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Résumé

La structure du paysage agricole est définie par l’hétérogénéité spatiale de la mosaïque de

parcelles cultivées et de la matrice des habitats naturels. L’oragnisation spatiale des parcelles

influence fortement le fonctionnement des agro-écosystèmes en déterminant les ressources

disponibles, la diversité des espèces et les interactions entre le milieu cultivé et les espaces

naturels. En particulier, la structure des habitats naturels et semi-naturels peut favoriser

un ensemble de services écosystémiques, tels que la lutte biologique contre les ravageurs.

Si la complexité paysagère est souvent associée à une plus forte régulation des ravageurs

des cultures, cette relation peut être aussi ambiguë. Les habitats semi-naturels favorisent

la présence et la diversité des espèces auxiliaires mais n’induisent pas forcément par un

meilleur service de régulation. En effet, les espèces auxiliaires diffèrent dans leur cycle

de vie, leurs comportements et leurs stratégies de prédation, s’influençant mutuellement

de manière positive ou négative. Dans le cadre de cette thèse, nous approfondissons dif-

férents aspects de la complexité du paysage et des interactions entre espèces afin de mieux

comprendre leurs effets sur le contrôle biologique.

Dans une première partie nous abordons la question de la représentation de paysages

agricoles réels pour permettre l’analyse structurelle du paysage et la génération de scé-

narios paysagers. Nous développons des outils statistiques pour représenter des paysages

composés d’éléments surfaciques et linéaires. En particulier, nous nous intéressons à la dis-

tribution des catégories d’occupation du sol. Nous proposons une méthode de validation

des modèles reposant sur un ensemble de métriques paysagères et nous développons un

outil permettant la simulation de paysages agricoles. Les données paysagères proviennent

de la basse vallée de la Durance (France). Dans une deuxième partie, nous définissons,

sur les paysages simulés, un modèle proie-prédateur décrivant la dynamique de ravageurs

et d’auxiliaires. Le modèle est spatialement explicite, il considère la dispersion des or-

ganismes à la fois dans les parcelles et le long des haies, ainsi que de potentiels traite-

ments phytosanitaires. Nous démontrons que l’hétérogénéité spatiale du paysage et les

traits d’histoire de vie du ravageur et de son auxiliaire jouent conjointement un rôle clé

dans l’efficacité du service de contrôle du ravageur. Nous ne limitons pas notre analyse

à l’échelle globale mais nous proposons aussi une nouvelle méthode pour étudier la dy-

namique du système à plusieurs échelles. Plus précisément, nous définissons un processus
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ponctuel spatio-temporel comme méta-modèle pour étudier le lien entre la dynamique lo-

calisée des pullulations de ravageur et les caractéristiques du paysage à différentes échelles

spatiales. Enfin, dans une troisième partie, nous étendons nos recherches aux aspects évolu-

tifs en abordant deux questions. Dans une première nous étudions comment l’hétérogénéité

environnementale influence la structure phénotypique d’une population dont les traits de

dispersion et de croissance sont soumis à un compromis évolutif. Ce travail est basé sur un

modèle de type paysage adaptatif et nous nous attachons à caractériser de façon analytique

les équilibres du système. La seconde question consiste à étudier comment la présence de

prédateurs, en interaction avec la structure du paysage, modifie les réponses comportemen-

tales de la proie. Pour ce faire nous complexifions le modèle développé dans la deuxième

partie pour une système avec plusieurs espèces.

Dans cette thèse nous explorons et intégrons différentes échelles spatio-temporelles (élé-

ments linéaires et surfaciques, échelles globales et locales, évolution temporelle des ravageurs

et des prédateurs) et différents niveaux de biodiversité (multi-espèces, diversité comporte-

mentale et diversité génétique). De cette manière, nous enrichissons les connaissances exis-

tantes en soulignant la nécessité de méthodes intégratrices afin de mieux évaluer en quoi la

complexité des paysages agricoles impacte les différentes facettes de la biodiversité.
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Abstract

Agricultural landscape structure is defined by the heterogeneity arising from a mosaic of

cultivated patches within a natural matrix. The spatial arrangement of these agricultural

habitats strongly influences ecosystem functioning and, therefore, determines environmen-

tal resources, species diversity and interactions. Specifically, the amount and the organ-

isation of natural and semi-natural habitats can promote a bundle of desired ecosystem

services, such as biological pest control. However, the relationships among desired effects

and landscape complexity can be ambiguous. Even if semi-natural area favours natural en-

emy species presence and diversity, this might not be directly translated into a profitable

advantage for natural pest suppression. The reason is that enemy species differ in their life-

cycle, their behaviours and predating strategy, influencing each other in positive or negative

ways. In this thesis, we deepen various aspects of the landscape complexity, population

dynamics and their relationships to better understand the effect on conservation biological

control.

Firstly, we deal with the representation of real agricultural landscapes to allow for land-

scape structural analysis and scenario generation. We develop statistical tools to represent

real landscapes composed by patches and linear elements, to capture the distribution of

landscape features, and to simulate land-use category allocation. We estimate model pa-

rameters for sub-regions of the Lower Durance Valley (France), validate the model based

on a diversity of landscape metrics and implement simulations of agricultural scenarios.

Secondly, we couple landscape generation with population dynamics based on the land-

scape model through a spatially explicit predator-pest model taking into account pesticide

applications, which are employed when biological control through predator efforts is not

enough. We demonstrate that spatial heterogeneity, species traits and their interactions

jointly play a key role for biological control outcomes. Since we recognise that integration

of species traits with landscape structure at multiple scales are needed, and that the output

aggregation over time and space cause information loss, we do not limit our analysis to the

global scale. We propose a more parsimonious representation to take into account all the

relevant information of spatially-explicit outputs to fully characterise spatio-temporal pest-

predator dynamics. Specifically, we recur to meta-models based on spatio-temporal point

processes. Through this multi-scale approach, we gain insights on both local and global
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spatio-temporal dynamics of predator-pest systems. Finally, we extend our analyses to the

assessment of genetic diversity and behavioural strategies to better represent species adap-

tation to different drivers like environmental conditions and different predating pressure.

During this thesis, we explore and integrate different spatio-temporal ranges (i.e., linear

and areal landscape elements, global and local scales, temporal pest and predator evolution)

and different biodiversity levels (multi-species, behavioural diversity and genetic diversity).

By focusing on different perspectives, we enrich the existing knowledge and highlight the

necessity of more integrated methods and efforts to better account for the various important

dimensions of biodiversity, jointly with agricultural landscape complexity.
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General context

Agroecosystem sustainability relies on various ecosystem services, such as crop produc-

tion, nutrient cycling, flood regulation, climate regulation, biological control of pests, and

aesthetic value (MEA, 2005; Zhang et al., 2007). However, the demand for increasing agricul-

tural productivity leads to significant changes and intensification of farming practices, such

as land consolidation, shortening of crop rotations, and selection of the most productive

cultivars relying on agri-chemicals to protect fields from pathogens and pests (Foley et al.,

2005; Poggi et al., 2021). Recent studies spotlight a dramatic decline in biodiversity, species

richness and abundance as the main consequence of habitat loss and land use change driven

by intensive agriculture and urbanisation, pollution, biological factors (including pathogens

and introduced species), and climate change (Sánchez-Bayo and Wyckhuys, 2019). Indeed,

it has been established that land use simplification, associated with a strong dependence on

agro-chemical inputs, is decreasing environmental quality and is threatening biodiversity

(MEA, 2005), as most ecosystem services are influenced by agricultural landscape structure

(Mitchell et al., 2014; Bianchi et al., 2006; Chaplin-Kramer et al., 2011a).

Agricultural landscapes can vary from structurally simple landscapes composed by few

cropping systems to a complex mosaic of different cultivated patches embedded in a natural

matrix (Power, 2010). Landscape structure is defined with respect to its heterogeneity, which

can be expressed through landscape configuration, referring to the size, shape, and spatio-

temporal arrangement of land-use patches, and through landscape composition, referring to

the number and proportion of land-use types (Martin et al., 2019). The structural complexity

of these systems influences ecological responses, such as animal movements (Fahrig, 2007),

population persistence (Fraterrigo et al., 2009), species interaction (Polis et al., 2004) and

other ecosystem functions (Lovett et al., 2005) providing more niches and diverse ways of

exploiting the environmental resources (Fahrig et al., 2011). Specifically, landscape config-

uration affects species movements, spillover and the colonization of neighbouring patches

(Tscharntke et al., 2005; Rand et al., 2006; Blitzer et al., 2012); landscape composition affects

diversity by providing complementary resources along the different stages of an organism’s

life cycle, by increasing species diversity, by affecting species interactions and by favour-

ing complex trophic network relationships (Benton et al., 2003; Fahrig, 2013). Specifically,

in agricultural landscapes, the amount and the organisation of natural and semi-natural

habitats have the potential to promote a bundle of desired ecosystem services, such as pest
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regulation and pollination, due to their influence on the community ecology at multiple

spatial and temporal scales (Bianchi et al., 2006; Chaplin-Kramer et al., 2011b; Tscharntke

et al., 2016a). Non-crop habitats often include woody (e.g., forest and hedgerow) and

herbaceous habitats (e.g., field margins, road verges and meadows). These habitats are rel-

atively undisturbed and permanent areas, and they are often a source of complementary

resources and refuges. Thus, they can support more diverse and abundant natural pest en-

emies than simple landscapes. Thus, commonly, pest regulation is expected to be greater in

complex landscapes that contain a greater proportion or diversity of semi-natural habitats,

such as forest, meadows, hedgerows or ditches (Chaplin-Kramer et al., 2011a). However,

despite this potentially beneficial role of semi-natural habitats for biological control, there

is a tendency to favour arable fields and large field sizes allocation in modern agricultural

landscapes (Rusch et al., 2016; Tscharntke et al., 2005)

The nexus among agricultural landscape structure, natural habitat presence and species

trophic interactions is not trivial. There can be potentially negative, neutral, or positive con-

sequences for biological control outcomes (Martin et al., 2013; Snyder, 2019). For example,

carabids alternate between semi-natural and crop habitats as they require both during their

life cycle (Kromp, 1999; Bareille et al., 2020). They reproduce in field margins and move

to crops where they feed on agricultural pests, such as aphids (Kromp, 1999). In this case,

the intermixing of semi-natural elements within crops positively affects carabid dynamics

and, thus, positively favours the pest regulation thanks to predation by carabids (Garcia

et al., 2000; Joyce et al., 1999). By contrast, natural habitat can also host a high variety of

pest species such as aphids, herbivorous flies and beetles (Langer, 2001). Similarly to their

predators, these pests can benefit of complementary resources, or they can use those habi-

tats in some stages of their life cycle, and they can then inflict damages on crops (Rand et al.,

2006; Tscharntke et al., 2016a).

Even if the presence of semi-natural area favours the presence and diversity of natural

enemy species , this does not directly translate into a profitable advantage for natural pest

regulation (Holt et al., 2001). Natural enemy species may differ in their life-cycle, their

behaviours and their predating strategy, and they can therefore influence each other in pos-

itive or negative ways. Specifically, natural enemy richness is beneficial for pest regulation

when species act in a complementary manner in terms of pest suppression (positive effect);

by contrast, it is also possible that natural enemies are in competition and disturb each other

(negative effect) (Northfield et al., 2010; Finke and Snyder, 2010). Complementary strate-

gies can be characterised by different predating time (e.g., nocturnal vs diurnal predators)

or by different dispersal ability and predating strategy (e.g., actively-searching vs sit-and-

wait predators) (Tscharntke et al., 2005). Negative effects may occur when natural enemies

show similar or identical behaviours limiting predator density or predating efficacy, such

as feeding on each other (e.g., intra-guild predation) (Finke and Snyder, 2010). For these

reasons, functional diversity, rather than species richness per se, may often determine the
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relationship between biodiversity and biological control. When species are categorised into

functional groups based on their behavioural and ecological traits, species within the same

group are considered as ecologically redundant, and species in different groups are com-

plementary (Hillebrand and Matthiessen, 2009; Northfield et al., 2012). However, species

richness and species functional diversity are naturally linked: having a large number of

different species would likely result in a large pool of species that could potentially have

different functions in the ecosystem (Tilman, 1996; Cadotte et al., 2011). Thus, it is al-

ways important to consider the correlation among species richness and functional diversity

(Tilman et al., 2001). In addition, maintaining species richness and functional redundancy

may be an important insurance and resilience strategy, since it provides options of compo-

sition change in response to future stressors or species loss (Tilman, 1996; Peterson et al.,

1998). Specifically, species having the same function in the present environmental context

may respond differently in future contexts as they may adapt their traits and behaviours in

different ways to changing drivers. In addition, species in the same functional group may

operate at different scales, such that they provide mutual reinforcement and contribute to

the resilience of a function (Peterson et al., 1998).

Divergent organism functions and behaviours are also influenced by landscape structure

and resource distribution, which, consequently, influence species interactions (Cenzer and

M’Gonigle, 2019). For predators, the combination of their preferred habitat and their dis-

persal ability jointly determines the spatial domain where they search for the prey, and it

determines the predating strategy they apply. Moreover, the predating strategy is adapted

to the behaviour of preys: sit-and-wait predators are more effective at capturing actively

moving prey, whereas actively moving predators are more effective at capturing seden-

tary prey. Thus, a change in the environmental context and species composition can result

in morphological or behavioural adaptation of species to adjust their traits and strategies

to match the new situation. Thus, predator–prey interactions and behavioural strategies

should be considered as an adaptive foraging games (Schmitz et al., 2017): predator success

results from the ability to capture the prey; prey success results from the ability to evade

predators. For example, Start and Gilbert (2017) study how predator behaviour and density

interact in structuring prey abundance, community composition and the strength of trophic

cascades. They demonstrate that predator strategy can create differences in abundance of

preys and in their composition (Royauté and Pruitt, 2015). Moreover, they suggest that in-

traspecific variation in one species can allow for the coexistence of the other species with

which it interacts (Pruitt et al., 2012). They also show that active predators are more likely

to cannibalise one another, and cannibalisation may become the dominant feeding strategy

when they are at high density, leading to weaker predation of other prey (Rudolf, 2007).

Sommer and Schmitz (2020) study how personality differences in a species of herbivore

prey mediated tri-trophic interactions involving its predator and its plant resources. They

show that it is insufficient to characterise a population’s trophic interactions across environ-
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mental contexts based on the mean trait value alone. Specifically, they noted a convergence

of opposite prey personality trait values and different resource utilisation under predation

risk by a sit-and-wait spider predator.

The interplay between species sorting and adaptation shapes the structure and func-

tioning of communities based on the species’ functional traits (Lavorel and Garnier, 2002;

Martin et al., 2019). In recent literature, the reciprocal interactions between ecological and

evolutionary processes, which enable the organisms to both shape and adapt to their envi-

ronment, are called Eco-evolutionary processes (“eco-evo”) (Becks et al., 2012; Legrand et al.,

2017; Bonte and Bafort, 2018). Ecological dynamics, such as species interactions and de-

mography, can influence evolutionary change by altering natural selection. This, in turn,

can alter ecological dynamics (Burak et al., 2018). Therefore, eco-evo interactions should

not be dissociated from the ecological and environmental context in which they occur (Ur-

ban et al., 2008; Hanski and Mononen, 2011; Legrand et al., 2017). This holds especially in

those habitats that are currently shaped by human activities, such as agricultural practices

(Legrand et al., 2017). Many phenotypic traits can be affected by spatial heterogeneity and

structure, in particular those traits related to mating systems, competitive skills, movement

abilities or habitat use (Legrand et al., 2017). Indeed, accounting for species traits and their

role in shaping the interaction between ecological and evolutionary dynamics is crucial to

understand many processes in ecology, such as evolutionary rescue (Lavigne et al., 2020),

migrational meltdown (Ronce and Kirkpatrick, 2001) or biological invasion (Szűcs et al.,

2019). For example, population expansion is an ecological process mainly driven by traits

related to reproduction and dispersal (Turchin, 1998; Deforet et al., 2019). However, there

are many examples where individuals who invest more in the development of their traits

related to the dispersal strategy reduce the effort in foraging and reproduction (Bonte and

Bafort, 2018; Baguette and Schtickzelle, 2006; Hanski et al., 2006). In such cases, two possi-

ble evolutionary strategies exist: dispersing faster, or growing more strongly (Deforet et al.,

2019). This results in a trade-off between the species’ traits that shapes the ecological and

evolutionary dynamics of populations.

In this thesis, we highlight the role of agricultural landscape structure on shaping pop-

ulation dynamics and on influencing biological control outcomes. In order to develop a

general methodology where we do not restrict our findings to a specific case study, we

propose and illustrate different perspectives and approaches that are generic and flexible

enough to be easily adapted to different systems.

The conceptual framework and structure of the thesis is presented in Figure 1. In the

Part I of this thesis, we deal with the representation of real agricultural landscapes. We give

a general overview of agricultural systems and dynamics where we highlight their com-

plexity and open challenges (Chapter 1). Then, we present novel models we developed to
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represent agricultural landscapes through computer generated-simulations where we vary

representative parameters related to landscape features such as the percentage of land-cover,

the habitat fragmentation, or spatial auto-correlation (Chapter 2) (Gardner, 1999; Saura and

Martinez-Millan, 2000; Gardner and Urban, 2007; Sciaini et al., 2018; Langhammer et al.,

2019). In this part of our research, the characterisation of virtual agricultural landscapes is

performed regardless of underlying ecological or social processes (i.e., neutral model-based

landscape generator) (Langhammer et al., 2019). This allows deeply focusing on one or

several characteristics of composition and configuration useful to simulate different, but

statistically similar landscapes having features close to real ones. In Part II, we investigated

the role of agricultural landscape heterogeneity on pest-predator dynamic (Chapter 3). In

order to go further and explore the role of complex landscape on BC, we couple stochastic

landscape models with a population dynamic model accounting for both dispersal along

the hedges and within surfaces. In this way, we are able to unravel the joint influences

of landscape features and species traits on BC output at global (Chapter 4) and local scale

(Chapter 5).

In Part III we take into account species functional diversity by focusing on species be-

haviours and species traits (Chapter 6), which are able to influence species interactions.

To assess traits evolution and adaptation during key ecological processes, in Chapter 7 we

characterise species with a continuous space of phenotype traits describing a simplified sys-

tem to focus on eco-evolutionary processes in new or changing environment. We decide to

describe a simplified system: the spatial support is represented by a 1D spatial domain;

and we consider a single species. We consider the expansion process driven by co-evolving

species traits, where the two possible eco-evolutionary strategies involve a trade-off: grow-

ing faster (but dispersing more slowly), or dispersing faster (but growing more slowly). We

explore the spreading dynamics of a consumer species exploiting a resource in a heteroge-

neous environment through a reaction-diffusion model. Even if this is a theoretical work;

it may be placed in the context biological control to study species invasion or colonisation

in an heterogeneous environment. Lastly, by using the idea and key messages of Chap-

ter 7, we expand the pest-predator model presented in Chapter 4 towards a two-predators

and two-pest system where species show opposite habits and traits. Here, we analyse how

the landscape structure may play a role in shaping species optimal strategies and fitness

(Chapter 8).
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Figure 1 – Thesis structure
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Part I

Modelling the spatio-temporal

heterogeneity of agricultural landscapes

Figure 2 – A landscape in central France with pastures, fields, and forestland mix, creating a “bocage”
landscape. Image taken on April 10, 2016. PlanetScope image © 2016 Planet Labs, Inc. cc-by-sa 4.0.
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Chapter 1

Complexity in agricultural

landscapes: definitions, functions

and representations

1.1 Agricultural landscape structure

A landscape is a spatially heterogeneous area defined by the land surface and its associated

habitats at different spatial scales (Turner, 1989). Fundamental landscape characteristics are

structure, function, and change (Forman et al., 1986). Structure refers to the spatial rela-

tionships between distinctive ecosystems, which depend on the size, shape, number, kind

and configuration of components. Function refers to the interactions between the spatial el-

ements, such as the flow of energy, materials, and organisms among the component ecosys-

tems. Change refers to alteration in time of structure and function (Turner, 1989). Indeed,

structural landscape heterogeneity involves different cover types identified by their physi-

cal characteristics, without reference to species; functional landscape heterogeneity involves

different cover types depending on differences in resource utilisation and includes species

or species groups (Fahrig et al., 2011). Then, spatial heterogeneity could be quantified by

landscape configuration (i.e., size, shape and spatial arrangement of land-use patches) and

landscape composition (i.e., proportion of land-use types), see Figure 1.1 (Fahrig et al., 2011;

Fahrig, 2013; Martin et al., 2019). As landscapes are spatially heterogeneous mosaics, their

structure, function, and change are scale-dependent: spatio-temporal patterns and hetero-

geneity are dependent on the considered scale (Turner, 1989). Landscape functions, such

as the flow of organisms, depend on scale and on species dispersal abilities and perception

of the surrounding environment (Whittaker et al., 1970). Changes in landscape structure

or function are scale-dependent as a dynamic landscape may exhibit a stable mosaic at one
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spatial scale but not at another (Turner, 1989).

Figure 1.1 – Landscape heterogeneity with two major axes: compositional and configurational het-
erogeneity. Each large square represents a landscape, and different colours represent different cover
types within landscapes. From Fahrig et al. (2011).

Agricultural landscapes are strongly human-driven landscapes, and they cover about

40− 50% of continental areas with an increasing trend to meet the growing demand of food

production (FAO, 2006; Gaucherel et al., 2014). Around the world, agricultural ecosystems

show variation in structure and function, due to diverse crops, different socioeconomic

conditions and diverse climatic regions (Power, 2010). However, in general, an agricultural

landscape can be viewed as a spatially heterogeneous area composed by a collection of

cultivated fields and semi-natural areas. Agroecosystems are key habitats not only for food

production purpose, but also for other ecosystem services, such as biodiversity, pollination

and pest control (Power, 2010; Foresight, 2011). Agricultural area could be represented as

a matrix or mosaic of patches defining the dominant land cover, while the interconnections

are constituted by linear elements (Van Der Zanden et al., 2013). During the last decades, the

agricultural intensification has resulted in strong changes in agricultural landscapes, mostly

in Western Europe and North America (Robinson and Sutherland, 2002). Specifically, we are

observing a simplification of agricultural landscapes characterised by the expansion and up-

scaling of arable field sizes, simplified crop patterns with fewer crop types and the reduction

of natural habitats to leave only small fragments (Baillod, 2016). Thus, arable fields become
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the dominant landscape element. A key point is that cropping systems are ephemeral

habitats that are often subject to frequent and intensive disturbances (Landis, 1999). On

the other hand, non-crop habitats, such as field margins, ditches, grassland, hedgerows

and wood lots, are relatively undisturbed and temporally permanent areas and, thus, are

capable of holding a substantial biodiversity richness acting as biodiversity reservoirs for

plants, insects, birds and mammals (Bianchi et al., 2006; Schmidt et al., 2005).

1.2 The role of semi-natural habitats (SNH) within agricul-

tural landscapes

The structure of semi-natural habitats (SNH) embedded in agricultural landscapes is highly

variable, ranging from wild and cultivated elements being almost indistinguishable and

intermeshed, such as in tropical agroforestry landscapes (Tscharntke et al., 2011), to being

strongly separated as in intensive monoculture landscapes, see Figure 1.2 (Poggi et al., 2021).

SNHs, such as hedgerows, ditches, ponds, grass strips, are of great importance since they

provide ecosystem services, such as erosion limitation, water supply and flood regulation,

pesticide and nutrient mitigation, weed and pest spreading regulation (Power, 2010). These

ecosystem services, if fostered and supported, could be an advantage and an opportunity

to limit the dependence on agricultural inputs (e.g., fertilisers, pesticides, irrigation water).

Consequently, the spatial arrangement of non-crop habitats and cultures strongly influences

the ecological system responses (Fahrig et al., 2011; Maalouly et al., 2013; Ricci et al., 2013;

Martin et al., 2019). The variability of habitats in ecosystems, and their functional diver-

sity, may also represent conditions for the development of biodiversity-based agricultural

landscapes, as well as resilience of ecosystems (Chapin I et al., 2000; Poggi et al., 2021). In

fact, the juxtaposition of different land cover types, considering different crops and SNHs,

both with different shapes and sizes, results in higher levels of complexity, both in terms

of landscape composition and configuration, which influence species dispersal and coloni-

sation of neighbouring patches (Perović et al., 2015). The presence of different land cover

types can guarantee complementary resources during the life cycles of each species, thereby

increasing species diversity and favouring complex trophic network relationships (Dunning

et al., 1992; Perović et al., 2015; Tscharntke et al., 2012; Poggi et al., 2021).

1.3 Landscape models

The structure of a given landscape results from accumulated past changes, and it is contin-

uously reshaped by natural and human drivers (Poggi et al., 2018). In order to describe the

spatio-temporal dynamics of landscapes represented by field mosaics and their shapes and

properties, models can provide a key contribution and can also support the design of sus-
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Figure 1.2 – Spatial structure of cultivated fields and SNHs across different farming systems. Source:
© IGN from Poggi et al. (2021).

tainable landscapes (Poggi et al., 2018). Given the complexity of the landscape system, the

broad range of spatial scales, the temporal dynamics and the multiple objectives that must

be satisfied, empirical experiments alone cannot provide exhaustive answers since they are

based on few case studies and relatively specific systems and scientific questions.

In general, a model is defined as an abstract mathematical representation of a system or

process (Turner et al., 2001). Therefore, most models are used to explore assumptions and

hypotheses rather than to represent system structure and dynamics exhaustively. As Box

(1979) stated: “All models are wrong, but some are useful". They allow for problem definition,

the identification of the relevant concepts, data analysis and result communication (Turner

et al., 2001). Models should always be considered as scientific tools which enable us under-

stand how a system works and, then, explore the suite of varying conditions in time and

space (Turner et al., 2001). Scientists model landscapes for mainly two reasons: to better

understand landscape dynamics themselves (intrinsic needs), and/or to offer realistic frames

to host other ecological, biological, sociological and/or physical processes (extrinsic needs)

(Rounsevell et al., 2012; Gaucherel et al., 2014). In this sense, the wide variety of available

or possible models could be used to provide insights and to guide the transformation and

transition towards future landscapes, for example by performing scenario simulation under

different conditions or multi-objective optimisations (Nendel and Zander, 2019; Poggi et al.,

2021). Moreover, landscape models could be coupled with outputs from global climate

models (Hayhoe et al., 2017) and species distribution models (Franklin, 2010) to predict the

effects of environmental changes on species and ecosystems. Different lines of research are

possible: i) Landscape representation, to further conceptualisation as technological devel-

opments and precision agriculture bring increasing information; ii) Landscape conception,
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to build bridges between disciplines underpinning agricultural landscape modelling (e.g.,

agronomy, geography, ecology, economy and computer science); iii) Landscape manipula-

tion, to identify future scenarios for shifting from current agricultural landscapes to novel

and more sustainable ones, but, here, research remains rare (Poggi et al., 2021).

Agricultural landscapes are highly complex systems for which modelling offers a fun-

damental tool to provide guidance on their future conception and manipulation (Poggi

et al., 2021). Agricultural landscape models describe landscapes as mosaics of fields hav-

ing shapes and properties that vary in space and time (Turner et al., 2001; Gaucherel et al.,

2014; Poggi et al., 2018). Different approaches exist for generating landscapes with various

structures (i.e., the spatial arrangement of land covers), and for studying biotic or abiotic

processes (Langhammer et al., 2019). Landscape models aim to generate virtual landscapes

by using algorithms that systematically and automatically vary landscape features, such as

percentage of land-cover, habitat fragmentation, or spatial auto-correlation. This allows sim-

ulating different virtual, but structurally realistic, maps of land cover by trying to combine

both realism and the possibility of varying landscape features (Gardner, 1999; Saura and

Martinez-Millan, 2000; Gardner and Urban, 2007; Sciaini et al., 2018; Langhammer et al.,

2019). Landscape mosaics can be represented by two complementary approaches, raster

and vector representations, depending on the goal of the study and how their constitutive

parts are handled, see Figure 1.3 (Bonhomme et al., 2017; Gaucherel et al., 2006b). Differ-

ences between raster and vector landscapes arise from their spatial composition. A raster is

a matrix data structure that represents a regular grid of cells that are the smallest units and

that are defined by two pieces of information (i.e the spatial coordinates and the cell value).

A vector is a spatial object (i.e. points, lines, and polygons) defined by the exact coordinates

of its bounding vertices and could have different attribute values (Langhammer et al., 2019).

Most of the existing models work with the raster mode and simulate cell mosaics (Gard-

ner, 1999; Saura and Martinez-Millan, 2000; Pe’er et al., 2013; Engel et al., 2012; van Strien

et al., 2016). In agricultural landscapes, for example, Begg and Dye (2014) develop a mod-

elling framework that couples a landscape mosaic generator and a population module. The

generator module is a stochastic algorithm that works by continually subdividing a two-

dimensional space to produce a mosaic of rectangular fields. Engel et al. (2012) design a

simple landscape structure composed of 15 crop types by varying crop proportion and the

mean field size. van Strien et al. (2016) generate landscapes integrating different landscape

metrics at field or class level, and their approach allows varying the configuration and the

composition. The model of van Strien et al. (2016) is based on an optimisation algorithm

that tries to optimise the configuration and the composition that correspond to the target

set for the landscape metrics. Raster-based approaches are commonly used for modelling

processes operating between contiguous cells and result in gradual landscape dynamics

(Langhammer et al., 2019).

However, agricultural mosaics display a patchy structure consisting of a moderately
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Figure 1.3 – Comparison of the raster (panel b) and vector (panel c) approaches to the representation
of real agricultural landscape (panel a). In raster representation, the information is contained in cells
as elementary units. In vector representation, the information is described using different geometrical
features i.e., farms as points, roads as linear elements, wooded area as polygons.

large number of contiguous polygons with rectilinear boundaries, and there can also be

fringe structure on their borders, such as hedgerows (Gaucherel, 2008). Indeed, for agri-

cultural landscapes strongly characterized by patches and corridors, the vector approach is

very well suited (Gaucherel et al., 2006a,b; Le Ber et al., 2009; Papaïx et al., 2014a; Inkoom

et al., 2017; Langhammer et al., 2019). For example, Gaucherel et al. (2006a,b) develop a

model that simulates the patches and fringe structures. In their work, a pixel definition of

the polygon is kept in order to simulate continuous processes. In follow-up work, Gaucherel

(2008) proposes models for polygonal landscapes mosaics, based on the comparison of dif-

ferent tessellation approaches. Le Ber et al. (2009) simulate agricultural landscape defined by

two different tessellation methods (i.e., Voronoi and rectangular) and two types of stochas-

tic cropping pattern distribution. Papaïx et al. (2014a) develops a landscape generator that

generates the landscape mosaic based on a T-tessellation algorithm developed by Kiêu et al.

(2013). Many tessellation models have the advantage of being parametric, where a set of

parameters controls the main features of the simulated landscapes. Moreover, these models

are stochastic and can be used to produce essentially infinite collections of replicated vir-

tual landscapes with similar landscape metrics (Papaïx et al., 2014a). This allows checking

the robustness of the results to changes in residual landscape variability. However, using

such approaches it can be difficult to reproduce fine grain spatial structures, as they do not

capture the full complexity of landscapes nor do they provide realistic landscape structures.

The combination of parametric with nonparametric approaches may enable this gap to be

bridged (Straubhaar et al., 2011). The majority of the above-mentioned models are validated

by testing whether generated landscapes are able to reproduce realistic landscape features.
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The validation is performed by comparing certain landscape metrics (see Section 1.4) with

real landscapes (Adamczyk-Chauvat et al., 2020; Gaucherel et al., 2006a,b; Le Ber et al., 2009;

Pe’er et al., 2013; van Strien et al., 2016; Inkoom et al., 2017; Zamberletti et al., 2020). Some

of them use also these metrics as input for the simulation algorithm to approximate the

generated landscape to the target one (Langhammer et al., 2019).

1.4 How to assess and analyse landscape patterns

Before the relationship among landscape structure and the processes of interest can be un-

derstood, landscape patterns must be identified and quantified in meaningful ways (Turner,

1990). The quantification through mathematical functions, using indicators or metrics, is a

useful tool for the analysis of landscape patterns, which may be patch-based and expressed

through discrete land-cover classes. A wide variety of methods, indices and metrics exist

and enable measuring landscape patterns across a multitude of applications (Turner, 1990;

McGarigal and Marks, 1995; Cushman et al., 2008; Kupfer, 2012; Frazier and Kedron, 2017).

As for the terminology, the common usage of the term “landscape metrics” mostly refers to

indices developed for categorical map patterns (McGarigal et al., 2002), but it is also used

for topographic measures (Iampietro et al., 2005) that characterize landscape. Landscape

metrics may also just refer to some combination of several characteristics that are important

to a particular species (Fernández et al., 2007). In order to make metrics relatively easy to

calculate (Calabrese and Fagan, 2004), software packages are widely used, and many met-

rics have also been integrated into existing geographic information system (GIS) software

e.g., Patch Analyst in ArcView; and module Pattern in IDRISI (Uuemaa et al., 2009). An

example are the metrics proposed by McGarigal and Marks (1995) who developed the ded-

icated software FRAGSTAT, also available through the open-source R package landscapemet-

rics (Hesselbarth et al., 2019). However, the proliferation of various metrics, many of them

strongly correlated among each other, poses a serious challenge to determine how many

components of landscape structure are relevant and which metrics should be used (Cush-

man et al., 2008). The desirable idea is to rely on the smallest number of independent met-

rics which sufficiently quantify landscape structure (Cushman et al., 2008). Cushman et al.

(2008) use principal component analysis (PCA) and cluster analysis to identify indepen-

dent components of landscape structure, which results in a moderate number of universal

and consistent combinations of FRAGSTAT metrics describing major attributes of landscape

structure at the landscape level. Leitao and Ahern (2002) propose a core ensemble of met-

rics relevant for landscape planning. However, some of the landscape metrics are difficult

to interpret because their behaviour has not yet been evaluated in depth (Uuemaa et al.,

2009; McGarigal et al., 2002). A solution to this problems can be obtained through neutral

landscape models, which may be employed to systematically generate maps with varying

map properties and to compare the generated patterns with those of real landscapes. This
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allows for testing and better understanding the behaviour of various metrics (Li et al., 2005).

Another common group of metrics are graph-theoretic measures, where graph-theoretic ap-

proaches are used to represent the landscape as a network of habitat patches through the

mathematical “graph” definition (Urban and Keitt, 2001; Minor and Urban, 2008; Saura and

Martinez-Millan, 2000; Lü et al., 2016). Metrics are then defined relative to nodes, edges

or the entire habitat network (Urban and Keitt, 2001; Lü et al., 2016). Once evaluated, a

combination of relevant metrics could be used for better characterising landscape structure

or investigating the processes, spatial dynamics or patterns and the relationships of interest.

1.5 Open issues and future challenges

The representation of agricultural landscapes remains challenging due to the complexity of

the system, the elevated number of properties and features to be addressed, different spatio-

temporal scales and the elevated number of processes involved within it (Poggi et al., 2021).

In general, large-scale patterns are now commonly integrated in landscape metrics and

models; fine-scale elements, instead, are generally not considered as they require a higher

spatial resolution (Poggi et al., 2021). However, such elements are fundamental as they may

influence the local landscape heterogeneity and may explain local dynamics.

In the raster representation for the landscape structure, as proposed by McGarigal and

Cushman (2005), there is a very realistic representation of landscape heterogeneity describ-

ing the landscape by continuous surface characteristics without arbitrary land-use classifi-

cation (Lausch et al., 2015). This approach seems well suited to landscapes with a relatively

high degree of naturalness and with strong temporal dynamics in vegetation patterns, and

to landscapes characterised by gradual and continuous processes (Lausch et al., 2015; Lang-

hammer et al., 2019). Traditional geostatistical analysis allows for metrics that can appropri-

ately characterize spatial variation in continuous surfaces; however, the definition of link-

ages between landscape representation and ecological processes should be better addressed

(Poggi et al., 2021). Moreover, there is the need to develop novel techniques to efficiently

reduce the model complexity in order to fully take advantage of all the available data and

maintain a high level of precision.

On the other hand, the patch mosaic paradigm (Forman et al., 1986) depicts the land-

scape as a mosaic of discrete, homogeneous areas, and we can quantitatively assess their

spatial arrangement (landscape configuration) and their constituent diversity (composition).

For this approach, numerous landscape indicators have been developed to quantify different

spatial and compositional aspects of landscape patterns and to link them with the process

of interest, such as ecological processes (Lausch et al., 2015). Its main weakness that calls

for further research is the lack of the description of the within-patch heterogeneity, which

leads to information loss that may be important to explain certain dynamical processes.

Nevertheless, this approach appears well suited in many human-dominated environments,
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such as urban areas or agricultural landscapes where discrete and homogeneous areas are

separated by sharp and discrete boundaries.

These two modeling paradigms have different data requirements and allow for different

quantification methods, and the choice should be driven by the scope of the work. For this

reason, the models presented in the existing literature focus on different aspects, levels of

detail and methodology, which makes direct comparisons of the two approaches perfor-

mance on a specific task difficult (Langhammer et al., 2019). Moreover, the alignment of

computer generated landscapes with real landscapes still has much potential for improve-

ment. Further development of specific algorithms for calibration and validation of models

with respect to real landscapes, using high resolution data and integrating relevant abiotic

factors, should be addressed (Langhammer et al., 2019).
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Chapter 2

Stochastic modelling of allocation

in vector-based representations of

agricultural landscapes

In this PhD thesis, we pave the way to the parameter-controlled generation of virtual but

realistic agricultural landscapes featuring different spatial patterns (e.g., geometry, connec-

tivity) and temporal patterns (e.g., crop rotation), thus providing a useful tool and a new

methodology to explore the relationships between landscape structures and processes at

stake within it. Our main goals are to develop an intuitive and flexible framework to easily

represent landscape elements and their interactions, to infer model parameters from land-

scape datasets, and to simulate different landscape structures. Specifically, we point out the

importance of taking into account the interplay among linear elements and patches, which

is often not clearly defined but has been highlighted as a key aspect for many ecosystem

services and ecological processes. We aim to present modelling approaches which are not

constrained by high computational load and memory requirements, and which can be eas-

ily adapted to different spatio-temporal scales.

Here, we discuss two modelling approaches for the allocation of land-use categories over

a fixed geometrical landscape structure. The first approach is developed over the spatial

support of the so-called Selommes region, where we only have the spatial support (a tes-

sellation) but no observed data for the allocation. The model performs stochastic land-use

category allocation by simulating Gaussian Random Fields (GRFs) and thresholding the

simulated values with the aim of easily performing the 2D and 1D element category al-

location based on few parameters that determine the Gaussian correlation structure and

threshold values. This approach was previously developed in Sabir et al. (2018). In the

work conducted during my thesis, this stochastic landscape generator is used in Section 4
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of Chapter 4. In Section 2.1, we give a rapid overview of its definition and its main con-

cepts. The second landscape modelling approach uses discrete Markov random fields to

simulate land-use category allocation; it allows for a more precise and detailed character-

ization of landscape features for surface and linear elements at relatively small scales by

considering "mechanistic" interactions between such elements. This second model is cali-

brated and simulated for the study region of the Lower Durance Valley, where land-use data

are available for parameter inference and model validation. As the Markov random field

model has been completely developed in the context of my thesis, we provide a detailed

exposition of its implementation and results in Section 2.2. In both approaches, the land-

scape is represented through a vectorial approach defined on a tessellation of 2D space with

polygon-shaped cells. Linear segments correspond to polygon edges. To achieve a partition

of space through polygon-shaped patches without "empty" areas, and to align hedgerows

with polygon edges, we preprocess the real landscape towards a polygon tessellation of

2D space (Boots et al., 1999), based on a heuristic loss criterion measuring the distance

between original and transformed landscape (Adamczyk-Chauvat et al., 2020). Landscape

elements are characterized by their geometry ( e.g., vertex coordinates, size and shape), and

by categorical information defining the land-cover (e.g., crop or alternative crop ). Here, we

suppose that the underlying structure defining patch and edge geometry is fixed; our aim

is to model the categorical information for the given geometrical structure. Specifically, we

can allocate each polygon and linear element with its own land-use category.

2.1 Simulating agricultural structures through Gaussian Ran-

dom Fields (GRFs)

For this study, the geometrical landscape structure is fixed and based on the real landscape

of the study region of Selommes with an extent of 5.55 km, but the model is generic and

can be adapted straightforwardly to other landscapes. The landscape is transformed into a

T-tessellation (Kiêu et al., 2013; Adamczyk-Chauvat et al., 2020) composed of 188 polygons

with a total of 577 edges. The aim of this model is to easily generate a high number of

agricultural landscapes featuring different compositions and configurations of land-use cat-

egories. The underlying purpose is to use these generated landscapes as spatial support for

the population dynamic model presented in Chapter 4 to explore the relationships among

landscape structure and population model outputs. Thus, we vary few, but representative

model parameters (i.e., crop proportion, hedge proportion and hedge and crop aggregation)

to generate a high number of different landscape structures.

In order to allocate a certain proportion of polygons and edges with a category, we use

Gaussian Random Fields (GRFs). The GRF is not an observed part of the landscape, i.e., it

is latent, and a threshold on the GRF values is set to attribute specific landscape elements

depending on the value being below or above the threshold. The strength of spatial depen-
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dence in the GRF (i.e., the spatial auto-correlation) governs the strength of clustering when

allocating categories to landscape elements. For example, strong dependence means that

relatively large contiguous areas fall either below or above the threshold, which generates

spatially clustered structures of landscape elements with the same allocation category. A

GRF denoted by W is a random surface over continuous 2D space, for which the multi-

variate distribution of the values (W(x1), W(x2), . . . , W(xn)) observed at a finite number of

locations x1, x2, . . . , xn in the landscape corresponds to a multivariate normal distribution.

This distribution is characterised by its mean vector, which we set to 0 for identifiability

reasons, and its covariance matrix Σ, here defined using an exponential correlation function

depending on the Euclidean distance between any two points xj and xi. The range param-

eter of the correlation function governs the strength of clustering of category allocation to

landscape elements. To handle the interactions between the allocation of hedge and crop,

we simulated two correlated GRFs for crop and hedge (See Box1). The GRFs are simulated

on specific locations xi representing the elements under consideration (e.g., midpoints for

linear elements, barycenter points for convex surface elements). When working with only

two categories, the categories are then selected by fixing a threshold for the values of the

GRF and by attributing category 1 if the value is above the threshold, and the alternative

category 0 otherwise. Given a simulation of a GRF, the proportion of each category can

then be simply controlled by varying the threshold value until the desired proportion is ob-

tained. Thus, this landscape model is defined by the parameters of hedge proportion, crop

proportion, spatial aggregation and GRF correlation, thus allowing the simulation different

landscape structures. More specific details about the allocation methods are explained in the

Box 1, while parameter settings are presented in the Table 1 of the paper (Zamberletti et al.,

2021b). An example of different landscape structures generated by different parametrisa-

tions is shown in Figure 2.1, where we set different proportions and aggregation levels of

hedges and crop fields.
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Figure 2.1 – Examples of simulated landscape structures with interacting elements. Two allocation
categories for fields: (i) crop (green) and (ii) alternative crop (white), and for edges: (i) hedges (blue)
(ii) no-hedges (black). a) increasing proportion of crop and hedges from low (left) to high (right) with
fixed aggregation and fixed crop and hedge correlation; b) increasing crop and hedges aggregation
level from low (left) to high (right) with fixed proportion of crop and hedges and fixed crop and hedge
correlation.

Box 1: A stochastic landscape model based on GRFs

A GRF, denoted by W, is a random surface defined over continuous 2D space. The multivariate

distribution of the values (W(x1), W(x2), . . . , W(xn)), observed at any finite number of locations

x1, x2, . . . , xn in the landscape, corresponds to a multivariate normal distribution, characterised

by its mean vector (here set to 0), and its covariance matrix Σ (here defined by an exponential

correlation function depending on the Euclidean distance between any two points xj and xi).

Formally, the GRF distribution at any collection of n locations x1, x2, . . . , xn can be written follows:

(W(x1), W(x2), . . . , W(xn)) ∼ N((0, 0, . . . ., 0), Σ) with Σij = exp(−(|xi − xj|/φ)),

with φ > 0 the spatial range parameter, which acts as an aggregation parameter.

To assign an allocation category, we initially define a separate GRF for each type of element of the

landscape geometry (i.e., linear and surface elements), with independence among these GRFs (in

the stochastic sense). Therefore, we generate two independent GRFs W1(s), W2(s) with exponential

correlation functions depending on range parameters φ1 > 0 and φ2 > 0, respectively, in order to

obtain simulations from two GRFs with independent aggregation structures. Then, if we aim to

handle the interactions between the category allocation of hedge and crop, we can correlate the two

independent GRFs through correlation parameters (ρh and ρc) governing the strength of interaction

among the GRFs (linear coregionalization model). The resulting two correlated GRFs for crop (Wc(s))

and hedge (Wh(s)) are defined as follows:

Wh(s) = ρhW1(s) +
√
(1− ρ2

h)W2(s),
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Wc(s) = ρcW1(s) +
√
(1− ρ2

c )W2(s).

To obtain a more parsimonious structure with a single cross-correlation parameter, we fix ρh = 1

such that W1 defines the GRF used for hedges, and we use ρ = ρc ∈ [−1, 1] to control the correlation

between Wh and Wc.

2.2 Simulating agricultural structures through Markov Ran-

dom Fields

Introduction

In this second modelling approach, we start from the same geometrical landscape repre-

sentation defined through the T-tessellation of polygons and linear elements, but, here, we

develop an approach based on graph-theory concepts. Habitat elements (i.e., polygons, lin-

ear elements) are represented by nodes, and their functional connections are represented by

links (Urban and Keitt, 2001). Then, the vector landscape can be summarised by a multiplex

network defined through the graph for patches and for linear elements with links (edges)

in the graph based on spatial adjacency among them. For example, Figure 2.2 shows an il-

lustration of a multiplex network to represent how real landscape structures and landscape

element interactions could be transformed into interconnected graphs. Here, two objects

interact if they have a link connecting them, meaning they are adjacent. Interactions are

possible among all the objects of the same type, such as in the layers of crop (C) (Panel a)

and in the layer of hedges (H) (Panel b), and among elements of different types such as the

inter-layer among C and H (Panel c). For landscape modelling, we consider two types of

such networks. A potential network represents all possible pairwise interactions (i.e., all the

interactions between adjacent patches (a), adjacent linear elements (b) and adjacent linear

elements and patches (c)). Next, given an allocation of this landscape support, the second

network type (also called active network) is used to represent the adjacency of objects allo-

cated with the same category (e.g., crop category for patches, hedge for linear elements), or

of objects allocated with specific types of categories. We use the active network to encode

structures that we consider as ecologically relevant, such as spatial aggregation (or inhibi-

tion) among crop fields or among hedges. By construction, the edges of the active network

are a subset of the edges of the potential network.

16



Figure 2.2 – Example of land-
scape representation through
the multiplex network for a
real landscape composed of
the network layer of crop al-
location (C) (Panel a), the net-
work layer of hedge alloca-
tion (H) (Panel b), the multi-
layer network connecting layer
(C) and layer (H) (Panel c).
The landscape is simplified in
potential networks, where all
connections among adjacent
objects are possible, and active
networks (in green), where
only the connections among
allocated objects of the same
type or of specific different
types are maintained depend-
ing on their categories.

Thanks to this kind of representation of a given landscape, it is possible to evaluate land-

scape metrics characterising landscape properties at local scale or at global scale, see some

examples of landscape metrics in Figure 2.3. In the following, the metrics we use for the

model calibration are called landscape descriptors, and we distinguish them from the en-

semble of available metrics. Moreover, parameters can be estimated to assess the importance

and effect of each descriptor for each specific landscape considered. This allows for land-

scape characterisation by selecting proper and suitable descriptor combinations specific to

each spatial study domain. Our approach permits to assess the adequacy and suitability of

different descriptor combinations and to take into account the most relevant and interesting

properties for each specific landscape.
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Figure 2.3 – Landscape metrics examples at local scale (middle) and global scale (right).

Landscape properties can be controlled through model parameters. Our main goal is to

develop a tool able to generate visually realistic landscapes: starting from an observed land-

scape composition and configuration, or using various parameter settings in our parametric

model, we wish to virtually generate a high number of statistically similar landscapes show-

ing the same observed or selected properties. For example, in Figure 2.4, we show several

simulations to visually explore the influence of parameters (βk) related to the landscape de-

scriptors k. In the example, we focus on parameters controlling three types of interactions:

crop-crop adjacency (βCC
adj), hedge-hedge adjacency (βHH

adj ), and crop-hedge adjacency (βCH
adj ). In each

simulation run, we set only one of the coefficients to a non-zero value among {−1, 1}; other

descriptors are set to 0. Negative coefficients produce fragmented allocation structures of

the two corresponding categories, while a positive coefficient results in clustered configura-

tions of categories.

In order to capture a real landscape composition and configuration, we construct differ-

ent models of Markov random field type, and we discuss model selection and validation

(Hammersley and Clifford, 1971; Besag, 1972). We develop the estimation of coefficients of

landscape descriptors on real landscapes through a maximum pseudo-likelihood approach.

Given the parametrisation estimated for the real landscape, we simulate a high number of

virtually generated landscapes to test significance of coefficients (e.g., to answer the question

if there is significant spatial aggregation of crop fields) and to validate the models. Model

validation is performed by quantitatively comparing observed and simulated summaries:

1) the descriptors used in the model estimation; 2) the variograms; 3) landscape metrics

for vector and raster based representation. Specifically, we highlight that type 2 and 3 are

not explicitly encoded into the model structure and calibration. Type 1 concerns statistical

validation: the theoretical distribution of a landscape descriptor should be in line with its

observed value; we check this through Monte–Carlo samples of the fitted model. Regarding

type 2, variograms (Cressie, 2015; van Lieshout, 2019), we adopt a geostatistical perspective
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(Saura and Martinez-Millan, 2000) that focuses on the variability and geographic scales of

the landscape, which has already proven useful to characterise land use properties (Gar-

rigues et al., 2006, 2008). Regarding type 3 of summaries, various metrics have been used

to assess if simulated landscape structures appropriately represent landscape functionality

and ecological relevancy (Kupfer, 2012; Frazier and Kedron, 2017). Some commonly used

metrics require landscapes to be represented as a mosaic of discrete habitat patches. Many

other metrics have been developed for landscapes conceptualised as environmental rasters

(i.e., for raster representations, see McGarigal and Marks, 1995; Cushman et al., 2010). Here,

we assess how data patterns are reproduced by models through metrics based on graph

theory (Urban and Keitt, 2001; Minor and Urban, 2008; Urban et al., 2009; Lü et al., 2016,

network metrics, see), or raster metrics (McGarigal and Marks, 1995).

In the Box 2, there is a close-up on some methodological details, which are fully dis-

cussed in (Zamberletti et al., 2020).

Figure 2.4 – Landscape sim-
ulation examples. First line:
varying crop-crop adjacency
(βCC

adj); Second line: varying

hedge-hedge adjacency (βHH
adj );

Third line: varying crop-hedge
adjacency (βCH

adj ). Columns
from left to right: coefficient
values −1, 1. Patches are
allocated with two categories
shown in grey (i.e., crop) and
white (i.e., alternative crop),
linear elements are allocated
with two categories shown in
black (i.e., no-hedge) and red
(i.e., hedge).
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Box 2: Representation and Markov Random field models for landscapes

Landscape representation

We propose to represent a landscape as a collection O = {o1, . . . , on} of n geometric objects

oi = (xi, zi), i = 1, . . . , n, where each element is composed of two sets of data xi and zi. The

information in z = (z1, . . . , zn) represents the geometrical structure; the vector x = (x1, . . . , xn)

represents categories (with ℓi ≥ 1 possible categories for the ith element) that we allocate to the

geometric elements in the landscape, like land-use types, and that we aim to model.

We use a graphical representation of landscape to capture spatial or functional adjacency of land-

scape elements, such as patches or linear segments. Here, we define a collection of objects with two

types, o = (oC, oH) (see Figure 2.5a), where oC
i = (xC

i , zC
i ), i = 1, . . . , nC, represent patches (layer

C), and oH
i = (xH

i , zH
i ), i = 1, . . . , nH , represent linear segments (layer H); see Figure 2.5b. Thus,

patches and linear elements are represented as graph nodes within their layer, and their inter-layer

and intra-layer relationships are represented by edges. To define graph connections in mathemati-

cal notation, we express that two distinct objects o1 and o2 are directly connected through an edge

in the graph (i.e., they are adjacent) by using the following notation: o1 ∼ o2, o1, o2 ∈ O. We

assume that two patches oC
i , oC

j are connected, oC
i ∼ oC

j , if they are adjacent, i.e., if they share part

of their physical boundary. Two linear elements are connected if they intersect or have a vertex in

common. Finally, inter-layer connections oC
i ∼ oH

j arise if the linear element oH
j is located on the

boundary of patch oC
i . Based on this landscape representation, we develop parametric probability

distributions over the set of possible allocations x ∈ X , conditional on the (fixed) information in

z = (z1, . . . , zn) and on their structural adjacency.

Figure 2.5 – Landscape representation. a) Polygon objects (patches, in grey) and linear segment
objects (in red). b) Multi-layer network of connections. Layer C: single network layer of connections
between patches; layer H: single network layer of connections between linear elements; links
between C and H represent connections of patches and linear elements.

Probabilistic mechanistic models for landscape descriptors

Given the multiplex network structure, we utilize Gibbs energies to define probabilistic models

of mechanistic nature, including Markov processes; see, e.g., Cressie (1991); van Lieshout (2019).

We construct a model using m functions Tk : X → (−∞, ∞), k = 1, . . . , m, that each measures the

value Tk(x | z) of a summary statistic for the allocations in x given the fixed information in z. The

functions Tk take the role of landscape descriptors (see Figure 2.3 for some examples) and are used
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as sufficient statistics of the Gibbs model by defining the probability of observing an allocation x

as follows, with coefficient vector β ∈ R
m:

p(x) =
1

c(β)
exp

(
−

m

∑
k=1

βkTk(x)

)
, x ∈ X , β ∈ R

m. (2.1)

The theoretical notion of sufficient statistics means that the functions Tk encapsulate all the infor-

mation that the model uses to assign a probability of occurrence to the landscape structures x. In

particular, if we want to estimate the parameters β, all the information that can help with their

estimation is contained in the values Tk(x). The normalizing constant c(β) > 0, also known as

the partition function, ensures that probabilities in (2.1) sum up to 1, but it is often very difficult

(i.e., computationally prohibitive) to evaluate. However, by considering the following conditional

probability of allocation of one landscape element given the allocations of all the other landscape

elements, the normalizing constant c(β) cancels out:

p(xi | x−i) =
p(x)

∑y∈Xi
p(x−i, x)

=
exp

(
−∑

m
k=1 βkTk(x)

)

∑x∈Xi
exp

(
−∑

m
k=1 βkTk(x−i, x)

) , (2.2)

where the denominator adds up the probabilities over all landscape structures obtained when

varying the category of oi but keeping the rest of the landscape fixed. In the two-level case with

xi ∈ {0, 1}, in the following we show how parameters βk can be estimated through classical

logistic regression.

Statistical inference

For estimation, we use a pseudo-likelihood based on conditional distributions; see Besag (1972,

1974); Møller and Waagepetersen (1998); van Lieshout (2000); Stoehr (2017), and particularly Sec-

tion 3.5 of van Lieshout (2019). Given n objects x = (x1, . . . , xn) with their allocation categories,

we define the pseudo-likelihood as the product of the conditional probabilities of the category xi

given all the other variables x−i; i.e., it is the composite likelihood (Varin et al., 2011) of conditional

distributions given as

L =
n

∏
i=1

p(xi | x−i, z) (2.3)

where the conditional probability p(xi | x−i, z) is defined in Equation (2.1) and does not depend

on the unknown normalizing constant c(β).

We propose approaches to statistically compare models with different landscape descriptor

configurations and to assess their goodness-of-fit, for instance by comparing maximum pseudo-

loglikelihood values or the Mean Squared Errors (MSE) based on k-fold cross-validation. To rank

models, we could also use formal information criteria that take the model complexity (i.e., the

number of parameters) into account to avoid overfitting, which allows identifying parameter

configurations that are both parsimonious and informative. Standard likelihood-based informa-

tion criteria (AIC, BIC) are not easily adaptable to our pseudo-likelihood approach if we want to
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compare models that have a different number of parameters, but it is possible to rank models with

the same number of parameters (and therefore with the same penalty for model complexity) based

on their maximum pseudo-log-likelihood value. To compare models with different numbers of pa-

rameters, we focus on predictive criteria such as MSE, calculated using cross-validation techniques.

Application to the Lower Durance Valley

Spatial domain definition and characterisation

We implement our framework on the Lower Durance Valley as case study using three differ-

ent domains, see Figure 2.6a. We select three subdomains D1, D2 and D3 with contrasting

properties and dimensions, shown in Figure 2.6b and numerically summarized in Table 2.1:

D1 is relatively small and with low crop proportion; D2 has the same surface area but equal

proportions of crop; D3 delimits a much larger domain including D1 and D2. We allow

for two allocation categories of both patches and linear elements: crop or alternative crop

(network C) ; presence or absence of a hedgerow (network H).
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Figure 2.6 – Lower Durance Valley study area. a) Full area with three subdomains. b) Subdomains D1,
D2, D3. The Lower Durance Valley is characterised mainly by agricultural land cover: green-shaded
patches represent SNHs (i.e., woods, open area, grassland); brown-shaded patches represent 34 dif-
ferent cultures (e.g., apple, pear, vineyards). Artificial surface (dark gray) consists of built structures
and urbanized area. The area is rich in linear elements (i.e., segments), including small water courses,
roads and hedges (Panel a). In the selected domains (Panel b), we selected as "crop" the category of
“apple/pear orchard", as it is the most abundant culture (gray patches), and we simplify the rest of the
landscape surface using the level alternative crop (white patches) in order to establish a continuous
cover with two categories. Patch boundaries are presented as linear elements, which are marked in
red when hedges are present.
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D1 D2 D3

Area (km2) 3.3 2.3 41.1

% of Alternative crop 73 50 76

% of Crop 27 50 24

Hedgerows (km) 44.6 33.6 386.4

No. of patches 368 468 4379

No. of linear segments 1105 1405 12517

Table 2.1 – Summary of selected subregions of the Lower Durance Valley study area; see
Figure 2.6.

We consider four models, denoted M1–M4, to test different combinations of landscape

descriptors, see Box Eq. (2.1). Table 2.2 (top) illustrates relevant choices of landscape de-

scriptors at local level (i.e., evaluated for each object), such as geometrical properties and

adjacency. We also consider landscape descriptors providing a more global perspective,

such as a descriptor for connected components of landscape elements of the same category

(see also Møller and Waagepetersen, 1998, which highlight Markov-like properties in this

case). Table 2.2 (bottom) shows models and descriptor combinations, where descriptors are

selected checking the correlation among them. In the Supplement of the manuscript Zam-

berletti et al. (2020) (Supplement 1.2), the temporal dynamic is also discussed to simulate

crop rotation. In our application, we do not show an example of temporal dynamics since

we do not have dynamic land cover data. However, we have formulated and detailed the

specification and implementation also for this type of landscape descriptor.
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Examples of landscape descriptors

Composition

Activity term TC
act, TH

act

Patch area TC
area,p

Long segments TH
length

Horizontal segments TH
orient

Interaction
(Adjacency)

Patch-patch TCC
adj

Segment-segment THH
adj

Patch-segment TCH
adj

Landscape models

C H

M1 TC
act, TC

area,0.25, TC
area,0.75, TCH

adj , TCC
adj TH

act, TH
length, TH

orient, THH
adj

M2 cf. M1 TH
act, TH

orient, THH
adj

M3 TC
act, TH

area,0.25, TCH
adj , TCC

adj cf. M1

M4 TC
act, TH

area,0.25, TC
area,0.75, TCH

adj , Tcluster
C cf. M1

Table 2.2 – Examples of landscape descriptors (top) and model configurations (bottom).
Notations: C and H refer to patches, and linear elements, respectively. Landscape models
show descriptors related to crop patches in network C, and to hedges in linear element
network H.

Parameter estimation

We performed parameter estimation for all possible combinations of spatial domains and

models. Here, we discuss an example showing a comparison among estimated parameters

for different spatial domains ( i.e., D1, D2 and D3) with the same model (Figure 2.7). Box-

plots of estimations are obtained by the parametric bootstrap using 100 simulations. The

parametric bootstrap consists of generating simulations from the estimated model and of

re-estimating the parameters for the simulated models. We detect no bias in the estimators

since the parameters estimated for the real landscape always lie in the central region of the

values obtained of bootstrap estimations. Moreover, we find that all estimated parameters

are significant for the Markov interaction in the networks C and H (positive coefficient of

C-C, H-H), for the area descriptor (negative coefficient of Small area and of Large area), for
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the hedge orientation descriptor (positive coefficient of Horizontal H), and for the activity

terms. No strong signal is found for a dominance of long hedge segments (Long H) in D1

and of Markov interaction between C and H. All descriptors are significant for the large

domain D3. The signs of estimates are the same across D1–D3 for all significant effects,

implying structurally similar behavior. Overall, estimated parameters tend to have com-

parable magnitudes across D1–D3. Given the parameter estimates of our model, the crop

category is usually less allocated on relatively small and relatively large fields. Crop fields

and hedges tend to cluster in space, i.e., they tend to be allocated on adjacent patches and

linear elements, respectively, such that they provide relatively large and contiguous habi-

tats, and relatively long continuous movement corridors. There is a dominating horizontal

orientation of hedges for protecting against strong North-South winds in the study region.

Crop-hedge adjacency has negative coefficients and is significant only for the large domain

M1-D3, suggesting a slight tendency of hedges to not being directly adjacent to crop fields.

In M1-D2, we discern a particularly strong signal of Long H indicating many short, strongly

horizontally oriented hedges.
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Figure 2.7 – Boxplots obtained through a parametric bootstrap of estimated parameters from model
M1 over spatial domains D1 (Panel a) D2 (Panel b), D3 (Panel c) for crop (left) and hedges (right), see
Figure 2.6. Descriptors are defined in Table 2.2
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Model validation

We check if landscape descriptors, as well as the variograms and the graph- and raster-based

metrics we introduced, are appropriately reproduced by the models. Here, we focus on the

performance results in D1 for crop allocation by showing the comparison among different

models M1-M3-M4. Figure 2.8 shows observed and simulated landscape descriptors, i.e.,

sufficient statistics for the estimated coefficients. Models M1, M3, M4 tend to produce

realistic values, especially M1.

Figure 2.8 – Landscape descriptors for domain D1 and network C (Crop) in M1, M3, M4. Boxplots
summarise 100 simulations of fitted models. Red dots are observed values.

Figure 2.9 shows empirical one-category (Crop) and two-category (Crop-Hedge) vari-

ograms with pointwise simulation envelopes. All variograms show a relatively steep slope

at the origin and tend to flatten for larger distances, such that the general shape of the

empirical data variogram is well reproduced by the models. In several cases, especially

with M3, empirical variograms of the dataset clearly fall outside the envelope, such that the

observed variability of landscape features with distance is not appropriately captured. In

general, the structure of M1 (with the large patch area descriptor, and Markov interaction

for crops) improves the match between data and model variograms, in contrast to M4 using

the global interaction descriptor based on the number of connected components.

For network-scale metrics (last row of Figure 2.10) we show the real landscape value
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Figure 2.9 – Variogram analysis of models M1, M3, M4 for domain D1. One-category variogram for
crop (top row); two-category variogram for crop and hedges (bottom row). Empirical variogram of
observed landscape (black line); pointwise simulation envelopes (red-shaded area: 5%-95%; dotted
red lines: minimum/maximum).

within the boxplot of simulated values. Observed metrics fall within or close to the in-

terquartile range of the simulated ones for the crop network, while they lie outside the

boxplot whiskers for the hedge network but are still of the same order of magnitude. Model

M1 does not directly control the number or dimension of clusters, only local interactions

through the Markov model. This explains better performance for neighborhood-based central-

ities in comparison to path-based centralities and metrics. However, in the Supplement 1.5

and 1.7, we show that using a global descriptor instead of a local descriptor in M4 does not

substantially improve performance for path-based centralities; see Section 7. Raster-based

landscape metrics of FRAGSTAT (McGarigal and Marks, 1995) are shown in Figure 2.11. In

most cases, the observed metrics fall within the whiskers of the boxplots, and in the other

cases the order of magnitude is still relatively well captured by the fitted model.
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Figure 2.10 – Validation metrics M1-D1 for crop network C (left) and hedge network H (right). Panels
a,c: metrics at node scale (red dots: mean values). Panels b,d: metrics at network scale (boxplots:
simulations; red dots: mean values of simulations; green dots: observed values.

Figure 2.11 – Raster-based metrics for M1-D1. Simulated values (boxplots); mean of simulated values
(red dots); observed value (green dots).
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2.3 Discussion

We have developed stochastic agricultural landscape models and statistical inference with

a focus on the land-use allocation of patches and linear elements. Both GRF and Markov

models turn out to be intuitive and flexible tools for simulation and offer direct control and

interpretation with respect to local behaviour. These approaches allow handling relatively

large landscapes by capitalising on low computational requirements due to vector-based

representations and to adjacency-based networks numerically represented through sparse

matrix structures for encoding interactions. Specifically, we have introduced the following

methodological novelties:

i) Mathematical representation of landscape compositions and configurations through

multiplex networks. Specifically, we focus on the integration of different landscape

elements interacting among each other (i.e., patch and linear elements).

ii) Generative stochastic parametric models coupling land-use allocation of patches and

linear elements, relying on Markov interactions based on the network established in (i);

iii) Model simulations through Markov Chain Monte Carlo (MCMC) using a Gibbs sampler

that is fast, and simple to implement;

iv) Statistical inference of model parameters using real landscapes;

v) Validation of relevant landscape characteristics based on statistical model selection tools

and on a comparison of summaries for vector and raster representations between real

and simulated landscapes.

We point out that vectors do not require to fix a specific grid resolution and, therefore,

give better control over small-surface elements, and provide a sparser and more functional

representation of patchy geometric structures. Moreover, a strength of our approaches is

that they are geared towards flexible and realistic parametric stochastic modeling of fringe

structures, such as hedgerows.

The first modeling approach is relatively simple since its construction is based on GRFs. By

contrast, it allows easily dealing with large landscapes while maintaining a relatively high

degree of flexibility to control surface and linear element interactions. Thus, it appears to

be well suited for generating diverse landscape structures while balancing computational

complexity, parameter number and flexibility. We here have not developed statistical infer-

ence for the model parameters in this approach (i.e., covariance parameters and thresholds

for the GRFs), but it could be achieved using standard geostatistical estimation approaches.

In the Markov model, using a network-based representation of interactions among land-

scape elements, we construct Gibbs energies based on network structure (see, e.g., the recent

collection of papers introduced by Fienberg, 2010), and more specifically models pertaining
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to the class of discrete Markov random fields, see Hammersley and Clifford (1971); Besag

(1972); van Lieshout (2000); Green et al. (2003); Gaetan and Guyon (2010); van Lieshout

(2019). The advantage of using Gibbs energies and Markov structures is that this setting

provides a natural distributional framework for controlling various landscape descriptors.

This allows for higher flexibility with the possibility to select the most suitable descriptors

for each landscape. By contrast, this may result in a higher level of complexity depending

on the number of descriptors considered and on their definition. Here, we have focused

on descriptors based on single objects or on pairwise Markov interactions, which leads to

robust modeling, estimation and simulation procedures. We found it generally difficult to

improve models by the use of more globally specified interaction descriptors. We high-

lighted the flexibility of the approach by comparing outcomes of different models over the

same domain. We also tested models over domains having different characteristics and size.

A motivation for our approach was that previously existing modeling frameworks lack

statistical tools for parameter inference and model validation. Validation procedures are

usually solely based on visually checking whether simulated landscapes are able to repro-

duce realistic landscape features by comparing observed and simulated landscape metrics

(e.g., from the FRAGSTAT library, McGarigal and Marks, 1995). Such metrics are often

directly used within simulation algorithms to enforce convergence towards target values

(Langhammer et al., 2019). Besides introducing formal statistical tools for selecting descrip-

tors and models, we here check more systematically if the fitted model is able to appro-

priately reproduce three types of summaries of the real landscape. Overall, the descriptors

of the model and other landscape metrics are satisfactorily reproduced by simulations from

models fitted to Lower Durance Valley data. From our detailed model comparison, we iden-

tify that some models have a better performance than others in reproducing real landscapes.

This essentially depends on the combination of landscape descriptors considered and their

correlation. However, not all relevant metrics can be reproduced through our model with-

out bias. For example, the grid discretization of space in the raster approach may produce

instabilities in treating small-scale small-area patterns, especially those related to linear seg-

ments. Linear element allocation also showed some discrepancy between model and data

for large-scale clustering properties. To remedy the issue of appropriately simulating an

important landscape summary that is not directly controlled by the model, we can add ad-

ditional constraints during simulation, using techniques such as Simulated Annealing (e.g.,

Papaïx et al., 2014a).

To conclude, vector-based models such as ours are more parsimonious and meaningful

from an ecological point of view (Gaucherel et al., 2012; Bonhomme et al., 2017), and they

enable explicit handling of different spatial and temporal scales. In raster-based approaches,

an appropriate representation of small-surface elements such as hedges would require a

very high and computationally unwieldy resolution, where a homogeneous large-surface

patch would be made up of a very large number of pixels, instead of a single geometric
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object in our model. Our multiplex network structure assures low computational cost and

memory requirements. The parameter estimation and validation assure the possibility of

reproducing properties similar to real landscapes in the simulation; and the generative

stochastic parametric model simulation through MCMC allows the generation of a high

number of statistically similar landscapes.

Perspectives and open questions

• Coupling the Markov model with the GRF model to improve the consideration of large

scale properties as long as small scale properties. Indeed, the GRF model performs

very well in simulating large-scale properties; instead, Markov models allow for better

taking into account local properties in an accurate way. Coupling would be possible

by extending the Markov model to have a GRF in its activity term. This will introduce

a spatial random effect that controls large-scale differences in the local proportions

of different category levels, such as crop and alternative crop. This extension would

unite the benefits of the two models and allow for higher flexibility.

• Extending the presented Markov model to n possible categories for estimation and

pattern analysis. It is possible to implement the Markov model with more than two

possible categories for landscape elements in order to estimate and simulate more

complex landscapes and land-use types. For this purpose, the logistic likelihood es-

timation approach must be replaced by a more generic maximum pseudo-likelihood

technique. MCMC-based simulation remains straightforward.

• Extending the use of Gibbs to a more general and flexible modelling framework. Gibbs

energies could be used to model and simulate more general numeric labels (e.g., con-

tinuous variables) associated with landscape elements, for instance the crop yield in a

field, or the proportions of a crop field used for specific crop types when several crops

are planted in the same field in some small-scale-alternating way. Then, the proposed

approach could be extended to more general models of the so-called exponential fam-

ily type (e.g., Brown, 1986).

• Applying our approach over different landscape to allow for comparison among land-

scape structures and specific features. It would be interesting to develop a fully au-

tomated variable selection method in order to effortlessly identify the most suitable

landscape descriptors for each landscape type, yielding models where we retain a

moderate number of representative parameters.

• Developing and estimating time dynamics on real landscapes. The integration of

temporal descriptors, as illustrated through the simulations in Supplement 1.2, would

be an interesting perspective for future development of such classes of models. This
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extension would allow us to consider processes such as crop rotation, which we cannot

estimate for the case study dataset due to lack of dynamic land-cover allocation data.

• Establishing statistical modeling and simulation for the landscape including its ge-

ometrical support. We intend to integrate the allocation model with (existing) gen-

erative tessellation model for the geometrical support. This would establish a more

holistic modelling of the configuration and composition of the landscape (Kiêu et al.,

2013; Adamczyk-Chauvat et al., 2020).

• Integrating the stochastic landscape model for land-use allocation with human de-

cisions. To provide operationally relevant management tools, we could couple our

stochastic allocation model with decision tools for agricultural optimisation where

an appropriate land-use allocation strategy for the desired management objectives is

identified. In fact, currently we cannot directly model human action in the temporal

dynamics of agricultural environments (Bonhomme et al., 2017; Poggi et al., 2018), for

which we would have to couple our model with a decision tool.
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Part II

Predator-pest dynamics in agricultural

landscapes for biological control outcomes

Figure 2.12 – Ladybird (Coccinellidae) preying on aphids. © BBC
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Chapter 3

Predator-pest dynamics in

agricultural landscapes for

biological control outcomes

In Part 1, we have put the focus on the characterisation of agricultural landscapes in order

to be able to depict their proper structures and to define a consistent spatial domain where

to simulate the ecological processes of interest. We have specifically modeled various land-

scape elements, such as linear elements or patches, to take into account their properties and

to separately and jointly consider their effects. Moreover, we have taken into consideration

various landscape properties and features to perform land-use category allocation, which

determines habitat composition and configuration. The indicators and validation metrics

we proposed may also give guidance to gain new insights on ecological processes. The

stochasticity of models with its inner structure of Markov random field type allows us to

virtually generate statistically similar landscapes using representative model parameters,

which could support the analysis of robustness and sensitivity for both landscape and pop-

ulation models.

In Part 2, we use the landscape model presented in Part 1 to simulate population dynam-

ics of predator-pest type, which allows us to investigate how the spatial heterogeneity of

complex landscapes influences ecological dynamics and the resulting biological control (BC)

outcomes.

3.1 Landscape ecology

The relationships between spatial pattern and ecological processes go under the definition

of landscape ecology. As stated by Risser (1987), landscape ecology focuses explicitly upon
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spatial patterns, considering the development and dynamics of spatial heterogeneity, spa-

tial and temporal interactions and exchanges across heterogeneous landscape, influences

of spatial heterogeneity on biotic and abiotic processes, and management of spatial het-

erogeneity. Specifically, landscape ecology recognises and addresses the importance of the

spatial composition (i.e., number of habitats) and configuration (i.e., habitat arrangements)

in influencing ecological processes (Turner et al., 2015). Moreover, the focus is not restricted

to a specific spatio-temporal scale, rather the emphasis is on identifying the scales that best

explain the relationships between spatial heterogeneity and the processes or response vari-

ables of interest (Turner et al., 2015). The main aim is to understand the interactions of

organisms with their environment and how they deal with spatial heterogeneity. This is of

fundamental importance since most landscape patterns are continually altered by natural

disturbances and human activities, affecting the relative abundance and spatial arrange-

ment of different habitats and/or habitat quality (Turner et al., 2015). Thus, in order to

meet sustainability goals and preserve ecosystem functioning, there is strong interest in in-

vestigating the influences of such changes on the distribution, abundance and persistence

of species across landscapes and their consequence on ecosystem functioning. Specifically,

there are some key landscape elements that have been reported to influence species dynam-

ics:

- Patch size: Patch size is an important characteristic of landscape structure: larger and more

heterogeneous patches contain more species and often a greater number of individuals than

smaller and more homogeneous patches of the same habitat (Kappes et al., 2009). In fact,

an increase in within-patch heterogeneity (e.g., vertical complexity, micro-site variety) will

generally increase species richness. However, despite many observations of species richness

increasing with patch size, the effect of patch size alone cannot easily be determined as it is

influenced also by the conditions of the surrounding landscape (Wiens, 2002).

- Edge: Also habitat boundary abundance is capable of influencing species diversity within

a patch, specifically Fagan et al. (1999) listed major effects: i) boundaries may be barriers

or filters to movement, ii) agents which alter mortality rates, iii) areas providing energetic

subsidies or refuge, and iv) regions where novel inter-species interactions may occur.

- Corridors: Corridor creation can promote movement to connect habitat patches and facil-

itate the flow or movement of individuals, genes, and ecological processes, and thus can

increase population persistence by providing an exchange of individuals among a popula-

tion. Since corridors are strongly influenced by edge effects, their interior habitat is often

minimal and may even be absent (Wiens, 2002).

- Surrounding landscape: Characteristics of the surrounding landscape (i.e., matrix) affects

local populations within a patch as species presence, abundance and diversity at a given

location or within a particular patch is often explained by characteristics of the focal patch,

by landscape context and by its connectivity (Roschewitz et al., 2005).
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3.2 Why the predator-pest landscape relationship is not an

easy matter

In spatially complex landscapes, predator–prey dynamics result from the interaction among

landscape structure and species dynamics as spatial patterns can influence organism move-

ments and distribution, thus influencing the probability of prey encounters and kills (Heb-

blewhite et al., 2005) and the effectiveness of predator strategies (Andruskiw et al., 2008).

In agricultural landscapes, the relationship among heterogeneous landscape structure and

population dynamics has been mostly considered for insect species, particularly for cases

where natural enemies may be predators that help to keep crop pests at low density (Tscharn-

tke et al., 2007). Landscape composition and configuration affect the diversity and abun-

dance of the natural enemy community since different habitats could enhance the presence

of different natural enemy species, how they move within and among the habitats and how

they use the different resources. Thus, a diversified agricultural landscape mosaic is ex-

pected to sustain a broad diversity of predators. Specifically, non-crop habitat may play

an important role as it provides often favourable habitats for predators and acts as source

habitat from which the less favourable agricultural fields are invaded (Bianchi et al., 2006).

However, Bianchi et al. (2006) review different studies that investigate if herbivores biologi-

cal control (BC) is enhanced in complex landscapes with a high proportion of semi-natural

habitats (SNHs). They found that there is considerable variability in species responses to

landscape structure, indicating that there is no trivial relationship among landscape com-

plexity and pest suppression (Bianchi et al., 2006; Rusch et al., 2010). Another example is

reported by Martin et al. (2013), who evaluate the role of landscape context on pest den-

sities and crop yield and find that herbivore (pest) pressure is greater rather than less in

landscapes with more SNHs. There are different explanations behind this relationship: i)

SNHs are prerequisite for many organisms, but effects are often taxon-specific (Martin et al.,

2019); ii) SNHs may host also different pest species (Chaplin-Kramer et al., 2011a; Tscharn-

tke et al., 2016b); iii) pest and natural enemy species traits and behaviours influence species

responses to landscape heterogeneity (Hanski and Mononen, 2011; Legrand et al., 2017;

Bonte and Bafort, 2018); iv) negative interactions may arise among different natural enemy

species, such as intra-guild predating (Tscharntke et al., 2016b; Letourneau et al., 2009). This

suggests that landscape composition and configuration are key in determining biodiversity

(Fahrig, 2013), but this is not the only criterion that should be considered when assessing

the effect of landscape structure on biological control. Therefore, it is demonstrated that no

clear general trends arise, and all the empirical studies present outcomes that are strongly

site-specific and valid under distinct conditions.
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3.3 Modelling the predator-pest system in the agroecological

context

Different experimental approaches can be useful to elucidate biodiversity effects in ecosys-

tems. They show inherent strengths and weaknesses regarding precision, realism, and the

possibility of hidden pesticide applications among empirical and experimental comparisons

(Letourneau et al., 2009). Aside from these empirical studies, modeling approaches are

likely to prove an interesting strategy for assessing the relationships among natural enemy-

pest dynamics, landscape structure and BC, but they are based on simplifying assumptions

and can not capture all the details of reality (Rusch et al., 2010). Here, our goal is to focus

on how different scenarios among landscape structure and different population traits and

behaviours may influence pest regulation. In this complex system, it would be difficult

to sample every possible combination of conditions or to conduct experiments at the ideal

spatial and temporal scales. An empirical approach would not be exhaustive and it would

result in a case-study-specific approach. Hence, our choice of coupling a model considering

both 2D elements (i.e., patches) and 1D elements (i.e., linear elements) with a population dy-

namics model is developed to theoretically study a wider range of scenarios and to present

a general approach, which could subsequently be adapted for more specific case studies. In

our case, the population dynamics model aims to represent the predator-pest relationships

among predators and pests.

Understanding and explaining pattern and scale through models is a central problem

in landscape ecology (Levin, 1992). Models in ecology could treat the space in an im-

plicit or explicit way. Many theoretical concepts of spatial ecology are treated by spa-

tially implicit models (SIMs), which account for the effects of space with assumptions or

parameters without specifying spatial positions (Cantrell and Cosner, 2004). SIMs have

the advantage of being simple and broadly applicable, allowing modelers to develop rel-

atively general theoretical outcomes (DeAngelis and Yurek, 2017). The major example of

treating both space and population dynamics implicitly is given by the MacArthur and

Levins (1967) models for island biogeography and by the classical metapopulation model

of Levins (1969a). These models describe populations strictly in terms of their presence or

absence and account for patterns of occupancy by balancing stochastic colonisations and

extinctions. However, addressing also questions concerning populations or communities in

specific positions is needed, since local conditions and organism behaviours may produce

dynamics and patterns that cannot fully incorporated into SIMs (DeAngelis and Yurek,

2017). Spatially explicit models (SEMs), instead, are able to describe mechanisms at differ-

ent spatio-temporal scale. There are many types of SEMs, such as patch models (Hanski,

1994), reaction-diffusion partial differential equations (Cantrell and Cosner, 2004), cellu-

lar automata (CA) neighbourhood models (Hogeweg, 1988), and individual-based models

(IBM) (Pacala and Silander Jr, 1985).

