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Centre d’études et de recherche en informatique et communications

THÈSE
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Résumé

Chaque seconde, une grande quantité de données numériques est transportée à travers une infinité

de types d’appareils via les réseaux cellulaires du monde entier, et les attentes sont à une croissance

considérablement accélérée avec des demandes de plus en plus importantes. En quelques années, ces

réseaux pourraient ainsi atteindre leurs capacités maximales en termes de transmission de données.

Pour faire face ces défis, Network Slicing a été présenté comme une nouvelle infrastructure virtualisée

pour le système de réseau mobile de nouvelle génération. Cette technologie couvre désormais non

seulement le niveau des applications, mais également la virtualisation des couches physiques et de

commutation, avec di↵érentes technologies d’accès radio. Ainsi, chaque fournisseur de services doit

pouvoir déployer ses services et applications sur des réseaux logiques, appelés Network Slices, spéci-

fiquement adaptés à ses exigences techniques. Le mode de communication Device-to-Device est une

autre approche présentée comme une alternative prometteuse à la communication traditionnelle dans

les réseaux cellulaires. Cette technologie permet de réutiliser les ressources radio et de diminuer la

latence de bout en bout des communications locales. Par conséquent, l’optimisation des ressources

physiques dans les réseaux cellulaires devient cruciale pour mieux dimensionner et déployer les réseaux

virtuels. L’objectif global de ce travail est donc de définir et d’étudier le concept de Device-to-Device

Communication et Network Slice Design dans les systèmes 5G, en proposant des modèles mathéma-

tiques et des algorithmes innovants pour résoudre les problèmes d’optimisation sous-jacents. Mots-clés

: Optimisation, Conception de réseau, Découpage réseau en tranches, Communication d’appareil à ap-

pareil.
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Abstract

Every second, a large amount of digital data is transported through huge number of types of devices

via cellular networks worldwide, and expectations are at a greatly accelerated growth with increasingly

large requests. In few years, these networks could thereby reach their maximum capacities in terms of

data transmission. To face these challenges, Network Slicing has been presented as a novel virtualized

infrastructure for the new generation cellular network system. This technology now not only covers

application-level abstraction but also physical and switching layers virtualization, with di↵erent radio

access and link communication technologies. Hence, each service provider is to be able to deploy its

communication services on top of logical networks, named Network Slices, specifically tailored to its

technical requirements. The Device-to-Device communication mode is another approach presented as

a promising alternative to traditional communication in cellular networks. This technology allows to

reuse radio resources and to decrease the end-to-end latency of local communications. Consequently,

the optimization of physical resources in cellular networks becomes crucial to better deploy virtual

networks. The overall objective of this work is therefore to define and study the concept of device-to-

device communication and network slice design in 5G systems, and propose mathematical models and

innovative algorithms to solve the underlying optimization problems.

Keywords : Optimization, Network Design, Network Slicing, Device-to-Device.
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Chapter 1

Introduction

The expectations around the data flow on mobile networks are at a greatly accelerated growth with

increasingly large requests. In few years, these networks could consequently reach their maximum

capacities in terms of data transmission. To face all these challenges, 5G technology is posed by

enabling the digitization of society and economic information. The idea behind the concept of 5G is

that it does not correspond to a simple increase in data rate, as was the case for previous generations,

but also the aim is thereby to widen the diversity of user equipment (UE).

This technological evolution will touch the whole network environment, going from cellular and

radio access to the application service architectures. This transition challenges network design since

multiple resources and segments, historically managed independently, are to be operated with both

continuity in networking and computing resource allocation and provisioning an as-a-whole and unique

service. In this context, di↵erent providers can be associated with di↵erent communication services

(CS) running on the same physical network at the access, core, and application segments.

Such communication services can be of three classes: enhanced Mobile Broadband (eMBB; e.g.,

broadband everywhere and large-scale events), Ultra-Reliable Low Latency Communications (URLLC;

e.g., online gaming and autonomous driving), and massive Machine Type Communications (mMTC;

e.g., device-to-device communication and internet of things) - di↵ering in the requirements, such as

maximum latency, minimum availability, and bandwidth. To provide the necessary flexible provision-

ing, Network Function Virtualization [2], Software Defined Networking [3], and Network Slicing [4]

technologies can be adopted to let the CS provider deploy its services on top of logical networks.

Because of di↵erent bitrate and latency requirements, policies on radio access function splitting
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are also going to have an impact on the backhauling network dimensioning, and therefore on the

placement of core network functions and on the configuration of edge computing application servers.

Moreover, di↵erent policies for control versus data-plane function sharing and scaling are expected to

be applied.

To overcome these challenges, ‘Network Slice’ has been presented as a novel virtualized infrastruc-

ture model. This technology not only covers the application-level abstraction but also the physical

and switching layers virtualization, with di↵erent radio access and link communication technologies.

Hence, each service provider is to be able to deploy its communication services on top of logical

networks, named Network Slices, specifically tailored to its technical requirements.

The Device-to-Device (D2D) communication mode is another new approach presented as a promis-

ing alternative to traditional communication in cellular networks. This technology allows to reuse radio

resources and to decrease the end-to-end latency of local communications. Then, D2D would allow a

set of UEs geographically close to each other to establish direct D2D communications, or span multiple

links (multi-hop D2D communications), to access a given service (e.g. video streaming or gaming)

while ensuring the required service quality.

In this context, optimizing resources in cellular networks becomes crucial on backhauling network

dimensioning, and hence on the placement of core network functions and the configuration of edge

computing application servers. Moreover, di↵erent policies for control versus data-plane function

sharing and scaling are expected to be applied. All these challenges must be overcome wisely and

e↵ectively, as the state of the system can change every second. In legacy technologies, such as 3G and

4G, the entire network system was designed for approximately ten years of use, with small variations

and slow evolution over the period. Contrarily, the 5G system is meant to be extremely flexible and still

be able to o↵er a customized and complete virtual network in a few minutes for each Communication

Service request. The overall objective of this work is therefore to define and study the concept of device-

to-device and network slice design in 5G systems and propose mathematical models and innovative

algorithms to solve the underlying optimization problems.

This manuscript is organized as follows. We first briefly present the basic notions on graph theory

and combinatorial optimization in Chapter 2. Then, in Chapter 3, we overview the evolution of the

mobile system, from 3G to 5G, and present the entities appearing in new generation networks as well

the main modeling aspects and technical constraints related to 5G systems and beyond. The content
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presented in Chapters 3 was partially published in the IEEE Communications Standards Magazine [1].

In Chapter 4, we formally define the Domain Creation Problem (DCP) and we propose a node-arc

(compact) integer linear programming (ILP) formulation to model it. We then present some strategies

to enhance the linear relaxation of the formulation along with two classes of valid inequalities within

a branch-and-cut algorithm to solve the problem. We also propose another solving method to address

the DCP, which is based on a decomposition of the problem into two sub-problems: the routing

sub-problem and the resource allocation sub-problem, that are to be solved separately. We further

propose a two-phase heuristic, obtained by such decomposing. To solve the routing sub-problem, we

propose two methods: an LP-based heuristic from the linear relaxation of a compact formulation, and

a non-compact formulation obtained by generating a subset of relevant paths. Then, the allocation

sub-problem is transformed into a vertex coloring problem that is solved heuristically by an improved

greedy algorithm. The content of Chapter 4 was presented at the International Network Optimization

Conference and published in its proceedings [5].

In Chapter 5, we introduce and study the Network Slice Design Problem (NSDP) in 5G systems.

We first propose a mixed-integer linear programming (MILP) formulation for the problem including

novel splitting, mapping and provisioning constraints described in the published 5G standards docu-

ments [6, 7, 8]. Then, we model new variants and extensions of the problem: NDSP with intra-slice

flexible splitting (NSDP-ISFS) and NDSP with inter-slice split continuity. We then provide several

sensitivity analyses regarding the impact of each proposed variant on the network. In Chapter 6, we

propose several classes of valid inequalities in order to strengthen the linear relaxation of the proposed

MILP and integrate them in a Branch-and-Cut framework to solve the problem. We further present

several strategies to reduce the symmetries and the size of the model. We go beyond in Chapter 7

by proposing an open-access framework based on a math-heuristic for the Network Slice Design that

relies on decomposing the NSDP into a few sub-problems and sequentially solve them. The content

presented in both Chapters 5 and 7 was respectively presented at the International Conference on

Network and Service Management and at the International Teletra�c Congress, and published in

their related proceedings [9, 10].

We dedicate Chapter 8 to present another variant of the NSDP, where dedicated network functions

are deployed to each network slice. Di↵erent strategies are then proposed in order to e�ciently solve

the optimization problems related to the problem. First, we propose a compact formulation and an
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Figure 1.1 – Contributions and manuscript organization.

extended one. To solve the former, we proposed a Relax-and-Fix heuristic that relies on repetitively

solving the proposed related ILP with only a few integer variables and fixing or relaxing most of the

remaining integer and binary ones. On the other hand, to address the exponential number of variables

in the extended formulation, a column generation-based framework is then proposed.

Figure 1.1 summarizes our contributions and the organization of this manuscript.
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In this chapter, we describe some theoretical aspects that are fundamental to a better under-

standing of our work. We begin by describing some concepts of the graph theory and some classical

problems that are used within our proposed approaches. Then we describe some exact and non-exact

approaches commonly used to address optimization problems.

2.1 Theory of graphs

Graphs are widely used in computer science and applied mathematics. They are vastly used to

describe di↵erent types of networks and scheduling processes for example. This section formalizes

some concepts of graph theory to better represent cellular networks.
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2.1. THEORY OF GRAPHS

Figure 2.1 – Representation of a graph

2.1.1 Definitions

As described in [11], a graph is composed of vertices and arcs (or edges). A graph G is defined

formally by a pair (V, E) where V is a finite set of elements called a vertex, and a subset (possibly

empty) E is of pairs of elements of V . Each element of the subset E is called arc if the graph is

oriented - or edge if the graph is a non-oriented graph.

The set E of an oriented graph, for example, is therefore composed of pairs (u, v), where u and v

are called origin and destination respectively. We call size of the graph the cardinality of the set E,

that is, the number of arcs of the graph. Similarly, we call order the cardinality of the set V , that is,

the number of vertices of the graph.

Non-oriented graphs are graphs that have no orientation on their arcs (we, therefore, use the term

edge), which means that if there is an edge between the vertex u and v, the information flow can be

sent in both directions: from u to v and also from v to u. Both u and v can be the origin or destination

of the edge at a time, depending on the case. Figure 2.1 shows a representation of a non-oriented

graph of size 6 and order 5.

In this context, a path of length k between a vertex u and a vertex v of a graph G = (V, E) is a

vertices sequence v0, v1, ..., vk such that u = v0, v = vk, and (vi≠1, vi) belongs to E for i = 1, ..., k. We

say that a vertex v is reachable by a vertex u if there is a path between u and v such that its length

k is greater than zero. Two vertices are called adjacent if k = 1. In this context, a complete graph is

a graph where all vertices are adjacent to each other, that means that every pair of disjoint vertices

is connected by an edge. A cycle in the graph is defined as a path v0, v1, ..., vk such that k > 0 and

v0 = vk. Finally, a path is called elementary if all its vertices are visited only once.
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2.1. THEORY OF GRAPHS

2.1.2 Some classical problems

We dedicate this sub-section to make a brief introduction to some important problems involving

graphs that were used in this work.

2.1.2.1 Path finding problem

Pathfinding is a problem that consists in finding how to move in an environment between a starting

point and a point of arrival taking into account di↵erent constraints. This problem is intensively

studied and used in various fields such as transportation [12, 13, 14, 15] and telecommunications [16,

17].

However, pathfinding becomes a complex problem when attempting to take into account various

additional constraints (E.g., real-time execution, presence of uncertainties, resource constraints, and

scalable environment). Initially, a path-finding problem can be reduced to a problem of finding the

shortest path between two nodes in a graph. There are several ways to solve the shortest path problems,

each one is adapted to a set of di↵erent problems [18]:

— Problem with a single destination: consists of determining the shortest path between each

vertex of the graph and a given destination vertex;

— Problem with a single origin: determines the shortest path between a given vertex and all the

other vertex of the graph;

— Origin-destination problem: determines the shortest path between two vertices given;

— All shortest paths problem: determines the shortest path between each pair of vertices present

in the graph.

According to the same authors, specific algorithms to solve the shortest path problem are sometimes

called path search algorithms. Among the algorithms of this class, the most known are:

— Dijkstra’s algorithm [19]: it solves the problem with an origin vertex in a graph whose edges

have weights greater than or equal to zero. This algorithm can determine the shortest path to

all the other vertices of the graph starting from a given vertex;

— Bellman-Ford’s algorithm [20]: it solves the problem with an original vertex in a graph whose

edges can have negative weights;

— Johnson’s algorithm [21]: it determines the distance between all vertices pairs in a graph.

— Breadth-First Search (BFS) [22]: it calculates the distances of all nodes from a source node in
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2.1. THEORY OF GRAPHS

an unweighted graph (oriented or non-oriented);

— Yen’s algorithm [23]: computes single-source K-shortest loopless paths for a graph with non-

negative edge weight.

In telecommunications and signal processing, the modeling might be slightly di↵erent (probabilis-

tic), and the problem can be solved by the Viterbi’s algorithm [24].

2.1.2.2 Max-clique problem

A clique in a graph G = (V, E) is a sub-set of vertices C ™ V , such that for every two vertices in

C, there is an edge connecting them. This is equivalent to saying that the induced sub-graph of C is

complete.

It is important to di↵erentiate a maximal clique from a maximum clique. A maximal clique is

a clique that can not be extended by adding one or more adjacent vertices. On the other hand, a

maximum clique is the largest possible clique on a given graph. The clique number Ê(G) of a graph

G is the number of vertices of its maximum clique.

The optimization problem associated with the ”clique problem” is the problem of the maximum

clique: it consists in finding the largest clique (in the sense of its number of vertices) in a graph.

The search for a clique of maximal size in a graph is a classical problem of the complexity theory.

The maximum clique problem is one of the 21 NP-complete problems of Karp published in 1972 in

Reducibility Among Combinatorial Problems [25].

2.1.2.3 Coloring problem

In graph theory, graph coloring is a special case of graph labeling. It is an assignment of labels

traditionally called ”colors”. In its simple form, it is a process where a di↵erent color tone is assigned

to each vertex of a graph, such that there is no adjacent vertex sharing the same color. This is called

vertex coloring. Likewise, the edges coloring assigns a color to each edge so that there are no two

adjacent edges of the same color.

The graph coloring problem can be formulated in two ways. First, as a decision problem, in which

the objective is to identify if a graph is colorable with exactly k colors. In the second formulation,

which is related to optimization problems, the objective is to find the minimum value of k. The fact

that this problem is classified as NP-hard constitutes a shred of strong evidence that there are no
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2.2. LINEAR PROGRAMMING

polynomial algorithms that can be used in its resolution, justifying therefore the use of enumeration

methods or development and use of heuristics [26]. The size of the maximum clique of a graph is the

best-known lower bound for the vertex coloring problem.

2.2 Linear programming

The development of linear programming has been classified as one of the greatest scientific advances

since the 1950s. According to [27], the problem of optimizing a linear function subject to linear

constraints originated with the Fourier studies of linear inequalities systems in 1826. However, only

in 1939, Kantorovich [28] notes the practical importance of these questions, creating an algorithm for

its solution.

This type of problem peaked with George Dantzig in the 1940s, with the formulation of the diet

problem [29] as a problem of mixing components. Danzig not only formulates the problem of linear

programming but also creates the Simplex algorithm for its solution in 1947. Its impact on the mid-

twentieth century has allowed companies to save millions of euros and continues to help the various

industrial and service sectors nowadays.

According to [30], a general problem to be solved by linear programming can be defined as the

objective of allocating in the best possible way - optimal - limited resources for activities that compete

with one another. Thus, the choice of the level of activity determines the quantity of each resource

consumed at each activity.

Linear programming, therefore, uses a mathematical model to describe the problem studied. Ac-

cording to [27], the adjective linear means that all the mathematical functions of this model are

necessarily linear functions 1. On the other hand, the noun programming, in this context, does not

refer directly to computer programming. It is, in essence, a synonym for planning.

Hence, linear programming winds up the planning of activities to obtain an optimal result, that

is a result that makes it possible to obtain the best allocation of resources between all the possible

scenarios. We can therefore define a generic model for any linear programming problem as follows:

max ctx (2.1)

1. An a�ne function is a function of the type f(x) = ax + b, where x is variable and a and b are real constants. Its
graph is always a straight line. A linear function, however, is an a�ne function where b is equal to zero, taking the form
f(x) = ax.

29



2.2. LINEAR PROGRAMMING

Ax Æ b (2.2)

x Ø 0 (2.3)

where c and b are vectors with constant values and have the size of the decision variables and the

number of constraints, respectively. A is a matrix [|b|, |c|] also having constant values to represent the

coe�cients of each variable in each constraint. Here, x is the representation, also by a vector, of the

decision variables. The Simplex algorithm is a powerful tool for solving this type of problem and we

discuss it in the following sections.

2.2.1 Integer linear programming

A integer linear programming problem is a linear programming problem in which all of the variables

are discrete - they must be integer values [27]. Similarly, if there are continuous and discrete variables,

then the mathematical model is a problem of a mixed integer linear programming (MILP).

We can therefore write the program as follows:

min{cx : Ax Æ b, x Ø 0, x œ Z}

The author in [31] considers the problems of linear programming involving yes or no decisions as

one of its most important applications. In these decisions, the only possible choices are yes or no.

With only two options, these decisions can be represented by decision variables that are limited to

only two values, typically 0 or 1.

Consequently, the i-th decision of this nature is represented by xi, such that:

xi =
I

1 , if the decision is yes

0 , if the decision is no

These variables are called binary variables. Therefore, linear programming problems that contain

binary variables can be classified as binary integer programming.

2.2.2 Geometric aspects of linear programming

In this subsection, we focus on the geometric aspects of Linear Programming, introducing the

concepts of Convexity, Polyhedron and Facets. First, a point x is a convex combination of m points
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in xjRn, ’j = 1, .., m, if and only if

x =
mÿ

j=1
⁄jxj

mÿ

j=1
⁄j = 1

⁄j Ø 0 , ’j = 1..m bibitemRAO

In particular, a point x(⁄) is a convex combination of two points z and w, if

x(⁄) = (1 ≠ ⁄)z + ⁄w, ⁄ œ [0, 1]

Geometrically, they are the points on the straight line that goes from z to w. A set C œ Rn is said to

be convex when, for all x and y of C, the interval [x, y] is contained in C. That is to say:

⁄x + (1 ≠ ⁄)y œ C , ’x, y œ C, ’⁄ œ [0, 1]

We call extreme point of a convex set C any point x which can not be represented as a convex

combination of two distinct points of C. The C profile is the set of all extreme points of C. We call

convex envelope of a set C, the intersection of all (closed) convex sets containing C. A convex and

compact - closed and bounded - set C is equal to the closed convex envelope of its profile.

A constraint in Rn is an inequality of the form

g(x) Æ 0, g : Rn
æ R

and a feasible region defined by m constraints of the type g(x) is the set of feasible x points. A

polyhedron in Rn is a feasibility region defined by linear constraints:

Ax Æ d

We say that in a feasible point x, the constraint gi(x) œ A is active if and only if it is of the form

gi(x) = d. It is worthwhile mentioning that polyhedrons are convex, but not necessarily limited.

2.2.3 Duality in linear programming

According to [27], any linear programming problem is associated with another linear programming

problem called dual. And this original problem is called the primal problem. The relationship between

the dual problem and the original problem (primal) is extremely useful.

31



2.2. LINEAR PROGRAMMING

Let a primal linear programming problem be described in the following way on the left, and for its

corresponding dual problem we have the model on the right:

PRIMAL

max ctx

Ax Æ b

x Ø 0

DUAL

min bty

Aty Ø c

y Ø 0

If the primal problem is maximization, the dual problem is minimization. The dual problem uses

the same parameters as its associated primal problem, but in the following way:

— The coe�cients of the objective function of the primal problem are the right sides of the

constraints in the dual problem.

— The right sides of the constraints in the primal problem are the coe�cients of the objective

function of the dual problem.

— The coe�cients of a variable in the constraints of the primal problem are the coe�cients of a

constraint of the dual problem.

Knowing that the dual is also a problem of linear programming, one can say that there exists

another associated problem of linear programming called dual. If one goes back to the problem, one

sees that the latter is none other than the dual problem of departure. Thus we have that the dual of

a dual problem is equal to the primal problem.

The main results of applying the primal-dual relation can be summarized in the following theorems,

whose proofs can be found in [32, 33]:

The weak duality theorem: If x is a feasible solution of the primal, and y a feasible dual solution,

then necessarily ctx Æ bty. In particular, if ctx = bty then x is an optimal solution of the primal and

y is an optimal solution of the dual.

The strong duality theorem: If the primal problem has an optimal solution x then the dual problem

has an optimal solution y. In this case, we necessarily have ctx = bty.
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Complementary gaps theorem: If x is a feasible solution of the primal problem, and y a feasible

solution of the dual problem, then x and y are optimal feasible solutions if and only if the following

conditions are satisfied:

— If a constraint is satisfied as a strict inequality in the primal (dual) then the corresponding

variable of the dual (primal) is zero.

— If the value of a variable in the primal (dual) is strictly positive then the corresponding con-

straint of the dual (primal) is an equality.

The dual problem also has a much-used economic interpretation, called reduced cost. The value of

the dual variable corresponding to a constraint of the primal gives the value of the reduced cost of this

constraint. We consider the reduced cost as the potential gain we can have in the objective function

of the primal: its value gives us the e↵ect on the objective function if we increase by one the right side

of the constraint. We can compute the reduced cost cr associated with a variable x of the primal by:

cr = c ≠ Aty. If we look at the constraint Aty Ø c of the dual model described above, we can easily

see that the reduced cost is associated with the fact that the constraint is satisfied or not.

2.3 Solving approaches for linear programming

In this section, we describe the most e�cient methods for solving linear programs. We first

introduce the Simplex method. Then, we cover the methods of linear relaxation and cutting planes.

We also introduce the basis of e�cient branch-and-bound and column generation methods. Finally,

we present some non-exact methods such as heuristics and meta-heuristics.

2.3.1 Graphical method and Simplex

The Graphical method - or Geometric method - allows solving simple linear programming problems

in an intuitive and visual way. This method is limited to problems with two or three decision variables

since it is not possible to graphically illustrate more than 3 dimensions. According to [34], this

method is a visual aid to interpret and understand the algorithm of the Simplex method (much more

sophisticated and abstract) and the concepts that surround it. The phases of the problem-solving

process using the Graphic method are as follows:

— Draw a Cartesian coordinate system in which each decision variable is represented by an axis.

— Establish a scale of measurement for each of these axes appropriate to the associated variable.
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— Draw the constraint coordinates of the problem, including non-negative (which will be the axes

themselves). Note that an inequality defines a region that will be the half-plane bounded by the

straight line obtained by considering the constraint as an equality, while an equation defines a

region that is the straight line itself.

— The intersection of all regions determines the feasible region or solution space (which is a convex

set). If this region is not empty, one must continue to the next step. Otherwise, there is no

point that simultaneously satisfies all constraints, so the problem will have no solution and it

will be called unfeasible.

— Determine the endpoints or vertices of the polygon or polyhedron that form the feasible region.

These points will be the candidates for the optimal solution.

— Evaluating the objective function at each vertex. That (or those) that maximize (or minimize)

the resulting value will determine the optimal solution to the problem.

The Simplex method is an iterative process that allows improving the solution of the objective

function in each step. The process ends when it is not possible to continue improving this value, that

is when the optimal solution is obtained. Based on the value of the objective function at any point,

the procedure consists in looking for another point that improves the previous value. As can be seen

in the graph method, such points are the vertices of the polygon (or polyhedron, if the number of

variables is greater than 2). The search is carried out employing displacements by the edges of the

polygon, from the current vertex to an adjacent one that improves the value of the objective function.

Whenever there is a viable region, and since its number of vertices and edges is finite, it will be possible

to find the solution. For problems of maximization, for example, the Simplex method is based on the

following property: if the objective function Z does not take its maximum value at vertex A, it means

that there is an edge that starts from A and along which the value of Z increases.

2.3.2 Linear relaxation

In integer linear programming, we use the term relaxation to indicate that some of the restrictions

of the original problem have been relaxed. The most known example is the linear relaxation. In this

particular case, we remove the integrality constraint on all variables of the original model. Formally,

if we have a formulation F represented by

z = min{c(x) : x œ P}
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where P is the set of points that satisfy the constraints of the formulation, c(x) is the objective function

and z is the value of the optimal solution.

A formulation FR

zR = min{f(x) : x œ R}

is a relaxation if all the points of P are in R (P ™ R) and if f(x) Æ c(x) for x œ P . Note that because

of these properties, the optimal relaxation solution is a dual limiting for the original formulation,

zr Æ z. The dual limiting can be used, for example, to improve the performance of the Branch and

Bound algorithm [35] .

The advantage of using relaxations in some cases is that they are easier to solve. For example,

linear relaxations can be solved in polynomial time, while the integer version, in general, is much

harder to be solved [35]. We can relax a formulation by removing some of its constraints. Note,

however, that the more we relax the formulation, the further we will be from the optimal solution.

Ideally, one should find a relaxation that is easy to solve and that gives us a good dual limit, that is,

very close to the optimal value of the original formulation.

Linear relaxation of an integer linear programming can be solved using a standard linear program-

ming technique, such as Simplex algorithm. If the optimal solution for the relaxed linear program has

all the variables equal to an integer value, then it is also the optimal solution for the original integer

model [36].

2.3.3 The branch-and-bound framework

To exactly solve an NP-hard optimization problem is often a challenging task requiring very e�cient

algorithms, and the Branch and Bound paradigm is one of the main tools on this. A Branch and Bound

algorithm searches the complete solution space for a given problem for the best solution. However,

explicit enumeration is normally impossible because of the exponentially increasing number of potential

solutions. The use of limits for the function to optimize, combined with the value of the best current

solution allows the algorithm to search for parts of the solution space implicitly.

At any time during the process of finding the solution, the state of the solution over the search

for the solution space is described by an unexplored subset of this and the best solution found so far.

According to [27], at first, a single subset exists, namely the complete solution space, and the best

35



2.3. SOLVING APPROACHES FOR LINEAR PROGRAMMING

solution found so far is Œ. Unexplored subspaces are represented as nodes in a dynamically generated

search tree, which initially contains only the root, and each iteration of the classical algorithm treats

such a node. The iteration has three main components: the selection of the node to be processed,

calculation of the limit, and the branching step. The sequence of these may vary depending on the

strategy chosen to select the next node to be processed.

If the following sub-problem selection is based on the value of the sub-problem boundary, the first

operation of an iteration after choosing the node is branching, that is, the subdivision of the space of

the solution of the node into two or more subspaces to be studied in a subsequent iteration. For each

of them, we check whether the subspace consists of a unique solution, in which case it is compared to

the best current solution while keeping the best of them. Otherwise, the subspace selection function

is computed and compared to the best current solution. If it can be established that the subspace can

not contain the optimal solution, the whole subspace is rejected, otherwise, it is stored in the set of

live nodes with its limit. In [37], this is called impatient strategy for node evaluation, since the limits

are computed as soon as nodes are available.

An alternative is to start with the calculation of the boundary of the selected node, then branch

on this node if necessary. The created nodes are then stored with the boundary of the processed node.

This strategy is often used when the next node to be processed is chosen to be a living node of the

maximum depth in the search tree. The search ends when there are no more unexplored parts of the

solution space, and the optimal solution is then the one recorded as the best current.

2.3.4 Cutting planes and branch-and-cut algorithm

Now, we introduce the concept of Cutting Planes. Let P be the following linear programming

problem:

max{cx|x œ X}

with

X = {x œ Rn
|Ax Æ b , x œ Z}

where A and b have rational coe�cients. An inequality fix Æ fi0 is a valid inequality for X if fix Æ fi0

is valid for all x œ X. As a valid inequality for X, we have, in particular, those which define the convex
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envelope of X, conv(X), which is always a polyhedron. According to [38] the problem P could be

solved through max{cx|x œ conv(X)} because all the basic solutions that optimize this problem are

also optimal solutions for P . However, there is usually no a simple way to characterize the inequalities

needed to describe P .

Let S be the linear relaxation of P . We define a cutting plane as a valid inequality for X that cut

the non-integer solutions of S. In general, an algorithm of cutting planes has the following form:

— beginning - t = 0 et S0 = S

— Iteration t - Determine the optimal solution xt for the relaxed problem: max{cx|x œ St
}. If xt

is integer, then xt is an optimal solution for P . Otherwise, if we find a valid inequality for X,

fitx Æ fit
0, which cuts xt, such as fitx > fit

0, we add it to S, St+1 = St
fl {x : fitx Æ fit

0}, and we

increase t, t = t + 1. If we do not find any valid inequality, we finish the procedure.

The Iterations are also known as the separation problem and give us the following theorem [39]:

Theorem 2.3.1. cutting plane-based method on a Ax Æ b system of constraints is polynomial if and

only if the separation algorithm associated with Ax Æ b is polynomial.

A cutting plan procedure may intend to end when an entire solution is found, or serve only to

improve the formulation of the original problem. We call branch-and-cut algorithm when the separation

routine is within a branch-and-bound framework.

2.3.5 Column generation and the branch-and-price algorithm

In this section we discuss the column generation method. It is a technique used to solve a linear

program when the number of variables of the model to solve is very large.

The basic principles of column generation have been published for more than four decades [40].

Hence, the methods of separation and the generation of columns (branch-and-price) were born. One

of the first successful practical applications was made in 1961 and 1963 by Gilmore and Gomory on

the cutting problem[41]. In this application, the solution was found by rounding.

In the generation method of columns, the original problem is divided into two problems:

— Restricted master problem: the problem to solve, with fewer columns;

— Subproblem: generator of new columns for the master problem.

These columns are embedded in the set of columns used by the restricted master problem to improve
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Figure 2.2 – Interaction between the restricted master problem and the sub-problem

the current solution. According to [40], the restricted master problem is a linear programming problem

and does not have the integral property of the solution. Therefore, it still does not have an associated

dual problem whose solution has exactly the same value, preventing the correct calculation of the

costs of the dual problem. According to the same author, to obtain the dual values necessary in the

solution of the sub-problem, the restricted master problem is not solved directly, so we must solve its

linear relaxation. In this case, the variables corresponding to each column are no longer binary, but

they remain as non-negative variables.

As pointed-out by [42], the purpose of the sub-problem is therefore to generate new columns

(variables). These new columns are added to the restricted master problem that improves the value

of the solution, or updates the dual variables, to produce other new columns by the subproblem. The

interaction between these two problems is represented in the figure 2.2 below:

Since the main problem only works with a subset of columns, a linear programming packet can

quickly find the solution. When new columns are added little by little, a solution can be obtained

from the previous solution. To this point, the method focuses on approaches to solve the sub-problem

more e↵ectively. Let the problem P3

min ctx (2.4)

subject to

Ax Ø b (2.5)
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x Ø 0 (2.6)

This problem has a large number of variables. For this reason, it may not be possible to solve it

directly. We first solve a problem P4 which is smaller, with a subset xÕ
™ x of variables:

min cÕtxÕ (2.7)

subject to

AÕxÕ
Ø b (2.8)

xÕ
Ø 0 (2.9)

For many constraints, each solution found must be tested if it satisfies all constraints, even those

that are not yet in the model. We call this test as viability test. In the case where the problem has

a large number of variables we must do the test of optimality, that is to say that each solution found

must be tested to know if the solution is an optimal solution of the problem, even without variables

that are not yet included in the model.

The optimality test can be performed by problem of separation of the corresponding dual PD1

problem:

max by (2.10)

knowing that

Aty Ø c (2.11)

y Ø 0 (2.12)

When we solve the model P4 we find a solution xÕú. Let yú be the solution of the dual problem

PD1. This solution is tested to find the constraints violated by yú in the dual set in (2.11). All or some

of the variables corresponding to the violated constraints are added to the problem P4, modifying xÕ,

cÕ, and AÕ. This process must be iteratively redone until there are no more violated constraints in the

dual problem PD1 .
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The test in (2.11) for a solution yú, rewritten as c ≠ Aty Ø 0, shows more clearly the significance of

the separation problem in the dual model. For each variable xj , the first term of the inequality (2.13)

is the reduced cost in the primal problem P4, computed by the dual prices yú

i
of the constraints.

c ≠

ÿ

i

aijyi Ø 0 (2.13)

It should be noted that an unsatisfied constraint in the dual problem is equivalent to a negative

cost variable negative in the primal problem. This variable, when added to the model, can produce a

solution having a better value in the objective function, and it is therefore interesting to add it to the

problem. This method is called column generation and we call branch-and-price algorithm when the

column generation routine is within a branch-and-bound framework.

The original problem with fewer variables is called master problem. The separation problem in the

dual (or pricing) model, which is the problem of finding or generating a new column, is commonly

called sub-problem. As mentioned earlier, this process can be used in problems where the number

of variables is very large, which would make it impossible to develop a model with each of them

exactly. According to [43], it is not necessary to introduce all the variables in the model, just create

an algorithm that, starting from the dual prices of the current solution, finds variables of reduced cost,

then simply add these variables to the master problem. We can go even further: it can be applied to

problems where we do not yet know all the variables. It is enough to generate iteratively the variables

of reduced negative cost which are interesting in the problem of optimization.

2.3.6 Heuristic methods

A heuristic is an algorithmic procedure developed by a cognitive model, usually by rules based

on the experience of developers. Unlike exact methods that seek to find an algorithmic way to find

an optimal solution by combining or looking for all possible solutions, heuristics usually tend to have

some degree of knowledge about problem behavior, generating a much smaller number of solutions

[44].

Many factors make using heuristic algorithms interesting to solve a particular problem. According

to [45], some factors are:

— When there is no exact method to solve this problem or it requires a very high processing time.

In this case, o↵ering a good solution is better than having no solution;
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— When the solution is not necessary because the solutions obtained are already reasonable;

— When data is unreliable. In this case, the search for the optimal solution has no meaning,

because it is already an approximation of reality;

— When time and/or money constraints require the use of rapid response methods;

— As intermediate steps of other algorithms, potentially accurate or others heuristics.

Heuristic methods include strategies and approximation procedures to find a good solution, even

if not optimal, within a reasonable calculation time.

A constructive heuristic is a type of heuristic that begins with an empty solution and extends the

current solution until a complete solution is obtained. It di↵ers from the local search heuristic which

begins with a complete solution and then tries to improve the current solution with local movements

[45].

A meta-heuristic is a generic heuristic method for solving optimization problems (usually in the

domain of combinatorial optimization). Meta-heuristics are generally applied to problems that do not

have a known e↵ective algorithm. According to [46], they use the combination of random choices

and historical knowledge of the previous results obtained by the method to orient itself and carry

out its search through the space of possible solutions, which prevents premature stoppages in optimal

premises.Local search is a meta-heuristic method for solving optimization problems. The main objec-

tive is to find the ”best” solution among several possible candidates by maximizing or minimizing the

criteria. From a starting point, this type of method applies local changes until a solution considered

ideal is found, or a time limit of execution is exceeded [46]. Therefore, each solution found, better

than the last, gets the new starting point for the next iteration. The search space contains all possible

solutions to a problem.

According to [47], the criteria for the use of a heuristic to solve a particular problem are the

following:

— Optimality: When there are several solutions to a given problem, does the heuristic ensure that

the best solution will be found? Is it really necessary to find the best solution?

— Completeness: When there are several solutions to a given problem, can the heuristic find all

of them? Do we really need all the solutions?

— Precision: Can this heuristic provide a good interval of confidence for the desired solution? Is

the gap between the optimal solution and the one found by the heuristic good enough?
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— Runtime: Is this the best-known and fastest heuristic to solve the problem? Some heuristics

converge faster than others. Some heuristics are only slightly faster than conventional methods.

In some cases, it may be di�cult to decide whether the solution found by the heuristic is good

enough because the underlying theory of this heuristic is not very elaborate.
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Every second, a large amount of digital data is transported through huge number of types of

devices via cellular networks worldwide, and expectations are at a greatly accelerated growth with

increasingly large requests. In this context, in few years these networks could reach their maximum

capacities in terms of data transmission. Consumer mobile communications, video downloads, and

the use of mobile applications represent the bulk of the current use of radio resources in 4G networks.

Hence, the need to optimize resources in classical cellular networks becomes extremely important. To
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face all these challenges, 5G technology is posed by enabling the digitization of society and economic

information. The idea behind the concept of 5G is that it does not correspond to a simple increase in

data rate, as was the case for previous generations. With 5G, the aim is thereby to widen the diversity

of users.

In this context, Device-to-Device communication (D2D) has been highlighted, as it provides a

better allocation of resources compared to conventional cellular communication underway. D2D is a

set of communication technologies that allow two digital devices (i.g., mobile phones and robots) in

close proximity zone to communicate directly with each other without passing through the traditional

cellular network’s access points (i.e., antennas and base stations). With discovery and communication

functions, the user equipment can find others around to exchange information.

Network Slicing [4] is another novel virtualized infrastructure model in new generation mobile

networks. This technology now not only covers application-level slice abstraction as done with prelim-

inary works on ‘slicing’, but also physical and switching layers virtualization, with di↵erent radio access

and link communication technologies. This transition challenges slice network design since multiple

resources and segments, historically managed independently from each other, are to be operated with

continuity in networking and computing resource allocation and provisioning as a whole and unique

service. In this context, di↵erent providers can be associated with di↵erent communication services

running on the same physical network at the access, core, and application segments.

Because of di↵erent bitrate and latency requirements, policies on radio access function splitting

have an impact on the backhauling network dimensioning, and therefore on the placement of core

network functions and on the configuration of edge computing application servers. Moreover, di↵erent

policies for control versus data-plane function sharing and scaling are to be applied. For instance,

in 5G a first service classification in three classes is given [6]: enhanced Mobile Broadband (eMBB),

Ultra-Reliable Low Latency Communications (URLLC), and massive Machine Type Communications

(mMTC). Each of these application categories has its specific requirements, such as maximum latency,

minimum availability, and bandwidth capacity and, to provide a flexible environment to support those

customized networks, novel infrastructures are supported by Network Function Virtualization [2], Soft-

ware Defined Networking [3], and Network Slicing [4] technologies. Hence, each communication service

(CS) provider can deploy its services on top of logical networks, named Network Slices, specifically

tailored to its technical requirements.
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Addressing end-to-end network slicing, however, requires considering heterogeneous resources from

di↵erent physical and virtual network topologies, each with specific technical constraints and particular

orchestration rules. Furthermore, an important novelty of 5G specification is the introduction of

three novel mapping dimensions influencing the placement and interconnection of slices and network

functions: (i) a CS can be delivered by multiple network slices; (ii) Slices can be decomposed into

Network Slice Subnets; and (iii) Network Functions can be decomposed into Network Function Services.

