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AUTO-DÉPLOYABLES

COMPUTATIONAL DESIGN OF SELF-SHAPING
TEXTILES

Jury:

Président du jury / President of the jury
Olivier Baverel, Professeur, École des Ponts ParisTech
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de créateur d’en imaginer, souvent durant des années, les péripéties gratuitement
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Résumé

Nous décrivons une technique de fabrication récente perme�ant de créer des textiles
auto-deployables qui consiste à extruder du plastique sur un tissu étiré au préalable en
utilisant des procédés de fabrication additive. Ce�e technique d’impression sur tissu
a récemment gagné en popularité car c’est une technique de fabrication peu coûteuse
perme�ant de créer des structures déployables qui prennent automatiquement une forme
en 3D lorsque le tissu est relaché.

Le comportement en déformation de ce matériau composite peut s’expliquer par une
combination d’e�ets géometriques intrinsèques et extrinsèques, le plastique déposé étant
à la fois la cause d’un changement de métrique et d’un e�et bilame par la combinaison
qu’il forme avec la couche sous-jacente de tissu. Nous exploitons ces observations pour
créer des métamatériaux qui agissent sur ces deux e�ets : la métrique du tissu est modulée
par la densité des motifs imprimés, et la �exion de la surface est contrôlée par l’épaisseur
de plastique imprimé grâce à l’e�et bilame.

Nous utilisons ces métamatériaux pour proposer deux types d’outils de design aidant à la
conception de structures auto-déployables légères : d’un côté des outils de design direct,
ou de recherche de forme, qui perme�ent de prédire la forme déployée de la structure
à partir du motif à imprimer, de l’autre un outil de design inverse qui prend en entrée
une forme donnée et trouve les paramètres optimaux du métamatériau (notamment
l’épaisseur et la densité) pour reproduire au mieux la forme cible.

Mots-clés: structures auto-déployables – impression 3D – métamatériaux – bilame





Abstract

We describe a recent manufacturing technique to design self-shaping textiles which
consists in extruding molten plastic into pre-stretched fabric using additive manufacturing
technologies. �is printing-on-fabric technique recently gained popularity as a low-cost
fabrication method for designing deployable structures which can pop out of shape when
the fabric is released.

�e morphing behavior of this composite material is due to a combination of intrinsic and
extrinsic geometric transformations, the deposited plastic is both frustrating the metric
of the textile and forming a bilayer with its substrate. We leverage these observations
to design metamaterials which exploit both of these e�ects: the metric of the fabric is
modulated by the density of printed pa�erns, and the amount of bending is controlled by
the thickness of the printed plastic through the bilayer e�ect.

We show how these metamaterials can help for the design of self-actuated, lightweight
structures by providing two separate kinds of design tools: forward design, or form-
�nding tools which aim at predicting the �nal deployed shape from a given printed
layout, and an inverse design tool which starts from an input shape and �nd the optimal
metamaterial parameters (thickness and density) to reproduce best the target shape.

Keywords: self-shaping – 3D printing – form �nding – metamaterial – bilayers
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Chapter 1

Introduction

1.1 Context
Advances in computer numerically controlled (CNC) machinery, jointly with the develop-
ment of computational tools that permit the design and processing of freeform geometry
allowed to reach an unprecedented level of complexity and customizability for the design
and fabrication of objects. However this complexity of form comes with complexity in the
manufacturing process: subtractive technologies such as CNC milling generate a lot of
waste and are limited in the shapes they can make, while additive manufacturing needs a
lot of support material to deal with overhangs. Now that freeform geometry is obtainable,
we should strive for e�cient ways to manufacture complex geometry. In that context,
deployable structures o�er an interesting alternative, as they can be manufactured in
simple con�gurations and then bent or otherwise deformed into shape. Besides the easier
fabrication process, �at-deployable structures have a compact form-factor which gives
them bene�ts in the most mundane storage and transport situations as well as the most
exotic ones such as space exploration. To manufacture an object �at and then deform
it to match a speci�c shape requires a precise understanding of both the physics of the
material in question and the geometry of the deformation, which will be detailed in the
following chapters.

Among deployables, self-shaping structures represent an interesting case. �ey do not
require any kind of actuation force to be deployed but instead morph as a reaction to an
energy input which can be heat, light, moisture, a magnetic �eld or the energy stored in a
pre-stretched substrate. Since their morphing is driven by a physical process (as opposed
to manual deformation), they can be actuated more easily and in a more consistent
manner. �is mechanism can also prove very useful in situations where it is not possible
to actuate the shape by pushing or pulling points on the surface, either because the
context makes it di�cult or because moving individual points on the surface will not
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achieve the desired result.

�ere are many di�erent ways of programming curvature into 2D sheets so that they
self-actuate into a 3D shape. I investigated a technique to create self-shaping textiles
which consists in depositing pa�erns of molten plastic into a pre-stretched fabric layer.
�e plastic bonds with the fabric layer and cures into a rigid material which will prevent
homogeneous contraction of the fabric when it is released and favor buckling into 3D
shapes instead (see Fig.1.1). Compared to other materials that can be used to program
self-morphing sheets such as liquid crystal elastomers (LCE) [3] or swelling gels [63],
self-shaping textiles have the advantage of being comparatively inexpensive and easy
to fabricate. �e only equipment needed is a stretchy type of fabric (e.g. spandex)
and hobbyist 3D printing hardware to deposit the plastic, which makes this technique
accessible to non-experts and opens the door to a wide range of creative practices and
shape experimentations. In particular, this allowed architecture and design teachers to
organize workshops in fab labs and similar types of facilities where students were able to

(a) (b)

(c)

Fig. 1.1: Overview of the printing-on-fabric technique: (a) a square piece of fabric is stretched
on the buildplate of a conventional (FDM) 3D printer,(b) the printer prints a shape as it would
normally do, (c) the shape buckles out of the plane a�er being cut out from the pre-stretched
fabric.

2
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quickly prototype self-actuated shapes [2, 37, 69].

3
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1.2 Contributions
�e work presented in this thesis takes both a geometric and design point-of-view to
deal with the computational design and fabrication of self-shaping textiles using the
aforementioned printing-on-fabric technique.

Geometry. From a di�erential geometric standpoint, the deployment of self-shaping
textiles can be analyzed through either an intrinsic or extrinsic perspective. In the intrinsic
viewpoint, we are interested in how local quantities such as geodesic lengths and angles
evolve on the surface. �ese lengths and angles can be measured by an object called
the metric or the �rst fundamental form of the surface 𝐼𝑝 (𝑢, 𝑣) =

〈
𝑑 𝑓𝑝 (𝑢), 𝑑 𝑓𝑝 (𝑣)

〉
, which

is the scalar product of the pushforward of two vectors 𝑢 and 𝑣 onto the tangent plane
of the surface at a point 𝑝 . �e �rst fundamental form is a very powerful object, even
though it gives no information about how a surface is embedded in 3D space, it uniquely
identi�es the Gaussian curvature 𝐾 at every point.

However, in the general case, knowing the �rst fundamental form (or the Gaussian
curvature) of a surface is not su�cient to uniquely determine it because there might be
several possible surfaces that are equivalent up to an isometry (see Figure 1.2). �is is
why the extrinsic perspective is important as well: it can be compelling to only think
of deployable materials in terms of how they stretch or expand and how this translates
to curvature, but ultimately intrinsic notions give no information as to how a given
surface is supposed to be embedded, or in our case, how it is supposed to deploy in
3D space. Extrinsic quantities, – such as the normal curvature 𝜅𝑁 of a curve, the mean
curvature of a surface 𝐻 , or its second fundamental form 𝐼 𝐼𝑝 (𝑢, 𝑣) = −

〈
𝑑𝑁𝑝 (𝑢), 𝑑 𝑓𝑝 (𝑣)

〉
which gives information about how normals around 𝑝 evolve through the di�erential
𝑑𝑁𝑝 – help disambiguate scenarios where a surface with a given metric can have multiple
embeddings.

In this thesis, we leverage both intrinsic and extrinsic e�ects. By carefully controlling the
density of printed plastic pa�erns, we can modulate the ability of the fabric to retract back
to its original size, and therefore control the underlying metric of the deployed surface.
�is allows to program Gaussian, or intrinsic, curvature into the deployable textile. To
bias the possible solutions to a speci�c embedding, we control the normal curvature of
the printed curves by leveraging a bilayer e�ect: since the fabric below the printed curves

4
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is pre-stretched and the plastic material prevent contraction, the plastic-fabric bilayer
will bend with a curvature depending on the thickness of printed plastic. �is control
on the extrinsic curvature guarantees a theoretical uniqueness of the deployed surface,
as there can exist multiple surfaces with the same Gaussian curvature but there is only
one surface (up to a global rotation and translation) with the same Gaussian and mean
curvature [33, p.239].

Computational design. �is thesis is about developing computational tools for the
design of self-shaping textiles. We envision two possible work�ows: a direct one and an
inverse one. In a direct work�ow, the user designs a speci�c pa�ern and then prints it on
stretched fabric. If the deployed shape does not have the expected appearance, the user
then has to start all over again. In that work�ow, it can be useful to be able to perform
form-�nding, i.e. to computationally predict what the deployed shape will look like before
printing it. �is allows for faster and less wasteful iterations loops, because the user does
not have to wait for the �nal printed object to decide whether they want to discard it or
not (Fig. 1.3, le�).

�e inverse work�ow is a bit di�erent. Instead of specifying a pa�ern to be printed and
discovering what kind of shape emerges from that pa�ern, the inverse process consists
in �rst specifying a target shape and then try to �nd out which kinds of pa�erns can be
suitable to obtain such a shape. For example, we can imagine that designers Guberan
and Clopath [51] proceeded in some kind of inverse work�ow when they designed their
self-shaping shoe: they probably knew beforehand that they wanted to create a shoe,
and then they �gured out which curve layout to print so that the deployed shape looks
like a shoe in the end. In that case, a computational tool which �nds an optimal curve
layout to be printed for a given shape can be of great help because it seemingly nulli�es

Fig. 1.2: Two shapes with the same Gaussian curvature can be bent di�erently, illustration with a
developable surface (𝐾 = 0) and a sphere with positive gaussian curvature (𝐾 > 0) which can be
bumped inwards in a similar way to a de�ated football.

5
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Pattern
speci�cation Form-�nding Fabrication

Pattern editing

Shape
speci�cation Inverse solving Fabrication

possible shape editing

(a) Form-�nding (b) Inverse design

Fig. 1.3: Illustration of the two design work�ows explored in this thesis.

the need for an iteration loop, even though in a real-life scenario the designer might not
be completely satis�ed with the result and may want to modify the input shape so as to
generate di�erent printing pa�erns (Fig. 1.3, right).

�ese two work�ows correspond to di�erent design cases because their operate from
di�erent starting points in the design process. In the direct work�ow, a user starts from
a pa�ern to be printed and then iterates on that pa�ern until a satisfying result is found,
this may be useful in early stages of the design process when the user tries to explore the
possible shapes they can obtain, or for artists who wish to enforce speci�c aesthetics to
the printed curve pa�ern. In the inverse work�ow the user starts from the shape to be
reproduced, and obtains a pa�ern to be printed as a result of an optimization process,
the user can then modify the input if the resulting pa�ern from the optimization is not
satisfying.

In this thesis we address both design work�ows, and towards this goal we tackle two
main questions. First, is it possible to accurately predict the behavior of these printed-on-
fabric composite materials? �e answer is not obvious because textiles can be extremely
diverse in terms of material response, and the process itself is imprecise with unknown
variables such as plastic adhesion with the fabric, or over- or under-extrusions changing
the result. To simplify this problem, we �rst study a particular pa�ern composed of tilings
of stars which is simple enough so that reduced order simulation models work well to
reproduce it, expressive enough so that it is possible to create varied shapes. We then try
to predict the �nal shape of more general, arbitrary pa�erns printed on stretched fabric,
by modeling the precise anisotropic behavior of the pre-stretched fabric on one hand,
and the bilayer nature of the plastic-fabric composite material on the other.

�e second question is can we inverse the design process and �nd a speci�c pa�ern that,
once printed on stretched fabric, will morph and reproduce a given target shape? Inverse
problems are in general ill-posed and this one is no exception: multiple printed pa�erns

6
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could result to the same shape, while other geometries might not be reproducible at all
by self-shaping textiles. Instead of optimizing for any kind of printed pa�ern, we focus
on parallel ribbon pa�erns which allow to control both intrinsic curvature through their
widths and spacing, and extrinsic curvature because of the bilayer e�ect.

1.3 Outline
�e rest of the thesis will be as follows:

• Chapter 2 details the work which has inspired and is most related to this thesis.

• Chapter 3 presents a (direct) design tool for fabricating lightweight architectural
models based on a tiling of star pa�erns, with the dimensions (and hence physical
properties) of the individual pa�ern elements varying over space. Users of this
system design free-form shapes by adjusting the star pa�ern; our system then
automatically simulates the complex physical coupling between the fabric and stars
to translate the design edits into shape variations.

• Chapter 4 describes preliminary work towards extending the form-�nding tool to
a general-purpose simulation method that can predict the buckling behavior of a
variety of printed-on-fabric designs besides star tilings. �e full anisotropic, large-
strain response of the fabric is reproduced and integrated in a shell simulator which
models the bilayer e�ect caused by the di�erential compression at the interface
between the plastic and fabric layers.

• Chapter 5 presents an inverse design tool that is able to reproduce target shapes
with printing-on-fabric using a dense pa�ern of closely-spaced ribbons. �e core of
this method is a parameterization algorithm that bounds surface distortions along
and across principal curvature directions, along with a pa�ern synthesis algorithm
that covers a surface with ribbons to match the target distortions and curvature
given by the aforementioned parameterization.

1.4 Publications
Chapters 3 and 5 are based on the two following peer-reviewed publications:

7
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• David Jourdan, Mélina Skouras, Etienne Vouga, Adrien Bousseau, 2021. Printing-
on-Fabric Meta-Material for Self-Shaping Architectural Models. In Advances in
Architectural Geometry 2020, pages 264–285.

• David Jourdan, Mélina Skouras, Etienne Vouga, Adrien Bousseau, 2022. Computa-
tional Design of Self-Actuated Surfaces by Printing Plastic Ribbons on Stretched
Fabric. Computer Graphics Forum (Proc. EUROGRAPHICS, conditionally accepted).

Chapter 4 presents preliminary results of an ongoing work that has not been published
yet.
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Chapter 2

Background and Related Work

�e study of self-shaping textiles is an interdisciplinary subject which requires knowledge
in theoretical areas such as di�erential geometry, continuum mechanics, and more
practical ones like digital fabrication and additive manufacturing. As such, the literature
which inspired this thesis covers a wide range of domains such as computer graphics,
architectural geometry, human-computer interactions (HCI), and so� ma�er physics. We
organize this chapter in two distinct sections:

• Section 2.1 deals with the computational design of deformable structures and
materials, approached from the point of view of computer graphics and architecture,
�elds which focus on e�cient tools and representations. In this body of work we
distinguish studies on the forward design of deformable shapes and the related
problem of form-�nding (2.1.1) from inverse design tools. While form-�nding deals
with the task of �nding the rest shape of a given structure – which we perform
in chapters 3 and 4 – inverse design tools aim at programming curvature into the
structure of a deformable material, in order to obtain a speci�c geometry – which
we tackle in chapter 5. In particular we review di�erent optimization devices which
make this feat possible.

• Section 2.2 focuses on deformable materials which do not need any external actua-
tion to be deformed into shape, but rather deform themselves. �e self-actuation
can be driven by di�erent environmental stimuli such as heat, moisture, or in our
case, the residual stress of a stretched substrate, we explain key mechanisms used
in many of these projects such as the bilayer e�ect. �ese self-actuated structures
have been studied in the so� ma�er physics community which is interested in un-
derstanding complex behaviors at the intersection between chemistry, physics and
geometry. �is understanding leads to accurate fabrication methods in controlled
environments ; meanwhile computer graphics and HCI communities have devel-
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oped more practical applications. In particular, we �nish by giving an overview of
the research in self-shaping textiles.

2.1 Computational design of deformable materials
�is thesis is a contribution towards the goal of designing deformable structures that can
be fabricated �at and deformed into a complex, 3D structure. �e need to manufacture 3D
surfaces out of �at sheets of material has motivated signi�cant research in various areas
such as computer graphics, architectural geometry, and materials science. �is section
does not a�empt to provide an exhaustive analysis of the work from these di�erent �elds,
but rather highlights some of the similarities between their approaches and how they
relate to the work that we have done.

2.1.1 Forward design and form-�nding

𝜅2 = 0

𝜅1 > 0

Fig. 2.1: A developable surface, 𝜅1
is the inverse of the radius of the
osculating circle.

�e computational design of deformable materials in
computer graphics is historically linked to the prob-
lem of modeling and representing shape. Advances
in the geometric understanding of deformations lead
to be�er representations and algorithms for modeling
shapes in the computer as well as methods to fabricate
them with a given material. We see a prime example
of that link with developable surfaces, which are sur-
faces with zero Gaussian curvature 𝐾 = 𝜅1𝜅2 – where
𝜅1 and 𝜅2 are the maximum and minimum normal
curvature. Gauss’s theorema egregium [40, p.27–28]
shows that such surfaces are locally isometric to the plane. As such, developable surfaces
are an appropriate representation for materials that can bend but cannot shear or stretch,
like paper. Approaches for modeling developable surfaces can thus represent them as
smooth geometric primitives such as splines [136], or use algorithms based on discrete
di�erential geometry such as the discrete orthogonal geodesic (DOG) nets of Rabinovich
et al. [104].

Other types of surface representations allow the modeling of di�erent material con-
straints, for example Chebyshev nets represent wire-like materials which have the ability

10



2.1. COMPUTATIONAL DESIGN OF DEFORMABLE MATERIALS

Fig. 2.2: Pillwein et al. [99]

to shear but not to stretch [39, 110] and can be used
to model elastic gridshells [9] which are structures
made of bent slender beams a�ached together to form
a grid. A commonly-found feature of gridshells is that
when they are made out of beams whose cross-section
is anisotropic, the rod mechanics force them to be
geodesics on the surface. �is particular geometric

property can be exploited to drive e�cient algorithms for their design [99]. Once designed,
deploying such structures can also be particularly challenging. A common approach is
to assemble the grid �at and then li� it while �xing the beam endpoints to a prescribed
boundary as was done for the ephemeral cathedral of Créteil [34] or the Solidays gridshell
[11]. Otherwise, sparse actuation of the structure can be obtained by using a one degree-
of-freedom mechanism with scissor-like hinges [94, 99, 129].

𝜅2 = −𝜅1

𝜅1 > 0

Fig. 2.3: A minimal surface.

A family of surfaces that is particularly relevant to
this thesis are area-minimizing or minimal sur-
faces, which are surfaces whose mean curvature
𝐻 = 𝜅1 + 𝜅2 vanishes everywhere [33, section 3.5].
As their name implies, these surfaces have the prop-
erty of minimizing their area under given boundary
constraints. �e numerical computation of such
geometries has been a topic of interest for at least
three decades [101] and has, until lately, remained
challenging to solve for complex topologies and
non-manifold con�gurations [58, 155]. But their interest is not only of a mathematical
nature, they are useful to model mechanical systems in which tension determines the
�nal geometry, such as soap �lms whose geometry is e�ectively that of a minimal surface,
or architectural surfaces such as tensile structures and cable nets [77] whose geometry
is dictated by their internal stress. �e architect Frei O�o famously experimented with
soap �lms to prototype his tensile structures using a process called form-�nding, which
consists in experimenting with di�erent boundary constraints to see a surface emerge
out of the physical constraints [27]. In general, form-�nding designates the process of
�nding the equilibrium shape of a given structure under a speci�c set of forces, it can be
performed computationally to explore the shape space of surfaces in equilibrium under
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internal stress (like tensile surfaces), self-weight (like catenaries and other funicular
shapes) [81, 139] and bending-active shapes constrained by their endpoints [73].

Computational form-�nding tools o�en try to solve a problem governed by the laws
of physics. A popular approach called Dynamic Relaxation which is implemented in
form-�nding so�ware such as Kangaroo Physics [86, 98] consists in integrating the
equations of motion with an added damping factor to avoid parasite oscillations, the
resulting motion is guaranteed to converge to a static equilibrium even if the motion
itself is not physically realistic. In chapters 3 and 4, we employ a di�erent strategy for
form-�nding self-shaping textiles. Instead of integrating the equations of motions we
�nd the minimum of the potential energy of the system

x = argmin𝑊 (x) ⇐⇒ ∇𝑊 (x) = 0 ∧ ∇2𝑊 (x) � 0 (2.1)

�is problem is known as the variational approach in �nite element analysis, we solve it
using a modi�ed version of Newton’s method where the energy𝑊 (x) is used as a merit
function [90]. For a more thorough overview of form-�nding techniques we point the
reader towards the work of Veenendaal and Block [149].

In their particular case of self-shaping textiles (see inset),
Pérez et al. [95] tackle the form-�nding problem by identi-
fying that their designs live in a speci�c shape space, that
of Kirchho�-Plateau surfaces – area-minimizing surfaces
which are enclosed by �exible rods. Notable designs com-

bining tensioned membranes and �exible rods, called Bending-Active Tensile Hybrid
(BATH) structures [128], include the architectural work of Ahlquist and Menges [5] and
Deleuran et al. [31]. In our case however, (chapters 3 and 5) the tensioned substrate is not
completely enclosed by �exible rods. �erefore, the shapes we are able to create belong
to a wider shape space.

