
HAL Id: tel-03659627
https://theses.hal.science/tel-03659627v1

Submitted on 5 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault Injection Attacks on Embedded Applications :
Characterization and Evaluation

Zahra Kazemi

To cite this version:
Zahra Kazemi. Fault Injection Attacks on Embedded Applications : Characterization and Evaluation.
Micro and nanotechnologies/Microelectronics. Université Grenoble Alpes [2020-..], 2022. English.
�NNT : 2022GRALT006�. �tel-03659627�

https://theses.hal.science/tel-03659627v1
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE ALPES

Préparée dans le cadre d’une cotutelle entre

Spécialité : NANO ELECTRONIQUE ET NANO TECHNOLOGIES

Arrêté ministériel : 25 mai 2016

Présentée par

Zahra KAZEMI

Thèse dirigée par Vincent BEROULLE, Professeur, Université Grenoble Alpes

et codirigée par David HÉLY, Maitre de Conférence, Université Grenoble Alpes

préparée au sein des Laboratoire de Conception et d’Intégration des Systémes

(LCIS)

dans les École Doctorale d’Electronique, Electrotechnique, Automatique,

Traitement du Signal (EEATS) et le Département d’Ingénierie Électrique

Attaques par injection de fautes sur les ap-
plications embarquées : caractérisation et
évaluation
Fault Injection Attacks on Embedded Ap-
plications: Characterization and Evalua-
tion
Thèse soutenue publiquement le 3 Février, 2022,
devant le jury composé de :

Monsieur Jean-Max DUTERTRE
Professeur, Ecole des Mines, Rapporteur

Monsieur Pascal BENOIT
MCF HDR, Université de Montpellier, Rapporteur

Monsieur Lilian BOSSUET
Professeur, Université de Saint Etienne, Président du jury

Madame Noémie BÉRINGUIER-BOHER
Hardware Security Expert, Brightsight SGS, Examinatrice

Monsieur Ioannis PARISSIS
Professeur, Université de Grenoble Alpes, Examinateur

Monsieur Mahdi FAZELI
Professeur, Université de Halmstad, Suéde, Invité

ACKNOWLEDGMENTS

First, i would like to sincerely thank my thesis directors, Prof.Vincent Beroulle and Dr.David Hély,

for their time, help, and support during these years. It would take another dissertation to describe

their positive effects on my work and my life in France. Their integrity and meticulousness have

greatly influenced me as a researcher and an individual. This work would not have been possible

without their continuous encouragement, guidance, and enthusiasm for my research.

In addition, i express special thanks to my co-advisor, Dr. Mahdi Fazeli, for his help, support,

and fruitful discussions throughout my Ph.D. journey. He taught me the skills of a professional

researcher, such as exposing a scientific problem and approaching it from different perspectives.

Thank you for enlightening my life and supporting me like a brother through these years. Likewise,

I would like to acknowledge Dr. Thanos Papadimitriou for being an exemplary mentor to start my

Ph.D. This was an excellent opportunity to work with him and learn immensely from him.

I must express my gratitude to the jury members for their useful and productive questions and

discussions. I would like to thank Prof. DUTERTRE and Dr. Pascal Benoit for all the time and effort

that they put on carefully reading the thesis and writing an accurate and detailed report.

I also want to take this opportunity to thank the SERENE-IoT project, the Laboratoire de Con-

ception et d’Integration des Systémes (LCIS) Laboratory, the Grenoble EEATS doctoral school, Greno-

ble Alpes Cybersecurity Institute, and IDEX for financially supporting this work, the conferences,

and all travel.

I am deeply grateful to Dr. Peyman Pouyan for his generous encouragements and help during

my Ph.D. journey. Also, i would like to give a special thanks to one of my best friends Dr. Ionela

Prodan for supporting me like a sister, even in the most challenging moments. Last but not least,

i would like to thank all my friends, colleagues, and labmates. I feel quite fortunate to meet and

working many brilliant people at LCIS. Thank you, Jennyfer Duberville, Carole Seyvet, Caroline

Palisse, Raphael Tavares De Alencar, Ehsan Aerabi, Amir Alipour, Ashkan Azarfar, Amin Norollah,

Mahdi Talebi, Afef Kchaou, Baptiste Pestourie, Cyril Bresch, Johan Laurant, and Zishan Ali. Finally,

I would not forget my family for their continuous love and support throughout all these years.

iii

v

"This thesis is dedicated to my beloved parents, Farhad Kazemi and Elham Choolabi, for their

unconditional love and support throughout all these years."

—————————————————————————————-

Abstract
The security assessment of IoT devices against potential software and hardware-based threats is

now a necessary task for embedded software developers. Having physical access to the target de-

vices makes hardware security a significant concern to consider in IoTs. Among the hardware se-

curity attack techniques, fault injection attacks such as clock glitching are one of the most practical

attacks which are non-invasive and low-cost. They can interfere with the expected operations and

cause serious malfunctions in the targeted device. Regarding this, an efficient security assessment

framework and methodology against fault injection attacks are needed to properly evaluate the

embedded devices.

It is often difficult for the software developer to use a fault injection platform correctly. There-

fore, this thesis focuses on designing an easy-to-use platform dedicated to clock glitching attacks

in order to evaluate the vulnerabilities of embedded software applications. This work proposes

an open-source evaluation platform followed by high-level assessment methodologies. Then, a

characterization process based on a preliminary simulation approach is presented to improve the

experimental fault injection parameters. Finally, the impacts of the injected faults are analyzed

and studied in an open-source medical application (Sec-Pump) as a case study. The platform and

the methodology proposed in this thesis can successfully identify the security vulnerabilities in an

embedded application and guide the software developer to mitigate such attacks.

Keywords— Hardware Security, Embedded Systems, Fault Injection Attacks, Clock Glitching

—————————————————————————————-

Résumé
L’évaluation de la sécurité des appareils IoT contre les menaces logicielles et matérielles poten-

tielles est désormais une tâche nécessaire pour les développeurs de logiciels embarqués. Avoir un

accés physique aux appareils cibles fait de la sécurité du matériel une préoccupation importante à

prendre en compte dans les IoT. Parmi les techniques d’attaque de sécurité matérielle, les attaques

par injection de fautes telles que les problémes d’horloge sont l’une des attaques les plus pratiques,

non invasives et peu coûteuses. Ils peuvent interférer avec les opérations attendues et provoquer

de graves dysfonctionnements dans l’appareil ciblé. À cet égard, un cadre d’évaluation de la sécu-

rité efficace et une méthodologie contre les attaques par injection de fautes sont nécessaires pour

évaluer correctement les dispositifs embarqués.

Il est souvent difficile pour le développeur de logiciels d’utiliser correctement une plate-forme

d’injection de fautes. Par conséquent, cette thése s’est concentrée sur la conception d’une plate-

forme facile à utiliser dédiée aux attaques par défaut d’horloge afin d’évaluer les vulnérabilités des

applications logicielles embarquées. Ce travail propose une plateforme d’évaluation open source

suivie de méthodologies d’évaluation de haut niveau. Ensuite, un processus de caractérisation

basé sur une approche de simulation préliminaire est présenté pour améliorer les paramétres ex-

périmentaux d’injection de fautes. Enfin, les impacts des failles injectées sont analysés et étudiés

dans une application médicale open source (Sec-Pump) en tant qu’étude de cas. La plate-forme

et la méthodologie proposées dans cette thése peuvent identifier avec succés les vulnérabilités de

sécurité dans une application embarquée et guider le développeur de logiciels pour atténuer de

telles attaques.

Mots clés— Sécurité matérielle, Systémes Embarqués, Attaques par Injection de Fautes, Glitch

d’horloge

CONTENTS

List of Figures xv

List of Tables xix

List of Abbreviations xxi

1 Introduction 1

1.1 Basic Concepts of Hardware Attacks . 3

1.1.1 Side-Channel Attacks . 4

1.1.2 Fault Injection Attacks . 6

1.2 Thesis Statement and Main Objectives . 9

1.3 Thesis Contributions . 11

1.4 Organization of the Dissertation . 12

2 State of The Art 15

2.1 A Basic Setup for a FIA Platform . 15

2.2 Clock-Based FIAs . 17

2.2.1 Concepts of Clock FIAs . 17

2.2.2 Clock Glitching Attack Examples . 20

2.2.3 Clock Glitch Generator Characteristics . 20

2.3 Voltage-Based FIAs . 22

2.3.1 Concepts of Voltage FIAs . 22

2.3.2 Voltage Glitching Attack Examples . 25

2.3.3 Voltage Glitch Generator Characteristics . 26

2.4 A Review of Fault Generators . 27

2.4.1 Clock Glitch Generators in the literature . 27

2.4.2 Voltage Glitch Generators in the Literature . 35

2.5 Conclusion . 41

3 Hardware Security Evaluation Platform 43

3.1 The Framework of a Practical Evaluation Platform . 43

3.2 Fault Configurator Interface . 45

xi

xii CONTENTS

3.2.1 Key Parameters for Clock Glitch Configuration . 45

3.2.2 Clock Glitch Configurator Interface . 46

3.3 Fault Generator . 47

3.3.1 FPGA Implementation of the Clock Glitch Generator 48

3.3.2 Experimental Comparison of Clock Glitch Generator Designs, CDC vs. CDCF:

Attacking AES Algorithm . 51

3.3.3 Design of an Efficient and Automated Clock Glitch Generator 57

3.4 Fault Effect Analyzer . 59

3.4.1 Main Control Flow Patterns and Their Evaluation Methods 59

3.4.2 Main Standard C-Functions and Their Evaluation Methods 61

3.5 Conclusion . 64

4 Hardware Security Assessment By Utilizing The Hardware Evaluation Platform 67

4.1 ICEM Assessment Methodology . 68

4.1.1 Identification of sensitive assets . 68

4.1.2 Classification of the Assets based on their security properties 69

4.1.3 Experimental Evaluation of the Assets . 69

4.1.4 Mitigation of Software-Level Vulnerabilities . 70

4.2 Evaluation of a Medical Embedded Application against Clock Glitching FIA: A Case

Study . 70

4.2.1 Identifying the Sec-Pump Assets . 71

4.2.2 Classifying the Sec-Pump’s Assets based on their Security Properties 72

4.2.3 Experimental Evaluation of the Sec-Pump . 72

4.2.4 Vulnerability Mitigation for the Sec-Pump Application 82

4.3 Conclusion . 85

5 Optimizing the FIA Evaluation Process by Utilizing Simulation-based Analysis and Sym-

bolic Assertion 87

5.1 Enhancing the Experimental FIA Through Simulation-based Pre-Injection Analysis . 88

5.1.1 Non-Exhaustive Experimental Evaluation of C-Functions 88

5.1.2 Fault Effects on A RISC-V Micro-Architecture . 89

5.1.3 Simulation-based Evaluation Results . 94

5.1.4 Fine Tuned Experimental Attack . 95

5.2 An Offline Hardware Security Assessment Approach using Symbolic Assertion and

Code Shredding . 97

5.2.1 Background of the Symbolic Fault Injection . 97

5.2.2 Precise Fault Injection Using Symbolic Execution 98

5.2.3 A Case-Study . 99

5.2.4 Experiments and Results . 100

CONTENTS xiii

5.3 Conclusion . 105

6 Conclusions 107

7 Perspectives 111

8 Publications 113

Bibliography 117

LIST OF FIGURES

1.1 The Abstract Machine of an Embedded Systems . 3

1.2 An Example of Traditional Assumption for Crypto-analysis Attacks against an Encryp-

tion Machine . 4

1.3 Taxonomy of Physical Attacks . 5

1.4 Side-Channels from an Embedded Device . 5

1.5 Fault propagation through different layers, (1) Fault Injection, (2) Fault Manifestation,

(3) Fault Propagation, (4) Fault Exploitation . 7

1.6 The road map for the dissertation . 13

2.1 General Fault Injection Attack Setup . 16

2.2 Synchronous Representation of Digital ICs [55] . 17

2.3 Violating Critical Path Delay by Insertion of Additional Positive Clock Edge 18

2.4 Representation of Clock Glitch and Fault Injection [64] 19

2.5 Experimental Setup of Clock Fault Attack . 20

2.6 Inverter Circuit and TP H L ,TP L H Parameters in Response Waveforms 23

2.7 Negative Supply Voltage Glitch . 24

2.8 Fault Injection Setup for Voltage Fault Attack . 25

2.9 Different Methods for Generating Clock Glitch(es) . 28

2.10 Faulty Clock Generation Using Two Shifted Signals . 29

2.11 Experimental Environment . 29

2.12 Glitch Generator in [57] . 30

2.13 Glitch Generation Using High-Frequency Signal . 31

2.14 Glitch Insertion Circuitry Using Two Ring Oscillators [54] 31

2.15 Different Methods for Generating Voltage Glitches . 36

2.16 Voltage Generator Set-Up in [51] . 37

2.17 Comparing Generated Voltage Signal with One and Two Voltage Generators [68] . . . 37

3.1 The architecture of the proposed evaluation platform 44

3.2 Clock Glitch FIA Parameters . 46

3.3 Glitch Period’s Search Space Bounds . 47

3.4 The improved architecture of the proposed evaluation platform 48

xv

xvi LIST OF FIGURES

3.5 A Clock Glitch Generator Based on the CSC Method . 49

3.6 Glitch Generator based on the CDCF Method . 50

3.7 An example of faulty clock generation based on the CDCF method 51

3.8 Structure of AES [83] . 52

3.9 SubBytes in AES 128 . 53

3.10 ShiftRows in AES 128 . 53

3.11 MixColumn in AES 128 . 53

3.12 AddRoundKey in AES 128 . 53

3.13 Fault Injection on a single byte of an AES-128 bit . 54

3.14 The Clock Glitching FIA Setup . 54

3.15 Fault Mapping, CSC generator . 55

3.16 Fault Mapping, CDCF generator . 55

3.17 General Architecture of the Clock Glitch Generator . 57

3.18 The State Machine for Updating the Phase Shifts . 58

3.19 The State Machine for Updating the Glitch Location . 58

3.20 An Example of the Generated Faulty Clock . 59

3.21 Control Flow Evaluation for Unconditional Branch . 61

3.22 Control Flow Evaluation of Single Conditional Branch 61

3.23 Control Flow Evaluation for Nested Condition . 62

3.24 Control Flow Evaluation of an Iterative Control . 62

4.1 ICEM Assessment Methodology . 68

4.2 Infusion Pump Physical Architecture . 70

4.3 Critical Assets in Sec-Pump . 71

4.4 The Experimental Setup . 73

4.5 Sec-Pump Authentication Evaluation Process . 75

4.6 Glitch Map for Single-Step Authentication (RED: Successful FIA, BLUE: Target Reset) . 75

4.7 Sec-Pump Drug Management Module Evaluation Process (strcpy function) 77

4.8 Glitch Map for strcpy function in Drug Management Module (RED: Successful FIA,

BLUE: Target Reset) . 78

4.9 Sec-Pump Drug Management Module Evaluation Process (atoi function) 78

4.10 Glitch Map for atoi function in Drug Management Module (RED: Successful FIA, BLUE:

Target Reset) . 79

4.11 Sec-Pump Drug Management Module Evaluation Process (memset function) 80

4.12 Glitch Map for memset function in Drug Management Module (RED: Successful FIA,

BLUE: Target Reset) . 81

4.13 Glitch Map for Nested Conditional Authentication (RED: Successful FIA, BLUE: Target

Reset) . 82

LIST OF FIGURES xvii

5.1 Experimental-Based Evaluation Results With Combinatorial Glitch Parameters 89

5.2 A 5-stage RISC-V CPU implementation . 90

5.3 RISC-V based instruction formats . 90

5.4 Simulation results of different functions . 96

5.5 Fine Tuned Experimental Evaluation Results for memset, strcpy, and strncpy 97

5.6 The architecture for our approach . 98

5.7 The percentage of the successful attacks for each block considering our utilized de-

tection patterns . 104

LIST OF TABLES

2.1 Clock Fault Injection Techniques and Characteristics . 19

2.2 Supply Voltage Fault Injection Techniques and Characteristics 24

2.3 Review of Previously Proposed Clock Glitch Generators 33

2.4 Review of Previously Proposed Clock Glitch Generators 39

3.1 Glitch Generator Comparison of Affected Bytess . 56

3.2 Fault Multiplicity of Single-Byte Faults . 56

3.3 Important Control Flow Statements . 59

3.4 The behavior of different high-level C-functions . 63

4.1 Different Asset Categories of Sec-Pump . 72

4.2 Potential FIA Threats for Sec-Pump . 74

5.1 Propagated fault effects based on different instruction types 93

5.2 The calculation of vulnerability factor for Sec-Pump’s software blocks 103

xix

LIST OF ABBREVIATIONS

IoT The Internet of Things

IoMT Internet of Medical Things

IIoT Industrial Internet of Things

SCA Side Channel Attack

FIA Fault Injection Attack

CF Control Flow

DF Data Flow

CSC Combine Shifted Clocks

CDCF Combine Different Clock Frequencies

VM Voltage Multiplexing

VSC Voltage Short Circuiting

VGPG Voltage Glitching using Pulse Generator

DCM Digital Clock Manager

MMCM Mixed-Mode Clock Manager

DRP Dynamic Reconfigurable Port

xxi

1 INTRODUCTION

Contents

1.1 Basic Concepts of Hardware Attacks . 3

1.1.1 Side-Channel Attacks . 4

1.1.2 Fault Injection Attacks . 6

1.2 Thesis Statement and Main Objectives . 9

1.3 Thesis Contributions . 11

1.4 Organization of the Dissertation . 12

The Internet of Things (IoT) connects objects and devices of all types over the Internet, either

wired or wireless. This technology has transformed many aspects of our daily lives, and there are

many useful applications for these devices. For instance, IoTs help to make smarter, safer, more

comfortable, and energy-efficient homes [1]. Moreover, they have a high potential to improve and

automate healthcare services. The Internet of Medical Things (IoMT) has already been employed

at home and in hospitals to enhance the safety and efficiency of medical services [2]. The banking

sector and other financial areas are also striving to make use of IoT and benefit from it. This way, the

customers can always stay in touch with their bank, which makes it possible to gather more data

about their behavior and preferences [3]. Additionally, IoTs are employed in industrial sectors such

as manufacturing, energy, mining, and transportation [4]. These intelligent devices in the industry,

so-called Industrial IoT (IIoT), are usually connected to a central system that can monitor, collect,

exchange, and analyze the gathered data.

Despite all of these applications and achievements for IoTs, their rapid technology usage comes

with various security challenges. The security attacks against them can result in dangerous and

costly outcomes, i.e., it can reveal personal information in public [5,6]. The attacks can be launched

against any IoT assets and facilities. They can potentially damage or disable a system’s regular

operation, which can cause severe economic damage to the owners/users. An example includes an

attack on medical IoT systems and taking control of the monitoring mechanisms [7]. Moreover, the

personal data from an embedded sensor inside or close to the patient’s body can be collected and

transferred to the adversary. Regarding this, performing security assessments against real examples

like medicine injection pumps is required to demonstrate the potential risks of numerous security

flaws of life-critical medical IoTs [8, 9]. As an example, an attacker can maliciously modify the

1

CHAPTER 1. INTRODUCTION

functionality of a pump and target running software and raise the amount of the injected insulin

over time [9].

In general, the attacks against IoT embedded devices can be classified into three main cat-

egories, including 1) Network, 2) Software, and 3) Hardware Attacks. In practice, an attack can

employ any or all of these approaches. In principle, the Network-based Attacks could be applied

remotely at any point of the interconnected IoTs. There are various studies that show IoTs are

susceptible to Network Attacks such as Denial of Service and Spoofing [10]. The second class of se-

curity attacks against IoTs is applied at the software level. They can be applied at various software

abstraction layers, such as in high level and low level. For instance, some High-level Software At-

tacks are brute force attacks that target an application that consists of a pair of input/output to get

authenticated or to reveal the information. Other examples aim to inject malware or manipulate

the machine-level code at lower levels and hijack the application’s execution flow [11]. Besides soft-

ware attacks, numerous security threats exist against the user-accessible targets named Hardware

Attacks [7, 12]. These attacks become critical when the attacker can have direct physical access to

measure the device operating parameters (e.g., power and propagation delay signal) or can tamper

with the external inputs of the targeted embedded device.

There are various techniques to apply Hardware Attacks against embedded systems. Two of

the main techniques which are considered in this thesis are the Side-Channel Attacks (SCA) and

the Fault Injection Attacks (FIA). One can perform SCAs to extract useful information (e.g., cryp-

tographic key) by observing the physical characteristics such as power consumption or electro-

magnetic emissions while the device is executing a specific operation. In FIAs, the attacker tries to

manipulate the device’s input or emit different energy rays to circumvent the security checks (e.g.,

user authentication) or execute an arbitrary code that causes unintended behavior of the target

(i.e., by changing the application’s control flow). There are also multiple combinations of FIA and

SCA, where the SCA takes advantage of fault impacts on the targeted device. For example, in [13,14],

a FIA reduces the number of rounds of a cryptographic algorithm, and the SCA can extract the pass

key faster.

To design a secure embedded system, one needs to follow a set of assessment procedures

against different types of threats in the three domains of network, software, and hardware. The

first two fields have been investigated and extensively analyzed over the past years [15]. Subse-

quently, numerous countermeasures are proposed and employed to secure the systems against

such vulnerabilities [16, 17, 18]. However, securing the system against network and software at-

tacks is often inadequate to achieve the desired security protection, especially in easily accessible

targets. Thus, it is required to consider the hardware security and to include different evaluation

processes against physical threats. To design an efficient hardware evaluation methodology, one

first needs to understand the fundamentals of these attacks. Regarding that, the background and

concepts of the Hardware Attacks are described in the following.

2

CHAPTER 1. INTRODUCTION

Figure 1.1: The Abstract Machine of an Embedded Systems

1.1 BASIC CONCEPTS OF HARDWARE ATTACKS

Embedded systems, at the beginning of their emergence and early developments, were not studied

in terms of security as of today. They were mainly considered as models called abstract machines.

Figure 1.1 shows an example of such abstract machines, including the inputs, the outputs, and the

relevant operation sets, usually at the high level of the system. In this case, it was assumed that

an attacker could only access and compromise the input and output of this system model [19, 20].

Figure 1.2 shows an example of an encryption machine in which the attacker can choose plain texts

freely, observe the generated cipher texts, and mathematically break a cryptography algorithm (to

reveal the key). Similar attacks can be applied against different designs to discover their internal

executive algorithm and extract secret information. These attacks, as they were mostly utilized to

hack the cryptography systems, were termed Crypto-Analysis attacks. Since then, the ability and

success rate of many cases in classical crypto-analysis attacks have been reported [21].

Along with the classical analysis attacks, the implementation-specific characteristics of the em-

bedded systems, which are referred to as side-channels, became an important concern in the field

of security. In this regard, the vulnerabilities of the newfangled category were reported in security

systems in which they were considered very secure from the mathematical point of view. The NSA,

for example, pointed to signs of detected vulnerabilities in encrypted and teletyped messages by a

conventional oscilloscope [22]. Besides, in the 1990s, N. Kocher et al. presented a new topic called

Hardware Attacks, which officially came alongside the conventional attacks of that time [20,23]. In

these attacks, vulnerabilities related to the hardware layer of the target system were analyzed in a

more specific way compared to the classical attacks. Since then, Hardware Attacks have emerged

as a new and powerful approach for attackers to compromise the accessible embedded systems

and their security [6].

A Hardware Attack is based on the interactions of an embedded system with its external en-

3

CHAPTER 1. INTRODUCTION

Figure 1.2: An Example of Traditional Assumption for Crypto-analysis Attacks against an Encryption Ma-

chine

vironment [6]. Figure1.3 shows the taxonomy of Hardware Attacks. Depending on the goal of the

attacker (e.g., to change the expected behavior of the system or to obtain encrypted information),

the appropriate attack model and method must be determined [6,24]. Accordingly, two of the most

important approaches including 1) Side-Channel Attacks; 2) Fault Injection Attacks, are studied,

where the main focus in this thesis has been on FIA.

1.1.1 SIDE-CHANNEL ATTACKS

Side-Channel Attacks are based on gathering the target’s produced unintentional outputs, phys-

ical characteristics, or observable signals while executing the software. They usually do not re-

quire manipulation of the target device, and the attacker can passively evaluate the system inter-

actions [19,25]. An attacker can take advantage of these available side-channel parameters, such as

the power consumption [20], the electromagnetic emanation [26], and the thermal signature [27],

to mount an SCA in order to obtain the critical data and to leak the secrets from an embedded

device [7]. Figure 1.4 depicts some common side-channel parameters, including Electromagnetic

emissions, Timing information, Acoustic leakage, and Power signals, which have leaked from a

target device during data processing. All types of discovered side-channels have been reviewed

in [19].

The SCA’s most basic instances have been performed against cryptographic machine imple-

mentations to extract their secret key [28, 29]. The subsequent works employed a similar approach

on various side-channels and targeted implemented ciphers (e.g., DES, AES, and RSA) inside the

4

CHAPTER 1. INTRODUCTION

Figure 1.3: Taxonomy of Physical Attacks

Figure 1.4: Side-Channels from an Embedded Device

5

CHAPTER 1. INTRODUCTION

smart-cards, mobile phones, personal computers, dedicated ASICs, and different microprocessor

architectures. These examples demonstrate that SCAs can pose a significant challenge to the secu-

rity of IoT devices.

SCAs are performed in two phases:1) Interaction phase, 2) Exploitation phase. The first phase is

to find an observable and measurable physical characteristic of a target and monitor that, generally

without any modification or opening up the chip (usually during the normal operational mode).

Note that this step often needs full access to the device for the attacker, who can run it iteratively

several times. Occasionally, based on the level of control an attacker may have on a device, the SCA

can be performed with the appropriate input vectors to get optimized results [25]. The exploita-

tion phase analyzes the collected data to extract the important physical information related to the

non-functional and internal operations. Although different SCAs may have their unique interac-

tion phase (way of data measurement), they all follow a very similar approach to their exploitation

phase [30].

1.1.2 FAULT INJECTION ATTACKS

Fault attacks are the noticeable type of physical attacks, in which the expected and secure behavior

of the targeted devices is liable to be jeopardized.Fault Injection Attacks have been designed and

introduced in various methods, such as 1) By manipulating the inputs of the device (such as clock

or voltage); 2) By stressing the target through changing its surrounding conditions (such as raising

the temperature); 3) By emitting energy rays (such as electromagnetic or laser). They can either

modify the process of software execution or the stored values inside the memory locations. FIAs

can be classified into three categories, namely: 1) Invasive, 2) Non-invasive, and 3) Semi-invasive

[31].

Invasive attacks are the type of intrusions performed by de-packaging the Integrated Circuit

(IC) and modifying the physical properties to do some probing. Invasive attacks, such as Micro-

probing, laser, or optical fault injection, are the strongest physical attacks without imposing any

restrictions on accessing the inside of the chips [32]. These kinds of attacks are very powerful in

precise space-time positioning, and they can reveal considerable secret information from internal

parts of the chip to the attackers. However, they are expensive, mostly irreversible, and compli-

cated. In addition, they have to be performed by qualified specialists in laboratories equipped

with special devices. They are usually applied against very secure devices such as smart-cards or

complex Commercial Off-The-Shelves (COTS) components, in which the target is in the form of

industrial products, and the attacker usually has more features and knowledge [33]. Nonetheless,

in some cases, such attacks are not appropriate methods for individual IoT hackers because they

are too costly for them, and also, they do not have access to wide-range facilities.For the consumer

IoTs, the attack would be in most cases too costly for the gain.

The semi-invasive attack is a type of FIA that stands between invasive and non-invasive at-

6

CHAPTER 1. INTRODUCTION

tacks [34, 35]. This type of attack can involve de-packaging the IC layers to gain access to the inter-

nal surface of the target, but normally, the passivisation layer remains unimpaired. For instance,

optical fault injection is a semi-invasive attack in which the protection layer of the device has to be

ruined [34].

Finally, non-invasive attacks are the type of non-destructive attacks that can be accomplished

by only utilizing pin-probing or bus-snooping without damaging the package [32]. Two of the sim-

plest non-invasive fault attacks are tampering with the device clock signal and/or the supply volt-

age, the so-called clock and voltage glitch attacks [36].