While the first mapping requirement can simply impact network design hyperparameters only, the

second and third ones come with new technical constraints to guarantee a coherent provisioning of

each CS. Namely, continuity constraints among slice subnets and the capacity to support specific

behaviors for all the components of the same slice, such as function splitting, sharing, and scaling

policies. In addition to these peculiar constraints, classical network function embedding, routing, and

requirements on latency, availability, and network and computing capacities hold as well.

In this chapter, we present the entities appearing in new generation networks and the main mod-

eling aspects and technical constraints related to 5G systems and beyond 1.

3.1 Core network evolution

Third Generation Partnership Project (3GPP) emerged from the need of technically specifying

the third generation (3G) mobile network. Such specifications were structured in documents called

Releases: the first one was issued in 1999, called Release 99 [48]. At that time, 3GPP’s work was based

on Global System for Mobile communication networks, also called 2G systems. The Core Network is

responsible for all control and central processing for the 3G system, being an evolution of the legacy

Network Switching Subsystem. For the conventional Circuit Switched domain, the 3G core network

was conceived with Mobile Switching Center (MSC) and MSC Gateway (GMSC) entities, responsible

for carrying calls from network users and interfacing with external circuit-based networks, respectively.

3G mobile technology supports a wide variety of services, ranging from multimedia applications

available on the Internet. For this purpose, 3G core is also conceived with a Packet Switched domain

1. The content of this chapter was partially published in the following papers: W. d. S. Coelho, A. Benhamiche, N.
Perrot and S. Secci, ”Network Function Mapping: From 3G Entities to 5G Service-Based Functions Decomposition,” in
IEEE Communications Standards Magazine, vol. 4, no. 3, pp. 46-52, 2020.
W. d. S. Coelho, A. Benhamiche, N. Perrot and S. Secci. ”On the impact of novel function mappings, sharing policies,
and split settings in network slice design.” 2020 16th International Conference on Network and Service Management
(CNSM). IEEE, 2020.
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to carry users’ data. As described by [49], this domain includes General Packet Radio Services Support

Node (SGSN) and Gateway General Packet Radio Services Support Node (GGSN). While SGSN is the

entity responsible for mobility, session management, and billing, GGSN can be seen as the main entity

of the 3G core. In this architecture, GGSN is responsible for ensuring and managing the connection

with external packet-switched networks, (e.g., Internet). Furthermore, Equipment Identity Register

(EIR), Home Location Register (HLR), and Authentication Center (AuC) are the entities shared by

both Circuit and Packet domains and contain all administrative information of each subscribed User

Equipment (UE). These entities are also responsible for connection rules and information and data

protection.

3.1.1 From 3G to 4G

To better deal with the immense popularization of the Internet on mobile phones and to support

a greater number of customers and volume of data, Release 8 [50] was delivered by 3GPP in 2009.

Release 8 was the first document presenting standards for Long-Term Evolution (LTE) mobile system,

so-called 4G. It is important to note that 3GPP did not change its name when moving to 4G (and

beyond) technology specification. .

Release 8 presents standards for the Packet Switch system, called Evolved Packet Core (EPC).

Within this new architecture, all services (e.g. voice, SMS, and data) are driven by the Internet

Protocol (IP), which implies the disappearance of Circuit Switched domain from legacy Core Network.

As depicted in Fig. 3.1, MSC and EIR’s functionalities were combined into Mobility Management

Entity (MME), the main controlling entity in EPC. MME is responsible for authentication, roaming,

and session management on the broadband network. It interfaces with two other entities, named Home

Subscriber Server (HSS) and Serving Gateway (S-GW). The former is the database where all network

user information is found and can be considered as an aggregation and evolution of HLR and AuC

from the 3G system. S-GW, in turn, has some functionalities from the legacy SGSN 3G core entity.

It acts as mobility anchor during handovers and is responsible for routing users’ data packets. In that

way, each user that accesses the EPC is associated with a single SGW, which interfaces with Packet

Data Network Gateway (PDN-GW). This last entity is the essential interconnection point between

EPC and external IP-based networks. It is also responsible for packet filtering, legal interception,

and IP address allocation. Hence, PDN-GW has functionalities from GMSC and GGSN, combined.
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Finally, we find the Policy and Charging Rules Function (PCRF) within the EPC system. It is part

of a functional framework called Policy and Charging Control (PCC), which is used to control the

bearer services o↵ered by the LTE network as well as to control the charging mechanisms. PCRF

is a software component and is responsible for providing access rules and policies for core network

gateways.

3.1.2 Separating 4G core with CUPS

In order to o↵er a higher degree of modularity and scalability for core entities, 3GPP proposes a

new architecture called CUPS: it stands for Control and User Plane Separation and o↵ers a complete

split between Control Plane (CP) and User Plane (UP). In this new EPC system, introduced in Release

14 [6], a more e↵ective approach to support increasing and dynamic tra�c is provided. With CUPS,

UP and CP scaling can be made independently. For this purpose, S-GW becomes Serving Gateway

Control Plane function (SGW-C) and Serving Gateway User Plane function (SGW-U). Equally, PDN-

GW is split into PDN Gateway Control plane function (PGW-C) and PDN Gateway User Plane

function (PGW-U). While SGW-C and PGW-C are responsible for controlling the processing of data

that transverse User Plane functions, SGW-U and PGW-U implement specific features for a certain

group of users, such as low latency or high bandwidth, to ensure Quality of Service (QoS). 3GPP has

also proposed to split Tra�c Detection Function (TDF) into CP and UP entities. TDF is part of

PCC block [51] and is responsible for improving the operator’s charging functions. With CUPS, TDF

becomes TDF User Plane (TDF-U) and TDF Control Plane (TDF-C) functions.

3.1.3 From 4G to 5G

The 5G architecture enhanced by Network Function Virtualization (NFV), Software-Defined Net-

working (SDN), and Network Slicing provides an even more flexible environment supporting end-to-end

customizable virtual networks. With dedicated resources to ensure specific QoS for a wide variety of

services, all entities in 5G might be entirely or partially virtualized. 3GPP proposes 5G Core (5GC),

another change in the mobile core network. Hence, 5GC presents the evolution of the legacy entities

found in 4G and additionally introduces optional Network Functions that might be necessary to con-

trol and operate each slice. In the resulting new virtualized architecture, what were called entities in

3G and 4G are now called Network Functions in 5G
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Figure 3.1 – 3GPP Network Core function evolution: from 3G to 5G.

As depicted in Fig. 3.1, MME functionalities are split into three new functions: Access and Mobility

Management Function (AMF), Session Management Function (SMF) and Unified Data Management

(UDM). AMF is responsible for registration, connection and reachability management, access authen-

tication, and access authorization. UDM further shares responsibilities found in legacy HSS with the

new Authentication Server Function (AUSF). SMF, in turn, is responsible for session management

and takes all functionalities from PGW-C and SGW-C. Additionally, SMF will directly interface with

5G User Plane, which is represented by User Plane Function (UPF). In this context, UPF might apply

all functionalities found in PGW-U, SGW-U and TDF-U, combined. Moreover, policies and charging

rules, which were in 4G PCRF entity, are provided by the Policy Control Function (PCF), which

interfaces with Application Function (AF); AF is meant to act like the logical 4G AF integrated into

PCC framework [51], o↵ering dynamic tra�c information and applications based on user behaviors.

In this evolving context, we can identify a primary set of functions that need to be present to deploy

a core slice. In that way, this slice must contain at least the basic functions connected to control and

user planes: AMF, SMF, PCF, AUSF, UDM and UPF. Additionally, to better control and operate

each slice in future 5G networks with specific requirements and technical constraints, several new

functions are proposed by 3GPP [8, 52, 53]. Following, we present the main functionalities of these
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new functions:

— Network Exposure Function (NEF) - event and capability safe exposure to functions and third

party networks.

— Non-3GPP Inter Working Function (N3IWF) - IP Security tunnel support in cases of untrusted

non-3GPP accesses.

— Network Slice Selection Function (NSSF) - slice selection for serving users.

— Unstructured Data Storage Function (UDSF) - information retrieval and storage as unstruc-

tured data.

— 5G-EIR - Permanent Equipment Identifier status checking.

— Network Data Analytics Function (NWDAF) - slice load level information.

— Charging Function (CHF) - online and o✏ine charging

— Network Repository Function (NRF) - provides NF instances information such as function type,

function ID, and Network Slice related Identifier(s).

— Unified Data Repository (UDR) - subscription and policy structured data retrieval and storage.

— SMS Function (SMSF) - SMS management and delivery over Non-Access-Stratum.

— Location Management Function (LMF) - measures user, downlink and uplink location.

— Security Edge Protection Proxy (SEPP) - non-transparent proxy responsible for filtering and

policing between Public Land Mobile Networks’ control planes.

— Binding Support Function (BSF) - supports binding information updates by NF service con-

sumers.

Figure 3.1 summarizes the aforementioned core network evolution, from 3G to 5G. For an in-depth

functionality description of each 5G function, one may refer to [8, 52, 53].

3.2 5G core specificities

To better support network slicing, 3GPP has proposed more flexible, customized service-based

network functions for 5G systems. With this new architecture, functions make use of a complete

integrated interface that allows them to expose their capability to other authorized NFs without pre-

cluding the use of intermediate functions. This implies that all Control Plane functions have potential

to directly communicate with each other by request/response and subscribe/notify application-level

signaling. For this propose, each CP function is conceived with a set of NF services to be consumed

49



3.2. 5G CORE SPECIFICITIES

Figure 3.2 – Service-based interactions between network functions.

by other functions. The interactions between CP functions are depicted in Fig. 3.2. In this example,

A is a NF service consumer from B’s point of view, which is, in turn, a NF service producer from A’s

perspective. Note that the same function may be service consumer and service producer at the same

time, as illustrated by B. One function might consume services from di↵erent NF service producers

and a function might also o↵er services for di↵erent NF service consumers. It is also important to

notice that a NF service can provide and consume services to and from other NF services within the

same function.

3GPP has also been providing some technical reports with a non exhaustive list of possible interac-

tions between di↵erent functions and NF services [8, 54, 55]. Some of those iterations are exemplified

on Table 3.1, where UDM is taken as example with its non-exhaustive list of NF services [55]. Note

that UDM is able to o↵er a same service to di↵erent NF service consumers. In this example, UDM

can subscribe data from AMF, SMF and SMSF. It is also important to notice that a same service

might make di↵erent operations (e.g. get, subscribe, update, result confirmation) and they are made

by request/response and subscribe/notify queries.

Table 3.1 – Example of a NF service decomposition: UDM as NF service producer

NF Service
NF Service
operations

Signaling
semantic

NF Service
consumers

Get Request/Response
Subscribe

Subscriber Data
Management

Notification
Subscribe/Notify

AMF, SMF,
SMSF

GetUE Context
Management Update

NEF, SMSF

UE
Authentication

Result
Confirmation

Request/Response
AUSF

Parameter
Provision

Update Request/Response NEF
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3.2.1 Customized service-based network functions

Legacy mobile networks lack the ability to provide a specific set of functionalities for each service

proposed by operators, each one with a very specific technical requirement. 5G systems, leveraging

NFV and SDN to support flexible data and service connectivity with an e�cient deployment of cus-

tomized slices, can o↵er a minimal and adapted set of core NFs for each case: each function can

be programmed to contain only the NF services required to keep each slice operational and e�cient.

Hence, two UPFs in di↵erent slices, for example, might contain di↵erent capabilities as well as di↵erent

customized sets of NF services. Having minimal sets of adapted functions implies a drastic reduction

on the use of limited physical resources.

To assure all these features, each NF service must be reusable, self-contained, and use individual

schemes independently from all NF services present in the system. E↵ectively, being reusable elim-

inates redundancy by o↵ering total integration between all others NF services, within the same NF

or not. In that way, each service is specific to a NF service producer and must be available to all

potential NF service consumers. Additionally, all NF services are supposed to be self-contained and

their operations must be done in their own contexts. Hence, NF services are allowed to operate only

on their own internal storage, using their own software resources.

3.2.2 Auto-scaling and distribution

To better deal with tra�c load fluctuation, auto-scaling becomes a powerful tool to alleviate

network congestion due to the high data tra�c load in certain periods. Additionally, distributing the

flow intelligently is essential to ensure that each user has access to the demanded Communication

Service with assured QoS. Such a distribution must be done by frameworks capable of detecting data

tra�c load fluctuation in a given slice in order to multiply instances of some critical functions. By

knowing the high signaling sent and received by a sub-set of NFs within a slice, the orchestrator entity

is responsible to provide and implement a tra�c-aware algorithm capable of creating NF instances in

critical moments (scale in) and distributing the tra�c among them. Equally, in periods of low data

tra�c load, NFs copies in the same slice are removed (scale out) and a data tra�c redistribution must

be done. Following the 3GPP standards, physical resources can be saved and QoS is assured to users

when NF instances are scaled out and in, respectively, once data tra�c is properly distributed.
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In 5G, scalability is facilitated by using as much stateless functions as possible. Today’s applications

found in mobile networks are often stateful, which greatly increases the risk of failure and related

management overhead. For the 5G core, most of its functions are meant to be stateless, facilitating

scalability and decreasing the failure risk. To do this, these functions use other specific NFs that store

states (e.g., network and users’ data and information). For such management, 3GPP proposes UDM,

UDSF, and UDR functions.

3.2.3 The user-plane case

Even though there is no precise reference to the User Plane domain, some assumptions based

on 3GPP releases can be taken into account when designing a slice that o↵ers UPFs. Firstly, one

possibility is to install a single instance of UPF with all the necessary NF services to a specific

slice. This approach becomes necessary in slices dedicated to civil security; in this example, security

and isolation constraints might imply that there must be only one node between access and data

networks. However, for those scenarios where there are no such constraints, proposed 5G systems

support interconnections between di↵erent UPFs by reference point named N9 [8]. In this way, each

UPF would be conceived with a sub-set of NF services and, unlike control plan data flow, user data is

carried through an ordered chain of functions, each one responsible for a specific data processing. In

the case of downlink data bu↵ering, for example, one UPF may act as the PDU Session Anchor while

another UPF may be responsible for data encapsulation. Furthermore, N9 reference points can be

established between di↵erent UPFs within the same Public Land Mobile Network (PLMN) or di↵erent

PLMNs [8] and, consequently, between di↵erent slices.

3.2.4 Functional splitting in the radio access network

Flexible Radio Access Network splitting [56] is a technique meant to increase network e�ciency

leveraging NFV flexibility. In 1G and 2G RANs, all entities responsible for radio and baseband

processing were distributed and integrated into each base station. To minimize costs and facilitate

network deployment, it was proposed to split the base station into Remote Radio Unit (RRU, also

called Remote Radio Head and Radio Unit) and Baseband Unit (BBU) (also called Data Unit). In

this context, the RRU is responsible for Physical Layer functionalities, while the BBU is responsible

for Data Link Layer functionalities [57]; the distance between these two entities could be up to 40
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kilometers. However, there is still redundancy in the network: all RAN functionalities are replicated

for each pair of BBU and RRU. To overcome this, centralized RAN (C-RAN) was first introduced in

2011 [58]; pools of BBUs with large capacity, now called Centralized Units (CUs), are proposed to

treat tra�c from a sub-set of RRUs, now named Distributed Units (DUs). Hence, one of the first

tasks is to define the functionalities enabled locally at the DU, and those installed centrally at the CU

and thus shared among a subset of DUs.

Figure 3.3 illustrates di↵erent functional split options on the 4G stack, as the 5G RAN split options

have not yet been specified. Let’s take option 3 as an example: all functions from Radio Frequency

(RF) to Low Radio Link Control (RLC) blocks are locally installed, while high RLC, Packet Data

Convergence Protocol (PDCP) and Radio Resource Control (RRC) functions are centrally installed.

Equivalently, with option 7 on the uplink direction, all functionalities after the low Physical (PHY)

block are installed at a CU, while with option 5 all entities before the low Media Access Control

(MAC) block are installed at the DUs.

Since the functional split was originally meant to be made a priori (i.e., before deploying the

network) choosing the best split [59] for each scenario is not trivial. Defining the distributed and cen-

tralized functionalities should take into account end-to-end delay and total bandwidth constraints on

each physical path connecting DUs and CUs while optimizing the resource allocation. It is important

to mention that all distributed functionalities should be installed in each DU to support any type of

split. Complementary, centralized functionalities have few instances that are installed in CUs and are

shared by a specific sub-set of DUs. The dependency factors such as varying network latency and

capacity has recently motivated experimenting dynamic functional splitting, where the split decision

can be reconfigured on a short time scale for one or a few split options [60].

Table 3.2 depicts di↵erent fronthaul (FH) bitrates and latency indicators for each functional split.

The bitrates are calculated as in [59] for a scenario using 100 MHz bandwidth and 32 antenna ports,

while the maximum accepted one-way latency through FH is proposed by 3GPP [57]. Note first that

the highest bitrates and lowest latency are imposed by option 8. However, one of the advantages

Figure 3.3 – Di↵erent functional split options.
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Table 3.2 – Fronthaul bitrate and latency in functional split.

Functional Split DL Bitrate UP Bitrate FH Latency
Option 1: RRC-PDCP 4 Gbps 3 Gbps 10 ms
Option 2: PDCP-hRLC 4 Gbps 3 Gbps 1.5-10 ms
Option 3: hRLC-lRLC 4 Gbps 3 Gbps 1.5-10 ms
Option 4: lRLC-hMAC 5.2 Gbps 4.5 Gbps 0.1-1.0 ms
Option 5: hMAC-lMAC 5.6 Gbps 7.1 Gbps 0.1-1.0 ms
Option 6: lMAC-hPHY 5.6 Gbps 7.1 Gbps 0.25 ms
Option 7: hPHY-lPHY 9.2 Gbps 60.4 Gbps 0.25 ms
Option 8: lPHY-RF 157.3 Gbps 157.3 Gbps 0.25 ms

of choosing this split would be in reducing the number of NFs throughout the access network, as

they would be installed centrally and shared by di↵erent DUs. Contrarily, option 1 requests low

bitrates and admits higher latency; the disadvantage of this option is that almost all NFs would be

installed locally - this scenario demands higher computational power on each DU, which could be

impractical given the number of expected DUs in mobile systems. It is also important to point out

the di↵erence between downlink (DL) and uplink (UP) bitrates, due to physical layer operations (e.g.,

transformations between transport blocks and in-phase and quadrature symbols in each direction of

the data flow).

Figure 3.4 represents a scenario with di↵erent split options with two operators and a RAN function

chain composed of four NFs. In this example, the split between NF 1 and NF 2 is applied to treat

the flow from DU 3 and DU 4. These two DUs have only NF 1 installed locally and send their flow to

CU 2, which has NF 2, NF 3, and NF 4. Note that these functions in CU 2 are shared by both DU 3

and DU 4.

SDN and NFV technologies can be used together with C-RAN to o↵er flexibility to split RAN slice

subnets [6, 57]. To this propose, two classes of RAN functions are proposed by [61]: asynchronous

Figure 3.4 – Functional split example with four RAN NFs.
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network functions and synchronous network functions ; the former refers to network functions that

process data asynchronously with the radio interface and demand low data rates. State transition

and handover preparation are functionalities from RRC and PDCP blocks that are candidates to be

virtualized, centralized into CUs pools, and shared by a sub-set of DUs. However, time-synchronous

functions, such as interference coordination, scheduling, and power control from PHY and MAC blocks,

process data synchronously with the radio interface, requiring low latency and high data rate. Hence,

the related NFs might need some hardware acceleration, which implies that they are good candidates

to either be implemented as dedicated machines or installed on a path that assures low latency and

high bandwidth. According to [62], strict timing dependency between protocol layers must be avoided,

using instead asynchronous NFs as much as possible to grant more flexibility to RAN slicing.

Being consistent with [6, 57, 62], we incorporate flexible RAN splitting in order to design end-to-end

network slices. This approach can better deal with the heterogeneous requirements of each NS request

while decreasing the redundancy in the network, that is, minimizing the number of virtual AN-based

functions installed throughout the physical network. [63, 64, 56] address the challenges of flexible

functional split schemes to optimize the allocation of physical and virtual resources. [56], for example,

proposes a new architecture that introduces a flexible split of RAN functionalities between the Cloud-

RRH, an edge cloud, and the central cloud. [64], in turn, analyze the technical features of the network

in order to find the optimal split for di↵erent scenarios; the authors considered the configuration of

the base stations, the fiber ownership, and the data transmission direction. They demonstrated that a

lower total cost of ownership can be achieved with optimal functional split compared to classical radio

access networks. The required backhaul capacities for uplink tra�c in terms of minimum bandwidth

and maximum latency for di↵erent split options are analyzed in [63].

Even though there are several works in the literature addressing functional split mode selection

and network slicing problems with NF sharing and NF scaling, no attention has been given to jointly

address the complete problem in order to design end-to-end network slices including functional splitting

for the radio access functions and di↵erent schemes for dimensioning and sharing NFs.
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Figure 3.5 – Representative use-cases of D2D communications in cellular networks.
Source: [65]

3.3 Device-to-device communication

In new generation access networks, mobile User Equipment will be able to host functions that give

them new abilities such as sharing connectivity, capacity, and CPU resources with other UEs, regardless

of the ongoing traditional communications. The 5G wireless technology, along with the evolution of

mobile users’ behavior and needs, will make the current scheme of communication (UE to Base Station)

no longer optimal in terms of radio resource utilization for some cases. The Device-to-Device (D2D)

communication mode is one of the new approaches presented as a promising alternative to traditional

communication in cellular networks. D2D communication is defined as direct communication between

two mobile or fixed user devices, without traversing the Base Station (BS) [65]. This technology allows

to reuse radio resources and to decrease the end-to-end latency of local communications. Then, D2D

would allow a set of UEs geographically close to each other to establish direct D2D communications, or

span multiple links (multi-hop D2D communications), to access a given service (e.g. video streaming

or gaming) while ensuring the required service quality. Figure 3.5 illustrates the advantages and uses

of D2D communication.

D2D communication can be divided into two groups: Inband D2D and Outband D2D. The former

proposes the use of licensed spectrum [66]. It is further subdivided into Underlay D2D Inband, where

both D2D communication and classical cellular communication can share all licensed spectrum range,
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and Overlay Inband D2D, in which the spectrum range is divided into two and each part is dedi-

cated to only one type of communication. On other hand, Outband D2D proposes to use unlicensed

spectrum [67]. It is also further subdivided into two others sub-categories: Controlled Outband D2D,

in which coordination between radio interfaces is controlled by the Base Station, and Autonomous

Outband D2D, where coordination between radio interfaces is controlled by the users.

One of the first works proposing the use of D2D communication was published in 2000 [68]. Soon

afterward, several researchers turned their attention to this promising technology and looked for ef-

fective methods to improve its use. Both Inband D2D and Outband D2D are studied since then,

with more attention to the former. However, several authors suggest that the main advantages of

Outband D2D are related to the absence of interference between cellular and D2D users. In addition,

there is no need to dedicate cellular resources to the D2D spectrum as in the Overlay Inband D2D

approach. Hence, resource allocation becomes easier because the scheduler does not require to take

the frequency-time matrix and location of the users into account. In addition, simultaneous D2D and

cellular communication are feasible. However, according to [65, 69] main disadvantages related to

Outband D2D commutation are:

— Interference in unlicensed spectrum is not in the control of the BS;

— Only cellular devices with two radio interfaces (e.g., LTE and WiFi) can use Outband D2D

communications;

— The e�cient power management between two wireless interfaces is crucial, otherwise, the power

consumption of the device can increase; and

— Packets (at least the headers) need to be decoded and encoded because the protocols employed

by di↵erent radio interfaces are not the same.

On the other hand, according to the authors in [65, 69], the main advantages and problems related

to Underlay Inband D2D are:

— Spectrum e�ciency: With the use of D2D we can improve the use of the cellular spectrum

very e↵ectively. This can be done by using interference reduction techniques between D2D and

classical cellular communication, or by developing high interference recognition applications to

avoid the use of problematic frequencies in a certain region and time.

— Power e�ciency: In several studies, it was observed that power e�ciency can be improved with

D2D technology. One of the most used techniques is the dynamic choice between cellular or
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D2D as a communication mode.

— Performance with QoS/Power Constraints: Improving the performance of D2D-enabled cellular

systems with QoS/power constraints usually require advanced techniques such as stochastic

optimization, nonlinear programming, and integer optimization.

However, Overlayng Inband D2D eliminates the concern about the interference between the two

types of communication, since they do not share the same spectral range. This approach considerably

reduces the number of resources to promote each part, and may promote an important waste of them.

BS-assisted scheduling [70] and D2D power control [71], techniques were proposed to reduce D2D

interference. Another technique is proposed by the authors in [69]. They propose to use the Base

Station as a relay (backup re-transmitter) for the D2D transmission or to use multiple D2D users

as the relays (re-transmitters) for multi-casting. According to the authors, both methods have low

complexity which makes them practical for real-world scenarios.

Even with important works using Controled Outbound D2D [72, 73, 74, 75, 76], Autonomous

Outband D2D [77, 78], and Overlayng Inband D2D [70, 71, 69], most of works were developed using

Underlay Inband D2D.

In [79], Underlay Inband D2D was applied in both non-orthogonal and orthogonal resource sharing

modes. In this work, the authors showed how to find a sub-set of viable solutions to ensure the

optimal solution for the non-orthogonal resource sharing technique. They have shown that their

approach provides gain over pathloss-based selection mode. Due to the non-convex di�culty found in

optimization problems in this context, authors in [80] proposed two sub-optimal strategies that have a

smaller complexity, facilitating their resolution. In such a work, authors used uplinks in Underlaying

Inband D2D technique to optimize only the transmission power of the D2D communications, fixing in

advance the transmission powers of the classic colleges that use base stations.

Authors in [81] propose dividing each cell into inner and outer regions and allocating di↵erent

frequency bands for the communications regarding the position of the users. The authors present a

fractional frequency reuse (FFR) approach to minimize interference between cellular communications

and D2D. Following the approach depicted in Figure 3.6, authors in [81] showed that D2D can signif-

icantly improve the total throughput of the cellular network compared to random allocation schemes.

Authors in [81] were able to improve the spatial-spectral e�ciency in the network using the inter-cell

interference coordination (ICIC) technique, which is managed by the base stations.
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Figure 3.6 – Resource allocation prodedure for D2D UEs
Source: [81]

Finally, authors in [82] propose distance-constrained resource-sharing criteria as select mode tech-

nique, controlling the interference by keeping a minimum distance between communications that use

the same frequency. Numerical results have shown the e↵ectiveness of this approach to significantly

reduce the interference caused by D2D active links.

3.4 5G system mapping requirements

The 3GPP specifications [8, 7, 6] present the di↵erent entities appearing in 5G systems; as we

describe in [1], they are: User Equipment (UE), Communication Service (CS), Network Slice (NS),

Network Slice Subnet (NSS), Network Function (NF), NF Service (NFS).

Fig. 3.7 depicts the relationships between these entities. A UE can be a smartphone, a robot, or

even an autonomous car, that might be connected to several CSs; e.g., a car connected to an Au-

tonomous Car Service while broadcasting movies and music from Streaming Services to its passengers.

To better deal with heterogeneous technical constraints of each service, each CS might run on one or

more customized NSs. Additionally, each NS might be composed of one or more NSSs, which might

also be composed of lower-layer NSSs. A simple example of this scenario is given by considering an NS
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Figure 3.7 – Relationships between 5G entities. Source: [1].

composed of an access NSS and a core NSS, where the latter can, in turn, be composed of a control-

plane NSS and a data-plane NSS (data-plane relates to user application tra�c while control-plane

tra�c involves network and service signaling functions).

In this nested architecture, each NS or NSS is composed of one or more NFs attached to the

Access Network (AN; e.g. Scheduler Function and Connection Mobile Control Function) or to the Core

Network (CN; e.g. Session Management Function and Access and Mobility Management Function), or

representing a Service Function (e.g. Firewall, Proxy, and Load Balancer). At the lowest level, each

virtual NF is composed of a set of NFSs.

We can distinguish five mapping levels for creating a complete virtual 5G environment, each one

with its characteristics and technical complexities to be implemented.

3.4.1 Mapping NF services into network functions

The first mapping is the most technical one. At this level, the di�culty lies in how to program

each function so that it behaves exactly as expected. As already discussed, each function is conceived

with a customized sub-set of NF services that keeps a slice operational and e�cient. The di�culty

related to this mapping is imposed by the need of minimizing the resource allocation for each function.
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Intuitively, the greater is a sub-set of NF services within a function, the greater is the number of

physical resources that must be provided to install it. Clearly, an important work must be done on

this level to find the right sub-set of NF services for each function and each use case, assuring the

operability and e�ciency of each CS.

3.4.2 Mapping network functions into slices and slice subnets

Mapping functions into slices is another technical problem. In this mapping, each NF has its own

minimal physical capacity request (e.g. CPU, RAM, storage) as well as its capability (e.g. package

treatment rate). The mapping at this level must also take into account the connection between each

possible pair of functions that must be linked, as well as the required capacity and processing rate

on each of those virtual links. At this level, the orchestrator entity is already aware of the sub-set of

NF services within each function. As a result, mapping functions into slices o↵ers to the orchestrator

entity a catalog of well-defined slice templates to specific and recurrent CSs. The problem for this

mapping level is how to decide which function must be present in each slice and how to predict the

quantity of each NF instance within a slice to better deal with the expected data rate throughout the

system. It is important to mention that this level also refers to the mapping of functions into slice

subnets, so creating NSSIs.

3.4.3 Mapping slices subnet into slices

After creating a slice subnet catalog as mentioned in the previous mapping level, the orchestrator

entity might decide to create NSIs from well-defined slice subnet templates. This may be the case

where a core NSI is created from UP and CP slices, combined. Hence, from 3GPP’s point of view,

those two last NSs are seen as slice subnet and the whole core as a slice. Notably, to do this type of

mapping, well-defined sets of slice subnet templates must be available to guarantee the deployment of

a whole NSI.

3.4.4 Mapping slices into communication services

This fourth level mapping is less technical than the previous ones. It takes advantage that all slice

templates are already cataloged and ready to be deployed. According to its heterogeneous needs and

expected data rate throughout the slice, each CS has a subset of possible slice templates to be mapped
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to. In this context, one may use matching techniques to better identify which templates are the most

appropriated to a given set of CSs. It is worth noting that this mapping level can also be applied when

slices are already deployed. In this context, each CS request might be mapped to an active virtual

network.

3.4.5 Mapping communication services into user equipment

The mapping levels formerly described are related to the first phase of the life cycle of a slice [7].

This phase, called Preparation, deals with the design of each previous mapping level, as well as the

pre-provisioning and network environment preparation. The second phase consists of installing all

slices on top of a physical network and activating them. Then, a mapping of Communication Services

into UEs must be done as soon as a new request arrives. Next, in the Run-time phase, all slices are

already activated and each UE must be connected to the right CS. More technically, this mapping

is essentially a mapping of UE into the right NSI. This is done after a registration procedure by the

first AMF receiving the connection request. This function then interacts with NSSF. Based on the

orchestrator’s policy rules, NSSF is responsible to direct each UE to the right Communication Service.

Hence, this last mapping level is essentially concentrated on NSSF, which must be connected to all

AMF of other slices o↵ered by CS Providers.

Clearly, a higher level of mapping can only be done if all lower ones are already concluded, creating

a strong dependency between them. Additionally, each level in this nested arrangement has its own

complexity, and choosing the right mapping to o↵er a CS request is crucial. Hence, a trade-o↵ between

flexibility and readiness is imposed. Deploying Communication Services from the first level gives more

flexibility to adapt a virtual environment to a new 5G CS with specific and unexpected technical

constraints. However, this might be a very arduous work to be done for every single request. Along

these lines, for those highly expected classes of CSs with well-known technical constraints, creating

templates to be available to a higher mapping level speeds up the procedure to build a virtualized 5G

CS using network slicing techniques.

We have to stress that the decomposition of NSs into NSSs and of NFs into NFSs is, on the one

hand, motivated by scalability and e�ciency reasons and, on the other hand, requires the network slice

design process to take into consideration continuity constraints. Indeed, one NS can be geographically

deployed in a scalable manner thanks to the segmentation of a slice into multiple NSSs; and the
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overall computing demand can be decreased by allocating resources to NF micro-services rather than

to macro NF units. Moreover, depending on techno-economic and network management policies,

continuity constraints on the decomposition may be needed; more precisely, the slice provider might

decide whether all NSSs belonging to the same higher level NS should undergo the same functional

split setting in the Radio Access Network (RAN).

3.5 Sharing policies

The mapping problem rising in 5G described above appears as a novel multi-level embedding of

network nodes. Jointly, addressing each mapping strategy involves a crucial point: how will each

entity of the same level interact with the higher level instances? Isolation is a key aspect for network

slicing and dedicated functions, for example, might be necessary to ensure that each slice operates

independently, preventing the incorrect balance of resources between the serving slices. Additionally,

security is another extremely important point in virtual environments. To ensure security and data

routing control, partially or completely isolated slices with dedicated functions might be implemented.

On the other hand, sharing a function is an interesting strategy to simplify virtual environment

implementation and to reduce redundancies throughout the network. Due to the high programmability

of NFs, some of them can be installed on top of physical resources to be shared by a set of slices.

In addition, following 3GPP standards for 5GC, some NF instances must be common and shared

between di↵erent slices. This imposition can be interestingly exemplified with NSSF. This function is

Figure 3.8 – Interactions between Slice and Slice Subnet Instances.
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responsible for mapping each UE to the right slice serving a requested CS. In this way, deployed slices

must share an interface with NSSF to keep it capable of making the right slice targeting.

It is important to keep in mind that, as functions, an NSSI can also be shared by two or more

NSIs, or it might still be entirely dedicated to a slice. Fig. 3.8 illustrates this concept and depicts

a possible mapping for di↵erent Communication Services. Note that service – is serviced by NSI A,

while service — is mapped to NSI B. In this example, NSSI 2 is a shared entity and is serving both NSI

A and NSI B. From a holistic point of view, NSSI 2 can be interpreted as an access network serving

two cores (NSSI 1 and NSSI 3), or the other way around, for example.

Given the expected data volume from each UE connected to each antenna and the processing

capacity of each NF, it is important to predict how many instances of each function type should be

installed for each network slice. Moreover, dimensioning strategies have to model how NFs relate to

di↵erent slices.

Isolation is a key aspect for network slicing and dedicated NFs might be necessary to ensure that

each NS operates independently. This approach is important for preventing the incorrect balance of

resources between the served NSs. Additionally, security is another crucial point in virtual environ-

ments. To ensure security and data routing control, partially or completely isolated network slices

with dedicated NFs might be implemented. Hence, isolation constraints might be applied on the vir-

tual layer; NFs installed in the same physical node must be dedicated to a virtual network serving a

specific client, thus cannot be shared by two or more NSs. On the other hand, sharing NFs among

di↵erent NSs can be an interesting strategy to simplify the virtual environment implementation and

to reduce redundancies throughout the network [7]. We assume that an NF can treat data from two or

more NSs if and only if they have an a�nity for each other. By a�nity, we mean allowing a network

slice to share one or more NFs with another NS. It is important to mention that an NS request might

impose isolation constraints only on a specific subset of network functions that cannot be shared with

a specific subset of NSs; this might be the case for critical NFs or network slices belonging to the

di↵erent tenants, for example.

We depict in Fig. 3.9 six possible NF sharing policies that, based on our analysis, are possible as of

3GPP specifications; in this illustration, a DP block can refer to data-plane functions for both access

and core segments. They are as follows:
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1. Flat Sharing : all CSs share the same virtual network; it can be an interesting strategy when

di↵erent slices have no isolation constraints and show similar technical constraints in terms of

latency and availability.

2. Hard Isolation: the isolation is complete, each CS has its own virtual network.

3. Shared Control-Plane: slices share the same Control-Plane (CP) while having their own and

dedicated user Data-Planes (D-DPs); it may be a solution for NSs requiring low end-to-end

latency, and in this scenario, DP equipment should be deployed as close as possible to UEs,

which has, therefore, an impact on the level of functional splitting.

4. Partial Control-Plane Isolation: only a part of the CP, called common CP (C-CP), is shared by

two CSs; a CP portion and entire DPs of each CS are dedicated.

5. Shared Data-Plane: CSs share the same Data-Plane while having their own and dedicated

Control-Planes (D-CPs).

6. Partial Data-Plane Isolation case: only a part of the DP is shared by two CSs, named common

DP (C-DP); a DP portion and entire CPs of each CS are dedicated.

According to 3GPP specifications, these settings are in practice adaptable to multiple CSs. In addition,

regarding the orchestration complexity inherent to each sharing policy (e.g., security and route control),

other configurations might be proposed to guarantee Service Level Agreements.

Figure 3.9 – NF sharing policies.
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3.6 Challenges

3GPP has been proposing a series of evolution in both Access and Core Networks to better serve

the upcoming 5G network. We summarized this work in this chapter with a particular view on function

decomposition and related mappings, which seems to call for even more integration of SDN, NFV,

and Network Slicing subsystems than what was commonly anticipated. Indeed, new challenges are

imposed to operators to ensure that future virtualized networks are successfully operational.

One of the main challenges is related to the first level of mapping. Managing the granularity of a

function is a crucial point to minimize the use of physical resources. As a consequence, an intelligent

entity is needed to provide the exact sub-set of NF services.What level this granularity is managed

and which entity is responsible for it remain both open questions. In other words, will the dynamic

creation of customized NFs be in charge of the NFs themselves, the orchestration entity or there will

be a new NF dedicated to this end? A similar problem was addressed by [83]. In this work, the

authors propose a flexible service composition in order to minimize the redundant functionality found

in instances of di↵erent service functions (e.g. application and edge firewalls, load balancer, and proxy)

throughout the virtual architecture. For this purpose, they apply the microservice concept on service

function chains for re-architecting the NFV ecosystem. This interesting approach is directly related to

the concept of NF services introduced by 3GPP, however, there is no study proposing such a technique

in functions related to 5G Core Network. Hence, this remains an open problem to be addressed.

