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Summary

Modeling data using probability distributions is a simple yet powerful way
to address countless problems in statistics and learning. Typical applicative
topics encountered in this thesis encompass modeling population dynamics in
biology, summarizing complex datasets for automated machine learning, and
public policy evaluation thanks to quantile regression. This thesis develops
numerical schemes with provable performance guarantees to perform ma-
chine learning over the space of probability distributions. Manipulating such
probability distributions requires new type of computational methods, which
can cope with the discretization of distributions using point clouds and can
integrate additional invariances of the problems. This raises both compu-
tational challenges (providing scalable and problem-independent numerical
schemes) and theoretical questions (ensuring smoothness and expressiveness
of the models for the topology of the convergence in law) which are addressed
in this thesis. Optimal transport (OT), which offers a geometrical toolbox
to compare probability distributions, is the cornerstone of this work. More
precisely, we leverage the entropic regularization approach to OT, to enable
scalable models which can be trained by gradient descent methods. In Chap-
ter 1, we introduce a new class of neural network architectures processing
probability measures in their Lagrangian form (obtained by sampling) as
both inputs and outputs. The formulation is versatile enough to adapt to
desired tasks from classification, regression to training of generative networks,
and is characterized by robustness and universal approximation properties.
In Chapter 2, we show that this framework can be adapted to perform regres-
sion with customized invariance requirements on probability measure inputs,
in a way that also preserves its robustness and approximation capabilities.
This method is proven to be of interest to design expressive, adaptable sum-
maries of datasets referred to as “meta-features”, in the context of automated
machine learning. Finally, we consider probabilities as objects of interest
for inference in Chapter 3: we demonstrate that the resort to entropy eases
the computation of conditional multivariate quantiles. We introduce the
regularized vector quantile regression problem, provide a scalable algorithm
to compute multivariate quantiles and show that it benefits from desirable
asymptotic properties.



Résumé

Modéliser des données à l’aide de distributions de probabilité est un
moyen simple mais puissant de résoudre d’innombrables problèmes en statis-
tiques et en apprentissage. Les sujets applicatifs typiques rencontrés dans
cette thèse comprennent la modélisation des dynamiques de populations en
biologie, la synthèse de bases de données complexes pour l’apprentissage
automatique et l’évaluation des politiques publiques par la régression de
quantile. Manipuler de telles distributions nécessite un nouveau type de
méthodes computationnelles, adaptées à la discrétisation des distributions par
des nuages de points et pouvant incorporer des invariances supplémentaires.
Cela soulève à la fois des défis de calcul (fournir des schémas numériques
efficaces et indépendants du problème) et des questions théoriques (assurer
la régularité et l’expressivité des modèles pour la topologie de la convergence
en loi) qui sont abordés dans cette thèse. Le transport optimal (TO) est la
pierre angulaire de ce travail, qui propose une bôıte à outils géométrique pour
comparer des distributions de probabilité. Plus précisément, nous exploitons
l’approche de régularisation entropique du TO, construisant des modèles
efficaces qui peuvent être appris par des méthodes de descente de gradient.
Dans le chapitre 1, nous introduisons une nouvelle classe d’architectures
neuronales qui gère des mesures de probabilité sous leur forme lagrangienne
(obtenue par échantillonnage) en tant qu’entrées et sorties. La formulation est
suffisamment polyvalente pour s’adapter à la variété des tâches souhaitées, de
la classification et de la régression aux réseaux génératifs, et se caractérise par
sa robustesse et ses propriétés d’approximation universelle. Dans le chapitre
2, nous montrons que ce cadre peut être adapté pour effectuer des tâches de
régression avec invariances additionnelles dont les entrées sont des mesures
de probabilité, en préservant sa robustesse et ses capacités d’approximation.
Cette méthode est utilisée pour concevoir des résumés expressifs et adapt-
ables de bases de données, appelés “meta-features”, dans le contexte de
l’apprentissage automatisé. Enfin, nous considérons les probabilités comme
des objets d’intérêt pour l’inférence au chapitre 3: nous montrons que le
recours à l’entropie facilite le calcul des quantiles conditionnels multivariés.
Nous introduisons le problème de régression de quantile vectoriel régularisé,
fournissons un algorithme efficace pour calculer les quantiles multivariés et
montrons qu’il bénéficie de propriétés asymptotiques souhaitables.
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Introduction

Dealing with probability measures is a crucial challenge in machine
learning, whether it be in supervised and unsupervised settings. While
learning with underlying probability measures has been considered in different
fields, deep learning architectures do not offer obvious tools to address learning
from distributions. Probability distributions have been however the object of
numerous innovations in the field of optimal transport, from which we take
inspiration to propose new computational methods dealing specifically with
probability measures. We show that learning from probability distributions
can be eased thanks to dedicated models compatible with entropy-regularized
optimal transport. In settings ranging from neural networks to statistical
applications, we show that representing objects of interest as probability
distributions comes with several computational and theoretical advantages.
We introduce a general pipeline to support measures in neural architectures,
that is able to cope with desired invariance properties, and propose to ease
the computation of quantile regression in the multivariate case using the
entropy.

1. Background

Statistics and Machine learning over the space of distributions.
The application of machine learning techniques to a wide variety of tasks
and settings has been shedding light upon its predictive power as well as its
limitations. In supervised learning, the input dataset is composed of labelled
examples (Xi,Yi)

n
i=1, where the observation Xi belongs to a feature space

X (for instance, an image with varying pixel intensities), and the label Yi

encodes a target value (eg, whether it represents a dog). Within supervised
learning, classification intends to learn from categorical labels, a classification
rule f such that Yi ≈ f(Xi) in a certain sense, so that the class of a new
input X can be predicted and the rule generalizes well. Similarly, regression
tasks aim at predicting data characteristics Yi using continuous labels. Its
most common instance lies in linear regression, where f is affine. While the
latter consists in assessing the conditional mean of a response variable Y
to a set of predictors X, quantile regression goes beyond that by allowing
analysis of the response at any quantile of its distribution. On the other
hand, learning from unlabelled data (Xi)

n
i=1 in a data space X is called

unsupervised learning. Procedures of interest include density fitting, which
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corresponds to parameterizing the underlying, unknown distribution of the
data with a parametric distribution. The field has sparked interest recently
notably through generative models [Goodfellow et al., 2014, Kingma and
Welling, 2014], that enable to generate other examples resembling the input
data through dimensionality reduction.

The success of such procedures relies heavily on the nature of the instance
space X , as well as the metrics used to perform learning. For instance, it
is worth noting that a lot of data types can be represented as discrete
probability distributions, namely of the form X =

∑p
i=1 µiδxi ∈ P(Ω),

where xi belongs to another space Ω, the weights µi > 0 are such that∑p
i=1 µi = 1 and P(Ω) stands for the space of probability measures with

ground space Ω. This representation is naturally invariant in the ordering
of the ground instances (xi)

p
i=1. Such objects can also be seen as random

vectors X distributed according to µ = (µi)
p
i=1, which is written X ∼ µ.

Consequently, we alternatively denote them as objects belonging to P(Ω) or
to R(Ω), the space of random vectors with ground space Ω. As such, we
consider two random vectors having the same distribution as equivalent and
indistinguishable. Their introduction to model for instance bags-of-images
[Rubner et al., 2000] or color transfer [Pitié et al., 2007] in computer vision,
shape registration in computer graphics [Solomon et al., 2015], bags-of-words
in natural language processing [Kusner et al., 2015], to scan variations in
neuroimaging [Gramfort et al., 2015], among other fields, still stimulates
interest to this day. In fact, datasets themselves can be considered as input
instances X ∈ X . In this setting, the goal of uncovering the best-performing
algorithm for a task at hand has fuelled research for more than four decades
[Rice, 1976], in the name of automated machine learning, referred to as
auto-ML [Hutter et al., 2018]. Task-dependence as well as computational
challenges linked to high dimensionality are intended to be alleviated notably
by the design of expressive summaries of datasets called meta-features [Brazdil
et al., 2008]. All in all, while these recent works have seen a more persistant
resort to probability measures within their frameworks, the lack of unifying
pipeline composed of adapted operations on raw probabilities is still a major
bottleneck to the wide spread of this class of methods. In this thesis, we tackle
this problem by proposing a general framework to process raw probability
measures in neural networks, as both inputs and outputs. Section 2 below
highlights these contributions, which are detailed in Chapter 1 – Section 4.

Invariant architectures. Best-performing models are expected to take
into account the structure of the instance space Ω, its regularity as well as
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the desirably recovered properties. Among them, symmetries and invariances
play a major role in coping with input variabilities linked to their high
dimensionality. Namely, a function f from an instance space Ω is said to be
invariant under the action of a group G if

∀x ∈ Ω, g ∈ G, f(g · x) = f(x)

An f : Ω→ Ω is said to be G-equivariant (or G-covariant) if

∀x ∈ Ω, g ∈ G, f(g · x) = g · f(x)

Neural networks have long been designed to satisfy such invariance properties
[Shawe-Taylor, 1993], such as original convolutional networks [LeCun et al.,
1989, Krizhevsky et al., 2012] or wavelet scattering networks [Bruna and
Mallat, 2013] for images. More recently, the necessity to deal with broader
input types such as point clouds [Zaheer et al., 2017, Qi et al., 2017a,
Hartford et al., 2018] or sequences [Vaswani et al., 2017, Lee et al., 2019,
Murphy et al., 2019] spurred renewed interest on invariant and equivariant
architectures. Initially designed to extend classical convolutional networks
[Scarselli et al., 2009, Bruna et al., 2014, Defferrard et al., 2016], graph
neural networks now also support invariance or equivariance properties with
respect to the whole permutation group [Kondor and Trivedi, 2018, Maron
et al., 2019a, Keriven and Peyré, 2019]. General treatment of symmetries in
the case of finite subgroups of the symmetric group have been investigated
[Ravanbakhsh et al., 2017] as well as in the infinite case [Kondor et al., 2018,
Cohen and Welling, 2016, Weiler et al., 2018]). Quantifying their expressive
power through universal approximation is to this day an active field of
research [Maron et al., 2019a, Xu et al., 2019, Keriven and Peyré, 2019].
Despite these recent advances largely focused on point sets and graphs, the
issue of dealing with invariant architectures processing probability measure
inputs is still a major bottleneck in the field. In this thesis, we introduce
a framework that performs regression on probability measure inputs, with
customized invariance requirements, and illustrate its applicative relevance
in the context of automated machine learning. Section 2 below highlights
these contributions, which are detailed in Chapter 2 – Section 5.

Optimal transport methods in learning. Learning from probability
distributions requires adapted metrics expressing meaningful notions of prox-
imities. Among them, ϕ-divergences [Csiszar, 1975] have been widely used
thanks to their computational simplicity, but suffer from the drawback of
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not metrizing weak convergence. Therefore, other metrics such as Maxi-
mum Mean Discrepencies [Gretton et al., 2007], Optimal Transport (OT)
[Kantorovich, 1942, Villani, 2008] or related Sinkhorn divergences [Genevay
et al., 2018, Feydy et al., 2019] have been put in the spotlight. The in-depth
study of transport maps [Santambrogio, 2015, Villani, 2008], such as their
representation as gradients of convex functions [Ryff, 1970, Brenier, 1991,
McCann, 1995] allows for a generalization of monotone functions in higher
dimension, which makes them a good candidate for statistical applications
such as quantile regression [Carlier et al., 2016b, 2017]. The original OT
formulation consists of a linear program [Kantorovich, 1942] that writes, for
a ground cost c : Ω× Ω→ R+,

min
(X,Y )∼π∈Π(α,β)

Eπ [c(X,Y )]

where the minimum is taken over Π(α, β), defined as the set of all transport
plans π with fixed marginal distributions α ∈ P(Ω) and β ∈ P(Ω), which
reads

Π(α, β)
def.
= {π ∈ P(Ω2),∀(A,B) ⊂ Ω2, π(A× Ω) = α(A), π(Ω×B) = β(B)}

This problem can be solved using the network simplex or interior-point
methods, with a complexity of at most O(n3 log(n)) (see for instance [Gold-
berg and Tarjan, 1989]) for two discrete distributions of size n. In the
case of two equal uniform discrete marginal distributions, also known as
linear assignment problem, the optimal π is a permutation matrix [Bertsimas
and Tsitsiklis, 1997], and the exact problem can be solved using the early
Hungarian algorithm [Borchardt and Jacobi, 1865] or the auction algorithm
[Bertsekas, 1981] and their variants. A typical choice lies in c = d, with d a
distance on Ω, in which case the minimum yields the 1-Wasserstein distance,
denoted W1:

W1(α, β)
def.
= min

π∈Π(α,β)

∫
Ω2

‖x− y‖dπ(x, y)

which is known to be a norm and to metrize weak convergence (see [Santam-
brogio, 2015], Proposition 5.1 and Theorem 5.11). Approximate computations
have eased its application to high dimensional problems [Levy and Schwindt,
2018, Peyré and Cuturi, 2019]. Strong regularizers such as the entropy
[Wilson, 1969, Erlander and Stewart, 1990, Cuturi, 2013] have long been
considered to force the solution to have a spread non-sparse support, which
stabilizes the computation while ensuring the objective is strongly convex.
In practice, Sinkhorn’s algorithm [Cuturi, 2013] enables fast parallelizable
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computations to solve the ε-regularized counterpart of the original problem,
namely

min
(X,Y )∼π∈Π(α,β)

Eπ [c(X,Y )]− εE(π|α⊗ β)

where E(π|α⊗ β) stands for the relative entropy of the joint coupling π with
respect to the product measure α⊗ β, which reads

E(π)
def.
=

∫
Ω×Ω

log

Å
dπ(x, y)

dα(x)dβ(y)

ã
dπ(x, y)

This formulation is known to be a near-linear time approximation of the
original problem [Altschuler et al., 2017], and can be extended to benefit
from stochastic optimization [Genevay et al., 2016], acceleration techniques
[Altschuler et al., 2017, Scieur et al., 2016, Dvurechensky et al., 2018],
improved complexity on gridded spaces using convolutions [Solomon et al.,
2015], multi-scale approaches [Schmitzer, 2016], online settings [Mensch and
Peyré, 2020], and to cope with multi-marginal problems [Benamou et al.,
2015], as well as unbalanced transport [Chizat, 2017]. OT is particularly
appreciated for its ability to leverage the underlying geometry of the data,
which can be strengthened by enforcing structure constraints [Alvarez-Melis
et al., 2018]. Asymptotic behavior of empirical Wasserstein distances has
been extensively studied over the last decades, see for instance [del Barrio
et al., 1999, Del Barrio et al., 2005, del Barrio and Loubes, 2019, Rippl
et al., 2016] and recently extended to regularized distances [Bigot et al.,
2019a, Klatt et al., 2020]. Though OT is known to suffer from the curse of
dimensionality [Dudley, 1969, Weed and Bach, 2019], regularized counterparts
benefit from better sample complexities [Genevay et al., 2019, Mena and
Niles-Weed, 2019]. Closely related variational problems include Wasserstein
gradient flows [Jordan et al., 1998, Ambrosio et al., 2008] and Wasserstein
barycenters [Agueh and Carlier, 2011, Le Gouic and Loubes, 2016, Bigot and
Klein, 2015], for which algorithmic adaptations have been proposed [Cuturi
and Doucet, 2014]. OT has been extended as the Gromov-Wasserstein
distance [Mémoli, 2011] to cope with probability measures that do not
share a common space. Though conditioned by a non-convex quadratic
program, numerical frameworks based on conditional gradient [Flamary and
Courty, 2017] or entropic regularization have been proposed [Peyré et al.,
2016], and its interpolation properties have been highlighted [Vayer et al.,
2020]. All these theoretical and computational aspects have broadened the
applicative settings of optimal transport, even beyond the aforementioned
fields to astrophysics, for modeling the early universe [Frisch et al., 2002],
music transcription [Flamary et al., 2016], genomics [Evans and Matsen,
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2012], statistical learning, to assess the convergence of various algorithms
[Canas and Rosasco, 2012], fluid dynamics [Gallouët and Mérigot, 2018],
economics, for matching markets modeling [Dupuy and Galichon, 2014] or
fairness [Gordaliza et al., 2019].

Quantile Regression. First introduced in the early 19th century by Leg-
endre [Legendre, 1805] and Gauss [Gauss, 1809] to model the shape of the
earth and movements of celestial bodies, the use of least squares still gathers
interest to this day to estimate conditional means, due to their computational
ease and optimality under normal errors [Gauss, 1822]. However, Edgeworth
pointed out the median as a preferable alternative to the mean, particularly
in the case of Gaussian mixtures [Edgeworth, 1888]. The ability to consider
other quantiles of the response variable was pioneered in [Koenker and Bas-
sett, 1978], that estimate the t-quantile (t ∈ [0; 1]) of variable ε = Y − qt (x)
conditional to X = x by minimizing the loss function E [tε+ + (1− t) ε−|X],
where ε+ and ε− respectively refer to the positive and negative parts of ε. It is
common practice to stipulate a linear form of the quantiles qt (x) = β>t x+αt,
in which case the problem boils down to solving

min
αt,βt

E
[Ä
Y − β>t X − αt

ä+
+ (1− t)

Ä
β>t X + αt

ä]
Strong incentives to analyze conditional distributions at arbitrary quantiles
include a range of applicative settings, from healthcare [Koenker and Hallock,
2001, Austin et al., 2005, Azagba and Sharaf, 2012], bioinformatics [Song
et al., 2017], education [Eide and Showalter, 1998], finance [Zietz et al., 2008],
ecology [Cade and Noon, 2003] to reduction of inequalities [Chamberlain,
1994, Buchinsky, 1994, 1998, Melly, 2005]. For instance, [Koenker and
Hallock, 2001] apply quantile regression to the case of infant birthweight,
showing that offering prenatal care has much larger impact on the lower
quantiles of the distribution. [Chamberlain, 1994, Buchinsky, 1994] have
considered the technique to leverage the impact of union status and education
on wage inequalities, showing for instance that union status has a much larger
effect on lower quantiles of the wage distribution. [Azagba and Sharaf, 2012]
have shown that increasing the intake of fruits and vegetables is more effective
to mitigate the risk of obesity at the higher quantiles of the body mass index.
Quantile regression coefficients can be interpreted as estimators for treatment
effects given a control population [Lehmann, 1974, Doksum, 1974], which
extends to the case of p different treatments [Koenker, 2005]. There is, to
this day, no consensus on how to extend quantile regression to the case of a
multivariate response. Among other proposals [Chaudhuri, 1996, Koltchinskii,
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1997, Serfling, 2004, Hallin et al., 2010, Belloni and Winkler, 2011, Kong and
Mizera, 2012], [Carlier et al., 2016b, 2017] introduce a notion of multivariate
quantile based on optimal transport. They define the conditional quantile
of Y |X = x as the Brenier’s map between a fixed distribution (for instance,
multivariate uniform on a cube) and the law of Y |X = x. Thanks to polar
factorization [Ryff, 1970, Brenier, 1991, McCann, 1995], this (multivariate)
quantile function is known to be the gradient of a convex function, extending
the notion of monotonicity to the multivariate case, and allowing to retrieve
the whole monotone function at once, as opposed to the original “t by t”
approach. In practice, this problem is solved by correlation maximization
under an additional mean-independence constraint, namely

max
(U,X,Y )∼π

Eπ
î
U>Y

ó
s.t. U ∼ U

Ä
[0, 1]d

ä
, (X,Y ) ∼ ν, E [X|U ] = 0

As hinted at above, practical computations of such multivariate quantiles
is still a major bottleneck to the wide spread of this method, that relies
on linear programming. In this thesis, we propose to widen its use by
considering a regularized version of the problem. Section 2 below highlights
these contributions, which are detailed in Chapter 3 – Section 6.

We now present in more technical details our original contributions, from
both the theoretical and empirical standpoints.

2. Summary of Contributions

Chapter 1: Stochastic Deep Networks

This chapter provides a unifying framework to process discrete measures
in neural architectures, backed by theoretical and empirical contributions.

Previous works. While initially tailored for images [Krizhevsky et al.,
2012] and speech [Hinton et al., 2012], deep neural networks have been
designed to support increasingly complex structured data types, such as
shapes [Wu et al., 2015b], sounds [Lee et al., 2009], texts [Lecun et al., 1998],
graphs [Henaff et al., 2015]. Such architectures rely on the composition of
elementary operations handling vectors that stream well on GPUs, and that
can be automatically differentiated using back-propagation. Their extension
to sequences of vectors had enormous impact [Hochreiter and Schmidhuber,
1997]. More recently, learning from unordered samples has drawn attention
since the seminal works of [Ravanbakhsh et al., 2016, Zaheer et al., 2017, Qi
et al., 2017a] that design neural architectures tailored for point set inputs.
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In this light, architectures generating point clouds have been developed [Fan
et al., 2017, Achlioptas et al., 2018, Yi et al., 2019]. Discussions on their
limitations have also emerged [Wagstaff et al., 2019, Segol and Lipman, 2020].
Previous works were also aware of the importance of order, and manage to
handle sequences recursively with attention mechanisms [Vinyals et al., 2016,
2015], which has paved the way for a stream of follow-up works in the field of
natural language processing [Vaswani et al., 2017, Lee et al., 2019]. Similar
ideas can be found in point process models, which allow for the analysis
of counting measures or random sets. Poisson [Rajaram et al., 2005] and
Hawkes processes [Belanger et al., 2018, Mei and Eisner, 2017] are among the
most popular models that offer basis for deep parameterization [Xiao et al.,
2017a, Du et al., 2016, Mei and Eisner, 2017, Xiao et al., 2017b], mostly
using likelihood-based approaches [Belanger et al., 2018, Du et al., 2016, Mei
and Eisner, 2017].

All in all, while learning with underlying probability measures has been
considered in different fields [Muandet et al., 2012, Poczos et al., 2013, Pevny
and Kovarik, 2019], providing a unifying deep learning framework supporting
raw probabilities in accordance with the convergence in law is, to the best of
our knowledge, a new concept. Various applicative settings create a strong
incentive for devising probability distribution-based neural networks. In
computer vision for instance, as opposed to embedding the inputs on a grid,
representing 3D objects as probability measures alleviates the computational
burden and helps preserve topological structure as well as natural invariances.
Moreover, in fields ranging from physics [Godin et al., 2007], biology [Grover
et al., 2011], ecology [Tereshko, 2000] to census data [Guckenheimer et al.,
1977], encoding populations at a macroscopic level with probability measures,
without requiring to monitor individual trajectories and regardless of the
population size, eases the pressure of experimental costs or privacy concerns.

Though analogies can be seen between discrete uniform probability mea-
sures and point clouds, as architectures thereof are both expected to be
permutation invariant, often equivariant to geometric transformations (trans-
lations, rotations) and capture local structure of points [Chen et al., 2014,
Cheng et al., 2016, Guttenberg et al., 2016], their natural topologies differ.
In sharp contrast with architectures dealing with point clouds that use the
Hausdorff distance, we resort to the convergence in law, also known as the
weak-* convergence of measures, that is metrized by the Wasserstein distance.
As such, some architectures continuous for the Hausdorff distance are not
continuous for the convergence in law, for instance due to max pooling steps
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[Qi et al., 2017a]. Optimal transport (OT) has recently been growing in
popularity in machine learning, notably due to its approximate computations
obtained with strongly convex regularizers such as the entropy [Cuturi, 2013],
eligible for fast parallelizations. The advantages of this regularization pro-
vided the bases for the use of OT in various applicative settings [Courty et al.,
2017, Rolet et al., 2016, Huang et al., 2016]. Although Wasserstein metrics
have long been taken into consideration for inference purposes [Bassetti et al.,
2006], their introduction in deep learning architectures is somewhat recent,
whether it be for generative tasks [Bernton et al., 2017, Arjovsky et al., 2017,
Genevay et al., 2018] or regression purposes [Frogner et al., 2015, Hashimoto
et al., 2016].

Contributions. The purpose of this work is to propose an extension
of these approaches through a uniting framework that enables to process
probability measures directly in deep architectures, regardless of the task
considered.

(i) Learning from probability measures: we introduce a general
pipeline to process probability measures or random vectors as in-
puts to both supervised and unsupervised machine learning tasks,
which relies numerically on the Lagrangian representation of mea-
sures (obtained by sampling). Parameterized by interaction functionals
f : Rq×Rq → Rr, our original layers map Rq-supported random vectors
(denoted X ∈ R(Rq)) to Rr-supported counterparts, in the following
way

Tf : X ∈ R(Rq) 7→ EX′∼X [f(X,X
′
)] ∈ R(Rr) (1)

where X
′

is an independent copy of X, that has the same law. Maps
(1) are also characterized by a natural invariance in the ordering of
the data observations. Resulting architectures are designed as iterative
transformations of random vectors using such layers, namely

X ∈ R(Rq0) 7→ Y = TfT ◦ · · · ◦ Tf1(X) ∈ R(RqT ) (2)

where ft : Rqt−1 × Rqt−1 → Rqt . Such networks are versatile enough
to (i) map measures to measures; and (ii) bridge the gap between
measures and Euclidean spaces (with deterministic outputs). They are
thus suited to the wide variety of machine learning applications.

(ii) Robustness and Universal Approximation: on the theoretical
side, these architectures are granted Lipschitz robustness in the sense
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of the Wasserstein-1 distance

∀ (X,Y ) ∈ R(Rq)2, W1(Tf (X), Tf (Y )) 6 2rC(f) W1(X,Y ) (3)

as long as the interaction functional f is C(f)-Lipschitz itself in its
individual variables. They also inherit from the universal approximation
capability of neural networks:

Theorem 1. Let F : R(Ω) → R(Ω′) be a continuous map for the
convergence in law, where Ω ⊂ Rq and Ω′ ⊂ Rr are compact. Then
∀η > 0 there exists three continuous maps f, g, h such that

∀X ∈ R(Ω), W1(F(X), Th ◦ Λ ◦ Tg ◦ Tf (X)) 6 η. (4)

where Λ : X 7→ (X,U) concatenates a uniformly distributed random
vector U .

(iii) Empirical illustrations: on the applicative side, we provide instan-
ciations of such networks and show their versatility on a set of both
supervised and unsupervised applications, namely classification, pre-
diction and generative networks (see for instance Figure 1 for examples
of generated 2D measures).

These contributions have been published in [De Bie et al., 2019].

Figure 1: Examples of generated measures in 2D, learnt from the Mnist
dataset as discrete measures. Blue dots stand for corresponding Diracs’
positions.

Chapter 2: Distribution-Based Invariant Deep Networks for
Automated Machine-Learning

This chapter provides theoretical and empirical grounds to perform
regression using neural networks on discrete measure inputs, with customized
invariance requirements.
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Previous works. Learning from samples with a neural architecture compli-
ant with domain- and application-dependent invariance or equivariance
properties ensures a more robust model, better capturing the data geometry.
Neural architectures benefiting from such properties have been pioneered
by [Ravanbakhsh et al., 2016, Zaheer et al., 2017, Qi et al., 2017a] in the
case of point sets subject to invariance or equivariance, including some works
with a particular focus on dataset inputs [Edwards and Storkey, 2017], which
have been extended to permutation equivariance across sets [Hartford et al.,
2018]. Similar ideas can be found in attention-based mechanisms for se-
quences [Vaswani et al., 2017, Lee et al., 2019, Murphy et al., 2019]. In the
same vain, invariant and equivariant architectures have been expanded to
support graphs [Herzig et al., 2018, Kondor et al., 2018, Maron et al., 2019a,
Chen et al., 2019, Albooyeh et al., 2020]. Characterizations of invariance
or equivariance under group actions have been proposed in the finite [Gens
and Domingos, 2014, Cohen and Welling, 2016, Ravanbakhsh et al., 2017] or
infinite case [Wood and Shawe-Taylor, 1996, Kondor and Trivedi, 2018]. A
general characterization of linear layers on the top of a representation that
are invariant or equivariant with respect to the whole permutation group has
been proposed by [Maron et al., 2019a, Keriven and Peyré, 2019]. Expressive
power of the proposed networks through universality results are known to
hold in the case of sets [Zaheer et al., 2017], point clouds [Qi et al., 2017a],
equivariant point clouds [Segol and Lipman, 2020], discrete measures [De Bie
et al., 2019], invariant [Maron et al., 2019b] and equivariant [Keriven and
Peyré, 2019] graph neural networks. Closest to our work, [Maron et al.,
2020] devises a neural architecture invariant with respect to the ordering of
samples and their features. The originality of our approach is that we do not
fix in advance the number of samples, and consider probability distributions
instead of point clouds.

