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INTRODUCTION ET RÉSUMÉ EN

FRANÇAIS

La cryptographie du grec kryptos, « secret, caché » et graphein, « écrire » est un vieux
sujet d’étude concernant en premier lieu la manière de cacher le sens d’un message à un
tiers écoutant les communications. La première utilisation ( en un certain sens ) remonte
à 1900 av. J.-C. dans une inscription de la tombe de Khnumhotep II où des hiéroglyphes
inhabituels sont utilisés. Environ 1850 ans plus tard, Jules César utilise pour ses affaires
militaires un chiffrement auquel il a donné son nom. Le chiffrement de César consiste
à transformer un message ( aussi appelé clair ) en une séquence inintelligible de lettres
appelée un chiffré en changeant chaque lettre du message en la n-ième ( fixe ) lettre sui-
vante dans l’alphabet. Le receveur peut alors retrouver le message originel en appliquant
la transformation inverse à chaque lettre du chiffré. Au cours du temps, les chiffrements
se sont complexifiés avec par exemple l’utilisation de plusieurs alphabets et sur le plan
pratique avec des mécanismes propres aux schémas comme des règles de conversions.
Au xvie siècle, Giovan Battista Bellasi crée le chiffrement de Vigenère ( faussement at-
tribué au diplomate Blaise de Vigenère ). Le chiffrement de Vigenère peut être compris
comme l’application de plusieurs chiffrements de César ( avec différentes translations ) sur
le message. Plus précisément, une séquence secrète de n lettres appelée une clé connue
uniquement par l’envoyeur et le receveur est utilisée pour chiffrer le message préalable-
ment découpé en blocs de taille n. Pour chaque bloc, la i-ème lettre du bloc est translatée
dans l’alphabet de r lettres où r est la position dans l’alphabet de la i-ème lettre de la
clé. Un exemple de chiffrement est donné en Figure 1.

À la fin du xixe siècle, la cryptographie a aussi été affectée par la vague de forma-
lisme logique présente dans les différents milieux universitaires. En particulier, en 1883,
Kerckhoff dans La Cryptographie Militaire proposa une liste de principes qu’un bon
chiffrement devrait suivre. Les principes de Kerchkoff sont toujours utilisés de nos jours
dans le design de primitives cryptographiques particulièrement au regard de la sécurité :
le système devrait être en pratique indéchiffrable ( sans connaissance de la clé ) ou dit
autrement, le système devrait garantir la confidentialité du message ; le seul paramètre
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Clé L A T I N L A T I N L A T I N L A T I N L A
Clair L O R E M I P S U M D O L O R S I T A M E T
Chiffré W O K M Z T P L C Z O O E W E D I M I Z P T

Figure 1 – Exemple de chiffrement de Vigenère. La table haute donne la correspondance
entre les lettres en clair ( colonne ), les lettres de la clé ( ligne ) et le chiffré ( entrée ). La
table basse donne le chiffrement de « LOREM IPSUM DOLOR SIT AMET » avec la clé
« LATIN ».

secret du système devrait être la clé ( petite et facilement changeable ).
Depuis cette formalisation par Kerchkoff, deux révolutions suivirent en cryptographie.

La première se passe durant la Deuxième Guerre mondiale avec la construction du pre-
mier ordinateur électronique programmable, le Colossus. Avec les puissances modernes
de calcul, la cryptographie a largement adopté le modèle binaire pour les clairs, clés et
chiffrés qui sont des séquences binaires de tailles arbitraires notées F∗2. L’autre révolution
en cryptographie a été l’invention de la cryptographie asymétrique avec le chiffrement
RSA [RSA78]. L’adoption de la cryptographie moderne avec les ordinateurs dans la vie
civile à petits pas depuis les années 60 avec les réseaux bancaires et les communications
téléphoniques. Au début des années 70, le gouvernement américain identifie un besoin
pour un algorithme de chiffrement standardisé pour les informations sensibles mais non-
classifiées. Ce besoin fut comblé par le Data Encryption Standard (DES) ouvert au pu-
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blic en 1977 jusqu’à son remplacement par le fameux Advanced Encryption Standard
(AES) en 2002. Pendant son utilisation, la sécurité du DES fut mise en doute notamment
par le rôle qu’ont joué certains services secrets dans sa création ( en particulier la NSA ).
Dans une optique naturelle vers plus de confiance pour les acteurs extérieurs, le processus
de développement a complètement changé depuis et de nos jours existe une collaboration
publique entre différents acteurs gouvernementaux, étrangers, scientifiques... Quand un
nouveau schéma est jugé nécessaire, les agences de standardisation lancent un appel à
contributions envers la communauté de la recherche cryptographique. Les candidats sont
alors étudiés par la communauté pour aider à une première sélection par l’organisme
standardisateur. Différentes sélections sont réalisées ( selon des critères différents ) jusqu’à
obtenir un finaliste ou une liste de finalistes publiés avec des recommandations d’uti-
lisation. Actuellement, deux compétitions majeures par le National Institute of Science
and Technology (NIST) des États-Unis sont en cours : la compétition pour le chiffrement
léger adapté aux objets connectés et la compétition post-quantique qui cherche à prépa-
rer la dépréciation de nombreux chiffrements asymétriques avec l’arrivée des ordinateurs
quantiques.

Durant cette thèse, nous nous sommes focalisés sur l’étude des primitives symétriques
( certaines intervenant dans la compétition légère du NIST ) selon différents points de vue
nous permettant de voir la cryptanalyse de différents objets en allant d’une étude com-
plémentaire d’une attaque générale ( présenté en Chapitre 1 ) à l’étude d’un critère dans
une construction générale (Chapitre 2 ) et à l’étude précise d’une primitive (Chapitre 3 ).
Pour introduire aussi clairement que possible les travaux de cette thèse, nous donnons une
définition générale d’un chiffrement (Définition 0.1 ) en gardant le vocabulaire déjà utilisé
dans cette introduction. Le reste de cette introduction donne plus de détails à propos des
constructions étudiées et leur sécurité.

Définition 0.1 (Chiffrement). Une fonction de chiffrement est une fonction E : F∗2×F∗2 →
F∗2 telle que pour toute clé dans F∗2, la fonction E(clé, ·) est une surjection et son inverse
D(clé, ·) peut être efficacement calculé lorsque la clé est connue.

Idéalement, en plus d’assurer la confidentialité, un bon chiffrement symétrique devrait
aussi garantir l’intégrité, c’est à dire la capacité à détecter un changement sur le chiffré et
à le corriger si nécessaire ainsi que l’authenticité, c’est à dire le fait d’avoir une preuve de
la provenance du chiffré. Essayer de construire directement des chiffrements ayant ces trois
propriétés est un vrai défi demandant de nombreuses compétences pour chaque propriété
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mais aussi pour toutes leurs interactions afin de garder un schéma sécurisé. En pratique,
pour simplifier la création de schéma en cryptographie symétrique, les chiffrements sont
découpés en plusieurs couches. La première couche consiste à construire une primitive,
une fonction cryptographique qui assure la confidentialité du message. Les deux autres
propriétés voulues ( ou d’autres propriétés plus mineures ) sont obtenues en intégrant une
primitive dans une construction plus grosse appelée un mode d’opération. Cependant, la
cryptographie moderne a tendance à ne pas considérer l’intégrité comme une propriété
que doit apporter cette deuxième couche car elle est obtenue par d’autres biais loin du su-
jet de cette thèse. Dans ce manuscrit, nous présentons nos travaux concernant différentes
primitives cryptographiques et continuons cette introduction avec la présentation de dif-
férentes constructions classiques de primitives dans la partie I, en donnant des éléments
pour comprendre leur sécurité dans la partie II et nous terminons cette introduction avec
la partie III par un résumé des différents chapitres correspondant aux travaux de cette
thèse.

Avant d’introduire les différentes primitives, voici un bref aparté sur le chiffrement à
masque jetable, un très célèbre schéma qui peut s’assimiler à un chiffrement de Vigenère
où la clé est exactement de la même taille que le message et qui sert souvent de base
de comparaison ou d’inspiration à d’autres schémas. Dans le chiffrement à masque
jetable, pour chaque clair m ∈ F∗2, une clé k jetable ( à utilisation unique ) de la même
taille que m est générée en tirant uniformément une valeur dans F|m|2 où |m| est la taille
de m. Le chiffré c est calculé simplement de la manière suivante : c = m ⊕ k où ⊕
représente le ou exclusif (XOR) bit à bit entre m et k. En 1949, Shannon [Sha49] prouva
que le chiffrement à masque jetable a une confidentialité parfaite ( pour être précis, il
prouve que le schéma a une sécurité qui est plus forte que la sécurité calculatoire utilisée
maintenant ) c’est à dire que même avec une puissance et un temps de calcul infinis, il
n’est pas possible de retrouver le message depuis le chiffré sans connaissance de la clé.
Malheureusement, le chiffrement à masque jetable a plusieurs défauts à commencer
par le fait que la clé doit être de la même taille que le message et utilisée seulement une fois,
ce qui le rend inadapté dans la vie réelle. Pour le remplacer, les cryptographes ont inventé
plusieurs constructions reprenant certains aspects du chiffrement à masque jetable tout en
introduisant des petites clés ( composées de 2n bits avec 5 ≤ n ≤ 10 ) réutilisables. Bien
que la sécurité sémantique de ces constructions ne soit pas prouvée ( aucune méthode n’est
connue pour l’obtenir dans le cas symétrique ), la sécurité calculatoire qu’elles mettent en
jeu font d’elles les principaux outils utilisés dans les communications modernes. Dans la
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partie suivante, nous introduisons les constructions rencontrées lors des travaux de cette
thèse : les chiffrements par bloc et les chiffrements par flot.

I Chiffrement symétrique

Pour se rapprocher de la confidentialité apportée par le chiffrement à masque jetable, les
cryptographes utilisent principalement deux familles de constructions imitant différents
aspects de celui-ci. Nous réintroduisons dans cette partie ces deux familles en commençant
par les chiffrements par bloc en sous-partie I.i et en continuant avec les chiffrements par
flot en sous-partie I.ii. Pour compléter cette introduction sur les schémas de chiffrements
symétriques, nous terminons cette partie avec un bref paragraphe ( sous-partie I.iii ) sur
les modes d’opération.

I.i Chiffrement par bloc

Dans une construction de chiffrement par bloc, le clair n’est plus de taille arbitraire mais
précise notée n : on parle alors de blocs qui contiennent le clair. Il en va de même pour
la clé qui a une taille k et pour le chiffré de taille m. En général, les chiffrés et les clairs
sont de même taille (m = n ) et souvent la clé est aussi de même taille que le clair. Dans
ce cas (m = n), la fonction de chiffrement est donc une famille de permutations sur les
blocs paramétrées par la clé comme formellement donné en Définition 0.2.

Définition 0.2 (Chiffrement par bloc). Un chiffrement par bloc est une fonction E :
Fk2 × Fn2 → Fn2 telle que pour tout κ ∈ Fk2, les fonctions E(κ, ·) sont des permutations.

Plus récemment, [LRW02] propose une formalisation d’une variante des chiffrements
par bloc appelée chiffrement par bloc paramétrable qui prennent un paramètre public
supplémentaire appelé naturellement un paramètre. Ce paramètre est utilisé, dans certains
cas, pour obtenir l’authenticité plus facilement dans certains modes d’opération ou pour
réduire les coûts de chiffrements lorsque le paramètre peut être changé plus facilement que
la clé comme dans le chiffrement d’un disque dur. Nous donnons une définition formelle
de cette construction que nous avons rencontrée dans nos travaux avec la Définition 0.3.

Définition 0.3 (Chiffrement par bloc paramétrable). Un chiffrement par bloc paramé-
trable est une famille de fonctions E : Ft2 × Fk2 × Fn2 → Fn2 telle que pour tout τ ∈ Ft2, les
fonctions E(τ, ·, ·) sont des chiffrements par bloc.
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La construction de chiffrements par bloc comme fonction prenant une entrée et ren-
voyant une sortie est rarement donnée dans la littérature en faveur des constructions
itératives ( comme illustré dans la Figure 2 ) qui transforment en plusieurs tours le clair
s0 en chiffré sr. Dans une construction itérative, la clé est utilisée en premier lieu pour
générer une séquence k0, . . . , kr de clés de tour qui seront mélangées une à une ( par tour )
à l’état i.e. le clair partiellement transformé à ce tour. L’autre composant d’une construc-
tion itérative est la fonction de tour qui va comme son nom l’indique, transformer le
bloc à chaque tour. La première itération calcule s1 = f(s0 ⊕ k0), la deuxième calcule
s2 = f(s1 ⊕ k1) et ainsi de suite pour les r tours. Dans la littérature, le tampon qui va
contenir au tour i la valeur si est appelé état interne de la construction. Deux objectifs né-
cessaires à la sécurité sont réalisés par la fonction de tour à savoir la diffusion, le mélange
en position dans l’état interne des bits de clair et de chiffrés et la confusion, le mélange en
complexité ( du point de vue du calcul de l’inverse ) des bits de clé et de clair. Plusieurs
constructions concrètes adoptent cette forme itérative et les deux plus courantes sont pré-
sentes dans les travaux de cette thèse, à savoir les réseaux de permutation-substitution et
les constructions de Feistel.

Algorithme optionnel d’expansion

k

s0 f
s1

. . . f
sr

sr+1

k0 k1 kr−1 kr

Figure 2 – Construction itérative d’un chiffrement par bloc de [Jea16]

Réseaux de Permutation-Substitution. Les réseaux de Permutation-Substitution
sont peut-être les constructions itératives pour les chiffrements par bloc les plus connues
par le standard AES proposé par Daeman et Rijmen [DR99] et consistent à découper la
fonction de tour en deux parties : la couche de substitution apportant la confusion et la
couche de permutation apportant la diffusion. Il n’y a pas de méthode connue pour créer
une bonne couche de substitution pour un état de 64 ou 128 bits. Pour combler ce manque,
la stratégie adoptée dans la littérature est de morceler l’état en plus petites cellules de 4, 8
bits généralement et d’appliquer sur chaque cellule une bonne substitution appelée une
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boite-S. La couche de permutation mélange l’information entre les cellules de l’état. Deux
paradigmes sont possibles pour cette couche : le premier consiste à permuter et appliquer
une opération linéaire aux cellules et est utilisé dans AES ou SKINNY [Bei+16]. Le second
paradigme possible est de permuter directement les bits de l’état comme dans PRESENT
[Bog+07] ou Gift [Ban+17]. Un exemple de chiffrement ( jouet ) orienté au niveau des
bits est donné en Figure 3.

S

S

S

S

S

S

S

S

k1

k2

Figure 3 – Chiffrement jouet avec une permutation orientée au niveau des bits de [Jea16]

Constructions de Feistel. Les constructions de Feistel sont l’autre construction géné-
rique utilisée pour les chiffrements par bloc itératifs que nous avons étudiés lors de cette
thèse. Dans la plus simple construction de Feistel ( Figure 4 ), le message est séparé en
deux moitiés ( égales ) appelées parfois branches. La branche de droite passe par une fonc-
tion F paramétrée par la clé et est ajoutée à la branche de gauche puis les deux branches
sont échangées. La fonction F est souvent une couche de boites-S suivie d’un ajout de la
clé ( de tour ). Plusieurs généralisations de cette construction ont été proposées dans la
littérature et en particulier l’une d’elle sera plus précisément étudiée pour l’un des travaux
de cette thèse dans la partie 2.
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f1

f2

f3

L0 R0

L3 R3

Figure 4 – Trois tours d’un réseau de Feistel de [Jea16] où les fonctions f1, f2, f3 sont
obtenues à partir de la fonction F avec les clés de tours une, deux et trois.

I.ii Chiffrement par flot

L’autre grande famille de chiffrements symétriques est celle des chiffrements par flot. À la
différence des chiffrements par bloc, il n’y a pas un bloc de taille fixe mais un flot de bits
à chiffrer. L’idée pour ce faire est de générer un flot de clé de même taille que le flot de
message et d’ajouter (XOR) les deux ( voir Figure 5 ). Dit autrement, un chiffrement par
flot consiste à créer l’équivalent d’une clé de bonne taille pour un chiffrement à masque
jetable à partir d’une clé de taille fixe. La confidentialité pour un chiffrement par flot
passe donc par la difficulté à retrouver la valeur de l’état interne ou la clé originale depuis
le flot de clé. En pratique, le flot de clé est généré bit à bit à mesure que le flot de message
est reçu. On parle de top d’horloge du chiffrement à flot pour chaque bit de flot de clé
généré.

Registre à décalage à rétroaction linéaire (LFSR). Si les boites-S étaient l’un
des éléments les plus élémentaires des chiffrements par bloc, son remplacement dans le
contexte des chiffrements par flot est le registre à décalage à rétroaction linéaire (LFSR).
Un LFSR peut être vu comme un registre organisé en cases contenant des bits ( souvent
un bit ). À chaque top d’horloge, le registre est décalé d’une position vers la droite et
la première case prend comme valeur le résultat d’une fonction linéaire, la fonction de
rétroaction appliquée à l’état ( avant le décalage ). Un schéma général de LFSR est donné
dans la Figure 6.
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clé, IV Chiffrement par flot

0

1
=
1

1

1
=
0

· · · · · · 0
⊕
0

=
0

message

chiffré
Figure 5 – Schéma d’un chiffrement par flot générique

S
(t)
`−1 S

(t)
`−2 S

(t)
1 S

(t)
0

c1 c2 . . .

. . .

. . .

. . .

. . .

. . .

c`−1 c`

Figure 6 – Description générale d’un LFSR de [Jea16]

Délinéariser. Les LFSRs sont très pratiques dans la création de chiffrement à flot avec
le top d’horloge du LFSR s’étendant naturellement au top d’horloge du chiffrement. Ce-
pendant, comme la fonction de rétroaction est linéaire, si elle est la seule composante
utilisée, le système est facilement inversible, ce qui n’est pas idéal pour la sécurité. Deux
stratégies différentes existent dans la littérature pour ajouter une opération non-linéaire
aux LFSRs : transformer une fonction de rétroaction linéaire en fonction de rétroaction
non-linéaire comme dans Grain [HJM07] ou Trivium [DP08]. L’autre solution est de
désynchroniser le top d’horloge de plusieurs LFSRs avec une fonction non-linéaire dépen-
dant des états de chaque LFSR comme dans A5/1 [BGW99] ou MICKEY [BD08].

I.iii Mode d’opération

Une primitive peut être placée dans une plus grande construction appelée mode d’opé-
ration pour obtenir de nouvelles propriétés. Le premier usage des modes d’opération est
d’étendre l’utilisation des chiffrements par bloc à des messages de taille supérieure à celle
du bloc. Le mode d’opération le plus naïf pour les chiffrements par bloc est le mode Elec-
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tronic CodeBook (ECB) où le message est simplement découpé en blocs, chacun chiffré
individuellement avec la même clé. Malheureusement, bien que très simple de conception,
ce mode n’offre pas de sécurité contre la manipulation de chiffré pour ne nommer que
cette attaque : échanger la position de deux blocs crée un chiffré valide sans connaissance
de la clé.

Dans la plupart des utilisations actuelles, la seule confidentialité est souvent insuf-
fisante et l’authenticité est ajoutée avec le mode d’opération contrairement à l’intégrité
qui vient d’autres procédés. Les modes d’opération qui, en plus de la confidentialité, ap-
portent l’authenticité sont appelés chiffrement authentifié (AE) ou chiffrement authentifié
avec données associées (AEAD), si des données publiques sont associées au message. C’est
ce type de chiffrement qui est demandé par la compétition de cryptographie symétrique
légère du NIST.

En général, lorsqu’elle existe, une preuve de sécurité ou portant sur une autre propriété
est donnée sur le mode d’opération. Dans ces preuves, la primitive considérée est une
primitive idéale. Dans la réalité, les primitives pratiques utilisées introduisent des biais
dans la preuve qui affaiblissent la sécurité de la construction. Les travaux de cette thèse
portent en partie sur l’étude de certains de ces biais trouvés à partir de méthodes générales.
Pour mieux les comprendre, dans la partie suivante, nous introduisons les notions de
sécurité nécessaires à la présentation de nos travaux.

II Analyse et sécurité des chiffrements symétriques

II.i Modèle de sécurité

Pour comprendre la notion de sécurité dans les chiffrements symétriques, il est d’abord
nécessaire de comprendre ce que l’attaquant recherche et ce qu’il peut faire. Trivialement,
si un attaquant peut directement demander la valeur de la clé et l’obtenir, il pourra
lire les messages à partir des chiffrés mais la primitive n’est pas, dans ce cas, considérée
comme cassée. En pratique, le pouvoir donné à l’attaquant est modélisé par sa capacité
à demander le chiffrement ou déchiffrement à un oracle. Un oracle peut être vu comme
une boîte noire qui contient une clé adaptée au chiffrement qu’il représente et répond
aux demandes de chiffrements et de déchiffrements envoyées par l’attaquant. Son but, la
plupart du temps, est de retrouver la clé cachée dans l’oracle en utilisant seulement les
demandes permises par celui-ci.
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Dans la littérature, il y a plusieurs types d’oracles en fonction des demandes considérées
comme permises. Le plus faible des oracles permet uniquement la requête de chiffrés
décidés sans connaitre les clairs associés. Dans ce cas, le modèle d’attaque appelé chiffrés
connus est le niveau le plus bas de sécurité demandé par les chiffrements à tel point
qu’il est souvent négligé en faveur de preuves ou de raisonnements avec des modèles
plus forts. Dans ces derniers, le pouvoir de l’attaquant est augmenté en demandant des
paires clairs/chiffrés décidées, puis en demandant pour le chiffrement de clairs choisis ( par
l’attaquant ) et finalement le chiffrement et déchiffrement de clairs et chiffrés arbitraires.
Ces modèles sont appelés respectivement clairs connus (KP), clairs choisis (CPA) et
chiffrés choisis (CCA).

Dans la littérature, l’autre facteur nécessaire à la description des attaques est la dé-
finition et la quantification des buts et succès de l’attaquant. Dans le formalisme actuel,
l’attaquant va jouer à un jeu où il gagne lorsqu’il récupère une information précise qu’il
devrait obtenir avec une probabilité faible. Une attaque peut être interprétée comme une
stratégie pour l’attaquant telle que la probabilité de gagner est meilleure ( par un facteur
polynomial en la taille du secret ) que la probabilité de choisir au hasard sa réponse. Un des
jeux utilisés dans la littérature consiste à initialiser l’oracle uniformément et aléatoirement
entre deux protocoles d’opération : le premier correspondant au fait de choisir correcte-
ment une clé et de l’utiliser normalement dans le schéma de chiffrement ; le deuxième
au fait de renvoyer uniformément et aléatoirement une réponse de forme correcte. Le but
dans ce jeu pour l’attaquant est de déterminer le protocole d’opération utilisé par l’oracle.
Lorsqu’aucun attaquant ne peut gagner à ce ce jeu avec un avantage conséquent, le chif-
frement est qualifié d’indistinguable (IND) et il est utilisé avec les précédents modèles
d’attaquants pour définir complètement la sécurité d’un schéma en parlant par exemple
de schéma IND-CCA.

Dans la cryptographie symétrique, de telles preuves de sécurité sont rarement faites
pour les primitives et par extension, la sécurité des primitives est conceptualisée par un
point de vue très pratique : elles sont sûres si aucune attaque pratique n’existe contre
elles. La sécurité peut, dans ce cas, être comprise comme l’effort continu pour casser des
primitives avec des techniques classiques ou de nouvelles attaques jusqu’à leur défaillance
et remplacement par de nouvelles primitives plus sûres. Lors de leur travail, les cryp-
tographes en symétrique ne cherchent pas toujours des attaques contre des primitives
mais des composants de certaines attaques appelés distingueurs qui peuvent être compris
comme des tests qui permettent de casser efficacement l’indistinguabilité des primitives.
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II.ii Distingueur

Un distingueur est un algorithme qui casse ( avec une bonne probabilité ) le caractère
d’indistinguabilité de chiffrements avec l’accès seul à des paires clairs/chiffrés en décidant
si les paires sont générées honnêtement ou aléatoirement. Les distingueurs sont cherchés
essentiellement en observant dans les chiffrements des comportements qui ne devraient pas
exister dans des fonctions aléatoires. Un exemple de propriétés observées pour trouver des
distingueurs est la propagation de différences dans le chiffrement dont nous parlons plus en
détail dans la sous-partie II.iii. Pour les constructions itératives, un distingueur sur r− 1
tours peut être étendu facilement en une attaque sur r tours, ce qui explique pourquoi
une fois que les distingueurs sont obtenus lors d’une étude, les attaques correspondantes
sont rarement données dans la littérature. En effet, en assumant que la clé de tour est plus
petite que la clé, un attaquant peut demander un ensemble de chiffrés ( sur r tours ) et
deviner la dernière sous-clé. La clé de tour devinée est utilisée pour déchiffrer un tour et le
distingueur peut être testé sur l’ensemble des chiffrés partiellement déchiffrés avec l’idée
que si la clé de tour est incorrecte, le distingueur devrait considérer l’ensemble testé comme
généré par de l’aléatoire et non par une clé. Ce processus peut être répété avec un tour de
moins jusqu’à obtenir assez de sous-clés pour reconstruire la clé maître. En conséquence,
une bonne justification pour la sécurité d’une primitive est de montrer qu’aucune méthode
classique comme des analyses différentielles ou linéaires ne permettent d’obtenir de bons
distingueurs. Dans la sous-partie suivante, nous introduisons la cryptanalyse différentielle,
la théorie principale que nous avons utilisée pour nos travaux dans cette thèse.

II.iii Cryptanalyse différentielle

À CRYPTO’90, Biham et Shamir [BS91a] présentaient leur analyse du Data Encryption
standard, le standard de chiffrement américain avec une nouvelle méthode, la cryptana-
lyse différentielle où une différence est observée dans son passage par le système. À la
même période, des attaques différentielles sont montées contre d’autres chiffrements par
bloc comme FEAL [BS91b]. En 1998, Vaudenay et al. proposent un nouveau cadre appelé
théorie de la décorrélation qui permet a priori ( entre autres ) de prévenir les attaques
différentielles ( directes ), elle est appliquée pour la première fois pour construire les chif-
frements COCONUT et PEANUT [Vau98]. La même année Wagner, [Wag99] prouve que la
théorie de la décorrélation n’est pas suffisante pour esquiver toutes les attaques différen-
tielles en exhibant une nouvelle attaque, les boomerangs. Depuis, de nouvelles attaques
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et variantes n’ont cessé d’apparaître dans la littérature comme les attaques sandwich
[DKS10], rectangle [BDK01] ou les attaques différentielles impossibles [Knu98]. La cryp-
tanalyse différentielle est maintenant une méthode classique pour l’étude de nouvelles
primitives qui, pour être sérieusement considérées, doivent avoir prouvé leur résistance
contre différentes attaques différentielles.

La cryptanalyse différentielle étudie la transformation de différences au cours du chif-
frement. Pour une paire de messages p0 et p1, la différence ∆p entre les deux messages est
définie par ∆p = p0 ⊕ p1. Trivialement, une différence est facilement propagée à travers
une opération linéaire L puisque L(∆p) = L(p0)⊕L(p1). Cependant, on ne peut pas dire
la même chose du passage par des opérations non-linéaires où cette égalité devient en
général fausse. Pour décrire les diverses différences en sortie possibles pour une différence
en entrée après une opération non-linéaire, la communauté parle de probabilité d’observer
une différence de sortie précise calculée avec le dénombrement du nombre de paires p0,
p0 ⊕ ∆p qui atteignent cette différence ( divisé par le nombre total de paires ). Un mo-
dèle d’attaquant plus fort peut en plus des différences dans le message ou état interne
introduire des différences dans la clé pour les constructions itératives, on parle alors de
modèle d’attaque à clés reliées. Si dans tous ces cas, le chiffrement se comporte comme
une fonction aléatoire au regard des différences, alors la probabilité d’observer une valeur
particulière de différence en sortie devrait être de 2−n où n est la taille du message. Sinon,
nous venons de décrire un distingueur particulier contre le chiffrement qui peut être utilisé
pour monter une attaque.

Faire une analyse différentielle complète d’une primitive est difficile et plusieurs sous-
problèmes ont été proposés pour la simplifier dans la littérature. Pour les chiffrements
itératifs, la différence peut être suivie tour par tour pour obtenir une caractéristique diffé-
rentielle qui peut se décrire par la séquence de différences (∆0, . . . ,∆r) observées au début
de chaque tour plus la différence finale en sortie. La probabilité d’une caractéristique est
compliquée à calculer directement mais peut être approximée en considérant que toutes
les transitions d’un tour à l’autre sont indépendantes les unes des autres. Dans ce cas, la
probabilité de la caractéristique est

r∏
i=1

P(∆i−1,∆i) où P(∆i−1,∆i) est la probabilité que
la différence ∆i−1 devienne ∆i après un tour. Le calcul de la probabilité d’une caracté-
ristique peut aussi être simplifié en utilisant la structure de la fonction de tour, comme
nous allons le montrer pour les SPNs. En effet, comme dit précédemment, la couche li-
néaire et l’addition de clé sont des couches où les différences vont se propager de manière
déterministe ( i.e. avec une probabilité 1 ). Il ne reste donc que la couche de substitution
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à prendre en compte pour le calcul de la probabilité. Or, la couche de substitution est
composée d’applications parallèles de boites-S qui sont donc les objets à considérer pour
l’étude de différences à travers le tour. Puisque les boites-S sont bien plus petites que le
bloc, la probabilité exacte d’observer une paire de différences d’entrée sortie (∆in,∆out)
peut être calculée et l’information est souvent condensée dans une table appelée table de
distribution des différences (DDT). La DDT est une table à double entrée qui pour une
entrée correspondant à la paire de différences (∆in,∆out) donne la probabilité d’observer
∆out = S(x)⊕S(x⊕∆in) pour les différentes valeurs de x et où S correspond à la boîte-S.