Among those different kinds of FIAs, this thesis considers the non-invasive FIAs against secured

embedded applications because there are more threatening than invasive attacks for IoT devices.

This is for three main reasons:

• They do not require any physical tampering; refer to the owner of the targeted device might

not notice the attack and trust in functionality and security.

• They can be reproduced and updated by using low-cost and easy-to-access equipment, even

in a small laboratory [37].

• They have proven that a high success rate can be achieved in a short time [38].

Since such threats can jeopardize embedded software, it is necessary for software developers

to evaluate the potential vulnerabilities due to FIAs. Therefore, there should be a systematic secu-

rity assessment approach to identify the security assets in terms of important functions and data,

discover the vulnerabilities, define risks, and illustrate the probability and consequences of the po-

tential successful Hardware Attacks. Discovering the impacts of physical FIA is not always straight

forward. So, one needs to understand the FIA effects and their propagation through different levels.

Figure 1.5 shows an example of the propagation of an injected fault through layers of an embedded

system along with its effects on the target.

These effects can be classified into different categories:

Figure 1.5: Fault propagation through different layers, (1) Fault Injection, (2) Fault Manifestation, (3) Fault

Propagation, (4) Fault Exploitation

7

CHAPTER 1. INTRODUCTION

• Faults at Circuit-Level: The physical stress on any target interface leads to transient electrical

faults like transient voltage glitches or current spikes at the circuit level resulting in gate faulty

behavior.

• Faults at Micro-Architectural Level: Transient electrical faults might be captured by the latches

and flip-flops in the system’s data or control paths, resulting in erroneous micro-architectural

states or data.

• Faults at Software/Application Level: Faulty values captured by different micro-architectural

blocks would cause errors in the control or data flow of the running software. In other words,

a fault at the micro-architectural level manifests itself as a deviation in the correct instruction

flow or as a faulty operand or opcode at the software level. Note that the faults at the software

level can be exploited in different manners.

In general, the exploited vulnerabilities at application level can be modeled as 1) Control-Flow

Corruptions (CF-Corrupt) and/or 2) Data-Flow Corruptions (DF-Corrupt) at the application level.

The CF-Corrupt can occur by disrupting the intended order of instructions, branches, or state-

ments of the embedded software. Accordingly, several works have shown that even non-invasive

FIAs such as clock/voltage glitching attacks can lead to CF-Corrupt by skipping or repeating one

instruction or by replacing that with another instruction [39,40]. Other CF-Corrupt instances hap-

pen when the evaluation step of a conditional branch has been skipped, and the incorrect branch is

taken [41]. FIAs can alter the conditional branch instructions, which are used to implement loops

and change conditions in security checks of embedded software.

DF-Corrupt happens when the attacker compromises the integrity or confidentiality of pro-

cessed data by disturbing the targeted MCU. For example, they can corrupt a single bit, a single

byte, multiple bytes, or a single word of a security-critical variable in various ways (e.g., flip, set, re-

set, random) [42,43]. Furthermore, one can exploit the vulnerable arithmetical/logical instructions

to generate intermediate or final faulty results. By repeating this procedure and obtaining more er-

roneous computational values, it is possible to leak secret and sensitive information [44]. On the

other hand, FIAs can affect the memory operations such as load, store, and copy instructions and

lead to DF-Corrupt [45]. These manipulated values can directly affect the system behavior, mainly

while other computational or condition evaluation instructions are using them.

Considering the mentioned vulnerabilities, the security specialists aim to mitigate the destruc-

tive consequences of FIA by developing a set of software and hardware level defensive countermea-

sures. For example, redundancy-based protection methods are one of the most utilized software-

based methods, in which one important instruction is repeated, and its result is compared; Then,

one detects the mismatch and runs the error management routine (if necessary) [46]. Another ap-

proach is named the duplication method without comparing and fault detection steps [47]. The

signature-based protection is another approach to counter-based protection, and that assigns a

unique identifier to all of the basic blocks inside the control flow graph. Then, it verifies the identi-

8

CHAPTER 1. INTRODUCTION

fier/signature by every control-flow transfer. Basic examples of hardware-based countermeasures

are applied in different ways, such as utilizing passive shields to cover the vulnerable part of the

chip and using specific logic such as autonomous frequency detectors that can detect the glitches

in the clock signal [48].

The software-based countermeasures have significant performance overhead, and they can-

not guarantee complete code integrity against fault injection attacks. However, in many non-

critical cases, they can provide a good trade-off between hardware cost and security. Accordingly,

hardware-level countermeasures can be applied for safety-critical embedded devices to protect

the design against stronger FIAs. Moreover, hardware-based mechanisms have better performance

than software solutions since fewer processor cycles need to be spent on performing the security

checks. The main drawback of the hardware-based countermeasures is their cost for embedded

devices.

1.2 THESIS STATEMENT AND MAIN OBJECTIVES

Embedded software evaluation against hardware-based security attacks has recently gained com-

pelling attention in industry and academia. Although several assessment tools and platforms have

been developed, choosing the right hardware platform is not always easy and depends on many

parameters. In response, the first objective of this thesis is to review some of the existing assess-

ment tools, specifically against non-invasive fault injection attacks, and to classify them accord-

ing to their specifications and features. This study helps to determine the important factors of an

hardware evaluation platform by considering the budget and the design effort.By budget, the aim

is to use low-cost devices and chips and by design effort, the aim is to have a easily configurable

platform. The way that IoT products are developed today - especially with their reduced" time to

market"- does not always give time to perform a third-party hardware security evaluation. Nowa-

days, developers get more involved in performing the evaluations by themselves. The existing com-

mercial evaluation tools have been simplified and matured considerably to satisfy the developers’

needs; however, they are dependent on the use of specific hardware, closed-source, not accessible

to deploy for the low-cost IoTs and not easy to exploit the software-level vulnerabilities. On the

other hand, very little research has been conducted to determine whether the hardware security

analysis instruments fulfill the embedded software developers need to secure their code. Accord-

ingly, the second objective is to provide one open-source and low-cost hardware evaluation tool,

which is highly important in the embedded software development stage.

When such a tool is available, the target users (e.g., non-security specialists or embedded soft-

ware developers) must be guided properly to apply the practical experiments. Unfortunately, the

previous research works have only focused on the in-depth evaluation of low-level specific instruc-

tions, and these isolated approaches cause inefficiency for a broad evaluation purpose. So, this

research’s next objective is to define comprehensive and function-level evaluation methods to be

9

CHAPTER 1. INTRODUCTION

executed in order to detect the embedded software vulnerabilities. Combining these scenarios and

the open-source platform designed in this thesis can significantly simplify the evaluation process

at the development phase.

The introduced hardware platform in this thesis, can efficiently apply fault injection attack into

an embedded system; however, it still requires significant time and analysis effort to detect the

vulnerabilities of a target. In practice, the evaluation time plays an essential role in the embedded

software design step, and one cannot ignore or just accept it as "that is how long it takes." Likewise,

this approach lacks information about the root causes of the revealed vulnerabilities and cannot

guide the target user to fix these issues or add proper countermeasures. Accordingly, this thesis

improves the evaluation process’s critical factors (e.g., accuracy, coverage, and time).

The proposed experimental FIA platform along with its associated tools and the defined method-

ologies in this thesis work construct an evaluation framework,to be used by embedded developers.

Accordingly this framework is verified in a case study to have a qualitative study. Among various

attention-demanding case studies, this thesis focuses on a medical IoT application named Sec-

Pump, which is also in the context of the SERENE IoT project. The SERENE IoT project (Secured

EneRgy EfficieNt hEalth-care solutions for IoT market) aims at developing high quality smart e-

health IoT devices in Europe. SERENE-IoT project is labeled within the framework of PENTA, the

EUREKA Cluster for Application and Technology Research in Europe on NanoElectronics. The

project contributes to developing high quality connected care services and diagnostic tools based

on advanced smart health-care IoT devices. The revealed vulnerabilities from hardware security

evaluation of the Sec-Pump can detect the real potential risks in similar critical applications for the

end-users and the service providers.

In brief, the main objectives of this thesis are summarized in the following:

• To implement an open-source, low-cost and efficient hardware evaluation platform to ap-

ply clock glitching FIA. This hardware platform will be generic and can be used for various

embedded targets.

– To investigate and review the state of the art of the existing practical fault injection plat-

forms that are used to attack various embedded systems

– To analyze the cost overheads, the advantages and the disadvantages of the proposed

hardware evaluation platform in front of other existing platforms

• To define a practical evaluation process for the developers and non-security specialists at the

design stage to identify the potential security vulnerabilities

– To evaluate the potential vulnerabilities at high level of the software and to narrow down

the fault injection time intervals by using the results from the simulation-based exper-

iments respectively

10

CHAPTER 1. INTRODUCTION

– To improve the coverage, efficiency,accuracy of injected faults and to simplify the anal-

ysis process for embedded applications

• To apply our evaluation framework which consists of a clock glitching FIA hardware platform

and our evaluation methodology into a practical case study (Sec-Pump)

– To identify the security vulnerabilities of an IoT application (Sec-Pump as an example)

by using our evaluation framework

1.3 THESIS CONTRIBUTIONS

The main contributions of this thesis are summarized in the following:

• The Existing Fault Injectors are Reviewed

The first contribution of this work is to study the different non-invasive fault injection ap-

proaches and platforms. This helped to extract their important factors such as complexity,

cost, and required usage expertise. The thesis focus has been on the clock, and voltage fault

injection approaches due to their effectiveness and affordable equipment. Accordingly, this

thesis first reviews the proposed clock and voltage glitch generators in the literature and cat-

egorizes them based on different essential parameters in the attack process.

This part has been published in [6].

• A Hardware Evaluation Platform for FIA is Designed

The reviewed state of the arts was challenging to adapt for general IoT designs and it lacked

the proper configuration characteristics. The second contribution of this thesis is in Chap-

ter 3, which introduces a practical evaluation platform to evaluate an MCU-based system

running a software application against the Clock Glitching FIA. This platform is specifically

focused on the clock glitching FIAs, and it is a low-cost and easy-to-use interface for non-

security specialists. Then, the utility of this platform is demonstrated by applying FIA to an

encryption algorithm and analyzing its results.

This part has been published in [44].

• Application-level Test Scenarios is Proposed

Another contribution of this thesis is to define high-level test scenarios to exploit and ana-

lyze the vulnerabilities of a target embedded software after injecting faults. This analysis is

applicable for high-level patterns and standard C functions. After this analysis, a report will

be generated, which can help the embedded developer to mitigate the vulnerabilities in the

early developing stage of the application. The main focus of this thesis approach is on the

analysis of the most prominent control flow and data flow integrity objectives.

This part has been published in [45].

11

CHAPTER 1. INTRODUCTION

• An Evaluation Framework for Software Developers is Provided

The fourth contribution is to provide a complete overview of the threat modeling for the

critical assets of an embedded application against FIAs. The software developers should be

guided correctly to identify the right critical assets of their application and then conduct an

appropriate assessment against the potential attacks. Therefore, in addition to an evaluation

platform, a methodized approach is defined to analyze the target code step by step.

This part has been published in [7, 49].

• The Timing Characterization of Clock Glitching FIA is Improved

The next contribution is to introduce a mixed simulation-experimentation methodology to

detect the security flaws against the clock glitching FIA. First, the simulation operates on the

defined fault models as fault injection attacks into the RISC-V micro-architecture. This can

help to improve the FIA timing characterization in the experimental attacks. Therefore, the

experimentation attack could give the analyzer more detail and more precise results.

This part has been published in [50].

• Symbolic Assertion and Code Shredding to Obtain A Global Vulnerability Factor

The last contribution of this thesis is to use the symbolic assertions and obtain a global

vulnerability factor for the embedded software evaluation against the clock glitching FIA.

Accordingly, a partitioning approach is applied to divide an application into various code

blocks with respect to the functionality and the main variables of each code block. Then,

the detection patterns are inserted into the code to report the successful attack and obtain

the vulnerability factor. This approach is an efficient criterion to evaluate all the corner case

vulnerabilities of software blocks against FIA. The final goal of this thesis is to verify that by

using such an approach, one could show the potential risks of the Sec-Pump blocks.

1.4 ORGANIZATION OF THE DISSERTATION

The remaining part of the dissertation is organized as follows (Figure 1.6): Chapter 2 explains the

basics of fault injection attacks and reviews the state-of-the-art of the existing fault injectors. Chap-

ter 3 describes the details of a proposed evaluation platform against fault injection attacks. It will

then show the experimental results and verify the usage of the platform. Chapter 4 presents the

steps of a high-level evaluation approach for embedded software developers. To explain the intro-

duced methodology, it has been applied in a case study (Sec-Pump). Chapter 5 studies the opti-

mized evaluation methods to improve the assessment results. It is based on utilizing the simulation

approach in order to improve the experimentation parameters. Finally, the conclusions and per-

spectives of this thesis are presented in Chapter 6 and 7.

12

CHAPTER 1. INTRODUCTION

Figure 1.6: The road map for the dissertation

13

2 STATE OF THE ART

Contents

2.1 A Basic Setup for a FIA Platform . 15

2.2 Clock-Based FIAs . 17

2.2.1 Concepts of Clock FIAs . 17

2.2.2 Clock Glitching Attack Examples . 20

2.2.3 Clock Glitch Generator Characteristics . 20

2.3 Voltage-Based FIAs . 22

2.3.1 Concepts of Voltage FIAs . 22

2.3.2 Voltage Glitching Attack Examples . 25

2.3.3 Voltage Glitch Generator Characteristics . 26

2.4 A Review of Fault Generators . 27

2.4.1 Clock Glitch Generators in the literature . 27

2.4.2 Voltage Glitch Generators in the Literature . 35

2.5 Conclusion . 41

This chapter studies the fundamentals of FIAs and reviews the main fault generator parame-

ters. These factors determine the applicability and efficiency of a fault injection platform. Then,

the principles of clock and voltage generators are studied, and their important specifications are

determined. Finally, it reviews the state-of-the-art clock and voltage fault generators and catego-

rizes them based on their features.

2.1 A BASIC SETUP FOR A FIA PLATFORM

Figure 2.1 shows an experimental setup for a fault injection system. It includes a target board, a

fault generator, and a controller computer. The fault generator is the crucial component of a fault

injection system. In the following, the main characteristics of a fault generator, which affect the

success rate of the attacks, are described.

Generally, in the hardware-controlled fault injection techniques, a separate external fault gen-

erator is used to induce faults in the running application. It is essential to produce well-controlled

faults utilizing the generator in order to achieve the desired results. It is, therefore, a challenging

15

CHAPTER 2. STATE OF THE ART

Figure 2.1: General Fault Injection Attack Setup

procedure to design a fault generator with a high level of accuracy and precision. Several factors de-

termine the applicability and efficiency of a fault generator. Below, a list of features are identified,

which are the main parameters for a hardware-based fault generator [38,51,52,53,54,55,56,57,58]:

• Accuracy in the generated faulty signal: The accuracy of the generated faulty signal can be

defined as our control over the fault parameters. In fact, the more control one has over the

generated faulty signals, the more achievement in successful attacks in terms of generating

and exploiting the desired faults. Control over the time and location of injected faults can be

achieved using the communication lines between the controller PC and the fault generator.

• Run-time fault configuration: In some evaluation platforms, the parameters of a faulty signal

produced by the generator can be reconfigured during run-time. They are not limited to the

design time and can be used to test a target system during the attack phase. This feature is

available in some generators and is based on some kinds of FPGAs, allowing modification of

some parameters during the run time [51].

• Reproducibility of the faulty signal: Reproducibility is the ability to obtain the same results

in multiple repeats of the same test. Regarding this feature, the faulty signal should be repro-

ducible and validated by a third party if the same hardware is used (for example, the same

FPGA). This parameter becomes more important when the same evaluation platform is used

multiple times to generate a faulty signal [38, 51, 52, 53, 56, 58].

• Randomness in faulty signal: Many of the faulty signal-generating methods presented, such

as [59, 60, 61, 62, 63], are deterministic methods. To set up a fault generator and to apply an

attack with high accuracy, all the output parameters must be prepared and calculated. How-

ever, as this requires complete and adequate information about the target, it is not applicable

16

CHAPTER 2. STATE OF THE ART

Figure 2.2: Synchronous Representation of Digital ICs [55]

in all real-world attack scenarios. In addition, in order to achieve an efficient attack, a large

number of possible combinations of the fault injection parameters need to be covered. This

makes deterministic methods intractable within a limited time. To address this issue, a fuzzy-

based fault generator has been proposed. It has been reported that this method has a high

attack success rate [54].

These factors for the clock and voltage fault attacks include accuracy, development expenses, the

complexity of the system setup, and user expertise.

In the following, the basic concepts and significant parameters in clock and voltage fault injec-

tion methods are reviewed.

2.2 CLOCK-BASED FIAS

Clock-based fault injection is a low-cost attack that can be applied by the attacker to devices sup-

plied with an external clock such as smart cards. If the target uses an internal clock signal, this

method is often not applicable. The fundamental concepts and related characteristics for this ap-

proach are provided in the following sub-sections.

2.2.1 CONCEPTS OF CLOCK FIAS

First of all, to explore the importance of proper timing in digital ICs, one has to understand the syn-

chronous design concept [55]. This is the basis for simple to complex computing systems. Digital

designs often consist of two main parts: 1) combinational logic for computational operations and

2) memories such as register banks to store the computation results after each clock cycle. Figure

2.2 shows the concepts of propagation delay and setup time as irrevocable delays for performing

computational operations. They are important timing parameters and need to have valid stored

values in the flip-flops.

The inequality in equation 2.1 should be satisfied in order to guarantee the correct behavior

of the flip-flop. Tclk represents the clock period, Tcr i t i cal represents the minimum time needed to

17

CHAPTER 2. STATE OF THE ART

Figure 2.3: Violating Critical Path Delay by Insertion of Additional Positive Clock Edge

process the data through the combinational part, and TSetup represents the setup time of flip-flops,

specified as the minimum amount of time for which data input needs to be stable before the active

edge of the clock:

Tc l k > TCr i t i cal +Tsetup (2.1)

One way to perform fault injection attacks is to violate these timing constraints. Violation of

the time constraints induces faults in the target. Tcr i t i cal and TSetup are two parameters that are

dependent on the system logic design and the technology, therefore they cannot be manipulated

to perform fault injection. Unlike the previous parameters, Tclk is a knob used for attackers to carry

out their fault injections. Clock fault injection is applied by tampering with the clock signal tem-

porarily or permanently. There are two different methods of clock fault injection: 1) Overclocking

and 2) Clock glitching. Overclocking is a kind of timing violation attack in which one tries to apply

a clock signal with a higher frequency than the nominal frequency for a specific time interval [55].

In fact, the overclocking method violates the timing constraint inequality (eq1) by decreasing the

clock period. A clock glitch is regarded as an unwanted transition in the clock signal.

In the clock glitching method, the attacker generates glitches in the clock signal. The induced

glitches produce extra edges in the clock signal, resulting in an erroneous output as the timing

inequality has been violated. Figure 2.3 shows a typical clock signal in which a glitch is induced. In

this figure, T represents the normal clock period, and TG l i t c h is the width of the glitch signal. As it

can be seen, an extra edge appears in the clock signal. Another important parameter is Tm i n , which

is equal to the reciprocal of maximum frequency. In order to have erroneous behavior, TG l i t c h

should be less than Tm i n [55]. Moreover, in [52], the authors have considered "T-TG l i t c h" as a

"post-glitch" phase. This abnormal semi-clock part could be considered as another approach for

fault injection. In this case, if "T-TGl i tch" is less than Tmi n , it leads to an erroneous behavior. Figure

2.4 shows how a clock glitch can inject faults in the system and how these faults can propagate

through the next clock cycles [64].

Table 2.1 compares the accuracy of overclocking and clock glitch attacks. The first column,

entitled spatial precision, refers to the level of accuracy with which the fault generator can inject a

fault into a specific location. Temporal precision, the second column, is defined as the accuracy of

the fault injection process in inducing a fault at a specific time. The third column reveals glitching

parameters such as frequency, width, and amplitude. The last two columns show equipment costs

18

CHAPTER 2. STATE OF THE ART

Figure 2.4: Representation of Clock Glitch and Fault Injection [64]

Table 2.1: Clock Fault Injection Techniques and Characteristics

Technique
Spatial

precision

Temporal

precision

Controlling

the intensity

Equipment

costs

Required

expertise

Over

Clocking

Low

(global)

Not

Applicable
Clock frequency Low Low

Clock

Glitching

Low

(global)

High

(local)

Glitch

parameters
Low Moderate

and the required level of expertise for fault injection, respectively. Since the clock is a global signal,

sufficient control is needed to induce a fault in a specific location in the system. Consequently, fault

induction in the clock signal would not have high spatial accuracy with either the overclocking or

clock glitching techniques.

In the clock glitching method, high temporal precision can be achieved by synchronizing the

target and the fault generator circuit. Temporal precision is meaningless in the overclocking tech-

nique as the clock frequency is considered a fault. Briefly, the clock glitching technique is more

desirable than the overclocking technique as it provides more accuracy and flexibility to manip-

ulate clock signal parameters. In fact, the overclocking technique is not applicable for injecting a

fault into a specific instruction at a specific time. In such cases, clock glitching is the only technique

for fault attacks. For accurate fault attack using the clock glitching technique, especially for com-

plex processor architectures employing the instruction pipeline, the fault generator circuit must be

highly accurate in terms of injection time and location. In addition, the injection process should

be carried out as fast as possible to avoid synchronization violations [65].

In this thesis, the main focus is on the clock glitching attack approach. Figure 2.5 shows a

19

CHAPTER 2. STATE OF THE ART

typical circuit employed by attackers to conduct a fault injection attack. A clock glitch generator

generally consists of different hardware components such as FPGA boards, pulse generators, and

micro-controllers to enable the implementation of various glitch generating methods. The desired

configuration is provided by a controller PC connected to both target and generator sides. Syn-

chronization is done by using the trigger signal between the target and the generator.

Figure 2.5: Experimental Setup of Clock Fault Attack

2.2.2 CLOCK GLITCHING ATTACK EXAMPLES

The clock glitching attack can significantly impact the critical parts of a running application, such

as its encryption module and arithmetic or logical instructions. In several works, a clock glitching

attack has targeted a specific round or operation of the AES algorithm to generate faulty cipher

text [38, 44, 52]. These faulty outputs can be used to recover the encryption key. Other than AES,

other cipher blocks, including DES, Camellia, CAST-128, SEED, and MISTY1, have been evaluated

against the clock glitching in [58]. Five commercial and low-cost processors have been targeted by

clock glitch injection in [52] to conduct a deep analysis of fault impacts.

2.2.3 CLOCK GLITCH GENERATOR CHARACTERISTICS

As discussed in previous sections, fault generators, in general, should have specific characteristics,

namely accuracy, run-time configuration, reproducibility, and randomness. In this sub-section,

the clock glitch generator characteristics are explained. Below is a list of the main features that are

20

CHAPTER 2. STATE OF THE ART

identified, and then for each category, the related articles are compared.

• Clock Glitch Accuracy: This feature includes the parameters such as minimum glitch width,

gliding shift steps, standard deviation, clock glitching placement, and clock glitch frequency

control. These features depend on the characteristics of the clock generator and the method

which is used to induce the glitches.

– Minimum glitch width: Most target systems contain protocols to protect their external

clock input so that when an abnormal clock is observed and detected, it resets the sys-

tem or produces an alert. Therefore, less glitch width results in a lower chance of detec-

tion. In addition, in many cases, a precise and short glitch is needed to target a specific

instruction running on the processor or specific data being fetched. This makes it im-

portant to control the glitch width. The precision of the clock glitch width is on the time

scale of picoseconds or a few nanoseconds. For example, in [58], a 2-channel pulse gen-

erator has been used to design an accurate 35ps glitch. [38,57] and [65] include glitches

on the nanosecond scale.

– Gliding shift steps: this parameter refers to the minimum value by which a clock glitch

generator adjusts the glitch width. These steps are on the nanosecond time scale. For

example, in [52, 56], the gliding shift steps are reported as 1ns.

– Standard deviation: The standard deviation of the reported glitch width depends on

the glitch generation algorithm and the limitations of the hardware used (e.g., FPGA).

– Clock glitching placement: It is important to induce a glitch into a specific position

of the clock signal. For example, it is important to inject a glitch into a system at a

certain round of encryption. [66] uses a counter to determine the location of the glitch

injection.

• Clock Glitch Run-Time Configuration: faulty clock parameters, such as phase delay and

frequency, can be reconfigured at the run-time to help the attacker. For example, in [57],

a digital clock manager (DCM) of an FPGA is used to configure the glitch. FPGA run-time

adjustment can be used to change the phase-shifted values, but this method is limited to a

certain range of values. [51] presents an approach for partial configuration using the FPGA

configuration capabilities, including reconfiguring the DCM blocks at the run-time. The "bit-

stream differential files" generated by FPGA tools are applied to substantiate the run-time

configuration.

• Clock Glitch Reproducibility: this helps attackers to reproduce the faulty clock signal with

the same characteristics as many times as they wish. It is important in some applications,

which require the assessment of vulnerabilities and tracking of the clock glitch attack pro-

cedure. [58] includes a unique evaluation platform (SASEBO) for reproducible clock glitch

generation.

21

CHAPTER 2. STATE OF THE ART

• Clock Glitch Randomness: In most clock glitch generators, the glitch parameters such as fre-

quency, width, precision, etc., are pre-determined, i.e., they are determined before run-time.

This requires complete and adequate information about the target system, which would not

be possible in all real-world attack scenarios. Furthermore, in order to have a highly efficient

attack, one needs to cover a large number of possible combinations of the parameters men-

tioned, which would not be practical in a limited time. For this reason, in recent years, new

techniques such as the fuzzy glitch generator [54] have been proposed for the generation of

clock glitches. All of these techniques use ring oscillators instead of FPGA blocks and demon-

strate the ability to achieve a highly successful attack rate. Details of the related works will be

provided in the following section.

2.3 VOLTAGE-BASED FIAS

Voltage fault injection is another practical and low-cost attack that adversaries can use to conduct

efficient attacks against targeted systems. They are used to attack embedded systems with one or

multiple external power supply inputs. The fundamental concepts and related characteristics for

this technique are provided in the following sub-sections.

2.3.1 CONCEPTS OF VOLTAGE FIAS

An important class of voltage glitch attack is manipulation of supply voltage [33, 56, 61, 62, 63, 67].

This is specifically applied in scenarios where the target system is fed from an external power sup-

ply [33]. Similar to clock fault attacks, a voltage fault attack is an approach that does not require

extensive equipment or knowledge. Moreover, it can be used when access to the external clock

input is not available on the target systems, i.e., those using their own internal clocks.

The non-equality in equation (2.1) points out the condition for correct circuit operation and

correct value storage in memory. A standard approach to produce a timing constraint violation is

to manipulate the clock period. The other approach is to increase the data propagation delay by

tampering with the input voltage. In these approaches, equation (2.2) will not fulfill the timing con-

dition for the correct circuit operation , which may result in erroneous data captured by memory

cells and/or flip-flops. [68] discusses the relation between the input voltage and data propagation

delay with a simple CMOS inverter as an example. Figure 2.6 shows that there are two propagation

delays, named TpHL and TpLH , for the output variations from high to low and vice versa.

Equation 2.2 shows that these two delays depend on different factors, including the supply

voltage. In this equation, VD D is the power supply voltage, CL is load capacitance, Vt h ,p is PMOS

threshold voltage, up is holes mobility, Co x is gate oxide capacitance, and (Wp /Lp) is the aspect ra-

tio of the PMOS. By replacing the parameters related to the inverter’s PMOS by NMOS parameters

(e.g. un , (Wn/Ln), Vt h ,n), Tp H L can also be derived [68, 69]. Equation 2.2 demonstrates that Tp H L

22

CHAPTER 2. STATE OF THE ART

Figure 2.6: Inverter Circuit and TP H L ,TP L H Parameters in Response Waveforms

and Tp L H have a direct relation with vD D . In particular, reducing the power supply will increase

Tp h l and Tp l h of the inverter. Therefore, manipulating the supply voltage (in long or short inter-

vals) can be an efficient approach to inject a fault in order to violate the timing constraints [33, 70].

