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Modeling data using probability distributions is a simple yet powerful way to address countless problems in statistics and learning. Typical applicative topics encountered in this thesis encompass modeling population dynamics in biology, summarizing complex datasets for automated machine learning, and public policy evaluation thanks to quantile regression. This thesis develops numerical schemes with provable performance guarantees to perform machine learning over the space of probability distributions. Manipulating such probability distributions requires new type of computational methods, which can cope with the discretization of distributions using point clouds and can integrate additional invariances of the problems. This raises both computational challenges (providing scalable and problem-independent numerical schemes) and theoretical questions (ensuring smoothness and expressiveness of the models for the topology of the convergence in law) which are addressed in this thesis. Optimal transport (OT), which offers a geometrical toolbox to compare probability distributions, is the cornerstone of this work. More precisely, we leverage the entropic regularization approach to OT, to enable scalable models which can be trained by gradient descent methods. In Chapter 1, we introduce a new class of neural network architectures processing probability measures in their Lagrangian form (obtained by sampling) as both inputs and outputs. The formulation is versatile enough to adapt to desired tasks from classification, regression to training of generative networks, and is characterized by robustness and universal approximation properties. In Chapter 2, we show that this framework can be adapted to perform regression with customized invariance requirements on probability measure inputs, in a way that also preserves its robustness and approximation capabilities. This method is proven to be of interest to design expressive, adaptable summaries of datasets referred to as "meta-features", in the context of automated machine learning. Finally, we consider probabilities as objects of interest for inference in Chapter 3: we demonstrate that the resort to entropy eases the computation of conditional multivariate quantiles. We introduce the regularized vector quantile regression problem, provide a scalable algorithm to compute multivariate quantiles and show that it benefits from desirable asymptotic properties.

Résumé

Modéliser des données à l'aide de distributions de probabilité est un moyen simple mais puissant de résoudre d'innombrables problèmes en statistiques et en apprentissage. Les sujets applicatifs typiques rencontrés dans cette thèse comprennent la modélisation des dynamiques de populations en biologie, la synthèse de bases de données complexes pour l'apprentissage automatique et l'évaluation des politiques publiques par la régression de quantile. Manipuler de telles distributions nécessite un nouveau type de méthodes computationnelles, adaptées à la discrétisation des distributions par des nuages de points et pouvant incorporer des invariances supplémentaires. Cela soulève à la fois des défis de calcul (fournir des schémas numériques efficaces et indépendants du problème) et des questions théoriques (assurer la régularité et l'expressivité des modèles pour la topologie de la convergence en loi) qui sont abordés dans cette thèse. Le transport optimal (TO) est la pierre angulaire de ce travail, qui propose une boîte à outils géométrique pour comparer des distributions de probabilité. Plus précisément, nous exploitons l'approche de régularisation entropique du TO, construisant des modèles efficaces qui peuvent être appris par des méthodes de descente de gradient. Dans le chapitre 1, nous introduisons une nouvelle classe d'architectures neuronales qui gère des mesures de probabilité sous leur forme lagrangienne (obtenue par échantillonnage) en tant qu'entrées et sorties. La formulation est suffisamment polyvalente pour s'adapter à la variété des tâches souhaitées, de la classification et de la régression aux réseaux génératifs, et se caractérise par sa robustesse et ses propriétés d'approximation universelle. Dans le chapitre 2, nous montrons que ce cadre peut être adapté pour effectuer des tâches de régression avec invariances additionnelles dont les entrées sont des mesures de probabilité, en préservant sa robustesse et ses capacités d'approximation. Cette méthode est utilisée pour concevoir des résumés expressifs et adaptables de bases de données, appelés "meta-features", dans le contexte de l'apprentissage automatisé. Enfin, nous considérons les probabilités comme des objets d'intérêt pour l'inférence au chapitre 3: nous montrons que le recours à l'entropie facilite le calcul des quantiles conditionnels multivariés. Nous introduisons le problème de régression de quantile vectoriel régularisé, fournissons un algorithme efficace pour calculer les quantiles multivariés et montrons qu'il bénéficie de propriétés asymptotiques souhaitables.

Introduction

Dealing with probability measures is a crucial challenge in machine learning, whether it be in supervised and unsupervised settings. While learning with underlying probability measures has been considered in different fields, deep learning architectures do not offer obvious tools to address learning from distributions. Probability distributions have been however the object of numerous innovations in the field of optimal transport, from which we take inspiration to propose new computational methods dealing specifically with probability measures. We show that learning from probability distributions can be eased thanks to dedicated models compatible with entropy-regularized optimal transport. In settings ranging from neural networks to statistical applications, we show that representing objects of interest as probability distributions comes with several computational and theoretical advantages. We introduce a general pipeline to support measures in neural architectures, that is able to cope with desired invariance properties, and propose to ease the computation of quantile regression in the multivariate case using the entropy.

Background

Statistics and Machine learning over the space of distributions. The application of machine learning techniques to a wide variety of tasks and settings has been shedding light upon its predictive power as well as its limitations. In supervised learning, the input dataset is composed of labelled examples (X i , Y i ) n i=1 , where the observation X i belongs to a feature space X (for instance, an image with varying pixel intensities), and the label Y i encodes a target value (eg, whether it represents a dog). Within supervised learning, classification intends to learn from categorical labels, a classification rule f such that Y i ≈ f (X i ) in a certain sense, so that the class of a new input X can be predicted and the rule generalizes well. Similarly, regression tasks aim at predicting data characteristics Y i using continuous labels. Its most common instance lies in linear regression, where f is affine. While the latter consists in assessing the conditional mean of a response variable Y to a set of predictors X, quantile regression goes beyond that by allowing analysis of the response at any quantile of its distribution. On the other hand, learning from unlabelled data (X i ) n i=1 in a data space X is called unsupervised learning. Procedures of interest include density fitting, which 1 corresponds to parameterizing the underlying, unknown distribution of the data with a parametric distribution. The field has sparked interest recently notably through generative models [Goodfellow et al., 2014, Kingma and[START_REF] Kingma | Auto-encoding variational bayes[END_REF], that enable to generate other examples resembling the input data through dimensionality reduction.

The success of such procedures relies heavily on the nature of the instance space X , as well as the metrics used to perform learning. For instance, it is worth noting that a lot of data types can be represented as discrete probability distributions, namely of the form X = p i=1 µ i δ x i ∈ P(Ω), where x i belongs to another space Ω, the weights µ i 0 are such that p i=1 µ i = 1 and P(Ω) stands for the space of probability measures with ground space Ω. This representation is naturally invariant in the ordering of the ground instances (x i ) p i=1 . Such objects can also be seen as random vectors X distributed according to µ = (µ i ) p i=1 , which is written X ∼ µ. Consequently, we alternatively denote them as objects belonging to P(Ω) or to R(Ω), the space of random vectors with ground space Ω. As such, we consider two random vectors having the same distribution as equivalent and indistinguishable. Their introduction to model for instance bags-of-images [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF] or color transfer [START_REF] Pitié | Automated colour grading using colour distribution transfer[END_REF] in computer vision, shape registration in computer graphics [START_REF] Solomon | Convolutional wasserstein distances: Efficient optimal transportation on geometric domains[END_REF], bags-of-words in natural language processing [START_REF] Kusner | From word embeddings to document distances[END_REF], to scan variations in neuroimaging [START_REF] Gramfort | Fast Optimal Transport Averaging of Neuroimaging Data[END_REF], among other fields, still stimulates interest to this day. In fact, datasets themselves can be considered as input instances X ∈ X . In this setting, the goal of uncovering the best-performing algorithm for a task at hand has fuelled research for more than four decades [START_REF] Rice | The algorithm selection problem[END_REF], in the name of automated machine learning, referred to as auto-ML [START_REF] Hutter | Automated Machine Learning: Methods, Systems, Challenges[END_REF]. Task-dependence as well as computational challenges linked to high dimensionality are intended to be alleviated notably by the design of expressive summaries of datasets called meta-features [START_REF] Brazdil | Metalearning: Applications to data mining[END_REF]. All in all, while these recent works have seen a more persistant resort to probability measures within their frameworks, the lack of unifying pipeline composed of adapted operations on raw probabilities is still a major bottleneck to the wide spread of this class of methods. In this thesis, we tackle this problem by proposing a general framework to process raw probability measures in neural networks, as both inputs and outputs. Section 2 below highlights these contributions, which are detailed in Chapter 1 -Section 4. the desirably recovered properties. Among them, symmetries and invariances play a major role in coping with input variabilities linked to their high dimensionality. Namely, a function f from an instance space Ω is said to be invariant under the action of a group G if

∀x ∈ Ω, g ∈ G, f (g • x) = f (x) An f : Ω → Ω is said to be G-equivariant (or G-covariant) if ∀x ∈ Ω, g ∈ G, f (g • x) = g • f (x)
Neural networks have long been designed to satisfy such invariance properties [Shawe-Taylor, 1993], such as original convolutional networks [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF][START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] or wavelet scattering networks [START_REF] Bruna | Invariant scattering convolution networks[END_REF] for images. More recently, the necessity to deal with broader input types such as point clouds [START_REF] Zaheer | Deep sets[END_REF], Qi et al., 2017a[START_REF] Hartford | Deep models of interactions across sets[END_REF] or sequences [START_REF] Vaswani | Attention is all you need[END_REF][START_REF] Lee | Set transformer: A framework for attention-based permutation-invariant neural networks[END_REF][START_REF] Murphy | Janossy pooling: Learning deep permutation-invariant functions for variable-size inputs[END_REF] spurred renewed interest on invariant and equivariant architectures. Initially designed to extend classical convolutional networks [START_REF] Scarselli | The graph neural network model[END_REF][START_REF] Bruna | Spectral networks and locally connected networks on graphs[END_REF][START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF], graph neural networks now also support invariance or equivariance properties with respect to the whole permutation group [Kondor and Trivedi, 2018, Maron et al., 2019a[START_REF] Keriven | Universal invariant and equivariant graph neural networks[END_REF]. General treatment of symmetries in the case of finite subgroups of the symmetric group have been investigated [START_REF] Ravanbakhsh | Equivariance through parameter-sharing[END_REF] as well as in the infinite case [Kondor et al., 2018[START_REF] Cohen | Group equivariant convolutional networks[END_REF][START_REF] Weiler | 3d steerable cnns: Learning rotationally equivariant features in volumetric data[END_REF]). Quantifying their expressive power through universal approximation is to this day an active field of research [Maron et al., 2019a[START_REF] Xu | How powerful are graph neural networks? 7th International Conference on Learning Representations[END_REF][START_REF] Keriven | Universal invariant and equivariant graph neural networks[END_REF]. Despite these recent advances largely focused on point sets and graphs, the issue of dealing with invariant architectures processing probability measure inputs is still a major bottleneck in the field. In this thesis, we introduce a framework that performs regression on probability measure inputs, with customized invariance requirements, and illustrate its applicative relevance in the context of automated machine learning. Section 2 below highlights these contributions, which are detailed in Chapter 2 -Section 5.

Optimal transport methods in learning. Learning from probability distributions requires adapted metrics expressing meaningful notions of proximities. Among them, ϕ-divergences [START_REF] Csiszar | i-divergence geometry of probability distributions and minimization problems[END_REF] have been widely used thanks to their computational simplicity, but suffer from the drawback of not metrizing weak convergence. Therefore, other metrics such as Maximum Mean Discrepencies [START_REF] Gretton | A kernel method for the two-sample-problem[END_REF], Optimal Transport (OT) [START_REF] Kantorovich | On the transfer of masses[END_REF][START_REF] Villani | Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften[END_REF] or related Sinkhorn divergences [START_REF] Genevay | Learning generative models with sinkhorn divergences[END_REF][START_REF] Feydy | Interpolating between optimal transport and MMD using sinkhorn divergences[END_REF] have been put in the spotlight. The in-depth study of transport maps [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF][START_REF] Villani | Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften[END_REF], such as their representation as gradients of convex functions [START_REF] Ryff | Measure preserving transformations and rearrangements[END_REF][START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF][START_REF] Mccann | Existence and uniqueness of monotone measure-preserving maps[END_REF] allows for a generalization of monotone functions in higher dimension, which makes them a good candidate for statistical applications such as quantile regression [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF][START_REF] Carlier | Vector quantile regression beyond the specified case[END_REF]. The original OT formulation consists of a linear program [START_REF] Kantorovich | On the transfer of masses[END_REF] that writes, for a ground cost c :

Ω × Ω → R + , min (X,Y )∼π∈Π(α,β) E π [c(X, Y )]
where the minimum is taken over Π(α, β), defined as the set of all transport plans π with fixed marginal distributions α ∈ P(Ω) and β ∈ P(Ω), which reads

Π(α, β) def. = {π ∈ P(Ω 2 ), ∀(A, B) ⊂ Ω 2 , π(A × Ω) = α(A), π(Ω × B) = β(B)}
This problem can be solved using the network simplex or interior-point methods, with a complexity of at most O(n 3 log(n)) (see for instance [START_REF] Goldberg | Finding minimum-cost circulations by canceling negative cycles[END_REF]) for two discrete distributions of size n. In the case of two equal uniform discrete marginal distributions, also known as linear assignment problem, the optimal π is a permutation matrix [START_REF] Bertsimas | Introduction to linear optimization[END_REF], and the exact problem can be solved using the early Hungarian algorithm [START_REF] Borchardt | De investigando ordine systematis aequationum differentialium vulgarium cujuscunque[END_REF] or the auction algorithm [START_REF] Bertsekas | A new algorithm for the assignment problem[END_REF] and their variants. A typical choice lies in c = d, with d a distance on Ω, in which case the minimum yields the 1-Wasserstein distance, denoted W 1 :

W 1 (α, β) def.
= min π∈Π(α,β) Ω 2

x -y dπ(x, y) which is known to be a norm and to metrize weak convergence (see [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF], Proposition 5.1 and Theorem 5.11). Approximate computations have eased its application to high dimensional problems [START_REF] Levy | Notions of optimal transport theory and how to implement them on a computer[END_REF]Schwindt, 2018, Peyré andCuturi, 2019]. Strong regularizers such as the entropy [START_REF] Wilson | The use of entropy maximising models, in the theory of trip distribution, mode split and route split[END_REF][START_REF] Erlander | The gravity model in transportation analysis: theory and extensions[END_REF][START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] have long been considered to force the solution to have a spread non-sparse support, which stabilizes the computation while ensuring the objective is strongly convex. In practice, Sinkhorn's algorithm [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] enables fast parallelizable computations to solve the ε-regularized counterpart of the original problem, namely min

(X,Y )∼π∈Π(α,β) E π [c(X, Y )] -εE(π|α ⊗ β)
where E(π|α ⊗ β) stands for the relative entropy of the joint coupling π with respect to the product measure α ⊗ β, which reads

E(π)
def.

= Ω×Ω log Å dπ(x, y) dα(x)dβ(y)

ã dπ(x, y)
This formulation is known to be a near-linear time approximation of the original problem [START_REF] Altschuler | Near-linear time approximation algorithms for optimal transport via sinkhorn iteration[END_REF], and can be extended to benefit from stochastic optimization [START_REF] Genevay | Stochastic optimization for large-scale optimal transport[END_REF], acceleration techniques [START_REF] Altschuler | Near-linear time approximation algorithms for optimal transport via sinkhorn iteration[END_REF][START_REF] Scieur | Regularized nonlinear acceleration[END_REF][START_REF] Dvurechensky | Computational optimal transport: Complexity by accelerated gradient descent is better than by sinkhorn's algorithm[END_REF], improved complexity on gridded spaces using convolutions [START_REF] Solomon | Convolutional wasserstein distances: Efficient optimal transportation on geometric domains[END_REF], multi-scale approaches [START_REF] Schmitzer | A sparse multiscale algorithm for dense optimal transport[END_REF], online settings [START_REF] Mensch | Online sinkhorn: optimal transportation distances from sample streams[END_REF], and to cope with multi-marginal problems [START_REF] Benamou | Iterative bregman projections for regularized transportation problems[END_REF], as well as unbalanced transport [START_REF] Chizat | Unbalanced optimal transport: Models, numerical methods, applications[END_REF]. OT is particularly appreciated for its ability to leverage the underlying geometry of the data, which can be strengthened by enforcing structure constraints [START_REF] Alvarez-Melis | Structured optimal transport[END_REF]. Asymptotic behavior of empirical Wasserstein distances has been extensively studied over the last decades, see for instance [START_REF] Del Barrio | Tests of goodness of fit based on the l 2 -wasserstein distance[END_REF][START_REF] Del Barrio | Asymptotics for l 2 functionals of the empirical quantile process, with applications to tests of fit based on weighted wasserstein distances[END_REF][START_REF] Del Barrio | Central limit theorems for empirical transportation cost in general dimension[END_REF][START_REF] Rippl | Limit laws of the empirical wasserstein distance[END_REF] and recently extended to regularized distances [Bigot et al., 2019a[START_REF] Klatt | Empirical regularized optimal transport: Statistical theory and applications[END_REF]. Though OT is known to suffer from the curse of dimensionality [Dudley, 1969, Weed andBach, 2019], regularized counterparts benefit from better sample complexities [Genevay et al., 2019, Mena and[START_REF] Mena | Statistical bounds for entropic optimal transport: sample complexity and the central limit theorem[END_REF]. Closely related variational problems include Wasserstein gradient flows [START_REF] Jordan | The variational formulation of the fokker-planck equation[END_REF][START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF] and Wasserstein barycenters [START_REF] Agueh | Barycenters in the wasserstein space[END_REF][START_REF] Gouic | Existence and consistency of wasserstein barycenters[END_REF][START_REF] Bigot | Characterization of barycenters in the wasserstein space by averaging optimal transport maps[END_REF], for which algorithmic adaptations have been proposed [START_REF] Cuturi | Fast computation of wasserstein barycenters[END_REF]. OT has been extended as the Gromov-Wasserstein distance [START_REF] Mémoli | Gromov-wasserstein distances and the metric approach to object matching[END_REF] to cope with probability measures that do not share a common space. Though conditioned by a non-convex quadratic program, numerical frameworks based on conditional gradient [START_REF] Flamary | Pot python optimal transport library[END_REF] or entropic regularization have been proposed [START_REF] Peyré | Gromov-wasserstein averaging of kernel and distance matrices[END_REF], and its interpolation properties have been highlighted [START_REF] Vayer | Fused gromov-wasserstein distance for structured objects[END_REF]. All these theoretical and computational aspects have broadened the applicative settings of optimal transport, even beyond the aforementioned fields to astrophysics, for modeling the early universe [START_REF] Frisch | A reconstruction of the initial conditions of the universe by optimal mass transportation[END_REF], music transcription [START_REF] Flamary | Optimal spectral transportation with application to music transcription[END_REF], genomics [START_REF] Evans | The phylogenetic kantorovich-rubinstein metric for environmental sequence samples[END_REF], statistical learning, to assess the convergence of various algorithms [START_REF] Canas | Learning probability measures with respect to optimal transport metrics[END_REF], fluid dynamics [START_REF] Gallouët | A lagrangian scheme à la brenier for the incompressible euler equations[END_REF], economics, for matching markets modeling [START_REF] Dupuy | Personality traits and the marriage market[END_REF] or fairness [START_REF] Gordaliza | Obtaining fairness using optimal transport theory[END_REF].

Quantile Regression. First introduced in the early 19 th century by Legendre [START_REF] Legendre | Nouvelles méthodes pour la détermination des orbites des comètes[END_REF] and Gauss [START_REF] Gauss | Théorie du mouvement des corps sélestes parcourant des sections coniques autour du soleil[END_REF] to model the shape of the earth and movements of celestial bodies, the use of least squares still gathers interest to this day to estimate conditional means, due to their computational ease and optimality under normal errors [Gauss, 1822]. However, Edgeworth pointed out the median as a preferable alternative to the mean, particularly in the case of Gaussian mixtures [START_REF] Edgeworth | Xxii. on a new method of reducing observations relating to several quantities[END_REF]. The ability to consider other quantiles of the response variable was pioneered in [START_REF] Koenker | Regression quantiles[END_REF], that estimate the t-quantile (t ∈ [0; 1]) of variable ε = Y -q t (x) conditional to X = x by minimizing the loss function

E [tε + + (1 -t) ε -|X],
where ε + and ε -respectively refer to the positive and negative parts of ε. It is common practice to stipulate a linear form of the quantiles q t (x) = β t x + α t , in which case the problem boils down to solving min αt,βt

E Ä Y -β t X -α t ä + + (1 -t) Ä β t X + α t ä
Strong incentives to analyze conditional distributions at arbitrary quantiles include a range of applicative settings, from healthcare [START_REF] Koenker | Quantile regression[END_REF][START_REF] Austin | The use of quantile regression in health care research: A case study examining gender differences in the timeliness of thrombolytic therapy[END_REF][START_REF] Azagba | Fruit and vegetable consumption and body mass index: A quantile regression approach[END_REF], bioinformatics [START_REF] Song | QRank: a novel quantile regression tool for eQTL discovery[END_REF], education [START_REF] Eide | The effect of school quality on student performance: A quantile regression approach[END_REF], finance [START_REF] Zietz | Determinants of house prices: A quantile regression approach[END_REF], ecology [START_REF] Cade | A gentle introduction to quantile regression for ecologists[END_REF] to reduction of inequalities [START_REF] Chamberlain | Quantile regression, censoring, and the structure of wages[END_REF][START_REF] Buchinsky | Changes in the U.S. Wage Structure 1963-1987: Application of Quantile Regression[END_REF][START_REF] Buchinsky | The dynamics of changes in the female wage distribution in the USA: a quantile regression approach[END_REF][START_REF] Melly | Decomposition of differences in distribution using quantile regression[END_REF]. For instance, [START_REF] Koenker | Quantile regression[END_REF] apply quantile regression to the case of infant birthweight, showing that offering prenatal care has much larger impact on the lower quantiles of the distribution. [START_REF] Chamberlain | Quantile regression, censoring, and the structure of wages[END_REF][START_REF] Buchinsky | Changes in the U.S. Wage Structure 1963-1987: Application of Quantile Regression[END_REF] have considered the technique to leverage the impact of union status and education on wage inequalities, showing for instance that union status has a much larger effect on lower quantiles of the wage distribution. [START_REF] Azagba | Fruit and vegetable consumption and body mass index: A quantile regression approach[END_REF] have shown that increasing the intake of fruits and vegetables is more effective to mitigate the risk of obesity at the higher quantiles of the body mass index. Quantile regression coefficients can be interpreted as estimators for treatment effects given a control population [START_REF] Lehmann | Nonparametrics: statistical methods based on ranks[END_REF], Doksum, 1974], which extends to the case of p different treatments [START_REF] Koenker | Quantile regression[END_REF]. There is, to this day, no consensus on how to extend quantile regression to the case of a multivariate response. Among other proposals [START_REF] Chaudhuri | On a geometric notion of quantiles for multivariate data[END_REF][START_REF] Koltchinskii | M-estimation, convexity and quantiles[END_REF][START_REF] Serfling | Nonparametric multivariate descriptive measures based on spatial quantiles[END_REF][START_REF] Hallin | Multivariate quantiles and multiple-output regression quantiles: From l 1 optimization to halfspace depth[END_REF][START_REF] Belloni | On multivariate quantiles under partial orders[END_REF][START_REF] Kong | Quantile tomography: using quantiles with multivariate data[END_REF], [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF][START_REF] Carlier | Vector quantile regression beyond the specified case[END_REF] introduce a notion of multivariate quantile based on optimal transport. They define the conditional quantile of Y |X = x as the Brenier's map between a fixed distribution (for instance, multivariate uniform on a cube) and the law of Y |X = x. Thanks to polar factorization [START_REF] Ryff | Measure preserving transformations and rearrangements[END_REF][START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF][START_REF] Mccann | Existence and uniqueness of monotone measure-preserving maps[END_REF], this (multivariate) quantile function is known to be the gradient of a convex function, extending the notion of monotonicity to the multivariate case, and allowing to retrieve the whole monotone function at once, as opposed to the original "t by t" approach. In practice, this problem is solved by correlation maximization under an additional mean-independence constraint, namely max

(U,X,Y )∼π E π î U Y ó s.t. U ∼ U Ä [0, 1] d ä , (X, Y ) ∼ ν, E [X|U ] = 0
As hinted at above, practical computations of such multivariate quantiles is still a major bottleneck to the wide spread of this method, that relies on linear programming. In this thesis, we propose to widen its use by considering a regularized version of the problem. Section 2 below highlights these contributions, which are detailed in Chapter 3 -Section 6.

We now present in more technical details our original contributions, from both the theoretical and empirical standpoints.

Summary of Contributions Chapter 1: Stochastic Deep Networks

This chapter provides a unifying framework to process discrete measures in neural architectures, backed by theoretical and empirical contributions.

Previous works. While initially tailored for images [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] and speech [START_REF] Hinton | Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups[END_REF], deep neural networks have been designed to support increasingly complex structured data types, such as shapes [START_REF] Wu | 3d shapenets: A deep representation for volumetric shape modeling[END_REF], sounds [START_REF] Lee | Unsupervised feature learning for audio classification using convolutional deep belief networks[END_REF], texts [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF], graphs [START_REF] Henaff | Deep convolutional networks on graphstructured data[END_REF]. Such architectures rely on the composition of elementary operations handling vectors that stream well on GPUs, and that can be automatically differentiated using back-propagation. Their extension to sequences of vectors had enormous impact [START_REF] Hochreiter | Long short-term memory[END_REF]. More recently, learning from unordered samples has drawn attention since the seminal works of [START_REF] Ravanbakhsh | Deep learning with sets and point clouds[END_REF][START_REF] Zaheer | Deep sets[END_REF], Qi et al., 2017a] that design neural architectures tailored for point set inputs.

In this light, architectures generating point clouds have been developed [START_REF] Fan | A point set generation network for 3d object reconstruction from a single image[END_REF][START_REF] Achlioptas | Learning representations and generative models for 3D point clouds[END_REF][START_REF] Yi | Gspn: Generative shape proposal network for 3d instance segmentation in point cloud[END_REF]. Discussions on their limitations have also emerged [Wagstaff et al., 2019, Segol and[START_REF] Segol | On universal equivariant set networks[END_REF]. Previous works were also aware of the importance of order, and manage to handle sequences recursively with attention mechanisms [START_REF] Vinyals | Order matters: Sequence to sequence for sets[END_REF][START_REF] Vinyals | Pointer networks[END_REF], which has paved the way for a stream of follow-up works in the field of natural language processing [START_REF] Vaswani | Attention is all you need[END_REF][START_REF] Lee | Set transformer: A framework for attention-based permutation-invariant neural networks[END_REF]. Similar ideas can be found in point process models, which allow for the analysis of counting measures or random sets. Poisson [START_REF] Rajaram | Poisson-networks: A model for structured point processes[END_REF] and Hawkes processes [Belanger et al., 2018, Mei and[START_REF] Mei | The neural hawkes process: A neurally selfmodulating multivariate point process[END_REF] are among the most popular models that offer basis for deep parameterization [Xiao et al., 2017a[START_REF] Du | Recurrent marked temporal point processes: Embedding event history to vector[END_REF][START_REF] Mei | The neural hawkes process: A neurally selfmodulating multivariate point process[END_REF], Xiao et al., 2017b], mostly using likelihood-based approaches [START_REF] Belanger | Representation learning for seismic hawkes processes[END_REF][START_REF] Du | Recurrent marked temporal point processes: Embedding event history to vector[END_REF][START_REF] Mei | The neural hawkes process: A neurally selfmodulating multivariate point process[END_REF].