Pour simplifier une nouvelle fois la recherche de caractéristiques différentielles dans
les SPNs, Knudsen [KRW99] a proposé d’ignorer la valeur exacte des différences pour ne
garder que la présence ( active ) ou l’absence ( inactive ) de différence pour une boîte-S à
un tour donné. Le terme adopté par la communauté pour décrire cet objet est caracté-
ristique différentielle tronquée. Elles se sont révélées très utiles pour le construction de
primitives en particulier pour donner des preuves simples pour la résistance contre les
attaques différentielles. Pour être plus précis, pour une caractéristique différentielle tron-
quée donnée avec n boites-S actives, et pour la propagation à travers la boite-S avec la
meilleure probabilité p, une borne supérieure facile à calculer pour la probabilité d’une
caractéristique ayant la forme tronquée ( pour un nombre donné de tours ) est donc pn.
Le même raisonnement peut être appliqué pour les caractéristiques ayant le minimum de
boites-S actives pour obtenir une borne supérieure sur les caractéristiques différentielles
pour un nombre de tours donné. Si cette borne supérieure est plus petite que 2−m où
m est la taille de bloc, alors le chiffrement semble au premier abord être résistant à la
cryptanalyse différentielle. Dans cette dernière décennie ( depuis 2009 pour être exact ),
de nouvelles méthodes fondées sur les solveurs ont été présentées pour la recherche de ca-
ractéristiques différentielles tronquées [SNC09 ; MP13 ; Mou+12 ; Sun+14 ; KLT15]. Les
solveurs sont des algorithmes génériques qui prennent en entrée la description d’un pro-
blème et cherche automatiquement une solution à celui-ci. Dans cette thèse, nous avons
aussi utilisé des solveurs pour calculer de nouvelles caractéristiques différentielles. Des dé-
tails supplémentaires sur nos travaux concernant ces aspects sont présentés au Chapitre 3.
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III Résumé des chapitres

Pendant cette thèse, nos travaux ont essentiellement porté sur de la cryptanalyse diffé-
rentielle grâce à des algorithmes particuliers à travers différentes perspectives allant d’une
étude détaillée d’une attaque récente avec des expériences algorithmiques à l’analyse d’un
critère particulier des réseaux de Feistel avec un algorithme constructif ainsi que l’étude
d’une primitive particulière SKINNY avec des solveurs. Dans cette partie, nous donnons un
résumé de chacun de ces travaux présentés un à un dans les différents chapitres.

Dans le Chapitre 1, nous revisitons les attaques rapides par collision proche ( "Fast
Near Collision Attack" (FNCA) ), un nouveau type d’attaque proposé par Zhang et al.
[ZXM18]. Les FNCAs ont été appliquées à deux chiffrements : Grain v1 ( dans le papier
original ) et A5/1 [Zha19] pour obtenir de nouvelles attaques plus rapides que les meilleures
connues jusqu’alors. Cependant, nous avons trouvé des incohérences dans ces attaques et
avons en conséquence publié des versions corrigées prouvant que les FNCAs ne sont pas
des attaques efficaces pour les exemples donnés.

Dans le Chapitre 2, nous résolvons un problème ouvert depuis 10 ans et nous présentons
les nouveaux résultats sur les réseaux de Feistel généralisés que nous avons obtenus. Plus
précisément, nous avons étudié en particulier une propriété des permutations des réseaux
de Feistel généralisés appelée tour de diffusion.

Pour finir, dans le Chapitre 3, nous présentons nos travaux sur les caractéristiques
différentielles du chiffrement par bloc SKINNY. Nous utilisons une approche très classique
de séparation de la recherche de caractéristiques différentielles. Grâce à des outils adaptés,
nous avons trouvé des et parfois les meilleures caractéristiques différentielles de SKINNY.

III.i Revisiter les attaques rapides par collision proche

En 2018, Zhang et al. dans [ZXM18] proposent une nouvelle attaque générique, les at-
taques rapides par collision proche, et la première application de celle-ci sur le chiffrement
à flot Grain v1. Puis, dans [Zha19] Zhang et al. l’appliquent une nouvelle fois avec succès
contre A5/1 pour obtenir une meilleure attaque de récupération de clé. Les FNCAs sont
des attaques "diviser pour régner" pour retrouver l’état interne du chiffrement à flot de-
puis le flot de clé. Elles séparent l’état interne en deux parties : la partie cruciale (CP) et
la partie restante (RP). Une fois la CP connue, il est facile de retrouver la RP. La partie
cruciale est retrouvée grâce à la partie collision proche de l’attaque à partir d’un petit
échantillon de flot de clé.
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Lors de cette thèse, nous avons essayé d’implémenter l’attaque contre A5/1 et après
une étude du processus pour confirmation, nous avons trouvé plusieurs incohérences du
point de vue de la théorie de l’information dans la description de l’attaque et des erreurs
dans le code donné par Zhang et al. pour tester des composants de leur attaque. Nous nous
sommes donc attelés à la réévaluation des complexités en corrigeant les théorèmes utilisés
pour leurs calculs et en vérifiant expérimentalement qu’aucun biais existant ne pouvait
expliquer les complexités annoncées par Zhang et al.. Nous donnons aussi les complexités
corrigées des FNCAs prouvant donc que Zhang et al. ont sérieusement sous-estimé le coût
réel de leur attaque. Ces travaux ont été publiés à FSE :
Patrick Derbez, Pierre-Alain Fouque et Victor Mollimard, “Fake Near Collisions
Attacks”, in : IACR Transactions on Symmetric Cryptology 2020.4 (déc. 2020), p. 88-
103, doi : 10.46586/tosc.v2020.i4.88-103, url : https://tosc.iacr.org/index.
php/ToSC/article/view/8749

III.ii Recherche efficace de couche de diffusion pour les réseaux
de Feistel généralisés

Les Feistels sont une des constructions les plus classiques pour les chiffrements par bloc. À
CRYPTO’89, Zheng et al. [ZMI89b] proposèrent différentes généralisations de la construc-
tion de base des Feistels. L’une d’entre elles consiste à appliquer en parallèle plusieurs
constructions de Feistel de base puis à glisser toutes les branches vers la droite. Comme
remarqué dans [Nyb96 ; SM10], la translation vers la droite n’est pas la seule permutation
qui peut être employée ici. La construction où la permutation utilisée est arbitraire est
maintenant appelée réseau de Feistel généralisé (GFN).

Cependant, lors de l’introduction des GFNs en 1996, aucune famille de permutations à
préférer n’est donnée pour des constructions a priori plus sûres. En 2010 à FSE, Suzumaki
et Minematsu [SM10] proposent un nouveau critère, le tour de diffusion, qui peut être
utilisé pour informer dans le choix d’une permutation à privilégier. Le tour de diffusion
peut être compris comme une mesure de la vitesse nécessaire en nombre de tours pour
qu’une différence sur n’importe quelle branche se diffuse sur toutes les branches du réseau.
Avec leur travail, Suzumaki et Minematsu sont capables de manière exhaustive d’évaluer
toutes les permutations jusqu’à 16 branches pour trouver toutes les permutations opti-
males ( selon ce critère ). De plus, après avoir remarqué que pour toutes les tailles de
réseau qu’ils testent, il y a une permutation optimale qui est paire-impaire, c’est-à-dire
qui transforme tous les pairs en impairs et inversement. Ils proposent à partir de cette
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observation une méthode de construction générale pour trouver de bonnes permutations
paires-impaires lorsque le nombre de branches est une puissance de deux. En particu-
lier, ils ont trouvé une bonne permutation paire-impaire avec 32 branches et un tour de
diffusion de 10. En 2019, Cauchois et al. [CGT19] publient une nouvelle méthode pour
la construction de permutations optimales paire-impaires leur permettant d’en trouver
jusqu’à 26 branches.

Pendant cette thèse, nous avons étudié le problème de la recherche de permutations
optimales pour le tour de diffusion pour les GFNs. Nous avons trouvé une nouvelle carac-
térisation du tour de diffusion qui permet de développer un algorithme efficace pour la
recherche de permutations paires-impaires optimales entre 28 et 42 branches en testant
si le tour de diffusion est à 9. En l’utilisant, nous avons exhibé toutes les permutations
paires-impaires optimales pour 28, 30, 32, 34 et 36 branches ainsi que des bons candidats
pour l’optimalité pour 38, 40 et 42 branches. Ces travaux ont été publiés à FSE :
Patrick Derbez et al., “Efficient Search for Optimal Diffusion Layers of Generalized
Feistel Networks”, in : IACR Transactions on Symmetric Cryptology 2019.2 (juin 2019),
p. 218-240, doi : 10.13154/tosc.v2019.i2.218-240, url : https://tosc.iacr.org/
index.php/ToSC/article/view/8321

III.iii Méthodes efficaces pour la recherche des meilleures
caractéristiques différentielles de SKINNY

SKINNY est une famille de SPNs paramétrables créée en 2016 par Beierle et al. [Bei+16].
Six versions de SKINNY existent groupées en deux familles dépendentes de la taille de l’état
interne : SKINNY-64 et SKINNY-128 utilisant respectivement des états internes de 64 et
128 bits. Pour donner une première idée de la sécurité contre la cryptanalyse différentielle,
ses créateurs ont inclus dans le papier des spécifications [Bei+16] un modèle pour chercher
les caractéristiques différentielles tronquées ayant le minimum de boites-S actives ( avec
différents modèles d’attaques où des différences peuvent être introduites dans les clés
paramétrées ).Le modèle qu’ils proposent est résolu par un solveur et plus précisément un
solveur de programme linéaire ( "mixed integer linear programming" MILP ). En MILP,
les variables sont des entiers et les contraintes à considérer sont des inéquations linéaires
en ces variables.

Depuis la publication des spécifications, peu de résultats ont été publiés concernant les
caractéristiques différentielles de SKINNY. Dans les limites de nos connaissances, seulement
deux autres articles ont des résultats sur ce sujet : Liu et al. [LGS17] avaient besoin de
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quelques caractéristiques pour étudier la résistance de SKINNY contre les attaques boome-
rangs et rectangles dans le cas des clés paramétrées reliées. En utilisant un modèle MILP
pour SKINNY-64 et un outil ad hoc pour SKINNY-128, ils ont trouvé les meilleures caracté-
ristiques différentielles jusqu’à 13 tours pour SKINNY-64 et de meilleures caractéristiques
pour SKINNY-128 pour un petit nombre de tours (mais sans l’optimalité ).

L’autre publication concernant les caractéristiques de SKINNY que nous avons trouvée
dans la littérature a été publiée par Abdelkhalek et al. dans [Abd+17]. Ils construisent
les meilleures caractéristiques différentielles de SKINNY-128 dans le modèle de clé simple
jusqu’à 13 tours avec un modèle MILP contenant une description efficace jugée inexistante
pour les boites-S de 8 bits. Ils montrent en plus qu’aucune caractéristique différentielle
avec une meilleure probabilité que 2−128 n’existe pour 14 tours ( et plus ) dans le modèle
de la clé simple.

Dans nos travaux, nous complétons les bornes sur les caractéristiques différentielles de
SKINNY en utilisant une approche très classique qui sépare la recherche en deux étapes. La
première étape consiste à chercher des caractéristiques différentielles tronquées ayant un
nombre de boites-S actives égal ou inférieur à une cible donnée. La seconde étape prend
les résultats de la première et essaye d’instancier en valeur les caractéristiques tronquées.
Notre contribution dans ces travaux, outre la publication de meilleures bornes, est l’uti-
lisation adaptée d’outils pour chacune des étapes. La première étape est réalisée avec un
outil ad hoc fondé sur de la programmation dynamique, la seconde utilise un modèle de
programmation par contrainte, un autre type de solveur que le MILP qui permet une
description bien plus directe dans ce cas que ce dernier où nous avons raffiné les stra-
tégies de résolution. Avec ces choix de méthode, nous retrouvons et terminons l’analyse
sur les caractéristiques différentielles de SKINNY-64 en quelques secondes. Concernant
SKINNY-128, nous retrouvons les résultats de [Abd+17] en quelques minutes, au lieu de
16 jours à l’origine. Nous trouvons aussi les meilleures caractéristiques différentielles de
SKINNY-128 dans les différents modèles de clés reliées pour certains tours ainsi que des
meilleures caractéristiques différentielles ( sans optimalité ) pour un plus grand nombre
de tours et des preuves qu’aucune caractéristique différentielle n’existe ( avec une bonne
probabilité ) pour certains nombres de tours. Les résultats détaillés sont dans la Sous-
partie 3.5.3 du Chapitre 3. Ces travaux ont été publié à ACNS :
Stéphanie Delaune et al., “Efficient Methods to Search for Best Differential Characte-
ristics on SKINNY”, in : International Conference on Applied Cryptography and Network
Security, Springer, 2021, p. 184-207
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INTRODUCTION

Cryptography from the Greek kryptos, "secret, hidden" and graphein, "to write" is an old
field of study concerning way to hide secret messages to a third eavesdropping party. Its
first known use (in a sense) can be dated to 1900 BC with an inscription in the tomb
of Khnumhotep II where non-standard hieroglyphs were used. Approximately 1850 years
later, Julius Caesar used a cipher for his military affairs named now after him. The
Caesar cipher consists in transforming a message into a gibberish sequence of letters
called a ciphertext by changing each letter of the message into the n-th (fix) next letter in
the alphabet. The receiver can then de-transform the ciphertext into the original message
using the inverse operation on the letter of the ciphertext. Over time, cipher gained
in design complexity, with the use for example of multiple alphabets and in practical
complexity, with the use of helping mechanisms like slide rules. During the 16th century,
Giovan Battista Bellaso created the Vigenère cipher (misattributed to the diplomat Blaise
de Vigenère). The Vigenère cipher can be understood as multiple uses of the Caesar
cipher on the message. More precisely, a secret sequence of letters of size n that is now
called a key known only by the sender and receiver is used in the scheme. To encrypt, the
message is split in block of size n. For each block, the i-th letter is shifted to the right
by r in the alphabet where r is the position in the alphabet of the i-th letter of the key.
An example of encryption following this scheme is given in Figure 7. In practice, another
permutation table can be used and only the key must be kept secret, the table can be
published.

At the end of the 19th century, cryptography was also changed by the formalism
that swept the different intellectual disciplines. In particular, in 1883 Kerckhoff in La
Cryptography Militaire [Ker83] proposed a list of principles that a cipher should follow.
Kerckhoff’s principles are still being followed nowadays in the design of cryptographic
primitives particularly regarding the security: the system should be practically indeci-
pherable or said in an another manner the system should guarantee the confidentiality of
the message and the only secret should be the key.

Since this formalization, two important revolutions happened in cryptography. The
first being the computing revolution during the second World War with the construction
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Key L A T I N L A T I N L A T I N L A T I N L A
Plaintext L O R E M I P S U M D O L O R S I T A M E T
ciphertext W O K M Z T P L C Z O O E W E D I M I Z P T

Figure 7 – Example of encryption with the Vigenère cipher. The upper table gives
the correspondence between the plaintext letter (column), the key letter (row) and the
ciphertext (entry). The lower table gives the ciphertext when the key is "LATIN" and the
plaintext is "LOREM IPSUM DOLOR SIT AMET".

of the first programmable electronic and digital computer, the Colossus. With modern
computational power appearing, cryptography has completely adopted the binary frame-
work: the message, key and ciphertext are now arbitrary length bitstrings in F∗2. The
other breakthrough in cryptography was the invention of asymmetric cryptography with
the RSA cipher by Rivest, Shamir and Adleman in [RSA78]. In asymmetric cryptography,
the secret key is replaced by a pair of keys: the public key and the private key. Adopting
modern cryptography on computer in civilian life begins little by little in the 60’s with
banking and communication networks. In the early 70’s, the US government identified
a need for a standard encryption algorithm for unclassified but still sensitive informa-
tion. The Data Encryption Standard (DES) was then opened to public uses in 1977 and
kept as a standard up to its replacement in 2002 by the famous Advance Encryption
Standard (AES). During its uses, the security of DES was doubted from its conception in
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relation to various US agencies (most famously the NSA) involved in the design process.
As a natural evolution towards more confidence, the way new primitives are developed
changed completely (like AES for example) and nowadays it is a sort of public collabora-
tion between several actors. When a new design is wished for, standardization agencies
call for public contributions from the cryptographer community. Candidates are then
studied by the community to inform a first sieving of the list which is studied again in
the same way up to the point where one finalist or a portfolio of finalists are published
with recommendations of uses. The organizers select during each round some candidate
in light of these studies and justify their choices with public reports on the process of
selection. Right now, two major competitions by the National Institute of Science and
Technology (NIST) of the USA are taking places: the lightweight competition for new
symmetric primitives adapted to IoT and the post-quantum competition to prepare the
replacement of RSA necessary from the rapidly approaching quantum computer.

During this thesis, we focus essentially on analyzing the existing primitives with differ-
ent algorithms and focusing on different aspects from properties that could be considered
in their designs to studying criteria informing on potential attacks and to reviewing at-
tacks against them. To introduce as clearly as possible the works of this thesis, we now
give Definition 0.1, a general definition of the primitives we studied, the encryption ci-
phers by keeping the vocabulary already used here about ciphers. We will give more
details regarding their constructions and security in the rest of this introduction.

Definition 0.1 (Encryption). An encryption function is a function E : F∗2 × F∗2 → F∗2
such that for any key in F∗2, the function E(key, ·) is a surjection and its inverse function
D(key, ·) is efficiently computable when the key is known.

Ideally in addition to ensuring confidentiality, a good symmetric cipher should give
integrity meaning it should be possible to detect a tempering of the message and authen-
ticity meaning there should be a process to verify that the source (of the ciphertext) is
who it pretends to be. Trying to design directly a cipher offering this three properties is
hard and asks for numerous competences, knowledge and various security proofs for each
property but also for their interactions. To simplify the conception and verification of
new designs, a layered strategy of conception is widely used in symmetric cryptography.
The first layer consists in constructing, designing primitives, ciphers that ensure confi-
dentiality for the messages. The missing two properties (or other properties for particular
cases) are obtained by integrating a good primitive in a bigger construction although
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modern cryptography is centered essentially on confidentiality and authenticity, integrity
being granted from other processes. In this thesis, we will present our works concerning
different primitives and for greater clarity, we will begin by reviewing classical ways to
construct primitives in Section I, we give some elements to understand their resistance
and security in Section II and introduce the works presented in each chapter in Section III.

Before introducing the different ways of constructing primitives, we review right now
the one time pad, a well known scheme which can be assimilated to a Vigenère cipher
where the key has the same size as the message that will serve as a basis to explain the
other constructions. In the one time pad, for each message m ∈ F∗2, a key k of the same
size as m is generated by uniformly taking a value in F|m|2 where |m| is the size of m and
computing the corresponding ciphertext c with c = m ⊕ k. In 1949, Shannon [Sha49]
proved that the one time pad cipher has perfect confidentiality (to be precise this is called
perfect secrecy which can be opposed to computational security or to semantic security,
weaker security notions) that is to say that even given infinite time and computational
power, it would be impossible to retrieve the message from the ciphertext without knowl-
edge of the key. Unfortunately, the one time pad presents multiple defaults beginning
with the fact that the key must be of the same size as the message and unique for each
communication. As a result, cryptographers invented different constructions to approach
the one time pad while keeping in a reasonable measure reusable small keys of 2n bits
with 5 ≤ n ≤ 10. Although, the semantic security of those constructions is not proven,
the computational security they exhibit made them the primary symmetric tools in use
in modern communications. In the next Section, we review well known constructions that
we encounter during the works of this thesis.

I Symmetric Cipher

To approach the one time pad in term of confidentiality, cryptographers now use prin-
cipally two families of constructions miming different aspects of the one time pad. We
review these two families of constructions beginning with the block ciphers in Subsec-
tion I.i and following in Subsection I.ii with stream ciphers. Finally, to complete this
presentation, we briefly introduce in Subsection I.iii modes of operation corresponding to
the general way to complete primitives that is used to obtain the integrity and authenticity
or more peculiar properties in certain use cases.
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I.i Block cipher

In block cipher construction, the message is not anymore of arbitrary length but limited
to a block of size n. The same can be said about the key with a fix size k. The encryption
is then a family of permutations of the block of size n parameterized by the key as can
be seen in Definition 0.2.

Definition 0.2 (Block cipher). A block cipher is a function E : Fk2 × Fn2 → Fn2 such that
for all κ, the function E(κ, ·) is a permutation.

More recently, in [LRW02] a slightly different construction was proposed: the tweakable
block ciphers which contain an additional public parameter called a tweak (or tweaks if
multiple are possible). The tweak can be used in different scenarios to add more easily
some new properties like integrity or authenticity. We give a formal description of this
construction in Definition 0.3.

Definition 0.3 (Tweakable block cipher). A tweakable block cipher is a family of functions
E : Ft2 × Fk2 × Fn2 → Fn2 such that for all τ ∈ Ft2, the functions E(τ, ·, ·) are block ciphers.

Since constructing directly a block cipher is hard, modern constructions mostly adopt
an iterative process, see Figure 8. In an iterated construction, the key is used to first
generate a sequence (k0, . . . , kr) of round keys that will be added little by little to the
message at each round. The other component of an iteration is the round function f that
transforms the message at each round. The first iteration computes s1 = f(s0 ⊕ k0), the
second iteration iteration corresponds to s2 = f(s1 ⊕ k1) and the process is repeated for
r rounds. In the literature, we talk about the internal state of a construction for a buffer
s that will contain in order the values s0, s1, . . . , sr. Two objectives are realized by the
round function namely the diffusion, shuffling every bits of message and key together and
the confusion, making the inversion of the shuffle of key and message bits hard to inverse
in a mathematical sense. Multiple generic constructions adopt this strategy of repeating
rounds. During this thesis, we work with two of them: the Substitution-Permutation
Networks and the Feistel constructions.

Substitution-Permutation Network (SPN). The Substitution-Permutation network
is maybe the most well known iterative construction of block cipher from its use in the
AES proposal by Daeman and Rijmen [DR99] and consists in applying a substitution layer
followed by a permutation layer to the internal state. There is no well known method for
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Optional Expansion Algorithm

k

s0 f
s1

. . . f
sr

sr+1

k0 k1 kr−1 kr

Figure 8 – Iterative construction of a block cipher from [Jea16]

finding a good substitution for a state of 64 or 128 bits. As a result, the strategy adopted
is to split the state in smaller cells of 4, 8 bits and applied in parallel to each of them
a good substitution called a S-box. The permutation layer is the linear layer that will
shuffle the bits of each cell in the state between different S-boxes for the next iteration.
Two different shuffles are used in the literature: the first consists in a cell shuffle where
the position of the cell will be permuted and a linear operation is applied to a set of cells
to internally shuffle the bits presented in them. This is the solution adopted in AES and
SKINNY [Bei+16]. The second shuffle possible for a SPN is a direct shuffle of the bits of
the internal state which sends some bits going from a S-box to another S-box in the next
round like the block ciphers PRESENT [Bog+07] or Gift [Ban+17]. An illustration of a
bit-wise toy cipher is given in Figure 9.

Feistel constructions. The Feistel construction is the other generic construction of
iterated block ciphers we encounter during this thesis. In the most basic Feistel construc-
tion, the message is split in two halves sometimes called branches. The right branch goes
through a keyed function F and is xored to the left branch then the two branches are
swapped. This keyed function is generally obtained by using a layer S-boxes followed
by a xor with a round key. From this basic construction, multiple generalizations were
proposed and one in particular is studied further in Chapter 2 for one of the works of this
thesis.

I.ii Stream cipher

Apart from block ciphers, the other generic ciphers in symmetric cryptography are the
stream ciphers. Whereas block ciphers imitate the one time pad from a permutation
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k1

k2

Figure 9 – Toy SPN with a bit oriented permutation layer. From [Jea16]

f1

f2

f3

L0 R0

L3 R3

Figure 10 – 3 rounds of the basic Feistel construction from [Jea16] where the f1, f2, f3 are
obtained with the function F with respectively the first round key, the second and the
third.

point of view, the stream cipher imitates it from its structure. More precisely, the key of
a stream cipher is used to generate an arbitrary long sequence of bits called the keystream
which will play the role of the secret key in an one time pad construction (see Figure 11).
As a result, confidentiality for a stream cipher is ensured either by the difficulty from
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key, IV Stream cipher
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Figure 11 – Generic stream cipher

retrieving the key from the keystream sequence or by retrieving the internal state from
the keystream.

In practice, the keystream is generated as needed as bit (or byte or other given quan-
tity...) of the message need to be encrypted. When a new keystream bit is generated, the
stream cipher is said to be clocked one time.

Linear Feedback Shift Register (LFSR). If the S-boxes and permutations were the
basic building blocks for the SPN, the most basic object that composed stream ciphers
are Linear Feedback Shift Registers. A LFSR can be seen as a rolling register containing
a finite number of bits in each of its cell. At each clocking, a fix linear combination of
some cells of the register called the feedback function is applied to the register to compute
a new cell x. Then, the register is shifted discarding the last value of the register and
freeing the first cell of the register which will take the value x. An example of a general
LFSR is given in Figure 12.

S
(t)
`−1 S

(t)
`−2 S

(t)
1 S

(t)
0

c1 c2 . . .

. . .

. . .

. . .

. . .

. . .

c`−1 c`

Figure 12 – General LFSR from [Jea16]
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Non-linearization. LFSRs are quite practical to use for constructing stream cipher
with the clocking of the LFSR extending well to the clocking of the stream cipher. How-
ever, since their operations are linear only the diffusion of the information exists if used
alone and as a result, the system can easily be inverted. Two strategies were adopted
to add confusion to the system and preventing an easy inversion: adding a non-linear
function to a feedback function of a LFSR like Trivium [DP08] or Grain [HJM07]. The
other solution is to change the clocking mechanism of multiple LFSRs to be a non-linear
function of the state of the registers like in A5/1 [BGW99] or MICKEY [BD08].

I.iii Modes of operation

A mode of operation takes a primitive and uses it in a bigger construction to obtain a
bigger cipher that can have more properties. The first use of mode of operation for block
ciphers is to encrypt messages of greater size than the block. The most basic mode of
operation for block ciphers is the Electronic CodeBook (ECB) consisting in splitting the
message in blocks of the size considered by the block cipher. Each block is then encrypted
with the same key through the block cipher and the resulting ciphertext are concatenated
to obtain the whole ciphertext. Unfortunately, while being quite simple it does not offer
security against multiple attacks like to name only this one tempering: switching the
position of two ciphertext blocks creates a valid ciphertext.

In most uses nowadays, only confidentiality is not enough and authenticity is added
with the mode of operation unlike integrity which is ensured with other methods that de-
veloped as an independent research topic from cryptography. The lightweight symmetric
cryptographic competition of the NIST asked for AEAD primitives for this reason. Ci-
phers (with their mode of operation) which give authenticity in addition to confidentiality
are called authenticated encryption (AE) or if a further public associated data is given,
authenticated encryption with associated data (AEAD).

In general, a proof of the security or regarding other properties is given when a new
mode of operation is published. Those proofs of security suppose that the primitives
pasted in their modes have good properties regarding their securities. In the next section
of this introduction, we revisit the necessary notions to understand the security of the
primitives.
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II Analysis and Security of symmetric ciphers

II.i Model of security

To understand the security of a symmetric cipher it is important to define the power of
an attacker. Trivially, an attacker could ask for the key directly to one of the participants
but obtaining it this way is not considered a break of the primitive.

In practice, the power given to the attacker is modeled as its capacity to query en-
cryption or decryption requests to an oracle. An oracle can be understood as a black box
that contains a random key for the targeted cipher and answers requests corresponding
to the encryption or decryption of given or known messages or ciphertexts. The goal of
the attacker is to retrieve the key using only the authorized queries of the oracle.

In the literature, there are multiple levels of oracle with varying types of queries that
give varying security. The weakest oracle (with respect to the power of the attacker)
consists in being able for the attacker to ask for ciphertexts selected by the oracle without
knowing the corresponding plaintexts. This model is called the known ciphertexts oracle
and is such a basic requirement for the security that it is most of the time skipped in
favor of more powerful attacker models. The power of the attacker is increased with in
order giving access to known plaintext ciphertext pairs, choosing arbitrary plaintexts to
encrypt and finally choosing in addition arbitrary ciphertext to decrypt. Those models
are called in order the known plaintexts, chosen plaintexts and chosen ciphertexts models.

In the literature, after defining the power of the attacker, the other necessary parameter
needed to understand security are to define and quantify the goal and success of the
attacker. The attacker will play a game where it can query the oracle (in function of
the model) and try to win the game by finding the goal like the key. An attack can be
understood as a strategy in this game for the attacker such that its probability of winning
is greater by a polynomial term (in the security parameter) than a random selection of
the answer.

