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Abstract

English version

In the context of a Chemical, Biological, Radiological, and Nuclear (CBRN)
application for the Belgian Defense, the original objective of the work was to
simulate a realistic open-air CBRN case (e.g. dispersion after an explosion
of particles in a city) by applying the Streamline-Upwind Petrov-Galerkin
(SUPG) stabilization on a finite element method (FEM), together with a
second phase (i.e. particles). This would be done through the code Coolfluid
3, a Domain Specific Language (DSL) written in C++.

However, open-air applications require to describe the atmospheric bound-
ary layer (ABL) correctly. This has never been done using stabilized FEM.
Consequently, the challenge of this work is to answer the simple question:
How to model an ABL taking advantage of the SUPG stabilization method.

To reduce the number of elements produced by a wall-resolved simulation,
the ABL was implemented with a wall model and verified in 2D. At the same
time, a few corrections (e.g. grid scalability, stable velocity profile) could also
be addressed.

However, the 3D implementation revealed spurious oscillations, suggesting
a numerical origin. Although SUPG does provide dissipation, it seemed not
sufficient enough for such a high Reynolds flow. Consequently, two directions
were followed to add numerical dissipation: Firstly, the implementation of an
extended version of the SUPG, the Variational MultiScale method (VMS),
was initiated. The latter provides a combined framework for stabilization
and turbulence modeling. Secondly, two LES formulations, known for their
dissipative behavior, were integrated.

Having solved the spurious oscillations, the velocity profile was analyzed.
Eventually, the viscous Reynolds number for the ABL domain was reduced
to enable the comparison with an available DNS result. Fortunately, relative
to the standard no-slip wall condition and the friction velocity condition, the
wall model implementation provided the best result, although not matching.

In conclusion, we ascertained two methodologies (LES and SUPG / VMS)
that have the potential to approach the ABL flow. The stabilized FEM using
SUPG revealed that it is currently not sufficient to avoid spurious oscilla-
tions in an ABL flow. In contrast, LES provided encouraging results for
reduced Reynolds number, supporting that some kind of turbulence model
is indispensable. This emphasizes that the implementation of VMS should
be promising, although challenging.
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Version française

Suite à une requête de la Défense belge dans le cadre des applications CBRN
(chimique, biologique, radiologique et nucléaire), l’objectif initial du travail
était de simuler un cas CBRN réaliste à l’air libre (i.e. dispersion de par-
ticules après une explosion dans une ville), en appliquant la stabilisation
Streamline-Upwind Petrov-Galerkin (SUPG) sur une méthode d’éléments
finis (FEM), incluant une deuxième phase (i.e. particules). Pour cette sim-
ulation, les développement se font dans le code Coolfluid 3, un langage
spécifique au domaine (DSL) écrit en C++.

Cependant, les applications à l’air libre nécessitent de décrire correctement
la couche limite atmosphérique (ABL). Cela n’a jamais été fait en utilisant
des éléments finis stabilisés. Par conséquent, le défi de ce travail est de
répondre à la question simple : Comment modéliser une ABL en profitant
de la méthode de stabilisation SUPG.

Afin de réduire le nombre d’éléments nécessaires pour une simulation
résolvant toutes les échelles de turbulences jusqu’aux parois, l’ABL a été
implémentée avec un modèle de paroi et vérifié en 2D, tandis que quelques
corrections (e.g. la résolution du maillage, la stabilité du profil de vitesse)
ont également pu être adressées.

Néanmoins, l’implémentation 3D a révélé des oscillations parasites, lais-
sant supposer à une origine numérique. Bien que SUPG produise de la
dissipation, cette dernière ne semble pas suffisante pour un écoulement à
nomber de Reynolds aussi élevé. Par conséquent, pour ajouter de la dissi-
pation, deux directions ont été suivies : Premièrement, une implémentation
de l’évolution de la SUPG, la méthode Variational MultiScale (VMS), a
été initiée. Cette dernière fournit un cadre combiné pour la stabilisation et
la modélisation de la turbulence. Deuxièmement, deux formulations LES,
connues pour leur comportement dissipatif, ont été intégrées.

Après avoir réduit les oscillations parasites, le profil de vitesse a été
analysé. Finalement, pour permettre la comparaison avec un résultat DNS
disponible, le nombre de Reynolds visqueux du domaine ABL a été réduit.
Favorablement, relativement à deux autres conditions, l’implémentation du
modèle ABL a fourni le résultat se rapprochant le plus de la courbe DNS.

En conclusion, nous avons déterminé deux méthodologies (LES et SUPG /
VMS) qui ont le potentiel d’approcher l’écoulement ABL. La FEM stabilisée
utilisant SUPG a révélé qu’elle n’est actuellement pas suffisante pour éviter
les oscillations parasites dans le cas d’un écoulement ABL. En revanche,
LES a fourni des résultats encourageants, ce qui prouve qu’un certain type
de modèle de turbulence est indispensable. Cela souligne l’intérêt pour la
méthode VMS, bien que difficile à implémenter.
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Chapter 1

Introduction

1.1 Background

In April 2010, a considerable part of the European airspace was locked down
due to the sudden eruption of the Icelandic volcano Eyjafjallaj “okull.

It resulted in the most extensive air-traffic shutdown in Europe after the
Second World War. From the 15th of April 2010 till the 17th of May 2010
for some countries, the airspace was partially or totally interrupted due to
ashes suspended in the air, leaving the airplanes on the ground to avoid
casualties.

Figure 1.1: Volcanic ash dispersion from Eyjafjallajökull (From Wikimedia,
2010)

Such a considerable amount of gas and particle dispersion in the atmo-
sphere influenced aerial transport but also all living beings that need to
breathe air (Bukowiecki et al., 2011).

In 2016, a massive citizen’s action concerning air quality was initiated in
Europe (by the OK Lab Stuttgart from the Open Knowledge Foundation
Germany (Blon, 2017; Luftdaten, 2017)) and, in parallel, in the Northern
part of Belgium (by the University of Antwerpen, the newspaper De Stan-
daard and the Flemish Environment Society (CurieuzeNeuzen, 2018)).
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Each participant received a measurement kit and had to report the NO2

gas concentration in the air. NO2 gas is easy to measure and mainly cor-
relates with emissions from vehicles or industries using combustion engines.
This gas concentration is related to the distribution of PM2.5 and PM10
solid fine particles, where PM stands for atmospheric Particulate Matter
and is followed by a number that represents the largest size of the consid-
ered particles, in µm (Priemus and Schutte-Postma, 2009).

Figure 1.2: Citizen Science: Air Quality in Flanders, Belgium (From
CurieuzeNeuzen, 2018)

Note that measuring PM2.5 and PM10 requires devices that can analyze
the size and concentration of particles. The particles are generated by the
exhaust of combustion engines, but also by sand particles from dry regions,
wood-burning (Lefebvre et al., 2016), or even agricultural regions producing
dust during cereals extraction. Thus, knowledge of the considered regions’
geography is required to reach the correct conclusions.

Moreover, the human breathing system can not filter PM2.5 particles nor
reject them. Consequently, these particles are kept in the lungs and therefore
pose a high health risk factor. However, PM10 particles can still have
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irritating effect (Oberdörster, Oberdörster, and Oberdörster, 2005; Pope
and Dockery, 2006).

Thus, returning to the massive citizen’s action of 2016, the participants
were asked to register NO2 concentration at a fixed location on their home’s
facade, schools, and several industrial areas.

This action aimed to objectify the impact of air quality on health and qual-
ity of life and increase awareness of the problem with citizens and politicians
(Meysman and Craemer, 2018).

As the last example, at the beginning of 2020, a world pandemic occurred,
leading to more than two months of complete lockdown in several countries
and social and economic restrictions for the following months.

At first instance, only the propagation by physical contact was considered,
but a few epidemiologists rapidly raised questions concerning propagation
through the air (Lednicky et al., 2020). The citizens were asked to reduce
contact by avoiding crowds, keeping their distance, cleaning their hands,
and eventually wearing masks to reduce the spreading.

The pandemic has not yet vanished, and until the vaccine is effectively
operating, only social distancing measures and moderate tracing method-
ologies are proposed to contain the spreading. Its economic and sociological
consequences are considerable.

Figure 1.3: COVID-19: total number of confirmed cases in the world (log
scale) (From Ritchie et al., 2020)

These three examples emphasize that the air surrounding the earth can
transport various types of particles that can seriously impact the daily life
of one another. The Belgian Defense, in charge of the external security of
the Belgian Kingdom and all its citizens, is concerned with the threat posed
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by aerosols. Some of these particles are liquid; others are solid; some par-
ticles are more dangerous because of their biochemical interactions with its
surrounding, others because of their obstructing effect. In a military con-
text, the accurate prediction of an explosion’s dispersion is both a defensive
and an offensive asset that could be taken into account for all chemical,
biological, radiological or nuclear (CBRN) applications. This point will be
developed further in the motivation section (§ 2).

In this study, the aim is to extend the development of the fluid simulation
software Coolfluid 3, a cutting-edge C++ framework (Quintino et al., 2012)
presented in the work of Janssens, 2014 by applying a multiphase flow model
to dispersion cases in the atmosphere.

The model would allow the simulation of flow in an open-field context,
taking the atmospheric dimensions into account, and would study the dis-
persion of fine solid particles in the air.

Referring to the three proposed examples, such a model would allow a
better prediction by handling the dynamics of the particles’ dispersion in
the air, considering complex geometries and domains with sizes up to a few
kilometers.

1.2 Thesis outline

While the introduction tends to smoothly bring the reader to the notion of
what the subject is, this section presents the document’s structure.

The document is divided into four parts: context, modeling, validation,
and conclusions.

In Part I, we present both the motivation of this work and the physical
aspects related to the current subject. This part is required to understand
the constraints that have to be taken into account in conjunction with their
associated theory.

Next, in Part II, the numerical methods will be addressed. Since the work
is first and foremost a numerical implementation effort, the fluid dynamics
theory has to be interpreted and translated into a discrete numerical model
suitable for scalable, parallel solutions on a computer.

After defining the modeling, its implementation has to be validated. Part
III compares simulation results to several study cases presented in the lit-
erature. This enables the reader to gain confidence in the proposed imple-
mentation and investigate the limitations and potential errors.

To conclude, Part IV summarises the aim of the presented work, its
achievement, but also its limitations, and how further studies could reduce
these limitations.
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1.3 Thesis flow chart diagram

A flow chart diagram is proposed to the reader to provide a schematic view
of the structure of this manuscript. Firstly, a global view is proposed.

Global view

Multiphase
test case

ABL with
SUPG

Spurious
oscillations

Simulation
vs. analytic

Details per process

Secondly, each part is developed in a detailed flow chart, where, on the right
side, one will find a reference to the related theoretical sections (above) as
well as the results (below).

Physics and
geometry

Simulate, list, and
prioritize challenges

First, ABL
implementation

Implement ABL Scalability?
Normalize at

boundary

Stabilized velocity?

Change SUPG
coefficient

Limit body force

No spurious
oscillations?

Test implicit vs.
semi-implicit

Add numerical
dissipation

velocity profile
follows analytic?

Sensitivity studies

Lower Reτ studies

Goal reached

No

Yes

No

Yes

No

Yes

No

Yes

Multiphase test case Details

ABL with SUPG

Spurious oscillations

Simulation vs. analytic

§ 1, 2, 3
§ 6.1, 6.2, 6.3

§ 4
§ 6.4

§ 4.2.4, 4.2.5
§ 6.6

§ 6.7

§ 6.9

§ 5.1, 5.2
§ 7.2, 7.3

§ 7.4

§ 7.5
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Details per subprocess

For three subprocesses, although the references are already available in the
previous chart, more details is provided here.

Firstly, the Add numerical dissipation subprocess contains two directions,
the LES approach and the VMS approach:

Implement WALE
Spurious os-
cillations?

Implement static
SL

Sensitivity
study

Implement
dynamic SL

Issue solved

Implement VMS
structure

Structure
validated?

Implement VMS
algorithm

Algorithm verified?

Investigations needed
Spurious os-
cillations?

Issue solved

Yes

No

1

2

Yes

No

Yes

No

Yes No

LES approach

VMS approach

Secondly, the Sensitivity studies subprocess is presented here after.

Find best solver
option

Optimal
computation
parameters

Find best
parallelization

Analyze grid
resolution

Analyze reference
velocity

Simulated profile
approaches

the analytic?

Parameter
to consider

Parameter
to neglect

1

2

Yes

No

Sensitivity studies

Finally, the chart concerning the reduction to the lower viscous Reynolds
number is displayed here.
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Apply a no-slip
condition

Apply a friction
velocity condition

Apply the ABL
wall model

Simulated pro-
file approaches

the DNS?

Option to
consider

Option to
neglect

1

2

3

Yes

No

Lower Reτ studies

The idea of these diagrams is to offer the reader an aerial view of the
holograph to smooth the immersion.

Having introduced the work, its flow, and equipped with the instrument
hereabove, we can enter the contextual part in serenity.





Part I

Context





Chapter 2

Motivation

In the introduction, the subject was initiated to the reader through rather
”civilian and environmental” concerns. In this section, the extra motivation
for the Belgian Defense to explore this field will further be explained.

In the protection and safety activities performed by armies at an interna-
tional level, there is a field called CBRN (Chemical, Biological, Radiological,
and Nuclear) defense that has snowballed for the last decades. It is con-
cerned with the protection against different kinds of contaminating agents
and particles, ranging from chemical and biological weapons to radioactive
particles or fallout. Apart from their composition, these agents can be char-
acterized by their ability to contaminate by dispersion or spreading, yielding
to challenging prediction and protection measures. The interest in CBRN
protection measures emerged from three main streams:

• classical chemical, biological, and nuclear warfare,

• industrial accidents, and

• terrorism.

CBRN warfare and industrial accidents

Although their origins are distinct, we will address the two first streams
through one shared topic related to dispersion: nuclear plant disasters. In-
deed, a nuclear plant destroyed during a war will primarily affect the in-
habitants and the military troops in the vicinity before propagating farther
away. Thus, we could start with what is considered the most severe disaster
in the nuclear industry: the explosion of the Tchernobyl power plant on the
26th of April 1986.

This accident happened during a maintenance procedure on reactor num-
ber 4. After a succession of unforeseen, unplanned, and incorrect manipu-
lations, the control of the reactor’s kernel was lost. In a few seconds, the
nominal power of the reactor was more than 100 times exceeded and followed
by two explosions breaking the reactor’s structure, blasting radioactive par-
ticles at 1000m of altitude into the atmosphere. Two days later, a Swedish
nuclear plant raised the European alarm due to a high radioactivity concen-
tration unrelated to their installation. The Soviet ministers’ council confirms
the existence of a severe nuclear hazard on the site of Tchernobyl that could
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have reached the other European countries. In April, an international con-
ference is organized by the International Atomic Energy Agency (IAEA) to
gather experts (IAEA, 1992; Marshall, 1986). By December 1986, a protec-
tive sarcophagus was built around the nuclear plant to reduce radioactive
contamination.

For this disaster, one should notice that the Soviet government did not
mention the use of a dispersion modeling methodology. However, some
models were available in the US and the UK (ApSimon, Macdonald, and
Wilson, 1986; ApSimon and Wilson, 1987).

25 years later, in Japan, after a significant earthquake happening on the
11th of March 2011, the nuclear plants’ sites of Fukushima, Dai-ichi and
Dai-ni, were both weakened (Holt, Campbell, and Nikitin, 2012). Concern-
ing the site that was the most severely impacted, Dai-ichi, from the six
nuclear reactors available, three were working and automatically stopped,
following the emergency procedure. While the city’s electrical net was out-
of-order, electro-generators powered the mandatory water cooling system
until, 41 minutes later, a tsunami, consequence of the earthquake, flooded
all reactors, except nr 6, leaving them without electricity, hence without
their cooling system. Consequently, reactors nr 1, 2, 3 all melted, producing
radioactive plumes in the atmosphere and the pacific ocean (see figure 2.1).

Figure 2.1: Simulated total atmospheric columns of radioactive 137Cs (con-
tours) and geopotential at 850 hPa from GFS (blue isolines).
(yellow circle: Nuclear reactor leak ; green shapes: air sampling
site) (From Stohl et al., 2011)
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In Japan, nearly 200.000 inhabitants (18.000 losses, 6.000 injured and
170.000 relocated) were directly impacted (in the short term, as a result of
the initial tsunami; in the long term, as a consequence of the radioactivity).

For this second nuclear disaster, although it was not prevented, the safety
measures and the dispersion modeling were available and applied (Chino,
Ishikawa, and Yamazawa, 1993; Srinivas et al., 2012).

Terrorism

The third stream came, concurrently, starting beginning of the twenty-first
century, with a new wave of terrorism that amplified the interest in CBRN
applications.

It amplified on the 11th of September 2001 with the hijack and crash of
four airliners (Wikipedia, 2001), affecting the United States (US) strongly,
fragilizing their symbolic almightiness (and, in a broader sense, of the North
Atlantic Treaty Organization (NATO)). The subsequent attacks, mainly in
Europe (Reshetin and Regens, 2003; Wikipedia, 2014), were predominantly
dispersed and isolated, but, like in the US, they had consequences on a wide
range of civilians. This new type of terrorism, difficult to prevent due to its
dispersion, raised fear in society and led to unique protection measurements,
new investments, and new studies by the governments and their national
defenses.

CBRN dispersion

As a result of these three streams, some countries decided to study the
spreading of CBRN through the air, water, or any other fluid, considering
the environment:

• France: A few studies (Armand, Duchenne, and Bouquot, 2014; Be-
namrane, 2015; Stohl et al., 2011) were initiated to evaluate and mit-
igate the impact of a CBRN attack on the most populated cities.

Figure 2.2 provides a simulated dispersion of an ammonia release in
Paris, for different release locations, with various wind directions. The
contamination intensity is colored according to the Acute Exposure
Guideline Levels (AEGL).

An equivalent study was proposed for the city of Marseille (figure 2.3),
where a RANS (cf. § 4.1.4) simulation was performed using CERES®

code, together with the simplified flow and dispersion solver PMSS, for
a statistical average wind coming from the south-west. The aim was
to provide a fast response on the possible dispersion of the yperite gas,
located in a downtown warehouse (Armand, Duchenne, and Bouquot,
2014).

• Germany: Similarly, in the work of Duchenne et al., 2013, the spread-
ing of an ammonia seeding was studied in the second-largest city in
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Figure 2.2: Simulation of an ammonia release (10 tons) in Paris (From Stohl
et al., 2011). Intensities: blue (> 1% AEGL-1) to red (AEGL-3)
limits.

Figure 2.3: AEGL zones for an Yperite dispersion (From Armand,
Duchenne, and Bouquot, 2014)

Germany, Hamburg, using both experimental setups and simulations.

Figure 2.4 presents a view of a Hamburg downtown area where the
plume of a tracer, located on a boat and emitting continuously for
45 minutes at a constant rate of 0.02kg/s, was measured. A second
experimental test was performed in a wind tunnel (right picture) with
a 1 : 350 scaled mockup, using the similarity laws to translate the
measurements to realistic values.

Eventually, in the pictures below, three simulations were performed
to compute ammonia concentration near the ground. For these simu-
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Figure 2.4: Left-top to right-bottom: Hamburg city, wind tunnel mokup,
Field experiment with continuous release, Concentration field,
Cross-section near the ground (From Duchenne et al., 2013)

lations, two were performed with variations of the PMSS solver used
in fig. 2.3, while for the third, the SATURNE® code (that provides
a RANS model, coupled to a k-ε turbulence model) was used. Note
that the PMSS solver uses a Lagrangian approach (§ 3.1.3) with 2000
particles per second for the modeling of the particle dispersion.

Following an analogous reflection, the Belgian Defense was interested in
developing a simulation software that could accurately define the dispersion
of solid particles in the atmosphere due to an explosion in the open field
while being able to handle any complex terrain.

The two main reasons for their interest are:

• During the first and second world wars, the Belgian territory was
deeply impacted by bombshells and mines. As a consequence, a branch
(DOVO) of the Belgian Defense is dedicated to explosive ordnance
disposal activities. They ensure that any explosive is safely removed
and destroyed at DOVO’s facilities. Since DOVO has to destroy each
year around 200 tons of munitions, they have set a storage space (cf.
fig 2.5).

Both spaces (i.e. the original location of the explosive and the storage
space) can represent a hazard (e.g. explosions but also dispersions of
potential contaminant). Although DOVO is applying strong regula-
tions to each of their processes, they remain interested in pursuing
the development of a simulation tool that could refine the prediction
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associated with the dispersion of solid particles in the atmosphere.

Figure 2.5: Explosive storage space at Poelkapelle, Belgium (From Defensie,
2019)

• After the resurgence of terrorist attacks in Europe (2014–2017), the
Belgian government requested the Belgian Defense to assign detach-
ments of soldiers in the main cities. The explosion of a subway inside
the Belgian capital, Brussels (near the European Parliament), on the
22nd of March 2016 increased even further the measures taken after
the Paris attacks on the 13th of November 2015.

As a consequence, the interest of the Belgian Defense in CBRN appli-
cations grew. Notably, they were keen to enhance their possibility of
predicting how and where an isolated explosion or contaminant could
propagate through any fluid in complex topographies.

For these reasons, this work aims to develop further the thesis of Janssens,
2014, that created a CFD software, Coolfluid 3, enabling the simulation and
study of flows over complex geometries, thanks to its inherent use of Finite
Elements, together with its integrated stabilization method (§ 4.2.5).



Chapter 3

Related physical aspects

Having defined the context and the motivation that brought us to study the
propagation of a multiphase flow in an open field or city, this chapter will
introduce two required concepts before laying the focus on the modeling:

• Multiphase flow

• Atmospheric Boundary Layer (ABL)

3.1 Multiphase flow

A multiphase flow is a broad term covering a wide spectrum of flows, having
single or multiple interactions between at least two physical phases (cf. solid,
liquid, or vapor phase).

In this work, we focus on a two-phase flow involving a gaseous fluid
(viz. the air) and solid particles (viz. PM2.5). The former is in a con-
tinuous phase (i.e. where elements can move from one position to another
while remaining in the same medium); the latter is in a dispersed phase (as
opposed to a continuous phase).

The reason is double: first, the description of all types of multiphase flows
involving a dispersed and a continuous phase is a domain that, although
they all do have a common element (i.e. the possibility to distinguish the
continuous from the dispersed phases), is far too extensive for this work.
(The reader is referred to Crowe et al., 2011; Fox, 2003; Marchisio and
Fox, 2013 for detailed explanations) ; second, the motivation chapter (§ 2)
promoted the study of how solid particles emanating from an explosion
would propagate.

It should be pointed out that the air is a single-phase (here, gas) mul-
ticomponent (mixture of chemical species) flow. It can be simplified to a
single component flow for practical matters, with specific viscosity and ther-
mal conductivity. This simplification is possible when molecular weights are
alike and there is no high temperature (that could facilitate molecular dis-
association).

Eventually, in the atmosphere, the air is considered a continuum, namely,
a continuous matter acting as a bulk (where all constituents aim towards the
same direction). Since the Navier-Stokes equations (§ 4.1.2) can describe
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a continuum, they can be applied to study the motion of the air in the
atmosphere.

3.1.1 Dimensionless numbers

To introduce the theory behind a two-phase flow, two dimensionless numbers
have to be defined:

• The Knudsen Number: provides an information on the rarefaction of
the flow. It is defined as the ratio between the mean free path λf of
the particle’s carrier phase by its diameter dp:

Kn =
λf
dp

(3.1)

The Knudsen number should be smaller than 10−3 to validate the con-
tinuum assumption (Crowe et al., 2011). At standard conditions, in
the case of air (containing 78% of nitrogen) with particles of diameter
dp = 2.5µm and a λf = 6.8e−8m, Kn would be equal to 0.027, making
the continuum assumption questionnable in our scope. However, prac-
tically, this assumption was used in similar studies (Bechmann, 2006;
Goit, 2015), resulting in acceptable results, and is therefore considered
in this study as well.

• The Stokes Number: provides information on the behavior of large
particles compared to smaller particles (here the surrounding fluid).
It is defined as the ratio between the large particle response time τp
and the fluid time scale τf , that both have dimensions of [s]:

St =
τp
τf

(3.2)

where τp can be derived from Stokes flow motion equation for a small
sphere (Crowe et al., 2011):

dv

dt
=

18µ

ρpd2
p

(up − vp) with
18µ

ρpd2
p

≡ τ−1
p (3.3)

and τf can be determined by means of two expressions (depending on
the available inputs):

τf =
df

|vf − vp|
∨ τf =

ν

u2
τ

(3.4)

with df being the diameter of the small fluid particles and |vf − vp|
the relative velocity between the large particles and the small fluid
particles (Crowe et al., 2011) ; and ν being the fluid viscosity, while
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uτ is the fluid friction velocity at the surface (when considering a
channel flow (Kuerten, 2006)).

Note that the particle response time τp can be interpreted as the time
necessary for the particle to reach 63% of the fluid velocity, starting
from a standstill.

Thus, a Stokes number significantly smaller than one (St � 1) will
correspond to particles with their velocity considerably influenced by
the fluid velocity. On the contrary, a Stokes number that is much
higher than one (St � 1) will indicate that the particle velocity is
largely independent of the fluid velocity.

The distinction given by the Stokes number has an impact on the
model chosen. In § 3.1.3 we will describe four techniques.

Nevertheless, before describing these approaches, another notion will greatly
influence the complexity and approach that will be used further on. This
notion is related to the particle response time τp defined in this section
(cf. eq. (3.3)) and is therefore developed in the next section.

3.1.2 Particles in the flow

In a two-phase dispersed flow, if the fluid forces prevail on the interactions
of the particles (collision against walls and/or other particles) to stir the
motion of particles, then the flow is considered diluted.

To fulfill this condition, one will refer to the ratio between the particle
response time τp (eq. (3.3)) and the average collision time τc. For a dilute
flow, the ratio should be smaller than unity, signifying that the particle will
spend more time propagating than colliding.

One can refer to the kinetic theory (Feynman, Leighton, and Sands, 1965)
to express the particle collision frequency, that is, the inverse of τc. Its
expression, for a monodisperse flow, is:

τc = (nπd2
pvr)

−1 (3.5)

where vr is the relative velocity between particles and n is the particle
concentration number, defined as:

n ≡ lim
δV→δV0

δN

δV
(3.6)

with δN the number of particles and δV the considered volume. The ex-
pression for a polydisperse flow follows a more complex derivation, detailed
in Janssens, 2014.

If the ratio τp/τc is greater than unity, the interactions between particles
will represent a major motion agent, leading to the notion of interaction
between phases. We will outline three cases:
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• the one-way coupling: is a coupling where only the fluid phase will
affect the particles.

• two-way coupling: will enable the interaction in both directions (from
fluid to particles and reverse).

• four-way coupling: integrates the interactions between particles (Vre-
man et al., 2008)

In this study, a dilute flow, thus with no particle interaction, will be
considered to avoid further complications.

3.1.3 Modeling approaches

From previous § 3.1.1, the motion of a continuum can be determined by
the Navier-Stokes equations. Ideally, in the case of a two-phase flow with
particles, the motion of the flow and each particle would accurately and
separately be resolved1.

However, practically, the resolution of these systems will depend signifi-
cantly on the number of particles, the complexity of the flow, and, obviously,
on the computational resources available.

For this reason, four approaches have been taken into consideration and
are illustrated in figure 3.1.

Figure 3.1: Two-phase flow modeling approaches

1Note that the same reasoning for dynamics is applicable for thermal properties, al-
though this will not be detailed.
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Single phase with modified density

The first approach (top left on figure 3.1) is the easiest to implement since
the complete two-phase flow is studied as one phase with combined inherent
properties. In other words, considering the fluid’s viscosity as an exam-
ple, one viscosity will be determined, created from the combination of both
phases’ viscosity.

Although this approach does not isolate each phase’s motion (for there is
only one mixed-phase), it still provides an idea of the mixture’s flow behavior
for a computational cost equivalent to a single-phase flow.

This approach is only feasible in the limit of vanishing Stokes numbers.

Eulerian approach

For higher Stokes numbers, the fluid and the solid particles can no more
respond similarly to any excitation. Intuitively, the drag induced by the
form factor of the larger particles will impact them more, and the particles
with higher density will require more momentum to change their trajectories.
Any existing external forces (e.g. gravity) will affect them more.

Nevertheless, if, in their respective phase, the particles can be considered
statistically homogeneous and isotropic, the two phases will only require two
distinct sets of equations to govern their motions. Without diving into the
details that will be developed in § 4.1.2, the Navier-Stokes equations make
use of 4 equations (one for continuity and three for momentum), while a few
additional transport equations will be introduced for the dispersed phase.
As a consequence, the computational resources’ needs will be increased rea-
sonably.

On the other hand, it would provide a more accurate solution than the
first approach by providing the motion for each phase.

This modeling approach is feasible with a St� 1, simplifying the model-
ing to two interacting continuum fluids.

In this case, the solid particles phase is also called a pseudo-fluid, and
although this approach is relatively fast, it necessitates extra constitutive
relations to close the flow equations. After having finished listing the differ-
ent approaches, section 3.1.4 will develop this point more in detail.

Lagrangian approach

When the Stokes number increases even further, one can no longer study the
second phase as a continuum, and each particle’s motion has to be studied
separately. This approach is named the Lagrangian approach. The top right
side of figure 3.1 illustrates it.

Thus, one will study the fluid phase as a continuum. In contrast, the solid
particle phase is a dispersed phase, where calculating the flow field (Elsayed
and Lacor, 2010) allows for the tracking of each particle’s trajectory, tak-
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ing both the Newtonian equations of motions and any external forces into
account (Niemi, 2012).

This type of modeling approach can be used with St� 1, and with solid
particles that differ in type, size, shape, and velocities but will drastically
increase the size of the system that has to be solved for each time step.

Moreover, another critical aspect of this approach is the particle-particle
and particle-wall interactions and collisions. As outlined in § 3.1.2, these
interactions imply very complex calculations that are not always explicitly
studied.

For these reasons, Snider, 2001, reports the process will often restrict
the modeling to two dimensions, without taking the continuous phase into
account and with the dispersed phase simulated with an order of 2 × 105

particles.

Several techniques exist from which the most popular creates a reduced
amount of parcels that group particles by properties to circumvent these lim-
itations. Only these parcels are being tracked, reducing the computational
cost.

Intermezzo: Correct denomination

In the literature, each phase can adopt an Eulerian or a Lagrangian ap-
proach. Stricto sensu, in a two-phase flow, each phase can be either Eulerian
or Lagrangian.

Consequently, the correct denominations for the respective two previous
sections are an Eulerian-Eulerian approach and an Eulerian-Lagrangian ap-
proach (fluid particles follow an Eulerian approach while the solid particles
follow a Lagrangian approach).

A nice representation of the different techniques can be found in figure 3.2,
detailed in Ariyaratne et al., 2018.

Single phase with exclusion

For even greater solid particle size, if the study permits it, the second phase
can be omitted and replaced by geometrical obstructions (in other words,
walls).

The bottom right side of figure 3.1 presents this approach. It has the clear
advantage of simplifying the model to one phase. Furthermore, as a matter
of fact, this is the most accurate method but unfeasible for large numbers
of particles. The particles are ”excluded” from the fluid mesh, but that
does not mean that no information is available. Indeed, using deforming
meshes, sliding meshes, or immersed boundaries particle motion can prove
to accurately model the effect of particles on the fluid.
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Figure 3.2: Summary of model approaches for gas-solids multiphase flow
modeling (From Ariyaratne et al., 2018)

Considered approach

To conclude on the modeling approach, this work will consider a domain
with significant dimensions (see § 6.2), where the limited computational
resources will constrain the simulation’s objective. Effectively, the latter
will determine the dispersion pattern of the particles in the atmosphere
rather than the precise location of each particle.

For this reason, the favored approach is the Eulerian-Eulerian approach,
where both the fluid phase and the solid particles phase will be studied
using continuous transport equations. This approach will provide relevant
information per phase while still reducing considerably the computational
resources that will, even so, remain substantial.

To ensure this approach is suitable, one could start from an academic
CFD case, namely, the channel flow, and assume the ABL domain to be
a halve channel flow (the top of the ABL domain being half the height of
the channel flow). Notice there is a significant difference between these two
cases. § 3.2 will address it.

Thus, suppose a channel flow of half-height 1200m, with air (µ = 1.8 ×
10−5kg/ms and ρf = 1.2kg/m3 at standard conditions) flowing together
with solid particles (ρp = 2620kg/m3 for carbon), the fluid time scale τf is
given by eq. (3.4), where the friction velocity uτ can be derived from the skin
friction coefficient for turbulent regime in a duct channel flow (cf. correlation
of Dean, 1978):

Cf ≡
τw

1
2ρU

2 =
2u2

τ

U
2 = 0.073Re−1/4 (3.7)
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with U the channel mean bulk velocity and Re the associated Reynolds
number (§ 4.1.1). Notice that the correlation of Dean was proposed for
6.0× 103 < Re < 6.0× 105.

With these relations (eqs. (3.2 - 3.4), (3.7)), both τp and U can be found
for St = 1. The values are presented in Table 3.1.

dp(µm) τp(µs) U(m/s) Re
10 697.5309 10.98 1.76× 109

2.5 43.5957 53.55 8.57× 109

0.1 0.0697 2120.49 3.39× 1011

Table 3.1: Flow properties and particle response time for different particle
size, at St = 1

Table 3.1 shows that already for the large particles PM10, the high bulk
velocity value together with the considerable domain height will produce
a Re that is substantial. Notice that smaller particles amplify the phe-
nomenon. The flow velocity needs to rise even more drastically to conform
with the decreasing particle response time τp. Since we are primarily inter-
ested in particles around the PM2.5 limit, it is clear that the Stokes number
will not easily exceed 1, and the Eulerian-Eulerian approach is valid.

3.1.4 Details on the solid phase

Before closing this section on multiphase flow, a few precisions should be
given concerning the second phase, namely the solid particle phase.

When particles are modeled as a continuum phase, considering an average
diameter is convenient. The basic Eulerian approach offers this behavior.
However, it does not sufficiently represent physics. To illustrate this, Niemi,
2012 considered a somewhat different case, that is, a circulating fluidized
bed, where he observed that large particles remained in suspension near the
bottom. At the same time, smaller particles traveled quickly above them2.
A simulation with only an average diameter taken into account would lead
to an erroneous vertical distribution and, consequently, an incorrect motion.

A better hypothesis is to substitute the average diameter by a Particle
Size Distribution (PSD). The generalized Navier-Stokes equations require
additional equations to achieve this. The following section will introduce
the theory behind this.

Population balance equation

When studying a collection of comparable elements, one can use a theory
called the population balance approach. This theory delineates the evolution
of these elements, here solid particles, that have a distribution of properties

2Notice these tiny particles also filled the holes to minimize the space inside the bed.
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that can change, both in time and space. The equations associated with this
approach are named the Population Balance Equations (PBE) (Ramkrishna,
2000).

In this theory, the particles are evolving in a continuous phase, where
external and internal coordinates define each particle’s state space. The for-
mer depicts the spatial location, while the second is bound to the intrinsic
properties of the particles (e.g. size, material, concentration, etc.). Addi-
tionally, the PBE supposes the existence of a density function f (e.g. the
PSD) that indicates the concentration of particles spatially. Notice that, if
integrated, this density function results in the total quantity of particles, N ,
in the domain Ω (eq. (3.8)). Resolving the PBE generates this function.∫

Ω

fdΩ = N (3.8)

The PBE can be derived in a similar way to other balance equations
(e.g. continuity, momentum, etc.). Starting from an arbitrary control volume
in the considered state space and supposing there is no creation neither
destruction of particles, the total amount of particle will remain constant in
time (eq. (3.9)).

d

dt
N =

d

dt

∫
Ω

fdΩ = 0 (3.9)

Supposing a smooth density function, the Reynold’s transport theorem
(Gonzalez and Stuart, 2015) can be applied to move the time derivative in
the integral, implying eq. (3.10):

∫
Ω

∂f

∂t
+∇ · (v f)dΩ = 0 (3.10)

with v the particle velocity.
Because the considered control volume Ω was chosen arbitrarily, the in-

tegrand has to vanish. By including a source term following Ramkrishna,
2000, eq. (3.11) represents the general differential form for the PBE (Yeoh,
2010). Notice that the source term could include influences such as evap-
oration, coagulation, fragmentation, aggregation, breakage, and nucleation
(Janssens, 2014; Niemi, 2012). The curious reader will find a multitude
of models following this general PBE expression in Ferry and Balachandar,
2001; Simonin, 2005; Zaichik et al., 2010.

∂f(x, ξ, t)

∂t
+∇ · (v(x, ξ, t) f(x, ξ, t)) = S(x, ξ, t) (3.11)

where both the density function f , the velocity v, and the added source term
S are depending on the external coordinates x, the internal coordinates ξ,
and the time t.
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The PBEs are thus PDEs. Numerical methods such as Monte Carlo meth-
ods, class methods (Yeoh, 2010), or Methods Of Moments (MOM) can solve
PBEs. The first method, a statistical ensemble approach, is very flexible and
accurate but also highly demanding in terms of computation. The second
method is a direct method that is very popular although still computation-
ally demanding. The third method is much less demanding while still very
accurate. Additionally, this last method is implemented in our code and, as
such, will further be explained in the next section.

