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A B S T R A C T I N E N G L I S H

Since Bush, (1945), governments of advanced economies have become aware of the
importance of science for technical progress and economic growth. However, it is
only very recently that researchers start being able to quantify the knowledge flows
between academia and the private sector. In this thesis, I first measure the direct
contribution of academics to invention, and then I go further by evaluating the impact
of different public policies on academics’ incentives to invent. All the chapters are
based on the French case, for which we have collected quasi-exhaustive data on the
population of academics and their inventions over around twenty years.

In the first chapter, I quantify academic invention in France and explore its indi-
vidual and social drivers. I find that more than 11% of the patented inventions for
the years 1995–2012 stem from academia, revising upwards prior estimations. Every
year increase not only the number of academic inventions, but also the propensity of
professors to invent (by 75% between 1995 and 2012). Given that the drivers of this dif-
fusion remain unclear, I study the contribution of micro and meso level characteristics.
I explore age and cohort effects: are young people trained in a more entrepreneurial
culture more likely to invent, or less likely than older ones for their focus on advanc-
ing their career first? I find support for the latter, that is a life-cycle effect rather than
a cohort effect. But invention is also a social phenomenon, so I wonder whether be-
ing surrounded by fellow inventors (in the lab or in the university) affects one’s own
propensity to invent. My results indicate that a professor patents four times more
inventions when colleagues in the lab invent one more patent per year on average.

In the second chapter, I evaluate the impact of the university ownership regime on
academic invention. This regime has been introduced in many advanced economies
following the US pioneering Bayh-Dole Act. It consists in assigning intellectual prop-
erty rights over academic inventions to universities, rather than to professors, com-
panies or federal agencies, with the aim of encouraging academic invention and its
transfer to society. France introduced its Innovation and Research Act in 1999. How
does the effective implementation of the university ownership regime affect profes-
sors’ incentives to invent? I find that only some universities effectively implement
the corresponding policy recommendations, and at different times. I use a Coarsened
Exact Matching on universities followed by a difference-in-differences regression to
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compare academics in universities that took the step and increasingly managed their
intellectual property to other similar academics in universities that have not taken the
step. I find that, upon the implementation of the regime in their university, profes-
sors patent up to 20% more inventions. I conclude that it is efficient to allocate the
intellectual property rights to universities, and suggest that negative effects observed
in other countries may result from a lack of flexibility towards universities in the
practical implementation of the regime.

In the third chapter, I assess the impact of competitive science funding on academic
invention. The French government introduced competitive funding for scientific re-
search in 2005. A national research agency was created to support the production
of higher quality fundamental knowledge. I merge to our previous database on pro-
fessors and patents the data on the projects they submitted in 2005-2009 and the
funding decisions of the selection committees. In a Heckman probit regression, I find
that academics with experience or who have contributed to innovation have a higher
propensity to apply but are less likely to be selected by the agency. I show that the for-
mer effect dominates the latter, as several hundred researchers have applied for and
received funding because of the particular characteristics shared by academic inven-
tors and researchers whose research is cited in patents. But once I match researchers
on the characteristics that affect their chances of applying and being selected and es-
timate the impact of receiving a grant in a difference-in-difference regression, I find
no significant impact of research grants on academic invention. This means that the
positive correlation between public funding and academic invention initially observed
is entirely due to selection effects.
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R É S U M É E N F R A N Ç A I S

Depuis Bush, (1945), les gouvernements des économies avancées ont pris conscience
de l’importance de la science pour le progrès technique et la croissance économique.
Cependant, ce n’est que très récemment que les chercheurs ont commencé à pou-
voir quantifier les flux de connaissances entre le monde universitaire et le secteur
privé. Dans cette thèse, je mesure d’abord la contribution directe des universitaires
à l’invention, puis je vais plus loin en évaluant l’impact de différentes politiques
publiques sur les incitations des universitaires à inventer. Tous les chapitres sont basés
sur le cas français, pour lequel nous avons collecté des données quasi-exhaustives sur
la population des universitaires et leurs inventions sur une vingtaine d’années.

Dans le premier chapitre, je quantifie l’invention académique en France et j’explore
ses facteurs individuels et sociaux. Je trouve que plus de 11% des inventions brevetées
pour les années 1995-2012 proviennent du milieu universitaire, révisant à la hausse
les estimations précédentes. Chaque année, non seulement le nombre d’inventions
académiques augmente, mais aussi la propension des professeurs à inventer (de 75%
entre 1995 et 2012). Étant donné que les déterminants de cette diffusion restent peu
clairs, j’étudie la contribution des caractéristiques aux niveaux micro et méso. J’explore
les effets de l’âge et de la cohorte : les jeunes formés dans une culture plus en-
trepreneuriale sont-ils plus enclins à inventer, ou moins enclins que leurs aînés en
raison de la priorité qu’ils accordent à l’avancement de leur carrière ? Je trouve des
arguments en faveur de cette dernière hypothèse, c’est-à-dire un effet de cycle de vie
plutôt qu’un effet de cohorte. Mais l’invention est aussi un phénomène social, et je me
demande donc si le fait d’être entouré de collègues inventeurs (dans le laboratoire ou
à l’université) a une incidence sur la propension à inventer. Mes résultats indiquent
qu’un professeur dépose quatre fois plus d’inventions lorsque ses collègues du labo-
ratoire déposent un brevet de plus par an en moyenne.

Dans le deuxième chapitre, j’évalue l’impact de l’implémentation du régime de pro-
priété universitaire sur l’invention académique. Ce régime a été introduit dans de
nombreuses économies avancées à la suite de la loi pionnière américaine Bayh-Dole.
Il consiste à attribuer les droits de propriété intellectuelle sur les inventions univer-
sitaires aux universités, plutôt qu’aux professeurs, aux entreprises ou aux agences
fédérales, dans le but d’encourager l’invention universitaire et son transfert à la so-
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ciété. La France a introduit sa loi sur l’innovation et la recherche en 1999. Comment le
régime de propriété universitaire affecte-t-il les incitations des professeurs à inventer ?
Je constate que seules certaines universités mettent effectivement en œuvre les recom-
mandations politiques correspondantes, et ce à des moments différents. J’apparie les
universités qui franchissent le pas et gèrent de plus en plus activement leur propriété
intellectuelle à d’autres universités qui n’ont pas franchi le pas et j’effectue une régres-
sion de différence de différences sur les inventions que leurs professeurs font breveter
et transfèrent par la suite. Je constate qu’après la mise en œuvre du régime dans leur
université, les professeurs font breveter jusqu’à 20% d’inventions supplémentaires. Je
conclus qu’il est efficace d’attribuer les droits de propriété intellectuelle aux univer-
sités, et je suggère que les effets négatifs observés dans d’autres pays peuvent résulter
d’un manque de flexibilité envers les universités dans la mise en œuvre pratique du
régime.

Dans le troisième chapitre, j’évalue l’impact du financement compétitif de la sci-
ence sur la contribution des universitaires à l’innovation. Le gouvernement français a
introduit le financement compétitif de la recherche scientifique en 2005. Une agence
nationale de recherche a été créée pour soutenir la production de connaissances fon-
damentales de meilleure qualité. Je fusionne à notre base de données précédente sur
les professeurs et les brevets les données sur les projets qu’ils ont soumis en 2005-2009

et les décisions de financement des comités de sélection. Dans une régression probit
de Heckman, j’observe que les universitaires ayant de l’experience ou ayant contribué
à l’innovation ont une plus grande propension à soumettre une demande mais ont
moins de chances d’être sélectionnés par l’agence. Je montre que le premier effet
domine le second, puisque plusieurs centaines de chercheurs ont demandé et obtenu
un financement grâce aux caractéristiques particulières que partagent les inventeurs
académiques et chercheurs dont les recherches sont cités dans les brevets. Mais une
fois que j’apparie les chercheurs sur les caractéristiques qui affectent leur chances de
candidater et d’être sélectionné et estime l’impact de la réception d’une subvention
dans une régression en différence de différences, je ne trouve pas d’impact signifi-
catif des subventions de recherche sur l’invention académique. Cela signifie donc que
la corrélation positive entre financement public et invention académique initialement
observée est entièrement due aux effets de sélection.
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G E N E R A L I N T R O D U C T I O N

Innovation is the engine of technical progress and economic growth. It largely re-
lies on the new ideas and knowledge that are produced by science (Jaffe, 1989; Mans-
field, 1991; Mowery and Nelson, 1999). Many large U.S. companies have operated
their own research laboratories for most of the twentieth century, conducting exten-
sive scientific research that often led to new products and technologies. They were
aware that, as much as applied research is important to bring innovations to market,
basic research broadens the knowledge base required to make breakthrough scientific
advances. As for many other major innovations, scientists have built upon decades of
accumulated knowledge in various fields to develop mRNA vaccines, which in addi-
tion to saving millions of lives helped advance the reopening of many economies. Yet
this idea that science is critical to innovation was not obvious a century ago. Public
opinion had (and remain) to be convinced that investing in science is beneficial to all.

The first research laboratories were established in Europe by wealthy professors in
their own homes back to the fifteenth or sixteenth century. With time, these eventually
migrated into universities, making research the second official mission of academics
(Schmidgen, 2021). But until the late nineteenth century, these structures did not yet
exist in the United States. American researchers were sent to Europe to be trained in
research, and the only basic research undertaken was in private sector laboratories,
while universities were entirely devoted to teaching. The outbreak of World War II
created many tactical and logistical challenges for the military. The United States
invested heavily in science to develop bigger bombs, faster airplanes, better medical
treatments, and more precise communications. In light of the technological advances
made during this period, Vannevar Bush wrote a now-famous report encouraging the
U.S. government to maintain the investment effort in basic research after the war in
order to foster economic growth (Bush, 1945).

These recommendations were taken seriously by the American government, which
in 1950 established the National Science Foundation. This foundation was responsible
for the distribution of public funding for science in all non-medical disciplines, along-

1



2 general introduction

side the already existing National Institutes of Health. It should be noted that the
competitive approach to research funding that these agencies implement and which
dominates the U.S. research landscape, differs significantly from the approach taken
by other advanced countries. Indeed, most European countries, as well as some Asian
ones, predominantly distribute block funding to universities, rather than grants to
individual researchers or projects.

Whether in universities, research centers, or companies, the scientific pursuit re-
sults in discoveries that sometimes have commercial potential. But while in the private
sector the profit motive naturally leads companies to patent and commercialize their
inventions, universities rather operate under the Mertonian norms of communism
(free sharing of knowledge) and disinterestedness (Merton, 1942).

When the first inventions arose in academia at the very beginning of the twenti-
eth century, it was not clear whether universities and academics should engage into
commercial activities, and there were no legal provision as to which entity could and
should claim ownership of these inventions. The federal government decided to take
on this responsibility in the 1920s. The primary intention was to avoid unrest between
universities when great licensing revenues accrue to one institution which retained in-
tellectual property rights (IPR) while other decided not to commercialize. It was also
in the spirit of optimization and fair redistribution of revenues from licenses across
universities (Etzkowitz, 1994). But in the 1970s it became apparent that the federal
government was in fact distributing very few licenses (less than 5%) and that poten-
tially many inventions were underused. On the contrary, some universities were very
willing to take on this duty, which at the end of a long institutionalization process
led them to gain ownership over academic inventions with the passage of the U.S.
Bayh-Dole Act in 1980 (Popp Berman, 2008).

The transfer of scientific advances to the private sector is precisely Europe’s self-
perceived weakness. In a 1995 Green paper, the conjecture that EU countries are world
leaders in generating high-quality scientific output, but lag behind in the ability to
convert this strength into marketable innovations was called the “European Paradox”
(European Commission, 1995). Subsequent work has questioned the empirical valid-
ity and alleged causes of this paradox (Dosi, Llerena, and Labini, 2006). In fact, aca-
demic technology transfer is a difficult phenomenon to measure, because the data
collection related to this transfer (patents, licensing agreements, spin-offs) is often
non-standardized, operated by each institution involved in a one-sided manner rather
than centralized at the national or supra-national level, and above all, the confiden-
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tiality of the data often limits access to it, even for research purposes. Yet there is
a prolific body of research on the subject, and over time these difficulties are being
overcome.

Recent work has managed to systematically measure the indirect contribution of
researchers to innovation, through the citation links between scientific articles and
patents (Ahmadpoor and Jones, 2017; Marx and Fuegi, 2020; Poege et al., 2019). For
instance, Ahmadpoor and Jones, (2017) show that in the U.S. 80 percent of scientific
papers are used directly or indirectly to develop an innovation, while 61 percent of
patented innovations are based on a previously published scientific discovery. On the
other hand, some work has attempted to estimate the level of academics’ direct con-
tribution to innovation, via academic patents. In the KEINS research project, Lissoni
et al., (2008) collect samples of academic patents in France, Italy and Sweden, and re-
estimate upwards the level of technology transfer in these countries. However, to the
best of my knowledge, there is no work that exhaustively measures academic patent-
ing, at least on the scale of a large European country. The empirical validity of the
European paradox therefore remains to be verified or refuted.

Since the first warning signs at the end of the twentieth century, European gov-
ernments have initiated a series of legislative changes affecting the organization and
funding of academic research and that converges towards the American model. These
reforms aim at legitimizing university-industry interactions and the commercializa-
tion of science, and at fostering the interest and involvement of researchers and univer-
sities in commercial issues. The ultimate goal is to improve the return on investment
in science and to foster technology transfer.

Did these reforms have the intended effect on academic invention and technology transfer?
The first observation is that some European countries indeed recorded a positive trend
in academic patenting since the beginning of the 21st century (Lissoni et al., 2008).

The cohort the professor belongs to reflects instead the norms regarding commer-
cialization that prevailed during the researcher’s training (Azoulay, Ding, and Stu-
art, 2007; Thursby and Thursby, 2007). Both factors showed some correlation with
academic patenting, but it has been difficult to conclude with regard to their effect
because of their mutual entanglement.

Another set of factors relates to peer effects and local norms. The entrepreneurial
culture in some university campuses (e.g. MIT or Stanford) was highlighted as critical
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to commercial engagement (Grimaldi et al., 2011; Tartari, Perkmann, and Salter, 2014),
as well as the influence that professors have on each other in their immediate work en-
vironment (Bercovitz and Feldman, 2008; Krabel and Schacht, 2014; Louis et al., 1989).
This branch of the literature does not address academic patenting specifically, but
rather commercialization activities as a whole, and rely on very small and particular
samples.

At the macro level, the growth in the number of U.S. academic patents in the late
twentieth century was first attributed to the Bayh-Dole Act (Mowery et al., 2001). The
subsequent end of the professor’s privilege in some European countries, which also
consisted in the assignment of academic patent ownership to universities, had more
of a negative effect on the propensity of academics to patent, at least immediately
after the passage of the reform (Ejermo and Toivanen, 2018; Hvide and Jones, 2018).
It is therefore unclear whether giving ownership of academic patents to universities
promotes academic invention.

Rather than the Bayh-Dole Act, Mowery et al., (2001) suggest that the growth in
federal financial support for basic biomedical research and the increased patentability
in this field better explain the positive trend in academic patenting. The only studies
that have established a causal link between public funding and academic invention
are Payne and Siow, (2003) and Tabakovic and Wollmann, (2019), who focused on
the U.S. case at the university level, and examined federal or university funding. It
remains to be seen whether this causal link persists in other countries, at a more meso
or micro scale, and when funds are distributed in different ways.

Thesis purpose and outline

In this thesis, I contribute to these different branches of the literature by investigating
the extent of academic invention in France and its determinants at different levels.
More specifically, I address the following research questions: Are there peer effects
in academic patenting, and at what scale do they operate? How does the allocation
of patent intellectual property rights to universities affect the involvement of univer-
sities and researchers in academic invention and its transfer? Does the allocation of
competitive public funding promote academic invention and how?

To answer these questions, I use a large database on the French case covering the
two past decades (1995–2016). I first contributed to build an employment database of
more than 140,000 professors and researchers that includes the name of the employ-
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ing laboratory and university, as well as personal information such as year of birth,
gender, academic position and scientific discipline, and use different versions of it
according to the chapter. I then use this information to collect patents whose inventor
has the same (or similar) name as one of the researchers, and disambiguate the results
using machine learning techniques that rely on scores for similarity between names,
frequency of name, consistency between age and year of patent application, consis-
tency between discipline and technology class, and finally the presence, if any, of the
employing university among the patent applicants. In this way, I end up with a highly
reliable set of over 44,000 academic patents filed between 1995 and 2012, and follow-
ing an intermediate update over 77,000 between 1995 and 2016. Finally, I merge this
database with another one containing their publications (previously disambiguated)
and related indicators such as H-index and citations, as well as funding applications
and awards by the French National Research Agency (ANR) between 2005 and 2009.
It is thus a large database that provides a wealth of detail allowing to investigate the
phenomenon of academic invention in many aspects, at several levels (individual, lab-
oratory, university), while having a remarkable control over potential endogeneity or
selection biases.

In the following outline, I describe the precise objective of each chapter, with the
methodology employed and the main results.

chapter 1 . Given that the transfer of technology between science and industry is
not well quantified, I develop in the first chapter a methodology to identify academic
inventions in France over two decades. It relies on machine learning techniques and
by the end of the disambiguation, we find at least 44,759 academic patents over the
years 1995–2012 (more when using different filtering parameters).

I then describe extensively the phenomenon and its evolution over time. I show, in
particular, that 11% of all patented inventions in France actually stem directly from
academia, and up to 9% as of year 1999, thus casting serious doubt on the existence
of the European paradox in this country. I further find that as much as 20% of profes-
sors and researchers invented at least once, and this engagement level is observed in
almost all hard and life sciences fields. Hence, academics are pretty well aware of and
involved in the commercialization their scientific discoveries.

Finally, I contribute to prior investigation on the individual and social drivers of
academic invention by investigating specifically the existence of life-cycle and cohort
effects, as well as local peer effects at the laboratory and university levels. Are young
people trained in a more entrepreneurial culture more likely to invent, or less likely
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than older ones for their focus on publishing to advance their career first? Using
linear regressions with many levels of fixed effects, I find evidence in support of a
life-cycle effect whereas cohort effects are insignificant. Since invention is also a social
phenomenon, I wonder whether being surrounded by fellow inventors (in the lab or
in the university) affects one’s own propensity to invent. The results indicate that a
professor invents four times more when colleagues in the lab invent one more patent
per year on average.

chapter 2 . In the second chapter, I study how universities’ effective ownership
of academic patents affects researchers’ incentives to invent. The French Innovation
and Research Act introduced in 1999 aimed of incentivizing universities to retain the
ownership of their inventions. I develop a methodology that captures whether and
when universities make the move toward retaining their patent Intellectual Property
Rights. The first observation is that only about half of them eventually made it over
the entire period (although this varies with a threshold that we set), with a higher
likelihood around years 2008, after some other legislations were introduced, and 2012,
coinciding with the regionalization of technology transfer offices.

This great heterogeneity offers an idea setup to perform an original impact evalua-
tion exercise. Since universities and business and engineering schools do not have the
same propensity to jump on the bandwagon, we match those that did it with other
similar institutions that did not. I then run difference-in-differences regressions on
the number of patents their professors and researchers file and find that professors
and researchers employed at institutions that have adopted the university ownership
regime, have raised their propensity to invent by 20.7% on average.

chapter 3 . In the third and final chapter, I explore the relationship between com-
petitive research funding and researchers’ contributions to innovation. Here I use
both the experience in innovation, proxied by the number of academic patents, and
the contribution to innovation, measure by the number of publications that are sub-
sequently cited in patents. In France, a national project-based funding agency was
created in 2005, following a similar operating model to the NSF in the United States.
The goal of this public policy is to support the production of higher quality basic
knowledge. In a first exploratory analysis, we find out that funded applicants file on
average more patents than non-funded ones, and these last still file more patents than
non-applicants. Are academics with a potential for invention more attracted to grant
funding, are they more likely to be selected, and/or is the grant receipt increasing
their propensity to contribute to innovation?
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First, we use a Heckman probit model to investigate the likelihood of inventors and
researchers cited in patents to apply and receive a grant. I find that researchers who
contribute to innovation are more attracted to project funding than their respective
counterparts. However, controlling for their observable differences, I find that they are
significantly less likely to be selected by the agency. The combination of the two effects
is still beneficial, as several hundred researchers have applied for and received grants
solely thanks to some specific characteristics shared by inventors and researchers cited
in patents. It could be for instance a greater ability to identify the potential impacts of
a research project, or an entrepreneurial mindset.

Second, I use a matching to restrict the sample to a set of similar candidates that
are funded and unfunded. In a set of difference-in-differences regression, I observe
that project-based funding does not significantly affect researchers’ contribution to
innovation overall. This leads me to conclude that the positive correlation previously
recorded between the two phenomena is therefore mainly the result of a selection
effect.





1
T H E S P R E A D O F A C A D E M I C I N V E N T I O N : A N AT I O N W I D E
C A S E S T U D Y O N F R E N C H D ATA ( 1 9 9 5 - 2 0 1 2 ) 1

1.1 introduction

Economists have long hypothesized that the ever-increasing stock of scientific knowl-
edge has a huge impact on innovation and the pace of economic growth (Arrow,
1962; Jones, 1995; Nelson, 1959; Romer, 1990). Focusing on the direct contribution of
academia to innovation, many pieces of public policy have been introduced around
the world to encourage scholars to generate inventions and support their transfer to
society. In this paper, we document the extent to which professors and researchers
engaged in academic patenting in France over nearly two decades (1995-2012) and
explore the factors leading them to do so.

We define academic patents as being those patents invented by professors and re-
searchers employed in universities and research institutes. The nice feature of such
a definition is that it is independent of the patent assignee and thus immune to the
transfer strategies of the professors and universities. The flip side is that this defini-
tion is much more demanding in terms of data collection and data treatments. Rosters
of professors and researchers need be collected and matched with patent inventors.
The main originality of our approach with respect to previous attempts2 is that we
systematize the matching and filtering procedures on a large scale thanks to machine
learning techniques that avoid time-consuming, painstaking checking procedures per-
formed by humans. Our method requires a reliable benchmark though, to ensure that
false positives and negatives are fully controlled and limited. This approach makes it
possible to consider i) large lists of professors and researchers which become compa-
rable to the reference population, and ii) sufficiently large time windows. We apply

1 This paper is co-authored with N. Carayol and has been published in the Journal of Technology Transfer
(DOI: 10.1007/s10961-021-09888-9. Access here). Although the dataset of academic patents presented in
this chapter has been updated subsequently to include more recent years (2013-2016) and a broader list
of individuals, this chapter still uses the first version ending in 2012 that offers details at the laboratory
level that are no longer available in the most recent dataset.

2 e.g. Lissoni et al., (2008), Meyer, (2003), and Thursby, Fuller, and Thursby, (2009).
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this method to France, the seventh country in the world in terms of GDP, sixth for
scientific articles, and fourth for patents granted in this period of time.

Over the eighteen-year period under scrutiny, academic patents are found to ac-
count for more than 11% of all patents invented in the country. This is well above
prior estimates and therefore provides a new insight into the real direct contribution
of science to technological inventions. As our data provide interesting covariates on
professors and researchers extending beyond those who might have a patent, we are
able to characterize their involvement in technology transfer. We find that more than
one in five professors and researchers is an inventor (excluding social sciences and
humanities). This statement applies to nearly all fields in the hard and life sciences,
meaning that academic patenting is not specific to a particular field of science. Ob-
viously, faculty members do not operate in some “ivory tower” and are much more
directly involved in technological invention than is often assumed.

Is this a recent phenomenon potentially entirely due to increasing incentives to
patent and commercialize academic research? We find that academic patents already
accounted for more than 9% of all patents invented in the country prior to the intro-
duction of the first piece of legislation encouraging technology transfer –the 1999

Innovation Act.3 This contradicts the idea of a very low pre-reform level of aca-
demic technology transfer, although it does not imply that nothing has changed in
the more recent period. On the contrary, we find that faculty members’ propensity
to invent increased by 75% between 1995 and 2012. To control for a potential trend
affecting patenting behavior (improvements in communication technology or instru-
mentation, for instance), we use non-academic patents as a reference point and show
that academic inventors increase their propensity to invent significantly more than
non-academic inventors over the same period.

What are the drivers behind the spread of patenting behavior in academia? We
consider two series of factors: individual attributes on the one hand, and social and
cultural influence on the other. Controlling for a large number of potential confound-
ing factors, such as university, age, gender, status, field and year effects, we find that
more recent cohorts are not more likely to engage in patenting. Age plays positively on
academic patenting at the individual level, a result which is reminiscent of previous
findings on smaller datasets (Carayol, 2007; Stephan et al., 2007) and consistent with
the idea that incentives to invent are less susceptible to decrease over the life-cycle

3 In France, public universities were entitled to retain the intellectual property rights over inventions
from publicly funded research since 1984, but it is the 1999 Innovation Act that started providing an
institutional design allowing them to commercialize their research outcomes.
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than traditional incentives to publish. However, the propensity to patent of professors
is shown to increase significantly over time, controlling for age and cohort effects.

To further understand how patenting behavior spreads through the academic com-
munity, we explore the influence of local social factors. The organizational culture
at the individual university level has been emphasized as key to the willingness of
faculty members to engage in entrepreneurship (Grimaldi et al., 2011). Other studies
have highlighted the importance of norms, role models and peer effects in the re-
search group in explaining faculty engagement in technology transfer (Bercovitz and
Feldman, 2008; Krabel and Schacht, 2014; Louis et al., 1989). We proxy community in-
volvement towards patenting using per capita invention rates in the previous years, at
the university level (excluding the focal lab staff) and within the laboratory (excluding
the focal person). Controlling for year, university and individual fixed effects, we find
that local diffusion within the lab plays a decisive role. One additional yearly patent
invented by the average colleague in the lab in previous years raises the expected
number of patents by a factor of four.

The rest of the paper is organized as follows. Section 2.2 reviews the literature on the
extent of academic patenting and its drivers. Section 1.3 exposes data collection and
the methodology. Section 1.4 proposes descriptive statistics on academic patenting in
France. Section 1.5 assesses how the propensity to invent varied over the period in
academia, as compared to non-academic inventor profiles. Section 1.6 discusses the
factors explaining the spread of patenting behavior within the academic community.
Section 1.7 concludes.

1.2 literature on academic patenting

1.2.1 The extent of academic patenting

At least since 1980, with the passage of the Bayh-Dole Act in the US4 attracting policy
makers’ and researchers’ attention to this phenomenon, the number of patents in-
vented by professors and researchers has been increasing over time in most advanced
economies (Henderson, Jaffe, and Trajtenberg, 1998; Mowery and Ziedonis, 2002).

The early 2000’s data on university patenting pointed to an underperformance of
UK and European universities as compared to their US counterparts, given the nations’

4 The Bayh-Dole Act allowed universities to retain the intellectual property rights over inventions stem-
ming from federally funded research.
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investment in fundamental research (Geuna and Nesta, 2006). Based on this prior and
the belief that the growth in US university patenting was driven by the Bayh-Dole Act,
several European countries voted similar reforms (Mowery and Sampat, 2004).

But counting university patents hardly reflects the true contribution of academia to
innovation in Europe (Geuna and Nesta, 2006). Considering university-owned patents
leads to bias downward the estimations of academic patenting because of cultural,
regulatory and managerial differences regarding the attribution of intellectual prop-
erty rights of professors and researchers employed in universities and public research
institutes. Whereas US universities may strongly enforce the ownership of their in-
ventions, their European counterparts often left the rights to their professors (the
so-called “professor’s privilege” in German and Nordic countries), or simply did not
have the resources to manage it, and thus inventions were owned by the private sector
or the individual inventor herself (Lissoni et al., 2008; Thursby, Fuller, and Thursby,
2009). International comparisons become meaningless simply because data are con-
taminated by the choice of a transfer strategy. Carayol and Sterzi, (2021) even show
that promising technologies are likely to be cherry-picked and transferred without
the involvement of the university TTO.

In such a context, an appropriate methodology for measuring the contribution of
academia to invention is to find and count in those patents invented by professors em-
ployed at universities and not assigned to their institution. Following this methodol-
ogy, in what is probably the most comprehensive national study, Meyer, (2003) found
that 8% of all patents invented in Finland the years 1986-2000 stem from academia.
Another great advantage of such an approach is that it also allows the analyst to ap-
preciate the engagement of professors and researchers in patenting. In six European
countries, Lissoni, (2012) finds that 2 to 5% of professors have filed a patent. This ap-
proach is however sensitive to potential underevaluation if the lists are incomplete or
if academic patents are difficult to retrieve.

Another approach based on surveys has also been used to appreciate faculty par-
ticipation in patenting. This literature provides very heterogeneous results, ranging
from 2 to 40%. Gulbrandsen and Smeby, (2005) provide a figure of 7% in Norway,
considering all scientific fields, including the social sciences and humanities. When fo-
cusing on hard and life sciences, Landry et al., (2010) find 22% of academic inventors
in Canada, Klofsten and Jones-Evans, (2000) 26% and 12% in Ireland and Sweden, and
Walsh and Huang, (2014) 26% and 32% in the US and Japan. For the hard sciences
only, D’Este and Perkmann, (2011) find 31% inventors among professors in the UK.
Finally, the share goes up to 40% among life scientists in the UK and Germany com-
bined (Haeussler and Colyvas, 2011). Selection bias may explain some of these highest
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figures, as inventors may be more likely to answer such surveys about their transfer
or commercial activities. Heterogeneity may be explained by field, institutional and
national differences.

