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A B S T R A C T

The analysis of electrical load curves collected by smart meters is a key step
for many energy management tasks ranging from consumption forecasting
and load monitoring to customers characterization and segmentation. In this
context, researchers from EDF R&D are interested in extracting significant
information from the daily electrical load curves in order to compare the
consumption behaviors of different buildings. The strategy followed by the
group which hosted my doctorate is to use physical and deterministic mod-
els based on information such as the room size, the insulating materials or
weather data, or to extract hand-designed patterns from the electrical load
curves based on the knowledge of experts. Given the growing amount of
data collected, the interest of the group in statistical or data-driven methods
has increased significantly in recent years. These approaches should pro-
vide new solutions capable of exploiting massive data without relying on
expensive processing and expert knowledge. My work fits directly into this
trend by proposing two modeling approaches: the first approach is based on
functional time series and the second one is based on non-negative tensor
factorization. This thesis is split into three main parts. In the first part, we
present the industrial context and the practical objective of the thesis, as well
as an exploratory analysis of the data and a discussion on the two modeling
approaches proposed. In the second part, we follow the first modeling ap-
proach and provide a thorough study of the spectral theory for functional
time series. Finally, the second modeling approach based on non-negative
tensor factorization is presented in the third part.

iii
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Part I

B A C K G R O U N D A N D E X P L O R AT O RY A N A LY S I S O F
T H E D ATA

This part provides general information about the industrial con-
text of my PhD and the practical objective addressed during these
three years. In particular, we discuss in Chapter 1 the problem
of the representation and comparison of time series and pro-
vide an overview of the functional time series framework. Next,
we present EDF’s strategy for extracting information from the
daily load curves. In Chapter 2, we present the results of the
exploratory analysis of the dataset provided by EDF. After ex-
plaining the pre-processing steps, we study the results of second
order dimension reduction methods, namely functional principal
component analysis and its harmonic extension. A discussion
about the drawbacks of these methods is provided and we con-
clude that a non-negative structured decomposition that takes
into account the effect of temperature should overcome these
drawbacks.





1

C O N T E X T A N D B A C K G R O U N D

1.1 Context

EDF is a leading French energy company whose activity extends to many
areas ranging from the production and distribution of electricity to services.
The group has a large nuclear fleet, with 58 reactors spread throughout the
territory and owns numerous onshore and offshore wind farms, as well as
solar fields and hydroelectric power plants. This makes it the leading Euro-
pean producer of renewable energies.

For several years, EDF has been participating in a process of transforma-
tion of the energy sector in order to meet the challenges of climate change
and aims for CO2 neutrality by 2050. This vision is reflected in their Cap 2030

strategic project, which is based on three pillars: innovation for customers,
low carbon and international growth. In this context, EDF takes great inter-
est in research and has eight R&D sites, including three in France: EDF Lab
Paris-Saclay, EDF Lab Les Renardières and EDF Lab Chatou. In the first site,
researchers focus on various topics ranging from vibrational mechanics and
mathematical and digital simulation to client relations. The research carried
out in the second site focuses on energy efficiency, security and reliability of
the electrical network. Finally, the last site develops expertise in the fields of
hydraulics, renewable and nuclear energies and the environment.

My PhD was hosted by two department: the TREE department (more
specifically, the E36 group) at EDF Lab les Renardières and the PRISME
department (more specifically, the P12 group) at EDF Lab Chatou.

The PRISME (Performance, Risque Industriel et Surveillance pour la Main-
tenance et l’Exploitation) department develops innovative solutions for data
acquisition and physical and mathematical modeling to improve electricity
production. The department has two main areas of expertise. The first is
the life cycle of the means of production with physical measurements and
simulations, but also safety control. The second expertise is data processing,

3
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in particular signal and image processing and statistical learning, in the con-
text of energy production. To carryout its projects, the department is divided
into six groups. The P12 group (Dynamic Systems, Images and Signals) is
more closely linked to the data processing expertise. Its competences are
thus articulated around the signal and image processing, optimization and
dynamic systems. The projects carried out concern various themes such as
hydraulics, thermal flexibility or life cycle.

The TREE (Technologie et Recherche pour l’Efficacité Energétique) depart-
ment gathers 9 groups working on various aspects of electricity regulation,
from resource optimization to building consumption modeling. The depart-
ment develops low CO2 tools for new and old buildings in the residen-
tial, tertiary and industrial sectors. In this context, artificial intelligence ap-
proaches are becoming increasingly popular with applications ranging from
defect detection on heat pumps and solar panels to automatic energy regu-
lation in Smart Buildings. The E36 group (Services & Systèmes Connectés)
specializes in the Internet of Things (IoT) for Smart Buildings. In particular,
the group integrates data collection and analysis in the ecosystems of EDF
branches (e.g. Sowee, Dalkia, EDF ENR) and conducts numerous studies for
internal and external collaborators. From the point of view of data analysis,
the solutions developed by the group consist mainly in the visualization and
monitoring of consumption, but also in the analysis of load curves based on
the knowledge of experts. For the latter task, the group developed a web
platform called ACDC (Analyse de Courbes De Charges).

My work complements those approaches in two ways: I propose a statis-
tical and data-driven point of view on load curves analysis and I treat the
multi-sites case where the consumption of several buildings is observed. In
this industrial context, the practical objective of my work can be expressed
as follows.

(PO) Extract information from multi-sites load curves to help understanding the
differences between the sites using an unsupervised approach which does not
use experts’ knowledge but can still be easily interpretable.

At a higher level, the practical objective (PO) raises directly the question of
the representation and comparison of time series for which many methods
have been proposed in the literature of the last decades. In this Chapter, I
propose an overview of these methods, as well as the methods implemented
on the ACDC web platform.
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1.2 Representation and comparison of time series

Comparing time series is not as trivial as comparing multivariate data and
there are many methods available depending on the context, constraints
and/or prior knowledge about the data. Unlike multivariate data, there is no
natural distance for time series. In fact, the usual metrics used for multivari-
ate data are often based on coordinate-wise comparison and are therefore
not appropriate for comparing time series sampled differently. To address
potential misalignment between two time series, metrics based on Dynamic
Time Wrapping (DTW) have been proposed (Sakoe and Chiba, 1971). Given
a metric to compare the samples, DTW computes the best alignment by mini-
mizing the discrepancy between the two signals. The minimum discrepancy
defines a distance between the time series and can be used in many machine
learning techniques. However, the computation of such a distance between
two signals of lengths T1 and T2 has a computational complexity of O (T1T2)

and becomes too expensive to use for long time series such as the electric
load curves analyzed at EDF which are sampled at 10 min intervals for 1 year
and therefore have 51100 samples per site Fortunately, the temporal repre-
sentation of a time series is usually very high dimensional compared to the
useful information contained in the signal, in particular in the presence of
noise. Therefore, it is common to rely on well-adapted representations to
embed the signals in a space of lower dimension before comparing them.
These representation-based approaches can be divided into three categories.

1.2.1 Property-based comparison

The first strategy consists in extracting specific properties from a priori as-
sumptions based on expert knowledge or on signal processing and statistical
tools. These properties can then be quantified and compared to determine
the similarity of two signals. For example, in the ACDC web platform, pre-
defined shapes are extracted from the load curves. In signal processing,
Fourier or wavelets representations are also very common but dictionary-
based or functional representations are also possible. Statistical methods
include regression coefficients or ARMA coefficients. One of the benefits
of this strategy is that using a priori knowledge can help in interpreting
the results. However, quantifying such properties can be difficult in non-
stationary, noisy or heterogeneous settings or with the presence of outliers
or missing data. Additionally, selecting which properties to use in the com-
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parison can be a long and tedious task that requires several test and error
steps and the help of experts’ knowledge. This process is known as feature
engineering and can result in representations that are very specific to the
type of data being analyzed. For example, at EDF, we know that different
properties are important for the residential, tertiary and industrial sectors.

1.2.2 End-to-end methods

The second strategy to compare signals is to use end-to-end methods. These
methods take the raw signal as input and simultaneously learn a represen-
tation of the data and the parameters for a model that solves a specific task.
A popular end-to-end method is deep learning (Goodfellow, Bengio, and
Courville, 2016) where successive representations of the data are learned in
the internal layers and are used by the output layer to perform a given task
(e.g. regression, classification). Contrary to the first strategy, the properties
extracted by end-to-end methods are not known a priori and are learned
directly from the data. Despite their versatility, these methods often present
the disadvantage of being difficult to interpret because the representation is
learned to perform the task and not for interpretation. For example, it is gen-
erally difficult to relate the inner layers of a neural network to the properties
of the original signal. In addition, these methods require large amounts of
training data because the number of parameters can be very high. It should
be noted that other end-to-end methods such as task-driven dictionary learn-
ing can yield interpretable results but necessitate labeled data (Mairal, Bach,
and Ponce, 2012; Mairal, Ponce, Sapiro, Zisserman, and Bach, 2009).

1.2.3 Pattern-based comparison

Finally, the last category of methods aims at extracting recurring patterns
from the data. Contrary to end-to-end methods, this is usually done without
a specific task in mind, but using general a priori assumptions on the pat-
terns such as orthogonality, non-negativity, independence or sparsity. Since
these assumptions are generally not data specific, these methods are very
versatile and popular for many practical applications. Most of these meth-
ods approximate either the signal or the centered signal xt as

xt =
R

∑
r=1

arsr,t + εt , (1.2.1)
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where ε is a noise term. A common interpretation is that the ar’s represent
the patterns which are modulated over time by an activation signal sr,t. For
example, a binary activation would suggest that the pattern is present in
the signal at specific time periods. In source separation, sr,t are interpreted
as source signals which are mixed together by the coefficients ar’s. In factor
analysis, ar is called the loading and sr,t the factor. The most popular ex-
ample of pattern-based method is Principal Components Analysis (PCA)
(Jolliffe, 1986) which gives orthogonal loadings and uncorrelated factors
(usually called scores). Other popular methods include Independent Com-
ponent Analysis (ICA) which searches for independent sources based on
maximization of non-Gaussianity (Cardoso, 1989; Cardoso and Souloumiac,
1993) or on second-order methods (Belouchrani, Abed-Meraim, Cardoso,
and Moulines, 1997; Yeredor, 2000). Finally using non-negativity constraints
on the patterns and activations leads to Non-negative Matrix Factorization
(NMF) (Lee and Seung, 2001) and sparsity constraints leads to Sparse Dictio-
nary Learning (Lee, Battle, Raina, and Ng, 2007). It is important to note that
these methods are not intended to model the same statistical properties of
the data. For example, PCA is a second-order method which models the vari-
ance while the NMF models the mean. For time series, using a convolution
in (1.2.1) instead of multiplication may be interesting to take into account
the dependence between the observations. For this reason, several pattern
representation models have their convolutional counterpart. For example,
Brillinger (2001, Chapter 9) presents a PCA in the frequency domain which,
in the time domain, has a convolutional form with uncorrelated scores time
series. Convolutional dictionary learning is used to capture recurring pat-
terns from a time series in a shift-invariant way (Grosse, Raina, Kwong, and
Ng, 2007).

1.3 The functional time series framework

Functional data analysis (FDA) aims at treating complex data structure pre-
senting inherent smoothness such as curves or surfaces. This field differs
from the multivariate framework by this smoothness assumption and by
the fact that the data are treated as belonging to an infinite dimensional
space. Since the path of a continuous time stochastic process can be seen as
a random function, it is legitimate to think that FDA is similar to stochastic
processes analysis. However, the methodologies used in these two frame-
works generally differ because, from the point of view of stochastic pro-
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cesses, a random function is considered as a collection of univariate random
variables, while in FDA we view a random function as a random element
valued in a separable Banach or Hilbert space such as L2(U ) where U is a
bounded interval of R. Details about such random variables are recalled in
Appendix B. FDA also deals with datasets consisting of a panel of random
functions and the interest is focused on the analysis of the statistical proper-
ties of this panel the panel of functions. The literature on FDA has grown in
the last decades and many multivariate statistical tools have been extended
to this framework (see e.g. Ferraty and Vieu, 2006; Horváth and Kokoszka,
2012; Ramsay and Silverman, 2005; Wang, Chiou, and Müller, 2016). These
tools have found application is various fields from medical imaging (Lila
and Aston, 2020) and biophysics (Tavakoli and Panaretos, 2016) to demog-
raphy (Hyndman and Ullah, 2007) and linguistics (Tavakoli, Pigoli, Aston,
and Coleman, 2019). As it is already the case in the univariate and multi-
variate cases, the question of dependence between observations is important.
Although the i.i.d. framework is widely used, the analysis of functional data
with spatial and/or temporal dependence has also been an active field of
research in the FDA community since the seminal work of Bosq, 2000. The
functional time series framework is convenient to represent temporal signals
collected over several days and where the structures of intraday and interday
dependence differ. This is exactly the case with the electricity consumption
data analyzed at EDF which consists of electrical load curves collected over
a period of 1 year at a sampling rate of 10 minutes. For this type of data,
it is natural to think that intra-day dependence is more related to human
activity and that the inter-day dependence is more related to seasonal vari-
ations. In this framework, we represent the load data of a given site as a
panel of curves (Xt)1≤t≤T where Xt belongs to the separable Hilbert space
L2([0, 24)). In this case, Xt(u) is the instantaneous consumption at day t and
intraday time u ∈ [0, 24). In the next section, we will see that this framework
is already implicitly used in the ACDC platform. In the rest of this section,
we fix a probability space (Ω,F , P) and review basic aspects of FDA and
functional time series.

1.3.1 Functional vs Hilbertian setting

There is a duality between functional data and data valued in a separable
Hilbert space. In fact, from a theoretical point of view, the two settings are
equivalent since any separable Hilbert space is isomorphic to the function
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space L2(U ). However, some results may be easier to interpret in one setting
than the other. The Hilbertian setting is more abstract but has the advantage
of providing more elegant results without using integral operators, as is of-
ten the case in the functional setting. On the contrary, the functional setting
can lead to finer results, especially when continuity is involved or when the
functional variable is seen as the path of a continuous-time stochastic pro-
cess. A drawback of this setting is that one must keep in mind that, if X is
an L2(U )-valued random variable, the evaluation X(u) does not make sense.
In this case, a statement like

E [X(u)] = µ(u) , u ∈ U ,

is an abuse of notation which should be understood as E [X] = µ in L2(U ).
This abuse of notation is widespread and usually harmless but may, in some
cases, lead to incorrect reasoning.

In this manuscript, I try to be as rigorous as possible for theoretical con-
siderations by primarily using the Hilbert setting and justifying statements
made with the functional setting. For practical work, some abuse of notation
is allowed as, when it comes to real data, the transition from discrete data to
functional data is often done in a way which implies continuity.

1.3.2 From discrete data to functional data

In practice, we access a functional datum x ∈ L2(U ) as a collection of pairs
(ui, yi)1≤i≤I where ui ∈ U and yi ∈ R. For example, for EDF’s data I = 144
and (ui)1≤i≤I are evenly spaced in [0, 24). If I is small enough, representing
the data by the vector y := [y1, · · · , yI ]

> is not necessarily prohibitive from
a computational point of view. However, this multivariate representation
fails to capture the underlying structure of the data, especially smoothness,
as the raw data can present errors and noise. For this reason, a first step
in FDA consists in recovering the function x from the discrete observations.
This process is called smoothing and usually relies on the model

yi = x(ui) + εi , i = 1, · · · , I , (1.3.1)

where (εi)1≤i≤I represents the noise.

1.3.2.1 Non-parametric smoothing

The model displayed in (1.3.1) is very common in non-parametric statistics
and therefore many non-parametric methods can be applied to the smooth-
ing problem. For example, one can estimate x(u) by the average of the
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values yi for i such that ui is in a neighborhood of u. This method, called
kernel-smoothing estimates x(u) by

x̂(u) =
I

∑
i=1

κ(u, ui)yi ,

where κ is a non-negative function such that κ(u, v) vanishes when |u− v|
vanishes. A typical example is the Gaussian kernel κ(u, v) = exp

(
− |u−v|2

2σ2

)
.

Another very popular non-parametric smoothing methods is based on the
addition of a penalty term to the least square loss, typically on the L2-norm
of the second derivative of x, admitting that this second derivative is in
L2(U ). The estimator writes as

x̂ = argmin
x

n

∑
i=1

(yi − x(ui))
2 + λ

∫
U

∣∣x′′(u)∣∣2 du .

This optimization problem is studied in Green and Silverman (1994, Chapter
2). In particular, the solution is necessarily a natural cubic spline and is
entirely characterized by the vector x̂ = [x̂(u1), · · · , x̂(uI)]

T which is defined
as

x̂ = argmin
x∈RI

‖y− x‖2
2 + λx>Kx ,

with an appropriate matrix K.

1.3.2.2 Parametric smoothing

In the FDA community, the most common smoothing method consists in
representing the function x as a linear combination of linearly independent
(but not necessarily orthogonal) functions (vk)1≤k≤K ⊂ L2(U ) called basis
functions. Namely, we assume that there exists c1, · · · , cK ∈ R such that

x(u) =
K

∑
k=1

ckvk(u) = c>v(u) , u ∈ U , (1.3.2)

where c := [c1, · · · , cK]
> and v(u) := [v1(u), · · · , vK(u)]>. The underlying

assumption behind this approach is that x belongs to (or is well approxi-
mated by its projection onto) the space V := Span (v1, · · · , vK) which is a
finite dimensional subspace of L2(U ). The assumption underlying this ap-
proach is that x belongs to (or is well approximated by its projection onto) a
finite dimensional subspace V := Span (v1, · · · , vK) of L2(U ). This approach
is more popular than the non-parametric approach because, in FDA, we are
interested in studying the statistical properties of a panel of curves and these
properties usually translate well to the coefficients c. The reason behind this
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is that, if A is a linear operator from V onto itself and A is the K× K matrix
such that Avk = ∑K

k′=1 Ak,k′vk′ , then for all x ∈ V decomposed as (1.3.2), we
have

Ax(u) = v(u)>Ac , u ∈ U . (1.3.3)

In particular, if b ∈ RK is an eigenvector of the matrix A with eigenvalue
λ ∈ R, then b : u 7→ b>v(u) is an eigenvector of the operator A.

The complexity of the method lies in choosing an appropriate V, or equiv-
alently, appropriate basis functions and their number. A possible collection
of basis functions in the collection of monomials , i.e. vk(t) = tk−1, which
means that V is the set of polynomials of degree k − 1. For periodic data,
the Fourier basis is a standard choice which presents the advantage of be-
ing orthogonal. For non-periodic data, the B-spline (Boor, 1978) collection is
usually the preferred choice. In this context, V becomes a subset of the set
of spline functions with range U . The B-spline collection can be useful for
electrical load data since all B-spline functions are valued in R+. This means
that, if we take α1, · · · , αK ≥ 0, we are sure that x is valued in R+, although
there are more accurate ways to approximate non-negative functions with
B-splines (see Hautecoeur and Glineur, 2020).

Given a collection of basis functions, the coefficients c1, · · · , cK in (1.3.2)
are usually estimated by ordinary least squares. If we define the matrix
V := [v(u1)

>, · · · , v(uI)
>]>, the estimator writes as

ĉ = argmin
c∈RK

‖y−Vc‖2
2 = (V>V)−1V>y .

1.3.3 Registration of functional data

Similarly to time series, functional data can be subject to misalignment.
When analyzing a panel of functions, we may want to take this misalignment
into account, but in general, it is preferable to re-align the data first. This pro-
cess is called registration. Formally, we assume that, instead of observing the
functions (Xt)1≤t≤T, we observe time-warped versions (Yt = Xt ◦ ht)1≤t≤T

where ht : U → U is called a warping function. The goal of registration is to
find the warping functions which will align the data. If the Xt’s are i.i.d and
µ = E [X1], we can write

Yt = µ ◦ ht + εt , t = 1, · · · , T ,
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where (εt)1≤t≤T is noise. Assuming we know µ, we can then estimate
(h1, · · · , hT) by a least-square criterion, i.e.

(ĥ1, · · · , ĥT) = argmin
h1,··· ,hT

T

∑
t=1

∫
U
(Yt(u)− µ(ht(u)))

2 du .

This optimization problem can be solved for certain types of warping func-
tions. For example, the least-square criterion is used in Ramsay and Silver-
man, 2005, Section 7.2.1 in the case where ht is the shift function of parameter
δt, i.e. ht(u) = u− δt. Other more advanced registration methods exist (Sri-
vastava and Klassen, 2016) but are beyond the scope of this manuscript. In
the case of EDF data, the only misalignment observed is caused by seasonal
clock changes in summer and winter (see Figures 1.2 and 1.3) and can be
fixed by a simple one hour shift.

1.3.4 Functional Principal Component Analysis

Functional Principal Component Analysis (fPCA) is one of the most used
statistical tools in FDA since it provides the best finite dimensional approx-
imation of the data for the least square error. From a high level point of
view, one can think of fPCA as the succession of a linear encoding step and
a linear decoding step. The role of encoding is to represent the data as a K-
dimensional vector and the role of decoding is to project the encoded data
back to the original space. More precisely, if X is a centered random variable
in L2(Ω,F ,H0, P), were H0 is a separable Hilbert space, and K ∈ N∗, the
problem writes as. Recall that Lb(E, F)

denotes the space of
bounded operators
between two Banach
spaces E and F and
Lb(E) = Lb(E, E).

min
{

E
[
‖X−ΨΦX‖2

H0

]
: Φ ∈ Lb(H0, CK), Ψ ∈ Lb(C

K,H0)
}

, (1.3.4)

or, equivalently

min
{

E
[
‖X−ΘX‖2

H0

]
: Θ ∈ Lb(H0), rank(Θ) ≤ K

}
. (1.3.5)

Let (φk)k≥1 be the sequence of eigenvectors of Cov(X) ranked by decreasing
order of their related eigenvalues. Then a solution of (1.3.5) is given by

Θ =
K

∑
k=1

φk ⊗ φk , (1.3.6)
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where we recall that, for any u, v ∈ H0 the operator u⊗ v ∈ Lb(H0) satisfies
that (u⊗ v)z = 〈z, v〉H0

u for all z ∈ H0. Note that we have Θ = ΨΦ with

Φ =


φH

1
...

φH
K

 and Ψ = [φ1, · · · , φK] , (1.3.7)

where φH : x 7→ 〈x, φ〉H0
. More specifically, this means that, for all x ∈

H0, Φx =
[
〈x, φ1〉H0

, · · · , 〈x, φK〉H0

]>
∈ CK and for all y ∈ CK, Ψy =

∑K
k=1 ykφk ∈ H0. Hence (Ψ, Φ) is a solution of (1.3.4).
On other words, the best approximation X by a finite dimensional linear

transformation is a truncated truncated version of the expansion

X =
+∞

∑
k=1
〈X, φk〉H0

φk , (1.3.8)

where the series converges in L2(Ω,F ,H0, P) as a direct consequence of
the convergence of the series in the eigendecomposition of Cov(X). This
expansion can be seen as the Hilbertian counterpart of the Karhunen-Loève
expansion of a mean square continuous stochastic process (see Bosq (2000,
Theorem 1.5)). In particular, we have that (〈X, φk〉H0

)k≥1 is an uncorrelated
univariate sequence. In the following, the vectors φk and the scalar products
〈X, φk〉H0

will be referred to a the loadings and the scores respectively.
Similarly to PCA, if we observe a functional dataset (Xt)1≤t≤T satisfying

Cov(Xt) = Cov(X) for all 1 ≤ t ≤ T, the least squares criteria of Equa-
tions (1.3.4) and (1.3.5) and the covariance operator are replaced by their
empirical counterparts. In practice, assuming H0 = L2(U ) and that we only
have access to a discrete version of the function Xt, we need to add a second
layer of approximation. In this case, there are two ways to perform fPCA.
The first is to use only the sampling points and estimate the scalar product
〈Xt, φk〉H0

=
∫
U Xt(u)φk(u)du by a Riemann integral. If the sampling points

are evenly spaced in U , this approach is equivalent to applying PCA to the
vectors representing the discretized functions. This method only provides
an estimate of the main functional component evaluated at the sampling
points. To recover the function, we must use an interpolation method. An
alternative is to add a penalty term on the L2-norm of the second derivative
of ϕk, which results in natural cubic spline estimators of the functional prin-
cipal component. The other, and most used, method to perform fPCA in
practice is to rely on a function basis representation of the data of the type
(1.3.2). In this case, we take a basis of functions (v1, · · · , vK′) with, K′ > K
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and assume Xt(u) = c>v(u) as in (1.3.2). Then, the eigenvectors of the em-
pirical covariance operator can be found by computing the eigenvectors of
the K′ × K′ matrix Γ = T−1G1/2CC>G1/2 where C = [c1, · · · , cT] ∈ RK′×T

and G ∈ RK′×K′ is the gram matrix of (v1, · · · , vK), i.e. Gk,k′ =
〈
vk, v′k

〉
H0

.

1.3.5 Functional time series

A functional time series is a sequence of functional random variables (Xt)t∈Z

valued in a separable Hilbert space H0 (for example L2(U )) which are not
assumed to be i.i.d. The study of such time series is usually done under the
assumption of weak stationarity, that is we assume

(i) For all t ∈ Z, Xt ∈ L2(Ω,F ,H0, P).

(ii) For all t ∈ Z, E [Xt] = E [X0]. We say that X is centered if E [X0] = 0.

(iii) For all t, h ∈ Z, Cov (Xt+h, Xt) = Cov (Xh, X0).

The most classical classes of processes in univariate and multivariate settings
are linear processes and the ARMA processes. Naturally, these models have
been extended to the functional setting. A (functional) linear process is a
sequence of the type

Xt = µ + ∑
k∈Z

Akεt−k , t ∈ Z , (1.3.9)

where µ ∈ H0, (εt)t∈Z is an H0-valued white noise i.e. a centered weakly
stationary H0-valued time series such that Cov (ε0, εh) = 0 whenever h 6=
0 and (Ak)k∈Z is a sequence of Lb(H0) operators. A thorough study of
this class of process is proposed in Bosq, 2000. Beyond linear processes,
extensions of the celebrated autoregressive and moving average processes to
the case where the parameters are linear operators have also been studied,
see e.g. Bosq, 2000; Klepsch, Klüppelberg, and Wei, 2017; Spangenberg, 2013.

Another important domain of study for weakly stationary time series is
the spectral theory. The principal idea of this theory is to derive a repre-
sentation of the process by an uncorrelated process indexed by frequencies.
The work of Tavakoli in Panaretos and Tavakoli, 2013a,b; Tavakoli, 2014 pro-
vides major contributions to the generalization of the spectral theory to the
functional framework. This work is based on the assumption that (Xt)t∈Z

is an H0-valued weakly stationary time series with autocovariance operator
function ΓX such that there exists fX ∈ L1(T,B(T),S1(H0), Leb) satisfying Recall that

T = R/2πZ and that
S1(H0) is the set of
trace-class operators on
H0.



1.3 the functional time series framework 15

ΓX(h) =
∫

T
fX(λ)eiλh dλ , h ∈ Z . (1.3.10)

In this case, using the terminology of Tavakoli (2014, Definition 2.3.1), the
function fX defines the collection of weak spectral density operators of (Xt)t∈Z.
The adjective weak emphasizes the fact that fX is only defined almost every-
where and that evaluating fX(λ) at a given frequency λ ∈ T is not possible.
In this manuscript, we call fX the spectral density operator function. In the case
where ∑h∈Z ‖ΓX(h)‖Lb(H0)

< +∞, Tavakoli (2014, Proposition 2.3.5) shows
that the function fX exists and writes as

fX(λ) =
1

2π ∑
h∈Z

ΓX(h)e−iλh , λ ∈ T . (1.3.11)

In particular, (1.3.11) gives that fX is continuous from T to Lb(H0). Pro-
vided that fX exists and is in Lp(T,B(T),S1(H0), Leb) for some p ∈ (1,+∞],
Tavakoli (2014, Theorem 2.4.3) derives the functional Cramér representation of
the process X = (Xt)t∈Z, that is

Xt =
∫

T
eiλt dZλ , P-a.s. , t ∈ Z , (1.3.12)

where the integral is a Riemann-Stieltjes integral on L2(Ω,F ,H0, P) and
(Zλ)λ∈T is an H0-valued process with uncorrelated increments in the sense
that Cov (Zλ1 − Zλ2 , Zλ3 − Zλ4) = 0 for λ1 > λ2 ≥ λ3 > λ4. The process
(Zλ)λ∈T is called the functional Cramér representation of X and is a key concept
to define linear filtering in the spectral domain. Given a functional time
series X := (Xt)t∈Z which admits a functional Cramér representation of
the form (1.3.12), Tavakoli defines in Tavakoli (2014, Section 2.5) an abstract
space H of transfer operator functions Φ : λ 7→ Φ(λ) which can be used to
filter the process X using a stochastic integral of the form∫

T
eiλtΦ(λ)dZλ .

Even though Tavakoli (2014, Definition 2.3.1) defines the weak spectral
density operators without any additional assumption on the covariance struc-
ture of the process, the author proves the existence of the function fX under
short-memory assumptions. However, in some cases, the fX function may
exist even if the time series has long-range dependence. In the univariate set-
ting, ARFIMA processes fall within this category and can be directly defined
in the spectral domain (Granger and Joyeux, 1980). Several generalizations
of long-range dependence processes to the functional setting have been pro-
posed recently (Characiejus and Račkauskas, 2013, 2014; Düker, 2018; Li,
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Robinson, and Shang, 2020; Račkauskas and Suquet, 2011). Finally, in the
univariate case, the Cramér representation can still be proved even when
no function fX satisfy (1.3.10), see Holmes, 1979 and the references therein.
In this case, the measure fX(λ)dλ in (1.3.10) is replaced by a measure on
(T,B(T)) which is not dominated by Lebesgue’s measure and the result
is known as Herglotz’s theorem. Its extension to the functional setting is
discussed in Delft and Eichler, 2020.

1.3.6 Harmonic fPCA

Harmonic fPCA provides a way to approximate a functional time series
by a finite dimensional time series and can be seen as a generalization of
Brillinger (2001, Chapter 9) to the functional case. In Harmonic fPCA, in-
stead of looking for an optimal rank-K linear projection of the data, we look
for an optimal rank-K linear filter. Let X = (Xt)t∈Z be a centered H0-valued
weakly stationary time series with functional Cramér representation (Zλ)λ∈T

and K ∈N∗, then the problem writes as

min
{

E
[
‖Xt − [FΘ(X)]t‖

2
H0

]
: rank(Θ) ≤ K, a.e.

}
, (1.3.13)

where FΘ(X) is the weakly stationary time series obtained by filtering X
with the transfer operator function Θ, i.e. [FΘ(X)]t =

∫
T

eiλtΘ(λ)dZλ for all
t ∈ Z. Theorem 2.8.2 of Tavakoli, 2014 gives that, under conditions includ-
ing continuity of the spectral density operator function fX, the minimum in
(1.3.13) is achieved for

Θ(λ) =
K

∑
k=1

φk(λ)⊗ φk(λ) , λ ∈ T , (1.3.14)

where (φk(λ))k≥1 are the eigenvalues of fX(λ) ranked by decreasing order
of their related eigenvalues. Since fX is the spectral counterpart of Cov(X),
the transfer operator function defined by (1.3.14) is the spectral counterpart
of the projection defined in (1.3.6), hence the name harmonic fPCA.

Similarly of fPCA, if we let K → +∞, we get an expansion of X which
is the spectral counterpart of the Karhunen-Loeve expansion (1.3.8) and is
referred to as the Cramér-Karhunen-Loève expansion Tavakoli (2014, Theorem
2.8.6). Namely,

Xt =
∞

∑
k=1

[
Fφk⊗φk(X)

]
t , t ∈ Z , (1.3.15)
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where the series converges in L2(Ω,F ,H0, P) and Fφk⊗φk is the filter with
operator transfer function λ 7→ φk(λ) ⊗ φk(λ). We also have that the time
series Fφk⊗φk(X) is uncorrelated to the time series Fφ`⊗φ`

(X) if ` 6= k.
If we write Θ(λ) = Ψ(λ)Φ(λ) in the same way as (1.3.7), we can prove

that the filter FΘ is a composition of the two filters FΨ and FΦ. For this reason
the harmonic fPCA can also be seen as an encoding/decoding model where
the encoder and decoder are linear filters. This is discussed in Tavakoli
(2014, Section 2.8.2) and Hörmann, Kidziński, and Hallin, 2015 where the
time-domain version of the Cramér-Karhunen-Loève expansion. If we call
ϕk,` the `-th Fourier coefficient of the function φk, then the k-th summand in
(1.3.15) writes as the following composition of two convolutional filters.[

Fφk⊗φk(X)
]

t = ∑
`∈Z

Yk,t+`ϕk,` with Yk,t = ∑
s∈Z

〈Xt−s, ϕk,s〉H0
, (1.3.16)

and (Yk,t)t∈Z is uncorrelated to (Y`,t)t∈Z if ` 6= k. In the following, the vectors
φk,` and the scalars Yk,t will be referred to as the loadings filters coefficients and
the scores respectively.

Finally, is practice, when discrete observations are available, the harmonic
fPCA can be translated to a matrix form using a basis expansion as discussed
in Hörmann, Kidziński, and Hallin, 2015.

1.3.7 Statistical inference for functional data

Statistical inference is an important topic in FDA and classic results from the
univariate and multivariate settings have been generalized to the functional
case. In this section, we assume that a collection of functional random vari-
ables (Xt)1≤t≤T is observed and review existing results on the estimation of
statistical objects from the observed data. This requires some assumptions
about the dependence structure of the data. The simplest is to assume that
the variables are i.i.d. For time-dependent data, the linear model assump-
tion provides a nice framework for inference, but it may be too restrictive.
Other assumptions aim at controlling the dependency between (Xt)t<n and
(Xt)t>m as m− n→ +∞. These assumptions are usually based on α-mixing,
Lp-m-approximability (see Hörmann and Kokoszka, 2010) or higher order
cumulant summability assumptions (see Tavakoli (2014, Condition C(l, k))).
A review of recent inference results is provided in Table 1.1. Note that these
results use an ideal context in which the entire function is observed. The
effect of discrete observation for inference in FDA has also been studied in
depth for independent data (see e.g. Belhakem, Picard, Rivoirard, and Roche,
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2021; Hall, Müller, and Wang, 2006; Li and Hsing, 2010; Yao, Müller, and
Wang, 2005) but also, more recently for dependent data (see Tavakoli (2014,
Section 3.8) and Rubı́n and Panaretos, 2020). In this scenario, the estimators
must be adapted and non-parametric methods are usually used.
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Estimation Type of assumption Consistency Asymptotic normality

µ i.i.d. Bosq (2000, Thm. 2.4) Bosq (2000, Thm. 2.7)

linear process Merlevède, Peligrad, and Utev (1997, Thm. 2)

α-mixing Merlevède, Peligrad, and Utev (1997, Thm. 4)

Lp-m-approximability Horváth, Kokoszka, and Reeder (2013, Thm. 2.1)

cumulant conditions Tavakoli (2014, Cor.3.3.6)

ΓX(0) i.i.d. Dauxois, Pousse, and Romain (1982, Prop. 1) Dauxois, Pousse, and Romain (1982, Prop. 5)

Lp-m-approximability Horváth and Kokoszka (2012, Thm.16.1) Kokoszka and Reimherr, 2013

ΓX(h) Lp-m-approximability Hörmann, Kidziński, and Hallin, 2015

∑h∈Z ΓX(h) Lp-m-approximability Horváth, Kokoszka, and Reeder, 2013 Berkes, Horváth, and Rice, 2016

fX Lp-m-approximability
Hörmann, Kidziński, and Hallin, 2015

Kokoszka and Mohammadi Jouzdani, 2020

cumulant conditions Tavakoli, 2014 Tavakoli, 2014

other Delft, 2019 Delft, 2019

linear process Kokoszka and Mohammadi Jouzdani, 2020

fPCA i.i.d. Dauxois, Pousse, and Romain, 1982 Dauxois, Pousse, and Romain, 1982

Lp-m-approximability Horváth and Kokoszka (2012, Thm.16.2) Kokoszka and Reimherr, 2013

harmonic fPCA Lp-m-approximability Hörmann, Kidziński, and Hallin, 2015

cumulant conditions Tavakoli, 2014 Tavakoli, 2014

other Delft, 2019

Table 1.1: Review of statistical inference for functional data
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1.4 Load curves analysis in the web platform ACDC

The web platform ACDC aims at simplifying load curve analysis carried out
by the group. The platform includes tools to visualize load and temperature
curves and algorithms to extract information from the load curves based on
experts’ knowledge. Some tools are also provided to quantify the influence
of the temperature. The front-end is developed in Javascript and the back-
end algorithms are developed in Matlab or Python. During the second part
of my PhD, I participated in the implementation of my algorithms in the
ACDC platform. In this section, I give an overview of the tools which were
present on the platform prior to my PhD. In all the figures, the power is in
kW and the temperature is in ◦C.

1.4.1 Data visualization

When the user enters the platform, he can import the data he wants to an-
alyze. A first graph shown on the platform represents the raw load and
temperature data as shown in Figure 1.1. This representation may be use-
ful for understanding general behavior, but other representations are better
suited to highlight important signal characteristics. This is the case of the
daily and weekly heatmaps displayed in Figures 1.2 and 1.3. In the graph
at the center of Figure 1.2, each row represents one day of the year and the
graph at the left represents the average temperature for each day. The user
can select a particular day and time (here January 11, 2019 at 11:10 a.m.).
The daily load curve of the selected day is displayed in the bottom graph.
The graph at the right shows the consumption observed each day at the se-
lected intraday time (here 11:10 a.m.). In short, the bottom graph and the
right graph are respectively a horizontal and a vertical slice of the central
graph. The weekly heatmap of Figure 1.3 reads the same way. This latter
representation is very useful for sites like the one presented because it high-
lights the fact that there are two regimes. Here, the site is an office and we
can interpret the two regimes as working (or opening) and non-working (or
closing) days. We can also see the influence of summer holidays as fewer
employees are present in the office. Apart from these graphs, the platform
proposes other visualization tools to analyze in more detail each day of the
week (e.g. time derivative, mean and other statistics, range of values).
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© EDF TREE

Figure 1.1: Raw data. Load (in blue) is in kW and Temperature (in red) is in ◦C.



2
2

c
o

n
t

e
x

t
a

n
d

b
a

c
k

g
r

o
u

n
d

© EDF TREE

Figure 1.2: Daily heatmap of load data. At the center, heatmaps of electrical load (in kW) where rows represent days and columns represent
intraday time. At the left, daily temperatures, at the right, load for each day at the selected intraday time. At the bottom, daily
load curve for the selected day.
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© EDF TREE

Figure 1.3: Weekly heatmap of load data. At the center, heatmaps of electrical load (in kW) where rows represent weeks and columns represent
intraday time and week days. At the left, daily temperatures, at the right, load for each week at the selected week day and intraday
time. At the bottom, weekly load curve for the selected week.
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1.4.2 Decomposition of load curves

For a more quantitative study, an the platforms includes an algorithm to
extract information from the load curves. Let us consider a day of the week
d and the associated collection of daily load curves

{
Xd

t (u) : u ∈ [0, 24)
}

for t = 1, · · · , Td, where Td is the number of times the day d is observed.
Of course, in practice, we observe a sampled version of Xd

t (u1), · · · , Xd
t (uI)

but seeing the load curve as a function of the intraday time is more intuitive.
The algorithm decomposes the load curve as follows.

Xd
t (u) = Pd(u) + Vd

t (u) , (1.4.1)

where Pd(u) and Vd
t (u) are called the minimum profile and seasonal variation

respectively. The minimum profile aims at estimating the daily load curve
we would get for the weekday d by observing the consumption of the build-
ing placed in a vacuum. This way the minimum profile captures the charac-
teristics of the building by eliminating the influence of time or any external
factors which is captured by the seasonal variation. For example, for the site
presented in Figure 1.3, if d is Monday, the computation of Pd(u) will not
take into account the few Mondays where the office is closed (e.g. in Novem-
ber) and summer holidays for which the seasonal variation is negative as
observed in Figure 1.4.

The minimum profiles are further decomposed as follows.

Pd(u) = Hd + Ad(u) , where Hd ≈ min
u∈[0,24)

Pd(u) . (1.4.2)

The two summands Hd, and Ad(u) of (1.4.2) are respectively referred to as
the heel and the activity. In the example of Figure 1.4, the heel represents the
consumption at night when the offices are empty and the activity reflects
the effect of human activity in the office. Finally, the seasonal variations are
divided into the summer seasonal variation and the winter seasonal varia-
tion to compute statistics such as the mean or some quantiles. The summer
period is set by default from April 1 to September 30. The user can then visu-
alize the effect of the seasonal variations as shown in Figure 1.5 for Mondays
and Saturdays. We see, for example, that the seasonal variation is very low
in summer but can be high in winter, especially on weekends. To quantify
the importance of each summand in the decomposition of the load curve pie
charts are provided for each weekday d individually or jointly, see Figure 1.6.
For the pie chart of all days jointly, the weekdays are aggregated into open-
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© EDF TREE

(a) Input data (b) Seasonal variations

(c) Minimum profiles

Figure 1.4: Decomposition of the load curves with minimum profiles and seasonal
variations
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ing days and closing days. Formally, the pie charts of Figures 1.6a and 1.6b
represent the decomposition (in kWh)

T

∑
t=1

∫ 24

0
Xd

t (u)du = 24Hd + Ad + ∑
s∈{winter, summer}

Vd
s , (1.4.3)

where Ad =
∫ 24

0 Ad(u)du and Vd
s = ∑season(t)=s

∫ 24
0 Vd

t (u)du, at weekdays
d = Monday and Saturday. The pie chart of Figure 1.6c represents the de-
composition

T

∑
t=1

∫ 24

0
Xt(u)du = ∑

τ∈{open,closed}
24Hτ + Aτ + ∑

s∈{winter, summer}
Vτ

s , (1.4.4)

where Hτ = ∑daytype(d)=τ Hd and similarly for Aτ and Vτ
s .

© EDF TREE

(a) Monday

(b) Saturday

Figure 1.5: Effect of seasonal variation
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1.4.3 Multi-sites analysis

In a multi-sites analysis, features are taken from the decompositions (1.4.3)
and (1.4.4) and are used to compare the sites. To take into account differences
in size between the buildings, each feature is normalized by the surface of
the building. For example, for 12 sites we get the feature matrix of Table 1.2.
Some tools such as the histograms of Figure 1.7 are then provided to visual-
ize these features. We can see some disparities in the dataset but the analysis
is limited and no automatic clustering method is implemented.
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© EDF TREE

(a) Monday (b) Saturday

(c) All days

Figure 1.6: Pie charts of the decomposition of load curves
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Total SV Heel HOD HCD AOD ACD SVW SVS

Site 1 5197.558 22.493 494.352 501.307 502.366 629.031 81.601 0.071 -0.026

Site 2 7869.655 86.309 768.409 787.750 688.521 432.424 133.151 0.159 0.011

Site 3 635.911 1.369 52.666 52.222 53.419 164.132 2.000 0.002 0.000

Site 4 4427.542 32.823 261.647 324.400 415.500 1313.268 69.506 0.055 0.010

Site 5 5059.517 34.188 307.333 375.380 469.600 1512.836 75.400 0.057 0.010

Site 6 1752.450 29.659 141.600 171.100 164.615 231.388 4.144 0.064 -0.005

Site 7 2321.387 11.174 193.625 218.882 215.875 391.296 29.017 0.021 0.001

Site 8 517.196 3.156 44.000 45.594 44.466 111.146 4.383 0.005 0.001

Site 9 663.427 3.656 67.750 71.153 69.083 43.805 5.251 0.012 -0.005

Site 10 1990.410 35.392 154.400 180.142 165.000 265.356 37.180 0.070 0.000

Site 11 4005.698 51.049 377.840 339.526 317.222 610.494 30.828 0.085 0.015

Site 12 5573.467 58.228 498.526 601.933 550.000 471.440 103.876 0.242 -0.125

© EDF TREE

Table 1.2: Values are in MWh/m2.
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Figure 1.7: Histograms for each features
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1.4.4 Correlation with outdoor temperature

Another tool provided by the ACDC platform enables the user to visualize
the dependence between power and temperature for each day of the week.
The dependence is modeled with linear or polynomial regression as shown
in Figure 1.8.

© EDF TREE

Figure 1.8: Power vs temperature for Monday (in blue) and Satuday (in brown).
In orange and green: linear and quadratic regression for Mondays. In
purple and gray: linear and quadratic regressions for Saturdays.





1

C O N T E X T E E T P R É L I M I N A I R E S

1.1 Contexte

EDF est un leader français de l’énergie dont l’activité s’étend à de nombreux
domaines allant de la production et de la distribution d’électricité aux ser-
vices. Le groupe dispose d’un important parc nucléaire, avec 58 réacteurs
répartis sur l’ensemble du territoire et possède de nombreux parcs éoliens
terrestres et offshore, ainsi que des champs photovoltaı̈ques et des centrales
hydroélectriques. Cela en fait le premier producteur européen d’énergies
renouvelables.

Depuis plusieurs années, EDF participe à un processus de transformation
du secteur énergétique afin de répondre aux enjeux du changement clima-
tique et vise la neutralité CO2 à l’horizon 2050. Cette vision est reflétée dans
leur projet stratégique Cap 2030, qui repose sur trois piliers : l’innovation
pour les clients, le bas carbone et la croissance internationale. Dans ce con-
texte, EDF porte un grand intérêt à la recherche et dispose de huit sites de
R&D, dont trois en France : EDF Lab Paris-Saclay, EDF Lab Les Renardières
et EDF Lab Chatou. Sur le premier site, les chercheurs se concentrent sur des
sujets variés allant de la mécanique vibratoire à la simulation mathématique
et numérique en passant par les relations clients. Les recherches menées sur
le deuxième site portent sur l’efficacité énergétique, la sécurité et la fiabilité
du réseau électrique. Enfin, le dernier site développe une expertise dans les
domaines de l’hydraulique, des énergies renouvelables et nucléaires et de
l’environnement.

Mon doctorat a été accueilli par deux départements : le département
TREE (plus précisément, le groupe E36) à EDF Lab les Renardières et le
département PRISME (plus précisément, le groupe P12) à EDF Lab Chatou.

Le département PRISME (Performance, Risque Industriel et Surveillance
pour la Maintenance et l’Exploitation) développe des solutions innovantes
d’acquisition de données et de modélisation physique et mathématique pour

33
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améliorer la production d’électricité. Le département a deux principaux do-
maines d’expertise. Le premier est le cycle de vie des moyens de production
avec des mesures physiques et des simulations, mais aussi le contrôle de
la sécurité. La seconde expertise est le traitement des données, en parti-
culier le traitement du signal et des images et l’apprentissage statistique,
dans le contexte de la production d’énergie. Pour mener à bien ses pro-
jets, le département est divisé en six groupes. Le groupe P12 (Systèmes
dynamiques, Images et Signaux) est plus étroitement lié à l’expertise en
traitement de données. Ses compétences s’articulent donc autour du traite-
ment du signal et de l’image, de l’optimisation et des systèmes dynamiques.
Les projets menés concernent des thèmes variés tels que l’hydraulique, la
flexibilité thermique ou le cycle de vie.

Le département TREE (Technologie et Recherche pour l’Efficacité Energétique)
regroupe 9 groupes travaillant sur différents aspects de la régulation électrique,
de l’optimisation des ressources à la modélisation de la consommation des
bâtiments. Le département développe des outils à faible émission de CO2

pour les bâtiments neufs et anciens dans les secteurs résidentiel, tertiaire
et industriel. Dans ce contexte, les approches d’intelligence artificielle sont
de plus en plus populaires avec des applications allant de la détection de
défauts sur les pompes à chaleur et les panneaux solaires à la régulation
automatique de l’énergie dans les Smart Buildings. Le groupe E36 (Services
& Systèmes Connectés) est spécialisé dans l’Internet des objets (IoT) pour
les Smart Buildings. Le groupe intègre notamment la collecte et l’analyse
de données dans les écosystèmes des filiales d’EDF (par exemple Sowee,
Dalkia, EDF ENR) et réalise de nombreuses études pour des collaborateurs
internes et externes. Du point de vue de l’analyse des données, les solutions
développées par le groupe consistent principalement en la visualisation et
le suivi des consommations, mais aussi en l’analyse des courbes de charge
basée sur les connaissances d’experts. Pour cette dernière tâche, le groupe
a développé une plateforme web appelée ACDC (Analyse de Courbes De
Charges).

Mon travail complète ces approches de deux manières : je propose une ap-
proche statistique et orientée données pour l’analyse des courbes de charge
et je traite le cas multi-sites où la consommation de plusieurs bâtiments est
observée. Dans ce contexte industriel, l’objectif pratique de mon travail peut
être exprimé comme suit.

(PO) Extraire des informations des courbes de charge électrique multi-sites pour
aider à comprendre les différences entre les sites en utilisant une approche non
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supervisée qui ne fait pas appel aux connaissances des experts mais qui reste
facilement interprétable.

L’objectif pratique (PO) pose directement la question de la représentation
et de la comparaison des séries temporelles pour lesquelles de nombreuses
méthodes ont été proposées dans la littérature des dernières décennies. Dans
ce chapitre, je propose un aperçu de ces méthodes, ainsi que des méthodes
implémentées sur la plateforme web ACDC.

1.2 Représentation et comparaison de séries temporelles

La comparaison des séries temporelles n’est pas aussi facile que celle des
données multivariées et il existe de nombreuses méthodes disponibles en
fonction du contexte, des contraintes et/ou des connaissances préalables
sur les données. Contrairement aux données multivariées, il n’existe pas
de distance naturelle pour les séries temporelles. En effet, les mesures
habituelles utilisées pour les données multivariées sont souvent basées sur
une comparaison par coordonnées et ne sont donc pas appropriées pour
comparer des séries temporelles pouvant être échantillonnées différemment.
Pour remédier aux problèmes potentiels d’alignement entre deux séries tem-
porelles, des métriques basées sur le Dynamic Time Wrapping (DTW) ont été
proposées (Sakoe and Chiba, 1971). Étant donnée une métrique pour com-
parer les échantillons, DTW calcule le meilleur alignement en minimisant
la divergence entre les deux signaux. La divergence minimale définit alors
une distance entre les séries temporelles et peut être utilisée dans de nom-
breuses techniques d’apprentissage automatique. Cependant, le calcul d’une
telle distance entre deux signaux de longueurs T1 et T2 a une complexité de
calcul de O (T1T2) et devient trop coûteux pour être utilisé sur de longues
séries temporelles telles que les courbes de charge électrique analysées à
EDF qui sont échantillonnées à intervalles de 10 min pendant 1 an et ont
donc 51100 échantillons par site. Heureusement, la représentation tem-
porelle d’une série temporelle est généralement de très haute dimension
par rapport à l’information utile contenue dans le signal, en particulier
en présence de bruit. Par conséquent, il est courant de s’appuyer sur des
représentations mieux adaptées qui projettent les signaux dans un espace
de dimension inférieure avant de les comparer. Ces approches basées sur les
représentations peuvent être divisées en trois catégories.
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1.2.1 Comparaison par caractéristiques

La première stratégie consiste à extraire des caractéristiques spécifiques à
partir d’hypothèses basées sur des connaissances d’experts ou sur des outils
de traitement du signal et de statistique. Ces propriétés peuvent ensuite être
quantifiées et comparées pour déterminer la similarité entre deux signaux.
Par exemple, dans la plateforme web ACDC, des motifs prédéfinis sont ex-
traits des courbes de charge. En traitement du signal, les représentations de
Fourier ou d’ondelettes sont très courantes, mais des représentations basées
sur des dictionnaires ou des représentations fonctionnelles sont également
possibles. Les méthodes statistiques peuvent se baser, par exemple, sur des
coefficients de régression ou des coefficients ARMA. L’un des avantages
de cette stratégie est que l’interprétation des résultats peut être facilitée
par l’utilisation de connaissances a priori. Cependant, la quantification de
ces caractéristiques peut être difficile dans des contextes non stationnaires,
bruités ou hétérogènes, ou en présence de valeurs aberrantes ou de données
manquantes. De plus, le choix des caractéristiques à utiliser dans la compara-
ison peut être une tâche longue et fastidieuse qui nécessite plusieurs étapes
de test et d’erreur et l’aide de connaissances d’experts. Ce processus est
connu sous le nom de feature engineering et peut aboutir à des représentations
très spécifiques au type de données analysées. Par exemple, à EDF, il est
connu que les caractéristiques importantes différent en fonction du secteur
(résidentiel, tertiaire ou industriel).

1.2.2 Méthodes bout-à-bout

La deuxième stratégie de comparaison des signaux consiste à utiliser des
méthodes de type bout-à-bout. Ces méthodes prennent le signal brut en
entrée et apprennent simultanément une représentation des données et les
paramètres d’un modèle qui résout une tâche spécifique. Une méthode
populaire est l’apprentissage profond (Goodfellow, Bengio, and Courville,
2016) où des représentations successives des données sont apprises dans les
couches internes et sont utilisées par la couche de sortie pour effectuer une
tâche donnée (e.g. régression, classification). Contrairement à la première
stratégie, les caractéristiques extraites par les méthodes de bout en bout ne
sont pas connues a priori et sont apprises directement à partir des données.
Malgré leur polyvalence, ces méthodes présentent souvent l’inconvénient
d’être difficiles à interpréter car la représentation est apprise pour effectuer
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la tâche et non pour l’interprétation. Par exemple, il est généralement dif-
ficile de relier les couches internes d’un réseau neuronal aux propriétés du
signal original. En outre, ces méthodes nécessitent de grandes quantités de
données d’apprentissage car le nombre de paramètres peut être très élevé.
Il convient de noter que d’autres méthodes bout-à-bout, peuvent donner
des résultats interprétables mais nécessitent des données étiquetées (Mairal,
Bach, and Ponce, 2012; Mairal, Ponce, Sapiro, Zisserman, and Bach, 2009).

1.2.3 Comparison par motifs

Enfin, la dernière catégorie de méthodes vise à extraire des motifs récurrents
des données. Contrairement aux méthodes bout-à-bout, cela se fait généralement
sans avoir de tâche spécifique en tête, mais en utilisant des hypothèses
générales sur les motifs, telles que l’orthogonalité, la positivité, l’indépendance
ou la parcimonie. Comme ces hypothèses ne sont généralement pas spécifiques
aux données, ces méthodes sont très polyvalentes et populaires pour de
nombreuses applications pratiques. La plupart de ces méthodes donnent
une approximation du signal ou du signal centré xt comme suit

xt =
R

∑
r=1

arsr,t + εt ; , (1.2.1)

où ε est un terme de bruit. Une interprétation courante est que les ar

représentent les motifs qui sont modulés dans le temps par un signal d’activation
sr,t. Par exemple, une activation binaire suggérerait que le motif est présent
dans le signal à des périodes de temps spécifiques. En séparation des
sources, les sr,t sont interprétés comme des signaux sources qui sont mélangés
par les coefficients ar. En analyse factorielle, ar est appelé le loading et sr,t le
facteur. L’exemple le plus populaire de méthode par motifs est l’analyse en
composantes principales (ACP) (Jolliffe, 1986) qui donne des loading orthog-
onaux et des facteurs décorrélés (généralement appelés scores). Parmi les
autres méthodes populaires, citons l’analyse en composantes indépendantes
(ACI) qui recherche des sources indépendantes en se basant sur la max-
imisation de la non-gaussianité (Cardoso, 1989; Cardoso and Souloumiac,
1993) ou sur des méthodes de second ordre (Belouchrani, Abed-Meraim,
Cardoso, and Moulines, 1997; Yeredor, 2000). Enfin, l’utilisation de con-
traintes de positivité sur les motifs et les activations conduit à la factori-
sation non-négative de matrices (NMF) (Lee and Seung, 2001) et les con-
traintes de parcimonie conduisent à l’apprentissage de dictionnaires parci-
monieux (Lee, Battle, Raina, and Ng, 2007). Il est important de noter que
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ces méthodes ne sont pas destinées à modéliser les mêmes propriétés statis-
tiques des données. Par exemple, l’ACP est une méthode de second or-
dre qui modélise la variance, tandis que la NMF modélise la moyenne.
Pour les séries temporelles, l’utilisation d’une convolution dans (1.2.1) au
lieu d’une multiplication peut être intéressante pour prendre en compte la
dépendance entre les observations. Pour cette raison, plusieurs modèles
de représentation de motifs ont leur contrepartie convolutive. Par exemple,
Brillinger (2001, Chapitre 9) présente une ACP dans le domaine fréquentiel
qui, dans le domaine temporel, a une forme convolutive avec des séries tem-
porelles de scores décorrélés. L’apprentissage par dictionnaire convolutif est
utilisé pour capturer les motifs récurrents d’une série temporelle de manière
invariante par rapport au décalage (Grosse, Raina, Kwong, and Ng, 2007).

1.3 Le cadre des séries temporelles fonctionnelles

L’analyse des données fonctionnelles (ADF) vise à traiter des structures de
données complexes présentant une régularité inhérente, comme des courbes
ou des surfaces. Ce domaine se distingue du cadre multivarié par cette
hypothèse de régularité et par le fait que les données sont traitées comme
appartenant à un espace de dimension infinie. Puisque la trajectoire d’un
processus stochastique à temps continu peut être vue comme une fonction
aléatoire, il est légitime de penser que l’ADF est similaire à l’analyse des pro-
cessus stochastiques. Cependant, les méthodologies utilisées dans ces deux
cadres diffèrent généralement car, du point de vue des processus stochas-
tiques, une fonction aléatoire est considérée comme une collection de vari-
ables aléatoires univariées, tandis que dans l’ADF, nous considérons une
fonction aléatoire comme un élément aléatoire d’un espace de Banach ou
de Hilbert séparable tel que L2(U ) où U est un intervalle borné de R. Les
détails sur ces variables aléatoires sont rappelés dans Appendix B. De plus,
en ADF, nous nous intéressons à l’analyse des propriétés statistiques de col-
lections de fonctions aléatoires. La littérature sur l’ADF s’est développée au
cours des dernières décennies et de nombreux outils statistiques multivariés
ont été étendus à ce cadre (voir par exemple Ferraty and Vieu, 2006; Horváth
and Kokoszka, 2012; Ramsay and Silverman, 2005; Wang, Chiou, and Müller,
2016). Ces outils ont trouvé des applications dans divers domaines allant de
l’imagerie médicale (Lila and Aston, 2020) et de la biophysique (Tavakoli
and Panaretos, 2016) à la démographie (Hyndman and Ullah, 2007) et à la
linguistique (Tavakoli, Pigoli, Aston, and Coleman, 2019). Comme cela est



1.3 le cadre des séries temporelles fonctionnelles 39

déjà le cas dans les cas univariés et multivariés, la question de la dépendance
entre les observations est importante. Bien que le cadre i.i.d. soit largement
utilisé, l’analyse des données fonctionnelles avec dépendance spatiale et/ou
temporelle est un domaine de recherche actif dans la communauté de l’ADF
depuis les travaux séminaux de Bosq, 2000. Le cadre des séries temporelles
fonctionnelles est pratique pour représenter des signaux temporels collectés
sur plusieurs jours et où les structures de dépendance intrajournalière et
interjournalière diffèrent. C’est le cas, par exemple, des données de con-
sommation d’électricité analysées à EDF où l’on s’intéresse à des courbes
de charge électrique collectées sur une période de 1 an à une fréquence
d’échantillonnage de 10 minutes. Pour ce type de données, il est naturel
de penser que la dépendance intrajournalière est plutôt liée à l’activité hu-
maine et que la dépendance inter-journalière est plutôt liée aux variations
saisonnières. Dans ce cadre, nous représentons les données de charge d’un
site donné comme un panel de courbes (Xt)1≤t≤T où Xt appartient à l’espace
de Hilbert séparable L2([0, 24)). Dans ce cas, Xt(u) est la consommation in-
stantanée au jour t et au temps intrajournalier u ∈ [0, 24). Dans la section
suivante, nous verrons que ce cadre est déjà implicitement utilisé dans la
plateforme ACDC. Dans le reste de cette section, nous fixons un espace de
probabilité (Ω,F , P) et passons en revue les aspects fondamentaux de l’ADF
et des séries temporelles fonctionnelles.

1.3.1 Cadre fonctionnel vs cadre hilbertien

Il existe une dualité entre les données fonctionnelles et les données à valeurs
dans un espace de Hilbert séparable. D’un point de vue théorique, les deux
cadres sont équivalents puisque tout espace de Hilbert séparable est isomor-
phe à l’espace de fonctions L2(U ). Cependant, certains résultats peuvent
être plus faciles à interpréter dans un cadre que dans l’autre. Le cadre
hilbertien est plus abstrait mais a l’avantage de fournir des résultats plus
élégants sans utiliser d’opérateurs intégraux, comme c’est souvent le cas
dans le cadre fonctionnel. Au contraire, le cadre fonctionnel peut conduire
à des résultats plus fins, notamment lorsque la continuité est impliquée ou
lorsque la variable fonctionnelle est considérée comme la trajectoire d’un
processus stochastique à temps continu. Un inconvénient de ce cadre est
que l’on doit garder à l’esprit que, si X est une variable aléatoire à valeur
L2(U ), l’évaluation X(u) n’a pas de sens. Dans ce cas, un énoncé comme

E [X(u)] = µ(u) ; , u ∈ U ; ,
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est un abus de notation qui doit être compris comme E [X] = µ dans L2(U ).
Cet abus de notation est très répandu et généralement inoffensif mais peut,
dans certains cas, conduire à un raisonnement incorrect.

Dans ce manuscrit, j’essaie d’être aussi rigoureux que possible pour les
considérations théoriques en utilisant principalement le cadre de Hilbert et
en justifiant les déclarations faites avec le cadre fonctionnel. Pour les travaux
pratiques, un certain abus de notation est autorisé car, lorsqu’il s’agit de
données réelles, le passage des données discrètes aux données fonctionnelles
se fait souvent d’une manière qui implique la continuité.

1.3.2 Des données discrètes aux données fonctionnelles

En pratique, nous accédons à une donnée fonctionnelle x ∈ L2(U ) sous la
forme d’une collection de paires (ui, yi)1≤i≤I où ui ∈ U et yi ∈ R. Par ex-
emple, pour les données d’EDF, I = 144 et (ui)1≤i≤I sont uniformément
espacés dans [0, 24). Si I est suffisamment petit, représenter les données
par le vecteur y := [y1, · · · , yI ]

> n’est pas forcément rédhibitoire d’un point
de vue computationnel. Cependant, cette représentation multivariée ne per-
met pas de capturer la structure sous-jacente des données, notamment leur
régularité, car les données brutes peuvent présenter des erreurs et du bruit.
Pour cette raison, une première étape de l’ADF consiste à récupérer la fonc-
tion x à partir des observations discrètes. Ce processus est appelé lissage et
s’appuie généralement sur le modèle

yi = x(ui) + εi ; , i = 1, · · · , I ; , (1.3.1)

où (εi)1≤i≤I représente le bruit.

1.3.2.1 Lissage non paramétrique

Le modèle présenté dans (1.3.1) est très courant en statistique non paramétrique
et, par conséquent, de nombreuses méthodes non paramétriques peuvent
être appliquées au problème du lissage. Par exemple, x(u) peut être estimé
par la moyenne des valeurs yi pour les i tel que ui est dans un voisinage de
u. Cette méthode, appelée lissage par noyau estime x(u) par

x̂(u) =
I

∑
i=1

κ(u, ui)yi ; ,

où κ est une fonction positive telle que κ(u, v) tend vers 0 lorsque |u− v| tend

vers 0. Un exemple typique est le noyau gaussien κ(u, v) = exp
(
− |u−v|2

2σ2

)
.
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Une autre méthode de lissage non paramétrique très populaire se base sur
l’ajout d’un terme de pénalité à l’erreur quadratique, typiquement la norme
L2 de la dérivée seconde de x, en admettant que cette dérivée seconde soit
dans L2(U ). L’estimateur s’écrit alors

x̂ = argmin
x

n

∑
i=1

(yi − x(ui))
2 + λ

∫
U

∣∣x′′(u)∣∣2 du ; .

Ce problème d’optimisation est étudié dans Green and Silverman (1994,
Chapitre 2). En particulier, la solution est nécessairement une spline cubique
naturelle et est entièrement caractérisée par le vecteur x̂ = [x̂(u1), · · · , x̂(uI)]

T

qui est défini comme suit

x̂ = argmin
x∈RI

‖y− x‖2
2 + λx>Kx ; ,

avec une matrice appropriée K.