All in all, while learning with underlying probability measures has been considered in different fields [START_REF] Muandet | Learning from distributions via support measure machines[END_REF][START_REF] Poczos | Distribution-free distribution regression[END_REF][START_REF] Pevny | Approximation capability of neural networks on spaces of probability measures and tree-structured domains[END_REF], providing a unifying deep learning framework supporting raw probabilities in accordance with the convergence in law is, to the best of our knowledge, a new concept. Various applicative settings create a strong incentive for devising probability distribution-based neural networks. In computer vision for instance, as opposed to embedding the inputs on a grid, representing 3D objects as probability measures alleviates the computational burden and helps preserve topological structure as well as natural invariances. Moreover, in fields ranging from physics [START_REF] Godin | Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator[END_REF], biology [START_REF] Grover | Measuring single-cell density[END_REF], ecology [START_REF] Tereshko | Reaction-diffusion model of a honeybee colony's foraging behaviour[END_REF] to census data [START_REF] Guckenheimer | The dynamics of density dependent population models[END_REF], encoding populations at a macroscopic level with probability measures, without requiring to monitor individual trajectories and regardless of the population size, eases the pressure of experimental costs or privacy concerns.

Though analogies can be seen between discrete uniform probability measures and point clouds, as architectures thereof are both expected to be permutation invariant, often equivariant to geometric transformations (translations, rotations) and capture local structure of points [START_REF] Chen | Unsupervised deep haar scattering on graphs[END_REF][START_REF] Cheng | Deep haar scattering networks[END_REF][START_REF] Guttenberg | Permutationequivariant neural networks applied to dynamics prediction[END_REF], their natural topologies differ. In sharp contrast with architectures dealing with point clouds that use the Hausdorff distance, we resort to the convergence in law, also known as the weak-* convergence of measures, that is metrized by the Wasserstein distance. As such, some architectures continuous for the Hausdorff distance are not continuous for the convergence in law, for instance due to max pooling steps [Qi et al., 2017a]. Optimal transport (OT) has recently been growing in popularity in machine learning, notably due to its approximate computations obtained with strongly convex regularizers such as the entropy [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF], eligible for fast parallelizations. The advantages of this regularization provided the bases for the use of OT in various applicative settings [START_REF] Courty | Optimal transport for domain adaptation[END_REF][START_REF] Rolet | Fast dictionary learning with a smoothed wasserstein loss[END_REF][START_REF] Huang | Supervised word mover's distance[END_REF]. Although Wasserstein metrics have long been taken into consideration for inference purposes [START_REF] Bassetti | On minimum kantorovich distance estimators[END_REF], their introduction in deep learning architectures is somewhat recent, whether it be for generative tasks [START_REF] Bernton | Inference in generative models using the Wasserstein distance[END_REF][START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF][START_REF] Genevay | Learning generative models with sinkhorn divergences[END_REF] or regression purposes [START_REF] Frogner | Learning with a wasserstein loss[END_REF][START_REF] Hashimoto | Learning population-level diffusions with generative rnns[END_REF].

Contributions. The purpose of this work is to propose an extension of these approaches through a uniting framework that enables to process probability measures directly in deep architectures, regardless of the task considered.

(i) Learning from probability measures: we introduce a general pipeline to process probability measures or random vectors as inputs to both supervised and unsupervised machine learning tasks, which relies numerically on the Lagrangian representation of measures (obtained by sampling). Parameterized by interaction functionals f : R q ×R q → R r , our original layers map R q -supported random vectors (denoted X ∈ R(R q )) to R r -supported counterparts, in the following way

T f : X ∈ R(R q ) → E X ∼X [f (X, X )] ∈ R(R r ) (1)
where X is an independent copy of X, that has the same law. Maps (1) are also characterized by a natural invariance in the ordering of the data observations. Resulting architectures are designed as iterative transformations of random vectors using such layers, namely

X ∈ R(R q 0 ) → Y = T f T • • • • • T f 1 (X) ∈ R(R q T ) (2)
where f t : R q t-1 × R q t-1 → R qt . Such networks are versatile enough to (i) map measures to measures; and (ii) bridge the gap between measures and Euclidean spaces (with deterministic outputs). They are thus suited to the wide variety of machine learning applications.

(ii) Robustness and Universal Approximation: on the theoretical side, these architectures are granted Lipschitz robustness in the sense of the Wasserstein-1 distance

∀ (X, Y ) ∈ R(R q ) 2 , W 1 (T f (X), T f (Y )) 2rC(f ) W 1 (X, Y ) (3) 
as long as the interaction functional f is C(f )-Lipschitz itself in its individual variables. They also inherit from the universal approximation capability of neural networks:

Theorem 1. Let F : R(Ω) → R(Ω ) be a continuous map for the convergence in law, where Ω ⊂ R q and Ω ⊂ R r are compact. Then ∀η > 0 there exists three continuous maps f, g, h such that

∀X ∈ R(Ω), W 1 (F(X), T h • Λ • T g • T f (X)) η. ( 4 
)
where Λ : X → (X, U ) concatenates a uniformly distributed random vector U .

(iii) Empirical illustrations: on the applicative side, we provide instanciations of such networks and show their versatility on a set of both supervised and unsupervised applications, namely classification, prediction and generative networks (see for instance Figure 1 for examples of generated 2D measures).

These contributions have been published in [START_REF] De Bie | Stochastic deep networks[END_REF]. Chapter 2: Distribution-Based Invariant Deep Networks for Automated Machine-Learning

Previous works. Learning from samples with a neural architecture compliant with domain-and application-dependent invariance or equivariance properties ensures a more robust model, better capturing the data geometry.

Neural architectures benefiting from such properties have been pioneered by [START_REF] Ravanbakhsh | Deep learning with sets and point clouds[END_REF][START_REF] Zaheer | Deep sets[END_REF], Qi et al., 2017a] in the case of point sets subject to invariance or equivariance, including some works with a particular focus on dataset inputs [START_REF] Edwards | Towards a neural statistician[END_REF], which have been extended to permutation equivariance across sets [START_REF] Hartford | Deep models of interactions across sets[END_REF]. Similar ideas can be found in attention-based mechanisms for sequences [START_REF] Vaswani | Attention is all you need[END_REF][START_REF] Lee | Set transformer: A framework for attention-based permutation-invariant neural networks[END_REF][START_REF] Murphy | Janossy pooling: Learning deep permutation-invariant functions for variable-size inputs[END_REF]. In the same vain, invariant and equivariant architectures have been expanded to support graphs [START_REF] Herzig | Mapping images to scene graphs with permutation-invariant structured prediction[END_REF], Kondor et al., 2018, Maron et al., 2019a[START_REF] Chen | On the equivalence between graph isomorphism testing and function approximation with gnns[END_REF][START_REF] Albooyeh | Incidence networks for geometric deep learning[END_REF]. Characterizations of invariance or equivariance under group actions have been proposed in the finite [START_REF] Gens | Deep symmetry networks[END_REF][START_REF] Cohen | Group equivariant convolutional networks[END_REF], Ravanbakhsh et al., 2017] or infinite case [START_REF] Wood | Representation theory and invariant neural networks[END_REF]Shawe-Taylor, 1996, Kondor andTrivedi, 2018]. A general characterization of linear layers on the top of a representation that are invariant or equivariant with respect to the whole permutation group has been proposed by [Maron et al., 2019a, Keriven andPeyré, 2019]. Expressive power of the proposed networks through universality results are known to hold in the case of sets [START_REF] Zaheer | Deep sets[END_REF], point clouds [Qi et al., 2017a], equivariant point clouds [START_REF] Segol | On universal equivariant set networks[END_REF], discrete measures [START_REF] De Bie | Stochastic deep networks[END_REF], invariant [Maron et al., 2019b] and equivariant [START_REF] Keriven | Universal invariant and equivariant graph neural networks[END_REF] graph neural networks. Closest to our work, [START_REF] Maron | On learning sets of symmetric elements[END_REF] devises a neural architecture invariant with respect to the ordering of samples and their features. The originality of our approach is that we do not fix in advance the number of samples, and consider probability distributions instead of point clouds.

In this work, distribution-based neural architectures [START_REF] De Bie | Stochastic deep networks[END_REF]] are extended to cope with an additional invariance in the features and labels, namely, the space supporting the distribution. This extra invariance is required to tackle the long-known Auto-ML problem (short for automated machine learning) [START_REF] Rice | The algorithm selection problem[END_REF][START_REF] Feurer | Efficient and robust automated machine learning[END_REF][START_REF] Hutter | Automated Machine Learning: Methods, Systems, Challenges[END_REF], which aims to identify a priori the machine learning (ML) configuration best suited to a dataset, in the sense of a given performance indicator (that entails both the learning algorithm and the hyperparameters thereof). The auto-ML rationale falls within the so-called democratization of machine learning [START_REF] Hutter | Automated Machine Learning: Methods, Systems, Challenges[END_REF]. However, as major bottlenecks towards that goal, the absence of a learning algorithm dominating other algorithms on all datasets [START_REF] Wolpert | The lack of A priori distinctions between learning algorithms[END_REF], together with the combinatorial structure of the search space make the auto-ML problem particularly arduous.

The ability to characterize a dataset by a set of relevant features, referred to as meta-features allows for solving the auto-ML problem through another supervised learning problem: given archives recording the performance of several ML algorithms on various datasets [START_REF] Vanschoren | Openml: Networked science in machine learning[END_REF], each dataset being described as a vector of meta-features, the best-performing algorithm (among these configurations) on a new dataset could be predicted from its meta-features. These meta-features are expected to be expressive summaries of input datasets, that preserve dataset similarities and are rather inexpensive to compute. Particular meta-features have been introduced, whether it be hand-crafted statistics [START_REF] Feurer | Efficient and robust automated machine learning[END_REF], Muñoz et al., 2018] or given by the performance of fast learning algorithms [START_REF] Pfahringer | Meta-learning by landmarking various learning algorithms[END_REF]. Closest to our work, Dataset2Vec [START_REF] Jomaa | Dataset2vec: Learning dataset meta-features[END_REF] extracts meta-features from point-set-represented datasets, through the classification task of identifying whether sub-samples of datasets are extracted from the same distribution. In sharp contrast, we advocate for the distribution representation of datasets endowed with the topology of the convergence in law. Other, though less related approaches consist in learning a generic model with quick adaptability to new tasks [START_REF] Finn | Probabilistic model-agnostic meta-learning[END_REF][START_REF] Yoon | Bayesian modelagnostic meta-learning[END_REF][START_REF] Perrone | Scalable hyperparameter transfer learning[END_REF]).

Contributions.

In this chapter, we advocate for the measure representation of datasets while offering theoretical and empirical grounds to design dataset meta-features by performing regression with customized invariance requirements.

(i) Distribution-based Invariant Regression: we design neural architectures achieving regression with customized invariance requirements, referred to as invariant regression, with probability measure inputs, where the natural invariance in the ordering of the instances is complemented by invariances in the ordering of the data features. Our motivating application is the design of dataset meta-features in automated machine learning, where inputs are datasets composed of both (d X -sized) data instances and (d Y -sized) meta-labels. Interaction functionals (1 are then required to satisfy the invariance property

∀σ ∈ S d X × S d Y , ∀(x, y) ∈ (R d X +d Y ) 2 , ϕ(σ(x), σ(y)) = ϕ(x, y) (5)
where S d denotes the d-sized permutation group, and

S d X × S d Y acts on R d X +d Y as: for x ∈ R d X , y ∈ R d Y and σ = (σ X , σ Y ) ∈ S d X × S d Y , σ(x, y) = [(x σ -1 X (i) ) i=1...d X ; (y σ -1 Y (j) ) j=1...d Y ] ∈ R d X +d Y .
The first layer of an invariant architecture of the form (2) is then required to be invariant for the whole network to be. In this setting, quantitative analysis is performed using the permutation-invariant Wasserstein-1 distance, namely, for two Ω-supported probability measures α, β

(denoted α, β ∈ M + 1 (Ω)) W 1 (α, β) = min σ∈S d X ×S d Y W 1 (σ α, β) (6) 
where σ still denotes (for simplicity) the push-forward operator between α ∈ M + 1 (Ω) and σ α ∈ M + 1 (Ω), which are considered indistinguishable.

(ii) Robustness and Universal Approximation: such architectures inherit from the Lipschitz property (3) as well as robustness with respect to small deformations, in the permutation-invariant Wasserstein-1 sense:

Proposition 1. For τ : R d → R d and ξ : R r → R r two Lipschitz maps, one has, for all α, β ∈ M + 1 (Ω), W 1 (ξ T ϕ (τ α), T ϕ (α)) sup x∈fϕ(τ (Ω)) ξ(x) -x 2 + 2r Lip(ϕ) sup x∈Ω τ (x) -x 2
Also, if τ is equivariant, the following holds:

W 1 (ξ T ϕ (τ α), ξ T ϕ (τ β)) 2r Lip(ϕ) Lip(τ ) Lip(ξ)W 1 (α, β)
Such architectures are also granted universal approximation capabilities:

Theorem 2. Let F : M + 1 (Ω) → R a S d X × S d Y -invariant
map continuous for the convergence in law, where Ω is compact. Then ∀η > 0, there exists two continuous maps ψ, ϕ such that

∀α ∈ M + 1 (Ω), |F(α) -ψ • T ϕ (α)| < η
where ϕ is S d X × S d Y -invariant and independent of F.

(iii) Empirical illustrations: we demonstrate the validity of the proposed architectures in the context of automated machine learning, to design dataset meta-features conditional to various meta-tasks, from distribution identification to performance model learning. The meta-features designed as such outperform previous approaches, whether it be handcrafted meta-features designed in the past two decades [START_REF] Feurer | Efficient and robust automated machine learning[END_REF], Muñoz et al., 2018] or their recent learnt counterparts [START_REF] Jomaa | Dataset2vec: Learning dataset meta-features[END_REF][START_REF] Maron | On learning sets of symmetric elements[END_REF].

These contributions have been published in [START_REF] De Bie | Distribution-based invariant deep networks for learning meta-features[END_REF].

Chapter 3: Regularized Vector Quantile Regression

This chapter provides a novel scalable numerical framework to perform Vector Quantile Regression (VQR) based on entropic regularization, complemented by statistical asymptotics analysis.

Previous works. Quantile regression, introduced by the seminal work of [START_REF] Koenker | Regression quantiles[END_REF] [START_REF] Koenker | Regression quantiles[END_REF], has become a popular tool to analyze the whole distribution of a response variable Y to a set of predictors X. It goes beyond classical median regression by allowing regression at any quantile t ∈ [0; 1] of the distribution. Originally, the t-quantile of variable ε = Y -q t (x) conditional to X = x is estimated by minimizing the loss function

E [tε + + (1 -t) ε -|X],
where ε + and ε - respectively refer to the positive and negative parts of ε. Stipulating a linear form of the quantiles q t (x) = β t x + α t , and without loss of generality that E[X] = 0, the problem boils down to solving min αt,βt

E Ä Y -β t X -α t ä + + (1 -t) α t (7)
whose dual formulation is known to be [START_REF] Koenker | Regression quantiles[END_REF] max

Vt E [V t Y ] , V t ∈ [0; 1], E [XV t ] = 0, E [V t ] = (1 -t) (8) 
As known since its original introduction [START_REF] Koenker | Regression quantiles[END_REF], this problem has a linear programming formulation. Associated with mild assumptions, complementary slackness leads to writing

V t = 1{Y > α t + β t X} (9) 
which turns constraints of (8) into

E î 1{Y > α t + β t X} ó = P(Y > α t + β t X) = (1 -t) E î X1{Y > α t + β t X} ó = 0 (10)
Strong incentives for designing a multivariate counterpart of (7) include capturing joint dependencies in the response variables, given the predictors, as well as recovering the whole monotone quantile function at once, as opposed to the "t by t" approach. [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF][START_REF] Carlier | Vector quantile regression beyond the specified case[END_REF] have proposed a multivariate extension of quantile regression based on optimal transport. They have shown [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF] that imposing a monotonicity constraint on the quantile curves

t → α t + β t X increasing on [0; 1] ( 11 
)
and defining U = 1 0 V t dt turns constraints (10) into

U is uniformly distributed over [0; 1], denoted U ∼ U ([0, 1]) X is mean-independent from U, namely E [X|U ] = E [X] = 0 (12)
Therefore, they consider as natural prolongation (see [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF], Theorem 3.3) the extension of the Monge-Kantorovich problem of optimal transport, with an additional constraint of mean-independence max

(U,X,Y )∼π E π [U Y ] s.t. U ∼ U ([0, 1]) , (X, Y ) ∼ ν, E [X|U ] = E [X] = 0
(13) where ν is the (given) distribution of the data. As opposed to the "t by t" approach, this global approach is strongly related to polar factorization [START_REF] Ryff | Measure preserving transformations and rearrangements[END_REF][START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF][START_REF] Mccann | Existence and uniqueness of monotone measure-preserving maps[END_REF] in the sense that it allows for the strong representation

Y = Q Y |X (U, X), U |X ∼ U([0; 1]) (14) 
where u → Q Y |X (u, X) is non-decreasing almost surely. Stipulating an affine form of the quantile, the Vector Quantile Regression (VQR) problem for a d-dimensional response variable Y , d 2, is the multivariate analogous of (13) max

(U,X,Y )∼π E π î U Y ó s.t. U ∼ U Ä [0, 1] d ä , (X, Y ) ∼ ν, E [X|U ] = 0 (15)
Similarly to ( 14), the strong representation holds, where the vector quantile of Y conditional to X = x is then the Brenier's map between U([0; 1] d ) and the law of Y |X = x, namely the gradient of a convex function.

In this context, the uniform U can be interpreted as a reference outcome for defining treatment effects [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF], where the distribution of an outcome for the untreated population is then uniform; (14) as well as the equivalent objective for (15) E π î Y -U 2 ó can also lead to interpret U as non-linear latent factors [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF], independent of predictors X, that best explain the variations in Y . The connection between U and a notion of continuous rank have also been highlighted (see for instance [START_REF] Koenker | Quantile regression[END_REF], Chapter 3.5 or [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF]). Optimality conditions are characterized as well when specification cannot be taken for granted [START_REF] Carlier | Vector quantile regression beyond the specified case[END_REF], which provides an alternative strong representation in that case.

While other approaches for the multivariate extension of quantile regression have been proposed [START_REF] Chaudhuri | On a geometric notion of quantiles for multivariate data[END_REF][START_REF] Koltchinskii | M-estimation, convexity and quantiles[END_REF][START_REF] Serfling | Nonparametric multivariate descriptive measures based on spatial quantiles[END_REF][START_REF] Hallin | Multivariate quantiles and multiple-output regression quantiles: From l 1 optimization to halfspace depth[END_REF][START_REF] Belloni | On multivariate quantiles under partial orders[END_REF][START_REF] Kong | Quantile tomography: using quantiles with multivariate data[END_REF], this work focuses on retrieving two desirable properties of quantiles in higher dimension, namely monotonicity and transport from a fixed distribution.

Previous methods for solving (15) rely on a vectorized version of the linear program (15) [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF]], yet the potential benefits of incorporating entropic regularization to this problem have been highlighted [START_REF] Carlier | Vector quantile regression beyond the specified case[END_REF].

Contributions. The main contributions of this chapter include a numerical framework to perform multivariate quantile regression as well as a statistical basis for hypothesis testing. (i) Regularized Vector Quantile Regression: we introduce the Regularized Vector Quantile Regression (RVQR) problem, whose primal formulation minimizes an ε-regularized counterpart of (15), namely max

Y 1 =Weight Y 2 =Thigh Circumference
(U,X,Y )∼π E π î U Y ó -εE π [log π(U, X, Y )] s.t. U ∼ U Ä [0, 1] d ä def. = µ, (X, Y ) ∼ ν, E [X|U ] = E [X] (16) 
whose discrete formulation reads max

π ij 0 ij π ij Ä u i y j ä -ε ij π ij log π ij s.t. j π ij = µ i , i π ij = ν j , j π ij x j = j ν j x j ( 17 
)
Its dual is the (unconstrained) RVQR problem min ψ,b j

ψ j ν j + ε i µ i log   j exp 1 ε î u i y j -b i x j -ψ j ó   (18) 
which alternatively writes min ϕ,ψ,b i

µ i ϕ i + j ψ j ν j + ε ij exp Å 1 ε [u i y j -ϕ i -b i x j -ψ j ]
ã .

Though initially conditioned by an additional mean-independence constraint, the RVQR problem (18) inherits from the regularity and scalability of entropy-regularized optimal transport [Cuturi, 2013, Peyré andCuturi, 2019].

(ii) Numerical Resolution: we propose a numerical scheme to perform RVQR in practice, that relies on solving the dual formulation (18), which is a smooth and unconstrained problem, through accelerated [START_REF] Nesterov | A method for solving the convex programming problem with convergence rate o(1/k 2 )[END_REF] gradient descent, which gives optimal convergence rates for first-order methods. With empirical illustrations on real datasets (see for instance Figure 11 for examples of obtained 2D quantiles), we retrieve classical quantile regression [START_REF] Koenker | Regression quantiles[END_REF] in the one-dimensional case, and show the computational advantages of regularization in higher dimension.

(iii) Statistical Analysis: we analyze statistical properties of the RVQR problem in the finite sample case, yielding a law of large numbers and a central limit theorem for the finite-dimensional dual potentials:

Proposition 2. The normalized RVQR finite-sample dual potentials are asymptotically Gaussian.

which paves the way for hypothesis testing on the RVQR regression coefficients.

Notations

Ambiant space. For two metric space X and Y, we denote by

• C(X ) the space of continuous real-valued functions on X ;

• C(X , Y) the space of continuous Y-valued functions on X ;

• M + 1 (X ) the set of Radon probability (i.e. with unit mass) measures supported on X ;

• R(X ) the set of random vectors supported on X .

Measures. We use capitals to denote random vectors (for instance, X). For a given random vector X ∈ R(X ), we denote α X ∈ M + 1 (X ) its law, which writes X ∼ α X . Two random vectors X, X having the same law are also denoted X ∼ X or alternatively α X = α X . It satisfies for any continuous map

f ∈ C(X ), E(f (X)) = X f (x)dα X (x). Its expectation is denoted E(X) = X xdα X (x) ∈ X .
In general, a compact support is denoted Ω. The Dirac measure at point x is δ x . We denote α n = 1 n n i=1 δ x i the empirical measure obtained from an i.i.d sample (x 1 , . . . , x n ). Let α ∈ M + 1 (X ) and β ∈ M + 1 (Y), we define Π(α, β)

def.

= {π ∈ M + 1 (X ×Y), ∀(A, B) ⊂ X ×Y, π(A× Y) = α(A), π(X × B) = β(B)} the set of probability distributions on X × Y with marginals α and β.

Measure operators. For a continuous map f : X → Y, we denote f : M + 1 (X ) → M + 1 (Y) the associated push-forward operator, which is a linear map between distribution satisfying, for α ∈ M + 1 (X ) and B ⊂ Y,

(f α)(B) = α(f -1 (B)); or equivalently, for g ∈ C(Y), Y g(y)d(f α)(y) = X g • f (x)dα(x). For (α, β) ∈ M + 1 (X ) × M + 1 (Y), their tensor product measure, denoted α ⊗ β ∈ M + 1 (X × Y), satisfies, for A ⊂ X and B ⊂ Y, (α ⊗ β)(A, B) = α(A)β(B) ; or equivalently, for g ∈ C(X × Y), X ×Y g(x, y)d(α ⊗ β)(x, y) = X Y g(x, y)dα(x)dβ(y).
Vectors and matrices. We use small letters (eg, a = (a 1 , . . . , a n ) ∈ R n ) for vectors and capitals for matrices (eg, A). For a matrix A = [A ij ], its transpose is denoted A . For two vectors (a, b) (respectively, two matrices (A, B)), their inner product is denoted a, b = i a i b i (respectively A, B denotes the Frobenius inner product). The probability n-simplex is denoted

Σ n = {a ∈ (R + ) n , i a i = 1}.
Invariances. We denote S d the d-sized permutation group. For x ∈ R d and σ ∈ S d , σ(x)

def. = (x σ -1 (i) ) i=1...d . For X ⊂ R d , the operator mapping α ∈ M + 1 (X ) to σ α ∈ M + 1 (X ) is still denoted σ by simplicity. A function F : M + 1 (X ) → R is then said to be S d -invariant if for all α ∈ M + 1 (X ) and σ ∈ S d , F(σ α) = F(α).
In that sense, α and its permuted counterpart σ α are then indistinguishable, hence M + 1 (X ) is endowed with the equivalence relation ∼ such that α ∼ β ⇐⇒ ∃σ ∈ S d , σ α = β. The corresponding quotient space is denoted M + 1 (X ) /∼ or alternatively R(X ) /∼ .

Chapter 1: Stochastic Deep Networks

Densities or probability distributions offer a promising alternative data representation to presently well-studied point sets or graphs in neural networks. This is particularly clear in computer vision, where this design can alleviate computational hurdle, as well as preserves the topological structure and retains invariances. Yet, current architectures are either application-oriented, therefore lack versatility, or suffer from the drawback of not metrizing the convergence in law.

In this chapter, we introduce a general neural network pipeline to handle probability measures in their Lagrangian form, which corresponds to sampling. This framework is versatile enough to either process probability measures using recurrent mechanisms, or bridge the gap between probability measures and Euclidean spaces. It is therefore well suited to the variety of machine learning applications, expected to process probability measures as both inputs and outputs.

We prove that these architectures benefit from the desirable property of Lipschitz robustness, and are actually universal approximators for functions mapping measures to measures, that are continuous for the convergence in law. We provide instanciations of such networks in various applicative settings, ranging from classification, generative networks, to predictive tasks. This chapter is based on [START_REF] De Bie | Stochastic deep networks[END_REF].

Introduction

Deep networks can now handle increasingly complex structured data types, starting historically from images [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] and speech [START_REF] Hinton | Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups[END_REF] to deal now with shapes [START_REF] Wu | 3d shapenets: A deep representation for volumetric shape modeling[END_REF], sounds [START_REF] Lee | Unsupervised feature learning for audio classification using convolutional deep belief networks[END_REF], texts [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] or graphs [START_REF] Henaff | Deep convolutional networks on graphstructured data[END_REF]. In each of these applications, deep networks rely on the composition of several elementary functions, whose tensorized operations stream well on GPUs, and whose computational graphs can be easily automatically differentiated through back-propagation. Initially designed for vectorial features, their extension to sequences of vectors using recurrent mechanisms, both as inputs [START_REF] Hochreiter | Long short-term memory[END_REF] or outputs [START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF] had an enormous impact, as showcased in machine translation systems [START_REF] Wu | Google's neural machine translation system: Bridging the gap between human and machine translation[END_REF].

Our goal is to devise neural architectures that can handle probability distributions under any of their usual form: as discrete measures supported on (possibly weighted) point clouds, or densities one can sample from. Such probability distributions are challenging to handle using recurrent networks because no order between observations can be used to treat them recursively (although some adjustments can be made, as discussed in [START_REF] Vinyals | Order matters: Sequence to sequence for sets[END_REF]) and because, in the discrete case, their size may vary across observations. There is, however, a strong incentive to define neural architectures that can handle distributions as inputs or outputs. This is particularly evident in computer vision, where the naive representation of complex 3D objects as vectors in spatial grids is often too costly memorywise, leads to a loss in detail, destroys topology and is blind to relevant invariances such as shape deformations. These issues were successfully tackled in a string of papers well adapted to such 3D settings [Qi et al., 2017a,b, Fan et al., 2017], including in the generative case [START_REF] Achlioptas | Learning representations and generative models for 3D point clouds[END_REF][START_REF] Yi | Gspn: Generative shape proposal network for 3d instance segmentation in point cloud[END_REF], even though discussions on their limitations have emerged [Wagstaff et al., 2019, Segol and[START_REF] Segol | On universal equivariant set networks[END_REF]. In other cases, ranging from physics [START_REF] Godin | Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator[END_REF], biology [START_REF] Grover | Measuring single-cell density[END_REF], ecology [START_REF] Tereshko | Reaction-diffusion model of a honeybee colony's foraging behaviour[END_REF] to census data [START_REF] Guckenheimer | The dynamics of density dependent population models[END_REF], populations cannot be followed at an individual level due to experimental costs or privacy concerns. In such settings where only macroscopic states are available, densities appear as the right object to perform inference tasks.