Furthermore, for each new and uncontemplated use case, new mappings at each level must be

performed, causing higher levels to depend intrinsically on the lower levels. In other words, to map

slice templates to CSs, for example, a complete function mapping work into slice must already be

completed. Clearly, mapping strategies have a strong impact on slice deployment and how to model

it. First, an intelligent framework to correctly distribute the flow of data throughout slices must be

provided. This is due to the proposed scalability for critical functions to handle highly dynamic data

rates. In this context, defining the number of instances for each function within a slice is not a trivial

work. Such a framework must be aware of the current state of the network to decide the exact time

of scaling up and down some critical NF instances and to redistribute the flow among them in an

intelligent manner. [84] presents an approach to address this problem, however, the authors apply

such framework only on one critical network function and do not give any instruction on how it could
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be implemented on two or more core functions at the same time. In fact, proposing such a global

framework is not a trivial task and remains an open problem to be addressed.

All these challenges must be overcome wisely and e↵ectively, as the state of the system can change

every second. In legacy technologies, such as 3G and 4G, the entire network system was designed for

approximately ten years of use, with small variations and slow evolutions over the period. Contrarily,

the 5G system is meant to be extremely flexible and still be able to o↵er a customized and complete

virtual network in minutes for each Communication Service request. In this way, network designers and

engineers have a laborious road to develop and apply techniques, algorithms, models, and approaches

that guarantee the high e�ciency in translating Communication Service demands into slices, doing

all the necessary mappings, allocating physical and virtual resources, and activating, monitoring, and

evolving each slice on 5G system.
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Chapter 4

Device-to-device communication in radio
access networks
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In future 5G networks, mobile User Equipment (UEs) will be able to host functions that give them

new abilities such as sharing connectivity, capacity, and CPU resources with other UEs, regardless

of the ongoing traditional communications. The 5G wireless technology, along with the evolution of

mobile users’ behavior and needs, will make the current scheme of communication (UE to Base Station)

no longer optimal in terms of radio resource utilization. The Device-to-Device (D2D) communication

mode is one of the new approaches presented as a promising alternative to traditional communication

in cellular networks. D2D communication is defined as a direct communication between two mobile

or fixed user devices, without traversing the Base Station (BS) [65]. This technology allows to reuse
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radio resources and to decrease the end-to-end latency of local communications. Then, D2D would

allow a set of UEs geographically close to each other to establish direct D2D communications, or span

multiple links (multi-hop D2D communications), to access a given service (e.g. video streaming or

gaming) while ensuring the required service quality.

A domain is defined as the set of UEs and BSs that are used to establish mobile communications

(D2D or cellular) related to a specific service. The communication is either direct or uses multiple

links (D2D or via the BS). Two UEs can then communicate through cellular links, using the BS or

D2D links, and both technologies can coexist within the same mobile network. In any case, radio

resources should be allocated to every active link involved in a communication, and the SINR (Signal-

to-Interference-plus-Noise Ratio) level required by the service should be ensured.

In this chapter, we formally define the Domain Creation Problem and we propose a node-arc

(compact) ILP formulation to model it. We present some strategies to enhance the linear relaxation

of the formulation along with two classes of valid inequalities. Our results are embedded within

a branch-and-cut algorithm to solve the problem. Numerical experiments are made on instances

generated thanks to realistic parameters of Orange mobile networks 1.

4.1 Problem statement

We consider a mobile network composed of a set of devices (UEs), a set of antennas (BS), and a

set of services eligible to D2D communications, with their associated tra�c matrices. These tra�c

matrices are in the form of data volume to be exchanged between pairs of devices. The involved

devices can communicate through one or several links, either using D2D or cellular communication

(via the BS). A non-negative weight, corresponding to the SINR, is associated with each link. It is a

measure of the quality of the communication that could be established using this link. Every service

requires a minimal quality threshold in terms of SINR and available resources (hardware capacity for

the devices, radio resources for the links) to be successfully established. Once these conditions are

met, the services are delivered through the di↵erent types of resources allocated to both the devices

and the links.

1. The content of this chapter was published in the following paper:
Benhamiche, Amal, Wesley da Silva Coelho, and Nancy Perrot. ”Routing and Resource Assignment Problems in Future
5G Radio Access Networks.” International Network Optimization Conference. 2019.
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The network is represented by a directed graph G = (V fi U , A), where V is the set of nodes

associated with devices, U the set of Base Station nodes, and A the set of arcs. We denote by ”+(u)

(resp. ”≠(u)) the subset of arcs going from (resp. to) node u. Every node u œ V has an associated

weight vector cu = {cu
1 , . . . , cu

|Cd|
}, where cu

i
> 0 is the capacity available at node u for the physical

resource i œ Cd. Every arc e œ A has a weight denoted SINRe that expresses a measure on the

quality of the transmission link represented by e. For every pair of arcs e, f œ A we denote by d(e, f)

the distance between e and f . This value corresponds to the minimum distance between the opposite

ends of the given pair of links, that is, the origin of one and the destination of the other. Namely,

two arcs e and f are said to be close if d(e, f) 6 D, where D is a minimum acceptable distance. Let

R = {1, . . . , r} be the set of available radio resources. An arc e of A is said to be active if a radio

resource r œ R is assigned to it. A resource r œ R can be assigned to two di↵erent arcs e, f œ A only

if d(e, f) > D. Indeed, due to interference constraints, two communications cannot be established on

e and f simultaneously using the same resource r œ R if e is close to f . We denote by K the set of

tra�c demands to be routed and S the set of service types. Every demand k œ K is defined by an

origin node ok
œ V , a destination node dk

œ V and a requested service sk. Moreover, every k œ K

has an associated cost µe
sk

to use arc e œ A and a tra�c vector ask = (ask
1 , . . . , ask

m ) where the element

ask
m > 0 denotes the quantity of physical resource type m from the set Cd of all resources types (e.g.

CPU, RAM, storage) needed to process the service sk requested by k. Finally, we denote by —k the

quality threshold needed by k to access the required service sk.

In this context, we define the Domain Creation Problem (DCP) as follows.

Definition 4.1.1. The Domain Creation Problem consists in finding a minimum cost allocation of the

radio resources in R to the active arcs of G to provide a feasible routing path for each demand. In

particular, a routing pk = {(ok, u), . . . , (v, dk)} for a demand k is said to be feasible if

— all the arcs of pk have an SINR value above the quality threshold —k required by the demand k

and,

— all the nodes in pk have enough capacity to satisfy the resource requirements of k.

Example An instance of the problem, with fives devices and one BS, is illustrated in Figure 4.1. For

sake of clarity, each pair of arcs between two nodes is represented by an edge. The edges representing

D2D links are shown in solid lines while edges representing device to BS links are in dashed lines.

Two di↵erent services, namely gaming and video streaming, and three demands per service are to be
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Figure 4.1 – Example of a network with 6 nodes and 6 demands to be delivered for 2 di↵erent services

Figure 4.2 – Feasible solution: active links and associated radio resource for Gaming domain (left)
and Video streaming domain (right)

delivered:{(u1,u3), (u2,u5), (u4, u2)} and {(u4, u3), (u3, u1), (u5, u2)}, assuming that twelve radio

resources {r1, . . . , r12}, are available. A feasible solution is represented in Figure 4.2. The figure on

the left side represents the Gaming domain, where all three demands are satisfied through D2D links.

The figure on the right side is the Video streaming domain, where just one demand uses the BS. Note

that, using the legacy approach, all demands must pass through the BS, using one uplink (from UE

origin to BS) and one downlink (from the BS to UE destination) for each demand. Since all active

links share at least one arc extremity (BS), the solution would require all the available resources (a

di↵erent one for each active link) to avoid interference. Thus, using D2D communications allow here

to save 50% of radio resources compared to a ”fully cellular” solution.

4.2 Related works

The problem of assigning radio resources to transmission links is studied in [85] and [86] under the

denomination of Frequency Assignment Problem (FAP). In [85], the authors give an ILP formulation

for the problem and propose a branch-and-cut algorithm to solve it. The work in [86] presents sev-
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eral variants of FAP and discusses existing and original optimization (including exact and heuristic)

approaches to solve them. The routing and resource allocation aspects are combined in the so-called

Routing and Wavelength Assignment (RWA) problem (see [87] and [88] for instance) which arises

in Optical Networks. The DCP di↵ers from the above-cited problems in that tra�c demands are

unsplittable (each demand has to be sent along a unique path using D2D or cellular links), several

types of capacities on the devices are considered, and radio resources re-use is submitted to distance

constraints to avoid radio interference. [89] propose a greedy heuristic as an alternative to allocate

resources to active links using D2D communication. The proposed heuristic is divided into two phases,

each one responsible for the allocation of uplinks and downlinks. After several tests in realistic scenar-

ios, the authors showed that the greedy heuristic improves the total throughput significantly reducing

the interference between classic and D2D communications. To maximize the number of active links

respecting minimum quality requirements in wireless networks, authors in [90] proposed a new integer

programming algorithm based on an e↵ective representation of the SINR constraints which is inspired

by knapsack problems using lifting procedure.

4.3 A mathematical formulation for the DCP

In this section, we propose a compact ILP formulation for the DCP followed by some valid in-

equalities to be used in a branch-and-cut algorithm.

4.3.1 Notations and formulation

The three types of binary variables are:

• xk
er, e œ A, k œ K, r œ R that takes the value 1 if the arc e is used by the demand k and assigned

with the resource r, 0 otherwise.

• yk
i
, i œ V fi U , k œ K, that takes the value 1 if the node i is used by the demand k, 0 otherwise.

• zr, r œ R that takes the value 1 if the resource r œ R is assigned with at least one arc, 0 otherwise.

Then, the DCP can be formulated as:

min
ÿ

kœK

ÿ

eœA

ÿ

rœR

µsk
e xk

er +
ÿ

rœR

Âzr (4.1)
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s.t.

ÿ

eœ”≠(u)

ÿ

rœR

xk

er ≠

ÿ

eœ”+(u)

ÿ

rœR

xk

er =

Y
_]

_[

1, if u = dk,
≠1, if u = ok,
0, otherwise,

’k œ K, ’u œ U fi V (4.2)

xk

er—k Æ SINRe ’ k œ K, ’ e œ A, ’ r œ R (4.3)
ÿ

kœK\T (i)
yk

i ask
m Æ ci

m ’ i œ V, ’ m œ Cd (4.4)

2xk

er ≠ yk

i ≠ yk

j Æ 0 ’k œ K, ’r œ R’(i, j) = e œ A (4.5)

xk

er + xk
Õ

fr Æ zr
’r œ R, ’k, kÕ

œ K, ’e œ A, ’f œ D(e) (4.6)

xk

er œ {0, 1} ’k œ K, ’e œ A, ’r œ R (4.7)

yk

i œ {0, 1} ’k œ K, ’i œ V (4.8)

zr
œ {0, 1} ’r œ R (4.9)

This formulation has a polynomial number of variables and constraints. The objective (4.1) is to

minimize the total costs composed of non-negative routing and radio resource utilization costs. The

first set of inequalities (4.2) are the flow conservation constraints. They ensure that each demand is

routed along a unique path between its origin node and its destination node. Note that such a routing

path can either span arcs corresponding to D2D links or use a node of U corresponding to some

BS. Inequalities (4.3) guarantee that a demand for a given service is routed along edges whose SINR

satisfies the quality threshold required by this service. (4.4) express the capacity constraints in every

node for the di↵erent types of hardware resources, with T (i) being the set of demands k œ K that have

i œ V as origin or destination. These capacity constraints are needed only on intermediate nodes, that

is, the nodes that are not the origin nor the destination of a given demand k œ K. Inequalities (4.5)

are linking constraints and inequalities (4.6) guarantee that the same radio resource is not assigned

to di↵erent edges unless they are distant enough, where D(e) is a set of arcs that are close to a given

arc e œ A. Note that, as the objective is to minimize the resources, in any optimal solution one radio

resource at most will be allocated to the same arc for a given demand. Finally, (4.7)-(4.9) are the

integrality constraints.

The ILP formulation (4.1)-(4.9) can be strengthened by replacing inequalities (4.3) by:

xk

er 6 Â
SINRe

—k

Ê, ’k œ K, e œ A, r œ R. (4.10)
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4.3.2 Symmetry-breaking

Due to the inherent symmetry of this problem, there is possibly a large number of feasible solutions.

(x, y, z) œ {0, 1}
(m◊|R|+n)◊|K|+|R|

satisfying inequalities (4.2)-(4.6), where m = |A| and n = |V |. The breaking symmetry constraints

(4.11) are inspired by classical inequalities in combinatorial optimization (see [91]), and can help in

reducing the number of symmetric solutions in the formulation.

zr > zr+1, ’1 6 r 6 |R| ≠ 1, (4.11)

(4.11) allow to assign the radio resources in an ordered way, forbidding to use a resource r + 1 if r is

available. Note that a vector (x, y, z) œ {(x, y, z) œ {0, 1}
(m◊|R|+n)◊|K|+|R| : (x, y, z) satisfies (4.2) ≠

(4.11)} is clearly a feasible solution to the DCP.

4.3.3 Valid inequalities

We introduce now two classes of inequalities valid for the DCP.

4.3.3.1 Clique-based inequalities

Given an instance of DCP, we define the conflict graph associated with a node u œ V as follows.

For each capacity type m œ Cd, let H
m
u = (V m

u , Em
u ) be the undirected graph obtained from the set

of demands K as follows. A node vk in V m
u is associated with every demand k œ K and there exists

an edge vkvl œ Em
u between two nodes vk, vl of V m

u if ask
m + asl

m > cu
m. In other words, an edge in

H
m
u exists if two demands cannot be packed together in the node u due to the lack of capacity for

the resource type m. Consequently, a clique in the graph H
m
u corresponds to a set of demands that

cannot use simultaneously the node u. Hence, we denote by CH the set of cliques in the graph H
m
u .

Let u be a node of V and m œ Cd be a physical resource type. Then the following inequalities

ÿ

kœC

yk

u 6 1, ’C œ CH (4.12)

are valid for the DCP.
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Proof. Let ÂC be a clique in H
m
u . It is clear that if two demands k1, k2 from clique ÂC use the resource

m of node u, the capacity constraint (4.4) for the resource m will be violated. In other words, each

edge vkivkj of the clique ÂC represents an infeasible packing of the demands ki, kj in the node u.

4.3.3.2 Strengthened neighborhood inequalities

The second family of valid inequalities strengthen constraints (4.6). They are obtained by consid-

ering the interference graph N = (VN , EN ) defined as follows. Every node u œ VN corresponds to an

arc in A and two nodes ue, uf of VN (associated respectively with the arcs e and f from A) are inter-

connected by an edge if e and f are close enough from each other (ie if d(e, f) 6 D). Consequently, a

clique in the graph N corresponds to a subset of arcs in A that are pairwise close, and cannot receive

the same radio resource due to interference constraints. Likewise in the conflict graph defined before,

we denote by CN the set of cliques in the graph N . The following inequalities

ÿ

kœK

ÿ

eœC

xk

er 6 zr, ’r œ R, C ™ CN (4.13)

are valid for the DCP.

Proof. Let ÂC be a clique in N and ue, uf two nodes of VN that belong to clique ÂC. Clearly, if e and f

are allocated the same resource r œ R in a solution, then it cannot be feasible for the DCP.

Note that similar inequalities are used in [85] and [86] for the Frequency Assignment Problem.

In what follows, we describe our branch-and-cut framework and show some computational results

to assess the e�ciency of our cuts.

4.4 A branch-and-cut algorithm for the DCP

We developed a branch-and-cut algorithm for the DCP based on two heuristic procedures to gen-

erate dynamically inequalities (4.12) and (4.13). Both separation routines rely on a greedy algorithm

introduced in [92] for the Independent Set problem, that finds a clique in the conflict graph (respec-

tively the interference graph) with appropriate weights on the nodes. We then add the corresponding

violated clique-based (respectively strengthened neighborhood) inequalities, if any, to the current LP.

Both classes of valid inequalities are separated throughout the branch-and-cut tree and several in-

equalities may be added at each iteration of the algorithm.
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4.5 A 2-phase heuristic for the DCP

Since solving the initial formulation (4.1)-(4.9) presented in the previous chapter has impractical

runtime even for small instances, we propose a solving method based on a decomposition of the DCP

into two sub-problems: the routing sub-problem and the resource allocation sub-problem, that are to

be solved separately. The objective of the first sub-problem is to find an elementary path for each

demand while minimizing the total link utilization costs. Then, the second sub-problem provides a

resource allocation to each active link obtained from the routing sub-problem solution.

We further propose a two-phase heuristic, obtained by decomposing the problem into routing and

radio resource allocation sub-problems. To solve the routing sub-problem, we propose two methods: an

LP-based heuristic from the linear relaxation of a compact formulation, and a non-compact formulation

obtained by generating a subset of relevant paths. Then, the allocation sub-problem is transformed

into a vertex coloring problem that is solved heuristically by an improved greedy algorithm. This

greedy algorithm is compared to a dual bound given by the exact solution of the associated Max-

Clique Problem. In what follows, we present in detail each of the proposed approaches.

4.5.1 Routing sub-problem

We propose two formulations for the routing sub-problem: a compact formulation obtained by

relaxing the resource assignment constraints (4.6) from (4.1)-(4.9), and a path reformulation.

4.5.1.1 Compact formulation

This formulation is the compact formulation obtained by relaxing the resource allocation con-

straints (4.6) from the formulation (4.1)-(4.9). The returned solution is a set of elementary paths for

each request, respecting the capacities of the nodes along the paths. Two kinds of binary variables

remains in the formulation : xk
e that takes value 1 if the link e œ A is used by the request k œ K and

the variables yi

k
. The objective is to minimize the total cost of active links:

min
ÿ

kœK

ÿ

eœE

µsk
e xk

e (4.14)
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Solving approach: The linear relaxation of this formulation is strengthened replacing (4.5) by:

xk

e ≠ yk

i Æ 0 ’ k œ K, ’ (i, j) = e œ E, (4.15)

xk

e ≠ yk

j Æ 0 ’ k œ K, ’ (i, j) = e œ E. (4.16)

and adding the following inequalities :

yk

i (ask
m ≠ ci

m) Æ 0 ’ i œ V, ’ m œ Cd, ’ k œ K\T (i). (4.17)

The linear relaxation of this strengthened sub-problem is then solved and a heuristic procedure is

used to get a feasible integer solution. This approach is summarized in Algorithm 1.

First, the linear relaxation is solved to optimality. Then, variables having an integer optimal value

are fixed by updating the right-hand side of the constraints (4.5) in step 5. Finally, this residual ILP

formulation is solved to optimality, giving rise to an integer solution for the whole problem. Step 11

is the rounding procedure on the solution found by step 1. This heuristic is particularly e�cient for

this problem since most of the optimal variable values of the linear relaxation are integers.

4.5.1.2 Path formulation

The second formulation is a path formulation. We assume that all feasible paths Pk have been

previously generated for each demand k. Thus, we define new binary variables xk
p that take value 1

if the path p œ Pk is used by the demand k œ K, 0 otherwise. The objective now is to minimize the

sum of the active path weights:

min
ÿ

kœK

ÿ

pœPk

µsk
p xk

p (4.18)
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where µsk
p is the cost of path p œ Pk, defined as the sum of the weights on the arcs of p. Let –e

p,

respectively “i
p, be an indicator parameter with value 1 if the arc e, respectively the node i, is in the

path p. The constraints of the path formulation are:

ÿ

pœPk

xk

p = 1 ’ k œ K, (4.19)

–e

pxk

p—sk Æ sinre ’ k œ K, e œ A, ’ p œ Pk, (4.20)
ÿ

kœK\T (i)

ÿ

pœPk

“i

pxk

pask
m Æ ci

m ’ i œ V, ’ m œ Cd, (4.21)

xk

p œ {0, 1} ’ k œ K, ’ p œ Pk. (4.22)

Constraints (4.19) assure that each demand uses one path. Constraints (4.20) are the SINR constraints,

and (4.21) are the capacity constraints.

Solving approach: This formulation, restricted to a subset of paths, is solved to optimality. The

subsets of paths are generated by applying the algorithm proposed by Yen [23]. This algorithm

returns the K-shortest loopless paths for a graph with non-negative edge costs. It uses a shortest

path algorithm as an intermediary to construct the whole solution. In this work, we use Dijkstra’s

algorithm [19], which has a good performance and a polynomial complexity. Using Yen’s algorithm

gives a guarantee to generate all the feasible paths due to the characteristics of our use case: for each

demand, once a path uses the base station we are sure that all the feasible D2D paths have already

been generated, then the path generation is stopped. This feature is due to greater weights on BS

arcs. The di↵erence between the weights of the BS links and the D2D ones plays an important role

in the construction of the paths subsets: the greater this di↵erence is, the longer it could be to obtain

all the paths that use only D2D communication. Finally, to reduce the size of the formulation, a

pre-processing on the SINR constraints is operated before solving both routing formulations: only the

valid SINR link constraints are kept in the formulation.

4.5.2 Resource allocation sub-problem

The resource allocation sub-problem consists in allocating the radio resources to each active link

provided by the solution of the first sub-problem. For this purpose, let Ga(V a, Ea) be a graph where

each vertex in the set V a represents an active link, that is, a link used by at least one path of the

routing problem solution (steps 2-5 in Algorithm 2). An edge e œ Ea is associated with a pair of
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vertices if the corresponding active links cannot share the same radio resource due to interference

(steps 6-12). The objective is to assign a minimum number of colors (resources) to the vertices of the

graph Ga, in such a way there are no adjacent vertices with the same color (step 14). This falls into

a classical Vertex Coloring Problem [93].

The proposed heuristic has as input the initial graph of the problem, the values of the routing

solutions, and a criteria value that represents the minimum distance for a pair of links to have the

same resource. This value was fixed to D = 100 meters to be representative of realistic use cases.

Hence, for dist() method, we calculate the distance between the opposite ends of the pair of links, that

is, the origin of one with the destination of the other. The method returns zero for adjacent links.

Finally, to find the coloring of the graph Ga (that is, allocate the resources to each active link) we use

the Coloring() method which is the implementation of a classical greedy algorithm [94] for the Vertex

Coloring Problem.

It is well known that the performance of this greedy algorithm is sensitive to the order of choice

of the next vertex to be colored. For this reason, we randomly generate a large number of orders

and choose the one that returns the minimum amount of colors. A lower bound value for the optimal

solution is given by solving the associated Max-clique problem. For this purpose, we use the method

proposed by [95], which is an exact approach using parallel programming.
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Table 4.1 – Runtime comparison (in seconds) with strengthening constraints.

Instance Original Model Symmetry-Breaking SINR Symmetry & SINR
U5 D2 0.05 0.06 0.05 0.06
U5 D6 187.18 11.55 77.18 10.71
U5 D8 600.56 45.16 90.70 72.43
U10 D5 1677.21 290.33 697.49 435.08
U10 D7 8746.32 3569.18 4453.58 2967.45
U15 D7 10800 10800 10800 10800

4.6 Computational results

We now present the numerical experiments applying each of the proposed approaches to solve

the DCP. We first discuss the e�ciency of the branch-and-cut algorithm and the symmetry-breaking

constraints. Then, we analyze the numerical simulations applying our 2-phase algorithm on di↵erent

realistic instances.

4.6.1 Branch-and-cut and symmetry-breaking constraints

We present below some experiments obtained for a set of small instances containing 5 to 15 nodes

and up to 7 demands. For these tests, each scenario contains only 1 antenna and 2 service domains.

For each instance, realistic data was provided by Orange, including the network topologies and SINR

values. We implemented our approach in a C++ environment using ILO CPLEX 12.6 as the linear

solver. Our tests were run on a Linux server with an Intel Xeon E5-2650 CPU.

Table 4.1 shows the impact of inequalities (4.10) and (4.11) on the initial model (formulation (4.1)-

(4.9)). In the first column, the name of each instance refers to the number of users (U#) and demands

(D#). The next four columns show the computational time (in seconds) for the initial formulation,

then when adding symmetry breaking constraints (4.11), strenghthened SINR constraints (4.10) and

both constraints, respectively. We can notice that using constraints (4.11) allows to obtain the best

execution time for two out of five instances tested (U5 D8 and U10 D5) while the instances U5 D6

and U10 D7 have the lower runtime when applying constraints (4.10) and (4.11), combined. For

instance U15 D7, the optimal solution could not be found after 3 hours of execution.

We tested the impact of using our valid inequalities and compared the results to CPLEX branch-

and-bound for the strengthened model (formulation (4.1)-(4.2) + (4.4)-(4.11)). Table 4.2 shows the

results obtained on five instances (same as in Table 4.1) when (i) no additional cuts are used, (ii)
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Table 4.2 – Solution quality comparison between models with and without additional cuts.

Strengthened Formulation Strengthened + Neighborhood cuts
Instance root gap (%) runtime (s) tree size root gap (%) runtime (s) tree size
U5 D2 0.00 0.05 1 0.00 0.06 1
U5 D6 10.00 11.49 7 10.00 11.67 8
U5 D8 59.65 154.65 470 23.58 130.69 291
U10 D5 57.89 677.21 1327 33.09 1370.90 190
U10 D7 62.26 3236.61 1850 50.04 8654.21 2040
U15 D7* 77.23 10800 58 72.37 10800 8

Strengthened + Clique-based cuts Strengthened + both cuts
Instance root gap (%) runtime (s) tree size root gap (%) runtime (s) tree size
U5 D2 0.00 0.06 1 0.00 0.05 1
U5 D6 10.00 12.33 2 10.00 13.31 2
U5 D8 33.71 389.01 1225 32.00 150 599
U10 D5 48.23 1262.83 91 33.09 2265.83 84
U10 D7 62.26 3251.99 1850 50.04 9648.12 2040
U15 D7* 77.23 10800 70 72.37 10800 22

using strenghthened neighborhood inequalities (4.13) in addition to formulation (4.1)-(4.9), (iii) using

clique-based inequalities (4.12) in addition to strengthened model and (iv) both cuts are used in the

branch-and-cut. We can observe that the gap at root node is substantially reduced when adding

cuts (the gap value decreases from 59.65% to 23.58% for instance U5 D8 when using strenghthened

neighborhood cuts) and so for the size of the branch-and-cut tree (for instance U10 D5, we range

from 1327 nodes without cuts to 84 nodes when both cuts are used). Overall, the strenghthened

neighborhood cuts are more e�cient in reinforcing the strengthened model.

4.6.2 2-phase heuristic

We present below some experiments obtained from applying the proposed 2-phase heuristic on a

set of di↵erent instance sizes. We implemented our approaches in a C++ environment using ILO

CPLEX 12.6 as the linear solver. Our tests were run on a Linux server with an Intel Xeon E5-2650

CPU. The solver’s time limit was set to 7200 seconds (2 hours) and only one thread was provided to

the branch-and-bound process.

4.6.2.1 Test setup

All instances were generated and o↵ered by the Mobile Access Design team from Orange Labs, in

which each cell has a 500 meters radius and is based on the networks of the figure 4.3 and follow the

following premises:

— The total number of UEs is evenly divided between the 7 core cells.
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Figure 4.3 – Simulated Network.

— We set the link weight to:

— 1.0 between each UEs pair in the central cell if the distance between them is less than 100

meters;

— 1.49 between a UE and the nearest base station;

— 0.9 between each pair of base stations;

— The origins of all requests are in the central cell;

— The requests are unique, that is, there is only one with the specific configuration (origin,

destination, required service), and random values are generated for only three UE physical

capacities (e.g., CPU, battery, and RAM).

— 6 di↵erent service domains are available to be required.

As previously presented, the name of each instance refers to the number of users (U#), links (L#),

and demands (D#).

4.6.2.2 Numerical results

We use this section to present and analyze the results obtained from the numerous tests performed

with the instances presented in the previous section. Such tests have as main objective to analyze the

performance of each approach of our 2-phase formulations in terms of execution time and quality of

the solution obtained in each phase.
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Routing sub-problem:

The numerical tests of the routing subproblem are summarized in table 4.3. The first column of the

Compact Formulation part is the percentage of active variables that are not integers in the optimal LP

solution. We note that it is always less than 6%. The second column is the gap between the solution

found by the relaxation and the final solution found by the LP-based heuristic. The average gap is

2.30% with a standard deviation equals to 3.85%. Finally, the third column is the total run time in

seconds (pre-processing, relaxed solution, and LP-based heuristic). In the second part of table 4.3,

the pre-processing and solver run times of the path formulation are presented. The average number of

paths generated in pre-processing is equal to 5.26 for each demand (with a standard deviation equals

to 2.39). Most of the runtime of the compact formulation-based approach was spent in solving the

linear relaxation of the problem. Given the very low number of fractional variables in the relaxed

solution, the last IP on the residual formulation is quickly solved. It is also worth noticing that the

pre-processing in path formulation is the most important step since it is responsible for most of the

solving time for all instances. However, its performance is relatively better than for the compact

formulation, being on average 1.30 times faster. It is important to mention that the gap between the

two formulations was always less than 0.50%.

Resource allocation sub-problem: Table 4.4 shows the results for the resource allocation subprob-

lem, where the Pre-processing column represents the time needed to transform the solution from the

previous subproblem into a classic graph and find its max-clique. We can observe that even though

they are extremely large graphs, the time needed to find the final solution is relatively short. This is

due to the characteristics of the topology constructed from the assumptions and hypotheses previously

Table 4.3 – Routing subproblem: numerical simulations.

Compact formulation Path Formulation
Instances Act. Frac. Var. (%) Gap (%) Runtime (s) Pre-processing (s) Solver (s)
U700 D175 0.05 0.03 9.16 4.81 0.02
U700 D350 1.92 1.1 13.92 9.5 0.02
U700 D525 1.84 13 21.28 14.26 0.08
U700 D700 0.87 0.04 26.72 19.22 0.13
U1400 D350 5.22 0.02 46.83 27.48 0.8
U1400 D700 3.37 3.6 77.7 55.68 0.26
U1400 D1050 3.13 3.05 152.31 82.82 0.42
U1400 D1400 1.79 0.49 143.78 110.81 0.60
U2100 D525 5.56 0.02 143.28 81.28 0.23
U2100 D1050 3.54 0.09 257.18 163.39 0.65
U2100 D1575 2.15 3.86 242.84 230 0.8

84



4.6. COMPUTATIONAL RESULTS

Table 4.4 – Resource Allocation sub-problem: numerical simulations

Instances Pre-processing (s) Greedy (s) Gap (%)
U700 D175 0.13 0.89 0
U700 D350 0.53 1.81 0
U700 D525 1.15 2.75 0
U700 D700 2.12 3.89 0
U1400 D350 0.54 1.74 0
U1400 D700 2.34 3.76 0
U1400 D1050 4.97 5.95 0
U1400 D1400 7.06 6.97 0
U2100 D525 1.32 2.07 0
U2100 D1050 4.45 5.25 0
U2100 D1575 11.21 9.51 0

presented. Generated graphs have an average density equals to 64.05% - standard deviation equals to

1.98%. Another important result emphasizes is that in all cases, we found the optimal solution, proven

by the lower bound value previously calculated by the exact max-clique algorithm (last column).

Final solution: In order to analyze the quality of the global solution, we performed additional tests

to compare the solutions found by our approach and those found by the original model (4.1)-(4.9). Due

to the high complexity of the original model, we run tests with only small instances. Table 4.5 shows

the time spent on each approach, as well as the solutions found. Regarding the results applying the

proposed 2-phase heuristic, Runtime columns represent the total time spent by both pre-processing

and solving steps one each approach. As seen in Table 4.5, our approach has a short time calculation

and reached the global optimum in all instances in these simulations.

Table 4.5 – Quality of the final solution.

2-Phase Heuristic Branch-and-Bound
Compact Formulation Path Formulation Original FormulationInstance
Gap (%) Runtime (s) Gap (%) Runtime (s) Gap (%) Runtime (s)

U140 L334 D35 0.0 0.19 0.0 0.15 0.0 7816
U140 L342 D35 0.0 0.19 0.0 0.16 0.0 8523
U140 L346 D35 0.0 0.18 0.0 0.14 0.0 7822
U140 L333 D35 0.0 0.19 0.0 0.16 0.0 7560
U140 L329 D35 0.0 0.17 0.0 0.13 0.0 7987
U140 L336 D35 0.0 0.18 0.0 0.14 0.0 8622
U210 L518 D52 0.0 0.46 0.0 0.43 0.0 32892
U210 L501 D52 0.0 0.43 0.0 0.34 0.0 37808
U210 L512 D52 0.0 0.45 0.0 0.35 0.0 38091
U210 L522 D52 0.0 0.45 0.0 0.39 0.0 33790
U210 L513 D52 0.0 0.43 0.0 0.40 0.0 36987
U210 L508 D52 0.0 0.45 0.0 0.38 0.0 37090
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4.7 Summary

In this chapter, we studied the Domain Creation problem, that is a routing and resource assign-

ment problem arising in future 5G networks. We proposed two algorithms: exact and heuristic, to

solve it. The exact approach is based on a node-arc ILP formulation enhanced by two families of

valid inequalities that are used within a branch-and-cut framework. The preliminary results show a

significant impact of the cuts in strenghthening the LP relaxation and reducing the computation time.

We expect that adding further classes of cuts and performing an analysis to find out the specificities

of di�cult instances (regardless of their size) will allow to solve even larger instances. A natural ques-

tion would be to consider a non-compact formulation, based on path variables and propose a column

generation based algorithm to solve it. On an other hand, our experiments show that the heuristic

approach performs well, even on large instances with up to 2100 devices and 1500 service requests on

7-cell networks. It would be interesting and most probably very powerful to use it as a primal heuristic

to boost e�ciency of an exact algorithm.
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The Network Slice Design problem
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Telecommunications network infrastructures evolved with 5G [96] and the development of the

‘network slice’ as a novel virtualized infrastructure model. This technology now not only covers

application-level slice abstraction as done with preliminary works on ‘slicing’, but also physical and

switching layers virtualization, with di↵erent radio access and link communication technologies. This

transition challenges slice network design since multiple resources and segments, historically managed

independently from each other, are to be operated with continuity in networking and computing

resource allocation and provisioning as a whole and unique service. In this context, di↵erent providers

can be associated with di↵erent communication services running on the same physical network at the
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access, core, and application segments.

In this chapter, we formally define the Network Slice Design problem (NSDP) as a comprehen-

sive network function dimensioning, placement, routing, and mapping framework that (i) takes into

consideration the above mentioned new mapping dimensions and (ii) models the relationship between

flexible radio access functional splitting, control-plane and data-plane function isolation, and core net-

work function placement. We use the 3rd Generation Partnership Project (3GPP) [8, 7, 6] 5G as a

reference system, knowing that the next generations shall support the same functional requirements

in terms of function mapping, sharing, and placement.

Even though several works partially cover the network slice design problem [97, 98] and related

sub-problems, such as functional split mode selection [63, 64, 56], network slicing with VNF sharing

[99, 100, 101], and network slicing with VNF scaling [84, 102, 103, 104, 105], no attention has been

given to address jointly all aforementioned aspects in order to design network slices and understand

the impact of mapping, sharing and split policies.

The overall objective of this chapter is thereby to introduce and study the Network Slice Design

Problem in 5G systems. We first propose a Mixed-Integer Linear Programming (MILP) formulation for

the problem including novel splitting, mapping and provisioning constraints described in the published

5G standards documents [6, 7, 8] and analyze its complexity 1.

5.1 Problem statement and notations

In this section, we introduce a set of necessary notations and we give a formal definition of the

Network Slice Design Problem. Table 5.1 summarizes the notations.

5.1.1 Physical network

The physical layer is modeled by a directed graph denoted G = (V , A), where V is the set of nodes

and A the set of arcs. The set V consists of three disjoint subsets denoted V du, V ac, and V ap and

corresponding to di↵erent types of nodes, namely the distributed unities, aggregation/core servers,

and application nodes, respectively. Each node u œ V is characterized by a set of available capacities

1. The content of this chapter was accepted for publication on Transactions on Network and Service Management:
W. d. S. Coelho, A. Benhamiche, N. Perrot and S. Secci, ”Function splitting, isolation, and placement trade-o↵s in
network slicing”, November 2021, Preprint.
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Table 5.1 – Main notation: sets and parameters

Set Description
V Set of all nodes.
V

du Set of all distributed units.
V

ac Set of all aggregation/core nodes.
V

ap Set of all applications server nodes.
A Set of all arcs.
F Set of all NFS types.
F

d Set of all data-plane NFS types.
F

c Set of all control-plane NFS types.
S Set of all network slice requests.
F (s) Set of all CP NFS pairs that must be connected in slice s.
G(s) Set of all pairs of NFSs from di↵erent type sets that must be connected to each other in slice s.
K(s) Set of all demands of slice request s.
O(s) Set of origin nodes of all tra�c demand from slice s.
N Set of all NFs.
C set of resource types available on physical nodes
Parameter Description
c

c
u amount of available resource c on node u.

µ
c
u cost of one unit of resource c provided by node u.

ba bandwidth value on arc a.

da delay value on arc a.
c

c
f amount of resource c required by NFS f .

cap(f) tra�c processing capacity of NFS f .
bfg total amount of tra�c generated between NFSs f and g by an UE.
bf expected data rate of NFS f given one UE.
dfg the maximum accepted delay between NFSs f and g.
⁄f compression coe�cient of NFS f .
–

s
f equals to 1 if a NFS type f must be present in slice s; 0 otherwise.

q
st
fg holds 1 if slice s admits sharing a NFS of type f with a NFS of type g of slice t; 0 otherwise.

q
st equals to 1 if slice s admits sharing physical node with slice t; 0 otherwise.

÷s expected number of UEs connected to slice s

ds maximum accepted delay on data plane of slice s.
ok origin node of demand k

tk target node of demand k

bk expected volume of data between sent by origin node of demand k.

denoted by C = {c1
u, . . . , cc

u}, corresponding to the types of physical resources, on any node type, and

a cost per unit of resource usage c œ C, noted µu > 0. Each arc a = (u, v) œ A represents a physical

link connecting nodes u and v œ V , and is characterized by a bandwidth capacity ba and a latency

value da.