1.3.2.2 Lissage paramétrique

La méthode de lissage la plus courante en ADF consiste à représenter la fonc-
tion x comme une combinaison linéaire de fonctions linéairement indépendantes
(mais pas nécessairement orthogonales) (vk)1≤k≤K ⊂ L2(U ) appelées fonc-
tions de base. En particulier, nous supposons qu’il existe c1, · · · , cK ∈ R tels
que

x(u) =
K

∑
k=1

ckvk(u) = c>v(u) ; , u ∈ U ; , (1.3.2)

où c := [c1, · · · , cK]
> et v(u) := [v1(u), · · · , vK(u)]>. L’hypothèse derrière

cette approche est que x appartient à (ou est bien approximé par sa projec-
tion sur) l’espace V := Span (v1, · · · , vK) qui est un sous-espace de L2(U )
de dimension finie. Cette approche est plus populaire que l’approche non-
paramétrique car, en ADF, nous nous intéressons à l’étude des propriétés
statistiques d’un panel de courbes et ces propriétés se transmettent généralement
bien aux coefficients c. La raison derrière cela est que, si A est un opérateur
linéaire de V sur lui-même et que A est la matrice K × K telle que Avk =

∑K
k′=1 Ak,k′vk′ , alors pour tout x ∈ V décomposé comme (1.3.2), nous avons

Ax(u) = v(u)>Ac ; , u ∈ U ; . (1.3.3)

En particulier, si b ∈ RK est un vecteur propre de la matrice A associé à
la valeur propre λ ∈ R, alors b : u 7→ b>v(u) est un vecteur propre de
l’opérateur A.
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La complexité de la méthode réside dans le choix d’un V approprié, ou
de manière équivalente, de fonctions de base appropriées et de leur nombre.
Une collection possible de fonctions de base est la collection des monômes ,
c’est-à-dire vk(t) = tk−1, ce qui signifie que V est l’ensemble des polynômes
de degré k− 1. Pour les données périodiques, la base de Fourier est un choix
standard qui présente l’avantage d’être orthonormale. Pour les données non
périodiques, les fonctions B-splines (Boor, 1978) sont, en général, un bon
choix. Dans ce contexte, V devient un sous-ensemble de l’ensemble des
fonctions splines définies sur l’intervalle U . La base des fonctions B-splines
peut être utile pour les données de charge électrique elles sont à valeurs pos-
itives. Ainsi, prendre α1, · · · , αK ≥ 0, garantit que x est à valeurs positives.
Il existe néanmoins des moyens plus précis d’approcher des fonctions non
négatives avec des B-splines (voir Hautecoeur and Glineur, 2020).

Étant donnée une collection de fonctions de base, les coefficients c1, · · · , cK

dans (1.3.2) sont généralement estimés par les moindres carrés ordinaires. Si
nous définissons la matrice V := [v(u1)

>, · · · , v(uI)
>]>, l’estimateur s’écrit

comme suit
ĉ = argmin

c∈RK
‖y−Vc‖2

2 = (V>V)−1V>y ; .

1.3.3 Alignement des données fonctionnelles

Tout comme les séries temporelles, les données fonctionnelles peuvent être
sujettes à des problèmes d’alignement. Lors de l’analyse d’un panel de fonc-
tions, nous pouvons vouloir prendre cela en compte, mais il est, en général,
préférable de réaligner les données au préalable. Formellement, nous sup-
posons que, au lieu d’observer les fonctions (Xt)1≤t≤T, nous observons des
versions déformées en temps (Yt = Xt ◦ ht)1≤t≤T où ht : U → U est ap-
pelée une fonction de déformation. Le but est alors de trouver les fonctions de
déformation qui vont aligner les données. Si les Xt sont i.i.d et µ = E [X1],
nous pouvons écrire

Yt = µ ◦ ht + εt ; , t = 1, · · · , T ; ,

où (εt)1≤t≤T est le bruit. En supposant que nous connaissions µ, nous pou-
vons alors estimer (h1, · · · , hT) par un critère des moindres carrés, c’est-à-
dire

(ĥ1, · · · , ĥT) = argmin
h1,··· ,hT

T

∑
t=1

∫
U
(Yt(u)− µ(ht(u)))

2 du ; .
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Ce problème d’optimisation peut être résolu pour certains types de fonc-
tions de déformation. Par exemple, le critère des moindres carrés est utilisé
dans Ramsay and Silverman, 2005, Section 7.2.1 dans le cas où ht est la fonc-
tion de translation du paramètre δt, c’est-à-dire ht(u) = u − δt. D’autres
méthodes d’enregistrement plus avancées existent (Srivastava and Klassen,
2016) mais dépassent le cadre de ce manuscrit. Dans le cas des données
EDF, le seul problème d’alignement observé est causé par les changements
d’heure d’été et d’hiver (voir Figures 1.2 and 1.3) et peut être corrigé par un
simple décalage d’une heure.

1.3.4 Analyse en composantes principales fonctionnelle

L’analyse en composantes principales fonctionnelle (ACPf) est l’un des out-
ils statistiques les plus utilisés dans l’ADF, car elle fournit la meilleure ap-
proximation à dimension finie des données pour l’erreur quadratique. D’un
point de vue général, on peut considérer l’ACPf comme la succession d’une
étape d’encodage linéaire et d’une étape de décodage linéaire. Le rôle de
l’encodage est de représenter les données sous la forme d’un vecteur de di-
mension K et le rôle du décodage est de renvoyer les données encodées dans
l’espace original. Plus précisément, si X est une variable aléatoire centrée
dans L2(Ω,F ,H0, P), où H0 est un espace de Hilbert séparable, et K ∈ N∗,
le problème s’écrit comme suit : .Nous rappelons que

Lb(E, F) désigne
l’espace des opérateurs

bornés entre deux
espaces de Banach E et

F et
Lb(E) = Lb(E, E).

min
{

E
[
‖X−ΨΦX‖2

H0

]
: Φ ∈ Lb(H0, CK), Ψ ∈ Lb(C

K,H0)
}

; , (1.3.4)

ou, de manière équivalente

min
{

E
[
‖X−ΘX‖2

H0

]
: Θ ∈ Lb(H0), rank(Θ) ≤ K

}
; . (1.3.5)

Soit (φk)k≥1 la suite des vecteurs propres de Cov(X) classés par ordre décroissant
de leurs valeurs propres associées. Alors une solution de (1.3.5) est donnée
par

Θ =
K

∑
k=1

φk ⊗ φk ; , (1.3.6)

où nous rappelons que, pour tout u, v ∈ H0 l’opérateur u ⊗ v ∈ Lb(H0)

satisfait (u⊗ v)z = 〈z, v〉H0
u pour tout z ∈ H0. Notons que Θ = ΨΦ avec

Φ =


φH

1
...

-phiHK

 et Ψ = [φ1, · · · , φK] ; , (1.3.7)
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où φH : x 7→ 〈x, φ〉H0
. Plus précisément, cela signifie que, pour tout x ∈

H0, Φx =
[
〈x, φ1〉H0

, · · · , 〈x, φK〉H0

]>
∈ CK et pour tout y ∈ CK, Ψy =

∑K
k=1 ykφk ∈ H0. Par conséquent, (Ψ, Φ) est une solution de (1.3.4).
En d’autres termes, la meilleure approximation de X par une transforma-

tion linéaire de dimension finie est une version tronquée de la décomposition

X =
+∞

∑
k=1
〈X, φk〉H0

φk ; , (1.3.8)

où la série converge dans L2(Ω,F ,H0, P). Cette décomposition peut être vu
comme la version hilbertienne de la décomposition de Karhunen-Loève d’un
processus stochastique L2 à temps continu (voir Bosq (2000, Theorem 1.5)).
En particulier, (〈X, φk〉H0

)k≥1 est une suite univariée décorrélée. Dans la
suite, les vecteurs φk et les produits scalaires 〈X, φk〉H0

seront appelés respec-
tivement les fonctions principales et les scores.

Comme pour l’ACP, si nous observons un ensemble de données fonction-
nelles (Xt)1≤t≤T satisfaisant Cov(Xt) = Cov(X) pour tout 1 ≤ t ≤ T, le
critère des moindres carrés des équations (1.3.4) et (1.3.5) et l’opérateur de
covariance sont remplacés par leurs équivalents empiriques. En pratique,
en supposant que H0 = L2(U ) et que nous n’avons accès qu’à une ver-
sion discrète de la fonction Xt, nous devons ajouter une deuxième couche
d’approximation. Dans ce cas, il existe deux façons d’effectuer une ACPf. La
première consiste à utiliser uniquement les points d’échantillonnage et à es-
timer le produit scalaire 〈Xt, φk〉H0

=
∫
U Xt(u)φk(u)du par une intégrale de

Riemann. Si les points d’échantillonnage sont régulièrement espacés dans
U , cette approche est équivalente à l’application d’une ACP aux vecteurs
représentant les fonctions discrétisées. Cette méthode ne fournit qu’une
estimation de la composante fonctionnelle principale évaluée aux points
d’échantillonnage. Pour récupérer la fonction, il faut alors utiliser une méthode
d’interpolation. Une alternative consiste à ajouter un terme de pénalité sur
la norme L2 de la dérivée seconde de ϕk, ce qui permet d’obtenir des estima-
teurs de type spline cubique naturels. L’autre méthode, la plus utilisée, pour
effectuer une ACPf en pratique consiste à s’appuyer sur une représentation
du type (1.3.2). Considérons une base de fonctions (v1, · · · , vK′) avec K′ > K
et supposons que Xt(u) = c>v(u) comme dans (1.3.2). Alors, les vecteurs
propres de l’opérateur de covariance empirique peuvent être obtenus en cal-
culant les vecteurs propres de la matrice K′ × K′ Γ = T−1G1/2CC>G1/2

où C = [c1, · · · , cT] ∈ RK′×T et G ∈ RK′×K′ est la matrice de gramme de
(v1, · · · , vK) i.e. Gk,k′ =

〈
vk, v′k

〉
H0

.
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1.3.5 Séries temporelles fonctionnelles

Une série temporelle fonctionnelle est une suite de variables aléatoires fonc-
tionnelles (Xt)t∈Z à valeurs dans un espace de Hilbert séparable H0 (par
exemple L2(U )) qui ne sont pas supposées i.i.d. L’étude de telles séries tem-
porelles est généralement effectuée sous l’hypothèse de stationnarité faible,
c’est-à-dire que nous supposons que

(i) Pour tout t ∈ Z, Xt ∈ L2(Ω,F ,H0, P).

(ii) Pour tout t ∈ Z, E [Xt] = E [X0]. On dit que X est centrée si E [X0] = 0.

(iii) Pour tout t, h ∈ Z, Cov (Xt+h, Xt) = Cov (Xh, X0).

Dans les cadres univarié et multivarié, les types de séries temporelles les plus
populaires sont les processus linéaires et les processus ARMA. Ces modèles
ont été naturellement étendus au cadre fonctionnel. Un processus linéaire
(fonctionnel) est une suite du type

Xt = µ + ∑
k∈Z

Akεt−k , t ∈ Z , (1.3.9)

où µ ∈ H0, (εt)t∈Z est un bruit blanc à valeurs dans H0 i.e. une série tem-
porelle faiblement stationnaire à valeurs dans H0 telle que Cov (ε0, εh) = 0
lorsque h 6= 0 et (Ak)k∈Z ∈ Lb(H0)Z. Une étude approfondie de ce type
de processus est proposée dans Bosq, 2000. Au-delà des processus linéaires,
des extensions des célèbres processus autorégressifs et de moyenne mobile
au cas où les paramètres sont des opérateurs linéaires ont également été
étudiées, voir Bosq, 2000; Klepsch, Klüppelberg, and Wei, 2017; Spangen-
berg, 2013.

Un autre domaine d’étude important pour les séries temporelles faible-
ment stationnaires est la théorie spectrale. L’idée principale de cette théorie
est d’obtenir une représentation du processus par un processus décorrélé
indexé par des fréquences. Les travaux du Tavakoli dans Panaretos and
Tavakoli, 2013a,b; Tavakoli, 2014 fournissent des contributions majeures à la
généralisation de la théorie spectrale au cadre fonctionnel. Ces travaux sont
basés sur l’hypothèse que (Xt)t∈Z est une série temporelle faiblement sta-
tionnaire à valeur H0 avec une fonction opérateur d’autocovariance ΓX telle
qu’il existe fX ∈ L1(T,B(T),S1(H0), Leb) satisfaisantNous rappelons que

T = R/(2πZ) et que
S1(H0) est l’ensemble

des opérateurs de
trace-classe sur H0.

ΓX(h) =
∫

T
fX(λ)eiλh dλ , h ∈ Z . (1.3.10)
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Dans ce cas, en utilisant la terminologie de Tavakoli (2014, Definition 2.3.1),
la fonction fX définit la collection des opérateurs de densité spectrale faible de
(Xt)t∈Z. L’adjectif faible souligne le fait que fX n’est défini que presque
partout et que l’évaluation de fX(λ) à une fréquence donnée λ ∈ T n’est
pas possible. Dans ce manuscrit, nous appelons fX la fonction opérateur de
densité spectrale. Dans le cas où ∑h∈Z ‖ΓX(h)‖Lb(H0)

< +∞, Tavakoli (2014,
Proposition 2.3.5) montre que la fonction fX existe et s’écrit comme suit

fX(λ) =
1

2π ∑
h∈Z

ΓX(h)e−iλh , λ ∈ T . (1.3.11)

En particulier, (1.3.11) implique que fX est continue de T vers Lb(H0). Sous
l’hypothèse d’existence de fX et qu’elle appartienne à Lp(T,B(T),S1(H0), Leb)
avec p ∈ (1,+∞], Tavakoli (2014, Theorem 2.4.3) établit la représentation de
Cramér fonctionnelle du processus X = (Xt)t∈Z, c’est-à-dire

Xt =
∫

T
eiλt dZλ , P-a.s. , t ∈ Z , (1.3.12)

où l’intégrale est une intégrale de Riemann-Stieltjes dans L2(Ω,F ,H0, P)

et (Zλ)λ∈T est un processus à valeurs dans H0 avec des accroissements
décorrélés i.e. Cov (Zλ1 − Zλ2 , Zλ3 − Zλ4) = 0 pour λ1 > λ2 ≥ λ3 > λ4. The
process (Zλ)λ∈T is called the functional Cramér representation of X and is a key
concept to define linear filtering in the spectral domain. Étant donnée une
série temporelle fonctionnelle X := (Xt)t∈Z qui admet une représentation
de Cramér fonctionnelle de la forme (1.3.12), Tavakoli définit dans Tavakoli
(2014, Section 2.5) un espace abstrait H de fonctions de transfert à valeurs
opérateurs Φ : λ 7→ Φ(λ) qui peuvent être utilisées pour filtrer le proces-
sus X sous la forme d’un intégrale du type∫

T
eiλtΦ(λ)dZλ .

Même si Tavakoli (2014, Definition 2.3.1) définit les opérateurs de densité
spectrale faible sans aucune hypothèse supplémentaire sur la structure de
covariance du processus, l’auteur prouve l’existence de la fonction fX sous
des hypothèses mémoire courte. Cependant, dans certains cas, la fonction fX

peut exister même si la série temporelle a une dépendance longue. Dans le
cadre univarié, les processus ARFIMA entrent dans cette catégorie et peu-
vent être directement définis dans le domaine spectral (Granger and Joyeux,
1980). Plusieurs généralisations des processus à mémoire longue ont été pro-
posées récemment dans le cadre fonctionnel (Characiejus and Račkauskas,
2013, 2014; Düker, 2018; Li, Robinson, and Shang, 2020; Račkauskas and
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Suquet, 2011). Enfin, dans le cas univarié, la représentation de Cramér peut
être prouvée même si aucune fonction fX ne satisfait (1.3.10), voir Holmes,
1979 et les références qui s’y trouvent. Dans ce cas, la mesure fX(λ)dλ dans
(1.3.10) est remplacée par une mesure sur (T,B(T)) qui n’est pas dominée
par la mesure de Lebesgue et le résultat est connu sous le nom de théorème
d’Herglotz. Son extension au cadre fonctionnel est discutée dans Delft and
Eichler, 2020.

1.3.6 ACPf harmonique

L’ACPf harmonique fournit un moyen d’approcher une série temporelle
fonctionnelle par une série temporelle de dimension finie et peut être con-
sidérée comme une généralisation de Brillinger (2001, Chapitre 9) au cas
fonctionnel. Dans l’ACPf harmonique, au lieu de chercher une projection
optimale des données de rang K, on cherche un filtre linéaire optimal de
rang K. Soit X = (Xt)t∈Z une série temporelle faiblement stationnaire centrée
à valeurs dans H0 admettant pour représentation de Cramér fonctionnelle
(Zλ)λ∈T et K ∈N∗, alors le problème s’écrit comme suit

min
{

E
[
‖Xt − [FΘ(X)]t‖

2
H0

]
: rank(Θ) ≤ K, a.e.

}
, (1.3.13)

où FΘ(X) est la série temporelle faiblement stationnaire obtenue en filtrant
X par la fonction de transfert Θ, i.e. [FΘ(X)]t =

∫
T

eiλtΘ(λ)dZλ pour tout
t ∈ Z. Le Théorème 2.8.2 de Tavakoli, 2014 prove que, sous des conditions
incluant la continuité de la fonction d’opérateur de densité spectrale fX, le
minimum (1.3.13) est atteint par

Θ(λ) =
K

∑
k=1

φk(λ)⊗ φk(λ) , λ ∈ T , (1.3.14)

où (φk(λ))k≥1 sont les vecteurs propres de fX(λ) classés par ordre décroissant
des valeurs propres associées. Puisque fX est la contrepartie spectrale de
Cov(X), la fonction de transfert définie par (1.3.14) est la contrepartie spec-
trale de la projection définie dans (1.3.6), d’où le nom ACPf harmonique.

De même que pour l’ACPf, si nous laissons K → +∞, nous obtenons une
décomposition de X qui est la contrepartie spectrale de la décomposition
de Karhunen-Loeve (1.3.8) et est appelé décomposition de Cramér-Karhunen-
Loève Tavakoli (2014, Theorem 2.8.6). A savoir,

Xt =
∞

∑
k=1

[
Fφk⊗φk(X)

]
t , t ∈ Z , (1.3.15)
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où la série converge dans L2(Ω,F ,H0, P) et Fφk⊗φk est le filtre de fonction
de transfert λ 7→ φk(λ)⊗ φk(λ). De plus, Les séries temporelles Fφk⊗φk(X) et
Fφ`⊗φ`

(X) sont décorrélées pour ` 6= k.
En écrivant Θ(λ) = Ψ(λ)Φ(λ) comme dans (1.3.7), nous pouvons prou-

ver que le filtre FΘ est une composition des deux filtres FΨ et FΦ. Pour
cette raison, l’ACPf harmonique peut également être considérée comme un
modèle de codage/décodage où l’encodeur et le décodeur sont des filtres
linéaires. Ceci est discuté dans Tavakoli (2014, Section 2.8.2) et Hörmann,
Kidziński, and Hallin, 2015 où la version dans le domaine temporel de la
décomposition de Cramér-Karhunen-Loève est données. Si nous appelons
ϕk,` le `-ième coefficient de Fourier de la fonction φk, alors le k-ième terme
dans la somme de (1.3.15) s’écrit comme la composition de deux filtres con-
volutifs.[

Fφk⊗φk(X)
]

t = ∑
`∈Z

Yk,t+`ϕk,` with Yk,t = ∑
s∈Z

〈Xt−s, ϕk,s〉H0
, (1.3.16)

et (Yk,t)t∈Z et (Y`,t)t∈Z sont décorrélées si ` 6= k. Dans la suite, les vecteurs
φk,` et les scalaires Yk,t seront appelés respectivement les coefficients des filtres
principaux et les scores.

Enfin, dans la pratique, lorsque seules des observations discrètes sont
disponibles, l’ACPf harmonique peut être traduite sous forme matricielle
à l’aide d’une décomposition dans une base comme discuté dans Hörmann,
Kidziński, and Hallin, 2015.

1.3.7 Inférence statistiques pour les données fonctionnelles

L’inférence statistique est un sujet important dans l’ADF et les résultats
classiques des contextes univariés et multivariés ont été généralisés au cas
fonctionnel. Dans cette section, nous supposons qu’une collection de vari-
ables aléatoires fonctionnelles (Xt)1≤t≤T est observée et nous passons en
revue les résultats existants sur l’estimation d’objets statistiques à partir des
données observées. Cela nécessite quelques hypothèses sur la structure de
dépendance des données. La plus simple est de supposer que les variables
sont i.i.d. Pour les données dépendantes, l’hypothèse du modèle linéaire
fournit un cadre agréable pour l’inférence, mais elle peut être trop restric-
tive. D’autres hypothèses visent à contrôler la dépendance entre (Xt)t<n et
(Xt)t>m comme m− n→ +∞. Ces hypothèses sont généralement basées sur
l’hypothèse α-mixing, l’approximabilité Lp-m (voir Hörmann and Kokoszka,
2010) ou des hypothèses de sommabilité des cumulants d’ordre supérieurs
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(voir Tavakoli (2014, Condition C(l, k))). Une revue des résultats d’inférence
récents est fournie dans le tableau 1.1 (voir version en anglais du chapitre).
Notez que ces résultats utilisent un contexte idéal dans lequel la fonction
est entièrement observée. L’effet des observations discrète pour l’inférence a
également été étudié en profondeur dans le cas des données indépendantes
(voir Belhakem, Picard, Rivoirard, and Roche, 2021; Hall, Müller, and Wang,
2006; Li and Hsing, 2010; Yao, Müller, and Wang, 2005) mais aussi, plus
récemment pour les données dépendantes (voir Tavakoli (2014, Section 3.8)
et Rubı́n and Panaretos, 2020). Dans ce cas, les estimateurs doivent être
adaptés et des méthodes non paramétriques sont généralement utilisées.

1.4 Analyse des courbes de charge sur la plateforme
web ACDC

La plateforme web ACDC vise à simplifier l’analyse des courbes de charge
réalisée par le groupe. La plateforme comprend des outils pour visualiser
les courbes de charge et de température et des algorithmes pour extraire des
informations des courbes de charge sur la base des connaissances des ex-
perts. Certains outils sont également fournis pour quantifier l’influence de
la température. Le front-end est développé en Javascript et les algorithmes
du back-end sont développés en Matlab ou Python. Durant la deuxième par-
tie de mon doctorat, j’ai participé à l’intégration de mes algorithmes dans la
plateforme ACDC. Dans cette section, je donne un aperçu des outils qui
étaient présents sur la plateforme avant mon doctorat. Dans toutes les fig-
ures, rassemblées dans la version en anglais du chapitre, la puissance est en
kW et la température est en ◦C.

1.4.1 Visualisation des données

Lorsque l’utilisateur entre dans la plateforme, il peut importer les données
qu’il souhaite analyser. Un premier graphique affiché sur la plateforme
représente les données brutes de charge et de température comme indiqué
dans la Figure 1.1. Cette représentation peut être utile pour comprendre
le comportement général, mais d’autres représentations sont plus adaptées
pour mettre en évidence les caractéristiques importantes du signal. C’est le
cas des graphes d’intensité quotidiens et hebdomadaires affichés dans les
Figures 1.2 and 1.3. Dans le graphique au centre de la Figure 1.2, chaque
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ligne représente un jour de l’année et le graphique à gauche représente la
température moyenne pour chaque jour. L’utilisateur peut sélectionner un
jour et une heure en particulier (ici le 11 janvier 2019 à 11h10). La courbe
de charge journalière du jour sélectionné s’affiche dans le graphique du bas.
Le graphique de droite montre la consommation observée chaque jour à
l’heure intrajournalière sélectionnée (ici 11h10). En bref, le graphique du bas
et le graphique de droite sont respectivement une tranche horizontale et une
tranche verticale du graphique central. Le graphe d’intensité hebdomadaire
de la Figure 1.3 se lit de la même manière. Cette dernière représentation
est très utile pour des sites comme celui présenté car elle met en évidence
le fait qu’il existe deux régimes. Ici, le site est un bureau et nous pouvons
interpréter les deux régimes comme des jours ouvrables (ou d’ouverture) et
non ouvrables (ou de fermeture). Nous pouvons également voir l’influence
des vacances d’été car moins d’employés sont présents au bureau. Outre
ces graphiques, la plateforme propose d’autres outils de visualisation pour
analyser plus en détail chaque jour de la semaine (par exemple, dérivée
temporelle, moyenne et autres statistiques, plage de valeurs).

1.4.2 Décomposition des courbes de charge

Pour une étude plus quantitative, la plateforme propose un algorithme per-
mettant d’extraire des informations des courbes de charge. Considérons
un jour de la semaine d et la collection de courbes de charge journalières{

Xd
t (u) : u ∈ [0, 24)

}
pour t = 1, · · · , Td, où Td est le nombre de fois où

le jour d est observé. Bien sûr, en pratique, nous observons une version
échantillonnée de Xd

t (u1), · · · , Xd
t (uI) mais voir la courbe de charge comme

une fonction du temps intrajournalier est plus intuitif. L’algorithme décompose
alors la courbe de charge comme suit.

Xd
t (u) = Pd(u) + Vd

t (u) ; , (1.4.1)

où Pd(u) et Vd
t (u) sont appelés respectivement le profil minimal et la vari-

ation saisonnière. Le profil minimal vise à estimer la courbe de charge jour-
nalière que nous obtiendrions pour le jour de la semaine d si le bâtiment était
placé dans le vide. Le profil minimal capture donc les caractéristiques du
bâtiment en éliminant l’influence du temps ou de tout facteur externe. Cette
influence est capturée par la variation saisonnière. Par exemple, pour le site
présenté dans la Figure 1.3, si d est un lundi, le calcul de Pd(u) ne tiendra
pas compte des quelques lundis où le bureau est fermé (e.g. en novembre)
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et des vacances d’été pour lesquelles la variation saisonnière est négative
comme observé dans Figure 1.4.

Les profils minimaux sont ensuite décomposés comme suit.

Pd(u) = Hd + Ad(u) ; , où Hd ≈ min
u∈[0,24)

Pd(u) ; . (1.4.2)

Les deux termes Hd, et Ad(u) de (1.4.2) sont respectivement appelés le talon
et le activité. Dans l’exemple de la Figure 1.4, le talon représente la con-
sommation la nuit lorsque les bureaux sont vides et l’activité reflète l’effet
de l’activité humaine dans les bureaux. Enfin, les variations saisonnières
sont divisées en variation saisonnière d’été et variation saisonnière d’hiver
pour calculer des statistiques telles que la moyenne ou certains quantiles. La
période estivale est fixée par défaut du 1er avril au 30 septembre. L’utilisateur
peut alors visualiser l’effet des variations saisonnières comme le montre la
Figure 1.5 pour les lundis et les samedis. On constate, par exemple, que la
variation saisonnière est très faible en été mais peut être élevée en hiver, no-
tamment le week-end. Pour quantifier l’importance de chaque terme dans
la décomposition de la courbe de charge, des diagrammes camembert sont
fournis pour chaque jour de semaine d individuellement ou conjointement,
voir Figure 1.6. Formellement, les diagrammes camembert des figures 1.6a
et 1.6b représentent la décomposition (en kWh)

T

∑
t=1

∫ 24

0
Xd

t (u)du = 24Hd + Ad + ∑
s∈{winter, summer

Vd
s :, (1.4.3)

où Ad =
∫ 24

0 Ad(u)du et Vd
s = ∑season(t)=s

∫ 24
0 Vd

t (u)du, aux jours de la
semaine d = lundi et samedi. Le diagramme camembert de la Figure 1.6c
représente la décomposition

T

∑
t=1

∫ 24

0
Xt(u)du = ∑

τ∈{open,closed
24Hτ + Aτ + ∑

s∈{winter, summer
Vτ

s :, (1.4.4)

où Hτ = ∑daytype(d)=τ Hd et de même pour Aτ et Vτ
s .

1.4.3 Analyse multi-sites

Dans une analyse multi-sites, les caractéristiques sont extraites des décompositions
(1.4.3) et (1.4.4) et sont utilisées pour comparer les sites. Pour tenir compte
des différences de taille entre les bâtiments, chaque caractéristique est nor-
malisée par la surface du bâtiment. Par exemple, pour 12 sites, on obtient
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la matrice des caractéristiques du tableau 1.2. Des outils tels que les his-
togrammes de la Figure 1.7 sont ensuite fournis pour visualiser ces car-
actéristiques. Nous pouvons voir quelques disparités dans le jeu de données
mais l’analyse est limitée et aucune méthode de clustering automatique n’est
implémentée.

1.4.4 Corrélation avec la température extérieure

Un autre outil fourni par la plateforme ACDC permet à l’utilisateur de visu-
aliser la dépendance entre la puissance et la température pour chaque jour
de la semaine. La dépendance est modélisée par une régression linéaire ou
polynomiale comme le montre la Figure 1.8.



2

E X P L O R AT O RY A N A LY S I S O F T H E D ATA

When working with real-world data, it is customary to spend time exploring
the dataset and the modeling options available. This exploratory step is nec-
essary for a variety of reasons. First, real-world data generally have various
flaws such as missing data or outliers which require some pre-processing be-
fore further analysis. Additionally, becoming familiar with the data is help-
ful in the modeling process, in particular to understand which important
characteristics need to be modeled. At this stage, working with experts is
an advantage because their experience can guide the models towards more
interpretable results. In the case of my doctorate, modeling the data as a
functional time series seemed logical and the first approach followed relied
on fPCA and harmonic fPCA. For this reason, parallel to the exploratory
analysis, I became interested in the study of the spectral theory of functional
time series which led to the work presented in Part ii of this manuscript. This
Chapter presents the successive steps taken during this exploratory analysis
which led us to change our approach to better meet the challenges of our
main practical objective (PO).

2.1 Presentation of the dataset and pre-processing

The dataset analyzed at EDF consists of electrical load curves of 181 super-
markets (mentioned as “sites”) across France over a period of one year at a
sampling rate of 10 minutes as well as daily average outdoor temperatures
for each site. In this section, we mainly discuss the mono-site setting and
denote, for a given site, {Xt(u) : u ∈ [0, 24)} the daily load curve observed
at day t ∈ J1, TK and Tt the average daily temperature. Figure 2.1 presents
the weekly heatmaps of one site and illustrates the two main issues which
were found in the data. The first one is missing values (gray in Figure 2.1)
and the second one is values very close to 0 (blue in Figure 2.1). These low
values correspond to periods during which the supermarket uses a personal

53



54 exploratory analysis of the data

generator, for example, if the price of electricity is too high. From Figure 2.1
we see that missing values or generator usage may extend over several hours
or even days. The selection of an exploitable subset of the 181 sites followed
three steps after which 108 were remaining. In the first step, we manually
rejected sites showing abnormal behavior such as unexpected drops in con-
sumption that may occur in case of sensor malfunction. The second phase
was to identify the periods during which the generator is used and to treat
them as missing entries. Finally, we eliminate sites that had more than one
week of missing entries. The generator detection is illustrated in Figure 2.2
and follows three steps.

1. We first detect which days have a low minimum value. More precisely,
defining Yt := minu∈[0,24) Xt(u), we select the days such that Yt ≤ τ,
where τ = 0.1×median(Yt, t = 1, · · · , T).

2. Then for each of the selected days, we remove the intra-day times such
that Xt(u) ≤ τ.

3. Finally, we smooth the curve using a median filter and remove the
points which are too far below the smoothed curve. This last step aims
at removing points which can remain because, when the generator is
used, the consumption does not drop instantaneously.

Finally, we impute missing values by a 2D interpolation of the weekly heatmap
representation (see Figure 2.3). The last pre-processing step consisted in
smoothing the daily load curves as discussed in Section 1.3.2 by projecting
them onto a basis of 30 B-splines (see Figure 2.4).
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Figure 2.1: Weekly heatmaps of power and temperature for one site. Missing data are in gray and values close to 0 (in blue) indicate the use
of an external power generator.
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(a) Step 1. Dashed red line represents the threshold τ and red points indi-
cate selected days.

(b) Steps 2 and 3 for 3 days. Red points indicate discarded data and dashed
black line represents the smoothed curve.

Figure 2.2: Illustration of the generator detection method.
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(a) After generator detection. (b) After imputation.

Figure 2.3: Imputation of missing values
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Figure 2.4: Smoothing the daily load curves for a closing day and an opening day.
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2.2 The two approaches followed

At the beginning of my PhD, the objective was to extract features from the
data using tools adapted to the functional time series framework. This frame-
work is built upon weak-stationarity assumptions on the time series which,
in particular, imply that the mean is constant over time. A look at the load
data of Figures 2.1 and 2.5 shows clearly that this is not the case. The most
obvious source of non-stationarity comes from the fact that two consump-
tion regimes are observed: opening days (mostly from Monday to Saturday)
and closing days (mostly on Sundays). It is therefore necessary to incorpo-
rate the consumption regime in the estimation of the expectation of the time
series. To this end, let us introduce a latent series (Wt)1≤t≤T correspond-
ing to the consumption regime, with Wt = 0 for closing days and Wt = 1
for opening days. Another source of non-stationarity may come from the
temperature since the power is highly correlated to the temperature. It may
therefore also be useful to take the temperature into account when estimat-
ing the expectation. We propose to follow two approaches.

• First approach : without temperature. In the first approach, we esti-
mate the expectation of Xt conditionally to Wt , i.e.

µw(u) := E [Xt(u)|Wt = w] , u ∈ [0, 24), w ∈ {0, 1} . (2.2.1)

Then we apply fPCA or harmonic fPCA to the centered time series
Xt(u)− µWt(u).

• Second approach : with temperature. In the second approach, we
estimate the expectation of Xt conditionally to (Wt, Tt), i.e.

µw(u; τ) := E [Xt(u)|Wt = w, Tt = τ] , u ∈ [0, 24), w ∈ {0, 1}, τ ∈ R .
(2.2.2)

Then we apply fPCA or harmonic fPCA to the centered time series
Xt(u)− µWt(u; Tt).

Before following any of these approaches, we must estimate the series
(Wt)t=1,··· ,T. To this end, we focus on the behavior of the daily mean data
since the two consumption regimes can be well observed in the daily mean
plots of Figure 2.5. This is discussed in the next section.
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(a) Power vs time

(b) Power vs temperature

Figure 2.5: Daily mean data
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2.3 First order analysis of daily means

The distinction between regimes is not as simple as the discrimination be-
tween different days of the week on the ACDC platform. For example, the
supermarket can open on a few Sundays, especially at the end of the year.
For this reason, we propose another method to detect consumption regimes
by simultaneously improving the modeling of the dependence between daily
power and temperature presented in Section 1.4.4. The model can be seen as
a daily mean counterpart of (2.2.2). Denoting by X̄t =

1
24

∫ 24
0 Xt(u)du, the

mean value of the curve Xt, then we estimate

µ̄w(τ) =
∫ 24

0
µw(u; τ)du . (2.3.1)

In addition, for each regime, we model the variance of the residuals by a mix-
ture of two Gaussians which aim at dividing the data into two sub-regimes
corresponding to points which are close and far from the µ̄. We interpret
these sub-regimes as “normal” and “extreme” behaviors. These sub-regimes
are modeled by a latent sequence (Zt)1≤t≤T. The model writes as follows.

X̄t = µ̄Wt(Tt) + σWt,Zt εt , t = 1, · · · , T , (2.3.2)

where for all (w, z) ∈ {0, 1}2, σw,z > 0 and (εt)1≤t≤T
iid∼ N (0, 1). We also

assume that (Wt, Zt)1≤t≤T are i.i.d and independent of (Tt, X̄t)1≤t≤T and that
for all t, ` ∈ J1, TK, X̄t is independent of (X̄`, T`) conditionally to Tt. The
parameter of this model is denoted by η and is decomposed as η = (α, θ)

where α = (α0, α1), θ = (θ0, θ1) and for all w ∈ {0, 1}

αw = P (Wt = w) and θw =
(
µ̄w, βw,0, βw,1, σ2

w,0, σ2
w,1
)

,

with for all z ∈ {0, 1}

βw,z = P [Zt = z |Wt = w] .

We estimate the parameter η as well as the labels (Wt, Zt)1≤t≤T using a hier-
archical scheme where we alternate between the two following steps

1. Update the main clustering i.e. the estimators α̂ and Ŵ1:T of α and
W1:T.

2. For each value w ∈ {0, 1}, fit the regression model and clustering of
sub-regimes on

{
t : Ŵt = w

}
.

Formally, the main iterations are described in Algorithm 2.3.1.
Details of each step are provided in the next sections. The results obtained

by this algorithm are illustrated in Figure 2.6 for one site of EDF’s dataset.



62 exploratory analysis of the data

Algorithm 2.3.1: Alternating clustering and regression updates

Data: Observations (Tt, X̄t)1≤t≤T and initial value η̂0.
1 k← 0
2 repeat

3
(

α̂k+1, (Ŵk+1
t )1≤t≤T

)
← update main clustering

(
η̂k
)

4 for w = 0, 1 do

5 Ik+1
w ←

{
t ∈ J1, TK : Ŵk+1

t = w
}

.

6

(
θ̂

k+1
w ,

(
Ẑk+1

t

)
t∈Ik+1

w

)
←

update regression
(

θ̂
k
w, (Tt, X̄t)t∈Ik+1

w

)
7 k← k + 1

8 until Stopping criterion;

9 return η̂k+1,
(

Ŵk+1
t

)
1≤t≤T

and
(

Ẑk+1
t

)
1≤t≤T
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Figure 2.6: Daily data regression and clustering. The left graph illustrates the result of the main clustering: blue corresponds to Wt = 0 (closing
days) and orange corresponds to Wt = 1 (opening days). The right graph represents the results of the regression. For each main
regime, the regression function is plotted and the sub-regimes are represented in different colors. Blue and orange correspond
respectively to Zt = 0 (normal) and Zt = 1 (extreme) when Wt = 0 and green and red correspond respectively to Zt = 0 and Zt = 1
when Wt = 1.
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2.4 Centering without temperature

Let us now present the results obtained following the first centering ap-
proach. The expectation of (2.2.1) is estimated by its empirical counterpart,
i.e.

µ̂w(u) =
∑T

t=1 1Wt=wXt(u)

∑T
t=1 1Wt=w

, u ∈ [0, 24) , w ∈ {0, 1} .

The centering process is illustrated in Figure 2.7. We then apply fPCA and
harmonic fPCA to the centered time series

Xc
t (u) := Xt(u)− µ̂Wt(u) , u ∈ [0, 24) .

(a) Original time series (b) Mean functions µ0(u) and µ1(u)

(c) Centered time series

Figure 2.7: Illustration of the first centering approach
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2.4.1 Results of fPCA

We extracted the K = 3 first functional principal components which explain
65, 10 and 4 percent of the variance respectively. We propose to visual-
ize the results in three ways. Figure 2.8 presents the fPCA loadings and
scores i.e the functions φk and the coefficients

〈
Xc

k, φk
〉
H0

of Relation (1.3.8).
Figure 2.9 illustrates the effect of each loadings φk on the mean µ̂w simi-
larly to the visualization proposed in Ramsay and Silverman (2005, Section
8.3.1). Here we display µ̂w + Cφk for C ranging from mint:Wt=w 〈Xc

t , φk〉H0
to

maxt:Wt=w 〈Xc
t , φk〉H0

φk. Finally, Figure 2.10 shows the truncated Karhunen-
Loeve expansion of three days at different truncation levels, i.e the curves
µ̂Wt + ∑K

k=1 〈Xc
t , φk〉 φk for K = 1, 2, 3.

Figure 2.8: fPCA loadings and scores. Each row corresponds to one functional prin-
cipal component.

The first striking result is that most of the data variability is explained
by the first principal component whose scores are highly correlated to the
temperature. In Figure 2.8, we see that the first principal component scores
are mostly negative in winter and positive in summer. It is interesting to
see how the first principal component loading affects the consumption as
presented in the upper left graph of Figure 2.9. Here, we see that when
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Figure 2.9: fPCA loadings as perturbation of the mean. The black dashed curve is
the mean µ̂w, the other lines represent µ̂w + Cφk for C in the range of
scores. Blue and red correspond to C < 0 and C > 0 respectively.

the score increases (in red), the curve morphs into a cooling profile where
the consumption is higher in the afternoon. On the contrary, as the score
increases (in blue), the curve morphs into a heating profile where the con-
sumption is higher in the morning. This cooling and heating interpretation
is also justified by the signs of the scores in summer and winter. The other
principal components are almost not correlated to the temperature and seem
to represent variations in specific periods of the day. The second component
focuses on the period before 10 a.m. and we can see in Figure 2.10b how it
helps the estimated curve to come closer to the true curve in that period. The
third component explains the variability between 8 p.m and 10 p.m which
can be observed in Figure 2.7c. The days on which this behavior is observed
are the Sunday when the supermarket opens at the end of the year. During
these days, the supermarket closes earlier than the other usual opening days
and the third component captures this variation as seen in Figure 2.10c.
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(a) Summer (b) Winter

(c) Open Sunday

Figure 2.10: Truncated Karhunen-Loeve expansion

2.4.2 Results of harmonic fPCA

Let us now investigate whether harmonic fPCA and the Cramér-Karhunen-
Loève expansion (1.3.15) can be interesting to achieve the practical objective
(PO). In practice, the Cramér-Karhunen-Loève expansion is truncated at two
levels. The first is the component level where we select K = 3 as in fPCA
and the second is for the convolutions in (1.3.16) where we truncate the
convolutions at lag ±L with L = 19 = bT1/2c as proposed in Hörmann,
Kidziński, and Hallin, 2015. Overall, the truncated Cramér-Karhunen-Loève
expansion writes as

X̂t(u) = µWt(u) +
K

∑
t=1

L

∑
`=−L

Yk,t+`ϕk,`(u) with Yk,t =
L

∑
s=−L

〈Xc
t−s, ϕk,s〉H0

.
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In fact, it is not necessary to take the same amount of lags in the two con-
volutions. It can be helpful for the interpretation to known which lags are
important in the construction of X̂t(u). Since

∑
`∈Z

‖ϕk,`‖2
H0

=
1

2π

∫
T
‖ϕ(λ)‖2

H0
dλ = 1 ,

we can select L with an elbow method on the graph of ∑L
`=−L ‖ϕk,`‖2

H0
. As we

see in Figure 2.11a, most of the norm of the filter is explained by the first lags.
This can also be observed in Figure 2.11b where the reconstruction with the
first harmonic principal component, i.e. µ̂Wt(u) + ∑L

`=−L Y1,t+`ϕ1,`(u), is dis-
played for several values of L. We see that much of the variation in the curve
is added by the first lags and that increasing L only brings subtle changes to
the reconstructed curve. For this reason, and to facilitate the interpretation,
we only display the loadings filters coefficients for lags ` = −1, 0,+1. These
loadings filters coefficients are presented in Figure 2.12 as well as the related
scores Yk,t. As an attempt to interpret the loadings filters coefficients, we us-
ing the method proposed Hörmann, Kidziński, and Hallin (2015, Figure 6)
where we display, in Figure 2.13, the curves µ̂1 +C(δ−1ϕ1,−1 + δ0ϕ1,0 + δ1ϕ1,1)

with C > 0 (here C = 1
T ∑T

t=1 |Yk,t|) for δi = ±1. Finally, Figure 2.10 shows
the truncated Cramér-Karhunen-Loève of the same days as in Figure 2.10,
at different truncation levels, i.e µ̂Wt + ∑K

k=1 ∑L
`=−L Yk,t+`ϕk,` for K = 1, 2, 3.

Finally, in Figure 2.15 we compare the reconstructed series obtained by the
truncation of the Karhunen-Loeve and Cramér-Karhunen-Loève expansion.
The relative error is defined as

∑T
t=1
∥∥X̂t − Xt

∥∥2
H0

∑T
t=1 ‖Xt‖2

H0

.

Similarly to fPCA, the component explaining the most of the variability
(67%) in the data is highly correlated to the temperature and the other two
are not correlated to the temperature and explain only 10% and 5% of the
variability respectively. The scores in Figure 2.12 look very similar to the
scores of Figure 2.8 and the loadings of Figure 2.8 are also very similar to
some loading filters coefficients of Figure 2.12. In fact, with a closer look, we
can interpret the k-th fPCA loading φk as a linear combination of the k-th har-
monic fPCA loading filter coefficients. For example, φ1 can be decomposed
as the sum of a constant curve (i.e ϕ1,0) and a curve which peaks during the
afternoon (i.e ϕ1,1). This additional decomposition allows harmonic fPCA to
recover more subtle variation in the curves as it can be seen in Figure 2.15.
However, the gain in reconstruction is not so important (0.6% of gain in the
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(a) Evolution of ∑L
`=−L

∥∥ϕk,`
∥∥2
H0

with the num-
ber L of lags.

(b) Reconstruction with the first har-
monic principal component, i.e.
µ̂Wt (u) + ∑L

`=−L Y1,t+`ϕ1,`(u), with dif-
ferent number L of lags.

Figure 2.11: Importance of the number of lags in the reconstruction.

relative error) compared to the loss in the interpretation of the results. In-
deed, interpreting the role of each filter coefficient is not straightforward.
Looking at Figure 2.13 we can state that, when the scores at days t and t + 1
are low (i.e. δ0 = δ1 = −1), the consumption is below the mean and has a
heating profile. On the contrary when the scores at days t and t + 1 as high
(i.e. δ0 = δ1 = 1), the consumption is above the mean and has a cooling
profile. The other cases correspond to transitions between these two cases.
Again, this is consistent with the fact that the scores for the first component
are mostly positive in summer and negative in winter. Finally, we see in
the reconstruction plots of Figure 2.14 that the Cramér-Karhunen-Loève re-
constructs more subtle changes in the curves and thus approaches better the
true load curve. Moreover, the effect of the second and third components is
less obvious than for the Karhunen-Loève expansions of Figure 2.10.
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Figure 2.12: Harmonic fPCA loadings filters coefficients and scores. Each row cor-
responds to one functional principal component.

Figure 2.13: Harmonic fPCA loading filters as perturbations of the mean for open-
ing days. The dashed black line in the mean curve µ̂1 and the solid blue
line is the perturbation µ̂1 + C(δ−1 ϕ1,−1 + δ0 ϕ1,0 + δ1 ϕ1,1).
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(a) Summer (b) Winter

(c) Open Sunday

Figure 2.14: Truncated Cramér-Karhunen-Loeve expansion

Figure 2.15: Comparison of Karhunen-Loeve and Cramér-Karhunen-Loève
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2.5 Centering with temperature

In the second approach, we treat the temperature as an explanatory variable
for the mean and investigate how this impacts the information extracted
from fPCA. We propose to define µ̂w(·; τ) as a local average of the load
curves Xt such that Tt is close to τ. In addition, we take advantage of the
“normal” and “extreme” regimes detection discussed in the last section by
only taking into account the days which are considered as “normal”, i.e.
Zt = 0. We get the following Nadaraya-Watson estimator.

µ̂w(u; τ) =
∑T

t=1 κ(Tt, τ)1Wt=w(1− Zt)Xt(u)

∑T
t=1 κ(Tt, τ)1Wt=w(1− Zt)

, u ∈ [0, 24), τ ∈ R, w ∈ {0, 1} ,

(2.5.1)
where κ(τ, τ′) = exp

(
−γ(τ − τ′)2) and γ = 1/8. The estimated mean µ̂w

is displayed in Figure 2.16 and, as expected, for opening days we observe
two behaviors when the temperature increases. The first one is a rise of the
overall consumption and the second is a change of shape in the load curve
from a heating profile to a cooling profile.

Figure 2.16: Nadaraya-Watson estimate of µ̂w(u; τ). Colors represent values of tem-
perature τ.

Applying fPCA to the centered load curves Xt(u) − µ̂Wt(u; Tt) then pro-
vides the loadings and scores of Figure 2.17. By removing the effect of the
temperature, we see that only the constant part of the first loading from Fig-
ure 2.8 is left in the first loading of Figure 2.17. The other two loadings are
very similar in both approaches, as they do not depend on the temperature.
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The fact that the first principal score is almost constant means that a positive
score at day t should imply that Xt(u) is above µWt(u; Tt) for all u ∈ [0, 24)
and a negative t should imply that Xt(u) is below µWt(u; Tt). In fact, we
see in Figure 2.17 that the points where Zt = 1 in the model of (2.3.2) are
characterized by large absolute value of their scores. This is consistent with
our previous observation that only the first component scores are correlated
to the temperature. For another comparison, we display in Figure 2.18 the
truncated Karhunen-Loève of the same three days as in Figure 2.10.

Figure 2.17: fPCA loadings and scores. Each row corresponds to one functional
principal component.
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(a) Summer (b) Winter

(c) Open Sunday

Figure 2.18: Truncated Karhunen-Loeve expansion

2.6 Discussion and conclusion

Overall, the exploratory analysis of the data gives rise to the following con-
clusions.

• Conclusion 1. We stressed the importance of taking into account the
temperature to explain temporal variations. In particular, the first
fPCA component falls from 67% to 35% of variance explained when
the temperature is included in the centering.

• Conclusion 2. Applying harmonic fPCA does not bring a high approx-
imation gain over fPCA and is more difficult to interpret due to its
convolutional nature. On the contrary, the Karhunen-Loève decompo-
sition is more easily interpreted by users accustomed to the ACDC plat-
form because it provides a decomposition similar to those already im-
plemented there. Moreover, it can be argued that the time dependence
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is mainly explained by the correlation with the temperature. This can
be seen by noting that the decay of the autocorrelation is much faster
when taking into account the temperature in the centering as observed
in Figure 2.19 where the autocorrelation at lag h is defined as

E
[〈

Xc
t+h, Xc

t
〉2
H0

]
E
[
‖Xc

t‖
2
H0

] ,

where Xc
t is either Xt − µ̂Wt or Xt − µ̂Wt(·, Tt).

(a) Autocorrelation of Xt − µ̂Wt (b) Autocorrelation of Xt − µ̂Wt (·, Tt)

Figure 2.19: Comparison of autocorrelation with the two centering methods

These first two conclusions demonstrate that the time series approach may
not be the best fit for our data and that it may be more appropriate to focus
on modeling temperature dependence rather than time dependence.

In addition, other types of models may be considered beyond fPCA to
overcome some of its drawbacks on which we now elaborate. If we compare
the fPCA approach and the experts’ approach implemented on the ACDC
platform, we note that both explain how the real daily load curves deviate
from a reference curve. However, this reference curve is not the same in
the two approaches. While the experts use the minimum profile defined in
Section 1.4, fPCA uses the mean and therefore cannot explain potentially
valuable information about the influence of external factors on the consump-
tion which may be contained in the mean. This is all the more true if we
take the temperature into account in the centering step. In addition, assum-
ing that we take the temperature into account in the mean, then the mean is
the most important statistic for energy monitoring. In fact, the total energy
ratio explained by the variation around the mean is

∑T
t=1
∫ 24

0 |Xt(u)− µ̂Wt(u; Tt)| du

∑T
t=1
∫ 24

0 Xt(u)du
≈ 0.075 ,
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which is not significant in our industrial context. Finally, the absence of sign
constraints on the loadings and scores can mislead the interpretation of the
components. To illustrate this last point, Figure 2.20 shows the successive
plots of µ1(·; 15) + C ∑K

k=1 φk for K = 0, · · · , 3, an arbitrary C > 0 and where
φ1, φ2, φ3 are the fPCA loading displayed in Figure 2.17. Focusing on the
region between 10 a.m. and 8 p.m., we observe that the components com-
pensate each other since the consumption increases when we add Cφ1, then
decreases when we add Cφ2 and increases again when we add Cφ3. These

Figure 2.20: Successive plots of µ1(·; 15) + C ∑K
k=1 φk with C > 0 for K = 0, · · · , 3.

observations lead to the final conclusion of the exploratory analysis.

• Conclusion 3. A different approach using a structured non-negative
decomposition of the daily load curve taking into account the effect of
temperature should allow us to address the drawbacks of fPCA.
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T H E S I S C O N T R I B U T I O N S A N D P E R S P E C T I V E S

In this Chapter, we briefly summarize the main contributions of this thesis
and provide some thoughts about possible perspectives.

In parallel to the exploratory analysis described in Chapter 2, I got inter-
ested in studying the spectral theory recently introduced for functional time
series, in particular in Tavakoli, 2014. Part ii of this manuscript presents our
contributions to this field of research. These contributions are mainly based
on revisiting the spectral theory using a Gramian isometry approach. By
introducing adapted mathematical objects, we show that this theory can be
clarified and completed using a minimal amount of assumptions. This part
summarized in Section 3.1.1 and is based on the two following academic
contributions.

C1. Amaury Durand, François Roueff. Weakly stationary stochastic pro-
cesses valued in a separable Hilbert space: Gramian-Cramér represen-
tations and applications. 2021. hal-02318267v4

C2. Amaury Durand, François Roueff. Hilbert valued fractionally inte-
grated autoregressive moving average processes with long memory
operators. 2020. hal-02961227

In Part iii, we treat the practical objective (PO) by taking into account the
conclusions of Chapter 2. A model based on a functional non-negative ten-
sor factorization is proposed along with the updates for the corresponding
optimization problem. We show empirically that this model is helpful to
extract smooth intraday patterns and take into account the external tempera-
ture data and can be used to cluster the sites. Then, we propose a theoretical
study of the aforementioned optimization problem by quantifying the im-
pact of smoothness on tensor factorization with missing data. This part is
summarized in Section 3.1.2 and is centered around the following academic
contribution.
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hal-02961227
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C3. Amaury Durand, François Roueff, Jean-Marc Jicquel, Nicolas Paul. Smooth
nonnegative tensor factorization for multi-sites electrical load monitor-
ing. EUSIPCO, Aug 2021, Dublin, Ireland. hal-03167498v2

C4. Amaury Durand, François Roueff, Jean-Marc Jicquel, Nicolas Paul. Smooth-
ness constraints for non-negative tensor factorization with missing val-
ues. In progress.

In addition, I have participated in the development of the two following
tools for the ACDC platform.

C5. A mono-site analysis tool based on Chapter 2 and the GUI presented
in Appendix E (in progress).

C6. A multi-sites analysis tool based on non-negative tensor factorization
models (in progress).

General mathematical background and algorithmic details are gathered in
the appendix. Some perspectives on functional models for multi-site data
are proposed in Section 3.2.

3.1 Summary of the thesis

3.1.1 Part ii : Theoretical aspects of functional time series.

The work presented in this part is aligned with the recent works on spec-
tral theory for Hilbert-valued processes (see Delft and Eichler, 2018, 2020;
Panaretos and Tavakoli, 2013a,b; Tavakoli, 2014) and on functional long-
memory processes (see Characiejus and Račkauskas, 2013, 2014; Düker, 2018;
Li, Robinson, and Shang, 2020; Račkauskas and Suquet, 2011).

Chapter 4 : the general stone and bochner theorems . In this
chapter, we introduce the main tools from functional analysis and measure
theory on vector and operator spaces which are needed to construct the
spectral theory in its most general form. In particular, we discuss the gen-
eral Bochner theorem for operator-valued functions and provide a compari-
son with the recently proved general Herglotz theorem of Delft and Eichler,
2020. An overview of the literature on Stone’s and Bochner’s theorems al-
low us to highlight the close relationship between these theorems and their
generalizations to normal Hilbert modules and operator-valued functions.

hal-03167498v2


3.1 summary of the thesis 79

Chapter 5 : weakly stationary stochastic processes valued in

a separable hilbert space . This chapter gathers the contribution of
C1. and develops a spectral theory for stochastic processes valued in a sepa-
rable Hilbert space H0. Elements of this theory were proposed in Panaretos
and Tavakoli, 2013a,b using restrictive summability assumption on the au-
tocovariance operator function. This assumption was relaxed in Tavakoli,
2014 where the author assumes the existence of a spectral density operator
function which is Lp(T,B(T),S1(H0), Leb) for some p ∈ (1,+∞]. Finally,
with their general Herglotz theorem, the authors of Delft and Eichler, 2020

provide an extension to the case where no spectral density operator exist.
The approach we present in this chapter is based on the tools devel-

oped in Chapter 4 and the earlier works of Kakihara, 1997; Kallianpur and
Mandrekar, 1971; Mandrekar and Salehi, 1970. In this approach, we de-
velop the spectral theory with minimal assumptions while avoiding unnec-
essary abstractions such as the completion of a pre-Hilbert space or on the
compactification of a pointed convex cone as used in Tavakoli (2014, Sec-
tion 2.5) and Delft and Eichler, 2020, respectively. This approach also clari-
fies and completes the isomorphic relationship between the modular spectral
domain and the modular time domain by exploiting the normal Hilbert module
property of the Bochner space H := L2(Ω,F ,H0, P) of random variables
V : Ω → H0 such that E

[
‖V‖2

H0

]
< ∞. For a weakly stationary stochastic

process X := (Xt)t∈G ∈ HG indexed by a locally Abelian group G, this chap-
ter provides the construction of the modular spectral domain of the process
X as a space of operator-valued transfer functions and its comparison to
the spaces of operator-valued transfer functions used in recent works. This
construction lead to the key result on spectral theory, namely the Gramian-
Cramér representation,

Xt =
∫

Ĝ
χ(t) X̂(dχ) , t ∈ G ,

and its interpretation as a Gramian-isometric operator between the modular
time domain and the modular spectral domain.

Chapter 6 : applications to linear filtering and long-mem-
ory processes In this chapter, we use the spectral theory developed in
Chapter 5 in three applications. First, we derive interesting results on the
composition and inversion of linear filters with an operator-valued trans-
fer functions. Second, we provide a version the Cramér-Karhunen-Loève
decomposition and harmonic fPCA with minimal assumptions. These two
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first applications were presented in Contribution C1.. Finally, we define a
class of fractionally integrated autoregressive moving average processes val-
ued in a separable Hilbert space using a spectral approach as presented in
Contribution C2.. In this framework, the usual univariate long memory pa-
rameter d is replaced by a long memory operator D acting on the Hilbert
space. Our approach is compared to processes defined in the time domain
that were previously introduced for modeling long range dependence in the
context of functional time series, see Characiejus and Račkauskas, 2013, 2014;
Düker, 2018; Li, Robinson, and Shang, 2020; Račkauskas and Suquet, 2011.

3.1.2 Part iii : Multi-sites electrical load disaggregation and clus-
tering.

In the second part of my PhD, in order to achieve the objective (PO), I
proposed a model based on non-negative tensor factorization which takes
into account additional temperature data and smoothness constraints. This
model presents the advantage of being easily interpretable. In Part iii, we
propose and study a non-negative tensor factorization model for multi-sites
electrical load curves disaggregation in order to achieve the practical objec-
tive (PO).

Chapter 7 : smooth non-negative tensor factorization for

multi-sites electrical load monitoring . We propose to model
the multi-sites electrical load curves using a functional formulation of non-
negative tensor factorization. Suppose we observe a dataset

{(Xn,t, Tn,t, εn,t) : n ∈ J1, NK, t ∈ J1, TK} ,

where Xn,t : u 7→ Xn,t(u), Tn,t and εn,t represent respectively the daily load
curve, the average daily temperature and the consumption regime (e.g. open-
ing vs closing days) observed at day t for the n-th site. Then, we model the
daily load curve by the factorization

Xn,t(u) ≈
R

∑
r=1

ar(u)br(Tn,t)c
εn,t
r,n ,

where ar(u) ≥ 0, br(τ) ≥ 0, cε
r ≥ 0. The idea is to represent the load curves

as a mixture of R sources. Each source is composed of a daily consumption
pattern ar(u) ≥ 0 called the signature which is modulated across tempera-
tures by a thermal activation br(Tn,t) ≥ 0. The weights of the mixture are
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represented by the site activation cεn,t
n,r ≥ 0 which also depends on the con-

sumption regime to take into account that different sources may be used
for opening and closing days. In this chapter, we discuss the optimization
problem resulting from this model and show on concrete examples how it is
useful to extract interpretable patterns from the electrical load curves.

Chapter 8 : smoothness constraints for non-negative tensor

factorization with missing values . The optimization problem re-
sulting from the model of Chapter 7 can be seen as a weighted version of
the standard NTF problem where vanishing weights represent missing val-
ues. In this chapter, we study this problem from a theoretical point of view.
It has been shown in Lim, 2005; Lim and Comon, 2009 that the standard
NTF problem always admits a global solution. In the weighted case, we
show that this it not necessarily the case and provide a sufficient condition
on the smoothness of the factors to ensure this existence. Then we propose
an algorithm to solve the resulting optimization problem.

3.2 Some perspective for other functional multi-sites
models

The conclusions of the exploratory analysis lead us to address the practical
objective (PO) using the non-negative tensor factorization model presented
in Part iii. However, other ideas have been suggested from the exploratory
analysis to deal with the multi-sites setting. These ideas were not pursued
further but are briefly discussed in this section.

In the multi-sites setting, we observe a panel of functional time series
{(Xn,t)t∈Z : n ∈ J1, NK} where N is the number of sites Xn,t ∈ H0 = L2(U ).
The ideas considered rely on a factor model with common loadings. Namely,
we assume

Xn,t =
K

∑
k=1

akSk,n,t + εn,t , t ∈ Z , n ∈ J1, NK , (3.2.1)

where ak ∈ H0, (Sk,n,t)t∈Z is a univariate centered weakly-stationary time
series and (εn,t)t∈Z is a centered weakly-stationary H0-valued noise uncor-
related to (Sk,n,t)t∈Z. This way, objective (PO) can be achieved by comparing
the K-variate scores time series ([s1,n,t, · · · , sK,n,t]

>)t∈J1,TK and interpreting the
loadings ak’s as patterns. Note that, with model (3.2.1), (Xn,t)t∈Z is centered
and weakly-stationary. Let us denote Γn = Cov(Xn,t). Then we propose to
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estimate the ak’s and Sk,n,t’s by minimizing the average mean-square errors
across sites, i.e.

1
N

N

∑
n=1

E

∥∥∥∥∥Xn,t −
K

∑
k=1

akSn,k,t

∥∥∥∥∥
2

H0

 . (3.2.2)

By the definition of the orthogonal projection on Span (a1, · · · , aK), if suf-
fices to take a1, · · · , aK orthonormal and Sn,k,t = 〈Xn,t, ak〉H0

and the problem
reduces to the eigendecomposition of the average of the covariance opera-
tors N−1 ∑N

n=1 Γn. This method is equivalent to applying fPCA to the whole
dataset without distinction between days and sites. In the finite dimensional
case where H0 = Rp, this is the Simultaneous Component Analysis with
common Patterns (SCA-P) proposed in Kiers and Berge, 1994. The advan-
tage of this method is that it is easy to implement in the functional setting
and we also get an infinite expansion

Xn,t =
+∞

∑
k=1

akSk,n,t (3.2.3)

where the series converges in L2(Ω,F ,H0, P). However, contrary to the
Karhunen-Loève expansion, the scores are not necessarily uncorrelated be-
cause we only have N−1 ∑N

n=1 Cov (Sk,n,t, S`,n,t) = 0 if k 6= `. Several con-
strained versions of the SCA-P model are also proposed in Timmerman and
Kiers, 2003, including one which assumes that the scores are uncorrelated.
Unlike SCA-P, the addition of constraints makes the solution analytically in-
tractable and (3.2.2) is minimized by a least-square alternating algorithm. It
would be interesting to study how this constrained problem generalizes to
the functional case. Namely, is there a way to estimate one of the models
(3.2.1) or (3.2.3) with the additional constraint that Cov (Sk,n,t, S`,n,t) = 0 for
k 6= ` ? With the more restrictive constraint of independence, this is closely
linked to ICA whose functional extensions are still largely unexplored (see
Li, Van Bever, Oja, and Sabolova, 2016 for some recent work). With the un-
correlation constraint, it seems that generalizing joint-diagonalization ideas
used in second order ICA (Belouchrani, Abed-Meraim, Cardoso, and Moulines,
1997; Cardoso and Souloumiac, 1996) or in Common PCA (Flury, 1984)
could be a promising idea. In fact, ideas from Flury, 1984 have already
been extended to the functional setting in Boente, Rodriguez, and Sued,
2010. Finally, in the finite dimensional case, if we further decompose Sk,n,t as
Sk,n,t = bk,nCk,t, the decomposition (3.2.1) fits into the field of tensor factor-
ization based on the CANDECOMP/PARAFAC decomposition Carroll and
Chang, 1970; Harshman, 1970; Kruskal, 1977 and functional extensions of
these models could be investigated.
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To conclude this section, let us note that the multi-sites setting can also be
seen in the point of view of multivariate functional data analysis where other
factor models have already been considered. For example, both multivariate
fPCA (mfPCA) introduced in Jacques and Preda, 2014 and the factor model
introduced in Tavakoli, Nisol, and Hallin, 2021 provide a decomposition of
the type

Xn,t =
K

∑
k=1

ak,nSk,t + εn,t . (3.2.4)





Part II

T H E O R E T I C A L A S P E C T S O F F U N C T I O N A L T I M E
S E R I E S

This part gathers theoretical results on the spectral theory for
weakly stationary processes valued in a separable Hilbert. These
processes have known renewed interest in the last decade and
we decided to revisit previously introduced mathematical ap-
proaches to provide important insights which clarify the recent
literature. The first goal of this work is, therefore, to complete the
understanding of the mathematical objects and relations which
form this theory. This is the purpose of Chapters 4 and 5. In
Chapter 4, we introduce adapted mathematical tools such as nor-
mal Hilbert modules and positive operator valued measures. As
a result, we also discuss the general Bochner theorem as dis-
cussed in recent works on this topic. Then, in Chapter 5, with
the help of earlier approaches, we propose to exploit the nor-
mal Hilbert module property of the space of Hilbert-valued ran-
dom variables with finite second-order moment in order to de-
scribe the isomorphic relationship between the modular spectral
domain and the modular time domain. The relationship takes
the form of a Gramian-Cramér representation whose construc-
tion complements recent works on the subject. As a consequence,
we propose three applications in Chapter 6. The first consists in
providing useful results on the composition and inversion of lag-
invariant linear filters. Then, we derive the Cramér-Karhunen-
Loève decomposition and harmonic functional principal compo-
nent analysis in their most general forms. Finally, we introduce
a novel class of fractionally integrated autoregressive moving av-
erage processes. These processes have been widely and success-
fully used, in both the time and spectral domains, to model uni-
variate and multivariate time series exhibiting long range depen-
dence. Functional extensions of these processes have also been
studied more recently using time domain approaches and we
propose to use a spectral domain approach to extend this class of
models to Hilbert valued processes.





