
HAL Id: tel-03662445
https://theses.hal.science/tel-03662445

Submitted on 9 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-supervised Dynamic SLAM : Tackling Consensus
Inversions
Adrian Bojko

To cite this version:
Adrian Bojko. Self-supervised Dynamic SLAM : Tackling Consensus Inversions. Artificial Intelligence
[cs.AI]. Université Paris-Saclay, 2022. English. �NNT : 2022UPASG031�. �tel-03662445�

https://theses.hal.science/tel-03662445
https://hal.archives-ouvertes.fr

THE
SE

DE
DO

CTO
RAT

NN
T:2

022
UPA

SG0
31

Self-supervised Dynamic SLAM :
Tackling Consensus Inversions

SLAM Dynamique Auto-Supervisé :
Résolution des Inversions de Consensus

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580 : Sciences et Technologies de l’Information et de
la Communication (STIC)

Spécialité de doctorat : Informatique
Graduate School : Informatique et sciences du numérique

Référent : Faculté des sciences d’Orsay

Thèse préparée au LIST (CEA), sous la direction de Hervé Le Borgne, docteur, le
co-encadrement de Romain Dupont, docteur, et le co-encadrement de

Mohamed Tamaazousti, docteur.

Thèse soutenue à Paris-Saclay, le 07 avril 2022, par

Adrian BOJKO

Composition du jury
Catherine ACHARD Présidente
Professeur des universités, Institut National des
Sciences Appliquées (INSA) de Rouen
Samia AÏNOUZ Rapporteur & Examinatrice
Professeur des universités, Sorbonne Université
David FILLIAT Rapporteur & Examinateur
Professeur des universités, École Nationale Supé-
rieure de Techniques Avancées (ENSTA) Paris
Hervé LE BORGNE Directeur de thèse
Docteur, Commissariat à l’Energie Atomique et
aux Energies Alternatives (CEA)

Titre : SLAM Dynamique Auto-Supervisé : Résolution des Inversions de Consensus
Mots clés : slam, dynamique, auto-supervision, inversion de consensus de mouvement, référentiel

Résumé : La capacité d’auto-localisation est es-
sentielle pour les véhicules autonomes, les robots,
la réalité mixte et plus généralement les systèmes
qui interagissent avec leur environnement. Lors-
qu’il n’y a pas de carte disponible, les algorithmes
de SLAM (Localisation et Cartographie Simulta-
nées) créent une carte de l’environnement et en
même temps y localisent le système. Un capteur
populaire est la caméra, qui a l’avantage de four-
nir passivement une représentation visuelle de l’en-
vironnement à bas coût, et donc celui que nous
utilisons.

Le SLAM en environnement dynamique, ou
SLAM Dynamique, est un défi car l’algorithme doit
être capable de percevoir en permanence quelles
parties de l’image sont fixes par rapport au réfé-
rentiel souhaité par l’utilisateur, en général le sol.
Des problèmes surviennent lorsque les hypothèses
sur lesquelles reposent les algorithmes SLAM de-
viennent invalides. Un cas remarquable est l’in-
version de consensus de mouvement : lorsque la
majeure partie d’une image est constituée d’objets
en mouvement, l’algorithme n’utilise pas le bon
référentiel, et échoue. Un autre est le masquage
excessif : certains algorithmes SLAM retirent des
images – c’est-à-dire masquent – tous les objets
qui pourraient être dynamiques même s’ils ne sont
pas en mouvement, et par conséquent échouent si
les images deviennent vides.

De façon générale, l’utilisateur peut avoir
besoin d’utiliser un algorithme SLAM dans un
contexte non supporté. En réalité, l’écart entre ce
dont l’utilisateur a besoin et ce que font les al-
gorithmes SLAM est significatif dans la recherche
SLAM et la cause de problèmes tels que les in-
versions de consensus, elles-mêmes rarement pré-
sentes dans la littérature. Ainsi, au lieu de proposer
un SLAM plus général, nous proposons un algo-
rithme SLAM qui s’adapte à de nouveaux environ-
nements grâce à un apprentissage auto-supervisé
automatisé : apprendre automatiquement quelles
parties d’une scène peuvent être mobiles par rap-
port au référentiel souhaité par l’utilisateur et

quand il faut les masquer. L’utilisateur fournit des
vidéos d’entraînement non annotées et notre algo-
rithme apprend automatiquement quoi en faire.

Nous présentons d’abord l’état de l’art, les
bases de données et les métriques SLAM de ré-
férence. En particulier, nous détaillons les défis du
SLAM Dynamique et de l’évaluation de la robus-
tesse. Les bases de données et métriques SLAM
actuelles font partie des points bloquants, nous
proposons donc les nôtres.

Dans une deuxième partie, nous explorons les
relations entre les points d’intérêt d’une image et
les performances du SLAM, et à partir de ce travail,
nous présentons un nouvel algorithme de SLAM
Dynamique auto-supervisé qui apprend quels ob-
jets masquer, en utilisant les outliers SLAM. Les
outliers SLAM sont des points d’intérêt rejetés au
cours du processus de SLAM : nous avons observé
que les outliers sur les objets en mouvement ont
des propriétés uniques dans des séquences vidéo fa-
ciles et peuvent être utilisés pour apprendre auto-
matiquement à segmenter les objets dynamiques.

Enfin, nous présentons une approche auto-
supervisée qui apprend quand masquer des objets :
SLAM Dynamique avec Masquage Temporel. A
partir d’une méthode donnée de masquage d’ob-
jet, on apprend automatiquement quand masquer
les objets de certaines classes. On annote automa-
tiquement chaque image des séquences d’entraî-
nement avec des décisions de masquage (s’il faut
masquer les objets ou non) puis on apprend les cir-
constances qui ont mené à ces décisions avec un
réseau basé mémoire.

Les résultats de cette thèse montrent que le
SLAM Dynamique auto-supervisé est une approche
viable pour résoudre les inversions de consensus de
mouvement. Plus généralement, l’auto-supervision
est la clé pour qu’un SLAM s’adapte aux besoins
des utilisateurs. Nous avons dépassé l’Etat de l’Art
en termes de robustesse, en plus de clarifier des
points aveugles de la littérature en termes d’éva-
luation de la robustesse des algorithmes de SLAM
Dynamique.

Title : Self-supervised Dynamic SLAM : Tackling Consensus Inversions
Keywords : slam, dynamic, self-supervised, motion consensus inversion, frame of reference

Abstract : The ability of self-localization is essen-
tial for autonomous vehicles, robots, mixed reality
and more generally to systems that interact with
their environment. When maps are not available,
SLAM (Simultaneous Localization and Mapping)
algorithms create a map of the environment and
at the same time locate the system within it. A
popular sensor is the camera, which has the bene-
fit of passively providing a visual representation of
the environment at a low cost, and for this reason
the one we to use for research.

SLAM in Dynamic environments, or Dynamic
SLAM, is challenging as the algorithm must be
able to continuously perceive what parts of the
image are fixed with respect to the frame of re-
ference the user wants, usually the ground. Pro-
blems arise when assumptions SLAM algorithms
rely on become invalid. A remarkable case is the
Motion Consensus Inversion (MCI) : when most of
an image is made of moving objects, the SLAM
does not use the correct frame of reference and
fails. Another one is excessive masking : some
SLAM algorithms remove from images – i.e., mask
– all objects that might be dynamic even if they
are not moving, and consequently fail if images
become empty.

More generally, the user may need to use a
SLAM algorithm in an unsupported context. In
fact, the gap between what the user needs and
what SLAM algorithms do is a blind spot in
SLAM research and the cause for issues like motion
consensus inversions, which are themselves seldom
seen in the literature. Hence, instead of proposing
a SLAM algorithm that applies to more cases, we
propose a SLAM algorithm that adapts to new
environments through automated self-supervised
training : to automatically learn what objects of
a scene may be moving with respect to the user’s
desired frame of reference, and when they should
be masked. The user provides unlabeled training
videos and our SLAM automatically learns what
to do to with them.

In the first part of this document, we present
the State of the Art of algorithms for SLAM and
Dynamic SLAM, reference datasets and metrics.
We detail the challenges of Dynamic SLAM and
robustness evaluation. Current SLAM datasets and
metrics are also subject to the user need gap, so we
propose our own. Our datasets are the first to expli-
citly include video sequences with motion consen-
sus inversions or excessive masking and our metric
is more general that the usual accuracy metrics,
which are misleading in very difficult scenarios.

In the second part, we explore the relation bet-
ween image features and SLAM performance, and
from this work we present a novel self-supervised
Dynamic SLAM that learns what objects to mask,
using SLAM outliers. Outliers are features rejec-
ted during the standard SLAM process : we obser-
ved that outliers on objects in motion have unique
properties in easy dynamic sequences. Thus, we
locate dynamic objects using outliers and learn to
segment them, so we can mask dynamic objects in
sequences of any difficulty at runtime.

Finally, we present a self-supervised approach
that learns when to mask objects : Dynamic SLAM
with Temporal Masking. Leveraging an existing
method to mask objects, it automatically learns
when to mask objects of certain classes. It au-
tomatically annotates every frame of training se-
quences with masking decisions (to mask objects
or not), then learns the circumstances that led to
these decisions with a memory-based network. We
do not make any geometrical assumption, unlike
other SLAM algorithms. Using a memory-based
approach prevents at runtime motion consensus
inversions and excessive masking, which is hardly
possible when relying on geometrical methods.

The results of this thesis show that a self-
supervised Dynamic SLAM is a viable approach
to tackle motion consensus inversions. More ge-
nerally, self-supervision is the key to have a SLAM
adapt to user needs. We surpassed the State of the
Art in terms of robustness, in addition to clarifying
blind spots of the literature in Dynamic SLAM ro-
bustness evaluation.

4

Remerciements
Maintenant que cette aventure s’est achevée, je souhaite remercier tous ceux qui m’ont aidé au cours
de cette thèse : de nombreuses personnes du CEA et ma famille !

Premièrement, un grand merci à mon directeur de thèse, Hervé Le Borgne, avec qui j’ai eu
l’honneur de travailler. Il a pris le temps qu’il fallait de me guider dans mes recherches. Et il était très
présent ! J’ai beaucoup apprécié les exemples très concrets, par exemple "faire comme Columbo" (i.e.,
commencer par le problème/l’évènement et le résultat/le coupable quand on présente ses recherches).
Cela m’a beaucoup aidé à comprendre comment faire de la recherche, et non juste ce qu’est la recherche.

Puis un grand merci à mes deux co-encadrants, Romain Dupont et Mohamed Tamaazousti.
Ils m’ont donné les premières pistes de recherche. Lors de réunions ou de relectures d’article, leurs
remarques étaient toujours très pertinentes. Merci d’être là aux moments les plus importants, entre
autres lors des révisions d’articles de dernière minute à l’approche de deadlines de conférences.

Merci au jury, Samia Aı̈nouz, David Filliat et Catherine Achard qui ont pris le temps de
relire mes travaux et ensuite de les juger lors de ma soutenance de thèse. Je suis reconnaissant pour
l’attention qu’ils ont prêté à mes recherches.

De même, merci à Régis Vinciguerra, chef du CEA LVML (Laboratoire Vision, Modélisation
et Localisation – le laboratoire où j’ai effectué ma thèse), et à Patrick Sayd, le directeur du SIALV
(Service d’Intelligence Artificielle pour le Langage et la Vision – le service incluant le LVML), qui m’ont
permis d’effectuer ma thèse au LVML. Ils m’ont soutenu et fait le nécessaire afin que la thèse démarre
dans les meilleures conditions. En parallèle de la thèse, participer au Comité de Vie du SIALV fut une
excellente expérience qui m’a mené à éditer de nombreuses newsletters. Que de bons souvenirs !

Ensuite, merci aux membres de l’équipe du CEA LVML : Steve, Olivier, Mathieu, Vin-
cent, Laetitia, Richard, Boris... ainsi que les autres doctorants – mes collègues de bureau –
Mohamed et Jade. Leurs interventions furent aussi utiles que variées : résolution de problème tech-
niques, obtention de matériel, relecture d’article, discussions d’idées ; tout cela m’a permis d’avancer.
Et je n’oublie pas de remercier Virginie, qui m’a aidé à faire les procédures admnistratives.

Je remercie aussi les responsables de FactoryIA, qui ont mis à disposition leur supercalculateur
sans lequel de nombreuses expériences auraient difficilement abouti en temps et en heure.

Enfin, je suis très reconnaissant envers ma famille et je les remercie du fond du cœur pour leur
soutien inconditionnel. Ma mère Ana, mon père André et mon frère Victor étaient toujours
là quand j’en avais besoin. On a passé des moments amusants, comme les fois où on explorait la ville
en quête de l’endroit idéal pour filmer des séquences vidéo!

Je ne peux mentionner toutes les personnes avec qui j’ai pu échanger ou travailler lors de ma thèse,
mais merci à vous tous !

5

Acknowledgements
Now that this adventure has come to an end, I would like to thank all those who helped me during
this thesis: many people from the CEA and my family!

First, a big thank you to my thesis supervisor, Hervé Le Borgne, with whom I had the honor of
working. He took the time to guide me in my research. And he was very present! I really appreciated
the very concrete examples, for example "to do as Columbo would" (i.e., start with the problem/event
and the result/culprit when presenting your research). It helped me a lot to understand how to do
research, and not just what is research.

Then a big thank you to my two co-supervisors, Romain Dupont and Mohamed Tamaazousti.
They gave the first lines of research. During meetings or article proofreading, their remarks were always
very relevant. Thank you for being there at the most important times, especially for last-minute paper
reviews right before conference deadlines.

Thank you to the jury, Samia Aı̈nouz, David Filliat and Catherine Achard who took the
time to read my work and then judge it during my thesis defense. I am grateful for the attention they
gave to my research.

Likewise, thank you to Régis Vinciguerra, head of the CEA LVML (Vision, Modeling and Lo-
calization Laboratory – the laboratory where I did my thesis), and to Patrick Sayd, the director
of SIALV (Artificial Intelligence Service for Language and Vision – the service including the LVML),
which allowed me to carry out my thesis at the LVML. They supported me and did what was neces-
sary so that the thesis started in the best possible conditions. In parallel with the thesis, participating
in the Life Committee of the SIALV was an excellent experience which led me to publish numerous
newsletters. What good memories!

Thank you to the members of the CEA LVML team: Steve, Olivier, Mathieu, Vincent,
Laetitia, Richard, Boris... as well as to the other doctoral students – my office colleagues –
Mohamed and Jade. Their interventions were as useful as they were varied: solving technical
problems, obtaining equipment, proofreading articles, discussing ideas; all this allowed me to move
forward. And I don’t forget to thank Virginie, who helped me with the administrative procedures.

I would also like to thank the FactoryIA managers, who made their supercomputer available
(funded by the Ile-de-France Regional Council) without which many experiments would have been
difficult to achieve, and certainly not in time.

Finally, I am very grateful to my family and I thank them from the bottom of my heart for their
unconditional support. My mother Ana, my father André and my brother Victor were always
there when I needed them. We had some fun times, like the times we were exploring the city looking
for the perfect place to record video sequences!

I cannot mention all the people with whom I was able to exchange or work during my thesis, but
thank you to all of you!

6

Contents

1 Introduction 19
1.1 Motivation: the SLAM Challenge . 19
1.2 Context of the thesis . 23
1.3 Contributions . 26

1.3.1 General approach . 26
1.3.2 Hypothesis of our thesis . 27
1.3.3 Main contributions . 28

1.4 Structure of the document . 29

2 SLAMs and Dynamic SLAMs 31
2.1 SLAM: Simultaneous Localization and Mapping . 31

2.1.1 Problem Formulation . 31
2.1.2 Sensors . 31
2.1.3 Brief history SLAMs . 34
2.1.4 Model-based SLAM . 35
2.1.5 Learning-Based SLAM . 37
2.1.6 Hybrid approaches . 39

2.2 Dynamic SLAM: SLAM in Dynamic Environments . 39
2.2.1 Problem formulation and choice of a feature-based Dynamic SLAM 39
2.2.2 Motion-based, geometrical masking . 41
2.2.3 Semantic masking approaches . 42
2.2.4 Hybrid approaches . 43

3 Understanding the relation between image features and Dynamic SLAM perfor-
mance 45
3.1 Keypoints as the cornerstone of feature-based SLAMs 46

3.1.1 The use of keypoints in SLAMs . 46
3.1.2 Filtering keypoints in Dynamic SLAMs . 47

3.2 Influence of the number of features on SLAM performance 48
3.2.1 Experimental Setup . 48
3.2.2 Evolution of SLAM performance with the number of features 48

3.3 Relation between keypoint detector repeatability and SLAM performance 52
3.3.1 The main keypoint detector metric: repeatability 52
3.3.2 Experiments . 54
3.3.3 Thoughts on keypoint detector repeatability, SLAM repeatability and self-supervision 59

3.4 Relation between outliers and Dynamic SLAM . 60
3.4.1 Experimental setup . 60
3.4.2 Methods to filter features on moving objects with outliers 61
3.4.3 Methods to densify outliers into masks of moving objects 66

3.5 The importance of temporality in keypoint filtering for Dynamic SLAM 70

7

8 CONTENTS

3.6 Conclusion . 71

4 SLAM Robustness: Metrics and Datasets 73
4.1 Introduction . 73
4.2 SLAM Robustness . 73

4.2.1 General Evaluation Criteria . 73
4.2.2 Difficulties of Dynamic Scenarios . 74

4.3 Current Metrics, Datasets, and their Limitations . 77
4.3.1 Core Metrics . 77
4.3.2 Datasets . 79
4.3.3 Limitations . 80

4.4 Proposed Metrics . 83
4.4.1 Penalized ATE RMSE and Success Rate . 83
4.4.2 USM: Unified SLAM Metric . 83

4.5 Proposed Datasets . 85
4.5.1 Ground Truth computation . 85
4.5.2 CI Dataset . 85
4.5.3 ConsInv Dataset . 87

4.6 Conclusion . 91

5 From a Robust SLAM to a Dynamic SLAM by Self-Learning of Outliers 93
5.1 Introduction . 93
5.2 Learning to Segment Dynamic Objects . 94

5.2.1 Overview of the method . 94
5.2.2 Outlier and inlier preprocessing . 95
5.2.3 Mask creation and network training . 97
5.2.4 SLAM Integration . 100

5.3 Experiments . 100
5.3.1 Experimental setup . 100
5.3.2 Results . 100
5.3.3 Limitations . 106

5.4 Conclusion . 106

6 Dynamic SLAM with Temporal Masking 107
6.1 Introduction . 107
6.2 SLAM Pipeline . 109
6.3 Temporal Masking Network . 109
6.4 Temporal Annotation Methods . 110

6.4.1 Baseline Methods . 110
6.4.2 Self-Supervised Method . 111

6.5 Main Experiments . 114
6.5.1 Experimental setup . 114
6.5.2 Comparison between annotation methods . 116
6.5.3 Comparison with the State of the Art . 116
6.5.4 Interpretation of Inferred Masks . 117
6.5.5 Degraded mask quality tests . 122
6.5.6 Computation time analysis and sampling computational tractability. 122
6.5.7 Data requirement for training . 122
6.5.8 Hyperparameter tuning . 123
6.5.9 Limitations: tests in out-of-context . 124

6.6 Complementary work: Dynamic SLAM with Weakly Supervised Temporal Masking . . . 126
6.6.1 Temporal Masking Network for Weak Supervision 126

CONTENTS 9

6.6.2 Experiments . 128
6.7 Conclusion . 130

7 Conclusion and Perspectives 131
7.1 Conclusion . 131
7.2 Perspectives . 132

7.2.1 Further Research . 132
7.2.2 Improving Technology Readiness Level for Future Industrialization 133
7.2.3 New Applications . 134

A Published SLAM datasets 137

B Complementary information 141
B.1 Influence of the number of features on SLAM performance 141

10 CONTENTS

List of Figures

1.1 Example of a static scenario convenient for a SLAM algorithm. 20
1.2 Example of dynamic scenario difficult for a SLAM algorithm, a traffic jam. 21
1.3 Example of very difficult dynamic scenario for a SLAM algorithm. 22
1.4 Example of instance segmentation. 23
1.5 Constrained SLAM. 24
1.6 Application of Augmented Reality to give repair and maintenance instruction in the

automotive applications. 24
1.7 Augmented Reality used to visualize custom vehicle furnishing. 25
1.8 Removal of an object across different frames using diminished reality in the presence of

specularities. 25
1.9 Feature-based Visual Dynamic SLAM. 27

2.1 Example of stereo + depth camera with an embedded IMU. 32
2.2 Example of LiDARs from the Velodyne family. 33
2.3 Example of RGB+depth camera. 33
2.4 Example of motion capture setup. 34
2.5 General structure of a model-based SLAM pipeline. 35
2.6 Illustration of feature-based and direct SLAMs. 36
2.7 The two main modules of a feature-based SLAM: keypoint generation and Tracking/Mapping. 36
2.8 ORB-SLAM architecture. 38
2.9 ORB-SLAM 2 architecture. 39
2.10 Comparison between model-based SLAMs and a learning-based, end-to-end visual SLAM

DeepVO. 40
2.11 The structure feature-based Dynamic SLAM. 41
2.12 An object used in our datasets, a dragon. 42
2.13 Example of optical flow using OpenCV. 42
2.14 Example of optical flow using PWC-Net. 42

3.1 Illustration of matched features in a SLAM. 46
3.2 Benchmark of ORB-SLAM using the GFTT keypoint detector. 49
3.3 Benchmark of ORB-SLAM using the original ORB keypoint detector (with ATE RMSE

and Tracking Rate). 49
3.4 Benchmark of ORB-SLAM using the GFTT keypoint detector (with Weighted ATE

RMSE and Tracking Rate). 50
3.5 Benchmark of ORB-SLAM using the original ORB keypoint detector (with Weighted

ATE RMSE and Tracking Rate). 51
3.6 Benchmark of ORB-SLAM using the original ORB keypoint detector (with Weighted

ATE RMSE and Tracking Rate). 51
3.7 Illustration of images from the HPatches dataset for keypoint detector repeatability tests. 52
3.8 Illustration of keypoint detection on the original image and the warped image. 53

11

12 LIST OF FIGURES

3.9 Visual representation of keypoint repeatability computation. 53
3.10 A synthetic image for training or repeatability tests. 54
3.11 Illustration of SuperPoint training process. 54
3.12 Illustration of SuperPoint homographic adaptation. 54
3.13 Examples of images of degraded quality using various levels of JPEG compression. . . . 56
3.14 Illustration of different keypoints detection methods on an image at 50% quality. Orig-

inal image from the MS COCO dataset. 56
3.15 Illustration of different keypoints detection methods on an image at 90% quality. 57
3.16 Illustration of different keypoints detection methods on an image at 100% quality. . . . 57
3.17 Steps from the ORB-SLAM pipeline from where we can extract outliers. 60
3.18 Typical repeatability profile of ORB-SLAM 2 inliers. Relative threshold = 0.8. 61
3.19 Typical repeatability profile of ORB-SLAM 2 outliers. Relative threshold = 0.2. 62
3.20 Scene before and after a person gets up (10 frames apart). 62
3.21 Image where a person before it starts moving its upper body. 63
3.22 Example of detected outliers after applying different relative thresholds. 63
3.23 Dense masks constructed from outliers collected with the relative threshold s = 0.2. . . 64
3.24 Masks with holes constructed from outliers and inliers. 65
3.25 Computation of superpixels in a simple scene, various sets of parameters (binary). . . . 66
3.26 Computation of superpixels in a simple scene, various sets of parameters (gradient). . . 67
3.27 Comparison between a SLAM with no masked object and a SLAM with masked objects. 68
3.28 Segmentation of a simple scene using RVOS. 69
3.29 Example of segmentation using COSNet. 69
3.30 Another example of segmentation using COSNet. 69
3.31 Example of possible masking decisions. 70
3.32 Another example of possible masking decisions. 70

4.1 Examples of Motion Consensus Inversions (MCI). 75
4.2 Examples of Excessive Masking leading to SLAM failure. 76
4.3 Illustration of the KITTI Dataset. 81
4.4 Illustration of the TUM RGB-D Dataset. 82
4.5 Miniatures of our CI dataset. 86
4.6 ConsInv-Indoors dataset. 88
4.7 Illustration of the ConsInv-Outdoors Dataset. 89
4.8 Illustration of the ConsInv-Extra-MeetingRoom Dataset. 90
4.9 Illustration of the ConsInv-Extra-LivingRoom Dataset. 90

5.1 Overview of our approach (learning to segment dynamic objects). 94
5.2 Steps of our method (learning to segment images). 95
5.3 Illustration of the sliding window process. 98
5.4 Illustration of the segmentation process. 99
5.5 Illustration of the training process. 99
5.6 Dynamic SLAM at runtime. 100
5.7 Consensus inversion in fr3_walking_xyz (TUM RGB-D). 102
5.8 Failure cases of baselines methods (ORB-SLAM 2 + existing network). 103
5.9 Example of monocular false start. 104
5.10 Method applied to LDSO. 105

6.1 Illustration of our results on the TUM RGB-D dataset. 107
6.2 Temporal Masking Network. 108
6.3 Overview of Dynamic SLAM with Temporal Masking and comparison to other approaches.109
6.4 LSTM Encoder-Decoder architecture. 110
6.5 Sequence annotation methods. 111

LIST OF FIGURES 13

6.6 Illustration of sampled temporal masks from a temporal mask space. 112
6.7 Temporal mask space E(l = 7, k0 = 2, k1 = 3) as a masking binary tree. 113
6.8 Process to compute spatial representations using ResNet50. 115
6.9 Results of Temporal Masking on ConsInv-Outdoors, part 1. 119
6.10 Results of Temporal Masking on ConsInv-Outdoors, part 2. 120
6.11 Masking result on an easy sequence with moving cars and no people. 121
6.12 Architectures of the LSTM Encoder-Decoder. 127

B.1 Benchmark of ORB-SLAM using the GFTT keypoint detector (with Weighted ATE
RMSE and Tracking Rate). 141

B.2 Benchmark of ORB-SLAM using the Shi keypoint detector (with Weighted ATE RMSE
and Tracking Rate). 142

B.3 Benchmark of ORB-SLAM using the Shi-Harris keypoint detector (with Weighted ATE
RMSE and Tracking Rate). 142

B.4 Benchmark of ORB-SLAM using the SIFT keypoint detector (with Weighted ATE
RMSE and Tracking Rate). 143

14 LIST OF FIGURES

List of Tables

3.1 Repeatability of various keypoints detectors (Harris and trained models based on Su-
perPoint) on various dataset samples of 200 images. 55

3.2 Mean rank of keypoint detectors in single-layer mode on the TUM RGB-D dataset. . . . 58
3.3 Mean rank of keypoint detectors in multi-layer mode on the TUM RGB-D dataset. . . . 58
3.4 Statistics on the ATE RMSE (mm) on 100 SLAM runs on the first 700 images of various

sequences of the TUM RGB-D dataset. 64

4.1 Example of score resulting score with the Unified SLAM Metric ς for several values of
ATE RMSE α and Tracking Rate ρ. 84

4.2 Number of sequences of the ConsInv dataset. 87

5.1 Average Penalized ATE RMSE (m) of the State-of-the-Art and baselines on Consensus Inver-
sion/Dynamic and TUM RGB-D/Dynamic datasets. N/A indicates that the SLAM mode is
not supported. 101

5.2 Success Rate (%) of the State-of-the-Art and baselines on Consensus Inversion/Dynamic and
TUM RGB-D/Dynamic datasets. N/A indicates that the SLAM mode is not supported. 101

5.3 Evaluation on Consensus Inversion/Static dataset. We report the ratio of sequences that do
not cause initialization fails (false starts). 101

5.4 Average Penalized ATE RMSE (m) and Success Rate (%) of LDSO and our masked
version on the Consensus Inversion/Dynamic dataset. 104

6.1 Comparison of supervision modes. Average USM on ConsInv/TUM RGB-D. 116
6.2 Comparison with the State of the Art on various datasets in their preferred mode. . . . 117
6.3 Comparison between our self-supervised approach and manual annotations from a SLAM

expert, used directly without learning. 118
6.4 Average USM on ConsInv-Indoors-Dynamic to evaluate the robustness to degraded se-

mantic masks. 122
6.5 Rate of prevented false starts on ConsInv-Indoors-Static including a degraded mask

approach. 122
6.6 Average inference time on a GTX 1080 Ti, per frame. Full res. is 1280x720. 122
6.7 Approximate size estimation of E(k0, k1, n) with block size k := k0 = k1. 123
6.8 Dataset complexity (variety of environment and object motion) and size of the evaluated

datasets. 123
6.9 Comparison between different annotation methods on the validation split of the ConsInv-

Indoors-Dynamic subset. 124
6.10 Tuning of k0 and k1. 125
6.11 Tuning of n. 125
6.12 Comparison between different annotation methods and architectures on the validation

split of the ConsInv-Indoors-Dynamic subset. 128

15

16 LIST OF TABLES

6.13 Comparison between supervision modes with different architectures. Average USM on
ConsInv/TUM RGB-D. 128

6.14 Comparison with the State of the Art on various datasets in their preferred mode. (with
weak supervision). 129

6.15 Dataset complexity (variety of environment and object motion) and size of the evaluated
datasets. 129

A.1 List of published SLAM datasets, part 1. 138
A.2 List of published SLAM datasets, part 2. 139

Synthèse en français

La capacité d’auto-localisation est essentielle pour les véhicules autonomes, les robots, la réalité mixte
et plus généralement les systèmes qui interagissent avec leur environnement. Lorsqu’il n’y a pas de
carte disponible, les algorithmes de SLAM (Localisation et Cartographie Simultanées) créent une carte
de l’environnement et en même temps y localisent le système. Un capteur populaire est la caméra, qui
a l’avantage de fournir passivement une représentation visuelle de l’environnement à bas coût, et donc
celui que nous utilisons.

Le SLAM en environnement dynamique, ou SLAM Dynamique, est un défi car l’algorithme doit
être capable de percevoir en permanence quelles parties de l’image sont fixes par rapport au référentiel
souhaité par l’utilisateur, en général le sol – mais pas toujours. Des problèmes surviennent lorsque les
hypothèses sur lesquelles reposent les algorithmes SLAM deviennent invalides. Un cas remarquable est
l’inversion de consensus de mouvement : lorsque la majeure partie d’une image est constituée d’objets
en mouvement, l’algorithme n’utilise pas le bon référentiel, et échoue. Un autre est le masquage
excessif : certains algorithmes SLAM retirent des images – c’est-à-dire masquent – tous les objets qui
pourraient être dynamiques même s’ils ne sont pas en mouvement, et par conséquent échouent si les
images deviennent vides.

De façon générale, l’utilisateur peut avoir besoin d’utiliser un algorithme SLAM dans un contexte
non supporté. En réalité, l’écart entre ce dont l’utilisateur a besoin et ce que font les algorithmes SLAM
est significatif dans la recherche SLAM et la cause de problèmes tels que les inversions de consensus,
elles-mêmes rarement présentes dans la littérature. Concrètement, l’utilisateur souhaite localiser la
caméra par rapport à un certain référentiel – le sol, la l’intérieur d’un navire, l’intérieur d’un train...
– et donc le calcul de trajectoire doit se faire par rapport aux objets dont la position est fixe dans
ce référentiel. Toutefois, les algorithmes de SLAM Dynamique ne peuvent pas deviner à l’avance quel
est le référentiel attendu par l’utilisateur et c’est pourquoi ils séparent les éléments de l’image qui
sont probablement dynamiques des autres: mais les scènes complexes contenant des objets inhabituels
et/ou avec une proportion objets statiques/objets dynamiques très déséquilibrée sont mal gérées par
les algorithmes existants.

Ainsi, au lieu de proposer un SLAM plus général, supportant une plus grande variété d’environnements,
nous proposons un algorithme SLAM qui s’adapte à l’environnement de l’utilisateur. Grâce à un
apprentissage auto-supervisé automatisé, notre algorithme apprend automatiquement quelles parties
d’une scène peuvent être mobiles par rapport au référentiel souhaité par l’utilisateur et quand il faut
les masquer. L’utilisateur fournit des vidéos d’entrâınement non annotées et notre algorithme apprend
automatiquement quoi en faire.