Previous works.

Specificities of Probability Distributions. Data described in point clouds or sampled i.i.d. from a density are given unordered. Therefore architectures dealing with them are expected to be permutation invariant; they are also often expected to be equivariant to geometric transformations of input points (translations, rotations) and to capture local structures of points. Permutation invariance or equivariance [START_REF] Ravanbakhsh | Deep learning with sets and point clouds[END_REF][START_REF] Ravanbakhsh | Equivariance through parameter-sharing[END_REF], or with respect to general groups of transformations [START_REF] Gens | Deep symmetry networks[END_REF][START_REF] Cohen | Group equivariant convolutional networks[END_REF], Ravanbakhsh et al., 2017] have been characterized, but without tackling the issue of locality. Pairwise interactions [START_REF] Chen | Unsupervised deep haar scattering on graphs[END_REF][START_REF] Cheng | Deep haar scattering networks[END_REF][START_REF] Guttenberg | Permutationequivariant neural networks applied to dynamics prediction[END_REF] are appealing and helpful in building permutation equivariant layers handling local information. Other strategies consist in augmenting the training data by all permutations or finding its best ordering [START_REF] Vinyals | Order matters: Sequence to sequence for sets[END_REF]. [Qi et al., 2017a,b] are closer to our work in the sense that they combine the search for local features to permutation invariance, achieved by max pooling.

(Point) Sets vs. Probability (Distributions). An important distinction should be made between point sets, and point clouds which stand usually for discrete probability measures with uniform masses. The natural topology of (point) sets is the Hausdorff distance. That distance is very different from the natural topology for probability distributions, that of the convergence in law, a.k.a the weak * topology of measures. The latter is metrized (among other metrics) by the Wasserstein (optimal transport) distance, which plays a key role in our work. This distinction between sets and probability is crucial, because the architectures we propose here are designed to capture stably and efficiently regularity of maps to be learned with respect to the convergence in law. Note that this is a crucial distinction between our work and that proposed in PointNet [Qi et al., 2017a] and PointNet++ [Qi et al., 2017b], which are designed to be smooth and efficients architectures for the Hausdorff topology of point sets. Indeed, they are not continuous for the topology of measures (because of the max-pooling step) and cannot approximate efficiently maps which are smooth (e.g. Lipschitz) for the Wasserstein distance. After the publication of this work, we came across [START_REF] Pevny | Approximation capability of neural networks on spaces of probability measures and tree-structured domains[END_REF], which, similarly to ours, considers learning from probability distributions, however restricted to the regression case, and providing universal approximators. Contrary to their work, we provide a unified framework that considers probability measures as both inputs and outputs, and offer regularity analysis in this more general case.

Another relevant line of work comes from point process models, which deal with dynamics of random counting measures or random sets and provide a coherent framework for event modeling, with flexible handling of time.

Popular models such as Poisson processes and Hawkes processes [START_REF] Belanger | Representation learning for seismic hawkes processes[END_REF][START_REF] Rajaram | Poisson-networks: A model for structured point processes[END_REF][START_REF] Mei | The neural hawkes process: A neurally selfmodulating multivariate point process[END_REF] offer basis for deep parametrizations and extensions, often in the form of recurrent networks [Xiao et al., 2017a[START_REF] Du | Recurrent marked temporal point processes: Embedding event history to vector[END_REF][START_REF] Mei | The neural hawkes process: A neurally selfmodulating multivariate point process[END_REF], Xiao et al., 2017b]. Likelihood-based approaches [START_REF] Belanger | Representation learning for seismic hawkes processes[END_REF][START_REF] Du | Recurrent marked temporal point processes: Embedding event history to vector[END_REF][START_REF] Mei | The neural hawkes process: A neurally selfmodulating multivariate point process[END_REF] overwhelmingly dominate the field, while few works use the Wasserstein metric [Xiao et al., 2017a].

Centrality of optimal transport. The Wasserstein distance plays a central role in our architectures that are able to handle measures. Optimal transport has recently gained popularity in machine learning due to fast approximations, which are typically obtained using strongly-convex regularizers such as the entropy [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF]. The benefits of this regularization paved the way to the use of OT in various settings [START_REF] Courty | Optimal transport for domain adaptation[END_REF][START_REF] Rolet | Fast dictionary learning with a smoothed wasserstein loss[END_REF][START_REF] Huang | Supervised word mover's distance[END_REF]. Although Wasserstein metrics have long been considered for inference purposes [START_REF] Bassetti | On minimum kantorovich distance estimators[END_REF], their introduction in deep learning architectures is fairly recent, whether it be for generative tasks [START_REF] Bernton | Inference in generative models using the Wasserstein distance[END_REF][START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF][START_REF] Genevay | Learning generative models with sinkhorn divergences[END_REF] or regression purposes [START_REF] Frogner | Learning with a wasserstein loss[END_REF][START_REF] Hashimoto | Learning population-level diffusions with generative rnns[END_REF]. The purpose of our work is to provide an extension of these works, to ensure that deep architectures can be used at a granulary level on measures directly. In particular, our work shares some of the goals laid out in [START_REF] Hashimoto | Learning population-level diffusions with generative rnns[END_REF], which considers recurrent architectures for measures (a special case of our framework). The most salient distinction with respect to our work is that our building blocks take into account multiple interactions between samples from the distributions, while their architecture has no interaction but takes into account diffusion through the injection of random noise.

Contributions.

In this chapter, we design deep architectures that can (i) map measures to measures; (ii) bridge the gap between measures and Euclidean spaces. They can thus accept as input for instance discrete distributions supported on (weighted) point clouds with an arbitrary number of points, can generate point clouds with an arbitrary number of points (arbitrary refined resolution) and are naturally invariant to permutations in the ordering of the support of the measure. The mathematical idealization of these architectures are infinite dimensional by nature, and they can be computed numerically either by sampling (Lagrangian mode) or by density discretization (Eulerian mode). The Eulerian mode resembles classical convolutional deep network, while the Lagrangian mode, which we focus on, defines a new class of deep neural models.

Our first contribution is to detail this new framework for supervised and unsupervised learning problems over probability measures, making a clear connexion with the idea of iterative transformation of random vectors. These architectures are based on two simple building blocks: interaction functionals and self-tensorization. This machine learning pipeline works hand-in-hand with the use of optimal transport, both as a mathematical performance criterion (to evaluate smoothness and approximation power of these models) and as a loss functional for both supervised and unsupervised learning.

Our second contribution is theoretical: we prove both quantitative Lipschitz robustness of these architectures for the topology of the convergence in law and universal approximation power.

Our last contribution is a showcase of several instantiations of such deep stochastic networks for classification (mapping measures to vectorial features), generation (mapping back and forth measures to code vectors) and prediction (mapping measures to measures, which can be integrated in a recurrent network).

Stochastic Deep Architectures

In this section, we define elementary blocks, mapping random vectors to random vectors, which constitute a layer of our proposed architectures, and depict how they can be used to build deeper networks.

Notion of Elementary Block

Our deep architectures are defined by stacking a succession of simple elementary blocks that we now define.

Definition 1 (Elementary Block). Given a function f : R q × R q → R r , its associated elementary block

T f : R(R q ) → R(R r ) is defined as ∀ X ∈ R(R q ), T f (X) def. = E X ∼X (f (X, X )) ( 19 
)
where X is a random vector independent from X having the same distribution.

Discrete random vectors. A particular instance, which is the setting we use in our numerical experiments, is when X is distributed uniformly on a set (x i ) n i=1 of n points i.e. when α

X = 1 n n i=1 δ x i . In this case, Y = T f (X) is also distributed on n points α Y = 1 n n i=1 δ y i where y i = 1 n n j=1 f (x i , x j ).
This elementary operation ( 19) displaces the distribution of X according to pairwise interactions measured through the map f . As done usually in deep architectures, it is possible to localize the computation at some scale τ by imposing that f (x, x ) is zero for x -x τ , which is also useful to reduce the computation time.

Fully-connected case. As it is customary for neural networks, the map f : R q × R q → R r we consider for our numerical applications are affine maps composed by a pointwise non-linearity, i.e.

f (x, x ) = (λ(y k )) r k=1 where y = A • [x; x ] + b ∈ R r where λ : R → R is a pointwise non-linearity (in our experiments, λ(s) = max(s, 0) is the ReLu map),
• stands for the matrix-vector product and [.; .] denotes concatenation. The parameter is then θ = (A, b) where A ∈ R r×2q is a matrix and b ∈ R r is a bias. Deterministic layers. Classical "deterministic" deep architectures are recovered as special cases when X is a constant vector, assuming some value x ∈ R q with probability 1, i.e. α X = δ x . A stochastic layer can output such a deterministic vector, which is important for instance for classification scores in supervised learning (see Section 4 for an example) or latent code vectors in auto-encoders (see Section 4 for an illustration). In this case, the map f (x, x ) = g(x ) does not depend on its first argument, so that Y

= T f (X) is constant equal to y = E X (g(X)) = R q g(x)dα X (x)
. Such a layer thus computes a summary statistic vector of X according to g. Push-Forward. In sharp contrast to the previous remark, one can consider the case f (x, x ) = h(x) so that f only depends on its first argument. One then has T f (X) = h(X), which corresponds to the notion of pushforward of measure, denoted α T f (X) = h α X . For instance, for a discrete law

α X = 1 n i δ x i then α T f (X) = 1 n i δ h(x i ) .
The support of the law of X is thus deformed by h.

Higher Order Interactions and Tensorization. Elementary Blocks are generalized to handle higher-order interactions by considering f : (R q ) N → R r , one then defines

T f (X) def. = E X 2 ,...,X N (f (X, X 2 , . . . , X N ))
where (X 2 , . . . , X N ) are independent and identically distributed copies of X. An equivalent and elegant way to introduce these interactions in a deep architecture is by adding a tensorization layer, which maps X → X 2 ⊗ . . . ⊗ X N ∈ R((R q ) N -1 ). Section 3 details the regularity and approximation power of these tensorization steps.

Building Stochastic Deep Architectures

These elementary blocks are stacked to construct deep architectures. A stochastic deep architecture is thus a map

X ∈ R(R q 0 ) → Y = T f T • • • • • T f 1 (X) ∈ R(R q T ), (20) 
where f t : R q t-1 × R q t-1 → R qt . Typical instances of these architectures includes:

• Predictive: this is the general case where the architecture inputs a random vector and outputs another random vector. This is useful to model for instance time evolution using recurrent networks, and is used in Section 4 to tackle a dynamic prediction problem.

• Discriminative: in which case Y is constant equal to a vector y ∈ R q T (i.e. α Y = δ y ) which can represent either a classification score or a latent code vector. Following remarks in Section 2.1, this is achieved by imposing that f T only depends on its second argument. Section 4 shows applications of this setting to classification and variational autoencoders (VAE) [START_REF] Kingma | Auto-encoding variational bayes[END_REF]].

• Generative: in which case the network should input a deterministic code vector x0 ∈ R q0 and should output a random vector Y . This is achieved by adding extra randomization through a fixed random vector X0 ∈ R(R q 0 -q 0 ) (for instance a Gaussian noise) and stacking X 0 = (x 0 , X0 ) ∈ R(R q 0 ). Section 4 shows an application of this setting to VAE generative models. Note that while we focus for simplicity on VAE models, it is possible to use our architectures for GANs [START_REF] Goodfellow | Generative adversarial nets[END_REF] as well.

Recurrent Nets as Gradient Flows. Following the work of [START_REF] Hashimoto | Learning population-level diffusions with generative rnns[END_REF], in the special case R q = R r , one can also interpret iterative applications of such a T f (i.e. considering a recurrent deep network) as discrete optimal transport gradient flows [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF] (for the W 2 distance, see also Definition ( 21) in section 3) in order to minimize a quadratic interaction energy E(α)

def.

= R q ×R q F (x, x )dα(x)dα(x ) (we assume for ease of notation that F is symmetric). Indeed, introducing a step size τ > 0, setting f (x, x ) = x -2τ ∇ x F (x, x ), one sees that the measure α X defined by the iterates X +1 = T f (X ) of a recurrent nets is approximating at time t = τ the Wasserstein gradient flow α(t) of the energy E. As detailed for instance in [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF], such a gradient flow is the solution of the PDE ∂α ∂t = div(α∇(E (α))) where

E (α) = R q F (x, •)dα(x)
is the "Euclidean" derivative of E. The pioneering work of [START_REF] Hashimoto | Learning population-level diffusions with generative rnns[END_REF] only considers linear and entropy functionals of the form E(α) = (F (x) + log dα dx )dα(x) which leads to evolutions α(t) being Fokker-Plank PDEs. Our work can thus be interpreted as extending this idea to the more general setting of interaction functionals (see Section 3 for the extension beyond pairwise interactions).

Theoretical Guarantees

In order to get some insight on these deep architectures, we now highlight some theoretical results detailing the regularity and approximation power of these functionals. This theoretical analysis relies on the Wasserstein distance, which allows us to make quantitative statements associated to the convergence in law.

Convergence in Law Topology

Wasserstein distance. In order to measure regularity of the involved functionals, and also to define loss functions to fit these architectures (see Section 4), we consider the p-Wasserstein distance (for 1 p < +∞) between two probability distributions (α,

β) ∈ M 1 + (R q ) W p p (α, β) def.
= min

π 1 =α,π 2 =β (R q ) 2 x -y p dπ(x, y) (21) 
where π 1 , π 2 ∈ M 1 + (R q ) are the two marginals of a coupling measure π, and the minimum is taken among coupling measures π ∈ M 1 + (R q × R q ). A classical result (see [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]) asserts that W 1 is a norm, and can be conveniently computed using

W 1 (α, β) = W 1 (α -β) = max Lip(g) 1 X gd(α -β),
where Lip(g) is the Lipschitz constant of a map g : X → R (with respect to the Euclidean norm unless otherwise stated).

With an abuse of notation, we write W p (X, Y ) to denote W p (α X , α Y ), but one should be careful that we are considering distances between laws of random vectors. An alternative formulation is

W p (X, Y ) = min X ,Y E( X -Y p ) 1/p
where (X , Y ) is a couple of vectors such that X (resp. Y ) has the same law as X (resp. Y ), but of course X and Y are not necessarily independent.

The Wasserstein distance metrizes the convergence in law (denoted ) in the sense that X k X is equivalent to W 1 (X k , X) → 0. In the numerical experiments, we estimate W p using Sinkhorn's algorithm [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF], which provides a smooth approximation amenable to (possibly stochastic, see [START_REF] Genevay | Stochastic optimization for large-scale optimal transport[END_REF]) gradient descent optimization schemes, whether it be for generative or predictive tasks (see Section 4).

Lipschitz property. A map T : R(R q ) → R(R r ) is continuous for the convergence in law (aka the weak * of measures) if for any sequence X k X, then T (X k )

T (X). Such a map is furthermore said to be C-Lipschitz for the 1-Wasserstein distance if

∀ (X, Y ) ∈ R(R q ) 2 , W 1 (T (X), T (Y )) C W 1 (X, Y ). ( 22 
)
Lipschitz properties enable us to analyze robustness to input perturbations, since it ensures that if the input distributions of random vectors are close enough (in the Wasserstein sense), the corresponding output laws are close too.

Regularity of Building blocks

Elementary blocks. The following proposition shows that elementary blocks are robust to input perturbations. As a consequence, architectures composed of such blocks benefit from Lipschitz robustness as well.

Proposition 3 (Lipschitzness of Elementary Blocks). If for all x, f (x, •) and

f (•, x) are C(f )-Lipschitz, then T f is 2rC(f )-Lipschitz in the sense of (22).
As hinted at in Section 2.1, such Elementary Blocks are actually defined as the composition of the push-forward operator and a partial integration operation which we now define. For the sake of clarity, we postpone the proof of Proposition 3 until regularity of both these operations has been detailed. Push-forward. The push-forward operator allows for modifications of the support while maintaining the geometry of the input measure.

Definition 2 (Push-forward). For a function f : X → Y, we define the push-forward f α ∈ M(Y) of α ∈ M(X ) by T as defined by

∀ g ∈ C(Y), Y gd(f α) def. = X g(f (x))dα(x). ( 23 
) Note that f : M(X ) → M(Y) is a linear operator.
Proposition 4 (Lipschitzness of push-forward). One has

W Y (f α, f β) Lip(f ) W X (α, β), (24) 
W Y (f α, g α) f -g L 1 (α) , (25) 
where Lip(f ) designates the Lipschitz constant of f .

Proof. ∀h : Y → R s.t. Lip(h) 1, h•f Lip(f ) is 1-Lipschitz, therefore X h • f Lip(f ) d(α -β) W X (α, β) hence inequality (24). Similarly, ∀h s.t. Lip(h) 1, X (h • f -h • g)dα X f (x) -g(x) 2 dα(x)
hence inequality (25).

Integration. We now define a (partial) integration operator.

Definition 3 (Integration). For f ∈ C(Z × X ; Y = R r ), and α ∈ M(X ) we denote f [•, α] def. = X f (•, x)dα(x) : Z → Y.
Proposition 5 (Lipschitzness of integration). With some fixed

ζ ∈ M 1 + (Z), one has f [•, α] -f [•, β] L 1 (ζ) r Lip 2 (f ) W X (α, β).
where we denoted by Lip 2 (f ) a bound on the Lipschitz contant of the function f (z, •) for all z.

Proof.

||f [•, α] -f [•, β]|| L 1 (ζ) = Z f [•, α](z) -f [•, β](z) 2 dζ(z) = Z X f (z, x)d(α -β)(x) 2 dζ(z) Z X f (z, x)d(α -β)(x) 1 dζ(z) = Z r i=1 X f i (z, x)d(α -β)(x) dζ(z) r i=1 Lip 2 (f i ) W X (α, β) r Lip 2 (f ) W X (α, β)
where we denoted by Lip 2 (f i ) a bound on the Lipschitz contant of the function

f i (z, •) (i-th component of f ) for all z, since again, f i Lip 2 (f i ) is 1-Lipschitz.
Now that Lipschitzness of the push-forward operator and the partial integration operation have been established, Lipschitz robustness of our Elementary Block can be detailed.

Proof. (of Proposition 3) Let us stress that the elementary block T f (X) defined in ( 19) only depends on the law α X . In the following, for a measure α we denote T f (α X ) the law of T f (X). The goal is thus to show that T f is Lipschitz for the Wasserstein distance.

For a measure α ∈ M(X ) (where

X = R q ), the measure β = T F (α) ∈ M(Y) (where Y = R r ) is defined via the identity, for all g ∈ C(Y), Y g(y)dβ(y) = X g Å X f (z, x)dα(x) ã dα(z).
Let us first remark that an elementary block, when view as operating on measures, can be decomposed using the aforementioned push-forward and integration operators, since

T F (α) = f [•, α] α.
Using the fact that W X is a norm,

W X (T F (α), T f (β)) W X (T F (α), f [•, β] α) + W X (f [•, β] α, T f (β)) f [•, α] -f [•, β] L 1 (α) + Lip(f [•, β]) W X (α, β),
where we used the Lipschitzness of the push-forward, Proposition 4. Moreover, for (z

1 , z 2 ) ∈ X 2 , f [z 1 , β] -f [z 2 , β] 2 f [z 1 , β] -f [z 2 , β] 1 = X (f (z 1 , •) -f (z 2 , •))dβ 1 r i=1 | X (f i (z 1 , •) -f i (z 2 , •))dβ| r i=1 X |f i (z 1 , •) -f i (z 2 , •)|dβ r i=1 Lip 1 (f i ) z 1 -z 2 2 r Lip 1 (f ) z 1 -z 2 2 ,
where we denoted by Lip 1 (f i ) a bound on the Lipschitz contant of the function f i (•, x) for all x. Hence Lip(f [•, β]) r Lip 1 (f ). In addition, Lipschitzness of integration, Proposition 5 yields

W X (T F (α), T f (β)) r Lip 2 (f ) W X (α, β) + r Lip 1 (f ) W X (α, β)
It is worth noting that, as a composition of Lipschitz functions defines Lipschitz maps, the architectures of the form (20) are thus Lipschitz, with a Lipschitz constant upper-bounded by t 2q t C(f t ), where we used the notations of Proposition 3.

Tensorization. As highlighted in Section 2.1, tensorization plays an important role to define higher-order interaction blocks.

Definition 4 (Tensor product). Given (X, Y ) ∈ R(X ) × R(Y), a tensor product random vector is X ⊗ Y def. = (X , Y ) ∈ R(X × Y)
where X and Y are independent and have the same laws as X and Y . This means that dα X⊗Y (x, y) = dα X (x)dα Y (y) is the tensor product of the measures.

Remark 1 (Tensor Product between Discrete Measures). If we consider random vectors supported on point clouds, with laws

α X = 1 n n i=1 δ x i and α Y = 1 m m j=1 δ y j , then X ⊗ Y is a discrete random vector supported on nm points, since α X⊗Y = 1 nm i,j δ (x i ,y j ) .
The following proposition shows that tensorization blocks maintain the stability property of a deep architecture.

Proposition 6 (Lipschitzness of tensorization). For (X, X , Y, Y ) ∈ R(X ) 2 × R(Y) 2 , one has W 1 (X ⊗ Y, X ⊗ Y ) W 1 (X, X ) + W 1 (Y, Y ). Proof. One has W 1 (α ⊗ β, α ⊗ β ) = max Lip(g) 1 1 g(x, y)[dα(x)dβ(y) -dα (x)dβ (y)] = max Lip(g) 1 X Y g(x, y)[dβ(y) -dβ (y)]dα(x) + Y X g(x, y)[dα(x) -dα (x)]dβ(y),
which yields the result.

Approximation Theorems

Universality of elementary block. The following theorem shows that any continuous map between random vectors can be approximated to arbitrary precision using three elementary blocks. Note that it includes through Λ a fixed random input which operates as an "excitation block" similar to the generative VAE models studied in Section 4.2.

Theorem 3. Let F : R(X ) → R(Y) be a continuous map for the convergence in law, where X ⊂ R q and Y ⊂ R r are compact. Then ∀η > 0 there exists three continuous maps f, g, h such that

∀X ∈ R(X ), W 1 (F(X), T h • Λ • T g • T f (X)) η. ( 26 
)
where Λ : X → (X, U ) concatenates a uniformly distributed random vector U .

The architecture that we use to prove this theorem is displayed on Figure 3, bottom (left). Since f , g and h are smooth maps, according to the universality theorem of neural networks [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Leshno | Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[END_REF] (assuming some restriction on the non-linearity λ, namely its being a nonconstant, bounded and continuous function), it is possible to replace each of them (at the expense of increasing η) by a sequence of fully connected layers (as detailed in Section 2.1). This is detailed further down this section.

Since deterministic vectors are a special case of random vectors (see Section 2.1), this results encompasses as a special case universality for vectorvalued maps F : R(Ω) → R r (used for instance in classification in Section 4.1) and in this case only 2 elementary blocks are needed. Of course the classical universality of multi-layer perceptron [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Leshno | Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[END_REF] for vectors-to-vectors maps F : R q → R r is also a special case (using a single elementary block).

Before stating a proof for Theorem 3, we introduce and prove two useful lemmas: (i) the first one shows how the gap between a probability measure and its discretized counterpart can be controlled; (ii) the second one shows the existence of a continuous noise-reshaping function mapping a uniform noise to a target distribution.

Approximation by discrete measures. The following lemma shows how to control the approximation error between an arbitrary random variable and a discrete variable obtained by computing moments against localized functions on a grid. Lemma 1. Let (S j ) N j=1 be a partition of a domain including Ω (S j ⊂ R d ) and let x j ∈ S j . Let (ϕ j ) N j=1 a set of bounded functions ϕ j : Ω → R supported on S j , such that

j ϕ j = 1 on Ω. For α ∈ M 1 + (Ω), we de- note αN def. = N j=1 α j δ x j with α j def. = S j ϕ j dα. One has, denoting ∆ j def. = max x∈S j x j -x , W 1 ( αN , α) max 1 j N ∆ j .
Proof. We define π ∈ M 1 + (Ω 2 ), a transport plan coupling marginals α and αN , by imposing for all f ∈ C(Ω 2 ),

Ω 2 f dπ = N j=1 S j f (x, x j )ϕ j (x)dα(x).
π indeed is a transport plan, since for all g ∈ C(Ω),

Ω 2 g(x)dπ(x, y) = N j=1 S j g(x)ϕ j (x)dα(x) = N j=1 Ω g(x)ϕ j (x)dα(x) = Ω g(x) Ñ N j=1 ϕ j (x) é dα(x) = Ω gdα.
Also,

Ω 2 g(y)dπ(x, y) = N j=1 S j g(x j )ϕ j dα = N j=1 g(x j ) Ω ϕ j dα = N j=1 α j g(x j ) = Ω gdα N .
By definition of the Wasserstein-1 distance,

W(α N , α) Ω 2 x -y dπ(x, y) = N j=1 S j ϕ j (x) x -x j dα(x) N j=1 S j ϕ j ∆ j dα N i=1 Ω ϕ i dα max 1 j N ∆ j = max 1 j N ∆ j .
Parametric Push-Forward. An ingredient of the proof of the universality Theorem 3 is the construction of a noise-reshaping function H which maps a uniform noise to another distribution parametrized by b.

Lemma 2. There exists a continuous map

(b, u) ∈ Σ m × [0, 1] r → H(b, u) so that the random vector H(b, U ) has law β def. = (1 -η)D * Y (b) + ηU, where U has density U (uniformly distributed on [0, 1] r ).
Proof. Since both the input measure U and the output measure β have densities and have support on convex set, one can use for map H(b, •) the optimal transport map between these two distributions for the squared Euclidean cost, which is known to be a continuous function, see for instance [Santambrogio, 2015][Sec. 1.7.6]. It is also possible to define a more direct transport map (which is not in general optimal), known as Dacorogna-Moser transport, see for instance [Santambrogio, 2015][Box 4.3].

We are now ready to state a proof for Theorem 3.

Proof. (of Theorem 3) In the following, we denote the probability simplex as Σ n = a ∈ R n + ; i a i = 1 . Without loss of generality, we assume X ⊂ [0, 1] q and Y ⊂ [0, 1] r . We consider two uniform grids of n and m points (x i ) n i=1 of [0, 1] q and (y j ) m j=1 of [0, 1] r . On these grids, we consider the usual piecewise affine P1 finite element bases (ϕ i ) n i=1 and (ψ j ) m j=1 , which are continuous hat functions supported on cells (R i ) i and (S j ) j which are cubes of width 2/n 1/q and 2/m 1/r . We define discretization operators as

D X : α ∈ M + 1 (X ) → Å R i ϕ i dα ã n i=1 ∈ Σ n and D Y : β ∈ M + 1 (Y) → Ç S j ψ j dβ å m j=1 ∈ Σ n .
We also define

D * X : a ∈ Σ n → i a i δ x i ∈ M + 1 (X ) and D * Y : b ∈ Σ m → j b j δ y i ∈ M + 1 (Y). The map F induces a discrete map G : Σ n → Σ m defined by G def. = D Y • F • D * X . Remark that D * X is continuous from Σ n (with the usual topology on R n ) to M 1 + (X ) (with the convergence in law topology), F is continuous (for the convergence in law), D Y is continuous from M 1
+ (Y) (with the convergence in law topology) to Σ m (with the usual topology on R m ). This shows that G is continuous.