5.1.2 Network function services

Let N denote the set of Network Functions (NF). Each NF n œ N is composed of one or several

Network Function Services (NFS). The set of all NFS is noted F . We suppose that F is composed of a

sub-set F c of control-plane NFSs, an ordered sub-set F d of data-plane NFSs and an auxiliary dummy

function f0, so that F = F c
fi F d

fi {f0}. Every NFS f œ F requires a set of resources {c1
f
, . . . , cc

f
},

has a tra�c processing capacity denoted cap(f) and delivers an expected data rate bf . Moreover,

we let bfg > 0 denote the total amount of tra�c generated by two communicating NFSs f and g
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and by dfg the maximum delay threshold between NFSs f and g. For each f œ F d, ⁄f denotes a

compression coe�cient applied on the data-plane tra�c of NFS f . We suppose that ⁄f0 = 1 and all

the aforementioned parameters are supposed to be equal to 0 for the dummy NFS f0.

5.1.3 Network slice requests

We denote by S the set of network slice requests. Every request s œ S is associated with a binary

parameter –s

f
that takes 1 (resp. 0) if at least one NFS of type f œ F is (resp. is not) required in

the associated slice. Let F (s) = {(f, g) : (f œ F c) · (g œ F c)} be the set of NFS types that must be

connected. Additionally, we denote by G(s) = {(f, g) : (f œ F c) ü (g œ F c)} the set of NFS pairs

from di↵erent sub-sets of NFS types that must be connected. Hence, the control-plane required by

a slice s is given by F (s) fi G(s). We denote by qst

fg
the binary parameter that takes value 1 if two

NFS f, g œ F respectively required by slice s, t œ S can be packed together in the same NF, and 0

otherwise, representing then the so-called virtual layer isolation. Similarly, the physical layer isolation

requirement is expressed by the binary parameter qst that takes value 1 if slice requests s, t œ S can

share a common physical node, 0 otherwise. Each slice request s œ S is associated with a set K(s)

of tra�c demands to be routed on the physical layer. Each demand k œ K(s) is defined by a pair

of origin-destination nodes (ok, tk), an initial data rate bk sent by ok to tk and a maximum end-to-

end latency value ds, similar for all tra�c demands in K(s). Finally, the expected number of users

connected to slice s is denoted by ÷s.

5.1.4 Problem statement

We define the Network Slice Design Problem as follows.

Definition 5.1.1. Given a directed graph G representing the physical network, a set of slice requests S,

a set of tra�c demands K(s) associated with each request s œ S, and a set F of NFS types, the NSDP

consists in determining the number of NFSs to install for each s œ S, the size of NF hosting them as

well as in deciding whether they are to be installed centrally or distributed (e.i., selecting the functional

splitting), so that (i) K(s) demands can be controlled and routed in G using these NFs; (ii) the NFSs

installed on G can be packed into the NFs while satisfying both isolation and capacity constraints; and

(iii) a path in G is associated with each pair of installed NFs that must be connected. The objective

is to design each network slice and embed them into the physical network G while minimizing the
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Figure 5.1 – Example of a solution for an NSDP instance.

total cost of deploying the network slice requests and ensuring all technical constraints imposed by both

physical and virtual layers.

Fig. 5.1 shows an example of how to design di↵erent slices and embedding them into a physical

network. In this example, we consider 2 slices, 5 tra�c demands (e.g., from NS 2: distributed unit 23

æ application node 16), 7 NFS types (3 for data-plane and 4 for control-plane), 8 NFs, and a physical

network with 23 nodes (6 DUs, 12 aggregation/core nodes representing CUs, and 5 application nodes).

Note that, for each slice, several copies of the same NFS type could be required (e.g. NFS 2). In the

illustrated solution, copies of NFS 1 from NS 1 are installed distributed, at each of its origin nodes,

while all other NFSs are centralized. Furthermore, copies of NFS 5 are packed into NF6 and shared

by both network slices. Finally, the tra�c flow from each slice request is routed through the physical

network: regarding the tra�c demand (distributed unit 3 æ application node 7) of slice 1, its virtual

DP flow encompassing the virtual link (NF1, NF4) is routed through the physical path (3, 6, 7). In our

previous work [9], we reported numerical results showing that flexible splitting appears as a key factor

to deal with heterogeneous requirements to deploy distinct CSs, leading to considerable network slice

cost decrease.

5.2 Related works

Scalability is a crucial point in dynamic environments, such as mobile networks. Authors in [84]

propose an algorithm based on Control Theory in order to balance the load on instances of a specific

core-based NF, called Access Management Function (AMF). Their algorithm scales out or in the AMF
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instance depending on the network load in order to save both virtual and physical resources. In the

same context, authors in [102] propose another solution to scale dynamically the 5G NFs; the proposed

approach prevents the latency and avoids overloading the core network. Authors in [103] propose an

online algorithm to minimize the cost for provisioning NF instances while minimizing the congestion

in a data-center network. Authors in [105, 104] propose di↵erent proactive approaches in order to

estimate the upcoming tra�c and adjust NF deployment a priori. While [105] combine an online

learning method with a multi-period online optimization algorithm, authors in [104] aim to minimize

the error in predicting the service chain demands for new instance assignment and service chain

rerouting. Moreover, authors in [99] address an NF scaling and sharing problem in order to minimize

the redundancy throughout the virtual networks; they propose FlexShare, a near-optimal NF-sharing

algorithm capable of ensuring priority and NF sharing decisions in polynomial time. Authors in [100]

propose a mathematical formulation and a heuristic based on a goodness function in order to address

large-sized network instances; they show that sharing NFs among network slices can use up to 30%

less bandwidth and 45% fewer NF instances, compared to dedicated-NF approaches. It is important

to mention that, di↵erently from these works, our model also encompasses the control-plane and

data-plane separation and considers di↵erent functional split options for designing NSs.

On top of mapping NFSs into network functions, we should provide a physical path connecting

each pair of NFs that must be connected. In this context, each virtual link between two or more NFs

has specific rules that must be ensured on the physical layer, such as ordering constraints, minimum

bandwidth, and maximum end-to-end delay values. The objective might be to optimize the length of

physical paths carrying NSs’ flow while respecting the imposed technical constraints. These restrictions

are the combination of technical constraints imposed by each network slice served by the given virtual

structure. This sub-problem can be seen as a variant of the well-known multi-commodity flow problem

[106] with additional latency and ordering constraints. Authors from [107, 108] address di↵erent

aspects of this problem and propose mathematical models applied to 5G networks. In [107], the

authors propose a framework that exploits the tra�c information and topology of both backhaul and

core networks for 5G systems; they propose a linear programming relaxation method and a heuristic

method in order to better manage network load balancing, achieving close-optimal solutions with low

computational complexity. Authors in [108], in turn, aim at integrating backhaul and fronthaul tra�c

over the same transport layer; a routing optimization framework is proposed, taking into account delay
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and path constraints, as well as a heuristic to reduce the computational complexity and apply it to

production-level networks.

Optimization approaches related to network slicing problems mostly consider them either as Virtual

Network Embedding (VNE) [109] or Function Placement and Routing (FPR) [110] problems. The

former problem can be defined as follows: given a set of r requested virtual network represented by

graphs Gv = (Vv, Av), v œ {1, . . . , r} and a physical network represented by graph Gp = (Vp, Ap), the

aforementioned approaches seek to embed the graphs Gv into Gp. Hence, each requested node u œ Vv,

v œ {1, . . . , r} is mapped to a physical node in V , each requested arc a œ Av is mapped to a physical

path on Gp, and all technical constraints are respected. In the case of the FPR problem, each virtual

network request is given by a directed acyclic graph to represent ordering constraints on mapping

virtual nodes through physical paths connecting di↵erent pairs of source-destination nodes on the

physical network. For instance, Esteves et al [111] propose an FPR-based ILP formulation to design

network function placement under slice-mimicking demands while considering the users’ geographic

location to guarantee the acceptable end-to-end latency on the data-plane flow; the same authors

propose in [112] an online heuristic to address the computational complexity of the studied problem.

In the same context, Fendt et al [113] present a MILP taking into consideration the network function

chaining and path splitting, which is based on an FPR formation. The proposed model also considers

an embedding with minimum latency for the virtual links of the NF chains related to the slices. Liu et

al [114], in turn, consider that the quantity, the types, and the locations of the NFs related to the slice

are determined by the requirements and distribution of users. Due to the complexity of the proposed

model, they also present a VNE-based heuristic to address the related problem in large-scale networks.

Even though several works partially cover the network slice design problem [97, 98] and related

sub-problems, such as functional split mode selection [63, 64, 56], network slicing with VNF sharing

[99, 100, 101], and network slicing with VNF scaling [84, 102, 103, 104, 105], no attention has been

given to address jointly all the aforementioned aspects in order to design network slices and understand

the impact of mapping, sharing and split policies.

93



5.3. MATHEMATICAL PROGRAMMING FORMULATION

5.3 Mathematical programming formulation

We now present the network slice provisioning as an optimization problem including novel mapping

and provisioning requirements rising with new radio and core function placement policies. In this

section, we propose a mixed-integer linear programming formulation for the NSDP. The problem

variables are defined as follows:

• zs

f
œ {0, 1} that takes value 1 if NFS f is centralized, 0 otherwise,

• xsf
nu œ {0, 1} that takes value 1 if NFS f serving slice s is packed into NF n, installed on node u, 0

otherwise,

• wsf
nu œ R+ the ratio between the quantity of tra�c processed by NFS f , packed into NF n and

installed on node u to serve slice s, over its capacity cap(f),

• yf
nu œ Z the total number of NFSs f packed into NF n, installed on node u,

• “ka

fg
œ {0, 1} that takes value 1 if arc a is used to route the tra�c between NFS f and NFS g for

demand k, 0 otherwise.

The constraints are categorized into several blocks and defined as follows :

Split Selection: The split selection constraints are to impose that if NFS f œ F d is centralized, then

the remaining NFSs of the ordered set F d should also be centralized, thus defining a splitting policy

attached to a slice :

zs

f Æ zs

f+1, ’s œ S, ’f œ F d
\{f|F d|}. (5.1)

Network Function Services Dimensioning and Packing: Equalities (5.2) are to define variables w

directly as a function of x variables, while inequalities (5.3) force to install enough NFS to process

all the tra�c. Inequalities (5.4) and (5.5) are the isolation constraints, respectively on NFs and on

physical nodes. Finally, constraints (5.6) ensure that NF n is assigned to at most one physical node
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of V .

cap(f)wsf

nu =

Y
___]

___[

q

kœK(s)|u=ok

⁄f≠1bkxsf
nu if f œ F d, u œ V du

÷sbf xsf
nu if f œ F c;q

kœK(s)
⁄f≠1bkxsf

nu if f œ F d, u œ V ac.
’s œ S, ’f œ F, ’n œ N, ’u œ V (5.2)

ÿ

sœS

wsf

nu Æ yf

nu ’n œ N, ’v œ V, ’f œ F (5.3)

xsf

nu + xtg

nu Æ 1 + qst

fgqts

gf ’s, t œ S, u œ V, n œ N, f, g œ F (5.4)
ÿ

nœN

xsf

nu +
ÿ

mœN

xtg

mu Æ 1 + qstqts
’s, t œ S, u œ V na, f, g œ F (5.5)

xsf

nu + xtg

nv Æ 1 ’s, t œ S, f, g œ F, n œ N, u, v œ V : v ”= u (5.6)

Let us explain in detail the inequalities (5.3) with some examples. Suppose that NFSs of type f

from s and t cannot be packed together (’n œ N, xsf
nu ü xtf

nu). Hence, all copies of f installed on

node u and serving s are not shared with t. In this way, if (5.2) set wsf
mu to 4.60 and wtf

nu to 1.25,

for example, we must install at least seven (Á4.60Ë + Á1.25Ë) NFSs of type f on the node u using two

di↵erent NFs. Now, let s and t be two slices with no isolation constraints and using the same NF

for a given NFS f (xsf
nu · xtf

nu). Suppose that (5.2) have set wsf

bu
and wtf

nu equal to 4.60 and 1.25,

respectively. Since both s and t accept NFS sharing with each other (qst

ff
·qts

ff
), we need to install

only six (Á4.60 + 1.25Ë) NFSs of type f on node u instead of seven of them. Using this approach on

residual capacities, this saving can be even greater if we have a bigger sub-set of slices having qst

fg
= 1

for a given tuple (s, t, f, g).

Network Function Services Placement: For each slice request s, equalities (5.7) ensure that a dis-

tributed NFS f should be installed on every origin node of K(s); whereas equalities (5.8) ensure that

each centralized NFS f serving s should be installed in a node of V ac.

ÿ

nœN

xsf

nu =
I

1 ≠ zs

f
, if f œ F d, u = ok;

0 , otherwise .
’k œ k(s)|s œ S, ’f œ F, u œ V du (5.7)

ÿ

nœN

ÿ

uœV ac

xsf

nu =
I

zs

f
, if f œ F d;

–s

f
, if f œ F c.

’s œ S, ’f œ F (5.8)

Tra�c routing: The constraints (5.9) are the flow conservation constraints, for each slice request s œ S,

each demand k œ K(s) and each pair of NFSs in F . They allow to associate a path in G for each

tra�c demand k between its origin node ok and the first NFS f = 1 from the ordered set F d and

serving k, and between the last NFS f = |F d
| from F d and the destination node tk of k.
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ÿ

aœ”+(u)
“ka

fg ≠

ÿ

aœ”≠(u)
“ka

fg =
Y
________________]

________________[

zs

f
≠ 1 if (f, g) œ G(s), f œ F c, u = ok,

1 ≠ zs

f
if , u = ok, ((f, g) œ G(s), f œ F d) ü (f = f|F d|, g = f0);

≠
q

nœN

xsg
nu if u œ V \V du, f = f0, g = f1|g œ F d

zs
g if u = ok, f = f0, g = f1|g œ F d

≠1 if u = tk, f = f|F d|, g = f0q
nœN

xsf
nu if u œ V \V du, f = f|F d|, g = f0

zs
g ≠ zs

f
if u = ok, ’f, g œ F d

|g = f + 1q
nœN

xsf
nu ≠

q
mœN

xsg
mu otherwise.

’k œ K(s) : s œ S, ’f, g œ F, ’u œ V (5.9)

Latency: Inequalities (5.10) ensure that each demand k œ K(s) is routed along a path that respects the

end-to-end latency value requested for slice s œ S while inequalities (5.11) ensure that the maximum

latency value between any pair of NFSs is also respected.

ÿ

aœA

da(“ka

f|F d|f0 +
ÿ

fœ{f0}fiF d\{f|F d|}

“ka

ff+1) Æ ds ’k œ K(s) : s œ S (5.10)

ÿ

aœA

da“ka

fg Æ dfg ’k œ K(s) : s œ S, ’f, g œ F (5.11)

Physical Capacity: Inequalities (5.12) are the capacity constraints over the arcs of A. Note that

the flow using an arc a œ A is composed of two types of tra�c for each s œ S, namely the part of

tra�c generated by inter-NFS communication and the part of tra�c generated by the demands of

K(s), which is submitted to the compression coe�cients ⁄. Inequalities (5.13) express the capacity

constraints in terms of NFs that can be installed on each physical node u œ V .

ÿ

sœS

ÿ

kœK(s)
bk(⁄f|F d|

“ka

f|F d|f0 +
ÿ

fœ{f0}fiF d\{f|F d|}

⁄f “ka

ff+1)]

+
ÿ

sœS

÷s(
ÿ

(f,g)œF (s)
bfg“1a

fg +
ÿ

(f,g)œG(s)

ÿ

kœK(s)

bfg“ka

fg

|K(s)| ) Æ ba ’a œ A (5.12)

ÿ

nœN

ÿ

fœF

cc

f yf

nu Æ cc

u ’u œ V, ’c œ C (5.13)

Being � the scaling coe�cient related to link utilization, the NSDP is then equivalent to the following

formulation:

min
ÿ

fœF

ÿ

nœN

ÿ

uœV

yf

nu + �
ÿ

aœA

ÿ

sœS

ÿ

kœK(s)

ÿ

f,gœF

“ka

fg (5.14)

96



5.4. COMPLEXITY

s.t. (5.1) ≠ (5.13)

yf

nu Ø 0 œ Z ’f œ F, ’n œ, ’u œ V (5.15)

xsf

nu œ {0, 1} ’s œ S, ’f œ F, ’n œ, ’u œ V (5.16)

zs

f , œ {0, 1} ’s œ S, ’f œ F (5.17)

“ka

fg œ {0, 1} ’k œ K(s) : s œ S, ’f, g œ F (5.18)

ws

uf Ø 0 œ R ’s œ S, ’f œ F, ’n œ, ’u œ V (5.19)

While the first term in (7.9) is related to the number of installed functions, the second term in (7.9)

multiplied by � is inserted to mechanically avoid loops, with a negligible qualitative impact on the

network solution. An alternative way to the second term would be to add loop avoidance constraints,

however increasing the complexity. Network designers may want to tune the factor � to drive toward

the desired outcome (e.g., to emphasize the number of NFSs over the number of links).

5.4 Complexity

In order to prove the complexity of the NSDP, we first define the Virtual Network Embedding

problem, which is used in our reduction framework.

Virtual Network Embedding problem: Let Gp = (Vp, Ap) be a directed graph representing the

physical network (also known as substrate network), where Vp is the set of physical nodes and Ap is

the set of physical links. While cc
p(u) represents the available resource c œ C on the physical node

u œ Vp, bp(a) is the available bandwidth on arc a œ Ap. Also, each arc in Ap has the latency dp(a)

expressing the time needed by a fow to traverse a. Finally, the request graph is similarly defined as

a directed graph Gr(Vr, Ar) with minimum capacities cc
r(u) and br(a) required respectively by virtual

nodes and arcs from Gr; each arc in Ar also has the maximum latency dr(a) that must be respect in

the embedding process.

In the VNEP, the requested graph must be mapped to the physical graph: each requested node

u œ Vr is mapped to a physical node in Vp , and a requested arc is mapped to a physical path on

Gp. A valid mapping must respect both required and available resources and latency constraints. As

proven by [115], the VNEP is N P-complete even with no latency and resource constraint related to
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the physical network (i.e., physical nodes and links have infinite capacities and no latency) and cannot

be approximated under any objective unless P = N P holds.

Theorem 5.4.1. The Network Slice Design problem is N P-complete even with only one slice request.

Proof. We first prove the N P-hardness of the NSDP. For this purpose, our framework reduction

relies on the VNEP. Given a VNEP instance with a request graph Gr, we construct a slice request

s for each sub-graph in Gr as following. For each requested node u œ Vr, a control-plane NFS is

created in F c with the same required capacity cc
u and, for each f œ F c, the related –s

f
is set to 1.

Similarly, for each arc in Gr, there is a tuple in F (s) imposing the connection between the related

NFSs f and g from F c with the same acceptable minimum bandwidth and maximum latency values.

In addition, a set F d is constructed with dummy functions with no capacity required to be installed

(i.e., cc

f0 = 0, ’f œ F d, ’c œ C). Additionally, any function in F has infinite processing capacity (i.e.,

cap(f) = +Œ ). For any tuple (s, t, f, g) : {s, t œ S, f, g œ F |s ”= t}, the related isolation parameter

qst

fg
is set to 0. In other words, no NFS sharing is allowed between any pair of slice requests. Moreover,

for each s œ S, dummy tra�c demands with no data flow are created (i.e., bk = 0, ’k œ K(s)|s œ S);

origin and destination nodes ok and tk are randomly chosen among the physical nodes in V du and

V app, respectively, for any tra�c demand k. Note that F d and K(s) sets can be of any size, even

empty. Finally, the graph G representing the physical network remains the same. This reduction is

done in polynomial time with complexity O(|Ar|).

Clearly, if there exists a feasible solution to the NSDP that respects the capacity and latency

constraints (if there exists any), then this solution is also feasible for the VNEP. Hence, any algorithm

applied to solve the NSDP can also be used to decide the VNEP, showing the N P-hardness of the

NSDP.

To conclude the N P-completeness proof, we now show that NSDP is also in N P. For this end, our

verifier-based algorithm relies on the proposed compact formulation (5.1)-(5.19) without the objective

function (7.9). Giving an NSDP instance I, a certificate X (i.e., a solution to I) can therefore be

constructed in polynomial size in |S|, |F |, |N | (i.e., number of variables). In other words, X is a

vector with a fixed value to each variable of the linear system. Our verifier V is also constructed in

polynomial size in |S|, |F |, |N | and |V | (i.e., number of constraints). To decide whether X is a feasible

solution to I, we apply V in order to verify if there exists at least one violated constraint. It is easy to
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see that V returns true if and only if X is a feasible solution to I (i.e., no constraint is violated). Since

verifying a system of equations is done in a polynomial time, the NSDP is also in N P, and hence in

N P-complete.

It is important to note that NF dimensioning and NFS sharing sub-problems are partially solved

by setting all related isolation parameters qst

fg
to zero; this implies that, on the control-plane, there

exists only one feasible solution for each sub-problem; on the data-plane, these sub-problems depend

on the select split setting chosen for each slice request. Also, even being fully solved, the data-plane

split selection sub-problem has no impact on the reduction framework since no physical capacity is

required by the related dummy flows. Note that this sub-problem can be seen as a Service Function

Chaining problem [116], which is also a di�cult problem. Clearly, an NSDP instance that has di↵erent

values for these aforementioned parameters increases the related sub-problems’ feasible solution space

and therefore makes the NSDP even harder to be solved in optimization scenarios.

5.5 Variants and extensions for the NSDP

In the following, we present a few relevant variants of the Network Slice Design Problem.

5.5.1 NDSP with intra-slice flexible splitting

With this variant of the problem, di↵erent split settings can be selected within the same slice. In

other words, flexible splitting is applied independently to each DU related to a given slice. For this

purpose, we apply a pre-processing to transform each tra�c demand into a slice request 2. Hence, any

NS request is now composed of only one tra�c demand (i.e., representing a unique tra�c demand

of the initial NS request). In order to impose a shared control-plane to all DU related to the same

initial NS (i.e., before the pre-processing), we introduce —st, a binary parameter generated during the

pre-processing: it holds 1 if the new slices s and t come from the same initial NS request (i.e., before

the decomposition); 0 otherwise. Finally, in order to reduce the management complexity, we add the

new constraints (5.20): they impose that requests from the same NS must share the same control-plane

NFSs. Note that the single requests from the same original slice can have their own data-plane. We

2. Following the taxonomy presented in this work, these new post-processed requests can be seen as network slice
subnets.
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refer to this variant by NSDP with intra-slice flexible splitting (NSDP-ISFS).

—st ≠ 1 Æ xsf

nu ≠ xtf

nu Æ 1 ≠ —st , ’s, t œ S, f œ F c, n œ N, u œ Vac (5.20)

Note that, constraints (5.20) impose the binary variables x to have the same value (i.e., either 1 or

0) if and only if the related parameter — holds 1; otherwise, these inequalities are implicitly relaxed.

After applying the described pre-processing on the initial input, the original formulation of NSDP

(5.1)-(5.19) can be directly applied along with the new constraints (5.20).

5.5.2 NDSP with inter-slice split continuity

We propose this variant in order to represent the scenarios with strict split setting constraints on

each DU. In fact, imposing the same split selection for any tra�c demand traversing a given DU might

be necessary to reduce the management complexity. Complementary to Ineq. (5.20), we add the new

constraints (5.21), where flst is a binary parameter generated during the pre-processing; it holds 1 if

the new slices s and t have the same origin DU node as their tra�c demands; 0 otherwise.

flst ≠ 1 Æ zs

f ≠ zt

f Æ 1 ≠ flst , ’s, t œ S, ’f œ F d (5.21)

Note that these inequalities can only be applied to instances whose slice requests have only one

tra�c demand (i.e., after pre-processing). We refer to this variant by NSDP with inter-slice split

continuity (NSDP-ISSC).

5.5.3 NSDP with optimized link load

In order to minimize the tra�c volume throughout the network, we introduce U , a continuous

variable that represents the maximal load among physical links. We then replace constraints (5.12)

by Ineq. (5.22) and (5.23) and add the new constraints (5.24) in order to impose upper bounds to y

variables; these inequalities are important to this NSDP variant since we no longer have the related

component within the new objective function (5.25).

ÿ

sœS

ÿ

kœK(s)
bk(⁄f|F d|

“ka

f|F d|f0 +
ÿ

fœ{f0}fiF d\{f|F d|}

⁄f “ka

ff+1)]+
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ÿ

sœS

÷s(
ÿ

(f,g)œF (s)
bfg“ksa

fg
+

ÿ

(f,g)œG(s)

ÿ

kœK(s)

bfg“ka

fg

|K(s)| ) Æ baU , ’a œ A (5.22)

0 Æ U Æ 1 (5.23)

yf

nu < 1 +
ÿ

sœS

wsf

nu , ’n œ N, ’v œ V, ’f œ F (5.24)

The new objective function is then formulated as following:

min U (5.25)

This formulation can be applied to any NSDP variant and a similar model can be generated in

order to minimize the maximal load on physical nodes.

5.6 Sensibility analyses

We now propose an open-access framework based on the proposed MILP formulations, which

encompass flexible functional splitting, with possibly di↵erent splitting for di↵erent slices and slice

subnets, while taking into account di↵erent network sharing policies from 5G specifications. We also

consider novel mapping and continuity constraints specific to the 5G architectures and beyond. We

show by numerical simulations the impact of taking into full and partial consideration these peculiar

novel technical constraints. To this purpose, we first detail the simulation setting and then expose the

results.

5.6.1 Simulation setup

Let us detail the simulation settings.

5.6.1.1 Physical topologies

We simulated di↵erent physical networks with di↵erent features. Inspired by common access

networks structure, we first propose a specific topology called Mandala (Fig. 5.2a) with the following

structure: given n DU nodes, we have n/4 aggregation nodes, n/4 core nodes, and n/8 application

nodes. Note that n must be equal or multiple of 8. Each DU node is connected to two aggregation

nodes, which, in turn, are connected to two inner-level core nodes. Each core node is additionally

connected to two application nodes, where demands are served. Finally, given two di↵erent nodes u
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Figure 5.2 – Physical network structures: examples with 16 DUs.

and v, there exists one arc (v, u) for each arc (u, v). Fig. 5.2a shows this topology where n is equal to

16. For sake of clarity, each pair of arcs between two nodes is represented by an edge.

In our simulation, while application nodes have no capacity constraint (they are considered as sink

nodes), each one of DU, aggregation, and core nodes provides 30 servers, each of which with 16 CPUs;

this capacity corresponds to 12.5% of the global generated CPU computing demand (i.e., with no

function sharing) and enables to test all split settings and sharing policies. In addition, fronthaul links

(i.e., between DUs and aggregation nodes), backhaul links (i.e., between aggregation and core nodes),

and core links (i.e., between core and application nodes) have link capacities ba set to respectively

100%, 200% and 300% of the maximum flow sent by a single DU at the split setting with the highest

bitrate. Finally, to simulate a small region, the latency da in each arc randomly takes a value between:

50µs and 100µs for fronthaul links, 200µs and 300µs for backhaul links, and 400µs and 600µs for core

links 3.

We also run our tests on two di↵erent physical topologies: one binary tree-based structure (here-

inafter referred to as Tree; Fig. 5.2b) with 31 nodes and 60 arcs, and Sun from SNDlib [118] composed

of 27 nodes and 102 arcs (Fig. 5.2c). We mapped the 16 DUs to all 16 leaves and the nodes com-

posing the external ring path in the former and latter structures, respectively; aggregation, core, and

application nodes were randomly mapped in both topologies. While the capacities on physical nodes

follow the same parameter values in Mandala, the bandwidth on links from the Tree structure was set

to 500% of the maximum flow sent by a single DU at the split setting with the highest bitrate; the

latency is between 50µs and 100µs. For the Sun topology, these values were randomly chosen between

3. Note that the end-to-end latency along the shortest path between any DU and application node is at most 1ms.
This value is commonly used as a threshold to strict latency constrained 5G services [117].
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Table 5.2 – Simulated slice demand setting.

Slice Service required Aditional CPNFSs Max E2E latency ds UE data rate UE per DU

1 Broadband access in dense areas NFS10, NFS11 10ms 300Mbps 600

2 Ultra-low cost broadband - 10ms 10Mbps 600

3 Real-time communication NFS11, NFS12, NFS13 1ms 25Mbps 180

4 Video broadcast NFS10, NFS11 100ms 200Mbps 60

50µs and 600µs for the latency whereas the bandwidth values were set between 100% and 300% of the

maximum flow sent by a single DU.

5.6.1.2 Virtual layer

To scale with the complexity of the formulation while stressing the impact of functional splitting

on the placement of NFSs, we set F d with five data-plane NFS types: NFS1 represents functions of the

MAC bloc; NFS2 represents functions of the RLC block; NFS3 represents functions from PDCP block;

NFS4 represents functions from RRC block; NFS5 represents DP functions from the core network 4.

In addition, there are four mandatory control-plane NFS types (labeled NFS6..NFS9) and other four

optional CP NFS types (labeled NFS10..NFS13; examples of mandatory and optional 5G core NFs

are presented in [1]). Each NFS has a processing capacity cap(f) set to 100% of the average volume

sent by all DUs. Furthermore, the resource cf required to install each copy of them is set to roughly

5% of the average capacity available on physical nodes. Also, the tra�c generated from or to any CP

NFS was set to 1 kbps per UE.

According to the 4G functional split levels reported in Table 3.2 and considering the uplink direc-

tion, we set similar compression coe�cients ⁄f related to initial volume sent by a tra�c demand: 65%

for NFS1 and 40% for the other DP NFSs. Additionally, the acceptable latency dfg between two DP

NFSs from F d also follows those in Table 3.2, taking the upper bound when an interval is proposed.

Finally, the latency dfg involving any CP NFS is set not to exceed 500µs; this value corresponds to

5% of the total CP latency proposed by 3GPP [6].

5.6.1.3 Slice requests

We tested instances with four NS requests, each with four tra�c demands with random origin-

destination pairs; for each k œ K(s), origin ok is a DU while destination tk is an application node as

4. Since RF and PHY blocs have synchronous network functionalities that pose extremely strict latency requirements,
we assume they are PNFs integrated to each DU. Hence, they are not considered in our virtual DP chains.
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previously discussed. Additionally, all network slices must contain all data-plane NFSs, four mandatory

control-plane NFSs, and a di↵erent set of additional NFSs that can be required (see Table 5.2). We

assume that all CP NFSs are connected to each other. Furthermore, to simulate the communication

between data and control planes, there exists an expected tra�c volume between CP NFSs and DP

ones on each related network slice; we create such tra�c from CP NFS6 only (e.g., corresponding to

the Access and Mobility Management Function, AMF, in 5G core [1]) to all DP NFSs (NFS1..NFS5).

To also observe the impact of di↵erent sharing policies on the number of distributed NFSs, 25% of

available DUs are set to be an origin node of all NS requests; application nodes are evenly distributed

as target nodes. Finally, each slice request imposes di↵erent technical constraints related to end-to-end

latency ds, demands for optional CP NFSs, and expected user experienced data rate. As depicted in

Table 5.2, we applied the assumptions proposed by [117] for each aforementioned requirements. In

our simulations, slice request 1 represents an eMBB application with an important tra�c volume,

which impacts both virtual and physical capacities. Slice request 3, in turn, represents an URLLC

application, imposing a strict end-to-end latency on the data-plane, which restrains the placement

possibilities of the related NFSs. The other two slice requests are intermediate regarding both afore-

mentioned parameters; request 2 can be seen as an mMTC application. Finally, being an origin of one

of some slice’s tra�c demands, each DU is associated with a flow rate equal to the product between

the expected number of UE per DU and their related data rate in such NS.

5.6.1.4 Scenarios

Following Fig. 3.3, each scenario represents one combination of functional split setting and sharing

policy applied to all slices. While di↵erent sharing policies are those previously presented (see Fig. 3.9),

the split settings impose di↵erent sets of distributed and centralized DP NFSs. Table 5.3 summarizes

the tested scenarios. Te proposed scenarios represent realistic areas, such as small cities and dense

zones to scale with the complexity of the formulation while stressing the impact of functional splitting

on the placement of network functions services. Each simulated parameter follows those proposed in

related technical documents [117, 6] in order to provide scenarios that are as realistic as possible.
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Table 5.3 – Scenarions: split settings and sharing policies

Split Setting Description

Setting 1 all DP NFS are installed locally for all NS requests.

Setting 2 for each slice, only NFS5 is installed centrally.

Setting 3 for each slice, only NFS4 and NFS5 are installed centrally. It corresponds to 3GPP’s split 1 in
Fig. 3.3.

Setting 4 for each slice, only NFS1 and NFS2 are distributed; it corresponds to 3GPP’s split 2 in Fig. 3.3.

Setting 5 for each slice, only NFS1 is installed locally. It corresponds to 3GPP’s split 4 in Fig. 3.3.

Setting 6 all DP NFSs are installed centrally for all NS requests. It corresponds to 3GPP’s split 6 in Fig. 3.3

Flexible free functional split selection for each NS request.

Policy Description

Hard Isolation NS requests do not accept sharing any NFS.

Shared DP only DP NFSs can be shared among slices.

Shared CP only CP NFSs can be shared among slices.

Partial DP Isol. only NFS1, NFS2, and NFS3 can be shared.

Partial CP Isol. only mandatory CP NFSs can be shared among NSs.

Flat Sharing NS requests do not impose any isolation constraint.

5.6.2 Numerical results

The analyses made in the following sub-sections are related to the formulation (1)-(26) and present

the numerical experiments of each variant of the problem on sub-section 3. We implemented our model

in a Julia-JuMP environment using ILO CPLEX 12.8 as the linear solver. We set � to an enough

small value (i.e., 10≠3) on the objective function (7.9) only to prioritize elementary paths to carry

tra�c demands and to emphasize the number of NFSs over the number of links in the optimization

process. Finally, our tests were run on a Linux server with an Intel Xeon E5-2650 CPU and 256GB

RAM. The data-set and the source code are available on [119].

5.6.2.1 Execution time

Before discussing the results related to the simulation setting as previously detailed, we present the

performance of our model on di↵erent instance sizes: we varied the number of NFSs available (from 3

up to 24), the number of tra�c demands per slice request (from 1 up to 16), and the physical topology

size (13, 26, and 52 physical nodes with random connection and average degree equals to 10). Finally,

all instances had 4 NS requests. We run 30 tests of each instance size, varying both origin and target

nodes of each tra�c demand. Finally, we set the maximal number of parallel threads that could be

invoked by the solver to 1 and the time limit to 10 800 seconds (three hours).

As shown in Fig. 5.3, the time needed to achieve the best solution increases exponentially with

the size of the instance. In particular, the number of NFSs available has the worst impact on the
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model. Even with small topologies (13 nodes), the problem with 24 NFSs could not be solved within

3 hours. Due to the di↵erent levels of packing problems within the model, this time limit is also

reached with the biggest topologies (52 nodes) and only 12 NFSs. The execution time also increases

as the number of tra�c demands increases. Due to the related routing sub-problems, the limit of three

hours is also reached with any number of demands and 12 NFSs on large topologies. It is worthwhile

to mention that, for those instances with 13 (resp. 52) nodes that reached the time limit and could

not be solved to optimality by the solver, the average relative gap was roughly 7% (resp. 43%) with

standard deviation equals to approximately 2% (resp. 8%).

5.6.2.2 Functional split and NF sharing

We now discuss the results depending on the presented network settings. We applied additional

constraints to impose the desired split setting to all slice demands. Additionally, sharing policies

were imposed by changing the qst

fg
parameters values used in Ineq. (5.4). All instances were generated

using Mandala, Sun and Tree topologies with 16 DUs (see Fig. 5.2). Finally, we run 10 tests on each

physical network varying both tra�c demands’ origin and destination nodes. The goal of the following

numerical analysis is to assess the impact of novel mapping, splitting, and sharing policies on network

design.

Fig. 5.4 reports the average number of distributed and centralized NFSs on di↵erent sharing policies

and split strategies for the three aforementioned physical topologies merged together (i.e., in the same

results set here). While distributed entities are only NFSs from DP, centralized ones also aggregate

NFSs from CP; translucent bars show the total number of installed NFSs. Note first that the generated

instances’ characteristics are such that:

Figure 5.3 – Runtime on di↵erent NSDP instance sizes.
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Figure 5.4 – Number of NFSs on di↵erent scenarios.

— The minimum (resp. maximum) number of NFSs required to serve all NS requests is equal to

101 (resp. 227);

— Since all NFSs are installed on all DUs related to each slice request, split setting 1 requires the

largest number of NFS copies in all proposed sharing policies;

— Since each (resp. no) NFS copy is dedicated to a single NS, Hard (resp. Flat) Isolation has the

greatest (resp. smallest) number of NFSs copies on all split settings, including the flexible one.

In our simulations, having isolation constraints on di↵erent sets of NFS types led to di↵erent

impacts on the network slice design. Regarding the five first split settings, Shared DP and Partial DP

policies provided a mean decrease (resp. increase) of 28% (resp. 42%) on the number of distributed

(resp. centralized) NFSs compared to Shared CP and Partial CP; the total number of NFSs when

using shared policies (i.e., CP Shared and DP Shared) was always smaller than when using partial

policies (i.e., Partial CP and Partial DP). Also, flexible splitting proves to be an interesting strategy

even for scenarios that have strong isolation restrictions. With roughly 56% as an overall reduction,

this approach has the smallest number of NFSs in all mapping scenarios; regarding each sharing policy,

the average reduction was roughly 38% (standard deviation equals to approximately 10%) compared

to split setting 1. It is important to note that, since we minimize the total number of NFSs, flexible

split always had the same number of NFS copies as split setting 6, which provided the greatest number
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of centralized NFSs. This behavior might di↵er if the NS provider is interested in optimizing other

parameters, such as the load on physical arcs.

In Fig. 5.5 we show that applying di↵erent sharing policies and split settings has also an important

impact on the physical network. It is worth mentioning that we excluded from the computation of

the average load the unused links and nodes, and for sake of readability, the standard deviations

are not depicted; the observed ratios of the standard deviation to the mean were always less than

14%. First, we observe that split settings 6 and Flexible have the worst impact on link load in all

sharing policies, requiring up to 100% of the capacity on the most loaded link (see Fig. 5.5e); the

average load on backhaul and core (resp. fronthaul) links was equal to 52% (resp. 40%) applying

Flat (resp. Shared DP) sharing policy and split setting 6 (see Figures 5.5c and 5.5d). This behavior

is expected since all NFSs are installed centrally and the data volume sent by each tra�c demand

is completely decompressed before traversing the fronthaul links. Conversely, split setting 1 benefits

from the impact of the compressed data and demands the least amount of capacity on the links in

all mapping approaches, requiring at most 60% of the capacity on the link on average (see Fig. 5.5e).