Nous présentons d’abord l’état de l’art, les bases de données et les métriques SLAM de référence.
En particulier, nous détaillons les défis du SLAM Dynamique et de l’évaluation de la robustesse. Les
bases de données et métriques SLAM actuelles font partie des points bloquants, nous proposons donc
les nôtres, notamment la métrique Unified SLAM Metric (USM).

Dans une deuxième partie, nous explorons les relations entre les points d’intérêt d’une image et
les performances du SLAM, et à partir de ce travail, nous présentons un nouvel algorithme de SLAM
Dynamique auto-supervisé qui apprend quels objets masquer, en utilisant les outliers SLAM. Les
outliers SLAM sont des points d’intérêt rejetés au cours du processus de SLAM : nous avons observé
que les outliers sur les objets en mouvement ont des propriétés uniques dans des séquences vidéo faciles

17

18

et peuvent être utilisés pour apprendre automatiquement à segmenter les objets dynamiques.
Enfin, nous présentons une approche auto-supervisée qui apprend quand masquer des objets :

SLAM Dynamique avec Masquage Temporel. A partir d’une méthode donnée de masquage d’objet, on
apprend automatiquement quand masquer les objets de certaines classes. On annote automatiquement
chaque image des séquences d’entrâınement avec des décisions de masquage (s’il faut masquer les objets
ou non) puis on apprend les circonstances qui ont mené à ces décisions avec un réseau basé mémoire.
Le Masquage Temporel est un concept nouveau qui est agnostique au choix d’algorithme SLAM et de
méthode de masquage, et qui présente des perspectives très intéressantes.

Les résultats de cette thèse montrent que le SLAM Dynamique auto-supervisé est une approche
viable pour résoudre les inversions de consensus de mouvement. Plus généralement, l’auto-supervision
est la clé pour qu’un SLAM s’adapte aux besoins des utilisateurs. Nous avons dépassé l’Etat de l’Art
en termes de robustesse, en plus de clarifier des points aveugles de la littérature en termes d’évaluation
de la robustesse des algorithmes de SLAM Dynamique. Enfin, les méthodes serviront à de futures
applications industrielles au sein du CEA, où cette thèse a été réalisée.

Chapter 1

Introduction

1.1 Motivation: the SLAM Challenge

Self-localization is a core requirement for many modern applications, as it is necessary, for instance, for
path planning and to ensure system safety. It usually relies on a map already available. When planning
a path to a specific location, the first step is to know where we are. Self-localization is also necessary to
ensure system safety: a typical example is that of an airplane as they have to fly within certain altitude
limits and cannot enter no-flight zones; likewise, ships must stay in waters safe for navigation. But
in various cases, we need self-localization without having an available map. For example, autonomous
vehicles may need to move in an unmapped, rural area. Robots and drones deployed to explore
unknown environments cannot plan their motion if they do not know where they are or what is around
them. Augmented and mixed reality applications running on portable devices like smartphones may be
used anywhere, including private areas, and need to understand their environment and where they are
within it. In other words, systems need to self-localize while building a map of the environment at the
same time. This task is known as Simultaneous Localization and Mapping (SLAM). These algorithms
solve a circular problem: I need to know where I am within the environment to build a map of it, and
I need a map of the environment to know where I am within it.

As SLAM algorithms build a map of its surroundings, they need to acquire information with sensors.
The most used ones to observe the environment are cameras, LiDARs and sonars. Cameras capture
images representing the environment; LiDARs generate point clouds of the environment using lasers;
sonars do the same as LiDARs but use sound instead, typically underwater. Major advantages of
cameras over the other sensors include the low cost, the fact that the captured images can be used for
high-level interpretations of the scene, and the passive aspect of the sensor. A passive sensor does not
emit light nor sound, which can be a hazard in certain contexts (e.g ., medical or military). While sonars
work better underwater and map creation is easier from LiDAR point clouds than images, cameras
remain indispensable sensors in almost all systems that need SLAM capabilities. This explains why
cameras are used in most autonomous systems. Common types of cameras include monocular cameras,
which have only one sensor, and stereo cameras that have two sensors (e.g ., left and right). Cameras
are often used with other sensors as Inertial Measurement Units (IMUs, which measure acceleration
and rotational speed), but IMUs cannot be used alone for mapping or SLAM as they do not observe
the environment. For brevity, we shorten references to SLAM algorithms to just SLAMs in the rest of
the thesis.

Hence, the ability of camera-based SLAM – also known as Visual SLAM – is essential for modern
applications. Cameras project the 3D environment onto a series of 2D images (i.e., a video sequence),
and this transformation is defined through a process called calibration. The principle of a Visual SLAM
is to compute the 3D points that make the environment – the map – that led to the video sequence,
and at the same time compute the 6D pose of the camera (translation + orientation) with respect to
the map in every frame.

19

20 CHAPTER 1. INTRODUCTION

There are in general three steps in a Visual SLAM: initialization, data association and track-
ing/mapping. Initialization consists in matching image features that are observed in different frames
(e.g ., corners of a table) and computing the 3D points and camera poses that led to their observation.
This is possible as matched features are projections of the same 3D points, so there is a mathematical
relation between features that depends on the position of 3D points and the pose of the camera in
both frames. The Visual SLAM algorithm first initializes the map then repeatedly: 1) Matches newly
detected features with the existing map (data association) 2) Computes the camera pose (tracking)
– solving what is called the Perspective-n-Point problem 3) Updates the map with new 3D points if
needed (mapping).

This approach supposes that the environment is static, which is a fundamental, and convenient, hy-
pothesis called the static world assumption. It means that the environment does not change with time.
For instance, the pose of large structures like buildings rarely changes. The static world assumption is
convenient as it implies that all 3D points are fixed in the same frame of reference (the world frame,
which is usually the ground), so they can all be used to compute camera poses. Figure 1.1 shows an
example of such a static scenario. However, when the world is not static, SLAM becomes much more
difficult. Moving objects as cars/trucks/pedestrians/etc. may confuse the SLAM and make it compute
erroneous trajectories, if not fail outright, since the static world assumption is not respected.

Figure 1.1 – Example of a static scenario convenient for a SLAM algorithm. It has no objects in motion
and the background is clearly visible.

This has led to the creation of SLAMs specifically designed for dynamic environments: Dynamic
SLAMs. The general approach consists in identifying the dynamic objects of the scene and masking
them, i.e., preventing the SLAM from mapping them. In other words, the data association step is
modified to make sure that the map does not include 3D points from dynamic objects as we want to
compute camera poses in the world frame. Dynamic SLAM is necessary for applications that need
SLAM in highly dynamic contexts, but it is an unsolved problem in general: an example is autonomous

1.1. MOTIVATION: THE SLAM CHALLENGE 21

vehicles – safety is still a major challenge which limits the widespread use of autonomous vehicles.
A major challenge of Dynamic SLAMs is to ensure that it uses the frame of reference

expected by the user, usually the Earth. In other words, a SLAM algorithm must not solve an
ill-posed problem: to compute a pose with respect to a variable or unexpected frame of reference.
To do so, most Dynamic SLAMs are designed under the hypothesis that the areas of the image that
are part of the motion consensus are fixed with respect to the Earth. We can group the 3D points
observed in a frame in rigid clusters according to their instantaneous motion: those fixed w.r.t. the
Earth, those belonging to a moving car, etc. We define the dominant motion of an image as the motion
of the largest group. We define motion consensus as the areas in a frame that correspond to the 3D
points that are part of the group whose motion is the dominant one. A simpler way to formulate the
Dynamic SLAM hypothesis, and the one usually seen in the literature, is “most of the image is static”,
but it is not rigorous.

Still, while the notion of motion consensus makes sense on a larger scale – e.g ., building and streets
are mostly static under normal circumstances – it may be misleading within the scope of short-term
input data. For instance, a camera could be in a traffic jam (fig. 1.2) where the ground is hardly
visible: in this case, the SLAM may completely fail and compute nonsensical poses due to what we
call a motion consensus inversion or MCI. We detail MCIs in section 4.2.2. The problem tackled by
the SLAM is ill-posed here: the implicit frame of reference that the SLAM uses to compute poses is
not the ground, but one attached to cars.

Figure 1.2 – Example of dynamic scenario difficult for a SLAM algorithm, a traffic jam. The motion
consensus (the dominant motion) does not correspond to the ground but to the motion of cars.

In detail, a SLAM maps the environment as it runs; one assumes that most mapped parts are fixed
with respect to the ground. SLAMs normally do not have a “ground detector” to make sure that the
ground is used as frame of reference: this means that if too many mapped points are not fixed with
respect to the ground – e.g ., when there are many dynamic objects –, the SLAM fails. The implicit

22 CHAPTER 1. INTRODUCTION

frame of reference in our traffic jam example is an unpredictable barycenter between the frames of all
objects respecting the misleading motion consensus... which may be random cars in a traffic jam. A
different situation that may lead to variable frames of reference is when objects are deformable. SLAM
with deformable objects, even if they are not moving, is extremely difficult and research on this topic
is at a very early stage [56].

Figure 1.3 – Example of very difficult dynamic scenario for a SLAM algorithm. The frame of reference
that the user wants to use for localization is not obvious: it could be the Earth or the ship itself. There
is no clear consensus in the image: the sky, the sea, the Earth, and the ship move differently.

Another complication is that the frame of reference may not even be the ground.
Assuming that a SLAM can always locate the user in relation to the ground, it will only be acceptable
if our goal is indeed to do so. For instance, in a large transportation as a ship or an airplane, the user’s
goal may be to locate the camera within the transportation and not with respect to the ground (the
Earth). Even if the SLAM is not affected by consensus inversions, it is still a failure if it computes
the pose of the camera with respect to the ground. This problem may not appear within a closed
environment like a plane, but it is serious in open environments like on of a ship. Figure 1.3 shows
such an example. First, the frame of reference that the user wants to use for localization is not obvious:
it could be the Earth or the ship itself. Additionally, there is no clear consensus in the image: the sky,
the sea, the Earth, and the ship move differently, and that is without counting people moving on the
ship itself. A related difficulty is the use of IMUs: they cannot be used for SLAM w.r.t. non-inertial
frame of reference – e.g ., accelerations would be computed w.r.t. to the Earth and not the ship. Thus,
if our goal is to locate the camera within the ship, a SLAM must ignore what is not part of the ship:

1.2. CONTEXT OF THE THESIS 23

the sky, the sea, moving people, etc., which a highly non-trivial task. How could a SLAM guess the
correct frame of reference under these conditions?

Therefore, to work properly, SLAM algorithms need to analyze the scene at a higher level of
abstraction than the motion consensus so as to identify what should be mapped or not. A possible
approach is to use an algorithm to segment objects that might move, and then an heuristic method
to decide if this object is in fact moving or not w.r.t. the frame of reference expected by the user.
Figure 1.4 shows an example of instance segmentation, which consists in assigning a label to every
pixel of image: background, car, person, etc.

Figure 1.4 – Example of instance segmentation. Instance segmentation identifies every instance of
every class separately.

Hence the problem of Dynamic SLAM is still far from solved. Learned algorithms recently enabled
major progress but it has not solved all problems: a major drawback is the need for training data,
which is costly to obtain. Additionally, the naive use of learning-based segmentation to mask parts
of the image that might move can have an adverse effect. For instance, if the camera is in a parking,
removing all cars from the image may leave it empty depending on where the camera is: this obviously
makes the SLAM fail.

1.2 Context of the thesis

We carried out this thesis entirely at CEA LIST, Laboratory for Integration of Systems and Technol-
ogy, from January 2019 to December 2021. The LIST is made of several sub-laboratories, including
the LVML, Laboratory for Vision, Modeling and Localization, and LASTI, Laboratory for Semantic
Analysis of Text and Images. The LVML has an history of over ten years of working with SLAM
systems and their related technologies, while the LASTI has a likewise long history of working with
automated video and image analysis. We did most of the research at LVML, where the advisors of
this thesis work, but we had regular interactions with the LASTI, where the supervisor of this the-
sis works. The current SLAM challenges require both scene understanding and in-depth geometrical
SLAM knowledge, so the partnership between both came naturally.

24 CHAPTER 1. INTRODUCTION

As explained before, SLAM is primarily about locating a system when there is no prior map of the
environment. But once we have a base SLAM method, it is valuable to developed specialized methods
according to the specific intended use of the SLAM. In particular, the LVML has developed several
specialized SLAM technologies for industrial use and has today a multi-camera embedded SLAM able
that combines several cameras, IMUs and magnetometers.

In industrial settings, we often have specific information on object geometry, namely CAD (Computer-
Aided Design) models. CAD models have the benefit of containing accurate 3D information on object
geometry. Constrained SLAM is precisely about leveraging this information [95, 96]. The major use
case is object tracking, since we already know what to look for. It consists in aligning a 3D model on
the image, as illustrated in fig. 1.5. A tracked object can be used as an additional source of information
for the SLAM: since we know its exact dimensions, we can use it to improve SLAM accuracy and fix
scaling issues. We may also need a precise pose of the object, e.g ., for bin-picking applications. And if
we are certain that the object is fixed w.r.t. the frame of reference we need, we can use it as a reliable
cue to find what parts of the scenario a SLAM algorithm can map without the risk of motion consensus
inversions. The main drawback of Constrained SLAM algorithms is the need for 3D models a priori,
which is not an issue in specific contexts where we control what objects are present.

Figure 1.5 – Constrained SLAM: the SLAM algorithm aligns CAD models on corresponding objects
to improve accuracy [96].

Another specialty of the LVML is Augmented Reality (AR) for industrial use [7, 40, 13, 41], as
illustrated in fig. 1.6 and fig. 1.7. AR adds visual information to the objects of interest.

Figure 1.6 – Application of Augmented Reality to give repair and maintenance instruction in the
automotive applications [41].

1.2. CONTEXT OF THE THESIS 25

Figure 1.7 – Augmented Reality used to visualize custom vehicle furnishing [41].

The main idea is to replace or superimpose real objects with virtual ones. E.g ., Augmented Reality
helps workers in industrial maintenance and quality assurance as it makes checking vehicle parts
a simple task when combined with Constrained SLAM. The LVML also works on the counterpart
of Augmented Reality, Diminished Reality (DR), and a related research topic, specularities – i.e.,
mirror-like reflections of light sources. Diminished Reality consists in removing parts of an image with
inpainting [22, 14], which is the technique of coherently filling a missing region of an image with respect
to the rest of it. Inpainting is a challenging task when there are specularities, especially when there
are multiple light sources. We illustrate DR in fig. 1.8.

Figure 1.8 – Removal of an object across different frames using diminished reality in the presence of
specularities [79].

In the last few years, with the rapid development of Deep Learning, the LVML has started research-
ing learned methods in SLAM contexts. This includes straightforward uses (e.g ., object detection) as
well as less obvious questions as explainability, which is important for industrial applications.

Having methods to support scenarios with known objects (including humans) and specularities, the
technologies at the LVML did not support highly dynamic scenarios when this thesis started. Since a
Dynamic SLAM must be robust in dynamic environments to be used in industrial contexts, research
on it is necessary. Learned approaches appeared as a potential way to achieve a Robust Dynamic
SLAM.

The starting point of this thesis is the idea that to make a robust Dynamic SLAM, we do not
need to create whole new SLAMs but instead target the weaknesses of the existing ones, possibly
with learning. This would later translate to automatically learning what and when dynamic objects
positively or negatively affect SLAMs, which are the core contributions of this thesis. This thesis was
the opportunity to construct strong foundations for Dynamic SLAM, which the laboratory will build
upon in the future to both continue the research and industrialize it.

26 CHAPTER 1. INTRODUCTION

1.3 Contributions

Since Dynamic SLAM is a valuable problem to solve, we decided to tackle the problem of creating
a robust Dynamic SLAM algorithm – i.e., a SLAM algorithm that always uses the correct frame of
reference. Since cameras are present in most systems that need SLAM, we focus our research on Visual
SLAM with an emphasis on monocular cameras, as they are low-cost and the most popular ones.

Our goal is to make a Dynamic SLAM that is agnostic with respect to the chosen frame
of reference. We detail in this section our approach and the underlying choices, the hypothesis of
this thesis, and detail our contributions.

1.3.1 General approach

Our approach can be summarized as continuously identifying all parts of a frame that can be safely
mapped and only them, in order to ensure that the SLAM only processes objects that are part of the
correct frame of reference. We split this challenge in two objectives: identifying what objects to mask
and when they should be masked, all to maximize SLAM performance.

Rationale of the general approach

For a Dynamic SLAM to be agnostic w.r.t. the choice of frame of reference, we first considered a
classical approach where we would identify geometrical criteria to identify parts of the image that
belong to the user’s expected frame of reference. However, there is a major obstacle: as these criteria
are manually defined, it would be very difficult to automatically adjust them to unknown contexts.
And this is assuming that it is possible to develop such criteria in the first place: it appears that to
handle the challenges previously mentioned – motion consensus inversion and excessive masking – we
need long-term understanding of the environment, which is hardly possible with classical algorithms.
Thus, we dropped classical approaches.

A second possibility would be to make a Dynamic SLAM algorithm general enough to support any
scenario. However, this implies proposing a SLAM approach that is not ill-posed, i.e., a SLAM that
can understand on-the-fly what frame of reference the user needs and then correctly identify it. This
would require a high-level intelligence that is far beyond the scope of Dynamic SLAMs, and extremely
difficult to achieve.

A last possibility is automatic two-step adaptation. Instead of creating a general Dynamic SLAM,
we automate the adaptation of the Dynamic SLAM to any environment. In a training step, the
Dynamic SLAM learns to identify the parts of the image that are fixed w.r.t. the expected frame of
reference in the training context – the SLAM is fine-tuned to the given context. Later, at runtime, the
Dynamic SLAM automatically recognizes what parts of the image should be masked or not, ensuring
that the correct frame of reference is used at any time if it runs in a similar context. Thanks to
reducing the scope the SLAM, the adaptability approach is within reach of a PhD thesis – unlike the
general approach –, so we select it.

Having opted for automatic two-step adaptation, the question now is how can a SLAM algorithm
automatically learn what and when to mask objects. There are two methods: unsupervised and
self-supervised learning. Supervised training depends on annotated data, which may be costly (both
in time and money) and requires a high level of expertise depending on what has to be annotated.
Self -supervised training consists in supervised training but with automatically annotated data. Un-
supervised learning has the benefit of not needing annotated data at the cost of having a complex
learning scheme – especially the loss function – and no explicit control over the expected output.
Learning what and when to mask objects is already a major challenge, so we preferred to have control
over data annotation and to keep the learning scheme as simple as possible. In other words, we decided
to tackle the SLAM challenge with self-supervision.

1.3. CONTRIBUTIONS 27

Choice of the type of SLAM

We group SLAMs in two categories: model-based and learned. Model-based SLAM corresponds to
geometrical methods and is split in feature-based SLAMs [75], that compute image features (keypoints)
then track/map them, and direct SLAMs [39], that process full images at once. Learned SLAMs [106]
are neural network that compute camera poses by processing images in a black-box fashion.

We discuss these choices in depth in section 2.2.1, but the main idea is that filtering features in
feature-based SLAM is a simple task that can clearly be separated from the rest of the SLAM, with our
work being about what and when to filter features. Direct SLAMs expect a dense input (images), so
filtering parts of it breaks this basic assumption. Since filtering dynamic objects is significantly more
difficult in direct SLAMs and since our challenge is to learn what and when to mask dynamic objects
in the first place, there is no reason to use them. Regarding learned SLAMs, the main drawbacks
are generalization to unknown environments and the lack of a usable map – it is contained within the
SLAM model. For these reasons, we chose to work on feature-based SLAMs. Figure 1.9 shows how
a feature-based Dynamic SLAM works. It consists in filtering features right after they are detected
based on an external input: masks that indicate the areas of the image that can be safely mapped.

Figure 1.9 – Feature-based Visual Dynamic SLAM. It consists in filtering all features based on masks,
which indicate what parts of the image can be safely mapped, i.e., are fixed w.r.t. to the frame of
reference expected by the user.

1.3.2 Hypothesis of our thesis

In this thesis we make the following assumptions:

1. We focus only on pure feature-based Visual SLAM. As explained before, Visual SLAM is valuable
as cameras are almost omnipresent on systems that need SLAM. Other sensors (LiDARs, sonars,
IMUs...) have their own limitations and can hardly replace cameras. Feature-based SLAMs are
more convenient than other types (direct/learned). And in any case, we expect SLAMs that
fuse output from different sensors to perform better if the output from visual sensors is correctly
processed. For simplicity, we will refer to Visual SLAM as simply SLAM unless otherwise noted.

2. We focus on Dynamic SLAM approaches that are generic in terms of context and in terms of
underlying SLAM engine. For this reason, we research learned approaches. Self-supervision
appears as an efficient way to limit the cost of data annotation.

3. We assume that that the deformability of objects can safely be ignored. Dynamic SLAM with
deformable objects generalizes Dynamic SLAM, which is already an unsolved problem. The only
deformable objects that appear in our experiments are people and our methods correctly segment
them, so for practical purposes we can consider that all objects are rigid.

28 CHAPTER 1. INTRODUCTION

1.3.3 Main contributions
We can group our works in three major contribution: automatically learning of what to mask in
dynamic scenarios, automatically learning of when to mask dynamic objects, and databases and metrics
to evaluate and measure the robustness of Dynamic SLAMs. The overall goal is to have a Robust
Dynamic SLAM, so we first ensure that we have proper datasets and metrics, learn what objects to
mask, then finally when to mask them to maximize SLAM performance.

Automatically learning of what to mask in dynamic scenarios. The main idea is that
semantic segmentation is the key to make Dynamic SLAMs robust, in particular to motion consensus
inversions caused by moving objects in difficult scenarios. Geometry-based approaches tend to fail
under motion consensus. End-to-end learned approaches are limited to their training data and having
to learn what objects are dynamic further complicates training. Thus, we propose a Dynamic SLAM
approach that automatically learns to segment new dynamic objects based on outliers, i.e., image
features that do not fit the static world model. Geometric SLAMs typically discard outliers, while
we use them as a source of information to improve the very SLAM that generated them. This makes
our approach self-supervised and able to adapt to new environments at a low cost. This contribution
corresponds to the publications:

1. De SLAM Robuste à SLAM Dynamique par Auto-apprentissage d’Outliers [10] published at
RFIAP 2020

2. Learning to Segment Dynamic Objects using SLAM Outliers [11] published at ICPR 2021

Automatically learning of when to mask dynamic objects. The main idea is that while the
ability of masking potentially dynamic objects that may lower SLAM performance is necessary, it is
not enough. An object may move or not – e.g ., a car may be parked or moving –, so masking it when
it is not moving would needlessly lower the performance of the SLAM and even make it fail. A major
difficulty is that geometry-based approaches are unreliable in difficult scenarios since they depend on
instantaneous motion detection, which cannot always be computed. Thus, we propose a completely
different paradigm: self-supervised Temporal Masking. It consists in automatically annotating video
sequences with per frame, per semantic class masking decisions then learning the decisions with a
memory-based network. The first insight here is to annotate sequences with a method that directly
maximizes SLAM performance, without priors on geometry – like the fact that masking dynamic
objects improves performance, which is in fact a result that emerges from learning. The second insight
is to infer masking decisions independently from the SLAM: this makes our approach independent from
the choice of the SLAM algorithm and ensures that the SLAM does not interfere with the computation
of masking decisions at runtime. This contribution corresponds to the publications:

1. Procédé de localisation et cartographie simultanées intégrant un masquage temporel auto-supervisé
et modèle d’apprentissage automatique pour générer un tel masquage [12]. Patent filed in France
on December 03, 2021. Number 2112893 – V/Ref.: BD21941 CM – N/Ref.: 073214 FR PHA/BLR

2. Dynamic SLAM With Self-Supervised Temporal Masking (title may change), planned for sub-
mission.

Databases and metrics to evaluate and measure the robustness of Dynamic SLAMs.
In the early phases of this thesis, we observed that SLAM datasets currently available almost never
include sequences that cause SLAM failures due to excessive masking or motion consensus inversions.
Moreover, popular SLAM metrics that focus on accuracy are biased: in very difficult scenarios, where
early SLAM failure are possible, an accurate trajectory does not mean that the SLAM performed well.
This makes comparisons complex: what is better, processing 100% of a sequence with an accuracy of
10cm, or 10% of a sequence with an accuracy of 1cm? Therefore, we propose our own datasets and
metrics to fill this gap in the current literature. The dataset and metric contributions have evolved
over time and are present in all our works [10, 11, 12].

1.4. STRUCTURE OF THE DOCUMENT 29

1.4 Structure of the document
The rest of the document is organized as follow:

Chapter 2 presents SLAMs and Dynamic SLAMs, including algorithms from the State of the Art.
Section 2.1 presents the general SLAM algorithm and a brief history, sensors, and the most common
SLAM paradigms. Section 2.2 focuses on Dynamic SLAM approaches.

Chapter 3 studies the relation between keypoints – SLAM features – and Dynamic SLAM. Sec-
tion 3.1 introduces the importance of keypoints in feature-based SLAMs and how to filter them.
Section 3.2 studies how many features should be used. Section 3.3 clarifies the relation between a key-
point detector performance, its repeatability, and SLAM performance. Section 3.4 focuses on SLAM
inliers and outliers and how they can be used for object detection. Section 3.5 exposes how important
the temporal aspect is for an efficient temporal masking.

Chapter 4 focuses on measuring SLAM robustness and corresponds to our contribution Databases
and metrics to evaluate and measure the robustness of Dynamic SLAMs. We first present in sec-
tion 4.2 the general aspects of SLAM robustness and the specific difficulties of Dynamic SLAMs. Then
we present the currently used metrics/datasets and their limitations in section 4.3. After having dis-
cussed the limitations of the current landscape of metrics and datasets, we present our own metrics in
section 4.4 and our own datasets in section 4.5.

Chapter 5 focuses on the question of what to mask in a Dynamic SLAM and corresponds to our
contribution Automatically learning of what to mask in dynamic scenarios. We first present a novel
method based on SLAM outliers in section 5.2. We then show experiments proving the interest of our
method and how it makes learning segmentation masks easier in section 5.3.

Chapter 6 focuses on the question of when to mask objects in a Dynamic SLAM and corresponds
to our contribution Automatically learning of when to mask dynamic objects. We first present a
SLAM pipeline including temporal masking in section 6.2. Then we present the core of our approach,
the temporal masking network in section 6.3 and the automatic annotation method in section 6.4.
We then present the experiments in section 6.5. Section 6.6 is a complementary research work on
weak supervision. We present a novel network architecture in section 6.6.1 and our experiments in
section 6.6.2.

Chapter 7 includes the conclusion and perspectives of this thesis.

30 CHAPTER 1. INTRODUCTION

Chapter 2

SLAMs and Dynamic SLAMs

2.1 SLAM: Simultaneous Localization and Mapping

2.1.1 Problem Formulation

SLAM – Simultaneous Localization and Mapping – is the computational problem of constructing a map
of an environment while locating an agent (e.g ., a robot) within it at the same time [17, 74, 40]. This
appears as a chicken-egg problem: a map is needed to localize an agent within it, and it is necessary
to know the position of an agent to build a map of the environment it perceives. [17] is an extended
review on the state of SLAM algorithms in 2016 and is still largely applicable. The critical question –
is SLAM solved? – has a clear answer: there are working solutions in specific contexts, but not in the
general case. Most importantly, SLAM algorithms are aimed at real-time applications. This means
that they are constrained by the available resources, in particular sensors and computational power.

Note that SLAM is distinct from other related problems: SfM (Structure from Motion), odometry,
and relocalization. SfM [99] is a photogrammetric imaging technique. The main goal of SfM is to
estimate three-dimensional structures from two-dimensional image sequences. This has real-world
applications as reconstructing monuments in 3D – also known as photogrammetry. However, the
position of the camera taking the images is not a required output but only an optional intermediate
result. Odometry is the use of data from sensors to estimate changes in pose over time. In this case
map construction is not necessary. Relocalization algorithms locate an agent within a known map.
Overall, SLAM algorithms have common points with SfM / odometry / relocalization algorithms but
are targeted at real-time use cases where neither localization or mapping information are available but
where both are needed.

2.1.2 Sensors

Sensors presents in SLAM systems are classified in three categories: proprioceptive, exteroceptive
and absolute positioning systems. Proprioceptive sensors measure the internal state of the agent;
exteroceptive sensors observe the environment; absolute positioning systems directly give the agent’s
pose.

Proprioceptive sensors

Proprioceptive sensors measure the internal state of the agent and measure battery level, wheel posi-
tions, joint angles, etc. For SLAM purposes, we focus on sensors related to the pose or motion of the
agent. A major advantage of these sensors is that they do not depend on external factors – unlike, for
instance, a standard RGB camera that would be useless in a dark environment.

31

32 CHAPTER 2. SLAMS AND DYNAMIC SLAMS

The primary use of such sensors is for dead reckoning: the process of estimating a pose (3D
position + 3D orientation) based on the previous pose and the sensor output. However, dead reckoning
accumulates errors over time, making it unusable in the long term. These sensors can be used for
odometry but cannot be used alone for SLAM: mapping the environment requires first observing it,
which is by definition impossible with proprioceptive sensors.

Wheel encoders return wheel angular motion. While obtaining the agent pose is simple rigid
body motion, it is not possible to account for slippage or, more generally, any unexpected motion (e.g .,
hitting an obstacle).

Joint angle encoders return the angles between joints and can be used to compute the pose of
articulated parts of the agent with respect to the agent’s main body.

Inertial Measurement Units (IMU) are devices that measure linear acceleration using ac-
celerometers and angular acceleration using gyroscopes. By integrating both the linear and angular
accelerations, it is possible to obtain the agent trajectory. Due to the double linear acceleration in-
tegration, the estimated pose drifts ∝ time squared, and can keep sub-meter accuracy only over very
short lengths of time – a few seconds for low-cost IMUs. In practice, IMUs are used jointly with other
sensors (e.g ., cameras). IMUs used in critical applications: airplanes, submarines, missiles, satellites,
etc., can remain accurate over longer time spans but are correspondingly more expensive.

Exteroceptive sensors

Exteroceptive sensors are used for the observation of the environment: sonars, lasers, cameras, etc.
Compared to proprioceptive sensors, they are not used for dead reckoning but as a source of features
that, compared over time, makes it possible to do SLAM. Interpreting these features is the core of
SLAM systems.

Vision sensors – i.e., cameras – are passive sensors that capture images of the environment,
similarly to a human eye. They work in different wavelengths (visible, infrared, multispectral), can have
a single input (monocular) or multiple inputs (stereo, sometimes more) and different lens properties
(pinhole, fisheye...). Cameras are systems that project 3D points of the environment on a 2D image; a
Visual SLAM computes from 2D images where the camera that took them was. The underlying theory
of modern SLAMs was first defined in 2003 under the name Multiple View Geometry [46]. Multiview
geometry requires an accurate camera calibration, which quantifies lens distortion, focal length, sensor
scale, etc. and is by itself a research topic. Figure 2.1 shows a stereo + depth + IMU camera.

Figure 2.1 – Example of stereo + depth camera with an embedded IMU, a MYNT EYE D1000-120,
the camera we used to create our datasets. Image from the MYNT EYE company website.

The main advantages of cameras are that images are convenient for scene understanding/object
detection and not only SLAM, and cameras are low-cost and almost omnipresent. They are also useful
in contexts were active sensors (LiDARs, Sonars) are not authorized, like medical or military contexts.
Drawbacks include poor image quality under lack of light or certain weather conditions (snow, rain,
dust) as well as hardware specifications that may be limiting for real-time systems (frame rate, image
resolution, shutter speed...).

LiDARs (Light Detection and Ranging) are active sensors that emit laser beams at fixed angular
steps. They measure the reflected pulses to estimate the distance between the sensor and the object.
Beams often operate in the near-infrared spectrum (thus invisible for humans) and work in ranges

2.1. SLAM: SIMULTANEOUS LOCALIZATION AND MAPPING 33

usually from a few meters to a hundred meters. The laser beams may be emitted within a plane,
generating a 2D point cloud, or within a cone, generating a 3D point cloud. LiDARs are sensors
of choice for autonomous vehicles. However, as for cameras, they may be severely affected by dust,
snow and rain. Reflective surfaces are also a problem for LiDARs: they may not be detected at all or
generate virtual objects. For instance, LiDARs assume that laser beams move in a linear fashion, so a
mirrored image of an object (a virtual object) appears as a real object behind the mirror. Figure 2.2
shows examples of LiDARs.