In this paper, we introduce a methodology (Section 1.3) to build large datasets of
academic patenting. We use it to set up a longitudinal dataset covering all scientific
fields at a national level. Among other benefits, this allows us to extend the above
mentioned lines of investigation in a more systematic way.

1.2.2 The drivers of academic patenting

Even though the extent of academic engagement was not yet fully appreciated, con-
siderable concern was expressed in the 90’s that the move towards commercialization
in the university community may be coming at the expense of the production of fun-
damental knowledge (Dasgupta and David, 1994; Stephan and Levin, 1996). A stream
of work investigated the nature of the relationship between patenting and publishing
(Azoulay, Ding, and Stuart, 2007; Carayol, 2007; Czarnitzki, Glänzel, and Hussinger,
2007; Stephan et al., 2007), and concluded that both activities are complement rather
than substitutes.

Once this concern was essentially dismissed, scholars became interested in the
drivers of academic patenting. In the US, the positive trend in academic patenting
was first attributed to the Bayh-Dole Act, although Mowery et al., (2001) suggest
that the growth in federal financial support for basic biomedical research and the in-
creased patentability in this field may better explain this positive trend than the Act
itself. Conversely and on a similar level, Ejermo and Toivanen, (2018) and Hvide and
Jones, (2018) find that the end of the Professor’s Privilege had a negative impact on
academics’ propensity to invent.

At the individual level, the type of research performed, the degree of collaboration
with the private sector as well as relevance of intellectual property rights protection
varies greatly among scientific fields, making the discipline another important driver
to consider (Carayol, 2007; Stephan et al., 2007). Tenure was also found to be relevant
in the US context (Azoulay, Ding, and Stuart, 2007; Stephan et al., 2007). The literature
also identifies age as a key characteristic in explaining academic productivity. The life-
cycle effect indicates that a scientist productivity grows up to a certain (biological) age
before decreasing towards the end of the career. It is usually observed in scientists’
publishing patterns, but also in their patenting activity. Carayol, (2007) finds that
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patenting increases with age whereas Stephan et al., (2007) finds little evidence of
such an effect. Those results need to be taken with caution as the cross-sectional
nature of the data prevented these studies from accounting for cohort effects. Different
generations of scientists may have a different productivity pattern because of the
varying contexts in which they were trained and are working (Stephan, 2010).

Based on longitudinal data, Azoulay, Ding, and Stuart, (2007) and Thursby and
Thursby, (2007) find that, once controlling for cohorts, patenting decreases over the
life-cycle. However, while the authors of the former paper argue that newer cohorts
are more likely to patent than are earlier cohorts, the latter finds opposite results. We
contribute to this debate by studying the age and cohort effects on our longitudinal
dataset covering all scientific fields and almost all universities at a national level.

Finally, the literature has emphasized the role of the local culture within the univer-
sity site and peer effects in embracing a research style that considers innovation and
entrepreneurial attitudes (Grimaldi et al., 2011; Tartari, Perkmann, and Salter, 2014).
The entrepreneurial culture in some university campuses (such as MIT, Stanford or
the University of Wisconsin at Madison) is often highlighted as critical. The literature
also suggests that besides the campus atmosphere, professors influence each other in
their immediate work environment. Based on a survey of US life science faculty, Louis
et al., (1989) first highlight the importance of “local group norms” in predicting active
involvement in commercialization. Krabel and Schacht, (2014) highlight the influence
of Max Plank research institute leaders in disclosing inventions. Considering peer ef-
fects in faculty engagement in technology transfer activities, Bercovitz and Feldman,
(2008) show that faculty members of two US medical schools were more likely to
disclose inventions when their peers did so in the previous year.

We investigate the influence of university recent involvement in patenting as well
as similar effects within research labs.

1.3 identifying academic inventions

In this section, we first discuss the different approaches to identifying academic inven-
tions. We next present our data sources, before exposing our filtering methodology to
merge faculty lists with inventors. Lastly, we show how we can estimate the number
of academic inventions.
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1.3.1 Academic inventions in the literature

Previous studies of inventions produced in academia have relied on a variety of defini-
tions of what an academic patent is, and on associated data collection methodologies.
Scholars initially assumed that academic patents were patents assigned to universi-
ties and government labs (Mowery and Ziedonis, 2002; Mowery et al., 2001), but this
approach had the drawback of ignoring all patents invented by university personnel
but which were not assigned to the university, for whatever reason. Many academic
institutions traditionally did not manage their intellectual property rights and thus
often did not retain the rights to the inventions their staff were involved in, whether
intentionally or unintentionally. To avoid this issue, reference must be to the inventor
field rather than to the assignee.

Several strategies can be deployed for the inventor information to find university
research personnel. Some papers use the title “Prof. Dr.” that may be mentioned in
the inventor field (Czarnitzki et al., 2016), although this is barely feasible outside
Germany. When national statistical institutes provide precise employee data, authors
merge them with inventors (Ejermo and Toivanen, 2018). Another way is to merge
authors of scientific publications with inventors (Stephane and Martinez, 2014).

Our approach started out with information on the research staff of universities. Sev-
eral previous studies have used such lists (Balconi, Breschi, and Lissoni, 2004; Hvide
and Jones, 2018; Iversen, Gulbrandsen, and Klitkou, 2007; Lissoni et al., 2008; Meyer,
2003; Thursby, Fuller, and Thursby, 2009). The difficulties in this approach are i) col-
lecting large research staff lists over a sufficiently long period of time and ii) perform-
ing a reliable and systematic merge of those persons with inventors. In this paper we
use large lists of professors and researchers and develop a filtering procedure which
simultaneously avoids performing time-consuming manual checking and controls for
merge quality.

1.3.2 Data sources

Our data come from the French Ministry for Higher Education and Research. We
know, each year, the full name, gender, age, field of science, employing university and
status of all the professors employed in France. Besides, we know precisely in which
laboratory each person works. This is important because the French research system,
as in most continental European countries, is organized in research laboratories (see
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Azagra-Caro, Llerena, and Carayol, 2006; Carayol and Matt, 2004). These laboratories
are the elementary units structuring research activity in nearly all higher education
and research institutions. In France, labs host both professors employed by the univer-
sities (or higher education schools) and researchers employed by research institutes.
They vary in size from a few professors and researchers to several hundreds. Lab in-
formation is available as labs provide their staff lists when surveyed by the ministry
every four to five years. As most labs were surveyed this way at least twice over the pe-
riod, we can observe movements in time. At the end of this task, we had nearly 52,000

faculty members and researchers affiliated to 234 universities and research institutes
and more than two thousand laboratories.5

Patent data were extracted from the “EPO Worldwide Patent Statistical Database”
(PATSTAT Autumn 2017 Edition). We restricted the data to all patents filed at EPO or
INPI (the French national office) for which at least one inventor had a home address
in France. We obtained 427,891 French-invented patents from 1995 to 2012.

1.3.3 Filtering academic patents

Professors or researchers’ first and last names are first matched with those of the
inventor (using exact and fuzzy matching techniques to allow limited variation in
spelling). This returns almost 91,000 patents and 148,000 professor-inventor pairs on
a given patent that remain to be filtered out. We use a statistical model to estimate the
probability that each match is correct. Our filtering process takes four stages.

In the first stage, we estimate a logit model on a set of validated and unvalidated
couples. Such a benchmark was already used in Carayol et al., (2019) and was consti-
tuted on the basis of experts (mainly professionals of technology transfer employed
in the universities) identifying professors as potential inventors. The benchmark is
made up of almost 1,200 professor-inventor pairs.6 Explanatory variables include Jac-
card similarity between names, the inventor name frequency (in log), the distance be-
tween the patent technological classification and the professor’s scientific disciplines
as defined by Magerman et al., (2017) (in log), as well as dummies signaling consis-
tency between the professor’s age and the patent application year and between the
assignee’s name and the professor’s employing institution. Regressions are performed
per patent office as Hausman tests showed that logit coefficients are significantly dif-

5 Carayol and Lanoë, (2019) used a very similar dataset to estimate the impact of project-based funding.
6 This benchmark includes 31 pairs for the USPTO, 236 for the EPO and 945 for the INPI. There were too

few USPTO pairs for the algorithm to perform well on this subset so we removed them from the data.
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ferent across offices. Results for each patent office are presented in Table 6 in the
Appendix.

The second step uses the estimated coefficients to predict the probability that po-
tential matches are correct or incorrect over the whole reference population.

In the third step, we consider various thresholds of the probability of accepting or
rejecting matches. Let TP(p) denote the number of true positives in the benchmark
for a given threshold probability value p, FP(p) is the number of false positives, and
FN(p) the number of false negatives. We compute precision as

P(p) =
TP(p)

FP(p) + TP(p)
, (1)

and recall as

R(p) =
TP(p)

TP(p) + FN(p)
. (2)

Precision and recall vary in opposite directions with threshold p. We thus calculate a
synthetic indicator taking both into account:

Fβ(p) = (1+β2)× P(p)× R(p)
β2 × P(p) + R(p)

, (3)

with β, a strictly positive parameter weighting precision and recall. If β < 1, precision
gets a lower weight than recall, whereas the reverse holds when β > 1. As we do
not want our results to be sensitive to a particular value of β, all our statistics are
computed for β = 0.5, β = 1 and β = 2. In Figure 3 in the Appendix, we display the
computed values of those indicators for the different threshold probability values p.

The fourth and last stage consist in finding the optimal p threshold value, for each
β and patent office i. That is, we want to find

p∗β,i = arg max
p

{
Fβ,i(p)

}
, (4)

for all β and i, with Fβ,i(p) the indicator defined in Equation 3, but calculated using
the patents of office i only. Given that we consider two offices and three different
values of β, we end up with a series of six optimal threshold values to be calculated.
Optimal thresholds presented in Table 7 are significantly different for each consid-
ered office. Table 7 also indicates the precision and recall values for each pair (β, i).
We compute these indicators on the benchmark pooling patents from each office. As
expected, recall increases with β whereas precision decreases with β. EPO and INPI
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patents have very good recall rates (above 0.93) when β = 2. INPI patents have a sat-
isfactory recall rate (above 80%) when β equals 1. Recall and precision rates for EPO
patents are found to be simultaneously satisfactory when β equals 1 or 0.5.

For an external assessment of the quality of our data filtering, we use a more lim-
ited sample of faculty inventions which have been identified via a combination of web
searches, emails and phone calls.7 Having created faculty-inventor-patent tables in
both datasets and excluded homonyms born in the same year, those tables are merged
on prof name, first name, birth year and patent identifier code. This essentially leads
us to restrict data to the benchmark, obtaining 1,016 faculty-inventor-patent combina-
tions that were present in both datasets, involving 461 distinct scientists inventing 787

distinct patents. Interestingly, the filtering assessment maximizing Fβ when β = 2 on
the external dataset led to a 80.7% precision rate and a 83.2% recall. Filtering when
β = 1 or 0.5 led to significant but limited gains in terms of precision at the price of a
larger decrease in terms of recall.

This assessment was partially consistent with our own benchmarking exercise on
EPO patents: both led to satisfactory recall rates when β = 2. They diverged slightly,
however, with respect to precision. As it is better in principle to rely on external
sources to appreciate the quality of a parametrization optimized on a given training
set, we will use EPO patents preferentially in the rest of the paper, when applications
at another office is not necessary. This renders comparison with other studies easier
and rules out issues concerning institutional differences among patent offices. We
will also restrict our sample to EPO patents validated according to β = 2. This sample
performs well on both benchmarks in terms of recall. As our benchmark suggests that
a β = 1 would improve precision significantly, we performed robustness checks of all
our results with this parametrization on EPO patent applications. They are available
upon request from the authors, as are robustness checks on INPI applications, patent
families and the total number of patents at the two offices (EPO and INPI).

1.3.4 Estimating the number of academic patents

By definition, a patent is academic if at least one of its inventors is an academic staff
member. In our framework, this translates as a patent is academic if at least one of
its professor-inventor pairs (if any) has a probability of being a correct match above
threshold p∗β,i. Let N1β,i be the set of these validated patents, the cardinal of that set
is n1β,i and the number of candidate but non-validated patents is n0β,i. Assuming that

7 We thank F. Lissoni for giving us access to those data (Lissoni et al., 2008).
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n1β,i reflects the expected number of academic patents would be slightly misleading, as
some patents counted in the underlying set (N1β,i) are considered as such (because of
false positives) while some patents in the complement set (N0β,i) are also misallocated
(because of false negatives). We can however use our own estimations of errors in both
directions to correct those numbers and obtain a consistent estimation of the number
of academic patents as follows:

x̂i,β = n1β,i ×
TP(p∗β,i)

FP(p∗β,i) + TP(p
∗
β,i)

+n0β,i ×
FN

(
p∗β,i

)
FN

(
p∗β,i

)
+ TN

(
p∗β,i

) , (5)

for all β ∈ {0.5, 1, 2}, i ∈ {EPO, INPI}. We multiply the number of already validated
academic patents by precision rate (true positives among positives), and add this
number to the number of rejected patents multiplied by the rate of false negatives
among negatives. This leads to Table 8 in the Appendix.

We make another correction to those numbers because the data cover only univer-
sities and public research organizations recognized by the Ministry for Higher Educa-
tion and Research. Some higher education or research institutions are funded by other
ministries (defense, industry, agriculture) and not at all by Ministry for Higher Educa-
tion and Research. Table 1 reports the new calculations. The gain from this correction
is significant in our case. This tells us that our estimation of academic patenting will
still be an underestimation as we are missing all the patents invented by professors
and researchers who are not in our list or whose assignee is not an academic institu-
tion.

We can see in the table that the numbers obtained with different weightings of
precision and recall (different values of β) actually provide very similar numbers,
ranging from 44,759 to 45,637 academic patents over the period. The fact that those
numbers are very close is reassuring in that the estimations are largely unaffected by
the weightings of precision and recall.
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Table 1: Expected number of academic patents for several β values (from 1995 to 2012) – Al-
ternative method.

Office x̂ ′2 x̂ ′1 x̂ ′0.5
All French-invented

patents

EPO 19786 (11.1%) 21034 (11.8%) 21039 (11.8%) 177286

INPI 24973 (10%) 24604 (9.8%) 24273 (9.6%) 250605

Total 44759 (10.5%) 45637 (10.6%) 45312 (10.6%) 427891

Notes:
– For i = 1,2,0.5 we have x̂ ′i = x̂i + all patents that did not match on names and are owned by French universities and public
research organization (exclusively or in joint ownership with companies).
– This table displays fractional counts.
– The shares of academic patents - by office and overall - over all patents invented in France are placed into parentheses.

1.4 academic patenting in france

In this section, we provide descriptive statistics on academic patenting activity in
France. Firstly, we discuss the strength and specialization of academic patenting with
respect to overall patenting in the country. Secondly, we describe the strength of
patenting activity in the academic community.

1.4.1 Strength and specialization of academic patents

Table 1 shows that academic patents represented 11.1% of all patented inventions
generated in France between 1995 and 2012

8. Although it should be remembered that
this is a floor value (as some academic patents owned exclusively by the private sector
are still missing for the reasons mentioned above), it is way above previous estimates
which reported that 3.4% of EPO patents from 1995 to 2001 stemmed from academia
(Lissoni et al., 2008). Restricting our analysis to a similar period (1995-2002), we esti-
mate the share of academic inventions in France to be as much as 9.3%9. Academic
inventions were thus much greater than previously estimated by a factor of more than
2.5.

8 Recall that for the rest of the paper, we only interpret statistics and results for EPO patents validated
according to β = 2 (see Subsection 1.3.3).

9 This calculation was performed separately from Table 1 and thus does not appear on it.
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Interestingly, even before the introduction of the Innovation Act in 1999, universities,
higher education schools and public research institutes already contributed 9.1% of
all patents invented in the country.10 This number is much larger than expected and
this is important in that policy reforms aiming to develop the university ownership
model were introduced in France and in other European countries (Geuna and Nesta,
2006; Verspagen, 2006) on the prior that technology transfer was weak in return for
the investment made by the nation in fundamental research. It would therefore appear
that this prior had no empirical foundations.

Let us now consider the technological specialization of academia, as compared to
the country. The first two columns of Table 2 give the number of academic inven-
tions broken down by technology fields. The third and fourth columns provide the
same information for all French-invented patents. The fifth column is the absolute spe-
cialization of academia in the different technology fields, whereas the sixth column
displays the relative specialization (sometimes called “revealed technological advan-
tage”) of academia as compared to national invention. Academia is up to 51% less
specialized in fixed constructions and 45% more specialized in chemistry and metal-
lurgy than France. To a lesser extent, academia is more specialized than the country
in the physics and electricity fields (respectively 13% and 5% more specialized). In all
other technology classes, academia shows a technological disadvantage.

Table 2: Distribution of French patents and academic patents, by technology class (1995-2012).

Technology class Academic patents All patents A/B RTA
# (A) % # (B) %

Human necessities 3,358 (17.2%) 30,458 (17.2%) 11% 1

Performing operations; transporting 1,936 (10%) 28,674 (16.2%) 6.8% 0.61

Chemistry; metallurgy 4,039 (20.7%) 25,367 (14.3%) 15.8% 1.45

Textiles; paper 210 (1.1%) 2,231 (1.2%) 9.3% 0.86

Fixed constructions 353 (1.7%) 6,610 (3.7%) 5.3% 0.49

Mechanical engineering; lighting; etc. 1,493 (7.6%) 17,428 (9.8%) 8.6% 0.77

Physics 4,626 (23.7%) 36,813 (20.7%) 12.6% 1.13

Electricity 3,432 (17.6%) 29,533 (16.7%) 11.6% 1.05

Total 19,449 (100%) 177,114 (100%) 11% 1

Notes:
- For a technology class i, the revealed technological advantage is RTA= Ai

Bi
×
∑

i Bi∑
iAi

.
- A patent may belong to more than one technology class so we use fractional counts.

10 Separate calculation based on EPO patents for the period 1995-1999. This share is similar on patents
from other offices.
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Later in this article, we investigate trends in academic patenting and their drivers.
A potential confounding factor among these drivers is the specialization of academic
patenting. For instance, a positive variation in academic patenting may be due to
academia being specialized, or even increasing its specialization, in technological
fields that are growing more rapidly in general.11 Table 9 in the Appendix provides
descriptive statistics based on the finer-grained classification in 35 technological sub-
classes. The first column gives the RTA of academia in each sub-class. The second
presents the compound annual growth rate (CAGR) of the revealed technological ad-
vantage of each class over the period 1995-2012. The third column (Growth ratio) gives
the ratio between the annual growth rate of patents in that sub-class relative to the
growth rate of patents in France. The last column (Share) displays the proportion of
patents that fall in the corresponding class. Technological sub-classes are ordered in
decreasing order relative to the third column, which basically tells us how dynamic
the sub-class was in France over the period. The fields that are growing faster than
the national average (ratio greater than 1) are listed above the intermediate horizontal
line. Of those 14 fast-growing sub-fields, academia has a technological specialization
in only 6 of them (RTA greater than 1). Of those 6 sub-fields, academia is reinforcing
its specialization in only 3 of them (positive CAGR). It is true that academia is strongly
specialized in “Micro-structural and nano technology” (RTA of 5.4) which is also the
most dynamic sub-field (growth ratio of 5.5), but this sub-class gathers only 0.2% of
all patents. We can thus conclude that the technological specialization of academia
may not explain a positive variation in overall academic patenting.

1.4.2 Who is patenting in academia?

In the previous subsection, we looked at the importance of academia with respect
to all national inventions. Let us now reverse the viewpoint to investigate how im-
portant patenting is for academia, and who is participating. Since the goal here is to
characterize the professors who invented at least once and the analysis does not relate
to patent characteristics, we consider patents from all patent offices. To appreciate to
what extent professors and researchers are concerned by invention, we calculate the
share of inventors among professors and researchers12. Table 3 displays this informa-
tion by scientific discipline (social sciences and humanities are not considered here).

11 Using a similar argument, Mowery et al., (2001) suggested that the growth in federal financial support
for basic biomedical research and the increased patentability in this field may explain the positive trend
in US academic patenting (rather than the Bayh Dole Act).

12 A professor is counted as an inventor only once in a field, independently of its number of inventions
or offices where her patents were applied for.



1.4 academic patenting in france 23

There are two important and somewhat surprising insights that can be drawn from
this table.

Firstly, the share of professors and researchers who have been involved in patent-
ing (and thus in technology transfer activities) is significantly high, equal to 22.3%.
This means that more than one professor or researcher in five invented at least one
patent between 1995 and 2012. We would like to be sure we are not overestimating
participation by not being conservative enough in the filtering procedure. Giving too
much importance to recall may result in randomly accepting too many patents and
therefore wrongly considering many professors and research as inventors. To check
for this potential bias, we put more weight on precision and less on recall, using
β = 0.5 at the filtering stage, and verified that it did not significantly alter the results
(Table 10 in the Appendix). According to this specification, the share of professors
and researchers who invented at least one patent equals 21.8%, which is still large
and very close to the main result. When more weight is given to recall over precision
(β = 2 in Table 11 in the Appendix), the share of inventors remains very close (24.5%).
Overall, this shows that participation shares are affected by the filtering stage, but to
a limited extent which does not modify the results qualitatively. Besides, note that
the recorded share of inventors among professors is likely to be less than the share
of professors and researchers who have ever invented a patent, as some of those who
did not invent over our period may invent in the future or may have invented before
1995 (and are thus not considered here).

The second main insight is that the share of inventors in academia is high in almost
all disciplines in the life and hard sciences. Professors and researchers in chemistry
are the most active, with a share of one inventor for three professors and researchers,
and the observed rates in fields such as physics and medicine are above 25%. Even
in mathematics, more than one professor or researcher in five has been involved in a
patent. The lowest rate is in universe science with a 13.2% participation rate and this
can be explained by the very fundamental nature of research in that field13.

Those findings are in line with previous research that consider similar scientific
fields (D’Este and Perkmann, 2011; Hughes et al., 2016; Klofsten and Jones-Evans,
2000; Landry et al., 2010; Walsh and Huang, 2014) even though they are using a very
different methodology. Other studies however display important differences with our
results (Gulbrandsen and Smeby, 2005; Haeussler and Colyvas, 2011).

13 Hughes et al., (2016) recently performed a large-scale survey in the UK and find half our shares in
biology and chemistry (just under 15%), a third in physics and mathematics (between 7 and 8%) and
a fifth only in health sciences (just under 5%), but they only consider patents filed in the three prior
years and not the entire career, or at least 15-20 years.
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Table 3: Involvement of professors and researchers in academic patenting, by scientific disci-
pline (1995 – 2012).

Scientific field professors-inventors All professors

Chemistry 2,364 (33.3%) 7,093

Applied Bio. Ecology 1,959 (23.1%) 8,469

Fundamental Biology 3,047 (24.1%) 12,639

Medicine 2,938 (25.8%) 11,409

Engineering Sciences 2,693 (24.8%) 10,862

Mathematics 1,586 (21.7%) 7,295

Physics 2,092 (25.2%) 8,309

Universe Science 445 (13.2%) 3,383

Total 7,692 (22.3%) 34,439

Notes:
– The scientific field is part of the employment data collected from the French Ministry of Higher Education and Research and
follows the OST classification (Observatoire des Sciences et Techniques).
– 17,347 professors and researchers in Human and Social Sciences are not represented in this table. 754 of them have invented at
least one patent over the period (4.3%). If these HSS inventors are included in the full sample (51,786 researchers), the global
share of academic inventors goes down to 16.3%.
– 417 have missing scientific field.

A gender gap in academic patenting has been evidenced in several papers (Ding,
Murray, and Stuart, 2006; Frietsch et al., 2009; Whittington and Smith-Doerr, 2005).
Our data show that 16% of the nearly 12,000 women in our dataset (again excluding
human and social sciences) are patenting, which is 64% of the rate for men. Universe
science is the most gender biased field with a rate of 40%, whereas chemistry and
mathematics (respective rates of 70% and 77%) are best at closing the apparent gender
gap. This gender gap is smaller than in Whittington and Smith-Doerr, (2005) who
reported patenting among women scientists as representing about 40% of that for
men in a random sample of 4,000 life science faculty members.

We now consider the distribution of academic invention over the population of
professors and researchers and its trends over the period. There are 8, 863 academic
inventors in our database, defined as those researchers who invented at least one
patent over the period under study. Considering the professors and research who are
active in each sub-period, we find that 3.9% of them are inventors in the 1995-1999

period, 7.9% in 2000-2006 and 10% in 2007-2012. This means that patenting is adopted
increasingly widely within our population14. However, the most prolific inventors

14 This trend would result from a composition effect if the numerator (number of inventors) was in-
creasing and the denominator (number of professors) was shrinking simultaneously. This is not the
case here, since the denominator is always increasing or stable over the period (see Figure 4 in the
Appendix).
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tend to maintain or even increase their role: the top 10% most prolific inventors invent
24, 28 and 30% of academic patents in the three periods respectively. The top 5% invent
14, 17 and 19% of academic patents in the three periods. At the same time, the 4 most
prolific inventors among them represent a decreasing share over time: 1.11%, 0.56%
and 0.67% respectively.15 This means that although invention behavior tends to be
spreading in academia, there are more and more prolific inventors and their role does
not seem to be decreasing, but might even be slightly increasing.

1.5 the trend in propensity to invent in academia

In this section, we aim to appreciate how the probability of inventing varies among
professors and researchers over the period. A simple representation of the number
of academic patents invented over time may be misleading, as in fact the underlying
population of professors and researchers that we consider is likely to be increasing
over the period.16

1.5.1 The spread within academia

We create an unbalanced panel dataset using the repeated time observations presented
above. When someone was observed several times, any variation in the data (a pro-
motion for instance) was assumed to occur right in the middle between the two obser-
vations. The first entry date naturally determined entry in the panel. When a lab was
surveyed several times and a staff member was not listed anymore there and not listed
anywhere else, we assumed that they had exited two years after the last observation.
Otherwise we assumed the individual was active until the last year considered.

To control simultaneously for all time-invariant confounding factors (such as in-
dividual abilities or characteristics), we ran fixed effects regressions on the yearly
number of inventions. The model is of the form:

yit =

t=2012∑
t=1995

αt Yeart +
j=35∑
j=1

δjIPCjit + θi + εit, (6)

15 This corresponds to the C4 indicator. Similarly, the HHI was 6.61 for 1995-1999, 3.29 for 2000-2006 and
2.89 for 2007-2012.

16 Figure 4 in the Appendix shows that the number of professors and researchers is increasing over time,
meaning that the variation in the propensity to invent is difficult to appreciate just by computing yearly
per capita ratios.
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where yit is the outcome variable (number of EPO patent applications), Yeart is a year
dummy, and θi is the individual fixed effect. IPCjit is a set of 35 dummy variables (one
per technological field) controlling for the different dynamics in some fields between
academia and the private sector. It equals to one if individual i invented at least one
patent in the class j in year t. We are interested in estimating the coefficients of the year
fixed effects αt for each year t. A positive trend in the estimated αt would indicate an
increasing propensity to patent over the years.

Some other factors may influence patenting but do not offer sufficient variation to
be properly accounted for in a fixed effects framework. We thus estimate the following
equation

yit =

t=2012∑
t=1995

αt Yeart +
j=35∑
j=1

δjIPCjit +φXit + εit, (7)

where Xit stands for a vector of control variables, such as age and age squared, and
a number of dummies for professional status, gender, field of science, university, and
cohort.

Figure 1 displays the estimated αt coefficients in Equations 6 and 7 obtained via
OLS regressions, allowing for many fixed effects and the clustering of standard er-
rors. The left panel was obtained when we use individual fixed effects (Equation 6),
whereas the right one does not and includes the vector of control variables instead
(Equation 7). The two regressions provide very similar results concerning the year
fixed effects that we aim to estimate. We see that the coefficients of year fixed ef-
fects rise significantly over the period. In 2012, academic professors and researchers
invented an average of 0.015 patents more than in 1995. As the average number of
patents per capita in 1995 was 0.02, this means they actually increased their propen-
sity of 75% over the period.

1.5.2 Comparison with non-academic inventors

The propensity to invent among academic scientists may be affected by yearly shocks
affecting the economy. It could also be affected by changes in the productivity of
all inventors (not just academic ones) increasing under the effects of improvements
in communication technology or instrumentation, for instance. We thus need a refer-
ence point outside academia to compare the variation of the propensity to invent of
academic profiles with respect to the variation observed for non-academic profiles.
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Figure 1: How the propensity to invent of academic staff varies over the period 1995-2012.
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Note: The graphs present estimated coefficients of the year dummy mentioned in the horizontal axis (the αt in Equation (6)).
In the left graph, the individual scientists fixed effects (the θi) are not included whereas they are included in the regressions
leading to the right panel. Standard errors are clustered at the individual level.