I N T R O D U C T I O N A N D M O T I VAT I O N

Spectral theory for weakly stationary time series has been originally devel-
oped in a very general fashion, starting from the seminal works by Kolmogo-
roff, 1941, and spanning over several decades, see Holmes, 1979 and the ref-
erences therein. These foundations include time domain and frequency do-
main analyses, Cramér (or spectral) representations, the Herglotz theorem
and linear filters. In Holmes, 1979; Kolmogoroff, 1941 the adopted frame-
work is that of a bi-sequence X = (Xt)t∈Z ∈ HZ valued in a Hilbert space
(H, 〈·, ·〉H) and weakly stationary in the sense that 〈Xs, Xt〉H only depends
on the lag s− t. In this framework, a linear filter is a linear operator on HX

onto HX which commutes with the lag operator UX, where HX is the closure
in H of the linear span of (Xt)t∈Z and UX is the operator defined on HX by
mapping Xt to Xt+1 for all t ∈ Z. As explained in Holmes (1979, Section 3),
a complete description of such a filter is given in the spectral domain by
its transfer function. Let us recall the essential formulas which summarize
what this means. In Holmes, 1979, the spectral theory follows from and start
with the canonical representation of the lag operator UX above, namely

UX =
∫

T
eiλ ξ(dλ) , (ii.1)

where T = R/(2πZ) and ξ is the spectral measure of UX (which is a mea-
sure valued in the space of operators on HX onto itself). This corresponds
to Holmes (1979, Eq. (8)) with a slightly different notation. Then defining
X̂ as ξ(·)X0 (thus a measure valued in HX), one gets the celebrated Cramér
representation (see Holmes (1979, Eq. (13a)) again with a slightly different
notation)

Xt =
∫

T
eiλ t X̂(dλ) , t ∈ Z . (ii.2)

An other consequence of (ii.1) is what is called the Herglotz theorem in
Holmes (1979, Eq. (9)), summarized by the formula

〈Xs, Xt〉H =
∫

T
eiλ (s−t) µ(dλ) , s, t ∈ Z , (ii.3)

where µ = 〈ξ(·)X0, X0〉H is a non-negative measure on (T,B(T)). Interpret-
ing the right-hand side of (ii.3) as the scalar product of the two functions
es : λ 7→ eiλs and et : λ 7→ eiλt in L2(T,B(T), µ), Relation (ii.3) is simply

87
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saying that the Cramér representation (ii.2) mapping et to Xt is isometric.
Following this interpretation, one can extend this isometric mapping to a uni-
tary operator between the two isomorphic Hilbert spaces L2(T,B(T), µ) and
HX, respectively refered to as the spectral domain and the time domain. In par-
ticular the output of a linear filter with transfer function Φ ∈ L2(T,B(T), µ)

is given by

Yt =
∫

eiλt Φ(λ) X̂(dλ) , t ∈ Z , (ii.4)

or in other words, Yt is the image of the function etΦ by the extended
unitary operator that maps the spectral domain to the time domain.

Relations (ii.2)–(ii.4) and the isometric relation between the time and spec-
tral domains are considered as the pillars of spectral theory and apply to
any Hilbert space H. This theory is applied mainly to the case where
H = L2(Ω,F , P) the space of scalar random variables on the probability
space (Ω,F , P) which have finite variance. However, it also applies to mul-
tivariate time series by taking H = L2(Ω,F , Cq, P) = (L2(Ω,F , P))q and
to functional time series by taking H = L2(Ω,F ,H0, P), where H0 is an
infinite dimensional separable Hilbert space, thus isomorphic to, and of-
ten taken to be, the function space L2(0, 1) of Lebesgue-square-integrable
functions on [0, 1]. This last setting has gained renewed interest in the past
decade as the field of functional data analysis becomes more popular in
the statistical community. Generalizations of the spectral theory to weakly
stationary functional time series have been considered in Delft and Eichler,
2018, 2020; Panaretos and Tavakoli, 2013a,b; Tavakoli, 2014 as summarized
in Section 1.3.5. At first sight, it is fair to question the difference between
the functional case and the general framework studied in the original works
that founded the modern theory of stochastic processes. This issue cannot
be unequivocally answered because there are (many) different approaches
to establishing a spectral theory for weakly stationary functional time series.
Moreover, the merits and the drawbacks of a specific approach depend on
the applications that one wishes to deduce from the spectral theory at hand
and on the required mathematical tools in which one is ready to invest in
order to rigorously employ it. Nevertheless, the limitations of the approach
of Kolmogoroff, 1941 and Holmes, 1979 to deal with multivariate time series
(and functional time series even more so) are already mentioned in Holmes
(1979, Section 7), where the author argues that important generalizations are
needed. In order to better understand these generalizations, one must first
look at the multivariate case which has been reviewed in Masani, 1966. In
particular, Masani stresses the importance of the Gramian structure of the
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product space H = L2(Ω,F , Cq, P) = (L2(Ω,F , P))q. The Gramian matrix
between two vectors V = (V(1), · · · , V(q)) ∈ H and W = (W(1), · · · , W(q)) ∈
H is the q× q matrix [V, W]H with entries

(〈
V(k), W(l)

〉
H

)
1≤k,l≤q

which coin-

cides with the covariance matrix if V or W are centered. Using this Gramian
structure, Relations (ii.1)–(ii.4) are easily adapted by strengthening the weak
stationarity to impose that [Xs, Xt]H only depends on s− t (see Masani (1966,
Section 5)). This stronger weak stationarity assumption not only ensures
that the lag operator UX is (scalar product) isometric on HX but also that it is
Gramian-isometric on the larger space. Span

H
(PXt , t ∈ Z, P ∈ Cq×q). Follow-The superscript H in

the notation SpanH is
used to emphasize the
fact that the closure is

taken in H

ing the same approach, the development of a spectral theory of functional
time series relies on exhibiting a Gramian structure for H = L2(Ω,F ,H0, P)

making it a normal Hilbert module and replacing the time domain space HX

by the modular time domain

HX = Span
H
(PXt , t ∈ Z, P ∈ Lb(H0)) , (ii.5)

where Lb(H0) denotes the space of bounded operators on Lb(H0) onto itself.
In comparison, in the definition of HX used in Holmes, 1979, P is restricted
to be a scalar operator. Thus, while HX is a subspace of H seen as a Hilbert
space, HX is a submodule of H seen as a normal Hilbert module.

The goal of this part is to show that, by introducing suitable notions such
as normal Hilbert modules and Positive Operator Valued Measures, the
theory developed in Delft and Eichler, 2018, 2020; Panaretos and Tavakoli,
2013a,b; Tavakoli, 2014 can be clarified and completed. More precisely, we
propose the following path to achieve and fully exploit a Cramér represen-
tation on HX.

Step 1) Interpret the representation (ii.1) as the one of a Gramian-isometric
operator on HX (and not only an scalar product isometric operator on
HX).

Step 2) Deduce that the Cramér representation (ii.2) can effectively be extended
as a Gramian-isometric operator mapping H0 → H0-operator valued
functions on (T,B(T)) to an element of HX.

Step 3) As a first consequence, the scalar product isometric relation (ii.3) is
extended to

[Xs, Xt]H =
∫

T
eiλ (s−t) ν(dλ) , s, t ∈ Z , (ii.6)

where, here, ν is an operator valued measure on (T,B(T)). This
Gramian-isometric relationship corresponds to what is called the Her-
glotz theorem in the functional time series case.
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Step 4) As a second consequence, the Cramér representation (ii.4) of a linear
filter is extended to the case where the transfer function Φ is now
an H0 → H0-operator valued functions on (T,B(T)) (and not only
a scalar valued functions on (T,B(T))). This raises the question, in
particular, of the precise condition required on the transfer function to
replace the condition Φ ∈ L2(T,B(T), µ) of the scalar case.

The results of Step 1) to Step 4) establish the spectral theory for functional
time series and are addressed in Chapter 5, up to the following slight modi-
fications.

1. We treat the more general case of a stochastic process (Xt)t∈G, where
(G,+) is a locally compact Abelian (l.c.a.) group set of indices and
for each t ∈ G, Xt is a random variable defined on a probability space
(Ω,F , P) and valued in a separable Hilbert spaceH0 (endowed with its
Borel σ-field). Typical examples for G andH0 are the ones of functional
time series, namely G = Z and H0 = L2(0, 1) but, as far as spectral
theory is concerned, the presentation of the results is not only more
general (one can e.g. take G = R) but also more elegant in this general
setting. We recall in Section 4.2 the definition of the dual group Ĝ

of continuous characters on G. Of course, in the discrete time case
G = Z, any continuity condition imposed on a function defined on
G is trivially satisfied. Such continuity conditions constitute a small
price to pay (and the only one) in order to be able to treat the case of
a general l.c.a. group G rather than focusing on the discrete time case
alone.

2. For obvious practical reasons, it is usual to treat the mean of a stochas-
tic process separately. Therefore we will assume that the process (Xt)t∈G

is centered.

3. We will consider the case where the separable Hilbert space G0 in
which the output of the filter is valued is different from H0, the one of
the input, that is, we replace P ∈ Lb(H0) in (ii.5) by P ∈ Lb(H0,G0),
the space of bounded operators from H0 to G0. This makes the results
directly applicable in the case of different input and output spaces, es-
pecially in the case where they have different dimensions (so that they
are not isomorphic).

The approach to derive a spectral theory following Step 1) to Step 4) is
essentially contained in Kakihara, 1997; Kallianpur and Mandrekar, 1971;
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Mandrekar and Salehi, 1970. Our main contribution concerning these steps
is to introduce all the preliminary definitions required to understand them,
to select the most important results, to provide detailed proofs of the key
points and to bring forward this approach in order to promote what we be-
lieve to be a more powerful, complete and easy to exploit approach than
the more recently proposed ones in Delft and Eichler, 2018, 2020; Panaretos
and Tavakoli, 2013a,b; Tavakoli, 2014. A very useful benefit of the Gramian-
isometric approach is that it allows a concrete description of the spectral
domain rather than relying on the completion of a pre-Hilbert space or on
the compactification of a pointed convex cone as used in Tavakoli (2014, Sec-
tion 2.5) and Delft and Eichler, 2020, respectively. A greater benefit, however,
is to make the Cramér representation much easier to exploit for deriving
useful general results. This will be made apparent when establishing the
results gathered in the following additional steps and treated in Chapter 6.

Step 5) An interesting consequence of Step 4) is to study the composition of
linear filters and deduce when and how it is possible to inverse them.

Step 6) An other interesting consequence of Step 2) is to derive the Cramér-
Karhunen-Loève decomposition and the harmonic principal compo-
nent analysis for any weakly stationary functional time series valued
in a separable Hilbert space.

Step 7) We exploit the results of Step 4) and Step 5) to prove existence of certain
classes of processes, in particular long-memory processes, based on a
spectral approach.

To our best knowledge, the results on composition and inversion of filters
appear to be novel in this degree of generality. Similarly, our versions of the
Cramér-Karhunen-Loève decomposition and harmonic functional principal
component analysis are not restricted to the case where the spectral density
operator has none or finitely many points of discontinuity as in Delft and
Eichler, 2020; Tavakoli, 2014. Finally, the last step introduced a new class of
long-memory processes in the functional setting.

As previously mentioned, each approach has its drawbacks and the main
drawback of the one we are presenting here is probably that it requires
lengthier, although not intrinsically difficult, preliminaries. In particular
we need to precisely recall definitions of operator valued measures and
Gramian-isometric operators on normal Hilbert modules. All these defi-
nitions are assembled in Chapter 4 along with the useful facts about l.c.a.
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groups. In this chapter, we also discuss the generalization of Bochner’s
theorem for operator-valued functions which contains Step 3) and will be
compared to the generalization of Herglotz’s theorem proposed in Delft and
Eichler, 2020. Then Step 1)–Step 4) are followed in Chapter 5 and Step 5)–
Step 7) are discussed in Chapter 6. All definitions and notation concerning
operators can be found in Appendix A.



4

T H E G E N E R A L S T O N E A N D B O C H N E R T H E O R E M S

This chapter gathers preliminary results needed to follow Step 1) to Step 7).
In particular, we recall definitions of vector and operator valued measures,
normal Hilbert modules and locally compact Abelian groups. As a conse-
quence, we discuss the generalization of Bochner’s theorem (and Herglotz’s
theorem a fortiori) for operator-valued functions and Stone’s theorem for
normal Hilbert modules. A similar generalization of Herglotz’s theorem
was proposed recently in Delft and Eichler, 2020 using a different, more
complex, construction of operator-valued measures than the one described
here (p.o.v.m.’s). Although both concepts rely on a similar idea, which is
to characterize an operator-valued measure by a set of scalar measures, and
turn out to be equivalent up to an isomorphism between monoids, we ar-
gue that the objects introduced in this section are more elegant and easier
to work with for two reasons. The first one is that we do not rely on the
compactification of a pointed convex cone. The second one is that the theory
of p.o.v.m.’s has already been established decades ago (see e.g. Berberian,
1966b) and largely used in fields such as quantum mechanics. It is also aSeveral denomination

are used to refer to
p.o.v.m.’s and we chose

the most explicit.

key ingredient of Stone’s theorem which is used to derive Relation (ii.1). In
fact, in this framework, the general Bochner theorem can be traced back to
the 40’s and different versions and proofs can be found in the literature, see
e.g. Berberian, 1966a; Neumark, 1943, Theorem VII of Fillmore (1970, Chap-
ter 8) and Proposition 5 of Kakihara (1997, Section 2.5). It is also contained
in common proofs of Stone’s theorem (Ambrose, 1944; Arnous, 1946; Salehi,
1972) or Theorem VI of Fillmore (1970, Chapter 8). This chapter aims at
introducing all the necessary tools to understand the proof of this theorem.
By doing so, we highlight the close relationship between Bochner’s theorem
and its generalization and Stone’s theorem and its generalization to normal
Hilbert modules.
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4.1 Vector valued and Positive Operator Valued Mea-
sures

In this section, we summarize important results about vector valued mea-
sures. A nice overview on the topic can be found in Dinculeanu (2011, Chap-
ter 1) and more thorough study is proposed in Dinculeanu, 1967, Diestel and
Uhl, 1977. Next, we introduce the notion of Positive Operator Valued Mea-
sures (p.o.v.m.’s) which is a key element to generalize Stone’s and Bochner’s
theorems for normal Hilbert modules. Details can be found in Berberian,
1966b.

4.1.1 Measures valued in a Banach space

Definition 4.1.1. Let (Λ,A) be a measurable space and (E, ‖·‖E) a Banach space.
An E-valued measure is a mapping µ : A → E which is σ-additive i.e. for any
sequence (An)n∈N ∈ AN of disjoint sets, µ(

⋃
n∈N An) = ∑n∈N µ(An), where the

series converges in the norm topology of E, that is,

lim
N→+∞

∥∥∥∥∥µ

( ⋃
n∈N

An

)
−

N

∑
n=0

µ(An)

∥∥∥∥∥
E

= 0 .

Proposition 4.1.1 (Variation of a measure). Let (Λ,A) be a measurable space,
(E, ‖·‖E) a Banach space and µ an E-valued measure. Then the mapping

‖µ‖E : A 7→ sup

{
∑

i∈N

‖µ(Ai)‖E : (Ai)i∈N ∈ AN is a countable partition of A

}

defines a non-negative measure on (Λ,A) called the variation measure of µ.

When ‖µ‖E is finite, integrals of functions in L1(Λ,A, ‖µ‖E) with respect to
µ are easily defined by first considering simple functions and by extending
the obtained linear form to the whole space L1(Λ,A, ‖µ‖E) by continuity, see
Dinculeanu (1967, P. 120). It is still possible to define integrals for measures
with non-finite variation but this will not be necessary for our purpose.

When Λ is a locally-compact topological space and A is the Borel σ-field
of Λ, endowing the class of subsets of Λ with a well-suited topology in-
duces a notion of continuity for E-valued measures (see Dinculeanu (1967,
Chapter III, §15)). This is called regularity.

Definition 4.1.2 (Regularity). Let Λ be a locally-compact topological space and
A the Borel σ-field of Λ. Then an E-valued measure µ defined on A is said to be
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regular if for all A ∈ A and ε > 0, there exist a compact set K ∈ A and an open
set U ∈ A with K ⊂ A ⊂ U such that

‖µ(U \ K)‖E ≤ ε .

The definition of regularity for non-finite (non-negative) measures is similar but the
property is only required for A such that µ(A) < +∞.

From the straightforward inequality ‖µ(A)‖E ≤ ‖µ‖E(A) for all A ∈ A,
we get that, if µ is an E-valued measure with finite and regular variation,
then µ is regular. An interesting result (see Kakihara (1997, Remark 3.6.2)) is
that an E-valued measure µ is regular if and only if, for any element φ in the
continuous dual E∗ of E, the mapping φ ◦ µ is a regular complex measure.

The final notion we discuss is absolute continuity and densities of vector-
valued measures. If E is a Banach space and (Λ,A) a measurable space,
then an E-valued measure is said to be absolutely continuous with respect to a
non-negative σ-finite measure ν defined on the same space if for all A ∈ A,Diestel and Uhl, 1977

assume that ν is finite,
but, if the

Radon-Nikodym
property holds for ν

finite, it is easily
shown that it also

holds for ν σ-finite.

ν(A) = 0 ⇒ µ(A) = 0. The absolute continuity of µ with respect to ν is
denoted by µ � ν. Note that µ � ν is and only if ‖µ‖E � ν. We say that E
has the Radon-Nikodym property if µ � ν is equivalent to the existence of
a function f ∈ L1(Λ,A, E, ν) such that

µ(A) =
∫

A
f dν , A ∈ A ,

In this case, f is called the density of µ with respect to ν and is unique
up to a ν-null set. This is denoted by is f = dµ

dν or dµ = f dν. Radon-
Nikodym’s theorem states that C has the Radon-Nikodym property but this
is not the case of all Banach spaces. In Diestel and Uhl (1977, Chapter III)
the authors study the properties that E must satisfy in order to have the
Radon-Nikodym property. For example, Theorem 1 in Diestel and Uhl (1977,
Chapter III, Section 3) states that any separable dual space has the Radon-
Nikodym property.

4.1.2 Positive Operator Valued Measures (p.o.v.m.’s)

A Positive Operator Valued Measure (p.o.v.m.) is a measure valued in the
space L+

b (H) of positive bounded linear operators on a Hilbert space H.
Similarly to vector-valued measures, defining a p.o.v.m. relies on a notion
of σ-additivity for a well-suited topology. For p.o.v.m.’s, the weak operator
topology (w.o.t.) is chosen and the definition writes as follows. We refer the
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reader to Appendix B for the definitions of the weak and strong operator
topologies.

Definition 4.1.3 (Positive Operator Valued Measures (p.o.v.m.)). Let (Λ,A)
be a measurable space and H be a Hilbert space. A Positive Operator Valued Mea-
sure (p.o.v.m.) on (Λ,A,H) is a mapping ν : A → L+

b (H) such that for all
sequences of disjoint sets (An)n∈N ∈ AN,

ν

( ⋃
n∈N

An

)
= ∑

n∈N

ν(An) (4.1.1)

where the series converges in L+
b (H) for the weak operator topology (w.o.t.).

It is interesting to note that, due to properties of positive operators, the
convergence of the series in (4.1.1) in w.o.t. implies its convergence for the
strong operator topology (s.o.t.), see Berberian (1966b, Proposition 1). How-
ever, the series does not necessarily converge in operator norm which im-
plies that, in this definition, a p.o.v.m. does not need to be an Lb(H)-valued
measure. Therefore the above definitions of integrals and regularity cannot
be applied. This is circumvented by noting that a p.o.v.m. is entirely charac-
terized by the family of non-negative measures

{
νx : A 7→ xHν(A)x : x ∈ H

}
.

This is proved in Berberian (1966b, Theorems 1 and 2). Based on this char-
acterization, we introduce two definitions related to p.o.v.m.’s, the first one
about the regularity property and the second one about integrals of bounded
scalar valued functions.

Definition 4.1.4 (Regular p.o.v.m.). Let Λ be a locally-compact topological space
with Borel σ-field A and H be a Hilbert space. Then a p.o.v.m. ν on (Λ,A,H) is
said to be regular if for all x ∈ H, the non-negative measure νx : A 7→ xHν(A)x
is regular.

An alternative equivalent definition of regular p.o.v.m.’s is Berberian (1966b,
Definition 14), see also Theorem 20 in the same reference. We now define
the integral of bounded functions with respect to a p.o.v.m..

Definition 4.1.5 (Integral of a scalar valued function with respect to a p.o.v.m.).
Let (Λ,A) be a measurable space,H be a Hilbert space, ν be a p.o.v.m. on (Λ,A,H)

and define for all x ∈ H, the non-negative measure νx : A 7→ xHν(A)x. Let
f : Λ → C be a bounded and measurable function. Then the integral of f with
respect to ν is the unique operator in Lb(H), denoted by

∫
f (λ) ν(dλ), such that

for all x ∈ H,

xH

(∫
f (λ) ν(dλ)

)
x =

∫
f (λ) νx(dλ) .
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The existence of the operator
∫

f (λ) ν(dλ) in Definition 4.1.5 through the
mapping x 7→ xH

(∫
f (λ) ν(dλ)

)
x is straightforward, see Berberian (1966b,

Theorem 9). The integral in Definition 4.1.5 is only valid for bounded func-
tions. Generalizing this integral to unbounded functions is complicated.
Nevertheless, when dealing with spectral operator measures of weakly sta-
tionary processes valued in a separable Hilbert space, we can rely on the ad-
ditional trace-class property, which makes all the previous definitions easier
to handle and extend. Trace-class p.o.v.m.’s are discussed in Section 4.5. We
end this section by introducing another important class of p.o.v.m.’s which
plays a role in Stone’s theorem.

Definition 4.1.6 (Projection-valued measure). Let (Λ,A) be a measurable space
and H a Hilbert space. Then a p.o.v.m. ξ on (Λ,A,H) is called a projection-
valued measure if it satisfies the two following conditions.

(i) The operator ξ(Λ) is the identity operator on H, that is, ξ(Λ) = IdH0 .

(ii) For all A ∈ A, ξ(A) is an orthogonal projection.

Projection-valued measures are characterized by the following proposition
(see Berberian (1966b, Theorems 3, 10 and 15)).

Proposition 4.1.2. A p.o.v.m. ξ on (Λ,A,H) satisfies Condition (ii) of Defini-
tion 4.1.6 if and only if, for all A, B ∈ A,

ξ(A ∩ B) = ξ(A)ξ(B) .

In this case, the following properties hold for all A, B ∈ A and scalar f , g bounded
and measurable functions from Λ to C.

(i) ξ(A)ξ(B) = ξ(B)ξ(A)

(ii) A ∩ B = ∅⇒ ξ(A) and ξ(B) are orthogonal.

(iii)
∫

f dξ =
(∫

f dξ
)H.

(iv)
∫

f g dξ =
(∫

f dξ
) (∫

g dξ
)
=
(∫

g dξ
) (∫

f dξ
)

4.2 Locally compact Abelian groups and the theorems
of Stone and Bochner

In this section, we summarize key results from Rudin (1990, Chapter 1) on
locally compact Abelian (l.c.a.) groups. Then we state the theorems of Stone
and Bochner which provide characterizations of two classes of functions
defined on an l.c.a. group by their spectral representations.
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4.2.1 Basic definitions and results

Definition 4.2.1 (Topological and locally compact Abelian group). A topologi-
cal group is a group (G,+) (with null element 0) endowed with a topology for which
the addition and the inversion maps are continuous in G× G and G respectively. If
G is Abelian (i.e. commutative) and is locally compact, Hausdorff for its topology,
then it is called a locally compact Abelian (l.c.a.) group.

The Fourier theory on l.c.a. groups relies on the duality between the l.c.a.
group and the space of characters.

Definition 4.2.2 (Characters and dual group). A character χ of an l.c.a. group G

is a group homomorphism from G to the unit circle group U := {z ∈ C : |z| = 1}
that is a mapping χ : G→ U such that for all s, t ∈ G,

χ(s + t) = χ(s)χ(t)

The set of continuous characters of G is called the dual group of G and is denoted
by Ĝ.

It is easily checked that a character χ of an l.c.a. group G, satisfies χ(0) = 1
and χ(t) = χ(t)−1 = χ(−t) for all t ∈ G. Hence, Ĝ is a multiplicative Abelian
group if we define the product of χ1, χ2 ∈ G, the identity element ê and the
inverse of χ ∈ G as

χ1χ2 : t 7→ χ1(t)χ2(t) , ê : t 7→ 1 , and χ−1 : t 7→ χ(t)−1 = χ(t) .

Then a major result on l.c.a. groups is that the dual group Ĝ becomes itself
an l.c.a. group if endowed with a well-suited topology. This topology is the
compact-open topology which, in this context, is equivalent to the topology
for which χn → χ in Ĝ if and only if for every compact K ⊂ G, χn →
χ uniformly on K i.e. supt∈K |χn(t)− χ(t)| −−−−→

n→+∞
0 (see Munkres (2000,

Theorem. 46.8)). With this topology, it is straightforward to prove that Ĝ is an
Abelian topological group. Then, using results from the Gelfand transform
and its equivalence to the Fourier transform on G, one can show that Ĝ is
also locally compact and Hausdorff, and the following result thus holds.

Theorem 4.2.1. The dual group Ĝ of an l.c.a. group G is an l.c.a. group when
endowed with the compact-open topology.

Another straightforward result is that, for all t ∈ G, the function

et :
Ĝ → U

χ 7→ χ(t)
,
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is a continuous homomorphism and therefore an element of ˆ̂G, the set of
characters of Ĝ. The next key result on l.c.a. groups states that the set
{et : t ∈ G} is exactly ˆ̂G and is isomorphic to G. This result is known as
the Pontryagin Duality Theorem (see Rudin (1990, Theorem 1.7.2)).

Theorem 4.2.2 (Pontryagin Duality Theorem). The evaluation map

G → ˆ̂G

t 7→ et

.

is a bijective continuous homomorphism with continuous inverse. Hence the set
{et : t ∈ G} is exactly ˆ̂G and is isomorphic to G.

The most common examples of l.c.a. groups are Z, T = R/(2πZ) and R

all endowed with their usual additions and topologies. Their dual can be
characterized as follows. The dual group Ẑ contains all Z → U-functions
χ : t 7→ zt for some z ∈ U. Since the compact sets of Z are the finite subsets
of Z, the compact-open topology on Ẑ is the same as the one induced by
pointwise convergence. It is then easy to show that Ẑ, U and T are iso-
morphic (from Ẑ to U take χ 7→ χ(1) and from T to U take λ 7→ eiλ). In
this case we identify Ẑ with T. In particular, this means that an integral on
χ ∈ Ẑ is replaced by an integral on λ ∈ T with χ(t) replaced by eiλ t for all
t ∈ Z. The dual set of R̂ contains all R→ U-functions χ : t 7→ eitλ for some
λ ∈ R (see for example Conway (1990, Theorem 9.11.)). Hence R̂ and R are
isomorphic via the mapping λ 7→ (t 7→ eitλ) and we identify R̂ with R.

4.2.2 Stone’s and Bochner’s theorems

In the following, we consider an l.c.a. group (G,+) and a Hilbert space H.
Bochner’s and Stone’s theorems are spectral-type theorem which aim at rep-
resenting certain type of functions on G as Fourier transforms of measures
on the Borel σ-field of the dual space Ĝ. Let us introduce the following
notions.

Definition 4.2.3 ((Continuous) Unitary representations). Let (G,+) be an l.c.a.

group and H a Hilbert space. A mapping U :
G → Lb(H)

h 7→ Uh

is said to be a

unitary representation (u.r.) of G on H if it satisfies the two following assertions.

(i) For all h ∈ G, Uh is a unitary operator from H to H.
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(ii) The operator U0 is the identity operator on H, that is, U0 = IdH, and, for all
s, t ∈ G, Us+t = UsUt.

We say that U is a continuous unitary representation (c.u.r.) if it moreover
satisfies

(iii) The mapping h 7→ Uh is continuous on G for the w.o.t.

Remark 4.2.1. Note that a mapping valued in the set of unitary operators is con-
tinuous for the w.o.t. if and only if it is continuous for the s.o.t.Hence, a c.u.r. is
continuous for the s.o.t. as a consequence of (iii).

Definition 4.2.4 (Hermitian non-negative definite function). A function γ :
G → C defined on an l.c.a. group (G,+) is said to be hermitian non-negative
definite if for all n ∈N, t1, · · · , tn ∈ G and a1, · · · , an ∈ C,

n

∑
i,j=1

aiajγ(ti − tj) ≥ 0.

The spectral representations of c.u.r.’s and continuous hermitian non-negative
definite functions are characterized by the following theorems.

Theorem 4.2.3 (Stone). Let G be an l.c.a. group, H a Hilbert space and U : h 7→
Uh a mapping from G to Lb(H). Then U is a c.u.r. of G on H if and only if there
exists a regular projection-valued measure ξ on (Ĝ,B(Ĝ)) such that

Uh =
∫

Ĝ
eh dξ =

∫
Ĝ

χ(h) ξ(dχ), h ∈ G . (4.2.1)

In this case, ξ is uniquely determined by U.

Proof. The proof of implication (⇒) is omitted because it would require to
introduce concepts about the Fourier transform on G and ∗-representations
and Riesz-Markov representation theorem which would not be used in the
rest of this manuscript. We refer the reader to §36E of Loomis, 1953. The
converse inclusion is a consequence of Proposition 4.1.2 and Point (ii) of
Berberian (1966b, Theorem 11). For uniqueness, it is enough to show that
for all x ∈ H, ξx : A 7→ xHξ(A)x is the unique regular non-negative measure
satisfying xHUhx =

∫
Ĝ χ(h) ξx(dχ) which is a consequence of Theorem 1.3.6

in Rudin, 1990.

Theorem 4.2.4 (Bochner). Let G be an l.c.a. group and γ : G → C. Then γ is
a continuous hermitian non-negative definite function if and only if there exists a
regular finite non-negative measure µ on (Ĝ,B(Ĝ)) such that

γ(h) =
∫

Ĝ
eh dµ =

∫
Ĝ

χ(h) µ(dχ), h ∈ G . (4.2.2)

In this case, µ is uniquely determined by γ.
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Proof. This theorem can also be proved using Fourier theory and Riesz-
Markov representation theorem as in §1.4.3 of Rudin, 1990. However, Theo-
rem I in Fillmore (1970, Chapter 8) gives that, for any hermitian non-negative
definite function γ : G → C, there exists a Hilbert space H, a unitary repre-
sentation U : t 7→ Ut of G on H and a vector x0 ∈ H such that

γ(h) = 〈Uhx0, x0〉H , h ∈ G. (4.2.3)

Then, using this result Theorem 4.2.4 is a straightforward consequence of
Theorem 4.2.3.

Theorem I in Fillmore (1970, Chapter 8) shows that there is a duality be-
tween hermitian non-negative definite functions and unitary representations
and this duality can be used to obtain Theorem 4.2.4 as a consequence of
Theorem 4.2.3. It turns out that the converse can also be done, that is Theo-
rem 4.2.3 can be obtained as a consequence of Theorem 4.2.4. This is done
in the proof of Theorem VI in Fillmore (1970, Chapter 8) which also contains
the proof of a generalization of Bochner’s theorem for operator-valued her-
mitian non-negative definite functions (see Theorem VII in Fillmore (1970,
Chapter 8)). This last class of functions is actually linked to a generaliza-
tion of unitary representations for normal Hilbert modules which we now
introduce.

4.3 Normal Hilbert modules

Modules extend the notion of vector spaces to the case where scalar multi-
plication is replaced by a multiplicative operation with elements of a ring.
The case where the ring is Lb(H0) for a separable Hilbert space H0 is
of particular interest for H0-valued random variables. In short, a normal
Hilbert Lb(H0)-module is a Hilbert space endowed with a module action and
a Gramian. A Gramian [·, ·] is similar to a scalar product but is valued in the
space S1(H0) and is related to scalar product by the relation 〈·, ·〉 = Tr([·, ·]).
Notions such as sub-modules, Gramian-orthogonality, Gramian-isometric
operators are natural extensions of their counterparts in the Hilbert frame-
work. We give such useful definitions hereafter and refer to Kakihara (1997,
Chapter 2) for details.
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Definition 4.3.1 (Lb(H0)-module). Let H0 be a separable Hilbert space. An
Lb(H0)-module is a commutative group (H,+) such that there exists a multiplica-
tive operation (called the module action)

Lb(H0)×H → H
(P, x) 7→ P • x

which satisfies the usual distributive properties : for all P, Q ∈ Lb(H0), and x, y ∈
H,

P • (x + y) = P • x + P • y,

(P + Q) • x = P • x + Q • x,

(PQ) • x = P • (Q • x),

IdH0 • x = x.

Next, we endow an Lb(H0)-module with an Lb(H0)-valued product.

Definition 4.3.2 ((Normal) pre-Hilbert Lb(H0)-module). LetH0 be a separable
Hilbert space. We say that (H, [·, ·]H) is a pre-Hilbert Lb(H0)-module if H is an
Lb(H0)-module and [·, ·]H : H×H → Lb(H0) satisfies, for all x, y, z ∈ H, and
P ∈ Lb(H0),

(i) [x, x]H ∈ L
+
b (H0),

(ii) [x, x]H = 0 if and only if x = 0,

(iii) [x + P • y, z]H = [x, z]H + P[y, z]H,

(iv) [y, x]H = [x, y]HH.

If moreover, for all x, y ∈ H, [x, y]H ∈ S1(H0), we say that [·, ·]H is a Gramian
and that H is a normal pre-Hilbert Lb(H0)-module.

Note that an Lb(H0)-module is a vector space if we define the scalar-vector
multiplication by αx = (αIdH0) • x for all α ∈ C, x ∈ H and that, in the
particular case where [·, ·]H is a Gramian, then 〈·, ·〉H := Tr[·, ·]H is a scalar
product. Hence a normal pre-Hilbert Lb(H0)-module is also a pre-Hilbert
space. Lemma 2 in Kakihara (1997, Section 2.1) gathers useful results about
Gramians, in particular if (H, [·, ·]H) is a normal pre-Hilbert Lb(H0) module,
we have

‖[x, y]H‖1 ≤ ‖x‖H‖y‖H , for all x, y ∈ H , (4.3.1)

where ‖·‖1 is the trace-class norm defined in Appendix A. We can now de-
fine the following.
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Definition 4.3.3 (normal Hilbert Lb(H0)-module). A normal pre-Hilbert Lb(H0)-
module is said to be a normal Hilbert Lb(H0)-module if it is complete (for the
norm defined by ‖x‖2

H = 〈x, x〉H = ‖[x, x]H‖1).

Definition 4.3.4 (Submodules and Lb(H0)-linear operators). Let H0 be a sepa-
rable Hilbert space and H,G be two Lb(H0)-modules. Then a subset of H is called
a submodule if it is an Lb(H0)-module. An operator F ∈ Lb(H,G) is said to be
Lb(H0)-linear if for all P ∈ Lb(H0) and x ∈ H, F(P • x) = P • (Fx). In the
case where H is a normal pre-Hilbert Lb(H0)-module, we denote, for any E ⊂ H,
Span

H
(E) the smallest linear subspace of H which contains E and is closed for the

norm ‖·‖H. It is a submodule of H.

Definition 4.3.5 (Gramian-isometric operators). Let H0 be a separable Hilbert
space,H,G be two pre-Hilbert Lb(H0)-modules and U : H → G an Lb(H0)-linear
operator. Then U is said to be

(i) Gramian-isometric if for all x, y ∈ H, [Ux, Uy]G = [x, y]H,

(ii) Gramian-unitary if it is bijective Gramian-isometric.

The space H is said to be Gramian-isometrically embedded in G (denoted by
H ⊆∼ G) if there exists a Gramian-isometric operator from H to G. The spaces H
and G are said to be Gramian-isometrically isomorphic (denoted by H ∼= G) if
there exists a Gramian-unitary operator from H to G.

The well-known isometric extension theorem can be straightforwardly
generalized to the case of Gramian-isometric operators as stated in the fol-
lowing proposition.

Proposition 4.3.1 (Gramian-isometric extension). Let H0 be a separable Hilbert
space, H be a normal pre-Hilbert Lb(H0)-module, and G be a normal Hilbert
Lb(H0)-module. Let (vj)j∈J and (wj)j∈J be two collections of vectors in H and
G respectively with J an arbitrary index set. If for all i, j ∈ J,

[
vi, vj

]
H =

[
wi, wj

]
G

then there exists a unique Gramian-isometric operator

S : Span
H (

P • vj, P ∈ Lb(H0), j ∈ J
)
→ G

such that for all j ∈ J, Svj = wj. If moreover H is complete then

S
(

Span
H (

P • vj, P ∈ Lb(H0), j ∈ J
))

= Span
G (

P • wj, P ∈ Lb(H0), j ∈ J
)

(4.3.2)

Finally, orthogonal projections can be generalized in this context as fol-
lows.
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Definition 4.3.6 (Gramian-projection). Let H0 be a separable Hilbert space and
H a normal Hilbert Lb(H0)-module. Then an orthogonal projection onto a closed
submodule of H is called a Gramian-projection.

Let us introduce some examples of normal Hilbert Lb(H0)-modules that
will be of interest in the following.

Example 4.3.1 (Basic examples of normal Hilbert modules). LetH0,G0 be two
separable Hilbert space. Then the following assertions hold.

(1) The spaceH0 is a normal Hilbert Lb(H0)-module with module action P • x =

Px and Gramian [x, y]H0
= x ⊗ y where (x ⊗ y)u = 〈u, y〉H0

x for all
u ∈ H0 as defined in (A.1.1).

(2) The space S2(H0,G0) of Hilbert-Schmidt operators fromH0 to G0 is a normal
Hilbert Lb(G0)-module with module action defined, for P ∈ Lb(G0) and Q ∈
S2(H0,G0), by P •Q = PQ and Gramian defined, for P, Q ∈ S2(H0,G0), by
[P, Q]S2(H0,G0)

= PQH.

(3) Let µ be a non-negative measure on a measurable space (Λ,A) and H a
normal Hilbert Lb(H0)-module. Then space L2(Λ,A,H, µ) is an Lb(H0)-
Hilbert module with module action defined for all P ∈ Lb(H0) and f ∈
L2(Λ,A,H, µ) by P • f : λ 7→ P • f (λ). Moreover, Relation (4.3.1) gives
that, for all f , g ∈ L2(Λ,A,H, µ), the function λ 7→ [ f (λ), g(λ)]H is in
L1(Λ,A,S1(H0), µ), and thus

[ f , g]L2(Λ,A,H,µ) :=
∫

[ f , g]H dµ =
∫

[ f (λ), g(λ)]H µ(dλ)

is well defined in S1(H0). It is easy to show that it is a Gramian and that
L2(Λ,A,H, µ) is a normal Hilbert Lb(H0)-module if endowed with this
Gramian.

The next two example are direct applications of Point (3) in Example 4.3.1
where H is taken as in Points (1) and (2) respectively.

Example 4.3.2 (Normal Hilbert module M(Ω,F ,H0, P)). Let (Ω,F , P) be a
probability space andH0 be a separable Hilbert space. The Bochner space L2(Ω,F ,H0, P)

is the space of H0-valued random variables Y such that E
[
‖Y‖2

H0

]
< +∞. Then

the expectation of Y is the unique vector E [Y] ∈ H0 satisfying

〈E [Y] , x〉H0
= E

[
〈Y, x〉H0

]
, for all x ∈ H0 ,

and the covariance operator between Y, Z ∈ L2(Ω,F ,H0, P) is the unique linear
operator Cov (Y, Z) ∈ Lb(H0), satisfying

〈Cov (Y, Z) y, x〉H0
= Cov

(
〈Y, x〉H0

, 〈Z, y〉H0

)
, for all x, y ∈ H0 .
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Equivalently, we have

Cov (Y, Z) = E [(Y−E [Y])⊗ (Z−E [Z])] ,

and therefore, Points (1) and (3) in Example 4.3.1 give that the spaceM(Ω,F ,H0, P)

of all centered random variables in L2(Ω,F ,H0, P) is a normal Hilbert Lb(H0)-
module for the module action defined for all P ∈ Lb(H0) and X ∈ M(Ω,F ,H0, P)

by P • X = PX, and the Gramian

[X, Y]M(Ω,F ,H0,P) = Cov (X, Y) ∈ S1(H0) .

Example 4.3.3 (Normal Hilbert module L2(Λ,A,S2(H0,G0), µ) for a non-neg-
ative measure µ). Let µ be a non-negative measure on (Λ,A) and H0,G0 be two
separable Hilbert spaces. Then L2(Λ,A,S2(H0,G0), µ) is a normal Hilbert Lb(G0)-
module with module action defined for all P ∈ Lb(G0) and Φ ∈ L2(Λ,A,S2(H0,G0), µ)

by P•Φ : λ 7→ PΦ(λ) and Gramian defined, for all Φ, Ψ ∈ L2(Λ,A,S2(H0,G0), µ),
by

[Φ, Ψ]L2(Λ,A,S2(H0,G0),µ) :=
∫

ΦΨH dµ .

4.4 Generalizations of Stone’s and Bochner’s theorems

The duality between the scalar product on a Hilbert space and the Gramian
on a normal Hilbert module leads naturally to the following definitions.

Definition 4.4.1 ((Continuous) gramian unitary representations). Let (G,+)

be an l.c.a. group, H0 a separable Hilbert space and H a normal Hilbert Lb(H0)-

module. A mapping U :
G 7→ Lb(H)

h 7→ Uh

is said to be a gramian unitary repre-

sentation (g.u.r.) of G on H if it is an u.r. of G on H such that for all h ∈ G, Uh is
gramian-unitary. A g.u.r. is continuous, then called a c.g.u.r., if it is continuous as
an u.r.

Definition 4.4.2 (Gramian-projection-valued measure). Let (Λ,A) be a mea-
surable space,H0 a separable Hilbert space andH a normal Hilbert Lb(H0)-module.
Then a projection-valued measure on (Λ,A,H) is called a Gramian-projection-
valued measure if for all A ∈ A, ξ(A) is a Gamian-projection.

Then the generalization of Stone’s theorem for normal Hilbert modules
writes as Theorem 4.2.3 where U is a c.g.u.r and ξ is a Gramian-projection-
valued measure (see Kakihara (1997, Proposition 2.5.4)).
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Theorem 4.4.1 (Stone’s theorem for modules). Let (G,+) be an l.c.a. group,H0

a separable Hilbert space and H a normal Hilbert Lb(H0)-module. Then a function
U : h 7→ Uh from G to Lb(H) is a c.g.u.r. if and only if there exists a regular
Gramian-projection valued measure ξ on (Ĝ,B(Ĝ),H) such that

Uh =
∫

χ(h) ξ(dχ), h ∈ G . (4.4.1)

In this case, ξ is uniquely determines by U.

Proof. The idea of the proof is to apply Stone’s theorem to U which is also
a c.u.r and to verify that the projection-valued measure obtained is in fact
Gramian-projection-valued.

Now, to generalize Bochner’s theorem, we need to extend the notion of
hermitian non-negative definiteness to operator-valued functions. Several
definitions have been used in the literature and they are not straightfor-
wardly equivalent.

Definition 4.4.3. Let H be a Hilbert space and (G,+) an l.c.a. group. A function
Γ : G→ Lb(H) is said to be

1. positive definite if for all n ∈N∗, t1, · · · , tn ∈ G and P1, · · · , Pn ∈ Lb(H),

n

∑
i,j=1

PiΓ(ti − tj)PH
j � 0 ;

2. of positive-type if for all n ∈N∗, t1, · · · , tn ∈ G and x1, · · · , xn ∈ H,

n

∑
i,j=1

〈
Γ(ti − tj)xj, xi

〉
H ≥ 0 ;

3. hermitian non-negative definite if for all n ∈ N∗, t1, · · · , tn ∈ G and
a1, · · · , an ∈ C,

n

∑
i,j=1

aiajΓ(ti − tj) � 0.

Equivalently, Γ is hermitian non-negative definite if and only if for all x ∈ H,
t 7→ 〈Γ(t)x, x〉H is hermitian non-negative definite.

It is straightforward to show that the definitions in Definition 4.4.3 are
given in an increasing order of generality in the sense that 1 ⇒ 2 ⇒ 3. In
the univariate case, for a function γ : G→ C all these definitions are trivially
equivalent to hermitian non-negative positiveness. A natural question for a
general Hilbert space H is which definition should be used to extend the
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Bochner theorem. It turns out that this choice does not matter since, with
additional continuity condition, all these definitions are equivalent. This
result is essentially the Naimark’s moment theorem of Berberian, 1966a.

Theorem 4.4.2 (General Bochner Theorem). Let (G,+) be an l.c.a. group, H a
Hilbert space and Γ : G→ Lb(H). Then the following assertions are equivalent.

(i) Γ is continuous in w.o.t. and positive definite.

(ii) Γ is continuous in w.o.t. and of positive-type.

(iii) Γ is continuous in w.o.t. and hermitian non-negative definite.

(iv) There exists a regular p.o.v.m. ν on (Ĝ,B(Ĝ),H) such that

Γ(h) =
∫

χ(h) ν(dχ) for all h ∈ G. (4.4.2)

Moreover, if Assertion (iv) holds, ν is the unique regular p.o.v.m. satisfying (4.4.2).

Proof. The equivalence between (i) and (ii) is straightforward: to show that
(i)⇒(ii), take an arbitrary x ∈ H0 with unit norm and set Pi = x xH

i for
i = 1, . . . , n. To show that (ii)⇒(i), take, for any x ∈ H0, xi = PH

i x for
i = 1, . . . , n. The equivalence between (ii), (iii) and (iv) is given by Berberian
(1966a, Theorem 3). Recall Definition 4.1.4 of a regular p.o.v.m.. It follows
that the lastly stated fact that ν is uniquely determined by (4.4.2) is a conse-
quence of the uniqueness stated in the univariate Bochner theorem (recalled
in Theorem 4.2.4) applied to νx : A 7→ xHν(A) x for all x ∈ H0.

Most of the generalizations of Bochner’s theorem aim at showing that one
of the statements (i), (ii), (iii) of Theorem 4.4.2 imply (iv) and Theorem 4.4.2 is
the most complete formulation possible. In fact, a closer look at the literature
in operator theory shows that the implication (iii)⇒ (iv) appears commonly
as an ingredient of the proof of Stone’s theorem1, see e.g. Ambrose, 1944;
Arnous, 1946 or Theorem VI of Fillmore (1970, Chapter 8). Since (ii) obvi-
ously implies (iii), this indicates that the implication (ii) ⇒ (iv) is a classical
result which has been proved again in Delft and Eichler (2020, Theorem 3.7)
for their (equivalent) notion of operator-valued measures. The same implica-
tion, (ii)⇒ (iv), is also proved in Neumark, 1943, this time as a consequence
of Stone’s theorem. In contrast, it seems that little attention has been given

1This is because a c.u.r. clearly satisfies (iii). Hence, once we know that (iv) holds, the
remaining of the proof of Stone’s theorem reduces to showing that, if (Γ(h))h∈G is an u.r.,
then ν is a projection-valued measure.
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to the converse implication (iv) ⇒ (ii). The proof of this implication is in-
cluded in the proof of Berberian (1966a, Theorem 2). Berberian claims there
that “[He does] not know how to prove [it] without using dilation theory”. The
proof of the same implication given in Delft and Eichler, 2020 relies on the
computation of

∫
〈ν(dχ)x(χ), x(χ)〉 where ν is an operator-valued measure

in the sense of their Definition 3.5, see Delft and Eichler (2020, Lines 3 and 4,
Page 3695). However the rigorous definition of such an integral is unclear to
us in their context. For sake of completeness, we provide a simple proof of
(iv)⇔ (ii).

Proof of (ii)⇔ (iv) in Theorem 4.4.2. To prove the implication (ii) ⇒ (iv),
we follow the classical path found in the literature. Assume that (ii) holds
and denote for all x ∈ H, γx : h 7→ xHΓ(h)x. Then for all x ∈ H, γx is
a hermitian non-negative definite function and Theorem 4.2.4 implies that
there exists a unique regular finite non-negative measure νx on (Ĝ,B(Ĝ))
such that, for all h ∈ G,

xHΓ(h)x = γx(h) =
∫

Ĝ
χ(h) νx(dχ) .

Then it is easy to verify that the family {νx : x ∈ H} satisfies the condi-
tions of Berberian (1966b, Theorem 2) which thus provides the existence of
a unique regular p.o.v.m. ν on (Ĝ,B(Ĝ),H) such that for all A ∈ B(Ĝ),

xHν(A)x = νx(A) .

In this case, by Definition 4.1.5 we have, for all h ∈ G and all x ∈ H,

xH

(∫
Ĝ

χ(h) ν(dχ)

)
x =

∫
Ĝ

χ(h) νx(dχ) = xHΓ(h)x ,

which gives (4.4.2).
For the converse implication, we provide a simple proof without relying

on dilation theory. Suppose that (iv) holds. The continuity of Γ in w.o.t.
follows immediately by dominated convergence and we now prove that it
is of positive type as in Definition 4.4.3. Take some arbitrary n ∈ N∗, and
x1, · · · , xn ∈ H0. Let us define the Cn×n-valued measure µ on on (Ĝ,B(Ĝ))
by

µ(A) =


〈ν(A)x1, x1〉H0

· · · 〈ν(A)xn, x1〉H0
...

. . .
...

〈ν(A)x1, xn〉H0
· · · 〈ν(A)xn, xn〉H0

 .
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Then, by the Cauchy-Schwartz inequality, for all i, j ∈ J1, nK, the C-valued
measure µi,j : A 7→ [µ(A)]i,j admits a density fi,j with respect to the non-
negative finite measure ‖µ‖1 : A 7→ ‖µ(A)‖1 = Tr(µ(A)) and the matrix-
valued function f : χ 7→ ( fi,j(χ))1≤i,j≤n is ‖µ‖1-a.e. hermitian, non-negative
semi-definite since, for all a ∈ Cn and A ∈ B(Ĝ),

∫
A

aH f (χ)a ‖µ‖1(dχ) = aHµ(A)a =

(
n

∑
i=1

aixi

)H

ν(A)

(
n

∑
i=1

aixi

)
≥ 0 .

Then, for all t1, · · · , tn ∈ G, we have

n

∑
i,j=1

〈
Γ(ti − tj)xi, xj

〉
H0

=
n

∑
i,j=1

∫
χ(ti)χ(tj) µi,j(dχ)

=
n

∑
i,j=1

∫
χ(ti)χ(tj) fi,j(χ) ‖µ‖1(dχ)

=
∫ ( n

∑
i,j=1

χ(ti)χ(tj) fi,j(χ)

)
︸ ︷︷ ︸

≥0 ‖µ‖1-a.e.

‖µ‖1(dχ) ≥ 0 .

The first line follows from (iv), the definition of µi,j above and the definition
of the integral as given by Definition 4.1.5. The second line follows from
the definition of fi,j and the third line from the above property of the matrix-
valued function f . Hence we have shown (ii) and the proof of the implication
is concluded.

Throughout this section, we have seen that Theorems 4.2.3, 4.2.4, 4.4.1
and 4.4.2 are closely related. It actually turns out that almost every result can
be obtained as a consequence of any of the others. As an illustration of this
conclusion, Figure 4.1 gives a graphical representation of some interesting
implications found in the literature. Arrows with the same color indicate a
path of implications usually followed by one or several authors.
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Fourier theory on groups

and Riesz-Markov

representation theorem

Bochner’s theorem

(Theorem 4.2.4)

Stone’s theorem

(Theorem 4.2.3)

(iii)⇒ (iv) of Theorem 4.4.2

(ii)⇒ (iv) of Theorem 4.4.2
Stone’s theorem for

modules (Theorem 4.4.1)

Loomis (1953, §36E)

Using Theorem I in

Fillmore (1970, Chapter 8)

Ambrose, 1944

Arnous, 1946

Berberian, 1966a

Fillmore (1970, Chap. 8)

Rudin (1990, §1.4.3)

Proposition 4 in

Section 2.5 of

Kakihara, 1997

Proposition 5 in

Kakihara (1997, Section 2.5)

Neumark, 1943

Obvious

Figure 4.1: Possible proof paths for Bochner’s, Stone’s theorems and their general-
izations.
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4.5 Trace-class p.o.v.m.’s

In the case where H0 is a separable Hilbert space, we provide the definition
of trace-class p.o.v.m.’s and derive several useful properties they enjoy.

Definition 4.5.1 (Trace-class p.o.v.m.). Let (Λ,A) be a measurable space, H0 be
a separable Hilbert space and ν be a p.o.v.m. on (Λ,A,H0). We say that ν is a
trace-class p.o.v.m. if it is S+1 (H0)-valued.

Trace-class p.o.v.m.’s are equivalent to the S+1 (H0)-valued measures used
in Kakihara, 1997, Section 3.4. In particular, these measures fit the frame-
work of vector-valued measures as stated in the following Lemma.

Lemma 4.5.1. Let (Λ,A) be a measurable space and H0 be a separable Hilbert
space. Then a p.o.v.m. ν on (Λ,A,H0) is trace-class if and only if ν(Λ) ∈ S1(H0).
In this case, ν is an S1(H0)-valued measure (in the sense that (4.1.1) holds in ‖·‖1-
norm) with finite variation measure ‖ν‖1 : A 7→ ‖ν(A)‖1. Moreover, regularity of
ν as a p.o.v.m. is equivalent to regularity of ν as an S1(H0)-valued measure which
is itself equivalent to regularity of ‖ν‖1.

Proof. The first point comes from the fact that for all A ∈ A, ν(A) � ν(Λ).
Now, if ν is trace-class, then (4.1.1) is easily verified for the norm ‖·‖1 us-
ing the fact that ‖·‖1 = Tr(·) for positive operators. Finally, by definition of
‖ν‖1, regularity of ‖ν‖1 is equivalent to regularity of ν as an S1(H0)-valued
measure which clearly implies regularity of νx = xHν(·)x for all x ∈ H0. Sup-
pose now that for all x ∈ H0, νx is regular, then let (ek)k∈N be a Hilbert basis
of H0, and define for all n ∈ N, the non-negative measure µn := ∑n

k=0 νek

such that for all A ∈ A, ‖ν‖1(A) = limn→+∞ µn(A) = supn∈N µn(A). Then,
by Vitali-Hahn-Sakh-Nikodym’s theorem (see Brooks, 1969), the sequence
(µn)n∈N is uniformly countably additive which implies regularity of ‖ν‖1 by
Lemma 23 in Diestel and Uhl (1977, Chapter VI, Section 2).

The main advantage of trace-class p.o.v.m.’s lies in the fact that S1(H0)

is a separable dual space and therefore has the Radon-Nikodym property.
Consequences of this property are discussed in the remaining of this sec-
tion as well as implications of the general Bochner theorem when trace-class
p.o.v.m.’s are involved. We conclude this section by deriving useful results
on the eigendecomposition of a trace-class p.o.v.m..
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4.5.1 Radon-Nikodym property of trace-class p.o.v.m.’s

Theorem 4.5.2. Let (Λ,A) be a measure space, H0 a separable Hilbert space and
ν a trace-class p.o.v.m. on (Λ,A,H0). Let µ be a σ-finite non-negative measure on
(Λ,A). Then ‖ν‖1 � µ, if and only if there exists g ∈ L1(Λ,A,S1(H0), µ) such
that dν = g dµ, i.e. for all A ∈ A,

ν(A) =
∫

A
g dµ . (4.5.1)

In this case, g is unique and is called the density of ν with respect to µ and we write

g =
dν

dµ
.

Moreover, the following assertions hold.

(a) For µ-almost every λ ∈ Λ, g(λ) ∈ S+1 (H0).

(b) The mapping g1/2 : λ 7→ g(λ)1/2 belongs to L2(Λ,A,S2(H0), µ).

(c) The density of ‖ν‖1 with respect to µ is ‖g‖1. In particular, g = dν
d‖ν‖1
‖g‖1

µ-a.e. and if µ = ‖ν‖1, then ‖g‖1 = 1 µ-a.e.

Proof. The first part of the theorem comes from the fact that the space S1(H0)

has the Radon-Nikodym property. Indeed, since H0 is separable, S1(H0) is
the dual of the separable space K(H0). It is therefore a separable dual space
and the result follows by Theorem 1 in Diestel and Uhl (1977, Chapter III,
Section 3). Then for all x ∈ H0 and A ∈ A,∫

A
〈g(λ)x, x〉H0

µ(dλ) = 〈ν(A)x, x〉H0
≥ 0 ,

and there exists a set Ax ∈ A with µ(Ac
x) = 0 and 〈g(λ)x, x〉H0

≥ 0 for
all λ ∈ Ax. Taking (xn)n∈N a dense countable subset of H0 we get that
g ∈ S+1 (H0) on A =

⋂
n∈N Axn thus proving Assertion (a). Assertion (b)

then follows from Lemma B.2.1. Moreover, taking the trace in (4.5.1) gives
for all A ∈ A,

‖ν‖1(A) =
∫

A
‖g‖1 dµ

which gives Assertion (c).

From Lemma 4.5.1, we know that a trace-class p.o.v.m. ν is an S1(H0)-
valued measure. This allows us to integrate an unbounded scalar-valued
functions f with respect to ν as soon as f ∈ L1(Λ,A, ‖ν‖1) as recalled in Sec-
tion 4.1.1. With the Radon-Nikodym property, we can interpret this integral
as a Bochner integral.
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Corollary 4.5.3. Let (Λ,A) be a measure space, H0 a separable Hilbert space and
ν a trace-class p.o.v.m. on (Λ,A,H0). Let µ be a σ-finite non-negative measure on
(Λ,A) such that ‖ν‖1 � µ, and let g = dν

dµ . Let f : Λ → C be measurable. Then
f ∈ L1(Λ,A, ‖ν‖1) if and only if λ 7→ f (λ) g(λ) ∈ L1(Λ,A,S1(H0), µ), and, in
this case, we have ∫

f (λ) ν(dλ) =
∫

f (λ) g(λ) µ(dλ) . (4.5.2)

Proof. The proof consists in extending the case f = 1A for A ∈ A to simple
functions and then using the density of simple functions.

Note that, in (4.5.2), the first integral is that of a scalar-valued function
with-respect to the S1(H0)-valued measure ν as recalled above for general
vector-valued measures with finite variation and the second is the Bochner
integral of an S1(H0)-valued function with-respect to the non-negative mea-
sure µ as recalled in Appendix B. Of course, if f is bounded on Λ, these
integrals coincide with the integral of f with respect to ν of Definition 4.1.5
in which ν is seen as a p.o.v.m.. The Radon-Nikodym property of trace-
class p.o.v.m.’s is a key step to extend such integrals to operator valued
functions, hence allowing us to use a handy definition of the integral of an
operator valued function with respect to an operator valued measure, in the
particular case where this measure is a trace-class p.o.v.m.. An example of
such integrals provides a more general formulation of the space of transfer
functions used in Tavakoli (2014, Section 2.5) and Delft and Eichler (2018,
Appendix B.2.3) for filtering functional time series.

Example 4.5.1 (semi-Gramian [·, ·]ν on L2(Λ,A,Lb(H0,G0), ‖ν‖1) for a trace–
class p.o.v.m. ν.). Let (Λ,A) be a measurable space, H0,G0 be two separable
Hilbert spaces and ν a trace-class p.o.v.m. on (Λ,A,H0) with density f with
respect to its finite variation ‖ν‖1. Then the space L2(Λ,A,Lb(H0,G0), ‖ν‖1)

is an Lb(H0)-module with module action defined for all P ∈ Lb(G0) and Φ ∈
L2(Λ,A,Lb(H0,G0), ‖ν‖1) by P • Φ : λ 7→ PΦ(λ). Define also for all Φ, Ψ ∈
L2(Λ,A,Lb(H0,G0), ‖ν‖1)

[Φ, Ψ]ν :=
∫

Φ f ΨH d‖ν‖1 . (4.5.3)

Note that the S1(H0)-valued Bochner integral in the right-hand side of (4.5.3)
is well defined because by Theorem 4.5.2 (c), we have ‖ f ‖1 = 1, ‖ν‖1-a.e. and
thus

∥∥Φ f ΨH
∥∥

1 ≤ ‖Φ‖Lb(H0,G0)
‖Ψ‖Lb(H0,G0)

, ‖ν‖1-a.e., which implies Φ f ΨH ∈
L1(Λ,A,S1(G0), ‖ν‖1). Then [·, ·]ν is a semi-Gramian in the sense that it satisfies
all Assertions from Definition 4.3.2 except Assertion (ii). Indeed, we have

[Φ, Φ]ν = 0⇔ Φ f 1/2 = 0 , ‖ν‖1-a.e. .
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To make it a Gramian, we can quotient space L2(Λ,A,Lb(H0,G0), ‖ν‖1) by the
set {‖·‖ν = 0} where ‖·‖ν is the semi-norm associated to the semi-Gramian [·, ·]ν,
i.e. ‖Φ‖2

ν = Tr[Φ, Φ]ν. Note that this semi-norm is different from the norm
‖Φ‖2

L2(Λ,A,Lb(H0,G0),‖ν‖1)
. In particular, for all Φ ∈ L2(Λ,A,Lb(H0,G0), ‖ν‖1),

we have

‖Φ‖2
ν = Tr

∫
Φ f ΦH d‖ν‖1 =

∫
Tr
(

Φ f ΦH
)

d‖ν‖1

≤
∫
‖Φ‖2

Lb(H0,G0)
d‖ν‖1 = ‖Φ‖2

L2(Λ,A,Lb(H0,G0),‖ν‖1)
, (4.5.4)

where we used again that ‖ f ‖1 = 1, ‖ν‖1-a.e. It is easy to find Φ’s for which the
inequality is strict.

Example 4.5.1 is pivotal for defining the modular spectral domain of a
weakly stationary process with spectral operator measure ν. However, it
does not suffice to describe the whole spectral domain because, as already
noted in Tavakoli (2014, Section 2.5) in a similar case, this space, in general,
it is not complete. As a result, unfortunately, the spectral domain is more
complicated for functional time series than for (finite dimensional) multi-
variate time series. Of course, as proposed in Tavakoli (2014, Section 2.5),
it is always possible to use topological completion under ‖·‖ν. These ideas
are in fact very similar to the ones of Kakihara, 1997; Kallianpur and Man-
drekar, 1971; Mandrekar and Salehi, 1970 with the exception that the latter
references provide a more general framework and lead to a modular spec-
tral domain which is an explicit set of operator-valued functions. We will
follow this approach in Chapter 5. In fact, we can already define a larger
space by noting that the integral in (4.5.3) is not restricted to functions in
L2(Λ,A,Lb(H0,G0), ‖ν‖1). This space is a natural extension of Masani, 1966

where the case of (finite dimensional) multivariate time series is considered
(see the definition of L2,M in this reference). As introduced in Appendix B,
the set Fs (Λ,A,H0,G0) is the set of functions Φ : Λ→ Lb(H0,G0) such that,
the mapping λ 7→ Φ(λ)x is measurable for all x ∈ H0.

Example 4.5.2 (Normal pre-Hilbert module
(
L2(Λ,A,Lb(H0,G0), ν), [·, ·]ν

)
for a trace-class p.o.v.m. ν.). Let (Λ,A) be a measurable space,H0,G0 be two sep-
arable Hilbert spaces and ν a trace-class p.o.v.m. on (Λ,A,H0) with density f with
respect to its finite variation ‖ν‖1. Denote by L 2(Λ,A,Lb(H0,G0), ν) the space of
functions Φ ∈ Fs (Λ,A,H0,G0) such that Φ f 1/2 ∈ L2(Λ,A,S2(H0,G0), ‖ν‖1).
Then L 2(Λ,A,Lb(H0,G0), ν) is an Lb(H0)-module with the same module ac-
tion as in Example 4.5.1 and the mapping [·, ·]ν of (4.5.3) can be extended to a
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semi-Gramian on L 2(Λ,A,Lb(H0,G0), ν). Indeed, it suffices to note that, for all
Φ, Ψ ∈ L 2(Λ,A,Lb(H0,G0), ν),

[Φ, Ψ]ν =
[
Φ f 1/2, Ψ f 1/2

]
L2(Λ,A,Lb(H0,G0),‖ν‖1)

, (4.5.5)

where the gramian in the right side of (4.5.5) is defined in Example 4.3.3.
Then, the space

L2(Λ,A,Lb(H0,G0), ν) := L 2(Λ,A,Lb(H0,G0), ‖ν‖1)
/
{‖·‖ν = 0} ,

is a normal pre-Hilbert Lb(H0)-module.

4.5.2 The general Bochner theorem for trace-class p.o.v.m.’s

Let (G,+) be an l.c.a. group andH0 a separable Hilbert space and consider a
function Γ : G→ Lb(H0) satisfying (4.4.2) where ν is a p.o.v.m. on (Λ,A,H0).
Then, in particular Γ(0) = ν(Λ) and Lemma 4.5.1 gives that ν is a trace-class
p.o.v.m. if and only if Γ(0) ∈ S1(H0). Interestingly, in this case, we also get
that Γ(h) ∈ S1(H0) for all h ∈ G and that Γ becomes continuous in a stronger
sense. This is stated in the following corollary.

Corollary 4.5.4. Let (G,+) be an l.c.a. group, H0 a separable Hilbert space and
Γ : G→ Lb(H0). Then the following assertions are equivalent.

(i) Any of the Assertions (i)–(iii) in Theorem 4.4.2 holds and Γ(0) ∈ S1(H0).

(ii) Assertion (i) holds and Γ(h) ∈ S1(H0) for all h ∈ G.

(iii) Assertion (i) holds and Γ satisfies the following continuity condition: for all
P ∈ Lb(H0), h 7→ Tr(PΓ(h)) is continuous on G.

(iv) There exists a regular trace-class p.o.v.m. ν on (Ĝ,B(Ĝ),H0) such that (4.4.2)
holds.