For any b ∈ Σ m , Lemma 2 proved above defines a continuous map H so that, defining U to be a random vector uniformly distributed on [0, 1] r (with law U), H(b, U ) has law (1 -η)D * Y (b) + ηU. We now have all the ingredients, and define the three continuous maps for the elementary blocks as

f (x, x ) = (ϕ i (x )) n i=1 ∈ R n , g(a, a ) = G(a ) ∈ R m , and h((b, u), (b , u )) = H(b, u) ∈ Y.
The corresponding architecture is displayed on Figure 3, bottom. Using these maps, one needs to control the error between F and

F def. = T h • Λ • T g • T f = H • Λ • D Y • F • D * X • D X where we denoted H (b) def.
= H(b, •) U the law of H(b, U ) (i.e. the pushforward of the uniform distribution U of U by H(b, •)).

(i) We define α def. = D * X D X (α). The diameters of the cells R i is ∆ j = √ q/n 1/q , so that Lemma 1 proved above shows that W 1 (α, α)

√ q/n 1/q .

Since F is continuous for the convergence in law, choosing n large enough ensures that W 1 (F(α), F(α)) η.

(ii) We define

β def. = D * Y D Y F(α).
Similarly, using m large enough ensures that W 1 (F(α), β) η.

(iii) Lastly, let us define

β def. = H • D Y ( β) = F(α). By construction of the map H in Lemma 2, one has hat β = (1 -η) β + ηU so that W 1 ( β, β) = η W 1 ( β, U) Cη for the constant C = 2
√ r since the measures are supported in a set of diameter √ r. Putting these three bounds (i), (ii) and (iii) together using the triangular inequality shows that W 1 (F(α), F(α)) (2 + C)η.

We now detail how the maps f, g, and h involved in Theorem 3 can each be approximated by neural networks [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Leshno | Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[END_REF], so that the measure-valued function of interest F can be approached by a neural architecture as well.

Proof. (Approximation by neural networks related to Theorem 3) For the sake of simplicity, we first give the proof in the case F : R(Ω) → R r , i.e. no mapping h is needed (the proof being similar for the general case), and only two Elementary Blocks are needed. Furthermore, without loss of generality, we consider the real-valued case r = 1. Let η > 0, then Theorem 3 shows that F can be approximated arbitrarily close (up to η 3 ) by a composition of functions of the form f (E X∼α (g(X))). We now show how to approximate the continuous functions f and g by two neural networks

(i) g θ (x) def. = C 1 λ(A 1 x + b 1 ) : R d → R N , (ii) f ξ (x) def. = C 2 λ(A 2 x + b 2 ) : R N → R, such that ∀α ∈ M 1 + (Ω), |F(α) -f ξ (E X∼α (g θ (X)))| < η.
where N, p 1 , p 2 are integers,

A 1 ∈ R p 1 ×d , A 2 ∈ R p 2 ×N , C 1 ∈ R N ×p 1 , C 2 ∈ R 1×p 2 weight matrices and b 1 ∈ R p 1 , b 2 ∈ R p 2 are biases.
By triangular inequality, we upper-bound the difference of interest

|F(α) -f ξ (E X∼α (g θ (X)))|
by a sum of three terms:

(i) |F(α) -f (E X∼α (g(X)))| (ii) |f (E X∼α (g(X))) -f ξ (E X∼α (g(X)))| (iii) |f ξ (E X∼α (g(X))) -f ξ (E X∼α (g θ (X)))|
and bound each term by η 3 , which yields the result. The bound on the first term directly comes from theorem 1 and yields constant N which depends on η. The bound on the second term is a direct application of the universal approximation theorem [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Leshno | Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[END_REF]. Indeed, since α is a probability measure, input values of f lie in a compact subset of R N : [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Leshno | Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[END_REF] is applicable as long as λ is a nonconstant, bounded and continuous function. Let us focus on the third term. Uniform continuity of f ξ yields the existence of δ > 0 s.

Ω g(x)dα ∞ max x∈Ω max i |g i (x)|, hence the theorem
t. ||u -v|| 1 < δ implies |f ξ (u) -f ξ (v)| < η
3 . Let us apply the universal approximation theorem: each component g i of g can be approximated by a neural network g θ,i up to δ N . Therefore:

E X∼α (g(X) -g θ (X)) 1 E X∼α g(X) -g θ (X) 1 N i=1 Ω |g i (x) -g θ,i (x)|dα(x) N × δ N = δ
since α is a probability measure. This proves the bound on the third term, with u = E X∼α (g(X)) and v = E X∼α (g θ (X)) in the definition of uniform continuity.

We proceed similarly in the general case F : R(X ) → R(Y), and upperbound the Wasserstein distance by a sum of four terms by triangular inequality. The same ingredients (namely uniform continuity together with the universal approximation theorem [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Leshno | Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[END_REF], since all functions f , g and h have input and output constrained in in compact sets) allow us to conclude.

Universality of tensorization. We now further investigate the advantages of tensorization of the input measures, namely its capacity to acquire universal approximation abilities. The following Theorem shows that in fact, one can approximate any real-valued continuous map using a high enough order of tensorization followed by an elementary block.

Theorem 4. Let F : R(Ω) → R a continuous map for the convergence in law, where Ω ⊂ R q is compact. Then ∀η > 0, there exists n > 0 and a continuous function f such that

∀ X ∈ R(Ω), |F(X) -T f • θ n (X)| η (27)
where θ n (X) = X ⊗ . . . ⊗ X is the n-fold self tensorization.

Proof. We denote C(M 1 + (Ω)) the space of functions taking probability measures on a compact set Ω to R which are continuous for the weak- * topology. We denote the set of integrals of tensorized polynomials on Ω as

A Ω def. =    F :M 1 + (Ω) → R, ∃n ∈ N, ∃ϕ : Ω n → R, ∀µ ∈ M 1 + (Ω), F(µ) = Ω n ϕdµ ⊗n    . The goal is to show that A Ω is dense in C(M 1 + (Ω)).
Since Ω is compact, Banach-Alaoglu theorem shows that M 1 + (Ω) is weakly- * compact. Therefore, in order to use Stone-Weierstrass theorem, to show the density result, we need to show that A Ω is an algebra that separates points, and that, for all probability measure α, A Ω contains a function that does not vanish at α. For this last point, taking n = 1 and ϕ = 1 defines the function F(α) = Ω dα = 1 that does not vanish in α since it is a probability measure. Let us then show that A Ω is a subalgebra of C(M 1 + (Ω)): (i) stability by a scalar follows from the definition of A Ω ;

(ii) stability by sum: given

(F 1 , F 2 ) ∈ A 2 Ω (with associated functions (ϕ 1 , ϕ 2 ) of degrees (n 2 , n 2 )), denoting n def. = max(n 1 , n 2 ) and ϕ(x 1 , . . . , x n ) def. = ϕ 1 (x 1 , . . . , x n 1 ) + ϕ 2 (x 1 , . . . , x n 2 ) shows that F 1 + F 2 = Ω n ϕdµ ⊗n and hence F 1 + F 2 ∈ A Ω ;
(iii) stability by product: similarly as for the sum, denoting this time n = n 1 + n 2 and introducing

ϕ(x 1 , . . . , x n ) = ϕ 1 (x 1 , . . . , x n 1 ) × ϕ 2 (x n 1 +1 , . . . , x n ) shows that F = F 1 × F 2 ∈ A Ω , using Fubini's theorem.
Lastly, we show the separation of points: if two probability measures (α, β) on Ω are different (not equal almost everywhere), there exists a set Ω 0 ⊂ Ω such that α(Ω 0 ) = β(Ω 0 ); taking n = 1 and ϕ = 1 Ω 0 , we obtain, after smoothing ϕ to make it continuous, a function

F ∈ A Ω such that F(α) = F(β).
The architecture used for this theorem is displayed on the bottom (right) of Figure 3. The function f appearing in ( 27) plays a similar role as in ( 26), but note that the two-layers factorizations provided by these two theorems are very different. It is an interesting avenue for future work to compare them theoretically and numerically.

Applications

To exemplify the use of our stochastic deep architectures, we consider classification, generation and dynamic prediction tasks. The goal is to highlight the versatility of these architectures and their ability to handle as input and/or output both probability distributions and vectors. In all cases, the procedures displayed similar results when rerun, hence results can be considered as quite stable and representative. We also illustrate the gain in maintaining the measure representation along several layers of the architecture. The code used to produce all results in this section is available at: https://github.com/gdebie/stochastic-deep-networks.

Classification tasks

MNIST Dataset. We perform classification on the 2D MNIST dataset of handwritten digits. To convert a MNIST image into a 2D point cloud, we threshold pixel values (threshold ρ = 0.5) and use as a support of the input empirical measure the n = 256 pixels of highest intensity, represented as points (x i ) n i=1 ⊂ R 2 (if there are less than n = 256 pixels of intensity over ρ, we repeat input coordinates), which are remapped along each axis by mean and variance normalization. Each image is therefore turned into a sum of n = 256 Diracs 1 n i δ x i . Our stochastic network architecture is displayed on the top of Figure 3 and is composed of 5 elementary blocks (T f k ) 5

k=1 with an interleaved self-tensorisation layer X → X ⊗ X. The first elementary block T f 1 maps measures to measures, the second one T f 2 maps a measure to a deterministic vector (i.e. does not depend on its first coordinate, see Section 2.1), and the last layers are classical vectorial fully-connected ones. We use a ReLu non-linearity λ (see Section 2.1). The weights are learnt with a weighted cross-entropy loss function over a training set of 55,000 examples and tested on a set of 10,000 examples. Initialization is performed through the Xavier method [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF] and learning with the Adam optimizer [START_REF] Kingma | A method for stochastic optimization[END_REF]. Table 1 displays our results, compared with the PointNet [Qi et al., 2017a] baseline. We observe that maintaining stochasticity among several layers is beneficial (as opposed to replacing one Elementary Block with a fully connected layer allocating the same amount of memory). 

Generative networks

We further evaluate our framework for generative tasks, on a VAE-type model [START_REF] Kingma | Auto-encoding variational bayes[END_REF]] -note that it would be possible to use our architectures for GANs [START_REF] Goodfellow | Generative adversarial nets[END_REF] as well. The task consists in generating outputs resembling the data distribution by decoding a random variable z sampled in a latent space Z. The model, an encoderdecoder architecture, is learnt by comparing input and output measures using the W 2 Wasserstein distance loss, approximated using Sinkhorn's algorithm [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF][START_REF] Genevay | Learning generative models with sinkhorn divergences[END_REF]. Following [START_REF] Kingma | Auto-encoding variational bayes[END_REF], a Gaussian prior is imposed on the latent variable z. The encoder and the decoder are two mirrored architectures composed of two elementary blocks and three fully-connected layers each. The corresponding stochastic network architecture is displayed on the bottom of 3. Figure 4 displays an application on the MNIST database where the latent variable z ∈ R 2 parameterizes a 2D of manifold of generated digits. We use as input and output discrete probability measures of n = 100 Diracs, displayed as point clouds on the right of Figure 4.

Dynamics Prediction

Birds of a Feather. The Cucker-Smale flocking model [START_REF] Cucker | On the mathematics of emergence[END_REF] is non-linear dynamical system modelling the emergence of coherent behaviors, as for instance in the evolution of a flock of birds, by solving for positions and speed x i (t) def. where L(p) ∈ R n×n is the Laplacian matrix associated to a group of points

= (p

i (t) ∈ R d , v i (t) ∈ R d ) for i = 1, . . . , n ṗ(t) = v(t), and v(t) = L(p(t))v(t) (28) 
p ∈ (R d ) n L(p) i,j def. = 1 1 + p i -p j m , L(p) i,i = - j =i L(p) i,j .
In the numerics, we set m = 0.6. This setting can be adapted to weighted particles (x i (t), µ i ) i=1•••n , where each weight µ i stands for a set of physical attributes impacting dynamics -for instance, mass -which is what we consider here. This model equivalently describes the evolution of the measure α(t) = n i=1 µ i δ x i (t) in phase space (R d ) 2 , and following remarks in Section 2.2 on the ability of our architectures to model dynamical system involving interactions, (28) can be discretized in time which leads to a recurrent network making use of a single elementary block T f between each time step. Indeed, our block allows to maintain stochasticity among all layerswhich is the natural way of proceeding to follow densities of particles over time.

It is however not the purpose of this work to study such a recurrent network and we aim at showcasing here whether deep (non-recurrent) architectures of the form (20) can accurately capture the Cucker-Smale model. More precisely, since in the evolution (28) the mean of v(t) stays constant, we can assume i v i (t) = 0, in which case it can be shown [START_REF] Cucker | On the mathematics of emergence[END_REF] that particles ultimately reach stable positions (p(t), v(t)) → (p(∞), 0). We denote F(α(0)) def.

= n i=1 µ i δ p i (∞) the map from some initial configuration in the phase space (which is described by a probability distribution α(0)) to the limit probability distribution (described by a discrete measure supported on the positions p i (∞)). The goal is to approximate this map using our deep stochastic architectures. To showcase the flexibility of our approach, we consider a non-uniform initial measure α(0) and approximate its limit behavior F(α(0)) by a uniform one (µ i = 1 n ). In our experiments, the measure α(t) models the dynamics of several (2 to 4) flocks of birds moving towards each other, exhibiting a limit behavior of a single stable flock. As shown in Figures 5 and6, positions of the initial flocks are normally distributed, centered respectively at edges of a rectangle (-4; 2), (-4; -2), (4; 2), (4; -2) with variance 1. Their velocities (displayed as arrows with lengths proportional to magnitudes in Figures 5 and6) are uniformly chosen within the quarter disk [0; -0.1] × [0.1; 0]. Their initial weights µ i are normally distributed with mean 0.5 and sd 0.1, clipped by a ReLu and normalized. Figures 5 (representing densities) and 6 (depicting corresponding points' positions) show that for a set of n = 720 particles, quite different limit behaviors are successfully retrieved by a simple network composed of five elementary blocks with layers of dimensions [2,10,20,40,60], learnt with a Wasserstein [START_REF] Genevay | Learning generative models with sinkhorn divergences[END_REF] fitting criterion (computed with Sinkhorn's algorithm [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF]). 

µ i = 1 n ).
Chapter 2: Distribution-Based Invariant Deep Networks for Automated Machine Learning

Densities or probability distribution offer a propitious input or output representation for a wide variety of data types, ranging for 3D shapes in computer vision, to population modeling in biology, ecology, physics, chemistry or census. Indeed, such a design provides the means to follow populations at a macroscopic level over time without requiring individual knowledge on particles' positions, which is often inconceivable due to experimental costs or privacy concerns.

In this chapter, we demonstrate that this representation is well suited to datasets as well. Based on a set of labeled datasets, we show that their representation as measures, in a Lagrangian form, offers new perspectives to tackle the long-known problem of automated machine learning (Auto-ML), whose aim is to uncover a priori the best-performing machine learning pipeline for a task at hand.

As performance of machine learning pipelines is invariant in the ordering of dataset features as well as its labels, we introduce a neural network framework able to perform regression on probability measures, at a granular level, with such invariance requirements (referred to as invariant regression). This Distribution-based Invariant Deep Architecture (DIDA) inherits from desirable Lipschitz robustness properties and is actually a universal approximator for invariant regression functionals continuous for the convergence in law. We provide instanciations of such networks for different tasks, the end-goal being the design of expressive dataset summaries referred to as meta-features. This chapter is based on [START_REF] De Bie | Distribution-based invariant deep networks for learning meta-features[END_REF].

Introduction

Deep networks architectures, initially devised for structured data such as images [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] and speech [START_REF] Hinton | Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups[END_REF], have been extended to respect some invariance or equivariance [Shawe-Taylor, 1993] of more complex data types. This includes for instance point clouds [Qi et al., 2017a], graphs [START_REF] Henaff | Deep convolutional networks on graphstructured data[END_REF] and probability distributions [START_REF] De Bie | Stochastic deep networks[END_REF], which are invariant with respect to permutations of the input points. In such cases, invariant architectures improve practical performance while inheriting the universal approximation properties of neural networks [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Leshno | Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[END_REF].

In this chapter, distribution-based neural architectures [START_REF] De Bie | Stochastic deep networks[END_REF] are extended to cope with an additional invariance: the space of features and labels (i.e. the space supporting the distributions) is also assumed to be invariant under permutation of its coordinates. This extra invariance is important to tackle Auto-ML problems [START_REF] Rice | The algorithm selection problem[END_REF], Muñoz et al., 2018[START_REF] Feurer | Efficient and robust automated machine learning[END_REF][START_REF] Hutter | Automated Machine Learning: Methods, Systems, Challenges[END_REF][START_REF] Bardenet | Collaborative hyperparameter tuning[END_REF][START_REF] Hutter | Sequential model-based optimization for general algorithm configuration[END_REF][START_REF] Klein | Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets[END_REF][START_REF] Rakotoarison | Automated machine learning with monte-carlo tree search[END_REF][START_REF] Elsken | Neural architecture search: A survey[END_REF]. Auto-ML aims to identify a priori the machine learning configuration (both the learning algorithm and hyper-parameters thereof) best suited to the dataset under consideration in the sense of a given performance indicator. Would a dataset be associated with accurate descriptive features, referred to as metafeatures, the Auto-ML problem could be handled via solving yet another supervised learning problem: given archives recording the performance of various machine learning configurations on various datasets [START_REF] Vanschoren | Openml: Networked science in machine learning[END_REF], with each dataset described as a vector of meta-features, the best-performing algorithm (among these configurations) on a new dataset could be predicted from its meta-features. The design of accurate metafeatures however has eluded research since the 80s (with the except of [START_REF] Jomaa | Dataset2vec: Learning dataset meta-features[END_REF], more below), to such an extent that the prominent Auto-ML approaches currently rely on learning a performance model specific to each dataset [START_REF] Feurer | Efficient and robust automated machine learning[END_REF][START_REF] Rakotoarison | Automated machine learning with monte-carlo tree search[END_REF].

Previous works.

Learning from finite discrete distributions. Learning from sets of samples subject to invariance or equivariance properties opens up a wide range of applications: in the sequence-to-sequence framework, relaxing the order in which the input is organized might be beneficial [START_REF] Vinyals | Order matters: Sequence to sequence for sets[END_REF]. The ability to follow populations at a macroscopic level, using distributions on their evolution along time without requiring to follow individual trajectories, and regardless of the population size, is appreciated when modelling dynamic cell processes [START_REF] Hashimoto | Learning population-level diffusions with generative rnns[END_REF]. The use of sets of pixels, as opposed to e.g., voxellized approaches in computer vision [START_REF] De Bie | Stochastic deep networks[END_REF], offers a better scalability in terms of data dimensionality and computational resources.

Most generally, the fact that the considered hypothesis space and related neural architecture comply with domain-dependent invariances ensures a better robustness of the eventually learned model, better capturing the data geometry. Such neural architectures have been pioneered by [Qi et al., 2017a[START_REF] Zaheer | Deep sets[END_REF] for learning from point clouds subject to permutation invariance or equivariance. These have been extended to permutation equivariance across sets [START_REF] Hartford | Deep models of interactions across sets[END_REF] and relational databases [START_REF] Graham | Equivariant entity-relationship networks[END_REF]. Invariance or equivariance under group actions have been characterized, whether it be in the finite [START_REF] Gens | Deep symmetry networks[END_REF][START_REF] Cohen | Group equivariant convolutional networks[END_REF], Ravanbakhsh et al., 2017] or infinite case [START_REF] Wood | Representation theory and invariant neural networks[END_REF]Shawe-Taylor, 1996, Kondor andTrivedi, 2018]. A general identification of linear layers on the top of a representation that are invariant or equivariant with respect to the whole permutation group has been proposed by [Maron et al., 2019a, Keriven andPeyré, 2019]. Universality results are known to hold in the case of sets [START_REF] Zaheer | Deep sets[END_REF], point clouds [Qi et al., 2017a], equivariant point clouds [START_REF] Segol | On universal equivariant set networks[END_REF], discrete measures [START_REF] De Bie | Stochastic deep networks[END_REF], invariant [Maron et al., 2019b] and equivariant [START_REF] Keriven | Universal invariant and equivariant graph neural networks[END_REF] graph neural networks. The approach most related to our work is that of [START_REF] Maron | On learning sets of symmetric elements[END_REF], presenting a neural architecture invariant with respect to the ordering of samples and their features. The originality of our approach is that we do not fix in advance the number of samples, and consider probability distributions instead of point clouds. This allows us to leverage the natural topology of optimal transport to assess theoretically the universality and smoothness of our architectures, which is adapted to tackle the Auto-ML problem.

Auto-ML. The absence of learning algorithms efficient on all datasets [START_REF] Wolpert | The lack of A priori distinctions between learning algorithms[END_REF] makes Auto-ML -i.e. the automatic identification of the machine learning pipelines yielding the best performance on the task at hand -a main bottleneck toward the so-called democratizing of the machine learning technology [START_REF] Hutter | Automated Machine Learning: Methods, Systems, Challenges[END_REF]. The Auto-ML field has been sparking interest for more than four decades [START_REF] Rice | The algorithm selection problem[END_REF], spread from hyperparameter optimization [START_REF] Bergstra | Algorithms for hyperparameter optimization[END_REF] to the optimization of the whole pipeline [START_REF] Feurer | Efficient and robust automated machine learning[END_REF]. Formally, Auto-ML defines a mixed integer and discrete optimization problem (finding the machine learning pipeline algorithms and their hyper-parameters), involving a blackbox expensive objective function. The organization of international challenges spurred the development of various efficient Auto-ML systems, instrinsically relying on Bayesian optimization [START_REF] Feurer | Efficient and robust automated machine learning[END_REF][START_REF] Thornton | Auto-weka: Combined selection and hyperparameter optimization of classification algorithms[END_REF], Monte-Carlo tree search [START_REF] Drori | Alphad3m: Machine learning pipeline synthesis[END_REF] on top of a surrogate model, or their combination [START_REF] Rakotoarison | Automated machine learning with monte-carlo tree search[END_REF].

As said, the ability to characterize tasks (datasets, in the remainder of this chapter) via vectors of meta-features would solve Auto-ML through learning the performance model. Meta-features, expected to describe the joint distribution underlying the dataset, should also be inexpensive to compute. Particular meta-features called landmarks [START_REF] Pfahringer | Meta-learning by landmarking various learning algorithms[END_REF] are given by the performance of fast machine learning algorithms; indeed, knowing that a decision tree reaches a given level of accuracy on a dataset gives some information on this dataset; see also [Muñoz et al., 2018]. Another direction is explored by [START_REF] Jomaa | Dataset2vec: Learning dataset meta-features[END_REF], defining the Dataset2Vec representation. Specifically, meta-features are extracted through solving the classification problem of whether two patches of data (subset of examples, described according to a subset of features) are extracted from the same dataset. Meta-learning [START_REF] Finn | Probabilistic model-agnostic meta-learning[END_REF][START_REF] Yoon | Bayesian modelagnostic meta-learning[END_REF] and hyperparameter transfer learning [START_REF] Perrone | Scalable hyperparameter transfer learning[END_REF], more remotely related to the presented approach, respectively aim to find a generic model with quick adaptability to new tasks, achieved through few-shot learning, and to transfer the performance model learned for a task, to another task.

Contributions.

The contributions of this chapter is twofold. On the algorithmic side, a distribution-based invariant deep architecture (Dida) able to learn such meta-features is presented in Section 2. The challenge is that a meta-feature associated to a set of samples must be invariant both under permutation of the samples, and under permutation of their coordinates. Moreover, the architecture must be flexible enough to accept discrete distributions with diverse support and feature sizes. The proposed Dida approach extends the state of the art [START_REF] Maron | On learning sets of symmetric elements[END_REF][START_REF] Jomaa | Dataset2vec: Learning dataset meta-features[END_REF] in two ways. Firstly, it is designed to handle discrete or continuous probability distributions, as opposed to point sets (Section 2). As said, this extension enables to leverage the more general topology of the Wasserstein distance as opposed to that of the Haussdorf distance (Section 3). This framework is used to derive theoretical guarantees of stability under bounded distribution transformations, as well as universal approximation results, extending [START_REF] Maron | On learning sets of symmetric elements[END_REF] to the continuous setting. Secondly, the empirical validation of the approach on two tasks defined at the dataset level demonstrates the merit of the approach compared to the state of the art [START_REF] Maron | On learning sets of symmetric elements[END_REF][START_REF] Jomaa | Dataset2vec: Learning dataset meta-features[END_REF], Muñoz et al., 2018] (Section 4).

Distribution-Based Invariant Networks for Meta-Feature Learning

This section describes our distribution-based invariant layers, mapping a probability distribution to another one while respecting invariances. It details how such layers can form trainable architectures performing regression with customized invariance requirements, referred to as invariant regression, and achieve meta-feature learning.

Invariant Functions of Discrete Distributions

Let X= {z i def. = (x i , y i ) ∈ R d } n
i=1 denote a dataset including n labelled samples, with x i ∈ R d X an instance and y i ∈ R d Y the associated multilabel. With d X and d Y respectively being the dimensions of the instance and label spaces, let d def.

= d X + d Y . By construction, X is invariant under permutation on the sample ordering; it is viewed as an n-size discrete distribution 1 n n i=1 δ z i in R d (or alternatively, as the associated random vector, hence notation X), as opposed to a point cloud. While we present in more detail the case of discrete uniform distributions, this framework is naturally suited to arbitrary distributions. Therefore, we recall for the sake of clarity that M + 1 (R d ) still denotes the space of arbitrary distributions, whether it be continuous or discrete (of arbitrary size), and R(R d ) still denotes the associated space of random vectors.

As the performance of a machine learning algorithm is most generally invariant with respect to permutations operating on the feature or label spaces, the neural architectures leveraged to learn the meta-features must enjoy the same property. Formally, let G def.

= S d X × S d Y denote the group of permutations independently operating on the feature and label spaces. For σ = (σ X , σ Y ) ∈ G, the image σ(X) of a labelled sample is defined as (σ X (x), σ Y (y)), with x = (x[k]) d X k=1 and σ X (x)

def.

= (x[σ -1 X (k)]) k . For simplicity and by abuse of notations, the operator mapping a distribution

X = (z i ) i to {σ(z i )} def.
= σ X is still denoted σ. We denote M + 1 (Ω) the space of distributions supported on some set Ω ⊂ R d (respectively, R(Ω) the space of random vectors), and we assume that the domain Ω is invariant under permutations in G.

The goal of this chapter is to define trainable deep architectures, implementing functions ϕ defined on R(Ω ⊂ R d ) such that these are invariant under G, i.e. ϕ(σ X) = ϕ(X) for any σ ∈ G. By construction, a multi-label dataset is invariant under permutations of the samples, of the features, and of the multi-labels. Therefore, any meta-feature, that is, a feature describing a multi-label dataset, is required to satisfy the above sample and feature permutation invariance properties. Such functions will be trained to define meta-features.

Distribution-Based Invariant Layers

Taking inspiration from [START_REF] De Bie | Stochastic deep networks[END_REF], the basic building-blocks of the neural architecture defined in Section 2.1 of Chapter 1 are extended to satisfy the feature-and label-invariance requirements.

Definition 5. (Distribution-based invariant layers) Let an interaction functional

ϕ : R d × R d → R r be G-invariant, i.e. ∀σ ∈ G, ∀(z, z ) ∈ (R d ) 2 , ϕ(z, z ) = ϕ(σ(z), σ(z )). ( 29 
)
A distribution-based invariant layer T ϕ is defined as

T ϕ : X ∈ R(R d ) → E X ∼X [ϕ(X, X )] ∈ R(R r ) ( 30 
)
where X is a random vector independent of X having the same distribution.

Remark 2. It is easy to see that, defined as such,

T ϕ : R(R d ) → R(R r ) is indeed invariant.
Nature of the invariance. Note that the invariance requirement on ϕ actually is less demanding than requiring ϕ(z, z ) = ϕ(σ(z), τ (z )) for any two distinct permutations σ and τ in G.

Discrete distribution.