We create a panel table of all French inventors from PATSTAT. The only individual
identifier available in PATSTAT is “PSNID” (Magerman et al., 2009). This identifier is
far from perfect but its flaws are not likely to alter the results qualitatively. The ini-
tial merge of inventor names with academic profiles presented above (see Subsection
1.3.3) is used to identify potential “academic” PSNIDs. A PSNID inventor profile is
academic if at least one of its patents has been validated as academic and thus at-
tached to an academic profile in our dataset of professors and researchers. Otherwise
it is not academic. This clearly shows that the academic character of PSNIDs is depen-
dent on the parametrization of the filtering stage (the choice of the β). All inventors
are assumed to be in the dataset from year 1995 to 2012 so that we have a balanced
panel dataset. Making the alternative assumption according to which inventors en-
ter the dataset in the year of their first patent and leave it at the year after their last
invention does not change the results qualitatively either.

To control simultaneously for all time-invariant confounding factors (such as in-
dividual abilities or characteristics), we run fixed effects regressions on the yearly
number of inventions. The model is of the form:

yit =

t=2012∑
t=1995

αtYeart +
t=2012∑
t=1995

γt Academici ×Yeart +
j=35∑
j=1

δjIPCjit + θi + εit, (8)

where yit is the outcome variable (number of EPO patent applications), Yeart is a year
dummy, and Academici is a dummy equal to one if the inventor profile is academic.
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The Academici variable is not introduced directly into the regression as its effect is
fully captured via the individual fixed effect θi. IPCjit is a set of 35 dummy variables
(one per technological field) controlling for the different dynamics in some fields be-
tween academia and the private sector. It equals to one if individual i invented at
least one patent in the class j in year t. The main goal of this model is to estimate
the coefficient of the interaction term between the academic profile dummy and the
time fixed effect, γt, for each year t. A positive trend observed on the γt would indi-
cate that academic inventors increased their propensity to patent over the period at a
higher rate than non-academic ones (or decreased at a lower rate).

Figure 2 displays the estimated γt coefficients in Equation 8 obtained via OLS, al-
lowing us to control for many fixed effects. Profiles are declared here as academic
using parameter β = 2 in the filtering stage, but again, using any of the other two val-
ues of β (1 and 0.5) leads to similar results. We can see in the figure that the estimated
coefficients of the interaction terms between the year dummies and the academic pro-
file dummy increase over the years. All coefficients are negative but tend to zero at
the end of the period, suggesting that academic inventors were progressively closing
the gap with non-academic inventors.
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Figure 2: How the propensity to invent of academic inventors is affected relative to non-
academic inventors over the period 1995-2012.
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Note: The graph presents estimated coefficients and confidence intervals of the interaction
term between the year dummy mentioned in the horizontal axis and the academic profile
dummy (the γt in Equation (8)). Standard errors are clustered at the individual level.
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1.6 factors in the spread of academic patenting

We have seen that patenting behavior increases over the period in the academic com-
munity. We now aim to unveil the drivers of that spread at the micro level. We sub-
sequently consider two series of factors: individual attributes on the one hand, and
social and cultural influence on the other hand.

1.6.1 Individual factors

The spread of patenting is first considered according to individual characteristics. Our
main interest at this stage is to disentangle age from cohort factors in patenting, but
we also consider other dimensions, such as professional status or gender. We estimate
the following model:

yit = α1Ageit+α2Age2it+α3Cohorti+α4Statusit+α5Genderi+γXit+ ηt+ εit, (9)

where ηt is the year fixed effect and yit the number of EPO patent applications. In-
dividual fixed effects are not introduced, so that time-invariant factors of academic
patenting can now be considered. In particular age and cohort effects can now be
estimated. The four cohorts are defined as follows: cohort 1 (the reference) groups
professors born before 1950, cohort 2 groups the ones born in the 50’s, cohort 3 in the
60’s, and cohort 4 in the 70’s or later. There are four professional statuses: associate
professor, (full) professor, associate researcher, or (full) researcher. Vector Xit accounts
for a number of controls such as scientific field and university dummies. The latter
account for a number of other dimensions affecting patenting behavior, which may
be correlated with the explanatory variables of interest. This model is close to the one
presented in Equation 7, with some differences, but focuses on different explanatory
variables.

Table 4 summarizes the regression results, again using linear regressions with many
levels of fixed effects. Controlling for the cohorts, we find that age plays positively on
patenting. This confirms previous research evidencing a life-cycle effect in patenting
(Azoulay, Ding, and Stuart, 2007; Carayol, 2007; Stephan et al., 2007; Thursby and
Thursby, 2007).

When age is not included among regressors (column 1), the second, third and fourth
cohort dummies are positively correlated with the outcome variable. However, when
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age is controlled for, cohort dummies are not significantly correlated with patenting
anymore. This contrasts with Thursby and Thursby, (2007) who find that more recent
cohorts are in fact less likely to disclose inventions, controlling for tenure and age,
or Azoulay, Ding, and Stuart, (2007) who evidenced the opposite. Professional status
makes significant differences. Full professors invent almost twice as many patents
per year as associate professors (the reference), junior researchers 67% more, and
full researchers invent more than three times more often. Lastly, gender is also an
important driver of patenting as women invented 50% fewer patents for equivalent
years, ages, disciplines, cohorts, universities and statuses.

1.6.2 Local diffusion effects

None of the individual factors examined above can fully account for the growing
patenting behavior in the French academic community. The fact that the population
under study is aging over the years plays in this direction, but age is already controlled
for in Equation 7 and thus, as shown in the right panel of Figure 1, cannot explain
the phenomenon. Therefore, we now investigate the role of local culture within the
university site and the lab.

We create two variables to capture the influence of these two layers of local social
influence: variable UnivExp is the average number of patents per capita in the research
community (the university site) in the previous three years ([t− 3; t− 1]), excluding
all members of the focal person’s lab. It proxies for the university culture towards
academic entrepreneurship and patenting. The second variable LabExp is the same
per capita average but considering the members of the lab only, excluding the focal
person. Note that, as previous years are used to calculate some explanatory variables,
observations from the first three years (1995-1997) are not considered.

We rely upon fixed effects regressions of the form

yit = αUnivExpit +βLabExpit +φXit + ηt + θi + εit, (10)

where ηt is the year fixed effect. The error terms may be correlated for a given profes-
sor, a given research lab and a university, so we cluster standard errors with respect
to these three identifiers (multi-way). We include time-varying controls via Xit such
as the number of professors and researchers in the lab (LabSize) and in the university
excluding those from the focal person’s lab (UnivSize).
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Table 4: The individual factors of academic patenting.

(1) (2) (3) (4) (5)

Age 0.003
∗∗∗

0.003
∗∗∗

0.002
∗∗∗

0.002
∗∗∗

(0.000) (0.000) (0.000) (0.000)

Age squared -0.000
∗∗∗ -0.000

∗∗∗ -0.000
∗∗∗ -0.000

∗∗∗

(0.000) (0.000) (0.000) (0.000)

Cohort 2 0.006
∗∗∗

0.002
∗

0.002

(0.001) (0.001) (0.001)

Cohort 3 0.007
∗∗∗

0.003 0.001

(0.001) (0.002) (0.002)

Cohort 4 0.004
∗∗∗

0.003 0.003

(0.001) (0.003) (0.003)

Professor 0.011
∗∗∗

0.011
∗∗∗

(0.001) (0.001)

Associate Researcher 0.008
∗∗∗

0.008
∗∗∗

(0.001) (0.001)

Researcher 0.028
∗∗∗

0.028
∗∗∗

(0.002) (0.002)

Female -0.014
∗∗∗ -0.014

∗∗∗ -0.014
∗∗∗ -0.013

∗∗∗ -0.013
∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Observations 827031 822032 822032 820068 820068

Adjusted R2 0.011 0.012 0.012 0.013 0.013

Mean dep variable 0.021 0.021 0.021 0.021 0.021

F-statistics 169.756 268.484 136.962 164.378 113.066

Notes: Standard errors into parentheses are clustered at the individual level. Signifi-
cance levels: * p<0.10, ** p<0.05, *** p<0.01.
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The fixed effect framework allows us to capture variation for a given professor or
researcher. Therefore the estimated α and β are likely close to capturing peer effects
at the university and laboratory levels respectively. However, professors are not as-
sembled in labs and universities randomly, so correlated effects may still explain both
past patenting variation of peers and contemporary variation in the patenting of the
focal professor.

A number of other controls could not be introduced as they do not offer sufficient
variation. We thus perform similar regressions as in Equation 10 but without individ-
ual fixed affects and introducing instead a number of supplementary control variables
:

yit = αUnivExpit +βLabExpit +φXit + ηt + εit, (11)

where Xit stands for a vector of control variables, that includes LabSize and Univ-
Size as in Equation 10, but also the age, age squared, and a number of dummies for
professional status, gender, field of science, and cohort.

Table 5 presents the fixed effect regression results (Equation 10). We find that al-
though both variables are positively related to academic patenting, only LabExp co-
efficients are significant. When lab peers each produced one more patent per year
on average in the previous years, the average faculty member invents almost 4 times
more patents17. This supports the idea that academic patenting behavior is likely to
increase in laboratories where such behavior has been pervasive recently. It under-
lines that academic patenting likely spreads locally, and potentially through local
“peer effects”. This is reminiscent of what Bercovitz and Feldman, (2008) and Tartari,
Perkmann, and Salter, (2014) previously found for invention disclosure and academic
engagement.

Table 12 in the Appendix exposes the regressions results of the specification intro-
duced in Equation 11. Results are very similar to the fixed effects for LabExp and
also very similar to those presented in Table 4 regarding individual factors. The only
significant difference is that the university recent experience UnivExp is now positive
and significant.

17 As professors and researchers invented 0.023 patents per year on average, a coefficient of 0.065 means
that productivity increases by a factor of 3.8.
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Table 5: The social factors of academic patenting.

(1) (2) (3) (4) (5) (6)

UnivExp 0.037 0.034 0.027 0.025

(0.033) (0.032) (0.033) (0.033)

LabExp 0.066
∗∗∗

0.066
∗∗∗

0.064
∗∗∗

0.065
∗∗∗

(0.017) (0.017) (0.017) (0.017)

UnivSize 0.000
∗∗

0.000
∗∗

0.000
∗∗

(0.000) (0.000) (0.000)

LabSize 0.000
∗∗

0.000
∗∗

0.000
∗

(0.000) (0.000) (0.000)

Observations 667590 670805 666822 667590 670805 666822

Adjusted R2 0.130 0.130 0.131 0.130 0.130 0.131

Mean dep variable 0.023 0.023 0.023 0.023 0.023 0.023

F statistic 54.353 62.690 41.588 30.139 33.967 27.017

Notes: Standard errors into parentheses are clustered at the individual level. Signifi-
cance levels:
∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01.
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1.7 conclusion

Since a few decades, academic patenting has been a growing phenomenon in most ad-
vanced economies worldwide, and the subject of a longstanding stream of investiga-
tion. Policy makers as well as the academic community have raised various concerns
about this new practice in academia. National governments voted several reforms
in order to shape universities’ and professors’ involvement in the phenomenon, but
they often lacked reliable and consistent scientific information. Most prior literature
relied on interviews or small samples of a few hundred professors at best, were cross-
sectional in nature, and thus generally covered a short time period.

In this article, we attempt to fill this gap by investigating academic patenting in-
cluding all scientific fields and several thousands of professors and researchers. We
develop a methodology to appreciate the importance of, and trends in, academic
patenting in France over nearly two decades. This methodology improves on existing
ones as it avoids time-consuming human checking and proves reliable when trained
on a benchmark set of only a few thousand professor-inventor pairs. The method is
thus tractable to document patenting behavior in large datasets of academic staff and
over sufficiently long periods.

We estimate that, among the 428,000 patents filed at the EPO and INPI and invented
in France over the years 1995-2012, more than 44,000 stemmed from academia. The
involvement of professors in technology transfer is found to be larger than expected,
with one professor or researcher out of five having invented at least one patent, and
widespread across most fields of the hard and life sciences (social sciences and hu-
manities being excluded).

Even if academic patenting is strong before reforms favoring technology transfer
were passed, professors and researchers are increasingly likely to invent after such re-
forms. An aging population of professors or simple cohort effects can not explain this
phenomenon. Our results rather indicate that local diffusion, in particular within lab-
oratories, plays a key role in the diffusion of academic patenting. A given professor is
up to four times more likely to invent when her colleagues in the laboratory are more
involved in patenting in the recent years (controlling for year and individual fixed
effects). Though we cannot identify the extent of their exact influence, this suggests
that peer effects may actually play a central role in fostering technology transfer.
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1.8 appendix of chapter 1

Figure 3: Precision, recall et Fβ (when β = 0.5, β = 1 or β = 2) for different threshold proba-
bility values.
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Figure 4: The evolution of academic patenting in France, with respect to the reference popula-
tion.
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Table 6: Logistic regressions on the benchmark, per office

(1) (2) (3)

EPO EPO INPI

Name similarity 22.427*** 21.834*** 12.740***

[3.635] [3.117] [2.002]

Inventor’s name frequency 1.234*** 1.239*** 0.645***

[0.165] [0.169] [0.055]

Assignee/employer consistency 6.244*** 6.231*** 1.273***

[0.675] [0.662] [0.455]

Tech/discipline consistency 0.566** 0.591*** 0.425***

[0.193] [0.202] [0.087]

Age/year consistency 0.666 1.245***

[0.554] [0.244]

Constant -32.188*** -29.189*** -21.841***

[5.046] [3.618] [2.392]

Observations 682 682 2829

Notes:
- Bootstrap standard errors into brackets.
- Significance levels: ∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01.
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Table 7: Optimal thresholds for each office and β values (0.5, 1, 2)

Patent office β Optimal
threshold

Precision Recall F-measure Number of
validated
patents

2 0.14 0.53 0.95 0.82 20,648

EPO 1 0.44 0.84 0.81 0.82 12,166

0.5 0.46 0.88 0.80 0.86 11,995

2 0.20 0.52 0.93 0.80 20,202

INPI 1 0.45 0.66 0.82 0.73 12,620

0.5 0.74 0.77 0.62 0.74 7,898

Notes:
- Interpretation: For patents filed at the EPO and the when precision is valued the most (thus β = 0.5), the maximum
F-measure is 0.86 for a threshold probability set at 0.46. In the dataset, 11,995 patents have a probability higher than or equal to
0.46 and are thus validated as academic patents.
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Table 8: Expected number of academic patents for several β values (from 1995 to 2012)

Office x̂2 x̂1 x̂0.5
All French-invented

patents

EPO 11072 (6.1%) 12320 (6.9%) 12325 (7%) 177286

INPI 11173 (4.5%) 10804 (4.3%) 10473 (4.1%) 250605

Total 22245 (5.1%) 23123 (5.4%) 22798 (5.3%) 427891

Notes:
– This table displays fractional counts.
– The shares of academic patents - by office and overall - over all patents invented in France are placed in parentheses.
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Table 9: RTA and CAGRs for patents in 35 technology classes (1995-2012)

Technology class RTA CAGR Growth ratio Share

Micro-structural and nano-technology 5.40 -1.5% 5.5 0.2%

IT methods for management 0.41 -1.9% 3.5 0.5%

Digital communication 0.53 -0.0% 2.0 3.7%

Semiconductors 2.76 4.1% 1.8 2%

Engines, pumps, turbines 0.81 -3.2% 1.7 3.7%

Computer technology 0.86 1.5% 1.7 5.3%

Analysis of biological materials 3.40 2.6% 1.6 0.8%

Transport 0.34 -2.4% 1.5 8.7%

Measurement 1.99 -0.6% 1.1 4.5%

Thermal processes and apparatus 0.73 1.5% 1.1 1.5%

Surface technology, coating 1.64 0.8% 1.1 1.4%

Environmental technology 1.43 -1.2% 1.1 1.6%

Electrical machinery, apparatus, energy 0.96 1.4% 1.0 5.5%

Food chemistry 0.76 -3.9% 1.0 1%

Civil engineering 0.47 -4.3% 0.9 4.1%

Other consumer goods 0.32 0.4% 0.9 2.6%

Telecommunications 0.82 0.8% 0.8 2.8%

Control 0.65 0.4% 0.8 1.7%

Medical technology 0.89 2.3% 0.8 4.1%

Audio-visual technology 0.77 -1.7% 0.8 2.6%

Machine tools 0.65 -2.6% 0.8 2%

Other special machines 0.57 -1.4% 0.7 3.5%

Handling 0.38 -1.1% 0.7 3.4%

Biotechnology 3.16 -0.5% 0.6 2.7%

Mechanical elements 0.42 -2.6% 0.6 3.8%

Pharmaceuticals 1.57 1.1% 0.6 4.8%

Furniture, games 0.23 3.1% 0.6 2.6%

Materials, metallurgy 1.41 0.7% 0.6 1.9%

Basic materials chemistry 1.52 -1.0% 0.6 2.1%

Macromolecular chemistry, polymers 1.03 1.2% 0.6 1.9%

Basic communication processes 1.32 4.8% 0.6 1%

Chemical engineering 1.71 -1.0% 0.5 2.7%

Optics 1.61 1.2% 0.5 1.9%

Organic fine chemistry 0.82 1.5% 0.4 6.1%

Textile and paper machines 0.44 0.7% 0.0 1.3%

Total 1 0% 1 100%

Notes: For a technology class i, the revealed technological advantage is RTA= Ai
Bi
×
∑
iBi∑
iAi

. Column one

displays its average value over the years 1995-2012. For column two, we first calculate the RTA of each

technological class every year, then we display its Compound Annual Growth Rate between 1995 and

2012. We calculate the CAGR of French patents overall (nCAGR) and the CAGR of those patents in

a technology class i (nCAGRi). Thus, in column three we have the growth ratio = nCAGRi
nCAGR . For the

fourth and last column, share = #patentsi
#patents where #patentsi is the number of French patents in techno-

logical class i, and #patents the total number of French patents. A patent may belong to more than one

technology class so we use fractional counts.
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Table 10: Repartition of professors and researchers involved in academic patenting by scientific
discipline (1995 – 2012), for a chosen β = 0.5 at the filtering stage.

Scientific field professors-inventors All professors

Chemistry 2,327 (32.8%) 7,093

Applied Bio. Ecology 1,924 (22.7%) 8,469

Fundamental Biology 2,992 (23.7%) 12,639

Medicine 2,892 (25.3%) 11,409

Engineering Sciences 2,626 (24.2%) 10,862

Mathematics 1,545 (21.2%) 7,295

Physics 2,039 (24.5%) 8,309

Universe Science 420 (12.4%) 3,383

Total 7,503 (21.8%) 34,439

Notes:
– The scientific field is part of the employment data collected from the French Ministry of Higher Education and Research and
follows the OST classification (Observatoire des Sciences et Techniques).
– 17,347 professors and researchers in Human and Social Sciences are not represented in this table. 670 of them have invented at
least one patent over the period (3.9%). If these HSS inventors are included in the full sample (51,786 researchers), the global
share of academic inventors goes down to 15.8%.
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Table 11: Repartition of professors and researchers involved in academic patenting by scientific
discipline (1995 – 2012), for a chosen β = 2 at the filtering stage.

Scientific field professors-inventors All professors

Chemistry 2,500 (35.2%) 7,093

Applied Bio. Ecology 2,121 (25%) 8,469

Fundamental Biology 3,299 (26.1%) 12,639

Medicine 3,174 (27.8%) 11,409

Engineering Sciences 2,923 (26.9%) 10,862

Mathematics 1,742 (23.9%) 7,295

Physics 2,282 (27.5%) 8,309

Universe Science 538 (15.9%) 3,383

Total 8,441 (24.5%) 34,439

Notes:
– The scientific field is part of the employment data collected from the French Ministry of Higher Education and Research and
follows the OST classification (Observatoire des Sciences et Techniques).
– 17,347 professors and researchers in Human and Social Sciences are not represented in this table. 1,086 of them have invented
at least one patent over the period (6.3%). If these HSS inventors are included in the full sample (51,786 researchers), the global
share of academic inventors goes down to 18.4%.
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Table 12: The social and individual factors of academic patenting.

(1) (2) (3) (4) (5) (6)

UnivExp 0.086
∗∗∗

0.063
∗∗∗

0.084
∗∗∗

0.062
∗∗∗

(0.019) (0.015) (0.020) (0.016)

LabExp 0.151
∗∗∗

0.148
∗∗∗

0.151
∗∗∗

0.148
∗∗∗

(0.017) (0.017) (0.017) (0.017)

UnivSize -0.000 -0.000 -0.000

(0.000) (0.000) (0.000)

LabSize 0.000 0.000 0.000

(0.000) (0.000) (0.000)

Age 0.000 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Age squared -0.000
∗ -0.000

∗ -0.000
∗ -0.000

∗ -0.000
∗ -0.000

∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Cohort 2 0.003
∗∗

0.003
∗∗

0.003
∗∗

0.003
∗∗

0.003
∗∗

0.003
∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Cohort 3 0.003 0.002 0.002 0.003 0.002 0.002

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Cohort 4 0.004 0.004 0.004 0.004 0.004 0.004

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Professor 0.005
∗∗∗

0.005
∗∗∗

0.005
∗∗∗

0.005
∗∗∗

0.005
∗∗∗

0.005
∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Associate Researcher 0.003
∗∗∗

0.003
∗∗∗

0.002
∗∗∗

0.003
∗∗∗

0.003
∗∗∗

0.002
∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Researcher 0.011
∗∗∗

0.011
∗∗∗

0.011
∗∗∗

0.011
∗∗∗

0.011
∗∗∗

0.011
∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 658415 661645 657662 658415 661645 657662

Adjusted R2 0.450 0.451 0.452 0.450 0.451 0.452

Mean dep variable 0.023 0.023 0.023 0.023 0.023 0.023

F statistic 16.824 17.555 20.664 14.657 15.430 18.886

Notes: All regressions also control for university, field of science, technological specialization and co-
hort fixed effects. Standard errors into parentheses are clustered at the individual, laboratory and
university levels. Significance levels: ∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01.
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A S S I G N I N G I N T E L L E C T U A L P R O P E RT Y R I G H T S T O
U N I V E R S I T I E S : T H E “ L A S T M I L E ” E F F E C T 1

2.1 introduction

Universities and public research organizations are constantly feeding society with
new ideas and technologies, but beyond fundamental knowledge, professors and re-
searchers also generate inventions whose efficient and rapid transfer to markets is
extremely valuable to society. The tremendous growth in academic patents recorded
in the United States was largely attributed to a key policy reform, the 1980 Bayh-Dole
Act (Henderson, Jaffe, and Trajtenberg, 1998; Mowery and Ziedonis, 2002), that trans-
ferred the ownership of academic inventions from the federal government to univer-
sities. This reform subsequently inspired many advanced economies to adopt such a
“university ownership regime”. However, several recent studies have highlighted that
the implementation of a similar reform in Northern European countries has had disap-
pointing impacts. Indeed, ending the so called “professor privilege” and introducing
university ownership in Germany, Norway and Finland, has had a significantly neg-
ative impact (Czarnitzki et al., 2015; Ejermo and Toivanen, 2018; Hvide and Jones,
2018). How can it be that a successful reform implementation in one country has a
radically opposed impact when implemented in other countries?

In this chapter, we use the French case to provide some answers to this question. In
this country, university ownership has been established by law since 1984, but it was
not until the introduction of the Innovation and Research Act in 1999 that most univer-
sities began to take ownership of their inventions. This reform is quite similar to the
Bayh-Dole Act also in the way the regime was introduced. Universities were encour-
aged, rather than required, to take ownership and manage their intellectual property
rights. We leverage this unique setting to elucidate the role of a key dimension in tech-
nology transfer under the university ownership regime: an effective involvement of
the university in applying the reform. Our empirical strategy is based on the revealed
actions of institutions with respect to their management of intellectual property.

1 This chapter is based on a paper co-authored with N. Carayol.
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We identify which universities actually implement the university ownership model,
and if so when, by a kink in the share of university ownership of its research staff
inventions. When this share increases sharply and consistently, we infer that the insti-
tution has made the decision to follow the policy recommendations that year. Follow-
ing this procedure, we find that 31 universities implemented the university ownership
regime at different points in time between 1999 and 2006, while 48 other institutions
did not implement it at all over the entire period (1995-2016). We then match univer-
sities that made the move with others that never did. We then estimate the impact of
this university implementation on the individual propensity of researchers to invent.
We make use of a unique panel dataset of over 118,000 professors and researchers em-
ployed by those universities for whom we have collected all articles they published
and all their inventions, using the Web of Science and PASTAT databases respectively.

We find that professors employed by universities which made the move towards im-
plementing the university ownership regime, produce significantly more inventions
after that move: they increase their propensity to invent by 20.7% on average (32.5%
in hard sciences). A number of robustness checks confirm this conclusion. This sup-
ports the idea that the “last mile” of university ownership regime may be key to the
success of the reform and may thus explain the puzzle faced by the literature. Besides,
we also show that companies collaborating with researchers from treated universities
were not crowded out. They keep retaining ownership of academic patents after the
university move. To the contrary, implementing the reform raises the number of in-
ventions owned by at least one company. This leads us to highlight a second factor
shared by the French and the American cases, and which has been largely overlooked
by the literature, namely the provision of alternative transfer channels thanks to a
pragmatic approach to applying university ownership regime. The use of alternative
pathways prevents TTOs from having a monopoly power over the transfer of inven-
tions, which may harm technology transfer (Carayol and Sterzi, 2021), in particular
at a time universities are likely not yet efficient in managing those processes whereas
professors have their own transfer networks in place.

The rest of the chapter is organized as follows: We start by synthesizing the results
from the literature on the impact of the university ownership regime on academic
inventions in Section 2.2. In the next section, we describe the methodology we devel-
oped to split French universities into two groups according to their implementation
or not of the regime (Section 2.4). We then assess the impact of the regime in France
in Section 2.5 and discuss the implications of our results in Section 2.6.
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2.2 literature review

2.2.1 The adoption of the university ownership regime

In his famous report to the President of the United States, Bush, (1945) called for
an expansion of government support for science, maintaining that basic research is
“the pacemaker of technological progress”. In contrast, the private sector is known for
lacking incentives to invest in fundamental research, as it has difficulty appropriating
the economic value of the resulting discoveries (Arrow, 1962; Nelson, 1959). All of the
world’s advanced economies have invested heavily in basic research since then.

While seeking a fundamental understanding of scientific problems, some research
projects falling in Pasteur’s quadrant also have an immediate use for society (Stokes,
1997). It is in the society’s best interest to ensure that the inventions resulting from
these projects and other more applied research projects are transferred to the private
sector in an efficient and timely manner.

As early as the 1970’s, the number of patents filed for academic inventions has been
increasing drastically in the US. Conversely, in Europe emerged a perception that the
institutional context was relatively unsuccessful in converting scientific and technolog-
ical discoveries into commercial success (Commission of the European Communities,
1993), especially considering the level of investment in basic research. Such perception
was later labelled the “European Paradox”2.

The US trend in university patenting and licensing was largely attributed to its 1980

Bayh-Dole Act, which entitled universities the IPR over technologies stemming from
federally funded research (Henderson, Jaffe, and Trajtenberg, 1998; Jaffe and Lerner,
2001). In contrast, the “professor’s privilege” regime, in which the professor-inventor
owns the IPR over her discoveries, still applied in most European countries until
the end of the 1990’s. In an attempt to end the European paradox, several countries
terminated this privilege in the early 2000’s and adopted the Bayh-Dole university
ownership regime.

Almost two decades later, the efficiency of the university ownership regime remains
questioned. Mowery and Sampat, (2004) early sensed a potential unsuitability of this

2 The recent availability of large-scale data in France allowed us to investigate in a prior work (Carayol
and Carpentier, 2021) whether such a paradox existed. We find that even prior to any policy change
more than 9% of the patents invented in the country stemmed from academia, thus invalidating its
existence, at least for this country.
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regime in countries characterized by a different higher education system. Hence, the
main policy debate still remains open: If one were to maximize faculty incentives to
invent, and simultaneously foster the dissemination of the inventions, how should
IPR over academic inventions be allocated?

2.2.2 Impact of university ownership regime on academic patenting

Empirically, two historically well identified models of university technology transfer
can bring some insights into the debate: the Bayh-Dole US model and the German
and Nordic “professor’s privilege” model. In the US, the Bayh-Dole Act contributed
to an increase in academic patenting (Mowery et al., 2001), and despite some initial
concern (Henderson, Jaffe, and Trajtenberg, 1998), the importance of inventions did
not decrease (Mowery and Ziedonis, 2002).

More recently, a few studies investigated the consequences of terminating the pro-
fessor’s privilege in West and Northern Europe countries towards adopting the uni-
versity ownership model. Czarnitzki et al., (2015) find that in Germany, for professors
who had existing industry connections, the 2000 policy change decreased patenting,
but for those without prior industry connections, it increased patenting. The overall
balance is negative, though. In Norway, a similar reform introduced in 2003 resulted
in a 50% decline in patenting, along with a decline in patents’ quality (Hvide and
Jones, 2018). For Finland, abolishing the professor privilege in 2007 resulted in a 27

to 46% decrease in patenting (Ejermo and Toivanen, 2018). Thus, the introduction of
the university ownership regime in Europe had a rather negative impact on academic
invention.