Finally, it is relevant to mention that some structures have the ability to encode and con-
trol more general types of deformations. �ey are usually made out of repetitive, tileable
elements that can contract or expand in a speci�c manner and thus indue intrinsic curva-
ture by modulating the metric of the surface. Such structures are dubbed metamaterials
as their deformation capabilities can be beyond those of the base material they are built
with, and they can be de�ned by the properties of the individual element that is being tiled.
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For example, Konaković et al. [66] consider triangular aux-
etic linkages where the opening angle between adjacent
triangles dictates the resulting surface curvature, Chen et al.
[24] augment this mechanism by using bistable tiles which
can either be completely open or completely close, thus guar-
anteeing stability of the deployed shape. Malomo et al. [83]
and Laccone et al. [74] consider repetitive spiral-shaped elas-
tic rods where the amount of twist of the spiral controls
surface bending (see inset �gure). �e tileable pa�erns we develop in chapters 3 and 5
can be considered to form a metamaterial as well.

In some cases, it is possible to control how the material will deform by carefully picking the
right tileable elements that compose the metamaterial, and thus to create programmable
materials which have their deformation behavior encoded within their structure, the
process of designing such materials is called inverse design.

2.1.2 Inverse design

In the following, we distinguish between two kinds of inverse design methods. Geometry-
based methods, solve the problem by studying its geometry, and use it to drive e�cient
algorithms. However, some problems may not have a nice mathematical structure which
allows for simpli�cations. Physics-based methods approach the problem by using opti-
mization machinery which poses static equilibrium as a hard constraint. Deformable
materials which are made out of rigid parts, or that are constrained in their deformation
are o�en well-suited for geometric methods. Flexible materials can also be programmed
using a geometric approach (see e.g. [54]), and some rigid mechanisms can be suitable
for physics-based optimization approaches (see e.g. [41]). It is also possible to combine a
geometric approach with physics-based optimization [93, 106].
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Physics-based

�e physics-based optimization approach to inverse design consists in solving the fol-
lowing problem:

min
x,p

𝐸 (x)

subject to 𝑓 (x, p) = 0

where x corresponds to geometry variables, p are design variables (e.g. the Young’s
modulus in elastic parameter optimization [158]), 𝐸 (x) is the energy to optimize for
(usually the distance to a target geometry possibly with added regularizers) and 𝑓 (x, p)
is the sum of the forces, which typically depends on both the geometry and the design
parameters.

�e constraint is usually nonlinear, so this problem is non trivial to solve and requires
iterative methods with good initializations to avoid di�cult local minima. As an example,
Skouras et al. [125, 126] solve this problem with the Augmented Lagrangian Method
(ALM) which iteratively updates lagrangian multipliers without having to introduce them
in the linear systems, thus avoiding a signi�cant increase in the number of variables
compared to the traditional method of Lagrange multipliers (see [90, Chapter 17] for more
details). Skouras et al. [127] use Sequential �adratic Programming (SQP) to �nd the
optimal layout of �at panels such that, when assembled, they form a balloon resembling
the input shape.

An alternative to solving this problem using nonlinear constrained optimization tools is
sensitivity analysis. Sensitivity analysis reformulates the constraint 𝑓 (x, p) = 0 into an
implicit function 𝑥 (p) which locally approximates the manifold de�ned by the constraint.
Given variables x0, p0 such that 𝑓 (x0, p0) = 0, we can write

𝑓 (x̂(p), p) −−−−−→
p→p0

𝑓 (x0, p0) +
(
𝜕𝑓

𝜕x

𝜕𝑥

𝜕p
+ 𝜕𝑓
𝜕p

)
Δp = 0 ⇐⇒ 𝜕𝑥

𝜕p
= −

(
𝜕𝑓

𝜕x

)−1
𝜕𝑓

𝜕p

�e derivative 𝑆 = 𝜕𝑥
𝜕p is called the sensitivity matrix, and can be used to optimize the

geometry x̂ as a function of the design variables p. Sensitivity analysis is o�en used in
conjunction with the adjoint method which consists in avoiding a costly matrix inversion
by exploiting the associativity of matrix multiplication when computing the gradient of
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the energy: 𝜕𝐸
𝜕p = 𝜕𝐸

𝜕x

(
−

(
𝜕𝑓

𝜕x

)−1
𝜕𝑓

𝜕p

)
= −

(
𝜕𝐸
𝜕x

(
𝜕𝑓

𝜕x

)−1)
𝜕𝑓

𝜕p which amounts to simply solving

a linear system.

Sensitivity analysis has been used for the design of objects made of �exible rods [83, 95, 96],
silicone inclusions [159], polystyrene sculptures made with hot-wire cu�ing [35], objects
weaved with curved ribbons [106] and in�atable structures [93]. Like other physics-based
optimization techniques, its main drawback is that it requires simulating the entire object
at every iteration which may be computationally expensive and prevent interactivity
in the design process. In many cases, exploiting the geometry of the problem allows to
derive more e�cient algorithms.

Geometry-based

Because developable materials are only allowed to bend, they are o�en well-suited for
geometric approaches. Tachi [134]’s Origamizer is a method to compute a pa�ern of folds
on a sheet of paper so that when it is folded, the paper will resemble the input polyhedral
surface. �e idea of the method is that the excess of material can be tucked inside the folds
when it is needed to create curvature, a process that has been used empirically before by
Ron Resch [107]. �e algorithm was proven to work on any polyhedral surface [32]. In
contrast to origami where the practitioner is only allowed to fold the material, kirigami
[60] allows for cuts, which enables less wasteful approaches for creating architectural
geometries.

Fig. 2.4: Fabricating a doubly curved surface
(right) by assembling planar patches (le�) [80].

A di�erent family of approaches start from
a smooth surface (or a discretization of it)
and optimize for some metric of developa-
bility such as the presence of hinges on ver-
tex stars [133], the shape operator (i.e. the
Hessian in isotropic geometry) being rank-
de�cient [116], or the Gauss image (the map
of normals to the unit sphere) being one-
dimensional [17]. Some methods are explic-
itly made to guarantee fabricability, such as the work of Ion et al. [57] based on the discrete
orthogonal geodesic (DOG) framework. �e method of Sharp and Crane [119] optimizes
the shape of cuts in arbitrary surfaces such that they can be made from planar patches
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with the least distortion possible, as showcased by Louis-Rosenberg and Rosenkrantz
[80].

Shapes made out of assemblies of curves are also well-suited for geometric approaches,
the case of bending-active structures that I mentioned in the previous section is a good
example. Pillwein and Musialski [100] identify that curves in a gridshell correspond
to geodesics, and devise an e�cient way to compute them while optimizing for the
orientation of the structure. Hafner and Bickel [54] devise a geometric criterion for all
elastic ribbons in equilibrium and use it to optimize the cross-section of such ribbons
to match a given curve input. A speci�c case relates to gridshells where the elements
are weaved together. In this case they are not only geodesics but form a 𝑛-rotationally
symmetric (𝑛-RoSy) directional �eld. Vekhter et al. [150] identify geodesic foliations to
be the proper mathematical framework for dealing with weaved straight ribbons, and
develop an e�cient algorithm to compute such foliations.

Fig. 2.5: le�: �a�ened auxetic pa�ern, right:
projected pa�ern onto the target surface [68].

Closest to our inverse design applications
(Chapter 5) are methods based on a parame-
terization approach. Konaković-Luković et al.
[68] leverage the fact that the morphing of
their metamaterial from the �at plane to a 3D
surface preserve angles to use a conformal
mapping tool to optimize for the size of ele-
ments in their triangular auxetic linkage so
that the structure automatically takes the prescribed shape upon actuation by gravity or
pneumatic deployment. Chen et al. [24] also use a conformal map to compute an isotropic
scale factor for each individual cell of their metamaterial and match it to a precomputed
cell shape which has the desired bistable behavior. �e Geodesy+ tool [50] computes an
anisotropic parameterization, because the contraction mechanism they exploit favors
one direction (along the extrusion path) over the other, this parameterization is then
exploited to create self-rising shapes.

2.2 Self-shaping materials
Self-shaping materials have the property of not needing any external actuation force
to be deformed, instead their shape changes as a result of a variety of stimuli such as
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temperature, moisture content, internal air pressure or tensile stress. In this section I
give an overview of some of the mechanisms that make self-shaping materials possible.

2.2.1 Geometric description

In this section I make the distinction between two kinds of mechanisms to create self-
shaping surfaces. �e �rst ones act on the lengths of the surface to create Gaussian
curvature and are called intrinsic mechanisms because they do not depend on how the
surface is embedded in space. �e second kind act on extrinsic notions of curvature such
as bending by way of bilayer e�ects.

A general mechanism for self-actuation that was identi�ed by Sharon and Efrati [118]
is that of metric change meaning that some materials can locally expand or contract
upon a speci�c trigger mechanism. If this contraction or expansion is not uniform across
the whole geometry, it will trigger a change in curvature. �erefore, by changing the
metric (also known as the �rst fundamental form) which is the bilinear operator de�ning
distances on a surface, we can change the curvature of the surface. I previously mentioned
Gauss’ theorema egregium which states that the Gaussian curvature of a surface does
not depend on how the surface is bent in space, which is why we consider that Gaussian
curvature is an intrinsic property of surfaces. However, the link between the metric
and Gaussian curvature may be more apparent if we introduce a corollary known as the
Bertrand-Diguet-Puiseux theorem [15, 131, p.145] which states that Gaussian curvature
can be expressed as the limit di�erence between circumferences, (or similarly, areas) of a
circle in the plane and a (geodesic) circle of the same radius on the surface:

𝐾 = lim
𝑟→0

3
2𝜋𝑟 −𝐶 (𝑟 )

𝜋𝑟3
= 12

𝜋𝑟2 −𝐴(𝑟 )
𝜋𝑟4

, (2.2)

this clearly shows how Gaussian curvature is dependent on how the lengths on a surface
di�er from the lengths on the plane. If the circumference of the geodesic circle is bigger
than the circumference of a �at circle, the Gaussian curvature will be negative, on
the contrary if the circumference of the geodesic circle is smaller, then then Gaussian
curvature will be negative. Even though this formula is only true for in�nitesimal disks
on a surface, we can still see how the same principles can be applied on �nite areas to
create self-shaping surfaces.
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Fig. 2.6: Illustration of the Bertrand-Diguet-Puiseux theorem: the three circles have the same
(geodesic) radius, but di�erent circumferences due to the Gaussian curvature of the surfaces they
are drawn on.

For example, Kim et al. [63] combine two materials with
di�erent swelling rates using a hal�oning pa�ern, a dif-
ferent density of dots meaning a di�erent swelling rate
(see inset). Since the circumference is mostly covered by
red dots which have a low swelling factor while the interior contains a black material
with a high swelling factor, the area of the disk will increase faster than its circumference,
thus creating positive Gaussian curvature.

Fig. 2.7: Geodesy [49]

Some morphing materials [42, 49] leverage a dif-
ferent mechanism where the material has been
deposited along speci�c pathways and shrinks at
di�erent rates along and across the printing path,
which is particularly useful to create this di�er-
ence between geodesic radius and circumference.
In particular the Geodesy project [49, 50] focuses
on shells printed along spiral pathways whose

circumference shrinks faster than their radius, creating positive Gaussian curvature (see
inset). A similar mechanism is at play on individual printed stars in Chapter 3, the star
branches constrain the circle radius to stay constant while the circumference shrinks.

�e di�erence of shrinking between di�erent directions is an example of an anisotropic
morphing behavior that can be used e�ectively to create self-shaping surfaces [45]. In
particular, this mechanism is at play with nematic elastomers [3] where the orientation
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of liquid crystals in�uences the swelling behavior and can be programmed by using
a parameterization approach similar to ARAP [79]. We take inspiration from nematic
elastomers and the general problem of anisotropic morphing to build our own ARAP-like
parameterization algorithm for self-shaping textiles in Chapter 5.

An extrinsic mechanism that we exploit in chapters 3 and 5 is called the bilayer e�ect.
It is the result of binding two layers, with at least one being an active layer which is
either expanding or shrinking, the mismatching lengths between the two layers cause
the initially planar assembly to bend out (Figure 2.8). �is mechanism has been studied at
least since Timoshenko [141] who predicted the curvature of a bilayer ribbon made out of
two metals with di�erent thermal expansion coe�cients, we show how their formulation
is equivalent to the one we computed for plastic-fabric composites in Chapter 3.

Several papers exploit this mechanism to create self-actuated
rods [18, 109, 152], either by binding two layers of di�erent
materials with di�erent properties, or by binding layers of
the same material a di�erent orientations, this works if the
material in question has an anisotropic morphing behavior.
Bilayer, self-shaping rods can be combined together to create
more complex structures, such as self-shaping meshes [153] (see inset), or in our case,
self-shaping rods a�ached to a pre-stretched substrate (chapters 3 and 5)

�e bilayer e�ect can also be used to create self-shaping surfaces that bend along pre-
scribed directions. �is can be used to engineer folds along sharp kinks so as to create self-
folding versions of the origami and kirigami techniques introduced in section 2.1.2 [111],
or self-shaping periodic metamaterials based on a foldable la�ice structure [143, 145].

Passive layer
Active layer

Fig. 2.8: Bilayer e�ect: the combination of a passive layer resisting deformation and an active
layer which is either expanding or shrinking, causes the whole assembly to curve so that one layer
becomes smaller than the other one. �e curvature of the resulting equilibrium con�guration can
be computed as a function of the thicknesses of the layers, their Young’s moduli, and the amount
of expansion or shrinkage the active layer is going through.
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More complex bending behavior can also be achieved with the bilayer e�ect so as to
obtain a wide variety of developable surfaces [8, 144]. �is mechanism can be used in
conjunction with metric change: if both layers are active, then the metric of the whole
assembly is going to change [146]. In fact, apart from origami techniques, metric change
is necessary to create double curvature, as the bilayer e�ect itself can only bend the
surface and thus cannot change the Gaussian curvature.

Equations for general bilayer shells have been formulated by Pezzulla et al. [97] and
van Rees et al. [147]. Compared to standard �nite element methods where a strain is
computed between the current state and a stress-free rest state, it is more complex to
simulate self-shaping bilayer shells because there may not exist a shape in which the shell
is completely stress-free. Instead it is possible to compute stress-free �rst and second
fundamental forms separately even if there might not exist a surface with such �rst and
second fundamental forms, we use the formulas of van Rees et al. [147] in Chapter 3 to
derive the curvature of a printed-on-fabric bilayer ribbon.

2.2.2 Materials

Self-shaping surfaces can be created using di�erent materials and trigger mechanisms, in
the following section I review some of them and classify them by their trigger mechanism.
Some materials morph when receiving a certain quantity of energy, while some others
were already storing energy inside and the trigger merely permits the release of the
stored energy, which is the case of self-shaping textiles that I explore in this thesis.

A commonly heard term when talking about self-shaping materials is 4D printing [140].
Unfortunately, this expression has no precise or commonly agreed on de�nition. In this
thesis, the term 4D printing will be used only when referring to self-shaping objects
that have been created using additive manufacturing technologies such as fused �lament
fabrication (FFF), this excludes techniques employing a pre-stretched substrate.

Many 4D printing methods rely on heat to trigger the morphing [8, 18, 49, 50, 144, 152,
153]. �ey exploit a warping e�ect that happens when the thermoplastic material that
has been used to print the object is heated above its glass transition temperature (usually
between 60–80◦C). When a thermoplastic material is deposited using the common FFF
technique, the polymer chains are initially aligned along the printing path. Heating the
material allows the chains to rearrange along random directions, making the material
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denser and more compact. �is phenomenon makes the material shorten along the
printing path, which is useful to leverage the bilayer e�ect to make self-shaping rods
[18, 152, 153] and shells [8, 144], it can also be used to trigger more general metric changes
[49, 50]. An innovative method combines 4D printing and conductive materials to create
tangible user interfaces [26], by controlling current through the material to cause it to
heat and morph.

Other types of materials can morph in reaction to a change of temperature, such as
the classic case of metals studied by Timoshenko [141]. Boley et al. [20] combined four
di�erent elastomeric inks with various expansion coe�cents to create la�ices which
morph out of the plane when heated, and then cure at a high temperature and can stay
in place when cooling down to room temperature. �is property is particularly desirable
as some materials do morph when heated but go back to their initial shape upon cooling
down, which means the programmed curvature cannot exist at room temperature. �is
is the case of Aharoni et al. [3]’s work, who programmed curvature into Liquid Crystal
Elastomers which expand anisotropically when heated but go back to their initial shape
at room temperature. A way to circumvent this problem is to prepare the sample at a high
temperature and then let it morph by cooling down, even if the mechanism is reversible
the sample will hold its shape at room temperature. �is is the case for gel lithography
[63, 87] methods which program a pa�ern in a photo-crosslinkable material using light
in a controlled environment at a high temperature and then let the material cool down in
an aqueous solution at room temperature.

Tibbits [140] who coined the term 4D printing, explores a di�erent mechanism. Using a
multi-material 3D printer, they mix a passive material with a hydrophobic one which
expands when in contact with water and use this technique to engineer self-folding
materials. Wood is also known to expand when wet, since its swelling is anisotropic
and follows the material �bers, it is possible to assemble wood bilayers whose �bers are
at di�erent orientations to create bending [48, 109]. It is even possible to use additive
manufacturing technologies to e�ectively 3D print wood and therefore have a higher level
of control on the anisotropic swelling behavior [25]. Other materials can have interesting
behaviors in reaction to humidity, for example Gladman et al. [42] consider hydrogels
which have an anisotropic swelling behavior when immersed in water, the results of this
experiment were successfully simulated by van Rees et al. [146].

21



CHAPTER 2. BACKGROUND AND RELATED WORK

More unusual trigger mechanisms have been explored, such as cooking, to create self-
shaping pasta [138, 156] or other �our-based foods [137]. Auto-in�atables [157] which
are structures that are in�ated by a chemical reaction inside the membranes can also lead
to interesting developments, as there is a whole body of work on programming curvature
into in�atable structures [91, 93, 124].

2.2.3 Pre-stretched membranes

�e last trigger mechanism for self-shaping surfaces is the most related to this thesis:
using the tension of pre-stretched substrates. �e idea is to locally bind some rigid
material with a pre-stretched membrane which forms a bilayer where the rigid material
has the role of a passive layer resisting deformation, upon release the membrane becomes
an active layer which will contract as much as possible.

One way to create self-shaping mechanisms is by altering the pre-stretched substrate itself,
either by depositing resin onto the membrane to locally sti�en it, or by integrating rigid
elements such as rods within the fabric. Oxman and Louis-Rosenberg [92] deposit resin
into a pre-stretched latex membrane, forming di�erent pa�erns and experimenting with
simple form-�nding algorithms using the Processing environment. Ahlquist et al. [4] and
Sharmin and Ahlquist [117] use pre-stretched machine kni�ed textiles locally reinforced
with epoxy resin and experiment with simple base forms and heuristic simulation models.
Aldinger et al. [7] sew sti� �ber reinforced polymer rods into a pre-stretched tulle mesh
fabric, they are able to control the curvature of the result depending on the pa�ern the
rods form and whether they are on the top side or the bo�om side of the fabric.

Fig. 2.9: CurveUps [53]

Another popular technique is to laminate a layer of sti�
material onto the pre-stretched substrate. �e layer it-
self has usually a sparse geometry to let the membrane
contract and can be either 3D printed [1, 12, 21, 52, 53]
or laser cut from materials such as wood [4, 12]. Some
authors experimented with pa�erns forming a grid, for
example Ahlquist et al. [4] glues laser cut Voronoi pat-
terns onto a pre-stretched textile and examine their fold-

ing behavior, Agkathidis et al. [1] and Berdos et al. [12] print pa�erns following principal
stress directions which are important for structural stability at a large scale. A problem
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with this type of approach is that a dense grid will constrain the metric of the �nal geom-
etry so that it will only be possible to obtain developable surfaces since the composite
material can barely stretch or expand. Moreover, since the curves have an anisotropic
cross-section, all the laminated lines are constrained to be geodesics on the surface.
Another approach is to control the geometry of the material to obtain speci�c bending
modes. Callens et al. [21] glue 3D printed structures with speci�c hinges on a latex mem-
brane so that upon release the hinges make a 90° angle and the overall structure forms a
triply periodic minimal surface. Guseinov et al. [53] propose a more general method to
program curvature into pre-stretched membranes, which consists in ‘sandwiching’ 3D
printed frustum-like elements between two rubber sheets, the speci�c geometry of the
rigid elements allowing to control bending angles on the surface. [52] show how to also
control the temporal morphing behavior of these structures by using heat as a second
trigger mechanism.

Instead of laminating a given structure onto the pre-stretched substrate, it is possible to
use a 3D printer to directly print onto the fabric material and the molten plastic will bond
with the textile �bers upon cooling down. �is technique has been also experimented for
printing onto non-stretched textiles for composite applications, in particular there has
been a lot of studies into the adhesion of 3D printed pa�erns onto textiles. See [123] for
an overview on 3D printing on non-stretched fabric.

Directly 3D printing on stretched fabric to create self-shaping textiles has been used in
many di�erent applications such as to design shoes [51], architectural shell prototypes
[6], circular shading panels [71], sound-absorbing panels (using tilings of stars similar to
the one showcased in Chapter 3) [30] and even wearable tangible user interfaces [43],
and for good reason: fabric is an ubiquitous and very versatile material, and has countless
uses in fashion, sound absorption and architecture (see Fig. 2.10).

However, the morphing behavior of these assemblies is di�cult to anticipate just by
looking at the 2D printed pa�ern. �e deployed shape is the result of a stress-minimizing
process which can be simulated, therefore researchers experimented with form-�nding
tools to predict the e�ect of speci�c pa�erns. If some architects experimented with
heuristic form-�nding [28, 72], more systematic and physics-based methods have been
developed as well: experiments on a simple rectangle shape have been done using the
FEM package Abaqus [132], but the most notable and closely related to this thesis is the

23



CHAPTER 2. BACKGROUND AND RELATED WORK

Fig. 2.10: Self-shaping textiles. From le� to right: shading panels [71], architectural prototype [6],
wearable user interface [43].

interactive form-�nding program of Pérez et al. [95].