In the experiments, datasets are represented as random vectors uniformly distributed on a set (z i ) n i=1 , in which case the invariant layer

T ϕ maps X = (z i ) n i=1 ∈ R(R d ) to T ϕ (X) def. = Ñ 1 n n j=1 ϕ(z 1 , z j ), . . . , 1 n n j=1 ϕ(z n , z j ) é ∈ R(R r ).
Moment and Push-forward. Two particular cases are when ϕ only depends on its first or second input:

(i) if ϕ(z, z ) = ψ(z ), then T ϕ computes a global "moment" descriptor of the input, as T ϕ (X) = E X [ψ(X)], which, in the discrete case, reads

1 n n j=1 ψ(z j ) ∈ R r .
(ii) if ϕ(z, z ) = ξ(z), then T ϕ transports the input distribution via ξ through a push-forward, which, in the case of discrete distributions, reads

T ϕ (X) = {ξ(z i )} i ⊂ R r .
Spaces of arbitrary dimension. Both in practice and in theory, it is important to define T ϕ layers (in particular the first one of the architecture) that can be applied to distributions on R d X × R d Y of arbitrary dimensions d X and d Y . This can be achieved by constraining ϕ to be of the form, with z = (x, y) and z = (x , y ):

ϕ(z, z ) = v d X k=1 d Y =1 u(x[k], x [ ], y[k], y [ ])
where u : R 4 → R t and v : R t → R r are independent of d.

Generalization to arbitrary groups. The definition of invariant functions ϕ (and the corresponding architectures) can be generalized to arbitrary group operating on R d (in particular sub-groups of the permutation group).

A simple way to design an invariant function is to consider ϕ(z, z ) = ψ(z +z ) where ψ is G-invariant. In the linear case, [START_REF] Maron | On learning sets of symmetric elements[END_REF], Theorem 5 shows that these types of functions are the only ones, but this is not anymore true for non-linear functions.

Localized computation. The complexity of computing 1 n j ϕ(z i , z j ) in practice can be reduced by considering only z j in a neighborhood of z i . The layer then extracts local information around each of the points.

Higher Order Interactions and Tensorization. Invariant layers can also be generalized to handle higher order interactions functionals, namely T ϕ (X) def.

= E X 2 ,...,X N ∼X [ϕ(X, X 2 , . . . , X N )]. An equivalent and elegant way to introduce these interactions in a deep architecture is by adding a tensorization layer, which maps X → X 2 ⊗ . . . ⊗ X N ∈ R((R d ) N -1 ). Section 3 details the regularity and approximation power of these tensorization steps.

Link to kernel methods. The use of an interaction functional ϕ is inspired from kernel ideas, albeit with significant differences: (i) using T ϕ , the detail of the pairwise interactions ϕ(z i , z j ) is lost through averaging; (ii) ϕ takes into account labels; (iii) ϕ is learnt. Further work will be devoted to investigating the properties of the T ϕ (z i ) matrix.

Learning Dataset Meta-features from Distributions

The proposed invariant regression neural architectures defined on point distributions (Dida) are defined as

X ∈ R(R d ) → F ζ (X) def. = f ϕm • f ϕ m-1 • . . . • f ϕ 1 (X) ∈ R d m+1 (31)
where ζ are the trainable parameters of the architecture (detailed below). Note that this architecture shares similarities to the one presented in Section 2.2 of Chapter 1, however focused on the discriminative case (with a constant output vector), and including an additional invariance requirement. Here

ϕ k : R d k ×R d k → R d k+1 , d 1 = d
and ϕ m only depends on its second argument, such that F ζ (X) ∈ R d m+1 should be understood as being a vector (as opposed to a distribution), whose coordinates are referred to as meta-features.

Note that only ϕ 1 is required to be G-invariant and dimension-agnostic for the architecture to be as well. This map ϕ 1 , defined as suggested in Section 2.2, is thus learned using inputs of varying dimension as a G-invariant layer with d Y = 1, where u maps (x, x , y, y

) ∈ R 4 to [ρ(A u [x; x ]+b u ); 1 y =y ] ∈ R t , v maps e ∈ R t to ρ(A v e+b v ) ∈ R r , with A u •+b u , A v •+b v are
affine functions, ρ is a non-linearity and [.; .] denotes concatenation.

As the following layers ϕ k (k = 2, . . . , m) need not be invariant, they are parameterized as ϕ k = ρ(A k • +b k ) using a pair A k , b k of (matrix,vector). The parameters of the Dida architecture are thus

ζ def. = (A u , b u , A v , b v , {A k , b k } k ).
They are learned in a supervised fashion, with a loss function depending on the task at hand (see Section 4). Maintaining the distributional nature among several layers is shown to improve performance in practice (see Section 4). By construction, these architectures are invariant with respect to the orderings of both the points composing the input distributions and their coordinates. The input distributions can be composed of any number of points in any dimension, which is a distinctive feature with respect to [START_REF] Maron | On learning sets of symmetric elements[END_REF].

Theoretical Analysis

To get some insight on these architectures, we now detail their robustness to perturbations and their approximation abilities with respect to the convergence in law, which is the natural topology for distributions.

Optimal Transport Comparison of Datasets

Point clouds vs. distributions. It is important to note that learning from datasets, referred to as meta-learning for simplicity in the sequel, requires such datasets be seen as probability distributions, as opposed to point clouds. For instance, having twice the same point in a dataset really corresponds to doubling its mass, i.e. it should have twice more importance than the other points. We thus argue that the natural topology to analyze meta-learning methods is the one of the convergence in law, which can be quantified using Wasserstein optimal transport distances. This is in sharp contrast with point clouds architectures (see for instance [Qi et al., 2017a]), making use of max-pooling and relying on the Haussdorff distance to analyze the architecture properties. While this analysis is standard for low-dimensional (2D and 3D) applications in graphics and vision, this is not suitable for our purpose, because max-pooling is not a continuous operation for the topology of convergence in law.

Wasserstein distance. In order to quantify the regularity of the involved functionals, we resort to the 1-Wasserstein distance between two probability distributions α, β ∈ (M + 1 (R d )) 2 (referring the reader to [Santambrogio, 2015, Peyré andCuturi, 2019] for a comprehensive presentation of Wasserstein distance):

W 1 (α, β) def. = min π 1 =α,π 2 =β R d ×R d
x -y dπ(x, y)

def.

= min

X∼α,Y ∼β

E( X -Y )
where the minimum is taken over measures on

R d × R d with marginals α, β ∈ M + 1 (R d ).
W 1 is known to be a norm [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF], that can be conveniently computed using

W 1 (α, β) = W 1 (α -β) = max Lip(g) 1 R d gd(α -β),
where Lip(g) is the Lipschitz constant of g : R d → R with respect to the Euclidean norm (unless otherwise stated). For simplicity and by abuse of notations, W 1 (X, Y ) is used instead of W 1 (α, β) when X ∼ α and Y ∼ β.

The convergence in law denoted is equivalent to the convergence in Wasserstein distance in the sense that X k X is equivalent to W 1 (X k , X) → 0.

Permutation-invariant Wasserstein distance. The Wasserstein distance is quotiented according to the permutation-invariance equivalence classes: for α,

β ∈ M + 1 (R d ) W 1 (α, β) def. = min σ∈G W 1 (σ α, β) = min σ∈G max Lip(g) 1 R d g • σdα - R d gdβ such that W 1 (α, β) = 0 ⇐⇒ α ∼ β.
W 1 defines a norm on the quotient space M + 1 (R d ) /∼ , which is, for the sake of simplicity, still denoted

M + 1 (R d ) or R(R d ) in the following. Lipschitz property. A map f : R(R d ) → R(R r ) is continuous for the convergence in law (aka the weak * of measures) if for any sequence X k X, then f (X k ) f (X)
. Such a map is furthermore said to be C-Lipschitz for the permutation invariant 1-Wasserstein distance if

∀ (X, Y ) ∈ (R(R d )) 2 , W 1 (f (X), f (Y )) CW 1 (X, Y ). ( 32 
)
Lipschitz properties enable us to analyze robustness to input perturbations, since it ensures that if the input distributions of random vectors are close in the permutation invariant Wasserstein sense, the corresponding output laws are close, too.

Regularity of Distribution-Based Invariant Layers

The following propositions show the robustness of invariant layers with respect to different variations of their input, assuming the following regularity condition on the interaction functional:

∀z ∈ R d , ϕ(z, •) and ϕ(•, z) are Lip(ϕ) -Lipschitz. ( 33 
)
We first show that invariant layers are Lipschitz regular. This ensures that deep architectures of the form (31) map close inputs onto close outputs.

Proposition 7. Invariant layers T ϕ of type (30) are (2r Lip(ϕ))-Lipschitz in the sense of (32).

Proof. (Proposition 7). For α, β ∈ M + 1 (R d ), Proposition 1 from [START_REF] De Bie | Stochastic deep networks[END_REF] 

yields W 1 (T ϕ (α), T ϕ (β)) 2r Lip(ϕ) W 1 (α, β), hence, for σ ∈ G, W 1 (σ T ϕ (α), T ϕ (β)) W 1 (σ T ϕ (α), T ϕ (α)) + W 1 (T ϕ (α), T ϕ (β)) W 1 (σ T ϕ (α), T ϕ (α)) + 2r Lip(ϕ) W 1 (α, β)
hence, taking the infimum over σ yields

W 1 (T ϕ (α), T ϕ (β)) W 1 (T ϕ (α), T ϕ (α)) + 2r Lip(ϕ) W 1 (α, β) 2r Lip(ϕ) W 1 (α, β) Since T ϕ is invariant, for σ ∈ G, T ϕ (X) = T ϕ (σ X), W 1 (T ϕ (α), T ϕ (β)) 2r Lip(ϕ) W 1 (σ α, β)
Taking the infimum over σ yields the result.

Secondly, we consider perturbations with respect to diffeomorphisms. This stability is essential to cope with situations where, for instance, an auto-encoder τ has been trained, so that a dataset X = (z 1 , . . . , z n ) and its encoded-decoded representation τ X = (τ (z 1 ), . . . , τ (z n )) are expected to yield similar meta-features. The following proposition shows that T ϕ (τ X) and T ϕ (X) are indeed close if τ is close to the identity, which is expected when using auto-encoders. It also shows that similarly, if both inputs and outputs are modified by regular deformations τ and ξ, then the output are also close.

Proposition 8. For τ : R d → R d and ξ : R r → R r two Lipschitz maps, one has, for all α, β ∈ M + 1 (Ω),

W 1 (ξ T ϕ (τ α), T ϕ (α)) sup x∈Tϕ(τ (Ω)) ξ(x) -x 2 + 2r Lip(ϕ) sup x∈Ω τ (x) -x 2
Also, if τ is equivariant, the following holds:

W 1 (ξ T ϕ (τ α), ξ T ϕ (τ β)) 2r Lip(ϕ) Lip(τ ) Lip(ξ)W 1 (α, β)
Proof. (Proposition 8). To upper bound W 1 (ξ T ϕ (τ α), T ϕ (α)) for α ∈ M + 1 (Ω), we proceed as follows, using proposition 3 from [De Bie et al., 2019] and proposition 7:

W 1 (ξ T ϕ (τ α ϕ (α)), T ϕ (α)) W 1 (ξ T ϕ (τ α), T ϕ (τ α)) + W 1 (T ϕ (τ α), T ϕ (α)) ξ -id L 1 (Tϕ(τ α)) + Lip(T ϕ ) W 1 (τ α, α) sup y∈Tϕ(τ (Ω)) ξ(y) -y 2 + 2r Lip(ϕ) sup x∈Ω τ (x) -x 2 For σ ∈ G, we get W 1 (σ ξ T ϕ (τ α), T ϕ (α)) W 1 (σ ξ T ϕ (τ α), ξ T ϕ (τ α)) + W 1 (ξ T ϕ (τ α), T ϕ (α))
Taking the infimum over σ yields

W 1 (ξ T ϕ (τ α), T ϕ (α)) W 1 (ξ T ϕ (τ α), T ϕ (α)) sup y∈Tϕ(τ (Ω)) ξ(y) -y 2 + 2r Lip(ϕ) sup x∈Ω τ (x) -x 2 which is the expected result. Similarly, for α, β ∈ (M + 1 (R d )) 2 , W 1 (ξ T ϕ (τ α), ξ T ϕ (τ β)) Lip(ξ) W 1 (T ϕ (τ α), T ϕ (τ β)) Lip(ξ) Lip(T ϕ ) W 1 (τ α, τ β) 2r Lip(ϕ) Lip(ξ) Lip(τ ) W 1 (α, β) hence, for σ ∈ G, W 1 (σ ξ T ϕ (τ α), ξ T ϕ (τ β)) W 1 (σ ξ T ϕ (τ α), ξ T ϕ (τ α)) + W 1 (ξ T ϕ (τ α), ξ T ϕ (τ β))
and taking the infimum over σ yields

W 1 (ξ T ϕ (τ α), ξ T ϕ (τ β)) W 1 (ξ T ϕ (τ α), ξ T ϕ (τ β)) 2r Lip(ϕ) Lip(ξ) Lip(τ ) W 1 (α, β) Since τ is equivariant: namely, for α ∈ M + 1 (R d ), σ ∈ G, τ (σ α) = σ (τ α), hence, since T ϕ is invariant, T ϕ (τ (σ α)) = T ϕ (σ (τ α)) = T ϕ (τ α), hence for σ ∈ G, W 1 (ξ T ϕ (τ α), ξ T ϕ (τ β)) 2r Lip(ϕ) Lip(ξ) Lip(τ ) W 1 (σ α, β)
Taking the infimum over σ yields the result.

Universality of Invariant Layers

We now show that our architecture can approximate any continuous invariant map. More precisely, the following proposition shows that the combination of an invariant layer (30) and a fully-connected layer are enough to reach universal approximation capability. This statement holds for arbitrary distributions (not necessarily discrete) and for functions defined on spaces of arbitrary dimension in the sense of Section 2.2 (assuming some a priori bound on the dimensions).

Theorem 5. Let F : M + 1 (Ω) → R a S d X × S d Y -invariant map continuous for the convergence in law, where Ω is compact. Then ∀η > 0, there exists two continuous maps ψ, ϕ such that

∀α ∈ M + 1 (Ω), |F(α) -ψ • T ϕ (α)| < η where ϕ is S d X × S d Y -invariant and independent of F.
Before providing a proof of Theorem 5, we first state two Lemmas that will be useful for the proof.

Lemma 3. Let (S j ) N j=1 be a partition of a domain including Ω (S j ⊂ R d ) and let x j ∈ S j . Let (ϕ j ) N j=1 a set of bounded functions ϕ j : Ω → R supported on S j , such that j ϕ j = 1 on Ω. For α ∈ M + 1 (Ω), we denote αN def.

= N j=1 α j δ x j with α j def.

= S j ϕ j dα. One has, denoting ∆ j def.

= max x∈S

j x j -x , W 1 ( αN , α) max 1 j N ∆ j .
Proof. We refer to Chapter 1, Section 3.3 for a proof.

Lemma 4. Let f : R d → R q a 1/p-Hölder continuous function (p 1), then there exists a constant C > 0 such that for all α, β ∈ M

+ 1 (R d ), W 1 (f α, f β) C W 1 (α, β) 1/p .
Proof. For any transport map π with marginals α and β, 1/p-Hölderness of f with constant C yields ||f (x) -f (y)|| 2 dπ(x, y) C ||x -y|| 1/p 2 dπ(x, y) C ||x -y|| 2 dπ(x, y) 1/p using Jensen's inequality (p 1). Taking the infimum over π yields W 1 (f α, f β) C W 1 (α, β) 1/p . We are now ready to provide a proof of Theorem 5. We first show the result in the case of S d -invariant regression functionals (G = S d ) and extend the result to products of permutations

(G = S d 1 × . . . S d N ) in the next paragraph. Proof. Let α ∈ M + 1 (R d ).
We consider:

(i) h : x = (x 1 , . . . , x d ) ∈ R d → Ä 1 j 1 <...<j i d x j 1 • . . . • x j i ä i=1...d
∈ R d the collection of d elementary symmetric polynomials; h does not lead to a loss in information, in the sense that it generates the ring of S d -invariant polynomials (see for instance [START_REF] Cox | Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra, 3/e[END_REF], chapter 7, theorem 3) while preserving the classes (see the proof of Lemma 2, appendix D from [START_REF] Maron | On learning sets of symmetric elements[END_REF]);

(ii) h is obviously not injective, so we consider π : R d → R d /S d the projection onto R d /S d : h = h • π such that h is bijective from π(Ω) to its image Ω , compact of R d ; h and h-1 are continuous;

(iii) Let (ϕ i ) i=1...N the piecewise affine P1 finite element basis, which are hat functions on a discretization (S i ) i=1...N of Ω ⊂ R d , with centers of cells (y i ) i=1...N . We then define g :

x ∈ R d → (ϕ 1 (x), . . . , ϕ N (x)) ∈ R N ;
ϕ introduced in the statement of Theorem 5 is defined as ϕ def.

= g • h;

(iv) ψ : (α 1 , . . . , α N ) ∈ R N → F Ä N i=1 α i δ h-1 (y i ) ä ∈ R.
We approximate F using the following steps:

(i) Lemma 3 yields that h α and h α = N i=1 α i δ y i are close:

W 1 (h α, h α) √ d/N 1/d
(ii) The map h-1 is regular enough (1/d-Hölder) such that according to Lemma 4, there exists a constant C > 0 such that

W 1 ( h-1 (h α), h-1 h α) C W 1 (h α, h α) 1/d Cd 1/2d /N 1/d 2 Hence W 1 (α, h-1 h α) := inf σ∈S d W 1 (σ α, h-1 h α) Cd 1/2d /N 1/d 2 .
Note that h maps the roots of polynomial d i=1 (X -x (i) ) to its coefficients (up to signs). Theorem 1.3.1 from [START_REF] Rahman | Analytic theory of polynomials[END_REF] yields continuity and 1/d-Hölderness of the reverse map. Hence h-1 is 1/d-Hölder.

(iii) Since Ω is compact, by Banach-Alaoglu theorem, we obtain that M + 1 (Ω) is weakly-* compact, hence M + 1 (Ω) /∼ also is. Since F is continuous, it is thus uniformly weak-* continuous: for any η > 0, there exists

δ > 0 such that W 1 (α, h-1 h α) δ implies |F(α) -F( h-1 h α)| < η. Choosing N large enough such that Cd 1/2d /N 1/d 2 δ therefore ensures that |F(α) -F( h-1 h α)| < η.
It is worth noting that, contrary to the proof of Theorem 3 in Chapter 1, which considers measure-valued functionals, the concatenation of random noise is not required here. Another distinctive feature is the use of elementary symmetric polynomials that enforce here the desired invariance property.

Extension to products of permutation groups. The approximation ability of such layers extends to products of permutation groups, which is our experimental setting (see Section 4), as exemplified in the next corollary.

Corollary 1. Let F : M + 1 (Ω) → R a continuous S d 1 × . . . × S dn -invariant map ( i d i = d),
where Ω is a symmetrized compact over R d . Then ∀η > 0, there exists two continuous maps ψ, ϕ such that

∀α ∈ M 1 + (Ω), |F(α) -ψ • T ϕ (α)| < η
where ϕ is S d 1 × . . . × S dn -invariant and independent of F.

Proof. We provide a proof in the case G = S d × S p , which naturally extends to any product group G = S d 1 × . . . × S dn . We trade h in the proof of Theorem 5 for the collection of elementary symmetric polynomials in the first d variables; and in the last p variables:

h : (x 1 , . . . , x d , y 1 , . . . , y p ) ∈ R d+p → ([ 1 j 1 <...<j i d x j 1 . . . x j i ] d i=1 ; [ 1 j 1 <...<j i p y j 1 . . . y j i ] p i=1
) ∈ R d+p up to normalizing constants (see Lemma 6). We still define ϕ def.

= g • h, with g : R d+p → R N , and keep the same ψ.

Step 1 (in Lemma 5) consists in showing that h does not lead to a loss of information, in the sense that it generates the ring of S d × S p -invariant polynomials. In step 2 (in Lemma 6), we show that h-1 is 1/ max(d, p)-Hölder. Combined with the proof of Theorem 5, this amounts to showing that the concatenation of Hölder functions (up to normalizing constants) is Hölder. With these ingredients, the sketch of the previous proof yields the result.

Lemma 5. Let the collection of symmetric invariant polynomials

[P i (X 1 , . . . , X d )] d i=1 def. = [ 1 j 1 <...<j i d X j 1 . . . X j i ] d i=1 and [Q i (Y 1 , . . . , Y p )] p i=1 def.
= [

1 j 1 <...<j i p Y j 1 . . . Y j i ] p i=1
The d + p-sized family (P 1 , . . . , P d , Q 1 , . . . , Q p ) generates the ring of S d × S p -invariant polynomials.

Proof. The result comes from the fact the fundamental theorem of symmetric polynomials (see [START_REF] Cox | Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra, 3/e[END_REF] 

, . . . , Q p ]. Lemma 6. Let h : (x, y) ∈ Ω ⊂ R d+p → (f (x)/C 1 , g(y)/C 2 ) ∈ R d+p where Ω is compact, f : R d → R d is 1/d-Hölder with constant C 1 and g : R p → R p is 1/p-Hölder with constant C 2 . Then h is 1/ max(d, p)-Hölder.
Proof. Without loss of generality, we consider d > p so that max(d, p) = d, and f, g normalized (f.i. ∀x,

x 0 ∈ (R d ) 2 , f (x) -f (x 0 ) 1 x -x 0 1/d 1 ). For (x, y), (x 0 , y 0 ) ∈ Ω 2 , h(x, y) -h(x 0 , y 0 ) 1 f (x) -f (x 0 ) 1 + g(y) -g(y 0 ) 1 x -x 0 1/d 1 + y -y 0 1/p 1
since both f, g are Hölder. We denote D the diameter of Ω, such that both x -x 0 1 /D 1 and y -y 0 1 /D 1 hold. Therefore

h(x, y) -h(x 0 , y 0 ) 1 D 1/d Å x -x 0 1 D ã 1/d + D 1/p Å y -y 0 1 D ã 1/p 2 1-1/d D 1/p-1/d (x, y) -(x 0 , y 0 )
1/d 1 using Jensen's inequality, hence the result.

Extension to different spaces. Theorem 5 also extends to distributions supported on different spaces, by considering a joint embedding space of large enough dimension. This way, any invariant prediction function can (uniformly) be approximated by an invariant network, up to setting added coordinates to zero, as shown below.

Corollary 2. Let I = [0; 1] and, for k ∈ [1; d m ], F k : M + 1 (I k ) → R con- tinuous and S k -invariant. Suppose (F k ) k=1...dm-1 are restrictions of F dm , namely, ∀α k ∈ M + 1 (I k ), F k (α k ) = F dm (α k ⊗ δ ⊗dm-k 0 
). Then there exists ψ, g continuous, h 1 , . . . , h dm continuous invariant such that

∀k = 1 . . . d m , ∀α k ∈ M + 1 (I k ), |F k (α k ) -ψ • E • g(h k α k )| < η.
Proof. The proof of Theorem 5 yields continuous ψ, g and a continuous invariant h dm such that ∀α ∈ M + 1 (I dm ), |F dm -ψ •E•g(h dm α)| < η (with ϕ in the statement of the Theorem defined as ϕ def.

= g•h dm ). For k = 1 . . . d m -1, we denote

h k : (x 1 , . . . , x k ) ∈ R k → î ( 1 j 1 <...<j i k x (j 1 ) • . . . • x (j i ) ) i=1...k , 0 . . . , 0 ó ∈ R dm . With the hypothesis, for k = 1 . . . d m -1, α k ∈ M + 1 (I k ), the fact that h k (α k ) = h dm (α k ⊗ δ ⊗dm-k 0 ) yields the result.
Approximation by invariant neural networks. A consequence of Theorem 5 is that any continuous invariant regression function taking (compactly supported) distributions can be approximated to arbitrary precision by an invariant neural network. This result is detailed below and uses the following ingredients: (i) an invariant layer with ϕ that can be approximated by an invariant network; (ii) the universal approximation theorem [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Leshno | Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[END_REF]; (iii) uniform continuity to obtain uniform bounds. = g • h:

(i) We approximate f by a neural network f θ : x ∈ R N → C 1 λ(A 1 x + b 1 ) ∈ R, where p 1 is an integer, A 1 ∈ R p 1 ×N , C 1 ∈ R 1×p 1 are weights, b 1 ∈ R p 1
is a bias and λ is a non-linearity.

(ii) Since each component ϕ j of ϕ = g•h is permutation-invariant, it has the representation ϕ j : et al., 2017] (which is a special case of our layers with a base function only depending on its first argument, see Section 2.2), ρ j : R d+1 → R, and u : R → R d+1 independent of j (see [START_REF] Zaheer | Deep sets[END_REF], theorem 7).

x = (x 1 , . . . , x d ) ∈ R d → ρ j Ä d i=1 u(x i ) ä [Zaheer
(iii) We can approximate ρ j and u by neural networks ρ j,θ :

x ∈ R d+1 → C 2,j λ(A 2,j x + b 2,j ) ∈ R and u θ : x ∈ R d → C 3 λ(A 3 x + b 3 ) ∈ R d+1 , where p 2,j , p 3 are integers, A 2,j ∈ R p 2,j ×(d+1) , C 2,j ∈ R 1×p 2,j , A 3 ∈ R p 3 ×1 , C 3 ∈ R (d+1)×p 3 are weights and b 2,j ∈ R p 2,j , b 3 ∈ R p 3 are biases, and denote ϕ θ (x) = (ϕ j,θ (x)) j def. = (ρ j,θ ( d i=1 u θ (x i ))) j .
Indeed, we upper-bound the difference of interest |F(α)-f θ (E X∼α (ϕ θ (X)))| by triangular inequality by the sum of three terms:

(i) |F(α) -f (E X∼α (ϕ(X)))| (ii) |f (E X∼α (ϕ(X))) -f θ (E X∼α (ϕ(X)))| (iii) |f θ (E X∼α (ϕ(X))) -f θ (E X∼α (ϕ θ (X)))|
and bound each term by ε 3 , which yields the result. The bound on the first term directly comes from theorem 5 and yields a constant N which depends on ε. The bound on the second term is a direct application of the universal approximation theorem (UAT) [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Leshno | Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[END_REF]. Indeed, since α is a probability measure, input values of f lie in a compact subset of R N :

Ω g • h(x)dα ∞ max x∈Ω max i |g i • h(x)|
, hence the theorem is applicable as long as λ is a nonconstant, bounded and continuous activation function. Let us focus on the third term. Uniform continuity of f θ yields the existence of δ > 0 s.

t. ||u -v|| 1 < δ implies |f θ (u) -f θ (v)| < ε 3 .
Let us apply the UAT: each component ϕ j of h can be approximated by a neural network ϕ j,θ . Therefore:

E X∼α (ϕ(X) -ϕ θ (X)) 1 E X∼α ϕ(X) -ϕ θ (X) 1 N j=1 Ω |ϕ j (x) -ϕ j,θ (x)|dα(x) N j=1 Ω |ϕ j (x) -ρ j,θ ( d i=1 u(x i ))|dα(x) + N j=1 Ω |ρ j,θ ( d i=1 u(x i )) -ρ j,θ ( d i=1 u θ (x i ))|dα(x) N δ 2N + N δ 2N = δ
using the triangular inequality and the fact that α is a probability measure. The first term is small by UAT on ρ j while the second also is, by UAT on u and uniform continuity of ρ j,θ . Therefore, by uniform continuity of f θ , we can conclude.

Universality of Tensorization. As hinted at in Section 2.2, tensor products play a role in designing invariant layers, allowing for more expressive power as illstrated in the following result. Indeed, as long as the test function is invariant, tensorization allows for the approximation of any invariant regression functional.