Figure 2.2 – Example of LiDARs from the Velodyne family, used on autonomous vehicles. Image from
Wikipedia.

Radars (Radio detection and ranging) are active sensors that emit electromagnetic waves in order
to estimate the position of objects with respect to the sensor. Like LiDARs, they generate point clouds.
They are used to detect aircrafts, ships, missiles, etc. and rarely for SLAM.

Sonars (sound navigation and ranging) are like radars but use sound waves instead of electro-
magnetic waves. They are often used to locate objects underwater and more rarely for underwater
SLAM.

IR Depth sensors return the distance of objects with respect to the sensor. It may be a simple
IR beam (giving the distance of the first object along a line) or an IR emitter / IR camera pair. In
this case, it generates a depth map, i.e., a grayscale image in which the color is proportional to the
depth. Figure 2.3 shows an RGB+depth camera.

Figure 2.3 – Example of RGB+depth camera, a Kinect, often used in SLAM benchmarks. Image from
Wikipedia.

Absolute positioning systems

Absolute positioning systems directly give the pose of the agent. There are global and local systems.
Global navigation satellite systems (GNSS) emit signals to satellites to estimate the global

position of the emitter based on signal propagation time and the position of the satellites. The most
well-known GNSS system is USA’s Global Positioning System (GPS). GPS may be inaccurate and
consumer-grade ones (e.g ., in a smartphone) have an accuracy rarely better than 1m. Moreover, they
work poorly in places where satellites are hard to reach, especially underground and in tunnels. They

34 CHAPTER 2. SLAMS AND DYNAMIC SLAMS

are nonetheless an almost ubiquitous sensor in autonomous vehicles and used with other sensors that
are more accurate at short ranges, like LiDARs.

Motion capture systems, also known as mocap systems, compute the pose of known mark-
ers within an environment. A popular application is to capture the motion of the human body for
movies/game with IR-reflective markers and IR active cameras – IR cameras coupled with an IR emit-
ter. While mocap systems can be very accurate (<1mm), a major drawback is the need to install the
capture system beforehand. Figure 2.4 shows what a mocap setup looks like. Thus, they cannot be
used to locate an agent without preparing the environment. In practice, for SLAM, motion capture
systems are used to compute accurate ground truths when creating datasets.

Figure 2.4 – Example of motion capture setup. Image from Wikipedia.

2.1.3 Brief history SLAMs
Cadena et al . [17] presents detailed insights on the history of SLAMs until 2016, and we use it as the
main source for this section. SLAM systems are not new: Leonard and Durrant-Whyte [58] proposed in
1991 a multi-sonar SLAM. Interestingly, they already talk about the chicken egg problem of localization
and mapping, which is still today what defines a SLAM: an accurate location is needed for mapping,
and an accurate map is needed for location. The acronym SLAM itself was coined in Durrant-Whyte
et al . in 1996 [33].

SLAM research from the 90s until 2004 has seen the development of probabilistic real-time SLAM
approaches based on Extended Kalman Filters (EKF), Rao-Blackwellized particle filters or maximum
likelihood estimation. SLAMs became world-famous with the self-driving STANLEY and JUNIOR
cars, led by Sebastian Thrun: they won the DARPA Grand Challenge in 2005.

The period from 2004 to 2015 in SLAM research was focused on making SLAMs more efficient,
consistent, and better understood from an analytical point of view, e.g ., with studies on convergence
and observability [32]. It also includes the advent of newer and cheaper sensors like the Kinect in 2010
and the corresponding RGB-D SLAM method [51]. Cheaper sensors are also useful for mass-market
SLAM, like autonomous robotic vacuum cleaners. The first Roomba to use visual SLAM (seventh
generation, 900 series) appeared in 2015.

The period from 2016 until today has seen strong progress in open-sourcing and intelligent SLAMs.
The increasing open-sourcing of SLAM engines like ORB-SLAM [75] in 2015 made it possible for
other researchers to use known SLAM engines as a backend and focus on more complex questions like
SLAM in dynamic environments. It also made repeating experiments and comparing SLAM methods

2.1. SLAM: SIMULTANEOUS LOCALIZATION AND MAPPING 35

easier. With the progress of GPUs (Graphical Processing Units) and deep learning methods, SLAMs
started to integrate learned modules. Those can be steps like feature generation [30], object masking
in Dynamic SLAMs [8] or the whole SLAM, i.e., end-to-end deep SLAMs [106].

There are today a number of open problems. Robustness, both software-wise (recovery after a
SLAM failure) and hardware-wise (failing sensors) is challenging to achieve. The dynamic and/or
deformable aspect of objects or of the environment are complex issue to tackle. Moreover, the fact
that the temporality of changes is variable – seasonal changes occur gradually over months, objects
may move suddenly at unpredictable times, object deformations may be temporary or permanent –
makes the problem even more difficult. Other challenges include collaborative SLAM (multiples robots
working together and sharing maps), computational optimization (on-device intelligent SLAMs) and
scene understanding, especially when SLAM is used for path or action planning.

Note that modern SLAM algorithms as ORB-SLAM are in fact not strictly limited to a static world,
but rather to an almost static world. The meaning of “almost static” depends on the SLAM, but it
would typically include environments where moving objects are only seen from afar, covering only a
fraction of the image. However, this improved robustness is not enough to handle highly dynamic
environments, unlike Dynamic SLAMs.

The key takeaway is that SLAMs have evolved for over thirty years and will continue to do so
towards even more intelligent, fast and efficient systems.

2.1.4 Model-based SLAM

Typical model-based SLAMs are constructed in two parts: the frontend and the backend. The frontend
interprets incoming sensor data through feature extraction. Newly extracted features are then asso-
ciated with features previously extracted and processed. The backend uses optimization techniques
to estimate the map and the agent pose based on the associated data. In general, short-term data
association is used to compute incremental changes while long-term data association is useful for loop
closures (global trajectory optimizations) or relocalization after a tracking loss.

The focus of this thesis being Visual SLAMs, we present camera-based SLAMs. Modern SLAMs
as ORB-SLAM [75] have three key steps: initialization, tracking and mapping. Initialization consists
in computing an initial map – a 3D reconstruction of the environment – and an initial pose from
a set of images. SLAM algorithms perform tracking and mapping continuously: they compute in
turns respectively the new camera pose and update the map. Tracking consists in computing 2D-3D
correspondences between the map and the image in order to estimate camera pose, essentially solving
the Perspective-n-Point (PnP) problem. Mapping consists in updating the map once the new pose is
known, correcting the position of existing 3D points, or creating new ones that correspond to new 2D
features. Figure 2.5 shows the general structure of model-based SLAMs.

Figure 2.5 – General structure of a model-based SLAM pipeline: sensor input, frontend + backend,
map/trajectory output.

There are two schools of thought on the frontend of Visual SLAMs. The first one is to compute

36 CHAPTER 2. SLAMS AND DYNAMIC SLAMS

keypoints, or sparse points representing remarkable elements in the image as corners. The second one
does not actually extract features from the image: the image is a set of features (i.e., pixel values)
and used it directly for pose computation. Figure 2.6 illustrates the difference between direct and
feature-based SLAM.

Figure 2.6 – Illustration of feature-based and direct SLAMs [36].

Feature-based methods

Feature-based methods add a feature extraction step after an image is received by the SLAM. The
rationale is that the full set of pixels from an image – which can amount to several millions – is
difficult to interpret in real-time and contains largely redundant information for SLAM purposes. A
major benefit of having a feature extraction step is that it makes the SLAM algorithm lighter at
runtime and more modular. Modularity makes the replacement of the feature extraction module by a
newer one easier. Figure 2.7 shows the fundamental structure of a feature-based SLAM: the keypoints,
i.e., feature, extraction step and the Tracking Mapping step.

Figure 2.7 – The two main modules of a feature-based SLAM: keypoint generation and Track-
ing/Mapping.

MonoSLAM [28] (2007) is the first work to consider image features as landmarks to build a cor-

2.1. SLAM: SIMULTANEOUS LOCALIZATION AND MAPPING 37

respondingly sparse map. Pose computation then relies on an Extended Kalman Filter (EKF), an
iterative process in a Bayesian framework that continuously updates a full state vector containing the
agent pose as well as the features position.

Also in 2007, PTAM [54] presented the first Bundle Adjustment (BA) method. Bundle Adjustment
consists in minimizing the reprojection error : to compute the camera pose and 3D map that minimizes
the error between the position of observed 2D features and their estimated 2D position if (re)projected
according to the 6D pose and 3D map being optimized. PTAM and later SLAM algorithms successfully
tackled this nonlinear optimization problem with Levenberg–Marquardt techniques [54, 75]. As bundle
adjustment can be too slow for real-time SLAM, modern SLAMs as ORB-SLAM [75] restrict pose/map
optimization to features in keyframes, or frames that are heuristically considered to contain novel
information compared to previous frames. Note that although bundle adjustment is the de facto
standard today, research on EKF-based methods is still active [43].

Focus on ORB-SLAM 2. Since our works in later chapters are based on ORB-SLAM 2, we give
more details about it. Please note that this is for clarity purposes, since we generally consider SLAMs
as black boxes in our works. The monocular SLAM ORB-SLAM [75] and especially its extension
to stereo / RGB-D sequences ORB-SLAM 2 [76] are popular in SLAM research as they are open-
source, modular and state-of-the-art methods among general SLAM algorithms (Dynamic SLAMs
excluded). Figure 2.8 shows the structure of the base ORB-SLAM. Its main modules are Tracking
– feature extraction, data association, and pose estimation –, Mapping – graph-based map creation
and optimization –, and optionally Loop Closing – long-term global optimization when the camera
trajectory loops – and Relocalization in case of tracking loss. After initialization, data association
consists in matching newly detected features with the 3D map previously built by the SLAM.

Figure 2.9 shows that the main difference between both versions of ORB-SLAM is that the data
association step now includes merging data from different sensors, a pair of cameras for stereo and
a combined camera + depth sensor for RGB-D, through subprocesses called resp. rectification and
registration. Rectification is the projection of left/right RGB images on a common plane, which is
necessary to find common features between the images. Registration means matching an RGB image
to a depth image in order to know the depth of every RGB pixel. In all cases, it is necessary to
calibrate the camera [46].

Direct methods

Direct methods directly use an image as input to the pose/map optimization process. The general
approach is to maximize photometric consistency, as in photogrammetry tasks. A key difference with
feature-based methods is that the feature extraction step does not exist. In practice, this has the
advantage of making the creation of dense reconstructions easier and the SLAM more robust to poorly
textured environments, where feature extraction is difficult. On the other hand, direct SLAMs are
more sensitive to light changes. The first direct SLAMs appeared in 2007 [88]. Popular approaches
today include LSD-SLAM [36], DSO [35] and its evolution LDSO [39]. Note that the concepts of
feature-based/direct and map density are separate. Namely, DSO minimizes photometric error, so it
is direct, but generates a sparse map.

2.1.5 Learning-Based SLAM

Learning-based SLAM is completely different from model-based SLAM in the sense that the module
that transforms a series of images to a trajectory is not crafted but learned from input sequences. In
particular, deep networks using Convolutional Neural Networks (CNN) or Recurrent Neural Networks
have reached the state-of-the-art for certain relocalization or odometry tasks. A major advantage of
learning-based systems is that they are end-to-end, removing the need for intermediate steps. However,
this makes the design and interpretation of such systems more difficult.

Another major difference of learned SLAMs is that the map is typically not available: the trained
model has an internal representation of the environment, but it cannot be easily interpreted. For

38 CHAPTER 2. SLAMS AND DYNAMIC SLAMS

Figure 2.8 – ORB-SLAM architecture [75]. The initialization, feature detection, tracking and mapping
steps are clearly separated. It supports only monocular sequences.

this reason, it is an abuse of language to call trained models used for odometry as learning-based
SLAM. On the other hand, these models often also estimate image depth, which can be used for map
reconstruction. In practice, these learned models are called both learned odometry and learned SLAM.

Learned Visual Odometry

A milestone in learned visual odometry is DeepVO [106] in 2017, which is a monocular odometry
system relying on Recurrent Convolutional Neural Networks – a mix of CNNs and RNNs. Together
with the increasing use of GPUs for deep learning and the increasing interest in data-driven algorithms,
many other algorithms followed: UndeepVO [60], D3VO [113], DeepTAM [119], DeepSFM [108], ...

In practice, learned odometry does not (yet) perform as well as model-based SLAM and are dif-
ficult to generalize to environments not included in the training data. On the other hand, they have
made major progress in the last years, and may become the undisputed state-of-the-art in the future.
Figure 2.10 compares a learning-based visual odometry, DeepVO, to the typical model-based approach.

Another significant difference with model-based SLAM is the overlap, both in terms of network
architecture and training data, with other domains. For instance, learned depth estimation from
RGB images is an active research topic [23, 114, 37, 68, 44, 44]. Depth may also be an additional
output from a network designed primarily for odometry purposes [113]. Depth necessarily appears
in pose computation, explicitly or not – which is why it makes sense that models able to compute
a trajectory would also be able to compute the depth of an image. Overall, other domains dealing
with pose estimation have strong similarities in terms of network architecture, like object/human pose
estimation [59, 90, 27, 6], place recognition [117], feature/keypoint computation [29, 115] and motion
prediction [25].

2.2. DYNAMIC SLAM: SLAM IN DYNAMIC ENVIRONMENTS 39

Figure 2.9 – ORB-SLAM 2 architecture [76]. It is an extension of ORB-SLAM to stereo and RGB-D
sequences.

2.1.6 Hybrid approaches

Hybrid approaches are a compromise between the power of deep learning and the convenience of model-
based approaches. They consist in replacing key modules in the SLAM pipeline (fig. 2.8) as the feature
extraction step with learned modules. An example is LIFT-SLAM [16], which uses LIFT [115] for
keypoint detection. A similar example is SuperpointVO [30].

Deep learning networks can also work as virtual depth sensors for integration in monocular SLAMs.
CNN-SLAM [97] and [67] proposed such approaches. Another major use case is object detection for
SLAM in dynamic environments – we talk about this in details in section 2.2 and later chapters.

Today, virtually all modules of a model-based SLAM have their “deep” counterpart [26, 80, 102, 70,
31, 97, 83, 15, 98, 64]. While learning-improved SLAMs have attained unprecedented performance, the
usual drawbacks persist: the need for training data, computational complexity, memory requirements,
lack of explainability. Considering the fast advances in AI research, this justifies why deep methods
are almost omnipresent and at the same time replaced very quickly.

2.2 Dynamic SLAM: SLAM in Dynamic Environments

2.2.1 Problem formulation and choice of a feature-based Dynamic SLAM

Modern Visual SLAMs [76, 39] are mature and used in real-life applications such as Robotics and
Autonomous Vehicles. Dynamic SLAMs, or SLAMs designed for dynamic environments, are an active
research topic. [81] gives an overview of Dynamic SLAMs: the general principle is to remove image
features on dynamic objects so that the SLAM only uses static features. Current methods detect
motion, semantically segment dynamic objects, or both.

Given a geometric SLAM algorithm, making it robust to dynamic objects is relevant to real-world
applications since it generalizes the SLAM from static to dynamic environments. Keeping the original,
non-learned modules of an existing SLAM is valuable as it limits generalization issues encountered
by learned algorithms, e.g ., end-to-end SLAMs [107]. Since end-to-end SLAMs do not have a map
available, as explained in section 2.1.5, end-to-end SLAMs cannot be used for applications requiring
an exploitable map.

For these reasons, we focus on Dynamic SLAMs that keep the original SLAM modules. Between
a feature-based SLAM (section 2.1.4) and a direct SLAM (section 2.1.4), it is much simpler to filter

40 CHAPTER 2. SLAMS AND DYNAMIC SLAMS

Figure 2.10 – Comparison between model-based SLAMs and a learning-based, end-to-end visual SLAM
DeepVO [106].

unwanted features than it is to interfere in a photometric alignment process during SLAM. A direct
SLAM expects a dense input (images) and relaxing this hypothesis is not trivial. Moreover, features
are sparse compared to images, which makes the manipulation and analysis of features faster and
simpler. These reasons explain why the vast majority of Dynamic SLAMs are feature-based, and not
learned or direct. Thus, we focus on feature-based SLAMs in this thesis.

Figure 2.11 shows the basic structure of a feature-based Dynamic SLAM. The main difference with
a feature-based SLAM (fig. 2.7) is the addition of a module to filter image features – i.e., keypoints.
From the input image, a new module generates a mask of areas considered dynamic, and then all
features in masked areas are removed in the filtering step before proceeding to the normal Tracking
and Mapping steps.

Another possibility would be to detect points only areas of the image that are considered static,
i.e., pre-filter features. In practice, this would cause edge effects as feature detectors analyze the
image by patches, sometimes the full image at once in case of learned detectors. Thus, pre-filtering
features is much more likely to cause unexpected issues than post-filtering them. This also explains
why post-filtering is the standard approach.

2.2. DYNAMIC SLAM: SLAM IN DYNAMIC ENVIRONMENTS 41

Figure 2.11 – The structure feature-based Dynamic SLAM: keypoint generation, Tracking/Mapping
and a keypoint filtering step based on masks computed from the input image.

2.2.2 Motion-based, geometrical masking

Motion-based masking approaches filter features in dynamic regions [57, 21, 110, 84], typically with
optical flow. [81] surveys many non-learned Dynamic SLAMs and concludes with “handling missing,
noisy, and outlier data remains a future challenge for most of the discussed techniques [...] Most
techniques also have difficulty in dealing with degenerate and dependent motion.”.

Optical flow approaches [20] compute pixel displacements between frames but may not work if
dynamic objects occupy most of the scene or have an erratic motion.

Depth maps approaches [93] use the additional depth information to identify salient objects but
are limited by sensor range and resolution.

Clustering/background-foreground approaches [61, 94] identify dynamic objects by grouping and
assigning probabilities to points with similar motions but have high computational costs and do not
work well with noisy or degenerate motions [81].

A general limit of motion-based masking approaches is the underlying assumption that
most of the image corresponds to static objects. The motion consensus of an image is often
computed through algorithms like RANSAC (Random Sample Consensus), which consist in separating
“inliers” from “outliers”. Inliers are points that fit a predetermined model and outliers those that do not.
The consensus is another name for the set points that fit the model. Therefore, in a SLAM context,
the motion consensus is the underlying motion of the inliers with respect to the camera. Thanks
to the mostly static world assumption, we assume that inliers are fixed with respect to the ground,
which means that the relative motion between the camera and the frame of reference corresponding
to the inliers is in fact the motion of the camera with respect to the ground. Note that “mostly static”
theoretically means here 50% of features are static. This is unlike

In case of motion consensus inversion, the SLAM considers static objects as dynamic and vice-
versa – effectively swapping inliers and outliers. This makes the SLAM use dynamic objects as frame
of reference: the SLAM consequently drifts when the objects move. Such inversions occur when most
of the features are on dynamic objects, which may occur when they are too close to the camera. The
SLAM fails because inliers are not fixed anymore with respect to the ground: this implies that the
computed motion is not the trajectory of the camera with respect to the ground. This applies to all
geometry-based approaches: optical flow, depth maps, clustering and others.

To illustrate the limitations of the optical flow approaches, consider the object, a dragon, in fig. 2.12
(more images in fig. 4.6, section 4.5.3). The difficulty is that the camera and the object may be moving
at the same time. Note that some approaches compensate the camera motion, as the Dynamic SLAM
based on Lucas-Kanade flow in section 5.3.2, but this supposes that we have a way to estimate the
camera motion before the actual SLAM. This estimation is in fact accurate only outside motion
consensus inversions, which is the very problem we are trying to solve – so we are deadlocked, unless
we use a method that does not rely on geometry.

For illustration purposes, we compute a dense optical flow using OpenCV1 and PWC-Net [91], a
learned optical flow method. Figure 2.13 shows we can see that the difference between a moving object
and the background, but we cannot distinguish between a situation where all objects are moving, or

1https://docs.opencv.org/4.5.4/d4/dee/tutorial_optical_flow.html

42 CHAPTER 2. SLAMS AND DYNAMIC SLAMS

Figure 2.12 – An object used in our datasets, a dragon.

none are. Figure 2.14 shows a different situation: the object is moving in all cases, but it can be
identified only in the first case, being almost invisible in the second one.

Figure 2.13 – Example of optical flow using OpenCV. The camera is moving in both scenarios. The
object is static in the left image and moving in the right image. We cannot distinguish between a
situation where all objects are moving, or none are.

Figure 2.14 – Example of optical flow using PWC-Net [91]. The camera and the object are both moving
in the two images. The object is far from the camera in the left image and close to it in the right one.

2.2.3 Semantic masking approaches

Semantic masking approaches [53] typically use networks as Mask R-CNN [47] to filter features on
objects of specific classes (e.g ., cars). Most have the masking module placed right after feature com-
putation: they either remove features on dynamic objects or process them separately. As semantic
segmentation does not rely on motion consensus, these approaches are unlikely to suffer MCIs and
drift unless there are dynamic objects of unknown classes. However, they tend to mask objects even
if they are not moving (e.g ., parked cars) and cause early SLAM failure when there are not enough
remaining features.

2.2. DYNAMIC SLAM: SLAM IN DYNAMIC ENVIRONMENTS 43

2.2.4 Hybrid approaches
Hybrid approaches combine semantic and motion masking. [8] combines multiview geometry and se-
mantic segmentation to remove features on dynamic objects of known and unknown objects. However,
it may remove too many features and fail as it unconditionally masks all detected objects, even if they
are not moving. Some hybrid approaches apply semantic masks only when they consider the masked
object dynamic. [82] depends on motion detection: it classifies features as static/dynamic according
to the semantic class of the object they are on and how many times the corresponding reconstructed
map points have been observed at the same position. However, reconstructed points on a dynamic
object may be mistakenly considered static under motion consensus inversion, making the method fail.
[3] computes an approximate camera motion using features that are considered static by the seman-
tic segmentation, then selects the dynamic features that are on motionless objects using photometric
error, and finally inputs both static and selected dynamic features into the SLAM backend. However,
if there are features only on objects of dynamic classes, it will be unable to compute the camera pose
and fail. [109] is similar to [3] but uses reprojection errors instead of photometric errors.

[5, 118] are two-step approaches: they learn to segment dynamic objects at training time and
do only semantic masking at runtime, so they may suffer from early failures. [5] creates a database
of dynamic objects by comparing point clouds. However, [5] requires training sequences recording
the same location at different times, does not detect objects that do not move between training
sequences, and needs a full stereo camera + LIDAR setup. [118] first trains a depth estimation CNN
with self-supervision then generates outlier masks – i.e., masks that give the probability of a pixel
being photometrically consistent with the previous frame – from depth estimation results at runtime.
However, this method requires an existing semantic segmentation network to start training. Moreover,
it depends on photometric / consistency losses and those are misleading under an MCI: when a dynamic
object covers most of an image, both photometric error and consistency error would be low as the object
appears as an inlier instead of an outlier, so outlier mask estimation would not work under an MCI.
Finally, both [8, 118] remove detected objects unconditionally even if they are not moving, and may
fail if they remove too many of them.

To the best of our knowledge, all current vision-only Dynamic SLAMs have fundamental limitations
related to dynamic objects – e.g ., motion consensus inversions or early failures due to excessive masking.
The key cause is the dependency on instantaneous motion detection, which is not reliable in some
cases. Later in this thesis, we first propose the solution to the problem of unknown objects and MCIs
in chapter 5. We then propose in chapter 6 a radically different approach as we predict the effect of
objects on the SLAM. We do so by adding temporal masking to a SLAM: a memory-based decision
module that signals the SLAM when to apply given semantic masks.

44 CHAPTER 2. SLAMS AND DYNAMIC SLAMS

Chapter 3

Understanding the relation between
image features and Dynamic SLAM
performance

The goal of this chapter is to reflect the exploratory work that later resulted in our contributions:
outlier-based masking, Temporal Masking, datasets, and metrics. We consider the Dynamic SLAM
problem as formulated in section 2.2.1, so we focus on feature-based Dynamic SLAM.

Current Dynamic SLAM research is mostly about improving the accuracy of SLAMs when objects
move by removing the appropriate features. While image features (i.e., keypoints) [45, 78] and their
uses in feature-based SLAMs [75] have been studied for years, the relation between features and
Dynamic SLAM performance is unclear. Therefore, we conducted a set of experiments to understand
this relation to methodically improve feature-based Dynamic SLAM algorithms. We interchangeably
use keypoint and feature in this chapter. The main results are:

1. Filtering keypoints with external learned tools offers better generalization and performance per-
spectives for Dynamic SLAMs (section 3.1) than filtering keypoints with geometrical, manually
crafted solutions, or using end-to-end learned keypoint detectors.

2. Evaluating SLAM performance is difficult due to SLAM repeatability issues (section 3.3.3) and
the need for metrics to account for failures (section 3.2).

3. Feature-based SLAMs are typically configured to use less than 5000 keypoints: in this context, the
2500-3000 range maximizes SLAM performance for the classical keypoint detectors we evaluated
(section 3.2).

4. Learned keypoint detectors are, by design, more repeatable than classical ones (section 3.3.2).

5. Superior keypoint detector repeatability does not imply superior SLAM accuracy (section 3.3.2),
but self-supervised learning can be used to force this relation (section 3.3.3).

6. Keypoint detection repeatability does not imply SLAM repeatability. But SLAM-repeatable
keypoints – both inliers and outliers – can be used to generate objects masks for keypoint filtering.
Using these masks improves SLAM performance (section 3.4.2). It is possible to create dense
masks by leveraging learned methods (section 3.4.3).

7. Keypoint filtering should consider the temporal aspect of the scene, masking objects when nec-
essary to keep as many useful features as possible (section 3.5).

45

46 CHAPTER 3. DYNAMIC SLAM PERFORMANCE AND KEYPOINTS

3.1 Keypoints as the cornerstone of feature-based SLAMs

As explained in section 2.1.4, keypoints are image features crucial for feature-based SLAMs since they
are the link between the video sequence and the Tracking/Mapping backend. In this section, we clarify
their place in SLAMs and Dynamic SLAMs.

3.1.1 The use of keypoints in SLAMs

Features/keypoints are key elements of an image (e.g ., corners) that are matched across frames in
order to compute a trajectory. Figure 3.1 illustrates such features. Note that for matching purposes,
feature detectors are combined with a feature descriptor, which computes a fixed-size, real-valued
vector encoding the unique appearance of the neighborhood of the feature. For instance, ORB-SLAM
[75] relies on the ORB feature detector [78], which combines the FAST detector and Rotated BRIEF
descriptors. Descriptors are designed to make descriptions unique and easily matched, even if the scene
illumination or point of view changes. Keypoint detection is an active research topic.

Feature detection methods can be grouped into end-to-end methods – i.e., fully learned methods
– and classical methods, which are geometry-based. Classical methods typically have the advantage
of being faster to compute and lightweight [78] compared to end-to-end methods. On the other hand,
end-to-end methods [115], thanks to the advances in deep learning, are achieving superior robustness
in terms of point matching.

Figure 3.1 – Illustration of matched features (green points) in a SLAM.

3.1. KEYPOINTS AS THE CORNERSTONE OF FEATURE-BASED SLAMS 47

3.1.2 Filtering keypoints in Dynamic SLAMs
We previously explained in section 2.2 the principle of feature-based Dynamic SLAMs: to filter features
that are on dynamic objects by masking the latter, i.e., dynamic features. However, the concept of
what is dynamic is ambiguous, which leads to problems as motion consensus inversions (presented in
section 4.2.2). We may have:

1. No learning: geometric considerations, like the optical flow, are used to tell which features are
dynamic.

2. External learned tools: to identify dynamic features, we use an external learned algorithm.

3. Implicit learning: in the case of end-to-end features, the feature detector directly computes
static features, or alternatively directly classifies its own features in static/dynamic, e.g ., [30].

Purely geometrical approaches with no learning are difficult to improve further. In implicit ap-
proaches, it is virtually impossible to decouple the keypoint detector from the dynamic point classifier –
it is a monolithic trained model. This severely limits the use of different feature detectors, in particular
classical ones, which may be a requirement in some industrial or medical settings. Another benefit of
decoupling, which appeared much later (in chapter 6), is that dealing with complex scenarios requires
a memory-based approach. Integrating memory in a keypoint detector is a very delicate matter as
they are normally stateless and designed to operate on a frame-by-frame basis. Moreover, it would
make the keypoint detector bloated and exceedingly complex.

For these reasons, we chose the external learned tools path: this option offers the best perspectives
and generalization. Note that this does not prevent using learned feature detectors as [29]. We just
need to make our decisions on features being static/dynamic independent from the keypoint detector.

48 CHAPTER 3. DYNAMIC SLAM PERFORMANCE AND KEYPOINTS

3.2 Influence of the number of features on SLAM performance
The core parameter of most non-learned keypoint detectors is the maximum number of detected fea-
tures – there may be less at runtime. The configured number of features to use in a SLAM varies
significantly but is usually less than 5000. To ensure that our research is not biased by a suboptimal
configuration of this setting, we need to determine the number of features lower than 5000 that maxi-
mizes SLAM performance for various keypoint detectors. This implies that future SLAM improvements
are obtained thanks to our method and not just a better configuration of the SLAM. Unexpectedly,
we identified the issue of SLAM repeatability: SLAM results can be unstable, hence SLAMs must be
evaluated over several executions of the same dataset.

3.2.1 Experimental Setup
We ran a modified ORB-SLAM 2 [76] on six popular sequences of the TUM RGB-D dataset (presented
in section 4.3.2) with various keypoint detectors: ORB-SLAM 2’s native detector ORB and OpenCV
library’s GFTT, Shi, Shi-Harris and SIFT detectors1. We increased the number of features from 500
to 6000 in steps of 50, running the SLAM 24 times per step.

The modifications in ORB-SLAM 2 consisted in replacing the original detector by an abstraction
layer that calls upon the appropriate keypoint detector. Note that as ORB-SLAM 2 uses image
pyramids (8 by default) – i.e., combined feature computation and matching on the same image at
different resolutions –, we can run keypoint detectors in two ways: multi-layer or single-layer. In
multi-layer, we apply the given keypoint detector on every pyramid level (as ORB-SLAM 2 original
worked); in single-layer, we use the given detector only on the full resolution image. Certain detectors
as SIFT already support pyramid levels internally, thus we prevent them from doing so, limiting them
to one internal pyramid in multi-layer mode; in single-layer mode they are set to use internal pyramids.
The native ORB-SLAM 2 detector ORB always runs in multi-layer mode. In this experiment, we use
multi-layer mode for all detectors that do not support internal pyramids, and single-layer mode with
internal pyramids otherwise.

3.2.2 Evolution of SLAM performance with the number of features
Figure 3.2 shows the results for the GFTT keypoint detector and fig. 3.3 for the ORB keypoint
detector. It appears, for all detectors, that the accuracy varies significantly although the median
accuracy reaches the expected baseline. We can also see that the Tracking Rate and the ATE RMSE
may evolve differently with the number of features, making the interpretation of results difficult.

Therefore, we need a way to compare to compare results even if the ATE RMSE and
Tracking Rate behave differently.

1Source: https://docs.opencv.org/4.5.4/d5/d51/group__features2d__main.html and
https://docs.opencv.org/4.5.4/d3/df6/namespacecv_1_1xfeatures2d.html

3.2. INFLUENCE OF THE NUMBER OF FEATURES ON SLAM PERFORMANCE 49

Figure 3.2 – Benchmark of ORB-SLAM using the GFTT keypoint detector. We show the ATE RMSE
and Tracking Rate. The red line indicates ORB-SLAM 2’s performance in the original paper.

Figure 3.3 – Benchmark of ORB-SLAM using the original ORB keypoint detector. We show the ATE
RMSE and Tracking Rate. The red line indicates ORB-SLAM 2’s performance in the original paper.

50 CHAPTER 3. DYNAMIC SLAM PERFORMANCE AND KEYPOINTS

We propose to evaluate SLAM performance with the Weighted ATE RMSE (WATE)
instead of the ATE RMSE: WATE = ATE RMSE

TR+ε , with ε = 10−7. This metric is our first attempt at
combining ATE RMSE and Tracking Rate. It will later evolve into new metrics proposed in section 4.4.
The analysis with the new metrics is shown in fig. 3.4 and fig. 3.5, without error bars. Results for
other keypoint detectors are in appendix B.1. While the results with the ORB detector are smooth,
the results on GFTT are unstable for a feature number over 3000. For both detectors, we can clearly
see how the SLAM starts working at about 1000 features, with a Tracking Rate and Weighted ATE
RMSE that stabilizes. We have comparable results on other detectors (Shi, Shi-Harris, SIFT). For a
combined view, fig. 3.6 shows the Weighted ATE RMSE of the ORB detector on all six sequences at
the same time.