Perez et al.’s method focuses of Kirchho�-Plateau surfaces which are piecewise-minimal-
like shapes that appear when printing sparse networks of closed curves. If the network is
more dense like a gridshell, the structure will become more constrained and only bending
will be possible. �is gives rise to developable or almost developable surfaces, as shown
in the recent results by Agkathidis and Varinlioğlu [2]. But closed networks are not
a requirement, in fact one of the strengths of this method is that by printing directly
of the substrate we can easily print any pa�ern included disconnected ones. Indeed,
experiments in workshops such as the one of Erioli and Naldoni [37] show great examples
of that.

To control the metric in a more methodic way, it might be interesting to take inspiration
from the whole body of work cited previously: even if they do not use the same materials,
much of the same geometric principles can be applied. For example, a pa�ern of dots
where the spacing between the dots varies can be a good way to control the metric in
an isotropic, or conformal way [63], and indeed such a pa�ern was shown to work for
self-shaping textiles [38].

Since the imprinted plastic layers form a bilayer with the fabric, it is convenient to exploit
the bilayer e�ect to control the bending behavior of the surface. Starting with simple
pa�erns such as parallel ribbons [72] or lamellæ [89], it is possible to identify which
parameters have an impact on the resulting curvature. Parameters such as the amount
of stretch of the fabric or the thickness of the plastic elements are known to control the
bending behavior – for example, Kycia [70] exploited some of the capabilities of a 3D
printer by varying the thickness of the printing pa�ern, this allowed them to locally
modulate the amount of curvature along a printed element. More surprising �ndings are
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that the number of parallel elements and their spacing also control the curvature: the
more spaced the elements, the bigger the area of fabric which acts on the elements; and
the bigger the number of elements, the larger the total force applied on the fabric [72, 89].
In Chapter 5, we exploit both the printed thickness and the ribbon spacing to modulate
the curvature of our elements. Another interesting �nding by Kycia [72] is how slender
elements can either bend and roll into a cylinder, or make wrinkles depending on the
thickness and the spacing of the elements. �ese two modes (wrinkling and bending) are
related to the sti�ness limits of bilayers and the theoretical limit between the two modes
can be computed as a function of geometric and material parameters [145].

A limitation of using a 3D printer to deposit plastic on stretched fabric is that access to
both sides of the substrate is di�cult, which becomes limiting when one wants to exploit
the bilayer e�ect: if only one side is covered by plastic pa�ern they will all be biased
towards bending upwards. Christie [28] used a 6 degrees of freedom (DoF) robot arm
to print both onto and under a pre-stretched textile, the printed shapes are not forming
bilayers but are tridimensional mechanisms allowing some metric change as well as some
bending.
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Chapter 3

Creating Self-Shaping Architectural Models

3.1 Introduction
Physical models are an important tool architects use to explore ideas and communicate
them to clients and collaborators [36]. Architects have a long tradition of exploiting
a�ordable and easy-to-assemble materials for fabricating small-scale prototypes, including
cardboard, foam and wood cutouts. With the rise of maker spaces, technologies for
milling, laser cu�ing, and 3D printing are increasingly accessible and powerful tools
for architectural prototyping. Doubly-curved freeform surfaces, however, remain a
signi�cant challenge: even with modern additive manufacturing techniques, prototypes of
thin curved structures cannot be easily fabricated without formwork, support structures,
or other artifacts.

�is chapter explores the use of 3D printing on stretched fabric to create self-shaping
architectural models. �is fabrication technique can be a powerful medium for architects
who wish to explore new shape ideas, as was demonstrated by recent experimentations
[2, 37, 70]. Our work follows in the line of several recent explorations of combining
fabric under tension with networks of elastic rods to control shape [1, 95]. �e resulting
fabric and curve structure behaves as a so-called Kirchho�-Plateau Surface, where the
fabric forms minimal surface patches bounded by the rods. Yet, a wider variety of shapes
are possible if one does not restrict to printing closed curves and instead uses dense
repetitive pa�erns of plastic rods [37, 70]. Our main contribution is the use of dense
3-pointed star pa�erns for fabricating freeform structures with large-scale curvature
variation. Our choice of 3-pointed stars is based on two important physical observations:
�rst, the arms of the stars bend to form a small bump localized around the star, which
contracts the surface locally. Varying the thickness of the stars o�ers control on the
amount of contraction in their neighborhood. Second, since the pa�ern is formed of
disconnected elements, the fabric contracts in-between these elements, bringing them
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closer together, with the amount of contraction controlled by the local spacing of the stars.
In both cases, if the amount of contraction varies spatially, it induces in the initially-�at
fabric a new rest state with non-Euclidean metric [63, 67, 118], and the fabric bends in
space to resolve the metric frustration. Due to the combination of these e�ects, our
plastic pa�ern act as a metamaterial, whose local geometry dictates the overall shape.
Varying the two degrees of freedom o�ered by the stars thickness and spacing allows
us to achieve a variety of shapes, including cylindrical and doubly-curved surfaces with
negative Gaussian curvature (Fig. 3.9). An additional bene�t of our star-based approach
is that the pa�ern enriches the surface with a texture, allowing architects to explore a
design space that combines shape and appearance.

�e precise amount of contraction within and between the stars in a star pa�ern is
determined by the nonlinear interaction of the sti� plastic with the fabric substrate. To
avoid the need for laborious trial-and-error with physical 3D-printed models, we present
a form-�nding tool that simulates the deployment of our printed-on-fabric metamaterials,
allowing users to quickly iterate on virtual prototypes before investing time in fabrication.
To perform our simulation, we introduce a physical model of plastic pa�erns printed on
stretched fabric. Our model goes beyond existing ones [95] by accounting for the bilayer
structure of the plastic-on-fabric assemblies and for the speci�c mechanical behavior of
the structure at the boundary between the pa�erns and the fabric, especially near the
star arms tips, which we found to be critical to accurately reproduce the shapes we target.
We also detail our fabrication protocol used to achieve accurate, reproducible physical
prototypes using a commodity 3D printer.

In summary, we make the following contributions:

• A description of the main physical phenomena that contribute to the emergence of
curved surfaces when printing dense plastic pa�erns over pre-stretched fabric.

• A physical simulator of dense plastic pa�erns printed on pre-stretched fabric,
allowing accurate reproduction of these phenomena.

• A form-�nding tool based on this simulator, which we used to design and fabricate
a variety of architectural forms based on a simple 3-pointed star pa�ern.

�is chapter is mainly based on the following publication:
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• David Jourdan, Mélina Skouras, Etienne Vouga, Adrien Bousseau, 2021. Printing-
on-Fabric Meta-Material for Self-Shaping Architectural Models. In Advances in
Architectural Geometry 2020, pages 264–285.

3.2 Physical Model
To fabricate our self-shaping textile models, we take a rectangle of thin fabric, pre-stretch
it along each dimension by a factor 𝑠 by pinning the fabric boundary to a wooden frame,
place the fabric on the print bed of a conventional FFF 3D-printer, and print small three-
pointed stars over the fabric (see Figure 3.6). �e melted plastic deposited by the printer
adheres to the surface of the fabric, resulting in strong bonding of the two materials to
each other. A�er the plastic has cured, we remove the fabric from the frame, trim excess
fabric, and pose the structure by pinning several points of the boundary to the ground.
See Section 3.3 for full details of the fabrication process.

We parameterize the fabric by a rectangle Ω in the plane. Each star’s center is placed at
the nodes of a regular hexagonal tiling of Ω, with distance 𝑑 mm between neighboring
centers, with the star’s three arms aligned to the symmetry axes of the tiling. �ree scalar

(a) Contraction
of a single star

(b) Contraction
between stars

(d) Bending
propagation

(c) Buckling

Fig. 3.1: Geometric intuition behind our approach, at several length scales. At the scale of a single
star, the contraction of the pre-stretched fabric back to its rest dimensions is halted by the plastic
star bonded to the fabric. �e star arms buckle to form a small bump (a); neighborhoods of thicker
stars contract less due to the star arms bending less. At the scale of a neighborhood of several
stars, the fabric contracts unimpeded, since stars are not connected (b). A sparser star pa�ern with
smaller stars (and hence more spacing between them) allows more contraction. At the scale of a
large patch of metamaterial area, several factors control the surface shape: di�erential contraction
due to variations in star thickness and spacing induces buckling of the surface to relieve metric
frustration; boundary conditions can impose additional contraction and buckling (c); and if stars
are laid out in a regular pa�ern, there is global coupling in how each star breaks symmetry while
buckling, introducing large-scale curvature (d).
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sizing �elds specify the design of the star pa�ern: ℓ : Ω → [0, 1] speci�es the length of
the star’s arms at di�erent locations on the fabric, with ℓ = 0 indicating no star at all and
ℓ = 1 a star with arm lengths 𝑑 (so that the star touches its neighbors); and ℎ,𝑤 : Ω → R
specify the thickness (in the direction perpendicular to the fabric and printing plane) of
the stars and (in-plane) width of the star arms, both in millimeters.

To summarize, a star pa�ern design consists of a choice of:

1. fabric tension 𝑠 and star spacing 𝑑 , both global to the entire pa�ern;

2. three functions ℓ, ℎ,𝑤 over Ω; which encode variations in the star sizing;

3. boundary conditions for how the border of the pa�ern should be pinned to the
ground a�er printing.

3.2.1 �e geometry of the metamaterial

A�er the star pa�ern has been printed and the fabric is allowed to relax to static equi-
librium, the surface buckles into a 3D structure with residual internal stress. Figure 3.1
illustrates how the choice of design parameters provides several means of li�ing the
resulting surface into controllable shapes. In the neighborhood of each individual star,
the star arms bend to form a bump under the action of the fabric’s compressive forces
(Figure 3.1a). �e size of this bump depends on the fabric tension 𝑠 and the length and
thickness of the star arms, which control the star’s resistance to bending and thus �nal
curvature. In between stars, the fabric contracts unimpeded (Figure 3.1b), by an amount
proportional to the length of the star arms.

At a coarse scale much larger than that of an individual star, we can treat the metamaterial
as a homogenized smooth surface without the bumps around each star. In this homoge-
nized view, the e�ect of each bump is to change the surface area of a neighborhood of the
star at equilibrium, where the spatially-varying amount of surface contraction depends
on the thickness, width, and length of the stars. �erefore ℓ, ℎ,𝑤 equip the homogenized
surface with a rest state described by a non-Euclidean metric [118]. In addition to chang-
ing the local surface area of the homogenized surface, the stars modify the surface’s rest
extrinsic curvature, since the stars are printed on top of the fabric (rather than embedded
within it); in other words the metric of the metamaterial varies in the thickness as well as
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Fig. 3.2: Our simulation tool (le�) correctly predicts that a uniform star pa�ern, with free boundary,
rolls up into a cylinder at static equilibrium (right). �is complex behavior is due to the extrinsic
curvature induced by the bilayer structure of the ribbon-and-fabric assembly, and the coupling of
the bending of neighboring stars causing global symmetry-breaking in the pa�ern.

the curvilinear directions. �e di�erential contraction described by this metric causes the
surface to buckle out of plane, in order to exchange large amounts of stretching strain
for slight bending strain (Figure 3.1c). �is relationship between change of metric and
buckling has also been exploited by related self-shaping fabrication technologies based
on swelling [63] or auxetic linkages [67]. In our case, the precise relationship between
the surface metric and the values of ℓ , ℎ, and𝑤 depends on a complex physical coupling
between the fabric and the printed plastic ribbons.

We also observed a coupling phenomenon between neighboring stars, where the bending
of each individual star propagates to adjacent stars through deformation of the fabric
in between (Figure 3.1d). It is unclear whether this behavior is a consequence of, or
an additional e�ect independent of the induced non-Euclidean metric. �is coupling
leads to globally consistent symmetry-breaking in the surface, a phenomenon that is
especially visible when we do not �x the boundary of the domain, since in this case the
accumulation of local bending makes the entire surface fold on itself to form a tube, as
shown in Figure 3.2.

Given the complexity of the physical phenomena involved, from local contraction of the
surface to global propagation of bending, we propose a dedicated numerical simulation
model to predict the shape that user-provided star pa�erns would take. In the following
sections we present the di�erent material models used, they have all been implemented
in C++ and their implementation is available on GitHub [61].
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3.2.2 Fabric’s material model

We model the fabric as a plate discretized using constant strain triangles and edge-based
bending hinges following the popular Discrete Shells model of Grinspun et al. [47]. �e
energy describing the behavior of the fabric is computed as a sum of a �exural term
associated to bending, and a membrane term associated to stretch, it is optimized to �nd
the static equilibrium con�guration (see Section 3.2.4).

For the �exural term, we followed the implementation suggested by Tamstorf and Grin-
spun [135] and compute it as a sum over edges of the mesh:

𝑊𝐵 (𝑥) = 𝑘𝐵
∑︁
𝑖

3‖𝑒𝑖 ‖2

𝐴𝑖

(
2 tan

(
𝜃𝑖

2

))2
(3.1)

where 𝜃𝑖 is the dihedral angle, ‖𝑒𝑖 ‖ is the initial length of edge 𝑒𝑖 ,𝐴𝑖 is the sum of the initial
areas of the adjacent triangles, 𝑘𝐵 = 𝐸ℎ3

24(1−𝜈2) is the bending sti�ness, ℎ is the thickness of
the membrane, 𝐸 its Young’s modulus and 𝜈 its Poisson’s ratio. While bending forces are
typically much smaller than membrane forces in Kirchho�-Plateau surfaces and can be
mostly neglected [95], we found that accounting for the �nite �exural resistance of the
material at the boundary between the stars and fabric was necessary to limit the tangent
discontinuities at the boundary and to reproduce the global curvature of the surface that
we observed on the real artifacts (see Figure 3.5).

Our structures exhibit high localized stresses and large deformations near the tips of the
stars’ arms, due to the arm tips bending and “digging into” the fabric substrate. Using a
linear material model for the fabric causes elements to completely compress and cause
so-called altitude collapses [135] which leads to division by zero in the Discrete Shells
model. To prevent this problem, we use a neo-Hookean material model to approximate the
nonlinear deformation of the fabric near the rod tips. �e membrane energy contribution
writes as

𝑊𝑀 (𝑥) =
ℎ

2

∑︁
𝑖

𝐴𝑖

(
𝜇 (tr(𝐹𝑇 𝐹 ) − 2 − 2 ln 𝐽 ) + 𝜆(ln 𝐽 )2

)
(3.2)

where 𝜆 = 𝐸𝜈

1−𝜈2 and 𝜇 = 𝐸
2(1+𝜈) are the Lamé coe�cients, 𝐹 is the deformation gradient,

and 𝐽 =
√
det 𝐹T𝐹 . Note that this formula is slightly di�erent than the equivalent one for

volumetric elements.

Despite the orthotropic behavior exhibited by the fabric that we used, we noticed that in
the case of this star tiling pa�ern it was su�cient to model it as an isotropic material.
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3.2.3 Rods material model

We use the Discrete Elastic Rods (DER) model [13, 14, 75] for modeling the arms of
the stars. �is model is based on a reduced centerline representation, where a rod is
represented as a strip of vertices with additional degrees of freedom to represent twist.
For a rod with a rectangular cross-section with thickness𝑤𝑛 and width𝑤𝑏 , the energy
contribution of a rod writes as:

𝑊𝑅 =
1

2

∑︁
𝑖

𝐸𝐴

8

( (
‖𝑒𝑖−1‖2 − 𝑙2𝑖−1

)2
𝑙3
𝑖−1

+
(
‖𝑒𝑖 ‖2 − 𝑙2𝑖

)2
𝑙3
𝑖

)
+ 2

𝑙𝑖−1 + 𝑙𝑖

(
𝐸𝐼1

(
𝜅1𝑖 − 𝜅1𝑖

)2
+ 𝐸𝐼2

(
𝜅2𝑖 − 𝜅2𝑖

)2
+ 𝜇 𝐼1 + 𝐼2

2
𝜏2𝑖

) (3.3)

where 𝐼1 =
𝑤3
𝑛𝑤𝑏

12 , 𝐼2 =
𝑤3
𝑏
𝑤𝑛

12 are the geometric moments of inertia, 𝐴 = 𝑤𝑛𝑤𝑏 is the
cross-sectional area,𝜏𝑖 is the discrete twist associated with vertex 𝑖 , 𝜅1𝑖 and 𝜅2𝑖 are the two
components of the curvature binormal projected onto the local material basis. For more
details, see [75].

Coupling. We enforce the coupling between the plate and the rods via colocation:
all centerline degrees of freedom of the rod are also vertices of the plate. �is strategy
implies that the fabric mesh must have edges that align with the star arms: we �rst
discretize the rods constituting each star (by choosing the resolution of the rod centerline)
and then we generate the fabric mesh using constrained Delaunay triangulation [122].
Within a star, the rods should also be coupled together because they are rigidly linked at
the center of the star.

De�ning energies that allow for proper transfer of bending and twisting forces from
one rod to the other is, in the general case, a challenging problem. Even though several
models exist for computing connections between rods using within the DER framework
[76, 96], they can be complex to implement and expensive to run. We instead exploit the
3-folded symmetry of stars and the fact that the rods mostly bend about their width axis:
we compute twist and bending at the connection as if each star arm was split into two
“copies” of the same rod with the same geometry and each was bonded to one rod copy
on each of the two other arms (see Figure 3.3). �e elastic energy contributed by the
connection is then the sum of the three pairwise bending and twisting energies, weighted
by 1

2 since the cross-sectional area of each “rod copy” is half that of the full rod. �is
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Fig. 3.3: To de�ne a bending and twist-
ing energy at the connection between
three rods, we split each rod into two
copies and divide the volume of the
connection into three equal parts, here
shown in di�erent colors.

approximation gives the proper weighting only in the case where rods only bend about
their width axis at the center connection, that is 𝜅2𝑖 = 0. In that case, both connection
contributions are weighted by 𝐼1 = 𝑤3

𝑛𝑤𝑏

24 and thus sum to the expected total.

Bilayer ribbon model. Simply colocating the vertices representing star arms to the
thin shell model representing the fabric does not correctly capture the geometry of the
ribbon-on-fabric assembly: in the printed assembly, the stars are on top of the fabric, while
in the colocation model, rods are embedded within the fabric. Yet the bilayer structure of
the assembly is precisely what causes the rods to bend in a privileged direction, because
of the di�erences in stresses between the traction-free top surface of the ribbon and the
compressive forces applied by the fabric to the bo�om surface. We can easily observe
this so-called bilayer e�ect on a �at ribbon printed on top of a strip of fabric of the same
width: the structure will not stay �at when released and will consistently bend in the
same direction (see Figure 3.4, le�). Furthermore, the assembly also exhibits some plastic
deformation: when we separate the ribbon from the fabric layer, the initially straight
ribbon does not completely recover its original shape (see Figure 3.4, right) and has a
non-zero rest curvature 𝜅.

Van Rees et al. [147] show that a bilayer shell made of two monolayers of respective
Young’s moduli 𝐸1, 𝐸2, thicknesses ℎ1, ℎ2, and where the strain-free rest state of each
layer is given by a di�erent metric (i.e. �rst fundamental form) a𝑟1 and a𝑟2 , is energetically
equivalent to a monolayer with non-zero rest curvature. �ey give formulas for the rest
�rst and second fundamental forms a𝑟 and b𝑟 of this equivalent monolayer (see [147,
Supplemental material section S1.3.3]). To account for ribbon plasticity, we extend their
formula to the case where each of the two layers in the bilayer have non-�at rest shape
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Fig. 3.4: A plastic ribbon printed on top of a strip of fabric. Due to the bilayer e�ect, the ribbon
will naturally bend upwards (le�). �e plasticity of the material causes the upper layer not to
recover its initially �at shape when detached from the fabric layer (right).

with the same second fundamental form b̄.1 Here we derive new formulas for a𝑟 and b𝑟

that account for this bilayer rest curvature.

To this end, we make the following ansatz:

a𝑟1 = a𝑟 + 𝛼1(b𝑟 − b̄)
a𝑟2 = a𝑟 − 𝛼2(b𝑟 − b̄),

(3.4)

where 𝛼1 and 𝛼2 are factors to be determined so that the elastic energy of the e�ective
monolayer and that of the bilayer agree up to a constant. Note that for any choice of
these factors, Equation (3.4) is satis�ed by se�ing

a𝑟 =
a𝑟1 + a𝑟2

2
− 𝛼1 − 𝛼2
2(𝛼1 + 𝛼2)

(a𝑟1 − a𝑟2) (3.5)

b𝑟 = b̄ +
a𝑟1 − a𝑟2
𝛼1 + 𝛼2

. (3.6)

Like van Rees et al. [147], we de�ne the elastic inner product associated to a material
with Poisson’s ratio 𝜈 as

< A,B >=
𝜈

1 − 𝜈2
tr(A) tr(B) + 1

1 + 𝜈 tr(AB) (3.7)

and the elastic energy norm as

| |A| |2 =< A,A >=
𝜈

1 − 𝜈2
tr2(A) + 1

1 + 𝜈 tr(A2). (3.8)
1Note that in our case, only the plastic ribbon exhibits signi�cant plasticity. However, assuming that

the fabric has the same curved rest state as the ribbon helps simplifying the formulas. Since our fabric is
highly �exible, we believe that the error that we introduce by doing so is negligible.
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Le�ing a𝑐 and b𝑐 denote, respectively, the �rst and second fundamental forms of the
midsurface of the shell in the current con�guration, we can de�ne the energy of the
bilayer by

𝑊𝐵𝐿 =
1

2

∫
𝑈

𝐸1

[
ℎ1

8
| |a−1𝑟1 a𝑐 − I| |2 +

ℎ31

24
| |a−1𝑟1 (b𝑐 − b̄) | |2

+
ℎ21

8
< a−1𝑟1 a𝑐 − I, a−1𝑟1 (b𝑐 − b̄) >

]√︁
det a𝑟1 d𝑥 d𝑦

+1
2

∫
𝑈

𝐸2

[
ℎ2

8
| |a−1𝑟2 a𝑐 − I| |2 +

ℎ32

24
| |a−1𝑟2 (b𝑐 − b̄) | |2

−
ℎ22

8
< a−1𝑟2 a𝑐 − I, a−1𝑟2 (b𝑐 − b̄) >

]√︁
det a𝑟2 d𝑥 d𝑦

(3.9)

and that of the equivalent monolayer by

𝑊𝑀𝐿 =
1

2

∫
𝑈

[
𝐸1ℎ1 + 𝐸2ℎ2

8
| |a−1𝑟 a𝑐 − I| |2 +

𝐸1ℎ
3
1 + 𝐸2ℎ

3
2

24
| |a−1𝑟 (b𝑐 − b𝑟 ) | |2

+
𝐸1ℎ

2
1 − 𝐸2ℎ

2
2

8
< a−1𝑟 a𝑐 − I, a−1𝑟 (b𝑐 − b𝑟 ) >

]√︁
det a𝑟 d𝑥 d𝑦,

(3.10)

where 𝑈 is the parameterization domain of the shell midsurface parameterized by curvi-
linear coordinates (𝑥,𝑦).