Theorem 6. The algebra

A Ω def. =    F : M + 1 (Ω) →R, ∃n ∈ N, ∃ϕ : Ω n → R invariant, ∀α ∈ M + 1 (Ω), F(α) = Ω n ϕdα ⊗n    .
where ⊗n denotes the n-fold tensor product, is dense in

C(M 1 + (Ω) /∼ ).
Proof. This result follows from the Stone-Weierstrass theorem. Since Ω is compact, by Banach-Alaoglu theorem, we obtain that M + 1 (Ω) is weakly-* compact, hence M + 1 (Ω) /∼ also is. In order to apply Stone-Weierstrass, we show that A Ω contains a non-zero constant function and is an algebra that separates points. A (non-zero, constant) 1-valued function is obtained with n = 1 and ϕ = 1. Stability by scalar is straightforward. For stability by sum: given (F 1 , F 2 ) ∈ A 2 Ω (with associated functions (ϕ 1 , ϕ 2 ) of tensorization degrees (n 2 , n 2 )), we denote n def.

= max(n 1 , n 2 ) and ϕ(x 1 , . . . , x n )

def. = ϕ 1 (x 1 , . . . , x n 1 ) + ϕ 2 (x 1 , . . . , x n 2 ) which is indeed invariant, hence F 1 + F 2 = Ω n ϕdα ⊗n ∈ A Ω .
Similarly, for stability by product: denoting this time n = n 1 + n 2 , we introduce the invariant ϕ(x 1 , . . . , x n ) = ϕ 1 (x 1 , . . . , x n 1 ) × ϕ 2 (x n 1 +1 , . . . , x n ), which shows that F = F 1 × F 2 ∈ A Ω using Fubini's theorem. Finally, A Ω separates points: if α = ν, then there exists a symmetrized domain S such that α(S) = ν(S): indeed, if for all symmetrized domains S, α(S) = ν(S), then α(Ω) = ν(Ω) which is absurd. Taking n = 1 and ϕ = 1 S (invariant since S is symmetrized) yields an F such that F(α) = F(ν).

Learning Meta-Features: Proof of Concept

The experimental validation presented in this section considers two goals of experiments: (i) assessing the ability of Dida to learn accurate metafeatures; (ii) assessing the merit of the Dida invariant layer design, building invariant T ϕ on the top of an interactional function ϕ (Eq. 30). As said, this architecture is expected to grasp contrasts among samples, e.g. belonging to different classes; the proposed experimental setting aims to empirically investigate this conjecture. The code used to produce figures in this section is available at: https://github.com/herilalaina/dida.

Baselines. These goals of experiments are tackled by comparing Dida to three baselines: DSS layers [START_REF] Maron | On learning sets of symmetric elements[END_REF]; hand-crafted meta-features (HC) [Muñoz et al., 2018] (Table 7 in Appendix -Section 5); Dataset2Vec [START_REF] Jomaa | Dataset2vec: Learning dataset meta-features[END_REF]. We implemented DSS, the code being not available. In order to cope with varying dataset dimensions (as required by the UCI and OpenML benchmarks), the original DSS was augmented with an aggregator summing over the features. Three DSS baselines are considered: linear or non-linear invariant layers, possibly preceded by equivariant layers. Similarly, the original Dataset2Vec implementation has been augmented to address our experimental setting. The baselines are detailed in Appendix -Section 5.

Experimental setting. Two tasks defined at the dataset level are considered: patch identification (section 4.1) and performance modelling (section 4.2). The dataset preprocessing protocols are detailed in Appendix -Section 5. On both tasks, the same Dida architecture is considered (Fig 7 ), involving 2 invariant layers followed by 3 fully connected (FC) layers. Meta-features F ζ (X) consist of the output of the third FC layer, with ζ denoting the trained Dida parameters. All experiments are run on 1 NVIDIA-Tesla-V100-SXM2 GPU with 32GB memory, using Adam optimizer with base learning rate 10 -3 and batch size 32.

Figure 7: Learning meta-features with Dida. Top: the Dida architecture (BN stands for batch norm; FC for fully connected layer). Bottom left: Learning meta-features for patch identification using a Siamese architecture (section 4.1). Bottom right: learning meta-features for performance modelling, specifically to rank two hyper-parameter configurations θ 1 and θ 2 (section 4.2).

Distribution Identification

The patch identification task consists of detecting whether two blocks of data are extracted from the same original dataset [START_REF] Jomaa | Dataset2vec: Learning dataset meta-features[END_REF]. Letting u denote a n-sample, d-dimensional dataset, an n z , d z patch X is constructed from u by selecting n z examples in u (sampled uniformly with replacement) and retaining their description along d z features (sampled uniformly with replacement). The size n z and number d z of features of the patch are uniformly selected in fixed intervals (Table 6, Appendix -Section 5). To each pair of patches X, X with same number of instances n z = n z , is associated a binary meta-label (X, X ) set to 1 iff X and X' are extracted from the same initial dataset u. Dida parameters ζ are trained to minimize the cross-entropy loss of model ˆ

ζ (X, X ) = exp -F ζ (X) -F ζ (X ) 2 , with F ζ (X) and F ζ (X ) the meta-features computed for X and X : min ζ - X,X (X, X ) log Ä ˆ ζ (X, X ) ä + (1 -(X, X )) log Ä 1 -ˆ ζ (X, X ) ä
(34) Dida and all baselines are trained using a Siamese approach (Figure 7, bottom left): the same Dida (or baseline) architecture is used to compute meta-features F ζ (X) and F ζ (X ) from patches X and X , and trained to minimize the cross-entropy loss w.r.t. (X, X ). The classification results on toy datasets and UCI datasets (Table 3, detailed in Appendix -Section 5) show the pertinence of the Dida meta-features, particularly so on the UCI datasets where the number of features widely varies from one dataset to another. The relevance of the interactional invariant layer design is established on this problem as Dida outperforms both Dataset2Vec, DSS as well as the function learned on the top of the hand-crafted meta-features.

An ablation study is conducted to assess the impact of (i) the feature permutation invariance; (ii) considering one vs two invariant layers of type (30). The so-called No-FInv-DSS baseline, detailed in Appendix -Section 5, is built upon [START_REF] Zaheer | Deep sets[END_REF]; it only differs from the DSS baseline as it is not feature permutation invariant. With ca the same number of parameters as DSS, its performances are significantly lower (Table 3), showcasing the benefits of enforcing the feature invariance property. Secondly, we compare the 2-invariant layers Dida, with the 1-invariant layer Dida (1L-Dida and 2L-Dida for short): 1L-Dida yields significantly lower performances, which confirms the advantages of maintaining the distributional nature among several layers, as already noted by [START_REF] De Bie | Stochastic deep networks[END_REF]. Note that the 1L-Dida still outperforms the non feature-invariant baseline, while requiring much fewer parameters. 

Performance Model Learning

The performance modelling task aims to assess a priori the accuracy of the classifier learned from a given machine learning algorithm with a given configuration θ (vector of hyper-parameters ranging in a hyper-parameter space Θ, Table 8 in Appendix -Section 5), on a dataset X (for brevity, the performance of θ on X) [START_REF] Rice | The algorithm selection problem[END_REF].

For each ML algorithm, ranging in Logistic regression (LR), SVM, k-Nearest Neighbours (k-NN), linear classifier learned with stochastic gradient descent (SGD), a set of meta-features is learned to predict whether some configuration θ 1 outperforms some configuration θ 2 on dataset X: to each triplet (X, θ 1 , θ 2 ) is associated a binary value (X, θ 1 , θ 2 ), set to 1 iff θ 2 yields better performance than θ 1 on X. Dida parameters ζ are trained to build model ˆ ζ , minimizing the (weighted version of) cross-entropy loss (34), where ˆ ζ (X, θ 1 , θ 2 ) is a 2-layer FC network with input vector [F ζ (X); θ 1 ; θ 2 ], depending on the considered ML algorithm and its configuration space.

In each epoch, a batch made of triplets (X, θ 1 , θ 2 ) is built, with θ 1 , θ 2 uniformly drawn in the algorithm configuration space (Table 8) and X a n-sample d-dimensional patch of a dataset in the OpenML CC-2018 [START_REF] Bischl | Openml benchmarking suites[END_REF] with n uniformly drawn in [700; 900] and d in [3; 10]. Algorithm 1 summarizes the training procedure.

The quality of the Dida meta-features is assessed from the ranking accuracy (Table 4), showing their relevance. The performance gap compared to the baselines is higher for the k-NN modelling task; this is explained as the sought performance model only depends Sample (θ 1 , θ 2 ), two hyper-parameters of CLF Search space: Table 8 7:

Sample patch X from dataset u Patch dimension: Table 6 8:

pred ← softmax(MLP(F ζ (X), θ 1 ), MLP(F ζ (X), θ 2 )) 9:
Backpropagate logloss(pred, 0 if error(X, CLF(θ 1 )) < error(X, CLF(θ 2 )) else 1) 10: end for algorithms. Note that the 2L-Dida yields significantly better (respectively, similar) performances than 1L-Dida on the k-NN model (resp. on all other models).

Meta-feature assessment. A regression setting is thereafter considered, aimed to predict the actual performance of a configuration θ based on the (frozen) meta-features F ζ (X). The regression accuracy is illustrated for the configurations of the k-NN algorithm on Figure 8, left (results for other algorithms are presented in Appendix -Section 5). The comparison with the regression models based on DSS meta-features or hand-crafted features (Figure 8, middle and right) shows the merits of the Dida architecture; a tentative interpretation for the Dida better performance is based on the interactional nature of Dida architecture, better capturing local interactions. 

Appendix

Benchmark details

Three benchmarks are used (Table 5): TOY and UCI, taken from [START_REF] Jomaa | Dataset2vec: Learning dataset meta-features[END_REF], and OpenML CC-18 [START_REF] Bischl | Openml benchmarking suites[END_REF]. TOY includes 10,000 datasets, where instances are distributed along mixtures of Gaussian, intertwinning moons and rings in R 2 , with 2 to 7 classes. UCI includes 121 datasets from the UCI Irvine repository [START_REF] Dua | UCI machine learning repository[END_REF]. Datasets UCI and OpenML are normalized as follows: categorical features are one-hot encoded; numerical features are normalized; missing values are imputed with the feature mean (continuous features) or median (for categorical features).

Patches are defined as follows. Given an initial dataset, a number d X of features and a number n of examples are uniformly selected in the considered ranges (depending on the benchmark) described in Table 6 The following Algorithm 2 details the learning procedure used to train Dida, DSS or Dataset2Vec on the patch identification task (Section 4.1, Table 3). Note that function generate patches() is extracted from the Dataset2Vec source code.

Algorithm 2 Batch Identification

1: F ζ ← meta-feature extractor (Dida Deep Sets, DSS, or Hand-crafted) 2: for iteration=1, 2, . . . do 3: X 1 , X 2 , y ← generate patches() y ← 1 if X 1 and X 2 are from the same dataset else 0 4: mf 1 ← F ζ (X 1 ) 5: mf 2 ← F ζ (X 2 ) 6:
Backpropagate logloss(exp (-mf 1 -mf 2 2 ), y) 7: end for 5.3. Baseline Details Dataset2Vec details. The available implementation of Dataset2Vec1 does not allow for a random uniform subsampling of all features, hence we have included as baselines: (i) the reported accuracy from [START_REF] Jomaa | Dataset2vec: Learning dataset meta-features[END_REF]; (ii) the computed accuracy from our own implementation of Dataset2Vec, based on a uniform sampling of the features. As said, this implementation only aims at solely making up for the feature sampling procedure. The architecture is the same as reported in [START_REF] Jomaa | Dataset2vec: Learning dataset meta-features[END_REF], Eq. 4, namely

D : X ∈ R n (R d ) → h 1 d X d Y d X m=1 d Y t=1 g 1 n n i=1 f (x i [m], y i [t]) (35) 
where functions f, g, h characterizing the architecture are chosen as depicted in the publicly available file conf ig.py2 . More precisely, f, g are FC(128)-ReLU-ResFC(128, 128, 128)-FC(128) and h is FC(128)-ReLU-FC(128)-ReLU where ResFC is a sequence of fully connected layer with skip connection.

DSS layer details. We built our own implementation of invariant DSS layers, as follows. Linear invariant DSS layers (see [START_REF] Maron | On learning sets of symmetric elements[END_REF], Theorem 5, 3.) are of the form

L inv : X ∈ R n×d → L H ( n j=1 x j ) ∈ R K (36) 
where L H : R d → R K is a linear H-invariant function. Our applicative setting requires that the implementation accommodates to varying input dimensions d as well as permutation invariance, hence we consider the Deep Sets representation (see [START_REF] Zaheer | Deep sets[END_REF], Theorem 7)

L H : x = (x 1 , . . . , x d ) ∈ R d → ρ d i=1 ϕ(x i ) ∈ R K (37) 
where ϕ : R → R d+1 and ρ : R d+1 → R K are modelled as (i) purely linear functions; (ii) FC networks, which extends the initial linear setting (36). In our case, H = S d X × S d Y , hence, two invariant layers of the form (36-37) are combined to suit both feature-and label-invariance requirements. Both outputs are concatenated and followed by an FC network to form the DSS meta-features. The last experiments use DSS equivariant layers (see [START_REF] Maron | On learning sets of symmetric elements[END_REF], Theorem 1), which take the form

L eq : X ∈ R n×d → Ñ L 1 eq (x i ) + L 2 eq ( j =i x j ) é i∈[n] ∈ R n×d (38) 
where L 1 eq and L 2 eq are linear H-equivariant layers. Similarly, both featureand label-equivariance requirements are handled via the Deep Sets representation of equivariant functions (see [START_REF] Zaheer | Deep sets[END_REF], Lemma 3) and concatenated to be followed by an invariant layer, forming the DSS metafeatures. All methods are allocated the same number of parameters to ensure fair comparison.

No-FInv-DSS baseline (no invariance in feature permutation). This baseline aims at showcasing the empirical relevance of the invariance requirement in feature and label permutations, while retaining invariance in permutation with respect to the datasets. To this end, aggregation with respect to the examples is performed as exemplified in [START_REF] Zaheer | Deep sets[END_REF], Theorem 2, namely

L : X = (X 1 , . . . , X n ) ∈ Z(R d ) → 1 n n i=1 g(X i ) ∈ R K (39) 
where g : R d → R K is an MLP with FC(128)-ReLU-FC(64)-ReLU-FC(32)-ReLU layers. To ensure label information is captured, the output is concatenated to the mean of labels ȳ def. = 1 n n i=1 y i and followed by and MLP with FC(1024)-ReLU-FC(700)-ReLU-FC(512) layers. The so-called No-FInv-DSS baseline defined as such, can be summed up as follows

X ∈ R(R d ) → MLP([L(X); ȳ]) (40) 
Hand-crafted meta-features. For the sake of reproducibility, the list of meta-features used in Section 4 is given in Table 7. Note that metafeatures related to missing values and categorical features are omitted, as being irrelevant for the considered benchmarks. Hand-crafted meta-features are extracted using BYU metalearn library. In total, we extracted 43 meta-features.

Performance Prediction

Experimental setting. Table 8 details all hyper-parameter configurations Θ considered in Section 4.2. As said, the learnt meta-features F ζ (X) can be used in a regression setting, predicting the performance of various ML algorithms on a dataset X. Several performance models have been considered on top of the meta-features learnt in Section 4.2, for instance (i) a BOHAMI-ANN network [START_REF] Springenberg | Bayesian optimization with robust bayesian neural networks[END_REF]; (ii) Random Forest models, trained under a Mean Squared Error loss between predicted and true performances.

Results. Table 9 reports the Mean Squared Error on the test set with performance model BOHAMIANN [START_REF] Springenberg | Bayesian optimization with robust bayesian neural networks[END_REF], comparatively to DSS and hand-crafted ones. Replacing the surrogate model with Random Forest concludes to the same ranking as in Table 9. Figure 9 complements Table 9 in assessing the learnt Dida meta-features for performance model learning. It shows Dida's ability to capture more expressive meta-features than both DSS and hand-crafted ones, for all ML algorithms considered.

Stability of meta-features with respect to sample and feature sampling

The robustness of the learned meta-features is investigated along three settings (below). The robustness performance indicators are the average and standard deviation of the distance between the meta-feature vectors and a reference vector. The comparative performances of Dida and the baseline No-FInv-DSS (Section 5.3) are reported in Fig. 10. Both Dida and No-FInv-DSS are trained on Task 1. Specifically, the three settings aim to measure the robustness w.r.t. (A) the uniform selection of the samples only; (B) the uniform selection of the samples and the permutation of features; (C) the uniform selection of the samples and the features: A Considering a fixed set of features, 128 patches are extracted from a dataset u. For each patch X, Dida computes a meta-feature vector F ζ (X) in R 64 . The reference vector is the average of these meta-feature vectors. Fig. 10.A reports the mean and standard deviation of the distance between the meta-feature vectors and their mean (Fig. 10.A).

B Same as in A, except that for each patch, the features are permuted. The reference vector is the same as in [A]. The mean and standard deviation of the distances between these meta-feature vectors and the C 128 Patches are uniformly selected (subset of samples, subset of features drawn with replacement), and a meta-feature vector is computed for each patch. The reference vector here is the average of these metafeature vectors. The mean and standard deviation of the distances between these meta-feature vectors and the reference vector thus reflect the impact of sampling both examples and features (Fig. 10.C). Chapter 3: Regularized Vector Quantile Regression

Quantile regression, introduced by the seminal work of Koenker and Bassett [START_REF] Koenker | Regression quantiles[END_REF] is recognized to this day as a powerful tool to analyze the response of an explained variable to a set of predictors, at any quantile of the distribution. It thus allows to recover the whole conditional distribution, as opposed to just the median.

There is to this day however no consensus on how to extend this method to the case of a multivariate response variable. Carlier, Galichon and Chernozhukov [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF][START_REF] Carlier | Vector quantile regression beyond the specified case[END_REF] have proposed the Vector Quantile Regression (VQR) expansion, based on Optimal Transport, that is linked to polar factorization [START_REF] Ryff | Measure preserving transformations and rearrangements[END_REF][START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF][START_REF] Mccann | Existence and uniqueness of monotone measure-preserving maps[END_REF] in the sense that the multivariate quantile is the gradient of a convex function. The proposed approach focuses on retrieving two desirable properties of quantiles in higher dimension, namely monotonicity and transport from a fixed distribution.

Until now, numerical solvers rely on linear programming that is hardly scalable to high dimensional settings. In this chapter, we introduce an entropy-regularized variant of this problem called Regularized Vector Quantile Regression (RVQR) that alleviates this computational hurdle in high dimension. We demonstrate the scalability of the approach through a range of experiments, and show that original quantiles are still retrieved in 1D. We also exhibit the statistical benefits of this problem in finite dimension, by recovering a central limit theorem in the finite sample case, that paves the way for hypothesis testing on regression coefficients. This chapter is based on [START_REF] Carlier | Vector quantile regression and optimal transport, from theory to numerics[END_REF].

Introduction

While ordinary least squares provides a convenient method to estimate the effect of predictors on the conditional mean of an outcome variable, quantile regression has emerged [Koenker andBassett, 1978, Koenker, 2005] as a way to provide estimates of their impact at any conditional quantile of the response. Quantile regression has notoriously appeared in the last decades as a useful tool to evaluate public policies, and its ability to model extreme values accurately has also made it a popular approach in economics and finance: it has emerged in areas ranging from healthcare [START_REF] Koenker | Quantile regression[END_REF][START_REF] Austin | The use of quantile regression in health care research: A case study examining gender differences in the timeliness of thrombolytic therapy[END_REF][START_REF] Azagba | Fruit and vegetable consumption and body mass index: A quantile regression approach[END_REF], bioinformatics [START_REF] Song | QRank: a novel quantile regression tool for eQTL discovery[END_REF], education [START_REF] Eide | The effect of school quality on student performance: A quantile regression approach[END_REF], finance [START_REF] Zietz | Determinants of house prices: A quantile regression approach[END_REF], ecology [START_REF] Cade | A gentle introduction to quantile regression for ecologists[END_REF] to reduction of inequalities [START_REF] Chamberlain | Quantile regression, censoring, and the structure of wages[END_REF][START_REF] Buchinsky | Changes in the U.S. Wage Structure 1963-1987: Application of Quantile Regression[END_REF][START_REF] Buchinsky | The dynamics of changes in the female wage distribution in the USA: a quantile regression approach[END_REF][START_REF] Melly | Decomposition of differences in distribution using quantile regression[END_REF]. The ability to interpret quantile regression coefficients as estimates for treatment effects under a control population [START_REF] Lehmann | Nonparametrics: statistical methods based on ranks[END_REF], Doksum, 1974[START_REF] Koenker | Quantile regression[END_REF] had enormous impact.

In this chapter, we focus on Vector Quantile Regression (VQR), a multivariate extension of quantile regression introduced in the seminal works of [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF][START_REF] Carlier | Vector quantile regression beyond the specified case[END_REF]. This approach, based on optimal transport, relies in practice on linear programming. Our goal is to ease the computation of the conditional quantiles in this method, making it amenable to high dimensional settings. For that purpose, we advocate for solving a regularized version of the original problem. Indeed, strong regularizers such as the entropy [START_REF] Wilson | The use of entropy maximising models, in the theory of trip distribution, mode split and route split[END_REF][START_REF] Erlander | The gravity model in transportation analysis: theory and extensions[END_REF][START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] have long been considered in numerical optimal transport to force the solution to have a spread non-sparse support, which stabilizes the computation while ensuring the objective is strongly convex. These desired computational and analytical properties are complemented by eligibility for stochastic [START_REF] Genevay | Stochastic optimization for large-scale optimal transport[END_REF] and acceleration techniques [START_REF] Altschuler | Near-linear time approximation algorithms for optimal transport via sinkhorn iteration[END_REF][START_REF] Scieur | Regularized nonlinear acceleration[END_REF]. Its statistical properties [START_REF] Genevay | Sample complexity of sinkhorn divergences[END_REF][START_REF] Mena | Statistical bounds for entropic optimal transport: sample complexity and the central limit theorem[END_REF], Bigot et al., 2019a[START_REF] Chizat | Faster Wasserstein Distance Estimation with the Sinkhorn Divergence[END_REF] and algorithmic improvements [Altschuler et al., 2017, Mensch andPeyré, 2020] constitute an active field of research to this day.

Previous works.

Quantile regression. Early appearances of median regression can be traced back to the 18 th century work of Boscovich, and later Laplace, that considered a "method of situation" blending mean and median ideas. A century later, [START_REF] Edgeworth | Xxii. on a new method of reducing observations relating to several quantities[END_REF] formalized the idea of minimizing the sum of absolute residuals. His proposal was revived when recognized as linear programming in the 1950s and applied to economics [START_REF] Arrow | A time series analysis of interindustry demands[END_REF]. [START_REF] Fox | Admissibility of quantile estimates of a single location parameter[END_REF] began considering the loss function ρ τ (u) = u(τ -1{u < 0}) to investigate admissibility of quantile estimates until [START_REF] Koenker | Regression quantiles[END_REF] introduced the regression setting and its asymptotic behavior. The ability to interpret quantile regression coefficients as treatment effects under a control population, in the case of binary [START_REF] Lehmann | Nonparametrics: statistical methods based on ranks[END_REF], Doksum, 1974[START_REF] Koenker | Quantile regression[END_REF] or multiple treatments [START_REF] Koenker | Quantile regression[END_REF][START_REF] Pmlr | Quantile-optimal treatment regimes[END_REF] gathered a lot of interest, as well as pointwise [START_REF] Koenker | Quantile regression[END_REF] or uniform [START_REF] Koenker | Additive models for quantile regression: Model selection and confidence bandaids[END_REF][START_REF] Belloni | Uniform post-selection inference for least absolute deviation regression and other Z-estimation problems[END_REF] confidence intervals. Thanks to its ability to characterize the whole conditional distribution, quantile regression has been linked to structural models [START_REF] Matzkin | Estimation of Nonparametric Models With Simultaneity[END_REF]. The original model has been extended to nonlinear dependencies in parameters, incorporating censorship [START_REF] Powell | Censored regression quantiles[END_REF], Box-Cox transformations [START_REF] Machado | Box-Cox quantile regression and the distribution of firm sizes[END_REF] or others [START_REF] Koenker | Quantile regression[END_REF]. The capacity to relax linearity in covariates while preserving linearity in parameters has been extensively studied as nonparameteric quantile regression, from locally polynomial [START_REF] Chaudhuri | Nonparametric estimates of regression quantiles and their local bahadur representation[END_REF] or partially linear [START_REF] Lee | Efficient semiparametric estimation of a partially linear quantile regression model[END_REF] to sparsity-oriented approaches able to control the parametric dimension of the models, with 1 or related total variation penalties, see for instance [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF][START_REF] Koenker | Quantile smoothing splines[END_REF]. This has also paved the way to a large literature on post selection inference [START_REF] Belloni | Uniform post-selection inference for least absolute deviation regression and other Z-estimation problems[END_REF][START_REF] Koenker | Additive models for quantile regression: Model selection and confidence bandaids[END_REF]. Quantile regression has been extended to cope with time series models [START_REF] Xiao | Inference on the quantile regression process[END_REF] or their frequency counterpart [START_REF] Li | Laplace Periodogram for Time Series Analysis[END_REF], panel data [Wei et al., 2006, Arellano and[START_REF] Arellano | Nonlinear panel data estimation via quantile regressions[END_REF], duration models [START_REF] Koenker | Reappraising medfly longevity[END_REF], missing data [START_REF] Yang | A new approach to censored quantile regression estimation[END_REF], causal models [START_REF] Chesher | Identification in nonseparable models[END_REF] and instrumental variables [START_REF] Chernozhukov | The effects of 401(k) participation on the wealth distribution: An instrumental quantile regression analysis[END_REF]. From the early simplex method, computational procedures have evolved to interior point methods [START_REF] Portnoy | The gaussian hare and the laplacian tortoise: computability of squared-error versus absolute-error estimators[END_REF]] with a later focus on sparse algebra [START_REF] Koenker | Additive models for quantile regression: Model selection and confidence bandaids[END_REF]. The increasing parametric dimension has shifted focus back to gradient descent, hence the adaptation of quantile regression through the alternating direction method of multipliers [START_REF] Koenker | Computational methods for quantile regression[END_REF].

Notions of multivariate quantiles. Unsurprisingly, extending quantile regression to the multivariate setting raises a number of questions, since the "inversion" of a functional F : R d → [0; 1] or the notion of multivariate median are not straightforward. Several bases to expand the notion of quantile to the multivariate case have been considered, relying on (i) orderings of multivariate data, as exemplified by the use of depth functions [START_REF] Tukey | Mathematics and picturing data[END_REF]; (ii) the extension of empirical quantile processes [START_REF] Pyke | Multidimensional empirical processes: some comments. Stochastic Processes and Related Topics[END_REF]; (iii) the expansion of the distribution function to the multivariate case, such that its inverse can be thought of as a multivariate quantile [START_REF] Chaudhuri | On a geometric notion of quantiles for multivariate data[END_REF][START_REF] Koltchinskii | M-estimation, convexity and quantiles[END_REF]. [START_REF] Kong | Quantile tomography: using quantiles with multivariate data[END_REF] = u Y . The latter is stated in the absence of covariates for the sake of simplicity. Their envelopes coincide with halfspace depth contours [START_REF] Tukey | Mathematics and picturing data[END_REF] so that computation is enabled through parametric linear programming [START_REF] Hallin | Multivariate quantiles and multiple-output regression quantiles: From l 1 optimization to halfspace depth[END_REF] and extensions to nonparametric formulations can be considered [START_REF] Hallin | Local bilinear multipleoutput quantile/depth regression[END_REF]. A stream of works consider definitions based on M -estimators [START_REF] Koltchinskii | M-estimation, convexity and quantiles[END_REF][START_REF] Chaudhuri | On a geometric notion of quantiles for multivariate data[END_REF][START_REF] Serfling | Nonparametric multivariate descriptive measures based on spatial quantiles[END_REF]. [START_REF] Wei | An approach to multivariate covariate-dependent quantile contours with application to bivariate conditional growth charts[END_REF] propose to define bivariate quantiles using Knothe-Rosenblatt transport, which is known to be linked to optimal transport [START_REF] Carlier | From Knothe's transport to Brenier's map and a continuation method for optimal transport[END_REF]. [START_REF] Belloni | On multivariate quantiles under partial orders[END_REF] suggest a notion of multivariate partial quantile, based on a partial order on R d . [START_REF] Kato | Estimation in functional linear quantile regression[END_REF] considers the case of function-valued covariates and proposes estimates based on principal component analysis and corresponding plug-in estimators for quantiles. Among the above definitions, it is to be noted that some are set-valued. The Vector Quantile Regression (VQR) approach, which we focus on, developed by [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF][START_REF] Carlier | Vector quantile regression beyond the specified case[END_REF] defines multivariate quantiles as a transport from a fixed distribution (for instance uniform on a cube) to the conditional law, that maximizes their correlation. Thanks to polar factorization [START_REF] Ryff | Measure preserving transformations and rearrangements[END_REF][START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF][START_REF] Mccann | Existence and uniqueness of monotone measure-preserving maps[END_REF], it satisfies monotonicity of the quantile curves. Its current computational procedures rely on linear programming [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF].