However, as shown in Fig. 5.5a, this split is one of the settings that require the largest number of

links (between 77% and 82%) since the NFSs from CPs and DPs are further from each other. Besides,

CP NFS6 must be connected to all distributed DP NFSs of the related NS.

We also note a strong impact of di↵erent scenarios on physical nodes. Since there exist at least

one NFS type installed locally, the first five functional splits had the largest number of physical nodes

hosting at least one NF (see Fig. 5.5f). We also observe a decrease of the average load on physical

nodes (see Fig. 5.5g), in particular on DU nodes (see Fig. 5.5h), on all sharing policies. However,

due to the completely decompressed data arriving in the centralized DP chain, a shift of behavior is

observed when split setting 6 is applied (see Fig. 5.5g). Unlike physical links and aggregation and

core nodes (see Fig. 5.5b and Fig. 5.5i, respectively), DU nodes benefit from functional splits where a

greater number of NFSs is installed centrally. The average load on DU (resp. aggregation and core)

nodes decreased (resp. increased) from roughly 43% (resp. 21%) applying split setting 1 along with

Partial CP (resp. Shared CP) sharing policy to approximately 8% (resp. 75%) applying split setting 5

jointly with Flat sharing policy; the most loaded physical node (see Fig. 5.5j) provided 98% (resp.

43%) on average of its available resource applying split setting 6 (resp. setting 1) and Partial DP

(resp. Flat) sharing policy. Note that, applying Hard, Shared CP, and Partial CP isolation policies,
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Figure 5.5 – Impact of di↵erent split settings and sharing policies on the physical network.

all distributed NFSs can serve only one slice. Hence, they will always demand the same capacity from

DU nodes when the same split setting is applied (see Fig. 5.5h).

Even with a negative impact on the number of installed NFSs, mapped links, and nodes (see

Figures 5.4, 5.5a, 5.5f, respectively), Hard Isolation could partially unload the physical network. In

fact, due to strong isolation constraints, this sharing policy demanded less physical capacity from links

(see Fig. 5.5b) and from aggregation and core nodes (see Fig. 5.5i) in some split settings. Consequently,

a short physical path for each tra�c demand was prioritized, leading to the use of physical nodes

and links not mapped to other tra�c demands. Also, let us recall that the final solutions prioritized

minimizing the number of NFSs, even if this approach harms the load of the physical network; to bring

the final solution closer to its economic strategy, the NS provider can simply modify the objective

function (7.9) to a more suitable one. It is also worth mentioning that, in order to test feasible

instances of all functional split settings, we set a low enough latency for each physical link; otherwise,

some split settings (e.g. settings 5) could be impossible. Finally, since we imposed the same scenario

(see Table 5.3) to all slice requests, we did not observe a significant di↵erence in the results using

distinct physical topologies. For instance, comparing the three proposed topologies, the di↵erence in

the number of physical nodes hosting an NF, the ratio of active links, and the number of NFS copies

were always less than 7%, 11%, and 1%, respectively. This behavior might be di↵erent in real scenarios

since NS requests are likely to impose di↵erent isolation constraints and physical networks might not

have enough capacity to allow all split settings (due to the relation between the fronthaul capacity

and the NFSs’ compression coe�cient). This, therefore, reinforces the importance of applying flexible
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functional splitting while considering di↵erent sharing policies in virtual environments.

5.6.2.3 NSDP and variants

We now present the impact of the proposed variants of the presented problem on the physical

network. Henceforth, we refer by NSDP the original formulation (5.1)-(5.19); the other two variants

refer to the proposed formulations as previously discussed. Since we set � to 10≠3 in (7.9), we refer

by minNFS this objective function while minLinkLoad refers to (5.25); as aforesaid, this objective

function is implemented along with inequalities (5.22)-(5.24). Also, the sharing policy was randomly

chosen for each pair of slices while we applied the Flexible Split setting along with the same parameters

related to both physical and virtual layers as previously presented in this section. Finally, we run 10

tests on each combination of objective function, variant, and physical topology, varying both origin

and target nodes of each tra�c demand; for NSDP-ISFS and NSDP-ISSC variants, the pre-processing

described in the previous section was applied on the NSDP instances.

Figure 5.6 shows the mean and the standard deviation of each depicted parameter. Minimizing the

load on physical links generally increased the number of NFSs installed throughout the network (see

Figures 5.6a and 5.6b) and the number of physical nodes hosting an NF (see Fig. 5.6h); regarding all

variants, the average increase in terms of both numbers of NFSs and hosting nodes was roughly 400%.

This is due to the impact of the compression coe�cient related to data-plane NFSs; when installed

locally, they can compress the data before leaving the origin node of each tra�c demand. However,

as seen in Fig. 5.6j, this strategy is limited by the available resources on DU nodes, which impose to

install some DP NFSs centrally whenever the related physical capacities are reached (see Fig. 5.6k and

Fig. 5.6l). Moreover, since the data flow is spread over as many physical links as possible, minimizing

the load on physical links also increased the end-to-end DP latency (i.e., the latency between tra�c

requests’ origin and target physical nodes); this increase was approximately 100% on all NSDP variants

(see Fig. 5.6c).

Applying di↵erent variants has also an important impact on the physical network. Since NSDP-

ISFS and NSDP-ISSC variants allow sharing data-plane NFSs with other slices rather than the ones

from the same initial slice request (which gives more flexibility to NFS placement decisions), di↵erent

objective functions had opposite impacts on the physical network. Indeed, the NSDP approach de-

manded up to 40% more (resp. 50% less) bandwidth compared to the other variants when the number
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Figure 5.6 – Impact of di↵erent NSDP variants on the physical network.

of NFSs (resp. load on the physical links) is minimized (see Figures 5.6d,5.6e, and 5.6f). Also, com-

paring the two objective functions, the load on physical links could be reduced by a factor of 3, and the

most loaded physical link provided roughly 97% (resp. 34%) of its capacity when NSDP-ISSC (resp.

NSDP) is applied along with minNFS (resp. minLinkLoad) objective function (see Fig. 5.6g). This

behavior is explained by the concentration of NFSs on few physical nodes when the minNFS objective

function is applied, hence stressing the related incoming links; applying the split setting 6 whenever is

possible, this concentration is due to the greater number of centralized DP functions to be installed.

Moreover, the NSDP-ISSC variant had a relevant impact on the physical nodes (see Fig. 5.6i); com-

paring this variant to NSDP and regarding the minNFS formulation, the load on physical nodes could

be decreased from 85% to 65% on average.

NFSs’ compression coe�cients also play an important role in the final solution. Indeed, depending

on the parameter to be optimized, di↵erent split settings are prioritized. For instance, when the load

on the physical links is minimized, split setting 1 is always selected when it is admissible by DUs’

capacity (see Fig. 5.6j); this functional split places all DP NFSs locally and therefore completely

compresses the tra�c demands’ flow before sending it through fronthaul links (see Fig. 5.6e). It is

worth mentioning that, regarding the three proposed physical topologies, we observed an important

di↵erence only on the end-to-end DP latency and on the fronthaul links’ load. In our simulations,

while the average end-to-end DP latency was 2.50 ms on the Tree structure, these values increased to

4.20 ms and 6.60 ms on Sun and Mandala topologies, respectively. Let us recall that, since there is

only one possible elementary path to connect any pair of physical nodes on the Tree topology and slice
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request 3 imposes a strict DP latency (see Tab. 5.2), the latency on the related physical links is lower

than those found on Sun and Mandala structures; otherwise, some instances would be infeasible. For

the same reason and in order to carry the flow from slice request 1, the links’ capacity on Tree topology

is greater than on the other two structures. Hence, when the number of NFS copies was minimized,

the average load on fronthaul links on Tree, Sun, and Mandala was respectively 12.50%, 30%, and

40%. However, running the same instance on each of these topologies, we observed no di↵erence in

the selected split setting on the final solutions. However, this behavior might not be observed in real

scenarios since physical networks are unlikely to have enough capacity to allow any split setting and

hence be able to allocate resources to all slice requests. This, therefore, reinforces the importance of

applying flexible functional splitting in future 5G systems and beyond.

5.7 Summary

In this chapter, we modeled the network slice provisioning as an optimization problem including

novel mapping and provisioning requirements. In particular, we considered novel mapping dimensions

appearing with 5G systems, modeling the relationship between flexible radio access functional split-

ting, control-plane and data-plane function separation, and sharing policies. Di↵erent variants of the

problem were also proposed and the related models are compliant with running standards. We demon-

strated by simulation the impact of taking into full and partial consideration of the peculiar constraints

rising from the standards. For instance, we reported numerical results showing that flexible splitting

appears as a key factor to deal with heterogeneous requirements to deploy distinct communication

services, leading to considerable network slice cost decrease. In our simulations, the number of NFSs

needed to deploy the virtual networks could be reduced by up to 56% depending on which of the six

proposed sharing policies is applied to each network slice. We also observed that di↵erent variants

related to the flexible splitting have an important impact on the physical network; depending on the

selected approach, the average load on physical links could be reduced by a factor of 3.
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Exact approaches for the NSDP
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In this chapter, we propose several exact approaches based on the MILP formulation (5.1)-(5.19)

for the problem, which includes novel splitting, mapping and provisioning constraints described in the

published 5G standards documents [6, 7, 8]. We propose several classes of valid inequalities in order

to strengthen the linear relaxation of the proposed MILP and integrate them in a Branch-and-Cut

framework to solve the problem. We further present several strategies to reduce the symmetries and

the size of the model 1. All notations follow those presented in Table 5.1.

1. The content of this chapter was submitted to Discrete Applied Mathematics Journal as:
W. d. S. Coelho, A. Benhamiche, N. Perrot and S. Secci, ”Exact Approaches for the Network Slice Design Problem”,
September 2021.

113



6.1. SYMMETRY-BREAKING CONSTRAINTS

6.1 Symmetry-breaking constraints

This formulation could be strengthened by eliminating the inherent symmetries corresponding to

the NF usage. The following inequalities are symmetry-breaking constraints for the NSDP.

xsf

nu Æ

ÿ

tœS

ÿ

gœF

ÿ

vœV

xtg

n≠1v
’s œ S, ’f œ F, ’u œ V, ’n œ N\{n1} (6.1)

Inequalities (6.1) allow assigning the NFs in an ordered way, by forbidding the use of an NF n + 1

if NF n is available (i.e., hosting no NFS).

Proof. Given any NF n œ N , having the left-hand side of inequality (6.1) equals to zero (i.e., xsf
nu = 0

for any s œ S, f œ F, u œ Vp) implies that n was not assigned to any f œ F and hence it is available

to host any NFS from any slice request. Since we check this feature in a paired, ordered way (i.e.,

(n≠1, n)) and there is no utilization cost related to the uncapacitated functions from N , the right-hand

side of the same inequality can hold any value equal or greater than zero; the related upper-bound

will be imposed by constraints (5.4)-(5.13). Hence, (6.1) cut o↵ part of the feasible region, while

guaranteeing that at least one optimal solution from the original problem remains feasible.

Example: Consider an instance with one slice request s1 and three available network functions

{n1, n2, n3} to host two di↵erent NFS types {f1, f2}. Given a physical node u1 and regardless the

related capacity constraints, all the following values for the x variables would imply the same cost in

the complete solution for the problem:

xs1f1
n1u1 = xs1f2

n2u1 = 1 and xs1f1
n2u1 = xs1f1

n3u1 = xs1f2
n1u1 = xs1f2

n3u1 = 0 (6.2)

xs1f1
n1u1 = xs1f2

n3u1 = 1 and xs1f1
n2u1 = xs1f1

n3u1 = xs1f2
n1u1 = xs1f2

n2u1 = 0 (6.3)

xs1f1
n2u1 = xs1f2

n3u1 = 1 and xs1f1
n1u1 = xs1f1

n3u1 = xs1f2
n1u1 = xs1f2

n3u1 = 0 (6.4)

However, applying Proposition 6.1, only (6.2) would be feasible.

6.2 Valid inequalities

We now present several families of valid inequalities used to strengthen the linear relaxation of

formulation (5.1)-(5.19).
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6.2. VALID INEQUALITIES

6.2.1 Lower-bound inequality

The first inequality expresses a lower bound on the number of NFSs needed to satisfy all the slice

requests of S and the associated tra�c demands.

The following inequality
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is valid for the NSDP.

Proof. The left-hand side of inequality (6.5) is the sum of constraints (5.2) when isolation (5.4)-(5.5)

constraints and capacity inequalities (5.12)-(5.13) are relaxed. Hence, this is the minimum value for the

right-hand side of inequality (6.5), which is the sum of constraints-(5.3) and the optimized parameter

in the objective function (7.9) disregarding the required capacities and their related costs.

6.2.2 Shortest path-based inequalities

The following trivial valid inequalities are based on the fact that the physical path assigned to

carry the flow associated to a tra�c demand k cannot be shorter than the shortest path between

ok and tk that is capable of carry the flow of k completely compressed. For each tra�c demand

k œ K(s) : s œ S, let sp(k) be the end-to-end latency on the shortest path between ok and tk with

enough available capacity to carry the flow of k. Then, the following inequalities

ÿ

aœAp

da(“ka

f|F d|f0 +
ÿ

fœ{f0}fiF d\{f|F d|}

“ka

ff+1) Ø sp(k) , ’k œ K(s) : s œ S (6.6)

are valid for the NSDP problem.

Proof. Given a tra�c demand k œ K, the left-hand side of inequalities (6.6) contains all possible

gamma variables that will be present in any feasible solution for an NSDP instance; due to the flow

conservation constraints (5.9), the variables holding 1 represent the path connecting the origin and

target nodes of k and transversing all installed DP NFSs copies related to the same tra�c demand.

Clearly, the sum of latency of all active arcs carrying the tra�c sent by k cannot be smaller than the

end-to-end latency on the shortest path with enough capacity to carry the expected volume between

the related origin and target nodes.
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(a) Without SP valid inequality. (b) With SP valid inequality.

Figure 6.1 – An example of applying the shortest path-based (SP) valid inequality.

Example: Let G = (V, A) be the graph representing the physical network, where V = {u1, u2} is the

set of nodes and A = {a1, a2} is the set of arcs in G. Note that both arcs have their origin in node

u1 and their destination in node u2; their available bandwidth and latency are showed in Fig. 6.1.

Also, consider a scenario with only one NFS f1 installed on the origin node of the tra�c demand

k1, whose expected volume from its origin node ok to its target node tk is equals to 100Gbs after

being compressed by NFS f1; the dummy function f0 is installed in the target node tk as previously

discussed. As depicted by Fig. 6.1b, “k1a1
f1f0

= “k1a2
f1f0

= 0.50 is a feasible solution since it respects

all technical constraints for the linear relaxation of the formulation (5.1)-(5.19). Since only arc a2 is

capable of carry the complete flow of k1, sp(k1) is equal to 100ms. By Proposition 6.2.2, this fractional

solution is no longer feasible since we add the following valid inequality:

10“k1a2
f1f0

+ 100“k1a2
f1f0

Ø 100 (6.7)

Hence, only setting “k1a1
f1f0

to 0.00 and “k1a2
f1f0

to 1.00 is a feasible solution as shown in Fig. 6.1b.

6.2.3 Minimum cut-based inequalities

The following valid inequalities are based on one min-cut max-flow theorem of Ford and Fulker-

son [120], which states that for a single commodity, the maximum flow is equal to the minimum cut

separating the related origin and target nodes. We, therefore, consider only the arcs with enough

capacity to carry the expected flow individually. For each k œ K(s) : s œ S, let �(k) be the set of all

minimum cuts separating ok from tk, such that for any ” œ �(k) ™ Ap, ” = {a|ba Ø ⁄f|F d|
bk}. Then,

the following inequalities

ÿ

aœ”

(“ka

f|F d|f0 +
ÿ

fœ{f0}fiF d\{f|F d|}

“ka

ff+1) Ø 1 ’k œ K(s) : s œ S, ’” œ �(k) (6.8)

are valid for the NSDP problem.
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Figure 6.2 – An example of applying the minimum cut-based valid inequality.

Proof. For any k œ K(s) : s œ S, let Ok and Tk be two disjoint sets such that Ok fiTk = Vp, Ok flTk = ÿ,

ok œ Ok, and tk œ Tk. Now, let ”k be a minimum cut separating Ok from Tk such that ”k ™ Ap and

for any arc (u, v) œ ”k, (ba Ø ⁄f|F d|
bk) holds and exactly one of its extremities is in Ok, implicating

(u œ Tk) ü (v œ Tk). Clearly, removing ”k from Ap, there would no longer exist a path connecting

ok to tk and capable of carry the expected volume from tra�c demand k. Hence, a feasible solution

for NSDP problem must use at least one arc from ”k, whose capacity must be greater or equal to the

compressed flow related to such tra�c demand k.

Example: Let G = (V, A) be the graph representing the physical network, where V = {u1, .., a4}

is the set of nodes and A = {a1, .., a6} is the set of arcs whose available bandwidth and latency are

showed in Fig. 6.2. Also, consider a scenario with only one NFS f1 installed on the origin node of the

tra�c demand k1, whose expected volume from its origin node ok = u1 to its target node tk = u4 is

equals to 100Gbs after being compressed by NFS f1; the dummy function f0 is installed in the target

node tk as previously discussed. By setting all “ variables to 0.50 is a feasible solution for the linear

relaxation of the formulation (5.1)-(5.19) since it respects all technical constraints: the flow of k1 is

then split and each arc carries only 50Gbs. Applying Fulkerson [120] theorem, we have three di↵erent

minimum cuts: (a1, a2), (a3, a4), and (a5, a6). However, only arcs a2, a4, and a6 are capable of carry

the complete flow of k1 individually. Consequently, by Proposition 6.2.3, the initial fractional solution

is no longer feasible since we add the following valid inequalities:

“k1a2
f1f0

Ø 1 (6.9)

“k1a4
f1f0

Ø 1 (6.10)

“k1a6
f1f0

Ø 1 (6.11)

Hence, only setting “k1a2
f1f0, “k1a4

f1f0
, “k1a4

f1f0
to 1.00 and all other variables to zero is a feasible solution.
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6.2.4 Clique-based inequalities

In what follows, we introduce a set of inequalities based on the so-called conflict graphs related to

the isolation constraints on one hand and the physical capacities on the other hand.

6.2.4.1 Virtual isolation

Let Hn = (Vn, En) be the associated graph obtained for each function n œ N as follows. A node

v in Vn is associated with every tuple (s, f, u) : s œ S, f œ F, u œ V and there exists an edge in

(u, v) œ En between any two nodes u = (s, f, u) and v = (t, g, u) from Vn if qst

fg
ú qts

gf
= 0 holds.

Hence, an edge in Hn exists if two NFSs are packed together in the same function n while violating

the isolation constraints imposed by the NSs.

Let C(Hn) be the set of all cliques in Hn. Then, the following inequalities

ÿ

(s,f,u)œC

xsf

nu 6 1 ’n œ N, ’C œ C(Hn) (6.12)

are valid for the NSDP.

Proof. Let C be a clique in C(Hn). If two tuples (s, f, u) and (t, g, v) from C are mapped to a same

network function n œ N , the related isolation constraints (5.4) will be violated. I other words, each

pair of tuples from clique C represents an infeasible packing of NFSs from di↵erent slices requests in

an NF n œ N . Consequently, a clique in the graph Hn corresponds to a set of NFS that cannot be

simultaneously packed in any network function n œ N .

Example: Consider a small instance with three slice requests {s1, s2, s3}, one CP NFS type fc, three

NF {n1, n2, n3} and one non-access node u1 in the physical network. For this instance, we also have

qst

fcfc
ú qts

fcfc
= 0 for any pair (s,t) of distinct slice requests from S. From (5.4), we have:

xs1fc
n1u1 + xs2fc

n1u1 + xs3fc
n1u1 + xs1fc

n2u1 + xs2fc
n2u1 + xs3fc

n2u1 + xs1fc
n3u1 + xs2fc

n3u1 + xs3fc
n3u1 Æ 4.50 (6.13)

Now, consider the linear relaxation of the problem in which we no longer have the integrity con-

straints on the variables. Setting 0.5 all x variables gives a feasible fractional solution for (6.13) and

for the whole relaxed model. By Proposition 6.2.4.1, this fractional solution is no longer feasible since
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we add the following aggregated cut:

xs1fc
n1u1 + xs2fc

n1u1 + xs3fc
n1u1 + xs1fc

n2u1 + xs2fc
n2u1 + xs3fc

n2u1 + xs1fc
n3u1 + xs2fc

n3u1 + xs3fc
n3u1 Æ 3 (6.14)

6.2.4.2 Physical isolation

Let Hu = (Vu, Eu) be the associated undirected graph obtained from an instance of NSDP as

follows. A node v in Vu is associated with every tuple (s, f, n) : s œ S, f œ F, n œ N that x̄sf
nu > 0

holds in the current solution. In addition, there exists an edge in (u, v) œ E between any two nodes

u = (s, f, n) and v = (t, g, n) from Vu if (qst
ú qts = 0) holds. In other words, an edge in Hu exists if

two functions are packed together in any node u œ Vp while violating the isolation constraints imposed

by the related slices. Let C(Hu) be the set of all cliques on Hu. Then, the following inequalities

ÿ

(s,f,n)œC

xsf

nu 6 1 ’u œ V na

p , ’C œ C(Hu) (6.15)

are valid for the NSDP.

Proof. Let C be a clique in C(Hu). If two tuples (s, f, n) and (t, g, n) from C are assigned to a same

physical node u œ Vp, the related isolation constraints (5.5) will be violated. I other words, each pair

of tuples from clique C represents an infeasible packing of NFSs from di↵erent slices requests in a

node u œ Vp. Consequently, a clique in the graph Hu corresponds to a set of NFS that cannot be

simultaneously installed in any physical node u œ Vp.

Example: Consider a small instance with three slice requests {s1, s2, s3}, one CP NFS type fc, three

NF {n1, n2, n3} and one non-access node u1 in the physical network. For this instance, we also have

qst
ú qts = 0 for any pair (s,t) of distinct slice requests from S. From (5.5), we have:

xs1fc
n1u1 + xs2fc

n1u1 + xs3fc
n1u1 + xs1fc

n2u1 + xs2fc
n2u1 + xs3fc

n2u1 + xs1fc
n3u1 + xs2fc

n3u1 + xs3fc
n3u1 Æ 4.50 (6.16)

xs1fc
n1u2 + xs2fc

n1u2 + xs3fc
n1u2 + xs1fc

n2u2 + xs2fc
n2u2 + xs3fc

n2u2 + xs1fc
n3u2 + xs2fc

n3u2 + xs3fc
n3u2 Æ 4.50 (6.17)

xs1fc
n1u3 + xs2fc

n1u3 + xs3fc
n1u3 + xs1fc

n2u3 + xs2fc
n2u3 + xs3fc

n2u3 + xs1fc
n3u3 + xs2fc

n3u3 + xs3fc
n3u3 Æ 4.50 (6.18)

Now, consider the linear relaxation of the problem in which we no longer have the integrity con-

straints on the variables. Setting 0.5 all x variables gives a feasible fractional solution for (6.16)-(6.18)
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and for the whole relaxed model. However, by applying Proposition 6.2.4.2, this fractional solution is

no longer feasible since we add the following aggregated cuts:

xs1fc
n1u1 + xs2fc

n1u1 + xs3fc
n1u1 + xs1fc

n2u1 + xs2fc
n2u1 + xs3fc

n2u1 + xs1fc
n3u1 + xs2fc

n3u1 + xs3fc
n3u1 Æ 3 (6.19)

xs1fc
n1u2 + xs2fc

n1u2 + xs3fc
n1u2 + xs1fc

n2u2 + xs2fc
n2u2 + xs3fc

n2u2 + xs1fc
n3u2 + xs2fc

n3u2 + xs3fc
n3u2 Æ 3 (6.20)

xs1fc
n1u3 + xs2fc

n1u3 + xs3fc
n1u3 + xs1fc

n2u3 + xs2fc
n2u3 + xs3fc

n2u3 + xs1fc
n3u3 + xs2fc

n3u3 + xs3fc
n3u3 Æ 3 (6.21)

6.2.4.3 Link capacity

Let Ha = (Va, Ea) be the associated graph obtained for each physical link a œ A as follows. A

node v in Va is associated with every tuple (k, f, g) : s œ S, k œ K(s), f, g œ F . Let b(k, f, g) be the

total data flow between NFSs f and g from commodity k. There exists an edge in (u, v) œ Ea between

any two nodes u = (k, f, g) and v = (kÕ
, f

Õ
, g

Õ) from Va if b(k, f, g) + b(kÕ
, f

Õ
, g

Õ) > ba holds. Let

C(Ha) be the set of all cliques on Ha. Then, the following inequalities

ÿ

(k,f,g)œC

“ka

fg 6 1 ’a œ A, ’C œ C(Ha) (6.22)

are valid for the NSDP.

Proof. Let C be a clique in C(Ha). If the flow of two pairs (k, f, g) and (kÕ
, f

Õ
, g

Õ) from C are carried

through a same physical link a œ Ap, the related capacity constraint (5.12) will be violated. I other

words, each pair of nodes from clique C represents an infeasible routing from di↵erent tra�c demands

in a physical link a œ Ap. Consequently, a clique in the graph Ha corresponds to a set of tra�c

demands that cannot be carried simultaneously through physical link a.

Example: Consider a small instance with one slice requests s1 with two tra�c demands {k1, k2}, one

DP NFS type f1, f2, and several physical arcs {a1, .., a|Ap|} in the physical network. For this instance,

we also have ba = 15 for any a œ Ap and bk1 = bk2 = 10. From (5.12), we have:

10“k1a

f0f1
+ 10“k2a

f0f1
Æ 15 , ’a œ Ap (6.23)

This constraint imposes that the volume sent by each tra�c demand to the DP NFS f1 and carried

by the arc a cannot be greater than its capacity. Now, consider the linear relaxation of the problem
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in which we no longer have the integrity constraints on the variables. Setting 0.75 all “ variables

gives a feasible fractional solution for (6.23). However, by applying Proposition 6.2.4.3, this fractional

solution is no longer feasible since we add the following cuts:

“k1a

f0f1
+ “k2a

f0f1
Æ 1 , ’a œ Ap (6.24)

6.2.4.4 Node capacity

This class of valid inequalities depends directly on the values of x and w variables and therefore

can be generated only regarding a solution for the presented formulation (5.1)-(7.9). Let w̄sf
nu and x̄sf

nu

be the values of the related variables in the current solution. For each u œ Vp, let Hu = (Vu, Eu) be

the associated undirected graph obtained from an instance of NSDP as follows. A node v in Vu is

associated with every tuple (s, f, n) : s œ S, f œ F, n œ N that x̄sf
nu > 0 holds in the current solution.

There exists an edge in (u, v) œ Eu between any two nodes u = (s, f, n) and v = (t, g, m) from Vu if
w̄sf

nu

x̄sf
nu

cc

f
+ w̄tg

mu

x̄tg
mu

cc
g > cc

u holds for any physical resource c œ C. Let C(Hu) be the set of all cliques on

Hu. Then, the following inequalities

ÿ

(s,f,n)œC

xsf

nu 6 1 , ’u œ Vp, ’C œ C(Hu) (6.25)

are valid for the NSDP.

Proof. Let C be a clique in C(Hu). If the flow of two pairs (s, f, n) and (t, g, m) from C are carried

through a same physical node u œ Vp, the related capacity constraint (5.13) will be violated. I other

words, each pair of nodes from clique C represents an infeasible packing from di↵erent NFSs in a

physical node u œ Vp. Consequently, a clique in the graph Hu corresponds to a set of functions that

cannot be packed simultaneously in the physical node u.

Example: Consider a small instance with two slice requests {s1, s2}, one DP NFS type f1, two available

NFs {n1, n2}, and two aggregation/core nodes {u1, u2} with only one resource type c1 in the physical

network. For this instance, we also have c1
u = 15 for any u œ V ac

p ,
n1bf1

cap(f1) = n2bf1

cap(f1) = 1, and

c1
f1 = 10. From (5.2),(5.3), and (5.13), we have:

wsf1
nu = xsf1

nu , ’s œ S, ’n œ N, ’u œ V ac

p (6.26)

ws1f1
nu + ws2f1

nu Æ yf1
nu Æ 1.5 , ’n œ N, ’u œ V ac

p (6.27)
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Now, consider the linear relaxation of the problem in which we no longer have the integrity con-

straints on the variables. Setting xs1f1
n1u1 and xs2f1

n2u1 to 0.75 gives a feasible fractional solution for (6.26)

and (6.27). However, by applying Proposition 6.2.4.4, this fractional solution is no longer feasible since

the following cut are added:

xs1f1
n1u1 + xs2f1

n2u1 Æ 1 , ’n œ N, ’u œ V ac

p (6.28)

6.3 A branch-and-cut algorithm for the NSDP

In this work, we first propose a parallelized Branch-and-Cut algorithm to solve the problem e�-

ciently. In this algorithm, referred to as Clique-based Branch-and-Cut (CBC), we build the conflict

graphs in each node of the branch-and-bound tree as follows.

Physical node isolation: A node in the related conflict graph Hu = (Vu, Eu) is associated with every

tuple (s, f, n) : s œ S, f œ F, n œ N that x̄sf
nu > 0 holds in the current solution. In addition, there exists

an edge in Eu between any two nodes (s, f, n) and (t, g, n) from Vu if (qst
ú qts = 0) · (x̄sf

nu + x̄tf
nu > 1)

holds 2. In other words, given a fractional solution, an edge in Hu exists if two functions are packed

together in any node u œ Vp while violating the isolation constraints imposed by the related slices.

Network function isolation: For each n œ N , a node in the related conflict graph Hn = (Vn, En)

is associated with every tuple (s, f, u) : s œ S, f œ F, u œ Vp that x̄sf
nu > 0 holds in the current

solution. Also, there exists an edge in En between any two nodes (s, f, u) and (t, g, u) from Vn if

(qst

fg
ú qts

gf
= 0) · (x̄sf

nu + x̄tf
nu > 1) holds.

Physical link capacity: A node in the related conflict graph is associated with every tuple (k, f, g) :

s œ S, k œ K(s), f, g œ F that “̄ka

fg
> 0 holds in the current solution. Considering di↵erent tra�c

generation dependencies 3 and the compression coe�cients of each NFS type, let b(k, f, g) be the total

data flow between NFSs f and g from commodity k. There exists an edge in Ea between any two

nodes u = (k, f, g) and v = (kÕ
, f

Õ
, g

Õ) from Va if (b(k, f, g) + b(kÕ
, f

Õ
, g

Õ) > ba) · (“̄k,a

f ,g
+ “̄k

Õ
,a

f
Õ
,g

Õ > 1)

holds.

2. It is worth mentioning that, if s = t, qst + qts = 2 always holds.
3. As previously discussed, data-plane tra�c depends on the service is provided by the slice while control-plane tra�c

relies on the expected number of UE and their behaviors.
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Physical node capacity: Let w̄sf
nu and x̄sf

nu be the values of the related variables in the current solution.

For each physical node u œ V , a node in the related conflict graph Hu = (Vu, Eu) is associated with

every tuple (s, f, n) : s œ S, f œ F, n œ N that x̄sf
nu > 0 holds in the current solution. There exists

an edge in Eu between any two nodes u = (s, f, n) and v = (t, g, m) from Vu if
w̄sf

nu

x̄sf
nu

cc

f
+ w̄tg

mu

x̄tg
mu

cc
g > cc

u

holds for any physical resource c œ C.

Regarding the solution of the current LP, we run several separation routines in parallel as follow:

each available thread is responsible for creating a conflict graph from the capacity and isolation con-

straints, and identifying violated clique inequalities (6.12)-(6.25), as previously discussed. All cliques

provided by the separation routines are found by using Bron-Kerbosch algorithm [121] and added as

user cuts through the solver’s callback procedure [122].

6.4 A row-generation framework for the NSDP

We also propose the Reduced MILP-based Row-Generation (RMRG) framework, which is based on

a relaxed model: the original formulation (5.1)-(5.19) is reduced to a new one without the isolation,

capacity, and latency constraints. Hence this new formulation has only the constraints related to the

main decisions on the NSDP: the split selection inequalities (5.1), the dimensioning equations (5.2), the

packing inequalities (5.3), the placement constraints (5.7) and (8.27), and the routing constraints (5.9);

integrality constraints remain in the model. This reduced model can thereby be considerably smaller,

having up to 98% fewer constraints compared to the original formulation; for the instances with only

one element in each input set, the reduced model has 50% fewer constraints. We then denote by L the

set of relaxed constraints, namely the isolation constraints (5.4)-(5.6), the capacity inequalities (5.13)

and (5.19), and the latency constraints (5.10) and (5.11). During the branch-and-bound process, the

Lazy Constraints routine (available in the MILP solver’s callback procedure [122]) is called each time

the solver finds a new and better integer solution: if the current solution violates any constraint from

L, it is added as cut to the reduced model. We developed a parallelized framework in which each

parallel process is responsible for searching and adding the violated constraints related to a given

physical node or link.
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Table 6.1 – Instance Sizes

Instance size |V | Graph density |S| Demands per slice |F
d
| |F

c
|

Tiny (T) 10 0.15 2 1 2 2
Small (S) 15 0.10 2 2 4 2

Medium (M) 20 variable 4 3 4 3

Table 6.2 – Instance Classes

Latency Description
Low (L) The maximum latency dfg between two NFSs and the end-to-end latency ds imposed by

each slice request s œ S is set respectively to between 50% and 150% and to between 250%
and 500% of the average latency on the physical links.

High (H) The maximum latency dfg between two NFSs and the end-to-end latency ds of each slice
s œ S is set respectively to between 200% and 400% and to between 300% and 1000% of
the average latency on the physical links.

Capacity Description
Tight (T) The available bandwidth ba on the physical links have between 50% and 100% of the average

volume (without compression) generated by the slices. In addition, each physical node
u œ V \V ap has enough capacity to host between 1 and 3 copies of each NFS type; application
nodes has no available capacity.

Moderate (M) The available bandwidth ba on the physical links have between 200% and 300% of the
average volume (without compression) generated by the slices. In addition, each physical
node u œ V \V ap has enough capacity to host between 5 and 8 copies of each NFS type;
application nodes has no available capacity.

Isolation Description
Weak (W) 10% of isolation parameters qst and qst

fg are set to 0; they are randomly chosen.
Strong (S) 75% of isolation parameters qst and qst

fg are set to 0; they are randomly chosen.

6.5 Numerical experiments

We generated di↵erent instance sizes (see Table 6.1), in which the processing capacity cap(f) of

each NFS in F d was set to a value between 50% and 100% of the average volume generated by the

tra�c demands. For NFSs of F c, this value was set to between 50% and 100% of the volume related

to the total number ns of expected UEs connected to the slice. Also, the total amount bf g of tra�c

between two functions from F (s) fi G(s) was set to 1 Kbps per UE. As shown in Table 6.2, di↵erent

instance classes are also proposed, which are related to the ratio between the resources required by

the slices and those available on the physical network, and also between the latency on the physical

links and the threshold imposed by slices and pairs of NFSs. The complete reference of each generated

instance is given by joining the acronyms of each size and class name from Table 6.1 and Table 6.2.

For example, < S, L, M, S > refers to a small instance with low latency threshold, moderate capacity

requirements, and strong isolation constraints. The data-set and the source code are available on [123].
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We implemented our model in a Julia-JuMP environment using ILO CPLEX 12.10 as the linear solver.

Our tests were run on a Linux server with an Intel Xeon E5-2650 CPU. Finally, all tests were made

by replacing the objective function (7.9) by the following one:

min
ÿ

fœF

ÿ

nœN

ÿ

uœV

ÿ

cœC

cc

f µc

uyf

nu (6.29)

6.5.1 Model strengthening

We now analyze the impact of Symmetry-Breaking (SB) constraints (6.1), the Lower-Bound (LB)

inequality (6.5), Shortest-Path (SP) constraints (6.6), and Min-Cut (MC) inequalities (6.8) on the

original model (5.1)-(5.19). While each shortest path sp(k) on (6.6) is calculated using Dijkstra’s

algorithm [19], we provide di↵erent minimum cuts to the set �(k) on (6.8) by using Edmonds-Karp

algorithm [124], Dinic’s algorithm [125], and Boykov-Kolmogorov algorithm [126], which are e�cient

algorithms to solve the related dual Max-Flow problem. We then eliminate all arcs that do not have

enough capacity to individually carry the flow of the related tra�c demand. Note that, by using

these three di↵erent algorithms, we can provide at most three di↵erent minimum cuts. Table 6.3 and

Table 6.4 show the impact of these di↵erent models with and without the proposed inequalities. The

first and second columns refer to the instance and the additional inequalities (if any), respectively.

While the third column shows the gap between the linear relaxation and the best integer solution

found in one-hour runtime, the fourth column depicts the number of nodes on the branch-and-bound

tree. Finally, the two last columns refer to the final gap and the total runtime. In all columns, we

show the average and standard deviation of the related parameter from 10 di↵erent instances of the

same class.

We observe first that LB inequality had an important impact on all instance classes, especially on

scenarios with weak isolation. For instance, the average gap from the linear relaxation and final gap

were respectively equal to 3% and 0% (resp. 2% and 1%) on < T, T, H, W > (resp. < S, T, H, W >)

instances. As seen in Table 6.3, SB inequalities better performed on instances with strict capacity,

latency, and isolation constraints: the average reduction on the tree size was equal to 57% and 83%

on < T, T, L, S > and < S, T, L, S > instances, respectively.

Interestingly, SP and MC inequalities worked better on instances with strong isolation. For in-
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Table 6.3 – Impact of di↵erent valid inequalities: tiny instances.