Tp H L =
CL([

2Vt h p

VD D−|Vt h p |]+ l n(3−4
|Vt h p |
VD D

)

uPCo x
WP
LP

(VD D −|Vt h p |)
(2.2)

There are two main types of voltage attacks: 1) Underpowering and 2) Voltage glitching [70].

Underpowering is a type of voltage manipulation in which the target’s supply voltage is applied

permanently (or for a relatively long period) to a voltage source out of its nominal range (the stan-

dard voltages defined by the manufacturer). Voltage glitching is a sudden and momentary change

in the supply voltage. It has been shown that under-powering is not sufficient to achieve a high

success rate because it impacts multiple instructions that are executed [36].

In Voltage glitching, the attacker attempts to feed the target with a power supply below or above

the considered nominal value(VD D), for a certain period. Voltage glitching is generally used to in-

duce a fault via timing violation; however, an attacker needs to have high control over the attack

procedure and precision. This sudden (usually negative) change of voltage, which is defined by

Vd i f f , can induce transient faults. In this regard, a multiplexer can be used to switch the volt-

age between the two VD D and VD D −Vd i f f values [63]. The value for Vd i f f strongly depends on

the level of the protection mechanisms (e.g., glitch detectors) that exists in the target system. If it

goes beyond a certain value, such unusual behavior may trigger a warning regarding target system

functionality and reliability, and usually leads to a device reset (to prevent damage in the IC, burn-

ing of electronic components, etc.). Typically, injected voltage glitches are generated as a square

or V-shaped signal [33]. Figure 2.7 depicts an example of a negative voltage glitch. However, the

amplitude of such a glitch can be positive (i.e. above the nominal voltage value) [70].

The shape of the glitch is defined by the rising and falling time (t f and tr) and the pulse width

(tp). The sum thereof represents the total duration of the glitch, named Tg l i t c h [71]. Tg l i t c h is also

referred to as the Attack window. This window is located between the falling and rising edges for

23

CHAPTER 2. STATE OF THE ART

Figure 2.7: Negative Supply Voltage Glitch

negative glitch inducing and vice versa for positive. Vg l i t c h (equal to Vd d - Vd i f f) is the voltage

level that is fed at the target glitching time.

Table 2.2 compares the accuracy of under-powering and voltage glitching attacks.

Table 2.2: Supply Voltage Fault Injection Techniques and Characteristics

Technique
Spatial

precision

Temporal

precision

Controlling

the intensity

Equipment

costs

Required

expertise

Under

Powering
Moderate

Not

Applicable
Voltage amplitude Low Low

Voltage

Glitching
Moderate

Moderately

synchronization

Voltage amplitude

glitch width or delay
Low Moderate

All the column headings are the same as those in Table 2.1. The first column compares the

spatial accuracy of under-powering and voltage glitching. The advantage of voltage fault injection

methods as compared to clock fault injection methods is higher spatial accuracy (moderate level).

The spatial precision of voltage fault injection is due to the presence of multiple power islands in

modern systems. These systems typically operate in multiple power islands in accordance with

their performance requirements. However, the temporal precision of voltage glitching (column 2)

is less than that of clock glitching because in the later one can synchronize the injected fault in

respect to the specific cycle accurately. In addition, the precision of the fault injection process in

inducing a fault at a specific time is not applicable to the under-powering and overclocking ap-

proaches. The third column compares the attacker’s level of control over the voltage glitch param-

eters, such as glitch delay and width in voltage fault injection methods. The same level of control

is not attainable for under-powering attacks. Finally, the last two columns show equipment costs

and the required level of expertise for the two methods, which are very similar.

This thesis considers the voltage glitching attack approach from the voltage FIA techniques

24

CHAPTER 2. STATE OF THE ART

based on the facts above. Figure 2.8 shows a common setup employed by attackers to conduct

successful voltage glitching attacks. A voltage glitch generator generally consists of different hard-

ware components such as power sources, FPGA boards, and high-speed multiplexers to enable the

desired glitch shape(s) in the generated voltage signal. Similar to the clock fault injection setup, a

controller PC is connected to both target and generator sides to determine and configure the pa-

rameters of the attack. Synchronization is done by using the trigger signal between the target and

the generator. The glitch may be injected by using a trigger signal from the general-purpose I/O

pins and set up by running the program on the target. In the next sub-section, the main character-

istics of voltage glitch generators are classified.

Figure 2.8: Fault Injection Setup for Voltage Fault Attack

2.3.2 VOLTAGE GLITCHING ATTACK EXAMPLES

This type of attack has been employed against various critical modules of embedded applications.

One of the most critical examples is the encryption module, such as the AES algorithm which has

been evaluated against voltage fault injection attacks. In this algorithm, applying voltage fault in-

jection can result in a reduction of the number of encryption rounds [32]. The faulty cipher texts

can then be leveraged to reveal the encryption key. Moreover, it has also been used by adversaries

to induce faults and bypass different security features such as the authentication or secure boot

of the embedded systems. The induced fault can help the attacker to load his/her arbitrary values

in the PC (Program counter) register, which is very dangerous for secure systems [71]. Finally, [62]

25

CHAPTER 2. STATE OF THE ART

has shown that the voltage glitching attack can lead to privilege escalation from the user to kernel

mode in the Linux OS.

2.3.3 VOLTAGE GLITCH GENERATOR CHARACTERISTICS

Different characteristics, such as accuracy, run-time configuration, reproducibility, and random-

ness, are important in successful fault injection attacks. In this sub-section, these characteristics

for the voltage glitch generators are discussed. There are many similarities between voltage and

clock glitch generator characteristics. Here each voltage glitch generation feature is studied in more

detail, and later the works related to these features are compared in Section 2.5.

• Voltage Glitch Accuracy: Various parameters can affect the accuracy of the generated voltage

glitch, such as minimum glitch width, glitch delay, and glitch placement. These features are

dependent on the characteristics of the voltage generator and also the method which is used

to induce the glitches.

– Minimum glitch width: Generally, a precise and short voltage glitch is needed to by-

pass the existing glitch detectors on the external voltage inputs of the targeted systems.

These protection modules observe the external voltage inputs and can reset the target

system or create an alert to avoid any malfunction. Furthermore, a short voltage glitch

is needed to target a specific instruction of the running code on the processor. There-

fore, the more accurate and tenuous the voltage glitch is, the more chances an attacker

has to accomplish the desired fault attacks. Depending on the equipment employed to

generate the faulty signal, the minimum value of the glitch width can be changed. For

instance, in the generator presented in [70], a pulse generator is used to generate the

optimized voltage glitch, and the minimum pulse width is reported as 10ns.

– Glitch delay: This parameter shows the amount of time a voltage glitch takes to be in-

jected after the setting up of the trigger signal [62]. To take advantage of the existing

vulnerabilities in the running application, the glitch must be induced simultaneously

with specific instruction(s) execution. According to the selected glitch width, the glitch

delay should be considered to guarantee that the injected glitch hits the targeted in-

struction. For instance, to generate faulty cipher texts, it is important to inject a glitch

into the target at a certain round of encryption [72,73]. The glitch injection time is deci-

sive in other situations such as escalating privileges [62], skipping authentications, and

misinterpreting an instruction [71].

– Voltage glitch placement: this parameter is related to the spatial position of the glitch.

Spatial precision specifies the exact locations of the targeted circuit affected by the

faulty voltage signal. In advanced systems such as modern SoCs, there are different

power domains or power islands. A power domain is a group of gates powered by the

26

CHAPTER 2. STATE OF THE ART

same supplier. Depending on operational conditions, different voltage suppliers are

connected to these domains. This parameter can help the attacker to provoke an erro-

neous behaviour in a specific part. For example, by targeting an area in the chip like

register banks and inducing memory faults, the wrong values may be gathered from the

memory bus [32].

• Voltage Glitch Run-Time Configuration: this parameter is defined as the possibility of recon-

figuring the voltage glitch during the run-time. The parameters of generated glitchy voltage

signals such as glitch width, delay, and amplitude can be reconfigured at the run-time to

help the attacker to examine different attack scenarios. Run-time configurability depends

on the specifications of the generator circuit. Reconfigurability can be applied through hard-

ware inputs (e.g., by using sliding switches to adjust glitch width) or by communicating (e.g.,

UART) with the controller PC [51].

• Voltage Glitch Reproducibility: This feature helps the attacker to obtain the same voltage

glitching attack results when the same glitch is injected into multiple runs. Typically, voltage

glitch generations are reproducible when fixed values are identified for the glitch parameters.

• Voltage Glitch Randomness: Instead of pre-defining and pre-calculating all voltage glitch

parameters in every attack scenario, an attacker can select them randomly from an interval

of possible values. Using this approach, more combinations of the parameters mentioned

can be covered within a short time, leading to more successful attacks. With some of the

previously proposed approaches, such as [62], glitch width and glitch delay parameters are

defined using a divide and conquer method with a randomized parameter approach. Now

that the important parameters of glitches are categorized, some of the main works in the field

are reviewed in the next section.

2.4 A REVIEW OF FAULT GENERATORS

In this section, some state-of-the-art platforms for clock and voltage fault injectors are reviewed.

Then, these works are classified based on the defined parameters in the previous section. Then

these parameters are compared in terms of operational constraints, accuracy in the generated sig-

nal, and impacts on the target system. Table 2.3 and 2.4 shows the details of our comparison.

2.4.1 CLOCK GLITCH GENERATORS IN THE LITERATURE

There are various practical techniques for generating a faulty clock signal [38, 51, 52, 53, 54, 55, 56,

57, 58, 64, 74, 75]. All of the proposed methods call for a high-frequency clock signal, the so-called

"Nominal Clock" on the clock fault generator side. Nominal Clock generation can be done via

several methods, including ring oscillator, Phase-Locked Loop (PLL), voltage oscillator coupled

27

CHAPTER 2. STATE OF THE ART

Figure 2.9: Different Methods for Generating Clock Glitch(es)

with PLL and clock frequency circuit, or crystal oscillators. Figure 2.9 summarizes the different

solutions to generate a single glitch or even multiple glitches in the nominal clock signal. In this

figure, the related works are divided into two broad categories: 1) Combine Shifted Clocks (CSC), 2)

Combine Different Clock Frequencies (CDCF). Below, the works in each category are introduced.

It should be noted that all previous works assume that the external clock of the target system is

accessible.

2.4.1.1 Combine Shifted Clocks (CSC)

Combine Shifted Clocks (CSC) is based on multiplexing two different clock signals with the same

frequencies and different phases at the appropriate time [55]. Figure 2.10 shows the point of mul-

tiplexing which is defined by the trigger signal (C l ock−Del ayed1 and C l ock−Del ayed2) [51,53,

56, 58]. In CSC, the glitch width and glitch period are controlled by the trigger and shifted clock

signals.

In order to have higher accuracy and control over the glitch generation, [52] presents a method

in which the output clock is created by multiplexing between three signals (rather than two) with

equal frequencies and different phases. There are mainly two implementation groups to produce

the shifted versions of the nominal clock signal and to combine them. The first method is based on

using external clock sources with phase-controlling capability. Figure 2.11 shows an example that

combines the two external clocks using a 2-to-1 multiplexer from a two-channel pulse generator

[58]. In the proposed glitch generator, the trigger signal is set to be synchronous with the execution

of the running code on the target. To this end, an oscilloscope detects the positive edge of the

target’s execution signal and then sends out the trigger signal with a constant delay.

The second method utilizes internal FPGA features such as the embedded DLL (Delayed Locked

28

CHAPTER 2. STATE OF THE ART

Figure 2.10: Faulty Clock Generation Using Two Shifted Signals

Figure 2.11: Experimental Environment

29

CHAPTER 2. STATE OF THE ART

Figure 2.12: Glitch Generator in [57]

Loop) to generate the shift [51, 53, 55, 57]. In this method, the precision of the glitch is closely re-

lated to the smallest elementary delay of the DLL. Figure 2.12 illustrates a method in which two

DLLs and a counter are used to control the glitch delay [57]. Compared to [55], this method can

change the glitch period in just one cycle and can induce glitches into any cycle (higher configura-

bility). Note that the frequencies of the generated clocks are limited to the DLL circuit of FPGA. To

solve this issue, [57] used dividers to output the desired frequency.

2.4.1.2 Combine Different Clock Frequencies (CDCF)

Combine Different Clock Frequencies (CDCF) is based on multiplexing the nominal clock with a

high-frequency clock of the same phase whose period is Tn and Tg , respectively [38, 52, 74]. Figure

2.13 demonstrates that a trigger signal is used for timely multiplexing between two clock signals in

the CDCF-based method.

There are mainly two implementation approaches for CDCF. The first group is based on gen-

erating the desired clock signals using external sources [38, 54]. For example, [38] uses a wave

generator to produce the nominal clock and the high-frequency clock. However, this approach

cannot provide an acceptable level of randomness in clock glitching scenarios. [54] introduces an

approach that includes randomness in the glitch generation procedure named Fuzzy glitching.

This approach is based on the use of adjustable ring oscillators at various frequencies. In this work,

instead of producing exactly timed glitches, random glitches are made by using ring oscillators. Fig-

ure 2.14 shows an application of fuzzy glitching where a multiplexer is used to inject the glitches

into the system for a limited time.The second approach is based on generating the clock signals

with different frequencies by using the interior FPGA features such as Phase Locked Loop (PLL). As

an example, in [74], a precise and accurate external clock signal passes through the on-chip PLL to

provide the appropriate nominal clock. The unchanged version of that external clock signal is used

30

CHAPTER 2. STATE OF THE ART

to produce the faster clock. Multiplexing between these signals can be performed via Mixed Mode

Clock Management (MMCM).

Figure 2.13: Glitch Generation Using High-Frequency Signal

Figure 2.14: Glitch Insertion Circuitry Using Two Ring Oscillators [54]

31

CHAPTER 2. STATE OF THE ART

Table 2.3 summarizes the technical attributes of the proposed CSC-based and CDCF-based

clock glitch generators. Table 3 shows that in both CSC and CDCF, clock glitches are either gener-

ated using internal features of FPGAs or by external clock sources. FPGAs are the major platform

for clock glitching experiments [51, 52, 53, 54, 55, 58]. A waveform generator is also a common tool

used in CDCF to generate a high-frequency clock signal. Below, all of the parameters reported in

Table 2.3 are elaborated.

Table 2.3 compares different approaches in terms of complexity and cost. It shows that the

FPGA-based approaches are easy to implement and very cost-effective [51, 52, 55]. There are gen-

erators that require custom board design and need to be produced by more skilled engineers and

perhaps at a higher cost. Moreover, there are specific evaluation boards such as SASEBO and Chip

whisperer, which are semi-configurable and have a moderate cost [51, 59, 76].

Table 2.3 reports the minimum glitch width values and studies the fault clock cycle location

among different approaches. It is observed that [51] from the CSC category and [38] from the CDCF

category provide the most precise glitches among different glitch generators. It also shows that all

the previous works, except the fuzzy generator [54], have the capability to inject glitches in the

chosen clock cycle [51, 53, 55, 58]. Another important factor for fault generators is the run-time

configuration. Table 2.3 shows the limitation of this factor in FPGA-based generators [52,53,55,58].

The design in [51] uses a more advanced Xilinx board and can, therefore, support more run-time

configuration parameters such as glitch delay and glitch width. Finally, Table 2.3 analyses the clock

glitching approaches with respect to reproducibility and frequency adjustability. All of the glitch

generators, except [54], can reproduce any faulty clock signal with exactly the same characteristics.

Instead, the capability of providing random faulty clock signals is only considered in [54]. Clock

frequency adjustments are also possible for all of the reviewed generators. However, FPGA’s clock

management units create another limitation related to the generated clock maximum frequency

[51, 53, 55, 56]. This setting is less restricted using external clock resources [38].

32

CHAPTER 2. STATE OF THE ART

Table 2.3: Review of Previously Proposed Clock Glitch Generators

 Methods

Characteristics

Fault Attack By Tampering Clock Input

CSC CDCF

Using FPGA Features

Using

External

Clock

Sources

Using External

Sources

Using

FPGA

Features

[55] [51] [53] [56] [57] [58] [38] [54] [52]

E
v

a
lu

a
ti

o
n

 P
la

tf
o

rm

Equipment

X
il

in
x

 V
ir

te
x

5

F
P

G
A

S
p

ar
ta

n
6

 F
P

G
A

S
p

ar
ta

n
6

 F
P

G
A

S
p

ar
ta

n
6

 F
P

G
A

F
P

G
A

 o
n
 S

A
S

E
B

O
-G

 V
ir

te
x

II
-P

ro

X
C

2
V

P
3
0

A
g

il
en

t
1
1

1
5
2

 P
u

ls
e

g
en

er
at

o
r

an
d

S
A

S
E

B
O

-G

A
g

il
en

t
E

4
4
3

8
C

 6
G

H
z

W
av

ef
o

rm

g
en

er
at

o
r

D
E

2
-1

1
5
 d

ev
el

o
p
m

en
t

b
o

ar
d

.

R
in

g
 O

sc
il

la
to

rs
 o

n

S
p

ar
ta

n
-3

E
 F

P
G

A

V
ir

te
x

-I
I

P
ro

 X
C

2
V

P
3

0
 F

P
G

A

System

Complexity

M
o
d

er
at

e

M
o
d

er
at

e

M
o
d

er
at

e-
H

ig
h

(P
C

B
 d

es
ig

n
in

g
)

M
o
d

er
at

e-
H

ig
h

(P
C

B
 d

es
ig

n
in

g
)

M
o
d

er
at

e-
H

ig
h

(e
v

al
u
at

io
n

 p
la

tf
o

rm
)

M
o
d

er
at

e-
H

ig
h

(e
v

al
u
at

io
n

 p
la

tf
o

rm
)

M
o
d

er
at

e

M
o
d

er
at

e-
H

ig
h

M
o
d

er
at

e

Cost

M
o
d

er
at

e

M
o
d

er
at

e-
 H

ig
h
 *

M
o
d

er
at

e

M
o
d

er
at

e

M
o
d

er
at

e-
 H

ig
h
 *

(e
v

al
u
at

io
n

 p
la

tf
o

rm
)

M
o
d

er
at

e-
 H

ig
h
 *

(e
v

al
u
at

io
n

 p
la

tf
o

rm
)

M
o
d

er
at

e

M
o
d

er
at

e

M
o
d

er
at

e

Minimum Glitch Width

N
o

 I
n

fo
.

(1
0
0
M

h
z)

3
n

s
fo

r
(1

0
M

H
Z

)

7
n

s
fo

r
(1

0
 a

n
d

2
0
M

H
Z

)

5
.9

n
s

fo
r

(2
4
M

h
z)

4
.9

n
s

(2
4
M

h
z)

5
.6

n
s

(2
4
M

h
z)

8
n

s
in

 (
1

1
4
M

h
z)

 a
n
d

2
n

s
(2

G
H

z)

1
0
0

 n
s

fo
r

8
m

h
z

2
7
n

s

(8
m

h
z)

33

CHAPTER 2. STATE OF THE ART

Capability to Inject

Glitch into Specific

Clock Cycle

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

Capability to Perform

Run-Time Configuration N
o

P
ar

ti
al

re
co

n
fi

g
u

ra
ti

o
n

N
o

N
o

N
o

N
o

Y
es

N
o

N
o

Capability to Control

Generated Faulty Clock

Frequency

Y
es

 b
u

t
L

im
it

ed
 t

o

D
L

L

Y
es

 b
u

t
L

im
it

ed
 t

o

D
L

L

Y
es

 b
u

t
L

im
it

ed
 t

o

D
L

L

Y
es

 b
u

t
L

im
it

ed
 t

o

D
L

L

Y
es

Y
es

Y
es

Y
es

Y
es

Reproducibility of

Glitchy Clock Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

Desired Randomness N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

N
o

Target Platform

X
il

in
x

 S
p

ar
ta

n
 3

A
N

 f
p

g
a

A
V

R
,X

M
E

G
A

,s
m

ar
t

ca
rt

A
V

R
 a

tm
eg

a
1
6

2

A
R

M
 C

o
rt

ex
-M

0
,

A
T

x
m

eg
a

2
5
6

S
A

S
E

B
O

-G
 V

ir
te

x
II

-P
ro

X
C

2
V

P
7

)

S
A

S
E

B
O

-R

A
lt

er
a

D
E

2
-1

1
5

E
P

4
C

E
1
1
5

F
2
9

C
7

S
T

M
3

2
F

0
3
0

A
T

M
E

G
A

 1
6
3

Application

1
2
8

-b
it

A
E

S

1
2
8

-b
it

A
E

S
 a

n
d

 a
u

th
en

ti
ca

ti
o
n

A
ri

th
m

et
ic

 i
n

st
ru

ct
io

n
s

ar
it

h
m

et
ic

al
/l

o
g

ic
al

 i
n

st
ru

ct
io

n
s,

 b
ra

n
ch

in
st

ru
ct

io
n

,
an

d
 m

em
o

ry
 i

n
st

ru
ct

io
n

s

A
E

S

A
E

S

A
E

S

In
fi

n
it

e-
lo

o
p

S
m

ar
tc

ar
d

ap
p

li
ca

ti
o
n

 S
O

S
S

34

CHAPTER 2. STATE OF THE ART

2.4.2 VOLTAGE GLITCH GENERATORS IN THE LITERATURE

In this section, the existing voltage fault injector designs are reviewed. The parameters discussed

before are used to compare them in terms of operational constraints, accuracy in the generated

signal, and impacts on the target system. The comparison results are then presented in Table 2.4.

The input voltage of a target system can be manipulated to perform fault injection if the system is

connected to an external source. Reducing the input voltage increases the propagation delay and

can result in timing violations [68]. Voltage fault injection can be performed either by permanently

decreasing the voltage supply (under-powering) [63, 77] or by multiplexing between different volt-

age levels for a limited time (Voltage glitching) [62, 68, 70, 71, 72, 78].

For the under-powering method, adjusted and pre-planned parameters are not required. In-

stead, in order for an attack to be performed, the target simply needs to be connected to a constant

voltage below the nominal voltage. However, this value depends on the target system specifications

and occasionally calls for many trials and errors in order to be found [72]. For example, to perform

differential fault attacks (DFA) using this approach, the attacker must find a particular voltage at

which the faulty output would appear. Furthermore, the applied voltage should be above a thresh-

old value at which the target system is functional, and communications to the controller computer

must operate in order to collect the faulty outputs [63, 68, 77].

Although under-powering is a low-cost and simple method to implement, it does not provide

the required time and location precision in many attack scenarios [60]. For more effective attacks,

voltage glitch fault injection is employed. To obtain the desired voltage signal and to induce faults

in the target systems accurately, different implementations are employed. Figure 2.15 summarizes

the main techniques for voltage glitching and the classification of the related works into three cat-

egories: 1) Voltage Multiplexing (VM), 2) Voltage Short-Circuiting (VSC), and 3) Voltage Glitching

using Pulse Generators (VGPG). It should be noted that for a more effective attack, some changes

may be made to the experimental set-up before voltage fault injection is performed. For instance,

the main power supply from the target chip should be disconnected. This calls for the removal of

the corresponding resistor bridge, which helps to control the voltage supply of the target system.

Moreover, all existing bypass capacitors on the target PCB should be detached since their role is

to enhance stability, and they are not needed to carry out the attack process. In the following, the

works in different categories are introduced.

2.4.2.1 Voltage Multiplexing (VM)

VM is based on the use of a high-speed multiplexer to switch between Vdd and a lower voltage value

during trigger Signal activation [60, 79]. In [60], one high-speed multiplexer on an FPGA is used.

The multiplexer includes two adjustable inputs, and its output is connected to the target system

in order to switch between different voltage levels (Vdd and 0 volts). Different specifications must

be considered to select a proper multiplexer for the fault injection set-up, including input voltage

35

CHAPTER 2. STATE OF THE ART

Figure 2.15: Different Methods for Generating Voltage Glitches

limits, switching speed, output leakage, existing capacitance, and charge injection. Depending

on the required voltage ranges on the output, different multiplexers are designed and optimized.

Consequently, the proper multiplexer should be used in order to avoid performance degradation.

2.4.2.2 Voltage Short-Circuiting (VSC)

VSC is one of the most commonly-used fault injection approaches for generating one or multiple

glitches in the voltage signal. Figure 2.16 presents the related set-up in which a transistor is placed

in parallel to the power supply line in order to create a short-circuit between the Vcc and the ground

[51]. In this method, additional equipment is required to control the voltage levels and the timing

of glitch induction. The generated glitch can be erratic due to process variations and the target

system’s electronic properties. [33] has shown the oscillations in the generated voltage signal by

using the VSC set-up and has proposed a method for a more precise and optimized voltage glitch

shape.

2.4.2.3 Voltage Glitching using Pulse Generators (VGPG)

The idea behind VGPG is to utilize a pulse generator as a DC voltage source to generate and inject

arbitrary glitches (usually square shapes) into the supply path [33, 68, 70, 71, 78]. The pulse genera-

tor can produce the equivalent analog signal from a digital source [33]. A logic level change in the

36

CHAPTER 2. STATE OF THE ART

Figure 2.16: Voltage Generator Set-Up in [51]

external input trigger leads to a transition from the constant supply voltage to the glitch waveform

loaded in the generator. In [33], a pulse generator is used to generate arbitrary wave forms in which

a set of parameters can be defined at the software level and saved in the internal memory of the

pulse generator. [68] presents a solution for using two pulse generators (instead of one) to achieve

higher precision. The second pulse generator can improve the generated glitch shape, and it brings

the voltage value to the normal level at a higher rate.

Figure 2.17 depicts the expected and altered glitches with one and two generators in this work.

A high-speed FPGA can also be used to generate the desired pulse. In [71], an FPGA and an ampli-

fier are used to produce the faulty voltage signal. In this case, glitch parameters are easily config-

ured by loading the bitstream file into the FPGA.

Figure 2.17: Comparing Generated Voltage Signal with One and Two Voltage Generators [68]

37

CHAPTER 2. STATE OF THE ART

Table 2.4 reviews voltage glitch generators and summarizes their technical features. The ta-

ble compares the VM, VSC, and VGPG approaches and presents their implementation platforms

(FPGAs, transistors, and pulse generators) [33, 51, 60, 68, 70, 78, 79].

Various targets and applications are also listed in the table and have been examined with re-

spect to voltage glitch generators. Complexity and cost are the first two parameters in our compar-

ison shown in Table 2.4. It can be seen that most voltage glitching platforms can be implemented

with moderate knowledge and expenses. The minimum glitch width is the next parameter to con-

sider in different voltage glitch generators. It depends highly on the equipment used and its abil-

ity to shape the precise voltage glitch. The VM-based approach could ideally generate very short

glitches by internal FPGAs; however, due to the limitations on I/O pins or other connectors used,

higher values are obtained in practice [60, 79]. In the VGPG-based approach, the minimum glitch

width is reliant on the capabilities of the pulse generator. For example, in [70], it has been reported

as 10ns. The next main parameter of voltage glitch generators is run-time configuration capabil-

ity, which is limited to the MUX used in VM-based generators [60, 79]. However, this setting is less

restricted by the use of external voltage resources in VSC and VGPG approaches [33, 51, 68, 71, 78].

This table also shows that in all studied works, synchronization between the voltage glitch genera-

tor and the target is applicable by using a trigger signal.

As a final point, Table 4 analyzes the voltage glitching approaches concerning reproducibility.

It shows that all of the glitch generators can reproduce any faulty voltage signal with the same

characteristics. Note that these voltage generators cannot provide any random faulty voltage.