A�er plugging (3.4) in Equation (3.9), expanding the terms inside the norms, discarding
all terms which do not depend on a𝑐 nor b𝑐 (and therefore do not change the equilibrium
state), and equating all the remaining terms, we �nd that𝑊𝐵𝐿 matches𝑊𝑀𝐿 (up to a
constant) when the following system of equations is satis�ed:

𝐸2ℎ2𝛼2 − 𝐸1ℎ1𝛼1
4

=
1

8
(𝐸2ℎ22 − 𝐸1ℎ

2
1)

𝐸1ℎ
2
1𝛼1 + 𝐸2ℎ

2
2𝛼2

8
=

1

12
(𝐸2ℎ32 + 𝐸1ℎ

3
1).

(3.11)

Solving System (3.11) for 𝛼1 and 𝛼2 gives us

𝛼1 =
4ℎ31𝐸1 + 3ℎ21ℎ2𝐸1 + ℎ

3
2𝐸2

6ℎ21𝐸1 + 6ℎ1ℎ2𝐸1

𝛼2 =
ℎ31𝐸1 + 3ℎ1ℎ

2
2𝐸2 + 4ℎ32𝐸2

6ℎ1ℎ2𝐸2 + 6ℎ22𝐸2
,

(3.12)
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which allows us to write

b𝑟 − b̄ =
a𝑟1 − a𝑟2
𝛼1 + 𝛼2

=
6ℎ1ℎ2𝐸1𝐸2(ℎ1 + ℎ2)

ℎ41𝐸
2
1 + 2ℎ1ℎ2𝐸1𝐸2(2ℎ21 + 3ℎ1ℎ2 + 2ℎ22) + ℎ

4
2𝐸

2
2

(a𝑟1 − a𝑟2). (3.13)

In our case, the quantities 𝐸1, ℎ1 and a𝑟1 correspond to the plastic layer, and 𝐸2, ℎ2 and
a𝑟2 correspond to the fabric layer. �e plastic material that we use is much sti�er than
the fabric, i.e. 𝐸1 >> 𝐸2, so we can further simplify this expression:

b𝑟 − b̄ ≈ 6ℎ2(ℎ1 + ℎ2)𝐸2
ℎ31𝐸1

(a𝑟1 − a𝑟2). (3.14)

We assume the plastic printed on top of the stretched fabric has no residual strain, so

that the metric of the plastic is a𝑟1 =
(
1 0

0 1

)
. Since the fabric is stretched from rest by a

factor 𝑠 , a𝑟2 =
(
1
𝑠2

0

0 1
𝑠2

)
. We then have

b𝑟 − b̄ ≈ 6ℎ2(ℎ1 + ℎ2)𝐸2
ℎ31𝐸1

(
1 − 1

𝑠2
0

0 1 − 1
𝑠2

)
, (3.15)

i.e.,

b𝑟 ≈
6ℎ2(ℎ1 + ℎ2)𝐸2

ℎ31𝐸1

(
1 − 1

𝑠2
0

0 1 − 1
𝑠2

)
+ b̄. (3.16)

�e bending energy of the ribbon-on-fabric assembly will penalize deviation of the
assembly’s second fundamental form b𝑐 away from b𝑟 . Since the arms of our stars are
much longer than they are wide, we neglect bending deformations in the width direction,
and assume that the arms are at rest when the curvature 𝜅 in the longitudinal direction
matches the normal curvature in that direction prescribed by b𝑟 :

𝜅 =
6ℎ2(ℎ1 + ℎ2)𝐸2

ℎ31𝐸1

(
1 − 1

𝑠2

)
+ 𝜅, (3.17)

where 𝜅 is the rest curvature of the plastically deformed rod in the longitudinal direction.

We can show that, in the case of 𝜅 = 0, this result is consistent with previous models for
bilayers such as the classic Timoshenko model for bilayer metal thermostats [141] which
states that the curvature is given by

𝜅 =
6(ℎ1 + ℎ2)

3(ℎ1 + ℎ2)2 + ℎ21 + ℎ
2
2 + ℎ

3
2
𝐸2
𝐸1

+ ℎ31
ℎ2

𝐸1
𝐸2

(
1 − 1

𝑠2

)
−−−−−−→
𝐸1>>𝐸2

6ℎ2(ℎ1 + ℎ2)𝐸2
ℎ31𝐸1

(
1 − 1

𝑠2

)
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(a) No bending (b) No bilayer (c) Our model (d) Fabrication

Fig. 3.5: Impact of critical components of our model when simulating a uniform �eld of stars. (a)
Neglecting bending forces in the fabric makes the stars contract independently of each other,
preventing the emergence of global curvature. (b) Using a �at rest shape for the rods makes
the stars less curved than in reality. (c, d) Our complete model be�er reproduces the fabricated
surface.

We use this expression to set the rest curvature of the rods about their width axis, 𝜅1𝑖
in Equation 3.3. �is model allows us to accurately reproduce the global curling up
of a uniform star pa�ern into a rolled tube; see Figure 3.2. We provide in Figure 3.5 a
comparison between our model and a model that ignores this bilayer e�ect, showing that
our model be�er captures the behavior of a real-world fabricated surface.

3.2.4 Optimization

De�ning the total energy𝑊 (x) =𝑊𝐵 (x) +𝑊𝑀 (x) +𝑊𝑅 (x) +𝑊𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 (x) where x is a
vector stacking all degrees of freedom, we compute the equilibrium shape of a star pa�ern
by minimizing the total energy and �nding x = argmin𝑊 (x) using the Newton-Raphson
procedure with line search [90].

Starting from a �at initial guess x0, the Newton-Raphson algorithm iteratively looks for
x such that ∇𝑊 (x) = 0 and ∇2𝑊 (x) � 0. To use this algorithm, we need to compute the
�rst and second derivatives of𝑊 , which are implemented in our open-source library
[61]. �is algorithm iteratively solves a linear system involving the Hessian matrix
∇2𝑊 (x), this matrix may be non-positive, when that happens we regularize it by adding
a multiple of the identity matrix. We report the runtime performances of this minimization
procedure for all the examples shown in this chapter in Table 3.1.

38



3.3. FABRICATION

Fig. 3.6: Our 3D printing setup. We stretch the fabric and clamp it between a wooden frame and a
plexiglas plate, which we a�ach to the build plate with magnets (le�). �e printer deposits plastic
on the surface of the stretched fabric (right).

3.3 Fabrication
We now describe the hardware setup we used to produce our physical models, shown in
Figure 3.6.

Our substrate is an elastic polyurethane fabric. We used a stretch factor of 𝑠 = 1.35 (in
both directions) in all of our experiments. To hold the fabric in place under tension, we
built a custom, 26 by 26cm wooden frame and clamp the fabric between the frame and a
plexiglass plate of similar dimensions (see Figure 3.6), which we �x to the print bed with
magnets. To con�rm that the fabric has been installed in its frame at the proper tension,
we use a fabric marking pencil to draw a square with side length 10 cm near the center
of the fabric before stretching it, and check that the square has side length 10𝑠 cm once
the fabric is clamped in its frame.

In contrast to prior work [95] that used standard PLA printing �lament, we performed
our experiments using a more �exible TPU95A plastic to allow �ner-grained control and
higher range of star bending sti�ness. We employ a UltiMaker2+ printer, which performs
well with �exible �lament. �e printer must be calibrated to account for the thickness of
the fabric and plate, e�ectively raising the height of the print bed. Indeed, we observed
that without proper calibration to ensure that the nozzle begins directly above the fabric
when extruding the �rst star layer, the melted plastic does not stick well to the fabric.

�e material properties of printing �lament can vary widely even between di�erent
spools of the same material purchased from the same manufacturer. To avoid relying
on inaccurate material parameters from a material datasheet, we used Equation 3.17 to
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directly calibrate the relative Young’s modulus of the plastic with respect to the fabric.
We printed 4 × 10 strips of plastic of known thicknesses ℎ1 ranging from 0.3 mm to 0.45
mm over the fabric, and trimmed the fabric around each strip to produce a beam whose
cross-section is a fabric-plastic bilayer. �is beam �exes out of plane into a circular arc
of approximately constant curvature; we photographed the side view (see Figure 3.4,
le�) and estimated the beam’s natural curvature 𝜅 from the dimensions of the bounding
rectangle in the image plane. We then carefully removed the bo�om fabric layer from
the plastic rod and measured its rest curvature 𝜅 the same way (see Figure 3.4, right).
Since we know the fabric’s thickness ℎ2 = 0.8 mm from measurements, the stretch factor
𝑠 = 1.35, and the thickness ℎ1 of each printed plastic strip, we use linear regression and
Equation 3.17 to deduce the ratio of Young’s moduli 𝐸1/𝐸2 = 3.2 × 103.

3.4 Evaluation
We �rst present several simulation experiments that illustrate how our model behaves
with typical parameter se�ings. We then demonstrate the potential of our approach for
architectural modeling by designing and fabricating a variety of freeform surfaces.

E�ect of parameters. As described in section 3.2, the amount of contraction of the
surface is in�uenced both by the arm length ℓ and thickness ℎ of the stars. Figure 3.7
illustrates the e�ect of these two parameters when we vary them according to a linear
radial gradient over a hexagonal domain. Se�ing ℓ smaller at the boundary of the domain
and larger in the center gives more room for contraction at the boundary than in the
middle, inducing the surface to buckle into a dome-like shape. A similar e�ect is achieved
by using thinner stars on the boundary. In contrast, using long or thick stars at the
boundary prevents contraction, so that the surface shape near the center is �a�er. Using
thick stars also results in smoother surfaces overall, while thin stars decorate the surface
with multiple small bumps. While both thickness and arm length can be varied at the
same time, we observed that ℓ usually has a greater e�ect on curvature, and so we
used a �xed thickness of ℎ = 0.3 mm for all other results. We also experimented with
variations in arm width𝑤 , but this parameter had less impact that ℎ on the surface shape
— consistent with the fact that the bending sti�ness of the star arms scales cubically in
the arm thickness, but only linearly in its width.
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Fig. 3.7: We show the e�ect of two design parameters on the equilibrium shape of the star
metamaterial: the length of the star arms ℓ and their thickness ℎ. For this experiment we print 37
stars on a hexagon of fabric with side length 67 mm. In the top row we �xed ℓ = 10 mm and set,
from le� to right, ℎ with a decreasing radial gradient from 0.6 mm to 0.2 mm, a constant value of
0.4 mm and an increasing gradient from 0.2 to 0.6 mm. In the bo�om row we �x ℎ = 0.3 mm
and prescribe three di�erent radial gradients for ℓ : a decreasing gradient from 10 mm to 4 mm,
and constant value of 7 mm and an increasing gradient from 4 mm to 10 mm.

Equipped with the ability to vary surface contraction locally, we can achieve di�erent
amounts of curvature by adjusting the rate of change of surface contraction. Figure 3.8
illustrates this control on a hexagonal domain �xed at its boundary, where we vary the
size of the stars according to radial gradients of di�erent pro�les to produce surfaces
ranging from a bell shape to a cone. For illustration purposes, we use a stronger stretching
factor 𝑠 = 1.75 in this experiment.

Example designs. Figure 3.9 showcases several architectural models that we created
with our approach. For each result, we provide the input star pa�ern, the simulated
surface, and a picture of the fabricated model. In all cases, we observe a close agreement
between our simulation and reality.

�e �rst two rows on top show singly-curved, cylinder-like shapes with �rst a curved
cylindrical tunnel composed of a uniform �eld of stars which we �xed to the ground along
two of its edges to prevent it to fold on itself, and second a cylindrical section with varying
star sizes supported by six needles to model a small roof. �e third row shows the result
of a layout where large stars form a U-shaped boundary, while smaller stars contract
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Fig. 3.8: E�ect of di�erent arm-length gradient pro�les on the equilibrium shape of a hexagonal
star pa�ern. Each row corresponds to a di�erent function ℓ (𝑥,𝑦): on the le�, a plot of ℓ as a
function of distance to the hexagon center; in the middle, a diagram of the corresponding star
pa�ern design; and on the right, the simulated equilibrium shape.
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Name Runtime Nb of vertices
tunnel 23m57.8s 8020
roof 17m27.7s 7237

U shape 28m22.7s 10551
doubly-curved 40m0.4s 12140

Table 3.1: Runtime performance of the simulation on a PC with an Intel Xeon Gold 5118
processor running at 2.60GHz (single-threaded).

the surface in its center. �e resulting surface takes the shape of an amphitheater. Only
points along the U-shaped boundary were �xed. �e last row shows a doubly-curved
surface that we obtained using a hexagonal domain where we made the stars smaller
in the middle and towards its three �xed corners. �e three other corners are covered
by bigger stars, which prevent them to contract as much as their surrounding, yielding
buckling. We also applied a textile strengthener (Powertex) so that this surface supports
its own weight.

Printing our models took 20 minutes on average, see Table 3.1 for simulation runtimes.

Discussion. �e examples shown demonstrate that the speci�c pa�ern of disjointed
stars we employed was well-suited to create positively curved surfaces and thus move
away from the appearance of minimal surfaces that is prevalent in general tensioned
structures. �e tiling pa�ern of stars was �exible enough so that, by varying the size of
the stars, we were able to create a variety of shapes, both singly- and doubly-curved. To
aid in the design and shape exploration of this self-shaping textile medium, I developed a
form-�nding tool which allowed for easy visualization of the resulting shape. �e form-
�nding method was inspired from existing work [95] but also modeled more complex
behavior such as the bilayer e�ect of the plastic-fabric composite assembly. �is form-
�nding method shows good agreement with the printed results, but the method may
not be accurate for simulating some pa�erns di�erent than tilings of stars. In the next
chapter I will present a general-purpose simulation method for form-�nding deployable,
printed-on-fabric structures which is intended to work well on a variety of printed
pa�erns.
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Star pa�ern Simulation Fabrication

Fig. 3.9: Various architectural models created using our system, from top to bo�om: a U-shape, a
tunnel and a doubly-curved roof. For each result we provide the star layout to be printed (le�),
the simulated surface (middle), and the printed result (right).
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Chapter 4

Bilayer Shell Simulation of Self-Shaping
Textiles

4.1 Introduction
Making simplifying assumptions about the behavior of materials is common practice
when implementing simulation tools. Even the simple act of choosing a scale at which to
observe a given physical phenomenon naturally leads to ignoring certain e�ects because
they are not observable at the considered scale. �ese simplifying assumptions are o�en
necessary as they allow to focus the computational e�ort on the phenomena which
actually contribute to the results, but simpli�cations that are valid in one context might
not be in another where they would introduce noticeable discrepancies between the actual
object and its simulated counterpart. In the previous chapter, two of such simplifying
assumptions were made, the fabric was thought to have an almost isotropic behavior
and the rods’ width was assumed to be negligible compared to their length. In this
chapter, we are interested in developing a simulator that is not only capable of predicting
the deployment of the shapes presented before, but also more general pa�erns of rod
networks, general parallel curves, or even pa�erns which do not look like curves at all
(see examples below). With that goal in mind, we can revisit those assumptions and see
if they are still valid approximations.

Guberan and Clopath [51] Erioli and Naldoni [37] Fields [38]



CHAPTER 4. BILAYER SHELL SIMULATION OF SELF-SHAPING TEXTILES

Impact of width In the previous chapter – and similarly to Pérez et al. [95] – we
used the Discrete Elastic Rods (DER) method to simulate the plastic curves. �e DER
method is based on a one-dimensional, reduced centerline representation which models
the cross-section of the rods implicitly in the constitutive equations but does not explicitly
model its geometry nor the impact it can have on the underlying substrate. �is geometric
representation proved to be e�ective in the case of sparse networks of connected curves
[95] as well as in our case of 3-pointed stars. However, ignoring the width of curves can
be detrimental when one wishes to modulate the retraction of the fabric in order to create
some metric distortion. �is can be easily seen by considering a simple pa�ern of parallel
straight ribbons printed on a fabric that was stretched uniaxially along the 𝑥-axis. If the
ribbons are modeled as thin curves, the fabric will be free to retract back to its original
width 𝑙0:

However, if the ribbons have their surface properly modeled, the fabric will only be able
to properly retract in the black regions where it is not impeded by the white plastic. �e
�nal width will therefore be larger than its initial width 𝑙0.

It is therefore necessary to have a proper surface model for the printed pa�erns so that
the retraction of the fabric can be tracked accurately. A surface representation for the
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plastic has also the advantage of being able to generalize to pa�erns which are not curves
such as hexagon tilings [38].

Orthotropic behavior For the case of 3-pointed stars
in the previous chapter, the fabric was modeled as
an isotropic membrane which means that the simu-
lated textile had the same properties in every direc-
tion. �erefore, the simulation was essentially rotation-
independent: no ma�er how the stars were oriented, the
results would be the same. And indeed we can observe
experimentally that the approximation was valid in that
case: when printing individual stars or groups of stars in di�erent orientations, the results
are qualitatively the same (see inset). But this is not the case for all pa�erns, a pa�ern of
parallel straight ribbons for example might give very di�erent results depending on its
orientation. I did an experiment where I printed two sets of parallel ribbon pa�erns with
di�erent thicknesses. �e �rst set (le�) was printed in one orientation, while the second
(right) was printed at a 90° angle. �e resulting shapes bent along two di�erent axes:

A possible explanation for this experimental result would be that the samples have two
di�erent bending modes, one along the ribbons and one across, and which one dominates
the other depends on the tensile forces applied by the surrounding fabric to the ribbons.
In that case, the fabric having an orthotropic response – which means it has possibly
di�erent responses when rotated by a 90° angle – could explain this surprising result.
Materials which have a one-axis re�ection symmetry are known to exhibit orthotropic
properties [115], and indeed looking at the structure of a typical elastic textile (which are
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Fig. 4.1: Microscope view of a �nely-kni�ed spandex textile (80% polyamide, 20%
elastane).

usually kni�ed following speci�c stitch pa�erns for be�er compliance) we can see the
kni�ing pa�ern exhibits such a re�ection symmetry (see Fig. 4.1).

For a simulation method to work on as many printing-on-fabric scenarios as possible, it
is therefore necessary to take into account both the exact width of the printed curves
and the direction-dependent behavior of the stretched fabric. However, to the extent of
my knowledge, there is no simulator for self-shaping textiles which takes into account
both of these e�ects. As I mentioned before, both our method from Chapter 3 and the
previous work of Pérez et al. [95] used a one-dimensional representation for the plastic
curves coupled to an isotropic membrane model. �e work of Stapleton et al. [132] who
used the FEM so�ware Abaqus to simulate a simple rectangular shape goes further: by
modeling explicitly the surface of the plastic as well as the fabric, their model seems be�er
suited to accurately track local metric variations induced by the width of the printed lines.
However, they still modeled the fabric as an isotropic material which can be problematic,
as highlighted above.

Overview. In this chapter, I will present preliminary work towards developing a general
method to simulate the �nal deployed shape of printed-on-fabric pa�erns, by modeling
both the �nite width of the printed curves and the non-linear, orthotropic response of the
fabric. �e method is based on a physically accurate shell simulator which naturally takes
into account the geometry of printed ribbons because of its surface representation, and is
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tailored to reproducing bilayer e�ects such as the one encountered when a�aching a rigid
material to a pre-stretched substrate [147]. Instead of computing explicitly the curvature
of the plastic-fabric bilayer and se�ing it as the rest curvature in a rod-based framework,
our shell simulator directly integrates the bilayer e�ect within its constitutive equations.
�erefore, this shell simulation method takes into account both intrinsic behaviors such
as metric frustration due to the printed rods having �nite width, and extrinsic behaviors
such as bilayer e�ects due to the layers of plastic and fabric having di�erent reference
geometries.

To give accurate results, the simulator needs to be properly calibrated: the geometry of
the �nal deployed shape can be very sensitive to changes in material properties such
as Young’s modulus of the di�erent materials and in geometric properties such as the
thickness of the di�erent layers. We performed extensive measurements on two materials:
an elastic textile material which can be used for printing-on-fabric on one hand, and a
�exible �lament used for 3D printing on the other hand. Using these measurements, I
developed a data-driven material law which reproduces well the high-strain behavior of
the stretched fabric when it is being released.

In summary, the two main contributions of this chapter are (1) a general-purpose simula-
tion method able to accurately reproduce a variety of printed-on-fabric designs, and (2) a
set of experimental results used to calibrate this simulation tool to particular materials.

�is chapter is part of an ongoing collaboration between Victor Romero from Inria Grenoble,
Etienne Vouga from UT Austin, and my supervisors Adrien Bousseau and Mélina Skouras.
Victor Romero helped me perform the physical experiments described in the rest of this
chapter.

4.2 Background
Bilayer shell simulation. Van Rees et al. [147] proposed a shell simulation method
capable of modeling combinations of layers with di�erent metrics by de�ning an elastic
energy inner product. �ey showed how to compute the �rst and second rest fundamental
forms of the bilayer as a function of the rest fundamental forms of the individual layers.
Chen et al. [23] used this method to simulate environmental e�ects such as moisture
or temperature gradients. We adopt this framework to model the bilayer formed by the
combination of plastic and fabric whose respective �rst fundamental forms and material
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properties can be combined into a reduced shell representation (see Section 4.3). Even
though this model was based on a small-strain analysis, we show how to adapt it in our
case where the fabric is stretched well past its linear regime.