Method Of Moments (MOM)

Hulburt and Katz proposed the method of moments in 1964 (Hulburt and
Katz, 1964). In this method, supposing the concentration distribution is
the scalar that we are looking for, the concept is to convert the PBE into a
problem of finding the moments of the concentration distribution. As such,
one defines the integer moments of a distribution by eq. (3.12).

mk(x, t) =

∫
Ω

f(x, ξ, t) ξkdξ (3.12)

For example, the first moment (i.e. k = 0) would lead to expression (3.8).
Thus, when looking at eq. (3.12), the PBE can be converted to its moment

form by integrating it after having multiplied it with a power of its internal
coordinate. The direct consequence of this integration is a closure problem
that will prove to be problematic for any numerical implementation.

To circumvent this, McGraw, 1997 introduced an evolution of the method,
called the quadrature method of moments (QMOM). Practically, analo-
gously to numerical integrations, the integral terms from MOM are ap-
proached by numerical quadrature (i.e. discretized) following eq. (3.13).

mk(x, t) ≈
N∑
i=0

wi ξ
k (3.13)

with wi the weights and ξi the abscissas of the quadrature.
Various algorithms such as the product-difference algorithm from Gordon,

1968 are available to obtain the values of the moments. From these values,
QMOM permits the calculation of the weights and abscissas.

QMOM was successfully implemented in CFD by Marchisio et al., 2003;
Marchisio, Vigil, and Fox, 2003a,b. However, it suffered a significant limita-
tion: it could only provide moments that propagate with the same velocity.
In other words, it was limited to a single particle velocity field.

Fortunately, the QMOM method, proposed initially by Marchisio and
Fox, 2005, continued to be developed, and a modified version called the
direct quadrature method of moments emerged. The next section of this
multiphase flow segment will detail the latter.
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Direct Quadrature Method Of Moments (DQMOM)

Reverting to previous section, the main limitation of QMOM was its in-
ability to handle moments propagating at different velocities. The Direct
Quadrature Method Of Moments (DQMOM) addresses it at a lower level.
The transport equations are no more originating from tracking the moments
themselves. Instead, they are written directly for the weights and abscissas
available in the QMOM approximation.

As a consequence, the number of scalar equations is equal to QMOM.
Moreover, they are equivalent to monodispersed flows.

In contrast, DQMOM lifted the limitation by allowing each transported
weight and abscissa to use different velocities, making it convenient when
considering particles of different sizes. Another advantage, compared to
QMOM, is its facility to integrate polydisperse capabilities.

Practically, eq. (3.14) defines the PSD through Dirac-functions.

f(x, L, t) =

N∑
q=0

wq(x, t) δ [L− Lq] (3.14)

with wq the weights and Lq the abscissas for the quadrature approximation.

Eq. (3.14) can then be substituted into the PBE (eq. (3.11)) to generate,
after a few operations, the transport equations for each weight and abscissa
following eq. (3.15).

∂wq
∂t

+∇ · (vq wq) = aq

∂Lq
∂t

+∇ · (vq Lq) = bq

(3.15)

where Lq = Lqwq is the weighted abscissa, aq and bq are associated with the
source terms and can be found by solving a linear system at each iteration
and for each control volume. And where vq are the velocities, that are now,
specific to each weight and abscissa.

These multiphase continuity equations can now be coupled and solved
with standard equations for the fluid phase.

Eventually, because:

• the DQMOM was validated in several applications (Fan, Marchisio,
and Fox, 2004; Selma, Bannari, and Proulx, 2010; Silva et al., 2010),

• only a few quadrature points (i.e. two to four) are necessary to obtain
good results,

• of its multivariate capacity,
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this method is considered the most promising method for multiphase flows,
both in terms of results and computations. This method was implemented
by Janssens, 2014 in our Coolfluid 3 code, and therefore, it is the method
that will be applied in § 6.3.

Despite these excellent characteristics, one should mention two main draw-
backs associated with the (DQ)MOM:

• it is sensitive to ill-conditioning (Grosch et al., 2006). Therefore, in-
creasing the accuracy by heavily increasing the number of quadratures
may lead to worsening the solution.

• it is possible to locally reach sets of moments that do not match any
real PSD (Wright, 2007). The discretization of the advection term in
the moment transport equations is at the origin of this issue.

3.2 Atmospheric boundary layer

Having exposed the multiphase properties of the flow, we can introduce the
central part of the work, namely, the creation of a system characterized by
an atmospheric boundary layer.

3.2.1 Boundary layer meteorology (or micrometeorology)

The first notion is the boundary layer, a layer of fluid directly surrounding a
physical surface where an interchange of mass, momentum, and energy oc-
curs. This exchange can induce fluctuations in the flow properties (velocity,
density, and temperature).

Secondly, one can divide the Earth’s atmosphere into six layers named,
from the furthest to the nearest, the exo-, iono-, thermo-, meso-, strato-,
and troposphere. Figure 3.3 presents them.

The first six layers are related to ionization, aurora, spatial protections
(burning of meteors), and ultraviolet protection (due to the ozone). Nonethe-
less, their density is negligible compared to the last layer, the troposphere.
Because of its higher concentration and the direct contact with the Earth’s
surface, the troposphere is where most weather phenomena happen. It will
therefore be the primary region of interest in meteorology and, consequently,
in this work.

Figure 3.4 suggests a cross-section view of the troposphere layer that
starts at the Earth’s surface and expands to ∼ 9km of height at the poles
and ∼ 17km at the equator. In this layer, the temperature decreases with
the altitude by 6.5◦C/km on average, and its upper limit is defined by the
point where the decrease ceases, namely, the tropopause.

Furthermore, the troposphere reveals motions that contain a wide range of
scales, from millimeters to thousands of kilometers in the horizontal direction
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Figure 3.3: Diagram of the atmosphere’s layers (From Zell, 2017)

Figure 3.4: Troposphere cross section (From Service, 2008)

and kilometers in the vertical direction. These length scales are associated
with time scales that have a span from seconds to years.

In meteorology, one can divide these scales into three branches: the micro-,
meso-, and macro-scales (also designated as local-, regional-, and global
scales). The micro-scale branch is the branch of interest in this work because
it is constrained to phenomena predominated by frictions appearing at the
surface of the Earth, also named atmospheric boundary layer (ABL) or more
generally planetary boundary layer (PBL).

Thus, the ABL is a boundary layer mainly affected by exchanges between
the Earth’s surface and the surrounding atmosphere. Figure 3.5 proposes a
schematic representation subdividing the ABL into a surface layer and an
outer layer:
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• The former corresponds to one-tenth of the ABL and contains the
roughness layer (or canopy layer) specific to the considered surface of
the Earth. The characteristic of this layer will be further developed in
§ 3.2.2 and taken into account in § 4.3.

• The latter represents the major volume of the ABL. Because of its
dimension, the perturbations generated in the surface layer will further
develop in the outer layer and create a great amount of mixing. This
mixing will be fed by a specificity of the ABL, namely, the variation
of the wind direction in function of the height. This effect will be
clarified in section 3.2.2.

Nevertheless, although the complete domain will be considered, only
the effect of the surface layer will be taken into account in the first
instance.

Figure 3.5: Atmospheric Boundary Layer illustration (From Arya, 2001)

Note that figure 3.5 represents a nearly neutral ABL, that is, where each
layer has relatively high stability, generating consequently stratified layers
(as opposed to mixing layers).

Ordinarily, the ABL thickness varies enormously, depending on the warm-
ing, the wind velocity, the topology, and other factors. As an order of magni-
tude, these daily fluctuations could imply an ABL thickness stretching from
100m, early in the morning to kilometers in the evening (Garćıa Sánchez,
2017; Gorlé et al., 2009).

Because of these wide variations, any air pollutant release at the Earth’s
surface would eventually contaminate the whole volume, defining a clear
and sharp separation between the dirty turbulent air (in the ABL) and
the cleaner and streamlined air (above the ABL, in the free-atmosphere).
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The split or ABL height is usually referred to as the mixing depth and is
commonly associated with an arbitrary cutoff delimited by the cloud base
(Arya, 2001).

In this work, one will restrain the complexity to a purely convective phe-
nomenon, producing a nearly neutral ABL condition following fig. 3.5. In
reality, such a condition rarely appears, but they do occur during overcast
skies or strong geostrophic winds.

3.2.2 ABL specificities

Before diving into the modeling part, one should clarify two important speci-
ficities of the ABL:

1. the velocity profiles associated to the roughness layer, and

2. the wind direction in function of the height.

Notice that other factors influence the ABL wind distribution (e.g. pressure
and temperature gradients, thermal stratification due to the diurnal cycle,
the momentum/heat/moisture exchange between the ABL and the layers
above, the presence of clouds). Still, since we considered a purely convective
and neutral ABL, these influences will not be discussed.

Roughness layer

The first specificity is associated with the lower part of the ABL, the surface
layer, that is, directly connected to the Earth’s surface. This surface layer
will encounter the largest fluctuations in physical quantities depending on
the height. One of the reasons is the topology of the ground, or, more
precisely, what is named the roughness layer.

The roughness layer (or canopy layer) is the lowest layer near the sur-
face where rough elements will potentially disturb the flow. The roughness
layer’s thickness is characterized by a specific roughness height z0 that can
vary from nearly insignificant, for stripped land, to the height of the most
outstanding buildings in suburban or urban terrain. In between, a rural
or a vegetated region will produce a roughness layer with moderate eleva-
tions. In the literature, a roughness parameter (or height or even length) z0

was introduced as a geometric average roughness that will be used later, in
eq. (3.20). Typical values for z0 are 0.23m, 0.33m, and 2.47m respectively
associated with a rural, suburban, and urban terrain (Vasaturo et al., 2018).

Figure 3.6 presents an illustration of different roughness layers.

As sketched in figure 3.6, the variation in roughness suggests a modifica-
tion in the considered wind velocity profiles. The three following sections
will develop the possible profiles in more detail and briefly compare them.
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Figure 3.6: Roughness illustrations (From Oke, 1987)

Roughness layer: Power-law profile

A common methodology to model an ABL is to assimilate it to an academic
case, that is, the study of a half channel flow (i.e. flow between two infinitely
long parallel plates, or plane Poiseuille flow). In other words, one could
consider a flat-plate boundary layer on the ground and the middle of a
channel flow at the top of the domain to simulate an ABL.

In this case, the velocity distribution would follow approximatively a
power-law expression given by:

U

Uh
=
( z
h

)m
(3.16)

for different z height, with h, the half-channel depth (or boundary layer
thickness), Uh the velocity at that height, and the stability coefficient m =
1/7 for a smooth surface, as reported by Prandtl. Because, for an ABL,
the relation is valid until a reference height (smaller than the half-channel
depth h), Uh and h are often replaced by the velocity Ur given at a reference
height r.

In accordance with Prandtl‘s discovery, Izumi and Caughey verified the
expression for the various surface’s roughness and the various ABL stability
condition presented in figure 3.7.

Figure 3.7 reveals that, independently of the considered roughness and
the flow condition, the observed wind velocity follows a power-law profile.
The only difference resides in the value of the exponent m, varying between
∼ 0.1 for smooth surfaces and ∼ 0.4 for urban regions, under near-neutral
flow conditions; and approaching 1.0 for conditions increasing in stability.

Unfortunately, these observations, validating the power-law velocity pro-
file in the surface layer, do not provide a result that is satisfactory when
considering the turbulent momentum flux near the surface.

Effectively, near the surface (in the constant stress layer), the momentum
flux is assumed constant with the height. As a consequence, by applying
similarity hypothesis, the power-law velocity profile can be used to express a
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Figure 3.7: Wind velocity power-Law profiles for various roughness z0 and
ABL stability conditions, in function of the height. (From Izumi
and Caughey, 1976)

power-law eddy viscosity νm distribution in function of the height, following
expression (3.17):

νm
νmr

=

(
z

zr

)(1−m)

(3.17)

Eqs. (3.16) and (3.17) are often referred to as the conjugate power laws in
the atmospheric theories. When these two equations are used outside the
constant stress layer, the coefficient (1 − m) becomes too restrictive and
impacts negatively the profile (Arya, 2001).

Roughness layer: Log-law profile

Instead of using the presented power-law profile, another slightly different
approach exists, which is more grounded theoretically and physically, espe-
cially for a neutral ABL, and follows a logarithmic profile law or log-law
profile.

To facilitate the explanation, consider a neutral surface layer, horizontally
homogeneous, with no additional complexity brought by a viscous layer or
a roughness layer and with no external forces. The velocity distribution can
be reduced to an expression (3.18) depending solely on the height z (not
necessarily on the ground but rather in its vicinity), and the ratio between
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the wall shear stress τ0 and the fluid density ρf (also known as the kinematic
momentum flux):

∂U

∂z
= f(z, τ0/ρf ) (3.18)

In expression (3.18), tacitly, it is assumed that the wall shear stress τ0 that
establishes the velocity gradients in the surface layer contains the influence
of both the surface roughness and the horizontal pressure gradients (induced
by the geostrophic winds).

Thus, eq. (3.18) is function of two characteristic scales, namely, the ve-
locity scale u∗ ≡ (τ0/ρf )1/2 and the length scale z. These can lead, after
dimensional analysis, to the dimensionless wind shear similarity relation:(

z

u∗

)(
∂U

∂z

)
= constant =

1

κ
(3.19)

with κ, the von Karman’s constant. The latter was found empirically and is
considered a constant equal to 0.401 for all wall surfaces, although its exact
value could not be reached at a better precision than 5% (Högström, 1985).

From integrating eq. (3.19) in relation with z, and after defining the mix-
ing length as l = κz and the eddy viscosity νm = κzu∗, one will find the
established log-law profile (Oke, 1987):

U

u∗
=

(
1

κ

)
ln

(
z

z0

)
(3.20)

where z0 is the integration constant that was presented in the beginning of
section 3.2.2.

Figure 3.8 shows a perfect correlation between the observations performed
on the plains of Wangara, located in the Hay region of Australia, where a
neutral surface layer could be measured, and the log-law wind profiles. This
correlation is supported by the linear variations of νm and l with the height
that is consistent with both theory and physics (in contrast with the non
linear behavior for the power-law profile).

Power-law vs log-law

To further enrich the discussion, the two profiles can be compared by plotting
the reference height zr version of eq. (3.16) together with an adapted version
of eq. (3.20) given by:

U

Ur
= 1 +

ln(z/zr)

ln(zr/z0)
(3.21)

Figure 3.9 presents both profiles, where the power-law profiles are given for
varying values of m, while the variation is in zr/z0 for the log-law profiles.
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Figure 3.8: Observations of wind profiles in the neutral surface layer in
Wangara compared to the corresponding log-law profiles (From
Clarke et al., 1971)

Figure 3.9: Power-law (–) and log-law (– – –) comparison for hypothetical
wind profiles (From Arya, 2001)

Since these two profiles are different, the equivalence between these two
parameters can be approached by equalling the velocity gradients, at the
reference height zr following eq. (3.22):

m =
d(lnU)

d(ln z)
=

z

U

∂U

∂z

∣∣∣∣
z=zr

=

(
zr
z0

)−1

(3.22)
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By observing fig. 3.9, one can clearly see the deviation taken by the power-
law profiles relative to the log-law profiles, the further z travels from the
reference height zr.

This concludes that, although both profiles perform reasonably in the
surface layer, the log-law profile follows the observations better, especially
in neutral conditions, and is more consistent with the physics, making it
a suitable choice. As a matter of fact, this approach is commonly used
nowadays and will further be developed in the Modeling Part (§ 4.3)

Wind direction

An additional specificity of ABL is related to the change in wind direction
with the height.

In the classical channel flow case (introduced in section 3.2.2), a unidi-
rectional flow is considered. This approach is perfectly acceptable in the
surface layer but becomes unrealistic when considering the entire ABL.

In the ABL, because of the significant scales, together with the variations
of pressure (and temperature), the rotation of the Earth (i.e. Coriolis effect)
will influence how the direction of the geostrophic wind evolves with the
altitude. Note that the geostrophic winds are defined as the winds that
would occur only with these two influences (hence, with local acceleration,
but with no advection nor friction).

To elaborate, the geostrophic winds components Ug and Vg, respectively
in the longitudinal (x) and lateral (y) directions, can be defined in terms of
pressure gradients through eq. (3.23):

Ug = − 1

ρff

∂P

∂y
; Vg =

1

ρff

∂P

∂x
(3.23)

where f is the Coriolis factor defined in function of the rotational velocity
of the earth Ω and the specific latitude φ, in eq. (3.24):

f = 2Ω sinφ (3.24)

Thus, in the outer layer, the Coriolis effects will induce deviations of the
geostrophic wind direction, that can be expressed by the velocity-defect law
(Monin and Yaglom, 1971) given in eq. (3.25):

(U − Ug)/u∗ = Fu(fz/u∗)

(V − Vg)/u∗ = Fv(fz/u∗) (3.25)

where Fu,v() are functions based on the similarity hypothesis for barotropic
neutral ABL, originally proposed by Kazanski and Monin, 1961.

Accordingly, the influence of the Coriolis effect was measured and vali-
dated experimentally by Kaimal in 1976 while conducting an experiment
over flat terrain in Minnesota for a convective overland (figure 3.10).
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Figure 3.10: Temperature, velocity and direction of the wind in function of
the height, for a convective overland condition. (From Kaimal
et al., 1976)

Nevertheless, in this work, as previously stated, the change in direction
will not be considered to reduce the complexity.

As a special remark, in 1968, during a World Health Organization sym-
posium on urban climates and building climatology held at Brussels, Oke
presented an interesting observation where, in unstable conditions, the wind
direction from the surface layer progressively shifts cyclonically (to the left
in the northern hemisphere, right in the southern hemisphere) when the
roughness layer changes from smooth to rough. These shifts can reach 10
to 20◦ for a passage from rural to urban areas (Oke, 1974).

This final remark shows that these two essential characteristics of ABL,
namely the roughness layer and the Coriolis effect, can significantly influence
the wind distribution.

3.3 Synthesis on related physical aspects

Chapter 3 presented two physical aspects influencing the dispersion of par-
ticles in the atmosphere.

To define the interaction between the solid particles and the air, dimen-
sionless numbers were defined which allowed to find what model would be
appropriate, taking both the physics and the resources into account. As
such, we decided to develop a model that would use an Eulerian-Eulerian
approach, applying the DQMOM to the solid particle phase. This would
ease the numerical development and distinguish the two phases while still
allowing the computation with limited computational resources. Eventually,
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this approach also allows to focus on one phase and add the second phase
independently.

In the second part of this chapter, the atmospheric boundary layer was
introduced through a meteorological approach to understand physics better.
Two main specificities, namely, the roughness layer and the variation in wind
direction with the height, were further detailed to introduce the study that
needs to be performed to bring us closer to the final goal.

From this last part, one needs to keep three notions in mind:

• we studied two wind profiles in the literature: the power-law and the
log-law profiles. The log-law is the most commonly used thanks to
its deeper connection to theory and physics, near the surface but also
until the outer layer, in contrast with the power-law profile. It is also
the log-law profile that we will exploit in this work.

• The average roughness height (z0) is a parameter used to express the
roughness of the terrain. Since it influences the turbulences occurring
near the ground and, therefore, on the potential dispersion of particles
(or more globally on all quantum), this parameter is intrinsic to any
ABL representation. By way of illustration, three values of z0, for three
different terrains, are displayed: 0.23m (rural), 0.33m (suburban), and
2.47m (urban).

• The Coriolis effect and the associated wind deviation with the height
is a peculiar characteristic of ABL, but in first instance, although
necessary in general, this effect will not be implemented.

Having defined what is to model and what profile will be studied, the
main goal of this work remains to develop code inside the software Coolfluid
3 (Quintino et al., 2012) that will enable us to:

1. Simulate an airflow in an open field, taking the size of the atmospheric
boundary layer into consideration.

2. Ascertain the validity of the modeling and its stabilizations without
jeopardizing the computational resources.

Nevertheless, before diving into the different particularities of the code,
the first sections of the next part will propose a description of the various
computational fluid dynamics (CFD) simulation types.



Part II

Modeling





Chapter 4

Numerical modeling

After having defined this work’s motivation and physical aspects, this chap-
ter will focus on the primary modeling techniques.

First, an overview of the principal modeling directions will be outlined
(§ 4.1).

Then, the methodology used in the Coolfluid 3 code will be detailed, to-
gether with its advantages but also weaknesses. For the latter, the available
solutions (e.g. stabilization method) will be specified (§ 4.2).

The third section will extend the prior ABL knowledge (§ 3.2) by in-
troducing the modeling strategy (§ 4.3) that will be further developed in
Part III.

Eventually, a few words will be written concerning the influence of the
domain’s dimension (§ 4.4).

All these elements are essential to the proper comprehension and analysis
of the future results but not sufficient. As a consequence, this chapter will be
followed by a chapter deepening the turbulence modeling (§ 5), concluding
the Modeling Part II.

4.1 From accurate but slow, to fast but
simplified, to a realistic compromise

Modeling physical behaviors can be defined as trying to explain and repro-
duce, mathematically, physical phenomena.

To help with the modeling, first, a non-dimensional parameter, the Reynolds
number, will be defined. This parameter is derived from the dimensional
analysis and will help in characterizing some fluid properties.

The second subsection will establish the needed governing or state equa-
tions. They represent the mathematical model that fits the physical pro-
cesses and will be solved in their discrete forms.

Lastly, three approaches (§ 4.1.3, § 4.1.4, § 4.1.5) used to solve them will
be described.

4.1.1 Reynolds number

The Reynolds number, symbolized by Re, is a non-dimensional parameter
that was introduced by Sir Osborne Reynolds in 1883. It is defined as the
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ratio between the inertial and the viscous forces occurring in the considered
fluid (Bottin, 2015).

It plays a fundamental role by indicating the nature of the flow, namely
laminar or turbulent, in a broader sense, by identifying the transition be-
tween these two regimes.

Finertia := mU
dU

dx
= m

U2

L
= ρV

U2

L
= ρL2U2 with V = L3

Fviscous := τS = µ
U

L
L2 = µUL with S = L2

→ Re :=
Finertia
Fviscous

=
ρUL

µ
(4.1)

where U , L, ρ, µ are respectively the characteristic velocity, the length, the
density and the dynamic viscosity of the flow. τ is the shear stress related
to the dynamic viscosity by:

τ := µ
∂U

∂y
(4.2)

where x is aligned with the flow direction while y is normal to the boundary.
Thus, if the inertial forces prevail on the viscous forces (typically when

Re is more significant than 105 in an open stream), the flow will become
turbulent.

4.1.2 Navier-Stokes equations

The Navier-Stokes equations provide a complete description of the flow
(both, its motion and all the turbulent structures contained in the fluid). If
the density and the viscosity of the fluid remain constant (i.e., incompress-
ible and homogeneous), the equations are:

∂iu = 0

∂tuj + ui∂iuj = 2ν∂iSij −
1

ρ
∂jP + fi with j = 1, 2, 3 (4.3)

With for the intrinsic properties of the fluid: ν the kinematic viscosity and
ρ the fluid’s density. The other variables are depending on the considered
system: the velocity field u(x, t) expressed both in space and time, the
rate-of-strain tensor Sij corresponding to the friction between the particles
(John, 2014), the pressure P and, eventually, any external force per unit
mass f acting on the fluid.

Note that the expression for the rate-of-strain tensor is:

Sij =
1

2
(∂iuj + ∂jui) (4.4)
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Thus, these eqs. (4.3) are respectively based on the conservation of mass
and the conservation of momentum.

By looking at these Navier-Stokes equations, it should be stressed that
the numerical resolution will present three difficulties: the amount of infor-
mation in the velocity field, the non-linearity of the convective term ui∂iuj
and the coupling between the pressure and the velocity (John, 2014).

To facilitate the interpretation of the momentum equation (from eq. (4.3)),
one can reformulate it with the dimensionless Reynolds number (eq. (4.1)):

∂tuj + ui∂iuj = 2
1

Re
∂iSij −

1

ρ
∂jP + fi (4.5)

From expression (4.5), a solution that is predominantly viscous (Re→ 0)
will monotonously reach a stationary solution. For increased Re (→ 102 ∼
103), the influence of the non-linear convection term (ui∂iuj) will increase,
causing a flow that will head toward a periodic solution. For even greater
Re (→∞), where inertia prevails on viscous forces, even more periodicities
aggregate to eventually produce a flow in a turbulent state, where disorder
is predominant.

An elegant manner to illustrate this progression is to look at the gener-
ation of vortices behind a cylinder, in function of Re. Figure 4.1 displays
the Q-criterion, which is an indicator of the relative rotational fluctuation
in the flow compared to its translational fluctuation. It is defined by:

Qij =
1

2

(
|Ωij |2 − |Sij |2

)
(4.6)

where Sij and Ωij are respectively the strain (eq. (4.4)) and vorticity tensors
that will further be detailed in section 5.2.2.

Figure 4.1: Q contours for increasing Re. (From Banyai, 2016)

Referring to the introduction of this section, although the Navier-Stokes
equations provide a complete description of the flow, the complexity brought
by turbulence clarifies why only a few accessible cases have an analytical
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solution. To solve the vast majority of flows, the only currently available
choice is to discretize and use numerical models.

The following sections will present three approaches that are primarily
acting on the numerical size of the system to be solved.

4.1.3 Direct Numerical Simulation (DNS)

The direct numerical simulation (DNS) takes all turbulent scales into ac-
count. To enable an accurate representation of all pertinent scales, one has
to divide the studied domain into cells (i.e. the grid resolution) that are
fine enough to capture the smallest eddies (e.g. ∼ 10−3m). In contrast, the
dimension of the considered geometry has to be wide enough to contain the
largest structures. Note that the latter is met if the correlation between two
points placed in the stream- and spanwise directions vanishes in the first
half of the computational domain (Trofimova et al., 2009).

As a consequence, the number of cells increases drastically. In fact, ac-
cording to Kolmogorov, 1991, supposing isotropic turbulence, the number
of mesh points necessary to capture the smallest eddies is proportional to
Re9/4. Pope, 2001 presented an analogous comparison where the increase is
a polynomial function of the Reynolds number that can, for a turbulent flow
(e.g. Re ≈ 106), lead to a grid with 1018 (= Re3) mesh points in space-time
(Hoffman and Johnson, 2006). Spalart estimated that half a century will
still be needed for the computational resources to be able to solve a typical
engineering case in turbulence (Spalart, 2000).

In the case of an ABL (with a domain’s unit dimension of ∼ 103m), due
to the wide range of turbulent scales, resolving all time and length scales to
obtain an actual turbulent flow is numerically impossible. Indeed, the large
amount of computational cells required to detect the small eddies, together
with the short numerical time steps essential to capture the fastest turbulent
structures, results in a substantial computational cost.

Because the computational cost of this type of simulation is significantly
high, because these simulations are only reachable for small Reynolds num-
bers and eventually because, in our work, an open-field simulation is consid-
ered (in other words, both the Reynolds number and the spatial dimension
are large), this type of simulation is not affordable.

To circumvent this limitation, an option is to transfer the complexity to
the modeling (Tennekes and Lumley, 1976). This can be carried out by
reducing the number of information to handle through averaging. Three
techniques are widely used:

• Ensemble averaging in time: all physical quantities are averaged in
time.

• Spatial filtering: in this case, a low-pass filter, preserving continuity,
is applied to the flow, reducing the number of mesh points involved in
the computation.
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• A blending of the two previous techniques.

The following two subsections will introduce the two first approaches. The
third one, the blending, although widely studied in the literature, will not
be expanded1.

4.1.4 Reynolds Averaged Navier-Stokes (RANS) equations

The first technique uses the so-called Reynolds Averaged Navier-Stokes
(RANS) equations. In this approach, physical values are averaged in time
(also called ensemble averaging in time):

φ = lim
T→∞

1

T − T0

∫ T

T0

φ(T0 + t)dt (4.7)

By averaging in time, the fluctuations disappear, leaving a flow field that
is less sensitive to the spatial configuration. As a consequence, the mesh
resolution needed to capture these averaged quantities is also less restrictive.
As a result, this method could rapidly be applied to turbulent models.

In concrete terms, each physical quantity (φ(t)) can be expressed by
eq. (4.8), as the sum of a time averaged (φ) that follows eq. (4.7), and a
fluctuating (φ′(t)) component that is illustrated by figure 4.2:

φ(t) = φ+ φ′(t) (4.8)

Figure 4.2: Illustration of a signal φ composed of an average φ and a fluctu-
ating φ′(t) part. (From Banyai, 2016)

By averaging in time the Navier-Stokes eqs. (4.3) and applying identi-
ties (4.9),

∇φ(t) = ∇φ, φ′(t) = 0, ∇φ′(t) = 0,
∂φ′(t)

∂t
= 0 (4.9)

one can express the RANS equations (4.10). Note that, here, to ease the
reading, the vectorial notation is used.

1Nonetheless, by seeking the benefits of the two first approaches while reducing their
drawbacks, there is undoubtedly much interest in this last direction (Chaouat, 2017;
Hoarau et al., 2019; Sagaut, 2006).
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∇~u = 0

∂t~u+
(
~u · ∇

)
~u = ν∇2~u− 1

ρ
∇P −∇τ ′ with τ ′ = u′iu

′
j (4.10)

When looking at eqs. (4.10), all terms are averaged in time except τ ′

that expresses the fluctuations produced by the convection. τ ′, named the
Reynolds stress tensor, is a tensor with six degrees of freedom (in 3D) that
requires six more equations to solve the system. To solve the system, a
closure needs to be found. The latter should not only solve the mathematical
equations but also consider the physics of the considered flow. The most
widely used formulation is the Boussinesq approximation (4.11), proposed
in 1877 (Boussinesq, 1877):

τ ′ = −2νtS +
2

3
δijk with k =

1

2
u′iu
′
i (4.11)

where S is defined by eq. (4.4), k is defined as the turbulent kinetic energy,
and where νt, the turbulent eddy viscosity, is the only remaining parameter.

Concerning the last unknown, νt, several models exist to define it. Since
they will not be used in this work, only a brief outline will be provided. The
linear models can be distributed in three categories:

• the algebraic models: are not based on the solution of any other equa-
tion (exception for the Johnson-King model) but directly calculated
from flow variables. These are robust models for high-speed flows but
do not take the history of the flow into account. Examples are the
Baldwin-Lomax (Baldwin and Lomax, 1978), Cebeci-Smith (Smith
and Cebeci, 1967), and Johnson-King (Johnson and King, 1985) mod-
els.

• the one-equation models: resolve an extra transport equation, typ-
ically the turbulent kinetic energy equation. The initial version is
from Prandtl (Wilcox, 2006) while the most common is the Spalart-
Allmaras version (Spalart and Allmaras, 1992). Other more modern
versions are the Baldwin-Barth (Baldwin and Barth, 1990), Rahman-
Argawal-Siikonen (Rahman, Siikonen, and Agarwal, 2011), WA (Wray-
Argawal) (Han, Wray, and Agarwal, 2017), and the Shuai-Argawal
(Shuai and Agarwal, 2020) turbulence models.

• the two-equations models: describe the turbulences in the flow by two
transport equations (one equation associated with the turbulent ki-
netic energy k, and another for its dissipation ε or rate of dissipation
ω). Its main advantages are connected to its ability to provide a flow
that preserves its ”memory” (e.g. the convection and diffusivity of the
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turbulent energy) at a reasonable cost (i.e. resources vs. flow resolu-
tion). As such, these models are the most popular in the industry. The
most used model for nearly a half-century was the k − ε (Jones and
Launder, 1972) and its variants. A conceptually different model, the
k−ω model, was proposed in 1988, and its optimized version was pop-
ularized by Menter (Menter, 1993) in 1993 under the name SST k−ω
(with SST standing for Shear Stress Transport).

Besides linear turbulence models, non-linear models are also developed, asso-
ciating the turbulent eddy viscosity to the velocity, via a non-linear relation.
It supports some anisotropy near the wall. The author refers to the v2 − f
and the cubic k − ε models for more details (Durbin, 1995; Popovac and
Hanjalic, 2007).

To synthesize, the RANS approach uses time-averaged flow properties that
do not require extra-fine meshes. As a result, they produce a solution with
limited resources both in time and computation. The drawback is related to
the loss in resolution due to the averaging. This also makes these models less
suitable for particle dispersion since turbulent scales can influence particle
behavior, which would require additional modeling.

4.1.5 Large Eddy Simulation (LES)

In between these two approaches, there is a statistical method that does
not use time-averaged values and mitigates the constraints of a pure DNS
simulation. This is achieved by limiting the computation to the dynam-
ics of the large-scale motions while representing the smaller scales through
simple models (Pope, 2001). This approach is categorized in the so-called
Large Eddy Simulations (LES) and will be developed more in detail in § 5.2.
Thanks to the increasing available computational resources, the industry in-
creased its use widely during the last decades.

In the same region of interest, there is another approach that is substan-
tially distinct from the LES approach. This different approach is called the
Variational Multi-Scale method (VMS). The latter will be developed in § 5.1
and is mainly different from the LES in the reasoning and the technique used
to solve the closure problem inherent to the filtering used in these types of
simulation.

Although small, this section contains the methodologies that will be used
in this work and, for this reason, a specific chapter will be dedicated to
them (§ 5) after having defined first the method used to compute the flow
properties inside the domain, namely the Finite Element Method (FEM)
(§ 4.2), and second, the implementation of the model that will be used near
the wall surface (§ 4.3).
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4.2 Discretization with the finite element method

4.2.1 Path to discretization

To solve a fluids problem using CFD, two fundamental facets are required:

• the physical modeling

• the numerics

The physical modeling will require finding mathematical equations that can
close the governing equations. These will need to agree, as much as possible,
with the observed physics. In this matter, the first stones have been laid in
chapter 3 and will further be investigated in chapter 4.3.

The second facet, numerics, is dedicated to finding algebraic relations
that will faithfully represent the physics of the governing equations. In
other words, since solving Partial Differential Equations (PDE) (e.g the
Navier-Stokes equations) is not always analytically possible, making them
correspond with algebraic relations will allow finding a solution.

Although simply enounced, this process is neither unique nor exact. The
PDE often describes a conservation principle, where no ”artificial” loss is ex-
pected. Discretizing these principles by means of a numerical algorithm will
induce approximations. Moreover, each differential term of these governing
equations contains a physical meaning that could slightly be altered by the
chosen discretization scheme. For this reason, but also because of stabil-
ity and convergence motivations, several schemes were developed (upwind,
central, quick, etc.). However, it remains a challenge to derive a consistent
mathematical discretization.

This section aims to present and detail the Finite Element Method (FEM)
choice for the discretization of the Navier-Stokes equations.

Since it is not the most prominent choice in CFD, it was decided to in-
troduce it by describing briefly two other available methods (§ 4.2.2): The
Finite Difference Method (FDM) and the Finite Volume Method (FVM).

Note that although other methods are available (e.g. the spectral methods,
the weighted residual method, or even the time discretization methods), they
will not be described since the purpose of this section is not to propose a
full CFD discretization course in the context of flow fields but to situate and
focus on the FEM in the CFD environment.

After the contextualization, FEM will further be detailed (§ 4.2.3 - 4.2.5)
by elaborating on the stabilization method used. As will be seen in chap-
ter 6, numerical stabilization should not be neglected when considering the
simulation of ABL.

4.2.2 Finite difference and finite volume methods

As implied but not expressed in the previous section, the governing equations
in a physical domain describe a continuous phenomenon in a continuous
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domain. Since, for most situations, the governing equations can not be
analytically resolved, they have to be approached by algebraic relations.
These relations are bound to discrete quantities. Therefore, the domain
also needs to be divided into a grid (also called mesh) with discrete points
(i.e grid points, mesh points, or even nodes).

Finite Difference Method (FDM)

Historically, the oldest method is the FDM (Sadrehaghighi, 2021). It was
designed by Thom (Thom and Apelt, 1961) in 1961, under the name ”the
method of square”, to resolve nonlinear hydrodynamic equations.

The FDM is a mathematical tool that can be used to approximate PDEs
by replacing them, algebraically, through finite difference equations. The
computational domain is typically sliced in quads for a 2D domain (hexahe-
dras in 3D) and the finite difference equations are linked to its grid points
(see figure 4.3).

Figure 4.3: FDM grid patterns.

For this purpose, Taylor’s series expansions are applied. This is exempli-
fied, in eqs. (4.12), by three distinct expressions for the first derivative in
the x-direction of the physical quantity (here, the velocity) and one for the
second derivative.

∂xui ≈
ui+1 − ui

∆x︸ ︷︷ ︸
Forward

≈ ui − ui−1

∆x︸ ︷︷ ︸
Backward

≈ ui+1 − ui−1

2∆x︸ ︷︷ ︸
Central

∂xxui ≈
ui+1 − 2ui + ui−1

(∆x)2
(4.12)

where ∆x is the distance between two grid points (e.g. i and i + 1). As
noticeable, it takes its origin from the definition of the derivative (eq. (4.13)):

∂u(x, y)

∂x
= lim

∆x→0

u(x+ ∆x, y)− u(x, y)

∆x
(4.13)

Although old, this method is still often used thanks to its straightfor-
ward implementation and light cost for a simple case. The drawbacks are
associated with truncation error (cf. Taylor’s series expansion), consistency,
stability, convergence, and ultimately conservation. In-depth studies are
provided by Anderson, Tannehill, and Pletcher, 1984; Anderson, 2003.
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Finite Volume Method (FVM)

Because of the conservation limitation of the FDM and due to the increasing
demand for complex flows study, an incentive to develop other discretization
methods in the early 1980s resulted in the massive growth and use of the
FVM in fluid mechanics, where both the advective and the diffusive terms
inside a PDE could be handled.