38

CHAPTER 2. STATE OF THE ART

Table 2.4: Review of Previously Proposed Clock Glitch Generators

 Methods

Characteristics

Fault Attack by Tampering Voltage Input

VM VSC VGPG

Using FPGA Features

Using a

Transistor
Using a Pulse Generator

[60]

[79]

[51]

[71]

[33]

[68]

[78]

[70]

E
v

a
lu

a
ti

o
n

 P
la

tf
o

rm

Equipment

X
IL

IN
X

 S
p

ar
ta

n
-6

X
C

6
S

L
X

4
5

S
ta

n
d
ar

d
 E

v
al

u
at

io
n

 B
o

ar
d

(S
A

S
E

B
O

)
th

at
 i

n
cl

u
d

es

tw
o

 X
il

in
x

 V
ir

te
x

T
M

-I
I

P
ro

d
ev

ic
es

C
h
ip

w
h

is
p

er
er

 e
v

al
u
at

io
n

p
la

tf
o

rm

D
ed

ic
at

ed
 h

ig
h

-s
p

ee
d

h
ar

d
w

ar
e

A
rb

it
ra

ry
 W

av
ef

o
rm

g
en

er
at

o
r

an
d
 g

li
tc

h

am
p
li

fi
er

A
g

il
en

t
8
1

4
A

 A
N

D

P
ic

o
se

co
n

 d
 1

0
,3

0
0

0
B

P
C

B
 a

n
d

 a
 p

u
ls

e
g
en

er
at

o
r

A
g

il
en

t
8
1

1
4

A
 p

u
ls

e

g
en

er
at

o
r

System

complexity

M
o
d

er
at

e

H
ig

h

(e
v

al
u
at

io
n

p
la

tf
o

rm
)

+
 R

F

m
ea

su
re

m
en

ts

M
o
d

er
at

e-
H

ig
h

(e
v

al
u
at

io
n

p
la

tf
o

rm
)

A
n

d
 O

p
en

so
u

rc
e

M
o
d

er
at

e

M
o
d

er
at

e-
H

ig
h

(s
tm

3
2

 t
o

co
n

tr
o

ll
in

g
 a

n
d

I/
O

)

M
o
d

er
at

e

M
o
d

er
at

e

M
o
d

er
at

e

Cost

M
o
d

er
at

e

M
o
d

er
at

e-
H

ig
h

(e
v

al
u
at

io
n

 p
la

tf
o

rm
)

M
o
d

er
at

e-
H

ig
h

(e
v

al
u
at

io
n

 p
la

tf
o

rm
)

M
o
d

er
at

e

M
o
d

er
at

e

M
o
d

er
at

e

M
o
d

er
at

e

M
o
d

er
at

e

Minimum Glitch

Width

 - - - - - - -

1
0
n

s

Voltage Glitch

Placement

S
y

n
ch

ro
n
o
u

s
w

it
h

T
ri

g
g

er

S
y

n
ch

ro
n
o
u

s
w

it
h

T
ri

g
g

er

S
y

n
ch

ro
n
o
u

s
w

it
h

T
ri

g
g

er

S
y

n
ch

ro
n
o
u

s
w

it
h

T
ri

g
g

er

S
y

n
ch

ro
n
o
u

s
w

it
h

T
ri

g
g

er

S
y

n
ch

ro
n
o
u

s
w

it
h

T
ri

g
g

er

S
y

n
ch

ro
n
o
u

s
w

it
h

T
ri

g
g

er

S
y

n
ch

ro
n
o
u

s
w

it
h

T
ri

g
g

er

Capability to

Perform Run-Time

Configuration

L
im

it
ed

 t
o
 M

U
X

 (
o
n

th
e

F
P

G
A

)

L
im

it
ed

 t
o
 M

U
X

 (
o
n

th
e

F
P

G
A

)

L
im

it
ed

 t
o
 t

h
e

v
o

lt
ag

e

so
u

rc
e

L
im

it
ed

 t
o
 t

h
e

F
P

G
A

L
im

it
ed

 t
o
 t

h
e

v
o

lt
ag

e

so
u

rc
e

L
im

it
ed

 t
o
 t

h
e

v
o

lt
ag

e

so
u

rc
e

L
im

it
ed

 t
o
 t

h
e

v
o

lt
ag

e

so
u

rc
e

L
im

it
ed

 t
o
 t

h
e

v
o

lt
ag

e

so
u

rc
e

39

CHAPTER 2. STATE OF THE ART

Reproducibility of

Glitchy Clock Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Desired

Randomness N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Target

F
P

G
A

 X
il

in
x
 S

p
ar

ta
n
3

 a
n
d

S
p

ar
ta

n
6

T
ag

 C
h

ip

A
V

R
 –

 S
T

M
F

1
0

3

A
R

M

D
if

fe
re

n
t

ta
rg

et
s

fo
rm

 S
T

,
T

ex
as

in
st

ru
m

en
t

an
d

 R
en

n
es

F
P

G
A

X
il

in
x

 S
p

ar
ta

n
 3

A

A
rd

u
in

o
 B

o
ar

d

F
P

G
A

 X
il

in
x
 S

p
ar

ta
n
3

Application

S
T

R
N

G

R
ad

io
 F

re
q
u

en
cy

 I
d
en

ti
fi

ca
ti

o
n

(R
F

ID
)

ta
g

s

A
u

th
en

ti
ca

ti
o
n

/
b
o
o

t
lo

ad
er

S
ec

u
re

 b
o
o

t
at

ta
ck

/
se

cu
re

 r
u
n

ti
m

e

at
ta

ck

D
if

fe
re

n
t

F
au

lt
 m

o
d

el
s

A
E

S

T
h

e
E

d
2
5
5

1
9

 a
n
d

 E
d

D
S

A

si
g
n

at
u

re
 s

ch
em

es

A
E

S

40

CHAPTER 2. STATE OF THE ART

2.5 CONCLUSION

Chapter 2 reviewed most of the state-of-the-art clock and voltage glitching platforms. It then de-

fined their important characteristics and compared them based on these factors.The review points

out these platforms are challenging to adapt for general IoT designs, and they lack the proper FIA

configuration characteristics, such as clock/voltage glitch shape and injection timing parameters.

An ideal platform makes it easy to set these variables for the software developers. Moreover, most

of the proposed platforms were used to inject fault at lower levels (e.g., assembly or binary levels),

making it difficult for the software developers to interpret the vulnerabilities.Therefore, they need

an extra work to first configure the platform, then identify the most important/ vulnerable points,

and then to analyze the fault effects. Respectively, this thesis benefits from the reviewed and al-

ready existing features to design an efficient fault injection platform based on clock glitching. This

platform will be explained in next chapter. .

41

3 HARDWARE SECURITY EVALUATION PLATFORM

Contents

3.1 The Framework of a Practical Evaluation Platform 43

3.2 Fault Configurator Interface . 45

3.2.1 Key Parameters for Clock Glitch Configuration 45

3.2.2 Clock Glitch Configurator Interface . 46

3.3 Fault Generator . 47

3.3.1 FPGA Implementation of the Clock Glitch Generator 48

3.3.2 Experimental Comparison of Clock Glitch Generator Designs, CDC vs. CDCF:

Attacking AES Algorithm . 51

3.3.3 Design of an Efficient and Automated Clock Glitch Generator 57

3.4 Fault Effect Analyzer . 59

3.4.1 Main Control Flow Patterns and Their Evaluation Methods 59

3.4.2 Main Standard C-Functions and Their Evaluation Methods 61

3.5 Conclusion . 64

This chapter presents a practical hardware FIA platform designed to evaluate an embedded

software against clock glitching attacks. This platform consists of various components, including

1)Fault Configuration Interface, 2)Fault Generator, and 3)Fault Effects Analyzer. Each of these units

is presented with their related characteristics. Nevertheless, this chapter mainly focuses on the

Fault Generator part. Accordingly, the implementations of two different clock glitch generators

are first presented. Then, the capabilities and accuracies of these two clock glitch generators are

compared. These two generators are experimentally evaluated by applying a clock glitching attack

against an encryption algorithm. Finally, a simplified high-level fault effects analysis approach is

proposed.

3.1 THE FRAMEWORK OF A PRACTICAL EVALUATION PLATFORM

This section presents the framework for a practical evaluation platform against the clock glitch-

ing FIA. The characteristics of this platform have been defined according to the studied works in

Chapter 2. Figure 3.1 illustrates the high-level diagram of the proposed platform, which consists of

43

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

Figure 3.1: The architecture of the proposed evaluation platform

three main components: 1) Fault Configuration Interface, 2) Fault Generator, and 3) Fault Effects

Analyzer. The configuration and the analyzer are accessible through a Controller PC. The following

process details the way that the platform is used to perform a fault injection

• Via the configuration interface the user adjusts the fault generator with proper parameters

and initializes the target processor.

• The fault generator then sends a ready signal to the configurator interface when it is com-

pletely programmed.

• The configuration interface sends the proper inputs to the target under attack and starts its

execution.

• The target processor sets the synchronization signals (e.g., a trigger signal) to reach the pre-

defined point in its execution flow.

• The fault generator generates the faulty signals with the parameters specified in step (1) and

applies them to the corresponding target.

• The analyzer examines the individual attack results and gives an overview of vulnerabilities

that the evaluator can use (e.g., software developer or hardware security specialists). It de-

picts the prone to attack sections of the system, which the developer can consider improving.

In the following sub-sections, each unit is studied in more detail, and its characteristics are ex-

plained.

44

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

3.2 FAULT CONFIGURATOR INTERFACE

To increase a platform’s evaluation performance and to build practical clock glitching attack sce-

narios, a configurator interface is required. This can help the user (evaluator here) to control and

adjust the faulty signal parameters. This configurator can automatically or manually generate the

fault parameters, modify them, and send them to the fault generator circuitry. In the following,

the important configuration parameters for clock glitching FIAs are explained. Thereafter, a search

strategy is introduced to gather the configuration sets that lead to a successful fault attack.

3.2.1 KEY PARAMETERS FOR CLOCK GLITCH CONFIGURATION

In this thesis, the focus is on the clock glitching FIA. A clock glitch will temporarily shorten the

clock cycle period from Tc l k to Tg l i t c h , cause timing violations and faulty outputs or malfunctions

in the target processor. There are multiple clock glitch parameters that must be tuned, such as:

• Glitch Delay: This parameter shows where to insert the glitch after the positive edge of a

clock cycle.

• Glitch Width: This parameter describes the width from the point indicated by Glitch Delay

to the right.

• Glitch Temporal Location: This variable shows the clock cycle (i.e., number of cycles) to in-

sert the glitch after the trigger signal’s positive edge.

In order to perform clock glitching attack, one needs to run the application and wait for the re-

spective clock cycle to apply an efficient fault. It is difficult and time consuming to test all the com-

binations of clock glitch parameters. Therefore, one needs to apply optimized search strategies for

clock glitch configurations. The first assumption is that the glitch delay is equal to the Glitch Width

(Glitch Delay= Glitch Width), and their sum equals to Glitch Period (Glitch Delay +Glitch Width=

Glitch Period which is named as Tg l i t c h). This assumption can help to have only two glitch vari-

ables to be configured including Glitch Period and Glitch Location. Figure 3.2 demonstrates the

considered clock FIA parameters including Glitch Temporal Location, Glitch Width and Glitch De-

lay. One can also consider the additional parameters such as the Glitch Repeats, which is the num-

ber of times one aims to repeat the glitch in successive clock cycles, resulting in more advanced

scenarios.

In the following, the approach to develop the configuration interface strategies for clock glitch

configurations is presented.

45

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

Figure 3.2: Clock Glitch FIA Parameters

3.2.2 CLOCK GLITCH CONFIGURATOR INTERFACE

To have successful FIA experiments, one needs to improve the platform and build up an example

database for each of the target processors’ instruction sets with different sets of glitch parameters,

namely Fault Settings. The first step in developing the configurator interface is to define a search

space for different FIA parameters. In the search space of the clock glitch generator, the two fault

variables are Tg l i t c h and Glitch Temporal Location, and every combination of these values rep-

resents a specific configuration. The goal is to define the appropriate configurations, yielding a

successful FIA. Therefore, one needs to apply an approach to obtain the proper values. However,

choosing a proper algorithm that can give the best combination of FIA parameters in the search

space is difficult. One can randomly sample this search space as the first possible solution. Note

that an accurate range for the parameters is necessary for an evaluation process, and a lousy esti-

mation of these ranges leads to spending much time to test the different parameter combinations.

Regarding this, the idea of random sampling can be used as a basic approach in which there is no

guarantee to find the minimum precision for the evaluation process.

To apply improved approaches and to obtain more optimized results than a random way, the

search space needs to be narrowed down within respective bounds. This makes the evaluation

process easier and more time-efficient. According to this, one can study the datasheet of the target

processor and find the operating clock information. After that, based on that information, one can

define the specific bounds for the Tg l i t c h parameters:

• Per i odm i n : A lower bound for the Tg l i t c h , if the Tg l i t c h is set to this value or lower, the

device will ignore the glitch and mask it as a normal noise; therefore, the device response will

be as regular operation.

• Per i odm a x : A higher bound for the Tg l i t c h , and if the glitch width is set to this value or

higher, the device is affected by the glitch; however, the protection protocols try to tamper

with it, and the device goes into reset mode.

The new bounded search space for Tg l i t c h is in the ranges of (Per i odm i n , Per i odm a x). Figure

3.3 depicts the new search space for clock glitch parameters: Note that the glitch periods in (a) and

46

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

Figure 3.3: Glitch Period’s Search Space Bounds

(b) are not considered in the new search space.

Now, having a limited bound, the aim is to find the best values for Tg l i t c h in the defined in-

terval to have a successful attack. We apply here a basic method to obtain the best Tg l i t c h values.

Regarding that, one can divide the interval into "N" equal spaces and obtain "N-1" respective value

points. Depending on the required accuracy, one can increase the number of value points. For in-

stance, if the interval is divided into two sub-intervals, then one Tg l i tch is obtained. As another

example, if the interval is divided into eleven sub-intervals, then ten values are produced. Dividing

the interval by more sub-intervals can provide a more accurate estimation of the proper Tg l i t c h

for the FIA configurator. Finally, these values are tested iteratively in each one of the Glitch Loca-

tions, and their respective results are analyzed. If a successful fault injection is reported, the related

parameters will be marked and stored as the proper glitch parameters.

Figure 3.4 shows the framework of this platform in which the Fault Settings (e.g., related glitch

parameters) can be stored for each specific embedded software instruction (e.g., beq, addi, etc.)

running the target microprocessor. Since the fault effects are dependent on the target microproces-

sors’ architecture, only the developed settings and experiments for specific targets are explained.

However, according to this platform’s flexibility, further models could be added based on the eval-

uation process targets and needs.

3.3 FAULT GENERATOR

This section presents a fault generator unit based on the clock glitch FIA. First, the requirements

to implement the clock glitch generator designs are explained. Then, a guide is given to select the

47

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

Figure 3.4: The improved architecture of the proposed evaluation platform

right architecture depending on different considerations, such as the used components, the design

complexity, and the cost. Finally, two glitch generators are implemented, and their experimental

results are discussed to verify their performance.

3.3.1 FPGA IMPLEMENTATION OF THE CLOCK GLITCH GENERATOR

As discussed in section 2.4, in order to design a clock glitcher, one can select between CSC (Com-

bined Shifted Clock) and CDCF (Combined Different Frequency Clocks) methods and implement

the design on a hardware platform. Among different platforms, FPGA development boards are

easily accessible to implement glitch generator designs. Depending on the features that are impor-

tant to the user, one can choose from the boards and implement the clock glitch generator design.

The first important parameter is the price of the FPGA board, which fortunately does not impose a

limit. For example, low-cost FPGAs such as Spartan-3 and Virtex-4 have a desirable feature named

Digital Clock Management (DCM) that can be used to generate different versions of the nominal

clock and create a glitch. A very similar feature can be found in the more powerful models such

as Virtex-5 and Spartan-6 that have Phase Locked Loop (PLL) to generate glitches [80]. Moreover,

advanced and more expensive FPGAs such as Virtex-6 and the seven series FPGAs have the Mixed-

Mode Clock Manager (MMCM) in [81], including both the DCM and PLL features. The advantage

of using MMCM is that it can generate multiple accurate clock signals with defined shifted-phases

or divided/multiplied frequencies.

Another parameter to consider for fault generators is the run-time configuration. This feature

allows the user to modify the glitch characteristics without re-programming the whole system and

can be specifically useful in a testing scenario with various parameters. The authors in [44] present

48

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

an example where different clock glitch generator parameters, such as output frequency, phase,

and duty cycle, can be dynamically reconfigured effortlessly in the run-time. This utility is present

in the Xilinx 7 series, Ul tr aScaleT M , and Ul tr aScale+T M and is named the dynamic reconfigu-

ration port (DRP).

In the following, the two fault generator designs based on the CSC and CDCF methods are

explained. Then, the experimental results of an example target application are discussed to show

their capabilities to exploit the desired errors. Afterward, the results of these two designs and their

capabilities and performances are compared.

3.3.1.1 Clock Glitch Generator Design Based on the CSC Method

In order to design a glitch generator based on the CSC method, a Xilinx FPGA (Arty-S7-50) is se-

lected. Figure 3.5 shows an architecture of a clock glitch generator that is implemented in this

FPGA. It contains two phase shifting modules which are implemented by using the DCM, and then

the signals are combined by some logical operations (e.g., XOR or MUX). Once there is a rising

edge of the trigger signal, the glitch with the configured parameters can be injected. Using this

method, one can control all the important glitch parameters such as Glitch width, Glitch Location,

and Glitch delay. The run-time configuration for the glitch width parameter is related to the DCM

block specifications, and partial reconfiguration makes it possible to change this parameter with

some restrictions. The glitch delay inside the affected clock cycle is specified by the phase of the

first clock signal.

Figure 3.5: A Clock Glitch Generator Based on the CSC Method

3.3.1.2 Clock Glitch Generator design based on the CDCF method

The CDCF method is implemented with a Kintex 7 FPGA (Digilent Genesys-2). Figure 3.6 shows

the two clocks that are fed into a specialized clock multiplexer and are available for Xilinx FPGAs

(BUFGMUX). The multiplexer is used in an "asynchronous" mode to switch the slow clock to the

49

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

Figure 3.6: Glitch Generator based on the CDCF Method

fast clock when one aims to inject the clock glitch. The glitch injection is therefore realized by con-

trolling the selection of the multiplexer. This selection is connected to a large shift register which

is configured by the computer through a UART connection. Each bit inside the shift register corre-

sponds to one potential clock cycle of the fast clock. Thus, when the shift register’s output equals

zero, the multiplexer outputs the slow clock, while it is equal to one, so it outputs the fast clock.

In order to control the fault injection, a state machine in the FPGA is implemented, which initially

configures the shift register. Then the system waits for a trigger from the target and synchronizes

the shifting of the register to the select of the BUFGMUX on the "slow clock" edge, following the

trigger. An example of this process is shown in Figure 3.7. In this process first, the fault injection

setup is equipped with the clock generator. Then the software which controls the device under

evaluation activates the trigger signal. Whenever the output value of the shift register equals to

one, a single glitch will be injected. The output of the BUFGMUX is connected with an ODDR and

an OBUF element to reduce the jitter and improve the driving capabilities for the output clock

This methodology can inject a clock glitch on multiple instants within a normal clock cycle

according to the ratio of "fast clock"/" slow clock," which in our case was 208/16 = 13. Therefore,

one is able to supply a clock glitch to the target in 13 different time divisions of each clock cycle of

the normal clock. This setup is very flexible since it allows to configure any combination of single

or multiple glitches during the computation under evaluation. The main drawback of the current

setup is that if the glitch control shift register is very large, then it takes time to fill the register before

every fault injection.

50

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

Figure 3.7: An example of faulty clock generation based on the CDCF method

3.3.2 EXPERIMENTAL COMPARISON OF CLOCK GLITCH GENERATOR DESIGNS,

CDC VS. CDCF: ATTACKING AES ALGORITHM

In this section, an example of clock glitching FIA on the AES algorithm is presented to validate

the efficiency of implemented fault generators. These glitch generators are then validated on an

off-the-shelf ARM-Cortex-M3 32 bit micro-controller (MCU) target. Clock glitching FIA can cause

an erroneous behavior of this algorithm and result in faulty cipher texts. The main goal of this

experiment is to characterize the types of injected faults. It is important to perform an accurate

clock glitching FIA and have a single bit faulty value in generated AES cipher text. The AES algo-

rithm is applied to encrypt or decrypt data blocks of 128 bits by using a secret key of 128, 192, or

256 bits [82, 83]. The key length decides the total number of encryption rounds. Except for the

last round, each round consists of four transformations: SubBytes, ShiftRows, MixColumns, and

AddRoundKey. Compared with other rounds, the last round does not execute the MixColumns

function. A structure of AES 128-bit has been shown in Figure 3.8.

Here, a short explanation of the main steps of the AES-128 algorithm is presented:

1. SubBytes is a nonlinear byte substitution in which another value replaces every byte from the

16-byte state. In the SubBytes step, each byte in the state is replaced with its entry in a fixed

8-bit lookup table.

2. Shift rows are circular shifts on the four rows of the state. More precisely, row i is transformed

by a circular shift on bytes by i positions to the left.

3. A mixed Column is a linear bijection on the four columns in parallel.

4. AddRoundKey consists of an XOR operation of a generated schedule from the original 128-

bit key utilizing a key expansion, which means that a different, unique key is generated and

added to the state for every round.

51

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

Figure 3.8: Structure of AES [83]

All the steps are illustrated in Figures 3.9, 3.10, 3.11, 3.12.

52

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

Figure 3.9: SubBytes in AES 128

Figure 3.10: ShiftRows in AES 128

Figure 3.11: MixColumn in AES 128

Figure 3.12: AddRoundKey in AES 128

53

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

Figure 3.13: Fault Injection on a single byte of an AES-128 bit

In the following, a clock glitching FIA on an AES-128 running on a target MCU is performed.

As an example, the AddroundKey function of the last round (10th round) is selected. Moreover, the

glitch generator is configured to examine the effect of injecting a single clock glitch with proper

parameters on each of the 410 clock cycles needed for executing this function. Fault Injection on

AddRoundKey of the last round of AES-128 bit is illustrated in Figure 3.13. In order to characterize

and compare the capabilities of the clock glitch injection platforms, a fault injection experiment

on an AES algorithm running on an ARM-CortexM3-32bit MCU is performed.

For the setup, the evaluator needs to follow the high-level diagram of Figure 3.14.

Figure 3.14: The Clock Glitching FIA Setup

The setup consists of a control PC, a target board, and a fault-injection module. One can control

and configure both the fault-injection module and the target board by using the PC. UART performs

the communication between the MCU and the PC. Moreover, this PC acts as a user interface and

configures the clock glitch generators via a second UART interface.

54

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

Figure 3.15: Fault Mapping, CSC generator

Figure 3.16: Fault Mapping, CDCF generator

In this work, the AddRoundKey operation of the last round (10th round) is attacked. After ap-

plying the glitch, the computed cipher text of the AES has been saved and sent to the computer. In

this work, 4100 fault injections were performed. Furthermore, in order to be able to verify the be-

havior of the fault injection with different data being processed, for every different setup of glitch

attack parameter, ten fault injections have been performed with random plain texts. Thus, ten fault

injections have been performed in each of the 410 clock cycles of the last round AddRoundKey op-

eration, while all 4100 encryptions are performed with random plain texts and the same key.

Figures 3.15 and 3.16 depict the cartography of the injected faults for the two injectors. The

horizontal axis contains all 410 clock cycles of the AES operation under attack.

On the vertical axis, the number of affected bytes of the AES’s state register due to each of the

410 depicted attacks has been plotted (with random plain texts and the same key). When a fault

injection results in a reset/hang of the MCU, the value of minus one is assigned to that. Such

cartography is very useful because it can show the clock periods of the computation, which can

lead to a fault of a specific impact. The obtained patterns for the ten repetitions of the attacks are

very similar. This shows consistency during the fault injection with different plain texts concerning

the number of affected bytes. Such cartography can also be used later to focus on a more thorough

evaluation of specific clock cycles. Comparing the two figures, one can notice that the use of the

CSC glitch generator led to fewer successful fault injections than the CDCF, which shows that the

overall setup and the glitch location used for fault injection play an important role in the acquired

results.

55

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

Table 3.1: Glitch Generator Comparison of Affected Bytess

Table 3.2: Fault Multiplicity of Single-Byte Faults

In Table 3.1, the glitch generators are compared in terms of the number of affected bytes. In

this table, the results of all 4100 injections are illustrated with the corresponding percentages of in-

jections, which led either to a fault-free operation or to a Hang/Reset of the MCU or to a successful

injection. For successful cases, the number of bytes that were affected are also mentioned. This

can confirm reproducibility and also help us to figure out if there is a relation between plain text

and the number of faulty bytes or not. The faults which led to a Hang/Reset were 13.4% for the

CDCF generator while 25.1% for the CSC generator. Furthermore, the CDCF glitch generator led

to considerably more errors affecting one or two bytes, and at the same time, it caused more faults

affecting all 16 bytes of the AES.

Table 3.2 provides the results regarding the number of bit flips injected in the subset of injec-

tions affecting a single byte of the AES. This time it is observed that the Clock CDCF generator did

not lead to any faults of one bit, while the CSC generator led to 1.2% of errors of a single bit. On the

other hand, the CDCF glitch generator led to a higher amount of 255 single-byte faults versus 161

for the Phase Shift glitch generator.

Although the results of the two glitch generators are different, they show that both glitch gen-

erators are capable of injecting well-controlled faults into the MCU. However, the CSC approach

has more parameters to control than the CDCF method does. For instance, with the CSC method,

the glitch delay can be manipulated inside any single clock. Moreover, much thinner glitches can

be produced by applying the CSC method due to the existing DLL constraint of generating higher

frequencies for the CDCF method.

56

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

3.3.3 DESIGN OF AN EFFICIENT AND AUTOMATED CLOCK GLITCH GENER-

ATOR

As discussed in the previous section, the minimum glitch width with the CSC method is less than

the CDCF and the glitch location is controllable inside any of the single clocks. Therefore, the CSC

method has been selected for the rest of the experiments in this thesis work. In order to automate

the clock glitch generation and to induce the glitch in all clock cycles of the targeted software, an

advanced FPGA (Arty S7-xc7s50) board has been selected. Figure 3.17 illustrates the high-level ar-

chitecture of the clock glitch generator. This clock glitcher consists of three sub-modules, including

a Frequency-Convertor, a MMCM-Dynamic-Phase-Shifter, and a Glitch Injector.

Figure 3.17: General Architecture of the Clock Glitch Generator

The Frequency-Convertor module is used to convert one of the available internal clock sig-

nals in the FPGA (12 and 100 Mhz for Arty S7-xc7s50) to the desired frequency. Then, the MMCM-

Dynamic-Phase-Shifter utilizes the Dynamic Reconfiguration Port (DRP) feature to generate shifted

versions of the converted clock signals. The shifted phase values (shifted 1 and shifted 2) are de-

termined in a state machine shown in Figure 3.18. They can change from 0 to 90 degrees and this

can cause to generate different glitches with various parameters (glitch width and location inside

a single clock). Then, another state machine shown in Figure 3.19 is used to insert the generated

glitches in specific clock cycles.

Figure 3.20 elaborates one example of a generated faulty clock in which the glitch is inserted

after 1,2 and 3 cycles after the rising edge of injector signal.

57

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

Figure 3.18: The State Machine for Updating the Phase Shifts

Figure 3.19: The State Machine for Updating the Glitch Location

58

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

Figure 3.20: An Example of the Generated Faulty Clock

3.4 FAULT EFFECT ANALYZER

This section defines the high-level analyzer of the evaluation platform and explains the proposed

test scenarios and approaches. The goal is to exploit and analyze the high-level vulnerabilities of

a target embedded software after injecting faults. After this analysis, the evaluator should have

information about the security vulnerabilities in the early developing stage of the application.The

problem is that it is not trivial on an application to understand in details which faults might occur.

Therefore, the goal is to instrument the C code and to be able to catch the fault effects at higher

software levels. The following focuses on analyzing the most prominent patterns in the program

control flow and common functions.

3.4.1 MAIN CONTROL FLOW PATTERNS AND THEIR EVALUATION METHODS

In this part, in order to present the evaluation approach, the important control flow statements are

categorized into three main classes, namely: 1) Unconditional Branches, 2) Decision Makings, and

3) Iterative Controls. Table 3.3 shows these statements with some C code examples.