Figure 3.4 – Benchmark of ORB-SLAM using the GFTT keypoint detector. We show the Weighted
ATE RMSE and Tracking Rate. The red line indicates ORB-SLAM 2’s performance in the original
paper.

The conclusion of this experiment is that it is safe to use 2500 to 3000 features for all
keypoint detectors and that we have to include the Tracking in a performance analysis. Hence, we
use the value of 3000 features for our ORB-SLAM 2 experiments, using the ORB detector, in the next
chapters.

3.2. INFLUENCE OF THE NUMBER OF FEATURES ON SLAM PERFORMANCE 51

Figure 3.5 – Benchmark of ORB-SLAM using the original ORB keypoint detector. We show the
Weighted ATE RMSE and Tracking Rate. The red line indicates ORB-SLAM 2’s performance in the
original paper.

Figure 3.6 – Benchmark of ORB-SLAM using the original ORB keypoint detector. We show the
Weighted ATE RMSE and Tracking Rate on six sequences at once.

52 CHAPTER 3. DYNAMIC SLAM PERFORMANCE AND KEYPOINTS

3.3 Relation between keypoint detector repeatability and SLAM
performance

We evaluate in this section both learned and classical, non-learned keypoint detectors. Our goal is to
compare both approaches and at the same time understand how much the repeatability of keypoint
detectors – the main metric of keypoint detectors – affects SLAM performance. It appears that a
keypoint detector being learned or having a higher repeatability does not imply better SLAM perfor-
mance. A positive outcome of our experiments is that we identified the importance of self-supervision
for Dynamic SLAM.

3.3.1 The main keypoint detector metric: repeatability
An essential property of keypoint detectors is repeatability: the fact that keypoints are repeatedly
detected on the same physical location in different images. We started by testing how repeatable
keypoint detection is. The rationale is that if keypoint detection is repeatable, there may a repeatable
property unique to dynamic objects that we could later repeatedly detect.

The standard way to evaluate repeatability is to check if features are physically detected on the
same locations, within a certain error margin, between two images of the same scene but from two
different points of view. If there are no multiple point of views of the same scene, a fallback approach
is to warp images to simulate new points of views. A standard benchmark for this purpose is the
HPatches dataset [4]. Figure 3.7 shows a sample from it.

Figure 3.7 – Illustration of images from the HPatches dataset [4] for keypoint detector repeatability
tests.

Repeatability computation consists in comparing the keypoints on the common part of an original
image and its warped (and if needed, cropped) counterpart. Keypoints on the warped image are
projected onto the original one – i.e., unwarped – before comparison, and we check if there is another
keypoint within ε pixels of the original one. It is necessary to restrict the comparison to the common
part as the projection may make some points fall out of bounds. Figure 3.8 illustrates the keypoint
detection process on an image and its warped version. Note that keypoint detection may require
cropping the original image, especially if using trained models that require an input of fixed size.
Figure 3.9 shows the process of matching an image and its warped counterpart for comparing keypoints.

3.3. RELATION BETWEEN KEYPOINT DETECTOR REPEATABILITY AND SLAM PERFORMANCE53

Figure 3.8 – Illustration of keypoint detection on the original image and the warped image. The images
are cropped to the same dimensions before detection. Original image from the COCO dataset [65].

Figure 3.9 – Visual representation of keypoint repeatability computation. Once we have the keypoints
from the original image and the warped image, the keypoints of the warped image are projected onto
the original image. Repeatability computation evaluates keypoint repeatability only on the common
part between the original image and the unwarped image.

54 CHAPTER 3. DYNAMIC SLAM PERFORMANCE AND KEYPOINTS

3.3.2 Experiments
Experimental Setup

Our first experiments are the qualitative and quantitative evaluation of the repeatability of various
keypoint detectors: SuperPoint [29] and variants of it as well as the Harris corner detector [45].

The Harris corner detector is a lightweight classical keypoint detector that has been used for a
long time for SLAM purposes. It relies on geometrical considerations and consists in the selection of
points whose local structure (made of spatial derivatives) have the highest Harris response, i.e., the
smallest eigenvalue.

SuperPoint is a learned detector that obtained State of the Art results and performance com-
parable to classical keypoint detectors. The underlying network has a keypoint output (location of
keypoints) and description output. It is trained through self-supervision in three steps. a) Pre-training
step, where it uses synthetic, automatically generated images and their known corners as ground truth.
Figure 3.10 shows such an image. b) Automatic labelling through a process called homographic adapta-
tion, which consists in detecting keypoints on warped versions of the same image using the pretrained
model, then aggregating them after unwarping the image. c) Joint training of the keypoint detector
and descriptor using the automatically labeled images. Figure 3.11 illustrates the training process and
fig. 3.12 illustrates the homographic adaptation process.

Figure 3.10 – A synthetic image for pretraining or repeatability tests. Green points are labels.

Figure 3.11 – Illustration of SuperPoint training process [29].

Figure 3.12 – Illustration of SuperPoint homographic adaptation [29], which is used for automatic
labelling of images using a pretrained model.

3.3. RELATION BETWEEN KEYPOINT DETECTOR REPEATABILITY AND SLAM PERFORMANCE55

Comparison of detector repeatability between a classic and a learned keypoint detector

We trained the SuperPoint detector ourselves by adapting a public implementation2. We trained four
variants of it:

1. MagicPoint Shapes: the model resulting from the pretraining step, trained only on synthetic
shapes

2. MagicPoint COCO: the model resulting from the full training but without training the descriptor,
using COCO images [65] for the last step.

3. SuperPoint COCO: the model resulting from the full training descriptor included, using COCO
images.

4. HarrisPoint: the same as SuperPoint COCO but image labels are computed using the Harris
corner detector, effectively skipping step 1) and 2) of the SuperPoint pipeline.

We evaluated the repeatability of the Harris corner detector and our trained models on random
samples of 200 images from various datasets: HPatches, Synthetic shapes (similar to the ones used for
the pretraining of SuperPoint), and COCO. For COCO, we tested degrading the quality of the images
through lossy JPEG compression. The rationale is to check detector robustness to the loss of input
information. Figure 3.13 illustrates the degradation of image quality.

Qualitatively, we can see the detection result on images of 50%, 90% and 100% quality (no compres-
sion) resp. in fig. 3.14, fig. 3.15 and fig. 3.16. We can see that the learned detectors tend to generate
less dense keypoints than the Harris corner detector. Additionally, compression artifacts cause the ap-
pearance of bogus keypoints that do not correspond to any physical object. Between learned models,
MagicPoint Shapes has points that do not correspond to any real object, but those vanish in Magic-
Point COCO and SuperPoint COCO. HarrisPoint COCO seems to generate less keypoints than the
Harris corner detector. Interestingly, the latter detects less points as image quality decreases, possibly
because the local structures are altered to the point that the Harris response is too low.

Table 3.1 shows the quantitative results. SuperPoint COCO appears as the best performer on
natural images, especially of high quality. The Harris corner detector performs the best on synthetic
shapes or small patches. HarrisPoint has the lowest performance.

The overall conclusion is that the learned keypoint detector SuperPoint is better on high-quality
real-life images, MagicPoint Shapes on low-quality real-life images, and the Harris corner detector on
synthetic images and HPatches images. This suggests that learned detectors are more repeatable on
real-life images than classical detectors, which makes sense as they were trained for that.

Keypoint detector Synthetic HPatches COCO50 COCO80 COCO90 COCO95 COCO99 COCO100
MagicPoint Shapes 0.409 0.711 0.617 0.597 0.577 0.592 0.619 0.618
MagicPoint COCO 0.454 0.724 0.484 0.494 0.597 0.687 0.734 0.705
SuperPoint COCO 0.354 0.530 0.527 0.541 0.648 0.694 0.722 0.716

HarrisPoint 0.386 0.872 0.461 0.449 0.449 0.463 0.487 0.484
Harris 0.459 0.810 0.540 0.523 0.489 0.499 0.473 0.469

Table 3.1 – Repeatability of various keypoints detectors (Harris and trained models based on Super-
Point) on various dataset samples of 200 images: from synthetic shapes, HPatches, and COCO dataset.
The number after COCO indicates the quality of images in terms of JPEG compression.

2https://github.com/rpautrat/SuperPoint

56 CHAPTER 3. DYNAMIC SLAM PERFORMANCE AND KEYPOINTS

Figure 3.13 – Examples of images of degraded quality using various levels of JPEG compression.

Figure 3.14 – Illustration of different keypoints detection methods on an image at 50% quality. Original
image from the MS COCO dataset.

3.3. RELATION BETWEEN KEYPOINT DETECTOR REPEATABILITY AND SLAM PERFORMANCE57

Figure 3.15 – Illustration of different keypoints detection methods on an image at 90% quality.

Figure 3.16 – Illustration of different keypoints detection methods on an image at 100% quality.

58 CHAPTER 3. DYNAMIC SLAM PERFORMANCE AND KEYPOINTS

Comparison of performance between keypoint detectors

The OpenCV library provides a variety of keypoint detectors that can easily be tested. We evaluate the
following keypoint detectors: ORB (ORB-SLAM 2 native keypoint detector), BRISK, SIFT, SURF,
KAZE, AKAZE, Harris-Laplace, MagicPoint COCO (our model), SuperPoint COCO (authors’ pre-
trained network), Shi, Shi-Harris, GFTT, FAST, MSD, AGAST and STAR3. Note that the keypoint
description process used for matching points (Rotated BRIEF in ORB-SLAM 2), is unchanged.

As we defined in section 3.2 the best number of features, 3000, we can compare keypoint detectors
and link this result with the experiments on repeatability. The issue is that comparing detectors is
tricky even with the Weighted ATE RMSE due to major SLAM failures. Failures cause the SLAM not
to output anything, hence the ATE RSME – and the WATE RMSE – cannot be computed. For this
reason, we used an alternate solution unique to this experiment.

We run ORB-SLAM 2 24 times on every sequence and compute the miss rate, i.e., how many runs
did not produce any output. We consider that the detector failed on a given sequence if the miss rate
is over 20%. Then we rank detectors from better to worse according to their WATE RMSE for every
sequence – first successful detectors according to their WATE RMSE (lower = better), then failed
detectors according to their miss rate (lower = better). Finally, we compute the mean rank of every
detector across the full dataset.

Table 3.2 shows the results in single-layer mode and table 3.3 in multi-layer mode. The overall best
is the original ORB keypoint detector in both cases. A first conclusion is that the overall best
detectors are the classical ones ORB and SIFT, which is consistent with their popularity in the
research community. Surprisingly, the learned detectors were not top performers although
they are supposedly the most repeatable. This matches the analysis in the next section, section 3.3.3:
we need a direct link between keypoint detector design and SLAM though self-supervision to ensure
performance. We can summarize the result as: better keypoint repeatability through change of
point of view does not imply better trajectory accuracy or Tracking Rate, although there
is a positive correlation.

ORB 4.54
SIFT 4.91

AKAZE 4.91
MAGICPOINT_COCO 5.25

SURF 6.39
SUPERPOINT_COCO 6.51

BRISK 6.92
HARRIS_LAPLACE 7.91

AGAST 8.38
FAST 8.60
GFTT 8.87
SHI 8.91
MSD 9.05

STAR_DETECTOR 9.11
KAZE 10.28

SHI_HARRIS 11.08

Table 3.2 – Mean rank of keypoint detectors in
single-layer mode on the TUM RGB-D dataset.

ORB 3.76
BRISK 5.16
SIFT 5.38

AKAZE 5.47
SURF 6.10
KAZE 6.80

HARRIS_LAPLACE 7.03
MAGICPOINT_COCO 7.63

SHI 8.29
SHI_HARRIS 8.30

SUPERPOINT_COCO 8.67
GFTT 8.98
FAST 10.21
MSD 10.47

AGAST 10.81
STAR_DETECTOR 11.40

Table 3.3 – Mean rank of keypoint detectors in
multi-layer mode on the TUM RGB-D dataset.

In conclusion, the Weighted ATE RMSE and the mean rank were useful to quantify SLAM per-
formance using different keypoint detectors. Still, they are not very suitable for comparison between
different SLAM algorithms as the mean rank and the Weighted ATE RMSE are both hard to interpret
in terms of accuracy/robustness. For these reasons, we will present better metrics in section 4.4).

3Documentation: https://docs.opencv.org/4.5.4/d5/d51/group__features2d__main.html and
https://docs.opencv.org/4.5.4/d3/df6/namespacecv_1_1xfeatures2d.html

3.3. RELATION BETWEEN KEYPOINT DETECTOR REPEATABILITY AND SLAM PERFORMANCE59

3.3.3 Thoughts on keypoint detector repeatability, SLAM repeatability
and self-supervision

Keypoint detector repeatability vs. self-supervision

We saw that learned approaches benefit from self-supervision, while labels coming from another source,
like another keypoint detector, have poorer results. SuperPoint, and its later adaptation in a Dynamic
SLAM, SuperPointVO [30], have several common points with our Dynamic SLAM problem. The
question of image features is actually an ill-posed problem, like Dynamic SLAM when the frame of
reference is not defined (section 1.1). The key issue is that keypoints are used for complex tasks – image
stitching, SLAM, motion tracking, etc. –, so measuring the performance of keypoint by themselves is
not enough. In practice, we still evaluate a key property of keypoints: their repeatability. However,
this property does not ensure that a keypoint is “good” for the task they are employed.

To deal with the gap between a keypoint detector being repeatable and keypoints performing well
in a SLAM, the authors of SuperPointVO added a third branch to SuperPoint that classifies their
own detected points into dynamic, unknown, and static. The labels of this branch are automatically
computed by running a lightweight SLAM and checking the stability of the map points corresponding to
the detected keypoints – effectively making network training self-supervised. In this way, one increases
the chances that the computed keypoints will perform well in a SLAM setting.

As previously explained in section 3.1.2, having the classification as static/dynamic intrinsically
tied to the keypoint detector imposes major limitations. Still, the idea of using self-supervision to
solve the ill-posedness of a problem is valuable, and eventually inspired our approaches.

Keypoint detector repeatability vs. SLAM repeatability

The experiments on the best number of features showed that ORB-SLAM 2 is not repeatable. We
insist on the fact that the randomness is not due to keypoint detectors, which are deterministic, even
for the learned SuperPoint. However, the 3D map, and consequently the trajectory, may change.

We managed to reduce the randomness of ORB-SLAM 2 by doing the following:

1. Deactivating relocalization

2. Deactivating loop closure

3. Setting global random seeds for random functions (especially RANSAC)

4. Deactivating the graphical user interface (GUI)

5. Removing the early stopping during local bundle adjustment. The local bundle adjustment
optimizes both map and poses but is a slow operation; for this reason, it is usually stopped, early
if needed, after a maximum number of frames.

This still did not completely remove the randomness. A probable reason is that ORB-SLAM 2 is
multithreaded and, despite our changes, threads are still not fully synchronized. This experiment will
later guide the construction of the ground truth of our datasets (section 4.5.1), which is ORB-SLAM
2 running with the above changes, except the deactivation of relocalization and loop closure. A side-
effect is that the SLAM becomes much slower, sometimes not reaching even 1 Hz, as more keyframes
(frames used for map optimization) are created.

The conclusion is that making ORB-SLAM 2 – and more generally other SLAMs – perfectly
repeatable is difficult. A better approach and good practice is to ensure that benchmarks run the
SLAM enough times and compute average/median metrics.

60 CHAPTER 3. DYNAMIC SLAM PERFORMANCE AND KEYPOINTS

3.4 Relation between outliers and Dynamic SLAM

During our earlier evaluations of ORB-SLAM 2, we observed that in ORB-SLAM 2 keypoints matched
with the stored 3D map are clearly separated between inliers and outliers, where inliers are points
that are part of the image consensus and can be mapped, and outliers are points that are not part
of the consensus and cannot be mapped, thus being rejected. Note that ORB-SLAM 2 supposes that
the image consensus corresponds to the static world which the user expects as frame of reference. We
asked ourselves: are inliers and outliers repeatable? Does this repeatability have a relation
with dynamic objects?

3.4.1 Experimental setup

Inliers and outliers are not strictly repeatable due to SLAM randomness (e.g ., due to multithreading).
But how repeatable are they? Figure 3.17 shows the steps from the ORB-SLAM pipeline from where
we can extract outliers. They are the Initial Pose Estimation step and the Local Bundle Adjustment
step. The initial pose estimation is done by projecting the last known pose, assuming that the camera
moves at a constant velocity.

Within ORB-SLAM 2, outliers are 2D feature - 3D map point matches that are rejected after the
initial match during robust optimization, in other words, erroneous matches between new features and
the existing map. We store the location of the rejected features and call those outliers. Inliers consist
in all matched features that were not rejected – i.e., matched features that are not outliers. It is
important to note that what we call outliers are points rejected during optimization that should never
have been considered for map integration in the first place.

Features that were never matched are simply ignored and are not, in fact, outliers. Likewise,
features rejected during initialization or relocalization also are not outliers. These features may not
have been matched for many reasons, for instance due to being in areas that do not overlap different
points of views: they are not erroneously matched points.

Figure 3.17 – Steps from the ORB-SLAM [75] pipeline (in red) from where we can extract outliers.

3.4. RELATION BETWEEN OUTLIERS AND DYNAMIC SLAM 61

We collected inliers and outliers from TUM RGB-D dataset. We ran the SLAM 450 times and
accumulated inliers/outliers in the form (x, y, n) where n is the total number of observations of in-
liers/outliers at the coordinates (x, y). Figure 3.18 and fig. 3.19 show respectively the outlier and inlier
profile of the sequence fr3_sitting_halfsphere (788 images) processed with ORB-SLAM 2 in monocular
mode. This profile is in fact typical, and other collections resulted in a similar result. We can see that
about 90% of all outliers are observed in at most 81 images or less, and 90% of all inliers are in at
least 650 images. It is clear that some inliers and outliers are much more repeatable than others.

Figure 3.18 – Typical repeatability profile of ORB-SLAM 2 inliers. Relative threshold = 0.8.

The fact that some points are much more repeatable than others is meaningful, so we analyze in
detail what this means. A first conclusion is that if we want to understand what these repeatable
points represent, we have to remove the noisy points that are not repeatable. To do so, we establish
a relative threshold between the left and most repeatable observed point. Let s ∈ [0, 1]. We keep an
inlier/outlier i observed ni times if ni ≥ mini(ni) + s(maxi(ni)−mini(ni)), and exclude it otherwise.
s = 0.2 / s = 0.8 resp. seem to be good starting points to remove all the “noisy”, i.e., non-repeatable,
inliers/outliers.

3.4.2 Methods to filter features on moving objects with outliers
We realized by observing the pose of outliers during motion that outliers are concentrated on
objects when they start moving, and this is the key idea to make masks. We call clusters of
outliers dense outliers. Figure 3.20 shows a scene right before and after a person gets up. For
illustration purposes, we increased the search window used to compute 2D-3D matches from 2px to
20px to force the appearance of more outliers. The reason being that what we see in this figure are
outliers from only one SLAM run, while outlier collection occurs over many SLAM runs. It is not
recommended to use such large search windows as it lowers the quality of keypoint matching and
consequently SLAM accuracy.

62 CHAPTER 3. DYNAMIC SLAM PERFORMANCE AND KEYPOINTS

Figure 3.19 – Typical repeatability profile of ORB-SLAM 2 outliers. Relative threshold = 0.2.

Figure 3.20 – Scene before and after a person gets up (10 frames apart). Red: unmatched features,
green: matched features (inliers), blue: outliers. We see that all inliers on the sitting person vanished
and were replaced by either unmatched features or outliers.

3.4. RELATION BETWEEN OUTLIERS AND DYNAMIC SLAM 63

Figure 3.21 shows an image: in RGB, in grayscale (ORB-SLAM 2 transforms images to grayscale
before processing them), and mapped point at instant t. This image is taken right at the moment
the person starts moving his upper body. Figure 3.22 shows the corresponding outliers with different
thresholds s: 0.0, 0.2 and 0.5.

Figure 3.21 – Image where a person before it starts moving its upper body. From left to right: original
RGB image, grayscale version, and grayscale version + mapped points.

Figure 3.22 – Example of detected outliers after applying different relative thresholds.

We can see that there are very few remaining outliers at or above s = 0.2 and they are mostly
on the person. This indicates that there is a strong relation between moving objects and
repeatable outliers. At this point it would be opportune to build a mask from the outliers for
future learning, in order to generalize to other sequences. We first evaluate what would happen if in
subsequent SLAM executions we filter these repeatable outliers.

Table 3.4 shows extended statistics on tests we did by filtering features found at the same place
where repeatable outliers where previously collected. It shows that while direct filtering of outliers
does not appear to affect significantly the mean/median accuracy, it has the surprising effect of limiting
the max error and reducing the standard deviation. This is a strong indicator that removing features
likely to become outliers reduces the randomness of the SLAM and in fact stabilizes it, reducing the
chance of large errors. During the experience, we noticed that this stabilization effect appears only if
we collect outliers from at least 100 SLAM runs.

64 CHAPTER 3. DYNAMIC SLAM PERFORMANCE AND KEYPOINTS

Mean Median Standard
Deviation Min Max

Outlier filtering No Yes No Yes No Yes No Yes No Yes
fr3_long_office_household 12.18 8.07 9.07 7.34 7.46 2.83 4.97 4.95 39.01 23.01

fr3_nostructure_texture_near_withloop 10.51 11.38 9.54 11.46 3.06 2.34 6.26 6.94 19.10 16.10
fr3_sitting_halfsphere 33.00 18.21 13.07 14.96 74.32 11.23 8.61 9.32 459.76 81.33

fr3_sitting_static 2.64 3.55 0.84 3.97 3.11 2.27 0.12 0.36 12.42 10.78
fr3_sitting_xyz 5.95 9.75 5.26 6.12 3.90 14.47 3.46 3.22 26.94 102.00

fr3_structure_texture_far 11.03 11.22 10.92 11.22 2.02 1.55 6.69 7.90 15.58 14.85
fr3_structure_texture_near 18.76 16.25 15.72 15.63 14.04 4.03 8.94 10.17 109.26 26.70

fr3_teddy 22.75 23.53 20.93 24.10 10.46 4.57 2.67 11.52 84.35 32.92
fr3_walking_static 2.21 2.04 2.07 2.05 0.74 0.07 0.60 1.85 6.09 2.19

Table 3.4 – Statistics on the ATE RMSE (mm) on 100 SLAM runs on the first 700 images of various
sequences of the TUM RGB-D dataset. We filter features found at the same place where repeatable
outliers were previously collected (relative threshold s = 0.2). No means no outlier filtering and Yes
means that we filter outliers. Lowest standard deviations and maximums in bold.

Having confirmed that removing outliers has a positive effect on the SLAM, we tried to make a
dense mask to evaluate how masking whole areas of the image affects performance. Figure 3.23 shows
early tests where we drew disks on the outliers with various radii. We also tried dilating these disks.
Unfortunately, as there is a non-negligible number of outliers outside moving objects, increasing R too
much caused the removal of too many inliers and caused the SLAM to fail.

Figure 3.23 – Dense masks constructed from outliers collected with the relative threshold s = 0.2. R
indicates the radius.

We then identified repeatable inliers and outliers with relative thresholds resp. sinlier and soutlier,
built masks as previously and then removed the points where there are known inliers. This led to the
creation of “perforated masks” as we can see in fig. 3.24. They did improve SLAM performance, but
such irregular masks seem exceedingly difficult to learn. We tried tweaking R and s, but it did improve
the masks. For this reason, we searched other densification strategies.

3.4. RELATION BETWEEN OUTLIERS AND DYNAMIC SLAM 65

Figure 3.24 – Masks with holes constructed from outliers and inliers. Locations with repeatable inliers
are unmasked (in green). The masks are built by collecting inliers and outliers over 100 executions,
while the displayed inliers in green correspond to the current execution, so inliers do not perfectly fill
the holes.

66 CHAPTER 3. DYNAMIC SLAM PERFORMANCE AND KEYPOINTS

3.4.3 Methods to densify outliers into masks of moving objects
Superpixels. We first tried using SuperPixels [1] to densify outliers. We tried this on simpler scenes,
as illustrated in fig. 3.25. To do so, we compute the ratio of outliers within superpixels and check if it is
below a certain threshold. We tried dozens of different thresholds and other ad hoc criteria, but none
truly worked. Figure 3.26 shows a trial where superpixels are colored according to the concentration
of outliers. Overall, the method does not perform well enough. Areas with many outliers are indeed
identified, but the masking rarely masks objects fully and tends to mask areas that naturally generate
outliers, as ambiguous/repetitive textures (e.g ., chessboards, squared paper).

Figure 3.25 – Computation of superpixels in a simple scene, various sets of parameters. The box at
the center is moving. Superpixel size = 75px. Areas in green show superpixels marked as dynamic.
Red points are unmatched features, green points inliers and blue points outliers.

3.4. RELATION BETWEEN OUTLIERS AND DYNAMIC SLAM 67

Figure 3.26 – Computation of superpixels in a simple scene, various sets of parameters. The box at
the center is moving. Superpixel size = 75px. Areas in green show superpixels marked as dynamic,
with a darker green corresponding to a higher ratio of outliers. Red points are unmatched features,
green points inliers and blue points outliers.

68 CHAPTER 3. DYNAMIC SLAM PERFORMANCE AND KEYPOINTS

Learning masks. Being stuck on the densification of outliers, we decided to check if masks could
be learned in the first place. To do so, we annotated a toy sequence with masks, as illustrated in
fig. 3.27, and trained a DeepLabv3+ model [19] with them. We can see that we can successfully learn
such masks. However, we still need a method to automatically compute the annotations. Fortunately,
we observed how SLAM performance improved: once problematic objects are masked, the SLAM
algorithm does not suffer drifts anymore.

Figure 3.27 – Comparison between a SLAM with no masked object (top) and a SLAM with masked
objects (bottom). The mask prevents SLAM failures: the SLAM map (in red) and trajectory (green
lines) are correct only if we use a mask. The sequence with no masks shows that the camera (the
triangles) repeatedly moves left and right, which is not true. There are some edge effects that were
present at this moment due to imperfect training.

3.4. RELATION BETWEEN OUTLIERS AND DYNAMIC SLAM 69

RVOS. We evaluated RVOS [100], a video segmentation network. It also masks static objects and
sometimes misses dynamic objects, so we abandoned this method.

Figure 3.28 – Segmentation of a simple scene using RVOS [100]. The box is moving.

COSNet. We tested another method, COSNet. It has the property of masking “objects of interest”,
which can be dynamic objects. Figure 3.29 and fig. 3.30 show that the results are accurate. Unfortu-
nately, it does not distinguish between moving and static objects, and loses accuracy when objects are
seen from afar or partially occluded, so we cannot directly use it to annotate our sequences.

Figure 3.29 – Example of segmentation using COSNet [66].

Figure 3.30 – Another example of segmentation using COSNet [66].

70 CHAPTER 3. DYNAMIC SLAM PERFORMANCE AND KEYPOINTS

3.5 The importance of temporality in keypoint filtering for Dy-
namic SLAM

The experiments on outliers showed that they appear in clusters on objects when they start to move.
This highlights the importance of considering the temporal aspect of SLAM for keypoint filtering. In
particular, the act of filtering keypoints itself has to consider the temporality of the scene: in other
words, it is sometimes useful to filter keypoints, but sometimes it may be counterproductive to do so.

Figure 3.31 and fig. 3.32 show examples of situations where we would mask or not objects. We
would mask objects that are moving or when they have a significant risk of moving. Note that the
notion of “risk of moving” is subtle as it depends on the spatiotemporal context. In practice, we would
mask an object when we know that it can move, and we are not sure that we can detect its motion in
time – we call this Temporal Masking. An example would be when we are behind another car: if we
are too close, we cannot be sure if the car in front is moving only from visual information. Temporal
Masking could be used to handle both MCIs and excessive masking (we discuss these difficulties in
section 4.2.2), which is hardly possible with geometrical methods that rely on instantaneous motion
detection. This means that doing a long-term analysis of the scene is necessary to simultaneously
overcome motion consensus inversions and excessive masking.

Figure 3.31 – Example of possible masking decisions. We mask an object when it is in motion and not
all the time.

Figure 3.32 – Another example of possible masking decisions. We mask an object when it has a
significant risk of motion, even if it has already stopped. In this case, we would mask a car ready to
start at a parking payment terminal, but not a car that is parked with nobody inside.

We could have an hyperparameter that controls the risk of SLAM failure, since the baselines No
Masks (never mask anything) and Full Masks (mask all possibly dynamic objects) are polar opposites.

3.6. CONCLUSION 71

Assuming that all dynamic objects can be segmented, full masking ensures that the SLAM never
drifts at the cost of failing early in certain situations. On the other hand, never masking objects would
prevent early failures but risks motion consensus inversions. In a situation where the risk of computing
an erroneous trajectory is unacceptable – like for autonomous vehicles where a bad pose estimation
could cause an accident – we would tend towards full masking. On the opposite, in situations where
the top priority is to keep the SLAM running – like for rescue robots – we would tend towards no
masking. The risk control could be a runtime setting that controls how much risk of not masking
moving objects we accept.

While this idea is promising, it makes the creation of training data too complex. Making the notion
of risk implicit to the training data and, consequently, the trained model appears as a better approach.
Moreover, it is essential to make our approach self-supervised, since self-supervision explicitly would
ensure that the SLAM algorithm knows what frame of reference the user expects.

To summarize, the temporal aspect of keypoint filtering cannot be ignored. The crucial information
that leads to the correct decision of what and when to mask objects is available only at specific times.

3.6 Conclusion
From all our experiments in this section, we now better understand the relation between keypoint and
Dynamic SLAMs. We first clarified the place of keypoint and concluded that filtering keypoints with
external learned tools offers the performance and generalization capabilities. Then we studied the
keypoint detectors themselves, defining the general best range for keypoints (2500-3000) and showing
that a proper SLAM evaluation requires both several runs and metrics that integrate the Tracking Rate.
After that, we studied the repeatability of keypoint detectors: learned detectors are more repeatable,
but repeatability is in general weakly related to SLAM performance, although self-supervision can
strengthen this relation. In the last part, we saw that outliers can act as source of information for
dynamic objects, that their removal improves the SLAM, and tested a variety of methods including
learning manually defined masks. Finally, we discussed the importance of the temporal aspect in
keypoint filtering.

The key takeaways of this chapter are: we need better Dynamic SLAM metrics, we can improve
SLAM performance by modifying the keypoint detection module with self-supervised approaches, and
we need to add a temporal aspect to keypoint filtering, especially at runtime.

At this point, we realized that we had the key elements to propose a solution to achieve
our goal of making a SLAM always use the correct frame of reference: a self-supervised
method to both learn what to mask and when to mask objects.

Regarding what to mask, we use outliers to give only the approximate location of a dynamic
object. The idea is that we look for the sudden appearance of dense outliers – i.e., areas in the
image where outliers replace inliers in temporally close images. Doing so, we can leverage COSNet
only on the identified area to segment the dynamic object inside, which is the only object of interest
now that we focus on it. From that point, we finally use a semi-supervised segmentation tool called
SiamMask [105] to propagate the mask across the sequence. Hence, we have a method to automatically
segment objects in training sequences using outliers as a starting point, i.e., a way to automatically
obtain labelled data to train a semantic segmentation network.

Regarding when to mask, the idea is to consider both the SLAM and the masking method as
black boxes. The annotation of video sequences with binary masking decisions (to mask or not) does
not depend on a specific SLAM or masking method; at runtime, we infer masking decisions based only
on a global analysis of past frames.

The research in this chapter was essential to identify what we need to do to make an improved
Dynamic SLAM, and defined a clear direction for our research.

72 CHAPTER 3. DYNAMIC SLAM PERFORMANCE AND KEYPOINTS

Chapter 4

SLAM Robustness: Metrics and
Datasets

4.1 Introduction
Measuring the performance of SLAMs is essential to ensure progress with respect to the State of
the Art. There are two essential criteria: having comprehensive datasets and appropriate metrics.
However, it appears that datasets used to evaluate Dynamic SLAMs are limited and that the used
metrics are inappropriate in some cases.