In the FVM, analogously to the FDM (and other discretization methods),
the objective is to replace the PDE with a set of algebraic equations. It can
be described in three steps:

• The computational domain is divided into finite volumes (also called
cells).

• The PDEs are integrated over each given cell, producing balance equa-
tions. In these balance equations, specific volume integrals can be
converted into surface integrals (following the divergence theorem),
implying the conservation of flux through the surfaces (cf. fig. 4.4).
Subsequently, the surface (and volume) integrals are substituted by
discrete algebraic relations, following specific integration quadratures.

Figure 4.4: FVM flux illustrations. (From Moukalled, Mangani, and Dar-
wish, 2015)

• Inside each cell, but also at no-storage locations (e.g. grid points), a
chosen interpolation profile will offer an approximated value for each
quantity, between the discrete quantities produced in the first step.

Certainly, the choice of the integration quadrature’s order as well as the
interpolation profile will have an impact on the accuracy of the produced
solution.
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Similar to FDM, the solutions are discrete, but, in contrast with FDM,
the field variables are usually stored in the center of each cell and not on
the grid points (also called nodes).

The main advantages of FVM is that:

• it satisfies the conservation laws (even in coarse mesh), enabling it
to compute and evaluate the flux at the boundaries of each cell (also
possible for nonlinear issues or discontinuous solutions in highly com-
pressible flows), and

• it does not require a structured grid (allowing studies of more complex
geometries while avoiding any internal mesh conversion). Figure 4.5
illustrates the latter.

Figure 4.5: Geometry resolution for FDM (left) and FVM (right) (From
Ebrahimi, 2010)

It should also be noted that the FVM resolution in regions of interest
can be increased by refining the mesh. However, the interpolation profiles
are limited to a low-order accuracy (relative to FEM in the next section).
Its drawbacks are associated with increased complexity in code structure,
together with a loss in computational efficiency (relative to FDM).

4.2.3 Finite Element Method (FEM)

Brief history

In previous section on FDM, it was stated that FDM was the oldest dis-
cretization method of the three presented. Technically, it depends on what
is considered the starting date for the FEM (Felippa, 2001; Mohite, 2001).

FEM originates from the analysis of mechanical structures. Precisely, its
ancestor, the Matrix Structure Analysis (MSA), was developed in 1934 to
enable humans (in the pre-computer era) to solve discrete aeroelastic mod-
els. The motivation and development were linked to the aircraft industry
associated with the two World Wars.

In 1959, Turner, working for the aircraft builder Boeing, proposed an
evolution of MSA, named Direct Stiffness Method (DSM). Thanks to its
computer implementation, integrated into structural and continuum models,
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the DSM supplanted other methods (e.g. Force Methods) in the aerospace
industry.

From 1962, the DSM was connected to an early idea of subdivisions in
interconnected elements, where a structural component could be idealized
by finite elements. From that moment on, DSM gave birth to FEM. Sub-
sequently, FEM integrated new variational approximations schemes that
demonstrated that such type of conforming DSM is actually a form of the
Rayleigh-Ritz method (i.e. direct numerical method to approximate eigen-
value) based on the minimum potential energy principle. This last discovery
strengthens the mathematical foundations of the young FEM.

Thanks to the increasing interest, in 1965, FEM was applied to non-
structural problems, higher-order elements were developed to increase the
resolution performance ratio, and the mathematical foundations of FEM
were consolidated in the monograph of Strang and Fix, 1975.

As of today, although FEM remains unrivaled in the mechanical, vibra-
tory, and structural analysis, most industrial CFD codes mainly compose
with FVM by default due to both the FVM handling of the advection term
and to the complexity associated with FEM implementation. Nevertheless,
FEM remains present in CFD, especially in multiphysics cases where the
mathematical foundations of FEM play a substantial role and in cases with
complex geometries where high-order elements can save computational re-
sources (Hughes and Tezduyar, 1984).

Strengths and weaknesses

After the brief history and the comparison with two popular spatial dis-
cretization methodologies used in CFD, having a better understanding of
how FEM works will provide a better insight on what are its forces but also
on how to circumvent its weaknesses.

Returning to section 3.1.3, two kinetic descriptions of the flow field were
defined to simulate the flow: the Lagrangian approach, where each particle
was traced; and the Eulerian approach, where the accent was set on the flow
direction as a continuum, from a fixed referential.

FEM, albeit introduced in the previous section, was intensively used in
mechanical structure analysis, where deformations of structures are progres-
sive and can be discretized spatially by nodes that follow the structure that
is being deformed. In other words, the material points stick to their respec-
tive grid points during the complete motion (fig. 4.6). (Mathematically, it
means the material derivative does not contain any convective term, reduc-
ing it to an ordinary time derivative). As a result, there is no convective
effect in the Lagrangian approach.

In figure 4.6, RX is the domain associated with the original referential X,
Rx is the deformed domain after motion, φ is the transformation, considering
the velocity v, applied to the original referential.

These kinds of problems are typically governed by elliptic or parabolic
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Figure 4.6: Lagrangian referential motion. (From Donea and Huerta, 2003)

PDE and present a symmetric stiffness matrix (Donea and Huerta, 2003).
In fact, thanks to both the Lagrangian context and the symmetric stiffness
matrix, FEM can efficiently be applied using what is called the Galerkin
FEM. In the Galerkin FEM, the difference between the FEM approximation
and the exact solution is minimized (following a weighted residuals method)
according to the energy norm (Strang and Fix, 1975).

These types of algorithms are advantageous when tracking free surfaces
or interfaces between materials and are therefore optimal to describe me-
chanical structures (specifically elasto- and visco-plastic deformations).

However, when the computational domain undergoes significant distor-
tions without frequent repositioning of the different nodes (i.e. remeshing),
Galerkin FEM will not succeed in following the deformations.

In fluid mechanics, fluid motion does encounter relatively large displace-
ment, making the Lagrangian formulation much less attractive. In contrast,
the Eulerian approach2, where the computational mesh does not evolve (or
get transformed) with the flow motion, can easily capture the fluid motion:
It is the flow that moves, relative to the fixed grid.

The corollary is that the particles moving relative to the computational
grid will create a convective effect that leads to an unsymmetric stiffness
matrix. Unfortunately, Galerkin FEM was created to solve symmetric ma-
trices.

Fortunately, a solution was developed (§ 4.2.4) precisely to solve this issue.
Before presenting it, three steps still need to be addressed:

• The first step is to define necessary mathematical tools and terminol-

2Another formulation exists, the ALE approach, that was developed to combine the ad-
vantages of both the Lagrangian and the Eulerian approaches. Depending on the speci-
ficity of the investigated case, the mesh displacement will be activated (Lagrangian)
or not (Eulerian). This approach is elegant but requires an extra mesh displacement
algorithm as well as an error estimator activating the switch. This approach exists
in FEM but was not used in this work. Great details are provided by Giuliani, 1982;
Huerta et al., 1999.
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ogy.

• The second step is to address the original Galerkin FEM more in detail
with the new tools.

• Then, the third step will be to demonstrate the weakness with a simple
example but also to glimpse at possible mitigations.

Eventually, we will have all the information to present the solution. Note
that although each step will need its section, the author decided to skip
some details that can be found in any complete course on FEM (Donea
and Huerta, 2003; Johnson, 1987; Trofimova et al., 2009; Zienkiewicz, 2000;
Zienkiewicz, Taylor, and Zhu, 2013).

Mathematical terminology and tools

In FEM, considering a spatial domain Ω ⊂ Rnsd (nsd = 1, 2, 3 the space
dimension) with a piecewise continuous boundary Γ (= dΩ), the spatial
discretization is based on discretizing the weak integral form3 of the PDE
of interest (e.g. the Navier-Stokes equations, the Poisson equation, etc.).
Because of these integral formulations, the required functions should be
square integrable over the considered domain Ω, denoted by L2(Ω). This
space is a Sobolev space characterized by a standard inner product and a
norm given by eqs. (4.14).

(u, v) =

∫
Ω

uv dΩ, & ||v||0 = (v, v)1/2 (4.14)

In fact, these capabilities should be extended to the derivatives of all these
functions, up to order k. This new space can be defined as a Hilbert space
Hk(Ω) (eq. 4.15)4.

Hk(Ω) =

{
u ∈ L2(Ω)

∣∣∣∣ ∂|α|u

∂xα1
1 ∂xα2

2 · · · ∂x
αnsd
nsd

∈ L2(Ω) ∀|α| ≤ k
}

(4.15)

where k is a positive integer, and α = (α1, α2, · · · , αnsd) ∈ Nnsd is a n-tuple
of integers.

For the sake of clarity, in FEM, three spaces are of interest, L2 (already
defined), H1, and H1

0 (subspace of H1 associated with the boundary Γ) that
can be derived from eq. (4.15):

H1(Ω) =

{
v ∈ L2(Ω)

∣∣∣∣ ∂v∂xi ∈ L2(Ω) with i = 1, · · · , nsd
}

H1
0(Ω) =

{
v ∈ H1(Ω) |v = 0 on Γ

}
(4.16)

3also named variational form.
4A Hilbert space is a linear space that includes an inner product definition characterized

by convergent Cauchy sequences.
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where the inner product and norm are given by eqs.(4.17).

(u, v)1 =

∫
Ω

(
uv +

nsd∑
i=1

∂u

∂xi

∂v

∂xi

)
dΩ & ||u||1 = (u, u)

1/2
1 (4.17)

Remark 4.1. L2(Ω) is in fact a H0(Ω) space.

Remark 4.2. These spaces are valid for both scalar- and vector-valued
functions. In the case of vector-valued functions, Hk(Ω) will be rewritten
[Hk(Ω)]m, with m the number of vector-components.

These space definitions enables us to define two classes of functions re-
quired for FEM:

• the test (also called weighting) functions, and

• the trial (also called admissible) solutions.

The first class, designated by V, is a H1
ΓD

space (i.e. H1 vanishing on the
boundary where Dirichlet condition applies):

V =
{
w ∈ H1(Ω)|w = 0 on ΓD

}
≡ H1

ΓD (Ω) (4.18)

The second class, designated by S, is similar to V except that it does fulfill
the Dirichlet conditions on ΓD:

S =
{
u ∈ H1(Ω)|u = uD on ΓD

}
≡ V + {ūD} (4.19)

Remark 4.3. If the boundary conditions are homogeneous (uD = 0), the
two classes concur: V = S = H1

0(Ω).

Remark 4.4. After subdividing5 the domain into subdomains (i.e. finite
element spaces) following eq. (4.20), the S and V containing an infinite
amount of solutions, are respectively approximated by Sh and Vh, where h
is a characteristic mesh size in order that diam(Ωe) ≤ h for all elements.

Ω = ∪nele=1Ωe with Ωe ∩ Ωf = φ for e 6= f (4.20)

Subsequent to this space terminology, two tools can be defined: the bilin-
ear and the trilinear forms. These will enable to write the FEM weak form
in its concise integral form.

• the bilinear forms:

a(u, v) =

∫
Ω

∇u : ∇v dΩ ∀u, v ∈ H1(Ω),

b(v, q) = −
∫

Ω

q∇ · v dΩ ∀v ∈ H1(Ω) and q ∈ L2(Ω) (4.21)

with a(u, v) and b(v, q) respectively for two H1 functions, or for a more
restrictive Hilbert case (with H1 and L2 functions).

5also called triangulation
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• the trilinear form:

c(v;w, u) =

∫
Ω

w · (v · ∇)u dΩ ∀u, v, w ∈ H1(Ω) (4.22)

containing subsequent symbols:

[∇u]ij =
∂ui
∂xj

, for i = 1, · · · ,m and j = 1, · · · , nsd

∇u : ∇v =

m∑
i=1

nsd∑
j=1

∂ui
∂xj

∂vi
∂xj

, & w · (v · ∇)u =

m∑
i=1

nsd∑
j=1

wivj
∂ui
∂xj

(4.23)

Galerkin FEM formulation

Having defined all needed mathematical features, the original Galerkin FEM
formulation will be applied to the simplest (not Navier-Stokes) governing
equation that contains a convection term (important for the oscillation phe-
nomenon). It will ease the manipulation.

We chose the steady convective-diffusive governing equation of a scalar
quantity u = u(x) to illustrate its principle. Eq. (4.24) offers the strong
form:

a · ∇u−∇ · (ν∇u) = s in Ω,

u = uD on ΓD,

n · ν∇u = ν
∂u

∂n
= h on ΓN (4.24)

where the considered domain Ω ∈ Rnsd is enclosed: partially by an essential
(Dirichlet) boundary, ΓD, with a determined uD value ; and partially by a
natural (Neuman) boundary, ΓN , with an established normal diffusive flux
h. The remaining parameters are the convective velocity a(x), the diffusivity
coefficient ν > 0, and the volumetric source s(x).

The following phase is to find the variational (i.e. weak) form of the equa-
tion. This is made possible by defining a S space where all u are fulfilling
the Dirichlet condition uD, while the V space provides weighting functions
w vanishing on the boundary ΓD (cf. eqs (4.18), (4.19)). The weak form is
then given by:

u ∈ S |
∫

Ω

w(a · ∇u)dΩ−
∫

Ω

w∇ · (ν∇u)dΩ =

∫
Ω

w sdΩ ∀w ∈ V

(4.25)

Then, applying the Gauss-Ostrogradsky divergence theorem to the diffu-
sion term together with eq. (4.19) transform eq. (4.25) to:∫

Ω

w(a · ∇u)dΩ +

∫
Ω

∇w · (ν∇u)dΩ =

∫
Ω

w sdΩ +

∫
ΓN

w hdΓ ∀w ∈ V

(4.26)
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where the natural boundary condition is inherently applied.
Finally, the bilinear and trilinear forms (eqs. (4.21), (4.22)) can be rewrit-

ten for this convective-diffusion problem as:

a(w, u) =

∫
Ω

∇w · (ν∇u)dΩ, (w, s) =

∫
Ω

ws dΩ,

c(a;w, u) =

∫
Ω

w(a · ∇u)dΩ, (w, h)ΓN =

∫
ΓN

whdΓ (4.27)

By applying them, the concise weak form becomes:

a(w, u) + c(a;w, u) = (w, s) + (w, h)ΓN ∀w ∈ V (4.28)

Or even better, after dividing the domain into a finite number of sub-
domains, and creating the sub-spaces Sh and Vh, we obtain:

a(wh, uh) + c(a;wh, uh) = (wh, s) + (wh, h)ΓN ∀wh ∈ V (4.29)

that will yield to the Galerkin FEM approximation of uh (eq. (4.30)).
However, before expressing it, a small remark has to be stressed.

Remark 4.5. One should understand that the Dirichlet condition will imply
a difference between the number of nodal points nnp of the finite element
mesh and the number of unknowns (or equations) neq of the system. If we
define η = {1, 2, · · · , nnp} as the global node number in the mesh, and ηD as
the nodes, included in η, where Dirichlet condition applies, then η\ηD = neq.

With this comprehension, the trial solution uh can now be expressed:

uh(x) =
∑

A∈η\ηD

NA(x)uA +
∑
A∈ηD

NA(x)uD(xA) (4.30)

where uD is the Dirichlet value, uA is the nodal unknown, and the shape
function NA, bound to node A, is intimately linked to the the arbitrary
weighting function wh by:

wh ∈ Vh := span
A∈η\ηD

{NA} (4.31)

Eventually, inserting eq. (4.30) into eq. (4.29) will generate the discrete
weak expression:∑
B∈η\ηD

[a(NA, NB) + c(a;NA, NB)]uB = ∀A ∈ η\ηD

(NA, s) + (NA, h)ΓN −
∑
B∈ηD

[a(NA, NB) + c(a;NA, NB)]uD(xB)

(4.32)
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that can be reduced to the matrix form:

(D + C)u = f (4.33)

where the convection matrix C, the diffusion matrix D, and the source
term vector s (on the right hand side (RHS)) are achieved by assembling,
topologically, the contribution of each element (a, b, · · · with 1 ≤ {a, b} ≤
nen) locally, by means of the Ae local6 assembly operator (Hughes, Mazzei,
and Jansen, 2000). Their respective share are given by eq. (4.34):

D = AeDe with De
ab =

∫
Ωe
∇Na · ν∇NbdΩ

C = AeCe with Ceab =

∫
Ωe
Na(a · ∇Nb)dΩ

f = Aefe with feab = (Na, s)Ωe + (Na, h)∂Ωe∩ΓN

−
nen∑
b=1

[a(Na, Nb)Ωe + c(a;Na, Nb)Ωe ]u
e
Db

(4.34)

with ueDb = uD(xeb) following Dirichlet condition.

Remark 4.6. Accordingly, an excellent characteristic of the FEM is that
unstructured meshes are inherently handled7.

Illustration of the Galerkin FEM oscillations

Having defined the Galerkin FEM formulation for the steady convective-
diffusive governing equation, it can be used to:

• demonstrate the oscillation behavior that takes place,

• why it happens and perhaps most important,

• how to counter it.

To simplify even further the case, the advection a and diffusion ν coeffi-
cients will be assumed constant ; a homogeneous Dirichlet boundary condi-
tion is imposed on both sides ; the source term s depends solely on x:

aux − νuxx = s(x) in ]0, L[

u = 0 at x = 0 and x = L (4.35)

After integration by parts, the weak form and its compact form are given
by: ∫ L

0

(w aux + wx ν ux)dx =

∫ L

0

w sdx

a(w, u) + c(a;w, u) = (w, s) (4.36)

6local: element referential ; as opposed to global: domain referential
7A mesh is unstructured if the number of elements connected to each node can differ.
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For the discretization, consider a 1D uniform mesh composed of linear
elements of size h, where the node numbering is successive (for the sake of
simplicity). neq is the amount of interior nodes of the spatial discretization
η = {1, · · · , neq, neq + 1, nnp} containing ηD = {1, nnp}.

By incorporating the trial (eq. (4.30)) and weighting (eq. (4.31)) functions,
eq. (4.36) can be rewritten, for interior node A (with A = 2, · · · , neq + 1):

∫ L

0

neq+1∑
b=2

(
aNA

∂NB
∂x

+ ν
∂NA
∂x

∂NB
∂x

)
uB dx =

∫ L

0

NAs dx (4.37)

To solve eq. 4.37, a few more details can be added:

• Within a 1D linear element (figure 4.7), composed of 2 nodes (nen =
2), with local number 1 and 2, the shape functions have following
expressions:

N1(ξ) =
1

2
(1− ξ) N2(ξ) =

1

2
(1 + ξ) (4.38)

with ξ the normalized coordinate (contained between −1 and 1).

Figure 4.7: Linear element in 1D.

• In the local referential, any point inside the element will have an ex-
pression for x(ξ) and for u(ξ) that will be a linear combination of its
respective values in 1 and 2.

• Furthermore, the global distance of this linear element of size h can
be expressed in the local referential by:

dx =
1

2
(x2 − x1)dξ =

h

2
dξ (4.39)

• The latter implies that:

∂Nb
∂x

=
∂Nb
∂ξ

∂ξ

∂x
=

2

h

∂Nb
∂ξ

with b = 1, 2 (4.40)

Remark 4.7. The case proposed here is applied to a 1D linear element
for convenience. However, it was generalized in the literature (Zienkiewicz,
Taylor, and Zhu, 2013).
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All these details contribute to evaluating locally the convection Ce and
diffusion De matrices:

Ce = a

∫
Ωe

(
N1

∂N1

∂x N1
∂N2

∂x

N2
∂N1

∂x N2
∂N2

∂x

)
dx =

a

2

(
−1 +1
−1 +1

)
De = ν

∫
Ωe

(
∂N1

∂x
∂N1

∂x
∂N1

∂x
∂N2

∂x
∂N2

∂x
∂N1

∂x
∂N2

∂x
∂N2

∂x

)
dx =

ν

h

(
+1 −1
−1 +1

)
(4.41)

with Ωe = [xe, xe+1] for e = 1, · · · , nel8.
The same process can be performed for the source term s, assuming the

linear combination s(ξ) = N1(ξ)s1 +N2(ξ)s2, and applying eq. (4.34).

fe =

∫
Ωe
{N1(N1s1 +N2s2), N2(N1s1 +N2s2)}T dx (4.42)

Eventually, after having assembled the contribution of each element con-
nected to one interior node j, the Galerkin FEM in node j will generate
following discrete expression:

a

(
uj+1 − uj−1

2h

)
− ν

(
uj+1 − 2uj + uj−1

h2

)
=

1

6
(sj−1 + 4sj + sj+1)

(4.43)

Remark 4.8. The informed reader will have observed an apparent similar-
ity between the Galerkin method based on linear elements and the central
difference method (developed in the FDM). However, they also differ sub-
stantially in the way they handle the source term. Briefly, the former takes
advantage of a weighted average (cf. RHS of eq. (4.43)), while the latter
utilizes a punctual and local source value.

Eq. (4.43) is an important equation in the examination of the oscillatory
behavior of the Galerkin FEM. But first, let us define a relation showing the
influence of the convective effect relative to the diffusive part. This relation
is named the Péclet number:

Pe =
a h

2ν
(4.44)

Inserting eq. (4.44) into eq.(4.43) results in eq. (4.45):

a

2h

(
Pe − 1

Pe
uj+1 +

2

Pe
uj −

Pe + 1

Pe
uj−1

)
=

1

6
(sj−1 + 4sj + sj+1) (4.45)

The next step before analyzing is to simplify even more the equation by:

• setting the source term, the domain dimension, and the advection to
unity (s = L = a = 1), and

8here, nel = neq + 1 = nnp − 1
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• selecting three values for Pe (Pe = 0.24, 0.9, 5) to evaluate the influence
of the convection, relative to the diffusion.

Remark 4.9. Forcing a uniform source term has the advantageous side ef-
fect to avoid any potential truncation errors caused by discretizing the source
(cf. RHS of eq. (4.45)). This enables us to precisely being able to impute any
truncation error to the discretization of the left-hand side (LHS), namely the
convection-diffusion influence.

Since there exists an analytical and exact solution (Donea and Huerta,
2003) given by eq. (4.46) for this equation, both the analytical and the
approximated solutions for u can be drawn. The latter is estimated on a
uniform mesh with 10 elements.

u(x) =
1

a

(
x− 1− exp(γx)

1− exp γ

)
with γ =

a

ν
(4.46)

The resulting profiles are given in figure 4.8.

Figure 4.8: Exact (−) and Galerkin (· · · ) solutions for the convection-
diffusion equation for 10 linear elements on a uniform mesh,
with L = s = 1. (From Donea and Huerta, 2003)

The unambiguous observation is that the higher Pe is (i.e. the higher the
domination of the non-symmetric convection relative to the diffusive effect),
the greater the oscillation encountered by the Galerkin approximation will
be. In other words, the more convective the flow is, the less correct the
Galerkin FEM will be, and the more these numerical (and non-physical)
oscillations will pollute the expected solution.
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This observation is critical.
Now that the oscillations for convective flow using Galerkin FEM were

demonstrated, the next step is to understand why it happens.
In this respect, eq. (4.45) can be remodeled in a homogeneous form so

that the left and right side of node j are isolated:

(1 + Pe)(uj − uj−1) = (1− Pe)(uj+1 − uj) (4.47)

Eq. (4.47) reveals that, for high Péclet number (i.e. Pe > 1), the slope on
the left and right sides of node j are in opposition.

This first analysis can be reinforced by the exact solution of this linear
difference equation (Isaacson and Keller, 1994) that has the following char-
acteristic equation:

(1− Pe)λ2 − 2λ+ (1 + Pe) = 0 (4.48)

that is solved by λ1 = 1 and λ2 = (1 + Pe)/(1− Pe). As a consequence, the
solution to eq. (4.47) is:

uj = C1 + C2

(
1 + Pe
1− Pe

)j
(4.49)

where C1 and C2 are provided by the boundary conditions.
Eq. (4.49) confirms that a high Péclet number affects the Galerkin FEM

in such a manner that its solution has no choice but to be oscillating.
Eventually, to find out how to remedy these oscillations, the LHS structure

of eq. (4.45) will be mimicked to produce a scheme generating an exact
solution at each node xj , for any Pe. Then, comparing these two expressions
will enable us to determine how to modify the Galerkin scheme in order to
reduce these oscillations.

Thus, the mimicked scheme should have following structure:

α1uj−1 + α2uj + α3uj+1 = 1 (4.50)

where each αi must be replaced by a value according to the exact solution
(eq. (4.46)).

Eq. (4.46) provides an expression for uj−1, uj , and uj+1:
uj−1 = 1

a

(
xj − h− 1−exp(γxj) exp(−2Pe)

1−exp γ

)
,

uj = 1
a

(
xj − 1−exp(γxj)

1−exp γ

)
,

uj+1 = 1
a

(
xj + h− 1−exp(γxj) exp(2Pe)

1−exp γ

) (4.51)

These expressions can be inserted into eq. (4.50) to produce a system of
three equations with three unknowns:

α1 + α2 + α3 = 0

−α1 + α3 = a/h

α1 exp(−2Pe) + α2 + α3 exp(2Pe) = 0

(4.52)
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that will deliver eqs. (4.53):
α1 = −a(1 + cothPe)/(2h)

α2 = a(cothPe)/h

α3 = a(1− cothPe)/(2h)

(4.53)

By inserting these values into eq. (4.50), we obtain the intended exact
scheme:

a

2h
[(1− cothPe)uj+1 + (2 cothPe)uj − (1 + cothPe)uj−1] = 1 (4.54)

that is similar but not equal to the original Galerkin scheme (eq. (4.45)).
Reorganizing eq. (4.54) in two specific ways will enable us to better un-

derstand how to reduce these spurious numerical oscillations:

• Firstly, by rearranging it analogously to the original scheme (eq. (4.45)):

a
uj+1 − uj−1

2h
− (ν + ν̄)

uj+1 − 2uj + uj−1

h2
= 1 (4.55)

where ν̄ is an artificial numerical diffusion that depends solely on the
element size h and the characteristics of the transport equation. It is
given by:

ν̄ = β
ah

2
= βνPe with β = cothPe −

1

Pe
(4.56)

• Secondly, by incorporating β:

1− β
2

(
a
uj+1 − uj

h

)
+

1 + β

2

(
a
uj − uj−1

h

)
− ν uj+1 − 2uj + uj−1

h2
= 1 (4.57)

In this version, the discretized convection term corresponds to a weighted
average of the fluxes of the solution that occurs on the right and left
sides of node j. As a matter of fact, the centered scheme is not ap-
pearing in this case.

Returning to the subject of our work, the considered case is highly con-
vective; the classical Galerkin FEM can thus not be used as-is. A sort of
stabilization has to be applied to reduce these spurious numerical oscilla-
tions. To summarize, according to the previous paragraph, two potential
directions for stabilization methods are available9:

• replacing the centered discretization scheme by an upwind scheme, or

• insert an additional numerical diffusive term.

This brings us to the next section dedicated to stabilization methods.

9order inversed because the first that will be developed is the upwind scheme.
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4.2.4 From early stabilization to Streamline-Upwind
Petrov-Galerkin (SUPG)

As introduced in the previous section, replacing the centered scheme with an
upwind scheme should counteract the numerical oscillations introduced by
the classical Galerkin FEM. Although it is not what was performed in our
work, it will still be explained since, eventually, the reader will find out both
directions to help understand one another. Furthermore, more important, it
will help clarify the main complication of this work: the spurious numerical
oscillations (cf. results part (§ 6.8)). In a few chapters, all the foundations
will be set to identify and try to counter them.

From centered to upwind scheme

Returning to the modest convection-diffusion case expressed by eq. (4.43),
that is, the Galerkin form in node j, the source term will be neglected10, and
the convection term central scheme will be replaced by an upwind scheme.
The new expression is given by eq. (4.58):

a

(
uj − uj−1

h

)
− ν

(
uj+1 − 2uj + uj−1

h2

)
= 0 (4.58)

Notice that the additional numerical diffusion (of magnitude ah/2) intro-
duced by a first-order upwind scheme on the convective term can be observed
by developing the scheme via Taylor expansion around xj :

a

(
uj − uj−1

h

)
= aux(xj)−

ah

2
uxx(xj) +O(h2) (4.59)

Actually, eq. (4.58) could also be derived from the central difference ap-
proximation of the equation given by eq. (4.60):

aux − (ν +
ah

2
)uxx = 0 (4.60)

where the diffusive coefficient is clearly the sum of the physical diffusion ν
and the artificial diffusion ah/2.

However, as criticized and explained by Gresho and Lee, 1981; Leonard,
1979; Vahl Davis and Mallinson, 1976, the addition of both the physical
and the additional upwind diffusions will over-rate the expected value. This
over diffusive phenomenon is visible on figure 4.9, for low Pe. Conversely,
for higher Pe, the upwind solution is much more stable and convincing than
the standard Galerkin solution.

10to ease the calculations
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Figure 4.9: Upwind relative to Galerkin and exact solutions. (From Donea
and Huerta, 2003)

The rise of Petrov-Galerkin

Nevertheless, the stabilizing effect from the upwind scheme was further stud-
ied and gave rise to an alternative to the classical Galerkin formulation: the
Petrov-Galerkin (or PG). This new formulation is a weighted residual formu-
lation where, by opposition to the Galerkin formulation, the test functions
are not of the same class as the trial solutions.

In the seventies, the first PG formulations were proposed (Christie et al.,
1976). Their weighting (or test) functions were build in such a manner that,
on each node j, more weight would be set for the upstream element, and
less for the downstream element. An illustration is given in figure 4.10.

Figure 4.10: Upwind-type weighting function. (From Donea and Huerta,
2003)

Reverting to the 1D example of convection-diffusion with linear elements
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(eq. 4.35), the shape function of internal node j (pertaining to element e and
subsequent element e+ 1) can be computed by considering the contribution
of both surrounding elements:

Nj =

{
N2 = 1

2 (1 + ξ) from element e

N1 = 1
2 (1− ξ) from element e+ 1

for ξ ∈ [−1, 1] (4.61)

As expressed by the PG formulation, the upwind weighting function wj
will be composed of the contribution of upstream element e, reinforced, and
downstream element e+ 1, reduced. The reinforcement (or upwinding) will
be set through a parameter β and the functions are given by eq. (4.62)

wj =

{
w2 = 1

2 (1 + ξ) + 3
4β(1− ξ2) from element e

w1 = 1
2 (1− ξ)− 3

4β(1− ξ2) from element e+ 1
forξ ∈ [−1, 1]

(4.62)

Applying these PG weighting functions to the convection-diffusion weak
formulation (eq. (4.36))11 reformulated below:∫ L

0

(w aux + wx ν ux)dx = 0 (4.63)

and discretizing it in node j will transform eq. (4.47) into:

[1 + (1 + β)Pe](uj − uj−1)− [1− (1− β)Pe](uj+1 − uj) = 0 (4.64)

Remark 4.10. The exact solution is given for β = cothPe − 1/Pe (cf.
eq. 4.56), and if β = 1, the full upwind differencing is effective.

Unfortunately, although stable, the solution provided by this PG formu-
lation encountered the same disproportionate dissipation as the ordinary
upwind differences. Besides this, their higher-order test functions induced a
more complex implementation and a higher cost in computational resources.

Streamline-Upwind (or the balancing diffusion)

Referring to the beginning of this subsection (§ 4.2.4), although the first
direction (i.e. replacing the convection term centered scheme by an upstream
scheme) led to the just discussed excessive dissipation, a second direction
could still be analyzed: The addition of an artificial diffusion, also called the
balancing diffusion (Kelly et al., 1980) for it counterbalances the negative
diffusion engendered by the classical Galerkin method.

Once more, consider the steady 1D linear convection-diffusion case, start-
ing from eq. (4.55), with no source term. Adding the artificial diffusion ν̄ to

11With no source term to ease the development
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the weak form (eq. (4.36)), as proposed by Hughes, Liu, and Brooks, 1979,
will generate following equation:∫ L

0

(w aux + wx (ν + ν̄)ux)dx = 0 (4.65)

where the additional diffusion is defined in eq. (4.56) by ν̄ = βah/2.
By isolating the convective contributions from the diffusive’s, eq. (4.65)

can be rearranged as:∫ L

0

[
(w + β

h

2
wx)a ux + wx ν ux

]
dx = 0 (4.66)

In this equation, one can observe a modified weighting function w̄ =
w + β(h/2)wx that only affects the convection (i.e. no modification of the
diffusive term), which makes it a slightly inconsistent PG formulation.

Remark 4.11. A second observation is that this modified test function is
no more continuous between two consecutive elements, as illustrated by fig-
ure 4.11.

Figure 4.11: Streamline-Upwind weighting function. (From Donea and
Huerta, 2003)

Coming back to the modified weighting function, because it influences
the convection term only and because convection follows the streamlines,
the balancing diffusion should only be inserted in the flow direction. If
the latter were to be added in transversal directions, the resulting diffusion
would de novo be overly diffusive.

This reflection becomes even more significant when considering a multi-
dimensional domain.

To comply with this constraint, Hughes and Brooks proposed a tensorial
diffusion operator where diffusion would only act along streamlines. The
Streamline-Upwind (SU) schemes were born (Brooks and Hughes, 1982;
Hughes, Liu, and Brooks, 1979).

In concrete terms, Hughes and Brooks substituted the scalar diffusion ν̄
from eq. (4.56) by the tensor diffusion ¯̄ν = ν̄ij :

ν̄ij = ν̄aiaj/||a||2 (4.67)

for a flow velocity a, with i components.
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Consecutively, to find the corresponding SU weighting function for nsd
spatial dimensions, the variational form is:

u ∈ S | ∀w ∈ V :

∫
Ω

[w(a · ∇u) +∇w · (νInsd + ¯̄ν) · ∇u] dΩ = 0 (4.68)

with Insd a nsd-dimensions identity matrix.
Inserting eq. (4.67) into eq. (4.68) and isolating convective from diffusive

effect yields to:∫
Ω

{[
w +

ν̄

||a||2
(a · ∇w)

]
(a · ∇u) + ν∇w · ∇u

}
dΩ = 0 (4.69)

From eq. (4.69), one can find the modified weighting function, the SU
weighting function, expressed as:

w̄ = w +
ν̄

||a||2
(a · ∇w) (4.70)

Another elegant manner to define the SU method is as a combination of
the classical Galerkin method with an additional SU term:∫

Ω

[w(a · ∇u) + ν∇w · ∇u] dΩ︸ ︷︷ ︸
Classical Galerkin

+

∫
Ω

ν̄

||a||2
(a · ∇w)(a · ∇u)dΩ︸ ︷︷ ︸

Additional SU term

= 0 (4.71)

where the extra SU term will be effective inside each element but not on its
boundaries, due to the discontinuouty illustrated in figure 4.11.

Eventually, the compact SU weak form for the convection-diffusion case
can be expressed by:

a(w, u) + c(a;w, u) +
∑
e

∫
Ωe

ν̄

||a||2
(a · ∇w)(a · ∇u)dΩ︸ ︷︷ ︸

SU stabilization term

= (w, s) + (w, h)ΓN

(4.72)

Returning to our 1D linear element example, the resulting profile given by
figure 4.12 is stable and matching the exact solution for all Pe (remember
the method is acting on the interior nodes only), what makes it an ideal
candidate for future development.

Nevertheless, accuracy issues remain for more complex cases (e.g. mobile
source term, variable convectivity, or time-dependency). The main reason
is that the SU weighting is applied in a slightly non-consistent way, only to
the convective term, inducing a non-residual formulation.

Consequently, an even more significant manner to follow the SU path will
be detailed in the following subsection. This method is called the Streamline-
Upwind Petrov-Galerkin (SUPG) and is the fundamental stabilization im-
plemented and used in our work.
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Figure 4.12: Streamline-upwind and exact solutions for the 1D convection-
diffusion case with linear elements. (From Donea and Huerta,
2003)

The completeness of the Streamline-Upwind Petrov-Galerkin (SUPG)

For this last subsection on stabilization of the convective term, the two
last concepts (i.e. PG and SU) are brought together to reach a consistent
stabilization method, namely, a method that ensures that both the governing
equations and its weak form have the same solution.

Starting from the SU formulation, Hughes et al. continued to evolve with
this concept and proposed a residual formulation to ensure its consistency.
As previously indicated, this is not the case for eq. (4.72), the SU version.

Thus, to express the residual formulation, let us first resume by rewriting
the steady convection-diffusion equation from eq. (4.24) together with its
essential and natural boundary conditions, for convenience:

a · ∇u−∇ · (ν∇u) = s in Ω,

u = uD on ΓD,

n · ν∇u = ν
∂u

∂n
= h on ΓN

Its residual formulation is given by:

R(u) = a · ∇u−∇ · (ν∇u)︸ ︷︷ ︸
L(u)

−s = L(u)− s (4.73)

where L is the PDE operator.
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By constraining it to the finite dimensional spaces, the residual R(u) is
evaluated on each element interior Ωe, inducing following compact weak
form:

a(w, u) + c(a;w, u) +
∑
e

∫
Ωe
P(w)τR(u)dΩ = (w, s) + (w, h)ΓN (4.74)

where the conventional weighting function is replaced by a generalized opera-
tor P(w), and where a new parameter is defined: the stabilization parameter
τ .

By applying the SU weighting function consistently to all terms (and not
only to the convective term), one can express it through the operator P(w)
from eq. (4.75):

P(w) = a · ∇w (4.75)

involving that the test function space V is no more corresponding with the
trial solution space S12. Therefore, this consistent stabilization technique is
named SUPG.