According to this prior evidence, the same regime implemented on both sides of the
Atlantic had apparently opposite consequences on academic invention. We identified
a few characteristics that differ between the two continents: the direction of change in
the involvement of researchers in the transfer of their inventions, whether or not the
possibility of transferring inventions without going through the TTO is maintained,
and whether or not the university is involved in implementing the patent ownership
regime.
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2.2.3 Sources of heterogeneity in the regime implementation

the involvement of the inventor The Bayh-Dole Act was motivated by the
idea that, due to insecurity regarding their ownership, patents resulting from federally
funded research were unexploited (Eisenberg, 1996; Mowery et al., 2015). Prior to the
Act, agreements between the government and universities started to be made to allow
the latter to manage the IPR on a case-by-case, and then university-by-university, basis
(Popp Berman, 2008). These agreements made it easier for inventors to be involved in
the future of their inventions.

Then in the early 2000s, when several countries already ended the professor’s priv-
ilege, a stream of literature strongly criticized the performance of university TTOs
(Greenbaum and Scott, 2010; Kenney and Patton, 2009; Litan, Mitchell, and Reedy,
2007). While TTOs are expected to have access to a larger network of companies as
potential business partners than inventors, and could save researchers’ time by han-
dling the patenting and licensing processes for them, empirical investigation show a
rather different reality. They are described as bureaucraties with ineffective incentives.
Information asymmetries and conflicting objectives of the different parties involved in
the process argue against the university ownership regime (Kenney and Patton, 2009).

On the other side, although they have fewer financial ressources and less bargaining
power than a TTO, faculty members usually have strong incentives to transfer their
inventions, as they often get research funding from the private sector in exchange. In
addition, because of the tacit knowledge that surrounds an invention, the professor’s
involvement in the licensing process is crucial to its commercial success (Agrawal,
2006). Siegel, Veugelers, and Wright, (2007) evidence that the inventor’s royalty share
is important to secure researchers’ cooperation in the licensing process. Finally, many
academics are likely to have better opportunity recognition skills, both scientific and
entrepreneurial, than the TTO staff (Litan, Mitchell, and Reedy, 2007).

From an empirical stand, while in the United States the federal government was
initially responsible for IP management, the reform brought IP management closer to
the inventor, at the university level. It made it easier for the inventor to be involved in
the technology transfer process. Conversely, the end of the professor’s privilege has
moved IP management away from the inventor, clearly decreasing her involvement.

the possibility to bypass the tto The university ownership regime is highly
enforced in a country when all universities and public research organizations take
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a monopoly position over the new technology transfer function, whether interested,
skilled and resourceful to perform it or not. Under such framework, professors are not
allowed to maintain alternative technology transfer pathways at a time. They must
end all prior pathways and can only pass through the university TTO. Conversely,
when the regime is weakly enforced, it displays a greater flexibility in the technology
transfer pathways available to the inventors. Only interested universities develop the
new function, invest the resources to become skilled, expand their collaboration net-
work with firms while other less interested universities leave their professors at their
prior pathways.

In the US, the debate surrounding the desirability of university patenting was sup-
planted by the governmental passage of the Bayh-Dole Act. It alerted faculty and
administrators who were still operating under the Mertonian norms that conditions
were changing, and that it was now socially desirable for universities to patent in-
ventions (Kenney and Patton, 2009). The Act provided incentives for universities to
establish a TTO and to engage into the formal transfer of professors’ inventions (Link
and Hasselt, 2019), thus only weakly enforcing the legislation. On the other hand, the
end of the professor’s privilege has been characterized by a high level of enforcement.
In countries affected by this change, the introduction of the university ownership
regime was applied to all universities in a systematic way. This lack of flexibility may
have prevented a smooth transition from the old regime to the new one and thus led
to an overall negative effect, at least in the short run.

the involvement of the university To the best of our knowledge, the only
work that considers the involvement of the university in the implementation of the
patents ownership regime is Link and Hasselt, (2019). They argue that the US Bayh-
Dole Act mostly provided incentives for universities to invest in a technology transfer
office (TTO), which in turn resulted in increased university patenting.

2.3 the ownership of academic inventions in france

In order to shed light on which difference prevails over the others, we estimate the im-
pact of universities’ implementation of the ownership regime on academic invention
in France. In this section, we first describe the relevant historical and legislative back-
ground related to academic inventions’ ownership in France, then present our dataset,
and finally describe the evolution in the ownership structure of academic inventions
over the past two decades.



2.3 the ownership of academic inventions in france 51

2.3.1 Historical and legislative background

The university ownership regime was first introduced in France in 1984. However,
since very few universities were actually managing their IPR until the end of the
1990s, the major policy reform regarding the ownership of academic patents, that is
comparable to the US Bayh-Dole Act, is the Innovation Act introduced in 1999. This
reform introduced the possibility for universities to open a technology transfer office
called SAIC3. These structures were in charge of the management of research con-
tracts, patenting and licensing activities and the commercialization of the outcomes
of professors’ and researchers’ activities.

Since then, the government voted several other pieces of legislation to incentivize
university toward managing industrial relations and the IPRs over the inventions of
their professors and researchers. For instance, the introduction of the first national
research funding agency, the Agence Nationale de la Recherche (ANR), in 2005 pro-
vided competitive funding to collaborative research projects between universities and
private firms, sponsored industrial chairs and delivered labels of excellence (label
Carnot) along with a substantial funding to universities that actively develop partner-
ships with the private sector.

A 2007 piece of legislation aimed at increasing universities’ administrative auton-
omy through providing them with greater freedom to hire temporary staff, including
for their TTO, and to manage these structures4. Three years later, the government
voted a reform to regionalize TTOs. The universities’ internal services (SAICs) were
grouped at a regional level to become SATTs5. These SATTs are in charge of manag-
ing and commercializing the intellectual property of several universities. In case of
joint ownership among multiple universities, a single representative is appointed in
order to ease the patenting process. Although these SATTs were meant to replace all
other forms of IP management structures such as the SAICs, private subsidiary of
universities, or associations, all of these forms still coexist.

The university mission of seeking IPR and commercializing academic inventions
was first explicitly stated in 2006, specifically regarding research results stemming
from ANR sponsored research, and later extended to inventions from all public civil

3 SAIC stands for Services d’Activites Industrielles et Commerciales.
4 See the 2007 Pecresse Law or LRU.
5 Societe d’Acceleration des Transferts de Technologie in French, or technology transfer acceleration

company.
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servants in 2013, and at the same time restrained to commercially valuable discover-
ies6.

2.3.2 Data

We first built a panel dataset of tenured professors and researchers employed at
French universities, engineering and business schools, and PROs by merging two
pre-existing panels. All raw data were provided by the French Ministry of Higher
Education and Research. The first panel was built from several lists of professors and
researchers employed in universities and public research organizations (PROs) that
we compiled and disambiguated. It includes 82,955 professors and researchers ob-
served over the years 1995-2017. The second panel was collected more recently and
already had its panel structure, but it only includes professors (and not researchers).
It comprises 89,264 professors for the years 2000-2018. We merged the two panels to-
gether and disambiguated entries. The resulting unbalanced panel contains 115,885

professors and researchers, associate or full, over the years 1995-2016
7, for whom we

have first and last name, birth year, gender, scientific field, academic position each
year, and the name of the employing institution, among other information.

For this list of professors and researchers, we collected in the PATSTAT database
(Fall 2019 edition) all patents on which the name of at least one inventor matches
that of one of the academics. We limited the search to patents filed with the French
and European patent offices (INPI and EPO) between the years 1995 and 2016. The
method of disambiguation of the researcher-inventor-patent triplets is that described
in Carayol and Carpentier, (2021). As the current list of academics is larger than in the
previously cited paper, we had to increase the weight of precision in the calculation
of the Fβ measure8, which is used to define the confidence threshold of the disam-
biguation, in order to improve the performance of the algorithm. The three thresholds
selected are β = 0.3, 0.5 and 1, where the weight of precision (versus recall) is decreas-
ing with beta. All statistics and results in the rest of the paper are computed using
the threshold β = 0.5 and EPO patents, to make comparability with other studies
easier, and robustness checks are performed on the two other values of β, and using

6 See the Goulard law in 2006 and the Fioraso Law, or Enseignement Superieur et Recherche Law in
2013.

7 We trimmed the time-window to 2016 because patent data were not available for more recent years at
the time of the data collection.

8 Precision is the fraction of relevant instances among the retrieved instances, while recall is the fraction
of relevant instances that were retrieved. The Fβ measure combines precision and recall in a single
indicator: Fβ = (1+β2)× precision×recall

β2×precision+recall .
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INPI patents as well. They are available upon request to the authors. By the end of
the patent disambiguation procedure, we find that 16,908 professors and researchers
have invented 77,353 academic patents from 1995 to 2016, which is consistent with
our prior statistics on a smaller dataset and a shorter period (Carayol and Carpentier,
2021).

Finally, we collected and disambiguated publication data of these professors and re-
searchers from ISI Web of Science, including in particular the number of publications
adjusted for the number of co-authors, number of citations and H-Index.

2.3.3 Evolution of academic patents ownership

The ownership structure of academic patents takes three main modalities: either they
are owned by universities and other public research organizations, or they belong to
the private sector, or else they are co-owned by these two types of entities. Figure 5

shows the temporal evolution of the respective share of academic patents for each
modality.

In a first time, before the Innovation Act, academic institutions usually owned less
than 5% of their inventions, co-owned around 35% with companies, and left the re-
maining 60% in exclusive ownership of the private sector. The second phase appears
from the passage of the Innovation Act until the introduction of the ANR (2000-2006).
It may be called the transition phase. Universities and PRO are increasingly retaining
ownership of their inventions, both exclusively (from 5 to 20%) and in joint property
with firms (up to 55%), leaving as little as 25% in exclusive ownership of the private
sector as of 2006. The third and final period, which we call the stabilization period,
starts after 2007. The ownership structure of academic inventions appears stable, with
around 20% of IPRs in exclusive ownership of universities and PRO, 20% in exclusive
companies’ ownership, and 60% in joint property between these entities.

Far from trivial, filing applications for patents is a long, complex and costly pro-
cess. The significant development of joint ownership in the transition phase suggests
that the French unexperienced and underfunded universities may have used this co-
ownership regime as a strategy to learn the patenting process, and possibly rely on
their business partners to cover the patenting costs until they could afford it them-
selves. Moreover, the persisting heterogeneity in ownership after 2007 confirms that
the French model is still characterized by some flexibility in IP management.
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If we distinguish between patents that are owned by the university that employs the
focal researcher and those that are owned by other institutions, such as co-inventors’
universities or public research organizations, we see in Figure 6 that the number of
universities applying the ownership regime increased significantly after 2006. This
movement occurred jointly with PROs until 2011, before somehow substituting for
them after that date. Examining very closely, one might wonder whether the increase
we see after 1999 and after 2006 (red line, which refers to the right vertical axis) does
not better explain the sustained increase in the number of academic inventions (bold
green line, which refers to the left vertical axis). Of course, behind these aggregate
numbers are individual universities, each of which has a specific strategy and imple-
ments the ownership regime at different times.

2.4 methodology

2.4.1 Identifying the institutions adopting the regime

We use an empirical approach that exploits heterogeneity across universities and
schools in the implementation of government recommendations towards academic
patent ownership. Our first step is to identify which universities actually implement
the policy recommendations, and when. For this, we use a “revealed strategy” ap-
proach based on the share of patents owned by the institution each year: a structural
upward break in its time trend is interpreted as a signal of effective implementation
of the university’s ownership regime.

More in detail, we use the panel dataset presented in Subsection 2.3.2, which we
aggregate to the institutional level, and then calculate for each of the 62 universities
and 17 business and engineering schools the total number of patented inventions each
year9, and the share of these for which the institution has retained the intellectual
property rights (either alone or in co-ownership with a firm)10. We then study the

9 We removed from the study 19 universities and 25 schools where less than 150 inventions were made
over the 22 years.

10 First, note that we calculate the share retained over the previous, current, and next year to reduce the
high temporal variability. Second, since institutions are technically managing as many patents as they
fill applications for in each office, this treatment variable is built on the whole set of patents applications
(both filed at the EPO and INPI). For instance, one strategy for an institution could be to increase the
number of patents filed at the EPO while decreasing in the same proportion the number of patents filed
at the INPI. In that case, if the treatment variable is built on EPO patents only, it would allocate the
institution to the treated group (by mistake), while built on INPI patents the same institution would
be allocated to the control group. Since the volume of patents managed remained constant, in this
example the correct allocation is to the control group.
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temporal evolution of this share in each institution in search of a notable evolution.
For each year in the panel, we calculate the difference in slopes between the three
previous years and the three following years. When it is positive in a given year
and greater than a threshold (which we will define and then play with to check the
robustness of our analysis), we assign the value 1 to the indicator variable Treated
that signals the observed implementation of the university’s ownership regime. If
several years are validated for the same institution, we keep only the one with the
highest difference in slopes, and if several years have exactly the same maximum
difference in slopes we keep only the first year. All universities and years combined,
these differences are on average zero (-1%) with a standard deviation of 16.57%, a
minimum of -117% and a maximum of +75%. Such a large variance results from the
sometimes very low volume of inventions in some institutions. We set the threshold
value at 20 percent for the main analysis and run robustness checks on the 15 percent
and 25 percent values11. With this parameter, there are 31 institutions that pass the
threshold while the other 48 are used as potential controls.

Figure 7 illustrates the gradual progression in the implementation of the regime in
France: five institutions changed their strategy around the passage of the innovation
act in 1999, and then more and more institutions followed until reaching two peaks
in 2008 and 2012. This pattern is robust to a change in the threshold value (see Fig-
ures 8 and 9 in Appendix). It is possible that legislations introduced in 2005 and 2007

that increased funding for university-industry collaborations and university auton-
omy explain the first peak, while a reform passed in 2012 initiated the regionalization
of TTOs and could explain the revival of institutional involvement that year.

2.4.2 Identification strategy

matching Because the implementation of government recommendations is a de-
cision made by each institution, presumably based on its needs and expectations, we
match universities with each other on a (limited) set of observable characteristics to
reduce the effect of potential selection bias. We use a Coarsened Exact Matching (Ia-
cus, King, and Porro, 2012; King and Nielsen, 2018), and match institutions on the
number of patents resulting from research within the institution (regardless of patent

11 Setting lower values increases the number of institutions that pass the threshold, but values that are
too low are more likely to include false positives (variations that do not actually signal a change
in university strategy), while setting higher values increases precision but significantly reduces the
number of institutions that pass the threshold. For example, setting the threshold at 30 percent would
leave only 6 institutions.
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Figure 7: Number of institutions implementing the policy recommendations each year.

ownership) in the three years prior to implementation, the trend in share of patents
managed by the institution itself over the same period, the type of institution (public
university or business/engineering school) and the year of implementation.

Table 13 shows the mean and standard deviation for each of these matching vari-
ables as well as ex-post variables (on which we did not match) for the group of institu-
tions implementing the reform (treated) and the group not implementing it (control)12.
In the last column, it reports the t-tests of difference in means between groups. The
first panel reports these statistics before matching, while the second panel refers to the
statistics after matching. We managed to find at least one control institution for three
quarters of the treated universities, and the t-tests of the second panel confirm that
these two groups are no longer statistically different on observable characteristics.

econometric specification We now use the individual-level panel that we
restrict to the previously matched institutions and recompute weights (which correct
for strata size) to account for the varying number of scientists within institutions.
Table 14 summarizes, at the time of the employing institution’s adoption of the regime,

12 There are 665 observations in the pre-matching control group because, unlike treated institutions for
which the treatment year is identified, the control group includes several years for each institution in
which they may be a counterfactual for a treated institution.
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Table 13: Difference in means on observable characteristics between treated and control
groups.

Before matching
Treatment group Control group Difference t-test
mean sd mean sd b p

Number of patentsPre 66.03 68.70 152.62 187.54 86.59 (0.00)
Share of patents managedPre -0.01 0.04 0.28 0.66 0.28 (0.00)
Share of universities (vs schools) 0.74 0.44 0.80 0.40 0.06 (0.48)
Year 2007.03 3.69 2007.00 5.48 -0.03 (0.96)
Share of patents managedPost 0.29 0.08 0.03 0.06 -0.26 (0.00)
Number of patentsPost 94.94 100.51 179.73 209.52 84.79 (0.00)
Number of univ-owned patentsPost 44.94 61.04 84.85 116.33 39.92 (0.00)
Number of firm-owned patentsPost 28.74 25.23 67.65 62.36 38.91 (0.00)
Number of co-owned patentsPost 21.26 28.13 27.23 45.39 5.97 (0.28)
Number of cit-weighted patentsPost 3773.71 10270.78 12842.41 24282.53 9068.70 (0.00)
Number of patent familiesPost 65.35 62.26 124.48 144.90 59.13 (0.00)
Observations 31 665 696

After matching
Treatment group Control group Difference t-test
mean sd mean sd b p

Number of patentsPre 70.21 76.94 80.03 104.51 9.83 (0.68)
Share of patents managedPre 0.01 0.04 0.00 0.07 -0.00 (0.80)
Share of universities (vs schools) 0.79 0.41 0.79 0.41 -0.00 (1.00)
Year 2006.92 3.99 2006.92 3.93 -0.00 (1.00)
Share of patents managedPost 0.28 0.06 0.03 0.05 -0.25 (0.00)
Number of patentsPost 106.25 111.85 106.31 130.01 0.06 (1.00)
Number of univ-owned patentsPost 48.21 68.82 48.10 67.08 -0.11 (1.00)
Number of firm-owned patentsPost 32.71 27.08 44.72 43.60 12.01 (0.27)
Number of co-owned patentsPost 25.33 30.81 13.49 27.66 -11.85 (0.09)
Number of cit-weighted patentsPost 4641.58 11575.31 5078.74 13557.83 437.16 (0.88)
Number of patent familiesPost 72.29 69.16 76.37 90.93 4.08 (0.85)
Observations 24 71 95
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their demographics, scientific field, productivity (number of publications on the past
three years and H-index) and prior patenting experience. This sample is representative
of the overall population of professors and researchers in France.

Table 14: Summary statistics on the sample of scientists at matched institutions

mean sd min max
Gender 0.65 0.48 0 1

Age 47.16 10.32 23 79

Fundamental Biology 0.23 0.42 0 1

Medicine 0.21 0.40 0 1

Applied bio. Ecology 0.12 0.32 0 1

Chemistry 0.13 0.33 0 1

Physics 0.14 0.35 0 1

Universe Science 0.04 0.20 0 1

Engineering Sciences 0.18 0.39 0 1

Mathematics 0.09 0.29 0 1

Social Sciences 0.40 0.49 0 1

Humanities 0.40 0.49 0 1

Nb of publications 0.32 0.65 0 24

H-index 3.79 6.64 0 120

Inventor 0.00 0.00 0 0

Treatment year 2007.33 3.45 1999 2012

Observations 70462

Note: All variables are measured at the time of the treatment. Gender equals 0 for female, and 1 for male. The number of
publications is weighted by the number of co-authors, and averaged on the three previous years.

We run the following difference-in-differences linear regression to assess the impact
of the university’s implementation of the regime on the propensity to invent of its
professors and researchers:

yiut = α+ δPostut +∆ Treatedut × Postut +X ′iutφ+ θi +Θu + ηt + εiut, (12)

where yiut is the logarithm of the number of EPO patents (for patent disambiguation
threshold 0.513) of scientist i employed by institution u in year t; Treatedut is equal to
one if entity u has engaged in the transfer policy (treated) before year t, and zero other-
wise. X ′iut is a vector of individual-level controls including the scientific field, number
of publications, and H-index. We also introduce year, individual, and institution fixed

13 See Carayol and Carpentier, (2021) for more information.
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effects (ηt, θi, Θu respectively). The main coefficient of interest is ∆, reporting the av-
erage treatment effect of the university ownership regime on academic invention at
the individual level.

2.5 the impact of the university ownership regime on academic in-
vention

2.5.1 Main results

We report the main results of interest in Table 15 below, and the full version includ-
ing coefficients for all control variables is available in Appendix Table 17. The first
columns includes all academics, while the second and third columns split them be-
tween hard scientists and life scientists respectively (social scientists and humanities
are not reported), and the fourth and fifth columns divide them between professors
(associate and full) and researchers (junior and senior). Coefficients are to be inter-
preted as the average number of supplementary patents per capita obtained each year
thanks to implementing the new regime of university ownership at the university
level. Those numbers need to be compared to the actual mean numbers of patents in-
vented within each considered set so that policy effect can be perceived as percentage
changes.

We find that professors and researchers employed at institutions that have adopted
the university ownership regime, have raised their propensity to invent due to their
university implementing the new policy by 20.7% on average. To obtain that number,
we divide .006 by .029, which is the average number of patents invented each year in
the overall population. This effect is significant at the 5% level.

Comparing columns (2) and (3), we see that impact is much larger in hard sciences
as compared to life sciences. Relative to the means in each subset, we get a 32.5%
impact in the hard sciences (.013/.04) against a 13.5% impact in life sciences (.005/.037).
The effect in the hard sciences is significant at the 5% level whereas the one in the life
sciences is not significant.

It is also interesting to compare the impact of university involvement on person-
nel invention propensity, depending on status. In France most scientists are either
researchers employed by national research institutes, or professors (including assis-
tant professors) employed by universities. Both work in research units that are most
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of the time staffed by the two types of personnel. 14 We find that the impact is posi-
tive and significant for professors and assistant professors only with a 29.2% increase
(.007/.024). The impact is negative and non significant for researchers. This result is
consistent with the idea that most researchers can benefit from the transfer facilities
of their research institutes that are coordinated at the national level. Therefore they
are less sensitive to the implementation of the university transfer policy.

Table 15: Impact of university participation in the ownership regime on academics’ number of
patents (partial table)

(1) (2) (3) (4) (5)
All Hard Scientists Life Scientists Professors Researchers

Treated × Post 0.003
∗∗

0.005
∗∗

0.003 0.004
∗∗ -0.006

(0.001) (0.002) (0.003) (0.001) (0.006)
Observations 451746 172296 127430 375588 67293

Note: we present the results of the estimation of δt from Equation 12. The dependent variable is the logarithm of the yearly
number of EPO patents disambiguated with threshold β = 0.5. In column (1), we include the full matched sample. We restrict
the sample to scientists in hard sciences in column (2), and those in life sciences in column (3). We divide the sample between
professors (including associate professors) in column (4) and researchers (either full or associate) in column (5). In all regressions,
we include individual, university and time fixed effects as well as the following control variables: post, age, gender, number of
publications (past three years), H-index, and share of patents managed by the academic system (excluding the employing
institution). The standard errors are clustered at the individual and university levels. Significance level are:∗ p<0.1, ∗∗ p<0.05,
∗∗∗ p<0.01.

One concern that may have accompanied this type of reform is the possibly lesser
ability of the private sector to exploit academic inventions. We report in Table 16 the
regressions according to the type of patent ownership (see Appendix Table 18 for the
complete results). The first column shows the number of patents for which at least
one applicant is a firm, in the second column all applicants are firms, in the third all
applicants are universities and/or PROs, and in the fourth applicants are both firms
and universities or PROs. Note that the first column is the sum of the second and
fourth ones. Our results contradict the belief described above, and instead indicate
that firms benefit significantly from the reform in the sense that they partially own
the additional inventions, but do not manage to capture more of them under sole
ownership.

14 The cut between researchers and profssors is carreer consistent as most assistant researchers are pro-
moted as researchers whereas most assistant professors are promoted as professors.
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Table 16: Impact of university participation in the ownership regime on academics’ choice of
transfer pathway (partial table)

(1) (2) (3) (4)
1+ company Companies only Universities only Comp. & univ.

Treated × Post 0.003
∗∗∗ -0.000 0.000 0.003

∗∗∗

(0.001) (0.001) (0.001) (0.001)
Observations 452331 452331 452331 452331

Note: we present the results of the estimation of δt from Equation 12, but the dependent variable is the logarithm of the yearly
number of EPO patents disambiguated with threshold β = 0.5 that are given in ownership to the private sector (not exclusively
in column 1, exclusively in column 2), to the university and PRO system exclusively (column 3), or in co-ownership between
these two types of entities (column 4). In all regressions, we include individual, university and time fixed effects as well as the
following control variables: post, age, gender, number of publications (past three years), H-index, and share of patents managed
by the academic system (excluding the employing institution). The standard errors are clustered at the individual and university
levels. Significance level are:∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01.

2.5.2 Robustness checks

We perform a set of robustness checks by first varying the threshold for disambigua-
tion of academic patents, then the patent office considered, and finally the threshold
for the treatment variable.

patent disambiguation The main results presented were performed on EPO
patents with the threshold value β = 0.5 at the patent disambiguation stage. Alterna-
tively, we repeat the analysis with two other values of β. When we give even more
importance to precision than recall (β = 0.3), there are more institutions in the treated
group, but fewer find an appropriate match (Appendix Table 19). The main result
remains consistent and become even more significant, while the effects on subgroups
of discipline or researchers vs professors become inconsistent (Appendix Table 20).
The effect on patent ownership is robust (Appendix Table 21). In turn, when recall is
weighted equally to precision (β = 1), we find much fewer institutions in the treated
group so that only 10 finally find an appropriate match (Appendix Table 22). The
main result remains robust (Appendix Table 23), while the effect on private sector
ownership is consistent but becomes insignificant (Appendix Table 24).

patent office We carried the main analysis on patents filed at the EPO to ease
comparison between studies. But it could be the case that universities decreased the
number of patents filed at the INPI in favor of a more ambitious strategy at the Eu-
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ropean level by filing them directly with the EPO. IIn this case, substitution between
patent offices would imply that there is no real increase in the total number of inven-
tions. We verify this hypothesis in Appendix Tables 25 and 26, where the results are
replicated on the number of patents filed at the INPI this time. It appears that the co-
efficients are positive although not significant, but not negative. Thus we can discard
the hypothesis of a substitution effect between patent offices.

thresholds to define the treatment variable Finally, to define the treat-
ment variable, we set the threshold for the difference in slope at 20%. This value may
seem arbitrary, so we study how the results are affected when we vary this threshold
up and down. Setting it lower, at 15 percent, we find more treated units and more
matched control units (Appendix Table 27), but all results are robust (Appendix Ta-
bles 28) and 29). Setting it higher, at 25 percent, the number of treated institutions
decreases significantly (Appendix Table 30), but the main effect remains robust (Ap-
pendix Tables 31), while the hypothesis of a crowding out effect on firms remains
unverified in our results (Appendix Tables 32).

2.6 discussion and conclusion

What is the impact of the university’s ownership regime of patents on academic in-
vention? This question is difficult to answer, mainly because of the divergence in its
observed effects between the United States and Northern and Eastern European coun-
tries. In this chapter, we assess how the effective involvement of universities in the
patent ownership regime affects academics’ propensity to invent in France. We find
that professors in universities that took the step file on average 20.7% more inventions.
This supports the idea that the “last mile” of university ownership regime, i.e. the ef-
fective implementation by actors, may be the key to the success of the reform and may
thus explain the puzzle faced by the literature.

Indeed, the first difference we identified between continents is the variation (pos-
itive or negative) in the involvement of the academic inventor in the transfer and
commercialization of her invention. In the United States, the reform increased her in-
volvement by bringing the management of technology transfer within the university
from the federal government. In contrast, the implementation of the regime in North-
ern and Eastern European countries caused a reduction of her involvement by adding
an additional intermediary between her and her industrial partners, namely the TTO.
In France, universities’ implementation of the patent ownership regime has also led
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to a reduction in her involvement, since before the year 2000 around two third of in-
ventions were transferred directly from researchers to companies. If this determinant
had been preponderant in the impact of universities decision to make a move towards
adopting the ownership regime, we would have observed a negative impact in France,
which is not verified in our results. Thus, it appears that the degree of involvement of
the researcher in the transfer of her inventions plays only a secondary role (if any) in
determining the performance of the university’s ownership regime.

The second difference we observe is that researchers may (or may not) continue to
use old technology transfer pathways (such as direct transfer between the inventor
and the commercial partner), without passing by the TTO. In this sense, the French
case is closer to the American one in terms of the flexibility in the patent ownership
structure that we have observed, and further away from that of Northern and Eastern
Europe where the abolishment of the professor’s privilege rather implied an obliga-
tion for inventors to go through the TTO and put an end to the alternative transfer
pathways (Czarnitzki et al., 2015). The positive effect observed in France thus sug-
gests that this factor affects more significantly the performance of the university’s
ownership model. It seems important, then, that researchers can use various trans-
fer pathways: using their network with industry and transferring themselves when
relevant, while having the option of relying on their TTO in other situations. This
idea echoes the discussion of Litan, Mitchell, and Reedy, (2007) who suggest that the
limitations of technology transfer performance in the US can be attributed to the mo-
nopolistic position that many TTOs have taken. They suggest possible modifications
to the university ownership model, such as a “free agency”. The researcher would be
required to pay a percentage of the revenues back to her university, and would be free
to select the third party that would handle the technology transfer of her invention,
the university TTO being simply one of them.