Fabric simulation. Computer graphics has had a long history of trying to simulate
textiles, notably because of the need to realistically animate the clothes of virtual charac-
ters. In that context, the deformations are mostly restricted to the small-strain regime
and approximate models such as the popular approach of Bara� and Witkin [10] were
shown to work well in many cases.

However, the textiles are subject to extreme deformation in our case, for the simulation to
match real-life experiments we need to accurately reproduce the full stress-strain curve
and not just its derivative at 0. Unfortunately, it is impossible to derive a simple stress-
strain relationship for say, kni�ed fabrics, because fabric are heterogeneous materials
made from a multitude of �bers arranged into threads. �erefore it is di�cult to describe
the material response of textiles in terms of continuum mechanics, as we can do for
e.g. rubbers with the neo-Hookean or Mooney-Rivlin models. Instead, there are two
popular options: either simulate the fabric at a smaller, micro- or meso-scale, or use a
data-driven material model optimized for a given fabric material. Simulating at smaller
scales is the approach of yarn-based methods [29], the idea is to simulate the textile
at the level of individual threads where each thread is modeled as an elastic rod [14]
and contact and friction between threads is tracked as well. Unfortunately, this type
of method can become prohibitively expensive when considering a large area of fabric
because of the number of contact points involved. Homogenization-based methods can
mitigate the issue by combining the level of detail of yarn-based methods with the speed
of shell simulations [130] but they still need proper calibration and measurements to be
physically accurate.

Another approach is to directly measure the elastic response of the material and derive a
data-driven material model from those measurements. A way to do it is by measuring
so-called stress-strain curves, expressing the 2nd Piola-Kirchho� stress 𝝈 as a nonlinear
function of the Green strain 𝜺 = 1

2 (𝐹
T𝐹 − 𝐼 ), where 𝐹 is the deformation gradient. Volino

et al. [151] showed that we can express the entries of the stress matrix 𝜎𝑖 𝑗 as a nonlinear
function of the strains 𝜀𝑖 𝑗 to derive an orthotropic data-driven material model. We take
inspiration from their method, even though they do not take into account transverse
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e�ects, i.e. couplings between strains in both directions due to the Poisson e�ect.

4.3 Material model
Our printed-on-fabric metamaterial is modeled as an inhomogeneous shell which is
comprised of two di�erent materials: a fabric material and a bilayer material, i.e. each
point on the surface is either in a fabric-only area, or a bilayer area (see Fig. 4.2). Both
materials are modeled as thin shells but with di�erent material models: the bilayer shell
model is based on the work of van Rees et al. [147] which models the curvature of bilayers
by looking at metric di�erences between the two layers; and the fabric is modeled using a
custom data-driven material model which is ��ed against the experimental data described
in section 4.4.

Bilayer material Similar to the previous chapter (Eq. 3.9), the elastic energy of a
bilayer composed of two materials with rest �rst fundamental forms a𝑟1 and a𝑟2, Young’s

Fabric material

Bilayer material

Fig. 4.2: Example of modeling a 3-pointed star shape similar to the ones in Chapter 3:
the black area corresponds to the fabric and is modeled using a custom data-driven
material model, the white area corresponds to a plastic-fabric bilayer modeled using the
method of van Rees et al. [147].
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moduli 𝐸1 and 𝐸2, and thicknesses ℎ1, ℎ2 is de�ned as:

𝑊𝐵𝐿 =
1

2

∫
𝑈

𝐸1

[
ℎ1

8
| |a−1𝑟1 a𝑐 − I| |2 +

ℎ31

24
| |a−1𝑟1 b𝑐 | |

2

+
ℎ21

8
< a−1𝑟1 a𝑐 − I, a−1𝑟1 b𝑐 >

]√︁
det a𝑟1 d𝑥 d𝑦

+1
2

∫
𝑈

𝐸2

[
ℎ2

8
| |a−1𝑟2 a𝑐 − I| |2 +

ℎ32

24
| |a−1𝑟2 b𝑐 | |

2

−
ℎ22

8
< a−1𝑟2 a𝑐 − I, a−1𝑟2 b𝑐 >

]√︁
det a𝑟2 d𝑥 d𝑦

(4.1)

where < A,B >= 𝜈

1−𝜈2 tr(A) tr(B) +
1

1+𝜈 tr(AB) is the elastic inner product associated
to a material with Poisson’s ratio 𝜈 , and | |A| |2 =< A,A >= 𝜈

1−𝜈2 tr
2(A) + 1

1+𝜈 tr(A
2) is

the elastic energy norm.

a𝑟1 and a𝑟2 are respectively the �rst fundamental forms of the fabric and plastic layers.
Depending on how the fabric was stretched, a𝑟1 will have di�erent entries. Two use
cases are common when fabricating self-shaping textiles, the �rst case is uniaxial strain,
meaning the fabric was stretched only in one direction, the second case is isotropic stretch
which means the fabric was stretched equally in both directions. If we call 𝑠 the ratio of

lengths between the undeformed and the deformed state, we will have a𝑟1 =

(
1
𝑠2

0

0 1

)
for

uniaxial strain and a𝑟1 =
1
𝑠2
I for isotropic strain. Since the plastic is initially strain-free,

its �rst fundamental form corresponds to the identity matrix: a𝑟2 = I

a𝑐 and b𝑐 are respectively the �rst and second fundamental forms of the current con�gu-
ration. We discretize Equation 4.1 so that they are constant on each triangle. Following
Chen et al. [23], we compute a𝑐 on the triangle formed by vertices 𝑣𝑖, 𝑣 𝑗 , 𝑣𝑘 as:

a𝑐 =

(
‖𝑣 𝑗 − 𝑣𝑖 ‖2 (𝑣 𝑗 − 𝑣𝑖) · (𝑣𝑘 − 𝑣𝑖)

(𝑣 𝑗 − 𝑣𝑖) · (𝑣𝑘 − 𝑣𝑖) ‖𝑣𝑘 − 𝑣𝑖 ‖2

)
b𝑐 is computed with the “triangle with �aps” stencil of Grinspun et al. [46]:

b𝑐 =

(
(𝑛 𝑗 − 𝑛𝑖) · (𝑣 𝑗 − 𝑣𝑖) (𝑛 𝑗 − 𝑛𝑖) · (𝑣𝑘 − 𝑣𝑖)
(𝑛𝑘 − 𝑛𝑖) · (𝑣 𝑗 − 𝑣𝑖) (𝑛𝑘 − 𝑛𝑖) · (𝑣𝑘 − 𝑣𝑖)

)
𝑛𝑖, 𝑛 𝑗 , 𝑛𝑘 are normals de�ned on the edge opposite 𝑣𝑖, 𝑣 𝑗 , 𝑣𝑘 respectively, and computed
by averaging the normals of their adjacent faces.
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Equation 4.1 gives the elastic energy of a bilayer composed of homogeneous materials
with the same Poisson’s ratio 𝜈 . In our case, we use the average value of the Poisson’s
ratios of the two layers: the fabric’s Poisson’s ratio is measured from videos of a uniaxial
tensile test as the ratio of transverse contraction to axial strain and is estimated to be
about 0.3; the plastic material used (thermoplastic polyurethane) is known to be almost
incompressible [103] which means a value of 0.5.

Moreover, the fabric layer is not isotropic, we will see in section 4.4 that we can compute
its Young’s modulus 𝐸1 by averaging the tangent of the stress-strain curve upon unloading
over a sampling of di�erent orientations.

Fabric material model As is standard for modelling cloth [84, 154], we separate the
bending and membrane contributions of the energy:

𝑊𝐹 =𝑊bending +𝑊membrane.

For the bending contribution, as in the previous chapter (Eq. 3.1) we use the Discrete
Shell model of Grinspun et al. [47]:

𝑊bending = 𝑘𝐵

∑︁
𝑖

3‖𝑒𝑖 ‖2

𝐴𝑖

(
2 tan

(
𝜃𝑖

2

))2
For the membrane energy, since textiles are inhomogeneous materials made from a
multitude of �bers, it is di�cult to describe their material response with a simple law
derived from continuum mechanics as is possible for e.g. rubbers with the neo-Hookean or
Mooney-Rivlin models. Instead, we de�ne a custom parametric material model designed
to reproduce well the nonlinear response of the fabric especially when released a�er
a given amount of pre-stretch. For each triangle we can write the elastic energy as a
function of its Green strain tensor wri�en in Voigt notation as 𝜺 =

(
𝜀11 𝜀22 2𝜀12

)T
:

Ψ(𝜺) = 1

1 − 𝜈2
𝜺T

©­­«
𝛼1

√
𝛼1𝛼2𝜈 0

√
𝛼1𝛼2𝜈 𝛼2 0

0 0 𝛼3(1 − 𝜈2)

ª®®®¬ 𝜺 − 𝜑1(𝜀11) − 𝜑2(𝜀22) (4.2)

where 𝜑1 and 𝜑2 are symmetric log-barrier functions:

𝜑𝑖 (𝜀𝑖𝑖) = 𝛽𝑖
(
(𝜀𝑖𝑖 − 𝛾𝑖) log

(
𝛾𝑖 − 𝜀𝑖𝑖
𝛾𝑖

)
− 𝜀𝑖𝑖

)
if 𝜀𝑖𝑖 > 0,

= −𝛽𝑖
(
(𝜀𝑖𝑖 + 𝛾𝑖) log

(
𝛾𝑖 + 𝜀𝑖𝑖
𝛾𝑖

)
− 𝜀𝑖𝑖

)
if 𝜀𝑖𝑖 < 0.

(4.3)
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and
𝑊membrane = ℎ

∑︁
𝑖

𝐴𝑖Ψ(𝜺𝑖).

In the small strain regime,𝜑𝑖 ≈ 0 and the model has the form of an orthotropic StVK energy
[78], it then increases exponentionally in the high strain regime to match the measured
stress-strain curves in section 4.4. Since the function is symmetric with respect ot the y-
axis, it also penalizes exponentionally negative strains which is useful to prevent triangle
inversions. �e model is parameterized by seven coe�cients: 𝛼1, 𝛼2, 𝛼3, 𝛽1, 𝛽2, 𝛾1, 𝛾2
which are optimized to match the experimentally measured response, and a Poisson’s
ratio 𝜈 measured experimentally.

4.4 Measurements and ��ing
In this section, I will describe the di�erent experiments we conducted and how we used
these measurements to calibrate the simulation model presented above. We considered
two materials: an elastic textile which is representative of the kinds of materials used for
3D printing on stretched fabric, and a �exible 3D printing plastic �lament. �e textile is
a �nely-kni�ed lycra fabric composed of 80% polyamide and 20% elastane, while the
printing �lament material is a thermoplastic polyurethane known as Ultimaker TPU 95A.
We conducted three types of measurements: uniaxial stretch tests (performed on both
the fabric and plastic material), shear tests and cantilever tests (performed on the textile
only).

4.4.1 Uniaxial stretch

For this test, samples were prepared in a standard dogbone shape, the plastic was 3D
printed into a 15cm long by 1cm wide shape, while several fabric samples were laser cut
out of a 11cm long by 2cm wide template. �e fabric samples were cut out at di�erent
orientations to measure the orthotropy of the material, we measured the tensile response
of samples oriented at 0, 15, 30, 45, 60, 75, and 90° respectively (measured from the
horizontal axis in Fig. 4.1).

�e tensile measurements were made using an Instron 5865 machine with a 50N force
sensor which tracks both the displacement 𝑑 of the clamped endpoints and the force
applied 𝑓 (called the response of the material). �ese force-displacement curves then have
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Fig. 4.3: le�: uniaxial stretch testing setup, right: the stress-strain curve of a fabric sample forms a
cycle because the path followed is not the same between loading and unloading.

to be converted to stress-strain curves in order to be able to extract useful calibration
information such as the Young’s modulus of the materials. We convert these values into
entries of the second Piola-Kirchho� stress tensor 𝝈 = 𝜕Ψ

𝜕𝜺 and the Green strain tensor 𝜺
which are accurate quantities for large strains. For uniaxial stretch, the diagonal entries
of these 2 × 2 matrices can be computed from the force-displacement curves of either the
0° or 90° samples:

𝜀𝑖𝑖 =
𝑑

𝐿
+ 𝑑2

2𝐿2

𝜎𝑖𝑖 =
1

𝑤

(
𝑓

𝐿

𝑑 + 𝐿

) (4.4)

the 𝑖 = 1 values can be computed from the 0° sample and the 𝑖 = 2 values can be computed
from the 90° one.

Fig. 4.3 shows a picture of the rig setup. �e testing machine stretched and released
the samples by performing load-unload cycles, which created loops characteristic of
a hysteresis behavior when plo�ing the stress-strain curves. �is hysteresis, or path-
dependent behavior, is likely caused by the internal friction between �bers of the fabric
which rearrange as the textile gets stretched. Since we want to model the behavior of
the textile once it has been stretched and gets released, we are really interested in the
unloading part of the curve (in green in Fig. 4.3).

We �rst use the stress-strain curves of the plastic and the di�erent fabric samples to
calibrate the bilayer material model (Equation 4.1), and in particular, to measure the
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Fig. 4.4: le�: stress-strain curve for the plastic material, the slope of its tangent at 0 is the material’s
Young’s modulus; right: stress-strain curve for the fabric material, here we are interested in the
slope of the tangent upon unloading.

Young’s moduli 𝐸1 and 𝐸2 of the two layers. Classically, the Young’s modulus is the
slope of the tangent at 0 of the stress-strain curve, it is a linear approximation of the
stress-strain behavior for small strains, we can therefore compute the plastic’s Young’s
modulus 𝐸1 by �nding the tangent at zero of its stress-strain curve (Fig. 4.4, le�). For
the fabric substrate however the situation is a bit di�erent, since it was pre-stretched
when the plastic-fabric bilayer was formed, it does not make much sense to consider an
approximation of its response for strains close to zero since the plastic layer prevents it
from ever going back to its original length. Instead, the linear approximation should start
from the maximum strain value, 𝐸2 is therefore computed as a pseudo “Young’s modulus”
by �nding the slope of the tangent at the point of release (Fig. 4.4, right). Since this value
is measured at the point of unloading, it may depend on how far the sample was stretched,
to account for a dependency on the initial strain of the fabric, we performed two tests in
which the fabric samples were stretched up to 45% and 70% of their initial lengths, and
linearly interpolate between the two measured values to simulate self-shaping textiles
pre-stretched with a di�erent strain value.

We also use the uniaxial stretch data to �nd the coe�cients of the fabric material model.
We can compute the stress tensor by di�erentiating Equation 4.2 (assuming 𝜀𝑖𝑖 > 0):

𝝈 =
𝜕Ψ

𝜕𝜺
=

1

1 − 𝜈2
©­­«

𝛼1
√
𝛼1𝛼2𝜈 0

√
𝛼1𝛼2𝜈 𝛼2 0

0 0 𝛼3(1 − 𝜈2)

ª®®®¬
©­­«
𝜀11

𝜀22

2𝜀12

ª®®®¬ −
©­­­­«
𝛽1 log

(
𝜀11−𝛾1
𝛾1

)
𝛽2 log

(
𝜀22−𝛾2
𝛾2

)
0

ª®®®®¬
. (4.5)

We can use the relationship 𝜈 = −𝜀22
𝜀11

to express 𝜎11 as function of 𝜀11, and 𝜎22 as function
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of 𝜀22:

𝜎11 =
1

1 − 𝜈2
(
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√
𝛼1𝛼2𝜈

2
)
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𝜎22 =
1
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√
𝛼1𝛼2𝜈

2
)
𝜀22 − 𝛽2 log
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𝜀22 − 𝛾2
𝛾2

)
. (4.7)

We then �t a function of the form 𝜎𝑖𝑖 (𝜀) = 𝑎𝜀𝑖𝑖 − 𝑏 log
( 𝜀𝑖𝑖−𝑐

𝑐

)
which allows to directly

retrieve 𝛽1, 𝛽2, 𝛾1 and 𝛾2. For 𝛼1 and 𝛼2, solving a simple nonlinear system allows to
compute them as a function of 𝜈 . �ese parameters also depend on how much was the
fabric stretched, we can also linearly interpolate the ��ed values for di�erent amounts of
stretch as was done for 𝐸2.

4.4.2 Shear tests

�e last coe�cient needed for the membrane parametric model is 𝛼3 which corresponds
to the shear modulus. To measure this coe�cient we clamp two parallel edges of a square
sample and move one of its edges laterally while probing the response (Fig. 4.5, le�).
We performed the measurement twice on the same sample in two di�erent orientations,
90° from each other. �e results at 0° and 90° showed an approximately linear response
which corresponds well with the choice of expressing 𝜎12 as a linear function of 𝜀12
in the parametric model. �e two shearing experiments correspond to the same strain
value 𝜀12 and therefore should give the same stress 𝜎12 as a result. However, a surprising
experimental result was that the response was not the same at a 0° and 90° orientation
(Fig. 4.5, right), this could either be due to errors in the experimental process or to more
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Fig. 4.6: Matching measurements of cantilevered shapes against the “master curve” of Romero
et al. [108].

complex e�ects occurring within the fabric which our model cannot reproduce. Another
possibility is that the curves are diverging a�er the small strain regime because of the
orthotropy of the material: at large strains, the deformation is not pure shearing anymore
but a mix of shearing and stretching, and since the stretching response is direction
dependent this could explain the deviation between the curves. Since our model cannot
explain this divergence between the two curves, we compute 𝛼3 as the average linear
regression of each curve.

4.4.3 Bending tests

�e last coe�cient needed for the fabric’s material model is the �exural coe�cient 𝑘𝐵
of the bending energy. �is coe�cient is usually expressed as a function the Young’s
modulus 𝐸, the thickness ℎ and the Poisson’s ratio 𝜈 for a homogenous material:

𝑘𝐵 =
𝐸ℎ2

12(1 − 𝜈2)

but we can directly measure it by performing a cantilever test in which a fabric ribbon
sample is clamped horizontally and a length 𝐿 of itself is submi�ed to gravity. Romero
et al. [108] show the relationship between a unitless gravito-bending parameter Γ =

𝜌𝑔

𝑘𝐵
𝐿3 –

where 𝜌 is the mass density and 𝑔 is the acceleration of gravity – and the aspect ratio 𝑦/𝑥
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𝐸1 (MPa) 𝐸2 (MPa) 𝛼1 𝛼2 𝛼3 𝛽1 𝛽2 𝛾1 𝛾2 𝑘𝐵(N)
72.3 1.05 24161 90890 29676 20512 0.9626 0.9637 63419 0.0192

Table 4.1: Parameters measured on a TPU95A thermoplastic �lament and a spandex textile
stretched up to 70% of its initial length.

of the bounding rectangle of the cantilevered sample (see Fig. 4.6, inset). �is relationship
is universal in the sense that the pair (Γ, 𝑦/𝑥) will always be on a speci�c curve, called
the master curve, no ma�er what the material properties of the sample.

To �nd the value of 𝑘𝐵 , we therefore measure 𝑦/𝑥 for di�erent values of 𝐿 and �nd the
coe�cient 𝑘𝐵 such that the di�erent points ( 𝜌𝑔

𝑘𝐵
𝐿3, 𝑦/𝑥) are as close as possible to the

curve in the least squares sense. We performed the test on two di�erent orientations of
the fabric (0° and 90°) and tested them both front side up and back side up, for a total of 4
di�erent experiments. �e results (Fig. 4.6) show a di�erence in 𝑘𝐵 between the 0° and 90°
orientation, which is not surprising given the structure of the kni�ed textile (Fig. 4.1). �e
di�erence between bending front side up and back side up was found to be negligible in
the 0° case – meaning the resistance to bending is essentially symmetric in that direction
– but for the 90° case the �exural coe�cient is almost 3 times bigger on one side compared
to the other, which can be explained by the fact that kni�ed textiles in general do not
exhibit mirror symmetry between their front and back sides and therefore can have fairly
di�erent responses between bending upwards and downwards. �e Discrete Shells model
that we use to model bending does not account for these direction-dependent e�ects and
is only weighted by one �exural coe�cient (𝑘𝐵), therefore we compute 𝑘𝐵 as mean value
between the 4 measured ones. All the di�erent parameters used in the bilayer model
(𝐸1, 𝐸2), the membrane energy (𝛼1, 𝛼2, 𝛼3, 𝛽1, 𝛽2, 𝛾1, 𝛾2) and the bending energy (𝑘𝐵) are
summed up in table 4.1.

4.5 Preliminary results and validation
To validate our simulation method, I performed a series of basic tests, comparing the
simulation results against experimental data and simulating simple shapes. To check
that the fabric’s material model reproduces well the measured behavior, I ran several
simulations in which a rectangle was uniaxially stretched. Depending on how the
rectangle was oriented in global coordinates, the integrated forces along each edge
were di�erent and matched well with the experimental data (Fig. 4.7).
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Fig. 4.7: le�: simulated sample undergoing uniaxial strain, right comparison between measured
force values and simulated ones for di�erent orientations.

I also simulated a simple pa�ern of parallel ribbons of the same thickness. �e bilayer
e�ect makes the assembly roll into a cylinder as expected from similar printed results in
Chapter 5 (Fig. 4.8).

Fig. 4.8: Simulation of a pa�ern of parallel ribbons rolling into a cylinder.
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4.6 Discussion and limitations
�e goal of this chapter was twofold: be�er understanding, by means of physical experi-
ments, the mechanics of pre-stretched textiles when released and their interaction with
thermoplastics printed on top, and deriving a simulation model from those measurements
and experiments which should be both accurate and e�cient.