Proof. The equivalence between (i) and (iv) is a clear consequence of Theo-
rem 4.4.2 and Lemma 4.5.1. The implications (iii) ⇒ (i) and (iii) ⇒ (ii) are
straightforward. It remains to show that (iv) implies (iii) which reduces to
showing that for all P ∈ Lb(H0), h 7→ Tr(PΓ(h)) is continuous. To this end,
let f = dν

d‖ν‖1
and take P ∈ Lb(H0). Then for all h ∈ G,

PΓ(h) = P
∫

Ĝ
χ(h) f (χ) ‖ν‖1(dχ) =

∫
Ĝ

χ(h)P f (χ) ‖ν‖1(dχ) ,

and, since the integrand in the last integral has a S1(H0)-norm upper bounded
by ‖P‖Lb(H0)

and ‖ν‖1 is finite, we get that h 7→ PΓ(h) is continuous from
Ĝ to S1(H0) by dominated convergence. The continuity of h 7→ Tr(PΓ(h))
follows.
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4.5.3 Eigendecomposition of a trace-class p.o.v.m.

The goal of this section is to provide a proof of the following result which
addresses the issues discussed in Section 2.7 of Tavakoli, 2014 in a more
general setting.

Proposition 4.5.5 (Eigendecomposition of a trace-class p.o.v.m.). Let H0 be
a separable Hilbert space with dimension N ∈ {1, . . . ,+∞}. Let ν be a trace-
class p.o.v.m. on (Λ,A,H0) and µ a σ-finite dominating measure of ν, e.g. its
variation norm ‖ν‖1. Then there exist sequences (σn)0≤n<N and (φn)0≤n<N of
(Λ,A) → (R+,B(R+)) and (Λ,A) → (H0,B(H0)) measurable functions, re-
spectively, such that the following assertions hold.

(i) For all λ ∈ Λ, (σn(λ))0≤n<N is non-increasing and ∑
0≤n<N

σn(λ) < ∞.

(ii) For all λ ∈ Λ, (φn(λ))0≤n<N is orthonormal.

(iii) The trace-class p.o.v.m. ν admits the density

f : λ 7→ ∑
0≤n<N

σn(λ) φn(λ)⊗ φn(λ) ,

with respect to µ, where the convergence holds absolutely in S1(H0) for each
λ ∈ Λ.

(iv) Moreover, if N = +∞, we have

f =
+∞

∑
n=0

σn φn ⊗ φn ,

where the series converges in L1(Λ,A,S1(H0), µ).

To this end, let us recall essential facts about the diagonalization of com-
pact positive operators. Let H0 be a separable Hilbert space of dimension
N ∈ {1, · · · ,+∞}, (Λ,A) be a measurable space and Φ ∈ Fs (Λ,A,H0) such
that for all λ ∈ Λ, Φ(λ) ∈ S+1 (H0). Then, in this case, for any λ ∈ Λ, Φ(λ)

admits the eigendecomposition

Φ(λ) = ∑
0≤n<N

σn(λ)φn(λ)⊗ φn(λ) , (4.5.6)

where the series converges in operator norm and the family (φn(λ))0≤n<N is
orthonormal. Moreover, we have

Tr(Φ(λ)) = ∑
0≤n<N

σn(λ) < +∞ .
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The following theorem shows that such a decomposition can be constructed
in a way which makes the eigenvalues and eigenvectors measurable as func-
tions of λ. The novelty of this result compared to Lemma 7 of Kakihara,
1997, Section 3.4 is that, using topological properties induced by S+1 (H0), we
prove measurability of the eigenvectors and not only the eigenprojections.

We will need the following lemmas, which rely on the weak topology on
H0, defined as the smallest topology which makes the functions

{
xH : x ∈ H0

}
continuous.

Lemma 4.5.6. Let H0 be a separable Hilbert space and denote the closed unit ball
by

B̄0,1 :=
{

x ∈ H0 : ‖x‖H0
≤ 1

}
.

Then B̄0,1 endowed with the weak topology is a compact metrizable space.

Proof. By the Banach-Alaoglu theorem, B̄0,1 is compact for the weak topology.
Since H0 is separable, we can choose a Hilbert basis (ψn)0≤n<N for H0, with
N ∈ {1, · · · ,+∞}. It is straightforward to show that the mapping (x, y) 7→
∑0≤n<N 2−n

∣∣∣〈x− y, ψn〉H0

∣∣∣ is a metric inducing the weak topology on B̄0,1.

Lemma 4.5.7. Let H0 be a separable Hilbert space. Then the Borel σ-field Bw(H0)

of H0 endowed with the weak topology coincides with the (usual) Borel σ-field
B(H0) of (H0, ‖·‖H0

).

Proof. The weak topology is included in the topology of (H0, ‖·‖H0
), hence

Bw(H0) ⊂ B(H0). To prove the converse inclusion, observe that by ex-
pressing ‖x− y‖H0

as the `2-norm of the inner-products of (x − y) with a
Hilbert basis (ψn)0≤n<N , we easily get that y 7→ ‖x− y‖H0

is measurable
from (H0,Bw(H0)) to (R+,B(R+)) for all x ∈ H0. Hence B(H0) ⊂ Bw(H0),
which concludes the proof.

Lemma 4.5.8. Let H0 be a separable Hilbert space. If P ∈ S+1 (H0) then the
mapping x 7→ 〈Px, x〉H0

is continuous on the unit closed ball B̄0,1 for the weak
topology.

Proof. Let us consider the eigendecomposition P = ∑0≤n<N σnφn ⊗ φn. Then

for all x ∈ B̄0,1, 〈Px, x〉H0
= ∑

0≤n<N
σn

∣∣∣〈x, φn〉H0

∣∣∣2 and the result follows by

dominated convergence since

sup
x∈B̄0,1

∣∣∣〈x, φn〉H0

∣∣∣2 ≤ 1 and ∑
0≤n<N

σn < +∞ .
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Theorem 4.5.9. Let H0 be a separable Hilbert space and (Λ,A) be a measurable
space. Let Φ ∈ Fs (Λ,A,H0) such that for all λ ∈ Λ, Φ(λ) ∈ S+1 (H0). Then the
pairs {(σn, φn) : 0 ≤ n < N} in (4.5.6) can be taken so that for all 0 ≤ n < N,
σn is measurable from (Λ,A) to (R+,B(R+)) and φn is measurable from (Λ,A)
to (H0,B(H0)).

Proof. The construction of the eigenvalues and eigenvectors is done itera-
tively using the Measurable Maximum Theorem Aliprantis and Border (2006,
Theorem 18.19) on Λ × B̄0,1, where B̄0,1 denotes the closed unit ball of H0,
which is compact metrizable for the weak topology by Lemma 4.5.6. As in
Aliprantis and Border (2006, Definition 17.1), a correspondence ϕ from Λ to
B̄0,1, denoted by ϕ : Λ � B̄0,1, is a mapping which assigns each element of
Λ to a subset of B̄0,1.
Construction of (σ1, φ1) : Define

f :
Λ× B̄0,1 → R+

(λ, x) 7→ 〈Φ(λ)x, x〉H0

.

Then, for all x, λ 7→ f (λ, x) is measurable and, for all λ ∈ Λ, x 7→ f (λ, x)
is continuous in x for the weak topology by Lemma 4.5.8. Moreover the
correspondence

ϕ :
Λ� B̄0,1

λ 7→ B̄0,1

is weakly measurable (in the sense of Aliprantis and Border (2006, Defini-
tion 18.1)) with nonempty compact values (for the weak topology). There-
fore the Measurable Maximum Theorem (see Aliprantis and Border (2006,
Theorem 18.19)) gives that m : λ 7→ maxx∈B̄0,1

f (λ, x) is measurable and
that there exists a function g : Λ → B̄0,1 such that for all λ ∈ Λ, g(λ) ∈
argmaxx∈B̄0,1

f (λ, x) and g is measurable from Λ to B̄0,1 endowed with the
Borel σ-field generated by the weak topology. This implies the usual mea-
surability by Lemma 4.5.7. We set σ0 = m and φ0 = g. Then, from the
definitions of f , m and g, that σ0(λ) is the largest eigenvalue of Φ(λ) and
that φ0(λ) is an eigenvector with eigenvalue σ0(λ).
Construction of (σn, φn) : Assume we have constructed n measurable func-
tions σ0, · · · , σn−1 and φ0, · · · , φn−1 satisfying for all λ ∈ Λ, σ0(λ) ≥ · · · ≥
σn−1(λ), and (φ0(λ), · · · , φn−1(λ)) is an orthonormal family where for all
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0 ≤ i ≤ n− 1, φi(λ) ∈ ker(Φ(λ)− σi(λ)IdH0). Then, as in the initialization
step, the function

f :
Λ× B̄0,1 → R+

(λ, x) 7→ 〈Φ(λ)x, x〉H0
−∑n−1

i=1 σi(λ)
∣∣∣〈x, φi(λ)〉H0

∣∣∣2 .

is measurable in λ and continuous in x (for the weak topology) by Lemma 4.5.8.
Moreover, using Aliprantis and Border (2006, Corollary 18.8 and Lemma 18.2))

and the fact that ϕ(λ) =

{
x ∈ B̄0,1 : ∑n−1

i=0

∣∣∣〈x, φi(λ)〉H0

∣∣∣2 = 0
}

and has

nonempty compact values (because ϕ(λ) is a closed subset of B̄0,1 for the
weak topology hence is compact for this topology), we get that the corre-
spondence

ϕ :
Λ � B̄0,1

λ 7→ B̄0,1 ∩ Span (φ0(λ), · · · , φn−1(λ))
⊥

is weakly measurable (in the sense of Aliprantis and Border (2006, Defini-
tion 18.1)). Hence, as previously, the Measurable Maximum Theorem and
Lemma 4.5.7 give that m : λ 7→ maxx∈ϕ(λ) f (λ, x) is measurable and that
there exists a measurable function g : Λ → H0 such that for all λ ∈ Λ,
g(λ) ∈ argmaxx∈ϕ(λ) f (λ, x). We set σn = m and φn = g. Then, from the
definitions of f , m and g, we get that σn(λ) ≤ σn−1(λ) is the (n + 1)-th
largest eigenvalue of Φ(λ) (because it is the largest eigenvalue of Φ(λ) −
∑n−1

i=0 σi(λ)φi(λ) ⊗ φi(λ)) and that φn(λ) is an eigenvector with eigenvalue
σn(λ) and is orthogonal to φ0, · · · , φn−1.

With these results, the proof of Proposition 4.5.5 is easily derived.

Proof of Proposition 4.5.5. We provide a proof in the case where N = ∞
as the finite dimensional case is easier. Let f ∈ L1(Λ,A,S+1 (H0), µ) be the
density of ν with respect to µ. We assume without loss of generality that
f (λ) ∈ S1(H0)+ for all λ ∈ Ĝ (rather than for µ-almost every λ). Using
Theorem 4.5.9 we can write

f (λ) =
+∞

∑
n=0

σn(λ)φn(λ)⊗ φn(λ) , (4.5.7)

where (σn(λ))n∈N is non-decreasing and converges to zero and (φn(λ))n∈N

satisfies (ii). Moreover, for all λ ∈ Λ, ∑n σn(λ) = ‖ f (λ)‖1 < ∞, and
we get Assertions (i) and (iii). In remains to prove Assertion (iv). Since
L1(Λ,A,S1(H0), µ) is complete, it suffices to show that

∫ ∥∥∑
q
n=p σnφn ⊗ φn

∥∥
1 dµ
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converges to 0 as p, q → +∞ which holds by dominated convergence be-
cause, for all λ ∈ Λ,

∥∥∑
q
n=p σn(λ)φn(λ)⊗ φn(λ)

∥∥
1 = ∑

q
n=p σn(λ) which con-

verges to 0 as p, q→ +∞ and is upper-bounded by ‖ f (λ)‖1.



5

S P E C T R A L T H E O RY F O R W E A K LY S TAT I O N A RY
S T O C H A S T I C P R O C E S S E S VA L U E D I N A S E PA R A B L E
H I L B E RT S PA C E

In this chapter, we use the tools developed in Chapter 4 to build the spec-
tral theory of weakly stationary stochastic processes valued in a separable
Hilbert using the approach of Kakihara, 1997; Kallianpur and Mandrekar,
1971; Mandrekar and Salehi, 1970. In particular, we illustrate how Step 1)
and Step 3) are related to Theorem 4.4.1 and Theorem 4.4.2 and how the
Cramér representation can be viewed as an integral with respect to a ran-
dom countably additive Gramian-orthogonally scattered measure. Such integrals
are introduced in Section 5.1 which paves the way for describing the mod-
ular spectral domain. Section 5.2 contains the main results: 1) we offer a
synthesis of the results of Kakihara, 1997; Kallianpur and Mandrekar, 1971;
Mandrekar and Salehi, 1970 providing a natural and complete spectral the-
ory for weakly stationary processes valued in a separable Hilbert space; 2)
in light of these results, we re-examine the differences with the approaches
proposed in Delft and Eichler, 2020; Tavakoli, 2014. The main proofs are
postponed in Section 5.3.

5.1 Stochastic integral with respect to a random count-
ably additive Gramian-orthogonally scattered mea-
sure

5.1.1 Countably additive Gramian-orthogonally scattered measures

In this section, we introduce the notion of random countably additive Gramian-
orthogonally scattered (c.a.g.o.s.) measures which will have an important
role in the construction provided by Kakihara, 1997; Kallianpur and Man-
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drekar, 1971; Mandrekar and Salehi, 1970. The terminologies c.a.o.s. and
c.a.g.o.s. are borrowed from Definition 3 in Kakihara (1997, Section 3.1)

Definition 5.1.1 ((Random) c.a.o.s. measures). Let H be a Hilbert space and
(Λ,A) be a measurable space. We say that W : A → H is a countably addi-
tive orthogonally scattered (c.a.o.s.) measure on (Λ,A,H) if it is an H-valued
measure on (Λ,A) such that for all A, B ∈ A,

A ∩ B = ∅⇒ 〈W(A), W(B)〉H = 0 .

In this case, the mapping

νW : A 7→ 〈W(A), W(A)〉H

is a finite non-negative measure on (Λ,A) called the intensity measure of W and
we have that, for all A, B ∈ A,

νW(A ∩ B) = 〈W(A), W(B)〉H . (5.1.1)

We say that W is regular if νW is regular. When H is the space M(Ω,F ,H0, P)

of Example 4.3.2, we say that W is an H0-valued random c.a.o.s. measure on
(Λ,A, Ω,F , P).

The generalization to a normal Hilbert module is straightforward.

Definition 5.1.2 ((Random) c.a.g.o.s. measures). Let H0 be a separable Hilbert
space, H be a normal Hilbert Lb(H0)-module and (Λ,A) be a measurable space.
We say that W : A → H is a countably additive Gramian-orthogonally scat-
tered (c.a.g.o.s.) measure on (Λ,A,H) if it is an H-valued measure on (Λ,A)
such that for all A, B ∈ A,

A ∩ B = ∅⇒ [W(A), W(B)]H = 0 .

In this case, the mapping

νW : A 7→ [W(A), W(A)]H

is a trace-class p.o.v.m. on (Λ,A,H0) called the intensity operator measure of W
and we have that, for all A, B ∈ A,

νW(A ∩ B) = [W(A), W(B)]H . (5.1.2)

We say that W is regular if ‖νW‖1 is regular. When H = M(Ω,F ,H0, P) of
Example 4.3.2, we say that W is an H0-valued random c.a.g.o.s. measure on
(Λ,A, Ω,F , P).
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The following remark will be useful.

Remark 5.1.1. Recall that any H-valued measure W is σ-additive in the sense that
for any finite or countable collection (Aj)j∈J ∈ ΛJ of pairwise disjoint sets we have

W

⋃
j∈J

Aj

 = ∑
j∈J

W(Aj) ,

where, in the case where J is countably infinite, the infinite sum converges in H in-
conditionally. When W is a c.a.o.s., the summands are moreover orthogonal. When
it is a c.a.g.o.s., they are Gramian-orthogonal.

It is easy to show that a c.a.o.s. measure W as in Definition 5.1.1 can be
equivalently seen as the restriction of an isometric operator I from L2(Λ,A, νW)

onto H by setting
W(A) = I(1A) , A ∈ Λ .

This simply follows by interpreting the left-hand side of (5.1.1) as the scalar
product between 1A and 1B in L2(Λ,A, νW) so that I above can be defined
as the unique isometric extension from L2(Λ,A, νW) to H of the isometric
mapping defined by 1A 7→ W(A) for A ∈ Λ. This observation gives a rig-
orous meaning to the integral in the Cramér representation (ii.2) where X̂ is
c.a.o.s. (see Holmes (1979, Section 2)). Moreover, from this isometric map-
ping, we get the isomorphic relation between the time domain and the spec-
tral domain. Similarly, if W is a c.a.g.o.s. measure as in Definition 5.1.2, the
mapping defined by 1AP 7→ PW(A) for A ∈ Λ and P ∈ Lb(H0) is Gramian-
isometric from the normal pre-Hilbert module (L2(Λ,A,Lb(H0), νW), [·, ·]ν)
defined in Example 4.5.2 onto H. Using Proposition 4.3.1, we get a Gramian-
isometric extension on the whole space. However, to use the second part of
Proposition 4.3.1, i.e. Relation (4.3.2), and therefore characterize the isomor-
phic relation between the modular time domain and the modular spectral
domain, we would need completeness of L2(Λ,A,Lb(H0), νW) for the norm
‖·‖ν. In the case where H0 has finite dimension, this completeness is proved
in Masani (1966, Theorem 6.3) (see also Kuroda (1967, Lemma 3.2)) where
the author derives a Cramér representation of the type (ii.2) for a multivari-
ate time series (Xt)t∈Z and a c.a.g.o.s. measure X̂. In the infinite dimensional
case, L2(Λ,A,Lb(H0), νW) is not necessarily complete for the norm ‖·‖ν. A
trivial counterexample is given in Kuroda (1967, Remark 3.1) and we will
provide a necessary and sufficient condition in Theorem 5.1.5. Similarly to
Tavakoli (2014, Section 2.5), Kuroda proposes to work with the completion of
L2(Λ,A,Lb(H0), νW) under the norm ‖·‖ν but highlights the inconvenience
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of this solution because, in this case, some elements of the completed space
may not have any representative function. The approach of Mandrekar and
Salehi, 1970 solved this issue by exhibiting the smallest normal Hilbert mod-
ule containing the space L2(Λ,A,Lb(H0), νW). This space, which we will
denote by L2(Λ,A,O(H0,G0), ν) and define for a trace-class p.o.v.m. ν, will
be introduced in Section 5.1.2. Before that, let us note that, in the case of
random c.a.g.o.s. measure W, by definition of H = M(Ω,F ,H0, P) in Ex-
ample 4.3.2, the identity (5.1.2) shows that the covariance structure of the
centered process (W(A))A∈A is entirely determined by νW . The Gaussian
case is interesting as it provides a way to build W from its intensity measure.
In particular, the following result will be useful.

Theorem 5.1.1. Let H0 be a separable Hilbert space and (Λ,A) be a measurable
space. Let ν be a trace-class p.o.v.m. on (Λ,A,H0). Then there exist a probability
space (Ω,F , P) and an H0-valued random c.a.g.o.s. W on (Λ,A, Ω,F , P) with
intensity operator measure ν such that the process (〈W(A), x〉)A∈A,x∈H0 is a (com-
plex) Gaussian process.

Proof. Define γ : (H0 ×A)2 → C by of

γ((x, A); (y, B)) = xHν(A ∩ B)y =
[

xH1A, yH1B

]
ν

,

where we used the Gramian (4.5.3) of Example 4.5.1 with G0 = C. Then it
is easy to see γ is hermitian non-negative definite in the sense that for all
n ≥ 1, x1, . . . , xn ∈ H0, A1, . . . , An ∈ A and a1, . . . , an ∈ C,

n

∑
i,j=1

aiajγ((xi, Ai); (aj, Aj)) ≥ 0 .

Let (Zx,A)(x,A)∈H0×A be the centered circularly-symmetric Gaussian process
complex with covariance γ. Let (φn)0≤n<N be a Hilbert basis of H0, with
N = dimH0 ∈ {1, 2, . . . , ∞}. It is straightforward to show that for all A ∈ A,

W(A) := ∑
0≤n<N

Zφn,A φn

is well defined in H = M(Ω,F ,H0, P) and that the so defined W is a
random c.a.g.o.s. with intensity operator measure ν.

5.1.2 The space L2(Λ,A,O(H0,G0), ν)

As discussed in the previous section, the role of c.a.o.s. and c.a.g.o.s. mea-
sures in the spectral theory of weakly stationary processes relies on their
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characterization by unitary or Gramian-unitary operators between the (mod-
ular) time domain and the (modular) spectral domain. This has been entirely
studied in the case of univariate and multivariate time series, see Holmes,
1979 and Masani, 1966, respectively, and the references therein. For time
series valued in a general separable Hilbert space, defining the modular
spectral domain requires to exhibit a suitable completion of the normal
pre-Hilbert module L2(Λ,A,Lb(H0,G0), ν) of Example 4.5.2 where ν is a
trace-class p.o.v.m. . In this section, we define such a space of operator-
valued functions which are square-integrable with respect to p.o.v.m. ν. This
space was introduced in Mandrekar and Salehi, 1970 and includes the space
L2(Λ,A,Lb(H0,G0), ν) but is, in general, larger in the case where H0 has
infinite dimension. Since this space involves functions valued in O(H0,G0)

which is not a Banach space, we need to introduce a suitable notion of mea-
surability for such functions. The following definition is slightly adapted
from Mandrekar and Salehi, 1970, Kakihara (1997, Section 3.4).

Definition 5.1.3 (O-measurability). Let (Λ,A) be a measurable space and H,G
be two Hilbert spaces. Then a function Φ : Λ → O(H,G) is said to be O-
measurable if it satisfies the two following conditions.

(i) For all x ∈ H, {λ ∈ Λ : x ∈ D(Φ(λ))} ∈ A.

(ii) There exist a sequence (Φn)n∈N valued in Fs (Λ,A,H,G) such that for all
λ ∈ Λ and x ∈ D(Φ(λ)), Φn(λ)x converges to Φ(λ)x in G as n→ ∞.

We denote by FO (Λ,A,H,G) the space of such functions Φ.

Then we introduce the following definition.

Definition 5.1.4. Let (Λ,A) be a measurable space, H0,G0, I0 be three separable
Hilbert spaces and ν a trace-class p.o.v.m. on (Λ,A,H0) with density f with respect
to its finite variation ‖ν‖1, as defined in Theorem 4.5.2. Then, we say that the
pair (Φ, Ψ) ∈ FO (Λ,A,H0,G0)×FO (Λ,A,H0, I0) is ν-integrable if the three
following assertions hold.

(i) We have Im( f 1/2) ⊂ D(Φ) and Im( f 1/2) ⊂ D(Ψ), ‖ν‖1-a.e.

(ii) We have Φ f 1/2 ∈ S2(H0,G0) and Ψ f 1/2 ∈ S2(H0, I0), ‖ν‖1-a.e.

(iii) We have (Φ f 1/2)(Ψ f 1/2)H ∈ L1(Λ,A,S1(I0,G0), ‖ν‖1).

In the case, we define∫
ΦdνΨH :=

∫
(Φ f 1/2)(Ψ f 1/2)H d‖ν‖1 ∈ S1(I0,G0) . (5.1.3)
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Moreover, we say that Φ ∈ FO (Λ,A,H0,G0) is square ν-integrable if (Φ, Φ)

is ν-integrable and we denote by L 2(Λ,A,O(H0,G0), ν) the space of square ν-
integrable functions in FO (Λ,A,H0,G0).

Remark 5.1.2. Let us briefly comment this definition.

1) In (5.1.3), using the Radon-Nikodym property of the trace-class p.o.v.m. ν,
we have thus defined an integral of operator-valued functions with respect
to an operator valued measure as a simple Bochner integral in S1(I0,G0).
By Corollary 4.5.3 for a measurable scalar function φ : Λ → C we can
interpret the integral

∫
φ dν in which ν is seen as an S1(H0)-valued measure

as in Section 4.1 as the same integral as in (5.1.3) with Φ : λ 7→ φ(λ)IdH0

and Ψ ≡ IdH0 . Hence the integral (5.1.3) of Definition 5.1.4 can be seen
as an extension of the integral of scalar-valued functions to operator-valued
functions, with respect to a trace-class p.o.v.m.

2) It is easy to show that for all Φ, Ψ ∈ L 2(Λ,A,O(H0,G0), ν), the pair
(Φ, Ψ) is ν-integrable and thus

∫
ΦdνΨH is well defined as above.

3) We have the following inclusions

L2(Λ,A,Lb(H0,G0), ‖ν‖1) ⊂ L 2(Λ,A,Lb(H0,G0), ν)

⊂ L 2(Λ,A,O(H0,G0), ν) , (5.1.4)

and the Gramian [Φ, Ψ]ν defined on the smaller space as in (4.5.3) coincides
with

∫
ΦdνΨH defined in (5.1.3). However the equality [Φ, Ψ]ν =

∫
Φ f ΨH

is only valid when Φ, Ψ belong in one of the first two spaces of (5.1.4) where
this integral is well defined.

The following theorem, whose proof can be found in Section 5.3.1, shows
that the same Gramian can be used over the larger space L 2(Λ,A,O(H0,G0), ν)

and that it makes this space a normal Hilbert Lb(G0)-module when quo-
tiented by the set with zero norm.

Theorem 5.1.2. Let H0,G0 be separable Hilbert spaces, (Λ,A) a measurable space,
ν a trace-class p.o.v.m. on (Λ,A,H0) and f = dν

d‖ν‖1
. Then L 2(Λ,A,O(H0,G0), ν)

is an Lb(G0)-module with module action

P •Φ : λ 7→ PΦ(λ), P ∈ Lb(G0), Φ ∈ L 2(Λ,A,O(H0,G0), ν) .

Moreover, we can endow L 2(Λ,A,O(H0,G0), ν) with the pseudo-Gramian

[Φ, Ψ]ν :=
∫

ΦdνΨH Φ, Ψ ∈ L 2(Λ,A,O(H0,G0), ν) . (5.1.5)
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Then, for all Φ ∈ L 2(Λ,A,O(H0,G0), ν), we have

‖Φ‖ν = ‖[Φ, Φ]ν‖
1/2
1 = 0⇐⇒ Φ f 1/2 = 0 ‖ν‖1-a.e.

Let us denote the class of such Φ’s by {‖·‖ν = 0} and the quotient space by

L2(Λ,A,O(H0,G0), ν) := L 2(Λ,A,O(H0,G0), ν)
/
{‖·‖ν = 0} .

Then
(
L2(Λ,A,O(H0,G0), ν), [·, ·]ν

)
is a normal Hilbert Lb(G0)-module.

Clearly, the normal Hilbert Lb(G0)-module
(
L2(Λ,A,O(H0,G0), ν), [·, ·]ν

)
contains the pre-Hilbert one of Example 4.5.1. The next result, whose proof
can be found in Section 5.3.1, says that it is the smallest one.

Theorem 5.1.3. Let H0,G0 be two separable Hilbert spaces, (Λ,A) a measurable
space, and ν a trace-class p.o.v.m. on (Λ,A,H0). Then L2(Λ,A,Lb(H0,G0), ‖ν‖1)

is dense in L2(Λ,A,O(H0,G0), ν) and the following assertions hold.

(i) The space Span (1A P : A ∈ A, P ∈ Lb(H0,G0)) of simple Lb(H0,G0)-valued
functions is dense in L2(Λ,A,O(H0,G0), ν).

(ii) For any subset E ⊂ L2(Λ,A, ‖ν‖1) which is linearly dense in L2(Λ,A, ‖ν‖1),
Span (h P : h ∈ E, P ∈ Lb(H0,G0)) is dense in L2(Λ,A,O(H0,G0), ν).

In some of the definitions above, it can be useful to replace ‖ν‖1 can be
by any σ-finite non-negative measure µ dominating ‖ν‖1 and the following
characterization hold (see Section 5.3.1 for a proof).

Proposition 5.1.4. Let (Λ,A) be a measurable space, H0,G0, I0 be three separable
Hilbert spaces and ν a trace-class p.o.v.m. on (Λ,A,H0). Let µ be a σ-finite non-
negative measure dominating ‖ν‖1 and set g = dν

dµ , as defined in Theorem 4.5.2.
Then the following assertions hold.

(a) For all (Φ, Ψ) ∈ FO (Λ,A,H0,G0)×FO (Λ,A,H0, I0), the pair (Φ, Ψ) is
ν-integrable if and only if the three following assertions hold.

(i’) We have Im(g1/2) ⊂ D(Φ) and Im(g1/2) ⊂ D(Ψ), µ-a.e.

(ii’) We have Φg1/2 ∈ S2(H0,G0) and Ψg1/2 ∈ S2(H0, I0), µ-a.e.

(iii’) (Φg1/2)(Ψg1/2)H ∈ L1(Λ,A,S1(G0, I0), µ).

In this case we have∫
ΦdνΨH =

∫
(Φg1/2)(Ψg1/2)H dµ . (5.1.6)
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(b) For all Φ ∈ FO (Λ,A,H0,G0), we have Φ ∈ L 2(Λ,A,O(H0,G0), ν) if
and only if Im(g1/2) ⊂ D(Φ) µ-a.e.

Φg1/2 ∈ L2(Λ,A,S2(H0,G0), µ)

(c) If Φ, Ψ ∈ L 2(Λ,A,O(H0,G0), ν), then the pair (Φ, Ψ) is ν-integrable and∫
ΦdνΨH =

[
Φg1/2, Ψg1/2

]
L2(Λ,A,S2(H0,G0),µ)

, (5.1.7)

where the latter Gramian comes from Example 4.3.3. In particular, this means
that the mapping Φ 7→ Φg1/2 is Gramian-isometric from L2(Λ,A,O(H0,G0), ν)

to L2(Λ,A,S2(H0,G0), µ).

Finally, we conclude this section by investigating the equality cases for the
two inclusions in (5.1.4). These questions are of interest for various reasons.
First, we consider the second inclusion involving L 2(Λ,A,Lb(H0,G0), ν)

and L 2(Λ,A,O(H0,G0), ν). Because endowing these two spaces with the
same seminorm ‖·‖ν makes the quotient normed space L2(Λ,A,O(H0,G0), ν)

the completion of the quotient normed space L2(Λ,A,Lb(H0,G0), ν), the
equality case means that L2(Λ,A,Lb(H0,G0), ν) is complete. This is char-
acterized, in Theorem 5.1.5, by having that dν

d‖ν‖1
has finite rank ‖ν‖1-a.e. As

far as we know, this is a new result. Its proof is given in Section 5.3.1.

Theorem 5.1.5. Let H0,G0 be separable Hilbert spaces, (Λ,A) a measurable space
and ν a trace-class p.o.v.m. on (Λ,A,H0) with density f with respect to its finite
variation ‖ν‖1. Then the following assertions are equivalent.

(i) We have the equality L2(Λ,A,Lb(H0,G0), ν) = L2(Λ,A,O(H0,G0), ν).

(ii) The space L2(Λ,A,Lb(H0,G0), ν) is complete for the norm ‖·‖ν.

(iii) We have rank( f ) < +∞, ‖ν‖1-a.e.

Moreover, if any of the above assertions holds, then rank
(

dν
dµ

)
is finite µ-a.e. for all

σ-finite non-negative measure µ which dominates ‖ν‖1.

For sake of completeness, we also discuss the equality case for the first
inclusion in (5.1.4). First note that, by (4.5.4), the inclusion defines a contin-
uous embedding

L2(Λ,A,Lb(H0,G0), ‖ν‖1) ↪→ L2(Λ,A,Lb(H0,G0), ν),

where L2(Λ,A,Lb(H0,G0), ‖ν‖1) is endowed with its usual L2 norm and
L2(Λ,A,Lb(H0,G0), ν) with ‖·‖ν. The comparison of the norms in (4.5.4)



5.1 stochastic integral 129

relies on the point-wise inequality Tr
(
Φ f ΦH

)
≤ ‖Φ‖2

Lb(H0,G0)
which follows

from the fact that f ∈ S+1 (H0) with unit trace. Of course, if there exists a
constant C > 0 such that f � C IdH0 ‖ν‖1-a.e., then the opposite inequality
holds up to a positive multiplicative constant and the equality case with the
corresponding embedding is obtained. Note that this can only happen if H0

has finite dimension since otherwise IdH0 is not trace-class. It turns out that
this case is the only equality case for the first inclusion in (5.1.4) as stated in
the following result.

Theorem 5.1.6. Let H0,G0 be separable Hilbert spaces, (Λ,A) a measurable space
and ν a trace-class p.o.v.m. on (Λ,A,H0) with density f with respect to its finite
variation ‖ν‖1. Consider the following assertions.

(i) There exists a constant C > 0 such that f � C IdH0 , ‖ν‖1-a.e.

(ii) There exists a constant C > 0 such that, for all Φ ∈ L 2(Λ,A,Lb(H0,G0), ν)

‖Φ‖2
ν ≤ ‖Φ‖

2
L2(Λ,A,Lb(H0,G0),‖ν‖1)

≤ C−1 ‖Φ‖2
ν .

(iii) We have the equality L2(Λ,A,Lb(H0,G0), ‖ν‖1) = L 2(Λ,A,Lb(H0,G0), ν).

Then, we have (i) ⇔ (ii) ⇒ (iii). If, in addition, the measure space (Λ,A, ‖ν‖1) is
such that

∃(An)n∈N ∈ AN with ∀n 6= m , An ∩ Am = 0 and ∀n ∈N µ(An) > 0
(5.1.8)

then we have (iii)⇒ (ii).
In particular, if the measure space (Λ,A, ‖ν‖1) satisfies (5.1.8) and H0 has infi-

nite dimension, then the first inclusion of (5.1.4) is strict.

5.1.3 Integration with respect to a random c.a.g.o.s. measure

Having all the necessary notions for a clear definition of the modular spectral
domain, we now define the mapping which makes it Gramian-isometrically
isomorphic to the modular time domain. This definition is often presented
as a stochastic integral because it linearly and continuously maps a function
to a random variable.

Let H0 and G0 be two separable Hilbert spaces, (Λ,A) be a measurable
space, and let ν be a trace-class p.o.v.m. defined on (Λ,A,H0). Given an
H0-valued random c.a.g.o.s. measure W, we further set

HW,G0 := Span
G
(PW(A) : P ∈ Lb(H0,G0), A ∈ A) , (5.1.9)
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which is a submodule of G := M(Ω,F ,G0, P). As in Proposition 13 in
Kakihara (1997, Section 3.4) and Mandrekar and Salehi (1970, Theorem 6.9),
we now define the integral of an H0 → G0-operator valued function with
respect to a random c.a.g.o.s. measure W as a Gramian-isometry from the
normal Hilbert Lb(G0)-module L2(Λ,A,O(H0,G0), νW) to HW,G0 . A proof
can be found in Section 5.3.1.

Theorem 5.1.7. Let (Λ,A) be a measurable space and (Ω,F , P) a probability
space. Let H0 and G0 be two separable Hilbert spaces. Let W be an H0-valued
random c.a.g.o.s. measure on (Λ,A, Ω,F , P) with intensity operator measure νW .
Let HW,G0 be defined as in (5.1.9). Then there exists a unique Gramian-isometry

IG0
W : L2(Λ,A,O(H0,G0), νW)→M(Ω,F ,G0, P)

such that, for all A ∈ A and P ∈ Lb(H0,G0),

IG0
W (1AP) = PW(A) P-a.s.

Moreover, L2(Λ,A,O(H0,G0), νW) and HW,G0 are Gramian-isometrically isomor-
phic.

We can now define the integral of an operator valued function with respect
to W.

Definition 5.1.5 (Integral with respect to a random c.a.g.o.s. measure). Under
the assumptions of Theorem 5.1.7, we use an integral sign to denote IG0

W (Φ) for
Φ ∈ L2(Λ,A,O(H0,G0), νW). Namely, we write∫

Φ dW =
∫

Φ(λ)W(dλ) := IG0
W (Φ) . (5.1.10)

The following remark will be useful.

Remark 5.1.3. In the setting of Definition 5.1.5, take Φ = φ IdH0 with φ : Λ→ C.
Then, we have Φ ∈ L2(Λ,A,O(H0), νW) if and only if φ ∈ L2(Λ,A, ‖νW‖1). We
will omit IdH0 in the notation of the integral, writing

∫
φ dW for

∫
φIdH0 dW.

We conclude this section with a kind of Fubini theorem for interchanging
a Bochner integral with a c.a.g.o.s. integral.

Proposition 5.1.8. Let (Λ,A) be a measurable space and H0, G0 two separable
Hilbert spaces. Let W be anH0-valued random c.a.g.o.s. measure on (Λ,A, Ω,F , P)

with intensity operator measure νW . Let µ be a non-negative measure on a measur-
able space (Λ′,A′). Suppose that Φ is measurable from Λ×Λ′ to Lb(H0,G0) and
satisfies ∫ (∫ ∥∥Φ(λ, λ′)

∥∥
Lb(H0,G0)

µ(dλ′)

)2

‖νW‖1(dλ) < ∞ , (5.1.11)
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∫ (∫ ∥∥Φ(λ, λ′)
∥∥2
Lb(H0,G0)

‖νW‖1(dλ)

)1/2

µ(dλ′) < ∞ . (5.1.12)

Then we have∫ (∫
Φ(λ, λ′) µ(dλ′)

)
W(dλ) =

∫ (∫
Φ(λ, λ′) W(dλ)

)
µ(dλ′) ,

(5.1.13)
where integrals with respect to W are as in Definition 5.1.5, in the left-hand side the
innermost integral is understood as a Bochner integral on L2(Λ′,A′,Lb(H0,G0), µ)

and in the right-hand side, the outermost integral is understood as a Bochner inte-
gral on L2(Λ′,A′,M(Ω,F ,G0, P), µ).

Proof. Conditions (5.1.11) and (5.1.12) ensure that, for ‖νW‖1-a.e. λ ∈ Λ
Φ(λ, ·) ∈ L1(Λ′,A′,Lb(H0,G0), µ) and that, for µ-a.e. λ′ ∈ Λ′, Φ(·, λ′) ∈
L2(Λ,A,Lb(H0,G0), ‖ν‖1), thus showing that the innermost integrals in both
sides of (5.1.13) are well defined for adequate sets of λ and λ′, respectively.

Let E1 and E2 denote the sets of functions Φ measurable from Λ× Λ′ to
Lb(H0,G0) and satisfying (5.1.11) and (5.1.12), respectively. We denote by
‖Φ‖E1

the square root of the left-hand side of (5.1.11) and by ‖Φ‖E2
the left-

hand side of (5.1.12), which make E1 and E2 Banach spaces. Then, for all
Φ ∈ E := E1 ∩ E2, concerning the left-hand side of (5.1.13), we have∥∥∥∥∫ Φ(·, λ′) µ(dλ′)

∥∥∥∥2

νW

≤
∫ ∥∥∥∥∫ Φ(·, λ′) µ(dλ′)

∥∥∥∥2

Lb(H0,G0)

d‖νW‖1 ≤ ‖Φ‖
2
E1

,

as for the right-hand side, we have, setting H :=M(Ω,F ,G0, P),∫ ∥∥∥∥∫ Φ(λ, ·) W(dλ)

∥∥∥∥
H

dµ =
∫ ∥∥Φ(·, λ′)

∥∥
νW

µ(dλ′) ≤ ‖Φ‖E2
,

These two inequalities show that both sides of (5.1.13) seen as functions of Φ
are linear continuous from E endowed with the norm ‖·‖E = ‖·‖E1

+ ‖·‖E2

to M(Ω,F ,G0, P). Since they coincide for Φ(λ, λ′) = 1A(λ)1B(λ
′)P with

A ∈ A, B ∈ A′ and P ∈ Lb(H0,G0), this concludes the proof.

5.2 The Gramian-Cramér representation

We now have all the tools to derive a spectral theory for Hilbert valued
weakly-stationary processes following the approach of Kakihara (1997, Sec-
tion 4.2). Let (Ω,F , P) be a probability space, H0 be a separable Hilbert
space and (G,+) be a locally compact Abelian (l.c.a.) group, whose null ele-
ment is denoted by 0. Recall that Ĝ denotes the dual group of G defined in
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Section 4.2. Throughout this section we are interested in the spectral proper-
ties of a centered process valued in a separable Hilbert space and assumed
to be weakly stationary in the following sense.

Definition 5.2.1 (Hilbert valued weakly stationary processes). Let (Ω,F , P)

be a probability space, H0 be a separable Hilbert space and (G,+) be an l.c.a. group.
Then a process X := (Xt)t∈G is said to be an H0-valued weakly stationary process
if

(i) For all t ∈ G, Xt ∈ L2(Ω,F ,H0, P).

(ii) For all t ∈ G, E [Xt] = E [X0]. We say that X is centered if E [X0] = 0.

(iii) For all t, h ∈ G, Cov (Xt+h, Xt) = Cov (Xh, X0).

(iv) The autocovariance operator function ΓX : h 7→ Cov (Xh, X0) satisfies
the following continuity condition: for all P ∈ Lb(H0), h 7→ Tr(PΓX(h)) is
continuous on G.

In the case of time series, G = Z, we can of course remove Condition (iv)
in this definition. It is less trivial to show that, for any l.c.a. group G, we get
an equivalent definition if we replace (iv) by just saying that ΓX is continuous
in w.o.t. This interesting fact is explained in the following remark in a more
detailed fashion.

Remark 5.2.1. Let us comment briefly the continuity assumption (iv) from Defini-
tion 5.2.1.

1) The trace appearing in Assertion (iv) of Definition 5.2.1 is well defined for
any P ∈ Lb(H0) and any h ∈ G since the covariance operator of variables in
L2(Ω,F ,H0, P) lies in S1(H0), and the composition of a bounded operator
and a trace-class operator is trace-class. Furthermore, for any x, y ∈ H0, tak-
ing P = xyH we have Tr(PΓX(h)) = 〈ΓX(h)x, y〉H0

. Hence Condition (iv)
of Definition 5.2.1 implies the following one.

(iv’) The autocovariance operator function ΓX : h 7→ Cov (Xh, X0) is contin-
uous in w.o.t.

It is easy to find a mapping f : G → S1(H0) which is continuous in w.o.t.
but such that h 7→ Tr( f (h)) is not continuous hence does not satisfy the
continuity condition imposed on ΓX in (iv). However, it turns out that if ΓX

is the autocovariance operator function h 7→ Cov (Xh, X0) with X satisfying
Conditions (i) and (iii), then Conditions (iv) and (iv’) become equivalent. The
reason behind this surprising fact comes from Corollary 4.5.4 as it is easily
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verified that ΓX satisfies Assertion (i) of Corollary 4.5.4. In other words, we
can replace (iv) by (iv’) without altering Definition 5.2.1.

2) The previous remark is related to a fact established in Proposition 3 of Kaki-
hara (1997, Section 4.2), which states the equivalence between being scalar
stationary and being operator stationary. The latter definition is the same
as our Definition 5.2.1, and the former one amounts to replace Condition (iv)
in Definition 5.2.1 by assuming that for all x ∈ H0, xHΓx : h 7→ xHΓ(h)x
is continuous and hermitian non-negative definite. But this amounts to says
that Γ itself is continuous in the w.o.t. and hermitian non-negative definite.
Since Γ(0) ∈ S1(H0) is a consequence of Assertion (i) in Definition 5.2.1,
the equivalence between (iv) and (iv’) implies the equivalence established in
Proposition 3 of Kakihara (1997, Section 4.2).

As in the univariate case, the notion of weak stationarity is related to an
isometric property of the lag operators, but here the covariance stationar-
ity expressed in Condition (iii) translates into a Gramian-isometric property
rather than a scalar isometric property. Namely, let X := (Xt)t∈G satisfy Con-
ditions (i) and (ii) and take it centered so that each Xt belongs to the normal
Hilbert module M(Ω,F ,H0, P) as defined in Example 4.3.2. For all h ∈ G,
define the lag operator of lag h ∈ G as the mapping UX

h : Xt 7→ Xt+h defined
for all t ∈ G. Then Condition (iii) is equivalent to saying that for all h ∈ G, the
mapping UX

h is Gramian-isometric on {Xt : t ∈ G} for the Gramian struc-
ture inherited from M(Ω,F ,H0, P). Thus, if this condition holds, for any
lag h ∈ G, using Proposition 4.3.1, there exists a unique Gramian-unitary
operator extending UX

h on the modular time domain HX of X defined as the
submodule ofM(Ω,F ,H0, P) generated by the Xt’s, that is,

HX := Span
M(Ω,F ,H0,P)

(PXt : P ∈ Lb(H0), t ∈ G) ,

which is the generalization of (ii.5) to a general l.c.a. group G. An interesting
property of the lag operators is the following.

Lemma 5.2.1. Let (Ω,F , P) be a probability space, H0 be a separable Hilbert
space and (G,+) be an l.c.a. group. Let X := (Xt)t∈G be an H0-valued stochastic
process satisfying (i) and (ii) of Definition 5.2.1 with E [X0] = 0. Then X is weakly
stationary if and only if UX is a c.g.u.r of G on HX.

Proof. The proof is a consequence of the definition of (UX
h )h∈G and following

identity which holds for all t, h ∈ G,

Cov (Xt+h, Xt) =
[
UX

h Xt, Xt

]
HX

=
[
UX

t Xh, UX
t X0

]
HX

.
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In fact it is convenient to introduce a slightly more general definition of
the modular time domain.

Definition 5.2.2 (G0-valued modular time domain). Let (G,+) be an l.c.a.
group, and H0 and G0 be two separable Hilbert spaces. Let X := (Xt)t∈G be a
collection of variables in M(Ω,F ,H0, P) as defined in Example 4.3.2. The G0-
valued modular time domain of X is defined by

HX,G0 := Span
M(Ω,F ,G0,P)

(PXt : P ∈ Lb(H0,G0), t ∈ G) , (5.2.1)

which is a submodule ofM(Ω,F ,G0, P).

We now extend the (scalar) Cramér representation theorem by means of
an integral with respect to a c.a.g.o.s. measure.

Theorem 5.2.2 (Gramian-Cramér representation theorem). Let H0 be a sepa-
rable Hilbert space, (Ω,F , P) be a probability space and (G,+) be an l.c.a. group.
Let X := (Xt)t∈G be a centered weakly stationary H0-valued process as in Defini-
tion 5.2.1. Then there exists a unique regular H0-valued random c.a.g.o.s. measure
X̂ on (Ĝ,B(Ĝ), Ω,F , P) such that

Xt =
∫

χ(t) X̂(dχ) for all t ∈ G . (5.2.2)

This result is stated in Theorem 2 in Kakihara (1997, Section 4.2) without
the uniqueness, which appeared to be a new result in this general setting. We
provide a detailed proof in Section 5.3.2. In fact Theorem 2 in Kakihara (1997,
Section 4.2) contains a converse statement, which we now state separately as
a lemma with its proof.

Lemma 5.2.3. Let (G,+) be an l.c.a. group, H0 a separable Hilbert space and W
be an H0-valued random c.a.g.o.s. measure on (Ĝ,B(Ĝ), Ω,F , P) with intensity
operator measure ν. Define, for all t ∈ G,

Xt =
∫

χ(t) W(dχ) .

Then X = (Xt)t∈G is a centered H0-valued weakly stationary process with auto-
covariance operator function Γ defined by

Γ(h) =
∫

χ(h) ν(dχ) for all h ∈ G. (5.2.3)
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Proof. By Definition 5.1.5, X = (Xt)t∈G is a centered H0-valued process sat-
isfying (i) and (ii) in Definition 5.2.1. Using the Gramian-isometric property
of integration with respect to W, we get for all t, h ∈ G, Cov (Xt+h, Xt) =∫

χ(t + h)χ(t)νX(dχ) =
∫

χ(h)νX(dχ) which gives (iii) in Definition 5.2.1
with auto-covariance operator function Γ given by (5.2.3). The last point of
Definition 5.2.1 comes from Corollary 4.5.4 because ν is trace-class.

With Theorem 5.2.2 at our disposal, we can now define the Gramian-Cramér
representation and the spectral operator measure of X.

Definition 5.2.3 (Gramian-Cramér representation and spectral operator mea-
sure). Under the setting of Theorem 5.2.2, the regular c.a.g.o.s. measure X̂ is called
the (Gramian) Cramér representation of X and its intensity operator measure is
called the spectral operator measure of X. It is a regular trace-class p.o.v.m. on
(Ĝ,B(Ĝ),H0).

By Lemma 5.2.3, we see that the auto-covariance operator function and
the spectral operator measure of X are related to each other through the
identity (5.2.3). As already hinted in the introduction, using the tools in-
troduced in Section 5.1.3, we can more generally interpret the Cramér rep-
resentation of Theorem 5.2.2 as establishing a Gramian-isometric mapping
onto the modular time domain of X, starting from its modular spectral domain
which we now introduce.

Definition 5.2.4 (G0-valued spectral time domain). Let H0 and G0 be two sep-
arable Hilbert spaces and X := (Xt)t∈G be a centered weakly stationary process
valued in H0 as in Definition 5.2.1. The G0-valued modular spectral domain of
X is the normal Hilbert Lb(G0)-module defined by

ĤX,G0 := L2(Ĝ,B(Ĝ),O(H0,G0), νX) , (5.2.4)

where νX is the spectral operator measure of X introduced in Definition 5.2.3.

We can now state that the modular time and spectral domain are Gramian-
isometrically isomorphic, whose proof can be found in Section 5.3.2.

Theorem 5.2.4 (Kolmogorov isomorphism theorem). Under the setting of The-
orem 5.2.2, for any separable Hilbert space G0, the mapping IG0

X̂
: Φ 7→

∫
Φ dX̂ is a

Gramian-unitary operator from ĤX,G0 toHX,G0 and we haveHX,G0 = HX̂,G0 . Thus,
the G0-valued modular time domain HX,G0 and the G0-valued modular spectral
domain ĤX,G0 are Gramian-isometrically isomorphic.



136 spectral theory for H0 -valued weakly stationary processes

Remark 5.2.2. There are two natural classes of Gramian-unitary operators respec-
tively on the modular time and spectral domains, namely, for all h ∈ G, the lag oper-
ator UX

h : HX → HX defined as the Gramian-unitary extension of Xt 7→ Xt+h, t ∈
G, and the multiplication by MX

h : ĤX → ĤX which maps Φ to χ 7→ χ(h)Φ(χ).
Then, for all h ∈ G, UX

h and MX
h represent the same mapping expressed either in

the time domain or the spectral domain in the sense that

UX
h ◦ IH0

X̂
= IH0

X̂
◦MX

h for all h ∈ G .

Indeed, applying these definitions with (5.2.2), we immediately get that UX
h and

IH0
X̂
◦MX

h ◦
(

IH0
X̂

)−1
are Gramian-isometric and coincide on {Xt : t ∈ G}, hence,

by Proposition 4.3.1, coincide on HX.

To conclude this section, let us note that Relation (5.2.3) is special case of
Relation (4.4.2) from the general Bochner theorem where the function Γ is
the autocovariance operator function of a weakly-stationary process X. As
stated in Remark 5.2.1, the autocovariance operator function of a weakly-
stationary process satisfies (i) of Corollary 4.5.4 and therefore we can com-
plete Corollary 4.5.4 as follows.

Corollary 5.2.5. Let (G,+) be an l.c.a. group, H0 a separable Hilbert space and
Γ : G→ Lb(H0). Then the following assertions are equivalent.

(i) The function Γ is a proper auto-covariance operator function, i.e. there
exists an H0-valued weakly stationary process with autocovariance operator
function Γ.

(ii) Any of the Assertions (i)–(iv) in Corollary 4.5.4 holds.

5.3 Postponed proofs

5.3.1 Proofs of Section 5.1

It is in fact better to start with the following proof because Theorem 5.1.2
basically follows from Proposition 5.1.4.

Proof of Proposition 5.1.4. Let f = dν
d‖ν‖1

as in Theorem 4.5.2. Using that
‖ν‖1({g = 0}) =

∫
{g=0} ‖g‖1 dµ = 0 and g = f ‖g‖1 µ-a.e. by uniqueness of

the density, we get that

‖g‖1 > 0 ‖ν‖1-a.e. and g = f ‖g‖1 µ-a.e. (5.3.1)
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(and thus also ‖ν‖1-a.e. since ‖ν‖1 � µ). Assertion (a) follows easily. Let
us for instance detail the proof of the equivalence between (i’) and (i) of
Definition 5.1.4. The left-hand side of (5.3.1) gives that

‖ν‖1

({
Im( f 1/2) 6⊂ D(Φ)

})
= ‖ν‖1

({
Im( f 1/2) 6⊂ D(Φ)

}
∩ {g 6= 0}

)
,

(5.3.2)
and its right-hand side yields

µ
({

Im( f 1/2) 6⊂ D(Φ)
}
∩ {g 6= 0}

)
= µ

({
Im(g1/2) 6⊂ D(Φ)

}
∩ {g 6= 0}

)
(5.3.3)

= µ
({

Im(g1/2) 6⊂ D(Φ)
})

,

since
{

Im(g1/2) 6⊂ D(Φ)
}
∩ {g = 0} = ∅. To get (i’)⇔ (i), we note that

‖ν‖1

({
Im( f 1/2) 6⊂ D(Φ)

}
∩ {g 6= 0}

)
=
∫
{Im( f 1/2) 6⊂D(Φ)}∩{g 6=0}

‖g‖1 dµ ,

and thus the right-hand side of (5.3.2) is zero if and only if the left-hand
side of (5.3.3) is. Equivalences (ii) ⇔ (ii’) and (iii) ⇔ (iii’) and Relation
(5.1.6) are easy consequences of (5.3.1). Assertions (b) and (c) come easily
using the definition of L 2(Λ,A,O(H0,G0), ν). Measurability of Φg1/2 and
(Φg1/2)(Φg1/2) are ensured by O-measurability of Φ, simple measurability
of f and Lemma B.1.2.

We can now derive Theorem 5.1.2.

Proof of Theorem 5.1.2. All theses results are easily derived from Proposi-
tion 5.1.4 and the module nature of L2(Λ,A,S2(H0,G0), µ). The only diffi-
culty lies in showing the completeness of L2(Λ,A,O(H0,G0), ν) which we
now detailed following the proof of Theorem 11 of Kakihara (1997, Sec-
tion 3.4). Let f = dν

d‖ν‖1
and consider a Cauchy sequence (Φn)n∈N in the

space L2(Λ,A,O(H0,G0), ν). Then, by (5.1.7), the sequence (Φn f 1/2)n∈N is
a Cauchy sequence in L2(Λ,A,S2(H0,G0), ‖ν‖1). Since the latter space is
complete, there exists a function Ψ ∈ L2(Λ,A,S2(H0,G0), ‖ν‖1) such that
limn→+∞

∫ ∥∥Ψ−Φn f 1/2
∥∥2

2 d‖ν‖1 = 0. Now, consider the measurable eigen-
decomposition f = ∑n∈N σnφn ⊗ φn as provided by Theorem 4.5.9 and take
Φ = Ψ

(
f 1/2)†

, where ( f 1/2)† : λ = ( f (λ)1/2)† . From (A.1.5) and mea-See Appendix A.1.4 for
a definition of the

generalized inverse P†

of an operator
P ∈ Lb(H0)

surability of the σn’s and φn ⊗ φn’s, we get that Φ f 1/2 ∈ FO (Λ,A,H0,G0).
Then, using (A.1.4), we get Φ f 1/2 = ΨΠ(ker f 1/2)⊥ , where Π(ker f 1/2)⊥ is the



138 spectral theory for H0 -valued weakly stationary processes

orthogonal projection onto (ker f 1/2)⊥. Hence
∥∥Φ f 1/2

∥∥
2 ≤ ‖Ψ‖2 and there-

fore Φ f 1/2 ∈ L2(Λ,A,S2(H0,G0), ‖ν‖1). Hence, Φ ∈ L2(Λ,A,O(H0,G0), ν)

by Assertion (b) of Proposition 5.1.4. Finally,

‖Φ−Φn‖2
ν =

∫ ∥∥∥ΨΠ(ker f 1/2)⊥ −Φn f 1/2
∥∥∥2

2
d‖ν‖1

=
∫ ∥∥∥(Ψ−Φn f 1/2)Π(ker f 1/2)⊥

∥∥∥2

2
d‖ν‖1

≤
∫ ∥∥∥Ψ−Φn f 1/2

∥∥∥2

2
d‖ν‖1 −−−→n→∞

0 ,

thus concluding the proof.

Proof of Theorem 5.1.3. In the first two steps of the proof of Theorem 12

in Kakihara (1997, Section 3.4) (see also Mandrekar and Salehi (1970, The-
orem 4.22)), it is shown that, if Φ ∈ L2(Λ,A,O(H0,G0), ν) and ε > 0,
there exists Ψ ∈ L2(Λ,A,Lb(H0,G0), ‖ν‖1) ⊂ L2(Λ,A,O(H0,G0), ν) such
that ‖Φ−Ψ‖ν < ε. This implies that L2(Λ,A,Lb(H0,G0), ‖ν‖1) is dense in
L2(Λ,A,O(H0,G0), ν). Then Assertion (i) follows using (4.5.4) and the usual
density of simple functions. Assertion (ii) then follows by approximating,
for any A ∈ A and P ∈ Lb(H0,G0) the function 1AP by gP with g ∈ Span (E)
arbitrarily close to 1A in L2(Λ,A, ‖ν‖1).

Proof of Theorem 5.1.5. The proof of the fact that we can take µ instead of
‖ν‖1 uses the same arguments we used to prove Proposition 5.1.4 and will
be omitted. The equivalence between (i) and (ii) is obvious since the space
L2(Λ,A,Lb(H0,G0), ν) is dense in L2(Λ,A,O(H0,G0), ν) by Theorem 5.1.3.
It remains to show the equivalence (ii) ⇔ (iii). To this end, we consider the
density f : λ 7→ ∑n∈N σn(λ)φn(λ)⊗ φn(λ) of ν with respect to ‖ν‖1 obtained
by Assertion (iii) in Theorem 4.5.9, and we let A := {rank f 1/2 = +∞} =⋂

n∈N{σn > 0} ∈ A. Then Assertion (iii) is equivalent to

‖ν‖1(A) = 0 . (5.3.4)

We now prove that (ii) is equivalent to (5.3.4).

Proof of (ii) ⇒ (5.3.4). Suppose that L2(Λ,A,Lb(H0,G0), ν) is complete for
the norm ‖·‖ν and that ‖ν‖1(A) > 0. Then in order to get a contradiction,
we will follow the following two steps.

Step 1 Construct a function Ψ ∈ L2(Λ,A,S2(H0,G0), ‖ν‖1) such that

for all λ ∈ A, Ψ(λ) /∈
{

P f (λ)1/2 : P ∈ Lb(H0,G0)
}

. (5.3.5)
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Step 2 Construct a sequence (Φn)n∈N ∈ L2(Λ,A,Lb(H0,G0), ‖ν‖1)
N

such that Φn f 1/2 converges to Ψ in L2(Λ,A,S2(H0,G0), ‖ν‖1).

Let us explain why these two steps lead to a contradiction. Step 2 implies
that (Φn f 1/2)n∈N is Cauchy in L2(Λ,A,S2(H0,G0), ‖ν‖1) which means that
(Φn)n∈N is Cauchy in L2(Λ,A,Lb(H0,G0), ν). Since we assumed complete-
ness, there exists Φ ∈ L2(Λ,A,Lb(H0,G0), ν) such that ‖Φn −Φ‖ν −−−−→n→+∞

0.

Again, this means that Φn f 1/2 converges to Φ f 1/2 in L2(Λ,A,S2(H0,G0), ‖ν‖1)

and thus Φ f 1/2 = Ψ ‖ν‖1-a.e. contradicting (5.3.5).
We now provide the constructions previously described.

Step 1 Let u ∈ G0 with ‖u‖G0
= 1 and define

y : λ 7→ ∑
n∈N

√
σn(λ)φn(λ) , and Ψ : λ 7→ u⊗ y(λ) .

Then for all λ ∈ Λ, we have ‖Ψ(λ)‖2
2 = ‖y‖2

H0
= ∑n∈N σn(λ) = ‖ f (λ)‖1

and therefore Ψ ∈ L2(Λ,A,S2(H0,G0), ‖ν‖1). We now show that Ψ satisfies
(5.3.5). To this end, we suppose that (5.3.5) does not hold and show that
this leads to a contradiction. Taking λ ∈ A and P ∈ Lb(H0,G0) such that
Ψ(λ) = P f (λ)1/2, we have y(λ)⊗ u = Ψ(λ)H = f (λ)1/2PH and thus

y(λ) = (y(λ)⊗ u) (u) = f (λ)1/2PHu ∈ Im( f (λ)1/2) .

This means that there exists x ∈ H0 such that y(λ) = f (λ)1/2x and therefore,
for all n ∈N,√

σn(λ) = 〈y(λ), φn(λ)〉H0
=
〈

f (λ)1/2x, φn(λ)
〉
H0

=
〈

x, f (λ)1/2φn(λ)
〉
H0

=
√

σn(λ) 〈x, φn(λ)〉H0
,

where we have used the fact that f (λ)1/2 = ∑n∈N

√
σn(λ)φn(λ) ⊗ φn(λ).

Since λ ∈ A, we have σn(λ) > 0 and therefore 〈x, φn(λ)〉H0
= 1 for all n ∈N.

This would mean that ‖x‖H0
= +∞, which is impossible thus concluding

Step 1.
Step 2 Define

Φn : λ 7→ u⊗
n

∑
k=0

φk(λ) .

Then Φn ∈ L2(Λ,A,Lb(H0,G0), ‖ν‖1) and for all λ ∈ Λ, Φn(λ) f 1/2(λ) =

u⊗∑n
k=0

√
σn(λ)φk(λ). Hence, for all λ ∈ Λ,∥∥∥Ψ(λ)−Φn(λ) f 1/2(λ)

∥∥∥2

2
=

+∞

∑
k=n+1

σk(λ) ,
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which tends to 0 as n → +∞ and is bounded by ‖ f (λ)‖1 which is equal to
1, ‖ν‖1-a.e. Hence by Lebesgue’s dominated converge theorem∫ ∥∥∥Ψ−Φn f 1/2

∥∥∥2

2
d‖ν‖1 −−−−→n→+∞

0 ,

which concludes Step 2.

Proof of (5.3.4)⇒ (ii). The proof follows the same path than the proof of The-
orem 5.1.2. The only difference in the proof is the fact that, this time, we need
to show that, under Assumption (5.3.4), for any Ψ ∈ L2(Λ,A,S2(H0,G0), ‖ν‖1),
we have Ψ( f 1/2)† ∈ L2(Λ,A,Lb(H0,G0), ν) i.e Ψ( f 1/2)† ∈ Fs (Λ,A,H0,G0)

and Ψ( f 1/2)† f 1/2 ∈ L2(Λ,AS2(H0,G0), ‖ν‖1). The second point is a clear
consequence of the fact that Ψ( f 1/2)† f 1/2 = ΨΠ(ker f 1/2)⊥ , where Π(ker f 1/2)⊥

is the orthogonal projection onto (ker f 1/2)⊥. For the first point, it suffices to
show that we can take a representing function of ( f 1/2)† in Fs (Λ,A,H0).
To this end, assume that (5.3.4) holds, i.e. that rank f 1/2 is finite ‖ν‖1-
a.e., and take a representing function of f 1/2 with finite rank everywhere.
Then D( f 1/2)† = Im f 1/2 ⊗ (Im f 1/2)⊥ = H0 and the fact that ( f 1/2)† ∈
Fs (Λ,A,H0) is a consequence of (A.1.5) and measurability of the σn’s and
φn’s.

Proof of Theorem 5.1.6. The proof of (i) ⇔ (ii) ⇒ (iii) has already been ex-
plained before the statement of the theorem. Moreover, if H0 has infinite
dimension, then (i) does not hold. Hence, proof is completed if we show
that, under (5.1.8), if (i) does not hold neither does (iii). We now assume that
(5.1.8) holds and that (i) does not hold and let f = ∑k∈N σk φk ⊗ φk be the
measurable eigendecomposition of f as provided by Theorem 4.5.9.

First, let us assume that we can define three measurable functions g : Λ→
R+, n : λ→N and h : Λ→ R+ satisfying

σn + g > 0 and ‖ν‖1-essinf(σn + g) = 0 , (5.3.6)∫
h2 d‖ν‖1 = ∞ , (5.3.7)∫
h2 σn d‖ν‖1 < ∞ , (5.3.8)

where, here, σn : λ 7→ σn(λ)(λ). Then, defining Φ : λ 7→ h(λ)ψ0φH
n(λ), where

ψ0 ∈ G0 with unit norm, we get

‖Φ‖2
ν =

∫
h2 σn d‖ν‖1 < ∞ , and ‖Φ‖2

L2(Λ,A,Lb(H0,G0))
=
∫

h2 d‖ν‖1 = ∞ .

Hence Φ ∈ L 2(Λ,A,Lb(H0,G0), ν) \ L2(Λ,A,Lb(H0,G0), ‖ν‖1), which con-
tradicts (iii).
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To conclude the proof, we now construct such functions g : Λ → R+,
h : Λ → R+ and n : λ → N. Note that, if (5.3.6) holds, then defining
Bk = {2−k < σn + g ≤ 21−k}, for all k ≥ 1, we get that there infinitely many
k’s in N such that ‖ν‖1(Bk) > 0 and therefore the function

h2 =
∞

∑
k=1

vk1Bk ,

with vk = 2k(‖ν‖1(Bk))
−1 if ‖ν‖1(Bk) > 0 and 0 otherwise satisfies (5.3.7)

and (5.3.8). Hence, it only remains to show that we can define measurable
g : Λ→ R+ and n : λ→N such that (5.3.6) holds. To this end, let us define
ρ : λ 7→ infn∈N σn(λ) and let (Ak)k∈N be as in (5.1.8). Define

g = 1{ρ≥1} +
+∞

∑
k=1

2−k1{2−k≤ρ<21−k} ++a 1{ρ=0} ,

with
a = ∑

k∈N

2−k1Ak + 1(⋃k∈N Ak)
c .