In this work, distribution-based neural architectures [De Bie et al., 2019]
are extended to cope with an additional invariance in the features
and labels, namely, the space supporting the distribution. This extra
invariance is required to tackle the long-known Auto-ML problem (short
for automated machine learning) [Rice, 1976, Feurer et al., 2015, Hutter
et al., 2018], which aims to identify a priori the machine learning (ML)
configuration best suited to a dataset, in the sense of a given performance
indicator (that entails both the learning algorithm and the hyperparameters
thereof). The auto-ML rationale falls within the so-called democratization of
machine learning [Hutter et al., 2018]. However, as major bottlenecks towards
that goal, the absence of a learning algorithm dominating other algorithms
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on all datasets [Wolpert, 1996], together with the combinatorial structure of
the search space make the auto-ML problem particularly arduous.

The ability to characterize a dataset by a set of relevant features, referred
to as meta-features allows for solving the auto-ML problem through another
supervised learning problem: given archives recording the performance of
several ML algorithms on various datasets [Vanschoren et al., 2013], each
dataset being described as a vector of meta-features, the best-performing
algorithm (among these configurations) on a new dataset could be predicted
from its meta-features. These meta-features are expected to be expressive
summaries of input datasets, that preserve dataset similarities and are rather
inexpensive to compute. Particular meta-features have been introduced,
whether it be hand-crafted statistics [Feurer et al., 2015, Muñoz et al., 2018]
or given by the performance of fast learning algorithms [Pfahringer et al.,
2000]. Closest to our work, Dataset2Vec [Jomaa et al., 2019] extracts
meta-features from point-set-represented datasets, through the classification
task of identifying whether sub-samples of datasets are extracted from the
same distribution. In sharp contrast, we advocate for the distribution
representation of datasets endowed with the topology of the convergence
in law. Other, though less related approaches consist in learning a generic
model with quick adaptability to new tasks [Finn et al., 2018, Yoon et al.,
2018, Perrone et al., 2018]).

Contributions. In this chapter, we advocate for the measure representa-
tion of datasets while offering theoretical and empirical grounds to design
dataset meta-features by performing regression with customized invariance
requirements.

(i) Distribution-based Invariant Regression: we design neural archi-
tectures achieving regression with customized invariance requirements,
referred to as invariant regression, with probability measure inputs,
where the natural invariance in the ordering of the instances is com-
plemented by invariances in the ordering of the data features. Our
motivating application is the design of dataset meta-features in au-
tomated machine learning, where inputs are datasets composed of
both (dX -sized) data instances and (dY -sized) meta-labels. Interaction
functionals (1 are then required to satisfy the invariance property

∀σ ∈ SdX × SdY , ∀(x, y) ∈ (RdX+dY )2, ϕ(σ(x), σ(y)) = ϕ(x, y) (5)

where Sd denotes the d-sized permutation group, and SdX × SdY acts
on RdX+dY as: for x ∈ RdX , y ∈ RdY and σ = (σX , σY ) ∈ SdX ×
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SdY , σ(x, y) = [(xσ−1
X (i))i=1...dX ; (yσ−1

Y (j))j=1...dY ] ∈ RdX+dY . The first

layer of an invariant architecture of the form (2) is then required to
be invariant for the whole network to be. In this setting, quantitative
analysis is performed using the permutation-invariant Wasserstein-
1 distance, namely, for two Ω-supported probability measures α, β
(denoted α, β ∈M+

1 (Ω))

W1(α, β) = min
σ∈SdX

×SdY

W1(σ]α, β) (6)

where σ still denotes (for simplicity) the push-forward operator between
α ∈M+

1 (Ω) and σ]α ∈M+
1 (Ω), which are considered indistinguishable.

(ii) Robustness and Universal Approximation: such architectures
inherit from the Lipschitz property (3) as well as robustness with
respect to small deformations, in the permutation-invariant Wasserstein-
1 sense:

Proposition 1. For τ : Rd → Rd and ξ : Rr → Rr two Lipschitz maps,
one has, for all α, β ∈M+

1 (Ω),

W1(ξ]Tϕ(τ]α), Tϕ(α)) 6 sup
x∈fϕ(τ(Ω))

‖ξ(x)− x‖2

+ 2r Lip(ϕ) sup
x∈Ω
‖τ(x)− x‖2

Also, if τ is equivariant, the following holds:

W1(ξ]Tϕ(τ]α), ξ]Tϕ(τ]β)) 6 2r Lip(ϕ) Lip(τ) Lip(ξ)W1(α, β)

Such architectures are also granted universal approximation capabilities:

Theorem 2. Let F :M+
1 (Ω)→ R a SdX × SdY -invariant map contin-

uous for the convergence in law, where Ω is compact. Then ∀η > 0,
there exists two continuous maps ψ,ϕ such that

∀α ∈M+
1 (Ω), |F(α)− ψ ◦ Tϕ(α)| < η

where ϕ is SdX × SdY -invariant and independent of F .

(iii) Empirical illustrations: we demonstrate the validity of the proposed
architectures in the context of automated machine learning, to design
dataset meta-features conditional to various meta-tasks, from distribu-
tion identification to performance model learning. The meta-features
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designed as such outperform previous approaches, whether it be hand-
crafted meta-features designed in the past two decades [Feurer et al.,
2015, Muñoz et al., 2018] or their recent learnt counterparts [Jomaa
et al., 2019, Maron et al., 2020].

These contributions have been published in [De Bie et al., 2020].

Chapter 3: Regularized Vector Quantile Regression

This chapter provides a novel scalable numerical framework to perform
Vector Quantile Regression (VQR) based on entropic regularization, comple-
mented by statistical asymptotics analysis.

Previous works. Quantile regression, introduced by the seminal work
of Koenker and Bassett (1978) [Koenker and Bassett, 1978], has become
a popular tool to analyze the whole distribution of a response variable Y
to a set of predictors X. It goes beyond classical median regression by
allowing regression at any quantile t ∈ [0; 1] of the distribution. Originally,
the t-quantile of variable ε = Y − qt (x) conditional to X = x is estimated
by minimizing the loss function E [tε+ + (1− t) ε−|X], where ε+ and ε−

respectively refer to the positive and negative parts of ε. Stipulating a linear
form of the quantiles qt (x) = β>t x+ αt, and without loss of generality that
E[X] = 0, the problem boils down to solving

min
αt,βt

E
[Ä
Y − β>t X − αt

ä+
+ (1− t)αt

]
(7)

whose dual formulation is known to be [Koenker and Bassett, 1978]

max
Vt

E [VtY ] , Vt ∈ [0; 1], E [XVt] = 0, E [Vt] = (1− t) (8)

As known since its original introduction [Koenker and Bassett, 1978], this
problem has a linear programming formulation. Associated with mild as-
sumptions, complementary slackness leads to writing

Vt = 1{Y > αt + β>t X} (9)

which turns constraints of (8) into

E
î
1{Y > αt + β>t X}

ó
= P(Y > αt + β>t X) = (1− t)

E
î
X1{Y > αt + β>t X}

ó
= 0

(10)
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Strong incentives for designing a multivariate counterpart of (7) include
capturing joint dependencies in the response variables, given the predictors,
as well as recovering the whole monotone quantile function at once, as
opposed to the “t by t” approach.

[Carlier et al., 2016b, 2017] have proposed a multivariate extension of
quantile regression based on optimal transport. They have shown [Carlier
et al., 2016b] that imposing a monotonicity constraint on the quantile curves

t 7→ αt + β>t X increasing on [0; 1] (11)

and defining U =
∫ 1

0 Vtdt turns constraints (10) into

U is uniformly distributed over [0; 1], denoted U ∼ U ([0, 1])

X is mean-independent from U, namely E [X|U ] = E [X] = 0
(12)

Therefore, they consider as natural prolongation (see [Carlier et al., 2016b],
Theorem 3.3) the extension of the Monge-Kantorovich problem of optimal
transport, with an additional constraint of mean-independence

max
(U,X,Y )∼π

Eπ [UY ] s.t. U ∼ U ([0, 1]) , (X,Y ) ∼ ν, E [X|U ] = E [X] = 0

(13)
where ν is the (given) distribution of the data. As opposed to the “t by t”
approach, this global approach is strongly related to polar factorization [Ryff,
1970, Brenier, 1991, McCann, 1995] in the sense that it allows for the strong
representation

Y = QY |X(U,X), U |X ∼ U([0; 1]) (14)

where u 7→ QY |X(u,X) is non-decreasing almost surely. Stipulating an affine
form of the quantile, the Vector Quantile Regression (VQR) problem for a
d-dimensional response variable Y , d > 2, is the multivariate analogous of
(13)

max
(U,X,Y )∼π

Eπ
î
U>Y

ó
s.t. U ∼ U

Ä
[0, 1]d

ä
, (X,Y ) ∼ ν, E [X|U ] = 0 (15)

Similarly to (14), the strong representation holds, where the vector quantile
of Y conditional to X = x is then the Brenier’s map between U([0; 1]d) and
the law of Y |X = x, namely the gradient of a convex function.

In this context, the uniform U can be interpreted as a reference outcome
for defining treatment effects [Carlier et al., 2016b], where the distribution
of an outcome for the untreated population is then uniform; (14) as well as

the equivalent objective for (15) Eπ
î
‖Y − U‖2

ó
can also lead to interpret U
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as non-linear latent factors [Carlier et al., 2016b], independent of predictors
X, that best explain the variations in Y . The connection between U and
a notion of continuous rank have also been highlighted (see for instance
[Koenker, 2005], Chapter 3.5 or [Carlier et al., 2016b]).

Optimality conditions are characterized as well when specification cannot
be taken for granted [Carlier et al., 2017], which provides an alternative
strong representation in that case.

While other approaches for the multivariate extension of quantile regres-
sion have been proposed [Chaudhuri, 1996, Koltchinskii, 1997, Serfling, 2004,
Hallin et al., 2010, Belloni and Winkler, 2011, Kong and Mizera, 2012], this
work focuses on retrieving two desirable properties of quantiles in higher
dimension, namely monotonicity and transport from a fixed distribution.

Previous methods for solving (15) rely on a vectorized version of the
linear program (15) [Carlier et al., 2016b], yet the potential benefits of
incorporating entropic regularization to this problem have been highlighted
[Carlier et al., 2017].

Contributions. The main contributions of this chapter include a numerical
framework to perform multivariate quantile regression as well as a statistical
basis for hypothesis testing.

Y1 =Weight Y2 =Thigh Circumference

Figure 2: RVQR 2D quantiles obtained by regressing Y = (Y1, Y2) on X = (1,
Height) for the small height individuals in the Ansur II male sample.

(i) Regularized Vector Quantile Regression: we introduce the Reg-
ularized Vector Quantile Regression (RVQR) problem, whose primal
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formulation minimizes an ε-regularized counterpart of (15), namely

max
(U,X,Y )∼π

Eπ
î
U>Y

ó
− εEπ [log π(U,X, Y )]

s.t. U ∼ U
Ä
[0, 1]d

ä
def.
= µ, (X,Y ) ∼ ν, E [X|U ] = E [X]

(16)

whose discrete formulation reads

max
πij>0

∑
ij

πij
Ä
u>i yj

ä
− ε

∑
ij

πij log πij

s.t.
∑
j

πij = µi,
∑
i

πij = νj ,
∑
j

πijxj =
∑
j

νjxj
(17)

Its dual is the (unconstrained) RVQR problem

min
ψ,b

∑
j

ψjνj + ε
∑
i

µi log

∑
j

exp
1

ε

î
u>i yj − b>i xj − ψj

ó (18)

which alternatively writes

min
ϕ,ψ,b

∑
i

µiϕi +
∑
j

ψjνj + ε
∑
ij

exp

Å
1

ε
[u>i yj − ϕi − b>i xj − ψj ]

ã
.

Though initially conditioned by an additional mean-independence con-
straint, the RVQR problem (18) inherits from the regularity and scal-
ability of entropy-regularized optimal transport [Cuturi, 2013, Peyré
and Cuturi, 2019].

(ii) Numerical Resolution: we propose a numerical scheme to perform
RVQR in practice, that relies on solving the dual formulation (18),
which is a smooth and unconstrained problem, through accelerated
[Nesterov, 1983] gradient descent, which gives optimal convergence rates
for first-order methods. With empirical illustrations on real datasets
(see for instance Figure 11 for examples of obtained 2D quantiles), we
retrieve classical quantile regression [Koenker and Bassett, 1978] in
the one-dimensional case, and show the computational advantages of
regularization in higher dimension.

(iii) Statistical Analysis: we analyze statistical properties of the RVQR
problem in the finite sample case, yielding a law of large numbers and
a central limit theorem for the finite-dimensional dual potentials:
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Proposition 2. The normalized RVQR finite-sample dual potentials
are asymptotically Gaussian.

which paves the way for hypothesis testing on the RVQR regression
coefficients.
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Notations

Ambiant space. For two metric space X and Y, we denote by

• C(X ) the space of continuous real-valued functions on X ;

• C(X ,Y) the space of continuous Y-valued functions on X ;

• M+
1 (X ) the set of Radon probability (i.e. with unit mass) measures

supported on X ;

• R(X ) the set of random vectors supported on X .

Measures. We use capitals to denote random vectors (for instance, X).
For a given random vector X ∈ R(X ), we denote αX ∈M+

1 (X ) its law, which
writes X ∼ αX . Two random vectors X, X ′ having the same law are also
denoted X ∼ X ′ or alternatively αX = αX′ . It satisfies for any continuous
map f ∈ C(X ),E(f(X)) =

∫
X f(x)dαX(x). Its expectation is denoted

E(X) =
∫
X xdαX(x) ∈ X . In general, a compact support is denoted Ω. The

Dirac measure at point x is δx. We denote αn = 1
n

∑n
i=1 δxi the empirical

measure obtained from an i.i.d sample (x1, . . . , xn). Let α ∈ M+
1 (X ) and

β ∈M+
1 (Y), we define Π(α, β)

def.
= {π ∈M+

1 (X×Y),∀(A,B) ⊂ X×Y, π(A×
Y) = α(A), π(X ×B) = β(B)} the set of probability distributions on X ×Y
with marginals α and β.

Measure operators. For a continuous map f : X → Y, we denote
f] : M+

1 (X ) → M+
1 (Y) the associated push-forward operator, which is

a linear map between distribution satisfying, for α ∈ M+
1 (X ) and B ⊂ Y,

(f]α)(B) = α(f−1(B)); or equivalently, for g ∈ C(Y),
∫
Y g(y)d(f]α)(y) =∫

X g ◦ f(x)dα(x).
For (α, β) ∈ M+

1 (X )×M+
1 (Y), their tensor product measure, denoted

α ⊗ β ∈ M+
1 (X × Y), satisfies, for A ⊂ X and B ⊂ Y, (α ⊗ β)(A,B) =

α(A)β(B) ; or equivalently, for g ∈ C(X × Y),
∫
X×Y g(x, y)d(α⊗ β)(x, y) =∫

X
∫
Y g(x, y)dα(x)dβ(y).

Vectors and matrices. We use small letters (eg, a = (a1, . . . , an) ∈ Rn)
for vectors and capitals for matrices (eg, A). For a matrix A = [Aij ], its
transpose is denoted A>. For two vectors (a, b) (respectively, two matrices
(A,B)), their inner product is denoted 〈a, b〉 =

∑
i aibi (respectively 〈A,B〉

denotes the Frobenius inner product). The probability n-simplex is denoted
Σn = {a ∈ (R+)n,

∑
i ai = 1}.
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Invariances. We denote Sd the d-sized permutation group. For x ∈ Rd
and σ ∈ Sd, σ(x)

def.
= (xσ−1(i))i=1...d. For X ⊂ Rd, the operator mapping

α ∈ M+
1 (X ) to σ]α ∈ M+

1 (X ) is still denoted σ by simplicity. A function
F :M+

1 (X )→ R is then said to be Sd-invariant if for all α ∈ M+
1 (X ) and

σ ∈ Sd,F(σ]α) = F(α). In that sense, α and its permuted counterpart σ]α
are then indistinguishable, hence M+

1 (X ) is endowed with the equivalence
relation ∼ such that α ∼ β ⇐⇒ ∃σ ∈ Sd, σ]α = β. The corresponding
quotient space is denoted M+

1 (X )/∼ or alternatively R(X )/∼.
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Chapter 1: Stochastic Deep Networks

Densities or probability distributions offer a promising alternative data
representation to presently well-studied point sets or graphs in neural networks.
This is particularly clear in computer vision, where this design can alleviate
computational hurdle, as well as preserves the topological structure and
retains invariances. Yet, current architectures are either application-oriented,
therefore lack versatility, or suffer from the drawback of not metrizing the
convergence in law.

In this chapter, we introduce a general neural network pipeline to handle
probability measures in their Lagrangian form, which corresponds to sampling.
This framework is versatile enough to either process probability measures
using recurrent mechanisms, or bridge the gap between probability measures
and Euclidean spaces. It is therefore well suited to the variety of machine
learning applications, expected to process probability measures as both inputs
and outputs.

We prove that these architectures benefit from the desirable property of
Lipschitz robustness, and are actually universal approximators for functions
mapping measures to measures, that are continuous for the convergence
in law. We provide instanciations of such networks in various applicative
settings, ranging from classification, generative networks, to predictive tasks.

This chapter is based on [De Bie et al., 2019].
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1. Introduction

Deep networks can now handle increasingly complex structured data types,
starting historically from images [Krizhevsky et al., 2012] and speech [Hinton
et al., 2012] to deal now with shapes [Wu et al., 2015b], sounds [Lee et al.,
2009], texts [Lecun et al., 1998] or graphs [Henaff et al., 2015]. In each of these
applications, deep networks rely on the composition of several elementary
functions, whose tensorized operations stream well on GPUs, and whose
computational graphs can be easily automatically differentiated through
back-propagation. Initially designed for vectorial features, their extension to
sequences of vectors using recurrent mechanisms, both as inputs [Hochreiter
and Schmidhuber, 1997] or outputs [Sutskever et al., 2014] had an enormous
impact, as showcased in machine translation systems [Wu et al., 2016].

Our goal is to devise neural architectures that can handle probability
distributions under any of their usual form: as discrete measures supported
on (possibly weighted) point clouds, or densities one can sample from. Such
probability distributions are challenging to handle using recurrent networks
because no order between observations can be used to treat them recursively
(although some adjustments can be made, as discussed in [Vinyals et al., 2016])
and because, in the discrete case, their size may vary across observations.
There is, however, a strong incentive to define neural architectures that
can handle distributions as inputs or outputs. This is particularly evident
in computer vision, where the naive representation of complex 3D objects
as vectors in spatial grids is often too costly memorywise, leads to a loss
in detail, destroys topology and is blind to relevant invariances such as
shape deformations. These issues were successfully tackled in a string of
papers well adapted to such 3D settings [Qi et al., 2017a,b, Fan et al., 2017],
including in the generative case [Achlioptas et al., 2018, Yi et al., 2019], even
though discussions on their limitations have emerged [Wagstaff et al., 2019,
Segol and Lipman, 2020]. In other cases, ranging from physics [Godin et al.,
2007], biology [Grover et al., 2011], ecology [Tereshko, 2000] to census data
[Guckenheimer et al., 1977], populations cannot be followed at an individual
level due to experimental costs or privacy concerns. In such settings where
only macroscopic states are available, densities appear as the right object to
perform inference tasks.

Previous works.

Specificities of Probability Distributions. Data described in point
clouds or sampled i.i.d. from a density are given unordered. Therefore
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architectures dealing with them are expected to be permutation invariant ;
they are also often expected to be equivariant to geometric transformations of
input points (translations, rotations) and to capture local structures of points.
Permutation invariance or equivariance [Ravanbakhsh et al., 2016, 2017], or
with respect to general groups of transformations [Gens and Domingos, 2014,
Cohen and Welling, 2016, Ravanbakhsh et al., 2017] have been characterized,
but without tackling the issue of locality. Pairwise interactions [Chen et al.,
2014, Cheng et al., 2016, Guttenberg et al., 2016] are appealing and helpful
in building permutation equivariant layers handling local information. Other
strategies consist in augmenting the training data by all permutations or
finding its best ordering [Vinyals et al., 2016]. [Qi et al., 2017a,b] are closer
to our work in the sense that they combine the search for local features to
permutation invariance, achieved by max pooling.

(Point) Sets vs. Probability (Distributions). An important distinc-
tion should be made between point sets, and point clouds which stand usually
for discrete probability measures with uniform masses. The natural topology
of (point) sets is the Hausdorff distance. That distance is very different from
the natural topology for probability distributions, that of the convergence in
law, a.k.a the weak∗ topology of measures. The latter is metrized (among
other metrics) by the Wasserstein (optimal transport) distance, which plays
a key role in our work. This distinction between sets and probability is
crucial, because the architectures we propose here are designed to capture
stably and efficiently regularity of maps to be learned with respect to the
convergence in law. Note that this is a crucial distinction between our work
and that proposed in PointNet [Qi et al., 2017a] and PointNet++ [Qi et al.,
2017b], which are designed to be smooth and efficients architectures for the
Hausdorff topology of point sets. Indeed, they are not continuous for the
topology of measures (because of the max-pooling step) and cannot approxi-
mate efficiently maps which are smooth (e.g. Lipschitz) for the Wasserstein
distance. After the publication of this work, we came across [Pevny and
Kovarik, 2019], which, similarly to ours, considers learning from probability
distributions, however restricted to the regression case, and providing univer-
sal approximators. Contrary to their work, we provide a unified framework
that considers probability measures as both inputs and outputs, and offer
regularity analysis in this more general case.

Another relevant line of work comes from point process models, which
deal with dynamics of random counting measures or random sets and provide
a coherent framework for event modeling, with flexible handling of time.
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Popular models such as Poisson processes and Hawkes processes [Belanger
et al., 2018, Rajaram et al., 2005, Mei and Eisner, 2017] offer basis for deep
parametrizations and extensions, often in the form of recurrent networks
[Xiao et al., 2017a, Du et al., 2016, Mei and Eisner, 2017, Xiao et al., 2017b].
Likelihood-based approaches [Belanger et al., 2018, Du et al., 2016, Mei and
Eisner, 2017] overwhelmingly dominate the field, while few works use the
Wasserstein metric [Xiao et al., 2017a].

Centrality of optimal transport. The Wasserstein distance plays a cen-
tral role in our architectures that are able to handle measures. Optimal
transport has recently gained popularity in machine learning due to fast
approximations, which are typically obtained using strongly-convex regular-
izers such as the entropy [Cuturi, 2013]. The benefits of this regularization
paved the way to the use of OT in various settings [Courty et al., 2017,
Rolet et al., 2016, Huang et al., 2016]. Although Wasserstein metrics have
long been considered for inference purposes [Bassetti et al., 2006], their
introduction in deep learning architectures is fairly recent, whether it be for
generative tasks [Bernton et al., 2017, Arjovsky et al., 2017, Genevay et al.,
2018] or regression purposes [Frogner et al., 2015, Hashimoto et al., 2016].
The purpose of our work is to provide an extension of these works, to ensure
that deep architectures can be used at a granulary level on measures directly.
In particular, our work shares some of the goals laid out in [Hashimoto et al.,
2016], which considers recurrent architectures for measures (a special case
of our framework). The most salient distinction with respect to our work
is that our building blocks take into account multiple interactions between
samples from the distributions, while their architecture has no interaction
but takes into account diffusion through the injection of random noise.

Contributions.

In this chapter, we design deep architectures that can (i) map measures
to measures; (ii) bridge the gap between measures and Euclidean spaces.
They can thus accept as input for instance discrete distributions supported
on (weighted) point clouds with an arbitrary number of points, can generate
point clouds with an arbitrary number of points (arbitrary refined resolution)
and are naturally invariant to permutations in the ordering of the support
of the measure. The mathematical idealization of these architectures are
infinite dimensional by nature, and they can be computed numerically either
by sampling (Lagrangian mode) or by density discretization (Eulerian mode).
The Eulerian mode resembles classical convolutional deep network, while
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the Lagrangian mode, which we focus on, defines a new class of deep neural
models.

Our first contribution is to detail this new framework for supervised and
unsupervised learning problems over probability measures, making a clear
connexion with the idea of iterative transformation of random vectors. These
architectures are based on two simple building blocks: interaction functionals
and self-tensorization. This machine learning pipeline works hand-in-hand
with the use of optimal transport, both as a mathematical performance
criterion (to evaluate smoothness and approximation power of these models)
and as a loss functional for both supervised and unsupervised learning.

Our second contribution is theoretical: we prove both quantitative Lips-
chitz robustness of these architectures for the topology of the convergence in
law and universal approximation power.

Our last contribution is a showcase of several instantiations of such
deep stochastic networks for classification (mapping measures to vectorial
features), generation (mapping back and forth measures to code vectors) and
prediction (mapping measures to measures, which can be integrated in a
recurrent network).

2. Stochastic Deep Architectures

In this section, we define elementary blocks, mapping random vectors to
random vectors, which constitute a layer of our proposed architectures, and
depict how they can be used to build deeper networks.

2.1. Notion of Elementary Block

Our deep architectures are defined by stacking a succession of simple
elementary blocks that we now define.

Definition 1 (Elementary Block). Given a function f : Rq × Rq → Rr, its
associated elementary block Tf : R(Rq)→ R(Rr) is defined as

∀X ∈ R(Rq), Tf (X)
def.
= EX′∼X(f(X,X ′)) (19)

where X ′ is a random vector independent from X having the same distribu-
tion.
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Discrete random vectors. A particular instance, which is the setting we
use in our numerical experiments, is when X is distributed uniformly on a
set (xi)

n
i=1 of n points i.e. when αX = 1

n

∑n
i=1 δxi . In this case, Y = Tf (X)

is also distributed on n points

αY =
1

n

n∑
i=1

δyi where yi =
1

n

n∑
j=1

f(xi, xj).

This elementary operation (19) displaces the distribution of X according
to pairwise interactions measured through the map f . As done usually in
deep architectures, it is possible to localize the computation at some scale
τ by imposing that f(x, x′) is zero for ‖x− x′‖ > τ , which is also useful to
reduce the computation time.

Fully-connected case. As it is customary for neural networks, the map
f : Rq ×Rq → Rr we consider for our numerical applications are affine maps
composed by a pointwise non-linearity, i.e.

f(x, x′) = (λ(yk))
r
k=1 where y = A · [x;x′] + b ∈ Rr

where λ : R → R is a pointwise non-linearity (in our experiments, λ(s) =
max(s, 0) is the ReLu map), · stands for the matrix-vector product and [.; .]
denotes concatenation. The parameter is then θ = (A, b) where A ∈ Rr×2q is
a matrix and b ∈ Rr is a bias.