Eventually, injecting the operator from eq. (4.75) and the residual expres-
sion from eq. (4.73) into eq. (4.74), one will find the desired discrete case to
find u ∈ Sh|

a(wh, uh) + c(a;wh, uh)

+
∑
e

∫
Ωe

(a · ∇wh)τ
[
a · ∇uh −∇ · (ν∇uh)− s

]
dΩ

= (wh, s) + (wh, h)ΓN ∀wh ∈ Vh (4.76)

with τ = ν/||a||2.
To illustrate the performance of the SUPG formulation, the 1D linear

elements case from the previous sections will be reconsidered but this time,
with a source term added, to complexify the expression:{

a ux − ν uxx = 5e−100(x− 1
8 )2 − 5e−100(x− 1

4 )2

in ]0, 1[

u = 0 at x = 0 and x = 1
(4.77)

The resulting plot is given by figure 4.13 where the matching between the
exact solution and the SUPG solution is excellent.

Remark 4.12. The informed reader will have noticed no detail was provided
concerning the stabilization parameter τ , neither concerning the unsymmet-
ric behavior brought by the SUPG stabilization term from eq. (4.76). These
two issues are not trivial and are discussed further in Codina, 2000; Tezdu-
yar and Osawa, 2000.

12Which was the definition of a PG formulation.
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Figure 4.13: Comparison between the exact, SU and SUPG solution for
eq. (4.77). (From Donea and Huerta, 2003)

Eventually, while the SUPG method reduces oscillations caused by strongly
advective flows, there is another type of spurious numerical oscillation. The
latter is visible when discretizing PDEs containing a pressure term (e.g. the
Navier-Stokes equations). In this case, having an identical finite element
order for the velocity and the pressure will result in instabilities on the pres-
sure side. Briefly, these instabilities are due to the Ladyzhenskaya-Babuška-
Brezzi condition (LBB) not being satisfied.

This issue is analogously solved by the stabilizing method named the
Pressure-Stabilizing Petrov-Galerkin method (PSPG). Together with SUPG,
they form the so-called PSPG/SUPG stabilizing method.

Although essential and used in this work, the author elaborated primarily
on the SUPG design to facilitate the comprehension of the main constraint
of this work, which will be covered in § 6.8 when presenting the results.
The curious reader will find enlightening clarifications concerning PSPG in
Bányai, Vanden Abeele, and Deconinck, 2006; Tezduyar, 1991.

4.2.5 PSPG/SUPG applied to Navier-Stokes

Having introduced the (PSPG/)SUPG methodology on a simple PDE, this
theory can be incorporated into our model, where the two first Navier-Stokes
transport equations of eqs. (4.3) are considered.

The finite element formulation can be achieved by multiplying these equa-
tions with weighting functions. The unknown variables can be interpolated
between the discrete nodes by using shape functions, and eventually, these
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equations can be integrated over the whole domain. The expressions can be
simplified by choosing weighting functions equal to shape functions, which
leads to a Galerkin formulation. Its implementation (eqs. (4.78)) follows the
details provided by Janssens, 2014.∫

Ω

(Ni + τSU (~u · ∇Ni)) ~RmdΩ +

∫
Ω

τBU∇NiRcdΩ = 0∫
Ω

NiRcdΩ +

∫
Ω

τPS∇Ni · ~RmdΩ = 0 (4.78)

with the time scale (or stabilization coefficients) τSU coupled to the SUPG
method, and τPS,BU to the PSPG method. These time scales are further
described in Braack et al., 2007. The indices c,m for the residual R refer
respectively to the continuity and momentum equations of the governing
equations.

After applying a θ-method (Aslefallah, Rostamy, and Hosseinkhani, 2014)
to find the time derivative and because the shape functions are non-zero only
on their respective node and surrounding element, the integrals for all the
elements can be replaced by a sum of the integral on each element. At last,
the pressure and the velocity for the next timestep can be found by solving
this discrete system:

N∑
e=1

(
1

∆t
Te + θAe

)(
xn+1
e − xne

)
= −

N∑
e=1

Aex
n
e (4.79)

where θ is set to 1 for a (fully implicit) forward Euler scheme or 0.5 for a
Crank-Nicolson scheme. By default, it is set to 0.5 in Janssens, 2014.

The unknown xne for each element, grouped by nodal values, have following
format for a 3D element with m+ 1 nodes:

xne = [pn0 · · · pnm(un0 )0 · · · (un0 )m · · · (un2 )m] (4.80)

The matrices Ae and Te have the following structure:

Ae =

[
App Apu
Aup Auu

]
=


App Apu0 Apu1 Apu2

Au0p Au0u0
Au0u1

Au0u2

Au1p Au1u0
Au1u1

Au1u2

Au2p Au2u0
Au2u1

Au2u2

 (4.81)

Each block of Ae can be formulated following eqs. (4.82-4.88):

App =

∫
Ωe

τPS∇NT
p ∇NpdΩe (4.82)

Apui =

∫
Ωe

((
Np +

τPS ũadv∇Np
2

)T
(∇Nu)i

+ τPS (∇Np)Ti ũadv∇Nu

)
dΩe (4.83)
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Auip =

∫
Ωe

(Nu + τSU ũadv∇Nu)
T ∇NpdΩe (4.84)

Auiui =

∫
Ωe

(
ν∇NT

u ∇Nu

+ (Nu + τSU ũadv∇Nu)
T
ũadv∇Nu

)
dΩe +Auiuj (4.85)

Auiuj =

∫
Ωe

(
τBU (∇Nu)i

+
1

2
(ũadv)i (Nu + τSUu∇Nu)

)T
(∇Nu)j dΩe (4.86)

Tpui =

∫
Ωe

τPS (∇Np)Ti NudΩe (4.87)

Tuiui =

∫
Ωe

(Nu + τSU ũadv∇Nu)
T
NudΩe (4.88)

Notice that ũadv is the advection velocity, obtained, in Janssens, 2014, by
a Taylor expansion of the previous velocities. And where the stabilization
terms, multiplied by their respective stabilization coefficients (τPS,SU,BU ),
are presented in Braack et al., 2007. The thorough development is proposed
by Banyai (Bányai, Vanden Abeele, and Deconinck, 2006).

Remark 4.13. When observing the previous equations, one will notice that:

1. τPS has an influence both on the App and Apui blocks. The most
impacted is the former, the laplacian of the pressure, which is non-
zero when τPS 6= 0.

2. τSU increases the weight of the upstream nodes relative to the stream
direction.

3. τBU is influencing advection flows.

Consequently, these coefficients have to be chosen in such a manner that the
numerical values are properly stabilized but not over-dissipated.

Hereafter, eqs. (4.89-4.94) reveal the definition proposed by Trofimova et
al., 2009, based on the element metric tensor Gij (i.e. the element shape
function inverse Jacobian matrix multiplied with its transpose).
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τ2
SU1 =

1

uiGijuj
(4.89)

τSU2 =
∆t

2
(4.90)

τ2
SU3 =

1

ν2GijGij
(4.91)

τSU =

(
1

τ2
SU1

+
c21
τ2
SU2

+
c2
τ2
SU3

)−1/2

(4.92)

τPS =τSU (4.93)

τBU =
1

τSUGij
(4.94)

where c1 and c2 are tuning parameters set to 4 ≤ c1 ≤ 16 and c2 = 36 by
the author in Trofimova et al., 2009, for an advection flow.

This stabilization method was implemented by Janssens, 2014 and suc-
cessfully helped to solve oscillations for reasonable Reynolds simulation
(e.g. the channel flow test case).

Eqs. (4.79) constitute the genuine implementation in the Coolfluid 3 code.
It will be used in § 5.1, § 6, and § 7.

Now that the foundation of our modeling has been set, the following
section will provide a few more details concerning the ABL modeling.

4.3 ABL modeling

Section 3.2 described the composition of an ABL physically and presented
its complexity in great detail. In Part III, the complete representation will
be developed, and its resulting velocity profile will be analyzed.

To bind these two sections, we still need to introduce the required mod-
eling. In this respect, we recall two substantial ABL specificities:

• the size of the domain (and the Reynolds number associated).

• the roughness of the ground

The first feature is constrained by the physical time and the computa-
tional resources available. However, as previously commented, reducing the
number of elements in the domain to study can decrease the computation
at each simulation time step in a non-negligible manner.

The second ABL particularity is associated with the irregularities and
the properties of the studied terrain. One choice is to meticulously repro-
duce the topography and apply specific physical properties to the interface
(e.g. porosity). This methodology requires a significant amount of elements.
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Hence, it works against the first feature. An alternative would be to sub-
stitute the resolution in the near-wall region, where the complex geometries
and the significant velocity gradients will require smaller (read more) ele-
ments, with a model representing the dynamics of that zone. Such a model
is named a wall model.

This wall model solution would thus operate on these two ABL specificities
beneficially. As such, the following section will further develop this direction.

4.3.1 Wall models: Preamble

To have a better idea on where these wall models are operating, figure 4.14
presents the near-wall region (also named inner layer) in the reduced coor-
dinate system (also called wall units).

Figure 4.14: Boundary layer regions expressed non-dimensionally in a semi-
log scale. (From Banyai, 2016)

The first region, the viscous sublayer, is characterized by its linear behav-
ior. Including this scale for the resolution of the governing equations corre-
sponds to a full-scale resolution (in other words, DNS resolution (§ 4.1.3))
and implies a considerable amount of tiny elements to capture the smallest
turbulent scales and the high-velocity gradient near the wall. Notice that
results for unsophisticated flow cases like a channel flow exist until a viscous
Reynolds number of Reτ = 5200 (Lee and Moser, 2015; Moser, Kim, and
Mansour, 1999). These cases will be of interest in § 7.5.

Following this first sublayer, there is a transition region named the buffer
zone, where initiating any flow resolution is unadvised since no deterministic
profile can be defined.
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Eventually, after gradually shifting from the linear profile, the last sub-
layer of the inner region named the inertial sublayer (or log-law region)
presents an explicit logarithmic behavior.

The region of interest is located in what is called the viscous and buffer
sub-layers. By modeling these two sub-layer regions and starting resolving
the governing equations from the inertial region, the quantity of elements is
significantly reduced, rendering such a simulation accessible.

4.3.2 Wall models: Choice

Referring to Sagaut, 2006, when considering a single layer simulation, several
wall model implementations are available:

• The Schumann model: requires the skin friction as input and relates
the wall stress to the wall parallel velocity components at the first grid
points.

• The Grötzbach model: is an evolution of the Schumann model, deduc-
ing the skin friction from the log-law profile inversion associated with
the streamwise velocity.

• The various extensions of the Grötzbach model: the shifted correlation
model considers the coherent structures; the ejection model includes
the sweep and ejection effects; the Werner and Wengle model substi-
tutes the log-law profile for the power-law (§ 3.2.2); and lastly, the
simplified Mukarami model.

• The Mason and Callen model: designed for rough walls.

• and finally the suboptimal-control-based wall models: designed to im-
prove the results with high Reynolds number and unrefined grid.

In this work, although the hereabove listed models are more sophisticated
than the Schumann’s, we decided to follow the path proposed by recent
ABL studies (Bechmann, 2006; Goit, 2015) to provide a reference. Thus,
the chosen approach is the Schumann model.

As will be presented in the section dedicated to its implementation (§ 6.4.1),
it will be augmented with a zero vertical velocity on the wall (i.e. imper-
meability), while the neutral rough boundary layer will be induced by the
Monin-Obukhov similarity theory (Monin and Obukhov, 1954).

4.3.3 Main FEM contribution

To emphasize the importance of what the author intends to achieve, fig-
ure 6.6 provides three sketches. The two upper sketches present the current
situation in the CFD scope, when using FVM:
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• The upper left sketch represents the full resolution of all scales, using
a large amount of elements near the wall, drastically constraining the
domain size of the case studies.

• The upper right sketch substitutes all elements near the wall by a
single layer of cells that will follow a specific wall model. This second
approach only exists within the FVM theory.

Figure 4.15: Wall model integration to FVM and FEM.

The specificity of the path followed by the author is suggested in the
lowest sketch of figure 6.6, namely, to introduce the wall models into the
FEM theory.

The latter has not yet been developed, to the author’s knowledge, and
represents a main contribution.

In this peculiar case, the computational domain is completely separated
from the physical wall, by a distance ywall and the physical properties of the
first nodes above the wall will include the result of the newly implemented
wall model.

By enabling the use of wall models in the FEM theory, the author allies
the robustness of the FEM to the reduced domain size achieved through the
wall models.
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Its implementation will be developped in § 6.4.1, where both the distance
to the physical wall, ywall, and the terrain roughness, y0, will be integrated.

Before closing this chapter, a brief section concerning the dimensionality
of the present work is required to emphasize the challenges that are to be
expected.

4.4 Dimension of the system

Although not directly related to the previous sections, this segment is nec-
essary to emphasize the complexity associated with the system’s dimension-
ality that is to be studied.

To keep the writing concise, the first paragraph will express the require-
ments. They will be followed by a paragraph regarding the correlated con-
straints and concluded by the adopted approach.

Thus, as explained in chapter 3, the atmospheric boundary layer is occur-
ring at the surface of the Earth. The latter is revolving, inducing a Coriolis
effect that will eventually be added to the modeling to represent physical
behavior properly. Moreover, the roughness of the ground, together with
the temperature gradient happening during a diurnal cycle, influences the
amount of turbulence that is to be observed near the surface. Lastly, tur-
bulences are not only propagating in the vertical plane, but they do also
spread and develop laterally, making them a 3D phenomenon per se. As a
consequence, a three-dimensional simulation is a prerequisite to allowing an
accurate representation of an ABL.

On the other side, adding a third dimension multiplies the number of
elements by the chosen number of subdivisions. By way of example, a com-
putation performed on a domain subdivided into 256 × 256 (i.e. 65536)
elements in 2D will explode to 16 millions of elements if the same number
of subdivisions is taken in the third dimension. Since for each timestep of
the simulation, the unknowns have to be computed for each element, the
velocity at which the simulation can evolve in time is dependent on two
factors:

• the computation time inside each element,

• the interaction time between these elements.

Of course, the computational resources available are increasing quickly (cf.
fig. 4.16). Indeed, it could be possible to take advantage of computational
tricks like parallelism and multi-processing if the code allows it. However,
the resources are ultimately limited, and the simulation still needs to provide
a sufficiently accurate result. In this respect, there is an extra non-negligible
advantage associated with FEM code: it only requires the definition of a new
type of element (e.g. 3D) to reuse all the already developed algorithms.

In conclusion, the typical approach in FEM is to implement the required
algorithm and then proceed to primary assessments on a small 2D grid.
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Figure 4.16: Supercomputer Power(FLOPS) following Moore’s Law. (From
Ritchie et al., 2020)

When physical behavior demands the third dimension, the analysis is done
in 3D. This work followed this methodology (except in the first section of
chapter 6 used to identify the challenges).





Chapter 5

Turbulence models

In the last chapter, we have evoked the main challenge faced in this work
(i.e. spurious numerical oscillations that will be presented in Part III). These
oscillations justified, on the one hand, the previous study on the PSPG/-
SUPG stabilization method (§ 4.2.4), and, on the other hand, the two fun-
damental directions we have considered to investigate further.

These two directions are:

• the Variational MultiScale method (VMS), and

• the Large Eddy Simulations (LES)

5.1 VMS

The PSPG/SUPG stabilization methods gave FEM the ability to handle
more complex problems better and, in particular, convective flows. Sup-
posing that these stabilizations would not be sufficient for our case, there
is an evolution, or to be specific, a generalized version of the SUPG stabi-
lization method, called the Variational Multiscale method (VMS). Hughes
introduced it (Hughes, Mazzei, and Jansen, 2000), while Bazilevs proposed
an algorithm (Bazilevs et al., 2007).

The essence of the VMS is that it applies the scale separation (coarse vs.
fine) primarily and only then approximates the fines scales. In these small
scales, the stabilization terms appear “naturally”.

The next section will present an implementation of the latter, following
the convention proposed by Y. Bazilevs, adjusted to our notation.

5.1.1 Structure

The proposed VMS method derives from Bazilevs et al., 2007 and follows a
Newton structure, also called predictor / multi-corrector structure, schema-
tized in figure 5.1 and detailed in the following subsections. This method
has more parameters than the standard SUPG method, allowing it to better
respond to numerical oscillations.
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Figure 5.1: Predictor / Multi-corrector’s structure

5.1.2 Stages

Predictor stage

For each timestep, during the first stage, the predictor stage, the three
variables (velocity U , derivative of the velocity U̇ and pressure P ) are set
according to previous timestep.

Un+1,(0) =Un (5.1)

U̇n+1,(0) =
γ − 1

γ
U̇n (5.2)

Pn+1,(0) =Pn (5.3)

γ (as well as αf and αm that are presented in § 5.1.2) is a real-valued
parameter defining the α-method. It is developped in Chung and Hulbert,
1993 and especially for fluid dynamics in Jansen, Whiting, and Hulbert,
2000.

Multi-corrector stage

Then, during the second stage (that is, the nonlinear multi-corrector stage),
a number of iterations (l = 1, 2, ..., lmax) is performed (typically between 2
and 4) to converge to steady values, or in other words, the residuals for,
both, the continuity and momentum equations of eq. (4.3) are minimized.

To be more explicit, during these iterations, the following steps are per-
formed:
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(1) The first step is to set the intermediate time levels:

U̇n+αm,(l) =U̇n + αm

(
U̇n+1,(l−1) − U̇n

)
(5.4)

Un+αf ,(l) =Un + αf
(
Un+1,(l−1) − Un

)
(5.5)

Pn+1,(l) =Pn+1,(l−1) (5.6)

αf and αm are intermediate time level parameters. They (as well as
previously mentionned γ) are selected, taking accuracy and stability
considerations into account. According to Jansen, Whiting, and Hul-
bert, 2000, obtaining second-order accuracy in time is possible if:

γ = 1/2 + αm − αf (5.7)

and the method is unconditionally stable if:

αm > αf > 1/2 (5.8)

For the latter, αf and αm can be expressed as a function of one single
parameter: ρ∞. That is, the spectral radius of the amplification matrix
when ∆t→∞.

αm =
1

2

(
3− ρ∞
1 + ρ∞

)
and αf =

1

1 + ρ∞
(5.9)

Further details on how this single parameter controls the dissipation
for high-frequencies are extensively described in Hughes, 2000. There-
fore, by selecting a γ agreeing with eq. (5.7) and by defining the proper
ρ∞, one can ensure the time integration scheme is unconditionally sta-
ble.

(2) These intermediate values are used to assemble the residuals of the
continuity and momentum equations and solve the following linear
system:

Au̇u̇∆U̇n+1,(l) +Au̇p∆Pn+1,(l) =−RM(l) (5.10)

Apu̇∆U̇n+1,(l) +App∆Pn+1,(l) =−RC(l) (5.11)

that can be rearranged as below:[
Au̇u̇ Au̇p
Apu̇ App

] [
∆U̇n+1,(l)

∆Pn+1,(l)

]
=

[
−RM(l)
−RC(l)

]
(5.12)

(3) This will provide values for the derivative of the velocity and the pres-
sure that can be updated in the last step of the multi-stage corrector:

U̇n+1,(l) =U̇n+1,(l−1) + ∆U̇n+1,(l) (5.13)

Un+1,(l) =Un+1,(l−1) + γ∆t∆U̇n+1,(l) (5.14)

Pn+1,(l) =Pn+1,(l−1) + ∆Pn+1,(l) (5.15)
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In terms of computation, the second step of the multi-corrector stage,
namely, assembling and solving the linear system, is the most costly.

5.1.3 VMS assembly matrix Ae

Remembering the SUPG Assembly matrix detailed in eqs. (4.82-4.88), a
slightly different assembly matrix Ae is provided:

Ae =

[
Au̇u̇ Au̇p
Apu̇ App

]
=


Au̇0u̇0

Au̇0u̇1
Au̇0u̇2

Au̇0p

Au̇1u̇0 Au̇1u̇1 Au̇1u̇2 Au̇1p

Au̇2u̇0 Au̇2u̇1 Au̇2u̇2 Au̇2p

Apu̇0
Apu̇1

Apu̇2
App

 (5.16)

Indeed, in this case, the first block depends on the derivative of the velocity
u̇ and the last block on the pressure p. This structure was chosen to match
the proposed implementation of Bazilevs et al., 2007 but it is equivalent to
the one presente in the SUPG section (§ 4.2.5).

For each block, the expression is detailed hereafter:

Au̇iu̇i =

∫
Ωe

(
αmN

T
u̇ Nu̇

+ αm (uτM∇Nu̇)
T
Nu̇

+ αfγ∆tNT
u̇ u∇Nu̇

+ αfγ∆t (∇Nu̇ν)
T ∇Nu̇

+ αfγ∆t (u∇Nu̇τM )
T

(u∇Nu̇)

)
dΩe (5.17)

Au̇iu̇j =

∫
Ωe

(
αfγ∆t (∇Nu̇)

T
j ν (∇Nu̇)i

+ αfγ∆t (∇Nu̇)
T
i τC (∇Nu̇)j

)
dΩe (5.18)

Au̇ip =

∫
Ωe

− (∇Nu̇)
T
i Np

+
(
uT τM (∇Nu̇)i

)T ∇NpdΩe (5.19)

Apu̇i =

∫
Ωe

(
αfγ∆tNT

p (∇Nu̇)i

+ αfγ∆t (∇Np)Ti τMu∇Nu̇

+ αm (∇Np)Ti τMNu̇

)
dΩe (5.20)
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App =

∫
Ωe

(∇Np)T τM∇NpdΩe (5.21)

As previously described, the N[u̇,p] represent the shape functions, the
α[f,m] and γ represent the intermediate time level parameters, ∆t represents
the difference between timestep tn+1 and tn, u is the advection velocity (dif-
ferent of ũadv because computed during the simulation and not constructed
from a Taylor serie), ν is the kinematic viscosity, and at last, τ[C,M ] are the
stabilizing coefficients.

All these components have been defined except the two stabilizing coeffi-
cients. The following subsection will describe them thoroughly.

5.1.4 Defining the stabilizing coefficients

Two stabilizing coefficients are defined: τm and τc. The first one is the
stabilization coefficient associated with the momentum equation, and the
second, with the continuity equation.

Below, their respective expressions:

τm =

(
4

∆t2
+ u ·Gu+ C1ν

2G : G

)−1/2

(5.22)

τc = (τmg · g)
−1

(5.23)

where C1 is a positive constant, derived from an element-wise inverse esti-
mate described in Johnson, 1987 and set to 1 in our work. And where three
specific operations have to be introduced:

1) the tensor product G : G

2) the advection term u ·Gu

3) the vector product g · g

To compute all these items, first, the element’s shape function inverse
Jacobian matrix has to be computed (eq. 5.24).

J−1 =

(
∂xi
∂ξk

)−1

(5.24)

Before computing items 1) and 2), we first need to define the element
metric tensor (eq. (5.25)).

Gij =

3∑
k=1

J−1
k,i

(
J−1
k,j

)T
(5.25)
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Then, item 1) can be reached by computing the tensor product of Gij
(eq. (5.26)).

G : G =

3∑
i,j=1

GijGij (5.26)

Item 2) can be obtained by determining the scalar product of the velocity
by the product of the inverse jacobian tensor and the velocity (eq. (5.27)).

uh ·Guh =

3∑
i,j=1

uhiGij(u
h
j )T (5.27)

For the last item, 3), first the sum of the inverse of the jacobian is formed
and then, its product is column-wise summed (eq. (5.28)).

gi =

3∑
j=1

(J−1)j,i ⇒ g · g =

3∑
i=1

gi(gi)
T (5.28)

When looking to the SUPG method, τc (eq. (5.23)) is equivalent to τBU
(eq. (4.94)). For the relation between τm and τSU (and thus τPS), when
looking to eq. (4.92) and eq. (5.22), except for the tuning parameters, these
coefficients are equivalent.

5.1.5 SUPG vs VMS assembly matrix comparison

Now that both SUPG (§ 4.2.4) and VMS (§ 5.1) are described, it is con-
venient to show that, indeed, the VMS method can be considered as a
generalized version of the older and more used SUPG method.

To ease the comprehension, the viscosity term will be dash-underlined,

. . . .the . . . . . . . . . . . . . . .stabilization. . . . . . . .terms .. . . . . . . . . . . . . . . . .dot-underlined. Moreover, to simplify the expres-
sions, the intermediate time level parameters will be set to unity: αf =
αm = γ = 1. Furthermore, because the SUPG assembly matrices have the
velocity and the pressure as unknowns whereas the VMS assembly matrix
has the derivative of the velocity and the pressure as unknowns, to be able
to compare them, ∆t is set equal to 1 making the value of u̇ and u equal.

In the next equations, each block of the assembly matrices will be re-
written for comparison.

1. PP block:

SUPG (eq. (4.82)) : App =

∫
Ωe

τPS∇NT
p ∇Np. . . . . . . . . . . . . . . .

dΩe

VMS (eq. (5.21)) : App =

∫
Ωe

∇NT
p τM∇Np. . . . . . . . . . . . . . .

dΩe

Both equations are expressing the shape functions related to the pres-
sure and can be considered equivalent, assuming τPS ≡ τM
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2. PUi block:

SUPG (eq. (4.83)) :

Apui =

∫
Ωe

((
Np +

τPS ũadv∇Np
2.. . . . . . . . . . . . . .

)T
(∇Nu)i

+ τPS (∇Np)Ti ũadv∇Nu. . . . . . . . . . . . . . . . . . . . . . . . .

)
dΩe

SUPG (eq. (4.87)) :

Tpui =

∫
Ωe

τPS (∇Np)Ti Nu. . . . . . . . . . . . . . . . .
dΩe

VMS (eq. (5.20)) :

Apui =

∫
Ωe

(
αfγ∆tNT

p (∇Nu̇)i

+ αfγ∆t (∇Np)Ti τMu∇Nu̇. . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ αm (∇Np)Ti τMNu̇. . . . . . . . . . . . . . . . . . . .

)
dΩe

First observation is that both the assembly matrix Ae and Te for the
SUPG method are gathered into the assembly matrix Ae in the VMS
method.

Second observation is that eq. (4.83) is proportional to the two first
terms of eq. (5.20), while the third term in eq. (5.20) is equivalent to
eq. (4.87).

Note that the second term of the SUPG formulation is written in a
skew-symmetric form to improve its stability and accuracy properties.

3. UiP block:

SUPG (eq. (4.84)) :

Auip =

∫
Ωe

(
Nu + τSU ũadv∇Nu. . . . . . . . . . . . . . .

)T
(∇Np)idΩe

VMS (eq. (5.19)) :

Auip =

∫
Ωe

− (∇Nu̇)
T
i Np

+ (uτM∇Nu̇)
T

(∇Np)i. . . . . . . . . . . . . . . . . . . . . . .
dΩe
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After developing the integration by parts, the first term of eq. (4.84)
can be expressed as the first term of eq. (5.19). The second terms are
directly equivalent.

This also implies that nothing has to be done to set the pressure to 0
on a boundary (e.g. at the outlet). This type of boundary condition
is named the “do-nothing” boundary condition (Braack and Mucha,
2014).

4. UiUi block:

SUPG (eq. (4.85)) :

Auiui =

∫
Ωe

(
ν∇NT

u ∇Nu

+

(
Nu + τSU ũadv∇Nu. . . . . . . . . . . . . . .

)T
ũadv∇Nu

)
dΩe +Auiuj

SUPG (eq. (4.88)) :

Tuiui =

∫
Ωe

(
Nu + τSU ũadv∇Nu. . . . . . . . . . . . . . .

)T
NudΩe

VMS (eq. (5.17)) :

Auiui =

∫
Ωe

(
αmN

T
u̇ Nu̇

+ αm (uτM∇Nu̇)
T
Nu̇. . . . . . . . . . . . . . . . . . . . . .

+ αfγ∆tNT
u̇ u∇Nu̇

+ αfγ∆t (∇Nu̇ν)
T ∇Nu̇

+ αfγ∆t (u∇Nu̇τM )
T

(u∇Nu̇)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

)
dΩe +Auiuj

For UiUi block, when comparing the two SUPG blocks to the VMS
block, all the terms are identical: there is one term (dash-underlined)
for viscosity, two terms (dot-underlined) for stabilization and two
terms for the shape functions time derivative and the advection.

5. UiUj block:

SUPG (eq. (4.86)) :

Auiuj =

∫
Ωe

(
τBU (∇Nu)i. . . . . . . . . . . . .

+
1

2
(ũadv)i

(
Nu + τSUu∇Nu. . . . . . . . . . .

))T
(∇Nu)j dΩe
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VMS (eq. (5.18)) :

Auiuj =

∫
Ωe

(
αfγ∆t (∇Nu̇)

T
j ν (∇Nu̇)i + αfγ∆t (∇Nu̇)

T
i τC (∇Nu̇)j. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

)
dΩe

The last block, Auiuj is interesting since there is a clear distinction
between the SUPG and the VMS formulation. For the first term of
eq. (4.86), supposing τBU ≡ τC , it can be considered equivalent to
the second term of eq. (5.18). The second term of eq. (4.86) is the
skew-symmetric form in the SUPG matrix while the viscous tensor in
VMS is treated differently.

Eventually, although the comparison above reflects the implementation
proposed by Bazilevs et al., 2007, the most important distinction is not
visible and lies between the theory presented by Bazilevs and his imple-
mentation. Indeed, one cross term (eq. 5.29) in the variational form of his
eq. (71) is no more visible in the implemented form (eqs. (101-106) in his
article or eqs. (5.17-5.21) in current work):

−(∇wh, τMrM (uh, ph)⊗ τMrM (uh, ph))Ω (5.29)

which is a bilinear form (eq. 4.21) containing the gradient of the weight func-
tion, the stabilization coefficient for the momentum equation (eq. (5.22)),
and the residual for the momentum equation, for each element.

This concludes the description of the VMS theory. Before moving to the
Results and Validation (Part III), the theory related to the second direction,
LES, will also be described.

5.2 LES

Implementing the additional cross terms for VMS proved challenging in our
current framework. Because of that, it was decided to also work on the
implementation of various LES formulations. Indeed, the LES formulations,
known to be dissipative, could help when dealing with spurious artifacts like
oscillations. The idea behind this is to reach results that could be compared
to the literature and give a better insight into the limitation of LES.

The LES simulations are characterized by the direct representations of
the large-scale motions and the small-scales’ models. To do this, Pope, 2001
proposed a four steps description:

1. The velocity u is composed of a filtered component ū characterizing the
motion of the large eddies and a perturbation velocity u′ corresponding
to the small eddies. Thus, the velocity can be expressed as u = ū+ u′

2. To compute the filtered velocity ū, a filtered version of the Navier-
Stokes equations (eq. (4.3)) is introduced. The filtered equations are
composed of the unfiltered version of a residual stress tensor derived
from the residual motions.
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3. The closure of these filtered equations implies the modeling of this
residual stress tensor.

4. The filtered velocity is obtained by solving these filtered equations.

The filtering operation is represented by an overline on a variable. It is
defined as the multiplication of the desired quantity (e.g., the velocity) by
a filter function G∆, integrated over the flow domain:

ū(x, t) :=

∫
G∆(r, x)u(x− r, t)dr (5.30)

The filtered function G∆ depends on the filter width ∆ (often propor-
tional to the length of the considered element size) and has to satisfy the
normalization condition: ∫

G∆(r, x)dr = 1 (5.31)

A typical filter choice is the Gaussian filter:∫
G∆(r)dr =

(
6

π∆2

) 1
2

exp

(
−6|r|2

∆2

)
(5.32)

This filter has the properties of being uniform because not depending on x,
and it is isotropic for it is built on the norm of r (Pope, 2001). Moreover, it
preserves linearity and allows commutativity for differentiation with respect
to time and space.

Thanks to these properties, the filtered Navier-Stokes equations can be
expressed as:

∂iū = 0

∂tūj + ui∂iuj = 2ν∂iS̄ij −
1

ρ
∂jP̄ + f̄j with j = 1, 2, 3 (5.33)

Reducing the filtered momentum equation to an expression analogous to
the unfiltered version is possible by further developing the convection term
ui∂iuj . For this purpose, two groups of tools are introduced:

• Firstly, three new variables are defined:

τRij := uiuj − ūiūj (5.34)

τ rij := τRij −
1

3
τRkkδij (5.35)

p̄ :=
1

ρ
P̄ +

1

3
τRkk (5.36)

Respectively the residual-stress tensor, the anisotropic residual-stress
tensor and the modified filtered pressure.
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• Secondly, an identity of the product rule, filtered and unfiltered, is
suggested, simplified by virtue of the continuity equation:

∂i(uiuj) := (∂iui)uj + ui∂iuj = ui∂iuj (5.37)

∂i(ūiūj) := (∂iūi)ūj + ūi∂iūj = ūi∂iūj (5.38)

By first applying identity (eq. (5.37)) to the LHS of the filtered momentum
equation (eq. (5.33)), consequently applying a derivative property, substi-
tuting the residual-stress tensor (eq. (5.34)) and finally invoking the filtered
identity (eq. (5.38)), one can express the LHS as:

∂tūj + ui∂iuj = ∂tūj + ∂i (uiuj)

= ∂tūj + ∂i (uiuj)

= ∂tūj + ∂i (ūiūj) + ∂iτ
R
ij

= ∂tūj + ūi∂iūj + ∂iτ
R
ij (5.39)

where the first two terms are analogous to the unfiltered LHS equation.
When bringing the last term of eq. (5.39) to RHS and considering it

together with the pressure term, both terms can be reworked by injecting the
expression for the anisotropic stress-tensor (eq. (5.35)), applying derivative
properties and finally embedding the modified filtered pressure (eq. (5.36)):

−∂iτRij −
1

ρ
∂jP̄ = − ∂iτ rij − ∂i

1

3
τRkkδij −

1

ρ
∂jP̄

= − ∂iτ rij − ∂j
1

3
τRkk −

1

ρ
∂jP̄

= − ∂iτ rij − ∂j
(

1

3
τRkk +

1

ρ
P̄

)
= − ∂iτ rij − ∂j p̄ (5.40)

allowing the filtered momentum equation to be expressed analogously to the
unfiltered equation.

Together with the continuity equation, the filtered Navier-Stokes equa-
tions, or in other words, the LES version of the Navier-Stokes equations are
thus:

∂iū = 0

∂tūj + ūi∂iūj = ∂i
(
2νS̄ij − τ rij

)
− ∂j p̄+ f̄i with j = 1, 2, 3 (5.41)

Solving this filtered version of the Navier-Stokes equations induces a clo-
sure problem due to increased unknowns inherent to the (anisotropic) resid-
ual stress-tensors.

To close the equations, we propose two specific turbulence models:

• the Smagorinsky-Lilly model and
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• the Wall-Adapting Local Eddy-viscosity (WALE) model

Historically, the Smagorinsky-Lilly model was developed before the WALE
model. Practically, in coolfluid 3, the WALE model was implemented first
because of its simplicity and promising properties.

To ease the description, the Smagorinsky-Lilly model will be presented
first.

5.2.1 Smagorinsky-Lilly

The Smagorinsky-Lilly (SL) model was proposed by Joseph Smagorinsky
in 1963 (Smagorinsky, 1963), after discovering, together with his colleague
Douglas Lilly, one of the first but also simplest LES model to perform well
(Pope, 2001).

Following previous section, the idea is to find an expression for the aniso-
tropic residual-stress tensor τ rij(x, t) that will enable to find the filtered ve-
locity field ū(x, t) and filtered pressure p̄(x, t), starting from the filtered
Navier-Stokes equations (eq. (5.41)).

By supposing the mean turbulent fluctuations as dissipative, the Boussi-
nesq hypothesis (eq. 4.11) (Berselli, Iliescu, and Layton, 2005; John, 2014;
Pope, 2001) can provide a mathematical expression for the tensor:

τ rij := −2νrS̄ij (5.42)

where νr can be considered as an artificial viscosity (John, 2014) that rep-
resents the viscosity of the residual motions. Therefore, νr is named the
residual subgrid-scale eddy viscosity.

Its generic form, for classical approaches like the SL model, is:

νr = Cm∆2OP (x, t) (5.43)

where, partially quoting Nicoud and Ducros, 1999, ”Cm is a constant of the
model, ∆ is the [...]” filter width or ”[...] subgrid characteristic length scale
(in practice the size of the mesh) and OP is a [...]” chosen ”[...] operator
both in space and time, homogeneous to a frequency, and defined from the
resolved fields”.

Smagorinsky - Lilly

Explicitly, for the SL model, νr is function of:

• the SL lengthscale lS , composed of the SL constant CS and the filter
width ∆:

lS = CS∆ (5.44)
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• the local strain rate |S̄| as operator OP (or characteristic turbulent
velocity):

|S̄| =
√

2S̄lkS̄lk (5.45)

It aims to replicate the transfer of energy from the resolved to the
subgrid scales.

As such, the SL model expression (Pope, 2001; Sagaut, 2006) is:

νr := l2S |S̄| = (CS∆)2
√

2S̄lkS̄lk (5.46)

According to Ferziger, Perić, and Street, 2002, the SL model ”can be de-
rived in many ways, including heuristic methods, for example, by equating
production and dissipation of subgrid-scale turbulent kinetic energy, or via
turbulence theories.” The SL model will be obtained, taking under advise-
ment this exact methodology.