39



An advantage of metapopulation and source-sink approaches is that such model’s are

based on a discrete network of patches and allow for the assessment of the effect of habitat

heterogeneity in a straightforward way (Pitt, 2008). For example, Bascompte and Solé (1998)

develop a metapopulation model to study the effect of habitat destruction and fragmenta-

tion on a predator-pest system. They confirm that the response to habitat fragmentation

depends not only on the critical behaviour of the landscape structural properties, but also

on the biological properties of the metapopulation as the trophic level, colonisation and

extinction probabilities. In general, the higher trophic-level species goes extinct sooner than

the lower trophic-level species (Bascompte and Solé, 1998). They discuss that this is a key

results in the context of BC since pest enemies belong to higher trophic levels (Hawkins

et al., 1993). When differences between patches are considered, it may be relevant to con-

sider source–sink models as patches with excess reproduction are source patches, and sink

patches occur when local mortality exceeds reproductive success (Turner et al., 2015). How-

ever, the discrete vision of the metapopulation does not correspond to the real environment,

a 2D spatial domain, and there is the need to consider patterns in ecological modelling

to depict more robust relationships among species spread, their establishment and envi-

ronmental conditions at different spatial scales (Lonsdale, 1999). Pest and enemy species

invasion and dynamics have been often addressed by reaction-diffusion models in homoge-

neous and heterogeneous environments (Roques et al., 2008; Parisey et al., 2016; Ciss et al.,

2014). This is a wide class of spatial models, which treat the space as a continuum and

describe the distribution of populations in terms of densities (Skellam, 1951; Shigesada and

Kawasaki, 1997; Okubo and Levin, 2013). These models aim to translate local assumptions

or data about the movement, mortality, and reproduction of individuals into global out-

comes about the persistence or extinction of populations and the coexistence of interacting

species (Cantrell and Cosner, 2004). An example is offered by Roques et al. (2008), who

propose a two-dimensional reaction-diffusion model to predict the expansion and impacts

of an exotic, specialist seed chalcid, Megastigmus schimitscheki, which has been introduced

into southeastern France from Turkey. The comparison among these models considering

different dispersion operators shows that taking account of spatial heterogeneity effects on

the individuals’ mobility could have an important impact on the predicted attack rates, as

it results in lower or higher estimations depending on the diffusion operator selected. Two

other types of spatially explicit models which treat space as a discrete grid are IBM (Durrett

and Levin, 1994) and CA (Hogeweg, 1988) where each point of the spatial grid has its own

event history (Cantrell and Cosner, 2004). Differently, for IBM, the focus is no more on

the space, but on the single individual. These models allow exploring variability among

individuals, local interactions, complete life cycles, and in particular individual behaviour

adapting to the individual’s changing internal and external environment (Grimm et al.,

2006). However, this great potential of IBMs also is a drawback due to the complexity of

the model structure as compared to analytical models. Their outputs are also more difficult
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to analyse, understand and communicate than traditional analytical models (Grimm et al.,

2006). An example of pest regulation through IBM is presented by (Le Gal et al., 2020),

who present an IBM to focus on the role of SNHs for conservation BC. They highlight the

important influence of the interplay between the landscape structure and the timing of BC

measures on the delivery of pest control services. In their study, increasing SNH proportion

at the landscape level enhances the visitation rate of pest-colonised crop, but it also reduces

the delay between pest colonisation and predator arrival at the crop fields (Le Gal et al.,

2020).

In our work, we have decided to firstly focus on the landscape characterisation to better

take into account the main elements that may be key for modelling population dynamics

where we pay attention to the composition of habitat patches and linear corridors. This

results in a complex landscape composed by a 2D matrix characterising a heterogeneous

surface and 1D linear elements characterising edges and corridors. Moreover, since our

interest is to answer questions about how different landscape configurations and composi-

tions influence population dynamics in an agro-ecological context, we couple the landscape

model with the population dynamic model. This allowed us to explore different combina-

tions of landscape structure and species traits. We describe the predator-pest population

dynamics of a pest and its natural predator through a reaction-diffusion model on a 2D-

1D spatial domain. We choose a reaction-diffusion model as it can explain three types of

spatial phenomena that are important when studying pest and predator dynamics: waves

of invasion by exotic species, the formation of patterns in homogeneous space, and the ef-

fects of the size, shape, and heterogeneity of the spatial environment on the persistence of

species and the structure of communities (Cantrell and Cosner, 2004). We could have used

other types of models, such as IBM or CA or interacting particle systems if highly detailed

specific predictions were required. However, as said before, major limitations would have

arisen with respect to the analysis, the extraction of general properties (Cantrell and Cos-

ner, 2004) and the matching with the landscape model composed by 1D and 2D elements

(i.e., 2D1D landscape model). This 2nd Part analyses population dynamics outcomes for BC

from a global perspective in the Chapter 4, and the spatio-temporal population dynamics

outcomes at local scale in the Chapter 5.

41



Chapter 4

More pests but less pesticide

applications: ambivalent effect of

landscape complexity on

Conservation Biological Control

In this Chapter, we face the challenge of investigating a more general approach with a model

characterising the joint influence of landscape structure and species traits on Conservation

Biological Control (CBC) service.

Specifically, we aim to investigate the following research questions: 1) Can landscape

composition and configuration reduce the number of pesticide applications by enhancing

CBC? 2) How do species traits related to dispersal, predation and population demography

modify the effect of landscape heterogeneity?

To answer to these questions, we develop the following main novelties:

i) The simulation of predator-pest dynamics within a 2D-1D landscape representation,

allowing for taking into account and investigating the key role of semi-natural corridors

within an heterogeneous landscape matrix;

ii) the assessment of the joint effect of species traits and landscape features on the popula-

tion dynamics and pesticide applications, which allows distinguishing among different

effects and their importance on BC outcomes;

iii) the consideration of different spatio-temporal scales, allowing for a global-scale and

field-scale characterisation of the population dynamics and BC outcomes.
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Our study corroborates that spatial heterogeneity, landscape structure (i.e., the size and

physical arrangement of patches), species traits and their interactions play a key role for

CBC. Moreover, we also reveal how the relationship of pests and pesticide applications (in

case of pest density exceedance above an economic threshold) is shaped by landscape struc-

ture. We highlight seemingly unexpected outcomes where hedge presence is not sufficient

to ensure a decrease in pest density but still results in a decrease in pesticide applications.

Predator-pest models within agricultural landscapes

The predator-pest dynamics represent the dynamics of the codling moth (Cydia pomonella)

pest and of one of its main predators, the family of ground beetles (Carabidae), in apple

orchards. Codling moths respond strongly to the spatial distribution of orchards over land-

scapes (Ricci et al., 2009). Franck et al. (2011) have found low genetic differentiation among

codling moth populations over large distances, but mild genetic differentiation among pop-

ulations collected on different host plants. In addition, pesticide applications have strong

effects on genetic differentiation resulting from spatial and temporal population size varia-

tions (Franck et al., 2011). This indicates that codling moths can disperse over large distances

in agricultural landscapes, which supports the conjecture that hedges do not substantially

impact their dispersal, such that pesticide applications to break the local pest dynamics

are important. Thus, in the model, we assume that the pest can be encountered only in

fields and that it has positive growth only in fields allocated with crop. In addition, field

boundaries do not affect the pest population dynamics; i.e., the life cycle of Cydia pomonella

is mostly based in apple orchards, and it perceives the landscape as a heterogeneous 2D

environment. Finally, we impose the triggering of local pesticide applications when the pest

density exceeds a fixed threshold on average in a crop patch.

The presence of semi-natural areas, such as hedges, promotes the presence of pest preda-

tors (Maalouly et al., 2013; Thies and Tscharntke, 1999) by offering shelters and by provid-

ing complementary resources when pests are not present in fields (Lefebvre et al., 2017).

Lefebvre et al. (2017) present a field study investigating the routine movement of arthro-

pods among apple orchards and adjacent hedgerows. They found that there are frequent

movements for foraging (to orchards) and for escaping pesticide applications (to hedges),

demonstrating the important influence of hedgerows on the presence of numerous preda-

tors in apple orchards. Thus, we consider that hedges form the main habitat of the predator.

The predator can spill over from hedges to fields and there feed on pest in fields as an alter-

native resource. However, it is generally attracted to hedges, which are its preferred habitat,

so that migration from fields to hedges is relatively high. The predator is known to be averse

to moving outside its natural habitat; therefore, migration from hedges to fields is always

lower than migration from fields to hedges (Lefebvre et al., 2017).
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Coupling the landscape model with the population dynamics

model

We use the stochastic landscape model developed in Section 2.1 of Part 1 to generate differ-

ent agricultural landscapes where we simulate the spatially explicit population dynamics

model of a predator-pest system integrating dispersal both on agricultural fields and on the

hedge network. Landscape structures are characterised by fields, which can be allocated

by crop or an alternative crop that is pest resistant, and by linear elements defining field

boundaries, which can be allocated by hedges or no-hedges. Different landscape structures

are generated by varying parameters controlling crop proportion, hedge proportion and

hedge and crop aggregation (see Table 4.1).

Parameters Description Range Units Reference

For landscape model

φ Spatial aggregation of hedges and crops [5.55 ∗ 10−2 − 5.55] km -

Pc Proportion of crop [0− 1] - -

Ph Proportion of hedges [0− 1] - -

ρ Correlation between crops and hedges GRFs 0.5 - -

Parameters for population dynamic model

Dv
2 2D predator diffusion rate [0.000625− 0.012] km2d−1 1,2

1/mv Predator life-span [20− 66] d 1,2

β Predating rate [0.01− 0.010] pest−1d−1 2

ρ21 Predator migration rate from field to hedge 0.05 km−1d−1 -

D1
1 1D predator diffusion rate 0.012 km2d−1 1,2

rv Predator intrinsic growth rate [0.010− 0.020] d−1 3

Khi
Predator carrying capacity in hedge 1 predatorskm−2 -

ρ12 Predator migration rate from hedge to field [0− 0.05] d−1 -

Du
2 2D pest diffusion rate [0.000625− 0.012] km2d−1 1,2

ru Pest intrinsic growth rate [0.010− 0.020] d−1 3

Cit Pest carrying capacity in crop field Cit =

{
20 no pesticide application

0.1 after pesticide application
pestskm−2 -

1/mu Pest life-span [20− 66] d 2

Table 4.1 – Population dynamics model parameters. References: 1) Corbett and Rosenheim
(1996), 2) Pearce et al. (2006), 3) Xia et al. (1999).

The population model is defined by a system of partial differential equations and consid-

ers both 2D diffusion on patches and 1D diffusion on linear elements (Roques and Bonnefon,

2016). Simulations are performed over a [0, 100]-time interval representing a cropping sea-

son with a time step of 1 day. The model parameters and their range of simulated values

are reported in Table 4.1. The predator-pest dynamics is illustrated in the Supplement 2.2

by plots of the temporal dynamics (Figure 4). Here, in Figure 4.1, we present snapshots of

the dynamics over the whole landscape. The equations defining the models are reported in

the Box 3.
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Figure 4.1 – Snapshots of pest and predator spatial dynamics. Simulations of predator-pest population
dynamics at different time intervals t = 1, 70, 100. At the initial stage, the pest density (first line) is
very low, followed by random introduction of pest. As time proceeds, pest density increases (from
left to right). As time proceeds, predator density (second line) increases and diffuses to surrounding
fields. At the final time step, there is a high pest density where predators are absent.

Initially, predators are present in all hedges at carrying capacity, since hedges are their

natural habitat. The pest is introduced randomly in space and time in crop fields. The aver-

age number of pest introductions in a single simulation is proportional to the crop field area

in the landscape, and a Poisson distribution is used to simulate the number of pest intro-

ductions. Inoculated crop fields are picked at random with probability depending on their

relative surface. During the simulation, a pesticide application is applied to a crop field

when the pest density in that field reaches a given threshold. The effect of the pesticide

application remains active for a short period of time by drastically reducing pests based

on modifying the carrying capacity. We have made a strong assumption about pesticide

applications in our model, as they are only effective for pest and do not influence predator

dynamics.

In order to match the biology of the pest (Codling moth) and predator (family of ground

beetles) dynamics detailed in Section 4, predator-pest dynamics are coupled over the 2D1D

landscape model using the following assumptions: (i) pests do not perceive linear elements

as a barrier, (ii) linear elements without a hedge do not represent a barrier for the predator,

(iii) the predator is attracted by hedges, thus migration from fields to hedges is relatively

high, (iv) the predator shows aversion to move outside its natural habitat, thus migration

from hedges to fields is lower than migration from fields to hedges. We define 11500 dis-

tinct parameter combinations according to a Sobol experimental design (see the range of

parameters in Table 4.1) among population and landscape parameters. For each param-

eter combination, we consider 15 landscape replicates, leading to a total of 172500 simu-
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lations. Numerical simulations of the spatio-temporal partial differential equation system

of predator-pest dynamics are performed using the Freefem++ finite-element framework

(Hecht, 2012a). Results are analysed through sensitivity analyses and Generalised Linear

Models. Details are provided in the Box 3.

Box 3: Coupling landscape models with predator-pest dynamics

Agricultural landscapes as the spatial support

The landscape is represented through a vectorial approach and it is composed of 2D polygons

representing patches, separated by 1D segments representing linear elements. Landscape elements

are characterised by their geometry (e.g., vertex coordinates, size and shape), and by categorical

information defining the land-cover (e.g., crop or SNH). We use the landscape generator model

presented in Section 2.1 to allocate a proportion of polygons and edges as crops, representing the

principal culture, and hedges, representing SNHs, respectively.

Predator-pest model

We model a generalist predator not showing strong attraction towards pests. Hedges are the main

predator habitat, and the predator feeds on pests when moving into the fields. The predator

dynamics are characterised as follows:

• In 1D landscape elements:

Linear 1D elements of the landscape matrix are denoted by hi. A 1-dimensional reaction-

diffusion model on linear elements is defined for the predator vhi
:

{
∂tvhi

= ∂xxDv
1 vhi

+ rvvhi
(1− vhi

Khi
) if the edge hi has a hedge,

vhi
= 0 otherwise,

(4.1)

where: Dv
1 is the diffusion parameter of the predator along the hedges, rv is the intrinsic

growth rate of the predator, and Khi
is the carrying capacity of the hedge i.

• In 2D landscape elements:

Polygon-shaped 2D fields are denoted by Ωi. The population density of predators vΩi
in

each field is modelled by a reaction-diffusion equation with mobility parameter within field

D2, predating rate β, and life-span 1/m:

∂tvΩi
= ∆Dv

2 vΩi
−mvΩi

+ βuΩi
vΩi

(4.2)

The pest dynamics are characterised as follows:

• In 1D landscape elements:

We make the assumption that edges do not host the pest uhi
, and that they do not modify

directly their population dynamics: uhi
= 0 for all i.

• In 2D landscape elements:

The pest uΩi
is assumed to live only in fields. In addition, the crop fields represent a source
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of pest, whereas the non-crop fields are a sink for the pest. In the absence of dispersal from

fields hosting the crop, the pest population vanishes in fields hosting the non-crop type. The

bidimensional reaction-diffusion model is defined as follows:
{

∂tuΩi
= ∆Du

2 uΩi
+ ruΩi

(1− uΩi
Cit

)− βuΩi
vΩi

for crop,

∂tuΩi
= ∆Du

2 uΩi
−muΩi

− βuΩi
vΩi

for alternative resistant crop,
(4.3)

where Du
u2

is the diffusion parameter of the pest in fields, ru is its intrinsic growth rate

on the crop category, β is the predating rate, and 1/mu is the life-span rate of the pest on

alternative pest resistant crop fields. In a crop field, a pesticide application is applied when

the average pest population density in that field exceeds a given threshold, which we here

fix to 0.2 pestskm−2 . Pesticide applications reduce the carrying capacity Cit of the field i.

We set Cit = KΩi
if no chemical pesticide is applied, and Cit =

200
KΩi

if the chemical pesticide

is applied.

This results in a pesticide application efficacy providing a 99.5% pest reduction, which can

be considered as an ideal-optimal case. More realistic values of pesticide application efficacy

could be around 70%; this scenario is analysed in the Supplement 2.4, where the sensitivity

of results to the pesticide application threshold is also tested. We point out that we identify

the carrying capacity as a general saturation level for pest and predator density that does

not correspond necessarily to the number of individuals per km2. Similarly, mortality other

than for predation or pesticide applications could have occurred in crop fields, but we have

opted against this option for the sake of parsimony.

Analysis

• We assess the Sobol sensitivity indices on the mean and standard deviation of predator

density, pest density and number of pesticide applications by averaging the outputs over

landscape replicates and crop fields. First-order indices are estimated with Sobol–Saltelli’s

method (Sobol’ et al., 2007; Saltelli et al., 2010), whereas total indices are estimated with

Sobol–Jansen’s method (Jansen, 1999). These analysis are performed within the R software

v. 3.0.3 (R Team, 2003), using the packages fOptions (v. 3010.83) and sensitivity (v. 1.11).

• We applied Generalized linear models (GLMs) to further explore direction and magnitude

of variations in response variables with respect to landscape parameters. Pest and predator

densities and the number of pesticide applications are analysed with the Gamma distribu-

tion for the response variable and a log link function. The presence/absence of pesticide

applications is analysed with a GLM with binomial distribution. We develop GLM formulas

containing interactions among covariates (see Table 1) up to 2nd order, and we implement

a step-wise variable selection algorithm using the Bayesian information criterion (BIC) in

order to select the “best subset’́ of variables for each model.

• We use Generalized Linear Mixed-Effect models (GLMMs) to analyse pesticide application

occurrences at field scale by taking into account their spatial position in the landscape. These

analyses are performed using the R package lme4 with R version 3.2.3 (31).
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Main results

Sensitivity analysis

The sensitivity analysis of the mean of model outputs across landscape replicates allows

ranking the importance of different covariates for explaining variations in the response vari-

able. Predator population density is mainly explained by predator spillover from hedge to

field (ρ12) and by the total proportion of hedges (Ph), whereas interactions among parame-

ters have little impact on the outputs (Figure 4.2a right). For the pest population density and

the average number of pesticide applications, crop proportion (Pc) and pest growth rate (ru)

are the most important parameters to explain model output variability, again with only little

interaction between model parameters (Figure 4.2b right). The sensitivity analysis of stan-

dard deviation of model outputs across landscape replicates gives different importance to

the input variables as compared to the mean values. For the predator, crop proportion (Pc),

predator migration (ρ12), hedge proportion (Ph) and crop and hedge spatial aggregation (φ)

explain respectively 55%, 19%, 9% and 9% of the variability of model outputs (Figure 4.2a

left). For the pest and pesticide applications, results are consistent with the analysis on the

mean (Figure 4.2b left). Complete results are found in the Supplement 2.3.

Figure 4.2 – Sobol sensitivity analysis. Total sensitivity indices (light grey bar) and first-order sen-
sitivity indices (black bar) of space-time averaged values for predator density (a) and pest density
(b), based on the mean (right) or on the standard deviation (left) over replicated simulations (with
15 replicates). The length of the bar indicates the mean of the sensitivity index, and the solid line
indicates its 95% confidence interval.
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Landscape structure effects on the predator-pest dynamics

Estimated coefficients of landscape variables (denoted Evariable in the following) on predator

density highlight a positive effect of hedge proportion (EPh
= 0.40± 0.05), a negative effect

of crop proportion (EPc = −0.20± 0.04) and a positive interaction among both variables

(EPh :Pc = 0.08± 0.02), which implies that hedges can buffer the negative effect of increased

crop proportion. Migration from hedges to fields (Eρ12 = 0.56± 0.01) has the highest pos-

itive effect on predator density with again a positive interaction with crop proportion. As

expected, crop proportion (EPc = 1.50± 0.16), as well as crop and hedge spatial aggregation

(Eφ = 0.55± 0.02), have a strong positive effect on pest density. Both variables interact neg-

atively (Eφ:Pc) = −0.11± 0.01), as high aggregation results in an increase of the size of con-

tiguous crop fields, which lowers the effect of increased crop proportion. The positive effect

of crop proportion is lowered by its interaction with hedge proportion (EPh :Pc = 0.03± 0.06)

and also with predator migration from hedges to fields (EPc :ρ12 = 0.06± 0.06). Interestingly,

an increase in hedge proportion (EPh
= 0.09± 0.11) has a positive effect on pest density.

Indeed, predator presence over all the landscape helps to stabilize the pest population by

keeping it under the thresholds triggering a pesticide application. Among species traits,

predator migration from hedges to fields (Eρ12 = −0.13 ± 0.12) has the highest negative

impact on pest density. Pest diffusion (EDu = −1.03± 0.01), due to a dilution effect, and the

predation rate (Eβ = −0.24± 0.01), have also a negative impact on the pest, while the growth

rate (Eru = 0.4± 0.01) contributes positively to pest density. When testing the sensitivity of

our results depending on the pesticide application variables (i.e., pesticide application effi-

cacy [optimal vs realistic] and pesticide thresholds [low vs high], see the Supplement 4.4),

we find that there is no variation in the direction of the estimated effects, but the magni-

tude of the effect may increase or decrease depending on the scenario considered. However,

when pest reduction is lower due to low pesticide efficacy, or, when pest reduction is slower

due to an elevated pesticide threshold, hedges show a more important role in slowing down

pest dynamics thanks to predator presence providing a more efficient CBC.

Effect of local landscape features on pesticide application at local scale

Presence of pesticide applications is negatively influenced by field area and perimeter

(EArea = −0.32± 0.01, EPerimeter = −0.10± 0.03). These effects reflect both a slower pest

diffusion in large fields and higher incoming fluxes of predators in fields with long perime-

ter. Conversely, when applications occurred in a field, their total number increases with

field perimeter due to spillover from the neighbourhoods. An increase in the number of

adjacent crop fields produces a positive effect on the presence (EAdjC = 0.74± 0.01) and

number (EAdjC = 0.20± 0.002) of pesticide applications, while an increase in the number

of adjacent hedges leads to a negative effect on the presence (EAdjH = −0.07± 0.01) and

number (EAdjH = −0.05± 0.001) of pesticide applications. Whereas in the global model the
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Density Pesticide applications
Coefficient Predator Pest Coefficient P/A No.

L

EPh
+ +

L

EPh
+ -

EPc - + Eρ12 + -
EPh :Pc + + Eφ:Pc + -
Eρ12 + -

P

Earea - -
Eφ:Pc ns - Eperim - +
EPc :ρ12 + + EAdjC + +
EDu + - EAdjH - -
Eβ + - EAdjTr

+ +
Eru + +

Table 4.2 – Estimated coefficients (as far as discussed in the text) for effects on predator
and pest density (left) and on the presence/absence (P/A) and number (No.) of pesticide
applications (right) at landscape (L) and patch level (P). + means a positive effect, − means
a negative effect, NS means a non significative effect.

increase of hedge proportion is associated with a positive effect on the presence of pesticide

applications, we attribute the negative effect at local level to the fact that the predator tends

to locally maintain the pest density under the application threshold, especially after a first

pesticide application. The number of pesticide applications in adjacent fields is positively

correlated to the local presence (EAdjTr
= 2.99± 0.01) and number (EAdjTr

= 0.13± 0.001)

of pesticide applications, indicating local infestation of the pest. See also Table 4.2 for a

summary of the effects at landscape and field scale.

Discussion

In this chapter, we characterise the joint influence of landscape structure and species traits

on CBC service. We point out that spatial heterogeneity, landscape structure (i.e., the size

and physical arrangement of patches and hedges), species traits and their interactions play

a key role for CBC outcomes and may trigger unexpected dynamics.

Crop proportion is the major determinant of increasing pest population and resulting in

an increased number of pesticide applications over the whole landscape. Indeed, increasing

crop proportion in fragmented landscapes ensures food availability to the pest all over the

landscape (Zhao et al., 2013, 2015; Tscharntke et al., 2016a). In highly aggregated landscapes,

the size of contiguous crop patches is already large enough to sustain a relatively large pest

population, thus lowering the effect of an increase in crop proportion (Veres et al., 2013).

The effects of crop proportion and spatial aggregation are intimately linked to pest growth

rate and dispersal capability. Indeed, unfavourable landscape properties for the pest (i.e.,

low proportion and high fragmentation) can be compensated by a higher growth rate. How-

ever, the effect of dispersal is a double-edged sword since high dispersal helps spreading

on fragmented landscapes, but comes with a larger amount of propagules lost in unsuitable
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habitats, potentially leading to a dilution effect (Tscharntke et al., 2005; Baggio et al., 2011;

Rand et al., 2006).

As expected, hedge proportion (i.e., SNHs) positively affects predator presence in agri-

cultural landscapes. In addition, the predator’s ability to move between SNHs and crop

habitats is the parameter that increases most strongly the predator density, since it enables

predators to reach complementary resources in crop fields more easily. Predator fluxes

from adjacent habitat is reported to have a major impact on pest populations in crop fields

(Tscharntke et al., 2016a, 2005; Rand et al., 2006). Spillover from hedges to patches not only

depends on predator propensity to forage outside their natural habitat, but also on semi-

natural patch connectivity and on crops and predator reservoir interface (Coppolillo et al.,

2004). Thus, different combinations of SNH proportion and aggregation influence land-

scape structural connectivity and are also important determinants of predator efficiency in

regulating crop pests (Coppolillo et al., 2004).

Hedges are modeled as source of predators where they have a logistic growth. This is a

simplification for predator dynamics in their natural habitat, as we do not consider poten-

tial prey presence in hedges and predator foraging behaviour in crop fields. For example,

the growth rate, instead of being constant, could depend on the time spent in the fields

and on the number of consumed preys (see Chapter 8). In addition, predating rate and

consumption rate are crucial in determining the efficiency of CBC (Pettorelli et al., 2015).

Finally, another strong assumption may be that pesticide applications do not affect predator

mortality, and we do not explore a broad-spectrum pesticide scenario. In general, broad-

spectrum pesticides are more commonly applied (Koss et al., 2004), but there are pest man-

agement programs where selective insecticides have been proved to be particularly effective

along with a CBC strategy, such as combining direct targeted reduction in pest numbers

with predator conservation (Koss et al., 2004; Hilbeck et al., 1998). Moreover, accounting

for broad-spectrum pesticide application effects may result in a secondary pest breakout

(Dutcher, 2007; Gross and Rosenheim, 2011; Steinmann et al., 2011)), where pests benefits

from the predator reduction. Additional pesticide loads would be necessary to decrease pest

density, while continuously breaking down predator density (Steinmann et al., 2011). Thus,

finally, the effect of SNH and predators and their relationships for CBC outcomes would

be confounded and masked. However, in our work, an indirect effect could be observed,

as in crop fields a positive predator growth rate relies only on pest, such that a strong pest

reduction due to pesticide applications is automatically translated into a strong impact on

predator density when such pesticide applications occur. Thus, adding extra-mortality in

crop fields should not modify the results that much. To account for major pesticide appli-

cation effects, an impact on predator mortality in its natural habitat should be considered.

Predator migration from hedges to crop fields has a major influence on pest density and

related pesticide applications. High crop proportion enhances pest density, but this effect

is counter-balanced by the joint effect of hedge proportion and predator spillover, which
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favours predator pressure and reduces pesticide application. Indeed, hedges ensure an in-

creased landscape functional connectivity, which enables predators to successfully disperse

and feed on complementary resources in the fields. Interestingly, we found that if SNHs

can sustain a high population of predators (Fabian et al., 2013), this is not sufficient to

achieve a decrease in pest density. Indeed, by keeping the pest population density under

the pesticide application threshold, the predator population can favour its spread across

the landscape, thus increasing pest density at the landscape scale, even if fewer pesticide

applications are applied. Most of the studies consider the amount of SNH as a proxy for

predator presence and focus on how landscape structure directly influences CBC. However,

as highlighted by our results (see also Fabian et al. (2013)), the extent to which species are

influenced by landscape heterogeneity depends on their traits. For example, Le Gal et al.

(2020) argue that predators with an oriented movement are better able to deliver pest con-

trol services. They discuss the interplay among predator mobility, proportion of crop and

SNHs. More generally, SNH predator spillover is expected to be particularly strong when

(i) predator attack rates on prey are high, (ii) predator movement abilities are substantial,

and (iii) predator mortality rates in the recipient habitat are low (Holt et al., 2001). However,

we point out that the predator we model is a generalist predator not showing strong ag-

gregation behaviour to pests. Pests represent a predator resource in fields, while predators

can persist in the landscape also without pests as they have a positive growth in hedges.

Different outcomes would be probably observed considering a specialist predator showing

an aggregating behaviour around local pest outbreaks (Bianchi et al., 2010). As for example

in Bianchi et al. (2010), specialist predators are found to be more effective agents in sup-

pressing local outbreaks than generalist ones.

The flux of predator migration from hedge to field, and the distance over which pest and

predator can spread, both depend on local configurational variables such as field size, shape,

amount of shared edge, and connectivity (Haan et al., 2020). Large fields can support high

pest volumes, but it has been demonstrated that the relationship between field size and

pest density can take several forms depending on assumptions, conditions and species con-

sidered (Segoli and Rosenheim, 2012). Our results show a negative effect of large field

area on the need to use pesticides and on the number of required applications, which, ac-

cordingly to Segoli and Rosenheim (2012), may come from the elevated growth rate of the

prey combined with its good dispersal ability. An increasing pesticide application num-

ber is favoured by long field perimeter as it facilitates high fluxes of pest incoming from

surrounding fields. However, when a hedge is present on field boundary, we observe a

reduction in pesticide number as there is an increase of predator spillover from hedges into

fields (Bianchi et al., 2006). Interestingly, we show a contrasted effect of hedge depending

on the scale considered. At global scale, the proportion of hedges shows a positive effect on

pest density and has a negative effect only on pesticide application presence. At local scale,

an elevated number of hedges on crop boundary shows an even more important impact on
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CBC by negatively affecting both the local presence and number of pesticide applications

(Fabian et al., 2013) (see Chapter 5).

We find that natural habitat enhances predator population, but it does not systemati-

cally translate into a strong correlation with pest density decrease. However, a relatively

high predator density often helps maintaining pest density below the economic threshold

level above which pesticides are applied, thus preventing highly localized pest densities.

By contrast, predator migration from hedges to fields is fundamental for CBC; it reduces

pest density and guarantees high predator fluxes and different habitat connectivity. At field

scale, landscape geometrical features, hedge presence and habitat connectivity are able to

influence predator-pest dynamics, and therefore they affect the number of pesticide ap-

plications in a different way from a global perspective. This highlights the importance of

conducting a multi-scale analysis to consider the differences in outcomes at landscape and

patch scale for pest CBC (Veres et al., 2013). Up to now, we have considered global outputs

by averaging pest and predator densities over crop fields. However, populations are obvi-

ously structured in space and time. Thus, in the next Chapter 5 we focus on how landscape

structure impacts predator-pest spatio-temporal dynamics, which brings further insights on

pest outbreak determinants in relation to predator–prey dynamics and interactions. For

example, in Figure 4.3, two landscapes characterised by the same crop proportion but dif-

ferent hedge network structures are showed. Pesticide application events occur in the same

number, but with completely different patterns. Thus, up to this point of our analysis, we

can not detect any effect of the hedge network structure, as we aggregate the output in

space and time for a global analysis. By contrast, in the next Chapter 5, we wonder if land-

scape features and population dynamics can explain local patterns by taking into account

spatio-temporal information at both local and global scale.

Figure 4.3 – Landscapes with the same number of pest density peak (10) but with a different spatial
distribution
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Chapter 5

Spatio-temporal point processes as

meta-models for population

dynamics in heterogeneous

agricultural landscapes

Dealing with ecological processes involves studying different spatial and temporal scales,

since ecosystem patterns and processes cover various spatio-temporal ranges and may have

multiple drivers acting across different extents (Fritsch et al., 2020). The characterisation

of the spatial distribution of landscape features and individuals in response to a complex

interplay of processes across scales can be very well accounted for by Spatially Explicit

Model (SEM). Different SEM types have been proposed, such as continuous-space reaction-

diffusion partial differential equations (Roques, 2013), patch models (Hanski, 1994), cellu-

lar automata neighbourhood models (Hogeweg, 1988), or individual-based models (IBM,

Grimm and Railsback, 2005).

The development of advanced numerical models has greatly improved our ability to

accurately describe complex dynamics incorporating fine-grain interactions over a large

extent. However, as models aim to provide a realistic but simplified representation of reality,

the spatio-temporal extent is often properly adapted by scaling decisions (Fritsch et al.,

2020). In-model scaling methods give control over simplifications when building the model

or allow us to incorporate and transfer relevant information across different scales. Scaling

techniques may also be used before or after building the model, to define model parameters

or analyse model outputs. In this work, The predator-pest model is defined through a

system of partial differential equations over a large spatio-temporal domain, and its solution

returns large output sets. Thus, we focus on post-model scaling and propose a parsimonious
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approach to deal with the complexity of SEM outputs while keeping fine-scale information

on the ecological dynamics.

A solution to deal with this complexity could be the application of non-spatial analysis

methods via spatial and temporal output aggregation (Gotelli, 2000; Webb, 2000; Fritsch

et al., 2020). This is the solution we first applied and presented in Chapter 4. An alternative

solution is given by meta-models and meta-analysis, which offer the possibility of reducing

model output complexity by establishing a simplified mathematical relationship between

the input and output of the system (Simpson et al., 2001). Their main aim is to replace

complex numerical models by more parsimonious representations that provide a better

understanding and faster analysis tools for optimisation and exploration, specifically when

performing uncertainty or sensibility analysis (Simpson et al., 2001; Jia and Taflanidis, 2013;

Saint-Geours, 2012; Ratto et al., 2012). Where possible, an elegant way to build meta-models

is the approximation through an analytical model, which is fitted to the large-scale output

and allows for simplification (Grimm and Railsback, 2005). Analytical solutions can provide

insight from different aggregation levels, but their construction and use are not always

unequivocal (see Johst et al., 2013). Spatial statistics techniques are potential candidates of

great interest and should be further explored (Fritsch et al., 2020).

Here, we show how spatio-temporally explicit outputs of population dynamics model

in landscape ecology could be analysed through a meta-modelling approach to get a more

parsimonious representation. Due to the high-dimensional spatial mesh and temporal res-

olution, we do not work directly with the spatially resolved pest and predator density

output. Thus, outputs are simplified to point patterns by considering individual positions,

key events or significant hotspots determining local dynamics. The resulting patterns can

be modelled as spatio-temporal point processes (STPP), and the pattern itself, or rather its

structure, is the response variable that one seeks to explain through the structure of the spa-

tial support, and its temporal changes, described through predictor variables (Diggle, 2003;

Illian et al., 2012; Renshaw, 2015; Illian and Burslem, 2017). Point processes can be defined

over continuous space and time, such that there is no need to work with fixed spatial and

temporal units; they can be used for descriptive analyses and stochastic modelling of pat-

terns. For example, Law et al. (2009) apply STPP tools by computing first- and second-order

statistics, i.e., expected numbers of points and point pairs, for characterising observed plant

patterns; Gabriel et al. (2017); Opitz et al. (2020); Pimont et al. (2020) develop models for

wildfire occurrences through STPP to overcome challenges given by the multi-scale struc-

ture of data and by strong non-stationarities in space and time driven by weather, land-cover

and land-use.

This approach allows us to investigate the role of landscape structure in influencing the

point process intensity summarising the predator-pest dynamics, and we address two gen-

eral questions: (I) How can landscape effects and population dynamics traits be coupled
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at different spatio-temporal scales?; (II) What are the spatio-temporal relationships between

pest introductions, pest density peaks and landscape heterogeneity?

To answer these questions, the main novelty of our work resides in the characterisation

of spatio-temporal population dynamics through STPPs. A hierarchical framework is devel-

oped (Figure 5.1), where (i) the stochastic landscape model to generate the spatial support

(Section 2.1), and (ii) the predator-pest simulation are the steps addressed in Chapter 4.

This is the starting point of this Chapter, where we propose to represent spatio-temporally

explicit outputs as point patterns identifying space-time-indexed key events of pest dynam-

ics, that we subsequently model by constructing and estimating regression equations for

marked STPPs where points are marked by magnitude of the event they represent. The

response variables we aim to model are the occurrences and the magnitude of the pest den-

sity peaks. Response variables are explained by taking into account both global and local

landscape features, species life-history traits, and the occurrences of pest introduction, pest

peaks and pesticide applications in appropriately chosen spatio-temporal neighborhoods

around the location and time where the response variable is observed.

Figure 5.1 – Overview of meta-modeling workflow.
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Pest-predator dynamic patterns

Predator-pest simulations of the spatially-explicit population model presented in Section 4

provide the spatio-temporal pest and predator densities, from which we extract and store

the spatial positions, the times and the value of pest density maxima. Following our mod-

elling framework, we identify as events (i) the spatio-temporal pesticide application oc-

currences (i.e., pest threshold exceedance or pest peak) and (ii) the spatio-temporal pest

introductions. For example, when pest threshold exceedance occurs in a patch, we apply a

pesticide application in this patch and, to define the event episode as a point, we extract the

time t of threshold exceedance, the pest density maximum in the patch with its Euclidean

coordinates (x, y), and the average pest density over the patch. In Figure 5.2, two simu-

lations are shown for different time steps, where the spatio-temporal occurrences of pest

introductions and pesticide peaks within different landscape allocations are highlighted.

This example also illustrates the conjecture that the spatial hedge structure plays a role for

pest dynamic by influencing its evolution jointly in space and time. Deeper exploratory

quantitative analyses of spatio-temporal relationships between different types of points are

proposed in the Supplement 3.1, while we focus on statistical model-based analyses in what

follows.

Figure 5.2 – Two simulation examples (by row) illustrating the spatio-temporal pest dynamics depend-
ing on landscape structure through pest introductions, and through pest density peaks after threshold
exceedances.

Pest density peaks as a Spatio-Temporal Point Process (STPP)

Point patterns representing individual or event distributions in space and time can be mod-

elled as STPPs (see Diggle (2003); Illian et al. (2008); Baddeley et al. (2015) for formal defi-
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nitions). Each point can be endowed with additional qualitative or quantitative information

defined as a “point mark". In our application, the pattern of events is defined by the co-

ordinates in space and time of pest peaks with both qualitative (pest introduction) and

quantitative marks (pest maximum density). Thanks to the theory of STPPs it is possible to

analyse the point distribution properties locally in space and time, and to estimate models

for predictive purposes (e.g., number of events, point-to-point correlations, and distribution

of their numerical or categorical marks). We focus on modelling the point process intensity

function (local point density) (Illian et al., 2013), see Box 4. Our modelling goal is to pre-

dict the intensity of pest density peaks and the associated values of maximum pest density,

and explain their variability in space, through time and across different simulations. We

divided the spatial domain in a relatively large number of small cells, and we assume a

homogeneous point process intensity within each cell during each interval of time. The

spatial discretisation we use is shown in Figure 5.3, and background on its structure and

construction is provided in the paper Zamberletti et al. (2021a) and in the Supplement 3.4.

Figure 5.3 – Spatial discretisation of the regression models. Complete mesh discretisation (light grey),
mesh cells used in the analysis (dark grey), landscape patches (black). Cell centroids of different colour
refer to different cell types: cell in patch center (red), cell connecting exactly two patches (green), cell
connecting more than two patches (blue).
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Box 4: Spatio-temporal point process (STPP)

A point process is a random collection of points X that is defined on a space-time observation

window W of R
d, where we here use d = 3 to represent two spatial dimensions and time, and

X(W) is the random number of points in W . For details, we refer the reader to Diggle (2003);

Moller and Waagepetersen (2003); Illian et al. (2008); Baddeley et al. (2015).

Realisations of X are called point patterns. We can then work with arbitrary subsets (or mapping

units) A ofW (e.g., space-time cylinders defined as patch or triangulation cell times time-step), for

which we can locally analyse the events’ distribution (e.g., number of event points, and distribution

of numerical attributes associated to events), see Figure 5.4. In addition to the spatial locations of

the objects represented by the points, qualitative or quantitative attributes on the objects may

be available. These additional variables are commonly referred to as marks, and they can be

considered alongside the pattern and included as part of a marked point process model. Given a

random mark mx ∈ M associated with each point x ∈ X, where M is the mark space, the marked

point process is defined as Xm = {(x, mx) : x ∈ X}. The mark space M may be subset of R
gM

(with gM ≥ 1) for continuous marks; if M = {1, . . . , k} then Xm is a multi-type point process with

k different point types.

Figure 5.4 – Spatio-temporal point process representation on the subset A. X and Y represent the
spatial dimension, t represents the temporal dimension, X = {x0, x1, . . . , x4} is the point pattern
realised within the subset A.

The most important characteristic of a point process is its intensity function λ, which can be locally

interpreted as the average number of events per space-time unit; this density allows calculating

the expected number of points in a set A by considering the cumulated intensity in A, i.e., by

calculating the integral E(X(A)) =
∫

A λ(x)dx where x ∈ R
d.
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Index Covariate Spatial reference Range Unit
Spatio-temporal (STC)

1 No. of pesticide applications in the patch at t− 1 patch 0-40 -
2 N. of pesticide applications in the patch cumulated up to t− 2 patch 0-97 -
3 No. of pesticide applications in neighbor patches at t− 1 patch 0-337 -
4 No. of pesticide applications in neighbor patches cumulated up to t− 2 patch 0-861 -
5 No. of pest density peaks at t− 1 cell 0-15 -
6 No. of pest density peaks cumulated up to t− 2 cell 0-36 -
7 No. of pest density peaks in neighbor cells at t− 1 cell 0-45 -
8 No. of pest density peaks in neighbor cells cumulated up to t− 2 cell 0-97 -
9 No. of pest introduction in cell at t− 1 cell 0-30 -

10 No. of pest introduction in cell cumulated up to t− 2 cell 0-30 -
11 No. of pest introduction in neighbor cells at t− 1 cell 0-30 -
12 No. of pest introduction in neighbor cells cumulated up t− 2 cell 0-39 -

Spatial (SC)

13 Cell dimension cell 0-0.069 km2

14 Binary indicator if the cell is among 2 patches cell 0-1 -
15 Binary indicator (1/0) if the cell is among 3 or more patches cell 0-1 -
16 Proportion of hedges within the buffer centered in the cell buffer 0-1 %
17 Proportion of crops within the buffer centered in the cell buffer 0-1 %
18 Landscape crop and hedge aggregation landscape 0-5.54 -
19 Landscape crop proportion landscape 0-1 %
20 Landscape hedge proportion landscape 0-1 %

Population dynamics (PDC)

21 Pest diffusion in crop patch landscape 0.06-12 km2d−1

22 Predator diffusion in crop patch landscape 0.07-12 km2d−1

23 Predator migration from hedge to crop landscape 0.1-1

Table 5.1 – Covariate list for the space-time regression model of pest density peak patterns.
The temporal unit d stands for day.

Pest density peak meta-modelling

For predicting pest density peak intensities and maximum pest density peak values, we de-

velop and estimate regression equations for marked STPPs. Both global and local landscape

features, species life-history traits, and the occurrences of pest introductions, pest peaks

and pesticide applications are used as covariate information. We construct two separate

generalised linear model (GLM) formulas as meta-models that incorporate the available co-

variate information. Response variables and covariates are evaluated over each spatial cell

(Figure 5.3) and time step (see Box 5 and the paper (Zamberletti et al., 2021a) for model

equation specification).
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Box 5: Regression equations for marked STPP to model pest density peaks

Model covariates

We evaluate spatio-temporal (STC), spatial (SC) and population dynamics (PDC) covariates to put

the spatio-temporal event patterns, landscape structure and population dynamics into relation.

STC(s, t) =
12

∑
k=1

βkzk(s, t), SC(s) =
20

∑
k=13

βkzk(s), PDC =
23

∑
k=21

βkzk, β ∈ R
23, (5.1)

The β vector gathers the covariate coefficients to be estimated separately for each model, and

the values zk are covariates summarised in Table 5.1 and provided for each space-time cell; more

information on their selection and computation is given in the Supplement 3.5. We applied a

coarser temporal discretisation (i.e., time step of 10 over the temporal interval [0, 100]) as compared

to the population dynamics model in order to reduce the computational complexity. A residual

analysis is performed to evaluate if the predicted values obtained by the GLMs are uncorrelated

and homogeneously distributed in space and time for the intensity peak occurrences and for the

peak values of pest density (See the Supplement 3.7).

Meta-model for the occurrence intensity of pest density peaks

To model the maximum pest density value associated with each pest peak point, we consider a

log-Gaussian GLM, i.e., we combine a log-link function with a Gaussian distribution of regression

errors:

λ(s, t) = exp
(

βλ
0 + STC(s, t) + SC(s) + PDC

)
(5.2)

with global intercept βλ
0 and coefficients of the other variables to be estimated.

The value λ(s, t) represents the average number of pest peaks occurring in a unit of space and

time around the point (s, t), and is assumed to be constant within each cell of the mesh during

each time interval of 10.

Meta-model for magnitudes of pest density peaks

To model the maximum pest density value associated with each pest peak point, we consider a log-

Gaussian GLM, i.e., we combine a log-link function with a Gaussian distribution for the regression

errors:

Pmax(s, t) = exp
(

βPmax
0 + STC(s, t) + SC(s) + PDC + ε(s, t)

)
(5.3)

with global intercept βPmax
0 and coefficients of the other variables to be estimated, where Pmax(s, t)

is the maximum pest density value associated to the point where the pesticide application is

applied, conditional to the occurrence of such a point. The term ε(s, t) ∼ N (0, σ2) corresponds to

the spatially and temporally independent and identically distributed Gaussian error terms.
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Figure 5.5 – Estimated regression coefficients for the models of peak occurrence intensity (x-axis) and
the model of the peak value (y-axis). Colours of dots indicate covariate types: STC (orange), SC (blue),
PDC (green).
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Main results

To assess the effect of different local and global drivers (i.e., STC, SC, PDC), we analyse the

estimated GLM coefficients for the models in Equations 5.2 and 5.3 in Box 5 (Figure 5.5).

Before estimation, covariates have been normalised to empirical mean 0 and variance 1

to compare more easily the magnitudes of estimated effects.

In Figure 5.5a, we identify the drivers leading to the strongest effect on the peak number

and value. For example, as expected, crop coverage at local scale (i.e., in the buffer) and

at global scale (i.e., in the whole landscape) strongly favours the abundance of suitable

habitat for pests, which can easily spread and find resources. By contrast, the strongest

negative effect on pest peak values is pest diffusion and may be due to a dilution effect:

high pest diffusion allows the pest to easily move, so the pest population tends to spread

homogeneously over the whole landscape. Therefore, few local hotspots arise, and the

pesticide threshold for average pest density over a field is less often exceeded. Both response

variables related to pest peaks are also strongly reduced by local predator presence, which

in turn is mainly driven by a high local presence of hedges.

Figure 5.5b shows a zoom of covariate effects with a lower magnitude. High numbers

of pest peaks along with high peak concentration values (top-right quadrant in Figure 5.5b)

are relatively strongly favoured by the presence of previous peaks in the same cell or in the

surrounding ones (both at t− 1, and cumulated up to t− 2). Similarly, an elevated num-

ber of pest introductions in neighbouring cells leads to high pest concentration due to pest

spillover. On the other hand, the application of pesticide applications locally in the patch

or in neighbouring patches at previous time steps leads in general to a decrease of both the

number and the concentration value of peaks. Results show a negative effect of hedge pro-

portion in the buffer on pest activity. However, there also arises a weaker but positive effect

of the hedge proportion over the whole landscape, which may appear counter-intuitive at

first glance. Since response variables are evaluated at cell scale, having a large hedge pro-

portion in the whole landscape but a low proportion of hedges in the buffer clearly results

in a concentration of pest where hedges are missing. In addition, hedges help to keep the

pest below the pesticide application threshold and therefore favour its propagation through

the landscape (see Chapter 4 and Zamberletti et al. (2021b)); therefore, the pest may reach

areas of lower predation pressure more easily and pull out. Predator spillover (i.e., move-

ment from hedge to field) results in a decrease of the number of threshold exceedances, but

it may increase pest peak values since the predators are not homogeneously present in the

patches and over the whole landscape. Predators have stronger influence near hedges (e.g.,

in cells overlapping different patches) but less in the center of the patch (central cells).
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Discussion

In this Chapter, we propose post-model scaling using regression meta-models based on

marked STPPs. This approach enabled us to assess and compare the contribution of differ-

ent spatio-temporal covariates and life-history traits to the direction and strength of varia-

tion in crucial events of population dynamics issued from spatially explicit models. The use

of statistical regression meta-models makes our approach flexible and easy to implement,

while numerous and diverse covariates describing local and global characteristics can be in-

corporated. We applied our methodology to the outputs of a SEM describing the biological

control in agricultural landscapes of a crop pest by its natural predator. We found signif-

icantly different effects of landscape structures at various spatial scales on the population

dynamics patterns.

The adaptation of our approach of defining a marked STPP meta-model may be rel-

evant and insightful in various other contexts. Examples where STPP modeling is use-

ful are occurrence locations and times of earthquake epicentres (Lombardo et al., 2019),

wildfires (Opitz et al., 2020), epidemiological outbreaks (White et al., 2018a), biodiversity

hotspots and species distribution (Soriano-Redondo et al., 2019), pollutant concentrations

(Lindström et al., 2014) or local maxima or minima in meteorological events (Heaton et al.,

2011). In most ecological processes, space and time are closely intertwined and not sepa-

rable, where pest introductions and subsequent peaks depend on local temporal dynamics

driven by local spatial structure. Thus, here, we design our approach to allow for joint

analysis of spatial and temporal scales. For ecological processes related to those we study,

White et al. (2018a) address how landscape structure impacts simulated disease dynamics in

an individual-based susceptible–infected–recovered model. They quantify disease dynam-

ics by outbreak maximum prevalence and duration, coupled with landscape heterogeneity

defined by patchiness and proportion of available habitat. They find that fragmentation pro-

motes pathogen persistence, except for simulation with high conspecific density, slower re-

covery rates and larger perceptual ranges, where more complex disease dynamics emerged;

the most fragmented landscapes were not necessarily the most conducive to outbreaks or

pathogen persistence. Our work has similar thrust by exploring the effect of landscape het-

erogeneity on pest density peaks. However, by taking advantage of the STPP modelling,

we focus on spatio-temporal positions of peaks, and we investigate which factors locally

influence occurrence intensity and magnitude of these events. The meta-model allows us to

depict complex spatial dynamics and patterns even if multiple processes occur at compet-

ing scales (White et al., 2018b). To assess fine-scale biodiversity, Azaele et al. (2015) capture

species patterns through correlations among different species’ abundances across sample

plots. Therefore, they use counts over spatial units (i.e., plots), determined by the sampling

design and leading to relatively large counts, and they contrasted their results with common

species–area curves (Fritsch et al., 2020). They conclude that this mathematical framework
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provides a common language to link different spatial scales. Our approach goes beyond

a purely descriptive "geostatistical" analysis since we take into account the space-time po-

sition of each of the points as well as their relationships with nearby key elements. This

representation parsimoniously summarises spatially continuous dynamics into discrete oc-

currences of spatio-temporal key events and allows modeling them for explanatory and pre-

dictive purposes. Our regression model for occurrence intensities also aggregates individual

events, but we work with relatively small counts by choosing appropriate, problem-specific

space-time units.

Ecosystem patterns and processes can cover a wide range of space and time, and they

depend on multiple drivers acting over different scales (Fritsch et al., 2020). Problematic loss

of information may arise in procedures of scaling-up or scaling-down when coupled with

the complexity of the involved systems. Our work strikes a pragmatic balance with respect

to the inevitable trade-off between model simplicity, to obtain clear insights into important

factors, and model complexity, to achieve a more complete and realistic representation of

the system (Lacy et al., 2013). Spatio-temporal meta-models present a flexible solution by

capturing the functional linkages between model components. They show great potential to

reveal properties in ecological systems that are difficult to identify when considering only

the complex model output with large data volumes as a whole (Lacy et al., 2013). Our STPP

model allows for a relatively complex spatio-temporal local analysis of system dynamics.

It therefore provides insights into the role of different effects and takes process-specific

scales into account by using categorical or numerical marks. Through statistical inferences,

it becomes possible to identify significant relationships of key events with their drivers

focusing on biotic interactions, habitat heterogeneity and spatio-temporal stochastic effects,

and to provide predictions (Baddeley et al., 2015). A large body of literature on meta-models

(or surrogate models, or emulators) in various disciplines focuses on Gaussian processes or

machine-learning techniques (e.g., Forrester et al., 2008; Kleijnen, 2015), whereas our work

highlights the potential of point-process-based approaches for dynamical systems. This

novel way of conducting meta-analyses is applicable to various collections of relevant events

arising in dynamical processes available at high spatio-temporal resolution. We emphasise

that our methods leverage spatio-temporal and multivariate point pattern techniques, while

the state-of-the-art in point pattern analyses deals mostly with purely spatial patterns or

does not well represent the temporal dimension (Wiegand et al., 2017). Our extensions are

well-suited for spatio-temporal mechanisms and population dynamics parameters, where

the assessment of their relative and joint role is crucial for characterising emerging diversity

patterns.

In the application to the predator-pest dynamics, we benefit of this kind of approach to

distinguish the roles of different covariates types and the effects of different scales. Spatio-

temporal covariates (STC) contribute spatio-temporally structured information, such as the

number or magnitudes of previous or concomitant events around a given location and
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time, which conveys additional information to understand the evolution of pest dynamics.

Le Gal et al. (2020) highlight the important influence of the interplay between the landscape

structure and the timing of CBC measures on the delivery of pest control services. They

show that increasing the SNH proportion at the landscape level enhances the visitation

rate of pest-colonised crop cells, but it also reduces the delay between pest colonisation

and predator arrival at the crop fields (Le Gal et al., 2020). In our model, we have opted for

simulating the time and position of pest arrival according to a Poisson process with intensity

proportional to crop area. We find that locations showing frequent and high density peaks

in previous time steps are likely to incur new peaks. On the other hand, local previous

pesticide applications in a patch negatively influence the dynamics since they efficiently

reduce the pest density in this patch. Introductions of pest act as an accelerator of local

pest dynamics, and after a short period we often assist to both high frequency and high

magnitudes of peaks in the surrounding fields.

Spatial covariates (SC) are time-invariant landscape characteristics that may influence

pest peaks. Crop proportion is the main driver for pest in our models, and leads to a clear

positive response of pest insects to increasing cover of a suitable crop (Ricci et al., 2019; Rand

et al., 2014; Zhao et al., 2015; Avelino et al., 2012; Tscharntke et al., 2007). Our results show

that considering it at local scale or at global scale leads to different peak patterns. When crop

aggregation and percentage coverage are high in the whole landscape, exceedance events

of pest density are relatively homogeneously spread over the area with generally relatively

low pest density values throughout. Instead, when high crop coverage is only local (i.e., in

the buffer), the resulting pattern shows a locally higher number of exceedance events with

high peaks; pests find their preferred habitat in a more limited space and tend to concen-

trate there. In Chapter 4, we show that in landscapes with strong aggregation of crop fields

the area of contiguous crop may cause a dilution effect with a positive effect on pest pop-

ulation, a negative effect on pesticide application occurrence, and a positive effect on the

pesticide application numbers in the whole landscape. Therefore, if pesticide applications

are necessary in a patch, they tend to arise in relatively high numbers over the full obser-

vation period. Hedge distribution and proportion can be viewed as a proxy for predator

presence and reveal when predators may play a role in reducing pest density (Bianchi et al.,

2006; Tscharntke et al., 2007). The effects attributed to SNHs (e.g., hedges) are ambiguous

with both positive, negative or neutral impacts on CBC (Chaplin-Kramer et al., 2011b; Karp

et al., 2018). In our models, total hedge proportion has a small but positive effect on both

the number and the magnitude of peaks. A reason could be that the global proportion of

hedges does not inform about hedge connectivity and distribution (e.g., homogeneously or

in clusters). If there is a high hedge coverage, predators are expected to be homogeneously

distributed in the landscape, thus stabilising the pest population and potentially reaching

an equilibrium in the whole landscape for pest and predator density. However, this does not

imply that pest density remains under the pesticide application threshold; it could happen
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that other parameters influence its dynamics by favouring pest population (e.g., crop cov-

erage or pest growth rate) or decreasing predator presence in field (e.g., mortality, spillover

from hedge). This results in a homogeneous predator presence that is not sufficient to pre-

vent pest density from exceeding the threshold. In our model, another reason could stem

from statistical confusion in the regression models between the effects of global hedge pro-

portion and global crop proportion since the simulated landscape model tends to position

hedges more often in crop areas than in the rest of the landscape. However, when focusing

on local buffers around a cell, local hedge structure and the resulting predator concentration

play a bigger role by reducing both number of pest peaks and their magnitude.

Population dynamics covariates (PDC) are related to species traits. Here we consider the

effect of varying population parameters related to species mobility in the environment. We

find that predator diffusion ability over the landscape is fundamental to reduce the presence

of pest. Interestingly, we do not notice the same effect for predator migration speed from

hedge to field. This predator trait acts most strongly at locations close to hedges, i.e., around

patch borders, with a strong decrease in the number of peaks, while the peak value is not

affected but is high mostly in the patch core areas.

Our analysis provides explanations of spatio-temporal event occurrence and magnitude

with respect to local and global drivers, which could be of importance for prediction and

management decisions. For example, within the context of our application, improved under-

standing of local spatio-temporal relationships and dynamics helps to schedule specific local

control strategies by targeting the locations that more frequently suffer from pest peaks, and

by identifying the moments when local control strategies can be expected to be most effi-

cient to control pest dynamics.

Perspectives and open questions

• Modelling the effects of pesticide on predators. As discussed in Chapter 4, the pes-

ticide only influences indirectly predator dynamics through increased pest mortality.

Even if selective insecticides exist and allow focusing only on the target pest species, a

more complete analysis would be to consider also broad-spectrum insecticides, which

kill pests and predators indiscriminately (Bianchi et al., 2013).

• Exploring the sensibility of CBC outcomes depending on the economic threshold of

pesticide application in more details. This threshold is a variable that could be con-

trolled by farmers depending on the economic value of crops and the pest damages

(Bianchi et al., 2013; Ragsdale et al., 2007).

• Considering a more complex predator-pest system, taking species traits and strategies

into account (see Part III), or developing a model that considers different life stages.

67



For example, Codling moth, in common with other lepidopteran hosts, supports a rich

assemblage of parasitoid species that attack the host at successive stages in the life

cycle and differ in mode of development (Mills, 2005). This would allow identifying

the most vulnerable life stages where the pest regulation by pesticide applications or

predators would be likely more effective. In addition, life cycles of pests and predators

may be of quite different lengths, and population stages could be present at the same

or different time (May and Hassell, 1988).

• Applying the developed theoretical model on real biological system. This would al-

low us to contrast the general outcomes of our modelling framework with real system

observations. Moreover, it would give the opportunity of estimating population dy-

namics parameter on real data in a study-site specific application. Finally, as the

approach would be applied on a specific system, different simulation scenarios could

be tested to offer the possibility of studying biological management strategies and of

providing concrete suggestions instead of general guidelines.
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Part III

Trophic networks, species traits and

behaviours within complex agricultural

landscapes

Figure 5.6 – Different predating strategies. First line (from left to right): nocturnal vs diurnal; Second
line (from left to right): sit-and-wait vs actively foraging
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Chapter 6

Multi-species interactions within

complex agricultural landscapes

In Part 2, we have analysed the joint role of the landscape structure and population dy-

namics for biological control outcomes at global and local scale. In general, we highlight

the key role of landscape linear elements (i.e., hedges) as semi-natural habitats (SNH) for

pest regulation. SNHs are considered as proxy of natural enemy abundance, but we have

demonstrated that the presence of SNHs is not enough to drastically reduce the pest den-

sity. SNHs are able to sustain a high population of natural enemies, which act by keeping

the pest population density under the treatment threshold. The predator population can

favour pest spread across the landscape, thus increasing pest density at the landscape scale,

even if fewer treatments are applied. In addition, we show that the influence of species

depends also on their traits. The major influence on pest density and related treatments is

represented by the predators’ ability to disperse from hedges to crop fields. Thus, a large

hedge proportion and high predator spillover jointly favour predator pressure and reduce

pesticide treatment applications. In this situation, hedges ensure an increased landscape

functional connectivity that enables predators to successfully disperse and feed on com-

plementary resources in the fields. In this first analysis in Chapter 4, we have aggregated

outputs over time and space, but we recognise that interesting information may be masked,

such as local spatio-temporal relationships or patterns. Since we have used spatially-explicit

models (SEMs) to achieve a high level of detail and precision, we presented in Chapter 5 an

approach to overcome the computational complexity, the high amount of data and memory

requirements and the problem of outputs that are difficult to analyse. We have developed a

meta-model based on a spatio-temporal point process (STPP) to analyse SEM output with

the aim to characterise spatio-temporal population dynamics and landscape heterogene-

ity relationships in an agricultural context. We provide local insights on spatio-temporal

dynamics of the pest-predator system. In this 3rd Part, we now go further with the aim
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of exploring the role of landscape heterogeneity in shaping the strategy and the trophic

interactions of different species depending on their traits.

Species richness, functional and genetic diversity

The influence of species richness on arthropod BC has been largely discussed and reviewed

in Schmitz (2007) and Letourneau et al. (2009). Species richness has been commonly used

to assess species diversity within ecosystems. However, predators cannot be treated collec-

tively as a single trophic level, since this would assume that predator species have iden-

tical effects and functions in ecosystems and would therefore be functionally substitutable

(Schmitz, 2007). Predators can interact synergistically or antagonistically, and, consequently,

an elevated number of natural enemy species does not directly correspond to a positive ef-

fect on pest regulation (Crowder and Jabbour, 2014). Indeed, they may show a negative

impact when natural enemies are in competition and disturb each other, which limits the

predator density or the predator pressure efficacy (Northfield et al., 2010; Finke and Sny-

der, 2010). Functional diversity may be relevant for assessing the effect of species diversity

on biological control relationships (Crowder and Jabbour, 2014). Species can be lumped

into functional groups based on ecological traits, similar behaviours and resource utilisa-

tion. Species in the same group are considered as ecologically redundant, whereas species

in different groups are considered as complementary (Hillebrand and Matthiessen, 2009;

Northfield et al., 2012). Species richness is beneficial for BC when species act complemen-

tary in term of pest suppression (Northfield et al., 2010; Finke and Snyder, 2010). Natural

enemy species may complement each other in predation time (e.g., day vs night, different

seasons), space (e.g., different habitat domains) (Snyder, 2019; Schmitz et al., 2017) and at-

tack strategy (e.g., actively searching vs sit-and-wait) (Northfield et al., 2012). For example,

Northfield et al. (2017) distinguish different outcomes for a simple trophic network com-

posed of two predators and a prey depending on the space used by each species. One can

identify the cases where the predators have a substituting effect, where they have a negative

interaction among them, or where the system evolves towards intra-guild predation; see

Figure 6.1.

The functional role of each species in the ecosystem may be determined by any mor-

phological, behavioural, or physiological trait that is associated with a biotic interaction or

ecological function of interest. By contrast, a unique and unequivocal measure of func-

tional diversity is not so straightforward to define due to the large number of traits, the

diverse influence of traitas, and the difficulty of measuring trait diversity (Tilman, 1996).

Petchey and Gaston (2006) deeply review how functional diversity could be crucial in as-

sessing and predicting the impact of organisms on ecosystems, but also discuss the critical

points in developing consistent predictive measures. When species are categorised in func-

tional groups, there can be certain levels of functional redundancy (i.e., a high number of
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Figure 6.1 – Different relationships of multiple predator influence on a prey depending on the spatial
interactions determined by the predator and prey habitat occupations from Northfield et al. (2017).

species within the same functional group) (Balvanera et al., 2006), which however should

not be considered in negative terms. In fact, the number of different enemy species within

a functional group can predict the durability of this function for herbivore suppression.

For example, Schweiger et al. (2007) find that agricultural intensification caused extirpation

of species unevenly across functional groups of syrphid fly predators: specialists get lost

due to habitat degradation, instead Generalist species are able to persist. However, char-

acterising enemy diversity or defining their assemblages may require attention to factors

beyond the number of species that share prey and the number of predators within the same

functional group (Letourneau et al., 2009). Letourneau et al. (2009) discuss the difficulty of

generalising and predicting BC outcomes by using species richness and functional diversity.

In fact, species losses and introductions in natural enemy communities have unpredictable

effects on herbivore suppression due to the wide range of enemy-enemy interactions that

can occur. Moreover, this enemy species interference may change and evolve not only de-

pending on the interactions among them, but also depending on host density, for example

through intensified within-host competition and host-feeding attacks (Kato, 1994), or via

increased bird predation of parasitised hosts (Tscharntke, 1992). In addition, species having

the same function in the present environmental context may respond differently in the fu-

ture as they may adapt their traits and behaviours in different ways in response to changing

drivers. Species in the same functional group may operate at different scales, thus, provid-

ing mutual reinforcement and contributing to the resilience of a function (Peterson et al.,

1998). In general, since species richness and species functional diversity are naturally linked

(Tilman, 1996; Cadotte et al., 2011), it is always important to consider both of them and their

correlation within each environmental context (Tilman et al., 2001).
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The adaptive foraging game

As predator–prey interactions are often represented as consumptive acts between two species

(Gotelli et al., 2008), this may entail that all predators are viewed as being functionally equiv-

alent for capturing and consuming prey, and that all preys are passive victims (Schmitz

et al., 2017). Consequently, in such frameworks it is assumed that the interaction type and

strength are invariant among species and environmental contexts (Peckarsky et al., 2008).

However, predator–prey interaction can vary in space and time depending on variation in

the predators’ hunting and feeding mode and the preys’ mobility and escape ability, and

the surrounding environment (Schmitz et al., 2017). The predators’ feeding mode may de-

termine the size range and the prey species consumed: sit-and-wait predators are more

keen on capturing actively moving prey, whereas actively moving predators are more keen

on capturing sedentary prey. When predators and preys face an environmental change,

they may undergo changes in their hunting mode and escaping mode, respectively, which

leads to morphological or behavioural changes (Schmitz et al., 2017). In this setting, prey-

predator systems can be defined as adaptive foraging games (Kotler, 2016; Brown et al., 2001;

Schmitz et al., 2017): the predators’ objective is to capture and subdue the prey, whereas the

preys’ objective is to be able to evade or fend off their predators. For example, preys may

become more vigilant, shift their foraging time budget, or shift between foraging habitats

and refuge habitats, or increase their mobility. The way in which predators can affect prey

species’ behaviour, that in turn can influence other elements of the food web, constitutes

the ecology of fear (Brown et al., 1999). In fact, the interplay between adaptation and species

interactions not only explains the community assembly dynamics but also the functioning

of complex food webs (Urban et al., 2008). These reciprocal interactions between ecological

and evolutionary processes are called eco-evolutionary processes or feedback (eco-evo) (Becks

et al., 2012; Legrand et al., 2017; Bonte and Bafort, 2018). A rapid evolution in response

to such selection mechanisms can affect the ecological dynamics, which in turn produce

feedback on the evolutionary processes (Burton et al., 2010; Bonte and Bafort, 2018).

6.1 The distribution of species traits

The degree of trait variation between interacting species can explain considerable variation

in the nature and strength of trophic interactions (McGill et al., 2006; Schmitz et al., 2015).

Usually, in functional trait approaches, mean trait values are assumed to adequately rep-

resent species interactions and their effects on community structure (Schmitz et al., 2015).

However, using mean trait values or simply species identity ignores considerable intra-

specific trait variation (Start and Gilbert, 2017; Sommer and Schmitz, 2020; Schmitz et al.,

2015). In Figure 6.2 taken from Sommer and Schmitz (2020), we see different frequency

distributions representing variation among individuals for any given trait. In Panel a), all
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individuals show an identical trait response: all individuals in the population undergo the

same direction and magnitude of trait response. In this case, as all individuals have an

identical trait response, the mean is an accurate characterisation of the population’s het-

erospecific interactions. In Panels b) and c), individuals do not show an identical trait

response but converge towards a similar mean (b), or show opposing directional responses

(c). In these cases, considering only the mean value is not enough to appropriately capture

differences among individuals (Sommer and Schmitz, 2020). Consistent differences among

individuals in their suites of behaviours are defined as animal personality, which may play

an important role for trophic dynamics. For example, predator personality can determine

activity rates and patterns of attack. Start and Gilbert (2017) study how predator person-

ality and density interactively structure prey abundance, community composition and the

strength of trophic cascades. Sommer and Schmitz (2020) study how personality differences

in a species of herbivore prey mediated tri-trophic interactions involving its predator and

its plant resources.

Figure 6.2 – Different frequency distri-
butions of an individual trait within a
population. The initial trait distribu-
tion is represented by black curves; the
changed trait distribution is represented
by light gray curves. (Panel a) all indi-
viduals show an identical trait response,
(Panel b) individual traits converge to-
wards a similar mean, with the resulting
trait distribution showing smaller vari-
ance and a shifted mean value within
the population. (Panel c) individual
traits undergo opposing directional re-
sponses, with the resulting trait dis-
tribution showing higher variance and
a shifted mean within the population
(Sommer and Schmitz, 2020).
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Systems involving pests and their natural enemies are characterised by a multitude of

species and behavioural diversity and are influenced by environmental conditions. Our

goal is to provide a deeper investigation of the species functional diversity and the key el-

ements which influence the dynamic of pests and natural enemies in complex landscapes.

In the following Chapter 7, we specifically focus on how the traits related to dispersal and

growth rate may evolve during a species invasion. The aim is to assess how species are

able to adapt to a heterogeneous environment and the subsequent eco-evo dynamics. Here,

we concentrate on evolutionary aspects by looking at trait selection and mutation in an

eco-evolutionary trade-off between growth and dispersal on a propagation front in a het-

erogeneous 1D environment. Then, in Chapter 8 coupling the take-home messages from

Part II and Chapter 7, we enlarge the predator-pest system with more complex dynamics

to investigate the role of heterogeneity in shaping the selected behavioural strategies. This

idea is developed by considering complex landscapes simulated through the model pre-

sented in the Section 2.2, where we enlarge the population dynamics system of Chapter 4

by considering two predators and two pests with opposite behaviours.
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Chapter 7

On the evolutionary trade-off

between growth and dispersal

during a range expansion

Even if individual variability may cover a very large range of trait values, functional trait

approaches have mostly been studied by considering only the mean trait value over the

population, as we have done in Chapters 4 and 5. By contrast, trait variation is central to un-

derstand how individuals interact along them, how they are influenced by the surrounding

environment (Start and Gilbert, 2017), and which evolutionary dynamics result from these

mechanisms. For example, the mean value will not capture differences among individuals

if trait responses are not identical; see Sommer and Schmitz (2020). Some theoretical studies

have investigated how intra-specific trait variation affects population dynamics (Vindenes

et al., 2008; Doebeli, 1996), interspecific competition (Lankau, 2009; Lichstein et al., 2007),

and predator-pest or host-parasitoid or host-pathogen systems (Okuyama, 2008; Saloniemi,

1993). These studies consider variation in diverse traits, such as traditional phenotypes (e.g.,

size or morphology) or emergent traits (e.g., competitive ability, prey attack rate, or vulner-

ability to enemies ) or fitness-related traits (e.g., fecundity or survival) (Bolnick et al., 2011).

Their results are very dissimilar (and sometimes conflicting) and depend strongly on the

specific modelling approach and underlying assumptions.

A better characterisation of functional trait variation is of key importance since it has

consequences for evolutionary processes describing how species respond to new pressures,

changes of trophic dynamics or of the environmental context (Sommer and Schmitz, 2020).

Intraspecific variation underpins evolution that can alter ecological processes and lead to

feedbacks (Bolnick et al., 2011). Reciprocal interactions between ecological and evolutionary

processes, which enable the organisms to both shape their environment and adapt to it, are
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called Eco-evolutionary processes or feedback (eco-evo) (Becks et al., 2012; Legrand et al.,

2017; Bonte and Bafort, 2018).

When considering eco-evo processes, the spatial structure of the landscape has a funda-

mental role, especially in rapidly changing systems like natural environments. Such envi-

ronments are currently cut into fragments by human activities, in particular by agricultural

practices and urbanisation in terrestrial ecosystems (Legrand et al., 2017). The fragmented

landscape structure may influence genetic variation (DiBattista, 2008) and may induce a

‘meta-functioning’ at the levels of populations, communities and ecosystems, which affects

evolutionary forces and the related ecological processes (Legrand et al., 2017). Especially,

the fragmented landscape structure can deeply impact the evolution of dispersal traits and

the covariation between dispersal and other traits (Cote et al., 2017). These changes act

on balancing eco-evo processes, since dispersal in itself and through its covariation with

multiple phenotypic traits has important effects on both ecological and evolutionary pro-

cesses (Legrand et al., 2017). Dispersal affects capabilities to exchange individuals and

genes among different habitats and influences trophic network dynamics across ecosystems

(Legrand et al., 2017). Movement traits have been proved to be related to body dimension

and condition (Duthie et al., 2015; Helms and Kaspari, 2015; Steenman et al., 2015), thus af-

fecting competitive abilities, food web interactions (Bonte and de la Pena, 2009) or metabolic

processes (Hirt et al., 2017). Variation in dispersal traits may also lead to the ‘spatial sorting’

of high-dispersal individuals at the expansion front that accelerate invasion (Shine et al.,

2011; Bouin et al., 2012). Therefore, these traits are fundamental during invasion, coloni-

sation and expansion processes: when species shift their range, they face a new selection

pressure, and a rapid evolution can affect their ecological dynamics, which in turn lead to

feedback on the evolutionary potential (Burton et al., 2010; Bonte and Bafort, 2018). How-

ever, there are many examples where individuals who invest more in the development of

their traits related to the dispersal strategy reduce the effort in foraging and reproduction at

the same time (e.g. by reducing their mating period or by using lower egg mass) (Baguette

and Schtickzelle, 2006; Hanski et al., 2006; Bonte and Bafort, 2018). In such cases, two

favourable evolutionary strategies are possible: dispersing faster, or growing stronger (De-

foret et al., 2019). This results in a species’ trait trade-off that shapes the eco-evo population

dynamics and species spread in the environment.

Species introductions for biological control or pest invasions are likely subject to eco-

evolutionary processes due to rapid human-induced environmental change within the com-

plex landscape mosaic. Thus, it is relevant to study ecological processes and related proper-

ties, for example by evaluating the speed of pest species propagating in the agricultural crop

and SNH intermixing and their population development capabilities (Szűcs et al., 2019). In

fact, since agricultural landscapes are complex heterogeneous mosaics, pest or biocontrol

agents experience novel abiotic and biotic conditions in unknown environments, which

may impose strong natural selection leading to evolutionary changes (Szűcs et al., 2019).

77



Classical biological control is based on the idea that once a biocontrol agent is successfully

settled, it can expand its range by following pest distribution and persist in the landscape

(Eilenberg et al., 2001). However, biocontrol agents have species-specific dispersal-related

traits that can mediate their rates of dispersal. During expansion, evolutionary processes

can impact the fitness, reproductive rates, and dispersal ability of individuals on the front.

Such a rapid evolution, in turn, can feed back to alter ecological characteristics (e.g., growth

rates or competitive traits) of individuals on the population expansion front that are likely

to affect the dynamics of introduced populations (Pelletier et al., 2009; Szűcs et al., 2019).

The relationship between species life-history traits and environmental properties in a

spatio-temporal context is often addressed by a mathematical formalism through the frame-

work of reaction-diffusion models. Speed properties of biological invasions have been firstly

assessed by Fisher (1937); Shigesada and Kawasaki (1997); Turchin (1998); Murray (2002) in

a homogeneous environment with a normally distributed kernel of dispersal without mu-

tation. Relaxing the hypothesis that the space is homogeneous and adding spatial and/or

temporal heterogeneity may speed up or slow down the invasion, depending on which trait

is affected by the environment (Shigesada and Kawasaki, 1997). Most theoretical studies

based on the reaction-diffusion framework focus on the spreading properties, and, espe-

cially, on the existence of travelling wave solutions and their generalizations to spatially-

heterogeneous environments (Berestycki and Hamel, 2002, 2005; Berestycki et al., 2005). The

particular type of propagating solutions is the so-called pulsating front (Xin, 2000). Some

recent works by Benichou et al. (2012); Bouin et al. (2012); Bouin and Calvez (2014); Beresty-

cki et al. (2015) focus on demonstrating the travelling wave existence, and they study the

spreading properties by developing an eco-evolutionary model to take into account species

adaptation. Berestycki et al. (2015) propose a model where the acceleration dynamics is due

to a continual selection of individuals with enhanced dispersion abilities. Thus, their model

assumes a continuous and infinite space for the dispersal trait, which can take arbitrarily

large values. Their work is based on a homogeneous space, and trade-off with other traits

is not considered. They find theoretical and numerical results of expansion front properties

(e.g., front position and spreading speed solution) and compare local and nonlocal dynam-

ics. Bouin and Calvez (2014) construct travelling wave solutions and evaluate the spreading

speed of travelling waves for Australian cane toad (Rhinella marina) dynamics characterised

by a unique continuous bounded phenotype trait, the toad motility. Their work addresses

the issue of front expansion in ecology, where the studied trait is related to dispersal ability

Bouin and Calvez (2014). However, in this case too, the space is homogeneous and there is

no trade-off among traits.

In the present Chapter, we develop a reaction-diffusion model to describe the phenotype-

space-time dynamics of a consumer species in a heterogeneous space during a range expan-

sion. In contrast to the other Chapters, we follow a mathematical and numerical approach in

order to better understand theoretical dynamics. We simplify the population model by con-
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sidering only one species and a uni-dimensional space where heterogeneity is defined by a

periodic function of favourable and unfavourable habitats. Our choice is driven by the aim

of exploring in depth the species dynamics with an eco-evolutionay model that describes

trait variation by a phenotype continuum, with the goal to assess the effect of trait trade-

off on trait selection during a population expansion. Specifically, we focus on the trade-off

between the growth rate R and dispersal rate D. In a spatially homogeneous environment

and in the absence of mutations and Allee effects, the standard formula v = 2
√

R(y) D(y)

(Kolmogorov et al., 1937) clearly shows that growth and dispersal play a similar role on the

spreading speed. We analyse here how this symmetry in the effects of R and D may be

broken when facing spatial heterogeneities and/or in the presence of competition between

phenotypic traits and of mutations. Specifically, we consider spatially-periodic environ-

ments and we modulate the level of spatial fragmentation with the goal of investigating the

following questions: i) What is the spreading speed of the population range and the corre-

sponding fastest phenotype trait? ii) What is the role of the competition among phenotypic

traits? iii) What is the population composition along the expansion front?

7.1 Eco-evolutionary dynamics

A reaction-diffusion model, fully described in the Box 7, examines a consumer species dy-

namics where this species exploits a resource and disperses in a one-dimensional space. At

time t and location x, the density of the consumer phenotype y ∈ (ymin, ymax) is defined

by c(t, x, y) (Equation 7.1). The spatial dispersion (D(x, y)) occurs in a one-dimensional

environment, corresponding to random walk movements of the individuals (Turchin, 1998;

Shigesada and Kawasaki, 1997). The mutation coefficient (µ ≥ 0) is proportional to the

mutation rate (per individual per generation) and to the average effect of mutations on

the phenotype (Hamel et al., 2020). The population grows logistically with heterogeneous

growth rate R(x, y). Competition occurs locally on the geographical space but globally over

phenotypes through a non-local term, and it is modulated by a parameter γ.

∂tc(t, x, y) =∂xx(D(x, y) c(t, x, y)) + µ ∂yyc(t, x, y) +

+ c(t, x, y)
(

R(x, y)− γ
∫ ymax

ymin

c(t, x, s)ds
)

.
(7.1)

Simulation scenarios

We define three scenarios, depending on the presence of spatial heterogeneity, and on the

trait which is impacted (see Box 7 for more details):

Scenario A: spatially homogeneous coefficients (i.e, R(y) and D(y)).
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Scenario B: heterogeneous growth and homogeneous dispersal (i.e, R(x, y) and D(y)).

Scenario C: homogeneous growth and heterogeneous dispersal (i.e, R(y) and D(x, y)).