Instance Valid Inequalities Lin. Relax. Gap Tree Size (x106) Final Gap Runtime (s)
<T,T,L,S> None 0.37±0.01 3.0±0.7 0.12±0.02 3600

Lower-Bound 0.16±0.05 2.0±0.3 0.0 1528±1087
Min-Cut 0.37±0.01 1.6±0.2 0.0 1268±1165

Shortest-Path 0.37±0.01 1.6±0.3 0.0 1285±1157
Symmetry-Breaking 0.37±0.01 1.3±0.1 0.0 1243±1178

All 0.16±0.05 1.4±1.0 0.0 1398±1087
<T,T,L,W> None 0.33±0.04 4.5+1.5 0.22±0.07 3600

Lower-Bound 0.1±0.04 3.0±1.5 0.08±0.04 3600
Min-Cut 0.33±0.04 3.2±1.5 0.12±0.6 3600

Shortest-Path 0.33±0.04 3.4±1.4 0.17±0.8 3600
Symmetry-Breaking 0.33±0.04 3.3±1.4 0.17±0.8 3600

All 0.1±0.04 2.7±1.4 0.09±0.04 3600
<T,T,H,W> None 0.22±0.04 1.6±1.4 0.0 1465±1117

Lower-Bound 0.03±0.01 0.5±0.4 0.0 460±298
Min-Cut 0.22±0.04 1.5±0.7 0.0 1250±685

Shortest-Path 0.22±0.04 1.5±0.6 0.0 1282±876
Symmetry-Breaking 0.22±0.04 1.7±0.6 0.0 1426±354

All 0.03±0.01 1.1±0.9 0.0 1276±378
<T,T,H,S> None 0.33±0.03 3.0±1.1 0.12±0.09 3600

Lower-Bound 0.18±0.4 4.8±0.6 0.08±0.05 3600
Min-Cut 0.33±0.03 4.5±0.2 0.11±0.07 3600

Shortest-Path 0.33±0.03 5.0+0.2 0.09±0.05 3600
Symmetry-Breaking 0.33±0.03 3.1±0.9 0.10±0.04 3600

All 0.18±0.4 3.0±0.6 0.07±0.02 3600
<T,M,L,S> None 0.26±0.2 8.2±1.0 0.13±0.03 3600

Lower-Bound 0.11±0.5 4.7±0.3 0.04±0.02 3600
Min-Cut 0.26±0.2 4.0±1.1 0.06±0.03 3600

Shortest-Path 0.26±0.2 4.0±0.9 0.07±0.04 3600
Symmetry-Breaking 0.26±0.2 3.3±1.2 0.08±0.04 3600

All 0.11±0.5 4.1±0.1 0.08±0.04 3600
<T,M,L,W> None 0.26±0.03 4.3±1.6 0.05±0.03 3600

Lower-Bound 0.13±0.02 4.0±0.9 0.07±0.05 3600
Min-Cut 0.26±0.03 3.9±1.5 0.06±0.03 3600

Shortest-Path 0.26±0.03 4.1±1.3 0.06+0.03 3600
Symmetry-Breaking 0.26±0.03 2.6±1.2 0.0 1964±978

All 0.13±0.02 3.0±0.8 0.04±0.02 3600
<T,M,H,W> None 0.23±0.03 6.0±1.4 0 2896±526

Lower-Bound 0.08±0.05 2.5±0.8 0.0 2279±668
Min-Cut 0.23±0.03 5.0±0.3 0.09±0.03 3600

Shortest-Path 0.23±0.03 4.6±0.3 0.08±0.04 3600
Symmetry-Breaking 0.23±0.03 4.5+0.1 0.1±0.04 3600

All 0.08±0.05 3.3±0.3 0.04±0.03 3600
<T,M,H,S> None 0.28±0.02 2.8±1.2 0.07±0.02 3600

Lower-Bound 0.18±0.04 4.5±1.0 0.01±0.01 3600
Min-Cut 0.28±0.02 5.8±1.5 0.02±0.01 3600

Shortest-Path 0.28±0.02 4.5±0.9 0.02±0.01 3600
Symmetry-Breaking 0.28±0.02 4.6±1.2 0.05±0.05 3600

All 0.18±0.04 3.3±0.7 0.02±0.01 3600

126



6.5. NUMERICAL EXPERIMENTS

Table 6.4 – Impact of di↵erent valid inequalities: small instances.

Instance Valid Inequalities Lin. Relax. Gap Tree Size (x106) Final Gap Runtime (s)
<S,T,L,S> None 0.26±0.03 4.7±1.1 0.21±0.3 3600

Lower-Bound 0.17±0.02 1.7±0.9 0.01±0.01 3600
Min-Cut 0.26±0.03 1.4±0.7 0.0 2839±761

Shortest-Path 0.26±0.03 1.5±0.2 0.0 3209±315
Symmetry-Breaking 0.26±0.03 0.8±0.3 0.0 2562±1037

All 0.17±0.02 1.0±0.5 0.0 2669±930
<S,T,L,W> None 0.21±0.02 4.2±0.3 0.19±0.02 3600

Lower-Bound 0.07±0.03 1.7±0.6 0.05±0.02 3600
Min-Cut 0.21±0.02 1.9±1.0 0.12±0.03 3600

Shortest-Path 0.21±0.02 1.8±1.3 0.12±0.03 3600
Symmetry-Breaking 0.21±0.02 1.4±1.3 0.14±0.02 3600

All 0.07±0.03 1.4±1.0 0.06±0.03 3600
<S,T,H,W> None 0.35±0.12 1.6±0.4 0.3±0.1 3600

Lower-Bound 0.02±0.01 1.5±0.9 0.01±0.01 3600
Min-Cut 0.35±0.12 1.7±0.6 0.11±0.01 3600

Shortest-Path 0.35±0.12 1.6±0.9 0.12±0.02 3600
Symmetry-Breaking 0.35±0.12 1.3±0.3 0.13±0.02 3600

All 0.02±0.01 1.3±0.5 0.02±0.01 3600
<S,T,H,S> None 0.23±0.04 2.6±0.2 0.13±0.03 3600

Lower-Bound 0.11±0.04 1.7±0.2 0.08±0.03 3600
Min-Cut 0.23±0.04 1.8±0.1 0.14±0.04 3600

Shortest-Path 0.23±0.04 1.8±0.2 0.15±0.03 3600
Symmetry-Breaking 0.23±0.04 1.3±1.2 0.12±0.04 3600

All 0.11±0.04 1.0±0.3 0.0 2689±910
<S,M,L,S> None 0.16±0.02 1.9±0.8 0.14±0.02 3600

Lower-Bound 0.07±0.01 1.8±1.1 0.05±0.01 3600
Min-Cut 0.16±0.02 1.8±0.4 0.06±0.02 3600

Shortest-Path 0.16±0.02 1.9±0.7 0.06±0.02 3600
Symmetry-Breaking 0.16±0.02 1.4±0.7 0.07±0.01 3600

All 0.07±0.01 1.2±1.1 0.06±0.01 3600
<S,M,L,W> None 0.16±0.02 3.6±0.6 0.15±0.04 3600

Lower-Bound 0.07±0.01 1.7±0.8 0.06±0.01 3600
Min-Cut 0.16±0.02 1.8±0.7 0.10±0.03 3600

Shortest-Path 0.16±0.02 1.8±0.9 0.12±0.03 3600
Symmetry-Breaking 0.16±0.02 1.3±0.7 0.12±0.03 3600

All 0.07±0.01 1.2±0.4 0.06±0.01 3600
<S,M,H,W> None 0.33±0.04 3.2±0.7 0.12±0.04 3600

Lower-Bound 0.22±0.05 1.7±1.1 0.21±0.05 3600
Min-Cut 0.33±0.04 1.7±0.7 0.27±0.04 3600

Shortest-Path 0.33±0.04 1.8±0.7 0.25±0.04 3600
Symmetry-Breaking 0.33±0.04 1.4±1.2 0.27±0.04 3600

All 0.22±0.05 1.4±0.8 0.21±0.05 3600
<S,M,H,S> None 0.21±0.02 2.5±0.2 0.15±0.01 3600

Lower-Bound 0.09±0.01 1.6±0.3 0.06±0.01 3600
Min-Cut 0.21±0.02 1.7±0.2 0.14±0.01 3600

Shortest-Path 0.21±0.02 1.7±0.2 0.14±0.01 3600
Symmetry-Breaking 0.21±0.02 1.1±0.1 0.015±0.01 3600

All 0.09±0.01 1.2±0.2 0.07±0.01 3600
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stance, the average final gap on scenarios with weak and strong isolation constraints was respectively

15% (resp. 8%) and 9% (resp. 5%) on small (resp. tiny) instances. Since the possibilities of embed-

ding NFs into physical nodes are decreased when strong isolation constraints are applied, these valid

inequalities led to fewer fractional routing-related variables “ in the linear relaxation: we observed

up to 30% fewer variables holding values in ]0, 1[. This behavior might therefore have an important

impact in selecting a branching strategy by the solver’s black box in order to find integer solutions.

The proposed SB, LB, SP, and MC inequalities (6.1)-(6.8) outperformed the original model with

no valid inequalities in almost all tests, specially on instances without strict latency constraints (e.g.,

< S, T, H, S > ). Together, the final gap could be reduced from 30% to 2% on < S, T, H, W >

instances. It is worthwhile mentioning that the original model had its performance decreased when

applied on instances with strict capacity instances: the average final gap was respectively equal to

22% and 30% on < T, T, L, W > and < S, T, H, W > instances.

6.5.2 Branch-and-cut algorithm

We now present the results from the numerical experiments applying the proposed CBC algorithm

along with the isolation-based valid inequalities (6.12) and (6.15) (hereafter referred to as Isolation

Cuts) and the capacity-based valid inequalities (6.22) and (6.25) (hereafter referred to as Capacity

Cuts) to the original model (5.1)-(5.19). The separation routines were made as previously discussed

and using 8 threads. Finally, SB, LB, SP, and MC inequalities (6.1)-(6.8) were not applied in these

tests.

Fig. 6.3 depicts the results applying the proposed branch-and-cut frameworks. We ran 10 instances

of each class and, for sake of clarity, only the average of each parameter is presented. First, both

capacity and isolation cuts had smaller gaps in almost all tests, especially on instances with strict

latency and capacity constraints. For instance, compared to the branch-and-bound framework without

any cut, the average gap decreased from 22% to 13% (resp. from 21% to 14%) on < T, T, L, W > (resp.

< S, T, L, S >) when capacity (resp. isolation) cuts were applied (see Fig. 6.3a; resp. Fig. 6.3b). This

impact is also reflected on the size of the branch-and-bound tree, in particular on tiny instances (see

Fig. 6.3c): regarding all instance classes and applying either isolation or capacity cuts, the average

reduction was roughly 85% on small instances (see Fig. 6.3d).

On the other hand, these cuts did not present a relevant outperformance when applied on instances
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Figure 6.3 – Impact of di↵erent cutting-planes.

without strict capacity, latency, and isolation constraints: see the results for < ≠, M, H, W > instances

on both instance sizes in Fig. 6.3a and Fig. 6.3b for example. Also, due to the time required by the

separation routine within the Branch-and-Cut framework, jointly applying all proposed cutting-planes

increased the final gap. Regarding all instance classes and sizes, the average time spent within the

separation routine was 10 times greater than when only one cut class was applied. This issue might

be overcome by increasing the number of threads on the parallel searches for violated inequalities.

6.5.3 Row-generation framework

Fig. 6.4 depicts the cumulative distribution function (CDF) from the tests applying the proposed

RMRG framework. The search of violated cuts from the set L of lazy constraints was done as pre-

viously discussed and added using 8 parallel threads. While BB refers to the formulation (5.1)-(7.9)

solved by the solver’s Branch-and-Bound, CBC+ and RMRG+ are respectively CBC and RMRG ap-

proaches along with SB, LB, SP, and MC inequalities (6.1)-(??) and both isolation and capacity-cut

classes. Finally, we generate 40 medium-size instances varying the graph density from 0.10 to 1.00
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Figure 6.4 – Impact of the Row-Generation framework on medium-size instances.

(see Table 6.2). Instances with no feasible solution found within the time limit (i.e., 3600 seconds) are

represented with a final gap equal to 100%.

We observe that RMRG outperformed BB in all graph densities. Indeed, while the RMRG model

had a final gap smaller than 10% in more than 90% of all instances, RMRG+ has its performance

decreased only on instances with complete mesh graphs (see Fig. 6.4d); these approaches had a similar

e�ciency on instances with graphs with density equals to 0.25 and 0.50 (see Fig. 6.4b and Fig. 6.4c,

respectively). This behavior is expected since the separation routines within these approaches search

for violated link-related constraints and, hence, the time to find them is directly proportional to the

number of arcs in the graph. Moreover, the graph density has also an important impact on BB

and CBC+ approaches. Since it is more di�cult (resp. easier) to find a solution feasible for both

mapping and routing sub-problems in sparse (resp. mesh) graphs that respect all capacity and latency

constraints in the NSDP, BB had less (resp. more) than 35% (resp. 90%) of instances solved with a

final gap smaller than 25% (see Fig. 6.4a; resp. Fig. 6.4d).

6.6 Summary

In this chapter, we presented and discussed the Network Slice Design Problem in 5G systems, and

proposed a MILP formulation and exact algorithms to solve it. Numerical experiments showed the

e�ciency of each approach on di↵erent instance classes. For instance, the proposed symmetry-breaking

and lower bound-based constraints led to an important decrease in the final gap: from 30% to 1% in

some instances. Also, our Branch-and-Cut algorithm could reduce the size of the Branch-and-Bound

tree by 85% and outperformed the solver’s Branch-and-Bound algorithm in all tests. Finally, our

Row-Generation framework outperformed the Branch-and-Bound approach in all tests, especially in

those with sparse graphs.
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A math-heuristic for the NSDP
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The overall objective of this chapter is to go beyond the work presented in the previous chapter.

To this purpose, we propose an open-access framework based on a math-heuristic for the Network

Slice Design Problem present numerical results to assess the e�ciency of our approach 1. The overall

idea of the proposed math-heuristic relies on decomposing the NSDP into a few sub-problems and

sequentially solve them. These sub-problems are related to the following decisions: split selection,

NFS-NF packing, NF-node embedding, and tra�c routing. All notations follow those presented in

Table 5.1.

1. The content of this chapter was published in the following paper: W. d. S. Coelho, A. Benhamiche, N. Perrot and
S. Secci. ”A Math-Heuristic for Network Slice Design”, the 33nd International Teletra�c Congress (ITC 33), Avignon,
France, 2021.
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7.1 Algorithm description

Algorithm 1 presents the global framework of our approach. As input, the heuristic receives an

NSDP instance composed of a directed graph G representing the physical network with the set of

capacities C, a set of slice requests S, each of which with a set of tra�c demands K(s), a set F of

NFS types, and a set N of potential host virtual functions. As output, Algorithm 1 returns a virtual

network to each slice request s œ S ensuring all technical constraints imposed by both physical and

virtual layers.

7.1.1 Split selection

After initializing the auxiliary variables at step 1, the first decision is made by the chooseCUs()

procedure. It first calculates the minimal number of CUs to host all functions serving slices without

isolation constraints: this lower-bound – is given by Equation (7.1), which considers the ratio of the

most demanded physical resource by NFSs and the most critical resource on physical nodes as well as

the di↵erent tra�c from data and control planes.

– =
ÿ

fœF c

max{cc

f /cc

u : c œ C, u œ V ac
}

Ïÿ

sœS

nsbf

cap(f)
Ì
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+
ÿ

fœF d

max{cc

f /cc

u : c œ C, u œ V ac
}

Ï ÿ

kœK(s):sœS

⁄f≠1bk

cap(f)
Ì

(7.1)

Then, the procedure builds a set V h of – host CUs with the most centralized nodes. If it is not

called for the first time, the procedure builds a new set with the nodes already chosen in previous

iterations. The Closeness Centrality value cent(u) of each node u œ V ac is given by Equation (7.2),

which verifies the distance dist(u, v), in terms of latency, between the node u to all other nodes in G.

cent(u) = 1
q

vœV :v ”=u

dist(u, v) , ’u œ V (7.2)

Next, steps 3-7 are dedicated to find elementary paths to the related tra�c demands of each slice

request s œ S, and to select a split setting to the related data-plane flow. First, the Yen() procedure is

called to find ◊ paths between the origin ok and target tk nodes of each tra�c demand k œ K(s). These

paths are generated by Yen’s algorithm [23] in order to find only paths that respect the end-to-end

latency ds while traversing as many host CUs (those found in step 3) as possible. Since finding paths

for each slice request is done independently, this procedure is run in parallel, with each thread being

responsible for running Yen’s algorithm on a single tra�c demand. Subsequently, a path is chosen

for each tra�c demand by procedure choosePaths() in step 7, which seeks to maximize the number of

host CUs visited by the selected paths. For this purpose, let xk
p be a binary variable that takes the

value 1 if path p from the set of paths P (k) is chosen to carry the flow of tra�c demand k œ K(s);

0 otherwise. Also, let zuv be an integer variable corresponding to the number of active paths passing

by node u œ V h before node v œ V h, with V h
™ V ac being the set of host CUs generated in step 3.

Finally, let fiuv be the associated cost of each pair of nodes u, v œ V h. In order to break the inherent

symmetry of the proposed formulation, we set fiuv = 1 + 10≠4 and fivu = 1 ≠ 10≠4 for any pair of

nodes u, v œ V h. Then, the choosePaths() procedure solves the following Integer Linear Program:

max
ÿ

u,vœV h|u ”=v

fiuvzuv (7.3)

ÿ

pœP (k)
xk

p = 1 , ’k œ K(s) : s œ S (7.4)

ÿ

kœK(s)

ÿ

pœP (k)
⁄p

uvxk

p = zuv , ’u, v œ V h
|u ”= v (7.5)

xk

p œ {0, 1} , ’k œ K(s)|s œ S, ’p œ P (k) (7.6)

zuv œ N0 , ’u, v œ V h
|u ”= v (7.7)
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Since the aim is to share ordered data-plane NFS chains among as many tra�c demands as possible,

the objective function (7.3) consists in maximizing the number of chosen paths that have similar

structures. For this end, Equation (7.5) calculates how many activated paths pass by node u œ V h

before node v œ V h, where ⁄p
uv is an auxiliary binary parameter that holds 1 if node u œ V h comes

before node v œ V h in path p, and 0 otherwise. While Equation (7.4) ensures that there is exactly

one path selected to each tra�c demand k, (7.6) and (7.7) are the variable domain constraints. The

proposed formulation is then solved by a distributed parallel branch-and-bound algorithm [127] using

multiple threads to solve each singular branch-and-bound tree’s node.

After, a split setting is selected for each slice in step 8. For this purpose, the selectSplit() procedure

verifies if there is at least one common host CU visited by the chosen path of each tra�c demand

k œ K(s) of a given slice s œ S. If that is the case, a split setting is randomly chosen for a random

sub-set SÕ
™ S of slices requests as follows. For each slice request s œ SÕ, an NFS f œ F d is randomly

chosen to be the first centralized NFS in the data-plane chain. Then, all NFSs before the chosen NFSs

f in the ordered set F d are set to be distributed. The remain sub-set S\SÕ of slice requests are set to

have all their data-plane NFSs centralized. On the other hand, if there is no common host CU visited

by the chosen path of each tra�c demand k œ K(s) of a given slice s œ S, all related data-plane NFSs

are forced to be distributed, that is, they must be installed in each DU node u œ O(s). Let us recall

that control-plane NFSs cannot be distributed and hence are always installed in aggregation/core

nodes. Since selecting a split for each slice request is done independently, the selectSplit() is run

in a parallel way, with each distributed thread being responsible for a single slice. As output, sets

F dist(s) and F cent(s) are generated with the distributed and centralized network function service

copies, respectively.

7.1.2 Network function service packing

The packNFSs() procedure (see Algorithm 2) generates copies of network functions with di↵erent

NFS types in order to process the data from all slices. This decision is made by translating the related

NSDP sub-problem into a Vertex Coloring Problem [93]. To this end, let distGraph = (V d, Ed) be

the conflict graph associated with the set of distributed NFSs as follows. A node u in V d is associated

with every tuple (s, f, u) : s œ S, f œ F dist(s), u œ O(s) and there exists an edge in (v, vÕ) œ Ed

between any two nodes v = (s, f, u) and vÕ = (sÕ, f Õ, uÕ) from V d if (qss
Õ

ff Õqs
Õ
s

f Õf = 0) ‚ (u ”= uÕ) holds.
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Hence, an edge in distGraph exists in order to forbid two NFSs to be packed together in the same

function n while violating the isolation constraints imposed by the NSs, or slices s and t do not share

any access node u œ V du. Once the conflict graph is generated in step 1 in Algorithm 2, its maximum

clique size is calculated with getCliquesSize() on step 2 by applying the Grimmett-McDiarmid’s greedy

algorithm [128]: in each iteration, a random vertex is chosen and added to the current clique if and

only if it is a common neighbor.

In order to find a clique with maximum size, the greedy algorithm is run several times in a

distributed parallel way (i.e., across multiple threads) within the getCliquesSize() procedure. The

best value is then taken into consideration as lower-bounds to the related vertex coloring problem.

This translated sub-problem is then solved in step 3 by the colorGraph() procedure, which runs the

randomized sequential coloring algorithm presented by Syslo [129]. It is also run several times in

a distributed parallel way and returns the best coloring (i.e., with the minimal chromatic number).

Regarding the related clique size calculated in step 2, the colorGraph() procedure stops any time an

optimal coloring is found (i.e., the clique size equals to the chromatic number) or a maximal number

of tries is reached. Hence, each NFSs represented by a vertex with the same color is packed in the

same network function by the buildNFs() procedure in step 4.

Steps 7-15 in Algorithm 2 repeat the previous ones in order to pack the centralized NFS set, which

also includes control-plane network function services. For this purpose, let centGraph = (V c, Ec) be
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the associated conflict graph as follows. For each centralized NFS f œ F cent(s)|s œ S, we associate a

node v in V c with every tuple (s, f). Also, let ws

f
œ R+ be the ratio between the quantity of tra�c

from slice s and processed by NFS f , over its capacity cap(f) as calculated by Equation (7.8).

ws

f =

Y
____]

____[

nsbf

cap(f) if f œ F c;
q

kœK(s)
⁄f≠1bk

cap(f) if f œ F d.

, ’s œ S, ’f œ F cent(s) (7.8)

Moreover, there exists an edge in (v, vÕ) œ Ec between any two nodes v = (s, f) and vÕ = (sÕ, gÕ)

from V d if (max{
cc

f
ws

f
+ cc

f Õws
Õ

f Õ

cc
u

: c œ C, u œ V h
} > 1) ‚ (qss

Õ
ff Õqs

Õ
s

f Õf + qss
Õ
qs

Õ
s < 2) holds. Hence,

an edge in centGraph exists in order to forbid two NFSs to be packed together in the same function

n while violating capacity and isolation constraints. Since the conflict graph is built regarding only

each pair of NFSs, the coloring solution calculated in step 8 must be checked: if the sum of physical

capacity required by all NFSs hosted by a given NF n œ N Õ is greater than the maximal amount

that any host CU can provide, another coloring for the related conflict graph must be provided if

the maximal number of tries is not reached; otherwise, packNFSs() procedure will be stopped and no

solution will be generated.

7.1.3 Network function embedding

In step 12 from Algorithm 1, each network function n œ N generated in the previous step is

embedded into a physical node. A copy of each n hosting a distributed NFS f œ F dist(s) from any

slice s œ S is generated and embedded into every associated DU node u œ O(s). For network functions

hosting centralized data-plane NFSs, a host node is chosen as follows. Let S(n) be the set of slices

from S and served by NF n œ N , and V (n) the set of host CUs among those visited by all paths

p œ P (k) : s œ S(n), k œ K(s) as chosen in step 7 of Algorithm 1. Then, for each NF n hosting

centralized network functions services, a host physical node is randomly chosen among those in V (n).

This procedure is repeated until an embedding that respects capacity constraints on physical nodes is

found or the maximal number of tries is reached.

7.1.4 Tra�c routing

The last sub-problem solved within Algorithm 1 is related to finding a path for each pair of

physical nodes that host NF copies that must be connected. Algorithm ?? depicts our approach to
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generate a solution to this sub-problem. First, let hostPairs be the set of such pair of nodes. Then,

a set paths(u, v) of paths to each pair of nodes in hostPairs is generated. For this purpose, Yen’s

algorithm [23] is used to find ◊ shortest paths between each node pair (u, v) œ hostPairs that respects

the maximal latency imposed by related NF copies. Then, all paths that do not support the expected

volume between the related NFs are deleted. Since finding paths for each flow is done independently,

this procedure is run in a distributed parallel way: each thread is responsible for running Yen’s

algorithm for a given flow and verifying the capacity constraints. Finally, a path from path(u, v)

is randomly chosen for each u, v œ hostPairs. If the combined tra�c volume of the selected paths

does not respect the capacity of the related physical links, another selection of paths is made. The

procedure returns no path if the number of tries of path selection is reached or no feasible path is

generated in steps 1-4.

7.1.5 Final solution

If a feasible solution is generated, its cost is then calculated in step 15 of Algorithm 1 as follows:

cost(Solution) =
ÿ

fœF

ÿ

nœN

ÿ

uœV

ÿ

cœC

µc

uyf

nu (7.9)

Where yf
nu œ Z0 and µc

u are the total number of NFSs f packed into NF n and installed on node u,

and the related cost per unit of resource usage c œ C, respectively. It is worthwhile mentioning that

the first cost of BestSolution is set to +Œ in step 1. Then, step 17 tests if a better solution should be
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found, where rand() uniformly generates a random number between 0 and 1 and fl(t) = 1 ≠ „/t is a

function depending on the time t (in seconds) that passed until such verification and a parameterizable

value „. For instance, setting „ to 60, the probability P (rand() Ø fl) that rand() is greater than fl is

equal to 100% if t is equal to 60 seconds or less, and less than 50% (resp. 10%) if t is equal to 120

(resp. 600) seconds. If the test returns true, then another solution is generated. Otherwise, the best

solution found theretofore is returned as output and the procedure stops.

7.1.6 Algorithm’s time complexity

Table 7.1 – Time Complexity

Main Procedures Asymptotic Complexity
chooseCU() O(F + V )
getPaths() O(KV

4)
choosePaths() Solver’s black box’s complexity
selectSplit() O(SF

d)
packNFSs() O(SF + V

3 + N), V from conflict graph
embedNFs() O(N)
colorGraph() O(V 2), V from conflict graph
routing() O(V 4)
Auxiliary Procedures Asymptotic Complexity
getDistributedConflictGraph() O(SF

d)
getCentralizedConflictGraph() O(SF )
getCliqueSize() O(V 4), V from conflict graph
BuildNFs() O(N)

Table 7.1 summarizes the time complexity of each procedure within Algorithm 1, where K =
q

sœS

|K(s)|. All other notations follow those presented in Table 5.1. Let us recall that, besides

chooseCU() and embedNFs(), all procedures are able to be run in a distributed parallel way.

7.2 Numerical experiments

Let us first detail the simulation settings. We propose di↵erent instance sizes (see Table 7.2), in

which we set the processing capacity cap(f) of each NFS in F d to between 50% and 100% of the

Table 7.2 – Instance Sizes

Instance size |V | Graph Density* |S| |K| |F
d
| |F

c
|

Tiny (T) 10 0.15 2 1 2 2
Small (S) 15 0.10 2 2 4 2

Medium-Small (SM) 20 0.15 4 3 4 3
Medium (M) 25 0.15 4 8 6 4

Medium-Big (MB) 30 0.20 4 8 6 6
Big (B) 35 0.20 8 8 8 6

Extra-Big (EB) 40 0.25 8 8 8 8
* Ratio between exiting and theoretically possible number of arcs.
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Table 7.3 – Instance Classes

Latency Description
Low (L) The maximum latency dfg between two NFSs and the end-to-end latency ds imposed by each slice

request s œ S is set respectively to between 50% and 150% and to between 250% and 500% of the
average latency on the physical links.

High (H) The maximum latency dfg between two NFSs and the end-to-end latency ds of each slice s œ S is
set respectively to between 200% and 400% and to between 300% and 1000% of the average latency
on the physical links.

Capacity Description
Tight (T) The available bandwidth ba on the physical links have between 50% and 100% of the average volume

(without compression) generated by the slices. In addition, each physical node u œ V \V
ap has

enough capacity to host between 1 and 3 copies of each NFS type; application nodes has no available
capacity.

Moderate
(M)

The available bandwidth ba on the physical links have between 200% and 300% of the average
volume (without compression) generated by the slices. In addition, each physical node u œ V \V

ap

has enough capacity to host between 5 and 8 copies of each NFS type; application nodes has no
available capacity.

Isolation Description
Weak (W) 10% of isolation parameters q

st and q
st
fg are set to 0; they are randomly chosen.

Strong (S) 75% of isolation parameters q
st and q

st
fg are set to 0; they are randomly chosen.

average volume generated by the tra�c demands. For NFSs of F c, this value was set to between 50%

and 100% of the volume related to the total number ns of expected UEs connected to the slice. Also,

the total amount bf g of tra�c between two functions from F (s) fi G(s) was set to 1 Kbps per UE. As

shown in Table 7.3, di↵erent instance classes are also proposed, which are related to the ratio between

the resource required by the slices and those available on the physical network, and also between the

latency on the physical links and the threshold imposed by slices and pairs of NFSs. The complete

reference of each generated instance is given by joining the acronyms of each size/class name from

tables 7.2 and 7.3. For example, < S, L, M, S > refers to a small instance with low latency threshold,

moderate capacity requirements, and strong isolation constraints. We implemented our model in a

Julia-JuMP environment using ILO CPLEX 12.10 as the linear solver. Our tests were run on a Linux

server with an Intel Xeon E5-2650 CPU. Also, we provided 12 threads for each distributed parallel

procedure. Finally, for each instance size/class, 30 di↵erent instances were randomly generated as

previously discussed. The data-set and the source code are available on [130].

7.2.1 Quantitative analyses

We first analyze the e�ciency of the proposed Math-Heuristic. For this purpose, we compare

it with the mixed-integer linear programming formulation (5.1)-(5.19) with the proposed objective

function (6.29), hereafter referred to as to MILP, introduced in the previous chapters. Concerning
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step 17 of Algorithm 1, we set fl to 1 ≠ 60/seconds for tiny and small instances and 1 ≠ 600/seconds

for all other sizes in our simulations.

Fig. 7.1 shows di↵erent results on tiny and small instances. First, as seen in Fig. 7.1a and Fig. 7.1f,

approximately 75% (resp. 70%) of all tiny (resp. small) instances were solved in less than 130 (resp.

220) seconds. We also observe that tiny (resp. small) instances with moderate (resp. tight) capacity

constraints were solved faster in general. For instance, the average runtime was roughly 98 and 118

(resp. 85 and 120) seconds on < T, M, L, W > and < T, T, L, W > (resp. < S, T, L, W > and

< S, M, L, W >) instance classes, respectively. While there is no strong impact on the number of

feasible solutions found by the Math-heuristic on small-size instances (see Fig. 7.1g), this behavior

led to an increase in the number of solutions for tiny-size instances (see Fig. 7.1b). In fact, 75% of

< T, M, L, W > and < T, M, L, S > (resp. < T, T, H, W > and < T, T, L, W >) instance classes

had more (resp. less) than 1700 (resp. 900) feasible solutions found within 180 seconds of execution

time. Considering all instance classes, the average time needed to find a feasible solution for tiny and

small instances was approximately 1 and 3 seconds, respectively. Moreover, as seen in Fig. 7.1c and

Fig. 7.1h, the best solution (not necessarily the optimal one) was found in less than 300 rounds for

more than 50% of all tiny and small instances. Due to greater feasible solution space, more iterations

were needed for instances with moderate capacity constraints. In fact, the best solution could be found

only after 800 (resp. 1000) rounds for some < T, M, L, S > (resp. < S, M, L, W >) instances.

Fig. 7.1d and Fig. 7.1i depict the final gap related to the best solution found by the proposed

Math-heuristic and the optimal value obtained by MILP. First, we observe that more than 80% (resp

75%) of tiny-size (resp. small-size) instances had a gap smaller than 2% (resp. 4%). Also, we do not

observe any strong impact on the final gap related to di↵erent instance classes. In fact, 100% of all

instances solved by the Math-Heuristic had a final gap less or equal to 10%. However, the average

gap of each feasible solution for tiny-size instances was better when strong isolation and strict latency

constraints were applied. As seen in Fig. 7.1e and Fig. 7.1j, the average gap on < T, T, L, S > and

< T, M, H, W > (resp. < S, M, L, S > and < S, T, H, W >) instances were respectively 2% and 5%

(resp. 5% and 8%).

Table 7.4 shows the total execution time and final gap on medium-small, medium, medium big,

big, and extra big instances. In each simulation, an instance class (i.e., a combination of capacity,

latency, and isolation constraints; see Table 7.3) was randomly chosen. While the third and fourth
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Figure 7.1 – Quantitative analyses: tiny and small instances.

columns of Table 7.4 are related to MILP, the two last columns depict the values when the proposed

Math-Heuristic was applied. In both cases, the final gap is related to the best solution and the lower

bound obtained from the linear relaxation of MILP. First, we observe that the Math-Heuristic was

faster than MILP in all instance sizes. While MILP reached the time limit in almost all instance sizes,

our Math-Heuristic needed less than 20 minutes to find a good solution. As seen in Table 7.4, the

average gap could be reduced from 36.3% to 4.3% on medium-big instances. Moreover, while MILP

could not find any feasible integer solution for big and extra big instances within 1 hour, the average

runtime and final gap were respectively 997 seconds and 8.2% (resp. 1245 seconds and 11.5%) when

Math-Heuristic was applied on big (resp. extra big) instances.

7.2.2 Qualitative analyses

To better understand the impact of our math-heuristic on the physical network, we now analyze

di↵erent parameters related to both physical nodes and physical links, as well as the end-to-end (e2e)

latency on the data-plane flow. Fig. 7.2 shows the impact of each approach on the aforementioned

Table 7.4 – Quantitative analyses: from medium small to extra big instances

Instance Size MILP Math-Heuristic
Runtime (s) Gap (%) Runtime (s) Gap (%)

Medium-Small 2165 ± 364 0 732 ± 87 3.2 ± 0.5
Medium 3600ú 5.7 ± 2.1 803± 122 4.5±0.7
Medium-Big 3600ú 36.3 ± 4.8 894 ± 109 4.3±1.2
Big 3600ú ** 997 ± 84 8.2±3.6
Extra-Big 3600ú ** 1245 ± 241 11.5±2.4
* Time limit reached. ** No feasible solution was found.
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network parameters. Compared to MILP, more physical links are used to carry the expected slice

flows in the final solution found by the proposed Math-Heuristic. For instance, the average link usage

ratio was respectively 62% and 76% (resp. 53% and 58%) on < T, M, H, S > and < S, M, H, S >

when Math-heuristic (resp. MILP) was applied, (see Fig. 7.2a and Fig. 7.2f). However, the average

load on active links remains the same on tiny instances (see Fig. 7.2b) and on small instances without

strict capacity constraints (see Fig. 7.2g). Also, as seen in Fig. 7.2g, the Math-heuristic could reduce

the average load on active links on small instances with strict capacity constraints, especially those

with strong isolation restrictions: compared to MILP, we observe a reduction from 58% (resp. 55%)

to 40% (resp. 38%) on < S, T, L, S > (res. < S, T, H, S > ) instances. Regarding all instance classes,

the average reduction was approximately 16% on small instances. Finally, we observe an adverse e↵ect

on the e2e latency only on small instances without strict capacity constraints applying the proposed

Math-Heuristic, especially on instances without strict latency constraints. Even though all latency

constraints are respected (i.e., e2e latency and between each pair of NFSs) by both approaches, the

average e2e data-plane latency was respectively 0.5 ms and 2.55 ms (resp. 0.38 ms and 1.89 ms) on

< T, M, H, S > and < S, M, H, W > when Math-Heuristic (resp. MILP) was applied; regarding all

instance classes, the average increase on the e2e latency was equal to 14% and 25% on tiny and small

instances, respectively (see Fig. 7.2c and Fig. 7.2h).

We also observe similar behavior on physical nodes. The proposed Math-Heuristic led to more

nodes hosting at least one network function than the MILP formulation. As seen in Fig.7.2i, the

number of host nodes considerably increased when the Math-heuristic was applied on small instances,

especially those with strong isolation constraints. For instance, the ratio of host nodes increased

from 17% (resp. 17%) with MILP to 36% (resp. 27%) with Math-Heuristic on < S, T, L, S > (resp.

< S, M, L, S >) instances; regarding all instance classes, the average ratio increased by roughly 2%

and 47% on tiny and small instances, respectively (see Fig.7.2d and Fig.7.2i). This behavior, however,

led to an important decreasing in the average node load, especially on small-size instances with strict

capacity and isolation constraints. As seen in Fig. 7.2j, the Math-heuristic could reduced the average

load on host nodes from 41% (resp. 30%) to 18% on < S, T, L, S > (res. < S, T, H, S > ) instances.

Regarding all instance classes, the average reduction was approximately 35% on small instances (see

Fig. 7.2j); we did not observe an important impact on the average load of physical nodes on tiny

instances (see Fig. 7.2e).
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Figure 7.2 – Qualitative analyses: tiny and small instances.

7.3 Summary

In this chapter, we presented and discussed the Network Slice Design Problem in 5G systems,

proposing an open-access framework based on a Math-heuristic to address the underlying optimization

problem. The overall idea of the proposed approach relies on decomposing the NSDP into several sub-

problems and sequentially solve them while encompassing control-plane and data-plane separation

and novel mapping and decomposition dimensions influencing the placement and interconnection of

slices. Numerical experiments showed the e�ciency of our approach on di↵erent instance classes,

which could attain near-optimal solutions in a competitive runtime. Comparing it to a mixed-integer

linear programming formulation, the proposed Math-Heuristic could reduce the average runtime and

the final gap by up to 78% and 90%, respectively. Moreover, our approach could reduce the congestion

on the physical network, better balancing the data flow while considering all technical constraints. For

instance, the average load on physical links and physical nodes could be reduced by 16% and 35%,

respectively.

On a practical note, as our Math-Heuristic could reduce the average load on physical nodes and

physical links, a tough but interesting extension is to use it within an online algorithm. Our approach

might potentially increase the slice acceptance ratio, that is the ratio between the number of embedded

slices and the number of requests, since the solution proposed by the Math-Heuristic distributes the

data flow among several nodes and links, leading to a decreasing in the network congestion. More tests
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must therefore be carried out to assess the e↵ects of the proposed Math-heuristic on such scenarios

and before conclusions can be drawn. Also, let us recall that, as the proposed approach is a Math-

Heuristic, the optimality of the solutions found by our algorithm cannot be ensured. However, as seen

in the presented numerical results, the e�ciency of our approach o↵sets this aspect and led to finding

solutions with a small average gap on relatively short execution time, even on big instances. Thus,

it would be interesting and most probably very powerful to use it as a primal heuristic to boost the

e�ciency of an exact algorithm.