1. The first step is to start from the statement of Kolmogorov, 1991
concerning the universal form of the energy spectrum function (or
energy density per unit wave number k):

E(k) = K〈ε〉 2
3 k−

5
3 with K ≈ 1.4 (5.47)

where K is a constant and

ε(t) :=
ν

|Ω|

∫
Ω

|∇u|2(x, t)dx (5.48)

is the rate of energy dissipation per unit volume Ω, in this case,
averaged statistically. Notice, for the subsequent development, that ε
is defined as the energy dissipation rate, ε̃ as the energy flux, and εI
as the energy production rate.

Eq. (5.47) suggests that the energy contained in turbulent scales cas-
cades from large to small scales.

2. The second step is to find an expression for the residual subgrid-scale
eddy viscosity νr, related to the kinetic energy transfer rate ε̃[m2/s3]
and to the filter width ∆[m], starting from the dimensional analysis:

τ rij = −2νrS̄ij

[
m2

s2

]
⇔ νr

[
m2

s

]
≡ ε̃ 1

3 ∆
4
3 (5.49)

In Sagaut, 2006, two theories propose a relation: the Two-Fluid Model
(TFM) and the Eddy-Damped QuasiNormal Markovian (EDQNM).

〈νr〉 =
A

π4/3K
〈ε̃〉 1

3 ∆
4
3 (5.50)

where A is a constant equal to 0.438 for TFM and to 0.441 for EDQNM
(Aupoix and Cousteix, 1982).
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3. The third step is to find an expression for the energy dissipation rate,
function of the rate-of-strain tensor Sij . This can be achieved by
supposing an isotropic homogeneous case (Sagaut, 2006), where:

〈2S̄lkS̄lk〉 =

∫ π
∆

0

2k2E(k)dk (5.51)

, then substituing eq. (5.47), and isolating 〈ε〉 so that

〈2S̄lkS̄lk〉 =

∫ π
∆

0

2k2K〈ε〉 2
3 k−

5
3 dk

= 2K〈ε〉 2
3

∫ π
∆

0

k
1
3 dk

=
3

2
K〈ε〉 2

3π
4
3 ∆−

4
3

⇔
(

3K

2

) 3
2

〈ε〉π2∆−2 = 〈2S̄lkS̄lk〉
3
2

⇔ 〈ε〉 =
1

π2

(
3K

2

)− 3
2

∆2〈2S̄lkS̄lk〉
3
2 (5.52)

4. In the last step, because there is constant spectral equilibrium (follow-
ing the local equilibrium hypothesis), there is no energy accumulation
at any frequency. As a consequence, there is no time dependence of
the energy spectrum, and therefore, there is equality between the pro-
duction 〈εI〉, dissipation 〈ε̃〉 and energy 〈ε〉 rates through the cutoff
(Sagaut, 2006):

〈εI〉 = 〈ε̃〉 = 〈ε〉 (5.53)

This equality allows to substitute eq. (5.52) in eq. (5.50):

〈νr〉 =
A

π4/3K

(
1

π2

3K

2

− 3
2

∆2〈2S̄lkS̄lk〉
3
2

) 1
3

∆
4
3

=
A

π2K

(
3K

2

)− 1
2

∆2〈2S̄lkS̄lk〉
1
2 (5.54)

where the SL constant can be defined as:

CS :=

(
A

π2K

(
3K

2

)− 1
2

) 1
2

≈ 0.148 (5.55)

justifying the definition for the SL model, introduced in eq. (5.46) and
expressed without averaging here:

νr(x, t) = (CS∆)2
(
2S̄ij(x, t)S̄ij(x, t)

) 1
2 (5.56)



5.2. LES 95

This model is admitted (Sagaut, 2006) without further justification
except it is verified on average and that its performances are satisfac-
tory.

Note that the squared value of the SL constant CS is defined as the SL
coefficient and will be denoted C̃S in the next subsections: C̃S = C2

S

Value for the Smagorinsky - Lilly constant

While eq. (5.55) provides a defined value for CS , several works produced
valid simulations with values between 0.1 and 0.23 (0.15 in Pope, 2001, 0.17
in Berselli, Iliescu, and Layton, 2005, 0.18 in Sagaut, 2006).

In 1991, understanding that the CS constant should be a function of space
and time, Germano et al., 1991 proposed a version that would dynamically
be adapted. This proposal was even further developed by Lilly, 1991 and
gave birth to what is commonly known as the dynamic Smagorinsky-Lilly
model.

Dynamical Smagorinsky-Lilly model

The concept, behind the dynamical Smagorinsky-Lilly model, is to filter
a second time the filtered Navier-Stokes equations (eq. (5.41)), defining a

second filter called the ”test” filter ∆̂ that is greater than the first ”grid”
filter ∆:

∂i ˆ̄u = 0

∂t ˆ̄uj + ∂i ̂̄uiūj = ∂i

(
2ν ˆ̄Sij − τ̂ rij

)
− ∂j ˆ̄p+ ˆ̄fi with j = 1, 2, 3 (5.57)

where the second filtering is indicated by hats and where eq. (5.38) was
applied to the LHS second term of the momentum equation.

As a result, the filtered anisotropic residual-stress tensor can be approxi-
mated by:

τ̂ rij =
̂[

τRij −
1

3
τRkkδij

]
≈ −2C̃S(x, t)∆2 ̂[

(2S̄lkS̄lk)
1
2 S̄ij

]
(5.58)

Note that the exact result will be reached only if C̃S is not depending on x
(John, 2014).

To find C̃S , one can define the subtest-scale stress tensor, in an analogous
manner to eq. (5.34):

Kij := ûiuj − ˆ̄ui ˆ̄uj (5.59)

as well as its anisotropic version:

Kij −
1

3
Kkkδij = − 2C̃S(x, t)∆̂2

(
2̂̄Slk ̂̄Slk) 1

2 ̂̄Sij (5.60)
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and finally, the Germano identity (Breuer, 1998):

Lij := Kij − τ̂Rij = ̂̄uiūj − ˆ̄ui ˆ̄uj (5.61)

With these tools defined, the anisotropic version of the Germano identity
can be expressed as:

Lij −
1

3
Lkkδij =

(
Kij − τ̂Rij

)
−
(

1

3
Kkkδij −

1

3
τ̂Rkkδij

)
≈ − 2C̃S

(
∆̂2
(

2̂̄Slk ̂̄Slk) 1
2 ̂̄Sij − ̂

∆2
(
2S̄lkS̄lk

) 1
2 S̄ij

)
= − 2C̃SMij (5.62)

with

Mij := ∆̂2
(

2̂̄Slk ̂̄Slk) 1
2 ̂̄Sij − ̂

∆2
(
2S̄lkS̄lk

) 1
2 S̄ij (5.63)

Unfortunately, eq. (5.62) provides five independent equations for one un-
known making it impossible to find a value for C̃S .

The trick of Lilly, 1991 is to minimize the square of its error by means of
a least-square method. Defining Q as the square of the error:

Q =

(
Lij −

1

3
Lkkδij + 2C̃SMij

)2

(5.64)

One can find ∂Q/∂C̃S :

∂Q

∂C̃S
= 2

(
Lij −

1

3
Lkkδij + 2C̃SMij

)
2Mij

= 4LijMij −
4

3
LkkMll + 8C̃SMijMij

= 4LijMij + 8C̃SMijMij (5.65)

with Mll = 0 (due to the filtered continuity equation in eq. (5.41) makinĝ̄Sll = S̄ll = 0).
C̃S is found by ∂Q/∂C̃S = 0:

C̃S(x, t) = − LijMij

2MijMij
(x, t) (5.66)

Note that the second derivative is positive, confirming it is a minimum:

∂2Q

∂C̃2
S

= 8MijMij > 0 (5.67)
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Backscattering and numerical instabilities

A nice side effect of the double filtering is that the SL coefficient C̃S(x, t)
can have negative values (due to not being squared like the SL constant
CS(x, t)). By this, it diverges from the classical SL model and allows energy
to flow from small to big scales: backscatter is allowed (John, 2004).

However, due to possible substantial variations in space or high nega-
tive values of C̃S , the numerical solution can be very unstable. To limit
these instabilities, both the nominator and denominator of eq. (5.66) can be
averaged or limited in time (Breuer, 1998; Lesieur, 2007; Sagaut, 2006).

5.2.2 WALE

Another LES model that was considered is the Wall-Adapting Local Eddy-
viscosity model (WALE). This model was proposed by Nicoud and Ducros
(Ducros, Nicoud, and Poinsot, 1998; Nicoud and Ducros, 1999) in 1999 to
circumvent three limitations classical LES approaches, like the Smagorinsky-
Lilly model (§ 5.2.1), do have:

1. The first limitation, is related to the eddy-viscosity νr, or more specif-
ically, to the chosen operator OP (eq. (5.43)).

Choosing the local strain rate (eq. (5.45)) implies that the subgrid dis-
sipation is directly connected to the strain rate of the smallest resolved
scales while Wray and Hunt (Wray and Hunt, 1990) could demonstrate
that the energy dissipation concentrates in eddies where vorticity dom-
inates (in place of irrotational strain), and in convergences zones where
irrotational strain prevails.

Therefore, the operator OP should take both the local strain rate S̄
and the rotational rate Ω̄ into account.

Note: Ω̄ is also named the anti-symmetric part of the velocity gradient
tensor ḡ (to oppose to the symmetric part S̄ from eq. (4.4)) and is
defined as:

Ω̄ij =
1

2
(∂j ūi − ∂iūj) (5.68)

2. The second constraint, in the classical method, comes from test fil-
tering that can be difficult to implement with complex geometries
(Jansen, 1994). The WALE model proposes a solution that depends
neither on translation nor on rotation, thus, invariant for both.

3. The third issue, for the classical LES approach, is that the eddy-
viscosity νr does not vanish near the wall, although all turbulent fluc-
tuations should be damped. To solve this issue, damping functions
(e.g., Van Driest, 1956, Piomelli, 2008; Piomelli and Balaras, 2002,
or the mixing length from Prandtl, 1927) were proposed for classical
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methods. However, these functions provided a νr that is proportional
to O(y2) while the natural diminishing at walls is O(y3).

Moreover, as a result of the chosen operator OP , the WALE model is
numerically well-conditioned (here: νr ≥ 0). This implies an unambiguous
and efficient implementation (Banyai, 2016; Nicoud and Ducros, 1999).

Eventually, to briefly review the modifications proposed by Nicoud and
Ducros and to propose the WALE model:

• the two first issues are solved by defining a modified strain rate tensor
that takes both rotation and irrotational rate into account while being
invariant on any translation or rotation. Thus, the retained version is
based on the traceless symmetric part of the square velocity gradient
tensor ¯̄g:

Sd =
1

2

[
ḡ2 + (ḡ2)T

]
− 1

3
Iḡ2 (5.69)

with I the identity matrix.

• the third is tackled by chosing the third power of the new operator
OP and then, normalize it:

νsgs =
(
Cw∆2

)√ (SdijS
d
ij)

3

(SijSij)5
(5.70)

However, due to its denominator capable of reaching zero (e.g. in vor-
tex centres), this new eddy-viscosity is not well conditionned, numeri-
cally. To easily get around this matter, a stabilization term was added
to the final Wall-Adapting Local Eddy-viscosity (WALE) model:

νsgs =
(
Cw∆2

)√√√√ (SdijS
d
ij)

3

(SijSij)5(SdijS
d
ij)

5
2

(5.71)

with the WALE coefficient commonly fixed to Cw = 0.325, correspond-
ing, for an isotropic turbulence, to a SL coefficient Cs = 0.1 (Banyai,
2016), via the relation:

Cw =
√

10.6C2
s (5.72)

This concludes the theory related to the last LES turbulence model im-
plemented in this work, and, at the same time, it is also the last chapter of
the Modeling Part.

It is now time to move to the Results and Validation Part.



Part III

Results and Validation





Chapter 6

From broad view to ABL implementation

The first part of this monograph, Context (Part I), introduced the circum-
stances in which this work was initiated, but also the specificities related to
the environment and, in a broader sense, to the type of simulation that had
to be performed.

The second part, Modeling (Part II), provided the theory that is re-
quired to handle these simulations, taking into account the existing software,
Coolfluid 3, its advantages but also its constraints. It also elaborated on the
valuable tools to circumvent the complications specific to ABL modeling
with FEM.

In this third part, Results and Validation, the tests that were performed,
the encouraging results that were achieved, but also the disappointing results
that brought us to investigate other paths; are all described for the reader
to have a deeper insight on what are the challenges that were encountered
and how these were apprehended.

Notice that since the specifications of the different cases will be provided,
the results will mainly be presented in local units (i.e. dimensionalized) to fa-
vor the physical sense. In chapter 7, some results will be non-dimensionalized
to enable the comparison with the literature.

6.1 Preamble on Coolfluid 3

Before diving into the results, it is necessary to briefly outline how a typical
simulation test case in Coolfluid 3 works.

The Coolfluid 3 package is written in the programming language C++,
which enables:

• The creation of a code fully dedicated to, in this case, the simulation of
CFD problems. In other words, it means a Domain Specific Language
(DSL) can be built.

• The generation of a computationally efficient code, due to both its
low hierarchical level (i.e. straightforward conversion into assembler
code, that is, the computer core language) and its standard library
implementation, known for its cleanliness and efficiency. With these
two assets, the code can then be compiled into a binary form that
improves the delivered software’s performance even more.
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Thus, Coolfluid 3, compiled from C++, represents the core code. The latter
is then queried by an input file written in a language named Python that is
less performant but more accessible. Consequently, it has a wider commu-
nity. This python input file will contain all the test case parameters to be
simulated (e.g. the physical properties of the fluid, the governing equations
to choose, the boundary and initial conditions, the data to output, etc.). A
typical example of such a python file is available in appendix A.3.

In this work, the theoretical implementations are performed in the core
code, in C++, but the test case will be defined through a python input file.

In the following sections, some C++ implementations will be described,
and sometimes, a python input file will also need to be introduced because
the latter, often with specific considerations, activates the former.

This being written, we can introduce the first simulations.

6.2 Geometry and physical properties

Geometry

In this work, the complete domain, illustrated in figure 6.1, has a height
of H = 1200m (with the height adopted as the distance unit), a length of
nearly six times the height (L = 2πH ≈ 7540m), and a width approximated
by three times the height (W = πH ≈ 3770m). These dimensions are
commonly selected to represent an ABL domain (Bechmann, 2006; Goit,
2015).

Figure 6.1: Dimensions of the domain.

Physical properties

The considered fluid is the air following standard NTP conditions, with
a density ρ = 1.2kg/m3 and a dynamic viscosity µ = 1.8e−5Pa s. For
the second phase, although only relevant for the next section, a density of
ρp = 50µg/m3 (cf. PM10 from chapter 2) was chosen.
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6.3 The broad view

The author decided to initiate the work by creating a domain in 3D, includ-
ing a source emitting a second phase in a developed airflow. The objective
of this simulation was to identify potential problems when applying our code
to real-life dispersion problems. It would exhibit the potential complications
that would need investigation.

The primary purpose of this section is not to attach importance to the
quantities but to identify the points of interest.

6.3.1 Setup

Thus, for the first domain, the dimensions are reduced (i.e. H = 1.2m) to
facilitate the simulation, and a source is positioned longitudinally (i.e. in the
x−direction, streamlined with the flow), at a two heights distance from the
inlet. Because the idea is to simulate a source originating downstream of a
building without having to account for the upstream turbulences, the shape
of the source is extended until the inlet boundary. In the y−direction, it
is placed as close as possible from the bottom while ensuring an acceptable
meshing quality1. Laterally, in the z−direction, positioning the source in
the middle of the domain allows a spherical propagation.

Boundary conditions

To give the numerical model its physical meaning, boundary conditions have
to be set consistently. In this model, periodicity is applied to the inlet,
outlet, and sides of the model. In other words, the input is connected to the
output, the left side to the right side. A symmetry condition is applied to
the top (i.e. the topside should be far enough, not to influence the domain
of interest). For the bottom, a no-slip condition (i.e. nul velocity on the
ground) is set.

Initial condition

To initiate the simulation, a flow condition is fixed, equal to a rudimentary
uniform velocity (u = 4m/s).

Mesh creation

The first mesh is generated with hexahedral elements to enable a structured
mesh to facilitate the computation and reduce the simulation time. The
smallest length is set to 1mm and progressively increased with a scale factor
of 1.4. Unfortunately, in a structured mesh, each interior node has the
same amount of elements in its surroundings, forcing the refined hexahedra’s

1The quality of the mesh structure is measured through analyzing the skewness of each
element
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local resolution to extend in the three dimensions. As a consequence, when
considering a refinement on the wall locations, after several adjustments,
the first grid is reduced from 25 to 15 million of elements (figure 6.2), even
though such a grid is impracticable for analysis. Moreover, the solution is
hardly computable, even with the available computational resources.

Figure 6.2: Hexahedral mesh including a source.

To reduce the number of elements, an option is to replace the hexahedral
elements with tetrahedral elements at the cost of replacing the structured
mesh with an unstructured mesh. The latter requires a remapping of each
element in the system to be solved. Thus, using tetrahedral elements enable
to refine in regions of interest (i.e. high gradient, separation, etc.) and
progressively unscale in regions of dissipation (i.e. where interactions with
the interfaces are reduced). In our case, a scaling factor of 1.4 is chosen
(although 1.1 is preconized) to enable both the insertion of a cylindrical
source and the ability to rapidly increase the size of the elements when
moving away from the source, its support, and the bottom. The resulting
mesh2 is given in figure 6.3 and contains 5 millions of elements.

Figure 6.3: Tetrahedral mesh including a source.

2Note that for this specific case, the dimensions were modified (i.e. ∼ 9H x H x ∼ 3H) to
correlate with another study (Bechmann, 2006), but the thought remains equivalent.
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Note that this mesh is by no means relevant to describe an ABL properly,
for three obvious reasons:

• Both the height (H = 1.2m vs. Hreal = 1200m) and the uniform
velocity profile (uinlet = 5m/s) are not realistic.

• Observing the size of the elements at the interfaces, in the y− and
z−directions, the pressure gradient will not have the span to decrease
sufficiently, implying potentially spurious reflections at the interface.

• The dimension of the elements on the ground does not reflect the
velocity gradient to be expected, normal to the ground.

Although critical, these observations are helpful to precise the preliminary
complexity of the case.

6.3.2 Results

Four additional pieces of information are brought by inspecting qualitatively
the first timesteps of the converged simulation. The two firsts are visible in
figure 6.4.

Figure 6.4: Vertical cross-section of the boussinesq volume fraction for the
second phase, 0.4s after release.

• First, the geometry of the source outlet presents some similarities with
a well-known academic case, namely, the backstep flow, which is al-
ready subject to numerous studies due to the complexity brought by
both the separation and the backscatter flow.

• Second, a significant amount of elements is required because of the
space left below the cylindrical shape of the source.

These two observations raise questioning on the necessity to represent the
source in such a manner.

The third and fourth details are discernible in figure 6.5.
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• The third observation is related to the dispersion that looks symmet-
rical relative to the horizontal plane. Since both the boundary condi-
tions and the source geometry are symmetrical relative to the horizon-
tal plane, there is no reason to believe this observation would not be
accurate. Consequently, slicing the model in two, following the sym-
metry plane, would reduce the number of elements of the simulation
by two. However, two issues will then arise:

– turbulences is a 3D phenomenon that needs three dimensions to
develop;

– unsymmetrical boundary conditions (that can occur in an ABL,
implied by a Coriolis effect) will not be appropriately captured.

Figure 6.5: Horizontal cross-section of the volume fraction for the second
phase, 1s after release.

• The fourth observation is noticeable near the source outlet (i.e. pipe
extremity). One can perceive a circular propagation pattern that is
embracing the outlet’s contour. Certainly, the geometry upwind of
the source will influence the dispersion pattern. Since the primary
goal is to study the influence of the atmospheric boundary layer on
the dispersion of a second phase, it would be advantageous to avoid
any superfluous obstruction.

Area of focus

Eventually, although incomplete, these qualitative examinations exposed
lots of subjects of investigations that are not all directly related to our sub-
ject. Therefore, we decided to focus on the fundamental stage: create a
proper flow, taking the size and the specificities of the ABL into account,
while leaving the geometries and second phase behaviors for further inves-
tigations.
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The following section will thus present a less sophisticated domain that
will allow us to develop the ABL theory.

6.4 The ABL simulation

6.4.1 Setup

Geometry and mesh

As suggested in the previous section, for this section, the geometry is reduced
to figure 6.1 containing only the fluid phase (no source, neither support
included), and the results will be provided in 2D. Moreover, while the more
sophisticated mesh of the previous section was prepared with an external
mesher (i.e. Gmesh), the more accessible mesh of the following sections will
be prepared via the Coolfluid 3 internal mesher to discard a source of error
(namely, the surface creation and node matching).

Moreover, the generated mesh will have a 64× 64× 64 and a 64× 128×
64 elements distribution (i.e. size) with a reduced scale factor (i.e. 1.1) to
smooth the progression.

ABL expression

In this domain, to avoid requiring many elements (cf. § 4.3) and because
in FEM, we use a grid where all quantities are computed on the nodes, the
concept of a first cell layer is ill-suited to our problem. For this reason, we
started the mesh at a height ywall from the wall, where ywall plays the role
of first cell height. Figure 6.6 illustrates it.

Figure 6.6: Illustration of the 1st node above a wall.
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Since most of the literature and code in CFD is written for FDM and FVM
(cf. § 4.2.2), our development has its origin in a FDM implementation of the
wall model, proposed by Goit, 2015. The latter proposes a LES modeling
where the boundary condition incorporates a Schumann’s wall model. This
expression, derived from Bou-Zeid, Meneveau, and Parlange, 2005, is an
improved local law-of-the-wall formulation:

τw = −
[

κ

ln(ywall/y0)

]2 (
ū2

1 + ū2
2

)
(6.1)

with τw the shear stress at the wall, ywall is the height of the first node,
and y0 is the roughness of the considered terrain. Thus, this formulation is
used in LES of a high-Reynolds number boundary layer, where the viscous
sublayer is not resolved.

From the general definition of the shear stress (eq. (6.2)):

τwi = ν
∂ui
∂xj

nj → ∂ui
∂xj

nj =
τwi
ν

(6.2)

and from the definition of a natural Robin boundary condition (eq. (6.3)):

βu+
∂u

∂n
= 0 → ∂u

∂n
= −βu (6.3)

Because eq. (6.1) is a function of the velocity (i.e. τw = f(u)), applying
eq. (6.3)) leads to an expression where the wall model appears in the system
matrix, represented using the FEM shape functions N as follows:∫

Γ

1

ν

(
κ

log ywall
y0

)2

|u|NT (u)N(u)|n̄|dΓ = 0 (6.4)

Boundary conditions

Similar to the previous section, the current model will also have a symmetry
condition applied to the top and periodicity on the inlet, outlet, and sides.

In contrast, for the bottom, the no-slip condition is replaced by a non-
penetration condition (i.e. impermeability, that is, the vertical component of
the velocity set to 0m/s) coupled to the just defined Schumann’s wall-stress
boundary condition from eq. (6.4).

Initial condition

For the initial condition, to accelerate the convergence, the previous uniform
velocity is replaced by a logarithmic velocity profile, more representative for
an ABL profile:

uinletx =
(uτ
κ

)
log

(
y + ywall

y0

)
(6.5)
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The reference velocity is 4 m/s at a height of 200 m. A timestep of 0.1 s was
taken (0.05 s sec in 3D) to ensure stability and convergence of the simulation
(i. e. a CFL 3 below 0.2 in this case).

Remark 6.1. In the following sections, the reference velocity can slightly
vary around 4m/s. The grounds behind it are associated with the literature
that was taken into account during the examination. Although any reference
velocity from this order of magnitude could have been considered to feign
a highly convective flow, its value will be indicated each time there is any
adjustment to avoid any confusion.

Body force

Eventually, the model and its boundaries being defined, a body force f is
set to keep the ABL at a constant speed. This body force can be found by
requiring equilibrium between the force Ff and the force Fw induced by the
wall shear stress:

Ff = fV ρ & Fw = Awτw

if Ff = Fw → f =
τw
ρh

(6.6)

and

uτ =

√
τw
ρ

→ f =
u2
τ

h
(6.7)

with h the height of the model.
Expressed in terms of speed on the first node, derived from eq. (6.1):

uτ =
κuref

ln((yref + ywall)/y0)
(6.8)

6.4.2 Results

Flow pattern

The logarithmic profile of the flow can qualitatively be seen on figure 6.7.
The velocity range varies between 0.58 m/s (on the first node) near the wall
and 4.9 m/s at the -top of the model.

The reference speed was 4 m/s at a height of 200 m. Hence, at 1200 m
(height of the model), the speed should reach around 4.86 m/s to be consis-
tent with the logarithmic profile.

Velocity profile

By looking closer at the velocity profile in the center of the domain (fig. 6.8),
one can confirm the supposition quantitatively.

3i.e. Courant-Friedrichs-Lewy condition, that is, a common stability criterion for hyper-
bolic equations.
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Figure 6.7: Velocity countour map with the new ABL implementation.

Figure 6.8: Velocity magnitude [m/s] vs y-coordinate [m]

As can be seen in figure 6.8, the velocity plot starts above 0.4 m/s, pass
through 4 m/s at the reference height (200 m) and show a logarithmic profile
as suspected by previous map.

Sensitivity to the mesh-wall distance

As mentioned in § 6.4.1, to reduce the required number of elements, Schu-
mann’s wall model permits an offset between the physical wall and the mesh.
If the boundary condition is implemented correctly, the velocity at the first
node as a function of this offset should follow the theoretical logarithmic
profile.
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We performed seven nearly identical simulations to validate this approach.
The only difference between each of these simulations was the position of
the first node relative to the wall.

By plotting the velocity computed in the first node of each of these simu-
lations and compare it to the theoretical ABL profile, the correctness of the
implementation could be validated.

Figure 6.9 presents the results of these seven simulations (seven colored
crosses) and compares them to the analytical profile (dash line).

Figure 6.9: 1st node velocity for 7 simulations compared to theoretical value.

One can see the analytic value from eq. (6.8) is nearly equal to the value
computed by the simulation, on the 1st node (the most significant deviation
is 0.4% at 0.47m from the wall). This confirms that our translation of
Schumann’s model to FEM is implemented correctly.

This brings confidence in both the approach and its implementation, but
of course, it is limited to a 2D verification.

The next step is to ensure the boundary condition is stable both in func-
tion of the number of elements and in function of the simulation time. This
brings us to the following two sections.

6.5 Boundary condition normalization

With the newly implemented wall model boundary condition, it is impor-
tant to ascertain that the number of elements defining the domain will only
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influence the resolution of the solution and not alter the absolute physical
values.

We can verify this with two smaller grids (i.e. 4-elements and 16-elements
grids on a 20m height domain) without waiting for the final converged result.
In figure 6.10, the coarse grid has an orange color; the refined grid has a
purple color.

Figure 6.10: Boundary condition normalization. (Inside graph is a full pro-
files’ view)

After a few iterations, although the solution is not converged, one can
already observe a slight deviation between the coarse and the refined grids
on the first nodes (near the wall).

When normalizing the solution by its first node value, the two grids pro-
duce identical values (i.e. dotted values). This optimization is the first help-
ful step toward a robust spatial solution. The following sections will present
a second step heading toward a stable solution in time.

6.6 SUPG coefficients

When applying the body force introduced in eq. (6.7), the system should be
excited until the body force achieves a certain equilibrium with the shear
stress velocity uτ . Practically, it is the case in 2D.

However, when moving to 3D, with an unsteady viscous flow, it will be
shown that the body force causes the velocity profile to increase continu-
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ously, exceeding the reference velocity. As a consequence, no convergence
can be reached.

The first idea is to adjust the stabilization method coefficients (αSU , αBU ,
and αPS) and analyze their influence on the resulting velocity in a position
located in the center of the domain, at mid-height, and compare them to
the original velocity.

The coefficients αSU , αBU , and αPS are constant values that can manually
be adjusted to give more weight respectively to the streamline upwind (SU),
the bulk (BU), and pressure (PS) stabilization schemes. In our specific
implementation, the pressure is not directly adjusted. Therefore, αPS will
not be analyzed.

In the conventional implementation, these coefficients, or gain, are all
set to 1.0. The resulting velocity profile, on the last figure 6.13 will be
displayed in dotted black. However, before comparing the different results
to the regular profile, the influence of the gain coefficients will be examined.

For this purpose, figure 6.11 presents the evolution of the instantaneous
velocities for three different simulations for respectively three increasing val-
ues of αBU : 0.0 (i.e. deactivation of the BU stabilization), 0.1, and 0.5.

The chosen location for the velocity is the center (i.e. height of 600m) of
the domain, for a reference velocity of 5m/s (at 200m).

Figure 6.12 presents the same evolution, for two increasing values of αSU :
0.1 and 0.5. (no deactivation is necessary to draw the conclusions).

For these two figures, the velocities for the first iterations (from 0 to
32000), slightly more transparent, were part of a first simulation. They are
only shown to confirm the velocity started below 5m/s and continued its
progression through and over the reference value.

Figure 6.11: BU effects. Figure 6.12: SU effects.

Figure 6.11 brings three observations upfront:

• All three velocities follow the same linear and increasing progression.
In other words, no velocity tends to a stabilized constant velocity.
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• The velocity from the deactivated BU scheme shows the largest oscil-
lation’s amplitude, the one with the greatest αBU , the narrowest.

• The mean values are different.

Figure 6.12 is placed next to figure 6.11 because the observations are
analoguous:

• a linear progression;

• this time the smallest αSU corresponds to the narrowest oscillation
amplitude;

• αSU has less influence on the oscillation’s amplitude then αBU .

From these two figures, one could deduce that these gain factors will
unfortunately not bring a solution to the over-rated velocities arising with
an increase in simulation time (i.e. number of iterations).

Nevertheless, it is still interesting to analyze how these various velocities
compare to the original velocity profile. They are all given through their
respective linear regression lines in figure 6.13. (The raw signals were too
noisy to draw conclusions, hence the filtered representation.)

Figure 6.13: Mean SU - BU effects compared to standard case. (Inside graph
is a full profiles’ view.)

Figure 6.13 presents the trendlines for each considered case, compared to
the original case (i.e. dotted black). One can observe that an increasing
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weight on the SU scheme tends to decrease the velocity in the direction of
the standard case. An advisable option to continue in the decreasing trend
is to reduce the BU scheme effect.

Unfortunately, the decrease keeps the angular coefficient of the increasing
velocity positive. No improvement is to be expected with these coefficients.
Therefore, we decided to remain with the original case.

Remark 6.2. The confidence interval for each of these lines was computed
to confirm the proper linear assumption for these trendlines and, because
of the equal distribution of the sampled velocities (i.e. one per iteration),
without surprise, the confidence interval is above 0.95.

6.7 Body force limiter

A solution to counter this non-expected behavior is implementing a lim-
iter that would act on the body force according to the maximum velocity
expected at the reference height, namely the reference velocity.

Ordinary limiter

An ordinary first implementation of a body force limiter is visible in fig-
ure 6.14 where a reference velocity of 3.75m/s was applied. In this simple
limiter, the body force is first computed thanks to the requested velocity
and then recalculated at each timestep, with a correction factor corr given
by eq. (6.9).

corr =

(
uref − umean
‖uref‖

)
(6.9)

For the sake of illustration, we set a probe at the reference height and
monitored its velocity during the simulation. Figure 6.14 presents the men-
tioned velocity in function of the time (actually, the iterations). The dotted
line corresponds to the trendline.

As the simulation progresses, the velocity should reach its reference value,
namely 3.75m/s. When the velocity computed at the reference height ex-
ceeds the requested value, the body force counterbalances it, not taking the
previous timesteps into account (no feedback loop). Consequently, the com-
puted velocity tries to return to the requested value but with an opposite
derivative, without damping. Figure 6.14 shows the saw teeth behavior of
this first implementation.

The saw teeth behavior of the body force limiter has two non-negligible
drawbacks:

• The time needed to reach convergence is far from optimal. In real-
ity, it could even be theoretically infinite since oscillation could occur
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Figure 6.14: Ordinary implementation of a limiter

indefinitely the smaller the deviation becomes. This is noticeable be-
tween iterations 40.000 and 120.000, where the progression given by
the trendline (i.e. dotted line) follows a slow path to the targeted
value. Moreover, the oscillation amplitude does not seem to diminish
anymore.

• These oscillations produce discontinuities between each iteration that
will increase potential numerical instabilities (or trigger them if not
yet present) and deteriorate the quality of the resulting flow.

Thus, this first proposal is not an acceptable solution. In contrast, the
same idea, without the oscillatory behavior, could still contribute to im-
proving the simulation. Consequently, the following subsection will present
a more advanced limiter.

Dynamic limiter

In this second implementation, two thoughts are taken into account:

• to use the information of the last iteration to control the direction of
the future body force.

• to smooth the response by not limiting the information to the very last
iteration but consider time-averaged information of multiple iterations.

Accordingly, the idea is to consider the history of the previous iterations
before updating the required body force. Put differently, the body force is
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once more first computed thanks to the requested velocity and subsequently
iteratively updated using a feedback scheme that compares the velocity from
the computed flow to the requested velocity.

For this purpose, the proposal of Goldstein, Handler, and Sirovich, 1993
was implemented. The adapted body force has following pattern:

f(xs, t) = α

∫ t

0

u(xs, t
′)dt′ + βu(xs, t) (6.10)

where a large negative α coefficient will result in a fast response and a large
negative β coefficient in a greater damping. The coefficients of the feedback
loop expression are therefore named the gain, and the damping. For our
case, the optimal coefficient are found to be respectively −1. and −0.2.

Eventually, to include the history of multiple previous iterations and not
only the last one, the time integral can be approximated by a Riemann sum:

∫ t

0

u(xs, t
′)dt′ ≈

N∑
j=1

u(xs, j)∆t (6.11)

where N is the number of steps and ∆t is the size of the timestep.
The next step is to verify the appropriate response of the new limiter. We

can ascertain this by inserting three probes set at different heights (bottom,
center, and top of the domain), following their behavior in function of the
time (i.e. iterations), and simultaneously inspecting the flow velocity. The
body force is constant in the entire domain.

Figure 6.15 displays the velocity at the three probes, with a reference
velocity set at 5m/s. In this plot, the three velocities are rapidly reacting to
the influence of the body force. Moreover, the damping is clearly observable
on the probe located at mid-height.

At first instance, it has met the two criteria expressed at the beginning of
this section. The resulting method does facilitate the flow convergence and
stabilizes the velocity profile more quickly.

To confirm this behavior is correlated to the action of the body force,
figure 6.16 presents the body force intensity for the same simulation.

As expected, the intensity of the body force is high in the first steps,
allowing a fast alteration of the physical properties of the model. Then, it
decreases rapidly with the number of iterations, a consequence of the limiter,
enforcing a reduction and damping of the body force intensity.

Remark 6.3. The curious reader can find the exact implementation in ap-
pendix A.1.

However, when computing the body force analytically, the obtained value
is equal to 3.584e−3N/kg while the converged numerical value is 3.077e−4N/kg.
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Figure 6.15: Limiter with feedback scheme: Velocities at 3 different
heights (-); trendlines (- -)

Figure 6.16: Limiter implementation with feedback scheme:
body force value in the whole domain

The factor 10 is due to the limiter’s use (which is doing what he was re-
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quested to do). This difference primarily means that the shear stress is much
lower than expected, indicating a severe problem with the solution.

6.8 Spurious oscillations

To better understand and observe the phenomenon, the simulation was run
further on both a simple and a full-scale model, until statistical convergence
could be obtained. Figure 6.17 illustrates visually the phenomenon that is
occurring near the wall.

Figure 6.17: Velocity contour.

One can observe horizontal lines near the wall that are undoubtedly not
physical.

To quantify and confirm this artifact, figure 6.18 provides two types of
graphs:

• outside graph: two velocity profiles in the center of the domain (sta-
tistical in purple; instantaneous in red).

• inside graph: the velocity in function of the time (or iterations) for
three locations (i.e. bottom, mid, and top of the domain).

The outside graph exhibits an instantaneous velocity profile where the
high oscillation near the wall (left side of the curve) is apparent.

Moreover, to support even more these two first inspections, on the inner
graph, the velocity capture for each timestep at the bottom of the domain
confirms this spurious and significant oscillation.

Remark 6.4. Notice that the values on the nodes were verified, and the pre-
sented oscillation is, unfortunately, no postprocessing artifact; the computed
values are effectively affected by spurious numerical oscillations.

These spurious oscillations that are not physical remind us of § 4.2.3. The
latter explained how FEM implementations are sensitive to convective flows
and how, basically, the PSPG/SUPG stabilization method was developed
to counter these.
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Figure 6.18: Instantaneous and statitical velocity profiles (outside) ;
Velocities at 3 heights in function of the iterations (inside).

Potentially, in the case of an ABL modeling, the PSPG/SUPG method
can not be applied without considering both the numerical implementation
and perhaps some extra turbulences modeling.

Remark 6.5. Another interesting observation is that the velocity at the
reference height (i.e. 200m) is not the reference velocity (i.e. 4m/s) but a
velocity close to the velocity at the top of the domain. As a matter of fact,
the profile is not logarithmic.

This over-estimated velocity can be seen on the statistical velocity (purple
line) at the reference height and through the mid-position velocity history
(dark blue line), which is very close to the top-position velocity history (cyan
line).

Although essential, this observation will be left aside while the investiga-
tion will focus on the spurious oscillations.
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6.9 Implicit vs semi-implicit

Following the previous section, before proposing any turbulence modeling,
the first idea is to ensure that the ABL implementation has no side effect on
the numerical resolution of the system. In this respect, two versions of the
ABL implementation will be developed. It will provide two parallel paths
to solve the simulation’s computation and hopefully reach the same result.