At the moment, this method is still very much work in progress and needs to be validated
against a variety of printed pa�erns to assess its accuracy. To check that the bending
behavior caused by the bilayer e�ect is modeled correctly, we will compare the curvature
of simulations of parallel ribbon pa�erns such as the one shown in Fig. 4.8 with the
measured curvature of their fabricated counterparts. To check that the intrinsic con-
traction behaves similarly to printed pa�erns, we can print a pa�ern from next chapter
which reproduces half a torus by having a lower density of curves on the inside of the
�a�ened shape and a higher density of curves on the outside (Fig. 5.2). A�er performing
these validations we will try to simulate our own printed pa�erns and a variety of other
curve layouts inspired from previous work (such as the self-shaping textiles shown in
introduction).

However, we mentioned in chapter 3 that the printed plastic material exhibited a certain
amount of plasticity (Fig. 3.4) which has not yet been taken into account in a systematic
way in the model, and therefore might cause the simulated results to be sti�er than the
printed ones, this could prevent the method to accurately reproduce extrinsic curvature in
particular. Another issue with the method is the amount of experimental data it requires
to �nd the parameters for given plastic and fabric materials, it would be useful to have a
way to easily calibrate the simulation method to other unseen materials (provided they
are not too di�erent). One way to do this would be to propose a set of tests that would
each be used to measure a speci�c parameter. For example, measuring the curvature
of an individual bilayer ribbon can be used to derive the Young’s moduli ratio 𝐸1/𝐸2 or
measuring a series of parallel ribbons at di�erent orientations gives information about
the orthotropic fabric response.
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Chapter 5

Inverse Design of Self-Shaping Textiles

5.1 Introduction
�e previous chapters were about the form-�nding of self-shaping textiles created by
3D printing on stretched fabric: given a speci�c pa�ern to be printed, the goal of the
form-�nding is to �nd a deployed shape which satis�es an equilibrium of forces between
the pre-stretched fabric and the more rigid plastic printed on top. In this chapter we tackle
the inverse problem instead: given a target surface that we want to reproduce, the goal is
to �nd an optimal layout to be printed so that the deployed shape is as close as possible
to the input. �is is a di�cult problem as it amounts to �nding a mapping between a
3D surface and a �a�ened one which preserves the dimensions of all the printed shapes,
since the plastic is essentially incompressible during deployment.

To solve this problem, we focus on printing pa�erns of almost-parallel ribbons on both
sides of a pre-stretched elastic textile. �is pa�ern allows to control both the metric
by modulating the density of printed ribbons, and extrinsic curvature via the bilayer
e�ect (Figure 5.1). We examine the interplay of geometry and physics that governs the

(a) Target surface (b) Ribbon layout (c) Deployed surface

Fig. 5.1: Given a target 3D surface (a), our method computes a �at layout of plastic ribbons (b)
which, when printed on pre-stretched fabric, causes the surface to deploy into 3D when the fabric
is released (c). We designed a custom frame to easily print ribbons on both sides of the fabric (b,
red and blue), allowing us to reproduce surfaces with positive and negative extrinsic curvature.
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behavior of the ribbon-fabric ensemble, and use those insights to develop an algorithm
for inverse design and a fabrication pipeline for approximating a given freeform surface
by a self-actuating deployable structure.

Relation to previous plastic-on-fabric techniques Several recent methods have
experimented with the idea of printing plastic on fabric to rapidly prototype lightweight
curved surfaces [51, 95]. �e main di�erence of our approach is that we propose to print
dense, broken ribbons of plastic, rather than the sparse networks of closed curves found in
prior work.

Forces over empty fabric

Forces along a ribbon

While both strategies involve printing plastic on
fabric, there are deep di�erences in the mechanics of
how the plastic-fabric ensemble buckles, and in the
ability of the ribbons to control the shell geometry.
Speci�cally, in a sparse assembly of long ribbons
(as found in prior work), most of the shape change
during self-actuation is the result of compression of
the pre-stretched fabric in the regions in between the curves. �e curves buckle and bend
to release this stress [95] (inset, top), and serve as boundary conditions for the fabric
which shrinks to a Plateau-like surface. On the one hand, this mechanism allows for
signi�cant coarse-scale shape change with only a small amount of added plastic material.
On the other hand, the sparse ribbons provide only limited control over the geometry of
the fabric patches (which always have negative intrinsic and approximately zero extrinsic
curvature).

In contrast, in our dense assemblies, the plastic ribbons cover a signi�cant fraction of
the fabric surface area: not only does the shrinking fabric exert in-plane stress on the
plastic ribbons, but bilayer e�ects become important in the regions covered by plastic. As
the fabric relaxes and shrinks to relieve stretch, it exerts stress on the plastic along the
plastic-fabric interface. Since the plastic is incompressible yet elastic, the ribbon buckles
to form an arc at the equilibrium state (inset, bo�om). �e curvature of this arc depends
on the pre-stress of the fabric as well as on the thicknesses of the elastic and plastic
layers. At the coarse scale, our dense assemblies thus form a type of metamaterial, whose
geometry is directly controlled by the spacing, orientation, and thickness of the plastic
ribbons. Given a sheet of fabric with constant pre-stress, our key idea is to program
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(e) Deployed surface and deviation

(a) Target surface (b) Flattening (c) Stripe pattern

(d) Ribbon layout

1.3                  1.51

0                    5%

𝜎2

Fig. 5.2: Overview of our method. Given a target surface (a), we �rst compute its principal
curvatures, along which plastic ribbons will be placed. We compute a �a�ening of the 3D surface
into the plane, with bounded stretching (b; colors indicate the magnitude of stretching 𝜎2 in the
ribbon direction). We then generate a staggered stripe pa�ern aligned with these directions; the
deformation desired for deploying from the �a�ened state to 3D determines the spacing and
density of the ribbon pa�ern (c). We generate plastic ribbons from this pa�ern, and adjust their
thicknesses according to the target extrinsic curvature magnitude (d). Printing these plastic ribbons
on pre-stretched fabric results in a self-actuated assembly that deploys to a shape approximating
the target surface when released (e).

the curvature of a target surface by optimizing these parameters to leverage the above
mechanisms of shape change.

Note that in contrast to methods that mainly rely on metric frustration to control intrinsic
curvature [24, 68], our approach provides control of extrinsic curvature as well, as we
can force the surface to bend along prescribed directions by aligning ribbons with those
directions. �e ability to manipulate extrinsic curvature is particularly important when
fabricating nearly-developable surfaces, when prescribing Gaussian curvature is not
enough to reliably achieve the desired shape.
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Overview Our inverse design tool takes as input a triangle mesh embedded in R3

representing the desired target (deployed) surface shape, and computes (1) a �a�ening
of this surface into the plane, and (2) a set of ribbons over this planar domain, so that
3D-printing the ribbons onto fabric with constant pre-stress, and cu�ing the fabric along
the boundary of the planar domain, yields an assembly whose static shape deploys to
match the target surface (see Figure 5.2). �e task of programming the desired surface
curvature is divided between these two steps: during �a�ening, we optimize for a ribbon
layout that will achieve the desired intrinsic curvature, and aligns with directions of
principal extrinsic curvature to prevent torsion of the ribbons. �en, we �nd the optimal
ribbon thickness to obtain the extrinsic curvature magnitude.

In contrast to the direct design tools presented in the previous chapters, the inverse
design method presented in this chapter is based on geometric principles rather than
physical simulation: we compute the �a�ening by optimizing for a 2D parameterization
of the target surface, subject to certain fabricability constraints:

1. the metric distortion of the parameterization remains below the maximum stretch
of the fabric;

2. the metric distortion of the parameterization is close to 1 along the direction of
maximum curvature.

�e �rst condition encodes that the fabric can, at most, remain in its pre-stretched state,
and cannot stretch further. �e second condition ensures that the assembly will undergo
li�le compression along directions of high curvature, which allows us to print closely-
spaced, incompressible plastic ribbons along those directions to maximally exploit the
bilayer e�ect to induce the necessary surface curvature. We solve for a �a�ening that
satis�es these properties using a local/global iterative algorithm akin to As-Rigid-As-
Possible parameterization [79]. While recent methods relied on a similar procedure to
bound distortion for other fabrication techniques [3, 93], we introduce a hard constraint
on the direction of distortion to align our plastic ribbons with the principal directions of
curvature of the target surface.

We then position the plastic ribbons over the �a�ened surface to form a dense pa�ern
with spatially-varying spacing and thickness. As explained above, the resulting pa�ern
acts as a homogenized metamaterial, where spacing between the ribbons controls the
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average stretch of the assembly as dictated by the parameterization, while thickness
controls the magnitude of directional curvature. We generate G-code for printing this
ribbon pa�ern by tracing orthogonal families of curves along smooth curvature-aligned
direction �elds [64, 65].

Since we use a 3D printer to deposit plastic on top of the stretched fabric, the bilayer e�ect
strongly biases the surface to curve away from the printer bed, so that the curvature of the
assembly a�er it has relaxed to its static shape is almost always positive in the direction
of the ribbons. We circumvent this limitation by introducing a custom, reversible frame
structure that allows us to print plastic on both sides of the stretched fabric. �is simple
hardware further expands the range of surfaces we can reproduce (Figure 5.11).

Contributions In summary, we introduce:

• a new mechanism for self-actuated structures, based on closely-spaced plastic
ribbons printed on pre-stretched fabric, which provides controllable directional
distortion and curvature;

• an inverse design tool to fabricate low-cost, lightweight prototypes of freeform
surfaces using this mechanism;

• a parameterization algorithm that bounds surface distortions along and across pre-
scribed directions, along with a pa�ern synthesis algorithm that covers a surface
with ribbons to match the target distortions and curvature given by the aforemen-
tioned parameterization;

• a simple hardware setup to reliably print plastic ribbons on both sides of a pre-
stretched sheet of elastic fabric, with minimum manual intervention.

We applied our approach to fabricate a number of freeform surfaces, and evaluate our
method by measuring the agreement between the fabricated and target 3D shapes.

�is chapter is mainly based on the following publication:

• David Jourdan, Mélina Skouras, Etienne Vouga, Adrien Bousseau, 2022. Computational
Design of Self-Actuated Surfaces by Printing Plastic Ribbons on Stretched Fabric.
Computer Graphics Forum (Proc. EUROGRAPHICS, conditionally accepted).
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5.2 Related work
Out of the various methods for designing deployable structures already introduced in
chapter 2, the in�atable structures of Pane�a et al. [93], present an interesting case due
to their similar approach to solving the inverse design problem. Two thin, �at sheets of
elastic material are fused along a network of curves, creating air pockets between the
layers in the form of tube-like channels. Pressurizing the interstitial space causes the
channels to in�ate and contract tranversally. At the highest level, the design problem for
in�atables solved by Pane�a et al. shares similar features to the problem we solve for
ribbon networks on fabric: in both cases, actuation results from programming anisotropic
residual strain in a �at sheet, parameterized by a network of curves, and subject to
fabricability constraints on the maximum strain. But crucial di�erences prevent using
the method of Pane�a et al. for designing ribbon layouts: in�ated channels have zero
normal curvature, whereas ribbons exhibit strong extrinsic curvature (due to the bilayer
e�ect) which can be controlled and must be accounted for; moreover, whereas in�ated
channels have circular cross-section, plastic ribbon cross-sections are rectangular and a
ribbon layout must account for potential axial twisting of the ribbons due to geodesic
torsion (see Section 5.3.1 and Figure 5.4).

Surface parameterization is a classic problem in geometry processing [55], with many
available algorithms that seek to minimize angle [112, 121] or length distortion [160],
while possibly also considering ancillary complications such as seam placement, local and
global injectivity, atlas decomposition, etc. We do not give a complete survey here; note
that while conformal mapping in particular is popular for texture mapping and similar
applications, and for fabrication techniques that exploit isotropic scaling [53, 66], we
speci�cally require an anisotropic parameterization with bounded distortion. Few prior
methods approached the problem of computing a �a�ening whose distortion is bounded
in one arbitrary direction [3]. Closest to our approach is Pane�a et al. [93]’s �a�ening step,
which includes a so� penalty term to favor alignment of the channels perpendicularly to
the principal direction of curvature. In contrast, we treat curvature direction alignment
as a hard constraint, which allows us to build our �a�ening algorithm on top of As-
Rigid-As-Possible (ARAP) parameterization [79], a classic and easily-extendable local-
global algorithm for distortion-minimizing parameterization. See Section 5.3.2 for more
discussion of the pros and cons of the two approaches.
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�e last step of our method consists in generating a pa�ern of plastic ribbons over the
�a�ened shape, where the local orientation and spacing of the ribbons is dictated by the
curvature and distortion �elds of the target surface. Producing such a graded pa�ern of
discrete, elongated elements arises in other fabrication scenarios, including the design
of metal frame and wire structures [82, 85], kni�ing paths [88], microstructures [142],
weaves [106, 150] and nets [110], �ber-reinforced composites [19], and the aforementioned
in�atable structures [93]. Many of the algorithms in geometry processing on vector-�eld
integration could be used to generate ribbon curves from our curvature-aligned vector
�eld; see the survey by Vaxman et al. [148] for a review of some of these alternatives.
We chose the method of Knöppel et al. [65], originally designed for computing stripe
textures on surfaces, due to the ease of specifying the frequency of the reconstructed
pa�ern in the transverse direction, and availability of source code.

5.3 Programming intrinsic and extrinsic curvature
In this section, we �rst describe the mechanics of plastic ribbons embedded in stretched
fabric, then we derive the �a�ening formulation in the continuous se�ing, before dis-
cretizing it. We then show how to implement the parameterization algorithm and how to
�nd the optimal thickness to print so as to match a given normal curvature.

5.3.1 �e mechanics of plastic ribbons embedded in stretched fabric

�e key idea behind our approach is to balance between two e�ects that occur when
plastic ribbons are bound to a stretched fabric substrate. First, the ribbons frustrate the
contraction of the fabric back to its rest state, forcing residual strain in the fabric and
creating intrinsic curvature. Second, as mentioned in the introduction, due to di�erential
compression of the plastic and fabric layers in the direction of the ribbons, there is a
bilayer e�ect that induces each ribbon to buckle into an arc when the assembly is released.
We seek to exploit both phenomena to program the desired surface curvature.

k1
k2𝑤𝑟

𝑙𝑟

𝜇2

𝜇1
Fig. 5.3: Ribbon pa�ern.

To that end, we de�ne a pa�ern of plastic rib-
bons that behaves like a homogeneous metama-
terial with controllable stretch and curvature,
illustrated as inset. �is pa�ern will be printed
on fabric that has been uniformly stretched by
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(a) Fabricated ribbon patterns (b) Darboux frames

Fig. 5.4: Due to the bilayer e�ect, parallel plastic ribbons roll to form a cylinder (a, top). A�empting
to orient the ribbons away from the direction of maximum curvature still yields a cylinder as
ribbons resist torsion (a, bo�om). On a curved surface, curvature lines are the only curves with
zero geodesic torsion, as visualized by sliding a Darboux frame along the curve and observing its
rotation around the curve tangent (b, a�er [56]).

a factor 𝑠 . In this pa�ern, the plastic ribbons
are separated by empty fabric to form dashed stripes. Parallel stripes are also separated
by empty fabric. Note that we shi� every two stripes by half the period of the dashes
to form a staggered pa�ern, which prevents the emergence of long bands of empty
fabric transverse to the plastic ribbons. Varying the quantity of empty fabric in-between
consecutive and parallel plastic ribbons controls the average contraction 1/𝜎1 and 1/𝜎2
of the metamaterial when deployed, while varying the thickness 𝜏 of plastic deposited on
the ribbons impacts the strength of their bilayer e�ect.

Given a target surface S, our key idea is to design an appropriate ribbon pa�ern in three
stages:

1. �e bilayer e�ect induces signi�cant extrinsic curvature in the direction of the
ribbons, and the plastic ribbons resist torsion along that direction (Fig. 5.4a). Based
on these two observations, we align the ribbon pa�ern (horizontal axis in Fig. 5.3)
in the direction of maximum magnitude principal curvature k1, which maximally
exploits the bilayer e�ect and minimizes torsion along the ribbons since curvature
lines are characterized by vanishing geodesic torsion [16, 33, 56] (Fig. 5.4b). It
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follows that the transverse direction of the pa�ern aligns to the other principal
curvature direction k2.

2. When the plastic-fabric ensemble is released and allowed to relax to equilibrium,
the fabric will contract. At most, it will return to its original shape; and at least,
it will not contract at all (if the fabric is covered completely in plastic). �e fabric
pre-stretch factor 𝑠 , together with fabricability constraints on the minimum and
maximum values of ribbon length and width 𝑙𝑟 ,𝑤𝑟 and spacing 𝜇1, 𝜇2, determine the
range of possible contractions in the ribbon and transverse direction. We compute
a �a�ening of the target surface S to the 2D plane, which satis�es these constraints
(Section 5.3.2).

3. To control extrinsic bending of the surface, we adjust the ribbon thickness 𝜏 , using a
data-driven law for the relationship between 𝜏 and curvature derived from physical
experiments (Section 5.3.5).

5.3.2 Fla�ening with bounded directional scaling

Let the mapping 𝜑 : Ω ⊂ R2 → R3 describe our (given) target deployed surface S, and let
𝜑 : Ω ⊂ R2 → R2 describe its (currently unknown) �a�ened, pre-stretched counterpart S̄,
with Ω denoting an arbitrary surface parametric domain with coordinates (𝑢, 𝑣). We write
k1(𝑢, 𝑣), k2(𝑢, 𝑣) for the vector �elds Ω → R3 in the direction of maximum-magnitude
and minimum-magnitude principal curvature of S.

We seek a �a�ening 𝜑 ◦ 𝜑−1 : S → S̄ with the following properties: (1) the principal
stretch directions are aligned with k1, k2; (2) the two principal stretches 𝜎𝑖 are in the
range 1 ≤ 𝜎min

𝑖 ≤ 𝜎𝑖 ≤ 𝜎max
𝑖 . As discussed above, the achievable range of principal

stretches [𝜎min
𝑖 , 𝜎max

𝑖 ] is determined by 𝑠 , the geometry of the ribbon pa�ern, and limits
on the accuracy and resolution of the 3D printer; we discuss how to determine these
ranges in Section 5.3.4, and assume they are given for now (roughly speaking, 𝜎1 must be
close to inextensible, while there is more �exibility in the choice of 𝜎2, since the ribbons
are longer than they are wide).

More precisely, let 𝐽𝜑 = d𝜑 ∈ R2×2 denote the Jacobian of the mapping 𝜑 , and likewise
for 𝐽𝜑 . We are looking for a mapping 𝜑 such that the pushforward d(𝜑 ◦ 𝜑−1) has the
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form
d(𝜑 ◦ 𝜑−1) = 𝑅S̄Σ𝑅TS,∀(𝑢, 𝑣) ∈ Ω, (5.1)

where 𝑅S̄ (𝑢, 𝑣) is an arbitrary rotation matrix; 𝑅S =

[
k̂1 k̂2

]
3×2

rotates the Euclidean
plane to the tangent plane of S, with the Euclidean axes mapping to the principal
curvature directions; and Σ(𝑢, 𝑣) =

(
𝜎1 (𝑢,𝑣) 0

0 𝜎2 (𝑢,𝑣)

)
encodes stretching, subject to the

bound constraints 𝜎𝑖 ∈ [𝜎min
𝑖 , 𝜎max

𝑖 ].

Since satisfying (5.1) exactly for all (𝑢, 𝑣) ∈ Ω might be impossible, we seek the closest
solution in the least square sense. Denoting ‖ · ‖𝐹 the Frobenius norm, we cast our
minimization problem as

min
𝜑,𝜎1,𝜎2,𝑅S̄

∫
Ω
‖ 𝐽𝜑 − 𝑅S̄Σ𝑅TS 𝐽𝜑 ‖

2
𝐹 d𝑢d𝑣, (5.2)

whose unknowns are the �elds 𝜑 : Ω → R2, 𝜎1 : Ω → [𝜎min
1 , 𝜎max

1 ], 𝜎2 : Ω →
[𝜎min

2 , 𝜎max
2 ] and 𝑅S̄ : Ω → 𝑆𝑂 (2).

While this formulation is reminiscent of other �a�ening methods with bounded scaling
[3, 93], unique to our approach is the use of the �xed matrix 𝑅S to strictly constrain the
directions of maximal strain. In contrast, Pane�a et al. [93] employ a so� regularizer
to penalize alignment of their air channels with directions of high normal curvature.
While their formulation gives additional freedom to trade curvature alignment for be�er
scaling distribution, the strong resistance of plastic ribbons to torsion (Fig. 5.4) demands
close curvature alignment and limits the usefulness of this tradeo�. Moreover, hard
constraints allow the use of an ARAP-style local-global solver (described next), which is
more e�cient (parallelizes trivially) and easier to implement than the black-box nonlinear
optimization using Newton’s method that would be required for so� constraints.

5.3.3 Discrete formulation

We discretize (5.2) using triangular elements. To this end, we represent the surfaces
S and S̄ using triangle meshes having same number of vertices 𝑛V and faces 𝑛T , and
same topology, and we stack the coordinates of their vertices into the vectors x and x̄

respectively. Approximating 𝜑 by a piecewise linear function makes 𝐽𝜑 constant on each
triangle. We denote by 𝐽 𝑒 the value of 𝐽𝜑 on element 𝑒 , and likewise for other quantities
such as Σ𝑒 =

(
𝜎𝑒1 0
0 𝜎𝑒2

)
, etc.
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S ⊂ R3 Ω𝑒 ⊂ R2 S̄ ⊂ R2
𝑥

𝑦

𝑧

𝑢

𝑣

𝑢

𝑣

k1

a𝑢

a𝑣

x1

x2

x3

𝜃

𝜑

X1 X2

X3

d𝜑−1(k1)
𝜃

k̄1

ā𝑢

ā𝑣

x̄1

x̄2

x̄3

𝜑

1
𝑢

𝑣

Ω

𝜃

𝑅𝜃 Σ 𝑅S̄

S̄

𝜑, d𝜑 = 𝐽𝜑 ≈ 𝑅S̄Σ𝑅𝜃

d𝜑−1(k1)
k̄1

ā𝑢

ā𝑣

𝜎1

𝜎2

Fig. 5.5: Overview of the �a�ening algorithm. Each triangle of the target mesh S is �rst mapped
to the 2D plane by aligning its (x1, x2) edge with the𝑢-axis of our 2D Cartesian coordinate system.
We then compute its mapping 𝜑 to the �a�ened con�guration S̄ using a local/global algorithm
(top). �is mapping 𝜑 is built so as to maximally stretch the surface S along its direction of
maximum curvature k1 (bo�om).