Then, for all λ ∈ Λ, we have g(λ) > 0 and therefore the function

n : λ 7→ min {k ∈N : σk(λ) ≤ ρ(λ) + g(λ)} ,

is well defined. Moreover, from the inequalities

σn + g ≤ ρ + 2g ≤ (ρ + 2)1{ρ≥1} +
+∞

∑
k=1

22−k1{2−k≤ρ<21−k} + 2a 1{ρ=0} ,

we get that, for all m ≥ 1,

‖ν‖1
(
{σn + g ≤ 2−m}

)
≥ ‖ν‖1

(
{0 < ρ < 2−(m+1)}

)
+

+∞

∑
k=m
‖ν‖1 ({ρ = 0} ∩ Ak) . (5.3.9)

To conclude that (5.3.6) holds, it suffices to prove that one of the summands
in the right-hand side of (5.3.9) not null. We distinguish two cases: first,
if ‖ν‖1({ρ > 0}) > 0, we have ‖ν‖1

(
{0 < ρ < 2−(m+1)}

)
> 0 because

(i) does not hold. On the other hand, if ‖ν‖1({ρ > 0}) = 0, we have

∑k∈N ‖ν‖1 ({ρ = 0} ∩ Ak) = ∑k∈N ‖ν‖1 (Ak) > 0 by (5.1.8).

Proof of Theorem 5.1.7. We setH =M(Ω,F ,H0, P) and G =M(Ω,F ,G0, P).
For all A, B ∈ A and P, Q ∈ Lb(H0,G0), we have, by Theorem 5.1.2,

[1AP, 1BQ]νW
= PνW(A ∩ B)QH
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= P Cov (W(A), W(B))QH

= Cov (PW(A), QW(B))

= [PW(A), QW(B)]G .

Then Proposition 4.3.1, applied to J = A×Lb(H0,G0) with v(A,P) = 1AP and
w(A,P) = PW(A), gives that there exists a unique Gramian-isometric operator

IG0
W from Span

L2(Λ,A,O(H0,G0),νW)
(1AQP : A ∈ A, P ∈ Lb(H0,G0), Q ∈ Lb(G0))

to G such that for all A ∈ A, P ∈ Lb(H0,G0), IGW(1AP) = PW(A) and, in ad-
dition,

Im(IG0
W ) = Span

G
(QPW(A) : A ∈ A, P ∈ Lb(H0,G0), Q ∈ Lb(G0)) .

(5.3.10)
Now, note that

Lb(H0,G0) = {QP : P ∈ Lb(H0,G0), Q ∈ Lb(G0)} . (5.3.11)

This gives that

Span (1AQP : A ∈ A, P ∈ Lb(H0,G0), Q ∈ Lb(G0))

= Span (1AP : A ∈ A, P ∈ Lb(H0,G0)) . (5.3.12)

Therefore, by Theorem 5.1.3, the domain of IG0
W is equal to the whole space

L2(Λ,A,O(H0,G0), νW). Finally, (5.3.11) with (5.3.10) yields

Im(IG0
W ) = Span

G
(PW(A) : A ∈ A, P ∈ Lb(H0,G0)) = HW,G0 ,

which concludes the proof.

5.3.2 Proofs of Section 5.2

Let us start with the proof of the Gramian-Cramér representation theorem,
as a consequence of Theorem 4.4.1. The proof relies on the following lemma
which gives the link between Gramian-projection-valued measures and c.a.g.o.s.
measures.

Lemma 5.3.1. Let H0 be a separable Hilbert space, H an Lb(H0)-normal Hilbert
module and (Λ,A) a measurable space. Let ξ be a Gramian-projection valued mea-
sure on (Λ,A,H). Then for all x0 ∈ H, the mapping ξx0 : A 7→ ξ(A)x0 is a
c.a.g.o.s. measure on (Λ,A,H) which is regular if ξ is regular.

Proof. Using the fact that ξ is a p.o.v.m. on (Λ,A,H) and Berberian (1966b,
Proposition 1), it is straightforward to see that ξx0 is an H-valued measure.
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Moreover, since ξ is a Gramian-projection-valued measure, we get that for
all disjoint A, B ∈ B(G)

[ξ(A)x0, ξ(B)x0]H = [ξ(B)ξ(A)x0, x0]H = [ξ(B ∩ A)x0, x0]H = 0 ,

where the first equality is justified in Kakihara (1997, P. 23) and the second
one by Proposition 4.1.2. This proves that ξx0 is a c.a.g.o.s. measure on
(Λ,A,H). In the following, we denote by ν its intensity operator measure.
Then, for all A ∈ A, we have

‖ν(A)‖1 = Tr[ξ(A)x0, ξ(A)x0]H = 〈ξ(A)x0, x0〉H ,

where the last equality comes from the fact that ξ(A) is an orthogonal projec-
tion onH. Now, if ξ is regular, then the measure A 7→ 〈ξ(A)x0, x0〉 is regular
and so is ‖ν‖1 by the previous display. This implies that ξx0 is regular and
the proof is concluded.

Proof of Theorem 5.2.2. Suppose that X is weakly stationary as in Defini-
tion 5.2.1. Then the collection of lag operators (UX

h )h∈G of Lemma 5.2.1 is
a c.g.u.r. of G on HX and therefore Theorem 4.4.1 gives that there exists a
regular Gramian-projection-valued measure ξX on (Ĝ,B(Ĝ),HX) such that,
for all h ∈ G,

UX
h =

∫
χ(h) ξX(dχ) . (5.3.13)

Then, by Lemma 5.3.1, the mapping

X̂ :
B(Ĝ) → HX

A 7→ ξX(A)X0

(5.3.14)

is a regular c.a.g.o.s. measure on (Ĝ,B(Ĝ),HX) and we denote by νX its
intensity operator measure. Since HX is a submodule of M(Ω,F ,H0, P),
X̂ is also a regular H0-valued random c.a.g.o.s. measure on (Ω,F , P), see
Definition 5.1.2. Relation (5.2.2) then follows by applying (5.3.13) and the
fact that, for all t ∈ G, Uh

t X0 = Xt and, for all φ : Λ → C measurable and
bounded, ∫

φ dX̂ =

(∫
φ dξX

)
X0 , (5.3.15)

where the integral in the left-hand side is defined as in Definition 5.1.5
(see also Remark 5.1.3) and the integral in the right-hand side as in Defi-
nition 4.1.5, for the p.o.v.m. ξX. Relation (5.3.15) obviously holds if φ = 1A

with A ∈ A and also for φ simple by linearity. Now, for a general mea-
surable and bounded φ : Λ → C, we can find a sequence (φn)n∈N of sim-
ple functions such that |φn| ≤ |φ| for all n ∈ N and φn(λ) → φ(λ) as
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n → ∞ for all λ ∈ Λ. Then, by dominated convergence, φn converges to φ

in L2(Λ,A, ‖ν‖1) and therefore φnId converges to φId in L2(Λ,A,O(H0), ν).
Thus

∫
φn dX̂ →

∫
φ dX̂ in HX by the isometric property of the integral of

Definition 5.1.5. To get (5.3.15), it now suffices to show that, for all Y ∈ HX,〈(∫
φn dξ

)
X0, Y

〉
HX →

〈(∫
φ dξ

)
X0, Y

〉
HX . This follows from the polariza-

tion formula, Definition 4.1.5 and dominated convergence.
To show uniqueness, suppose there exists another regular H0-valued ran-

dom c.a.g.o.s. measure W on (Ĝ,B(Ĝ), Ω,F , P) satisfying the same identity
as (5.2.2) with X̂ replaced by W. Then, we get∫

χ(t) X̂(dχ) =
∫

χ(t) W(dχ) for all t ∈ G . (5.3.16)

Let η denote the Haar measure on G and denote by Cc(G) the space of
compactly supported functions from G to C. Then, by Rudin (1990, Theo-
rem 1.2.4) and Rudin (1990, Section E.8), the space

E =

{
φ̂ : χ 7→

∫
φ(t)χ(t) η(dt) : φ ∈ L1(G,B(G), η)

}
is dense in L2(Ĝ,B(Ĝ), ‖νW‖1 + ‖νX‖1). We can thus find, for any A ∈
B(Ĝ), (φn)n∈N ∈ Cc(G)N such that, defining φ̂n as above, φ̂n → 1A both
in L2(Ĝ,B(Ĝ), ‖νW‖1) and in L2(Ĝ,B(Ĝ), ‖νX‖1). Then by Proposition 5.1.8,
we have, for all n ∈N,

∫
φ̂n(χ) W(dχ) =

∫ (∫
χ(−t) W(dχ)

)
φn(t) η(dt)

=
∫ (∫

χ(−t) X̂(dχ)

)
φn(t) η(dt) =

∫
φ̂n(χ) X̂(dχ) ,

where we have used (5.3.16) in the second equality. Letting n → ∞, we get
W(A) = X̂(A), thus proving the uniqueness of X̂.

We can now prove the Kolmogorov isomorphism theorem.

Proof of Theorem 5.2.4. By Theorem 5.1.7 and (5.2.4), IG0
X̂

is a Gramian-unitary
operator from ĤX,G0 to HX̂,G0 . Thus to conclude, we only need to show
that HX,G0 = HX̂,G0 . By (5.2.2), we have for all P ∈ Lb(H0,G0) and t ∈ G,
PXt = IG0

X̂
(Pet) ∈ HX̂,G0 , where et : χ 7→ χ(t). Thus, by (5.2.1), we get that

HX,G0 ⊂ HX̂,G0 . The definition of X̂ in (5.3.14) gives the converse inclusion,
which achieves the proof.
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5.4 Comparison with recent approaches

We can now provide a more thorough comparison with the recent works
establishing a spectral theory for functional time series mentioned in the
introduction. Hence we take G = Z in this section, so that χ ∈ Ĝ can be
replaced by λ ∈ T = R/(2πZ) (or (−π, π]) with χ(h) replaced by eiλh.
The functional case usually corresponds to setting H0 = L2(0, 1) but this is
unimportant for the following discussion.

5.4.1 Isometry vs Gramian-isometry

As hinted in the introduction, the major benefit of the construction devel-
oped in the previous sections is to clarify the spectral domain of a functional
weakly-stationary process X as being defined as a set of operator-valued
functions, namely L2(Ĝ,B(Ĝ),O(H0,G0), νX). Moreover, the Gramian-Cramér
representation, as stated in Theorem 5.2.2, is a particular instance of the
Gramian-unitary operator between the spectral domain and the time do-
main, based on the integral of Definition 5.1.5. In contrast, the isomor-
phism constructed in Delft and Eichler (2020, Theorem 4.4) and Panare-
tos and Tavakoli (2013a, Theorem 2.1) is similar to the one expressed in
Holmes, 1979 and recalled in the introduction as the isometric extension
of (ii.2) to HX = Span (Xt , t ∈ Z). In his thesis, Tavakoli improved this con-
struction by using the appropriate space Span (PXt : P ∈ Lb(H0), t ∈ Z),
see Tavakoli (2014, Section 2.6), his approach assumes that the spectral den-
sity operator is dominated by Lebesgue’s measure and that its density is in
Lp(T,B(T),S1(H0), Leb) for p ∈ (1,+∞].

5.4.2 Functional orthogonal increment process vs c.a.g.o.s. measures

Moreover, in recent approaches, X̂ in (ii.2) is defined as a functional orthogonal
increment process and the integral is referred to as a Riemann–Stieltjes integral
with respect to X̂. This notion, used for the Cramér representations exhibited
in Delft and Eichler, 2018, 2020; Panaretos and Tavakoli, 2013a,b; Tavakoli,
2014, and which follows the construction of Rosenblatt, 1985 for univariate
weakly stationary time series, is based on the following definition where we
prefer to use the term Gramian-orthogonal increment process to emphasize the
use of the Gramian structure ofM(Ω,F ,H0, P).
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Definition 5.4.1 (Gramian-orthogonal increment processes). Let H0 be a sep-
arable Hilbert space. A random process (Zλ)λ∈[−π,π] valued in H0 is said to be a
Gramian-orthogonal increment process if the three following assertions hold.

(i) We have Z−π = 0 a.s. and, for all λ ∈ (−π, π], Zλ ∈ M(Ω,F ,H0, P) (as
defined in Example 4.3.2).

(ii) For all λ1, λ2, λ3, λ4 ∈ [−π, π], with λ2 ≥ λ1 and λ4 ≥ λ3, we have

(λ1, λ2] ∩ (λ3, λ4] = ∅⇒ Cov (Zλ4 − Zλ3 , Zλ2 − Zλ2) = 0 .

(iii) For all λ ∈ [−π, π], lim
ε↓0

E
[
‖Zλ+ε − Zλ‖2

H0

]
= 0.

Of course, Definition 5.4.1 can be related to random c.a.g.o.s. measures
as in Definition 5.1.2 with Λ = (−π, π] and A = B((−π, π]). Indeed, it is
straightforward to show that, if W is anH0-valued random c.a.g.o.s. measure
on ((−π, π],B((−π, π]), Ω,F , P), then setting

Z−π = 0 and Zλ = W((−π, λ]) , λ ∈ (−π, π] , (5.4.1)

we get a Gramian-orthogonal increment process. The reciprocal result is
stated as the following proposition.

Proposition 5.4.1. Let (Zλ)λ∈[−π,π] be a Gramian-orthogonal increment process
as in Definition 5.4.1. Then there exists a unique H0-valued random c.a.g.o.s. W
on ((−π, π],B((−π, π]), Ω,F , P) such that (5.4.1) holds.

Proof. By (ii) in Definition 5.4.1, we have that, for all s < t in [−π, π],

E
[
‖Zt − Z−π‖2

H0

]
= E

[
‖Zs − Z−π‖2

H0

]
+ E

[
‖Zt − Zs‖2

H0

]
.

Thus, with (iii), we have that the function F : [−π, π]→ R+ defined by

F(λ) = E
[
‖Zλ − Z−π‖2

H0

]
is non-decreasing and right-continuous, and it follows that there exists a
finite non-negative measure ν on ((−π, π],B((−π, π])) such that, for all
s < t in [−π, π],

E
[
‖Zt − Zs‖2

H0

]
= ν((s, t]) .

Another straightforward consequence of (ii) in Definition 5.4.1 is that, for all
s < t and s′ < t′ in (−π, π], we have

E
[
〈Zt − Zs, Zt′ − Zs′〉H0

]
=

E
[
‖Zt′∧t − Zs′∨s‖2

H0

]
if s′ ∨ s < t′ ∧ t,

0 otherwise.



5.4 comparison with recent approaches 147

Thus we can consider the mapping 1(s,t] 7→ Z(t)− Z(s) defined for all s < t
in (−π, π] as a G := L2((−π, π],B((−π, π]), ν) → H := M(Ω,F ,H0, P)

mapping, and, interpreting the right-hand side of the previous display as〈
1(s,t], 1(s′,t′]

〉
G

, we see that this mapping is isometric. Let us denote by
I the unique isometric extension of this mapping on the linear closure of{
1(s,t] : s < t ∈ (−π, π]

}
in G, which happens to be G itself. We then set,

for all A ∈ B((−π, π]),
W(A) = I(1A) ,

and we immediately obtain that W is an H0-valued random c.a.o.s. measure
on ((−π, π],B((−π, π]), Ω,F , P) as in Definition 5.1.1 and its intensity mea-
sure is ν. By uniqueness of the isometric extension, it only remains to show
that W is moreover a c.a.g.o.s. measure, that is, for all A, B ∈ B((−π, π])

such that A ∩ B = ∅, we have

[W(A), W(B)]H = Cov (W(A), W(B)) = 0 .

This is implied by showing that, for all x ∈ H0 such that ‖x‖H0
= 1, for all

A, B ∈ B((−π, π]) such that A ∩ B = ∅, we have

xHCov (W(A), W(B)) x = Cov
(
〈W(A), x〉H0

, 〈W(B), x〉H0

)
= 0 . (5.4.2)

Now take x ∈ H0 such that ‖x‖H0
= 1 and define Fx : [−π, π]→ R+ by

Fx(λ) = E

[∣∣∣〈Zλ − Z−π, x〉H0

∣∣∣2] .

As previously with F, (ii) and (iii) in Definition 5.4.1 imply that Fx is non-
decreasing and right-continuous and it follows that there exists a finite non-
negative measure νx on ((−π, π],B((−π, π])) such that, for all s < t in
[−π, π],

E

[∣∣∣〈Zt − Zs, x〉H0

∣∣∣2] = νx((s, t]) .

Again, we can extend the mapping 1(s,t] 7→ 〈Zt − Zs, x〉H0
defined for all s <

t in (−π, π] as a Gx := L2((−π, π],B((−π, π]), νx)→M(Ω,F , C, P) isomet-
ric mapping, which we denote by Ix in the following. We further denote by
Wx the c.a.o.s. measure defined by Wx(A) = Ix(1A) for all A ∈ B((−π, π]).
This is a C-valued random c.a.o.s. measure on ((−π, π],B((−π, π]), Ω,F , P)

with intensity measure νx. Hence to obtain (5.4.2) and conclude the proof,
we only need to show that for all A ∈ B((−π, π]), we have

Wx(A) = 〈W(A), x〉H0
. (5.4.3)
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We already know that this is true for A ∈ C = {(−π, λ] : λ ∈ (−π, π]}
by definitions of Wx, W, Ix and I. The class C is a π-system of Borel
sets and satisfies σ(C) = B((−π, π]). We conclude with the π-λ-theorem
by observing that the class A of sets A ∈ B((−π, π]), such that (5.4.3)
holds is a λ-system. Indeed if A ∈ A, then Ac = (−π, π] \ A satisfies
Wx(Ac) = Wx((−π, π]) −Wx(A) and W(Ac) = W((−π, π]) −W(A), so
that A, (−π, π] ∈ A implies Ac ∈ A. Similarly, if (An)n∈N ∈ AN with
An ∩ Ap = ∅ for n 6= p then ∪n An ∈ A because the c.a.o.s. measures Wx and
W are σ-additive inM(Ω,F , C, P) and inM(Ω,F ,H0, P), respectively, see
Remark 5.1.1.
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A P P L I C AT I O N S T O L I N E A R F I LT E R I N G A N D
L O N G - M E M O RY P R O C E S S E S

In this chapter, we illustrate the advantages of the spectral theory developed
in Chapter 5 with three applications. First, we give a formal definition of
linear filtering and derive interesting results on the composition and inver-
sion of linear filters, thus establishing Step 5) of the introduction. Second,
we address Step 6) by providing a version the Cramér-Karhunen-Loève de-
composition with minimal assumptions. Finally, we introduce a novel class
of long-memory processes with long memory operator D acting on a Hilbert
space and compare our approach to processes defined in the time domain
that were previously introduced for modeling long range dependence in the
context of functional time series. This corresponds to Step 7) of the introduc-
tion.

6.1 Composition and inversion of linear filters

With the construction of the spectral theory for weakly-stationary processes
of Section 5.2, the study of linear filters for such processes is easily derived.
Indeed, we are now able to give the most general definition of linear filter-
ing, characterize the spectral structure of the filtered process and provide re-
sults on compositions and inversion of linear filters. We start in the spectral
domain by with filtering of random c.a.g.o.s. measures and then translate
the results to the case where the random c.a.g.o.s. measures are Gramian-
Cramér representations of weakly stationary processes.

6.1.1 Linear filtering of random c.a.g.o.s. measures

The definition of filtering of a c.a.g.o.s. measure based the following straight-
forward result.
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Proposition 6.1.1. Let (Λ,A) be a measurable space,H0, G0 two separable Hilbert
spaces. Let W be an H0-valued random c.a.g.o.s. measure on (Λ,A, Ω,F , P) with
intensity operator measure νW . Let Φ ∈ L 2(Λ,A,O(H0,G0), νW). Then the
mapping

V : A 7→
∫

A
Φ dW = IG0

W (1AΦ) (6.1.1)

is a G0-valued random c.a.g.o.s. measure on (Λ,A, Ω,F , P) with intensity operator
measure

ΦνWΦH : A 7→
∫

A
ΦdνWΦH ,

which is a well defined trace-class p.o.v.m.. In particular, we have that, for all σ-
finite measure µ on (Λ,A) dominating ‖νW‖1, then µ dominates

∥∥ΦνWΦH
∥∥

1 and

dνW

dµ
=

[
Φ
(

dνW

dµ

)1/2
] [

Φ
(

dνW

dµ

)1/2
]H

. (6.1.2)

The c.a.g.o.s. V defined by (6.1.1) is said to admit the density Φ with re-
spect to W, and we write dV = ΦdW (or, equivalently, V(dλ) = Φ(λ)W(dλ)).
In the following definition, we use a signal processing terminology where Λ
is seen as a set o frequencies and Φ is seen as a transfer operator function
acting on the (random) input frequency distribution W.

Definition 6.1.1 (Filter F̂Φ(W) acting on a random c.a.g.o.s. measure in ŜΦ).
Let (Λ,A) be a measurable space, H0, G0 two separable Hilbert spaces. For a given
transfer operator function Φ ∈ FO (Λ,A,H0,G0), we denote by ŜΦ(Ω,F , P)

the set of H0-valued random c.a.g.o.s. measures on (Λ,A, Ω,F , P) whose inten-
sity operator measures νW satisfy Φ ∈ L 2(Λ,A,O(H0,G0), νW). Then, for any
W ∈ ŜΦ(Ω,F , P), we say that the random G0-valued c.a.g.o.s. measure V defined
by (6.1.1) is the output of the filter with transfer operator function Φ applied to the
input c.a.g.o.s. measure W, and we denote V = F̂Φ(W).

The goal of this section is, given another separable Hilbert space I0, to
characterize the transfer functions Ψ valued in O(G0, I0) which can be used
to filter the c.a.g.o.s. measure V. According to Proposition 6.1.1, Ψ must
be square-integrable with respect to νV = ΦνWΦH and this turns out to be
equivalent to checking that ΨΦ is square integrable with respect to νW as
stated in the following theorem. We recall that ΨΦ is the pointwise compo-
sition, that is, ΨΦ : λ 7→ Ψ(λ) ◦Φ(λ) and is defined whenever the image of
Φ(λ) is included in the domain of Ψ(λ).

We can now state the main result of this section whose proof can be found
in Section 6.5.1
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Theorem 6.1.2. Let (Λ,A) be a measurable space, H0, G0, I0 separable Hilbert
spaces and ν a trace-class p.o.v.m. on (Λ,A,H0). Let Φ ∈ L 2(Λ,A,O(H0,G0), ν)

and Ψ ∈ FO (Λ,A,G0, I0). Define ΦνΦH : A 7→
∫

A ΦdνΦH = [1AΦ, 1AΦ]ν,
which is a trace-class p.o.v.m. on (Λ,A,G0). Then

Ψ ∈ L 2(Λ,A,O(G0, I0), ΦνΦH)⇔ ΨΦ ∈ L 2(Λ,A,O(H0, I0), ν) . (6.1.3)

Moreover, the following assertions hold.

(a) For all Ψ, Θ ∈ L 2(Λ,A,O(G0, I0), ΦνΦH),

(ΨΦ)ν(ΘΦ)H = Ψ(ΦνΦH)ΘH .

(b) The mapping Ψ 7→ ΨΦ is a well defined Gramian-isometric operator from
L2(Λ,A,O(G0, I0), ΦνΦH) to L2(Λ,A,O(H0, I0), ν).

(c) Suppose moreover that Φ is injective ‖ν‖1-a.e., then we have that

Φ−1 ∈ L 2(Λ,A,O(G0,H0), ΦνΦH) ,

where we define Φ−1(λ) :=
(

Φ(λ)|D(Φ(λ))→Im(Φ(λ))

)−1
with domain Im(Φ(λ))

for all λ ∈ {Φ is injective} and Φ−1(λ) = 0 otherwise.

As aconsequence of this theorem, we get the following results on the com-
position and inversion for random c.a.g.o.s. measures which are proved in
Section 6.5.1.

Corollary 6.1.3 (Composition and inversion of filters on random c.a.g.o.s.
measures). Let (Λ,A) be a measurable space, H0, G0 two separable Hilbert spaces,
and Φ ∈ FO (Λ,A,H0,G0). Let W ∈ ŜΦ(Ω,F , P) with intensity operator mea-
sure νW . Then three following assertions hold.Recall that the

definitions of ⊆∼ and
∼= are given in
Definition 4.3.5

(i) For any separable Hilbert space I0, we have HF̂Φ(W),I0 ⊆∼ H
W,I0 .

(ii) For any separable Hilbert space I0 and all Ψ ∈ FO (Λ,A,G0, I0), we have
W ∈ ŜΨΦ(Ω,F , P) if and only if F̂Φ(W) ∈ ŜΨ(Ω,F , P), and in this case,
we have

F̂Ψ ◦ F̂Φ(W) = F̂ΨΦ(W). (6.1.4)

(iii) Suppose that Φ is injective ‖νW‖1-a.e. Then W = F̂Φ−1 ◦ F̂Φ(W), where Φ−1

is defined as in Assertion (c) of Theorem 6.1.2. Moreover, Assertion (i) above
holds with ⊆∼ replaced by ∼= .
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6.1.2 The case of weakly stationary stochastic processes

The results of the previous section translate to H0-valued weakly-stationary
stochastic processes as follows. Let H0 and G0 be two separable Hilbert
spaces and Φ ∈ FO (Λ,A,H0,G0). Then, if X = (Xt)t∈G is an H0-valued
weakly stationary stochastic process with Gramian-Cramér representation
X̂ such that

X̂ ∈ ŜΦ(Ω,F , P) or, equivalently, Φ ∈ ĤX,G0 , (6.1.5)

then we can define the random c.a.g.o.s. measure Ŷ = F̂Φ(X̂) and Lemma 5.2.3
gives that the process Y = (Yt)t∈G defined by

Yt =
∫

χ(t) Ŷ(dχ) , t ∈ G ,

is a G0-valued weakly stationary stochastic process. Moreover, applying As-
sertion (ii) of Corollary 6.1.3 with Ψ = χ(t)IdG0 yields

Yt =
∫

χ(t)Φ(χ) X̂(dχ) , for all t ∈ G .

In this case, for convenience we write, in the time domain,

X ∈ SΦ(Ω,F , P) and Y = FΦ(X) , (6.1.6)

for the assertions X̂ ∈ ŜΦ(Ω,F , P) and Ŷ = F̂Φ(X̂).
In this framework, using the Gramian-unitary operator between the mod-

ular time domain and the modular spectral domain, the following result
holds as a direct application of Corollary 6.1.3 with Λ = Ĝ and A = B(Ĝ)
and W = X̂.

Corollary 6.1.4 (Composition and inversion of filters on weakly stationary
time series). Let H0 and G0 be two separable Hilbert spaces and pick a transfer
operator function Φ ∈ FO

(
Ĝ,B(Ĝ),H0,G0

)
. Let X be a centered weakly stationary

H0-valued process defined on (Ω,F , P) with spectral operator measure νX. Suppose
that X ∈ SΦ(Ω,F , P) and set Y = FΦ(X), as defined in (6.1.6). Then the three
following assertions hold.

(i) For any separable Hilbert space I0, we have HY,I0 ⊆∼ H
X,I0 .

(ii) For any separable Hilbert space I0 and all Ψ ∈ FO
(
Ĝ,B(Ĝ),G0, I0

)
, we

have X ∈ SΨΦ(Ω,F , P) if and only if FΦ(X) ∈ SΨ(Ω,F , P), and in this
case, we have

FΨ ◦ FΦ(X) = FΨΦ(X). (6.1.7)
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(iii) Suppose that Φ is injective ‖νX‖1-a.e. Then X = FΦ−1 ◦ FΦ(X), where we

define Φ−1(λ) :=
(

Φ(λ)|D(Φ(λ))→Im(Φ(λ))

)−1
with domain Im(Φ(λ)) for

all λ ∈ {Φ is injective} and Φ−1(λ) = 0 otherwise. Moreover, Assertion (i)
above holds with ⊆∼ replaced by ∼= .

To conclude this section, we note than many examples in the literature
rely on a time-domain description of the filtering obtained as in the following
interesting example.

Example 6.1.1 (Convolutional filtering). LetH0 and G0 be two separable Hilbert
spaces. Let X = (Xt)t∈G be an H0-valued weakly stationary stochastic process
defined on (Ω,F , P). Let η be the Haar measure on G (see Rudin (1990, Chapter 1))
and Φ ∈ L1(G,B(G),Lb(H0,G0), η). Define the process Y = (Yt)t∈G by the time
domain convolutional filtering

Yt =
∫

Φ(s) Xt−s η(ds) , t ∈ G ,

where the integral is a Bochner integral on L1(G,B(G),M(Ω,F ,G0, P), η). Then,
using Proposition 5.1.8 and defining Φ̂ : Ĝ→ Lb(H0,G0) by the following Bochner
integral on L1(G,B(G),Lb(H0,G0), η),

Φ̂(χ) =
∫

Φ(s) χ(s) η(ds) ,

it is straightforward to show that Φ̂ ∈ L2(Ĝ,B(Ĝ),O(H0,G0), νX) and Y =

FΦ̂(X).

6.2 Cramér-Karhunen-Loève decomposition

LetH0 be a separable Hilbert space with (possibly infinite) dimension N and
X = (Xt)t∈G be a centered, H0-valued weakly-stationary process defined on
a probability space (Ω,F , P) with Gramian-Cramér representation X̂ and
spectral operator measure νX. The Cramér-Karhunen-Loève decompositionThe term “Cramér-

Karhunen-Loève” was
coined in Panaretos

and Tavakoli, 2013a.

the amounts to give a rigorous meaning to the formula

X̂(dχ) = ∑
0≤n<N

φn(χ)⊗ φn(χ) X̂(dχ) , (6.2.1)

where, for all χ ∈ Ĝ, (φn(χ))0≤n<N is an orthonormal sequence in H0 chosen
in such a way that the summands in (6.2.1) are uncorrelated. Such a decom-
position provides a way to derive the harmonic principal component analy-
sis of the process X, which is an approximation of X by a finite rank linear
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filtering. In recent works, the functional Cramér-Karhunen-Loève decom-
position is achieved under additional assumptions on νX such as having a
continuous density with respect to the Lebesgue measure (in Tavakoli, 2014)
or at most finitely many atoms (in Delft and Eichler, 2020). In fact, thanks to
the Radon-Nikodym property of trace-class p.o.v.m.’s of Theorem 4.5.2 and
the measurable eigendecomposition of Theorem 4.5.9, there is no need for
such additional assumptions. Instead, we rely on Proposition 4.5.5 and the
following lemma

Lemma 6.2.1 (Properties of the eigendecomposition of a trace-class p.o.v.m.).
Let H0 be a separable Hilbert space with dimension N ∈ {1, . . . ,+∞}. Let ν be a
trace-class p.o.v.m. on (Λ,A,H0) and µ a σ-finite dominating measure of ν, e.g. its
variation norm ‖ν‖1. Let

f (λ) = ∑
0≤n<N

σn(λ) φn(λ)⊗ φn(λ) , λ ∈ Λ

be the measurable eigendecomposition of f = dν
dµ as proved in Proposition 4.5.5.

Then, using the notations φH
n : λ 7→ φn(λ)H and φn ⊗ φn : λ 7→ φn(λ)⊗ φn(λ),

we have the following properties.

(i) The sequence (φH
n )0≤n<N is orthogonal in L2(Λ,A,O(H0, C), ν).

(ii) The sequence (φn⊗φn)0≤n<N is Gramian-orthogonal in L2(Λ,A,O(H0), ν).

(iii) The Lb(H0)-valued mapping λ 7→ ∑0≤n<N φn(λ)⊗φn(λ) belongs in L2(Λ,A,O(H0), ν)

and is equal to the mapping λ 7→ IdH0 in L2(Λ,A,O(H0), ν).

(iv) If N = +∞, we have

lim
p→+∞

∥∥∥∥∥ p

∑
n=0

φn ⊗ φn − IdH0

∥∥∥∥∥
ν

= 0 .

Proof. First note that the O-measurability of φH
n , φn⊗ φn and ∑0≤n<N φn⊗ φn

are direct consequences of the measurability of the φn’s. Then, since f 1/2 =

∑0≤n<N σ1/2
n φn ⊗ φn we get the following results.

Firstly, for all 0 ≤ n < N and all λ ∈ Λ,
∥∥φH

n f 1/2(λ)
∥∥2

2 = σn(λ) ≤ ‖ f (λ)‖1.
Hence φH

n f 1/2 ∈ L2(Λ,A,S2(H0, C), ν) and Proposition 5.1.4 gives that φH
n ∈

L2(Λ,A,O(H0, C), ν) and for all 0 ≤ n, p < N,

〈
φH

n , φH
p

〉
ν
=
∫

φH
n f φp dµ =

0 if n 6= p,∫
σn dµ otherwise. ,
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which proves Assertion (i).
Similarly, for all 0 ≤ n < N, φn ⊗ φn f 1/2 ∈ L2(Λ,A,S2(H0), ν), hence

by Proposition 5.1.4, we have φn ⊗ φn ∈ L2(Λ,A,O(H0), ν) and for all 0 ≤
n, p < N, [

φn ⊗ φn, φp ⊗ φp
]

ν
=
∫
(φn ⊗ φn) f (φp ⊗ φp) dµ

=

0 if n 6= p,∫
σn (φn ⊗ φn) dµ otherwise,

which proves Assertion (ii).
Moreover, for all λ ∈ Λ,

(
∑0≤n<N φn(λ)⊗ φn(λ)

)
f (λ)1/2 = f (λ)1/2 and

therefore Assertion (iii) holds by Proposition 5.1.4.
Finally, by completeness of L2(Λ,A,O(H0), ν), Assertion (iv) reduces show-

ing that
∥∥∑

q
n=p φn ⊗ φn

∥∥
ν

converges to 0 as p, q → +∞. This holds because,
for all q ≥ p ≥ 0,∥∥∥∥∥ q

∑
n=p

φn ⊗ φn

∥∥∥∥∥
2

ν

=
∫ ∥∥∥∥∥

(
q

∑
n=p

φn ⊗ φn

)
f 1/2

∥∥∥∥∥
2

2

d‖ν‖1

=
∫ ∥∥∥∥∥ q

∑
n=p

σ1/2
n φn ⊗ φn

∥∥∥∥∥
2

2

d‖ν‖1

=
∫ ( q

∑
n=p

σn

)
d‖ν‖1 ,

where, for all λ ∈ Λ,
(
∑

q
n=p σn(λ)

)
≤ ‖ f (λ)‖1 and ∑

q
n=p σn(λ) converges to

0 as p, q→ 0.

We have the following remark about Assertion (iii).

Remark 6.2.1. By Proposition 4.5.5, for all λ ∈ Λ, ∑0≤n<N φn(λ)⊗ φn(λ) is the
orthogonal projection onto the closure of the range of f (λ). Thus, Assertion (iii) of
Lemma 6.2.1 says that this projection is equal to IdH0 in L2(Λ,A,O(H0), ν). It
is not equivalent to saying that ∑0≤n<N φn ⊗ φn = IdH0 , ‖ν‖1-a.e. since it may
happen that the range of f (λ) is dense in H0 for none of the λ’s, in which case
we have Assertion (iii) of Lemma 6.2.1 at the same time as {∑0≤n<N φn ⊗ φn =

IdH0} = ∅.

Then the Cramér-Karhunen-Loève decomposition is derived as a conse-
quence of Proposition 4.5.5 and Lemma 6.2.1.
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Corollary 6.2.2 (Cramér-Karhunen-Loève decomposition). Let H0 be a separa-
ble Hilbert space with (possibly infinite) dimension N and X = (Xt)t∈G be a cen-
tered, H0-valued weakly-stationary process defined on a probability space (Ω,F , P)

with Gramian-Cramér representation X̂ and spectral operator measure νX with
dνX

d‖νX‖1
= ∑0≤n<N σnφn ⊗ φn as in Theorem 4.5.9. Then we have

X̂ = F̂(∑0≤n<N φn⊗φn)(X̂) = ∑
0≤n<N

F̂φn⊗φn(X̂) = ∑
0≤n<N

F̂φn ◦ F̂φH
n
(X̂) , (6.2.2)

where (F̂φn⊗φn(X̂))0≤n<N are uncorrelated random c.a.g.o.s. measures on (Ĝ,B(Ĝ),H0)

and (F̂φH
n
(X̂))0≤n<N are uncorrelated C-valued c.a.o.s. measures.

Proof. We treat the case N = +∞ because the other case is simpler. The
first equality in (6.2.2) is a consequence of (iii) of Lemma 6.2.1 and the last
one comes from Corollary 6.1.3. The only tricky part is to show that we can
invert the sum and the filtering operation in the second equality, i.e. that for
all A ∈ B(Ĝ), ∫

A

+∞

∑
n=0

φn ⊗ φn dX̂ =
+∞

∑
n=0

∫
A

φn ⊗ φn dX̂ ,

which holds by Assertion (iv) of Lemma 6.2.1 and the fact that the stochastic
integral with respect to X̂ is continuous on L2(Ĝ,B(Ĝ),O(H0), ν).

Note that the equality should be understood as holding when the c.a.g.o.s.
measures are evaluated at any arbitrary A ∈ B(Ĝ). The following remark
provides other formulations of Relation (6.2.2)

Remark 6.2.2. Depending on the setting, Relation (6.2.2) can have the following
other formulations.

1. Using the density notation, we may write Relation (6.2.2) as

X̂(dχ) = ∑
0≤n<N

φn(χ)⊗φn(χ)X̂(dχ) = ∑
0≤n<N

〈
X̂(dχ), φn(χ)

〉
H0

φn(χ) ,

which emphasizes the fact that the Cramér-Karhunen-Loève decomposition
is a Karhunen-Loève decomposition in the spectral domain. However, this
notation is not rigorous and may lead to confusions.

2. In the time domain, Relation (6.2.2) writes as

X = F(∑0≤n<N φn⊗φn)(X) = ∑
0≤n<N

Fφn⊗φn(X) = ∑
0≤n<N

Fφn ◦ FφH
n
(X̂) ,
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where (Fφn⊗φn(X̂))0≤n<N are uncorrelatedH0-valued weakly stationary stochas-
tic processes and (FφH

n
(X))0≤n<N are uncorrelated C-valued weakly station-

ary stochastic processes. Here the equality should be understood as holding
when the time series are evaluated at any arbitrary t ∈ G.

3. Letting et : χ 7→ χ(t), we get the following integral formulation, for all
t ∈ G,

Xt =
∫

et

(
∑

0≤n<N
φn ⊗ φn

)
dX̂ = ∑

0≤n<N

∫
et (φn ⊗ φn) dX̂

= ∑
0≤n<N

∫
etφn dF̂φH

n
(X̂) ,

which corresponds to the formulation of Tavakoli, 2014, Theorem 2.8.6.

As a consequence, we get the following general formulation of a harmonic
principal components analysis for H0-valued weakly-stationary processes.

Proposition 6.2.3 (Harmonic functional principal components analysis). Let
H0 be a separable Hilbert space and X = (Xt)t∈G be a centered, H0-valued weakly-
stationary process defined on a probability space (Ω,F , P) with spectral operator
measure νX. Let (σn)0≤n<N and (φn)0≤n<N be given as in Proposition 4.5.5 for
some dominating measure µ of νX, for instance µ = ‖νX‖1. Let q : Ĝ → N∗ be a
measurable function. Then for all t ∈ G,

min
{

E
[
‖Xt − [FΘ(X)]t‖

2
]

: Θ ∈ L2(Ĝ,B(Ĝ),O(H0), νX), rank(Θ) ≤ q
}

is equal to ∫
Ĝ

∑
q(χ)∧N≤n<N

σn(χ) µ(dχ) ,

and the minimum is achieved for

Θ : χ 7→ ∑
0≤n<q(χ)∧N

φn(χ)⊗ φn(χ) .

Proof. Let
fX(χ) = ∑

0≤n<N
σn(χ) φn(χ)⊗ φn(χ)

denotes the density of νX with respect to µ as given by Proposition 4.5.5. We
have, for all t ∈ G and Θ ∈ L2(Ĝ,B(Ĝ),O(H0), νX),

[FΘ(X)]t =
∫

χ(t)Θ(χ) X̂(dχ) ,
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and thus by isometric isomorphism between the spectral domain and the
time domain,

E
[
‖Xt − [FΘ(X)]t‖2

]
=
∫ ∥∥∥(IdH0 −Θ(χ)) f 1/2

X (χ)
∥∥∥2

S2(H0)
µ(dχ) .

The result is then obtained by observing that, for each χ ∈ Ĝ, the norm in
the integral is minimal under the constraint rank(Θ(χ)) ≤ q(χ) for Θ(χ) =

∑0≤n<q(χ)∧N φn(χ)⊗ φn(χ).

6.3 Some details about functional random variables

The construction of processes with long memory operators, which will be
discussed in Section 6.4, relies on the singular value decomposition of a nor-
mal operator. This places us in the framework where the separable Hilbert
space is H0 = L2(V,V , ξ) for some measure space (V,V , ξ) and therefore,
we need to introduce an appropriate formalism. This is the purpose of this
section. In Section 6.3.1, we introduce notions relative to Hilbert-Schmidt
integral operators. In Section 6.3.2, we show that an H0-valued random
variable Y can be seen as the realization of some continuous time process
{Y(v) : v ∈ V} in the sense that there always exists a version of Y which
is jointly measurable in V × Ω as will be stated in Proposition 6.3.3. This
last point allows us to define a cross-spectral density function containing the
spectral information of the functional time series evaluated at two points
v, v′ ∈ V.

In this section, we consider H0 := L2(V,V , ξ) where (V,V , ξ) is a measure
space. We assume that ξ is σ-finite and that the space H0 is separable. We
will denote by (φn)n∈N an arbitrary Hilbert basis of H0.

6.3.1 Hilbert-Schmidt integral operators

For K ∈ L2(V2,V⊗2, ξ⊗2), we define the integral operator with kernel K as
the unique operator K on H0 satisfying

K f : v 7→
∫
V
K (v, v′) f (v′) ξ(dv′) , for all f ∈ H0 .

In this case, K ∈ S2(H0) with ‖K‖2
2 =

∫
V2 |K |2 dξ⊗2 and, through this re-

lation, the spaces L2(V2,V⊗2, ξ⊗2) and S2(H0) are isometrically isomorphic.
In particular, any Hilbert-Schmidt operator on H0 is an integral operator
and is associated to a unique kernel in L2(V2,V⊗2, ξ⊗2). It is easy to check
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that the kernel associated to KH is the adjoint kernel (v, v′) 7→ K (v′, v) and
that K ∈ L2(V2,V⊗2, ξ⊗2) is the kernel of a Hilbert-Schmidt operator K if
and only if

φH
i Kφj =

∫
K (v, v′) φi(v)φj(v′) ξ(dv)ξ(dv′) , for all i, j ∈N .

A special case of interest is when we consider an operator G ∈ S+1 (H0).
In this case, G is also a Hilbert-Schmidt operator and therefore is also as-
sociated to a kernel, say G ∈ L2(V2,V⊗2, ξ⊗2). However, because we can
write G = HHH for some well (non-uniquely) chosen H ∈ S2(H0), we can
be more precise in describing the kernel, as stated in the following lemma,
in which, for instance, one can choose H = HH = G1/2.

Lemma 6.3.1. Let H0 = L2(V,V , ξ) be a separable Hilbert space, G ∈ S+1 (H0)

and H ∈ S2(H0) such that G = HHH. Let G ,ℋ ∈ L2(V2,V⊗2, ξ⊗2) be the
kernels of G and H respectively. Then for ξ⊗2 − a.e. (v, v′) ∈ V2,

G (v, v′) =
∫

ℋ (v, v′′)ℋ (v′, v′′) ξ(dv′′) . (6.3.1)

Let us now consider an S2(H0)-valued function K defined on a measurable
space (Λ,A). As explained previously, for any λ ∈ Λ, K(λ) can be seen as an
integral operator associated to a kernel K (·; λ) ∈ L2(V2,V⊗2, ξ⊗2). However
it is useful to consider the mapping (v, v′, λ) 7→ K (v, v′; λ) and to make this
mapping measurable on (V2 ×Λ,V⊗2 ⊗A). For convenience, we introduce
the following definition to refer to such a measurable mapping.

Definition 6.3.1 (Joint kernel function). Let H0 = L2(V,V , ξ) be a separable
Hilbert space, with (V,V , ξ) a σ-finite measured space. Let K be a measurable
function from (Λ,A) to (S2(H0),B(S2(H0))) and K : (v, v′, λ) 7→ K (v, v′; λ)

be measurable from (V2 ×Λ,V⊗2 ⊗A) to (C,B(C)) such that, for all λ ∈ Λ and
f ∈ H0,

K(λ) f : v 7→
∫

K (v, v′; λ) f (v′) ξ(dv′) . (6.3.2)

Then we call K the Λ-joint kernel function of K.

In Definition 6.3.1, the Λ-joint kernel function of K is unique in the sense
two Λ-joint kernel functions K and K̃ of the same S2(H0)-valued function
K must satisfy that, for all λ ∈ Λ, K (·; λ) = K̃ (·; λ), ξ⊗2− a.e. The following
lemma asserts that a Λ-joint kernel function of K always exists and provides
additional properties in two special cases that will be of interest.

Proposition 6.3.2. LetH0 and K be as in Definition 6.3.1. Then K admits a Λ-joint
kernel function K . Moreover the two following assertions hold for any non-negative
measure µ on (Λ,A).
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(i) If K ∈ L2(Λ,A,S2(H0), µ), then K ∈ L2(V2 ×Λ,V⊗2 ⊗A, ξ⊗2 ⊗ µ).

(ii) If K ∈ L1(Λ,A,S+1 (H0), µ), then K satisfies

∫ (∫ ∣∣K (v, v′; λ)
∣∣2 ξ(dv)ξ(dv′)

)1/2

µ(dλ) < +∞ . (6.3.3)

6.3.2 L2(V,V , ξ)-valued weakly stationary time series

We first show that we can always find a version of an H0-valued random
variable which is jointly measurable on V×Ω.

Proposition 6.3.3. Let Y be an H0-valued random variable defined on (Ω,F , P).
Then Y admits a version (v, ω) 7→ Ỹ(v, ω) jointly measurable on (V×Ω,V ⊗F ).

Hence, in the following an H0-valued random variable Y will always be
assumed to be represented by a V × Ω → C-measurable function Ỹ. If,
moreover, Y ∈ L2(Ω,F ,H0, P), then, by Fubini’s theorem, we can see Ỹ as
an element of L2(V×Ω,V ⊗F , ξ ⊗P), and we can write

Ỹ(v, ω) = ∑
k∈N

〈Y(ω), φk〉 φk(v) ,

where the convergence holds in L2(V ×Ω,V ⊗ F , ξ ⊗ P). As expected, in
this case, the covariance operator Cov(Y) is an integral operator with kernel
(v, v′) 7→ Cov

(
Ỹ(v, ·), Ỹ(v′, ·)

)
. It is then tempting to write that Var

(
Ỹ(v, ·)

)
is equal to the kernel of the integral operator Cov(Y) on the diagonal set{

v = v′ : (v, v′) ∈ V2}. However, because this set has null ξ⊗2-measure, this
“equality” is meaningless in the framework of Hilbert-Schmidt operators.
In the following lemma we make this statement rigorous by relying on a
decomposition of the form Cov(Y) = KKH for some K ∈ S2(H0).

Lemma 6.3.4. Let Y be a random variable valued in a separable Hilbert space
H0 = L2(V,V , ξ), with ξ a σ-finite measure on (V,V). Let K ∈ S2(H0) and
denote by K its kernel in L2(V2,V⊗2, ξ⊗2). Suppose that Cov(Y) = KKH. Then,
we have, for ξ − a.e. v ∈ V,

E
[∣∣Ỹ(v, ·)

∣∣2] = ∫ ∣∣K (v, v′)
∣∣2 ξ(dv′) = ‖K (v, ·)‖2

H0
, (6.3.4)

where Ỹ is a version of Y in L2(V×Ω,V ⊗F , ξ ⊗P).

Let now X = (Xt)t∈Z be an H0-valued weakly stationary time series de-
fined on (Ω,F , P) with spectral operator measure νX and, for each t ∈ Z,
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denote by X̃t a version of Xt in L2(V×Ω,V ⊗ F , ξ ⊗ P). Note that, for all
n ∈ N, (∑n

k=1 〈Xt, φk〉 φk(v))t∈Z are C-valued sequences which are (v ∈ V)-
jointly weakly stationary. Hence, from what precedes, we get that there
exists a ξ-full measure set V0 ∈ V such that (X̃t(v, ·))t∈Z are C-valued se-
quences which are (v ∈ V0)-jointly weakly stationary. The next proposition
shows that these time series admit spectral densities with respect to any
non-negative measure that dominates the spectral measure of X.

Proposition 6.3.5. Let H0 = L2(V,V , ξ) be a separable Hilbert space, with ξ a σ-
finite measure on (V,V). Let X = (Xt)t∈Z be anH0-valued weakly stationary time
series defined on (Ω,F , P) with spectral operator measure νX. Suppose that µ is a
finite non-negative measure on (T,B(T)) that dominates νX. Let gX = dνX

dµ and
ℊX : (v, v′, λ) 7→ ℊX(v, v′; λ) be its T-joint kernel function as in Definition 6.3.1.
Then for ξ⊗2 − a.e. (v, v′) ∈ V2, the cross spectral measure of the time series
(X̃t(v, ·))t∈Z and (X̃t(v′, ·))t∈Z admits the density λ 7→ ℊX(v, v′; λ) with respect
to µ.

Proposition 6.3.5 leads to the following.

Definition 6.3.2 (Cross-spectral density function). Under the assumptions of
Proposition 6.3.5, we call ℊX the cross-spectral density function and with respect
to µ.

6.4 Hilbert valued FIARMA processes

Although, the study of weakly-stationary time series valued in a separable
Hilbert space has been an active field of research in the past decades, the
literature mainly focuses on short-memory processes and the study of long-
memory processes valued in a separable Hilbert space is a more recent topic,
see Characiejus and Račkauskas, 2013, 2014; Düker, 2018; Li, Robinson, and
Shang, 2020; Račkauskas and Suquet, 2011. In particular, in Li, Robinson,
and Shang (2020, Section 4), the authors propose a generalization of the
fractionally integrated autoregressive moving average (often shortened as
ARFIMA but we prefer to use the abbreviation FIARMA for reasons that
will be made explicit in Remark 6.4.1) processes to the case of curve (or
functional) time series. In short, they consider the functional case in which
the Hilbert space is an L2 space of real valued functions defined on some
compact subset C of R, and they introduce the time series (Xt)t∈Z valued in
this Hilbert space defined by

(1− B)dXt(v) = Yt(v) , t ∈ Z, v ∈ C , (6.4.1)
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where −1/2 < d < 1/2, B is the backshift operator on RZ, and Yt is a
functional ARMA process. As pointed out in Li, Robinson, and Shang (2020,
Remark 9), taking the same d for all v ∈ C in (6.4.1) is very restrictive com-
pared to other long memory processes recently introduced, for instance in
Characiejus and Račkauskas, 2013, 2014, where they consider long-memory
processes of the form

Xt(v) =
∞

∑
k=0

(1 + k)−n(v) εt−k(v) , t ∈ Z , v ∈ V ,

where (V,V , ξ) is a σ-finite measured space and (εt)t∈Z is a white noise val-
ued in L2(V,V , ξ). A formulation not restricted to an L2 space was proposed
in Düker, 2018 where the author considers long-memory processes of the
form

Xt =
∞

∑
k=0

(1 + k)−N εt−k , t ∈ Z , (6.4.2)

where (εt)t∈Z is a white noise valued in a separable Hilbert space H0 and
N is a bounded normal operator on H0. This suggests to define FIARMA
processes in (6.4.1) with d replaced by a a function d(v), or in the case where
it is valued in an arbitrary separable Hilbert space H0, by a bounded normal
operator D acting on this space.

In this section, we fill this gap by providing a definition of FIARMA pro-
cesses valued in a separable Hilbert space H0 with a long memory operator
D, taken as a bounded linear operator on H0. If D is normal, then we can
rely on its singular value decomposition and find necessary and sufficient
conditions to ensure that the FIARMA process with long memory operator
D is well defined. This allows us to compare FIARMA processes with the
processes defined by (6.4.2) as in Düker, 2018. First we recall known results
on the existence of ARMA processes.

6.4.1 ARMA processes

Let p be a positive integer and consider the p-order linear recursive equation

Yt =
p

∑
k=1

AkYt−k + εt , t ∈ Z , (6.4.3)

where ε = (εt)t∈Z is an input sequence valued in H0 and A1, . . . , Ap ∈
Lb(H0). If ε is a white noise (that is, it is centered and weakly stationary
with a constant spectral density operator), then Equation (6.4.3) is called a
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(functional) p-order auto-regressive (AR(p)) equation. If ε can be written for
some positive integer q as

εt = Zt +
q

∑
k=1

BkZt−k , t ∈ Z , (6.4.4)

where Z = (Zt)t∈Z is a centered white noise valued in H0 and B1, . . . , Bp ∈
Lb(H0), then ε is called a (functional) moving average process of order q
(MA(q)) and Eq. (6.4.3) is called a (functional) (p, q)-order auto-regressive
moving average (ARMA(p, q)) equation. Note that (6.4.4) can be written as
the spectral domain filtering

ε(dλ) = �(e−iλ)Ẑ(dλ) with �(z) = IdH0 +
p

∑
k=1

Bkzk . (6.4.5)

Weakly stationary solutions of AR(p) or ARMA(p, q) equations are called
AR(p) or ARMA(p, q) processes. The existence (and uniqueness) of a weakly
stationary solution to Eq. (6.4.3) is given by the following result where U =

{z ∈ C : |z| = 1} is the complex unit circle.

Theorem 6.4.1. Let ε = (εt)t∈Z be a centered weakly stationary process valued in
H0 and A1, . . . , Ap ∈ Lb(H0) satisfying the condition

�(z) = IdH0 −
p

∑
k=1

Akzk is invertible in Lb(H0) for all z ∈ U. (6.4.6)

Then, setting Φ(λ) = �(e−iλ) for all λ ∈ R, the processes Y = FΦ−1(ε) is well
defined and is the unique weakly stationary solution Y = (Yt)t∈Z satisfying (6.4.3).
Moreover, the process Y admits the linear representation

Yt = ∑
k∈Z

Pkεt−k , t ∈ Z , (6.4.7)

where (Pk)k∈Z is a sequence valued in Lb(H0) whose operator norms have expo-
nential decays at ±∞.

Theorem 6.4.1 is usually proven in the Banach space valued case by con-
structing the explicit expansion (6.4.7) from algebraic arguments (see Span-
genberg (2013, Corollary 2.2) and the references in the proof). In Section 6.5
we provide a very short proof relying on linear filtering in the spectral do-
main.

Let us introduce some notation which will be useful in the following.

Definition 6.4.1 (Polynomial sets Pd(H0) and P∗d (H0)). For any integer d ∈
N, let Pd(H0) denote the set of polynomials p of degree d with coefficients in
Lb(H0) and such that p(0) = IdH0 . Further denote by P∗d (H0) the subset of all
p ∈ Pd(H0) which are invertible on U (as � in (6.4.6)).
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An H0-valued ARMA(p, q) process X can thus be concisely defined as
follows.

Definition 6.4.2 (Hilbert valued ARMA process). Let H0 be a separable Hilbert
space, p, q be non-negative integers, � ∈ Pq(H0), � ∈ P∗p (H0) and Z be a (cen-
tered) H0-valued white noise. The H0-valued weakly stationary time series with
spectral representation given by

X̂(dλ) = [�(e−iλ)]−1�(e−iλ)Ẑ(dλ) ,

where Ẑ is the spectral representation of Z, is called an ARMA(p, q) process.

By Proposition 6.1.1, in this case, if Σ denotes the covariance operator of
Z, then X admits the spectral density

gX(λ) = [�(e−iλ)]−1�(e−iλ)Σ[�−1(e−iλ)�(e−iλ)]H

with respect to the Lebesgue measure. The following results will be useful.

Proposition 6.4.2. Let H0 be a separable Hilbert space and X be an ARMA(p, q)
process defined by X̂(dλ) = [�(e−iλ)]−1�(e−iλ)Ẑ(dλ) with � ∈ Pq(H0), � ∈
P∗p (H0) and Z an H0-valued white noise with covariance operator Σ. Then there
exists η ∈ (0, π) and k : (−η, η) → S2(H0) continuous and bounded such that,
for Leb− a.e. λ ∈ (−η, η), we have

gX(λ) = h(λ) [h(λ)]H with h(λ) = [�(1)]−1�(1)Σ1/2 + λ k(λ) . (6.4.8)

In the case whereH0 = L2(V,V , ξ) for some σ-finite measure space (V,V), then the
(−η, η)-joint kernel function k in L2(V2 × (−η, η),V⊗2 ⊗B(−η, η), ξ⊗2 ⊗ Leb)
associated to k also satisfies∫

V2
Leb-essup

λ∈(−η,η)

∣∣k(v, v′; λ)
∣∣2 ξ(dv) ξ(dv′) < +∞ . (6.4.9)

The following lemma indicates that an invertible linear transform of an
ARMA process is still an ARMA process. It will be useful in particular
in the case where U is an isometry mapping H0 to a space of the form
G0 = L2(V,V , ξ).

Lemma 6.4.3. Let ξ be a σ-finite measure on (V,V), H0 and G0 be two sep-
arable Hilbert spaces. Let X be an ARMA(p, q) process defined by X̂(dλ) =

[�(e−iλ)]−1�(e−iλ)Ẑ(dλ) with � ∈ Pq(H0), � ∈ P∗p (H0) and Z an H0-valued
white noise. Then, for any invertible operator U ∈ Lb(H0,G0), the process UX =

(UXt)t∈Z is the G0-valued ARMA(p, q) process defined by

ÛX(dλ) = [�̃(e−iλ)]−1 �̃(e−iλ) ÛZ(dλ) ,

where �̃ := U�U−1 ∈ Pq(G0) and �̃ := U�U−1 ∈ P∗p (G0), and UZ = (UZt)t∈Z

is a G0-valued white noise.



6.4 hilbert valued fiarma processes 165

6.4.2 Fractional operator integration of weakly stationary processes

In the following, we use the notation (1− z)D for some D ∈ Lb(H0) and
z ∈ C \ [1, ∞). This must be understood as

(1− z)D = exp(D ln(1− z)) =
∞

∑
k=0

1
k!

(D ln(1− z))k ,

where ln denotes the principal complex logarithm, so that z 7→ ln(1 − z)
is holomorphic on C \ [1, ∞), and so is z 7→ (1− z)D, as a Lb(H0)-valued
function, see Gohberg and Leiterer (2009, Chapter 1) for an introduction on
this subject.

Definition 6.4.3 (Fractional integration operator transfer function). Let H0

be a separable Hilbert space and D ∈ Lb(H0). We define the D-order fractional
integration operator transfer function FID by

FID(λ) =


(
1− e−iλ)−D if λ 6= 0,

0 otherwise.

Using the properties of z 7→ (1− z)D recalled previously, we get that FID

is a mapping from T to Lb(H0), continuous on T \ {0}. Then we have
FID ∈ Fs (T,B(T),H0) and we can define the filter FFID as in (6.1.6) whose
domain of definition are the centered weakly stationaryH0-valued processes
X ∈ SFID(Ω,F , P). Then a fractionaly integrated autoregressive moving average
(FIARMA) process is simply the output of the filter in the case where X is
an ARMA process, as defined in the following.

Definition 6.4.4 (FIARMA processes). Let H0 be a separable Hilbert space and
p, q be two non-negative integers. Let D ∈ Lb(H0), � ∈ Pq(H0), � ∈ P∗p (H0) and
Z be an H0-valued centered white noise. Let X be the ARMA(p, q) process defined
by X̂(dλ) = [�(e−iλ)]−1�(e−iλ)Ẑ(dλ) and suppose that X ∈ SFID(Ω,F , P).
Then the process defined by Y = FFID(X), or, in the spectral domain, by

Ŷ(dλ) = FID(λ)�
−1(e−iλ)�(e−iλ)Ẑ(dλ) , (6.4.10)

is called a FIARMA process of order (p, q) with long memory operator D, shortened
as FIARMA(D, p, q).

Remark 6.4.1. Definition 6.4.4 extends the usual definition of univariate (C or
R-valued) ARFIMA(p, d, q) processes to the Hilbert-valued case. In the general
case we use the acronym FIARMA to indicate the order of the operators in the
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definition (6.4.10), where the fractional integration operator appears on the left of the
autoregressive operator, itself appearing on the left of the moving average operator.
We also respected this order in the list of parameters (D, p, q). Of course, one can
also define an ARFIMA(p, D, q) process as the solution of (6.4.3) with ε defined as
a FIARMA(0, D, q) process but the ARFIMA(p, D, q) process do not coincide with
the FIARMA(p, D, q) process (this is already the case in finite dimension larger than
1). Observe that in the univariate case all the operators commute and FIARMA and
ARFIMA boils down to the same definition. Note also that Definition 6.4.4 extends
the definition of ARFIMA curve time series proposed in Li, Robinson, and Shang,
2020 in the case where H0 is an L2(C,B(C), Leb) for some compact set C ⊂ R and
where D is a scalar operator, that is D = d Id for some d ∈ (−1/2, 1/2). We will
see below that, in this case, we have X ∈ SFID(Ω,F , P) for any ARMA process X,
see Remark 6.4.2 below.

Since FID has a singularity at the null frequency, we want to provide con-
ditions to ensure that, given a weakly stationary process X, the filter with
transfer function FID applies to X i.e. we look for conditions implying that
X ∈ SFID(Ω,F , P). For instance in the scalar case, it is well known that if
X has a positive and continuous spectral density at the null frequency, then
FFId(X) is well defined if and only if d < 1/2. The Hilbert valued case relies
on the singular value decomposition of D, which we will assume to be nor-
mal. Based on the spectral decomposition of a normal operator, we derive,
in the following result, a necessary and sufficient condition involving the
spectral operator density of X and the spectral decomposition of D which is
recalled in Appendix A.

Theorem 6.4.4. Let H0 be a separable Hilbert space, D ∈ Lb(H0) and X =

(Xt)t∈Z be an H0-valued weakly stationary time series defined on (Ω,F , P) with
spectral operator measure νX. Suppose that D is normal, with singular value func-
tion d on G0 := L2(V,V , ξ) and decomposition operator U. Let µ be a nonnegative
measure on (T,B(T)) which dominates νX and let h ∈ L2(T,B(T),S2(G0), µ)

such that λ 7→ h(λ)[h(λ)]H is the spectral operator density function of UX =

(UXt)t∈Z with respect to µ, that is,

h(λ)[h(λ)]H = U gX(λ)UH for µ− a.e. λ ∈ T ,

where gX = dνX
dµ . Let h denote the T-joint kernel function of h. Then the three

following assertions are equivalent.

(i) We have X ∈ SFID(Ω,F , P).
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(ii) There exists η ∈ (0, π) arbitrarily small such that∫
V2×(−η,η)

|λ|−2<(d(v)) ∣∣h(v, v′; λ)
∣∣2 ξ(dv)ξ(dv′)µ(dλ) < ∞ . (6.4.11)

(iii) Equation (6.4.11) holds for all η ∈ (0, π).

Remark 6.4.2. If the dominating measure µ is the Lebesgue measure and if d is a
constant function, d ≡ d for some d < 1/2 then the integral in (6.4.11) is bounded
from above by

2η1−2d

1− 2d
Leb-essup

λ∈(−η,η)

∫
V2

∣∣h(v, v′; λ)
∣∣2 ξ(dv)ξ(dv′) =

2η1−2d

1− 2d
Leb-essup

λ∈(−η,η)
‖gX(λ)‖1 .

Thus, in this case, a sufficient condition for X ∈ SFID(Ω,F , P) is to have that
‖gX‖1 is locally bounded around the null frequency. This is always the case if X is
an ARMA process as in Definition 6.4.2.

Theorem 6.4.5. Let H0 be a separable Hilbert space and D ∈ Lb(H0). Suppose
that X is an H0-valued ARMA(p, q) process defined by

X̂(dλ) =
[
�(e−iλ)

]−1
�(e−iλ)Ẑ(dλ) ,

with � ∈ Pq(H0), � ∈ P∗p (H0) and Z a white noise with covariance operator Σ.
Suppose that D is normal, with singular value function d on G0 := L2(V,V , ξ) and
decomposition operator U. Let W̃ be a jointly measurable version of the G0-valued
variable W = U[�(1)]−1�(1)Z0 and define

σW : v 7→
(

E
[∣∣W̃(v, ·)

∣∣2])1/2
.

Now, consider the following assertions.

(i) We have X ∈ SFID(Ω,F , P).

(ii) We have <(d) < 1/2, ξ − a.e. on {σW > 0}.

(iii) We have
∫
{<(d)<1/2}

σ2
W(v)

1− 2<(d(v)) ξ(dv) < +∞.

(iv) We have <(d) < 1, ξ − a.e.

(v) We have �(z) = �(z) = Id for all z ∈ C (i.e. X = Z).

Then (i) implies (ii) and (iii). Conversely, if (iv) or (v) hold, then (i) is implied by
(ii) and (iii).
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Remark 6.4.3. If <(d) < 1/2, ξ − a.e. then both (ii) and (iv) hold, and (iii)
simplifies to ∫

σ2
W(v)

1− 2<(d(v)) ξ(dv) < +∞ .