If the oscillations remained, these two alternatives would confirm there
is no correlation between the oscillations and one of these paths. If the
oscillation were to disappear, it could bring a solution.

Regardless of the oscillative behavior, this first investigation will provide
more insight and better tools to understand the phenomenon.

Thus, as described in chapter 4, the introduction of convective terms
(e.g. in the momentum equation) within a FEM approach results in the use
of stabilization methods. As a matter of fact, the existence of convective
terms has another important implication:

Combined with the need to solve the governing equations on a large num-
ber of elements, for a significant amount of timesteps, a few simulation
codes propose an explicit handling of the convective terms because the lat-
ter is fast and boosts the scalability. Indeed, in the explicit approach, the
term is handled on the RHS of the governing equation as a source term,
avoiding inner iterations to find the solution for each timestep. However,
more severe timestep restrictions (cf. CFL condition) also constrain the ex-
plicit approach. In this regard, such a type of handling will require smaller
timesteps to obtain a converged result, but in a more significant amount.

Another option is to propose an implicit approach, where the pressure and
the velocities are coupled. The latter considers the convective terms inside
the assembly matrix, leading to a significant increase in computational cost
per timesteps (because of the inner iteration required for the coupling).
However, on the other side, the restriction on the timesteps is no more
relevant, enabling to increase the size of these steps, and therefore reduce
the number of timesteps. In the case of FEM, the poor conditioning of the
linear system leads to poor convergence of the linear system solution.

For non-linear PDEs, an even more advantageous technique, implemented
in Coolfluid 3 by Janssens, 2014 makes use of an implicit scheme for lin-
ear terms and an explicit scheme for non-linear terms (González-Calderón,
Vivas-Cruz, and Herrera-Hernández, 2018). This method combines a less-
restrictive use of the timestep to a more efficient (read less computationally
costly) resolution per timestep. This last version is a hybrid named the
semi-implicit version. In the context of LES and DNS, this can be justified
because resolving turbulence also requires small time steps.

In this section, we will present two adaptations of our case (following the
implicit and the semi-implicit approaches). For this purpose, the typical
main structure of the wall model implementation first needs to be described.
Its implementation is partially visible in appendix A.2 to keep the section
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lightweight.

Description of the wall model implementation

Appendix A.2 provides two files that define the ABL component that is
included in the FEM resolution, inside the Coolfluid 3 code:

• The first file is the header file.

In short: It contains the declarations for all variables and functions
that are part of the newly defined ABL component.

In long: It starts with the necessary libraries (#1-4) and accessible
namespaces (#6-9). Then, it defines the new ABL class (#11). This
class contains a public section including :

– (#16) the conventional constructor and,

– (#19) destructor, but also

– (#22) the name identification of the class and

– (#25) one function to enable the execution of the component,
when activated.

The class also contains a private section (i.e. only callable inside the
ABL component) that holds the most important information, namely:

– (#29) one function that associates the component to a specific
boundary region (in our case, the region will be the bottom of
the domain to study);

– (#32) one function that contains the core of the wall function
implementation. It will be further detailed when describing the
second file;

– (#35-36) the objects containing the assembly matrix (also named
the system matrix) and the RHS source term;

– (#37-43) all the numerical and physical parameters required for
the ABL implementation.

• The second file presents the fragment of the primary definition file that
contains the ABL implementation itself.

Longer version:

– (#3) It starts with some calls to the the actual WallLaw compo-
nent,

– (#5-9) and the physical quantities of the latest timestep.

– (#11-15) Then, a small function will compute the ABL coefficient
(eq. (6.1)) to avoid having to recompute the same value for each
element.
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– (#18-35) Finally, the core process is carried out in the wall law
→ set expression function.

∗ (#20) In this task, first the type of FEM element that can be
considered will be defined. These could be piecewise linear
triangular elements, piecewise linear hexahedral elements, or
other available elements.

∗ (#21-34) Then, the assembly matrix as well as its RHS have
to be composed. These are needed to solve the linear system
that will deliver the physical quantities (e.g. velocity and
pressure) for each element, at each timestep.

It is precisely the last item (#21-34) from the second file that will diverge
in the two approaches. This block will be named the expression block to
ease the reading.

Implicit approach

For the implicit version, as introduced at the beginning of this section, the
idea is to include the effect of the ABL inside the assembly matrix that
is part of the linear solver system (LSS) associated with the velocity and
coupled to the pressure.

To achieve this, two modifications needs to be applied:

1. The expression block displayed in listing 1 needs to be properly imple-
mented.

2. The python inputfile (§ 6.1) for the Coolfluid 3 simulation test case
needs to activate the implicit implementation.

Thus, first, we describe the specific expression block implementation:

• (#3) At each timestep, the first stage is to initialize the assembly
matrix for both the velocity and the pressure.

• (#4-8) Then, each element is examined and attributed two relations:

– (#6) The first relation imposes a no-penetration condition by
deducting the contribution of the pressure on the velocity.

– (#7) The second relation enforces the ABL wall model condition
by appending the ABL coefficient to the velocity following the
exact expression (6.1).

• (#9) After having looped on each element, the system matrix can be
completed by appending the assembly matrix, adjusted with a coeffi-
cient θ (from the θ-method detailed in Janssens, 2014).

• (#10) Equivalently, the RHS will deduct the effect of the assembly
matrix to the unknown vector.
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1 group

2 (

3 _A(u) = _0, _A(p) = _0,

4 element_quadrature

5 (

6 _A(p, [u_i]) += -transpose(N(p)) * N(u) * normal[_i],

7 _A(u[_i], u[_i]) += _norm(u) * transpose(N(u)) * N(u)

* _norm(normal) * lit(dt()) * ABL_factor()↪→

8 ),

9 system_matrix += m_theta * _A,

10 rhs += -_A * _x

11 )

Listing 1: Implicit expression block.

Second, the python input file needs to select an implicit implementation of
the Navier-Stokes equations and choose an LSS optimized for such a system.
Listing 2 illustrates these portions.

In listing 2, line (#2) selects the general version of the Navier-Stokes
equations. This version is the only possible for the implicit execution. Then,
line (#5-23) specify the type and parameters needed for the LSS associated
to the implicit configuration:

• (#6-15) Select the preconditionner and enter its parameters (e.g. type
of matrix resolution).

• (#17-23) Select the LSS type and the parameters required to restrain
the computation (i.e. convergence criterium, number of iterations and
allocated memory).

The LSS options are part of an external package called Trilinos that is
incorporated to Coolfluid 3. More details on this package can be found in
Sala et al., 2010.

Semi-implicit approach

By comparison, the approach for the semi-implicit direction is fundamentally
different since the ABL effect needs to be converted into a source term.
We can then transfer the new source term to the RHS, together with the
contribution of other potential source terms (e.g. heat source).

Once more, the first step is to rewrite the expression block following list-
ing 3. The steps are equivalent to the implicit version, except the expressions
are modified:
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1 ### Add the Navier-Stokes solver as an unsteady solver

2 ns_solver =

solver.add_unsteady_solver('cf3.UFEM.NavierStokes')↪→

3

4 # Implicit solver setup for NS

5 for lss in [ns_solver.LSS]:

6 lssParam = lss.SolutionStrategy.Parameters

7 lssParam.preconditioner_type = 'ML'
8

9 lssML = lssParam.PreconditionerTypes.ML.MLSettings

10 lssML.add_parameter(name='ML output', value=0)

11 lssML.default_values = 'NSSA'
12 lssML.aggregation_type = 'Uncoupled'
13 lssML.smoother_type = 'symmetric block Gauss-Seidel'

# 'Chebyshev'↪→

14 lssML.smoother_sweeps = 2

15 lssML.smoother_pre_or_post = 'post'
16

17 lssBelos = lssParam.LinearSolverTypes.Belos

18 lssBelos.solver_type = 'Block GMRES'
19

20 lssGMRES = lssBelos.SolverTypes.BlockGMRES

21 lssGMRES.convergence_tolerance = 1e-5

22 lssGMRES.maximum_iterations = 2000

23 lssGMRES.num_blocks = 1000

Listing 2: Implicit portion of a typical case.

• (#3) The initialization is no more done on the assembly matrix for
both the velocity and the pressure, but on the pressure assembly ma-
trix and the velocity component of the RHS vector.

• (#7) For each element, the non-penetration condition remains unchan-
ged. However, the ABL wall model condition is this time appended
to the RHS velocity vector. Moreover, we slightly adapted its formu-
lation by multiplying it by the velocity components while respecting
the matricial product rules.

• (#9) The system matrix operation is identical to the implicit version.

• (#10) The RHS, in contrast, will only deduct the effect of the whole
RHS vector.

The second step is to adjust the python inputfile to the semi-implicit
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1 group

2 (

3 _A(p) = _0, _a[u] = _0,

4 element_quadrature

5 (

6 _A(p, [u_i]) += -transpose(N(p)) * N(u) * normal[_i],

7 _a[u[_i]] += ABL_factor() * _norm(u) * transpose(N(u))

* u[_i] * _norm(normal) * lit(dt())↪→

8 ),

9 system_matrix += m_theta * _A,

10 rhs += -_a

11 )

Listing 3: Semi-implicit expression block.

formulation, following listing 4.

Briefly:

• (#2) The semi-implicit formulation of Navier-Stokes is selected.

• (#3-6) This new implementation requires to precise a few options
(e.g. the coefficient for the θ-method from Janssens, 2014, the velocity-
pressure interaction, the use of a body force).

• (#9-27) Analogously to the implicit version, the linear systems need
a solver to be defined.

– (#9-13) First a solver for the pressure part is defined (here,
Amesos-KLU ) and its parameters are filled.

– (#15-27) Secondly, the velocity part is handled, by defining the
preconditionner, the LSS solver, and their respective parameters.

Once more, all these solvers derive from the Trilinos algebra package. The
curious reader will find all the available solvers with their options detailed
in Sala et al., 2010.

These descriptions aim to illustrate the importance of adapting the test
case to the chosen implementation.

Outcome

To conclude this section, we have implemented two versions of the wall
model. Theoretically, these two versions are fundamentally different in their
resolution:
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1 ### Add the Navier-Stokes solver as an unsteady solver

2 ns_solver = solver.add_unsteady_solver('cf3.UFEM.Navie c

rStokesSemiImplicit')↪→

3 ns_solver.options.theta = 0.5

4 ns_solver.options.nb_iterations = 2 # 1 if isolate

velocity computation from pressure↪→

5 ns_solver.options.enable_body_force = True

6 ns_solver.options.pressure_rcg_solve = True # True

with Amesos ; False with Amesos_Klu↪→

7

8 ### solver setup for SI

9 for strat in

[ns_solver.children.FirstPressureStrategy,

ns_solver.children.SecondPressureStrategy]:

↪→

↪→

10 strat.MLParameters.aggregation_type = 'Uncoupled'
11 strat.MLParameters.max_levels = 4

12 strat.MLParameters.smoother_sweeps = 2

13 strat.MLParameters.coarse_type = 'Amesos-KLU'
14

15 lss = ns_solver.VelocityLSS.LSS.SolutionStrategy

16 lss.preconditioner_reset = 1#20000000

17

18 lssParam = lss.Parameters

19 lssParam.preconditioner_type = 'Ifpack'
20 lssParam.PreconditionerTypes.Ifpack.overlap = 0

21

22 lssBelos = lssParam.LinearSolverTypes.Belos

23 lssBelos.solver_type = 'Block CG'
24

25 lssCG = lssBelos.SolverTypes.BlockCG

26 lssCG.convergence_tolerance = 1e-6

27 lssCG.maximum_iterations = 300

Listing 4: Semi-implicit portion of a typical case.

• One considers the ABL wall model part of the assembly matrix (im-
plicit version). This implies an alteration of its shape. As a reminder,
the sparser the matrix is, the more complex and computationally de-
manding its resolution will be. On the other hand, this implicit version
enables increasing the timesteps’ size, facilitating the time progression
in the simulation.

• In contrast, the semi-implicit version simplifies the preliminary work
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by relaying the ABL wall model to a source term on the RHS, making
its implementation more accessible, but constraining the simulation to
the CFL condition.

However, the resulting simulation should provide the same outcome.
After letting our simulation test case run with the two implementations,

no difference was observable in the results, reducing the two implementations
to a prerogative left to the user’s preference.

This also supports the fact that the spurious numerical oscillations ex-
posed in § 6.8 are not impacted by the method used to solve the linear
system.

This direction of investigation can therefore be closed.



Chapter 7

Turbulent model investigations

By successfully developing Schumann’s wall model, the previous chapter
delivered a potential implementation of the ABL, supporting a substantial
reduction of the number of elements necessary to define the domain. As
a matter of fact, it was ascertained that the first nodes of the grid do not
need to correspond with the physical wall and that spacing them from the
wall will imply a proper adjustment of the velocity that complies with the
expected analytical value.

Moreover, a body force limiter was implemented to ensure the requested
reference velocity would always bound the computed velocities.

However, because spurious numerical oscillations occur near the wall, be-
cause these take place in a region where turbulence is non-negligible, and
because turbulence models tend to have a dissipative behavior, it was de-
cided to investigate the effect of turbulence modeling on the ABL velocity
profile.

In this chapter, the first sections will examine two LES turbulence models
that were introduced in § 5.2.1 and § 5.2.2.

Subsequently, the most appropriate model will be selected to initiate sev-
eral sensitivity studies on various criteria.

To allow a solid foundation for the future works, the complete model will
be adapted to enable a comparison with a DNS resolution.

Eventually, the premises to work on the VMS implementation will be
introduced.

In consideration of the preceding, before diving into the turbulence inves-
tigations, a unique tool needs to be introduced: the randomizer.

Remark 7.1. In § 6.4.2, the reference height was set to href = 200m for a
reference velocity vref = 4m/s, corresponding to a velocity at the top of the
domain reaching ∼ 5m/s.

To simplify the indicator for the following results, the reference height
was set at the top of the domain (i.e. href = 1200m), and accordingly, the
reference velocity was set to 5m/s.
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7.1 Preamble to 3D turbulent modeling: The
randomizer

When simulating an ABL with a realistic dimension, even with the help of a
wall model, the number of elements necessary to fill the domain is consider-
able. When starting from a perfectly homogeneous domain (and a priori not
the final solution), with the help of the initial and boundary conditions, the
transition to a developed flow can require a significant amount of timesteps
for the perturbations to propagate in every single element and even more
timesteps to get some turbulence to build up.

To accelerate the process, a tool named the randomizer was implemented
in Coolfluid 3. By initiating a random, directed, and bounded excitation,
the randomizer is designed to produce an inhomogeneous domain that will
facilitate the creation of turbulences.

Its activation is given in appendix A.2 (#208-215). The steps are:

• to create the randomizer component,

• to map it to the grid,

• to associate the randomizer to a physical quantity (in our case, the
velocity), and finally

• to provide its intensity and maximum variation in each direction.

The resulting velocity contour when initiating the simulation is illustrated
in figure 7.1.

Figure 7.1: Randomizer effect at initialization.

At first instance, this section could seem futile. However, in reality, the
variation on the reference velocity, the direction of activation, and foremost,
the randomizer implementation (i.e. independent of the quantity to analyze)
can substantially impact the simulation convergence time. This will be
further commented in § 7.5.

In the meantime, the randomizer will be used to speed up the results
provided in the following sections.
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7.2 LES WALE

Thus, the first turbulence model that is being tested is the Wall-Adapting
Local Eddy-viscosity (WALE) model. As emphasized in § 5.2.2, it was
designed to circumvent the weaknesses of more traditional LES models.

Because its implementation was partially present in the existing code, it
was decided to finalize it and test it on our case.

Implementation

The important part of the implementation, the computation of the WALE
turbulent viscosity, is transcribed in appendix A.4. Briefly, it is composed
of:

• (#7-10) the definition of tools (operators and matrix types).

• (#12-24) the computation of velocity gradient, Fröbenius norms, and
broadly, factors needed for the WALE viscosity expression below.

• (#26) this is the important expression of the implementation, where
the artificial WALE viscosity is assembled. It represents the more
conventional expression (5.71).

• (#27-28) a small safety condition to remove negative values.

• (#30) the integration of the WALE viscosity into each element’s node.

• (#33) the last constant is user-defined and commonly fixed to 0.325,
following eq. (5.72).

Results

To analyze the influence of the artificial dissipation delivered by the WALE
model, it was thus included in our ABL system, and to better understand
the consequences, figure 7.2 presents the velocity profile1 in the center of
the domain, at different timesteps (equivalent to iterations).

As explained in the previous section, the simulation starts with a random-
ized velocity field, producing inhomogeneity. The effect is still observable
on the dotted profile given after three iterations. Obviously, the profile will
converge with the number of iterations. This is shown by the dashed curves
(i.e. 20 to 500 iterations).

After 1300 iterations, the profile is not yet converged, but already, tangible
observations can be made:

• no oscillation is visible near the wall. The turbulence model did posi-
tively influenced our case.

1Notice for this test case, the logarithmic profile was not activated. However, the obser-
vations are equivalent.
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Figure 7.2: WALE: Instantaneous velocity profiles per iteration;
laminarised velocity contour for last iteration (inside).

• the profile is dramatically laminar. The velocity contour for this last
timestep (inside figure 7.2) pictures it even better.

The latest observation is certainly not desirable and is the consequence of
too much dissipation.

As explained in § 5.2.2, the model was optimized from a more traditional
LES turbulence model and is therefore also less easy to adjust manually.

The logical next step is thus to revert to a different LES turbulence model:
the Smagorinsky - Lilly model.

7.3 LES Smagorinsky - Lilly

In § 5.2.1, the Smagorinsky - Lilly (SL) model was presented as one of
the oldest LES turbulence models. Nevertheless, it is still commonly used
due to its simplicity and yet satisfying results. Consistently with all LES
models, it proposes an artificial viscosity expression that will contribute to
close the governing equations for a small dissipation cost. Once more, the
question will be how advantageous is this dissipative effect for our ABL
implementation.

Two versions of this model were presented in the theoretical part. Their
implementation and the resulting velocity profiles for our case will be the
subject of the following subsections.
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7.3.1 Static version (or Cs constant)

Alike in WALE’s section, we will first describe the implementation given in
apppendix A.5. Then, we will look at the resulting velocity profiles to review
the effect of the model on the spurious oscillations and, most importantly,
on the resulting ABL velocity profile.

Implementation

As previously, only the meaningfull part of the implementation will briefly
be described. The idea is to display the correlation between the theoretical
part (§ 5.2.1) and the FEM implementation.

Thus, succinctly:

• (#7-8) Alike in WALE, a factor is foreseen for the anisotropy of each
element (but not detailed here).

• (#10-12) Not used here. It will be explained in § 7.3.3.

• (#18-20) The definition of tools (operators and matrix types).

• (#22) To define the velocity in the element’s center, it has to be com-
puted from the surrounding nodes.

• (#24-26) The static SL method requires the grid filtered volume as
well as the characteristic filtered width ∆gF to be computed. It is
done relative to the considered element’s volume.

• (#27-29) The computation of the velocity gradient and Fröbenius
norm of the strain tensor are needed for the static SL expression below.

• (#31-94) Not used here. It will be explained in § 7.3.3.

• (#95) This is the first important expression. The subgrid-scale length
scale is computed from the manually inserted CS coefficient and multi-
plied to a function of the grid filter width. It follows eq. (5.46). Notice
that by default, the CS value is set to 0.148 (§ 5.55).

• (#97-100) One of the SL drawbacks is related to its incapacity to reach
the no-slip condition on the wall. We implemented the Mason wall
damping approach (Mason and Thomson, 1992) here to circumvent
this.

• (#102-104) This is the important expression of the implementation,
where the artificial SL viscosity is assembled. It represents the more
conventional expression (5.46).

• (#106-107) A safety condition to remove negative values.
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1 smag =

solver.add_unsteady_solver('cf3.UFEM.les.Smagorinsky')↪→

2 smag.options.use_dynamic_smagorinsky = False

3 smag.options.cs = 0.148

Listing 5: Static SL activation in Coolfluid 3 python input file.

• (#109-114) The integration of the SL viscosity into each element’s
node.

• (#117-125) The last lines define the used parameters but also the
boolean used to de/activate the different options like the static or
dynamic SL (that will be analyzed in the next subsection).

After having implemented the static SL model, it was integrated into our
ABL system by adding following lines (listing 5) to the python test case.

Hopefully, the simulation will modify the resulting velocity profile posi-
tively.

Results

Analogously to the WALE’s section, the resulting velocity profile is pre-
sented in figure 7.3. Two profiles are displayed: the instantaneous velocity
in the center of the domain, at the last simulated time step (dashed line),
and the statistical velocity (plain line) computed on the last 3e5 iterations.

Fortunately, both the instantaneous and the statistical velocity are fol-
lowing a reassuring path. The former displays a turbulent behavior starting
at a non-zero velocity (as expected from the wall model implementation)
and moving towards the reference velocity. The latter presents a smooth
curvature that recalls the expected ABL profile.

To better emphasize the turbulent response present in the instantaneous
velocity profile, the velocity contour for the last time step is given in fig-
ure 7.4

Qualitatively, the velocity contour exhibits turbulences that do not pre-
sent the spurious horizontal oscillations near the wall (neither elsewhere).
Moreover, the velocity remains in the expected range: between the supposed
non-zero velocity at the first node above the wall (bottom) and around the
reference velocity at the top of the domain.

Remark 7.2. This simulation was performed on a 64×64×64 grid, with the
first nodes’ vertical position located at ywall = 12.5m (that is, the total height
divided by the number of elements) ; a considered roughness of y0 = 0.01m
(corresponding to a very smooth rural terrain) ; a timestep of 1s ; and a SL
coefficient set to the constant value CS = 0.148.
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Figure 7.3: SL static model: Velocity profiles after 6e5 iterations.

Figure 7.4: SL static model: Instantaneous turbulent velocity contour after
6e5 iterations.

Having presumably found a solution to both the spurious oscillations near
the wall and the convergence issue, the profile is numerically satisfactory but
has not yet proven to be physical.

The next section will study the influence of the SL coefficient and compare
the result to the expected analytical (i.e. physical) logarithmic profile.
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7.3.2 Cs constant: Sensitivity study

In previous section, the CS value was set to 0.148 following eq. (5.55). How-
ever, the literature (§ 5.2.1) also demonstrated that this constant value is
actually not performing properly for all cases. Practically, the value is not
constant, nor in time, nor spatially. Vasaturo et al., 2018 even stated: ”Con-
cerning the Smagorinsky constant, CS , there is neither a consensus nor a
clear guideline about the value to adopt for the simulation of the ABL.”
He was referring to the CS values of 0.1, 0.12, 0.16 for the respective works
of Thomas and Williams, 1999, Hu, Ohba, and Yoshie, 2008, and Tseng,
Meneveau, and Parlange, 2006.

Therefore, in the first step, the idea is to study the influence of CS for
values varying between 0.00 and 0.20 by steps of 0.02. Figure 7.5 presents the
resulting velocity profiles, after reaching the statistical convergence (here,
6e5 iterations). Additionally, the expected analytical ABL velocity profile
is included to situate the computed profiles better.

Figure 7.5: SL static model: Statistical velocity profiles for varying CS .

From figure 7.5, three observations are straightforward:

• All profiles do reach the reference velocity at the reference height.

• Each profile starts at a different velocity on the first node’s height
(ywall).

• All computed profiles drastically differ from the analytical ABL profile.
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The first observation is positive and expected. The second is linked to the CS
value and requires more explanation. The third remark is critical because
it can not directly be linked to the implementation.

Reverting to the second observation, the CS coefficient defines the arti-
ficial turbulent viscosity generated by the turbulence model. The artificial
turbulent viscosity is added to the kinematic viscosity and, together, they
influence the whole domain and, specifically, the shear stress on the wall.
By extension, the shear stress applied to the wall (in our case, the first layer
above the wall) is a function of CS . Since the shear stress is directly re-
lated to the applied body force (eq. (6.7)), this explains the correspondence
between the velocity variation on the first node and the different CS values.

As a matter of verification, we shall demonstrate the shear stress equiv-
alence between the one originating from the simulated body force and the
one from the simulated wall velocity.

Thus, starting from the case CS = 0.148, at a specific time step (here,
(6e5 + 264e3) iterations2):

• On the one hand, we shall consider the computed velocity on the first
node’s layer, averaged on the whole layer (figure 7.6), to deduce the
theoretical shear stress τ thw .

• On the other hand, we will compute another shear stress τsimw from
the body force acting on the domain for the same timestep.

Both shear stresses should be equal.
Figure 7.6 displays a slice of the domain, representing the velocity contour

at the first nodes’ layer only (on the left side), together with the body force
and the velocity components averaged on the displayed layer.

Figure 7.6: SL static model: Body Force vs. wall velocity. (Magnified ver-
sion in appendix B.1)

2To reduce the convergence time, the new simulation are started from a previously
converged (and developed) simulation
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Starting from the domain parameters (κ = 0.401, h = 1200m, ywall =
(1200/64)m = 18.75m, y0 = 0.01m), together with the simulated wall ve-
locity: uwall = 2.64231m/s, they produce the theoretical shear stress, from
§ 6.4.1 and especially eq. (6.1):

τ thw =

(
κ

log(ywall/y0)

)2

u2
wall = 0.0197m2/s2

On the other side, from the simulated body force: f = 1.71761e−5m/s2, we
find the simulated shear stress via:

τsimw = f × h = 0.0206m2/s2 (7.1)

Although the two values τ thw and τsimw are not equal, they are incredi-
bly close, which is reassuring. The difference between these two values is
nevertheless not adequate and could have been explained by the previously
implemented body force limiter but unfortunately, deactivating it in a con-
verged simulation did not suffice to reach equality. Another attempt to
reach the balance will be made in § 7.5. For the time being, the solution is
sufficient to confirm the second observation made at the beginning of this
subsection.

The last observation, the disagreement between the simulated profiles
and the analytical ABL profile, still needs to be explored. A first step will
be to further develop the SL turbulence model, namely, by considering its
evolution: the dynamic Smagorinsky - Lilly turbulence model.

7.3.3 Dynamic version (or Cs dynamic)

Analogously to § 7.3.1, first we will describe the dynamic CS implementation
(given in apppendix A.5). It will allow for a proper identification of the
theory presented in § 5.2.1.

Implementation

The dynamic SL was developed as an evolution of the static version. Indeed,
the only difference between the two versions resides in the determination of
the CS coefficient. The other steps remain equivalent. As a consequence,
the implementation of the dynamic version is also integrated into the static
version. As such, all shared lines will not be reviewed.

Below one can find a brief focus on the dynamic version:

• (#7-8) Explained in § 7.3.1.

• (#10-12) The dynamic CS value will be computed for each element.
This value will nevertheless be depending on the neighboring elements.
As a consequence, a list of all neighboring elements needs to be ob-
tained. The function get neighbElts() is non trivial and was also devel-
oped in this scope. However, it will not be described for conciseness.
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• (#18-29) Explained in § 7.3.1.

• (#31-94) As a reminder, the main objective is to generate a dynamic
CS value and to insert it in the regular static SL model. This part
contains all the necessary steps to generate the dynamic CS :

– (#32-45) For the dynamic version, a second filter, the test fil-
ter, needs to be created. All the necessary components for the
expressions (5.61) and (5.63) first need to be initialized.

– (#47-66) This is a loop on each neighboring element. For each
of them, a set of elementary computations (e.g. velocity gradient,
strain rate tensor, norm, etc.) needs to be created and summed
over all these neighboring elements. Later on, they will be used
to compute the CS for the dedicated (center) element.

– (#68-74) The focus is back on the main center element. The
elementary components are estimated.

– (#76-82) All the computed and summed-up components from
the neighboring elements (#47-66) are normalized by the total
test filter volume. Also, the strain rate norm for the grid filter is
calculated.

– (#85) The square of the characteristic test filtered width ∆tF is
computed.

– (#86-88) These are the core expressions for the dynamic version,
where the matrix Mij , Lij , and finally the square of CS , named

C̃S not to confuse it (cf. under eq. (5.56)), is computed.

– (#90-93) These are two limiters to constrain the value of the real
CS coefficient between 0 and 0.23 (Germano et al., 1991). In
addition, the C̃S value is square rooted to reduce it to the real
CS value.

• (#95-125) Explained in § 7.3.1.

Without surprise, the implementation follows all steps presented in theory.

Results

Turning now to the results produced by this new implementation, three
aspects will be analyzed:

• Does the CS coefficient truly vary inside the domain?

• How does the resulting viscosity react to this?

• What velocity profile is resulting from this new implementation?
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Once more, we will start from the same domain parameter and activate
the dynamic SL implementation through setting line #2 to True in listing
5. Line #3 is no more active.

To answer the first question, a way to proceed is to look at the CS contour
and plot the values on a vertical line in the center of the domain. Figure 7.7
depicts these information.

Figure 7.7: SL dynamic model: Cs values on the domain. (Magnified version
in appendix B.2)

On the contour (left side), the average CS value is clearly varying spatially.
It is not an accident that the visualization nearly mimics the velocity contour
that could be expected from a typical channel flow case. Indeed, the test
case, as is, is surrounded by a wall at the bottom and a constant velocity
at the top. In the center, the viscosity produced by the SL model has more
liberties to amplify.

On the right side, the average CS value (red-colored) for a vertical pro-
file located in the domain center corroborates with the contour, and the
instantaneous CS value (in blue) exhibits the inhomogeneous and drastic
activation on a single vertical line.

The answer to the first question is therefore positive. The CS value is
effectively not constant on the whole domain.

For the second question, similarly, the viscosity can be displayed on the
domain. Figure 7.8 presents it.

From figure 7.8, it is not possible to derive the independent influence of the
artificial viscosity (Indeed, the implementation directly sums the artificial
viscosity to the kinematic viscosity). Nevertheless, it is made clear that the
total effective viscosity is not homogeneous in the domain. The pattern is
not apparent in any case.

Finally, the third question will be answered by analyzing the dynamic SL
result compared to the existing static SL and the analytical velocity profile.
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Figure 7.8: SL dynamic model: Viscosity on the domain. (Magnified version
in appendix B.3)

Figure 7.9 displays the three statistical profiles for statistically converged
simulation. Moreover, the velocity contour for the dynamic case is integrated
into the plot.

Figure 7.9: SL dynamic model: Statistical velocity profile.

Regrettably, the velocity profile provided by the dynamic version is steer-
ing to the other extreme, even further than the most minor CS case from
the static version. By looking at the velocity contour, the whole domain is
effectively filled with the reference velocity, except for an extremely narrow



142 Chapter 7. Turbulent model investigations

region near the wall, where a thin turbulent layer can be observed.
As a matter of fact, this dynamic version will not help us further. In

contrast, a few parameters could still have a beneficial effect. These will be
the subjects of the next section, dedicated to sensitivity studies.

7.4 Other sensitivities

From the previous section, it was observed that the constant SL turbulence
model does reduce elegantly the spurious numerical oscillations encountered
with the ABL wall model FEM implementation. The remaining issue is the
great divergence from the expected analytical ABL profile.

In this section, we would like to study how two chosen parameters could
affect the profile. Accordingly, a sensitivity study will be performed for each
of them. The chosen parameters are:

• the grid resolution,

• the reference velocity,

However, before initiating these studies, because there is no specific sec-
tion related to performance on our ABL case, and because, except in chap-
ter 3, the significant computation times were never emphasized, we will start
the section with a preliminary study on the computation efficiency. Note
that this study is also relevant for the grid resolution sensitivity since the
latter will make intensive use of this preliminary study.

7.4.1 Computation scalability

Introduction

Following the geometry described in § 6.2 and the mesh proposed in § 6.3,
a 64 × 64 × 64 grid would have 262144 elements, what very reasonable is,
nowadays. At least if no inner loop is required during the computation of
each time step, as, for example, for the computation of the dynamic CS
version seen in the previous section. In that case, the time per iteration can
significantly increase.

Suppose now that the grid resolution is increased by 2 in each direction,
the resulting grid will reach just above the two million elements, representing
today an acceptable but yet large grid to compute. Once more, any inner
loop that would derive from an interaction between the computation of the
velocity quantities iterating with the pressure matrix (i.e. coupled system)
would substantially increase computation time.

To improve our simulations’ time, we do have two workhorses:

• find an optimal linear solver, and

• make use of multi-processing.
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These items will be analyzed separately and together.
Apart from these two available optimizations, although still related to

computational performance, we recently and temporarily received the op-
portunity to compare the performance of our computation cluster with a
new cluster installed in another Belgian university. The last subsection will
present the performances for our case, both as a benchmark and to under-
stand where optimization in our computation facility can be envisioned.

MUMPS vs. MueLu solvers

Fundamentally, solving the governing equations (in our case, the Navier-
Stokes equations) numerically on a considered domain can be reduced to:

• discretize the domain in a certain amount of elements,

• discretize the PDE’s representing these governing equations and trans-
form them to a linear sub-system,

• apply this discretization to each element to constitute the linear system
to solve, and eventually,

• solve this linear system.

Although each item of this outline is a field in itself, only the two last tasks
will be discussed.

To perform them, Coolfluid 3 integrates one package called Trilinos (Sala
et al., 2010) that is specialized in tools and solvers for large matricial sys-
tems. It can interface with two libraries, specialized in this respect:

• The first library, MUMPS, is a MUltifrontal Massively Parallel Solver.
It is an external library, written in Fortran90 (a low-level language), is
opensource, and is based on a direct Gaussian elimination approach.
The latter is named the multifrontal method (Amestoy, Duff, and
L'Excellent, 2000; Amestoy et al., 2019).

This method solves large linear systems with the Ax = b shape, where
the system matrix, A, is a square sparse matrix with no limitation on
the ”symmetricity”3. For this solver, in the semi-implicit method, the
factorization process for the pressure system needs to be executed for
each iteration, inducing a computational cost.

MUMPS is a direct solver, and, usually, it is far too expensive for
CFD, but it is admissible for the pressure system because the matrix
does not change with time.

Lastly, although not directly integrated into the solver, MUMPS can
easily be parallelized by using it, through the MPI (Message Passing
Interface) protocol (Sur, Koop, and Panda, 2006).

3x is the unknown vector and b is the RHS vector
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• The second library, MueLu is a multigrid preconditioner library (smooth-
ing the shape of the system matrix A to fasten the following processes)
that is directly integrated to Trilinos and can fully be adjusted to
the considered application. It uses a Smooth Aggregation (SA) algo-
rithm, which is written in C++ (also a low-level language), is opensource
(Prokopenko et al., 2014; Wiesner et al., n.d.).

In contrast with the previous library, MueLu is not used as a solver
but as a preconditioner for the conjugate gradient method to solve the
pressure system. It enables it to avoid factorization at each iteration.
However, for accuracy, during the sensitivity analysis, both the mean
and minimum computation times will be provided to compare the
solver process primarily.

Note that the MueLu library allows to fully adjust the system matrix,
which means several options need to be selected. The curious reader
will find the chosen options for our case in the third listing (i.e. ”MueLu
specs XML file”) in appendix A.6. Their definitions are available in
Wiesner et al., n.d. Nevertheless, they will not be further explained
for brevity, although background tests were performed.

The activation of each library is made inside the Python input file and is
available in appendix A.6.

To emphasize this sensitivity study in the case of our ABL test case (with
64x64x64 elements), it takes around 3e6 timesteps, timesteps of 5e−4 sec-
onds, to reach statistical convergence, and an equivalent amount is necessary
to capture the statistics of the flow. If the CFL remains reasonable within
this configuration, it takes ten days to obtain usable results on 80 cores per-
forming each part of the computation on a slice of the domain. If the CFL
increased dangerously, the timestep would need to be reduced, increasing
the number of iterations proportionally and, therefore, the required time
needed to obtain the usable results. If the computational resources are not
available, the situation is even worse.

Clearly, reducing the processing time per iteration will have a tremen-
dously beneficial effect on the resolution time. Assembling the system ma-
trix, optimize its shape for faster resolution, and select a solver dedicated to
the type of matrix that corresponds to our specific PDE are all factors that
are non-negligible when considering a large linear system.

Therefore, four configurations for our case are proposed:

• our classic case with 64x64x64 elements, solved with MUMPS, on a
node containing 80 cores.

• our classic case with 64x64x64 elements, solved with MueLu, on a node
containing 80 cores.

• a refined case with 128x128x128 elements, solved with MUMPS, on
two nodes containing each 80 cores.
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• a refined case with 128x128x128 elements, solved with MueLu, on two
nodes containing each 80 cores.

For each case, only ten timesteps were performed to reduce the weight of
the setup while still limiting the computational time.

Remark 7.3. Three required notions: Cluster, Nodes, and Cores.
The available computational facility at the Royal Military Academy is con-

stituted of a server governing a network of computers where the whole group
is called a cluster, where each computer is named a node. These nodes con-
tain a certain number of processors that each contain a certain amount of
cores (e.g. in our case, it can be 20 cores per processor. See in the clusters’
study § 7.4.1). To simplify, the processors will not be considered after that,
only the nodes and the cores.

The communication between cores of the same node is optimal (thanks to
the vicinity but also the intrinsic construction of a node).

The communication between nodes is less optimal and can present greater
latencies than between cores. These latencies can negatively affect computa-
tional time. Thus, for a test case that requires more than one node to work,
a latency cost is to consider.