7.2 Methods

We explore the consumer species R-D trade-off by analysing the population expansion dy-

namics depending on space heterogeneity. We focus on the spreading properties (See Box

7, Eq. 7.7), i.e., we assess the range expansion behaviour in space, we identify the fastest

phenotypic trait and we characterise the population composition on the expansion front and

in the bulk of the population. We derive analytical approximations of the spreading speeds,

using approximated models and limiting cases of rapidly and slowly varying environments,

and we compare these approximations with numerical results. We further explore the phe-

notypic trait composition in the population by performing numerical simulations with dif-

ferent parameter value combinations. Specifically, the parameters we focus on are: i) the

period of heterogeneity L, considering rapidly (small period L = 2) and slowly (large pe-

riod L = 10) varying environments; ii) the distance d between the two optima, where we

consider a short distance for weak trade-off (d = 2) and a large distance for strong trade-off

(d = 4); iii) the amplitude of the heterogeneity a ∈ (0, 1); iv) and, the mutation µ = 0

(no mutations) or µ = 0.001. We computed numerically the phenotype spreading speeds

vsim(y) as:

vsim(y) =
xsim(y)

Tsim
,

where xsim(y) is the furthest forward position of the phenotype y at time Tsim (Tsim is se-

lected large enough such that vsim(y) does not vary much at larger times). Once the spread-

ing speed for each trait is evaluated, either numerically or analytically, the phenotype y∗,
which leads to the fastest spreading speed, can be evaluated and classified according to the

phenotype classification of the Figure 7.1 as a D specialist, an R specialist and or a Gen-

eralist. Then, we use the same classification in order to categorise the whole population

composition behind the front. When the environment is heterogeneous, we also take into

account the role of the amplitude a in Equations (7.3) and (7.4). The amplitude is repre-

sented by the vertical distance among the R(y) and D(y) fitness functions in Scenarios B

and C. It is possible to identify an amplitude threshold value influencing the class leading

the colonisation front to distinguish when the front is led by the R specialist or by the D spe-

cialist. The equations are solved numerically by transforming them into lattice dynamical

systems (continuous time, discrete space with small space step), and using a Runge-Kutta

method over a fixed spatial domain and a time horizon large enough to ensure a stable

dynamic and propagation front. The implementation is performed by using the software

Matlabr.
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Box 7: Modelling eco-evolutionary dynamics

Consumer eco-evolutionary dynamics

At time t and location x ∈ R, the density of the consumer phenotype y is defined by c(t, x, y).

Spatial dispersion in a one-dimensional environment is described through a Laplace diffusion

operator with diffusion parameter D(x, y). Mutations between phenotypes are also described with

a Laplace diffusion approximation (Tsimring et al., 1996; Hamel et al., 2020) with constant mutation

coefficient µ ≥ 0. The function R(x, y) is the (possibly) heterogeneous growth rate. The competition

is modulated by the parameter γ. We assume a one-dimensional phenotype y ∈ (ymin, ymax). The

reaction-diffusion model for the phenotype-space-time dynamics of the consumer population is

defined as follows:

∂tc(t, x, y) = ∂xx(D(x, y) c(t, x, y)) + µ ∂yyc(t, x, y) +

+ c(t, x, y)
(

R(x, y)− γ
∫ ymax

ymin

c(t, x, s)ds
)

.
(7.2)

In addition, we assume no-flux boundary conditions at the boundaries y = ymin, ymax:

∂yc(t, x, ymin) = ∂yc(t, x, ymax) = 0,

so that in the absence of demography (i.e., if R = γ = 0), the global population size C(t) =∫
R×(ymin,ymax)

c(t, x, y)dxdy remains constant.

Genetic and spatial heterogeneity in dispersal and growth

Spatial heterogeneity in environmental conditions is assumed to impact the consumer growth rate

R and its mobility D. Genetic and spatial effects on R and D are assumed to be additive:

R(x, y) = R0 + Rg(y) + a Rs(x/L), (7.3)

D(x, y) = D0 + Dg(y) + a Ds(x/L), (7.4)

where R0 and D0 are the basal values for growth and diffusion. These basal values are modified

according to a genetic effects Rg and Dg, respectively, and spatial effects Rs and Ds, respectively.

L controls the heterogeneity for R and D, and it is modeled as piecewise constant function with a

period L over x. The coefficient a scales up the amplitude of the spatial heterogeneity, and it can

vary from 0 to 1.

Genetic effect

Given the trait value y, the genetic effect on the growth rate R and the diffusion coefficient D is

assumed to be Gaussian (Figure 7.1):

Rg(y) = exp(−(y + d/2)2/(2σ2)), (7.5)

Dg(y) = exp(−(y− d/2)2/(2σ2)), (7.6)
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where d =| OD −OR | corresponds to the distance between the two optima OD and OR. The

optimum trait for diffusion is OD ∈ (ymin, ymax), which represents the consumer optimal dispersal

strategy, and the optimum trait for the growth rate is OR ∈ (ymin, ymax), which represents the

consumer optimal resource exploitation strategy. Here, we assume that OD and OR are symmetric

with respect to 0, thus the two optima correspond to ±d/2 (i.e OD = +d/2 and OR = −d/2,

respectively). Specifically, in the Supplement 4B, we calculate a threshold dcr that differentiates

cases by selecting the Generalist or the specialists depending on the distance d between the

optima. The coefficient σ is the standard deviation of the Gaussian function and indicates the

intensity of selection around the optimal trait value. The phenotypic traits are classified into

three classes (Figure 7.1): the D specialists (the phenotypic traits with narrow preference range

on diffusion strategy), the R specialists (the phenotypic traits with narrow preference range on

foraging strategy) and the Generalists (the phenotypic traits with broad preference range on

diffusion and foraging strategy). More specifically, as d =| OD −OR |, the D specialists have the

phenotypic traits belonging to the trait set [+d/4, ymax), the R specialists have the phenotypic traits

belonging to the trait ensemble (ymin,−d/4], while the Generalists correspond to the phenotypic

traits belonging to the trait ensemble (−d/4,+d/4 ).

Figure 7.1 – Phenotype classification. The curves represent the dispersal rate D(x, y) (red) and
growth rate R(x, y) (blue) as functions of phenotypic traits y ∈ (ymin, ymax) in the homogeneous
case. The coefficient d is the distance among OD and OR, which are the optimum for dispersal and
growth rate, respectively. The colored boxes highlight the classification of D Specialist, R Specialist
and Generalist.
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Environmental effect

In Equations (7.3) and (7.4), the terms Rs(x/L) and Ds(x/L) describe the periodic heterogene-

ity over the space x through periodic functions with period L > 0. Varying the period L allows

describing different grains of spatial heterogeneity for the resource distribution and dispersal capa-

bility. Thus, we choose Rs as a 1-periodic piecewise constant function of mean 0, with Rs(x) = R0

on [0, 1/2) and Rs(x) = −R0 on [1/2, 1). The function Ds is a smooth 1-periodic function, with

mean value 0, and bounded from below by −D0 (so that D is always positive). More precisely, we

define the 1-periodic function δ1(x) such that δ1(x) = D0 in [0, 1/2) and δ1(x) = −D0 in [1/2, 1).

Then, Ds is obtained by regularizing δ1 with a convolution by a smooth function:

Ds(x) =
∫

R

δ1(x− y) φ(y) dy,

with φ a Gaussian function with small variance.

Simulation scenarios

- Scenario A:

R(x, y) = Rh(y) := R0 + Rg(y) and D(x, y) = Dh(y) := D0 + Dg(y).

- Scenario B:

R(x, y) = R0 + Rg(y) + Rs(x/L) and D(x, y) = Dh(y) = D0 + Dg(y).

- Scenario C:

R(x, y) = Rh(y) = R0 + Rg(y) and D(x, y) = D0 + Dg(y) + Ds(x/L).

Methods for assessing the spreading property

The spreading speed V is the asymptotic rate at which a species, initially concentrated in a finite

spatial region, expands its spatial range. It can be defined here as the smallest speed v such that,

if an observer travels to the right (i.e., towards increasing x values) with speed v, he will observe

that the population density converges to 0 (Figure 7.2). In mathematical terms, V is the uniquely

defined speed such that the following two properties hold:

C(t, x + v t)→ 0, as t→ +∞, for all v > V,

C(t, x + v t) 6→ 0, as t→ +∞, for all v < V,
(7.7)

with C(t, x) the population density at spatial position x:

C(t, x) =
∫ ymax

ymin

c(t, x, y) dy.

For each phenotype y, the spreading speed v(y) of the phenotype y can be defined as well by

replacing C(t, x) with c(t, x, y) in the above expressions (e.g., c(t, x + v t, y)→ 0 as t→ +∞, for all

v > v(y)).
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Figure 7.2 – Spreading speed (V) of the propagation front.

The existence of a spreading speed as well as analytical characterisations have been obtained by

Kolmogorov et al. (1937); Aronson and Weinberger (1975, 1978); Fife and McLeod (1977) for stan-

dard equations with spatially homogeneous coefficients and local competition terms. Comparable

results have been obtained in the early 2000s (Berestycki and Hamel, 2002, 2005) with a periodically

varying coefficient as in Equation (7.2) and a local competition term, namely for equations of the

following form:

∂tc(t, x, y) = ∂xx(D(x, y) c(t, x, y)) + µ ∂yyc(t, x, y) + c(t, x, y) (R(x, y)− γ c(t, x, y)) . (7.8)

Here, the difference with Equation (7.2) is that the individuals with phenotype y only interact with

individuals of the same phenotype. We conjecture that the spreading speeds V of the solutions of

Equations (7.2) and (7.8) are equal, which is supported by the results of Alfaro et al. (2014). This

would imply that the fastest phenotype,

y∗ = argmax
y∈(ymin,ymax)

v(y),

has the same speed with and without non-local interactions. As the fastest phenotype, y∗ does not

compete with other phenotypes, and its speed should indeed not be influenced by the competition

term, and therefore be the same for the two equations. For Equation (7.8), under our three scenarios

(A,B,C), more or less explicit formulas for the spreading speed can be obtained available; under

more specific conditions (see the Manuscript On the evolutionary trade-off between growth and dispersal

during a range expansion), they can be simplified to more tractable formulas (see Table 1 of the above

manuscript).
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7.3 Results

We first compare the phenotype spreading speeds evaluated with the theoretical formulas

against the numerical simulations to assess the fastest phenotype (Figure 7.3). Then, we

analyse the phenotypic trait composition on the expansion front (Figure 7.4) and over the

whole spatial domain (Figure 7.5).

7.3.1 Spreading speed

The spreading speed evaluated by analytical formulations is compared with numerical sim-

ulations with both local and non-local equations for different heterogeneity scenarios where

we let vary the period L and the distance between optima d (Figure 7.3). In all cases, nu-

merical simulations and analytical formulas are consistent with each other for the fastest

phenotype identification. Generally, non-local competition shrinks the phenotypic trait dis-

tribution around the optimum value of the spreading speed, which leads to important dif-

ferences between the theoretical spreading speeds and the observed ones for phenotypes y

other than the fastest one. In the case of d < dcr (left column of Figure 7.3, dcr is defined in

the Supplement 4B), the Generalist has the fastest trait value on the expansion front in all

the scenarios and for all periods L . However, we can notice that the spreading speed curve

for the Scenario C is slightly shifted to the right, leading to an imbalance in favour of D. In

the case d > dcr (right column of Figure 7.3), the standard behaviour described by Equation

7.8 (local competition) predicts that, on the expansion front, both phenotypes at growth rate

and dispersal optima (i.e., OD and OR) have similar speed in the Scenario A. Instead, when

considering the Equation 7.2, the effect of the competition leads to the selection of the R

specialist. This is also the case for the scenario B when the environment is changing quickly.

However, in that scenario, a greater value of L leads to comparable spreading speed of both

R and D specialists. In the scenario C the spreading speed is lower than in scenario A, and

the trade off is completely shifted in favour of the D specialist.
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Figure 7.3 – Spreading speed in scenarios (A); (B); (C) for µ = 0 and a = 1. The red line with stars
stands for the homogeneous case formula (H), the dashed red line stands for the theoretical formula
(Th), the continuous blue line stands for the local numerical solution (L), the dashed blue line stands
for the non-local numerical solution (NL). Columns show different distance between optima. In panel
(b) and (c) different lines show different period values (L→ 0 and L→ ∞).
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7.3.2 Population composition on the front

Here, we assess the composition of the expanding front when varying the period L, the

distance among the optima d and the amplitude a of the heterogeneity (Figure 7.4).

In the scenario B (Figure 7.4a), for L → 0, the heterogeneity amplitude a does not pro-

duce any effect on the dynamics: when d < dcr, the R-D trade-off is always in favor of the

Generalist; when d > dcr the R specialist has the fastest phenotype. Instead, for L → ∞

when d > dcr, the fastest phenotype could be either the R or the D specialist. When a < acr,

the behavior is in favour of the R specialist; when a > acr, the trade-off is shifted in favour

of the D specialist.

In the scenario C (Figure 7.4b), both for L → 0 and L → ∞, a alters the trade-off among

R and D. For d < dcr, the fastest phenotype is always the Generalist. For d > dcr, as before,

the fastest phenotype could be either R or the D specialist depending on the value of a.

Amplitudes below acr select for the R specialist whereas amplitudes behind acr select for

the D specialist (see also Figure 7.3C for which a = 1).

Figure 7.4 – Results of the numerical simulations for assessing the role of the amplitude of scenario
B (Panel a) and C (Panel b) for non-local model in case of L → 0 and L → ∞. Parameter ranges are
a = [0.1− 1] by 0.1 steps (x axis) and d = [0.5− 5] by 0.5 steps (y axis). The colours stand for the
fastest phenotypic traits: yellow stands for Generalists, red stands for D specialists and blue for R
specialists. The white points represent the value acr given for each d.
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7.3.3 Total population composition

We analyse the composition of the total population behind the front under the different

scenarios for the non-local case (Figure 7.5). Under the scenario B with a fast varying

environment, the density of phenotype classes is invariant with respect to the amplitude of

the heterogeneity and only varies with d. When d > dcr, the population is composed by

half of Generalists and by half of R specialists. As d increases, the R specialist proportion

increases until being the only class present. For a slowly varying environment and for high

amplitude value of heterogeneity, the population composition is not completely dominated

by the R specialist, but there is a proportion of D specialist coming out. And specifically,

this proportion is localised on the expansion front as demonstrated in Figure 7.4. Under the

scenario C, when d < dcr, there is an increase of the Generalist instead of the R Specialist as

the amplitude a increases. When d > dcr, there is a clear shift from a proportion in favour

of the R specialist to the D specialist as the amplitude a increases. This shows that the D

specialist takes the lead on the expansion front but also dominates a great part of the total

population behind the front.

Figure 7.5 – Results of
the numerical simula-
tions for assessing the
population composition
in scenario B (Panel A)
and scenario C (Panel B)
for the non-local equa-
tion and in the case of
L → 0 and L → ∞. The
amplitude of heterogene-
ity varies as a = [0.1− 1]
with step size 0.1 (x
axis) and the distance
between optima varies
as d = [0.5 − 5] with
step size 0.5 (y axis).The
colours represent the
density proportion for
each phenotype class: R
for the R specialist, G for
the Generalist and D for
the D specialist.
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7.3.4 The effect of mutation

In all of the scenarios and parameter combinations, we also evaluate the effect of the muta-

tion. We observe that it only leads to a homogenisation of the phenotypic distribution and

therefore to a wider phenotype ensemble that leads the propagation front. However, the

mutation does not affect the R-D trade-off outcome: the fastest phenotypic trait is the same

without and with mutations.

By contrast, when the system is composed of only the two phenotypes y = OR and y =

OD instead of a continuum y ∈ (ymin, ymax), and assuming a low mutation rate among them,

we numerically find an overall spreading speed (v f ) which is higher than the maximum of

the spreading speeds of each phenotype independently, i.e., strictly larger than

max
(

2
√

Rh(OR)× Dh(OR), 2
√

Rh(OD)× Dh(OD)

)

in Scenario A, that corresponds to the faster speed reported by Elliott and Cornell (2012)

(see Supplement 4A). Interestingly, in the scenario B, we find that both in a slow and fast

varying environment for the heterogeneity in R, the spreading speed still corresponds to

v f as in the homogeneous case. That was not the case in the scenario C, where the fastest

speed results to be lower than v f .

7.4 Discussion

Dispersing faster or growing stronger? Which strategy is selected in populations invading

a heterogeneous environment? Range expansion and colonisation of new habitats are pri-

marily driven by reproduction and dispersal (Lewis et al., 2016). However, both traits are

generally correlated as organisms can pay a reproductive cost to disperse faster (Baguette

and Schtickzelle, 2006; Hanski et al., 2006; Bonte and Bafort, 2018). In addition, spatial

heterogeneity in environmental conditions that impacts growth or dispersal can influence

such processes by modifying demography and dispersal (Hanski et al., 2006; Ramanan-

toanina and Hui, 2016). In this work we addressed these questions by gathering analytical

solutions from the literature and performing numerical simulations of a reaction-diffusion

model describing the demo-genetic dynamics of a population invading a one-dimensional

heterogeneous environment. We find that the spatial heterogeneity plays a role in shaping

the trait trade-off determining the preferred strategy on the expansion front and in the rest

of the population behind. The trade-off strength, the fragmentation of the environment and

the amplitude between low and high quality habitat are the key elements that contribute to

the strategy shift with respect to the homogeneous case.

When the trade-off is weak, i.e., when the distance between the optimal phenotypes d

is below the threshold dcr, evolution leads to the selection of a phenotype with Generalist
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features. When heterogeneity impacts the growth rate, the Generalist is the same as in

homogeneous environments. This is due to the fact that heterogeneity impacts the average

growth rate only through its arithmetic mean. Interestingly, when heterogeneity impacts the

diffusion coefficient, the phenotype of the Generalist is shifted toward a greater dispersal

ability. Indeed, in that case it is the harmonic mean that appears in the expression of the

velocity.

As the trade-off becomes stronger, in a homogeneous environment the phenotypes opti-

mising growth (R specialists) and the phenotypes optimising dispersal (D specialists) have

the same speed. This holds true when environmental heterogeneity impacts the growth rate

while only the D-specialist confers the maximal speed when dispersal is heterogeneous.

However, competition among phenotypes can give advantage to growth. Recently, Deforet

et al. (2019) explore the R− D trade-off and determine the conditions favoring evolution of

fastest dispersal against the growth rate in a homogeneous space for a population composed

of two-morphs. Given two species having r1, D1 and r2, D2, for species 1 and 2 respectively,

they assess the evolutionary outcome depending on the simple condition r2/r1 > D1/D2.

Basically they find that a lower trait value for either growth or dispersal can be compensated

by the other trait in order for a species to dominate the other one. This was not the case in

our approach as we are in the particular case where the two morphs at the optimum of the

two strategies are such that r2/r1 = D1/D2, due to the symmetry assumption.

Habitat fragmentation plays also a crucial role in determining the evolutionary out-

put. Fast varying environments (L → 0) tend to favour stronger growth rate upon faster

dispersal, at least when heterogeneity impacts the growth rate. Indeed, resources are het-

erogeneously distributed, but the distance among favourable habitats is not large, thus

the trade-off is more favourable to the selection of the R-strategy on the front as high

resource availability and fecundity facilitate expansion by increasing population growth

(Burton et al., 2010). By contrast, in slower varying environments (L → ∞), the faster dis-

persers take advantage of their mobility to reach the most favourable habitats and lead

the colonisation front. Evolution leads thus to the selection of a higher dispersal capac-

ity. When environmental heterogeneity impacts dispersal, phenotypes optimising dispersal

are selected at the front regardless of habitat fragmentation. This result is in line with the

“Spatial sorting theory”, where, in an expanding front, dispersal may be strongly favoured

and the best dispersers tend to be disproportionately represented on the population front

(see Travis and Dytham (2002); Phillips et al. (2008); Shine et al. (2011)). Many examples

suggest that population expansion may select for better dispersal Zera and Denno (1997);

Chuang and Peterson (2016), even at the cost of slower growth (Chuang and Peterson, 2016;

Andrade-Restrepo et al., 2019) as in the case of the cane toads Rhinella marina invasion in

Australia, where on the margin individuals have longer legs with lower birth rates (Phillips

et al., 2006). Similarly, this has been observed for the speckled wood butterfly Pararge

aegeria among two habitats which differ for their availability of breeding sites. The most
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fragmented habitats are associated with an increased dispersal ability, but females at range

margins laid significantly fewer eggs than those from populations nearer the centre of the

range (Hughes et al., 2003). The picture is different behind the front where we found that

the R-strategy is always selected.

In pulled waves, when competition is relaxed on the front, the genetic diversity is con-

sistently low on the front (Roques et al., 2012) due to the filtering of spatial sorting, homog-

enizing the phenotypic traits selected for dispersal (Cobben et al., 2015; Andrade-Restrepo

et al., 2019). The effect of mutation on the spreading speed of an expanding population is

addressed numerically by Elliott and Cornell (2012). They investigated the effect of varying

R and D on the spreading speed of the system, and they find that the system would spread

faster in the presence of both phenotypes than just one phenotype would spread, in the

absence of mutations and for certain combinations of R and D values (Elliott and Cornell,

2012; Morris et al., 2019). Morris et al. (2019) derive predictions about the spreading of

species characterised by travelling waves and find analytical conditions given by R and D

parameter combinations. In Supplement 4A, we consider only the two phenotypes OD and

OR, and we verify that our case corresponds to the one expressed by Eq. 40 of Morris et al.

(2019). Here, we are in the case of Elliott and Cornell (2012) where the spreading speed of

the fastest morphs is equal to v f with low mutation rate and considering a population of

two-morphs. However, we find here that a low step-wise mutation in a non-local system

composed by a continuous phenotype space is able to slow down the spreading speed that

the system would have with only two phenotypes due to the mutation among the nearest

neighbors and competition.

Finally, it is important to recall that our results depend on the assumptions about the

form of the dispersal and growth rate functions and the heterogeneity definition (i.e. piece-

wise function of period L on the uni-dimensional domain x). In our model, we do not take

into account the Allee effect, which can have consequences for the dynamics of invasion

since there are low densities on the invasion front (Chuang and Peterson, 2016; Roques

et al., 2012; Andrade-Restrepo et al., 2019). Moreover, integrating such theoretical models

and results with empirical data would be beneficial. Future works could develop a more

complex dynamic model than the presented one taking into account important effects or

introducing another species. This research and results are key for describing different kinds

of invasion and colonisation phenomena, such as the expansion of invasive species (Phillips

et al., 2006). In an agro-ecological context for biological control, the evaluation the speed of

pest species could be relevant to assess the species propagation in the intermixing of habi-

tat of an agricultural landscape (Shigesada, 1986). In addition, the consideration of a more

complex landscape structure could allow for the evaluation of the effects of the crop and

SNH intermixing, which affects species richness, functional diversity and species interac-

tions. In Chapters 4 and 5, we have already highlighted that predator–pest interactions are

strongly determined by the spatial structure and the specific traits of pests and predators,

91



but we pointed out that species trait diversity is not considered. In the present Chapter,

we highlight the importance of considering spatial heterogeneity in determining the trade-

off among dispersal and growth rate considering a continuous phenotype space, but we

recognised that the studied system is relatively simple and the assumption over the spatial

domain are not representative for a real agricultural landscape. In the next Chapter, we start

from these perspectives and couple the outcomes of Chapter 2 about landscape structure,

the results from predator-pest dynamic model of Chapters 4 and 5 and the outcomes about

the trade-off among species traits and behaviours due to spatial heterogeneity in the cur-

rent Chapter. Then, we implement a predator-pest system where we consider two pest and

predator species to take into account different species behaviours and traits in a complex

agricultural landscape.
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Chapter 8

Should I stay or should I go?

Effects of predating strategies in

shaping pest dispersal behaviours

within heterogeneous landscapes

A fundamental species trait which is highly dependent on spatial context is the disper-

sal strategy: it allows the exploitation of spatially variable resources, it enables the re-

colonisation of patches after local extinction, and it assures gene flow between ecological

interfaces (Clobert et al., 2009; Barraquand and Murrell, 2012). However, dispersal has been

recognised as a complex process, since it is strongly dependent on inner factors (i.e., species

life-history traits, morphology, behaviour) but also on external factors (i.e., environments,

kin competition, intraspecific competition, predation risk) (Clobert et al., 2009; Cote et al.,

2017). In addition, as the energetic investment required for dispersal is substantial, it may

have to be traded off with energetic allocation to other traits (See Chapter 7).

Usually, species greatly differ in their dispersal strategies, and different species may

use different cues to disperse, leading to different demographic responses to habitat frag-

mentation (Fahrig, 2003; Clobert et al., 2009). In addition, habitat fragmentation decreases

connectivity, and, since the heterogeneity degree and habitat traversability is perceived dif-

ferently by each individual, the evolution of dispersal is species-specific and may vary over

multiple spatio-temporal scales (Cote et al., 2017). Most studies focus on how the mean

dispersal behaviour of one species evolves due to fragmentation change (Cote et al., 2017),

where various modeling approaches are used, such as metapopulation frameworks (Hanski

and Simberloff, 1997), reaction-diffusion models (Kawasaki and Shigesada, 2007; Ramanan-

toanina, 2015) or Individual Based Model (IBM) (North et al., 2011). Kawasaki and Shige-
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sada (2007) firstly propose a patchy environment alternating favourable and unfavourable

patches. They assume that the spatial heterogeneity affects only the growth processes and

not the dispersal ability. Their main outcome is that the presence of unfavourable fields

can decrease the rate of spread dramatically. Dewhirst and Lutscher (2009) used the same

environment structure as Kawasaki and Shigesada (2007), but they considered that individ-

ual dispersal behaviours are also affected by the environment. They derived the minimal

proportion of favourable habitats to ensure a successful invasion as well as the asymptotic

rate of spread.

Considering the effects of spatial variability of resources and habitat fragmentation has

greatly improved the understanding of the best dispersal strategy or the dispersal evolu-

tion in single-resource landscapes (Heino and Hanski, 2001; Bonte et al., 2010; North et al.,

2011). Cenzer and M’Gonigle (2019) make a step forward by investigating the role of a

more complex landscape composed by two types of resources for assessing the selection of

a single-species dispersal strategy. In fact, the presence of multiple resources presents the

opportunity for specialisation to the type of resource and to the arrangement of resources

in space. The authors highlight that increasing the proportion of habitats promotes a long

distance dispersal strategy, as there is a higher probability that individuals encounter suit-

able habitats. By contrast, an increase in the spatial auto-correlation of resources could lead

to a divergence in the dispersal strategy selection.

However, the habitat spatio-temporal variability is not the only force behind the selec-

tion for dispersal, but other factors pertaining to the genetic structure of the population

should also be considered (Hamilton and May, 1977). For example, studies have confirmed

that spatial variation in habitat quality generally leads to selection against dispersal, while

kin competition, inbreeding, and temporal variation in habitat quality tent to select for dis-

persal (Johnson and Gaines, 1990; Bowler and Benton, 2005; Ronce, 2007). A less studied

but logical driver of dispersal is predation (Barraquand and Murrell, 2012). Predator–prey

interactions vary in space and time depending on the surrounding environment and on

their specific behaviours and traits, which characterise predator hunting, feeding strategies

and survival ability (Schmitz et al., 2017). Some predators sit and wait for their prey at hid-

den places (e.g., the sheetweb weaver species Stiphidion facetum, see Janetos (1982)), others

actively search for preys and adapt their hunting ground according to prey density (e.g.,

Carabidae Agonum dorsal, see Griffiths et al. (1985)) (Ramanantoanina, 2015). In contrast,

prey can also improve its survival strategy by developing abilities and behaviours to es-

cape from predators. Consequently, different dispersal behaviours naturally arise from the

optimisation of species fitness (Ramanantoanina, 2015). Theoretical and empirical studies

highlight different dispersal behaviours in predator-prey systems by assessing the effect

of prey-induced dispersal in predators (El Abdllaoui et al., 2007; Ainseba et al., 2008; Tao,

2010) or by assessing the effects of prey refuge and density-dependent mortality on species

persistence (Forrester and Steele, 2004). Ramanantoanina et al. (2011) suggest that the rate
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of range expansion of the predators is closely tied with that of the prey; in the case of a

specialist predator, the predator’s range is limited by that of the prey (Kubisch et al., 2014).

From one hand, complex landscapes and resource distribution across space and time

would lead to divergent organism responses and dispersal evolution (Papaïx et al., 2014b;

Cenzer and M’Gonigle, 2019) and, from the other, predation can be variable in both space

and time and it is not always evident how it will promote dispersal within prey (Barraquand

and Murrell, 2012). However, the joint effect of environmental heterogeneity and the pre-

dating strategy on pests’ dispersal behaviour has not been explored yet. Here, we aim to

fill this research gap by focusing on the role of dispersal strategy in heterogeneous com-

plex habitats for a multi-prey and multi-predator system. For this purpose, we simulate

the dynamics of pests and their natural predators in an agricultural context. The dynamics

and presence of predators and pests depend on habitat composition and configuration, and

predators and pests differ in their strategical behaviours. Specifically, we investigate the fol-

lowing two questions: (i) What is the role of predating strategies in shaping pest dispersal

behaviours depending on landscape heterogeneity? (ii) How is the predators’ composition

and coexistence influenced by the pest type and landscape heterogeneity? In our simulated

model, we first generate complex landscapes composed by linear elements allocated with

hedges and by fields allocated with crop or an alternative resistant crop. Then, we simulate

population dynamics with two predators and two pests on the generated landscapes. The

dynamics of the species are chosen to depend on the spatial structure: predators differ in

their dynamics as one species has preferred habitat in hedges and the other one on fields;

on the other hand, pests differ in their dispersal traits (i.e., slow or fast dispersal).

8.1 Models

Figure 8.1 highlights the modelling framework: the landscape stochastic generator devel-

oped in Section 2.2 is used to stochastically generate the culture and hedge allocations which

define the spatial support (1) over which the population dynamics of the model for the two-

predators and two-pests dynamics is simulated under different scenarios of predation (2

and 3).
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Figure 8.1 – Modelling framework: 1) Landscape stochastic generator model (Zamberletti et al., 2020);
2) two-predators and two-pests dynamics; 3) Spatially explicit outputs obtained at the last time step.
All the equation variables in 2) are explained further in the text. We write x to refer to the coordinates
for the 2D domain.

8.1.1 Landscape generator

We use the stochastic landscape model presented in Section 2.2 of Part 1 to simulate dif-

ferent agricultural landscapes. The study domain is a portion of the real landscape of the

Lower Durance Valley that we have already presented. It contains 42 fields surrounded by

114 linear elements. The allocation classes are as follows: 1) fields can be allocated with

crops (C) or with alternative pest-resistant crops (PRC); 2) linear elements can be allocated

with hedges (H) or not. We study the system’s response to landscape parameters which

refer to habitat type proportion and habitat aggregation, as these parameters determine the

most influential landscape characteristics for the pest-predator dynamics. Their ranges are

detailed in the Table 8.1, and the parameter variable names are the same as those used for

defining the model in Section 2.2. The choice of range for the adjacency parameters comes

from estimated parameters, which are presented in the undergraduate internship report

provided in the Supplement 6. Different parameter configurations are generated by ran-

dom extractions from a uniform distribution given fixed ranges for the parameters of crops

and hedge allocation to define the landscape structures.

Parameters Description Range

Pc Proportion of crop [0, 1]

Ph Proportion of hedges [0, 1]

βCC
adj Crop-crop adjacency [−5, 5]

βHH
adj hedge-hedge adjacency [−5, 5]

βCH
adj Crop-hedge adjacency [−5, 5]

Table 8.1 – Parameters of the stochastic landscape generator.
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8.1.2 Two-predators and two-pests population dynamics

We expand the population model based on the system of partial differential equations de-

scribed in Chapter 4. The new model is composed by two predators and two pests, and it

takes into account opposite strategies for the behaviours of pests and predators, respectively.

The two predators have opposite behaviour related to habitat preference: one shows a

life cycle reliant on hedges, while the other one relies on fields. The hedge predator 1 (V1)

prefers staying in the hedges or or very close, and it goes into fields only for foraging. It has

a positive growth only in the hedges, and the growth depends on its pest consummation

in the field area surrounding hedges. In this way, it is possible to take into account the

interaction among pests and predators in the fields close to hedges. Moreover, as hedges

are its preferred habitat, its diffusion on fields is a function of the distance from the hedge

network: the more the predator is found far from hedges, the more rapidly it diffuses in

order to quickly come back to its preferred habitat. Indeed, this predator spends most of its

time in hedges or in their immediate surrounding. By contrast, the field predator (V2) can

be found in the fields, and it is not attracted by hedges since it does not perceive them at all.

It shows a homogeneous dispersal, which does not depend on field allocation. It forages on

the pests available in the fields.

Pests, instead, have the same dynamics, but different dispersal trait values: there is a

slow pest (U1) and a fast pest (U2). Pests perceive the habitat as heterogeneous since they

have positive growth only in crop fields, identified as their preferred habitat. They are not

influenced by hedge presence. In the fields allocated with the PRC they can only disperse

and be predated but cannot grow. The systems’ parameters are shown in Table 8.2. Note

that we do not vary the species parameters to explore only landscape variability jointly with

species strategy selection due to predation pressure. Adding species parameter variability

would have introduced higher uncertainty and complexity in the system and in the analyses

of its simulation outputs. In Figure 8.2, the two-predators and two-pests dynamic system is

summarised, and in Box 6 the system is explained in more detail, including its mathematical

equations.

Figure 8.2 – Multi-pest and multi-predator system.
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Parameters Description Value Units

Predators

dv 1D diffusion check m2d−1

β1* Predating rate 0.00825 pest−1d−1

β2* Predating rate 0.05 pest−1d−1

mV Mortality 0.01 d−1

ρV1,1D2D Migration between hedges and fields 0.05 m−1d−1

DV1(s) = a + b(s)** 2D dispersal a = 0.05; b = 0.5 m2d−1

DV2 2D dispersal (DU1 + DU2)/2 m2d−1

Pests

DU1 2D dispersal 0.08 m2d−1

DU2 2D dispersal 3.2 m2d−1

βU Consumption rate 0.05 predator−1d−1

rU Growth rate 0.01 d−1

KU Carrying capacity 1 pest d−2

mu Mortality 0.01 d−1

Table 8.2 – Parameters describing the two-predators and two-preys dynamics. The param-
eter names correspond to the variables used in the Box 6 where the system of equations is
presented.
* The relationship among the value β1 and β2 is shown in the Supplement 5.1.
** s is the smallest distance between hedge and field.

8.1.3 Simulation scenarios

To analyse the possible effects of predating strategy on pest dispersal behaviour, we explore

4 scenarios considering different species combination:

• Scenario 1: Only pests (U1 and U2 )

• Scenario 2: Hedge predator and pests (V1, U1 and U2 )

• Scenario 3: Field predator and pests (V2, U1 and U2 )

• Scenario 4: All predators and pests (V1, V2, U1 and U2 )

At the first time step, pests are punctually introduced using the same density for each

introduction, where for each pest we select an introduction field of crop type, which is

randomly chosen from a uniform distribution over fields. Hedge predators (V1) are homo-

geneously distributed in fields and in hedges (
∫

Ω
V1 dΩ =

∫
H V1 dH). Field predators (V2)

are homogeneously distributed over all fields. Predators are introduced in same abundance

at landscape scale (
∫

Ω
V1 dΩ +

∫
H V1 dH =

∫
Ω

V2 dΩ ).

Simulations are performed with a time step equal to 1 day. The final time step (Tf ) varies

98



since it depends on the species dynamics, and we fix it as follows: we simulate Scenario 1

and we identify the time step (T), for which the total prey density reaches 90% of the pest

carrying capacity in crop fields. Then, we set Tf to Tf = 2× T, and we use this value in the

simulations of all the scenarios. Numerical simulations of the multi-pest-predator system

are performed using the Freefem++ finite-element framework (Hecht, 2012b).

8.1.4 Statistical methods for analysing simulation outputs

We define an experimental design where we randomly draw from a uniform distribution

the parameter setting using the ranges presented in Table 8.1. For each parameter setting,

we consider 10 replicates, leading to a total of 11000 simulations for each scenario. To ex-

plore the direction and magnitude of variations in response variables, we apply Generalized

Linear Models (GLMs), where we consider the scenarios along with the landscape variables

as covariates. Pest and predator densities, as well as population composition of predators

and pests (i.e., the proportions of V1 and U2 among the total populations), are analysed as

response variables by using the Gaussian distribution with log-link function. The species

density is evaluated only on crop fields at the last time step Tf . The hedge predator pro-

portion is evaluated as the V1-density divided by the total predator density V1+V2. The

proportion for pests is evaluated in the same way in order to separately assess the com-

position of predator and pest population. We develop GLM formulas containing covariate

interactions up to second order, and we use a stepwise variable selection algorithm based

on the Bayesian Information Criterion (BIC) in order to iteratively select the “best subset”

of variables for each model. Prior to estimation, covariates have been normalised to have

empirical mean 0 and variance 1, which simplifies the comparison of the magnitudes of

estimated effects.
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Box 6: Modelling with multiple predators and multiple pests

We denote by Ω the whole spatial domain. It is split into two non overlapping sub-domains: crop

(C) and alternative pest resistant crop PRC, such that Ω = {ΩC, ΩPRC}. A hedge network H is

defined by the ensemble of linear 1D elements H = {h1, h2, ... hi, ... hNH}, where NH is the total

number of linear elements within the landscape matrix, see Figure 8.3.

Figure 8.3 – Illustration of a complex heterogeneous landscape.

Predator dynamics

We denote by vi
1 and V1 the densities of the hedge predators on the 1D element i and on the 2D spa-

tial domain, respectively. Similarly, we define vi
2 and V2 as the population densities corresponding

to the field predators on the 1D element i and on the 2D spatial domain, respectively.

• Hedge predator: The dynamics of the densities vi
1 on the 1D elements are governed by a

1-dimensional reaction-diffusion model:

∂tv(t, x) = dv ∂xxv + β1 s(t, x)−mV v + [1D↔ 2D] + [1D↔ 1D], (8.1)

with s(t, x) the contribution on the reproduction at the position x of foraging activities in Ω,

see the explanations below. The parameter β1 is the predating rate that takes into account

the conversion efficiency; the parameter mV corresponds to the mortality in the hedges. The

first term dv∂xxv describes a random walk movement of the individuals in the hedge. The

coefficient dv is the 1D diffusion parameter along the hedges.

To describe the effect of foraging in the 2D domain on the reproduction, we first point out

that the overall instantaneous pest consumption by predator 1 is proportional to

∫

Ω
V1(t, y) (U1 + U2)(t, y) dy.

Then, we define the relative contribution of a position x in a hedge to the pest consumption
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at any given position y in Ω using the following kernel k:

k(x, y) =
e−d(x,y)2

∫
H e−d(z,y)2 dz

.

Here, H corresponds to the set of all the hedges, and d(x, y) is the Euclidian distance between

x and y, where x denotes the position in the hedge and y a position in the 2D domain. This

formula assumes a Gaussian decay of the probability of visiting a given location x with the

distance to the source, typical of a diffusion process. Thus, the contribution of the position

x in the hedge on the global foraging is:

s(t, x) =
∫

Ω
k(x, y)V1(t, y) (U1 + U2)(t, y) dy,

with U1 + U2 the density of pests (see below).

Lastly, the terms 1D ↔ 2D and 1D ↔ 1D respectively describe the exchanges between the

1D element hi and 2D spatial domain Ω, and the exchanges between the two sides of the

element hi (i.e., the exchanges between hi and hi′ , see Figure 1 in the Supplement 2.1).

On the 2D domain, the dynamics of V1 are described by a reaction-diffusion equation with

a spatially heterogeneous diffusion term:

∂tV1(t, x) = ∆(DV1 (x)V1)−mVV1. (8.2)

Here, ∆ is the 2D Laplace operator and ∆(DV1 (x)Vi
1) describes a 2D random walk movement

of the individuals. In the absence of mortality and interactions, the solution of ∂tV1(t, x) =

∆(DV1 (x)V1) would tend to become proportional to 1/DV1 (x). Thus, to describe a hedge

tropism of the predator of type 1 we choose the heterogeneous diffusion coefficient DV1 (x)

such that it becomes large when the predator is far from the surrounding hedges. More

precisely, we set: DV1 (x) = f (s) = a + b(s) with a, b > 0, where s is the distance between

the point x and the closest hedge element hi, and the choice of a, b depends on the unit of

space.

• Field predator: The field predator does not consider the hedge network and perceives the

landscape as a heterogeneous 2D space. Its dynamics in hi is simply expressed by vi
2 = 0 for

all hi.

On the 2D domain, the dynamics of V2 is described by a reaction-diffusion equation with a

spatially heterogeneous diffusion term:

∂tV2(t, x) = ∆(DV2 V2)−mVV2 + β2(U1 + U2)V2 (8.3)

where mV is the mortality and β2 is the predating rate for V2. The parameter DV2 is the

2D diffusion in the 2D domain which is constant for the predator species V2, as it is not

attracted by hedges. The relationship between β1 and β2, and the parameter calibration, are

explored in the Supplement 5.1.
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Pest dynamics

The dynamics of the density of pest j (j = {1, 2}), Uj, is described by the following reaction-

diffusion equations:





∂tUj(t, x) = ∆ DUj Uj + rU Uj

(
1− ∑j Uj

KU

)
− βU Uj (U1 + U2) for ΩC,

∂tUj(t, x) = ∆ DUj Uj −mUUj − βU Uj (U1 + U2) for ΩPRC.
(8.4)

Here, DUk
, with DU1 << DU2 , can correspond to slow or fast diffusion rate in the field. The

parameter KU is the pest carrying capacity in crop field, rU is the intrinsic growth rate, mU is the

mortality, and βU is the predating rate. For simplicity and parsimony, we assume that the two pest

species have the same parameter values except for the diffusion parameter.

8.2 Results

Here, we present the analyses of the results and illustrate them through Figures 8.4, 8.5 and

8.6. Key GLM results are discussed in the text, and full results are given in the Supplement

5.2. The notation ESn
variable stands for the estimated coefficient of the covariate with name

variable for the Scenario n. Boxplots showing variance among repetitions of the selected

variables are shown in the Supplement 5.3.

8.2.1 Predating strategies and landscape structure effects on pest dynam-

ics

In Figure 8.4a the pest density (U1 + U2) is analysed by contrasting it with the crop propor-

tion in the simulated landscape. As expected, when predators are not present (Scenario 1),

crop proportion has a positive effect on pest density (ES1
Pc

= 0.020± 3.827× 10−4). However,

different predating strategies show divergent impacts in reducing pest density depending

on crop proportion. In Scenario 3, the pest density is drastically reduced in general, but

there is only a relatively weak negative effect when crop and hedge proportions increase

(ES3
Pc

= −0.007± 3.827 ∗ 10−4). In Scenario 4, we find a slightly more marked effect when

the crop proportion is high (ES4
Pc

= −0.018± 3.827 ∗ 10−4). Instead, when only the hedge

predator V1 is present (Scenario 2), pest density is reduced more strongly with increasing

crop proportion, and with even more pronounced effects when there is also a high hedge

proportion (ES2
Pc

= −0.121 ± 3.827 × 10−4; ES2
Ph

= −0.073 ± 3.835 × 10−4). This is due to

the fact that V1 depends on hedge presence, thus pest density is negatively impacted when

hedges are preferentially located on crop field boundaries (ES2
βCH

adj
= −0.033± 3.838× 10−4).

Hedge proportion has a slight effect also under Scenario 4 (ES4
Ph

= −0.003± 3.835× 10−4)

as both predators jointly act on prey. From comparing Scenarios 2 and 3, we notice that

V1 is able to reduce the pest density almost as strongly as V2 only in the case of high crop
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coverage. When considering the composition of the pest population (i.e., the proportion of

U2 among U1 + U2), in general, crop proportion and crop aggregation favour the selection

of the fast dispersal strategy (ES1
Pc

= 0.291± 0.002, ES2
Pc

= 0.218± 0.002, ES3
Pc

= 0.305± 0.002,

ES4
Pc

= 0.260± 0.002; and ES1
βCC

adj
= 0.104± 0.002, ES2

βCC
adj

= 0.093± 0.002, ES3
βCC

adj
= 0.111± 0.002,

ES4
βCC

adj
= 0.114± 0.002, respectively). However, predating strategies also shape differently the

pest composition, see Figure 8.4b. Scenario 3 does not produce any changes in pest compo-

sition. By contrast, in Scenario 2, there is a clear reduction of the fast pest (U2) with respect

to the benchmark Scenario 1. When U2 is most favoured by crop presence, the predating

strategy led by the hedge predator can reduce the pests’ density and shift the pest compo-

sition in favour of U1. In Scenario 4, we notice a combined effect of Scenario 2 and Scenario

3 with more pronounced effects when there is high crop proportion.

Figure 8.4 – Pest density and composition averaged over 10 replicates. a) Pest density as a function of
the crop proportion; b) Proportion of the fast pest (U2) of the benchmark Scenario 1 contrasted with
the proportion of the fast pest (U2) of Scenarios 2, 3 and 4. Different scenarios are represented by
different colors, and point size changes with hedge proportion. The colour gradient in b) represents
crop proportion, while the diagonal bisecting line represents the a pest composition equal to the one
in Scenario 1.

8.2.2 Landscape structure effects on predator dynamics

The density and composition of predators are shown in Figure 8.5. Landscape characteris-

tics favouring pest abundance also favour predator density, such as crop proportion (ES2
Pc

=

0.083± 2.32× 10−4, ES3
Pc

= 0.004± 2.32× 10−4, ES4
Pc

= 0.028± 2.32× 10−4) and crop aggre-

gation (ES2
βCC

adj
= 0.005± 2.32× 10−4, ES3

βCC
adj

= 0.002± 2.32× 10−4, ES4
βCC

adj
= 0.003± 2.32× 10−4).

A favourable landscape structure increases the predator density but also varies the preda-

tor composition (Figure 8.5a). In Figure 2a of the Supplement 5.4, we also highlight that
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the density increase with crop proportion is driven by the increasing presence of V1 (in

proportion to V2). Thus, when the crop proportion is high, the hedge predator becomes a

stronger competitor that decreases the presence of V2. A higher crop proportion positively

affects predator density and increases the proportion of V1 (ES2
Pc

= 0.249± 0.001). Instead,

hedge proportion has a role in shaping the population composition (See also Figure 2b of

the Supplement 5.4): landscapes characterised by high hedge proportion allow for a high

proportion of V1 (ES2
Ph

= 0.053 ± 0.001). By contrast, when the crop coverage is low, the

hedge predator V1 lacks easy access to pests and is not able to persist in the habitat due to

the presence of the competing predator V2 in the fields; this follows from the fact that V1

always persists in Scenario 2 when it is the only predator (Figure 8.5b). In this case, even if

the landscape is characterised by an elevated hedge presence (Figure 8.5a), V1 is not able to

persist as it is disadvantaged with respect to V2, which has strong dynamics in crop fields

and therefore has more direct access to the pest resource.

Figure 8.5 – Predator density and composition in Scenario 4 averaged over 10 replicates. a) Predator
density as a function predator of hedges (V1). The colour gradient represents crop proportion, and
the point size changes with hedge proportion; b) Predator density as a function of crop proportion.
Triangles are used to indicate that only V2 survives, and red crosses are used when both predators
survive.

8.2.3 Predator and pest population composition

Results on the densities of pests and predators can be further explained by jointly looking at

the predator and prey composition in Scenario 4. This allows identifying the preferred strat-

egy applied by pests and predators depending on landscape characteristics. In Figure 8.6,

the hedge predator proportion (V1) is contrasted with the proportion of the fast pest (U2).

Predator-pest associated strategies arise mostly in the first and third quadrants.
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In the first quadrant (a), the landscape is characterised by high crop and hedge propor-

tion; consequently, there is a prevalence of the hedge predator over the field predator, and

of the fast pest over the slow pest. This can be identified as the predating strategy known as

sit-and-wait, as predators have limited dispersal ability and are located in the surrounding

area of hedges, and highly dispersing pests move rapidly by crossing the whole landscape.

For this reason, V1 mainly predates the pest U2, thus reducing pest density and shifting the

pest composition. This strategy results from landscapes composed of a high crop propor-

tion, favouring the fast pests, and a high proportion of hedges, the principal habitat for V1.

In the third quadrant (b), the landscape is characterised by a low crop proportion, which

leads to selection towards a complementary strategy: the actively-researching predating

strategy. Due to the high level of landscape fragmentation, the slow dispersing pest, U1,

is favoured together with the field predator V2, which shows higher dispersal ability. In

this case, hedge proportion does not show an important role, as both the pest and the field

predator do not rely on this habitat.

Figure 8.6 – Pest and predator composition averaged over 10 replicates. Proportion of hedge predator
V1 as a function of proportion of the fast pest U2. The colour gradient represents crop proportion,
and point size changes with hedge proportion. Letters indicate the first-quadrant (a), and the third
quadrant (b).

105



8.3 Discussion

Species dispersal behaviours are determined by biotic and abiotic factors (Ramanantoan-

ina, 2015). Predating is one of the most significant biotic interactions affecting individual

behaviours. On the other hand, habitat heterogeneity and the distribution of resources in

space can influence demographic as well as dispersal processes determining the persistence

and the spread of the population (Cenzer and M’Gonigle, 2019). However, theoretical or

empirical studies often focus separately and not jointly on the role of habitat heterogeneity

(Hanski and Simberloff, 1997; Shigesada, 1986; Kawasaki and Shigesada, 2007; Dewhirst and

Lutscher, 2009) or on the role of predators (El Abdllaoui et al., 2007; Ainseba et al., 2008;

Chakraborty et al., 2007) in influencing pest dispersal. The joint influence of complex land-

scape heterogeneity and multiple predators on preys dynamics and dispersal behaviours

has not been sufficiently explored. Here, we simulate different landscape structures com-

posed of crops and hedges, and the dynamics of two pest and two predator species having

opposite behaviours and dynamics. The present research aims at studying the role of land-

scape characteristics in shaping behaviours of multiple predators and multiple preys.

One key outcome is that different predating strategies act differently on pest density,

and in some cases they also alter the composition of the pest population (Figure 8.4). When

there are no predators (Scenario 1), our results are consistent with the literature: high crop

proportion favours fast dispersal, while high fragmentation favours slow dispersal. Simi-

larly, North et al. (2011) focus on the evolution of dispersal ability for one species through a

spatially explicit IBM taking into account the role of patch size, patch quality, patch turnover

rate, and the impact of habitat loss. They show that in a strongly heterogeneous landscape,

the long-dispersal strategy is disadvantaged because it is more risky and costly. By contrast,

increasing patch size can select for longer dispersal distances, as individual patches support

large populations and kin competition is relaxed. In addition, here, we use a more complex

landscape, taking into account crop aggregation and hedge proximity.

Then, we test how this situation may evolve when introducing one predator at a time,

and with both of the two predators. The introduction of the field predator V2 reduces the

pest density without any influence with respect to landscape characteristics (Scenario 3).

By contrast, the effects due to the introduction of the hedge predator V1 depend on both

crop and hedge proportion (Scenario 2). The strongest pest reduction is observed when

there is a high proportion of crops, as the increase in the crop proportion makes crop-hedge

proximity more likely, which favours control by V1. A hedge proportion increase acts in the

same way as favourable habitat increases, thus affecting the proximity of hedge predator to

pest.

Under Scenario 2, the pest composition is also altered since the proportion of the pest

U2 is highly reduced with respect to the its proportion in Scenario 1: when environmental

conditions favour high abundance of hedge predator, the composition is switched in favour
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of slow pests. From the pest point of view, the dispersal ability could be an efficient strategy

to avoid predators by rapidly moving away or remaining hidden. From the predator point of

view, the dispersal ability could determine the attack strategy by either waiting for the pests

or directly searching them (i.e., sit-and-wait vs actively searching predators). Individuals

located in habitats at low predation risk should tend to not disperse at all, as moving prey

also takes the risk of landing closer to a predator (Barraquand and Murrell, 2012). Here,

we observe a co-evolution of the system towards a domination of V1 and U2 as soon as

the landscape allows V1 to be maintained, whereas when V1 is not maintained or in a

very low proportion, the system co-evolves towards domination of V2 and U1. When we

introduce both predating strategies, different outcomes are observed depending on pests

species composition and crop proportion. When the crop resource is scarce and the pest

population is mainly composed of the slow pest, there is no cumulative effect of V1 and V2,

but the field predator V2 seems to be alone to contribute towards reducing pests. When

the crop resource is abundant and the pest population is mainly composed of the fast pest,

the two predators are able to reduce pests in a complementary way. Interestingly, based on

analysing the predator composition (Figure 8.5), we can highlight that the hedge predator

is present and plays a key role when the crop proportion is not too low. This means that

predators are able to compensate each other by balancing dispersal and competition among

them. This also means that, even if there is some mild variability in the pest density in

Scenario 4, predation is not provided by the same predators. In addition, a stronger effect

of complementarity may be expected in the case where the field predator V2 shows a lower

predating efficacy with respect V1. Moreover, we could expect that the hedge predator V1

may coexist even when the landscape structure is less favourable for it.

Predator density and composition is influenced by both crop and hedge proportion.

Specifically, in landscape structures with limited crops and hedges, the coexistence of the

two predators is hampered. Indeed, pests depend on habitat availability, and when the pro-

portion of crop is low, the pest density is low and predators compete for a limited resource.

If only few hedges are in the neighbourhood of crop fields, the resource is even more limited

for the hedge predator and it cannot persist in the landscape. As suggested by Northfield

et al. (2017), negative interactions arise among predators when both predator species and

pests share the same small or large spatial domain (Schmitz, 2007). In our model, we as-

sume that the hedge predator’s intake depends on the numbers of pests encountered in

the crop fields close to hedges. Thus, the hedge predator is clearly disadvantaged as it has

a more limited foraging space with respect to the predator that lives in the fields. This

is clearly shown in Figure 8.5b, where in some cases V1 is not able to persist. However,

we also find that in other cases the predator population is mostly composed of V1. This

is the case when there is a sufficiently high crop proportion that pushes towards selecting

the fast dispersal behaviour in the pest population. In this case, the pest can more easily

escape the field predators, which have a slower dispersal ability, but pests more often fall
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nearby hedges, thus favouring the hedge predator. For this reason, given high crop and

hedge resources, the hedge predator is able to persist and over-compete the field predator.

More sophisticated predator behaviours could have been taken into account in the model,

such as directed searching dependent on pest density. (Mitchell and Lima, 2002) find that

in response to a randomly searching predator, the best strategy for prey is to not move, i.e.,

selection against dispersal would arise; while in response to a directed searcher exploiting

prey aggregations, prey should diffuse by spreading on a relatively large spatial scale in the

landscape in order to avoid aggregation, i.e., selection in favour of dispersal would arise.

Through the joint analysis of the population composition of predators and pests, we

identify the matching strategies: sit-and-wait predators are advantaged when the majority

of pests adopt fast dispersal, while actively-searching predators are advantaged when the

majority of pests adopt slow dispersal. Our findings are in agreement with Barraquand

and Murrell (2012), who study the effect of predation on the evolution of dispersal strate-

gies within a homogeneous environment through an IBM corresponding to a Lotka-Volterra

system. They find that increasing the predation intensity and the spatial auto-correlation

among predation locations ultimately leads to selection against dispersal for preys. In fact,

high prey dispersal leads to a lower spatial segregation between predator and prey, and this

leads to lowering the landscape-level density (per spatial unit) of the prey. In their study,

the heterogeneity is generated by the predator locations, but in natural systems the habi-

tat types and their structure contribute strongly to landscape heterogeneity and population

movements. We found here that the most severe effect is produced by crop and hedge pro-

portions, but we highlight also the role of the landscape configuration. Spatial aggregation

of crops favours the fast dispersal strategy as it enhances the presence of available resources

and lowers the risk for the fast dispersal strategy to disperse into low-quality habitat (North

et al., 2011). By contrast, the adjacency among crop and hedges favours hedge predators

and pests encounters.

We have shown how pest dispersal behaviours are influenced by different predation

strategies and landscape structures. We also discussed about predator interference and co-

existence. A number of extensions could be relevant with respect to the current formulation

of our model. Even if behavioural adaptation is considered, the presented model does not

consider mutation or behavioural changes. This could be an interesting extension that could

lead to even stronger variations in population composition. In addition, we consider only

opposite behaviours, but the system could be enlarged to take into account intermediary

behaviours or a more continuous gradient with a higher number of species between the

very pronounced Generalist or specialist strategies of predators. At the community level,

an increasing number of diverse species interactions, coupled with environmental hetero-

geneity, is expected to increase the stability and resilience of communities (Modlmeier et al.,

2015). However, environmental conditions should also be taken into account as they may

contribute to selecting a behavioural strategy with respect to another, as in our case. For
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example, Poisot et al. (2012) developed a tri-trophic resource–plant–herbivore system, fo-

cusing on how different patterns of resource dynamics could impact the structure of an

exploitative community. They found that specialisation depends on habitat quality: spe-

cialised enemies are selected in high-quality environments, while Generalist enemies are

selected in poor-quality environments.

In the agricultural context, functional foraging complementation in natural predator as-

semblages is expected to augment biocontrol efforts (Modlmeier et al., 2015). For example,

Finke and Snyder (2008) showed that greater intraspecific variation in parasitoid specialists

fostered greater mortality in aphid communities when compared to species diversity per

se. Royauté and Pruitt (2015) empirically tested the effects of a Generalist predator showing

behavioural differences (active vs. sedentary) and found that different predator behaviours

can generate contrasting prey communities in an agro-ecosystem. These studies allow for

the investigation of how natural enemies can be used to fight pests in complex landscapes,

and they clearly demonstrated that predator type variation affects biocontrol success. Here,

we introduce the landscape heterogeneity as an additional key element that could be used to

better understand the relationships between natural predators and pest regulations. Specif-

ically, we argue that landscape structure influences predator behaviours, thus affecting their

efficacy as biocontrol agents. From our results, we conclude that key landscape elements

determining predator strategy efficacy are given by crop abundance and aggregation jointly

with hedge proximity. Interestingly, hedge proportion alone is not strongly influential in

determining a variation in the predator density and composition, while an increasing crop

proportion assures a higher hedge proximity and, thus, enhances predator-pest encounters.

Therefore, we emphasise that landscape structure is an additional parameter to account for

implementing efficient biological control strategy along with the species traits and func-

tional diversity.

Perspectives and open questions

• Developing an eco-evolutionary model to study the trade-off among species traits for

a prey-predator systems. This is an interesting perspective to move further the results

of Chapter 7. It would allow for theoretical insights that could be compared with the

numerical results obtained with the complex simulated landscapes. In addition, as

in predator-pest systems the dynamics of one species influence the landscape hetero-

geneity of the other, coevolution between organisms could also be considered.

• Extending of the analysis to the local scale. In Chapter 8, we have presented only

results obtained by averaging model outputs over the landscape at the end of the

simulation period. More analysis at both global and local scales would allow for a

better comprehension of the system and could further validate and improve our key
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messages. In particular, an interesting question would be to study how the different

strategies coexist in space and time.

• Applying the theoretical approach presented in a biological control context and test-

ing it on a real system. For example, the results of Chapter 7 could be used to assess

pest invasions, while Chapter 8 could be useful to better understand the positive/neg-

ative/neutral effects of natural predator pest reduction resulting from species interac-

tions.
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Part IV

Discussion

What is the motivation for modeling the interaction between agricultural

landscapes and ecological dynamics?

In order to meet the agricultural production demand, modern agriculture has simplified tra-

ditional agroecosystems and substituted biological functions, generally provided by diverse

communities of organisms, with a diffused input of energy and agrochemicals (Bommarco

et al., 2013). For example, modern agricultural strategies rely on the addition of organic nu-

trients, the mechanical loosening of the soil structure that allows for better root penetration

and growth, and control of pests and epidemics through pesticides (Tilman et al., 2001).

This agricultural upgrade may be successful in meeting the goal of production demand at

short term, but agroecosystem simplification affects important ecosystem services (ES) via

the loss of biodiversity, such as pest control, pollination, decomposition processes and also

crop production (Altieri, 1999; Daily, 1997; Bommarco et al., 2013). Over the last decades,

the scientific community and society strongly claimed to better preserve agroecosystems in

order to meet future climatic, economic, and social challenges by balancing productivity,

stability, and resiliency in a sustainable way that minimizes environmental impacts (Foley

et al., 2005; Bianchi et al., 2013). For example, from the 1 January 2014, the European Union

member states applied a legislation to achieve the sustainable use of pesticides with the re-

quirement to take all necessary measures to promote low pesticide-input pest management

and give priority to nonchemical methods (Bianchi et al., 2013).

One of the prime pest control mechanisms is the ecological intensification based on the

idea to match or increase yield levels while minimizing the negative impacts on the en-

vironment and avoiding the negative impact on agricultural productivity by integrating

the management of ES into crop production (Doré et al., 2011). It is based on the combi-

nation of pest control techniques discouraging the development of pest populations and

keeping pesticide levels that are economically justified (Bianchi et al., 2013). For example,

given the context of this work, the amount and the organisation of cultivated, natural and

semi-natural habitats have the potential to promote a bundle of desired ES due to their
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influence on the community ecology at multiple spatial and temporal scale (Bianchi et al.,

2006; Chaplin-Kramer et al., 2011b; Tscharntke et al., 2016a). In particular, non-crop habi-

tats often includes woody (e.g., forest and hedgerow) and herbacious habitats (e.g., field

margins, road verges and meadows),which are relatively undisturbed and permanent areas

offering shelters and resources, so that they are a biodiversity pool.

A key issue of ecological intensification is to devise management interventions that aid

in limiting possible trade-offs between services. In fact, it can happen that the enhancement

of one service negatively affects other services (Bommarco et al., 2013). For example, effec-

tive biological weed control reduces cover of weeds, on which many pollinators and natural

enemies rely for food; this can lead to reduced pollination and pest control service (Bom-

marco et al., 2013). Multiple criteria assessment considers potential trade-offs by combining

indicators related to productivity, stability and resilience (Doré et al., 2011). In general, this

kind of approach is particularly appreciated by policymakers as it allows for an objective

cost and benefit comparison of ecological intensification practices in order to meet economic

goals in environmentally-friendly way (Batáry et al., 2015).

The ES concept highlights the importance of ecosystems and their ecological processes

for human society (Daily, 1997), but its application in management is both welcome and

worrying. Welcome because it takes into account the important benefits derived from

ecosystems for society and incorporates them into planning and decision-making (Bengts-

son, 2015). Worrying because the usefulness of the concept is restricted by a largely insuffi-

cient understanding of many underlying dynamical ecological processes (Bommarco et al.,

2013; Firbank et al., 2013; Bengtsson, 2015).

Usually these evaluation approaches provide a static picture of the ecosystem without

taking into account the system’s spatio-temporal dynamics. Only few studies consider the

spatio-temporal dimensions that are most relevant to farmers, such as the influence of crop

rotations on pollination, biodiversity and pest control (Kleijn et al., 2019). Additionally, in-

formation is lacking on benefits from ecological intensification at multiple scales (i.e., from

farm to landscape scale) and on the approach to evaluate the effects over different spatial

scales. However, this information is important when considering that different species have

different dispersal abilities and can be differently influenced by semi-natural habitats or

crops up to several kilometres away from the target location (Steffan-Dewenter et al., 2002;

Lonsdorf et al., 2009; Shackelford et al., 2013; Jonsson et al., 2014).

Even though this thesis does not directly deal with the ES assessment, we have largely dis-

cussed the importance of considering the pest regulation at different spatio-temporal scales.

In Chapter 5, we show that foregoing pesticide applications, pest peaks or introductions

show effects that determine the pest outbreaks in the immediate future and in surround-
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ing areas. For example, the presence of previous local pesticide applications in a field and

its neighbouring fields negatively influences the dynamics since pesticide applications effi-

ciently reduce the pest density in the field. Pest arrival acts as an accelerator of local pest

dynamics, as was shown by a high frequency and high magnitudes of pest density peaks in

the surrounding areas. In addition, the same landscape features may act in a different way

depending on the considered scale, as crop proportion at local scale or at landscape scale

leads to different pest breakout events. Similarly, global hedge proportion has a small but

positive effect on both pest dynamics as at that scale it does not inform about hedge con-

nectivity and distribution, while hedge proportion at local scale characterises local hedge

structure, and the resulting predator concentration that plays a bigger role by reducing pest

outbreaks.

Even if a cost-benefit analysis approach offers a simple and effective solution to complex

and intractable resource management problems (Vira and Adams, 2009), there could arise

questions of ethical significance (Jax et al., 2013). The ES evaluation through cost-benefit

analysis or indicators has an implicit utilitarian perspective, which obscures the ethical

positions in nature conservation promoting the protection of biodiversity regardless of its

instrumental value to humans (Jax et al., 2013). In fact, natural capital does not capture the

full complexity relations between genes, species, and ecosystems that is associated with the

term biodiversity (Wilson, 1997). In addition, the processes by which stocks of natural cap-

ital and key processes are transformed into flows of ecosystem services are themselves not

straightforward and not clearly determined, and there is high variability (Vira and Adams,

2009). For example, as discussed, even if some studies have found a positive relationship

between the diversity and abundance of species and landscape complexity, there could

be also notable exceptions with negative or neutral effects (Chaplin-Kramer et al., 2011b;

Karp et al., 2018; Kleijn et al., 2019). Furthermore, using the ES economic evaluation and

market-based mechanisms has raised concerns about the commodification of nature (Kosoy

and Corbera, 2010; Peterson et al., 2010; Robertson, 2004), meaning that ES components or

processes are transformed into products or services that can be privately appropriated. A

practical example is offered by Carrasco et al. (2014), who discuss how the economic valua-

tion of ES fails to capture biodiversity and food security value of tropical forests, especially

for isolated sites. Their main outcomes call for multi-criteria approaches where biodiversity

is considered at the same level as ecosystem service values. Moreover, their advise is to

avoid using ES values as the only criterion, or rather to use it as bundled objectives together

with biodiversity. Recently, other studies go beyond the ES monetary evaluation focusing

on ES social-cultural value (Díaz et al., 2011; Milcu et al., 2013; Martín-López et al., 2014;

Cáceres et al., 2015). Their idea to provide an alternative rigorous quantitative-qualitative

way to compare the perspective of different social actors is thus useful for social-ecological

assessment and action.
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However, we should recognise that there are no generally agreed upon meanings and

boundaries of “ecosystem services” and “biodiversity”. It seems reasonable to ask whether

biodiversity is an ES in itself, or should be taken into account separately. The answer

depends on whether ES are defined as ecosystem components and processes that lead to

benefits, or as goods and benefits themselves (as in the MEA (2005) definition) (Jax and

Heink, 2015). Moreover, similar to ES, the assessment of biodiversity – e.g., if it is high or

low – must rely on numerical criteria and indices. The main point is that ES are always

conceptualised in relation to human well-being. By contrast, biodiversity studies and biodi-

versity conservation do not necessarily focus only on ecological entities according to their

potential utility for people.

How should agroecosystems be represented to take the landscape com-

plexity into account?

The representation of agroecosystems is not straightforward: it relies on the available types

of data, on the goals of the study and on the process integration. In Chapter 2.2, a special

attention is dedicated to the representation of landscape complexity by considering linear

elements along with patch elements. We propose a novel methodological approach based

on a vector representation, which is particularly suited to this purpose as linear elements

could be simply represented by segments. Then, both qualitative and quantitative informa-

tion can be specified for each element. We discuss and compare our method with the most

commonly used raster approach, through which is not possible to identify individual linear

elements as they are made up by a sequence of consecutive individual cells. Moreover, in

order to define a linear element with a high precision, a high raster resolution is required.

This, in turn, will lead to an elevated computational complexity and/or limited area ex-

tent. Instead, in the vector approach, multiple attributes related to each landscape element

can be considered without strong impact on the computational demand. Defining patch

and linear elements as landscape objects offers the possibility of studying their interactions

through graph theory. We demonstrated that the ensemble of these features is particularly

suitable to reach our modelling aim of focusing on patch and linear element allocation and

interaction for describing, inferring and simulating different agricultural landscapes. Lastly,

the conceptualisation through graph theory allows us to model habitat interactions and to

generate virtual but realistic agricultural landscapes featuring different spatial patterns (ge-

ometry, connectivity) and temporal patterns (e.g. crop rotation), thus providing a useful tool

to explore the relationships between landscape structure and the processes at stake within

it (Poggi et al., 2021).

Concerning the hedge representation, even if the raster format may not be appealing for

linear element modelling, there are applications where this kind of representation provides
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relevant results and is informative. Betbeder et al. (2017) show methods for estimating re-

sistance map for hedgerows from radar images (i.e., Synthetic Aperture Radar, SAR) and

areal photography (AP) to explore hedgerow network connectivity using landscape and lo-

cal metrics describing hedgerow internal structure and landscape properties. From the AP,

hedgerows are digitalised and represented by vector lines then rasterised; from the SAR

image, hedgerows are represented by the projection of tree canopy cover. Whereas hedges

are usually mapped as lines by considering only their locations, the authors introduce tree

density and canopy cover thanks to remote sensing imagery data. They demonstrate that

including the internal structure of hedgerows improves connectivity measures and high-

light the importance of data source choice when mapping and characterising landscapes to

assess landscape connectivity (Wade et al., 2015).

Modern techniques for acquiring aerial and satellite data can provide raw optical and

radar multimodal time series of landscape images. These datasets provide a large amount of

information that could be used to explore, represent and simulate landscapes with higher

precision. For example, the THEIA Land Data Centre is a French inter-agency initiative

which promotes the use of satellite data, primarily for environmental research on land sur-

faces, for public policy monitoring and for management of environmental resources. For

agricultural purposes, the main research projects and applications are related to crop map-

ping and monitoring, crop yield estimation, estimation of environmental variables and esti-

mation of farming practices. In addition, both vector and raster products are available with

high resolution (e.g., land cover data with 10 m for raster and 20 m for vector with annual

update frequency). Future challenges could also deal with the use of this new valuable data

source for a hybrid approach combining raster and vector representation in order to take ad-

vantage of the most informative satellite source and the simplest and parsimonious spatial

representation. In the model we presented here, it would be possible to assign information

such as canopy cover and tree density to each element constituting the hedge network as

an attribute and, then, to estimate and model the hedge allocation also with respect to this

information. Finally, future research should enhance multilevel and integrated approaches

of landscape functioning (Poggi et al., 2021).

How to jointly model landscape complexity and species dynamics?

The integration of agricultural landscape heterogeneity and biophysical processes is fun-

damental, but remains challenging due to the complexity of both landscape and living

systems. For example, landscape structure impacts agricultural pest suppression at global

(Haan et al., 2020; Zamberletti et al., 2021b) and local scale (Haan et al., 2020; Zamberletti

et al., 2021a) and, thus, biological control in agroecosystems (Thies and Tscharntke, 1999;

Zamberletti et al., 2021b,a). There are only relatively few studies that have assessed the
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effect of landscape context and species trophic interactions jointly (Turner et al., 2015), and

the outcomes of these studies easily lead to conflicting or similar results, and also results of

difficult interpretation (Tscharntke et al., 2005; Karp et al., 2018). In fact, the direction of dif-

ferent factors affecting the dynamics is not determined a priori in a straightforward way, but

it depends on the combination of the specific systems, the species, the spatial domain and

the assumptions. Specifically, the high variability in the effects found in such studies could

depend on two key points: the species community composition and the environmental con-

text. When modelling, difficulties may arise from the data and information availability, the

selection of an approach, the integration of different components without losing key infor-

mation or using excessive assumptions (Poggi et al., 2018). Usually, the resulting trade-offs

lead to studying the relationship among simple species systems and a complex landscape

or the relationship among species with a strong simplification on the landscape. The orig-

inality of our work presented in Part II is to study jointly the relationships of complex

landscapes and a quite detailed and realistic model of population dynamics, which may

open up new research questions and approaches.

Field studies, models, and experiments are all useful approaches to understand and pre-

dict the effects of the landscape on population dynamics (Turner et al., 2015). Field studies

and empirical modelling based on real observations are fundamental and rely mainly on

correlative statistical models for analysis and synthesis (Cabral et al., 2017), but drawbacks

have been discussed (Guisan and Thuiller, 2005). The main idea of correlative methods is

to statistically relate environmental variables directly to species occurrence or abundance,

while causal mechanisms are not identified (Dormann et al., 2012). Thus, explanatory power

is limited and, consequently, it is difficult to transfer the outcomes across geographic space,

time, and environmental space (Dormann et al., 2012). Experimental studies are site- and

species-specific, providing results that are difficult to generalise, but they may support and

confirm theoretical and numerical results. In contrast, process-based models formulate the

ecology of a species defining causality by mathematical functions. Thus, the species abun-

dance and presence come out as a consequence of causal links between spatial structure and

population dynamics (Cabral et al., 2017). Theoretical models may appear strongly based

on assumptions and more far from reality and may result of difficult comprehension due to

some technicality. An important difference is that in the correlative model data cannot be

used to test hypothesis because they have been used to define the model, while the process-

based model is independent from data, and hence, it can be tested by checking if model

results and observations match. A way to bridge the gap between empirical and process-

based approaches is the mechanistic-statistical framework (Soubeyrand and Roques, 2014;

Hefley et al., 2017). In such a framework, a mechanistic model, deterministic (e.g. PDEs

– Partial Differential Equations) (Louvrier et al., 2020; Roques et al., 2021)) or stochastic

(Soubeyrand et al., 2009; Papaïx et al., 2021), is used to describe the ecological process un-
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der study, while a probabilistic model is used to link the mechanistic model to the data

and to provide data-driven estimation of model parameters. Here, we have developed a

process-based mechanistic modelling approach, but the only real data we used are the land-

scape data to perform the inference for a specific agricultural domain. However, the method

we developed is general and flexible, and we use the data to show an application example

over different study sites using real land-cover data. However, we do not have data for the

population dynamics. We are aware that this is a weak point of this work, as it would be

interesting to compare modeling outputs with data, or using the data for parameter infer-

ence. Our choices of parameters are based on the literature, and certain simplifications and

assumptions have been introduced with the help of sensitivity analysis. Nevertheless, our

approach allows us to develop a technique that can be generalised and applied to different

systems and species. Thus, paring and comparing models with data would be certainly

possible by adding the necessary adjustments, and it would be an interesting further devel-

opment to discuss and validate what we have done.

Landscape heterogeneity mediates predator–prey interactions (Abrams et al., 1996; Schmitz,

1998), since landscape structure and patterns influence the probability of prey encounters

(Hebblewhite et al., 2005) and the strategies to avoid predators (Andruskiw et al., 2008).

For example, habitat type and its connectivity, patch size, and topographic setting could

lead prey to be more or less susceptible to predation pressure (Hebblewhite et al., 2005).

Existing approaches have been widely developed following theoretical population ecology,

where predator–prey interactions take the form of a dynamic game played in spatially com-

plex landscapes. This body of theory is crucial as it constitutes the basis for understanding

how natural ecosystems can maintain critical functions depending on the environmental

context (Schmitz, 1998). In the agroecological context of biocontrol, a fundamental aspect

is the landscape complexity, as agricultural landscapes could be highly heterogeneous with

respect to the culture intermixing or with respect to the different habitat types (i.e., cul-

ture, grassland, wooded area, ditches, hedgerows). Natural enemies are more diverse and

numerous in complex agricultural landscapes with abundant natural or seminatural habi-

tat as compared to more homogeneous, intensively cultivated landscapes (Chaplin-Kramer

et al., 2011b). To study population dynamics in heterogeneous landscapes, one of the sim-

plest frameworks balancing local extinction events and recolonisation is represented by the

metapopulation approach (Levins, 1969b; Wiegand et al., 1999). Its success comes from

the appealing way through which the complexity of real landscape is reduced to a simpler

framework for characterising population dynamics. However, only a limited range of dy-

namics and landscapes features can be encompassed (Wiens et al., 1993). For example, the

consideration of spatial heterogeneity in terms of simple, internally homogeneous, shape-

less patches embedded in an adverse matrix leaves out all the key elements which we have

widely addressed in this thesis, and which play a key role for specific ecological processes,
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such as biological control and pollination (Wiens et al., 1993). Under these circumstances,

a more detailed modeling framework is needed to better understand and characterise the

processes of interest by explicitly relating demographic processes, as well as dispersal and

habitat selection, to the landscape in which these processes occur (Wiegand et al., 1999).

A spatially explicit representation of landscape structure coupled with species dynamics

seems to be an approach that better allows linking individual’s use of space, exploring

fine-scale details of landscapes, and investigating how such landscape elements influence

species dynamics and interactions (DeAngelis and Yurek, 2017). For example, natural en-

emy movement from crop and non-crop interfaces is influenced both by habitat composition

and configuration of different landscape elements and both by diverse habitat use and dis-

persal ability, thus affecting species communities and pest regulation (Bianchi et al., 2006).

The landscape model we used is particularly suited to this purpose by distinguishing linear

elements and field elements, where these two element types have different properties and

can be allocated with different habitat types. Then, spatially explicit population dynamics

of predators and preys are modeled. Coupling two models allows us to separately focus

on the landscape system in a detailed way, and, then, on the definition of the appropriate

population dynamics system. In order to match the spatial support with the population dy-

namics, different dynamics and behaviours are taken into account depending on the specific

habitat and species characteristics. This approach is flexible and can represent realistic be-

haviours by directly reflecting species traits and the mechanisms of how landscape structure

affects population dynamics.

In Chapter 4, we mainly focus on the integration of the landscape characteristics in the

pest-predator dynamics. Especially, we propose to couple landscape properties and species

traits to identify the main effects on CBC. However, as we worked at a global landscape scale

and we lose some information in the spatial structure, we developed a novel methodolog-

ical approach to parsimoniously use all the information provided by the spatially explicit

model. In Chapter 5, we depict the pest-predator dynamics through key events, and we

proposed to model them by a marked spatio-temporal point process (STPP). The use of

STPP is quite common to model real events, biodiversity hotspots and animal positions,

but it is rarely used as a surrogate model to capture the information of spatially explicit

models with the goal to assess outcomes at global and local scales. Individual-based spa-

tially explicit population models (IBM) could go even further as they are able to integrate

life-history information and behavioural rules for each organism and to monitor all the

locations it visited. In fact, an organism-centered view of landscape structure specifically

links the individuals’ use of space (e.g., dispersal and habitat selection) with the landscape

structure (Wiegand et al., 1999). For example, Le Gal et al. (2020) highlight the important

influence of the interplay between the landscape structure and the timing of CBC measures

on the delivery of pest control services, through an IBM. This kind of model allowed them

to evaluate variables such as natural enemy visitation rate in crop and the pest colonisation
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event. Thus, they provide a very specific and point-centered analysis, and they found that a

high proportion of SNH enhances the visitation rate of pest-colonised crop cells, but it also

reduces the delay between pest colonisation and predator arrival in the crop fields. Indeed,

using an organism-centered model could also allow for focusing more on organism disper-

sal and specifically on dispersal strategies, movement trajectories and habitat selection of

each individual. For example, Barraquand and Murrell (2012) analyse a spatially explicit,

individual-based predator-prey model to investigate the effect of predation on the evolution

of prey dispersal. In this way, they detect that the balance between the level of competition

and predation pressure, which an individual is expected to experience, determines whether

prey should disperse. They find that more predation selects for less prey dispersal. Specif-

ically, predators with smaller home ranges also select for less prey dispersal; on the other

hand, more prey dispersal is favoured if predators have large home ranges, as species are

very mobile, and/or are evenly distributed across the landscape (Barraquand and Murrell,

2012).

How to deal with multiple species showing different behavioural strate-

gies?

Behavioural landscape ecology aims to explore how the behaviour of a particular species

responds to landscape heterogeneity and changing landscape patterns (Knowlton and Gra-

ham, 2010). This field has been only recently developed, but it gains increasing attention

especially in the context of global change (Turner et al., 2015). In order to take into account

the landscape influence on species behaviour, we develop our multi-preys multi-predators

model by considering a limited number of species defined in a system of PDEs. We inte-

grated within this framework the habitat complexity to investigate the role of landscape

heterogeneity for the selection of dispersal strategies of the prey and predator. In our

approach, we identify two specific opposite behaviours for prey species and for preda-

tor species, without considering all the possible phenotype traits and the broad range of

behaviours among individual organisms and their local environment. By using IBMs, it

would also be possible to take into account individual members of a population, to easily

model complex behaviours and to include many attributes for each individual. IBMs can

reproduce accurately the way real individuals act and interact, but a high number of pa-

rameters is required, and the issue arises that such information is not always available from

data and bibliography. Instead, the choice of the use of a PDE system in this thesis relies in

the good balance of complexity, number of parameters and understanding.