Deterministic layers. Classical “deterministic” deep architectures are
recovered as special cases when X is a constant vector, assuming some value
x ∈ Rq with probability 1, i.e. αX = δx. A stochastic layer can output such a
deterministic vector, which is important for instance for classification scores
in supervised learning (see Section 4 for an example) or latent code vectors
in auto-encoders (see Section 4 for an illustration). In this case, the map
f(x, x′) = g(x′) does not depend on its first argument, so that Y = Tf (X)
is constant equal to y = EX(g(X)) =

∫
Rq g(x)dαX(x). Such a layer thus

computes a summary statistic vector of X according to g.

Push-Forward. In sharp contrast to the previous remark, one can consider
the case f(x, x′) = h(x) so that f only depends on its first argument.
One then has Tf (X) = h(X), which corresponds to the notion of push-
forward of measure, denoted αTf (X) = h]αX . For instance, for a discrete law

αX = 1
n

∑
i δxi then αTf (X) = 1

n

∑
i δh(xi). The support of the law of X is

thus deformed by h.
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Higher Order Interactions and Tensorization. Elementary Blocks are
generalized to handle higher-order interactions by considering f : (Rq)N →
Rr, one then defines

Tf (X)
def.
= EX2,...,XN

(f(X,X2, . . . , XN ))

where (X2, . . . , XN ) are independent and identically distributed copies of
X. An equivalent and elegant way to introduce these interactions in a deep
architecture is by adding a tensorization layer, which maps X 7→ X2 ⊗ . . .⊗
XN ∈ R((Rq)N−1). Section 3 details the regularity and approximation power
of these tensorization steps.

2.2. Building Stochastic Deep Architectures

These elementary blocks are stacked to construct deep architectures. A
stochastic deep architecture is thus a map

X ∈ R(Rq0) 7→ Y = TfT ◦ · · · ◦ Tf1(X) ∈ R(RqT ), (20)

where ft : Rqt−1 × Rqt−1 → Rqt . Typical instances of these architectures
includes:

• Predictive: this is the general case where the architecture inputs a
random vector and outputs another random vector. This is useful to
model for instance time evolution using recurrent networks, and is used
in Section 4 to tackle a dynamic prediction problem.

• Discriminative: in which case Y is constant equal to a vector y ∈ RqT
(i.e. αY = δy) which can represent either a classification score or a
latent code vector. Following remarks in Section 2.1, this is achieved
by imposing that fT only depends on its second argument. Section 4
shows applications of this setting to classification and variational auto-
encoders (VAE) [Kingma and Welling, 2014].

• Generative: in which case the network should input a deterministic
code vector x̃0 ∈ Rq̃0 and should output a random vector Y . This
is achieved by adding extra randomization through a fixed random
vector X̄0 ∈ R(Rq0−q̃0) (for instance a Gaussian noise) and stacking
X0 = (x̃0, X̄0) ∈ R(Rq0). Section 4 shows an application of this setting
to VAE generative models. Note that while we focus for simplicity on
VAE models, it is possible to use our architectures for GANs [Goodfellow
et al., 2014] as well.
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Recurrent Nets as Gradient Flows. Following the work of [Hashimoto
et al., 2016], in the special case Rq = Rr, one can also interpret iterative
applications of such a Tf (i.e. considering a recurrent deep network) as
discrete optimal transport gradient flows [Santambrogio, 2015] (for the W2

distance, see also Definition (21) in section 3) in order to minimize a quadratic

interaction energy E(α)
def.
=
∫
Rq×Rq F (x, x′)dα(x)dα(x′) (we assume for ease

of notation that F is symmetric). Indeed, introducing a step size τ > 0,
setting f(x, x′) = x− 2τ∇xF (x, x′), one sees that the measure αX`

defined
by the iterates X`+1 = Tf (X`) of a recurrent nets is approximating at time
t = `τ the Wasserstein gradient flow α(t) of the energy E . As detailed for
instance in [Santambrogio, 2015], such a gradient flow is the solution of the
PDE ∂α

∂t = div(α∇(E ′(α))) where E ′(α) =
∫
Rq F (x, ·)dα(x) is the “Euclidean”

derivative of E . The pioneering work of [Hashimoto et al., 2016] only considers
linear and entropy functionals of the form E(α) =

∫
(F (x) + log

(
dα
dx

)
)dα(x)

which leads to evolutions α(t) being Fokker-Plank PDEs. Our work can thus
be interpreted as extending this idea to the more general setting of interaction
functionals (see Section 3 for the extension beyond pairwise interactions).

3. Theoretical Guarantees

In order to get some insight on these deep architectures, we now highlight
some theoretical results detailing the regularity and approximation power
of these functionals. This theoretical analysis relies on the Wasserstein
distance, which allows us to make quantitative statements associated to the
convergence in law.

3.1. Convergence in Law Topology

Wasserstein distance. In order to measure regularity of the involved
functionals, and also to define loss functions to fit these architectures (see
Section 4), we consider the p-Wasserstein distance (for 1 6 p < +∞) between
two probability distributions (α, β) ∈M1

+(Rq)

Wp
p(α, β)

def.
= min

π1=α,π2=β

∫
(Rq)2

‖x− y‖pdπ(x, y) (21)

where π1, π2 ∈M1
+(Rq) are the two marginals of a coupling measure π, and

the minimum is taken among coupling measures π ∈M1
+(Rq × Rq).

A classical result (see [Santambrogio, 2015]) asserts that W1 is a norm,
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and can be conveniently computed using

W1(α, β) = W1(α− β) = max
Lip(g)61

∫
X
gd(α− β),

where Lip(g) is the Lipschitz constant of a map g : X → R (with respect to
the Euclidean norm unless otherwise stated).

With an abuse of notation, we write Wp(X,Y ) to denote Wp(αX , αY ),
but one should be careful that we are considering distances between laws of
random vectors. An alternative formulation is

Wp(X,Y ) = min
X′,Y ′

E(
∥∥X ′ − Y ′∥∥p)1/p

where (X ′, Y ′) is a couple of vectors such that X ′ (resp. Y ′) has the same
law as X (resp. Y ), but of course X ′ and Y ′ are not necessarily independent.
The Wasserstein distance metrizes the convergence in law (denoted ⇀) in
the sense that Xk ⇀ X is equivalent to W1(Xk, X)→ 0.

In the numerical experiments, we estimate Wp using Sinkhorn’s algo-
rithm [Cuturi, 2013], which provides a smooth approximation amenable to
(possibly stochastic, see [Genevay et al., 2016]) gradient descent optimization
schemes, whether it be for generative or predictive tasks (see Section 4).

Lipschitz property. A map T : R(Rq) → R(Rr) is continuous for the
convergence in law (aka the weak∗ of measures) if for any sequence Xk ⇀ X,
then T (Xk) ⇀ T (X). Such a map is furthermore said to be C-Lipschitz for
the 1-Wasserstein distance if

∀ (X,Y ) ∈ R(Rq)2, W1(T (X), T (Y )) 6 C W1(X,Y ). (22)

Lipschitz properties enable us to analyze robustness to input perturbations,
since it ensures that if the input distributions of random vectors are close
enough (in the Wasserstein sense), the corresponding output laws are close
too.

3.2. Regularity of Building blocks

Elementary blocks. The following proposition shows that elementary
blocks are robust to input perturbations. As a consequence, architectures
composed of such blocks benefit from Lipschitz robustness as well.

Proposition 3 (Lipschitzness of Elementary Blocks). If for all x, f(x, ·) and
f(·, x) are C(f)-Lipschitz, then Tf is 2rC(f)-Lipschitz in the sense of (22).
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As hinted at in Section 2.1, such Elementary Blocks are actually defined
as the composition of the push-forward operator and a partial integration
operation which we now define. For the sake of clarity, we postpone the proof
of Proposition 3 until regularity of both these operations has been detailed.

Push-forward. The push-forward operator allows for modifications of the
support while maintaining the geometry of the input measure.

Definition 2 (Push-forward). For a function f : X → Y, we define the
push-forward f]α ∈M(Y) of α ∈M(X ) by T as defined by

∀ g ∈ C(Y),

∫
Y
gd(f]α)

def.
=

∫
X
g(f(x))dα(x). (23)

Note that f] :M(X )→M(Y) is a linear operator.

Proposition 4 (Lipschitzness of push-forward). One has

WY(f]α, f]β) 6 Lip(f) WX (α, β), (24)

WY(f]α, g]α) 6 ‖f − g‖L1(α), (25)

where Lip(f) designates the Lipschitz constant of f .

Proof. ∀h : Y → R s.t. Lip(h) 6 1, h◦f
Lip(f) is 1-Lipschitz, therefore∫

X

h ◦ f
Lip(f)

d(α− β) 6 WX (α, β)

hence inequality (24). Similarly, ∀h s.t. Lip(h) 6 1,∫
X

(h ◦ f − h ◦ g)dα 6
∫
X
‖f(x)− g(x)‖2dα(x)

hence inequality (25).

Integration. We now define a (partial) integration operator.

Definition 3 (Integration). For f ∈ C(Z × X ;Y = Rr), and α ∈M(X ) we
denote

f [·, α]
def.
=

∫
X
f(·, x)dα(x) : Z → Y.
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Proposition 5 (Lipschitzness of integration). With some fixed ζ ∈M1
+(Z),

one has

‖f [·, α]− f [·, β]‖L1(ζ) 6 r Lip2(f) WX (α, β).

where we denoted by Lip2(f) a bound on the Lipschitz contant of the function
f(z, ·) for all z.

Proof.

||f [·, α]− f [·, β]||L1(ζ) =

∫
Z
‖f [·, α](z)− f [·, β](z)‖2dζ(z)

=

∫
Z

∥∥∥∥∫
X
f(z, x)d(α− β)(x)

∥∥∥∥
2

dζ(z)

6
∫
Z

∥∥∥∥∫
X
f(z, x)d(α− β)(x)

∥∥∥∥
1

dζ(z)

=

∫
Z

r∑
i=1

∣∣∣∣∫
X
fi(z, x)d(α− β)(x)

∣∣∣∣dζ(z)

6
r∑
i=1

Lip2(fi) WX (α, β)

6 r Lip2(f) WX (α, β)

where we denoted by Lip2(fi) a bound on the Lipschitz contant of the function
fi(z, ·) (i-th component of f) for all z, since again, fi

Lip2(fi)
is 1-Lipschitz.

Now that Lipschitzness of the push-forward operator and the partial
integration operation have been established, Lipschitz robustness of our
Elementary Block can be detailed.

Proof. (of Proposition 3) Let us stress that the elementary block Tf (X)
defined in (19) only depends on the law αX . In the following, for a measure
α we denote Tf (αX) the law of Tf (X). The goal is thus to show that Tf is
Lipschitz for the Wasserstein distance.

For a measure α ∈ M(X ) (where X = Rq), the measure β = TF(α) ∈
M(Y) (where Y = Rr) is defined via the identity, for all g ∈ C(Y),∫

Y
g(y)dβ(y) =

∫
X
g

Å∫
X
f(z, x)dα(x)

ã
dα(z).

Let us first remark that an elementary block, when view as operating on
measures, can be decomposed using the aforementioned push-forward and
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integration operators, since

TF (α) = f [·, α]]α.

Using the fact that WX is a norm,

WX (TF (α), Tf (β))

6 WX (TF (α), f [·, β]]α) + WX (f [·, β]]α, Tf (β))

6 ‖f [·, α]− f [·, β]‖L1(α) + Lip(f [·, β]) WX (α, β),

where we used the Lipschitzness of the push-forward, Proposition 4. Moreover,
for (z1, z2) ∈ X 2,

‖f [z1, β]− f [z2, β]‖2 6 ‖f [z1, β]− f [z2, β]‖1 =

∥∥∥∥∫
X

(f(z1, ·)− f(z2, ·))dβ
∥∥∥∥

1

6
r∑
i=1

|
∫
X

(fi(z1, ·)− fi(z2, ·))dβ|

6
r∑
i=1

∫
X
|fi(z1, ·)− fi(z2, ·)|dβ

6
r∑
i=1

Lip1(fi)‖z1 − z2‖2 6 r Lip1(f)‖z1 − z2‖2,

where we denoted by Lip1(fi) a bound on the Lipschitz contant of the function
fi(·, x) for all x. Hence Lip(f [·, β]) 6 r Lip1(f). In addition, Lipschitzness
of integration, Proposition 5 yields

WX (TF (α), Tf (β)) 6 r Lip2(f) WX (α, β) + r Lip1(f) WX (α, β)

It is worth noting that, as a composition of Lipschitz functions defines
Lipschitz maps, the architectures of the form (20) are thus Lipschitz, with
a Lipschitz constant upper-bounded by

∏
t 2qtC(ft), where we used the

notations of Proposition 3.

Tensorization. As highlighted in Section 2.1, tensorization plays an im-
portant role to define higher-order interaction blocks.
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Definition 4 (Tensor product). Given (X,Y ) ∈ R(X ) × R(Y), a tensor

product random vector is X ⊗ Y def.
= (X ′, Y ′) ∈ R(X × Y) where X ′ and

Y ′ are independent and have the same laws as X and Y . This means that
dαX⊗Y (x, y) = dαX(x)dαY (y) is the tensor product of the measures.

Remark 1 (Tensor Product between Discrete Measures). If we consider
random vectors supported on point clouds, with laws αX = 1

n

∑n
i=1 δxi and

αY = 1
m

∑m
j=1 δyj , then X ⊗ Y is a discrete random vector supported on nm

points, since αX⊗Y = 1
nm

∑
i,j δ(xi,yj).

The following proposition shows that tensorization blocks maintain the
stability property of a deep architecture.

Proposition 6 (Lipschitzness of tensorization). For (X,X ′, Y, Y ′) ∈ R(X )2×
R(Y)2, one has

W1(X ⊗ Y,X ′ ⊗ Y ′) 6 W1(X,X ′) + W1(Y, Y ′).

Proof. One has

W1(α⊗ β, α′ ⊗ β′) = max
Lip(g)61

∫
1
g(x, y)[dα(x)dβ(y)− dα′(x)dβ′(y)]

= max
Lip(g)61

∫
X

∫
Y
g(x, y)[dβ(y)− dβ′(y)]dα(x)

+

∫
Y

∫
X
g(x, y)[dα(x)− dα′(x)]dβ(y),

which yields the result.

3.3. Approximation Theorems

Universality of elementary block. The following theorem shows that
any continuous map between random vectors can be approximated to arbi-
trary precision using three elementary blocks. Note that it includes through
Λ a fixed random input which operates as an “excitation block” similar to
the generative VAE models studied in Section 4.2.

Theorem 3. Let F : R(X )→ R(Y) be a continuous map for the convergence
in law, where X ⊂ Rq and Y ⊂ Rr are compact. Then ∀η > 0 there exists
three continuous maps f, g, h such that

∀X ∈ R(X ), W1(F(X), Th ◦ Λ ◦ Tg ◦ Tf (X)) 6 η. (26)

where Λ : X 7→ (X,U) concatenates a uniformly distributed random vector
U .
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The architecture that we use to prove this theorem is displayed on
Figure 3, bottom (left). Since f , g and h are smooth maps, according to
the universality theorem of neural networks [Cybenko, 1989, Leshno et al.,
1993] (assuming some restriction on the non-linearity λ, namely its being a
nonconstant, bounded and continuous function), it is possible to replace each
of them (at the expense of increasing η) by a sequence of fully connected
layers (as detailed in Section 2.1). This is detailed further down this section.

Since deterministic vectors are a special case of random vectors (see
Section 2.1), this results encompasses as a special case universality for vector-
valued maps F : R(Ω)→ Rr (used for instance in classification in Section 4.1)
and in this case only 2 elementary blocks are needed. Of course the classical
universality of multi-layer perceptron [Cybenko, 1989, Leshno et al., 1993]
for vectors-to-vectors maps F : Rq → Rr is also a special case (using a single
elementary block).

Before stating a proof for Theorem 3, we introduce and prove two useful
lemmas: (i) the first one shows how the gap between a probability measure
and its discretized counterpart can be controlled; (ii) the second one shows
the existence of a continuous noise-reshaping function mapping a uniform
noise to a target distribution.

Approximation by discrete measures. The following lemma shows how
to control the approximation error between an arbitrary random variable
and a discrete variable obtained by computing moments against localized
functions on a grid.

Lemma 1. Let (Sj)
N
j=1 be a partition of a domain including Ω (Sj ⊂ Rd)

and let xj ∈ Sj. Let (ϕj)
N
j=1 a set of bounded functions ϕj : Ω → R

supported on Sj, such that
∑

j ϕj = 1 on Ω. For α ∈ M1
+(Ω), we de-

note α̂N
def.
=
∑N

j=1 αjδxj with αj
def.
=
∫
Sj
ϕjdα. One has, denoting ∆j

def.
=

maxx∈Sj ‖xj − x‖,
W1(α̂N , α) 6 max

16j6N
∆j .

Proof. We define π ∈M1
+(Ω2), a transport plan coupling marginals α and

α̂N , by imposing for all f ∈ C(Ω2),∫
Ω2

fdπ =
N∑
j=1

∫
Sj

f(x, xj)ϕj(x)dα(x).
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π indeed is a transport plan, since for all g ∈ C(Ω),∫
Ω2

g(x)dπ(x, y) =
N∑
j=1

∫
Sj

g(x)ϕj(x)dα(x) =
N∑
j=1

∫
Ω
g(x)ϕj(x)dα(x)

=

∫
Ω
g(x)

Ñ
N∑
j=1

ϕj(x)

é
dα(x) =

∫
Ω
gdα.

Also, ∫
Ω2

g(y)dπ(x, y) =
N∑
j=1

∫
Sj

g(xj)ϕjdα =
N∑
j=1

g(xj)

∫
Ω
ϕjdα

=
N∑
j=1

αjg(xj) =

∫
Ω
gdα̂N .

By definition of the Wasserstein-1 distance,

W(α̂N , α) 6
∫

Ω2

‖x− y‖dπ(x, y) =
N∑
j=1

∫
Sj

ϕj(x)‖x− xj‖dα(x)

6
N∑
j=1

∫
Sj

ϕj∆jdα

6

(
N∑
i=1

∫
Ω
ϕidα

)
max

16j6N
∆j = max

16j6N
∆j .

Parametric Push-Forward. An ingredient of the proof of the universality
Theorem 3 is the construction of a noise-reshaping function H which maps a
uniform noise to another distribution parametrized by b.

Lemma 2. There exists a continuous map (b, u) ∈ Σm × [0, 1]r 7→ H(b, u)

so that the random vector H(b, U) has law β
def.
= (1− η)D∗Y(b) + ηU , where U

has density U (uniformly distributed on [0, 1]r).

Proof. Since both the input measure U and the output measure β have densi-
ties and have support on convex set, one can use for map H(b, ·) the optimal
transport map between these two distributions for the squared Euclidean cost,
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which is known to be a continuous function, see for instance [Santambrogio,
2015][Sec. 1.7.6]. It is also possible to define a more direct transport map
(which is not in general optimal), known as Dacorogna-Moser transport, see
for instance [Santambrogio, 2015][Box 4.3].

We are now ready to state a proof for Theorem 3.

Proof. (of Theorem 3) In the following, we denote the probability simplex
as Σn =

{
a ∈ Rn+ ;

∑
i ai = 1

}
. Without loss of generality, we assume

X ⊂ [0, 1]q and Y ⊂ [0, 1]r. We consider two uniform grids of n and m
points (xi)

n
i=1 of [0, 1]q and (yj)

m
j=1 of [0, 1]r. On these grids, we consider the

usual piecewise affine P1 finite element bases (ϕi)
n
i=1 and (ψj)

m
j=1, which are

continuous hat functions supported on cells (Ri)i and (Sj)j which are cubes
of width 2/n1/q and 2/m1/r. We define discretization operators as

DX : α ∈M+
1 (X ) 7→

Å∫
Ri

ϕidα

ãn
i=1

∈ Σn

and

DY : β ∈M+
1 (Y) 7→

Ç∫
Sj

ψjdβ

åm
j=1

∈ Σn.

We also define
D∗X : a ∈ Σn 7→

∑
i

aiδxi ∈M+
1 (X )

and
D∗Y : b ∈ Σm 7→

∑
j

bjδyi ∈M+
1 (Y).

The map F induces a discrete map G : Σn → Σm defined by G
def.
=

DY ◦ F ◦ D∗X . Remark that D∗X is continuous from Σn (with the usual
topology on Rn) to M1

+(X ) (with the convergence in law topology), F is
continuous (for the convergence in law), DY is continuous fromM1

+(Y) (with
the convergence in law topology) to Σm (with the usual topology on Rm).
This shows that G is continuous.

For any b ∈ Σm, Lemma 2 proved above defines a continuous map H so
that, defining U to be a random vector uniformly distributed on [0, 1]r (with
law U), H(b, U) has law (1− η)D∗Y(b) + ηU .

We now have all the ingredients, and define the three continuous maps
for the elementary blocks as

f(x, x′) = (ϕi(x
′))ni=1 ∈ Rn, g(a, a′) = G(a′) ∈ Rm,
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and h((b, u), (b′, u′)) = H(b, u) ∈ Y.

The corresponding architecture is displayed on Figure 3, bottom. Using these
maps, one needs to control the error between F and F̂ def.

= Th ◦ Λ ◦ Tg ◦ Tf =

H] ◦ Λ ◦DY ◦ F ◦D∗X ◦ DX where we denoted H](b)
def.
= H(b, ·)]U the law of

H(b, U) (i.e. the pushforward of the uniform distribution U of U by H(b, ·)).
(i) We define α̂

def.
= D∗XDX (α). The diameters of the cells Ri is ∆j =√

q/n1/q, so that Lemma 1 proved above shows that W1(α, α̂) 6
√
q/n1/q.

Since F is continuous for the convergence in law, choosing n large enough
ensures that W1(F(α),F(α̂)) 6 η.

(ii) We define β̂
def.
= D∗YDYF(α̂). Similarly, using m large enough ensures

that W1(F(α̂), β̂) 6 η.

(iii) Lastly, let us define β̃
def.
= H] ◦DY(β̂) = F̂(α). By construction of

the map H in Lemma 2, one has hat β̃ = (1− η)β̂ + ηU so that W1(β̃, β̂) =
ηW1(β̂,U) 6 Cη for the constant C = 2

√
r since the measures are supported

in a set of diameter
√
r.

Putting these three bounds (i), (ii) and (iii) together using the triangular
inequality shows that W1(F(α), F̂(α)) 6 (2 + C)η.

We now detail how the maps f, g, and h involved in Theorem 3 can each
be approximated by neural networks [Cybenko, 1989, Leshno et al., 1993],
so that the measure-valued function of interest F can be approached by a
neural architecture as well.

Proof. (Approximation by neural networks related to Theorem 3) For the
sake of simplicity, we first give the proof in the case F : R(Ω)→ Rr, i.e. no
mapping h is needed (the proof being similar for the general case), and only
two Elementary Blocks are needed. Furthermore, without loss of generality,
we consider the real-valued case r = 1. Let η > 0, then Theorem 3 shows
that F can be approximated arbitrarily close (up to η

3 ) by a composition of
functions of the form f (EX∼α (g(X))). We now show how to approximate
the continuous functions f and g by two neural networks

(i) gθ(x)
def.
= C1λ(A1x+ b1) : Rd → RN ,

(ii) fξ(x)
def.
= C2λ(A2x+ b2) : RN → R,

such that

∀α ∈M1
+(Ω), |F(α)− fξ (EX∼α (gθ(X)))| < η.
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where N, p1, p2 are integers, A1 ∈ Rp1×d, A2 ∈ Rp2×N , C1 ∈ RN×p1 , C2 ∈
R1×p2 weight matrices and b1 ∈ Rp1 , b2 ∈ Rp2 are biases.

By triangular inequality, we upper-bound the difference of interest

|F(α)− fξ (EX∼α (gθ(X)))|

by a sum of three terms:

(i) |F(α)− f (EX∼α (g(X)))|

(ii) |f (EX∼α (g(X)))− fξ (EX∼α (g(X)))|

(iii) |fξ (EX∼α (g(X)))− fξ (EX∼α (gθ(X)))|

and bound each term by η
3 , which yields the result. The bound on the first

term directly comes from theorem 1 and yields constant N which depends
on η. The bound on the second term is a direct application of the universal
approximation theorem [Cybenko, 1989, Leshno et al., 1993]. Indeed, since
α is a probability measure, input values of f lie in a compact subset of RN :∥∥∫

Ω g(x)dα
∥∥
∞ 6 maxx∈Ω maxi |gi(x)|, hence the theorem [Cybenko, 1989,

Leshno et al., 1993] is applicable as long as λ is a nonconstant, bounded and
continuous function. Let us focus on the third term. Uniform continuity of
fξ yields the existence of δ > 0 s.t. ||u− v||1 < δ implies |fξ(u)− fξ(v)| < η

3 .
Let us apply the universal approximation theorem: each component gi of g
can be approximated by a neural network gθ,i up to δ

N . Therefore:

‖EX∼α (g(X)− gθ(X))‖1 6 EX∼α‖g(X)− gθ(X)‖1

6
N∑
i=1

∫
Ω
|gi(x)− gθ,i(x)|dα(x) 6 N × δ

N
= δ

since α is a probability measure. This proves the bound on the third term,
with u = EX∼α (g(X)) and v = EX∼α (gθ(X)) in the definition of uniform
continuity.

We proceed similarly in the general case F : R(X )→ R(Y), and upper-
bound the Wasserstein distance by a sum of four terms by triangular in-
equality. The same ingredients (namely uniform continuity together with the
universal approximation theorem [Cybenko, 1989, Leshno et al., 1993], since
all functions f , g and h have input and output constrained in in compact
sets) allow us to conclude.
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Universality of tensorization. We now further investigate the advan-
tages of tensorization of the input measures, namely its capacity to acquire
universal approximation abilities. The following Theorem shows that in fact,
one can approximate any real-valued continuous map using a high enough
order of tensorization followed by an elementary block.

Theorem 4. Let F : R(Ω) → R a continuous map for the convergence in
law, where Ω ⊂ Rq is compact. Then ∀η > 0, there exists n > 0 and a
continuous function f such that

∀X ∈ R(Ω), |F(X)− Tf ◦ θn(X)| 6 η (27)

where θn(X) = X ⊗ . . .⊗X is the n-fold self tensorization.

Proof. We denote C(M1
+(Ω)) the space of functions taking probability mea-

sures on a compact set Ω to R which are continuous for the weak-∗ topology.
We denote the set of integrals of tensorized polynomials on Ω as

AΩ
def.
=


F :M1

+(Ω)→ R,∃n ∈ N,∃ϕ : Ωn → R,

∀µ ∈M1
+(Ω),F(µ) =

∫
Ωn

ϕdµ⊗n

 .

The goal is to show that AΩ is dense in C(M1
+(Ω)).