One of the basic game of this type in the literature consists at the beginning of the game
to have the oracle chooses secretly between two modes: a first corresponding to what was
described previously and a second where the oracle answer to query with random strings
(of the good form). The goal of the attacker is to find which of these cases is running for
the oracle. When no attacker can win with a good advantage, the cipher is said to be
indistinguishable and with the previous model for the power of the attacker, it is defined
for example as IND-CCA.
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In symmetric cryptography, such proofs of security are rarely done for primitives and
their security is conceptualized from a practical point of view: no known practical attacks
exist against them. Security can then be understood as a continuous effort in breaking
primitives with classical or sometimes new techniques. When studied, cryptographers
don’t search first for attacks against ciphers but for a smaller component that exists in
most attacks called a distinguisher that is used to build a general attack scheme.

II.ii Distinguishers

A distinguisher is an algorithm that breaks (with a good advantage) the indistinguishibility
property of ciphers with only access to plaintexts ciphertexts pairs by deciding if the pairs
are randomly generated or generated from a cipher. Distinguishers are mostly searched
by observing ciphers and finding behaviors that should not exist in random functions.

For iterative constructions, a general extension of distinguishers over r−1 rounds into
an attack over r rounds is well known in the community and explains why the last step
(to obtain the attack) is rarely detailed in research papers. Indeed, if you assume that the
last roundkey is smaller than the master key, an attacker can ask for a set of ciphertexts
(over r rounds) and can guess the last roundkey. Using the guessed roundkey for a one
round decryption, the distinguisher can be tested on the obtained partially decrypted set
with the idea that if the roundkey is incorrect, the distinguisher should consider the set
as originating from randomness. This process can be repeated (with one less round) up
to the point where enough roundkeys have been found to retrieve the master key. By
extension, a good justification used by the designers of primitives for the security of their
constructions is to argue that no classical methods like linear or differential cryptanalysis
produced a good distinguisher. In the following subsection, we introduce differential
cryptanalysis, the principal theory we used to realized the different works of this thesis.

II.iii Differential cryptanalysis

At CRYPTO’90, Biham and Shamir [BS91a] presented an analysis of the Data Encryp-
tion Standard, the encryption standard of the standardization organism of the USA. In
the same period, differential attacks were mounted against other block ciphers like FEAL
[BS91b] to obtain new attacks. In 1998, Vaudenay et al. proposed a new framework
called the decorrelation theory to prevent differential attacks (among others) applied for
the first time in the ciphers COCONUT and PEANUT [Vau98]. The next year, Wagner in
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[Wag99] proved that decorrelation theory is not enough to ensure security against dif-
ferential attacks by exhibiting a new type of differential attack, the boomerang attack
[Wag99].Since then new variants of differential attacks appeared in the literature like the
sandwich [DKS10], rectangle [BDK01] or impossible differential [Knu98] attacks. Differ-
ential cryptanalysis is now a classical way to study ciphers and new primitives to be
seriously considered must have been analyzed against the classical differential attacks.

Differential cryptanalysis studies the transformation of differences through a cipher.
Given a pair of messages p0 and p1, the difference ∆p between the two messages is
∆p = p0 ⊕ p1. Trivially, a difference is easily propagated through a linear transfor-
mation L since L(∆p) = L(p0) ⊕ L(p1). However, the same cannot be said about the
passage through the non-linear operations where this equation becomes false. To describe
the multiple outputs that can be obtained after a non-linear operation, the community
talks about the probability of observing an output difference for a given input difference
computed by counting the number of input pairs p0 and p0 +∆p that reached the targeted
output difference. In addition to differences in the message/state, more powerful attack-
ers who can add (or know) differences in the key are sometimes considered for iterative
constructions. If the cipher behaves like a random function regarding differential analysis
then the probability to observe a particular output difference should be 2−n where n is
the size of the message. If it is not the case, we just described a particular distinguisher
against this cipher allowing us to mount an attack.

Doing a complete differential analysis of primitives is hard and to simplify this studies
for different primitives multiple sub-problems have been proposed in the literature. For
iterative block ciphers, the difference can be followed through each round to obtain a
differential characteristics. A differential characteristic can be described as the sequence
(∆0,∆1, . . . ,∆r) of differences at the beginning of each round and the output difference.
The exact probability of a differential characteristic is hard to compute but can be decently
(most of the time) approximated by considering that the transition of each round is inde-
pendent from the others. In this case, the probability of the differential is

r∏
i=1

P(∆i−1,∆i)
where P(∆i−1,∆i) is the probability that difference ∆i−1 becomes difference ∆i through
the round function. Computing differential characteristics can also be simplify be lever-
aging the structure of the round function essentially for SPN constructions. Indeed, as
said previously, the linear layer and the key addition are layers where the differences will
deterministically propagate with probability 1. It leaves only the substitution layer to
take into consideration to compute the probability through the round. Or the substitu-
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tion layer is composed of parallel applications of the S-box which can then be the size
considered for the study of the difference in the round. Since S-boxes are usually far
smaller than block sizes, the exact probability for every pair (∆in,∆out) can be computed
and the information can be regrouped in a table called the differential distribution table
(DDT). The DDT is a double entry table which gives for entry (∆in,∆out) the probability
of observing ∆out = S(x)⊕ S(x⊕∆in) over every possible value of x.

To simplify further the task of finding differential characteristics in SPN, Knudsen
[KRW99] proposed to ignore the precise value of the differences to only keep the presence
(active) or absence (inactive) of differences for S-boxes at a given round. The term
adopted by the community for this object is truncated differential characteristic. They
show themselves to be very useful for a design perspective and more precisely to argue in
favor of the resistance of new designs against differential cryptanalysis. More precisely,
consider a truncated differential characteristic with n active S-boxes and the propagation
with the best probability p for the S-box, an easy upper bound on the probability of
differential characteristics following this truncated form is then pn. The same reasoning
can be done for the truncated differential characteristics with the minimum number of
active S-boxes to obtain an upper bound on the probability of differential characteristics
on a given number of rounds. If this upper bound is lower than 2−m where m is the block
size, the cipher should be at first sight resistant against differential cryptanalysis. In the
last decade (since 2009 to be exact), new methods based on solvers were presented to find
truncated differential characteristics [SNC09; MP13; Mou+12; Sun+14; KLT15]. Solvers
are algorithms taking as input a description of a problem and searching automatically
a solution to this problem. In this thesis, we also use solvers to compute differential
characteristics. More details concerning this part of our work can be found in Chapter 3.

III Overview of the manuscript

During the thesis, our works mainly focus on differential cryptanalysis over different per-
spectives from the study of one differential criteria in one type of Feistel construction,
the study of a precise primitive SKINNY and revisiting some attacks that use differen-
tial cryptanalysis. Nevertheless, in this three works we always developed algorithms to
construct or check our results. In this section, we give a brief review of each chapter of
this thesis. In Chapter 1, we revisit the Fast Near Collision Attack (FNCA), a new type
of attack proposed by Zhang et al. [ZXM18]. The FNCA was applied to two ciphers:
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Grain v1 [ZXM18] and A5/1 in [Zha19] yielding a new key recovery attack against Grain
v1 and a new attack against A5/1 that should be faster than the state of the art up to
their publications. However, we found incoherences in the attack and proposed a correct
version of the FNCA that proves the attack is not useful.

In Chapter 2, we solve a 10-year old open problem and give new results concern-
ing Generalized Feistel networks. We especially studied a particular property called the
diffusion round concerning the permutation of Generalized Feistel networks.

Finally, in Chapter 3, we studied the differential characteristics of the block cipher
SKINNY. We used the very classical approach of splitting the search of differential char-
acteristics in two parts. By using this classical approach with carefully selected tools we
were able to find new best and good differential characteristics for SKINNY.

III.i Revisiting Fast Near Collision Attacks (FNCA)

In 2018, Zhang et al. in [ZXM18] proposed a new general attack, the Fast Near Collision
Attack, and gave as a first application an attack the stream cipher Grain v1. Then,
in [Zha19] Zhang et al. applied successfully the FNCA to A5/1 to obtain a better key
recovery attack against this primitive. The FNCA is a divide-and-conquer attack to
retrieve the internal state of a stream cipher from the keystream. It splits the internal
state in two parts the crucial part (CP) and the rest part (RP). Once the crucial part is
known, the rest part can efficiently be recovered. The crucial part is retrieved with a near
collision attack based on a small sample of the keystream.

During the PhD, we tried to implement the FNCA against A5/1 and after a careful
review of the process, we found incoherences from an information theoretical point of
view in the description of the attack and some error in the code that Zhang used to test
component of his attack on A5/1. As a result, we reevaluated the complexity of the FNCA
and verified experimentally that no bias exists in the two targets that could explain the
complexities announced by Zhang et al.. We also give the corrected complexity of the
FNCA and prove that Zhang et al. severely underestimated the real cost of their attacks.
This work is presented in Chapter 1 and was published at FSE:
Patrick Derbez, Pierre-Alain Fouque, and Victor Mollimard, “Fake Near Collisions At-
tacks”, in: IACR Transactions on Symmetric Cryptology 2020.4 (Dec. 2020), pp. 88–103,
doi: 10.46586/tosc.v2020.i4.88-103, url: https://tosc.iacr.org/index.php/
ToSC/article/view/8749
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III.ii Efficient Search for Optimal Diffusion Layers of General-
ized Feistel Networks

Feistels are one of the most classical way to construct block ciphers. At CRYPTO’89,
Zheng et al. [ZMI89b] proposed different generalizations of the basic Feistel construction.
One of them consists in applying in parallel multiple Feistel constructions then shifting
all branches to the right. As remarks in [Nyb96; SM10], the shift to the right is not
the only permutation that can be used. They named the construction with an arbitrary
permutation as Generalized Feistel Networks.

However, no family of permutations to use for a better scheme was given. In 2010 at
FSE, Suzumaki and Minematsu [SM10] proposed one criteria, the diffusion round, which
can help for the choice of a particular permutation. The diffusion round of a permutation
can be understood as a measure of the speed necessary in number of rounds for a difference
on any branches to diffuse to every branches of the Feistel construction. In their work,
Suzumaki and Minematsu were able to exhaust and evaluate every permutations for up to
16 branches to find all optimal permutations. Furthermore, after remarking that for every
number of branches they studied, there was always an optimal even-odd permutation,
defined as a permutation that transforms even numbers in odd numbers and the converse.
As a result, they proposed a generic construction to find a good even-odd permutation
when the number of branches is a power of two. In particular, they found a good even-
odd permutation for 32 branches with a diffusion round of 10. In 2019, Cauchois et al.
[CGT19] presented a new method to construct optimal even-odd permutations allowing
them to find them up to 26 branches.

During this PhD, we studied the problem of finding optimal permutations for GFN.
We presented a new characterization of the diffusion round and we used it in an efficient
algorithm searching for optimal even-odd permutation with a diffusion round of 9 for GFN
of 28 to 42 branches. As such, we were able to find all optimal even-odd permutations
for 28, 30, 32, 34 and 36 branches as well as found good candidate permutations for 38,
40 and 42 branches.

This work is presented in Chapter 2 and was published at FSE:
Patrick Derbez et al., “Efficient Search for Optimal Diffusion Layers of Generalized Feis-
tel Networks”, in: IACR Transactions on Symmetric Cryptology 2019.2 (June 2019),
pp. 218–240, doi: 10.13154/tosc.v2019.i2.218-240, url: https://tosc.iacr.org/
index.php/ToSC/article/view/8321
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III.iii Efficient Methods to Search for Best Differential Charac-
teristics on SKINNY

SKINNY is a family of tweakey SPNs designed in 2016 by Beierle et al. [Bei+16]. There
are six versions grouped in terms of size in two families: SKINNY-64 and SKINNY-128 using
respectively blocks of 64 and 128 bits. To give a first idea of its security against differential
cryptanalysis, its designer included in its specification [Bei+16] a model to search for the
minimum number of active S-boxes in a truncated differential characteristics. The model
is solved by a constraint solver and more precisely a MILP solver. A constraint solver is a
generic algorithm that takes in input a description of a problem, containing variables and
relations between them and searches a solution of this problem. In MILP, the variables’
values are numbers and the constraint are linear inequalities between those variables.

Since then few results were published concerning the differential characteristics of
SKINNY. To the best of our knowledge, only two papers present results on them: Liu et al.
in [LGS17] needed some good differential characteristics to study the resistance of SKINNY
against boomerang and rectangle attacks in the tweakey settings. Using a MILP modeling
of SKINNY-64 and an ad-hoc tools for SKINNY-128, there were able to find in the different
tweakey settings the best differential characteristics up to 13 rounds for SKINNY-64 and
some good differential characteristics (but on a small number of rounds) for SKINNY-128.

The second result we found concerning the differential characteristics of SKINNY was
published by Abdelkhalek et al. in [Abd+17]. They found the best differential charac-
teristics of SKINNY-128 in the single key settings up to 13 rounds using a MILP model
containing an efficient description up to now thought impossible of the 8-bit S-box of
SKINNY-128. Moreover, they showed that no differential characteristic with a better prob-
ability than 2−128 exist for 14 rounds (and more) in the single key setting.

We complete the knowledge concerning the differential characteristics of SKINNY. In
this work, we adopted a very classical approach of splitting the search in two steps. The
Step 1 consists in searching truncated differential characteristics and the Step 2 consists
in instantiating in value the solutions found in the first step. The contributions of this
work other than the new results are the way the two steps are solved. We proposed a
new tool to complete the Step 1 search based on dynamic programming. For the Step 2
process, we used a constraint programming solver, another type of constraint solver that
allows more types of constraints than the MILP and obtained a faster resolution of the
Step 2 process than the MILP modeling of [Abd+17]. In this way, we were able to
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compute every optimal differential characteristics with a probability greater than 2−64 in
the round reduced version of SKINNY-64. Concerning SKINNY-128, we retrieved the results
of [Abd+17] within of few minutes (compared to 16 days) and found new best differential
related-tweakey characteristics in the different related-tweakey settings. Furthermore, we
found in some of those tweakey settings good differential characteristics on a greater round
reduced versions and proved that none could exist for some given numbers of rounds.
This work is presented in Chapter 3 and was published at ACNS:
Stéphanie Delaune et al., “Efficient Methods to Search for Best Differential Character-
istics on SKINNY”, in: International Conference on Applied Cryptography and Network
Security, Springer, 2021, pp. 184–207
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Chapter 1

REVISITING THE FAST NEAR COLLISION

ATTACK

1.1 Introduction

Recently, the fast near collision attack (FNCA), a new general attack was applied to both
Grain [ZXM18] and A5/1 [Zha19], two stream ciphers. During the PhD to study in more
details A5/1, we try to implement completely this new attack against A5/1 but we were
not able to do so. Then, we did a review of the attack and found some incoherences in
the published results. By extension, we also reviewed the FNCA against Grain and found
the same incoherences. As a result, we decided to formally review and checked the results
of these two papers using some algorithms containing elements of information theory.

A5/1 was designed in 1987 for the Global System for Mobile Communication (GSM)
and became public in 1994 with a leak of the general design before being completely
reverse engineer in 1999 by Marc Briceno. Ross Anderson reported a "terrific row between
NATO signal intelligence agencies in the mid-1980 over whether GSM encryption should
be strong or not". Germany wanted a strong design to protect its communication against
possible interception by the Warsaw Pact, the other allies wanted a weaker design. Finally,
a French design was adopted. Without surprise, attacks and vulnerabilities were found
beginning with Anderson in 1994 [And94] based on guessing majority of the state. In
1997, Golic̀ [Gol97] proposed an attack with a complexity of 241.16 where some guesses
on the clock are used to generate a linear system of equations. A more efficient version
of Golic̀ attack was proposed by Biryukov et al. [BSW00] in 2000 with a well adapted
time-memory trade-off. In the same year, Biham et al. published [BD00], another attack
needing 239.91 clockings and 220.8 plaintexts. In 2003 Ekdhal et al. proposed a new attack
[EJ03] against the initialization process of A5/1. It is improved a first time in 2004, by
Maximov et al. in [MJB04] and a second time by Barkan et al. in [BB05] to yield an
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attack needing a few minutes. Although multiples vulnerabilities were found, counter
measures were adopted in the GSM standard to ensure security. Nevertheless, A5/1 is
still an important target of study with its preponderant role in some legacy systems (G2).

Gain v1 is another stream cipher and is part of the eSTREAM portfolio [RB08] with
the rest of the Grain stream cipher family. As a more modern stream cipher, a considerable
effort to cryptanalyse Grain v1 exists in the literature. Since 2009 and its invention by
Dinur et al. in [DS09], cube attacks were increasingly successfully applied to Grain to
cite only some of those works [DS11; Wan+13; Ban14; Rah+16]. This last cube attack is
a key recovery attack on reduced version of Grain v1 where initialization is reduced to
100 rounds with a complexity reduced from the exhaustive search by a 232 factors. Other
methods of attacks against Grain in the literature are among others an algebraic attack
[AM08], internal state recovery attacks [Mih+12b; Mih+12a] or a near collision attack
[Zha+13]. Nevertheless, the complete Grain is still seen as a secure stream cipher for the
numerous keystream bits necessary for the attacks. In this context, the attack proposed
by Zhang et al. in [ZXM18] that we revisit in this Chapter is even more impressive as an
efficient key recovery attack on the whole scheme.

Checking results is in some sciences such as experimental physics as important as the
result itself. In these research domains, results have to be validated by two separate
and independent teams before being published. In some computer sciences areas where
results can depend on the input data set, it is also highly important to give access to these
data and to the code. In data mining for example the reproducibility of results has been
acknowledged as mandatory before publishing work in order to ease the checking and/or
comparison of this work with further research works.

In symmetric cryptography, where usually the complexities of attacks and distinguish-
ers can be out of reach with experiments, a well-known method consists in experimentally
checking only some parts of the attack and/or by targeting a toy cipher. Indeed attacks
can usually be split in two parts: the adversary has to guess some bits and then he evalu-
ates some distinguishers. The evaluation of the distinguisher cannot be exhaustive since it
would have been tested for all guess bits. If we checked that the distinguisher is working
for random guess, we declare that the attack is validated. However, it is the authors’
accountability to check carefully the experiments and reviewers usually verified the fact
that the authors seem to have correctly performed their results. Nevertheless, sometimes
it is not sufficient to ensure the correctness of some proposed attacks and it is up to the
community to revisit and discuss previous works to offer new insights on their contribu-
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tions. For instance in [Gra01] Granboulan showed that differential attacks on SKIPJACK
proposed in [KRW99] were flawed because the probabilities of some differential charac-
teristics were not correctly evaluated. In 2007, Wang, Keller and Dunkelman [WKD07]
caught a similar error for an impossible differential used in several attacks on SHACAL-1.
Such errors may also come from hypothesis which do not hold for all ciphers as exemplified
by Murphy [Mur11] with boomerangs on both DES and AES.

Symmetric cryptography is not the only place where mistakes can be made. In public-
key cryptography and provable cryptography, it is also possible to discover errors as the
famous bug in the OAEP paper [BR94], which has been corrected in [Sho01; Fuj+01]. The
same kind of problems appeared in proofs in symmetric cryptography for the equivalence
between the random oracle model and ideal cipher model [CPS08] corrected in [HKT11]
and more recently in the security proof of the OCB-2 mode of operation [Ino+19]. Conse-
quently, Barthe et al. have developed tools to verify these proofs as in [Bar+11b; Bar+11a]
and even on the corrected proofs they have been able to spot some errors or imprecisions
since these tools do not accept unclear arguments or logical flaws. As a consequence,
they design the EasyCrypt tool to help the verification of cryptographic proofs to reason
about code-based proofs as these tools were first developed to verify programs. There
is no such tool to check symmetric-key cryptanalysis. The verification of these attacks
boils down to checking the complexity analysis of the cryptanalytic algorithm. The main
difficulty is that some parts are heuristic and the verification of these heuristics are not
easy to automatize and to perform rigorously. Moreover, understanding the problems is
not always an easy task since it requires to reverse engineer the experiments performed
which are subject to statistical effects and it is less easy than reading a proof.

Contributions. In this Chapter, we look at the recent fast near collision attacks proposed
by Zhang, Xu and Meier against the Grain v1 [ZXM18] stream cipher and by Zhang
against A5/1 [Zha19]. The main idea behind fast near collision attack consists in a divide-
and-conquer partition of the full internal state into the crucial part (CP) and the rest part
(RP). The latter part can be efficiently recovered using only the CP, while the former one
is retrieved using a near collision attack based on a small number of bits of the keystream.

Our first goal was to implement the attack on the A5/1 stream cipher since the time
and memory complexities seem within our reach and practical. However, during this
process we discovered several issues in the claimed probabilities, leading to an overall
complexity much worst than expected. In fact, we came up to implement a slower version
of the attack proposed by Golić at Eurocrypt’97 [Gol97]. Consequently, we scrutinized
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this article and decided to reevaluate the time complexity to 228 calls to (the end of)
Golić’s attack, for an overall complexity around 242. Since this attack is a bit difficult as
it is flooded with the details of the stream cipher under attack, we decided to present its
basic ideas in a self-contained manner. The details can be found in Section 1.3. Finally,
we decided to also verify the previous attack on Grain v1 as proposed at Eurocrypt’18
and we discovered similar problems in the analysis. In particular, the correct overall
complexity is 2113 and so the attack is less efficient than the naive exhaustive search
in 287.4 ticks on Grain v1. The complete analysis is presented in Section 1.4.

More importantly, we show in Section 1.2 that fast near collision attacks, as described
in both [ZXM18] and [Zha19], are intrinsically erroneous. Replacing the refined self-
contained method, which is the core of those attacks and the only algorithm relying on
near collisions, by an algorithm outputting a random set (of fixed size) of pre-images
would lead to the exact same complexities. Thus such attacks are illusive.

1.2 Fast Near Collision

At Eurocrypt’18, Zhang et al. described a new powerful cryptanalysis technique called
fast near collision attack. This technique was specially designed to analyze stream ciphers
and was successfully applied to both Grain v1 [Hel+06] and A5/1 [BGW99]. It combines
both a divide-and-conquer approach and near collisions. The core idea is to use near
collisions to restrict the possible values of some bits of the internal state.

1.2.1 The refined self-contained method

Let f be a public function from n to m bits, xs be a secret n-bit word and ks the output
of f(xs). A classical objective is to retrieve xs from the knowledge of both f and ks. In
the following we will explain how the fast near collision technique claims to restrict the
search space for xs.

The process is composed of 3 procedures which aim at computing a set X containing
xs with a high enough probability.

Precomputation. The first step in a fast near collision attack is to construct a differ-
ential table Td mapping each pair (∆k, k) to all possible ∆x such that:

• |∆x| ≤ d
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• there exists x such that f(x) = k and f(x⊕∆x) = k ⊕∆k.

In other words, the table Td is a variant of the classical differential distribution table
associated to an S-box. The number of times ∆x is solution for (∆k, k) is also stored as
extra information. This allows for each value of k to select ∆k to maximize the probability
of f(x⊕∆x) = k ⊕∆k knowing both f(x) = k and ∆x ∈ Td [∆k, k].

Note that in case it would be too costly to fully compute Td, x and ∆x can be sampled.

Online. The second step of the procedure uses the precomputed table to generate a set
X containing xs with a good probability. The process is described in Algorithm 1. The
idea is to randomly generate x, compute k = f(x), look into Td [k ⊕ ks,ks] for possible
∆x’s and check whether f(x⊕∆x) = ks. If the last equality holds then x⊕∆x is added
to the set X as a possible value for xs.

Algorithm 1 The refined self-contained method
1: Data: keystream ks, difference ∆k, table Td,
2: Result: a set X such that xs ∈ X has high probability
3: X ← ∅
4: for i = 0 to N do
5: randomly generate x such that f(x) = ks ⊕∆k
6: for all ∆x ∈ Td[∆k,ks] do
7: if f(x⊕∆x) = ks then
8: X ← X ∪ {x⊕∆x}
9: end if
10: end for
11: end for
12: return X

Amplifying phase. In order to increase the probability that X contains xs, Zhang et
al. propose to run N ×M times Algorithm 1 , each random invocation outputting a set
denoted Xi,j (i = 1 to N and j = 1 to M). Then a new set is outputted by computing

X =
N⋃
i=1

 M⋂
j=1

Xi,j

 .
1.2.2 About probabilities

While we could discuss on the interest of this construction, we are only interested by the
probability that xs belongs to the constructed set X.
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Grain v1. In [ZXM18], Zhang et al. used the fast near collision technique to mount an
attack against Grain v1. They applied the refined self-contained method to a function f
such that n = 12 andm = 2. They obtained a setX of size 848 and claimed the probability
for xs to belong to X is around 89.64% which is a bit higher than the 848/1024 = 82.81%
expected. Note that here the function f is such that z = f(x) can be rewritten as
z = x1 ⊕ h(x2) and thus, the refined self-contained method was applied on h(x2) = 0. In
particular this means that the search space is restricted without the knowledge of any bit
of keystream.

A5/1. In [Zha19], the function f is such that n = 15 and m = 2. Zhang obtained a set X
of size 7835 and claimed the probability for xs to belong to X is around 99.09% which is
higher than the 7835/8192 = 95.64% expected.

We claim all those claimed probabilities are wrong or, more precisely, cannot be true
without a big enough bias in the initialization phases of both A5/1 and Grain v1. This
is supported by the following theorem:

Theorem 1.1. Let A be an algorithm which takes as input a function f and an element
ks and outputs a subset X of f−1(ks). Let xs be an element of f−1(ks) drawn uniformly
at random. The probability that xs belongs to X is exactly

|X|/|f−1(ks)|.

The refined self-contained method fulfils the requirements of Theorem 1.1 but Zhang
et al. claim the set X output by the algorithm contains the secret xs which generated ks
with a good probability. Note that the algorithm can be run before the secret was actually
generated and thus Zhang et al. claim can be invalidated by the following experiment:

1. randomly generate ks

2. run the refined self-contained method on f and ks and obtain the subset X

3. draw xs uniformly at random in f−1(ks)

4. check whether xs belongs to X

Hence, the probabilities given in both [ZXM18] and [Zha19], and by extension the
complexity of corresponding attacks, are quite suspicious. Actually, they would hold if
and only if it is not possible to draw xs uniformly at random in f−1(ks) which would
imply bias in the initialization process.
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1.2.3 Several issues

We found several issues and unreproducible results in both [ZXM18] and [Zha19]. The first
and most important one is about the set outputted by Algorithm 1 and, more precisely,
about its average size and the average probability for the right value to belong to this
set. For both Grain v1 and A5/1, they were obtained experimentally from unspecified
procedures and do not satisfy Theorem 1.1. Since Zhang et al. state to have conducted
extensive experiments, either the whole experiments were flawed or the pseudo-random
generators they used were biased.

Another issue lies in the amplifying phase. First the computations are all based on
the wrong results regarding Algorithm 1 and so are unlikely to be correct. But there
is another issue with this phase. Authors used two independent theorems to exhibit the
claimed special behavior of the set X constructed in the amplifying phase: one to compute
the size of X and one to compute the probability for the right value to belong to X. While
using two different avenues to prove two properties on the same set is not important in
regards to the truth of the statement, the theorem they used to compute the size of
X (Statement 1.1 in this chapter) is flawed. As a consequence, there is a decorrelation
between the computation of the probability that X contains the correct value and the
computation of the size X, explaining again the incorrect complexities they found for
their attacks.

Statement 1.1 (Theorem 3 of [ZXM18]). Let V be a set and let draw uniformly at random
a collection (Ui) of subsets of V . Let Fi = ⋃

k≤i
Uk. Then on average the following relation

holds:

|Fi+1| = |Fi|+ |Ui+1| −
|Ui+1|∑
j=0

(
|Fi|
j

)
·
(
|Fi+1|−|Fi|
|Ui+1|−j

)
(
|Fi+1|
|Ui+1|

) · j

The sum in the formula is expected to compute the average size of the intersection
between both the sets Fi and Ui+1 and this is where the error lies. The main idea is
correct as they count the number of configurations such that j elements of Ui+1 belong to
Fi and |Ui+1| − j elements do not. But actually, at this point, not in Fi does not mean in
Fi+1 − Fi but means in V − Fi. Indeed, Ui+1 is drawn as a subset of V not as a subset of
Fi+1. Hence the corrected version of the Statement 1.1 is proposed in Theorem 1.2.

Theorem 1.2 (Corrected version). Let V be a set and let draw uniformly at random a
collection (Ui) of subsets of V . Let Fi = ⋃

k≤i
Uk. Then on average the following relation

29



Chapter 1 – Revisiting the Fast Near Collision Attack

holds:

|Fi+1| = |Fi|+ |Ui+1| −
|Ui+1|∑
j=0

(
|Fi|
j

)
·
(
|V |−|Fi|
|Ui+1|−j

)
(
|V |
|Ui+1|

) · j

In particular, the formula used by Zhang et al. would always underestimate the average
size of set Fi. This fully supports our claiming: to reach the probabilities announced in
both [ZXM18] and [Zha19] the size of the set output by the refined self-contained method
has to be bigger than they expected.

Finally there is a wrong assumption about the right value. More precisely, in both
papers authors assume there is only one right value that will behave differently than the
wrong ones. With enough keystream bits this is true that there is only one internal state
solution. But the fast near collision only uses a small part of the known keystream bits
and so the assumption of only one right value does not hold. For instance, for the attack
against A5/1, the fast near collision technique is applied to only 5 keystream bits and we
show Section 1.3.3 there are many more right values than only one.

In the next sections, we will show for both Grain v1 and A5/1, the observed deviation
in the probabilities is wrong and will give the corrected complexities of the corresponding
attacks.