When considering classical biological control, direct and indirect interactions among

multiple species are likely to be involved when appropriately determining the efficacy of

natural reduction of pests. However, there multiple ways in which species can be tied to-

gether in complex food web (Holt et al., 2001). So far, the most popular strategies have been
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to model species distributions one at a time (Ferrier and Guisan, 2006), and small com-

munity modules to focus on strong direct and indirect interactions among a relative small

number of species by defining specific community modules (Holt et al., 2001). To contrast

two opposite strategies for preys and predators, we could not take into account all the in-

termediary behaviours, but it is enough to provide the general tendency and the resulting

dynamics. Specifically, in our case, working with such a system allowed us to maintain and

balance a certain level of detail in the population dynamics and a complex spatial domain

to answer to our research questions. Holt et al. (2001) present typical modules defining the

most common direct and indirect interactions among preys and predators. They argue that

this kind of generalisation can be of importance as empirical systems may closely match the

structure modules, and these modules can be considered as building blocks to achieve com-

munities with full complexity. However, community-level modelling may confer significant

benefits for applications involving very large numbers of species. Landscape ecology studies

have started evaluating the landscape influences on biotic community structure using patch-

based analyses of species richness (Turner et al., 2015). Thus, the main research questions are

targeted at understanding how community composition varies with landscape, for example,

by relating richness (or its components) to environmental conditions. Schindler et al. (2015)

specifically discuss about the selection of landscape metrics as predictors for biodiversity,

which is a very involved task. They found that an a priori determination of the appropriate

indicators can be problematic, and even expert opinions seem to be inappropriate in certain

circumstances and should be supported by pre-scans and statistical approaches to identify

a satisfying set of metrics. Different strategies for modelling biodiversity at the community

level are possible, and (Ferrier and Guisan, 2006) provide a comprehensive review of avail-

able approaches within each strategy, and they discuss strengths and weaknesses. They

conclude that no single approach is likely to be optimal for all purposes and across all data

sets. The choice of modelling biodiversity either at the community level or at the species

level can be influenced by the study motivation and data type, quality and quantity (Ferrier

and Guisan, 2006). Here, we benefit from the simplicity of the community modules to de-

scribe a more complex dynamics considering specific traits, different strategies and enabling

the assessment of landscape-dynamics relationships.

What’s next?

The key point of whole work in this thesis is that it is not restricted to considering only a

unique dimension, but we try to explore and integrate different spatio-temporal ranges (i.e.,

linear and areal landscape elements, global and local scales, temporal pest and predator

evolution) and different biodiversity levels (multi-species, behavioural diversity and genetic

diversity). Therefore, we have introduced key novelties to the existent literature that could

be the starting points from where one could develop the following extensions: (1) efficient
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and effective conservation strategies; (2) the assessment of eco-evo complementarity for

conservation; (3) more accurate developments of spatio-temporal dimensions.

By coupling the conclusions on landscape complexity properties, as addressed in Part I,

with species dynamics, their interactions and their traits, we have demonstrated that land-

scape heterogeneity has a key importance in determining species dynamics and CBC out-

comes at different spatial scales (Part II and III). In addition, as there is a pressing need for

more integrated approaches to management and conservation that capture the multifaceted

nature of biodiversity, we suggest that spatial conservation planning should go hand-in-

hand with landscape planning. This holds especially in the agroecological context, where

the organisation and management of culture and SNH influence biodiversity and, thus, the

relationships among pests and their natural enemies.

The conclusions provided in Part III highlight that environmental complexity also influ-

ences species composition and persistence. This comes from the fact that functional and

genetic diversity leads to the development of different behavioural strategies to adapt to the

environmental context and to the other species. Considering species richness or genetic di-

versity would be not the same from the conservation point of view: Forest et al. (2007) show

that phylogenetic diversity or species richness would result in a different selection of con-

servation sites, leading to a trade-off among the different criteria. However, both criteria are

key to conserve ecosystems providing insurance against the consequences of short-term and

long-term environmental change. Even if the integration of different aspects of biodiversity

into conservation assessments can be discussed, a major question could be the definition

of the metrics and methodological approach to increase the conservation benefit compared

with other conservation measures. In particular, there are cases for which there are not yet

commonly defined metrics or approaches. For example, the selection of the right metric of

genetic diversity is not trivial, and different metrics could lead to sensibly different results

Winter et al. (2013). Only few works are now trying to incorporate functional and genetic

diversity measures to quantitatively assess their effects on conservation (e.g., see Robertson

et al. (2020)).

In Chapter 5, the identification of events characterising pest-predator dynamics allows

for a parsimonious representation of spatially explicit model outputs at different spatio-

temporal scales. Taking into account spatial and temporal dimensions becomes relevant

when explanations for variations in spatio-temporal are observed with respect to drivers at

multiple scales. For example, wheat is the most widely grown crop in the world and it is

subject to various pest attacks, such as yellow rust, fusarium head blight, sharp eyespot,

powdery mildew, aphid etc. causing important losses to farmers. Conventional calendar-

scheduled pesticide application for disease control generally does not consider disease de-

velopment and its spatial distribution, often resulting in excessive use of pesticides and

the associated high costs and negative effects (Su et al., 2019). By contrast, spatio-temporal

crop or disease monitoring could be a prerequisite to enable the early and precise disease
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control as real-time identification of the occurrence of dangerous pathogens for rapid coun-

termeasures (Su et al., 2019; Hamer et al., 2020). For example, Hamer et al. (2020) focus

on the generation of temporal and spatial prediction of the epidemic spread of infestations

by combining phytopathological and geographical methods and knowledge. They find

that coupling geostatistical regionalisation, machine learning methods, and long-term phy-

topathological data series prove to be efficient and appropriate, as the improved prediction

of actual cases outweigh the increased false positive rate. We acknowledge that spatio-

temporal influences are complex and intertwined and, therefore, it is hard to completely

understand and implement them into a general monitoring and conservation program. In

addition, the larger the spatial and temporal scale the model and analysis have to cover, the

more observations are needed with additional efforts (Van den Eynde et al., 2020). Thus, we

also stress the importance of using parsimonious and flexible methods to take into account

the temporal dimension and various landscape scales in a smart and efficient way.

The conclusion of this work is a call for more integrated methods and efforts that account

for the many different dimensions of biodiversity jointly with landscape complexity and

heterogeneity by coupling theoretical approaches with real data.
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Abstract

Modern agriculture faces the dual challenges of feeding a growing human population,

while preserving natural resources and slowing current trends in climate change and

its impacts. A deep understanding of the functioning of agricultural landscapes appears

crucial if we are to move towards sustainable, complex and resilient agroecosystems.

Modelling is a powerful tool to address these issues since it can inform these transfor-

mations by simulating the multiscale ecological flows and myriad interactions agro-

ecosystems host, and the multilevel stakeholder actions and their feedbacks in

landscapes. This chapter shows that models can provide guidance on the transition

towards future multifunctional agricultural landscapes. We have focused on

process-based models, which allow for a more thorough understanding of the under-

lying mechanisms and how these may be manipulated. We first examine how models

can simulate the structure and the dynamics of agricultural landscapes, emphasizing the

complex mosaic of urban, peri-urban, rural and seminatural habitats. Then, we consider

the simulation of biotic and abiotic flows and their complex interactions in the mosaic

habitats. Using formalisms from the social sciences, we integrate human decision-

making and actions into the landscape models, thereby encompassing a major com-

ponent in the landscape transformation process. Finally, we outline some avenues

for future research. We have focused on improvements to landscape representation,

and have suggested ways to bridge the gap between future landscape conception

andmanipulation, thus providing operational guidance for the transition towards future

agricultural landscapes that achieve our objectives.

1. Introduction

1.1 Earth faces changes at an unprecedented pace

Our planet has undergone unparalleled change over the past three centuries.

The impact of humans now competes with natural forces as a driver of plan-

etary change, justifying the term ‘Anthropocene’ for the present, human-

dominated, geological epoch (Crutzen, 2002). Very few places on Earth

have not been affected by humans, either directly or indirectly (Vitousek,

1997). Supported by considerable mechanical and technological develop-

ments that rely on fossil–fuel-derived energy, humans have transformed

landscapes worldwide and altered, potentially irrevocably, the ecological

flows and myriad ecological interactions they host (With, 2019). In this con-

text, landscape-scale models are useful tools to improve our knowledge and

guide decision-making at spatial scales (typically 1–1000km2) on which
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many ecological processes and linkages are manifest (Keane et al., 2015).

Ongoing population growth—from 690 million in 1750 to 7.8 billion in

2020—and urbanization have resulted in the expansion of cities into the

surrounding rural areas and the homogenisation of agricultural landscapes.

Concomitant, intensification of farming practices (land consolidation, short-

ening of crop rotations, and selection of the most productive cultivars

relying on agrichemicals to protect fields from pathogens and pests) has con-

tributed to landscape simplification. Such changes were adopted in answer to

the challenge of feeding the increasing world population, but at the expense

of the environment as well as animal and human health (Foley, 2005;

Rayfuse and Weisfelt, 2012; Tilman, 1999).

Some recent studies spotlight dramatic declines in biodiversity, species

richness and abundance, e.g. birds and mammals (Hallmann et al., 2014;

Spooner et al., 2018) and entomofauna (Hallmann et al., 2017; Seibold

et al., 2019; Vogel, 2017). Sánchez-Bayo and Wyckhuys (2019) assessed

and ordered the main drivers of species declines: habitat loss and land use

change to intensive agriculture and urbanization; pollution, mainly by syn-

thetic pesticides and fertilizers; biological factors, including pathogens and

introduced species; and climate change. By 2050, agriculture will need to

produce an additional 50% of food than in 2012 to meet the need of around

9.73 billion people (Armanda et al., 2019; FAO, 2018).

All these signs signal a need to transform the systems responsible for this

situation, including farming systems that are responsible for 14.5% of all

anthropogenic greenhouse gas emissions (Gerber et al., 2013), pollution

of soils (Rodrı́guez Eugenio et al., 2018) and waters (Carpenter et al.,

1998; Mateo-Sagasta et al., 2017), and biodiversity decline (Tilman,

2001; Tsiafouli et al., 2015). Such transformation will have to be multifac-

eted, since it will modify production systems, socioeconomic organization

of labour, crop selection and agricultural practices, but also global diets and

food waste.

1.2 Reorganizing farming areas towards a sustainable
agriculture

Today, some 55% of the world’s population lives in urban areas, and this

percentage is rising. By 2050, with the urban populationmore than doubling

its current size, nearly 7 in 10 people in the world will live in cities (World

Bank, 2020). The rural agricultural land abandonment that this causes is the

most frequent driver of landscape change in many regions of the world

(Plieninger et al., 2016). Cities and their surrounding regions will be
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challenged to plan and design their development in order to deliver green,

inclusive, competitive and resilient services including food supply. In

Europe, much of the distinction between rural and urban landscapes has lost

because areas classified as peri-urban and characterized by complex land-

scapes are growing four times faster than urban areas. At this rate, the

peri-urban area would double in around 40 years (Piorr et al., 2011). In

exhibiting higher structural complexity, future peri-urban landscapes could

lead to the formation of mosaics where agricultural, urban and seminatural

habitats intermingle. Maintaining agriculture within these peri-urban

mosaics will be an essential strategy for ensuring food security and mitigating

climate change. This calls for a rethinking of food systems in a farm-to-fork

approach linking farming systems to our modes of consumption.Models can

foster this transition towards future sustainable complex landscapes by

highlighting food production capacities that depend on the context of

biotic/abiotic/anthropogenic interactions due to local heterogeneities and

landscape structure, and support the design of new farming systems adapted

to local conditions (Duru et al., 2015).

Seminatural habitats (composed by hedgerows, ditches and irrigation

channels, ponds, grass strips, natural or artificial wetlands, etc.) are of great

importance in rural and peri-urban landscapes because they are implicated in

ecosystem services such as erosion limitation, water supply and flood regu-

lation, pesticide and nutrient mitigation, weed and pest spreading regulation

(Biggs et al., 2017; Burel, 1996; Dollinger et al., 2015; Le C�ur et al., 2002;

Power, 2010). These ecosystem services, if supported, presents an opportu-

nity to reduce our dependence on agricultural inputs (fertilizers, pesticides,

irrigation water, etc.). Diversity and functional complementarities between

species (Caron et al., 2014) is also a condition for the development of

biodiversity-based agricultural landscapes, as well as resilience of ecosystems

(Chapin et al., 2000).

For this sustainable future of farming, much research points to the impor-

tance of considering ecological scales in farming systems (Altieri and

Nicholls, 2012). This implies an upscaling of decision and organization of

management practices from the plot or farm levels to the landscape level

(Elzen et al., 2012). Whereas the plot and the farm levels are driven by indi-

vidual farmer decision making, managing the landscape is a challenge since it

involves a collective decision-making process that includes interdependent

stakeholders, including nonfarmers. The landscape can therefore be consid-

ered as a system whose properties emerge from its components (e.g. farms).

Organizational, regulatory and technical innovations are needed to make

agricultural landscapes more manageable (Hannachi and Martinet, 2019).
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1.3 Modelling as a central tool to help design future
agricultural landscapes

Designing future landscapes with higher complexity, resilience and manage-

ability, requires a modified scientific approach. Transformations across scales

cannot be informed by experiments alone, given the complexity of the sys-

tem, the broad range of spatial scales and the multiple objectives that must be

satisfied. Indeed, examples of projects of agricultural landscape redesign are

rare (Geertsema et al., 2016; Kremen and Merenlender, 2018; Schulte

et al., 2017).

Conversely, the wide variety of models that are available could be used to

provide invaluable insight to guide the transformation of farming systems

(Nendel and Zander, 2019) and the transition towards future agricultural

landscapes. For instance, combining output from global climate models

(Hayhoe et al., 2017) and species distribution models (Franklin (2010)

and references therein) can predict the effects of environmental changes

on species and ecosystems. Combining models that capture feedbacks

between biophysical and socioeconomic drivers of land-use change, yet

include at the small scale interactions with biodiversity, and at the large

scale a model of the world economy, would make it possible to investigate

the consequences of reaching equal global production gains by 2030, either

by cropland expansion or intensification, and analyse their impacts on

agricultural markets and biodiversity (Zabel et al., 2019). More generally,

agricultural landscapes provide many ecosystem services (e.g. food produc-

tion, regulation of water, regulation of greenhouse gases), thereby making it

challenging to commit to transformative changes that improve one service

without unintended consequences for the others. In that, multiobjective

optimisation algorithms (Memmah et al., 2015; Todman et al., 2019) can

be helpful, for instance in identifying trade-off frontiers.

Complexity and uncertainty are two cornerstones of modelling. Models

allows the exploration of a set of scenarios as a way of exploring uncertainty.

By incorporating knowledge from various disciplines (physics, chemistry,

biology, ecology, economy, sociology, etc.), coupling components and con-

sidering interactions and feedbacks, models contribute to our comprehension

of complexity. Here we use agricultural landscape models to tackle these

issues of future agricultural landscape design. These tools, in simulating the

landscape functioning, can help to inform decision-makers on possible trajec-

tories towards objectives and search options set by “society”. Building reli-

able tools requires a better coupling of landscape patterns and process models

to account for feedbacks, integrate the decisions of multiple stakeholders,

consider the spatial and temporal heterogeneity of data and processes,
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explore alternative landscape organizations and assess multiobjective perfor-

mance (Poggi et al., 2018). A myriad of technical issues arises when doing

this coupling. These include uncertainties of evaluation, model parameter

inference, data assimilation, etc. In this paper, we give insights on the added

value, current development and limitations of such models to provide guid-

ance on the transition towards future desirable landscapes. Where possible,

we focus on process-based models that allow for a more thorough compre-

hension of the underlying processes at stake and provide our perspective of

their beneficial use.

1.4 Chapter structure

In Section 2, we present some major drivers of the modifications of agricul-

tural landscapes, notably urban expansion and sprawl, and highlight the rel-

evance of modelling for forecasting this ongoing evolution. We assume that

demographic pressure, demand for food, reduction of fossil energy depen-

dence and environmental requirements will give rise to more complex agri-

cultural landscapes, forming mosaics where contrasted habitat intermingle. In

Section 3, we focus on the simulation of biotic and abiotic flows across agri-

cultural landscapes, and the impacts of adding complexity in process-based

models of these flows. In Section 4, we show how models can generate

transformative knowledge for the design of future agricultural landscapes.

We address this issue via insights from the social sciences (e.g. economy, geog-

raphy), interdisciplinary modelling (notably between social and natural

sciences), and transdisciplinary modelling (i.e. participatory modelling involv-

ing scientists and practitioners). In Section 5, we suggest some avenues for

future research, identifying the need for multiscale and multilevel representa-

tions of agricultural landscapes, as well as their conception and their manip-

ulation. Finally, in Section 6 we conclude this chapter with a key set of

take-home messages for landscape modelling.

2. Are current models relevant to simulate the
complexity of future agricultural landscapes?

The structure of a given landscape results from the accumulation of

past changes (legacy effect) driven by multiscale forces (Houet et al.,

2010). Given current trends, we assume that future landscapes will be more

complex, with a strong intermingling between agricultural, seminatural and

urban habitats. Thus, methods and tools that enable the simulation of these

three types of land cover, and their interaction, are of major importance.
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In this section, we first introduce a way to model the structure and dynamics

of agricultural landscapes. We briefly review how urban expansion may be

modelled and then focus on peri-urban areas which are likely to become

ever more important with the increasing intermingling between agricultural

and urban land uses, and discuss the inclusion of agriculture in cities. Finally,

we introduce seminatural habitats into the landscape mix, and by recalling

their impact on many ecological and physical processes, emphasize the cau-

tion that should be exercised when modelling these important habitats.

2.1 Current approaches to represent the agricultural
landscape structure

Agricultural landscape models describe landscapes as mosaics of fields having

shapes and properties that vary in space and time (Poggi et al., 2018).

Different approaches have been proposed for generating landscapes with

various structures (i.e. the spatial arrangement of land covers), and for study-

ing biotic or abiotic processes (Langhammer et al., 2019). There are two

complementary approaches, raster and vector representations, for modelling

such mosaics, depending on the goal of the study and how their constitutive

parts are handled (Bonhomme et al., 2017; Gaucherel et al., 2006b).

Most existing models use rasters to simulate cell mosaics (Engel et al.,

2012; Gardner, 1999; Pe’er et al., 2013; Saura and Martı́nez-Millán,

2000; van Strien et al., 2016). The landscape is discrete and played out across

a grid, where each grid cell is the smallest elementary spatial unit of the land-

scape and contains information about that unit of the landscape. Begg and

Dye (2015) developed a modelling framework that couples a landscape

mosaic generator and a population module to study the interactions between

the population dynamics of several crop pests and the cropping system.

Engel et al. (2012) designed simple landscape patterns composed by 15 crop

types with varying crop proportions and mean field sizes. A more complex

approach was developed by van Strien et al. (2016) who generated land-

scapes integrating different landscape metrics (e.g. number of patches,

patch size, patch edge contrast), calculated at the field or class levels, which

allowed for variation in the landscape configuration and composition. The

raster-based (or grid-based) approach is particularly suited to the modelling

of gradual landscape dynamics and continuous processes, due to the regular

grid structure facilitating processes operating between contiguous cells.

Real agricultural landscapes display a patchy structure made of contigu-

ous, irregular polygons delineated by rectilinear boundaries, some polygons

having border structures such as hedgerows (Gaucherel, 2008), making the
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vector-based approach appealing (Gaucherel et al., 2006a,b; Inkoom et al.,

2017; Langhammer et al., 2019; Le Ber et al., 2009; Papaı̈x et al., 2014). For

example, Gaucherel et al. (2006a,b) developed a model that simulates

tessellated patches and borders structures. Le Ber et al. (2009) simulated agri-

cultural landscapes defined by two different tessellations (Voronoi and rect-

angular), i.e., the cover of the Euclidian plan by a countable number of

geometric shapes, and two types of cropping pattern distributions (random

or stochastic). Papaı̈x et al. (2014) developed a simple landscape generator

that generates the polygon landscape mosaic based on a T-tessellation algo-

rithm developed by Kiêu et al. (2013). Tessellation models have the advan-

tage of being parametric, meaning that a set of parameters control the main

features of the simulated landscapes. In addition, these models are stochastic,

producing collections of replicated virtual landscapes with similar landscape

metrics (Papaı̈x et al., 2014). This allows testing of the robustness of the

results to changes in residual landscape variability, as landscape ecological

metrics are not sufficient statistically. However, it can prove difficult to

reproduce fine grain spatial structures with such approaches as they do

not capture the full complexity of landscapes nor do they provide realistic

landscape patterns. Combining parametric with nonparametric approaches

may enable this gap to be bridged (Straubhaar et al., 2011).

2.2 Spread of land uses mixing agricultural and urban covers

Urban expansion is an increasing global trend (World Bank, 2020). In

Europe, peri-urban areas characterized by complex landscapes mixing agri-

cultural and urban covers are growing rapidly. These new contexts call for

the constraints and opportunities offered by urban and peri-urban settings to

be explored for the purpose of developing future agricultural landscapes.

2.2.1 Simulating urban expansion

The simulation of urban land use within agricultural landscapes relies on an

understanding and integration of biophysical and social perspectives

(Verburg et al., 2010). The biophysical perspective sets the environmental

conditions (e.g. climate, altitude) determining the global change processes.

The social perspective encompasses at least the demographic development

and rural–urban flows that depend on the territorial context.

The development of cities was initially simulated using a cellular autom-

aton (CA), coupled to a geographical information system (GIS) to define the

neighbourhood effects of various land uses (Couclelis, 1997). Subsequently,

temporal dynamism was integrated into the CA model using stochastic
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process models that describe how one state is likely to change to another state

(Markovian models), given the transition probabilities between actual and

future land use maps (Sang et al., 2011). Guan et al. (2011) stated that such

Markov-CA modelling provides the most suitable approach to study the

temporal and spatial dynamics of land use change. Various models have

been proposed over the last 20 years: CA models (Barredo et al., 2003),

Markov-CA models ( Jokar Arsanjani et al., 2013), the Dyna-Clue model

(Verburg and Overmars, 2009), the Spacelle (Dubos-Paillard et al., 2003)

and Foresight models (Houet et al., 2016) with spatial resolutions spanning

from 1ha to 1 km2. The main challenges for this modelling have been to

take into account spatially explicit, environmental variables that constrain

urban expansion in space (Fig. 1), and irregularities in temporal trends that

affect transitions from current to future landscapes. In particular, model cal-

ibration requires comprehensive and accurate spatial and temporal datasets.

Importantly, these modelling approaches do not consider the large number

of current land uses or potential new uses, or the specifics of the peri-urban

zone in the transition between dense urban and rural areas.

2.2.2 Modelling agriculture in complex peri-urban landscapes

Beyond the ongoing scientific debate about the use of the term peri-urban, its

precise location, spatial extent and the definition of boundaries (Friedmann,

2016), peri-urban agriculture can be defined empirically as the farming

performed in the space close to towns (FAO, 1999). A growing literature

characterizes the dynamics of rural–urban areas using process-based models

but these rarely focus on farming in peri-urban landscapes (Silveira et al.,

2006). Statistical approaches have been applied at the patch scale to assess

the transition probabilities of grid patches from one land-use category to

another and notably the impact of urbanization in the land-use patch structure

of peri-urban areas. These models are used to assess the loss of cultivated land,

and the deterioration of the site conditions of unconverted peri-urban culti-

vated land due to the fragmentation induced by urban sprawl (Li et al., 2017;

Pribadi and Pauleit, 2015). Agriculture in peri-urban landscapes is usually con-

sidered in terms of a distance from city-centres, as a distance-gradient inspired

by the classical Von Th€unen’s conceptual model (Sinclair, 1967; Von

Th€unen, 1826). For Von Th€unen, a theoretical agricultural society would

be one in which agents live in a single settlement and use the surrounding area

to produce essential and nonessential goods. The distance between urban set-

tlements and the areas of agricultural production are therefore extremely

important for the placement of these products. This approach has been used
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Fig. 1 Illustration of urban expansion (from left to right) in a river delta flowing into theMediterranean Sea, as modelled with a cellular autom-

aton using the NetLogo® platform. The urban areas (brown areas) are constrained by the distance to the road network (red lines) and the

distance to the sea. Land uses derive from a study on the Lower Orb river fluvial plain by Saint-Geours et al. (2015).
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in an agent-based simulation model to generate a wide range of agricultural

landscapes (Macmillan and Huang, 2008). But, distance to a main urban set-

tlement is, on its own, not sufficient to characterize agriculture in complex and

multipolarized peri-urban landscapes, which are diverse, plural and dynamic

(Sanz Sanz et al., 2017, 2016). Farming systems connected to cities are indeed

characterized by a high degree of complexity related to anthropic develop-

ments as well as to the strategies of the different stakeholders (Zasada et al.,

2013). This complexity is not integrated in the existing process-based agricul-

tural landscapes generators (Langhammer et al., 2019). Furthermore, land-

scape change models operating at an aggregated level (including dynamic

process-based simulation models) have not been used to predict changes in

peri-urban agricultural land use such as intensification, because intensification

is a function of themanagement of physical resources within the context of the

prevailing social and economic drivers (Lambin et al., 2000).

Most attempts to evaluate spatial suitability of agriculture in peri-urban

landscapes are partly based on qualitative approaches requiring thorough field-

work associated with statistical and spatial analysis based on GIS (Thapa and

Murayama, 2008). Farming systems shape agricultural landscapes, as observed

by Rizzo et al. (2013), and thus every type of peri-urban agriculture has its

“spatial signature”. These are particular spatial structures whose arrangement

is identifiable in space resulting in a set of common characteristics, such as crop

plot shape, location of farmstead, border relation between farming and urban

zones, etc. Complex peri-urban agriculture has recently been modelled by

social scientists for the purpose of landscape planning and policy-making by

using simple, predictive probabilistic models based on free available data.

Sanz Sanz et al. (2018) classed peri-urban farming into spatial units of

peri-urban agriculture (USAPU) and proposed a multivariate statistical

modelling approach at the NUTS-3 level, that is a small region defined by

the European Union for specific diagnoses and statistics (Box 1).

An alternative approach proposed by urban economists for small study

areas has been to use peri-urban farm econometric location models based

on exhaustive databases at the plot scale and often complex mathematical

tools. Geniaux et al. (2011) developed a spatialized hedonic model to esti-

mate land-use change using mixed geographically weighted regression

(MGWR) techniques with a two-stage model that links agricultural and

developable land markets.

2.2.3 Inclusion of agriculture in cities

Urban agriculture, which can be defined as the cultivation of crops and rea-

ring of animals for food and other uses within cities (Mougeot, 2000), may
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BOX 1

Operational modelling of peri-urban farmland in a Mediterranean context. Sanz

Sanz et al. (2018) classified peri-urban farming into spatial signatures, referred to

as spatial units of peri-urban agriculture, using a multivariate statistical approach.

This was done using an in-depth analysis of a local case study in the Avignon,

France, peri-urban area, involving surveys, on-site landscape reading, remote

sensing analyses and interviews. The classification obtained from sevenmunicipal-

ities was subsequently used to train a fractional regression model, which was then

tested on the rest of this French department (similar to NUTS-3 level; EC European

Commission, 2018) to predict the presence and actual proportion of each spatial

signature in the total agricultural land of each municipality (151 municipalities).

They defined categories of municipality according to the distribution of spatial sig-

natures that open perspectives for public action on peri-urban farming. While pro-

viding reliable predictions regarding peri-urban developments, this model proved

to be simple and operational for collective decision-making on peri-urban planning.

Incorporating this concept of spatial signatures in Markov-CA models (Guan et al.,

2011) simulating urban expansion offers promising developments for the study of

farming dynamics in the complex peri-urban areas of future landscapes.
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lead to a second green revolution (Armanda et al., 2019). Despite being stud-

ied in many developing countries (Armanda et al., 2019; Dossa et al., 2011;

Mawois et al., 2012), intraurban agriculture suffers from the lack of a model-

ling framework for elaborating spatiotemporal dynamics. This may be due to

the divergence of spatial scales in land use change models (LUCC) between

intraurban agriculture and traditional agriculture. In contrast to the relatively

large-scale and long-term dynamics of traditional agriculture, intraurban

agriculture acts at a local scale in space-confined cities, sometimes on verti-

cally inclined surfaces such as building walls (Specht et al., 2014). Intraurban

crops are also based on short cycles and with wide crop diversity (Mawois

et al., 2012).

Nevertheless, it is necessary to simulate the spatial allocation of urban

agriculture and its temporal dynamics. A potential avenue to explore is to

create a specific LUCCmodel by combining the factors affecting spatial suit-

ability of urban agriculture (Thapa and Murayama, 2008) and the leafy veg-

etables land use model (LYLU) developed by Mawois et al. (2012). The

LUCCmodel estimates the surface area of each leafy vegetable that depends

on plant specificities, amount of resources in the farm, and the sales channel

for these products. In the future, such an approach combining LUCC and

agronomic models should be able to guide decisions for the estimation of

agricultural food supply in urban or peri-urban areas.

2.3 Considering the structure of seminatural habitats

Seminatural habitats have the potential to deliver bundles of desired ecosys-

tem services because of their influence on the community ecology of crop

pests and beneficial organisms (Bianchi et al., 2006; Burdon and Thrall,

2008; Chaplin-Kramer et al., 2011), on water flow regulation, soil loss

mitigation or pollutant retention and degradation (Dollinger et al., 2015).

The structure of seminatural habitats embedded in landscapes dominated

by agricultural land can be highly variable. These can range from wild

and cultivated elements being almost undistinguishable and intermeshed,

such as in tropical agroforestry landscapes (Tscharntke et al., 2011), to being

strongly separated such as in intensive monoculture landscapes, with the area

and spatial distribution of remnant wildlands varying greatly (Fig. 2).

An enhanced diversity of land cover types, stemming from the inclusion

of noncrop and nonmanaged areas of different patch sizes and shapes, can

result in higher levels of complexity, both in terms of landscape composition

and configuration (Perovi�c et al., 2015). The boundary types (ecotones) and
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Fig. 2 Spatial structure of the agroecological interface across different farming systems. Source: ©IGN.
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contrasts between patches affect the dispersal of species and the frequency

and probability of colonization of neighbouring patches (Perovi�c et al.,

2015; Sattler et al., 2010). These different land cover types can contribute

complementary resources during the life cycles of each species, thereby

increasing species diversity and favouring complex trophic network rela-

tionships (Dunning et al., 1992; Massol et al., 2017; Perovi�c et al., 2015;

Philpott et al., 2020; Tscharntke et al., 2012). Seminatural habitat cover

on farms is generally assessed by national maps to support the planning

and implementation of agri-environmental policies meant for an accurate

spatial targeting of biodiversity restoration and preservation (Sullivan

et al., 2011). This approach relies on the integration of available datasets,

GIS and remote sensing. Remote sensing techniques are very effective when

there is a high contrast between neighbouring habitats, for instance to map

scrub on seminatural grassland habitats in Ireland (Parr et al., 2006; Sullivan

et al., 2011). Based on farm agronomic and economic data and farm practice

surveys, broad scale land use classifications have been used to build indicators

and identify areas of High Nature Value farmland in France (Pointereau

et al., 2007), Belgium (Samoy et al., 2007) and Hungary (Bel�enyesi et al.,

2008). Sullivan et al. (2011) developed a model to investigate the relation-

ships between the percent seminatural area and a number of variables that

reflect surrounding landscape features and farm management practices.

They estimated the likely distribution of hotspots or areas with high cover

of seminatural habitats at a regional scale. The main drawbacks of these

techniques is that they are site specific and depend on the availability and

reliability of landscape data (Pointereau et al., 2007; Sullivan et al., 2011).

We show in Section 2.3 that landscape models are appropriate tools to sim-

ulate the landscape mosaic composed of cultivated and seminatural patches

and their interactions, thereby providing ways to study the relationships

between landscape patterns and the landscape processes of interest.

Linear corridor, seminatural habitats, such as field boundaries (hedge-

rows or ditches), play a major role in the landscape because of their impor-

tant impact onmany agroecological processes. Such border structures should

be modelled with care, though, due to their low-ground coverage and the

spatiotemporal constraints that they can impose at the landscape scale. For

example, Gaucherel et al. (2006a,b) used models based on Gibbs energy

terms to control pairwise interactions between landscape elements and to

simulate patches and certain border structures. Alternatively, multilayer net-

work frameworks can be used to model the interactions between the differ-

ent geometrical elements of the landscape (Box 2). In previous examples, the
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BOX 2

Illustration of a landscape stochastic generator and its parameter statistical infer-

ence. The landscape is represented as a collection of n geometric objects which

can be of different types, such as polygons (i.e. habitat patches such as fields) or

linear segments (i.e. linear landscape elements such as rivers or hedges), depicted

in (A) and (B). Polygons can be of different categories such as crops, natural hab-

itat, etc. Linear segments can be allocated with categories as single-species

hedgerows, mixed-species hedgerows or no hedgerows. Spatial or functional

relationships among landscape objects are captured by a graphical representa-

tion of the landscape. Interactions between objects are modelled through a
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border structures are constrained by the polygonal meshing of the agricul-

tural fields. However, seminatural habitats (e.g. watercourses) are more

perennial imposing their location on agricultural elements. Vinatier and

Chauvet (2017) therefore developed an interesting framework that they

applied to the simulation of road networks. They proposed a hierarchical

model based on successive interleavings of deformed networks, with the

deformation being realized on the basis of a reverse Douglas–Peucker algo-

rithm (Douglas and Peucker, 1973). This model could be adapted to account

for external variables influencing the network of linear elements such as

topography, wind direction, connectivity of habitat patches, etc.

Spatial-point seminatural habitats, such as trees, also deserve inclusion in

models due to their potential role in the spread of organisms. For instance,

Rossi et al. (2016) simulated the distribution of isolated trees in a landscape

using an inhomogeneous Poisson point process model. Remarkably, they

discovered that trees outside forests constituted the main source of landscape

connectivity for the pine processionary moth, suggesting a potentially huge

role in forest insect pest dispersal and invasive species expansion.

BOX 2—CONT’D
multilayer network (Boccaletti et al., 2014; Kivela et al., 2014), as shown in (C). Each

layer corresponds to an object type, and each single-network layer represents

the interactions among objects of the same type. Interactions between different

network layers represent interactions between objects of the different types.

Landscape descriptors (D-G) capture important landscape characteristics and

features of both patches and linear elements. Typically, three groups of landscape

descriptors are defined (Zamberletti et al., 2020): (i) composition metrics

(D) correspond to the contributions of individual objects; (ii) spatial interaction

metrics measure the interaction between two adjacent objects of the same type

(E) or of different types (F); and, (iii) temporal metrics (G) assess the difference

between configurations over two consecutive time steps. These descriptors

can be incorporated in a probability measure describing the energy of the current

configuration, i.e. a Gibbs energy function (Cressie, 2015; Van Lieshout, 2019), to

infer parameters governing the real allocation and perform landscape simula-

tions starting from a given parameter setting. Starting from a real landscape

(H), simulations of landscape configurations can be performed using an iterative

algorithm (Metropolis-Hastings algorithm) converging towards the stationary

distribution of the target model (e.g. Descombes (2013)). The model generates

virtual but realistic agricultural scenarios (I) featuring different spatial patterns

(e.g. geometry, connectivity) and temporal patterns (e.g. crop rotation).
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In the future, the debate regarding the notion of aggregation or fragmen-

tation of the seminatural habitats within territories, i.e., the land-sparing vs

land-sharing strategies (Fischer et al., 2008; Grass et al. , 2021;Mitchell et al.,

2015), will continue. Neutral models as those presented above and those dis-

cussed in the Section 2.1 may inform this debate. Building such models to

consider different landscape constraints may shed light on efficient designs

of configurations of seminatural habitats for increasing themultifunctionality

of agricultural landscapes.

3. Spatial flows and interactions across agricultural
landscapes: Simulation of biotic–abiotic
interrelations and trophic networks

For the representation of future agricultural landscapes, complex

biotic and abiotic interactions deserve specific attention as many ecosystem

services (e.g. erosion limitation, pest regulation) derive from these interac-

tions (de Groot et al., 2010; Fisher et al., 2009). Processes underpinning

these interactions can take place in fields or noncultivated areas (e.g. hedge-

rows, ditches, ponds, wetlands) and at the local or landscape scale (Power,

2010). Interestingly, a better understanding of these interactions may open

ways of deploying nature-based solutions (Nessh€over et al., 2017; Rey et al.,

2015), which could enhance the resilience of agricultural landscapes against

extreme weather events, pest and disease outbreaks, and other anthropo-

genic stressors, and decrease their dependence on the use of agricultural

inputs such as fertilizers and pesticides (Duru et al., 2015).

Here, we first address the modelling of spatial flows in complex land-

scapes. Then we present how interacting biotic and abiotic flows are cur-

rently modelled in agricultural landscapes, and we discuss concepts and

models underpinning the simulation of multitrophic interactions in complex

landscapes, notably useful to unravel the processes at stake in natural regu-

lation of pests which is pivotal in an agroecosystem favouring biodiversity.

Finally, we highlight current trends in measuring and calibrating models of

spatial processes based on large spatiotemporal datasets.

3.1 Modelling spatial flows in complex landscapes

In landscapes characterized by a strong intermingling between seminatural

habitats, crops and built areas (see Sections 2.2 and 2.3), modelling of spatial

flows, such as the movements of individuals, particles, chemicals and fluids

(wind, water), between those landscape elements is of primary importance
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for a better understanding of landscape resilience. A variety of mathematical

tools are available in ecology, such as in random walk models or stochastic

differential equations at the scale of an individual for instance or

reaction–diffusion models at the scale of a population, but their use in the

context of complex environments may require further methodological

developments (see Vinatier et al. (2013) for a review). Fluids, such as water

and air, are generally considered as three-dimensional continua, character-

ized by density and velocity fields that vary in space and time. Modelling

these fields and their related compartments (atmosphere, vegetation, soil sur-

face, subsurface) at the landscape scale involves uniting approaches from sev-

eral scientific disciplines, including ecology, and the earth and physical

sciences. Except for very simple circumstances, these modelling approaches

are not continuous and no general analytical solutions exist to solve the

equations representing 3D flow processes (Singh and Woolhiser, 2002).

Equations are derived from physical laws (e.g. Darcy laws) and involve

parameters that could be measured in the field (e.g. hydraulic conductivity).

Here, we present examples of spatial flow representation and modelling in

agricultural landscapes in the cases of (i) physical processes and (ii) biological

processes.

In landscapes in which increased complexity of geometrical structures

stems from the introduction of numerous linear or point elements of signif-

icant height, such as hedgerows in bocage landscapes or trees in agroforestry

systems, dispersal of airborne propagules may be profoundly affected by dif-

ferent airflows and turbulences between crops cultivated in open lands and

crops surrounded by hedgerows or cultivated under shade trees. As an exam-

ple, tree architecture and its interactions with microclimates may drive the

dynamics of fungal diseases in crop fields (Motisi et al., 2019). Spatially

explicit models for the simulation of turbulent flows within and above veg-

etation exist (Dupont and Brunet, 2008), and have already been applied to

pollen dispersal (Dupont et al., 2006) and wind gust inside forests during

windstorms (Dupont and Brunet, 2006), but their application to highly struc-

tured environments covering a large extent with varying height of linear

elements remains challenging. The inclusion of hydrological infrastructures

forming a high-density network within spatially explicit models also requires

the development of specific models to handle the distribution of water within

these infrastructures. The hydrological model MHYDAS (Moussa et al.,

2002) and its application to a hydrological network on a hilly landscape opens

interesting future avenues to explore. In flatter areas through which linear

elements with higher flow rates circulate, e.g., streams or channels, hydraulic

models are most suited (Baume et al., 2005; Brunner and Bonner, 1994).
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Modelling dispersal of organisms and matter in landscapes comprising

agroecological elements with specific geometrical properties (e.g. hedge-

rows, field borders) needs to be treated cautiously to avoid artefactual effects,

such as might result from the incorrect estimation of population densities

at the interface between elements. Hedgerow networks may act both as

ecological corridors along which animal species disperse and as barriers to

dispersal, in other circumstances. These source and sink structures for var-

ious organisms are classically modelled using spatially explicit models that

consider position-dependent mobility and reproduction parameters, at indi-

vidual and population scales. Depending on various factors such as the size of

the population under study or the complexity in individual behaviour that

it is necessary to consider, a wide range of mechanistic approaches can be used,

from differential equation models to individual-based models (Bourhis et al.,

2015; Preisler et al., 2013; Soubeyrand and Roques, 2014; Vinatier et al.,

2011). In these models, space is either treated as continuous or as a discrete,

regular grid (lattice). Grid-based population models can offer an efficient

way to model dispersal because dispersal kernels are easily discretized on a reg-

ular lattice (Ricci et al., 2018; Slone, 2011). At the landscape scale (i.e. a large

spatial extent), however, the limitations in the grid spatial resolution makes it

difficult to consider elements with low grid coverage, such as linear or point

elements. In contrast, Roques and Bonnefon (2016) developed a promising

approach based on a system coupling two-dimensional (2D) and one-

dimensional (1D) reaction-diffusion equations describing the population

dynamics of surface and linear elements of the landscape. This approach proved

particularly relevant when the presence of a corridor or a barrier (e.g. roads,

rivers, hedgerows) significantly alters the model outcomes. Using the example

of the range expansion of the tiger mosquito, Aedes albopictus, in metropolitan

France, the 2D/1D approach provided a better fit and a higher predictive

power than a classical 2D reaction-diffusion approach, outlining the impor-

tance of considering explicitly corridors such as the road network.

3.2 Simulation of biotic and abiotic interactions in complex
landscapes

Simulating biotic-abiotic interrelations requires interdisciplinary

approaches. Each discipline may have developed, independently, its own

landscape modelling approaches, resulting in an unbalanced representation

of biotic, abiotic processes depending on the core discipline of the modellers

(Vinatier et al., 2016).

Despite some attempts to unify the biotic and abiotic processes in the

same modelling framework (Vinatier et al., 2016), there remain a number
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of model design, space-time and computational challenges to be met. We

highlight these challenges using the functioning of a hydrological man-made

network (noncoated ditches) in an agricultural watershed as a case study

(Box 3). Ditches are both hot-spots of plant biodiversity and vectors of

water flow transport in agricultural watersheds, thus giving rise to interactions

BOX 3

Example of a biotic-abiotic coupling using spatially explicit models. Rudi (2019)

aimed to understand to which extent ditch management regimes influences

ecohydraulic services provided by vegetation. An explicit representation of the

hydraulic network provided by ditches in a Mediterranean watershed was pro-

posed, with a focussed on the interactions between vegetation and water,

sediments and plant propagules transport through hydrochory. Following con-

tinuum observation-experimentation-modelling, a spatially explicit model was

developed at the grain of a ditch section and the extent of a small watershed,

then applied to simulate indicators of service linked to water, weeds and soil reg-

ulation. The model, built on concepts from two contrasting disciplines, ecology

and hydraulics, is expected to help design nature-based solutions on the basis of

plant biodiversity for the regulation of water and soil resources.
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whose comprehension relies on the multidisciplinary science of ecohydrology

(Porporato and Rodriguez-Iturbe, 2002). In terms of model design, the sim-

ulation of the abiotic, water component, which drives the functioning of

the hydrographical network, is carried out by assuming an Eulerian represen-

tation of the flows. In the Eulerian representation, water is modelled as a con-

tinuous quantity following mass conservation laws. In the case of vegetated

ditches, the biotic components in direct interaction with the water flow, i.e.,

the plants and their propagules, are generally modelled as discrete elements by

adopting an object-oriented Lagrangian representation. Integrating the biotic

component (vegetation) in hydrological infrastructures used a trait-based

approach (Merritt et al., 2010) that considers the whole plant community

response to the flows as an aggregated property of the system, instead of con-

sidering the aggregation of individual plant-flow interactions. However, such

trait-based approaches, although widely adopted in plant community ecology

(Violle et al., 2007), has rarely been considered in terms of the specific traits of

interacting with water flows and this will require a large sampling effort to

establish the appropriate traits and their value for the wild plant species found

in landscapes.

For the space–time challenge, the complex dynamics of biotic and abi-

otic components acting at different time scales require a coupled modelling

of short, intense events (e.g. rainfall events and runoff ) andmore continuous

processes (e.g. plant community selection and growth). In ecology and

hydrology, there are a wide range of models for simulating rainfall and runoff

events (see Moradkhani and Sorooshian (2008) for a review), and a diversity

of models simulating weed community dynamics in agricultural landscapes

(see, for example, Duru et al. (2009); Gardarin et al. (2012)) and riparian

communities (Garcı́a-Arias and Franc�es, 2016). These two types of models

are not readily coupled because the response of vegetation to a series of dis-

turbances is poorly understood, due to the lack of long-term monitoring

(Blomqvist et al., 2009), a paucity of vegetation community response param-

eters and the difficulty of disentangling the underlying effects of hydrology

and agricultural practices. This limited capacity to model vegetation

response to disturbance impairs the inclusion of the effect of vegetation

on pulsed fluxes of water due to uncertainties in our understanding of veg-

etation succession and development. Fine-scale ecohydraulic models simu-

lating the interaction between a plant and a Eulerian flow do exist (Nepf,

2012), but their complexity entails high computational costs that hinder

their use at the landscape scale.

The computational challenge would suggest that it is infeasible to model

individual plant-flow interactions at the landscape level. We might,
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however, use upscaling methods to scale-up from local observations/

modelling/simulations to landscape simulations. High-frequency monitor-

ing procedures could be used to define a phenomenological model of the

structure–function relationship of the biotic system and its effect on abiotic

processes at a local scale. To this end, several landscape elements (plots,

hedgerows, ponds, etc.) were recently equipped with different sensors to

measure all parameters characterizing the system. In vegetated ditches, biotic

parameters have been monitored using drones to measure the spatial vari-

ability and evolution of plant cover porosity (Rudi et al., 2018; Vinatier

et al., 2018). Abiotic parameters might also be assessed in controlled condi-

tions in hydraulic flumes with different organizations of vegetation patches

to measure the friction exerted by vegetation as a function of flow rates and

water height (Vinatier et al., 2017). These parameters and metrics observed

at a local scale could then be scaled-up for exploitation at the landscape scale

(Box 3). Another way to meet the computational challenge would be to run

several simulations of a fine-scale ecohydraulic model to produce a set of

relations between biotic/abiotic parameters. The use of machine learn-

ing/artificial intelligence to detect, model and predict the structure–function

response of the vegetation to flows opens promising perspectives to face the

current numerical issues that slow and limit the exploration of these

relationships.

3.3 Simulation of multitrophic interactions in complex
landscapes

The simulation of interaction/trophic networks among living communities

at the landscape scale remains a hard task (Tixier et al., 2013). Most recent

advances were made using Bayesian network approaches (H€aussler et al.,

2020) or path analysis (Beduschi et al., 2015; Jacquot et al., 2019). It is par-

ticularly difficult because it encompasses both the interactions between spe-

cies (or trophic groups) and their dispersal at multiple scales (fromwithin the

plot to the landscape scale or even the region). Unravelling these interactions

is crucial because identifying the processes that lead to the natural regulation

of pests and diseases are sorely needed in low-input agriculture (Macfadyen

et al., 2009). In the diversified landscapes of the future, richer plant diversity

will be deployed, from basic intercropping that mixes two cultivated species,

via highly biodiversified patches inside or near the cultivated fields to large

patches of natural or seminatural areas maintained in the landscapes (e.g. for-

est patches). We hypothesise that in areas with higher plant richness, trophic

networks will become more complex. To date there are no multiscale and
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multitrophic model able to address comprehensively the issue of optimizing

the integration of plant biodiversity at all these scales in order to maximize

the services supported by associated communities, and primarily the natural

control of pests and diseases or the conservation of biodiversity.

Simulating trophic interactions across heterogeneous landscapes can be

done with models based on the metacommunity concept (Leibold et al.,

2004;Massol and Petit, 2013) that simulates interactions within and between

the communities in distinct patches, e.g., cultivated fields or seminatural

areas. If flows of individuals (e.g. beneficial predators spreading from diver-

sified patches to cultivated fields) are well described, the metacommunity

framework (Fig. 3A) is powerful to simulate the overall dynamic in patches

and within the landscape. To date, metacommunity models have not yet

been implemented on concrete cases to answer applied issues. The challenge

for simulating innovative landscapes which include new patterns of plant

Fig. 3 (A) Classical metacommunity model (meta-food web: each community includes a

food webmodel) as emphasized by Massol et al. (2011); (B) metacommunity model with

foraging zones; and (C) metacommunity model with Individual Based Model in the

foraging zone.
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diversification around and inside cultivated fields is to tackle the issue of the

zone of influence of these habitats and their potential as a sink for beneficial

organisms. This could be achieved using spatially explicit models where

each plant diversified patch has a surrounding “foraging zone” (Fig. 3B).

The concept of foraging zone has more often been used in marine or mam-

mal ecology to represent the area where animals can forage (Bailleul et al.,

2007; Weimerskirch et al., 2009). In the case of natural enemies, this con-

cept might be helpful for the prediction of the effect of each plant diversified

patch on the regulation of pests in the surrounding cultivated fields. Foraging

zones may be described using differential equation models or, alternatively,

simulated using individual based models (Fig. 3C) which are particularly

suitable to simulate species dispersal in heterogeneous environments

(Collard et al., 2018). Another concept that could be used to rethink inter-

actions between communities at the landscape scale are “island ecology”

theories. This framework is particularly useful for considering the effect

of the size of patches and their distance on immigration and extinction rates

and finally on species composition of patches (Warren et al., 2015).

Macarthur and Wilson (1967) stated that the diversity of islands could be

formalized by a diversity-dependent dynamic balance between immigration

and extinction. They assumed that the immigration rate for an island falls as

the number of species on the island increases and that the rate of extinction of

species increases as the number of species increases. Such island ecological

concepts may prove useful for the study of plant-diversified patch-islands

in a sea of homogeneous cropped land (landscape or field).

Whatever the approach, the parameterisation of metacommunity models

is a crucial step towards designing of resilient agroecosystems. While met-

acommunity models have been extensively studied from the theoretical per-

spective, they have rarely been parameterized with real data. The difficulties

of this are twofold. The first challenge consists in characterizing the dispersal

of the most important species (pests, natural enemies, alternative preys), as

data remain scarce. The knowledge of dispersal capacities as well as effect

of landscape elements, especially barrier or corridors, are pivotal for optimiz-

ing the trade-off between the dispersal of beneficial communities and pests.

The ongoing developments of monitoring tools, such as video tracking sys-

tems, and increases in the performance of signal or image processing using

artificial intelligence, our knowledge regarding the dispersal of pests and

other trophic groups will undoubtedly improve.

The parameterization of the interaction between trophic groups is the

other challenge to take up in order to get realistic and useful food web
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models. Recent technological advances of DNA metabarcoding approaches

make possible unravelling trophic links between preys and predators (Mollot

et al., 2014). These approaches are powerful as they uncover predator-prey

consumption links that may be difficult to observe in the field, especially in

arthropod communities. However, such methods are difficult to apply in a

dynamic way. Another promising approach that could be particularly valu-

able for understanding community dynamics and identifying interactions is

the combination of automated imagery in-field and artificial intelligence

detection algorithms. The CORIGAN pipeline (Tresson et al., 2019) pro-

vides hierarchical classification of the detected species on pictures taken in

the field, for example. Such approaches have the advantage of: (i) making

in-field identifications of taxa at play in communities with a minimal distur-

bance; and, (ii) observing the dynamics of interactions between taxa. They

may also enable the measurement of nontrophic interactions (avoidance,

cooperation) that are believed to be important but are often not considered

in the interpretation of food webs (Loreau and de Mazancourt, 2013;

Ohgushi, 2008). Such nontrophic interactions could be particularly impor-

tant at the edges between cultivated habitats and noncultivated habitats.

Although models will be key tools for designing the landscapes of the

future, their relevance will depend on the quality of their parametrization.

New methodological approaches for characterizing communities and their

interactions represent a real opportunity to parameterize multiscale multi-

trophic models.

3.4 Measuring and calibrating spatial processes from
large spatiotemporal datasets

Investing greater confidence in the spatiotemporal models discussed so far in

this paper, will require that we collect data at multiple spatial and temporal

scales, test the model simulations against this data and validate the model

behaviours regarding variations in their inputs. In this subsection, we focus

on the dispersal of organisms as an illustration of the variety of datasets that

might be analysed.

Estimation of the dispersal capabilities of organisms is crucial for a con-

sistent model of spatiotemporal dynamics. For organisms that disperse pas-

sively, an observed colonization event results from both a dispersal process

and the subsequent survival, and it is often difficult to disentangle these pro-

cesses. For organisms that disperse actively, the behaviour of individuals has

to be considered in addition to dispersal and survival. In heterogeneous envi-

ronments and in complex community structures, heterogeneity in survival
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and modification of behavioural strategies can blur the estimation of actual

dispersal. To cope with these difficulties, collecting high-resolution spatio-

temporal data are essential, either by sampling populations at given locations

or by tracking individuals. Citizen scientists have contributed millions of

observations of species to databases over the past decade (e.g. Ries and

Oberhauser (2015) or Tulloch et al. (2013)) and these provide invaluable

sources of information for studies on genetics, trophic ecology, etc. These

databases suffer, however, from a number of shortcomings and biases, as they

often result from heterogeneous sampling protocols with unknown sampling

efforts. Data from digital sensors are also now being collected at wide spatial

scales, and these might in the future provide estimates of species dispersal as

part of the era of Big Data. These digital data offer the advantage that they

are documented, and they can be preserved for later species identity verifica-

tion (Kays et al., 2020). Recent imagery and tracking systems (Dell et al.,

2014; Hodgson et al., 2018; Kays et al., 2015; Steenweg et al., 2017), com-

bined with new developments in machine learning (LeCun et al., 2015; Olsen

et al., 2019;W€aldchen andM€ader, 2018), could provide data in real-time and

at unprecedented resolution, that will prove invaluable for the study of habitat

suitability, ecological interactions, impact of climate change, response to

anthropogenic disturbance, effect of conservation policies, etc.

Inference of dispersal parameters from landscape models has to accommo-

date a diversity of data types (pest occurrence or abundance, crop phenology,

agricultural practices, etc.), potentially collected at multiple temporal and spa-

tial scales, some of them massive (Big Data from remote imagery or

next-generation sequencing in the case of genetic studies), others possibly spo-

radic (e.g. field measurements, survey on technical operations), and generally

giving access to a partial and indirect observation of the mechanisms under

study. In this context, hierarchical modelling approaches offer a framework

for parameter inference as it decomposes the model into multiple layers

encompassing the set of parameters, the process at stake and the observation

process (Cressie et al., 2009). It can cope with multiple, simultaneous obser-

vation processes, operating at different scales, and their related uncertainties

and errors. The complexity of hierarchical models, however, can lead to

models whose likelihood functions are analytically intractable and cannot

be solved without the use of simulation or numerical approximation tech-

niques. Hierarchical Bayesian frameworks are particularly convenient when

dealing with heterogeneous data (Clark, 2004). These rely on specific estima-

tion algorithms to infer parameters using Monte Carlo methods. We would

note, however, thatMonte Carlomethods generally require a large number of
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iterations, making them difficult to use when the process model takes time

to simulate. In that case, classical optimization tools could bemore appropriate

to find the parameters maximizing the likelihood function even if they

render the computation of uncertainty around the estimated values difficult.

In the particular case of Gaussian latent variables, the integrated nested Laplace

approximation (INLA) approach is recommended (Illian et al., 2013). When

comparedwithmathematical models, simulationmodels (e.g. individual-based

models) offer the possibility of incorporating fine-scale and complex processes

but can lead to intractable likelihood functions.Where this is the case, approx-

imate Bayesian computation (ABC; Beaumont (2010)) and pattern-oriented

modelling (POM; Grimm et al. (2005)) may be used to infer parameter values.

These methods are based on intensive simulations of the model and the com-

parison of model outputs to data through summary statistics and a measure of

quality of fit. Although these different methodologies provide interesting and

powerful tools that help us to move from pure correlative data analysis to an

integrative analysis explicitly introducing the underlying processes of interest,

model complexity and parameter identifiability remain key issues.

Model exploration is classically performed through global sensitivity

analysis. In the case of spatial models, however, this is challenging because

of the complexity of integrating the landscape as an input factor and the con-

sideration of spatial outputs. Spatial sensitivity analysis evaluates howmodels

respond to landscape descriptors. These descriptors do not define a unique

landscape but rather decompose landscape variability into a measurable and

controllable component through quantitative variables and a residual vari-

ability. It is important therefore to build landscape replicates for each set

of descriptors to perform a robust sensitivity analysis (Papaı̈x et al., 2014).

In the literature, three strategies are described to deal with spatial outputs:

mapping local sensitivity indices to study correlations with landscape char-

acteristics (Saint-Geours et al., 2014); performing the sensitivity analysis on

the components of a multivariate analysis (Lamboni et al., 2011); and, sum-

marizing the spatial output as nonspatial output to use classical sensitivity anal-

ysis methods. Other methods to explore model outcomes use scenarios, i.e. a

set of contrasting initial conditions and parameters. Landscape scenarios can

encompass alternative landscape structures and land-use organizations to

explore ways to increase sustainability. They can also help assess the effects

of various political decisions, social or environmental contexts, and evolutions

of landscape systems. Simulating scenarios provides a viable approach to antic-

ipate the impact of changes on agricultural landscapes and to pinpoint poten-

tial pathways to be explored (Tieskens et al., 2017; Verburg et al., 2016).
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A major challenge lies in the adoption of such results for policy applications,

which essentially demands the correspondence of model output to real world

data (Topping et al., 2013).

4. Learnings from social sciences on how landscape
models can “transform” reality

“This is just a model!” is sometimes heard when landscape modelling

is discussed with practitioners or policymakers. This sentence expresses a

scepticism towards the social utility of modelling and a perception of models

as rather hypothetical than proper knowledge. But is modelling really a vain

thing for action and decision? Can we foster the capacity of models to gen-

erate usable and transformative knowledge for future agricultural landscapes?

These questions can be addressed via a focus on social sciences insights. We

first examine how landscape modelling is used in social sciences to generate

knowledge and/or action (Section 4.1). We then use the performativity

concept (a concept from social sciences that aims to understand how theory

and knowledge can create or shape a new reality in the field) to analyse how

modelling in general can foster the capacity to change the reality of land-

scapes (Section 4.2).

4.1 Landscape modelling in social sciences

Much research has been done in the social sciences and in interdisciplinary

science incorporating the social sciences on the subject of landscape model-

ling. This research is often used by policymakers, practitioners and aca-

demics to identify and shape strategies and objectives for public action or

to evaluate the state of progress and the incomes of measure implemented.

While not claiming to be exhaustive, we identify three main types of land-

scape modelling involving social sciences according to their approaches and

the ultimate aim of the model.

4.1.1 Comprehensive ex-post research on in situ drivers of landscape
changes

A great deal of landscape modelling studies focuses on deciphering the tra-

jectory of real landscapes (Benoı̂t et al., 2012; Bieling et al., 2013; Hersperger

and B€urgi, 2009;Mignolet et al., 2004;Mottet et al., 2006; Serra et al., 2008;

Xiao et al., 2014). The approach is generally based on an analysis of the real

landscape historical evolution in terms of land cover (Fuchs et al., 2015)

and/or farming practices (Medley et al., 1995) with the aim of understanding
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the socioecological drivers of landscape change. The drivers are commonly

political (e.g. agricultural policy, subsides or regulations), economic (e.g.

markets and commercialization opportunities), cultural (e.g. public atti-

tudes, values and beliefs), technological (appearance and spread of new tech-

nologies for the use of natural resources or for cropping), and natural/spatial

factors (e.g. soil characteristics, climate change, the spatial configuration of

landscape patches).

Themain added value of this type of landscape research is that it enables an

improved understanding of the human and social mechanisms behind land-

scape change. It also enlightens us about the barriers to landscape change.

These types of landscape research have shown that, except in the case of non-

anthropogenic (i.e. wild ecosystems) and abandoned landscapes, there is never

a single driver that operates alone to determine landscape change, but rather a

combination of many different drivers that come into play (B€urgi et al., 2005;

Plieninger et al., 2016). This characterizes the inevitable complexity of the

landscape as an object of socioeconomic research and action.

4.1.2 Ex-ante research for in silico evaluation of scenarios or policy
measures

Computational, in silico, research has been used to evaluate and simulate

public policies or behavioural strategies in spatially explicit or simplified

landscapes (Overmars et al., 2007). The approach is based on simulation

models (Box 4) and typically evaluates the design of new instruments and

strategies of landscape change (Martinet, 2013). It is important to note that

increasingly research focusses on the combination of multiple and inter-

connected functions, measures and human practices within the landscapes

(Groot et al., 2009). Such multifunctional landscape modelling research

enables the visualization and comprehension of trade-offs between services

(Box 4; see also for example co-viability theory (B�en�e and Doyen, 2008;

Doyen and Martinet, 2012)), or ecosystem services (Rossing et al., 2007;

Zander et al., 2008). These model-based policy evaluations also reveal pos-

sible barriers and impact inequalities of policies. For instance, Bareille et al.

(2020) examined farmers’ benefits from the coordinated landscape-scale

management of biological control in a realistic, heterogeneous farmland

landscape. Using an agronomic-ecologic-economic model, Bareille et al.

(2020) simulated various strategies from no management to collective

landscape-scale management, including situations of individual manage-

ment. Their results show that if the coordinated management of biological
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BOX 4

Effectiveness of public policies for biological conservation in dynamic agricultural

landscapes. National or supranational entities (e.g. the European Union with the

Common Agricultural Policy) invest significant funding to mitigate the environ-

mental effects of intensive agriculture, calling in turn for an economic evaluation

of such expenditure. In their theoretical study, Barraquand and Martinet (2011)

developed a framework to examine the effect of monetary incentives on the

probability of persistence of a metapopulation used as a proxy for biological con-

servation. They considered a dynamic mosaic landscape (A) composed of two

land uses: grassland (white cells), assumed to favour the local population dynam-

ics, and cropland (black cells), which has a negative effect on population growth.

Their ecological-economic model links simulated farmers’ behaviour (private

land-use decisions in a context of agricultural output price volatility) to the bio-

logical population through the resulting dynamic landscape. A set of policy

instruments were explored: incentives for implementing habitat favourable to

biological conservation, in the form of subsidies to grassland, tax for practices

unfavourable to biodiversity such as agricultural input, and their joint effect.

Beyond cost-benefit analyses, the authors determined the production possibility

frontier of the dynamic landscape in terms of agricultural profit and biological

conservation (B), thus the expected trade-off between agricultural and ecological

outcomes.

Figures from Barraquand, F., Martinet, V., 2011. Biological conservation in dynamic agricultural landscapes:

effectiveness of public policies and trade-offs with agricultural production. Ecol. Econ. 70, 910–920. https://

doi.org/10.1016/j.ecolecon.2010.12.019.
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control at the landscape scale improves collective benefits, the heterogeneity

of farms entails strong inequalities in terms of farmers benefit from the coor-

dination process. In turn, farmers may reject the coordination policy unless

specific measures support vulnerable farms.

The main added value of ex ante research is that it highlights conflicts,

choices and trade-offs, thereby fosters a public decision for targetable strategies

for the future. They are often used as an applied modelling exercise to help

form decision-making and action. The limit of these modelling approaches,

however, is that they generally focus on the state regulator as a key actor

and on the subsidies or taxes as the levers for landscape change (Pascual

and Perrings, 2007); they are top-down. Excluding many stakeholders in this

way may limit the full understanding the drivers of landscape change. Indeed,

studies have shown that local cooperatives and agri-production buyers, local

agricultural input suppliers (Hannachi and Col�eno, 2015), local extension ser-

vices (Labarthe, 2009), and nonagricultural actors (Cardona, 2012) all have

some power to change landscapes. Moreover, this diversity of stakeholders

operates at different scales (Poggi et al., 2018). Thus, there is a need to con-

sider, integrate and connect decisions and drivers from multiple stakeholders

to make landscapes more “manageable”, i.e., to enable the emergence of a

multistakeholder’s action that allows to collectively plan and control

landscapes.

4.1.3 Collective transdisciplinary learning as a tool for the evaluation
of future landscapes

Since the impact of the landscape socioecological phenomenon in question is

in the hands of many independent land-holders, considering actions and man-

agement strategies under direct centralized control (top-down process) will be

tricky without parallel changes in political systems. In such context, the focus

should be on communication and education to increase the awareness of

stakeholders’ to their interdependence and their vision of the social costs

and benefits of their actions. In this perspective, approaches for decision-

making using multiagent systems, like Agent-Based Models (ABM), have

flourished (Huber et al., 2018), as they offer an appropriate tool to study

the interactions among agents and/or their environment. Agent-based models

simulate the actions and interactions of acting agents (be they individuals or

collective entities such as organizations or firms) with a view to assessing their

effects on the system as a whole. They combine elements of game theory,

complex systems, computational sociology and evolutionary programming.

ABM can cope with numerous agents, each with an individual behaviour
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or personality, that may interact via cooperation, coordination, competition

and negotiationmechanisms. Suchmodels enable the exploration of the effects

of individual and collective actions on the environment, and can be seen as

“bottom-up” models since they simulate emergent phenomena without

any a priori assumptions regarding the local agents’ cooperation and the aggre-

gate system properties (Brown et al., 2016;Magliocca et al., 2015). The impact

on the agents and the environment of management strategies can then be sim-

ulated and evaluated. This type of modelling is recognized as a methodology

that facilitates collective learning. Therefore, many scientists call for a strong

integration of stakeholders in the simulation process, e.g., via role-playing

games (e.g. Becu et al. (2017)), and even in model conception through par-

ticipativemodelling (Farias et al., 2019; Le Page and Perrotton, 2017). This last

option of incorporating various stakeholders at the conception and simulation

steps, appears one of the better options for inducing socially optimal behaviour

in the landscape, as it relies on a common understanding of the environmental

issue between stakeholders, and not only on the responsiveness of farmers,

consumers or any other stakeholder to the policy measures and actions.

It is generally accepted that the best decisions are made by those who will

bear the consequences. It is axiomatic, therefore, that the more the agent-

based modelling is participative, the more it may formalize and improve the

knowledge of a system. Participatory models are particularly recognized for

the production of shared and innovative solutions for a problem solving

(Voinov and Bousquet, 2010), and thus they have a strong transformative

potential for landscape change. Among the different participatory modelling

approaches, companion modelling appears particularly suited to engender

landscape reality changes (Etienne, 2014). Companion modelling is an

approach combining ABM and role-playing games, advocating three major

principles: construction of the model with stakeholders, transparency of the

process and adaptiveness, with the model evolving as the problems change

during the research. Companion modelling aims to support collective

decision-making process in terms of sustainable landscape management

(Box 5). It has been implemented in a diversity of landscape issues over

the world, including management of the erosive runoff in Seine Maritime

in France (Souchère et al., 2010), adaptation of extensive grazing strategies

to climate change in Uruguay (Dieguez Cameroni et al., 2014), water

resource management in Burkina Faso (Dar�e and Venot, 2018), forest

and livestock management in the Larzac in France (Simon and Etienne,

2010). This approach relies on the formalization of a conceptual model based

on iterative interactions between landscape stakeholders’ representatives,
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BOX 5

Application of companion modelling to conflict resolution and organizational

innovations. Renewable natural resources at the landscape scale are often the

subject of conflicts due to the lack of coordination between stakeholders and

insufficient awareness of collective interdependency. It was the case in

Lingmuteychu (Bhutan) where conflicts among villages and among farmers

had arisen because of the stress for use of water in a rice terraces landscape, par-

ticularly during the highland rice transplanting period. The traditional way of

working was upset by the adoption of new commercial crops that improved

farmer income, but gave rise locally to disputes on the use of water as well as

farmers food security issues. The Lingmuteychu watershed was chosen as an

experimental site by the local Ministry of Agriculture to explore solutions to

the conflict over water management (Gurung et al., 2006). The local deciders

chose to use the companion modelling approach as a mediation tool between

the nine villages involved. The initiative comprised two rounds. The first round

(2003–2004) consisted of the design of a preliminary role-playing game on water

sharing between two villages. To this end, surveys, focus groups and literature

reviews were done to shape the social, hydrogeological and agricultural outline.

This first game was used in many sessions to collectively understand and validate

the way of decision making of various types of farmers and the collective conse-

quences in each village and at the whole landscape level. The second round

(2005–2006) consisted of the design of a new role-playing game that was more

abstract and concerned seven stepped villages sharing water. This second

role-playing game was used for many sessions involving differing village repre-

sentatives according to various play modes in terms of communication (with and
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scientific experts (notably on the natural or biophysical process) and

modellers. This conceptual model combines shared representations among

practitioners and researchers. Then, it is used to produce a serious game that

is subsequently played with local stakeholders in game sessions. Here the

model serves as an intermediary object, in the sense that it helps clarify

and formalize the points of view and provide a discussion space. The collec-

tive discussion of the simulation that results enables support for a positive

confrontation of the different points of view and the reality of the situations.

As Skrimizea et al. (2020) argue, such collective learnings are key for the

transformative changes required to ensure sustainability in agriculture.

4.2 How to foster the capacity of models to perform reality
and change landscapes

But, how can these landscapemodelling research impact the reality and drive

future landscape change?

One response is that more the modelling research is participative and

include stakeholders, the more it has the potential to change stakeholder

behaviour, and thus to shape a change within the landscape (Voinov and

Bousquet, 2010). Interactions betweenmodellers and stakeholders and prac-

titioners enable a better mutual understanding that can foster the interest of

practitioners in the model outcomes. Moreover, a modelling design that

includes stakeholders’ perceptions, room for manoeuvre and information

needs, is a design that is more likely to produce usable knowledge for prac-

titioners and decision-makers.

BOX 5—CONT’D
without inter-village communication). This approach raised awareness of the

importance of coordination among stakeholders. Along the game session

collective debriefs, the players identified the information to share, and when

and how to do it. Beyond the conflict resolution locally in Lingmuteychu, the

companion modelling method induced the creation of an organizational innova-

tion: a sub-catchment resource management committee where common action

plan among villages are set and carried out. Moreover, this case study was used to

draw up by-laws of the watershed committee and inspired other regions in

Bhutan.

Photographs: ©Guy Tr�ebuil (CIRAD).
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But is nonparticipatory research and modelling able to change land-

scapes? The concept of performativity provides a potential response to this

question. The concept of performativity stems from the works of Austin on

language (Austin, 1962). Austin identified two kinds of utterances: the

“constative” utterances, which can be predictive or descriptive and which

can be true or false, and “performative” utterances, which have the intrinsic

power to change social reality under certain circumstances, as for example,

when a judge or a clergyman officiates at a marriage (Austin, 1962). Many

researchers in social sciences extended the Austin conception to scientific

theories to explore and understand how researchers can change the world

via their utterances. According to this perspective, a theory is said to be per-

formative when it contributes to a change in the reality it describes (Callon,

1998; Latour, 2005). Such thoughts and analyses have been applied to eco-

nomic and financial markets theories (Callon, 1998; MacKenzie et al., 2007)

and management theories (Cabantous and Gond, 2011; Muniesa, 2014).

These researches have shown that social science theories have the potential

to be performative, in that they can create the social reality they are supposed

to describe and analyse. This concept of performativity offers a novel and

interesting perspective to understand interactions between science and prac-

tice development. If we extend the concept of performativity to landscape

modelling (which involves social sciences), the question is whether and how

it can be performative even if it has been developed in academic contexts

(i.e. without being a participative research).

According to Austin (1962), an utterance performs if some conditions,

called “felicity conditions”, are reached. Felicity conditions refer to the con-

ditions that must be in place and the criteria that must be satisfied to induce

and achieve the change in social reality. Many of these felicity conditions

strongly relate to the speakers of the utterance and their status, and this makes

it difficult to transpose all of them to theories or models. Some can be applied

to theories and models, however, and here we attempt to extend them to

landscape modelling researches. If we extend the concept of performativity

and its felicity conditions to landscape modelling, a first felicity condition,

inspired by Latour (1987), can be named as a tripod “generic-explicit-com-

binable”. This condition means that, to perform, landscape modelling

should be generic-enough so that it can be applied to management practices

and fit in different landscape management or social contexts. In other

words, if the model is too specific or linked to a very explicit landscape,

this will limit the capacity of the model to influence or drive the reality.
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But, the modelling needs also to be sufficiently explicit, otherwise it

becomes too intangible and uninspiring for practitioners. Finally, the land-

scape modelling needs to be combinable so that its statements can be cumu-

lated, aggregated or shuffled with other models and insights, and this can let

the practitioners and/or policymakers to adapt and to test it in their contexts,

even as it becomes complex.

The second felicity condition relates to theories’ performativity. These

researches show that a necessary condition of the performativity of a given

theory is the existence of sociomaterial devices that embody the theory’s

assumptions (Callon, 1998; MacKenzie et al., 2007). Sociomaterial devices

stands for dashboards, control panels or indicators, etc., i.e., operational

devices that can be used in everyday life by practitioners and decision-makers

and which may thus shape their routines. This means that to become perfor-

mative, it is pivotal for landscape modelling research to be incorporated into

devices used by landscapes’ stakeholders. For example, to cope with the issue

of controlling cross pollination between GMO and non-GMO corn crops,

French farmers’ cooperatives used GMO pollen dispersion models to create

geographic information systems and decision systems allowing the manage-

ment of farmers’ production plans at the landscape scale (Hannachi and

Col�eno, 2015). These systems shaped the cooperatives marketing supply

for farmers and allowed cooperatives to play a strategic role, ensuring a rele-

vant spatial distribution of crops and appropriate harvest dates. This step of

connecting researchers’ models into practitioners’ devices is a transdisciplinary

issue that builds on the knowledge of multiple scientific disciplines (such as

computer sciences, ergonomics, etc.) as well as practitioners’ knowledge.

This will be crucial for the performativity of landscape modelling. The third

felicity condition for the performativity of landscapes modelling research is

that the practitioners’ devices that incorporate the landscape modelling

research must be efficient (Muniesa, 2014). It means that they must provide

relevant information on the relevant timeline to generate pertinent and effi-

cient decisions enabling the practitioners to reach their objectives.

The extension of the performativity concept to landscapemodelling pro-

vides some interesting insights. It leads to the identification of three felicity

conditions under which we can increase the capacity of the landscapemodels

to change the reality of landscapes. All these insights are hypotheses that need

to be explored and tested but it addresses where landscape modelling

research can be performative and drive landscape effective changes even

where it has not produced intentional actionable knowledge.
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5. Avenues for future research

In previous sections we have outlined the wide range of models avail-

able to represent and simulate the complex structure of landscapes (Section 2),

tomodel the interacting biotic and abiotic flows within landscapes (Section 3),

and to encompass social sciences to foster the use ofmodels to generate knowl-

edge and transformative actions (Section 4). In this section we suggest some

avenues for future research.

5.1 Agricultural landscape representation and simulation

5.1.1 Enhancing a multilevel and integrated approach of landscape
functioning

The understanding and management of landscapes should rely on a more sys-

temic approach by considering multiscale biotic and abiotic processes and

their interactions, multilevel stakeholder’s decision-making and actions, feed-

backs between processes and actions. Interestingly, the systemic approach

considers explicitly properties that emerge from the interactions (competition,

cooperation) between the system’s components, which would not normally

occur under the assumption that these components evolve independently.

At the same time, promoting a systemic approach should not distract us

from the importance of the individual level since individual independence

also provides key information regarding the functioning of agricultural land-

scapes. Dedeurwaerdere and Hannachi (2019), as an example, demonstrated

that in a social organization characterized by an anarchy and nondialogue

among farmers about rice seed choices in the Yuanyuang region of China.

The independence of farmers fostered a strong autonomy of decision-making

and nonconformism to pressure on the choice of rice seed. As a consequence,

the local cultivated rice diversity was sufficiently large to achieve a sustainable

control of rice diseases at the landscape level. Bareille et al. (2020) examined

individual farmer and collective benefits from a landscape-scale management

of biological control. Using an agronomic-ecologic-economic model of farm

system constraints (e.g. allocation of land uses), the authors demonstrated that

a landscape-scale management of biological control generates strong inequal-

ities in terms of farmer benefits. These inequalities between individuals are a

major cause of concern and conflict in landscape collective management

that calls for a redistribution of subsidies or specific payment for the vulnerable

farmers.
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Thus, future research should enhance multilevel and integrated

approaches of landscape functioning. The consideration of all possible pro-

cesses and their interactions is not possible, however, because the complexity

of the resulting model impedes a rigorous analysis of the outcomes.

Therefore, despite previous research efforts, these approaches remain a

challenge that will require a concerted research effort.

5.1.2 Refining the representation of the agricultural landscape
structure

The representation of agricultural landscapes remains challenging, and

deserves attention as there is plethora of evidence arguing for the effect of

the landscape structure on key processes or phenomena at the core of agri-

culture sustainability. Among many examples, increasing the heterogeneity

of the cropmosaic (crop diversity andmean field size) enhances multitrophic

diversity (Sirami et al., 2019), landscape structure impacts agricultural pest

suppression (Haan et al., 2020) and biological control in agroecosystems

(Thies and Tscharntke, 1999). If large-scale patterns are now commonly

integrated in landscape metrics and in models simulating virtual landscapes,

fine-scale elements are generally not considered as they require a higher spa-

tial resolution. However, such elements are important as they directly

influence the local heterogeneity of the landscape.

The classic but still commonly used patch mosaic paradigm (Forman,

1995; Forman and Godron, 1986; Wiens et al., 1993) essentially adopts a

human-centric view of landscapes, which are depicted as a mosaic of dis-

crete, homogeneous cover types characterized by their composition and

configuration. Such categorical conceptualisation fails to represent the con-

tinuous spatial heterogeneity and may result in the loss of information as

most ecological attributes are inherently continuous in their spatial variation

(e.g. soil properties, climate, and vegetation index). The gradient concept of

landscape structure, as proposed byMcGarigal and Cushman (2005), offers a

more realistic representation of landscape heterogeneity where landscape

structure is described by continuous surface characteristics without arbitrary

land-use classification thus avoiding delineation of discrete areas with sharp

boundaries (Lausch et al., 2015). Increasingly aerial and satellite data provide

raw optical and radar multimodal time series of landscape images that can

efficiently feed such continuous representations. A challenge consists in

interpreting these images to quantify the properties of landscape elements.

For instance, Betbeder et al. (2017) showed that synthetic aperture radar

images enabled to estimate the resistance values associated with hedgerows
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according to their suitability in terms of canopy cover and landscape grain for

forest carabid beetles. Future research should produce metrics that charac-

terize continuous surfaces, which could characterize interesting linkages

between landscape representation (i.e. composition, configuration, connec-

tivity) and ecological processes.

Landscapes may also be conceptualized using a graph-theoretical

approach where habitat patches are represented by nodes and their func-

tional connections are represented by edges (Urban and Keitt, 2001).

Some developments in progress (Box 2) open promising avenues to generate

virtual but realistic agricultural landscapes featuring different spatial patterns

(geometry, connectivity) and temporal patterns (e.g. crop rotation), thus

providing a useful tool to explore the relationships between landscape struc-

ture and processes at stake within it.

It is particularly complicated to access to the diversity, sequence and loca-

tion of crop practices of agricultural landscapes (Leenhardt et al., 2010).Most

studies aim at classifying subregions as homogeneous clusters based on

datasets of crop practice sequences considering cropping systems as static

(Dury et al., 2012). For example, Xiao et al. (2014) described the spatial dis-

tribution of crop sequences at a large regional scale mining crop sequences in

land survey dataset with hidden Markov models and clustering based on the

similarity of occurrence of crop sequences. Such approaches can help iden-

tify homogeneous zones in agricultural landscapes and study their character-

istics. Conversely, Murgue et al. (2016) proposed an approach that consists

in progressively hybridizing databases and local actors’ and experts’ knowl-

edge to finely model the spatiotemporal distribution of cropping systems. All

this, when combined, highlights the importance of defining a typology of

crop practices and the need for databases describing fine scale crop practices.

Future research could consider a combination of the patch mosaic,

gradient concept, and graph-theoretical paradigms to describe landscapes,

as advocated by Frazier and Kedron (2017). Overall, the ultimate goal still

consists of the development of an integrated representation of landscapes,

accounting for the multiscale representation of system organization and con-

trol, and in which changes in the landscape pattern interrelate with the

dynamics of the biophysical processes under study.

5.2 Landscape conception and manipulation

Across the different sections of this chapter, we have highlighted the wide

range of landscape models that integrate biophysical processes and
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stakeholders’ views with different levels of complexity. In Fig. 4, we propose

a classification of studies reported in the literature of landscape planning

(lato sensu) according to two axes, without any claim for exhaustiveness

but rather seeking to shed light on contrasted modelling approaches. The

horizontal axis separates conceptual and theoretical studies from studies in

which stakeholders are actively involved in the modelling process. The ver-

tical axis separates studies oriented towards landscape conception (answering

the question “which landscape is optimal or suboptimal with respect to

given criteria?”) from those focusing on landscape manipulation (answering

the question “how to operate changes leading to a target landscape?”). From

this simple typology we identify two main research perspectives that we

present below: (i) moving towards a conceptualisation of landscape manip-

ulation; and, (ii) reconciling theoretical approaches and stakeholders’

involvement.