Certain research domains have a variety of metrics of similar importance – e.g ., in image semantic
segmentation, we have pixel accuracy, IoU/Jaccard score, Dice coefficient/F1 score. On the other hand,
SLAM research relies almost exclusively on ATE RMSE, i.e., Absolute Trajectory Root-Mean-Square-
Error or variants as in [42]. There are additional metrics as the Relative Pose Error or Tracking Rate
[75, 76], but they are usually strongly correlated to the ATE RMSE – hence rarely a source of new
insights and often ignored.

We found a limitation in the current Dynamic SLAM literature: datasets used to evaluate Dynamic
SLAMs as the TUM RGB-D dataset [89] are challenging due to the presence of moving objects. There
is hardly any control over the degree of difficulty of object motions, which is not surprising considering
that older SLAMs initially could barely handle any object motion. However, this is not the case
anymore. In other words: popular SLAM datasets are today too easy given current SLAM capabilities
– they cannot be used to correctly evaluate the robustness of modern Dynamic SLAMs. Even worse,
we identified scenarios in which it is not possible to correctly measure SLAM performance with the
ATE RMSE alone.

In this chapter, we will first discuss in section 4.2 how to measure SLAM Robustness and present
two issues that – to the best of our knowledge – never have been properly identified: Motion Consensus
Inversion and Excessive Masking. We will then present current datasets and metrics in section 4.3,
and finally present our own metrics in section 4.4 and datasets in section 4.5.

4.2 SLAM Robustness

4.2.1 General Evaluation Criteria
The robustness of a system, i.e., the ability of tolerating perturbations that might affect the system’s
functional body1 is vital for it to be used in real-life situations. For SLAM systems, it means that
the localization must remain accurate regardless of the quality of the video input. We identified the
following perturbations to be overcome as qualitative criteria for SLAM robustness:

1Definition from Wikipedia.

73

74 CHAPTER 4. METRICS AND DATASETS

1. Lack of features / ambiguous textures: the environment may have repetitive textures that
confuse the SLAM, like tree leaves or chessboards, or not enough features for accurate localization
like a plain corridor.

2. Illumination changes: natural or artificial changes that alter the brightness of the image.

3. Dynamic objects, i.e., objects that move.

4. Fast camera movement: camera motion degrades feature detection and increases requirements
on computation time.

5. Lifelong SLAM: long-term localization within an environment that slowly changes over time.

The importance of each criterion depends on the actual SLAM application. SLAM for autonomous
vehicles would focus on dynamic object support; SLAM in agriculture would focus on robustness to
ambiguous textures; underwater SLAM would focus on illumination changes and lack of features. In
this thesis, we focus on the most common perturbation: dynamic objects.

4.2.2 Difficulties of Dynamic Scenarios
Dynamic perturbations are fundamentally different from others in the sense that they break a core
assumption of SLAM systems: that the environment is static – unlike lifelong SLAM and other SLAMs,
major changes easily occur in a few frames. Note that this is a major difference as the environment
itself changes: the challenge is not only to understand the environment, but to adapt to it continuously
and quickly as changes occur.

The typical effect of dynamic perturbations on the SLAM is that the SLAM integrates features
on moving objects while mapping the environment. This causes SLAM drift and lowers the accuracy
of the computed trajectory. However, there are two failure cases that are almost non-existent in the
current literature: motion consensus inversions and excessive masking. We later show in section 4.3.3
that these scenarios, in addition to being rare in datasets, are not appropriately quantified with the
current metrics. These two issues are one of the main challenges that we tackle in our work.

Motion Consensus Inversion (MCI)

The first difficulty is what we call Motion Consensus Inversion (MCI). We define an MCI as the event
when a SLAM considers a moving object that covers most of the image as part of the background,
i.e., everything that is fixed with respect to the frame of reference expected by the user – usually
the ground. In other words, under an MCI, the SLAM misidentifies the motion consensus of the
background, on which it depends, effectively inverting background and foreground. Consequently, the
SLAM will follow the object as it moves and will ignore the rest of the image, while it should do the
exact opposite. Figure 4.1 shows various examples of motion consensus inversions.

The danger in real-world applications is that the trajectory error is not only very hard to detect as
the SLAM does not stop tracking, but also unbounded. For instance, consider a car following another:
if the SLAM considers the car in front as part of the background – that is, it suffers from motion
consensus inversion –, it may compute that the camera is not moving even if the cars are moving at
high speeds, since the relative position of the cars does not change. This is, of course, potentially
catastrophic.

Note that the consensus inversion is in relation to the frame of reference expected by the user,
whatever it is. An extreme example would be a camera moving inside a moving train. If we considered
the train as the frame of reference (i.e., the “ground”), then the SLAM would not suffer from MCIs
unless the camera looks outside. On the other hand, if we wanted to know the pose of the train, the
frame of reference would be the Earth: in this case, if the camera looked inside the train, the SLAM
would suffer from an MCI.

4.2. SLAM ROBUSTNESS 75

(a) Severe MCI in the ConsInv-Outdoors dataset with a moving car. In the left figure, useful
features on the ground are missing while the majority of features is on a moving car, which
causes SLAM drift.

(b) Severe MCI in the TUM RGB-D dataset with people walking. In the left figure, useful
features on the table are missing while a considerable number of features is on a moving person,
which causes SLAM drift.

(c) Severe MCI in the ConsInv-Indoors dataset with a moving object. In the left figure, useful
features in the background are missing while the majority number of features is on a moving
object, which causes SLAM drift.

(d) Extreme MCI in the ConsInv-Indoors dataset with a moving object. The plate and dragon
are rigidly moved. There are not enough features not on the dynamic object for localization.
Thus, when the dragon is not masked, the SLAM relies almost exclusively on it for localization,
resulting in a SLAM drift. The expected behavior is for the SLAM to stop tracking as long
as only the plate or dragon are visible.

Figure 4.1 – Examples of Motion Consensus Inversions (MCI). Green points are mapped features.
Pictures on the left show map points from a SLAM without masks and the right one points from a
SLAM with masked dynamic objects.

76 CHAPTER 4. METRICS AND DATASETS

Excessive Masking

Another difficulty that has not been studied in detail is excessive masking, which is specific to Dynamic
SLAMs. A simple Dynamic SLAM strategy is to filter features that are on dynamic objects to prevent
them from being used by the SLAM. While this strategy is effective to prevent MCIs (assuming that all
dynamic objects are properly masked), it tends to mask all objects that might move, even if they are
not actually moving. This means that if a dynamic object that is not moving takes 100% of the image,
masking it leaves no features whatsoever, which makes the SLAM inevitably fail. In practice, lower
ratios (e.g ., 70%) may still be high enough to make the SLAM fail due to lack of features. Figure 4.2
shows examples of situations where excessive masking leads to SLAM failures.

(a) Excessive masking in the ConsInv-Outdoors with a static car. In the right figure, most features are removed
by masking the car, leaving not enough of them for the SLAM to work and causing it to fail.

(b) Excessive Masking in the ConsInv-Indoors dataset with a static object. In the right figure, most features
are removed by masking the object, leaving not enough of them for the SLAM to work and causing it to fail.

Figure 4.2 – Examples of Excessive Masking leading to SLAM failure. Green points are mapped
features and blue points are unmapped features due to a SLAM crash. Pictures on the left show points
from a SLAM without masks and the right one points from a SLAM with masked dynamic objects.

Dealing with excessive masking is quite tricky in the sense that it appears due to the strategies
intended to remove the negative effects of dynamic objects on the SLAM in the first place. Even worse,
excessive masking often does not lower trajectory accuracy since it makes the SLAM directly fail –
it might even improve the accuracy! This counter-intuitive behavior may occur when the SLAM fails
early. For instance, if we had a video used for SLAM that is more difficult in its second half, a partial
trajectory limited to the first half of the video would be more accurate than a trajectory that spans
the whole video. We discuss in depth the limits of current metrics in section 4.3.3.

4.3. CURRENT METRICS, DATASETS, AND THEIR LIMITATIONS 77

4.3 Current Metrics, Datasets, and their Limitations
We present in this section the current metrics, datasets and discuss their limitations. The takeaway is
that there is not any current metric that can correctly compare SLAM algorithms alone, especially in
difficult dynamic scenarios that are rarely present in current datasets.

4.3.1 Core Metrics
The methods for evaluating the performance of SLAM systems have evolved over a long time, as shown
in [55]. Two of the main metrics used today, ATE and RPE, were first presented in [89]. We detail
them below.

Underlying theory

We represent a trajectory as a timestamped sequence of poses – a transformation from the world to
the body frame – in SE(3). [34, 9] give more details on SE(3).

SE(3) is the space of all rigid transformations in R3, so it has six degrees of freedom: three for
the rotations and three for translations. Rotations are defined in SO3, the group of all rotations in
Euclidean geometry, one per axe. This also means that a pose P can be expressed as a pair (R, t)
where R ∈ SO(3) is the corresponding rotation and t ∈ R3 the corresponding translation. Note that
P can be expressed as a 4× 4 matrix:

P =

(
R t
0 1

)
This means that given the coordinates of a point xB in the body frame, the coordinates of this same

point in the world frame are xW = RxB + t. Given a pose P , we define three operators to compute
metrics:

trans(P) := t

rot(P) := R

∠R := arccos

(
tr(R)− 1

2

)
We assume that the estimated trajectory is given by a sequence of poses P1, ..., Pn ∈ SE(3) and that

the ground truth trajectory is given by a sequence of poses Q1, ..., Qn. In practice, these sequences
may not match one-to-one due to different sampling rate, time to initialize, etc. In this case, it is
necessary to match and/or interpolate the data beforehand. In the rest of this chapter, we assume
that both sequences are time-synchronized and have length n.

ATE: Absolute Trajectory Error

The main SLAM metric is the ATE RMSE, which has the benefit of quantifying the global consistency
of the estimated trajectory. The ATE RMSE is the RMS (Root-Mean-Square) of the difference between
estimate trajectory points and the corresponding ground truth points. As the frames of references of
trajectories are arbitrary, trajectories first need to be aligned. A popular alignment method is the
Horn method [49], which finds the rigid-body transformation S that maps the estimated trajectory
P1, ..., Pn onto the ground truth trajectory by minimizing least-square errors.

The mapped estimated trajectory is, for i ∈ 1, ..., n:

Ei := Q−1
i SPi

The ATE RMSE is defined as:

ATE RMSE =

√√√√ 1

n

n∑
i=1

‖ trans(Ei) ‖2

78 CHAPTER 4. METRICS AND DATASETS

Note that the trajectory alignment includes scaling the trajectory, thus S ∈ Sim(3) [34] (which has 7
degrees of freedom). Scaling the trajectory is required for monocular SLAM since estimated trajectories
have an arbitrary scale, but not for Stereo or RGB-D SLAM. In this case, a SE(3) alignment makes
more sense than a Sim(3) alignment since the scales should be the same.

RPE: Relative Pose Error

The relative pose error is the measure of local accuracy of the estimated trajectory over a fixed time
interval ∆. Note that ∆ is an hyperparameter. Thus, the relative pose error quantifies the drift of a
trajectory.

Let m := n−∆. We define the relative pose error matrix Fi for i ∈ 1, ..,m:

F∆
i := (Q−1

i Qi+∆)−1(P−1
i Pi+∆)

The RPE is usually divided into translation and rotation components – note that since they are
strongly correlated, it is often enough to compute the RPE only with respect to the translation. Thus,
we have for the translation component of the RPE:

RPE∆
trans =

√√√√ 1

m

m∑
i=1

‖ trans(Fi) ‖2

And the rotation component of the RPE:

RPE∆
rot =

1

m

m∑
i=1

∠(rot(F∆
i))

The choice of ∆ needs to be appropriate (a good baseline is ∆ = frame rate). For SLAM systems,
averaging over all possible values of ∆ makes sense and removes the hyperparameter ∆:

RPEtrans =
1

n

n∑
∆=1

RPE∆
rot

RPErot =
1

n

n∑
∆=1

RPE∆
rot

However, since this makes the computation time quadratic, it may be necessary to limit the number
of sampled relative poses in practice.

TR: Tracking Rate

The tracking is the ratio of frames whose camera pose is known, i.e., tracked. It is useful to detect
early SLAM failures.

TR = Ratio of tracked frames

Note that the Tracking Rate may vary significantly with the SLAM mode. A typical monocular
SLAM can hardly have a Tracking Rate of 100% since it needs at the very least two frames from
different points of view to initialize, i.e., it needs significant camera motion to initialize. On the other
hand, Stereo/RGB-D SLAM are much more likely to have a 100% Tracking Rate. The reason is that a
monocular SLAM does not have access to depth information, so it triangulates features across different
frames to initialize, while Stereo and RGB-D SLAM have direct access to this information. As feature
triangulation for monocular SLAM requires camera motion, it may take an arbitrarily long time to
initialize. And having a better Tracking Rate does not mean that the SLAM is accurate,
only that it runs longer without stop. These are two separate concepts.

4.3. CURRENT METRICS, DATASETS, AND THEIR LIMITATIONS 79

Robustness Metrics

For the sake of completeness, we mention the robustness metrics proposed in [87], which presents
the OpenLORIS dataset for lifelong SLAM. The metrics are Correct Rate of Tracking – within
a trajectory, the ratio of poses that have an accuracy below certain thresholds –, and Correctness
Score of Re-localization which quantifies the time to re-localize. While these metrics may improve
the interpretation of results by distinguishing “poor results” from results that are “good enough”, they
still do not make it possible to compare SLAMs with a single value in difficult dynamic scenarios.

4.3.2 Datasets

We list the main SLAM datasets in appendix A. These datasets present a wide variety of contexts:
drones in forests, cameras underwater, vehicles in urban or rural environments, offices, industrial halls,
plantations, etc. and sensors: monocular/stereo/RGB-D cameras, LiDARs, IMUs, barometers and so
on.

Recent datasets tend to be targeted at research in scene understanding for autonomous driving
rather than SLAM, e.g ., being able to correctly segment and classify objects of interest in the scene.
Some examples are NuScenes [18], CityScapes [24] and Waymo Dataset [92]. Another trend is the use
of simulators as Microsoft AirSim [86] and CARLA Simulator [86] or virtual photo-realistic datasets
as Virtual KITTI [38]. The main issue of such datasets is the domain gap with real world data: the
performance of a system on simulated data does not guarantee performance in the real world. On
the other hand, the advantage is the perfect control over the environment as well as access to perfect
ground truth data.

Very few datasets are challenging due to the motion of objects and not due to other factors, as those
we mentioned in section 4.2.1. Even fewer contain real-world data. To the best of our knowledge, None
of these datasets are suitable for learning as they either include too little data and/or do not propose
data splits, forcing researchers to make arbitrary choices, which may cause problems comparing results
across different works.

Popular datasets in Visual SLAM research are KITTI and TUM RGB-D dataset as they are good
baselines to evaluate SLAM systems as a whole.

KITTI Dataset

The KITTI dataset [42] and its later evolutions include various benchmarks: stereo matching, optical
flow estimation, 3D visual odometry / SLAM, depth prediction, 3D object detection. The SLAM
benchmark, KITTI Visual Odometry, is – of course – the one we are interested in. We illustrate the
KITTI odometry dataset in fig. 4.3. The sequences were taken from a station wagon with two color
and two grayscale PointGrey Flea2 video cameras at 10 Hz / 1392×512 pixels, a Velodyne HDL-64E
3D laser scanner at 10 Hz (64 laser beams, range: 100 m), and a GPS/IMU localization unit with
RTK correction signals. The ground truth is computed from the GPS/IMU output.

The KITTI Odometry benchmark includes 22 sequences, of which 11 (sequences 00-10) have the
ground truth. The other 11 (11-20) do not have a public ground truth and to obtain the accuracy
of a trajectory it is necessary to submit it to the KITTI website2. For this reason, researchers often
use only the 11 sequences with known ground truth to evaluate SLAM algorithms. These sequences
consist in driving through a calm city and on a highway.

Train and Test sequences for Odometry/SLAM. Methods that do not use KITTI sequences
for training usually test all sequences with known ground truth, 00 to 10 [8, 82]. As the dataset
creators do not provide a train/test split, there are two unofficial splits that researchers use: training
on sequences 00-08 and testing on 09,10,11 [60, 120, 62], or training on sequences 00,01,02,08,09 and
testing on 03,04,05,06,07,10 [112, 111, 107]. Note that this does not apply for methods that do only

2http://www.cvlibs.net/datasets/kitti/

80 CHAPTER 4. METRICS AND DATASETS

depth prediction, for which the KITTI Depth Prediction dataset is more suitable. To the best of our
knowledge, no learned method uses a validation split.

TUM RGB-D Dataset

The TUM RGB-D dataset [89] is a reference benchmark for SLAMs made of 47 sequences in offices
or in a industrial hall. Of these, 8 sequences explicitly include moving people: 4 with people walking,
and 4 with people sitting but moving theirs arms or their head. There is a validation split made of 33
sequences whose ground truth is not publicly available, the only way of evaluating a trajectory being
to submit it to the TUM RGB-D website3. For this reason, researchers rarely use these validation
sequences. The dataset was recorded with a Kinect sensor: an RGB camera + an Infrared sensor for
depth at 640x480 / 30Hz. The ground truth comes from a motion capture system. We illustrate the
dynamic sequences of the TUM RGB-D dataset in fig. 4.4.

Train and Test sequences for basic SLAM (non-Dynamic). Methods that do not use TUM
RGB-D sequences for training test arbitrarily chosen sequences from the full dataset, not only dy-
namic sequences [75, 76]. Popular sequences include fr1_xyz, fr1_desk, fr1_floor, fr2_xyz, fr2_desk,
fr3_str_tex_near, fr3_str_tex_far, but this choice varies between papers. Learned methods use
arbitrary train/test sequences. For instance, [112] uses 19 train sequences and 10 test sequences.

Train and Test sequences for Dynamic SLAM. Methods that do not use TUM RGB-D
sequences for training (even if they use external learned tools) usually test 5 to 8 sequences among the
8 dynamic sequences [8, 116, 82, 84]. Popular sequences include the 4 walking sequences. The choice
of other sequences varies. To the best of our knowledge, there is no Dynamic SLAM that learns only
from TUM RGB-D sequences, much less only dynamic TUM RGB-D sequences. Some methods test
the generalization capabilities of their models on TUM RGB-D sequences. For instance, [111] trains
its model on KITTI sequences 00,01,02,08,09 and [62] trains its model on KITTI sequences 00-08.

4.3.3 Limitations
Regarding Dynamic SLAMs, the main limitation of current datasets is that they are biased towards
ATE RMSE optimization. The focus is always to evaluate how accurate a SLAM is. Being accurate
is a major criterion for SLAM systems, but it is not the only one: we need to take into account the
robustness of the system. In particular, current datasets do not include the two difficult cases explained
in section 4.2.2, Motion Consensus Inversions and Excessive Masking.

The subtlety here is two-fold. Firstly, these difficult cases can make a SLAM completely fail and,
unless one has the appropriate method, essentially impossible to correctly process. Thus, they appear
as pointlessly difficult unless the authors of the dataset perceive that these cases are qualitatively
different from the usual moving object perturbations – that do not completely crash the SLAM but
only make it less accurate within acceptable limits. Sequences that appear needlessly difficult are
unlikely to be included in a dataset. Secondly, we need a way to correctly measure the robustness
of the SLAM, especially in difficult situations. The issue is that this is not possible with the ATE
RMSE, but one would notice this only if they are testing difficult sequence, especially in the Excessive
Masking case, and comparing several metrics at once – namely an accuracy metric and the Tracking
Rate.

Hence, the Motion Consensus Inversion and Excessive have been absent from SLAM datasets.
Interestingly, there exist a few sequences that cause MCIs as some dynamic sequences in TUM RGB-
D and some in CityScapes [82], but they likely occurred by chance. Certain datasets come close to
the MCI problem [71, 89], but none ever properly defined it nor included sequences to evaluate the
Excessive Masking issue. Some papers have almost touched upon the MCI/Excessive Masking issues
[82, 3, 109], but do not define them. Overall, the SLAM community is aware of the interest of Dynamic
SLAM algorithms and the corresponding datasets – however, the MCI / Excessive Masking difficulties
are a blind spot both in terms of datasets and metrics.

3https://vision.in.tum.de/data/datasets/rgbd-dataset/online_evaluation

4.3. CURRENT METRICS, DATASETS, AND THEIR LIMITATIONS 81

Figure 4.3 – Illustration of the KITTI Dataset [42]

82 CHAPTER 4. METRICS AND DATASETS

Figure 4.4 – Illustration of the TUM RGB-D Dataset [89]

4.4. PROPOSED METRICS 83

4.4 Proposed Metrics

As we explained in section 4.3.1, the performance of a SLAM method is usually reported in terms
of ATE RMSE, but sometimes the authors also report the Tracking Rate. This second metric is
nevertheless often ignored although it has important consequences from a practical and scientific
point of view. In practice, a method that suddenly fails is not satisfactory and may cause severe
issues depending on the application. It also carries a risk to the scientific community since it makes
the design of SLAM methods biased towards minimizing the ATE RMSE, regardless of early SLAM
failures. Thus, it seems important to propose metrics that unify both ATE RMSE and Tracking Rate.
We first propose the Penalized ATE RMSE and Success Rate, which we use in chapter 5, then we
propose the Unified SLAM Metric, which we use in chapter 6.

4.4.1 Penalized ATE RMSE and Success Rate

If Tracking Rates are too different the comparison of ATE RMSEs is biased: a SLAM that stops early
might skip tricky parts of the sequence. Hence, we defined the Penalized ATE RMSE and Success
Rate.

We consider that an ATE RMSE is invalid if: 1) it is unknown (e.g ., when using reported results)
or 2) the Tracking Rate is lower than ρ−ρc, where ρc is a fixed threshold and ρ is the Tracking Rate of
the ground truth. The Tracking Rate of the ground truth is the Tracking Rate of the SLAM execution
corresponding to the ground truth computation as specified in section 4.5.1, otherwise it must the
Tracking Rate we could expect the SLAM in the mode it is run (monocular, stereo, etc.). The idea is
to filter out Tracking Rate that are abnormally low while setting a reasonable target.

The Penalized ATE RMSE is computed in relation to other SLAMs in case of invalidation. With
τ the penalty factor and L the set of all valid ATE RMSEs computed by other SLAMs on the tested
sequence, we define the Penalized ATE RMSE in (4.1):

Penalized ATE RMSE =

{
max(L).(1 + τ), if unknown or ρgt < ρc

ATE RMSE, otherwise.
(4.1)

The Success Rate of a SLAM on a dataset is the ratio of sequences that the SLAM successfully
processes, i.e., whose ATE RMSE is valid.

4.4.2 USM: Unified SLAM Metric

We initially proposed the Penalized ATE RMSE, but this metric suffers from several drawbacks. Firstly,
it depends on two hyperparameters (τ and ρc) that are arbitrarily fixed. More critically, the resulting
value depends on the set of methods that is considered. Hence, for the scientific community, the values
may be different from one paper to another, making comparison over time difficult.

To address these issues, we propose the Unified SLAM Metric (USM). Let us consider a method
that has an ATE RMSE α and a Tracking Rate ρ. We define the function β parametrized by a real
value ρc as:

β(α, ρ; ρc) =

{
+∞, if ρ < ρc.

α, otherwise.
(4.2)

It seems fairly similar to the Penalized ATE RMSE but has one hyperparameter less and, most impor-
tantly, avoids any dependence to other methods to get a score. However, in this form β has a major
drawback since it attributes a value to the methods that have a Tracking Rate below the threshold ρc.
Moreover, the fact that this value is infinite makes it difficult to compare methods or to compute an
average over several sequences.

Instead, we propose to consider exp(−β(α, ρ; ρc)). As e−β ∼ 1+β around zero, the resulting metric
is quasi linear for small values of ATE RMSE. We integrate over all possible values of ρc, resulting

84 CHAPTER 4. METRICS AND DATASETS

into a remarkably simple expression for our Unified SLAM Metric ς:

ς(α, ρ) =

∫ 1

0

e−β(α,ρ;ρc)dρc = ρe−α (4.3)

For a perfect Tracking Rate and a small ATE RMSE, we have ς(α, ρ) ∼ 1−α, making it consistent
with the usual metric used in the SLAM literature. However, when the system fails, the score is
penalized proportionally to the Tracking Rate, making the general behavior of the metric correspond
to user expectations. However, if one wants to have a different balance between ATE RMSE and
Tracking Rate in the final score, it is possible to introduce an hyperparameter λ to control it, resulting
into:

ςλ(α, ρ) = ρe−λα (4.4)

λ balances ATE RMSE (i.e., α) and Tracking Rate (i.e., ρ), and ensures dimensional consistency.
If ρ = 100% and α � 1

λ , then ςλ ∼ 1− λα, which is consistent with the usual ATE RMSE metric. If
the system fails early (low Tracking Rate), the score is penalized correspondingly. Thus, the general
behavior of our metric corresponds to user expectations. We report some scores for several couples
α, ρ and λ in table 4.1.

α ρ ς ςλ=5 ςλ=10

1 cm 100% 0.99 0.95 0.90
2 cm 100% 0.98 0.90 0.82
3 cm 100% 0.97 0.86 0.74
4 cm 100% 0.96 0.81 0.67
5 cm 100% 0.95 0.77 0.61
10 cm 100% 0.90 0.61 0.37
20 cm 100% 0.82 0.37 0.14
50 cm 100% 0.61 0.08 0.01
1 m 100% 0.36 0.01 0.00
1 cm 90% 0.89 0.86 0.81
1 cm 80% 0.79 0.76 0.72
1 cm 50% 0.50 0.48 0.45
2 cm 90% 0.88 0.81 0.74
2 cm 80% 0.78 0.72 0.65
2 cm 50% 0.49 0.45 0.41

Table 4.1 – Example of score resulting score with the Unified SLAM Metric ς for several values of ATE
RMSE α and Tracking Rate ρ. We also report values for ς5 and ςλ=10, that propose a smaller relative
importance of low Tracking Rates. Note: α is in meter in (4.4).

4.5. PROPOSED DATASETS 85

4.5 Proposed Datasets
We present in this section the CI dataset and ConsInv datasets. The goal of both datasets is to test
the robustness of Dynamic SLAMs. The CI dataset is the first dataset to explicitly include motion
consensus inversions, and it corresponds to our work on self-supervised Dynamic SLAM based on
outliers (chapter 5). The ConsInv dataset is a much larger iteration: it includes not only motion
consensus inversions, but also sequences to test excessive masking. It corresponds to our work on
Temporal Masking (chapter 6). Additionally, ConsInv dataset can be used for learning purposes as it
as has train/val/test splits.

We used a MYNT EYE D1000-120 stereo camera at 1280x720 / 30Hz, as illustrated in fig. 2.1 in
section 2.1.2. IMU data are recorded but not used. Sequences are about 500 to 1000 images long.
Calibration and raw data, including unused IMU data, is available with our dataset.

4.5.1 Ground Truth computation
We compute the ground truth using ORB-SLAM 2 [76] without early stopping in stereo mode and
with all dynamic objects masked once any of them moves. We manually annotate the delay. Masking
all objects once any moves prevents the SLAM from computing incorrect loop closures due to dynamic
object. It also makes it more accurate than if we masked objects only when they move, thanks to
the improved bundle adjustment. Note that we prevent the ground truth from being too biased by
relying on the stereo mode and double-checking that trajectories computed in both monocular and
stereo modes are consistent.

4.5.2 CI Dataset
We created the CI dataset (as in Consensus Inversion), illustrated in fig. 4.5, made of two subsets:
Dynamic and Static.

CI-Dynamic Dataset

The camera is dynamic in the CI-Dynamic subset. It includes two sequences with static objects
(book/notes) and twelve with dynamic objects (dragon/dromedary/car, each object moves in three
sequences). This subset covers different situations:

• Static: a static object close to the camera. Tests excessive masking, i.e., if the SLAM masks a
static object and fails for this reason (as all image features are masked).

• Easy : an object moves but does not cause consensus inversion. Tests standard SLAM robustness.

• Hard : an object moves and causes motion consensus inversion. Tests SLAM robustness to
consensus inversions.

• Very hard : an object moves rigidly with the camera while very close to it. Tests the robustness
to consensus inversion when detecting object motion is extremely difficult.

CI-Static Dataset

The camera is static in the CI-Static subset. An object close to the camera starts moving and causes
a consensus inversion: the SLAM must, however, not compute any motion. We made five sequences
per dynamic object.

86 CHAPTER 4. METRICS AND DATASETS

Figure 4.5 – Miniatures of our CI dataset. The camera moves in the Dynamic subset and stays static
in the Static subset.

4.5. PROPOSED DATASETS 87

4.5.3 ConsInv Dataset
We present in this subsection the ConsInv dataset (as in Consensus Inversion). It is a major evolution
of the CI dataset. The ConsInv dataset is split in ConsInv-Indoors, ConsInv-Outdoors and ConsInv-
Extra, the first two with train/val/test splits. ConsInv-Indoors is designed for experiments on SLAM
robustness where at most one object moves at the same time, while the ConsInv-Outdoors dataset is
designed for experiments where several objects move at the same time. ConsInv-Extra includes se-
quences with the same objects as ConsInv-Indoors but in different environments. Camera displacement
is limited (/2m for ConsInv-Indoors/ConsInv-Extra and / 30m for ConsInv-Outdoors dataset).

Subset Train Val Test Total
ConsInv-Indoors-Dynamic 28 12 12 52
ConsInv-Indoors-Static 8 3 9 20

ConsInv-Extra - - 18 18
ConsInv-Outdoors 44 10 15 69

Table 4.2 – Number of sequences of the ConsInv dataset.

ConsInv-Indoors Dataset

We built the ConsInv-Indoors dataset, made of the subsets ConsInv-Indoors-Dynamic and ConsInv-
Indoors-Static. They include objects moving indoors. We made ConsInv-Indoors-Static to test false
starts, i.e., incorrect initializations that occur when the camera is static, and the SLAM uses features
on moving objects to initialize. Performance is measured in % of prevented false starts. We made
ConsInv-Indoors-Dynamic to evaluate SLAM robustness to motion consensus inversions and failures
due to excessive masking. We include a few sequences with dynamic objects from the CI dataset. We
created sequences to evaluate early failures due to masking static objects and to have enough data for
training splits.

ConsInv-Outdoors Dataset

We built ConsInv-Outdoors (fig. 4.7) to evaluate SLAM robustness in real outdoor settings. It includes
sequences with cars and pedestrians. They move in some sequences and not in others, sometimes at
the same time but not always. Therefore, all-or-nothing strategies (masking all objects or none) are
likely to perform poorly.

ConsInv-Extra Dataset

We made two sets of nine difficult sequences with the dynamic objects of the ConsInv-Indoors dataset,
respectively in a meeting room fig. 4.8 and in a living room (fig. 4.9). These sequences include the same
dynamic objects as ConsInv-Indoors. We illustrate these subsets in fig. 4.8 and fig. 4.9. The purpose
of ConsInv-Extra is to evaluate generalization capabilities of models trained on ConsInv-Indoors.

88 CHAPTER 4. METRICS AND DATASETS

Figure 4.6 – ConsInv-Indoors dataset. The camera is mobile in the ConsInv-Indoors-Dynamic subset
and fixed in the ConsInv-Indoors-Static subset.

4.5. PROPOSED DATASETS 89

Figure 4.7 – Illustration of the ConsInv-Outdoors Dataset.

90 CHAPTER 4. METRICS AND DATASETS

Figure 4.8 – Illustration of the ConsInv-Extra-MeetingRoom Dataset.

Figure 4.9 – Illustration of the ConsInv-Extra-LivingRoom Dataset.

4.6. CONCLUSION 91

4.6 Conclusion
We presented in this chapter the difficulties of evaluating SLAMs in dynamic scenarios, detailing
two issues that we identified: the Motion Consensus Inversion and the Excessive Masking. We also
presented the current SLAM metrics and datasets as well as their limits. Thus, we proposed new
SLAM metrics, the Penalized ATE RMSE, the Success Rate, and the USM. We also proposed and new
datasets: the CI Dataset and ConsInv Dataset. The key takeaway is that compared to static scenarios,
dynamic scenarios have unique challenges that require appropriate – and previously missing – metrics
and datasets to be properly tackled.