1.3 Fast Near Collision on A5/1

In this Section we carefully study the attack presented in [Zha19] on the A5/1 stream
cipher. This attack is absed on a divide and conquer partition of the internal state. The
first part of the internal state called the crucial part (CP) is The second part of the
internal state called the rest part (RP) is obtained by leveraging the knowledge of the CP
and the keystream with the attack proposed by Golić in [Gol97]. To be as complete as
possible, we begin with recalling the design of A5/1 and Golić attack. Then, we describe
Zhang used of fnca on A5/1 and explain why its complexity was underestimated.

1.3.1 Description of A5/1

A5/1 is a stream cipher underlined by a 64-bit internal state. The internal state is com-
posed of three short linear feedback shift registers (LFSR) of length 19, 22 and 23 bits
respectively. In the rest of the chapter we will refer to them as R1, R2, R3. As illustrated
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in Figure 1.1, the feedback taps for each LFSR are positions 13, 16, 17 and 18 for R1,
20 and 21 for R2 and 7, 20, 21 and 22 for R3. Furthermore, each LFSR also possesses a
clocking tap at position 8, 10, 10 for respectively R1, R2 and R3, represented with the
red arrows in the figure.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Output

Figure 1.1 – Description of A5/1 (source: [Jea16]). The 33 blue bits are the one required
to compute the first 5 keystream bits.

A5/1 uses an asynchroneous clocking regime for the LFSRs: at each clock tick, a LFSR
is clocked if its clock tap value is the majority value between the three clocking taps (refer
to Table 1.1 for the plain list of the clocking).

clock value of
R1 0 0 0 0 1 1 1 1
R2 0 0 1 1 0 0 1 1
R3 0 1 0 1 0 1 0 1

register clocked
R1 X X X - - X X X
R2 X X - X X - X X
R3 X - X X X X - X

Table 1.1 – Clocking of A5/1

Finally, we review the utilisation of the A5/1 stream cipher during a GSM conversation
session with Algorithm 2, the pseudo code for the generation of the 228 bits of keystream
of one GSM session.

1.3.2 An attack from Golić

In [Gol97], Golić introduces a clever memory-less attack against A5/1. It is a basic divide-
and-conquer attack recovering the unknown initial state from a known keystream sequence
(of 64 bits). Called the initial state S0 and defined the sequence of internal states after n

31



Chapter 1 – Revisiting the Fast Near Collision Attack

Algorithm 2 The procedure used during a GSM session to generate 128 bits of keystream
1: P = (F,K) = (P85, . . . , P0) an 86-bit word composed of a 64-bit key K and a 22-bit

frame F

2: for i = 0 to 85 do Loading Parameters
3: R1[0], R2[0], R3[0]← R1[0]⊕ Pi, R2[0]⊕ Pi, R3[0]⊕ Pi
4: clock R1, R2, R3 simultaneously
5: end for
6: for i = 0 to 99 do Initialization
7: clock R1, R2, R3 asynchronously
8: end for

9: for i = 0 to 227 do Keystream generation
10: zi = R1[18]⊕R2[21]⊕R3[22]
11: clock R1, R2, R3 asynchronously
12: end for

13: Output z = (z227, . . . , z0) the keystream

clocking as Snn. In his attack, Golic̀ reconstructs the internal state S101 from the known
keystream than uses it to determine S0.

First, the main idea to recover S101 is quite simple: it is an elimination of the non-
linear operations by guessing the clock bits. Remarks that in his paper, Golic̀ proved that
only 5 · 261 ≈ 263.32 states S101 were reachable from the inital state S0. In the following,
we will search S101 in this set of reachable states.

If, for each of the three LFSRs, one guesses the clock bit for n (asynchronous) clocks
of the LFSRs, we can obtain 3n linear/affine equations. For instance, for n = 10 it means
guessing on the initial state R1[0..8], R2[1..10], R3[1..10] as well as R1[13] ⊕ R1[16] ⊕
R1[17] ⊕ R1[18]. In this exemple, the equations obtained for the first register when
guessed values are called g1,i, i ∈ [0..9] are:

∀i ∈ [0..8], R1[i] = g1,i

R1[13]⊕R1[16]⊕R1[17]⊕R1[18] = g1,9

Furthermore, from those 3n guesses we know the beginning of the clocking sequence
and obtains on average 1+4n/3 affine equations from the knowledge of the keystream bits
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(the first keystream bit is computed before clocking with the guessed sequence). Indeed,
at each step the probability for a register to be clocked is 3/4 (see Table 1.1) and as
a consequence from the 3n guesses we know on average the clocking sequence for 4n/3
rounds, leading to the equations R1i[18]⊕R2i[21]⊕R3i[22] = zi for 0 ≤ i ≤ 4n/3. Note
that trivially these 1 + 4n/3 equations are linearly independent: each one has at least two
new variables appearing from the minimum two registers that are clocked while n ≤ 18.
They also are linearly independent of the first 3n equations if each of them contains at
least one bit that was not guessed. This happen with high probability given that n ≤ 10.
For now, we will consider that the 1 + 4n/3 equations are linearly independent of the
3n first. Hence, a naive solution would be to accumulate enough equations to solve the
system by inverting a matrix. This would require n to be such that 1+4n/3+3n ≥ 63.32,
so n ≥ 14.38 (respecting effectively the condition for the 1+4n/3 equations to be linearly
independent). But actually, for n > 10, the equations are not linearly independent, and
we need to increase the number of guesses to make.

To overcome this issue, Golić proposed a better algorithm close to the early abort
technique [Lu+08]. The basic idea he proposed was to used redundant equation as a
consistency tool. First, one uses the method previously described with n = 10 to obtain
1+3n+4n/3 ≈ 44.3 linearly independent equations on average. Than instead of guessing
the remaining m ≈ (63.32−44.3)

3 missing bits in each LFSR, Golic̀ proposed that at each step
the adversary guesses/computes the majority bit, gets the corresponding equation from
the corresponding keystream bit and checks whether it is consistent with the previously
obtained equations. If the equation is consistent, the equation is added to the system, the
missing clocking bits are guessed/computed from the majority bit and the already known
clocking bits and the whole state is clocked. This process is repeated until the system
uniquely determines the 64-bit state. Golić showed that the average complexity of the
procedure is around 241.16 simple operations.

In his paper, Golic̀ also presents a way to reconstruct the key and the frame number
from the inital state S0. In this sense, the attack proposed by Golic̀ in [Gol97] and by
Zhang in [Zha19] are key recovery attacks against A5/1.

1.3.3 Fast near collision attack against A5/1

At Asiacrypt’19, Zhang proposed an improved memory-less attack against A5/1, claim-
ing a time complexity around 231 clocks [Zha19]. Given a sufficiently long sequence of
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keystream bits (around 64), he proposed a 2-step procedure to recover the full internal
state.

1. The main observation is that 2 consecutive bits of keystream only depend on 15
variables of the internal states. Using the technique described in Section 1.2.1,
Zhang constructs a set containing approximately 7835 values for the 15 variables
and claims that the probability the value we want is in it to be around 99.09%.
Four such sets are constructed, one for each pair (zi, zi+1) of keystream bits, for i
from 0 to 3. Then a sophisticated merge procedure is applied to construct a set of
216.6 values for the 33 bits of the internal state leading to z0z1z2z3z4. Furthermore,
Zhang claims that the probability for the set to contain the right value is round
(0.9909)4 = 96.41%. Note that 216.6 possibilities is much lower than 233−5 = 228,
which is what we would intuitively expect.

2. The 31 remaining state bits are recovered using the procedure of Golić described
Section 1.3.2 with few refinements.

1.3.4 Complexity correction

In this section, we show the time complexity of the attack presented by Zhang at Asi-
acrypt’19 is actually much higher than announced in [Zha19]. More precisely, we show it
is impossible to restrict the number of possible values for the 33 bits of the crucial part
(CP) from 233 to 216.6 using only the 5 first keystream bits without drastically decreasing
the probability of success of the attack. Hence, it turns out Zhang’s attack has the same
complexity than the one of Golić.

Theoretical analysis. As explained in Section 1.3.3, the attack proposed by Zhang
begins by the recovery of the crucial part (CP) corresponding to 33 bits of the internal
state of A5/1. Those bits are coloured in blue on Figure 1.1. The only information used
in the procedure to do so is the first five bits of keystream generated from the internal
state.

Let x be a randomly chosen value for the CP part and k its corresponding 5-bit
keystream output. In his attack, Zhang claims that from k he can extract a set of 216.6

CP configurations containing x with a very high probability. To invalidate this result we
first make the following proposition:
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Proposition 1.1. Given a 5-bit keystream output k, there are exactly 228 values for the
33 bits of the CP part leading to k.

Proof. The 33 bits of the CP part can be divided into two groups: one composed of 15 bits
(R1[4...8], R2[6..10] and R3[6...10]) used only to determine the clocking sequence and one
composed of 18 bits (R1[13..18], R2[16...21], R3[17..22]) used to generate the keystream
bits. Hence, once the 15 bits of the first group are fixed, the clocking sequence is known
and so each of the five first keystream bits is computed as a linear combination of the 18
bits of the second groups. Furthermore, those 5 linear equations are independent since
each of them depends on at least one bit that does not appear in the other ones (because
at least two registers are clocked each round). Thus, for each possible value of k we have
exactly 218−5 = 213 possible values for the 18 bits of the second groups.

According to Proposition 1.1, the claim of Zhang would imply that over the 233 possible
values of the 33 bits of the CP part, only a subset of 216.6+5 = 221.6 values (a set of 216.6 for
each of the 25 possible keystream values) can be actually reached after A5/1 initialization,
the remaining ones being reached with marginal probability. While it seems quite obvious
that such a big bias would have already been observed, we ran several experiments to
refute the claim made by Zhang.

Experimental results. We first experimentally verified Proposition 1.1. We count for
each of the 25 5-bit keystream prefix the number of CP values that generate it. As
expected, we found that for 5 given bits of keystream prefix, there are exactly 228 CP
combinations that generate it.

The second hypothesis we studied was a potential bias in reaching every CP config-
uration from the initialization phases of a GSM session. To test this hypothesis, we ran
two experiments, sampling at random the 33-bit CP part after an A5/1 initialization.

For the first one, we simply drawn uniformly at random 236 64-bit keys and 22-bit
frame counters. For each of them we performed the initialization process of A5/1 as
detailed in Algorithm 2 and computed the corresponding value of the 33 bits of interest.
To avoid any bias in the experiment we used AES in CTR mode as source of randomness.
For the sake of clarity and to give more details about the random sampling, we give a
pseudo-code description of the experiments in Algorithm 3.

The second experiment is exactly the same as the first one but the 64-bit key is
composed of 54 random bits and 10 zeroes for its rightmost bits as it was traditionally
done in some system, like comp128v2.
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Algorithm 3 Experiment
1: sample a 128-bit word key from /dev/rand Setup
2: initialize a 128-bit word counter at 0
3: initialize a 233 array called configuration;

4: for i = 0 to 236 do Experiment
5: random = AES-CTR(key,counter) and increase counter
6: extract from random one A5/1-key, keyExp and one A5/1-frame, frameExp
7: do an A5/1 initialization with keyExp and frameExp
8: select the 33-bit of the CP part of the obtained internal state
9: increment the corresponding field in configuration
10: end for

11: Output configuration

We present in Figure 1.2 the distribution of occurrences of the 233 possible CP values
for respectively GSM session key of 54 random bits and 64 random bits and for randomly
selected internal states of 64-bit in the form of histograms mapping a value n to the
number of CP configurations (in log scale) that are sampled n times.

No bias as strong as the one presented in the complexity announced by Zhang can be
observed on those representative histograms.

Finally, we provide a last experiment definitely showing the attack presented in [Zha19]
is flawed.

1. Randomly generate a 5-bit word ks

2. Run the refined self-contained method to obtain a set X of size 216.6. According
to [Zha19], this set should contain the secret which generated ks with probability
0.9641.

3. Do N times:

(a) Randomly generate a key and a frame counter and run the initialization process

(b) Check whether the first five keystream bits match ks. If not repeat the previous
step.

(c) Check whether the value of the CP part belongs to X.
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Figure 1.2 – One diagram represents the number of 33-bit CP part values (in log scale)
from experimental data in ordinates that are reached exactly x times on the horizontal axe.
The experimental data for the two red diagrams are generated as described in Algorithm 3
with 54-bit keys for the left one and 64-bit keys for the right one. The experimental data
of the blue diagram comes from directly randomly generating the 33-bit CP part of the
A5/1 internal state.

4. Check whether the experimental probability matches the expected one.

We ran this experiment1 10 times withN = 228 and found the experimental probability
to be very close to 2−11.4, confirming the probability of 0.9641 claimed by Zhang to be far
from the reality.

Corrected complexity. With the probability of success corrected, Zhang’s attack be-
comes very similar to the one of Golić. The difference is that he would guess 18 extra bits
while Golić would have 5 linear/affine equations between those 18 bits and the keystream.

1. Actually at each trial we took for X the set of the 216.6 values reached the most. This highlights
the refined self-contained method is irrelevant and can be replaced by any algorithm outputting a set of
size 216.6.
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Hence in Zhang attack one would proceed less keystream bits before obtaining an invert-
ible system of equations and thus more keystream bits should be checked a posteriori,
leading to an attack which cannot be better than Golić one.

1.4 Fast Near Collision on Grain v1

In this section, we study the attack proposed at Eurocrypt’18 [ZXM18] in the same way
we did in the previous section for A5/1.

1.4.1 Description of Grain v1

Grain is a family of stream ciphers that was retained in the eSTREAM portfolio [09].
In this chapter, we focus on Grain v1 as specified in [HJM07]. This stream cipher is
composed of one LFSR of 80 bits chained with a non-linear feedback shift register (NFSR)
of 80 bits.

b79 b78 . . . b1 b0 s79 s78 . . . s1 s0

fg

h∗

output

nfsr lfsr

Figure 1.3 – Simple representation of the grain v1 cipher

At step i, the content of the LFSR is denoted by si, si+1, . . . , si+79 and the content of
the NFSR is denoted by bi, bi+1, . . . , bi+79.

The update function of the LFSR is defined as

si+80 = si+62 ⊕ si+51 ⊕ si+38 ⊕ si+23 ⊕ si+13 ⊕ si,
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and the one of the NFSR as

bi+80 = si ⊕ bi+62 ⊕ bi+60 ⊕ bi+52 ⊕ bi+45 ⊕ bi+37 ⊕ bi+33 ⊕ bi+28 ⊕ bi+21 ⊕ bi+14

⊕ bi+9 ⊕ bi ⊕ bi+63bi+60 ⊕ bi+37bi+33 ⊕ bi+15bi+9 ⊕ bi+60bi+52bi+45

⊕ bi+33bi+28bi+21 ⊕ bi+63bi+45bi+28bi+9 ⊕ bi+60bi+52bi+37bi+33

⊕ bi+63bi+60bi+21bi+15 ⊕ bi+63bi+60bi+52bi+45bi+37 ⊕ bi+33bi+28bi+21bi+15bi+9

⊕ bi+52bi+45bi+37bi+33bi+28bi+21.

At each step, the output bit is computed from 8 bits of the NFSR and 4 bits of the
LFSR as

zi = h(si+3, si+25, si+46, si+64, bi+63)⊕
⊕
k∈A

bi+k,

where h is a boolean function of degree 3 and A = {1, 2, 4, 10, 31, 43, 56}.

The initialization of Grain v1 is described in Algorithm 4. First, the 80-bit key is
loaded into the NFSR and the 64-bit IV into the 64 first bits of the LFSR. Remaining bits
of the LFSR are set to 1. Then, the internal state is clocked 160 times with a re-injection
of the output bits.

1.4.2 Zhang et al. attack

At Eurocrypt’18, Zhang et al. presented a fast near collisions attack against Grain v1,
claiming a time complexity around 275.7 ticks. Let xi be

⊕
k∈A bi+k so that zi = xi ⊕

h(si+3, si+25, si+46, si+64, bi+63). For each 0 ≤ i < j ≤ 19, they applied the refined self-
contained method together with the amplified phase to (zi, zj) and obtained a subset of
the possible pre-images Xi,j containing the right value with probability p. As xi can be
directly computed from the value keystream bit zi and si+3, si+25, si+46, si+64 and bi+63,
they did not store xi nor xj in the Xi,j. As a result they claim that Xi,j contains on
average 848 elements (over 210) and p = 89.64%.

The next step of the attack is to merge all those 190 sets to get a set X containing
only values leading to the rightful first 20 bits of keystream. They claim that X would
contain on average 26.67 elements and the probability for the right value of the internal
state to be in X would be around p343 = (0.8964)343 = 2−54.09. The time complexity of
the whole attack is then proportional to |X| × p−343.
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Algorithm 4 The initialization procedure and keystream generation of Grain v1
1: key a 80-bit key Parameters
2: iv a 64-bit initial value

3: Load key in Initialization
4: Load iv in
5: for i = 0 to 15 do
6: si ← 1
7: end for
8: for i = 0 to 159 do
9: compute o = h∗(s79, s54, s33, s15, b16, b78, b77, b75, b69, b48, b36, b23)
10: clock the LFSR and the NFSR with the following respective feedback bits:
11: f(s79, s66, s56, s41, s28, s17)⊕ o
12: g(b16, b17, b19, b27, b34, b42, b46, b51, b58, b64, b65, b70, b79)⊕ s79 ⊕ o
13: end for

14: for i do Keystream generation
15: compute zi = h∗(s79, s54, s33, s15, b16, b78, b77, b75, b69, b48, b36, b23)
16: clock the LFSR and the NFSR with the following respective feedback bits:
17: f(s79, s66, s56, s41, s28, s17)
18: g(b16, b17, b19, b27, b34, b42, b46, b51, b58, b64, b65, b70, b79)⊕ s79

19: end for

20: Output {zi}i the keystream
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Figure 1.4 – Histogram plotting how many times each of the 210 possible two successive
input of the function h were reached after 230 Grain v1 initialization using random key
and iv values.

1.4.3 Complexity correction

Experimental result on initialization. As for A5/1, we checked whether there are
bias in the initialization phase of Grain v1 which could explain the probability given by
Zhang et al. in [ZXM18]. We have drawn uniformly at random 230 keys and IVs, and for
each them ran the initialization phase. We then looked at the 10 bits going through the
function h to generate the 2 first keystream bits. As expected, we did not notice any bias
in the distribution (see Figure 1.4).

Theoretical analysis. As explained Section 1.2.2, assuming all the 2160 possible internal
states are equiprobable, and since the output function is balanced, the probability p for
the right value to belong to Xi,j has to be corrected to 848/1024 = 82.81%. In particular,
the final probability becomes (0.8281)343 = 2−93.32. But actually the whole attack is
flawed. Indeed, since we merge 190 independent sets Xi,j the probability for the right
value to belong to X is p190 and not p343. The mistake made by Zhang et al. lies in
the merging process. First they construct the set X0,1,2 by merging X0,1, X0,2 and X1,2

claiming a probability of p3 which is correct. Then they construct the set X1,2,3 by
merging X1,2, X1,3 and X2,3 claiming a probability of p3 which is also correct. But then
they construct the set X0,1,2,3 by merging X0,1,2, X1,2,3 and X0,3 and claim a probability
of p3 × p3 × p = p7. This is wrong because X0,1,2,3 is actually the merge of only 6 sets,
X1,2 being used twice, and the right probability is p6. Thus the corrected probability for
the right value to belong to X is p190 = (0.8281)190 = 2−51.7. Surprisingly this is not so
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far from the 2−54.09 claimed by Zhang et al.. But the 20 keystream bits z0 . . . z19 depend
on 118 (linear combinations of) state bits (see Table 5 in [ZXM18]). Thus, according to
Theorem 1.1, to reach such probability the set X has to contain 2118−20 × 2−51.7 = 247.3

elements and not only 26.67. As a consequence, the overall complexity of the attack is
increased by a factor 247.3+51.7−6.67−54.09 = 237.24, making it slower than an exhaustive
search.

Experimental result on p. Finally, as for A5/1 we provide the following experiment to
support our claim regarding the correct complexity of the attack presented in [ZXM18].

1. Randomly generate a 3-bit word ks

2. Run the refined self-contained method to obtain a set X of size 214.2 which should
contain the secret which generated ks with probability (0.8964)3 = 0.7203 according
to Zhang et al..

3. Do N times:

(a) Randomly generate a key and an IV and run the initialization process.

(b) Check whether the first three keystream bits from the current internal state
match ks. If not repeat the previous step.

(c) Check whether the value of the internal state part belongs to X.

4. Check whether the experimental probability matches the expected one.

We ran this experiment2 10 times withN = 226 and found the experimental probability
to be very close to (0.8281)3 = 0.5679, confirming the inaccuracy of the probability 0.7203
claimed by Zhang et al.. To ensure that the initialization process does not introduce
and/or remove any biases, we repeated 10 times the experiment for random states during
the keystream generation phase too. In more details, we sampled R < 210 and before
generating the three keystream bits, we updated by R rounds the internal state. As
expected, none of those experiments supported Zhang et al. claimed probability.

2. As for A5/1, we simply took for X the set of size 214.2 composed of the values reached the most
during the experiment.
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1.5 Conclusion

In the works about FNCA [ZXM18] and [Zha19], authors seem to have experimentally
verified their claimed probabilities. They wrote they have done a large number of exper-
iments ... and almost all the experimental results conform to our theoretical predictions.
This statement is quite unlikely. Indeed, it was enough to add a loop in the publicly
available C codes of their works to observe the deviation in the claimed probabilities.
Furthermore, as shown in this Chapter, we presented simple algorithms to disprove their
claim complexities. In more details, we found an error in the theory proposed and by
correcting it and running some algorithmic experiments, we confirm our hypothesis that
the complexities of the Fast Near Collision Attacks are seriously underestimated in the
papers that introduce them.

To avoid this type of problem, we need to develop more tools to check and verify attacks
or to find a completely new theory to explain the security of symmetric primitives like
the decorrelation theory at the time of its publication. Nevertheless, it stays important
and crucial to evaluate and correct manually previous scientific works.
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Chapter 2

EFFICIENT SEARCH FOR OPTIMAL

DIFFUSION LAYERS OF GENERALIZED

FEISTEL NETWORKS

2.1 Introduction

The Feistel network is one of the main generic designs for building modern block ciphers.
It was initially proposed in the data encryption standard DES [DES77], and is still used in
more recent ciphers such as Twofish [Sch+98], Camellia [Aok+00] or SIMON [Bea+13].
The idea behind this construction is to split the plaintext into two halves x0, x1, and
build the round function which sends (x0, x1) to (x1, x0 ⊕ Fi(x1)), where Fi is a non-
linear function for the i-th round. One of the main advantage of this construction is
that Fi does not need to be invertible, and thus it allows to transform a pseudorandom
function (PRF) into a pseudorandom permutation (PRP). Moreover, there are theoretical
arguments suggesting that it is a good method to construct block ciphers, as Luby and
Rackoff proved in 1988 [LR88] that if each Fi is a pseudorandom function and all three
are independent, then 3 rounds of the Feistel construction are enough to get a block
cipher which is indistinguishable from a random permutation under the Chosen Plaintext
Attack (CPA) model, and 4 rounds with 4 independent functions are enough in the Chosen
Ciphertext Attack (CCA) model. This was later improved by Pieprzyk in 1990 [Pie90] :
if one takes f as a pseudorandom function, 4 rounds of Feistel with Fi = f for i = 1, 2, 3
and F4 = f 2 are sufficient to obtain a block cipher that is indistinguishable from a
random permutation in the CPA model. In 1989 at CRYPTO, Zheng et al. [ZMI89a]
proposed some generalizations of the Feistel construction. Especially, they defined the
Type-2 Feistel1 construction, which splits the message into 2k blocks and uses a round

1. Note that some papers use the term Type-2 Generalized Feistel to denote this construction
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function of the form

(x0, . . . , x2k−1) 7→ (x2k−1, x0 ⊕ Fi,0(x1), x1, x2 ⊕ Fi,1(x3), x3, . . . , x2k−2 ⊕ Fi,k−1(x2k−1)),

where each Fi,j is a pseudorandom function for the i-th round. This is essentially a parallel
application of k Feistels followed by a cyclic shift of the blocks. They also showed that
when all Fi,j are pseudorandom functions, then 2k + 1 rounds of such a construction
provide a block cipher that is indistinguishable from a random permutation. Moreover,
the Type-2 construction is inherently easier to compute in parallel, and the corresponding
decryption function is basically the same except that the functions Fi,j are applied in
reverse order, i.e. for r rounds, the first round of decryption uses the functions Fr,j. Both
of these properties make this construction very efficient in practice, both on hardware and
software, e.g. TWINE [Suz+12] and Simpira [GM16a]. All of these arguments lead to
some block ciphers based on this Type-2 Feistel construction, such as HIGHT [Hon+06]
and CLEFIA [Shi+07].

At ASIACRYPT’96, Nyberg [Nyb96] studied a variant of the Type-2 Feistel con-
struction using a different permutation than the cyclic shift, called Generalized Feistel
Network. Such a construction was used to design block ciphers such as TWINE [Suz+12]
and Piccolo [Shi+11]. However, Nyberg only focused on one specific permutation. Suzaki
and Minematsu thus studied at FSE’10 [SM10] a more general case where the cyclic shift
is replaced by any other permutation of the blocks. Their work was focused on finding
permutations with the lowest diffusion round. The diffusion round is close to the con-
cept of diffusion introduced by Shannon in 1949 [Sha49]. Essentially, a block cipher has
full diffusion if every bit of the ciphertext depends on every bit of the plaintext. In the
context of Generalized Feistel Network (GFN), [SM10] defined the diffusion round as the
minimal number of rounds such that every block of the ciphertext depends on every block
of the plaintext. Focusing on blocks instead of bits allows them to get rid of the pre-
cise specification of the functions Fi,j as well as the exact size of the blocks, thus giving
structural results. Especially, they tied the diffusion round of a given GFN to its resis-
tance against Impossible Differential distinguishers [BBS99], proving that if a GFN has
a diffusion round of DR, then it needs strictly more than 2DR + 1 rounds to avoid any
Impossible Differential distinguisher. Along with a lower bound on the diffusion round
of a GFN of 2k blocks, they gave optimal permutations (w.r.t the diffusion round) for
2 ≤ 2k ≤ 16. It is worthy to note that such an optimal permutation was then used to
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design block ciphers such as TWINE [Suz+12]. At FSE’19, Cauchois et al. went further
and gave optimal permutations for 18 ≤ 2k ≤ 26, as well as good candidates for 2k = 32
(which was already found in [SM10]), as well as for 2k = 64 and 128 using a sophisticated
technique that they called Collision-free exhaustive search. Note that these permutations
are even-odd, i.e. the image of an even number is an odd number. On a side note, relaxing
the condition that the permutation is the same in each round make the problem easier
and in [Kal+17], Kales et al. give such a construction for any number of blocks.

Our contribution. In this chapter, we focus on even-odd permutations and we
complete the work on the 10-year-old problem (introduced by [SM10]) of finding optimal
even-odd permutations for 32 blocks, as well as finding optimal even-odd permutations for
28, 30 and 36 blocks which were not given in the previous literature. To do so, we propose
a new characterization of a permutation reaching full diffusion after a given number of
rounds. Using this characterization, we are able to create a very efficient algorithm, which
on the previously mentioned cases yields all the permutations that achieve full diffusion
in 9 rounds. Note that our algorithm essentially uses branch-and-bound techniques, and
thus it is hard to evaluate the exact complexity. However, the size of the search space
goes from 243 for 2k = 28 up to 275 for 2k = 42, but we were able to treat each of
these cases in less than one hour for each value of k when using 72 threads. Moreover,
this characterization has a very efficient implementation which allowed us to re-find all
optimal even-odd permutations for up to 26 blocks with a basic exhaustive search in a
few hours, showing that for these cases, there is no need for sophisticated techniques as
in [CGT19]. Furthermore, for 34, 38, 40 and 42 blocks, we prove with this method that
there is no even-odd permutation with a diffusion round of 9, which is the lower bound
on the diffusion round for these sizes given in [SM10]. We were also able to find even-
odd permutations with a diffusion round of 10 for 2k = 34 (which is thus optimal), as
well as even-odd permutations with diffusion round 11 for 2k = 38, 40, 42. Finally, we
evaluate the security of our constructed permutations against impossible differentials and
differentials (by computing the minimum number of active S-boxes). In particular, for
the 32 blocks case, and the impossible differentials, all our permutations have a one-round
shorter longest impossible differential distinguisher compared to what was proposed by
[CGT19], which brings it down to 17 rounds.
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Figure 2.1 – Generalized Feistel Network

2.2 Preliminaries

2.2.1 Generalized Feistel Networks (GFN)

Zheng et al. [ZMI89a] introduced Type-2 Feistels as a generalization of the original Feistel
construction. Given an even number 2k of blocks (X0, . . . , X2k−1), it first applies the
Feistel construction on the pairs of blocks which yields (X0 ⊕ S0(X1), X1, . . . , X2k−2 ⊕
Sk−1(X2k−1), X2k−1). The blocks are then cyclically right shifted to obtain the result.
Later, it was proposed to use another permutation than the cyclic shift in [Nyb96], leading
to Generalized Feistel Networks.