144



Chapter 8

Network slice design with dedicated
network functions

Contenu
8.1 A compact formulation for the NSDP-DNF . . . . . . . . . . . . . . . . . . . . . . . . 146
8.2 An extended formulation for the NSDP-DNF . . . . . . . . . . . . . . . . . . . . . . . 149
8.3 Solving approaches for the NSDP-DNF . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.3.1 Relax-and-fix algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.3.2 Column generation-based algorithm . . . . . . . . . . . . . . . . . . . . . . . . 155

8.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.4.1 Compact formulation and relax-and-fix algorithm . . . . . . . . . . . . . . . . . 158
8.4.2 Extended formulation and column generation-based framework . . . . . . . . . 162

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

In this chapter, we present another variant of the NSDP, where the Hard Isolation policy is always

applied, that is, all network functions are slice-dedicated (see Chapter 3 for more information). Thanks

to this hypothesis, the complexity of the studied problem can be decreased, allowing us to propose

di↵erent heuristic and mathematical approaches to solve the related optimization problem. However,

the intra-slice anti-a�nity constraints remain, which represent the possibility of packing two di↵erent

NFSs into the same network function serving a given network slice. The motivation for keeping the

NFS-NF mapping comes from decreasing the operational complexity related to the deployment of each

NS. In other words, installing few network functions instead of several network function services allows

operators to aggregate into the same entity all NFSs that share the same communication protocol or

other types of a�nity. Hence, the set-up step of deploying networks slices might potentially be easier

and faster, reducing, therefore, operating expenses costs [131]. We refer this variant as to Network

Slice Design with Dedicated Network Functions (NSDP-DNF).

145



8.1. A COMPACT FORMULATION FOR THE NSDP-DNF

In what follows, we present di↵erent strategies in order to e�ciently solve the optimization problems

related to the NSDP-DNF 1. First, we propose a compact formulation and an extended one. To solve

the former, we proposed a Relax-and-Fix heuristic that relies on repetitively solving the proposed

related ILP with only a few integer variables and fixing or relaxing most of the remaining integer

and binary ones. On the other hand, to address the exponential number of variables in the extended

formulation, a column generation-based framework is then proposed.

8.1 A compact formulation for the NSDP-DNF

In this section, we present a integer linear programming formulation for the NSDP. The following

formulation is based on those proposed on our previous Chapter 5, and presents some modifications

to better address the variant of the NSDP-DNF presented in this chapter. The problem variables are

therefore defined as :

• zs

f
œ {0, 1} that takes value 1 if NFS f is centralized, 0 otherwise,

• xsf
nu œ {0, 1} that takes value 1 if NFS f serving slice s is packed into NF n, installed on node u, 0

otherwise,

• wsf
nu œ Z the total number of NFSs f packed into NF n, installed on node u, and serving slice s

• yn œ {0, 1} that takes value 1 if NF n is built; 0 otherwise,

• “ka

fg
œ {0, 1} that takes value 1 if arc a is used to route the tra�c between NFS f and NFS g for

demand k, 0 otherwise.

• ra œ R+ the total volume traversing arc a.

The constraints are categorized into several blocks and defined as follows :

Split Selection: The split selection constraints are to impose that if NFS f œ F d is centralized, then

the remaining NFSs of the ordered set F d should also be centralized, thus defining a splitting policy

1. The content of this chapter was subbimited to Networks Journal in November 2021 as: W. d. S. Coelho, A.
Benhamiche, N. Perrot and S. Secci, ”Relax-and-Fix and Column Generations Algorithms for the Network Slice Design
Problem”.
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attached to a slice :

zs

f Æ zs

f+1, ’s œ S, ’f œ F d
\{f|F d|}. (8.1)

Network Function Services Dimensioning and Packing: Constraints (8.2) are to define variables w

directly as a function of x variables while forcing to install enough NFS to process all the tra�c: they

express the number of copies of distributed and centralized NFSs needed for each NS request s œ S.

Inequalities (8.3) are the anti-a�nity constraints on NFs on the virtual layer. They also ensure that

NF n is assigned to at most one physical node of V , while forcing the variable y to be equal to 1 if

there is at least one NFSs hosted by the related network function n œ N .

cap(f)wsf

nu Ø

Y
___]

___[

q

kœK(s)|u=ok

⁄f≠1bkxsf
nu if f œ F d, u œ V du

nsbf xsf
nu if f œ F c;q

kœK(s)
⁄f≠1bkxsf

nu if f œ F d, u œ V ac.
’s œ S, ’f œ F, ’n œ N, ’u œ V (8.2)

xsf

nu + xtg

nv Æ

I
1 + qs

fg
if s = t, u = v,

yn otherwise .
’s, t œ S, ’f, g œ F, ’n œ N, ’u, v œ V (8.3)

Network Function Services Placement: For each slice request s, equalities (8.4) ensure that a dis-

tributed NFS f should be installed on every origin node of K(s); whereas equalities (8.5) ensure that

each centralized NFS f serving s should be installed in a node of V ac.

ÿ

nœN

xsf

nu =
I

1 ≠ zs

f
, if f œ F d, u œ O(s);

0 , otherwise.
, s œ S, ’f œ F, u œ V du (8.4)

ÿ

nœN

ÿ

uœV\V du

xsf

nu =
I

zs

f
, if f œ F d;

–s

f
, otherwise.

s œ S, ’f œ F (8.5)

Tra�c routing: The constraints (8.6) are the flow conservation constraints, for each slice request s œ S,

each demand k œ K(s) and each pair of NFSs in F . They allow to associate a path in G for each

tra�c demand k between its origin node ok and the first NFS f = 1 from the ordered set F d and

serving k, and between the last NFS f = |F d
| from F d and the destination node tk of k.
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ÿ

aœ”+(u)
“ka

fg ≠

ÿ

aœ”≠(u)
“ka

fg =

Y
__________________]

__________________[

zs

f
≠ 1 , if (f, g) œ G(s), f œ F c, u = ok,

1 ≠ zs

f
, if , u = ok, (f, g) œ G(s), f œ F d

or if u = ok, f = f|F d|, g = f0;
≠

q
nœN

xsg
nu , if u œ V \V du, f = f0, g = f1

zs
g , if u = ok, f = f0, g = f1

≠1 , if u = tk, f = f|F d|, g = f0q
nœN

xsf
nu , if u œ V \V du, f = f|F d|, g = f0

zs
g ≠ zs

f
, if u = ok, ’f, g œ F d

|g = f + 1q
nœN

xsf
nu ≠

q
mœN

xsg
mu , otherwise.

’k œ K(s) : s œ S, ’f, g œ F, ’u œ V (8.6)

Latency: Inequalities (8.7) ensure that each demand k œ K(s) is routed along a path that respects the

end-to-end latency value requested for slice s œ S while inequalities (8.8) ensure that the maximum

latency value between any pair of NFSs is also respected.

ÿ

aœAp

da(“ka

f|F d|f0 +
ÿ

fœ{f0}fiF d\{f|F d|}

“ka

ff+1) Æ ds , ’k œ K(s) : s œ S (8.7)

ÿ

aœAp

da“ka

fg Æ dfg , ’k œ K(s) : s œ S, ’f, g œ F (8.8)

Physical Capacity: Inequalities (8.9) are the capacity constraints over the arcs of A. Note that the

flow using an arc a œ A is composed of two types of tra�c for each s œ S, namely the part of

tra�c generated by inter-NFS communication and the part of tra�c generated by the demands of

K(s), which is submitted to the compression coe�cients ⁄. Inequalities (8.10) express the capacity

constraints in terms of NFs that can be installed on each physical node u œ V .

ÿ

sœS

ÿ

kœK(s)
bk(⁄f|F d|

“ka

f|F d|f0 +
ÿ

fœ{f0}fiF d\{f|F d|}

⁄f “ka

ff+1)]

+
ÿ

sœS

ns(
ÿ

(f,g)œF (s)
bfg“ksa

fg
+

ÿ

(f,g)œG(s)

ÿ

kœK(s)

bfg“ka

fg

|K(s)| ) = ra , ’a œ Ap (8.9)

ÿ

nœN

ÿ

fœF

cc

f yf

nu Æ cc

u ’u œ V, ’c œ C (8.10)

The NSDP-DNF is then equivalent to the following formulation:

min
ÿ

nœN

yn +
ÿ

sœS

ÿ

fœF

ÿ

uœV

ÿ

cœC

cc

f µc

uwsf

nu (8.11)
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subject to

(8.1) ≠ (8.10)

0 Æ ra Æ ba œ R , ’a œ A (8.12)

yn œ {0, 1} ’n œ N (8.13)

xsf

nu œ {0, 1} ’s œ S, ’f œ F, ’n œ, ’u œ V (8.14)

zs

f , œ {0, 1} ’s œ S, ’f œ F (8.15)

“ka

fg œ {0, 1} ’k œ K(s) : s œ S, ’f, g œ F (8.16)

wsf

nu Ø 0 œ Z ’s œ S, ’f œ F, ’n œ N, ’u œ V (8.17)

The objective function consists in minimizing the total cost of the NFS copies installed over the nodes

of G and the number of network functions to be built. When the costs of physical resources are

unitary, it allows identifying the smallest number of NFS needed to design and embed all network slice

requests in a common physical infrastructure.

8.2 An extended formulation for the NSDP-DNF

In this formulation, the concept of virtual network templates is based on the definition of Network

Slice Templates (NST) and Network Slice Blueprint (NSB) respectively proposed by 3GPP [7] and

NGMN [132]. Hence, a virtual network template contains the complete description of the structure, the

configuration of contained components, and the plans/workflows for how to instantiate and control the

NS instance. We extend the NST and NSB definitions to incorporate splitting, packing, and mapping

decisions. For this purpose, we introduce the set G(s) of all possible virtual network templates for

slice request s œ S. Moreover, let x̄gf
nu be a parameter that takes value 1 if NFS f is packed into

NF n and installed on node u in virtual network template g œ G(s); 0 otherwise. Also, w̄gf
nu is the

ratio between the quantity of tra�c processed by NFS f , packed into NF n and installed on node u

in virtual network template g, over its capacity cap(f). Moreover, let ȳg
n be a binary parameter that

takes 1 (resp. 0) if NF n is (resp. is not) built within within virtual network template g, and by r̄g
a the

expect volume from virtual network template g on arc a. Finally, for each slice request, let µs
g be the

cost of embedding virtual network template g œ G(s) into physical network G. This cost takes into

149



8.2. AN EXTENDED FORMULATION FOR THE NSDP-DNF

consideration the cost of resources from host nodes and the number of built NFs, and is calculated as

following:

µs

g =
ÿ

nœN

ȳg

n +
ÿ

fœF

ÿ

uœV

ÿ

cœC

cc

f µc

uw̄gf

nu ’s œ S, ’g œ G(s) (8.18)

We now propose a extended integer linear programming formulation, hereafter referred as to E-

ILP, for the NSDP. The variables related to this formulation are then defined as :

• fis
g œ {0, 1} that takes value 1 if virtual network g œ G(s) is activated to serve slice s œ S, 0 otherwise.

The E-ILP is then equivalent to the following formulation:

min
ÿ

sœS

ÿ

gœG(s)
µs

gfis

g (8.19)

subject to

ÿ

gœG(s)
fis

g = 1 , ’s œ S Âs (8.20)
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sœS

ÿ

gœG(s)
fis
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a Æ ba , ’a œ A „a (8.21)

ÿ
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fœF
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nœN

cc
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nufis

g Æ cc

u , ’u œ V, ’c œ C ‡c

u (8.22)

fis

g œ {0, 1} , ’s œ S, ’g œ G(s) (8.23)

The objective function consists in minimizing the total cost of the NFS copies installed over the

nodes of G and the number of network functions to be built. When the costs of physical resources

are unitary, it allows identifying the smallest number of NFS needed to design and embed all network

slice requests in a common physical infrastructure. Constraints (8.20) ensure that exactly one virtual

network template is chosen for each slice request. Inequalities (8.21) express the capacity constraints

in terms of NFs that can be installed on each physical arc a œ A, while inequalities (8.22) are the

capacity constraints over the nodes of V .
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8.3 Solving approaches for the NSDP-DNF

In what follows, we present di↵erent strategies in order to e�ciently solve the proposed formulations

related to the NSDP-DNF. First, we propose a compact formulation and an extended one. To solve the

former, we proposed a Relax-and-Fix heuristic that relies on repetitively solving the proposed related

ILP with only a few integer variables and fixing or relaxing most of the remaining integer and binary

ones. On the other hand, to address the exponential number of variables in the extended formulation,

a column generation-based framework is then proposed.

8.3.1 Relax-and-fix algorithm

Algorithm 6 presents the global framework of our approach. The overall idea of the proposed

heuristic, hereinafter referred to as Relax-and-Fix, relies on repetitively solving the proposed ILP (8.1)-

(8.17) with only a few integer variables and fixing or relaxing most of the remaining integer and binary

variables. As input, the heuristic receives an NSDP-DNF instance composed of a directed graph G

representing the physical network with the set of capacities C, a set of slice requests S, each of which

with a set of tra�c demands K(s), a set F of NFS types, a set N of potential host virtual functions,

and the pacing strategy fl œ Z+. As output, it returns a virtual network to each slice request s œ S

ensuring all technical constraints imposed by both physical and virtual layers.

Steps 1-6 are responsible for initiating all parameters within Relax-and-Fix. First, an auxiliary set

Nú is created with only one NF in it and a model M is created following the presented ILP (8.1)-(8.17).

In order to accelerate the solving process, M is created with Nú instead of N , and Inequalities (8.3)

are relaxed (i.e., they are not presented in M). Also, the integrality constraint of each variable in M

is removed. In step 4, the set S of slice request is ordered following a given strategy. For instance,

S might be ordered in an increasing (resp. decreasing) order in terms of end-to-end latency ds (resp.

required capacity) or even in a random way. In this work, each ILP sub-problem within M is related

to a slice request (and all related variables and constraints). Hence, a pace p represents how many

slices should be embedded in each iteration. In other words, in each iteration, we restore integrality

constraints on all variables related to p slices requests in S. Then, in step 5, p is set to the initial

pacing strategy fl. Finally, an auxiliary set Sú is created in step 6 with no element. This set will

represent the embedded slices after each pacing within Relax-and-Fix, that is, the slice request with

151



8.3. SOLVING APPROACHES FOR THE NSDP-DNF

fix values on their variables.

Steps 7-21 are the core of our proposed algorithm. First, let IntSlices be a set of slices whose

variables will be enforced to be integers in the current round. This set is built regarding the p first

slice requests in S and disregarding those already embedded in previous rounds (i.e., those whose

variables have fixed values). Then, in step 11, the model M is solved. In this step, the variables

associated with slice requests in S, Sú, and IntSlice are respectively continuous, integer (or binary),

and fixed (i.e., taking the values found in previous rounds where they were set to integer). Next, if M

is feasible, steps 13-14 are responsible for fixing the values found in step 11 only on each slice request

s œ IntSlices. Then, IntSlices is added to the embedded slices set Sú and p is restored to fl. If M is

not feasible and Sú is not empty (i.e., there is at least one slice embedded theretofore), then the last

slice request is removed from the set Sú of embedded slices, and the value of p is incremented by one

unit. This last step is responsible for creating a big set IntSlices in step 8 during the next round.
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This loop stops when all slices are embedded or the instance I is proven to be unfeasible.

If a feasible solution is found, then packNFSs() procedure generates copies of network functions with

di↵erent NFS types in order to process the data from all slices. This decision is made by translating

the related NSDP-DNF sub-problem into a Vertex Coloring Problem [93] which is summarized in

Algorithm 7. First, let Gc = (V c, Ec) be the conflict graph associated with the set of distributed

NFSs as follows. A node v in V c is associated with every tuple (s, f, u) : s œ S, f œ F ), u œ V and

there exists an edge in (v, vÕ) œ Ec between any two nodes v = (s, f, u) and vÕ = (sÕ, f Õ, uÕ) from

V c if (qs

ff Õqs
Õ

f Õf = 0) ‚ (u ”= uÕ) holds. Hence, an edge in Gc exists in order to forbid two NFSs to

be packed together in the same network function n while violating anti-a�nity packing constraints

(see Inequalities (8.3)). Once the conflict graph is generated, its maximal clique size is calculated by

applying the Grimmett-McDiarmid’s greedy algorithm [128]: in each of its iteration, a random vertex

is chosen and added to the current clique if and only if it is a common neighbor to all vertices already

in the clique. In order to find a clique with maximal size, the greedy algorithm is run several times in a

distributed parallel way (i.e., across multiple threads). The best value is then taken into consideration

as lower-bound to the related vertex coloring problem, which is then solved by running the randomized
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Table 8.1 – Time Complexity

Main Procedures Steps Asymptotic Complexity
Creating conflict graph 1-5 O(SFV ), V from physical network
Getting clique size 6-10 O(V 4), V from conflict graph
Coloring conflict graph 11-17 O(V 2), V from conflict graph

sequential coloring algorithm presented by Syslo [129]. It is also run several times in a distributed

parallel way and returns the best coloring (i.e., with the minimal chromatic number). Regarding the

related clique size previously calculated, the procedure stops any time an optimal coloring is found

(i.e., the clique size is equal to the chromatic number) or a maximal number of tries is reached. Hence,

each NFSs f represented by a vertex with the same color is packed into the same network function n.

8.3.1.1 Algorithm analysis

While Algorithm 6 is mainly driven by the solver’s black box’s time complexity, Table 8.1 depicts

the complexity related to each inner procedure in Algorithm 7. In what follows, we present en discuss

some important features of the proposed Relax-and-Fix algorithm.

Theorem 8.3.1. If IntSlice set is equal to the set S of slice requests and the mathematical formulation

M is unfeasible, then no feasible solution exists for I.

Proof. If the pace p is equal to the number of slices requests in set S, then IntSlices will be equal to S

in the next round. Hence, the integrality constraints will be enforced to all variables in M. As it can

only happen if there is no slice with fixed variables (see steps 17-19 in Algorithm 6) and applying the

well-known Duality Theorem [133], it is clear that if M is not feasible, then no feasible solution exists

to I.

As a direct implication of Theorem 8.3.1, we have the following corollary:

Corollary 1. Relax-and-Fix always returns a feasible solution to M if there exists at least one.

Proof. The proof is trivial, since that Relax-and-Fix will solve M enforcing the integrality constraints

on all variables of the model in the worst case (i.e., IntSlice set is equal to set S of slice requests).

Theorem 8.3.2. If Sú is empty and I is feasible, then the solution found to M is a lower-bound to

ILP (8.1)-(8.17).
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Proof. The proof is trivial, since the Inequalities (3)-(4) and integrality constraints are partially relaxed

and there is no variable with fixed value.

8.3.2 Column generation-based algorithm

We now describe the Column Generation framework to solve the NSDP, which relies on the pro-

posed E-ILP formulation (8.19)-(8.23) as the Master Problem. We first introduced the related dual

formulation: the integrality constraints (8.23) are then relaxed and therefore respectively become

fis
g Ø 0. Then, we present an ILP formulation corresponding to the pricing sub-problem related to

each slice request.

8.3.2.1 The restricted master problem

Since G(s) has an exponential number of potentially suitable templates for each slice request, the

E-ILP formulation (8.19)-(8.23) has an exponential number of variables. Hence, we propose to initialize

the master problem with only a sub-set of columns (i.e., variables related to each g œ GÕ(s) ™ G(s)

for each s œ S). This model is then called Restricted Master Problem (RMP) and can be generated

by proposing templates with no physical capacity requirement and cost with a large enough value

(e.g., µs
g = 105). We also propose to initialize the RMP with the final solution found by the proposed

Relax-and-Fix algorithm described in the previous sections.

8.3.2.2 Pricing sub-problems

We first present the D-NCILP formulating related to the linear relaxation of E-ILP, whose dual

variables are depicted on the right of each related constraint class in the previous section of this work.

max
ÿ

s

Âs ≠

ÿ

aœA

ba„a ≠

ÿ

uœV

ÿ

cœC

cc

f ‡c

u (8.24)

subject to
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fœF

ÿ

nœN

ÿ

uœV
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cœC
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nucc
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u Æ µs
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Âs œ R , ’s œ S (8.26)

„a œ R+ , ’a œ A (8.27)

‡c

u œ R+ , ’u œ V, ’c œ C (8.28)

The separation of inequalities (8.25) represents the pricing sub-problems related to the E-ILP

formulation. Hence, the pricing sub-problem consists in finding a virtual network template for each

slice request s œ S in such a way that all technical constraints would be respected while improving

the solution cost of RMP (i.e., decreasing the value of the objective function (8.19)). To this purpose,

let Â̄s „̄a ‡̄c
u be the components of the dual solution of the RMP related to constraints (8.20) and

inequalities (8.21) and(8.22), respectively. Hence, the pricing problem consists of finding, for each slice

request s œ S, a virtual network template g such that

Âs̄ ≠

ÿ

aœA

rg

a„̄a ≠

ÿ

fœF

ÿ

nœN

ÿ

uœV

ÿ

cœC

w̄gf

nucc

f ‡̄c

u > µs

g (8.29)

The pricing sub-problem related to each slice request sú œ S relies therefore on the compact

formulation (8.1)-(8.17) whose objective function (8.11) is replaced by :

PSP (sú) = max Â̄sú ≠

ÿ

nœN

ys
ú

n ≠

ÿ

aœA

ra„̄a ≠

ÿ

fœF

ÿ

nœN

ÿ

uœV

ÿ

cœC

cc

f ws
ú
f

nu (µc

u + ‡̄c

u) (8.30)

8.3.2.3 Column generation framework

Let us now describe the column generation-based framework proposed to solve the NSDP-DNF;

which is summarized in Algorithm 8. First, let GÕ(s) ™ G(s) be a minimal sub-set of potential virtual

network templates for each slice request s œ S. Then, let E-ILP with these aforementioned sub-sets

GÕ(s) be our Restricted Master Problem, which is applied on its linear relaxation form. The algorithm

starts by generation the sub-set GÕ(s) for each slice request (see step 1 in Algorithm 8). In order to

build such sub-sets, we apply the Relax-and-Fix as our primal heuristic. Then, in step 3, the related

RMP are generated and solved. The next step is related to the pricing sub-problems, in which the

PSP(s*) is solved for each slice request applying the values of the related dual variables from RMP.

As previously discussed, this step is |S| times solved by applying the compact formulation (8.1)-(8.17),

where S = {sú} and whose objective function (8.11) is replaced by (8.30). If the reduced cost is
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negative, then the generated virtual network template is added to GÕ(s) and the new RMP is solved

with the new columns. These last steps are repeated until no column is generated from any PSP(s*).

Finally, the ILP related to the RMP, with all generated columns and the integrality constraints (8.23),

is then solved.

Note that this framework gets as input a minimal sub-set GÕ(s) for each slice request. The con-

struction of such sub-sets that ensure a feasible solution for the NSDP-DNF instance I is made in

pre-processing.

8.4 Numerical experiments

Let us first detail the simulation settings. We propose di↵erent instance sizes (see Table 8.2), in

which we set the processing capacity cap(f) of each NFS in F d to between 50% and 100% of the

average volume generated by the tra�c demands. For NFSs of F c, this value was set to between 50%

and 100% of the volume related to the total number ns of expected UEs connected to the slice. Also,

the total amount bf g of tra�c between two functions from F (s) fi G(s) was set to 1 Kbps per UE. As

shown in Table 8.3, di↵erent instance classes are also proposed, which are related to the ratio between

the resource required by the slices and available on the physical network, and also between the latency

on the physical links and the threshold imposed by slices and pairs of NFSs. The complete reference

of each generated instance is given by joining the acronyms of each size/class name from tables 8.2
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Table 8.2 – Instance Sizes

Instance size |V | Graph Density* |S| |K| |F d| |F c|
Tiny (T) 10 0.15 2 1 2 2
Small (S) 15 0.10 2 2 2 2

Medium-Small (SM) 20 0.15 4 3 5 2
Medium (M) 25 0.15 4 8 5 5

Medium-Big (MB) 30 0.20 4 8 10 5
Big (B) 35 0.20 8 8 10 10

* Ratio between exiting and theoretically possible number of arcs.

Table 8.3 – Instance Classes

Latency Description
Low (L) The maximum latency dfg between two NFSs and the end-to-end latency ds imposed by

each slice request s œ S is set respectively to between 50% and 150% and to between
250% and 500% of the average latency on the physical links.

High (H) The maximum latency dfg between two NFSs and the end-to-end latency ds of each slice
s œ S is set respectively to between 200% and 400% and to between 300% and 1000% of
the average latency on the physical links.

Capacity Description
Tight (T) The available bandwidth ba on the physical links have between 50% and 100% of the

average volume (without compression) generated by the slices. In addition, each physical
node u œ V \V ap has enough capacity to host between 1 and 3 copies of each NFS type;
application nodes has no available capacity.

Moderate (M) The available bandwidth ba on the physical links have between 200% and 300% of the
average volume (without compression) generated by the slices. In addition, each physical
node u œ V \V ap has enough capacity to host between 5 and 8 copies of each NFS type;
application nodes has no available capacity.

Isolation Description
Weak (W) 10% of anti-a�nity parameters qs

fg are set to 0; they are randomly chosen.
Strong (S) 75% of anti-a�nity parameters qs

fg are set to 0; they are randomly chosen.

and 8.3. For example, < S, L, M, S > refers to a small instance with low latency threshold, moderate

capacity requirements, and strong isolation related to a�nity constraints. We implemented our model

in a Julia-JuMP environment using ILO CPLEX 12.10 as the linear solver. Our tests were run on

a Linux server with an Intel Xeon E5-2650 CPU. Also, we provided 12 threads for each distributed

parallel procedure. Finally, for each instance size/class, 30 di↵erent instances were randomly generated

as previously discussed.

8.4.1 Compact formulation and relax-and-fix algorithm

We first analyze the e�ciency of the proposed Relax-and-Fix algorithm. For this purpose, we

compare it with the compact formulation (8.1)-(8.17) formulation, hereafter referred to as to ILP,

introduced in this chapter. In these tests, we set the time limit to 3600 seconds (one hour). For
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Table 8.4 – Relax-end-Fix: gap and runtime on di↵erent instances sizes.

ILP Relax-and-Fix
Instance Size Gap (%) Runtime (s) Gap (%) Runtime (s)
Tiny 0.0 5±3 1.14 ± 1.1 0.03±0.01
Small 0.0 248±49 1.65 ± 0.3 0.23±0.1
Medium Small 26.5±2.3 3600* 8.44±0.2 97±28
Medium 48.4±28.8 3600* 5.77±0.1 178±37
Medium Big 82.8±32.2 3600* 4.31±0.06 319±49
Big ** 3600* 5.90±0.1 907±158
* Time limit reached. ** No feasible solution was found.

each instance size, 30 instances for each class (i.e., a combination of capacity, latency, and isolation

constraints; see Table 8.3) were randomly generated as previously discussed.

Table 8.4 shows the execution time and final gap (average and standard deviation) on all instance

sizes. While the second and third columns are related to the ILP formulation within the solver branch-

and-bound, the two last columns depict the values when the proposed Relax-and-Fix algorithm was

applied. In both cases, the final gap is related to the best lower bound between those obtained by

Relax-and-Fix (see Theorem 8.3.2) and the solver on the ILP formulation (8.1)-(8.17). All results

reported in Table 8.4 are related to random slice ordering and the 1-slice pacing strategy. First, we

observe that the Relax-and-Fix was faster than ILP in all instance sizes. For instance, ILP reached

the time limit on medium small-size instances and bigger ones, while our proposed Relax-and-Fix

needed less than 20 minutes to solve any instance size. Indeed, we observed that approximately 90%

of medium-small (resp. small) instances were solved in less than 1 (resp. 120) seconds. As seen in

Table 8.4, the average gap could also be reduced from 82.8% to 4.31% (resp. 48.4% to 5.77%) on

medium-big (resp. medium) instances. It is worth mentioning that 50% of medium instances had a

gap smaller than 25%, and any feasible solution was found within 1-hour runtime for roughly 20%

of medium-small instances. Moreover, while ILP could not find any feasible integer solution within

1-hour runtime for any big-size instance, the average runtime and final gap were respectively 907

seconds and 5.2% when Relax-and-Fix was applied on the same instances.

Fig. 8.1 shows the influence of di↵erent instance classes on the e�ciency of our approach (random

slice ordering and 1-slice pacing strategy were applied in all tests). Regarding all 32 possible combi-

nations, we observe a moderate impact only on tiny and small instances (see Fig. 8.1a and Fig. 8.1b).

Indeed, while 100% of < T, H, M, W > (resp. < S, H, M, W >) instances had a gap smaller than

1.50% (resp. 2.50%), only 37.50% (resp. 60.0%) of < T, L, T, S > (resp. < S, L, T, S >) instances
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had the same solution quality. We also observed that the average final gap on tiny (resp. small) in-

stances with tight capacity constraints was roughly 1.50% (resp. 2.47%) against 0.78% (resp. 0.50%)

presented by those with moderate physical capacities. This behavior can be explained by the fact

that almost all integrality constraints are relaxed during the first iterations of the proposed Relax-

and-fix algorithm, which might potentially lead to the violation of several capacity constraints (see

Inequalities (8.9)-(8.10)) before the last iteration (i.e., with all variables with either fixed values or

related integrality constraints restored). However, we did not observe any important influence on the

performance of our approach applying di↵erent instance classes on bigger instances (see Fig. 8.1c and

Fig. 8.1d). Also, di↵erent latency and anti-a�nity constraints did not statistically impact the quality

of the final solutions on any instance size.

In what follows, we analyze the response of the Relax-and-Fix algorithm to di↵erent pacing and

ordering strategies. To this purpose, we proposed three slice ordering strategies, which is responsible

to chose the order of slices having the integrality constraints restored on the related variables (see

steps 4 and 8-10 in Algorithm 6): by capacity (i.e., decreasing order of ratio between the capacity

required by the slice and those available on the physical network), by latency (i.e., increasing order

accepted latency on the data-plane function chain), and randomly. We also implemented di↵erent

pacing strategies (from 1 to 4), which, in turn, is related to how many slices have their variables

enforced to be integer on each iteration of our approach (see steps 5, 8, and 10 in Algorithm 6). For

each combination ordering/pace, the average and the 95% confidence interval related to 100 instances

are presented. These instances were randomly chosen among those generated with di↵erent sizes and

classes (see Tables 8.2 and 8.3) used in the previous tests. Let us recall that the final gap is related to

the best lower bound between those obtained by Relax-and-Fix and the solver on the ILP formulation.

Figure 8.1 – Relax-end-Fix: qualitative analyses on di↵erent instance classes.
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Figure 8.2 – Relax-and-Fix: ordering and pacing strategy trade-o↵s.

Fig. 8.2 presents the trade-o↵ between runtime and quality of the final solution when di↵erent

ordering and pacing strategies are applied within the proposed Relax-and-Fix framework. As expected,

we observed a better solution quality when a bigger pacing is applied instances with 4 slices requests

(see Fig. 8.2a, Fig. 8.2b, and Fig. 8.2c). For instance, the final gap could be reduced from 8.00%

(resp. 6.92% ) to 1.25% (resp. 0.40%) on medium-small (resp. medium) instances when latency (resp.

random) ordering strategy was applied. Regarding all ordering strategies, the overall reduction on

medium-big instances was approximately 22% from 1-slice pacing to 2-slice pace, 55% from 2-slice

pacing to 3-slice pace, and 30% from 3-slice pacing to 4-slice pace.

In general, the runtime increases as the pacing strategy gets bigger. Indeed, the time needed to find

the final solution by our approach increased from 270 seconds with 1-slice pacing to 490 seconds with

2-slice pacing on medium-big instances when capacity ordering strategy was applied (see Fig. 8.2g). We

observe an even bigger increase from 3-slice pacing to 4-slice pacing in smaller instances (see Fig. 8.2e

and Fig. 8.2f): in general, the runtime increased by 121% and 88% on medium small and medium

instances, respectively. This behavior is expected since, even with fewer iterations (see the loop from

steps 7-21 in Algorithm 6), the number of integer variables are considerably bigger on pacing strategies

with more slices, which has a well-known strong influence on the branch-and-bound performed by the

solver. This e↵ect is even more noticeable on big-size instances (see Fig. 8.2d and Fig. 8.2h). While

there is a smaller gain by increasing the pacing strategy, the runtime reached the 1-hour limit with the
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4-slice pacing on all ordering strategies. As seen in Figures 8.2e and 8.2g, however, this is not always

the case. For instance, we observed a decrease from 1-slice pacing to 2-slice pacing (resp. 2-slice pacing

to 3-slice pacing) on medium-small (resp. medium) instances with latency (resp. random) ordering

strategy. More tests must therefore be carried out to assess this behavior in such scenarios before

conclusions can be drawn.

8.4.2 Extended formulation and column generation-based framework

We now present the results from solving the extended (8.19)-(8.23) along with the proposed column

generation-based framework (see Algorithm 6). As a start point, we gave the solution found by our

RF algorithm applying the 2-slice pace and capacity ordering strategies and set the time limit to 3600

seconds (1 hour). We refer to this approach as to RF-CG. Also, an artificial template-based starting

point was proposed, in which an artificial column (i.e., slice template) was created with a large enough

artificial cost (i.e., µs
g = 102|S|) and no physical capacity required. As previously discussed, our pricing

sub-problem is based on the compact formulation (8.1)-(8.17), hereafter referred to as to CF, where

S = {sú} and whose objective function (8.11) is replaced by (8.30). We refer this approach as to

AT-CG. For each pricing iteration, we set the time limit to 3600 ≠ � seconds, where � is the time

elapsed theretofore. Finally, for each instance size, 30 random instances were generated as previously

discussed (see Tables 8.2 and 8.3). Table 8.5 depicts the result of our numerical experiments applying

the proposed column generation framework on di↵erent instance sizes. For each approach, we present

the linear relaxation gap 2, the final gap 3, the total runtime (in seconds), and the number of pricing

iterations done before finding the best solution (only for the column generation-based approaches).

First, the final gap was substantially improved by the RF-CG on bigger instances. On medium-

small and big instances, for example, the average reduction related to the CF was roughly 96% and

88%. This approach was also 96% (resp. 58%) faster than CF on tiny (resp. medium) instances and

44% faster than the AT-CG on average. In addition, while AT-CG could not find any feasible solution

in less than 3600-second runtime on medium-big and big instances, RF-CG could improve the initial

solution (i.e., those found by the relax-and-fix algorithm) in almost all instance sizes. Indeed, due

2. Calculated as the absolute value of the ratio between the found solution of the relaxed model and the best-known
lower-bound, calculated as previously discussed.

3. Calculated as the absolute value of the ratio between the found solution of the related model with all integrality
constraints and the best-known lower-bound, calculated as previously discussed.
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Table 8.5 – Column Generation-based framework: gap and runtime on di↵erent instances sizes.

Approach Instance Size
Tiny Small M. Small Medium M. Big Big

LR (%) 22.5±6.9 22.6±1.2 47.2±7.0 42±5.1 38.5±16.2 39.1±13.4
Gap (%) 0.0 0.0 26.5±2.3 48.4±28.8 82.8±32.2 **

Compact
Formulation

Runtime (s) 5±3 248±49 3600* 3600* 3600* 3600*
LR (%) 0.8±0.1 0.4±0.3 1.9±0.05 2.62±0.5 1.8 ±1.1 5.9±0.1
Iterations 3.21±0.3 4.6±0.7 20.2±4.2 15.0±3.1 3.5±1.2 0
Gap (%) 0.4±0.2 0.8+0.1 2.7±0.5 3.0±0.4 2.54±0.6 5.90 ±0.1

Relax-and-Fix
+

Column Generation
Runtime (s) 0.2±0.01 4±2 492±200 1484±342 3600* 3600*
LR (%) 0.8±0.1 0.4±0.3 1.9±0.5 0.2±0.07 15.6±9.2 27.3±16.4
Iterations 5.46±0.5 6.7±0.9 21.9±3.7 18.5±2.8 2.2±1.3 0
Gap (%) 3.5±0.5 10.2±5.6 16.5±6.1 47.2±10.3 ** **

Artificial Temp.
+

Column Generation
Runtime (s) 0.36±0.5 7±4 733±247 3600* 3600* 3600*

* Time limit reached. ** No feasible solution was found.

to time constraints, RF-CG could not complete any pricing iteration on big instances, generating no

additional column (i.e., slice template) to the master problem. Compared to AT-CG, RF-CG could

reach the best linear-relaxation solution with fewer iterations. For instance, RF-CG needed 41% (resp.

31%) fewer pricing iterations on tiny (resp. small) instances compared to AT-CG.

Moreover, we observe that the linear relaxation solutions of both CG-based frameworks were

considerably better than those found by the compact formation: the average gap related to the best-

known lower-bound could be reduced from roughly 22% (resp. 38%) to 0.4% (resp. 15%) on small

(rep. medium-big) instances after less than 5 pricing iterations. It is important to mention that, the

small number of pricing iterations on di↵erent instance sizes is due to di↵erent reasons. Indeed, while

tiny and small instances could be solved in few iterations thanks to the quality of generated columns

and the starting point (using the solution found by the relax-and-fix framework) on RF-CG, AT-CG

instances could not be solved all potential pricing sub-problems to the optimality due to the time limit

for bigger instances. For instance, the average gap of the last pricing iteration was approximately 13%

(resp. 22%) on medium-big (resp. big) instances when the RF-CG was applied; these gaps were

respectively 16% and 21% applying AT-CG. It is also worthwhile mentioning that we did not observe

any significant improvement by changing the gap tolerance in the pricing routine since the solver spent

a considerable amount of time on improving the dual bound in general on each pricing sub-problem.

8.5 Summary

In this chapter, we presented another variant of the NSDP, called Network Slice Design with

Dedicated Network Functions, where the Hard Isolation policy is always applied, that is, all network
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functions are slice-dedicated, keeping, however, the intra-slice anti-a�nity constraints, which repre-

sent the possibility of packing two di↵erent NFSs into the same network function serving a given

network slice. The motivation for keeping the NFS-NF mapping comes from decreasing the oper-

ational complexity related to the deployment of each NS. We then presented di↵erent strategies in

order to e�ciently solve the optimization problems related to the NSDP-DNF. First, we proposed a

compact formulation and an extended one. To solve the former, we proposed a Relax-and-Fix heuris-

tic that relies on repetitively solving the proposed related ILP with only a few integer variables and

fixing or relaxing most of the remaining integer and binary ones. On the other hand, to address the

exponential number of variables in the extended formulation, a column generation-based framework

was then proposed.