92 CHAPTER 4. METRICS AND DATASETS

Chapter 5

From a Robust SLAM to a Dynamic
SLAM by Self-Learning of Outliers

We present in this chapter our work on self-supervised Dynamic SLAMs that use outliers as a indirect
supervision signal, building upon the work in chapter 3. We detail the resulting method and the
corresponding methods experiments. The goal of this chapter is to answer the question: what should
a Dynamic SLAM mask?

5.1 Introduction

The work in this chapter focuses on two specific difficulties of Dynamic SLAM: the ability to both un-
known dynamic objects and to handle motion consensus inversions, which we presented in section 4.2.2.
MCIs are rarely studied [82, 5] although it is of high interest in practice. We presented various Dy-
namic SLAMs approaches in section 2.2. Very few of them can learn automatically to mask unknown
objects, namely [5, 118]. [5] requires training sequences recording the same location at different times
and needs a full stereo camera + LIDAR setup, while [118] requires an existing semantic segmentation
network for bootstrapping and does not work under an MCI. Hence, we propose an approach that at
the same time requires little training data and supports unknown objects.

We use geometrical information – SLAM inliers and outliers – to first locate dynamic objects then
construct and learn their masks. We build upon the exploratory work in section 3.4: the key idea is
that outliers tend to appear in clusters on dynamic objects when they start to move, replacing inliers.
Therefore, we use outliers to pinpoint areas of interest, identify the objects inside (which is hard to do
without clues on where they are), and create a training database of semantic masks of these objects.
We finally use this database to train a semantic segmentation network. We integrate the trained
model in an existing SLAM to make it Dynamic. Our approach only needs one monocular sequence
per dynamic object, while [5] requires at least two and up to eight in practice. Moreover, unlike [5],
we do not need stereo nor depth information, making our approach easier to implement and put into
practice. And unlike [118], our approach is not vulnerable to MCIs, especially at runtime.

We use our approach to make ORB-SLAM 2 robust to dynamic objects without any manual
annotations. ORB-SLAM 2 is still today one of the best SLAMs and widely used, so improving it
is valuable. We also tested transferring the trained masking model into LDSO [39], a feature-based
dense SLAM, and the result was a significant improvement in performance showing some inter-SLAM
generalization capability.

Note that our approach is different from motion learning [63]. Our approach is about learning to
segment objects that generate clusters of outliers, which are usually dynamic objects, then masking
them. Motion learning consists in learning the motion of objects in a general context: thus, motion
learning methods are disconnected from the SLAM context. We discussed in section 1.1 how the gap

93

94 CHAPTER 5. OUTLIER-BASED DYNAMIC SLAM

between what the user needs and what the SLAM does is the cause for issues as the motion consensus
inversion. Widening this gap is likely to make the SLAM perform poorly in difficult scenarios, so we
avoid relying on motion learning algorithms to improve SLAM performance.

5.2 Learning to Segment Dynamic Objects

5.2.1 Overview of the method

We outline in this section our approach, illustrated in fig. 5.1, to transform a feature-based SLAM into
a Dynamic SLAM by adding the ability to filter dynamic objects. Our goal is to protect the SLAM
against the negative effects of dynamic objects in a given environment. We achieve this by training
a segmentation network with two classes: static and dynamic, the latter being masked during the
execution of the SLAM. Having detailed classes as car or person is not needed since we always mask
dynamic objects. We show that unconditional masking is more robust than geometrical methods,
which fails under consensus inversions. Among mask-based approaches, ours is the only one with
automatic annotation and very low data requirements (one sequence per object).

Figure 5.1 – Overview of our approach. We collect inliers and outliers from example sequences and use
them to create masks of dynamic objects. We train a semantic segmentation network with the created
masks and integrate it in the SLAM after the keypoint detection step. At runtime we infer the masks
of any sequence and remove all features on dynamic objects.

SLAMs usually reject non-static features with methods as RANSAC [76]. We make the hypothesis
that, if there is no motion consensus inversion, the sudden apparition of dense clusters of outliers
characterizes violations of the static world assumption by dynamic objects. Thus, if dense clusters of
outliers suddenly replace inliers, it means that the inliers that became outliers were in fact dynamic
features, indicating that there is a whole object violating the static world assumption rather than just
isolated features.

Given a SLAM, we define example sequences as sequences that respect our hypothesis, i.e., make
the SLAM generate clusters of outliers on dynamic objects when they move. In practice, example
sequences are sequences in which dynamic objects are reconstructed by the SLAM and do not cause
motion consensus inversions, e.g ., a sitting person that stands up a couple meters away from the
camera.

Figure 5.2 illustrates our method. The steps of our approach are:

1. Outlier and inlier preprocessing: we use the SLAM to generate outliers and inliers. For
non-deterministic SLAMs, we add a filtering step.

5.2. LEARNING TO SEGMENT DYNAMIC OBJECTS 95

2. Mask creation and network training: we use the inliers and outliers to create the masks of
dynamic objects in training sequences. This lets us create a complete training database, where
the sequences that created inliers/outliers are the network input and the masks the network
labels. We the use this database to train a neural network for the image segmentation task.

3. SLAM Integration and Inference: we integrate the trained network right after the feature
detection step of the SLAM. At runtime, we infer segmentation masks from the input images
and use them to filter features in masked areas.

Figure 5.2 – Steps of our method. We only need one monocular sequence per dynamic object to make
the SLAM robust and prevent major failures due to dynamic objects. We train one network for our
CI dataset and one for TUM RGB-D.

5.2.2 Outlier and inlier preprocessing
Once initialized, a feature-based SLAM algorithm computes camera poses for each frame in three
major steps:

96 CHAPTER 5. OUTLIER-BASED DYNAMIC SLAM

1. 2D keypoint detection.

2. 2D-3D matching between detected keypoints and known 3D map points + triangulation of new
3D map points.

3. Bundle adjustment: robust optimization of 2D-3D matches and camera poses.

We save the coordinates of outliers and inliers of each frame right after the bundle adjustment:
outliers are keypoints whose 2D-3D match was rejected, and inliers those whose 2D-3D match was
not rejected. SLAMs may be non-deterministic due to multithreading or random functions (e.g,.
RANSAC). We previously discussed this point in section 3.3.3. So, we save inliers and outliers coor-
dinates over several runs and merge them, filtering rarely observed coordinates as they tend to create
spurious clusters when merged.

5.2. LEARNING TO SEGMENT DYNAMIC OBJECTS 97

5.2.3 Mask creation and network training
This step is divided in mask creation network training.

Mask creation

this step consists in localizing dynamic objects with sliding windows, refining the windows into masks,
and propagating the masks to the whole sequence.

Localizing dynamic objects with sliding windows: on every image of every sequence we use
rectangular sliding windows of different sizes, at a fixed stride, to evaluate how the inlier/outlier ratio
changes.

Let w be a window on image p and w′ its corresponding window on image p′. Then the outlier
score S is:

S =

(
outlier density of w
inlier density of w

)
/

(
outlier density of w′

inlier density of w′

)
(5.1)

When a mapped object moves, many inliers become outliers, making the ratio S drop between
consecutive frames. We consider that w contains a dynamic object if S is less than a threshold Smax,
set by the user. Note that this value Smax is intrinsic to the SLAM and does not depend on the
processed sequence.

We approximately compensate camera motion with the homography H = K.dRp,p′ .K
−1 where K

is the camera intrinsic matrix and dRp,p′ is the relative rotation between w and w′. We apply H on
window w′ to have both w and w′ match the same physical location. This approximation is easy to
compute using a trajectory generated by the SLAM and was accurate enough in our experiments. We
illustrate this process in fig. 5.3.

Refining sliding windows into single masks: we merge all bounding boxes that overlap on
the same image. Then we project each merged bounding box on the past and future k frames and
create image sequences with the content of these projected bounding boxes. The created sequences
are a perfect fit for Unsupervised Video Object Segmentation (UVOS, methods that automatically
segment salient/dynamic objects in videos) as there is no ambiguity on which object to segment. For
each created sequence we apply the author’s implementation of COSNet on the central images – a
state-of-the-art UVOS network which we already tested in section 3.4.3 –, thus masking the dynamic
objects inside the sliding windows.

98 CHAPTER 5. OUTLIER-BASED DYNAMIC SLAM

Figure 5.3 – Illustration of the sliding window process. The goal is to find areas where the inlier/outlier
ratio drops between frame n and frame n+3 using a sliding window, and build bounding boxes around
these areas. In this scenario, there are ratio drops on the car (the red boxes) since the car starts
moving between the two frames. The final result is a bounding box around the areas were ratio drops
were found, i.e., the car.

5.2. LEARNING TO SEGMENT DYNAMIC OBJECTS 99

Propagating single masks: now that we have at least a single accurate binary mask for every
dynamic object, we can propagate them to past and future frames using semi-supervised video object
segmentation. These methods track dynamic objects in videos but require very accurate initial guesses
which we have thanks to the previous step. We apply the author’s implementation of SiamMask [105],
a state-of-the-art network that is both lightweight and class-agnostic, towards past and future frames.
The result is a set of binary masks, covering the whole sequence, for each dynamic object. We illustrate
this process as well as the previous one in fig. 5.4.

Figure 5.4 – Illustration of the segmentation process. We use COSNet to make to transform the
bounding box into a single segmentation mask and SiamMask [105] to propagate segmentation masks
across the sequence.

Network training

Our goal is to train a semantic segmentation network able to mask all dynamic objects simultaneously.
First, we train one instance of the network for every set of masks generated at the previous step. Then,
we infer semantic masks for every sequence and for every trained network. We superimpose the masks
inferred on the same sequence and use all superimposed masks to train a final instance of the semantic
segmentation network; the computed model can be used to mask all dynamic objects of all sequences
simultaneously. Figure 5.5 shows the result: from models able to segment a single object, we train
models able to segment all objects at the same time.

Figure 5.5 – Illustration of the training process. We first train models able to one object class at a
time (green masks, left), then combine inferred masks to train models able to mask all of them at the
same time (blue masks, right).

100 CHAPTER 5. OUTLIER-BASED DYNAMIC SLAM

5.2.4 SLAM Integration

We integrate the final trained model after the feature detection module in the SLAM. The model
will later be used for inference: at runtime, we infer the mask of dynamic objects from the current
image, then filter all features whose coordinates are on masked areas. We previously presented the full
pipeline in fig. 5.1. The inference part alone is in fig. 5.6.

Figure 5.6 – Dynamic SLAM at runtime. It consists in filtering all features on dynamic objects using
generated semantic masks.

5.3 Experiments

5.3.1 Experimental setup

We evaluate our method on the TUM RGB-D dataset and on the CI dataset, presented in section 4.5.2.
We use ORB-SLAM 2 as the core SLAM algorithm for the main experiments and LDSO specifically

to test the extension to a Direct SLAM. We set the feature number to 3000 following the results from
section 3.2 and use default/author settings otherwise. We use our method to train one network
on the TUM RGB-D dataset (we use the sequences fr3_sitting_static and fr3_walking_static for
training) and one on the CI dataset (we use the Easy sequences of the Dynamic subset), presented
in section 4.5. For semantic segmentation, we use DeepLabv3+1 [19], a state-of-the-art semantic
segmentation network. We set τ = 0.1 when computing the Penalized ATE RMSE.

While evaluating our method on the easy sequences of the CI dataset we empirically found suitable
parameters: sliding windows of size 100x100 / 200x200 / 300x300 / 400x400 with a stride of 50px, a
difference of 3 images to compute outliers scores, an interval of at least k = 30 images (1s at 30Hz)
for the mask propagation step and a max outlier score Smax = 0.15 to determine if a sliding window
contains a dynamic object. We manually adjusted these parameters so as to have qualitatively accurate
bounding boxes around dynamic objects.

5.3.2 Results

Comparison with the State-of-the-Art

Dynamic objects, especially when causing consensus inversions, may cause early SLAM failure and
decrease in the Tracking Rate of SLAMs, making the comparison of ATE RMSEs biased. To take
both the trajectory error and the Tracking Rate into account we use our new metrics: the Penalized
ATE RMSE and the Success Rate. The Penalized ATE RMSE integrates failures, so it is directly
comparable between SLAMs, and a higher Success Rate expresses that a SLAM is less affected by
dynamic objects. We evaluate the methods on the TUM RGB-D and CI datasets.

1Source: https://github.com/srihari-humbarwadi/person_segmentation_tf2.0

5.3. EXPERIMENTS 101

State of the Art ORB-SLAM 2 [76] + · · ·

L-K2[20] Dyna3[8] ST4[82] Uni5[103] DS5[116]
Segmentation baselines

Our seg.
Test dataset No seg. Mask R-CNN[47] PWC-Net[91] RVOS[100] COSNet[66]

Consensus Inversion - Mono 0.0547 0.0693 0.0692 N/A N/A 0.0860 0.0760 0.0237 0.0144 0.0297 0.0089

Consensus Inversion - Stereo N/A 0.0627 0.0699 N/A N/A 0.0756 0.0630 0.0803 0.0116 0.0148 0.0094

TUM RGB-D - Mono 0.0892 0.1108 0.1101 N/A N/A 0.0252 0.0235 0.0335 0.0331 0.0267 0.0222

TUM RGB-D - RGB-D N/A 0.0206 0.0173 0.0190 0.0802 0.1077 0.0172 0.0790 0.0218 0.0245 0.0185

Table 5.1 – Average Penalized ATE RMSE (m) of the State-of-the-Art and baselines on Consensus Inver-
sion/Dynamic and TUM RGB-D/Dynamic datasets. N/A indicates that the SLAM mode is not supported.

State of the Art ORB-SLAM 2 [76] + · · ·

L-K2[20] Dyna3[8] ST4[82] Uni5[103] DS5[116]
Segmentation baselines

Our seg.
Test dataset No seg. Mask R-CNN[47] PWC-Net[91] RVOS[100] COSNet[66]

Consensus Inversion - Mono 54,5% 63,6% 63,6% N/A N/A 45,5% 54,5% 72,7% 72,7% 72,7% 100,0%

Consensus Inversion - Stereo N/A 72,7% 63,6% N/A N/A 63,6% 63,6% 63,6% 81,8% 81,8% 100,0%

TUM RGB-D - Mono 50,0% 62,5% 62,5% N/A N/A 87,5% 87,5% 62,5% 62,5% 100,0% 100,0%

TUM RGB-D - RGB-D N/A 100,0% 100,0% 100,0% 87,5% 62,5% 100,0% 62,5% 100,0% 100,0% 100,0%

Table 5.2 – Success Rate (%) of the State-of-the-Art and baselines on Consensus Inversion/Dynamic and
TUM RGB-D/Dynamic datasets. N/A indicates that the SLAM mode is not supported.

State of the Art ORB-SLAM 2 [76] + · · ·

L-K2[20] Dyna3[8] ST4[82]
Segmentation baselines

Our seg.
No seg. Mask R-CNN[47] PWC-Net[91] RVOS[100] COSNet[66]

53,3% 60,0% 60,0% 60,0% 60,0% 66,7% 86,7% 80,0% 100,0%

Table 5.3 – Evaluation on Consensus Inversion/Static dataset. We report the ratio of sequences that do not
cause initialization fails (false starts).

102 CHAPTER 5. OUTLIER-BASED DYNAMIC SLAM

Table 5.1 (cols. 2-6) shows the Penalized ATE RMSE of the State of the Art. Our method
performed better than others on our dataset (all modes) and on TUM RGB-D in monocular mode. It
is in third place on TUM RGB-D in RGB-D mode.

On TUM RGB-D in monocular mode the results of L-K2[20], DynaSLAM3 [8] and Slamantic4 [82]
are explained by the harsh penalty we give to early failures (which happened to the three of them). The
original ORB-SLAM 2 already performs well so removing dynamic objects is not really necessary. All
Dynamic SLAMs5 performed well in RGB-D including our method. We reached the standard of other
Dynamic SLAMs that rely on manually annotated networks. Figure 5.7 illustrates how the SLAM can
output nonsense in presence of consensus inversions (motions that do not exist) and that we prevent
it.

Figure 5.7 – Consensus inversion in fr3_walking_xyz (TUM RGB-D). Camera pose in blue and 3D
map in red. Left: no masks, the camera trajectory is nonsensical as the SLAM uses features on
moving people. Right: we apply masks using our method, the SLAM trajectory is coherent with the
real motion.

On our CI dataset other Dynamic SLAMs performed poorly: they failed in hard / very hard
sequences when the object was of an unknown class, e.g ., dragon or dromedary. Even Slamantic, that
tries not to segment mobile objects that are not moving (e.g ., a parked car) also failed in the very
hard sequences as the objects are static during most of the sequence.

Table 5.2 (cols. 2-6) shows the Success Rate of the State of the Art. Our approach has the best

2We implemented a simplified version of [20] (which uses the Lucas-Kanade optical flow): we warp frames with an
homography and we set the optical flow displacement threshold to 2px.

3DynaSLAM randomly crashed in RGB-D mode on our system. We refer to the original results in this mode.
4The publicly available code of Slamantic does not support monocular mode so we adapted the available stereo code.
5We report the results of DS-SLAM and Unified.

5.3. EXPERIMENTS 103

performance in all cases. The results are coherent with the Penalized ATE RMSE: a higher Success
Rates correspond to a lower Penalized ATE RMSE. Except for TUM RGB-D in RGB-D mode (success
rate ≥ 85%), all results are below 75%. The results in monocular mode show that it is more difficult to
handle monocular dynamic sequences with geometrical approaches, possibly due to the arbitrary scale
of the SLAM. The success rates on our dataset (about 60%) shows that both geometrical approaches
and hybrid ones combining geometrical/semantic approaches at runtime fail if there are consensus
inversions caused by unknown objects.

Our results prove that regarding the robustness to dynamic objects: 1) semantic networks should be
fine-tuned to the dynamic objects of the working environment 2) geometrical approaches are unreliable
under consensus inversions 3) Hybrid/combined approaches are unreliable under consensus inversion
caused by unknown objects.

Comparison with baselines

Unsupervised Video Object Segmentation (UVOS) networks and semantic segmentation networks may
appear as trivial solutions to make a SLAM Dynamic as their integration is straightforward.

To test this aspect, we integrated Mask R-CNN (we filter the same semantic classes as DynaSLAM),
RVOS [100] (in zero-shot, i.e., unsupervised mode) and COSNet (we only use past frames for inference)
in ORB-SLAM 2. We also test a very simple optical flow solution with PWC-Net [91], a learned optical
flow network, by masking the area of the image with the 50% most intense optical flow.

Table 5.1 (cols. 7-12) show that we perform better that all baselines. All results are comparable
to the State of the Art on TUM RGB-D except for PWC-Net, likely due to its naive integration (if
there is no object moving the predicted mask will be wrong). However, on the CI dataset results
are quite different: Mask R-CNN and PWC-Net both perform poorly while RVOS and COSNet have
very good results. This shows that methods that are class-agnostic perform better than class-aware
methods and – considering the other columns of the table – geometrical methods. The main issue with
UVOS networks is in fact oversegmentation: RVOS and COSNet failed on the Static sequences of the
Consensus Inversion / Static subset. They masked the only source of features in the image and made
the SLAM fail. The same conclusions come from table 5.2. Figure 5.8 illustrates failure cases.

The conclusion is that UVOS networks are better at making SLAMs robust to dynamic objects
than the usual semantic and geometrical approaches. However, they also segment static objects and
have an increased risk of failing early in static environments.

Figure 5.8 – Failure cases of baselines methods (ORB-SLAM 2 + existing network). Mask R-CNN
ignores the dragon and considers the dromedary a cake. Other methods segment static objects.

Evaluation of monocular false starts

Monocular SLAMs as ORB-SLAM 2 require the camera to move to initialize, so we evaluate a spe-
cific kind of failure: false starts. Figure 5.9 illustrates such a false start: since the camera is static,
generated maps or trajectories are necessarily fake. We evaluate the State of the Art and the base-
lines on the Consensus Inversion / Static subset. We performed best, never initializing incorrectly.
All other methods failed, either because the object is unknown (semantic approaches), because the
object caused a consensus inversion (geometrical approaches) or because it was not fully segmented

104 CHAPTER 5. OUTLIER-BASED DYNAMIC SLAM

LDSO [39] + · · ·
No segmentation Our segmentation

Avg. Penalized ATE RMSE (m) 0.0833 0.0581
Success Rate (%) 36.4% 63.6%

Table 5.4 – Average Penalized ATE RMSE (m) and Success Rate (%) of LDSO and our masked version
on the Consensus Inversion/Dynamic dataset.

(UVOS approaches). The results show again that it is essential to make a SLAM robust in a specific
environment.

Figure 5.9 – Example of monocular false start. The SLAM cannot initialize as the camera is perfectly
static. Yet if the object is not masked the SLAM generates absurd trajectories and 3D maps. Masking
dynamic objects prevents such situations.

Extension to a Direct SLAM

We tested integrating the model trained on ORB-SLAM 2 into LDSO, a monocular feature-based,
dense SLAM. Since it is feature-based we proceed as for ORB-SLAM 2: we integrate the network right
after the feature detector, filtering features that are located on dynamic objects. The input (images)
and output (a trajectory) remain unchanged.

Figure 5.10 shows the effect of masking: the 3D reconstruction is incorrect if the object is not
masked. However, when masked, the SLAM runs normally. Table 5.4 shows that both the Penalized
ATE RMSE and Success Rate improve. While the Success Rate does not reach 100%, the result is
very interesting: it is possible to use what we learned from one SLAM algorithm to improve another
one.

This shows that our trained model has a certain inter-SLAM generalization capability: it is not
limited to a specific SLAM although the training is self-supervised. This makes sense as the model
ultimately masks dynamic objects, and dynamic objects are the raison d’être of Dynamic SLAMs.

5.3. EXPERIMENTS 105

Figure 5.10 – We apply our method on LDSO and evaluate it on a hard sequence. Without masks the
SLAM fails, with masks it ignores the object and works correctly.

106 CHAPTER 5. OUTLIER-BASED DYNAMIC SLAM

5.3.3 Limitations
There are some limitations to our method. We rely on video segmentation networks, but they may
not work in ambiguous situations, i.e., when an object is not clearly identifiable in an image or not a
solid entity. This includes various situations:

1. A dynamic object passes in front of a background similar to the object. This makes boundaries
harder to distinguish and complicates image segmentation.

2. An object is (partially) out of bounds or occluded by another object. This makes image segmen-
tation perform poorly and cuts the information flow when propagating masks across a sequence.
We can mitigate this issue by splitting sequences where an object stops being visible and con-
sidering the rest of the sequence as a different one (the rest of the algorithm in section 5.2.3 is
unchanged). But the resulting quality is lowered since per-sequence training datasets become
smaller.

3. Non-solid entities like reflections, smoke, liquids, etc. are a poor match to our method. They
are very hard to segment in the first place; creating training databases automatically is a major
challenge. Our method is unlikely to work with these entities. Regarding deformable objects
(e.g ., people), our method works if the segmentation algorithm has sufficient generalization
capabilities. Seeing these deformable objects in different forms also helps training (e.g ., people
walking, sitting, running...).

Although it is not really a limitation but more of a design choice, dynamic objects must be recon-
structed by the SLAM to generate outliers. This means that it is difficult to mask objects that move
all the time. We aim to mask outlier-generating objects: an object that never generates outliers when
it moves (outside MCIs) does not need to be masked at all. For practice purposes, it is invisible to
the SLAM. This implies that training sequences must be representative of what situations the SLAM
algorithm may encounter.

Similarly, we do not handle new dynamic objects at runtime, but this is extremely difficult and a
poor idea considering the risk of making the problem we are trying to solve ill-posed, as we discussed
in section 1.1. Finally, the improved SLAM stops tracking if a known dynamic object covers the
whole image; but we solve this issue by adding a new concept, Temporal Masking, that we present in
chapter 6.

5.4 Conclusion
In this chapter we proposed a novel method to learn to segment dynamic objects using only one
monocular sequence per dynamic object, which is an advantage in comparison to previous methods.
More importantly, we do not need any manual labelling which makes our method much easier to use.

We also evaluated the CI dataset and new metrics to evaluate the robustness of Dynamic SLAMs.
We showed that consensus inversions can cause major SLAM failures, even to state-of-the-art Dynamic
SLAMs. We improved ORB-SLAM 2 monocular/stereo/RGB-D as well as LDSO at the same time
and achieved top results in very challenging scenarios, effectively preventing MCIs.

Finally, another advantage of our method, in addition to preventing SLAM failures and improving
motion estimation, is the improvement in map reconstruction. Tasks like relocalization and loop closing
need accurate maps and should benefit from our approach.

Chapter 6

Dynamic SLAM with Temporal
Masking

We present in this chapter our work on Dynamic SLAM with self-supervised Temporal Masking. We
focus on the notion of temporality in Dynamic SLAMs that we first discussed in section 3.5. The goal
of this chapter is to propose a solution to the problem: when should a Dynamic SLAM mask objects?

6.1 Introduction

Figure 6.1 – Illustration of our results on the TUM RGB-D dataset. a) A Basic SLAM does not mask
dynamic objects and consequently drifts. b) A Dynamic SLAM masks all supposedly dynamic objects,
even when they are actually static, and may consequently fail if there are not enough unmasked features.
c) Our method, Dynamic SLAM with Temporal Masking, masks dynamic objects when appropriate:
when it is predicted to maximize SLAM performance. Our model learns by itself that masking objects
in motion is beneficial for the SLAM, while other approaches must make this assumption.

We discussed in the previous chapter how to prevent motion consensus inversions but did not
tackle the problem of early failure due to lack of features. To the best of our knowledge, current
visual Dynamic SLAMs – as well as the approach presented in the previous chapter – are unable to
handle both motion consensus inversions and failures due to excessive masking. The key cause is

107

108 CHAPTER 6. DYNAMIC SLAM WITH TEMPORAL MASKING

Figure 6.2 – Temporal Masking Network. It takes as input a video sample and outputs, for the last
sampled frame, per-class binary masking decisions on which classes should be masked using a semantic
mask. Spatial Representation outputs features for every input frame.

the dependency on instantaneous motion detection, unreliable in some cases. This problem is rarely
studied. Slamantic proposes computes a “dynamic factor” for each 3D point depending on its semantic
class and its detection consistency over time [82], which allows to identify those that should be used
for pose estimation. It nevertheless still relies on geometrical considerations to detect instantaneous
motion, therefore fails in scenarios where the instantaneous motion of an object is too difficult to detect.
Moreover, the computation of dynamic factors depends on heuristic and class-specific thresholds, which
makes generalization to new classes or environments a cumbersome process.

We thus propose to decide whether to mask objects or not without any a priori on geometry. In
practice, we learn a model that provides such a decision frame by frame, depending on the previous
frames of the sequence being processed and the data seen during training. Temporal Masking is
therefore a new paradigm that differs from earlier approaches by not using any prior to filter 3D
points, neither on object motion nor on which semantic classes are dynamic. In place of instantaneous
geometric considerations, the masking decision emerges from the memory of training data and the
previous frame of the sequence.

Most effective learning-based approaches are supervised, therefore require annotations. To create
a temporal mask, a binary decision mask / no_mask must be taken for every frame of every training
sequence. Beyond the tediousness of the task, it is moreover difficult to make such a choice a priori
w.r.t. the final SLAM performance, even for an expert. In addition, such a choice may be algorithm-
dependent and would have to be done again for any new approach.

Hence, the core of our contribution is a self-supervised approach to automatically create temporal
masks for any sequence, without any manual work, and that adapts automatically to any (feature-
based) SLAM algorithm. The general idea consists in sampling the space of all possible binary temporal
masks, then evaluating and aggregating the samples to reflect the corresponding SLAM performance.
A uniform sampling would nevertheless require too many samples, making the method computationally
intractable, hence we propose a method to efficiently explore and select samples in this space. Any
SLAM performance metric can be used with our method, including the classical trajectory accuracy
(ATE RMSE) and robustness to failures (Tracking Rate). Our goal is to maximize SLAM performance
holistically, so we choose to use the Unified SLAM Metric presented in section 4.4.2 since it combines
accuracy and robustness.

Once the training sequences are automatically annotated, we train a model that takes as input past
frames and computes a binary decision for the current one: whether applying a given spatial mask
is relevant or not with regard to the final SLAM performance. The underlying architecture is based
on recurrent neural networks to take into account possible dependencies with past frames. We show
that our approach is on par or better than the State of the Art on TUM RGB-D and KITTI datasets,
as well our ConsInv dataset, previously presented in section 4.5.3. We also report the limits of our
approach when the test context is different from the training one.

Our approach is different from the State of the Art as we predict the effect of masking objects on
SLAM performance: we add temporal masking to the SLAM, a memory-based decision module that

6.2. SLAM PIPELINE 109

signals when to apply given semantic masks. We consider the SLAM as a black box with respect to
masking decisions. As a consequence, Dynamic SLAM algorithms that use internal SLAM data for
object masking [3, 8, 82, 109] are not compatible with our approach.

6.2 SLAM Pipeline

Figure 6.3 – Overview of Dynamic SLAM with Temporal Masking and comparison to other approaches.
The key improvement compared to other methods is the per-class choice between masking and not
masking objects that does not depend on the SLAM itself, nor priors on object motion or semantics.

We present our SLAM pipeline in fig. 6.3. A basic SLAM is composed of two modules: Keypoint
detection and Tracking and Mapping. It takes as input the current frame at time t and outputs the
camera pose at time t. A standard Dynamic SLAM adds semantic masking between these two elements,
unconditionally filtering keypoints that are on masked objects considered dynamic. Our approach is to
add Temporal Masking: a decision module that computes at frame-level and class-level binary masking
decisions, i.e., which classes should be masked in the current frame to improve SLAM performance
(using a given masking algorithm like Mask R-CNN) and which should not. The decision module uses
a video sample as input, which is a set of past frames before time t + the current frame at time t.
Note that the set of past frames does not have to be consecutive nor immediately precede the frame
at time t: the sample may include frames from the far past.

6.3 Temporal Masking Network
Overview. Let a video sequence and a generator of semantic masks segmenting p classes, e.g ., Mask
R-CNN. Our goal is to predict frame by frame which object classes should be masked (with masks from
the given generator) to maximize SLAM performance. Thus, we propose an LSTM-based Temporal
Masking Network: it memorizes for every class the circumstances when masking objects pertaining to
it is beneficial for the SLAM, to later infer masking decisions for unknown sequences. The reliance on
memory instead of geometry-based instantaneous motion detection avoids the deadlocks discussed in
section 2.2.2.

LSTM-based network. The Temporal Masking Network, in fig. 6.2, computes which semantic
classes in the last frame of a video sample should be masked: it is a multi-label classification problem.

110 CHAPTER 6. DYNAMIC SLAM WITH TEMPORAL MASKING

It is composed of a spatial representation module and an LSTM Encoder-Decoder. The network takes
as input a video sample, computes a spatial representation of every frame of the sample (e.g ., features
computed with a CNN encoder), inputs the computed features into an LSTM Encoder-Decoder, and
finally applies a threshold to the result to obtain a per-class binary masking decision for the last frame
of the sample. We train only the LSTM Encoder-Decoder.

The main reason to compute a spatial representation is that directly inputting tens of images at
high resolution – 720p or above – in a LSTM is hardly possible within the memory limits of currently
available GPUs. A lightweight spatial representation is far easier to handle and makes training faster.
Note that if using deep networks to generate features, they do not need to come from the last layer of
the encoder – they can come from intermediate ones.

We propose an architecture for the LSTM Encoder-Decoder in fig. 6.4. A ReLU activation and a
dropout follow intermediate fully connected layers. The last layer is activated with a sigmoid. We use
a binary cross-entropy loss for multi-label classification. The last layer has size p+ 1 as it corresponds
to the p semantic classes to mask + a nothing to mask class: the latter is a background class and is
discarded after inference.

Figure 6.4 – LSTM Encoder-Decoder architecture. When masking p classes, the output has length
p+ 1 as it includes a nothing to mask class.

6.4 Temporal Annotation Methods

Training a network for temporal masking requires annotating video sequences accordingly. Let us
consider a video sequence of length l and a generator of semantic masks (e.g ., Mask R-CNN) segmenting
p classes: a temporal mask is a binary matrix of size l×p storing masking decisions (i.e., which classes
to mask using the given generator) for every frame of the sequence. We make annotations with two
approaches: sequence-wise or frame-wise.