Definition 2.1. Let 2k be an even number, n, r be positive integers, and {Fi,j}i∈{1,...,r},j∈{0,...,k−1}

be a set of cryptographic keyed functions from Fn2 to Fn2 . Let π be a permutation over 2k
elements. A Generalized Feistel Network (GFN) is a block cipher built as Rr ◦ · · · ◦ R1,
where Ri is the round function

Ri : (X0, . . . , X2k−1)→ π(X0 ⊕ Fi,0(X1), X1, . . . , X2k−2 ⊕ Fi,k−1(X2k−1), X2k−1)

Note that for this chapter, neither the exact definition of the keyed functions Fi,j nor
their sizes are relevant. We can thus consider all of them as an arbitrary S-box S, leading
to the framework depicted in Figure 2.12. As the only variable parameters are thus k and
π, we denote by GFN k

π a GFN with 2k blocks that uses the permutation π.

2. In practice, one should carefully study the primitive if the same F-function is used, e.g. [GM16b]
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2.2.2 Diffusion Round

We use the notations depicted in Figure 2.1. The input variables of the i-th round of
a GFN are denoted by (X i

0, X
i
1, . . . , X

i
2k−1). We also denote by (X̃ i

0, X̃
i
1, . . . , X̃

i
2k−1) the

variables which are at the input of the permutation π, i.e.

(X i+1
0 , X i+1

1 , . . . , X i+1
2k−1) = π(X̃ i

0, X̃
i
1, . . . , X̃

i
2k−1)

It is easy to see from Definition 2.1 that X1
π(0) depends on X0

0 and X0
1 . More generally,

any block X̃r
j depends on a certain number of blocks from the round 0, i.e. computing

X̃r
j requires some blocks {X0

j0 , . . . , X
0
jl
}. Note that this does not depend on the size of the

functions Fi,j in the GFN. As in [SM10], we say in that case that any of these X0
ji
diffuses

to X̃r
j , and we focus our study on the number of rounds needed to reach full diffusion.

Definition 2.2. Let π be a permutation over 2k elements. We say that a block X0
j fully

diffuses after r rounds if for all i ∈ {0, . . . , 2k − 1}, X0
j diffuses to X̃r

i . We say that π
reaches full diffusion after r rounds if for all j ∈ {0, . . . , 2k− 1}, X0

j fully diffuses after r
rounds. The smallest r that verifies this property for the block X0

i is called the diffusion
round of the block X0

i .

Note that we need to study both the diffusion over the encryption and the decryption
process. Indeed, there is no guarantee that an encryption function with good diffusion
also keeps this property for its inverse. Since we have (GFN k

π)−1 = GFN k
π−1 , we need to

study both the diffusion of π and π−1. Naturally, we would like both π and π−1 to fully
diffuse as quickly as possible, which leads to the following definition.

Definition 2.3. Let π be a permutation over 2k elements. Denote by DRi(π) the mini-
mum number of rounds r such that X0

i fully diffuses after r rounds in GFNk
π .

The diffusion round of a permutation π is:

DRmax(π) = max
0≤i≤2k−1

{
DRi(π),DRi(π−1)

}
(2.1)

This definition gives the same importance to the total diffusion of both π and π−1.
Definition 2.3 defines a natural partial order on the permutations: a permutation π1

is better (at diffusing) than a permutation π2 if DRmax(π1) ≤ DRmax(π2). Searching the
best permutations (for the diffusion) directly can be difficult. As a result the methodology
we adopt in this work is to search for permutations that diffuse totally in the forward
direction and then check if their respective inverse also diffuses totally.
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2.2.3 Even-odd Permutations

A naive way to search for optimal permutation would be to simply go through all of them
and check the diffusion one permutation by one. However, there are (2k)! permutations,
which quickly grows beyond practical means. For example with 2k = 32, approximately
2117 permutations should be checked. To reduce the number of permutations that will be
tested, we will restrict ourselves to a specific class of permutations and give an equivalence
relation which further reduces the number of permutations to be considered.

In [SM10], Suzaki and Minematsu did an exhaustive search for 1 ≤ k ≤ 8, and made
the observation that every optimal permutation (for such k) mapped even-number input
blocks to odd-number output blocks and vice versa. We call such permutations even-odd.
In the rest of this chapter, we will use the following notation for even-odd permutations.
An even-odd permutation π of size 2k will be denoted by the pair of permutations (p, q)
of size k verifying ∀i ∈ [0, k − 1], π(2i) = 2 · p(i) + 1 and π(2i+ 1) = 2 · q(i). The search
space is now reduced to (k!)2 permutations.

According to this, [SM10] gives the following lower-bound on the diffusion round of
even-odd permutations (p, q).

Proposition 2.1. Let Fi be the Fibonacci sequence, i.e. F0 = 0,F1 = 1 and Fi =
Fi−1 + Fi−2, i ≥ 2. Let π = (p, q) be an even-odd permutation over 2k elements, and i be
the smallest integer such that Fi ≥ k. Then DRmax(π) ≥ i+ 1.

For a given permutation π, if the inequality is tight, we say that π is tight. A proof of
this proposition already exists in both [SM10] and [CGT19]. According to our results, we
will give another proof of this proposition in Section 2.3. We will also show in Section 2.3
that this bound is tight for the cases 2k = 28, 30, 32, 36 and strict for 2k = 34, 38, 40, 42.

2.2.4 Equivalence Classes of Even-odd Permutations

To further reduce the size of the search space, as in [CGT19], we use some equivalence
classes, given by the following definition.

Definition 2.4. Let π and π′ be two even-odd permutations over 2k elements. We say
that π and π′ are equivalent if there exists a permutation ϕ over 2k elements such that

π′ = ϕ ◦ π ◦ ϕ−1 and ∀i ∈ [0, k − 1], ϕ(2i+ 1) = ϕ(2i) + 1.
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From [CGT19], we can then give a set of permutations Pk such that for any equivalence
class, there exists at least one π ∈ Pk which belongs to this class. This effectively gives
us a set of class representatives (in which a few of them are redundant), and this set can
be built from the following proposition, proven in [CGT19]. Recall that any permutation
can be decomposed into a composition of cycles. We call cycle structure the unordered
set of the length of these cycles, for example the permutation

(0 1 2 3)(4 5)(6 7)(8)

has a cycle structure of {4, 2, 2, 1}.

Proposition 2.2. Let Pk be a set of even-odd permutations π = (p, q) over 2k elements
constructed as follows. For each possible cycle structure c of a permutation over k ele-
ments, pick one permutation p which has a cycle structure equal to c. Then, for every
permutation q over k elements, add (p, q) in the set Pk. By doing so, Pk contains at
least one representative of each equivalence class induced by Definition 2.4. Moreover, Pk
contains exactly Nk.k! elements, where Nk is the number of partitions of the integer k.

This allows us to only considerNk.k! permutations instead of (k!)2. This is a significant
improvement, as for example with k = 16, there are only 231 × 16! ' 252 permutations
to go through, instead of (16!)2 ' 288. However when k grows, it is still too big a
number to try an exhaustive search. As such, we propose in Section 2.4 an efficient search
algorithm to find all optimal even-odd permutations for a given k, without needing to do
an exhaustive search.

2.3 Characterization of Full Diffusion

In this section, we will explain our strategy to search for a tight even-odd permutation,
that is, a permutation with a diffusion round reaching the Fibonacci bound given in
Proposition 2.1. We will first give an algebraic characterization for a permutation to
have full diffusion, then give an algorithm to exploit this characterization and quickly
search all such permutations. Note that here we only focus on the diffusion round of the
permutation when considering encryption. That is, for a given permutation π, we focus
only on DR(π) = max

0≤i≤2k−1
{DRi(π)}. Then, once we found a permutation reaching the

Fibonacci bound, we can easily check if π−1 also reaches this bound, and if that is the
case, we found a tight permutation.
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We describe here the main tools we used to design our search algorithm. Note that
for two permutations p, q, we denote the composition p ◦ q by pq for better reading. We
first begin by giving the following proposition.

Proposition 2.3. Let π = (p, q) be an even-odd permutation over 2k elements. Then π
achieves full diffusion after r rounds if and only if each block X0

j is diffused to at least
one block of each pair at the input of the (r − 1)-th round, i.e. diffused to either Xr−1

2j′ or
Xr−1

2j′+1 for each j′ ∈ {0, . . . , k − 1}.

Proof. Suppose that a given block X0
i has been fully diffused, i.e. to every block X̃r

2j and
X̃r

2j+1, j ∈ {0, . . . , k − 1}. Then X0
i must have diffused to at least Xr

2j+1 for every j, as it
is the only way to reach X̃r

2j+1. Thus, X0
i must have diffused to X̃r−1

2j′ with j′ = p−1(j),
which means that it has diffused to either Xr−1

2j′ or Xr−1
2j′+1.

On the other hand, suppose that a given block X0
i has diffused to an even block Xr−1

2j ,
then X0

i will be diffused to only X̃r−1
2j . If X0

i has diffused to an odd block Xr−1
2j+1, it will be

diffused to both X̃r−1
2j and X̃r−1

2j+1. In both cases, it will be diffused to X̃r−1
2j , then to Xr

2j′+1

with j′ = p(j), and finally to both X̃r
2j′ and X̃r

2j′+1. Thus, if for all j ∈ {0, . . . , k − 1},
X0
i is diffused to any block of the j-th pair at the input of the (r− 1)-th round, it will be

diffused to every block X̃r
2p(j) and X̃r

2p(j)+1, and since p is a permutation, this means that
we have full diffusion for X0

i .

Corollary 2.1. Let π = (p, q) be an even-odd permutation over 2k elements. Then π

achieves full diffusion after r rounds if and only if each even block X0
2j, j ∈ {0, . . . , k− 1}

diffuses to every even block X̃r−1
2j′ , j

′ ∈ {0, . . . , k − 1}.

Proof. For the proof of the previous theorem, we can easily see that a block X0
j diffuses

to either Xr−1
2j′ or Xr−1

2j′+1 if and only if X0
j diffuses to X̃r−1

2j′ . Moreover, we can easily see
that if X0

2j is fully diffused, so is X0
2j+1. Indeed, X0

2j being fully diffused is the same as
X̃0

2j being fully diffused, and X0
2j+1 is always diffused to X̃0

2j.

Thus we only need to focus on the diffusion of each block X0
2j to each block X̃r−1

2j .
Now we can take a look a what would happen in an ideal scenario. Assume that we are
studying the diffusion of a block X0

2j. Then X0
2j is diffused to X̃0

2j1
0
with j1

0 = j. It is then
diffused to both X̃1

2j2
0
and X̃1

2j2
0+1, with j2

0 = p(j1
0). Then again :

• X̃1
2j2

0
is diffused to both X̃2

2j3
0
and X̃2

2j3
0+1, with j3

0 = p(j2
0).

• X̃1
2j2

0+1 is diffused to X̃2
2j3

1
with j3

1 = q(j2
0)
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Assuming an ideal scenario, we would have j3
0 6= j3

1 , i.e. X0
2j has diffused to two different

blocks after 4 rounds (minus the application of π on the fourth round). We can then keep
going and get a series of ji` which gives us the blocks on which X0

2j has diffused after i+ 1
rounds minus the last application of π, always assuming that we never have ji` = ji`′ for
` 6= `′. The propagation for up to 7 rounds is given in Figure 2.2.

However, we cannot have ji` 6= ji`′ with ` 6= `′ forever. Indeed, since we only have k
blocks, we are bound at some point to have ji` = ji`′ and ` 6= `′. However, we can easily
compute the actual value of each ji`. Indeed, if we take for example j6

6 in Figure 2.2, then
we know that

j6
6 = (qppqp)(j1

0) = (qppqp)(j).

Denote by Jij the set of equations obtained by expressing every ji` that way. For
example, we would have

J6
j = {(ppppp)(j),

(qpppp)(j),
(pqppp)(j),
(ppqpp)(j),
(qpqpp)(j),
(pppqp)(j),
(qppqp)(j),
(pqpqp)(j)}

According to this, we can give a generic way to compute Jij. We start with J1
j = {j}

and J2
j = {p(j)}. To build Jij from Ji−1

j , we begin by adding p(x) to Jij for every term x

in Ji−1
j . Then, for every term x in Ji−1

j such that x can be written as x = p(y) for some
y ∈ Ji−2

j , we also add q(x) to Jij.
We can justify this construction as follows. Suppose that a given j′ belongs to Ji−2

j

because X0
2j diffuses to X̃ i−2

2j′ . Then X0
2j diffuses to both X̃ i−1

2j′′ and X̃ i−1
2j′′+1 with j′′ = p(j′).

Thus for the next round, X0
2j will diffuse to both X i

2̃j+1 and X i

2j̃′
, with j̃ = p(j′′) and

j̃′ = q(j′′).
On the other hand, suppose that j′ belongs to Ji−2

j because X0
2j diffuses to X̃ i−2

2j′+1. In
that case, X0

2j will only diffuse to X̃ i−1
2j′′ with j′′ = q(j′). For the next round, X0

2j only
diffuses to X i

2̃j+1 with j̃ = p(j′′).

53



Chapter 2 – Efficient Search for Optimal Diffusion Layers of Generalized Feistel
Networks

2j
6 0

2j
6 0

+
1

2j
6 1

2j
6 2

2j
6 2

+
1

2j
6 3

2j
6 3

+
1

2j
6 4

2j
6 5

2j
6 5

+
1

2j
6 6

2j
6 7

2j
6 7

+
1

2j
5 0

2j
5 0

+
1

p
q

2j
5 1

p

2j
5 2

2j
5 2

+
1

p
q

2j
5 3

2j
5 3

+
1

p
q

2j
5 4

p

2j
4 0

2j
4 0

+
1

p
q

2j
4 1

p

2j
4 2

2j
4 2

+
1

p
q

2j
3 0

2j
3 0

+
1

p
q

2j
3 1

p

2j
2 0

2j
2 0

+
1

p
q2j

1 0

p2j

Fi
gu

re
2.
2
–
Pr

op
ag
at
io
n
tr
ee

fo
r
7
ro
un

ds
(m

in
us

th
e
la
st

ap
pl
ic
at
io
n
of
π
)

54



2.3. Characterization of Full Diffusion

Thus in both cases, we need to have j̃ = p(j′′), but we only require j̃′ = q(j′′) in the
first case, which corresponds exactly to the case where the previous term started with a
composition by p.

Note that from this construction, we can deduce the following proposition.

Proposition 2.4. The size of Jij is exactly Fi where Fi is the i-th term of the Fibonacci
sequence.

Proof. We can prove this by induction. Both J1
j and J2

j are of size 1, which corresponds
to F1 and F2. We first add an element p(x) to Jij for every x ∈ Ji−1

j , thus Fi−1 elements.
Then, for every x in Ji−1

j such that x = p(y) with y ∈ Ji−2
j , we add q(x) to Jij. However,

according to our construction, Ji−1
j contains such an element x = p(y) for every term

y ∈ Ji−2
j . Thus, there are Fi−2 such terms. In the end, Jij contains Fi−1 + Fi−2 = Fi

elements, which concludes the induction.

We can now use those sets Jij to fully characterize the fact that a block fully diffuses
when using a given permutation.

Theorem 2.1. Let Jr−1
j be the set of equations as defined above. Then for a given per-

mutation π = (p, q) over 2k blocks, X0
2j is fully diffused after r rounds if and only if Jr−1

j

contains every number in {0, . . . , k − 1} at least once.

Proof. As Jr−1
j = {jr−1

0 , . . . , jr−1
`r−1} is defined, it basically represents that X0

2j diffuses to
every X̃ i

2ji
`
. Thus, if Jij contains every number in {0, . . . , k − 1} at least once, it exactly

means that X0
2j diffuses to each block X̃ i

2j′ , j
′ ∈ {0, . . . , k − 1}. According to Corollary

2.1, this means that X0
2j achieves full diffusion after i+ 1 rounds.

We can then easily deduce the following corollary.

Corollary 2.2. Let π = (p, q) be a permutation over 2k elements. Then we have DR(π) =
i+1 if and only if i is the smallest integer such that for every j ∈ {0, . . . , k−1}, Jij contains
every number in {0, . . . , k − 1} at least once.

This gives us another proof for the Fibonacci bound given in Proposition 2.1. Indeed,
for Jij to contain every number in {0, . . . , k − 1} at least once, Jij must contain at least k
terms. Thus, and since the size of Jij does not depend on j, the minimal number of rounds
needed to have full diffusion for every block must be such that

∣∣∣Jij∣∣∣ = Fi ≥ k. According
to the previous corollary, if i is the smallest integer such that Fi ≥ k, this exactly means
that DRmax(π) ≥ i+ 1
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Note that from the construction of any Jij, each term starts with a composition by p.
Since p is a permutation, and we want full diffusion for every blocks, we can remove this
first p from every term to get a smaller representation. Essentially, this means that we
are considering the diffusion of the block p−1(j), but we will still write Jij. As such, J6

j for
example is thus rewritten as

J6
j = {(p4)(j),

(qp3)(j),
(pqp2)(j),
(p2qp)(j),
(qpqp)(j),

(p3q)(j),
(qp2q)(j),
(pqpq)(j)}

To illustrate the previous characterization, we introduce what we call the diffusion
table (of rank i) of an even-odd permutation (p, q) of size 2k. The columns are indexed
by the numbers from 0 to k − 1 and the row are indexed by the products of p and q

used to generate all sets Jij. Each cell of the table is the value obtained by applying the
permutation indexing the row to the value indexing the column of the cell. For example,
the cell indexed by pi and 0 contains pi(0). This provides a clear visualization of our
characterization, as the j-th column is exactly Jij.

Thus, we can easily illustrate Corollary 2.2 by verifying that every column of this table
contains every possible values. We thus add one more row at the end of diffusion table
called diff which contains the number of different values in a column. By construction,
this is exactly the number of elements of Jij where j is the index of the column. In tables
constructed as described, the full diffusion of a permutation corresponds to a diff row
containing only the value k.

For example, we give in Table 2.1 the diffusion tables for the cyclical shift (i.e.
p = (7, 0, 1, 2, 3, 4, 5, 6) and q = (0, 1, 2, 3, 4, 5, 6, 7)) and one of the optimal permuta-
tion proposed by [CGT19] (i.e. p = (6, 3, 7, 1, 0, 2, 4, 5) and q = (3, 5, 1, 6, 4, 0, 2, 7)) for
k = 8 and i = 7, thus the optimal permutation clearly have a diffusion round of 8.

Finally, we can reformulate the problem of finding optimal even-odd permutations with
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x 0 1 2 3 4 5 6 7
p5 3 4 5 6 7 0 1 2
p4q 4 5 6 7 0 1 2 3
p3qp 4 5 6 7 0 1 2 3
p2qp2 4 5 6 7 0 1 2 3
pqp3 4 5 6 7 0 1 2 3
qp4 4 5 6 7 0 1 2 3
p2qpq 5 6 7 0 1 2 3 4
pqp2q 5 6 7 0 1 2 3 4
qp3q 5 6 7 0 1 2 3 4
pqpqp 5 6 7 0 1 2 3 4
qp2qp 5 6 7 0 1 2 3 4
qpqp2 5 6 7 0 1 2 3 4
qpqpq 6 7 0 1 2 3 4 5
diff 4 4 4 4 4 4 4 4

x 0 1 2 3 4 5 6 7
p5 4 3 5 1 6 7 0 2
p4q 3 2 1 4 0 6 7 5
p3qp 2 6 7 5 1 3 4 0
p2qp2 6 7 4 0 5 2 3 1
pqp3 1 4 3 2 0 6 7 5
qp4 2 5 7 6 3 1 4 0
p2qpq 7 1 0 6 3 5 2 4
pqp2q 4 5 2 1 7 0 6 3
qp3q 5 0 6 2 4 3 1 7
pqpqp 5 0 6 3 2 4 1 7
qp2qp 0 3 1 7 6 5 2 4
qpqp2 3 1 2 4 7 0 5 6
qpqpq 1 6 4 3 5 7 0 2
diff 8 8 8 8 8 8 8 8

Table 2.1 – Diffusion tables for the cyclical shift (left table) and one optimal permutation
proposed by [CGT19] (right table).

these tables. Indeed, it corresponds to finding the minimal i and even-odd permutations
of size 2k such that their diffusion table have their diff row containing only k.

2.4 Searching for an Optimal Permutation over 9 Rounds

2.4.1 Efficient Search Algorithm

First, we can see that our characterization can be very efficiently implemented, as testing
if π = (p, q) has full diffusion mostly requires only a few table lookups. An example of
an implementation for this test for 9 rounds is given in Appendix 2.B, and its efficiency
allowed us to recover all optimal even-odd permutations for k ≤ 13 with a basic exhaustive
search. Especially, for k = 13, we were able to go through all N13.13! ' 239 permutations
and check them in about 410 minutes on a single core. While these optimal permutations
were already known, it shows that the sophisticated techniques introduced in [CGT19]
were not necessary for these cases.

However for k ≥ 14, it becomes too expensive to make this exhaustive search. We thus
focus on finding optimal even-odd permutations for 14 ≤ k ≤ 21, hence such permutations
would have a diffusion round of 9. Given a cycle structure for p, we can easily find a
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permutation p with such structure and thus we need to search q such that π = (p, q)
needs 9 rounds to reach full diffusion, i.e., such that each J8

j contains all numbers from 0
to k − 1.

Note that we cannot exploit J8
j directly. Indeed, one might want to guess parts of q

and check if J8
j does not contains too many duplicates. However, to fully compute J8

j , we
need to guess q in its entirety, which makes this strategy too expensive. We thus describe
an efficient way to exploit this characterization to find optimal even-odd permutations.

First for a given j, if we take a look at J6
j , we can see that we need to make only 7

guesses over the images of q to fully compute J6
j . Indeed, we need to know

q(j), (qp)(j), (qp2)(j), (qp3)(j), (qpq)(j), (qp2q)(j) and (qpqp)(j).

Let X6
j and Y6

j be two subsets of J6
j , such that X6

j ∪ Y6
j = J6

j , with

X6
j = {p4(j), (pqp2)(j), (p2qp)(j), (p3q)(j), (pqpq)(j)}

and Y6
j = {(qp3)(j), (qpqp)(j), (qp2q)(j)}.

According to the construction of J8
j , we can actually write

J8
j = p2(X6

j ∪ Y6
j) ∪ (pq)(X6

j) ∪ (qp)(X6
j ∪ Y6

j).

Assume that we made the 7 guesses mentioned above. In that case, we know the exact
values in both X6

j and Y6
j . Moreover, since p is known, we know exactly the values in

p2(X6
j ∪ Y6

j). Finally, since we guessed 7 images of q, there might be some values in
(pq)(X6

j) and (qp)(X6
j ∪ Y6

j) that are known.
Hence, we create three sets Kj, X̃6

j and Ỹ6
j :

• Kj is the set of all known values of J8
j . Thus p2(X6

j ∪ Y6
j) ⊂ Kj and there might be

a few elements from (pq)(X6
j) and (qp)(X6

j ∪ Y6
j) in Kj too.

• X̃6
j is the subset of X6

j such that for any x ∈ X̃6
j , the value of q(x) yet remains to be

determined.

• In the same way, Ỹ6
j is the subset of p(X6

j ∪Y6
j) such that for any x ∈ Ỹ6

j , the value
of q(x) is not determined.
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For j to be fully diffused, we thus have the constraint

Cj :
∣∣∣Kj ∪ q(Ỹ6

j) ∪ (pq)(X̃6
j)
∣∣∣ ≥ k.

We then check if this constraint is valid, i.e. if there exist some guesses for the remaining
images of q such that Cj holds, and this is described in the next section.

Now if we take a look at J6
j′ where j′ = p(j), we can see that we only need 3 more

guesses to compute it, instead of 7 as before. Indeed, we already guessed

(qp)(j) = q(j′)
(qp2)(j) = (qp)(j′)
(qp3)(j) = (qp2)(j′)

(qpqp)(j) = (qpq)(j′)

and thus it only remains to guess

(qp4)(j) = (qp3)(j′)
(qp2qp)(j) = (qp2q)(j′)
(qpqp2)(j) = (qpqp)(j′).

By doing these guesses, we can build the sets Kj′ ,X6
j′ and Y6

j′ as before, and thus get
another constraint that needs to be checked

Cj′ :
∣∣∣Kj′ ∪ q(Ỹ6

j′) ∪ (pq)(X̃6
j′)
∣∣∣ ≥ k.

However by making those three new guesses, we might be able to compute new values in
X̃6
j and Ỹ6

j . We thus need to update the constraint Cj according to these guesses, and
then check again if Cj is valid.

This can be repeated until we have fully guessed q, in which case we have a solution,
or show that no matter which guesses we made there is no solution which satisfies all
constraints. This is the core of our algorithm, which is described from a high-level point
of view in Algorithm 5.

Note however that the actual algorithm is a bit more sophisticated. Indeed, it might
occur at some point that p(j) was already processed, i.e. Cp(j) is already a constraint we
have. When this happens, we need to choose another starting block j, and re-apply the
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Algorithm 5 Searching for optimal even-odd permutations over 9 rounds
1: function nextGuess(p, q, j,C) C is the list of known constraints
2: if q is fully determined then
3: Print p, q
4: else
5: while all guesses are not made do
6: Guess (qp3)(j), (qp2q)(j) and (qpqp)(j)
7: Update every constraints in C according to those guesses
8: Deduce the new constraint Cj
9: C′ ← C ∪ {Cj}
10: if ∃ invalid constraint in C′ then
11: Make a new guess
12: else
13: nextGuess(p, q, p(j),C′)
14: end if
15: end while
16: end if
17: end function

18: p← chosen permutation with a given structure cycle
19: j ← an element from the smallest cycle of p
20: while all guesses are not made do
21: Guess q(j), (qp)(j), (qp2)(j), (qp3)(j), (qpq)(j), (qp2q)(j) and (qpqp)(j)
22: Deduce the constraint Cj
23: if Cj is a valid constraint then
24: C← {Cj}
25: nextGuess(p, q, p(j),C)
26: end if
27: end while
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algorithm, while still keeping all previously computed constraints. In practice, we found
that the most efficient strategy is to use an element from the shortest cycle of p as the
first starting block. Then, if we need to choose another starting block, we pick an element
in the next shortest cycle of p and so on. Moreover, when making some guesses for the
images of q, it might happen that we already made this guess. This is not a problem, as
this guess basically becomes free and does not add any more cost. Finally, except for the
first seven guesses, we update and check all constraints after each guess.

2.4.2 Checking the Constraints

We first give a naive way to check if a constraint is valid. We are given three sets K,X
and Y, resulting in the constraint

C : |K ∪ q(Y) ∪ (pq)(X)| ≥ k.

We know the full permutation p, and for any x ∈ X ∪ Y, q(x) is still unknown. Let A
denote the set of values a for which we still do not know the preimage of a through q, i.e.
for any a ∈ A, we do not know which x results in q(x) = a. Considering the guesses we
already made on q, we always know this set A, and thus have the following two relations
(pq)(X) ⊂ p(A) and q(Y) ⊂ A. According to this, we can write

|K ∪ q(Y) ∪ (pq)(X)| ≤ |K ∪ A ∪ p(A)| .

Hence if |K ∪ A ∪ p(A)| < k, we know that the constraint C cannot be valid. However,
we can actually go further and get more precise information by doing the following.

We can formulate our problem in the following generic way. We are given three sets
K,A, and B (= p(A)), and we search for two sets Ã ⊂ A and B̃ ⊂ B such that |K∪ Ã∪ B̃|
is maximal, with Ã = q(Y) and B̃ = (pq)(X). Note that, since p and q are permutations,
we have |Ã| = |X| and |B̃| = |Y|. Hence our idea is to determine whether there is at
least one such pair (Ã, B̃) satisfying |K ∪ Ã ∪ B̃| ≥ k. Indeed if no such pair exists then
constraint C does not hold. Note that if X ∩ Y 6= ∅ then it is possible for such pair to
exist while C does not hold. However we found this filter powerful enough for our need.

We can partition K ∪ A ∪ B into the following eight disjoint sets:
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S0 = K ∩ A ∩ B S1 = Kc ∩ A ∩ B
S2 = K ∩ Ac ∩ B S3 = K ∩ A ∩ Bc

S4 = Kc ∩ Ac ∩ B S5 = Kc ∩ A ∩ Bc

S6 = K ∩ Ac ∩ Bc S7 = Kc ∩ Ac ∩ Bc

Let kA (resp. kB) denote the cardinality of Ã (resp. B̃), and kiA, kiB be such that

kiA = |Ã ∩ Si| ≤ min(|Si|, kA), kiB = |B̃ ∩ Si| ≤ min(|Si|, kB).

Since all Si are disjoint, Ã ⊂ A and B̃ ⊂ B, notice that we have

k2
A = k4

A = k6
A = k7

A = 0 and kA = k0
A + k1

A + k3
A + k5

A

k3
B = k5

B = k6
B = k7

B = 0 and kB = k0
B + k1

B + k2
B + k4

B.

By selecting the two sets Ã ∩ S1 and B̃ ∩ S1 as disjoint as possible we have:

|K ∪ Ã ∪ B̃| = |K|+ kA + kB − k0
A − k0

B − k2
B − k3

A

−max(k1
A + k1

B − |S1|, 0)

Indeed, first we have at most |K| + kA + kB elements in K ∪ Ã ∪ B̃. However among all
those elements, some might be the same, which explains the remaining terms :

• Elements of Ã and B̃ included in S0, S2 or S3 are duplicates since they all belong to
K.

• We need to take k1
A (resp. k1

B) elements from A (resp. from B), where all those
elements belongs to S1. We thus have two cases. If k1

A + k1
B ≤ |S1|, we can freely

choose all those elements without having duplicates between Ã and B̃. Indeed for
example, if we have k1

A = k1
B = 1 and S1 = {0, 1, 2}, then we can put 0 in Ã and

1 in B̃, thus resulting in no duplicates between Ã and B̃ . However if we have
k1
A+k1

B > |S1|, then no matter what, we will have duplicates. Thus in the best case,
we have max(k1

A + k1
B − |S1|, 0) duplicates that we need to count out.