Fig. 4 Conceptual classification of landscape planning studies (lato sensu). Cited refer-

ences provide examples of studies falling in different categories, without any claim for

exhaustiveness.
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5.2.1 Moving towards a conceptualisation of landscape manipulation

The conception of new landscape configurations relates to the definition of a

spatial or spatiotemporal configuration of some landscape characteristics (e.g.

crop diversity, structure of seminatural patches) that is considered as optimal

or suboptimal with respect to a given, potentially multidimensional, crite-

rion. The conception of new landscape configurations from theoretical

approaches is generally based on two different approaches (landscape con-

ception involving the participation of stakeholders is discussed later). The

first approach consists in understanding how some landscape characteristics

impact a given biophysical process. For example, Papaı̈x et al. (2018) and

Rimbaud et al. (2018) developed a spatially explicit epidemiological model

that described the demography and evolution of a pathogen population

across a landscape composed of a mosaic of fields where different crop cul-

tivars were grown. The goal of these studies was to understand how the spa-

tiotemporal structure of cultivar deployment at the landscape scale modified

the disease spread and the level of adaptation of the pathogen population on

each crop cultivar, these measures having direct economic and ecological

impacts through yield loss, resistance durability, and the use of pesticides.

The key point here is that the analysis is performed globally over the param-

eter space leading to a general picture of how epidemics proceed in agricul-

tural landscapes. The second approach relies on the optimisation of model

outcomes over the landscape characteristics. Optimisation heuristics search

for the best combinations of input landscape descriptors to meet multiple

output criteria (Memmah et al., 2015). Klein et al. (2013) performed mul-

tiobjective regional optimisation for identifying optimum land management

adaptations to climate change. Integrating a generic cropmodel and different

climate scenarios they designed a multiobjective optimisation routine and

identified conflicts between productivity and environmental goals. In a sim-

ilar approach, Walangitan et al. (2012) analysed socioeconomic and ecolog-

ical conflicts in the use of land resources of Lake Tondano (Indonesia).

Modelling approaches allowing the conception of new landscape config-

urations generally integrate complex outputs and detailed biophysical

models. However, such approaches do not generate possible trajectories

of a shift from a given landscape towards a more sustainable one. This

dynamical aspect describing which trajectory could lead to the desired con-

figuration is what we refer to as landscapemanipulation (Fig. 4). Further the-

oretical and methodological developments are needed to better capture

landscape dynamics (Houet et al., 2010) and identify relevant and feasible

trajectories with their related costs. Some theoretical studies explicitly focus
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on the dynamics describing whichmodifications have to be done to improve

landscape performances regarding some specified outcome. Bourhis et al.

(2017), see also Box 6, specifically addressed this issue based on a mechanistic

model that fitted the traits of a theoretical flying insect pest. They investi-

gated which modifications impacting the feeding and laying sites of the

insect were relevant depending on the characteristics of the initial landscape.

In the same way, Parisey et al. (2016) compared different landscape config-

urations built under agronomic constraints allowing them to propose

rearrangements of landscapes that achieved a better biological regulation

of weeds. Interestingly, in the specific context where landscapes are defined

as a set of polygons forming a T-tessellation, Kiêu et al. (2013) demonstrated

that it is theoretically possible to explore all landscape structures using only

three geometrical operations modifying the shape of the fields. Another

promising perspective to account for the landscape trajectory could be

the use of models developed in evolutionary biology to describe the evolu-

tionary trajectory of populations (e.g. Tenaillon (2014)). In these models, an

individual is described by a set of phenotypic traits that determines its selec-

tive advantage (i.e. its fitness) in a given environment. Individuals can

produce offspring that inherit their traits, but some modifications of these

traits can occur through mutations. Thus, the population evolves through

the mutation-selection balance. When applied to the context of landscape

modification, different landscapes with different configurations represent

individuals whose selective advantage can be evaluated through a set of

criteria. The representation of the fitness landscape could help identify

changes associated with elevated costs.

5.2.2 Reconciling theoretical approaches and stakeholders’ implication

Fig. 4’s horizontal axis shows that purely theoretical landscape studies, which

might investigate the effects of spatiotemporal heterogeneities of landscape

features on biophysical processes or socioeconomic outcomes, exist towards

the extreme left of the abscissa. An example of this category is the work by

Bourhis et al. (2017) who examined relevant landscape alterations in terms of

minimizing the fitness of a crop pest. At the opposite end of the x-axis lie

studies in which stakeholders play a central role in the landscape conception

or transformation, including for example works from Hossard et al. (2013),

Lagabrielle et al. (2010), Salliou et al. (2019) and Sausse et al. (2013). Lansing

et al. (2017) provided a remarkable example showing that a self-organized

cooperative management of rice terraces in Bali achieved a resilient system

that both increased and equalized harvests. Naturally, there are studies along
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BOX 6

Illustration of a theoretical landscape planning problem. Bourhis et al. (2017)

developed amodel that made the strong andmechanistic link between the land-

scape structure and the population dynamics of flying insect pests (e.g. the cab-

bage root fly, Panel A) with an ability for high dispersal and directed flight.

Foraging strategies hinged on the distribution of two competing resources (feed-

ing and laying sites) affecting the pest’s energy supply. Two landscape metrics

described the competing resources spatial co-occurrence: the interface length

(IL) which described the proportion of field borders allocated as feeding sites,

and the Euclidean nearest neighbour (ENN) which measured the mean distance

between each laying site and its nearest feeding site. A wide variety of landscapes

was generated to explore the metric space (IL, ENN). The maximized fitness (MF)

of the pest population measured the favourability of each landscape in terms of

reproduction success. (Panel B) displays 94 original landscapes (circles) with the

corresponding optimized values of fitness (MF) and their interpolated surface

(background colormap). The interpolated surface allows an informed navigation

in the metric space, in which the landscapes can be relocated to become more

suppressive regarding pests. Assuming restrictive constraints, such as a constant

landscape composition and using the field crop (laying sites) rotation as a single

mechanism for change in the landscape, target selection for landscape modifica-

tion are displayed (squares). This approach demonstrates the potential of land-

scape pest modelling for solving theoretical landscape planning problems.

Photo from https://commons.wikimedia.org/wiki/File:Delia_radicum_01.JPG (retrieved on 30-18-

2020) licensed under the Creative Commons Attribution-Share Alike 4.0 International licence.

Panel B adapted from Bourhis, Y., Poggi, S., Mammeri, Y., Le Cointe, R., Cortesero, A.-M., Parisey, N.,

2017. Foraging as the landscape grip for population dynamics—a mechanistic model applied to crop pro-

tection. Ecol. Model. 354, 26–36. https://doi.org/10.1016/j.ecolmodel.2017.03.005.
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the gradient of this axis. Theoretical studies can account implicitly for stake-

holders, for example by formalizing policies such as incentives and taxation at

the national or supranational (e.g. European) scale (Barraquand and Martinet,

2011). At a finer scale, in their study on farmers’ benefits from the coordinated

landscape-scale management of biological control in a realistic landscape with

heterogeneous farms, Bareille et al. (2020) considered two realistic farm sys-

tems (“swine” and “cattle”) with specific crop-allocation rules that were cal-

ibrated based on interviews with farmers. However, additionally to ongoing

research, we advocate for a better mix between theoretical studies and those

involving stakeholders.

Pure conceptual or theoretical approaches are essential to explore the rel-

evance of landscape structures regardless of social and economic constraints,

as they can potentially bring innovations that were not accessible without

isolation from the specific context. But farmers and other landscape stake-

holders (e.g. cooperatives, local extension services, local environmental

associations, water catchment managers) demand increasingly to play an

active role in planning and decision-making that affect them, their commu-

nities and the agricultural landscapes they inhabit. They are also increasingly

aware of their own capabilities to provide inputs to planning processes,

including models (Voinov et al., 2016). Moreover, it is generally agreed that

better decisions are implemented with less conflict and more success when

they are driven by stakeholders. Consideration of stakeholders can be done

at various levels of integration. Stakeholders can either be involved in the

conception of the systems’ dynamics, or in the assessment of a set of empir-

ical rules describing agent behaviour (Becu et al., 2014). Elsewhere, they can

be involved in participatory modelling, contributing to the model design,

the construction of scenarios to be simulated and the analysis and discussion

of model outcomes. Participatory Companion Modelling (see Section 4.1.3

and Box 5), has successfully been applied to natural resource management

issues in spatial entities ranging from the village to the small watershed

involving multilevel stakeholders (Campo et al., 2010; Etienne, 2014).

Another challenge in reconciling theoretical approaches and stakeholder

involvement stems from the complexity of models. Excessive computation

time may limit the exploration of scenarios or impede any direct interaction

with stakeholders who are themselves involved in process with a different

time frame. This issue opens up possible uses for meta-modelling to convert

overly complex models into simpler ones, while preserving the functional

link between model inputs and outcomes but markedly improving simula-

tion times and costs; facilitating a wider exploration of the variable space and

greater stakeholder involvement.
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6. Conclusion

Factors including human population growth, urban sprawl, depen-

dency on modern agriculture and on chemical inputs, and its subsequent

impacts on the health and the environment, make it challenging to feed

humankind while preserving natural resources and slowing current trends

in climate change and its effects. In this context, the understanding and man-

agement of landscapes is of utmost importance, as it has become vital to shift

towards sustainable agricultural landscapes. Transformative changes are nec-

essary to meet these challenges, and providing solutions to the trade-offs in

the many functions provided by agricultural landscapes (e.g. food produc-

tion, biodiversity conservation, soil loss mitigation) and that underpin eco-

system services.

In this chapter, we have shown that a wide range of modelling approaches

can be used to anticipate and simulate the complexity of future agricultural

landscapes. Where possible, we have outlined how spatially explicit and

mechanistic models address future landscape construction, shedding light

on agriculture in expanding cities as well as in rural-urban areas (Box 1).

Assuming an increasing complexity of landscapes, characterized by a highly

intricate structure, we have illustrated (Box 2) howmodels can capture aspects

of agricultural landscapes and generate virtual but realistic simulations featur-

ing different spatial (e.g. geometry, connectivity) and temporal patterns (e.g.

crop rotation).

However, the design of agricultural landscapes faces a daunting prospect: a

myriad of processes and their interactions are in play. Inevitably, modelling

spatial flows across complex landscapes is challenging, but it is also an essential

step towards the design of resilient landscapes. We have attempted to give an

overview of the main issues whenmodelling and simulating biotic and abiotic

flows, as well as multitrophic interactions, in complex landscapes.We used the

functioning of ditch networks in agricultural watershed as a case study (Box 3)

to advocate for the reinforcement of multidisciplinary sciences.

The transition towards future agricultural landscapes puts landscape

stakeholders centre stage. However, the multiplicity of stakeholder actors

(individual farmers, agricultural cooperatives, local and national regulators,

estate owners, etc.) that shape the landscape and whose decision-making are

influenced by the landscape patterns, and also who operates at which spatial

and temporal scale, presents considerable problems of model formulation.

46 Sylvain Poggi et al.

ARTICLE IN PRESS

47



We presented some contrasted examples of formalisms to integrate human

actions and decisions in landscape models. Theoretical models and their

simulations consider stakeholders implicitly and address questions such as

the evaluation of policies (Box 4), other models actively involve landscape

stakeholders to solve natural resource management conflicts and promote

institutional innovations (Box 5). The level of model genericity or

territory-specificity should be adjusted to the research and action objectives.

Independently, we question to which extent the concept of performativity

might provide interesting insights on how the research in landscape model-

ling could drive effective changes in the reality of landscapes even if it has not

produced intentional actionable knowledge.

Agricultural landscapes are highly complex systems for which modelling

appears an inescapable tool in the toolkit required to provide guidance on

their future conception and manipulation. Models open up many possible

lines of research. Landscape representation, in models, may lead to further

conceptualisation as technological developments (e.g. high throughput data

from satellites or drones) and precision agriculture bring increasing informa-

tion. In terms of landscape conception, building bridges between disciplines

underpinning agricultural landscape modelling (e.g. agronomy, geography,

ecology, economy and computer science) becomes pivotal. Regarding land-

scape manipulation, research remains rare, and while we identified some

studies showing potential for solving theoretical landscape planning issues

(Fig. 4, Box 6), we also pinpointed gaps in the identification of future

trajectories—or sequences of landscape modifications—enabling a shift from

current agricultural landscapes to novel and more sustainable ones.

While we only briefly addressed landscape resilience, it is an issue that will

increasingly become important for future research. Over the past decades, and

notably in the last few years, major disturbances (bushfire, drought, flooding,

pest outbreak, pandemics) have occurred and caused dramatic damage.

Landscapes, more than ever, need be resilient to such disturbance. But, this

also calls into question the capacity of models to accommodate perturbations

and disruptions, because it exacerbates problems of model complexity and

tractability.

The transition towards future agricultural landscapes represents a formi-

dable challenge for scientists of many disciplines and for practitioners. It will

require a sharing of the overarching goal to design landscapes that serve both

nature and people, and we would argue that landscape modelling has a cen-

tral role in this goal.
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In agricultural landscapes, the spatial distribution of cultivated and semi-

natural elements strongly impacts habitat connectivity and species dynamics.

To allow for landscape structural analysis and scenario generation, we here

develop statistical tools for real landscapes composed of geometric elements,

including 2D patches but also 1D linear elements (e.g., hedges). Utilizing the

framework of discrete Markov random fields, we design generative stochas-

tic models that combine a multiplex network representation based on spatial

adjacency with Gibbs energy terms to capture the distribution of landscape

descriptors for land-use categories. We implement simulation of agricultural

scenarios with parameter-controlled spatial and temporal patterns (e.g., ge-

ometry, connectivity, crop-rotation), and we demonstrate through simulation

that pseudo-likelihood estimation of parameters works well. To study statis-

tical relevance of model components in real landscapes, we discuss model

selection and validation, including cross-validated prediction scores. Model

validation with view towards ecologically relevant landscape summaries is

achieved by comparing observed and simulated summaries (network met-

rics, but also metrics and appropriately defined variograms using a raster

discretization). Models fitted to subregions of the Lower Durance Valley

(France) indicate strong deviation from random allocation and realistically

capture landscape patterns. In summary, our approach improves the under-

standing of agroecosystems and enables simulation-based theoretical analysis

of how landscape patterns shape biological and ecological processes.

1. Introduction. Agroecosystems are the basis for food production and other ecosys-

tem services such as biodiversity, pollination and pest control (Power, 2010; Foresight, 2011).

Landscape heterogeneity plays an important role for many agroecological processes. It can be

expressed through landscape configuration, referring to the size, shape, and spatial-temporal

arrangement of land-use patches (e.g., clustering, repulsiveness), and through landscape com-

position, referring to the number and proportion of land-use types (Martin et al., 2019). Gen-

erative models are widely applied in landscape ecology for simulating virtual landscapes

(i.e., a mosaic of fields having shapes and properties that vary in space and time, and provide

a support for biotic and abiotic processes) to systematically study the effects and impacts

of landscape heterogeneity on ecosystem processes; see the recent reviews of Poggi et al.

(2018); Langhammer et al. (2019). The purpose of such models is to generate a high number

of virtual but structurally realistic maps of land-cover (Gardner, 1999; Saura and Martinez-

Millan, 2000; Gardner and Urban, 2007; Sciaini et al., 2018), and often parameters related to

landscape features such as the percentage of land-cover, the habitat fragmentation, or spatial

autocorrelation (Langhammer et al., 2019) can be controlled. In this paper, we focus on mod-

eling agricultural landscapes, and we consider neutral landscape models where the model

does not directly interact with the biotic or abiotic processes (Gardner et al., 1987; With and

King, 1997).

Keywords and phrases: Graphical model, Markov-chain Monte-Carlo simulation, Multiplex-network, Pseudo-

likelihood, Statistical landscape modeling, Stochastic geometry
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Existing models use either a vector-based or a raster-based representation, with the ma-

jority of models being of raster type. The raster approach is particularly useful for mod-

elling gradual landscape dynamics and continuous processes (e.g., Lin et al., 2014). How-

ever, agricultural landscapes are strongly characterized by polygon-shaped patches and piece-

wise linear corridors along polygon boundaries, such that vector approaches seem preferable

(Gaucherel et al., 2006a,b; Le Ber et al., 2009; Papaı̈x et al., 2014; Inkoom et al., 2017; Lang-

hammer et al., 2019). In particular, fringe structures such as hedgerows, roads or ditches

aligned along polygon boundaries, have an important impact on many agroecological pro-

cesses despite their small surface proportion. In a vector-based framework, Gaucherel et al.

(2006a,b) use models based on Gibbs energy terms to control certain pairwise interactions

between landscape elements with the aim of simulating patches and certain fringe structures.

Papaı̈x et al. (2014) develop a landscape generator without fringe structures that generates

the landscape mosaic with two types of fields based on the Gibbsian T-tessellation model of

Kiêu et al. (2013). However, existing modeling frameworks lack tools for parameter infer-

ence and model validation. Validation procedures are usually solely based on testing whether

simulated landscapes are able to reproduce realistic landscape features by comparing ob-

served and simulated landscape metrics (e.g., from the FRAGSTAT library, McGarigal and

Marks, 1995). Such metrics are often directly used within simulation algorithms to enforce

convergence towards target values (Langhammer et al., 2019).

Vector-based approaches are independent of the grid resolution and give better control

over small-surface elements, and they provide a sparser and more functional representation

of patchy geometric structures without continuous gradients. The approach that we develop is

geared towards flexible and realistic parametric stochastic modeling of fringe structures, such

as hedgerow networks. For these reasons, we advocate to turn away from the raster paradigm

when modeling agricultural landscapes. Using a network-based representation of interactions

among landscape elements, we construct Gibbs energies based on network structure (see, e.g.,

the recent collection of papers introduced by Fienberg, 2010), and more specifically models

pertaining to the widely used class of discrete Markov random fields, see the seminal work

of Hammersley and Clifford (1971); Besag (1972). Approaches relevant to our work are the

nearest-neighbour Markov structures of Baddeley and Møller (1989) and the representations

based on connected components introduced in Møller and Waagepetersen (1998). Recent de-

velopments and reviews are exposed in van Lieshout (2000); Green et al. (2003); Gaetan and

Guyon (2010); van Lieshout (2019). The use of Gibbs energies, and of Markov structures in

particular, provides a natural distributional framework for controlling landscape descriptors.

Likelihood-based statistical inference in such classification models, here formulated for cat-

egories of landscape elements, is notoriously difficult due to an intractable normalizing con-

stant. We therefore resort to well-established pseudo-likelihood estimation, for which model

selection and validation are more intricate and need to be performed carefully, especially in

our setting with only a single observed realization of the process.

We suppose that the polygon structure of patches in a bounded subset of planar space R2

is given, i.e., a tessellation of space serves as fixed support of the model. It can be obtained

by preprocessing a real landscape, or we may use simulations of a parametric tessellation

model to generate realistic features (e.g., Kiêu et al., 2013). We model the stochastic land-use

allocation mechanism of patches and linear elements by assigning categories to the polygons

and their edges, where dynamic structures such as crop rotation are possible.

An overarching goal is to generate visually realistic landscapes. We develop the follow-

ing methodological novelties: i) a mathematical representation of landscape composition and

configuration through multilayer networks; ii) generative stochastic parametric models cou-

pling land-use allocation of patches and linear elements, relying strongly on Markov inter-

actions based on the network established in (i); iii) simulation of such models using Markov
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Chain Monte Carlo (MCMC) with the Gibbs sampler; iv) statistical inference using real land-

scape data; v) validation of relevant landscape characteristic based on a comparison of sum-

maries for vector and raster representations between real and simulated landscapes. Our ap-

proach can handle relatively large landscapes by capitalizing on low computational require-

ments thanks to vector-based representations and to sparse-matrix structures for encoding

interactions.

The paper is structured as follows. Section 2 presents real landscape data and preprocess-

ing steps for an agricultural region in southeastern France, for which previous studies have

highlighted a key role of agricultural practices and hedgerow configuration for biodiversity

and pest control (Ricci et al., 2009; Maalouly et al., 2013; Lefebvre et al., 2016). In Section 3,

we propose the mathematical representation, modeling and simulation of landscapes. Tools

for statistical inference, including model selection and validation, are developed in Section 4.

In Section 5, we apply the developed framework to the above data, and we discuss how the

goodness-of-fit and the generation of realistic landscape metrics is influenced by the choice

of the descriptors in the model. A discussion in Section 6 concludes the paper. Supplementary

material contains details on the simulation algorithm and additional estimation and simula-

tion results (Zamberletti et al., 2021).

2. Landscape data. Real data for agricultural landscapes are based on remote sensing

images, digital land registers, land-cover data bases such as CORINE (Büttner and Maucha,

2006), and field data. Often, manual annotation steps are necessary to complete and clean

data. We study the Lower Durance Valley in southeastern France depicted in Figure 1a,

stretching over 163 km2 and mainly characterized by agricultural activity (87%) and ur-

banized areas, with main cultures of open area (46%) and apple/pear orchards (24%).

Data are based on manual digitalization (ArcView software) using an official French

database of aerial photographs (BD ORTHO, IGN, 2004, 0.5 m resolution, updated with

field monitoring in 2009).

The region has a total length of 1146 km of hedgerows, which we will represent as linear

segments, whose average length amounts to 105 m. A particularity of the region is a dom-

inance of East-West oriented hedges, whose function is to break the strong Mistral winds

blowing from the North.

For the data application in this paper, we select three subdomains D1, D2 and D3 with

contrasting properties and dimensions, shown in Figure 1b and numerically summarized in

Table 1: D1 is relatively small and dominated by semi-natural surfaces; D2 has the same sur-

face area but equal proportions of semi-natural and crop; D3 delimits a much larger domain

including D1 and D2.

D1 D2 D3

Area (km2) 3.37 2.3 41.13

% of Semi-natural 73 50 76

% of Crop 27 50 24

Hedgerows (km) 44.64 33.61 386.36

No. of patches 368 468 4379

No. of linear segments 1105 1405 12517

Table 1: Summary of selected subregions of the Lower Durance Valley study area; see Fig-

ure 1.

We use a simplified representation of the landscape as a tessellation of 2D space with

polygon-shaped cells. Linear segments (e.g., hedgerows) correspond to polygon edges. To

achieve a partition of space through polygon-shaped patches, and to align hedgerows with
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FIG 1. Lower Durance Valley study area. a) Full area with three subdomains. b) Subdomains D1, D2, D3.

The Lower Durance Valley is characterised mainly by agricultural cover: green-shaded patches represent semi-

natural area (i.e., woods, open area, grassland); brown-shaded patches represent 34 different cultures (e.g., apple,

pear, vineyards). Artificial surface (dark gray) consists of built structures and urbanized area. The area is rich in

linear elements (i.e., segments), including small water courses, roads and hedges (Panel a). In the selected do-

mains (Panel b), we selected as ”crop” the category of “apple/pear orchard”, as it is the most abundant culture

(gray patches), and we simplify the rest of the landscape surface as semi-natural area (white patches) in order to

establish a continuous cover with two categories. Patch boundaries are presented as linear elements, which are

marked in red when hedges are present.

polygon edges, we preprocess the landscape towards a polygon tessellation of 2D space

(Boots et al., 1999), based on a heuristic loss criterion measuring the distance between origi-

nal and transformed landscape (Adamczyk-Chauvat et al., 2020). Figure 2 illustrates that pre-

processing modifications for domain D2 are mostly minor. For simplicity, we here attribute
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always one of the two categories of ”crop” or ”semi-natural” to the patches in the three study

domains. Specifically, we gather several types of semi-natural habitat into a single category,

including some patches with built structures (farms, greenhouses...). In principle, the subse-

quent modeling would also allow for parts of the landscape with unspecified category. While

we here consider tessellations as a fixed support for linear element attribution and crop rota-

tion, tessellation simulation algorithms for agricultural landscapes (Kiêu et al., 2013; Papaı̈x

et al., 2014; Poggi et al., 2018) would enable the generation of new, synthetic but realistic

supports for our models.

FIG 2. Preprocessing of domain D2. a) Original digitalized shapefile; b) Preprocessed landscape tessellation

defined over a rectangular domain.

3. Stochastic modeling and simulation of landscape allocation.

3.1. Mathematical landscape representation. We propose to represent a landscape as a

collection O = {o1, . . . , on} of n geometric objects as follows,

(1) oi = (xi, zi), xi ∈ Xi = {0,1, . . . , ℓi − 1}, i= 1, . . . , n,

where each element is composed of two sets of data xi and zi. The information in z =
(z1, . . . , zn) represents the geometrical structure of the landscape, determining object dimen-

sion and their organisation, and it is considered as being fixed. The vector x= (x1, . . . , xn)
represents categories that we allocate to the geometric elements in the landscape, such as

land-use types among hedges, water courses (for linear elements) or crop, grassland (for

patches), and that we aim to model. We suppose that xi ∈ Xi with a finite space Xi of ℓi ≥ 1
possible categories for the ith element, where the index 0 usually represents a baseline cat-

egory. The objects oi = (xi, zi) could represent different geometric types, such as polygons

(i.e., habitat patches) or linear segments (i.e., linear landscape elements), see Figure 3a. For

polygon objects, the data component zi could contain this type information, and in addition

the geographical coordinates of its vertices, its surface area, and potentially other exoge-

nous covariates. For instance, we could allocate each polygon with a category among the

following three options: crop (xi = 1), (semi-)natural habitat (xi = 2), other (xi = 0). A lin-

ear segment could be allocated with a category among hedgerow (xi = 1) or no hedgerow

(xi = 0). In the case ℓi = 1 with only a single category xi = 0 no choice of allocation has to

be made. The space of all possible combinations of allocations is X = X1 ⊗X2 ⊗ . . .⊗Xn.

This finite collection contains |X |= ℓ1 × ℓ2 × . . .× ℓn possible allocations. If the geometric

structure contained in zi may vary through time, it is possible to describe temporal dynam-

ics (if present) by the sequence xi,τ , τ = 1,2, . . . of categories allocated within patches over

discrete time.
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3.2. Network model of landscape. We use a graphical representation of landscape to cap-

ture spatial or functional adjacency of landscape elements such as patches or linear segments

in Figure 1b. Adjacency of objects is modeled through a multilayer or multiplex network,

i.e., a set of single network layers with some nodes connected between layers (Boccaletti

et al., 2014; Kivelä et al., 2014). Each layer in this graphical representation corresponds

to an object type; nodes stand for individual objects; edges in single network layers repre-

sent adjacency of objects of the same type; edges between different network layers represent

adjacency of objects of different type. There are two types of networks that can be consid-

ered. First, for the specification of the Markov models we develop, we need a network that

represents the fixed landscape support where the layers correspond to patches and to lin-

ear segments, respectively, in our setting. The probability of landscape category allocations

in pairwise Markov models is then constructed from individual contributions of the nodes

and edges in this network. Second, given a landscape allocation, we can consider the net-

work where each layer corresponds to a specific allocation category. In the case of categories

”crop” and ”semi-natural” for patches, and of categories ”hedge” and ”no hedge” for linear

segments, we obtain four layers. This second network type is useful for calculating landscape

metrics taking into account allocation.

We illustrate the structure of the first network used for constructing Markov models.

We define a collection of objects with two types, o = (oC ,oH) (see Figure 3a), where

oCi = (xCi , z
C
i ), i= 1, . . . , nC represent patches (layer C), and oHi = (xHi , zHi ), i= 1, . . . , nH

represent linear segments (layer H); see Figure 3b. We express that two distinct objects o1
and o2 are directly connected through an edge in the graph (i.e., they are adjacent) using the

following notation:

(2) o1 ∼ o2, o1, o2 ∈O.
For the models in this paper, we assume that two patches oCi , o

C
j are connected, oCi ∼ oCj ,

if they are adjacent, i.e., if they share part of their physical boundary; two linear elements

are connected if they intersect or have a vertex in common; finally, inter-layer connections

oCi ∼ oHj arise if the linear element oHj is located on the boundary of patch oCi . This structure

is similar to the nearest-neighbour relations discussed in Section 4 of Baddeley and Møller

(1989) with respect to Markov properties.

For mathematical operations based on the network structure, we encode the object inter-

actions in the network matrix (or adjacency matrix) A:

(3) A=

(
AC ACH

AHC AH

)
, Ai,j =

{
1, oi ∼ oj ,

0, oi 6∼ oj ,
, i, j ∈ {1, . . . , nC + nH},

where AC ∈ RnC×nC

and AH ∈ RnH×nH

represent the network matrices of intra-layer con-

nections of C and H , respectively, and ACH ∈ RnC×nH

encodes inter-layer connections

among C and H . For simplicity, we here assume symmetric connections with binary weights,

such that Aij ∈ {0,1} and A = AT , but the extension to asymmetric and directed connec-

tions with Aij ∈ R \ {0} if oi ∼ oj would be straightforward. Non-binary weights could be

based on distance or sizes of connected elements.

Based on this landscape representation, we develop parametric probability distributions

over the allocations x ∈ X , conditional on the (fixed) information in z = (z1, . . . , zn) and

A. We put focus on Markov models where we assume conditional independence of category

xi with respect to z and the categories of objects not directly connected with oi through the

∼-relation of adjacency.

We adopt notations such as o−i to refer to the set O \ {oi}. Therefore, we make the

following assumption of equality of conditional distributions:
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(4) xi | (zi, o−i)
d
= xi | (z, {oj ∈O | oi ∼ oj}) , i= 1, . . . , nC + nH .

This framework allows for flexible dependence structures expressed through the adjacency

matrix A with sparse structure, i.e., with a relatively small proportion of non-zero entries.

FIG 3. Landscape representation. a) Polygon objects (patches, in grey) and linear segment objects (in red). b)

Multi-layer network of connections. Layer C: single network of connections between patches; layer H: single

network of connections between linear elements; links between C and H represent connections of patches and

linear elements.

3.3. Probabilistic mechanistic models for landscape descriptors. We utilize Gibbs en-

ergies to define probabilistic models of mechanistic nature, including Markov processes;

see, e.g., Cressie (1991); van Lieshout (2019). We construct a model using m functions

Tk : X → (−∞,∞), k = 1, . . . ,m, that each measure the value Tk(x | z) of a summary

statistic for the allocations in x given the fixed information in z. In the following, we often

omit z for notational simplicity when no confusion arises; e.g., we simply write Tk(x). We

refer to the Tk as landscape descriptors and use them as sufficient statistics of the model

by defining the probability of observing an allocation x as follows, with coefficient vector

β ∈Rm:

(5) p(x) =
1

c(β)
exp

(
−

m∑

k=1

βkTk(x)

)
, x ∈ X , β ∈Rm.

The normalizing constant c(β)> 0, also known as the partition function, ensures that prob-

abilities in (5) sum up to 1.

Since the number of possible configurations |X | is finite, the normalizing constant is finite

and the model is well-defined. In practice, the number of configurations is usually very large,

such that numerical computation of the constant c(β) is not tractable. If all descriptors Tk

can be represented as sums of terms for single objects or two objects linked in the network

through the ∼-relation in (2), the Markov property (4) holds.

We will also explore extensions beyond pairwise interactions but related to connected

components where the descriptor is still defined through the graph structure. Instead of the

global specification in Equation (5), we now consider a local specification, i.e., the allocation

of xi conditional to fixed information zi and the rest of the landscape. Therefore, we deter-

mine the probability of observing category xi given z and the allocations x−i of all the other

elements,

where we use the notation (x−i, x) = (x1, . . . , xi−1, x, xi+1, . . . , xn) to indicate an (arbi-

trary) category x attributed to the object oi. Then, the normalizing constant c(β) cancels out
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in the conditional probability

(6) p(xi | x−i) =
p(x)∑

y∈Xi
p(x−i, x)

=
exp (−∑m

k=1 βkTk(x))∑
x∈Xi

exp (−∑m
k=1 βkTk(x−i, x))

,

where the denominator adds up the probabilities over all landscape configurations obtained

when varying the category of oi but keeping the rest of the landscape fixed. In the two-level

case with xi ∈ {0,1}, we show in Section 4.1 how parameters βk can be estimated through

classical logistic regression.

3.4. Examples of parametric models. Landscape descriptors are intended to capture im-

portant landscape characteristics. In composition terms, such functions are the sum of contri-

butions of individual objects; in configuration terms (or interaction terms), we add up contri-

butions that evaluate the spatial interaction of two or more objects. An example specification

is as follows, with three generic spatial landscape descriptors given by

(7) TC
act(x) =

nC∑

i=1

t(xCi ), TCC
adj (x) =

∑

oCi ∼oCj

t(xCi , x
C
j ), TCH

adj (x) =
∑

oCi ∼oHj

t(xCi , x
H
j ),

Then, Tact is a composition term, TCC
adj an interaction term for network layer C , TCH

adj is

an interaction term for inter-layer interactions of C and H . Figure 4 illustrates landscape

descriptor evaluation on a subarea of D1 using the network to represent landscape interac-

tions. The adjacency network of landscape elements is fixed for all landscape allocations and

is based on the information in z. It is defined among all the objects of the same layer C
(Figure 4a), layer H (Figure 4b) and the interlayer of C and H (Figure 4c). It represents all

pairwise interactions (i.e., all the interactions between adjacent patches (4a), adjacent linear

segments (Figure 4b) and adjacent linear elements and patches (Figure 4c)). Next, given an

allocation of this landscape support, the second network type (also called active network) is

used to represent the adjacency of objects allocated with the same category (e.g., crop cate-

gory for patches, hedge for linear elements). To calculate the landscape descriptors Tk, we

illustrate the additive contribution of a single object provides in Figure 5. The fixed informa-

tion in z characterises the objects through their geometrical properties and assesses how the

category allocation could be influenced by features such as the size of the patch (Figure 5b,c),

the length or orientation of the linear elements, and determines the adjacency with respect to

other objects (Figure 5d,e).

Table 2 illustrates relevant choices of landscape descriptors involving C and H , i.e.,

patches and linear elements, with 2 allocation categories (i.e., xi ∈ {0,1}): crop (xCi = 1)

or natural habitat (xCi = 0), and hedgerow (xHi = 1) or no hedgerow (xHi = 0). In the sup-

plementary material (Section 2) (Zamberletti et al., 2021), a temporal descriptor for crop

rotation is illustrated.

We employ the label of activity terms for composition terms where T (x) is the count of the

number of objects of a specific category. To ensure identifiability, we fix a reference category

(e.g., xCi = 0 for objects of type C) and specify the activity term and its coefficient βC
xC
i

∈R

only for categories xCi 6= 0, such that it is expressed relative to xCi = 0, and implicitly we have

βC
xC
i =0 = 0. A positive coefficient βC

xC
i =1 > 0 gives relative preference to category 1 over cat-

egory 0, such that landscapes tend to have more objects of category 1 than of category 0 for

type C , provided that the energy terms of other landscape descriptors do not conversely influ-

ence the proportion of categories. Markov models with only two-level categories and terms

for activity and pairwise interaction can be viewed as variants of the classical Ising model
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(Gallavotti, 2013), and more generally of auto-logistic regression models, see Hammersley

and Clifford (1971); Besag (1972) and Section 3 of van Lieshout (2019).

Instead, we could also consider landscape descriptors providing a more global perspective

on the graph. As an example, we study a global descriptor related to the notion of connected

components of landscape elements of the same category (see also Møller and Waagepetersen,

1998, which highlight Markov-like properties in this case). By definition, a connected com-

ponent is a subgraph in which any two vertices are linked to each other along paths of graph

edges defined by the ∼-related in (2), while there are no connections to any other vertices

in the complementary graph. A connected component could represent a cluster of patches or

linear elements allocated with the same category. The number of connected components in a

landscape conveys global information about spatial clustering of an allocation category, and

it can be evaluated through dedicated algorithms (Hopcroft and Tarjan, 1973). Formally, we

define the landscape descriptor Tcluster as the minimum possible number of sets in any par-

tition S1, S2, ..., SK of O satisfying the following property: oi, oj ∈ Sk if a path along edges

between objects in Sk exists from oi to oj .

Examples of landscape descriptors

Composition

Activity term
TC
act,

TH
act

t(xC
i ) = I(xC

i = 1)

Patch area TC
area,p t(xC

i ;p) = 1(xC
i = 1, area(oCi )≤Qp(area(o

C
i )))

Long segments TH
length t(xH

i ) = 1(xH
i = 1, length(oHi )≥ E[length(oHi )])

Horizontal

segments
TH
orient t(xH

i ) = 1
(

xH
i = 1,angle(oHi ) ∈ [0, π

6
]∪

[

5π
6
,2π

])

Interaction
(Adjacency)

Patch-patch TCC
adj t(xC

i , x
C
j ) = aC

ij

Segment-

segment
THH
adj t(xH

i , xH
j ) = aH

ij

Patch-segment TCH
adj t(xC

i , x
H
j ) = aCH

ij

Landscape models

C H

M1 TC
act, T

C
area,0.25, TC

area,0.75, TCH
adj , TCC

adj TH
act, T

H
length, TH

orient, T
HH
adj

M2 cf. M1 TH
act, T

H
orient, T

HH
adj

M3 TC
act, T

H
area,0.25, TCH

adj , TCC
adj cf. M1

M4 TC
act, T

H
area,0.25, TC

area,0.75, TCH
adj , T cluster

C cf. M1

Table 2: Examples of landscape descriptors (top) and model configurations (bottom). Nota-

tions: C and H refer to patches, and linear elements, respectively; I is the indicator function;

Qp is the (empirical) p-percent quantile (p ∈ (0,1)); E is the (empirical) expected value. The

function angle returns the radians angle of a linear segment in [−π/2, π/2) with respect to

the West-East direction (i.e., the axis (0,1)T ). Landscape models show descriptors related to

crop patches in network C , and to hedges in linear element network H .

3.5. Simulation examples. Iterative simulation of Gibbs random fields with finite state

spaces through Markov Chain Monte Carlo techniques is in general relatively straightfor-

ward and stable (see, e.g., Section 3.6 of van Lieshout, 2019). We here implement the Gibbs
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FIG 4. Example of landscape descriptor evaluation over a small portion of D1 for the network layer C of crop

allocation (Panel a) , the network layer H of hedge allocation (Panel b), the multi-layer network connecting

layer C and layer H (Panel c). The landscape is simplified in potential networks, where all connections among

adjacent objects are possible, and an active networks, where only the connections among allocated objects of

the same type or different type are maintained depending on their categories. The landscape descriptors for this

landscape small sample for the layer C are evaluated as: TC
act = 14, TC

area,0.25 = 12, TCH
adj = 168, TCC

adj = 58;

and for the layer H are evaluated as: TH
act = 101, TH

length = 49, THH
adj = 379, TH

orient = 74. Formulations for

computing these landscape descriptors are expressed in Equation 7 and in Table 2.

sampler; see the supplementary material for details (Zamberletti et al., 2021), where we also

check MCMC convergence diagnostics such as trace plots of descriptors.

We show several simulations for the domain D1 to visually explore the influence of param-

eters βk in (5); see Figure 6. We focus on three types of Markov interactions: crop-crop adja-

cency (βCC
adj ), hedge-hedge adjacency (βHH

adj ), and crop-hedge adjacency (βCH
adj ), as defined in

Table 2. In each simulation run, we set only one of the coefficients to a non-zero value among

{−1,−1/3,1/3,1}; other descriptors are not controlled in the model. The MCMC simula-

tion runs take from several seconds (D1, D2) to several minutes (D3) before approximately

reaching the stationary distribution. For all simulations in this paper, we have fixed relatively

large numbers of burn-in steps of N0 = 104 (D1, D2) and of N0 = 106 (D3) to ensure that

chains always reach the stationary distribution. Negative coefficients produce fragmented al-

location structures of the two corresponding categories, while a positive coefficient results in

clustered configurations of categories. In Figure 6c, a negative coefficient of the crop-hedge

adjacency leads to many hedges being located away from crop-patch boundaries, while they

tend to concentrate on such boundaries for positive coefficients.

4. Statistical inference and model validation.

75



MARKOV RANDOM FIELD MODELS FOR LANDSCAPES 11

FIG 5. Given Figure 4, we focus on a single object oi = (zi, xi), where zi = coords(oi),area(oi) and xi =
crop,xi = 1) (Panel a), with detailed landscape descriptor specification (Panels b-e). Specification for object Oi

are evaluated as: (b) tCact(xi) = 1, (c) tCarea,0.25(xi) = 0, (d) tCH
adj (xi) = 4, (e) tCC

adj (xi) = 3. Formulations for

the evaluation specific landscape descriptors are found in Table 2.

FIG 6. Landscape simulations on D1. Panel a): varying crop-crop adjacency; Panel b): varying hedge-hedge

adjacency; Panel c): varying crop-hedge adjacency. Columns from left to right: coefficient −1,−0.33,0.33,1.

4.1. Parameter inference. We infer the allocation mechanism of real landscapes by first

estimating the parameter vector β of candidate models, and then studying significance and

other diagnostics. The likelihood function is not tractable in practice due to the normalizing

constant c(β) in the probability mass function (5). Instead, we use a pseudo-likelihood based
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on conditional distributions; see Besag (1972, 1974); Møller and Waagepetersen (1998); van

Lieshout (2000); Stoehr (2017), and particularly Section 3.5 of van Lieshout (2019). Given

n objects x= (x1, . . . , xn) with their allocation categories, we define the pseudo-likelihood

as the product of the conditional probability of the category xi given all the other variables

x−i; i.e., it is the composite likelihood (Varin et al., 2011) of conditional distributions given

as

(8) L=

n∏

i=1

p(xi | x−i,z)

where the conditional probability p(xi | x−i,z) is defined in Equation (6) and does not de-

pend on the normalizing constant c(β); in Markov models, it depends only on information

from adjacent objects in o−i.

For binary xi ∈ Xi = {0,1}, we write x̃ for x with xi replaced by the alternative level;

then, (6) is equivalent to the logistic regression equation

(9) log
p(xi | x−i)

1− p(xi | x−i)
=

m∑

k=1

βk (Tk(x)− Tk(x̃)) .

Parameter estimation of β can then be carried out using standard software for logistic

regression (if ℓi = 2), or using the more general pseudo-likelihood framework (if ℓi > 2).

The maximum pseudo-likelihood estimator β̂ is asymptotically consistent and normal

when independent replicates of the spatial process have been observed (Jensen et al., 1991;

Varin et al., 2011).

However, in the single-replicate setting it is difficult to obtain standard errors and con-

fidence bounds since standard asymptotic theory for maximum likelihood and maximum

pseudo-likelihood estimation is based on replicated data structures. Moreover, one should

check if estimation bias arises with finite-sample data. Block-bootstrapping procedures using

a spatial partition of the study area (Lahiri, 2013) could provide a solution in cases of very

large study areas, especially with Markov models whose spatial dependence strength decays

relatively fast for larger distances; however, such bootstrap schemes would be difficult to

implement on moderately large domains such as D1, D2 and D3 in Figure 1, and handling

the multiplex networks may be awkward. Instead, we propose to resort to a parametric boot-

strap, using MCMC simulation of the estimated model to generate pseudo-replicates of the

observed data, which then allows us to check if estimation is stable and unbiased, to obtain

confidence intervals, and more specifically to check if a descriptor is significant.

We proceed as follows: generate nboot independent simulations (e.g., nboot = 99) of the

fitted model using β = β̂, and reestimate the coefficient vector for each simulation to obtain

a sample of the pseudo-likelihood estimator; then, use this sample to check for estimation bias

and derive Monte-Carlo confidence intervals. For a test of the null hypothesis of βk = 0 for

fixed k ∈ {1, . . . ,m}, i.e., to check if the landscape descriptor Tk is significant, we implement

a Monte-Carlo test where we repeatedly simulate the fitted model, but with the modification

β̂k = 0. Then, we here reject the null if the value β̂k does not lie within the one-sided Monte–

Carlo confidence interval of β̂k, i.e., if less than α% (e.g., α= 5) of the βk-values estimated

for the simulations have the same sign and higher absolute value than the value estimated for

the data (see, e.g., Davison and Hinkley, 1997).

4.2. Pseudo-likelihood-based model selection. We propose approaches to statistically

compare models with different landscape descriptor configurations and to assess their

goodness-of-fit.

As first criterion, we consider the maximum pseudo-loglikelihood value, denoted by mpll.
We have to rank models based on information criteria that take the model complexity (i.e.,
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the number of parameters) into account to avoid overfitting, and to identify parameter config-

urations that are both parsimonious and informative. Relevant information criteria such as the

composite likelihood information criterion (CLIC) are hard to calculate in a single-replicate

setting, such that we only use them to compare models with the same number of parameters;

i.e., we directly compare mpll values to rank CLICs in this case.

The second criterion, applicable to compare any types of models, is the Mean Squared

Error (MSE) based on k-fold cross-validation. In k-fold cross-validation, we partition the

original dataset into k groups (e.g., k = 5), and reestimate the model repeatedly by holding

out one fold a time. For each hold-out set, we then summarise the skill of the model by a

prediction score, here chosen as the MSE between the predicted probability of an allocation

category and its actual value. The MSE is also known as the Brier score (Brier, 1950), and

it is a proper score function as defined by Gneiting and Raftery (2007). We evaluate scores

separately on each hold-out set, and then average the k resulting values to obtain the global

score. We here propose to generate a random partition into k folds of the same size separately

for each layer of the network (e.g., patches, edges).

4.3. Model diagnostics using landscape summaries. We propose to check if the fitted

model is able to appropriately reproduce three types of summaries of the real landscape: 1)

landscape descriptors used in the model (i.e., sufficient statistics); 2) variograms (using a

raster representation), as defined in the following, to measure the variability of crop, hedge,

and crop-hedge structures with respect to Euclidean distance in space; 3) general landscape

metrics commonly used in landscape ecology, based on vector or raster representations.

Type 1 concerns statistical validation: the theoretical distribution of a landscape descriptor

should be in line with its observed value; we check this through Monte–Carlo samples of the

fitted model.

Regarding type 2, variograms (Cressie, 2015; van Lieshout, 2019), we adopt a geosta-

tistical perspective (Saura and Martinez-Millan, 2000) that focuses on the variability and

geographic scales of the landscape, which has already proven useful to characterize land

use properties (Garrigues et al., 2006, 2008). We here define two variogram variants. The

first variant, called one-category variogram, explores the spatial variability of the presence

Zc(s) ∈ {0,1} (1 for present, 0 for absent) of a category c at any location s in the study do-

main D. The second variant, called two-category variogram, explores the spatial interaction

of two distinct categories c1, c2 (e.g., crop and hedges). We define Zc1,c2(s) ∈ {0,1} only for

locations s where either c1 or c2 is present (other locations are considered as not being part

of the domain of the process), and we set Zc1,c2(s) = 1 if c1 is present at s, otherwise the

value is 0. For both variants, denoted by γc and γc1,c2 , respectively, we calculate experimen-

tal variograms, assuming stationarity and isotropy, according to the empirical counterpart of

γ(h) = E(Z(s1)−Z(s2))
2, where ‖s2 − s1‖= h for distances h≥ 0.

Regarding type 3 of summaries, various metrics have been used to assess if simulated

landscape patterns appropriately represent landscape functionality and ecological relevancy

(Kupfer, 2012; Frazier and Kedron, 2017); some metrics are known to be strongly correlated

in practice. We assess if models of type (5), endowed with a small number of landscape de-

scriptors, are able to generate metric values close to the observed one. Simulation of fitted

models is used to generate a representative sample of the theoretical model-based distribu-

tions of metrics.

Some commonly used metrics require landscapes to be represented as a mosaic of discrete

habitat patches, as in our case. Many other metrics have been developed for landscapes con-

ceptualized as environmental gradients (i.e., for raster representations, see McGarigal and

Marks, 1995; Cushman et al., 2010). Here, we assess how data patterns are reproduced by

models through metrics based on graph theory (Urban and Keitt, 2001; Minor and Urban,
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2008; Urban et al., 2009; Lü et al., 2016, network metrics, see), or raster metrics (McGarigal

and Marks, 1995), where we transform our vector-based patch-mosaic representation into a

raster; see Table 3 for a summary.

We focus on standard network metrics (Urban and Keitt, 2001; Minor and Urban, 2008),

evaluated either at node scale (with one value per node), or at network scale. These active

networks associated to a specific allocation have one layer for each allocation category (e.i.,

crop network C , and hedge for network H), recall Section 3.3, and there are edges if two

adjacent objects ((x1, z1) = o1 ∼ o2 = (x2, z2)) have been allocated the same category, i.e.,

x1 = x2. Node scale helps to identify vital nodes associated with structural or functional ob-

jectives (Lü et al., 2016), while network scale summarizes the global topology (Urban and

Keitt, 2001; Calabrese and Fagan, 2004). For metrics based on gradient theory, we follow

Cushman et al. (2008) and choose those metrics identified as “highly universal and consis-

tent class-level landscape structure components”. We use the R package raster (Hijmans

et al., 2015) to transform vector objects (i.e., polygons and linear segments) into rasters with

categorical values, and the package landscapemetrics to evaluate raster metrics (Hes-

selbarth et al., 2019). In the case of two polygon types (crops/hedges) and two edge types

(presence/absence of hedge), we obtain 3 pixel categories in the raster, also called habitats:

crop, semi-natural, and hedge; absence of hedges is not a class in itself.

Name Description Support Range Reference

Degree⋆ Number of connected nodes node [0, 1] [1],[2]

Coreness K-shell decomposition for a node’s spreading influence node [0,∞) [1],[2]

Degree grade 2⋆ Number of connected nodes at most 2 nodes away node [0, 1] [1],[2]

Eccentricity⋆ Maximum shortest path to connected nodes node [0, 1] [1],[2]

Closeness Reciprocal of total length of shortest paths to connected nodes node [0,∞) [1],[2]

Betweenness⋆ Potential power to control information flow node [0, 1] [1],[2]

Diameter Longest path network [0,∞) [1]

Efficiency Efficiency of information exchange network [0,∞) [2],[3]

Cluster avg. Proportion of interconnected adjacent nodes of a vertex network [0,1] [2],[3]

PLAND [%] Percentage of a habitat in the landscape raster [0,100] [4],[5]

PD [# / ha × 100] Patch density raster [0,∞) [4],[5]

ENN [m] Mean Euclidean nearest neighbor distance raster [0,∞) [4],[5]

PARA [/] Perimeter-area ratio of contiguous habitat raster [0,∞) [4],[5]

IJI [%] Interspersion/juxtaposition index measuring spatial

intermixing of different habitats

raster [0,100] [4],[5]

CLUMPY [/] Clumpiness index measuring deviation from randomness raster [-1,1] [4],[5]

Table 3: Landscape metrics. A star ⋆ indicates metrics normalized with the number of nodes.

Metric type is either “node” (node-scale network metrics), “network” (global network met-

rics), or “raster”. Listed references are as follows: [1] Urban et al. (2009), [2] Lü et al. (2016),

[3] Latora and Marchiori (2001), [4] McGarigal and Marks (1995), [5] Cushman et al. (2008)

5. Application to the Lower Durance Valley in southern France. We fit parametric

stochastic models for the category allocation mechanism of crops and hedges in the domains

D1, D2 and D3 using the logistic regression equation (9), and we discuss descriptor selection

by assessing a moderate number of landscape descriptors.

5.1. Structure of descriptors and models. We allow for two allocation categories of both

patches and linear elements: crop or semi-natural area (network C) ; presence or absence of

a hedgerow for (network H).

We consider four models for (5), denoted M1–M4, and summarized in Table 2, to test

different combinations of landscape descriptors in the general model (5). To avoid collinear-

ity of descriptors, we first check correlations between the covariates arising in the logistic
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Landscape descriptors D1 D2 D3

C

M1 TC
act, T

C
area,0.25, TC

area,0.75, TCH
adj , TCC

adj -198.9, 0.184 -236.4, 0.171 -1778.3 , 0.130

M3 TC
act, T

C
area,0.25, TCH

adj , TCC
adj -205.6, 0.191 -239.5, 0.173 -1781.5, 0.130

M4 TC
act, T

C
area,0.25, TC

area,0.75, TCH
adj , TC

cluster -202.1, 0.191 -243.5, 0.182 -1970.0, 0.151

H
M1 TH

act, T
H
length, TH

orient, T
HH
adj -608.5, 0.186 -633.3 , 0.143 -6399.6, 0.169

M2 TH
act, T

H
orient, T

HH
adj -608.6, 0.185 -640.7, 0.144 -6405.4, 0.169

Table 4: Values of mpll and MSE in 5-fold cross-validation for each combination of model

(M1–M4, Crop/Hedge network) and spatial domain (D1–D3). Highest mpll and lowest MSE

are highlighted in bold for each domain and Crop/Hedge.

regression (9) for each spatial domain; see Figure 5 in the supplementary material (Zam-

berletti et al., 2021). Strong negative correlation is observed between TCC
adj (crop adjacency)

and TC
cluster (number of connected crop components), such that we avoid including both of

them in the same model, and we seek to assess which of the two descriptors better captures

crop-to-crop interaction (M1/M3 vs. M4).

The patch area distribution shows high variance, and we include descriptors for the ef-

fect of patch area in network C . While the behavior of large patches can strongly influence

the proportions of crop and semi-natural habitat, small field sizes may benefit biodiversity

through easier access to adjacent fields with complementary resources (Sirami et al., 2019).

Therefore, we use a patch area condition using TC
area,p in Table 2 with p= 0.25 and p= 0.75

(M1), and we check redundancy by removing TH
area,0.75 in M3.

For hedges, Figure 5 in the supplementary material shows strong positive correlation be-

tween TH
length (long hedges, where we count the number of hedges positioned on edges longer

than the average edge length) and TH
orient (horizontal hedges), which is related to the wind-

break function of many hedges against strong Mistral winds blowing from the North; to check

redundancy of these two descriptors, we include only TH
length in M2, in contrast to M1–M3

(Zamberletti et al., 2021).

We present a detailed analysis of model M1 in D1, denoted as M1-D1, and we point out

some salient results of the comparison of M1, M3 and M4, and of other domains D2 and

D3. Detailed results can be found in the supplementary material (Zamberletti et al., 2021).

5.2. Likelihood-based model comparison. Table 4 reports mpll values, and mean-

squared errors (MSE) obtained through 5-fold cross-validation; recall Section 4.2. In the

network H , the hedge length descriptor TH
length, included in M1 but not M2, does not provide

notable improvements except for the domain D2, where the correlation between the logistic

regression covariates related to TH
length and TH

orient is relatively weaker. In the network C , the

comparison of the crop models in M1, M3 and M4 reveals that M1 consistently performs best

for both criteria; i.e., explicit control over large patches is required, and the Markov interac-

tion model based on adjacency provides better results than direct control over the number of

connected crop components.

5.3. Estimated parameters. In Table 5, we report coefficient estimates of βk, as well

as standard errors and significance with respect to the null βk = 0, based on Monte–Carlo

procedures using 100 simulations; see Section 4.1. Figure 7 in the supplementary material

shows boxplots of the parametric bootstrap estimations, and we detect no bias in the es-

timators(Zamberletti et al., 2021). All estimated parameters are significant for the Markov

interaction in the networks C and H (positive coefficient of C-C, H-H), for the area descrip-

tor (negative coefficient of Small area and of Large area), for the hedge orientation descriptor

(positive coefficient of Horizontal H), and for the activity terms. No strong signal is found for
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Crop Hedge

Activity Small area Large area C-H C-C Activity Long H H-H Horizontal H

M1-D1

Estimate -1.01 -1.52 -1.13 0.03 0.40 -2.38 -0.10 0.77 1.58

SD 0.34 0.35 0.29 0.07 0.10 0.19 0.19 0.07 0.19

M3-D1

Estimate -1.08 -1.24 - -0.05 0.37 -2.38 -0.10 0.77 1.58

SD 0.37 0.34 - 0.09 0.10 0.19 0.19 0.07 0.19

M4-D1

Estimate -0.16 -1.80 -1.15 0.06 -0.99 -2.38 -0.10 0.77 1.58

SD 0.25 0.39 0.32 0.08 0.47 0.19 0.19 0.07 0.19

M1-D2

Estimate -1.58 -1.13 -0.68 -0.04 0.65 -3.38 -0.58 0.77 3.65

SD 0.32 0.32 0.28 0.07 0.08 0.23 0.17 0.08 0.2

M1-D3

Estimate -1.82 -1.44 -0.25 -0.14 0.66 -3.01 -0.16 0.95 1.96

SD 0.09 0.14 0.07 0.02 0.02 0.06 0.05 0.02 0.05

Table 5: Parameter estimates for crop-related (C) and hedge-related (H) descriptors. Crop-

hedge interaction (C-H), Crop-crop interaction (C-C). “SD” values and significance (at the

95% level, indicated through bold face) are based on 100 parametric bootstrap simulations.

C-C is of Markov type (using TCC
adj ) in M1/M3, and is global (using TC

cluster) in M4.

a dominance of long hedge segments (Long H) in D1, confirming results in Section 5.2, and

of Markov interaction between C and H . All descriptors are significant for the large domain

D3. The signs of estimates are the same across D1–D3 for all significant effects, implying

structurally similar behavior. The different sign in M4 for C-C interaction is due to differ-

ent specification as a global descriptor using the number of connected components. Overall,

estimated parameters tend to have comparable magnitudes across D1–D3.

We interpret these results as follows: given the parameter estimates of our model, the crop

category is usually not allocated on relatively small and relatively large fields; later results

will confirm the superior performance of M1 over M3/M4, the latter without the large area

descriptor. Crop fields and hedges tend to cluster in space, i.e., they tend to be allocated

on adjacent patches and linear elements, respectively, such that they provide relatively large

and contiguous habitats, and relatively long continuous movement corridors. Moreover, the

connected component descriptor in M4 has negative coefficients, i.e., the study domains seem

to be characterised by relatively few large crop clusters. There is a dominating horizontal

orientation of hedges for protecting against strong winds. Crop-hedge adjacency has negative

coefficients and is significant only for the large domain M1-D3, suggesting a slight tendency

of hedges to not being directly adjacent to crop fields. In M1-D2, we discern a particularly

strong signal of Long H indicating many short, strongly horizontally oriented hedges.

5.4. Summary diagnostics of observed and simulated landscape. We check if landscape

descriptors, as well as one- and two-category variograms and graph- and raster-based metrics

introduced in Section 4.3, are appropriately reproduced by the models for crop allocation

to patches in D1. We focus on M1, which was found to show good relative performance

in the preceding diagnostics. We generate 100 independent simulations of the fitted model.

For scalar metrics, and for fixed distances in the variogram analysis, we report results for

approximate two-sided Monte-Carlo test procedures at 95% confidence level with respect

to the null hypothesis that the observed summary could have been generated by the fitted

model. Results for the hedge network and for other domains (M1-D2, M1-D3) are structurally

similar; they are reported in the supplementary material (Zamberletti et al., 2021).

5.4.1. Landscape descriptors. Figure 7 shows observed and simulated landscape de-

scriptors, i.e., sufficient statistics for the estimated coeffients. Models M1, M3, M4 tend to

produce realistic values, especially M1.
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FIG 7. Landscape descriptors for domain D1 and network C (Crop) in M1, M3, M4. Boxplots summarize 100
simulations of fitted models. Red dots are observed values.

5.4.2. Variogram analysis. Figure 8 shows empirical one-category (Crop) and two-

category (Crop-Hedge) variograms with pointwise simulation envelopes. All variograms

show a relatively steep slope at the origin and tend to flatten for larger distances, such that

the general shape of the empirical data variogram is well reproduced by the models. In sev-

eral cases, especially with M3, empirical variograms of the dataset clearly fall outside the

envelope, such that the observed variability of landscape features with distance is not appro-

priately captured. In general, the structure of M1 (with the large patch area descriptor, and

Markov interaction for crops) improves the match between data and model variograms—

in contrast to M4 using the global interaction descriptor based on the number of connected

components. One-category variograms for hedges are appropriately captured by models (sup-

plementary material (Zamberletti et al., 2021)).

5.4.3. Network metrics. Figure 9 shows observed and simulated network metrics. For

node-scale metrics (two top rows), we observe good overlap of boxplots of observed and

simulated values for the crop and hedgerow network, with the exception of Betweenness

(number of the shortest paths going through a node when connecting any two other nodes)

where we tend to simulate too large values for crop, and too small values for hedges. Some

outlying values are not shown since Betweenness is very heavy-tailed due to high variability

among different networks, which may explain the mismatch between observed and simulated

values. Heavy-tailedness highlights that few crop patches serve as bridges connecting differ-

ent crop clusters, which is fundamental to global connectivity of the landscape (Estrada and

Bodin, 2008; Urban et al., 2009; Belgrano et al., 2015); this property is preserved in the fitted

model.

For network-scale metrics (last row of Figure 9) we show the real landscape value within

the boxplot of simulated values. Observed metrics fall within or close to the interquartile
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FIG 8. Variogram analysis of models M1, M3, M4 for domain D1. One-category variogram for crop (top row);

two-category variogram for crop and hedges (bottom row). Empirical variogram of observed landscape (black

line); pointwise simulation envelopes (red-shaded area: 5%-95%; dotted red lines: minimum/maximum).

range of the simulated ones for the crop network, while they lie outside the boxplot whiskers

for the hedge network but are still of the same order of magnitude. Moreover, we define

and report so-called pseudo-p-values in Section 7 of the supplementary material to allow for

automatic screening of network and raster metrics (Zamberletti et al., 2021).

Model M1 does not directly control the number or dimension of clusters, only local inter-

actions through the Markov model. This explains better performance for neighborhood-based

centralities in comparison to path-based centralities and metrics. However, using a global de-

scriptor instead of a local descriptor in M4 does not substantially improve performance for

path-based centralities; see Section 7 in the supplementary material (Zamberletti et al., 2021).

5.4.4. Raster metrics. Figure 10 shows the raster-based landscape metrics of FRAG-

STAT; see Section 4.3 and Table 3.

In most cases, observed metric fall within the whiskers of the boxplots, and in the other

cases the order of magnitude is still relatively well captured by the fitted model.

5.4.5. Correlation analysis of landscape summaries. Different landscape summaries

(descriptors, metrics) may comprise similar information, and strong correlation may arise

among such variables. If we seek a realistic representation of a specific metric through the

model, the landscape descriptors included in the model (or combinations of them) should be

strongly correlated with this metric. To assess such relationships, i.e., if the model may allow

us to target specific values of metrics of interest, we generate a sample of size 100 of the

model through the MCMC approach from Section 3.5. We then use linear regression with

the landscape descriptors as predictors and one landscape metric at a time as dependent vari-

able, and then consider the part of the standard deviation of the response not explained by

the predictors. For illustration, we analyse differences among the models M1 and M3 (where

M1 has an additional descriptor TC
area,0.75 related to the allocation of large patches with crop)
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FIG 9. Validation metrics M1-D1 for crop network C (left) and hedge network H (right). Panels a,c: metrics at

node scale (red dots: mean values). Panels b,d: metrics at network scale (boxplots: simulations; red dots: mean

values of simulations; green dots: observed values.

for domain D1 through the correlation analysis in Figure 11a. The descriptor TC
area,0.75 is

generally more strongly correlated with other metrics for crop patches than TC
area,0.25 , which

tends to substantially reduce residual standard deviation not explained by the descriptors of

the model, as shown in Figure 11b.

FIG 10. Raster-based metrics for M1-D1. Simulated values (boxplots); mean of simulated values (red dots);

observed value (green dots).
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FIG 11. Correlation analysis for M1-D1, M3-D1. Panel a: Correlations among landscape descriptors and metrics

(notation: C – patch network; H – linear element network; CH – patch to linear element connections; SNH –

Semi-natural habitat (raster)). Panel b: Comparison of patch-related metrics between M1-D1 and M3-D1 based

on residual standard deviation.

6. Conclusion. We have developed stochastic agricultural landscape models and statis-

tical inference with a focus on the land-use allocation mechanism of patches and linear ele-

ments, using network models as an intuitive and flexible tool for direct control and interpre-

tation with respect to local behavior. We have focused on descriptors based on single objects

or pairwise Markov interactions, which leads to robust modeling, estimation and simulation

procedures, while we found it generally difficult to improve models by the use of more glob-

ally specified interaction descriptors. Overall, the descriptors of the model and other land-

scape metrics were satisfactorily reproduced by simulations from models (especially M1)

fitted to Lower Durance Valley data. We highlighted the flexibility of the approach by com-

paring outcomes of different models over the same domain, and we also tested models over

domains having different and relatively large size. The generality of calibrated models was

evaluated through variograms and metrics whose values are not explicitly encoded into the

model structure. Time dynamics, such as crop rotation, cannot be estimated for the dataset

due to lack of dynamic land-cover allocation data. The integration of temporal descriptors,

as illustrated through the simulations in the supplementary material, would be an interesting

perspective for future development of such classes of models (Zamberletti et al., 2021). The

proposed model class succeeds in capturing key patterns of configuration and composition in

real landscapes.

The developed approach focuses on the task of classification, i.e., of attributing to each

landscape element one class among a finite number of possible classes. The use of Gibbs

energies could be extended to more general numeric labels (e.g., continuous variables) asso-

ciated with landscape elements, for instance the crop yield in a field, or the proportions of

a crop field used for specific crop types when several crops are planted in the same field in

some small-scale-alternating way. Then, the proposed approach could be extended to more

general models of exponential family type (e.g., Brown, 1986).

We have provided a set of diagnostic and inferential tools to assess model performance

from different perspectives and select an appropriate candidate. Not all relevant metrics can
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be reproduced through our model without bias, especially on raster scale where the grid

discretization of space may produce instabilities in treating small-scale small-area patterns,

especially those related to linear segments. Linear element allocation also showed some dis-

crepancy between model and data for large-scale clustering properties. To remedy the issue

of appropriately simulating an important landscape summary that is not directly controlled

by the model, we can add constraints during simulation, using techniques such as Simulated

Annealing (e.g., Papaı̈x et al., 2014).

We outline the potential of Approximate Bayesian Computation (ABC) for parameter es-

timation and likelihood-free model selection using Bayes factors (e.g., Grelaud et al., 2009).

Using landscape descriptors for the ABC target summaries yields asymptotically consistent

estimators under mild conditions since descriptors are sufficient statistics. However, rather

long computation times may arise with this method.

Vector-based models such as ours are more parsimonious and meaningful from an ecologi-

cal point of view (Gaucherel et al., 2012; Bonhomme et al., 2017), and they enable explicitly

handling different spatial and temporal scales. In raster-based approaches, an appropriate

representation of small-surface elements such as hedges would require a very high and un-

wieldy resolution, where a homogeneous large-surface patch would be made up of a very

large number of pixels, instead of a single geometric object in our model. Our multiplex

network structure assures low computational cost and memory requirements.

We do not directly model human action in the temporal dynamics of agricultural environ-

ments (Bonhomme et al., 2017; Poggi et al., 2018), for which we would have to couple our

model with a decision tool. Future developments also comprise the integration of our allo-

cation model with (existing) generative parametric tessellation models for the geometrical

support (Kiêu et al., 2013).
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Supplementary Material: Technical report with extended results

doi: COMPLETED BY THE TYPESETTER; .pdfAdditional details for the simulation algo-

rithm and results for the case study in Section 5.
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Lü, L., Chen, D., Ren, X.-L., Zhang, Q.-M., Zhang, Y.-C., and Zhou, T. (2016). Vital nodes identification in

complex networks. Physics Reports, 650:1–63.

Maalouly, M., Franck, P., Bouvier, J.-C., Toubon, J.-F., and Lavigne, C. (2013). Codling moth parasitism is af-

fected by semi-natural habitats and agricultural practices at orchard and landscape levels. Agriculture, ecosys-

tems & environment, 169:33–42.
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Abstract 25 

In agricultural landscapes, the amount and organization of crops and semi-natural habitats (SNH) have the 26 

potential to promote a bundle of ecosystem services due to their influence on ecological community at multiple 27 

spatio-temporal scales. SNH are relatively undisturbed and are often source of complementary resources and 28 

refuges, therefore supporting more diverse and abundant natural pest enemies. However, the nexus of SNH 29 

proportion and organization with pest suppression is not trivial. It is thus crucial to understand how the behavior 30 

of pest and natural enemy species, the underlying landscape structure, and their interaction, may influence 31 

conservation biological control (CBC). Here, we develop a generative stochastic landscape model to simulate 32 

realistic agricultural landscape compositions and configurations of fields and linear elements. Generated 33 

landscapes are used as spatial support over which we simulate a spatially explicit predator-prey dynamic model. 34 

We find that increased SNH presence boosts predator populations by sustaining high predator density that 35 

regulates and keeps pest density below the pesticide application threshold. However, predator presence over all 36 

the landscape helps to stabilize the pest population by keeping it under this threshold, which tends to increase 37 

pest density at the landscape scale. In addition, the joint effect of SNH presence and predator dispersal ability 38 

among hedge and field interface results in a stronger pest regulation, which also limits pest growth. Considering 39 

properties of both fields and linear elements, such as local structure and geometric features, provides deeper 40 

insights for pest regulation; for example, hedge presence at crop field boundaries clearly strengthens CBC. Our 41 

results highlight that the integration of species behaviors and traits with landscape structure at multiple scales is 42 

necessary to provide useful insights for CBC. 43 

Author Summary 44 

  In the agricultural context, the loss of semi-natural surfaces often results in high pest abundance requiring 45 

elevated pesticide loads. Habitat heterogeneity resulting from the agricultural intermixing of arable fields and 46 

semi-natural areas is key to allow organism fluxes across agro-ecological interfaces by influencing ecological 47 

processes. Semi-natural habitats (SNH) are often restricted to linear structures, such as hedgerows, but they play 48 

an important role by hosting a large number of species. However, the effect of hedgerows is controversial, as it 49 
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could result in a positive, ineffective or negative effect for CBC. Usually, the impacts of landscape structure on 50 

pest population dynamics and resulting CBC are assessed through field experiments with a specific focus, which 51 

cannot be generalized, lack flexibility and are limited by the need to manipulate relatively large landscapes. 52 

Here, we tackle the challenge to investigate the controversial role of semi-natural habitats for CBC by presenting 53 

a simulation-based approach, which allows us to characterize the joint influence of landscape structure and 54 

species traits on CBC service. Our study corroborates that spatial heterogeneity, species traits and their 55 

interactions are fundamental for CBC. We show that hedge presence alone is not sufficient to lead to strong pest 56 

reduction, but hedge-based predators help to maintain the pest density under the pesticide threshold. Instead, 57 

SNH presence coupled with appropriate predator traits leads to stronger decrease of pest population. Moreover, 58 

we highlight an important scaling effect of SNH, which at the local scale has an even more important impact on 59 

CBC as local properties are considered.  60 

 61 

Introduction 62 

Agricultural landscape simplification results in substantial loss of semi-natural mosaics and of non-crop field 63 

margins. It is often associated with high pest abundance, which in turn requires a higher pesticide input (1,2). 64 

Consequently, a negative relationship emerges between intensity of agriculture and agricultural landscape 65 

biodiversity (3) because of a partial replacement and suppression of the ecological services provided by 66 

communities of beneficial organisms (4,5). Habitat heterogeneity is key to allow cross-system fluxes of 67 

organisms across agro-ecological interfaces by influencing ecological dynamics within those habitats (6,7) and 68 

potentially increasing predator abundance and diversity in agricultural systems (8,9). In addition, complex 69 

landscape favours habitat and resource diversity for predators thanks to increased availability of alternative 70 

preys, higher microclimate heterogeneity, the presence of refuges from their own predators and for 71 

overwintering (10). In arable land, semi-natural habitat (SNH) is typically restricted to hedgerows. These linear 72 

structures play an important role as relatively perennial line corridors because of their temporal stability with 73 

respect to crop fields. Their presence supports predator dispersal and movement to escape from disturbances and 74 

to find food resources scattered in time and space (11,12). 75 
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While SNH favours the presence or abundance of functional groups of organisms in landscapes, it can also 76 

result in ineffective conservation biological control (CBC) (12,13) with no, or even negative effects on pest 77 

control (12–14). A meta-analysis revealed that pest pressure in complex landscapes is reduced in 45% of cases, 78 

not affected in 40% of cases and increased in 15% of cases (9). The analysis in (15) highlights the difficulty of 79 

stating general and systematic pest and predator interactions and responses; it is based on a very large pest 80 

control dataset from which a remarkable variability in pest and enemy responses to different landscape metrics is 81 

found. For example, the effect of landscape structure on pests remains inconclusive, as many crop pests also 82 

benefit from nearby non-crop habitat (12–14). It may occur that SNH offers more complementary resources to 83 

pests rather than to predators to complete their life cycle (6). Predator abundance is not always enough to 84 

guarantee a consistent reduction of pest species (16) in case of the presence of alternative prey (known as 85 

dilution effect) (17), or increased intra-guild predation (18). Life history traits, in particular those traits related to 86 

mating systems, competitive skills, movement abilities and habitat use, are also of major importance by affecting 87 

species’ responses to landscape heterogeneity and being readily linked with ecological processes (19). Thus, 88 

effect direction and magnitude jointly depend on organisms and landscapes under study (20,21). 89 

In general, the impacts of landscape structure on pest population dynamics are investigated through empirical 90 

correlative approaches with global descriptors at landscape level, due to the difficulty of manipulating large 91 

landscapes for local analyses and due to the lack of the spatio-temporal dimension. The main drawback of these 92 

approaches is the difficulty of linking correlation levels to population dynamic processes, such as local 93 

population growth or migration behavior (22). A complementary approach, combining theoretical modeling and 94 

computer simulations, consists in coupling generative landscape models with population dynamics models to 95 

explore how different landscape configurations, including the hedge network structure, affect CBC (23) .  96 

A major goal of this work is to implement a general simulation-based approach to obtain theoretical insights 97 

on CBC by incorporating landscape effects and species traits, which can serve as basis to formulate practical 98 

recommendations. In order to assess what are the main factors that influence the predator-pest population 99 

densities in complex landscapes, following questions are investigated: (i)Can landscape composition and 100 

configuration reduce the number of pesticide applications by enhancing CBC?  (ii) How do species traits related 101 
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to dispersal, predation and population demography modify the effect of landscape heterogeneity? Specifically, 102 

we develop a stochastic landscape model to simulate realistic agricultural landscape compositions and 103 

configurations of fields and linear elements for crop and semi-natural allocation. The generated landscapes are 104 

used as spatial support over which we simulate spatially explicit predator-pest dynamics. The population model 105 

accurately links 2D diffusion on surface, 1D diffusion on linear elements, and the flux interchanges among them 106 

to put particular attention on the linear element integration; see the video file provided in the supplement for 107 

illustration. Predators use hedges as their natural habitat where their population naturally develops, but they can 108 

also move into crop field to feed on pests. Pests consider crop fields as their natural habitats where they show 109 

positive growth, while they are not influenced by hedge elements. Our study explores how the joint 110 

consideration of spatial heterogeneity, landscape structure, species traits and their interactions helps to achieve 111 

effective CBC. We present and discuss results in the following sections; the technical description of our model 112 

and statistical methods is given in Section 4.  113 

2 Results 114 

2.1 Sensitivity of predator density, pest density and pesticide applications to model parameters 115 

Fig. 1 shows the results of a Sobol sensitivity analysis, where sensitivity indices are denoted by 𝐼𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 in 116 

the following and are calculated from replicated simulations with the same underlying parameter configuration. 117 

The sensitivity analysis of the mean of model outputs across landscape replicates (Fig. 1a right) shows that 118 

variations in mean predator population density are mainly explained by predator migration (𝐼𝜌12 = 50%) and by 119 

the proportion of hedges (𝐼𝑃ℎ = 41%), whereas interactions among parameters have little impact on the outputs. 120 

For the mean pest population density and the average number of pesticide applications, crop proportion (𝐼𝑃𝑐 =121 78% and 𝐼𝑃𝑐 = 83%, respectively) and pest growth rate (𝐼𝑟𝑢 = 17% and 𝐼𝑟𝑢 = 15%, respectively) are the most 122 

important parameters to explain model output variability, again with only little interaction between model 123 

parameters (Fig. 1b right). Complete results for pesticide applications are given in the S1. 124 

The sensitivity analysis of standard deviation of model outputs across landscape replicates gives different 125 

importance to the input variables as compared to the mean values. For the predator density, crop proportion (𝑃𝑐), 126 

predator migration (𝜌12), hedge proportion (𝑃ℎ) and spatial crops and hedges aggregation (𝜑) explain 127 
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respectively 55%, 19%, 9% and 9% of the variability of model outputs (Fig. 1a left). For the pest and pesticide 128 

applications, results are consistent with the results obtained for the mean. However, interactions between model 129 

parameters are important to explain variations in the standard deviation of predator and pest density, as well as 130 

of pesticide applications among landscape replicates. This implies that particular landscape structures, 131 

characterized by a combination of several descriptors, have to be considered to fully understand the drivers of 132 

predator-pest dynamics. 133 

 134 

 135 

Fig. 1. Sobol sensitivity analysis. Total sensitivity indices (light grey bar) and first-order sensitivity indices 136 

(black bar) of space-time averaged values for predator density (a) and pest density (b), based on the mean (right) 137 

or on the standard deviation (left) calculated over replicated simulations. The length of the bar indicates the 138 

mean of the sensitivity index, and the solid line indicates its 95% confidence interval. 139 
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3.2 Landscape structure effects on the predator-pest dynamics 140 

Estimated coefficients of landscape variables (denoted 𝐸𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 in the following) on predator density 141 

highlight a positive effect of hedge proportion (𝐸𝑃ℎ = 0.40 ± 0.05), a negative effect of crop proportion 142 

(𝐸𝑃𝑐 = −0.20  ± 0.04) and a positive interaction among both variables (𝐸𝑃ℎ:𝑃𝑐 = 0.08 ± 0.02), which implies 143 

that hedges can buffer the negative effect of increased crop proportion. Migration from hedges to fields (𝐸𝜌12 =144 0.56 ± 0.01) has the highest positive effect on predator density with again a positive interaction with crop 145 

proportion. 146 

As expected, crop proportion (𝐸𝑃𝑐 = 1.50 ± 0.16), as well as spatial crop and hedge aggregation (𝐸𝜑 =147 0.55 ± 0.02), have a strong positive effect on pest density. Both variables interact negatively (𝐸𝜑:𝑃𝑐 =  − 0.11 ±148 0.01), as high aggregation results in an increase of the size of contiguous crop fields, which lowers the effect of 149 

increased crop proportion. The positive effect of crop proportion is lowered by its interaction with hedge 150 

proportion (𝐸𝑃ℎ:𝑃𝑐 = 0.03 ± 0.06) and also with predator migration from hedge to fields (𝐸𝑃𝑐:𝜌12 = 0.06 ±151 0.06). Counterintuitively at first sight, an increase in hedge proportion (𝐸𝑃ℎ = 0.09 ± 0.11) has a positive effect 152 

on pest density. Indeed, predator presence over all the landscape helps to stabilize the pest population by keeping 153 

it under the thresholds that would trigger a pesticide application. This is further confirmed by the fact that hedge 154 

proportion (𝐸𝑃ℎ = 0.32 ± 0.57), predator spillover from hedges to fields (𝐸𝜌12 = 0.61 ± 0.34) and concurrence 155 

of high crop proportion and aggregation (𝐸𝜑:𝑃𝑐 = 0.24 ± 0.09) have a positive effect on the presence of 156 

pesticide applications, but a negative effect on pesticide application numbers (𝐸𝑃ℎ = −0.11 ± 0.07, 𝐸𝜌12 =157 −0.19 ± 0.08, 𝐸𝜑:𝑃𝑐 = −0.07 ± 0.01). 158 

Among species traits, predator migration from hedges to fields (𝐸𝜌12 = −0.13 ± 0.12) has the highest 159 

negative impact on pest density. Pest diffusion (𝐸𝐷𝑢 = −1.03 ± 0.01), due to a dilution effect, and the predating 160 

rate (𝐸𝛽 = −0.24 ± 0.01), have also a negative impact on the pest, while the growth rate (𝐸𝑟𝑢 = 0.41 ± 0.01) 161 

contributes positively to pest density. S1 Fig. 3 shows all estimated effects and their confidence intervals for 162 

predator and pest density and pesticide application presence/absence and number, see also Table 1. 163 
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By checking the sensitivity of our results with respect to the pesticide application variables (i.e., pesticide 164 

application efficacy [optimal vs realistic] and pesticide thresholds [low vs high], see the Supplement), we find 165 

that there is no variation of the direction of the estimated effects, but the magnitude of the effect can increase or 166 

decrease depending on the scenario considered. Specifically, when pest reduction is lower due to low pesticide 167 

efficacy, or, when pest reduction is slower due to an elevated pesticide threshold, hedges show a more important 168 

effect in slowing down pest dynamics thanks to predator presence providing a more efficient CBC. 169 

3.4 Effect on pesticide application at local scale 170 

Locally, presence of pesticide applications is negatively influenced by field  area and perimeter (𝐸𝐴𝑟𝑒𝑎 =171 −0.32 ± 0.01, 𝐸𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 = −0.10 ± 0.03). These effects reflect both a slower pest diffusion in large fields and 172 

higher predator incoming fluxes to fields with long perimeter. Conversely, when pesticide applications occurred 173 

in a field, the total number of pesticide applications increases with field perimeter due to spillover form the 174 

neighborhoods. An increase in the number of adjacent crop fields produces a positive effect on the presence 175 

(𝐸𝐴𝑑𝑗𝐶 = 0.74 ± 0.01) and number (𝐸𝐴𝑑𝑗𝐶 =   0.20 ± 0.002) of pesticide applications, while an increase in the 176 

number of adjacent hedges leads to a negative effect on the presence (𝐸𝐴𝑑𝑗𝐻 = −0.07 ± 0.01) and number 177 

(𝐸𝐴𝑑𝑗𝐻 = −0.05 ± 0.001) of pesticide applications. Whereas in the global model the increase of hedge 178 

proportion is associated with a positive effect on the presence of pesticide applications, we attribute the negative 179 

effect at local level to the fact that the predator tends to locally maintain the pest density under the pesticide 180 

threshold, especially after a first pesticide application. The number of pesticide applications in adjacent fields is 181 

positively correlated to their local presence (𝐸𝐴𝑑𝑗𝑇𝑟 = 2.99 ± 0.01) and number (𝐸𝐴𝑑𝑗𝑇𝑟 = 0.13 ± 0.001), 182 

indicating local proliferation of the pest. S1 Fig. 4 shows all estimated local effects and confidence intervals for 183 

pesticide application presence/absence and number, see also Table 1.  184 

 185 

 186 

Table 1. Estimated coefficients (only those discussed in the text). Estimated coefficient on predator and 187 
pest density (left) and on the presence/absence (P/A) and number (No.) of pesticide applications (right) at 188 
landscape and patch level. + indicates a  positive effect, – a negative effect, NS a non significant effect. 189 

 190 
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Density   

Pesticide 

application 

 Coefficient Predator Pest   Coefficient P/A No. 