In frame-wise annotations, every frame is separately annotated – manual frame-wise annotations
correspond to fully supervised training and automatic ones to self-supervised training. In sequence-
wise annotations, objects of the same class are either masked in all frames or in none – these are weak
annotations and correspond to weakly supervised training. As data annotation is a costly, SLAM-
specific, and expert task, we propose to learn temporal masks with self-supervision in section 6.4.2
and compare this approach to the simpler ones in section 6.4.1. We illustrate the annotation process
in fig. 6.5.

6.4.1 Baseline Methods

Full Supervision Annotations for full supervision are manual and frame-wise: they consist in de-
ciding for every frame and semantic class if masking objects of this class in this frame improves SLAM
performance. They require SLAM expertise and become prohibitively costly as the sequence length
increases.

6.4. TEMPORAL ANNOTATION METHODS 111

Figure 6.5 – Sequence annotation methods. The annotation consists in deciding, per class, when to
mask objects of this class with semantic segmentation. a) In full supervision, a human expert makes
decisions for every frame. b) In weak supervision, a human expert makes a single decision that is
applied to all frames. c) In self-supervision, an automatic annotation method makes decisions for
every frame.

Weak Supervision Annotations for weak supervision are manual and sequence-wise: they consist
in taking a unique decision for each class and each sequence. The mask of a class is always active if it
improves SLAM performances when at least one frame is masked. Otherwise, the mask is never active
for the training sequence. Note that at inference, a model may take different masking decisions within
the same sequence even if trained with weak annotations.

6.4.2 Self-Supervised Method

Annotations for self-supervision are automatic and frame-wise. We first present the annotation method
for a single class to mask. Note that iterating through the full temporal mask space is computationally
intractable (up to 2n masks large, where n is the sequence length), so we cannot exhaustively evaluate
all temporal masks.

We initially considered directly constructing temporal masks with various strategies as sliding
masking windows (inspired by our outlier-based masking method), where we would try to find blocks
of consecutive frames to mask. This worked in very specific cases, e.g ., when a single object moves
quickly once in a sequence, but it generalizes poorly. Then we thought about Monte-Carlo methods,
that consist in solving mathematical problems through random sampling of known spaces. Monte-Carlo
methods are especially useful when one does not need exact answers and exact/exhaustive computation
is computationally intractable.

Therefore, we compute temporal masks in three steps for every sequence:

1. Random sampling of a subset of all possible temporal masks. The restricted random sampling
makes the problem computationally tractable.

2. Benchmarking of the sampled temporal masks using a unified metric. The use of a suitable
unified metric makes mask aggregation automatically integrate SLAM failure cases.

3. Performance-weighted aggregation of sampled temporal masks into a unique mask.

The rationale is that samples that perform well tend to mask objects more appropriately, so the result
from the aggregation masks objects precisely when appropriate. Step 2 is straightforward: for every
sample to test, we run the SLAM applying semantic masks according to the masking decisions in the
sample and measure its performance with the unified metric.

112 CHAPTER 6. DYNAMIC SLAM WITH TEMPORAL MASKING

Random Sampling of Temporal Masks Subspace

We generate a set of basic temporal masks that we will benchmark to know their impact on SLAM
performance. Let l the sequence length, k0 and k1 the minimum required length of resp. contiguous
blocks of zeros and blocks of ones in a temporal mask (0 = do not mask, 1 = mask). For instance, if
we set l = 7, k0 = 2 and k1 = 3, then the following temporal masks (0 = do not mask, 1 = mask):

• Respect k0 and k1: 1110000 ; 0011100

• Do not respect k0 and k1: 1110111 ; 0011000

We uniformly sample masks from the space E(l, k0, k1) of all temporal masks of length l that respect
the min. lengths k0, k1. The rationale is that the states of the objects in the scene do not change too
quickly: by skipping high-frequency changes (low k0, k1), we focus on masks more suited to the scene.

Figure 6.6 – Illustration of sampled temporal masks from a temporal mask space (blue = masked, black
= not masked). Conditions k0, k1 on masked/unmasked block sizes prevent quick changes between
masking states.

We represent E as a binary tree (see fig. 6.7). To keep the problem computationally tractable,
the key insight is to use a closed-form expression of the number of possible paths C(N) under any
bifurcating node N . Starting from the root, whenever we reach a node that has two children, we
randomly pick a child with the odds of each child proportional to the number of possible masks under
it. Any mask corresponding to a root-to-leaf path computed in this way has a uniform probability of
being sampled from E. Note that if k0 = k1 = 1 the sampling is trivial as E is the space of all binary
strings of length l. Figure 6.6 illustrates what sampled masks look like.

Constructing the binary tree representing E. We construct E such that any temporal
mask corresponds to the node values of a unique root-to-leaf path in the tree. The differences with
a unconstrained binary tree are: 1) All leaves have a depth equal to the sequence length 2) Any
temporal mask generated from the tree must respect the minimum block size conditions k0 and k1.

Let i ∈ 0, 1. We call an i-node a node of value i, i-branch consecutive i-nodes connected without
intermediate bifurcations, and bifurcating nodes that have two children. A direct consequence of
condition 2) is that we can only add an i-node whose value is different from its parent if it is inside an
i-branch at least ki nodes long. Hence, all temporal masks are defined by a unique set of bifurcation
choices: the first branching choice at the tree root + the value of the bifurcating nodes it crosses.
Other node values are redundant since they are non-bifurcating and their value determined by their
parent.

For instance, let l = 7, k0 = 2, k1 = 3. Figure 6.7 illustrates E(7, 2, 3). If we start with a 0-branch,
our mask becomes 00. Then, if we choose to add a 1-branch (we cannot add less than k1 1-nodes after a
0-node), our mask becomes 00111. For the last bifurcation, we can either add a 0-branch (resulting in
0011100) or a 1-node. In the latter case, we are then forced to add another 1-node as there is no space
left for a 0-branch, resulting in 0011111. Represented as bifurcations choices, 0011111 ⇐⇒ {0, 1, 1}
(highlighted in fig. 6.7).

Uniformly sampling from the masking binary tree. To compute a root-to-leaf path, we make
consecutive bifurcation choices. At each step of the traversal, let B the last bifurcation node currently
reached. Let C(N) be the number of different masks that can be generated starting from a node N .
We define the criterion Q for the next bifurcation choice b: we sample a random number r ∈ [0, 1[then

6.4. TEMPORAL ANNOTATION METHODS 113

Figure 6.7 – Temporal mask space E(l = 7, k0 = 2, k1 = 3) as a masking binary tree. A temporal mask
is equivalent to a root-to-leaf path.

set b = 0 if r < C(B∪{0})
C(B) (i.e., we branch towards zero) and b = 1 otherwise (i.e., we branch towards

one). Hence, the probability P (b|B) of making choice b from node B is P (b|B) = C(B∪{b})
C(B) .

Let M = {B0, ..., Bp} an ordered set of bifurcation nodes and {b0, · · · , bp} the corresponding
branching choices to reach them, made with the criterion Q, defining a mask M in E(l, k0, k1). Thus:

P (B0, ..., Bp) = P (b0)× P (b1|b0)× ...× P (bp|b0, ..., bp−1)

=
C(B0)

|E|
× C(B1)

C(B0)
× ...× C(Bp)

C(Bp−1)
=

1

|E|
(6.1)

Note that C(Bp) = 1 (end of tree at the p-th choice) and C(B0) is the total number of possible
masks (i.e. the size of E) since the first bifurcation is the tree root. Thus P (M) = 1

|E| : the generated
mask is uniformly sampled. We only need a closed-form solution for C to be able to uniformly sample
temporal masks.

Closed-form solution. We define un and vn as the number of possible masks starting from resp.
a bifurcating 0-node and 1-node at depth n. This implies than C(B) = un if B is a 0-node and
C(B) = vn otherwise. Given the constraints k0, k1 we have the relation:{

un = un+1 + vn+k1

vn = un+k0 + vn+1

(6.2)

By re-indexing the depth n from the end of the tree and defining k := k0 + k1, we have:{
un = un−1 + vn−k1
vn = un−k0 + vn−1

⇐⇒

{
un = 2un−1 − un−2 + vn−k−1

vn = 2vn−1 − vn−2 + vn−k−1

(6.3)

(6.3) shows that (un) and (vn) are linear recurrence relations with constant coefficients and the
same characteristic equation: xk+1 − 2xk + xk−1 − 1 = 0. [2] gives direct formulas for the initial
conditions and approximate solutions. For large n, un and vn have an approximate form αρn with
ρ ' 1, α ∈]0, 1[. Finally, we numerically solve the characteristic equation, obtaining a closed-form
solution for C. We are now able to directly evaluate criterion Q for bifurcation choices, i.e., uniformly
sample the temporal mask space E(l, k0, k1). The total size of E is |E| = u(l − k0) + v(l − k1) as the
root is not a node per se but only a bifurcation.

114 CHAPTER 6. DYNAMIC SLAM WITH TEMPORAL MASKING

Benchmarking of the Sampled Temporal Masks

This step if straightforward: for every sample, we execute the SLAM while applying semantic masks
according to the sample being tested. We then evaluate the computed trajectories using a single metric
as the USM, presented in section 4.4.2.

Sampled Temporal Mask Aggregation

After measuring the performance (i.e., score) of every temporal mask previously sampled, we aggregate
them. To do so, we sum the differences between all pairs of sampled masks (vectors made of -1,0,1)
weighted by their score difference. The idea is that a difference in performance is explained by the
difference in masking decisions, so the score-weighted sum is a real vector where high values indicate
frames that must be masked and low values frames that must not be masked. Let x, y be two sampled
temporal masks and sx, sy their respective scores. To consider only significant score differences, let σa
be the absolute noise (below which score differences are meaningless) and σr the relative noise (the
score difference must be at least σr times the first score of the pair). Then we compute the result
vector R:

R =
∑

x,y∈Samples

max(0, sgn(|sy − sx| −max(σr|sx|, σa)))
×(sy − sx)(y − x) (6.4)

R is a real-valued vector that has high values at indexes where images should be masked and
low values where images should not be masked. We normalize R in [0, 1] and binarize by applying
thresholds in [0, 1], generating an arbitrary number of masks. We finally test these masks and select
the best one score-wise. If there are equivalent masks (within the noises σa and σr), we choose the
one that masks the most frames. We call this method Max TM.

Generalization to multiple classes

Let a sequence of length l and p classes to mask. In the single-class case, we sample q vectors of length
l. In the multiclass case, we sample pq vectors that we join in matrices of size l×p. The benchmarking
step is unchanged.

The aggregation step is the same up to the computation of R, which is now a real-valued matrix.
In the single-class case, R is a vector that we binarize by applying thresholds. In the multiclass case,
every class (i.e., column) may have a different optimal threshold. Hence, for every class i: 1) We
generate a matrix Ri by zeroing out all columns other than column i. 2) As in the single-class case,
we apply thresholds, generating an arbitrary number of temporal masks, evaluate them and select
the best one Ti. The rationale is to maximize the relative effect of masking class i. 3) We select the
best temporal mask score-wise. 3) We concatenate columns 1, . . . , p of resp. T1, . . . , Tp, resulting in a
temporal mask where all classes are appropriately masked.

6.5 Main Experiments

6.5.1 Experimental setup

Datasets. We evaluate the 8 dynamic sequences of TUM RGB-D dataset in RGB-D and the first 11
sequences of KITTI odometry dataset, the ConsInv-Indoors dataset in monocular (both the Dynamic
and Static subsets are used for training but only the former is of interest for evaluating our Temporal
Masking method) and the ConsInv-Outdoors dataset in stereo, all presented in chapter 4. For TUM
RGB-D and KITTI, given the small number of sequences, we run our tests in a leave-one-out approach:
we run the annotation/train pipeline on all sequences but one and infer/test temporal masks for the
remaining one in a round-robin fashion.

Spatial representation. We use ResNet-50 [48] (TensorFlow 2, pretrained on ImageNet) to
compute frame features. Figure 6.8 illustrates the spatial representation pipeline. It appears that

6.5. MAIN EXPERIMENTS 115

naive spatial representations, like using the output of the last layer of ResNet-50 does not work at all:
the training of the Temporal Masking Network does not converge. Apparently, the information needed
to understand a scene at a high level of abstraction (concepts like the object just started moving) is
present in lower-level layers. Thus, for every frame, we collect the output of each of the 17 convolutional
blocks of ResNet-50. For each block, we apply a 2D average pooling on its output (into size (4, 4, .)),
flatten and apply Principal Component Analysis, computed per block on the training sequences. It
results in a feature vector of length about 100 to 1000 per convolutional block, which we concatenate,
resulting in the input frame’s spatial representation – a real-valued vector of size 15k to 20k. We
considered more advanced PCA strategies [85], but they did not appear as necessary.

Figure 6.8 – Process to compute spatial representations using ResNet50.

LSTM Encoder-Decoder and Training. Given a frame index k, we generate video samples by
randomly sampling 49 frames from frames 0 to k − 1 and adding frame k. We sample frames from
the whole past to avoid depending on instantaneous motion detection. We mask the first 49 frames as
we cannot sample them without repetition. We train the LSTM Encoder-Decoder on train+val with
early stopping. Training lasted 40 to 60 epochs in our experiments. We augment training sequences
with horizontal flipping and process video samples in a random order.

SLAM and Semantic Masking. We use ORB-SLAM 2 (3000 features). As ORB-SLAM 2
is non-deterministic, we run it five times on KITTI dataset and ten times on other datasets for
every sequence/temporal mask to evaluate and report the median score. We generate semantic masks
for KITTI/ConsInv-Outdoors datasets using Mask R-CNN, trained on the COCO dataset, and for
ConsInv-Indoors/TUM RGB-D datasets we used the DeepLabv3+ models from chapter 5. We segment
people/vehicles (7 classes) for KITTI, people and cars for ConsInv-Outdoors (2 classes), people for
TUM RGB-D (1 class), and drom/lambo/dragon for ConsInv-Indoors (1 class1).

Dataset Annotation. For automatic annotations (i.e., self-supervision), we sample 200 temporal
masks for each sequence with min. block sizes k0 = k1 = 25 and use the USM (section 4.4.2) to
benchmark/aggregate temporal masks. We manually create weak annotations and full annotations.
The latter are verified to prevent all cases of excessive masking and motion consensus inversion. Since
the ATE RMSE of sequences in the datasets TUM RGB-D/ConsInv and KITTI is resp ≈1cm and
≈1m with manual expert labels, we set λ = 10m−1 for TUM RGB-D/ConsInv and λ = 0.1m−1 for
KITTI, which implies USM ≈ TR(1 − λATE) and make comparisons between SLAMs match user
expectations.

1Note that the model trained on CI dataset segments the dromedary/lambo/dragon in a single dynamic class although
there are three object classes of interest.

116 CHAPTER 6. DYNAMIC SLAM WITH TEMPORAL MASKING

6.5.2 Comparison between annotation methods

We compare in table 6.1 the performance of full supervision (using the manual expert annotations on
train+val), weak supervision and self-supervision on the ConsInv-Indoors-Dynamic subset, ConsInv-
Outdoors and TUM RGB-D dataset.

For the ConsInv-Indoors-Dynamic subset, the performance of self-supervision is slightly higher.
For the TUM RGB-D and ConsInv-Outdoors datasets, self-supervision is by far the best approach,
followed by weak, then full supervision. Thus, full supervision (i.e., manual frame-wise annotations)
and weak supervision (i.e., manual sequence-wise annotations) require more training sequences than
self-supervision (i.e., automatic frame-wise annotations). A first conclusion is that self and weak
supervision modes tend to reach the performance of self-supervision with enough data. Additionally,
frame-wise manual annotations (i.e., full supervision) are surprisingly the most difficult to learn. This
is likely because the person annotating sequences relies on cues that are too subtle (e.g ., reflections on
a car, landmarks that are on the border of the image), therefore difficult, for the temporal masking
network to learn. The overall conclusion is that self-supervision leads to the best results in addition
to removing the need for manual annotations, so we use this method in the rest of the chapter.

Dataset Full supervision Weak supervision Self-supervision
ConsInv-Indoors-Dynamic 0.72 0.68 0.75

ConsInv-Outdoors 0.74 0.80 0.88
TUM RGB-D 0.69 0.70 0.80

Table 6.1 – Comparison of supervision modes. Average USM on ConsInv/TUM RGB-D.

6.5.3 Comparison with the State of the Art

We compare in table 6.2 our method to DynaSLAM2 [8], Slamantic [82], Lucas-Kanade optical flow
[21] (only in monocular), all based on ORB-SLAM 2. We also evaluate StaticFusion [84], that supports
only RGB-D. No masks refers to the original ORB-SLAM2, Full masks refers to ORB-SLAM 2 with
semantic masks always applied. All methods use the same semantic masks. Note that since scores
are medians over the datasets, median USM results cannot be exactly computed from the median
ATE RMSE and median Tracking Rate. We do not show the ATE RMSE and Tracking Rate for the
ConsInv dataset since it includes sequences likely to cause failures due to excessive masking. In such
sequences the ATE RMSE and Tracking Rate are misleading.

TUM RGB-D dataset. Table 6.2 shows that the major obstacles for the SLAM for this dataset
are motion consensus inversions, and our self-supervised model learned to mask objects most of the
time to prevent them. All methods performed well, close or equal to the manual annotations, except
DynaSLAM that performed barely above the No masks baseline and StaticFusion below it. DynaSLAM
removes even more features than the Full masks approach, which delays SLAM initialization and causes
temporary tracking loss. The Tracking Rate of DynaSLAM is in fact exceedingly low despite a good
accuracy (i.e., low ATE RMSE), which proves the importance of measuring the Tracking Rate and
the relevance of our metric, the USM. StaticFusion fails in dynamic sequences with fast rotations, as
it is unable to filter dynamic objects quickly enough.

KITTI dataset. Table 6.2 shows that our method slightly outperforms others as it makes slightly
better masking decisions overall. Still, it appears that the KITTI dataset is unsuitable for Dynamic
SLAM testing since no matter when objects are masked, performance hardly changes. In particular,
the Tracking Rate is always 100%, so tracking failures are absent from this dataset.

ConsInv-Indoors-Dynamic subset. Table 6.2 shows that our approach outperforms all current
methods. DynaSLAM and Slamantic perform worse than the Full masks baseline: thus, masking as

2DynaSLAM crashes when processing the TUM RGB-D seq. fr3_walking_xyz. We compute averages on the 7 other
sequences in this case.

6.5. MAIN EXPERIMENTS 117

Mode Dataset Metric
Baselines State of the Art

OursNo masks Full masks Optical
flow [21] DynaSLAM [8] Slamantic [82] StaticFusion [84]

RGB-D TUM RGB-D
ATE RMSE (m) ↓ 0.105 0.019 - 0.019 0.028 0.099 0.019
Tracking Rate ↑ 96% 96% - 69% 96% 96% 96%

USM ↑ 0.55 0.80 - 0.57 0.76 0.54 0.80

Stereo KITTI
ATE RMSE (m) ↓ 2.59 2.67 - 2.74 2.70 - 2.51
Tracking Rate ↑ 100% 100% - 100% 100% - 100%

USM ↑ 0.80 0.80 - 0.79 0.80 - 0.81
Stereo ConsInv-Outdoors USM ↑ 0.61 0.81 - 0.80 0.82 - 0.88
Mono ConsInv-Indoors-Dynamic USM ↑ 0.57 0.71 0.49 0.63 0.68 - 0.75
Mono ConsInv-Extra-MeetingRoom USM ↑ 0.33 0.65 0.34 0.60 0.54 - 0.67
Mono ConsInv-Extra-LivingRoom USM ↑ 0.51 0.73 0.55 0.60 0.69 - 0.74

Mono ConsInv-Indoors-Static Prevented
false starts ↑ 56% 100% 67% 100% 78% - 100%

Table 6.2 – Comparison with the State of the Art on various datasets in their preferred mode. ’-’
indicates that the mode is not supported by the SLAM algorithm. All scores are medians over the
dataset. For ATE RMSE, lower is better (↓). For Tracking Rate / USM / Prevented false starts,
higher is better (↑). We use the model trained on ConsInv-Indoors when evaluating our method on
ConsInv-Extra, in order to evaluate how it performs in new contexts.

much as possible (DynaSLAM does semantic + motion-based masking) or masking with prior geometric
criteria (Slamantic) is suboptimal in difficult scenarios – and masking appropriately is challenging.
Lucas-Kanade optical flow has a low score as it does not avoid all consensus inversions and removes
features during fast motions, lowering accuracy.

ConsInv-Indoors-Static subset. We also evaluate the ability to prevent false starts (sec-
tion 4.5.3) on the ConsInv-Indoors-Static subset. Table 6.2 shows that most methods, including ours,
prevent all false starts. The underperformance of Slamantic shows that motion-based geometric criteria
are vulnerable to motion consensus inversions.

ConsInv-Outdoors dataset. Table 6.2 shows that our multiclass self-supervised method out-
performs the State of the Art (USM = 0.88). Surprisingly, almost all other approaches have the same
score (USM ≈ 0.80). This means that the masking strategy has to be learned from the environment,
or performance may be suboptimal.

Global conclusion. Our method outperforms the State of the Art in all datasets. A remarkable
result is that when object motion is difficult to detect as in the ConsInv dataset, the simple semantic
approach Full Masks is safer than motion-based, geometry-dependent approaches. Since our method
does not depend on geometric a priori, it can outperform Full Masks, unlike current methods.

6.5.4 Interpretation of Inferred Masks

Quantitative interpretation

We showed previously than full supervision – i.e., learning expert manual frame-wise annotations –
has a lower performance than self-supervision in addition to the annotation cost. Hence, to better
understand why, we directly used manual frame-wise annotations in the SLAM, without any learning.

Table 6.3 shows that manual annotations directly input in the SLAM outperforms our method in
almost all cases. This means that although our method is better than the State of the Art, it can still
be further improved. Manual gives a new threshold to reach in future works, threshold that can be
achieved with better masking decisions.

There are several likely reasons that explain the difference between full supervision (i.e., learned
manual annotations) and the direct use of manual annotations. Manual annotations may rely on
extremely subtle details to detect motion, like tiny objects reflections on car windows or shadows.
Such cues are exceedingly difficult to learn for a neural network – training could require hundreds of
sequences, if not more. Another reason is that manual annotations may not be consistent: for instance,
if masking an object has no effect on SLAM performance, the annotator might mask it inconsistently
in different sequences. Lack of data due to the complexity of label interpretation combined with

118 CHAPTER 6. DYNAMIC SLAM WITH TEMPORAL MASKING

Mode Dataset Metric Manual annotations
(No learning) Ours

RGB-D TUM RGB-D
ATE RMSE (m) ↓ 0.019 0.019
Tracking Rate ↑ 96% 96%

USM ↑ 0.80 0.80

Stereo KITTI
ATE RMSE (m) ↓ 2.53 2.51
Tracking Rate ↑ 100% 100%

USM ↑ 0.81 0.81
Stereo ConsInv-Outdoors USM ↑ 0.93 0.88
Mono ConsInv-Indoors-Dynamic USM ↑ 0.83 0.75
Mono ConsInv-Extra-MeetingRoom USM ↑ 0.74 0.67
Mono ConsInv-Extra-LivingRoom USM ↑ 0.82 0.74

Mono ConsInv-Indoors-Static Prevented
false starts ↑ 100% 100%

Table 6.3 – Comparison between our self-supervised approach and manual annotations from a SLAM
expert, used directly without learning. All scores are medians over the dataset. For ATE RMSE,
lower is better (↓). For Tracking Rate / USM / Prevented false starts, higher is better (↑). We reuse
use the model trained on ConsInv-Indoors when evaluating our method on ConsInv-Extra, in order to
evaluate how it performs in new contexts.

label inconsistency explains why full supervision performs poorly and further highlights the value of
self-supervision.

Qualitative interpretation

Figure 6.9a to fig. 6.11 show qualitative different results on ConsInv-Outdoors in terms of masking,
comparing No masks (never masking objects), Full masks (always masking objects), Manual annota-
tions with no learning and temporal masks inferred with our method, Self-supervision. We observe
the following:

1. Manual annotations follow the “mask the bare minimum” approach while masks inferred from
the self-supervised model follow the “mask unless we are sure it is safe” approach.

2. In easy sequences (fig. 6.11), where masking has no effect, our approach still prefers to mask
objects.

3. In hard sequences where excessive masking negatively affects performance (fig. 6.9a, fig. 6.9b),
our approach masks cars for some time at the start before concluding that “it is not necessary
anymore”. Figure 6.9a shows a difficult case where excessively masking objects leads to SLAM
failure.

4. In difficult sequences where objects cause motion consensus inversions (fig. 6.10b), our approach
always masks objects.

5. Our model has, to a certain extent, situational awareness. It learned that a car + person on
car = car is not moving, i.e., masking cars is not necessary when a person is on them / very
close to them. Likewise, it learned that masking cars is sometimes necessary when a car has
moved in past frames and not necessarily in the last one. This shows that we do not depend
on instantaneous motion detection, and this non-dependence is necessary to solve the motion
detection deadlock as explained previously.

6. Masking people is almost always necessary.

6.5. MAIN EXPERIMENTS 119

(a) Masking result on a difficult sequence with moving people and static cars. Our approach masks people all
the time and almost never cars, making the inferred annotation and the manual annotation very similar.

(b) Masking result on a sequence where both people and cars are static. Our approach is more prudent towards
masking, but correctly stops masking when needed. Blue segments indicate masked frames, per class.

Figure 6.9 – Results of Temporal Masking on ConsInv-Outdoors, part 1. Blue segments indicate
masked frames, per class. Red segments indicate tracking failure due to excessive masking.

120 CHAPTER 6. DYNAMIC SLAM WITH TEMPORAL MASKING

(a) Another masking result on a sequence where both people and cars are static. Our approach is more prudent
towards masking, but correctly stops masking when needed.

(b) Masking result on a difficult sequence with moving cars and no people. Our approach says to mask both
people and cars all the time out of caution.

Figure 6.10 – Results of Temporal Masking on ConsInv-Outdoors, part 2. Blue segments indicate
masked frames, per class. Red segments indicate tracking failure due to excessive masking. Arrows
indicate motion direction.

6.5. MAIN EXPERIMENTS 121

Figure 6.11 – Masking result on an easy sequence with moving cars and no people. Our approach
says to mask both people and cars all the time out of caution. Masking objects has no effect in this
sequence since the vast majority of features is on the background. Blue segments indicate masked
frames, per class.

122 CHAPTER 6. DYNAMIC SLAM WITH TEMPORAL MASKING

6.5.5 Degraded mask quality tests

Segmentation masks can be inaccurate, which may affect the automatic annotations and thus the
training. To measure the robustness of our method to this problem, we degraded the quality of the
segmentation masks during the annotation process by randomly eroding or dilating every mask by
10px. Table 6.4 shows that our method still has superior performance, albeit slightly lower than
before.

TRef Baselines Ours
No masks Full masks Self-sup. Self-sup. (degraded)

0.83 0.57 0.71 0.75 0.73

Table 6.4 – Average USM on ConsInv-Indoors-Dynamic to evaluate the robustness to degraded semantic
masks.

TRef Baselines Ours
No masks Full masks Self-sup. Self-sup. (degraded)

100% 56% 100% 100% 100%

Table 6.5 – Rate of prevented false starts on ConsInv-Indoors-Static including a degraded mask ap-
proach.

6.5.6 Computation time analysis and sampling computational tractability.

We measured the average time to process a frame on a GTX 1080 Ti GPU once all networks are
loaded. We consider full resolution as 1280x720. Results are in table 6.6. Depending on image
resolution, the total time varies from 43ms (23Hz) to 82ms (12Hz), making real-time possible as most
of the computation is offloaded to the GPU.

Mask inference (DeepLabv3+) 12ms (30% res) or 30ms (60% res)
Image encoding (ResNet50) 22ms (50% res) or 43ms (100% res)

Feature processing (pooling + PCA) 4ms
Masking decision inference 5ms
Total inference time 43ms (23Hz) to 82ms (12Hz)

Table 6.6 – Average inference time on a GTX 1080 Ti, per frame. Full res. is 1280x720.

We give the size of the temporal mask space E in table 6.7 depending on the number of images
n and the minimal block sizes k0, k1. The table shows that with block sizes that match real motions
(≈1s to start or stop moving, i.e., less than 50 images), the problem becomes intractable after a few
seconds of video (at 30Hz). This proves the value of our uniform sampling method since exhaustive
exploration of E is computationally intractable.

6.5.7 Data requirement for training

This section compiles results from the main experiments to give a rule of thumb to know how much
data is needed to actually train a temporal masking network. The key elements are dataset complexity
and dataset size.

We define dataset complexity as the number of difficulties present in the dataset among: 1) At
least one sequence causes a motion consensus inversion for a No masks Basic SLAM 2) At least one
sequence causes an early failure due to lack of features to a Full Masks Dynamic SLAM 3) Neither the
No masks nor the Full Masks approach prevent all MCIs and early failures.

6.5. MAIN EXPERIMENTS 123

k Size of E(k0, k1, n)

1
|E| = 2n ≈ 100.3010n

n = 1 30 100 500 1000 10000
|E| = 2 1.07× 109 1.26× 1030 3.27× 10150 1.07× 10301 1.99× 103010

25
|E| ≈ 0.616× 1.1005(n−25) ≈ 0.616× 100.04158(n−25)

n = 1 30 100 500 1000 10000
|E| = 0 2 808 3.53× 1019 2.18× 1040 3.67× 10414

50
|E| ≈ 0.534× 1.0593(n−50) ≈ 0.534× 100.0250(n−50)

n = 1 30 100 500 1000 10000
|E| = 0 0 4 9.84× 1010 3.24× 1023 6.57× 10248

Table 6.7 – Approximate size estimation of E(k0, k1, n) with block size k := k0 = k1. The table
includes approximate solutions for different sequence lengths n but numerical results were computed
with the full solution. It is computationally intractable to fully explore the temporal mask space E if
the masked video is longer than a few seconds (at 30Hz).

We define dataset size in tiers based on the number of images: 1) Less than 10000 images 2) From
10000 to 49999 images 3) 50000 images or more.

Of the previously evaluated datasets, TUM RGB-D is the easiest (constant environment, simple
object motion), KITTI is easy (similar urban environment, simple object motion), ConsInv-Indoors is
hard (same indoors environment, difficult object motions) and ConsInv-Outdoors is very hard (different
outdoor environments, difficult object motions). Table 6.8 shows the dataset complexity and size of
the datasets previously evaluated.

Dataset Dataset
complexity

Dataset
size

TUM RGB-D + +
KITTI + ++

ConsInv-Indoors ++ +++
ConsInv-Outdoors +++ +++

Table 6.8 – Dataset complexity (variety of environment and object motion) and size of the evaluated
datasets.

Empirically, for state-of-the-art performance using self-supervision, we need dataset complexity
lower or equal than dataset size. Quantitatively, about 10 sequences made of 1000 images per dynamic
object class is a good starting point for self-supervision.

6.5.8 Hyperparameter tuning

Choice of dataset annotation methods

In addition to methods used in the main experiments: manual frame-level annotations (for fully super-
vised training), manual sequence-level annotations (for weakly supervised training) and automatically
computed frame-level annotations, i.e., Max TM (for self-supervised training), we can consider two
other annotation methods: Min TM and Best Random. TM means Temporal Masking. Max TM
refers to the fact that, given temporal masks with the same performance, the automatic annotation
method prefers the one masking as many frames as possible (section 6.4.2).

Min TM is the same as Max TM except for the very last step of the sampled temporal mask
aggregation: if we obtain several masks that are equivalent in terms of performance, we choose the
one that masks the least frames instead of the most. This results in masks that are sparse, masking
only the bare minimum of frames to reach max SLAM performance. Best Random, on the other hand,

124 CHAPTER 6. DYNAMIC SLAM WITH TEMPORAL MASKING

consists in completely removing the aggregation step and directly picking the sample that has the
best overall score. Note that we previously raised the idea of controlling the risk of SLAM failure,
especially SLAM drifts, through Temporal Masking in section 3.5. In fact, the accepted risk of failure
is controlled in the last step of our method during the choice of masks among equivalent ones: Min
TM would be a high-risk approach and Max TM a low-risk one.

We tested all annotation methods using the proposed neural network architectures. We used the
train split of the ConsInv-Indoors-Dynamic subset for training (not train+val) and evaluated the
results on the val split of ConsInv-Indoors-Dynamic.