Coming back to our four test cases, the two traditional 64x64x64 cases
would have sufficed to observe the behavior of the two solvers. However,
would these behaviors be confirmed or vanished when the linear system is
so large that parallelization between nodes is mandatory? Would the solvers
take advantage of the parallelization or, conversely, be heavily affected? This
is the reason for the two additional test cases, with the larger and refined
128x128x128 grid.

Table 7.1 presents the mean timing4 for these different configurations.
The total timing is not given because the focus is set on the time differences
between the two solver types. As a consequence, the loop timing for the
Navier-Stokes solving process is considered as the total timing. This loop
timing contains several steps like the initial condition setup, the resolution of
considered governing equations, the boundary conditions setup, and other
steps. In fact, the most relevant step in our case is the resolution of the
governing equations, that is, the Navier-Stokes in its semi-implicit version.

Therefore, one will find a summary of the processing time for each step
inside this semi-implicit resolution. Notice that each of these steps is per-
formed ten times.

Eventually, the last section of table 7.1 provides details concerning one
of these sections, namely the inner loop section. Notice that each of these
steps is performed twenty times.

4Notice that the minimum timings are provided in appendix C.1. Although the mean
timings are biased by the factorization that occurs in MUMPS before each iteration,
the conclusions provided by both the mean and the minimum timings are very similar.
Looking at the mean values facilitates the additions.
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mumps64 muelu64 mumps128 muelu128

Grid 64x64x64 64x64x64 128x128x128 128x128x128

Solver MUMPS MueLu MUMPS MueLu

NS semi-implicit 3.683 1.995 75.581 10.548

10x LinearizeU 1.699e-2 1.849e-2 1.755e-1 9.751e-2
10x PressureLSS 3.757e-5 3.751e-5 4.741e-5 4.628e-5
10x VelocityLSS 3.376e-5 3.284e-5 3.448e-5 3.321e-5
10x SetSolution 4.608e-3 5.098e-3 6.683e-3 1.422e-2
10x InnerLoop 3.612 1.930 75.058 10.228
10x Update 2.046e-2 1.690e-2 2.801e-1 1.703e-1
10x CFL 1.035e-2 3.250e-3 2.069e-2 1.049e-2

In InnerLoop
20x URHSAss 4.369e-2 4.579e-2 1.482e-1 1.542e-1
20x PRHSAss 3.916e-2 3.919e-2 1.218e-1 1.157e-1
20x ApplyAup 2.476e-2 2.329e-2 7.507e-2 6.938e-2
20x SolveUSyst 2.205e-1 2.751e-1 8.014e-1 6.855e-1
20x SolvePSyst 1.351 4.566e-1 35.876 3.645

Table 7.1: MUMPS vs. MueLu solver timings [s] (mean values).

When looking at the first two cases (i.e. two first columns) from table 7.1,
one will find out the total (loop) timing are not equal. The MueLu case
processes the information in nearly half the time. According to the data, the
difference resides in the Navier-Stokes resolution, and precisely, one timing
is diverging between the two cases: the InnerLoop step (dashed-underlined).
Again, the timing difference reflects the halving. By diving even further into
the InnerLoop details, one will find out the InnerLoop operation contains
all the processes related to RHS and system matrix assembly, as well as the
resolution, for both the velocity and the pressure system. It is precisely in
the resolution of the pressure system that the disparity is observable.

When looking at the two following columns, the 128x128x128 refined
cases, the observations are identical, with one exception: the contrast be-
tween the MUMPS and the MueLu resolution is even greater (a reduction
of more than 15% for the MueLu case). These two right columns demon-
strate that the parallelization between two nodes benefits the MueLu solver
considerably.

Practically, with no modification of the cluster’s setup, the MueLu solver
will be chosen for our case.
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Multi-processing

After having optimized the solver’s choice, the second ingredient that can
help to reduce the total simulation time is the parallelization between several
nodes to reduce the load and accelerate the processing time for each of them.

For this purpose, our ABL case will be even further refined to reach
256x256x256 (i.e. nearly 17 million) elements. This test case will then be
simulated in parallel, using 1 to 4 nodes of 80 cores each.

Remark 7.4. Cores execute simple instructions, also called threads. Each
processor will distribute threads to its cores (cf. Remark 7.3). This low-level
operation is called multi-threading.

Accordingly, the processor uses the results of these small instructions to
compose more complex expressions that can then be a part of the final result.
For this purpose, the processors can work together with other processors
through what is called multi-processing.

Thanks to the MPI protocol, both the multi-threading and multi-processing
operations are handled as processes, hence the title of this subsection.

Reverting to the scaling study, the main study will consider only the
computation time. Aside, a secondary study will observe the impact of
saving intermediate data (named snap, for snapshot) on the total simulation
time. One could imagine that reading/writing a large amount of data to the
disk between computation steps could have an impact on the simulation
time. The question will then be on what scale.

Table 7.2 presents 3 simulations with respectively 10, 20, and 100 timesteps
(called Iters in the table and in Figure 7.10) and only 1 snapshot. Two addi-
tional cases are given with respectively 2 and 10 snapshots, for the secondary
study.

For each of these cases, the first subtable (in the center) exposes the total
simulation time for each case in minutes:seconds. The second subtable (on
the right) displays the same information, in percentage, when considering
the one node case as the reference (i.e. 100%).

Timing [mm:ss] Ratio [%]
Nodes 1 2 3 4 1 2 3 4
Cores 80 160 240 320 80 160 240 320

Iters Snap

10 1 17:10 17:16 21:08 21:19 100.0 100.5 123.1 124.2
20 1 22:29 19:43 25:10 24:53 100.0 87.7 112.0 110.7

2 22:27 25:09 20:09 24:24 100.0 112.0 89.8 108.7
100 1 59:21 42:15 43:52 42:13 100.0 71.2 73.9 71.1

10 61:31 58:36 36:50 43:51 100.0 95.3 59.9 71.3

Table 7.2: Multi-processing (256x256x256 grid): total simulation times.

For the main study, the observations can be divided into three:
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• Vertical analysis: when looking at a single node number (single col-
umn), the increase in total processing time is not following a linear
path in function of the number of iterations. Actually, it is even de-
creasing, meaning that the fixed time-cost reduces with an increasing
number of iterations. Indeed, at the beginning of the simulation, set-
ting up the domain only happens once. No surprise here.

• Horizontal analysis: When looking at the ratio subtable (right sub-
table), one will find out there are two trends: on the one hand, the
10 and 20 iterations’ cases that tend to increase the total simulation
time with increasing parallelization; on the other hand, the 100 it-
erations’ case that follows a more suitable path, reducing the total
simulation time when doubling the parallelization nodes. This ob-
servation is essential. Predictably, the cost due to the parallelization
(and its associated communication latency) needs to be absorbed by
the number of iterations to be worthwhile.

• Horizontal and vertical analysis: The optimal simulation time (under
dashed) for this case is reached when shifting from 1 to 2 nodes and
with 100 iterations.

Concerning the secondary study (i.e. the influence of the snapshots), it is
perceptible that some time is necessary for them to occur and, when looking
at the most extensive case, 100 iterations and 10 snapshots, the performance
penalty is significant (i.e. from 71.2% to 95.3% of the one node timing).
In such a case, the three nodes configurations will be more advantageous.
Consequently, the communication time needed to write the snapshots should
not be neglected when considering the computational setup.

The current analysis is based on the total simulation time. Although
interesting if one suppose infinite computational resources, it is also essential
to evaluate the efficiency of processing time per core.

Figure 7.10 provides this information. The total times were divided by
the number of cores, for all one snap configuration and the ten snaps case,
in function of the number of nodes used.

The first observation is that all cases follow power laws (dashed lines)
that tend to converge to the same minimal timing when an infinite number
of nodes is used. Note that this minimal timing is non-zero. The second
observation shows that the most significant reduction occurs when passing
from one to two nodes, and specifically for the high number of iterations.

Eventually, our computational resources are limited, bringing the optimal
(read simulation time vs. node use) choice to two nodes (or 160 cores) for the
ultra-refined case (or even three nodes if multiple snapshots are required).

With these two adjustments, we have a good setup to start the sensitivity
study related to the grid resolution (i.e. mesh). However, prior to this new
study, the last performance study related to computational resources will
be presented.
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Figure 7.10: Multi-Processing optimum.

Cluster performance

As stated in the introduction, because we received the opportunity to bench-
mark our cluster to a new cluster facility based in another Belgian university,
we used the ABL case to simulate a few time steps. From these simulations,
we reiterated the two previous studies in a condensed way and eventually
compared the results for the largest grid (i.e. 256x256x256) to simulations
ran on our cluster. Following the indicator used in the solver’s choice study,
table 7.3 displays the Navier-Stokes semi-implicit minimum process time for
comparison.

Before analyzing the data’s, the characteristics of the two clusters will
briefly be listed to have a better insight:

• The new cluster named VSC here is provided by the Vlaams Super-
computing Center (VSC, 2019). It is composed of:

– 408 Skylake5 nodes (incl. 2 CPUs with 14 cores each), 192GB
RAM (with latency checker).

– 436 Broadwell nodes (incl. 2 CPUs with 14 cores each), 128GB
RAM (with latency checker).

– 144 Broadwell nodes (incl. 2 CPUs with 14 cores each), 256GB
RAM.

The nodes are connected using an Infiniband EDR network (25.8Gbit).

• The RMA cluster is composed of:

– 12 Skylake nodes (incl. 4 CPUs with 20 cores each), 384GB RAM.

5The node’s name is associated with the CPU micro-architecture, hence, production
date and performance. For instance, Haswell, Broadwell, Skylake were respectively
built in 2013, 2014, and 2015.
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– 5 Broadwell nodes (incl. 2 CPUs with 20 cores each), 128GB
RAM.

– 10 Haswell nodes (incl. 2 CPUs with 16 cores each), 128GB RAM.

The nodes are connected using a 10Gbit network (older technology).

From these characteristics, one can notice that the CPU architectures are
equivalent. In contrast, the communication between nodes is substantially
different, and the clusters’ sizes are not comparable (but the latter has no
direct impact on this study). Notice that all simulations were performed on
the Skylake architectures.

Cores Grid 64 128 256
# Cluster (-Nodes) MUMPS [s] [s] [s]

1 VSC 28 x 1.814 x x
2 84 x 0.919 x x
3 168 x 3.847 x
4 336 x 2.313 x
5 336 x x 6.624 x
6 224 x x 11.434
7 896 x x 6.081
8 1792 x x 4.203

9 RMA 80-1 x x 25.070
10 160-2 x x 14.952
11 240-3 x x 10.458
12 320-4 x x 8.687
13 400-5 x x 7.532
14 480-6 x x 9.994

Table 7.3: VSC and RMA clusters’s benchmark: Solver processing time.

Moving on to the analysis of table 7.3:

• The first two rows correspond to a regular 64x64x64 grid case solved
using the MUMPS solver on the VSC cluster. These two lines imply
there is no linear scalability. Indeed, the reduction in processing time
is not proportional to the number of cores. However, the gain is fair.

• Lines 3-5 correspond to a slightly larger grid (128x128x128). Anal-
ogously, the processing time reduction in function of the number of
nodes is observable on lines 3-4, where the preconditioner MueLu is
applied. Lines 4-5 are the same case except for the solver type, con-
firming the advantage provided by the MueLu solution.

• Lines 6-8 presents the largest grid (256x256x256), using MueLu, where
increasing the number of nodes still induces an improvement in pro-
cessing time.
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• Lines 9-14 represents the same 256x256x256 grid, on the RMA cluster,
for 80 to 560 cores. Firstly, notice that the 240 cores RMA case (line
11) has slightly better timing than the 224 cores VSC case (line 6).
However, it also has more cores to perform. Secondly, an optimum is
reached at 400 cores (on 5 nodes), and this minimal processing time
is clearly greater than the best timings obtained with the VSC cluster
(line 8). One could argue that the number of cores is not comparable,
and it is true. However, line 14 showed that an increase in cores on
the RMA cluster would not lead to further time reduction.

The last point is interesting and can be associated with remark 7.3, where
the communication speed between nodes can be responsible for computation
latencies. Effectively, when looking at the cluster’s characteristics, the com-
munication protocol (e.g. infiniband vs. 10Gbit ethernet) are significantly
different, providing a nice hint on the possible improvement to bring to the
RMA cluster.

This concludes the subsection on computation sensitivity study. With
this deeper insight on the computation hardware and with the adjustments
brought to the solver’s type and to the multi-processing setup, the next
subsections will initiate the sensitivity studies directly connected to the test
case’s result.

7.4.2 Mesh sensitivity

As expressed in the introduction of this section 7.4, the idea is to play on the
parameters to seek a manner to bring the simulated velocity profile to the
analytical curve. In this respect, our case will be simulated with 3 degrees
of refinement:

• 64x64x64 elements

• 64x128x64 elements

• 64x256x64 elements

Notice that the refinement takes place only in the vertical y-direction to
avoid an explosion of elements in less relevant directions and, consequently,
an explosion of computational resources. As a matter of completeness, the
128x128x128 case was started for comparison with the 64x128x64 case, but
the convergence time was not affordable (i.e. extrapolated, four months of
computation time is required).

The resulting velocity profiles for the three grid resolutions are proposed,
together with the analytical profile, in figure 7.11.

Happily, the three profiles do end at the same reference velocity and follow
a similar profile. Understandably, they all start at different positions and
velocities. This is normal since the position of their first node varies with the
varying resolution. Accordingly, their respective curve tends to get closer to
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Figure 7.11: Grid resolution.

the analytical profile for increasing resolution, which was expected since it
approaches a full resolution.

Unfortunately, the relative progress is small compared to the increase in
grid resolution. Moreover, the concavity remains slightly different. However,
this parameter does influence the simulated profile positively.

7.4.3 Velocity sensitivity

Another parameter that will be studied is the reference velocity. The latter
obviously has an impact on the Reynolds number and therefore modifies the
inherent type of flow that is to be expected, although in our case, the flow
was already highly turbulent.

The consequence of not having the same Reynolds number, if we keep the
same case and only modify the reference velocity, is that the simulations
results can not be compared non-dimensionally. It would correspond to
comparing apples with pears.

Nevertheless, since our objective is to analyze the influence of the reference
velocity on the resulting velocity profile, an option is to normalize these
profiles by their respective reference velocity. Doing this will allow having
normalized profiles that can easily be set side by side.

Practically, we will compare the analytical values to three velocities:

• 5m/s

• 10m/s
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• 20m/s

Figure 7.12 presents these normalized curves. One can observe that none

Figure 7.12: Sensitivity study on reference velocity.

of the configurations generates a velocity profile that approaches the ana-
lytical profile.

Notwithstanding, the 10m/s and the 20m/s match each other perfectly,
implying that, at a very high Reynolds number, no change in profile is
expected. What could we say concerning a smaller reference velocity?

When looking at our reference velocity profile (blue dashed line), the
latter matches neither the two higher velocities nor the analytical. It lays in
between. Could this mean that the lower the Reynolds number, the better
the matching will turn out? By analogy, when considering a similar flow
case, the channel flow, DNS simulations could be performed (in 2015) until
a viscous Reynolds number (i.e. with respect to uτ ) of 5200, but not higher.

This brings a nice transition to the next section, which attempts to answer
this question by reverting to a case with a lower viscous Reynolds number.

7.5 Analogy to the channel flow

In this penultimate section, following the above observations, the idea is to
reduce our ABL test case to a more universal case. This reduced case with
less severe constraints can also be used for comparison in future works.

The chosen reference case is a DNS simulation performed by Lee and
Moser, 2015, for a channel flow, at viscous Reynolds numbers until Reτ =
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5200. As a reminder, one defines the viscous Reynolds number as a non-
dimensional number dividing the channel half-height h by the viscous length
scale δv. We have chosen their Reτ = 1000 case as a reference.

Indubitably, our ABL case is not a channel flow, but to a certain extent,
when considering half the height of the channel flow, one could consider it
to be similar to our case. However, this is not the only modification that has
to be applied. Our model reaches Reτ = 5e7, that is, significantly higher
than the proposed reference case. Accordingly, we will adapt our case. The
modified parameters are proposed in eqs. (7.2).

Reτ = 1000, h = 1m, uref = 22.593m/s,

ρf = 1kg/m3, µ = 1/Reτ , ν = µ/ρf ,

zwall = 0m, z0 = 1.015e−4m, uτ = 1m/s, f = u2
τ/h (7.2)

where all domain parameters are adjusted to reach the imposed Reτ .
For this basic test case, three variations are proposed:

• The elementary no-slip type: the velocity on the first node is set to
zero, assuming the first node position is the wall.

• Ustar version: the velocity on the first node is set equal to the man-
ually computed friction velocity. The latter will be explained in its
respective subsection.

• ABL wall model variant: the velocity on the first node follows the wall
model implementation.

The resulting velocity profile will be expressed non-dimensionally (cf. pre-
vious figure 4.14). We have envisaged different grid resolutions (in the ver-
tical y-direction) for each of these cases, and their results will be compared
to the DNS profile.

Each simulation will be performed in two steps:

• a first simulation with the body force limiter activated,

• a second step with the body force limiter deactivated.

The idea behind this is to use the body force limiter to rapidly reach the
converged state and then let the equilibrium between the body force and
the shear stresses govern the flow.

Lastly, due to the different grid resolutions and lower boundary condi-
tions, the convergence could not be reached at the same pace for each case.
Concretely, some simulations needed their timesteps to be adjusted, increas-
ing the computation time dramatically. Therefore, not all simulations have
reached convergence at the same rate. Nevertheless, the trend given by
the curves can still be used for interpretation. To ease the comprehension,
table 7.4 presents the total simulation time for every simulation.
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resolution No Slip uw = u∗ Wall model

64x64x64 167 220 φ
64x128x64 39.6 18.82 75.66
64x256x64 35.4 45.8 22
64x512x64 29 φ φ

Table 7.4: Simulation time [s] per grid resolution and wall type.

Notice the wall model case for the 64 grid (i.e. short name for 64x64x64)
directly converged to a homogeneous reference velocity in the whole domain,
making the results non-usable. For the 512 grid, only the no-slip condition
was intended because of the computational cost. The idea was to check the
trend.

From table 7.4, one will see that the small 64 grids obtain considerable
simulation time. This is due to a timestep of 5e−4s that could be applied
continuously. In contrast, the other grid resolutions suffered very high in-
stabilities at the beginning of their respective simulations, generating peak
velocities near the wall as high as 340m/s (for the 128 grids). Consequently,
they needed a considerable timestep reduction to meet the CFL condition.
However, as a matter of example, with a reference velocity of 22.593m/s in-
side a domain with a length of 6.283m, and after 18.82s, a particle traveled
the domain more than 67 times. In comparison, according to Goit, 2015, at
least 8 crossings are needed to develop the flow.

Before analyzing the resulting curve, one remark concerning the 128 grids:
although all the other parameters were identical (except the grid resolution
thus), they all started with a substantial velocity near the wall. One will
remember § 7.1 concerning the ordinary implementation of the randomizer
used to stimulate the turbulences. Because of the non-adjusting behavior of
the randomizer, the latter could be the reason for the 128 grids to behave
radically differently, at least in the first timesteps.

7.5.1 No-slip sensitivity

The no-slip condition case was simulated for four grid resolutions (i.e. 64,
128, 256, and 512 elements in the y-direction) and is displayed in figure 7.13.

One will see that all curves do not match the DNS profile, although they
follow similar trends. Moreover, the difference between 256 and 512 cases
is not relevant, while, in contrast, it is relevant with the two other resolu-
tions. One would expect an increasing resolution near the wall to have a
positive influence on the resulting profile. This is the case in the buffer (and
partially inertial) region. However, the 128 grid’s result seems to lack some
convergence far from the wall.
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Figure 7.13: Non-dimensional velocity profile with no slip condition.

7.5.2 Ustar sensitivity

Suppose the no-slip condition at the wall is substituted so that the velocity
at the wall is set equal to the expected friction velocity u∗.

Figure 7.14 provides the resulting profiles.

Figure 7.14: Non-dimensional velocity profile with friction velocity at wall.
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Once more, all curves do not match the DNS profile, while the trends for
the 64 and 256 cases are similar. The 128 grid is clearly not yet converged,
corroborating with the high-velocity issue related to the randomizer (stated
in the introduction for the three test case variations).

The two other resolutions (64 and 128) follow the same observations as
for the no-slip condition: the higher the resolution, the nearer to the DNS
line.

7.5.3 Wall model sensitivity

Eventually, applying our wall model implementation results in figure 7.15.

Figure 7.15: Non-dimensional velocity profile with ABL wall model condi-
tion.

These are opportunely the best profiles in terms of agreement with the
DNS profile:

• positive improvement due to the resolution, and

• close matching with the DNS curve in the inertial region. The latter
represents the region of interest for the computation.

To conclude, the first two cases presented a departure from the DNS re-
sult, although following a similar slope. The last case, the ABL wall model
implementation, presented a reasonable matching with the DNS curve, un-
derlining the benefit of reducing the number of elements by applying a wall
model.



158 Chapter 7. Turbulent model investigations

Nevertheless, analogously to the conclusion of previous sections of this
chapter, the gap still needs further development to reach a perfect matching.

7.6 VMS

During this chapter, the focus was solely on implementing LES turbulence
models and their effects on the velocity profile. It was demonstrated that
they could significantly help to reduce the spurious numerical oscillations
near the wall. Nonetheless, the resulting profiles were not matching with
the analytical ones.

In a parallel path, a completely different approach was initiated. The
foundation of this approach relies on the evolution of the SUPG stabiliza-
tion method, named the VMS (§ 5.1). As explained in the modeling part,
the VMS was developed precisely to generalize and increase the stabiliza-
tion effects on a broader range of flows. In this context, it was essential
to implement this methodology to determine its effectiveness in our ABL
case. The first results will be presented in this section. Notice that all
tests are performed in 2D to reduce the computational cost and to facilitate
troubleshooting. As explained in the FEM section (§ 4.2), moving from a
2D simulation to a 3D simulation only requires the use of different types of
element; the algorithm implementation remains identical.

The first section is focused on results displaying the algorithm’s structure,
whereas the second section concentrates more on the implementation of the
algorithm itself.

Mesh properties

Preliminary to the results, the mesh properties are detailed:

• For the tests related to the structure, a mesh of 16x16 segments was
used, with a reference velocity of 1m/s in x-direction (horizontal) for
the Poisson equation and in the x and y-directions for the Taylor-Green
equation.

• For the test related to the algorithm, the number of segments was
reduced to 2x2, and the θ-value appearing in the finite element formu-
lation from eq. (4.79) was set to 1 (in other words, the Euler form) to
be able to compare the combination of the SUPG assembly matrices,
Ae and Te, to the VMS assembly matrix, Ae.

7.6.1 Structure

The VMS structure described in section 5.1.1 is a predictor / multi-corrector
structure. To confirm the correctness of our implementation, it was first
tested with classical governing equations.
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Poisson equation

The first test, the Poisson equation, defined by ∆ϕ = f , was used because of
its simple implementation, its analytical resolution, and no use of periodical
boundary conditions.

The correctness of the predictor / multi-corrector structure was verified
by comparing this first test case qualitatively to the simulation result, using
a standard steady Poisson implementation. No quantitative analyses were
performed.

Figure 7.16 proposes a velocity contour of the simulation, where we set
the inlet velocity on the left side to 1m/s.

Figure 7.16: Poisson test case Figure 7.17: Taylor-Green test case

Taylor-Green equation

After having gained some confidence in the structure’s implementation, it
was tested on a test case with periodical boundary conditions: the Taylor-
Green test case.

Once more, we chose this test case because it has an analytical solu-
tion and because its standard Navier-Stokes’ implementation is available in
Coolfluid 3.

The objective of this test was to ensure the output generated by the VMS’s
structure would agree with the one produced with a standard Navier-Stokes
structure.

Figure 7.17 presents a velocity contour that reflects the recognizable sinks
and sources from the Taylor-Green equation. Moreover, no spurious phe-
nomenon is visible at the boundaries.

7.6.2 Algorithm

Having acquired confidence in the structure, it is time to test the algorithm’s
implementation. The latter is difficult because no analytical comparison
is possible. The only analysis that can be performed is to compare the
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assembly matrix Ae between the already existing SUPG implementation
and the new VMS algorithm implementation. To do this, both the viscosity
ν and the stabilization coefficients τx have to be reduced to zero (to reduce
the VMS algorithm to an equivalent SUPG’s).

To better analyse how each equation described in section 5.1.3 is influenc-
ing Ae, they are schemed with blocks in Table 7.5. Notice that each block
is actually a 3x3 matrix.

Auiui Auiuj Auip
Auiuj Auiui Auip
Apui Apui App

Table 7.5: Ae structure

The Ae matrix will be printed with three decimals (sufficient to see the
differences) to ease the reading.

Results with ν = τx = 0

A simulation was performed, for an identical mesh, with both the SUPG
implementation and the new VMS implementation. Table 7.6 displays Ae
for the SUPG implementation. This is the reference result.

-0.182 0 0.182 0 0 0 -0.083 0.083 0
-0.182 0 0.182 0 0 0 -0.083 0.083 0
-0.182 0 0.182 0 0 0 -0.083 0.083 0
0 0 0 -0.182 0 0.182 0 -0.083 0.083
0 0 0 -0.182 0 0.182 0 -0.083 0.083
0 0 0 -0.182 0 0.182 0 -0.083 0.083
-0.083 0.083 0 0 -0.083 0.083 0 0 0
-0.083 0.083 0 0 -0.083 0.083 0 0 0
-0.083 0.083 0 0 -0.083 0.083 0 0 0

Table 7.6: Ae with ν = 0 for SUPG

In table 7.6, one can see the matrix is symmetrical, considering the blocks.
Another observation is that Auiuj and App blocks are null value. Eventually,
all blocks have a column structure (values varying only column-wise).

The next table 7.7 proposes the result for the VMS implementation (cf.
eqs. (5.17 - 5.21)).

When analyzing table 7.7 for the similarities, the observation is that the
null valued blocks are identical. For the differences, the first remark is that
Ae is column-wise except for Auip that is row-wise and has the opposite
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-0.083 0 0.083 0 0 0 0.083 0.083 0.083
-0.083 0 0.083 0 0 0 -0.083 -0.083 -0.083
-0.083 0 0.083 0 0 0 0 0 0
0 0 0 -0.083 0 0.083 0 0 0
0 0 0 -0.083 0 0.083 0.083 0.083 0.083
0 0 0 -0.083 0 0.083 -0.083 -0.083 -0.083
-0.083 0.083 0 0 -0.083 0.083 0 0 0
-0.083 0.083 0 0 -0.083 0.083 0 0 0
-0.083 0.083 0 0 -0.083 0.083 0 0 0

Table 7.7: Ae with u = 0 for VMS

sign, compared to SUPG values. Second, the Auiui values are not equal to
SUPG ones.

After modifying Auip by transposing it and taking its opposite value,
table 7.7 becomes table 7.8.

-0.083 0 0.083 0 0 0 -0.083 0.083 0
-0.083 0 0.083 0 0 0 -0.083 0.083 0
-0.083 0 0.083 0 0 0 -0.083 0.083 0
0 0 0 -0.083 0 0.083 0 -0.083 0.083
0 0 0 -0.083 0 0.083 0 -0.083 0.083
0 0 0 -0.083 0 0.083 0 -0.083 0.083
-0.083 0.083 0 0 -0.083 0.083 0 0 0
-0.083 0.083 0 0 -0.083 0.083 0 0 0
-0.083 0.083 0 0 -0.083 0.083 0 0 0

Table 7.8: Modified Ae with u = 0 for VMS

In the latter, a difference remains when looking at Auiui . Unfortunately,
the investigation was interrupted at this point due to a lack of details in
the literature. Nevertheless, when this issue is solved, the next step will be
to reactivate the stabilization coefficients and the viscosity to study their
behavior.

To summarize these preliminary results, it was demonstrated that the
implementation of the predictor / multi-corrector stages structure behaves
correctly. It was also shown that the implementation of the algorithm itself
still lacks correctness, although evolving in the right direction. Eventually,
when the VMS implementation reflects perfectly the SUPG (for the non-
viscous case), it will offer a robust foundation to explore the VMS capacities.

This concludes both this chapter, where the positive effects of LES tur-
bulence models on our ABL case were demonstrated and the preliminary
investigations on the new VMS implementation. As introduced in the the-
oretical part, the VMS approach is still young and lacks validation cases.
However, according to the literature, it should turn out to be a major can-
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didate to resolve issues like the one we are confronted with.



Part IV

Conclusions, Further Works and
Appendices





Chapter 8

Conclusion and further work

8.1 Conclusion

The original objective of this work was to integrate functionalities into the
simulation software Coolfluid 3 in such a manner that the SUPG stabiliza-
tion could be applied to a FEM, together with a DQMOM model to include
a second phase (i.e. particles), on realistic open-air CBRN cases (e.g. dis-
persion, after an explosion of particles in a city).

Such a utility is of great interest for the Belgian Defense because of its dual
aspect: safety for existing sensitive locations and prevention for potential
threads (§ 2).

Although the Defense already uses commercial packages that help with
these concerns, these solutions are based on a statistical approach that pro-
vides fast answers while being limited in complexity. As such, the topo-
graphical details, the physical environment, or even the thermal effects are
all obstacles that the existing solution can not handle.

In this respect, we presented a preliminary multiphase flow simulation
(§ 6.3) that helped us identify and prioritize the expected challenges for an
open-air application.

This initial step resulted in establishing the primary requirement when
considering open-air applications: describing an ABL correctly. However,
this has never been done using stabilized FEM, so this was the focus of the
current work, especially by answering this simple question: How to model
an ABL taking advantage of the SUPG stabilization method?

The following step was thus to have a better understanding of how FEM
(§ 4.2) is implemented inside the Coolfluid 3 code and to identify the
strengths and weaknesses of the SUPG stabilization method (§ 4.2.4). This
would help us discern potential complications during the ABL implementa-
tion.

While proposing an implementation, based on the Schumann wall model
(§ 4.3.2, 6.4), we first tested the correct adjustment of the velocity, depending
on the position of the first node, above the physical wall (§ 6.4.2).

Then, we isolated the issues and solved them sequentially:

• We started with a boundary condition normalization to ensure scala-
bility between equivalent domains with varying resolutions (§ 6.5).
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• Subsequently, we observed an unstable velocity profile, reaching ve-
locities above and beyond the reference velocity, which could not be
physical. We first tried to tune the SUPG stabilization coefficients
(§ 6.6). These effectively had a positive influence, but unfortunately,
the effect was insufficient compared to the velocity variations. The
second attempt (§ 6.7) was more artificial, but effective. For this sec-
ond solution, we implemented a body force limiter, ensuring control
of the body force driving the simulation, hence, the velocity in the
domain.

• The third issue that we encountered was related to numerical oscilla-
tions occurring near the wall and indicating the SUPG method was
insufficient to dissipate the perturbations in this region. The first re-
action (§ 6.9) was to ensure that the issue was not coming from the
implementation by proposing two different schemes for the implemen-
tation: implicit and semi-implicit schemes. Having ascertained the
wall model implementation was not the issue (by generating the same
results with both schemes), we decided to investigate methods to add
numerical dissipation:

– The first proposed method can be considered as an evolution of
the SUPG method. It is called the VMS (§ 5.1) and, although
promising, this modern approach lacks validation cases and de-
tails that caused the development to be laborious. Nevertheless,
its predictor / multi-corrector structure, as well as part of its
algorithm, could be implemented and validated (§ 7.6).

– The second approach is a more conventional CFD method and
is based on LES turbulence models. These models are widely
known for producing dissipation.

Within the LES options, we choose first to apply the modern
WALE method (§ 5.2.2). The latter regrettably produced too
much dissipation (§ 7.2) and, as a consequence, induced a com-
plete laminar flow. Because of its automatic adjusting behavior,
it could not be adapted to better approximate the ABL.

As a consequence, the second chosen method was less sophisti-
cated yet known to generate outstanding results. This method is
the Smagorinsky-Lilly method (§ 5.2.1). Two versions exist, the
static and the dynamic. The former requires setting a coefficient
Cs to a constant value. The latter adapts this coefficient spatially
and temporally. We implemented both methods (§ 7.3), and both
generated velocity profiles where the spurious numerical oscilla-
tions completely disappeared while the turbulence remained. The
issue was solved. However, while comparing the resulting veloc-
ity profile to the expected analytical profile, a clear difference
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appeared. Notice that, although the dynamic version is the evo-
lution of the static, the latter gave the best results.

• Having solved the spurious numerical oscillation issue, the following
quest was now directed towards shifting the simulated velocity profile
in the direction of the analytical profile.

For this purpose, we first initiated sensitivity studies to evaluate the
influence of chosen parameters: the grid resolution (§ 7.4.2) and the
reference velocity (§ 7.4.3). To facilitate these studies, a preliminary
study was necessary to optimize the computational setup (§ 7.4.1).
The outcome of these studies was that each of these parameters does
have a positive impact on the result. Nevertheless, the analytical pro-
file could not be reproduced. However, we could observe a clear im-
provement when reducing the reference velocity and, in extenso, re-
ducing the corresponding Reynolds number of the flow.

As a consequence, we decided to reduce the system’s complexity by
decreasing its viscous Reynolds number to 1000, enabling us to com-
pare our results to an available non-dimensional DNS result (§ 7.5).
In this last attempt, we compared three options:

– to apply a non-slip condition on the wall,

– to apply a velocity on the wall equal to the friction velocity,

– to apply our wall model implementation.

The resulting profiles still deviated from the DNS reference, but the
result generated by the wall model was clearly a better match than
the two other options.

To conclude, although we were not yet able to accurately simulate the
ABL, solutions were discovered for numerous difficulties, bringing us closer
to the expected behavior and enabling us to answer the original question.
That is, the stabilization provided by the SUPG method is insufficient for
the ABL. Nevertheless, adding LES turbulence models does stabilize the
solution. The VMS is also an interesting possible solution, but we need to
elaborate our implementation of this method further.

In the next section, we will propose a few directions to approach the ideal
ABL representation further.

8.2 Further work

In the continuity of this work, the idea would be to extend the investigation
at Reτ = 1000 and reach the matching before increasing over again towards
the real ABL case.
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Future with low Reynolds

To reach this matching, we propose four directions:

• Applying the body force limiter is an artificial control. Theoretically,
at equilibrium, no limiter should be necessary. Practically, the limiter
is not only necessary, it is improving the solution. The disagreement
between theory and practice necessitates further investigations.

• One could investigate the influence of the two other velocity compo-
nents (e.g. lateral and vertical) inside the ABL implementation while
applying the Smagorinsky-Lilly turbulence model to keep the profile
stable.

• Another interesting direction is to study the variety of available wall
models (§ 4.3.2). In this work, predecessors mainly inspired our choice,
but other models dedicated to high Reynolds number and coarse mesh
might perform better.

• Last but not least, in the SUPG direction, one could further develop
the VMS implementation. In this respect, interesting resources are the
reference book of Donea and Huerta, 2003, and the article of Bazilevs
et al., 2007.

From real scale to real case

When the match is in sight, one must carry out a sensitivity study on the
surface roughness parameter to stress-test the ABL implementation (Goit,
2015). Consequently, one will need to include the Coriolis effect (Bechmann,
2006) to match the neutral ABL properties perfectly.

From this point, the second phase can be integrated (Janssens, 2014) to
extend the applicability and produce the primary CBRN test case.

More capabilities

Then, to improve the capabilities of the implemented tool, various directions
can be followed:

• Physical complexity: Integrate the energy equation to account for ther-
mal effects. This will generalize the neutral ABL expression to an ABL
that is more realistic. Moreover, it will better represent the whole day
cycle.

• Turbulence excitation: To accelerate turbulence creation, we use a
basic randomizer. One could incorporate a more dynamic adjustment
of this randomizer, spatially and in function of the expected profile.
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• Computation performance: One could perform studies to improve even
more the computation time. Effectively, the MueLu preconditioner
contains many options that permit adjustment and optimize the as-
sembly matrix for the ABL case. Such a study would require further
deepening into computer science rather than CFD. However, at a cer-
tain point, a numeriscist in CFD is already confronted with computer
science.

Interests

Eventually, following the motivation chapter (§ 2), a considerable amount
of applications could benefit from this implementation, starting with the
Defense, internally, on the site of Poelkapelle, where open-air explosions are
performed, but also the University of La Rochelle that is currently carry-
ing an experimental air quality investigation in urban areas. In the same
direction, in September 2021, Brussels will start an experimental survey on
atmospheric pollution in an urban area (CurieuzenAirBxl, 2021). In fact,
it has been a hot topic for the last five years and is only at its prelude,
according to the late fit for 55 European legislation on greenhouse gases
reduction, presented in July 2021 (Europarl, 2021).





Appendix A

Implementation details

A.1 The body force Limiter.

1 void BodyForceControl::execute()

2 {

3 using boost::proto::lit;

4 const std::string tag = options().option("velocity_field c

_tag").value<std::string>();↪→

5 Eigen::Map<RealVector> uRef(&m_uRef[0],m_uRef.size());

6 FieldVariable<0, VectorField> u("Velocity", tag);

7

8 /// uMean computation

9 RealVector uMean(physical_model().ndim());

10 uMean.setZero();

11 surface_integral(uMean, m_surface_regions, u);

12 Real surface = 0.0;

13 surface_integral(surface, m_surface_regions, lit(1.0));

14 uMean /= surface;

15

16 /// uInteg computation

17 if(uInteg.size() == 0) /// modify

uInteg only at 1st iter↪→

18 {

19 uInteg.resize(physical_model().ndim()); /// Resize to

speed dim(x, y, z)↪→

20 uInteg.setZero(); /// Initialize

to zero↪→

21 }

22 uInteg += (uMean - uRef) * m_time->dt();

23

24 /// Correction factor

25 m_correction.resize(physical_model().ndim());

26 m_correction = aCoef * uInteg + bCoef * (uMean - uRef);

/// Goldstein p.356↪→

27



172 Chapter A. Implementation details

28 CFinfo << "Computed body_force: " <<

m_correction.transpose() << CFendl;↪→

29

30 ProtoAction::execute();

31 }

A.2 The ABL implementation.