Since Ω is compact, Banach-Alaoglu theorem shows that M1
+(Ω) is

weakly-∗ compact. Therefore, in order to use Stone-Weierstrass theorem, to
show the density result, we need to show that AΩ is an algebra that separates
points, and that, for all probability measure α, AΩ contains a function that
does not vanish at α. For this last point, taking n = 1 and ϕ = 1 defines the
function F(α) =

∫
Ω dα = 1 that does not vanish in α since it is a probability

measure. Let us then show that AΩ is a subalgebra of C(M1
+(Ω)):

(i) stability by a scalar follows from the definition of AΩ;

(ii) stability by sum: given (F1,F2) ∈ A2
Ω (with associated functions

(ϕ1, ϕ2) of degrees (n2, n2)), denoting n
def.
= max(n1, n2) and

ϕ(x1, . . . , xn)
def.
= ϕ1(x1, . . . , xn1) + ϕ2(x1, . . . , xn2)

shows that F1 + F2 =
∫

Ωn ϕdµ⊗n and hence F1 + F2 ∈ AΩ;

(iii) stability by product: similarly as for the sum, denoting this time
n = n1 + n2 and introducing

ϕ(x1, . . . , xn) = ϕ1(x1, . . . , xn1)× ϕ2(xn1+1, . . . , xn)

shows that F = F1 ×F2 ∈ AΩ, using Fubini’s theorem.
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Lastly, we show the separation of points: if two probability measures (α, β) on
Ω are different (not equal almost everywhere), there exists a set Ω0 ⊂ Ω such
that α(Ω0) 6= β(Ω0); taking n = 1 and ϕ = 1Ω0 , we obtain, after smoothing
ϕ to make it continuous, a function F ∈ AΩ such that F(α) 6= F(β).

The architecture used for this theorem is displayed on the bottom (right)
of Figure 3. The function f appearing in (27) plays a similar role as in (26),
but note that the two-layers factorizations provided by these two theorems
are very different. It is an interesting avenue for future work to compare
them theoretically and numerically.

4. Applications

To exemplify the use of our stochastic deep architectures, we consider
classification, generation and dynamic prediction tasks. The goal is to
highlight the versatility of these architectures and their ability to handle
as input and/or output both probability distributions and vectors. In all
cases, the procedures displayed similar results when rerun, hence results
can be considered as quite stable and representative. We also illustrate the
gain in maintaining the measure representation along several layers of the
architecture. The code used to produce all results in this section is available
at: https://github.com/gdebie/stochastic-deep-networks.

4.1. Classification tasks

MNIST Dataset. We perform classification on the 2D MNIST dataset of
handwritten digits. To convert a MNIST image into a 2D point cloud, we
threshold pixel values (threshold ρ = 0.5) and use as a support of the input
empirical measure the n = 256 pixels of highest intensity, represented as
points (xi)

n
i=1 ⊂ R2 (if there are less than n = 256 pixels of intensity over ρ,

we repeat input coordinates), which are remapped along each axis by mean
and variance normalization. Each image is therefore turned into a sum of
n = 256 Diracs 1

n

∑
i δxi . Our stochastic network architecture is displayed

on the top of Figure 3 and is composed of 5 elementary blocks (Tfk)5
k=1 with

an interleaved self-tensorisation layer X 7→ X ⊗ X. The first elementary
block Tf1 maps measures to measures, the second one Tf2 maps a measure
to a deterministic vector (i.e. does not depend on its first coordinate, see
Section 2.1), and the last layers are classical vectorial fully-connected ones.
We use a ReLu non-linearity λ (see Section 2.1). The weights are learnt with
a weighted cross-entropy loss function over a training set of 55,000 examples
and tested on a set of 10,000 examples. Initialization is performed through
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Figure 3: Top and center: two examples of deep stochastic architectures
applied to the MNIST dataset: top for classification purpose (Section 4.1),
center for generative model purpose (Section 4.2). Bottom: architecture for
the proof of Theorems 3 and 4.

the Xavier method [Glorot and Bengio, 2010] and learning with the Adam
optimizer [Kingma and Ba, 2014]. Table 1 displays our results, compared
with the PointNet [Qi et al., 2017a] baseline. We observe that maintaining
stochasticity among several layers is beneficial (as opposed to replacing one
Elementary Block with a fully connected layer allocating the same amount
of memory).

Table 1: MNIST classification results

input type error (%)

PointNet point set 0.78

Ours measure (1 stochastic layer) 1.07
Ours measure (2 stochastic layers) 0.76

ModelNet40 Dataset. We evaluate our model on the ModelNet40 [Wu
et al., 2015a] shape classification benchmark. The dataset contains 3D CAD
models from 40 man-made categories, split into 9,843 examples for training
and 2,468 for testing. We consider n = 1, 024 samples on each surface,
obtained by a farthest point sampling procedure. Our classification network
is similar to the one displayed on top of Figure 3, excepted that the layer
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dimensions are [3, 10, 500, 800, 400, 40]. Our results are displayed in figure
2. As previously observed in 2D, peformance is improved by maintaining
stochasticity among several layers, for the same amount of allocated memory.

Table 2: ModelNet40 classification results

input type accuracy (%)

3DShapeNets volume 77

Pointnet point set 89.2

Ours measure 82.0
(1 stochastic layer)

Ours measure 83.5
(2 stochastic layers)

4.2. Generative networks

We further evaluate our framework for generative tasks, on a VAE-type
model [Kingma and Welling, 2014] – note that it would be possible to use
our architectures for GANs [Goodfellow et al., 2014] as well. The task
consists in generating outputs resembling the data distribution by decoding
a random variable z sampled in a latent space Z. The model, an encoder-
decoder architecture, is learnt by comparing input and output measures
using the W2 Wasserstein distance loss, approximated using Sinkhorn’s
algorithm [Cuturi, 2013, Genevay et al., 2018]. Following [Kingma and
Welling, 2014], a Gaussian prior is imposed on the latent variable z. The
encoder and the decoder are two mirrored architectures composed of two
elementary blocks and three fully-connected layers each. The corresponding
stochastic network architecture is displayed on the bottom of 3. Figure 4
displays an application on the MNIST database where the latent variable
z ∈ R2 parameterizes a 2D of manifold of generated digits. We use as input
and output discrete probability measures of n = 100 Diracs, displayed as
point clouds on the right of Figure 4.

4.3. Dynamics Prediction

Birds of a Feather. The Cucker-Smale flocking model [Cucker and Smale,
2007] is non-linear dynamical system modelling the emergence of coherent
behaviors, as for instance in the evolution of a flock of birds, by solving for
positions and speed xi(t)

def.
= (pi(t) ∈ Rd, vi(t) ∈ Rd) for i = 1, . . . , n

ṗ(t) = v(t), and v̇(t) = L(p(t))v(t) (28)
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Figure 4: Left: Manifold of digits generated by the VAE network displayed
on the bottom of 3. Right: Corresponding point cloud (displaying only a
subset of the left images).

where L(p) ∈ Rn×n is the Laplacian matrix associated to a group of points
p ∈ (Rd)n

L(p)i,j
def.
=

1

1 + ‖pi − pj‖m
, L(p)i,i = −

∑
j 6=i
L(p)i,j .

In the numerics, we set m = 0.6. This setting can be adapted to weighted
particles (xi(t), µi)i=1···n, where each weight µi stands for a set of physical
attributes impacting dynamics – for instance, mass – which is what we
consider here. This model equivalently describes the evolution of the mea-
sure α(t) =

∑n
i=1 µiδxi(t) in phase space (Rd)2, and following remarks in

Section 2.2 on the ability of our architectures to model dynamical system
involving interactions, (28) can be discretized in time which leads to a recur-
rent network making use of a single elementary block Tf between each time
step. Indeed, our block allows to maintain stochasticity among all layers –
which is the natural way of proceeding to follow densities of particles over
time.

It is however not the purpose of this work to study such a recurrent
network and we aim at showcasing here whether deep (non-recurrent) archi-
tectures of the form (20) can accurately capture the Cucker-Smale model.
More precisely, since in the evolution (28) the mean of v(t) stays constant, we
can assume

∑
i vi(t) = 0, in which case it can be shown [Cucker and Smale,

2007] that particles ultimately reach stable positions (p(t), v(t)) 7→ (p(∞), 0).

We denote F(α(0))
def.
=
∑n

i=1 µiδpi(∞) the map from some initial configuration
in the phase space (which is described by a probability distribution α(0)) to
the limit probability distribution (described by a discrete measure supported
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on the positions pi(∞)). The goal is to approximate this map using our
deep stochastic architectures. To showcase the flexibility of our approach,
we consider a non-uniform initial measure α(0) and approximate its limit
behavior F(α(0)) by a uniform one (µi = 1

n).

In our experiments, the measure α(t) models the dynamics of several (2
to 4) flocks of birds moving towards each other, exhibiting a limit behavior
of a single stable flock. As shown in Figures 5 and 6, positions of the initial
flocks are normally distributed, centered respectively at edges of a rectangle
(−4; 2), (−4;−2), (4; 2), (4;−2) with variance 1. Their velocities (displayed
as arrows with lengths proportional to magnitudes in Figures 5 and 6) are
uniformly chosen within the quarter disk [0;−0.1] × [0.1; 0]. Their initial
weights µi are normally distributed with mean 0.5 and sd 0.1, clipped by a
ReLu and normalized. Figures 5 (representing densities) and 6 (depicting
corresponding points’ positions) show that for a set of n = 720 particles,
quite different limit behaviors are successfully retrieved by a simple network
composed of five elementary blocks with layers of dimensions [2, 10, 20, 40, 60],
learnt with a Wasserstein [Genevay et al., 2018] fitting criterion (computed
with Sinkhorn’s algorithm [Cuturi, 2013]).
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(a
)

(b
)

(c
)

Initial α(0) F(α(0)) Predicted

Figure 5: Prediction of the asymptotic density of the flocking model, for
various initial speed values v(0) and n = 720 particles. Eg. for top left
cloud: (a) v(0) = (0.050;−0.085); (b) v(0) = (0.030;−0.094); (c) v(0) =
(0.056;−0.081).
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(a
)

(b
)

(c
)

Initial α(0) F(α(0)) Predicted

Figure 6: Prediction of particles’ positions corresponding to Figure 5. Dots’
diameters are proportial to weights µi (predicted ones all have the same size
since µi = 1

n).
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Chapter 2: Distribution-Based
Invariant Deep Networks for
Automated Machine Learning

Densities or probability distribution offer a propitious input or output
representation for a wide variety of data types, ranging for 3D shapes in
computer vision, to population modeling in biology, ecology, physics, chemistry
or census. Indeed, such a design provides the means to follow populations
at a macroscopic level over time without requiring individual knowledge on
particles’ positions, which is often inconceivable due to experimental costs or
privacy concerns.

In this chapter, we demonstrate that this representation is well suited
to datasets as well. Based on a set of labeled datasets, we show that their
representation as measures, in a Lagrangian form, offers new perspectives to
tackle the long-known problem of automated machine learning (Auto-ML),
whose aim is to uncover a priori the best-performing machine learning pipeline
for a task at hand.

As performance of machine learning pipelines is invariant in the ordering
of dataset features as well as its labels, we introduce a neural network frame-
work able to perform regression on probability measures, at a granular level,
with such invariance requirements (referred to as invariant regression). This
Distribution-based Invariant Deep Architecture (DIDA) inherits from desir-
able Lipschitz robustness properties and is actually a universal approximator
for invariant regression functionals continuous for the convergence in law.
We provide instanciations of such networks for different tasks, the end-goal
being the design of expressive dataset summaries referred to as meta-features.

This chapter is based on [De Bie et al., 2020].
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1. Introduction

Deep networks architectures, initially devised for structured data such as
images [Krizhevsky et al., 2012] and speech [Hinton et al., 2012], have been
extended to respect some invariance or equivariance [Shawe-Taylor, 1993]
of more complex data types. This includes for instance point clouds [Qi
et al., 2017a], graphs [Henaff et al., 2015] and probability distributions
[De Bie et al., 2019], which are invariant with respect to permutations of
the input points. In such cases, invariant architectures improve practical
performance while inheriting the universal approximation properties of neural
networks [Cybenko, 1989, Leshno et al., 1993].

In this chapter, distribution-based neural architectures [De Bie et al.,
2019] are extended to cope with an additional invariance: the space of features
and labels (i.e. the space supporting the distributions) is also assumed to
be invariant under permutation of its coordinates. This extra invariance
is important to tackle Auto-ML problems [Rice, 1976, Muñoz et al., 2018,
Feurer et al., 2015, Hutter et al., 2018, Bardenet et al., 2013, Hutter et al.,
2011, Klein et al., 2017, Rakotoarison et al., 2019, Elsken et al., 2019]. Auto-
ML aims to identify a priori the machine learning configuration (both the
learning algorithm and hyper-parameters thereof) best suited to the dataset
under consideration in the sense of a given performance indicator. Would a
dataset be associated with accurate descriptive features, referred to as meta-
features, the Auto-ML problem could be handled via solving yet another
supervised learning problem: given archives recording the performance of
various machine learning configurations on various datasets [Vanschoren
et al., 2013], with each dataset described as a vector of meta-features, the
best-performing algorithm (among these configurations) on a new dataset
could be predicted from its meta-features. The design of accurate meta-
features however has eluded research since the 80s (with the except of [Jomaa
et al., 2019], more below), to such an extent that the prominent Auto-ML
approaches currently rely on learning a performance model specific to each
dataset [Feurer et al., 2015, Rakotoarison et al., 2019].

Previous works.

Learning from finite discrete distributions. Learning from sets of
samples subject to invariance or equivariance properties opens up a wide
range of applications: in the sequence-to-sequence framework, relaxing the
order in which the input is organized might be beneficial [Vinyals et al., 2016].
The ability to follow populations at a macroscopic level, using distributions
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on their evolution along time without requiring to follow individual trajecto-
ries, and regardless of the population size, is appreciated when modelling
dynamic cell processes [Hashimoto et al., 2016]. The use of sets of pixels, as
opposed to e.g., voxellized approaches in computer vision [De Bie et al., 2019],
offers a better scalability in terms of data dimensionality and computational
resources.

Most generally, the fact that the considered hypothesis space and related
neural architecture comply with domain-dependent invariances ensures a
better robustness of the eventually learned model, better capturing the data
geometry. Such neural architectures have been pioneered by [Qi et al., 2017a,
Zaheer et al., 2017] for learning from point clouds subject to permutation
invariance or equivariance. These have been extended to permutation equiv-
ariance across sets [Hartford et al., 2018] and relational databases [Graham
et al., 2019]. Invariance or equivariance under group actions have been
characterized, whether it be in the finite [Gens and Domingos, 2014, Cohen
and Welling, 2016, Ravanbakhsh et al., 2017] or infinite case [Wood and
Shawe-Taylor, 1996, Kondor and Trivedi, 2018]. A general identification of
linear layers on the top of a representation that are invariant or equivariant
with respect to the whole permutation group has been proposed by [Maron
et al., 2019a, Keriven and Peyré, 2019]. Universality results are known to
hold in the case of sets [Zaheer et al., 2017], point clouds [Qi et al., 2017a],
equivariant point clouds [Segol and Lipman, 2020], discrete measures [De Bie
et al., 2019], invariant [Maron et al., 2019b] and equivariant [Keriven and
Peyré, 2019] graph neural networks. The approach most related to our work
is that of [Maron et al., 2020], presenting a neural architecture invariant
with respect to the ordering of samples and their features. The originality of
our approach is that we do not fix in advance the number of samples, and
consider probability distributions instead of point clouds. This allows us to
leverage the natural topology of optimal transport to assess theoretically the
universality and smoothness of our architectures, which is adapted to tackle
the Auto-ML problem.

Auto-ML. The absence of learning algorithms efficient on all datasets
[Wolpert, 1996] makes Auto-ML − i.e. the automatic identification of
the machine learning pipelines yielding the best performance on the task
at hand − a main bottleneck toward the so-called democratizing of the
machine learning technology [Hutter et al., 2018]. The Auto-ML field has
been sparking interest for more than four decades [Rice, 1976], spread from
hyperparameter optimization [Bergstra et al., 2011] to the optimization
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of the whole pipeline [Feurer et al., 2015]. Formally, Auto-ML defines
a mixed integer and discrete optimization problem (finding the machine
learning pipeline algorithms and their hyper-parameters), involving a black-
box expensive objective function. The organization of international challenges
spurred the development of various efficient Auto-ML systems, instrinsically
relying on Bayesian optimization [Feurer et al., 2015, Thornton et al., 2013],
Monte-Carlo tree search [Drori et al., 2018] on top of a surrogate model, or
their combination [Rakotoarison et al., 2019].

As said, the ability to characterize tasks (datasets, in the remainder
of this chapter) via vectors of meta-features would solve Auto-ML through
learning the performance model. Meta-features, expected to describe the joint
distribution underlying the dataset, should also be inexpensive to compute.
Particular meta-features called landmarks [Pfahringer et al., 2000] are given
by the performance of fast machine learning algorithms; indeed, knowing
that a decision tree reaches a given level of accuracy on a dataset gives
some information on this dataset; see also [Muñoz et al., 2018]. Another
direction is explored by [Jomaa et al., 2019], defining the Dataset2Vec
representation. Specifically, meta-features are extracted through solving the
classification problem of whether two patches of data (subset of examples,
described according to a subset of features) are extracted from the same
dataset. Meta-learning [Finn et al., 2018, Yoon et al., 2018] and hyper-
parameter transfer learning [Perrone et al., 2018], more remotely related
to the presented approach, respectively aim to find a generic model with
quick adaptability to new tasks, achieved through few-shot learning, and to
transfer the performance model learned for a task, to another task.

Contributions.

The contributions of this chapter is twofold. On the algorithmic side,
a distribution-based invariant deep architecture (Dida) able to learn such
meta-features is presented in Section 2. The challenge is that a meta-feature
associated to a set of samples must be invariant both under permutation
of the samples, and under permutation of their coordinates. Moreover, the
architecture must be flexible enough to accept discrete distributions with
diverse support and feature sizes. The proposed Dida approach extends the
state of the art [Maron et al., 2020, Jomaa et al., 2019] in two ways. Firstly,
it is designed to handle discrete or continuous probability distributions,
as opposed to point sets (Section 2). As said, this extension enables to
leverage the more general topology of the Wasserstein distance as opposed
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to that of the Haussdorf distance (Section 3). This framework is used
to derive theoretical guarantees of stability under bounded distribution
transformations, as well as universal approximation results, extending [Maron
et al., 2020] to the continuous setting. Secondly, the empirical validation
of the approach on two tasks defined at the dataset level demonstrates the
merit of the approach compared to the state of the art [Maron et al., 2020,
Jomaa et al., 2019, Muñoz et al., 2018] (Section 4).

2. Distribution-Based Invariant Networks for Meta-Feature
Learning

This section describes our distribution-based invariant layers, mapping
a probability distribution to another one while respecting invariances. It
details how such layers can form trainable architectures performing regression
with customized invariance requirements, referred to as invariant regression,
and achieve meta-feature learning.

2.1. Invariant Functions of Discrete Distributions

Let X= {zi
def.
= (xi, yi) ∈ Rd}ni=1 denote a dataset including n labelled

samples, with xi ∈ RdX an instance and yi ∈ RdY the associated multi-
label. With dX and dY respectively being the dimensions of the instance
and label spaces, let d

def.
= dX + dY . By construction, X is invariant under

permutation on the sample ordering; it is viewed as an n-size discrete
distribution 1

n

∑n
i=1 δzi in Rd (or alternatively, as the associated random

vector, hence notation X), as opposed to a point cloud. While we present
in more detail the case of discrete uniform distributions, this framework is
naturally suited to arbitrary distributions. Therefore, we recall for the sake
of clarity that M+

1 (Rd) still denotes the space of arbitrary distributions,
whether it be continuous or discrete (of arbitrary size), and R(Rd) still
denotes the associated space of random vectors.

As the performance of a machine learning algorithm is most generally
invariant with respect to permutations operating on the feature or label
spaces, the neural architectures leveraged to learn the meta-features must
enjoy the same property. Formally, let G

def.
= SdX × SdY denote the group

of permutations independently operating on the feature and label spaces.
For σ = (σX , σY ) ∈ G, the image σ(X) of a labelled sample is defined

as (σX(x), σY (y)), with x = (x[k])dXk=1 and σX(x)
def.
= (x[σ−1

X (k)])k. For
simplicity and by abuse of notations, the operator mapping a distribution
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X = (zi)i to {σ(zi)}
def.
= σ]X is still denoted σ. We denote M+

1 (Ω) the space
of distributions supported on some set Ω ⊂ Rd (respectively, R(Ω) the space
of random vectors), and we assume that the domain Ω is invariant under
permutations in G.

The goal of this chapter is to define trainable deep architectures, imple-
menting functions ϕ defined on R(Ω ⊂ Rd) such that these are invariant
under G, i.e. ϕ(σ]X) = ϕ(X) for any σ ∈ G. By construction, a multi-label
dataset is invariant under permutations of the samples, of the features, and
of the multi-labels. Therefore, any meta-feature, that is, a feature describing
a multi-label dataset, is required to satisfy the above sample and feature
permutation invariance properties. Such functions will be trained to define
meta-features.

2.2. Distribution-Based Invariant Layers

Taking inspiration from [De Bie et al., 2019], the basic building-blocks of
the neural architecture defined in Section 2.1 of Chapter 1 are extended to
satisfy the feature- and label-invariance requirements.

Definition 5. (Distribution-based invariant layers) Let an interaction func-
tional ϕ : Rd × Rd → Rr be G-invariant, i.e.

∀σ ∈ G, ∀(z, z′) ∈ (Rd)2, ϕ(z, z′) = ϕ(σ(z), σ(z′)). (29)

A distribution-based invariant layer Tϕ is defined as

Tϕ : X ∈ R(Rd) 7→ EX′∼X [ϕ(X,X ′)] ∈ R(Rr) (30)

where X ′ is a random vector independent of X having the same distribution.

Remark 2. It is easy to see that, defined as such, Tϕ : R(Rd) → R(Rr) is
indeed invariant.

Nature of the invariance. Note that the invariance requirement on ϕ
actually is less demanding than requiring ϕ(z, z′) = ϕ(σ(z), τ(z′)) for any
two distinct permutations σ and τ in G.

Discrete distribution. In the experiments, datasets are represented as
random vectors uniformly distributed on a set (zi)

n
i=1, in which case the

invariant layer Tϕ maps X = (zi)
n
i=1 ∈ R(Rd) to

Tϕ(X)
def.
=

Ñ
1

n

n∑
j=1

ϕ(z1, zj), . . . ,
1

n

n∑
j=1

ϕ(zn, zj)

é
∈ R(Rr).
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Moment and Push-forward. Two particular cases are when ϕ only
depends on its first or second input:

(i) if ϕ(z, z′) = ψ(z′), then Tϕ computes a global “moment” descriptor of
the input, as Tϕ(X) = EX [ψ(X)], which, in the discrete case, reads
1
n

∑n
j=1 ψ(zj) ∈ Rr.

(ii) if ϕ(z, z′) = ξ(z), then Tϕ transports the input distribution via ξ
through a push-forward, which, in the case of discrete distributions,
reads Tϕ(X) = {ξ(zi)}i ⊂ Rr.

Spaces of arbitrary dimension. Both in practice and in theory, it is
important to define Tϕ layers (in particular the first one of the architecture)
that can be applied to distributions on RdX × RdY of arbitrary dimensions
dX and dY . This can be achieved by constraining ϕ to be of the form, with
z = (x, y) and z′ = (x′, y′):

ϕ(z, z′) = v

(
dX∑
k=1

dY∑
`=1

u(x[k], x′[`], y[k], y′[`])

)

where u : R4 → Rt and v : Rt → Rr are independent of d.

Generalization to arbitrary groups. The definition of invariant func-
tions ϕ (and the corresponding architectures) can be generalized to arbitrary
group operating on Rd (in particular sub-groups of the permutation group).
A simple way to design an invariant function is to consider ϕ(z, z′) = ψ(z+z′)
where ψ is G-invariant. In the linear case, [Maron et al., 2020], Theorem 5
shows that these types of functions are the only ones, but this is not anymore
true for non-linear functions.

Localized computation. The complexity of computing 1
n

∑
j ϕ(zi, zj) in

practice can be reduced by considering only zj in a neighborhood of zi. The
layer then extracts local information around each of the points.

Higher Order Interactions and Tensorization. Invariant layers can
also be generalized to handle higher order interactions functionals, namely
Tϕ(X)

def.
= EX2,...,XN∼X [ϕ(X,X2, . . . , XN )]. An equivalent and elegant way to

introduce these interactions in a deep architecture is by adding a tensorization
layer, which maps X 7→ X2 ⊗ . . .⊗XN ∈ R((Rd)N−1). Section 3 details the
regularity and approximation power of these tensorization steps.
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Link to kernel methods. The use of an interaction functional ϕ is in-
spired from kernel ideas, albeit with significant differences: (i) using Tϕ, the
detail of the pairwise interactions ϕ(zi, zj) is lost through averaging; (ii) ϕ
takes into account labels; (iii) ϕ is learnt. Further work will be devoted to
investigating the properties of the Tϕ(zi) matrix.

2.3. Learning Dataset Meta-features from Distributions

The proposed invariant regression neural architectures defined on point
distributions (Dida) are defined as

X ∈ R(Rd) 7→ Fζ(X)
def.
= fϕm ◦ fϕm−1 ◦ . . . ◦ fϕ1(X) ∈ Rdm+1 (31)

where ζ are the trainable parameters of the architecture (detailed below).
Note that this architecture shares similarities to the one presented in Section
2.2 of Chapter 1, however focused on the discriminative case (with a constant
output vector), and including an additional invariance requirement. Here
ϕk : Rdk×Rdk → Rdk+1 , d1 = d and ϕm only depends on its second argument,
such that Fζ(X) ∈ Rdm+1 should be understood as being a vector (as opposed
to a distribution), whose coordinates are referred to as meta-features.

Note that only ϕ1 is required to be G-invariant and dimension-agnostic for
the architecture to be as well. This map ϕ1, defined as suggested in Section
2.2, is thus learned using inputs of varying dimension as a G-invariant layer
with dY = 1, where u maps (x, x′, y, y′) ∈ R4 to [ρ(Au[x;x′]+bu);1y 6=y′ ] ∈ Rt,
v maps e ∈ Rt to ρ(Ave+bv) ∈ Rr, with Au ·+bu, Av ·+bv are affine functions,
ρ is a non-linearity and [.; .] denotes concatenation.

As the following layers ϕk (k = 2, . . . ,m) need not be invariant, they are
parameterized as ϕk = ρ(Ak ·+bk) using a pair Ak, bk of (matrix,vector). The

parameters of the Dida architecture are thus ζ
def.
= (Au, bu, Av, bv, {Ak, bk}k).

They are learned in a supervised fashion, with a loss function depending
on the task at hand (see Section 4). Maintaining the distributional nature
among several layers is shown to improve performance in practice (see Section
4). By construction, these architectures are invariant with respect to the
orderings of both the points composing the input distributions and their
coordinates. The input distributions can be composed of any number of
points in any dimension, which is a distinctive feature with respect to [Maron
et al., 2020].
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3. Theoretical Analysis

To get some insight on these architectures, we now detail their robust-
ness to perturbations and their approximation abilities with respect to the
convergence in law, which is the natural topology for distributions.

3.1. Optimal Transport Comparison of Datasets

Point clouds vs. distributions. It is important to note that learning
from datasets, referred to as meta-learning for simplicity in the sequel,
requires such datasets be seen as probability distributions, as opposed to
point clouds. For instance, having twice the same point in a dataset really
corresponds to doubling its mass, i.e. it should have twice more importance
than the other points. We thus argue that the natural topology to analyze
meta-learning methods is the one of the convergence in law, which can
be quantified using Wasserstein optimal transport distances. This is in
sharp contrast with point clouds architectures (see for instance [Qi et al.,
2017a]), making use of max-pooling and relying on the Haussdorff distance
to analyze the architecture properties. While this analysis is standard for
low-dimensional (2D and 3D) applications in graphics and vision, this is not
suitable for our purpose, because max-pooling is not a continuous operation
for the topology of convergence in law.