Hence, maximizing |K∪Ã∪ B̃| is straightforward as there is one specific order in which
to find the values of kiA and kiB that always maximize the size of the union. We only give
the way to optimally build Ã since it is fully similar for B̃ :
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• First, using elements from S5 to build Ã does not add any duplicate, thus we first
pull elements from S5 and k5

A = min(kA, |S5|).

• As mentioned above, using one element from S1 adds either zero or one duplicate,
thus we then pull elements from S1 and k1

A = min(kA − k5
A, |S1|).

• Finally, elements from either S0 and S3 necessarily add duplicates, so we freely
choose any k0

A ≤ |S0| and k3
A ≤ |S3| such that k0

A + k3
A = kA − k5

A − k1
A.

Finally, computing the maximal value for |K ∪ Ã ∪ B̃| only requires to compute |S1|,
|S4| and |S5| and we then check how it compares to k.

2.4.3 Results

We ran our algorithm for every k such that we need at least 9 rounds to have full diffusion,
according to Proposition 2.1. This corresponds to 14 ≤ k ≤ 21, and we were able to find
all optimal even-odd permutations for k ∈ {14, 15, 16, 18}. For k ∈ {17, 19, 20, 21}, our
algorithm allowed us to prove that there is no even-odd permutation leading to a full
diffusion after 9 rounds. Since 9 rounds correspond to the Fibonacci bound, we know
that for these cases, we need at least 10 rounds to have full diffusion, and we give later in
this section an optimal solution for k = 17 reaching full diffusion in 10 rounds, as well as
good permutations for k = 19, 20, 21 with a diffusion round of 11. We can thus give the
following theorem to summarize our results.

Theorem 2.2. To build a Generalized Feistel Network GFN k
π with full diffusion where π

is an even-odd permutation, we have :

• For k = 14, 15, 16 and 18, the optimal number of rounds for full diffusion is 9.

• For k = 17, the optimal number of rounds for full diffusion is 10.

• For k = 19, 20 and 21, the optimal number of rounds for full diffusion is at least 10
and at most 11.

We give in Table 2.2 an overview of our results. The first column gives the total time
needed for our algorithm to either exhaust all optimal even-odd permutations, or prove
that no such permutation exists. Note that this is the total CPU time, i.e. when using
a single CPU, however our algorithm is highly parallelizable and thus the real time can
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k Time Structure of p Structure of q Number of solutions

14 180 min

(6, 6, 1, 1) (6, 6, 2) 144
(6, 6, 2) (6, 6, 1, 1) 144

(6, 3, 2, 2, 1) (6, 3, 2, 2, 1) 144
(12, 2) (12, 1, 1) 24

(12, 1, 1) (12, 2) 24
15 480 min (10, 2, 2, 1) (10, 2, 2, 1) 160

16 1023 min
(6, 6, 3, 1) (6, 6, 3, 1) 432
(6, 6, 2, 2) (6, 3, 3, 2, 1, 1) 288

(6, 3, 3, 2, 1, 1) (6, 6, 2, 2) 216
17 1700 min - - 0

18 2213 min (8, 8, 1, 1) (8, 8, 2) 256
(8, 8, 2) (8, 8, 1, 1) 256

19 1913 min - - 0
20 1116 min - - 0
21 400 min - - 0

Table 2.2 – Results for optimal permutations with DRmax(π) = 9

be drastically reduced.3 This shows that our algorithm is extremely efficient, as it can
quickly solve the case k = 16 for which [CGT19] were not able to give an optimal solution.
The second (resp. third) column gives the possible cycle structures of p (resp. q) in an
optimal permutation, and the last column gives the number of solutions which have this
structure. We can notice that not only the number of solutions is quite low, but also that
the number of possible cycle structures is also quite limited. Moreover, we always have a
fixed point in either p or q.

The most important result in this table is that there are actually even-odd permuta-
tions which have full diffusion after 9 rounds for k = 16, while both [SM10] and [CGT19]
could only find a permutation with full diffusion after 10 rounds, leaving open the question
of whether the theoretical bound of 9 rounds (from Proposition 2.1) could be reached.
Our results shows that it is indeed possible, and thus this proves that our permutations
are optimal when considering even-odd permutations. We will see in the next section that
we can further regroup these permutations into more precise equivalence classes, leading
for the case k = 16 to four equivalence classes, given in Table 2.3.

3. Less than one hour for each k using 72 threads.
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(p, q)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 14, 12, 15)
q = (2, 6, 12, 10, 1, 13, 4, 15, 7, 9, 14, 5, 8, 3, 11, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 14, 12, 15)
q = (5, 6, 13, 10, 4, 12, 9, 15, 2, 1, 14, 7, 11, 3, 8, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 12, 15, 14)
q = (2, 1, 12, 8, 7, 14, 5, 4, 13, 11, 10, 15, 9, 3, 6, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 6, 10, 11, 9, 13, 12, 14, 15)
q = (7, 6, 14, 9, 11, 15, 1, 12, 2, 13, 5, 4, 10, 8, 3, 0)

Table 2.3 – Optimal equivalence classes with k = 16

2.4.4 Security Analysis

Recall that our search space Pk defined in Proposition 2.2 contains at least one repre-
sentative for each class. Hence, among all the permutations we found, some of them
might actually be in the same equivalence class. We can thus go further and regroup all
representatives that belong to the same class using the following proposition.

Proposition 2.5. Let π = (p, q) be a permutation over 2k elements. Then for any
permutation r such that r ◦ p ◦ r−1 = p, (p, q) and (p, r ◦ q ◦ r−1) are equivalent.

Proof. Let π = (p, q) and π′ = (p, r◦q◦r−1) where r is a permutation such that r◦p◦r−1 =
p. Recall that we have π(2i) = 2p(i) + 1 and π(2i+ 1) = 2q(i), for all i ∈ {0, . . . , k − 1}.
Now let ϕ be the permutation over 2k elements defined as

ϕ(2i) = 2r(i), ϕ(2i+ 1) = 2r(i) + 1, ∀i ∈ {0, . . . , k − 1}.

Then we have π′ = ϕ ◦ π ◦ ϕ−1. Indeed, if we look at the image of an even number 2i, we
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have

ϕ ◦ π ◦ ϕ−1(2i) = ϕ ◦ π(2r−1(i))
= ϕ(2(p ◦ r−1)(i) + 1)
= 2(r ◦ p ◦ r−1)(i) + 1
= 2p(i) + 1 = π′(2i).

In the same way, the image of an odd number 2i+ 1 is

ϕ ◦ π ◦ ϕ−1(2i+ 1) = ϕ ◦ π(2r−1(i) + 1)
= ϕ(2(q ◦ r−1)(i))
= 2(r ◦ q ◦ r−1)(i)
= π′(2i+ 1)

We thus have π′ = ϕ ◦ π ◦ ϕ−1. Hence, π and π′ are conjugate and thus equivalent,
according to Definition 2.4.

This leads us to the equivalence classes given in Table 2.4 to 2.7 in Appendix 2.A
for k = 14, 15, 18. The column (p, q) gives both permutations p and q. The column Imp.
Diff. gives the number of rounds for the longest Impossible Differential distinguisher. Note
that this is only considering structural Impossible Differentials, where we do not specify
neither the size of the blocks nor the definition of the S-boxes, such that contradictions
are obtained on blocks rather than bits. The columns Ss,δN give the minimal number of
rounds to get at least N active S-boxes, where each S-box is of size s and the highest
differential probability is 2−δ. We chose to only consider three cases : S4,2

N , S8,6
N and S8,7

N .
The first case represents the best case for 4-bit S-boxes. Indeed, we know that there is no
APN bijective S-boxes of size 4 (which would lead to a highest differential probability of
2−3). As such, the best case is when the highest differential probability is 2−2. It is still
unknown whether 8-bit APN bijective S-boxes exist, so we consider both cases. If such
an APN 8-bit S-box exists, the column S8,7

N is relevant, otherwise it would be S8,6
N (for

example the AES S-box). The last thing is that N depends on the size of the key (as well
as δ). Indeed, if we have a key of size λ, then we want N to verify 2−δN < 2−λ, i.e. N > λ

δ
.
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As the evaluation of the minimal number of rounds to get at least N S-boxes can be quite
expensive, we limited ourselves to λ = 2ks, where k follows the notation in this chapter,
i.e. we have 2k blocks of s bits and the key is of the same size as the state. Finally,
the last column N20 shows the minimal number of active S-boxes for 20 rounds, as both
[SM10] and [CGT19] also gave this metric for the permutations they found. It is worth
mentioning that while our permutations are optimal (w.r.t the diffusion round), for the
case k = 16, they have a minimal number of active S-boxes over 20 rounds which is lower
than for the permutations given in [CGT19] in the same case, where those permutations
have a diffusion round of 10 and at least 70 actives S-boxes over 20 rounds. However for
all our permutations, the longest Impossible Differentials distinguisher we can build is
over 17 rounds, which is at least one round lower than for the permutations with k = 16
given in [CGT19].

Note that we were still able to find the following optimal even-odd permutation for
k = 17, which thus has a diffusion round of 10 :

p = (7, 1, 4, 13, 8, 16, 2, 3, 12, 5, 0, 9, 15, 14, 10, 11, 6)
q = (8, 0, 9, 10, 3, 2, 16, 6, 14, 11, 7, 4, 1, 12, 5, 15, 13)

For this permutation, the longest Impossible Differential distinguisher is over 19 rounds,
and S4,2

69 , S
8,6
46 , S

8,7
39 , N20 are respectively 20, 16, 15 and 20. For k = 19, 20, 21, we easily

found permutations reaching full diffusion after 11 rounds with a random search, leaving
open the question to find one permutation with a diffusion round of 10. We give an
example for these cases below

k = 19 :
p = (18, 3, 5, 9, 13, 15, 10, 16, 11, 8, 6, 1, 0, 2, 14, 7, 17, 12, 4)
q = (9, 14, 2, 6, 3, 8, 16, 4, 0, 13, 18, 15, 5, 11, 7, 17, 12, 1, 10)

k = 20 :
p = (14, 5, 15, 1, 17, 3, 11, 8, 4, 0, 6, 13, 19, 10, 2, 9, 18, 12, 16, 7)
q = (1, 17, 5, 18, 12, 2, 0, 16, 13, 6, 3, 10, 14, 8, 11, 19, 9, 15, 7, 4)

k = 21 :
p = (19, 10, 7, 17, 2, 16, 20, 9, 6, 0, 3, 12, 18, 1, 4, 11, 15, 13, 14, 8, 5)
q = (20, 12, 0, 8, 7, 1, 4, 2, 10, 13, 5, 6, 11, 14, 19, 15, 9, 16, 3, 17, 18)
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2.5 Conclusion

We solved a 10-year-old problem which was to find an optimal (w.r.t diffusion round)
even-odd permutation for a Generalized Feistel Network with 32 blocks. More specifi-
cally, we showed that there exist permutations which have a diffusion round of 9, while
the best permutation found before had a diffusion round of 10. To do so, we give a
precise characterization for the permutation to have full diffusion after a given number
of rounds. This characterization allowed us to get a very efficient exhaustive search for
k ≤ 13. Even if optimal permutations were already known for these sizes, this shows that
our characterization is powerful, thus we have no need to use the elaborated techniques
from [CGT19] to treat all these cases. We then exploit this characterization to design a
very efficient algorithm that allows us to exhibit all optimal even-odd permutations for 32
blocks, as well as for 28, 30 and 36 blocks, which also have an optimal diffusion round of 9
and were not given in the previous literature. For 34, 38, 40 and 42 blocks, our algorithm
also allows us to prove that there is no even-odd permutation with a diffusion round of 9
(which is the lower bound), which is again a new result. However for these cases, we were
able to give better optimality bounds when considering even-odd permutations, namely
for 2k = 34 the optimal number of rounds for full diffusion is exactly 10 rounds and for
2k = 38, 40, 42, at most 11 rounds. We also give some security evaluation for Impossible
Differentials and Differentials (through the minimum number of active S-boxes). Espe-
cially for Impossible Differentials, for the 32 blocks case, all our permutations have their
longest impossible differential distinguishers over 17 rounds, which is at least one round
lower than every permutation given in [CGT19] for this case.

2.A Results for Optimal Permutations

2.B Efficient Implementation to Test 9 Round Full
Diffusion

We give an example of a C++ implementation of the characterization for a permutation to
have full diffusion over 9 rounds. This function takes powerp and q as parameters, which
are respectively, the precomputed values of each power of p, i.e. powerp[i][j] = pi(j),
and the permutation q.
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(p, q) Imp. Diff S4,2
57 S8,6

38 S8,7
33 N20

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 12, 13)
17 19 14 13 66

q = (10, 7, 13, 11, 9, 8, 4, 1, 12, 5, 3, 2, 6, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 12, 13)
17 19 14 13 66

q = (8, 6, 13, 10, 7, 9, 1, 12, 5, 2, 4, 3, 11, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 12)
17 19 14 13 66

q = (9, 1, 13, 5, 2, 10, 3, 7, 12, 11, 8, 4, 6, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 12)
17 19 14 13 66

q = (4, 1, 13, 5, 10, 9, 2, 11, 8, 12, 6, 3, 7, 0)

p = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 13, 12)
17 22 14 13 52

q = (3, 5, 2, 13, 0, 10, 9, 11, 8, 12, 6, 4, 7, 1)

p = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 13, 12)
17 22 14 13 52

q = (3, 1, 13, 11, 8, 10, 9, 7, 12, 5, 2, 4, 6, 0)

p = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 12, 13)
17 22 14 13 52

q = (3, 11, 8, 13, 6, 10, 9, 5, 2, 12, 0, 4, 7, 1)

p = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 12, 13)
17 22 14 13 52

q = (3, 7, 13, 5, 2, 10, 9, 1, 12, 11, 8, 4, 6, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 6, 10, 9, 12, 11, 13)
17 23 19 18 46

q = (4, 9, 6, 11, 13, 12, 10, 2, 8, 1, 5, 3, 7, 0)

Table 2.4 – Security evaluation for the best equivalence classes with k = 14

(p, q) Imp. Diff S4,2
61 S8,6

41 S8,7
35 N20

p = (1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 10, 13, 12, 14)
17 20 16 14 61

q = (12, 5, 10, 3, 11, 1, 13, 9, 14, 7, 4, 6, 2, 8, 0)

p = (1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 10, 13, 12, 14)
17 42 28 24 30

q = (13, 9, 10, 7, 11, 5, 12, 3, 14, 1, 4, 6, 8, 2, 0)

Table 2.5 – Security evaluation for the best equivalence classes with k = 15

bool checkDiffusion(vector <vector <unsigned int >> const & powerp ,
vector <unsigned int > const & q){
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(p, q) Imp. Diff S4,2
65 S8,6

43 S8,7
37 N20

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 14, 12, 15)
17 33 22 19 40

q = (2, 6, 12, 10, 1, 13, 4, 15, 7, 9, 14, 5, 8, 3, 11, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 14, 12, 15)
17 33 22 19 40

q = (5, 6, 13, 10, 4, 12, 9, 15, 2, 1, 14, 7, 11, 3, 8, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 12, 15, 14)
17 50 33 29 26

q = (2, 1, 12, 8, 7, 14, 5, 4, 13, 11, 10, 15, 9, 3, 6, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 6, 10, 11, 9, 13, 12, 14, 15)
17 50 33 29 26

q = (7, 6, 14, 9, 11, 15, 1, 12, 2, 13, 5, 4, 10, 8, 3, 0)

Table 2.6 – Security evaluation for the best equivalence classes with k = 16

(p, q) Imp. Diff S4,2
73 S8,6

49 S8,7
42 N20

p = (1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 15, 8, 16, 17)
17 31 22 19 44

q = (10, 9, 14, 12, 15, 11, 13, 17, 2, 1, 6, 4, 7, 3, 5, 16, 8, 0)

p = (1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 15, 8, 16, 17)
17 56 38 32 26

q = (14, 8, 12, 15, 13, 10, 9, 17, 7, 6, 16, 3, 5, 1, 4, 2, 11, 0)

p = (1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 15, 8, 17, 16)
17 31 22 19 44

q = (2, 1, 6, 12, 15, 3, 13, 16, 10, 9, 14, 4, 7, 11, 5, 17, 8, 0)

p = (1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 15, 8, 17, 16)
17 56 38 32 26

q = (11, 5, 9, 12, 2, 7, 6, 16, 3, 13, 1, 4, 10, 15, 14, 17, 8, 0)

Table 2.7 – Security evaluation for the best equivalence classes with k = 18
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auto const & p6 = powerp [6];
auto const & p5 = powerp [5];
auto const & p4 = powerp [4];
auto const & p3 = powerp [3];
auto const & p2 = powerp [2];
auto const & p = powerp [1];

unsigned int sizeperm = q.size ();
for(unsigned int x = 0; x < sizeperm; x++){

unsigned int qx = q[x];
unsigned int qpq = q[p[qx]];
unsigned int qp = q[p[x]];
unsigned int qp2 = q[p2[x]];
unsigned int qp3 = q[p3[x]];
unsigned int qp2q = q[p2[qx]]];
unsigned int qpqp = q[p[qp]];

unsigned int indicator = (1 <<p6[x]);
indicator |= (1 << p5[qx]);
indicator |= (1 << p4[qp]);
indicator |= (1 << p3[qp2 ]);
indicator |= (1 << p2[qp3 ]);
indicator |= (1 << p[q[p4[x]]]);
indicator |= (1 << q[p5[x]]);
indicator |= (1 << p3[qpq ]);
indicator |= (1 << p2[qp2q ]);
indicator |= (1 << p2[qpqp ]);
indicator |= (1 << p[q[p3[qx]]]);
indicator |= (1 << p[q[p2[qp]]]);
indicator |= (1 << p[q[p[qp2 ]]]);
indicator |= (1 << q[p4[qx]]);
indicator |= (1 << q[p3[qp]]);
indicator |= (1 << q[p2[qp2 ]]);
indicator |= (1 << q[p[qp3 ]]);
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indicator |= (1 << p[q[p[qpq ]]]);
indicator |= (1 << q[p2[qpq ]]);
indicator |= (1 << q[p[qp2q ]]);
indicator |= (1 << q[p[qpqp ]]);
if(__builtin_popcount(indicator) != sizeperm)

return false;
}
return true;

}
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Chapter 3

EFFICIENT METHODS TO SEARCH FOR

BEST DIFFERENTIAL CHARACTERISTICS

ON SKINNY

Introduction

Differential cryptanalysis [BS91b] evaluates the propagation of an input difference
δX = X ⊕X ′ between two plaintexts X and X ′ through the ciphering process. Indeed,
differential attacks exploit the fact that the probability of observing a specific output
difference given a specific input difference is not uniformly distributed. Today, differential
cryptanalysis is public knowledge, and block ciphers such as AES have proven bounds
against differential attacks. A classical extension of differential cryptanalysis is the so
called related-key differential cryptanalysis [Bih93] that allows an attacker to inject dif-
ferences not only between the plaintexts X and X ′ but also between the keys K and K ′

(even if the secret key K stays unknown from the attacker). This attack has been recently
extended to tweakable block ciphers [Bei+16]. Those particular ciphers allow in addition
to the key, a public value called a tweak. Thus, related-tweakey differential attacks al-
low related-key differences but also related-tweak differences (i.e. differences in a pair
of tweaks (T, T ′)). In differential attacks, two notions are considered: first, differentials
where only the input and the output differences are known; and differential characteristics
where each difference after each round is completely specified. A classical approach to
evaluate the resistance against differential attacks is to compute the probability of the
best differential characteristic of the cipher.

Finding optimal (related-tweakey) differential characteristics is a highly combinatorial
problem that hardly scales. To limit this explosion, a common solution consists in using a
truncated representation [Knu95] for which cells are abstracted by single bits that indicate
whether sequences contain differences or not. Typically, each cell (i.e. byte or nibble) is
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abstracted by a single bit (or, equivalently, a Boolean value). In this case, the goal is no
longer to find the exact input and output differences, but to find the positions of these
differences, i.e., the presence or absence of a difference for every cell. When a difference is
present at the input of an S-box, we talk about an active S-box or an active byte/nibble.
However, some truncated representations may not be valid (i.e., there do not exist actual
byte values corresponding to these difference positions) because some constraints at the
byte level are relaxed when reasoning on difference positions.

Hence, the optimal (related-tweakey) differential characteristic problem is usually
solved in two steps [BN10; Abd+17]. In the first one, every differential byte is abstracted
by a Boolean variable, denoted by ∆, that indicates whether there is a difference or not
at this position, and we search for all truncated representations of low weight as the less
differences passing through S-boxes there are, the more the probability is increased. Then,
for each of these low weight truncated representations, the second step aims at deciding
whether it is valid (i.e., whether it is possible to find actual cell values, denoted δ, for
every Boolean variable) and, if it is valid, at finding the actual cell values that maximize
the probability of obtaining the output difference given the input difference.

Related Work. Many techniques have been proposed to search for the Step 1 solutions
using automatic tools such as Boolean satisfiability (SAT) [SNC09; MP13], [SWW17] or
Mixed Integer Linear Programming (MILP) [Sun+14; ST17; Bei+16] and Satisfiability
Modulo Theories (SMT) [KLT15]. Dedicated solutions have also been proposed [Mat94].

Regarding the search of the best instantiation of a truncated characteristic, most of the
approaches were ad-hoc and dedicated to a precise cipher [Laf18; SWW18; FJP13b; BN10;
Gér+18; ENP19]. Concerning the use of SAT solvers, [SWW18] implements a SAT model
for differential cryptanalysis based on Cryptominisat5 [SNC09] for Midori64 and LED64.
This model implies a sufficiently small number of clauses to model the non-zero values of
the DDT and to be applicable. However, no result concerning 8-bit S-boxes are given. As
SAT uses Boolean formulas, it seems that the same problem than for MILP appears for
modeling S-box: a huge number of Boolean formulas will be necessary to correctly model
this step even if dedicated tools as Logic Friday or the Expresso algorithm [Abd+17]
are used. In [Abd+17], 16 days are needed to find the best related tweakey differential
characteristics on SKINNY-128 for the SK model. Recently, in [Ger+20; Gér+18], the
authors introduce Constraint Programming (CP) models for Step 2 and the performance
results are really promising regarding AES-192 and AES-256.

Our contribution. In this chapter, we refine the security bounds on the SKINNY-n tweak-
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able block cipher regarding differential cryptanalysis for the four following attack models
according to the size of the tweakey: the SK model focuses on single-key attack, the TK1
model considers related-tweakey attack when the tweakey has only one component, the
TK2 model in the related-tweakey settings considers 2 components and the TK3 model,
3 components.

To do so, we implement Step 1 using an ad-hoc method inspired from [FJP13b]. We
also propose a CP model for Step 2 taking as input the solutions outputted by Step 1.
Thus, we provide, for the first time, the best differential related-tweakey characteristics
up to 14 rounds for the TK1 model. We also consider the TK2 and TK3 models and
we were able to find some differential characteristics up to 16 rounds for the TK2 model
and up to 17 rounds for the TK3 model of SKINNY-128. However, we were not able to
test all the solutions Step 1, and thus these differential characteristics are not necessarily
optimal. This is an important improvement compared to previous results. For instance,
in [LGS17] Liu et al. could only find the best differential characteristics up to 7 and 9
rounds for TK1 and TK2. Finally we also show there is no differential characteristic
with probability higher than 2−128 against 15 rounds in the TK1 model, 19 rounds for
TK2 and 23 rounds for TK3. All those results clearly show that SKINNY is much more
resistant to differential cryptanalysis than one would expect while counting the number
of active S-boxes.

As a feedback, we also provide the time results we obtain when implementing the
Step 1 using another tool, a MILP model for the 4 attack settings. As a result we show
that MILP is not always the best choice. First, for Step 1, the ad-hoc method is able
to surpass the MILP model. Second, the CP model proposed for Step 2 is incomparably
much faster than the MILP model proposed in [Abd+17] that requires 16 days according
their paper.

All the codes to reproduce these results can be found at [Del+21b].

Organization of the chapter. Section 3.1 gives a short description of SKINNY-n; Sec-
tion 3.4 presents our Ad-Hoc tool and gives performance results comparing our Ad-Hoc
model with a MILP one; Section 3.5 presents our dedicated modeling for Step 2 based
on CP and analyzes the obtained results. Finally, some differential characteristics we
found are given in the appendices (Appendix 3.A for SKINNY-64 and Appendix 3.B for
SKINNY-128).
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3.1 Cipher under study: SKINNY-n

In this section, we briefly review the tweakable block cipher SKINNY-n where n denotes
the block size and can be equal to 64 or 128 bits. All the details that have been overlooked
can be found in [Bei+16].

As its name indicates, it enciphers blocks of length 64 or 128 bits seen as a 4 × 4
matrix of cells (nibbles for n = 64 or bytes for n = 128). We denote xi,j,k the cell at row
i and column j of the internal state at the beginning of round k (i.e. 0 ≤ i, j ≤ 3 and
0 ≤ k ≤ r + 1 where r is the number of rounds depending on the tweak length and on
the key length). SKINNY-n follows the TWEAKEY framework from [JNP14]. SKINNY-n
has three main tweakey size versions: the tweakey size can be equal to t = 64 or 128 bits,
t = 128 or 256 bits and t = 192 or 384 bits and we denote z = t/n the tweakey size to
block size ratio. Then, the number of rounds is directly derived from the z value: between
32 rounds for the 64/64 version up to 56 for the 128/384 version.

The tweakey state is also viewed as a collection of z 4×4 square arrays of cells (nibbles
for n = 64 or bytes for n = 128). We denote these arrays TK1 when z = 1, TK1 and TK2
when z = 2, and finally TK1, TK2 and TK3 when z = 3. We also denote by TKki,j the
nibble or the byte at position [i, j] in TKk. Moreover, we define the associated adversarial
model SK (resp. TK1, TK2 or TK3) where the attacker cannot (resp. can) introduce
differences in the tweakey state.

One encryption round of SKINNY is composed of five operations applied in the following
order: SubCells (SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR)
and MixColumns (MC) (see Fig. 3.1).

SC AC

ART

»> 1

»> 2

»> 3

ShiftRows MixColumns

Figure 3.1 – the SKINNY round function with its five transformations [Jea16].

SubCells. A 4-bit (n = 64) or an 8-bit (n = 128) S-box is applied to each cell of the
state. See [Bei+16] for the details of the S-boxes.

AddConstants. A 6-bit affine LFSR is used to generate round constants c0 and c1 that
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are XORed to the state at position [0, 0] and [1, 0] whereas the constant c2 = 0x02
is XORed to the position [2, 0].

AddRoundTweakey. The first and second rows of all tweakey arrays are extracted and
bitwise exclusive-ored to the cipher internal state, respecting the array positioning.
More formally, we have:

• xi,j = xi,j ⊕ TK1i,j when z = 1,

• xi,j = xi,j ⊕ TK1i,j ⊕ TK2i,j when z = 2,

• xi,j = xi,j ⊕ TK1i,j ⊕ TK2i,j ⊕ TK3i,j when z = 3.

Then, the tweakey arrays are updated. First, a permutation PT is applied on
the cells positions of all tweakey arrays: if ` = 4 ∗ i + j where i is the row in-
dex and j is the column index, then the cell ` is moved to position PT (`) where
PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]. Second, every cell of the first and
second rows of TK2 and TK3 are individually updated with an LFSR on 4 bits
(when n = 64) or on 8 bits (when n = 128) with a period equal to 15.

ShiftRows. The rows of the cipher state cell array are rotated to the right. More pre-
cisely, the second (resp. third and fourth) cell row is rotated by 1 position (resp. 2
and 3 positions).

MixColumns. Each column of the cipher internal state array is multiplied by the 4 × 4
binary matrix M : 

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0


Since 2016 and the birth of SKINNY-128, the cryptographic world never stopped trying

to attack it. Among all the cryptanalysis results, we could cite the following ones in the
related-tweakey settings and classified according the type of attacks. First, in [SQH19;
Zha+20; LGS17], boomerang and rectangle related-tweakey attacks are considered. The
best result is on 28 rounds with a complexity of 2315 in time based on a boomerang distin-
guisher of 23 rounds in the TK3 scenario. Concerning impossible related-tweakey attack
[Sun+17; LGS17], the best attack has 23 rounds using a distinguisher with 15 rounds in
the TK2 scenario. Even if the distinguishers presented here have less rounds, they do
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not look at the same attack scenario. This work essentially goes further than [Abd+17]
concerning the search of the best related-tweakey differential trails and aims at refining
the best security bounds of SKINNY in this attack model.

3.2 Best known differential characteristics on SKINNY

Analysis concerning the differential characteristics of SKINNY already exist in the litera-
ture. The designers of SKINNY proposed the first analysis of security of the primitive done
in their design paper. The first result concerning truncated differential characteristics
were published in this occasion. The authors proposed a MILP model to compute the
best truncated differential characteristic of SKINNY under the different tweakeys settings.
In particular, they were able to reduce the search space of the differences in the tweakeys
in the TK2 and TK3 settings. Details on this work are reviewed in Subsection 3.2.1.