This study has a major limitation that should be addressed in future research. Both
the dependent (number of academic inventions) and the main independent (imple-
mentation of the university’s ownership regime) variables are constructed from the
academic patents of professors and researchers affiliated with the university. Alterna-
tive approaches to making these two variables independent would be to use as an
independent variable the year the TTO creation (or any other transfer structure), or
the number of full-time equivalent employees within the TTO. Unfortunately, these
data are not available in France. In addition, we have relatively little information
on the determinants of universities’ decisions to follow policy recommendations. We
have considered patent management trends and the number of past inventions, but
there are likely many other relevant factors. For example, is there an imitation effect
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between universities? Did the industrial partners of the researchers use their bargain-
ing power to delay or even prevent the implementation of the policy reform in some
institutions? How important are the financial and human resources available to the
institution? Technology transfer seems to be a complex activity, which requires skills,
human and financial means, and the construction of a network of industrial partner-
ships in order to function efficiently. Is there a learning period after the opening of the
TTO, and how long does it last before the structure is efficient? These are all avenues
that future research can explore.
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2.7 appendix of chapter 2

Complementary tables (main results)

Table 17: Impact of university participation in the ownership regime on academics’ number of
patents (complete table)

(1) (2) (3) (4) (5)

All Hard Scientists Life Scientists Professors Researchers

Treated × Post 0.003
∗∗

0.005
∗∗

0.003 0.004
∗∗ -0.006

(0.001) (0.002) (0.003) (0.001) (0.006)

Post -0.002 -0.002 -0.003 -0.002 -0.002

(0.001) (0.002) (0.003) (0.001) (0.004)

Outside options 0.005
∗∗

0.013
∗∗∗

0.004 0.007
∗∗ -0.006

(0.002) (0.004) (0.003) (0.003) (0.009)

Nb of publications 0.007
∗∗∗

0.008
∗∗

0.013
∗∗∗

0.005
∗∗

0.020
∗∗∗

(0.002) (0.004) (0.003) (0.002) (0.007)

H-index 0.001
∗∗∗

0.002
∗∗∗

0.001 0.001
∗∗

0.001

(0.000) (0.000) (0.001) (0.000) (0.001)

Age 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (.)

gender -0.003 -0.003 -0.019 -0.003 0.000

(0.005) (0.003) (0.024) (0.005) (.)

Observations 451746 172296 127430 375588 67293

Note: we present the results of the estimation of δt from Equation 12. The dependent variable is the logarithm of the yearly
number of EPO patents disambiguated with threshold β = 0.5. In column (1), we include the full matched sample. We restrict
the sample to scientists in hard sciences in column (2), and those in life sciences in column (3). We divide the sample between
professors (including associate professors) in column (4) and researchers (either full or associate) in column (5). In all regressions,
we include individual, university and time fixed effects. Control variables include outsideoptions, which is the share of
patents managed by the academic system (excluding the institution of the focal scientist) and reflect her possibility to transfer
the invention through the university system but without going through her own TTO. The standard errors are clustered at the
individual and university levels. Significance level are:∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01.
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Table 18: Impact of university participation in the ownership regime on academics’ choice of
transfer pathway (complete table)

(1) (2) (3) (4)
1+ company Companies only Universities only Comp. & univ.

Treated × Post 0.003
∗∗∗ -0.000 0.000 0.003

∗∗∗

(0.001) (0.001) (0.001) (0.001)

Post -0.002
∗∗ -0.001

∗
0.001 -0.001

∗∗

(0.001) (0.001) (0.001) (0.000)

Nb of publications 0.002 -0.000 0.006
∗∗∗

0.002
∗∗∗

(0.001) (0.001) (0.002) (0.001)

H-index 0.000 -0.000 0.001
∗∗∗

0.000

(0.000) (0.000) (0.000) (0.000)

Age 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

gender -0.004 -0.000 0.001 -0.004

(0.005) (0.000) (0.001) (0.005)
Observations 452331 452331 452331 452331

Note: we present the results of the estimation of δt from Equation 12, but the dependent variable is the logarithm of the yearly
number of EPO patents disambiguated with threshold β = 0.5 that are given in ownership to the private sector (not exclusively
in column 1, exclusively in column 2), to the university and PRO system exclusively (column 3), or in co-ownership between
these two types of entities (column 4). In all regressions, we include individual, university and time fixed effects as well as the
following control variables: post, age, gender, number of publications (past three years), H-index, and share of patents managed
by the academic system (excluding the employing institution). The standard errors are clustered at the individual and university
levels. Significance level are:∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01.
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Results using patent disambiguation threshold 0.3

Table 19: Difference in means on observable characteristics between treated and control groups
(patent disambiguation threshold 03).

Before matching

Treatment group Control group Difference t-test

mean sd mean sd b p

Number of patentsPre 38.97 40.18 117.13 132.37 78.16 (0.00)

Share of patents managedPre -0.02 0.10 0.25 0.61 0.27 (0.00)

Share of universities (vs schools) 0.82 0.39 0.82 0.39 -0.01 (0.94)

Year 2004.59 4.11 2007.00 5.49 2.41 (0.00)

Share of patents managedPost 0.36 0.12 0.05 0.08 -0.32 (0.00)

Number of patentsPost 73.62 68.60 142.77 145.74 69.16 (0.00)

Number of univ-owned patentsPost 44.18 50.31 93.63 96.23 49.45 (0.00)

Number of firm-owned patentsPost 13.06 10.79 18.79 14.21 5.73 (0.01)

Number of co-owned patentsPost 16.38 17.55 30.35 46.85 13.97 (0.00)

Number of cit-weighted patentsPost 1857.18 2937.51 6826.72 12692.31 4969.55 (0.00)

Number of patent familiesPost 55.41 51.63 105.23 104.64 49.82 (0.00)

Observations 34 209 243

After matching

Treatment group Control group Difference t-test

mean sd mean sd b p

Number of patentsPre 43.32 47.81 64.63 113.80 21.32 (0.28)

Share of patents managedPre 0.03 0.05 0.04 0.05 0.01 (0.49)

Share of universities (vs schools) 0.89 0.32 0.89 0.31 0.00 (1.00)

Year 2004.42 4.25 2004.42 4.21 0.00 (1.00)

Share of patents managedPost 0.39 0.11 0.04 0.07 -0.35 (0.00)

Number of patentsPost 89.11 83.41 95.93 143.71 6.82 (0.80)

Number of univ-owned patentsPost 58.42 62.12 60.34 85.73 1.92 (0.92)

Number of firm-owned patentsPost 14.21 12.69 12.57 10.40 -1.64 (0.62)

Number of co-owned patentsPost 16.47 16.66 23.02 53.82 6.54 (0.45)

Number of cit-weighted patentsPost 2441.11 3458.41 5455.71 14207.44 3014.61 (0.17)

Number of patent familiesPost 67.84 62.76 72.09 100.62 4.25 (0.83)

Observations 19 29 48
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Table 20: Impact of university participation in the ownership regime on academics’ number of
patents (patent disambiguation threshold 03)

(1) (2) (3) (4) (5)

All Hard Scientists Life Scientists Professors Researchers

Treated × Post 0.002
∗∗

0.004
∗∗

0.001 0.001 0.007
∗∗

(0.001) (0.001) (0.001) (0.001) (0.003)

Post -0.001
∗ -0.003 -0.002 -0.001 -0.006

(0.001) (0.002) (0.001) (0.001) (0.003)

Outside options 0.002
∗∗

0.005
∗∗∗

0.001 0.001 0.011
∗

(0.001) (0.002) (0.001) (0.001) (0.006)

Nb of publications 0.000 0.002
∗∗ -0.002 0.000 0.000

(0.001) (0.001) (0.002) (0.001) (0.002)

H-index 0.001
∗∗∗

0.001 0.001
∗∗∗

0.001
∗∗

0.001

(0.000) (0.001) (0.000) (0.000) (0.001)

Age 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (.)

gender 0.001 0.003
∗∗ -0.001 0.000 0.000

(0.001) (0.001) (0.002) (0.001) (.)

Observations 321753 152228 121721 247891 64242

Note: we present the results of the estimation of δt from Equation 12. The dependent variable is the logarithm of the yearly
number of EPO patents disambiguated with threshold β = 0.3. In column (1), we include the full matched sample. We restrict
the sample to scientists in hard sciences in column (2), and those in life sciences in column (3). We divide the sample between
professors (including associate professors) in column (4) and researchers (either full or associate) in column (5). In all regressions,
we include individual, university and time fixed effects. Control variables include outsideoptions, which is the share of
patents managed by the academic system (excluding the institution of the focal scientist) and reflect her possibility to transfer
the invention through the university system but without going through her own TTO. The standard errors are clustered at the
individual and university levels. Significance level are:∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01.
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Table 21: Impact of university participation in the ownership regime on academics’ choice of
transfer pathway (patent disambiguation threshold 03)

(1) (2) (3) (4)

1+ company Companies only Universities only Comp. & univ.

Treated × Post 0.001
∗∗

0.000 0.000 0.001
∗∗

(0.000) (0.000) (0.001) (0.000)

Post -0.001
∗∗ -0.000 -0.000 -0.001

∗∗

(0.001) (0.000) (0.001) (0.000)

Nb of publications 0.001 -0.000 -0.001 0.001

(0.001) (0.000) (0.001) (0.001)

H-index 0.000 -0.000 0.001
∗∗∗

0.000

(0.000) (0.000) (0.000) (0.000)

Age 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

gender 0.001
∗∗

0.000 -0.000 0.000
∗∗

(0.000) (0.000) (0.001) (0.000)

Observations 321851 321851 321851 321851

Note: we present the results of the estimation of δt from Equation 12, but the dependent variable is the logarithm of the yearly
number of EPO patents disambiguated with threshold β = 0.3 that are given in ownership to the private sector (not exclusively
in column 1, exclusively in column 2), to the university and PRO system exclusively (column 3), or in co-ownership between
these two types of entities (column 4). In all regressions, we include individual, university and time fixed effects as well as the
following control variables: post, age, gender, number of publications (past three years), H-index, and share of patents managed
by the academic system (excluding the employing institution). The standard errors are clustered at the individual and university
levels. Significance level are:∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01.
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Results using patent disambiguation threshold 1

Table 22: Difference in means on observable characteristics between treated and control groups
(patent disambiguation threshold 1).

Before matching

Treatment group Control group Difference t-test

mean sd mean sd b p

Number of patentsPre 56.07 39.45 156.71 207.41 100.64 (0.00)

Share of patents managedPre -0.02 0.08 0.27 0.66 0.29 (0.00)

Share of universities (vs schools) 0.60 0.51 0.84 0.37 0.24 (0.09)

Year 2006.73 3.81 2007.00 5.48 0.27 (0.79)

Share of patents managedPost 0.28 0.06 0.02 0.05 -0.26 (0.00)

Number of patentsPost 85.13 50.61 180.94 230.22 95.81 (0.00)

Number of univ-owned patentsPost 34.53 22.88 66.67 108.02 32.14 (0.00)

Number of firm-owned patentsPost 27.80 27.08 92.01 95.37 64.21 (0.00)

Number of co-owned patentsPost 22.80 23.38 22.27 41.47 -0.53 (0.93)

Number of cit-weighted patentsPost 1922.20 3210.45 15048.06 34937.77 13125.86 (0.00)

Number of patent familiesPost 64.73 42.05 130.76 165.22 66.03 (0.00)

Observations 15 1159 1174

After matching

Treatment group Control group Difference t-test

mean sd mean sd b p

Number of patentsPre 54.40 33.15 83.02 97.74 28.62 (0.15)

Share of patents managedPre 0.02 0.05 0.02 0.05 0.01 (0.80)

Share of universities (vs schools) 0.80 0.42 0.80 0.40 -0.00 (1.00)

Year 2006.10 3.96 2006.10 3.78 0.00 (1.00)

Share of patents managedPost 0.29 0.07 -0.01 0.05 -0.29 (0.00)

Number of patentsPost 82.30 50.21 106.31 120.84 24.01 (0.38)

Number of univ-owned patentsPost 32.20 19.72 29.69 43.16 -2.51 (0.80)

Number of firm-owned patentsPost 32.60 32.41 66.43 66.55 33.83 (0.04)

Number of co-owned patentsPost 17.50 19.00 10.19 15.32 -7.31 (0.29)

Number of cit-weighted patentsPost 1456.10 2046.31 5115.18 13101.33 3659.08 (0.07)

Number of patent familiesPost 58.60 38.09 82.43 89.52 23.83 (0.27)

Observations 10 75 85
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Table 23: Impact of university participation in the ownership regime on academics’ number of
patents (patent disambiguation threshold 1)

(1) (2) (3) (4) (5)

All Hard Scientists Life Scientists Professors Researchers

Treated × Post 0.004
∗∗

0.006 0.004 0.006
∗∗ -0.007

(0.002) (0.004) (0.004) (0.003) (0.007)

Post 0.001 -0.001 0.006 -0.002 0.013

(0.003) (0.004) (0.007) (0.002) (0.008)

Outside options 0.005 0.008 0.000 0.004 -0.002

(0.004) (0.008) (0.009) (0.003) (0.010)

Nb of publications 0.006
∗∗∗

0.008
∗∗

0.001 0.007
∗∗

0.005
∗∗

(0.002) (0.004) (0.003) (0.003) (0.003)

H-index 0.001 0.000 0.001
∗∗

0.001
∗∗∗ -0.000

(0.000) (0.001) (0.000) (0.000) (0.001)

Age 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (.)

gender -0.019 0.001 -0.156 -0.017 0.000

(0.021) (0.003) (0.117) (0.022) (.)

Observations 308775 106296 65847 253021 47338

Note: we present the results of the estimation of δt from Equation 12. The dependent variable is the logarithm of the yearly
number of EPO patents disambiguated with threshold β = 1. In column (1), we include the full matched sample. We restrict
the sample to scientists in hard sciences in column (2), and those in life sciences in column (3). We divide the sample between
professors (including associate professors) in column (4) and researchers (either full or associate) in column (5). In all regressions,
we include individual, university and time fixed effects. Control variables include outsideoptions, which is the share of
patents managed by the academic system (excluding the institution of the focal scientist) and reflect her possibility to transfer
the invention through the university system but without going through her own TTO. The standard errors are clustered at the
individual and university levels. Significance level are:∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01.
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Table 24: Impact of university participation in the ownership regime on academics’ choice of
transfer pathway (patent disambiguation threshold 1)

(1) (2) (3) (4)

1+ company Companies only Universities only Comp. & univ.

Treated × Post 0.002 -0.001 0.003 0.003
∗

(0.002) (0.001) (0.002) (0.002)

Post -0.001 -0.001 0.002 0.000

(0.001) (0.001) (0.002) (0.001)

Nb of publications 0.003
∗∗

0.002
∗

0.003
∗

0.001
∗

(0.001) (0.001) (0.001) (0.001)

H-index 0.000 -0.000 0.001 0.000

(0.000) (0.000) (0.000) (0.000)

Age 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

gender -0.020 0.001 0.001 -0.021

(0.021) (0.001) (0.001) (0.021)

Observations 308775 308775 308775 308775

Note: we present the results of the estimation of δt from Equation 12, but the dependent variable is the logarithm of the yearly
number of EPO patents disambiguated with threshold β = 1 that are given in ownership to the private sector (not exclusively
in column 1, exclusively in column 2), to the university and PRO system exclusively (column 3), or in co-ownership between
these two types of entities (column 4). In all regressions, we include individual, university and time fixed effects as well as the
following control variables: post, age, gender, number of publications (past three years), H-index, and share of patents managed
by the academic system (excluding the employing institution). The standard errors are clustered at the individual and university
levels. Significance level are:∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01.

Results using INPI patents

Note that the treatment variable, Treated, is built upon patents filed at both the EPO
and INPI, so that the results of matching remain unchanged.
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Table 25: Impact of university participation in the ownership regime on academics’ number of
INPI patents

(1) (2) (3) (4) (5)

All Hard Scientists Life Scientists Professors Researchers

Treated × Post 0.002 0.005 -0.001 0.002
∗ -0.001

(0.002) (0.003) (0.003) (0.001) (0.007)

Post -0.001 -0.004 0.001 -0.002 0.005

(0.002) (0.003) (0.003) (0.002) (0.005)

Outside options 0.004 0.011
∗∗ -0.008 0.003 0.007

(0.003) (0.005) (0.005) (0.003) (0.006)

Nb of publications 0.005
∗∗

0.007
∗

0.002 0.004
∗∗

0.008

(0.002) (0.004) (0.003) (0.002) (0.006)

H-index 0.001 0.001 -0.001 0.001 -0.000

(0.000) (0.001) (0.000) (0.000) (0.001)

Age 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (.)

gender 0.001 -0.001 0.004
∗

0.001 0.000

(0.001) (0.002) (0.002) (0.001) (.)

Observations 451746 172296 127430 375588 67293

Note: we present the results of the estimation of δt from Equation 12. The dependent variable is the logarithm of the yearly
number of INPI patents disambiguated with threshold β = 0.5. In column (1), we include the full matched sample. We restrict
the sample to scientists in hard sciences in column (2), and those in life sciences in column (3). We divide the sample between
professors (including associate professors) in column (4) and researchers (either full or associate) in column (5). In all regressions,
we include individual, university and time fixed effects. Control variables include outsideoptions, which is the share of
patents managed by the academic system (excluding the institution of the focal scientist) and reflect her possibility to transfer
the invention through the university system but without going through her own TTO. The standard errors are clustered at the
individual and university levels. Significance level are:∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01.
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Table 26: Impact of university participation in the ownership regime on academics’ choice of
transfer pathway (INPI patents)

(1) (2) (3) (4)

1+ company Companies only Universities only Comp. & univ.

Treated × Post 0.001 -0.000 0.001 0.001

(0.001) (0.001) (0.001) (0.001)

Post -0.001 -0.001
∗ -0.000 0.000

(0.001) (0.001) (0.001) (0.000)

Nb of publications 0.000 0.000 0.005
∗∗

0.000

(0.001) (0.001) (0.002) (0.000)

H-index 0.000 -0.000 0.000 0.000
∗∗

(0.000) (0.000) (0.000) (0.000)

Age 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

gender -0.000 -0.000 0.001 -0.000

(0.000) (0.000) (0.001) (0.001)

Observations 452331 452331 452331 452331

Note: we present the results of the estimation of δt from Equation 12, but the dependent variable is the logarithm of the yearly
number of INPI patents given in ownership to the private sector (not exclusively in column 1, exclusively in column 2), to
the university and PRO system exclusively (column 3), or in co-ownership between these two types of entities (column 4). In
all regressions, we include individual, university and time fixed effects as well as the following control variables: post, age,
gender, number of publications (past three years), H-index, and share of patents managed by the academic system (excluding
the employing institution). The standard errors are clustered at the individual and university levels. Significance level are:∗

p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01.
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Results using different threshold values to define the treatment variable
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Figure 8: Number of institutions adopting the regime each year (threshold 15%).
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Table 27: Difference in means on observable characteristics between treated and control groups
(threshold 15%).

Before matching

Treatment group Control group Difference t-test

mean sd mean sd b p

Number of patentsPre 80.69 92.54 152.62 187.54 71.94 (0.00)

Share of patents managedPre -0.01 0.05 0.28 0.66 0.29 (0.00)

Share of universities (vs schools) 0.76 0.43 0.80 0.40 0.04 (0.51)

Year 2006.42 4.14 2007.00 5.48 0.58 (0.38)

Share of patents managedPost 0.26 0.08 0.03 0.06 -0.23 (0.00)

Number of patentsPost 117.11 143.41 179.73 209.52 62.62 (0.01)

Number of univ-owned patentsPost 55.27 85.24 84.85 116.33 29.59 (0.03)

Number of firm-owned patentsPost 38.40 41.61 67.65 62.36 29.25 (0.00)

Number of co-owned patentsPost 23.44 32.34 27.23 45.39 3.79 (0.47)

Number of cit-weighted patentsPost 6837.29 19386.87 12842.41 24282.53 6005.12 (0.06)

Number of patent familiesPost 81.20 95.73 124.48 144.90 43.28 (0.01)

Observations 45 665 710

After matching

Treatment group Control group Difference t-test

mean sd mean sd b p

Number of patentsPre 83.14 100.77 91.81 127.48 8.67 (0.70)

Share of patents managedPre -0.00 0.05 -0.00 0.06 -0.00 (0.92)

Share of universities (vs schools) 0.78 0.42 0.78 0.42 -0.00 (1.00)

Year 2006.58 4.21 2006.58 4.17 -0.00 (1.00)

Share of patents managedPost 0.25 0.07 0.03 0.05 -0.22 (0.00)

Number of patentsPost 121.14 151.62 118.03 164.90 -3.11 (0.92)

Number of univ-owned patentsPost 56.69 93.32 57.18 96.98 0.48 (0.98)

Number of firm-owned patentsPost 37.89 36.72 45.45 46.05 7.56 (0.41)

Number of co-owned patentsPost 26.56 35.20 15.40 31.42 -11.15 (0.08)

Number of cit-weighted patentsPost 7486.86 21298.96 7262.00 20804.26 -224.86 (0.96)

Number of patent familiesPost 82.17 98.47 83.42 111.89 1.26 (0.95)

Observations 36 113 149
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Table 28: Impact of university participation in the ownership regime on academics’ number of
patents (threshold 15%)

(1) (2) (3) (4) (5)

All Hard Scientists Life Scientists Professors Researchers

Treated × Post 0.003
∗∗

0.003 0.005
∗∗

0.003
∗∗

0.001

(0.001) (0.002) (0.002) (0.001) (0.004)

Post -0.001 0.000 -0.004 -0.001 -0.000

(0.001) (0.002) (0.002) (0.001) (0.002)

Outside options 0.006
∗∗

0.012
∗∗

0.005 0.007
∗∗ -0.001

(0.003) (0.005) (0.003) (0.003) (0.009)

Nb of publications 0.006
∗∗∗

0.006
∗∗

0.009
∗∗∗

0.004
∗∗∗

0.010
∗∗

(0.002) (0.003) (0.003) (0.002) (0.004)

H-index 0.001
∗∗

0.001 0.001 0.001
∗∗∗

0.000

(0.000) (0.001) (0.001) (0.000) (0.001)

Age 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (.)

gender -0.003 -0.003 -0.014 -0.003 0.000

(0.003) (0.002) (0.017) (0.003) (.)

Observations 797766 325057 235826 639059 137346

Note: we present the results of the estimation of δt from Equation 12. The dependent variable is the logarithm of the yearly
number of EPO patents disambiguated with threshold β = 0.5. In column (1), we include the full matched sample. We restrict
the sample to scientists in hard sciences in column (2), and those in life sciences in column (3). We divide the sample between
professors (including associate professors) in column (4) and researchers (either full or associate) in column (5). In all regressions,
we include individual, university and time fixed effects as well as the following control variables: post, age, gender, number of
publications (past three years), H-index, and share of patents managed by the academic system (excluding the employing
institution). The standard errors are clustered at the individual and university levels. Significance level are:∗ p<0.1, ∗∗ p<0.05,
∗∗∗ p<0.01.
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Table 29: Impact of university participation in the ownership regime on academics’ choice of
transfer pathway (threshold 15%)

(1) (2) (3) (4)

1+ company Companies only Universities only Comp. & univ.

Treated × Post 0.002
∗∗

0.000 0.001 0.002
∗∗

(0.001) (0.001) (0.001) (0.001)

Post -0.001
∗ -0.001 0.000 -0.001

∗

(0.001) (0.001) (0.001) (0.000)

Nb of publications 0.001 -0.000 0.005
∗∗∗

0.002
∗∗∗

(0.001) (0.001) (0.001) (0.001)

H-index 0.000 -0.000 0.001
∗∗

0.000
∗∗

(0.000) (0.000) (0.000) (0.000)

Age 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

gender -0.003 -0.000 0.000 -0.003

(0.003) (0.000) (0.001) (0.003)

Observations 798351 798351 798351 798351

Note: we present the results of the estimation of δt from Equation 12, but the dependent variable is the logarithm of the yearly
number of EPO patents disambiguated with threshold β = 0.5 that are given in ownership to the private sector (not exclusively
in column 1, exclusively in column 2), to the university and PRO system exclusively (column 3), or in co-ownership between
these two types of entities (column 4). In all regressions, we include individual, university and time fixed effects as well as the
following control variables: post, age, gender, number of publications (past three years), H-index, and share of patents managed
by the academic system (excluding the employing institution). The standard errors are clustered at the individual and university
levels. Significance level are:∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01.
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Figure 9: Number of institutions adopting the regime each year (threshold 25%).
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Table 30: Difference in means on observable characteristics between treated and control groups
(threshold 25%).

Before matching

Treatment group Control group Difference t-test

mean sd mean sd b p

Number of patentsPre 62.29 78.01 152.62 187.54 90.33 (0.00)

Share of patents managedPre 0.00 0.04 0.28 0.66 0.28 (0.00)

Share of universities (vs schools) 0.65 0.49 0.80 0.40 0.15 (0.22)

Year 2007.18 3.61 2007.00 5.48 -0.18 (0.85)

Share of patents managedPost 0.34 0.06 0.03 0.06 -0.32 (0.00)

Number of patentsPost 95.71 109.79 179.73 209.52 84.02 (0.01)

Number of univ-owned patentsPost 50.29 75.27 84.85 116.33 34.56 (0.08)

Number of firm-owned patentsPost 24.41 25.36 67.65 62.36 43.24 (0.00)

Number of co-owned patentsPost 21.00 22.22 27.23 45.39 6.23 (0.29)

Number of cit-weighted patentsPost 4188.06 12936.43 12842.41 24282.53 8654.35 (0.02)

Number of patent familiesPost 64.82 60.67 124.48 144.90 59.66 (0.00)

Observations 17 665 682

After matching

Treatment group Control group Difference t-test

mean sd mean sd b p

Number of patentsPre 71.83 91.81 73.36 110.10 1.53 (0.96)

Share of patents managedPre 0.02 0.03 0.02 0.04 0.00 (0.73)

Share of universities (vs schools) 0.75 0.45 0.75 0.44 0.00 (1.00)

Year 2006.83 3.93 2006.83 3.80 -0.00 (1.00)

Share of patents managedPost 0.33 0.05 0.04 0.05 -0.29 (0.00)

Number of patentsPost 114.25 127.17 96.87 140.70 -17.38 (0.67)

Number of univ-owned patentsPost 58.33 89.04 44.17 70.21 -14.16 (0.61)

Number of firm-owned patentsPost 29.50 28.47 37.10 38.44 7.60 (0.43)

Number of co-owned patentsPost 26.42 24.46 15.61 37.66 -10.81 (0.19)

Number of cit-weighted patentsPost 5674.33 15335.30 4958.92 16239.69 -715.41 (0.88)

Number of patent familiesPost 76.00 69.33 66.57 98.29 -9.43 (0.68)

Observations 12 48 60
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Table 31: Impact of university participation in the ownership regime on academics’ number of
patents (threshold 25%)

(1) (2) (3) (4) (5)
All Hard Scientists Life Scientists Professors Researchers

Treated × Post 0.005
∗∗

0.009
∗∗

0.000 0.006
∗∗ -0.004

(0.002) (0.004) (0.003) (0.002) (0.006)

Post -0.000 -0.004 0.006
∗∗ -0.000 0.000

(0.001) (0.002) (0.003) (0.001) (0.005)

Outside options 0.002 0.012
∗∗

0.001 0.003 -0.002

(0.002) (0.004) (0.005) (0.002) (0.010)

Nb of publications 0.005
∗∗∗

0.003 0.010
∗∗∗

0.005
∗∗∗

0.006

(0.001) (0.002) (0.003) (0.002) (0.004)

H-index 0.002
∗∗∗

0.002
∗∗∗

0.001
∗∗∗

0.002
∗∗∗

0.002
∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.001)

Age 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (.)

gender 0.002
∗ -0.000 0.006

∗∗
0.002

∗∗
0.000

(0.001) (0.002) (0.002) (0.001) (.)
Observations 317236 123188 95995 254296 55330

Note: we present the results of the estimation of δt from Equation 12. The dependent variable is the logarithm of the yearly
number of EPO patents disambiguated with threshold β = 0.5. In column (1), we include the full matched sample. We restrict
the sample to scientists in hard sciences in column (2), and those in life sciences in column (3). We divide the sample between
professors (including associate professors) in column (4) and researchers (either full or associate) in column (5). In all regressions,
we include individual, university and time fixed effects as well as the following control variables: post, age, gender, number of
publications (past three years), H-index, and share of patents managed by the academic system (excluding the employing
institution). The standard errors are clustered at the individual and university levels. Significance level are:∗ p<0.1, ∗∗ p<0.05,
∗∗∗ p<0.01.
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Table 32: Impact of university participation in the ownership regime on academics’ choice of
transfer pathway (threshold 25%)

(1) (2) (3) (4)
1+ company Companies only Universities only Comp. & univ.