Contributions.

In this chapter, we propose to consider a regularized version of the correlation maximization problem introduced in [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF][START_REF] Carlier | Vector quantile regression beyond the specified case[END_REF], penalizing the entropy of the joint distribution, called the Regularized Vector Quantile Regression (RVQR) approach. Due to smoothness and regularity, the RVQR problem enjoys computational and analytical properties that are missing from the original VQR formulation. In particular, its dual problem is a smooth, unconstrained problem that can be solved efficiently using accelerated [START_REF] Nesterov | A method for solving the convex programming problem with convergence rate o(1/k 2 )[END_REF] gradient descent, which gives optimal convergence rates for first-order methods. Numerical illustrations are presented in the multivariate case, and classical quantile curves are retrieved in the one-dimensional case. Asymptotics in the finite-sample case are analyzed in finite dimension, which allows to uncover a law of large numbers and a central limit theorem for the RVQR finite-sample potentials. This chapter is organized as follows. Section 2 offers reminders on the notion of quantile; Section 3 will review the previous results of [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF][START_REF] Carlier | Vector quantile regression beyond the specified case[END_REF] on the "specified" case, and offers insight on the comparison with the shape-constrained classical quantile regression; and Section 4 reviews results on the multivariate case. Section 5 introduces the RVQR problem coupled with relevant results for that problem, as well as computational considerations and numerical results. Section 6 provides insight into asymptotics of the RVQR finite-dimensional potentials in the finite sample case.

Several Characterizations of Quantiles

Throughout this chapter, (Ω, F, P) will be some fixed nonatomic space3 probability. Given a random vector Z with values in R k defined on this space we will denote by L (Z) the law of Z, given a probability measure θ on R k , we often write Z ∼ θ to express that L (Z) = θ. Independence of two random variables Z 1 and Z 2 will be denoted as Z 1 ⊥ ⊥ Z 2 .

Quantiles

Let Y be some univariate random variable defined on (Ω, F, P). Denoting by F Y the distribution function of Y :

F Y (α) def. = P(Y ≤ α), ∀α ∈ R the quantile function of Y , Q Y = F -1
Y is the generalized inverse of F Y given by the formula:

Q Y (t) def.
= inf{α ∈ R : F Y (α) > t} for all t ∈ (0, 1).

(41)

Let us now recall two well-known facts about quantiles:

• α = Q Y (t) is a solution of the convex minimization problem min α {E((Y -α) + ) + α(1 -t)} (42) 
• there exists a uniformly distributed random variable U such that Y = Q Y (U ). Moreover, among uniformly distributed random variables, U is maximally correlated4 to Y in the sense that it solves

max{E(V Y ), V ∼ µ} (43) 
where µ def.

= U([0, 1]) is the uniform measure on [0, 1].

Of course, when L (Y ) has no atom, i.e. when F Y is continuous, U is unique and given by U = F Y (Y ). Problem (43) is the easiest example of optimal transport problem one can think of. The decomposition of a random variable Y as the composed of a monotone nondecreasing function and a uniformly distributed random variable is called a polar factorization of Y . The existence of such decompositions goes back to [START_REF] Ryff | Measure preserving transformations and rearrangements[END_REF] and the extension to the multivariate case (by optimal transport) is due to [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF].

We therefore see that there are basically two different approaches to study or estimate quantiles:

• the local or "t by t" approach which consists, for a fixed probability level t, in using directly formula (41) or the minimization problem (42) (or some approximation of it), this can be done very efficiently in practice but has the disadvantage of forgetting the fundamental global property of the quantile function: it should be monotone in t,

• the global approach (or polar factorization approach), where quantiles of Y are defined as all nondecreasing functions Q for which one can write Y = Q(U ) with U uniformly distributed. In this approach, one rather tries to recover directly the whole monotone function Q (or the uniform variable U that is maximally correlated to Y ). Therefore this is a global approach for which one should rather use the optimal transport problem (43).

Conditional Quantiles

Let us assume now that, in addition to the random variable Y , we are also given a random vector X ∈ R N which we may think of as being a list of explanatory variables for Y . We are primarily interested in the dependence between Y and X and in particular the conditional quantiles of Y given X = x. Let us denote by ν the joint law of (X, Y ) by ν the law of X, and by ν(.|x) the conditional law of Y given X = x:

ν def. = L (X, Y ), m def. = L (X), ν(.|x) def. = L (Y |X = x) (44) 
which in particular yields dν(x, y) = dν(y|x)dm(x).

We then denote by F (x, y) = F Y |X=x (y) the conditional cdf:

F (x, y) def. = P(Y ≤ y|X = x)
and Q(x, t) the conditional quantile

Q(x, t) def.
= inf{α ∈ R : F (x, α) > t}, ∀t ∈ (0, 1).

For the sake of simplicity, we assume that for m = L (X)-almost every x ∈ R N (m-a.e. x for short), one has t → Q(x, t) is continuous and increasing (45) so that for m-a.e. x, F (x, Q(x, t)) = t for every t ∈ (0, 1) and Q(x, F (x, y)) = y for every y in the support of ν(.|x).

Let us now define the random variable

U def. = F (X, Y ), (46) 
then by construction:

P(U < t|X = x) = P(F (x, Y ) < t|X = x) = P(Y < Q(x, t)|X = x) = F (x, Q(x, t)) = t.
We deduce that U is uniformly distributed and independent from X (since its conditional cdf does not depend on x). Moreover since U = F (X, Y ) = F (X, Q(X, U )) it follows from (45) that one has the representation

Y = Q(X, U )
in which U can naturally be interpreted as a latent factor. This remark leads to a conditional polar factorization of Y through the pointwise relation Y = Q(X, U ) with Q(X, .) nondecreasing and U ∼ µ, U ⊥ ⊥ X. We would like to emphasize now that there is a variational principle behind this conditional decomposition. Let us indeed consider the variant of the optimal transport problem (43) where one further requires U to be independent from the vector of regressors X:

max{E(V Y ), L (V ) = µ, V ⊥ ⊥ X}. ( 47 
)
then we have Proposition 9. If E(|Y |) < +∞ and (45) holds, the random variable U defined in ( 46) solves (47).

We refer to [Carlier et al., 2016a], Theorem 4.1 for a proof.

Quantile Regression

Specified Quantile Regression

Since the seminal work of [START_REF] Koenker | Regression quantiles[END_REF], it has been widely accepted that a convenient way to estimate conditional quantiles is to stipulate an affine form with respect to x for the conditional quantile. Since a quantile function should be monotone in its second argument, this leads to the following definition: Definition 6. (Specified Quantile Regression) Quantile regression is specified if there exist (α, β) ∈ C([0, 1], R) × C([0, 1], R N ) such that for m-a.e. x t → α(t) + β(t) x is increasing on [0, 1] (48)

and Q(x, t) = α(t) + β(t) x, (49) 
for m-a.e. x and every t ∈ [0, 1]. If ( 48)-( 49) hold, quantile regression is specified with regression coefficients (α, β).

Specification of quantile regression can be characterized by the validity of an affine in X representation of Y with a latent factor: Proposition 10. Let (α, β) be continuous and satisfy (48). Quantile regression is specified with regression coefficients (α, β) if and only if there exists U such that

Y = α(U ) + β(U ) X almost surely, L (U ) = µ, U ⊥ ⊥ X. (50) 
We refer to [Carlier et al., 2016a], Proposition 4.3 for a proof.

• U QR is uniformly distributed, • X is mean-independent from U QR i.e. E(X|U QR ) = E(X) = 0, • Y = α QR (U QR ) + β QR (U QR ) X almost surely.
Moreover U QR solves the correlation maximization problem with a meanindependence constraint:

max{E(V Y ), L (V ) = µ, E(X|V ) = 0}. ( 63 
)
We refer to [Carlier et al., 2016a], Proposition 4.5 for a proof. Uniqueness is reached for the mean-independent decomposition given in proposition 11: Proposition 12. Assume ( 45)-( 51)-( 52)-( 57) and ( 58). Let us assume that

Y = α(U ) + β(U ) X = α(U ) + β(U ) X with:
• both U and U uniformly distributed,

• X is mean-independent from U and U : E(X|U ) = E(X|U ) = 0,

• α, β, α, β are continuous on [0, 1],

• (α, β) and (α, β) satisfy the monotonicity condition (48),

then α = α, β = β, U = U .
whose proof can be found in [Carlier et al., 2016a], Proposition 4.6. This argument allows for a strong representation in the quasi-specified case: Corollary 3. Assume ( 45)-( 51)-( 52)-( 57) and ( 58). If quantile regression is quasi-specified, the regression coefficients (α QR , β QR ) are uniquely defined and if Y can be written as

Y = α(U ) + β(U ) X
for U uniformly distributed, X being mean independent from U , (α, β) continuous such that the monotonicity condition (48) holds then necessarily

α = α QR , β = β QR .
As said, quasi-specification is equivalent to the validity of the factor linear model:

Y = α(U ) + β(U ) X
for (α, β) continuous and satisfying the monotonicity condition (48) and U , uniformly distributed and such that X is mean-independent from U . This has to be compared with the decomposition of paragraph 2.2 where U is required to be independent from X but the dependence of Y with respect to U , given X, is given by a nondecreasing function of U which is not necessarily affine in X.

Quantile Regression without specification

Now we wish to address quantile regression in the case where neither specification nor quasi-specification can be taken for granted. In such a general situation, keeping in mind the remarks from the previous paragraphs, we can think of two natural approaches.

The first one consists in studying directly the correlation maximization with a mean-independence constraint (63). The second one consists in getting back to the Koenker and Bassett t by t problem (55) but adding as an additional global consistency constraint that V t should be nonincreasing (which we abbreviate as V t ↓) with respect to t:

sup{E( 1 0 V t Y dt) : V t ↓, V t ∈ [0, 1], E(V t ) = (1 -t), E(V t X) = 0} (64)
Our aim is to compare these two approaches (and in particular to show that the maximization problems (63) and ( 64) have the same value) as well as their dual formulations. Before going further, let us remark that (63) can directly be considered in the multivariate case whereas the monotonicity constrained problem (64) makes sense only in the univariate case.

As proven in [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF], ( 63) is dual to inf

(ψ,ϕ,b) {E(ψ(X, Y )) + E(ϕ(U )) : ψ(x, y) + ϕ(u) ≥ uy -b(u) x} (65) 
which can be reformulated as:

inf (ϕ,b) max t∈[0,1] (ty -ϕ(t) -b(t) x)ν(dx, dy) + 1 0 ϕ(t)dt (66) 
in the sense that7 sup(63) = inf(65) = inf(66). ( 67)

The existence of a solution to (65) is not straightforward and is established under appropriate assumptions in [START_REF] Carlier | Vector quantile regression beyond the specified case[END_REF] in the multivariate case. The following result, proved in [Carlier et al., 2016a], Lemma 4.8, shows that there is a t-dependent reformulation of ( 63):

Lemma 7. The value of (63) coincides with 

sup{E( t 0 V t Y dt) : V t ↓, V t ∈ {0, 1}, E(V t ) = (1 -t), E(V t X) = 0}. (68) Let us now define C def. = {v : [0, 1] → [0, 1], ↓} Let (V t ) t be admissible for (64) and set v t (x, y) def. = E(V t |X = x, Y = y), V t def. = v t (X, Y ) it is obvious that (V t ) t is admissible for (64) and by construction E(V t Y ) = E(V t Y ).
The main result of this section, proved in [Carlier et al., 2016a], Theorem 4.9, links the shape-constrained quantile regression problem to correlation maximization as follows:

Theorem 7. The shape constrained quantile regression problem ( 64) is related to the correlation maximization with a mean independence constraint (63) by: sup(63) = sup(64).

Vector Quantile Regression

We now consider the case where Y is a random vector with values in R d with d 2. The notion of quantile does not have an obvious generalization in the multivariate setting however, the various correlation maximization problems we have encountered in the previous sections still make sense (provided Y is integrable say) in dimension d and are related to optimal transport theory. The aim of this section is to briefly summarize the optimal transport approach to quantile regression introduced in [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF][START_REF] Carlier | Vector quantile regression beyond the specified case[END_REF].

Brenier's map as a Vector Quantile

From now on we fix as a reference measure the uniform measure on the unit cube [0, 1] d i.e.

µ d def. = U([0, 1] d ) (72) 
Given Y , an integrable R d -valued random variable on (Ω, F, P), a remarkable theorem due to [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF] and extended by [START_REF] Mccann | Existence and uniqueness of monotone measure-preserving maps[END_REF] implies that there exists a unique U ∼ µ d and a unique (up to the addition of a constant) convex function defined on [0, 1] d such that

Y = ∇ϕ(U ). (73) 
The map ∇ϕ is called the Brenier's map between µ d and L (Y ).

The convex function ϕ is not necessarily differentiable but being convex it is differentiable at Lebesgue-a.e. point of [0, 1] d so that ∇ϕ(U ) is well defined almost surely, it is worth at this point recalling that the Legendre transform of ϕ is the convex function: = {u ∈ [0, 1] d : ϕ(u) + ϕ * (y) = u y} so that ∂ϕ and ∂ϕ * are inverse to each other in the sense that

ϕ * (y) def. = sup u∈[0,1] d {u y -ϕ(u)} ( 
y ∈ ∂ϕ(u) ⇔ u ∈ ∂ϕ * (y)
which is often refered to in convex analysis as the Fenchel reciprocity formula8 . Note then that (73) implies that U ∈ ∂ϕ * (Y ) almost surely.

If both ϕ and ϕ * are differentiable, their subgradients reduce to the singleton formed by their gradient and the Fenchel reciprocity formula simply gives ∇ϕ -1 = ∇ϕ * . Recalling the subgradient of the convex function ϕ is monotone in the sense that whenever y 1 ∈ ∂ϕ(u 1 ) and y 2 ∈ ∂ϕ(u 2 ) one has

(y 1 -y 2 ) (u 1 -u 2 ) 0,
we see that gradients of convex functions are a genelarization to the multivariate case of monotone univariate maps. It is therefore natural in view of (73) to define the vector quantile of Y as: Definition 8. The vector quantile of Y is the Brenier's map between µ d and L (Y ). Now, it is worth noting that the Brenier's map (and the uniformly distributed random vector U in (73)) are not abstract objects, they have a variational characterization related to optimal transport9 . Consider indeed

sup{E(V Y ) : V ∼ µ d } (75) 
and its dual inf

f,g { [0,1] d f dµ d +E(g(Y )) : f (u)+g(y) u y, ∀(u, y) ∈ [0, 1] d ×R d } (76)
then U in ( 73) is the unique solution of (75) and any solution (f, g) of the dual (76) satisfies ∇f = ∇ϕ µ d -a.e.

Conditional Vector Quantiles

Assume now as in paragraph 2.2 that we are also given a random vector X ∈ R N . As in (44), we denote by ν the law of (X, Y ), by m the law of X and by ν(.|x) the conditional law of Y given X = x (the only difference with ( 44) is that Y is R d -valued). Conditional vector quantile are then defined as Definition 9. For m = L (X)-a.e. x ∈ R N , the vector conditional quantile of Y given X = x is the Brenier's map between µ d def.

= U([0, 1] d ) and ν(.|x) def.

= L (Y |X = x). We denote this well defined map as ∇ϕ x where ϕ x is a convex function on [0, 1] d .

If both ϕ x and its Legendre transform

ϕ * x (y) def. = sup u∈[0,1] d {u y -ϕ x (u)}
are differentiable 10 , one can define the random vector:

U def. = ∇ϕ * X (Y ) which is equivalent to Y = ∇ϕ X (U ). ( 77 
)
One can check exactly as in the proof of Proposition 9 for the univariate case that if Y is integrable then

U ∼ µ d , U ⊥ ⊥ X and U solves max{E(V Y ), V ∼ µ d , V ⊥ ⊥ X}. (78) 

Vector Quantile Regression

When one assumes that the convex function ϕ x is affine with respect to the explanatory variables x (specification):

ϕ x (u) = ϕ(u) + b(u) x
10 A deep regularity theory initated by [START_REF] Caffarelli | The regularity of mappings with a convex potential[END_REF] in the 1990's gives conditions on ν(.|x) such that this is in fact the case that the optimal transport map is smooth and/or invertible, we refer the interested reader to the textbook of [START_REF] Figalli | The monge-ampere equation and its applications[END_REF] for a detailed and recent account of this regularity theory.

with ϕ : [0, 1] d → R and b : [0, 1] d → R N smooth, the conditional quantile is itself affine and the relation (77) takes the form

Y = ∇ϕ X (U ) = α(U ) + β(U )X, for α = ∇ϕ, β def. = Db . (79) 
This affine form moreover implies that not only U maximizes the correlation with Y among uniformly distributed random vectors independent from X but in the larger class of uniformly distributed random vectors for which 11

E(X|U ) = E(X) = 0.
This is the reason why the study of

max{E(V Y ), V ∼ µ d , E(X|V ) = 0} (80) 
is the main tool in the approach of [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF][START_REF] Carlier | Vector quantile regression beyond the specified case[END_REF] to vector quantile regression. Let us now briefly summarize the main findings in these two papers. First observe that (80) can be recast as a linear program by setting π def.

= L (U, X, Y ) and observing that U solves (80) if and only if π solves max

π∈MI(µ d ,ν) [0,1] d ×R N ×R d u ydπ(u, x, y) (81) 
where MI(ν, µ) is the set of probability measures which satisfy the linear constraints:

• the first marginal of π is µ d , i.e., for every ϕ ∈ C([0, 1] d , R):

[0,1] d ×R N ×R d ϕ(u)dπ(u, x, y) = [0,1] d ϕ(u)dµ d (u),
• the second marginal of π is ν, i.e., for every ψ

∈ C b (R N × R d , R): [0,1] d ×R N ×R d ψ(x, y)dπ(u, x, y) = R N ×R d ψ(x, y)dν(x, y) = E(ψ(X, Y )),
• the conditional expectation of x given u is 0, i.e., for every b ∈

C([0, 1] d , R N ): [0,1] d ×R N ×R d b(u) xdπ(u, x, y) = 0.
11 here we assume that both X and Y are integrable
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The dual of the linear program (80) then reads inf = sup

(ϕ,ψ,b) [0,1] d ϕdµ d + R N ×R d ψ(x, y)dν(x, y) (82 
u∈[0,1] d {u y -ϕ(u) -b(u) x}.
The existence of a solution (ψ, ϕ, b) to ( 82) is established in [START_REF] Carlier | Vector quantile regression beyond the specified case[END_REF] (under some assumptions on ν) and optimality for U in ( 80) is characterized by the pointwise complementary slackness condition

ϕ(U ) + b(U ) X + ψ(X, Y ) = U Y almost surely.
If ϕ and b were smooth we could deduce from the latter that

Y = ∇ϕ(U ) + Db(U ) U = ∇ϕ X (U ), for ϕ x (u) def. = ϕ(u) + b(u) x
which is exactly (79). So specification of vector quantile regression is essentially the same as assuming this smoothness and the convexity of u → ϕ x (u)

def.

= ϕ(u) + b(u) x. In general, these properties cannot be taken for granted and what can be deduced from complementary slackness is given by the weaker relations

ϕ X (U ) = ϕ * * X (U ), Y ∈ ∂ϕ * * X (U ) almost surely,
were ϕ * * x is the convex envelope of ϕ x (i.e. the largest convex function below ϕ x ), we refer the reader to [START_REF] Carlier | Vector quantile regression beyond the specified case[END_REF] for details.

Numerical Vector Quantile Regression

Regularized Vector Quantile Regression

We now turn to a discrete setting for implementation purposes, and consider data (X j , Y j ) j=1..J distributed according to the empirical measure ν = J j=1 ν j δ (x j ,y j ) , and a [0, 1] d -uniform sample (U i ) i=1,...,I with empirical measure µ = I i=1 µ i δ u i . In this setting, the vector quantile regression primal (81) writes max π∈R I×J + I i=1 J j=1 u i y j π ij subject to marginal constraints ∀j, i π ij = ν j and ∀i, j π ij = µ i and the mean-independence constraint between X and U : ∀i, j x j π ij = 0. Its dual formulation (82) reads inf

(ϕ i ) i ,(ψ j ) j ,(b i ) i J j=1 ψ j ν j + I i=1 ϕ i µ i subject to the constraint ∀i, j, ϕ i + b i x j + ψ j u i y j .
Using the optimality condition ϕ i = max j u i y j -b i x j -ψ j , we obtain the unconstrained formulation inf

(ψ j ) j ,(b i ) i j ψ j ν j + i µ i Å max j u i y j -b i x j -ψ j ã .
Replacing the maximum with its smoothed version 12 , given a small regularization parameter ε, yields the smooth convex minimization problem (see [START_REF] Peyré | Computational optimal transport[END_REF] for more details in connection with entropic regularization of optimal transport), which we call the Regularized Vector Quantile Regression (RVQR) problem inf

ψ j ,b i J(ψ, b) def. = j ψ j ν j + ε i µ i log   j exp Å 1 ε [u i y j -b i x j -ψ j ] ã   (83)
We then have the following duality result 13 :

12 Recall that the softmax with regularization parameter ε > 0 of (α1, . . . , αJ ) is given by Softmaxε(α1, . . . , αJ

) def. = ε log J j=1 e α j ε
. 13 Which can be proved either by using the Fenchel-Rockafellar duality theorem (see [START_REF] Rockafellar | Conjugate duality and optimization[END_REF], Theorems 19-20) or by hand. Indeed, in the primal, there are only finitely many linear constraints and nonnegativity constraints are not binding because of the entropy. The existence of Lagrange multipliers for the equality constraints is then straightforward.

Theorem 8. The RVQR problem max

π ij 0 ij π ij Ä u i y j ä -ε ij π ij (log π ij -1) j π ij = µ i i π ij = ν j j π ij x j = j ν j x j
has dual (83), or equivalently

min ϕ i ,ψ j ,b i i µ i ϕ i + j ψ j ν j + ε ij exp Å 1 ε [u i y j -ϕ i -b i x j -ψ j ] ã .
Note that the objective J in (83) remains invariant under the two transformations

• (b, ψ) ← (b + c, ψ -c x) with c ∈ R N is a constant translation vector, • ψ ← ψ + λ where λ ∈ R is a constant.
These two invariances enable us to fix the value of b 1 = 0 and (for instance) to chose λ in such a way that i,j exp 1 ε [u i y j -b i x j -ψ j ] ) = 1. Remark 3. This formulation is eligible for stochastic optimization techniques when the number of (X, Y ) observations is very large. Stochastic optimization w.r.t. ψ can be performed using the stochastic averaged gradient algorithm [START_REF] Genevay | Stochastic optimization for large-scale optimal transport[END_REF], for instance by considering the objective inf 

ψ,ϕ,b j h ε (x j , y j , ψ, ϕ, b)ν j with h ε (x j , y j , ψ, ϕ, b) = ψ j + i µ i ϕ i + ε i exp 1 ε [u i y j -b i x j -ψ j -ϕ i ] .

Numerical Resolution

As already noted the objective J in ( 83) is convex14 and smooth. Its gradient has the explicit form

∂J ∂ψ j def. = ν j - I i=1 µ i e θ ij J k=1 e θ ik where θ ij = 1 ε [u i y j -b i x j -ψ j ] (84) 
and

∂J ∂b i def. = -µ i J k=1 x k e θ ik J k=1 e θ ik . (85) 
To solve ( 83) numerically, we therefore can use a gradient descent mehod. An efficient way to do it is to use Nesterov accelerated gradient algorithm see [START_REF] Nesterov | A method for solving the convex programming problem with convergence rate o(1/k 2 )[END_REF] and [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]. Note that if ψ, b solves (83), the fact that the partial derivatives in ( 84)-( 85) vanish imply that the coupling

α ε ij def. = µ i e θ ij
J k=1 e θ ik satisfies the constraint of fixed marginals and mean-independence of the primal problem. Since the index j corresponds to observations it is convenient to introduce for every x ∈ X def.

= {x 1 , . . . , x J } and y ∈ Y def.

= {y 1 , . . . y j } the probability π ε (x, y, u i )

def.

= j : x j =x, y j =y α ε ij .

Numerical results

Quantiles computation. The discrete probability π ε is an approximation (because of the regularization ε) of L (U, X, Y ) where U solves (80). The corresponding approximate quantile Q

ε X (U ) is given by E π ε [Y |X, U ].
In the above discrete setting, this yields

Q ε x (u i ) def. = E π ε [Y |X = x, U = u i ] = y∈Y y π ε (x, y, u i ) y ∈Y π ε (x, y , u i )
.

Remark 4. To estimate the conditional distribution of Y given U = u and X = x, we can use kernel methods. In the experiments, we compute approximate quantiles as means on neighborhoods of X values to make up for the lack of replicates. This amounts to considering

E π ε [Y |X ∈ B η (x), U = u i ]
where B η (x) is a Euclidean ball of radius η centered on x.

Empirical illstrations. We demonstrate the use of this approach on a series of health related experiments. We use the "ANSUR II" dataset (Anthropometric Survey of US Army Personnel), which can be found online15 . This dataset is one of the most comprehensive publicly available data sets on body size and shape, containing 93 measurements for over 4,082 male adult US military personnel. It allows us to easily build multivariate dependent variables.

One-dimensional RVQR. We start by one-dimensional dependent variables (d = 1), namely Weight (Y 1 ) and Thigh circumference (Y 2 ), explained by X =(1, Height), to allow for comparison with classical quantile regression of [START_REF] Koenker | Regression quantiles[END_REF]. Figure 11 displays results of our method compared to the classical approach, for different height quantiles (10%, 30%, 60%, 90%). Figure 11 is computed with a "soft" potential ϕ while Table 10 depicts the difference with its "hard" counterpart (see the beginning of section 5.1). Figure 12 and Table 11 detail the impact of regularization strength on these quantiles. 

First dimension Second dimension

||Q sof t -Q hard || 2 ||Q sof t || 2
, X = 10% 3.8•10 -3 1.5•10 -2 6.7•10 -2 9.2•10 -2

||Q sof t -Q hard || 2 ||Q sof t || 2
, X = 30% 6.8•10 -3 1.9•10 -2 7.0•10 -2 9.3•10 -2

||Q sof t -Q hard || 2 ||Q sof t || 2
, X = 60% 1.2•10 -2 2.0•10 -2 6.9•10 -2 9.5•10 -2

||Q sof t -Q hard || 2 ||Q sof t || 2
, X = 90% 1.6•10 -2 2.3•10 -2 6.8•10 -2 9.5•10 -2

Table 10: Relative error between one-dimensional RVQR with a "soft" computation of ϕ and its "hard" counterpart, with Y 1 =Weight and X =(1, Height) for different height quantiles (10%, 30%, 60%, 90%), depending on regularization strengths ε. Chosen grid size is n = 20. 15 (each corresponding to an explained component, either Y 1 or Y 2 ) depicts how smoothing operates in higher dimension for different Height quantiles (10%, 50% and 90%), compared to a previous unregularized approach [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF]. Figure 13 details computational times in 2D using an Intel(R) Core(TM) i7-7500U CPU 2.70GHz.