L
a
n

d
sc

a
p
e 

𝐸𝑃ℎ + +  

L
a
n

d
sc

a
p
e 

𝐸𝑃ℎ + - 𝐸𝑃𝑐  - +  𝐸𝜌12 + - 𝐸𝑃ℎ:𝑃𝑐 + +  𝐸𝜑:𝑃𝑐 + - 
 𝐸𝜌12 + -  

P
a
tc

h


𝐸𝑎𝑟𝑒𝑎 - - 𝐸𝜑:𝑃𝑐 NS -  𝐸𝑝𝑒𝑟𝑖𝑚 - + 𝐸𝑃𝑐:𝜌12 + +  𝐸𝐴𝑑𝑗𝐶  + + 𝐸𝐷𝑢 + -  𝐸𝐴𝑑𝑗𝐻  - - 𝐸𝛽 + -  𝐸𝐴𝑑𝑗𝑇𝑟  + + 𝐸𝑟𝑢  + +      

 191 

3 Discussion 192 

Sustainable management of pests and diseases in agro-ecosystems requires a better understanding of how 193 

landscape structure drives and alters population dynamics. By simulating different landscape configurations 194 

including linear corridors, and the predator-pest dynamics, the present research aims at characterizing the joint 195 

influence of landscape structure and species traits on CBC service. Our study corroborates that spatial 196 

heterogeneity, landscape structure (i.e., the size and physical arrangement of patches), species traits and their 197 

interactions play a key role for CBC. 198 

High crop proportion is the major determinant of increasing pest population and results in an increased 199 

number of pesticide applications over the whole landscape. Indeed, increasing crop proportion in fragmented 200 

landscapes ensures food availability to the pest all over the landscape (1,2,12). In highly aggregated landscapes, 201 

the size of contiguous crop patches is already large enough to sustain a relatively large pest population, thus 202 

lowering the effect of an increase in crop proportion (14). The effects of crop proportion and spatial crop and 203 

hedge aggregation are intimately linked to pest growth rate and dispersal capability. Indeed, unfavorable 204 

landscape properties for the pest (i.e., low proportion and high fragmentation) can be compensated by a higher 205 

98



growth rate. However, the effect of dispersal is a double-edged sword since high dispersal helps spreading on 206 

fragmented landscapes but comes with a larger amount of propagules lost in unsuitable habitats, potentially 207 

leading to a dilution effect (3,33,34).  208 

As expected, hedge proportion (i.e., SNHs) positively affects predator presence in agricultural landscapes. In 209 

addition, the predator’s ability to move between SNHs and crop habitats is the parameter that increases most 210 

strongly the predator density, since it enables predators to reach complementary resources in crop fields more 211 

easily. Predator fluxes from adjacent habitat is reported to have a major impact on pest populations in crop fields 212 

(3,12,26). Spillover from hedges to fields not only depends on predator propensity to forage outside their natural 213 

habitat, but also on semi-natural patch connectivity and on crops and predator reservoir interface (27). Thus, 214 

different combinations of SNH proportion and aggregation influence landscape structural connectivity and are 215 

also important determinants of predator efficiency in regulating crop pests (27).  216 

In our representation, hedges are modeled as a source of predators where these have logistic growth. This is a 217 

simplification for predator dynamics in their natural habitat, as we do not consider potential prey presence in 218 

hedges and predator foraging behavior in crop fields. For example, the growth rate, instead of being constant, 219 

could depend on the time spent in the fields and on the number of consumed preys. In addition, predating rate 220 

and consumption rate are crucial in determining the efficiency of CBC (28). Here, these parameters are not 221 

identified as influential in the dynamics, maybe because they are assumed identical (parameter β in our model). 222 

Finally, another strong assumption of our model is that we refer to a selective pesticide application which does 223 

not affect predator mortality, such that we do not explore a broad-spectrum pesticide scenario. In general, broad-224 

spectrum pesticides are more commonly applied (17), but there are pest management programs where selective 225 

insecticides have been proved to be particularly effective in combination with a CBC strategy by weaving 226 

together direct targeted reduction in pest numbers with predator conservation (17,29). Moreover, introducing 227 

broad-spectrum pesticide application effects may result in secondary pest breakouts (30–32), where pests benefit 228 

from the predator reduction. Then, additional pesticide loads would be necessary to decrease pest density, which 229 

in turn continuously decimates the predator population (33). Therefore, the effect of SNH and predators, and 230 

their relationships for CBC outcomes, would be confused and masked. In our work, an indirect effect could be 231 
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observed: in crop fields, a positive predator growth rate relies only on pest availability, such that a strong pest 232 

reduction due to pesticide applications is automatically translated into a strong impact on predator density when 233 

such pesticide applications occur. 234 

In our analysis, we found that the predator’s ability to disperse from hedges to crop fields has a major 235 

influence on pest density and related pesticide applications. High crop proportion enhances pest density, but this 236 

effect is counter-balanced by the joint effect of hedge proportion and predator spillover from hedges to fields, 237 

which favors predator pressure and reduces pesticide applications. Indeed, hedges ensure an increased functional 238 

landscape connectivity, which enables predators to successfully disperse and feed on complementary resources 239 

in the fields. Interestingly, however, we found that if SNHs can sustain a high population of predators (34), this 240 

is not sufficient to achieve a decrease in pest density. Indeed, by keeping the pest population density under the 241 

pesticide application threshold, the predator population can favor its spread across the landscape, thus increasing 242 

pest density at the landscape scale, even if fewer pesticide applications are applied. Most of the studies consider 243 

the amount of SNH as a proxy for predator presence and focus on how landscape structure directly influences 244 

CBC. However, as highlighted by our results (see also (37)), the extent to which species are influenced by 245 

landscape heterogeneity depends on their traits. For example, (36) argue that predators with an oriented 246 

movement are better able to deliver pest control services. They discuss the interplay among predator mobility, 247 

proportion of crop and SNHs. More generally, predator fluxes from SNH are expected to be particularly strong 248 

when (i) predator attack rates on prey are high, (ii) predator movement abilities are substantial, and (iii) predator 249 

mortality rates in the recipient habitat are low (37). However, we point out that the predator we model is a 250 

generalist predator that does not show strong aggregation behaviour towards pests. Pests represent a predator 251 

resource in field, but predators can persist in the landscape also without pests as they have a positive growth in 252 

hedges. Different outcomes would be probably observed when considering a specialist predator showing an 253 

aggregating behaviour around local pest outbreaks (38). As for example in (38), specialist predators are found to 254 

be more effective agents in suppressing local outbreaks than generalist ones.  255 

The amount of predator spillover from hedges to fields, and the distance over which pest and predator can 256 

spread, both depend on local configurational variables such as field size, shape, amount of shared edge, and 257 
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connectivity (20). Large fields can support high pest volumes, but it has been demonstrated that the relationship 258 

between field size and pest density can take several forms depending on assumptions, conditions and species 259 

considered (39). Our results show a negative effect of large field area on the need and quantity of pesticide 260 

applications, which, according to (39), may come from the elevated growth rate of the prey combined with its 261 

good dispersal ability. By contrast, a high number of pesticide applications is favoured by long field perimeters, 262 

as these facilitate high fluxes of pest coming in from surrounding fields. However, when a hedge is present on a 263 

field boundary, we observe a reduction in numbers of pesticide applications, as there is an increase of predator 264 

spillover from hedges into fields (9). Interestingly, we show a contrasted effect of hedges depending on the scale 265 

considered. At global scale, the proportion of hedges shows a positive effect on pest density and has a negative 266 

effect only on the presence of pesticide application. At local scale, an elevated number of hedges on crop 267 

boundaries shows an even more important impact on CBC by negatively affecting both the local presence and 268 

number of pesticide applications (34). 269 

Landscape simplification is a major driver of pest abundance and consequently has strong impacts on the 270 

necessity of pesticide applications and their frequency. We find that natural habitat enhances predator 271 

population, but it does not systematically translate into a strong correlation with pest density decrease. However, 272 

a relatively high predator density often helps maintaining pest density below the threshold level above which 273 

pesticides are applied, thus preventing highly localized pest densities. However pest population can already have 274 

a moderate density level over substantial surfaces and therefore may quickly propagate in every point of the 275 

space.  Indeed, in our model the hedges are generally expected to play a positive role, but our results at global 276 

scale show that the final outcome must be analyzed in a much more nuanced way. By contrast, predator spillover 277 

from hedges to fields is fundamental for CBC; it reduces pest density and guarantees high predator fluxes and 278 

different habitat connectivity. At field scale, landscape geometric features, hedge presence and habitat 279 

connectivity are able to influence predator-pest dynamics, and therefore they affect the number of pesticide 280 

applications. This highlights the importance of conducting a multi-scale analysis to consider the differences in 281 

outcomes at landscape and patch scale for pest CBC (14). In most of our analyses, we considered global outputs 282 

by averaging pest and predator densities over crop fields. However, populations are obviously structured in 283 
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space and time. Thus, a complementary analysis studying how landscape structure impacts spatio-temporal 284 

predator-pest dynamics would bring deeper insights on pest outbreak determinants. Moreover, a larger number 285 

of pest and predator species, inter/intra-species interactions and also different trophic network structures, could 286 

be considered in future work to better understand the role of pest and predator diversity on CBC efficacy. 287 

4 Models and methods   288 

 289 

4.1 Stochastic landscape model 290 

The landscape is represented through a vectorial approach, which is appropriate for representing the highly 291 

regular geometric patterns of agricultural landscapes (40,41). It is composed of polygons representing fields, 292 

separated by edges. Landscape elements are characterized by their geometry (e.g., vertex coordinates, size and 293 

shape), and by categorical information defining the land-cover (e.g., crop or natural habitat). The landscape 294 

geometric structure is fixed and based on a real landscape with an extent of 5.55 km. The landscape is 295 

transformed into a T-tessellation (42,43) composed of 188 polygons with a total of 577 edges.    296 

We use Gaussian random fields (GRFs) to allocate a proportion of polygons and edges as crops representing 297 

the principal culture and hedges to provide SNHs, respectively. A threshold on the simulated GRF values is set 298 

to attribute specific landscape elements depending on the value being below or above the threshold. By 299 

definition, a GRF denoted by 𝑊 is a random surface over continuous 2D space, for which the multivariate 300 

distribution of the values (𝑊(𝑥1), 𝑊(𝑥2), … , 𝑊(𝑥𝑛) ) observed at a finite number of locations 𝑥1, 𝑥2, … , 𝑥𝑛 in 301 

the landscape corresponds to a multivariate normal distribution, characterized by its mean vector and its 302 

covariance matrix Σ. The mean is fixed to 0 and the exponential correlation function is used for Σ, such as 303 

Σ𝑖𝑗 =  𝑒−(|𝑥𝑖−𝑥𝑗|𝜑 )
, where |𝑥𝑗 −  𝑥𝑖| is the Euclidean distance between any two points 𝑥𝑗 and 𝑥𝑖. The range 304 

parameter 𝜑 ≥ 0 governs the strength of clustering of category allocation to landscape elements. To handle the 305 

interactions between the allocation of hedge and crop, we simulated two correlated GRFs for crop (𝑊𝑐(𝑠)) and 306 

hedge (𝑊ℎ(𝑠)):  307 𝑊𝑐(𝑠) = 𝜌𝑊ℎ(𝑠) +  √1 − 𝜌2�̃�(𝑠),          (1) 
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where 𝜌 ∈ [−1, 1] controls the correlation between 𝑊ℎ and �̃�, which is a GRF independent from 𝑊ℎ. The 308 

parameter used for the landscape models with their range of values can be found in Table 2. Fig. 2 shows an 309 

example of four landscapes simulated according to different proportions and aggregation levels of hedges and 310 

crop fields.   311 

 312 

 313 

Fig. 2. Simulation examples. Examples of simulated landscape structures with interacting elements using the 314 

following allocation categories: for fields, (i) crop (green) and (ii) non-crop (white); for edges, (i) hedge (blue) 315 

and (ii) no-hedge (black). First row: low (a) and high (b) proportions of crop and hedges (0.2 and 0.8, 316 

respectively), with fixed parameter configuration for aggregation and fixed correlation between crop and hedges 317 

(0.5). Second row: low (c) and high (d) crop and hedge aggregation level from left to right, with fixed proportion 318 

of crop and hedges (0.5) and fixed correlation between crop and hedges (0.5). 319 

4.2 Predator-pest model 320 

We developed a spatially explicit predator-pest model based on a system of partial differential equations. The 321 

model is built on a previously developed model that considers both 2D diffusion on polygons and 1D diffusion 322 

on edges (11). Simulations are performed over a [0,100]-time interval representing a cropping season with a time 323 
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step of 1 day. The model parameters and their range of simulated values are reported in Table 2. Numerical 324 

simulations of the spatio-temporal partial differential equation system of predator-pest dynamics are performed 325 

using the Freefem++ finite-element framework (44). The predator-pest dynamics is illustrated by snapshots at 326 

different time step (Fig. 3) and  by plots of the temporal dynamics  in the supplement, and by a video for the 327 

whole simulation period over the spatial domain. 328 

 329 

Fig. 3 Snapshots of pest and predator spatial dynamics. Simulation of predator-pest population dynamics 330 

at different time intervals t={1, 70, 100}. At the initial stage, the pest density (first line) is very low, followed by 331 

random introduction of pest. As time proceeds, the pest density increases  (from left to right), anad predator 332 

density (last line) also increases  and diffuses  to surrounding fields. At the final time step, high pest density 333 

arises where predators are absent. 334 

Table 2. Description of parameter values. *Spatial aggregation is the parameter controlling the 335 

adjacency of crop elements among each other and hedge elements among each other.  336 

Parameters Description Values Units References 
Min max  

For landscape model  

        𝜑 Spatial aggregation of hedges and crops* 5.55/100 5.55 km  

        Pc Proportion of crop 0 1 -  

        Ph Proportion of hedges 0 1 -  
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𝜚 Correlation between crops and hedges 
GRFS 

0.5 -  

Parameters for population dynamic mode  𝐷2𝑣 2D diffusion rate of the predator 0.000625 0.012 𝑘𝑚2𝑑−1 Corbett et al., 
1996; Pearce 
et al. 2006 1/𝑚𝑣 Lifespan of the predator 20 66  𝑑1 Pearce et al. 
2006 𝛽 Predating rate 0.01 0.010 𝑝𝑒𝑠𝑡−1𝑑−1 Pearce et al. 
2006 𝜌21 Migration rate of the predator from field 

to hedge 
0.05  𝑘𝑚−1𝑑−1 

 𝐷1𝑣 1D diffusion rate of the predator 0.012 𝑘𝑚2𝑑−1 Corbett et al., 
1996; Pearce 
et al. 2006 𝑟𝑣 Intrinsic growth rate of the predator on 

hedges 
0.010 0.020 𝑑−1 Xia et al., 

1999 𝐾ℎ𝑖 Carrying capacity of hedges for the 
predator 

1 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟𝑠 𝑘𝑚−2  𝜌12 Migration rate of the predator from hedge 
to field 

0 0.05 𝑑−1  𝐷𝑢 2D diffusion rate of the pest 0.000625 0.012 𝑘𝑚2𝑑−1 Corbett et al., 
1996; Pearce 
et al. 2006 𝑟𝑢 Intrinsic growth rate of the pest 0.010 0.020 𝑑−1 Xia et al., 
1999 𝐶𝑖𝑡 Carrying capacity of 2D system for the 

pest  
20 (without pesticide)
0.1 (after pesticide) 

𝑝𝑒𝑠𝑡𝑠 𝑘𝑚−2  1/𝑚𝑢 Lifespan of the pest 20 66 𝑑 Pearce et al. 
2006 

 337 

4.2.1 Predator dynamics 338 

We model a generalist predator not showing strong aggregation behavior around pests. Hedges are the 339 

predator’s main habitat, which feeds on pests when moving into the fields. Using notations 𝑡 for time and 𝑥 for a 340 

spatial location, we thus assume the following 1-dimensional reaction-diffusion model for the predator density 341 𝑣ℎ𝑖 on the edge ℎ𝑖: 342 

{𝜕𝑡𝑣ℎ𝑖 = 𝜕𝑥𝑥𝐷1𝑣𝑣ℎ𝑖 + 𝑟𝑣𝑣ℎ𝑖 (1 − 𝑣ℎ𝑖𝐾ℎ𝑖)                            if the edge ℎ𝑖 carries a hedge, 𝑣ℎ𝑖 = 0                                             otherwise,               (2) 

where 𝐷1𝑣 is the diffusion parameter of the predator along hedges, 𝑟𝑣 is the intrinsic growth rate of the predator, 343 

and 𝐾ℎ𝑖 is the carrying capacity of the hedge 𝑖. If two hedges are linked together at one of their endpoints, then 344 

the dynamics in Equation (7) apply continuously across the junction. 345 
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In addition, the predator forages on fields where it feeds on the pest. The population density 𝑣Ωi of predators 346 

in a field Ω𝑖 is modelled by a reaction-diffusion equation with mobility parameter within field 𝐷2𝑣, predating rate 347 𝛽, and life span 1/𝑚𝑣: 348 𝜕𝑡𝑣Ωi = ∆𝐷2𝑣𝑣Ωi − 𝑚𝑣𝑣Ωi + 𝛽𝑢Ωi𝑣Ωi .                                                      (3) 

4.2.2 Pest dynamics 349 

We suppose that edges do not modify directly pest population dynamics. Writing 𝑢ℎ𝑖 for the pest density in 350 

an edge ℎ𝑖, we set 351 𝑢ℎ𝑖 = 0        for all 𝑖.            (4) 

The pest is a specialist of the principal crop and, without dispersal, it shows positive growth only in crop 352 

fields. The bidimensional reaction-diffusion model for the pest density 𝑢Ωi in field 𝑢Ωi is 353 

{ 𝜕𝑡𝑢Ωi = ∆𝐷2𝑢𝑢Ωi + 𝑟𝑢𝑢Ωi (1 − 𝑢Ωi𝐶𝑖𝑡 ) − 𝛽𝑢Ωi𝑣Ωi              for Ω𝑖 with crop, 𝜕𝑡𝑢Ωi = ∆𝐷2𝑢𝑢Ωi − 𝑚𝑢𝑢Ωi − 𝛽𝑢Ωi𝑣Ωi                                for Ω𝑖 with non-crop,             (5) 

where 𝐷2𝑢 is the diffusion parameter of the pest in fields, 𝑟𝑢 is its intrinsic growth rate on crop category, 𝛽 is the 354 

predating rate, and 1/𝑚𝑢 is the life span  of the pest on non-crop fields. 355 

In a crop field, a pesticide application is performed when the average pest population density in that field 356 

exceeds a given threshold, which we here fix to 0.2 pests km-2. Pesticide applications strongly reduce the 357 

carrying capacity 𝐶𝑖𝑡 of the field 𝑖 (Eq. (5)): 358 

{ 𝐶𝑖𝑡 = 𝐾Ω𝑖                                                                if no pesticide application is applied,𝐶𝑖𝑡 = 𝐾Ωi200          during the period 𝑒𝑡 for which the pesticide application is efficient.              (6) 359 

This results in a pesticide application efficacy providing a 99.5% pest reduction, which can be considered an 360 

ideal-optimal case in practice. More realistic values of pesticide application efficacy should be around 70% 361 

(45,46); this alternative scenario is analyzed in the supplement, where the sensitivity to the pesticide application 362 

threshold is also tested.  363 

 Instead of a applying a reduction of the carrying capacity, we could have used an additional linear mortality 364 

term to account for the effects of pesticide applications, but this would have implied the modification of both 365 
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growth and carrying capacity. For that reason, and to keep the model parsimonious, possible effects of pesticide 366 

applications are assumed to change only the carrying capacity (Eq. 6), which is equivalent to using quadratic 367 

additional mortality term. 368 

We point out that here we set the carrying capacity as a general saturation level for pest and predator densities, 369 

but it does not necessarily correspond to the number of individuals per 𝑘𝑚2. Similarly, mortality other than for 370 

predating or pesticide applications could have occurred in crop fields, but we have opted against this option for 371 

the sake of parsimony. 372 

4.2.3 Coupling predator-pest dynamics over the entire landscape 373 

Using the framework described in (11), the dynamics described by equations (2) to (6) are coupled over the 374 

full landscape using the following assumptions (see the Supplementary Information (SI) for more details): (i) 375 

edges (with or without a hedge) do not represent a barrier for the pest, (ii) edges without a hedge do not represent 376 

a barrier for the predator, (iii) the predator is attracted by hedges, thus migration from fields to hedges (𝜌21) is 377 

relatively high, (iv) the predator shows aversion to move outside its natural habitat, thus migration from hedges 378 

to fields (𝜌12) is lower than migration from fields to hedges. We consider reflecting conditions on landscape 379 

boundaries, meaning that in- and out-fluxes between the landscape and its surrounding environment are equal. 380 

Since pest population grows in crop habitat but not in non-crop habitat in our model, an increase in pest 381 

density with a higher crop proportion is expected. Similarly, since predators prefer hedges, higher hedge 382 

proportion favours predator movement through the landscape, thus, increasing predator density and predating 383 

pressure.  384 

4.2. Pest arrival and spatio-temporal design 385 

Initially, the predator is present in all hedges at carrying capacity. The pest is introduced randomly in space 386 

and time. The average number of pest inoculations in a single simulation is proportional to the proportion of crop 387 

field area in the landscape, and we draw the actual number of inoculations from a Poisson distribution. The 388 

maximal average number of pest inoculations is 25 and arises when the crop is grown in all fields. Inoculated 389 

crop fields are picked at random with probability depending on their relative surface. 390 
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4.3 Statistical methods for analyzing simulation outputs 391 

We define an experimental design based on Sobol’s sequences leading to 11,500 distinct parameter 392 

configurations (47–49). For each parameter combination, we consider 15 landscape replicates, leading to a total 393 

of 172,500 simulations. We first conduct a Sobol sensitivity analysis on the mean and standard deviation of 394 

predator density, pest density and number of pesticide applications by averaging the outputs over landscape 395 

replicates and crop fields. First-order indices were estimated with Sobol–Saltelli’s method  (50,51), whereas total 396 

indices are estimated with Sobol–Jansen’s method (50,52). These analysis are performed within the R software 397 

version 3.0.3 (R Team, 2003), using the packages fOptions (v. 3010.83) and sensitivity (v. 1.11). 398 

Then, to further explore direction and magnitude of variations in response variables with respect to landscape 399 

parameters, we applied Generalized Linear Models (GLMs). Pest and predator densities, and pesticide 400 

application numbers (if different from 0), are analysed as response variable by using the Gamma distribution 401 

with log-link function. Additionally, presence/absence of pesticide applications during a simulation is analyzed 402 

using a GLM with binomial distribution. We develop GLM formulas containing covariable interactions (see 403 

Table 2) up to second order, and we use a step-wise variable selection algorithm based on the Bayesian 404 

Information Criterion (BIC) in order to iteratively select the “best subset” of variables for each model.  405 

 406 

Finally, we use Generalized Linear Mixed-Effect models to analyze occurrences of pesticide applications by 407 

taking into account their spatial position in the landscape. We use the log-transformed area (𝐴𝑟𝑒𝑎) and perimeter 408 

(𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟) to take into account the geometrical properties of the fields, and we use the number of adjacent 409 

crop fields (𝐴𝑑𝑗𝐶), the number of adjacent hedges (𝐴𝑑𝑗𝐻), and the number of pesticide applications applied in 410 

the adjacent crop fields (𝐴𝑑𝑗𝑇𝑟) to take into account the composition and dynamics in local neighbourhoods. In 411 

addition, we include the estimated linear effects from the global models as offsets. The random effect is 412 

structured by the landscape simulation to account for its specific dynamics. By analogy with the global GLMs, 413 

the presence/absence of pesticide applications is analyzed using the binomial response distribution, and numbers 414 

of pesticide applications are analyzed with the Gamma distribution for the response variable with a log-link 415 
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function. Again, we consider predictor interactions up to 2nd order. These analyses are performed using the R 416 

package lme4 with R version 3.2.3 (53).  417 

 418 
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Spatio-temporal point processes as meta-models for population

dynamics in heterogeneous landscapes

Abstract

Landscape heterogeneity affects population dynamics, which determine species persistence,

diversity and interactions. These relationships can be accurately represented by advanced

spatially-explicit models (SEMs) allowing for high levels of detail and precision. However, such

approaches are characterised by high computational complexity, high amount of data and memory

requirements, and spatio-temporal outputs may be difficult to analyse. A possibility to deal with

this complexity is to aggregate outputs over time or space, but then interesting information may

be masked and lost, such as local spatio-temporal relationships or patterns. An alternative solu-

tion is given by meta-models and meta-analysis, where simplified mathematical relationships are

used to structure and summarise the complex transformations from inputs to outputs. Here, we

propose an original approach to analyse SEM outputs. By developing a meta-modelling approach

based on spatio-temporal point processes (STPPs), we characterise spatio-temporal population

dynamics and landscape heterogeneity relationships in agricultural contexts. A landscape gener-

ator and a spatially-explicit population model simulate hierarchically the pest-predator dynamics

of codling moth and ground beetles in apple orchards over heterogeneous agricultural landscapes.

Spatio-temporally explicit outputs are simplified to marked point patterns of key events, such as

local proliferation or introduction events. Then, we construct and estimate regression equations

for multi-type STPPs composed of event occurrence intensity and magnitudes. Results provide

local insights into spatio-temporal dynamics of pest-predator systems. We are able to differentiate

the contributions of different driver categories (i.e., spatio-temporal, spatial, population dynam-

ics). We highlight changes in the effects on occurrence intensity and magnitude when considering

drivers at global or local scale. This approach leads to novel findings in agroecology where the

organisation of cultivated fields and semi-natural elements are known to play a crucial role for pest

regulation. It aids to formulate guidelines for biological control strategies at global and local scale.

1

Keywords: spatio-temporal pattern, multi-type spatio-temporal point process, meta-model, spatially2

explicit model, system dynamics, landscape heterogeneity3
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1 Introduction4

Community structure, population dynamics and species interactions within and between trophic levels are not5

limited within single plot’s borders but depend on the spatial context (e.g., patch size, spatial configuration,6

landscape composition, habitat connectivity; see Delaune et al. (2019)) and on ecological processes at different7

spatial scales (Pickett and Siriwardena, 2011). The key to understanding and predicting community structure8

and population distribution lies in the explication of the latent mechanisms and causes underlying observed9

patterns, which may emerge from the collective behaviour at smaller scale units or may be imposed by10

larger-scale constraints and the related temporal scale (Levin, 1992). Moreover, the influence of different11

spatial and temporal scales is closely related with species life-history traits, such as their ability to disperse,12

body size, competition, habitat specialisation, or trophic position (Rusch et al., 2010; O’Rourke et al., 2011).13

For example, foraging range and dispersal ability may determine the landscape elements that contribute14

to population dynamics and trophic interactions (Eber, 2001; Fahrig, 2001; Tscharntke and Brandl, 2004).15

Changes in spatial arrangement of habitats and composition could induce investment in the adaptation of16

dispersal-related traits (Tscharntke and Brandl, 2004).17

Hence, dealing with ecological processes involves studying different spatial and temporal scales, since18

ecosystem patterns and processes cover various spatio-temporal ranges and may have multiple drivers acting19

across different extents (Fritsch et al., 2020). The characterisation of the spatial distribution of landscape20

features and individuals in response to such complex interplay of processes across scales belongs to the field of21

landscape ecology. To account for this complexity, the development of spatially explicit computer modelling22

and simulations are central for addressing theoretical questions. Many Spatially Explicit Model (SEM)23

types have been proposed, such as continuous-space reaction-diffusion partial differential equations (Roques,24

2013), patch models (Hanski and Thomas, 1994), cellular automata neighborhood models (Hogeweg, 1988),25

or individual-based models (IBM, Grimm et al., 2005). DeAngelis and Yurek (2017) show the importance26

and the benefits of using SEMs compared to Spatially Implicit Models (SIMs) through different examples,27

including a savanna ecosystem. They find that the details and small-scale processes captured by SEMs are28

fundamental drivers for the ecosystem and its dynamics. SEMs can simulate the emergence of both small-29

and large-scale patterns from these processes and reveal deep details of dynamics such as predator–prey30

interactions and food web chains.31

The development of advanced numerical models has greatly improved our ability to accurately describe32

complex dynamics incorporating fine-grain interactions over a large extent. However, as models aim to33

provide a realistic but simplified representation of reality, the spatio-temporal extent is often properly adapted34

by scaling decisions (Fritsch et al., 2020). In-model scaling methods give control over simplifications when35
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building the model or allow us to incorporate and transfer relevant information across different scales.36

Scaling techniques may also be used before or after building the model, to define model parameters or37

analyse model outputs. In this work we focus on post-model scaling and propose a parsimonious approach38

to deal with the complexity of SEM outputs while keeping fine-scale information on the ecological dynamics.39

A solution to deal with this complexity could be the application of non-spatial analysis methods via spatial40

and temporal output aggregation (Gotelli, 2000; Webb, 2000; Fritsch et al., 2020). For example, Nathan et al.41

(2019) use spatially-explicit IBMs to study the hybridisation dynamics among species by describing their42

relationships across ecological scales, and then model outputs are integrated over space and time. In this case,43

however, all fine-scale information is lost, thus impeding any analysis of the drivers acting across different44

scales. An alternative solution is represented by meta-models and meta-analysis, which offer the possibility45

of reducing model output complexity by establishing a simplified mathematical relationship between the46

input and output of the system (Simpson et al., 2001). Their main aim is to replace complex numerical47

models by more parsimonious representations that provide a better understanding and faster analysis tools48

for optimisation and exploration, specifically when performing uncertainty or sensibility analysis (Simpson49

et al., 2001; Jia and Taflanidis, 2013; Saint-Geours, 2012; Ratto et al., 2012). Where possible, an elegant way50

to build meta-models is the approximation through an analytical model, which is fitted to the large-scale51

output and allows for simplification (Grimm and Railsback, 2005). Analytical solutions can provide insight52

from different aggregation levels, but their construction and use are not always unequivocal (see Johst et al.,53

2013). Spatial statistic techniques are potential candidates of great interest and should be further explored54

(Fritsch et al., 2020). For example, Jia and Taflanidis (2013) present a systematic implementation and55

optimisation of kriging meta-models for hurricane wave and surge prediction maps based on high-dimensional56

outputs to reduce complexity while preserving spatial dimension. In functional Magnetic Resonance Imaging57

analysis, Kang et al. (2014) show a meta-analysis approach to synthesise brain mapping information from58

images. Given brain activation maps, they propose a spatial point process approach to model peak activation59

locations, which were identified as local maxima of brain activation area, explaining the brain task involved.60

Here, we show how spatio-temporally explicit outputs of population dynamics models in landscape ecology61

can be analysed through a meta-modelling approach. Such outputs are simplified to point patterns composed62

of individual positions, key events or significant hotspots defining local dynamics. The resulting patterns63

can be modelled as spatio-temporal point processes (STPP), and the pattern itself, or rather its structure,64

is the response variable that one seeks to explain through the structure of the spatial support, and its65

temporal changes, described through appropriately defined predictor variables (Diggle, 2003; Illian et al.,66

2012; Renshaw, 2015; Illian and Burslem, 2017). Point processes can be defined over continuous space67

and time, such that there is no need to work with fixed spatial and temporal units; they can be used for68
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descriptive analyses and stochastic modelling of patterns. For example, Law et al. (2009) apply STPP tools69

by computing first- and second-order statistics, i.e., expected numbers of points, and of point pairs with70

given point-to-point distance, for characterising observed plant patterns; Gabriel et al. (2017); Opitz et al.71

(2020); Pimont et al. (2020) develop models for wildfire occurrences through STPPs to overcome challenges72

given by the multi-scale structure of data and by strong non-stationarities in space and time driven by73

weather, land-cover and land-use.74

The main novelty of our work resides in the characterisation of spatio-temporal population dynamics75

through STPPs. As a case study application, we focus on the relationships among agricultural landscape76

structure and the dynamics of a pest and its natural enemy. A hierarchical framework is developed (Figure 1):77

(i) a stochastic landscape model, characterised by parameters determining the landscape configuration and78

composition, is constructed and simulated; (ii) a spatially explicit population dynamics model, characterised79

by parameters determining the pest-predator structure and its spatial heterogeneity, is constructed and80

simulated. We propose to represent spatio-temporally explicit outputs returned by this modelling chain as81

point patterns identifying space-time-indexed key events of pest dynamics, that we subsequently model by82

constructing and estimating statistical regression equations for multi-type STPPs. The response variables83

we aim to model are the occurrences and the magnitude of the pest density peaks. Response variables84

are explained by taking into account both global and local landscape features, species life-history traits,85

and the occurrences of pest inoculation, pest peaks and treatments in appropriately chosen spatio-temporal86

neighborhoods around the location and time where the response variable was observed. This approach87

allows us to investigate the role of landscape structure in influencing the point process intensity summarising88

the pest-predator dynamics, and we address two general questions: (1) How can landscape effects and89

population dynamics traits at different spatio-temporal scales be coupled? (2) What are the spatio-temporal90

relationships between pest inoculations, pest density peaks and landscape heterogeneity?91

2 Simulation models for landscape-pest-predator dynamics92

2.1 Pest-predator models within agricultural landscapes93

We model agricultural landscapes composed by crops, semi-natural areas and hedges through a stochastic94

landscape generator. Landscape simulations are the spatial support for a spatially explicit population model95

of auxiliaries and pests with opportune chemical treatments on pests. To couple the landscape complex and96

the spatially explict population model, we allow for dispersal both on agricultural fields and on hedge network97

(Figure 1). The agricultural landscape is composed of patches (i.e., polygons) and linear elements (i.e.,98
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Figure 1: Overview of meta-modeling workflow.

segments) (Zamberletti et al., 2021). We generate a wide variety of structurally different composition and99

configuration scenarios for the allocation of crop over patches and of hedges over linear elements by varying100

representative parameters (i.e., crop and hedge proportion and their aggregation); details are provided in101

the Supplement. Within these generated spatial supports, we then simulate the dynamic of the codling102

moth (Cydia pomonella) pest and of one of its main predators, the family of ground beetles (Carabidae),103

in apple orchards. The pest-predator model is defined by a spatially explicit and density-based model of104

reaction-diffusion type (Roques and Bonnefon, 2016).105

Codling moths respond strongly to the spatial distribution of orchards over landscapes (Tischendorf,106

2001; Ricci et al., 2009). Franck et al. (2011) have found low genetic differentiation among codling moth107

populations over large distances, but mild genetic differentiation among populations collected on different108

host plants. In addition, insecticide treatments have strong effects on genetic differentiation resulting from109
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spatial and temporal population size variations (Franck et al., 2011). This indicates that codling moths110

can disperse over large distances in agricultural landscapes, which supports the conjecture that hedges do111

not substantially impact their dispersal, such that insecticide treatments to break the pest dynamics are112

important. Thus, in the model, we assume that the pest can be encountered only in fields and that it113

has positive growth only in fields allocated with crop. In addition, field boundaries do not affect the pest114

population dynamics; i.e., the life cycle of Cydia pomonella is mostly based in apple orchards, and it perceives115

the landscape as a heterogeneous 2D environment. Finally, we impose the application of local insecticide116

treatments when the pest density exceeds a fixed threshold on average in a crop patch.117

The presence of semi-natural areas, such as hedges, promotes the presence of pest auxiliaries (Maalouly118

et al., 2013; Thies and Tscharntke, 1999) by offering shelter and by providing complementary resources when119

pests are not present in fields (Lefebvre et al., 2017). Lefebvre et al. (2017) present a field study investigating120

the routine movement of arthropods among apple orchards and adjacent hedgerows. They found that there121

are frequent movements for foraging (to orchards) and for escaping treatments (to hedges), demonstrating122

the important influence of hedgerows on the presence of numerous predators in apple orchards. Thus, we123

consider that hedges form the main habitat of the predator. The predator can spill over from hedges to fields124

and there feed on pest in fields as an alternative resource. However, it is generally attracted to hedges, which125

are its preferred habitat, so that migration from fields to hedges is relatively high. The predator is known126

to be averse to moving outside its natural habitat; therefore, migration from hedges to fields is always lower127

than migration from fields to hedges (Lefebvre et al., 2017).128

Details about the pest-predator dynamics among 1D and 2D elements are fully presented in Roques129

and Bonnefon (2016). All the parameters are shown in the Supplement. To fix parameter ranges, we had130

performed a sensitivity analysis in a preliminary step since observation data of pests and predators are not131

available (Zamberletti et al., 2021). Initially, the predator is present in all hedges at carrying capacity. The132

pest is introduced randomly in space and time. The time unit can be considered as the day. Overall,133

172, 500 simulations were run by varying landscape and population parameter configurations (see parameter134

ranges in Table 1 of the Supplement), with 15 simulations for each configuration where parameters are fixed135

but landscape realisations are stochastic.136

2.2 Pest-predator spatio-temporal patterns137

Simulations provide the spatio-temporal pest and predator densities. We characterise the influence of land-138

scape spatio-temporal structure on the prey-predator dynamics by using point patterns. Following our139

modelling framework, we identify as events (i) the spatio-temporal treatment occurrence (i.e., pest threshold140
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exceedance or pest peak) and (ii) the spatio-temporal pest introductions. For example, when pest thresh-141

old exceedance occurs in a patch, we apply a treatment in this patch and, to define the event episode as142

a point, we extract the time t of threshold exceedance, the pest density maximum in the patch with its143

Euclidean coordinates (x, y), and the average pest density over the patch. In Figure 2, two simulations are144

shown for different time steps, where the spatio-temporal occurrences of pest inoculations and treatments145

within different landscape allocations are highlighted. This example also illustrates the conjecture that the146

spatial hedge structure plays a role for pest dynamic by influencing its evolution jointly in space and time.147

Deeper exploratory quantitative analyses of spatio-temporal relationships between different types of points148

are proposed in the Supporting information, while we focus on statistical model-based analyses in what149

follows.150

Figure 2: Two simulation examples (by row) illustrating the spatio-temporal pest dynamics depending on
landscape structure through pest inoculations, and through pest density peaks after threshold exceedances.

3 Methods: STPP-based analysis of pest-predator dynamics151

3.1 Pest density as STPP152

Point patterns representing individual or event distributions in space and time can be modelled as STPPs (see153

Diggle (2003); Illian et al. (2008); Baddeley et al. (2015) for formal definitions). Each point can be endowed154

with additional qualitative or quantitative information defined as a “point mark”. In our application, the155
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pattern of events is defined by the coordinates in space and time of pest peaks with both qualitative (pest156

inoculation) and quantitative marks (pest maximum density). Thanks to the theory of STPPs it is possible157

to analyse the point distribution properties locally in space and time, and to estimate models for predictive158

purposes (e.g., number of events, point-to-point correlations, and distribution of their numerical or categorical159

marks). We focus on modelling the point process intensity function (local point density) (Illian et al., 2013).160

Our modelling goal is to predict the intensity of pest density peaks and the associated values of maximum161

pest density, and explain their variability in space, through time and across different simulations. We divided162

the spatial domain in a relatively large number of small cells, and we assume a homogeneous point process163

intensity within each cell during each interval of time. The spatial discretisation we use is shown in Figure164

3, and background on its structure and construction is provided in the Supplement.165

166

3.2 Pest density peak meta-modelling167

For predicting the intensity of pest density peaks and associated values of maximum pest density, we develop

and estimate regression equations for multi-type STPPs. Both global and local landscape features, species

life-history traits, and the occurrences of pest introductions, pest peaks and treatments are used as covariate

information. We construct two separate generalized linear model (GLM) formulas as meta-models that

incorporate the available covariate information. Response variables and covariates are evaluated over each

spatial cell (Figure 3) and time step. The spatio-temporal (STC), spatial (SC) and population dynamics

(PDC) covariates put the spatio-temporal event patterns, landscape structure and population dynamics into

relation:

STC(s, t) =
12∑

k=1

βkzk(s, t), SC(s) =
20∑

k=13

βkzk(s), PDC =
23∑

k=21

βkzk, β ∈ R23, (1)

The β vector gathers the covariate coefficients to be estimated separately for each model, and the values168

zk are covariates summarised in Table 1 and provided for each space-time cell. More information on their169

selection and computation is given in the Supporting information, as well as residual analysis to evaluate170

the predicted values obtained by the GLMs.171

3.2.1 Meta-model for the occurrence intensity of pest density peaks172

To model the occurrence intensity of pest density of pest peak points, we consider a GLM with Poisson173

response, i.e., we combine a log-link function with a Poisson response distribution:174
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Table 1: Covariates used in the space-time regression model of pest density peak patterns. The temporal
unit d stands for day.
Index Covariate Spatial reference Range Unit
Spatio-temporal (STC)
1 No. of treatments in the patch at t− 1 patch 0-40 -
2 No. of treatments in the patch cumulated up to t− 2 patch 0-97 -
3 No. of treatments in neighbor patches at t− 1 patch 0-337 -
4 No. of treatments in neighbor patches cumulated up to t− 2 patch 0-861 -
5 No. of pest density peaks at t− 1 cell 0-15 -
6 No. of pest density peaks cumulated up to t− 2 cell 0-36 -
7 No. of pest density peaks in neighbor cells at t− 1 cell 0-45 -
8 No. of pest density peaks in neighbor cells cumulated up to t− 2 cell 0-97 -
9 No. of pest introduction in cell at t− 1 cell 0-30 -
10 No. of pest introduction in cell cumulated up to t− 2 cell 0-30 -
11 No. of pest introduction in neighbor cells at t− 1 cell 0-30 -
12 No. of pest introduction in neighbor cells cumulated up t− 2 cell 0-39 -

Spatial (SC)
13 Cell dimension cell 0-0.069 km2

14 Binary indicator if the cell is among 2 patches cell 0-1 -
15 Binary indicator (1/0) if the cell is among 3 or more patches cell 0-1 -
16 Proportion of hedges within the buffer centered in the cell buffer 0-1 %
17 Proportion of crops within the buffer centered in the cell buffer 0-1 %
18 Landscape crop and hedge aggregation landscape 0-5.54 -
19 Landscape crop proportion landscape 0-1 %
20 Landscape hedge proportion landscape 0-1 %

Population dynamics (PDC)
21 Pest diffusion in crop patch landscape 0.06-12 km2d−1

22 Predator diffusion in crop patch landscape 0.07-12 km2d−1

23 Predator migration from hedge to crop landscape 0.1-1
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Figure 3: Spatial discretisation of the regression models. Complete mesh discretisation (light grey), mesh
cells used in the analysis (dark grey), landscape patches (black). Cell centroids of different colour refer to
different cell types: cell in patch center (red), cell connecting exactly two patches (green), cell connecting
more than two patches (blue).

λ(s, t) = exp
(
βλ
0 + STC(s, t) + SC(s) + PDC

)
(2)

with global intercept βλ
0 and coefficients of the other variables to be estimated. The value λ(s, t) represents175

the average number of pest peaks occurring in a unit of space and time around the point (s, t), and is assumed176

to be constant within each cell of the mesh during each time interval of 0.1.177

178

3.2.2 Meta-model for magnitudes of pest density peaks179

To model the maximum pest density value associated with each pest peak point, we consider a log-Gaussian180

GLM, i.e., we combine a log-link function with a Gaussian response distribution:181

Pmax(s, t) = exp
(
βPmax

0
+ STC(s, t) + SC(s) + PDC + ε(s, t)

)
(3)
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with global intercept βPmax

0
and coefficients of the other variables to be estimated, where Pmax(s, t) is the182

maximum pest density value associated to the point where the treatment is applied conditional to the occur-183

rence of such a point. The term ε(s, t) ∼ N (0, σ2) corresponds to the spatially and temporally independent184

and identically distributed Gaussian error terms.185

186

4 Results: spatiotemporal drivers of pest hotspots in pest-predator187

agroecological system188

We present main results obtained by estimating the GLMs in Equations 2 and 3. Additional results of a189

covariate correlation analysis and of residual analysis are reported in the Supporting information; they show190

that the models defined in Equations 2 and 3 appropriately capture the spatio-temporal variability of the191

observed data (i.e., population dynamic model outputs).192

193

The estimated GLM coefficients for the models in Equations 2 and 3 are summarized in Figure 4. Prior194

to estimation, covariates have been normalised to empirical mean 0 and variance 1 to compare more easily195

the magnitudes of estimated effects.196

We first discuss the strongest effects corresponding to points outside the inner rectangle in Figure 4a.197

The strongest positive effects on the number of pest peaks arise for covariates favouring pest dynamics.198

Specifically, crop coverage at local scale (i.e., in the buffer) and at global scale (i.e., in the whole landscape)199

favours the abundance of suitable habitat for pests, which can easily spread and find resources. Regarding200

the pest peak value, the cell size has the strongest positive contribution. An explanation is that the pest201

density is likely to be highest where the inoculation takes place, and a large cell is more often inoculated202

than a smaller cell. By contrast, cell dimension contributes the strongest negative effect on the number203

of peaks, since peaks tend to concentrate in the periphery of the patches, thus in cells containing borders204

among different patches.205

Pest diffusion has the strongest negative effect on pest peak values, it may be due to a dilution effect.206

In addition, since high pest diffusion allows the pest to easily move, pest population tends to spread homo-207

geneously over the whole landscape. Therefore, few local hotspots arise, and the pesticide threshold is less208

often exceeded. Both response variables related to pest peaks are also strongly reduced by local predator209

presence, which in turn is mainly driven by a high local presence of hedges. The spatio-temporal covariate210

group (STC) shows generally weaker effects on pest dynamics, except for the local cumulated number of pest211
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Figure 4: Estimated regression coefficients for the models of peak occurrence intensity (x-axis) and the model
of the peak value (y-axis). Dot colours indicate covariate types: STC (orange), SC (blue), PDC (green).
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peaks during earlier time intervals. It positively influences the number and the value of pest peaks since212

pests are already present at high density in the surrounding area if there have been peaks during earlier213

intervals. Such locations may have characteristics that make them particularly pest-prone and favourable214

for pest dynamics.215

The zoom in Figure 4b shows covariate effects with a lower magnitude. High numbers of pest peaks along216

with high peak concentration values (top-right quadrant in Figure 4) are relatively strongly favoured by the217

presence of previous peaks in the same cell or in the surrounding ones (both at t− 1, and cumulated up to218

t− 2). Similarly, an elevated number of introductions in neighbouring cells leads to high pest concentration219

due to pest spillover. On the other hand, the application of treatments locally in the patch or in neighbouring220

patches at previous time steps leads in general to a decrease of both the number and the concentration value221

of peaks.222

Results show a negative effect of hedge proportion in the buffer on pest activity. However, there also arises223

a weaker but positive effect of the hedge proportion over the whole landscape, which may appear counter-224

intuitive at first glance. Since response variables are evaluated at cell scale, having a large hedge proportion225

in the whole landscape but a low proportion of hedges in the buffer clearly results in a concentration of226

pest where hedges are missing. In addition, hedges help to keep the pest below the treatment threshold227

and therefore favour its propagation through the landscape (see Zamberletti et al. (2021)); therefore, the228

pest may reach areas of lower predation pressure more easily and pull out. In addition, our model shows229

that the landscape aggregation has a weak positive effect on peak occurrence numbers at cell level. Pest230

density threshold exceedances occur homogeneously over large areas of contiguous crop, but these peaks231

are of relatively small magnitude because hotspots with high pest clusters and concentration do not build232

up. Predator spillover (i.e., movement from hedge to field) results in a decrease of the number of threshold233

exceedances, but it may increase pest peak values since the predators are not homogeneously present in234

the patches and over the whole landscape. Predators have stronger influence near hedges (e.g., in cells235

overlapping different patches) but less in the center of the patch (central cells).236

5 Discussion237

In this work we propose post-model scaling using regression meta-models based on marked STPPs. This238

approach enabled us to assess and compare the contribution of different spatio-temporal covariates and239

life-history traits to the direction and strength of variation in crucial events of population dynamics issued240

from spatially explicit models. The use of statistical regression meta-models makes our approach flexible241

and easy to implement, while numerous and diverse covariates describing local and global characteristics242
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can be incorporated. We applied our methodology to the outputs of a SEM describing the biological control243

in agricultural landscapes of a crop pest by its natural predator. We found significantly different effects of244

landscape structures at various spatial scales on the population dynamics patterns.245

The adaptation of our approach of defining a marked STPP meta-model may be relevant and insightful246

in various contexts. Examples are occurrence locations and times of earthquake epicentres (Lombardo et al.,247

2019), wildfires (Opitz et al., 2020), epidemiological outbreaks (White et al., 2018a), biodiversity hotspots248

and species distribution (Soriano-Redondo et al., 2019), pollutant concentrations (Lindström et al., 2014)249

or local maxima or minima in meteorological events (Heaton et al., 2011). In most ecological process250

space and time are closely intertwined and not separable as in our case, where pest introductions and251

subsequent peaks depend on local temporal dynamics driven by local spatial structure. Thus, here, we252

designed our approach to allow for joint analysis of spatial and temporal scales. For ecological processes253

related to those we study, White et al. (2018a) addressed how landscape structure impacts simulated disease254

dynamics in an individual-based susceptible–infected–recovered model. They quantified disease dynamics255

by outbreak maximum prevalence and duration, coupled with landscape heterogeneity defined by patchiness256

and proportion of available habitat. They find that fragmentation promotes pathogen persistence, except257

for simulation with high conspecific density, slower recovery rates and larger perceptual ranges, where more258

complex disease dynamics emerged; the most fragmented landscapes were not necessarily the most conducive259

to outbreaks or pathogen persistence. Our work has similar thrust by exploring the effect of landscape260

heterogeneity on pest density peaks. However, by taking advantage of the STPP modelling, we focus on261

spatio-temporal positions of peaks, and we investigate which factors locally influence occurrence intensity262

and magnitude of these events. The meta-model allowed us to depict complex spatial dynamics and patterns263

even if multiple processes occur at competing scales (White et al., 2018b). To assess fine-scale biodiversity,264

Azaele et al. (2015) captured species patterns through correlations among different species’ abundances265

across sample plots. Therefore, they used counts over spatial units (i.e., plots), determined by the sampling266

design and leading to relatively large counts, and they contrasted their results with common species–area267

curves (Fritsch et al., 2020). They concluded that this mathematical framework provides a common language268

to link different spatial scales. Our approach goes beyond a purely descriptive ”geostatistical” analysis since269

we take into account the space-time position of each of the points as well as their relationships with nearby270

key elements. This representation parsimoniously summarises spatially continuous dynamics into discrete271

occurrences of spatio-temporal key events and allows modeling them for explanatory and predictive purposes.272

Our regression model for occurrence intensities also aggregates individual events, but we work with relatively273

small counts by choosing appropriate, problem-specific space-time units.274

Ecosystem patterns and processes can cover a wide range of space and time, and they depend on multiple275
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drivers acting over different scales (Fritsch et al., 2020). Problematic loss and the lack of information may276

arise in procedures of scaling-up or scaling-down when coupled with the complexity of the involved systems.277

Our work strikes a pragmatic balance with respect to the inevitable trade-off between model simplicity, to278

obtain clear insights into important factors, and model complexity, to achieve a more complete and realistic279

representation of the system (Lacy et al., 2013). Spatio-temporal meta-models present a flexible solution280

by capturing the functional linkages between model components. They show potential to reveal properties281

in ecological systems that are difficult to identify when considering only the complex model output with282

large data volumes as a whole (Lacy et al., 2013). Our STPP model allowed for a relatively complex spatio-283

temporal local analysis of system dynamics. It therefore provides insights into the role of different effects284

and takes process-specific scales into account by using categorical or numerical marks. Through statistical285

inferences it becomes possible to identify significant relationships of key events with their drivers focusing on286

biotic interactions, habitat heterogeneity and spatio-temporal stochastic effects predictions (Baddeley et al.,287

2015).288

A large body of literature on meta-models (or surrogate models, or emulators) in various disciplines289

focuses on Gaussian processes or machine-learning techniques (e.g., Forrester et al., 2008; Kleijnen, 2015),290

whereas our work highlights the potential of point-process-based approaches for dynamical systems. This291

novel way of conducting meta-analyses is applicable to various collections of relevant events arising in dy-292

namical processes available at high spatio-temporal resolution. We emphasise that our methods leverage293

spatio-temporal and multivariate point pattern techniques, while the state-of-the-art in point pattern anal-294

yses deals mostly with purely spatial patterns or does not well represent the temporal dimension (Wiegand295

et al., 2017). Our extensions are well-suited for spatio-temporal mechanisms and population dynamic pa-296

rameters where the assessment of their relative and joint role is crucial for characterising emerging diversity297

patterns.298

We have constructed a collection of predictor variables in which spatio-temporal covariates (STC) con-299

tribute spatio-temporally structured information, such as the number or magnitudes of previous or concomi-300

tant events around a given location and time, to convey information related to the local evolution of pest301

dynamics. In a similar context, Le Gal et al. (2020) highlighted the important influence of the interplay302

between the landscape structure and the timing of CBC measures on the delivery of pest control services.303

They showed that increased semi-natural habitat proportion at the landscape level enhances the visitation304

rate of pest-colonised crop cells, but it also reduces the delay between pest colonisation and predator arrival305

in the crop fields. In our model, we have opted for simulating the time and position of pest arrival according306

to a Poisson process with intensity proportional to crop area. We found that locations showing frequent and307

high density peaks in previous time steps are likely to incur new peaks. On the other hand, local previous308
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treatments in a patch negatively influence the dynamics since they efficiently reduce the pest density in this309

patch. Introductions of pest act as an accelerator of local pest dynamics, and after a short period we often310

assist to both high frequency and high magnitudes of peaks in the surrounding fields.311

Spatial covariates (SC) in our regression meta-models are time-invariant landscape characteristics that312

may influence pest peaks. Crop proportion is the main driver for pest in our models, and leads to a clear313

positive response of pest insects to increasing cover of a suitable crop (Ricci et al., 2019; Rand et al., 2014;314

Zhao et al., 2015; Avelino et al., 2012; Tscharntke et al., 2007). Our results show that considering it at local315

scale or at global scale leads to different peak patterns. When crop aggregation and percentage coverage are316

high in the whole landscape, exceedance events of pest density are relatively homogeneously spread over the317

area with generally relatively low pest density values throughout. Instead, when high crop coverage is only318

local (i.e., in the buffer), the resulting pattern shows a locally higher number of exceedance events with high319

peaks; pests find their preferred habitat in a more limited space and tend to concentrate there. Zamberletti320

et al. (2021) showed that in landscapes with strong aggregation of crop fields the area of contiguous crop may321

cause a dilution effect, with a positive effect on pest population, a negative effect on treatment occurrence,322

and a positive effect on the treatment numbers in the whole landscape. Therefore, if treatments are necessary323

in a patch, they tend to arise in relatively high numbers over the full observation period. Hedge distribution324

and proportion can be viewed as a proxy for predator presence and reveal when predators may play a role in325

reducing pest density (Bianchi et al., 2006; Tscharntke et al., 2007). The effects attributed to semi-natural326

habitat (e.g., hedges) are ambiguous with both positive, negative or neutral impacts on CBC (Chaplin-327

Kramer et al., 2011; Karp et al., 2018). In our models, total hedge proportion has a small but positive effect328

on both the number and the magnitude of peaks. A reason could be that the global proportion of hedges329

does not inform about hedge connectivity and distribution (e.g., homogeneously or in clusters). If there330

is a high hedge coverage, predators are expected to be homogeneously distributed in the landscape, thus331

stabilising the pest population and potentially reaching an equilibrium in the whole landscape for pest and332

predator density. However, this does not imply that pest density remains under the treatment threshold; it333

could happen that other parameters influence its dynamics by favouring pest population (e.g., crop coverage334

or pest growth rate) or decreasing predator presence in field (e.g., mortality, spillover from hedge). This335

results in a homogeneous predator presence that is not sufficient to prevent pest density from exceeding336

the threshold. In our model, another reason could stem from statistical confusion in the regression models337

between the effects of global hedge proportion and global crop proportion since the simulated landscape338

model tends to position hedges more often in crop areas than in the rest of the landscape. However, when339

focusing on local buffers around a cell, local hedge structure, and the resulting predator concentration, play340

a bigger role by reducing both number of pest peaks and their magnitude.341
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Population dynamics covariates (PDC) in our models are related to species traits. Here we consider the342

effect of varying population parameters related to species mobility in the environment. We focus on how the343

structure of landscape elements influences species spread with respect to the studied events. We find that344

predator diffusion ability over the landscape is fundamental to reduce the presence of pest. Interestingly,345

we do not notice the same effect for predator migration speed from hedge to field. This predator trait acts346

strongly at locations close to hedges, i.e., around patch borders, with a strong decrease in the number of347

peaks, while the peak value is not affected but is high mainly in the patch core areas.348

In the agro-ecological context, our analysis aids prediction and management decisions. For example,349

improved understanding of local spatio-temporal relationships and dynamics helps to schedule specific local350

control strategies by targeting the locations that frequently suffer from pest peaks and the moments when351

local control strategies can be expected to be most efficient to control pest dynamics.352
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Abstract

Eco-evolutionary processes play a key role shaping the invasion dynamics of popula-

tions expanding in new habitats. This could be important for assessing colonization3

phenomena as the expansion of invasive species or for biological control as evaluating

the pest propagation in the agricultural habitat intermixing. The expansion process is

driven by co-evolving species traits, in particular, those traits related to body dimensions,6

competitive skills, movement abilities controlling also their responses to landscape het-

erogeneity gradients. Typically, individuals who invest more in the development of their

traits related to the dispersal strategy reduce investment in reproduction. Thus, there are9

two possible trading-off eco-evolutionary strategies: growing faster or dispersing faster

(R − D trade-off). We explore the spreading dynamics of a consumer species exploit-

ing a resource in a heterogeneous environment through a reaction-diffusion model. We12

focus on the co-evolution of growth-rate and dispersal traits for assessing the pheno-

type having the highest spreading speed and leading the propagation front. We evaluate

spreading properties numerically and analytically, when theoretical formulas are avail-15

able, using different simulation scenario and parameter combinations. Our main results

show that the heterogeneity has a fundamental role in shaping the R−D trade-off deter-

mining the phenotype selection and phenotypic trait proportion within the propagating18

front and beyond the front.
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Introduction

Accounting for the interaction between ecological and evolutionary dynamics is crucial21

to understand many processes in ecology such as evolutionary rescue (Lavigne et al.,

2020), migrational meltdown (Ronce and Kirkpatrick, 2001), biological invasion (Szűcs

et al., 2019) . Indeed, when species shift their range, they face a new selection pressure, a24

rapid evolution can affect their ecological dynamics which in turn feedback on the evolu-

tionary potential (Bonte and Bafort, 2018; Burton et al., 2010). Population expansion is an

ecological process mainly driven by traits related to reproduction and dispersal (Deforet27

et al., 2019; Turchin, 1998a). Dispersal affects capabilities to exchange individuals and

genes among different habitats (Legrand et al., 2017). Dispersal traits have been proved

to be related to body dimension and condition (Duthie et al., 2015; Helms and Kaspari,30

2015; Steenman et al., 2015), affecting competitive abilities, food web interactions (Bonte

and de la Pena, 2009) or metabolic processes (Hirt et al., 2017). As a consequence, there

are many examples where individuals who invest more in the development of their traits33

related to the dispersal strategy reduce the effort in foraging and reproduction (e.g. re-

ducing their mating period or with lower egg mass) (Baguette and Schtickzelle, 2006;

Bonte and Bafort, 2018; Hanski et al., 2006). In such cases, two possible evolutionary36

strategies exist: dispersing faster or growing stronger (Deforet et al., 2019). This re-

sults in a species’ trait trade-off that shapes the ecological and evolutionary dynamics of

populations.39

Usually the attention is given to traits as dispersal and growth affected by environ-

mental heterogeneity (Lewis et al., 2002, 2016; Turchin, 1998b), but adaptation of those

traits has been less taken into consideration (Morris et al., 2019) under the assumption42
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that evolutionary dynamics its a slower processes than demography (Alex Perkins et al.,

2013; Griette et al., 2015). By contrast, there is evidence that evolution could be very

rapid during invasions. For example, Alex Perkins et al. (2013) focus on how life-history45

or dispersal traits impact spread rates of the cane toad Rhinella marinain Australia by

combining a stage-structured population dynamics model and an evolutionary quanti-

tative genetic model. They point out that rapid evolution of life-history and dispersal48

traits at the invasion front could have led to a more than twofold increase in the distance

spread by cane toads Rhinella marina across northern Australia. Indeed, spatial sorting

of high-dispersal individuals at the expansion front drives dispersal evolution at the in-51

vasion front and may result in the accumulation of individuals with extreme dispersal

abilities at its edge, accelerating invasion (Alex Perkins et al., 2013; Bouin et al., 2012;

Shine et al., 2011). Another example is wing polymorphism, which plays a role in the54

interaction between dispersal and other key life history traits such as reproduction (Zera

and Denno, 1997).The flight capability (defined by developed wings and flight muscles)

is negatively correlated with age at first reproduction and fecundity (Denno, 1994). Thus,57

the energy efforts for flight and reproduction leads a trade-off for internal resources (Zera

and Denno, 1997). In epidemic context, since pathogens are likely to exhibit rapid evo-

lution on front expansion, epidemic invasions could be influenced by spatial structure:60

invasion success of a mutant pathogen depends on the life-history traits of the mutant

and the location of the mutant relative to the front of the epidemic (Griette, 2019; Wei

and Krone, 2005).63

Speed properties of biological invasions have been firstly assessed by Fisher (1937);

Murray (2002); Shigesada and Kawasaki (1997); Turchin (1998a) in a homogeneous en-

vironment with a normally distributed kernel of dispersal without mutation. The or-66
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ganisms spread as a traveling wave with a speed equal to 2
√

RD, where where R is the

exponential growth rate of the population at low density and D is the diffusion coeffi-

cient (Shigesada and Kawasaki, 1997). Relaxing the hypothesis that the space is homo-69

geneous and adding spatial and/or temporal heterogeneity may speed up or slow down

the invasion depending on which trait is affected by the environment (Shigesada and

Kawasaki, 1997). Most theoretical studies based on the reaction-diffusion framework fo-72

cus on the spreading properties, and, especially, on the existence of travelling wave solu-

tions and their generalizations to spatially-heterogeneous environments (Berestycki and

Hamel, 2002, 2005; Berestycki et al., 2005).Some recent works by Benichou et al. (2012);75

Berestycki et al. (2015); Bouin and Calvez (2014); Bouin et al. (2012) focus on demon-

strating the travelling wave existence and studying the spreading properties developing

a eco-evolutionary model to take into account species adaptation. Berestycki et al. (2015)78

propose a model where the acceleration dynamics is due to a continual selection of in-

dividual with enhanced dispersion abilities. Thus, it considers a continuum not limited

space for the dispersal trait, which can take arbitrarily large values. Their work is based81

on a homogeneous space and trade-off with other traits is not considered. They find

theoretical and numerical results of expansion front properties (e.g, front position and

spreading speed solution) and compare local and nonlocal dynamics. Bouin and Calvez84

(2014) construct travelling waves solutions and evaluate the spreading speed of travel-

ling waves for Australian cane toads Rhinella marina dynamics defined by a continuum

bounded phenotype traits. Their work address the issue of front expansion in ecology,87

where the studied trait is related to dispersal ability Bouin and Calvez (2014). However,

also in this case, the space is homogeneous and there is no trade-off among traits.

In this work, we develop a reaction-diffusion model to describe the phenotype-space-90
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time dynamics of a consumer species in a heterogeneous space during a range expansion.

We focus on the trade-off between the growth rate R(x, y) and dispersal rate D(x, y),

which are both defined as functions of the space variable x and the phenotype variable93

y. Thus, contrarily to several recent reaction-diffusion approaches (Benichou et al., 2012;

Bouin and Calvez, 2014; Bouin et al., 2012) where the trait D was also the phenotypic

variable of the model, we describe the trade-off between R and D by assuming that they96

depend on an underlying abstract trait y and reach their respective optimal value for

different values of this trait. In a spatially homogeneous environment and in the absence

of mutations and Allee effects, the standard formula v = 2
√

R(y) D(y) (Kolmogorov99

et al., 1937) clearly shows that growth and dispersal play a similar role on the spreading

speed. We analyze here how this symmetry in the effects of R and D may be broken

when facing spatial heterogeneities, in the presence of competition between phenotypic102

traits or in the presence of mutations. Specifically, we investigate the following questions:

i) What is the spreading speed v of the population range and the corresponding fastest

phenotype y∗? ii) What is the role of the competition among phenotypic traits? iii) What105

is the population composition along the expansion front?

Model

Eco-evolutionary dynamics108

At time t and location x, the density of the consumer phenotype y is defined by c(t, x, y).

We describe the spatial dispersion in a one-dimensional environment with a Laplace dif-

fusion operator, corresponding to random walk movements of the individuals, with a

mobility parameter (also called diffusion coefficient) D(x, y) (Shigesada and Kawasaki,

1997; Turchin, 1998a). We assume a one-dimensional phenotype y ∈ (ymin, ymax). The

6

142



mutations between phenotypes are also described with a Laplace diffusion approxima-

tion (Hamel et al., 2020; Tsimring et al., 1996) with constant mutation coefficient µ ≥ 0.

The mutation coefficient µ is proportional to the mutation rate (per individual per gener-

ation) and to the average mutation effect on phenotype (Hamel et al., 2020). Finally, the

population grows logistically with heterogeneous growth rate R(x, y). Competition oc-

curs locally on the geographical space but globally over phenotypes though a non-local

term, and is modulated by a parameter γ. This leads to the following reaction-diffusion

model for the phenotype-space-time dynamics of the consumer population:

∂tc(t, x, y) = ∂xx(D(x, y) c(t, x, y)) + µ ∂yyc(t, x, y) + c
(

R(x, y)− γ
∫ ymax

ymin

c(t, x, s)ds
)

. (1)

In addition, we assume no-flux boundary conditions at the boundaries y = ymin, ymax:

∂yc(t, x, ymin) = ∂yc(t, x, ymax) = 0,

so that in the absence of demography (i.e., if R = γc = 0), the global population size

C(t) =
∫

R×(ymin,ymax)
c(t, x, y)dxdy remains constant.

Modelling genetic and spatial heterogeneity in dispersal and growth111

Spatial heterogeneity in environmental conditions are assumed to impact the consumer

growth rate R and its mobility D. Genetic and spatial effects on R and D are assumed to

be additive:

R(x, y) = R0 + Rg(y) + a Rs(x/L), (2)

D(x, y) = D0 + Dg(y) + a Ds(x/L), (3)

where R0 and D0 are the basal values for growth and diffusion. These basal values

are modified according to a genetic effect, Rg, respectively Dg, and a spatial effect, Rs,

respectively Ds. The coefficient a scales up the amplitude of the spatial heterogeneity, it114

can vary from 0 to 1.
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Figure 1: Phenotype classification. The curves represent the dispersal rate D(x, y) (red)

and growth rate R(x, y) (blue) in function of phenotypic traits y ∈ (ymin, ymax) in the

homogeneous case. The coefficient d is the distance among the optimum for dispersal

and growth rate. The colored boxes highlight the classification of D Specialist, R Specialist

and Generalist.
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Genetic effect. Given its trait value y the genetic effect on the growth rate R and the

diffusion coefficient D is assumed to be Gaussian (Figure 1):

Rg(y) = exp(−(y + d/2)2/(2σ2)), (4)

Dg(y) = exp(−(y− d/2)2/(2σ2)), (5)

where d corresponds to the distance between the two optima. The optimum trait for

diffusion represents the consumer optimal dispersal strategy, and the optimum trait for117

the growth rate represents the consumer optimal resource exploitation strategy. Here, we

assume that the optimum values are symmetric with respect to 0, corresponding to the

values of −d/2 and +d/2 for the growth rate and dispersal, respectively . The coefficient120

σ is the standard deviation of the Gaussian function and indicates the intensity of selec-

tion around the optimal trait value. The phenotypic traits are classified in three classes

depending on d (Figure 1): the D specialists (the phenotypic traits with narrow prefer-123

ence range on diffusion strategy), the R specialists (the phenotypic traits with narrow

preference range on foraging strategy) and the generalists (the phenotypic traits with

broad preference range on diffusion and foraging strategy).126

Environmental effect. In Equations (2) and (3), the terms Rs(x/L) and Ds(x/L) describe

the periodic heterogeneity over the space x through periodic functions with period L >

0. Varying the period L allows describing different grain of spatial heterogeneity for

the resource distribution and dispersal capability. Thus, Rs is a 1-periodic piecewise

constant function of mean 0, with Rs(x) = R0 on [0, 1/2) and Rs(x) = −R0 on [1/2, 1).

Equivalently, Ds is a smooth 1-periodic function, with mean value 0, and bounded from

below by −D0 (so that D is always positive). More precisely, we define the 1-periodic

function δ1(x) such that δ1(x) = D0 in [0, 1/2) and δ1(x) = −D0 in [1/2, 1). Then, Ds is

9
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obtained by regularizing δ1 with a convolution by a smooth function:

Ds(x) =
∫

R

δ1(x− y) φ(y) dy,

with φ a Gaussian function with small variance (Figure 1).

Simulation scenario129

We define three scenarios, depending on the presence of spatial heterogeneity, and on if

it impacts growth or dispersal:

- Scenario A: spatially homogeneous coefficients. In this case, R(x, y) = Rh(y) :=132

R0 + Rg(y) and D(x, y) = Dh(y) := D0 + Dg(y).

- Scenario B: heterogeneous growth and homogeneous dispersal. In this case, R(x, y) =

R0 + Rg(y) + Rs(x/L) and D(x, y) = Dh(y) = D0 + Dg(y).135

- Scenario C: homogeneous growth and heterogeneous dispersal. In this case, R(x, y) =

Rh(y) = R0 + Rg(y) and D(x, y) = D0 + Dg(y) + Ds(x/L).

Methods138

We explore the consumer species R−D trade-off by analyzing the population expansion

dynamics depending on space heterogeneity. We focus on the spreading properties, i.e.,

we assess the range expansion behavior in space, we identify the fastest phenotypic trait141

and we characterize the population composition on the expansion front and in the bulk

of the population. We derive analytical approximations of the spreading speeds, using

approached models and limiting cases of rapidly and slowly varying environments and144
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we compare these approximations with numerical results.

The spreading speed147

The spreading speed V is the asymptotic rate at which a species, initially concentrated

in a finite spatial region, expands its spatial range. It can be defined here as the smallest

speed w, such that, if an observer travels to the right (i.e., towards increasing x values)

with the speed w, he will observe the the population density converge to 0. In mathe-

matical terms, V is the only speed such that:

C(t, x + w t)→ 0, as t→ +∞, for all w > V,

C(t, x + w t) 6→ 0, as t→ +∞, for all w < V,
(6)

with C(t, x) the population density at spatial position x:

C(t, x) =
∫ ymax

ymin

c(t, x, y) dy.

For each phenotype y, the spreading speed v(y) of the phenotype y can be defined as

well by replacing C(t, x) with c(t, x, y) in the above expressions (e.g., c(t, x + w t, y) → 0

as t→ +∞, for all w > v(y)).150

The existence of a spreading speed as well as analytical characterizations have been

obtained by (Aronson and Weinberger, 1975, 1978; Fife and McLeod, 1977; Kolmogorov

et al., 1937) for standard equations with spatially homogeneous coefficients and local

competition terms. Comparable results have been obtained in the early 2000s (Berestycki

and Hamel, 2002, 2005) with a periodically varying coefficient as in Equation (1) and a

local competition term, namely for equations of the form:

∂tc(t, x, y) = ∂xx(D(x, y) c(t, x, y)) + µ ∂yyc(t, x, y) + c(t, x, y) (R(x, y)− γ c(t, x, y)) . (7)
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Here, the difference with Equation (1) is that the individuals with phenotype y only

interact with individuals with the same phenotype. As we did not assume an Allee

effect in Equation (1), the solutions should be pulled by the individuals in the leading

edge of the colonization (Roques et al., 2012a; Stokes, 1976). Their speed should therefore

only depend on the growth term through its linearization around 0, here R(x, y) c. We

therefore conjecture that the spreading speeds V of the solutions of Equations (1) and (7)

are equal. This conjecture is supported by the results of Alfaro et al. (2014), which deal

with a non-local equation of the form (1), with a constant diffusion term D and with a

growth term of the form R(x, y) = r(y− B x), with r(y) = rmax − b y2 (to each position x

is attached an optimal phenotype B x). This would imply that the fastest phenotype,

y∗ = argmax
y∈(ymin,ymax)

v(y)

has the same speed for the two Equations (1) and (7) with and without non-local inter-

actions. As the fastest phenotype, y∗ does not compete with other phenotypes and its

speed should indeed not be influenced by the competition term, and therefore be the153

same for the two equations.

For Equation (7), under our three scenarios (A,B,C), more or less explicit formulas

for the spreading speed are available. First, when the environment is spatially ho-156

mogeneous (Scenario A) i.e. when R(x, y) = Rh(y) and D(x, y) = Dh(y) and in the

absence of mutations (µ = 0), the spreading speed associated with a phenotype y is

v(y) = 2
√

Rh(y) Dh(y) (Kolmogorov et al., 1937). In that case, and according to the159

values of d and σ (see Equations (4) and (5)), the fastest phenotypes can be the gen-

eralist, y∗ = 0 or the two specialists, y∗ = −d/2 and y∗ = d/2, see Appendix B. The

overall spreading speed defined by Equation (6) is V = 2
√

Rh(y∗) Dh(y∗). When the162

environmental heterogeneity only impacts the growth rate R(x, y) keeping the diffusion
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coefficient spatially homogeneous D(x, y) = Dh(y) (Scenario B), a general formula for

the spreading speed has been obtained by Berestycki and Hamel (2005). Their results165

also encompass the case of a heterogeneous diffusion coefficient D(x, y) but spatially ho-

mogeneous growth rate R(x, y) = Rh(y) (Scenario C). However, in this case, their result

holds true for equations with "Fickian" spatial diffusion term, i.e. ∂x(D(x, y) ∂xc) instead168

of Fokker-Planck diffusion ∂xx(D(x, y) c) in (7) (Roques, 2013; Turchin, 1998a).

In the spatially heterogeneous cases (Scenarios B, C) the formulas rely on variational

characterizations which make them hardly tractable, even numerically (see Appendix B).171

More tractable formulas for the phenotype spreading speeds can be obtained for rapidly

varying (i.e. when the period is small, L → 0) and slowly varying (i.e. when the period

is large, L→ ∞) environments in the absence of mutations (µ = 0) (El Smaily et al., 2009;174

Hamel et al., 2010, 2011). These formulas are summarized in Table 1, see also Appendix

B for more mathematical details.

Table 1: Theoretical phenotype spreading speeds for Equation (7) with µ = 0 (no muta-

tion) for rapidly varying environments L→ 0 and slowly varying environments L→ ∞.

Spatial heterogeneity L→ 0 L→ ∞

Scenario A Rh(y), Dh(y) v(y) = 2
√

Rh(y) Dh(y) v(y) = 2
√

Rh(y) Dh(y).

Scenario B R(x, y), Dh(y) v0(y) = 2
√

Rh(y) Dh(y)
∗

v∞(y) = 4
√

Dh(y)× (R+(y))2+(R−(y))2+(R+(y)+R−(y))
√
△(y)

(R+(y)+R−(y)+2
√
△(y))

3
2

∗∗

Scenario C R(y), D(x, y) v0(y) = 2
√

Rh(y) < D >H (y)
∗∗∗

v∞(y) = 2
√

Rh(y) <
√

D >H (y)∗∗∗

(Fickian diffusion)

Where:

* v0(y) = 2
√

Rh(y) Dh(y) with Rx(y) =
∫ 1

0 R(x, y) dx = Rh(y), as Rs(x) has mean value 0

** R+(y) = Rh(y) + R0, R−(y) = Rh(y)− R0, △(y) = (R+(y))2 + (R−(y))2 − R+(y) R−(y)

***< F >H (y) =
(∫ 1

0
1

F(x,y) dx
)−1

is the harmonic mean of F(x, y)
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Simulation experiment177

We check the accuracy of the analytical approximations in Table 1 and we further explore

the phenotypic trait composition in the population by performing numerical simulations

with different parameter value combinations. Specifically, the parameters we focus on180

are: i) the period of heterogeneity L, considering a rapidly (small period L = 2) and

slowly (large period L = 10) varying environments; ii) the distance d between the two

optima, where we consider a short distance for weak trade-off (d = 2) and a large dis-183

tance for strong trade-off (d = 4); iii) the amplitude of the heterogeneity a ∈ (0, 1); iv)

and, the mutation µ = 0 (no mutations) or µ = 0.001. Both Equations (1) and (7) were

simulated.186

We computed numerically the phenotype spreading speeds vsim(y) as:

vsim(y) =
xsim(y)

Tsim
,

where xsim(y) is the furthest forward position of the phenotype y at time Tsim (Tsim is

selected large enough such that vsim(y) does not vary much at larger times). The location

xsim(y) is defined as the furthest forward position such that as c(t, x, y) ≥ clim for all189

x(y) < xsim(y), with clim a fixed threshold (small enough such that the results do not

depend much on clim). Here after, vsim(y) is defined as v(y) to simplify the notation.

Once the spreading speed for each trait is evaluated, either numerically or analytically,192

the phenotype y∗, which leads to the fastest spreading speed, can be evaluated. We

follow the phenotype classification of the Figure 1 in D specialists, R specialists and

Generalist, to determine which phenotype class is leading the front. Then, we use the195

same classification in order to categorise the whole population composition behind the

front.

14

150



When the environment is heterogeneous, we also take into account the role of the198

amplitude a in Equations (2) and (3). The amplitude is represented by the vertical dis-

tance among the Rh(y) and Dh(y) fitness functions in Scenario B and C. It is possible

to identify an amplitude threshold value influencing the class leading the colonization201

front to distinguish when the front is led by the R specialist or by by the D specialist.

The threshold value results by the intersection among the Rh(y) curve and Dh(y) curve

separating the phenotype domain within two intervals. The subtended area of the Rh204

curve, over the interval where Dh(y) < Rh(y), is the area proportion where there is

higher R than D (p1); instead, the subtended area of the Rh(y) curve, over the interval

where Dh(y) > Rh(y), is the area proportion where there is low R with respect to D (p2).207

We define the amplitude critic value acr as the amplitude that leads having p1 equals to p2

and we evaluate it for different combination of d and a. Thus, when p1 > p2 the class

leading the front is the R specialist, while when p2 > p1 the class leading the front is the210

D specialist.