Treated × Post 0.002 -0.001 0.003
∗∗

0.003
∗∗

(0.001) (0.001) (0.001) (0.001)

Post -0.001 -0.000 0.001 -0.001
∗

(0.001) (0.001) (0.001) (0.000)

Nb of publications 0.001 -0.000 0.003
∗∗∗

0.002
∗∗∗

(0.001) (0.001) (0.001) (0.001)

H-index 0.000 0.000 0.002
∗∗∗

0.000

(0.000) (0.000) (0.000) (0.000)

Age 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

gender -0.000 -0.000 0.002
∗∗

0.000

(0.000) (0.001) (0.001) (0.001)
Observations 317470 317470 317470 317470

Note: we present the results of the estimation of δt from Equation 12, but the dependent variable is the logarithm of the yearly
number of EPO patents disambiguated with threshold β = 0.5 that are given in ownership to the private sector (not exclusively
in column 1, exclusively in column 2), to the university and PRO system exclusively (column 3), or in co-ownership between
these two types of entities (column 4). In all regressions, we include individual, university and time fixed effects as well as the
following control variables: post, age, gender, number of publications (past three years), H-index, and share of patents managed
by the academic system (excluding the employing institution). The standard errors are clustered at the individual and university
levels. Significance level are:∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01.





3
R E S E A R C H G R A N T S A N D A C A D E M I C S ’ C O N T R I B U T I O N T O
I N N O VAT I O N : A T W O - WAY R E L AT I O N S H I P ? 1

3.1 introduction

Whereas scholars have long hypothesized that fundamental research has a much
higher social value than its private one (Arrow, 1962), empirically evidencing knowl-
edge flows from academic research to markets is more recent. Some studies tend to
show that those flows may be greater than expected. Studying the citation links be-
tween 4.8 million U.S. patents and 32 million research articles, Ahmadpoor and Jones,
(2017) found 80% of cited articles refer (directly or indirectly) to a future patent and
61% of the patents refer to a prior research article. Li, Azoulay, and Sampat, (2017)
found that 31% of the 365,000 NIH-funded projects lead to articles that are cited by
patents in the biomedical sector and that about 8% directly lead to a patent.

If science does not seem to be this “ivory tower” that has often been portrayed and
criticized, it remains unclear how public research policy influences the contribution
of academic research to technological innovation. In this paper, we focus on public
funding of research projects (namely grants to research projects provided through
competitive schemes by a dedicated national agency) and its influence on both in-
vention by researchers or professors, and their published knowledge that is used to
produce innovations. Academic invention (usually measured by patent applications in
which at least one inventor is a researcher or a professor) has been increasing sharply
over the last few decades (Carayol and Carpentier, 2021; Hall, 2004).

In the French case, I computed the average number of patents per capita each year,
split into three groups according to their grant application and funding status and
reported the statistics in the left panel of Figure 10. After the national funding agency
(ANR) was created in 2005, grant applicants who received funding patented more
inventions on average than those who were not funded, and those who were not
funded themselves patented more inventions than professors and researchers who

1 This chapter is based on a paper co-authored with N. Carayol and P. Roux.
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Figure 10: Number of patents per capita by application and funding status.
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never applied for ANR grants. Since grants were distributed in different calendar
years, the right panel of Figure 10 focuses on grant applicants and plots the average
number of patents per capita around the year of application to control for possible
cohort effects. It leads to a similar conclusion: funded applicants file more patents on
average than non-funded applicants. These two figures thus suggest that there is a
positive correlation between research grants and academic invention.

In this chapter, we explore whether (and how) academic invention and publications
cited in patents can be the direct result of research supported by an identified public
policy. A number of previous papers have considered the causal impact of funding on
scientific outcomes at the individual (Azoulay, Graff-Zivin, and Manso, 2011; Banal-
Estanol, Macho-Stadler, and Perez-Castrillo, 2019; Carayol and Lanoë, 2019; Jacob and
Lefgren, 2011), group (Carayol, Henry, and Lanoë, 2020) or university levels (Carayol
and Maublanc, 2020). To the best of our knowledge, Payne and Siow, (2003) and
Tabakovic and Wollmann, (2019) are the only studies assessing the impact of public
funding on academic invention.

Indeed, several mechanisms could explain the positive relationship previously ob-
served between public funding and invention. Funding would have a causal direct
effect on invention simply because invention would be a by-product of fundamental
research funded by the ANR. But it could also be that project-based funding more
likely fund researchers who already have a “taste” for invention. This would not be a
direct effect of funding but instead an indirect one though self-selection and/or selec-
tion effect. Finally, the design of grant funding could mediate these two mechanisms.

We use individual-level data on the French case, for which we have a panel dataset
of 54,024 tenured professors and researchers over the years 2000-2016. We add their
publication and patenting records over the same period, collected from ISI Web of
Science and PASTAT, respectively, and their applications and funding decisions pro-
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vided by the French grant funding agency (ANR) for the years 2005-2009. We take
advantage of the quasi exhaustivity of our data to study specifically the characteris-
tics of scholars who apply for and receive funding, rather than merely controlling for
the bias that these differences may introduce.

We first investigate the application behavior of academics contributing to innovation
and whether the selection committees favor or dislike their projects. Using a probit
model, we find that inventors and researchers cited in patents are more likely to
seek grant funding, but controlling for this self-selection bias and other observable
characteristics in a Heckman probit model, we evidence that the agency is less likely to
select their projects. We further notice that projects stemming from a competitiveness
cluster are significantly more likely to receive grant funding.

We then assess the impact of receiving an ANR grant on academics’ contribution
to innovation, controlling for selection bias. We match funded applicants with similar,
but unfunded, applicants, and run difference-in-differences regressions on the num-
ber of inventions they subsequently patent and the number of papers they publish
that are subsequently cited in patents.

We do not find a causal impact, so that positive correlation we initially observed
between grant funding and academic invention seems to be entirely driven by se-
lection mechanisms. We find that ANR grants do not affect in a significant way the
contribution of researchers to innovation overall, although it has a positive impact
on researchers in hard sciences in terms of academic patents and on inventors in di-
rected programs in terms of citations in patents. We also find a puzzling effect on
researchers whose project is labelled by a competitiveness clusters, who seem to be
negatively affected by a grant receipt.

The rest of the chapter is organized as follows: we first identify the strands of liter-
ature to which this article is related in Section 3.2, and describe the background and
data for the study in Section 3.3. We investigate the application and selection factors
for research grants in Section 3.4, and assess the impact of such grants on academics’
contributions to innovation in Section 3.5. We finally discuss the implications of our
results and conclude in Section 3.6.
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3.2 prior literature

3.2.1 Impact of science funding on research outputs

Science drives innovation, technological progress and economic growth. The more
an economy invest in basic science, the faster its pace of innovation. Although this
intuition was born at least a century ago (Bush, 1945), the scientific evidence to prove
it has been long in coming. Moreover, measuring the return on investment is still an
active area of research, not least because responses are very context-specific, because
large-scale data on funding and outputs are not always easy to obtain, and because
the science production function varies over time (Wuchty, Jones, and Uzzi, 2007).

One of the first works in this direction is Jaffe, (1989), who initiated a research line
that investigates empirically the “real effects” of academic research on private-sector
patenting (Acs, Audretsch, and Feldman, 1992; Azoulay et al., 2019; Henderson, Jaffe,
and Trajtenberg, 1998; Kantor and Whalley, 2014). It explores how scientific knowl-
edge is used by private sector firms in developing new technologies. At that time
when publication data were difficult to obtain, Jaffe, (1989) proxied the production of
scientific knowledge by the amount of private R&D funding and universities’ research
expenditures and showed that private patenting reacts positively to increases in both
funding sources. Much more recent studies have finally established the causality of
public funding on private patenting. Tabakovic and Wollmann, (2019) exploited the
intra-season performance variation of U.S. universities’ soccer team as an exogenous
shock on university funds and estimate the cost of generating a patentable idea at
$2.59 million, which is well below the $4.35 million figure that Azoulay et al., (2019)
previously arrived at. Azoulay et al., (2019) exploited idiosyncratic rigidities in the
NIH funding rules to generate exogenous variation in funding across research areas
and estimated that a $10 million boost in NIH funding leads to a net increase of 2.7
patents.

In addition, there is a much more prolific literature that measures the impact of
research funding on scientific output (usually publications), hence focusing on a par-
ticular piece of the causal chain. The question addressed by these studies is: how
many (valuable) outputs would not have been produced in the absence of funding?
Except for a few cases (Ayoubi, Pezzoni, and Visentin, 2019; Benavente et al., 2012;
Lawson, Geuna, and Finardi, 2021), the literature converges toward a positive number
of publications and citations, both in developed (Azoulay, Graff-Zivin, and Manso,
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2011; Carayol and Lanoë, 2019; Hussinger and Carvalho, 2021; Jacob and Lefgren,
2011) and developing countries (Chudnovsky et al., 2008; Ganguli, 2017).

Nevertheless, the magnitude of the impact seems to differ greatly depending on
the context. The observed effect may be quite small. In Argentina, Chudnovsky et al.,
(2008) find that researchers receiving a grant produced one additional publication in
a 5-year window, a result that holds when the number of publication is weighted by
the journal impact factor. Similarly, Jacob and Lefgren, (2011) find that scholars receiv-
ing an NIH grant generate only one additional publication over the next five years,
corresponding to a 7% increase. For 230 professors at the university of Luxembourg,
Hussinger and Carvalho, (2021) report a 20% increase in publication output upon re-
ception of a grant (corresponding to 0.4 more publications) but the effect drops after
five years. However, they show that the increase in quality lasts beyond the term of
the grant. In a study evaluating a Swiss funding program sponsoring interdisciplinary
collaborations, Ayoubi, Pezzoni, and Visentin, (2019) report that researchers who ap-
ply to the program experience a 43% increase in publications and that their average
impact factor increases by 7%, but whether the researcher receives the grant seems
to have no additional effect on her scientific productivity. For chemistry and physics
researchers at the University of Turin, Lawson, Geuna, and Finardi, (2021) do not find
that competitive research funding is associated with a higher research productivity.

Conversely, in other contexts, public funding appears to be essential. Carayol and
Lanoë, (2019) report a 15% increase in articles’ citations upon reception of a grant
from the French Research Funding Agency, a higher impact than Jacob and Lefgren,
(2011) that they attribute to the lesser availability of alternative funding sources in
the French context. Ganguli, (2017) explores the impact of a historic grant program
that substituted government R&D funding shortly after the end of USSR. She shows
that in a developing country where funding levels are low, the program more than
doubled publications on the margin, and significantly induced scientists to remain
in the science sector. In the Chilean context, Benavente et al., (2012) also evidence a
large increase in the number of publications, between two and six, upon reception of
a grant. However, the grant program had no effect on researchers’ number of citations,
a result they attribute to the small amount of grants as compared to the international
standards and to the incentive scheme of the program that does not account for out-
puts quality. One explanation for these variations could be that funding is critical at
times and/or places where few alternative sources of funding exist.

Finally, public funding could favor the production of innovative and patentable
knowledge by academics. To our knowledge, there are few if any systematic evidence
about the effects of publicly funded science on academic invention. The only study
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that addressed this question is Payne and Siow, (2003) who measured at an aggregate
level, the impact of federal research funding on university patenting. Their identi-
fication strategy is based on instrumenting funds by alumni representation on U.S.
Congressional appropriations committees. On a panel of 68 U.S. research universities,
they find a positive result: a $1 million increase in research funding leads to 0.2 more
patents.

These observations will lead us to carefully consider the design of research grants
in our analysis.

3.2.2 Impact of funding design

Even when alternative funding sources are available, the origin of the funding has an
impact on the nature and quality of scientific outputs. Much of the literature that ex-
plores the consequences of private sector funding of basic research on the nature and
direction of scientific pursuit, initiated by Rosenberg and Nelson, (1994), suggests that
research funded by the private sector is more likely to be applied than basic (David,
Hall, and Toole, 2000; Geuna, 2001; Gulbrandsen and Smeby, 2005; Perkmann et al.,
2013). While private funding tends to decrease the number of articles published and
citations received, it has a positive impact on the patentability of research results (Hot-
tenrott and Lawson, 2017; Hottenrott and Thorwarth, 2011). Research teams receiving
funding from a variety of sources (including non-federal) are more likely to patent
than those with only federal funding, and those who do patent are more likely to
produce disruptive inventions (Funk et al., 2019).

Furthermore, the way science funding is administered also has consequences for the
knowledge produced. Azoulay, Graff-Zivin, and Manso, (2011) compare the Howard
Hughes Medical Institute (HHMI) funding program, that ties the grant to individuals,
to NIH grants allocated to projects. They find that HHMI-funded investigators pro-
duce high-impact articles at a much higher rate than NIH-funded scholars: the HHMI
program increases their overall publication output by 39%, and the magnitude jumps
to 96% when focusing on the number of publications in the top percentile of the ci-
tation distribution. Their results suggest that the design of NIH grants discourages
academics from producing novel results.

Finally, in the process of science funding, national agencies usually define relevant
areas of investigation in consultation with socio-economic actors (government, busi-
ness, academia) and then issue calls for projects for each targeted priority research
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area (directed programs), and generic calls that let researchers define the research
topic themselves (non-directed programs).2 For instance, at the UK Medical Research
Council, directed and non-directed programs are called MRC Strategic and Researcher-
led respectively, at the US National Institute of Health these are NIH-Requested research
and Unsolicited Research, and at the French Research National Agency, programmes
dirigés and programmes blancs. The underlying rationale of directed programs is that
the traditional academic incentives for investigating new or interdisciplinary research
areas are not strong enough. Indeed, it is often argued that risk-taking, novelty, and
interdisciplinarity are not sufficiently rewarded because the peer-review system, pri-
marily organized within disciplines, does not encourage truly transformative ideas
(Braben, 2004; Wang, Lee, and Walsh, 2018; Wessely, 1998). (Wang, Lee, and Walsh,
2018) show that competitive schemes fund more novel research on average than block
funding, unless applicants are junior or female researchers. In the French case, Carayol
and Lanoë, (2019) show that grants awarded by non-directed programs have much
larger scientific impact but cannot find a causal effect of directed programs on the
research novelty of the granted.

3.2.3 Selection effects in grant funding

One of the benefits of distributing public money for science in a competitive man-
ner is that it allows funds to be directed to the most excellent research projects and
thus to maximize the return on investment for government and society. However, if
the selection process does not properly identify the most excellent projects, then the
competitive scheme cannot fully achieve its objective.

Temporally, the sequence of events is as follows. To apply for funding, researchers
respond to calls by submitting a project. From there, although it may vary slightly
from one agency to another, a basic selection procedure is the following: first, the
agency screens out projects that are not meeting the basic criteria; second, the projects
are sent to external peers for evaluation; and third, based on the reviewers’ report and
the projects themselves, the agency’s internal selection committee gathers to decide
which projects will be funded. Applicants are subsquently notified of this decision
(Ismail, Farrands, and Wooding, 2009).

In this process, how do peers judge which projects are excellent enough to be
funded and which are not? By Merton’s norm of impartiality in science, the judg-
ment of the quality of knowledge should rely entirely on scientific criteria and with-

2 Many funding agencies deploy both approaches implemented in separate programs.
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out interference from the personal or social background of both the reviewed and the
reviewers (Merton, 1973). While the criteria officially stated by the agencies appear
consistent with this norm, many of the factors identified in the literature are not.

In principle, the decision is based on criteria defined by the agency. In the case of the
United States and continental Europe, these are quality of research (originality; aca-
demic and extra-academic relevance; quality, appropriateness, rigor, coherence/justi-
fication), quality of description (clarity, completeness), personal qualities (motivation,
traits; diversity) and feasibility (Hug and Aeschbach, 2020). But in practice, it is com-
mon for reviewers and jury members to rely on heuristics to assess the quality of
projects, exploiting, for example, bibliometric indicators of the applicant’s publication
record or other observable and quickly interpretable characteristics.

While the number of publications does not appear to be a reliable predictor of
grant selection, the number of citations, or the impact factor of the journals where
the applicant’s work was published are more consistent indicators (Arora and Gam-
bardella, 2005; Neufeld, Huber, and Wegner, 2013; Van den Besselaar and Leydesdorff,
2009). Applicants with a past grant experience have also been found more likely to
receive grant funding (Bol, Vaan, and Rijt, 2018; Park, Lee, and Kim, 2015), while
those producing more novel (Ayoubi, Pezzoni, and Visentin, 2021; Boudreau et al.,
2016) or interdisciplinary research (Banal-Estanol, Macho-Stadler, and Perez-Castrillo,
2019; Bromham, Dinnage, and Hua, 2016; Lanoë, 2018) were less likely to be receive
it. Political factors such as the applicant’s Ph.D. granting institution (Kim and Kim,
2016), network connections (Wenneras and Wold, 2010), academic and departmental
status (Bazeley, 1998; Cole, Cole, and Simon, 1981; Jayasinghe, Marsh, and Bond, 2003;
Viner, Powell, and Green, 2004), current university size (Murray et al., 2016), research
field (Laudel, 2006) and type of research (Porter and Rossini, 1985) can further affect
the chances of obtaining funding. In some instances, demographic factors such as the
applicant’s age (Guthrie, Ghiga, and Wooding, 2017; Lanoë, 2018), gender (Bornmann,
Mutz, and Daniel, 2007; Jagsi et al., 2009; Pohlhaus et al., 2011; Van der Lee and Elle-
mers, 2015; Wenneras and Wold, 2010), and ethnicity (Ginther et al., 2011) have also
been identified as affecting the likelihood of receiving funding.

These characteristics of the applicant and the project seem to determine only about
half of the allocation of grants, while luck determines the other half (Cole, Cole, and
Simon, 1981). The chance factor is partly related to subjectivity in the review process
and in the definition of excellence (Lamont, 2009; Van Arensbergen and Van Den
Besselaar, 2012). For example, Boudreau et al., (2016) show that reviewers consistently
give lower scores to research proposals that are closer to their own areas of expertise.
Nevertheless, it appears that the benefits of expertise still dominate the costs of bias
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(Li, 2017). Overall, these results suggest that reviewer characteristics and selection
committee composition also influence selection.

If we now focus on the efficiency of the selection process, are the selected appli-
cants and projects indeed the most excellent ones and result in the highest quality
knowledge compared to those that are not selected? On the one hand, Van den Besse-
laar and Leydesdorff, (2009) and Neufeld, Huber, and Wegner, (2013) look at the past
performance of applicants and compare it to the results of the selection. They both
report that, on average, funded applicants have slightly fewer publications than many
rejected applicants, especially those just below the selection threshold. On the other
hand, Li and Agha, (2015) and Park, Lee, and Kim, (2015) instead look forward and
assess the predictive power of review scores in terms of future performance. Both
studies use the NIH case and agree that higher peer-review scores are associated with
better outcomes in terms of publications, citations and patents.

Even if the selection process was fully effective and efficient, it remains depen-
dent on the pool of researchers it attracts. A misalignment between the researchers
who apply and those whom the agency seeks to attract would reduce the ability of
project-based funding to maximize the return on investment. Yet, there is remarkably
little empirical research on self-selection in competitive funding (Ayoubi, Pezzoni, and
Visentin, 2021; Lanoë, 2018; Lawson, Geuna, and Finardi, 2021; Neufeld, Huber, and
Wegner, 2013).

Neufeld, Huber, and Wegner, (2013) bibliometrics analysis reports that the candi-
dates applying to the 2009 edition of ERC grants have greater publication records as
compared to the potential applicants. Ayoubi, Pezzoni, and Visentin, (2021) rely on
a sample of 717 applicants to a Swiss funding program and define the population
of scientists eligible to the program as all actively publishing scientists with a Swiss
affiliation. While they confirm that the funding agency is biased against novelty, they
further evidence that novel scientists are 14% more likely to apply for a grant than less
novel ones. They attribute this surprising result to either an imperfect information of
novel candidates when applying regarding the true selection criteria or the absence of
intrinsic motives to bring recognition to unconventional ideas and projects. They fur-
ther find that more senior scientists, those with a stronger scientific profile, those with
a broader network and who are holding active funds at the moment of application
have a higher probability to apply for a grant.

Analyzing the French national funding program in its early years, Lanoë, (2018)
finds that novel and interdisciplinary scientists are more likely to apply for a grant,
despite the selection bias against them. She adds that male, more senior scientists,
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those with a stronger scientific profile, those who already applied for a grant, and
those from a better ranked department have a higher propensity to apply, while hold-
ing active funds at the moment of application decreases the likelihood to apply. In
contrast, if Ayoubi, Pezzoni, and Visentin, (2021) confirm that novel scientists are
more likely to apply for a grant in the Swiss context, they rather find that holding
active funds increases the probability to apply, and add that scientists with a broader
network are also more likely to apply. More specifically, potential applicants with a
connection to a committee member may be more likely to apply if they anticipate a
premium at the evaluation stage (Bagues, Sylos-Labini, and Zinovyeva, 2019). In the
Italian case, Lawson, Geuna, and Finardi, (2021) find that women are initially not less
likely to apply for grants than men, which contrasts with Lanoë, (2018)’s finding.

3.2.4 Individual drivers of academic patenting

If research grants are preferentially obtained by researchers who exhibit specific indi-
vidual characteristics that are also those that favor academic invention, then we might
incorrectly attribute an impact on invention to research grants. Therefore, we need to
correctly identify the determinants of academic patenting that might also affect the
likelihood of being funded, either through a selection mechanism or a self-selection
mechanism. What are these factors?

Many studies have questioned the nature of the relationship between academic
patenting and the production of scientific articles (Azoulay, Ding, and Stuart, 2007;
Carayol, 2007; Czarnitzki, Glänzel, and Hussinger, 2007; Stephan et al., 2007), con-
cerned that patenting may have a negative impact on publication. They conclude that
researchers who produce patents typically also produce more and higher quality re-
search articles. Moreover, the type of research performed, the degree of collaboration
with the private sector as well as relevance of intellectual property rights protection
varies greatly among scientific fields, making the discipline another important driver
to consider (Carayol, 2007; Stephan et al., 2007). The to patent also vary with past ex-
periences in patenting activities (Kordal et al., 2016), either directly through learning
effects and/or indirectly because these individuals are typically highly creative and
productive, able to foster collaborative projects in their research groups and through
collaborations with companies or to obtain funding for their projects.

The literature also identified age and career stage as keys characteristics in explain-
ing academic productivity in general. It has been observed that a scientist’s produc-
tivity grows up to a certain (biological) age before decreasing towards the end of the
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career. This effect is much more mixed in academics’ patenting activity. For instance,
Carayol, (2007) found that patenting increases with age whereas Stephan et al., (2007)
found little evidence of such an effect. Different cohorts of scientists may also have
heterogenous productivity pattern because of the varying contexts in which they were
trained and are working (Stephan, 2010). Based on longitudinal data, Azoulay, Ding,
and Stuart, (2007) and Thursby and Thursby, (2007) find that, once controlling for
cohorts, patenting decreases over the life-cycle. However, while the authors of the for-
mer paper argue that newer cohorts are more likely to patent than are earlier cohorts,
the latter finds opposite results. Finally, tenure was also found to affect the incentives
towards invention in the US context (Azoulay, Ding, and Stuart, 2007; Stephan et al.,
2007).

In this paper, we contribute to the literature on the effects of research funding
in three different ways that correspond to each stage (self-selection, selection, and
impact) of competitive science funding. First, we examine the characteristics of re-
searchers who decide to apply for funding by adding a new attribute: the researcher’s
past contribution to innovation, either directly via academic invention or indirectly
via the publication of articles that are subsequently cited in patents. Second, control-
ling for differences between actual and potential applicants for funding, we study the
characteristics of applicants and projects that affect the chances of being selected by
the agency. In particular, we look at how past contributions to innovation affect the
agency’s selection decision. Third, controlling for the selection bias and for the design
of the programs, we analyze the causal impact of grants on researchers’ contribution
to innovation.

3.3 context and data

3.3.1 The French funding landscape

While historically in the United States, project-based funding has been the main mode
of budget allocation for basic science, France, like many other European and Asian
countries, has long relied on recurrent funding of research laboratories and universi-
ties. In 2005, the country initiated a change in direction with the creation of the Agence
Nationale de la Recherche (ANR). The agency has since been responsible for implement-
ing project-based funding on a national scale. Its functioning is very similar to that
of the National Institutes of Health or the National Science Foundation in the United
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States. The agency is organized into eight departments that cover all scientific fields.
Within these departments, there are dozens of directed programs, each corresponding
to a research topic deemed a priority by the agency, as well as an undirected program
open to any research topic proposed by scientists.

To request funding, researchers must write a research project that may involve col-
laboration between universities and possibly in partnership with a company, and send
it to one of the programs (directed or not) in response to a call for projects. Projects
submitted undergo a standard single-blinded peer review procedure, and then the
agency’s evaluation committee selects the most promising projects3. If the selected
project involves more than one partner, the scientist designated as responsible in each
institution receives his or her share of the budget to manage it autonomously. The
overall research budget allocated to projects has gradually increased from 540 million
euros in 2005 to 650 million in 2009

4. This represents an average budget per project
ranging from about 100,000 euros in the social sciences and humanities to nearly
800,000 euros in the hard sciences (Agence Nationale de la Recherche, 2005, 2006,
2007, 2008, 2009).

On another front, the French government has taken a position in favor of university-
industry interactions with the passage of the Innovation Act in 1999. In order to fur-
ther concretize this support, in 2004 it created structures that associate companies,
research centers and educational institutions in a given geographical area. The mem-
bers of these so-called “competitiveness clusters” are meant to work in partnership to
generate synergies and encourage industrial competitiveness. Researchers applying
for an ANR grant whose institution belongs to a competitiveness cluster can report
this information in the project, thereby bringing additional funding from the ANR to
their project.

3.3.2 Data

The data collection began with grant applications to the ANR during the years 2005-
2009.5 These data, provided by the ANR, are exhaustive over the period and include

3 In the year of the agency’s creation, the selection procedure was relatively unpolished. It was subse-
quently modified to reach the international ISO 9001 standards as of 2007.

4 We only provide statistics for years 2005-2009 because our dataset on funding applications and deci-
sions only covers these years

5 Funding data for subsequent years were not available at the time of this study, and scientific output
data are available up to seven years after the most recent awards, which provides sufficient depth to
estimate the relationship of interest.
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a lot of information such as the name of the projects, the full name of the scientific
coordinator but also of each scientific leader at each partner institution within the
project, the department to which the project was submitted, the corresponding call
for projects and the final funding decision. On the other hand, the evaluators’ scores
and the amounts requested by and awarded to each project were unfortunately not
correctly recorded in the agency’s database and are therefore not usable in this study.
Moreover, the names of the other researchers involved in the project beyond those of
scientific leaders have not been recorded at all by the agency, which prevents us from
observing the composition of the team, for instance.

Since a researcher can apply for several grants over time, and even several grants
within the same year (as coordinator of one project and partner on other projects), we
define the statistical individual i in the study as a researcher on a project, or applicant-
application. Over the period, 23,846 applications were submitted, corresponding to
67,407 applicant-applications. We matched the first and last names, as well as scientific
field and institution, of all project scientific leaders to those of 83,721 professors and
researchers employed in universities or research organizations in France between 2000

and 2018.6 We found a match for 17,901 applications (75% of all projects) and 31,501

applicant-applications (47% of all pairs). Since project partners are not necessarily
academics, this explains the relatively low level of partners retrieval.

We complemented the database with the individual-level scientific outcomes. First,
publication data were extracted from the Web of Science and disambiguated using
an automated procedure implemented by Lanoë, (2018). At the end of the process,
publications from 63,131 researchers were retrieved. The data include the raw count
of publications, the number of publications corrected for the number of co-authors,
the number of publications in the top 10% and top 5% most cited in its field, as well as
other quality indicators such as the total count of citations, the H-index, and indexes of
novelty (maximum and average, based on pairs of keywords) from Carayol, Lahatte,
and Llopis, (2019) and interdisciplinarity (maximum and average, based on the list
of references using Shannon and Herfindhal indexes). It further indicates whether
the publications of the researcher have been cited in patents in all years forward until
2020 (Cited in patent(s)). Second, we extracted patents from the PATSTAT 2019 database
and disambiguated following the method described in the first chapter. We use the
disambiguation threshold β = 1 that gives equal importance to precision and recall
in the main analysis, and perform robustness checks on the thresholds β = 0.5 and
β = 0.3 that are increasingly favoring precision over recall. This data covers all 83,721

6 Further information of the academic employment panel data is available in Carayol and Carpentier,
(2021).
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academics, of which 13,575 patented at least one invention between 1996 and 2016.
This dataset includes the number of patented inventions each year at the EPO and the
French INPI separately.