Wasserstein distance. In order to quantify the regularity of the involved
functionals, we resort to the 1-Wasserstein distance between two probability
distributions α, β ∈ (M+

1 (Rd))2 (referring the reader to [Santambrogio, 2015,
Peyré and Cuturi, 2019] for a comprehensive presentation of Wasserstein
distance):

W1(α, β)
def.
= min

π1=α,π2=β

∫
Rd×Rd

‖x− y‖dπ(x, y)
def.
= min

X∼α,Y∼β
E(‖X − Y ‖)

where the minimum is taken over measures on Rd × Rd with marginals
α, β ∈M+

1 (Rd). W1 is known to be a norm [Santambrogio, 2015], that can
be conveniently computed using

W1(α, β) = W1(α− β) = max
Lip(g)61

∫
Rd

gd(α− β),

where Lip(g) is the Lipschitz constant of g : Rd → R with respect to the
Euclidean norm (unless otherwise stated). For simplicity and by abuse of
notations, W1(X,Y ) is used instead of W1(α, β) when X ∼ α and Y ∼ β.
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The convergence in law denoted ⇀ is equivalent to the convergence in
Wasserstein distance in the sense that Xk ⇀ X is equivalent to W1(Xk, X)→
0.

Permutation-invariant Wasserstein distance. The Wasserstein dis-
tance is quotiented according to the permutation-invariance equivalence
classes: for α, β ∈M+

1 (Rd)

W1(α, β)
def.
= min

σ∈G
W1(σ]α, β) = min

σ∈G
max

Lip(g)61

∫
Rd

g ◦ σdα−
∫
Rd

gdβ

such that W1(α, β) = 0 ⇐⇒ α ∼ β. W1 defines a norm on the quotient
space M+

1 (Rd)/∼, which is, for the sake of simplicity, still denoted M+
1 (Rd)

or R(Rd) in the following.

Lipschitz property. A map f : R(Rd) → R(Rr) is continuous for the
convergence in law (aka the weak∗ of measures) if for any sequence Xk ⇀ X,
then f(Xk) ⇀ f(X). Such a map is furthermore said to be C-Lipschitz for
the permutation invariant 1-Wasserstein distance if

∀ (X,Y ) ∈ (R(Rd))2, W1(f(X), f(Y )) 6 CW1(X,Y ). (32)

Lipschitz properties enable us to analyze robustness to input perturbations,
since it ensures that if the input distributions of random vectors are close in
the permutation invariant Wasserstein sense, the corresponding output laws
are close, too.

3.2. Regularity of Distribution-Based Invariant Layers

The following propositions show the robustness of invariant layers with
respect to different variations of their input, assuming the following regularity
condition on the interaction functional:

∀z ∈ Rd, ϕ(z, ·) and ϕ(·, z) are Lip(ϕ)− Lipschitz. (33)

We first show that invariant layers are Lipschitz regular. This ensures
that deep architectures of the form (31) map close inputs onto close outputs.

Proposition 7. Invariant layers Tϕ of type (30) are (2r Lip(ϕ))-Lipschitz
in the sense of (32).
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Proof. (Proposition 7). For α, β ∈ M+
1 (Rd), Proposition 1 from [De Bie

et al., 2019] yields W1(Tϕ(α), Tϕ(β)) 6 2r Lip(ϕ) W1(α, β), hence, for σ ∈ G,

W1(σ]Tϕ(α), Tϕ(β)) 6 W1(σ]Tϕ(α), Tϕ(α)) + W1(Tϕ(α), Tϕ(β))

6 W1(σ]Tϕ(α), Tϕ(α)) + 2r Lip(ϕ) W1(α, β)

hence, taking the infimum over σ yields

W1(Tϕ(α), Tϕ(β)) 6 W1(Tϕ(α), Tϕ(α)) + 2r Lip(ϕ) W1(α, β)

6 2r Lip(ϕ) W1(α, β)

Since Tϕ is invariant, for σ ∈ G, Tϕ(X) = Tϕ(σ]X),

W1(Tϕ(α), Tϕ(β)) 6 2r Lip(ϕ) W1(σ]α, β)

Taking the infimum over σ yields the result.

Secondly, we consider perturbations with respect to diffeomorphisms.
This stability is essential to cope with situations where, for instance, an
auto-encoder τ has been trained, so that a dataset X = (z1, . . . , zn) and its
encoded-decoded representation τ]X = (τ(z1), . . . , τ(zn)) are expected to
yield similar meta-features. The following proposition shows that Tϕ(τ]X)
and Tϕ(X) are indeed close if τ is close to the identity, which is expected
when using auto-encoders. It also shows that similarly, if both inputs and
outputs are modified by regular deformations τ and ξ, then the output are
also close.

Proposition 8. For τ : Rd → Rd and ξ : Rr → Rr two Lipschitz maps, one
has, for all α, β ∈M+

1 (Ω),

W1(ξ]Tϕ(τ]α), Tϕ(α)) 6 sup
x∈Tϕ(τ(Ω))

‖ξ(x)− x‖2 + 2r Lip(ϕ) sup
x∈Ω
‖τ(x)− x‖2

Also, if τ is equivariant, the following holds:

W1(ξ]Tϕ(τ]α), ξ]Tϕ(τ]β)) 6 2r Lip(ϕ) Lip(τ) Lip(ξ)W1(α, β)

Proof. (Proposition 8). To upper bound W1(ξ]Tϕ(τ]α), Tϕ(α)) for α ∈
M+

1 (Ω), we proceed as follows, using proposition 3 from [De Bie et al., 2019]
and proposition 7:

W1(ξ]Tϕ(τ]αϕ(α)), Tϕ(α)) 6 W1(ξ]Tϕ(τ]α), Tϕ(τ]α)) + W1(Tϕ(τ]α), Tϕ(α))

6 ‖ξ − id‖L1(Tϕ(τ]α)) + Lip(Tϕ) W1(τ]α, α)

6 sup
y∈Tϕ(τ(Ω))

‖ξ(y)− y‖2 + 2r Lip(ϕ) sup
x∈Ω
‖τ(x)− x‖2
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For σ ∈ G, we get

W1(σ]ξ]Tϕ(τ]α), Tϕ(α)) 6W1(σ]ξ]Tϕ(τ]α), ξ]Tϕ(τ]α))

+ W1(ξ]Tϕ(τ]α), Tϕ(α))

Taking the infimum over σ yields

W1(ξ]Tϕ(τ]α), Tϕ(α)) 6 W1(ξ]Tϕ(τ]α), Tϕ(α))

6 sup
y∈Tϕ(τ(Ω))

‖ξ(y)− y‖2 + 2r Lip(ϕ) sup
x∈Ω
‖τ(x)− x‖2

which is the expected result. Similarly, for α, β ∈ (M+
1 (Rd))2,

W1(ξ]Tϕ(τ]α), ξ]Tϕ(τ]β)) 6 Lip(ξ) W1(Tϕ(τ]α), Tϕ(τ]β))

6 Lip(ξ) Lip(Tϕ) W1(τ]α, τ]β)

6 2r Lip(ϕ) Lip(ξ) Lip(τ) W1(α, β)

hence, for σ ∈ G,

W1(σ]ξ]Tϕ(τ]α), ξ]Tϕ(τ]β)) 6 W1(σ]ξ]Tϕ(τ]α), ξ]Tϕ(τ]α))

+ W1(ξ]Tϕ(τ]α), ξ]Tϕ(τ]β))

and taking the infimum over σ yields

W1(ξ]Tϕ(τ]α), ξ]Tϕ(τ]β)) 6 W1(ξ]Tϕ(τ]α), ξ]Tϕ(τ]β))

6 2r Lip(ϕ) Lip(ξ) Lip(τ) W1(α, β)

Since τ is equivariant: namely, for α ∈ M+
1 (Rd), σ ∈ G, τ](σ]α) = σ](τ]α),

hence, since Tϕ is invariant, Tϕ(τ](σ]α)) = Tϕ(σ](τ]α)) = Tϕ(τ]α), hence for
σ ∈ G,

W1(ξ]Tϕ(τ]α), ξ]Tϕ(τ]β)) 6 2r Lip(ϕ) Lip(ξ) Lip(τ) W1(σ]α, β)

Taking the infimum over σ yields the result.

3.3. Universality of Invariant Layers

We now show that our architecture can approximate any continuous
invariant map. More precisely, the following proposition shows that the com-
bination of an invariant layer (30) and a fully-connected layer are enough to
reach universal approximation capability. This statement holds for arbitrary
distributions (not necessarily discrete) and for functions defined on spaces
of arbitrary dimension in the sense of Section 2.2 (assuming some a priori
bound on the dimensions).
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Theorem 5. Let F :M+
1 (Ω)→ R a SdX × SdY -invariant map continuous

for the convergence in law, where Ω is compact. Then ∀η > 0, there exists
two continuous maps ψ,ϕ such that

∀α ∈M+
1 (Ω), |F(α)− ψ ◦ Tϕ(α)| < η

where ϕ is SdX × SdY -invariant and independent of F .

Before providing a proof of Theorem 5, we first state two Lemmas that
will be useful for the proof.

Lemma 3. Let (Sj)
N
j=1 be a partition of a domain including Ω (Sj ⊂ Rd)

and let xj ∈ Sj. Let (ϕj)
N
j=1 a set of bounded functions ϕj : Ω → R

supported on Sj, such that
∑

j ϕj = 1 on Ω. For α ∈ M+
1 (Ω), we de-

note α̂N
def.
=
∑N

j=1 αjδxj with αj
def.
=
∫
Sj
ϕjdα. One has, denoting ∆j

def.
=

maxx∈Sj ‖xj − x‖,
W1(α̂N , α) 6 max

16j6N
∆j .

Proof. We refer to Chapter 1, Section 3.3 for a proof.

Lemma 4. Let f : Rd → Rq a 1/p-Hölder continuous function (p > 1),
then there exists a constant C > 0 such that for all α, β ∈ M+

1 (Rd),
W1(f]α, f]β) 6 C W1(α, β)1/p.

Proof. For any transport map π with marginals α and β, 1/p-Hölderness of f

with constant C yields
∫
||f(x)− f(y)||2dπ(x, y) 6 C

∫
||x− y||1/p2 dπ(x, y) 6

C
(∫
||x− y||2dπ(x, y)

)1/p
using Jensen’s inequality (p 6 1). Taking the

infimum over π yields W1(f]α, f]β) 6 C W1(α, β)1/p.

We are now ready to provide a proof of Theorem 5. We first show the
result in the case of Sd-invariant regression functionals (G = Sd) and extend
the result to products of permutations (G = Sd1 × . . . SdN ) in the next
paragraph.

Proof. Let α ∈M+
1 (Rd). We consider:

(i) h : x = (x1, . . . , xd) ∈ Rd 7→
Ä∑

16j1<...<ji6d
xj1 · . . . · xji

ä
i=1...d

∈ Rd

the collection of d elementary symmetric polynomials; h does not lead
to a loss in information, in the sense that it generates the ring of
Sd-invariant polynomials (see for instance [Cox et al., 2007], chapter
7, theorem 3) while preserving the classes (see the proof of Lemma 2,
appendix D from [Maron et al., 2020]);
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(ii) h is obviously not injective, so we consider π : Rd → Rd/Sd the
projection onto Rd/Sd: h = h̃ ◦ π such that h̃ is bijective from π(Ω) to
its image Ω

′
, compact of Rd; h̃ and h̃−1 are continuous;

(iii) Let (ϕi)i=1...N the piecewise affine P1 finite element basis, which are
hat functions on a discretization (Si)i=1...N of Ω

′ ⊂ Rd, with centers of
cells (yi)i=1...N . We then define g : x ∈ Rd 7→ (ϕ1(x), . . . , ϕN (x)) ∈ RN ;

ϕ introduced in the statement of Theorem 5 is defined as ϕ
def.
= g ◦ h;

(iv) ψ : (α1, . . . , αN ) ∈ RN 7→ F
Ä∑N

i=1 αiδh̃−1(yi)

ä
∈ R.

We approximate F using the following steps:

(i) Lemma 3 yields that h]α and ĥ]α =
∑N

i=1 αiδyi are close:

W1(h]α, ĥ]α) 6
√
d/N1/d

(ii) The map h̃−1 is regular enough (1/d-Hölder) such that according to
Lemma 4, there exists a constant C > 0 such that

W1(h̃−1
] (h]α), h̃−1

] ĥ]α) 6 C W1(h]α, ĥ]α)1/d 6 Cd1/2d/N1/d2

Hence W1(α, h̃−1
] ĥ]α) := infσ∈Sd

W1(σ]α, h̃
−1
] ĥ]α) 6 Cd1/2d/N1/d2 .

Note that h maps the roots of polynomial
∏d
i=1(X − x(i)) to its coef-

ficients (up to signs). Theorem 1.3.1 from [Rahman and Schmeisser,
2002] yields continuity and 1/d-Hölderness of the reverse map. Hence
h̃−1 is 1/d-Hölder.

(iii) Since Ω is compact, by Banach-Alaoglu theorem, we obtain thatM+
1 (Ω)

is weakly-* compact, hence M+
1 (Ω)/∼ also is. Since F is continuous,

it is thus uniformly weak-* continuous: for any η > 0, there exists
δ > 0 such that W1(α, h̃−1

] ĥ]α) 6 δ implies |F(α) − F(h̃−1
] ĥ]α)| < η.

Choosing N large enough such that Cd1/2d/N1/d2 6 δ therefore ensures

that |F(α)−F(h̃−1
] ĥ]α)| < η.

It is worth noting that, contrary to the proof of Theorem 3 in Chapter 1,
which considers measure-valued functionals, the concatenation of random
noise is not required here. Another distinctive feature is the use of elementary
symmetric polynomials that enforce here the desired invariance property.
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Extension to products of permutation groups. The approximation
ability of such layers extends to products of permutation groups, which is
our experimental setting (see Section 4), as exemplified in the next corollary.

Corollary 1. Let F :M+
1 (Ω)→ R a continuous Sd1 × . . .× Sdn-invariant

map (
∑

i di = d), where Ω is a symmetrized compact over Rd. Then ∀η > 0,
there exists two continuous maps ψ,ϕ such that

∀α ∈M1
+(Ω), |F(α)− ψ ◦ Tϕ(α)| < η

where ϕ is Sd1 × . . .× Sdn-invariant and independent of F .

Proof. We provide a proof in the case G = Sd × Sp, which naturally extends
to any product group G = Sd1 × . . . × Sdn . We trade h in the proof of
Theorem 5 for the collection of elementary symmetric polynomials in the
first d variables; and in the last p variables: h : (x1, . . . , xd, y1, . . . , yp) ∈
Rd+p 7→ ([

∑
16j1<...<ji6d

xj1 . . . xji ]
d
i=1; [

∑
16j1<...<ji6p

yj1 . . . yji ]
p
i=1) ∈ Rd+p

up to normalizing constants (see Lemma 6). We still define ϕ
def.
= g ◦ h, with

g : Rd+p → RN , and keep the same ψ. Step 1 (in Lemma 5) consists in
showing that h does not lead to a loss of information, in the sense that it
generates the ring of Sd × Sp−invariant polynomials. In step 2 (in Lemma
6), we show that h̃−1 is 1/max(d, p)−Hölder. Combined with the proof
of Theorem 5, this amounts to showing that the concatenation of Hölder
functions (up to normalizing constants) is Hölder. With these ingredients,
the sketch of the previous proof yields the result.

Lemma 5. Let the collection of symmetric invariant polynomials

[Pi(X1, . . . , Xd)]
d
i=1

def.
= [

∑
16j1<...<ji6d

Xj1 . . . Xji ]
d
i=1

and
[Qi(Y1, . . . , Yp)]

p
i=1

def.
= [

∑
16j1<...<ji6p

Yj1 . . . Yji ]
p
i=1

The d + p−sized family (P1, . . . , Pd, Q1, . . . , Qp) generates the ring of Sd ×
Sp−invariant polynomials.

Proof. The result comes from the fact the fundamental theorem of symmetric
polynomials (see [Cox et al., 2007] Chapter 7, Theorem 3) does not depend on
the base field. Every Sd×Sp−invariant polynomial P (X1, . . . , Xd, Y1, . . . , Yp)
is also Sd × Ip−invariant with coefficients in R[Y1, . . . , Yp], hence it can be
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written P = R(Y1,...,Yp)(P1, . . . , Pd). It is then also Sp−invariant with coeffi-
cients in R[P1, . . . , Pd], hence it can be written P = S(Q1,...,Qp)(P1, . . . , Pd) ∈
R[P1, . . . , Pd,
Q1, . . . , Qp].

Lemma 6. Let h : (x, y) ∈ Ω ⊂ Rd+p 7→ (f(x)/C1, g(y)/C2) ∈ Rd+p where
Ω is compact, f : Rd → Rd is 1/d−Hölder with constant C1 and g : Rp → Rp
is 1/p−Hölder with constant C2. Then h is 1/max(d, p)−Hölder.

Proof. Without loss of generality, we consider d > p so that max(d, p) = d,

and f, g normalized (f.i. ∀x, x0 ∈ (Rd)2, ‖f(x)− f(x0)‖1 6 ‖x− x0‖1/d1 ).
For (x, y), (x0, y0) ∈ Ω2,

‖h(x, y)− h(x0, y0)‖1 6 ‖f(x)− f(x0)‖1 + ‖g(y)− g(y0)‖1
6 ‖x− x0‖1/d1 + ‖y − y0‖1/p1

since both f, g are Hölder. We denote D the diameter of Ω, such that both
‖x− x0‖1/D 6 1 and ‖y − y0‖1/D 6 1 hold. Therefore

‖h(x, y)− h(x0, y0)‖1 6 D1/d

Å‖x− x0‖1
D

ã1/d

+D1/p

Å‖y − y0‖1
D

ã1/p

6 21−1/dD1/p−1/d‖(x, y)− (x0, y0)‖1/d1

using Jensen’s inequality, hence the result.

Extension to different spaces. Theorem 5 also extends to distributions
supported on different spaces, by considering a joint embedding space of
large enough dimension. This way, any invariant prediction function can
(uniformly) be approximated by an invariant network, up to setting added
coordinates to zero, as shown below.

Corollary 2. Let I = [0; 1] and, for k ∈ [1; dm],Fk : M+
1 (Ik) → R con-

tinuous and Sk−invariant. Suppose (Fk)k=1...dm−1 are restrictions of Fdm,
namely, ∀αk ∈M+

1 (Ik),Fk(αk) = Fdm(αk⊗ δ⊗dm−k0 ). Then there exists ψ, g
continuous, h1, . . . , hdm continuous invariant such that

∀k = 1 . . . dm, ∀αk ∈M+
1 (Ik), |Fk(αk)− ψ ◦ E ◦ g(hk]αk)| < η.

Proof. The proof of Theorem 5 yields continuous ψ, g and a continuous invari-
ant hdm such that ∀α ∈M+

1 (Idm), |Fdm−ψ◦E◦g(hdm ]α)| < η (with ϕ in the
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statement of the Theorem defined as ϕ
def.
= g◦hdm). For k = 1 . . . dm−1, we de-

note hk : (x1, . . . , xk) ∈ Rk 7→
î
(
∑

16j1<...<ji6k
x(j1) · . . . · x(ji))i=1...k, 0 . . . , 0

ó
∈

Rdm . With the hypothesis, for k = 1 . . . dm − 1, αk ∈M+
1 (Ik), the fact that

hk](αk) = hdm ](αk ⊗ δ
⊗dm−k
0 ) yields the result.

Approximation by invariant neural networks. A consequence of The-
orem 5 is that any continuous invariant regression function taking (compactly
supported) distributions can be approximated to arbitrary precision by an
invariant neural network. This result is detailed below and uses the following
ingredients: (i) an invariant layer with ϕ that can be approximated by an
invariant network; (ii) the universal approximation theorem [Cybenko, 1989,
Leshno et al., 1993]; (iii) uniform continuity to obtain uniform bounds.

Proof. (Approximation by neural networks related to Theorem 5) Based on
the proof of Theorem 5, F is uniformly close to ψ ◦ E ◦ g ◦ h, where ϕ in the
statement of the Theorem is defined as ϕ

def.
= g ◦ h:

(i) We approximate f by a neural network fθ : x ∈ RN 7→ C1λ(A1x+b1) ∈
R, where p1 is an integer, A1 ∈ Rp1×N , C1 ∈ R1×p1 are weights, b1 ∈ Rp1
is a bias and λ is a non-linearity.

(ii) Since each component ϕj of ϕ = g◦h is permutation-invariant, it has the

representation ϕj : x = (x1, . . . , xd) ∈ Rd 7→ ρj
Ä∑d

i=1 u(xi)
ä

[Zaheer

et al., 2017] (which is a special case of our layers with a base function
only depending on its first argument, see Section 2.2), ρj : Rd+1 → R,
and u : R→ Rd+1 independent of j (see [Zaheer et al., 2017], theorem
7).

(iii) We can approximate ρj and u by neural networks ρj,θ : x ∈ Rd+1 7→
C2,jλ(A2,jx + b2,j) ∈ R and uθ : x ∈ Rd 7→ C3λ(A3x + b3) ∈ Rd+1,
where p2,j , p3 are integers, A2,j ∈ Rp2,j×(d+1), C2,j ∈ R1×p2,j , A3 ∈
Rp3×1, C3 ∈ R(d+1)×p3 are weights and b2,j ∈ Rp2,j , b3 ∈ Rp3 are biases,

and denote ϕθ(x) = (ϕj,θ(x))j
def.
= (ρj,θ(

∑d
i=1 uθ(xi)))j .

Indeed, we upper-bound the difference of interest |F(α)−fθ (EX∼α (ϕθ(X)))|
by triangular inequality by the sum of three terms:

(i) |F(α)− f (EX∼α (ϕ(X)))|

(ii) |f (EX∼α (ϕ(X)))− fθ (EX∼α (ϕ(X)))|

(iii) |fθ (EX∼α (ϕ(X)))− fθ (EX∼α (ϕθ(X)))|
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and bound each term by ε
3 , which yields the result. The bound on the first

term directly comes from theorem 5 and yields a constant N which depends
on ε. The bound on the second term is a direct application of the universal
approximation theorem (UAT) [Cybenko, 1989, Leshno et al., 1993]. Indeed,
since α is a probability measure, input values of f lie in a compact subset
of RN :

∥∥∫
Ω g ◦ h(x)dα

∥∥
∞ 6 maxx∈Ω maxi |gi ◦ h(x)|, hence the theorem is

applicable as long as λ is a nonconstant, bounded and continuous activation
function. Let us focus on the third term. Uniform continuity of fθ yields
the existence of δ > 0 s.t. ||u− v||1 < δ implies |fθ(u)− fθ(v)| < ε

3 . Let us
apply the UAT: each component ϕj of h can be approximated by a neural
network ϕj,θ. Therefore:

‖EX∼α (ϕ(X)− ϕθ(X))‖1 6 EX∼α‖ϕ(X)− ϕθ(X)‖1

6
N∑
j=1

∫
Ω
|ϕj(x)− ϕj,θ(x)|dα(x)

6
N∑
j=1

∫
Ω
|ϕj(x)− ρj,θ(

d∑
i=1

u(xi))|dα(x)

+

N∑
j=1

∫
Ω
|ρj,θ(

d∑
i=1

u(xi))− ρj,θ(
d∑
i=1

uθ(xi))|dα(x)

6 N
δ

2N
+N

δ

2N
= δ

using the triangular inequality and the fact that α is a probability measure.
The first term is small by UAT on ρj while the second also is, by UAT on u
and uniform continuity of ρj,θ. Therefore, by uniform continuity of fθ, we
can conclude.

Universality of Tensorization. As hinted at in Section 2.2, tensor prod-
ucts play a role in designing invariant layers, allowing for more expressive
power as illstrated in the following result. Indeed, as long as the test function
is invariant, tensorization allows for the approximation of any invariant
regression functional.

Theorem 6. The algebra

AΩ
def.
=


F :M+

1 (Ω)→R,∃n ∈ N,∃ϕ : Ωn → R invariant,

∀α ∈M+
1 (Ω),F(α) =

∫
Ωn

ϕdα⊗n

 .
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where ⊗n denotes the n-fold tensor product, is dense in C(M1
+(Ω)/∼).

Proof. This result follows from the Stone-Weierstrass theorem. Since Ω is
compact, by Banach-Alaoglu theorem, we obtain that M+

1 (Ω) is weakly-
* compact, hence M+

1 (Ω)/∼ also is. In order to apply Stone-Weierstrass,
we show that AΩ contains a non-zero constant function and is an alge-
bra that separates points. A (non-zero, constant) 1-valued function is
obtained with n = 1 and ϕ = 1. Stability by scalar is straightforward.
For stability by sum: given (F1,F2) ∈ A2

Ω (with associated functions

(ϕ1, ϕ2) of tensorization degrees (n2, n2)), we denote n
def.
= max(n1, n2) and

ϕ(x1, . . . , xn)
def.
= ϕ1(x1, . . . , xn1) + ϕ2(x1, . . . , xn2) which is indeed invariant,

hence F1 + F2 =
∫

Ωn ϕdα⊗n ∈ AΩ. Similarly, for stability by product:
denoting this time n = n1 + n2, we introduce the invariant ϕ(x1, . . . , xn) =
ϕ1(x1, . . . , xn1) × ϕ2(xn1+1, . . . , xn), which shows that F = F1 × F2 ∈ AΩ

using Fubini’s theorem. Finally, AΩ separates points: if α 6= ν, then there
exists a symmetrized domain S such that α(S) 6= ν(S): indeed, if for all
symmetrized domains S, α(S) = ν(S), then α(Ω) = ν(Ω) which is absurd.
Taking n = 1 and ϕ = 1S (invariant since S is symmetrized) yields an F
such that F(α) 6= F(ν).

4. Learning Meta-Features: Proof of Concept

The experimental validation presented in this section considers two goals
of experiments: (i) assessing the ability of Dida to learn accurate meta-
features; (ii) assessing the merit of the Dida invariant layer design, building
invariant Tϕ on the top of an interactional function ϕ (Eq. 30). As said, this
architecture is expected to grasp contrasts among samples, e.g. belonging
to different classes; the proposed experimental setting aims to empirically
investigate this conjecture. The code used to produce figures in this section
is available at: https://github.com/herilalaina/dida.

Baselines. These goals of experiments are tackled by comparing Dida to
three baselines: DSS layers [Maron et al., 2020]; hand-crafted meta-features
(HC) [Muñoz et al., 2018] (Table 7 in Appendix – Section 5); Dataset2Vec
[Jomaa et al., 2019]. We implemented DSS, the code being not available. In
order to cope with varying dataset dimensions (as required by the UCI and
OpenML benchmarks), the original DSS was augmented with an aggregator
summing over the features. Three DSS baselines are considered: linear or
non-linear invariant layers, possibly preceded by equivariant layers. Similarly,
the original Dataset2Vec implementation has been augmented to address
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our experimental setting. The baselines are detailed in Appendix – Section
5.

Experimental setting. Two tasks defined at the dataset level are consid-
ered: patch identification (section 4.1) and performance modelling (section
4.2). The dataset preprocessing protocols are detailed in Appendix – Section
5. On both tasks, the same Dida architecture is considered (Fig 7), involving
2 invariant layers followed by 3 fully connected (FC) layers. Meta-features
Fζ(X) consist of the output of the third FC layer, with ζ denoting the trained
Dida parameters. All experiments are run on 1 NVIDIA-Tesla-V100-SXM2
GPU with 32GB memory, using Adam optimizer with base learning rate
10−3 and batch size 32.

Figure 7: Learning meta-features with Dida. Top: the Dida architecture
(BN stands for batch norm; FC for fully connected layer). Bottom left:
Learning meta-features for patch identification using a Siamese architecture
(section 4.1). Bottom right: learning meta-features for performance modelling,
specifically to rank two hyper-parameter configurations θ1 and θ2 (section
4.2).