The equations are solved numerically by transforming them into lattice dynamical

systems (continuous time, discrete space with small space step), and using a Runge-213

Kutta method over a fixed spatial domain and a time horizon large enough to ensure a

stable dynamic and propagation front. The implementation is performed by using the

software Matlabr.216

Results

We first compare the phenotype spreading speeds evaluated with the theoretical formu-

las vs the numerical simulations to assess the fastest phenotype (Figure 2). Then, we219

analyze the phenotypic trait composition on the expansion front (Figure 3 and ??) and
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over whole spatial domain (Figure 4).

Spreading speed222

The spreading speed evaluated by analytical formulations is compared with numerical

simulations in both local and non-local equations for different heterogeneity scenario

varying the period L and the optimum distance d (Figure 2). In all cases, the fastest225

phenotype is well-captured by the analytical formulas. Generally, non-local competition

shrinks the phenotypic trait distribution around the spreading speed optimum value

leading to important differences between the theoretical spreading speeds and the ob-228

served ones for phenotypes y other than the fastest one. In the case of d < dcr (left

column Figure 2, dcr is defined in the Appendix), the generalist has the fastest trait value

on the expansion front in all the scenario and period L . However, we can notice that the231

spreading speed curve for the Scenario C is slightly shifted to the right, leading to an im-

balance in favor of D. In the case d > dcr (right column Figure 2), the standard behavior

described by Equation 7 (local competition) predicts that, on the expansion front, both234

phenotypes at growth rate and dispersal optimum have similar speed in the Scenario

A. Instead, when considering the Equation 1, the effect of the competition leads to the

selection of the R specialist. This is also the case for the scenario B when the environ-237

ment is changing quickly. However, in that scenario, a greater value of L leads both R

and D specialists having comparable spreading speed. In the scenario C the spreading

speed is lower than in scenario A and the trade off is completely shifted in favor of the240

D specialist.
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Figure 2: Spreading speed in scenario (A); (B); (C) for µ = 0 and a = 1. Red line

with stars stands for the homogeneous case formula (H), dashed red line stands for

theoretical formula (Th), continuous blue line stands for the local numerical solution

(L), dashed blue line stands for the non-local numerical solution (NL). Columns show

different optimum distance. In panel (b) and (c) different lines show different period

value (L→ 0 and L→ ∞).
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Population composition on the front

Here, we assess the composition of the expanding front varying the period L, the distance243

among the optimum d and the amplitude a of the heterogeneity. In Figure 3, results of

different scenario and parameter combinations are analysed coloring each cell of the plot

with the color that correspond to the fastest phenotype (i.e yellow for generalist, blue for246

the R specialist, red for the D specialist).

In the scenario B, for L → 0, the heterogeneity amplitude a does not produce any

effect on the dynamics: when d < dcr, the R − D trade-off is always in favor of the249

Generalist; when d > dcr the R specialist has the fastest phenotype. Instead, for L → ∞

when d > dcr, the fastest phenotype could be either the R or the D specialist. When

a < acr, the behavior is in favour of the R specialist; when a > acr, the trade-off is shifted252

in favor of the D specialist (Figure 3A).

In the scenario C, both for L → 0 and L → ∞, a alters the trade-off R and D. For

d < dcr, the fastest phenotype is always the generalist. For d > dcr, as before, the255

fastest phenotype could be either R or the D specialist depending on the value of a.

Amplitudes below acr select for the R specialist whereas amplitudes behind acr select for

the D specialist (see also Figure 2C for which a = 1).258

Total population composition

We analyse the composition of the total population behind the front under the differ-

ent scenario for the non-local case (Figure 4). Under the scenario B with a fast varying261

environment, the density of phenotype class is invariant with respect to the amplitude

of the heterogeneity and only varies depending on d. When d > dcr, the population is
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Figure 3: Results of the numerical simulations for assessing the role of the amplitude of

scenario B and C for non-local in case of L → 0 and L → ∞. a = [0.1− 1] by 0.1 (x axis)

and d = [0.5− 5] by 0.5 (y axis). The colors stand for the fastest phenotypic traits: yellow

stands for generalists, red stands for D specialists and blue for R specialists. The white

points represent the acr given for each d.
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composed by half generalist and half R specialist. As d increases, the R specialist propor-264

tion increases up to to be the only class presents. For a slowly varying environment and

for high amplitude value of heterogeneity, the population composition is not completely

dominated by the R specialist, but there is a proportion of D specialist coming out. And267

specifically, this proportion is localised on the expansion front as demonstrated in Figure

3. Under the scenario C, when d < dcr, there is an increase of the generalist instead of

the R Specialist as the amplitude a increases. When d > dcr, there is a clear shift from270

a proportion in favor of the R specialist to the D specialist as the amplitude a increases

showing that the D specialist takes the leading of the expansion front but also a great

part of the total population behind the front.273

The effect of mutation

In all the scenarios and parameter combinations, we also evaluate the effect of the muta-

tion. We observe that it only leads to an homogenization of the phenotypic distribution276

and therefore to a wider phenotype ensemble that leads the propagation front. However,

the mutation does not affect the R-D trade-off outcome: the fastest phenotypic trait is the

same without and with mutations.279

By contrast, when the system is composed of only the two phenotypes y = OR and

y = OD instead of a continuum y ∈ (ymin, ymax), with a low mutation rate, we numer-

ically find an overall spreading speed (v f ) which is higher than the maximum of the

spreading speeds of each phenotype independently, i.e., strictly larger than

max
(

2
√

Rh(OR) Dh(OR), 2
√

Rh(OD) Dh(OD)

)

in Scenario A, that corresponds to the faster speed reported by Elliott and Cornell (2012)
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Figure 4: Results of the numerical simulations for assessing the population composition

for scenario B (Panel A) and scenario C (Panel B) for non-local equation in case of L→ 0

and L→ ∞. The amplitude of heterogeneity varies as a = [0.1− 1] by 0.1 (x axis) and the

optimum distance varies as d = [0.5− 5] by 0.5 (y axis).The colors represent the density

proportion for each phenotype class: R for the R specialist, G for the generalist and D

for the D specialist.
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(see Appendix A). Interestingly, in the scenarios B and C, we find that both in a slow

and fast varying environment for the heterogeneity in R, the spreading speed still corre-282

sponds to v f as in the homogeneous case. That was not the case in the scenario C.

Discussion

Dispersing faster or growing stronger? Which strategy is selected in populations invad-285

ing a heterogeneous environment ? Range expansion and colonization of new habitats

are primarily driven by reproduction and dispersal (Lewis et al., 2016). However, both

traits are generally correlated as organisms can pay a reproductive cost to disperse faster288

(Baguette and Schtickzelle, 2006; Bonte and Bafort, 2018; Hanski et al., 2006). In addi-

tion, spatial heterogeneity in environmental conditions that impacts growth or dispersal

can influence such processes by modifying demography and dispersal (Hanski et al.,291

2006; Ramanantoanina and Hui, 2016). In this work we addresses these questions gath-

ering analytical solutions from the literature and performing numerical simulations of a

reaction-diffusion model describing the demo-genetic dynamics of a population invad-294

ing a one-dimensional heterogeneous environment. We find that the spatial heterogene-

ity play a role in shaping the trait trade-off determining the preferred strategy on the

expansion front and in the rest of the population behind. The trade-off strength, the297

fragmentation and the amplitude are the key elements that contribute to the strategy

shift with respect to the homogeneous case.

When the trade-off is weak, i.e. when the distance between the optimal phenotypes300

is below the threshold d < dcr, evolution leads to the selection of a phenotype with gen-

eralist features. When heterogeneity impacts the growth rate, the generalist is the same

as in homogeneous environments. This is due to the fact that heterogeneity impacts the303
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average growth rate only through its arithmetic mean. Interestingly, when heterogene-

ity impacts the diffusion coefficient, the phenotype of the generalist is shifted toward a

greater dispersal ability. Indeed, in that case it is the harmonic mean that appears in the306

expression of the velocity.

As the trade-off becomes stronger, in an homogeneous environment the phenotypes

optimizing growth (R specialist) and the phenotype optimizing dispersal (D specialist)309

have the same speed. This holds true when envionmental heterogeneity impacts the

growth rate while only the D-specialist confers the maximal speed when dispersal is

heterogeneous. However, competition among phenotypes can give advantage to growth.312

Recently, Deforet et al. (2019) explore the R− D trade-off and determine the conditions

favoring evolution of fastest dispersal against the growth rate in a homogeneous space

for a population composed of two-morphs. Given two species having r1, D1 and r2, D2,315

for species 1 and 2, respectively, they assess the evolutionary outcome depending on the

simple condition r2/r1 > D1/D2. Basically they find that a lower trait value for either

growth or dispersal can be compensated by the other trait in order for a species to take318

over the other one. This was not the case in our approach as we are in the particular case

where the two morphs at the optimum of the two strategy results in the particular case

r2/r1 = D1/D2, due to the symmetry assumption.321

Habitat fragmentation plays also a crucial role in determining the evolutionary out-

put. Fast varying environments (L→ 0), tend to favour stronger growth rate upon faster

dispersal at least when heterogeneity impacts the growth rate. Indeed, resources are324

heterogeneously distributed, but the distance among favorable habitats is not large, thus

the trade-off is more favorable to the selection of thte R-strategy on the front as high

resource availability and fecundity facilitate expansion by increasing population growth327
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(Burton et al., 2010). By contrast, in slower varying environment (L → ∞), the faster

dispersers take advantage of their mobility to reach the most favourable habitats and

lead the colonization front. Evolution leads thus to the selection of a higher dispersal330

capacity. When environmental heterogeneity impacts dispersal, phenotypes optimizing

dispersal are selected at the front regardless of habitat fragmentation. This result is in

line with the “Spatial sorting theory”, where, in an expanding front, dispersal may be333

strongly favoured because of spatial sorting and selection where the best dispersers tend

to be disproportionately represented on the population front (see Phillips et al. (2008);

Shine et al. (2011); Travis and Dytham (2002)). Many examples suggest that population336

expansion may select for better dispersal Chuang and Peterson (2016); Zera and Denno

(1997), even at the cost of slower growth (Andrade-Restrepo et al., 2019; Chuang and

Peterson, 2016) as the cane toads lat name invasion in Australia, where on the margin in-339

dividuals have longer legs with lower birth rates (Phillips et al., 2006). Similarly, this has

been observed for the speckled wood butterfly Pararge aegeria among two habitats which

differ for their availability breeding sites. The most fragmented habitat are associated342

with an increased dispersal ability, but females at range margins laid significantly fewer

eggs than those from populations nearer the centre of the range (Hughes et al., 2003).

The picture is different behind the front where we found that the R-strategy is always345

selected.

In pulled waves, when competition is relaxed on the front, the genetic diversity is

consistently low on the front (Roques et al., 2012b) due to the filtering of spatial sorting,348

homogenizing the phenotypic traits selected for dispersal (Andrade-Restrepo et al., 2019;

Cobben et al., 2015). The effect of mutation on the spreading speed of an expanding

population is addressed numerically by Elliott and Cornell (2012). They investigated the351
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effect of varying R and D on the spreading speed of the system and they find that the

system would spread faster in the presence of both phenotype than just one phenotype

would spread in the absence of mutation for certain combination of D and R values354

(Elliott and Cornell, 2012; Morris et al., 2019). Morris et al. (2019) derive predictions about

the spreading of species characterised by travelling waves and find analytical conditions

given by R and D parameter combinations. In our case, the two fastest phenotypes357

alone verify the hypothesis for which the speed v f should appear as Dh(OR)/Dh(OD) =

Rh(OD)/Rh(OR) The phenotypes y = OD and y = OR, alone, would have the same

spreading speed: 2
√

Rh(OD)Dh(OD) = 2
√

Rh(OR)Dh(OR), respectively. Thus, our case360

correspond to the one expressed by Eq. 40 of Morris et al. (2019), see Appendix. We are

in the case of Elliott and Cornell (2012) where the spreading speed of the fastest morphs

is equal to v f with low mutation rate and considering a population of two-morphs.363

However, in our system the fact of having a continuum space of phenotypes with a

step-wise mutation does not verify the same conditions since each phenotype mutates

with the nearest neighbors and they are not only the two optimum phenotypic traits366

(see Appendix B). Thus, we find that a low step-wise mutation in a non-local system

composed by a continuum phenotype space, is able to slow down the spreading speed

that the system would have with only two phenotypic traits due to the mutation among369

the nearest neighbors and competition.

Finally, it is important to recall that our results depend on the assumptions about

the form of the dispersal and growth rate functions and the heterogeneity definition372

(i.e. piece-wise function of period L on the uni-dimensional domain x). In our model,

we do not take into account of the Alee effect, which it is demonstrated to have conse-

quences for the dynamics of invasion since there are low densities on the invasion front375
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(Andrade-Restrepo et al., 2019; Chuang and Peterson, 2016; Roques et al., 2012a). Future

works could develop a more complex dynamic model than the presented one taking

into account important effects (e.g Allee effects) or introducing another species (e.g prey-378

predation). Moreover, integrating such theoretical models and results with empirical

data would be beneficial. This research and results are key for describing different kind

of invasion and colonization phenomena as the expansion of invasive species (Phillips381

et al., 2006) or in an agro-ecological context for biological control as evaluating the speed

of pest species propagating in the intermixing of habitat of an agricultural landscape

(Shigesada, 1986).384
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SUPPLEMENTARY MATERIAL FOR “MARKOV RANDOM FIELD MODELS

FOR VECTOR-BASED REPRESENTATIONS OF LANDSCAPES ”

BY PATRIZIA ZAMBERLETTI, JULIEN PAPAÏX, EDITH GABRIEL, THOMAS OPITZ

1. Gibbs sampler.

1.1. General setting. We implement a Markov Chain Monte Carlo algorithm of Gibbs

sampler type (Gibbs–MCMC) to iteratively simulate a discrete Markov chain whose station-

ary distribution corresponds to the target model (e.g., Casella and George, 1992), where the

configuration of the allocated land-use categories x is the state variable of the system.

The main steps of Gibbs–MCMC are as follows:

i) we define an initial state x(0); and then iteratively run through steps ii and iii:

ii) we generate a new state x̃ given the current state x(j), selecting a component of the vector
˜x(j) and sampling its category update from the distribution of that component conditioned

on all the other components sampled so far.

iv) finally, after I0 iterations, return the configuration x(I0).

If we need more than one realization of the landscape, we can either run several chains

in parallel, or we may run a single chain but return a sample given by the states indexed by

I0 + ℓI , ℓ= 1,2, . . ., with the burn-in period I0 > 0 and L− 1 intermediate states left out to

avoid autocorrelation in the final sample. Since the parameter vector β of the model is fixed

during each MCMC run, the intractable normalizing constant c(β) in the probability mass

function of the model cancels out in the conditional probabilities used for Gibbs sampling.

During the iterations we have to update the calculation of the set of landscape descriptors for

each new configuration x̃. With respect to the choice of the initial state x(0) of the system,

we have to ensure that p(x(0))> 0, and that valid Gibbs sampling paths x(1), . . . ,x(j) to and

from any configuration x(j) with p(x(j))> 0 are proposed with strictly positive probability.

All of the models presented in the paper satisfy p(x) > 0 for all possible configurations x,

such that any initial state is valid. In more general cases, hereditary properties when moving

between configurations must be checked. We initialize the system state either at random by

drawing the category of an object oi among all ℓi available categories, or by attributing a

single category to each object type, or by using an observed configuration from real data.

1.2. Detailed description of the algorithm. Here, we present in detail the steps of the

algorithm for the iterative but simultaneous simulation of patches and linear elements: at

each iteration i, we randomly select an element type (i.e. patch, layer a, or linear element,

layer b) to be updated, and then we select an object of this type, followed by a category

selection conditioned to all the other elements. If there is more than one time step, i.e., if

there are temporal dynamics with time steps τ = 1, ...,Hτ and time horizon Hτ ∈N, we also

choose at random one of the time steps to be updated.

As outlined above, we propose to use an algorithm where at successive steps for the net-

work, we select at random one of the object of this type and the new category of the element

are sampled from the distribution of that component conditioned on all other components

sampled so far. The new category is sampled among the available categories conditioned to

the allocated categories over the other elements. We denote the full configuration of cate-

gories during iteration step i of the algorithm by x(i).

Given

1
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• I , the total number of iterations, and ,

• time steps τ = 1, ...,Hτ , with Hτ the time horizon, where Hτ is fixed to 1 in the case of

purely spatial simulation,

the algorithm for landscape configuration works as follows:

1. Initialize patches in network C as x
C,(0)
τ = xC,(0) with an initial configuration xC,(0), and

initialize linear elements in network H as x
H,(0)
τ = xH,(0) with an initial configuration

xH,(0), for τ = 1, . . . ,Hτ .

2. set i= 1;

3. while i≤ I ,

• select at random the element type type among C and H: sample U ∼ Unif(0,1); if

U < 0.5 then type =C else type =H;

• if Hτ > 1 select a random the time step: τ ∼Unif({1, . . . ,Hτ});
• select at random one of the ntype object of network type: J ∼Unif({1, . . . , ntype});
• sample the new category for the selected element:

x̃
type,(i)
J,τ ∼ p

(
x̃
type,(i)
J,τ |xtype,(i)

(−J)

)

and denote the full configuration with the new category as x̃;

• increment i← i+ 1;

4. return the final configuration x(I).

1.3. Choice of burn-in period. The landscape descriptors Tk are sufficient statistics in

our models of exponential family type (Grelaud et al., 2009), i.e., they contain all the in-

formation on β that we can draw from an observation x. Therefore, we can monitor the

convergence of Markov chains to their stationary distribution by checking the m simulated

series T
(j)
k , k = 1, . . . ,m, through trace plots, which further allows us to determine an ap-

propriate burn-in period, and to analyze the mixing behavior of the Markov chains to fix the

number I − 1 of intermediate states to be left out (see, e.g. Kiêu et al., 2013). In practice, we

have found that the number of iterations needed for burn-in depends on the combination of

size of the landscape and complexity of the model, and especially on the type of landscape

descriptors involved. The running time necessary to simulate one landscape in one Markov

chain for the examples discussed in this paper ranges from several seconds to several minutes.

For illustration, we here report trajectories of the landscape descriptors in a rather complex

model for 50000 MCMC iterations with the small domain D1 in Figure 2, and for 1 million

MCMC iterations with the large domain D3 in Figure 3, used to check the algorithm conver-

gence.

2. Temporal landscape descriptor. In this section, we define the temporal landscape

descriptor and give an example of temporal dynamics with configurations correlated over

consecutive time steps, i.e., we evaluate temporal interactions. An example specification is:

(1) TC
temp(x) =

nC∑

i=1

Hτ∑

τ=2

t(xCi,τ , x
C
i,τ−1).

Here, TC
temp captures time dynamics for network C of crops over a horizon of Hτ discrete

time steps.
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FIG 1. Schematic representation of the Gibbs sampler. The index i indicatess the current iteration, I is the fixed

number of iterations, τ is the current time, and Hτ is the time horizon.
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FIG 2. MCMC simulation of a model for domain for D1. Convergence diagnostics in Panels a,b: trace plot

examples for patch allocation with crop (a), and for linear segment allocation with hedges (b); the red dashed lines

show the selected burn-in. Panels c, d: landscape descriptor values in domain D1 for 100 simulated landscapes

(boxplots) and the real landscape (red dot) using models M1, M3 and M4 for crop and M1 for hedge; for patches

(c) and linear elements (d). Descriptors in panels a,c from top to bottom: small crop area (TC
area,0.25), crop-

hedge adjacency (TCH
adj ), crop-crop adjacency (TCC

adj ). Descriptors in panels b,d from top to bottom: long hedge

allocation (TH
length), hedge-hedge adjacency (THH

adj ), allocation of horizontally oriented hedges (TH
orient).
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FIG 3. Convergence diagnostic for D3 with model M1: trace plot for patch allocation with crop (a), linear segment

allocation with hedges (b). The landscape descriptor values for the real landscape (red dot) and for the simulated

ones (box plot) at the end of the iterations for patches (c) and linear elements (d). Panel a) and c) from top to

bottom: small crop area (TC
area,0.25), crop-hedge adjacency (TCH

adj ), crop-crop adjacency (TCC
adj ). Descriptors in

panels b,d from top to bottom: long hedge allocation (TH
length), hedge-hedge adjacency (THH

adj ), allocation of

horizontally oriented hedges (TH
orient).imsart-aoas ver. 2020/01/20 file: output.tex date: February 1, 2021
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FIG 4. Examples of crop rotation simulations with positive time correlation (Panel a) and negative time correlation

(Panel b). Simulations are performed over four years. Gray boxes stand for crop (xC
i = 1), white boxes stand for

semi-natural habitat (xC
i = 0). Red lines stand for hedges that are not influenced by rotation and are kept fixed.

The specification of the temporal interaction among two objects of C aims to simulate

crop rotation using 2 allocation categories (i.e., xi ∈ {0,1}) : crop (xCi = 1) or natural habitat

(xCi = 0). Its formulation is given by:

t(xCi,τ , x
C
i,τ−1) = 1(xCi,τ−1 = xCi,τ )

Simulation examples are presented in Figure 4.
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FIG 5. Correlation of landscape descriptors for the spatial domains D1, D2, D3 for the crop network C (upper

panel) and the hedge network H (lower panel).

3. Landscape descriptor correlation. In order to avoid including strongly correlated

landscape descriptors in a landscape model, we check the correlation among covariates aris-

ing in the logistic regression. In Figure 5 we display the correlation among all landscape

descriptors for the three spatial domains.

4. Full results for variograms. To assess model diagnostics, we compute empirical var-

iograms by transforming our landscapes in rasters. We contrast the variogram of the real

landscape with the simulated ones. In Figure 6, variograms for each of the 3 spatial domains

with model M1 are shown. They are discussed in the main text where we put focus on model

comparison over the spatial domain D1.

5. Complete results for M1, M3 and M4 in the spatial domain D1. Here, we present

all results of modelss M1, M3, M4 for the spatial domain D1. In Figure 7a, the boxplot of

parameter estimate are shown for crop and hedge categories. In Figure 8, there is a focus

on the crop category comparing estimated parameters for M1, M3 and M4. Specific values

are reported and discussed in the main text in Table 4. For models M3 and M4, validation

results related to network metrics are shown in Figure 9, while results for raster metrics are

shown in Figure 10 and Figure 11 for M3 and M4, respectively. Lastly, in Figure 12 we show

the variation of the residual standard deviation of model M1 to highlight the improvement

achieved by the introduction of the large area landscape descriptor; more details are also

provided in the main text.

6. Complete results for model M1 and all domains. In Figure 7 we report the boxplots

for parameter estimates based on 100 simulations of the fitted model M1 for the three study

domains.

6.1. Model M1-D2. The complete validation results for the network metrics in the study

area D2 are reported in Figure 13. Figure 14 shows landscape metrics. Figure 17b illustrates

the inter-connection metrics.

In Table 1, we report results for the Monte–Carlo pseudo p-values for network scale met-

rics and raster-based landscape metrics.
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FIG 6. Variograms for the 3 spatial domains D1, D2, D3.

TABLE 1

Pseudo p-values obtained through the Monte–Carlo statistical test for the domain D2.

Semi-natural Crop Hedge

Diameter - 0.04 0.24

Efficiency - 0.23 0.13

Cluster average - 0.07 0

PLAND 0.09 0.10 0.11

PD 0 0.19 0.03

PARA MN 0.04 0 0.12

ENN MN 0.34 0 0.33

IJI 0.12 0.13 0.01

CLUMPY 0.13 0.21 0.03

6.2. The model M1-D3. The complete validation results for the network metrics in the

study area D3 are reported in Figure 15. Figure 16 shows landscape metrics. Figure 17c

illustrates the inter-connection metrics. The mean of the Betweenness distribution in the real

landscape and in the simulations lies in the upper region of the boxplot, which is due to the

presence of a small number of large outliers not shown in the boxplot.
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FIG 7. Parameter estimation for study area D1 (Panel a), D2 (Panel b), D3 (Panel b) with model M1. Left: crop

network; right: hedge network. Red dots represent the estimated value. Boxplots represent 100 simulations.

In Table 2 we report results for the Monte–Carlo pseudo p-values for network-scale metrics

and raster-based landscape metrics.

7. Pseudo-p-values for network metrics. The numbers in Table 3 report the proportion

p ∈ [0,0.5] of the simulated metric values that are “more excentric” than the observed one;

e.g., if the observed value is below the median and 26 among the 100 simulated values are

even lower, we report 0.26. These pseudo-p-values imply that observed metrics for the crop

network still appear realistic under the model. Overall, network-scale results indicate slightly

stronger clustering of crop in the model as compared to reality, but still with similar order of

magnitude for metric values. We also report pseudo-p-values for hedge network-scale metrics

in Table 3, which show stronger discrepancy between observed and simulated values. Node-
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FIG 8. Parameter estimation for the crop network in domain D1 with models M1, M3 and M4 (by columns). Red

dots represent the estimated value. Boxplots represent 100 simulations.

FIG 9. Validation of crop network metrics in D1 with models M3 and M4 at node scale (panels a,d), at network

scale (panels b,e) and for the degree among crop and hedges (panels c,f). In panels a,c,d,f, boxplots represent the

distribution of the node metrics for the real landscape network (left boxplots) and the for the simulated landscapes

(right boxplots). Red dots represent mean values of the node metric distribution of the real and simulated networks,

resspectively. In panels b,e, boxplots represent distributions of the simulated landscapes; red dots represent mean

values of the simulated landscapes; green dots represent the real landscape network values.
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FIG 10. Validation results for raster metrics in the domain D1 for model M3. Boxplots represent simulated land-

scapes transformed to raster format for the three habitats (i.e., semi-natural, crop, hedges). Red dots represent

mean values of each habitat for simulated landscapes. Green dots represent values of each habitat for the real

landscape.

TABLE 2

Pseudo p-values obtained through the Monte–Carlo statistical test for the large domain D3.

Semi-natural Crop Hedge

Diameter - 0.30 0.15

Efficiency - 0.35 0.15

Cluster average - 0.34 0

PLAND 0 0 0

PD 0 0.01 0.41

PARA MN 0 0 0

ENN MN 0 0.01 0.16

IJI 0 0 0.05

CLUMPY 0.36 0 0

scale metrics for hedges, more directly controlled through the network descriptors included

in our model, remain satisfying.
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FIG 11. Validation results for raster metrics in the domain D1 for model M4. Boxplots represent simulated land-

scapes transformed to raster format for the three habitat types (i.e., semi-natural, crop, hedges). Red dots repre-

sent mean values of each habitat for simulated landscapes. Green dots represent values of each habitat for the

real landscape.

TABLE 3

Pseudo-p-values of network-scale metrics and raster-based metrics for D1 and crop models M1, M3, M4.

Semi-natural Crop Hedge

M1 M3 M4 M1 M3 M4 M1

Diameter - - - 0.57 0.26 0.15 0.19

Efficiency - - - 0.56 0.06 0.38 0.23

Cluster average - - - 0.16 0.13 0.28 0

PLAND 0.08 0 0 0.10 0 0 0

PD 0 0 0 0.44 0.26 0.19 0.37

PARA MN 0.20 0.20 0.17 0.12 0.33 0.24 0.06

ENN MN 0.49 0.11 0.43 0.30 0.24 0.14 0.01

IJI 0.45 0.02 0.09 0.47 0.19 0.28 0.47

CLUMPY 0.19 0.11 0.26 0.24 0.02 0.02 0
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FIG 12. Percentage variation of the residual standard deviation (SD) of model M1 in domain D1 with respect to

model M3in domain D1. The letter a refers to the network patch network. Regarding raster metrics, SNH stands

for Semi-natural habitat, C stands for Crop and H stands for hedges.

FIG 13. Validation of network metrics for the domain D2. Validation at node scale (panels a,c), at network scale

(panels b,d) for crop network (left) and hedge network (right), respectively. In panels a,c, boxplots represent

distributions of node metrics for the real landscape network and for simulated landscapes. Red dots represent

mean values of the node metric distribution of the real and simulated networks. In panels b,d, boxplots represent

simulated landscapes. Red dots represent mean values of the simulated landscapes. Green dots represent the real

landscape.
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FIG 14. Validation of raster metrics for the domain D2. Boxplots represent the simulated landscapes in raster

format for the three habitat types (i.e., semi-natural, crop, hedge). Red dots represent mean values of each habitat

for simulated landscapes. Green dots represent values of each habitat for the real landscape.

FIG 15. Validation of network metrics for the domain D3. The description is the same as in Figure 13.
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FIG 16. Validation of landscape metrics for the domain D3. The description is the same as in Figure 14.

FIG 17. Validation of network metrics for the three domains D1, D2 and D3 (panels a,b,c, respectively) related

to inter-connections in the multi-layer network with model M1. In each display, boxplots show the distribution of

the node metric for the real landscape (left boxplot) for the simulated landscapes (right boxplot) for the Crop-to-

Hedge degree, which counts the number of links from crop patches to hedges (left column), and the Hedge-to-Crop

degree, counting the number of links from hedges to crop patches (right column).
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S1 Supplementary Information of the paper: “More pests but less pesticide 1 

applications: ambivalent effect of landscape complexity on conservation biological 2 

control” 3 

1. Description of the 2D/1D model for population dynamics in the landscape 4 

Here, we detail the description of the dynamics of a species in a landscape defined as a 2D matrix 5 

crossed by 1D corridors, following the methodology developed in Roques & Bonnefon (2016). Here, 6 

we report some of the key information to understand the 2D/1D model for population dynamics for our 7 

analysis. More details can be found in the original paper Roques & Bonnefon (2016). 8 

2D reaction-diffusion equations describe the dynamics in the matrix, and another set of 1D reaction-9 

diffusion equations describe the dynamics in the corridors. The fluxes among the matrix and the 10 

corridors are described by coupling terms between the two sets of equations. 11 

We consider a 2D matrix defined by a set Ω ⊂ 𝑅2 , composed of finite mosaics 𝑖 of  polygonal disjoint 12 

2D patches Ω𝑖 separated by corridors (Fig 1). Patch boundary is denoted by δΩ𝑖, each boundary 13 

consisting of a finite number of 1D edges 𝜆𝑖𝑘 . The edges can be classified as: interior edges (= the 14 

corridors), and exterior edges which belong to the boundary  δΩ  of Ω , for which no particular 1D 15 

dynamics are modelled. The population density is denoted by v𝑖 in each patch Ω𝑖 and by  𝑢𝑖𝑘  in each 16 

corridor 𝜆𝑖𝑘. 17 

. 18 

 19 

 20 

Fig. 1. Landscape representation. Patches 𝛀𝒊and edges 𝝀𝒊𝒌 at patch boundaries. 21 

1.1 Dynamics in the 2D matrix 22 

The population density is modelled by a reaction-diffusion equation: 23 𝛿𝑡𝑣𝑖 = 𝑑Δ𝑣𝑖 + 𝑓(𝑣𝑖), 

Supplement 2

,
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where 𝑑 is the diffusion parameter that describes the mobility in the matrix 2D, and 𝑓 is the growth 24 

function that describes the birth and death events in the patch Ω𝑖. 25 

The exchanges among patch Ω𝑖 and the surrounding corridors are described by the flux terms: 26 𝑑∇𝑣𝑖 𝒏 = 𝜌12𝑢𝑖𝑘(𝑡, 𝑥, 𝑦) −  𝜌21𝑣𝑖 (𝑡, 𝑥, 𝑦), 
where 𝜌12𝑢𝑖𝑘(𝑡, 𝑥, 𝑦) describes the flux of individuals leaving the corridor 𝝀𝒊𝒌 and entering the patch 27 𝛀𝒊 at time 𝑡 and at the position (𝑥, 𝑦), and  𝜌21𝑣𝑖 (𝑡, 𝑥, 𝑦) describes the flux of individuals leaving 28 

the patch 𝛀𝒊 and entering the corridor 𝝀𝒊𝒌; finally, 𝒏 = 𝒏(𝒙, 𝒚) denotes the outward unit normal to 29 

the boundary δΩ𝑖. On the exterior boundary edges 𝝀𝒊𝒌 ∈ δΩ𝑖, standard reflecting boundary 30 

conditions are assumed: 𝑑∇𝑣𝑖 𝒏 = 0. These boundary conditions mean that the individuals hitting 31 

the boundaries are reflected back inside the domain.  32 

 33 

1.2 Dynamics in the corridors 34 

Each corridor 𝝀𝒊𝒌 belongs to the common boundary of Ω𝑖 and of another set, which is denoted by Ω𝑖′, 35 

i.e., 𝝀𝒊𝒌 =  𝝀𝒊′𝒌′, where we model the 1D dynamics on each side of the corridor. The population densities 36 

in the corridor can be denoted by 𝑢𝑖𝑘  and 𝑢𝑖′𝑘′  from the Ω𝑖  and the Ω𝑖, sides, respectively, and we 37 

assumed that 𝑢𝑖𝑘 ≠  𝑢𝑖′𝑘′, in general. The exchanges between the two sides of the corridor are taken into 38 

account through a permeability parameter α > 0 (Fig. 1). To state the 1D equation for the dynamics in 39 

the corridors, we define an isometric transformation 𝑧 → ( 𝑥(𝑧), 𝑦(𝑧)) , which maps any corridor 𝝀  40 

into an interval (0, L(𝝀)), where L(𝝀) is the length of the corridor. Thus, the population density in the 41 

new coordinate 𝑧 ∈ 𝐿(𝜆)  is defined by �̃�(𝑡, 𝑧) = 𝑢(𝑡, 𝑥, 𝑦). The population dynamics in each corridor 42 𝝀𝒊𝒌 =  𝝀𝒊′𝒌′ separating two patches Ω𝑖 and Ω𝑖′ are described as follows: 43 𝛿𝑡�̃�𝑖𝑘 = 𝐷𝛿𝑧𝑧�̃�𝑖𝑘 + 𝜌21𝑣𝑖 (𝑡, 𝑥(𝑧), 𝑦(𝑧)) − 𝜌12�̃�𝑖𝑘(𝑡, 𝑧) −  𝛼�̃�𝑖𝑘(𝑡, 𝑧) +  𝛼�̃�𝑖′𝑘′(𝑡, 𝑧) + 𝑔(�̃�𝑖𝑘),  𝑡 > 0, 𝑧 ∈ (0, 𝐿(𝝀𝒊𝒌)) , 
   44 

where 𝑔 is the growth function in the corridor 𝝀𝒊𝒌; α is permeability parameter among the two side of 45 

the corridors, and D is the diffusion parameter on 1D corridor.   46 

2. Predator and Pest dynamic 47 

Here we show an example of the pest-predator dynamics resulting from the landscape configuration  48 

showed in Fig 2. Fig 3 illustrates snapshots for different time steps showing the pest and predator 49 

density in the whole landscape. Fig 4 shows temporal dynamics of pest and predator aggregated in 50 

space. In addition, we provide two video files of .gif type to show the whole spatio-temporal dynamics 51 

from the same simulation as in Figs 2,3,4 (See video in the supplement). 52 
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 53 

Fig. 2. Spatial configuration of crop (in grey) and hedges (in red). 54 

 55 

 56 

Fig. 3. Snapshots of pest and predator spatial dynamics. Simulation of predator-pest population 57 

dynamics at different time intervals t={1, 70, 100}. At the initial stage, the pest density (first line) is 58 

very low, followed by random introduction of pest. As time proceeds, the pest density increases  (from 59 

left to right), and predator density (last line) also increases  and diffuses  to surrounding fields. At the 60 

final time step, high pest density arises where predators are absent. The temporal dynamic is shown in 61 

Fig 4. 62 
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 63 

Fig. 4. Temporal dynamic of pest (first line) and predator (second line), aggregated over space. 64 

 65 

 66 

3. Complete Sobol sensitivity analysis for predator and pest density and pesticide applications  67 

 68 
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 69 

Fig. 5. Sobol sensitivity analysis. Total sensitivity indices (grey bar) and first-order sensitivity 70 

indices (black bar) of space-time averaged values for predator density, pest density and number of 71 

pesticide applications based on the mean (Panel a) or on the variance (Panel b) calculated over 72 

replicated simulations.  The length of the bar indicates the mean of the sensitivity index, and the solid 73 

line indicates its 95% confidence interval. 74 

 75 

3. Estimated effects  of Generalized Linear Models (GLMs) for pest and predator densities, and 76 

for presence/absence and number  of pesticide applications, and Generalized Linear Mixed-77 

Effect Model for presence/absence and number of local pesticide applications. 78 

 79 
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Fig. 6. GLM coefficient estimates. Effects of input parameters and their bivariate interactions on pest 81 

and predator population dynamics: Coefficient estimates (dots) and their confidence intervals 82 

(segments) for the parameters retained by the stepwise selection in the GLM for the predator density 83 

(a), the pest density (b), the presence/absence of pesticide applications (c) and the number of pesticide 84 

applications (d).  85 

 86 

Fig. 7. Generalized Linear Mixed-Effect coefficient estimates. Estimated local effects (dots) and 87 

confidence intervals (segments) for the presence/absence of pesticide applications (a) and for the 88 

number of pesticide applications (b). The intercept values are not shown in this plot to better focus on 89 

the effects of the landscape covariables. 90 

 91 

4.4  Sensitivity to pesticide application parameters 92 

We test the sensitivity of our findings to pesticide applications when varying the pesticide efficacy and 93 

application threshold. We consider the following contrasted scenarios at landscape level: 94 
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• Scenario S1: a baseline scenario that considers an optimal pesticide efficacy (reduction of 95 

99.5% of pest, Cit = 0.1 pests km-2 after application (See Table 2)) and a low application threshold (0.2 96 

pests km-2); 97 

• Scenario S2: sub-optimal pesticide efficacy (reduction of 70% of pest, Cit = 6 pests km-2 after 98 

application) and a low application threshold (0.2 pests km-2); 99 

• Scenario S3: optimal pesticide efficacy (reduction of 99.5% of pest, Cit = 0.1 pests km-2 after 100 

application (See Table 2)) and a low application threshold (2 pests km-2). 101 

Scenario S1 depicts an ideal context for pesticide efficiency, while more realistic pesticide applications 102 

inflict about 70% mortality to pests (1,2). The pesticide application threshold controls the pesticide 103 

application frequency, which could be highly variable depending on the pest species and on the 104 

economic value of crops (3). Thus, a very low threshold generates a high pesticide application 105 

frequency, while a high threshold leads to more moderate pesticide utilisation. 106 

We defined a smaller experimental setting where we vary only landscape parameters (aggregation (ϕ), 107 

crop proportion (Pc), hedge proportion (Ph)), and we perform a complete plan of 4 levels using the 108 

same ranges presented in Table 2 of the main text, with 15 repetitions each. We fixed population 109 

parameters (Table 2) to the median of the values considered in the main paper. For each scenario, we 110 

obtain 960 simulations. 111 

To contrast the effects of these different scenarios on CBC, we applied GLMs considering the scenarios 112 

along with the landscape variables. Pest and predator densities, and pesticide application numbers (if 113 

different from 0), are analyzed as response variable by using the Gamma distribution with log-link 114 

function; presence/absence  of pesticide applications during a simulation is analyzed using a GLM with 115 

binomial distribution. We use the same GLM formulas as those presented in the main text containing 116 

covariable interactions (see Table 2) up to 2nd order, and we also use a step-wise variable selection 117 

algorithm based on the Bayesian Information Criterion (BIC) in order to select the “best subset” of 118 

variables for each model.  119 

Results are presented in Fig 8. In general, we observe that the directions of estimated effects are 120 

maintained across the scenarios, while the mean estimated effect has magnitude depending on the 121 

scenario. As expected, scenario S2 leads to an increase of pesticide applications, where covariates 122 

favoring pest outbreaks show a stronger effect than S1 (e.g, crop proportion for pest density (Fig. 8b) 123 

and presence/absence of pesticide applications (Fig. 8c)). Scenario S3 is expected to reduce the 124 

pesticide application  frequency; therefore, for covariates favoring pest outbreaks, we observe that the 125 

estimated effect value is lower than S1 (e.g, spatial aggregation (ϕ) and crop proportion (Pc), for 126 

presence/absence of pesticide applications (Fig.8c)). Interestingly, S2 and S3 show remarkable effects 127 

provided by hedge proportion (Ph) for pest density: in S1, hedge proportion (Ph) is not significant, 128 

while in S2 and S3 hedge proportion (Ph) has a significant negative effect. Indeed, when pest reduction 129 

is lower due to low pesticide efficacy, or when pest reduction is slower due to an elevated pesticide 130 

application threshold on pest density, hedges may show a more relevant role in slowing down pest 131 

dynamics.  132 
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Fig. 8. GLM coefficient estimates for each scenario in the analysis of pesticide application 134 

sensitivity. Effects of input parameters and their bivariate interactions on pest and predator population 135 

dynamics: Coefficient estimates (dots) and their confidence intervals (segments) for the landscape 136 

parameters retained by the stepwise selection in the GLM, for the predator density (a), the pest density 137 

(b), the presence/absence of pesticide applications (c), and the number of pesticide applications (d). 138 

Scenarios S1, S2, S3 are indicated through different gray scales. All values are significant except for 139 

the following: S1: ϕ, S2: ϕ, S3: ϕ in a);  S1:Ph in b). 140 
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Supplementary material of: Spatio-temporal point processes as

meta-models for population dynamics in heterogeneous landscapes

1 Exploratory spatio-temporal analysis

We give an example of the exploratory analysis of relevant behaviour and effects when we are close in both
space and time to some reference or trigger event (e.g., when studying what happens after an inoculation,
or after a pest peak) and of relationships with the landscape structure. This analysis aims to highlight the
importance of jointly considering the space and time dimensions in our analysis.

The spatio-temporal structure of pest peaks is explored by evaluating the pest peak occurrence intensity
after a peak or after an inoculation. For each group of 15 repetitions of the 172,500 simulations, we select
the first temporal pest peak or the first inoculation, and we then compute the spatial and temporal distances
to all the other treatments later in time. Then, we use such distances as point in the xy plane and visualise
the resulting cloud of points intensity. We run analyses where we either pull together all the simulations,
or we run analysis on subsets of data by dividing them depending on key parameters. In Figure 1, we
report the logarithm of the occurrence intensity of treatments with respect to the spatio-temporal distances
among 1stpeak-peaks ( Figure 1a) and 1stinoculation-peaks (Figure 1b), where we consider the following data
subsets: all the simulations together (first column); by splitting the simulations depending on the % of crop
in the whole landscape (low and high in second and third columns, respectively); by splitting the simulations
depending on pest diffusion in crop (low and high in forth and fifth columns, respectively).

The plots for 1stpeak-peaks allow us to assess how rapidly the pest dynamic is able to recover after the first
peak and the associated application of a treatment within a patch to exceed again the treatment threshold
at a later stage, which also involves the re-colonisation from the neighbouring patches (Figure 1a). When
considering all the simulations, given a temporal distance, the peak intensity decreases moderately with
short spatial distance and more rapidly as the spatial distance increases. On the other hand, given a spatial
distance, there is a increasing trend of pest peak intensity until reaching a maximum value at a certain
temporal distance, and then it decreases. The temporal range with high values is wider for shorter distances
and shrinks as the spatial distance increases. In general, we observe a maximum intensity around the time
step t = 0.4 at all spatial distances. This behaviour can be explained by the fact that pests need time to
disperse and reach the threshold density above which the treatment is applied; and, at a short distance the
pest threshold would be exceeded more quickly than at a longer distance. Given a temporal distance, pest
density will be higher for shorter spatial distances. This behaviour changes when looking only at simulations
with small % of crop, since pests have not a lot of space in their preferred habitat. Thus, they group in a
small spatial range of suitable habitat. Consequently, the maximum intensity is reached at relatively short
spatial and temporal distances. By contrast, for high pest diffusion in crop, we observe a larger temporal
range at which the maximum pest peak intensity is observed, which is due to the fact that pests disperse
rapidly, thus are able to spread in shorter time than on average for all simulations.

The plots for the 1stinoculation-peaks analysis allow us to assess the capability of the pest population
to develop and colonise the surrounding landscape (Figure 1b). For all the simulations, the maximum
occurrence intensity of treatments depends mostly on the spatial distances with a decreasing trend at small
to moderate spatial distances; therefore, the closer we are to the inoculation point, the more pest peaks
above the treatment threshold will occur. More specifically for a small % of crop, the maximum occurrence
intensity is always found for relatively small spatio-temporal distances, where for small temporal distances
relatively high occurrence intensities persist over all spatial distances. This behaviour could be due to the
fact that pests cannot disperse over larger surfaces and therefore may locally accumulate very fast. For high
pest diffusion in crop, the trend is completely different; we note generally higher intensity values with respect
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to the other cases, and the maximum intensity is realised for short spatial distances for all temporal distances.
However, when the spatial distance increases and for short temporal distance, we observe relatively small
pest peak occurrence intensities, due to the fact that pests spread quickly and may thus easily reach other
habitats, which lowers the local pest density around the inoculation point and keeps it under the treatment
threshold. At longer temporal distances, the pest propagation causes the threshold to be exceeded quite
frequently.

Figure 1: Spatio-temporal visualisation of pest peak occurrence intensity as a function of the spatial distance
(x axis) and the temporal distance (y axis) with respect to the first pest peak in the simulation (Panel a)
or with respect to the first inoculation in the simulation (Panel b); for all the simulations together (first
column), or depending on low/high % of crop (second and third columns) and low/high Pest diffusion in
crop (fourth and fifth columns). The colour bar displays the log-occurrence intensity.

2 Landscape model

We provide details about the landscape model, which was developed in Zamberletti et al. (2021). As fixed
spatial support, we use an observed agricultural landscape and represent it through a vectorial approach by
T-tessellation. It results in 188 polygons with a total of 577 edges. For simulating the spatial allocation
of land-use categories in the T-tessellation, stationary Gaussian random fields (GRFs) are simulated in
the landscape (with mean 0 and variance 1). We then fix a threshold on the values of the Gaussian field
simulated at locations that represent the barycenter of a specific landscape element type (e.g., polygons),
and we allocate the landscape elements with one of two possible categories e.g., crop, no crop) depending on
the value of the GRF being below or above the threshold. The correlation parameters of the GRFs control
the strength of spatial dependence, which, in turn, governs the clustering strength of landscape elements,
such as surface elements and linear elements. The commonly used valid spatial correlation functions are
restricted to nonnegative correlations, such that GRFs are useful to generate clustered or independent
structures in space. It would be more difficult to obtain regular structures, e.g., repulsive structures between
neighboring elements. To simulate landscape configurations, GRFs are thresholded at a fixed quantile
(e.g., observed 70% quantile, where the probability level is one of the parameters of the model) to define
presence (if above threshold) or absence (if below threshold) of crops or of hedges, respectively. For each
type of elements of the landscape geometry (i.e., , segments and polygons), a separate GRF is defined
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to assign an land-use type controlling its spatial aggregation and proportion (i.e., W1(s) and W2(s) for
polygons and segments, with exponential correlation function given as corr(s1, s2) = exp(−dist(s1, s2)/φi),
i = 1, 2, respectively). Next, correlation between allocation of crop to patches and of hedges to edges can be
generated by inducing correlation between their respective GRFs, here using the idea of a linear models of
co-regionalization. Initially independent GRFs for landscape geometries can be linearly combined through
correlation parameters (Equation 1, 2 and 3) to obtain the two dependent GRFs used to determine the final
landscape configuration coupling surface and linear element allocation:

Wc(s) = ρcW1(s) +
√
1− ρ2cW2(s) (1)

Wh(s) = ρhW1(s) +
√
1− ρ2hW2(s) (2)

For a simpler and more parsimonious formulation, we fix ρh = 1 such that W1 defines the GRF used for
hedges, and we allow for ρc ∈ [−1, 1] to control the correlation between Wh and Wc (Zamberletti et al.,
2021). Moreover, we use the same spatial correlation range φ1 in both of the initial fields. Then, the
cross-correlation function between the GRFs for hedges and crops is as follows:

Corr(Wh(s1),Wc(s2)) = ρc exp(−dist(s1, s2)/φ1) (3)

Specifically, for correlation of hedges and crops at the same location x, we obtain Corr(Wh(x),Wc(x)) = ρc.

3 Population dynamics model

We report the population dynamics model to provide more details with respect to the narrative of the paper.
The model is the same of Zamberletti et al. (2021). Population dynamics are described by a spatially explicit
predator-pest model based on a system of partial differential equations. Our model is built on an earlier
developed approach that considers both 2D diffusion on surface elements and 1D diffusion on linear elements
(Roques and Bonnefon, 2016).

• Predator model structure:

– 1D landscape elements:
Linear 1D elements of the landscape matrix are denoted by hi. A 1-dimensional reaction-diffusion
model on linear elements is defined for the predator vhi

:

{
∂tvhi

= ∂xxD
v
1vhi

+ rvvhi
(1− vhi

Khi

) if the edge hi carries a hedge,

vhi
= 0 otherwise,

(4)

where Dv
1 is the diffusion parameter of the predator along the hedges, rv is the intrinsic growth

rate of the predator, and Khi
is the carrying capacity of the hedge i.

– 2D landscape elements:
Polygon-shaped 2D fields are denoted by Ωi. The population density of predators vΩi

in each field
is modelled by a reaction-diffusion equation with mobility parameter within field D2, predation
rate β, and mortality m:

∂tvΩi
= ∆Dv

2vΩi
−mvΩi

+ βuΩi
vΩi

. (5)

• Prey (i.e. pest) model structure:

– 1D landscape elements:
We make the assumption that edges do not host the pest uhi

, and that they do not directly modify
their population dynamics:

uhi
= 0 for all i. (6)
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– 2D landscape elements:
The pest uΩi

is assumed to live only in fields. In addition, the crop fields represent a source of
pest, whereas the non-crop fields are a sink for the pest. In the absence of dispersal from fields
hosting the crop, the pest population vanishes in fields hosting the non-crop type. A chemical
treatment is applied to a given crop field when the pest population in that field reaches a given
threshold. The bidimensional reaction-diffusion model is defined as follows:

{
∂tuΩi

= ∆Dv
uΩi

uΩi
+ ruΩi

(1− uΩi

Cit
)− βuΩi

vΩi
for crop,

∂tuΩi
= ∆Dv

uΩi
uΩi
−muΩi

− βuΩi
vΩi

for semi-natural,
(7)

where the carrying capacity Cit of the field i can change in time due to chemical treatments:
Cit = KΩi

, if no chemical treatment is applied, and Cit =
200

KΩi

for short period of time after the

chemical treatment is applied.

The dynamics described by equations 4 to 7 are coupled to define predator-pest dynamics over landscapes.
Moreover, the fluxes of individuals between 1D and 2D elements of the landscape are defined as follow:

• Edges (with or without a hedge) do not affect the pest population dynamics, i.e., the pest perceives
the landscape as a heterogeneous 2D environment without 1D effects of linear elements.

• Edges without a hedge do not affect the predator population dynamics, i.e., two fields separated by
an edge but without a hedge will be perceived as a unique (potentially heterogeneous) 2D element by
the predator.

• The predator is attracted by hedges, thus migration from fields to hedges is relatively high.

• The predator could potentially have an aversion to move outside its natural habitat; therefore, migra-
tion from hedges to fields is always lower than migration from fields to hedges. Finally, we considered
reflecting conditions on the boundaries of the landscape, meaning that in- and out-fluxes between the
landscape and its surrounding environment are equal.

Dynamics among 1D and 2D elements are fully presented in (Roques and Bonnefon, 2016). The parameter
that controls the predator movement between linear elements and fields is ρ12. All the parameters of predator
and pest dynamics are shown in Table 1.

Table 1: Parameters of the population dynamics model.
Parameters Description Range Units
For landscape model

φ Aggregation of hedges and crops [5.55× 10−2 − 5.55] -
Pc Proportion of crops [0− 1] -
Ph Proportion of hedges [0− 1] -
ρ Correlation between crops and hedges GRFs 0.5 -

Parameters for population dynamic model
Dv

2 2D predator diffusion rate [0.0625− 12] km2d−1

mv Predator mortality rate [5− 15] d−1

β Predation rate [1− 10] d−1

ρ21 Predator migration rate from fields to hedges 5 -
D1

1 1D predator diffusion rate 12 km2d−1

rv Predator intrinsic growth rate [10− 20] d−1

Khi
Predator carrying capacity in hedge 1 -

ρ12 Predator migration rate from hedge to field [0− 5] -
Du

2 2D pest diffusion rate [0.0625− 12] km2d−1

ru Pest intrinsic growth rate [10− 20] d−1

Cit Pest carrying capacity in crop fields Cit =

{
20 no treatment
0.1 after the treatment

-

mu Pest mortality rate [5− 15] d−1
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4 Landscape discretisation for regression models

The spatial domain is discretised into small cells, different from the field polygons, and we assume a ho-
mogeneous point process intensity within each cell during each interval of time. Each combination of a
spatial cell and a time unit represents a subset A as landscape elementary unit, where we count the events
occurring within it and evaluate additional information (i.e., spatio-temporal covariates) associated to each
cell. The discretisation is achieved through a triangulation mesh of space, whose construction puts focus
on the influence of landscape structure on pest-predator dynamics. We take into account the patch struc-
ture of the landscape by differentiating between three types of cells: cells where exactly two patches are
adjacent (located around the patch edge midpoints, with half of the edge length contained within the cell,
representing movement corridors between exactly two neighbouring patches), cells where three patches are
adjacent (around the vertices of the T-tessellation, containing 1/4 of each of the neigbhouring edge lengths,
representing movement corridors around hubs where more than 2 patches come together), and cells at the
center of each patch (representing areas that are separated away from edges and hedges, representing the
patch inner core). This kind of discretisation allows us to focus on the influence of linear landscape elements
represented by patch boundaries where hedges could be allocated, and we assume that the intensity function
of the space-time point process is homogeneous within each cell for a given time step. Due to the reflecting
boundary conditions of the population dynamics model, we observed a relatively large number of pest density
peaks occurring at the boundaries of the study region, and we decided to remove all the boundary cells from
the analysis to avoid an overly high influence of the boundary behaviour on the CBC analysis.

5 Predictor variables for pest dynamics

We evaluate spatio-temporal, spatial and population trait covariates for each cell of the mesh to relate the
spatio-temporal event patterns, landscape structure and population dynamics. The full list of covariates is
summarised in Table 2. Spatio-temporal covariates (STC) refer to the number of pest peaks, treatments and
introductions that have occurred in previous time steps in the same cell or in neighbouring cells. This allows
identifying spatio-temporal dynamics driven by preceding events at local scale. For example, we consider the
number of treatments in each cell occurring at the previous time step to characterise recent spatio-temporal
dynamics. We also evaluate the number of cumulated events up to two time steps before the present one
to assess the influence of the cell’s full local temporal dynamics in the past. Spatial covariates (SC) refer
to geometrical features of the landscape patch tessellation and the land use allocation to evaluate the effect
of the configuration and composition of the landscape. For example, to evaluate landscape configuration
properties, we consider a three-level categorical variable to indicate if the cell connects exactly two, or more
than two patches, to assess its spatial position that could be important to assess fluxes among patches. We
evaluate the landscape composition at local scale through a variable measuring the percentage of crop and
hedge within a buffer centered on the centroid of each cell, and at global scale through a variable measuring
the percentage of crop and hedge in the whole landscape. This enables an assessment of how the crop extent
and the hedge network may locally and globally influence the population dynamics leading to the number of
events within each cell. Specifically, since the buffer aims to characterise variables at local scale, the buffer
diameter is adapted to pest growth rate Rprey and dispersal Dprey, which determine the spreading speed of
the population. The spreading speed can be evaluated as v = 2

√
Rprey ∗Dprey. Then, the travelled space

(i.e., the front of the population) is computed by the classical formulation s = v× t, where s is the travelled
space, identifying the front position, and t is the time, set equal to 0.01, as in the population dynamics model.
Among all the possible simulated configurations of Rprey and Dprey, resulting in highly different buffer sizes
s, we group configurations in three classes defined by the 10%−, 50%−, 90%−percentile of the population
front s. Then, the buffer diameter size is set equal to the population front s used as an approximation of
the local range where the population could move during a time step starting from the center of a cell. The
three resulting buffers have a diameter equal to 0.09, 0.19 and 0.26 Km for the 10%−, 50%−, 90%−percentile
of s, respectively. To each pair of Rprey and Dprey is assigned the corresponding buffer, where we then
calculate covariates of crop and hedge proportion. For population dynamics covariates (PDC), we select
variables related to individual mobility, such as species dispersal in fields and spillover from hedge to fields.
We select these species trait variables as they are directly related to the species’ capability to move within
the landscape.
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Table 2: List of covariates of regression models.
Ref. ID Covariate name Spatial reference Range Unit Description
Spatio-temporal (STC)

1 tr patch(t− 1) patch 0-40 - No. of treatments in the patch at t− 1
2 tr patch cum(t− 2) patch 0-97 - No. of treatments in the patch cumulated up to t− 2
3 tr Nb.patch(t− 1) patch 0-337 - No. of treatments in neighbor patches at t− 1
4 tr Nb.patch cum(t− 2) patch 0-861 - No. of treatments in neighbor patches cumulated up to t− 2
5 pk cell(t− 1) cell 0-15 - No. of pest density peaks at t− 1
6 pk cell cum(t− 2) cell 0-36 - No. of pest density peaks cumulated up to t− 2
7 pk Nb.cell(t− 1) cell 0-45 - No. of pest density peaks in neighbor cells at t− 1
8 pk Nb.cell cum(t− 2) cell 0-97 - No. of pest density peaks in neighbor cells cumulated up to t− 2
9 int cell(t− 1) cell 0-30 - No. of pest introduction in cell at t− 1
10 int cell cum(t− 2) cell 0-30 - No. of pest introduction in cell cumulated up to t− 2
11 int Nb.cell(t− 1) cell 0-30 - No. of pest introduction in neighbor cells at t− 1
12 int Nb.cell cum(t− 2) cell 0-39 - No. of pest introduction in neighbor cells cumulated up t− 2

Spatial (SC)
13 Area cell 0-0.069 km2 Cell dimension
14 cell 2patch cell 0-1 - Binary, it is = 1 if the cell is among 2 patches, 0 otherwise
15 cell 3patch cell 0-1 - Binary, it is = 1 if the cell is among 3 or more patches, 0 otherwise
16 %H Buffer buffer 0-1 % Percentage of hedges within the buffer centered in the cell
17 %C Buffer buffer 0-1 % Percentage of crops within the buffer centered in the cell
18 Aggr landscape 0-5.54 - Landscape crop and hedge aggregation
19 %C Land landscape 0-1 % Landscape crop proportion
20 %H Land landscape 0-1 % Landscape hedge proportion

Population dynamics (PDC)
21 Dprey landscape 0.06-12 km2d−1 Pest diffusion in crop patch
22 Dpred landscape 0.07-12 km2d−1 Predator diffusion in crop patch
23 D12pred landscape 0.1-1 Predator diffusion from hedge to crop

6 Correlation analysis of covariates

We assessed the correlations among the selected covariates defined for each cell of the domain and for each
time step Figure 2. The main positive correlations arise for the covariate % of culture and % of hedge
within the buffer, and the corresponding % of culture and hedge in the whole landscape, respectively. Other
strong positive correlations are shown by the covariate evaluating the number of peaks and treatments at the
previous time step or cumulated up to (t− 2) in the same cell or in the neighbouring ones. This highlights
that locations favourable to high pest density will always experience pest outbreaks even after treatments.

7 Residual analysis of regression models

A residual analysis is performed to evaluate if the predicted values obtained by the GLMs are homogeneously
distributed in tspace and time for the models of intensity peak occurrence and of peak value of pest density.
Residuals are computed as the difference among the predicted values and the observed spatially explicit
population model outcomes.

We analyse the residuals to check the residual homogeneity over space and the time (Figures 3, 4 and
5). We can conclude that the models defined for pest peak number and value are able to capture the vari-
ability of observed data (i.e., population dynamic model outputs) in time and space (Figures 3) without any
systematic biases. We can recognise the already discussed spatial trend depending on cell position: the first
200 cells are cells intersecting 3 patches, the cells among 200 and 600 are center cells. As to the model for
peak number, higher intensity takes place in cells located over patch boundaries, while in the model for pest
peak density value higher values take place in center cells. The temporal dynamics are very well captured
and show a slow increasing trend for pest outbreak occurrence up to a maximum value at last time step, and
a fast and drastic increasing trend for pest density values with respect to time. In Figure 4 and 5 a) and d),
we can see that the residuals are relatively small and almost homogeneously distributed for both models in
space (a) and time (d). This can be also verified in the map of the spatial domain discretised in cells where
we visualise the error within each cell. Here, we remark that for the model of peak numbers, larger errors
occur in cells intersecting 2 or more patches, where the intensity of occurrence is slightly overestimated. By
contrast, in the model of peak valuse, larger errors occur in the relatively large cells centred in patches,
where the pest density concentration tends to be slightly underestimated. In Figure 4 and 5 e), we report
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Figure 2: Empirical Pearson correlations among covariates selected for the occurrence intensity of pest
density peaks and for the model for the peak value of the pest density.

the same plot as in Figures 3a but for each time step, in order to verify that also the dynamical behaviour
is well captured for each time step, and not only on the temporal average. Lastly, the spatial variograms of
residuals, 4 and 5 panels c), confirm that there is the same variability among cells over the distance, i.e.,
there is no spatial structure left in the residuals.

Finally, we show the estimated temporal effect (i.e., the intercept specific to each time interval) in the
regression models for the occurrence intensity of pest density peaks (Figure 6a) and for the peak value of
pest density (Figure 6b). We had introduced this temporal effect in order to better take into account and
explain the temporal dynamics of the population, which were not fully explained by the other covariates. As
for the occurrence intensity of pest density peaks (Figure 6a), the time-varying intercept is positive and it
increases with time up to a constant value. This reflects that the number of pest outbreaks increases through
time as the pest population grows and colonises the spatial domain. As for the peak value of pest density
(Figure 6b), the time-varying intercept is negative and shows a relatively weak amplitude. It decreases with
time, such that the maximum value of pest outbreaks occurs in the first time steps, probably when clusters
of pest concentration arise that are not well homogenised over the spatial domain. Afterwards, when the
pest population expands, there is a dilution effect that leads to a decrease in pest density peak values.
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Figure 3: Residual analysis showing observations, i.e., model output (red dots), with predicted (blue dots)
occurrence of peaks (Panel a) and of peak maximum values (Panel b) over space (left panels, by averaging
over time) and over time (right panels, by averaging over space).
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Figure 4: Residual analysis for the model of the occurrence intensity of peaks. Left: Spatial residual analysis.
Panel a) Residuals scaled over the fitted values for each cell averaged over time steps; Panel b) Visualisation
of the scaled residuals for each cell averaged over time steps; Panel c) Variogram of the scaled residuals.
Right: Temporal analysis. Panel d) Residuals scaled over the fitted values for each time step averaged over
cells; Panel e) Observations (red dots) and fitted values (blue values) for each time step.
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Figure 5: Residual analysis for the model of the peak values. The results presented follow the same structure
as in Figure 4
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Figure 6: Estimated temporal effects for the occurrence intensity of pest density peaks (Panel a) and for the
peak values of pest density (Panel b).
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Supplement 4

Appendix A: Effect of mutation on the spreading speed

We simulate the model described in Equations 1 and 12 defined by only two phenotypes

corresponding to y = OR and y = OD in order to compare our results with the ones of two

morphs presented by Elliott and Cornell (2012) and Morris et al. (2019). Elliott and Cornell

(2012) investigate numerically the effect of varying R and D on the spreading speed of the

system and find that the propagation would be faster in the presence of both phenotypes

than just one phenotype would be in the absence of mutation. We verify that we are in case

expressed by Eq. (40) by Morris et al. (2019), since Dh(OD)/Dh(OR) + Rh(OD)/Rh(OR) =

Rh(OR)/Rh(OD) + Rh(OD)/Rh(OR) = (Rh(OR)
2 + Rh(OD)

2)/(Rh(OD) ∗ Rh(OR)) >= (2 ∗
Rh(OR) ∗ Rh(OD))/(Rh(OR) ∗ Rh(OD)) = 2 (i.e. strict inequality as Rh(OR) 6= Rh(OD) ).

The spreading speed they derive is defined by the Eq. 13 in Elliott and Cornell (2012) and

Eq. 7 in Morris et al. (2019), and in our case can be espressed as

v f =
|Rh(OR)Dh(OD)− Rh(OD)Dh(OD)|√

(Rh(OR)− Rh(OD))− (Dh(OD)− Dh(OR))
(A1)

Here, we verify that, using the same parameter setting and fitness function as the phe-

notype continuous space, we obtain a value of spreading speed that corresponds to v f = 3

for high specialisation (i.e. d = 4) with a low mutation value (i.e. µ = 0.01). Moreover,

we also test if the heterogeneity in R and D leads to a variation of spreading speed with 2

phenotypic traits with respect to the homogeneous v f , see Table A1. In both cases L → ∞

and L→ 0, in case of low mutation, the faster spreading speed corresponding to v f appears

for local and non-local system. For the scenario B (number 2 in Table A1), in case of low

mutation, we find a spreading speed higher than the one without mutation, and, for L→ ∞,

the trade-off is shifted in favour of OR.

We verify and explain why, instead, the conditions do not hold true for having a faster

spreading speed equal to v f in case of low mutation when considering a continuous space

of phenotypic traits. We evaluate the conditions expressed by Morris et al. (2019) for the

appearance of v f considering the fastest phenotype (y = OR) with respect to all the other

phenotypic traits y ∈ (ymin, ymax).

Rh(OR)

Rh(y)
+

Dh(OR)

Dh(y)
> 2 (A2)

and

Rh(y)
R(hOR)

+
Dh(y)

Dh(OR)
> 2 (A3)
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L→ ∞ L→ 0
µ = 0 µ = 0.01 µ = 0 µ = 0.01

OR OD OR OD OR OD OR OD

A
vth 2.83 2.83 2.83 2.83 2.83 2.83 2.83 2.83
vL 2.86 2.76 2.98 2.87 2.86 2.76 2.98 2.87
vNL 2.85 0 2.98 0 2.85 0 2.98 0

B
vth 2.91 3.08 2.91 3.08 2.83 2.83 2.83 2.83
vL 2.96 3 3.14 3.03 2.91 2.84 3.05 2.95
vNL 2.92 3 3.13 0 2.91 0 3.04 0

C
vth 0.1 2.54 0.1 2.54 0.07 2.45 0.07 2.45
vL 0.43 2.46 2.36 2.45 0.2 2.41 1.2 2.39
vNL 0.25 2.46 2.43 2.44 0.24 2.43 2.4 2.4

Table A1 – Spreading speed of the system with only two phenotypic traits corresponding
to the fastest ones (y = OR and y = OD). In the first column: 1 stands for scenario A, 2
stands for scenario B, 3 stands for scenario C. In second column vth is the spreading speed
evaluated with analytical formulas, vL is the numerical local spreading speed, vNL is the
numerical non-local spreading speed.
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Figure A1 – Conditions for having a faster spreading speed v f . The black line represents the minimum
among the left term of conditions expressed in Eq. A2 and A3 and the dashed red curve the limit
value beyond which v f appears.

We draw the curve representing the minimum among the left term of conditions in

Eq. (A2) and (A3) the limit equal to 2. A faster spreading speed appears when we are

beyond the limit equal to 2, meaning that both conditions are verified (Figure A1). We find

that a low step-wise mutation in a non-local system composed by a continuum phenotype

space, is able to slow down the spreading speed that the system would have with only two

phenotypic traits due to the mutation among the nearest neighbors and competition.
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Appendix B: Spreading speed

Scenario A: Homogeneous case

In the absence of mutation (µ = 0), it is known that the spreading speed of the solution of

(7.8) in the Homogeneous case (i.e. R = Rh(y) and D = Dh(y)) associated with a phenotype

y is v(y) = 2
√

Rh(y) Dh(y) (Kolmogorov et al., 1937). Depending on d and σ (see (7.5)-(7.6)),

there may be only one fastest phenotype y∗ in 0 or two optima at ±d/2.

Note that Dh(y) = Rh(−y), thus:

(Rh(y) Dh(y))
′ = R′h(y)Rh(−y)− Rh(y)R′h(−y).

For y = 0, this quantity is equal to 0. Computing the second derivative, i.e., (Rh Dh)
′′(y) =

R′′h (y)Rh(−y)− 2 R′h(y)R′h(−y)+R′′h (−y)Rh(y), at y = 0, yields (Rh Dh)
′′(0) = 2(R′′h (0)Rh(0)−

R′h(0)
2). Thus, we observe that:





(Rh Dh)
′′(0) > 0, if d > 2σ

√
1 + 2 W

(
1

2 R0
e−1/2

)
,

(Rh Dh)
′′(0) < 0, if d < 2σ

√
1 + 2 W

(
1

2 R0
e−1/2

)
,

(B1)

with W the principal branch of the Lambert function. Thus, there exists a threshold on

the optimum distance given by dcr = 2σ

√
1 + 2 W

(
1

2 R0
e−1/2

)
. When d < dcr, 0 is a (local)

maximum of the speed, while if d > dcr, we conclude that the speed has two maxima, which

are symmetric with respect to 0. As (Rh Dh)
′(d/2) < 0, these maxima are reached in the

region (−d/2, d/2).

Scenario B: Heterogenous R, homogeneous D

In the local equation (7.8), when the coefficient R(x, y) is spatially heterogeneous and

L−periodic, we adopt the formula given for the spreading speed in Berestycki and Hamel

(2005). To state this formula, we first have to define a differential operator Lλ, acting on

functions φ(x, y) which are L−periodic in x and satisfy no-flux boundary conditions at the

boundaries y = ymin, ymax. For any λ > 0, this operator is defined by:

Lλ(φ) := D(y) ∂xxφ + µ ∂yyφ + 2 λ D(y) ∂xφ + [λ2D(y) + R(x, y)]φ. (B2)
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The spreading speed can then be computed by the Gärtner-Freidlin formula:

V = min
λ>0

k(λ)
λ

, (B3)

with k(λ) the principal eigenvalue (the unique eigenvalue associated with a positive eigen-

function) of Lλ.

However, when µ = 0, more tractable theoretical formulas can be obtained to determine the

spreading speed v(y) associated with a given phenotype y at the limit of rapidly varying

and slowly varying environments (i.e. (L→ 0) and (L→ ∞), respectively).

1. Rapidly varying environment L→ 0

We refer to El Smaily et al. (2009) work, where the spreading speed v0(y) of each

phenotype is derived analytically:

v0(y) = 2
√

Dh(y) Rx(y), (B4)

with Rx(y) the mean value of the growth rate, averaged over space:

Rx(y) =
∫ 1

0
R(x, y) dx = Rh(y),

as Rs(x) has mean value 0. Finally, the speed is the same as in the homogeneous case

(Rs ≡ 0):

v0(y) = 2
√

Dh(y) Rh(y).

2. Slowly varying environment L→ +∞

An explicit formula for the limit spreading speed v∞(y) of each phenotype as L→ +∞

can be derived analytically using the formulation of Hamel et al. (2010). It is given by

the expression:

v∞(y) = 4
√

Dh(y)×
(R+(y))2 + (R−(y))2 + (R+(y) + R−(y))

√
△(y)

(R+(y) + R−(y) + 2
√
△(y))

3
2

with R+(y) = Rh(y) + R0, R−(y) = Rh(y)− R0 and △(y) = (R+(y))2 + (R−(y))2 −
R+(y) R−(y).

Scenario C: Homogeneous R, heterogeneous D

The Fokker-Planck diffusion term in the local equation (7.8), can be rewritten as:

∂xx(D(x, y) c(t, x, y)) = ∂x(D(x, y) ∂xc(t, x, y)) + ∂x(c(t, x, y) ∂xD(x, y)). (B5)
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The term ∂x(D(x, y) ∂xc(t, x, y)) corresponds to Fickian diffusion operator. Though both

types of diffusion terms are found in the ecological literature, Fokker-Planck diffusion

∂xx(D(x, y) c(t, x, y)) naturally emerges from Brownian motion with space-dependent mo-

bility, and seems better adapted to describe individual movements (see Turchin, 1998; Roques,

2013), whereas Fickian diffusion emerges from flux considerations and seems more adapted

to describe heat conduction in heterogeneous media. The main difference between these two

operators is that Fickian diffusion tends to homogenize the density c(t, x, y) (with respect

to the diffusion variable x). The additional term ∂x(c(t, x, y) ∂xD(x, y)) in (B5) corresponds

to a spatially-periodic transport term which is oriented towards the lower values of D. As

the standard formula for the spreading speed with heterogeneous diffusion in (Berestycki

and Hamel, 2005) and the formulas in the limiting cases (El Smaily et al., 2009; Hamel et al.,

2011) are only available for Fickian diffusion operators, we used these formulas in Table ??

(Scenario C), thereby neglecting effect of the transport term ∂x(c(t, x, y) ∂xD(x, y)) on the

spreading speeds v(y). The corresponding equation, with mutation rate µ = 0 is:

∂tc(t, x, y) = ∂x(D(x, y) ∂xc(t, x, y)) + c(t, x, y) (R(x, y)− γ c(t, x, y)) . (B6)

1. Rapidly varying environment L→ 0

The spreading speed v0(y) of each phenotype can be derived from El Smaily et al.

(2009):

v0(y) = 2
√

Rh(y) < D >H (y),

with < D >H (y) =
(∫ 1

0
1

D(x,y) dx
)−1

the harmonic mean of x 7→ D(x, y).

2. Slowly varying environment L→ +∞

In this case, we use the results in Hamel et al. (2011), which show that:

v∞(y) = 2
√

Rh(y) <
√

D >H (y),

with <
√

D >H (y) =
(∫ 1

0
1√

D(x,y)
dx
)−1

the harmonic mean of x 7→
√

D(x, y).
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Supplement 5

1. Parametrization of β1 and β2

We can relate β1 and β2 in order to reduce the number of parameter.

Relative order of magnitude of β1 vs β2: assume for simplicity that U1 + U2 is spatially

constant. Set

NV2(t) =
∫

Ω
V2(t, x) dx,

the total population size of the predator 2. Integrating the equation satisfied by V2 over Ω,

we get:

N′V2
(t) = NV2(t) (β2 (U1 + U2)(t)−mV).

Consider now the first predator, and set

NH
V1
(t) =

∫

H
v1(t, x) dx and NΩ

V1
(t) =

∫

Ω
V1(t, x) dx,

the population sizes of predator 1 in H and Ω, respectively. Integrating the equation (8.1)

satisfied by v1 over H, we get:

(NH
V1
)′(t) = β1 NΩ (U1 + U2)−mH NH + ρ21

∫

H
V1(t, x) dx− ρ12NH , (B7)

and integrating (8.2) over Ω, using Green’s formula and the boundary condition (given in

the main text), we get:

(NΩ
V1
)′(t) = −mV NΩ − ρ21

∫

H
V1(t, x) dx + ρ12NH . (B8)

Assume for simplicity that V1(t, x) = α(t)/DV1(x) for some α(t). Then,

NΩ
V1
(t) = α(t)

∫

Ω

1
DV1(x)

dx,

and therefore

α(t) = NΩ
V1
(t)〈DV1〉 with 〈DV1〉 =

1∫
Ω

1
DV1

(x)
dx

.

As, DV1(x) = a > 0 for all x ∈ H, we deduce that, on H,

∫

H
V1(t, x) dx =

|H|NΩ
V1
(t) 〈DV1〉
a

.

We can then solve explicitly the system (B7)-(B8), and we get that the exponential rate of
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Figure 1 – Numerical calibration of β1 and β2.

growth of NΩ
V1
(t) is:

−mH + mV + ρ(1 + Z)
2

+
1
2

√
(mH −mV + ρ (1− Z))2 + 4 β1 ρ (U1 + U2),

with Z := |H|〈DV1〉/a and assuming ρ21 = ρ12 := ρ. With the approximation 〈DV1〉 =

a/|Ω|, we get Z = |H|/|Ω| (1D and 2D Lebesgue measures). For comparison, the growth

rate of NV2 is (β2 (U1 + U2)(t)−mV). Finally, although the effect of U1 + U2 is different, a

reasonable order of magnitude would be

β1 = β2
2/ρ.

However, in our application, we calibrate β1 and β2 by numerical simulation. We per-

form simulation where the prey abundance is kept constant (i.e., we set mortality equal to 0)

and we adjust the value of β1 determining the population growth of V1 in the 1D in order to

matching the same exponential curve determined by the V2 dynamic in the 2D. The result of

the calibration is showed in Figure 1. The corresponding values for β1 and β2 are reported

in Table 7.2 of the main text.