The final panel dataset consists of 54,024 professors and researchers over the years
2000–2016 for whom all funding, employment, publication and patent information is
available. For the 17,901 applications, there are on average 2.4 academic partners (min
1, max 15), and 7% are labeled by a competitiveness cluster. Approximately half of
the projects were submitted to the agency’s non-directed department (52%), with the
other half spread across the remaining seven directed departments. The success rate
is 30% overall and varies over time. The year the agency was created, this rate was
higher (69%) because researchers were either unaware of the funding opportunity,
suspicious of or opposed to this research funding system. In subsequent years, the
rate dropped to a more typical 30%, before dropping again to 18% in 2009 due to a
particularly high number of applications.

3.4 determinants of application and selection in grant funding

In this section, we use a probit model to investigate faculty propensity to apply for
grant funding, and implement a Heckman probit model (Amemiya, 1978) to study
the factors affecting their chances of being selected by the agency, accounting for aca-
demics’ different propensity to apply. Because we defined the statistical individual as
an applicant on a project, researchers appear in the panel as many time as they apply
for grants. To avoid the overrepresentation of serial applicants, we define fractional
weights that we include in all regressions.

3.4.1 Econometric specification

probit model for self-selection We use the following model of academics’
propensity to apply for a grant:

Ai,t = α+β1Inventori,t +β2Cited in patent(s)i,t

+

m∑
j=3

βjXi,t +

n∑
k=m+1

βkZi,t + γt + εi,t (13)
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where Ai,t = 1 if researcher i applies for a grant in year t, and our two main in-
dependent variables of interest are Inventori,t which is equal to one if researcher
i has invented at least one patent in the five years preceding to application and
Cited in patent(s)i,t which is one if her papers published in the five years prior
to application are cited in patents. Xi,t is a set of individual variables including the
age, gender, H-index, and fundraising profile, which is a categorical variable that takes
value 0 if the applicant never applied for an ANR grant, 1 if she already applied but
were never granted, and 2 if she were granted at least once. Finally, Zi,t is a set of con-
trol variables including the academic position and scientific field dummies, and γt is
a year fixed effect. Standard errors are clustered at the individual and project levels.
Table 40 in Appendix provides further details on the construction of these variables.
We do not include the count of publications nor citations because they are strongly
correlated with the H-index (0.63 and 0.84 respectively).

heckman probit model for selection We observe if the agency selects a
project only if the project has been submitted beforehand. To address the impossibility
of observing projects that have not been submitted to the ANR and thus control for
systematic differences between potential and actual applicants and projects, we use
a two-step Heckman probit model in which the first step estimates the probability
to apply for a grant and the second step estimates the conditional likelihood to be
selected by the agency. Our exclusion-restriction condition is academic position, since
the time an academic must devote to teaching and administrative duties varies from
one position to another, and the more time one can devote to research, the more
likely one is to apply for a grant. At the same time, and despite some work that finds
otherwise in some countries, we still think it is reasonable to assume that the agency
does not select projects based on the position of the applicants.

Equation 13 corresponds to the first step, while we model the second step as follows:

Si,t = α+β1Inventori,t +β2Cited in patent(s)i,t

+

m∑
j=3

βjXi,t +

n∑
k=m+1

βkVp +

r∑
l=n+1

βlZi,t + γt + εi,t (14)

where Si,t = 1 if the project is selected, and Xi,t is a set of individual i variables
including the age, gender, and H-index, and fundraising profile. Vp is a set of project
p time-invariant variables including a dummy equal to one when it is labeled by a
competitiveness cluster (Cluster) and the number of partner institutions. Zi,t controls
for the department of the agency to which the application is submitted and the re-
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searchers’ scientific field and γt is a year fixed effect. Standard errors are clustered at
the individual and project levels. Report to Appendix Table 40 for further details on
these variables.

3.4.2 Selection results

determinants of grant application We start with a simple test of differ-
ences in average between applicants and non applicants and report the results in Ta-
ble 33. Professors and researchers who contributed to innovation are significantly over-
represented among applicants: 10% of applicants have patented an invention against
2% among non applicants, and 47% of applicants have published articles that are cited
in patent(s) against 11% among non applicants. There are different mechanisms that
could be at work behind this overrepresentation of inventors and researchers cited
in patents among applicants. For instance, applicants could be those academics that
are older, or more advanced in their career, which happen to invent more often than
their younger counterparts. It could also be that more prolific academics, who also are
more often inventors, are more attracted to grant funding than the less-prolific ones.
Although it appears that the first hypothesis is not supported by the statistics, since
applicants are on average younger than non-applicants, the second one is plausible:
applicants are over-performing non-applicants in all metrics of scientific performance
(number of publications, citations, publications in top 10% and top 5%, H-index, in-
terdisciplinarity and novelty). Controlling for these variables, we run a regression to
identify the effect of contributing to innovation on the likelihood to apply for grant
funding.

Table 34 shows the marginal effects from the probit regression results. Coefficients
are available in Appendix Table 41

7. The first column includes all programs, while the
second and third columns focus specifically on non directed and directed programs.
Considering all programs together, we find that inventors and researchers cited in
patents are significantly more attracted to grant funding. The probability to apply in-
creases by 2.4 percentage points when candidates are inventors, and by 3.1 percentage
points when their research is cited in patents. In comparison with the probability to
apply of the average French researcher in our database (14.8%), it represents a 16%

7 In the Table 34 presented here and the second and third columns of Table 41, we include among the
potential candidates for one type of program (directed or non-directed) all researchers, including those
who applied to the other type of program (non-directed or directed, respectively), since it is perfectly
possible that researchers apply to both types of programs. Alternatively, in the last two columns of
Table 41, we exclude applicants to the other type of program from the potential applicants and observe
that the results remain unchanged.
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Table 33: T-tests among applicants and non applicants to ANR funding

(1) (2) (3)
Applicants Non Applicants Difference t-test

mean sd mean sd b p
Inventor 0.10 0.27 0.02 0.12 -0.08 (0.00)
Cited in patent(s) 0.47 0.42 0.11 0.25 -0.36 (0.00)
Age 33.50 14.17 36.33 16.05 2.82 (0.00)
#Pubs 2.95 3.48 2.09 3.02 -0.86 (0.00)
#Cites (3-y) 20.94 38.35 14.10 38.84 -6.84 (0.00)
Total #Cites 89.74 152.41 60.49 148.02 -29.25 (0.00)
# top 10% Pubs 4.51 7.35 2.98 6.11 -1.53 (0.00)
# top 5% Pubs 2.29 4.41 1.55 3.83 -0.75 (0.00)
H-index 7.54 6.21 5.63 6.12 -1.91 (0.00)
Interdisciplinarity 0.49 0.25 0.41 0.27 -0.09 (0.00)
Novelty -1.10 1.11 -1.04 1.15 0.06 (0.00)
Observations 27758 172672 200430

higher probability of applying for inventor scientists, and 21% higher probability of
applying for researchers cited in patents. The bulk of the effect occurs in directed
programs, where the probability is 13% higher for inventors and 18% higher for re-
searchers cited in patents, against a smaller but not significant probability and a 2%
higher one respectively in non directed programs.

As for the other determinants of application, we find a U-inverted relation between
age and the likelihood to apply for grant funding, men are more attracted to grant
funding with a 7% higher probability to apply, researchers who have a 1 point higher
H-index than the average researcher have a 1% higher probability to apply, researchers
who applied for ANR funding in the past are almost three times more likely to reapply
when they did not receive funding, and 85% more likely when they did.

Considering that the selection may vary greatly across fields (Van Arensbergen and
Van Den Besselaar, 2012), we investigate whether the propensity to apply also varies
across disciplines. We report regression results by group of disciplines in Table 42 in
Appendix, where the first column corresponds to researchers in hard sciences (HS),
the second to those in life sciences (LS), and the last column to those in social sciences
and humanities (SSH). Interdisciplinary researchers are counted once in each group
of discipline where he or she is affiliated. The determinants are very similar, both in
direction and effect size, across hard sciences and life sciences. A prior experience
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Table 34: Probability to apply for a grant (marginal effects)

(1) (2) (3)
All Programs Non Directed Programs Directed Programs

Inventor 0.024
∗∗∗ -0.001 0.019

∗∗∗

(0.003) (0.002) (0.002)
Cited in patent(s) 0.031

∗∗∗
0.003

∗∗
0.026

∗∗∗

(0.002) (0.001) (0.001)

Individual variables
Age 0.010

∗∗∗ -0.000 0.009
∗∗∗

(0.001) (0.001) (0.001)
Age squared -0.000

∗∗∗ -0.000
∗∗∗ -0.000

∗∗∗

(0.000) (0.000) (0.000)
Male 0.011

∗∗∗
0.004

∗∗∗
0.005

∗∗∗

(0.002) (0.001) (0.001)
H-Index 0.002

∗∗∗
0.001

∗∗∗
0.000

∗∗∗

(0.000) (0.000) (0.000)

Fundraising profile
Never applied before

Applied w/o success 0.261
∗∗∗

0.120
∗∗∗

0.117
∗∗∗

(0.005) (0.004) (0.004)
Applied with success 0.127

∗∗∗
0.036

∗∗∗
0.082

∗∗∗

(0.004) (0.002) (0.003)
Number of obs 200430 200430 200430

Notes: Robust standard-errors in parentheses, clustered at the individual and project levels. The control variables academic
position, scientific field and application year are included in the model but the marginal effects at the mean are not reported.
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in ANR grant application is more important for researchers in SSH as compared to
those in hard and life sciences, while the effect of age turns insignificant. We do not
interpret the coefficients for inventors and researchers cited in patents in SSH because
first, there are very few such individuals in the database and second, most of them
have a particular profile (they are in large part professors and co-affiliated to either
LS or HD).8

determinants of grant success Once a researcher applied, what factors af-
fect her chances of success with the ANR? This paragraph focuses on researchers who
are applicants for funding. Table 35 reports the tests of differences in average between
funded and unfunded ones. Inventors and researchers cited in patents are again over-
represented among funded applicants, although this does not control for potential
omitted variables biases. We report the marginal effects of the Heckman probit two-
step regression results in Table 36, that also controls for the first-stage self-selection
bias, and Appendix Table 43 reports the coefficients and other relevant statistics.

Table 35: T-tests among funded and non funded applicants to ANR funding

(1) (2) (3)
Funded Non Funded Difference t-test

mean sd mean sd b p
Inventor 0.11 0.29 0.10 0.26 -0.02 (0.00)
Cited in patent(s) 0.52 0.44 0.44 0.41 -0.08 (0.00)
Age 37.16 13.27 31.81 14.26 -5.34 (0.00)
#Pubs 3.45 3.85 2.72 3.27 -0.73 (0.00)
#Cites (3-y) 26.21 43.36 18.51 35.53 -7.71 (0.00)
Total #Cites 109.30 174.15 80.70 140.32 -28.60 (0.00)
# top 10% Pubs 5.80 8.36 3.92 6.75 -1.88 (0.00)
# top 5% Pubs 3.03 5.17 1.95 3.97 -1.08 (0.00)
H-index 8.66 6.88 7.02 5.81 -1.64 (0.00)
Interdisciplinarity 0.55 0.24 0.46 0.24 -0.09 (0.00)
Novelty -1.26 1.20 -1.02 1.06 0.23 (0.00)
Observations 8777 18981 27758

All programs considered (column 1), academic inventors have a 5% lower proba-
bility of being selected than the average applicant in our database (53.1%), and re-
searchers cited in patents have a 7% lower probability. The bias against inventors is

8 For instance, 90% of inventors are also affiliated to life sciences, and 52% to hard sciences.
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only observed in directed programs (column 2), while the bias against researchers
cited in patents is only observed in non-directed programs (column 3).

We find that older scientists are significantly less likely to be selected than younger
ones, an applicant one year older than the average one has a 0.4% lower probability of
success, and consistent with much previous research, we find that gender does not af-
fect the chances of success. Regarding the researcher’s publication profile, a one point
higher H-index than the average applicant results in a 0.6% higher probability of being
selected. Applicants’ fundraising profile only matters when they were not successful:
those candidates have a 14% lower probability to be selected. The determinant with
the strongest effect that we observe is the affiliation to a competitiveness cluster. Ap-
plicants from these structures have a 89% higher probability of being selected than the
average candidate, up to 146% higher in non directed programs (the success probabil-
ity of the average applicant to this program being 50.2%) . Finally, projects involving
a greater number of academic partners are more likely to be selected: the involvement
of an additional institution increases the probability of success by 7%.

Table 44 in Appendix reports the regression coefficients by field. The stronger bias
against inventors and researchers cited in patents in observed in the hard sciences.
Age does not affect chances of being selected in the life sciences, while previous fail-
ures with the ANR most affect the probability of being selected in the life sciences. The
number of institutions does not matter in the hard sciences, unlike in the life sciences.
For the reasons discussed above, and also because of the small number of observations
in these fields, we do not interpret the regression results on SSH researchers.

how the inventor and researcher cited in patent statuses affect the

selection overall? While researchers who contribute directly or indirectly to
innovation are more likely to apply, they are also less likely to be selected by the
agency conditional on having applied. We wonder about the balance of these two
effects.

We start with the case of academic inventors. The probability of applying increases
by 2.4 percentage points when the individual is an inventor. This means we may esti-
mate that 685 (0.024× 28, 528) more applications were made solely because of inventor
status of applicants. How many of them were selected? The probability of being se-
lected conditional on having applied for an average researcher is 53.1%, so 364 of them
should be selected, but in fact being an inventor decreases the conditional probabil-
ity of being selected by 2.8 percentage points so that 20 of them were discriminated
against because they are inventors. All in all, being an inventor still has a positive ef-
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Table 36: Probability to receive a grant (marginal effects)

(1) (2) (3)
All prog. Non directed Directed

Inventor -0.028
∗∗∗ -0.020 -0.029

∗

(0.010) (0.014) (0.015)
Cited in patent(s) -0.038

∗∗∗ -0.032
∗∗∗ -0.018

(0.009) (0.010) (0.015)

Individual variables
Age -0.002

∗∗∗ -0.001 -0.003
∗∗∗

(0.000) (0.001) (0.001)
Male 0.009 0.017

∗ -0.002

(0.008) (0.010) (0.012)
H-Index 0.003

∗∗∗
0.003

∗∗∗
0.004

∗∗∗

(0.001) (0.001) (0.001)

Fundraising profile
Never applied before

Applied w/o success -0.074
∗∗∗ -0.073

∗∗∗ -0.061
∗∗

(0.019) (0.015) (0.027)

Constant -0.005 -0.002 0.006

(0.015) (0.014) (0.025)

Project variables
Cluster 0.474

∗∗∗
0.731

∗∗∗
0.493

∗∗∗

(0.019) (0.119) (0.025)
Number of institutions 0.013

∗∗
0.025

∗∗∗
0.004

(0.006) (0.007) (0.008)
Number of selected obs 27758 13289 14469

Notes: Robust standard-errors in parentheses, clustered at the individual and project levels. The control variables Scientific
field, Department of the agency and Application year are included in the model but the marginal effects at the mean are not
reported. There is no fixed effect on the department of the agency for non directed programs because they all belong to the same
department.
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fect as it allowed an additional 1.2% of inventors, and an additional 7.7% of inventors
who applied, to receive funding.

Turning to the case of researchers cited in patents, we observe that the probability
of applying increases by 3.1 percentage points when their research is cited in patents.
This implies we may estimate that 3, 924 (0.031 × 126, 600) more applications were
made solely because of researcher cited in patents status of applicants. How many of
them were selected? The conditional probability of being selected is 53.1%, so 2, 084 of
them should be selected, but in fact publishing research that receives patent citations
decreases the conditional probability of being selected by 3.8 percentage points do
that 79 of them were discriminated against because their research is cited in patents.
All in all, being cited in patents allowed an additional 1.6% of cited researchers, and
an additional 11.1% of cited researchers who applied, to receive a grant.

In conclusion, past experience or contribution to innovation is beneficial to the
project-based funding of researchers, driving in some 344 inventors and 2,005 re-
searchers cited in patents into grant funding.

3.5 the impact of public competitive funding on invention

We have discussed how past contributions to innovation impacts researchers’ partici-
pation in the competition for research funding. Now we investigate the consequences
of obtaining a grant on researchers’ future contributions to innovation.

3.5.1 Empirical Strategy

We use a two-step econometric specification to estimate the impact of grant funding
on academic invention. First, we match funded applicants to other unfunded appli-
cants who are similar to them in order to control for the selection bias. We use the
results from the previous section to define the relevant variables to match. Second, we
run linear regressions in a difference-in-differences to further control for the effect of
unobserved, time-invariant characteristics.

matching procedure We implement a coarsened exact matching (CEM) proce-
dure (Iacus, King, and Porro, 2012; King et al., 2010) and report the variables used and
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a balancing measure in Table 37. The first four columns show the means and standard
deviations of funded and unfunded candidates separately9. The fifth column reports
the Student’s t test of difference in means. The first panel displays the values before
the CEM, while the second panel refers to the results after the CEM. For the dummies
inventor, cited in patents, gender, year of application, fundraising profile, competitive-
ness cluster, and non-directed program, the match is exact. In contrast, we coarsened
the values for the continuous variables as follows: four or less, between four and 10,
between 11 and 17, and 18 or more for the H-index; 40 or younger, between 41 and
50, and more than 50 years old for age at application; hard sciences, life sciences, and
social sciences and humanities for disciplines; and one, two, or more than two for the
number of partner institutions in the project.

Because grants are not randomly assigned to researchers, we observe in Table 37

(first panel, before matching procedure) that the variables measured before applica-
tion differ significantly between funded and non-funded applicants. Funded appli-
cants are on average more likely to be inventors and cited in patents than non-funded
applicants. They are also more often men, have a higher H-index, less often submitted
ANR applications in the past but were more often funded, are more likely to apply
in a directed program than a non directed one, more frequently belong to a compet-
itiveness cluster, and involve a greater number of institutions in their project. Since
all these characteristics can influence the propensity of researchers to contribute to
innovation, we ensure that these differences are no longer significant after matching
(second panel of the table). We were able to match half of the applicant-applications
(4,657 out of 9,281) with at least one other applicant similar on all these characteris-
tics that was not funded. Although the matched sample is fairly representative of the
population of funded applicants, we note that it still contains a lower proportion of
inventors, women, high-H index researchers and applications from competitive clus-
ters.

difference in differences The linear regression with multiple levels of fixed
effects estimated on the matched sample of funded and unfunded applicants is the
following:

Yi,t = β0 +β3Fundedi × Posti,t + γi + δt + εi,t (15)

9 When a researcher has submitted several projects in the same year and at least one has been awarded,
we remove from the sample the other unsuccessful applications so that the group of unfunded appli-
cants does not contain researchers funded on other ANR projects.
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Table 37: Difference in means on observable characteristics between treated and control
groups.

Before matching
Funded applicants Unfunded applicants Difference t-test
mean sd mean sd b p

Inventor 0.17 0.37 0.15 0.35 -0.02 (0.00)
Cited in patent(s) 0.62 0.49 0.60 0.49 -0.02 (0.00)
Age 44.43 8.03 44.55 8.15 0.12 (0.25)
Male 0.79 0.41 0.76 0.43 -0.03 (0.00)
H-Index 10.27 8.07 9.71 7.49 -0.56 (0.00)
Application Experience 0.44 0.50 0.51 0.50 0.07 (0.00)
Funding Experience 0.23 0.42 0.22 0.41 -0.01 (0.03)
Hard sciences 0.64 0.48 0.65 0.48 0.01 (0.03)
Life sciences 0.42 0.49 0.42 0.49 -0.01 (0.22)
Social sciences and humanities 0.07 0.26 0.08 0.27 0.00 (0.14)
Non Directed Programs 0.38 0.49 0.53 0.50 0.15 (0.00)
Cluster 0.20 0.40 0.02 0.15 -0.17 (0.00)
Number of institutions 2.52 1.16 2.36 1.04 -0.17 (0.00)
Observations 9281 17761 27042

After matching
Funded applicants Unfunded applicants Difference t-test
mean sd mean sd b p

Inventor 0.10 0.30 0.10 0.30 -0.00 (1.00)
Cited in patent(s) 0.59 0.49 0.59 0.49 -0.00 (1.00)
Age 43.95 8.05 44.03 8.03 0.08 (0.88)
Male 0.84 0.36 0.84 0.36 -0.00 (1.00)
H-Index 9.84 7.95 9.59 7.63 -0.25 (0.19)
Application Experience 0.43 0.50 0.43 0.50 -0.00 (1.00)
Funding Experience 0.21 0.41 0.21 0.41 -0.00 (1.00)
Hard sciences 0.66 0.48 0.66 0.47 -0.00 (1.00)
Life sciences 0.36 0.48 0.36 0.48 -0.00 (1.00)
Social sciences and humanities 0.04 0.19 0.04 0.19 -0.00 (1.00)
Non Directed Programs 0.39 0.49 0.39 0.49 -0.00 (1.00)
Cluster 0.05 0.22 0.05 0.22 -0.00 (1.00)
Number of institutions 2.50 1.00 2.53 1.11 0.03 (0.44)
Observations 4657 8863 13520

Notes: We removed 55 funded applicants-applications for which entry into the panel coincides with the funding application. In
addition, age is missing for 546 funded AAs, gender for an additional 4, and discipline for an additional 22, so that only 9,281

of the 9,908 funded AAs remain in this table before matching.
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Yi,t is either the number of patented inventions or the number of articles cited in
patents of researcher i in year t, Fundedi indicates whether the individual was funded
or not10, and Posti,t is a binary variable that is set to 0 for the three years prior to the
application (excluding the application year) and 1 for the four years after application.
Finally, we introduce an individual fixed effect γi, and a year fixed effect δt to control
for annual shocks.

3.5.2 Impact results

academic patents We report in the first column of Table 38 the regression re-
sults on all matched applicants, and the remaining columns correspond to results for
subsamples that we split according to the applicant’s scientific field (columns 2–3), age
group (columns 4–6), inventor status (columns 7–8), funding program type (columns
9–10), and project labeling by a competitive cluster (columns 11–12). Overall, we find
that once we control for selection bias grants do not affect academic invention. The co-
efficient is nearly null in all subsamples, except for inventors where it is significantly
negative. It is positive (although insignificant) for projects labelled by a competitive-
ness cluster and for non inventors (for whom the significance is not robust to changes
in patent disambiguation thresholds: see Appendix Tables 45 and 46 for all results on
thresholds 0.5 and 0.3 respectively).

We include an event study on applicant-applications labelled by clusters (Figure 11,
left panel) and non labelled (right panel). We do not observe any pre-trend in both
groups, but there seem to be positive trend in clusters. This observation is robust to
changes in the disambiguation threshold (see Appendix Figures 16 and 17 for events
studies on thresholds 0.5 and 0.3 respectively). However, this result must be inter-
preted with caution considering the small number of observations in this sample.

10 Since the regression is in fixed-effects and the variable is time-invariant, it is not included alone in the
regression.
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Table 38: The impact of grant funding on academic invention (threshold 1, main results)

(1) (2) (3) (4) (5) (6)
All Hard sc. Life sc. 40 and younger 40 to 50 50 and older

Funded × Post -0.00 0.01 -0.02 0.00 -0.00 -0.01

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Individual FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of obs 93728 63052 31872 35692 39963 18073

Adj. R-squared 0.29 0.30 0.30 0.23 0.32 0.31

Log-likelihood -4.6e+04 -2.7e+04 -1.9e+04 -1.4e+04 -2.1e+04 -1.0e+04

(7) (8) (9) (10) (11) (12)
Inventors Non inventors Directed Non directed Cluster Non cluster

Funded × Post -0.10
∗

0.01
∗ -0.00 0.00 0.04 -0.01

(0.06) (0.00) (0.01) (0.01) (0.03) (0.01)
Individual FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of obs 7474 85566 50396 43332 3134 90594

Adj. R-squared 0.27 0.15 0.29 0.30 0.34 0.29

Log-likelihood -1.0e+04 -6669.67 -2.9e+04 -1.4e+04 -1717.51 -4.4e+04

Notes: Robust standard-errors in parentheses, clustered at the individual and project levels. The dependent variable is the
number of patents using threshold 1. In this model, the pre-treatment window includes the three years prior to grant application.
The post-treatment window includes the four years post-treatment (grant reception year excluded).
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Figure 11: The impact of grant funding on faculty propensity to invent (disambiguation thresh-
old 1).
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Note: The dependent variable is the number of patents using threshold 1. 

publications cited in patents Turning to the impact of grant funding on aca-
demics’ indirect contribution to innovation, we report in Table 39 the results on the
number of publications that are subsequently cited in patents. Similarly to the previ-
ous table, we investigate the effect on samples divided by applicant’s field, age group,
(absence of) inventorship, funding program design, and (absence of) project labelling
by a competitiveness cluster. There is more variation in coefficients estimates than
for academic patents. The coefficients are positive (albeit insignificant) on the overall
regression, and for hard scientists, applicants aged 50 or older, applicants in directed
programs, and those whose project is not labelled by a cluster. We find a weakly signif-
icant, but robust, negative effect of grant funding on applicant-applications labelled
by a cluster (see Tables 47 and 48 for results on thresholds 0.5 and 0.3 respectively).The
same warning as above applies: the number of observations in the clusters is relatively
small compared to other samples so this result should be interpreted with caution.

We find in a set of event studies a positive and significant impact on hard scientists
(Figure 12, second and fourth year post grant, see Appendix Figures 18 and 19 to
check the robustness on the other thresholds), and on inventors in directed programs
(although the coefficient for the year prior to funding is significantly different from
zero, see Figure 13 and Appendix Figures 20 and 21 on other thresholds).

In addition, the exploration by age groups in Table 39, columns (4) to (6) and Fig-
ure 14 uncovers an interesting pattern: the effect and its trend are rather negative on
younger researchers (aged 40 or younger, left panel), null to weakly positive on middle
age ones (40 to 50 years old, middle panel), and positive on older scientists (those age
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50 or older). This suggests a positive correlation between the impact of grant funding
and the applicant’s age. But focusing on the older group in Figure 15, we notice that
those who are funded in directed programs were on a negative pre-trend, as opposed
to those funded in directed program who were on a rather positive one, casting some
doubt on the effect of the policy on this age group.

Table 39: The impact of grant funding on papers’ citations in patents (main results)

(1) (2) (3) (4) (5) (6)
All Hard sciences Life sciences 40 and younger 40 to 50 50 and older

Funded × Post 0.02 0.17 -0.21 -0.18 -0.02 0.50

(0.16) (0.11) (0.39) (0.18) (0.30) (0.41)
Individual FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of obs 93725 63051 31871 35691 39960 18073

Adj. R-squared 0.30 0.32 0.27 0.21 0.34 0.26

Log-likelihood -3.3e+05 -1.9e+05 -1.2e+05 -1.1e+05 -1.4e+05 -6.9e+04

(7) (8) (9) (10) (11) (12)
Inventors Non inventors Directed Non directed Cluster Non cluster

Funded × Post -0.19 -0.00 0.19 -0.26 -0.50
∗

0.04

(1.09) (0.14) (0.22) (0.29) (0.29) (0.17)
Individual FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of obs 7471 85564 50394 43331 3133 90591

Adj. R-squared 0.37 0.25 0.27 0.31 0.23 0.29

Log-likelihood -3.0e+04 -2.9e+05 -1.8e+05 -1.5e+05 -8069.09 -3.2e+05

Notes: Robust standard-errors in parentheses, clustered at the individual and project levels. The dependent variable is the
number of papers cited in patents. Academic patents from disambiguation threshold 0.3 are used to encode the inventor dummy
included in the matching. In this model, the pre-treatment window includes the three years prior to grant application. The
post-treatment window includes the four years post-treatment (treatment year excluded).
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Figure 12: The impact of grant funding on hard scientists’ propensity to publish articles sub-
sequently cited in patents (disambiguation threshold 1).
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Figure 13: The impact of grant funding on inventors’ propensity to publish articles subse-
quently cited in patents in directed programs (disambiguation threshold 1).
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Note: The dependent variable is the number of articles cited in patent(s) using threshold 1.
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Figure 14: The impact of grant funding on academics’ propensity to publish articles subse-
quently cited in patents by age group (disambiguation threshold 1).
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Note: The dependent variable is the number of articles cited in patent(s) using threshold 1. 

Figure 15: The impact of grant funding on academics’ aged 50 or more propensity to publish
articles subsequently cited in patents by program type (disambiguation threshold
1).
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Note: The dependent variable is the number of articles cited in patent(s) using threshold 1. 
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3.6 discussion and conclusion

In this chapter, we sought to explore the causal impact of project-based funding on
academic invention. Controlling for the self-selection and selection biases, we find that
grant funding does not in fact affect overall patent and patent-cited article production,
meaning that the positive correlation recorded between funding status and academic
invention is entirely due to a selection effect.

At the first stage, we find quite expectedly that male, older scientists, those at higher
academic positions, and those with a stronger scientific profile are more confident
in applying for ANR grants. But we also discover that academic inventors and re-
searchers cited in patents are more attracted to grant funding than their counterparts,
with a 16% and 21% higher probability to apply for these profiles. However, they are
subsequently 5% and 7% less likely to be selected by the agency respectively. This
resonates with a similar pattern observed by Ayoubi, Pezzoni, and Visentin, (2021) on
scientists producing novel research in a Swiss funding program. Furthermore, we es-
timate that the attraction effect is more powerful than the selection bias: an additional
1.2% of inventors and 1.6% patent-cited researchers applied for and received funding
solely thanks to their prior experience and contribution to innovation. We highlight
that the results vary between directed and non-directed programs, as well as between
scientific fields.