Table 3.3: Important Control Flow Statements

Control Flow Statements Type Examples

Branching/Skipping Unconditional Continue/Break/Go

Decision Making Conditional If/If-else

Iterative Conditional For/Do-While/While

In the following, in order to illustrate our method, different graphs are utilized in which the

59

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

nodes plus the edges represent the code segments and the control flows, respectively. To illustrate

the vulnerability of control branches one or two check points (CP1 and CP2) are assumed. In fact, a

check point is an added variable in the software which its value can show the execution of a certain

path.

• Branching/Skipping evaluation: Figure 3.22(a) shows the unconditional branch as a basic

control flow that contains an outgoing edge from a node in a control flow graph. Figure

3.21(b) shows an extension of a control flow evaluation with the inserted check points where

the program runs in the presence of the fault injection. When CP1 was activated, the injected

fault did not affect the correct execution of the branch, and when the CP2 was set, it showed

the branch was corrupted. When none of the checkpoints are activated, it implies that the

PC register contains an incorrect instruction memory address (represented as X).

• Decision-making evaluation: Figure 3.22 (a) shows a basic decision-making control flow

graph (if-else) that contains a decision node with two control branches. The conditional

control branches are merged after executing the statements of the selected branch (white

circles). Figure 3.22(b) presents an evaluation example of decision-making statements by

first setting the condition to a state which leads to a known result, and then CP1 and CP2

are inserted to monitor the consequence. In this example, it is expected that the condition is

false, so when the fault injection is unsuccessful, the CP2 is activated. When the CP1 is set,

one can detect the skipped conditional test.

To evaluate the nested conditional branch (branches in branches), more checkpoints are

needed. Figure 3.24 illustrates the inserted checkpoints in a nested branch. In this case,

the conditions are set to give false results, and therefore, it is expected that the CP3 to be-

come activated. This indicates the error-free execution of this statement. The fault injection

can result in the activation of CP1/CP2, and one can detect the vulnerability of branches.

• Iterative control evaluation: Figure 3.24 presents the while loop evaluation as one of the it-

erative control statements. First, it is assumed that an always true condition such as while

(1), then the CP1 as a watchdog flag is defined to detect the skip from the loop. In this case,

if CP1 becomes active, it demonstrates that the fault injection has manipulated the correct

execution of the loop.

To evaluate a finite iterative control flow statement (e.g., for-loop), using the check point is

not efficient to detect the fault execution. Instead, on can monitor its number of iterations

by using a counting variable in presence of fault injection. For this, the same for loop is run

twice (one in the presence of fault injection and the other is executed in a normal situation).

At the end of the loop, the final values of counting variables are compared. If these two values

are not equal, it indicates that fault injection has caused an error in the execution of the loop.

60

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

Figure 3.21: Control Flow Evaluation for Unconditional Branch

Figure 3.22: Control Flow Evaluation of Single Conditional Branch

Next, in order to cover more evaluation scenarios, some standard C functions are studied against

fault injection attack.

3.4.2 MAIN STANDARD C-FUNCTIONS AND THEIR EVALUATION METHODS

This section aims to explain more general evaluation scenarios to exploit the vulnerabilities of stan-

dard high-level C functions. First, the standard embedded C-functions are categorized, including:

• Type Casting Functions perform data type conversion from one type to another. Two impor-

tant examples are atoi and itoa, which convert string to int and int to string, respectively.

• String Manipulation Functions can modify the strings. There are various functions in this

class, including strcpy and strncpy to copy a string to another.

• Memory-Based Functions manipulate the data inside the memory and are specifically vital

61

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

Figure 3.23: Control Flow Evaluation for Nested Condition

Figure 3.24: Control Flow Evaluation of an Iterative Control

for a system’s initialization. Important examples of these functions are memset and memcpy,

which are used to set all the bytes in a block of memory to a particular value and to copy a

block of data from a source address to a destination address.

• Searching and Sorting Functions include examples such as bsearch and qsort. A bsearch sorts

an array and then searches the desired record based on the binary search tree algorithm.

A qsort function sorts an array of numbers. To evaluate it, each element is weighed at the

output array.

There are different evaluation scenarios for different C-functions in the analyzer interface. For

example, to test the Type Casting Functions, an (input, output) pair is selected and the function

runs in the presence of FIA. If the generated result differs from the expected one, a successful at-

tack is reported. For the Sring Manipulation Functions that transfer or copy data from a source to a

destination, the results are compared with strcmp to detect any possible mismatch. The Memory-

Based Functions are assessed by feeding them with known values and checking the specific mem-

ory location(s) related to the operation. A fault-affected function will result in an incorrect memory

62

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

address or value. The output of the Searching Functions can be observed when a known array is

given to the function, and when they return a null value, it means that the attack was successful.

To evaluate the Sorting Functions, each element of the output array is weighed. Then, when the

sorted array is generated, the sum of all the multiplication of weights and related elements of the

arranged array are compared. If these two are not equal, it means wrong sorting. Table 3.4 summa-

rizes different categories of the standard library functions with the normal and their faulty behavior

in front of FIA.

Table 3.4: The behavior of different high-level C-functions

C-Functions Normal Behavior Faulty Behaviour In Front of FIA

atoi Converts an ASCII array to an Integer

value

Corrupted integer value

itoa Converts integer value to an ASCII pre-

sentation

Corrupted ASCII value

memset Saves value in memory Corrupted memory value or manipulating

neighbor memory blocks

memcpy Compares the values in memory Faulty comparison results

strcpy Copies from one-character array to an-

other

Corrupted or incompleted copied array

strncpy Copies portion (n-bit) of contents of

one string into another string

Corrupted or incompleted copied array

character

strchr Finds the first occurrence of a character

in a string

Finds the wrong position or does not find

strtod Convert string to double value Corrupted double value

qsort Sorts an input array Change the position of values in an array

bsearch Searches an array to find value Does not find the value

63

CHAPTER 3. HARDWARE SECURITY EVALUATION PLATFORM

3.5 CONCLUSION

This chapter of the thesis proposed a practical hardware evaluation platform to analyze the em-

bedded software vulnerabilities against the clock glitching FIAs. The architecture and the main

components of this hardware platform were studied. Then, in order to implement an efficient

clock glitcher, the architecture of two different clock glitch generator were compared by targeting

an example (running 128 bit AES algorithm) and the best architecture was chosen for this work.

One of the limitations of this experimental platform is that it can take a long time to consider all of

the possible glitch parameters.

In the following of evaluation platform, different high-level analysis methods were proposed to

help the software developer to detect the existing vulnerabilities of different patterns and standard

functions against these hardware-based security attacks. Regarding this, another point to consider

is that the test scenarios are applied at functional level and it might get difficult to use them to

evaluate an overall embedded application. Therefore next chapter will use this hardware platform

and guide the software developer step by step to evaluate an embedded application.

64

4 HARDWARE SECURITY ASSESSMENT BY UTILIZING

THE HARDWARE EVALUATION PLATFORM

Contents

4.1 ICEM Assessment Methodology . 68

4.1.1 Identification of sensitive assets . 68

4.1.2 Classification of the Assets based on their security properties 69

4.1.3 Experimental Evaluation of the Assets . 69

4.1.4 Mitigation of Software-Level Vulnerabilities 70

4.2 Evaluation of a Medical Embedded Application against Clock Glitching FIA: A

Case Study . 70

4.2.1 Identifying the Sec-Pump Assets . 71

4.2.2 Classifying the Sec-Pump’s Assets based on their Security Properties 72

4.2.3 Experimental Evaluation of the Sec-Pump . 72

4.2.4 Vulnerability Mitigation for the Sec-Pump Application 82

4.3 Conclusion . 85

Securing IoT applications against hardware-based attacks is an increasingly important concern

for embedded software developers. To answer such a need, a hardware evaluation platform along

with high-level analysis methods have been proposed in the previous chapter. However, having

an implemented fault injection hardware platform and using only basic evaluation approaches are

not sufficient to assess a complex application which has different modules. In other words, the soft-

ware developers need to be guided properly to identify the critical assets of their application and

then to conduct the appropriate assessments against the experimental FIAs. Therefore, this chap-

ter shows how to utilize an evaluation platform efficiently to assess an embedded software against

clock glitching attacks. It uses a divide and conquer approach that includes four steps (Identifica-

tion, Classification, Evaluation and Mitigation), named as ICEM. Accordingly, this approach reveals

the procedure of how one developer can identify the critical assets and find the potential points of

interest (in terms of security) of the underlying application. These points can affect the creden-

tial information, the data/control flow integrity, and the availability of the critical services when

targeted by the FIA.

67

CHAPTER 4. HARDWARE SECURITY ASSESSMENT BY UTILIZING THE HARDWARE
EVALUATION PLATFORM

In this chapter, a medical IoT application is being analyzed by using our evaluation platform

and the ICEM approach as a case study along with a proof of concept. This example shows how to

discover the vulnerabilities, and presents a few software-level examples to mitigate the mentioned

FIA impacts on an application’s security level. The results and analysis of this chapter show that

by using ICEM approach, one can easily detect the system susceptibilities. Thereafter the system

security can be enhanced by adding proper countermeasures at the most security sensitive units.

In the following, the ICEM hardware security assessment methodology is described. Then, each

sequential step of this assessment approach is explained in detail.

4.1 ICEM ASSESSMENT METHODOLOGY

The ICEM assessment approach consists of four main steps for the embedded IoT applications:

1)Identification of sensitive assets, 2)Classification of the assets based on their security properties,

3)Evaluation of the assets, and 4)Mitigation of software-level vulnerabilities. Figure 4.1 shows the

flow of this approach that a developer should apply, and each step is explained in the following

parts of this chapter.

Figure 4.1: ICEM Assessment Methodology

4.1.1 IDENTIFICATION OF SENSITIVE ASSETS

Initially, all the application’s sensitive assets which have high value for the service provider or the

end-user must be identified. These assets can take various forms, including the device’s inten-

tional operational flow, the firmware, the user IDs and passwords, the encryption keys, the entered

information from the user or sensors, the stored system logs and libraries. By making a list of crit-

ical assets and prioritizing them, software developers can effectively decide the required testing

coverage level for each one of them.

68

CHAPTER 4. HARDWARE SECURITY ASSESSMENT BY UTILIZING THE HARDWARE
EVALUATION PLATFORM

4.1.2 CLASSIFICATION OF THE ASSETS BASED ON THEIR SECURITY PROPER-

TIES

Each asset has some associated security properties. Categorizing the mentioned assets in an IoT

application is critical because all subsequent steps rely on this step. Assets can be classified into

three main groups: 1) Confidentiality-related, 2) Integrity-related, and 3) Availability-related assets

and they are explained in the following:

• Confidentiality-related assets: these assets are the ones that contain various sensitive user

data and should only be accessible by authorized people. Confidentiality-related assets should

be highly secured to avoid any leakage of the user or the device information. Password en-

coding and determining different access levels are typical solutions in the software develop-

ment stage. Moreover, the hardware developer’s dedicated protected storage for confidential

and important data is common [84].

• Integrity-related assets: this category includes the information that an embedded applica-

tion may record or process in an intended manner. Only authorized parties can modify the

modules’ functionality. Therefore, the targets’ critical functional modules are considered as

integrity-related assets, and they must be protected against any unintentional modification

by an attacker. In other words, the accuracy and consistency of a functional unit over its life

cycle must be guaranteed in a secure embedded device.

• Availability-related assets: these assets are mostly related to the user interface for an embed-

ded application. They enable communication between the service providers and the end-

users. They collect the data from the physical entities and update the firmware according to

its requirements. These units must always remain operational. Hence, a complete analysis

must be performed to evaluate the service loss risk under different physical attack scenarios.

4.1.3 EXPERIMENTAL EVALUATION OF THE ASSETS

To perform an experimental evaluation of different assets and to discover the existing vulnerabili-

ties in an application, one can split the application into multiple modules. Based on the targeted

module properties, the right attack configuration and analysis scenarios from the evaluation plat-

form can be applied. For example, the evaluation of a module that performs the computing task is

different from a module that authenticate the users. In this work, the focus is on the clock glitch-

ing FIA, which can subvert the confidentiality, integrity, or availability of the vulnerable assets. For

example, the attacker can skip the privacy controls and authentications (confidentiality), enforce

the target to write erroneous data in unintended locations (integrity), perform corrupted read op-

erations from the memories (integrity), manipulate the functionality by corrupting a control flow

(integrity-availability).

69

CHAPTER 4. HARDWARE SECURITY ASSESSMENT BY UTILIZING THE HARDWARE
EVALUATION PLATFORM

4.1.4 MITIGATION OF SOFTWARE-LEVEL VULNERABILITIES

After evaluating an application against the fault injection attacks, the software developer can con-

clude the to be employed security level based on the discovered vulnerabilities; and can deter-

mine the security objectives which are defined at the application level. At this point, a list of re-

quired mitigation patterns for a secure application can be proposed to protect it against similar

FIAs [85, 86, 87]. Furthermore, considering target devices’ power and memory limitations, the de-

veloper can apply the appropriate mitigation based on the asset’s priorities.

4.2 EVALUATION OF A MEDICAL EMBEDDED APPLICATION AGAINST

CLOCK GLITCHING FIA: A CASE STUDY

This section aims to apply the ICEM methodology to an example of a medical embedded appli-

cation. Generally, medical IoTs do not always offer a high level of security and lack the hardware-

security standards. Moreover, the applications of these examples are written in unsafe languages

such as C. The criticality and lack of a clear evaluation approach of the embedded application in

this domain was the reason to apply this methodology to a medical IoT case study. An excellent

example of a medical IoT device exists as an infusion pump installed in hospitals to deliver doses

of drugs to patients and monitor their health status. Figure 4.2 shows an infusion pump’s physical

architecture connected to the network, which different users with different credentials can config-

ure. The pump’s generated logs and data are stored and sent to the central service provider, such

as the hospital.

Figure 4.2: Infusion Pump Physical Architecture

The lack of openness to research and posed commercial constraints of these infusion pumps

made it impossible to assess a real commercial example. Accordingly, an open-source and security-

70

CHAPTER 4. HARDWARE SECURITY ASSESSMENT BY UTILIZING THE HARDWARE
EVALUATION PLATFORM

oriented medical application was selected to model the behavior of a life-critical infusion pump

named as "Sec-Pump" from the SERENE-IoT Project [8]. This example has been designed to be

used for both research and teaching activities related to embedded system security and runs on

both ARM and RISC-V microprocessors [88]. Sec-Pump can demonstrate the potential security

breaches and vulnerabilities of other existing infusion pumps [49].

4.2.1 IDENTIFYING THE SEC-PUMP ASSETS

Figure 4.3 shows the important modules of the Sec-Pump application and identifies the critical

assets within each module,

Figure 4.3: Critical Assets in Sec-Pump

These modules and their assets are briefly explained as follows

• Display module: It is responsible for showing different information, including the time, in-

jective drug, patient name, etc. Since this module is easily accessible and important for in-

formation transfer, its crucial functions need to be secured against related physical attacks.

• Network and Cloud Communications: It configures the Sec-Pump and sends/receives the

administrative commands and data packets. This module should always be connected to

transfer commands and to monitor the running status.

• Bootloader: This module calls the application and runs an interface to display the infusion

pump’s current version and functionalities. It configures the Sec-Pump set values and mem-

ory addresses which plays an important role in the program flow.

• Encryption module: This module encrypts the critical user information and the variables

used by other modules. The encryption keys and the flow of important instructions should

be secured against any physical attack.

• Authentication module: This module requests a password from the user to provide a session

with privileges. If an attacker can reveal the passwords or bypass the checking instructions,

he/she will have the highest level of access to the system.

71

CHAPTER 4. HARDWARE SECURITY ASSESSMENT BY UTILIZING THE HARDWARE
EVALUATION PLATFORM

• Library: The secure pump applies much information from its library to secure functions at

runtime. The attacker may target the proper functionality of this module.

• Clock Scheduler: This module enables the doctor to choose a drug from the library and inject

it into the patient’s body at a specific time and with proper dosage. If the attacker can modify

the drug dosage or disrupt its schedule, a critical situation will happen for the patient.

• Drug Management: This module allows the doctor or medical authorities to modify the

boundary parameters, delete the drugs, or add new medicines. These values should be pro-

tected from any non-authorized person.

4.2.2 CLASSIFYING THE SEC-PUMP’S ASSETS BASED ON THEIR SECURITY

PROPERTIES

The second step is to define some functionality level categories and to classify the assets in the re-

lated categories. Regarding this, Table 4.1 presents the different asset categories of the Sec-Pump

application.The first group presents the confidentiality-related assets, including encryption and

authentication, that contain various sensitive user data and should only be accessible by autho-

rized people. Then, all of the critical functions in the boot loader, clock scheduler, and drug man-

agement modules are placed in the Integrity-related assets, and their accuracy and consistency

are necessary for Sec-Pump’s secure functionality. Finally, the network and display modules are

linked to the availability of the device because they enable the communication between the ser-

vice providers and the end-users.

Table 4.1: Different Asset Categories of Sec-Pump

Category Module Assets Examples

Confidentiality-related assets
Authentication Username and passwords

Encryption Encryption keys

Integrity-related assets

Bootloader The Program Counter (PC) register

Clock Scheduler Functions for setting the values

Drug Management Functions that affect the main outputs

Availability-related assets
Network Essential functions to maintain the connec-

tion

Display All the necessary functions

4.2.3 EXPERIMENTAL EVALUATION OF THE SEC-PUMP

In the following, two of the Sec-Pump application’s integrated modules, including Authentication

and Drug Manager, as case examples are evaluated. The experimental setup to apply clock glitch-

ing FIA into Sec-Pump application and to debug its faulty behaviour is shown in Figure 4.4. The

72

CHAPTER 4. HARDWARE SECURITY ASSESSMENT BY UTILIZING THE HARDWARE
EVALUATION PLATFORM

Sec-Pump application is being executed on an RISC-V Rocket Core which is implemented in an

Arty-A7 FPGA [89]. An Olimex debugger is used with JTAG interface and is supported by OpenOCD

(Open On-Chip Debugger)to program/ debug the target board. OpenOCD is an open-source soft-

ware that interfaces with a the JTAG port of the hardware debugger [90]. The target device’s clock

signal has been modified in three steps: 1) a clock-core signal has been defined and connected to

the clock source in the FPGAChip.scala file. 2) a clock port is created and connected to this clock-

core signal in the ArtyShell.scala file. 3) The clock-core signal is connected to one of the PMODs in

the arty constraint file (arty-7.xdc) [91]. In this way one have access to the clock core of the system

to apply the clock glitching FIA.

Figure 4.4: The Experimental Setup

Table 4.2 describes the security properties of Authentication and Drug Manager modules and

a brief explanation of the potential threats against them. In the following, the vulnerabilities of

these modules’ certain operations are investigated. In the first scenario, the Authentication module

and its related operations that authorize individuals to the system are evaluated. Then, the Drug

Manager module is analyzed in the second scenario.

4.2.3.1 Evaluation of the Authentication Module

Sec-Pump has a single-step authentication process. When the Sec-Pump boots, it enters an infinite

loop for password entry. If an attacker can bypass this password checking step, he/she can access

the entire system. In the following, this module is evaluated against the clock glitching FIA. Listing

73

CHAPTER 4. HARDWARE SECURITY ASSESSMENT BY UTILIZING THE HARDWARE
EVALUATION PLATFORM

Table 4.2: Potential FIA Threats for Sec-Pump

Targeted Module Security Properties Under Evaluation Functions against Clock

Glitching FIA

Authentication Confidentiality-related

assets

The Conditional Branch fo user password

checking

Drug Manager Integrity-related assets Critical Functions to convert or save important

values (Cure name and duration)

Listing 4.1: Authentication Module in Sec-Pump Application

bool PassCheck (char* r_pass, char* i_pass)

{

if(strcmp(r_pass, i_pass) == 0)

{

printf("welcome to the Sec-Pump\n");

InsulinController(FloatBuffer);

return true;

}

else

{

printf("Password Wrong!\n try again!");

return false;

}

}

4.1 illustrates a single-step authentication in which the user needs to enter his/her password to

enter the application environment. This conditional branch sets the authorized value and jumps

to the beginning of the critical control flow of the Sec-Pump with a high level of accessibility. This

branch as a critical part in the code has been identified and effort has been performed around it

to explore fault injection scenarios to fail the correct execution of it. After synchronizing the target

and the clock glitch generator using a trigger signal, in order to evaluate this single-step authen-

tication process, different glitch widths, glitch offsets, and glitch delays have been examined. As

explained in Chapter 3, a checkpoint (CP) in Figure 4.5 is used to identify the vulnerability of the

conditional branch of this module in the presence of FIA; When the CP equals one, it shows this

conditional branch has been corrupted.

The evaluation process has been performed using different glitch widths and glitch offsets.

This experiments has been performed 100 times, on different glitch delays which were selected

randomly. The glitch map for this attack is illustrated in Figure 4.6, in which red points are the

74

CHAPTER 4. HARDWARE SECURITY ASSESSMENT BY UTILIZING THE HARDWARE
EVALUATION PLATFORM

Figure 4.5: Sec-Pump Authentication Evaluation Process

successful faults, and blue points are the configuration that leads to the target reset. The best con-

figurations are obtained when the glitch width = 2,3,4,20,21,22 ns and the glitch offset is between

2 to 11 ns. The results show that the narrow glitches (glitch width < 5 ns) which are located in the

beginning of the clock cycles have more success rate. Moreover, the wider glitch widths (20 ns <

glitch width < 23 ns) lead to small post glitches (T - Tg l i tch) that cause erroneous function of the

processor.

Figure 4.6: Glitch Map for Single-Step Authentication (RED: Successful FIA, BLUE: Target Reset)

4.2.3.2 Evaluation of Drug Manager Module

Drug Management is another critical module that manipulates the central data/control flows of the

Sec-Pump application. To evaluate this module, first, the main functions and variables in this mod-

ule are determined. The Drug Management module’s core functions are 1)Create-Cure, 2)Modify-

Cure, and 3)Delete-Cure. These three functions operate on three variables: 1)Cure-Name, 2)Cure-

Volume, and 3)Cure-Duration. Cure-Volume and Cure-Duration directly impact the Sec-Pump’s

critical functionalities because they have a direct relation with the time and amount of injected

75

CHAPTER 4. HARDWARE SECURITY ASSESSMENT BY UTILIZING THE HARDWARE
EVALUATION PLATFORM

Listing 4.2: CreatCure Process in Drug Management Module of Sec-Pump Application

uint8_t CreateCure(uint8_t * name, uint8_t * volume, uint8_t * duration)

{

strcpy(cure.name, name);

cure.initVolume = atoi(volume);

cure.volume = atoi(volume);

cure.initDuration = atoi(duration);

cure.duration = 0;

if(cure.initVolume == 0 | cure.initDuration == 0)

{

printf("NULL VOLUME AND DURATION\n");

cure.valid=0;

}

else

{

cure.valid=1;

}

printf("[*] CURE CREATED\n");

return 1;

}

medicine.Consequently, they need to be protected against any kind of attacks, including FIAs.

First, the Create-Cure part is evaluated and shown in Listing 4.2. It forms a flexible mechanism

to initiate a cure with a Cure-Name to receive the inputs (Cure-Volume, and Cure-Duration) and to

initialize them.

In this work, the strcpy and atoi functions are evaluated against clock glitching fault injection

attacks by dynamically monitoring the output of each operation. Because there are multiple atoi

functions in the code, the one that operates on the Volume variable is taken as an example to assess.

In the following, these two examples are explained in detail.

• The strcpy function copies the string from the name to the Cure-Name variable and returns

the copied string. This function has been evaluated with different glitch configurations and

as a result, the copied string was either incomplete or wrong. Figure 4.7 shows the evaluation

process of a strcpy function using a boolean variable named as FAULTSUCCESS and an extra

strcmp function to compare the copied string. The faulty behavior of strcpy results in various

problems in the Sec-Pump’s expected functionality. For instance, an inappropriate drug may

be utilized, which is a dangerous action. Figure 4.8 shows the glitch map of the evaluation

of strcpy function in which red points are the successful faults (wrong copied string), and

blue points are the configuration that leads to the target reset. The best configurations are

obtained when the glitch width = 4,5,6 ns and the glitch offset is between 5 to 10 ns. One can

76

CHAPTER 4. HARDWARE SECURITY ASSESSMENT BY UTILIZING THE HARDWARE
EVALUATION PLATFORM

Figure 4.7: Sec-Pump Drug Management Module Evaluation Process (strcpy function)

notice that this function is less vulnerable than the conditional branch in the Authentication

module.

• The atoi function in the Create-Cure module converts a string, such as entered volume and

duration, to a number (specifically an integer). After the evaluation of atoi function with dif-

ferent glitch configurations,wrong volume/duration of the drug have been saved inside the

system. This vulnerability comes from the repetitive processes that are terminated early by

a clock glitching FIA. Figure 4.9 shows the evaluation process of an atoi function for volume

equal to 65535 using extra strcpy and the comparison functions. The best configurations are

obtained when the glitch width = 2,3,4 ns and the glitch offset is between 8 to 10 ns. atoi

function is less vulnerable than strcpy function but it can has a more dangerous effect (e.g.,

wrong drug value) on the Sec-Pump critical functionalities. Figure 4.10 shows the glitch map

for the atoi function in which red points are the successful faults (wrong integer value), and

blue points are the configuration that leads to the target reset. The vulnerability of atoi is

critical in the SecPump application because this function is also used to update and replace

the current Cure-Name, Cure-Volume, and Cure-Duration values. As the reference, it takes

the value from the timer of the system.

• An additional vulnerability of the Drug Management module originates from the Delete-

Cure Function. Delete-Cure, as it is shown in Listing 4.3, is responsible for eliminating a cure

and its related data (Cure-Name, Cure-Volume, and Cure-Duration) from memory. Erasing

the Cure-name is done by filling its memory block with zeros. Accordingly, a C library func-

tion named memset has been called to copy 0x0 to the 32 first characters of the memory

block where the Cure-Named is pointed to. The memset function can be evaluated by fol-

lowing the process in Figure 4.11.The faulty behavior of the memset also has been observed

77

CHAPTER 4. HARDWARE SECURITY ASSESSMENT BY UTILIZING THE HARDWARE
EVALUATION PLATFORM

Figure 4.8: Glitch Map for strcpy function in Drug Management Module (RED: Successful FIA, BLUE: Target

Reset)

Figure 4.9: Sec-Pump Drug Management Module Evaluation Process (atoi function)

78

CHAPTER 4. HARDWARE SECURITY ASSESSMENT BY UTILIZING THE HARDWARE
EVALUATION PLATFORM

Figure 4.10: Glitch Map for atoi function in Drug Management Module (RED: Successful FIA, BLUE: Target

Reset)

by loading the memory values from the application’s storage and comparing them with the

expected results. Figure 4.12 shows the glitch map for the memset function. This function

is not very vulnerable to the clock glitching and the only configuration for successful attack

is obtained when glitch width = 4 ns and the glitch offset= 9 ns. This is because the memset

function needs access to the memory and the probability of having synchronized fault with

the critical assembly instruction level is too low.

79

CHAPTER 4. HARDWARE SECURITY ASSESSMENT BY UTILIZING THE HARDWARE
EVALUATION PLATFORM

Figure 4.11: Sec-Pump Drug Management Module Evaluation Process (memset function)

Listing 4.3: Delete Cure Process in Drug Management Module of Sec-Pump Application

uint8_t DeleteCure()

{

memset(cure.name, 0x0, 32);

cure.volume = 0;

cure.initVolume = 0;

cure.initDuration = 0;

cure.duration = 0;

cure.valid=0;

printf("[*] CURE DELETED\n");

return 1;

}

80

CHAPTER 4. HARDWARE SECURITY ASSESSMENT BY UTILIZING THE HARDWARE
EVALUATION PLATFORM

Figure 4.12: Glitch Map for memset function in Drug Management Module (RED: Successful FIA, BLUE:

Target Reset)

Listing 4.4: The Comparison For Current Cure Duration and Initial Cure Duration In Drug Management

Module of Sec-Pump Application

if(cure.duration >= cure.initDuration)

{

printf("END OF CURE\n");

DeleteCure();

return;

}

In addition to the mentioned vulnerabilities of the Drug Management, this module also has

single conditional branches to compare the injected drug volume with their final quantity. This

comparison has been shown in Listing 4.4 The evaluation of the authentication module shows the

vulnerability of these conditional branches that may cause erroneous behavior.