2. GLM results

We report all the coefficient estimated by the General Mixed Model (GLM) for the prey

density, U2 proportion, predator density, V1 proportion.
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Prey density (U1 and U2)

Scenario 4 0.1983∗∗∗

Scenario 2 0.5267∗∗∗

Scenario 3 0.2124∗∗∗

Scenario 1 0.9422∗∗∗

Scenario 4:Pc −0.0183∗∗∗

Scenario 2:Pc −0.1212∗∗∗

Scenario 3:Pc −0.0073∗∗∗

Scenario 1:Pc 0.0200∗∗∗

Scenario 4:Ph −0.0028∗∗∗

Scenario 2:Ph −0.0731∗∗∗

Scenario 3:Ph 0.0002

Scenario 1:Ph −0.0000

Scenario 4:βCC
adj −0.0033∗∗∗

Scenario 2:βCC
adj −0.0155∗∗∗

Scenario 3:βCC
adj −0.0027∗∗∗

Scenario 1:βCC
adj 0.0065∗∗∗

Scenario 4:βCH
adj −0.0026∗∗∗

Scenario 2:βCH
adj −0.0333∗∗∗

Scenario 3:βCH
adj −0.0002

Scenario 1:βCH
adj 0.0007

Scenario 4:βHH
adj −0.0012∗∗

Scenario 2:βHH
adj 0.0017∗∗∗

Scenario 3:βHH
adj −0.0002

Scenario 1:βHH
adj 0.0008∗

Scenario 4:Pc:Ph −0.0033∗∗∗

Scenario 2:Pc:Ph −0.0240∗∗∗

Scenario 3:Pc:Ph −0.0002

Scenario 1:Pc:Ph −0.0003

Scenario 4:Pc:βCC
adj 0.0017∗∗∗

Scenario 2:Pc:βCC
adj 0.0083∗∗∗

Scenario 3:Pc:βCC
adj 0.0017∗∗∗

Scenario 1:Pc:βCC
adj 0.0014∗∗∗

Scenario 4:Pc:βCH
adj −0.0004

Scenario 2:Pc:βCH
adj 0.0138∗∗∗

Scenario 3:Pc:βCH
adj 0.0001

Scenario 1:Pc:βCH
adj 0.0006

Scenario 4:Pc:βHH
adj −0.0001

Prey density (U1 and U2)

Scenario 2:Pc:βHH
adj 0.0042∗∗∗

Scenario 3:Pc:βHH
adj 0.0003

Scenario 1:Pc:βHH
adj −0.0004

Scenario 4:Ph:βCC
adj 0.0004

Scenario 2:Ph:βCC
adj −0.0039∗∗∗

Scenario 3:Ph:βCC
adj 0.0004

Scenario 1:Ph:βCC
adj −0.0007

Scenario 4:Ph:βCH
adj 0.0002

Scenario 2:Ph:βCH
adj 0.0125∗∗∗

Scenario 3:Ph:βCH
adj −0.0002

Scenario 1:Ph:βCH
adj 0.0006

Scenario 4:Ph:βHH
adj 0.0002

Scenario 2:Ph:βHH
adj −0.0065∗∗∗

Scenario 3:Ph:βHH
adj 0.0001

Scenario 1:Ph:βHH
adj −0.0004

Scenario 4:βCC
adj :β

CH
adj 0.0006

Scenario 2:βCC
adj :β

CH
adj 0.0041∗∗∗

Scenario 3:βCC
adj :β

CH
adj 0.0006

Scenario 1:βCC
adj :β

CH
adj −0.0018∗∗∗

Scenario 4:βCC
adj :β

HH
adj 0.0000

Scenario 2:βCC
adj :β

HH
adj 0.0030∗∗∗

Scenario 3:βCC
adj :β

HH
adj 0.0001

Scenario 1:βCC
adj :β

HH
adj 0.0002

Scenario 4:βCH
adj :βHH

adj −0.0006

Scenario 2:βCH
adj :βHH

adj −0.0107∗∗∗

Scenario 3:βCH
adj :βHH

adj −0.0001

Scenario 1:βCH
adj :βHH

adj 0.0003

AIC −158315.2770

BIC −157750.3006

Log Likelihood 79222.6385

Deviance 70.3188

Num. obs. 44000
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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U2 proportion

Scenario 4 0.5288∗∗∗

Scenario 2 0.3996∗∗∗

Scenario 3 0.6065∗∗∗

Scenario 1 0.6197∗∗∗

Scenario 4:Pc 0.2597∗∗∗

Scenario 2:Pc 0.2179∗∗∗

Scenario 3:Pc 0.3054∗∗∗

Scenario 1:Pc 0.2916∗∗∗

Scenario 4:Ph −0.0286∗∗∗

Scenario 2:Ph −0.0698∗∗∗

Scenario 3:Ph −0.0158∗∗∗

Scenario 1:Ph −0.0137∗∗∗

Scenario 4:βCC
adj 0.1150∗∗∗

Scenario 2:βCC
adj 0.0938∗∗∗

Scenario 3:βCC
adj 0.1109∗∗∗

Scenario 1:βCC
adj 0.1045∗∗∗

Scenario 4:βCH
adj −0.0175∗∗∗

Scenario 2:βCH
adj −0.0203∗∗∗

Scenario 3:βCH
adj −0.0018

Scenario 1:βCH
adj 0.0015

Scenario 4:βHH
adj −0.0015

Scenario 2:βHH
adj 0.0047∗

Scenario 3:βHH
adj 0.0033

Scenario 1:βHH
adj 0.0035

Scenario 4:Pc:Ph 0.0091∗∗∗

Scenario 2:Pc:Ph −0.0150∗∗∗

Scenario 3:Pc:Ph 0.0222∗∗∗

Scenario 1:Pc:Ph 0.0205∗∗∗

Scenario 4:Pc:βCC
adj −0.0716∗∗∗

Scenario 2:Pc:βCC
adj −0.0497∗∗∗

Scenario 3:Pc:βCC
adj −0.0743∗∗∗

Scenario 1:Pc:βCC
adj −0.0740∗∗∗

Scenario 4:Pc:βCH
adj 0.0098∗∗∗

Scenario 2:Pc:βCH
adj 0.0150∗∗∗

Scenario 3:Pc:βCH
adj 0.0080∗∗∗

Scenario 1:Pc:βCH
adj 0.0046∗

Scenario 4:Ph:βCC
adj −0.0228∗∗∗

U2 proportion

Scenario 2:Ph:βCC
adj −0.0242∗∗∗

Scenario 3:Ph:βCC
adj −0.0231∗∗∗

Scenario 1:Ph:βCC
adj −0.0222∗∗∗

Scenario 4:Ph:βCH
adj 0.0110∗∗∗

Scenario 2:Ph:βCH
adj 0.0127∗∗∗

Scenario 3:Ph:βCH
adj 0.0071∗∗∗

Scenario 1:Ph:βCH
adj 0.0078∗∗∗

Scenario 4:βCC
adj :β

CH
adj −0.0279∗∗∗

Scenario 2:βCC
adj :β

CH
adj −0.0269∗∗∗

Scenario 3:βCC
adj :β

CH
adj −0.0252∗∗∗

Scenario 1:βCC
adj :β

CH
adj −0.0223∗∗∗

Scenario 4:βCH
adj :βHH

adj 0.0070∗∗

Scenario 2:βCH
adj :βHH

adj 0.0044∗

Scenario 3:βCH
adj :βHH

adj 0.0089∗∗∗

Scenario 1:βCH
adj :βHH

adj 0.0074∗∗∗

AIC −6556.8242

BIC −6096.1511

Log Likelihood 3331.4121

Deviance 2214.1858

Num. obs. 44000
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Predator density (V1 and V2 )

Scenario 4 0.1742∗∗∗

Scenario 2 0.2056∗∗∗

Scenario 3 0.1461∗∗∗

Scenario 4:Pc 0.0282∗∗∗

Scenario 2:Pc 0.0832∗∗∗

Scenario 3:Pc 0.0049∗∗∗

Scenario 4:Ph 0.0034∗∗∗

Scenario 2:Ph 0.0062∗∗∗

Scenario 3:Ph 0.0000

Scenario 4:βCC
adj 0.0025∗∗∗

Scenario 2:βCC
adj 0.0053∗∗∗

Scenario 3:βCC
adj 0.0016∗∗∗

Scenario 4:βCH
adj 0.0059∗∗∗

Scenario 2:βCH
adj 0.0245∗∗∗

Scenario 3:βCH
adj 0.0002

Scenario 4:βHH
adj 0.0012∗∗∗

Scenario 2:βHH
adj −0.0040∗∗∗

Scenario 3:βHH
adj 0.0002

Scenario 4:Pc:Ph 0.0043∗∗∗

Scenario 2:Pc:Ph −0.0015∗∗∗

Scenario 3:Pc:Ph −0.0001

Scenario 4:Pc:βCH
adj 0.0019∗∗∗

Scenario 2:Pc:βCH
adj −0.0081∗∗∗

Scenario 3:Pc:βCH
adj 0.0001

Scenario 4:Pc:βHH
adj −0.0004

Scenario 2:Pc:βHH
adj −0.0052∗∗∗

Scenario 3:Pc:βHH
adj −0.0001

Scenario 4:Ph:βCH
adj −0.0011∗∗∗

Scenario 2:Ph:βCH
adj −0.0096∗∗∗

Scenario 3:Ph:βCH
adj 0.0002

Scenario 4:Ph:βHH
adj −0.0001

Scenario 2:Ph:βHH
adj 0.0035∗∗∗

Scenario 3:Ph:βHH
adj −0.0001

Scenario 4:βCC
adj :β

CH
adj 0.0000

Scenario 2:βCC
adj :β

CH
adj −0.0021∗∗∗

Scenario 3:βCC
adj :β

CH
adj −0.0004

Scenario 4:βCH
adj :βHH

adj 0.0011∗∗∗
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Predator density (V1 and V2 )

Scenario 2:βCH
adj :βHH

adj 0.0049∗∗∗

Scenario 3:βCH
adj :βHH

adj 0.0000

AIC −151851.1239

BIC −151514.9534

Log Likelihood 75965.5620

Deviance 19.3446

Num. obs. 33000
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Proportion of V1

(Intercept) 0.3574∗∗∗

Pc 0.2489∗∗∗

Ph 0.0531∗∗∗

βCC
adj 0.0153∗∗∗

βCH
adj 0.0517∗∗∗

βHH
adj 0.0071∗∗∗

Pc:Ph 0.0517∗∗∗

Pc:βCH
adj −0.0042∗∗∗

Pc:βHH
adj −0.0051∗∗∗

Ph:βCH
adj −0.0134∗∗∗

βCH
adj :βHH

adj 0.0104∗∗∗

AIC −15582.4484

BIC −15494.7806

Log Likelihood 7803.2242

Deviance 155.8674

Num. obs. 11000
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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3. Variance among replicates

Figure 2 – Variance among replicates for the variables showed in Figures 8.4, 8.5, 8.6.
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4. Predator composition additional results

Figure 3 – Predator density and composition depending on crop and hedge proportion. Comparison of
hedge predator V1 and crop predator V2 density with respect to crop proportion and hedge proportion.
Density values are averaged over replicates.
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Supplement 6

8.3.1 Undgraduate project report

Here, we attach the study report of the internship of Lingeshwari Ramlugon finalised at

BioSP under my supervision. Ling’s research focus on the relationships among landscape

structures and landscape metrics. Her results are also used in the present work of thesis

to define the study area and parameter range of Chapter 8. She applied the stochastic

landscape generator model (Chapter 2.2) to perform parameter calibration and validation

on a study region of the Lower Durance Valley. She computed the proposed ensemble of

metrics vector and raster based. Then, she defined a complete simulation plan for which

she simulated and generated landscape structures. Lastly, a Principal Component Analysis

is realised to assess the relationship among parameters and generated pattern.
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Université Paul Sabatier, Faculté sciences et ingénierie, Bâtiment 3R1 b2 / 3e étage, 118 route
de Narbonne, 31062 Toulouse cedex 09

224



Remerciements
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Résumé

Dans le cadre de mon cursus en 3e année de Licence en Statistique et Informatique Décisionnelle
à l’Université de Toulouse III – Paul Sabatier, j’ai réalisé mon stage de fin d’études dans l’unité
BioSP (Biostatistique et Processus Spatiaux) de l’Institut Nationale de Rercherche en Agro-
nomie et Environnement (INRAE). J’ai été encadrée par Patrizia Zamberletti, doctorante en
biostatistique. L’objectif de ce stage est d’étudier la relation entre la structure d’un paysage et
la dynamique des ravageurs et prédateurs qui s’y trouvent. En effet, la structure d’un paysage
affecte la diversité, l’abondance et le mouvement de ses prédateurs. Pour étudier la dynamique
des proie-prédateurs, deux modèles ont été couplés : un modèle qui vise à simuler les paysages
pour la définition du support spatial et un modèle proie-prédateur qui simule la dynamique dans
les paysages. Dans ce stage, je me concentre sur la première étape de modélisation. On utilise
un modèle pour simuler différents paysages qui se rapprochent statistiquement du paysage réel.
Le paysage étudié est un sous-domaine de la Basse Vallée de la Durance, situé près d’Avignon
en France. Pour étudier ce paysage, on le représente comme un pavage avec des polygones et des
segments. On modélise l’allocation comme étant binaire : un polygone peut contenir une culture
ou autre ; un segment peut contenir une haie ou autre en utilisant un modèle de type “famille
exponentielle”. Le modèle utilise des paramètres qui peuvent être estimés sur le paysage réel ou
sélectionnés parmi une plage de valeurs pour générer d’autres paysages avec des configurations
et compositions différentes. Ce rapport résume donc le travail effectué pour faire l’estimation des
paramètres sur le paysage réel de la Basse Vallée de la Durance et, en suite, pour analyser la
sensibilité du modèle avec un jeu de paramètres différent. Le travail consiste à estimer les pa-
ramètres du modèle par la méthode de vraisemblance composite qui revient à faire une régression
logistique ; vérifier que les paramètres estimés ne contiennent pas de biais en les comparant avec
des paramètres calculés sur des paysages simulés selon un échantillonneur de Gibbs ; calculer des
métriques paysagères pour une représentation vectorisée et en raster du paysage pour le pay-
sage réel et les paysages simulés et comparer ces métriques ; établir différentes combinaisons de
paramètres (configurations) et simuler des répétitions d’allocation pour chaque configuration et
calculer des métriques sur chaque paysage simulé ; réaliser une analyse en composantes princi-
pales où les variables correspondent aux métriques et les individus aux configurations ; étudier le
lien entre les différentes configurations et la structure de leurs paysages. On conclut en indiquant
comment certains paramètres de descripteurs affectent la structure du paysage.
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1 Introduction

Les stratégies de régulation des ravageurs des cultures basées sur la biodiversité de leurs prédateurs
naturels présentent des avantages environnementaux en réduisant les pertes de rendement sans
les conséquences environnementales négatives qui résultent de l’utilisation de produits phyto-
sanitaires. Le rôle fonctionnel de chaque espèce dans l’écosystème est déterminé par les traits
morphologiques, comportementaux ou physiologiques d’un organisme, et est également influencé
par le contexte paysager(Bianchi et al., 2006). En effet, la structure d’un paysage affecte la di-
versité et l’abondance des prédateurs dans un paysage. Un paysage complexe ou hétérogène avec
plusieurs éléments (forêts, haies, bordures de champs, rivières, cultures, etc.) peut donc soutenir
une plus grande diversité de prédateurs (Poggi et al., 2021).

L’hétérogénéité d’un paysage est définie par sa composition et sa configuration(Langhammer
et al., 2019). La composition fait référence à l’occupation du sol, c’est-à-dire aux différents ha-
bitats présents (forêts, haies, rivières, cultures, etc.) et à leur proportion. La configuration fait
référence à la taille, à la forme et à la disposition spatio-temporelle de ces éléments. Afin d’étudier
les effets de l’hétérogénéité des paysages agricoles sur les dynamiques écologiques, des générateurs
stochastiques son utilisés pour simuler des scénarios de paysages et s’affranchir ainsi d’un contexte
spécifique à une région donnée. Ces paysages virtuels sont construits en contrôlant des propriétés
comme la proportion d’un type de culture ou d’habitat semi-naturel ou l’agrégation des habi-
tats. Les modèles de paysage existants utilisent une représentation vectorielle (c’est-à-dire une
collection d’objets géométriques, comme des polygones ou segments) ou une représentation en
raster (c’est-à-dire une discrétisation de l’espace en cellules auxquelles une occupation du sol
est donnée). La majorité des modèles utilisent une représentation en raster ; cependant, les pay-
sages agricoles sont souvent caractérisés par des parcelles en forme de polygones, et des éléments
linéaires tels que les haies. Une approche vectorielle semble donc préférable pour bien représenter
la disposition spatiale de ces structures géométriques sur un support continu. En se basant sur
l’approche développée par Zamberletti et al. (2021), l’objectif de ce travail est d’estimer les pa-
ramètres d’un modèle de paysage en l’ajustant à un paysage réel, puis de le valider en évaluant sa
capacité à reproduire des caractéristiques du paysage, et enfin de tester la sensibilité du modèle
aux différents paramètres.

Les travaux réalisés dans ce rapport sont basés sur une représentation vectorielle d’un sous-
domaine de la Basse Vallée de la Durance situé près d’Avignon en France. Le modèle mathématique
utilisé est un modèle paramétrique probabiliste de type “famille exponentielle” qui simule l’alloca-
tion des parcelles (p. ex. culture vs. espace semi-naturel) et des segments (p. ex. présence/absence
de haie). Pour les tests effectués sur le modèle, on adopte une approche de type “Monte–Carlo”
en simulant n paysages avec des allocations différentes grâce à un échantillonneur de Gibbs. Le
rapport est organisé suivant les différentes étapes menées : (i) estimation des paramètres du
modèle et test de leur significativité (chapitre 3), (ii) calcul des métriques paysagères pour une
représentation vectorisée et une représentation rastérisée du paysage (chapitre 4) et (iii) étude
de la sensibilité du modèle (chapitre 5).
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2 Domaine d’étude

Les données de paysage agricole réel sont obtenues à travers des prises de vues satellitaires
ou aériennes. Dans cette étude, on se base sur le paysage agricole de la Basse Vallée de la
Durance (qu’on note BVD dans la suite) dans le sud-est de la France. Ce paysage agricole
s’étend sur plus de 163km2 et est principalement caractérisé par une activité agricole (87%) et
des zones urbanisées, avec pour principales cultures des espaces ouverts (46%) et des vergers de
pommiers/poiriers (24%).

Figure 1: Basse Vallée de la Durance

La région cumule un total de 1146km de haies, qu’on représentera par la suite comme des seg-
ments dont la longueur moyenne est de 105m. Une particularité de la région est la prédominance
de haies orientées est-ouest, dont la fonction est de briser les vents forts (Mistral) qui soufflent
du nord.

Pour l’ajustement des modèles aux données, un sous-domaine de la région d’étude a été sélectionné
(Figure 1 encadré en noir). Pour étudier ce sous-domaine de la BVD, ce paysage est représente
comme un pavage, ou tessellation, définissant une partition de l’espace géographique.
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3 Modélisation d’un paysage réel

Une approche vectorielle est utilisée pour la représentation du paysage, où les éléments du paysage
sont définis comme des objets géométriques : les parcelles (tels que les surfaces cultivées ou les
prairies) sont représentées par des polygones, et les éléments linéaires (tels que les haies, les
bordures de champ fleuries, ou les rivières) sont représentés par des segments. La tessellation du
sous-domaine contient 263 parcelles et 814 segments.

Les objets sont notés comme l’ensemble O = {O1, ..., On} avec n étant le nombre total d’ob-
jets dans le paysage (Figure 2a). De manière générale, chaque objet a la structure suivante :
Oi = (Xi, Zi). (Zi) contient des informations géométriques tel que l’aire ou les coordonnées,
considéré comme étant fixé dans notre modélisation. (Xi) contient une information qualitative
que nous cherchons à modéliser et à simuler, telle que la catégorie d’usage de sol (allocation).
Pour les parcelles, les catégories d’allocations possibles sont les suivantes : habitat semi-naturel
(Xi = 2), culture (Xi = 1) ou autre (Xi = 0). Pour les segments, la catégorie d’allocation est
un segment avec une haie (Xi = 1) ou non (Xi = 0). Ici, nous simplifions l’approche en choisis-
sant une modélisation se basant sur une allocation binaire : pour les segments, l’allocation peut
être une haie (Xi = 1) ou autre (Xi = 0) ; pour les parcelles, l’allocation peut être une culture
(Xi = 1) ou autre (Xi = 0).

Figure 2: Représentation du paysage. a) Les polygones gris sont les parcelles, et les éléments
linéaires rouges sont les segments. b) Réseau multicouche. La couche C représente le réseau des
parcelles et la couche H représente le réseau des segments. Les liens entre le réseau C et H
représentent les liens entre les parcelles et les segments.

Pour modéliser les éléments du paysage et leur structure spatiale, on définit un réseau multi-
couche. Un réseau est composé d’objets représentés par des noeuds (ou sommets), et l’interaction
entre ces objets (telle que l’adjacence spatiale entre objets) est représentée par des liens entre les
noeuds (Urban et al., 2009; Lü et al., 2016). Par exemple, deux polygones sont considérés comme
étant adjacents s’ils partagent un de leurs cotés. Un réseau multi-couche est un ensemble de
plusieurs réseaux avec des liaisons entre les noeuds appartenant à différents réseaux (Figure 2).
Dans cette étude, le réseau multi-couche représente la liaison faite entre le réseau de parcelles (C)
et le réseau de segments (H). Pour illustration, considérons une parcelle (O1

C) qui est entourée
par 4 haies (O1

H , O2

H , O3

H , O4

H). D’abord, on établit le réseau des parcelles. Si deux parcelles sont
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adjacentes, on trace le lien entre les deux noeuds. On fait la même chose pour les segments.
Enfin on lie les objets adjacents des deux réseaux (voir les arêtes en pointillés dans la Figure
2b), où les haies (O1

H , O2

H , O3

H , O4

H) sont adjacentes à la parcelle (O1

C). Un réseau multi-couche
est mathématiquement défini par sa matrice d’adjacence. Les entrées de la matrice d’adjacence
indiquent si deux objets sont adjacents ou non. Si deux objets sont adjacents, le coefficient de la
matrice vaudra 1 ; dans le cas contraire, le coefficient vaudra 0. La diagonale est toujours nulle
car, pour des raisons de modélisation, nous supposons que les objets ne sont pas adjacents à
eux-mêmes. Pour chaque paysage, on construit 3 matrices d’adjacence pour l’adjacence entre
parcelles (AC), entre segments (AH) et entre parcelles et segments (ACH).

3.1 Le modèle d’allocation

Dans ce travail, on vise a générer des paysages virtuels en simulant l’allocation des catégories
d’usage de sol binaire. L’allocation des catégories dans le paysage est représentée par un modèle
stochastique et paramétrique, construit comme un modèle de Gibbs, de type “famille exponen-
tielle” pour pouvoir facilement estimer les paramètres. Étant donné z = {z1, ..., zn} ∈ Zn, x =
{x1, . . . , xn} ∈ Xn , la probabilité d’allouer une configuration x au paysage est définie comme
suit :

p(x ) =
1

c(β)
exp

(
−

m∑

k=1

βkTk(x)

)
, x ∈ X , β ∈ Rm. (1)

Tk sont m fonctions, appelées des descripteurs de paysages, X → (−∞,+∞), k = 1, ...,m
qui évaluent la valeur Tk(x ) représentant des statistiques d’intérêt pour guider l’allocation x ;
c(β) > 0 est une constante de normalisation inconnue ; β est le vecteur des coefficients dont le
rôle est de favoriser ou de pénaliser les fortes valeurs Tk(x) > 0.

3.2 Les descripteurs du paysage

Les descripteurs de paysages, notés Tk, ont pour but de représenter les caractéristiques impor-
tantes du paysage. Ces caractéristiques peuvent représenter la composition (caractéristiques des
objets) ou les interactions spatiales, temporelles, ou spatio-temporelles des objets dans le pay-
sage. Dans ce travail, en terme de composition, nous considérons deux termes d’activité (pour
contrôler la proportion d’éléments avec Xi = 1 pour les polygones et les segments), qui intègrent
l’information de la surface d’une parcelle et de la longueur d’un segment. En terme d’interactions,
on tient compte seulement des interactions spatiales entre les paires d’objets, et les descripteurs
considérés sont basés sur adjacence entre les parcelles, l’adjacence entre les segments et l’adja-
cence entre les parcelles et les segments. Les descripteurs pour les parcelles sont notés TC

k , et
ceux pour les segments TH

k . Un total de 9 descripteurs (m = 9) pour notre modèle (équation 1)
a été considéré :

Pour les parcelles, on a :
TC
act : descripteur du terme d’activité, équivalent au nombre de parcelles ayant une culture ;

TC
area,0.25 : descripteur indiquant si une parcelle de culture est petite ou non. Une parcelle est

considérée comme petite si son aire est inférieure au 1er quartile ;
TC
area,0.75 : descripteur indiquant si une parcelle de culture est grande ou non. Une parcelle est

considérée comme grande si son aire est supérieure au 3e quartile ;
TCH
adj : descripteur du nombre de haies adjacentes à chaque parcelle ;

TCC
adj : descripteur du nombre de cultures adjacentes à chaque parcelle.

Pour les segments, on a :
TH
act : descripteur du terme d’activité équivalent au nombre de segments ayant une haie ;

TH
length : descripteur indiquant si une haie est longue ou non. Une haie est considérée comme

longue si elle est supérieure à la médiane des haies du paysage ;
TH
orient : descripteur indiquant si une haie est horizontale ou non. Une haie est considérée comme

horizontale si son angle à partir d’un axe horizontal appartient à l’intervalle [0, π
6
] ∪ [ 5π

6
, 2π] ;

THH
adj : descripteur indiquant le nombre de haie adjacentes, cumulées pour tous les segments.
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C H

TC
act, T

C
area,0.25, T

C
area,0.75, T

CH
adj , TCC

adj TH
act, T

H
length, T

H
orient, T

HH
adj

Tableau 1: Résumé des descripteurs de notre modèle pour les parcelles (C) et les segments (H).

3.3 Estimation des paramètres

Dans cette partie, on aborde les méthodes utilisées pour estimer les paramètres βk, k ∈ {1, ...,m}
et tester leur significativité. Le premier objectif est l’estimation des paramètres sur le pay-
sage observé, pour ensuite pouvoir simuler des paysages différents mais partageant certaines
caractéristiques avec le paysage observé.

Pour l’estimation des paramètres, idéalement, on utiliserait la méthode du maximum de vraisem-
blance , mais la constante de normalisation c(β) ne peut pas être calculée facilement du fait du
grand nombre de configurations |X | avait été plus limité, on aurait pu évaluer la constante c(β).
Au lieu de la vraisemblance classique, nous avons ici recours à la méthode de la vraisemblance
composite (Besag, 1974), basée sur les probabilités conditionnelles d’allocation selon l’équation
2 :

p(xi | x−i) =
p(x)∑

y∈Xi
p(x−i, x)

=
exp (−∑m

k=1
βkTk(x))∑

x∈Xi
exp (−∑m

k=1
βkTk(x−i, x))

, (2)

La probabilité conditionnelle correspond à la probabilité d’allouer xi ∈ {0; 1} sachant l’allocation
x−i de tous les autres objets. La vraisemblance composite est définie comme le produit des
probabilités conditionnelles,

ℓ(β) =

n∏

i=1

p(xi | x−i), (3)

où la constante c(β) est éliminée. Dans le cas d’une allocation binaire, la vraisemblance composite
est équivalente à la régression logistique suivante pour estimer les βk ∈ k = {1, ...,m} grâce à la
fonction glm() du logiciel R :

log
p(xi | x−i)

1− p(xi | x−i)
=

m∑

k=1

βk (Tk(x)− Tk(x̃)) . (4)

Après l’estimation des paramètres, il est opportun de vérifier que l’estimation à l’aide de la
vraisemblance composite n’induit pas de biais d’estimation des paramètres. Pour ce faire, on
utilise la méthode du bootstrap paramétrique, qui consiste à simuler n allocations de paysage
(par exemple n = 100) à partir du modèle estimé, et à ré-estimer les paramètres pour les simula-
tions. Donc, on simule d’abord les vecteurs d’allocations des parcelles et segments. La simulation
d’allocation dépend des paramètres estimés sur le paysage réel. L’algorithme utilisé pour simuler
les allocations pour les parcelles et les segments est un échantillonneur de Gibbs, une variante
de Monte-Carlo par châınes de Markov (MCMC) (Fienberg, 2010).

Nous utilisons également l’approche de simulation pour tester la significativité de chaque pa-
ramètre (i.e. βk, k ∈ {1, ...,m} où m est le nombre de descripteurs) avec un test bilatéral de type
Monte-Carlo. Le test est basé sur une variante du bootstrap paramétrique. L’hypothèse nulle
(H0) indique que le paramètre qu’on cherche à tester est égal à 0, et l’hypothèse alternative
indique que le paramètre est différent de zéro. Un paramètre à la fois est testé en le mettant à
zéro dans le modèle simulé, tandis que les autres paramètres gardent leurs valeurs estimés sur
le paysage réel. Nous avons simulé n fois l’allocation avec le paramètre à tester avec la tech-
nique MCMC, et nous estimons à nouveau les paramètres à partir des paysages simulés. Pour
le test statistique, nous étudions la probabilité que la valeur absolue du paramètre estimé sur
un paysage simulé (avec le paramètre à tester mis à zéro) soit inférieure au paramètre absolu
estimé sur le paysage réel ou n’ait pas le même signe. Si cette proportion est supérieure à 0, 95
alors on rejette l’hypothèse nulle pour conclure que le paramètre est significativement différent
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de 0. Si la proportion est inférieure à 0, 95 alors on conserve H0, et on ne peut pas conclure
sur la significativité du paramètre. Par exemple, pour tester la significativité du paramètre βC

act

(paramètre associé au descripteur TC
act) les hypothèses établies sont :

H0 : βC
act = 0

H1 : βC
act 6= 0

On met βC
act (dont la valeur estimée sur le paysage réel est -0,348) à 0, et on garde βC

area,0.25

= -1.304 ; βC
area,0.75 = 0.209 ; βCH

adj = -0.254 ; βCC
adj = 0.408. On simule n paysages et on estime

les paramètres sur chaque paysage simulé. On obtient n estimations du paramètre étudiés. On
calcule la proportion de βC

act estimés qui sont supérieur à -0.348, et on prend une décision en
fonction de cette proportion.

3.4 Estimation et validation du modèle

3.4.1 Résultats des estimations des paramètres

βC
act βC

area,0.25 βC
area,0.75 βCH

adj βCC
adj

-0,348 -1,304 0,209 -0,254 0,408

Tableau 2: Les paramètres estimés des parcelles

Le descripteur TC
area,0.25 indique si une parcelle de culture est petite ou pas. Le paramètre

βC
area,0.25 est négatif, donc les parcelles qui contiennent des cultures ont tendance à avoir une aire

supérieure au 1er quartile. Le descripteur TC
area,0.75 indique si une parcelle est grande (une aire

supérieur au 3e quartile), βC
area,0.75 positif indique donc que les parcelles avec des cultures ont

tendance à être grande. Le descripteur TCH
adj indique le nombre de haies adjacentes pour une par-

celle et on a βCH
adj qui est négatif. Cela veut dire que dans notre paysage, les haies ont tendances

à être là où il n’y a pas de cultures. Le descripteur TCC
adj indique l’adjacence des cultures, et le

paramètre βCC
adj est positif, ce qui signifie que les cultures ont tendance à former des agrégats.

βH
act βH

length βHH
adj βH

orient

-3,649 -0,550 0,857 3,820

Tableau 3: Les paramètres estimés des segments

Le descripteur TH
length indique si une haie est longue ou pas. Le fait que βH

length soit négatif

signifie que les haies ont tendance à être courtes. βHH
adj et βH

orient sont positifs. Le descripteur

THH
adj indique le nombre de haies adjacentes, le paramètre βHH

adj étant positif, les haies ont tendance

à être adjacentes. Le descripteur TH
orient indique la position (horizontale ou verticale des haies),

et βH
orient est positif donc les haies ont tendance à être horizontales.

3.4.2 Biais d’estimation et significativité des paramètres

On représente la distribution des paramètres estimés sur les paysages simulés et la valeur estimée
sur le paysage réel à travers des bôıtes à moustache. Ceci permet de visualiser la distribution des
valeurs et de voir si les paramètres des paysages simulés cöıncident avec ceux du paysage réel.
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Figure 3: Distribution des paramètres pour les parcelles. Le point vert représente β estimé sur
le paysage réel, le point rouge représente la moyenne des β estimés sur les 100 paysages simulés

Figure 4: Distribution des paramètres pour les segments. Le point vert représente β estimé sur
le paysage réel, le point rouge représente la moyenne des β estimés sur les 100 paysages simulés

Si on compare les Figures 3 et 4, nous remarquons que les paramètres des parcelles ont une
distribution plus dispersée car il y a moins de parcelles que de segments ce qui augmente la
variabilité des estimations. Pour tous les paramètres (parcelles et segments) la distribution des
simulations cöıncident avec la valeur estimée sur le paysage réel. Cela montre que le modèle
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n’est pas biaisé et que les simulations réalisées avec les paramètres estimés reproduisent les
caractéristiques du paysage réel.

βC
act βC

area,0.25 βC
area,0.75 βCH

adj βCC
adj

0,83 1 0,73 0,96 1

Tableau 4: Statistique de test (probabilité) pour chaque paramètre des parcelles.

Selon le Tableau 4, les paramètres βC
area,0.25, β

CH
adj et βCC

adj sont significatifs, ce qui n’est pas le

cas pour βC
area,0.75. Ce résultat est cohérent avec la distribution de ce paramètre présenté dans

la Figure 3. En effet la distribution pour ce paramètre contient les valeurs nulles, alors que les
distributions de βC

area,0.25, β
C
area,0.75 et βCC

adj n’incluent pas zéro.

βH
act βH

length βHH
adj βH

orient

1 1 1 1

Tableau 5: Statistique de test (probabilité) pour chaque paramètre des segments.

Pour les haies, les probabilités confirment les résultats des bôıtes à moustaches : tous les pa-
ramètres sont significativement différent de 0 (Tableau 5).
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4 Métriques de validation

Selon la représentation, en vecteur ou en raster, d’un paysage, des métriques paysagères différentes
existent. Les métriques sont des fonctions qui visent à synthétiser les propriétés et les ca-
ractéristiques des paysages. Dans le cas présent, elles nous permettrons de vérifier que les paysages
simulés se rapprochent du paysage réel. Les métriques peuvent être à l’échelle globale, auquel cas
nous avons une métrique pour tout le paysage, ou à l’échelle locale, auquel cas nous avons plu-
sieurs valeurs pour un même paysage (i.e. une valeur pour chaque élément du paysage considéré).

Les métriques fréquemment utilisées requièrent une représentation sous forme d’un réseau du
paysage, ce qui est notre cas (cf chapitre 3). Il existe aussi des métriques pour les paysages
représentés en raster (McGarigal, 1995), et dans ce travail, on cherche à voir si le modèle réussi à
capturer la compléxité d’un paysage rasterisé. Etant donné que les données initiales se présentent
sous forme d’un paysage vectorisé, pour utiliser une représentation en raster, on transforme le
paysage vectorisé en un raster avec une resolution 100 x 100 pixels. Les métriques utilisées sont
décrites dans le Tableau 6.

Nom Description Support Plage de valeurs Références

Degré∗ Nombre de noeuds connectés noeud [0 ;1] [1],[2]
Coreness Décomposition k-core de l’influence d’un noeud noeud [0 ;∞[ [1],[2]

Degré 2e niveau∗ Nombre de noeuds connectés à au plus 2 pas noeud [0 ;1] [1],[2]
Excentricité∗ Nombre de liens nécessaire pour relier le noeud le plus distant noeud [0 ;1] [1],[2]
Proximité Inverse de la distance géodésique entre les noeuds noeud [0 ;∞[ [1],[2]

Intermédiarité∗ Utilité du noeud dans la transmission d’information sur le réseau noeud [0 ;1] [1],[2]
Diamètre Chemin le plus long réseau [0 ;∞[ [1]
Efficacité Efficacité d’échange d’informations réseau [0 ;∞[ [2],[3]

Coefficient de clustering Probabilité que deux noeuds soient connectés sachant qu’ils ont un voisin en commun réseau [0 ;1] [2],[3]
PLAND [%] Proportion d’une catégorie dans un paysage raster [0 ;100] [4],[5]

PD [ # / ha Ö 100] Densité d’une catégorie raster [0 ;∞[ [4],[5]
ENN [m] Distance entre plus proche voisins raster [0 ;∞[ [4],[5]
PARA [/] Rapport périmètre-aire d’une catégorie raster [0 ;∞[ [4],[5]
IJI [/] Index mesurant la mixité spatiale des catégories raster [0 ;100] [4],[5]

CLUMPY [/] Index mesurant si la distribution d’une catégorie est aléatoire raster [-1 ;1] [4],[5]

Tableau 6: Métriques des paysages. L’étoile (∗) indique que les métriques ont été normalisées
par le nombre de noeuds. Une métrique peut être de type noeud ou de type réseau (Lü et al.,
2016; McGarigal, 1995; Latora and Marchiori, 2001; Urban et al., 2009; Cushman et al., 2008).

4.1 Les métriques des réseaux

On représente le paysage vectorisé sous forme d’un réseau avec des liens entre les objets (cf. cha-
pitre 3). Par conséquent, les métriques sont établies soit à l’échelle des noeuds soit à l’échelle du
réseau (ensemble de tous les noeuds et liens). On rappelle qu’un noeud est un objet (parcelles,
segments). Dans la suite, on calcule donc les métriques pour le réseau des parcelles avec une
culture et le réseau des segments avec une haie.

Les métriques à l’échelle des noeuds sont les suivantes :

1. La centralité de degré (degree centrality en anglais) ou tout simplement le degré est
le nombre de liens depuis un sommet. Cette centralité est normée en la rapportant au
nombre de sommets moins un.

2. Le coreness est une mesure permettant d’identifier les noeuds fortement interconnectés
sur un réseau. Elle ressemble au degré, mais le coreness tient aussi compte de la position
du noeud sur le réseau. Ceci est du fait qu’il est probable qu’un noeud situé au centre
soit plus influent dans la transmission d’information qu’un noeud situé sur la périphérie
du réseau. Cette mesure est calculée selon une décomposition en k-core. (cf. section 2.1.4,
Lü et al. (2016)). Un noeud avec un coreness élevé correspond à un objet qui est entouré
par plusieurs objets de la même catégorie et qui est au centre du réseau.

3. La centralité de degré de 2e niveau ou degré 2e niveau (degree grade 2 en anglais)
ressemble au degré mais tient aussi compte du degré des voisins d’un noeud. En d’autres
termes, dans un réseau non-orienté, le degré 2e niveau d’un noeud est le nombre de liens
connectés à ce noeud à deux pas plus loin. Cette centralité est normée en la rapportant
au nombre de sommets moins un.
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4. L’excentricité (eccentricity en anglais) d’un noeud correspond au nombre de liens nécessaires
pour relier le noeud le plus distant. Plus l’excentricité d’un noeud est faible, plus le noeud
est considéré comme influent. Pour comparer l’excentricité dans différents réseaux, cette
métrique est normalisée. (cf section 2.2.1, Lü et al. (2016)). Un noeud avec une faible
excentricité correspond à un objet adjacent à plusieurs objets de la même catégorie.

5. La centralité de proximité ou proximité (closeness en anglais) d’un noeud est l’inverse
de la distance géodésique (chemin le plus court) entre ce noeud et tous les autres noeuds.
La centralité de proximité d’un noeud est élevée quand sa distance à tous les autres noeuds
est faible. Le noeud le plus central est “proche” de toute l’information dans le réseau.

6. La centralité d’intermédiarité ou intermédiarité (betweenness en anglais) mesure
l’utilité d’un noeud dans la transmission de l’information au sein du réseau. Le noeud
joue un rôle central si beaucoup de plus courts chemins entre deux sommets doivent
emprunter ce noeud.

Les métriques de centralité (degré, degré 2e niveau, proximité, intermédiarité) avec une valeur
élevée correspondent à des objets entourés par beaucoup d’objets de la même catégorie.

À l’échelle du réseau les métriques sont les suivantes :

7. Le diamètre (diameter en anglais) d’un graphe est la plus grande distance géodésique
possible qu’il puisse exister entre deux sommets. Un réseau avec un grand diamètre indique
que les objets ont une forte connectivité, mais n’indique pas forcément si ces objets forment
des agrégats.

8. L’efficacité (efficiency en anglais) d’un graphe est une mesure de l’efficacité d’échange
d’informations sur un réseau. L’éfficacité entre deux noeuds est l’inverse de la distance
géodésique entre ces noeuds. L’éfficacité globale d’un graphe correspond à la moyenne des
efficacités entre chaque paire de noeuds. Un réseau avec une grande efficacité indique que
les objets de même catégorie ont tendance à être adjacents.

9. Le coefficient de clustering (cluster average en anglais) d’un graphe (aussi appelé coef-
ficient d’agglomération, de connexion, de regroupement, d’aggrégation) est une
mesure du regroupement des noeuds dans un réseau. Plus précisément, ce coefficient est
la probabilité que deux noeuds soient connectés, sachant qu’ils ont un voisin en commun.
Le coefficient de clustering est calculé en faisant le rapport entre le nombre de triangle
(connexion entre trois noeuds) formés dans un graphe au nombre total de triangles pos-
sibles. Un coefficient de clustering élevé indique que les objets de même catégorie ont
tendance à former des agrégats.

Les métriques des réseaux sont basés sur la théorie des graphes. De ce fait, certaines métriques
tiennent compte de la transmission de l’information. Dans notre cas la transmission correspon-
drait à la dynamique proie-prédateur.

4.2 Les métriques basées sur une représentation en raster des paysages

Un paysage représenté par un raster est composé de cellules (ou pixels) qui contiennent de
l’information géographiques (i.e. les coordonnées) et l’information que le raster vise à représenter.
Ici, l’information que nous représentons correspond à la catégorie d’allocation d’usage de sol du
pixel. Le paysage rasterisé contient trois catégories d’allocations possibles : habitat semi-naturel,
culture ou haie. Un ensemble de pixels adjacents de la même catégorie est appelé une tache (de
l’anglais “patch”). On calcule les métriques suivantes à l’échelle des catégories d’allocation :

1. La proportion (PLAND) correspond à la proportion d’une catégorie d’allocation dans
le paysage.

2. La densité des habitats (PD) correspond au nombre de tache d’une catégorie

3. La distance des voisinages (ENN) est la distance (en ligne droite) la plus courte entre
une tache et son voisin le plus proche de la même catégorie.

4. Le rapport périmètre-aire (PARA) est le rapport entre le périmètre et la surface d’une
catégorie de tache, dans lequel la forme de de la tache est confondue avec sa taille ; si la
forme est constante, une augmentation de la taille de la tache entrâınera une diminution
du rapport périmètre-aire.
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5. L’index d’interspersion et de juxtaposition (IJI) est un index qui mesure la mixité
des habitats. Cet index indique si un habitat a tendance à être adjacent à un seul ou
plusieurs habitats. Un index IJI avec une grande valeur indique une forte mixité.

6. L’agrégation (CLUMPY) (clumpiness en anglais) est un index calculé en fonction de
la matrice d’adjacence qui indique la fréquence à laquelle deux habitats de catégories
différentes sont adjacents. Cette index mesure si la distribution d’un habitat a tendance
à être aléatoire ou agrégé. Si la valeur de cet index est élevée, cela veut dire que ce type
d’habitat a tendance à être groupé.

4.3 Résultats de la validation

On souhaite évaluer si les paysages simulés arrivent à capturer les caractéristiques du paysage réel
sur des métriques qui ne sont pas considérées dans le modèle, c’est-à-dire sur des caractéristiques
paysagères qui ne sont pas prises en compte lors de l’estimation des paramètres. On commence
par visualiser la distribution des métriques calculées sur les paysages simulés et on les compare
aux métriques calculées sur le paysage réel. Ensuite, on réalise un test pour évaluer la pertinence
des métriques à l’échelle du réseau.

Pour tester la pertinence d’une métrique, pour chaque catégorie d’élément (parcelles, segments),
on teste l’égalité de cette métrique à la valeur réelle (valeur estimée sur la paysage réel).

Nous faisons les hypothèses suivantes :

L’hypothèse nulle (H0) indique que la métrique que l’on cherche à tester est égale à la va-
leur réelle contre l’hypothèse alternative indiquant que la métrique est différente de valeur réelle.

Il y a deux statistiques de tests pour vérifier H0 que l’on appelle dans la suite p-valeur :

(i) Si la moyenne de la métrique sur les 100 simulations est inférieure à la valeur réelle, alors la
p-valeur c’est la proportion des simulations où cette métrique est supérieur à la valeur réelle. On
ne rejette pas H0 si la p-valeur est supérieur à 0,05.
(ii) Si la moyenne de la métrique sur les 100 simulations est supérieur à la valeur réelle, alors la
p-valeur c’est la proportion des simulations où cette métrique est inférieur à la valeur réelle. On
ne rejette pas H0 si la p-valeur est supérieur à 0,05.

4.3.1 Validation des métriques du réseau

Un paysage représenté comme un réseau est composé de plusieurs noeuds. Par conséquent, pour
chaque paysage (simulé ou le paysage réel) on a un ensemble de valeurs pour chaque métrique à
l’échelle des noeuds. On a une seule valeur pour chaque métrique à l’échelle de tout le réseau.

Etant donné les 100 simulations de paysage, on a une distribution pour chaque métrique. Pour
les métriques à l’échelle des noeuds, la distribution des simulations correspond à tous les noeuds
des 100 simulations et la distribution du paysage réel correspond à tous les noeuds du paysage.
Pour les métriques à l’échelle du réseau, la distribution des simulations correspond à la métrique
calculée sur chaque paysage simulé.
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Figure 5: Distribution des métriques à l’échelle des noeuds pour le réseau des cultures. A
gauche, les bôıtes à moustaches des métriques pour les paysages simulés. A droite, les bôıtes
à moustaches des métriques pour le paysage réel. Le point rouge représente la moyenne de la
métrique des paysages simulés et le point vert représente la moyenne de la métrique du paysage
réel.

Figure 6: Distribution des métriques à l’échelle du réseau pour le réseau des parcelles. Le point
vert représente la valeur du paysage réel, le point rouge représente la moyenne de la métrique
des paysages simulés.
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Figure 7: Distribution des métriques à l’échelle des noeuds pour le réseau des segments. A
gauche, les bôıtes à moustaches des métriques pour les paysages simulés. A droite, les bôıtes
à moustaches des métriques pour le paysage réel. Le point rouge représente la moyenne de la
métrique des paysages simulés et le point vert représente la moyenne de la métrique du paysage
réel.

Figure 8: Distribution des métriques à l’échelle du réseau pour le réseau des segments. Le point
vert représente la valeur du paysage réel, le point rouge représente la moyenne de la métrique
des paysages simulés.

Culture Haie

Diamètre 0,42 0,18
Efficacité 0,06 0,12

Coefficient de clustering 0,44 0,00

Tableau 7: Statistique de test (p-valeur) pour chaque métrique.
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Selon le Tableau 7, on a les p-valeurs du diamètre, de l’efficacité et du coefficient de clustering
qui sont supérieures à 0,05 pour le réseau des parcelles. On ne peut donc pas conclure qu’il y a
une différence significative entre la métrique calculée sur les simulations et la métrique calculée
sur le paysage réel. On ne peut pas rejeter l’hypothèse que l’allocation des parcelles dans les
paysages simulés se rapprochent à celle du paysage réel.

Pour les segments, le diamètre et l’efficacité ont des p-valeurs supérieures à 0,05 qui ne permettent
pas de conclure d’une différence significative entre la métrique calculée sur les simulations et la
métrique calculée sur le paysage réel. Cependant la p-valeur du coefficient de clustering est nulle
est on rejette l’hypothèse d’égalité. On peut conclure que le coefficient de clustering calculé sur
les simulations ne correspond pas à la réalité. Ceci étant dit, sachant que cette métrique varie
entre 0,30 et 0,43 selon les simulations et vaut 0,20 selon le paysage réel, les ordres de grandeurs
sont conservés entre les paysages simulés et le paysage réel.

4.3.2 Validation des métriques des paysages

Figure 9: Distribution des métriques des paysages selon chaque catégorie d’allocation (culture,
haie, habitat semi-naturel
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Semi-naturel Culture Haie

PLAND 0,25 0,25 0,12
PD 0,00 0,03 0,06

ENN MN 0,03 0,00 0,02
PARA 0,45 0,37 0,00
IJI 0,19 0,24 0,11

CLUMPY 0,24 0,09 0,02

Tableau 8: Statistique de test (p-valeur) pour chaque métrique de chaque catégorie d’allocation.

Selon le Tableau 8, on ne peut pas conclure qu’il y a une différence significative entre la valeur
réelle des métriques PLAND et IJI et la valeur calculée sur les paysages simulés. On peut dire que
le modèle arrive à bien reproduire le pourcentage des habitats et la mixité du paysage réel dans
les simulations. La densité des habitats de type haie du paysage réel arrive à être reproduite dans
les simulations (p-valeur=0,06). Ceci est aussi le cas pour rapport perimètre-aire et l’agrégation
des habitats de type semi-naturel ou culture.
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5 Analyse de sensibilité

Dans cette partie, on cherche à évaluer la sensibilité du modèle aux paramètres d’interaction :
(1) adjacence entre parcelles, (2) adjacence entre segments et (3) adjacence entre parcelles et seg-
ments. Cette analyse permettra de comprendre le lien entre ces trois paramètres et les structures
paysagères simulées par le modèle en étudiant comment différentes configurations de paramètres
affectent l’allocation des cultures et des haies dans les paysages simulés. Les paramètres de l’ad-
jacence entre parcelles (TCC

adj ), l’adjacence entre segments (THH
adj ) et l’adjacence entre parcelles et

segments (TCH
adj ) varient sur l’intervalle [-5 ;5] avec un pas de 1 alors que les autres paramètres

(cf. Tableau 1) sont fixés. Ceci amène à 1331 configurations de paramètres possibles. Pour chaque
configuration, on simule 50 répétitions des paysages pour chaque configuration des paramètres
et on calcule les métriques (cf chapitre 4.1, 4.2) sur chaque simulation.

On décide de faire varier les paramètres sur l’intervalle [-5 ;5], car cet intervalle contient toutes
les valeurs des paramètres estimées sur le paysage réel. Selon les figures 3 et 4, on a un intervalle
entre [-2 ;1] pour les paramètres des descripteurs des parcelles et un intervalle entre [-4,5 ;4,5] pour
les paramètres des descripteurs des segments. Le choix de simuler 50 répétitions des paysages
repose sur le fait que la variance des paramètres estimés se stabilise autour de 50 simulations
lorsque calculée sur un nombre croissant de simulations.

Etant donné que pour chaque paysage il y a un ensemble de valeurs pour les métriques à l’échelle
des noeuds, on décide de moyenner ces métriques sur tous les noeuds du paysage afin de se re-
trouver avec une métrique par simulation. Pour chaque paysage simulé, on a donc les métriques
suivantes à l’échelle du réseau :

1. Le diamètre ;

2. l’efficacité ;

3. le coefficient de clustering ;

4. la degré moyen ;

5. le coreness moyen ;

6. le degré 2e niveau moyen ;

7. l’excentricité moyenne ;

8. la proximité moyenne ;

9. l’intermédiarité moyenne.

et pour les métriques qui basées sur une représentation en raster des paysages, on a les mêmes
que celles du tableau 6.

Nous réalisons une analyse en composantes principales (ACP), qui nous permet d’explorer les
liaisons entre les métriques (nos variables) et les configurations des paramètres.

Dans une ACP, les variables d’entrée sont remplacées par de nouvelles variables qui sont des
combinaisons des variables initiales. Ces nouvelles variables sont appelées composantes prin-
cipales (CP) ou axes principaux. Pour savoir quelles composantes principales utiliser pour
l’analyse, on se réfère à leurs variances. Seules les composantes principales dont la variance
excède 1 sont retenues (critère de Kaiser). En calculant la contribution de chaque composante
principale, on peut trouver la part d’information initiale conservée par les axes choisies, qui est
égale à la somme des contributions des axes qu’on conserve.

Pour voir le lien entre les variables initiales et les composantes principales, on utilise un tableau
des corrélations. On analyse ensuite les variables initiales qui sont significativement corrélées
aux composantes principales conservées (i.e. corrélations supérieures ou égales à 0.7 ou inférieurs
ou égales à -0.7). On réalise l’ACP pour sur les métriques du réseau et les métriques du raster
séparément. Pour les métriques du réseaux, on réalise deux ACP. Dans la première ACP, les
variables initiales sont les moyennes (sur les 50 répétitions) des métriques listées dans le chapitre
5. Dans la deuxième ACP, les variables initiales sont les variances des mêmes métriques. Pour
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les métriques des raster, on réalise trois ACP, une pour chaque catégorie (habitat semi-naturel,
culture, haie). Pour identifier l’effet des descripteurs (TCC

adj , T
HH
adj et TCH

adj ) sur l’ensemble des
metriques, on réalise une régression linéaire des composantes principales en fonction des trois
descripteurs. On indique le coefficient estimé (ce), l’erreur type (ErT ) et la p-valeur (p).

5.1 ACP sur le réseau des parcelles

5.1.1 Analyse des moyennes entre répétitions

CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9

Contribution 0,76 0,17 0,05 0,01 0,01 0,00 0,00 0,00 0,00
Variance 6,86 1,52 0,42 0,13 0,05 0,02 0,01 0,00 0,00

Tableau 9: Contributions et variances des composantes principales.

CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9

Diamètre -0,34 0,91 0,15 -0,16 -0,09 -0,02 -0,01 0,00 0,00
Efficacité -0,98 -0,05 -0,19 -0,04 0,04 -0,01 -0,04 0,00 0,00

Coefficient de clustering -0,83 -0,10 0,53 0,01 0,10 0,00 -0,01 0,00 0,00
Degré moyen -0,91 -0,38 0,10 -0,02 -0,11 0,06 0,02 0,01 0,00

Coreness moyen -0,97 -0,20 -0,05 -0,09 0,02 -0,08 0,05 0,00 0,00
Degré 2e niveau moyen -0,93 -0,35 -0,02 -0,03 -0,09 0,02 -0,01 -0,02 0,00
Excentricité moyenne -0,88 0,37 -0,02 0,30 -0,05 -0,03 0,00 0,00 0,00
Proximité moyenne -0,98 -0,05 -0,19 -0,04 0,04 -0,01 -0,04 0,00 0,00

Intermédiarité moyenne -0,85 0,49 -0,15 -0,01 0,10 0,08 0,03 0,00 0,00

Tableau 10: Corrélations entre les métriques moyennées et les composantes principales.

La régression de la CP1 en fonction des descripteurs indique que seul le paramètre contrôlant
l’adjacence entre parcelles a un effet significatif (ce=2,687e-01 ; ErT=7,751e-03 ; p<2e-16 ). Ce
résultat est cohérent avec le fait que ce descripteur affecte directement les métriques du réseau
des parcelles. Au contraire, la régression de la CP2 en fonction des descripteurs montre que c’est
le paramètre contrôlant l’adjacence entre parcelles et segments qui affecte cet axe (ce=2,687e-
01 ; ErT=7,751e-03 ; p<2e-16 ). La CP2 étant liée essentiellement au diamètre du réseau nous
pouvons dire ici que ce dernière augmente avec l’augmentation de l’adjacence entre les parcelles
et segments. Le diamètre évalue la connectivité des cultures dans le paysage et quand on a un
grand diamètre cela signifie que toutes les cultures sont bien connectées et le paysage n’est pas
fragmenté (i.e. chaque culture est adjacente à au moins une autre culture). Vu que les haies
sont placées sur la bordure des parcelles, l’adjacence entre les cultures et haies favorise aussi
l’adjacence entre les deux parcelles qui partagent la haie.

5.1.2 Analyse de la variance entre répétitions

Dans cette partie nous étudions comment la variance entre les réplications peut être expliquée par
les différentes configurations de paramètres. Cette variance reflète la stochasticité du générateur
de paysage. Contrairement à l’analyse des moyennes (chapitre 5.1.1), nous nous intéressons ici à
comprendre en quoi une même configuration de paramètres peut amener à des paysages différents.
Selon le Tableau 11, les trois premières composantes principales conservent 81% de l’information
initiale et leurs variances respectives sont supérieures à 1.
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CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9

Contribution 0,42 0,24 0,15 0,07 0,07 0,03 0,01 0,01 0,00
Variance 3,78 2,15 1,31 0,65 0,64 0,31 0,10 0,06 0,00

Tableau 11: Contributions et variances des composantes principales.

CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9

Diamètre -0,60 -0,57 0,05 -0,16 -0,49 0,16 0,13 0,07 0,00
Efficacité -0,92 0,15 0,23 0,08 0,18 -0,16 0,05 0,06 0,00

Coefficient de clustering 0,09 -0,74 -0,54 -0,05 -0,05 -0,39 0,02 -0,03 0,00
Degré moyen -0,66 0,03 -0,71 -0,03 0,05 0,13 -0,16 0,10 0,00

Coreness moyen 0,14 0,69 -0,23 0,48 -0,45 -0,12 0,02 0,02 0,00
Degré 2e niveau moyen -0,69 0,45 -0,50 -0,09 0,10 0,11 0,13 -0,15 0,00
Excentricité moyenne 0,17 0,73 0,02 -0,60 -0,20 -0,17 -0,02 0,04 0,00
Proximité moyenne -0,92 0,15 0,23 0,08 0,18 -0,16 0,05 0,06 0,00

Intermédiarité moyenne -0,86 -0,14 0,34 0,00 -0,28 -0,05 -0,17 -0,13 0,00

Tableau 12: Corrélations entre les variances des métriques et les composantes principales.

Selon le Tableau 12, les variances de l’efficacité, de la proximité moyenne et de l’intermédiarité
moyenne sont négativement corrélés à la CP1. La variance du coefficient de clustering est
négativement corrélé à la CP2 alors que la variance de l’excentricité moyenne est positivement
corrélée à la CP2. La variance du degré moyen est négativement corrélé à la CP3. Ainsi l’axe 1
peut être interprété comme les configurations qui simule des paysages où l’adjacence des cultures
varie faiblement (valeurs positives) ; l’axe 2 comme les configurations où l’agrégation des cultures
varie faiblement mais l’adjacence est différente (valeurs positives) et l’axe 3 comme les configu-
rations où l’adjacence varie faiblement (valeurs positives).

La régression de la CP1 en fonction des descripteurs indique que les paramètres contrôlant
l’adjacence entre parcelles (ce= -8,902e-02 ; ErT=1,629e-02 ; p=5,58e-08 ) et entre parcelles et
segments (ce=1,319e-01 ; ErT=1,629e-02 ; p =1,28e-15 ) ont un effet significatif. La régression
de la CP2 en fonction des descripteurs montre que les paramètres de l’adjacence entre parcelles
(ce=3,030e-01 ; ErT=8,949e-03 ; p<2e-16 ) et de l’adjacence entre parcelles et segments (ce=-
1,311e-01 ; ErT=8,949e-03 ; pp<2e-16 ) ont un effet significatif. Pour la régression de la CP3, on
a aussi l’adjacence entre parcelles (ce=1,056e-01 ; ErT=7,974e-03 ; p<2e-16 ) et entre parcelles et
segments (ce=1,882e-01 ; ErT=7,974e-03 ; p<2e-16 ) qui ont un effet significatif. Ce résultat est
cohérent avec le fait que ces descripteurs affectent directement les métriques liées à l’adjacence
des cultures.

5.2 ACP sur le réseau des segments

5.2.1 Analyse des moyennes entre répétitions

CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9

Contribution 0,94 0,04 0,02 0,00 0,00 0,00 0,00 0,00 0,00
Variance 8,43 0,34 0,21 0,01 0,01 0,00 0,00 0,00 0,00

Tableau 13: Contributions et variances des composantes principales.

On a les deux premières composantes principales qui conservent 98% de l’information initiale.
Et seule la première composante principale à une variance supérieure à 1.
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CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9

Diamètre -0,99 -0,04 0,04 0,08 0,01 -0,01 0,01 0,00 0,00
Efficacité -0,99 0,11 -0,01 -0,02 0,04 0,00 0,00 0,00 0,00

Coefficient de clustering -0,88 -0,29 -0,37 -0,01 -0,01 0,00 0,00 0,00 0,00
Degré moyen -0,98 -0,12 0,12 -0,01 -0,02 0,03 0,01 0,00 0,00

Coreness moyen -0,98 -0,16 0,13 0,01 -0,01 0,01 -0,02 0,00 0,00
Degré 2e niveau moyen -1,00 -0,06 0,08 -0,02 0,01 0,02 0,01 -0,01 0,00
Excentricité moyenne -0,99 0,02 0,11 -0,03 -0,03 -0,04 0,00 0,00 0,00
Proximité moyenne -0,99 0,11 -0,01 -0,02 0,04 0,00 0,00 0,00 0,00

Intermédiarité moyenne -0,89 0,43 -0,15 0,01 -0,03 0,01 0,00 0,00 0,00

Tableau 14: Corrélations entre les métriques moyennées et les composantes principales.

Selon le tableau 14, toutes les métriques sont négativement corrélées à la première composante
principale (CP1). L’axe 1 peut être interprété comme les configurations avec un réseau où les
haies ont tendance à être dispersées (valeurs positives). De plus, le diamètre corrélé négativement
indique que les haies ont aussi tendance à être isolées (valeurs positives).

La régression de la CP1 en fonction des descripteurs indique que seul le paramètre contrôlant
l’adjacence entre segments (ce=-7,165e-01 ; ErT=1,575e-02 ; p<2e-16 ) a un effet significatif. Ce
résultat est cohérent avec le fait que ce descripteur affecte directement les métriques du réseau
des segments.

5.2.2 Analyse de la variance entre répétitions

CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9

Contribution 0,76 0,13 0,05 0,02 0,02 0,02 0,01 0,00 0,00
Variance 6,86 1,15 0,43 0,19 0,15 0,12 0,08 0,03 0,00

Tableau 15: Contributions et variances des composantes principales.

Les deux premières composantes principales conservent 89% de l’information initiale et se sont
les seules à avoir une variance supérieure à 1.

CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9

Diamètre -0,93 -0,11 0,14 0,04 0,23 0,21 -0,03 0,05 0,00
Efficacité -0,91 -0,37 -0,09 0,04 -0,09 -0,06 -0,09 0,03 0,00

Coefficient de clustering 0,78 -0,40 -0,41 -0,23 0,10 0,05 -0,02 0,00 0,00
Degré moyen -0,86 0,35 -0,30 -0,02 -0,12 0,08 0,15 0,06 0,00

Coreness moyen -0,78 0,52 -0,21 0,00 0,20 -0,18 -0,06 -0,01 0,00
Degré 2e niveau moyen -0,96 0,17 -0,11 -0,02 -0,08 0,14 -0,07 -0,12 0,00
Excentricité moyenne -0,89 0,03 0,28 -0,35 -0,03 -0,06 0,03 0,00 0,00
Proximité moyenne -0,91 -0,37 -0,09 0,04 -0,09 -0,06 -0,09 0,03 0,00

Intermédiarité moyenne -0,82 -0,53 -0,02 0,08 0,09 -0,08 0,18 -0,06 0,00

Tableau 16: Corrélations entre les variances des métriques et les composantes principales.

Selon le Tableau 16, toutes les métriques sont négativement corrélées à la première composante
principale (CP1) sauf le coefficient de clustering qui est positivement corrélé à la CP1. L’axe 1
peut être interprété comme les configurations qui simule des paysages où l’adjacence des haies
varie faiblement mais la tendance à former des agrégats varie significativement.
La régression de la CP1 en fonction des descripteurs indique que seul le paramètre contrôlant
l’adjacence entre segments (ce=-5,803e-01 ; ErT=1,622e-02 ; p<2e-16 ) a un effet significatif. Ce
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résultat est cohérent avec le fait que ce descripteur affecte directement les métriques du réseau
des segments.

5.3 ACP sur la représentation en raster du paysage

Dans cette partie, on réalise une ACP pour chaque catégorie (habitat semi-naturel, culture, haie)
en analysant les moyennes et variances des métriques selon 50 simulations.

5.3.1 Analyse des moyennes entre répétitions

CP1 CP2 CP3 CP4 CP5 CP6
Semi-naturel Contribution 0,52 0,31 0,11 0,04 0,02 0,01

Variance 3,12 1,85 0,64 0,25 0,10 0,04
Culture Contribution 0,69 0,16 0,10 0,04 0,01 0,01

Variance 4,14 0,93 0,58 0,24 0,07 0,04
Haie Contribution 0,73 0,17 0,08 0,02 0,00 0,00

Variance 4,39 1,00 0,46 0,14 0,02 0,00

Tableau 17: Contributions et variances des composantes principales pour chaque catégorie

CP1 CP2 CP3 CP4 CP5 CP6
Semi-naturel PLAND -0,79 -0,57 0,08 -0,11 -0,05 0,14

PD -0,52 0,54 -0,65 -0,05 -0,09 0,01
PARA 0,48 -0,75 -0,39 -0,21 0,14 -0,02
ENN 0,81 0,42 0,16 -0,36 -0,10 0,03
CLUMPY 0,90 0,33 -0,13 0,18 0,10 0,12
IJI -0,72 0,63 0,14 -0,16 0,22 0,01

Culture PLAND 0,89 0,22 0,31 0,21 0,17 0,04
PD -0,85 0,44 -0,21 -0,16 0,10 0,11
PARA 0,74 0,28 -0,57 0,21 -0,05 0,01
ENN -0,68 -0,65 -0,25 0,17 0,12 0,01
CLUMPY 0,88 -0,43 0,02 -0,10 -0,06 0,14
IJI -0,91 0,10 0,24 0,30 -0,12 0,07

Haie PLAND 0,92 0,01 0,29 0,27 -0,04 0,00
PD -1,00 -0,01 0,00 0,00 -0,07 -0,02
PARA -0,91 0,00 -0,34 0,25 0,04 0,00
ENN 0,87 0,02 -0,49 -0,01 -0,07 0,01
CLUMPY 0,99 0,01 -0,16 -0,01 0,05 -0,03
IJI 0,04 -1,00 -0,01 0,00 0,00 0,00

Tableau 18: Corrélations entre les métriques moyennées pour chaque catégorie et les composantes
principales

Selon le Tableau 17, le pourcentage d’information initiale conservé par les deux premières com-
posantes principales est de 83% pour les habitats semi-naturels, 85% pour les cultures et 90%
pour les haies. On obtient une variance supérieure à 1 pour la première composante principale
des cultures et pour les deux premières composantes principales des habitats semi-naturels et
des haies.

Dans le Tableau 18, pour les habitats semi-naturels, on a la proportion et l’index IJI qui sont
négativement corrélés à la CP1 et la distance des voisinages et l’index d’agrégation positive-
ment corrélés à la CP1. Les métriques de l’axe 1 reflètent donc la proportion et l’agrégation de
cette catégorie dans le paysage. Les configurations avec une valeur positive sur l’axe 1 renvoient
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des paysages avec une proportion faible d’habitats semi-naturels qui ont tendance à être adja-
cents et à former des agrégats. Ce résultat peut être expliqué par les effets des paramètres de
la régression en fonction de l’adjacence entre haies (ce=3,308e-01 ; ErT=1,033e-02 ; p=0,001 ),
l’adjacence entre culture et haies (ce=1,204e-01 ; ErT=1,033e-02 ; p<2e-16 ) et l’adjacence entre
cultures (ce=-3,932e-01 ; ErT=1,033e-02 ; p<2e-16 ). Si le paramètre d’adjacence entre cultures
augmente, on a plus d’agrégats de cultures et donc moins de possibilité pour les habitats semi-
naturels d’être agrégés, car l’allocation de l’habitat semi-naturel est conditionné à l’espace qui
reste dans le paysage après l’allocation des haies et des cultures. Les interactions des descripteurs
d’adjacence entre cultures et haies et d’adjacence entre haies, ont un effet inverse de l’adjacence
des cultures. En effet, si les cultures et haies ou les haies entre elles-mêmes ont tendance être
agrégés, les habitats semi-naturels seront agrégés aussi. Ceci est dû à la représentation des haies
comme séquence de pixels, par conséquent, l’adjacence des haies ne limite pas trop l’espace alloué
à l’habitat semi-naturel. Ensuite, on a le rapport périmètre-aire qui est négativement corrélé à
la CP2. L’axe 2 indique la complexité géométrique des taches. Ainsi, des valeurs positives sur
l’axe 2 désigne des habitats semi-naturels ayant une géométrie plus simple. De la régression,
on observe que l’adjacence entre haies (ce=8,717e-02 ; ErT=7,522e-03 ; p<2e-16 ), l’adjacence
entre cultures et haies (ce=3,021e-01 ; ErT=7,522e-03 ; p<2e-16 ) et l’adjacence entre cultures
(ce=1,045e-01 ; ErT=7,522e-03 ; p<2e-16 ) ont tous un effet positif et significatif. On s’attend
que à l’augmentation des interactions des cultures et haies, on ait des formes plus régulières pour
les taches d’habitats semi-naturels.

Pour les cultures, on a la proportion, le rapport périmètre-aire et l’indice d’agrégation qui sont
positivement corrélés à la CP1, alors que la densité de l’habitat et l’index IJI y sont négativement
corrélés. Les métriques liées à cet axe indiquent donc la proportion, l’agrégation et la mixité des
cultures dans le paysage. Si une configuration est positive sur l’axe 1, ceci signifie qu’elle simule
des paysages avec une grande proportion de cultures qui ont tendance à être agrégées. La va-
riation de l’axe 1 peut être expliquée par une régression en fonction de l’adjacence entre haies
(ce=-6,894e-02 ; ErT=1,154e-02 ; p= 2,97e-09 ), l’adjacence entre culture et haies (ce=-6,146e-
02 ; ErT=1,154e-02 ; p=1,18e-07 ) et l’adjacence entre cultures (ce=4,776e-01 ; ErT=1,154e-02 ;
p<2e-16 ). Comme attendu, l’adjacence des cultures est le plus influant pour CP1, favorisant des
structures où le cultures sont agrégées, avec une forme plus régulière et avec une proportion plus
élevée. Si on a les haies qui ont tendance à être agrégées entre elles ou si les cultures ont tendance
à être entourées de haies, il sera moins possible pour les cultures d’être agrégées entre elles. Le
fait que la disposition des haies est un effet significatif sur l’agrégation des cultures est cohérent
avec le fait que l’allocation se fait d’abord pour les haies et après pour les cultures.

Pour les haies, on a la proportion, la distance des voisinages et l’indice d’agrégation qui sont
positivement corrélés à la CP1. La densité de l’habitat et et le rapport périmètre-aire sont
négativement corrélé à cet axe. Les métriques de l’axe 1 résume donc l’agrégation des haies ainsi
que la géométrie et le nombre de tache de cette catégorie. Les configurations ayant une valeur
positive sur cet axe simulent des paysages où les haies ont tendance à former des agrégats qui sont
grands, peu nombreux et d’une complexité géométrique simple. Le seule paramètre contrôlant
ce résultat est celui de l’adjacence entre haies (ce=5,996e-01 ; ErT=7,702e-03 ; p<2e-16 ). Ce
résultat est cohérent avec le fait que l’allocation des haies est indépendante des autres types
d’éléments. Si le paramètre d’adjacence entre les haies augmente, on s’attend effectivement à
avoir plus d’agrégats de haies dans le paysage. La complexité géométrique simple est expliquée
du fait que les haies sont des éléments linéaires dont la forme est constante. L’index IJI est
négativement corrélé à la CP2. L’axe 2 reflète donc la mixité des taches de type haie dans les
paysages. Des valeurs positives sur cet axe indiquent une faible mixité des haies. Ce résultat
peut être expliqué par les effets des paramètres de la régression en fonction de l’adjacence entre
cultures (ce=-2,157e-01 ; ErT=5,154e-03 ; p<2e-16 ) et l’adjacence entre cultures et haies (ce=-
1,342e-01 ; ErT=5,154e-03 ; p<2e-16 ). On s’attend à ce que des paysages où les cultures sont
peu agrégées entre elles ou des paysages où les cultures faiblement entourées de haies aient des
haies qui sont très peu entourées par des taches de catégories différentes.
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5.3.2 Analyse des variances entre répétitions

CP1 CP2 CP3 CP4 CP5 CP6
Semi-naturel Contribution 0,39 0,28 0,11 0,09 0,07 0,06

Variance 2,32 1,71 0,66 0,55 0,43 0,34
Culture Contribution 0,39 0,28 0,11 0,10 0,08 0,04

Variance 2,35 1,68 0,68 0,59 0,48 0,22
Haie Contribution 0,54 0,17 0,16 0,06 0,05 0,02

Variance 3,24 1,01 0,95 0,38 0,29 0,13

Tableau 19: Contributions et variances des composantes principales pour chaque catégorie

CP1 CP2 CP3 CP4 CP5 CP6
Semi-naturel PLAND 0,06 0,85 -0,26 0,31 -0,26 -0,22

PD 0,61 0,39 0,65 -0,14 -0,19 0,00
PARA -0,78 0,20 -0,03 -0,54 -0,11 -0,23
ENN -0,85 0,15 0,09 0,11 -0,29 0,39
CLUMPY 0,31 0,80 -0,21 -0,25 0,28 0,27
IJI -0,72 0,36 0,36 0,25 0,39 -0,12

Culture PLAND 0,21 -0,74 0,54 0,33 0,05 -0,08
PD 0,76 -0,30 -0,10 -0,08 -0,57 0,06
PARA -0,86 -0,31 0,01 0,14 -0,13 0,35
ENN -0,76 -0,14 0,30 -0,49 -0,20 -0,15
CLUMPY 0,43 -0,71 -0,11 -0,43 0,32 0,14
IJI -0,48 -0,66 -0,52 0,16 -0,03 -0,21

Haie PLAND -0,10 0,90 -0,41 0,03 0,06 0,00
PD -0,88 0,03 -0,09 -0,06 -0,45 -0,07
PARA 0,90 0,08 0,03 0,26 -0,26 0,21
ENN 0,93 0,07 0,05 0,18 -0,08 -0,29
CLUMPY 0,84 0,11 0,02 -0,53 -0,10 0,02
IJI 0,24 -0,42 -0,87 0,00 0,00 0,00

Tableau 20: Corrélations entre les variances des métriques pour chaque catégorie et les compo-
santes principales

Selon le Tableau 19, le pourcentage d’information initiale conservé par les deux premières com-
posantes principales est de 67% pour les habitats semi-naturels, 67% pour les cultures et 71%
pour les haies. Les deux composantes principales ont une variance supérieure à 1 pour toutes les
catégories.

Dans le Tableau 20, pour les habitats semi-naturels, le rapport périmètre-aire, la distance des
voisinages et l’index IJI sont négativement corrélés à la CP1. Les métriques de l’axe 1 reflètent
la variance de la complexité géométrique, de la distance entre voisinages et de la mixité de cette
catégorie dans les paysages. Les configurations ayant des valeurs positives sur l’axe 1 corres-
pondent à des configurations qui simulent des paysages où pour cette catégorie, la géométrie
des taches, la distance entre les taches et la mixité des taches varient faiblement. Ce résultat
peut être expliqué par l’effet des paramètres de la régression en fonction de l’adjacence entre
haies (ce=1,313e-01 ; ErT=1,047e-02 ; p<2e-16 ), l’adjacence entre culture et haies (ce=1,558e-
01 ; ErT=1,047e-02 ; p<2e-16 ) et l’adjacence entre cultures (ce=-2,107e-01 ; ErT=1,047e-02 ;
p<2e-16 ). Si les haies sont adjacentes ou si elles entourent des cultures, on s’attend à avoir des
paysages où la géométrie des taches, la distance entre les taches et la mixité des taches varient
faiblement. Inversement, on a des paysages avec ces métriques qui varient considérablement si
les cultures ont tendance à être adjacentes. On a la proportion et l’agrégation qui sont positive-
ment corrélées à la CP2. L’axe 2 indique des paysages où la proportion et l’agrégation des taches
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semi-naturelles varient considérablement. Cette variation peut être expliquée par une régression
de cet axe en fonction de l’adjacence entre haies (ce=8,717e-02 ; ErT=7,522e-03 ; p<2e-16 ),
l’adjacence entre culture et haies (ce=3,021e-01 ; ErT=7,522e-03 ; p<2e-16 ) et l’adjacence entre
cultures (ce=1,045e-01 ; ErT=7,522e-03 ; p<2e-16 ). Si l’adjacence entre cultures, l’adjacence
entre haies et l’adjacence entre culture et haies augmente, on a tendance à avoir les paysages où
la proportion et l’agrégation des taches semi-naturelles sont significativement différentes.

Pour les cultures, la densité est positivement corrélée à la CP1 alors que le rapport périmètre-
aire et la distance des voisinages sont négativement corrélés à cet axe. L’axe 1 correspond à
la variance de la densité, de la complexité géométrique et de la distance entre voisins de cette
catégorie. Les valeurs positives sur l’axe 1 correspondent à des paysages où le nombre de taches
varie considérablement, mais où les taches ont presque la même complexité et les mêmes dis-
tances entre voisins. Ce résultat peut être expliqué par une régression de cet axe en fonction
des descripteurs de l’adjacence entre haies (ce=1,592e-01 ; ErT=1,169e-02 ; p<2e-16 ), de l’ad-
jacence entre culture et haies (ce=9,573e-01 ; ErT=1,169e-02 ; p<2e-16 ) et de l’adjacence entre
cultures (ce=-1,378e-01 ; ErT=1,169e-02 ; p<2e-16 ). Si on augmente l’adjacence entre haies et
l’adjacence entre les cultures et les haies, on se retrouve avec des paysages où le nombre de
taches de cette catégorie varie faiblement mais où la complexité géométrique et de la distance
entre voisins varie considérablement. Inversement, la complexité géométrique et la distance entre
voisins varie faiblement alors que le nombre de taches de type culture varie considérablement
lorsque l’adjacence entre cultures augmente. Ce résultat est cohérent avec le fait que ce des-
cripteur affecte directement la densité et l’agrégation des cultures. On a que la proportion et
l’agrégation sont négativement corrélées à la CP2. Les valeurs positives sur l’axe 2 reflètent les
paysages où la proportion et l’agrégation des taches semi-naturelles varient faiblement. Cette
variation peut être expliquée par l’adjacence entre haies (ce=8,717e-02 ; ErT=7,522e-03 ; p<2e-
16 ), l’adjacence entre culture et haies (ce=3,021e-01 ; ErT=7,522e-03 ; p<2e-16 ) et l’adjacence
entre cultures (ce=1,045e-01 ; ErT=7,522e-03 ; p<2e-16 ). Plus on augmente les paramètres d’in-
teractions des éléments du paysage, de moins en moins varie la proportion et l’agrégation des
taches la catégorie culture dans les paysages.

Pour les haies, la densité est négativement corrélée à la CP1 alors que le rapport périmètre-aire,
la distance des voisinages et l’agrégation sont positivement corrélés à cet axe. Les configurations
ayant une valeur positive sur cet axe renvoient des paysages où le nombre de taches de cette
catégorie varie peu, mais où la complexité géométrique, la distance entre voisins, et l’agrégation
varie considérablement. Ce résultat peut être expliqué par l’adjacence entre haies (ce=4,351e-01 ;
ErT=1,000e-02 ; p<2e-16 ), l’adjacence entre culture et haies (ce=9,573e-01 ; ErT=1,000e-02 ;
p=0,047 ) et l’adjacence entre cultures (ce=-1,990e-01 ; ErT=1,000e-02 ; p=0,004 ). Si on aug-
mente l’interaction des haies entre elles ou avec des cultures, on se retrouve avec des paysages où
le nombre de taches de type haie varie faiblement, mais où la complexité géométrique, la distance
entre voisins, et l’agrégation varie considérablement. Inversement, augmenter l’interaction entre
les cultures, renvoie à des paysages où le nombre de taches de haies varie plus et la complexité
géométrique, la distance entre voisins, et l’agrégation varie moins. On a la proportion qui est
positivement corrélée à la CP2. Les valeurs positives de cet axe reflètent des paysages où la pro-
portion de haies varie de manière significative. Ceci peut être expliqué par la régression de l’axe
en fonction de l’adjacence entre culture et haies (ce=6,497e-02 ; ErT=8,289e-03 ; p=9,25e-15 )
et l’adjacence entre cultures (ce=7,763e-02 ; ErT=8,289e-03 ; p<2e-16 ). Lorsque l’on augmente
l’adjacence entre les cultures et les haies ou l’adjacence entre les cultures, on a des paysages où
la proportion de haies varie significativement. Ce résultat semble cohérent, car augmenter ces
interactions implique d’augmenter le nombre de taches de cultures. On a aussi que l’indice IJI
est négativement corrélé à la CP3. L’axe 3 reflète donc des paysages avec des mixités des haies
plus (valeurs positives) ou moins (valeurs négatives) différentes. Ce résultat peut être expliqué
par la régression de l’axe en fonction de l’adjacence entre haies (ce=1,974e-02 ; ErT=6,166e-03 ;
p=0,001 ), l’adjacence entre culture et haies (ce=1,519e-01 ; ErT=6,166e-03 ; p<2e-16 ) et l’ad-
jacence entre cultures (ce=1,438e-01 ; ErT=6,166e-03 ; p<2e-16 ). Si on augmente l’interaction
entre les éléments, on a logiquement que la mixité des taches de type haies qui varie plus.
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6 Conclusion

Dans ce travail, l’objectif était de modéliser différentes compositions et configurations des pay-
sages. Le paysage est représenté avec une approche vectorielle qui nous a permis de distinguer
des éléments parcellaires et linéaires et de tenir compte des interactions entre eux. Les éléments
et leur structure spatiale sont définis avec un réseau multi-couche, où les nœuds représentent des
éléments et les liens représentent les interactions entre ces éléments. L’allocation de catégories
d’usage de sol est réalisée par un modèle stochastique de type “famille exponentielle”. Nous avons
considéré une allocation binaire où on tient compte de la présence de cultures dans les parcelles
et de haies dans les éléments linéaires. Le modèle considère neuf descripteurs. On a estimé leurs
valeurs sur le paysage réel de la Basse Vallée de la Durance et on a testé leur significativité. On
a trouvé que dans ce domaine d’étude on a une tendance à ne pas avoir des cultures dans des
petites parcelles et à ne pas avoir de haies qui entourent les cultures. En revanche, on trouve que
les cultures ont une tendance à former des agrégats. Les haies sont plutôt courtes, avec une orien-
tation est-ouest et une tendance à être regroupées. De plus, les estimateurs ne sont pas biaisés et
les paysages simulés capturent les caractéristiques du paysage réel sur des métriques qui ne sont
pas considérées dans le modèle d’allocation. Pour les métriques basées sur une représentation en
réseau du paysage, on a trouvé qu’il n’y avait pas de différence significative entre les simulations
et la réalité. Dans les cas où on trouve qu’il y a une différence significative, les ordres de grandeur
sont conservés. Pour les métriques basées sur une représentation en raster du paysage, on a conclu
qu’il n’y avait pas de différence significative entre les simulations et la réalité pour la majorité
d’entre elles. Sinon, les ordres de grandeurs sont tout de même conservés dans tous les cas. On
a observé que les métriques des réseaux réussissent à mieux capturer l’agrégation des éléments
du paysage que les métriques basées sur une représentation en raster, et cela particulièrement
pour les haies. On a réalisé une analyse de sensibilité du modèle par analyse en composantes
principales en faisant varier les paramètres des descripteurs d’adjacence entre cultures, d’adja-
cence entre haies et d’adjacence entre cultures et haies. Pour chaque configuration on a simulé
des répétitions des paysages et nos variables pour l’ACP étaient les moyennes et les variances des
métriques. On a trouvé que pour les métriques moyennées, diminuer les paramètres liés à l’adja-
cence des éléments de même type correspondait à des paysages avec des métriques de centralité
plus faible pour les réseaux, et des métriques d’agrégation plus faibles pour la représentation
en raster. Ce résultat correspond à des paysages où l’allocation des éléments est plus dispersée.
Contrairement aux métriques moyennées, la variance des métriques paysagères n’a pas de ten-
dance spécifique. Les travaux réalisés permettent d’établir la relation entre la disposition spatiale
des objets du paysage et comment cette disposition affecte les métriques paysagères. Ceci per-
mettra de contrôler avec aisance l’adjacence des éléments du paysages pour simuler des paysages
très divers, et afin d’étudier, par la suite, la dynamique des proie-prédateurs.
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