Hence, applying our result, we get that (i) is implied by

(vi) <(d) < 1/2, ξ − a.e. and
∫

σ2
W(v)

1− 2<(d(v)) ξ(dv) < +∞,

which we think is the most useful consequence of this theorem. However it is impor-
tant to note that (vi) is not necessary as our result says that, under assertion (v) (X
is a white noise), only the sufficient conditions (ii) and (iii) are necessary (and it is
easy to find D and Σ such that (ii) and (iii) holds but (vi) does not). Observe also
that since∫

σ2
W(v) ξ(dv) = E

[
‖W‖2

G0

]
≤
∥∥∥�(1)]−1�(1)

∥∥∥
Lb(H0)

E
[
‖Z0‖2

H0

]
< +∞ ,

Condition (ii) is immediately satisfied if <(d) uniformly stay away from 1/2 on
{σW > 0}, that is, <(d) ≤ 1/2− η ξ − a.e. on {σW > 0} for some η > 0. In
the n-dimensional case with n finite, we have V = {1, . . . , n}, ξ is the counting
measure on V and U can be interpreted as a n × n unitary matrix, and d and
σW as n-dimensional vectors. Condition (ii) then says that <(d(k)) < 1/2 on
the components k ∈ {1, . . . , n} such that σW(k) > 0, and Condition (iii) always
follows from (ii). For the real univariate case (n = 1, D = d ∈ R), Condition (ii)
says that d < 1/2 or σW = 0 and the latter happens if and only if Σ = 0 (Z is the
null process) or �(1) = 0 (the MA operator contains a difference operator of order
larger than or equal to 1). In particular we find the usual d < 1/2 condition for
the existence of a weakly stationary ARFIMA(p, d, q) model in the case where the
underlying ARMA(p, q) process is invertible (� does not vanish on the unit circle).

6.4.3 Other long-memory processes

Several non-equivalent definitions of long rang dependence or long memory
are available in the literature for time series. Some approaches focus on the
behavior of the auto-covariance function at large lags, others on the spectral
density at low frequencies, see Pipiras and Taqqu (2017, Section 2.1) and the
references therein. Separating short range from long range dependence is
often made more natural within a particular class of models. For instance,
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for a Hilbert-valued process Y = (Yt)t∈Z, one may rely on a causal linear
representation, namely

Yt =
∞

∑
k=0

Pkεt−k , t ∈ Z i.e. Ŷ(dλ) =

(
∞

∑
k=0

Pke−iλk

)
ε̂(dλ) , (6.4.12)

where ε = (εt)t∈Z is a centered white noise valued in the separable Hilbert
space H0 and (Pk)k∈Z is a sequence of Lb(H0) operators. Then, by isome-
try, the first infinite sum appearing in (6.4.12) converges in M(Ω,F ,H0, P)

if and only if the second one converges in L2(T,B(T),Lb(H0), νε). A suffi-
cient condition for these convergences to hold is ∑∞

k=0 ‖Pk‖Lb(H0)
< +∞, and

this assumption is referred to as the short-range dependence (or short mem-
ory) case (for example ARMA processes), in contrast to long range dependence
(long-memory) case, for which ∑∞

k=0 ‖Pk‖Lb(H0)
= +∞, under which the con-

vergences in (6.4.12) are no longer granted. In Düker, 2018, the case where
Pk = (k + 1)−N for some normal operator N ∈ Lb(H0) is investigated and
the following result is obtained.

Lemma 6.4.6. Let H0 be a separable Hilbert space, N ∈ Lb(H0) be a normal
operator with singular value function n on G0 := L2(V,V , ξ) and decomposi-
tion operator U. Let h : v 7→ <(n(v)). Let ε := (εt)t∈Z be a white noise in
M(Ω,F ,H0, P) and σ2

W : s 7→ E
[∣∣W̃(v, ·)

∣∣2], where W̃ is a jointly measurable
version of W = Uε0. Suppose that

h >
1
2

ξ-a.e. and
∫
V

σ2
W(v)

2h(v)− 1
ξ(dv) < +∞ . (6.4.13)

Then, for all t ∈ Z,

Yt =
+∞

∑
k=0

(k + 1)−Nεt−k (6.4.14)

converges inM(Ω,F ,H0, P). If, moreover, (εk)k∈Z is an i.i.d. sequence, then the
convergence also holds a.s.

In Düker (2018, Theorem 2.1), the author also studies the partial sums
of the process (6.4.14) and exhibits asymptotic properties which naturally
extend the usual behavior observed for univariate long-memory processes.
In the following, we explain how the process (6.4.14) can be related to a FI-
ARMA(D,0,0) process. First we prove the analogous of Lemma 6.4.6, namely,
that that Condition (6.4.13) implies the existence of this FIARMA process.

Lemma 6.4.7. Let N, ε, h and σW be as in Lemma 6.4.6. Set D = IdH0 −N. Then
Condition (6.4.13) implies ε ∈ SFID(Ω,F , P).
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We can now state a result which shows that the two process defined by
Lemmas 6.4.6 and 6.4.7 (6.4.14) are closely related up to a bounded operator
C and to an additive short-memory process.

Proposition 6.4.8. Under the assumptions of Lemma 6.4.6, defining Y = (Yt)t∈Z

by (6.4.14), there exists an operator C ∈ Lb(H0) and an sequence (∆k)k∈N ∈
Lb(H0)N with ∑+∞

k=0 ‖∆k‖Lb(H0)
< +∞ such that

FFID(ε) = C Y + Z ,

where Z is the short-memory process defined, for all t ∈ Z, by Zt = ∑∞
k=0 ∆kεt−k.

6.5 Postponed proofs

6.5.1 Proofs of Section 6.1

The proof of Theorem 6.1.2 relies on the following lemma.

Lemma 6.5.1. Let H0, G0, I0 be separable Hilbert spaces and P ∈ O(G0, I0),
Q ∈ K(H0,G0). The following assertions hold.

(i) Im(
∣∣QH

∣∣) = Im(Q).

(ii) If Im(Q) ⊂ D(P), then (PQ)(PQ)H = (P
∣∣QH

∣∣)(P ∣∣QH
∣∣)H.

(iii) If Im(Q) ⊂ D(P), then PQ ∈ S2(H0, I0) if and only if P
∣∣QH

∣∣ ∈ S2(G0, I0).
In this case ‖PQ‖2 =

∥∥P
∣∣QH

∣∣∥∥
2.

Proof. For convenience, we only consider the case where the spaces have
infinite dimensions. The singular values decomposition of Q yields for two
orthonormal sequences (ψn)n∈N ∈ GN

0 and (φn)n∈N ∈ HN
0 ,

Q = ∑
n∈N

σnψn ⊗ φn and
∣∣∣QH

∣∣∣ = ∑
n∈N

σnψn ⊗ ψn .

Proof of (i). We have Im(Q) =
{

∑n∈N σnxnψn : (xn)n∈N ∈ `2(N)
}
= Im(

∣∣QH
∣∣).

Proof of (ii). By the first point both compositions PQ and P
∣∣QH

∣∣ make
sense. Consider the polar decomposition of QH : QH = U

∣∣QH
∣∣, with U =

∑n∈N φn ⊗ ψn. Then Q =
∣∣QH

∣∣UH and

(PQ)(PQ)H =
(

P
∣∣∣QH

∣∣∣)UHU
(

P
∣∣∣QH

∣∣∣)H =
(

P
∣∣∣QH

∣∣∣) (P
∣∣∣QH

∣∣∣)H ,

where we used that
∣∣QH

∣∣UHU =
∣∣QH

∣∣.
Proof of (iii). We have that PQ ∈ S2(H0, I0) if and only if (PQ)(PQ)H ∈
S1(I0), which is equivalent to P

∣∣QH
∣∣ ∈ S2(G0, I0) by the previous point.
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We can now prove Theorem 6.1.2.

Proof of Theorem 6.1.2. Let µ be a dominating measure for ‖ν‖1 and g =
dν
dµ , then, by definition of ΦνΦH, µ also dominates

∥∥ΦνΦH
∥∥

1 and dΦνΦH

dµ =

(Φg1/2)(Φg1/2)H. Hence,
(

dΦνΦH

dµ

)1/2
=
∣∣(Φg1/2)H

∣∣ and we get, by Proposi-
tion 5.1.4,

Ψ ∈ L 2(Λ,A,O(H0, I0), ΦνΦH)⇔

Im
∣∣(Φg1/2)H

∣∣ ⊂ D(Ψ) µ-a.e.

Ψ
∣∣(Φg1/2)H

∣∣ ∈ L2(Λ,A,S2(G0, I0), µ)

⇔

Img1/2 ⊂ D(ΨΦ) µ-a.e.

ΨΦg1/2 ∈ L2(Λ,A,S2(H0, I0), µ)

⇔ ΨΦ ∈ L 2(Λ,A,O(H0, I0), ν) ,

where the second equivalence comes from Lemma 6.5.1 and the fact that
for all λ ∈ Λ, D(Ψ(λ)Φ(λ)) is the preimage of D(Ψ(λ)) by Φ(λ) which
gives that Im(g1/2(λ)) ⊂ D(Ψ(λ)Φ(λ)) if and only if Im(Φ(λ)g1/2(λ)) ⊂
D(Ψ(λ)).

To prove Assertion (a), note that, for all Ψ, Θ ∈ L 2(Λ,A,O(G0, I0), ΦνΦH)

and A ∈ A, we have

(ΨΦ)ν(ΘΦ)H(A) =
∫

A

(
ΨΦg1/2

) (
ΘΦg1/2

)H
dµ

=
∫

A

(
Ψ
∣∣∣(Φg1/2)H

∣∣∣) (Θ
∣∣∣(Φg1/2)H

∣∣∣)H dµ

= Ψ(ΦνΦH)ΘH(A) ,

where the second equality comes from Lemma 6.5.1. Assertion (a) follows
as well as Assertion (b) by taking A = Λ. Finally, to show Assertion (c),
suppose that Φ is injective ‖ν‖1-a.e. then Φ−1Φ : λ 7→ IdH01{Φ(λ) is injective} is
in L 2(Λ,A,O(H0), ν) which gives that Φ−1 ∈ L 2(Λ,A,O(G0,H0), ΦνΦH)

by Assertion (a).

Finally, we prove Corollary 6.1.3

Proof of Corollary 6.1.3. Assertion (i) follows from Assertion (b) of Theo-
rem 6.1.2 and Theorem 5.1.7. The two other assertions are a bit more in-
volved.
Proof of Assertion (ii). If W ∈ ŜΦ(Ω,F , P), then the equivalence between
W ∈ ŜΨΦ(Ω,F , P) and F̂Φ(W) ∈ ŜΨ(Ω,F , P) is just another formulation
of the equivalence (6.1.3) with ν = νW . Suppose that it holds and set
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V := F̂Φ(W) so that νV = ΦνΦH. Then, (6.1.4) means that, for all Ψ ∈
L2(Λ,A,O(G0, I0), νV) and for all A ∈ A,

∫
A Ψ dV =

∫
A ΨΦ dW. Replac-

ing Ψ by Ψ1A, it is sufficient to show this identity with A = Λ. Using
that the integral with respect to a random c.a.g.o.s. measure is Gramian-
isometric and Assertion (b) of Theorem 6.1.2, the mappings Ψ 7→

∫
Ψ dV and

Ψ 7→
∫

ΨΦ dW are Gramian-isometric from L2(Λ,A,O(G0, I0), ΦνWΦH) to
M(Ω,F , I0, P). Hence by Theorem 5.1.3, they coincide on the whole space
if they coincide on all Ψ = 1AP for A ∈ A and P ∈ Lb(G0, I0). To conclude
the proof of Assertion (ii), it is thus enough to prove that, for all A ∈ A and
P ∈ Lb(G0, I0), ∫

A
P dV =

∫
A

PΦ dW .

This identity follows from the definition of V and the fact that on both sides
the operator P can be moved in front of the integrals. This latter fact directly
follows from the definition of the integral for the left-hand side and for the
right-hand side when Φ = 1B for some B ∈ A, which extends to all Φ
by observing that Φ 7→

∫
PΦ dW and Φ 7→ P

∫
Φ dW are continuous on

L2(Λ,A,O(H0,G0), νW).
Proof of Assertion (iii). Continuing with the setting of the proof of the
previous point, we now suppose that Φ is injective ‖νW‖1-a.e. Assertions (c)
and (a) of Theorem 6.1.2 give that Φ−1 ∈ L 2(Λ,A,O(G0,H0), νV) (i.e. V ∈
ŜΦ−1(Ω,F , P)) and Φ−1νV

(
Φ−1)H = νW . Hence, writing Relation (6.1.4)

with Ψ = Φ−1, we get F̂Φ−1(V) = F̂Φ−1Φ(W) = W. Moreover, reversing the
roles of W and V in assertion (i) gives the embedding HW,I0 ⊆∼ H

F̂Φ(W),I0

which, with Assertion (i), allow us to conclude that HW,I0 ∼= HF̂Φ(W),I0 .

6.5.2 Proofs of Section 6.3.1

Proof of Lemma 6.3.1. We first prove that (v, v′) 7→
∫
ℋ (v, v′′)ℋ (v′, v′′) ξ(dv′′)

is in L2(V2,V⊗2, ξ⊗2). By the Cauchy-Schwartz inequality, we have, for all
(v, v′) ∈ V2,

(∫ ∣∣∣ℋ (v, v′′)ℋ (v′, v′′)
∣∣∣ ξ(dv′′)

)2

≤
(∫ ∣∣ℋ (v, v′′)

∣∣2 ξ(dv′′)
)(∫ ∣∣ℋ (v′, v′′)

∣∣2 ξ(dv′′)
)
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and, integrating the right-hand side with respect to ξ(dv) and ξ(dv′) and

using the fact that
∫
|ℋ |2 dξ⊗2 = ‖h‖2

2 we get that

∫ (∫ ∣∣∣ℋ (v, v′′)ℋ (v′, v′′)
∣∣∣ ξ(dv′′)

)2

ξ(dv′) ξ(dv) ≤ ‖h‖4
2 < +∞ . (6.5.1)

Hence (v, v′) 7→
∫
ℋ (v, v′′)ℋ (v′, v′′) ξ(dv′′) is well defined and is in the

space L2(V2,V⊗2, ξ⊗2).
Now, for all f ∈ H0 and v ∈ V,(∫ ∣∣∣ℋ (v, v′′)ℋ (v′, v′′) f (v′)

∣∣∣ ξ(dv′′)ξ(dv′)
)2

≤ ‖ f ‖2
H0

∫ (∫ ∣∣∣ℋ (v, v′′)ℋ (v′, v′′)
∣∣∣ ξ(dv′′)

)2

ξ(dv′)

which is is finite for ξ − a.e. v ∈ V by (6.5.1). Hence, by Fubini’s theorem, for
ξ − a.e. v ∈ V,

G f (v) = HHH f (v) =
∫

ℋ (v, v′′)
(∫

ℋ (v′, v′′) f (v′) ξ(dv′)
)

ξ(dv′′)

=
∫ (∫

ℋ (v, v′′)ℋ (v′, v′′) ξ(dv′′)
)

f (v′) ξ(dv′)

which implies (6.3.1) by uniqueness of the kernel associated to G.

Proof of Proposition 6.3.2. Define, for all v, v′ ∈ V and λ ∈ T,

Kn(v, v′; λ) := ∑
0≤i,j≤n

φH
i K(λ)φj φi(v)φ̄j(v′) ,

and, for all ε > 0,

Nε(λ) = inf

{
n ∈N : ∑

i or j>n

∣∣∣φH
i K(λ)φj

∣∣∣2 ≤ ε

}
.

Note that since ∑i,j∈N

∣∣φH
i K(λ)φj

∣∣2 = ‖K(λ)‖2 < ∞, Nε(λ) is well defined
and finite. Now let us define, for all v, v′ ∈ V and λ ∈ T,

K (v, v′; λ) := lim
n→∞

KN2−n (λ)(v, v′; λ) , (6.5.2)

whenever this limit exists in C and set K (v, v′; λ) = 0 otherwise. Since
(φk ⊗ φ̄k′)k,k′∈N is a Hilbert basis of L2(V2,V⊗2, ξ⊗2), we immediately have
that, for any λ ∈ Λ, KN2−n (λ)(·; λ) converges in the sense of this L2 space to

∑i,j∈N φH
i K(λ)φj φi ⊗ φ̄j, and so this limit must be equal to K (·; λ) ξ⊗2− a.e..

It follows that, that for any λ ∈ Λ, for all i, j ∈N,∫
K (v, v′; λ)φ̄i(v)φj(v′) ξ(dv)ξ(dv′) = φH

i K(λ)φj ,
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which gives that K(λ) is an integral operator associated to the kernel K (·; λ).
Since (v, v′, λ) 7→ K (v, v′; λ) is measurable by definition, we get that it is the
Λ-joint kernel of K as in Definition 6.3.1. Assertion (i) follows by observing
that, if K ∈ L2(Λ,A,S2(H0), µ), then (v, v′, λ) 7→ Kn(v, v′; λ) converges in
L2(V2 × Λ,V⊗2 ⊗A, ξ⊗2 ⊗ µ) and the limit must be equal to K ξ⊗2 ⊗ µ −
a.e. since for each λ ∈ Λ, (v, v′) 7→ Kn(v, v′; λ) converges to K (·; λ) in
L2(V2,V⊗2, ξ⊗2).
It only remains to prove Assertion (ii). Assume that K ∈ L1(Λ,A,S+1 (H0), µ)

as in this assertion and let H ∈ L2(Λ,A,S2(H0), µ) be such that for all
λ ∈ Λ, K(λ) = H(λ)H(λ)H (for example, by Lemma B.2.1, we can take
H(λ) = K(λ)1/2) . Then by Assertion (i), the Λ-joint kernel of H satisfies
ℋ ∈ L2(V2 × Λ,V⊗2 ⊗ A, ξ⊗2 ⊗ µ). Using Lemma 6.3.1 and the Cauchy-
Schwartz inequality, we get that the integral in (6.3.3) is bounded from above
by
∫
|ℋ (v, v′; λ)|2 ξ(dv)ξ(dv′)µ(dλ) which is finite.

6.5.3 Proofs of Section 6.3.2

Proof of Proposition 6.3.3. Decomposing Y on (φn)n∈N, we can define Ỹ on
V×Ω by

Ỹ(v, ω) =

 lim
n→∞

SY
NY

2−n (ω)
(v, ω) if the limit exists in C ,

0 otherwise,

where we set, for all n ∈N, ω ∈ Ω, v ∈ V and ε > 0,

SY
n (v, ω) =

n

∑
k=0
〈Y(ω), φk〉 φk(v) and

NY
ε (ω) = inf

{
n ∈N :

∥∥∥SY
n (·, ω)−Y(ω)

∥∥∥2

H0
≤ ε

}
.

It is easy to show that the following assertions hold for all ω ∈ Ω:

(i) NY
ε (ω) is well defined in N for all ε > 0,

(ii) (NY
2−n(ω))n is a non-decreasing sequence,

(iii) as n→ ∞, SY
NY

2−n (ω)
(·, ω) converges to Y in H0;

(iv) SY
NY

2−n (ω)
(v, ω) converges to Ỹ(v, ω) for ξ − a.e. v ∈ V,

(v) Ỹ(·, ω) = Y(ω) (as elements of H0).
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Since SY
n is jointly measurable on V×Ω for all n ∈N and NY

ε is measurable
on Ω for all ε > 0, we get the result.

Proof of Lemma 6.3.4. As explained before the statement of the lemma, we
have that

(v, ω) 7→ ỸN(v, ω) :=
N

∑
n=0
〈Y(ω), φn〉H0

φn(v)

converges to Ỹ as N → ∞ in L2(V×Ω,V ⊗ F , ξ ⊗P). Let us define, for all
v, v′ ∈ V,

KN(v, v′) =
N

∑
n=0

〈
K (·, v′), φn

〉
H0

φn(v)

Using that K ∈ L2(V2,V⊗2, ξ⊗2), it is easy to show that KN converges to K

in L2(V2,V⊗2, ξ⊗2) as N → +∞.
By the Cauchy-Schwartz inequality, we have that the mappings (g, h) 7→

[v 7→ E
[

g(v, ·) h(v, ·)
]
] and (g, h) 7→ [v 7→ 〈g(v, ·), h(v, ·)〉H0

] are sesquilin-

ear and continuous from L2(V × Ω,V ⊗ F , ξ ⊗ P) to L1(V,V , ξ) and from
L2(V2,V⊗2, ξ⊗2) to L1(V,V , ξ), respectively. This, with the two previous con-
vergence result shows that [v 7→ E

[∣∣ỸN(v, ·)
∣∣2]] and [v 7→ ‖KN(v, ·)‖2

H0
]

both converge in L1(V,V , ξ), to E
[∣∣Ỹ(v, ·)

∣∣2]] and ‖K (v, ·)‖2
H0

, respectively,
that is to the left-hand side and right-hand side of (6.3.4).

Hence to conclude we only have to show that, for all v ∈ V,

E
[∣∣ỸN(v, ·)

∣∣2] = ‖KN(v, ·)‖2
H0

. (6.5.3)

Indeed we can write

E
[∣∣ỸN(v, ·)

∣∣2] = E

[
N

∑
n,m=0

〈Y, φn〉H0
〈φm, Y〉H0

φn(v)φm(v)

]

=
N

∑
n,m=0

φH
n Cov(Y)φm φn(v)φm(v) .

Using Cov(Y) = KKH and Fubini’s theorem leads to

φH
n Cov(Y)φm =

∫ 〈
K (·, v′′), φn

〉
H0
〈K (·, v′′), φm〉H0

ξ(dv′′) .

Inserting this in the previous display, the double sum, put inside the integral
in ξ(dv′′), separates into a product of two conjugate terms and we get

E
[∣∣ỸN(v, ·)

∣∣2] = ∫ ∣∣∣∣∣ N

∑
n=0

〈
K (·, v′′), φn

〉
H0

φn(v)

∣∣∣∣∣
2

ξ(dv′′) .

so that (6.5.3) is proven, which concludes the proof.
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Proof of Proposition 6.3.5. For all n, n′ ∈ N and λ ∈ T, by the Cauchy-
Schwartz inequality and since ‖φn‖H0

= ‖φn′‖H0
= 1, we have

∫ ∣∣ℊX(v, v′; λ)φ̄n(v)φn′(v′)
∣∣ ξ(dv)ξ(dv′) ≤

(∫ ∣∣ℊX(v, v′; λ)
∣∣2 ξ(dv)ξ(dv′)

)1/2

.

By Proposition 6.3.2(ii), we get that∫ ∣∣ℊX(v, v′; λ)φ̄n(v)φn′(v′)
∣∣ ξ(dv)ξ(dv′) µ(dλ) < ∞ . (6.5.4)

Therefore we can apply Fubini’s theorem which gives, for all n, n′ ∈ N, and
s, t ∈ Z,∫

eiλ(s−t) ℊX(v, v′; λ)φ̄n(v)φn′(v′) ξ(dv)ξ(dv′) µ(dλ)

=
∫

eiλ(s−t) φH
n gX(λ)φn′ µ(dλ)

= Cov
(

φH
n Xs, φH

n′Xt

)
.

On the other hand, by Fubini’s theorem, we have that, for all n, n′ ∈ N, and
s, t ∈ Z,

Cov
(

φH
n Xs, φH

n′Xt

)
=
∫

Cov
(
X̃s(v, ·), X̃t(v′, ·)

)
φ̄n(v)φn′(v′) ξ(dv)ξ(dv′) .

This is also φH
n Cov (Xs, Xt) φn′ and since Cov (Xs, Xt) is a trace class hence

Hilbert Schmidt operator the previous display says that this operator is as-
sociated with the L2(V2,V⊗2, ξ⊗2) kernel (v, v′) 7→ Cov

(
X̃s(v, ·), X̃t(v′, ·)

)
.

The last two displays now imply that, for all n, n′ ∈N, and s, t ∈ Z,∫
Cov

(
X̃s(v, ·), X̃t(v′, ·)

)
φ̄n(v)φn′(v′) ξ(dv)ξ(dv′)

=
∫

eiλ(s−t) ℊX(v, v′, λ) φ̄n(v)φn′(v′) ξ(dv)ξ(dv′) µ(dλ)

=
∫ (∫

eiλ(s−t) ℊX(v, v′, λ) µ(dλ)

)
φ̄n(v)φn′(v′) ξ(dv)ξ(dv′) ,

where we used Fubini’s theorem (justified by (6.5.4) as above). Since the
kernel (v, v′) 7→ Cov

(
X̃s(v, ·), X̃t(v′, ·)

)
is in L2(V2,V⊗2, ξ⊗2) of which (φk ⊗

φ̄k′)k,k′∈N is a Hilbert basis, the last display shows that, for all s, t ∈ Z,

Cov
(
X̃s(v, ·), X̃t(v′, ·)

)
=
∫

eiλ(s−t) ℊX(v, v′; λ) µ(dλ) for ξ⊗2 − a.e. (v, v′),

which concludes the proof.
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6.5.4 Proofs of Section 6.4.1

Proof of Theorem 6.4.1. Denote Φ(λ) = �(e−iλ) for all λ ∈ R. As a trigono-
metric polynomial with Lb(H0)-valued coefficients, Φ belongs to the space
Fs (T,B(T),Lb(H0)). Moreover, Relation (6.4.6) directly implies that Φ−1 ∈
Fs (T,B(T),Lb(H0)). By Corollary 6.1.4, it follows that

(i) Y = FΦ−1(ε) satisfies FΦ(Y) = ε, and thus is a solution of (6.4.3);

(ii) for any centered weakly stationary process Y such that FΦ(Y) = ε, we
have Y = FΦ−1 ◦ FΦ(Y) = FΦ−1(ε).

We thus conclude that Y = FΦ−1(ε) is the unique weakly stationary solution
of (6.4.3).

Then the representation (6.4.7) holds as an immediate consequence of the
fact that z 7→ �(z)−1 is Lb(H0)-valued holomorhic on a ring containing the
unit circle, so that

[Φ(λ)]−1 = [�(e−iλ)]−1 = ∑
k∈Z

Pke−iλk ,

where (Pk)k∈Z are the Laurent series coefficients of �−1 (see Gohberg and
Leiterer (2009, Theorem 1.9.1), hence the series in the displayed equation
converges absolutely in Lb(H0)) and it can be shown that they have expo-
nential decay at ±∞ (as a consequence of Eq. (1.9.4) in Gohberg and Leiterer
(2009, Theorem 1.9.1)).

Proof of Proposition 6.4.2. Since z 7→ [�(z)]−1 �(z) is holomorphic in an
open ring containing U, Gohberg and Leiterer (2009, Theorem 1.8.5) im-
plies that there exists ρ > 0 and a sequence (Pn)n∈N ∈ Lb(H0)N such that

∑∞
n=0 ρn‖Pn‖Lb(H0)

< ∞ and [�(z)]−1 �(z) coincides with the Lb(H0)-valued
power series ∑∞

n=0(z − 1)nPn on the set {z ∈ C : |z− 1| ≤ ρ}. Now, take
η > 0 such that

{
e−iλ : λ ∈ (−η, η)

}
⊂ {z ∈ C : |z− 1| ≤ ρ}. Then we

have, for all λ ∈ (−η, η),

∞

∑
n=0

∣∣∣e−iλ − 1
∣∣∣n ‖Pn‖Lb(H0)

≤
∞

∑
n=0

ρn‖Pn‖Lb(H0)
< ∞ . (6.5.5)

Thus we can write [�(e−iλ)]−1 �(e−iλ) = P0 + λ Ψ(λ) by setting Ψ(0) = 0
and, for all λ ∈ (−η, η),

Ψ(λ) =
e−iλ − 1

λ

∞

∑
n=1

(e−iλ − 1)n−1Pn ,
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where the sum is absolutely convergent in Lb(H0) and where we used the
standard convention (e−iλ − 1)/λ = 1 for λ = 0 (hence Ψ(0) = 0). Since
P0 = [�(1)]−1�(1), it follows by Proposition 6.1.1 that (6.4.8) holds with
k(λ) := Ψ(λ)Σ1/2. Since Ψ is Lb(G0)-valued, continuous and bounded on
(−η, η), we get that k is continuous and bounded from (−η, η) to S2(H0).

Suppose now that H0 = L2(V,V , ξ). For all n ∈ N, let kn denote the
kernel associated to the operator kn := PnΣ1/2 ∈ S2(H0). Let us introduce
the following notation for all V2 × (−η, η)→ C-measureable function f ,

‖ f ‖∗ =
(∫

V2
Leb-essup

λ∈(−η,η)

∣∣ f (v, v′; λ)
∣∣2 ξ(dv)ξ(dv′)

)1/2

,

which allows to define a Banach space L∗ endowed with ‖·‖∗ as a norm.
Note that, for all n ∈ N, (

∫
|kn|2dξ⊗2)1/2 =

∥∥PnΣ1/2
∥∥

2 = ‖Pn‖Lb(H0)
‖Σ‖1/2

1 .
By (6.5.5) and since λ 7→ (e−iλ − 1)n/λ is bounded by ρn−1 on (−η, η), we
get that

∞

∑
n=1

∥∥∥∥(v, v′λ) 7→ (e−iλ − 1)n

λ
kn(v, v′)

∥∥∥∥
∗
=

∞

∑
n=1

Leb-essup
λ∈(−η,η)

∣∣∣∣ (e−iλ − 1)n

λ

∣∣∣∣ ∥∥∥PnΣ1/2
∥∥∥

2

≤ ‖Σ‖1/2
1

+∞

∑
n=1

ρn−1‖Pn‖Lb(H0)
< ∞ .

To conclude the proof, we observe that L∗ is continuously embedded in
L2(V2 × (−η, η),V⊗2 ⊗ B(−η, η), ξ⊗2 ⊗ Leb), which gives that the above se-
ries also converges in the latter space to the (−η, η)-joint kernel function k

of k and satifies (6.4.9).

Proof of Lemma 6.4.3. For any P, Q ∈ Lb(H0) such that P is invertible, we
have that UP−1Q = [UPU−1]−1[UQU−1]U. Thus, we obtain, defining �̃ and
�̃ as above,

ÛX(dλ) = U[�(e−iλ)]−1 �(e−iλ) Ẑ(dλ) = [�̃(e−iλ)]−1 �̃(e−iλ) ÛZ(dλ) .

It is then immediate to check that �̃ ∈ Pq(G0) and �̃ ∈ P∗p (G0), and that
UZ = (UZt)t∈Z is a G0-valued white noise.

6.5.5 Proofs of Section 6.4.2

The proof of Theorem 6.4.4 relies on the following lemma.

Lemma 6.5.2. For all z ∈ C and λ ∈ [−π, π], we have

(2/π)2[<(z)]+ |λ|2<(z) e−π|=(z)| ≤
∣∣∣(1− e−iλ)z

∣∣∣2 ≤ (π/2)2[<(z)]− |λ|2<(z) eπ|=(z)| .

(6.5.6)
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Proof. Let z ∈ C with <(z), then it can be shown that, for all λ ∈ (−π, π] \
{0}, ∣∣∣(1− e−iλ)z

∣∣∣2 =
∣∣∣1− e−iλ

∣∣∣2<(z) e−2=(z)b(e−iλ) ,

where b(e−iλ) denotes the argument of 1− e−iλ that belongs to
(
−π

2 , π
2

)
. It

follows that
e−π|=(z)| ≤ e−2=(z)b(e−iλ) ≤ eπ|=(z)| .

Using that |λ|π ≤ |sin(λ/2)| ≤ |λ|
2 for all λ ∈ (−π, π) and separating the

cases where <(z) ≥ 0 and where <(z) < 0, we easily get (6.5.6).

Proof of Theorem 6.4.4. Recall that ξ is a σ-finite measure and L2(V,V , ξ) is
separable since H0 is by assumption and they are isomorphic. As defined in
Section 6.1, X ∈ SFID(Ω,F , P) if and only if FID ∈ L2(T,B(T),O(H0), νX),
which, by Assumption (b) of Proposition 5.1.4, is equivalent to have∫

T

∥∥∥∥(1− e−iλ)−DgX(λ)
[
(1− e−iλ)−D

]H∥∥∥∥
1

µ(dλ) < +∞ . (6.5.7)

We have, for all λ ∈ T \ {0}, since U is unitary from H0 to L2(V,V , ξ),∥∥∥∥(1− e−iλ)−DgX(λ)
[
(1− e−iλ)−D

]H∥∥∥∥
1

=
∥∥∥UHM(1−e−iλ)−dUgX(λ)UHMH

(1−e−iλ)−dU
∥∥∥

1

=
∥∥∥M(1−e−iλ)−dU gX(λ)UHMH

(1−e−iλ)−d

∥∥∥
1

=
∥∥∥M(1−e−iλ)−d gUX(λ)MH

(1−e−iλ)−d

∥∥∥
1

=
∥∥∥M(1−e−iλ)−d h(λ)

∥∥∥2

2
.

Hence (6.5.7) holds if and only if∫
T

∥∥∥M(1−e−iλ)−d h(λ)
∥∥∥2

2
µ(dλ) < +∞ ,

which, using the T-joint kernel h of h reads∫ ∣∣∣(1− e−iλ)−d(v)h(v, v′; λ)
∣∣∣2 ξ(dv)ξ(dv′) µ(dλ) < +∞ .

Applying Lemma 6.5.2 to z = −d(v), since d is a µ-essentially bounded
function, we get that Assertion (i) is equivalent to∫

V2×(−π,π]
|λ|−2<(d(v)) ∣∣h(v, v′; λ)

∣∣2 ξ(dv)ξ(dv′)µ(dλ) < ∞ .
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This of course implies Assertion (iii), which implies Assertion (ii). Now,
if Assertion (ii) holds, since |λ|−2<(d(v)) is bounded independently of v on
λ ∈ (−π, π] \ (−η, η) and∫ ∣∣h(v, v′; λ)

∣∣2 ξ(dv)ξ(dv′)µ(dλ) =
∫
‖h(λ)‖2

2 µ(dλ) < ∞ ,

we get back the above condition involving an integration over V2 × (−π, π].

Proof of Theorem 6.4.5. Before proving the claimed implications, we start
with some preliminary facts that are obtained from Lemma 6.4.3, Proposi-
tion 6.4.2, Lemma 6.3.4 and Theorem 6.4.4.

By Lemma 6.4.3, the process UX = (UXt)t∈Z is the G0-valued ARMA(p, q)
process defined by ÛX(dλ) = [�̃(e−iλ)]−1 �̃(e−iλ) ÛZ(dλ), where �̃ := U�U−1 ∈
Pq(G0) and �̃ := U�U−1 ∈ P∗p (G0), and UZ = (UZt)t∈Z is a G0-valued white
noise. Applying Proposition 6.4.2 with µ as the Lebesgue measure, we get
that, for some η > 0, νUX has density h(λ)[h(λ)]H on (−η, η) with h valued
in S2(G0) satisfying, for all λ ∈ (−η, η),

h(λ) = [�̃(1)]−1�̃(1)(UΣUH)1/2 + λ k(λ) , (6.5.8)

where k is continuous from (−η, η) to S2(G0). Moreover, since G0 = L2(V,V , ξ),
Proposition 6.4.2 also gives that the joint kernel k of k satisfies (6.4.9), which
implies∫

s2(v)ξ(dv) ≤
∫

Leb-essup
λ∈(−η,η)

∣∣k(v, v′; λ)
∣∣2 ξ(dv′)ξ(dv) < +∞ , (6.5.9)

where we defined, for all v ∈ V,

s(v) = Leb-essup
λ∈(−η,η)

‖k(v, ·; λ)‖G0
.

Define, for any η′ ∈ (0, η),

I(η′) :=
∫
V2×(−η′,η′)

|λ|−2<(d(v)) ∣∣h(v, v′; λ)
∣∣2 ξ(dv)ξ(dv′)

dλ

2π
(6.5.10)

=
∫
V2×(−η′,η′)

|λ|−2<(d(v)) ∣∣k0(v, v′) + λk(v, v′; λ)
∣∣2 ξ(dv)ξ(dv′)

dλ

2π
,

where h is the kernel of h in (6.5.8) and k0 is the kernel of the operator
k0 := U[�(1)]−1�(1)Σ1/2UH ∈ S2(G0). Integrating w.r.t. v′, by the Minkowski
inequality, we get that

I(η′) ≥
∫
V×(−η′,η′)

|λ|−2<(d(v))
∣∣∣σW(v)− |λ| ‖k(v, ·; λ)‖G0

∣∣∣2 ξ(dv)
dλ

2π
,

(6.5.11)
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where we used that σW(v) = ‖k0(v, ·)‖G0
for ξ − a.e. v ∈ V, which holds as

a consequence of Lemma 6.3.4 since Cov(W) = k0kH0 . Similarly, using the
definition of s above, we can upper bound I(η′) by

I(η′) ≤ 2(I1(η
′) + I2(η

′)) , where

I1(η
′) =

∫
V×(−η′,η′)

|λ|−2<(d(v))σ2
W(v) ξ(dv)

dλ

2π
, and

I2(η
′) =

∫
V×(−η′,η′)

|λ|2−2<(d(v))s2(v) ξ(dv)
dλ

2π
.

(6.5.12)

To conclude these preliminaries, by Theorem 6.4.4, we have that Asser-
tion (i) of Theorem 6.4.5 is equivalent to the two following assertions:

(vii) for all η′ ∈ (0, η), we have I(η′) < ∞;

(viii) there exists η′ ∈ (0, η) such that I(η′) < ∞.

We are now ready to prove the claimed implications.
Proof of (i)⇒(ii). Let us define, for any n ∈N,

An =
{

σW > 2−n} ∩ {s ≤ 2n} .

Then, if η′ ∈ (0, 2−2n−1], we have, for Leb− a.e. λ ∈ (−η′, η′) and all v ∈ An,

|λ| ‖k(v, ·; λ)‖ ≤ η′s(v) < 2−n−1 < 2−n < σW(v) ,

which implies that σW(v) − |λ| ‖k(v, ·; λ)‖G0
≥ 2−n − 2−n−1 = 2−n−1 and

thus, with (6.5.11),

I(η′) ≥ 2−2n−2
∫

An×(−η′,η′)
|λ|−2<(d(v)) ξ(dv)

dλ

2π
. (6.5.13)

Suppose that (i) holds. Then so does (vii) and thus, for all n ∈ N, the
integral in (6.5.13) must be finite which implies <(d) < 1/2, ξ − a.e. on
An (since

∫
(−η′,η′) |λ|

−2ddλ = ∞ for d ≥ 1/2). On the other hand, we have⋃
n An = {σW > 0} ∪ {s < ∞} and, by (6.5.9), s < ∞ ξ − a.e.; hence we get

(ii).
Proof of (i)⇒(iii). Note that, for all (v, λ) ∈ V× (−η, η),∣∣∣σW(v)− |λ| ‖k(v, ·; λ)‖G0

∣∣∣2 ≥ σ2
W(v)− 2 |λ| σW(v) ‖k(v, ·; λ)‖G0

≥ σ2
W(v)− 2 |λ| σW(v) s(v) .

and thus, using (6.5.11), we get that, for all η′ ∈ (0, η),

I(η′) ≥
∫
{<(d)<1/2}×(−η′,η′)

|λ|−2<(d(v))
∣∣∣σW(v)− |λ| ‖k(v, ·; λ)‖G0

∣∣∣2 ξ(dv)
dλ

2π
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≥
∫
{<(d)<1/2}×(−η′,η′)

|λ|−2<(d(v))σ2
W(v) ξ(dv)

dλ

2π

− 2
∫
{<(d)<1/2}×(−η′,η′)

|λ|1−2<(d(v))σW(v) s(v) ξ(dv)
dλ

2π

=
∫
{<(d)<1/2}

η′1−2<(d(v))

2π

σ2
W(v)

1− 2<(d(v)) ξ(dv) (6.5.14)

−
∫
{<(d)<1/2}

η′2−2<(d(v))

2π

σW(v) s(v)
1−<(d(v)) ξ(dv) . (6.5.15)

Since d is bounded on V, we have that η′2−2<(d(v)) is upper bounded on
v ∈ V and since (1− <(d(v)))−1 ≤ 1/2 on {<(d) < 1/2}, we get that the
integral in (6.5.15) is bounded from above, up to a multiplicative constant,
by ∫

{<(d)<1/2}
σW(v) s(v) ξ(dv) ≤ ‖σW‖G0

‖s‖G0
,

which is finite using (6.5.9) and ‖σW‖2
G0

= E
[
‖W‖2

G0

]
< ∞. Using again that

d is bounded on V, we have that η′1−2<(d(v)) is lower bounded by a positive
constant on V. Hence, we finally get that, if (i) holds, then (vii) holds as well
and what precedes yields Assertion (iii).
Proof of (ii) and (iii)⇒(i) under (iv) or (v). To obtain (i), it is sufficient to
show that Assertion (viii) holds, which, by (6.5.12), follows from I1(η

′) < ∞
and I2(η′) < ∞. Under Assertion (ii), we have, for all η′ ∈ (0, η),

I1(η
′) =

∫
{<(d)<1/2}

η′1−2<(d(v))

π

σ2
W(v)

1− 2<(d(v)) ξ(dv) ,

and since d is bounded, this integral is finite under (iii). Thus (ii) and (iii)
imply that I1(η

′) < ∞ for all η′ ∈ (0, η). To conclude the proof it only
remains to show that I2(η′) < ∞ for some η′ ∈ (0, η) whenever (iv) or (v)
holds. We have in fact I2(η′) < ∞ for all η′ ∈ (0, η) under (iv) by using (6.5.9)
while under (v), we have I2(η′) = 0 for all η′ ∈ (0, η) since in this case
h(λ) = h(0) so that, in (6.5.8), k(λ) = 0 for all λ ∈ (−η, η) (thus implying
s = 0). This concludes the proof.

6.5.6 Proofs of Section 6.4.3

Proof of Lemma 6.4.6. The statement in i.i.d. case is exactly Düker (2018,
Lemma A.1). The convergence in M(Ω,F ,H0, P) follows from the proof
of Düker (2018, Lemma A.1), which continues to hold under the weaker
assumption that (εk)k∈Z is a white noise.
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Proof of Lemma 6.4.7. Since ε is a white noise, Assertion (v) of Theorem 6.4.5
holds. The result follows since the conditions in (6.4.13) imply Assertions (ii)
and (iii) of Theorem 6.4.5 with and D = IdH0 − N.

The proof of Proposition 6.4.8 relies on the two following lemmas where
the open and closed complex unit discs of C are respectively denoted by
D := {z ∈ C : |z| < 1} and D = {z ∈ C : |z| ≤ 1}.

Lemma 6.5.3. Let E be a Banach space and (an)n∈N ∈ EN such that ‖an‖E −−−−→n→+∞
0 and the series ∑ ‖an − an+1‖E converges. Then for all z0 ∈ D \ {1}, the series

∞

∑
n=0

anzn
0 converges in E and the mapping z 7→

∞

∑
n=0

anzn is uniformly continuous on

[0, z0].

Proof. By assumption on (an), ∑ anzn is a power series valued in E with
convergence radius at least equal to 1, hence is uniformly continuous on the
open disk with radius 1. When |z0| = 1, the result follows using Abel’s
transform.

Lemma 6.5.4. Let H0 be a separable Hilbert space, N ∈ Lb(H0) be a normal
operator with singular value function n on G0 := L2(V,V , ξ) and decomposition
operator U. Define

$ = ξ-essinf
v∈V

<(n(v)) .

Then there exist C ∈ Lb(H0) and (∆k)k∈N ∈ Lb(H0)N with ‖∆k‖Lb(H0)
=

O
(
k−1−$

)
such that, for all z ∈ D,

(1− z)N−Id = C

(
∞

∑
k=0

(k + 1)−Nzk

)
+

∞

∑
k=0

∆kzk , (6.5.16)

where the two infinite sums on the right-hand side are Lb(H0)-valued power series
with convergence radius at least equal to 1. Moreover, if $ > 0, then Eq. (6.5.16)
continues to hold for all z ∈ D \ {1} with the two infinite sums converging in
Lb(H0).

Proof. The proof is three steps. We first show Relation (6.5.16) for all z ∈ D,
then that ‖∆k‖Lb(H0)

= O
(
k−1−$

)
and finally extend the relation to z ∈

D \ {1} when $ > 0.
Step 1. Let z ∈ D, then

(1− z)N−Id = Id + ∑
k≥1

Nkzk ,
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where for all k ≥ 1, Nk = ∏k
j=1

(
Id− N

j

)
. Let k0 ≥ 1, such that ‖N‖Lb(H0)

/k0 <

1 and take k ≥ k0, then

Id− N
k

= exp
(

ln
(

Id− N
k

))
= exp

(
−∑

j≥1

N j

kj j

)
,

and therefore,

Nk =
k0−1

∏
j=1

(
Id− N

j

)
exp

(
−∑

j≥1

N j

j

k

∑
t=k0

1
tj

)
.

Moreover, we have the following asymptotic expansions,

k

∑
t=k0

1
t
=

k

∑
t=1

1
t
−

k0−1

∑
t=1

1
t
= ln(k + 1) + γe −

k0−1

∑
t=1

1
t
+

αk

k

and for all j ≥ 2,

k

∑
t=k0

1
tj =

+∞

∑
k=k0

1
tj −

+∞

∑
k=k+1

1
tj =

β j

kj
0

+
ηk,j

(j− 1)kj−1

where γe is Euler’s constant and (αk)k≥1, (ηk,j)k≥1,j≥2 such that supk≥1 |αk| <

+∞ and supk≥1,j≥2

∣∣ηk,j
∣∣ < +∞ and β j = ∑+∞

t=k0

(
k0
t

)j
satisfies supj≥2 β j <

+∞. This gives, for all k ≥ k0,

Nk = C(k + 1)−N exp

(
−N

αk

k
−∑

j≥2

N jηk,j

(j− 1)kj−1

)

where

C =
k0−1

∏
j=1

(
Id− N

j

)
exp

(
−N

(
γe −

k0−1

∑
t=1

1
t

))
exp

(
−∑

j≥2

(
N
k0

)j β j

j

)
.

Combining everything, we get

(1− z)N−Id = Id +
k0−1

∑
k=1

k

∏
j=1

(
Id− N

j

)
zk

+ C ∑
k≥k0

(k + 1)−N exp

(
−N

αk

k
−∑

j≥2

N jηk,j

(j− 1)kj−1

)
zk

which leads to Relation (6.5.16) with

∆0 = Id− C ,

∆k =
k

∏
j=1

(
Id− N

j

)
− C(k + 1)−N , for all 1 ≤ k ≤ k0 − 1,
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∆k = C(k + 1)−N

[
exp

(
−N

αk

k
−∑

j≥2

N jηk,j

(j− 1)kj−1

)
− Id

]
, for all k ≥ k0.

Step 2. For all k ≥ k0, denoting by Φk := −N αk
k −∑j≥2

N jηk,j

(j−1)kj−1 , we get

‖∆k‖Lb(H0)
=
∥∥∥C(k + 1)−N

(
eΦk − Id

)∥∥∥
Lb(H0)

≤ ‖C‖Lb(H0)

∥∥∥(k + 1)−N
∥∥∥
Lb(H0)

∑
t≥1

‖Φk‖t
Lb(H0)

t!
= O

(
k−1−$

)
,

where we used that

‖Φk‖Lb(H0)
≤ ‖N‖Lb(H0)

|αk|
k

+ ∑
j≥2

‖N‖j
Lb(H0)

ηk,j

(j− 1)kj−1

= ‖N‖Lb(H0)

 |αk|
k

+ ∑
j≥1

‖N‖j
Lb(H0)

jkj ηk,j+1

 = O
(

k−1
)

,

and that
∥∥(k + 1)−N

∥∥
Lb(H0)

=
∥∥(k + 1)−Mn

∥∥
Lb(H0)

=
∥∥∥M(k+1)−n

∥∥∥
Lb(H0)

=

ξ-essupv∈V

∣∣∣(k + 1)−n(v)
∣∣∣ = (k + 1)−$.

Step 3. We now assume $ > 0 and extend (6.5.16) to D \ {1}, that is to the
case z = e−iλ for some λ ∈ T \ {0}. For such a λ, we already have, for all
0 < a < 1,

(1− ae−iλ)N−Id = C ∑
k≥0

(k + 1)−Nake−iλk + ∑
k≥0

∆kake−iλk .

Moreover, (1 − e−iλ)N−Id = lima↑1(1 − ae−iλ)N−Id by continuity of z 7→
(1 − z)N−Id in D \ {1} and ∑k≥0 ∆ke−iλk = lima↑1 ∑k≥0 ∆kake−iλk because

∑k≥0 ‖∆k‖Lb(H0)
< +∞. It remains to show that ∑k≥0(k + 1)−Nz is well

defined on U \ {1} and that, for λ ∈ T \ {0}, ∑k≥0(k + 1)−Nake−iλk con-
verges to ∑k≥0(k + 1)−Ne−iλk as a ↑ 1, which we prove at once by applying
Lemma 6.5.3. For all k ∈N, we have∥∥∥(k + 1)−N

∥∥∥
Lb(H0)

= ξ-essup
v∈V

∣∣∣(k + 1)−n(v)
∣∣∣ = (k + 1)−$ ,

Since $ > 0, we get that
∥∥(k + 1)−N

∥∥
Lb(H0)

→ 0 as k → ∞. Hence, to apply
Lemma 6.5.3 it only remains to show

∑
k∈N

∥∥∥(k + 1)−N − (k + 2)−N
∥∥∥
Lb(H0)

< ∞ . (6.5.17)
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Note that we have, for all k ∈N,∥∥∥(k + 1)−N − (k + 2)−N
∥∥∥
Lb(H0)

= ξ-essup
v∈V

∣∣∣(k + 1)−n(v) − (k + 2)−n(v)
∣∣∣ .

(6.5.18)

Moreover, for all k ∈N, and ξ − a.e. v ∈ V, since <(n(v)) ≥ $ > 0, we have∣∣∣(k + 1)−n(v) − (k + 2)−n(v)
∣∣∣ = |k + 1|−<(n(v))

∣∣∣∣1− exp
(
− ln

(
1 +

1
k + 1

)
n(v)

)∣∣∣∣
≤ ς α(ς ln(2)) (k + 1)−$ ln

(
1 +

1
k + 1

)
,

where we set ς := ξ-essup |n| and, for any r > 0,

α(r) := sup
{∣∣∣∣1− e−z

z

∣∣∣∣ : z ∈ C 0 < |z| ≤ r
}

.

This leads to the asymptotic bound, as k→ ∞,

ξ-essup
v∈V

∣∣∣(k + 1)−n(v) − (k + 2)−n(v)
∣∣∣ = O

(
(k + 1)−$−1

)
.

Hence, with (6.5.18) and the assumption $ > 0, we obtain (6.5.17) and Step 3

is completed.

Proof of Proposition 6.4.8. The processes Y and FFID(ε) are well defined by
Lemma 6.4.6 and Lemma 6.4.7 respectively. Moreover, the first condition
in (6.4.13) gives $ ≥ 1/2 in Lemma 6.5.4 which therefore implies that there
exists C ∈ Lb(H0) and (∆k)k∈N ∈ Lb(H0)N with ‖∆k‖Lb(H0)

= O(k−3/2) (in
particular ∑+∞

k=0 ‖∆k‖Lb(H0)
< +∞) such that, for all λ ∈ T \ {0},

(1− e−iλ)N−Id = C
∞

∑
k=0

(k + 1)−Ne−iλk +
∞

∑
k=0

∆ke−iλk in Lb(H0) , (6.5.19)

thus concluding the proof.



Part III

M U LT I - S I T E S E L E C T R I C A L L O A D
D I S A G G R E G AT I O N A N D C L U S T E R I N G

In Part iii, we propose to address the practical objective using a
non-negative tensor factorization model for multi-sites electrical
load curves disaggregation. This model is presented in Chap-
ter 7, where we derive updates for the corresponding optimiza-
tion problem and show on concrete examples how this formula-
tion is helpful for exhibiting smooth intraday consumption pat-
terns and taking into account external variables such as the out-
side temperature. This model satisfies the industrial expectations
and is currently being implemented in a web interface to be used
as an analysis tool at the TREE department of EDF R&D. Chap-
ter 8 we study the problem of non-negative tensor factorization
from a theoretical point of view. In particular, since missing data
and smoothness are naturally present in the model introduced
in Chapter 7, we study the link between these two characteris-
tics and their effect on the existence of a global optimum for the
resulting minimization problem. More precisely, we show that,
contrarily to the case where all entries are observed, the non-
negative tensor factorization problem does not necessarily have
a global optimum if some entries are missing. However, we show
that adding smoothness constraints can guarantee the existence
of such an optimum. Both the derivation of the constraint and
the resulting optimization problem presents several algorithmic
challenges which are addressed in this chapter.





I N T R O D U C T I O N A N D M O T I VAT I O N

The analysis of load curves collected from smart meters is a key step for
many energy management tasks ranging from consumption forecasting to
customers characterization and load monitoring. (see Wang, Chen, Hong,
and Kang, 2019 for a recent review). Among these tasks, in the context of my
PhD, EDF was interested in addressing the practical objective (PO). This ob-
jective can be seen a jointly performing two popular tasks from energy load
curves analysis, namely load curves comparison and load curves disaggregation,
in a multi-sites setting. In fact, these two tasks correspond to specific in-
stances of the time series comparison and representation discussed in Chap-
ter 1. The goal of load curves curves is, in general, clustering (for example
for customers characterization). In this context, the meaning of the clusters
themselves is more important than the characteristics of the consumption.
On the other hand, load curve disaggregation aims at decomposing a load
curve as a sum of curves each representing a particular consumption pat-
tern. A popular example is Non Intrusive Load Monitoring (NILM) which
was introduces in Hart, 1992 and where each consumption pattern is linked
to one several devices present in the building. The two following paragraphs
provide a brief overview of the methods used in the literature for these tasks.

comparing load curves . The problem of comparing a panel of load
curves

Xt(u) , u ∈ U , t = 1, · · · , T ,

where U is an interval of R (e.g. U = [0, 24) for daily load curves) can
be found in both the mono-site and multi-site contexts depending on the
meaning given to the index t. In both cases we aim at regrouping the load
curves with similar consumption patterns into one cluster. Each cluster
then represents a particular consumption behavior. In the mono-site con-
text, t usually represents the day and we aim at assigning each day to a
specific cluster, which corresponds to a particular typical daily consumption
behavior, (see e.g. Antoniadis, Brossat, Cugliari, and Poggi, 2013; Bouvey-
ron, Bozzi, Jacques, and Jollois, 2018; Richard, Fortin, Fournier, Leduc, and
Poulin, 2017). In the multi-site context, each t usually represents a site (or
customer) as in Chicco, Napoli, and Piglione, 2006; Chicco, 2012; Wang,

189
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Chen, Kang, Zhang, Wang, and Zhao, 2015. In this case, if multiple load
curves are observed for each site, they are aggregated to a unique “repre-
sentative” load curve for each site. It is also possible to see the index t as
representing both the site and a time period (days, seasons, week day) as in
McLoughlin, Duffy, and Conlon, 2015; Yilmaz, Chambers, and Patel, 2019.

Regardless of the meaning given to the index t, this problem can be
placed in the framework of time series comparison and therefore we find
approaches based on the strategies discussed in Chapter 1. For example,
Chicco, Napoli, and Piglione, 2006; Chicco, 2012; McLoughlin, Duffy, and
Conlon, 2015; Tsekouras, Kotoulas, Tsirekis, Dialynas, and Hatziargyriou,
2008; Wang, Chen, Kang, Zhang, Wang, and Zhao, 2015 use clustering meth-
ods directly on the raw observations while Albert and Rajagopal, 2013; Azad,
Ali, and Wolfs, 2014; Notaristefano, Chicco, and Piglione, 2013; Yilmaz,
Chambers, and Patel, 2019 use hand-designed or model-based features. Di-
mension reduction methods have also been used (e.g. Chicco, Napoli, and
Piglione, 2006). More recently, deep learning approaches (Arechiga, Barocio,
Ayon, and Garcia-Baleon, 2016; Ryu, Choi, Lee, Kim, and Wong, 2018; Varga,
Beretka, Noce, and Sapienza, 2015) and functional data clustering (Bouvey-
ron, Bozzi, Jacques, and Jollois, 2018; Dasgupta, Srivastava, Cordova, and
Arghandeh, 2019; Teeraratkul, O’Neill, and Lall, 2018) have been proposed.

load curves disaggregation. We formulate the problem of load
curves disaggregation as a decomposition

Xt(u) ≈
R

∑
r=1

x(r)t (u) ,

where u ∈ U represents time (e.g. the intra-day time if U = [0, 24)) and t rep-
resent the observation (e.g. the sensor but also the day or the site in other con-
texts). In NILM, the variable x(r)t represents the load curve of the r-th device
for the given observation t and, again, several methods have been proposed,
from hand-designed methods (e.g. Dong, Meira, Xu, and Chung, 2013; Hart,
1992; Paris, Donnal, and Leeb, 2014) or Hidden Markov Models (e.g. Aiad
and Lee, 2016; Egarter, Bhuvana, and Elmenreich, 2015; Hart, 1992; Kim,
Marwah, Arlitt, Lyon, and Han, 2011) to recent deep learning models of De-
vlin and Hayes, 2019; Huber, Calatroni, Rumsch, and Paice, 2021; Kelly and
Knottenbelt, 2015; Singh and Majumdar, 2018). Over the past decade, blind
source separation methods such as Nonnegative matrix factorization (NMF)
or sparse coding have gained in popularity in the NILM community (see
Elhamifar and Sastry, 2015; Figueiredo, Ribeiro, and Almeida, 2013; Garcı́a,
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Dı́az, Pérez, Cuadrado, Domı́nguez, and Morán, 2018; Henriet, Dos Santos,
Fuentes, and Richard, 2019; Kolter, Batra, and Ng, 2010; Lange and Bergés,
2016; Miyasawa, Fujimoto, and Hayashi, 2019; Rahimpour, Qi, Fugate, and
Kuruganti, 2017). The idea behind NMF for NILM is to decompose the load
curve of the r-th device as a signature curve ar(u) ≥ 0 which is modulated
across observations by an activation bt,r ≥ 0. The full model becomes

Xt(u) ≈
R

∑
r=1

x(r)t (u) =
R

∑
r=1

ar(u)bt,r ,

which corresponds to the pattern-based model of (1.2.1) and is a functional
formulation of the usual NMF.

In a multi-site context, disaggregating the load curves can be a way to
extract features to describe the load profiles and compare the sites, thus
achieving the practical objective (PO). As discussed in Section 3.2, it is in-
teresting to rely on representations with common loadings. An advantage
of the NMF approach is that, it has a natural multi-sites extension which
satisfies this property. This extension is called Nonnegative Tensor Factor-
ization (NTF). In our context, assuming we observe a panel of daily load
curves {Xn,t(u) : u ∈ [0, 24), t ∈ J1, TK, n ∈ J1, NK} where u represents the
intra-day time, j the observed day and n the site, a functional formulation of
the classical NTF model writes as

Xn,t(u) ≈
R

∑
r=1

ar(u)bt,rcn,r , (iii.1)

where ar(u) ≥ 0 is the signature which is modulated across days by the day
activation bt,r ≥ 0 and across sites by the site activation cn,r ≥ 0. The signature
and activations are refered to as the factors.

When the constraints of positivity are relaxed, the decomposition (iii.1)
is know as the CANDECOMP/PARAFAC (CP) decomposition (see Carroll
and Chang, 1970; Harshman, 1970; Hitchcock, 1927). The CP decomposi-
tion and NTF are very popular is various domains ranging from chemomet-
rics and psychometrics to signal processing and machine learning (see Ci-
chocki, Zdunek, Phan, and Amari, 2009; Kolda and Bader, 2009; Sidiropou-
los, De Lathauwer, Fu, Huang, Papalexakis, and Faloutsos, 2017 and the
references therein). One of the strengths of these models is that they can of-
ten be adapted to take into account missing data and/or prior knowledge on
the data such as non-negativity, sparsity or smoothness. This flexibility ex-
plains their popularity in real worlds applications for which interpretability
of the model is necessary. For these reasons, these models seem appropri-
ate to address the practical objective (PO). However, their use in electrical
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load curves analysis is still recent. For example, Figueiredo, Ribeiro, and
Almeida, 2014; Figueiredo, Ribeiro, and Almeida, 2015 use NTF to model
the consumption of several devices in order to perform NILM in a super-
vised setting. Recently Sandoval, Barocio, Korba, and Sevilla, 2020 proposed
to use PARAFAC for multi-sites load curves disaggretation in an unsuper-
vised setting. The authors provide several applications such as data storage,
data completion and, in particular, clustering of the sites by clustering the
vectors of site activations, i.e. cn = (cn,1, · · · , cn,R)

>. However, they do not
give any interpretation of the factors nor the clusters. In Chapter 7, we pro-
pose several modifications of the NTF model (iii.1) in order to orient the
decomposition into more interpretable factors. Following the conclusions
of Chapter 2, we also use additional knowledge on the outside temperature
and different consumption regimes. The optimization problem related to our
model is expressed as a usual NTF problem with weights and an algorithm
is proposed to get an estimated solution of this problem.



7

S M O O T H N O N - N E G AT I V E T E N S O R FA C T O R I Z AT I O N
F O R M U LT I - S I T E S E L E C T R I C A L L O A D M O N I T O R I N G

In this chapter, we introduce a model based on a functional formulation
of non-negative tensor factorization (NTF) and derive updates for the cor-
responding optimization problem. We show on the example of multi-sites
load curves disaggregation how this formulation is useful to address the
practical objective (PO) by 1) exhibiting smooth intraday consumption pat-
terns and 2) taking into account external variables such as the outside tem-
perature. The benefits are demonstrated on simulated and real data by
exhibiting a meaningful clustering of the observed sites based on the ob-
tained decomposition. Throughout this chapter, we assume that we ob-
serve a dataset {(Xn,t(ui), Tn,t, εn,t) : i ∈ J1, IK, n ∈ J1, NK, t ∈ J1, TK} where
(ui)i∈J1,IK ∈ [0, 24)I are sampling points, and Xn,t : u 7→ Xn,t(u), Tn,t ∈ R and
εn,t ∈ J1, EK respectively represent the daily load curve, the average external
temperature and the consumption regime for the site n ∈ J1, NK and day
t ∈ J1, TK. For example, for EDF’s data, the regimes the opening and closing
days computed in Section 2.3.

7.1 Proposed model

Based on the observations of Section 2.6, we use the a priori assumption that
the dependence between Xn,t(u) and t is fully explained by the variables Tn,t

and εn,t. With this assumption in mind, we propose to replace the NTF
model of (iii.1) by

Xn,t(u) ≈
R

∑
r=1

ar(u)br(Tn,t)c
(εn,t)
n,r , (7.1.1)

where ar(u) ≥ 0, br(τ) ≥ 0, c(ε)n,r ≥ 0. We also assume that the functions ar

and br are smooth and that ar is periodic with a period of 24 hours (since it

193
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represents intra-day behavior). By analogy to the NMF and NTF cases we
call the functions br the thermal activations.

In order to estimate the functions ar and br of (7.1.1) from discrete data,
{Xn,t(ui) : i ∈ J1, IK, t ∈ J1, TK, n ∈ J1, NK}, we need to rely on smoothing as
discussed in Section 1.3.2. To this end, two approaches are possible: the
basis approach and the penalization approach.

the basis approach . In the basis approach, we express ar in a an
adapted functional basis (v1, · · · , vK) as in (1.3.2). Namely, we write

ar(u) =
K

∑
k=1

αkvk(u) , (7.1.2)

and estimate the coefficients vector α = [α1, · · · , αK]
>. In this framework,

two options are usually used to respect the non-negativity constraints.

• The first option is to estimate α such that ar(ui) ≥ 0 for all i ∈ J1, IK.
From (7.1.2), this is a linear constraint in α, but it only ensures that
the function ar is non-negative at the sample points. This approach
is followed in Hautecoeur and Glineur, 2021; Sadowski and Zdunek,
2018; Zdunek, 2014; Zdunek, 2012.

• The second option consists in taking a basis of non-negative functions
such as B-Splines and constraining the coefficients of the function to
be non-negative. Namely, we assume that vk(u) ≥ 0 for all u ∈ [0, 24)
and k ∈ J1, KK and search for α ∈ RK

+. This approach is followed
in e.g. Yokota, Zdunek, Cichocki, and Yamashita, 2015; Zdunek, Ci-
chocki, and Yokota, 2014 and ensures that ar(u) ≥ 0 for all u ∈ [0, 24).
However, in the case where (vk)k∈J1,KK is a B-spline basis, Boor and
Daniel, 1974 showed that estimating a non-negative function with this
approach may not be optimal.

It should be noted that, recently, Hautecoeur and Glineur, 2020 proposed an
algorithm which ensures that ar(u) ≥ 0 for all u ∈ [0, 24) without requiring
that α ∈ RK

+. Their method is based on an optimal non-negative projection
onto the space Span (v1, · · · , vK) in the case where the vk’s are B-splines.

the penalization approach . In the penalization approach, we add
a penalty term P(ar) to the loss which is used to estimate the factors in
(7.1.1) (e.g. the mean square loss). Classical examples of penalty ensuring
smoothness are the total variation norm P(ar) = ‖ar‖p

TV,p =
∫
|a′r|

p (usually
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for p = 1, 2) and the L2-norm of the second derivative P(ar) =
∫
|a′′r |

2.
The former penalty is approximated by a Riemann integral and the lat-
ter presents the advantage of implying that ar is a spline function as re-
called in Section 1.3.2 which becomes entirely characterized by the points
(ar(ui))i∈J1,IK. The downside of this penalized approach is that, there is no
simple method to ensure that ar is non-negative everywhere and we have to
settle for non-negativity at the sampling points. This approach is followed
in e.g. Cichocki and Phan, 2009; Cichocki, Phan, Zdunek, and Zhang, 2008;
Essid and Fevotte, 2013; Henriet, Dos Santos, Fuentes, and Richard, 2019.