81

CHAPTER 4. HARDWARE SECURITY ASSESSMENT BY UTILIZING THE HARDWARE
EVALUATION PLATFORM

4.2.4 VULNERABILITY MITIGATION FOR THE SEC-PUMP APPLICATION

Previously it was shown that how one can apply FIA and exploit the different Sec-Pump applica-

tion vulnerabilities. This section addresses some programming patterns to mitigate the revealed

vulnerabilities. These patterns assist the embedded developers to reduce the risk of this kind of

FIAs. These patterns mainly focus on critical data or program flows of Authentication and Drug

Management modules.

4.2.4.1 Fault impact mitigation for the Authentication module

It was shown that the single-step authentication module is vulnerable and may be bypassed by a

simple clock glitching FIA. Therefore it is needed to use an alternative for it. Nested conditional

statements are more secure than the single step conditions for the authentication process and

contain nested decision-making conditional statements. The glitch map in Figure 4.13 Shows that

these kind of statements are not vulnerable to a single glitch FIA.

Figure 4.13: Glitch Map for Nested Conditional Authentication (RED: Successful FIA, BLUE: Target Reset)

4.2.4.2 Fault impact mitigation for the Drug-Management module

In this part, some robust software-level alternatives are proposed to mitigate the impact of existing

vulnerabilities in different high-level instructions of the Drug-Management module.

One of the vulnerable functions in the Drug-Management module is the strcpy function. Gen-

erally, it is used to copy a string from the source to the destination with a null character termination.

This operation does not specify the length of the copied string. The strcpy function in the Drug

Management module is used to copy "name" to a destination "cure.name". As described in the

previous section, the strcpy operation is vulnerable against the clock glitching FIA, meaning that

82

CHAPTER 4. HARDWARE SECURITY ASSESSMENT BY UTILIZING THE HARDWARE
EVALUATION PLATFORM

the copied string in the destination was not equal to the source. This vulnerability originates from

the fact that the strcpy operation continues to copy into the destination location until it reaches the

null character. In the presence of a clock glitch, the processor may not have enough time to detect

the transferred NULL character and continues to copy the string. This is the reason behind the un-

expected copied string in the curename of the Sec-Pump. There are different solutions/alternatives

to have more secure strcpy type operation, which are described in the following:

• strncpy function: strncpy(destination, source, size n): This function is similar to the strcpy

process, except that the first n bytes of the source must be copied. According to our experi-

ments, most of the time, this function was not susceptible against single or multiple clocks

glitching FIA. It is less vulnerable than strcpy in front of FIA because it is not just based on a

single null termination but counts the copied bytes. However, injecting faults that are syn-

chronized with the counting process of strncpy can be targeted. Thus, it can not guarantee a

complete protection.

• strlcpy function: strlcpy(destination, source, size n): This function copies a string to a desti-

nation buffer, and it takes the destination size as a parameter like what strlcpy does. However,

it writes a single null byte to the end of the destination. This approach can also guarantee the

cases in which strncpy copies a null-terminated string to the destination.

The second vulnerable function in the Drug-Management module is atoi. This function con-

verts a string into its integer numerical representation. The atoi function has been used in the Drug

Management module to convert the related ASCII string as an argument (e.g., Volume and Duration

values) to integer form. At some point, in the presence of clock glitching FIA, this function returns

an undefined integer or zero, which does not correspond to the received argument. This faulty be-

havior can originate from the fact that this function works iteratively (convert characters from left

to right), and in the presence of a clock glitch, it may miss one character and return the first valid

number that can be converted from the received string. Also, atoi expects a null-terminated string

as an input, and a clock glitch can affect the observation of the null character.

There are different solutions/alternatives to have secure type atoi operation, which are de-

scribed in the following:

• Redundant function call: for sensitive data, one can call atoi twice and compare the gen-

erated integers. This must be done before passing the value to the other functions in the

application.

• Adding self-verification code: The itoa function complements atoi, which converts an in-

teger to an ASCII string. The atoi function’s result can be sent to an itoa function which is

called right after that to generate the related ASCII string. Then using a strcmp function, the

two ASCII strings are compared.

83

CHAPTER 4. HARDWARE SECURITY ASSESSMENT BY UTILIZING THE HARDWARE
EVALUATION PLATFORM

The third vulnerable function is memset. This function fills a memory block using a particular

value. The starting memory address, the value to be loaded, the number of bytes to be filled must

be determined. The memset operation is used in the Delete Cure function of the Drug Management

module to clear memory blocks. Invalid memory overwrites in the destination’s neighbors’ blocks

are caused by clock glitching FIA, and the copied zeros exceed the assigned memory size. The rea-

son behind it is that memset blindly writes to the specified address for the number of specified

bytes, regardless of what it might be overwriting. This can distract the other important memory

blocks, affecting the standard behavior/data of the Sec-Pump. Regarding memset, it is up to the

programmer to ensure that only the valid memory is written. There are different solutions/alter-

natives for more secure memset type operation, which are described in the following:

• making the execution timing unpredictable: in this case, the programmer needs to consider

a loop with random delays. Then within the loop, the same functionality for zeroing the

destination can be called. Like so, the probability of successful synchronization for clock-

glitching FIA is too low, and the other memory blocks are protected against any overwriting.

• Adding self-verification code: In this solution, the programmer can add some self-verification

code for memset to make sure about the overwriting concerns in the presence of FIA. This

can be done by copying the value of the "destination+length" pointer and compare it after

the memset execution.

84

CHAPTER 4. HARDWARE SECURITY ASSESSMENT BY UTILIZING THE HARDWARE
EVALUATION PLATFORM

4.3 CONCLUSION

This chapter utilized an evaluation approach to identify the most important assets and to assess

an embedded application against the clock glitching FIAs. This approach can help to partition a

complex application into smaller and more accessible units to evaluate. It can detect the criti-

cal security vulnerabilities and highlights the piece of the code that needs to become more robust

against the attacks. As a descriptive example of the this methodology, a medical embedded device

(Sec-Pump) was studied, and some parts of its code were analyzed. Then, the evaluation approach

and the assessment strategy of this chapter was utilized to find the Sec-Pump’s vulnerabilities. Us-

ing this method, one could perform a practical security risk assessment of existing software-level

vulnerabilities and reduce their impacts. In the following, it was demonstrated that this methodol-

ogy could help to pick up the proper software-level patterns to boost the overall system’s security.

Regarding this, a few alternatives for high-level C functions and software pattern examples were

introduced, which can help the software developer to make the application more resilient against

FIA.

The main limitation of this approach is its difficulty in comparing and prioritizing the exploited

vulnerabilities inside an application. Moreover, it is burdensome for the software developer to

consider all of the FIA parameters to apply an attack for each vulnerable pattern and function.

Furthermore, one cannot observe the global impact of the attack in an embedded application and

can only notice its local effect. Therefore it is needed to narrow down the FIA parameters and

to have a global estimation of the potential vulnerability by FIA. Finally, it is required to have an

approach to help the developer to know when to inject the faults, because otherwise, even if one

finds the important assets, there are too many possibilities. The discussed limitations and the way

to tackle them are the topics for the next chapter.

85

5 OPTIMIZING THE FIA EVALUATION PROCESS BY

UTILIZING SIMULATION-BASED ANALYSIS AND SYM-

BOLIC ASSERTION

Contents

5.1 Enhancing the Experimental FIA Through Simulation-based Pre-Injection Anal-

ysis . 88

5.1.1 Non-Exhaustive Experimental Evaluation of C-Functions 88

5.1.2 Fault Effects on A RISC-V Micro-Architecture 89

5.1.3 Simulation-based Evaluation Results . 94

5.1.4 Fine Tuned Experimental Attack . 95

5.2 An Offline Hardware Security Assessment Approach using Symbolic Assertion

and Code Shredding . 97

5.2.1 Background of the Symbolic Fault Injection 97

5.2.2 Precise Fault Injection Using Symbolic Execution 98

5.2.3 A Case-Study . 99

5.2.4 Experiments and Results . 100

5.3 Conclusion . 105

This thesis has previously assessed the embedded software against the clock glitching FIAs by

utilizing some simplified test routines. Then the vulnerability of some common C-functions and

patterns against experimental FIAs was demonstrated. Using the assessment approach one could

exploit the software-level vulnerabilities and could observe their impact on a target embedded

application (e.g., operational/data flaws, system output/behavior errors, or broken security fea-

tures/privileges). However, this approach does not consider all of the FIA parameters to apply an

attack for each vulnerable pattern or function. Furthermore, by using only constrained input vec-

tors for an embedded software, one is not able to find the corner case vulnerabilities. Regarding

this, a pre-injection analysis is needed to optimize the experimental evaluation against the clock

glitching FIAs, to narrow down the search space for experimental attack’s configurations and to

find the most critical points of an embedded software. Accordingly, this chapter considers two

87

CHAPTER 5. OPTIMIZING THE FIA EVALUATION PROCESS BY UTILIZING
SIMULATION-BASED ANALYSIS AND SYMBOLIC ASSERTION

techniques for premeditated vulnerable C-functions and high-level software patterns inside a tar-

get application.

The first technique uses the simulation-based results which studies the defined instruction-

level fault models, to find the root cause of the security weakness of high-level C-functions. In

particular, this approach examines the vulnerabilities of the target embedded software which run

on a RISC-V system. Respectively, an open-source and cycle-accurate simulation framework called

RIPES performs a simulation-based fault injection campaign on the identified sensitive c-functions.

The simulation results are then further exploited to fine-tune the experimental fault injection cam-

paign parameters to reveal the more detailed vulnerabilities within an embedded IoT application.

The second technique in this chapter utilizes the LLVM compiler and its add-on named KLEE

tool to evaluate the vulnerability of high-level patterns by using symbolic execution against FIAs.

This can benefit the security assessment approach to obtain an overall vulnerability factor of differ-

ent software blocks of the target application. This methodology has been applied on a Sec-Pump

as an example of a secured embedded application.

The proposed approaches in this chapter can help to improve the experimental evaluation by

giving a bigger picture of potential vulnerabilities, and consequently can increase the system’s se-

curity. Therefore, they can result in having better hardware security assessment scenarios for non-

security specialists and embedded software developers.

5.1 ENHANCING THE EXPERIMENTAL FIA THROUGH SIMULATION-

BASED PRE-INJECTION ANALYSIS

The evaluation platform was utilized to exploit the potential vulnerabilities of some functions of

the Sec-Pump application in chapter.4. Here, a more general test is considered for different C func-

tions from main categories including Type Casting, String Manipulation, Searching and Sorting

and Memory based functions.

5.1.1 NON-EXHAUSTIVE EXPERIMENTAL EVALUATION OF C-FUNCTIONS

The first evaluation approach is to exhaustively test all of the possible discrete combinations of

clock glitch parameters for each function. Although our platform can automatically generate all

of the possible glitch parameter values, but assuming that a glitch has 2 parameters (glitch width,

glitch offset) and each can take 90 values, this exhaustive approach takes too much time. Moreover,

depending on the execution time of each function, glitch delay as the third parameter, can take dif-

ferent values (e.g., 100 different cycles). Therefore, the exhaustive evaluation is almost impossible

because the target application may have a large number of sensitive functions. Instead of perform-

ing a complete test, a subset of glitch parameters combinations were generated. The search space

for glitch width and glitch offset is divided into n (here 11) sub-intervals, and then the n-1 (here 10)

88

CHAPTER 5. OPTIMIZING THE FIA EVALUATION PROCESS BY UTILIZING
SIMULATION-BASED ANALYSIS AND SYMBOLIC ASSERTION

Figure 5.1: Experimental-Based Evaluation Results With Combinatorial Glitch Parameters

produced points were used. In the next step, the generated glitch can be inserted on the random

clock cycles during the trigger signal. These selected combinatorial parameters can dramatically

reduce the number of experiments.

The experiments in this section have been performed on the same target as chapter.4 includ-

ing a RISC-V (Rocket Core) processor implemented on ARTY-A7 FPGA. The successful faults are

reported in Figure 5.1. These functions have been executed on the same target design as chap-

ter.4 (RISC-V Processor). From Type Casting Functions atoi and itoa were selected to be evaluated,

and they show significant vulnerabilities against experimental attacks. Both strcpy and strncpy

from String Manipulation Functions showed vulnerability by copying the corrupted string to the

destinations. strncpy is less vulnerable than strcpy because it is not just based on a single null ter-

mination but counts the copied bytes. In Searching and Sorting functions, the vulnerability of the

bsearch function has been exploited by the defined fault configurations.

The discussed evaluation process, is highly desirable to exploit a function’s vulnerabilities; how-

ever, by applying a pre-injection step to find the most vulnerable intervals for the glitch delay pa-

rameter, can make the attack more efficient. In the following, the focus is on the fault effects on a

RISC-V micro-architecture. A cycle accurate simulator has been utilized to model the fault effects

at micro-architectural level and to observe their propagation at the application level.

5.1.2 FAULT EFFECTS ON A RISC-V MICRO-ARCHITECTURE

The focus in this section is on the RISC-V processor. First, the main characteristics of the basic

implementation of this processor are reviewed. Then, an approach is presented to model the ex-

89

CHAPTER 5. OPTIMIZING THE FIA EVALUATION PROCESS BY UTILIZING
SIMULATION-BASED ANALYSIS AND SYMBOLIC ASSERTION

pected fault effects at the micro-architectural level.

5.1.2.1 An Introduction to RISC-V Processor

RISC-V is an open-source Instruction Set Architecture (ISA) developed by the University of Cali-

fornia, Berkeley [92]. This thesis targets the Rocket Core implementation of RISC-V [93]. It is com-

posed of a 5-stage pipeline which is demonstrated in Figure 5.2 In this pipeline, there are sequential

stages including Instruction Fetch (IF), where instructions are fetched from instruction memory;

Instruction Decode (ID), which decodes the instruction, drives control signals, and reads data from

the register-file; Execute (EXE), where operations are executed by the ALU; Memory (MEM), which

undertakes memory reads and writes; and finally Write-Back (WB), where the results from the pre-

vious stages are written into the register-file.

Figure 5.2: A 5-stage RISC-V CPU implementation

5.1.2.2 RISC-V Instruction Formats

There are six core of instruction formats in RISC-V ISA, as shown in Figure 5.3 They all have a fixed

32 bits long and must be aligned on a four-byte boundary in memory.

Figure 5.3: RISC-V based instruction formats

These instruction formats are explained in the following:

• R-Type instructions perform computation on the value of the two source registers and store

the result in the destination register. Examples are arithmetic/logical operations such as xor,

add, mul, div.

• I-Type instructions are instructions having an immediate value (12-bit) as one of their source

operands. load, jalr, slli, and addi are few examples of I-Type instructions.

• S-Type instructions such as sw and sb are used to store an operand into a destination reg-

ister by using the base addressing mode. This type of instruction has a source register, an

90

CHAPTER 5. OPTIMIZING THE FIA EVALUATION PROCESS BY UTILIZING
SIMULATION-BASED ANALYSIS AND SYMBOLIC ASSERTION

immediate value as the base address, and a destination register.

• SB-Type instructions are branch instructions based on PC-relative addressing mode such as

beq, bge. They need to specify a destination address and two registers to compare.

• U-Type instructions have been designed in RISC-V ISA, in which 32 bits in the instruction

format have been dedicated to the immediate value. This format is specifically used for two

instructions, namely lui, and auipc.

• UJ-Type is related to the unconditional jumps in which one may jump to anywhere in code

memory, such as jal.

5.1.2.3 Instruction-Level Fault Effect Modeling

In the following, the aim is to model the instruction-level fault injection impacts by utilizing the

clock glitcher designed in this thesis. The faults originating from the clock glitching attack may

either alter the result of combination logic or flip the storage elements (e.g., flip-flops) [6]. These

faults can propagate to the micro-architectural level and manifest themselves as registers with ran-

dom values. One can observe all of the possibilities for micro-architectural level injected fault ef-

fects; however, the focus here is on the specific cases in which the content (32-bit) of Instruction

Register (IR) is affected.

According to the variations in the detailed architecture of each pipeline stage, the fault impacts

on IR will vary from one stage to another. This work concentrates on the fault effects that occur

in ID, where a fault can be captured in ID/EXE registers and propagate to the following levels. The

fault propagation consequences are modeled as high-level errors at the instruction level depend-

ing on the instruction types in Table 5.1. In this Table, different instructions types have been stud-

ied with some examples. According to the variations in the detailed architecture of each pipeline

stage, the fault impacts on IR will vary from one stage to another. This work concentrates on the

fault effects that occur in ID, where a fault can be captured in ID/EXE registers and propagated

to the following levels. These fault propagation results in high-level errors at the instruction level

depending on the instruction types and include:

• R-Type: Wrong RS1 and RS2 data may be generated and propagated as a faulty result (e.g.

ADD X2 X3 X4 with wrong X3 and/or X4 value)

• I-Type: Wrong RS1 data or immediate value propagate as a faulty result (e.g., ORI X10 X15 50

becomes ORI X10 X15 54)

• S-Type: Wrong data in the wrong memory address may be store (e.g., SW X10 -24(X2) be-

comes SW X8 -16(X6))

• SB-Type: Either Wrong RS1 and RS2 data may cause wrong decision in the branches (e.g.,

BGEU X6 X15 16 becomes BGEU X2 X11 16) or the value of next PC may be corrupted (e.g.,

91

CHAPTER 5. OPTIMIZING THE FIA EVALUATION PROCESS BY UTILIZING
SIMULATION-BASED ANALYSIS AND SYMBOLIC ASSERTION

BGEU X6 X15 16 becomes BGEU X6 X15 24)

• U,UJ-Type: The value of the next PC may be corrupted (e.g.JAL X0 0x10504 becomes JAL X0

0x10564)

92

CHAPTER 5. OPTIMIZING THE FIA EVALUATION PROCESS BY UTILIZING
SIMULATION-BASED ANALYSIS AND SYMBOLIC ASSERTION

Table 5.1: Propagated fault effects based on different instruction types
T

h
e

lo
catio

n
o

f

fau
lt

m
an

ifestatio
n

T
h

e
fau

lteffects
(m

icro
-arch

itectu
rallevel)

In
s.

typ
es

P
ro

p
agated

fau
lteffects

(ISA
L

evel)
E

xam
p

le

In
stru

ctio
n

Fetch
Stage

T
h

e
fau

lty
sto

red
P

C
valu

e

Fau
lty

b
itvalu

es
o

fth
e

fetch
ed

in
stru

ctio
n

in

IF
/ID

registers

Fau
lty

valid
-b

it

W
ro

n
g

b
ran

ch
p

red
icto

r
d

ecisio
n

A
ll

Fetch
in

g
an

o
th

er
in

stru
ctio

n
/in

valid
d

ata
fro

m
a

w
ro

n
g

ad
d

ress
d

u
e

to
P

C
co

r-

ru
p

tio
n

Fau
lty

an
d

u
n

p
red

ictab
le

in
stru

ctio
n

fetch

N
o

texecu
tin

g
b

ecau
se

o
fth

e
d

isab
led

valid
b

it

In
stead

o
f

fetch
in

g
th

e
in

stru
ctio

n
w

ith
th

e
ad

d
ress

110,

th
e

in
stru

ctio
n

w
ith

th
e

ad
d

ress
114

is
fetch

ed
.

C
h

an
ge

th
e

in
stru

ctio
n

o
p

eran
d

s,
fo

r
exam

p
le

A
D

D
X

10

X
15

X
1

b
eco

m
es

A
D

D
X

10
X

14
X

3

In
stru

ctio
n

D
eco

d
e

Stage

Fau
lty

b
it

valu
es

o
f

th
e

register
b

an
k’s

d
ata

lo
ad

ed
to

sto
re

in
ID

/E
X

E
registers

Fau
lty

b
it

valu
es

o
f

im
m

ed
iate

b
its

o
f

in
-

stru
ctio

n
s

R
Lo

ad
in

g
w

ro
n

g
R

S1
an

d
R

S2
d

ata
an

d
p

ro
p

agatin
g

a
fau

lty
resu

lt
O

n
e

o
r

allo
fth

e
R

S1/R
S2

b
its

can
n

o
tb

e
sto

red
,th

erefo
re

th
e

d
ata

w
illb

e
in

valid
in

th
e

registers.

I
Lo

ad
in

g
w

ro
n

g
R

S1
d

ata
an

d
p

ro
p

agatin
g

a
fau

lty
resu

lt

P
ro

p
agate

a
fau

lty
resu

ltb
ecau

se
o

fth
e

w
ro

n
g

im
m

ed
iate

valu
e

O
n

e
o

r
allo

fth
e

R
S1/R

S2
b

its
can

n
o

tb
e

sto
red

,th
erefo

re

th
e

d
ata

w
illb

e
in

valid
in

th
e

registers.

O
R

I
X

10
X

15
50

b
eco

m
es

O
R

I
X

10
X

15
54

S
Itis

p
o

ssib
le

to
sto

re
th

e
w

ro
n

g
d

ata
to

th
e

w
ro

n
g

m
em

o
ry

ad
d

ress
SW

X
10

-24(X
2)

b
eco

m
es

SW
X

8
-16(X

6)

SB
Lo

ad
in

g
w

ro
n

g
R

S1
an

d
R

S2
an

d
m

akin
g

th
e

w
ro

n
g

d
ecisio

n
in

th
e

b
ran

ch
es

C
o

rru
p

ted
n

extP
C

B
G

E
U

X
6

X
15

16
b

eco
m

es
B

G
E

U
X

2
X

11
16

B
G

E
U

X
6

X
15

16
b

eco
m

es
B

G
E

U
X

6
X

15
24

U
,U

J
C

o
rru

p
ted

n
extP

C
JA

L
X

0
0x10504

b
eco

m
es

JA
L

X
0

0x10564

E
xecu

tio
n

Stage

Fau
lty

b
it

valu
es

o
f

th
e

resu
lt

in
E

X
E

/M
E

M

registers

Fau
lty

co
m

p
u

tin
g

in
m

u
ltip

licatio
n

an
d

d
ivi-

sio
n

R
,I

C
alcu

latin
g

th
e

w
ro

n
g

m
em

o
ry

ad
d

ress
fo

r
lo

ad
in

stru
ctio

n
s

T
h

e
calcu

lated
d

ata
is

n
o

tsto
red

p
ro

p
erly

in
th

e
registers

In
LW

X
14

0(X
8),ifX

8=
10

th
en

th
e

relative
ad

d
ress

valu
e

m
ay

b
e

in
co

rrectly
sto

red
as

11.

Ifth
e

resu
lto

fSU
B

X
2

X
4

X
2

is
15,itis

sto
red

in
th

e
regis-

ters
in

co
rrectly

as
7.

S
C

alcu
latin

g
th

e
w

ro
n

g
relative

m
em

o
ry

an
d

fi
n

ally
th

e
d

ata
is

sto
red

in
th

e

w
ro

n
g

ad
d

ress.

In
SW

X
10

-24(X
2),

if
X

2=
24

th
en

th
e

relative
ad

d
ress

valu
e

m
ay

b
e

in
co

rrectly
sto

red
as

4.

SB
A

w
ro

n
g

d
ecisio

n
in

th
e

b
ran

ch
es

an
d

ju
m

p
to

w
ro

n
g

P
C

ad
d

ress

C
o

rru
p

ted
n

extP
C

Itis
n

o
ttaken

b
u

tm
arks

as
taken

in
th

e
register.

T
h

e
n

extcalcu
lated

P
C

is
sto

red
in

co
rrectly.

M
em

o
ry

A
ccess

Stage

Fau
lty

b
it

valu
es

o
f

th
e

resu
lt

in
M

E
M

/W
B

registers

excep
tfo

r
S

&
SB

C
o

rru
p

ted
fi

n
alresu

lts
cap

tu
red

b
y

th
e

register
ad

d
ressed

b
y

R
D

T
h

e
fi

n
alresu

lt
o

fA
N

D
X

2
X

4
X

2
is

n
o

t
sto

red
co

rrectly
in

th
e

registers.

W
rite

B
ack

Stage

W
rite

th
e

w
ro

n
g

b
it

valu
es

in
th

e
register

b
an

k

excep
tfo

r
S

&
SB

C
o

rru
p

ted
fi

n
alresu

lts
cap

tu
red

b
y

th
e

register
ad

d
ressed

b
y

R
D

T
h

e
fi

n
alresu

lt
o

f
SLT

X
2

X
4

X
2

is
n

o
t

sto
red

co
rrectly

in

th
e

registers.

93

CHAPTER 5. OPTIMIZING THE FIA EVALUATION PROCESS BY UTILIZING
SIMULATION-BASED ANALYSIS AND SYMBOLIC ASSERTION

5.1.3 SIMULATION-BASED EVALUATION RESULTS

In this sub-section, the goal is to utilize a simulation-based evaluation to detect the micro-architectural

fault effects that can be propagated into the application level. This can help to narrow down the

fault injection intervals during the execution of high-level functions. Accordingly, one needs a

simulation-based analyzer that can mimic the real fault effects in a software environment. Then,

one can easily monitor the application state, memory values, and outputs after the fault injection

process. Existing simulators are usually based on modeling some or the whole parts of the hard-

ware stack that executes the embedded software. The fault injection attack in a simulation-based

environment can be performed by: 1) Tampering with the target hardware model, at compilation

time, in order to reproduce a real experimental FIA [94], and 2) Altering the state of the targeted

software model at execution time [4].

In this work, RIPES [95] has been selected as an open-source hardware simulator, written in

C++ and developed on QT cross-platform. RIPES is based on RISC-V ISA and simulates the execu-

tion of each instruction cycle accurately. Using this simulator, this thesis aims to induce faults into

the selected instructions and monitor the behavior of high-level functions running on a RISC- V

processor. The mentioned instruction-level fault effect models are integrated into the instruction

types in Section 5.2.3. At each run, the simulator replaces one correct instruction with the faulty

version and executes the function to report the potential high-level vulnerability in the whole func-

tion. This work does not consider the other affected instructions in the pipeline and only examines

one faulty instruction propagation at a time. The simulation steps to evaluate a function are as

follows:

1. The simulation environment must be prepared, and the objective function must be defined

(with predefined input values).

2. Immediately after the function execution, a Check Fault function must be considered to eval-

uate the function’s output(s) or the affected values.

3. A trial execution is also needed to specify the starting and ending clock cycle of the function

execution. This helps to locate the fault injections cycles accurately. After these three steps,

one can run the simulation in which the predefined fault models are injected at a lower level.

The simulation environment helps to monitor the execution process more precisely than the

experimental evaluation by having access to the internal registers of the processor, their state, and

execution time. Therefore, there are more possible results for the simulation-based evaluation

which can be categorized as:

• No effect: when the function executes correctly Time out: when the function does not end

due to a fault injection, and one has to stop the simulation

94

CHAPTER 5. OPTIMIZING THE FIA EVALUATION PROCESS BY UTILIZING
SIMULATION-BASED ANALYSIS AND SYMBOLIC ASSERTION

• Target meet: when the fault injection has reached the target of the attack and is considered

as a successful attack

• PC out of : when fault injection causes the PC processor to move to an address outside the

authorized area of the program

• Disruption of run time: when the execution time becomes longer or shorter

The results for the simulation-based evaluation of the example functions are shown in Figure 5.4

The results show that functions such as memscmp and qsort are robust to the proposed instruction-

level fault model. On the other hand, atoi, itoa, bsearch are highly affected by fault injection, but

the attack success rate is widespread in all time intervals of the function execution time. Moreover,

the vulnerabilities of the memset, strcpy, and strncpy functions are exploited at specific intervals.

To have optimized successful attacks, one can bound these intervals and choose the glitch param-

eters according to them.

5.1.4 FINE TUNED EXPERIMENTAL ATTACK

Having observed the results in the previous sub-section, one could notice that functions could be

more vulnerable when they were attacked with the proper glitch parameters. This highlights the

importance of choosing the attack time intervals. For example, functions such as memset, strcpy,

and strncpy are more vulnerable at their initial execution clock cycles (clock cycles 0-40). Therefore

the goal has been to re-perform the experimental attack for them by considering this information.

Note that, the same (Tg l i t c h) configuration has the same value as before, but this work targets

all the clock cycles inside these specific time intervals. Figure 5.5 presents the results for such an

evaluation, and it verifies the simulation results.