4.1. Distribution Identification

The patch identification task consists of detecting whether two blocks
of data are extracted from the same original dataset [Jomaa et al., 2019].
Letting u denote a n-sample, d-dimensional dataset, an nz, dz patch X is
constructed from u by selecting nz examples in u (sampled uniformly with

66



replacement) and retaining their description along dz features (sampled
uniformly with replacement). The size nz and number dz of features of the
patch are uniformly selected in fixed intervals (Table 6, Appendix – Section
5). To each pair of patches X,X ′ with same number of instances nz = nz′ , is
associated a binary meta-label `(X,X ′) set to 1 iff X and X’ are extracted
from the same initial dataset u. Dida parameters ζ are trained to minimize
the cross-entropy loss of model ˆ̀

ζ(X,X
′) = exp

(
−‖Fζ(X)−Fζ(X ′)‖2

)
,

with Fζ(X) and Fζ(X ′) the meta-features computed for X and X ′:

min
ζ
−
∑
X ,X ′

`(X,X ′) log
Ä

ˆ̀
ζ(X,X

′)
ä

+ (1− `(X,X ′)) log
Ä
1− ˆ̀

ζ(X,X
′)
ä

(34)
Dida and all baselines are trained using a Siamese approach (Figure 7,
bottom left): the same Dida (or baseline) architecture is used to compute
meta-features Fζ(X) and Fζ(X ′) from patches X and X ′, and trained to
minimize the cross-entropy loss w.r.t. `(X,X ′). The classification results
on toy datasets and UCI datasets (Table 3, detailed in Appendix – Section
5) show the pertinence of the Dida meta-features, particularly so on the
UCI datasets where the number of features widely varies from one dataset
to another. The relevance of the interactional invariant layer design is
established on this problem as Dida outperforms both Dataset2Vec, DSS
as well as the function learned on the top of the hand-crafted meta-features.

An ablation study is conducted to assess the impact of (i) the feature
permutation invariance; (ii) considering one vs two invariant layers of type
(30). The so-called No-FInv-DSS baseline, detailed in Appendix – Section 5,
is built upon [Zaheer et al., 2017]; it only differs from the DSS baseline as it
is not feature permutation invariant. With ca the same number of parameters
as DSS, its performances are significantly lower (Table 3), showcasing the
benefits of enforcing the feature invariance property. Secondly, we compare
the 2-invariant layers Dida, with the 1-invariant layer Dida (1L-Dida and
2L-Dida for short): 1L-Dida yields significantly lower performances, which
confirms the advantages of maintaining the distributional nature among
several layers, as already noted by [De Bie et al., 2019]. Note that the
1L-Dida still outperforms the non feature-invariant baseline, while requiring
much fewer parameters.
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Method # parameters TOY UCI

Hand-crafted 53,312 77.05 %± 1.63 58.36 %± 2.64

No-FInv-DSS (no invariance in features) 1,297,692 90.49 %± 1.73 64.69 %± 4.89

Dataset2Vec 257,088 96.19 %± 0.28 77.58 %± 3.13

DSS layers (Linear aggregation) 1338684 89.32 %± 1.85 76.23 %± 1.84
DSS layers (Non-linear aggregation) 1,338,684 96.24 %± 2.04 83.97 %± 2.89
DSS layers (Equivariant+invariant) 1,338,692 96.26 %± 1.40 82.94 %± 3.36

Dida (1 invariant layer) 323,028 91.37 %± 1.39 81.03 %± 3.23
Dida (2 invariant layers) 1,389,089 97.2 % ± 0.1 89.70 % ± 1.89

Table 3: Patch identification (binary classification accuracy) on 10 runs of
Dida and considered baselines.

4.2. Performance Model Learning

The performance modelling task aims to assess a priori the accuracy of
the classifier learned from a given machine learning algorithm with a given
configuration θ (vector of hyper-parameters ranging in a hyper-parameter
space Θ, Table 8 in Appendix – Section 5), on a dataset X (for brevity, the
performance of θ on X) [Rice, 1976].

For each ML algorithm, ranging in Logistic regression (LR), SVM, k-
Nearest Neighbours (k-NN), linear classifier learned with stochastic gradient
descent (SGD), a set of meta-features is learned to predict whether some
configuration θ1 outperforms some configuration θ2 on dataset X: to each
triplet (X, θ1, θ2) is associated a binary value `(X, θ1, θ2), set to 1 iff θ2

yields better performance than θ1 on X. Dida parameters ζ are trained to
build model ˆ̀

ζ , minimizing the (weighted version of) cross-entropy loss (34),

where ˆ̀
ζ(X, θ1, θ2) is a 2-layer FC network with input vector [Fζ(X); θ1; θ2],

depending on the considered ML algorithm and its configuration space.

In each epoch, a batch made of triplets (X, θ1, θ2) is built, with θ1, θ2

uniformly drawn in the algorithm configuration space (Table 8) and X a
n-sample d-dimensional patch of a dataset in the OpenML CC-2018 [Bischl
et al., 2019] with n uniformly drawn in [700; 900] and d in [3; 10]. Algorithm
1 summarizes the training procedure.

The quality of the Dida meta-features is assessed from the ranking
accuracy (Table 4), showing their relevance. The performance gap compared
to the baselines is higher for the k-NN modelling task; this is explained
as the sought performance model only depends on the local geometry of
the examples. Still, good performances are observed over all considered
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Method SGD SVM LR k-NN

Hand-crafted 71.18 %± 0.41 75.39 %± 0.29 86.41 %± 0.419 65.44 %± 0.73

Dataset2Vec 74.43 %± 0.90 81.75 %± 1.85 89.18 %± 0.45 72.90 %± 1.13

DSS (Linear aggregation) 73.46 %± 1.44 82.91 %± 0.22 87.93 %± 0.58 70.07 %± 2.82
DSS (Equivariant+Invariant) 73.54 %± 0.26 81.29 %± 1.65 87.65 %± 0.03 68.55 %± 2.84
DSS (Non-linear aggregation) 74.13 %± 1.01 83.38 %± 0.37 87.92 %± 0.27 73.07 %± 0.77

DIDA (1 invariant layer) 77.31 %± 0.16 84.05 %± 0.71 90.16 %± 0.17 74.41 %± 0.93
DIDA (2 invariant layers) 78.41 %± 0.41 84.14 %± 0.02 89.77 %± 0.50 78.91 %± 0.54

Table 4: Pairwise ranking of configurations, for ML algorithms SGD, SVM,
LR and k-NN: performance on test set of Dida, hand-crafted, Dataset2Vec
and DSS (average and std deviation on 3 runs).

Algorithm 1 Performance Modeling

1: Fζ ← meta-feature extractor (Dida, DSS, Dataset2Vec, or Hand-
crafted)

2: MLP ← NN[Linear(64)-ReLU-Linear(32)-ReLU-Linear(1)]
3: CLF ← machine learning classifier (SGD, SVM, LR or k-NN)
4: error ← 3-CV classification error function
5: for iteration=1, 2, . . . do
6: Sample (θ1, θ2), two hyper-parameters of CLF . Search space: Table

8
7: Sample patch X from dataset u . Patch dimension: Table 6
8: pred ← softmax(MLP(Fζ(X), θ1), MLP(Fζ(X), θ2))
9: Backpropagate logloss(pred, 0 if error(X, CLF(θ1)) < error(X,

CLF(θ2)) else 1)
10: end for
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algorithms. Note that the 2L-Dida yields significantly better (respectively,
similar) performances than 1L-Dida on the k-NN model (resp. on all other
models).

Meta-feature assessment. A regression setting is thereafter considered,
aimed to predict the actual performance of a configuration θ based on the
(frozen) meta-features Fζ(X). The regression accuracy is illustrated for the
configurations of the k-NN algorithm on Figure 8, left (results for other
algorithms are presented in Appendix – Section 5). The comparison with
the regression models based on DSS meta-features or hand-crafted features
(Figure 8, middle and right) shows the merits of the Dida architecture; a
tentative interpretation for the Dida better performance is based on the
interactional nature of Dida architecture, better capturing local interactions.

Figure 8: k-NN: True performance vs performance predicted by regression on
top of the meta-features (i) learned by Dida, (ii) DSS or (iii) Hand-crafted
statistics.

5. Appendix

5.1. Benchmark details

Three benchmarks are used (Table 5): TOY and UCI, taken from [Jomaa
et al., 2019], and OpenML CC-18 [Bischl et al., 2019]. TOY includes
10,000 datasets, where instances are distributed along mixtures of Gaussian,
intertwinning moons and rings in R2, with 2 to 7 classes. UCI includes 121
datasets from the UCI Irvine repository [Dua and Graff, 2017]. Datasets
UCI and OpenML are normalized as follows: categorical features are one-hot
encoded; numerical features are normalized; missing values are imputed with
the feature mean (continuous features) or median (for categorical features).
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Patches are defined as follows. Given an initial dataset, a number dX of
features and a number n of examples are uniformly selected in the considered
ranges (depending on the benchmark) described in Table 6. A patch is
defined by (i) retaining n examples uniformly selected with replacement
in this initial dataset; (ii) retaining dX features uniformly selected with
replacement among the initial features.

# datasets # samples # features # labels test ratio

Toy Dataset 10000 [2048, 8192] 2 [2, 7] 0.3

UCI 121 [10, 130064] [3, 262] [2, 100] 0.3

OpenML CC-18 71 [500, 100000] [5, 3073] [2, 46] 0.5

Table 5: Benchmarks characteristics

Patch Identification Performance Modeling

Dataset TOY UCI OpenML

# Features 2 [2, 15] [3, 11]

# Examples 200 [200, 500] [700, 900]

Table 6: Patch Size

5.2. Detailed experimental procedure: Patch Identification

The following Algorithm 2 details the learning procedure used to train
Dida, DSS or Dataset2Vec on the patch identification task (Section
4.1, Table 3). Note that function generate patches() is extracted from the
Dataset2Vec source code.

Algorithm 2 Batch Identification

1: Fζ ← meta-feature extractor (Dida Deep Sets, DSS, or Hand-crafted)
2: for iteration=1, 2, . . . do
3: X1, X2, y ← generate patches() . y ← 1 if X1 and X2 are from the

same dataset else 0
4: mf1 ← Fζ(X1)
5: mf2 ← Fζ(X2)
6: Backpropagate logloss(exp (−‖mf1 −mf2‖2), y)
7: end for
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5.3. Baseline Details

Dataset2Vec details. The available implementation of Dataset2Vec1

does not allow for a random uniform subsampling of all features, hence we
have included as baselines: (i) the reported accuracy from [Jomaa et al., 2019];
(ii) the computed accuracy from our own implementation of Dataset2Vec,
based on a uniform sampling of the features. As said, this implementation
only aims at solely making up for the feature sampling procedure. The
architecture is the same as reported in [Jomaa et al., 2019], Eq. 4, namely

D : X ∈ Rn(Rd) 7→ h

(
1

dXdY

dX∑
m=1

dY∑
t=1

g

(
1

n

n∑
i=1

f(xi[m], yi[t])

))
(35)

where functions f, g, h characterizing the architecture are chosen as depicted
in the publicly available file config.py2. More precisely, f, g are FC(128)-
ReLU-ResFC(128, 128, 128)-FC(128) and h is FC(128)-ReLU-FC(128)-ReLU
where ResFC is a sequence of fully connected layer with skip connection.

DSS layer details. We built our own implementation of invariant DSS
layers, as follows. Linear invariant DSS layers (see [Maron et al., 2020],
Theorem 5, 3.) are of the form

Linv : X ∈ Rn×d 7→ LH(
n∑
j=1

xj) ∈ RK (36)

where LH : Rd → RK is a linear H-invariant function. Our applicative
setting requires that the implementation accommodates to varying input
dimensions d as well as permutation invariance, hence we consider the Deep
Sets representation (see [Zaheer et al., 2017], Theorem 7)

LH : x = (x1, . . . , xd) ∈ Rd 7→ ρ

(
d∑
i=1

ϕ(xi)

)
∈ RK (37)

where ϕ : R → Rd+1 and ρ : Rd+1 → RK are modelled as (i) purely linear
functions; (ii) FC networks, which extends the initial linear setting (36). In
our case, H = SdX × SdY , hence, two invariant layers of the form (36-37)
are combined to suit both feature- and label-invariance requirements. Both
outputs are concatenated and followed by an FC network to form the DSS

1See https://github.com/hadijomaa/dataset2vec
2See https://github.com/hadijomaa/dataset2vec/blob/master/config.py
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meta-features. The last experiments use DSS equivariant layers (see [Maron
et al., 2020], Theorem 1), which take the form

Leq : X ∈ Rn×d 7→

Ñ
L1
eq(xi) + L2

eq(
∑
j 6=i

xj)

é
i∈[n]

∈ Rn×d (38)

where L1
eq and L2

eq are linear H-equivariant layers. Similarly, both feature-
and label-equivariance requirements are handled via the Deep Sets repre-
sentation of equivariant functions (see [Zaheer et al., 2017], Lemma 3) and
concatenated to be followed by an invariant layer, forming the DSS meta-
features. All methods are allocated the same number of parameters to ensure
fair comparison.

No-FInv-DSS baseline (no invariance in feature permutation). This
baseline aims at showcasing the empirical relevance of the invariance re-
quirement in feature and label permutations, while retaining invariance in
permutation with respect to the datasets. To this end, aggregation with
respect to the examples is performed as exemplified in [Zaheer et al., 2017],
Theorem 2, namely

L : X = (X1, . . . , Xn) ∈ Z(Rd) 7→ 1

n

n∑
i=1

g(Xi) ∈ RK (39)

where g : Rd → RK is an MLP with FC(128)-ReLU-FC(64)-ReLU-FC(32)-
ReLU layers. To ensure label information is captured, the output is concate-
nated to the mean of labels ȳ

def.
= 1

n

∑n
i=1 yi and followed by and MLP with

FC(1024)-ReLU-FC(700)-ReLU-FC(512) layers. The so-called No-FInv-
DSS baseline defined as such, can be summed up as follows

X ∈ R(Rd) 7→ MLP([L(X); ȳ]) (40)

Hand-crafted meta-features. For the sake of reproducibility, the list
of meta-features used in Section 4 is given in Table 7. Note that meta-
features related to missing values and categorical features are omitted, as
being irrelevant for the considered benchmarks. Hand-crafted meta-features
are extracted using BYU metalearn library. In total, we extracted 43
meta-features.
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5.4. Performance Prediction

Experimental setting. Table 8 details all hyper-parameter configurations
Θ considered in Section 4.2. As said, the learnt meta-features Fζ(X) can
be used in a regression setting, predicting the performance of various ML
algorithms on a dataset X. Several performance models have been considered
on top of the meta-features learnt in Section 4.2, for instance (i) a BOHAMI-
ANN network [Springenberg et al., 2016]; (ii) Random Forest models, trained
under a Mean Squared Error loss between predicted and true performances.

Results. Table 9 reports the Mean Squared Error on the test set with
performance model BOHAMIANN [Springenberg et al., 2016], comparatively
to DSS and hand-crafted ones. Replacing the surrogate model with Random
Forest concludes to the same ranking as in Table 9. Figure 9 complements
Table 9 in assessing the learnt Dida meta-features for performance model
learning. It shows Dida’s ability to capture more expressive meta-features
than both DSS and hand-crafted ones, for all ML algorithms considered.

5.5. Stability of meta-features with respect to sample and feature
sampling

The robustness of the learned meta-features is investigated along three
settings (below). The robustness performance indicators are the average
and standard deviation of the distance between the meta-feature vectors
and a reference vector. The comparative performances of Dida and the
baseline No-FInv-DSS (Section 5.3) are reported in Fig. 10. Both Dida
and No-FInv-DSS are trained on Task 1.

Specifically, the three settings aim to measure the robustness w.r.t. (A)
the uniform selection of the samples only; (B) the uniform selection of the
samples and the permutation of features; (C) the uniform selection of the
samples and the features:

A Considering a fixed set of features, 128 patches are extracted from a
dataset u. For each patch X, Dida computes a meta-feature vector
Fζ(X) in R64. The reference vector is the average of these meta-feature
vectors. Fig. 10.A reports the mean and standard deviation of the
distance between the meta-feature vectors and their mean (Fig. 10.A).

B Same as in A, except that for each patch, the features are permuted.
The reference vector is the same as in [A]. The mean and standard
deviation of the distances between these meta-feature vectors and the
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(a) k-NN

(b) Logistic Regression

(c) SVM

(d) SGD

Figure 9: Comparison between the true performance and the performance
predicted by the trained surrogate model on Dida, DSS or Hand-crafted
meta-features, for various ML algorithms.
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reference vector thus reflect the impact of the permutation of features
(Fig. 10.B);

C 128 Patches are uniformly selected (subset of samples, subset of features
drawn with replacement), and a meta-feature vector is computed for
each patch. The reference vector here is the average of these meta-
feature vectors. The mean and standard deviation of the distances
between these meta-feature vectors and the reference vector thus reflect
the impact of sampling both examples and features (Fig. 10.C).

Fig. 10 shows that for Dida, similar results are obtained for settings [A]
and [B] (the distributions of the meta-feature vectors around the reference
vector are similar), while a slightly higher mean and standard deviations are
observed for [C]. Quite the contrary, for the baseline No-FInv-DSS, similar
results are obtained for [B] and [C], suggesting that the baseline makes no
difference between permuting features and sampling new features.

Figure 10: Robustness of meta-features: average and standard deviation
of the distance between the meta-feature vectors and their reference vector
along the A, B, and C settings (please see text). Left: Breast Cancer dataset.
Right: Page Blocks dataset.
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Meta-features Mean Min Max

Quartile2ClassProbability 0.500 0.75 0.25

MinorityClassSize 487.423 426.000 500.000

Quartile3CardinalityOfNumericFeatures 224.354 0.000 976.000

RatioOfCategoricalFeatures 0.347 0.000 1.000

MeanCardinalityOfCategoricalFeatures 0.907 0.000 2.000

SkewCardinalityOfNumericFeatures 0.148 -2.475 3.684

RatioOfMissingValues 0.001 0.000 0.250

MaxCardinalityOfNumericFeatures 282.461 0.000 977.000

Quartile2CardinalityOfNumericFeatures 185.555 0.000 976.000

KurtosisClassProbability -2.025 -3.000 -2.000

NumberOfNumericFeatures 3.330 0.000 30.000

NumberOfInstancesWithMissingValues 2.800 0.000 1000.000

MaxCardinalityOfCategoricalFeatures 0.917 0.000 2.000

Quartile1CardinalityOfCategoricalFeatures 0.907 0.000 2.000

MajorityClassSize 512.577 500.000 574.000

MinCardinalityOfCategoricalFeatures 0.879 0.000 2.000

Quartile2CardinalityOfCategoricalFeatures 0.915 0.000 2.000

NumberOfCategoricalFeatures 1.854 0.000 27.000

NumberOfFeatures 5.184 4.000 30.000

Dimensionality 0.005 0.004 0.030

SkewCardinalityOfCategoricalFeatures -0.050 -4.800 0.707

KurtosisCardinalityOfCategoricalFeatures -1.244 -3.000 21.040

StdevCardinalityOfNumericFeatures 68.127 0.000 678.823

StdevClassProbability 0.018 0.000 0.105

KurtosisCardinalityOfNumericFeatures -1.060 -3.000 12.988

NumberOfInstances 1000.000 1000.000 1000.000

Quartile3CardinalityOfCategoricalFeatures 0.916 0.000 2.000

NumberOfMissingValues 2.800 0.000 1000.000

Quartile1ClassProbability 0.494 0.463 0.500

StdevCardinalityOfCategoricalFeatures 0.018 0.000 0.707

MeanClassProbability 0.500 0.500 0.500

NumberOfFeaturesWithMissingValues 0.003 0.000 1.000

MaxClassProbability 0.513 0.500 0.574

NumberOfClasses 2.000 2.000 2.000

MeanCardinalityOfNumericFeatures 197.845 0.000 976.000

SkewClassProbability 0.000 -0.000 0.000

Quartile3ClassProbability 0.506 0.500 0.537

MinCardinalityOfNumericFeatures 138.520 0.000 976.000

MinClassProbability 0.487 0.426 0.500

RatioOfInstancesWithMissingValues 0.003 0.000 1.000

Quartile1CardinalityOfNumericFeatures 160.748 0.000 976.000

RatioOfNumericFeatures 0.653 0.000 1.000

RatioOfFeaturesWithMissingValues 0.001 0.000 0.250

Table 7: Hand-crafted meta-features

77



Parameter Parameter values Scale

LR

warm start True, Fase
fit intercept True, Fase
tol [0.00001, 0.0001]
C [1e-4, 1e4] log
solver newton-cg, lbfgs, liblinear, sag, saga
max iter [5, 1000]

SVM

kernel linear, rbf, poly, sigmoid
C [0.0001, 10000] log
shrinking True, False
degree [1, 5]
coef0 [0, 10]
gamma [0.0001, 8]
max iter [5, 1000]

KNN
n neighbors [1, 100] log
p [1, 2]
weights uniform, distance

SGD

alpha [0.1, 0.0001] log
average True, False
fit intercept True, False
learning rate optimal, invscaling, constant
loss hinge, log, modified huber, squared hinge, perceptron
penalty l1, l2, elasticnet
tol [1e-05, 0.1] log
eta0 [1e-7, 0.1] log
power t [1e-05, 0.1] log
epsilon [1e-05, 0.1] log
l1 ratio [1e-05, 0.1] log

Table 8: Hyper-parameter configurations considered in Section 4.2.

Method SGD SVM LR KNN

Hand-crafted 0.016 ± 0.001 0.021 ± 0.001 0.018 ± 0.002 0.034 ± 0.001

DSS (Linear aggregation) 0.015 ± 0.007 0.020 ± 0.002 0.019 ± 0.001 0.025 ± 0.010
DSS (Equivariant+Invariant) 0.014 ± 0.002 0.017 ± 0.003 0.015 ± 0.003 0.028 ± 0.003
DSS (Non-linear aggregation) 0.015 ± 0.009 0.016 ± 0.003 0.014 ± 0.001 0.020 ± 0.005

DIDA 0.012 ± 0.001 0.015 ± 0.001 0.010 ± 0.001 0.009 ± 0.000

Table 9: Performance modelling, comparative results of Dida, DSS and
Hand-crafted (HC) meta-features: Mean Squared Error (average over 5 runs)
on test set, between the true performance and the performance predicted by
the trained BOHAMIANN surrogate model, for ML algorithms SVM, LR,
kNN, SGD (see text).
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Chapter 3: Regularized Vector
Quantile Regression

Quantile regression, introduced by the seminal work of Koenker and
Bassett [Koenker and Bassett, 1978] is recognized to this day as a powerful
tool to analyze the response of an explained variable to a set of predictors, at
any quantile of the distribution. It thus allows to recover the whole conditional
distribution, as opposed to just the median.

There is to this day however no consensus on how to extend this method
to the case of a multivariate response variable. Carlier, Galichon and Cher-
nozhukov [Carlier et al., 2016b, 2017] have proposed the Vector Quantile
Regression (VQR) expansion, based on Optimal Transport, that is linked to
polar factorization [Ryff, 1970, Brenier, 1991, McCann, 1995] in the sense
that the multivariate quantile is the gradient of a convex function. The
proposed approach focuses on retrieving two desirable properties of quan-
tiles in higher dimension, namely monotonicity and transport from a fixed
distribution.

Until now, numerical solvers rely on linear programming that is hardly
scalable to high dimensional settings. In this chapter, we introduce an
entropy-regularized variant of this problem called Regularized Vector Quantile
Regression (RVQR) that alleviates this computational hurdle in high dimen-
sion. We demonstrate the scalability of the approach through a range of
experiments, and show that original quantiles are still retrieved in 1D. We
also exhibit the statistical benefits of this problem in finite dimension, by
recovering a central limit theorem in the finite sample case, that paves the
way for hypothesis testing on regression coefficients.

This chapter is based on [Carlier et al., 2020].
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1. Introduction

While ordinary least squares provides a convenient method to estimate
the effect of predictors on the conditional mean of an outcome variable,
quantile regression has emerged [Koenker and Bassett, 1978, Koenker, 2005]
as a way to provide estimates of their impact at any conditional quantile
of the response. Quantile regression has notoriously appeared in the last
decades as a useful tool to evaluate public policies, and its ability to model
extreme values accurately has also made it a popular approach in economics
and finance: it has emerged in areas ranging from healthcare [Koenker and
Hallock, 2001, Austin et al., 2005, Azagba and Sharaf, 2012], bioinformatics
[Song et al., 2017], education [Eide and Showalter, 1998], finance [Zietz
et al., 2008], ecology [Cade and Noon, 2003] to reduction of inequalities
[Chamberlain, 1994, Buchinsky, 1994, 1998, Melly, 2005]. The ability to
interpret quantile regression coefficients as estimates for treatment effects
under a control population [Lehmann, 1974, Doksum, 1974, Koenker, 2005]
had enormous impact.

In this chapter, we focus on Vector Quantile Regression (VQR), a mul-
tivariate extension of quantile regression introduced in the seminal works
of [Carlier et al., 2016b, 2017]. This approach, based on optimal transport,
relies in practice on linear programming. Our goal is to ease the computation
of the conditional quantiles in this method, making it amenable to high
dimensional settings. For that purpose, we advocate for solving a regular-
ized version of the original problem. Indeed, strong regularizers such as
the entropy [Wilson, 1969, Erlander and Stewart, 1990, Cuturi, 2013] have
long been considered in numerical optimal transport to force the solution to
have a spread non-sparse support, which stabilizes the computation while
ensuring the objective is strongly convex. These desired computational and
analytical properties are complemented by eligibility for stochastic [Genevay
et al., 2016] and acceleration techniques [Altschuler et al., 2017, Scieur et al.,
2016]. Its statistical properties [Genevay et al., 2019, Mena and Niles-Weed,
2019, Bigot et al., 2019a, Chizat et al., 2020] and algorithmic improvements
[Altschuler et al., 2017, Mensch and Peyré, 2020] constitute an active field of
research to this day.

Previous works.

Quantile regression. Early appearances of median regression can be
traced back to the 18th century work of Boscovich, and later Laplace, that
considered a “method of situation” blending mean and median ideas. A

80



century later, [Edgeworth, 1888] formalized the idea of minimizing the sum
of absolute residuals. His proposal was revived when recognized as linear
programming in the 1950s and applied to economics [Arrow and Hoffen-
berg, 1959]. [Fox and Rubin, 1964] began considering the loss function
ρτ (u) = u(τ − 1{u < 0}) to investigate admissibility of quantile estimates
until [Koenker and Bassett, 1978] introduced the regression setting and
its asymptotic behavior. The ability to interpret quantile regression co-
efficients as treatment effects under a control population, in the case of
binary [Lehmann, 1974, Doksum, 1974, Koenker, 2005] or multiple treat-
ments [Koenker, 2005, Wang et al., 2018] gathered a lot of interest, as well
as pointwise [Koenker, 2005] or uniform [Koenker, 2011, Belloni et al., 2014]
confidence intervals. Thanks to its ability to characterize the whole condi-
tional distribution, quantile regression has been linked to structural models
[Matzkin, 2015]. The original model has been extended to nonlinear de-
pendencies in parameters, incorporating censorship [Powell, 1986], Box-Cox
transformations [Machado and Mata, 2000] or others [Koenker, 2005]. The
capacity to relax linearity in covariates while preserving linearity in param-
eters has been extensively studied as nonparameteric quantile regression,
from locally polynomial [Chaudhuri, 1991] or partially linear [Lee, 2003] to
sparsity-oriented approaches able to control the parametric dimension of the
models, with `1 or related total variation penalties, see for instance [Chen
et al., 2001, Koenker et al., 1994]. This has also paved the way to a large
literature on post selection inference [Belloni et al., 2014, Koenker, 2011].
Quantile regression has been extended to cope with time series models [Xiao
and Koenker, 2002] or their frequency counterpart [Li, 2008], panel data
[Wei et al., 2006, Arellano and Bonhomme, 2016], duration models [Koenker
and Geling, 2001], missing data [Yang et al., 2018], causal models [Chesher,
2003] and instrumental variables [Chernozhukov and Hansen, 2004]. From
the early simplex method, computational procedures have evolved to interior
point methods [Portnoy and Koenker, 1997] with a later focus on sparse
algebra [Koenker, 2011]. The increasing parametric dimension has shifted
focus back to gradient descent, hence the adaptation of quantile regression
through the alternating direction method of multipliers [Koenker, 2017].