As explained in the above paragraphs, depending on the method used,
we can obtain an estimate of ar which is either non-negative everywhere or
non-negative only at the sampling points. The latter is, in general, sufficient
all the more so as the smoothness of the curves may ensure that they do
not vanish in the neighborhoods of the sampling points. It is also possible
to add artificial sampling points and treat them as missing values in the
optimization problem. For these reasons, we focus on a penalized approach
expressed as the optimization problem proposed in the next section. Basis
approaches are left to future work.

7.1.1 The optimization problem

Let us consider two grids (u1, · · · , uI) ⊂ [0, 24) and (τ1, · · · , τK) ⊂ R which
contain all the observed intra-day times and temperatures. Let also E be the
number of consumption regimes so that εn,t ∈ J1, EK for all n ∈ J1, NK and
t ∈ J1, TK. Then the factors ar, br, c(ε)r , are estimated by solving the following
penalized least square problem.

min {F + P} ,

under the constraint that, for all r, i, k, n, ε, (7.1.3)

ar(ui) ≥ 0 , br(τk) ≥ 0 , c(ε)n,r ≥ 0

ar(0+) = ar(24−)

a′r(0+) = a′r(24−)

a′′r (0+) = a′′r (24−)
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where

F = ∑
i,j,n

(
Xn,t(ui)−

R

∑
r=1

ar(ui)br(Tn,t)c
(εn,t)
n,r

)2

,

P = α
R

∑
r=1

∫ 24

0
(a′′r )

2 + β
R

∑
r=1

∫ τK

τ1

(b′′r )
2 .

The scaling constraints prevent the factors from diverging since the error
F is not affected by multiplying one of the factors by a constant as soon as
the other factors are scaled accordingly. These scaling constraints also make
sure that we can compare the site activations.

Finally, the penalizations on the L2-norm of the second derivatives imply
that the solutions of Problem (7.1.3) are necessarily smooth spline functions.
More precisely, for all r ∈ J1, RK, the function ar must be a 24-periodic cu-
bic spline and the function br must be a natural cubic spline. Since spline
functions are characterized by their sample points, we can reformulate the
problem as a weighted NTF.

7.1.2 Formulation as a weighted NTF problem

We reformulate Problem (7.1.3) taking advantage of the fact that spline func-
tions are entirely characterized by their sample points. Classical results on
spline (see e.g. Green and Silverman, 1994) imply that that there exist v1 ∈ RI

and Q1 ∈ RI×I positive definite such that for any 24-period cubic spline a
on [0, 24), we have∫ 24

0
a = v>1 a and

∫ 24

0
(a′′)2 = a>Q1a , (7.1.4)

with a = [a(u1), · · · , a(uI)]
>.

Similarly there exist v2 ∈ RK and Q2 ∈ RK×K positive definite such that
for any cubic spline b on [τ1, τK], we have∫ τK

τ1

b = v>2 b and
∫ τK

τ1

(b′′)2 = b>Q2b , (7.1.5)

with b = [b(τ1), · · · , b(τK)].
Now, let us define W ∈ RI×K×EN , X ∈ RI×K×EN by

Wi,k,(ε−1)N+n =

(
T

∑
t=1

1{Tn,t=τk}1{εn,t=ε}

)1/2

,
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and

Xi,k,(ε−1)N+n =
∑T

t=1 1{Tn,t=τk}1{εn,t=ε}Xn,t(ui)

W2
i,k,(ε−1)N+n

,

with the convention that 0/0 = 0.
Then the following result, where ~ and ◦ are the Hadamard and outer

products defined in Appendix C.

Proposition 7.1.1. The solutions of Problem (7.1.3) are entirely characterized by
the solutions of the following penalized weighted NTF problem.

min
A∈RI×R

+ ,B∈RK×R
+ ,C∈REN×R

+

fW(A, B, C)

such that for all r ∈ J1, RK, (7.1.6)

v>1 ar = v>2 br = 1

where

fW(A, B, C) = LW(A, B, C) + αTr(A>Q1A) + βTr(B>Q1B)

with

LW(A, B, C) =

∥∥∥∥∥W~

(
X−

R

∑
r=1

ar ◦ br ◦ cr

)∥∥∥∥∥
2

2

, (7.1.7)

and (v1, Q1), (v2, Q2) are taken as in (7.1.4) and (7.1.5) respectively.

Proof. First, we know, from the penalization terms of (7.1.3), that the solution
must be such that ar and br are 24-periodic and natural cubic splines respec-
tively. Then, defining A = [a1, · · · , aR] ∈ RI×R

+ , B = [b1, · · · , bR] ∈ RK×R
+

and C = [c1, · · · , cR] ∈ REN×R
+ by

Ai,r = ai,r = ar(ui),

Bk,r = bk,r = br(tk),

C(ε−1)N+n,r = c(ε−1)N+n,r = cε
n,r ,

we get that (7.1.3) reduces to (7.1.6) where, L is replaced by L̃ defined as

L̃(A, B, C) + αTr(A>Q1A) + βTr(B>Q2B) ,

with

L̃(A, B, C) = ∑
i,t,n

(
Xn,t(ui)−

K

∑
k=1

E

∑
ε=1

1{Tn,t=τk}1{εn,t=ε}JA, B, CKi,k,(ε−1)E+n

)2

,

where JA, B, CK = ∑R
k=1 ar ◦ br ◦ cr.



198 smooth ntf for multi-sites electrical load monitoring

To conclude the proof, we now show that L̃ is equal to L up to an additive
constant which does not depend on A, B, C. Noticing that

K

∑
k=1

E

∑
ε=1

1{Tn,t=τk}1{εn,t=ε} = 1 ,

we get

L̃(A, B, C) = ∑
i,t,n

K

∑
k=1

1

∑
ε=0

1{Tn,t=τk}1{εn,t=ε)

(
Xn,t(ui)− JA, B, CKi,k,(ε−1)εK+k,n

)2

=
1

∑
ε=0

∑
i,k,n

(
T

∑
t=1

1{Tn,t=τk}1{εn,t=ε)Xn,t(ui)
2

)

+
1

∑
ε=0

∑
i,k,n

W2
i,k,(ε−1)E+nJA, B, CK2

i,k,(ε−1)E+n

− 2
1

∑
ε=0

∑
i,k,n

W2
i,k,(ε−1)E+nXi,k,(ε−1)E+nJA, B, CKi,k,(ε−1)E+n

= C(X) + L(A, B, C) ,

where C(X) is a constant which depends only on X. This concludes the
proof.

7.1.3 HALS algorithm

Problem is not convex in (A, B, C) and many approaches can be found in
the literature to provide an estimated local minimum, in general, in the
form of an iterative procedure. In this section, we propose a Hierarchical
Alternating Least Squares (HALS) methods which consists in minimizing
fW alternatively in the columns of A, B, C using the fact that LW(A, B, C)

in (7.1.7) writes, for all r ∈ J1, RK, as

LW(A, B, C) =
∥∥∥W~ (X(r) − ar ◦ br ◦ cr)

∥∥∥2

2
,

where X(r) := X−∑s 6=r as ◦ bs ◦ cs.
Assuming that all variables are fixed except ar for some r ∈ J1, RK, we

write LW(A, B, C) as a quadratic function applied to ar. Namely,

LW(A, B, C) = a>r Mrar + 2u>r ar +
∥∥∥W~ X(r)

∥∥∥2

2
,

where we have defined Mr := diag(W~2
(1)(cr ⊗ br)~2) ∈ RI×I and ur :=

−
(

W~2
(1) ~ X(r)

(1)

)
(cr ⊗ br) ∈ RI .
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With this formulation, the update for ar writes as

ar = argmin
a∈RI

+, v>a=1

1
2

a>(Mr + αQ1)a + u>r a ,

which can be solved using quadratic programming. However, it is common
in the matrix and tensor factorization community to give an approximated
solution where we solve the unconstrained problem, take the positive part
and then rescale the solution. With this approximation, the update follows
the two steps

ar ← −(Mr + αQ1)
−1ur

ar ←
[ar]+

v>1 [ar]+
,

where [a]+ is the vector in RI
+ whose i-th entry is max(ai, 0) (in practice we

usually take max(ai, ε) for a small ε > 0).
We can now derive the HALS for the optimization problem (7.1.6) as pro-

vided in Algorithm 7.1.1.
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Algorithm 7.1.1: HALS algorithm for Problem (7.1.6).
Data: X, W, Q1, Q2, v1, v2 and initial values for A, B, C

1 E = X−∑R
r=1 ar ◦ br ◦ cr

2 repeat
3 for r = 1, · · · , R do

4 X(r) = E + a(1)r ◦ · · · ◦ a(N)
r

/* update ar */

5 ar =
(

diag(W~2
(1)(cr ⊗ br)~2) + αQ1

)−1 (
W~2

(1) ~ X(r)
(1)

)
(cr ⊗ br)

6 ar =
[ar ]+

v>1 [ar ]+

/* update br */

7 br =
(

diag(W~2
(2)(cr ⊗ ar)~2) + βQ2

)−1 (
W~2

(2) ~ X(r)
(2)

)
(cr ⊗ ar)

8 br =
[br ]+

v>2 [br ]+

/* update cr */

9 cr =
(

diag(W~2
(3)(br ⊗ ar)~2

)−1 (
W~2

(3) ~ X(r)
(3)

)
(br ⊗ ar)

10 cr = [cr]+

/* update residuals */

11 E = X(r) − a(1)r ◦ · · · ◦ a(N)
r

12 until Change of fW(A, B, C) is sufficiently small;
13 return A, B, C
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7.2 Experimental results

We validate our model on two datasets. The first was extracted from en-
ergy demand data simulated for 1 year and with hourly rate by the Office
of Energy Efficiency & Renewable Energy (EERE)1. We took a total of 775
sites in California, Arizona, Nevada, Utah, Oregon, Idaho and Washington,
gathering 5 different building types. The second dataset consists of energy
demand collected by EDF from 108 supermarkets across France over a period
of 1 year with a sample rate of 10 minutes. The average external temperature
of each day is observed for each site2, EERE’s data have one consumption
regime and EDF’s data have two consumption regimes (closing and open-
ing days). Because of space constraints, we will not discuss the detection of
regimes. In order to compare sites of different sizes we scale the observed
load curves by the average daily consumption.

For both NTF and our model, we use the Fast HALS updates and the al-
gorithm is stopped when the relative improvement of the loss reaches 10−5.
Each factors was initialized by taking the positive part of the singular vectors
of the corresponding unfolding of X (e.g. ar = [φr]+ where φr is the r-th
singular vector of X(1)). Since there is no foolproof method to select the num-
ber of components R (see Bro and Kiers, 2003; Ceulemans and Kiers, 2006;
Timmerman and Kiers, 2000 for ad-hoc methods) and since cross-validation
is not straightforward with tensor data (see Bro, Kjeldahl, Smilde, and Kiers,
2008; Owen and Perry, 2009), we take R = 6 and α = β = 3000 for EERE’s
data and α = β = 100 for EDF’s data. This choice gives a good balance
between goodness of fit and interpretation of the factors. We also found em-
pirically that it helps to start a few iterations of the algorithm with a smaller
value of the penalization to get closer to a local optimum. For clustering, we
run K-means on the sites activations for all regimes. This means that site n
is represented by the feature vector (c(1)n,1, · · · , c(1)n,R, · · · , c(E)

n,1 , · · · , c(E)
n,R) where

we recall that E is the number of regimes.

1The data is available at https://openei.org/doe-opendata/dataset/commercial-and
-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states.

2EERE’s data can be obtained from the TMY3 weather stations using the eeweather

Python package.

https://openei.org/doe-opendata/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states
https://openei.org/doe-opendata/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states
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7.2.1 Results on EERE’s data

The factors obtained by NTF and our model are represented in Figure 7.1
where the colors correspond to the building types. The dependence on the
temperature is justified by the fact that the day activations of NTF mainly
indicate season changes. Moreover, the advantage of smoothing the signa-
tures is that only the most important peaks are kept, which is valuable for
interpretation. The radar plots of the site activations presented in Figure 7.2
show a better separation of the building types with our model (especially be-
tween the restaurants). To quantify this observation, we ran K-means with
5 clusters and compared the clusters with the true labels using the adjusted
random index. Our model gives a perfect fit with an adjusted random index
of 1 compared to 0.75 for NTF which mostly fails to separate the two types
of restaurants. In our model, both hotels have a high site activation in Com-
ponent 2 whose signature is typical of a hotel (high for breakfast and dinner
and medium for lunch). Small Hotels tend to heat at night (Component 4)
while Large Hotels tend to heat during the day (Component 1). Apartments
have a high site activation in Component 4 whose signature and thermal
activation are typical of heating in residential buildings. Components 5 and
6 also characterize the Apartments and can be interpreted as holidays and
working days respectively. Indeed, the thermal activation of Component 5 is
high when it is very cold and very hot (winter and summer holidays) where
people are more at home in the middle of the day (where the signature is
high) while the thermal activation of Component 6 peaks for medium tem-
peratures and its signature presents a typical working day profile. Finally,
the signature of Component 3, which peaks before lunch and dinner (and
a bit before breakfast), is characteristic of restaurants. The difference be-
tween the two types of restaurants is well explained by the factorization.
Indeed, Component 3 is larger for Quick Service Restaurants, thus indicat-
ing that they usually present more activity before lunch time. On the other
had, Component 1 is larger for Full Service Restaurant. In particular, this
indicates a high activity before dinner and larger use of heating. Finally, con-
trary to Quick Service Restaurants, we observe that Component 5 has some
weight in Full Service Restaurants. This is consistent with the interpretation
of this component as holidays during which people have more lunch time
and therefore may go to bigger restaurants.
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(a) NTF

(b) Our model

Figure 7.1: EERE’s Dataset : factors
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(a) NTF

(b) Our model

Figure 7.2: EERE’s Dataset : site activations
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7.2.2 Results on EDF’s data

The results obtained for EDF’s data are presented in Figure 7.3 where the
colors correspond to the clusters obtained by K-means. The number of clus-
ters was selected by the Davies-Bouldin index (between 2 and 9 clusters).
The two consumption regimes can be seen in the day activations of NTF
which justifies taking them into account in our model. The site activations
are not very diverse in NTF and the two clusters obtained mainly differ
from each other by Components 1 and 5 which respectively represent the
standard profiles of opening and closing days. On the contrary, our model
seems to extract more variable site activations (see also Figure 7.4) thus ex-
hibiting more clusters. The interpretation of the components is also easier
because of smoothness and of the dependence on temperature. We observe
3 heating profiles (Components 1, 3, 6) and 3 cooling profiles (Components
2, 4, 5). For both heating and cooling we observe one component which
characterizes the closing days: Component 1 for heating and Component 5

for cooling. These closing days components have similar signature which
peaks when the supermarket is closed, thus indicating a smaller difference
between opening and closing hours as it should be expected for closing days.
The signature of Component 3 is characteristic of heaters since it peaks in the
morning and then slowly decays because of inertia. The signature and ther-
mal activation of Component 4 indicate that it represents air conditioning
which is activated for high temperatures and in the middle of the day. Fi-
nally, the thermal activation of Component 2 indicates that it represents food
refrigeration which is activated for lower temperatures than air conditioning
and reaches a saturation level for high temperatures.

To interpret the cluster, it is more convenient to look at the cluster cen-
ters whose radar plots are displayed in Figure 7.4b. By comparing the radar
plots, we propose the following interpretation. Cluster 1: high heating (Com-
ponent 3) and air conditioning (Component 4) profiles. Cluster 2: medium
heating profile (Component 6). Cluster 3: High heating (Component 3) and
food refrigeration (Component 2) and small impact of air conditioning (Com-
ponent 4). Cluster 4: Small difference between opening and closing days
(Components 1 and 5) and small impact of air conditioning (Component 4).

Giving a meaning to the factors and clusters is highly valuable for mon-
itoring or maintenance purpose. For example, for high temperatures, sites
in Cluster 1 should reduce their use of air conditioning while for sites in
Cluster 3 should focus on food refrigeration. For low temperatures, sites in
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Clusters 1 and 3 should reduce their use of heating while sites in Cluster 2

present a different heating profile which should be treated separately.

7.3 Conclusion

We proposed a model based on a functional formulation of the non-negative
tensor factorization model and an associated optimization algorithm for the
disaggregation of multi-sites load curves. By taking into account additional
information such as the outside temperature and smoothness of the factors,
we showed that this model exhibits more meaningful features and clusters
than previously used NTF models.
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(a) NTF

(b) Our model

Figure 7.3: EDF’s Dataset : factors
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(a) All sites in each cluster

(b) Cluster centers

Figure 7.4: EDF’s Dataset : site activations of our model



8

S M O O T H N E S S C O N S T R A I N T S F O R N O N - N E G AT I V E
T E N S O R FA C T O R I Z AT I O N W I T H M I S S I N G VA L U E S

In this chapter, we discuss the optimization problem expressed in Chapter 7

from a theoretical point of view. Although tensor factorization models are
used in a large panel of practical studies, theoretical considerations are still
rare and most of the research focuses on application or on algorithmic con-
siderations to solve large-scale problems. The reason behind this is that
tensor factorization problem are subject to various issues which makes the-
oretical study a challenging research topic. In particular, finding the true
factorization of a tensor is often NP-Hard (Hillar and Lim, 2013) and finding
and approximated factorization requires solving a non-convex optimization
problem through an iterative process based on alternating minimization or
on gradient descent. Since the problem is non-convex, few guarantees exist
on the convergence of the optimization method used except that the objec-
tive function decreases at each iteration and that the algorithm converges
to a local optima. In practical setting, these guarantees are usually enough
provided a good initialization strategy for the algorithm (this can be based
on high order singular values decomposition or simply using multiple ini-
tial points). A question which naturally arises in this context is the existence
of a global optimum. Unfortunately, this is not always guaranteed and de-
generacies have been explored in both theoretical and experimental works
especially for the popular CANDECOMP/PARAFAC (CP) decomposition
(see e.g. Lim and Comon, 2009; Silva and Lim, 2008 and the references
therein). However, it is common knowledge in the inverse problem and
statistical learning communities, that solving ill-posed problems usually re-
quires some form of control controlling on the complexity of the solution
space, for example via regularization (Tikhonov and Arsenin, 1977; Vapnik,
1998). In the context of tensor factorization, is has been shown in Lim, 2005;
Lim and Comon, 2009 that adding non-negativity constraints ensures exis-

209
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tence of a global solution for the CP decomposition. This new decomposition
is known as non-negative tensor factorization (NTF).

In Chapter 7, we expressed our problem as a weighted version of the
usual NTF problem with vanishing weights representing unobserved tem-
peratures or intraday samples for a given site. This motivates us to studying
the impact of missing values on the existence of a global optimum for the
NTF problem. The literature on tensor factorization from the past decades
has given rise to a wide range of algorithms among which some are adapted
to missing values and/or additional constraints. Methods handling miss-
ing values usually fall into one of three following categories : imputation,
weighted least squares and probabilistic models. In the first case, missing
entries are estimated at each iteration resulting in an EM-like algorithm (An-
dersson and Bro, 2000; Bro, 1997). In the second case the squared error
is weighted with binary weights representing missing and observed entries
(see e.g. Acar, Dunlavy, Kolda, and Mørup, 2011; Tomasi and Bro, 2005).
In the last case, prior distributions are proposed for the factors and their
parameters are estimated from the observed data (Rai, Wang, Guo, Chen,
Dunson, and Carin, 2014; Xiong, Chen, Huang, Schneider, and Carbonell,
2010; Zhao, Zhou, Zhang, Cichocki, and Amari, 2016). The problem of miss-
ing entries is also closely related to tensor completion where, in addition to
the factors, one usually also tries to estimate a full tensor which coincides
with the data tensor on observed entries (see e.g Song, Ge, Caverlee, and
Hu, 2019 for a recent survey). Because of the need for efficient algorithms
to deal with large amount of data, the literature on tensor factorization is
dominated by algorithmic considerations, especially when missing values
are taken into account. The only theoretical work we could find on tensor
factorization with missing entries is Jain and Oh, 2014 where a condition
on the probability of missing entries is proposed for symmetric, orthonor-
mal tensors. In this chapter, we use a different approach and study the link
between smoothness and missing values. This is motivated by the model
of Chapter 7 where both smoothness and missing values appear naturally.
Moreover, smoothness has been thoroughly exploited in tensor factorization
and tensor completion (Henriet, Dos Santos, Fuentes, and Richard, 2019;
Imaizumi and Hayashi, 2017; Li, Ye, and Xu, 2017; Reis and Ferreira, 2002;
Sadowski and Zdunek, 2018; Timmerman and Kiers, 2002; Yokota and Ci-
chocki, 2016; Yokota, Zdunek, Cichocki, and Yamashita, 2015) as it can help
solving the ill-posed optimization problem and avoiding overfitting by in-
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corporating prior knowledge in the model while being at the same time
beneficial for the interpretation of the factors as we saw in Chapter 7.

In this chapter, we control smoothness via the total variation norm of the
factors and we show the existence of an upper bound for this norm which
ensures the existence of a global optimum for the NTF problem with miss-
ing values. This approach leads to a constrained optimization problem for
which we propose an algorithm. However, this problem is very challenging
so solve and we show, in a second phase, that it can be relaxed to penal-
ized optimization problem which is simpler to solve while keeping the same
theoretical guarantees. Considering similar results for spline constraints or
using the basis approach would be an interesting and challenging topic for
future work.

In the remaining of this chapter, we consider a N-way tensor X ∈ RI1×···×IN

of data with I1, · · · , IN ∈ N∗ and a N-way tensor of weights W ∈ R
I1×···×IN
+ .

To avoid lengthier notations, we denote by I := ∏N
n=1 J1, InK and an element

i ∈ I is a vector i = (i1, · · · , iN) used to index the tensors. We denote by
IW := {i ∈ I : Wi > 0}. Finally, for a given q ∈ [1,+∞) and I ∈ N∗, we
denote the positive q-norm sphere in RI by S+

I,q :=
{

a ∈ RI
+ : ‖a‖q = 1

}
and we recall that the total variation norm ‖a‖TV,q of a vector a ∈ RI is
defined as ‖a‖TV,q = ‖LIa‖TV,q where

LI :=


1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . . . . . . . . 0

0 · · · 0 1 −1

 ∈ R(I−1)×I . (8.0.1)

8.1 Existence of a global optimum for the weighted
NTF

A tensor Y ∈ RI1×···×IN is said to have a non-negative tensor factorization
with rank-R is there exist N factor matrices A(1) ∈ R

I1×R
+ , · · · , A(N) ∈ R

IN×R
+

such that

Y =
R

∑
r=1

a(1)r ◦ · · · ◦ a(N)
r , (8.1.1)
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where we recall that a(n)r is the r-th column of A(n). It is known that this
formulation of the NTF is ill-posed because of permutation and scaling in-
determinacy. The permutation indeterminacy indicates the fact that

R

∑
r=1

a(1)r ◦ · · · ◦ a(N)
r =

R

∑
r=1

a(1)
σ(r) ◦ · · · ◦ a(N)

σ(r) ,

for any permutation σ of J1, RK and the scaling indeterminacy means that

R

∑
r=1

a(1)r ◦ · · · ◦ a(N)
r =

R

∑
r=1

(αa(1)r ) ◦ (α−1a(2)r ) ◦ a(3)r ◦ · · · ◦ a(N)
r ,

for any α ∈ R∗. The permutation indeterminacy is not problematic because
the user can define an order for the factors depending on the use case. On
the contrary, the scaling indeterminacy implies that one of the factors can
diverge without changing the factorization. To deal with this indeterminacy
we need some constraint for at least N− 1 of the factors. It is therefore usual
to assume that the N− 1 first factors have unit q-norm for some q ∈ [1,+∞).
Equivalently, we can also assume that all factors are normalized and add an
additional scaling parameter, thus reformulating (8.1.1) as

Y =
R

∑
r=1

λra(1)r ◦ · · · ◦ a(N)
r , (8.1.2)

with a(n)r ∈ S+
In,q for some q ∈ [1,+∞) and λr ≥ 0.

In this chapter, we consider the problem of approximating the tensor X by
a tensor of the type (8.1.2). In addition, we assume that some entries of the
tensor can be missing. This can be expressed by using a Hadamard product
with a weights tensor where zeros represent missing entries. This leads to
the following weighted least square problem.

min
λ,A(1),··· ,A(N)

LW(λ, A(1), · · · , A(N))

s.t. ∀r ∈ J1, RK, λr ≥ 0 and ∀n ∈ J1, NK, a(n)r ∈ S+
In,q ,

(8.1.3)

where

LW(λ, A(1), · · · , A(N)) :=

∥∥∥∥∥W~

(
X−

R

∑
r=1

λra(1)r ◦ · · · ◦ a(N)
r

)∥∥∥∥∥
2

2

, (8.1.4)

and W ∈ R
I1,··· ,IN
+ is a binary tensor with value 0 for missing entries and 1

for observed entries. In the following we do not restrict W to be binary and
consider only that W ∈ R

I1,··· ,IN
+ and that it takes the value 0 for missing

entries.
A sufficient condition for the existence of a global minimum for the prob-

lem (8.1.3) is that the function LW is coercive.
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Definition 8.1.1. Let Θ be an unbounded subset of Rd and f : Rd → R. Then we
say that f is coercive on Θ if

lim
‖θ‖2→+∞,θ∈Θ

LW(θ) = +∞ .

In the case where W has only non-zero entries, the arguments of Lim, 2005;
Lim and Comon, 2009 show that the function LW defined in (8.1.4) is coercive
on the set of constraints defined in Problem (8.1.3). In the case where W has
some zero entries, we have to restrict the set of constraints as stated in the
following proposition whose proof can be found in Section 8.5.1.

Proposition 8.1.1. Let A = AR
1 × · · · × AR

N be such that for all n ∈ J1, NK,
An ⊂ S+

In,q. Then the function LW defined in (8.1.4) is coercive on Θ := RR
+ ×A

if and only if the following condition holds

∀(a(1), · · · , a(N)) ∈
N

∏
n=1
An, ∃i ∈ IW, ∀n ∈ J1, NK, a(n)in, > 0 , (8.1.5)

where we recall that IW is the set of indices where W does not vanish and that An

is the closure of An in S+
In,q.

Proposition 8.1.1 implies that, in order to guarantee the existence of a
global minimum, we should minimize LW with the constraint (8.1.5). Un-
fortunately, this constraint is not easily applicable and should be relaxed.
To this end, we propose to use smoothness constraints since, intuitively, if
the factors are smooth enough, they should not vanish too much and there-
fore (8.1.5) can hold. Formally, we look for constants C1, · · · , CN ∈ [0,+∞]

such that (8.1.5) holds if for all n ∈ J1, NK, An =
{

a ∈ S+
In,q : ‖a‖TV,p ≤ Cn

}
,

where p, q ∈ [1,+∞). Note that we allow Cn to be equal to +∞ in case we
do not want to impose any smoothness constraints on the n-th factor. To this
end, we take C1, · · · , CN of the form Cn = ρnC for some C ∈ [0,+∞] and
ρ ∈ (0, ∞]N . We assume that ρ is given by the user and look for a suitable C.
Let us define for all C ∈ [0,+∞],

An,p,q(ρ, C) :=
{

a ∈ S+
In,q : ‖a‖TV,p ≤ ρnC

}
, (8.1.6)

and for ρ ∈ (0,+∞]N ,

Θp,q(ρ, C) := RR
+ ×

N

∏
n=1

(
An,p,q(ρ, C)

)R . (8.1.7)

Consider the following assumption for a pair (I ′,N ) with I ′ ⊂ I and N ⊂
J1, NK.
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Assumption 8.1.1. For all (jn)n∈N ∈ ∏n∈N J1, InK, there exists i ∈ I ′, such that
in = jn, for all n ∈ N .

Then the following proposition holds.

Proposition 8.1.2. Assume that IW 6= I and let ρ ∈ (0,+∞]N , p, q ∈ [1,+∞).
Then there exists a constant Cp,q(ρ, IW) ∈ [0,+∞) such that the following asser-
tions hold.

(i) For all 0 ≤ C < Cp,q(ρ, IW), the function LW is coercive on Θp,q(ρ, C).

(ii) For all Cp,q(ρ, IW) ≤ C ≤ ∞, the function LW is not coercive on Θp,q(ρ, C).

Moreover, Cp,q(ρ, IW) has the following property in which we use notation {ρ =

+∞} = {n ∈ J1, NK : ρn = +∞}.

(iii) We have Cp,q(ρ, IW) > 0 if and only if (IW, {ρ = +∞}) satisfies Assump-
tion 8.1.1.

The proof of Proposition 8.1.2 is provided in Section 8.5.2 and the compu-
tation of the constant Cp,q(ρ, IW) is discussed in Sections 8.5 and 8.7. To end
this section, let us comment on the result provided by Proposition 8.1.2.

Remark 8.1.1. 1. The constant Cp,q(ρ, IW) describes how little we can con-
strain the total variation norm of the factors in order to ensure coercivity of
the loss function LW. In this sense, it is an optimal smoothness constraint.

2. If, for all N ⊂ J1, NK, we define the N -cylinders as a the sets of the type
{i ∈ I : in = jn, ∀n ∈ N}, where (jn)n∈N ∈ ∏n∈N J1, InK, Assertion (iii)
of Proposition 8.1.2 says that the only case in which adding smoothness con-
straints does not give guarantees on the optimization problem is the case where
we have a whole {ρ = +∞}-cylinder missing in the data. In particular we
have the following assertions.

a) If no mode is free, i.e. ρn < +∞ for all n ∈ J1, NK, then Cp,q(ρ, IW) =

0 if and only if W = 0 i.e. no entry is observed.

b) If only one mode is free, say ρ1 = +∞, then Cp,q(ρ, IW) = 0 if and
only if there exists a mode-1 fiber which is missing, i.e. there exists
i1 ∈ J1, I1K such that Wi1,··· ,iN = 0 for all (i2, · · · , iN) ∈ ∏N

n=2 J1, INK.

c) If only two modes are free, say ρ1 = ρ2 = +∞, then Cp,q(ρ, IW) =

0 if and only if there exists a mode-(1, 2) slice which is missing, i.e.
there exists (i1, i2) ∈ J1, I1K × J1, I2K such that Wi1,··· ,iN = 0 for all
(i3, · · · , iN) ∈ ∏N

n=3 J1, INK.
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d) If all modes are free, i.e ρn = +∞ for all n ∈ J1, NK, then Cp,q(ρ, IW) =

0 if and only if IW 6= I .

The conclusion of Proposition 8.1.2 is that we can guarantee the existence
of a global solution for the problem

min
λ,A(1),··· ,A(N)

LW(λ, A(1), · · · , A(N))

such that for all r ∈ J1, RK, and all n ∈ J1, NK,

λr ≥ 0 and a(n)r ∈ S+
In,q with

∥∥∥a(n)r

∥∥∥
TV,p
≤ Cn ,

(8.1.8)

as soon as Cn = ρnC with ρ and C satisfying the assumptions of Propo-
sition 8.1.2. This optimization problem is non-convex and has non-convex
constraints which makes it difficult to solve. In the next section, we propose
a Hierarchical Alternating Least Squares (HALS) approach.

8.2 HALS Algorithm for the constrained weighted NTF

In this section, we address the optimization problem (8.1.8) which does not
fit into the standard cases encountered in the tensor factorization literature
because of the additional condition

∥∥∥a(n)r

∥∥∥
TV,p
≤ Cn. There are usually two

ways to solve tensor factorization problems : alternating minimization or
gradient-based methods (Acar, Dunlavy, Kolda, and Mørup, 2011; Tomasi
and Bro, 2005). A combination of both can also be used (Yokota, Zhao, and
Cichocki, 2016). In order to take into accounts additional constraints, some
projection steps are also needed. Depending on the constraints, this projec-
tion can be exact or can be approximated. Usually, the projection onto S+

In,q

is approximated by taking the positive part of the tensor and dividing by its
q-norm. However, recently, variable splitting methods such as Alternating
Direction Method of Multipliers (ADMM, see e.g. Goldstein, O’Donoghue,
Setzer, and Baraniuk, 2014 and the reference therein) have been proposed
as a flexible way to include constraints in tensor factorization problems (see
e.g. Liavas and Sidiropoulos, 2015; Sadowski and Zdunek, 2018; Smith, Beri,
and Karypis, 2017; Zdunek, 2014). The use of ADMM in NTF consists in
splitting the variable A(n) with itself in order to separate the minimization
of the loss and the non-negativity constraints. Here, we follow a different
approach where the variable splitting is used to deal with the constraint on
the total variation norm. The method we propose here is based on Hierarchi-
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cal Alternating Least Squares (HALS) iterations. To simplify the notations
let us write for r ∈ J1, RK, n ∈ J1, NK, and a ∈ An,

L(r,n)
W (a) =

∥∥∥W~ (X(r) − λra(1)r ◦ · · · a(n−1)
r ◦ a ◦ a(n+1)

r ◦ · · · ◦ a(N)
r )

∥∥∥2

2
,

where
X(r) = X−∑

s 6=r
λsa

(1)
s ◦ · · · a(N)

s .

Also let Ln = LIn , as defined in (8.0.1), so that
∥∥∥a(n)r

∥∥∥
TV,p

=
∥∥∥Lna(n)r

∥∥∥
p
. Then

the HALS iterations are described in Algorithm 8.2.1.

Algorithm 8.2.1: HALS algorithm
Data: X, W, Ln, Cn for n ∈ J1, NK and initial values for

λ, A(1), · · · , A(N)

1 E = X−∑R
r=1 λra(1)r ◦ · · · ◦ a(N)

r

2 repeat
3 for r = 1, · · · , R do

4 X(r) = E + λra(1)r ◦ · · · ◦ a(N)
r

5 for n = 1, · · · , N do

6 a(n)r = argmin
a∈S+

In ,q,‖Lna‖p≤Cn

L(r,n)
W (a)

7 λr = argmin
λ≥0

∥∥∥W~ (X(r) − λa(1)r ◦ · · · ◦ a(N)
r )

∥∥∥2

2

8 E = X(r) − λra(1)r ◦ · · · ◦ a(N)
r

9 until Change of ‖W~ E‖2
2 is sufficiently small;

10 return λ, A(1), · · · , A(N)

In Algorithm 8.2.1, the update in λr simply writes as

λr =


〈

W~ X(r), W~ (a(1)r ◦ · · · ◦ a(N)
r )

〉
F∥∥∥W~ (a(1)r ◦ · · · ◦ a(N)

r )
∥∥∥2

F


+

(8.2.1)

For the update in a(n)r , note that L(r,n)
W (a) is equal, up to an additive constant,

to a>Ma + 2b>a, where

M = λ2
r diag

W~2
(n)

(⊗
m 6=n

a(m)
r

)~2
 and b = −λr

(
X(r)
(n) ~W~2

(n)

)⊗
m 6=n

a(m)
r .

Then the problems can be written as

min
a∈S+

In ,q,‖Lna‖p≤Cn

1
2

a>Ma + b>a , (8.2.2)
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This problem is quadratic and M is positive definite as soon as at the last
iteration of the HALS (8.1.5) holds and λr > 0. However, the constraints
imposed are not convex and therefore finding a solution is not guaranteed.
We still propose empirical ways to get an approximated solution. To this
end, let us distinguish the cases where Cn = +∞ and Cn < +∞.

8.2.1 Case where Cn = +∞

In the case where Cn = +∞, Problem (8.2.2) reduces to minimizing a quadratic
function on the positive sphere S+

In,q. Except when q = 1, in which case the
constraints are convex and a quadratic solver can be used, there is no stan-
dard method to solve this problem. For q > 1, an usual approximation in the
tensor factorization literature consists in first solving the problem without
constraints and then taking the positive part and normalizing the solution
i.e

a =

[
−M−1b

]
+∥∥[−M−1b]+
∥∥

q

. (8.2.3)

This approximation does not make sense when all the entries of −M−1b are
negative. In this case, several other approximations can be considered. For
example one can solve the problem with only the non-negative constraint
(which is convex) and then normalize the solution. A projected gradient
steps can also be used as in Yokota, Zhao, and Cichocki, 2016. Since HALS
is an iterative algorithm, it is usually not necessary to obtain an very sharp
approximation at each step. For this reason we propose to first try the most
straightforward update (8.2.3) and use the one of two other approaches if
the first one fails.

8.2.2 Case where Cn < +∞

In the case where Cn < +∞, the problem becomes harder because of the
additional constraint. We propose two methods, the first one based ADMM
and the second one based on the penalized version of the problem.

For the ADMM method, Problem (8.2.2) is reformulated as

min
a,z

1
2

a>Ma + b>a + IS+
In ,q

(a) + I[0,Cn](‖z‖p) s.t. z = Lna , (8.2.4)

where IC(x) = 0 if x ∈ C and +∞ otherwise. We propose to use the ac-
celerated version of ADMM with an adaptive restart described in Goldstein,
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O’Donoghue, Setzer, and Baraniuk, 2014, Algorithm 8 and recalled in Al-
gorithm 8.2.2. The update in a requires the minimization of a quadratic
function on S+

In,q and therefore the method described in the previous section
is applied. The update for z requires to compute the orthogonal projection
onto the ball Bp(Cn) =

{
x ∈ RIn−1 : ‖x‖p ≤ Cn

}
denoted by projBp(Cn)

. For
p = 2 this projection has the exact form projB2(C)(y) = y

max(1,C−1‖y‖2)
. For

p = 1, an algorithm based on projection onto the simplex can be used as
in Condat, 2016; Duchi, Shalev-Shwartz, Singer, and Chandra, 2008. For
p > 2, Newton’s method can be used to find a zero of the gradient of
the Lagrangian of the optimization problem minz∈Bp(C) ‖z− y‖2

2 as imple-
mented in the Matlab BPDQ toolbox Hammond, Jacques, Fadili, Puy, and
Vandergheynst, 2009.

The second method to approximate a solution of Problem (8.2.2) is to solve
the penalized version of the problem for increasing values of the penalty
parameter until the constraints are satisfied. In order to remove the non-
convexity of the problem caused by the condition a ∈ S+

In,q, we propose
to solve the penalized version only under non-negativity constraints un-
til ‖Lna‖p ≤ Cn‖a‖q and then normalize the solution. This procedure is
described in Algorithm 8.2.3 where the update in a can be obtained by a
first order method such as L-BFGS-B using the (sub)-gradient ∂‖·‖p

p
(a) =

|a|p−1 sign(a) where |·| and sign(·) are applied coordinate-wise.
Similarly to the case Cn = +∞, none of the two methods proposed stands

out. For example, the penalized method can be long if the target value of the
penalization parameter is large. One may use a more aggressive update of
this parameter in Algorithm 8.2.3 but with the risk of penalizing too much.
On the other hand, ADMM for non-convex problems does not come with
the same guarantees as in the convex case. In particular Wang, Yin, and
Zeng, 2019 gives necessary conditions for convergence of ADMM in the
non-convex case which are not satisfied by Problem (8.2.4) (see Condition A5

and Section 4 of Wang, Yin, and Zeng, 2019). In our implementation use the
ADMM approach first and then the penalized approach if the first one fails
at satisfying the condition under a reasonable number of iterations.
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Algorithm 8.2.2: Fast ADMM with restart for Problem (8.2.4)

Data: z−1 = ẑ0 ∈ RIn−1, y−1 = ŷ0 =∈ RIn , τ > 0, α1 = 1, η ∈ (0, 1),
c0 > 0

1 for k = 1, 2, · · · do

2 ak = argmin
a∈S+

In ,q

1
2

a>(M + τL>n Ln)a +
〈

b− L>n (ŷ
k + τẑk), a

〉
3 zk = projBp(Cn)

(Lnak − τ−1ŷk)

4 yk = ŷk + τ(zk − Lnak)

5 ck = τ−1
∥∥yk − ŷk

∥∥2
2 + τ

∥∥zk − ẑk
∥∥2

2
6 if ck < ηck−1 then

7 αk+1 =
1+
√

1+4(αk)2

2

8 ẑk+1 = zk + αk−1
αk+1 (zk − zk−1)

9 ŷk+1 = yk + αk−1
αk+1 (yk − yk−1)

10 else
11 αk+1 = 1, ẑk+1 = zk−1, ŷk+1 = yk−1

12 ck = η−1ck−1

Algorithm 8.2.3: Iterating over penalized versions of Problem (8.2.2)
Data: Initial values for α > 0, a

1 k = 1
2 while ‖Lna‖p > Cn‖a‖q do

3 a = argmin
a∈R

In
+

1
2

a>Ma + b>a + α‖Lna‖p
p

4 α = (1 + k−1)α

5 k = k + 1

6 return a/‖a‖q
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8.3 Experimental results

To evaluate the method, we construct a noisy tensor of the type Y = X +

σE ∈ RI×I×I where X = ∑R
r=1 λra(1)r ◦ a(2)r ◦ a(3)r and E has a standard normal

entries. The factors a(3)r are sampled uniformly on [0, 1]. For the factors and
the factors a(1)r and a(2)r are constructed by taking the non-negative part of
random linear combination of 7 B-Spline functions of order 4. We generate
randomly 60 tensors for each dimension I = 30, 50 and rank R = 3, 6. For 30
of these tensors, the factors a(1)r , a(2)r have only strictly non-negative values
(hence satisfy (8.1.5)) and for the 30 others they can vanish on some intervals.
We also generate 10 binary masks representing missing values for each pat-
tern (missing entries and missing fibers) and for several percentages pmissing

of missing data. Some noise is added to the true tensor and its standard
deviation σ > 0 is computed as in Acar, Dunlavy, Kolda, and Mørup, 2011;
Tomasi and Bro, 2005, i.e. σ = (100/ν− 1)−1/2 ‖X‖2

‖E‖2
with ν = 2. With this

setting, for each dimension, each rank and each missing data percentage, we
run 600 experiments (60 tensors and 10 masks). In all of the experiments,
we take ρ = [I−1, I−1, ∞] and p = q = 2 and for each mask W, we compute
a lower bound on C ≤ 0.9× Cp,q(ρ, IW) using Corollary 8.7.4, Lemma 8.6.3
and Algorithm 8.6.1.

We compare our method, referred to as swntf (for Smooth Weighted Non-
Negative Tensor Factorization) with the cpwopt method of Acar, Dunlavy,
Kolda, and Mørup, 2011. The cpwopt methods solves the least-squares prob-
lem related to tensor factorization and, using L-BFGS-B as a first order solver,
the non-negativity constraints can be imposed. However, the unit norm and
bounded TV-norm constraints are not added. In both cases, an SVD-based
initialization is used. For swntf, the number of iterations and the minimum
relative improvement of the residuals norm in Algorithm 8.2.1 are respec-
tively set to 103 and 10−6. For cpwopt, the number of iterations and the
minimum norm of the gradient in L-BFSG-B are respectively set to 103 and
10−8.

To evaluate the output X̂ = ∑R
r=1 λ̂râ(1)r ◦ â(2)r ◦ â(3)r , we define the similarity

score between the true parameter θ = (λ, A(1), · · · , A(N)) and the estimated
one θ̂ = (λ̂, Â(1), · · · , Â(N)) by

sim(θ, θ̂) := max
σ∈SR

min
r∈J1,RK

N

∏
n=1

〈
a(n)r , â(n)

σ(r)

〉
∥∥∥a(n)r

∥∥∥∥∥∥â(n)
σ(r)

∥∥∥ ,
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where SR denotes the set of permutations of J1, RK. The similarity score
quantifies how well the factors have been recovered up to scaling and permu-
tation. As in Acar, Dunlavy, Kolda, and Mørup, 2011, we say that the factors
are correctly recovered if sim(θ, θ̂) ≥ 0.97 and compute, for each value of I,
R and pmissing, the accuracy as the proportion of correctly recovered param-
eters. More precisely, for the given values if I,R,pmissing and percentage of
missing data, we have generated a set {(θ(k), X(k), W(k)) : k ∈ J1, 600K} of
true parameters, noisy tensors and masks and obtained the related estima-
tions

{
θ̂model(k) : k ∈ J1, 600K

}
for each model (swntf and cpwopt). Then

we compute

accuracy(model) :=
1

600

600

∑
k=1

1{sim(θ(k),θ̂model(k))≥0.97} .

The results are displayed in Table 8.1.
The first observation is that the task is more difficult when R or pmissing

grow or I is lower. The reason for this is that the difficulty of the problem is
inversely proportional to the ratio between the number of known entries and

the number of degrees of freedom which is equal to (1−pmissing)I3

3RI (see Acar,
Dunlavy, Kolda, and Mørup, 2011). Then, both methods perform compara-
bly well for less than 50% missing entries. However for 70% missing entries
and I = 50, the accuracy of our method drops to 79.9% and 65.6% while the
accuracy of cpwopt remains close 100%. A deeper investigation showed that
this drop is caused by the 30 tensors which were allowed to vanish. For these
tensors, Condition (8.1.5) is not necessarily satisfied and we propose two pos-
sible reasons explaining the drop of accuracy in our method. The first one is
that too much bias may be added by the constraint on the TV-norm and the
second is that the optimization problem (8.2.2) may be too challenging and
that the algorithm proposed in Section 8.2 relies too much on approxima-
tions. It is surprising though that the cpwopt algorithm (based on gradient
descent) seems to perform well even on cases where Condition (8.1.5) is not
necessarily satisfied. Finding an explanation for this would be a challenging
research topic which would require more investigation on the sequence of
iterations of the optimization algorithm used.
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Missing 25% 50% 70%

Model cpwopt swntf cpwopt swntf cpwopt swntf

Rank 3 6 3 6 3 6 3 6 3 6 3 6

I = 30 98.7 98.5 100.0 90.7 99.1 91.0 100.0 81.2 100.0 56.9 99.7 52.6

I = 50 96.5 99.7 100.0 100.0 98.1 100.0 100.0 98.5 99.3 100.0 79.9 65.7

Table 8.1: Accuracy (in %) for randomly generated data, “both” refers to initializing
swntf with cpwopt.

8.4 Discussion and perspective

In this chapter, we derived a sufficient condition based on the total variation
norm to ensure existence of a global minimum for the weighted least squares
problem associated to Non-negative Tensor Factorization with missing val-
ues. An HALS algorithm was proposed to solve the resulting difficult op-
timization problem. Unfortunately, its performance has not been validated
against state-of-the-art methods in which no additional constraint is used.
We argue that the drawback of our approach is mainly due to the multiplica-
tion of constraints which make the optimization very challenging. However,
the main theoretical outcome of this work can help to better understand
which cases are subject to degeneracies. Surprisingly, the gradient-based ap-
proach seems to work well even in these cases and further study should be
considered to understand the underlying reasons for this behavior.

To open up this work to further perspectives, we propose to show that
Propositions 8.1.1 and 8.1.2 can be used to guarantee the existence of a global
minimum for a penalized version of the problem which is similar to the one
used in Yokota, Zhao, and Cichocki, 2016. The advantage of the penalized
version is that it is simpler to solve because less constraints are imposed.
This result is stated as the following proposition whose proof can be found
in Section 8.5.1.

Proposition 8.4.1. Let p, q, d ∈ [1,+∞) and α = [α1, · · · , αN ]
> ∈ RN

+ .Let Θ :=
RR

+ ×∏N
n=1(S

+
In,q)

R and define for all θ := (λ, A(1), · · · , A(1)) ∈ Θ,

Pα(θ) :=
R

∑
r=1

λd
r

N

∑
n=1

αn

∥∥∥a(n)r

∥∥∥p

TV,p
.

Then, if (IW, {α = 0}) satisfy Assumption 8.1.1, the function LW +Pα is coercive
on Θ.

Remark 8.4.1. Let us make the following remarks on Proposition 8.4.1.
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1. If we take q = d = 2, we get the loss of Yokota, Zhao, and Cichocki, 2016.

2. The optimization problem we considered in Section 8.2 presents the advan-
tage that a global optimum exists but the price to pay is that, in the HALS
algorithm, we have to optimize on the intersection of the positive sphere and
a closed ball for the TV-norm. Using Proposition 8.4.1, we can relax the
constraints while keeping the existence of a global optimum by minimizing
LW + Pα which means that, in the HALS algorithm, we only optimize on
the positive sphere. The problem is similar to the one of Yokota, Zhao, and
Cichocki, 2016, but with non-negativity constraints. Investigating the effect
of non-negativity constraints on the performance of the method developed in
Yokota, Zhao, and Cichocki, 2016 would be interesting.

3. The cpwopt method used in Section 8.3 and based on Acar, Dunlavy, Kolda,
and Mørup, 2011 has the advantage of solving an optimization problem on
the unnormalized factors which, therefore, only has the constraint of non-
negativity. Moreover, it seems that a gradient-based method is well suited in
this context. However, with this formulation, no guarantee on the existence of
a global optimum can be obtained. However, from Proposition 8.4.1, we can
find an optimization problem on unnormalized factors which can be solved
by a gradient method and has a global optimum. The problem consists in
minimizing the function (LW + Pα) ◦ ψ where we take d = p and

ψ :
∏N

n=1 S+
In,q → Θ

(A(1), · · · , A(N)) 7→ (λ, Ã(1), · · · , Ã(N))
,

with for all n ∈ J1, NK, An ⊂ R
In
+ \ {0} and, for all r ∈ J1, RK, λr =

∏n
n=1

∥∥∥a(n)r

∥∥∥
q

and ã(n)r = a(n)r∥∥∥a(n)r

∥∥∥
q

if
∥∥∥a(n)r

∥∥∥
q
> 0 and any element of S+

In,q

otherwise.

The reason behind this choice it that, taking d = p, we get that, for all
(A(1), · · · , A(N)) ∈ ∏N

n=1AR
n ,

LW(ψ(A(1), · · · , A(N))) =

∥∥∥∥∥W~

(
X−

R

∑
r=1

a(1)r ◦ · · · ◦ a(N)
r

)∥∥∥∥∥
2

2

,

and

Pα(ψ(A(1), · · · , A(N))) =
R

∑
r=1

N

∑
n=1

αn ∏
m 6=n

∥∥∥a(m)
r

∥∥∥p

q

∥∥∥a(n)r

∥∥∥p

TV,p
,

hence we can easily compute a gradient.
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8.5 Postponed proofs

8.5.1 Proofs of Propositions 8.1.1 and 8.4.1

To simplify the notations, let us introduce the R+-valued functions

fW : (a(1), · · · , a(N)) 7→
∥∥∥W~

(
a(1) ◦ · · · ◦ a(N)

)∥∥∥2

2
, (8.5.1)

and

gW : (λ, A(1), · · · , A(N)) 7→
∥∥∥∥∥W~

(
R

∑
r=1

λra(1)r ◦ · · · ◦ a(N)
r

)∥∥∥∥∥
2

, (8.5.2)

respectively defined on ∏N
n=1 S+

In,q and RR
+ ×∏N

n=1

(
S+

In,q

)R
.

Proof of Proposition 8.1.1. First note that, by continuity of fW, (8.1.5) is
equivalent to

η := inf
∏N

n=1An

fW > 0 . (8.5.3)

Hence we show that LW is coercive on Θ if and only if Condition (8.5.3)
holds.

From the two triangular inequalities, we get that LW is coercive if and only
if the function gW defined in (8.5.2) is coercive and therefore we prove that
Condition (8.5.3) are necessary and sufficient for gW to be coercive.

First assume that Condition (8.5.3) holds and let us show that gW is coer-
cive. Consider a sequence (θ(m))m∈N ∈ ΘN such that ‖θ(m)‖2 −−−−→m→+∞

+∞

and write for all m ∈ N, θ(m) = (λ(m), A(1)(m), · · · , A(N)(m)). Then, since
A is bounded, we must have ‖λ(m)‖2 −−−−→m→+∞

+∞ and, using the fact that

the entries of θ are all non-negative and Condition (8.5.3), we get

(gW(θ(m)))2 ≥
R

∑
r=1

(λr(m))2 fW(a(1)r (m) ◦ · · · ◦ a(N)
r (m)) ≥ η‖λ(m)‖2

2 ,

which diverges to +∞ as m→ +∞ because η > 0. Thus gW is coercive.
Now, for the converse statement, assume that Condition (8.5.3) does not

hold and let us show that gW is not coercive. To this end, we construct a
sequence (θ(m))m∈N ∈ ΘN such that ‖θ(m)‖2 −−−−→m→+∞

+∞ while g(θ(m))

remains bounded. Since (8.1.5) does not hold, we get that for all m ∈ N,
there exists (a(1)(m), · · · , a(N)(m)) ∈ ∏N

n=1An such that

f (a(1)(m), · · · , a(N)(m)) ≤ 2−m .
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Now, for all m ∈ N and n ∈ J1, NK, take A(n)(m) = [a(n)(m), a(n)2 , · · · , a(n)R ],
where for r ≥ 2, a(n)r is any element of S+

In,q and let λ(m) = [m, 0, · · · , 0].
Then θ(m) := (λ(m), A(1), · · · , A(N)) ∈ Θ is such that ‖θ(m)‖2 −−−−→m→+∞

+∞,

but

(gW(θ(m)))2 = m2 f (a(1)(m), · · · , a(N)(m)) ≤ m22−2m −−−→
m→∞

0 .

Proof of Proposition 8.4.1. Since, for all θ ∈ Θ, we have

LW(θ) ≥ (gW(θ)− ‖W~ X‖2)
2 ,

with gW defined in (8.5.2), it suffices to show that the function g2
W + Pα is

coercive. To this end, let us define the function

hα : (a(n))n∈J1,NK 7→
N

∑
n=1

αn

∥∥∥a(n)r

∥∥∥p

TV,p
,

from ∏N
n=1 S+

In,q to R+, and the function

ϕ : λ 7→
[
‖λ‖d∧2

∞ − 1
]
+

,

from RR
+ → R+.

Then, for all θ = (λ, A(1), · · · , A(N)) ∈ Θ, since all the entries of θ are
non-negative, we have

(gW(θ))2 + Pα(θ) ≥ (λ2
s ∧ λd

s )
(

fW((a(n)s )n∈J1,NK) + hα((a
(n)
s )n∈J1,NK)

)
,

fW is defined in (8.5.1) and s ∈ J1, NK is taken such that λs = maxr∈J1,RK λr =

‖λ‖∞. Then, using the inequality λ2
s ∧ λd

s ≥ ϕ(λ), we get that, for all θ =

(λ, A(1), · · · , A(N)) ∈ Θ,

(gW(θ))2 + Pα(θ) ≥ ϕ(λ)η , (8.5.4)

where
η := inf

∏N
n=1 S+

In ,q

( fW + hα) .

Hence, to get that g2
W + Pα is coercive, it suffices to have η > 0, which we

now show.
Define for all n ∈ J1, NK, ρn = α

−p
n with the convention that 0−1 = +∞.

Then, Assertion (ii) of Proposition 8.1.2 gives that Cp,q(ρ, I) > 0 and there-
fore there exists 0 < C < Cp,q(ρ, I). Then, taking A := ∏N

n=1An,p,q(ρ, C)
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with An,p,q(ρ, C) defined as in (8.1.6), we get from Proposition 8.1.2 and
(8.5.3) that infA fW > 0. Moreover for all (a(n))n∈J1,NK ∈ Ac, there ex-

ists k ∈ J1, NK such that a(k) /∈ An,p,q(ρ, C), i.e. αk

∥∥∥a(k)r

∥∥∥p

TV,p
≥ Cp and

therefore hα((a(n))n∈J1,NK) ≥ αk

∥∥∥a(k)r

∥∥∥p

TV,p
≥ Cp. Hence, we get fW + hα ≥

(infA fW) 1A + Cp1Ac and therefore inf( fW + hα) ≥ (infA fW) ∧ Cp > 0, thus
concluding the proof.

8.5.2 Definition of Cp,q(ρ, IW) and proof of Proposition 8.1.2

To prove Proposition 8.1.2, we construct the constant Cp,q(ρ, IW). To this
end, we need to introduce the following notations. For any integer I ≥ 1
and J ⊂ J1, IK and p, q ∈ [1,+∞), define

AI,q(J ) :=
{

a ∈ S+
I,q : ∀j ∈ J , aj = 0

}
,

and
mp,q,I(J ) := inf

{
‖a‖TV,p : a ∈ AI,q(J )

}
,

with the convention that inf(∅) = +∞. Then for all ∅ ( J ⊂ J ′ ( J1, IK,
we get the two following straightforward displays.

∅ = AI,q(J1, InK) ( AI,q(J ′) ⊂ AI,q(J ) ( AI,q(∅) = S+
I,q , (8.5.5)

and

0 = mp,q,I(∅) < mp,q,I(J ) ≤ mp,q,I(J ′) < mp,q,I(J1, IK) = +∞ . (8.5.6)

Now, for I ′ ⊂ I and n ∈ J1, NK, we define the projection of I ′ onto the
n-th coordinate as πn(I ′) := {in : i ∈ I ′} and introduce the two following
sets

Π(I ′) :=
{
(Jn)

N
n=1 : ∀n ∈ J1, NK,Jn ⊂ πn(I ′)

}
,

and

J (I ′) :=
{
(Jn)

N
n=1 ∈ Π(I ′) : ∀i ∈ I ′, ∃n ∈ J1, NK, in ∈ Jn

}
.

Finally, for I ′ ⊂ I , p, q ≥ 1, and ρ ∈ (0,+∞]N , we define, for all (Jn)N
n=1 ∈

Π(I ′),
cp,q(ρ, (Jn)

N
n=1) := max

n∈J1,NK
ρ−1

n mp,q,In(Jn) . (8.5.7)

and
Cp,q(ρ, I ′) := min

(Jn)N
n=1∈J (I ′)

cp,q(ρ, (Jn)
N
n=1) . (8.5.8)



8.5 postponed proofs 227

with the convention that 0× inf(∅) = +∞.
In the remaining of this section, we will show that Cp,q(ρ, IW) satisfies

the assertions of Proposition 8.1.2. We first start with the following lemma
which proves Assertion (iii) of Proposition 8.1.2.

Lemma 8.5.1. Let p, q ∈ [1,+∞), I ′ ⊂ I and ρ ∈ (0,+∞]N . Then the following
statements hold.

(i) Cp,q(ρ, I ′) = +∞ if and only if I ′ = I .

(ii) Cp,q(ρ, I ′) > 0 if and only if (I ′, {ρ = +∞}) satisfies Assumption 8.1.1.

Proof. For Assertion (i), using (8.5.6), we get that

Cp,q(ρ, I ′) < +∞⇔ ∃(Jn)
N
n=1 ∈J (I ′), ∀n ∈ J1, NK, mp,q,In(Jn) 6= +∞

⇔ ∃(Jn)
N
n=1 ∈J (I ′), ∀n ∈ J1, NK,Jn 6= J1, InK

⇔ ∃(Jn)
N
n=1 ∈J (I ′), ∃i ∈ I , ∀n ∈ J1, NK, in /∈ Jn

⇔J (I ′) ∩ (J (I))c 6= ∅

⇔ I ′ 6= I .

The implication ⇒ in the last equivalence is straightforward by contraposi-
tion. For the converse implication, assume that I ′ 6= I and take i ∈ I \ I ′.
Then it is easily seen that (πn(I ′) \ {in})N

n=1 ∈J (I ′) ∩ (J (I))c.
For Assertion (ii), note that the pair (I ′, {ρ = +∞}) does not satisfy As-

sumption 8.1.1 if and only if there exists (jn)n∈{ρ=+∞} ∈ ∏n∈{ρ=+∞} J1, InK
such that

{i ∈ I : ∀n ∈ {ρn = +∞}, in = jn} 6⊂ I ′ . (8.5.9)

Moreover, we have

Cp,q(ρ, I ′) = 0

⇔ ∃(Jn)
N
n=1 ∈J (I ′), ∀n ∈ J1, NK, ρ−1

n mp,q,In(Jn) = 0

⇔ ∃(Jn)
N
n=1 ∈J (I ′),

∀n ∈ {ρ = +∞}, mp,q,In(Jn) < +∞

∀n ∈ {ρ < +∞}, mp,q,In(Jn) = 0

⇔ ∃(Jn)
N
n=1 ∈J (I ′),

∀n ∈ {ρ = +∞}, Jn 6= J1, InK

∀n ∈ {ρ < +∞}, Jn = ∅
(8.5.10)

where the last equivalence comes from (8.5.6).
Then, using the definition of J (I ′), (8.5.10) implies (8.5.9) by taking jn ∈

J1, InK \ Jn for all n ∈ {ρ = +∞}. Conversely, if there exists j ∈ I which
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satisfies (8.5.9), we get (8.5.10) by taking Jn = ∅ for n ∈ {ρ < +∞} and
Jn = J1, InK \ {jn} for n ∈ {ρ = +∞}.

We now prove Assertions (i) and (ii) of Proposition 8.1.2. To this end, we
rely on the following lemma.

Lemma 8.5.2. Let I ′ ⊂ I and p, q ∈ [1,+∞). Then, for all (Jn)N
n=1 ∈ J (I ′),

we have

cp,q(ρ, (Jn)
N
n=1) =

inf

{
max

n∈J1,NK
ρ−1

n

∥∥∥a(n)
∥∥∥

TV,p
: (a(1), · · · , a(N)) ∈

N

∏
n=1
AIn,q(Jn)

}
. (8.5.11)

Moreover, if for all n ∈ J1, InK, Jn 6= J1, InK, the infimum in (8.5.11) is finite and
reached by an element of ∏N

n=1AIn,q(Jn).

Proof. If there exists n ∈ J1, InK, such that Jn = J1, InK, Relations (8.5.5) and
(8.5.6) give the two terms of (8.5.11) are equal to +∞. Now, if for all n ∈
J1, InK, such that Jn 6= J1, InK, we know, by definition, that cp,q(ρ, (Jn)N

n=1)

is a lower bound for the set over which the infimum is taken in (8.5.11).
Moreover, for all n ∈ J1, NK, since AIn,q(Jn) is compact and the TV-norm is

continuous, we can take a(n) ∈ AIn,q(Jn) such that
∥∥∥a(n)

∥∥∥
TV,p

= mp,q,In(Jn)

and therefore maxn∈J1,NK ρ−1
n

∥∥∥a(n)
∥∥∥

TV,p
= cp,q(ρ, (Jn)N

n=1) thus concluding

the proof of Relation (8.5.11).

We can now prove Assertions (i) and (ii) of Proposition 8.1.2. Note that
Lemma 8.5.1 gives that, when IW 6= I , we have Cp,q(I , IW) < +∞.

Proof of Assertion (i) of Proposition 8.1.2. We show that, if LW is not coer-
cive on Θp,q(ρ, C) then C ≥ Cp,q(ρ, IW). Assume that LW is not coercive on
Θp,q(ρ, C). Then, by Proposition 8.1.1, Condition (8.1.5) does not hold and,
since the An,p,q(ρ, C)’s defined in (8.1.6) are closed, this means that there
exists (a(1), · · · , a(N)) ∈ ∏N

n=1An,p,q(ρ, C) such that for all i ∈ IW, there ex-
ists n ∈ J1, NK such that a(n)in

= 0. Now, construct (Jn)N
n=1 ∈ J (IW) by

the following procedure. Start with (Jn)N
n=1 = (∅)N

n=1 and then for each
i ∈ IW select one of the n’s such that a(n)in

= 0 and put in in Jn. With this
construction, we have (a(1), · · · , a(N)) ∈ ∏N

n=1AIn,q(Jn) and therefore we get

C ≥ max
n∈J1,NK

ρ−1
n

∥∥∥a(n)
∥∥∥

TV,p
≥ cp,q(ρ, (Jn)

N
n=1) ≥ Cp,q(ρ, IW) ,

where the first inequality comes from (8.1.7), the second from (8.5.11) and
the last from (8.5.8).
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Proof of Assertion (ii) of Proposition 8.1.2. Let C ≥ Cp,q(ρ, IW) and let us
show that (8.1.5) does not hold. Since IW 6= I , Lemma 8.5.2 gives that
there exist (Jn)N

n=1 ∈ J (IW) and (a(1), · · · , a(N)) ∈ ∏N
n=1AIn,q(Jn) such

that maxn∈J1,NK ρ−1
n

∥∥∥a(n)
∥∥∥

TV,p
= Cp,q(ρ, IW). Then, this gives that for all n ∈

J1, NK,
∥∥∥a(n)

∥∥∥
TV,p
≤ ρnCp,q(ρ, IW) ≤ ρnC and therefore a(n) ∈ An,p,q(ρ, C), as

defined in (8.1.6). On the other hand, (Jn)N
n=1 ∈ J (IW) means that for all

i ∈ IW, there exists n ∈ J1, NK such that in ∈ Jn and we get that a(n)in
= 0

because a(n) ∈ AIn,q(Jn). Hence (8.1.5) does not hold.

8.6 Approximations of Cp,q(ρ, IW)

In this section, we consider I ′ ⊂ I , p, q ≥ 1 and ρ ∈ (0,+∞]N and assume
that we know how to compute mp,q,I(J ) for any I ≥ 1 and J ⊂ J1, IK. In
this case, we also know how to compute cp,q(ρ, (Jn)N

n=1) for any (Jn)N
n=1 ∈

J (I ′). Then, we cannot compute Cp,q(ρ, I ′) using the expression (8.5.8)
because it would require to iterate over all the elements of J (I ′) (which
is represents roughly N|I

′| iterations). We therefore propose a procedure to
compute Cp,q(ρ, I ′) at a reasonable cost (in time and memory). The issue of
computing mp,q,I(J ) is addressed in Section 8.7.