In [LGS17], Liu et al. proposed a more targeted analysis of the security of SKINNY in
the TK models against boomerang and rectangle attacks. For their analysis, they need
to know some differential characteristics for SKINNY-64 and SKINNY-128 in the different
TK models. They were able to find some optimal differential characteristics for SKINNY-
64 and some goods for SKINNY-128 which to the best of our knowledge were the best
known before the work we realized. We review briefly the part of their work concerning
differential characteristics in Subsection 3.2.2.

Finally, [Abd+17] proposed a way to integrate large S-boxes in MILP models with
the S-boxes of AES and SKINNY-128. More importantly for us, their idea allows them to
construct and run a MILP model searching for differential characteristics of SKINNY-128.
They found with it the best differential characteristic for SKINNY-128 in the SK models
for 13 rounds and prove that no differential characteristics with a better probability than
2−128 exist for 14 rounds in the same model. Their work regarding SKINNY is explained
in Subsection 3.2.3.

3.2.1 Best truncated differentail characteristics

To give a first idea of the security of SKINNY, its designer proposed a simple MILP model
up to 30 rounds to search for the best truncated differential characteristics. Remarks that
this model is the same for SKINNY-128 and SKINNY-64.

For a model searching the truncated characteristics, the only operations that need to
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be represented are the ShiftRows, the MixColumn and the AddRoundTweakeys (if there
are differences in the keys). In their models, Bierle et al. have three sets of variables:

• {xk,i,j|i, j ∈ [0..3], k ∈ [0..r]} corresponding to the activity pattern of the internal
state round by round. xk,i,j is the activity of the cell of row i and column j at round
k: it is equal to 1 if there is a difference in the cell and 0 otherwise.

• {yk,i,j|i, jin[0..3], k ∈ [0..r]} corresponds to the activity pattern after the tweakeys
are added to the state.

• {κi,j|i, j ∈ [0..3]} corresponds to the initial activity pattern of the tweakey state.

With these variables, it is easy to see that the ShiftRows operations can be modeled
in another constraint by using the correct indexes between the different variables. In
addition, the two others are only composed of XOR operations. As a result, Bierle et al.
decomposed them to their xor levels and used a classical way to model the xor of binary
variables to obtain a complete model of SKINNY.

For SK and TK1, the model can be run directly with an objective of minimizing the
number of xr,i,j that are equal to 1. For TK2 and TK3, Bierle et al. choose to not
represent the activity patterns of each tweakeys but the one of their sum. This approach
needs a lot less variables than modeling each activity pattern: going from 2 or 3 times
16r to 16r variables. Furthermore, they remark that cancellation could happened in the
sums of the tweakeys but only a limited number of times (depending on the tweakey
setting considered) for each cell (followed after the permutation of the tweakeys states).
This limited number of cancellations appears from the updates by LFSRs of the second
and third tweaks. For example, for TK2, if at round k the sums of the first and second
tweakeys canceled, then at round k + 1 it cannot cancel again: since the first tweakey is
unchanged (up to a permutation of the cells) whereas the second one was updated by a
LFSR (up to the permutation of the cells). Or as the LFSR has a cycle length of 15, up
to two cancellations can happen for the up to 30 rounds considered. The only difference
in this model between TK2 and TK3 is the maximum number of cancellations for each
cell: 2 for TK2 and 3 for TK3 for each of the original active cells in κ. It is however not
clear with this modeling if the found bounds will be tight for TK1, TK2 and TK3. In
our work, we keep the idea concerning the cancellations in our Step 1 process and build
upon it (see details in Section 3.4). Running these models gave results to the designers of
SKINNY that we give again here in Table 3.1.
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# rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SK 1 2 5 8 12 16 26 36 41 46 51 55 58 61 66
TK1 0 0 1 2 3 6 10 13 16 23 32 38 41 45 49
TK2 0 0 0 0 1 2 3 6 9 12 16 21 25 31 35
TK3 0 0 0 0 0 0 1 2 3 6 10 13 16 19 24

# rounds 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
SK 75 82 88 92 96 102 108 (114) (116) (124) (132) (138) (136) (148) (158)
TK1 54 59 62 66 70 75 79 83 85 88 95 102 (108) (112) (120)
TK2 40 43 47 52 57 59 64 67 72 75 82 85 88 92 96
TK3 27 31 35 43 45 48 51 55 58 60 65 72 77 81 85

Table 3.1 – Minimum number of active S-boxes, Table 7 in [Bei+16]. Minimum number
of active S-boxes in a truncated differential characteristic. Numbers in parenthesis are
upper bound on the minimum.

3.2.2 Result in related-tweakeys models

In their works on boomerang and rectangle attacks against SKINNY, they needed good
differential characteristics for their analysis and proposed in their works to find them
with different tools. The results they found are summarized in Table 3.2.

For SKINNY-64 , Liu et al. repurposed the MILP models of [LGS17] and proceed in
three steps:

1. Generate every truncated differential characteristics with exactly the minimum num-
ber ASmin of active S-boxes for the given parameters;

2. Try to instantiate (with a MILP modeling of the 4-bit S-box) them and keep the
best probability found p. If p = 2−2ASmin−i with i ∈ {0, 1, 2} then the solutions
found are necessary optimal. Otherwise, do the third step;

3. Find all truncated differential characteristics with less than
⌊

log2(p)
2

⌋
active S-boxes.

Then, try to instantiate them with a MILP model.

With this method, Liu et al. were able to find the optimal differential characteristics of
SKINNY-64 up to 13 rounds in the different TKs settings. But they remark that it works
as long as the number of truncated differential characteristics to consider is small (less
than 5000).

For SKINNY-128 , Liu et al. remark that modeling the 8-bit S-box is too heavy for
MILP and proposed to replace it by a dedicated search algorithm used after computing
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# rounds 6 7 8 9 10 11 12 13

TK1 SKINNY-64 2−12 2−20 2−26 2−32 2−46 2−64 2−76 2−82

SKINNY-128 2−12 2−20 2−54

TK2 SKINNY-64 2−4 2−6 2−12 2−20 2−28 2−35 2−48 2−55

SKINNY-128 2−12 2−34.42

TK3 SKINNY-64 20 2−2 2−4 2−6 2−12 2−20 2−28 2−38

SKINNY-128 2−12 2−21 2−62.83

Table 3.2 – Probability of the best differential characteristics found in [LGS17] (summary
of Table 6 and Table 7 of their work).

with MILP truncated differential characteristics. The dedicated algorithm begins with
fixing the values of the (few) active cells in the initial tweakeys of the truncated solutions.
Then they compute the whole tweakey schedule. Once the tweakey schedule is known, it
is easy to find differential characteristics or verify there is no differential. They run their
methods only on a small number of truncated characteristics with a minimum of active
S-boxes.

3.2.3 The best differential characteristic

As Liu et al. remark in [LGS17], the fact that MILP cannot model 8-bit S-boxes (because
it would be too costly) was admitted in the cryptographer community. Abdelkhalek et
al. in [Abd+17] proved that it was in fact possible. Their work is an improvement
of the MILP model of Sun et al. in [Sun+14] which proposed to search for truncated
differential characteristics but used an elegant way to remove truncated solutions that do
not correspond to existing differential characteristics. They add as a criteria for the MILP
the existence of an instantiation by modeling only possible input/output differences and
ignoring probability: the DDT is truncated in terms of probability: every non-zero entry
is replaced by 1. They called this truncated version of the DDT the *-DDT.

In [Abd+17], Abdelkhalek et al. used the classical approaches to first compute the
truncated differential characteristics with less than a target number of active S-boxes
with a MILP model. Then, they searched again with a MILP model instantiation of the
truncated characteristics. For the model of this second step, they reused the *-DDT to
build a MILP model able to treat 8-bit S-boxes. They split the DDT of the 8-bit S-box
over the different probabilities in different *-DDT. More precisely, for each probability p in
the DDT, they create one *-DDT corresponding to every entry that has probability p. The
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non-zeroes entries being identical, they can be changed to 1. With this decomposition,
they split the modeling of S-boxes transitions in value in two steps: a first constraint,
representing the selection of a *-DDT or said in another manner, a constraint representing
the choice of the probability of the transition and a second constraint selecting one precise
transition with the selected probability. With this method, they were able to find the best
differential characteristics (with a probability of 2−123) for 13 rounds SKINNY-128 in the
SK setting. Furthermore, they were able to prove no differential characteristic with a
better probability than 2−128 exists for 14 rounds in the SK setting.

3.3 Overview of the search method

During this PhD, we studied the search of differential characteristics with a very classical
approach. In Subsection 3.3.1, we review this approach and give details on how we treat
the different steps in Section 3.4 and Section 3.5. Subsection 3.3.2 is a digression on other
tools that could be used for this approach and a brief argumentation to explain why we
did not use them.

3.3.1 A classical approach

As said previously, we adopt a very classical approach to search for the differential charac-
teristics of SKINNY. Just like [LGS17; Abd+17] for SKINNY or [GMS16; Ger+20] for AES,
we use a two step process that we called Step 1 and Step 2:

• Step 1 consists in computing for a given number of rounds the truncated differential
characteristics with a given number of active S-boxes. In our work, we proposed
an ad-hoc tool to replace the MILP modeling done in previous works based on
dynamic programming. We try other approaches to solve this step but keep only
the ad-hoc tool to compute our results. Comments on the other approaches are
found in Subsection 3.3.2. Details concerning our process are in Section 3.4.

• Step 2 searches for instantiation of truncated differential characteristics with better
probability than a target p. Such an instantiation of a truncated solution gives us a
better upper bound for the probability. In particular since the best S-boxes transi-
tions of SKINNY-128 have a probability of 2−2, there were already rounds (represented
with a lower opacity in Table 3.1) for which it is not necessary at all to search for a
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differential characteristic. The same reasoning can be followed for SKINNY-64 with
32 active S-boxes.

It is possible to automatize completely the exchange of informations between the
first and second steps. In reality, we run our process manually by calling generating
some truncated solutions then trying to instantiate them and if necessary go back to the
Step 1. With our method, we obtained new optimal differential characteristics for the
TKs settings and some good differential characteristics for TK2 and TK3 settings. The
precise results concerning them obtained from our works can be found in Section 3.5.3.

The major contribution of our work was the way we implement the search for each
step. More precisely, in Section 3.4, we explained in details how we search the truncated
differential characteristics. Then, in Section 3.5 we give details on the way we treat the
instantiation of the truncated differential characteristics we found in the first step.

3.3.2 About other tools

When we began working on this project, one of the goas was to study the efficiency of
different types of tools for searching differential characteristics. We dropped this idea
quite fast because such a comparison would need other targets than SKINNY,

For Step 1. We tried different approaches to solve the Step 1 problem, including MILP,
SAT and CP models.

Our SAT model is encoded through the high level modeling language MiniZinc while
our CP model is based on the Choco-solver. Unfortunately, the results of both the SAT
and the CP models are really bad: for example, for all instances greater than 16 rounds
we were unable to obtain solutions in reasonable time. This is mainly due to the need to
enumerate solutions for SAT, which implies to prohibit all solutions previously found. For
CP, on the other hand, this has to do with the nature of the Boolean variables themselves
where the Choco-solver can not efficiently propagate lower bounds and upper bounds on
Boolean variables.

Our MILP model was much better than our SAT and CP ones. We started from the
original model presented in [Bei+16] but made several optimizations. First, we added
constraints in the SK model to obtain all solutions up to column shifts in order to remove
symmetries. Moreover, as the original model only describes the way to find the minimal
number of active S-boxes, we added a constraint in each model to set a lower bound on
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the number of active S-boxes and thus, we were able to enumerate all the Step 1 solutions
given a particular lower bound for the number of active S-boxes. Then, in the original
MILP model all xor operations were modeled using dummy variables which is known to
be inefficient. Thus we replaced the corresponding inequalities, using that x⊕ y ⊕ z = 0
can be described with the three inequalities:

{x+ y ≥ z}, {x+ z ≥ y}, {y + z ≥ x}.

Finally, regarding the resolutions of the MILP models, the parallelization were left to the
Gurobi solver.1

We compared the MILP model to our ad-hoc tool and we found that our MILP model
is much slower in most cases and actually too slow to output all the Step 1 solutions
needed to perform Step 2. Running times are given in Table 3.3.

Rounds Model ObjStep1 MILP Ad-hoc
14 TK1 45 → 59 > 6h 5m
19 TK2 52 → 63 > 6h 19m
20 SK 96 342m 16s
20 TK1 70 38m 28s
20 TK2 57 745s 193s
20 TK3 45 998s 326s

Table 3.3 – Comparison of the running times required to generate all Step 1 solutions
between our MILP and ad-hoc approaches.

Note that while our ad-hoc tool gave very good running times, it may require a lot of
memory to store the array C. For instance, for 30 rounds in TK3 mode, our tool required
up to 500GB of RAM to finish the search. It is also important to note that it did not take
fully advantage of the 128 cores of our server, and most often used less than 40 cores.

For Step 2. With preliminary results with CP solver proving to be far faster than what
exists up to now with MILP and with the complexity of building an efficient ad-hoc tool
for Step 2, we basically only explored the uses of CP solver for this step of the search. All
details of our method for the resolution of Step 2 can be found in Section 3.5.

1. see: https://www.gurobi.com/documentation/9.0/refman/threads.html

84

https://www.gurobi.com/documentation/9.0/refman/threads.html


3.4. Models and Results for Step 1

3.4 Models and Results for Step 1

As explained in the introduction, in a first step called Step 1, we abstract each possible
difference at cell (nibble or byte) level by a binary variable which symbolizes the pres-
ence/absence of a difference value at a given position of the cipher. The main concern
regarding this step is the combinatorial explosion induced by the abstract XOR operation
for which the sum of two non-zero values can lead to the presence or the absence of a
difference.

3.4.1 Possible Transitions

Since the S-box is bijective and the ShiftRows operation only permutes cells, both
those operations do not affect truncated differences. But for the AddRoundTweakey and
MixColumns transformations we need to take care of the XOR operation. More precisely,
given two truncated differences a and b we know that the possible values of (a, b, a ⊕ b)
are:

(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)

However we have to pay attention to uninstantiable solutions. For instance, given three
truncated differences a, b and c, (1, 1, 1, 0, 0, 1) is a possible value for (a, b, c, a⊕b, a⊕c, b⊕c)
but it is impossible to instantiate it because if a = b and a = c then b = c.

Hence we rewrite the equation y = MixColumns◦AddRoundTweakey(x, k) to avoid such
patterns:

• y[1] = x[0]⊕ k[0],

• y[3] = y[1]⊕ x[2],

• y[0] = y[3]⊕ x[3],

• y[2] = x[1]⊕ k[1]⊕ x[3]

We experimentally verified that each truncated solution of this system can be instantiated.

Keyschedule. When looking at the key schedule of SKINNY at the cell level and for
truncated differential characteristics it is mostly a simple cell permutation. In the model
SK, there are no differences in the round keys. In the TKx models, differences in the
round keys are possible. If the number of rounds targeted is at most 30, the rule for active
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cells on the round keys is quite simple: either the cell is inactive for all round keys, either
it is active for all round keys but one (TK2) or two (TK3).

3.4.2 Ad-hoc Models for Step 1

To the best of our knowledge, the most efficient algorithm to search for truncated differ-
ential characteristics on SPN ciphers is the one described in [FJP13b] by Fouque et al.
which was applied on the 3 versions of AES. It is mostly dynamic programming as Round
i is independent of the paths of rounds 0, 1, . . . , i−1 and at each step we only have to save,
for each truncated state, the minimal number of active S-boxes to reach it. Hence, the
complexity of this algorithm is exponential in the state size but linear in the number of
rounds. The algorithm is specified in Algorithm 6. At the end of the algorithm we obtain
an array C such that C[r][s] contains the minimal number of active S-boxes required to
reach state s after r rounds. Retrieving the truncated representations is then done quite
easily using C, starting from the last state to the first. Let say we want to exhaust all
truncated differential characteristics on R rounds with at most b active S-boxes ending
with state s. From C[R − 1][s], we know whether such characteristic exists or not. If
C[R − 1][s] ≤ b we exhaust all states s′ such that the transition s′ → s through one
round is possible and, for each of them, we now need to exhaust all truncated differential
characteristics on R− 1 rounds with at most b− |s| active S-boxes ending with state s′.

The complexity of the algorithm in the single key model is very low, and we experi-
mentally counted around (R− 1)× 220 simple operations for R rounds. A naive solution
to search for truncated representations in the TK1, TK2 and TK3 models would be
to apply the previous algorithm for each possible configuration of the key. While for
TK1 this would only increase the overall complexity by a factor 216, the search would
not be practical for both the TK2 and TK3 models. Indeed, because of the possible
cancellations occurring in the round keys, the number of configurations is very high:

 8∑
k=0

(
8
k

)(
tk−1∑
i=0

(
b(R− 1)/2c

i

))k 8∑
k=0

(
8
k

)(
tk−1∑
i=0

(
d(R− 1)/2e

i

))k .
For instance, for R = 30, there are more than 264 configurations in the TK2 model.

In the following we present the first practical algorithm which tackles down the problem
for the TK models without relying on a black box solver as MILP, SAT or CP solvers.
Actually this is the only algorithm fast enough to generate all the Step 1 solutions required
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Algorithm 6 Search for the best truncated representation (SK).
1: for each state s do
2: M [s]←− list of states s′ reachable from s through one round
3: end for

4: for each state s do
5: C [0] [s]←− number of active cells of s
6: end for
7: for 1 ≤ r < R do
8: foreach state s do C [r] [s]←−∞
9: for each state s do

10: for each state s′ in
M [s]

do
11: c←− C [r − 1] [s] + number of active cells of s′
12: if c < C [r] [s′] then
13: C [r] [s′]←− c

14: end if
15: end for
16: end for
17: end for
18: Return C
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to perform the Step 2. Indeed, the best differential characteristic is rarely based on the
truncated differential characteristics minimizing the number of active S-boxes and thus we
need to generate a large number of truncated characteristics to find the one instantiating
with the best probability. As we will explain in Section 3.3.2, all other approaches we
tried to generate them failed.

The idea of our ad-hoc method is quite similar to the one used in the single key model.
Actually, to compute the minimal number of active S-boxes at round r + 1 we only need
to know the minimal number of active S-boxes for each possible state at round r together
with the number of cancellations for each key cell occurred so far. Indeed, we do not need
to know at which rounds the cancellations occurred but only how many times they did.
A simplified version of this algorithm is described in Algorithm 7. The most important
part is related to the variable cancelled which count how many times each key cell is
cancelled through the encryption. It is a vector of 16 cells, each cell taking values among
{0, 1, . . . , x− 1, r} for the TKx model. The main advantage of our representation is that
at each step of the algorithm, C[r][s] contains at most (x + 1)16 elements for the TKx
model which is much lower than the number of possible sequences of round keys.

Finally we introduce a new improvement which greatly speeds up the search procedure.
It is based on the so-called early abort technique principle and the idea is to handle the key
cell by cell. Indeed, we expect that the best truncated differential characteristics do not
involve many active cells in the round key and so we want to quickly cut those branches
during the search. To do so we first pick a key cell and guess whether it is active or not. At
this step we have not decided yet if any cancellations occur nor their positions but only if
it is always 0 or at least once 1. Then we apply the algorithm partially and guess another
key cell if and only if it seems possible to find a truncated differential characteristic with
a small enough number of active S-boxes. More precisely, along the search we have the
relation y = x ⊕ k where k is the round key. We introduce a new 16-bit variable g such
that gi = 0 if we made a choice for bit i of k and 1 otherwise. To compute the possible
truncated transitions from x to y through k for all the possible key (according to g) we
can restrict ourself at looking at the possible truncated transitions from (x|g) to y through
(k|g) where | is the bitwise OR. Indeed, we use the fact that in truncated setting 1 ⊕ 1
is 0 or 1 and thus our technique allows to handle all the possible keys by looking only at
few transitions.
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Algorithm 7 Search for the best truncated representation (TK).
1: for each state s, round key k do
2: M [k] [s]←− list of states s′ reachable from s and k through one round
3: end for
4: for each state s do
5: C [0] [s]←− {(number of active cells of s, 0)}
6: end for
7: for r = 1 doR− 1
8: foreach state s do C [r] [s]←− ∅
9: for each state s do
10: for each (cost, cancelled) ∈ C [r − 1] [s] do
11: for each round key k compatible with cancelled do
12: for state s′ in M [k] [s] do
13: c←− cost + number of active cells of s′
14: C [r] [s′]←− C [r] [s′] ∪ {(c, update(cancelled, k))}
15: end for
16: end for
17: end for
18: end for
19: foreach state s do keepOptimals(C [r] [s])
20: end for
21: Return C
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3.4.3 Results for Step 1

For Step 1, we run our ad-hoc tool on the four attack scenarios (SK, TK1, TK2, and
TK3) when varying the number of rounds between 3 and 20. We conducted all our
experiments on our server composed of 2× AMD EPYC 7742 64-Core and 1TB of RAM.
In particular, we were able to complete the security analysis made in [Bei+16; Alf+18]
and claim that the minimal number of active S-boxes in TK1 for 28, 29 and 30 rounds
are 105, 109 and 113 respectively (as shown in Table 3.4).

# Rounds 28 29 30
TK1 105 109 113

Table 3.4 – Lower bounds on the number of active S-boxes in SKINNY.

However, the optimal solution of Step 2, in terms of differential characteristic prob-
ability, could be obtained for a number of active S-boxes which is not the optimal one.
Hereafter, we denote ObjStep1 the number of active S-boxes we consider when solving the
problems. For example, assume that, when processing Step 2, one obtains a differential
characteristic with the best probability equal to 2−3×6 = 2−18 with ObjStep1 = 6 and
whereas the optimal differential probability of the S-box is 2−2. It means that one has to
test all solutions outputted by Step 1 until ObjStep1 < 18/2 = 9 to be sure that none has a
better differential characteristic probability. This is exactly what happened for the case of
SKINNY-128 in the TK models. We only want to stress here that computing the optimal
bounds is often not enough and we need to go further. However, increasing the value of
ObjStep1 induces an increase of the possible number of Step 1 solutions as illustrated in
the third column of Table 3.6. As one can see, this number of solutions tends to grow
exponentially when we increase v. For example, for SKINNY-128 with 14 rounds in the
TK1 model, for the optimal value v∗ = 45, Step 1 outputs only 3 solutions; whereas we
have 897 solutions for v = v∗ + 5 = 50; 137 019 solutions for v = v∗ + 10 = 55 and finally
7 241 601 solutions for v = 59. So, the time required to output all those Step 1 solutions
and the time required for the Step 2 computations on 1 solution outputted by the Step 1
become the bottleneck of the overall process.
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3.5 Modeling Step 2 with CP

The aim of Step 2 is to try to instantiate the abstracted solutions provided by Step 1
while maximizing the probability of the differential characteristic. Thus, Step 2 takes as
input a solution of Step 1 with the objective function of maximizing the probability of the
differential characteristic. However, some solutions of Step 1 could not be instantiated in
Step 2 as refining the abstraction level of Step 2 will induce non-consistent solutions. In
the literature, this step has been modeled using ad-hoc methods [BN10], MILP [Abd+17],
SAT [SWW18] or CP [Ger+20]. As MILP [Abd+17] and SAT [SWW18] seem to hardly
scale due to prohibitive computational times (linked with the size of the 8-bit S-boxes
that must be represented in the form of linear inequalities or of clauses), we focus here on
a dedicated CP method implemented using the Choco solver [PFL16]. We also provide,
in the second part of this section, the results we obtain when instantiating the differential
characteristics in the 4 attack scenarios.

3.5.1 Constraint Programming

Although less usual than MILP to tackle cryptanalytic problems, CP has already been
used in e.g. [GMS16; ENP19]. We recall some basic principles of CP and we refer the
reader to [RBW06] for more details.

CP is used to solve Constraint Satisfaction Problems (CSPs). A CSP is defined by a
triple (X,D,C) such that X = {x1, x2, . . . , xn} is a finite set of variables, D is a function
that maps every variable xi ∈ X to its domain D(xi) and C = {c1, c2, . . . , cm} is a set
of constraints. D(xi) is a finite ordered set of integer values to which the variable xi
can be assigned to, whereas cj defines a relation between some variables vars(cj) ⊆ X.
This relation restricts the set of values that may be assigned simultaneously to vars(cj).
Each constraint is equipped with a filtering algorithm which removes from the domains
of vars(cj), the values that cannot satisfy cj.

In CP, constraints are classified in two categories. Extensional constraints, also called
table constraints, explicitly define the allowed (or forbidden) tuples of the relation. In-
tentional constraints define the relation using mathematical operators. For instance, in
a CSP with X = {x1, x2, x3} such that D(x1) = D(x2) = D(x3) = {0, 1}, a constraint
ensuring that the sum of the variables in X is different from 1 can be either expressed in
extension (1) or in intention (2):

1. Table(〈x1, x2, x3〉 , 〈(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)〉)
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2. x1 + x2 + x3 6= 1

Actually, any intentional constraint can be encoded with an extensional one provided
enough memory space, and conversely [Dem+16b]. However, they may offer different
performances.

The purpose of a CSP is to find a solution, i.e. an assignment of all variables to
a value from their respective domains such that all the constraints are simultaneously
satisfied. When looking for a solution, a two-phase mechanism is operated: the search
space exploration and the constraint propagation. The exploration of the search space is
processed using a depth-first search. At each step, a decision is taken, i.e. a non-assigned
variable is selected and its domain is reduced to a singleton. This modification requires
to check the satisfiability of all the constraints. This is achieved thanks to constraint
propagation which applies each constraint filtering algorithm. Any application may trigger
modifications in turn; the propagation ends when either no modification occurs and all
constraints are satisfied or a failure is thrown, i.e., at least one constraint cannot be
satisfied. In the former case, if all variables are assigned, a solution has been found.
Otherwise a new decision is taken and the search is pursued. In the latter case, a backtrack
to the first refutable decision is made and the search is resumed.

Turning a CSP into a Constrained Optimisation Problem (COP) is done by adding
an objective function. Such a function is defined over variables of X, the purpose is then
to find the solution that optimizes the objective function. Finding the optimal solution
is done by repeatedly applying the two-phase mechanism above, and by adding a cut on
the objective function that prevents from finding a same cost solution in the future.

3.5.2 Modeling Step 2 with CP

Given a Boolean solution for Step 1, Step 2 aims at searching for the byte-consistent solu-
tion with the highest (related-tweakey) differential characteristic probability (or proving
that there is no byte-consistent solution). In this section, Model 1 describes the CP model
we used for SKINNY-128 (SK). Actually, the ones used to model the other variants, as well
as SKINNY-64 are rather similar.

For each Boolean variable ∆Xr,i,j of Step 1, we define an integer variable δXr,i,j. The
domain of this integer variable depends on the value of the Boolean variable in the Step 1
solution: If ∆Xr,i,j = 0, then the domain is D(δXr,i,j) = {0} (i.e., δXr,i,j is also assigned
to 0); otherwise, the domain is D(δXr,i,j) = [1, 255]. For each byte that passes through

92



3.5. Modeling Step 2 with CP

Model 1 Formulation of SK Step2.
Minimize

ObjStep2 =
R∑

r=1

4∑
i=1

4∑
j=1

Pr,i,j (3.1)

subject to

20× n ≤
R∑

r=1

4∑
i=1

4∑
j=1

Pr,i,j ≤ min(70× n,O∗) (3.2)

∀r ∈ 1..R, ∀i ∈ 1..4, ∀j ∈ 1..4{
δXr,i,j = 0 ∧ δSBr,i,j = 0 ∧ Pr,i,j = 0 if ∆Xr,i,j = 0
δXr,i,j ≥ 1 ∧ δSBr,i,j ≥ 1 ∧ Pr,i,j ≥ 20 otherwise

(3.3)

∀r ∈ 1..R, ∀i ∈ 1..4, ∀j ∈ 1..4
Table(〈δXr,i,j , δSBr,i,j , Pr,i,j〉 , 〈SBox〉) if ∆Xr,i,j 6= 0

(3.4)

∀r ∈ 1..R− 1, ∀j ∈ 1..4 δSBr,0,j = δXr+1,1,j (3.5)

∀r ∈ 1..R− 1, ∀j ∈ 1..4
δSBr,2,(2+j)%4 = δXr+1,2,j if ∆SBr,1,(3+j)%4 = 0
δSBr,1,(3+j)%4 = δXr+1,2,j if ∆SBr,2,(2+j)%4 = 0
δSBr,1,(3+j)%4 = δSBr,2,(2+j)%4 if ∆Xr+1,2,j = 0
Table(

〈
δSBr,1,(3+j)%4, δSBr,2,(2+j)%4, δXr+1,2,j

〉
, 〈XOR〉) otherwise

(3.6)

∀r ∈ 1..R− 1,∀j ∈ 1..4
δSBr,2,(2+j)%4 = δXr+1,3,j if ∆SBr,0,j = 0
δSBr,0,j = δXr+1,3,j if ∆SBr,2,(2+j)%4 = 0
δSBr,0,j = δSBr,2,(2+j)%4 if ∆Xr+1,3,j = 0
Table(

〈
δSBr,0,j , δSBr,2,(2+j)%4, δXr+1,3,j

〉
, 〈XOR〉) otherwise

(3.7)

∀r ∈ 1..R− 1, ∀j ∈ 1..4
δXr+1,0,j = δXr+1,3,j if ∆SBr,3,(1+j)%4 = 0
δSBr,3,(1+j)%4 = δXr+1,3,j if ∆Xr+1,0,j = 0
δSBr,3,(1+j)%4 = δXr+1,0,j if ∆Xr+1,3,j = 0
Table(

〈
δSBr,3,(1+j)%4, δXr+1,0,j , δXr+1,3,j

〉
, 〈XOR〉) otherwise

(3.8)

where ∀r ∈ R..n, ∀i ∈ 1..4, ∀j ∈ 1..4,

δXr,i,j ∈ 0..255, δSBr,i,j ∈ 0..255, Pr,i,j ∈ {0, 20, .., 70},

and 〈XOR〉 encodes ⊕ relation and 〈SBox〉 the S-box constraint.
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an S-box, we define an integer variable δSBr,i,j which corresponds to the difference after
the S-box. Its domain is {0} if ∆Xr,i,j is assigned to 0 in the Step 1 solution; otherwise,
it is D(δSBr,i,j) = [1, 255]. This is expressed in (3.3) of Model 1.