Header file

1 #include "UnsteadyAction.hpp"

2 #include <solver/actions/Proto/BlockAccumulator.hpp>

3 #include "LibUFEM.hpp"

4 #include "LSSAction.hpp"

5

6 namespace cf3 {

7 namespace math { namespace LSS { class System; } }

8 namespace mesh { class Region; }

9 namespace UFEM {

10

11 class UFEM_API BCWallFunctionABLGoitSI : public

UnsteadyAction↪→

12 {

13 public:

14 /// Contructor

15 /// @param name of the component

16 BCWallFunctionABLGoitSI ( const std::string& name );

17

18 /// Destructor

19 virtual ~BCWallFunctionABLGoitSI();

20

21 /// Get the class name

22 static std::string type_name () { return

"BCWallFunctionABLGoitSI"; }↪→

23

24 /// Execute the control of the ABL

25 virtual void execute();

26

27 private:

28 /// Called when the boundary regions are set

29 virtual void on_regions_set();

30

31 /// Called when the "lss" options is changed
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32 void trigger_setup();

33

34 /// variables

35 cf3::solver::actions::Proto::SystemRHS rhs;

36 cf3::solver::actions::Proto::SystemMatrix system_matrix;

37 Real m_theta = 0.5;

38 /// Default from KEpsilonPhysics.cpp. Else, from the

model↪→

39 Real m_c_mu = 0;

40 Real m_kappa = 0;

41 Real m_zwall = 0;

42 Real m_z0 = 0;

43 Real m_uplus = 0;

44 };

Main function in the ABL implementation file

1 void BCWallFunctionABLGoitSI::trigger_setup()

2 {

3 Handle<ProtoAction> wall_law(get_child("WallLaw"));

4

5 FieldVariable<0, VectorField> u("Velocity",

"navier_stokes_u_solution");↪→

6 FieldVariable<1, ScalarField> p("Pressure",

"navier_stokes_p_solution");↪→

7 FieldVariable<2, ScalarField> k("k", "ke_solution");

8 FieldVariable<3, ScalarField>

nu_eff("EffectiveViscosity",

"navier_stokes_viscosity");

↪→

↪→

9 FieldVariable<4, VectorField> u_adv("AdvectionVelocity",

"linearized_velocity");↪→

10

11 const auto ABL_factor = make_lambda([&]()

12 {

13 Real factor = ::pow(m_kappa/::log(m_zwall/m_z0),2);

14 return factor;

15 });

16

17 // Set normal component to zero and tangential component

to the wall-law value↪→

18 wall_law->set_expression(elements_expression

19 (



174 Chapter A. Implementation details

20 boost::mpl::vector3<mesh::LagrangeP1::Line2D,

mesh::LagrangeP1::Triag3D,

mesh::LagrangeP1::Quad3D>(),

↪→

↪→

21 group

22 (

23 _A(u) = _0, //_A(p) = _0, // Assembly version

24 // _a[u] = _0, // rhs version

25 element_quadrature

26 (

27 // _A(p, [u_i]) += -transpose(N(p)) * N(u) *

normal[_i], // no-penetration condition↪→

28 // _a[u[_i]] += ABL_factor() * _norm(u) *

transpose(N(u)) * u[_i] * _norm(normal) *

lit(dt()) // rhs version

↪→

↪→

29 _A(u[_i], u[_i]) += _norm(u) * transpose(N(u)) *

N(u) * _norm(normal) * lit(dt()) *

ABL_factor() // Goit p. 19 // Assembly version

↪→

↪→

30 ),

31 system_matrix += m_theta * _A,

32 // rhs += -_a // rhs version

33 rhs += -_A * _x // Assembly version

34 )

35 ));

36 }

A.3 Typical Coolfluid 3 ABL case: python
inputfile.

1 import os, math

2 import coolfluid as cf

3

4 def simLoop(outputName, interval, meshis='empty',
inputName='out1', restartTstep='0'):↪→

5 """

6 meshis: 'empty', 'gmesh' or 'restart'
7 interval: variable to move to increase the total_time

8 restartTstep: timestep (file) from where to restart

9 """

10

11 ### Parameters:

12 pressureSolve = True

13
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14 ### Model dimensions: cf. Bechmann p.41

15 h_wt = 20.#1200. # Height windtunnel : Y

16 l_wt = 2*math.pi* h_wt #6 * h_wt # Length windtunnel

: X↪→

17 w_wt = 2*math.pi* h_wt #4 * h_wt # Width windtunnel :

Z↪→

18

19 ### Flow properties

20 rho_fluid = 1.2

21 mu = 1.8e-5 #* 1e4 # Dynamic viscosity of the air

([Pa.s]) ; nu = (mu / rho) = kinematic viscosity↪→

22 nu = mu/rho_fluid

23 kappa = .407

24

25 href = h_wt

26 uref = 5.

27 z0 = h_wt * 5e-4

28 # zwall = 100 * mu / (utau * rho_fluid) # zwall

chosen so that z+=100=Re+=:zwall*utau/nu↪→

29 zwall = h_wt/64 # 12.5

30

31 ### Laminar case

32 #tau_w = -2*nu*uref/h_wt

33 #bf = -tau_w/h_wt

34

35 ### Turbulent case

36 utau = kappa * uref / math.log(href / z0)

37 bf = utau*utau/h_wt

38

39 ### Time parameters

40 tstep = .1 #.002 #2.5e-4 #60*2.5e-4*h_wt/utau

41 #interval = 500#1300#3600 # variable to move to

increase the total_time↪→

42 total_time = 10 * interval * tstep # Nb of captures *

interval * tstep↪→

43

44 ### Some shortcuts

45 root = cf.Core.root()

46 env = cf.Core.environment()

47

48 ### Global configuration

49 env.assertion_throws = False

50 env.assertion_backtrace = False

51 env.exception_backtrace = False

52 env.regist_signal_handlers = False
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53 env.log_level = 4

54 env.only_cpu0_writes = True

55

56 ### setup a model

57 model = root.create_component('NavierStokes',
'cf3.solver.ModelUnsteady')↪→

58 domain = model.create_domain()

59 physics =

model.create_physics('cf3.UFEM.KEpsilonPhysics')↪→

60 solver = model.create_solver('cf3.UFEM.Solver')
61

62 ### Add the Navier-Stokes solver as an unsteady solver

63 ns_solver =

solver.add_unsteady_solver('cf3.UFEM.NavierStokes')↪→

64

65

66 ### Mesh:

67 if meshis == "empty":

68 blocks = domain.create_component('blocks',
'cf3.mesh.BlockMesh.BlockArrays')↪→

69 points = blocks.create_points(dimensions=2,

nb_points=4)↪→

70 points[0] = [0.0, zwall]

71 points[1] = [l_wt, zwall]

72 points[2] = [0.0, h_wt]

73 points[3] = [l_wt, h_wt]

74 # Block, counter-clockwise ordering

75 block_nodes = blocks.create_blocks(1)

76 block_nodes[0] = [0, 1, 3, 2]

77 # Number of subdivisions in each direction

78 block_subdivs = blocks.create_block_subdivisions()

79 # block_subdivs[0] = [64, 64]

80 block_subdivs[0] = [4, 64]

81 # No grading

82 gradings = blocks.create_block_gradings()

83 gradings[0] = [1.0, 1.0, 1.0, 1.0]

84 # Create the boundaries

85 blocks.create_patch_nb_faces(name='inlet',
nb_faces=1)[0] = [2, 0]↪→

86 blocks.create_patch_nb_faces(name='outlet',
nb_faces=1)[0] = [1, 3]↪→

87 blocks.create_patch_nb_faces(name='bottom',
nb_faces=1)[0] = [0, 1]↪→

88 blocks.create_patch_nb_faces(name='top',
nb_faces=1)[0] = [3, 2]↪→
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89 blocks.periodic_x = ['inlet', 'outlet']
90

91 blocks.extrude_blocks(positions=[w_wt],

nb_segments=[4], gradings=[1.])↪→

92 blocks.periodic_z = ['front', 'back']
93

94 # Create Mesh

95 mesh = domain.create_component('Mesh',
'cf3.mesh.Mesh')↪→

96 blocks.create_mesh(mesh.uri())

97 elif meshis == "restart":

98 mesh =

domain.create_component('Mesh','cf3.mesh.Mesh')↪→

99 mesh_reader =

domain.create_component('CF3MeshReader',
'cf3.mesh.cf3mesh.Reader')

↪→

↪→

100 mesh_reader.mesh = mesh

101 mesh_reader.file = cf.URI(outputName[:-1] +

'-mesh.cf3mesh')↪→

102 mesh_reader.execute()

103 #mesh = domain.load_mesh(file =

cf.URI('out-restart-init_P0.msh'), name =

'Mesh') # for Gmsh data en mesh file.

↪→

↪→

104

105 if meshis != "restart":

106 # Write the initial mesh (no fields) -!- Must be

before create_point↪→

107 domain.write_mesh(cf.URI(outputName +

'-mesh.cf3mesh'))↪→

108

109 ### Pressure set in one center point:

110 create_point_region =

domain.create_component('CreatePointRegion',
'cf3.mesh.actions.AddPointRegion')

↪→

↪→

111 create_point_region.coordinates = [l_wt/2., (h_wt -

zwall)/64+zwall, w_wt/2.]↪→

112 create_point_region.region_name = 'center'
113 create_point_region.mesh = mesh

114 create_point_region.execute()

115

116

117 # Because of multi-region support, solvers do not

automatically have a region assigned,↪→

118 # so we must manually set the solvers to work on the

whole mesh↪→
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119 ns_solver.regions = [mesh.topology.uri()]

120

121 # solver setup for NS

122 for lss in [ns_solver.LSS]:

123 lss.SolutionStrategy.Parameters.preconditioner_typ c

e =

'ML'
↪→

↪→

124 lss.SolutionStrategy.Parameters.PreconditionerType c

s.ML.MLSettings.add_parameter(name='ML
output', value=0)

↪→

↪→

125 lss.SolutionStrategy.Parameters.PreconditionerType c

s.ML.MLSettings.default_values =

'NSSA'
↪→

↪→

126 lss.SolutionStrategy.Parameters.PreconditionerType c

s.ML.MLSettings.aggregation_type =

'Uncoupled'
↪→

↪→

127 lss.SolutionStrategy.Parameters.PreconditionerType c

s.ML.MLSettings.smoother_type = 'symmetric
block Gauss-Seidel' # 'Chebyshev'

↪→

↪→

128 lss.SolutionStrategy.Parameters.PreconditionerType c

s.ML.MLSettings.smoother_sweeps =

2

↪→

↪→

129 lss.SolutionStrategy.Parameters.PreconditionerType c

s.ML.MLSettings.smoother_pre_or_post =

'post'
↪→

↪→

130 lss.SolutionStrategy.Parameters.LinearSolverTypes. c

Belos.solver_type = 'Block
GMRES'

↪→

↪→

131 lss.SolutionStrategy.Parameters.LinearSolverTypes. c

Belos.SolverTypes.BlockGMRES.convergence_toler c

ance =

1e-5

↪→

↪→

↪→

132 lss.SolutionStrategy.Parameters.LinearSolverTypes. c

Belos.SolverTypes.BlockGMRES.maximum_iteration c

s =

2000

↪→

↪→

↪→

133 lss.SolutionStrategy.Parameters.LinearSolverTypes. c

Belos.SolverTypes.BlockGMRES.num_blocks =

1000

↪→

↪→

134

135 ### Properties for Navier-Stokes

136 physics.density = rho_fluid

137 physics.dynamic_viscosity = mu

138 ### Properties for KEpsilonPhysics

139 physics.href = href
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140 physics.uref = uref

141 physics.z0 = z0

142 physics.zwall = zwall

143 physics.kappa = kappa

144

145 ### Body force control

146 bfControl = solver.add_unsteady_solver('cf3.UFEM.BodyF c

orceControl')↪→

147 bfControl.velocity_field_tag = 'navier_stokes_solution'
148 bfControl.surface_regions = [mesh.topology.top]

149 bfControl.uRef = [uref, 0., 0.]

150 bfControl.aCoef = -1.

151 bfControl.bCoef = -.2

152 bfControl.regions = [mesh.topology.interior.uri()]

153

154 ### Initial conditions

155 if meshis != "restart":

156 ic_u = solver.InitialConditions.create_initial_con c

dition(↪→

157 builder_name='cf3.UFEM.InitialConditionFunctio c

n',
field_tag='navier_stokes_solution')

↪→

↪→

158 ic_u.variable_name = 'Velocity'
159 ic_u.regions = [mesh.topology.uri()]

160 ic_u.value = ['y*{u}/{h}'.format(u=uref,h=h_wt),
'0', '0']↪→

161

162 ### Body Force to set u_abl

163 # solver.InitialConditions.navier_stokes_solution.Velo c

city = [uref,

h_wt]

↪→

↪→

164 solver.InitialConditions.density_ratio.density_ratio =

1.↪→

165 ic_g =

solver.InitialConditions.create_initial_condition(↪→

166 builder_name='cf3.UFEM.InitialConditionFunction',
field_tag='body_force')↪→

167 ic_g.variable_name = 'Force'
168 ic_g.regions = [mesh.topology.uri()]

169 ic_g.value = ['{f}'.format(f=bf), '0']
170 print 'yop: bodyForce = {f}'.format(f=bf)
171

172 # ### Check value of u1:

173 # u1 = (1/kappa) * math.log(zwall/z0) *

math.sqrt((utau*utau/h_wt) * h_wt)↪→
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174 # print 'yop: u1 = {u1}'.format(u1=u1)
175 # print 'yop: CFL = u*dt/dx:

{0}'.format(uref*tstep/(h_wt/64))↪→

176

177 ### Boundary conditions

178 bc = ns_solver.get_child('BoundaryConditions')
179 bc.add_constant_bc(region_name='center',

variable_name='Pressure').value = 0.↪→

180 bc.add_constant_component_bc(region_name='top',
variable_name='Velocity', component=1).value = 0.↪→

181 bc.add_constant_component_bc(region_name='bottom',
variable_name='Velocity', component=1).value = 0.↪→

182 bc.create_bc_action(region_name = 'bottom',
builder_name = 'cf3.UFEM.BCWallFunctionABLGoit')↪→

183 # bc.add_constant_bc(region_name='bottom',
variable_name='Velocity').value = [0., 0.]↪→

184

185 ### Datas needed to restart (better to always produce

them in case we need a restart):↪→

186 restart_writer = solver.add_restart_writer()

187 restart_writer.Writer.file = cf.URI(outputName +

'-{iteration}.cf3restart')↪→

188 restart_writer.interval = int(interval)

189

190 ### Files writing

191 write_manager = solver.add_unsteady_solver('cf3.solver c

.actions.TimeSeriesWriter')↪→

192 write_manager.interval = int(interval)

193 writer = write_manager.create_component('VTKWriter',
'cf3.mesh.VTKXML.Writer')↪→

194 writer.mesh = mesh

195 writer.fields = [

196 cf.URI('/NavierStokes/Domain/Mesh/geometry/navier_ c

stokes_solution'),↪→

197 cf.URI('/NavierStokes/Domain/Mesh/geometry/body_fo c

rce'),↪→

198 cf.URI('/NavierStokes/Domain/Mesh/geometry/turbule c

nce_statistics')]↪→

199 writer.file = cf.URI(outputName + '-{iteration}.pvtu')
200

201 ### Time setup

202 time = model.create_time()

203 time.time_step = tstep

204 time.end_time = total_time

205
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206 ### Randomize the initial condition: (to put after the

time setup)↪→

207 if meshis != "restart":

208 solver.create_fields()

209 randomizer =

solver.InitialConditions.create_component(↪→

210 'Randomizer',
'cf3.solver.actions.RandomizeField')↪→

211 randomizer.field =

mesh.geometry.navier_stokes_solution↪→

212 randomizer.variable_name = 'Velocity'
213 randomizer.maximum_variations = [0.2, 0.05, 0.2]

214 randomizer.maximum_values = [uref, uref/3.0,

uref/3.0]↪→

215 randomizer.minimum_values = [-uref, -uref/3.0,

-uref/3.0]↪→

216

217 ### Read restart file

218 if meshis == "restart":

219 reader = solver.InitialConditions.Restarts.create_ c

component('Reader',
'cf3.solver.actions.ReadRestartFile')

↪→

↪→

220 reader.mesh = mesh

221 reader.time = time

222 reader.file = cf.URI(inputName + '-'+
str(restartTstep) +'.cf3restart')↪→

223 reader.read_time_settings = False # to initialize

the current time to 0↪→

224 solver.create_fields()

225 solver.InitialConditions.execute()

226 #domain.write_mesh(cf.URI('out-restart-init.pvtu'))
227 #domain.write_mesh(cf.URI('out-restart-init.cf3mes c

h')) # create mesh w/ infos for 1

cpu

↪→

↪→

228

229 ### Statistics

230 # stats = domain.create_component('Statistics',
'cf3.solver.actions.TurbulenceStatistics')↪→

231 stats = solver.add_unsteady_solver('cf3.solver.actions c

.TurbulenceStatistics')↪→

232 stats.region = mesh.topology

233 stats.file = cf.URI(outputName +

'-turbulence-statistics.txt')↪→

234 stats.rolling_window = 1000
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235 stats.add_probe([l_wt/2., (h_wt - zwall)/64+zwall,

w_wt/2.]) # ! it has to be on an existing node !↪→

236 #stats.options.count = 18000

237 stats.setup()

238 ### Averaging

239 dir_avg = solver.TimeLoop.children.WriteRestartManager c

.create_component('DirectionalAverage',
'cf3.solver.actions.DirectionalAverage')

↪→

↪→

240 dir_avg.direction = 1

241 dir_avg.field = mesh.geometry.turbulence_statistics

242 dir_avg.file = cf.URI(outputName +

'-turbulence-statistics-profile-{iteration}.txt')↪→

243

244 ### Probes setting:

245 def setProbe(x1, y1, z1, typ="v"):

246 probe = solver.add_probe(name =

'Probe-x{x}y{y}'.format(x=int(x1),↪→

247 y=int(y1)), parent = ns_solver, dict =

mesh.geometry)↪→

248 if typ == "f":

249 probe.Log.variables = ['Force[0]']
250 else:

251 probe.Log.variables = ['Velocity[0]']
252 probe.coordinate = [x1, y1, z1]

253 probe.History.file = cf.URI(outputName +

254 '-probe-{typ}-x{x}y{y}.tsv'.format(typ=typ c

, x=int(x1),

y=int(y1)))

↪→

↪→

255

256 setProbe(l_wt/2, (h_wt-zwall), w_wt/2) # Top

257 setProbe(l_wt/2, (h_wt-zwall)*2/3, w_wt/2) # 2/3

258 setProbe(l_wt/2, (h_wt-zwall)/2, w_wt/2) # 1/2

259 setProbe(l_wt/2, (h_wt-zwall)/3, w_wt/2) # 1/3

260 setProbe(l_wt/2, zwall, w_wt/2) # Bottom

261 setProbe(l_wt/2, (h_wt-zwall)/2, w_wt/2, "f") # 1/2

262

263 ### Run the simulation

264 model.simulate()

265 #domain.write_mesh(cf.URI('out-final.pvtu'))
266 #model.print_timing_tree()

267 #mesh.print_tree()

268

269 ### Run the simulation

270 simLoop('out', 1) # dt=.1 #0.01
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A.4 WALE core part of the implementation.

1 /// Proto functor to compute the turbulent viscosity

2 struct ComputeNuWALE

3 {

4 template<typename UT, typename NUT, typename ValenceT>

5 void operator()(const UT& u, NUT& nu, const ValenceT&

valence, const Real nu_visc) const↪→

6 {

7 typedef typename UT::EtypeT ElementT;

8 static const Uint dim = ElementT::dimension;

9 typedef mesh::Integrators::GaussMappedCoords<1,

ElementT::shape> GaussT;↪→

10 typedef Eigen::Matrix<Real, dim, dim> SMatT;

11

12 const SMatT grad_u = u.nabla(GaussT::instance().coords c

.col(0))*u.value();↪→

13 const SMatT S = 0.5*(grad_u + grad_u.transpose());

14 const Real S_norm2 = S.squaredNorm();

15 const SMatT grad_u2 = grad_u*grad_u.transpose();

16

17 SMatT Sd = 0.5*(grad_u2 + grad_u2.transpose());

18 Sd.diagonal().array() -= grad_u2.trace()/3.;

19 const Real Sd_norm2 = Sd.squaredNorm();

20

21 Real f = 1.; // anisotropic coefficient

22 // [...] Anisotropic cell size adjustment hidden.

23

24 const Real delta_iso = ::pow(u.support().volume(),

2./3.); // Isotropic length scale↪→

25

26 Real nu_t = cw*cw*f*f*delta_iso * ::pow(Sd_norm2, 1.5)

/ (::pow(S_norm2, 2.5) + ::pow(Sd_norm2, 1.25));↪→

27 if(nu_t < 0. || !std::isfinite(nu_t))

28 nu_t = 0.;

29

30 const Eigen::Matrix<Real, ElementT::nb_nodes, 1>

nodal_vals = (nu_t + nu_visc) *

valence.value().array().inverse();

↪→

↪→

31 nu.add_nodal_values(nodal_vals);

32 }

33 Real cw; // Model constant

34 };
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A.5 Smagorinsky - Lilly core part of the
implementation.

1 /// Proto functor to compute the turbulent viscosity

2 struct ComputeNuSmagorinsky

3 {

4 template<typename UT, typename NUT, typename ValenceT,

typename CsT, typename SgsT>↪→

5 void operator()(UT& u, NUT& nu, const ValenceT& valence,

const Real nu_visc, Real& cs, CsT& cs_elts, SgsT&

sgsLambda_elts) const

↪→

↪→

6 {

7 Real f = 1.; // anisotropic coefficient

8 // [...] Anisotropic cell size adjustment hidden.

9

10 // List all neighbouring elements (center elt incl.)

11 std::set<Uint> neighbElts {};

12 get_neighbElts(neighbElts, u, m_node_connectivity);

13

14 // Compute the dyn Smag parameters

15 typedef typename UT::EtypeT ElementT;

16 static const Uint dim = ElementT::dimension;

17

18 typedef mesh::Integrators::GaussMappedCoords<1,

ElementT::shape> GaussT;↪→

19 typedef Eigen::Matrix<Real, dim, dim> SMatT;

20 typedef Eigen::Matrix<Real, 1, dim> SVecT;

21

22 u.compute_values(GaussT::instance().coords.col(0));

// Compute u.eval()↪→

23

24 // Initialisation for static smagorinsky:

25 const Real vol_gF = u.support().volume(); // "g"rid

"F"ilter = volume of center elt↪→

26 const Real delta2_gF = ::pow(vol_gF, 2./3.); // square

of isotropic length scale for grid filter↪→

27 SMatT grad_u = u.nabla(GaussT::instance().coords.col(0 c

))*u.value();↪→

28 SMatT S = 0.5*(grad_u + grad_u.transpose());

29 Real S_norm = S.squaredNorm(); // SquaredNorm is the

sum of the square of all the matrix entries

(Frobenius norm).

↪→

↪→

30

31 if(use_dynamic_smagorinsky) {
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32 // Initialisation for dynamic smagorinsky (TEST

filter > GRID filter):↪→

33 Real smagCoefC = 0; // "C" cte equal to cs^2 ;

visible in Germano paper eq(5)↪→

34 Real vol_tF = 0.; // "t"est "F"ilter = sum of volume

on all neighbouring elts + center elt (e.g. 27

for a unit hexa3D in the center of a 3x3x3 cubus)

↪→

↪→

35 Uint storedElt_idx = u.support().element_idx(); //

store the id of the centered element↪→

36 SVecT u_gtF {}; // grid + test filtered velocity

37 u_gtF.setZero();

38 SMatT S_gF {}; // grid filtered strain-tensor

39 S_gF.setZero();

40 SMatT uu_gtF {}; // grid + test filtered velocities

product↪→

41 uu_gtF.setZero();

42 Real S_gF_norm = 0.; // grid filtered strain-tensor

magnitude↪→

43 Real SS_norm = 0.; // strain tensor product magnitude

44 SMatT SSxS {}; // grid + test filtered strain tensor

product magnitude times grid filtered strain

tensor

↪→

↪→

45 SSxS.setZero();

46

47 for (const auto i : neighbElts)

48 {

49 // set the neighbouring element's data to object u:

50 u.set_element(i);

51 removeConstRef(u.support()).set_element(i); //

needed to switch to other elt↪→

52

53 // u.value() gives velocity components for all

nodes, u.eval() computed for the elt↪→

54 u.compute_values(GaussT::instance().coords.col(0)) c

; // Compute

u.eval()

↪→

↪→

55

56 vol_tF += u.support().volume(); // test filter

volume↪→

57 u_gtF += u.eval() * u.support().volume(); // test

filter velocity↪→

58

59 grad_u = u.nabla(GaussT::instance().coords.col(0)) c

*u.value();↪→

60 S = 0.5*(grad_u + grad_u.transpose());
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61

62 S_gF += S * u.support().volume(); // grid filter

strain↪→

63 uu_gtF += u.eval().transpose() * u.eval() *

u.support().volume(); // test filter uu↪→

64 SS_norm = std::sqrt(2 * S.squaredNorm()); // SSij

65 SSxS += SS_norm * S * u.support().volume(); //

vect product SSxS↪→

66 }

67

68 // Restore and re-initialise the center element's
data to object u and recompute its values:↪→

69 u.set_element(storedElt_idx);

70 removeConstRef(u.support()).set_element(storedElt_id c

x);↪→

71 u.compute_values(GaussT::instance().coords.col(0));

72 grad_u = u.nabla(GaussT::instance().coords.col(0))*u c

.value();↪→

73 S = 0.5*(grad_u + grad_u.transpose());

74 S_norm = S.squaredNorm();

75

76 // Normalize the neighbElts stencil sums

77 const Real invVol_tF = 1. / vol_tF;

78 u_gtF *= invVol_tF;

79 S_gF *= invVol_tF;

80 S_gF_norm = std::sqrt(2 * S_gF.squaredNorm()); //

norm of grid filter Strain↪→

81 uu_gtF *= invVol_tF;

82 SSxS *= invVol_tF;

83

84 // Find the dynamic Smagorinsky parameter (depending

on space and time)↪→

85 const Real delta2_tF = ::pow(vol_tF, 2./3.); //

square of isotropic length scale for TEST filter↪→

86 const SMatT M = delta2_gF * SSxS - delta2_tF *

S_gF_norm * S_gF;↪→

87 const SMatT L = uu_gtF - u_gtF.transpose() * u_gtF;

88 smagCoefC = L.cwiseProduct(M).sum() / (2. *

M.cwiseProduct(M).sum());↪→

89

90 // Limiters

91 smagCoefC = std::max(smagCoefC,0.); // limiter to

avoid NaN↪→

92 cs = std::sqrt(smagCoefC); // Come back to the

expression of cs:↪→
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93 cs = std::min(cs, 0.23); // limiter cf. Lilly and

Germano's paper↪→

94 }

95 Real sgsLambda = cs * std::sqrt(delta2_gF); // Subgrid

Scale length scale↪→

96

97 if(use_mason_wallDamping) {

98 Real zcoord = u.support().coordinates(GaussT::instan c

ce().coords.col(0))[1]; // In fact y-coordinate

(...[1]) but it is seen as the z-coordinate for

us...

↪→

↪→

↪→

99 sgsLambda = std::pow(std::pow(sgsLambda,

(-m_masonCoef)) + std::pow(m_kappa*(zcoord +

m_z0), (-m_masonCoef)), (-1./m_masonCoef));

↪→

↪→

100 }

101

102 // Compute the viscosity

103 // Real nu_t = cs*cs*delta2_gF *f*f*

std::sqrt(2*S_norm);↪→

104 Real nu_t = std::pow(sgsLambda, 2) * f*f *

std::sqrt(2*S_norm);↪→

105

106 if(nu_t < 0. || !std::isfinite(nu_t))

107 nu_t = 0.;

108

109 const Eigen::Matrix<Real, ElementT::nb_nodes, 1>

nodal_vals = (nu_t +

nu_visc)*valence.value().array().inverse();

↪→

↪→

110 const Eigen::Matrix<Real, ElementT::nb_nodes, 1>

cs_vals = cs*valence.value().array().inverse();↪→

111 const Eigen::Matrix<Real, ElementT::nb_nodes, 1>

sgsLambda_vals =

sgsLambda*valence.value().array().inverse();

↪→

↪→

112 nu.add_nodal_values(nodal_vals);

113 cs_elts.add_nodal_values(cs_vals);

114 sgsLambda_elts.add_nodal_values(sgsLambda_vals);

115 }

116

117 // Model constant

118 Real m_cs;

119 int m_masonCoef; // Mason coefficient. Set to 3

according to Goit.↪→

120 bool use_anisotropic_correction;

121 bool use_dynamic_smagorinsky;

122 bool use_mason_wallDamping;
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123 mesh::NodeConnectivity* m_node_connectivity = nullptr;

124 Real m_kappa = 0;

125 Real m_z0 = 0;

126 };

127 }

A.6 MUMPS and MueLu activation in python
input file.

MUMPS activation.

1 ns_solver.PressureLSS.solution_strategy =

'cf3.math.LSS.DirectStrategy'↪→

2

3 lssP = ns_solver.PressureLSS.LSS

4 lssP.SolutionStrategy.solver_type = 'Amesos_Mumps'

MueLu activation.

1 ns_solver.PressureLSS.solution_strategy =

'cf3.math.LSS.TrilinosStratimikosStrategy'↪→

2

3 lssP = ns_solver.PressureLSS.LSS

4 lssP.SolutionStrategy.Parameters.LinearSolverTypes.Belos.s c

olver_type = 'Block
CG'

↪→

↪→

5 lssP.SolutionStrategy.Parameters.LinearSolverTypes.Belos.S c

olverTypes.BlockCG.convergence_tolerance =

1e-6

↪→

↪→

6 lssP.SolutionStrategy.Parameters.LinearSolverTypes.Belos.S c

olverTypes.BlockCG.maximum_iterations =

300

↪→

↪→

7 lssP.SolutionStrategy.Parameters.LinearSolverTypes.Belos.S c

olverTypes.BlockCG.assert_positive_definiteness =

False

↪→

↪→

8 lssP.SolutionStrategy.preconditioner_reset = 20000000

9 lssP.SolutionStrategy.Parameters.preconditioner_type =

'MueLu'↪→

10 lssP.SolutionStrategy.Parameters.PreconditionerTypes.MueLu c

.read_parameter_list("muelu.xml")↪→
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MueLu specs xml file.

1 <ParameterList name="MueLu">

2 <!-- =========== GENERAL ================ -->

3 <Parameter name="verbosity" type="string"

value="high"/>↪→

4 <Parameter name="problem: type" type="string"

value="Poisson-3D"/>↪→

5 <Parameter name="coarse: max size" type="int"

value="160"/>↪→

6 <Parameter name="multigrid algorithm" type="string"

value="sa"/>↪→

7

8 <!-- reduces setup cost for symmetric problems -->

9 <Parameter name="transpose: use implicit" type="bool"

value="true"/>↪→

10

11 <!-- start of default values for general options (can

be omitted) -->↪→

12 <Parameter name="max levels" type="int" value="10"/>

13 <Parameter name="number of equations" type="int"

value="1"/>↪→

14 <Parameter name="sa: use filtered matrix" type="bool"

value="true"/>↪→

15 <!-- end of default values -->

16

17 <!-- =========== AGGREGATION =========== -->

18 <Parameter name="aggregation: type" type="string"

value="uncoupled"/>↪→

19 <Parameter name="aggregation: drop scheme"

type="string" value="classical"/>↪→

20 <!-- Uncomment the next line to enable dropping of

weak connections, which can help AMG convergence

for anisotropic problems. The exact value is

problem dependent. -->

↪→

↪→

↪→

21 <!-- <Parameter name="aggregation: drop tol"

type="double" value="0.02"/> -->↪→

22

23 <!-- =========== SMOOTHING =========== -->

24 <Parameter name="smoother: type" type="string"

value="CHEBYSHEV"/>↪→

25 <ParameterList name="smoother: params">

26 <Parameter name="chebyshev: degree" type="int"

value="4"/>↪→
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27 <!-- <Parameter name="chebyshev: ratio eigenvalue"

type="double" value="7"/> -->↪→

28 <!-- <Parameter name="chebyshev: min eigenvalue"

type="double" value="1.0"/> -->↪→

29 <Parameter name="chebyshev: zero starting solution"

type="bool" value="false"/>↪→

30 </ParameterList>

31 <Parameter name="repartition: enable" type="bool"

value="false"/>↪→

32 <Parameter name="repartition: partitioner"

type="string" value="zoltan"/>↪→

33 <Parameter name="repartition: start level" type="int"

value="2"/>↪→

34 <Parameter name="repartition: min rows per proc"

type="int" value="400"/>↪→

35 <Parameter name="repartition: max imbalance"

type="double" value="1.1"/>↪→

36 <Parameter name="repartition: remap parts" type="bool"

value="false"/>↪→

37 <Parameter name="repartition: rebalance P and R"

type="bool" value="true"/>↪→

38 </ParameterList>



Appendix B

Magnified figures
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B.1 Shear stress equivalence between simulated
body force and simulated wall velocity.

Figure B.1: SL static model: Body Force vs. wall velocity.
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B.2 Cs variation for the dynamic Smagorinsky -
Lilly implementation.

Figure B.2: SL dynamic model: Cs values on the domain.
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B.3 Viscosity variation for the dynamic
Smagorinsky - Lilly implementation.

Figure B.3: SL dynamic model: Viscosity on the domain.



Appendix C

Additional values

C.1 MUMPS vs. MueLu solver timings (minimal
values).

mumps64 muelu64 mumps128 muelu128

Grid 64x64x64 64x64x64 128x128x128 128x128x128

Solver MUMPS MueLu MUMPS MueLu

NS semi-implicit 0.780 0.824 8.688 7.040

10x LinearizeU 1.445e-3 1.436e-3 1.988e-2 2.026e-2
10x PressureLSS 2.979e-5 2.990e-5 3.210e-5 3.254e-5
10x VelocityLSS 2.913e-5 2.896e-5 2.850e-5 2.854e-5
10x SetSolution 6.212e-4 5.790e-4 2.028e-3 2.359e-3
10x InnerLoop 7.650e-1 8.008e-1 8.333 6.850
10x Update 2.392e-3 2.299e-3 6.312e-2 3.815e-2
10x ComputeCFL 7.764e-4 7.267e-4 2.359e-3 2.245e-3

In InnerLoop
20x URHSAss 1.944e-2 2.137e-2 7.574e-2 7.379e-2
20x PRHSAss 1.482e-2 1.602e-2 5.631e-2 5.438e-2
20x ApplyAup 8.761e-3 8.889e-3 3.228e-2 3.042e-2
20x SolveUSyst 6.035e-2 6.228e-2 2.717e-1 2.738e-1
20x SolvePSyst 1.058e-1 8.425e-2 2.880 1.986

Table C.1: MUMPS vs. MueLu solver timings [s] (min values).
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tronic Press, 2018. doi: 10.3384/ecp17142680.

[8] P. Armand, C. Duchenne, and E. Bouquot. “Atmospheric Disper-
sion Modelling and Health Impact Assessment in the Framework of a
CBRN-E Training Exercise in a Complex Urban Configuration”. In:
2014.

[9] P. S. Arya. Introduction to Micrometeorology. Elsevier Science and
Techn, Apr. 25, 2001. 420 pp.

https://doi.org/10.1016/s0045-7825(99)00242-x
https://doi.org/10.1145/3242094
https://doi.org/10.1088/0260-2814/6/3/002
https://doi.org/10.1007/978-94-017-1911-7_9
https://doi.org/10.3384/ecp17142680


198 Chapter 9 Bibliography

[10] M. Aslefallah, D. Rostamy, and K. Hosseinkhani. “Solving time-
fractional differential diffusion equation by theta-method”. In: Int.
J. of Adv. in Aply. Math. and Mech 2 (Sept. 2014), pp. 1–8.

[11] B. Aupoix and J. Cousteix. “Simple subgrid scale stresses models for
homogeneous isotropic turbulence”. In: ReAer 4 (1982), pp. 1–10.

[12] B. Baldwin and H. Lomax. “Thin-layer approximation and alge-
braic model for separated turbulentflows”. In: 16th Aerospace Sci-
ences Meeting. American Institute of Aeronautics and Astronautics,
1978. doi: 10.2514/6.1978-257.

[13] B. S. Baldwin and T. J. Barth. “A One-Equation Turbulence Trans-
port Model for High Reynolds Number Wall-Bounded Flows”. In:
National Aeronautics and Space Administratbn (1990).

[14] T. Banyai. “Development of Stabilized Finite Element Method for
Numerical Simulation of Turbulent Incompressible Single and Eulerian-
Eulerian Two-Phase Flows”. PhD thesis. Universite libre de Brux-
elles, 2016.
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