In our simulations applying the proposed RF algorithm, for example, the average gap could be

reduced from 82.8% to 4.31% (resp. 48.4% to 5.77%) on medium-big (resp. medium) instances for

instance. Moreover, while ILP could not find any feasible integer solution within 1-hour runtime for

any big-size instance, the average runtime and final gap were respectively 907 seconds and 5.2% when

Relax-and-Fix was applied on the same instances. Regarding the column generation-based framework,

this approach could improve the gap in all instances sizes, especially when the solution found by the

RF algorithm was given as starting point. For instance, the gap and the runtime could be reduced by

96%.
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Chapter 9

Concluding remarks and perspectives

We defined and studied the concept of device-to-device communications and network slicing in

5G systems and propose mathematical models and innovative algorithms to solve the underlying

optimization problems. In particular, we studied the Domain Creation problem, which is a routing

and resource assignment problem arising in future 5G networks. We proposed two algorithms, one

exact and one heuristic, to solve it. The exact approach is based on a node-arc ILP formulation

enhanced by two families of valid inequalities that are used within a branch-and-cut framework. We

also presented a solving method based on a decomposition of the DCP into two sub-problems: the

routing sub-problem and the resource allocation sub-problem. First, a significant impact of the cuts

in strengthening the LP relaxation and reducing the computation time was observed. Despite a longer

runtime for some instances using the proposed cuts, we could observe that the gap between the root

solution and the final solution is always smaller when neighborhood cuts are applied. Using capacity

cuts, this improvement is observed for half of the considered instances. However, the final size of the

tree after finding the final solution using these cuts can be up to 76.40% smaller. Our experiments

also showed that the proposed heuristic approach performs well, even on large instances with up to

2100 devices and 1500 service requests on 7-cell networks. It would be interesting and most probably

very powerful to use it as a primal heuristic to boost the e�ciency of an exact algorithm.

We also defined and modeled the network slice provisioning as an optimization problem including

novel mapping and provisioning requirements. In particular, we considered novel mapping dimensions

appearing with 5G systems, modeling the relationship between flexible radio access functional split-

ting, control-plane and data-plane function separation, and sharing policies. Di↵erent variants of the
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problem were also considered and the proposed models are compliant with running standards. We

demonstrated by numerical analyses the impact of taking into full and partial consideration of the

peculiar constraints rising from the standards. For instance, we reported numerical results showing

that flexible splitting appears as a key factor to deal with heterogeneous requirements to deploy dis-

tinct communication services, leading to considerable network slice cost decrease. In our simulations,

the number of NFSs needed to deploy the virtual networks could be reduced by up to 56% depending

on which of the six proposed sharing policies is applied to each network slice. We also observed that

di↵erent variants related to the flexible splitting have an important impact on the physical network;

depending on the selected approach, the average load on physical links could be reduced by a factor

of 3.

In order to strengthen the linear relaxation of the proposed MILP, we presented several classes

of valid inequalities and integrate them into a Branch-and-Cut framework to solve the problem. We

further present several strategies to reduce the symmetries and the size of the model. Numerical

experiments showed the e�ciency of each approach on di↵erent instance classes. For instance, the

proposed symmetry-breaking and lower bound-based constraints led to an important decrease in the

final gap: from 30% to 1% in some instances. Also, our Branch-and-Cut algorithm could reduce the

size of the Branch-and-Bound tree by 85% and outperformed the solver’s Branch-and-Bound algorithm

in all tests. Finally, our Row-Generation framework outperformed the Branch-and-Bound approach

in all tests, especially in those with sparse graphs.

Moreover, to address the time complexity related to the proposed exact approaches, we presented

an open-access framework based on a Math-heuristic to address the underlying optimization problem.

The overall idea of the proposed approach relied on decomposing the NSDP into several sub-problems

and sequentially solve them while encompassing control-plane and data-plane separation and novel

mapping and decomposition dimensions influencing the placement and interconnection of slices. Nu-

merical experiments showed the e�ciency of our approach on di↵erent instance classes, which could

attain near-optimal solutions in a competitive runtime. Comparing it to a mixed-integer linear pro-

gramming formulation, the proposed Math-Heuristic could reduce the average runtime and the final

gap by up to 78% and 90%, respectively. Moreover, our approach could reduce the congestion on

the physical network, better balancing the data flow while considering all technical constraints. For

instance, the average load on physical links and physical nodes could be reduced by 16% and 35%,
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respectively.

We also studied the variant NSDP-DNF, where the Hard Isolation policy is always applied, that

is, all network functions are slice-dedicated, ensuring however the intra-slice anti-a�nity constraints,

which represent the possibility of packing two di↵erent NFSs into the same network function serving a

given network slice. We then proposed di↵erent strategies in order to e�ciently solve the optimization

problem. First, we presented a compact formulation and an extended one. To solve the former, we

proposed a Relax-and-Fix heuristic that relies on repetitively solving the proposed related ILP with

only a few integer variables and fixing or relaxing most of the remaining integer and binary ones. On

the other hand, to address the exponential number of variables in the extended formulation, a column

generation-based framework is then proposed. In our simulations applying the proposed Relax-and-

Fix approach, for instance, the average gap could be reduced from 82.8% to 4.31% (resp. 48.4% to

5.77%) on medium-big (resp. medium) instances. Moreover, while ILP could not find any feasible

integer solution within 1-hour runtime for any big-size instance, the average runtime and final gap were

respectively 907 seconds and 5.2% when Relax-and-Fix was applied on the same instances. Regarding

the column generation-based framework, this approach could improve the gap in all instances sizes,

especially when the solution found by the RF algorithm was given as starting point. For instance, the

gap and the runtime could be reduced by 96%.

On a practical note, a tough but interesting extension of our work related to the DCP is to include

users’ mobility and temporal aspect in radio resource assignment. Indeed, managing handovers is

highly expected in real scenarios, which might potentially imply an important reconfiguration of the

created domains in every short time period (i.e., minutes or even seconds). Also, other variants of

the NSDP can be studied (e.g., applying Multi-Access Edge Computing) and a service-aware function

objective might be proposed. In other words, di↵erent parameters might alternatively be optimized

regarding the service related to each network slice (e.g., latency over capacity). Finally, an extension of

our work on network slicing might also include availability constraints in order to ensure all technical

constraints that are expected in the Service Level Agreements.

We also expect to embed the proposed column generation-based algorithm into a branch-and-price

framework to ensure the optimal solution for each instance. On the other hand, in order to address

the time complexity related to the column generation-based algorithm proposed to the NSDP-DNF,

heuristic-based pricing algorithms might be proposed in order to attain near-optimal solutions in
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a competitive runtime. Finally, applying clustering algorithms as pre-processing might also be a

powerful approach to be applied in a distributed parallel programming, in which each thread might

be responsible for solving smaller NSDP or DCP instances. For instance, such clustering algorithms

can be based on geographical zone or even on service a�nity.
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Chapter 1

Résumé de Thèse

Les flux de données sur les réseaux mobiles a une croissance très accélérée avec des demandes

de plus en plus importantes depuis les années 2000. En quelques années, ces réseaux pourraient

ainsi atteindre leurs capacités maximales en termes de transmission de données. Pour faire face

à tous ces défis, la technologie 5G se pose en permettant la numérisation de la société et de

l’information économique. L’idée derrière le concept de la 5G est qu’elle ne correspond pas à

une simple augmentation du débit, comme c’était le cas pour les générations précédentes, mais

aussi qu’il s’agit par là d’élargir la diversité des équipements des utilisateurs.

Cette évolution technologique touchera l’ensemble de l’environnement réseau, allant des accès

cellulaires et radio aux architectures de services applicatifs. Cette transition remet en question

la conception du réseau, car plusieurs ressources et segments, historiquement gérés de manière

indépendante, doivent être exploités à la fois avec une continuité dans l’allocation des ressources

réseau et informatique et la proposition d’un service global et unique. Dans ce contexte, dif-

férents fournisseurs peuvent être associés à di↵érents services de communication exécutés sur le

même réseau physique au niveau des segments d’accès, de cœur et d’application. Pour fournir le

provisionnement flexible nécessaire, les technologies Network Function Virtualization [1], Soft-

ware Defined Networking [2] et Network Slicing [3] peuvent être adoptées pour permettre au

fournisseur CS de déployer ses services sur le dessus. de réseaux logiques.

Pour faire face à ces défis, ‘Network Slice’ couvre non seulement l’abstraction au niveau de

l’application mais également la virtualisation des couches physiques et de commutation, avec

di↵érentes technologies d’accès radio et de communication de liaison. Ainsi, chaque fournisseur

de services doit pouvoir déployer ses services de communication avec des réseaux logiques, appelés

Network Slices, spécifiquement adaptés à ses exigences techniques. Le mode de communication
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Device-to-Device (D2D) permet aussi de réutiliser les ressources radio et de diminuer la latence

de bout en bout des communications locales. D2D permettrait à un ensemble d’utilisateurs

géographiquement proches les uns des autres d’établir des communications D2D directes pour

accéder à un service donné.

Dans ce contexte, l’optimisation des ressources dans les réseaux cellulaires devient cruciale

sur le dimensionnement des réseaux de backhauling, et donc sur le placement des fonctions

de cœur de réseau et la configuration des serveurs d’applications edge computing. De plus,

di↵érentes politiques de partage et de mise à l’échelle des fonctions de contrôle par rapport au

plan de données devraient être appliquées.

L’objectif global de ce travail est donc de définir et d’étudier le concept de conception d’D2D

et de Network Slicing dans les systèmes 5G et de proposer des modèles mathématiques et des

algorithmes innovants pour résoudre les problèmes d’optimisation sous-jacents.

1.1 La communication appareil à appareil

Un domaine est défini comme l’ensemble des utilisateurs et des stations de base qui sont

utilisés pour établir des communications mobiles (D2D ou cellulaires) liées à un service spécifique.

Deux utilisateurs peuvent alors se communiquer via des liaisons cellulaires, en utilisant les liaisons

classiques ou D2D, et les deux technologies peuvent coexister au sein du même réseau mobile.

Dans tous les cas, des ressources radio devraient être allouées à chaque liaison active impliquée

dans une communication, et le niveau SINR (Signal-to-Interference-plus-Noise Ratio) requis par

le service devrait être assuré.

1.1.1 Définition du problème

Nous considérons un réseau mobile composé d’un ensemble de dispositifs, d’un ensemble

d’antennes et d’un ensemble de services éligibles aux communications D2D, avec leurs matrices

de trafic associées. Un poids non négatif, correspondant au SINR, est associé à chaque lien.

C’est une mesure de la qualité de la communication qui pourrait être établie à l’aide de ce

lien. Chaque service nécessite un seuil de qualité minimal en termes de SINR et de ressources

disponibles (capacité matérielle pour les appareils, ressources radio pour les liens) pour être
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établi avec succès. Une fois ces conditions remplies, les services sont délivrés via les di↵érents

types de ressources allouées à la fois aux appareils et aux liens.

Dans ce contexte, nous définissons le problème de création de domaine (DCP) comme suit.

Definition 1.1.1. Le problème de création de domaine consiste à trouver une allocation de coût

minimum des ressources radio aux arcs actifs pour fournir un chemin de routage réalisable pour

chaque demande. En particulier, un routage pk = {(ok, u), . . . , (v, dk)} pour une demande k est

dit faisable si

— tous les arcs de pk ont une valeur SINR supérieure au seuil de qualité requis par la

demande k et,

— tous les nœuds de pk ont une capacité su�sante pour satisfaire les besoins en ressources.

1.1.2 Sommaire

Nous avons étudié le problème de création de domaine en proposant deux algorithmes: ex-

act et heuristique. L’approche exacte est basée sur une formulation ILP nœud-arc renforcée

par deux familles d’inégalités valides qui sont utilisées dans un cadre de branch-and-cut. Les

résultats montrent un impact significatif des coupures dans le renforcement de la relaxation LP

et la réduction du temps de calcul. Nous nous attendons à ce que l’ajout de classes de coupes

supplémentaires et la réalisation d’une analyse pour découvrir les spécificités des instances di�-

ciles (quelle que soit leur taille) permettront de résoudre des instances encore plus grandes. Une

question naturelle serait d’envisager une formulation non compacte, basée sur des variables de

chemin et de proposer un algorithme basé sur la génération de colonnes pour la résoudre. D’un

autre côté, nos expériences montrent que l’approche heuristique fonctionne bien, même sur de

grandes instances avec jusqu’à 2100 appareils et 1500 demandes de service sur des réseaux à 7

cellules. Il serait intéressant et très probablement très puissant de l’utiliser comme heuristique

primale pour augmenter l’e�cacité d’un algorithme exact.

1.2 Le problème Network Slice Design

Le système 5G couvre désormais non seulement l’abstraction de slice au niveau de l’application

comme cela a été fait avec les travaux préliminaires sur le ‘slicing’, mais aussi la virtualisation des
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couches physiques et de commutation, avec di↵érentes technologies d’accès radio et de commu-

nication de liaison. Dans ce contexte, di↵érents fournisseurs peuvent être associés à di↵érents

services de communication s’exécutant sur le même réseau physique au niveau des segments

d’accès, de cœur et d’application.

1.2.1 Définition du problème

Nous définissons le problème de Network Slice Design comme suit.

Definition 1.2.1. Étant donné un graphe orienté G représentant le réseau physique, un ensemble

de requêtes de slices S, un ensemble de requêtes de trafic K(s) associé à chaque requête s œ S,

et un ensemble F de types de NFS, le NSDP consiste à déterminer le nombre de NFS à installer

pour chaque s œ S, la taille des NF qui les hébergent ainsi qu’à décider s’ils doivent être installés

de manière centralisée ou distribuée (c’est-à-dire en sélectionnant le découpage fonctionnel ), de

sorte que (i) les demandes de K(s) puissent être contrôlées et acheminées dans G en utilisant

ces NF ; (ii) les NFS installés sur G peuvent être compressés dans les NF tout en satisfaisant

à la fois les contraintes d’isolement et de capacité ; et (iii) un chemin en G est associé à chaque

paire de NF installées qui doivent être connectées. L’objectif est de concevoir chaque slice et

de les intégrer dans le réseau physique G tout en minimisant le coût total de déploiement des

requêtes de slice et en garantissant toutes les contraintes techniques imposées par les couches

physiques et virtuelles.

1.2.2 Sommaire

Nous avons démontré par simulation l’impact de la prise en compte totale et partielle des

contraintes particulières découlant des normes. Nous avons rapporté des résultats numériques

montrant que le fractionnement flexible apparâıt comme un facteur clé pour faire face à des

exigences hétérogènes pour déployer des services de communication distincts, conduisant à une

diminution considérable des coûts de slices. Dans nos simulations, le nombre de NFS nécessaires

pour déployer les réseaux virtuels pourrait être réduit jusqu’à 56% selon laquelle des six politiques

de partage proposées est appliquée à chaque slice. Nous avons également observé que di↵érentes

variantes liées au fractionnement flexible ont un impact important sur le réseau physique: selon

l’approche choisie, la charge sur les liens physiques pourrait être réduite d’un facteur 3.
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1.3 Approches exactes pour le NSDP

Nous proposons plusieurs approches exactes basées sur la formulation MILP pour le prob-

lème, qui comprend les nouvelles contraintes splitting, mapping et provisioning décrites dans les

documents de normes 5G publiés [4, 5, 6]. Nous proposons plusieurs classes d’inégalités valides

afin de renforcer la relaxation linéaire du MILP proposé et de les intégrer dans un cadre Branch-

and-Cut pour résoudre le problème. Nous présentons en outre plusieurs stratégies pour réduire

les symétries et la taille du modèle.

1.3.1 Contraintes de rupture de symétrie

Les inégalités suivantes sont des contraintes de rupture de symétrie pour le NSDP.

xsf
nu Æ

ÿ

tœS

ÿ

gœF

ÿ

vœV

xtg
n≠1v ’s œ S, ’f œ F, ’u œ V, ’n œ N\{n1} (1.1)

1.3.2 Inégalités valides

Nous présentons aussi plusieurs familles d’inéquations valides utilisées pour renforcer la re-

laxation linéaire de la formulation proposée.

1.3.2.1 Inégalité de la borne inférieure

La première inégalité exprime une borne inférieure sur le nombre de NFS nécessaires pour

satisfaire toutes les demandes de slices et les demandes de trafic associées.

The following inequality
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is valid for the NSDP.

1.3.2.2 Inégalités basées sur le plus court chemin

Les inégalités valides triviales suivantes sont basées sur le fait que le chemin physique assigné

pour transporter le flux associé à une demande de trafic ne peut pas être plus court que le plus
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court chemin entre son origine et sa destination.

ÿ
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ff+1) Ø sp(k) , ’k œ K(s) : s œ S (1.3)

are valid for the NSDP problem.

1.3.2.3 Inégalités basées sur les coupes minimales

Les inégalités valides suivantes sont basées sur un théorème min-cut/max-flow de Ford et

Fulkerson [7], qui précise que pour un même produit, le débit maximal est égal à la coupe

minimale séparant les nœuds d’origine et destination associés. Nous ne considérons donc que les

arcs ayant une capacité su�sante pour transporter individuellement le flux attendu.

ÿ

aœ”

(“ka
f|F d|f0 +

ÿ

fœ{f0}fiF d\{f|F d|}
“ka

ff+1) Ø 1 ’k œ K(s) : s œ S, ’” œ �(k) (1.4)

are valid for the NSDP problem.

1.3.3 Un algorithme de génération de lignes pour le NSDP

Nous proposons également l’algorithme Reduced MILP-based Row-Generation (RMRG), qui

est basé sur un modèle relaxé : la formulation originale proposée est réduite à une nouvelle sans

les contraintes d’isolement, de capacité et de latence. Ainsi, cette nouvelle formulation n’a que

les contraintes liées aux principales décisions sur le NSDP : les inégalités de sélection fractionnée,

les équations de dimensionnement, les inégalités d’emballage, les contraintes de placement, et

les contraintes de routage; les contraintes d’intégralité restent dans le modèle. On note alors

L l’ensemble des contraintes relâchées, à savoir les contraintes d’isolement, les inégalités de

capacité et les contraintes de latence et. Pendant le processus de branchement, la routine Lazy

Constraints (disponible dans la procédure de rappel du solveur MILP [8]) est appelée chaque

fois que le solveur trouve une nouvelle et meilleure solution entière: si la solution actuelle viole

toute contrainte de L, il est ajouté en tant que cut au modèle réduit. Nous avons développé un

cadre parallélisé dans lequel chaque processus parallèle est chargé de rechercher et d’ajouter les

contraintes violées liées à un nœud ou un lien physique donné.
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1.3.4 Sommaire

Dans cette section, nous avons présenté et discuté le problème de conception de slices dans

les systèmes 5G et proposé une formulation MILP et des algorithmes exacts pour le résoudre.

Des expériences numériques ont montré l’e�cacité de chaque approche sur di↵érentes classes

d’instances. Par exemple, la rupture de symétrie proposée et les contraintes basées sur les

limites inférieures ont conduit à une diminution importante de l’écart final : de 30% à 1% dans

certains cas. De plus, notre algorithme Branch-and-Cut a pu réduire la taille de l’arbre Branch-

and-Bound de 85% et a surpassé l’algorithme Branch-and-Bound du solveur dans tous les tests.

Enfin, notre framework Row-Generation a surpassé l’approche Branch-and-Bound dans tous les

tests, en particulier dans ceux avec des graphiques clairsemés.

1.4 Une math-heuristique pour le NSDP

L’objectif global de cette section est d’aller au-delà des travaux présentés dans la section

précédente. À cette fin, nous proposons un cadre d’accès ouvert basé sur une heuristique

mathématique pour le problème de conception de tranches de réseau présentant des résultats

numériques pour évaluer l’e�cacité de notre approche. L’idée globale de l’heuristique math-

ématique proposée repose sur la décomposition du NSDP en quelques sous-problèmes et sur

leur résolution séquentielle. Ces sous-problèmes sont liés aux décisions suivantes : sélection

fractionnée, regroupement NFS-NF, intégration de nœud NF et routage du trafic.

1.4.1 Description de l’algorithme

L’algorithme 1 présente le cadre global de notre approche. En entrée, l’heuristique reçoit une

instance NSDP composée d’un graphe orienté G représentant le réseau physique avec l’ensemble

de capacités C, un ensemble de requêtes de tranche S, dont chacune avec un ensemble de

trafic demande K(s), un ensemble F de types NFS et un ensemble N de fonctions virtuelles

hôtes potentielles. En sortie, l’algorithme 1 renvoie un réseau virtuel à chaque demande de

tranche s œ S garantissant toutes les contraintes techniques imposées par les couches physiques

et virtuelles.
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1.4.2 Sommaire

Dans cette section, nous avons présenté et discuté le problème de conception de tranches de

réseau dans les systèmes 5G, en proposant un cadre d’accès ouvert basé sur une math-heuristique

pour résoudre le problème d’optimisation sous-jacent. Des expériences numériques ont montré

l’e�cacité de notre approche sur di↵érentes classes d’instances, qui pourraient atteindre des

solutions quasi optimales dans un environnement d’exécution compétitif. En la comparant à une

formulation de programmation linéaire à nombres entiers mixtes, la Math-Heuristique proposée

pourrait réduire le temps d’exécution moyen et l’écart final jusqu’à 78% et 90%, respectivement.

De plus, notre approche pourrait réduire la congestion sur le réseau physique, en équilibrant

mieux le flux de données tout en tenant compte de toutes les contraintes techniques. Par

exemple, la charge moyenne sur les liens physiques et les nœuds physiques pourrait être réduite

de 16% et 35%, respectivement.

Sur une note pratique, vu que notre Math-Heuristique pourrait réduire la charge moyenne

sur les nœuds physiques et les liens physiques, une extension di�cile mais intéressante consiste

à l’utiliser dans un algorithme en ligne. Notre approche pourrait potentiellement augmenter le

taux d’acceptation des tranches, c’est-à-dire le rapport entre le nombre de tranches intégrées et
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le nombre de requêtes, puisque la solution proposée par la Math-Heuristique distribue le flux

de données entre plusieurs nœuds et liens, conduisant à une diminution de l’encombrement du

réseau. Davantage de tests doivent donc être e↵ectués pour évaluer les e↵ets de l’heuristique

mathématique proposée sur de tels scénarios et avant de pouvoir tirer des conclusions. Aussi,

rappelons que, l’approche proposée étant une Math-Heuristique, l’optimalité des solutions trou-

vées par notre algorithme ne peut être assurée. Cependant, comme le montrent les résultats

numériques présentés, l’e�cacité de notre approche compense cet aspect et conduit à trouver

des solutions avec un petit écart moyen sur des temps d’exécution relativement courts, même sur

de grandes instances. Ainsi, il serait intéressant et très probablement très puissant de l’utiliser

comme heuristique primale pour augmenter l’e�cacité d’un algorithme exact.

1.5 Conception de slices avec des fonctions de réseau dédiéess

Dans cette section, nous présentons une autre variante du NSDP, où la politique d’isolation

matérielle est toujours appliquée, c’est-à-dire que toutes les fonctions réseau sont dédiées aux

tranches. Grâce à cette hypothèse, la complexité du problème étudié peut être diminuée, ce

qui nous permet de proposer di↵érentes approches heuristiques et mathématiques pour résoudre

le problème d’optimisation associé. Cependant, les contraintes d’anti-a�nité intra-tranche de-

meurent, ce qui représente la possibilité de regrouper deux NFS di↵érents dans la même fonction

de réseau desservant une slice donnée. La motivation pour conserver la cartographie NFS-NF

vient de la diminution de la complexité opérationnelle liée au déploiement de chaque NS. En

d’autres termes, l’installation de quelques fonctions réseau au lieu de plusieurs services de fonc-

tions réseau permet aux opérateurs d’agréger dans une même entité tous les NFS partageant

le même protocole de communication ou d’autres types d’a�nité. Par conséquent, l’étape de

configuration du déploiement de slices pourrait être potentiellement plus facile et plus rapide,

réduisant ainsi les coûts d’exploitation [9]. Nous appelons cette variante Network Slice Design

with Dedicated Network Functions (NSDP-DNF).

Dans ce qui suit, nous présentons di↵érentes stratégies afin de résoudre e�cacement les

problèmes d’optimisation liés au NSDP-DNF. Tout d’abord, nous proposons une formulation

compacte et une formulation étendue. Pour résoudre le premier, nous avons proposé une heuris-

tique Relax-and-Fix qui repose sur la résolution répétitive de l’ILP lié proposé avec seulement
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quelques variables entières et la correction ou la relaxation de la plupart des entiers et binaires

restants. D’autre part, pour traiter le nombre exponentiel de variables dans la formulation

étendue, un cadre basé sur la génération de colonnes est ensuite proposé.

1.5.0.1 L’algorithme Relax-and-fix

L’algorithme 2 présente le cadre global de notre approche. L’idée globale de l’heuristique

proposée, ci-après dénommée Relax-and-Fix, repose sur la résolution répétitive de l’ILP proposé

avec seulement quelques variables entières et sur la fixation ou la relaxation de la plupart des

variables entières et binaires restantes. En entrée, l’heuristique reçoit une instance NSDP-DNF

composée d’un graphe orienté G représentant le réseau physique avec l’ensemble des capacités

C, un ensemble de demandes de tranches S, chacune avec un ensemble de demandes de trafic

K(s), un ensemble F de types NFS, un ensemble N de fonctions virtuelles hôtes potentielles

et la stratégie de rythme fl œ Z+. En sortie, il renvoie un réseau virtuel à chaque demande de

tranche s œ S garantissant toutes les contraintes techniques imposées par les couches physiques

et virtuelles.

1.5.0.2 Algorithme basé sur la génération de colonnes

Nous décrivons maintenant le cadre de génération de colonnes pour résoudre le NSDP, qui

repose sur la formulation E-ILP proposée comme problème principal. Nous avons d’abord intro-

duit la formulation duale associée : les contraintes d’intégralité sont alors relâchées et deviennent

donc respectivement fis
g Ø 0. Ensuite, nous présentons une formulation ILP correspondant au

sous-problème de tarification lié à chaque demande de tranche. Le problème du mâıtre restreint

Puisque G(s) a un nombre exponentiel de modèles potentiellement appropriés pour chaque de-

mande de tranche, la formulation E-ILP a un nombre exponentiel de variables. Par conséquent,

nous proposons d’initialiser le problème mâıtre avec seulement un sous-ensemble de colonnes

(c’est-à-dire des variables liées à chaque g œ GÕ(s) ™ G(s) pour chaque s œ S). Ce modèle est

alors appelé Restricted Master Problem (RMP) et peut être généré en proposant des modèles

sans exigence de capacité physique et de coût avec une valeur su�samment grande (par exemple,

µs
g = 105). Nous proposons également d’initialiser le RMP avec la solution finale trouvée par

l’algorithme Relax-and-Fix proposé décrit dans les sous-sections précédentes.
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1.5.1 Sommaire

Dans cette section, nous avons présenté une autre variante du NSDP, appelée Network Slice

Design with Dedicated Network Functions, où la politique d’isolation matérielle est toujours

appliquée, c’est-à-dire que toutes les fonctions réseau sont dédiées aux tranches, en gardant

cependant l’anti-tranche intra-tranche. -les contraintes d’a�nité, qui représentent la possibilité

de regrouper deux NFS di↵érents dans la même fonction de réseau desservant une slice donnée.

La motivation pour conserver la cartographie NFS-NF vient de la diminution de la complex-

ité opérationnelle liée au déploiement de chaque NS. Nous avons ensuite présenté di↵érentes

stratégies afin de résoudre e�cacement les problèmes d’optimisation liés au NSDP-DNF. Dans

un premier temps, nous avons proposé une formulation compacte et une autre étendue. Pour

résoudre le premier, nous avons proposé une heuristique Relax-and-Fix qui repose sur la résolu-

tion répétitive de l’ILP connexe proposé avec seulement quelques variables entières et en fixant
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ou en relaxant la plupart des entiers et binaires restants. D’autre part, pour traiter le nombre

exponentiel de variables dans la formulation étendue, un cadre basé sur la génération de colonnes

a ensuite été proposé.

Dans nos simulations appliquant l’algorithme RF proposé, par exemple, l’écart moyen pour-

rait être réduit de 82,8% à 4,31% (resp. 48,4% à 5,77%) sur des instances moyennes-grandes

(resp. moyennes) par exemple. De plus, bien qu’ILP n’ait pu trouver de solution entière réal-

isable en 1 heure d’exécution pour une instance de grande taille, la durée d’exécution moyenne

et l’écart final étaient respectivement de 907 secondes et de 5,2% lorsque Relax-and-Fix était

appliqué sur les mêmes instances. En ce qui concerne le cadre basé sur la génération de colonnes,

cette approche pourrait améliorer l’écart dans toutes les tailles d’instances, en particulier lorsque

la solution trouvée par l’algorithme RF a été donnée comme point de départ. Par exemple, l’écart

et le temps d’exécution pourraient être réduits de 96%.

1.6 Conclusions finales

Nous avons défini et étudié le concept de communications appareil à appareil et de découpage

de réseau dans les systèmes 5G et proposons des modèles mathématiques et des algorithmes

innovants pour résoudre les problèmes d’optimisation sous-jacents. En particulier, nous avons

étudié le problème de création de domaine, qui est un problème de routage et d’a↵ectation

de ressources survenant dans les futurs réseaux 5G. Nous avons proposé deux algorithmes, un

exact et un heuristique, pour le résoudre. L’approche exacte est basée sur une formulation ILP

nœud-arc renforcée par deux familles d’inégalités valides qui sont utilisées dans un cadre de

branchement et de coupure. Nous avons également présenté une méthode de résolution basée

sur une décomposition du DCP en deux sous-problèmes : le sous-problème de routage et le

sous-problème d’allocation de ressources. Premièrement, un impact significatif des coupes dans

le renforcement de la relaxation LP et la réduction du temps de calcul a été observé. Malgré

un temps d’exécution plus long pour certaines instances utilisant les coupes proposées, nous

avons pu observer que l’écart entre la solution racine et la solution finale est toujours plus petit

lorsque des coupes de voisinage sont appliquées. En utilisant les réductions de capacité, cette

amélioration est observée pour la moitié des instances considérées. Cependant, la taille finale de

l’arbre après avoir trouvé la solution finale à l’aide de ces coupes peut être jusqu’à 76,40% plus



1.6. CONCLUSIONS FINALES 195

petite. Nos expériences ont également montré que l’approche heuristique proposée fonctionne

bien, même sur de grandes instances avec jusqu’à 2 100 appareils et 1 500 demandes de service

sur des réseaux à 7 cellules. Il serait intéressant et très probablement très puissant de l’utiliser

comme heuristique primale pour augmenter l’e�cacité d’un algorithme exact.

Nous avons également défini et modélisé l’approvisionnement des slices en tant que problème

d’optimisation comprenant de nouvelles exigences de mappage et d’approvisionnement. En par-

ticulier, nous avons pris en compte les nouvelles dimensions de mappage apparaissant avec les

systèmes 5G, modélisant la relation entre la séparation fonctionnelle flexible de l’accès radio, la

séparation des fonctions du plan de contrôle et du plan de données et les politiques de partage.

Di↵érentes variantes du problème ont également été considérées et les modèles proposés sont

conformes aux normes de fonctionnement. Nous avons démontré par des analyses numériques

l’impact d’une prise en compte totale et partielle des contraintes particulières découlant des

normes. Par exemple, nous avons rapporté des résultats numériques montrant que le fraction-

nement flexible apparâıt comme un facteur clé pour faire face aux exigences hétérogènes de

déploiement de services de communication distincts, entrâınant une diminution considérable des

coûts de slice. Dans nos simulations, le nombre de NFS nécessaires pour déployer les réseaux

virtuels pourrait être réduit jusqu’à 56% selon laquelle des six politiques de partage proposées

est appliquée à chaque slice. Nous avons également observé que di↵érentes variantes liées au

fractionnement flexible ont un impact important sur le réseau physique ; selon l’approche choisie,

la charge moyenne sur les liens physiques pourrait être réduite d’un facteur 3.

Afin de renforcer la relaxation linéaire du MILP proposé, nous avons présenté plusieurs

classes d’inéquations valides et les avons intégrées dans un cadre Branch-and-Cut pour résoudre

le problème. Nous présentons en outre plusieurs stratégies pour réduire les symétries et la taille

du modèle. Des expériences numériques ont montré l’e�cacité de chaque approche sur di↵érentes

classes d’instances. Par exemple, la rupture de symétrie proposée et les contraintes basées sur

les limites inférieures ont conduit à une diminution importante de l’écart final : de 30% à 1%

dans certains cas. De plus, notre algorithme Branch-and-Cut a pu réduire la taille de l’arbre

Branch-and-Bound de 85% et a surpassé l’algorithme Branch-and-Bound du solveur dans tous

les tests. Enfin, notre framework Row-Generation a surpassé l’approche Branch-and-Bound dans

tous les tests, en particulier dans ceux avec des graphiques clairsemés.
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De plus, pour répondre à la complexité temporelle liée aux approches exactes proposées,

nous avons présenté un cadre d’accès ouvert basé sur une heuristique mathématique pour ré-

soudre le problème d’optimisation sous-jacent. L’idée générale de l’approche proposée reposait

sur la décomposition du NSDP en plusieurs sous-problèmes et sur leur résolution séquentielle

tout en englobant la séparation du plan de contrôle et du plan de données et de nouvelles

dimensions de mappage et de décomposition influençant le placement et l’interconnexion des

tranches. Des expériences numériques ont montré l’e�cacité de notre approche sur di↵érentes

classes d’instances, qui pourraient atteindre des solutions quasi optimales dans un environnement

d’exécution compétitif. En la comparant à une formulation de programmation linéaire à nom-

bres entiers mixtes, la Math-Heuristique proposée pourrait réduire le temps d’exécution moyen

et l’écart final jusqu’à 78% et 90%, respectivement. De plus, notre approche pourrait réduire la

congestion sur le réseau physique, en équilibrant mieux le flux de données tout en tenant compte

de toutes les contraintes techniques. Par exemple, la charge moyenne sur les liens physiques et

les nœuds physiques pourrait être réduite de 16% et 35%, respectivement.

Nous avons également étudié la variante NSDP-DNF, où la politique d’isolement dur est

toujours appliquée, c’est-à-dire que toutes les fonctions réseau sont dédiées aux tranches, en

garantissant toutefois les contraintes d’anti-a�nité intra-tranches, qui représentent la possibilité

de regrouper deux NFS di↵érents dans la même fonction de réseau desservant une slice don-

née. Nous avons ensuite proposé di↵érentes stratégies afin de résoudre e�cacement le problème

d’optimisation. Dans un premier temps, nous avons présenté une formulation compacte et une

autre étendue. Pour résoudre le premier, nous avons proposé une heuristique Relax-and-Fix

qui repose sur la résolution répétitive de l’ILP connexe proposé avec seulement quelques vari-

ables entières et en fixant ou en relaxant la plupart des entiers et binaires restants. D’autre

part, pour traiter le nombre exponentiel de variables dans la formulation étendue, un cadre basé

sur la génération de colonnes est ensuite proposé. Dans nos simulations appliquant l’approche

Relax-and-Fix proposée, par exemple, l’écart moyen pourrait être réduit de 82,8% à 4,31% (resp.

48,4% à 5,77%) sur moyen-grand (resp. moyen) instances. De plus, bien qu’ILP n’ait pu trou-

ver de solution entière réalisable en 1 heure d’exécution pour une instance de grande taille, la

durée d’exécution moyenne et l’écart final étaient respectivement de 907 secondes et de 5,2%

lorsque Relax-and-Fix était appliqué sur les mêmes instances. En ce qui concerne le cadre basé
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sur la génération de colonnes, cette approche pourrait améliorer l’écart dans toutes les tailles

d’instances, en particulier lorsque la solution trouvée par l’algorithme RF a été donnée comme

point de départ. Par exemple, l’écart et le temps d’exécution pourraient être réduits de 96%.
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Wesley DA SILVA COELHO

Modeling and Optimization of 5G Network
Design

Résumé : Chaque seconde, une grande quantité de données numériques est transportée
à travers les réseaux cellulaires du monde entier, et les attentes sont à une croissance
considérablement accélérée avec des demandes de plus en plus importantes. En quelques
années, ces réseaux pourraient atteindre leurs capacités maximales en termes de transmission
de données. Pour faire face ces défis, Network Slicing a été présenté comme une nouvelle
infrastructure virtualisée pour le système de réseau mobile de nouvelle génération. Cette
technologie couvre désormais non seulement le niveau des applications, mais également la
virtualisation des couches physiques et de commutation, avec di↵érentes technologies d’accès
radio. Ainsi, chaque fournisseur de services doit pouvoir déployer ses services sur des réseaux
logiques, appelés Network Slices, spécifiquement adaptés à ses exigences techniques. Le mode
de communication Device-to-Device est une autre approche présentée comme une alternative
prometteuse à la communication traditionnelle dans les réseaux cellulaires. Cette technologie
permet de réutiliser les ressources radio et de diminuer la latence de bout en bout des
communications locales. Par conséquent, l’optimisation des ressources physiques dans les
réseaux cellulaires devient cruciale pour mieux dimensionner et déployer les réseaux virtuels.
L’objectif global de ce travail est donc de définir et d’étudier le concept de Device-to-Device
Communication et Network Slice Design dans les systèmes 5G, en proposant des modèles math-
ématiques et des algorithmes innovants pour résoudre les problèmes d’optimisation sous-jacents.

Mots clés: Optimisation, Conception de réseau, Découpage réseau en tranches, Commu-
nication d’appareil à appareil

Abstract : Every second, a large amount of digital data is transported through cellular
networks worldwide, and expectations are at a greatly accelerated growth with increasingly
large requests. In few years, these networks could thereby reach their maximum capacities in
terms of data transmission. To face these challenges, Network Slicing has been presented as
a novel virtualized infrastructure for the new generation cellular network system. This tech-
nology now not only covers application-level abstraction but also physical and switching layers
virtualization, with di↵erent radio access and link communication technologies. Hence, each
service provider is to be able to deploy its communication services on top of logical networks,
named Network Slices, specifically tailored to its technical requirements. The Device-to-Device
communication mode is another approach presented as a promising alternative to traditional
communication in cellular networks. This technology allows to reuse radio resources and to
decrease the end-to-end latency of local communications. Consequently, the optimization of
physical resources in cellular networks becomes crucial to better deploy virtual networks. The
overall objective of this work is therefore to define and study the concept of device-to-device
communication and network slice design in 5G systems, and propose mathematical models and
innovative algorithms to solve the underlying optimization problems.

Keywords: Optimization, Network Design, Network Slicing, Device-to-Device
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