While the literature had not yet explored the role of past experience or involve-
ment in innovation as determinant in the selection for grants, inventing or producing
research that supports innovation may be related to the novelty of researchers. Sev-
eral possibilities have been suggested to counter the bias against novelty, and some
of them can be adapted to also reduce the one against researchers who contributed
to innovation. One of these options is to use different kind of peers for different pur-
poses (e.g. targeting specifically specialists in translational or high risk, innovative
research) (Langfeldt, 2001). Another one is to relax the levels of stringency and de-
grees of selectivity in the review process to reward the most visionary research for
instance (have a dedicated program) or use a different process for innovative projects
(Holliday and Robotin, 2010). It could also be possible to make ‘innovation’ a criteria
for assessment in peer review, although evidence of effectiveness is mixed Guthrie,
Ghiga, and Wooding, 2017, p. 5. While a consensus among peers is currently desired
to confirm the validity of a funding decision, authors have suggested that, conversely,
disagreement among reviewers could be perceived as a signal of innovation and that
projects with a high disagreement could be prioritized (Kaplan, 2005; Linton, 2016).
Finally, it was suggested to fund researchers on their merits regardless of what they
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plan to do (Azoulay, Graff-Zivin, and Manso, 2011; Guthrie, Ghiga, and Wooding,
2017).

Our second set of results focuses on the impact of competitive funding on the fu-
ture contribution to innovation. We find that grant funding does not affect patent and
patent-cited article production overall. However, we find a positive impact on the pro-
duction of patent-cited articles by hard science researchers, and a puzzling negative
effect of grant funding of projects labelled by a competitiveness clusters on academic
inventions and research cited in patents. One plausible phenomenon would be that
the positive bias in favor of these projects leads to a poor selection, so that the funds
do not lead to expected results in terms of research quality.

This chapter has several limitations that future work could address. Collecting eval-
uation scores from both internal and external peers would allow one to explore the
particular stage in the process where the bias emerges and thus better identify which
intervention is most relevant to reducing this bias. Il would also allow to adopt a
Regression Discontinuity Design in assessing the impact of grant funding (Lee and
Lemieux, 2010). Another important data that we missed is the identification of in-
dustrial partners on the projects, which may have influenced both the content of the
project, the chances of being selected and the propensity of researchers to patent. The
lack of information on project members beyond the scientific leaders, as well as on
the content of the project itself, limited our ability to explore the role of project-level
factors in this relationship between contribution to innovation and project funding.
For instance, it would be interesting to identify whether the bias against researchers
who contribute to innovation results from a judgment of the project or the researcher.
Finally, in the absence of information on alternative funding sources (in particular
ERC funding), we are probably underestimating the real impact of ANR funding on
contribution to innovation.
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Table 40: Description of variables.

Variable type Description

Number of patents count Number of EPO patent applications for which at least one inventor
is an academic. The threshold for disambiguation is 1 in the main
analysis, robustness checks for thresholds 0.5 and 0.3. See Chapter 1

for more information

Number of articles
cited in patent(s)

count Number of articles published in the year with at least one lifetime ci-
tation in patent(s) (anywhere in the document, since grant until 2020)

Inventor dummy =1 if the researcher patented at least once in the 5 years prior to grant
funding application

Cited in patent(s) dummy =1 if the researcher’s publications are cited in patent(s) at least once
in the 5 years prior to grant funding application

Age continuous Biological age of the individual

Gender/Male dummy =1 if male, and =0 if female

Academic position categorical Position at the application year : Associate professor, Full professor,
Junior researcher or Senior researcher

Scientific field dummies
(one by
field)

Field of affiliation in employment data: biology, physics, chemistry,
universe sciences, engineering sciences, mathematics, or social sci-
ences and humanities.

# Pubs continuous Average number of publication divided by the number of co-authors
in the past 5 years

#Cites (3-y) continuous Average number of citations received within 3 years by articles pub-
lished in the past 5 years

Total # Cites continuous Cumulated number of citations received by articles published in the
past 5 years

# top 10% Pubs continuous Number of articles in the top 10% most cited in its field published in
the past 5 years

# top 5% Pubs continuous Number of articles in the top 5% most cited in its field published in
the past 5 years

Novelty continuous Average pairwise keyword novelty of articles published in the past 5

years

Interdisciplinarity continuous Average Herfindahl index of interdisciplinarity of articles published
in the past 5 years

H-index continuous H-index at the application year

Fundraising profile categorical =0 if never applied for an ANR grant before, =1 if applied but never
received the funding before, and =2 if applied and received at least
one ANR grant in the past

Application year discrete Year of grant application

Cluster dummy =1 if at least one partner on the grant application belongs to a com-
petitiveness cluster

Nb of partners continuous Number of academic partner institutions on the project

Coordinator dummy =1 if the individual is coordinator of the project

Non Directed Program dummy =1 if the application is submitted to a non directed program

Department categorical Department of the agency to which the application is submitted: Bi-
ology and Health (BH), Ecosystems and Sustainable Development
(ESD), Sustainable Energy and Environment (SEE), Engineering, Pro-
cesses and Security (EPS), Matter and Information (MI), Non-Directed
Programs (NDP), Social Sciences and Humanities (SSH), Information
and Communication Sciences and Technologies (ICST)
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Figure 16: The impact of grant funding on faculty propensity to invent (disambiguation thresh-
old 0.5).
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Note: The dependent variable is the number of patents using threshold 05. 

Figure 17: The impact of grant funding on faculty propensity to invent (disambiguation thresh-
old 0.3).
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Note: The dependent variable is the number of patents using threshold 03. 
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Table 41: Probability to apply for a grant (coefficients)

Full sample Restricted sample
(1) (2) (3) (4) (5)

All Programs Non Directed Directed Non Directed Directed

Inventor 0.14
∗∗∗ -0.01 0.19

∗∗∗
0.03 0.20

∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)
Cited in patent(s) 0.18

∗∗∗
0.03

∗∗
0.26

∗∗∗
0.07

∗∗∗
0.26

∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)

Individual variables
Age 0.06

∗∗∗ -0.00 0.09
∗∗∗

0.01 0.10
∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
Age squared -0.00

∗∗∗ -0.00
∗∗∗ -0.00

∗∗∗ -0.00
∗∗∗ -0.00

∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
Male 0.07

∗∗∗
0.05

∗∗∗
0.05

∗∗∗
0.06

∗∗∗
0.06

∗∗∗

(0.01) (0.01) (0.01) (0.02) (0.01)
H-Index 0.01

∗∗∗
0.01

∗∗∗
0.00

∗∗∗
0.01

∗∗∗
0.01

∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)

Fundraising profile
Never applied before

Applied w/o success 1.02
∗∗∗

0.84
∗∗∗

0.77
∗∗∗

0.99
∗∗∗

0.91
∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)
Applied with success 0.61

∗∗∗
0.37

∗∗∗
0.61

∗∗∗
0.45

∗∗∗
0.65

∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)

Constant -2.90
∗∗∗ -1.92

∗∗∗ -4.13
∗∗∗ -2.17

∗∗∗ -4.19
∗∗∗

(0.13) (0.16) (0.16) (0.16) (0.16)
Academic position Yes Yes Yes Yes Yes
Scientific field Yes Yes Yes Yes Yes
Application year Yes Yes Yes Yes Yes
Number of obs 200430 200430 200430 185961 187141

Notes: Robust standard-errors in parentheses, clustered at the individual and project levels. The control
variables academic position, scientific field and application year are included in the model but the
coefficients are not reported.
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Table 42: Probability to apply for a grant by discipline group (coefficients)

(1) (2) (3)
Hard Sciences Life Sciences Social Sc. and Humanities

Inventor 0.14
∗∗∗

0.15
∗∗∗

0.06

(0.02) (0.02) (0.07)
Cited in patent(s) 0.22

∗∗∗
0.16

∗∗∗
0.04

(0.01) (0.02) (0.04)

Individual variables
Age 0.06

∗∗∗
0.08

∗∗∗
0.03

(0.01) (0.01) (0.02)
Age squared -0.00

∗∗∗ -0.00
∗∗∗ -0.00

∗∗

(0.00) (0.00) (0.00)
Male 0.04

∗∗
0.07

∗∗∗
0.11

∗∗∗

(0.02) (0.02) (0.03)
H-Index 0.01

∗∗∗
0.01

∗∗∗
0.00

∗

(0.00) (0.00) (0.00)

Fundraising profile
Never applied before

Applied w/o success 1.00
∗∗∗

0.99
∗∗∗

1.21
∗∗∗

(0.02) (0.03) (0.06)
Applied with success 0.56

∗∗∗
0.63

∗∗∗
0.79

∗∗∗

(0.02) (0.03) (0.06)

Constant -2.81
∗∗∗ -3.67

∗∗∗ -2.97
∗∗∗

(0.15) (0.21) (0.44)
Academic position Yes Yes Yes
Scientific field Yes Yes Yes
Application year Yes Yes Yes
Number of obs 117189 76590 33498

Notes: Robust standard-errors in parentheses, clustered at the individual and project levels. Among
potential applicants, 1,545 belong to two field groups simultaneously and 148 belong to all three groups.
The control variables academic position, scientific field and application year are included in the model
but the marginal effects at the mean are not reported.
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Table 43: Probability to receive a grant (coefficients)

(1) (2) (3)
All prog. Non directed Directed

Inventor -0.08
∗∗∗ -0.07 -0.07

∗

(0.03) (0.05) (0.04)
Cited in patent(s) -0.11

∗∗∗ -0.11
∗∗∗ -0.05

(0.02) (0.03) (0.04)

Individual variables
Age -0.00

∗∗∗ -0.00 -0.01
∗∗∗

(0.00) (0.00) (0.00)
Male 0.02 0.06

∗ -0.00

(0.02) (0.03) (0.03)
H-Index 0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗

(0.00) (0.00) (0.00)

Fundraising profile
Never applied before

Applied w/o success -0.21
∗∗∗ -0.24

∗∗∗ -0.15
∗∗

(0.05) (0.07) (0.07)
Applied with success -0.01 -0.01 0.02

(0.04) (0.05) (0.06)

Project variables
Cluster 1.35

∗∗∗
2.57

∗∗∗
1.24

∗∗∗

(0.06) (0.25) (0.06)
Number of institutions 0.04

∗∗
0.09

∗∗∗
0.01

(0.02) (0.02) (0.02)

Constant 1.48
∗∗∗

3.84
∗∗∗

1.05
∗∗∗

(0.12) (0.29) (0.22)
Department of the agency Yes No Yes
Scientific field Yes Yes Yes
Application year Yes Yes Yes
Number of obs 200430 200430 200430

Number of selected obs 27758 13289 14469

Rho -.340372 -.4660877 -.2306733

Prob chi2 0.00 0.00 0.01

Notes: Robust standard-errors in parentheses, clustered at the individual and project levels. The control variables Scientific field,
Department of the agency and Application year are included in the model but the marginal effects at the mean are not reported.
Prob chi2 represents the p-value associated with the Wald test of independence; Ho: The selection equation and the structural
equation are independent. There is no fixed effect on the department of the agency for non directed programs because they all
belong to the same department.
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Table 44: Probability to receive a grant by discipline group

(1) (2) (3)
Hard Sciences Life Sciences Social Sc. and Humanities

Inventor -0.09
∗∗ -0.07

∗
0.31

∗∗

(0.04) (0.04) (0.15)
Cited in patent(s) -0.10

∗∗∗ -0.09
∗∗ -0.09

(0.03) (0.04) (0.10)

Individual variables
Age -0.01

∗∗∗ -0.00 -0.01

(0.00) (0.00) (0.00)
Male 0.02 0.03 0.04

(0.03) (0.03) (0.09)
H-Index 0.01

∗∗∗
0.01

∗∗
0.01

∗

(0.00) (0.00) (0.01)

Application experience
Never applied before

Applied w/o success -0.14
∗∗ -0.28

∗∗∗ -0.36

(0.07) (0.07) (0.25)
Applied with success -0.02 0.06 -0.27

(0.05) (0.06) (0.19)

Project variables
Cluster 1.38

∗∗∗
1.29

∗∗∗
1.04

∗∗∗

(0.06) (0.10) (0.23)
Number of institutions 0.03 0.05

∗∗
0.02

(0.02) (0.02) (0.04)

Constant 1.03
∗∗∗

2.20
∗∗∗

2.25
∗∗∗

(0.16) (0.17) (0.52)
Department of the agency Yes Yes Yes
Scientific field Yes Yes Yes
Application year Yes Yes Yes
Number of obs 117189 76590 33498

Number of selected obs 18150 11824 1680

Rho -.2709038 -.407277 -.3638638

Prob chi2 0.00 0.00 0.12

Notes: Robust standard-errors in parentheses, clustered at the individual and project levels. The control variables Scientific field,
Department of the agency and Application year are included in the model but the marginal effects at the meanare not reported.
Prob chi2 represents the p-value associated with the Wald test of independence; Ho: The selection equation and the structural
equation are independent. There is no fixed effect on the department of the agency for non directed programs because they all
belong to the same department.
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Table 45: The impact of grant funding on academic invention (threshold 0.5, first alternative)

(1) (2) (3) (4) (5) (6)
All Hard sc. Life sc. 40 and younger 40 to 50 50 and older

Funded × Post -0.00 0.01 -0.02
∗∗

0.00 -0.00 -0.01

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Individual FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of obs 94805 63792 32237 36036 40500 18269

Adj. R-squared 0.26 0.24 0.29 0.18 0.29 0.28

Log-likelihood -4.1e+04 -2.3e+04 -1.8e+04 -1.1e+04 -1.9e+04 -9025.99

(7) (8) (9) (10) (11) (12)
Inventors Non inventors Directed Non directed Cluster Non cluster

Funded × Post -0.09
∗

0.01 -0.00 0.00 0.05
∗ -0.01

(0.05) (0.00) (0.01) (0.01) (0.03) (0.01)
Individual FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of obs 7139 87666 50885 43920 3169 91636

Adj. R-squared 0.22 0.14 0.26 0.25 0.28 0.26

Log-likelihood -9540.12 -5721.37 -2.7e+04 -9913.47 -1588.41 -3.9e+04

Notes: Robust standard-errors in parentheses, clustered at the individual and project levels. The dependent variable is the number
of patents using threshold 0.5. In this model, the pre-treatment window includes the three years prior to grant application. The
post-treatment window includes the four years post-treatment (grant reception year excluded).
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Table 46: The impact of grant funding on academic invention (threshold 0.3, second alterna-
tive)

(1) (2) (3) (4) (5) (6)
All Hard sc. Life sc. 40 and younger 40 to 50 50 and older

Funded × Post -0.00 0.01
∗ -0.01

∗
0.00 -0.01 0.00

(0.00) (0.00) (0.01) (0.01) (0.01) (0.01)
Individual FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of obs 98759 66441 33773 37128 42147 19484

Adj. R-squared 0.25 0.21 0.31 0.12 0.29 0.32

Log-likelihood -6533.92 -854.75 -5785.07 -762.04 -4507.70 -971.25

(7) (8) (9) (10) (11) (12)
Inventors Non inventors Directed Non directed Cluster Non cluster

Funded × Post -0.17
∗∗

0.00 0.00 -0.00 0.02 -0.00

(0.07) (0.00) (0.01) (0.01) (0.02) (0.00)
Individual FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of obs 3117 89395 53416 45343 3463 95296

Adj. R-squared 0.30 0.13 0.27 0.15 0.12 0.25

Log-likelihood -3804.59 21911.12 -8580.16 6533.40 127.09 -6812.00

Notes: Robust standard-errors in parentheses, clustered at the individual and project levels. The dependent variable is the number
of patents using threshold 0.3. In this model, the pre-treatment window includes the three years prior to grant application. The
post-treatment window includes the four years post-treatment (grant reception year excluded).
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Table 47: The impact of grant funding on papers’ citations in patents (threshold 0.5, first alter-
native)

(1) (2) (3) (4) (5) (6)
All Hard sciences Life sciences 40 and younger 40 to 50 50 and older

Funded × Post 0.04 0.18 -0.19 -0.19 0.01 0.52

(0.16) (0.11) (0.39) (0.18) (0.30) (0.41)
Individual FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of obs 94803 63792 32237 36036 40497 18269

Adj. R-squared 0.29 0.32 0.27 0.21 0.34 0.26

Log-likelihood -3.3e+05 -1.9e+05 -1.2e+05 -1.1e+05 -1.4e+05 -7.0e+04

(7) (8) (9) (10) (11) (12)
Inventors Non inventors Directed Non directed Cluster Non cluster

Funded × Post -0.14 0.01 0.21 -0.25 -0.51
∗

0.06

(1.12) (0.14) (0.22) (0.29) (0.30) (0.17)
Individual FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of obs 7138 87664 50884 43919 3168 91634

Adj. R-squared 0.37 0.25 0.27 0.31 0.24 0.29

Log-likelihood -2.9e+04 -3.0e+05 -1.8e+05 -1.5e+05 -8196.34 -3.2e+05

Notes: Robust standard-errors in parentheses, clustered at the individual and project levels. The dependent variable is the
number of papers cited in patents. Academic patents from disambiguation threshold 0.5 are used to encode the inventor dummy
included in the matching. In this model, the pre-treatment window includes the three years prior to grant application. The
post-treatment window includes the four years post-treatment (treatment year excluded).
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Table 48: The impact of grant funding on papers’ citations in patents (threshold 0.3, second
alternative)

(1) (2) (3) (4) (5) (6)
All Hard sciences Life sciences 40 and younger 40 to 50 50 and older

Funded × Post 0.08 0.08 0.07 -0.22 0.18 0.40

(0.15) (0.10) (0.36) (0.17) (0.25) (0.42)
Individual FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of obs 98756 66440 33772 37127 42144 19484

Adj. R-squared 0.29 0.31 0.26 0.20 0.30 0.28

Log-likelihood -3.5e+05 -2.0e+05 -1.3e+05 -1.1e+05 -1.5e+05 -7.5e+04

(7) (8) (9) (10) (11) (12)
Inventors Non inventors Directed Non directed Cluster Non cluster

Funded × Post 1.06 0.01 0.21 -0.12 -0.59
∗∗

0.11

(1.60) (0.14) (0.22) (0.20) (0.27) (0.16)
Individual FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of obs 3117 89393 53414 45342 3463 95293

Adj. R-squared 0.34 0.25 0.27 0.29 0.26 0.28

Log-likelihood -1.3e+04 -3.1e+05 -1.9e+05 -1.5e+05 -8811.95 -3.4e+05

Notes: Robust standard-errors in parentheses, clustered at the individual and project levels. The dependent variable is the
number of papers cited in patents. Academic patents from disambiguation threshold 0.3 are used to encode the inventor dummy
included in the matching. In this model, the pre-treatment window includes the three years prior to grant application. The
post-treatment window includes the four years post-treatment (treatment year excluded).
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Figure 18: The impact of grant funding on hard scientists’ propensity to publish articles sub-
sequently cited in patents (disambiguation threshold 0.5).
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Figure 19: The impact of grant funding on hard scientists’ propensity to publish articles sub-
sequently cited in patents (disambiguation threshold 0.3).
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Figure 20: The impact of grant funding on inventors’ propensity to publish articles subse-
quently cited in patents in directed programs (disambiguation threshold 0.5).
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Figure 21: The impact of grant funding on inventors’ propensity to publish articles subse-
quently cited in patents in directed programs (disambiguation threshold 0.3).
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G E N E R A L C O N C L U S I O N

This thesis aimed at identifying the contribution of different factors to the transfer
of knowledge from science to industry, under the form of academic inventions. To
this end, a new methodology was developed and implemented to collect a quasi-
exhaustive dataset of academic patents at the country level, covering all scientific
fields, and spanning two decades. The study focused on France, the seventh greatest
country in the world in terms of GDP, sixth in terms of scientific articles, and fourth
in terms of patents granted in this period of time. For this country, the first result of
this work revealed that over 44,000 academics patents were applied for over the years
1995–2012.

Based on this academic patents dataset, the three chapters of this thesis contributed
to: (i) quantify and characterize academic invention on large scale over a long period
of time (Chapter 1), (ii) identify the contribution of several factors at individual, labo-
ratory, and university levels (Chapter 1), and (iii) measure the impact of two specific
public policies, namely the university ownership regime (Chapter 2) and competitive
science funding (Chapter 3), on subsequent incentives to invent. All chapters were
empirical studies, with the first and second chapters including a methodological con-
tribution as well. I first detail the contribution, limitation and follow-up research con-
tained in each chapter, and sketch some future avenues of research at the end of this
conclusion.

main results , limitations , and follow-up research

chapter 1 . The first chapter aimed at characterizing the phenomenon of aca-
demic invention and its evolution over two decades. After exposing the methodology
to collect academic patents, I found that academic patenting is a growing phenomenon
over time, and that academia contributes for more than 11% of all inventions patented
in the country. One professor or researcher out of five has already transferred knowl-
edge through this channel, which revises upwards prior estimates. I ran logistic re-
gressions to explore which factors most contribute to the phenomenon. First, I found
lifecycle effects, whereby patenting is more likely to occur at older ages. However,

129
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changes in norms with regards to commercialization, that would reflect differently
across cohorts, appeared to play no significant role in fostering academic invention.
Finally, I evidenced for the first time the presence of peer-effects in academic invention
at the laboratory level.

These results have important policy implications. The French government has intro-
duced many pieces of legislation over the last decades to support academic patenting
and other commercialization activities. The results of this chapter suggest the most
efficient levers are the micro (rather than meso or macro) level ones. For instance,
legislations could bear greater fruits by accounting for patenting activities in tenure
and promotion decisions (Sanberg et al., 2014), or supporting collaborations within
laboratories to exploit localized peer-effects and role models. On the contrary, policy
efforts to change cultural perceptions in a more diffuse way, or to raise professors’
awareness of the commercial potential of their research would appear less efficient.

chapter 2 . In the second chapter, I assessed the impact of allocating the intellec-
tual property rights over academic inventions to universities, as opposed to firms or
individual inventors, on subsequent incentives to invent. Rather than studying the im-
pact around the year of reform, I developed a new approach to observe if (and when)
each institution implemented the policy recommendations. This measure relied on the
evolution of the share of inventions the institution took ownership of and managed
over time, provided that we showed some percentage often goes straight to firms or
the professor-inventor herself. Treated universities, i.e. those making the move towards
actively managing their intellectual property, were matched to similar untreated ones
on the same calendar year. A difference-in-differences regression showed professors
in treated universities subsequently patent on average 20.7% more inventions.

Comparing with other policy changes in Europe and the US, I suggested that al-
locating the ownership of intellectual property rights to universities is efficient to
support knowledge transfer when the regime implementation is flexible, i.e. in a way
that still allows private sector firms to own a share of these inventions. In countries
where professors initially owned their inventions and used to transfer them to the
private sector through their own network, policy makers could avoid a negative effect
on academic invention by allowing professors to maintain these prior transfer path-
ways while offering the university TTO as a complementary (rather than substitute)
transfer pathway.

The main limitation of this study is that the dependent variable was a double-
edged sword. It had the benefit of allowing to observe exogenously the strategy of
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university in terms of IP management, without allowing them to distort the facts,
and the drawback of being built on the independent variable, which raises concerns
in case the source for the latter is doubtful. Unfortunately, data on university-level
implementation time or date of TTOs’ opening were not available. This underlines
the importance of government providing access to such data for research purposes. In
case these data become available, it would be interesting to study how this constructed
variable relates to the timing of TTO opening in universities.

chapter 3 . In the third and last chapter, I explored the interplay between com-
petitive grants and academics’ contribution to innovation. I merged to the previous
database of professors and patents the data on the research projects they submitted
to the ANR in 2005–2009 and the funding decisions of the selection committees. The
first part examined the relative attraction to grant funding of academics contributing
directly (through academic patents) or indirectly (via publications cited in patents) to
innovation, and their selection rate by the agency. Using a Heckman probit model to
study step-by-step the self-selection and selection into grant funding, I found that con-
tributors to innovation are more likely to apply than non-contributors, but less likely
to be selected by the agency. Finally, the attraction effect appeared to be stronger than
the selection bias, since a positive number of inventors and researchers cited in the
patents applied for and received funding thanks to their prior experience or contribu-
tion to innovation.

I assessed the impact of receiving a competitive grant on academic patents and
publications cited in patents in the second part of this chapter. After matching funded
applicants to similar unfounded ones and comparing their patenting and publishing
rates in a difference-in-differences framework, I found that, despite science being an
undeniably critical input to innovation, providing funds under a competitive scheme
to produce science did not affect its transfer through inventions or publications cited
in patents in a systematic way. Despite this, the results unveiled a puzzling effect
on researchers whose project is labeled by a competitiveness cluster, which gener-
ates a new question: what distinctive features of the professors in these clusters, or
the structure and collaboration network they are embedded into, could explain that
these grants would be more or less effective at fostering the academic contribution to
innovation? Future research could address it by retrieving data on these specific struc-
tures that could be combined with the grant funding data, and would ideally include
more recent years so that the sample would be large enough to spur more significant
insights.
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Upon answering this last interrogation, the results will bear important policy impli-
cations. Research grants allocated through a competitive scheme have already proved
their effectiveness at supporting the creation of new knowledge (e.g. Azoulay, Graff-
Zivin, and Manso, 2011, Banal-Estanol, Macho-Stadler, and Perez-Castrillo, 2019, Ja-
cob and Lefgren, 2011, Carayol and Lanoë, 2019). But to the best of my knowledge,
there is no literature except for this thesis chapter, evidencing their ability to support
the transfer of this new knowledge through academic inventions. The identification of
the precise underlying mechanism could help policy makers refine the grant funding
model in a way that maximizes the social benefits through supporting both knowl-
edge creation and knowledge transfer.

Finally, these project-based grants are only a share of governmental funds allocated
to basic research under a competitive scheme. There exist other programs called “in-
vestissements d’avenir” (investments for the future) that distribute research funds to
laboratories and universities with the same goal of supporting the creation of cutting-
edge knowledge. A relevant extension of this chapter would be to study whether these
policies at different levels affect academics’ contribution to innovation.

research paths

One aim of this thesis was to examine the impact of two major policy changes related
to academic invention, but other reforms are also relevant for academic invention
and equally deserve investigation. For instance, the government introduced in 2004

competitiveness clusters, which are associations of companies, research centers and
educational institutions in a given area, working in partnership to generate synergies
and foster industrial competitiveness. As these structures are university-industry col-
laborations and target the industrial competitiveness, further investigation is required
to assess whether and how this policy is effective at fostering academic invention.
Another key policy change is the regionalization of universities technology transfer
offices, called Sociétés d’Accélération du Transfert de Technologies (SATTs). This change in
the way technology transfer activities are organized, and the introduction of a unique
mandate to smooth the process, are expected to further ease academic invention, but
this remains to be demonstrated.

Furthermore, this thesis uses the French case to study the existence of the European
paradox, i.e., an advanced scientific production but a difficulty in transferring knowl-
edge to the private sector, resulting in a delay in terms of innovation and economic
growth. While this phenomenon is not reflected in the data of this thesis, this does
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not necessarily imply that the paradox does not exist in other European countries. It
would therefore be interesting to study the academic contribution to innovation in
neighboring countries, or even to extend the analysis to other continents, such as Asia
or Latin America. Moreover, reforms in the organization and funding of science are
also being implemented in these nations, and a better understanding of their impact
in different contexts might allow to conduct a meta-analysis and draw generic lessons.

While conducting research for this thesis, I have identified some interesting effects
on gender that I would like to explore further. I observed in the first chapter that
16% of the nearly 12,000 women in our dataset are patenting, which is 64% of the
rate for men, and once controlling for the effect of other variables, I showed that
women invented 50% fewer patents than men all else equal. In the third chapter, I
note that women are significantly less likely to apply for a grant than men, but once
controlling for this self-selection bias, there is no clear evidence of a gender bias in
the grant peer-review process. These first elements call for further investigation of the
gender bias in academic invention, for instance to examine its evolution in European
countries (extending the contributions of Ding, Murray, and Stuart, (2006), Thursby
and Thursby, (2005), and Whittington and Smith-Doerr, (2005) on the US case), and
studying its determinants both in patenting and grant application behaviors using a
nationwide dataset over several decades.

In connection with the prior point, a stream of literature complementary to this the-
sis investigates the network of academic inventors (Breschi and Catalini, 2010; Forti,
Franzoni, and Sobrero, 2013; Lissoni, 2010). This literature, however, does not split the
analysis by gender. Neumeyer et al., (2019) investigate the social capital of women
entrepreneurs as compared to the one of men, and its impact on entrepreneurship
outcomes. Similar investigation focusing on academic invention is required to under-
stand whether women are building different structures of network as compared to
men, and whether specific structures are increasing women’s likelihood to invent.
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