Note that in practice we do not need to build a full (and consistent) parametrization of
the surface S on the entire domain Ω at once to compute the Jacobians 𝐽 𝑒 ; we can instead
locally parametrize the surface on a per triangle basis. More speci�cally, we de�ne the
preimage Ω𝑒 of a given element 𝑒 of S with 3D vertex coordinates x𝑒

1≤𝑘≤3 as a 2D triangle
of same shape and size with vertex coordinates X𝑒

𝑘
, whose edge vector X𝑒2 −X𝑒1 is aligned

with the 𝑢-axis of our 2D Cartesian coordinate system (see Figure 5.5). We can then
express the Jacobian 𝐽 𝑒 as 𝐽 𝑒 = [x̄𝑒2 − x̄𝑒1 x̄3 − x̄𝑒1] [X

𝑒
2 − X𝑒1 X𝑒3 − X𝑒1]

−1. Moreover,
on each triangle, the parameterization of S is now an isometry, with 𝑅TS 𝐽𝜑 = 𝑅𝜃 a 2 × 2

rotation matrix by angle 𝜃 , where 𝜃 is the angle from d𝜙−1k1 to the 𝑢-axis.

We can now rewrite our optimization problem (5.2) as

min
x̄,𝝈1,𝝈2,𝑹

𝑛T∑︁
𝑖=1

‖ 𝐽 𝑖 (x̄) − 𝑅𝑖S̄Σ
𝑖𝑅𝑖
𝜃
‖2𝐹 𝐴𝑖︸                           ︷︷                           ︸

𝐸 (x̄,𝝈1,𝝈2,𝑹)

, (5.3)

73



CHAPTER 5. INVERSE DESIGN OF SELF-SHAPING TEXTILES

where 𝝈1 = {𝜎𝑖1 ∈ [𝜎min
1 , 𝜎max

1 ]}, 𝝈2 = {𝜎𝑖2 ∈ [𝜎min
2 , 𝜎max

2 ]}, 𝑹 = {𝑅𝑖S̄ ∈ 𝑆𝑂 (2)}, and 𝐴𝑒
is the area of element 𝑒 in the mesh corresponding to S.

To solve problem (5.3), we adapt the local/global optimization algorithm proposed by
Liu et al. [79] and alternate between local steps in which we optimize the per-triangle
rotations and stretches 𝑅𝑒S̄ and Σ𝑒 , and global steps where we minimize the cost function
𝐸 over the positions x̄ while keeping all the matrices 𝑅𝑒S̄ and Σ𝑒 �xed. We detail below
how we solve these local and global problems.

Computation of stretching matrices Σ𝑒 . For each element 𝑒 , the minimizer of 𝐸 with
respect to 𝜎𝑒1 and 𝜎𝑒2 can be obtained by solving the local problem

(𝜎𝑒1, 𝜎
𝑒
2) = argmin

(𝜎1,𝜎2)
𝜎min
1 ≤𝜎1≤𝜎max

1 ,

𝜎min
2 ≤𝜎2≤𝜎max

2

‖ 𝐽 𝑒 (x̄) − 𝑅𝑒S̄Σ
𝑒𝑅𝑒
𝜃
‖2F︸                   ︷︷                   ︸

𝐸 (𝜎1,𝜎2)

. (5.4)

Noting that the Frobenius norm of any matrix 𝐴 is invariant under transposition and
rotation of the matrix, i.e. ‖𝐴T‖2

F
= ‖𝐴‖2

F
and ‖𝑅𝐴‖2

F
= ‖𝐴𝑅‖2

F
= ‖𝐴‖2

F
for any rotation

matrix 𝑅, we rewrite the cost function in Equation (5.4) as

𝐸 (𝜎1, 𝜎2) = ‖(𝑅𝑒S̄)
T(𝐽 𝑒 − 𝑅𝑒S̄Σ

𝑒𝑅𝑒
𝜃
) (𝑅𝑒

𝜃
)T‖2

F

= ‖(𝑅𝑒S̄)
T𝐽 𝑒 (𝑅𝑒

𝜃
)T − Σ𝑒 ‖2

F

= ‖𝑅𝑒
𝜃
(𝐽 𝑒)T𝑅𝑒S̄ − Σ𝑒 ‖2

F
.

(5.5)

𝐸 (𝜎1, 𝜎2) is thus equal to the sum of the squared entries of 𝑅𝑒
𝜃
(𝐽 𝑒)T𝑅𝑒S̄ − Σ𝑒 :

𝐸 (𝜎1, 𝜎2) = (𝜎1 − [𝑅𝑒
𝜃
(𝐽𝑒)T𝑅𝑒S̄]11)

2 + (𝜎2 − [𝑅𝑒
𝜃
(𝐽𝑒)T𝑅𝑒S̄]22)

2 +𝐶 (5.6)

where 𝐶 is constant with respect to 𝜎1 and 𝜎2. �e minima subject to 𝜎min
𝑖 ≤ 𝜎𝑒𝑖 ≤ 𝜎max

𝑖

are then given by

𝜎𝑒𝑖 =


𝜎min
𝑖 if 𝜎𝑒𝑖 < 𝜎min

𝑖 ,

𝜎𝑒𝑖 if 𝜎min
𝑖 ≤ 𝜎𝑒𝑖 ≤ 𝜎max

𝑖 , 𝑖 = {1, 2},

𝜎max
𝑖 if 𝜎max

𝑖 < 𝜎𝑒𝑖 ,

(5.7)

where 𝜎𝑒𝑖 is solution of 𝜕𝐸
𝜕𝜎𝑖

(𝜎1, 𝜎2) = 0, i.e. 𝜎𝑒𝑖 = [𝑅𝑒
𝜃
(𝐽𝑒)T𝑅𝑒S̄]𝑖𝑖 .
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Computation of rotation matrices 𝑅𝑒S̄ . Minimizing 𝐸 with respect to 𝑅𝑒S̄ amounts to
solving

𝑅𝑒S̄ = argmin
𝑅𝑒S̄∈𝑆𝑂 (2)




𝐽 𝑒 − 𝑅𝑒S̄Σ𝑒𝑅𝑒𝜃


2F . (5.8)

which is known as the Orthogonal Procustes problem [113], the following proof is given
here for completeness but can be found in a similar form in [44, Chapter 4]:

Expanding the right hand side of equation (5.8) gives us


𝐽 𝑒 − 𝑅𝑒S̄Σ𝑒𝑅𝑒𝜃


2𝐹 = tr
(
(𝐽 𝑒 − 𝑅𝑒S̄Σ

𝑒𝑅𝑒
𝜃
)𝑡 (𝐽 𝑒 − 𝑅𝑒S̄Σ

𝑒𝑅𝑒
𝜃
)
)

= tr
(
(𝐽 𝑒)𝑡 𝐽 𝑒

)
− 2 tr

(
(𝐽 𝑒)𝑡𝑅𝑒S̄Σ

𝑒𝑅𝑒
𝜃

)
+ tr

(
(𝑅𝑒S̄Σ

𝑒𝑅𝑒
𝜃
)𝑡𝑅𝑒S̄Σ

𝑒𝑅𝑒
𝜃

)
.

(5.9)

Discarding terms that do not depend on 𝑅𝑒S̄ we can write

𝑅𝑒S̄ = argmax
𝑅𝑒S̄∈𝑆𝑂 (2)

tr
(
(𝐽 𝑒)𝑡𝑅𝑒S̄Σ

𝑒𝑅𝑒
𝜃

)
= argmax
𝑅𝑒S̄∈𝑆𝑂 (2)

tr
(
𝑅𝑒S̄Σ

𝑒𝑅𝑒
𝜃
(𝐽 𝑒)𝑡

) (5.10)

We use the signed version of the singular value decomposition of
(
Σ𝑒𝑅𝑒

𝜃
(𝐽 𝑒)𝑡

)𝑡
= 𝑈𝑆𝑉 𝑡

such that |𝑆1 | < |𝑆2 | with 𝑆1 being possibly negative and𝑈𝑉 𝑡 ∈ 𝑆𝑂 (2) [79]

tr
(
𝑅𝑒S̄Σ

𝑒𝑅𝑒
𝜃
(𝐽 𝑒)𝑡

)
= tr

(
𝑅𝑒S̄𝑉𝑆𝑈

𝑡
)

= tr
(
𝑈 𝑡𝑅𝑒S̄𝑉𝑆

)
=𝑆1𝐻11 + 𝑆2𝐻22, 𝐻 = 𝑈 𝑡𝑅𝑒S̄𝑉

(5.11)

𝐻 ∈ 𝑆𝑂 (2) therefore 𝐻11 = 𝐻22 = cos𝜃 for some 𝜃 in R
�e maximum of tr

(
𝑅𝑒S̄Σ

𝑒𝑅𝑒
𝜃
(𝐽 𝑒)𝑡

)
is thus reached when 𝐻 = 𝐼 , i.e.

𝑅𝑒S̄ = 𝑈𝑉 𝑡 , 𝑈𝑆𝑉 𝑡 = 𝐽 𝑒 (𝑅𝑒
𝜃
)𝑡Σ𝑒 (5.12)

Computation of 2D node positions x̄. Following Liu et al. [79] and denoting 𝑀 (𝑒) =
𝑅𝑒S̄Σ

𝑒𝑅𝑒
𝜃
, we rewrite our energy 𝐸 using cotangent weights as

𝐸 =
∑︁

(𝑖, 𝑗)∈H𝑒

cot𝛼𝑖 𝑗

2



x𝑖 − x 𝑗 −𝑀 (T(𝑖, 𝑗)) (X𝑖 − X 𝑗 )


2 , (5.13)
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where H𝑒 denotes the set of all half-edges of the meshes, T(𝑖, 𝑗) the triangle incident to
the half-edge (𝑖, 𝑗), and 𝛼𝑖 𝑗 the angle opposite to the half-edge (𝑖, 𝑗) in the triangle T(𝑖, 𝑗) .

�e minimum of (5.13) with respect to x̄ can then be obtained by solving the linear system∑︁
𝑗∈N (𝑖)

[
cot𝛼𝑖 𝑗 + cot𝛼 𝑗𝑖

]
(x𝑖 − x 𝑗 )

=
∑︁
𝑗∈N (𝑖)

[
cot𝛼𝑖 𝑗𝑀 (T(𝑖, 𝑗)) + cot𝛼 𝑗𝑖𝑀 (T( 𝑗,𝑖))

]
(X𝑖 − X 𝑗 )

(5.14)

for all vertices 𝑖 , where N(𝑖) represents the set of vertices adjacent to 𝑖 .

5.3.4 Implementation details

Computation of curvature directions k1. We compute the directions of maximum
curvature k1 on the target mesh S using the method of Knöppel et al. [64] that we
slightly modi�ed to output a line �eld aligned with the curvature directions having largest
magnitude in terms of absolute value. For many examples, we kept the default value
𝜆 = 0 for the parameter controlling the tradeo� between faithfulness to the curvature
directions and smoothness of the output �eld (smoothness is necessary to regularize
the �eld when the principal curvature directions have similar magnitudes). However, in
some cases, we found necessary to slightly decrease this value to avoid oversmoothing
(see Table 5.1).

Setting the principal stretch bounds 𝝈min,𝝈max. �e upper bound in the transverse
direction is determined by how much spacing we allow between neighboring ribbons. We
�x this distance to 𝜇max

2 = 𝑙𝑟 to avoid producing large areas free of plastic. From this limit
spacing value, we deduce 𝜎max

2 ≈ 1.51 using Equation 5.15 described in Section 5.4.1. For
the lower bound, we set the value 𝜎min

2 = 1.3 as a safeguard against fusion of neighboring
ribbons. Along k1, we set 𝜎min

1 = 1 and 𝜎max
1 = 1.3 to give room to the fabric to contract

a bit along the principal direction of curvature if necessary to �a�en the surface.

Initialization of x̄, 𝝈1, 𝝈2 and 𝑹. We initialize the vertex positions x̄ of the �a�ened
mesh by computing a Tu�e’s embedding a�er regularly distributing the boundary vertices
on a unit disk. We then run the implementation of Scalable locally Injective Mappings
[105] (as implemented within libigl [59]). �e initial stretch values 𝜎𝑒1, 𝜎𝑒2 are set to 1. �e
rotations matrices 𝑅𝑒S̄ are initialized using Formula (5.12).
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Fig. 5.6: �e curvature 𝜅1 of our metamaterial varies not only as a function of plastic thickness
𝜏 , but also as a function of spacing 𝜇2 in the transverse direction (le�, with 𝜇1 = 22.5mm and
𝜏 = 0.5mm). In contrast, varying spacing 𝜇1 in the ribbon direction has li�le impact (right, with
𝜇2 = 6mm).

Update scheme and termination. We alternate between local computations of 𝑹, 𝝈1

and 𝝈2 and global computation of x̄ (in this order). �e loop updating 𝑹, 𝝈1 and 𝝈2 is
run twice before switching to x̄. �e algorithm is stopped when the average change of
both 𝜎1 and 𝜎2 is below 10−6. Note that the principal stretches and stretch directions
that will be used subsequently to compute ribbon layout are those of the Jacobians 𝐽 𝑒 at
termination, which might not exactly satisfy the scaling bounds if the optimal residual
of Equation 5.3 is nonzero. See Table 5.1 for detailed statistics about the behavior of the
optimization in practice.

5.3.5 Controlling normal curvature

As discussed in the previous section, we align the ribbon pa�ern along the direction of
maximum principal curvature k1 to take advantage of the bilayer e�ect: the tendency
of plastic printed on top of pre-stressed fabric to bend about the axis transverse to the
ribbon, to relieve the di�erential stress in the thickness direction at the bilayer interface.
In chapter 3, we derived an expression for the curvature expected for an isolated plastic
ribbon printed on fabric, as a function of the ribbon thickness. However, when we tested
the theory using physical prototypes, we observed that curvature is also a�ected by the
quantity of empty fabric surrounding the ribbons, as this fabric exerts additional forces
on the ribbons and modi�es their equilibrium shape.
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Fig. 5.7: Curvature 𝜅1 of our metamaterial as a function of plastic thickness 𝜏 and spacing 𝜇2 (in
mm).

We conducted an experiment where we printed sev-
eral regular pa�erns that roll in a cylindrical shape
(inset), with ribbons of constant thickness, width
and length, but varying 𝜇1 and 𝜇2. We then mea-
sured the curvature𝜅1 of each cylinder, as plo�ed in
Figure 5.6. �is experiment reveals that curvature
is a�ected primarily by the amount of empty fabric
in the transverse direction, 𝜇2, and not by the spacing in the ribbon direction, 𝜇1. We
conclude from this experiment that the forces applied by the fabric along the ribbons
depend on the area of fabric across the ribbon (controlled by 𝜇2).

Given the complex interplay between the fabric and the ribbons forming our assemblies,
we chose to adopt a data-driven approach to relate the target curvature to the thickness
and spacing of the ribbons. Concretely, we printed a series of regular pa�erns with varying
plastic thickness 𝜏 and spacing 𝜇2, while holding 𝜇1 and the ribbon width and length �xed.
We then measured the curvature 𝜅1 along the k1 direction of the resulting cylinders, as
reported in Figure 5.7. Since the function is monotonic, tabulating and interpolating this
data allows us to obtain, for a target curvature and spacing, the thickness 𝜏 that should be
used for each ribbon. While we only measured this data on cylindrical shapes produced
by parallel pa�erns, our results demonstrate its generalization to more complex shapes
(Figure 5.1, Figure 5.11). For many surfaces, the smooth curvature �elds extracted by the
methods of Knöppel et al. [64] are locally parallel.
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(a) Front view (b) Side view
Fig. 5.8: �e rod-based model from chapter 3 does not account for the width of the plastic ribbons.
When a�empting to simulate a similar pa�ern as in Fig. 5.2, the surface bends properly along the
ribbons due to the bilayer e�ect (a), but it contracts uniformly in the direction transverse to the
ribbons, despite the varying density of plastic along the interior and exterior boundary (b). As a
result, the simulation predicts a deployed shape that does not match the target half-torus.

We also considered physical simulation to optimize the ribbon parameters such that
they reproduce the target shape. However, our experiments with the rod-based model
presented in chapter 3 revealed that it cannot reliably predict the coarse-scale behavior of
our ribbon pa�erns. Because the plastic ribbons bond to the fabric along their entire width,
the presence of ribbons causes the surface to resist transverse contraction, by a factor
that depends on the ribbon width𝑤𝑟 (See Eq. 5.15 below). Rod-shell coupling models that
assume that the ribbons are in�nitesimally wide fail to capture this phenomenon. Fig. 5.8
shows the result of our rod-based model when simulating a similar pa�ern as in Fig. 5.2.
�e simulation predicts that the shell contracts uniformly during deployment, yielding
an equilibrium shape di�erent from the target half-torus. (In reality, the shell contracts
more along the interior boundary than along the exterior one.) Other e�ects that are
not captured by existing simulations, that we hypothesize are important to accurately
predicting the deployed shape, include nonlinearity of the fabric (which is kni�ed, and
stretched well outside its linear regime); plasticity of the ribbons; residual stress in the
ribbons induced by the printing process; printer fabrication errors; and seeping of the
plastic partially into the fabric during printing. �e more complex model presented in
chapter 4 might be able capture these important e�ects, however we have not yet fully
tested it against a variety of printed samples and therefore cannot guarantee that it is
capable of computing the correct curvature values for the whole range of parameters.

Front-and-back asymmetry We found that the curvature varied signi�cantly for
similar values of 𝜏 and 𝜇2 depending on the side of the fabric we printed on: the same
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Fig. 5.9: Illustration of the front-and-back asymmetry of the textile: even though the nozzle is at
the same height, the amount of extruded plastic can be bigger if the surface is rougher because
the extruded plastic generally �lls up all the available volume, including the small crevices in the
surface of the fabric.

ribbons, when printed on the stitch front, had a 50 to 60% higher curvature than the
ones printed on the stitch back. �is could be due to several factors, one explanation
might be that the bending resistance of the fabric is stronger in one direction than in the
other as was measured in chapter 4 (section 4.4.3), but in general the sti�ness of the fabric
is negligible compared to that of the plastic. Another explanation could be a geometric
di�erence between the two sides of the fabric, where one side has a rougher surface than
the other, causing the 3D printer to print a bigger thickness of fabric on the rougher side
(see Fig. 5.9).

To account for this di�erence in curvature, we computed two di�erent tables of 𝜇2 vs. 𝜅1
vs. 𝜏 , one for each side of the fabric, each of these tables has 8 × 6 data points in total.

5.4 Ribbon layout
We are now equipped with a �a�ened surface S̄, along with the directions k̄𝑖 = d

(
𝜑 ◦ 𝜑−1) k𝑖

and magnitudes 𝜎𝑖 of principal stretch of the �a�ening map. Our goal is to map these
quantities to the parameters 𝑙𝑟 ,𝑤𝑟 , 𝜇1, and 𝜇2 of the discrete ribbon pa�ern that will be
printed on the fabric (see inset �gure in Section 5.3.1), and compute curves on S̄ that trace
the centerline of each ribbon. Together with the thickness 𝜏 computed in Section 5.3.5,
these parameters and curves fully determine the structure to be fabricated.
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5.4.1 Determining the Pa�ern Parameters

In theory, we can vary the quantity of empty fabric locally by adjusting the length 𝑙𝑟 and
width 𝑤𝑟 of the ribbons, or the spacing 𝜇1 and 𝜇2 between the centers of neighboring
ribbons, or both. In other words, a dense pa�ern of thin ribbons yields as much empty
fabric as a sparse pa�ern of large ribbons. Since varying the spacing between ribbons is
less susceptible to limitations on printer accuracy and resolution than a�empting to vary
the ribbon dimensions, we eliminate this redundancy by �xing 𝑙𝑟 and𝑤𝑟 , leaving spacing
between the ribbons along 𝜇1 and 𝜇2 as the only parameters that control stretch. We
experimentally set 𝑙𝑟 = 15mm and𝑤𝑟 = 1.5mm as a trade-o� between the resolution of
the pa�ern and the adherence of the ribbons, as smaller ribbons would increase resolution
but adhere less to fabric.

Given the fabric pre-stretch 𝑠 , we compute the values of spacing 𝜇1 and 𝜇2 to achieve
the target stretching values 𝜎1 and 𝜎2 by considering individual stripes of ribbon dashes.
More speci�cally, we assume that, a�er we release the fabric, a periodic motif of initial
length 𝜇1 contracts to an average length 𝜇1 = 𝑙𝑟 + 𝜇1−𝑙𝑟

𝑠
. Likewise, we estimate the average

width of parallel motifs of initial width 𝜇2 to 𝜇2 = 𝑤𝑟 + 𝜇2−𝑤𝑟

𝑠
. Taking the ratios of initial

to contracted lengths (respectively widths) gives us the average stretch values 𝜎1 = 𝜇1
𝜇1

and 𝜎2 = 𝜇2
𝜇2

, from which we deduce

𝜇1 = 𝑙𝑟
𝑠 − 1

𝑠 − 𝜎1
𝜎1, 𝜇2 = 𝑤𝑟

𝑠 − 1

𝑠 − 𝜎2
𝜎2. (5.15)

Note that these equations assume that the empty fabric surrounding the ribbons e�ectively
contracts by a factor of 𝑠 on deployment. In practice, the presence of staggered ribbons
on each side of the gaps along k̄1 might prevent Equation (5.15) from holding for small
values of 𝜇2. Nevertheless, we found this e�ect to be negligible once the bound 𝜎min

2 on
𝜎2 was enforced during optimization.