In the remaining of this section, we need the following definitions. Let
us endow the set Π(I) with a partial order denoted by ⊂ and defined for
(Jn)N

n=1, (J ′n)N
n=1 ∈ Π(I) by

(Jn)
N
n=1 ⊂ (J ′n)N

n=1 if and only if ∀n ∈ J1, NK,Jn ⊂ J ′n .

Moreover, for i ∈ I and N ⊂ J1, NK, (Jn)N
n=1, (J ′n)N

n=1 ∈ Π(I) we denote

(J ′n)N
n=1 = (Jn)

N
n=1 +N i⇔ ∀n ∈ J1, NK, J ′n =

Jn ∪ {in} n ∈ N

Jn otherwise
,

and

(J ′n)N
n=1 = (Jn)

N
n=1 −N i⇔ ∀n ∈ J1, NK, J ′n =

Jn \ {in} n ∈ N

Jn otherwise
.

For simplicity, for k ∈ J1, NK, we use the notation +k and −k instead of +{k}
and −{k}. Then note that, for all (Jn)N

n=1, (J ′n)N
n=1 ∈J (I), we have

(Jn)
N
n=1 ⊂ (J ′n)N

n=1 ⇒ cp,q(ρ, (Jn)
N
n=1) ≤ cp,q(ρ, (J ′n)N

n=1) . (8.6.1)
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As a direct consequence of (8.6.1), we get

Cp,q(ρ, I ′) = min
{

cp,q(ρ, (Jn)
N
n=1) : (Jn)

N
n=1 ∈J ′(I ′)

}
, (8.6.2)

where

J ′(I ′) :=
{
(Jn)

N
n=1 ∈J (I ′) : ∀(J ′n)N

n=1 ∈J (I ′) \ {(Jn)
N
n=1}, (J ′n)N

n=1 6⊂ (Jn)
N
n=1

}
.

8.6.1 Algorithm to compute Cp,q(ρ, I ′)

The procedure to compute Cp,q(ρ, I ′) is provided in pseudo-code in Algo-
rithm 8.6.1. The idea is to approach Cp,q(ρ, I ′) from below by computing at
step k the value Cp,q(ρ, Ik) where Ik ⊂ I ′ with |Ik| = k. The fact that this
approaches Cp,q(ρ, I ′) from below relies on the following result.

Proposition 8.6.1. Let I ′ ⊂ I and i ∈ I . Then

J ′(I ′ ∪ {i}) =
N⋃

m=1

{
(Jn)

N
n=1 +m i : (Jn)

N
n=1 ∈Jm(I ′, i)

}
, (8.6.3)

where Jm(I ′, i) is the set of (Jn)N
n=1 ∈ J ′(I ′) satisfying at least one of the

following assertions.

(i) im /∈ πm(I ′).

(ii) im ∈ Jm.

(iii) im ∈ πm(I ′) and for all (J ′n)N
n=1 ∈ J ′(I ′) such that im ∈ J ′m, we have

(J ′n)N
n=1 6⊂ (Jn)N

n=1 +m i.

Proof. First note that

J (I ′ ∪ {i}) =
⋃

N⊂J1,NK
N 6=∅

{
(Jn)

N
n=1 +N i : (Jn)

N
n=1 ∈J (I ′)

}
.

To prove inclusion ⊂ of (8.6.3), take N ⊂ J1, NK, N 6= ∅ and (Jn)N
n=1 ∈

J (I ′) such that (Jn)N
n=1 +N i ∈J ′(I ′ ∪ {i}). Note that for all m ∈ N and

(J ′n)N
n=1 ∈ J ′(I ′) such that (J ′n)N

n=1 ⊂ (Jn)N
n=1, we have (J ′n)N

n=1 +m i ⊂
(Jn)N

n=1 +N i, and therefore (J ′n)N
n=1 +m i = (Jn)N

n=1 +N i. This means that
we can consider without loss of generality that |N | = 1 and (Jn)N

n=1 ∈
J ′(I ′). Let us write N = {m} and assume that (Jn)N

n=1 /∈ Jm(I ′, i). Then
im ∈ πm(I ′) \ Jm and there exists (J ′n)N

n=1 ∈J ′(I ′) such that im ∈ J ′m and
(J ′n)N

n=1 ⊂ (Jn)N
n=1 +m i. Since (Jn)N

n=1 +m i ∈ J ′(I ′ ∪ {i}), we must have
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(J ′n)N
n=1 = (Jn)N

n=1 +m i. This equality gives (Jn)N
n=1 ⊂ (J ′n)N

n=1 because that
for all n 6= m, J ′n = Jn and J ′m = J ′m ∪ {im} = Jm ∪ {im}. Since (J ′n)N

n=1 ∈
J ′(I ′), this implies that (Jn)N

n=1 = (J ′n)N
n=1 and therefore im ∈ Jm which

contradicts the fact that im ∈ πm(I ′) \Jm. Hence (Jn)N
n=1 ∈Jm(I ′, i) which

concludes the proof of inclusion ⊂ in (8.6.3).
To prove inclusion ⊃ of (8.6.3), take m ∈ J1, NK, (Jn)N

n=1 ∈ Jm(I ′, i)
and N ⊂ J1, NK, N 6= ∅, (J ′n)N

n=1 ∈ J (I ′) such that (J ′n)N
n=1 +N i ⊂

(Jn)N
n=1 +m i and let us show that (J ′n)N

n=1 +N i = (Jn)N
n=1 +m i. Assume

N 6= {m}, then there exists k ∈ N such that k 6= m and, since J ′k ∪{ik} ⊂ Jk,
we get ik ∈ Jk and therefore (Jn)N

n=1 −k i ( (Jn)N
n=1 which contradicts

the fact that (Jn)N
n=1 ∈ J ′(I ′). Hence N = {m} and we want to show

(J ′n)N
n=1 +m i = (Jn)N

n=1 +m i. Since Assertion (ii) implies im ∈ Jm and any
of the assertions (i) (iii) implies im /∈ J ′m, the fact that (Jn)N

n=1 ∈ Jm(I ′, i)
gives J ′m ⊂ Jm. Hence (J ′n)N

n=1 ⊂ (Jn)N
n=1 and, since (Jn)N

n=1 ∈ J ′(I ′),
we get (J ′n)N

n=1 = (Jn)N
n=1 and finally (J ′n)N

n=1 +m i = (Jn)N
n=1 +m i. This

concludes the the proof of inclusion ⊃ in (8.6.3).

Observing that the set Jk+1 constructed at step k of Algorithm 8.6.1 is
exactly the set of (Jn)N

n=1 +m i with m ∈ J1, NK and (Jn)N
n=1 ∈ Jk such

that one of the assertions (i) (ii) (iii) of Proposition 8.6.1 holds, the following
result comes easily by induction as a consequence of Proposition 8.6.1 and
(8.6.2).

Corollary 8.6.2. The sequence (Ik, Jk, Ck)k=1,··· ,|IW| constructed by Algorithm 8.6.1
is such that for all k ∈ J1, |I ′|K, Jk = J ′(Ik) and Ck = Cp,q(ρ, Ik). In particular,
this implies that C1 ≤ C2 ≤ · · · ≤ C|I ′| = Cp,q(ρ, I ′).

8.6.2 The particular case where one dimension is not constrained

In the case when one of the ρn’s is equal to +∞, the following lemma can be
used to speed up the computation of Cp,q(ρ, I ′).

Lemma 8.6.3. Assume ρm = +∞, then

Cp,q(ρ, I ′) = 1{πm(I ′)=J1,ImK} min
j∈J1,ImK

Cp,q(ρ
(−m),

{
i(−m) : i ∈ I ′, im = j

}
) ,

(8.6.4)
where for x ∈ RN , x(−m) is the vector if RN−1 formed by removing the m-th entry
of x.
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Proof. We can consider without loss of generality that m = N. The fact that
Cp,q(ρ, I ′) = 0 when πN(I ′) 6= J1, INK is a consequence of Lemma 8.5.1. We
now assume that πN(I ′) = J1, INK, then the proof follows two steps. In Step
1 we prove that

Cp,q(ρ, I ′) = min
{

cp,q(ρ, (Jn)
N
n=1) : (Jn)

N
n=1 ∈J (I ′), |JN | = IN − 1

}
,

(8.6.5)
and in Step 2 we show (8.6.4).
Step 1 : Since we use the convention ∞/∞ = ∞, we have cp,q(ρ, (Jn)N

n=1) =

+∞ as soon as |JN | = IN . Hence

Cp,q(ρ, I ′) = min
{

cp,q(ρ, (Jn)
N
n=1) : (Jn)

N
n=1 ∈J (I ′), |JN | ≤ IN − 1

}
.

Then, to prove (8.6.5), it suffices to take (Jn)N
n=1 ∈J ′(I ′) such that |JN | <

IN − 1 and construct (J ′n)N
n=1 ∈ J ′(I ′) which satisfies |JN | = IN − 1 and

cp,q(ρ, (J ′n)N
n=1) ≤ cp,q(ρ, (Jn)N

n=1). To this end, take j ∈ J1, INK \ JN , then,
since πN(I ′) = J1, INK, we know that there exists i ∈ I ′ such that iN = j
and by definition of J (I ′), there exists k ∈ J1, N − 1K such that ik ∈ Jk.
Take (J ′n)N

n=1 = (Jn)N
n=1 −k i +N i, then (J ′n)N

n=1 ∈ J (I) with |J ′N | = IN −
1 and cp,q(ρ, (J ′n)N

n=1) ≤ cp,q(ρ, (Jn)N
n=1) because mp,q,IN (J ′N) < +∞ and

mp,q,Ik(J ′k ) ≤ mp,q,Ik(Jk). This concludes the proof of (8.6.5).
Step 2 : Reformulating the right hand side of (8.6.5) and using the fact that
|JN | = IN − 1⇒ cp,q(ρ, (Jn)N

n=1) = cp,q(ρ(−N), (Jn)
N−1
n=1 ), we get

Cp,q(ρ, I ′) = min
j∈J1,INK

{
cp,q(ρ

(−N), (Jn)
N−1
n=1 ) : (Jn)

N
n=1 ∈J (I ′),JN = J1, INK \ {j}

}
.

Then (8.6.4) follows from the fact that, for any (Jn)N
n=1 ∈ J (I ′) such that

JN = J1, INK \ {j}, we have (Jn)
N−1
n=1 ∈J

({
i(−N) : i ∈ I ′, iN = j

})
.
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Algorithm 8.6.1: Computing Cp,q(ρ, I ′)
Data: I ′, ρ, p, q
Result: Cp,q(ρ, I ′)

1 Initialization :
2 Pick i ∈ I ′

3 I1 = {i}
4 J1 =

{
(∅)N

n=1 +m i : m ∈ J1, NK
}

5 C1 =
{

cp,q(ρ, (Jn)N
n=1) : (Jn)N

n=1 ∈J1
}

6 C1 = min C1

7 k = 1

8 while k < |IW| do
9 Pick i ∈ IW \ Ik

10 Ik+1 = Ik ∪ {i}
11 M = {m ∈ J1, NK : im ∈ πm(Ik)}
12 for m ∈ M do
13 J (m) =

{
(Jn)N

n=1 ∈Jk : im ∈ Jm
}

14 Jk+1 = ∅
15 Ck+1 = ∅
16 for (Jn)N

n=1 ∈Jk do
17 if ∃m ∈ M, (Jn)N

n=1 ∈J (m) then
18 Jk+1 = Jk+1 ∪ {(Jn)N

n=1}
19 Ck+1 = Ck+1 ∪ {cp,q(ρ, (Jn)N

n=1)}

20 else
21 for m ∈ J1, NK do
22 (J ′n)N

n=1 = (Jn)N
n=1 +m i

23 if
(

m ∈ M and ∀(J ′′n )N
n=1 ∈J (m), (J ′′n )

N
n=1 6⊂ (J ′n)N

n=1

)
or (m /∈ M) then

24 Jk+1 = Jk+1 ∪ {(J ′n)N
n=1}

25 Ck+1 = Ck+1 ∪ {cp,q(ρ, (J ′n)N
n=1)}

26 Ck+1 = min Ck+1

27 k = k + 1

28 return Ck
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8.7 Some results on TV norm optima

Define for n ≥ 1, let us define the n× n matrices

An =



1 −1 0 . . . 0

0
. . . . . . . . .

...
...

. . . 1 −1 0
...

. . . 1 −1

0 . . . . . . 0 1


, Bn = A−1

n =


1 1 . . . 1

0
. . . . . .

...
...

. . . . . . 1

0 . . . 0 1

 .

We further denote, for any matrix M with n columns,

‖M‖q,p = sup
{
‖Mx‖p : x ∈ Rn , ‖x‖q ≤ 1

}
.

Let for ∆ ≥ 1,

Gp,q(∆) := mp,q,∆({∆}) = mp,q,∆({1}) and Hp,q(∆) := mp,q,∆({1, ∆}) ,

where the equality mp,q,∆({∆}) = mp,q,∆({1}) is obtained by a symmetry
argument. Also note that Gp,q and Hp,q are non-increasing functions of ∆
and that Gp,q(1) = Hp,q(1) = Hp,q(2) = +∞. Then the following proposition
holds.

Proposition 8.7.1. Let q ≥ p ≥ 1. Let I ≥ K ≥ 1. Let J = {j1, · · · , jK} ⊂ J1, IK
with j1 < · · · < jK. Denote

∆∗I (J ) =

max {jk − jk−1 + 1 : 2 ≤ k ≤ K} if K ≥ 2

1 otherwise

∆†
I (J ) = max{j1, (I − jK + 1)} .

Then we have

mp,q,I(J ) = min
{

Gp,q(∆†
I (J )), Hp,q(∆∗I (J ))

}
. (8.7.1)

Proof of Proposition 8.7.1. Since the case where K = 1 is straightforward, we
assume K ≥ 2 and take a ∈ AI,q(J ). Then we have

‖a‖p
TV,p = 1{j1>1}

∥∥a1:j1

∥∥p
TV,p + ∑

2≤k≤K

∥∥ajk−1 :jk

∥∥p
TV,p + 1{jK<I}

∥∥ajK :I
∥∥p

TV,p

(8.7.2)

1 = ‖a‖q
q = 1{j1>1}

∥∥a1:j1

∥∥q
q + ∑

2≤k≤K

∥∥ajk−1 :jk

∥∥q
q + 1{jK<I}

∥∥ajK :I
∥∥q

q . (8.7.3)

Moreover, we have the following assertions.
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(i) If j1 > 1 and
∥∥a1:j1

∥∥
q > 0, we have a1:j1 /

∥∥a1:j1

∥∥
q ∈ Aj1,q({j1}). In such

a case, we get∥∥a1:j1

∥∥
TV,p ≥

∥∥a1:j1

∥∥
q Gp,q(j1) ≥

∥∥a1:j1

∥∥
q Gp,q(∆†

I (J )) .

(ii) For all 2 ≤ k ≤ K, if
∥∥ajk−1 :jk

∥∥
q > 0, we have ajk−1 :jk /

∥∥ajk−1 :jk

∥∥
q ∈

Ajk−jk−1+1,q({1, jk − jk−1 + 1}). In such a case, we get∥∥ajk−1 :jk

∥∥
TV,p ≥

∥∥ajk−1:jk

∥∥
q Hp,q(jk − jk−1 + 1) ≥

∥∥ajk−1:jk

∥∥
q Hp,q(∆∗I (J )) .

(iii) if jK < I, if
∥∥ajK :I

∥∥
q > 0, we have ajK :I/

∥∥ajK :I
∥∥

q ∈ AI−jK+1,q({1}). In
such a case, we get∥∥ajK :I

∥∥
TV,p ≥

∥∥ajK :I
∥∥

q Gp,q(I − jK + 1) ≥ ‖akK :I‖q Gp,q(∆†
I (J )) .

Using these three assertions in (8.7.2), we get that, for all a ∈ AI,q(J ),

‖a‖p
TV,p ≥

(
1{j1>1}

∥∥a1:j1

∥∥p
q + ∑

2≤k≤n

∥∥ajk−1:jk

∥∥p
q + 1{jK<I}

∥∥ajK :I
∥∥p

q

)
mp ,

where m denotes the right-hand side of (8.7.1). Using that ar + br ≥ (a + b)r

for all a, b ≥ 0 and r := p/q ∈ (0, 1], we further get with (8.7.3) that, for all
a ∈ AI,q(J ),

‖a‖TV,p ≥ m .

Hence the left-hand side in (8.7.1) is at least equal to the right-hand side. The
converse inequality is easily obtained by observing that if a ∈ Aj1,q({j1})
then completing a with I − j1 zeros on its right, we obtain an element of
AI,q(J ). Thus the left-hand side in (8.7.1) is at most equal to Gp,q(j1). Sim-
ilarly, it is at most equal to Hp,q(jk − jK−1 + 1) for all 2 ≤ k ≤ K and to
Gp,q(I − jK + 1). Since one of these upper bounds is m, it is at most equal to
m, which concludes the proof.

Lemma 8.7.2. Let 1 ≤ q ≤ p. We have, for any even integer ∆ ≥ 2,

Hp,q(∆) = 21/p−1/q Gp,q(∆/2) .

Proof. We set ∆ = 2K with K ≥ 1. For all a = a1:∆ ∈ R∆, we have

‖a‖p
TV,p = ‖a1:K‖

p
TV,p +

∥∥∥a(K+1):∆

∥∥∥p

TV,p
+ |aK+1 − aK|p . (8.7.4)

Let a = a1:∆ ∈ A∆,q({1, ∆}), then if ‖a1:K‖q > 0, we have a1:K/‖a1:K‖q ∈
AK,q({1}) and thus

‖a1:K‖TV,p ≥ ‖a1:K‖qGp,q(K) ,
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which remains true if ‖a1:K‖q = 0. Similarly, we have,∥∥∥a(K+1):∆

∥∥∥
TV,p
≥
∥∥∥a(K+1):∆

∥∥∥
q
Gp,q(K) ,

and finally, from (8.7.4) and the two previous displays , we get

‖a‖p
TV,p ≥ Gp,q(K)

(
‖a1:K‖p

q +
∥∥∥a(K+1):n

∥∥∥p

q

)
+ |aK+1 − aK|p .

By concavity of x 7→ xq/p, we have, for all a = a1:∆ ∈ R∆,

‖a‖q
q

2
=

1
2

(
‖a1:K‖q

q +
∥∥∥a(K+1):n

∥∥∥q

q

)
≤
(

1
2

(
‖a1:K‖p

q +
∥∥∥a(K+1):n

∥∥∥p

q

))q/p

.

With the previous display we get that

Hp,q(∆) ≥ 21−p/qGp,q(K) .

Take now b ∈ AK,q({K}) and its symmetric b′ ∈ AK,q({1}), so that the
concatenation a′ = b′b defined by a′k = bK+1−k for k = 1, . . . , K and a′k = bk−k

for k = K + 1, . . . , 2K satisfies a′K+1 = a′K, and ‖a′‖q = 21/q. Applying (8.7.4)
to a := a′/‖a′‖q. we get that

‖a‖p
TV,p = 2

∥∥∥2−1/qb
∥∥∥p

TV,p
= 21−p/q‖b‖p

TV,p .

and since a ∈ Aq,∆({1, ∆}) whenever b ∈ Aq,K({K}), this shows that the
previous inequality is an equality, which concludes the proof.

Lemma 8.7.3. We have, for any n ≥ 2,

Gp,q(n) = ‖Bn−1‖−1
p,q .

Proof. Let a = a1:n ∈ Rn
+ such that an = 0. Then

‖a‖p
TV,p = ∑

2≤k≤n−1
|ak − ak−1|p + |an−1|p =

∥∥∥An−1a1:(n−1)

∥∥∥p

p
,

where we used the definition of An. Thus, by definition of An,q({n}), we
have

Gp,q(n) = inf
{
‖An−1x‖p : x ∈ Rn−1

+ , ‖x‖q = 1
}

= inf

{
‖An−1x‖p

‖x‖q
: x ∈ Rn−1

+ \ {0}
}

.
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Since Bn−1 is defined as the inverse of An−1, by setting x = Bn−1y and
observing that, Bn having non-negative entries, y ∈ Rn−1

+ implies x ∈ Rn−1
+ ,

we get that

Gp,q(n) ≤ inf

{
‖y‖p

‖Bn−1y‖q
: y ∈ Rn−1

+ \ {0}
}

Using the same change of variable but letting y ∈ Rn−1, we obtain

Gp,q(n) ≥ inf

{
‖An−1x‖p

‖x‖q
: x ∈ Rn−1 \ {0}

}

≥ inf

{
‖y‖p

‖Bn−1y‖q
: y ∈ Rn−1 \ {0}

}
.

Now, for any y ∈ Rn−1, ‖y‖p does not depend on the sign of its entries and,
Bn having non-negative entries, ‖Bn−1y‖q cannot decrease when replacing
its entries by their absolute values. We conclude that the inf in the previous
display is achieved on y ∈ Rn−1

+ \ {0}, hence the inequalities in the two
previous displays are equalities. Since the previous inf coincide with(

sup

{
‖Bn−1y‖q

‖y‖p
: y ∈ Rn−1 \ {0}

})−1

= ‖Bn−1‖−1
p,q ,

this concludes the proof.

Using Proposition 8.7.1 and the above lemmas with p = q, we get the
following result. Note that a lower bound is enough for Proposition 8.1.2
and that for p ≥ 2, getting an exact value for ‖Bn‖p,p is a NP-Hard problem
Hendrickx and Olshevsky, 2010

Corollary 8.7.4. Let p ≥ 1. Let I ≥ K ≥ 1 and let J = {j1, · · · , jK} ⊂ J1, IK
with j1 < · · · < jK. Then we have∥∥∥∥B

∆‡
I (J )−1

∥∥∥∥−1

p,p
≤ mp,p,I(J ) ≤

∥∥∥B∆‡
I (J )−1

∥∥∥−1

p,p
.

where

∆‡
I (J ) := max {j1, (I − jK + 1), b(jk − jk−1 + 1)/2c : 2 ≤ k ≤ K} ,

and

∆‡
I (J ) := max {j1, (I − jK + 1), d(jk − jk−1 + 1)/2e : 2 ≤ k ≤ K} ,

and, for simplicity, we have defined ‖B0‖−1
p,p = +∞. In particular for J /∈

{∅, J1, IK}, we have the following assertions.
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(i) m1,1,I(J ) ∈
[(

∆
‡
I (J )− 1

)−1
,
(

∆‡
I (J )− 1

)−1
]

,

(ii) m2,2,I(J ) ∈
[

2 sin
(

π

2∆
‡
I (J )

)
, 2 sin

(
π

2∆‡
I (J )

)]
,

(iii) For all p ≥ 2, mp,p,I(J ) is lower bounded by 2
(

∆
‡
I (J )(∆

‡
I (J )− 1)

)−1
,(

∆
‡
I (J )− 1

)1/p−2
and 2

(
∆

‡
I (J )− 1

)1/p−1/2
sin
(

π

2∆
‡
I (J )

)
Proof. Assertion (i) comes from the fact that ‖Bn‖1,1 = max1≤j≤n ∑n

i=1[Bn]i,j =

n. Assertion (ii) is obtained from the fact that ‖Bn‖−1
2,2 is the lowest singu-

lar value of An and AnA>n is the tri-diagonal matrix with 2 on its diago-
nal and −1 on the upper and lower diagonals, hence its eigenvalues are{

2(1 + cos( kπ
n+1 )) : k = 1, · · · , n

}
. Finally, Assertion (iii), comes from in-

equalities (1.2) and (1.3) of Goldberg, 1987 with q = 1 and q = 2.
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B A C K G R O U N D T H E O RY O N O P E R AT O R S

In this chapter we introduce classical definitions and results for operators on
Banach and Hilbert spaces (see e.g. Conway, 1990; Gohberg, Goldberg, and
Kaashoek, 1990, 2003 for details). In all of the thesis, we assume that vector
spaces are defined over the field C. Recall that if (E, ‖·‖E) and (F, ‖·‖F) are
two normed spaces, such that E ⊂ F, we say that E is continuously embedded
in F if there exists a constant C > 0 such that, for all x ∈ E, ‖x‖F ≤ C‖x‖E.
In this case, we write the continuous embedding of E in F as

E ↪→ F .

a.1 Basic definitions and results on operators

For two Banach spaces (E, ‖·‖E) and (F, ‖·‖F), we call O(E, F) the set of
linear operators P whose domain, denoted by D(P), is a linear subspace of
E and whose range is a linear subspace of F. If E = F, we simply write
O(E) = O(E, E) and this short notation will be used for all operator spaces
defined in this chapter. The set of linear operator with domain E is denoted
by L(E, F) and we let Lb(E, F) be the set of all E → F continuous operators
i.e. the operator P ∈ L(E, F) for which there exists C > 0 such that for all
x ∈ E, ‖Px‖F ≤ C‖x‖E. In this case, we define the operator norm

‖P‖Lb(E,F) := sup
‖x‖E≤1

‖Px‖F < +∞ .

Then
(
Lb(E, F), ‖P‖Lb(E,F)

)
is a Banach space.

In the remaining of this section, we consider the special case where E and
F are Hilbert spaces.
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a.1.1 General definitions of operators on Hilbert spaces

Let (H0, 〈·, ·〉H0
) and (G0, 〈·, ·〉G0

) be two Hilbert spaces. Then, for any P ∈
Lb(H0,G0) there exists a unique operator PH ∈ Lb(G0,H0), called the adjoint
of P, which satisfies

〈Px, y〉G0
=
〈

x, PHy
〉
H0

, for all x ∈ H0 and y ∈ G0 .

In particular, we have ‖P‖Lb(H0,G0)
=
∥∥PH

∥∥
Lb(G0,H0)

.
In the case where H0 = G0, an operator P ∈ Lb(H0) satisfying ΦH =

Φ is called auto-adjoint and, if for all x ∈ H0, 〈Φx, x〉H0
≥ 0, we say that

Φ is positive, which we write Φ � 0. A positive operator is necessarily
auto-adjoint. For any set E ⊂ Lb(H0), we denote by E+ the set of positive
operators in E . For any P ∈ Lb(H0,G0) we have then PHP ∈ L+

b (H0) and
PPH ∈ L+

b (G0). A converse property is that for any P ∈ L+
b (H0), there exists

a unique operator in L+
b (H0), denoted by P1/2 which satisfies P = (P1/2)2.

This enable us to define the absolute value the an operator P ∈ Lb(H0,G0)

by |P| := (PHP)1/2.
We define for x ∈ H0 and y ∈ G0, the operator in Lb(H0,G0).

y⊗ x :
H0 → G0

u 7→ 〈u, x〉H0
y

. (A.1.1)

The operator y⊗ x has rank 1 since its range is Im(y⊗ x) = Span (y). The set
of finite rank operators can we written as Span ({y⊗ x : x ∈ H0, y ∈ G0}).

A bounded operator P ∈ Lb(H0,G0) is said to be compact is every bounded
sequence (xn)n∈N ∈ HN

0 admits a subsequence (xnk)k∈N such that Pxnk con-
verges in H0. We denote by K(H0,G0) the set of compact operators from
H0 to G0. This set is characterized by the singular values decomposition
theorem (see e.g. Theorem 1.1 in Gohberg, Goldberg, and Kaashoek, 1990,
Chapter VI).

Theorem A.1.1. Let H0,G0 be two Hilbert spaces and P ∈ Lb(H0,G0). Then P is
compact if and only if there exist a sequence (σn)n∈N ∈ RN

+ and two orthonormal
systems (φn)n∈NH0 and (ψn)n∈N ⊂ G0 such that

P = ∑
n∈N

σnψn ⊗ φn . (A.1.2)

where the series converges in operator norm. In this case, the sets {φn : n ∈N, σn > 0}
and {ψn : n ∈N, σn > 0} are Hilbert bases of (ker P)⊥ and ImP respectively. We
call (A.1.2) the singular values decomposition (SVD) of P. It is usual to take σn’s
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in decreasing order, which we will always assume. The σn’s are called the singular
valued of P, which we denote by (σn)n∈N = sing(P).

Note from Theorem A.1.1 that the range of a compact operator is nec-
essarily separable. Moreover, if P = ∑n∈N σnψn ⊗ φn, then ‖P‖Lb(H0,G0)

=

maxn∈N σn = σ0 and we have the following SVD’s

PH = ∑
n∈N

σnφn ⊗ ψn ,

Pk = ∑
n∈N

σk
nψn ⊗ φn , for all k ∈N∗ ,

P1/2 = ∑
n∈N

σ1/2
n ψn ⊗ φn ,

|P| = ∑
n∈N

σnφn ⊗ φn .

When P is auto-adjoint, then (A.1.2) holds with φn = ψn and the SVD is
referred to as the eigendecomposition and the σn’s and φn’s are respectively
called the eigenvalues and eigenvectors of P.

Finally, we define the Schatten-p spaces for p ≥ 1,

Sp(H0,G0) := {P ∈ K(H0,G0) : sing(P) ∈ `p(N)} ,

which are Banach spaces if endowed with the norm

‖P‖p := ‖sing(P)‖`p(N) .

If we endow the space K(H0,G0) with the operator norm, we get the follow-
ing continuous embeddings, for all 1 ≤ p ≤ p′,

Sp(H0,G0) ↪→ Sp′(H0,G0) ↪→ K(H0,G0) ↪→ Lb(H0,G0) . (A.1.3)

The spaces S1(H0,G0) and S2(H0,G0) are also respectively known as the
space of trace-class and Hilbert-Schmidt operators.

It is sometimes useful to use the notation S∞(H0,G0) = K(H0,G0) and for
all P ∈ S∞(H0,G0), ‖P‖∞ = ‖P‖Lb(H0,G0)

. This way, we can state that the
Schatten spaces inherit from the Hölder inequality of the `p spaces. Namely,
I0 is a third Hilbert space and 1 ≤ p, q, r ≤ +∞ are such that 1

r = 1
p +

1
q and

Φ ∈ Sp(H0,G0), Ψ ∈ Sq(G0, I0), we have

ΨΦ ∈ Sr(H0, I0) and ‖ΨΦ‖r ≤ ‖Ψ‖q‖Φ‖p .

This result also holds if we replace S∞ by Lb.
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a.1.2 The separable case

We now assume that H0 and G0 are separable and consider a Hilbert basis
(en)n∈N of H0. Then, for all P ∈ Lb(H0) and p ≥ 1, we have

P ∈ Sp(H0)⇔ ∑
n∈N

∣∣∣〈Pen, en〉H0

∣∣∣p < +∞ .

In the case where p = 1, we call the trace of P the value

Tr(P) := ∑
n∈N

〈Pen, en〉 ,

which does not depend on the choice of the basis (en)n∈N. Another charac-
terization of Hilbert-Schmidt operators is that an operator P ∈ Lb(H0,G0) is
Hilbert-Schmidt if and only if ∑n∈N ‖Pen‖2

H0
< +∞. In this case, the value

of the sum does not depend in the choice of the basis (en)n∈N and we have

‖P‖2
2 = ∑

n∈N

‖Pen‖2
H0

.

From this identity, we get that S2(H0,G0) is a Hilbert space if endowed with
the scalar product defined, for all P, Q ∈ S2(H0,G0),

〈P, Q〉2 = Tr(QHP) = ∑
n∈N

〈Pen, Qen〉G0
.

a.1.3 Isometries and unitary operators

Let H0,G0 be two Hilbert spaces. If A is a linear subset of H0, a linear
mapping U from A to G0 such that for all x, y ∈ H0, 〈Ux, Uy〉G0

= 〈x, y〉H0
is

called an isometry. An bijective isometry is called a unitary operator. If their
exists a unitary operator betweenH0 and G0 we say that they are isometrically
isomorphic. An isometry U between H0 and G0 in always in Lb(H0,G0) and
we have ‖U‖Lb(H0,G0)

= 1 and Im(Φ) is closed. The following isometric
extension theorem holds.

Theorem A.1.2. Let H0 be a pre-Hilbert space, I0 a Hilbert spaces and G be a
linear subspace of H0.

1. Let S : G → I0 be an isometry. Then S admits a unique isometric extension
S : G → I0. If moreover H0 is a Hilbert space then S(G) = S(G).

2. Let (vt)t∈T and (wt)t∈T be two sets of vectors in H0 and I0 respectively
with T an arbitrary index set. If for all s, t ∈ T, 〈vt, vs〉H0

= 〈wt, ws〉I0
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then there exists a unique isometric operator S : Span (vt, t ∈ T) → I0

such that for all t ∈ T, Svt = wt. If moreover H0 is a Hilbert space then
S(Span (wt, t ∈ T)) = Span (wt, t ∈ T).

a.1.4 The generalized inverse

Let H0 and G0 be two Hilbert spaces and P ∈ Lb(H0,G0), then the linear
mapping

P| ker(P)⊥→Im(P) :
ker(P)⊥ → Im(P)

x 7→ Px

is bijective. Then, the inverse
(

P| ker(P)⊥→Im(P)

)−1
is a linear mapping from

Im(P) to ker(P)⊥ and we define the generalized inverse of P as the operator
P† ∈ O(G0,H0) whose domain is D(P†) = Im(P)⊕ Im(P)⊥ which coincides

with
(

P| ker(P)⊥→Im(P)

)−1
on Im(P) and such that ker(P⊥) = Im(P)⊥. In

other words, ∀x ∈ D(P−), there exists (x1, x2) ∈ Im(P)× Im(P)⊥ such that

x = x1 + x2, then P−x =
(

P| ker(P)⊥→Im(P)

)−1
x1.

If we denote by Πker(P)⊥ the orthogonal projection onto ker(P)⊥, then

P†P = Πker(P)⊥ . (A.1.4)

Characterizing PP† is harder especially since it is not defined on all G0. How-
ever, for a compact operator P ∈ K(H0,G0), we have D(P†) is dense in G0

and, if we consider the SVD P = ∑n∈N σnψn ⊗ φn and define for all n ∈ N,
σ†

n = σ−1
n if σn > 0 and 0 otherwise, we have

D(P†) =

{
x ∈ G0 : ∑

n∈N

(σ†
n)

2
∣∣∣〈x, ψn〉G0

∣∣∣2 < +∞

}
,

and for all x ∈ D(P†),

P†x = ∑
n∈N

σ†
n 〈x, ψn〉G0

φn , (A.1.5)

where the series converges in H0. From this identity, we get that for all
x ∈ D(P†),

PP†x = ΠIm(P)x . (A.1.6)

a.1.5 SVD of normal operator

We conclude this section with the singular value decomposition of a bounded
normal operator on a Hilbert space H0 (see Conway, 1990, Theorem 9.4.6,
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Proposition 9.4.7). Let N ∈ Lb(H0) be a normal operator, i.e. NNH = NHN,
then, there exists a σ-finite measure space (V,V , ξ), a unitary operator U :
H0 → L2(V,V , ξ) and n ∈ L∞(V,V , ξ), such that

UNUH = Mn , (A.1.7)

where Mn denotes the pointwise multiplicative operator on L2(V,V , ξ) as-
sociated to n, that is Mn : f 7→ n× f . We say that N has singular value
function n on L2(V,V , ξ) with decomposition operator U.

a.2 Strong and weak operator topologies

As a Banach space, Lb(H0,G0) is endowed with its natural norm topology.
However, weaker topologies can be introduced and are also valid for opera-
tors in L(H0,G0).

Firstly, for two Banach spaces E, F, the strong operator topology (s.o.t.) on
L(E, F) is defined as the topology such that a sequence (Pn)n∈N ∈ L(E, F)N

converges to P ∈ L(E, F) in s.o.t. if and only if, for all x ∈ E,

lim
n→+∞

‖Pnx− Px‖F = 0 .

If H0 and G0 are two Hilbert spaces, then weak operator topology (w.o.t.)
on L(H0,G0) is defined as the topology such that a sequence (Pn)n∈N ∈
L(H0,G0)N converges to P ∈ L(H0,G0) in w.o.t. if and only if, for all x ∈ H0

and y ∈ G0,
lim

n→+∞
〈Φny, x〉H0

= 〈Φy, x〉H0
.

Note that, by the polarization identity, this is equivalent to

lim
n→+∞

〈Φnx, x〉H0
= 〈Φx, x〉H0

,

for all x ∈ H0.



B
M E A S U R A B I L I T Y A N D I N T E G R AT I O N I N B A N A C H
S PA C E S

Here we only recall some definitions and elementary properties of the Bochner
integrals of functions valued in Banach spaces with respect to non-negative
measures.

b.1 Measurability in Banach spaces

Let E be a Banach space and (Λ,A) a measurable space. When working with
functions from (Λ,A) to E, there are different definitions of measurability
which turn out to be equivalent when E in separable. We introduce these
definitions in this section.

A countably-valued function from (Λ,A) to E is a function which has a
countable range and such that ∀x ∈ Im( f ), f−1({x}) ∈ A. Such a function
can be written

∑
k∈N

αk1Ak

where αk ∈ E, the Ak’s are disjoints sets in A.
If, in addition, the range of f is finite, we say that f is a simple function.
The most natural notion of measurability comes from endowing E with

its the Borel σ-filed B(E) generated by the norm topology. Hence, we say
that a function f : Λ→ E is measurable if for all A ∈ B(E), f−1(A) ∈ A and
denote by F(Λ,A, E) the set of such functions.

The following theorem introduces other measurability notions and states
their equivalence in the separable case. We refer to Chapter 1 of Dinculeanu,
2011 for details.

Theorem B.1.1. Let f : Λ→ E where E be a separable Banach space and (Λ,A)
a measurable space. Then the following assertions are equivalent

(i) We have f ∈ F(Λ,A, E).

247



248 measurability and integration in banach spaces

(ii) The function f is Pettis-measurable i.e. for all φ ∈ E∗, φ ◦ f is measurable.

(iii) The function f is Bochner-measurable i.e. is the pointwise limit of a sequence
of simple functions (which are in particular Borel-measurable).

(iv) The function f is the uniform limit of a sequence of countably valued Borel-
measurable functions.

The equivalence (ii)⇔ (iii) is known as Pettis’s measurability theorem.

In the special case where E is a space of operators, we introduce another
notion of measurability. Consider E, F two Banach spaces. Then a function
Φ : Λ→ Lb(E, F) is said to by simply measurable if for all x ∈ E, the function
Φx : λ 7→ Φ(λ)x is Bochner-measurable. We denote by Fs (Λ,A, E, F) the
space of simply measurable functions from (Λ,A) to Lb(E, F). Then, we
clearly have, for all E ↪→ Lb(E, F),

F(Λ,A, E) ⊂ Fs (Λ,A, E, F) . (B.1.1)

In general the equality does not hold, but it holds in some cases as stated in
the following lemma.

Lemma B.1.2. Let H0, G0 be two separable Hilbert spaces and E = K(H0,G0) or
Sp(H0,G0) where p ∈ {1, 2}. Then a function Φ : Λ → E is measurable if and
only if it is simply measurable.

Proof. By (B.1.1) we only need to show that, if Φ is simply measurable
then it is measurable. The space E is separable because the set of finite
rank operators is dense in E for the norm ‖·‖ if E = K(H0,G0) and ‖·‖p

if E = Sp(H0,G0). By Pettis’s measurability theorem, this implies that it
is enough to show that for all f ∈ E∗, f ◦ Φ is a measurable complex-
valued function. By Conway, 2000, Theorems 19.1, 18.14, 19.2 we get that
K(H0,G0)∗, S1(H0,G0)∗ and S2(H0,G0)∗ are respectively isometrically iso-
morphic to S1(H0,G0), Lb(H0,G0) and S2(H0,G0) and the duality relation
can be defined on E ×E∗ as (P, Q) 7→ Tr(QHP). This means that we only have
to show measurability of the complex-valued functions λ 7→ Tr(PHΦ(λ))

for all P ∈ E∗. Let (φk)k∈N be a Hilbert basis of H0, then Tr(PHΦ(λ)) =

∑k∈N 〈Φ(λ)φk, Pφk〉G0
which defines a measurable function of λ by simple

measurability of Φ.
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b.2 The Bochner integral

We consider here a Banach space E and µ a σ-finite non-negative measure
on a measurable space (Λ,A). Then, noting that for all f ∈ F(Λ,A, E), the
function ‖ f ‖E : λ 7→ ‖ f (λ)‖E is a scalar measurable function, we can define
the Bochner space as

Lp(Λ,A, E, µ) := { f ∈ F(Λ,A, E) : ‖ f ‖E ∈ L
p(Λ,A, µ)} ,

where Lp(Λ,A, µ) is the usual scalar Lp space. Then we define the space
Lp(Λ,A, E, µ) as the space obtained by quotienting Lp(Λ,A, E, µ) with the
µ-a.e. equality. The standard results on scalar Lp spaces are transferred the
Bochner spaces. In particular, Lp(Λ,A, E, µ) is Banach space if endowed is
the norm ‖ f ‖Lp(Λ,A,E,µ) =

(∫
‖ f ‖p

E dµ
)1/p

and, if E is a Hilbert space, L2

is a Hilbert space with scalar product 〈 f , g〉L2(Λ,A,E,µ) =
∫
〈 f , g〉E dµ. For

p ∈ [1, ∞), the space of simple measurable functions with finite-measure sup-
port, i.e. Span (1Ax : A ∈ A, µ(A) < ∞, x ∈ E), is dense in Lp(Λ,A, E, µ).
For f ∈ Span (1Ax : A ∈ A, µ(A) < ∞, x ∈ E) with range {α1, · · · , αn}, the
integral (often referred to as the Bochner integral) of the E-valued function f
with respect to µ is defined by∫

f dµ =
n

∑
k=1

αk µ
(

f−1({αk})
)
∈ E . (B.2.1)

This integral is extended to L1(Λ,A, E, µ) by continuity (and thus also to Lp

if µ is finite). The Bochner integral is continuous in L1(Λ,A, E, µ) and, for
all f ∈ L1(Λ,A, E, µ), ∥∥∥∥∫ f dµ

∥∥∥∥
E
≤
∫
‖ f ‖Edµ .

Moreover, if f ∈ L1(Λ,A, E, µ) we have, for all Banach space F and all Φ ∈
Lb(E, F), then Φ f : λ 7→ Φ f (λ) is in L1(Λ,A, F, µ) and∫

Φ f dµ = Φ
(∫

f dµ

)
.

The following result will be useful.

Lemma B.2.1. Let Φ ∈ L1(Λ,A,S+1 (H0), µ) and define the function Φ1/2 : λ 7→
Φ(λ)1/2. Then Φ1/2 ∈ L2(Λ,A,S2(H0), µ).

Proof. Simple measurability of Φ1/2 is given by Lemma 2 in Kakihara, 1997,
Section 3.4 and therefore, by Lemma B.1.2, Φ1/2 ∈ F(Λ,A,S2(H0)). The fact
that Φ1/2 ∈ L2(Λ,A,S2(H0), µ) then follows from the identity

∥∥Φ1/2(λ)
∥∥2

2 =

‖Φ(λ)‖1.
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T E N S O R A L G E B R A

In this chapter, we gather the definitions of various operations on vectors
and tensors, we refer to Kolda and Bader, 2009 for details. We take N ∈
N∗, and consider I1, · · · , IN ∈ N∗. We use bold capital letters to denote
tensors and matrices and bold lowercase letters for vectors. Standard font
is used for the entries of the tensors, matrices and vectors. For example
A = [a1, · · · , aR] ∈ RI×R means that ar ∈ RI is the r-th column of A and
the (i, r)-th entry of A is denoted by Ai,r or ai,r. A tensor X ∈ RI1×···×IN is
indexed by a vector of integers i = (i1, · · · , iN) ∈ ∏N

n=1 J1, InK and we write
Xi = Xi1,··· ,in .

For X, Y ∈ RI1×···×IN , we define the Hadamard product X~ Y of X and Y
as the element of RI1×···×IN such that for all (i1, · · · , iN) ∈ ∏N

n=1 J1, INK,

(X~ Y)i1,··· ,iN = Xi1,··· ,iN Yi1,··· ,IN .

Moreover, we denote by X~2 = X~ X.
The q-norm of a tensor X ∈ RI1×···×IN is defined by

‖X‖q =

(
∑

i1,··· ,iN

|Xi1,··· ,iN |
q

)1/q

if q ∈N∗ and ‖X‖∞ = max
i1,··· ,iN

|Xi1,··· ,iN | .

For q = 2, this norm comes from the scalar product defined, for X, Y ∈
RI1×···×IN , by

〈X, Y〉2 = ∑
i1,··· ,iN

Xi1,··· ,iN Yi1,··· ,iN .

The space RI1×···×IN is isomorphic to the matrix spaces RIn×∏m 6=n In for all
n ∈ J1, NK via the relation which to a tensor X ∈ RI1×···×IN associates its n-th
unfolding X(n) ∈ RIn×∏m 6=n In defined such that

[
X(n)

]
in,j

= Xi1,··· ,iN ⇔ j = 1 + ∑
m 6=n

(im − 1)
m−1

∏
k=1
k 6=n

Ik .
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For N vectors a(1) ∈ RI1 , · · · , a(N) ∈ RIN , we define their outer product
a(1) ◦ · · · ◦ a(N) as the element of RI1×···×IN such that for all (i1, · · · , iN) ∈
∏N

n=1 J1, INK, by

(a(1) ◦ · · · ◦ a(N))i1,··· ,iN =
N

∏
n=1

a(n)in
.

The Kronecker product of two vectors a ∈ RI and b ∈ RJ is defines as the
vector

a⊗ b =


a1b

...

aIb

 ∈ RI J

Then, we can define the Kronecker product ⊗m 6=na(n) = a(N) ⊗ · · · ⊗ a(1) ∈ Be careful that the
product is taken
backwards.

R∏N
n=1 IN of N vectors a(1) ∈ RI1 , · · · , a(N) ∈ RIN recursively.

This way, we have, for all n ∈ J1, NK,

(a(1) ◦ · · · ◦ a(N))(n) = a(n)
(
⊗m 6=na(m)

)>
,

Then we define the Khatri-Rao product
⊙N

n=1 A(n) between N matrices
A(1) = [a(1)1 , · · · , a(1)R ] ∈ RI1×R, · · · , A(N) = [a(N)

1 , · · · , a(N)
R ] ∈ RIN×R as

N⊙
n=1

A(n) =
[
⊗N

n=1a(n)1 · · · ⊗N
n=1a(n)R

]
∈ R(∏N

n=1 In)×R .

This was, we have, for all λ ∈ RR, for all n ∈ J1, NK,(
R

∑
r=1

λra(1)r ◦ · · · ◦ a(N)
r

)
(n)

=
R

∑
r=1

λra(n)r

(
⊗m 6=na(m)

r

)>
= A(n)

(⊙
m 6=n

A(m)

)>
.



D
A L G O R I T H M I C D E TA I L S

This Chapter gathers practical algorithmic details about the methods intro-
duces throughout this thesis.

d.1 Details for the daily means analysis

d.1.1 Details for update main clustering

The update for the main clustering is a standard Expectation-Maximization
(EM) update. The parameter α̂ is updated as

α̂k+1 = argmax
α∈R2

+,α0+α1=1

T

∑
t=1

Eη̂k

[
ln p

(α,θ̂k
)
(X̄t, Wt|Tt)

∣∣∣ Tt, X̄t

]
, (D.1.1)

and the main clustering labels are updated as

Ŵk+1
t = argmax

w∈{0,1}
Pη̂k (Wt = w | Tt, X̄t) , t = 1, · · · , T . (D.1.2)

The update (D.1.2) requires computing the distribution of Wt given (X̄t, Tt)

under a parameter η which. By Bayes’s rule, we get for all w ∈ {0, 1},

Pη (Wt = w | Tt, X̄t) =
αw pη(X̄t|w, Tt)

∑1
w′=0 αw pη(X̄t|w, Tt)

,

where

pη(x|w, τ) =
1

∑
z=0

βw,z√
2πσ2

w,z

exp

(
− (x− µ̄w(τ))

2

2σ2
w,z

)
. (D.1.3)

The update (D.1.1) is easily derived and writes as

α̂k+1
w =

∑T
t=1 Pη̂k (Wt = w | Tt, X̄t)

∑1
w′=0 ∑T

t=1 Pη̂k (Wt = w′ | Tt, X̄t)
, w ∈ {0, 1} .
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d.1.2 Details for update regression

Fix a w ∈ {0, 1}, then the update performed in this step correspond to fitting
the following regression model with Gaussian mixture residuals on the time
indices t such that Ŵk

t = w.

X̄t = µ̄w(Tt) + σw,Zt εt , t ∈ Ik
w .

Equivalently, we can reason independently of the main updates Algorithm
2.3.1 by removing w in the notations and considering the model

X̄t = µ̄(Tt) + σZt εt , t ∈ I , (D.1.4)

where (εt)t∈I
iid∼ N (0, 1) and (Zt)t∈I ∈ {0, 1}I are i.i.d and independent of

(X̄t, Tt)t∈I and, for t, ` ∈ I , X̄t is independent of (X̄`, T`) conditionally to
Tt. We have σz > 0 and µ̄ : R → R and define θ = (µ̄, β0, β1, σ2

0 , σ2
1 ) where

βz = P (Zt = z). The goal of this section is to provide an estimator of θ. To
this end, we use an EM algorithm where penalty terms are added to enforce
µ̄ to be a convex natural cubic spline. Formally, we at the `-th step, given
the current value of the estimate θ̂

` we solve

θ̂`+1 = argmax
θ:µ̄ is convex

∑
t∈I

E
θ̂
(`) [ ln pθ(X̄t, Zt|Tt)| X̄t, Tt]− λ

∫
(µ̄′′)2 . (D.1.5)

This optimization problem cannot be solved analytically but we can alternate
between the maximization of each variable. The updates for this step are
given in Algorithm D.1.1 where we have

Pθ (Zt = z | X̄t, Tt) =
βz pθ(X̄t|z, Tt)

∑J
z′=1 βz′ pθ(X̄t|z′, Tt)

,

with

pθ(x|z, τ) =
1√

2πσ2
z

exp

(
− (x− µ̄(t))2

2σ2
z

)
. (D.1.6)

For the maximization with respect to µ̄, it is known (see Green and Silver-
man, 1994) that the L2 penalization on second derivative of µ̄ implies that the
solution is a natural cubic spline which is entirely characterized by the vector
µ = (µ̄(Tt))t∈I . Defining matrices Q, K, R as in Green and Silverman, 1994,
Section 2.1.2, the solution of spline smoothing

(
(σz, Pt,z, Tt, Yt)t∈I ,z∈{0,1}

)
is

entirely characterized by the solution of

min
µ∈R|I|

{
∑
t∈I

1

∑
z=0

Pt,z

σ2
z
(X̄t − µt)

2
+ λµ>Kµ

}
such that R−1Q>µ � 0 ,

where the constraint comes from the convexity constraint on µ̄. This quadratic
problem can be solved using numerical solvers.
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d.1.3 Practical implementation details

In this section, we discuss practical implementation details such at the ini-
tialization and stopping criteria.

d.1.3.1 Choice of the penalty parameter.

The penalty parameter λ in (D.1.5) will influence the smoothness of the func-
tion µ̄ obtained. For spline smoothing a closed form of the cross validation
error is provided in Green and Silverman, 1994, Eq. (3.27) but this formula
does not hold with the additional convexity constraint. Selecting the penalty
parameter using cross validation would therefore be computationally costly
as it requires to fit the model for multiple values of the parameter. In prac-
tice, we observed that the convexity constraint already imposed regularity
on the function µ̄ and that the value of λ did not have a great influence on
the final result. In our experiments we took λ = 0.5.

d.1.3.2 Initialization.

Algorithm 2.3.1 requires an initial value η̂0 for the estimator of η. To this
end, we perform the following steps.

1. Set Ŵ0
1:T as the result of K-means with 2 clusters performed on X̄1:T

and set for each w ∈ {0, 1}, α̂0
w = 1

T ∑T
t=1 1Ŵ0

t =w.

2. For each w ∈ {0, 1} fit a spline regression model on I0
w with Gaussian

noise (and not mixture of Gaussians). This means that we fit the model

X̄t = µ̄(Tt) + σεt t ∈ I0
w , (D.1.7)

which is the usual spline smoothing model presented in Green and
Silverman, 1994. We get

( ˆ̄µ, σ̂) = argmin
µ̄ convex,σ≥0

1
σ2 ∑

t∈I0
w

(X̄t − µ̄(Tt))
2 + λ

∫
(µ̄′′)2 ,

and set ˆ̄µ0
w = ˆ̄µ. For the values of β̂0

w,z and σ̂0
w,z, we use a priori assump-

tions by setting

β̂0
w,0 = 0.8 = 1− β̂0

w,0 , σ̂0
w,0 =

√
0.6× σ̂ and σ̂0

w,1 = σ̂ .

These values are based on the wish to interpret regime Z = 0 as rep-
resenting values close to the regression curve (i.e. “normal” behavior)
and the regime Z = 1 represents values far from the regression curve
(i.e “extreme” behavior).
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d.1.3.3 Stopping criteria.

As Algorithms 2.3.1 and D.1.1 are iterative, they require stopping criteria. In
both cases the criterion used is based on the relative change in likelihood.
In Algorithm 2.3.1, the likelihood is the one corresponding to model (2.3.2),
that is

pη (X̄1:T|T1:T) =
T

∏
t=1

(
1

∑
w=0

pη(X̄t|w, Tt)αw

)
,

where pη(x|w, τ) is given by (D.1.3). In Algorithm D.1.1, the likelihood is
the one of model (D.1.4), that is

pθ ((X̄t)t∈I |(Tt)t∈I) = ∏
t∈I

(
1

∑
z=0

pθ(X̄t|z, Tt)βz

)
,

where pθ(x|z, τ) is given by (D.1.6). Finally, in Algorithm D.1.1, the coordinate-
wise maximization also requires a stopping criterion. In practice we use a
fixed number of 5 iterations.

d.1.3.4 Selection of the regression noise.

In practice, we may not always want to detect two sub-regimes. To this end,
in the step update regression, we compare the results obtained by fitting
the model with Gaussian mixture noise (D.1.4) and the model with Gaussian
noise (D.1.7) and select the one giving the best likelihood. If the model with
Gaussian noise is selected, we adjust the estimators of βw,z and σw,z similarly
as in the initializing step.
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Algorithm D.1.1: spline mixture noise

Data: Observations (X̄t, Tt)t∈I and initial value θ̂
(0).

1 `← 0
2 repeat

/* Coordinate-wise maximization for regression */

3 repeat
4 for z ∈ {0, 1} do

5 Pt,z(θ̂
`
) = P

θ̂
` (Zt = z | X̄t, Tt) for all t ∈ I

/* Maximization with respect to σz */

6

σ̂`+1
z ←

(
∑t∈I Pt,z(θ̂

`
)
(
X̄t − ˆ̄µ`(Tt)

)2

∑t∈I Pt,z(θ̂
`
)

)1/2

.

/* Maximization with respect to µ̄ */

7

ˆ̄µ`+1 ← spline smoothing

((
σ̂`+1

z , Pt,z(θ̂
`
), X̄t, Zt

)
t∈I ,z∈{0,1}

)
.

8 until Stopping criterion;
/* Maximization with respect to β0, β1 */

9 for z ∈ {0, 1} do
10

β̂`+1
z ← ∑t∈I Pt,z(θ̂

`
)

∑t∈I ∑J
z′=1 Pt,z(θ̂

`
)

.

11 `← `+ 1

12 until Stopping criterion;
/* Cluster data */

13 for t ∈ I do
14

Ẑt ← argmax
z∈{0,1}

P
θ̂
`+1 (Zt = z | X̄t, Tt) .

15 return θ̂
`+1, (Ẑt)i∈I





E
G R A P H I C U S E R I N T E R FA C E S F O R L O A D C U RV E
A N A LY S I S

As a first step toward the implementation of the models proposed during my
PhD on the ACDC platform, I developed a Graphic User Interfaces (GUI) in
python to visualize the results of the algorithm as well as several diagnosis
features. This GUI is aimed to be a model for future Javascript implementa-
tion on the platform.

The results of the analysis on daily means are displayed in Figure E.1.
In the upper panel, the user can visualize the power and temperature data
as well as the regression curve and residuals obtained by Algorithm 2.3.1.
The colors represent the types of days. Normal opening days (Wt = 1 and
Zt = 0) are in blue, normal closing days (Wt = 0 and Zt = 0) are in cyan,
extreme opening days (Wt = 1 and Zt = 1) are in red and purple (red for a
consumption higher than normal and purple for a consumption lower than
normal) and extreme closing days (Wt = 0 and Zt = 1) are in orange and
brown (orange for a consumption higher than normal and brown for a con-
sumption lower than normal). The user can select a day t (in green) whose
daily load curve Xt(u) is then displayed in the lower panel and can be com-
pared to the daily load curves (and their mean) of all days which correspond
to the same weekday (here a Tuesday). Finally, the right panel displays some
information about power and energy and shows the energy gain in two sce-
narios. The first one consists in replacing the power of extreme days by the
edge of the distribution of normal days and the second consists in replacing
the power of extreme days by the value of the regression curve at the related
temperature. In Figure E.2, the user can visualize the functional data after
projecting onto a B-spline basis and the centered data. Colored curves corre-
spond to days during which the daily mean temperature is in a temperature
window selected by the user (here 16◦C± 3◦C). In the right panel, the daily
load curve and energy of the selected day (in green) are compared to the
mean curve (here µ1) and mean energy (

∫ 24
0 µ1(u)du). For the day displayed,
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the supermarket used, in total, 1945 kWh more and 599 kWh less than the
mean behavior, thus resulting in a total energy of 107.6% of the mean energy.

Finally, Figures E.3 and E.4 display the results of fPCA. The upper panel
of Figure E.3, corresponds to the fPCA loadings for a selected number of
components (here 3) and the lower panel is a zoom into a selected compo-
nent (her the first one). In Figure E.4, the Karhunen-Loève expansions of two
days are displayed. On top, the total reconstruction is compared to the mean
(in dashed black) and the true load curve (in dashed purple), and below, the
effect of each component on the mean is shown.
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Figure E.1: Daily mean analysis in GUI
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Figure E.2: Visualizing functional data in GUI
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Figure E.3: fPCA loadings and scores in GUI
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Figure E.4: Truncated Karhunen-Loève expansion in GUI
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Merlevède, Florence, Magda Peligrad, and Sergey Utev (1997). “Sharp Con-
ditions for the CLT of Linear Processes in a Hilbert Space.” In: Journal of
Theoretical Probability 10, pp. 681–693.

https://doi.org/10.1109/TSP.2015.2454476
https://doi.org/10.1080/01621459.2019.1635479
https://doi.org/10.1080/01621459.2019.1635479
https://doi.org/https://doi.org/10.1002/cem.1244
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cem.1244
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cem.1244
https://doi.org/10.1109/tpami.2011.156
https://doi.org/10.1109/tpami.2011.156
https://doi.org/10.21236/ad0630756
https://doi.org/10.21236/ad0630756
https://doi.org/https://doi.org/10.1016/j.apenergy.2014.12.039


bibliography 277

Miyasawa, Ayumu, Yu Fujimoto, and Yasuhiro Hayashi (2019). “Energy dis-
aggregation based on smart metering data via semi-binary nonnegative
matrix factorization.” In: Energy and Buildings 183, pp. 547–558. issn:
0378-7788. doi: https://doi.org/10.1016/j.enbuild.2018.10.030.

Munkres, James R. (2000). Topology. Second edition of [ MR0464128]. Prentice
Hall, Inc., Upper Saddle River, NJ, pp. xvi+537. isbn: 0-13-181629-2.

Neumark, M (1943). “Positive definite operator functions on a commutative
group.” In: Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 7.5,
pp. 237–244.

Notaristefano, A., G. Chicco, and F. Piglione (2013). “Data size reduction
with symbolic aggregate approximation for electrical load pattern group-
ing.” In: IET Generation, Transmission Distribution 7.2, pp. 108–117. doi:
10.1049/iet-gtd.2012.0383.

Owen, Art B. and Patrick O. Perry (2009). “Bi-cross-validation of the SVD
and the nonnegative matrix factorization.” In: The Annals of Applied Statis-
tics 3.2, pp. 564 –594. doi: 10.1214/08-aoas227.

Panaretos, Victor M. and Shahin Tavakoli (2013a). “Cramer-Karhunen-Loeve
representation and harmonic principal component analysis of functional
time series.” In: Stochastic Processes And Their Applications 123.7, pp. 29.
2779–2807.

— (2013b). “Fourier analysis of stationary time series in function space.”
In: Ann. Statist. 41.2, pp. 568–603. issn: 0090-5364. doi: 10.1214/13-
aos1086.

Paris, J., J. S. Donnal, and S. B. Leeb (2014). “NilmDB: The Non-Intrusive
Load Monitor Database.” In: IEEE Transactions on Smart Grid 5.5, pp. 2459–
2467. doi: 10.1109/tsg.2014.2321582.

Pipiras, Vladas and Murad S. Taqqu (2017). Long-Range Dependence and Self-
Similarity. Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press. doi: 10.1017/cbo9781139600347.

Rahimpour, A., H. Qi, D. Fugate, and T. Kuruganti (2017). “Non-Intrusive
Energy Disaggregation Using Non-Negative Matrix Factorization With
Sum-to-k Constraint.” In: IEEE Transactions on Power Systems 32.6, pp. 4430–
4441. doi: 10.1109/tpwrs.2017.2660246.

Rai, Piyush, Yingjian Wang, Shengbo Guo, Gary Chen, David Dunson, and
Lawrence Carin (2014). “Scalable Bayesian Low-Rank Decomposition of
Incomplete Multiway Tensors.” In: Proceedings of the 31st International
Conference on Machine Learning. Ed. by Eric P. Xing and Tony Jebara.

https://doi.org/https://doi.org/10.1016/j.enbuild.2018.10.030
https://doi.org/10.1049/iet-gtd.2012.0383
https://doi.org/10.1214/08-aoas227
https://doi.org/10.1214/13-aos1086
https://doi.org/10.1214/13-aos1086
https://doi.org/10.1109/tsg.2014.2321582
https://doi.org/10.1017/cbo9781139600347
https://doi.org/10.1109/tpwrs.2017.2660246


278 bibliography

Vol. 32. Proceedings of Machine Learning Research 2. Bejing, China:
Pmlr, pp. 1800–1808.

Ramsay, J. O. and B. W. Silverman (2005). Functional data analysis. Second.
Springer Series in Statistics. Springer, New York, pp. xx+426. isbn: 978-
0387-40080-8; 0-387-40080-x.
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Titre : Modélisation de séries temporelles fonctionnelles et application à la représentation et l’analyse de
courbes de charge électrique mutli-sites dans un contexte de maı̂trise d’énergie
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Résumé : L’analyse des courbes de charge électrique
recueillies par les compteurs intelligents est une étape
importante pour de nombreuses tâches de maı̂trise
d’énergie telles que le suivi et la prévision de la
consommation ou la segmentation de clientèle. Dans
ce contexte, les chercheurs d’EDF s’intéressent à
extraire des informations des courbes de charge
électrique journalières pour comparer les consom-
mations de différents bâtiments. La stratégie suivie
par le groupe de recherche accueillant mon doc-
torat consiste à utiliser des modèles physiques et
déterministes basés sur des informations telles que
la taille de la pièce, les matériaux isolants ou la
météo, ou à extraire à la main des motifs basés
sur les connaissances d’experts. Compte tenu de la
quantité croissante de données collectées, le groupe
s’intéresse de plus en plus aux méthodes statistiques

afin de fournir de nouvelles solutions capables d’ex-
ploiter des données massives sans s’appuyer sur
des traitements coûteux et des connaissances d’ex-
perts. Mon travail s’inscrit directement dans cette ten-
dance en proposant deux approches de modélisation
: l’une basée sur les séries temporelles fonctionnelles
et l’autre basée sur la factorisation non-négative de
tenseurs. Cette thèse est structurée en trois parties.
La première partie présente le contexte industriel et
l’objectif pratique de la thèse, ainsi qu’une analyse
exploratoire des données et une discussion sur les
deux approches proposées. Dans la deuxième par-
tie, nous suivons la première approche et étudions
la théorie spectrale des séries temporelles fonction-
nelles. La deuxième approche basée sur la factorisa-
tion non-négative de tenseurs est présentée dans la
troisième partie.

Title : Functional time series modeling and application to representation and analysis of multi-sites electric
load curves for energy management

Keywords : Time series, Functional data, Tensor factorization, Spectral analysis, Load curves, Energy.

Abstract : The analysis of electrical load curves col-
lected by smart meters is a key step for many energy
management tasks ranging from consumption fore-
casting and load monitoring to customers characteri-
zation and segmentation. In this context, researchers
from EDF R&D are interested in extracting significant
information from the daily electrical load curves in or-
der to compare the consumption behaviors of different
buildings. The strategy followed by the group which
hosted my doctorate is to use physical and determi-
nistic models based on information such as the room
size, the insulating materials or weather data, or to ex-
tract hand-designed patterns from the electrical load
curves based on the knowledge of experts. Given the
growing amount of data collected, the interest of the
group in statistical or data-driven methods has increa-
sed significantly in recent years. These approaches

should provide new solutions capable of exploiting
massive data without relying on expensive processing
and expert knowledge. My work fits directly into this
trend by proposing two modeling approaches: the first
approach is based on functional time series and the
second one is based on non-negative tensor facto-
rization. This thesis is split into three main parts. In
the first part, we present the industrial context and the
practical objective of the thesis, as well as an explora-
tory analysis of the data and a discussion on the two
modeling approaches proposed. In the second part,
we follow the first modeling approach and provide a
thorough study of the spectral theory for functional
time series. Finally, the second modeling approach
based on non-negative tensor factorization is presen-
ted in the third part.
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