The results show that while the vulnerability of the memset function was not detectable in the

previous experiment, now it is reported as 22 %vulnerable. Similarly, it has become easier to exploit

the vulnerability of the strcpy (before 32 % vulnerable, after 73 % vulnerable) and strncpy (before

13 %vulnerable, after 34 % vulnerable) functions.

This section has analyzed the FIA vulnerability of some C-Function examples running on a

RISC-V processor. This approach improves the timing characterization of the experimental at-

tacks. According to the detected vulnerabilities, one can propose robust alternatives and coun-

termeasures at the instruction level to mitigate the risk of existing vulnerabilities in different C

functions. Besides standard C-functions, different high-level patterns should be assessed against

such attacks. In the following part of this chapter, a complement approach is introduced to have

an overall view of vulnerable patterns in the targeted code.

95

CHAPTER 5. OPTIMIZING THE FIA EVALUATION PROCESS BY UTILIZING
SIMULATION-BASED ANALYSIS AND SYMBOLIC ASSERTION

Figure 5.4: Simulation results of different functions

96

CHAPTER 5. OPTIMIZING THE FIA EVALUATION PROCESS BY UTILIZING
SIMULATION-BASED ANALYSIS AND SYMBOLIC ASSERTION

Figure 5.5: Fine Tuned Experimental Evaluation Results for memset, strcpy, and strncpy

5.2 AN OFFLINE HARDWARE SECURITY ASSESSMENT APPROACH

USING SYMBOLIC ASSERTION AND CODE SHREDDING

Chapter 4 has so far studied the assessment of different high-level patterns against the clock glitch-

ing attacks; however, this vulnerability evaluation is considered a local evaluation and is not effi-

cient in practice. Accordingly, a global vulnerability factor is required for each software pattern,

which depends on its code location and application. A modular vulnerability code analysis ap-

proach based on symbolic assertions can enable one to perform such analysis. In the following, a

background of symbolic fault injection and related tools are presented. Then, a precise fault injec-

tion method, which utilizes these tools, is explained.

5.2.1 BACKGROUND OF THE SYMBOLIC FAULT INJECTION

LLVM is an open-source compiler framework for various projects [96]. This compiler can be uti-

lized for many objectives in the hardware security domain (e.g., automated embedded code re-

viewing and identifying the vulnerable operations against FIAs) [97]. The LLVM libraries are built

on the LLVM Intermediate Representation (LLVM-IR), which is a hardware-independent assembler-

like language. This LLVM-IR representation is usually obtained from a C target program using the

front-end compiler of LLVM named Clang. In the case of a resilient evaluation against FIA, the

symbolic execution can be employed to determine all of the possible execution paths and emu-

late the program’s execution. This can improve the vulnerability identifications usually performed

manually by the security analysts regarding the time and workload. KLEE is an LLVM tool that

implements the required symbolic virtual machine to support the symbolic execution [98].

There are several resilience evaluation approaches against FIA which are based on symbolic

97

CHAPTER 5. OPTIMIZING THE FIA EVALUATION PROCESS BY UTILIZING
SIMULATION-BASED ANALYSIS AND SYMBOLIC ASSERTION

techniques. For instance, [99] proposes a novel symbolic LLVM-based evaluation framework for

resilience evaluation. It employs a KLEE execution engine for the symbolic propagation analysis;

however, its main focus is on software-implemented fault injection techniques. Another example

is [100] that presents an evaluation implementation that operates at the LLVM-level, and the KLEE

symbolic execution engine supports the intermediate code representation. They have used the

output results to give appropriate countermeasures.

In the following, LLVM and KLEE are utilized to inject high-level faults and investigate the po-

tential vulnerabilities by symbolic execution. This work emulates the same effect of hardware-

oriented FIAs as Section 5.2.4, which can change 32-bit instruction to an unknown value at LLVM-

IR pseudo-code. Then, the KLEE tool is used to test a wide range of symbolic input data and report

the successful attacks by the detectors.

5.2.2 PRECISE FAULT INJECTION USING SYMBOLIC EXECUTION

Figure 5.6 illustrates the system architecture in which the LLVM and KLEE tools are used.

Figure 5.6: The architecture for our approach

To evaluate an application, first, it is partitioned into various code blocks in respect to the func-

tionality and the main variables of each code block. Then, the detection patterns will be inserted

into the code in order to report the successful attack. Some pattern examples are listed in the fol-

lowing:

• Double-Check: a mechanism that can detect an attack by its conditional re-checking,

• Loop-Check: a mechanism in which the loop variable is compared with the expected value,

• Bypass-Check: a mechanism that redoes and checks an execution of an important part of

the code,

• Corruption-Check: a mechanism that is used to detect the hijacking attack by inserting the

security variables.

98

CHAPTER 5. OPTIMIZING THE FIA EVALUATION PROCESS BY UTILIZING
SIMULATION-BASED ANALYSIS AND SYMBOLIC ASSERTION

Moreover, using the Klee-make-symbolic function, some sensitive and effective inputs of the

program are symbolized. In addition, the Klee-assume (con) function can be used to limit the

number of symbol input states, where, i.e., the con is the condition of the symbolic variable data

for the C-Language. In this manner, the target program is ready to be given to the Clang. Then,

the modified target program is compiled with Clang, and the LLVM-IR file is generated. This file

is a platform-independent virtual instruction set. LLVM-IR enables the option that the fault being

injected in a layer between the assembly and the C-language.

The impact of fault injection would be non-execution or a change in the operand(s) of an in-

struction. The change of operand(s) will cause the result not to get stored in the correct memory

destination, or a wrong value will be saved. In this way, in each step of the fault injection in the

LLVM-IR file, one of the semi-assembly instructions will be manipulated. Afterward, the Clang

compiler is used again to convert the fault injected LLVM-IR file into the LLVM bitcode and be

transferred to the KLEE unit. The fault injection can deteriorate the whole program execution and

therefore, no outputs can be obtained from the KLEE. Regarding this, to reduce the simulation

time, first, the program is executed alone, and one must see the results. The correctness of the

results is not evaluated in this step, and only reaching the final step of the execution is important.

Finally, the simulation is performed with the KLEE tool. In this order, for each fault injection, the

program is evaluated with a big group of symbolic input data, and the target program is being eval-

uated using the integrated detection patterns. If a successful fault is found in the output of KLEE,

it would appear in the report of the analysis results, and this process is repeated indefinite cycles.

As a result, one can obtain a parameter that is defined as Vulnerability-Factor. It can be an

important parameter to show the security weakness of each partition of the code. Combining this

parameter with the local weakness of each function can give a global view of the evaluation re-

sults of a complex application. For the sake of clarity, in the following subsection, this approach is

explained by using a case study.

5.2.3 A CASE-STUDY

The Sec-Pump project consists of several sections where it is divided into five partitions, including:

• Data receiver: This block is responsible for receiving all the input packets and extracting data

from them.

• Packet arbiter: This block is responsible for interpreting the received packet. It has access

to the Create, Modify, Delete, Emergency stop, and History functions. This block should be

limited in terms of access.

• Run cure: This block is executed periodically and is responsible for injecting the medicine. It

also removes the curing process if the permissible doses are injected.

99

CHAPTER 5. OPTIMIZING THE FIA EVALUATION PROCESS BY UTILIZING
SIMULATION-BASED ANALYSIS AND SYMBOLIC ASSERTION

• Update Cure Values: After each injection operation, the volume and duration values must be

updated.

• Main update volume: In this block, based on the patient’s previous history and blood sugar

levels, the experimental parameters are determined to be injected at the next time. This part

is important because it runs periodically and is related to the patient’s health.

The detection patterns are inserted in each one of Sec-Pump’s partitions to prepare the code

for the next steps. Listing 5.1 shows a piece of the data receiver code. In this partition, the duration

code is extracted from the received data packet. Note that, three detection patterns Loop-check,

Corruption-check, and Double-check, are used inside it. In this example, two’ if decision’ modes

are examined by the Double-check pattern. Moreover, there is a loop in this example that has a

break; therefore, an additional loop counter is used to perform the Loop-check. Finally, a variable

is defined as the tmpFlow variable which is used to apply the corruption check pattern. It should

have a constant value of 380, and other values can pinpoint a successful attack. This prepared code

is compiled with clang and becomes quasi-assembly code which is ready to inject faults.

Listing 5.2 shows a piece of the compilation of the main program in the LLVM reference lan-

guage. It is related to line codes 8 to 24 in Listing 5.2. In this block of code, which starts with

address 25 and ends with address 46, Zext is used to define a variable, and line 28 defines a variable

called i8 by the typing int32, in which the value of line 27 will be loaded. Note that the order of the

instructions, which start with %, is not in accordance with Listing 5.1.

The fault injection process is automatically applied to the compiled Clang output and differs

based on the instructions. It causes a change in operands or a change in an instruction to skip that

instruction or make it ineffective. For example, line 29 is to compare the value of line 28 (variable

i8) with the constant value of 35. If they are equal, the output value would be’ 1’; otherwise, it would

be’ 0’. Here, the fault injector manipulates the value of 35 to an unknown value. Therefore, the loop

will be potentially executed more cycles than the defined loop parameter, and consequently, the

Loop-check pattern will detect it.

5.2.4 EXPERIMENTS AND RESULTS

In this section, the simulation results of the Sec-Pump under evaluation with KLEE are presented.

First, the program is tested from an execution point of view, and for this purpose, the check process

step evaluates the fault injected code with normal conditions. If the injected faults do not corrupt

the program and no bug is reported, the KLEE is used for the main simulation purpose in the next

step. In each run-time, the KLEE assigns new outputs to the variables of symbolic software. If a bug

is detected, then with the usage of the Klee-assert function, the execution of the program stops, and

a report of a successful attack is presented. At the end of the simulation process, the output data is

sent to the output, and the evaluation process is continued until a database of fault injection result

is obtained.

100

CHAPTER 5. OPTIMIZING THE FIA EVALUATION PROCESS BY UTILIZING
SIMULATION-BASED ANALYSIS AND SYMBOLIC ASSERTION

Listing 5.1: A piece of the data receiver code

uint8_t counter = 0; //Loop check variable

int32_t tmpFlow = 0; //Flow check variable

...

tmpFlow += 40;

counter = 0;

for (i = 0; i < 35; i++, packetPtr++){

if (*(packetPtr) == ’\0’){

packetPtr++;

//[double check]

if (*(packetPtr) != ’\0’){

printf("DC flag in block 1-1\n");

klee_assert(0);

}

break;

}

else {

//[double check]

if (*(packetPtr) == ’\0’) {

printf("DC flag in block 1-2\n");

klee_assert(0);

}

}

*(durationLocation + i) = *(packetPtr);

counter++;

}

tmpFlow *= 2;

//Some important C functions

strcpy(durationValue, durationLocation);

tmpFlow -= 125;

if (counter != i | *(packetPtr-1) != ’\0’ | counter >= 35) { //[loop check]

printf("LC flag in block 1\n");

klee_assert(0);

}

...

if (tmpFlow != 380) { //[Flow check]

printf("FC flag in block 1\n");

klee_assert(0);

}

101

CHAPTER 5. OPTIMIZING THE FIA EVALUATION PROCESS BY UTILIZING
SIMULATION-BASED ANALYSIS AND SYMBOLIC ASSERTION

Listing 5.2: The semi LLVM language output.

25:

%26 = load i8*, i8** %12, align 8

%27 = load i8, i8* %26, align 1

%28 = zext i8 %27 to i32

%29 = icmp eq i32 %28, 35

br i1 %29, label %30, label %40

30: ; preds = %25

%31 = load i8*, i8** %12, align 8

%32 = load i8, i8* %31, align 1

%33 = zext i8 %32 to i32

%34 = icmp ne i32 %33, 35

br i1 %34, label %35, label %37

35: ; preds = %30

%36 = @printf("DC flag in block 1-1\n")

br label %37

37: ; preds = %35, %30

%38 = load i8*, i8** %12, align 8

%39 = (calculating a memory address)

store i8* %39, i8** %12, align 8

br label %62

40: ; preds = %25

%41 = load i8*, i8** %12, align 8

%42 = load i8, i8* %41, align 1

%43 = zext i8 %42 to i32

%44 = icmp eq i32 %43, 35

br i1 %44, label %45, label %47

45: ; preds = %40

%46 = @printf("DC flag in block 1-2\n")

br label %47

102

CHAPTER 5. OPTIMIZING THE FIA EVALUATION PROCESS BY UTILIZING
SIMULATION-BASED ANALYSIS AND SYMBOLIC ASSERTION

Table 5.2 presents the simulation results for injecting 46 faults into the LVMM-IR code of the

Sec-Pump. Overall, the KLEE has 109551 execution paths in our simulations, in which, on average,

2381 control-flow paths exist for each simulation. Next, the vulnerability factor is obtained, and

it was depicted that with the increase of the number of the fault injection, the preciseness of the

Vulnerability factor goes up.

Table 5.2: The calculation of vulnerability factor for Sec-Pump’s software blocks

The experimental results show that after injecting 40 uniform faults in the LLVM-IR code of the

Sec-Pump, the vulnerability-factor tends to toward a value that even the increasing of the number

of fault injection attack does not impact it. The results of the Vulnerability-factor reported in Table.

5.3 are the ratio of the number of successful attacks for each block in respect to the whole program.

The implemented detection patterns were able to detect 69.7% of the injected faults. Note that it is

possible that some of the injected faults are not detected, and it would be needed to utilize another

type of pattern to improve the evaluation accuracy. Moreover, it is also possible that some faults

are not detected as some injected faults may not have any impact.

Figure 5.7 shows the percentage of the successful attacks for each block considering the utilized

detection patterns. In the data receiver block, the loop check pattern has the highest value of de-

tection because this block has many execution iterations. Since this block is the main input packet

of the whole program, having faults here results in incorrect execution of the whole program.

It can be observed that this block has the highest number (57.6%) of Vulnerability- Factor in

comparison with other blocks. The arbiter block has the most undetected attacks due to its access

limitations. On the other hand, it includes a high percentage of detection (11%) mostly by the

Double-check pattern due to having many conditional branches. The Run Cure block is a critical

section in directing the flow of the Sec-Pump program. Therefore, one could see the most detected

faults by the Corruption-check pattern. Update Cure Values and Main Update Volume blocks use

the previously stored values for their executions. Hence, the Double-check pattern is the most

efficient pattern to detect faulty executions.

103

CHAPTER 5. OPTIMIZING THE FIA EVALUATION PROCESS BY UTILIZING
SIMULATION-BASED ANALYSIS AND SYMBOLIC ASSERTION

Figure 5.7: The percentage of the successful attacks for each block considering our utilized detection pat-

terns

104

CHAPTER 5. OPTIMIZING THE FIA EVALUATION PROCESS BY UTILIZING
SIMULATION-BASED ANALYSIS AND SYMBOLIC ASSERTION

5.3 CONCLUSION

This chapter has further analyzed the optimized mechanisms of fault injection attacks on embed-

ded software. The attack mechanisms are categorized based on the C-functions and patterns. A

mixture of simulation and experimentation has been selected to detect the security flaws against

the clock glitching FIA. The simulation operates on defined fault models as fault injection attacks

into the RISC-V micro-architecture. It could help to find the detailed mechanism of fault effect

propagation in the chosen instruction level. This enabled to improve the FIA timing characteriza-

tion in the experimental attacks. Therefore, the experimentation attack could give more detail and

more precise results.

Utilizing the applied fault models, this thesis has then analyzed the vulnerability of software

patterns by using the symbolic execution. In this approach, the software is divided into easy to

analysis blocks, and some assertions have been added to each block. This results in obtaining an

evaluation parameter named the vulnerability factor. This parameter can be an efficient criterion

to evaluate all the corner case vulnerabilities of software blocks against FIA. The obtained results

on the Sec-Pump blocks could show the potential risks of overlooking such vulnerabilities.

105

6 CONCLUSIONS

There has been significant growth in the design and usage of embedded IoT devices in day-to-

day lives. The IoT devices, such as the sensors and actuators, are generally easily accessible, and

therefore they are attractive targets for adversaries to tamper with. This can lead to revealing or

corrupting the data from unauthorized sources. The critical functionalities of many of the IoTs

and their quality of data clearly state the importance of hardware security attacks. For example,

a tampered wearable medical IoT that collects health-related information is a crucial and critical

application. Consequently, both IoT manufacturers and embedded software designers must con-

sider hardware attacks as a serious concern and balance the product between its time to market

and security. In many cases, the product’s security can only come with adequate software-level

evaluations. Therefore, the burden of providing proper tools and evaluation mechanisms is left to

the hardware security specialist, which has been the main scope of this thesis work.

In Chapter 1, the context of the IoTs and different hardware security attacks has been investi-

gated. It was exhibited that non-invasive fault injection attacks, such as voltage or clock glitching,

are more threatening for critical but low-cost and constrained targets. There are several reasons

behind that, including 1) Non-invasive attacks do not require any physical tampering, 2) These at-

tacks can be reproduced and updated by using low-cost and easy-to-access equipment, even in a

small laboratory and by mid-level knowledge attackers, and 3) They have proven that a high suc-

cess rate can be achieved in a short time. Consequently, the embedded software evaluation against

non-invasive attacks became the main subject of further research in the thesis.

Chapter 2 reviewed the state-of-the-art clock and voltage glitch generators and described their

important characteristics such as complexity, cost, required knowledge, and hardware depend-

ability. It has been observed that the existing evaluation platforms lack the proper configuration

characteristics, such as being easy to use for embedded software developers. Accordingly, the spec-

ifications of an efficient and low-cost fault injection platform have been acquired. It has also been

stated that, besides the evaluation platform, a guideline is required for non-hardware-security ex-

perts to detect the system’s vulnerabilities.

Chapter 3 has focused on the clock glitching attack and proposed a new hardware evaluation

platform to analyze the embedded software vulnerabilities. This platform consists of three main

components: 1) Fault Configuration Interface, 2) Fault Generator, and 3) Fault Effects Analyzer.

First, a configurator interface defines a search space for different FIA parameters. Afterward, two

107

CONCLUSIONS

different clock glitch generator architectures based on CSC and CDFC approaches have been im-

plemented and compared. Moreover, an example of applying clock glitching FIA on the AES al-

gorithm was presented to validate the efficiency of implemented fault generators. Then, different

high-level analysis methods were proposed to help the software developer eliminate the existing

vulnerabilities against these hardware-based security attacks. The work revealed that having only

an evaluation platform and a high-level analyzer is not enough for the non-security specialists, and

a systematic evaluation approach is needed.

Chapter 4 defined and applied a methodized approach named ICEM on evaluating an embed-

ded application. This approach can outline an IoT application’s assets and detect its vulnerabilities

in front of the fault injection attacks. It can help one to define the important system values and

functions, discover the vulnerabilities, determine the security risks, and illustrate the probability

and consequences of the potential successful attacks. Finally, the evaluation framework is applied

to a medical IoT pump (Sec-Pump) as a descriptive example of critical embedded IoTs. The Sec-

Pump has been targeted by FIA and been analyzed step by step to detect where the vulnerability of

each important function is originating from.

The lack of a precise FIA setting parameter has led to Chapter 5, where two different approaches

were proposed to improve the FIA results. They can optimize the hardware security assessment

scenarios for non-security specialists and embedded software developers. The first approach is

based on getting help from FIA simulation results, where an open-source and cycle-accurate sim-

ulator named RIPES has been used to fine-tune the experimental fault injection campaign param-

eters. This results in revealing more vulnerabilities within an embedded IoT application. In partic-

ular, the vulnerabilities of the target embedded software running on a RISC-V-based system have

been observed. The evaluation results could help to find the instruction level fault propagations

that cause software level corruptions. The second approach was based on the symbolic executions,

where a global vulnerability factor of different software blocks of the target application can be ob-

tained. This methodology has been applied on Sec-Pump as an example of a secured embedded

application.

Overall, this thesis work has proposed and implemented a complete assessment structure to be

used by embedded designers to evaluate the embedded systems against FIA. The proposed frame-

work in this thesis includes an open-source implemented hardware platform, a methodology to

identify the critical assets, an analysis approach of the potential functions, and a simulation uti-

lization to apply precise FIA. The results indicated that this thesis’s framework could efficiently and

accurately evaluate the embedded IoT applications against fault injection attacks.

108

7 PERSPECTIVES

Having an evaluation framework proposed in this thesis, there could be some ideas to extend this

work in the future. One would be to perform a more comprehensive review of the non-invasive

and low-cost semi-invasive attacking tools and to propose the most appropriate assessment ap-

proaches in accordance with the desired security level. This gets more important as the adversaries

may gain access to more powerful attacking tools such as electromagnetic fault injectors.

Next, this thesis presented some primary high-level and modular assessment methods for the

embedded software developers which can be improved and become more advanced. For instance,

one can consider not only the individual assets and examine the effects of high-level effects but

can also fully simulate the results of an actual attack. Accordingly, more accurate experiments can

be performed by integrating other control/ data flow evaluations and by making the quality of the

security testing as resourceful as possible.

Another possible improvement to the works of this thesis is to automate the configurator inter-

face in order to apply all of the possible glitch parameters. This can help the developers to save the

processing resources and time for hardware security testing. Accordingly, Artificial Intelligence can

embrace the responsibility of configuring the automated evaluation tool and assure high testing

coverage. AI can also help to create a detailed report on the existing vulnerabilities and to provide

an overview of the most sensitive parts of the application. So, perspective work can employ AI to

improve the speed, transparency, and time efficiency of the hardware security assessments.

Last by not least, in accordance with the vulnerabilities which can be detected by utilizing the

proposed framework in this thesis work, one can design software-based methods at different ab-

stract levels such as in assembly or higher levels of the software. This would lead to mitigating

the effects of injected faults by the clock glitching FIA. These countermeasures can be designed

by using complementary information about software-level or RTL level fault models. Finally, the

evaluation framework in this thesis can verify the effectiveness of the designed countermeasures

against experimental attacks.

111

8 PUBLICATIONS

• Journal Papers:

Z. Kazemi, D. Hely, M. Fazeli, and V. Beroulle, "A Review on Evaluation and Configuration of

Fault Injection Attack Instruments to Design Attack Resistant MCU-Based IoT Applications",

Electronics, vol. 9, no. 7, p. 1153, Jul. 2020, doi: 10.3390/electronics9071153.

• International Conferences, Workshops and Presentations:

Z. Kazemi, M. Fazeli, D. Hely, and V. Beroulle, "Hardware Security Vulnerability Assessment

to Identify the Potential Risks in A Critical Embedded Application", presented at the 2020

IEEE 26th International Symposium on On-Line Testing and Robust System Design (IOLTS),

Napoli, Italy, Italy, Jul. 2020. doi: 10.1109/IOLTS50870.2020.9159739.

Z. Kazemi, A. Norollah, A. Kchaou, M. Fazeli, D. Hely, and V. Beroulle," An in-depth vulner-

ability analysis of RISC-V micro-architecture against fault injection attack", International

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS),

2021.

Z. Kazemi, A. Norollah, M. Fazeli, D. Hely, and V. Beroulle," An Offline Hardware Security As-

sessment Approachusing Symbol Assertion and Code Shredding ", 23rd International Sym-

posium on Quality Electronic Design (ISQED’22), Apr 2022, Virtual event, United States.

Z. Kazemi, A. Papadimitriou, D. Hely, M. Fazcli, and V. Beroulle," Hardware Security Evalu-

ation Platform for MCU-Based Connected Devices: Application to Healthcare IoT", in 2018

IEEE 3rd International Verification and Security Workshop (IVSW), Costa Brava, Jul. 2018,

pp. 87-92.

Z. Kazemi et al.," On a Low-Cost Fault Injection Framework for Security Assessment of Cyber-

Physical Systems: Clock Glitch Attacks", in 2019 IEEE 4th International Verification and Se-

curity Workshop (IVSW), Rhodes Island, Greece, Jul. 2019, pp. 7–12.

A. Nejat,Z. Kazemi, V. Beroulle, D. Hely and M. Fazeli, "Restricting Switching Activity Using

Logic Locking to Improve Power Analysis-Based Trojan Detection", 2019 IEEE 4th Interna-

tional Verification and Security Workshop (IVSW), 2019, pp. 49–54.

Z. Kazemi, C. Bresch, D. Hely, and V. Beroulle," A Systematic Approach for Hardware Security

Assessment of Secured IoT Applications", presented at the TRUDEVICE 2020: Workshop on

113

PUBLICATIONS

Trustworthy Manufacturing and Utilization of Secure Devices, DATE, March. 2020.

Z. Kazemi, "Hardware Security Evaluation of Secured Embedded Applications", Ph.D. Forum

in Design, Automation, and Test in Europe (DATE) Conference 2021.

Zahra Kazemi, David Hély, Vincent Beroulle, "Hardware Security Assessment Methodology

Applied on an Embedded Application: A Case Study on a Medical IoT", Hardwear.io Security

Conference, Netherlands 2020.

Zahra Kazemi," Hardware Security Evaluation of Embedded Applications Against Fault In-

jection Attack", JAIF2021 : Journée thématique sur les attaques par injection de fautes, Sep.2021,

Paris, France.

• Article in submission progress:

Z. Kazemi, A. Norollah, M. Fazeli, D. Hely, and V. Beroulle" Build Up a Data Base on Clock

Glitch Configurations for Embedded ApplicationAssessment against Fault Injection Attacks"

• Other publications:

A.Norollah, Z. Kazemi, H. Beitollahi and D. Hely, "Hardware Support for Efficient and Low-

power data Sorting in Massive Data Application: The 3D Sorting Method", in IEEE Consumer

Electronics Magazine, doi: 10.1109/MCE.2021.3076979.

A. Norollah, Z. Kazemi and D. Hely, "3D-Sorter: 3D Design of a Resource-Aware Hardware

Sorter for Edge Computing Platforms Under Area and Energy Consumption Constraints",

2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2020, pp. 42-47.

A. Norollah, Z. Kazemi, N. Sayadi, H. Beitollahi, M. Fazeli and D. Hely, "Efficient Schedul-

ing of Dependent Tasks in Many-Core Real-Time System Using a Hardware Scheduler," 2021

IEEE High Performance Extreme Computing Conference (HPEC), 2021, pp. 1-7.

114

BIBLIOGRAPHY

[1] B. D. Davis, J. C. Mason, and M. Anwar, “Vulnerability studies and security postures of iot

devices: A smart home case study,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 10 102–

10 110, 2020.

[2] S. Lavanya, G. Lavanya, and J. Divyabharathi, “Remote prescription and i-home healthcare

based on iot,” in 2017 International Conference on Innovations in Green Energy and Health-

care Technologies (IGEHT), 2017, pp. 1–3.

[3] H. Ramalingam and V. Venkatesan, “Conceptual analysis of internet of things use cases in

banking domain,” in TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), 2019, pp.

2034–2039.

[4] M. Kooli and G. Di Natale, “A survey on simulation-based fault injection tools for complex

systems,” in 2014 9th IEEE International Conference on Design Technology of Integrated Sys-

tems in Nanoscale Era (DTIS), 2014, pp. 1–6.

[5] S. Bhunia and M. H. Tehranipoor, Hardware security: a hands-on learning approach. Mor-

gan Kaufmann Publishers.

[6] Z. Kazemi, D. Hely, M. Fazeli, and V. Beroulle, “A review on evaluation and configuration

of fault injection attack instruments to design attack resistant mcu-based iot applications,”

Electronics, vol. 9, no. 7, p. 1153, Jul 2020. [Online]. Available: http://dx.doi.org/10.3390/

electronics9071153

[7] Z. Kazemi, A. Papadimitriou, D. Hely, M. Fazcli, and V. Beroulle, “Hardware security evalua-

tion platform for mcu-based connected devices: Application to healthcare iot,” in 2018 IEEE

3rd International Verification and Security Workshop (IVSW), 2018, pp. 87–92.

[8] C. Bresch, “Secpump,” https://github.com/r3glisss/SecPump, 2017.

[9] ——, “Approaches, Strategies, and Implementations of Memory Safety Defenses in Critical

and Constrained Embedded Systems,” Theses, Université Grenoble Alpes [2020-....], Oct.