5.4.2 Generating the ribbon layout

2𝜇2

𝜇1

As discussed above, we reduced the design
space of our ribbon pa�ern to three param-
eters that correspond to the spacing 𝜇1 and
𝜇2 of the ribbons, and their thickness 𝜏 . We
now need to place ribbons over the �a�ened
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surface S̄ so that their local spacing agrees with the target stretching values 𝜎1 and 𝜎2
according to Equation (5.15). We achieve this goal by leveraging the fact that the ribbons
in our staggered pa�ern lie on two grid layouts with cell size 𝜇1 × 2𝜇2, one grid being
shi�ed by half a cell with respect to the other in a brick-like pa�ern (inset). Each such
grid can further be decomposed into two families of nearly-parallel curves with spacing
𝜇1 and 2𝜇2 respectively.

We generate these families of curves over S̄ using the stripe pa�ern algorithm of Knöppel
et al. [65], which provides local control on stripe spacing and orientation. Since this
algorithm requires spacing values per vertex, we compute these values by area-weighted
averaging of the per-triangle values given by our �a�ening algorithm. In practice, we
�rst run the stripe pa�ern algorithm twice with the spacing �elds 𝜇1 and 2𝜇2 and the
direction �elds k̄1 and k̄2, respectively, to form one grid of our pa�ern. �e output of the
algorithm of Knöppel et al. [65] is two 𝑆1-valued unit complex �elds over S̄, 𝜃 and𝜓 : the
zero isolines of arg(𝜃 ) give the centerlines of the ribbons on one copy of the staggered
grid (dark blue lines in inset �gure), and the zero isolines of arg(𝜓 ) (light blue lines)
intersect those arg(𝜃 )-isolines at the ribbon midpoints. We generate the shi�ed second
grid (orange lines) simply by extracting the 𝜋 isolines of both �elds. �e curvature 𝜅1
along these lines (used to de�ne the thicknesses of the associated ribbons) is obtained by
linearly interpolating the values of 𝜅1 at the crossing points between the lines and the
edges of the mesh.

�e ribbon centerline curves can be directly computed from the staggered grid described
above, by cu�ing the 𝜃 -isolines into pieces of length 𝑙𝑟 enclosed by the grid intersection
points. We clip the ribbons to the boundary of S̄, and we delete ribbons that are shorter
than 2mm. Also, we noticed that near singularities, the stripes can deviate signi�cantly
from the prescribed direction �eld to merge or split. We detect these cases by measuring
the angle between the ribbon centerline and the direction �eld, and trim the ribbon when
this angle exceeds 25◦. Finally, we walk along each ribbon and assign its segments to
either the front or back of the fabric depending on the sign of curvature 𝜅1. In cases
where the sign of the curvature changes sign, we split the ribbon in two pieces.
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Frames
Fabric

Base

Removable corner

Fig. 5.10: Our frame structure is composed of two rigid frames, in between which the fabric is
clamped in tension. �ese frames sit on a base that a�aches to the printer bed. �e four corners
of the frames can be removed to be �xed to the sheet of fabric before stretching.

5.5 Fabrication
Since fabricating our structures requires printing onto fabric that is under uniform,
prescribed amount of tension, and requires careful control over the width and thickness
of the ribbons being printed, we designed a custom frame structure that a�aches to the
printer bed, holds the pre-stretched fabric in place, and allows us to reliably fabricate our
results. �e frame structure was designed with several goals in mind:

• it should be easy to place the fabric under the prescribed tension, and the frame
structure should maintain that tension throughout the printing process;

• it should support the fabric from below to prevent the printer extrusion nozzle
from deforming the fabric during printing;

• it should be �xed to the printer bed to prevent sliding during printing;

• it should be easily reversible to print on both sides of fabric, without allowing the
pa�ern on one side to become miscalibrated with respect to that on the other due
to sliding or rotation of the fabric.

Figure 5.10 provides an exploded-view drawing of our design. �e structure is composed
of two frames that clamp down on the fabric to maintain it under uniform tension. To ease
setup of the fabric, the four corners of the frames are removable. We cut a rectangular
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piece of (unstretched) fabric of the size of the framed scaled by a factor 1/𝑠 , where 𝑠 is
the desired stretching factor. We then detach the four corner pieces from the frame and
independently clamp them onto the four corner of the fabric. �e corners then snap back
into place on the frame, stretching the fabric by the factor 𝑠 . Once the corners are pulled
back to their location on the frames, we �x additional clamps along all sides of the frame
to distribute the tension uniformly.

�e frames sit on a base that is glued to the printer bed. �is base has the same size as
the inner boundary of the frames, and of the same thickness as one frame (so that the
frame snaps into place �ush with the base, which ensures that the fabric is supported by
the base once the frames are in place). Since the base perfectly �ts within the bo�om
frame, the whole assembly cannot slide. And since the two frames have equal thickness,
we can print on both sides of the fabric simply by �ipping the frame structure around
and placing it back on the base.

We produced all our results with a desktop Ultimaker 2 FDM printer equipped with a
large printing nozzle (0.8mm) and con�gured at low speed (15mm/s), which we found
to improve adhesion of plastic on fabric. We used TPU 95A as plastic �lament, which
is more �exible than standard PLA. We used a �nely kni�ed spandex material (80%
polyamide, 20% elastane) as fabric, which binds well with the melted plastic and o�ers
enough elasticity to be stretched by a factor 𝑠 = 1.6 in our experiments.
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Fig. 5.11: Representative results produced with our method, including freeform doubly-curved
surfaces (Neumunster and Shell) and a nearly-developable surface achieved by printing on both
sides of the fabric (Skirt). We visualize the deviation of the scanned fabricated shape from the
target surface, expressed as percentages of the bounding box diagonal of the target.
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5.6 Results and discussion
Figure 5.1, Figure 5.11 and Figure 5.14 illustrate results produced with our method,
including several architectural models and fashion items. Note that all these shapes
deployed without manual placement of their boundaries, except the ones shown in
Figure 5.13 and Figure 5.14 for which we used additional support or a textile strengthener,
as discussed below.

Our results exhibit various degrees of curvature, including positive and negative curvature
achieved by printing on both sides of the fabric (Figure 5.1) and nearly developable surfaces
(Skirt in Figure 5.11). �is la�er example highlights the bene�t of being able to control
extrinsic curvature (via the bilayer e�ect), since developables cannot be fabricated by
controlling the intrinsic curvature alone. Fig. 5.12 plots the curvature values sampled
over some of our target shapes, which shows that while the bilayer e�ect allows us to
reproduce nearly-developable surfaces (k2 close to 0), metric frustration also provides a
way to reproduce shapes with moderate positive and negative Gaussian curvature.

We also visualize for each result in Figure 5.11 its deviation from the target surface: we
reconstruct the geometry of the deployed structure from a photogrammetry scan of the
fabricated object [22], rigidly register it to the target surface S, and for each point on
the reconstructed surface, compute the distance to its closest point on S. Errors are
expressed as percentages of the bounding box diagonal of S.

Table 5.1 reports the computation time for each model shown in the paper, along with
the average and maximum deviation of the photogrammetry scan from the target surface.
Note that we did not scan some models that require additional intervention to support

k2 ≈ 0 k1.k2 > 0 k1.k2 < 0

2

k

Skirt Mask Vault Torus Saddle

k

1

Fig. 5.12: Visualization of the two principal curvature values sampled over some of our target
surfaces. While we expect our method to be most e�ective at controlling extrinsic curvature
where the target shape is nearly-developable (k2 ≈ 0, such as throughout the Skirt), most of the
surfaces we reproduced also exhibit positive and negative Gaussian curvature (Mask, Vault and
Torus), or even solely negative Gaussian curvature (Octopus Saddle).
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Model Nb.
faces

Time
(s)

𝜆 Dev. (avg |
max)

k1
dev.
(avg.◦)

Max dev.
(s1 | s2)

Bad
𝜎1 | 𝜎2 (%)

Avg.
energy

Shell 105792 7.13 0 0.979 | 4.11 0.169 0.004 | 0.002 6.114 | 7.386 0.169
Octopus saddle 49152 0.91 0 2.63 | 8.01 0.731 0.0002 | 0.002 0.191 | 15.448 0.075
Neumunster 147456 5.20 -0.1 0.771 | 3.09 0.058 0.0002 | 0.027 2.100 | 2.740 0.192
Torus 159744 4.31 -0.1 1.14 | 4.96 0.070 0.003 | 0.002 1.127 | 7.699 0.201
Skirt 92160 2.90 -0.01 1.49 | 5.30 0.090 0.008 | 0.003 7.850 | 11.763 0.195
H. A. Center 55296 4.64 0 0.471 0.033 | 0.004 5.619 | 6.104 0.170
Vault 41472 7.53 -0.01 3.777 0.029 | 0.072 28.369 | 16.802 0.077
Mask 67584 1.35 0 0.069 0.007 | 0.003 2.477 | 4.903 0.196

Table 5.1: For each result shown in this chapter we report the computation time, curvature �eld
smoothing 𝜆, average and maximum deviation between the scanned fabricated shape and the
target (99𝑡ℎ percentile to remove scanning outliers), average deviation of the ribbon direction
from the target direction k1, maximum deviation from the bounds on 𝜎1 and 𝜎2, percentage of
triangles that violate the bounds, and average residual energy a�er convergence. While some
shapes exhibit a large portion of triangles outside the bounds, this deviation remains small. �e
two shapes that have the highest deviation in direction and percentage of triangles out of the
bounds are Octopus saddle (Fig. 5.1) and Vault (Fig. 5.14). We note that these two models contain
an umbilical region in their center, where the direction �eld exhibits a singularity.

their own weight, as discussed below. While the plastic ribbons produce small-scale
relief over the fabricated surface, our method captures the overall shape well with an
average deviation of around 1.4%, which corresponds to 1.6 mm on such small-scale
objects (11 cm average bounding box diagonal). �is level of accuracy is on par with the
one of prior methods that exploit similar mechanisms for the lightweight fabrication of
deployable structures [93, 95]. Table 5.1 also provides the average deviation from the
prescribed direction k1, as well as the percentage of triangles that exceed the stretching
bounds, along with the maximum deviation from the bounds. �is deviation remains
small for all models, even though some models reach the bounds on a relatively large
portion of the surface.

Limitations. �e maximum length distortion achievable using our technique, as the
surface deploys from the �at to curved state, is bounded by the fabric pre-stretch factor
(which is 𝑠 = 1.6 for the kni�ed fabric we used). Consequently, our method cannot
reproduce surfaces with patches of large total Gaussian curvature. (One workaround
would be to introduce cuts in the parameterization, and stitch the fabric along those
cuts to form the surface a�er printing [53, 114].) Although our �a�ening algorithm is
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(a) Target surface (b) Without support (c) With support

Fig. 5.13: Limitation. Without additional support, this architectural model sags under its own
weight (b). Adding a cardboard support underneath the structure brings it closer to the target
surface (c).

guaranteed to converge, running it on surfaces that cannot be �a�ened while satisfying
the principal stretch bounds will yield a �a�ening with signi�cant cost function residual
(Equation 5.3): in this case, either the right singular vectors of the resulting mapping 𝐽
do not align well with the prescribed directions, i.e. the �a�ening does not stretch the
surface along the curvature directions; or the singular values of 𝐽 do not lie within the
prescribed bounds and the desired �a�ening violates the ribbon minimal or maximal
spacing constraints.

Our choice of aligning to the direction of principal curvature is particularly e�ective for
nearly-developable surfaces, where the di�erence between principal curvatures is large.
In umbilic regions, the principal curvature direction is not well-de�ned, and currently
our approach chooses one direction arbitrarily in such regions. As a consequence, the
ribbon layout is sometimes suboptimal near umbilic points; notice for instance that the
Octopus Saddle (Fig. 5.1) and Vault (Fig. 5.14), which feature prominent umbilic regions,
also have the largest shape deviation among our examples (Table 5.1). A potential
future improvement would be to relax the curvature-alignment constraint (similar to
the so� penalty approach of Pane�a et al. [93]), perhaps weighting alignment by a
factor depending on |𝜅1 − 𝜅2 |, though the optimization would also need to include terms
to prevent shape distortion due to ribbon torsion. Another promising idea for future
work is to add anisotropy of the ribbon pa�ern as an optimization variable, so that the
ribbon shape can adjust in response to the ratio 𝜅1

𝜅2
(with ribbons degenerating to disks or

squares in umbilic regions, with only their spacing and not orientation encoding intrinsic
curvature in those regions, similar to the experiments by Fields [38].)

Finally, our method solves the inverse design task purely geometrically, without simulat-
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5.6. RESULTS AND DISCUSSION

Fig. 5.14: Architectural model (Vault) and fashion items (Skirt and Mask) prototyped with our
method.

ing the complex interactions between the elastic fabric and the plastic ribbons, nor the
e�ect of external forces like gravity or additional load. Figure 5.13 and Figure 5.14 show
results on shapes that tend to sag under the e�ect of gravity, which we corrected for by
adding external support or by applying a textile strengthener (Powertex). Nevertheless,
our geometric approach also has its strengths, as it achieves a good agreement with
the target surface in a ma�er of seconds when physics-based optimization o�en takes
hours. �is allows the method to be usable as part of a design loop where users can
quickly visualize the resulting pa�ern and make edits if necessary. We also note that
any simulation-based algorithm would require a good ribbon pa�ern initialization to
converge to a good solution, which our method provides.
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Chapter 6

Conclusion

In this thesis, I presented and used a method consisting in extruding plastic curves onto
pre-stretched fabric so as to create self-shaping textiles which automatically deploy when
the underlying fabric is released. Two distinct metamaterials made out of repetitive and
controllable pa�erns were presented, �rst a metamaterial arising from a pa�ern of stars
which we exploited to create self-shaping architectural models, and then a metamaterial
composed of parallel ribbons in which we leveraged the stretch in-between the ribbons
and the bilayer e�ect at the ribbon-fabric interface to program the intrinsic and extrinsic
curvature of the deployable surfaces.

In terms of the computational tools developed, they can be classi�ed into two distinct
design work�ows. First, chapters 3 and 4 proposed a direct form-�nding work�ow
in which the user speci�es a pa�ern to be printed on stretched fabric and can then
pre-visualizes the deployed shape which rises from the speci�ed pa�ern before actually
printing it. A direct work�ow can be interesting in early stages of the design process when
the user is exploring possible shape ideas, we apply it to the architectural modelmaking
context.

�en, in Chapter 5, an inverse design tool was presented. �e work�ow was di�erent:
the user was �rst asked to specify a target shape to be reproduced, and the system found
an optimal layout to be printed so as to obtain a deployed shape similar to the input.
�e inverse design work�ow might seem more productive because the designer does
not need to go through a trial-and-error process to obtain a speci�c shape, but in reality
some of their requirements might not be satis�ed by the inverse solver. �e proposed
inverse design tool was fast enough so that users would have no issue iterating on the
input shape if necessary.

Both types of computational design work�ows have been presented and studied, because
I believe both have their merits and use cases. In a way, they only fundamentally di�er
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Fig. 6.1: Integrating the direct and inverse work�ows: the user can start from either the shape or
the pa�ern, and make edits on either of these two.

from their starting point in the design process: in the direct work�ow, a user starts from
a pa�ern to be printed and then iterates on that pa�ern until a satisfying result is found;
in the inverse work�ow they start from the shape to be reproduced and then modify it if
the resulting pa�ern from the optimization is not satisfying. An interesting development
would be to be able to join both the direct and the inverse design work�ows in a system
where the user can start from either the pa�ern or the target shape and then have the
possibility to edit either one or the other and see these edits propagate to the other end
(see Fig. 6.1). Such a work�ow would suit both artists who wish to obtain a certain
aesthetic result with printed curves, and designers who focus more on the speci�c shape
they want to create, and would allow both types of users to make edits on either end.

Exciting potential directions for improving the simulation of printed-on-fabric deployable
structures include the ongoing work presented in Chapter 4 which could be expanded
into a tool that would allow users to simulate the deployment of arbitrary pa�erns printed
on stretched fabric instead of just the tiling of stars on which we focused in Chapter 3.
�e goal of Chapter 4 was to circumvent some of the limitations of the form-�nding
method of Chapter 3 by explicitly modeling the impact of the width of printed curve, as
well as modeling the orthropic and nonlinear response of the pre-stretched textile.

Modeling the imprecisions in the printing process would be also
greatly bene�cial as a variety of defects can occur, either because
the plastic sometimes does not adhere well to fabric (sometimes due
to under-extrusions), or because it leaks from one printed element to
the next as the printing head moves over the surface (over-extrusions,
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as in inset). �ese imprecisions could be modeled in an explicit way by using a thermo-
mechanical simulation of the plastic extrusion process to more precisely understand the
interaction between the extruded plastic and the textile surface, or in an implicit way by
using statistical tools to assess the impact of unknown factors such as, e.g. the variation
in the dimensions of the printed curves, and by propagating such uncertainty within the
simulation of the fabric-plastic assembly.

Many of the imprecisions we had to deal with were also ampli�ed because we were
working at quite a small scale. �e commercial 3D printer we used restricted us to
20 cm-wide designs at best, which means we had to print very �ne details in order for
the metamaterials to assume detailed curvature variations. Being able to create larger
scale self-shaping textiles would therefore be an interesting avenue for future work. It
would be possible, for example, to mount an extruder on a larger 2D CNC machine so
as to increase the available footprint, or to apply the same principles developed in this
thesis but on slightly di�erent fabrication techniques such as gluing plywood panels to a
large pre-stretched latex sheet [12] or embedding �exible rods inside a kni�ed textile [7].

An interesting challenge which would arise when fabricating larger shapes is how to
make a so� material such as fabric withstand its own weight. Traditionally, textiles in
architecture are o�en kept pre-stretched to prevent them from sagging, but in our case
it is the release of the membrane tension which gives the textile its shape. A possible
solution could be to sti�en the fabric by coating it with a material such a concrete, a
technique that has been successfully employed by Popescu et al. [102]. Another solution
could be to automatically generate support structures, a problem that was the topic of
my master’s thesis, and for which I developed an algorithm based on a sparsity-inducing
norm to �nd a small set of poles that would support a tensile structure [62].
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[78] Yijing Li and Jernej Barbič, 2015. “Stable orthotropic materials”. In Proceedings of the

ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’14, pages 41–46. doi:
10.2312/sca.20141121. Cited page 54.

[79] Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J. Gortler, 2008. “A local/global
approach to mesh parameterization”. In Proceedings of the Symposium on Geometry Processing,
SGP ’08, pages 1495–1504. Copenhagen. doi:10.5555/1731309.1731336. Cited pages 19, 66,
68, 74, and 75.

[80] Jesse Louis-Rosenberg and Jessica Rosenkrantz. “Puzzle cell complex” [online], 2020. URL:
https://n-e-r-v-o-u-s.com/blog/?p=8521 [Accessed 2022-01-09]. Cited pages 15 and 16.

[81] Long Ma, Ying He, Qian Sun, Yuanfeng Zhou, Caiming Zhang, and Wenping Wang, Oct.

102

https://doi.org/10.3218/3778-4_13
https://doi.org/10.3218/3778-4_13
https://doi.org/10.1016/j.cma.2019.112741
https://doi.org/10.1115/1.4046895
https://doi.org/10.1680/tsfab.61736
https://doi.org/10.2312/sca.20141121
https://doi.org/10.2312/sca.20141121
https://doi.org/10.5555/1731309.1731336
https://n-e-r-v-o-u-s.com/blog/?p=8521


BIBLIOGRAPHY

2019. “Constructing 3D self-supporting surfaces with isotropic stress using 4D minimal hy-
persurfaces of revolution”. ACM Transactions on Graphics, vol. 38, no. 5, pages 144:1–144:13.
doi:10.1145/3188735. Cited page 12.

[82] Zhao Ma, Alexander Walzer, Christian Schumacher, Romana Rust, Fabio Gramazio, Ma�hias
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[96] Jesús Pérez, Bernhard �omaszewski, Stelian Coros, Bernd Bickel, José A. Canabal, Robert
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Lazarus, Sébastien Neukirch, and Florence Bertails-Descoubes, jul 2021. “Physical validation
of simulators in computer graphics: A new framework dedicated to slender elastic structures
and frictional contact”. ACM Transaction on Graphics, vol. 40, no. 4, pages 66:1–66:19. doi:

10.1145/3450626.3459931. Cited page 58.
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[121] Alla She�er, Bruno Lévy, Maxim Mogilnitsky, and Alexander Bogomyakov, Apr. 2005.

106

https://doi.org/10.1371/journal.pone.0120718
https://doi.org/10.1145/3355089.3356564
https://doi.org/10.1146/annurev-conmatphys-031016-025316
https://doi.org/10.1146/annurev-conmatphys-031016-025316
https://doi.org/10.1145/3132705
https://doi.org/10.1007/BF02289451
https://doi.org/10.1145/3197517.3201347
https://doi.org/10.1145/3197517.3201347
https://doi.org/10.1145/3197517.3201278
https://doi.org/10.1145/3386569.3392419
https://doi.org/10.1145/3386569.3392419
https://doi.org/10.1039/C0SM00479K
https://doi.org/10.1145/3197517.3201356


BIBLIOGRAPHY

“Abf++: Fast and robust angle based �a�ening”. ACM Transactions on Graphics, vol. 24, no. 2,
pages 311–330. doi:10.1145/1061347.1061354. Cited page 68.

[122] Jonathan Richard Shewchuk, 1996. “Triangle: Engineering a 2D quality mesh generator and
delaunay triangulator”. In Selected Papers from the Workshop on Applied Computational Geometry,

Towards Geometric Engineering, pages 203–222. London. Cited page 33.

[123] Dereje Berihun Sitotaw, Dustin Ahrendt, Yordan Kyosev, and Abera Kechi Kabish, 2020.
“Additive manufacturing and textiles: State-of-the-art”. Applied Sciences, vol. 10, no. 15. doi:

10.3390/app10155033. Cited page 23.

[124] Emmanuel Siéfert, Etienne Reyssat, José Bico, and Benoı̂t Roman, Jan. 2019. “Bio-
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