Notions of multivariate quantiles. Unsurprisingly, extending quantile
regression to the multivariate setting raises a number of questions, since the
“inversion” of a functional F : Rd → [0; 1] or the notion of multivariate median
are not straightforward. Several bases to expand the notion of quantile to the
multivariate case have been considered, relying on (i) orderings of multivariate
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data, as exemplified by the use of depth functions [Tukey, 1975]; (ii) the
extension of empirical quantile processes [Pyke, 1975]; (iii) the expansion of
the distribution function to the multivariate case, such that its inverse can be
thought of as a multivariate quantile [Chaudhuri, 1996, Koltchinskii, 1997].
[Kong and Mizera, 2012] propose a notion of directional quantile (quantile
of projection), based on the minimization of E

[
ρτ
(
Yu − α− β>Y ⊥u

)]
over

(α, β), where, for a vector u ∈ Rd, Y ⊥u denotes the orthogonal of Yu
def.
= u>Y .

The latter is stated in the absence of covariates for the sake of simplicity.
Their envelopes coincide with halfspace depth contours [Tukey, 1975] so that
computation is enabled through parametric linear programming [Hallin et al.,
2010] and extensions to nonparametric formulations can be considered [Hallin
et al., 2015]. A stream of works consider definitions based on M -estimators
[Koltchinskii, 1997, Chaudhuri, 1996, Serfling, 2004]. [Wei, 2008] propose
to define bivariate quantiles using Knothe-Rosenblatt transport, which is
known to be linked to optimal transport [Carlier et al., 2008]. [Belloni and
Winkler, 2011] suggest a notion of multivariate partial quantile, based on
a partial order on Rd. [Kato, 2012] considers the case of function-valued
covariates and proposes estimates based on principal component analysis and
corresponding plug-in estimators for quantiles. Among the above definitions,
it is to be noted that some are set-valued. The Vector Quantile Regression
(VQR) approach, which we focus on, developed by [Carlier et al., 2016b,
2017] defines multivariate quantiles as a transport from a fixed distribution
(for instance uniform on a cube) to the conditional law, that maximizes
their correlation. Thanks to polar factorization [Ryff, 1970, Brenier, 1991,
McCann, 1995], it satisfies monotonicity of the quantile curves. Its current
computational procedures rely on linear programming [Carlier et al., 2016b].

Contributions.

In this chapter, we propose to consider a regularized version of the cor-
relation maximization problem introduced in [Carlier et al., 2016b, 2017],
penalizing the entropy of the joint distribution, called the Regularized Vector
Quantile Regression (RVQR) approach. Due to smoothness and regularity,
the RVQR problem enjoys computational and analytical properties that are
missing from the original VQR formulation. In particular, its dual problem
is a smooth, unconstrained problem that can be solved efficiently using
accelerated [Nesterov, 1983] gradient descent, which gives optimal conver-
gence rates for first-order methods. Numerical illustrations are presented
in the multivariate case, and classical quantile curves are retrieved in the
one-dimensional case. Asymptotics in the finite-sample case are analyzed
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in finite dimension, which allows to uncover a law of large numbers and a
central limit theorem for the RVQR finite-sample potentials.

This chapter is organized as follows. Section 2 offers reminders on the
notion of quantile; Section 3 will review the previous results of [Carlier et al.,
2016b, 2017] on the “specified” case, and offers insight on the comparison
with the shape-constrained classical quantile regression; and Section 4 reviews
results on the multivariate case. Section 5 introduces the RVQR problem
coupled with relevant results for that problem, as well as computational con-
siderations and numerical results. Section 6 provides insight into asymptotics
of the RVQR finite-dimensional potentials in the finite sample case.

2. Several Characterizations of Quantiles

Throughout this chapter, (Ω,F ,P) will be some fixed nonatomic space3

probability. Given a random vector Z with values in Rk defined on this
space we will denote by L (Z) the law of Z, given a probability measure θ
on Rk, we often write Z ∼ θ to express that L (Z) = θ. Independence of
two random variables Z1 and Z2 will be denoted as Z1 ⊥⊥ Z2.

2.1. Quantiles

Let Y be some univariate random variable defined on (Ω,F ,P). Denoting
by FY the distribution function of Y :

FY (α)
def.
= P(Y ≤ α), ∀α ∈ R

the quantile function of Y , QY = F−1
Y is the generalized inverse of FY given

by the formula:

QY (t)
def.
= inf{α ∈ R : FY (α) > t} for all t ∈ (0, 1). (41)

Let us now recall two well-known facts about quantiles:

• α = QY (t) is a solution of the convex minimization problem

min
α
{E((Y − α)+) + α(1− t)} (42)

3One way to define the nonatomicity of (Ω,F ,P) is by the existence of a uniformly
distributed random variable on this space, this somehow ensures that the space is rich
enough so that there exists random variables with prescribed law. If, on the contrary, the
space is finite for instance only finitely supported probability measures can be realized as
the law of such random variables.
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• there exists a uniformly distributed random variable U such that
Y = QY (U). Moreover, among uniformly distributed random variables,
U is maximally correlated4 to Y in the sense that it solves

max{E(V Y ), V ∼ µ} (43)

where µ
def.
= U([0, 1]) is the uniform measure on [0, 1].

Of course, when L (Y ) has no atom, i.e. when FY is continuous, U is
unique and given by U = FY (Y ). Problem (43) is the easiest example
of optimal transport problem one can think of. The decomposition of
a random variable Y as the composed of a monotone nondecreasing
function and a uniformly distributed random variable is called a polar
factorization of Y . The existence of such decompositions goes back
to [Ryff, 1970] and the extension to the multivariate case (by optimal
transport) is due to [Brenier, 1991].

We therefore see that there are basically two different approaches to
study or estimate quantiles:

• the local or ”t by t” approach which consists, for a fixed probability
level t, in using directly formula (41) or the minimization problem
(42) (or some approximation of it), this can be done very efficiently in
practice but has the disadvantage of forgetting the fundamental global
property of the quantile function: it should be monotone in t,

• the global approach (or polar factorization approach), where quantiles
of Y are defined as all nondecreasing functions Q for which one can
write Y = Q(U) with U uniformly distributed. In this approach, one
rather tries to recover directly the whole monotone function Q (or
the uniform variable U that is maximally correlated to Y ). Therefore
this is a global approach for which one should rather use the optimal
transport problem (43).

2.2. Conditional Quantiles

Let us assume now that, in addition to the random variable Y , we are
also given a random vector X ∈ RN which we may think of as being a list of
explanatory variables for Y . We are primarily interested in the dependence
between Y and X and in particular the conditional quantiles of Y given

4In fact for (43) to make sense one needs some integrabilty of Y i.e. E(|Y |) < +∞.
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X = x. Let us denote by ν the joint law of (X,Y ) by ν the law of X, and
by ν(.|x) the conditional law of Y given X = x:

ν
def.
= L (X,Y ), m

def.
= L (X), ν(.|x)

def.
= L (Y |X = x) (44)

which in particular yields

dν(x, y) = dν(y|x)dm(x).

We then denote by F (x, y) = FY |X=x(y) the conditional cdf:

F (x, y)
def.
= P(Y ≤ y|X = x)

and Q(x, t) the conditional quantile

Q(x, t)
def.
= inf{α ∈ R : F (x, α) > t}, ∀t ∈ (0, 1).

For the sake of simplicity, we assume that for m = L (X)-almost every
x ∈ RN (m-a.e. x for short), one has

t 7→ Q(x, t) is continuous and increasing (45)

so that for m-a.e. x, F (x,Q(x, t)) = t for every t ∈ (0, 1) and Q(x, F (x, y)) =
y for every y in the support of ν(.|x).

Let us now define the random variable

U
def.
= F (X,Y ), (46)

then by construction:

P(U < t|X = x) = P(F (x, Y ) < t|X = x) = P(Y < Q(x, t)|X = x)

= F (x,Q(x, t)) = t.

We deduce that U is uniformly distributed and independent from X (since
its conditional cdf does not depend on x). Moreover since U = F (X,Y ) =
F (X,Q(X,U)) it follows from (45) that one has the representation

Y = Q(X,U)

in which U can naturally be interpreted as a latent factor.
This remark leads to a conditional polar factorization of Y through the

pointwise relation Y = Q(X,U) with Q(X, .) nondecreasing and U ∼ µ,
U ⊥⊥ X. We would like to emphasize now that there is a variational principle
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behind this conditional decomposition. Let us indeed consider the variant
of the optimal transport problem (43) where one further requires U to be
independent from the vector of regressors X:

max{E(V Y ), L (V ) = µ, V ⊥⊥ X}. (47)

then we have

Proposition 9. If E(|Y |) < +∞ and (45) holds, the random variable U
defined in (46) solves (47).

We refer to [Carlier et al., 2016a], Theorem 4.1 for a proof.

3. Quantile Regression

3.1. Specified Quantile Regression

Since the seminal work of [Koenker and Bassett, 1978], it has been
widely accepted that a convenient way to estimate conditional quantiles is to
stipulate an affine form with respect to x for the conditional quantile. Since
a quantile function should be monotone in its second argument, this leads to
the following definition:

Definition 6. (Specified Quantile Regression) Quantile regression is specified
if there exist (α, β) ∈ C([0, 1],R)× C([0, 1],RN ) such that for m-a.e. x

t 7→ α(t) + β(t)>x is increasing on [0, 1] (48)

and
Q(x, t) = α(t) + β(t)>x, (49)

for m-a.e. x and every t ∈ [0, 1]. If (48)-(49) hold, quantile regression is
specified with regression coefficients (α, β).

Specification of quantile regression can be characterized by the validity
of an affine in X representation of Y with a latent factor:

Proposition 10. Let (α, β) be continuous and satisfy (48). Quantile regres-
sion is specified with regression coefficients (α, β) if and only if there exists
U such that

Y = α(U) + β(U)>X almost surely, L (U) = µ, U ⊥⊥ X. (50)

We refer to [Carlier et al., 2016a], Proposition 4.3 for a proof.
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3.2. Quasi-Specified Quantile Regression

Let us now assume that both X and Y are integrable

E(‖X‖+ |Y |) < +∞ (51)

and normalize, without loss of generality, X in such a way that

E(X) = 0. (52)

Koenker and Bassett showed that, for a fixed probability level t, the
regression coefficients (α, β) can be estimated by quantile regression i.e. the
minimization problem

inf
(α,β)∈R1+N

E(ρt(Y − α− β>X)) (53)

where the penalty ρt is given by ρt(z)
def.
= tz− + (1 − t)z+ with z− and z+

denoting the negative and positive parts of z. For further use, note that (53)
can be conveniently be rewritten as

inf
(α,β)∈R1+N

{E((Y − α− β>X)+) + (1− t)α}. (54)

As noticed by Koenker and Bassett, this convex program admits as dual
formulation

sup{E(VtY )) : Vt ∈ [0, 1], E(Vt) = (1− t), E(VtX) = 0}. (55)

An optimal (α, β) for (54) and an optimal Vt in (55) are related by the
complementary slackness condition:

Y > α+ β>X ⇒ Vt = 1, and Y < α+ β>X ⇒ Vt = 0. (56)

Note that α appears naturally as a Lagrange multiplier associated to the
constraint E(Vt) = (1 − t) and β as a Lagrange multiplier associated to
E(VtX) = 0.

To avoid mixing i.e. the possibility that Vt takes values in (0, 1), it will
be convenient to assume that ν = L (X,Y ) gives zero mass to nonvertical
hyperplanes i.e.

P(Y = α+ β>X) = 0, ∀(α, β) ∈ R1+N . (57)
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We also consider a nondegeneracy condition on the (centered) random vector
X which says that its law is not supported by any hyperplane5:

P(β>X = 0) < 1, ∀β ∈ RN \ {0}. (58)

Thanks to (57), we may simply write

Vt = 1{Y >α+β>X} (59)

and thus the constraints E(Vt) = (1− t), E(XVt) = 0 read

E(1{Y >α+β>X}) = P(Y > α+β>X) = (1− t), E(X1{Y >α+β>X}) = 0 (60)

which simply are the first-order conditions for (54).
Any pair (α, β) which solves the optimality conditions (60) for the Koenker

and Bassett approach will be denoted

α = αQR(t), β = βQR(t)

and the variable Vt solving (55) given by (59) will similarly be denoted V QR
t

V QR
t

def.
= 1{Y >αQR(t)+βQR(t)>X}. (61)

Note that in the previous considerations the probability level t is fixed,
this is what we called the ”t by t” approach. For this approach to be
consistent with conditional quantile estimation, if we allow t to vary we
should add an additional monotonicity requirement:

Definition 7. Quantile regression is quasi-specified6 if there exists for each
t, a solution (αQR(t), βQR(t)) of (60) (equivalently the minimization problem
(53)) such that t ∈ [0, 1] 7→ (αQR(t), βQR(t)) is continuous and, for m-a.e. x

t 7→ αQR(t) + βQR(t)>x is increasing on [0, 1]. (62)

A first consequence of quasi-specification is given by

Proposition 11. Assume (45)-(51)-(52) and (57). If quantile regression is

quasi-specified and if we define UQR
def.
=
∫ 1

0 V
QR
t dt (recall that V QR

t is given
by (61)) then:

5if E(‖X‖2) < +∞ then (58) amounts to the standard requirement that E(XX>) is
nonsingular.

6If quantile regression is specified and the pair of functions (α, β) is as in definition
6, then for every t, (α(t), β(t)) solves the conditions (60). This shows that specification
implies quasi-specification.
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• UQR is uniformly distributed,

• X is mean-independent from UQR i.e. E(X|UQR) = E(X) = 0,

• Y = αQR(UQR) + βQR(UQR)>X almost surely.

Moreover UQR solves the correlation maximization problem with a mean-
independence constraint:

max{E(V Y ), L (V ) = µ, E(X|V ) = 0}. (63)

We refer to [Carlier et al., 2016a], Proposition 4.5 for a proof. Uniqueness
is reached for the mean-independent decomposition given in proposition 11:

Proposition 12. Assume (45)-(51)-(52)-(57) and (58). Let us assume that

Y = α(U) + β(U)>X = α(U) + β(U)>X

with:

• both U and U uniformly distributed,

• X is mean-independent from U and U : E(X|U) = E(X|U) = 0,

• α, β, α, β are continuous on [0, 1],

• (α, β) and (α, β) satisfy the monotonicity condition (48),

then
α = α, β = β, U = U.

whose proof can be found in [Carlier et al., 2016a], Proposition 4.6. This
argument allows for a strong representation in the quasi-specified case:

Corollary 3. Assume (45)-(51)-(52)-(57) and (58). If quantile regression
is quasi-specified, the regression coefficients (αQR, βQR) are uniquely defined
and if Y can be written as

Y = α(U) + β(U)>X

for U uniformly distributed, X being mean independent from U , (α, β) con-
tinuous such that the monotonicity condition (48) holds then necessarily

α = αQR, β = βQR.
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As said, quasi-specification is equivalent to the validity of the factor linear
model:

Y = α(U) + β(U)>X

for (α, β) continuous and satisfying the monotonicity condition (48) and U ,
uniformly distributed and such that X is mean-independent from U . This
has to be compared with the decomposition of paragraph 2.2 where U is
required to be independent from X but the dependence of Y with respect to
U , given X, is given by a nondecreasing function of U which is not necessarily
affine in X.

3.3. Quantile Regression without specification

Now we wish to address quantile regression in the case where neither
specification nor quasi-specification can be taken for granted. In such a
general situation, keeping in mind the remarks from the previous paragraphs,
we can think of two natural approaches.

The first one consists in studying directly the correlation maximization
with a mean-independence constraint (63). The second one consists in
getting back to the Koenker and Bassett t by t problem (55) but adding as
an additional global consistency constraint that Vt should be nonincreasing
(which we abbreviate as Vt ↓) with respect to t:

sup{E(

∫ 1

0
VtY dt) : Vt ↓, Vt ∈ [0, 1], E(Vt) = (1− t), E(VtX) = 0} (64)

Our aim is to compare these two approaches (and in particular to show
that the maximization problems (63) and (64) have the same value) as well
as their dual formulations. Before going further, let us remark that (63) can
directly be considered in the multivariate case whereas the monotonicity
constrained problem (64) makes sense only in the univariate case.

As proven in [Carlier et al., 2016b], (63) is dual to

inf
(ψ,ϕ,b)

{E(ψ(X,Y )) + E(ϕ(U)) : ψ(x, y) + ϕ(u) ≥ uy − b(u)>x} (65)

which can be reformulated as:

inf
(ϕ,b)

∫
max
t∈[0,1]

(ty − ϕ(t)− b(t)>x)ν(dx, dy) +

∫ 1

0
ϕ(t)dt (66)
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in the sense that7

sup(63) = inf(65) = inf(66). (67)

The existence of a solution to (65) is not straightforward and is established
under appropriate assumptions in [Carlier et al., 2017] in the multivariate
case. The following result, proved in [Carlier et al., 2016a], Lemma 4.8, shows
that there is a t-dependent reformulation of (63):

Lemma 7. The value of (63) coincides with

sup{E(

∫ t

0
VtY dt) : Vt ↓, Vt ∈ {0, 1}, E(Vt) = (1− t), E(VtX) = 0}. (68)

Let us now define

C def.
= {v : [0, 1] 7→ [0, 1], ↓}

Let (Vt)t be admissible for (64) and set

vt(x, y)
def.
= E(Vt|X = x, Y = y), Vt

def.
= vt(X,Y )

it is obvious that (Vt)t is admissible for (64) and by construction E(VtY ) =
E(VtY ). Moreover the deterministic function (t, x, y) 7→ vt(x, y) satisfies the
following conditions:

for fixed (x, y), t 7→ vt(x, y) belongs to C, (69)

and for a.e. t ∈ [0, 1],∫
vt(x, y)ν(dx, dy) = (1− t),

∫
vt(x, y)xν(dx, dy) = 0. (70)

Conversely, if (t, x, y) 7→ vt(x, y) satisfies (69)-(70), Vt
def.
= vt(X,Y ) is admissi-

ble for (64) and E(VtY ) =
∫
vt(x, y)yν(dx, dy). All this proves that sup(64)

coincides with

sup
(t,x,y)7→vt(x,y)

∫
vt(x, y)yν(dx, dy)dt subject to: (69)− (70) (71)

The main result of this section, proved in [Carlier et al., 2016a], Theorem
4.9, links the shape-constrained quantile regression problem to correlation
maximization as follows:

7With a little abuse of notations when a reference number (A) refers to a maximization
(minimization) problem, we will simply write sup(A) (inf(A)) to the denote the value of
this optimization problem.
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Theorem 7. The shape constrained quantile regression problem (64) is
related to the correlation maximization with a mean independence constraint
(63) by:

sup(63) = sup(64).

4. Vector Quantile Regression

We now consider the case where Y is a random vector with values in Rd
with d > 2. The notion of quantile does not have an obvious generalization
in the multivariate setting however, the various correlation maximization
problems we have encountered in the previous sections still make sense
(provided Y is integrable say) in dimension d and are related to optimal
transport theory. The aim of this section is to briefly summarize the optimal
transport approach to quantile regression introduced in [Carlier et al., 2016b,
2017].

4.1. Brenier’s map as a Vector Quantile

From now on we fix as a reference measure the uniform measure on the
unit cube [0, 1]d i.e.

µd
def.
= U([0, 1]d) (72)

Given Y , an integrable Rd-valued random variable on (Ω,F ,P), a remarkable
theorem due to [Brenier, 1991] and extended by [McCann, 1995] implies that
there exists a unique U ∼ µd and a unique (up to the addition of a constant)
convex function defined on [0, 1]d such that

Y = ∇ϕ(U). (73)

The map ∇ϕ is called the Brenier’s map between µd and L (Y ).
The convex function ϕ is not necessarily differentiable but being convex

it is differentiable at Lebesgue-a.e. point of [0, 1]d so that ∇ϕ(U) is well
defined almost surely, it is worth at this point recalling that the Legendre
transform of ϕ is the convex function:

ϕ∗(y)
def.
= sup

u∈[0,1]d
{u>y − ϕ(u)} (74)

and that the subdifferentials of ϕ and ϕ∗ are defined respectively by

∂ϕ(u)
def.
= {y ∈ Rd : ϕ(u) + ϕ∗(y) = u>y}
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and
∂ϕ∗(y)

def.
= {u ∈ [0, 1]d : ϕ(u) + ϕ∗(y) = u>y}

so that ∂ϕ and ∂ϕ∗ are inverse to each other in the sense that

y ∈ ∂ϕ(u)⇔ u ∈ ∂ϕ∗(y)

which is often refered to in convex analysis as the Fenchel reciprocity formula8.
Note then that (73) implies that

U ∈ ∂ϕ∗(Y ) almost surely.

If both ϕ and ϕ∗ are differentiable, their subgradients reduce to the singleton
formed by their gradient and the Fenchel reciprocity formula simply gives
∇ϕ−1 = ∇ϕ∗. Recalling the subgradient of the convex function ϕ is monotone
in the sense that whenever y1 ∈ ∂ϕ(u1) and y2 ∈ ∂ϕ(u2) one has

(y1 − y2)>(u1 − u2) > 0,

we see that gradients of convex functions are a genelarization to the multi-
variate case of monotone univariate maps. It is therefore natural in view of
(73) to define the vector quantile of Y as:

Definition 8. The vector quantile of Y is the Brenier’s map between µd and
L (Y ).

Now, it is worth noting that the Brenier’s map (and the uniformly
distributed random vector U in (73)) are not abstract objects, they have a
variational characterization related to optimal transport9. Consider indeed

sup{E(V >Y ) : V ∼ µd} (75)

and its dual

inf
f,g
{
∫

[0,1]d
fdµd+E(g(Y )) : f(u)+g(y) > u>y, ∀(u, y) ∈ [0, 1]d×Rd} (76)

then U in (73) is the unique solution of (75) and any solution (f, g) of the
dual (76) satisfies ∇f = ∇ϕ µd-a.e.

8Note the analogy with the fact that in the univariate case the cdf and the quantile of
Y are generalized inverse to each other.

9In the case where E(‖Y ‖2) < +∞, (75) is equivalent to minimize E(‖V − Y ‖2) among
uniformly distributed V ’s.
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4.2. Conditional Vector Quantiles

Assume now as in paragraph 2.2 that we are also given a random vector
X ∈ RN . As in (44), we denote by ν the law of (X,Y ), by m the law of X
and by ν(.|x) the conditional law of Y given X = x (the only difference with
(44) is that Y is Rd-valued). Conditional vector quantile are then defined as

Definition 9. For m = L (X)-a.e. x ∈ RN , the vector conditional quantile

of Y given X = x is the Brenier’s map between µd
def.
= U([0, 1]d) and ν(.|x)

def.
=

L (Y |X = x). We denote this well defined map as ∇ϕx where ϕx is a convex
function on [0, 1]d.

If both ϕx and its Legendre transform

ϕ∗x(y)
def.
= sup

u∈[0,1]d
{u>y − ϕx(u)}

are differentiable10, one can define the random vector:

U
def.
= ∇ϕ∗X(Y )

which is equivalent to
Y = ∇ϕX(U). (77)

One can check exactly as in the proof of Proposition 9 for the univariate case
that if Y is integrable then

U ∼ µd, U ⊥⊥ X

and U solves
max{E(V >Y ), V ∼ µd, V ⊥⊥ X}. (78)

4.3. Vector Quantile Regression

When one assumes that the convex function ϕx is affine with respect to
the explanatory variables x (specification):

ϕx(u) = ϕ(u) + b(u)>x

10A deep regularity theory initated by [Caffarelli, 1992] in the 1990’s gives conditions on
ν(.|x) such that this is in fact the case that the optimal transport map is smooth and/or
invertible, we refer the interested reader to the textbook of [Figalli, 2017] for a detailed
and recent account of this regularity theory.

94



with ϕ : [0, 1]d → R and b : [0, 1]d → RN smooth, the conditional quantile is
itself affine and the relation (77) takes the form

Y = ∇ϕX(U) = α(U) + β(U)X, for α = ∇ϕ, β def.
= Db>. (79)

This affine form moreover implies that not only U maximizes the correlation
with Y among uniformly distributed random vectors independent from X
but in the larger class of uniformly distributed random vectors for which11

E(X|U) = E(X) = 0.

This is the reason why the study of

max{E(V >Y ), V ∼ µd, E(X|V ) = 0} (80)

is the main tool in the approach of [Carlier et al., 2016b, 2017] to vector
quantile regression. Let us now briefly summarize the main findings in these
two papers. First observe that (80) can be recast as a linear program by

setting π
def.
= L (U,X, Y ) and observing that U solves (80) if and only if π

solves

max
π∈MI(µd,ν)

∫
[0,1]d×RN×Rd

u>ydπ(u, x, y) (81)

where MI(ν, µ) is the set of probability measures which satisfy the linear
constraints:

• the first marginal of π is µd, i.e., for every ϕ ∈ C([0, 1]d,R):∫
[0,1]d×RN×Rd

ϕ(u)dπ(u, x, y) =

∫
[0,1]d

ϕ(u)dµd(u),

• the second marginal of π is ν, i.e., for every ψ ∈ Cb(RN × Rd,R):∫
[0,1]d×RN×Rd

ψ(x, y)dπ(u, x, y) =

∫
RN×Rd

ψ(x, y)dν(x, y)

= E(ψ(X,Y )),

• the conditional expectation of x given u is 0, i.e., for every b ∈
C([0, 1]d,RN ): ∫

[0,1]d×RN×Rd

b(u)>xdπ(u, x, y) = 0.

11here we assume that both X and Y are integrable
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The dual of the linear program (80) then reads

inf
(ϕ,ψ,b)

∫
[0,1]d

ϕdµd +

∫
RN×Rd

ψ(x, y)dν(x, y) (82)

subject to the pointwise constraint

ϕ(u) + b(u)>x+ ψ(x, y) > u>y

given b and ϕ the lowest ψ fitting this constraint being the (convex in y)
function

ψ(x, y)
def.
= sup

u∈[0,1]d
{u>y − ϕ(u)− b(u)>x}.

The existence of a solution (ψ,ϕ, b) to (82) is established in [Carlier et al.,
2017] (under some assumptions on ν) and optimality for U in (80) is charac-
terized by the pointwise complementary slackness condition

ϕ(U) + b(U)>X + ψ(X,Y ) = U>Y almost surely.