Finally, as we look for a byte-consistent solution with maximal probability, we also
add an integer variable Pr,i,j for each byte in an S-box: this variable corresponds to the
absolute value of the base 2 logarithm of the probability of the transition through the S-
box. Actually, a factor 10 has been applied to avoid considering floats. Thus we define a
Table constraint (3.4) composed of valid triplets of the form (δXr,i,j, δSBr,i,j, Pr,i,j). Note
that these triplets only contain non-zero values and that Pr,i,j takes only 2 different values
for the 4-bit S-box (SKINNY-64) and 7 different values for the 8-bit S-box (SKINNY-128).
There are roughly 214 triplet elements in the Table constraint for the SKINNY-128 case.
As the S-box layer is the only non-linear layer, the other operations could be directly
implemented in a deterministic way at the cell level. The associated constraints thus
follow the SKINNY-128 linear operations. When possible, i.e. when one element is known
to be zero, we replace XOR constraints (encoded using Table constraints) by a simple
equality constraint. This corresponds to Table constraints (3.5), (3.6), (3.7) and (3.8)
in Model 1.

The overall goal is finally to find a byte-consistent solution which maximizes differential
characteristic probability. Thus, we define an integer variable ObjStep2 to minimize the
sum of all Pr,i,j variables (3.1). This value mainly depends on the number of S-boxes
outputted by Step1 ObjStep1 and can be bounded to [[20 ·ObjStep1, 70 ·ObjStep1]] (3.2).

The differences for the models TK1, TK2 and TK3 are the modeling of the XORs
induced by the lanes of the tweakey through XOR table constraints. Each XOR constraint
depicted in Model 1 provides high quality filtering but requires 65536 tuples to be stored
which results in prohibitive memory usage. This may limit the number of threads that
can be used for the resolution, which was the case for TK2 and TK3. To get around this
issue, we encoded the XOR constraint in intention (by defining filtering rules), providing
a more memory efficient algorithm, at the expense of filtering strength (see Model 2). It
can be sum up as using the two most constraint variables to sieve the reachable values for
the third variable. This last choice was applied for TK2 and TK3 (SKINNY-128 only).
We also rely on Table constraints to model the LFSRs applied on TK2 and TK3.

Concerning the search space strategy, for the TK2 and the TK3 attack settings, the
Step 1 only outputs the truncated value of the sum of the TKi. Thus, the search space
strategy first looks at the cancellation places of the sum of the TKi and then instantiates
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Model 2 The XOR constraint in intention
Model for a⊕ b⊕ c = 0 with a, b, c ∈ XA, XB, XC

where a and b are more constraint than c.

X ′C = ø
∀x ∈ XA,∀y ∈ XB

X ′C = X ′C
⋃
{x⊕ y}

XC = XC

⋂
X ′C

(3.9)

the TKi values according to those positions. For the TK1 setting, we simply apply the
default Choco-solver strategy.

Concerning the parallelization, we affect one solution outputted by Step 1 per thread
and we share between the threads the value of ObjStep2.

3.5.3 Step 2 Performance Results

We run our Step 2 model on the two versions of SKINNY (SKINNY-64 and SKINNY-128)
using our CP models written in Choco-solver. We conduct all our experiments on our
server composed of 2× AMD EPYC 7742 64-Core and 1TB of RAM. All the reported
times are real system times.

Up to our knowledge, we only found [Abd+17] that gives time results concerning
finding the best SK differential characteristic probability on SKINNY-128 using a MILP
tool based on Gurobi.

More precisely, the authors say: “In our experiments, we used Gurobi Optimizer with
Xeon Processor E5-2699 (18 cores) in 128 GB RAM.” and, for 13 rounds, “in our environ-
ment, the test of 6 classes [Step 1 solutions with 58 active S-boxes without symmetries]
finished in 16 days. Finally, it is proven that the tight bound on the probability of
differential characteristic for 13 rounds is 2−123” in the SK model.

Regarding the TK models, the best known results were obtained by Liu et al. also
using MILP models [LGS17]. They could only find the best differential characteristics up
to 7, 9 and 13 rounds for TK1, TK2 and TK3 respectively.

Results for SKINNY-64.

We sum up in Table 3.5 all the results we obtain for SKINNY-64 in the four different attack
models (SK,TK1,TK2 and TK3). The overall time, in this case, is not a bottleneck.
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We only give results concerning number of rounds that are at the limit (just under and
just upper) when regarding the number of active S-boxes which is equal to 32 in the case
of SKINNY-64 as the state size is 64 bits and as the best differential probability of the
S-box is equal to 2−2. Thus, the best overall differential characteristic probability must
be under 2−64.

Note that sometimes, we need to browse several ObjStep1 bounds to find the optimal
differential characteristic probability when the number of rounds is fixed. Indeed, we
need to proactively adapt the probability bound we found. For example, in the case of
TK2 SKINNY-64 with 13 rounds, the optimal ObjStep1 is equal to 25 and when providing
the Step 2 process with this ObjStep1 bound, we find a best differential characteristic
probability equal to 2−55. Thus, we need to enumerate all the Step 1 solutions with
ObjStep1 = 26 and ObjStep1 = 27 to be sure that the previous probability is really the best
one. Then, before running again Step 2 on those new results we adapt the best probability
to the new bound equal to 2−55 instead of the old bound equal to 2−64.

We also provide in Appendix 3.A the details of the best found differential character-
istics.

Nb Rounds ObjStep1 Nb sol. Step 1 Step 2 time Best Pr
SK 7 26 2 1s 2−52

SK 8 36 17 1s < 2−64

TK1 10 23 1 1s 2−46

TK1 11 32 2 1s = 2−64

TK2 13 25 → 27 10 1s 2−55

TK2 14 31 1 1s < 2−64

TK3 15 24 → 26 46 2s 2−54

TK3 16 27 → 31 87 4s = 2−64

TK3 17 31 2 1s < 2−64

Table 3.5 – Overall results concerning SKINNY-64 in the four attack models. Step 2 time
corresponds to the Step 2 time taken over all Step 1 solutions when Objstep1 takes the
values precise in the first column. Best Pr corresponds to the best found probability of a
differential characteristic.

Results for SKINNY-128.

In the same way, we provide in Table 3.6 the best differential characteristic probability
with the total time required for this search for the 4 different attack models. As one
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can see, we also verify all the possible values for ObjStep1 for a given number of rounds,
depending on the probability value previously found. Thus, this time, the number of
solutions outputted by Step 1 could be huge when we move away from the optimal Step 1
value v∗. However, as the time spent to solve one solution is reasonable (at least when
considering SK and TK1), our model scales reasonably well: the worst case requires 25
days of real time on our server on 8 threads and 31 GB of RAM2. Our TK2 and TK3
models are based on XOR constraints encoded in intention (and not using tables) and
these experiences have been launched using the 128 threads of our server.

Concerning TK2 and TK3, we were not able to perform all the computations due
to the huge number of Step 1 solutions. Hence we decided to handle only the Step 1
solutions with exactly one active byte in the round keys in order to limit the number of
truncated characteristics to instantiate. Those results are given in Table 3.7. We provide
in Appendix 3.B the best TK2 differential characteristic we found for 16 rounds, and the
best TK3 differential characteristic we found for 17 rounds. Note that we do not know
if these differential characteristics are optimal in terms of probability as we were not able
to test all the solutions Step 1.

Lessons learnt.

The overall gap is not to find the optimal value of ObjStep1 = v∗ for a given number
of rounds and to enumerate the corresponding overall solutions if the Step 1 model is
sufficiently tight. The real gap is if the value obtained for ObjStep2 (here equal to 2× v∗

as the best differential probability for the S-box is equal to 2−2) is far from the optimal
bound then we have to increase ObjStep1 up to the bound bObjStep2/2c. Further we are
from v∗ in the Step 1 resolution, more numerous are the Step 1 solutions (in fact this
number grows exponentially as could be seen in Table 3.6). Thus, the time for the Step 2
resolution becomes the bottleneck.

Conclusion

In this chapter, we improve the security bounds regarding differential characteristics
search on the block cipher SKINNY. As usually done, we have divided the search pro-
cedure into two steps: Step 1 which abstracts the difference values into Boolean variables

2. It seems that the use of the 128 threads was prohibited by the memory usage of XOR tables (i.e.
XOR in extension).
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and finds the truncated characteristics with the smallest number of active S-boxes; and
Step 2 which inputs the results of Step 1 to output the best possible probability instanti-
ating the abstract solutions outputted by Step 1. Of course, each solution of Step 1 could
not always be instantiated in Step 2.

For Step 1, an ad-hoc method which heavily uses the structure of the problem is
proposed. For solving Step 2, we have implemented a Choco-solver model. Regarding
Step 2, our Choco-solver model is much faster than any other approaches. It allowed
us to find, for the first time, the best (related-tweakey) differential characteristics in the
TK1 model up to 14 rounds for SKINNY-128 and to show there is no differential trail on
15 rounds with a probability better than 2−128. Regarding the TK2 model, we were able
to find the best differential trails up to 16 rounds. For TK3, we are able to exhibit a
differential characteristic up to 17 rounds. Note that in [LGS17] Liu et al. were only able
to reach 7 and 9 rounds in the TK1 and TK2 model respectively. Our approach is thus
an important improvement.

3.A Best (related-tweakey) differential characteris-
tics for SKINNY-64

The best SK differential characteristics on 7 rounds of SKINNY-64 with probability equal
to 2−52 is given in Table 3.8. The best TK1 differential characteristics on 10 rounds of
SKINNY-64 with probability equal to 2−46 is given in Table 3.9. The Best TK2 differ-
ential characteristics on 13 rounds of SKINNY-64 with probability equal to 2−55 is given
in Table 3.10. Best TK3 differential characteristics on 15 rounds of SKINNY-64 with
probability equal to 2−54 is given in Table 3.11.
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3.A. Best (related-tweakey) differential characteristics for SKINNY-64

Nb Rounds Objstep1 Nb sol. Step 1 Step 2 time Best Pr
SK 9 41 → 43 52 16s 2−86

SK 10 46 → 48 48 11s 2−96

SK 11 51 → 52 15 4s 2−104

SK 12 55 → 56 11 6s 2−112

SK 13 58 → 61 18 2m27s 2−123

SK 14 61 → 63 6 21s ≤ 2−128

TK1 8 13 → 16 14 4s 2−33

TK1 9 16 → 20 6 3s 2−41

TK1 10 23 → 27 6 4s 2−55

TK1 11 32 → 36 531 37s 2−74

TK1 12 38 → 46 186 482 213m 2−93

TK1 13 41 → 53 2 385 482 2 days 2−106.2

TK1 14 45 → 59 11 518 612 20 days 2−120

TK1 15 49 → 63 7 542 053 25 days ≤ 2−128

TK2 9 9 → 10 7 3s 2−20

TK2 10 12 → 17 132 11s 2−34.4

TK2 11 16 → 25 4203 6m 2−51.4

TK2 12 21 → 35 1 922 762 512m 2−70.4

TK2 19 52 → 63 530 693 280m ≤ 2−128

TK3 10 6 3 3s 2−12

TK3 11 10 3 10s 2−21

TK3 12 13 → 17 373 1h 2−35.7

TK3 13 16 → 25 34 638 85h 2−51.8

TK3 23 55 → 63 47 068 11h ≤ 2−128

Table 3.6 – Overall results concerning SKINNY-128 in the four attack models. Step 2 time
corresponds to the Step 2 time taken over all solutions of Step1-enum when Objstep1 takes
the values precise in the first column. Best Pr corresponds to the best found probability
of a differential characteristic.
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Nb Rounds Objstep1 Best Pr
TK2 13 25 → 44 2−86.2

TK2 14 31 → 54 ≥ 2−105.8

TK2 15 35 → 56 ≥ 2−113.8

TK2 16 40 → 63 ≥ 2−127.6

TK3 14 19 → 33 2−67

TK3 15 24 → 40 2−81

TK3 16 27 → 48 2−98

TK3 17 31 → 54 2−110

TK3 19 43 → 63 ≤ 2−128

TK3 20 45 → 63 ≤ 2−128

TK3 21 48 → 63 ≤ 2−128

TK3 22 51 → 63 ≤ 2−128

Table 3.7 – Overall results concerning SKINNY-128 with exactly one active cell in the
tweakey.

Round δXi = Xi ⊕X ′i (before SB) δSBXi (after SB) Pr(States)
i = 1 0040 4444 4440 4400 0020 2222 2220 2200 2−2·10

2 0000 0020 0200 2002 0000 0010 0100 1001 2−2·4

3 0010 0000 0000 0001 0080 0000 0000 0008 2−2·2

4 0000 0080 0000 0080 0000 0040 0000 0040 2−2·2

5 0400 0000 0004 0000 0200 0000 0002 0000 2−2·2

6 0000 0200 0200 0000 0000 0100 0100 0000 2−2·2

7 0001 0000 0011 0001 0008 0000 0088 0008 2−2·4

Table 3.8 – The Best SK differential characteristics on 7 rounds of SKINNY-64 with
probability equal to 2−52. The four words represent the four rows of the state and are
given in hexadecimal notation.

Round δXi = Xi ⊕X ′i (before SB) δSBXi (after SB) δTK1i Pr(States)
i = 1 0000 0002 0020 0200 0000 0001 0010 0100 1000 0000 0B80 0000 2−2·3

2 1000 1000 0000 0000 B000 8000 0000 0000 B000 8000 1000 0000 2−2·2

3 0000 0000 0000 0000 0000 0000 0000 0000 0010 0000 B000 8000 −
4 0010 0010 0000 0010 00B0 00A0 0000 00B0 00B0 0080 0010 0000 2−2·3

5 0B00 0000 0002 0000 0100 0000 0001 0000 0000 1000 00B0 0080 2−2·2

6 0000 0100 0000 0000 0000 0800 0000 0000 0000 B800 0000 1000 2−2·1

7 0000 0000 0B00 0000 0000 0000 0100 0000 0000 0010 0000 B800 2−2·1

8 0001 0000 0000 0001 0008 0000 0000 0008 0008 00B0 0000 0010 2−2·2

9 0080 0000 000B 0000 0040 0000 0001 0000 0000 0100 0008 00B0 2−2·2

10 0140 0040 0110 0140 0820 0020 0880 0820 0000 0B08 0000 0100 2−2·7

Table 3.9 – The Best TK1 differential characteristics on 10 rounds of SKINNY-64 with
probability equal to 2−46. The four words represent the four rows of the state and are
given in hexadecimal notation.
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3.B. Best (related-tweakey) differential characteristics for SKINNY-128

3.B Best (related-tweakey) differential characteris-
tics for SKINNY-128

Concerning the best SK differential characteristics on 13 rounds of SKINNY-128, We
obtain the same best SK differential characteristics on 13 rounds of SKINNY-128 with
probability equal to 2−123 given in Table 11 of Appendix D of [Abd+17]. The best TK1
differential characteristics on 14 rounds of SKINNY-128 with probability equal to 2−120 is
given in Table 3.12. The best TK2 differential characteristics on 16 rounds of SKINNY-128
with probability equal to 2−127.6 we found is given in Table 3.13. The bestTK3 differential
characteristics on 17 rounds of SKINNY-128 with probability equal to 2−110 we found is
given in Table 3.14.
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3.B. Best (related-tweakey) differential characteristics for SKINNY-128

Round δXi = Xi ⊕X ′i (before SB) δTK1i Pr(States)
δSBXi (after SB) δTK2i

i = 1 00000000 00404010 40400000 40000000 00000000 00000000 00000000 00007700 2−2·6

00000000 00040440 04040000 04000000 00000000 00000000 00000000 00003900
2 00000400 00000000 40000000 00000404 00000000 00770000 00000000 00000000 2−2·3 2−3

00000500 00000000 04000000 00000101 00000000 00730000 00000000 00000000
3 00010000 00000500 00000000 00000100 00000000 00000000 00000000 00770000 2−2·2 2−3

00200000 00000500 00000000 00002000 00000000 00000000 00000000 00730000
4 00000000 00200000 00000005 00200000 00000077 00000000 00000000 00000000 2−2·2 2−3

00000000 00800000 00000005 00800000 000000E7 00000000 00000000 00000000
5 80050090 00000090 00058000 00050090 00000000 00000000 00000077 00000000 2−2·8

03010002 00000002 00010200 00010003 00000000 00000000 000000E7 00000000
6 00010303 03010002 00000001 01010003 00000000 00000077 00000000 00000000 2−2·6 2−3·4

00202020 20200009 00000020 20200020 00000000 000000CE 00000000 00000000
7 20000000 00202020 B0002000 00002020 00000000 00000000 00000000 00000077 2−2·6 2−2.4 2−3

80000000 00808080 80008000 00009380 00000000 00000000 00000000 000000CE
8 00930000 80000000 00000080 00008000 00770000 00000000 00000000 00000000 2−2·3 2−6

00EA0000 03000000 00000003 00000300 009D0000 00000000 00000000 00000000
9 00000000 00000000 00000000 00030000 00000000 00000000 00770000 00000000 2−5

00000000 00000000 00000000 00BC0000 00000000 00000000 009D0000 00000000
10 BC000000 00000000 00000000 00000000 77000000 00000000 00000000 00000000 2−6

4C000000 00000000 00000000 00000000 3B000000 00000000 00000000 00000000
11 00000000 00000000 00000000 00000000 00000000 00000000 77000000 00000000 −

00000000 00000000 00000000 00000000 00000000 00000000 3B000000 00000000
12 00000000 00000000 00000000 00000000 00007700 00000000 00000000 00000000 −

00000000 00000000 00000000 00000000 00007700 00000000 00000000 00000000
13 00000000 00000000 00000000 00000000 00000000 00000000 00007700 00000000 −

00000000 00000000 00000000 00000000 00000000 00000000 00007700 00000000
14 0000000 00000000 00000000 00000000 00000000 77000000 00000000 00000000 −

00000000 00000000 00000000 00000000 00000000 EF000000 00000000 00000000
15 00000000 00000000 00980000 00000000 00000000 00000000 00000000 77000000 2−5

00000000 00000000 00420000 00000000 00000000 00000000 00000000 EF000000
16 00000042 00000000 00000042 00000042 − 2−2.4·3

00000008 00000000 00000008 00000008

Table 3.13 – The Best TK2 differential characteristics we found on 16 rounds of
SKINNY-128 with probability equal to 2−127.6. The four words represent the four rows
of the state and are given in hexadecimal notation.
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Round δXi = Xi ⊕X ′i (before SB) δTK1i Pr(States)
δSBXi (after SB) δTK2i

δTK3i
i = 1 00000200 00320000 08000000 00000808 00000000 00BA0000 00000000 00000000 2−2·3 2−3·2

00000800 00920000 18000000 00001010 00000000 00430000 00000000 00000000
00000000 00730000 00000000 00000000

2 00100000 00000800 00000000 00001000 00000000 00000000 00000000 00BA0000 2−2·3

00400000 00001000 00000000 00004000 00000000 00000000 00000000 00430000
00000000 00000000 00000000 00730000

3 00000000 00400000 00000010 00400000 000000BA 00000000 00000000 00000000 2−2·3

00000000 00040000 00000040 00040000 00000086 00000000 00000000 00000000
00000039 00000000 00000000 00000000

4 04400005 00000005 00400400 00400005 00000000 00000000 000000BA 00000000 2−2·6 2−3·2

05040001 00000001 00040100 00040005 00000000 00000000 00000086 00000000
00000000 00000000 00000039 00000000

5 00040505 05040001 00000004 04040005 00000000 000000BA 00000000 00000000 2−2·9 2−3

00010101 01010028 00000001 01010001 00000000 0000000D 00000000 00000000
00000000 0000009C 00000000 00000000

6 01000000 00010101 03000100 00000101 00000000 00000000 00000000 000000BA 2−2·6 2−3 2−4

20000000 00202020 20002000 0000B320 00000000 00000000 00000000 0000000D
00000000 00000000 00000000 0000009C

7 00B30000 20000000 00000020 00002000 00BA0000 00000000 00000000 00000000 2−2·3 2−7

00EE0000 80000000 00000080 00008000 001A0000 00000000 00000000 00000000
004E0000 00000000 00000000 00000000

8 00000000 00000000 00000000 00800000 00000000 00000000 00BA0000 00000000 2−2

00000000 00000000 00000000 00030000 00000000 00000000 001A0000 00000000
00000000 00000000 004E0000 00000000

9 03000000 00000000 00000000 00000000 BA000000 00000000 00000000 00000000 2−4

29000000 00000000 00000000 00000000 34000000 00000000 00000000 00000000
A7000000 00000000 00000000 00000000

10 00000000 00000000 00000000 00000000 00000000 00000000 BA000000 00000000 −
00000000 00000000 00000000 00000000 00000000 00000000 34000000 00000000

00000000 00000000 A7000000 00000000
11 00000000 00000000 00000000 00000000 0000BA00 00000000 00000000 00000000 −

00000000 00000000 00000000 00000000 00006900 00000000 00000000 00000000
0000D300 00000000 00000000 00000000

12 00000000 00000000 00000000 00000000 00000000 00000000 0000BA00 00000000 −
00000000 00000000 00000000 00000000 00000000 00000000 00006900 00000000

00000000 00000000 0000D300 00000000
13 00000000 00000000 00000000 00000000 00000000 BA000000 00000000 00000000 −

00000000 00000000 00000000 00000000 00000000 D3000000 00000000 00000000
00000000 69000000 00000000 00000000

14 00000000 00000000 00000000 00000000 00000000 00000000 00000000 BA000000 −
00000000 00000000 00000000 00000000 00000000 00000000 00000000 D3000000

00000000 00000000 00000000 69000000
15 0000000 00000000 00000000 00000000 00000000 0000BA00 00000000 00000000 −

00000000 00000000 00000000 00000000 00000000 0000A700 00000000 00000000
00000000 00003400 00000000 00000000

16 00000000 00000000 00000029 00000000 00000000 00000000 00000000 0000BA00 2−3

00000000 00000000 00000030 00000000 00000000 00000000 00000000 0000A700
00000000 00000000 00000000 00003400

17 00300000 00000000 00300000 00300000 − 2−2·3

00400000 00000000 00400000 00400000

Table 3.14 – The Best TK3 differential characteristics we found on 17 rounds of
SKINNY-128 with probability equal to 2−110. The four words represent the four rows
of the state and are given in hexadecimal notation.
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CONCLUSION

In this thesis, we have presented our works on the uses and constructions of different
algorithms for differential cryptanalysis from the study of particular and general primitives
and we have revisited an attack.

In Chapter 1, we revisit the fast near collision attack (FNCA), a new generic attack
for stream ciphers applied successfully by their authors against Grain v1 and A5/1. The
FNCA is an internal state recovery attack based on divide-and-conquer strategy applied
with a near collision property on the targeted stream ciphers. The divide-and-conquer
strategy begins with splitting the internal state in two parts: the crucial part (CP) which
is recovered by leveraging the near collision property with the new self-refined method
proposed for the FNCA and the rest part (RP) which is efficiently computable when the
CP is known. In our work as presented in Chapter 1, we show that the self-refined method
has an incorrectly evaluated complexity by Zhang et al.. We proved this error doubly by
first exhibiting the incorrect theorem in the work of Zhang et al. and proposed a corrected
version and used it to compute the real complexity of the attacks proposed by Zhang et
al.. The second way we proved the error in the FNCA is by using some information
theory elements in an absurd reasoning: if the FNCA was correct, we should be able to
observe some bias in the distribution of the internal state after the initialization phases
of the stream ciphers. We ran several experiments with some simple codes to disprove
the existence of those bias and so proved that the FNCA cannot be correct (regarding its
claim complexity).

Chapter 2 presents our work concerning the diffusion round of Generalized Feistel
networks of type 2. We built an efficient algorithm based on our new characterization of
the diffusion round that constructs optimal even-odd permutations or gives better lower
bounds for GFN of up to 42 branches (although our analysis is still valid for bigger cases,
the computation cost becomes too great). More precisely, our characterization can be used
to directly exhaust every optimal even-odd solutions up to 26 branches and the efficient
algorithm is used for GFNs between 28 and 42 branches. For these values, we found
optimal even-odd permutations for 28, 30, 32, 34 and 36 branches which were unknown
to the best of our knowledge with a diffusion round of 9 except for the 34 branches case
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which has a diffusion round of 10. For the other cases, we prove that the best even-
odd permutations have a diffusion round of at least 10 and found permutations with a
diffusion round of 11 without ensuring the optimality of the results. However, the optimal
permutations have a worse differential resistance than non-optimal (with a diffusion round
of one more) permutations as remarked in the selection of the permutation in WARP, a new
Feistel primitive [Ban+20].

In Chapter 3, we show how we were able to obtain better and sometimes the best
differential characteristics for SKINNY in the different attacker settings namely single key,
one tweakey, two tweakeys and three tweakeys. We used in our analysis a very classical
approach of splitting the search of differential characteristics in two: computing good
truncated differential characteristics for SKINNY (Step1) and trying to instantiate them
in values (Step2). In addition to the new differential characteristics we found, this work
offers two major contributions. For Step1, we developed a new algorithm to compute effi-
ciently truncated differential characteristics with dynamic programming. More precisely,
we leveraged that a differential characteristic can be seen as a smaller differential charac-
teristic extended by one round and that not all information must be remembered for this
smaller differential characteristic in this problem. The Step2 process used a Constraint
Programming solver which allows for a straightforward modeling of SKINNY in particular
for the S-box compared to previous works using MILP or SAT. Our contribution con-
cerning Step2 is the precise search strategy given to the solver to be more efficient in the
search. With the way we implement the two steps search, we were able to find again the
best differential characteristics for SKINNY-64 in a few seconds and for SKINNY-128 in the
SK setting and to find for the first time the best differential characteristic for SKINNY-128
in the TK1 setting. We also gave new results for in TK2 and TK3 settings, optimal up
to 12 and 13 rounds and better than previously known up to 16 and 17 rounds respec-
tively. The next step for the automation of the search of differential characteristics is to
give a description of the cipher and to have the whole analysis done by the computer in
this work corresponding to the creation of the models. TAGADA [Lib+21], a Tool for
Automatic Generation of Abstraction-based Differential Attacks proposes to do exactly
this automatic generation of models but is still in development.
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Titre : Algorithmes pour la cryptanalyse différentielle
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Résumé : La sécurité en cryptographie symé-
trique semble être une notion très floue pour
des non-spécialistes du domaine. Pour simpli-
fier le raisonnement fait par les cryptanalystes,
une primitive symétrique est sûre lorsqu’au-
cune attaque pratique n’est trouvée contre
celle-ci. Une grande part de cette démons-
tration consiste à essayer des attaques clas-
siques contre les différentes primitives exis-
tantes. Dans cette thèse, nous présentons nos
travaux de cryptanalyse dans cette optique en
utilisant différents algorithmes constructifs ou
algorithmes de test.

Nous commençons par revisiter les at-
taques rapides par collision proche publiées
en 2018. Nous prouvons avec des algorithmes

inspirés de la théorie de l’information que la
complexité de ces attaques était sérieusement
sous-estimée et donnons la version corrigée.

Nous proposons ensuite une nouvelle ca-
ractérisation d’un aspect particulier des ré-
seaux de Feistel. Elle nous permet de dé-
duire un algorithme efficace pour trouver
(construire) les permutations optimales en ce
sens, apportant ainsi une solution à un pro-
blème vieux de 10 ans.

Nous terminons avec l’utilisation de sol-
veurs, des algorithmes généraux prenant en
entrée la description d’un problème et ren-
voyant en sortie une solution à celui-ci pour
le calcul de meilleures caractéristiques diffé-
rentielles du chiffrement par bloc SKINNY.

Title: Algorithms for differential cryptanalysis

Keywords: Cryptography, Symmetric cipher, Differential cryptanalysis

Abstract: Security in symmetric cryptog-
raphy seems to be a vague notion for non
specialists. To simplify the reasoning done
by cryptanalysts, a symmetric primitive is se-
cured when no practical attack have been
found against it. A large part of the security
demonstration of a primitive consists in try-
ing every classical attack against the studied
primitives. In this thesis, we review our crypt-
analysis works with this idea by using different
algorithms to construct or test our results.

We begin by revisiting the fast near col-
lision attacks proposed in 2018. We proved
with test algorithms inspired by information
theory that the complexity of this attack is se-

riously underestimated and gave the correct
estimation.

We then gave a new characterization of a
particular property of Feistel networks. It al-
lowed us to build a new efficient algorithm to
find the optimal permutations (for this prop-
erty) solving with the constructed permuta-
tions a 10 year old problem.

We end this document with the use of
solvers, generic algorithms taking a descrip-
tion of a problem in input and returning as out-
put a solution to this problem. In this work,
they are used to compute better differential
characteristics of the block cipher SKINNY.
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