2020. [Online]. Available: https://tel.archives-ouvertes.fr/tel-03118575

[10] G. Acar, D. Y. Huang, F. Li, A. Narayanan, and N. Feamster, “Web-based attacks to discover

and control local IoT devices,” in Proceedings of the 2018 Workshop on IoT Security and

117

http://dx.doi.org/10.3390/electronics9071153
http://dx.doi.org/10.3390/electronics9071153
https://github.com/r3glisss/SecPump
https://tel.archives-ouvertes.fr/tel-03118575

BIBLIOGRAPHY

Privacy. ACM, pp. 29–35. [Online]. Available: https://dl.acm.org/doi/10.1145/3229565.

3229568

[11] G. Mullen and L. Meany, “Assessment of buffer overflow based attacks on an IoT operating

system,” in 2019 Global IoT Summit (GIoTS), pp. 1–6.

[12] A. Barenghi, G. Bertoni, E. Parrinello, and G. Pelosi, “Low voltage fault attacks on the RSA

cryptosystem,” in 2009 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC).

IEEE, pp. 23–31. [Online]. Available: http://ieeexplore.ieee.org/document/5412860/

[13] H. Choukri and M. Tunstall, “Round reduction using faults,” pp. 13–24.

[14] H. Martin, T. Korak, E. S. Millan, and M. Hutter, “Fault attacks on STRNGs: Impact of

glitches, temperature, and underpowering on randomness,” vol. 10, no. 2, pp. 266–277.

[Online]. Available: http://ieeexplore.ieee.org/document/6965651/

[15] J. Deogirikar and A. Vidhate, “Security attacks in IoT: A survey,” in 2017 International

Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). IEEE, pp.

32–37. [Online]. Available: http://ieeexplore.ieee.org/document/8058363/

[16] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, “A survey on security and privacy issues in internet-

of-things,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1250–1258, 2017.

[17] Y. Lu and L. D. Xu, “Internet of things (iot) cybersecurity research: A review of current re-

search topics,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2103–2115, 2019.

[18] T. Borgohain, U. Kumar, and S. Sanyal, “Survey of security and privacy issues of internet of

things,” 2015.

[19] Y. Zhou and D. Feng, “Side-channel attacks: Ten years after its publication and the impacts

on cryptographic module security testing,” 2005, zyb@is.iscas.ac.cn 13083 received 27 Oct

2005. [Online]. Available: http://eprint.iacr.org/2005/388

[20] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in Cryptology âĂŤ

CRYPTO’ 99, M. Wiener, Ed. Springer Berlin Heidelberg, pp. 388–397.

[21] A. Said, “Measuring the strength of partial encryption schemes,” in IEEE International Con-

ference on Image Processing 2005, vol. 2, 2005, pp. II–1126.

[22] “TEMPEST: A signal problem.” [Online]. Available: https://www.nsa.gov/portals/75/

documents/news-features/declassified-documents/cryptologic-spectrum/tempest.pdf

[23] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, RSA, DSS, and other

systems,” in Advances in Cryptology, CRYPTO ’96, N. Koblitz, Ed. Springer Berlin Heidelberg,

pp. 104–113.

118

https://dl.acm.org/doi/10.1145/3229565.3229568
https://dl.acm.org/doi/10.1145/3229565.3229568
http://ieeexplore.ieee.org/document/5412860/
http://ieeexplore.ieee.org/document/6965651/
http://ieeexplore.ieee.org/document/8058363/
http://eprint.iacr.org/2005/388
https://www.nsa.gov/portals/75/documents/news-features/declassified-documents/cryptologic-spectrum/tempest.pdf
https://www.nsa.gov/portals/75/documents/news-features/declassified-documents/cryptologic-spectrum/tempest.pdf

BIBLIOGRAPHY

[24] L. Dureuil, M.-L. Potet, P. Choudens, C. Dumas, and J. Clédière, “From code review to fault

injection attacks: Filling the gap using fault model inference,” in Revised Selected Papers

of the 14th International Conference on Smart Card Research and Advanced Applications -

Volume 9514, ser. CARDIS 2015. Berlin, Heidelberg: Springer-Verlag, 2015, pp. 107 – 124.

[Online]. Available: https://doi.org/10.1007/978-3-319-31271-2_7

[25] F. Koeune and F.-X. Standaert, A Tutorial on Physical Security and Side-Channel Attacks.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 78–108. [Online]. Available:

https://doi.org/10.1007/11554578_3

[26] M. Kasuya, T. Machida, and K. Sakiyama, “New metric for side-channel information leak-

age: Case study on em radiation from aes hardware,” in 2016 URSI Asia-Pacific Radio Science

Conference (URSI AP-RASC), 2016, pp. 1288–1291.

[27] P. Gu, D. Stow, R. Barnes, E. Kursun, and Y. Xie, “Thermal-aware 3d design for side-channel

information leakage,” in 2016 IEEE 34th International Conference on Computer Design

(ICCD), 2016, pp. 520–527.

[28] F.-X. Standaert, Introduction to Side-Channel Attacks. Boston, MA: Springer US, 2010, pp.

27–42. [Online]. Available: https://doi.org/10.1007/978-0-387-71829-3_2

[29] E. Bursztein, “Hacker’s guide to deep-learning side-channel attacks: the the-

ory,” 2021, accessed: 2021-09-30. [Online]. Available: https://elie.net/blog/security/

hacker-guide-to-deep-learning-side-channel-attacks-the-theory/

[30] M. Randolph and W. Diehl, “Power side-channel attack analysis: A review of 20 years of

study for the layman,” Cryptography, vol. 4, no. 2, p. 15, May 2020. [Online]. Available:

http://dx.doi.org/10.3390/cryptography4020015

[31] N. Beringuier-Boher, K. Gomina, D. Hely, J.-B. Rigaud, V. Beroulle, A. Tria, J. Damiens, P. Gen-

drier, and P. Candelier, “Voltage glitch attacks on mixed-signal systems,” in 2014 17th Eu-

romicro Conference on Digital System Design, 2014, pp. 379–386.

[32] D. Karaklajić, J.-M. Schmidt, and I. Verbauwhede, “Hardware designer’s guide to fault at-

tacks,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 12, pp.

2295–2306, Dec 2013.

[33] C. Bozzato, R. Focardi, and F. Palmarini, “Shaping the glitch: Optimizing voltage

fault injection attacks,” TCHES, vol. 2019, pp. 199–224, Feb. 2019. [Online]. Available:

https://tches.iacr.org/index.php/TCHES/article/view/7390

[34] O. M. Guillen, M. Gruber, and F. De Santis, “Low-cost setup for localized semi-invasive optical

fault injection attacks,” in Constructive Side-Channel Analysis and Secure Design, S. Guilley,

Ed. Cham: Springer International Publishing, 2017, pp. 207–222.

119

https://doi.org/10.1007/978-3-319-31271-2_7
https://doi.org/10.1007/11554578_3
https://doi.org/10.1007/978-0-387-71829-3_2
https://elie.net/blog/security/hacker-guide-to-deep-learning-side-channel-attacks-the-theory/
https://elie.net/blog/security/hacker-guide-to-deep-learning-side-channel-attacks-the-theory/
http://dx.doi.org/10.3390/cryptography4020015
https://tches.iacr.org/index.php/TCHES/article/view/7390

BIBLIOGRAPHY

[35] D. Samyde, S. Skorobogatov, R. Anderson, and J.-J. Quisquater, “On a new way to read data

from memory,” in First International IEEE Security in Storage Workshop, 2002. Proceedings.,

2002, pp. 65–69.

[36] R. Piscitelli, S. Bhasin, and F. Regazzoni, “Fault attacks, injection techniques and tools for

simulation,” in 2015 10th International Conference on Design Technology of Integrated Sys-

tems in Nanoscale Era (DTIS), 2015, pp. 1–6.

[37] Y. Li, M. Chen, and J. Wang, “Introduction to side-channel attacks and fault attacks,” in 2016

Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), vol. 1.

IEEE, 2016, pp. 573–575.

[38] H. Liu, Z. Liu, Y. Qiao, and Z. Lu, “Clock glitch fault injection attacks on an fpga aes imple-

mentation,” Journal of Electrotechnology, Electrical Engineering and Management, vol. 1, pp.

23–27, 2017.

[39] T. Korak, M. Hutter, B. Ege, and L. Batina, “Clock glitch attacks in the presence of heating,” in

2014 Workshop on Fault Diagnosis and Tolerance in Cryptography, 2014, pp. 104–114.

[40] T. Korak and M. Hoefler, “On the effects of clock and power supply tampering on two micro-

controller platforms,” in Workshop on Fault Diagnosis and Tolerance in Cryptography, 2014,

pp. 8–17.

[41] B. Yuce, N. F. Ghalaty, and P. Schaumont, “Improving fault attacks on embedded software

using risc pipeline characterization,” in Proceedings of the 2015 Workshop on Fault Diagnosis

and Tolerance in Cryptography (FDTC), ser. FDTC ’15. USA: IEEE Computer Society, 2015,

p. 97âĂŞ108. [Online]. Available: https://doi.org/10.1109/FDTC.2015.16

[42] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection attacks on crypto-

graphic devices: Theory, practice, and countermeasures,” Proceedings of the IEEE, vol. 100,

no. 11, pp. 3056–3076, Nov 2012.

[43] M. Joye and M. Tunstall, Eds., Fault Analysis in Cryptography, ser. Information

Security and Cryptography. Springer Berlin Heidelberg. [Online]. Available: http:

//link.springer.com/10.1007/978-3-642-29656-7

[44] Z. Kazemi, A. Papadimitriou, I. Souvatzoglou, E. Aerabi, M. M. Ahmed, D. Hely, and

V. Beroulle, “On a low cost fault injection framework for security assessment of cyber-

physical systems: Clock glitch attacks,” in 2019 IEEE 4th International Verification and Se-

curity Workshop (IVSW), July 2019, pp. 7–12.

[45] Z. Kazemi, M. Fazeli, D. Hely, and V. Beroulle, “Hardware security vulnerability assessment

to identify the potential risks in a critical embedded application,” in 2020 IEEE 26th Inter-

120

https://doi.org/10.1109/FDTC.2015.16
http://link.springer.com/10.1007/978-3-642-29656-7
http://link.springer.com/10.1007/978-3-642-29656-7

BIBLIOGRAPHY

national Symposium on On-Line Testing and Robust System Design (IOLTS), July 2020, pp.

1–6.

[46] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, and F. Regazzoni, “Countermeasures against

fault attacks on software implemented aes: Effectiveness and cost,” in Proceedings of the 5th

Workshop on Embedded Systems Security, ser. WESS ’10. New York, NY, USA: Association for

Computing Machinery, 2010. [Online]. Available: https://doi.org/10.1145/1873548.1873555

[47] N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson, “Formal verification of a software

countermeasure against instruction skip attacks,” CoRR, vol. abs/1402.6461, 2014. [Online].

Available: http://arxiv.org/abs/1402.6461

[48] J.-F. Lalande, K. Heydemann, and P. Berthomé, “Software countermeasures for control flow

integrity of smart card C codes,” in ESORICS - 19th European Symposium on Research in

Computer Security, ser. Lecture Notes in Computer Science, M. Kutylowski and J. Vaidya,

Eds., vol. 8713. Wroclaw, Poland: Springer International Publishing, Sep. 2014, pp. 200–218.

[Online]. Available: https://hal.inria.fr/hal-01059201

[49] Z. Kazemi, C. Bresch, D. Hely, and V. Beroulle, “A systematic approach for hardware secu-

rity assessment of secured IoT applications,” in TRUDEVICE 2020: Workshop on Trustworthy

Manufacturing and Utilization of Secure Devices, DATE’20.

[50] Z. Kazemi, A. Norollah, A. Kchaou, M. Fazeli, D. Hely, and V. Beroulle, “An in-depth vulner-

ability analysis of risc-v micro-architecture against fault injection attack,” in 2021 IEEE In-

ternational Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems

(DFT), Oct 2021, pp. 1–6.

[51] C. O’Flynn and Z. D. Chen, “Chipwhisperer: An open-source platform for hardware embed-

ded security research,” in Constructive Side-Channel Analysis and Secure Design, E. Prouff,

Ed. Cham: Springer International Publishing, 2014, pp. 243–260.

[52] J. Balasch, B. Gierlichs, and I. Verbauwhede, “An in-depth and black-box characterization of

the effects of clock glitches on 8-bit mcus,” in 2011 Workshop on Fault Diagnosis and Toler-

ance in Cryptography, Sep. 2011, pp. 105–114.

[53] T. Korak, M. Hutter, B. Ege, and L. Batina, “Clock glitch attacks in the presence of heating,” in

2014 Workshop on Fault Diagnosis and Tolerance in Cryptography, Sep. 2014, pp. 104–114.

[54] J. Obermaier, R. Specht, and G. Sigl, “Fuzzy-glitch: A practical ring oscillator based clock

glitch attack,” in 2017 International Conference on Applied Electronics (AE), Sep. 2017, pp.

1–6.

[55] M. Agoyan, J.-M. Dutertre, D. Naccache, B. Robisson, and A. Tria, “When clocks fail: On criti-

cal paths and clock faults,” in Smart Card Research and Advanced Application, D. Gollmann,

121

https://doi.org/10.1145/1873548.1873555
http://arxiv.org/abs/1402.6461
https://hal.inria.fr/hal-01059201

BIBLIOGRAPHY

J.-L. Lanet, and J. Iguchi-Cartigny, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,

pp. 182–193.

[56] T. Korak and M. Hoefler, “On the effects of clock and power supply tampering on

two microcontroller platforms,” in 2014 Workshop on Fault Diagnosis and Tolerance

in Cryptography, FDTC 2014, Busan, South Korea, September 23, 2014, A. Tria and

D. Choi, Eds. IEEE Computer Society, 2014, pp. 8–17. [Online]. Available: https:

//doi.org/10.1109/FDTC.2014.11

[57] S. Endo, T. Sugawara, N. Homma, T. Aoki, and A. Satoh, “An on-chip glitchy-clock generator

for testing fault injection attacks,” Journal of Cryptographic Engineering, vol. 1, no. 4, p. 265,

Oct 2011. [Online]. Available: https://doi.org/10.1007/s13389-011-0022-y

[58] T. Fukunaga and J. Takahashi, “Practical fault attack on a cryptographic lsi with iso/iec

18033-3 block ciphers,” in 2009 Workshop on Fault Diagnosis and Tolerance in Cryptography

(FDTC), Sep. 2009, pp. 84–92.

[59] M. Matsubayashi, A. Satoh, and J. Ishii, “Clock glitch generator on sakura-g for fault injec-

tion attack against a cryptographic circuit,” in 2016 IEEE 5th Global Conference on Consumer

Electronics, Oct 2016, pp. 1–4.

[60] H. Martín, T. Korak, E. S. Millán, and M. Hutter, “Fault attacks on STRNGs: Impact of glitches,

temperature, and underpowering on randomness,” IEEE Transactions on Information Foren-

sics and Security, vol. 10, no. 2, pp. 266–277, Feb 2015.

[61] N. Beringuier-Boher, K. Gomina, D. Hély, J.-B. Rigaud, V. Beroulle, A. Tria, J. Damiens, P. Gen-

drier, and P. Candelier, “Voltage glitch attacks on mixed-signal systems,” in 2014 17th Eu-

romicro Conference on Digital System Design, Aug 2014, pp. 379–386.

[62] N. Timmers and C. Mune, “Escalating privileges in Linux using voltage fault injection,” in

2017 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), Sep. 2017, pp. 1–

8.

[63] A. Barenghi, G. Bertoni, E. Parrinello, and G. Pelosi, “Low voltage fault attacks on the RSA

cryptosystem,” in Proceedings of the 2009 Workshop on Fault Diagnosis and Tolerance in

Cryptography, ser. FDTC ’09. USA: IEEE Computer Society, 2009, p. 23âĂŞ31. [Online].

Available: https://doi.org/10.1109/FDTC.2009.30

[64] F. E. Potestad-Ordóñez, C. J. Jimé nez Fernández, and M. Valencia-Barrero, “Vulnerability

analysis of Trivium FPGA implementations,” IEEE Transactions on Very Large Scale Integra-

tion (VLSI) Systems, vol. 25, no. 12, pp. 3380–3389, Dec 2017.

122

https://doi.org/10.1109/FDTC.2014.11
https://doi.org/10.1109/FDTC.2014.11
https://doi.org/10.1007/s13389-011-0022-y
https://doi.org/10.1109/FDTC.2009.30

BIBLIOGRAPHY

[65] B. Yuce, N. F. Ghalaty, and P. Schaumont, “Improving fault attacks on embedded software

using RISC pipeline characterization,” in 2015 Workshop on Fault Diagnosis and Tolerance in

Cryptography (FDTC), Sep. 2015, pp. 97–108.

[66] B. Yuce, P. Schaumont, and M. Witteman, “Fault attacks on secure embedded software:

Threats, design, and evaluation,” Journal of Hardware and Systems Security, vol. 2, no. 2, pp.

111–130, Jun 2018. [Online]. Available: https://doi.org/10.1007/s41635-018-0038-1

[67] A. Barenghi, G. M. Bertoni, L. Breveglieri, and G. Pelosi, “A fault induction technique

based on voltage underfeeding with application to attacks against AES and RSA,” vol. 86,

no. 7, pp. 1864–1878. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0164121213000320

[68] L. Zussa, J.-M. Dutertre, J. Clédiere, and A. Tria, “Power supply glitch induced faults on FPGA:

An in-depth analysis of the injection mechanism,” in 2013 IEEE 19th International On-Line

Testing Symposium (IOLTS), July 2013, pp. 110–115.

[69] L. Zussa, J.-M. Dutertre, J. Clédière, B. Robisson, and A. Tria, “Investigation of timing

constraints violation as a fault injection means,” in 27th Conference on Design of Circuits

and Integrated Systems (DCIS), Avignon, France, Nov. 2012, p. pas encore paru. [Online].

Available: https://hal-emse.ccsd.cnrs.fr/emse-00742652

[70] L. Zussa, J.-M. Dutertre, J. Clediere, and B. Robisson, “Analysis of the fault injection mecha-

nism related to negative and positive power supply glitches using an on-chip voltmeter,” in

2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), May

2014, pp. 130–135.

[71] N. Timmers, A. Spruyt, and M. Witteman, “Controlling PC on ARM using fault injection,”

in 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), Aug 2016, pp.

25–35.

[72] H. Choukri and M. Tunstall, “Round reduction using faults,” pp. 13–24.

[73] R. Anderson and M. Kuhn, “Low cost attacks on tamper resistant devices,” in Security Proto-

cols, B. Christianson, B. Crispo, M. Lomas, and M. Roe, Eds. Springer Berlin Heidelberg, pp.

125–136.

[74] J. Korczyc and A. Krasniewski, “Evaluation of susceptibility of fpga-based circuits to fault

injection attacks based on clock glitching,” in 2012 IEEE 15th International Symposium on

Design and Diagnostics of Electronic Circuits Systems (DDECS), April 2012, pp. 171–174.

[75] B. Selmke, F. Hauschild, and J. Obermaier, “Peak clock: Fault injection into pll-based systems

via clock manipulation,” in Proceedings of the 3rd ACM Workshop on Attacks and Solutions in

123

https://doi.org/10.1007/s41635-018-0038-1
https://www.sciencedirect.com/science/article/pii/S0164121213000320
https://www.sciencedirect.com/science/article/pii/S0164121213000320
https://hal-emse.ccsd.cnrs.fr/emse-00742652

BIBLIOGRAPHY

Hardware Security Workshop, ser. ASHES’19. New York, NY, USA: Association for Computing

Machinery, 2019, p. 85âĂŞ94. [Online]. Available: https://doi.org/10.1145/3338508.3359577

[76] T. Katashita, Y. Hori, H. Sakane, and A. Satoh, “Side-channel attack standard evaluation board

sasebo-w for smartcard testing,” 2011.

[77] N. Selmane, S. Guilley, and J.-L. Danger, “Practical setup time violation attacks on aes,” in

2008 Seventh European Dependable Computing Conference, May 2008, pp. 91–96.

[78] Y. Romailler and S. Pelissier, “Practical fault attack against the ed25519 and eddsa signature

schemes,” in 2017 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), Sep.

2017, pp. 17–24.

[79] M. Hutter, J.-M. Schmidt, and T. Plos, “Contact-based fault injections and power analysis on

rfid tags,” in 2009 European Conference on Circuit Theory and Design, Aug 2009, pp. 409–412.

[80] Spartan-6 FPGA Data Sheet, Xilinx Inc, 1 2015, vol. 162.

[81] A. Note and J. Tatsukawa, MMCM and PLL Dynamic Reconfiguration MMCM and PLL Con-

figuration Bit Groups, Xilinx Inc.

[82] Wikipedia, “Advanced Encryption Standard — Wikipedia, the free encyclopedia,” http://fr.

wikipedia.org/w/index.php?title=Advanced%20Encryption%20Standard&oldid=181841434,

2021, [Online; accessed 23-November-2021].

[83] A. A. Abdelrahman, M. M. Fouad, and H. Dahshan, “Analysis on the aes implementation with

various granularities on different gpu architectures,” Advances in Electrical and Electronic

Engineering, vol. 15, no. 3, pp. 526–535, 2017.

[84] J. C. Talwana and H. Hua, “Smart world of internet of things (iot) and its security concerns,”

2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Comput-

ing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CP-

SCom) and IEEE Smart Data (SmartData), pp. 240–245, 2016.

[85] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection attacks on crypto-

graphic devices: Theory, practice, and countermeasures,” Proceedings of the IEEE, vol. 100,

no. 11, pp. 3056–3076, Nov 2012.

[86] A. B. Pawar and S. Ghumbre, “A survey on iot applications, security challenges and counter

measures,” in 2016 International Conference on Computing, Analytics and Security Trends

(CAST), Dec 2016, pp. 294–299.

[87] S. Picek, L. Batina, P. Buzing, and D. Jakobovic, “Fault injection with a new flavor: Memetic

algorithms make a difference,” in Constructive Side-Channel Analysis and Secure Design,

S. Mangard and A. Y. Poschmann, Eds. Springer International Publishing, pp. 159–173.

124

https://doi.org/10.1145/3338508.3359577
http://fr.wikipedia.org/w/index.php?title=Advanced%20Encryption%20Standard&oldid=181841434
http://fr.wikipedia.org/w/index.php?title=Advanced%20Encryption%20Standard&oldid=181841434

BIBLIOGRAPHY

[88] C. Bresch, S. Chollet, and D. Hély, “Towards an inherently secure run-time environment for

medical devices,” in 2018 IEEE International Congress on Internet of Things (ICIOT), July

2018, pp. 140–147.

[89] Running a RISC-v processor on the arty a7 - digilent reference. [Online]. Available:

https://digilent.com/reference/programmable-logic/arty-a7/arty_a7_100_risc_v/start

[90] Open on-chip debugger. [Online]. Available: https://openocd.org/

[91] “Digilent/digilent-xdc,” original-date: 2017-04-18T23:52:32Z. [Online]. Available: https:

//github.com/Digilent/digilent-xdc/blob/10e32cb88446b8d60cf7a34ed51cecd4e0aa0d9b/

Arty-A7-35-Master.xdc

[92] D. A. Patterson and A. Waterman, “The risc-v reader: An open architecture atlas,” 2017.

[93] A. Waterman and K. Asanovi’c, “The RISC-v instruction set manual volume i: User-level ISA.”

[94] T. Given-Wilson, N. Jafri, J.-L. Lanet, and A. Legay, “An automated formal process for de-

tecting fault injection vulnerabilities in binaries and case study on present,” in 2017 IEEE

Trustcom/BigDataSE/ICESS, Aug 2017, pp. 293–300.

[95] M. B. Petersen, “RIPES: A visual computer architecture simulator and assembly code

editor built for the RISC-V instruction set architecture.” [Online]. Available: https:

//github.com/mortbopet/Ripes

[96] “The LLVM Compiler Infrastructure Project.” [Online]. Available: https://llvm.org

[97] R. Corin and F. A. Manzano, “Taint analysis of security code in the klee symbolic execution

engine,” in ICICS, 2012.

[98] “KLEE Symbolic Execution Engine.” [Online]. Available: https://klee.github.io/

[99] H. M. Le, V. Herdt, D. Große, and R. Drechsler, “Resilience evaluation via symbolic fault injec-

tion on intermediate code,” in 2018 Design, Automation Test in Europe Conference Exhibition

(DATE), March 2018, pp. 845–850.

[100] E. Boespflug, C. Ene, L. Mounier, and M.-L. Potet, “Countermeasures Optimization in

Multiple Fault-Injection Context,” in ”Fault Diagnosis and Tolerance in Cryptography”

FDTC 2020, Milan (Virtual Workshop), Italy, Sep. 2020. [Online]. Available: https:

//hal.archives-ouvertes.fr/hal-02951150

125

https://digilent.com/reference/programmable-logic/arty-a7/arty_a7_100_risc_v/start
https://openocd.org/
https://github.com/Digilent/digilent-xdc/blob/10e32cb88446b8d60cf7a34ed51cecd4e0aa0d9b/Arty-A7-35-Master.xdc
https://github.com/Digilent/digilent-xdc/blob/10e32cb88446b8d60cf7a34ed51cecd4e0aa0d9b/Arty-A7-35-Master.xdc
https://github.com/Digilent/digilent-xdc/blob/10e32cb88446b8d60cf7a34ed51cecd4e0aa0d9b/Arty-A7-35-Master.xdc
https://github.com/ mortbopet/Ripes
https://github.com/ mortbopet/Ripes
https://llvm.org
https://klee.github.io/
https://hal.archives-ouvertes.fr/hal-02951150
https://hal.archives-ouvertes.fr/hal-02951150

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Basic Concepts of Hardware Attacks
	Side-Channel Attacks
	Fault Injection Attacks

	Thesis Statement and Main Objectives
	Thesis Contributions
	Organization of the Dissertation

	State of The Art
	A Basic Setup for a FIA Platform
	Clock-Based FIAs
	Concepts of Clock FIAs
	Clock Glitching Attack Examples
	Clock Glitch Generator Characteristics

	Voltage-Based FIAs
	Concepts of Voltage FIAs
	Voltage Glitching Attack Examples
	Voltage Glitch Generator Characteristics

	A Review of Fault Generators
	Clock Glitch Generators in the literature
	Voltage Glitch Generators in the Literature

	Conclusion

	Hardware Security Evaluation Platform
	The Framework of a Practical Evaluation Platform
	Fault Configurator Interface
	Key Parameters for Clock Glitch Configuration
	Clock Glitch Configurator Interface

	Fault Generator
	FPGA Implementation of the Clock Glitch Generator
	Experimental Comparison of Clock Glitch Generator Designs, CDC vs. CDCF: Attacking AES Algorithm
	Design of an Efficient and Automated Clock Glitch Generator

	Fault Effect Analyzer
	Main Control Flow Patterns and Their Evaluation Methods
	Main Standard C-Functions and Their Evaluation Methods

	Conclusion

	Hardware Security Assessment By Utilizing The Hardware Evaluation Platform
	ICEM Assessment Methodology
	Identification of sensitive assets
	Classification of the Assets based on their security properties
	Experimental Evaluation of the Assets
	Mitigation of Software-Level Vulnerabilities

	Evaluation of a Medical Embedded Application against Clock Glitching FIA: A Case Study
	Identifying the Sec-Pump Assets
	Classifying the Sec-Pump's Assets based on their Security Properties
	Experimental Evaluation of the Sec-Pump
	Vulnerability Mitigation for the Sec-Pump Application

	Conclusion

	Optimizing the FIA Evaluation Process by Utilizing Simulation-based Analysis and Symbolic Assertion
	Enhancing the Experimental FIA Through Simulation-based Pre-Injection Analysis
	Non-Exhaustive Experimental Evaluation of C-Functions
	Fault Effects on A RISC-V Micro-Architecture
	Simulation-based Evaluation Results
	Fine Tuned Experimental Attack

	An Offline Hardware Security Assessment Approach using Symbolic Assertion and Code Shredding
	Background of the Symbolic Fault Injection
	Precise Fault Injection Using Symbolic Execution
	A Case-Study
	Experiments and Results

	Conclusion

	Conclusions
	Perspectives
	Publications
	Bibliography