If ϕ and b were smooth we could deduce from the latter that

Y = ∇ϕ(U) +Db(U)>U = ∇ϕX(U), for ϕx(u)
def.
= ϕ(u) + b(u)>x

which is exactly (79). So specification of vector quantile regression is
essentially the same as assuming this smoothness and the convexity of
u 7→ ϕx(u)

def.
= ϕ(u) + b(u)>x. In general, these properties cannot be taken

for granted and what can be deduced from complementary slackness is given
by the weaker relations

ϕX(U) = ϕ∗∗X (U), Y ∈ ∂ϕ∗∗X (U) almost surely,

were ϕ∗∗x is the convex envelope of ϕx (i.e. the largest convex function below
ϕx), we refer the reader to [Carlier et al., 2017] for details.

5. Numerical Vector Quantile Regression

5.1. Regularized Vector Quantile Regression

We now turn to a discrete setting for implementation purposes, and
consider data (Xj , Yj)j=1..J distributed according to the empirical measure

ν =
∑J

j=1 νjδ(xj ,yj), and a [0, 1]d-uniform sample (Ui)i=1,...,I with empirical
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measure µ =
∑I

i=1 µiδui . In this setting, the vector quantile regression primal
(81) writes

max
π∈RI×J

+

I∑
i=1

J∑
j=1

u>i yjπij

subject to marginal constraints ∀j,
∑

i πij = νj and ∀i,
∑

j πij = µi and the
mean-independence constraint between X and U : ∀i,

∑
j xjπij = 0. Its dual

formulation (82) reads

inf
(ϕi)i,(ψj)j ,(bi)i

J∑
j=1

ψjνj +
I∑
i=1

ϕiµi

subject to the constraint

∀i, j, ϕi + b>i xj + ψj > u>i yj .

Using the optimality condition ϕi = maxj u
>
i yj − b>i xj − ψj , we obtain

the unconstrained formulation

inf
(ψj)j ,(bi)i

∑
j

ψjνj +
∑
i

µi

Å
max
j
u>i yj − b>i xj − ψj

ã
.

Replacing the maximum with its smoothed version12, given a small reg-
ularization parameter ε, yields the smooth convex minimization problem
(see [Peyré and Cuturi, 2019] for more details in connection with entropic
regularization of optimal transport), which we call the Regularized Vector
Quantile Regression (RVQR) problem

inf
ψj ,bi

J(ψ, b)
def.
=
∑
j

ψjνj + ε
∑
i

µi log

∑
j

exp

Å
1

ε
[u>i yj − b>i xj − ψj ]

ã
(83)

We then have the following duality result13:

12Recall that the softmax with regularization parameter ε > 0 of (α1, . . . , αJ) is given

by Softmaxε(α1, . . . , αJ)
def.
= ε log

(∑J
j=1 e

αj
ε

)
.

13Which can be proved either by using the Fenchel-Rockafellar duality theorem (see
[Rockafellar, 1974], Theorems 19-20) or by hand. Indeed, in the primal, there are only
finitely many linear constraints and nonnegativity constraints are not binding because of
the entropy. The existence of Lagrange multipliers for the equality constraints is then
straightforward.
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Theorem 8. The RVQR problem

max
πij>0

∑
ij

πij
Ä
u>i yj

ä
− ε

∑
ij

πij(log πij − 1)

∑
j

πij = µi∑
i

πij = νj∑
j

πijxj =
∑
j

νjxj

has dual (83), or equivalently

min
ϕi,ψj ,bi

∑
i

µiϕi +
∑
j

ψjνj + ε
∑
ij

exp

Å
1

ε
[u>i yj − ϕi − b>i xj − ψj ]

ã
.

Note that the objective J in (83) remains invariant under the two trans-
formations

• (b, ψ)← (b+ c, ψ − c>x) with c ∈ RN is a constant translation vector,

• ψ ← ψ + λ where λ ∈ R is a constant.

These two invariances enable us to fix the value of b1 = 0 and (for
instance) to chose λ in such a way that

∑
i,j exp

(
1
ε [u>i yj − b>i xj − ψj ]

)
) = 1.

Remark 3. This formulation is eligible for stochastic optimization techniques
when the number of (X,Y ) observations is very large. Stochastic optimization
w.r.t. ψ can be performed using the stochastic averaged gradient algorithm
[Genevay et al., 2016], for instance by considering the objective

inf
ψ,ϕ,b

∑
j

hε(xj , yj , ψ, ϕ, b)νj

with hε(xj , yj , ψ, ϕ, b) = ψj+
∑

i µiϕi+ε
∑

i exp
(

1
ε [u>i yj − b>i xj − ψj − ϕi]

)
.

Such techniques are not needed to compute b since the number of U samples
(i.e. the size of b) is set by the user.
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5.2. Numerical Resolution

As already noted the objective J in (83) is convex14 and smooth. Its
gradient has the explicit form

∂J

∂ψj

def.
= νj −

I∑
i=1

µi
eθij∑J
k=1 e

θik
where θij =

1

ε
[u>i yj − b>i xj − ψj ] (84)

and
∂J

∂bi

def.
= −µi

∑J
k=1 xke

θik∑J
k=1 e

θik
. (85)

To solve (83) numerically, we therefore can use a gradient descent mehod.
An efficient way to do it is to use Nesterov accelerated gradient algorithm
see [Nesterov, 1983] and [Beck and Teboulle, 2009]. Note that if ψ, b solves
(83), the fact that the partial derivatives in (84)-(85) vanish imply that the
coupling

αεij
def.
= µi

eθij∑J
k=1 e

θik

satisfies the constraint of fixed marginals and mean-independence of the
primal problem. Since the index j corresponds to observations it is convenient
to introduce for every x ∈ X def.

= {x1, . . . , xJ} and y ∈ Y def.
= {y1, . . . yj} the

probability

πε(x, y, ui)
def.
=

∑
j : xj=x, yj=y

αεij .

5.3. Numerical results

Quantiles computation. The discrete probability πε is an approximation
(because of the regularization ε) of L (U,X, Y ) where U solves (80). The
corresponding approximate quantile QεX(U) is given by Eπε [Y |X,U ]. In the
above discrete setting, this yields

Qεx(ui)
def.
= Eπε [Y |X = x, U = ui] =

∑
y∈Y

y
πε(x, y, ui)∑

y′∈Y π
ε(x, y′, ui)

.

Remark 4. To estimate the conditional distribution of Y given U = u
and X = x, we can use kernel methods. In the experiments, we compute
approximate quantiles as means on neighborhoods of X values to make up for
the lack of replicates. This amounts to considering Eπε [Y |X ∈ Bη(x), U = ui]
where Bη(x) is a Euclidean ball of radius η centered on x.

14it is even strictly convex once we have chosen normalizations which take into account
the two invariances of J explained above.
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Empirical illstrations. We demonstrate the use of this approach on
a series of health related experiments. We use the “ANSUR II” dataset
(Anthropometric Survey of US Army Personnel), which can be found online15.
This dataset is one of the most comprehensive publicly available data sets on
body size and shape, containing 93 measurements for over 4,082 male adult
US military personnel. It allows us to easily build multivariate dependent
variables.

One-dimensional RVQR. We start by one-dimensional dependent vari-
ables (d = 1), namely Weight (Y1) and Thigh circumference (Y2), explained
by X =(1, Height), to allow for comparison with classical quantile regression
of [Koenker and Bassett, 1978]. Figure 11 displays results of our method
compared to the classical approach, for different height quantiles (10%, 30%,
60%, 90%). Figure 11 is computed with a “soft” potential ϕ while Table
10 depicts the difference with its “hard” counterpart (see the beginning of
section 5.1). Figure 12 and Table 11 detail the impact of regularization
strength on these quantiles.

First dimension Second dimension

Figure 11: Comparison between one-dimensional RVQR (regularized dual
in dashed red, with a “soft” ϕ) and classical approach (green) with (i)
Y1 =Weight (Left) or (ii) Y2 =Thigh circumference and X =(1, Height).
Quantiles are plotted for different height quantiles (10%, 30%, 60%, 90%).
Regularization strengths are ε = 0.1. Chosen grid size is n = 20.

Multi-dimensional RVQR. In contrast, multivariate quantile regression
explains the joint dependence Y = (Y1, Y2) by X =(1,Height). Figures 14 and

15https://www.openlab.psu.edu/ansur2/
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ε 0.05 0.1 0.5 1
||Qsoft−Qhard||2
||Qsoft||2 , X = 10% 3.8·10−3 1.5·10−2 6.7·10−2 9.2·10−2

||Qsoft−Qhard||2
||Qsoft||2 , X = 30% 6.8·10−3 1.9·10−2 7.0·10−2 9.3·10−2

||Qsoft−Qhard||2
||Qsoft||2 , X = 60% 1.2·10−2 2.0·10−2 6.9·10−2 9.5·10−2

||Qsoft−Qhard||2
||Qsoft||2 , X = 90% 1.6·10−2 2.3·10−2 6.8·10−2 9.5·10−2

Table 10: Relative error between one-dimensional RVQR with a “soft” com-
putation of ϕ and its “hard” counterpart, with Y1 =Weight and X =(1,
Height) for different height quantiles (10%, 30%, 60%, 90%), depending on
regularization strengths ε. Chosen grid size is n = 20.

ε = 0.05 ε = 0.1 ε = 0.5 ε = 1

Figure 12: One-dimensional RVQR, dual (dashed red) compared to classical
QR (green) with Y1 =Weight regressed on X =(1, Height), for varying
regularization strengths ε. Quantiles are plotted for different height quantiles
(10%, 30%, 60%, 90%). Chosen grid size is n = 20.

15 (each corresponding to an explained component, either Y1 or Y2) depicts
how smoothing operates in higher dimension for different Height quantiles
(10%, 50% and 90%), compared to a previous unregularized approach [Carlier
et al., 2016b]. Figure 13 details computational times in 2D using an Intel(R)
Core(TM) i7-7500U CPU 2.70GHz.

6. Statistical Analysis

In this section, we turn to the asymptotic analysis of the finite-dimensional
RVQR dual potentials v = (ψ,ϕ, b) in the finite-sample case, namely, when-
ever the data measure ν is accessed through an iid sample X1, . . . , Xn ∼ ν.

6.1. Regularity of Dual Potentials

For that purpose, regularity of the RVQR objective with respect to ν is
first tackled. This section shows that the RVQR dual potentials v = (ψ,ϕ, b)
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ε 0.05 0.1 0.5 1
||QQR−QRV QR||2

||QQR||2 , X = 10% 9.8·10−3 9.8·10−3 2.8·10−2 3.8·10−2

||QQR−QRV QR||2
||QQR||2 , X = 30% 8.5·10−3 1.1·10−2 3.3·10−2 4.3·10−2

||QQR−QRV QR||2
||QQR||2 , X = 60% 7.7·10−3 9.3·10−3 3.1·10−2 4.4·10−2

||QQR−QRV QR||2
||QQR||2 , X = 90% 8.2·10−3 1.0·10−2 3.5·10−2 4.9·10−2

Table 11: Relative error between one-dimensional RVQR and classical QR
approach with Y1 =Weight and X =(1, Height) for different height quantiles
(10%, 30%, 60%, 90%), depending on regularization strengths ε. Chosen grid
size is n = 20.

Figure 13: Comparison of computational times between the unregularized
case (using Gurobi’s barrier logging) and the regularized case, for a varying
number of predictors in 2D. In the latter, this time represents the time to
reach an error of 10−5 in ‖·‖2 between two iterates of the transport plan for
ε = 0.1. Chosen grid size is n = 10 (per axis).
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Unregularized Regularized dual

Figure 14: Two-dimensional RVQR of Y =(Weight, Thigh) explained by
X =(1, Height). Quantiles of Y1=Weight are plotted for different height
quantiles: 10% (Bottom), 50% (Middle) and 90% (Top). Chosen grid size is
n = 10 (per axis) and regularization strength ε = 0.1.
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Unregularized Regularized dual

Figure 15: Two-dimensional RVQR of Y =(Weight, Thigh) explained by
X =(1, Height). Quantiles of Y2=Thigh are plotted for different height
quantiles: 10% (Bottom), 50% (Middle) and 90% (Top). Chosen grid size is
n = 10 (per axis) and regularization strength ε = 0.1.

104



are unique and regular (C2) with respect to the data measure ν, as long as
all states are observed. The main assumptions used in this section are the
following ones:

(A1) Potentials are normalized: ψ1 = 0, b1 = 0

(A2) The data points (xj)j generate RN : dimV ect(x1, . . . , xJ) = N

(A3) All states are observed: ∀i, j, µiνj > 0

(A4) The data is centered: E(X) =
∑
j

xjνj = 0

We consider the second formulation of the RVQR problem, equivalent to
(83), namely

min
v=(ψ,ϕ,b)

∑
j

ψjνj +
∑
i

ϕiµi + ε
∑
i,j

exp

Å
1

ε
(u>i yj − ϕi − ψj − b>i xj)

ã
(86)

which, for simplicity, is also denoted J(v).

Denoting [Kε]ij = ε exp
(
u>i yj
ε

)
and Λ : v ∈ RJ+I+IN 7→ b>i xj+ϕi+ψj ∈

RI×J , (86) writes

min
v
〈Λ(v), µ⊗ ν〉+ 〈Kε, e−Λ(v)〉

as long as (A4) holds. Using Fν : M ∈ RI×J 7→ 〈M,µ⊗ ν〉+ 〈Kε, e−M 〉 ∈ R,
it yields

min
v
Fν ◦ Λ(v)

Under some assumptions, Λ is injective:

Lemma 8. Under assumptions (A1), (A2), (A4), function Λ is injective.

Proof. If ∀i, j, ϕi + ψj + b>i xj = 0, then assumption (A4) yields ϕi =
−
∑

j ψjνj . Moreover, by (A1), normalization b1 = 0 gives ψj = −ϕ1,

hence by ψ1 = 0, ψj = ϕi = 0. Finally with ∀i, j, b>i xj = 0, assumption (A2)
yields bi = 0.

This allows to obtain the desired regularity:

Proposition 13. Under assumptions (A1) to (A4), there exists a unique
solution v = (ψ,ϕ, b) to the dual problem (86), which is regular in ν: v = h(ν),

where h : Dh
def.
= {(νj)j=1...J : ∀j, νj > 0,

∑
j νj = 1} → RI+J+IN is C2.
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Proof. Problem (86) is strictly convex (its hessian is positive definite for all x
as shown in the following) so it has at most one solution. J is moreover con-
tinuous and coercive hence it has a unique minimizer. First order conditions
are the following J + I + IN equations:

∇vJ(v) = Λ>∇Fν(Λ(v)) = 0 (87)

which defines an implicit relation between v and ν, namely

g(ν, v) = Λ>∇Fν(Λ(v)) = 0

Note that the hessian is invertible:

∇v,vJ(v) = ∇vg(ν, v) = Λ>∇M,MFν(Λ(v))Λ (88)

Indeed, the hessian ∇M,MFν(M) is diagonal with eigenvalues Kε
ije
−mij > 0;

hence the hessian Λ>∇M,MFν(Λ(v))Λ is also positive definite since Λ is
injective (Lemma 8). Therefore ∇vg(ν, v) is invertible. From that, the
implicit function theorem is applicable: there exists a unique C1 function
h : Dh = {(νj)j=1...J > 0,

∑
j νj = 1} → RI+J+IN , such that h(ν) = v and

its partial derivatives are given by

Jh(ν) = −[∇vg(ν, h(ν))]−1∇νg(ν, h(ν)). (89)

Since h is C1 and g is C2, by local inversion, Jh is also C1.

6.2. Law of Large Numbers

We consider the empirical measure ν̂n generated by an iid sample X1,. . .,
Xn ∼ ν. Denoting ν =

∑J
j=1 νjδxj , its empirical counterpart ν̂n writes

ν̂n
def.
=
(

1
n

∑n
i=1 1{Xi = xj}

)
j=1...J

. The multinomial covariance matrix Σ(ν)
writes

Σ(ν)
def.
=

á
ν1(1− ν1) −ν1ν2 · · · −ν1νJ
−ν1ν2 ν2(1− ν2) · · · −ν2νJ
...

...
. . .

...
−ν1νJ −ν2νJ · · · νJ(1− νJ)

ë
The following RVQR Law of Large Numbers holds:

Proposition 14. The sample-based potentials (ψ̂n, ϕ̂n, b̂n)
def.
= h(ν̂n) converge

almost surely to the true potentials, namely (ψ̂n, ϕ̂n, b̂n)
a.s.−−→ (ψ,ϕ, b).
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Proof. The Strong Law of Large Numbers (see Theorem 5.18 from [Wasser-
man, 2004]) gives ν̂n

a.s.−−→ ν. Since h : Dh = {(νj)j=1...J : ∀j, νj > 0,
∑

j νj =

1} → RI+J+IN is C1 and ν̂n ∈ Dh for n large enough, h(ν̂n) is well de-
fined for n large enough. Since P(ν ∈ Dh) = 1 by (A3), the continuous
mapping theorem (see Theorem 2.3 from [van der Vaart, 2000]) yields that
h(ν̂n)

a.s.−−→ h(ν) = (ψ,ϕ, b).

6.3. Central Limit Theorem

The following RVQR Central Limit Theorem holds:

Proposition 15. The sample-based potentials v̂n = (ψ̂n, ϕ̂n, b̂n) are asymp-
totically Gaussian, namely

√
n

ÑÑ
ψ̂n
ϕ̂n
b̂n

é
−

Ñ
ψ
ϕ
b

éé
L−→ Z,Z ∼ N (0, Jh(ν)Σ(ν)Jh(ν)>)

where Σ(ν) is the (unknown) multinomial covariance matrix; Jh(ν) is the
(I + J + IN)× J Jacobian matrix of h (see Proposition 13).

Proof. nν̂n is an n-sized sample of a multinomial distribution with probability
ν, hence Theorem 14.6 from [Wasserman, 2004] gives

√
n(ν̂n − ν)

L−→ Y, Y ∼ N (0,Σ(ν))

Since h : Dh = {(νj)j=1...J : ∀j, νj > 0,
∑

j νj = 1} → RI+J+IN is differen-
tiable at ν, and ν̂n take their values in Dh for n large enough, the Delta
Method (see Theorem 3.1 from [van der Vaart, 2000]) yields

√
n(h(ν̂n)− h(ν))

L−→ Jh(ν)Y
def.
= Z,Z ∼ N (0, Jh(ν)Σ(ν)Jh(ν)>)

In practice, the covariance matrix Jh(ν)Σ(ν)Jh(ν)> being unknown, it
has to be estimated, for instance using Jh(ν̂n)Σ(ν̂n)Jh(ν̂n)>.
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Conclusion

In this thesis, we have developed methods to perform machine learning
and statistical estimation over the space of measures. Before detailing some
avenues for future work, we would like to zoom on two salient features
common to these approaches.

1. Summary of salient features

Learning from probability measures. Modeling data as probability
distributions is the central topic of this thesis, but we would like to stress
that they play different roles, whether it be

(i) input objects to neural network architectures: we show that considering
input probability measures in their Lagrangian form in neural archi-
tectures (Chapter 1, Section 4) provides a geometric representation
that can take into account invariance properties (Chapter 2, Section
5), and that alleviates the computational burden linked to Eulerian
representations. This representation is characterized by an adaptabil-
ity to a wide variety of applicative settings, from census, computer
vision, biology and chemical data, to a suitable design of datasets, for
instance in the context of automated machine learning. The resort to
pairwise interaction functionals or their tensorized counterparts allows
for the construction of universal approximators that are robust to input
perturbations.

(ii) output objects to neural network architectures: the designed archi-
tectures are able to output probability measures as well, whether it
be for generative or dynamic prediction purposes (Chapter 1, Sec-
tion 4). This macroscopic representation is particularly well suited to
contemporary challenges of limiting experimental costs or including
privacy constraints. Such functionals require tailored layouts includ-
ing measure-based loss functions to be learnt, such as the entropic
Wasserstein distance.

(iii) objects of interest for inference: we demonstrate that the computation
of the regularized transport plan eases processing and rendering of
multivariate quantiles in the VQR framework (Chapter 3, Section 6).
The obtained RVQR approach benefits from a computationally-friendly
way to go beyond current pipelines while retrieving classical quantiles
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[Koenker and Bassett, 1978] in the one dimensional setting, as well as
unregularized quantiles in higher dimension [Carlier et al., 2016b].

Entropic optimal transport for high dimensional learning. Critical
desirable components are unlocked by the use of entropic optimal transport
in machine learning and statistics, from

(i) scalability: the structure of the regularized dual problem makes it a
good candidate for learning, whether it be as a loss function for neural
architectures with measure outputs (Chapter 1, Section 4) thanks to the
GPU-friendliness of Sinhkorn’s algorithm, or as an objective to retrieve
conditional multivariate quantiles (Chapter 3, Section 6). As such, it
allows processing probability measures in a parallelizable fashion as
well as making RVQR amenable to high dimensional settings.

(ii) differentiability: the addition of an entropic term to the original problem
allows to frame learning over distributions as differentiable program-
ming, which can be performed using automatic differentiation (Chapter
1, Section 4 and Chater 2, Section 5) or accelerated gradient descent
(Chapter 3, Section 6) in an optimal fashion.

(iii) statistical properties: the resort to the entropy enables to break the
curse of dimensionality [Genevay et al., 2019, Mena and Niles-Weed,
2019] as well as to retrieve desired and expected asymptotic properties
of multivariate quantiles in the finite sample case, yielding a law of large
numbers and a central limit theorem for dual regularized potentials,
that paves the way for hypothesis testing in the RVQR setting (Chapter
3, Section 6).

2. Perspectives for Future Work

Probability distribution-based neural networks. A natural extension
of Chapter 1 lies in considering mass-varying measures in neural architectures,
which falls under the scope of unbalanced optimal transport [Chizat, 2017]. It
is motivated by a wide variety of applicative settings, from shapes and image
processing, statistical learning, economic applications to evolution partial
differential equations (PDEs). Such a development requires an alternative
measure representation, since the modulation operation that allows for
mass variation is not Lagrangian differentiable. Another important extension
consists in investigating alternative representations such as Gaussian mixtures,
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which would be useful in to build more expressive models with applications
in biology or chemistry [Ficklin et al., 2017].

From a theoretical perspective, an important avenue to extend our contri-
butions of Chapter 2 is to consider broader classes of invariants than products
of permutations, which would be relevant for applications to shape or image
processing or to deal with graph features. The extension to the equivariant
case is also left for future work. The investigation of generalization bounds
would also complement our universal approximation statements in quantify-
ing the predictive performance of our networks. Computational perspectives
include (i) tackling performance learning over broader sets of ML configu-
rations; (ii) increasing expressiveness of the meta-features, for instance by
going beyond their Euclidean nature; (iii) investigating their adaptability to
new tasks, for which the probability distribution representation of tasks may
be well suited [Finn et al., 2017, 2018].

More broadly, an important avenue is to explore the application of the
methods developed in Chapter 1 and Chapter 2. In particular, promising
applications include (i) domain adaptation [Courty et al., 2014], to transfer
knowledge from a source domain to a target domain with possibly different
marginal distributions and different tasks. Our method could be readily
applied as it combines two already successful strategies used in the literature,
namely reweighting strategies and gradual distortions to align distributions;
(ii) a novel class of particle-based PDE solvers with applications to popula-
tion dynamics. Our method extends already popular neural network-based
approximate PDE solvers [Chen et al., 2018] to Lagrangian discretizations
which are particularly well suited to populations dynamics.

Regularized multivariate quantile regression. The extension of multi-
variate quantile regression through the RVQR program developed in Chapter
3 yields several perspectives. On the statistical side, the preliminary study
that has been presented opens the way to the design of hypothesis testing,
the analysis of the infinite-dimensional setting, a more quantitative assess-
ment of the error made on the dual potentials in the finite sample case,
as well as investigations of both regularity with respect to the regularizing
strength ε, and of the limit case ε→ 0, in which the asymptotic normality
cannot be taken for granted. While we restricted the analysis to the case
of an arbitrarily fixed ε, the idea of automatically selecting its value, for
instance through an estimation procedure, would deepen the analysis. The
idea has notably been investigated in the case of regularized Wasserstein
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barycenters [Bigot et al., 2019b]. Provided that some additional data is
gathered, for instance on the empirical joint measure π̂ij , estimation of ε
could also be performed together with the dual potentials, for instance by
maximum likelihood. Observation of π̂ij is however not obvious, but could
be done in application-dependent situations by setting arbitrary level curves
using prior empirical knowledge (for instance, in healthcare applications).
On the computational side, the regularized problem has been shown to be
eligible for stochastic optimization techniques, suitable when the number of
observations is too large, that are good candidates for GPU implementations.
Comparison with the RVQR primal also yields several perspectives. The
idea of solving the problem using alternating Bregman projections [Benamou
et al., 2015] is appealing, however the Kullback-Leibler projection onto the
mean-independence constraint is not in closed form. The issue can be cir-
cumvented by resorting to auxiliary variables, but it remains unclear how
much these would be regularized compared to the entropy.

Beyond that, the idea of resorting to neural networks to model dual
potentials in the RVQR setting is also promising. The objective of estimating
a Monge map by a neural network and its ability to generalize beyond the
original support [Seguy et al., 2018] may prove useful to make up for missing
data or the presence of censorship, which could also help quantify quantile
treatment effects. Moreover, neural network models based on recurrent-like
mechanisms may be well suited to extend RVQR to cope with spatio-temporal
data. The idea has begun to be investigated in the univariate case, for
instance [Rodrigues and Pereira, 2020], which shares similarities in flavor to
the recurrent mechanisms we introduced in our distribution-based networks.
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incompressible euler equations. Found. Comput. Math., 18(4):835–865,
Aug. 2018. ISSN 1615-3375.
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ABSTRACT 

This thesis proposes theoretical and numerical contributions to perform machine learning and 

statistics over the space of probability distributions. In a first part, we introduce a new class of neural 

network architectures to process probability measures in their Lagrangian form (obtained by 

sampling) as both inputs and outputs, which is characterized by robustness and universal 

approximation properties. We show that this framework can be adapted to perform regression on 

probability measure inputs, with customized invariance requirements, in a way that preserves its 

robustness and approximation capabilities. This method is proven to be of interest to design 

expressive, adaptable summaries of datasets referred to as “meta-features”, in the context of 

automated machine learning. In a second part, we demonstrate that the resort to entropy eases the 

computation of conditional multivariate quantiles. We introduce the regularized vector quantile 

regression problem, provide a scalable algorithm to compute multivariate quantiles and show that 

it benefits from desirable asymptotic properties. 

MOTS CLÉS 

Apprentissage statistique, Transport optimal, Réseaux neuronaux, Régression de quantile 

RÉSUMÉ 

Cette thèse propose des contributions théoriques et numériques pour effectuer des tâches 

d’apprentissage et de statistiques sur l’espace des mesures. Dans une première partie, nous 

introduisons une nouvelle classe de réseaux neuronaux qui traite les mesures de probabilité sous 

leur forme lagrangienne (obtenue par échantillonnage) à la fois comme entrées et sorties, qui se 

caractérise par sa robustesse et ses propriétés d'approximation universelle. Nous montrons que 

ce cadre peut être adapté pour effectuer des tâches de régression avec invariances additionnelles, 

dont les entrées sont des mesures de probabilité, en préservant sa robustesse et ses capacités 

d'approximation. Cette méthode permet de concevoir des résumés expressifs et adaptables de 

bases de données appelés « meta-features », dans le contexte de l'apprentissage automatisé. 

Dans une seconde partie, nous montrons que le recours à l'entropie facilite le calcul des quantiles 

conditionnels multivariés. Nous introduisons le problème de régression de quantile vectoriel 

régularisé, fournissons un algorithme efficace pour calculer les quantiles multivariés et montrons 

qu'il bénéficie de propriétés asymptotiques souhaitables. 

KEYWORDS 

Machine learning, Optimal transport, Neural networks, Quantile regression 
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