Statistical Analysis

In this section, we turn to the asymptotic analysis of the finite-dimensional RVQR dual potentials v = (ψ, ϕ, b) in the finite-sample case, namely, whenever the data measure ν is accessed through an iid sample X 1 , . . . , X n ∼ ν.

Regularity of Dual Potentials

For that purpose, regularity of the RVQR objective with respect to ν is first tackled. This section shows that the RVQR dual potentials Table 11: Relative error between one-dimensional RVQR and classical QR approach with Y 1 =Weight and X =(1, Height) for different height quantiles (10%, 30%, 60%, 90%), depending on regularization strengths ε. Chosen grid size is n = 20.

Figure 13: Comparison of computational times between the unregularized case (using Gurobi's barrier logging) and the regularized case, for a varying number of predictors in 2D. In the latter, this time represents the time to reach an error of 10 -5 in • 2 between two iterates of the transport plan for ε = 0.1. Chosen grid size is n = 10 (per axis).

Proof. Problem ( 86) is strictly convex (its hessian is positive definite for all x as shown in the following) so it has at most one solution. J is moreover continuous and coercive hence it has a unique minimizer. First order conditions are the following J + I + IN equations:

∇ v J(v) = Λ ∇F ν (Λ(v)) = 0 (87)
which defines an implicit relation between v and ν, namely

g(ν, v) = Λ ∇F ν (Λ(v)) = 0
Note that the hessian is invertible:

∇ v,v J(v) = ∇ v g(ν, v) = Λ ∇ M,M F ν (Λ(v))Λ (88)
Indeed, the hessian ∇ M,M F ν (M ) is diagonal with eigenvalues K ε ij e -m ij > 0; hence the hessian Λ ∇ M,M F ν (Λ(v))Λ is also positive definite since Λ is injective (Lemma 8). Therefore ∇ v g(ν, v) is invertible. From that, the implicit function theorem is applicable: there exists a unique C 1 function h : D h = {(ν j ) j=1...J > 0, j ν j = 1} → R I+J+IN , such that h(ν) = v and its partial derivatives are given by J h (ν) = -[∇ v g(ν, h(ν))] -1 ∇ ν g(ν, h(ν)).

(

) 89 
Since h is C 1 and g is C 2 , by local inversion, J h is also C 1 .

Law of Large Numbers

We consider the empirical measure νn generated by an iid sample X 1 ,. . ., X n ∼ ν. Denoting ν = J j=1 ν j δ x j , its empirical counterpart νn writes νn def.

= 1 n n i=1 1{X i = x j } j=1...J . The multinomial covariance matrix Σ(ν) writes Σ(ν)

def. = á ν 1 (1 -ν 1 ) -ν 1 ν 2 • • • -ν 1 ν J -ν 1 ν 2 ν 2 (1 -ν 2 ) • • • -ν 2 ν J . . . . . . . . . . . . -ν 1 ν J -ν 2 ν J • • • ν J (1 -ν J ) ë
The following RVQR Law of Large Numbers holds:

Proposition 14. The sample-based potentials ( ψn , φn , bn )

def.

= h(ν n ) converge almost surely to the true potentials, namely ( ψn , φn , bn ) a.s.

--→ (ψ, ϕ, b).

Proof. The Strong Law of Large Numbers (see Theorem 5.18 from [START_REF] Wasserman | All of Statistics: A Concise Course in Statistical Inference[END_REF]) gives νn a.s.

--→ ν. Since h : D h = {(ν j ) j=1...J : ∀j, ν j > 0, j ν j = 1} → R I+J+IN is C 1 and νn ∈ D h for n large enough, h(ν n ) is well defined for n large enough. Since P(ν ∈ D h ) = 1 by (A3), the continuous mapping theorem (see Theorem 2.3 from [START_REF] Van Der | Asymptotic Statistics. Asymptotic Statistics[END_REF]) yields that h(ν n ) a.s.

--→ h(ν) = (ψ, ϕ, b).

Central Limit Theorem

The following RVQR Central Limit Theorem holds: where Σ(ν) is the (unknown) multinomial covariance matrix; J h (ν) is the (I + J + IN ) × J Jacobian matrix of h (see Proposition 13).

Proof. nν n is an n-sized sample of a multinomial distribution with probability ν, hence Theorem 14.6 from [START_REF] Wasserman | All of Statistics: A Concise Course in Statistical Inference[END_REF] gives

√ n(ν n -ν) L -→ Y, Y ∼ N (0, Σ(ν))
Since h : D h = {(ν j ) j=1...J : ∀j, ν j > 0, j ν j = 1} → R I+J+IN is differentiable at ν, and νn take their values in D h for n large enough, the Delta Method (see Theorem 3.1 from [START_REF] Van Der | Asymptotic Statistics. Asymptotic Statistics[END_REF]) yields

√ n(h(ν n ) -h(ν)) L -→ J h (ν)Y def.
= Z, Z ∼ N (0, J h (ν)Σ(ν)J h (ν) )

In practice, the covariance matrix J h (ν)Σ(ν)J h (ν) being unknown, it has to be estimated, for instance using J h (ν n )Σ(ν n )J h (ν n ) .

Conclusion

In this thesis, we have developed methods to perform machine learning and statistical estimation over the space of measures. Before detailing some avenues for future work, we would like to zoom on two salient features common to these approaches.

Summary of salient features

Learning from probability measures. Modeling data as probability distributions is the central topic of this thesis, but we would like to stress that they play different roles, whether it be (i) input objects to neural network architectures: we show that considering input probability measures in their Lagrangian form in neural architectures (Chapter 1, Section 4) provides a geometric representation that can take into account invariance properties (Chapter 2, Section 5), and that alleviates the computational burden linked to Eulerian representations. This representation is characterized by an adaptability to a wide variety of applicative settings, from census, computer vision, biology and chemical data, to a suitable design of datasets, for instance in the context of automated machine learning. The resort to pairwise interaction functionals or their tensorized counterparts allows for the construction of universal approximators that are robust to input perturbations.

(ii) output objects to neural network architectures: the designed architectures are able to output probability measures as well, whether it be for generative or dynamic prediction purposes (Chapter 1, Section 4). This macroscopic representation is particularly well suited to contemporary challenges of limiting experimental costs or including privacy constraints. Such functionals require tailored layouts including measure-based loss functions to be learnt, such as the entropic Wasserstein distance.

(iii) objects of interest for inference: we demonstrate that the computation of the regularized transport plan eases processing and rendering of multivariate quantiles in the VQR framework (Chapter 3, Section 6).

The obtained RVQR approach benefits from a computationally-friendly way to go beyond current pipelines while retrieving classical quantiles [START_REF] Koenker | Regression quantiles[END_REF] in the one dimensional setting, as well as unregularized quantiles in higher dimension [START_REF] Carlier | Vector quantile regression: An optimal transport approach[END_REF].

Entropic optimal transport for high dimensional learning. Critical desirable components are unlocked by the use of entropic optimal transport in machine learning and statistics, from (i) scalability: the structure of the regularized dual problem makes it a good candidate for learning, whether it be as a loss function for neural architectures with measure outputs (Chapter 1, Section 4) thanks to the GPU-friendliness of Sinhkorn's algorithm, or as an objective to retrieve conditional multivariate quantiles (Chapter 3, Section 6). As such, it allows processing probability measures in a parallelizable fashion as well as making RVQR amenable to high dimensional settings.

(ii) differentiability: the addition of an entropic term to the original problem allows to frame learning over distributions as differentiable programming, which can be performed using automatic differentiation (Chapter 1, Section 4 and Chater 2, Section 5) or accelerated gradient descent (Chapter 3, Section 6) in an optimal fashion.

(iii) statistical properties: the resort to the entropy enables to break the curse of dimensionality [Genevay et al., 2019, Mena and[START_REF] Mena | Statistical bounds for entropic optimal transport: sample complexity and the central limit theorem[END_REF] as well as to retrieve desired and expected asymptotic properties of multivariate quantiles in the finite sample case, yielding a law of large numbers and a central limit theorem for dual regularized potentials, that paves the way for hypothesis testing in the RVQR setting (Chapter 3, Section 6).

Perspectives for Future Work

Probability distribution-based neural networks. A natural extension of Chapter 1 lies in considering mass-varying measures in neural architectures, which falls under the scope of unbalanced optimal transport [START_REF] Chizat | Unbalanced optimal transport: Models, numerical methods, applications[END_REF]. It is motivated by a wide variety of applicative settings, from shapes and image processing, statistical learning, economic applications to evolution partial differential equations (PDEs). Such a development requires an alternative measure representation, since the modulation operation that allows for mass variation is not Lagrangian differentiable. Another important extension consists in investigating alternative representations such as Gaussian mixtures, which would be useful in to build more expressive models with applications in biology or chemistry [START_REF] Ficklin | Discovering condition-specific gene co-expression patterns using gaussian mixture models: A cancer case study[END_REF].

From a theoretical perspective, an important avenue to extend our contributions of Chapter 2 is to consider broader classes of invariants than products of permutations, which would be relevant for applications to shape or image processing or to deal with graph features. The extension to the equivariant case is also left for future work. The investigation of generalization bounds would also complement our universal approximation statements in quantifying the predictive performance of our networks. Computational perspectives include (i) tackling performance learning over broader sets of ML configurations; (ii) increasing expressiveness of the meta-features, for instance by going beyond their Euclidean nature; (iii) investigating their adaptability to new tasks, for which the probability distribution representation of tasks may be well suited [START_REF] Finn | Model-agnostic meta-learning for fast adaptation of deep networks[END_REF][START_REF] Finn | Probabilistic model-agnostic meta-learning[END_REF].

More broadly, an important avenue is to explore the application of the methods developed in Chapter 1 and Chapter 2. In particular, promising applications include (i) domain adaptation [START_REF] Courty | Domain adaptation with regularized optimal transport[END_REF], to transfer knowledge from a source domain to a target domain with possibly different marginal distributions and different tasks. Our method could be readily applied as it combines two already successful strategies used in the literature, namely reweighting strategies and gradual distortions to align distributions; (ii) a novel class of particle-based PDE solvers with applications to population dynamics. Our method extends already popular neural network-based approximate PDE solvers [START_REF] Chen | Neural ordinary differential equations[END_REF] to Lagrangian discretizations which are particularly well suited to populations dynamics.

Regularized multivariate quantile regression. The extension of multivariate quantile regression through the RVQR program developed in Chapter 3 yields several perspectives. On the statistical side, the preliminary study that has been presented opens the way to the design of hypothesis testing, the analysis of the infinite-dimensional setting, a more quantitative assessment of the error made on the dual potentials in the finite sample case, as well as investigations of both regularity with respect to the regularizing strength ε, and of the limit case ε → 0, in which the asymptotic normality cannot be taken for granted. While we restricted the analysis to the case of an arbitrarily fixed ε, the idea of automatically selecting its value, for instance through an estimation procedure, would deepen the analysis. The idea has notably been investigated in the case of regularized Wasserstein barycenters [Bigot et al., 2019b]. Provided that some additional data is gathered, for instance on the empirical joint measure πij , estimation of ε could also be performed together with the dual potentials, for instance by maximum likelihood. Observation of πij is however not obvious, but could be done in application-dependent situations by setting arbitrary level curves using prior empirical knowledge (for instance, in healthcare applications). On the computational side, the regularized problem has been shown to be eligible for stochastic optimization techniques, suitable when the number of observations is too large, that are good candidates for GPU implementations. Comparison with the RVQR primal also yields several perspectives. The idea of solving the problem using alternating Bregman projections [START_REF] Benamou | Iterative bregman projections for regularized transportation problems[END_REF] is appealing, however the Kullback-Leibler projection onto the mean-independence constraint is not in closed form. The issue can be circumvented by resorting to auxiliary variables, but it remains unclear how much these would be regularized compared to the entropy.

Beyond that, the idea of resorting to neural networks to model dual potentials in the RVQR setting is also promising. The objective of estimating a Monge map by a neural network and its ability to generalize beyond the original support [START_REF] Seguy | Large-scale optimal transport and mapping estimation[END_REF] may prove useful to make up for missing data or the presence of censorship, which could also help quantify quantile treatment effects. Moreover, neural network models based on recurrent-like mechanisms may be well suited to extend RVQR to cope with spatio-temporal data. The idea has begun to be investigated in the univariate case, for instance [START_REF] Rodrigues | Beyond expectation: Deep joint mean and quantile regression for spatio-temporal problems[END_REF], which shares similarities in flavor to the recurrent mechanisms we introduced in our distribution-based networks.

Figure 1 :

 1 Figure 1: Examples of generated measures in 2D, learnt from the Mnist dataset as discrete measures. Blue dots stand for corresponding Diracs' positions.

Figure 2 :

 2 Figure 2: RVQR 2D quantiles obtained by regressing Y = (Y 1 , Y 2 ) on X = (1, Height) for the small height individuals in the Ansur II male sample.

Figure 3 :

 3 Figure 3: Top and center: two examples of deep stochastic architectures applied to the MNIST dataset: top for classification purpose (Section 4.1), center for generative model purpose (Section 4.2). Bottom: architecture for the proof of Theorems 3 and 4.

Figure 4 :

 4 Figure 4: Left: Manifold of digits generated by the VAE network displayed on the bottom of 3. Right: Corresponding point cloud (displaying only a subset of the left images).

Figure 5 :Figure 6 :

 56 Figure 5: Prediction of the asymptotic density of the flocking model, for various initial speed values v(0) and n = 720 particles. Eg. for top left cloud: (a) v(0) = (0.050; -0.085); (b) v(0) = (0.030; -0.094); (c) v(0) = (0.056; -0.081).

  Proof. (Approximation by neural networks related to Theorem 5) Based on the proof of Theorem 5, F is uniformly close to ψ • E • g • h, where ϕ in the statement of the Theorem is defined as ϕ def.

Algorithm 1

 1 Performance Modeling 1: F ζ ← meta-feature extractor (Dida, DSS, Dataset2Vec, or Handcrafted) 2: MLP ← NN[Linear(64)-ReLU-Linear(32)-ReLU-Linear(1)] 3: CLF ← machine learning classifier (SGD, SVM, LR or k-NN) 4: error ← 3-CV classification error function 5: for iteration=1, 2, . . . do 6:

Figure 8

 8 Figure 8: k-NN: True performance vs performance predicted by regression on top of the meta-features (i) learned by Dida, (ii) DSS or (iii) Hand-crafted statistics.

Figure 9 :

 9 Figure 9: Comparison between the true performance and the performance predicted by the trained surrogate model on Dida, DSS or Hand-crafted meta-features, for various ML algorithms.

Fig. 10

 10 Fig. 10 shows that for Dida, similar results are obtained for settings [A] and [B] (the distributions of the meta-feature vectors around the reference vector are similar), while a slightly higher mean and standard deviations are observed for [C]. Quite the contrary, for the baseline No-FInv-DSS, similar results are obtained for [B] and [C], suggesting that the baseline makes no difference between permuting features and sampling new features.

Figure 10 :

 10 Figure 10: Robustness of meta-features: average and standard deviation of the distance between the meta-feature vectors and their reference vector along the A, B, and C settings (please see text). Left: Breast Cancer dataset. Right: Page Blocks dataset.

  propose a notion of directional quantile (quantile of projection), based on the minimization of E ρ τ Y u -α -β Y ⊥ u over (α, β), where, for a vector u ∈ R d , Y ⊥ u denotes the orthogonal of Y u def.

  74) and that the subdifferentials of ϕ and ϕ * are defined respectively by ∂ϕ(u) def. = {y ∈ R d : ϕ(u) + ϕ * (y) = u y} and ∂ϕ * (y) def.

  ) subject to the pointwise constraint ϕ(u) + b(u) x + ψ(x, y) u y given b and ϕ the lowest ψ fitting this constraint being the (convex in y) function ψ(x, y)def.

  Such techniques are not needed to compute b since the number of U samples (i.e. the size of b) is set by the user. 98

Figure 11 :

 11 Figure 11: Comparison between one-dimensional RVQR (regularized dual in dashed red, with a "soft" ϕ) and classical approach (green) with (i) Y 1 =Weight (Left) or (ii) Y 2 =Thigh circumference and X =(1, Height). Quantiles are plotted for different height quantiles (10%, 30%, 60%, 90%). Regularization strengths are ε = 0.1. Chosen grid size is n = 20.

Figure 12 :

 12 Figure 12: One-dimensional RVQR, dual (dashed red) compared to classical QR (green) with Y 1 =Weight regressed on X =(1, Height), for varying regularization strengths ε. Quantiles are plotted for different height quantiles (10%, 30%, 60%, 90%). Chosen grid size is n = 20.
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Proposition 15 .

 15 The sample-based potentials vn = ( ψn , φn , bn ) are asymptotically Gaussian, namely , Z ∼ N (0, J h (ν)Σ(ν)J h (ν) )

  

  

Table 1 :

 1 MNIST classification results

		input type	error (%)
	PointNet	point set	0.78
	Ours	measure (1 stochastic layer)	1.07
	Ours	measure (2 stochastic layers)	0.76
	ModelNet40 Dataset. We evaluate our model on the ModelNet40 [Wu
	et al., 2015a] shape classification benchmark. The dataset contains 3D CAD
	models from 40 man-made categories, split into 9,843 examples for training
	and 2,468 for testing. We consider n = 1, 024 samples on each surface,
	obtained by a farthest point sampling procedure. Our classification network
	is similar to the one displayed on top of Figure 3, excepted that the layer

  Chapter 7, Theorem 3) does not depend on the base field. EveryS d × S p -invariant polynomial P (X 1 , . . . , X d , Y 1 , . . . , Y p ) is also S d × I p -invariant with coefficients in R[Y 1 , . . . , Y p ], hence it can be written P = R (Y 1 ,...,Yp) (P 1 , . . . , P d ). It is then also S p -invariant with coefficients in R[P 1 , . . . , P d ], hence it can be written P = S (Q 1 ,...,Qp) (P 1 , . . . , P d ) ∈ R[P 1 , . . . , P d , Q 1

Table 3 :

 3 Patch identification (binary classification accuracy) on 10 runs of Dida and considered baselines.

Table 4 :

 4 on the local geometry of the examples. Still, good performances are observed over all considered Pairwise ranking of configurations, for ML algorithms SGD, SVM, LR and k-NN: performance on test set of Dida, hand-crafted, Dataset2Vec and DSS (average and std deviation on 3 runs).

	Method	SGD	SVM	LR	k-NN
	Hand-crafted	71.18 %± 0.41	75.39 %± 0.29 86.41 %± 0.419 65.44 %± 0.73
	Dataset2Vec	74.43 %± 0.90	81.75 %± 1.85	89.18 %± 0.45	72.90 %± 1.13
	DSS (Linear aggregation)	73.46 %± 1.44	82.91 %± 0.22	87.93 %± 0.58	70.07 %± 2.82
	DSS (Equivariant+Invariant)	73.54 %± 0.26	81.29 %± 1.65	87.65 %± 0.03	68.55 %± 2.84
	DSS (Non-linear aggregation) 74.13 %± 1.01	83.38 %± 0.37	87.92 %± 0.27	73.07 %± 0.77
	DIDA (1 invariant layer)	77.31 %± 0.16	84.05 %± 0.71 90.16 %± 0.17 74.41 %± 0.93
	DIDA (2 invariant layers)	78.41 %± 0.41 84.14 %± 0.02 89.77 %± 0.50 78.91 %± 0.54

  . A patch is defined by (i) retaining n examples uniformly selected with replacement in this initial dataset; (ii) retaining d X features uniformly selected with replacement among the initial features.

	# datasets # samples	# features # labels test ratio
	Toy Dataset	10000	[2048, 8192]	2	[2, 7]	0.3
	UCI	121	[10, 130064]	[3, 262]	[2, 100]	0.3
	OpenML CC-18	71	[500, 100000]	[5, 3073]	[2, 46]	0.5
		Table 5: Benchmarks characteristics		
		Patch Identification Performance Modeling	
	Dataset	TOY	UCI	OpenML	
	# Features	2	[2, 15]	[3, 11]	
	# Examples 200	[200, 500]	[700, 900]	
			Table 6: Patch Size		
	5.2. Detailed experimental procedure: Patch Identification	

Table 8 :

 8 Hyper-parameter configurations considered in Section 4.2.

		Parameter			Parameter values	Scale
		warm start			True, Fase
		fit intercept			True, Fase
	LR	tol C			[0.00001, 0.0001] [1e-4, 1e4]	log
		solver		newton-cg, lbfgs, liblinear, sag, saga
		max iter			[5, 1000]
		kernel		linear, rbf, poly, sigmoid
		C			[0.0001, 10000]	log
		shrinking			True, False
	SVM	degree			[1, 5]
		coef0			[0, 10]
		gamma			[0.0001, 8]
		max iter			[5, 1000]
		n neighbors			[1, 100]	log
	KNN	p			[1, 2]
		weights			uniform, distance
		alpha			[0.1, 0.0001]	log
		average			True, False
		fit intercept			True, False
		learning rate		optimal, invscaling, constant
		loss	hinge, log, modified huber, squared hinge, perceptron
	SGD	penalty			l1, l2, elasticnet
		tol			[1e-05, 0.1]	log
		eta0			[1e-7, 0.1]	log
		power t			[1e-05, 0.1]	log
		epsilon			[1e-05, 0.1]	log
		l1 ratio			[1e-05, 0.1]	log
		Method		SGD	SVM	LR	KNN
		Hand-crafted		0.016 ± 0.001	0.021 ± 0.001	0.018 ± 0.002	0.034 ± 0.001
	DSS (Linear aggregation)		0.015 ± 0.007	0.020 ± 0.002	0.019 ± 0.001	0.025 ± 0.010
	DSS (Equivariant+Invariant)	0.014 ± 0.002	0.017 ± 0.003	0.015 ± 0.003	0.028 ± 0.003
	DSS (Non-linear aggregation) 0.015 ± 0.009	0.016 ± 0.003	0.014 ± 0.001	0.020 ± 0.005
		DIDA		0.012 ± 0.001 0.015 ± 0.001 0.010 ± 0.001 0.009 ± 0.000

Table 9

 9 

	: Performance modelling, comparative results of Dida, DSS and
	Hand-crafted (HC) meta-features: Mean Squared Error (average over 5 runs)
	on test set, between the true performance and the performance predicted by
	the trained BOHAMIANN surrogate model, for ML algorithms SVM, LR,
	kNN, SGD (see text).

  Moreover the deterministic function (t, x, y) → v t (x, y) satisfies the following conditions:

	for fixed (x, y), t → v t (x, y) belongs to C,	(69)
	and for a.e. t ∈ [0, 1],		
	v t (x, y)ν(dx, dy) = (1 -t),	v t (x, y)xν(dx, dy) = 0.	(70)
	Conversely, if (t, x, y) → v t (x, y) satisfies (69)-(70), V t	def. = v t (X, Y ) is admissi-
	ble for (64) and E(V t Y ) = v t (x, y)yν(dx, dy). All this proves that sup(64)
	coincides with		
	sup	v t (x, y)yν(dx, dy)dt subject to: (69) -(70)
	(t,x,y) →vt(x,y)		

This chapter provides theoretical and empirical grounds to perform regression using neural networks on discrete measure inputs, with customized invariance requirements.

See https://github.com/hadijomaa/dataset2vec

See https://github.com/hadijomaa/dataset2vec/blob/master/config.py

One way to define the nonatomicity of (Ω, F, P) is by the existence of a uniformly distributed random variable on this space, this somehow ensures that the space is rich enough so that there exists random variables with prescribed law. If, on the contrary, the space is finite for instance only finitely supported probability measures can be realized as the law of such random variables.

In fact for (43) to make sense one needs some integrabilty of Y i.e. E(|Y |) < +∞.

if E( X 2 ) < +∞ then (58) amounts to the standard requirement that E(XX ) is nonsingular.

If quantile regression is specified and the pair of functions (α, β) is as in definition 6, then for every t, (α(t), β(t)) solves the conditions (60). This shows that specification implies quasi-specification.

With a little abuse of notations when a reference number (A) refers to a maximization (minimization) problem, we will simply write sup(A) (inf(A)) to the denote the value of this optimization problem.

Note the analogy with the fact that in the univariate case the cdf and the quantile of Y are generalized inverse to each other.

In the case where E( Y 2 ) < +∞, (75) is equivalent to minimize E( V -Y 2 ) among uniformly distributed V 's.

it is even strictly convex once we have chosen normalizations which take into account the two invariances of J explained above.

https://www.openlab.psu.edu/ansur2/

Remerciements

Meta

Let us now assume that both X and Y are integrable

and normalize, without loss of generality, X in such a way that

Koenker and Bassett showed that, for a fixed probability level t, the regression coefficients (α, β) can be estimated by quantile regression i.e. the minimization problem inf

where the penalty ρ t is given by ρ t (z)

def.

= tz -+ (1 -t)z + with z -and z + denoting the negative and positive parts of z. For further use, note that ( 53) can be conveniently be rewritten as inf

As noticed by Koenker and Bassett, this convex program admits as dual formulation

An optimal (α, β) for ( 54) and an optimal V t in (55) are related by the complementary slackness condition:

Note that α appears naturally as a Lagrange multiplier associated to the constraint E(V t ) = (1 -t) and β as a Lagrange multiplier associated to E(V t X) = 0.

To avoid mixing i.e. the possibility that V t takes values in (0, 1), it will be convenient to assume that ν = L (X, Y ) gives zero mass to nonvertical hyperplanes i.e.

We also consider a nondegeneracy condition on the (centered) random vector X which says that its law is not supported by any hyperplane 5 :

Thanks to (57), we may simply write

and thus the constraints

which simply are the first-order conditions for (54). Any pair (α, β) which solves the optimality conditions (60) for the Koenker and Bassett approach will be denoted

and the variable V t solving (55) given by (59) will similarly be denoted

Note that in the previous considerations the probability level t is fixed, this is what we called the "t by t" approach. For this approach to be consistent with conditional quantile estimation, if we allow t to vary we should add an additional monotonicity requirement: Definition 7. Quantile regression is quasi-specified 6 if there exists for each t, a solution (α QR (t), β QR (t)) of (60) (equivalently the minimization problem (53)) such that t ∈ [0, 1] → (α QR (t), β QR (t)) is continuous and, for m-a.e.

A first consequence of quasi-specification is given by Proposition 11. Assume ( 45)-( 51)-( 52) and ( 57). If quantile regression is quasi-specified and if we define are unique and regular (C 2 ) with respect to the data measure ν, as long as all states are observed. The main assumptions used in this section are the following ones:

(A1) Potentials are normalized:

We consider the second formulation of the RVQR problem, equivalent to (83), namely

which, for simplicity, is also denoted J(v). v) as long as (A4) holds. Using

Under some assumptions, Λ is injective:

Lemma 8. Under assumptions (A1), (A2), (A4), function Λ is injective.

Proof. If ∀i, j, ϕ i + ψ j + b i x j = 0, then assumption (A4) yields ϕ i = j ψ j ν j . Moreover, by (A1), normalization b 1 = 0 gives ψ j = -ϕ 1 , hence by ψ 1 = 0, ψ j = ϕ i = 0. Finally with ∀i, j, b i x j = 0, assumption (A2) yields b i = 0.

This allows to obtain the desired regularity:

Proposition 13. Under assumptions (A1) to (A4), there exists a unique solution v = (ψ, ϕ, b) to the dual problem (86), which is regular in ν: v = h(ν), where h :
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