Table 6.9 shows that the automatic annotation method Max TM is the overall best, hence we
choose it as our main method in this chapter. Min TM masks are too sparse, so the training is very
difficult. Best Random masks have no overarching rule (e.g ., to mask as little/as much as possible),
thus they have no easily identifiable pattern and are exceedingly difficult to learn. Overall, automatic
methods work better with the Single LSTM architecture.

Between manual and weak annotations, the weak ones perform slightly better, which is a remarkable
result given that they cost much less. Another notable result is the fact that manual annotations do
not have top performance after learning: the cause is probably the human bias inherent to manual
annotations. A human might use tiny clues like the reflection on a car’s window to judge if an object is
moving – such clues are exceedingly difficult for the network to learn; additionally, human judgement
may be inconsistent, unlike our automatic annotation that always follow the same rules.

Automatic annotations Manual annotations

Best Random Min TM Self-supervision
(Max TM) Weak annotations Full annotations

0.69 0.68 0.77 0.72 0.71

Table 6.9 – Comparison between different annotation methods on the validation split of the ConsInv-
Indoors-Dynamic subset.

Automatic annotation parameters

The main parameters of automatic dataset annotation are the minimum block size k0, k1 and the
number of samples n. Our goal is to compute masks that focus on the key segments of the sequence
as much as possible while maximizing SLAM performance. The Min TM method is more practical to
evaluate this quality than Max TM as it minimizes the ratio of masked frames: a lower masking ratio
at equal performance indicates that the temporal masks fit the sequence better (less useless masking).
As the difference between both methods is only at the very last step of mask aggregation, we expect
the chosen parameters to also be a good fit for the Max TM method.

We evaluate the annotations directly in the SLAM, without learning them. We first tuned k0 and
k1 by maximizing the USM. Table 6.10 show that k0 = k1 = 25 maximize the USM with USM = 0.91.
Then we tuned n by minimizing the Masking Rate, i.e., the ratio of masked frames within a sequence.
Table 6.11 shows that n = 200 is a good compromise as the masking rate stagnates from n = 200
onwards and its USMn=200 = 0.88 remains above all other configurations of k0/k1. Finally, both
table 6.10 and table 6.11 show that the proposed automatic annotation methods (Min TM / Max TM)
are robust to the choice of k0/k1/n (without considering training).

6.5.9 Limitations: tests in out-of-context

While we designed our method to adapt a SLAM to any context (same object classes/similar envi-
ronment) at a low cost with self-supervision, we evaluated how the model trained on ConsInv-Indoors
performs in the contexts of the ConsInv-Extra dataset – a living room and a meeting room. Table 6.2
shows that we perform slightly better than other SLAMs. Thus, our model works in new contexts

6.5. MAIN EXPERIMENTS 125

k0 k1 USM
1 1 0.88
1 10 0.88
1 25 0.89
1 50 0.88
10 1 0.88
10 10 0.88
10 25 0.88
10 50 0.88
25 1 0.87
25 10 0.88
25 25 0.91
25 50 0.87
50 1 0.87
50 10 0.87
50 25 0.87
50 50 0.87

Table 6.10 – Tuning of k0 and k1.

n USM Masking Rate
50 0.91 0.06
100 0.88 0.05
150 0.89 0.06
200 0.88 0.04
250 0.89 0.04
300 0.89 0.04

Table 6.11 – Tuning of n.

similar to the training one and with the same objects. If the change is more drastic, performance
would likely decrease and require adaptations that are out of the scope of our proposal.

Another limitation is that the automatic annotation method needs a ground truth trajectory of
training sequences. It can be obtained, for instance, with manual expert temporal annotations or with
training-time GPS/motion capture data. A ground truth with poor accuracy is likely to lower the
quality of automatic annotations.

126 CHAPTER 6. DYNAMIC SLAM WITH TEMPORAL MASKING

6.6 Complementary work: Dynamic SLAM with Weakly Su-
pervised Temporal Masking

We present in this section an extension of our work on Dynamic SLAM with Temporal Masking to
weak supervision. We propose a new network architecture more suitable for it. We separated this
work in a new section to prevent confusion with our main method, which is self-supervised. Ours
now specifies whether it is the main self-supervised method or the newly improved weakly supervised
method.

In the self-supervised case, our proposal is to automatically annotate sequences with temporal masks
and learn them with a network. We talked about weak supervision in section 6.4.1 but abandoned
this approach in the first experiments (section 6.5.2) as it proved to have a lower performance than
self-supervision.

Still, weak supervision remains of interest. Self-supervision has a reduced annotation cost in the
sense that it requires little to no human intervention. However, computational costs are not negligible
as every sequence has to be evaluated tens, if not hundreds of times. Moreover, if self-supervision
cannot be used, we do not have any way out other than manual annotation – which is much more
costly. For instance, self-supervision could be unavailable due to limited computational resources or
the need for a shorter training pipeline (e.g ., if the annotation code cannot be shared).

Therefore, we propose a new network architecture that improves the performance of weak supervi-
sion and makes it more useful for practical uses.

6.6.1 Temporal Masking Network for Weak Supervision
We present the new network architecture in fig. 6.12. The architecture designed for self-supervision,
first presented in section 6.3, consists in an LSTM followed by a series of fully connected layers. It
uses as input the concatenated features of every frame of an input video sample. Our proposal is to
input separately features according to their source layer. For instance, if using ResNet50 to generate
features (fig. 6.8 in section 6.5), features may come from intermediate layers and not only the last layer.
The rationale is that different layers store information at different levels of abstraction, so processing
features according to their source layer would make learning this information easier.

Figure 6.12 shows both the previous and new architecture of the Temporal Masking Network.
The main difference is that features from different frames are concatenated according to their source
layer, then input in separate LSTMs. We name the previous architecture Single LSTM and the
new architecture One LSTM Per Layer LSTM Encoder-Decoder. The different branches are later
concatenated to have the same output as before, i.e., a vector of size p + 1 where p is the number of
classes to mask + a “do not mask anything” class. The latter is discarded during inference.

6.6. COMPLEMENTARY WORK: DYNAMIC SLAM WITH WEAKLY SUPERVISED TEMPORAL MASKING127

Figure 6.12 – Architectures of the LSTM Encoder-Decoder, a) With a single LSTM and b) With
multiple LSTMs. The input are features of every image of a video sample. In a), features are simply
concatenated. In b), features are grouped according to their source layer in the neural network used
to generate them (see section 6.5.1). When masking p classes, network output has length p + 1 as
it includes a nothing to mask class. Experimentally (section 6.5.1), a) is more suited for full/self-
supervision and b) for weak supervision.

128 CHAPTER 6. DYNAMIC SLAM WITH TEMPORAL MASKING

6.6.2 Experiments

The experimental setup is the same as in (section 6.5.1), with the exception of how the spatial represen-
tation is input in the LSTM Encoder-Decoder. If inputting features into an LSTM Encoder-Decoder
using the One LSTM per Layer architecture, features are inserted in separate LSTMs according to
their source layer in ResNet50.

Choice of architecture according to the annotation method

We follow the notations in section 6.5.8. To determine the most suitable architectures, including
the new one (fig. 6.12) for self/weak/full supervision. We trained models on the train split of the
ConsInv-Indoors dataset and evaluated the results on the val split of ConsInv-Indoors-Dynamic.

Table 6.12 shows that the Single LSTM architecture is more suitable for full/self-supervision train-
ing and One LSTM/Layer for weak supervision. The automatic annotation method Max TM remains
the overall best. Between manual and weak annotations, the weak ones perform slightly better, which is
a remarkable result given that they cost much less. Weak supervision has a slightly better performance
with the One LSTM/Layer architecture.

Automatic annotations Manual annotations

Architecture Min TM Max TM
(Self-supervision) Best Random

Weak annotations
(Weak supervision) Full annotations

Single LSTM 0.68 0.77 0.69 0.72 0.71
One LSTM/Layer 0.66 0.75 0.70 0.73 0.70

Table 6.12 – Comparison between different annotation methods and architectures on the validation
split of the ConsInv-Indoors-Dynamic subset. Best automatic / manual methods in bold.

While the Single LSTM architectures is better for self-supervision, it is not as much for weak
supervision. Thus, we decided to extend the comparison between supervision modes (table 6.1 in
section 6.5.2). We compare the performance of every mode on test sequences after training on train+val
sequences.

Table 6.13 shows that the difference between both architectures is sharp for weak supervision.
While self-supervision stays the overall best method, weak supervision performs significantly better,
sometimes with a negligible difference compared to self-supervision. Between manual and weak anno-
tations, the weak ones perform slightly better, which is a remarkable result given that they cost much
less. Weak annotations work better with the One LSTM/Layer architecture and full annotations with
a single LSTM, although the difference is low – it may even become negligible with enough data. For
practical purposes, when the use of weak annotations is a requirement, it might be useful to try both
architectures.

Dataset Full supervision Weak supervision
Single LSTM arch.

Weak supervision
One LSTM/Layer arch. Self-supervision

ConsInv-Indoors-Dynamic 0.72 0.68 0.74 0.75
ConsInv-Outdoors 0.74 0.80 0.79 0.88
TUM RGB-D 0.69 0.70 0.74 0.80

Table 6.13 – Comparison between supervision modes with different architectures. Average USM on
ConsInv/TUM RGB-D. Includes the number of sequences per object class.

For the rest of this chapter, unless otherwise noted, we use the One LSTM/Layer
architecture for weak supervision.

6.6. COMPLEMENTARY WORK: DYNAMIC SLAM WITH WEAKLY SUPERVISED TEMPORAL MASKING129

Comparison with the State of the Art

Having improved the performance of weak supervision, we extended the comparison to the State of
the Art (table 6.2 in section 6.5.3) to include weak supervision.

Table 6.14 shows that in most cases our weakly supervised method is second place only to our
own self-supervised method. Thus, weak supervision appears as a viable solution in settings where
self-supervision is unavailable.

Mode Dataset Metric
Baselines State of the Art Ours

No masks Full masks Optical
flow [21]

DynaSLAM
[8]

Slamantic
[82]

StaticFusion
[84]

Self-
Supervision

Weak
Supervision

RGB-D TUM RGB-D
ATE RMSE (m) ↓ 0.105 0.019 - 0.019 0.028 0.099 0.019 0.032
Tracking Rate ↑ 96% 96% - 69% 96% 96% 96% 96%

USM ↑ 0.55 0.80 - 0.57 0.76 0.54 0.80 0.74

Stereo KITTI
ATE RMSE (m) ↓ 2.59 2.67 - 2.74 2.70 - 2.51 2.63
Tracking Rate ↑ 100% 100% - 100% 100% - 100% 100%

USM ↑ 0.80 0.80 - 0.79 0.80 - 0.81 0.80
Stereo ConsInv-Outdoors USM ↑ 0.61 0.81 - 0.80 0.82 - 0.88 0.79
Mono ConsInv-Indoors-Dynamic USM ↑ 0.57 0.71 0.49 0.63 0.68 - 0.75 0.74
Mono ConsInv-Extra-MeetingRoom USM ↑ 0.33 0.65 0.34 0.60 0.54 - 0.67 0.53
Mono ConsInv-Extra-LivingRoom USM ↑ 0.51 0.73 0.55 0.60 0.69 - 0.74 0.73

Mono ConsInv-Indoors-Static Prevented
false starts ↑ 56% 100% 67% 100% 78% - 100% 100%

Table 6.14 – Comparison with the State of the Art on various datasets in their preferred mode. We
include results from weakly supervised temporal masking. ’-’ indicates that the mode is not supported
by the SLAM algorithm. All scores are medians over the dataset. For ATE RMSE, lower is better
(↓). For Tracking Rate / USM / Prevented false starts, higher is better (↑). We reuse use the model
trained on ConsInv-Indoors when evaluating our method on ConsInv-Extra, in order to evaluate how
it performs in new contexts.

Data requirements for training

To complete the study on weakly supervised Temporal Masking, we complete the conclusions on
training data requirements (table 6.8 in section 6.5.7). For readability, as the original table is short,
we copied it here.

Dataset Dataset
complexity

Dataset
size

TUM RGB-D + +
KITTI + ++

ConsInv-Indoors ++ +++
ConsInv-Outdoors +++ +++

Table 6.15 – Dataset complexity (variety of environment and object motion) and size of the evaluated
datasets.

Empirically, for state-of-the-art performance using self-supervision, we need dataset complexity
lower or equal than dataset size; for weak supervision, we need dataset complexity lower than dataset
size. Quantitatively, ≈ 10 sequences made of 1000 images per dynamic object class is a good starting
point for self-supervision. For weak supervision, this requirement increases to ≈ 15 sequences. This
explains why the performance of weak supervision is average on TUM RGB-D/ConsInv-Outdoors
datasets, and state-of-the-art on ConsInv-Indoors/KITTI datasets.

130 CHAPTER 6. DYNAMIC SLAM WITH TEMPORAL MASKING

6.7 Conclusion
In this work, we introduced the concept of Temporal Masking to overcome the limits of current Dynamic
SLAMs. The general idea is to mask objects of certain classes, frame by frame, in order to maximize
a chosen SLAM metric. In detail, we proposed a neural network architecture that we train in a self-
supervised way thanks to the proposed automatic annotation method. We compared the obtained
model with baselines and with the State of the Art [8, 82, 21, 84] and outperformed them all on real
data: on the TUM RGB-D, KITTI and ConsInv datasets

We showed that one of the baselines, weakly supervised Temporal Masking, is not as good as self-
supervised Temporal Masking. Still, it remains of interest, so we did a complementary research work
and proposed a novel network architecture better suited for weak supervision. The performance of the
resulting model is above the State of the Art and below our self-supervised model, so it is valuable for
contexts where self-supervision is unavailable.

Chapter 7

Conclusion and Perspectives

7.1 Conclusion
Simultaneous Localization and Mapping is an ability that is necessary for many applications as au-
tonomous vehicles and robotics, in particular its extension specialized for dynamic environments,
Dynamic SLAM. This ability is what enables navigation and interaction with the environment.

However, Dynamic SLAM is a significantly more difficult challenge than SLAM. The presence of
dynamic objects makes it impossible to rely on the convenient assumption that the world is static. The
purpose of running a Dynamic SLAM in dynamic environments is to ensure that, at all times, poses
are computed with respect to the correct frame of reference; we showed that several factors complicate
this task, namely situations known as motion consensus inversions and excessive masking.

A major SLAM challenge is to develop a method that works in any environment, including dynamic
ones. Designing a Dynamic SLAM that works is not trivial, but it has already been done; designing
one that works in any scenario is, however, extremely difficult. Generalization to arbitrary scenarios
requires the ability of understanding on-the-fly which frame of reference the user expects to be used
no matter what is happening in the scene – e.g ., a drone flying in a forest, a busy road or a ship
exploring the seas. Such generalization capabilities require a level of intelligence far above what AIs
can do today.

This thesis proposes to overcome the SLAM challenge with a self-supervised approach. Instead
of trying to develop increasingly complex solutions to make a SLAM more general, our philosophy
is to learn what the SLAM has to do to improve itself from data provided by the user – data that
are representative of the scenarios that the SLAM algorithm has to support. Our Dynamic SLAM
automatically learns what dynamic objects it should mask (i.e., filter) and when it should do so to
maximize SLAM performance, all from unlabeled training sequences provided by the user.

The first part of our work consisted in creating a setup for evaluation. The existing datasets were
quite limited, seldom having very difficult scenarios like motion consensus inversions. Hence, they
are not representative of difficult contexts that exist in real life. Moreover, the existing metrics – the
omnipresent accuracy metric ATE RMSE and the less popular robustness metric Tracking Rate – tend
to be misleading in these scenarios. A proper performance analysis needs to compare these two metrics
at the same time, making comparisons complex. For these reasons, we proposed our own datasets,
containing difficult dynamic scenarios, in particular scenarios with motion consensus inversions or risk
of excessive masking. We also proposed the Penalized ATE RMSE, Success Rate and Unified SLAM
Metric, which combine ATE RMSE and Tracking Rate in order to better reflect user needs and make
scalar comparisons simple and meaningful.

Once we clarified the difficulties of Dynamic SLAMs and had ways to evaluate the robustness
of Dynamic SLAMs with respect to them, we tackled the problem of what objects to mask in a
given scenario. Instead of making educated guesses, which tend to be biased, we developed a self-
supervised approach that automatically learns from SLAM outliers what should be masked. Outliers

131

132 CHAPTER 7. CONCLUSION AND PERSPECTIVES

are features in an image that the SLAM rejects for not fitting the static world model, and they tend to
be concentrated on dynamic objects when they start moving. We do not assume the nature of objects
to mask: the SLAM learns to segment them from outliers. This means that objects that are naturally
ignored by the chosen SLAM, e.g ., textureless objects, may very well never need to be masked. Thanks
to our method, we made our Dynamic SLAM safe from motion consensus inversions in any scenario
from which we have easy sequences to learn from, surpassing the State of the Art.

Our last contribution is to add the temporal aspect to the act of masking objects to our Dynamic
SLAM, i.e., Temporal Masking. It appears that never masking objects or masking them all the
time is suboptimal. Hence, we propose to learn the masking decisions that directly maximize SLAM
performance through self-supervision. Without any assumption on the motion of objects, we developed
a method that automatically annotates video sequences with masking decisions, annotations that we
learn with our Temporal Masking Network. Our memory-based network can go beyond the capabilities
of the usual approaches based on instantaneous motion detection, making our method perform beyond
the State of the Art on current SLAM datasets as well as on our own dataset. In particular, our
approach handles motion consensus inversions while preventing excessive masking.

7.2 Perspectives
After this thesis, there are three main tasks that may be considered: research to further improve
the proposed methods, improving the technology readiness level for future industrialization, and new
applications of the developed concepts.

7.2.1 Further Research

Regarding further research, we are considering several improvements in future works.

Further Research on Outlier-based Masking

In our outlier-based masking method, we analyze outliers and compute bounding boxes with geometry
alone. Motion learning approaches [50] could be used as an extra source of information to identify more
accurately the outlier-generating objects in the scene. They might also prove useful to shorten the
computation pipeline, reducing the first steps to a single module. Another difficulty of object masking
is dealing with object occlusions – i.e., when an object is only partially visible –, which complicate the
creation of the training database. Learned motion estimation [52] and occluded keypoint localization
[77] would improve the quality and consistence of the training database as they may be able to segment
objects even when they are barely visible, which our proposed approach has difficulty doing so.

Further Research on Temporal Masking

Instance-level Masking. The proposed approach makes masking decisions at the class level – to
mask or not all objects of a certain class. It cannot make different decisions, within the same image,
for different instances of the same class: e.g ., to mask a moving car while not masking a parked
car. Since networks as Mask R-CNN compute instance-level masks, it seems valuable to explore a
strategy that considers class instances separately. Note that computing temporal masking decisions
for every instance separately is a major challenge that will require significant research. It increases the
dimension of the temporal masking space: for a single frame, we do not have one binary decision per
class but a potentially higher, variable (and unknown) number of binary decisions per class. Likewise,
the Temporal Masking network has to be modified to be able to learn masking decisions for variable
number of objects. This means that the output of the Temporal Masking (for a single image as input)
would not be a vector of fixed size n – where n is the number of classes – but n sets of binary values of
variable size. Moreover, we cannot separate the spatial aspect from the temporal one in the network:
assuming that the neural network can handle instance-level inference, each inferred temporal masking

7.2. PERSPECTIVES 133

decision must then be matched to a specific detected object instance within the image, and not just
to segmentation classes that apply to the whole image. This further complicates the question.

Combining Semantic and Temporal Masking. It would be useful to jointly learn to segment
objects and learn when to mask them. Both could synergize and improve each other, in the same
sense that depth and ego-motion estimation learning are often joined. A single network could take as
input series of images and output semantic masks only when appropriate, without separating binary
decisions and semantic networks. There would be no need to output binary masking decisions: objects
simply would not be segmented when it is not appropriate.

End-to-end SLAMs. Temporal Masking is also of interest for end-to-end SLAMs. Our approach
is a feature-based SLAM aided by learned algorithms, so we can clearly separate Temporal Masking
from the rest of the SLAM. End-to-end SLAMs are single networks that take as input images and
output trajectories. They do have features and maps, but they are encoded within the layers of the
network and in practice too complex to extract, much less filter. Therefore, we preferred to rely
on feature-based SLAM: we can create a general approach that applies to any feature-based SLAM
without worrying about AI interpretability issues. Nonetheless, if in the future we understand how
networks for end-to-end SLAM work and where the key features for the implicit mapping task are, a
Temporal Masking module could be integrated in the neural network to boost its performance.

Better performance. Temporal Masking method can still be improved: we noticed during our
benchmarks, especially on the ConsInv-Outdoors and ConsInv-Indoors dataset, that objects are not
always masked optimally compared to manual annotations. Adding other types of sensors as input
(e.g ., depth sensors, an IMU) could help making appropriate masking decisions when the main camera
provides ambiguous information, for instance when it is exceedingly close to an object. For now,
the Temporal Masking Network is split in two steps: the computation of image features and the
computation of masking decisions from these features, mostly due to hardware limitations (memory
and computation time). Making the network truly end-to-end would ensure that its performance is
not limited by an imperfect match between the information contained in the features and the task we
are trying to train the network for.

Finally, we could have the possibility of controlling the acceptable risk of SLAM drift at runtime.
When annotating sequences, we have to find the right balance between masking too much out of caution
and masking not enough and risking a drift, which is unacceptable in some cases: e.g ., a SLAM for
autonomous cars that drifts could cause an accident. In our approach, this balance is implicit in the
annotation process. It would be convenient to have a configurable network hyperparameter at runtime
that controls this balance: this would make the model more flexible, able to adapt to situations of
different risk. The difficulty is that the annotation process would need to generate data for diverse
levels risk and the network architecture modified to integrate the notion of controllable risk.

7.2.2 Improving Technology Readiness Level for Future Industrialization

Regarding future industrialization, this thesis was carried out at the LVML whose primary purpose
is to provide localization and modelling solutions for industrial partners. The ability of automatically
adapting the SLAM to arbitrary dynamic scenarios is, therefore, valuable. Nonetheless, the Technology
Readiness Level (TRL) is still low: in other words, the proposed methods need to be further tested
and improved before being used in industrial applications. Once the TRL is increased enough, our
work will allow LVML’s SLAM algorithms to become more robust to unknown dynamic objects in
industrial contexts.

Integration into the Existing SLAM Base

Increasing the technology readiness level implies integrating the proposed methods into the LVML tech
stack. We expect self-supervised object masking to synergize well with the existing constrained SLAM
technology. Constrained SLAM [95] relies on known 3D models (e.g ., cars, industrial parts, etc.) to
identify objects and improve SLAM accuracy. The ability to identify outlier-generating objects could

134 CHAPTER 7. CONCLUSION AND PERSPECTIVES

be paired with constrained SLAM to label 3D models as static/dynamic. Another idea is to make
model alignment easier as outliers indicate the pose of dynamic objects. The LVML also works on
Augmented Reality and Diminished Reality: in these, correctly identifying objects to process or to
remove – including outliers – is necessary, and our method could help doing so.

The automation of both outlier-based masking and Temporal Masking is not trivial and requires a
significant work on the engineering aspect of our implemented pipelines. They first must be adapted
to the LVML’s own SLAM: we did not use it since it contains proprietary code and using ORB-
SLAM makes result comparison simpler w.r.t. the State of the Art, but LVML’s SLAM is designed
for industrial applications. In addition, as our pipelines includes data collection and network training
steps, it is necessary to industrialize them in a data-aware fashion.

Combining Outlier-based Masking and Temporal Masking into a Single Pipeline

We presented our two major contributions separately. However, they synergize well: the former is a
solution to learn how to mask unknown objects, and the latter is a solution to learn when to apply
these masks. Since they are complementary, it would be convenient to integrate both methods into a
single, robust pipeline. This pipeline would take as input sequences representative of the environment
we want the SLAM algorithm to process and would output one model to segment dynamic objects and
one model to compute the corresponding masking decisions.

Furthermore, the idea of combining the contribution in a single pipeline is also applicable to the
idea of combining semantic and Temporal Masking. In this case, the input of the pipeline would be
unchanged but the output would be a unique model that segments objects only when needed.

7.2.3 New Applications

Regarding new applications, outlier-based masking could be extended to entities other than SLAM
keypoints and the Temporal Masking paradigm could be used in new contexts.

Outlier-based masking is at its core a method to identify problematic entities in easy sequences and
transfer this knowledge to identify the same kind of entity in difficult sequences where such entities
would normally not be identified, preventing known issues. Like vaccination, an algorithm learns
what to do in a harmless setting to survive dangerous situations. But these entities can virtually be
anything in an algorithm. We can imagine using lines in a line-based SLAM [104] or image patches in
direct SLAMs. Outside SLAMs, we could apply this concept to robustify data processing pipelines and
reduce the chances of false positives/negatives. For instance, in electrocardiography (ECG) analysis we
could learn to detect false positives – e.g ., abnormal but harmless readings due to temporary anxiety.
Another possibility is to use the vaccination concept for feature engineering: this process is crucial for
reliable performance of machine learning systems, and it could be partially learned on easy datasets
and then applied on difficult datasets. As we can see, the concept of “outlier-based vaccination” is very
general – we only need to find where to apply it.

Certain scenarios include reflections that may confuse the SLAM. Specularities (mirror-like reflec-
tions of light sources) tend to generate misleading features and consequently lower SLAM accuracy.
Most SLAM algorithms do not explicitly process reflections as their effect on accuracy is usually neg-
ligible. However, as for motion consensus inversions, this means that the SLAM is likely to fail in very
difficult scenarios. On the other hand, there is significant research on specularities [101], including
within the LVML itself: research on the structural properties of specularities applied to their prop-
agation [79] and prediction [72, 73] for Augmented Reality (e.g ., object retexturing) and Diminished
Reality (removal of objects that takes overlapping specularities into account). Temporal Masking could
be applied to specularity detection instead of object detection, improving SLAM performance in these
circumstances. The idea is to decide when to remove or not specularities – note that this question
is not trivial, as specularity detection is trickier than object detection due to being non-physical and
prone to false positives that Temporal Masking could potentially reduce. More generally, Temporal
Masking could be applied to any future elements that a user can segment and needs to know if they

7.2. PERSPECTIVES 135

should be masked. The interest of Temporal Masking is the only thing the user needs to change is the
module computing segmentation masks.

Finally, we can consider that Temporal Masking is a method that maximizes the performance of
an algorithm that takes as input a time series by triggering a specific action when appropriate. This
concept could potentially be applied to contexts different from series of images and masking choices.
For instance, in path planning algorithms [69], the action could be to block certain directions that
are expected to lead to dead ends based on the last image inputs or on the local map. For instance,
if a robot is exploring a cave system, a trained model could know what patterns of caves indicate
danger, even if the sensors themselves cannot detect anything due to lack of light, or any other reason.
In a way, we would be giving an “instinct” to the robot. Interestingly, there is a parallel between
instincts and Temporal Masking. Instincts guide the behavior of animals for their own benefit without
rational conscious thoughts from them1; similarly, Temporal Masking signals an algorithm when to
mask objects or not to maximize SLAM performance, even if we do not understand the underlying
model. More generally, the input could potentially be any kind of time series, like the heart rate input
for sports coaching. The model could learn when to increase/decrease the effort so as to improve
training results. The key takeaway is: Temporal Masking is not about detecting anomalies; it is about
finding out what (not) to do to maximize the chances of reaching a certain goal.

We showed that the idea of learning from outliers and the concept of Temporal Masking both have
a lot of potential, especially when applied in contexts out of SLAM applications. Hopefully, these ideas
will inspire future researchers for novel applications in their own field!

1From https://en.wiktionary.org/wiki/instinct

136 CHAPTER 7. CONCLUSION AND PERSPECTIVES

Appendix A

Published SLAM datasets

The SLAM landscape has seen a variety of SLAM datasets in recent years. We give links and essential
info about currently available datasets in table A.1 and table A.21. The links in the table are all
available as of the publication of this thesis. The datasets used in this thesis are in chapter 4.

1We used the site https://github.com/youngguncho/awesome-slam-datasets as a source for part of the table.

137

138 APPENDIX A. PUBLISHED SLAM DATASETS

Name Link Affiliation Year Environment Platform
VIODE https://github.com/kminoda/VIODE EPFL, U. Tokyo 2021 Urban Veh

Minoda, Koji et al . “VIODE: A Simulated Dataset to Address the Challenges of Visual-Inertial Odometry in Dynamic Environments”. IEEE Robotics and Automation Letters 2021,
Virtual KITTI 2 https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/ Never Labs 2020 Urban Veh

Cabon, Yohann ; Murray, Naila ; Humenberger, Martin. “Virtual KITTI 2”. Arxiv:2001.10773, 2020.
Waymo https://waymo.com/open Waymo 2020 Urban Veh

Sun, Pei et al . “Scalability in perception for autonomous driving: Waymo open dataset”. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
NuScenes https://www.nuscenes.org/ nuScenes 2020 Urban Veh

H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan and O. Beijbom. “nuScenes: A multimodal dataset for autonomous driving”. CVPR 2020.
4Seasons https://www.4seasons-dataset.com/ TUM 2020 Urban Veh

P. Wenzel ; et al . “4Seasons: A Cross-Season Dataset for Multi-Weather SLAM in Autonomous Driving”. Proceedings of the German Conference on Pattern Recognition (GCPR) 2020.
OpenLORIS https://lifelong-robotic-vision.github.io/dataset/scene.html Intel 2020 Indoor Mob

Xuesong Shi et al . “Are We Ready for Service Robots? The OpenLORIS-Scene Datasets for Lifelong SLAM”. 2020 International Conference on Robotics and Automation (ICRA).
ICL-Dataset https://peringlab.org/lmdata/ Imperial College 2019 Indoor Hand, MAV

Sajad Saeedi et al . “Characterizing Visual Localization and Mapping Datasets”. International Conference on Robotics and Automation (ICRA), 2019,
FMDataset https://github.com/zhuzunjie17/FastFusion Hangzhou Dianzi / Tsinghua 2019 Indoor Hand

Shan, Zeyong, Ruijian Li, and Sören Schwertfeger. “RGBD-Inertial Trajectory Estimation and Mapping for Ground Robots.” Sensors 19.10 (2019): 2251.
UZH-FPV Drone Racing https://fpv.ifi.uzh.ch/ UZH, ETH 2019 Indoor, Outdoor UAV

J. Delmerico et al . “Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset” IEEE International Conference on Robotics and Automation (ICRA), 2019.
Syncity (Simulator) https://www.cvedia.com/simulation/ CVEDIA 2019 Urban, Terrain Veh, UAV

Bonn RGB-D https://www.ipb.uni-bonn.de/data/rgbd-dynamic-dataset/ U. Bonn 2019 Indoor Hand
Palazzolo et al . “ReFusion: 3D Reconstruction in Dynamic Environments for RGB-D Cameras Exploiting Residuals”. IROS 2019.

ETH3D https://www.eth3d.net/slam_overview ETH 2019 Indoors Hand
T. Schöps, T. Sattler, M. Pollefeys, “BAD SLAM: Bundle Adjusted Direct RGB-D SLAM”, Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

Segway DRIVE http://drive.segwayrobotics.com/ Segway 2019 Urban Mob
Jianzhu Huai, Yusen Qin, Fumin Pang, Zichong Che. “Segway DRIVE Benchmark: Place Recognition and SLAM Data Collected by A Fleet of Delivery Robots”.

ADVIO Dataset https://github.com/AaltoVision/ADVIO Aalto U 2018 Urban Hand
Saraee, Elham, Mona Jalal, and Margrit Betke. “SAVOIAS: A Diverse, Multi-Category Visual Complexity Dataset.” arXiv preprint arXiv:1810.01771 (2018).

DeepIO Dataset http://deepio.cs.ox.ac.uk/ Oxford 2018 Indoor Hand
Chen, Changhao, et al . “OxIOD: The Dataset for Deep Inertial Odometry.” arXiv preprint arXiv:1809.07491 (2018).

Aqualoc Dataset http://www.lirmm.fr/aqualoc/ ONERA-DTIS 2018 Underwater ROV
Ferrera, Maxime, et al . “The Aqualoc Dataset: Towards Real-Time Underwater Localization from a Visual-Inertial-Pressure Acquisition System.”arXiv:1809.07076.

Rosario Dataset http://www.cifasis-conicet.gov.ar/robot/doku.php CONICET-UNR 2018 Terrain Mob
Taihú Pire et al . “The Rosario Dataset: Multisensor Data for Localization and Mapping in Agricultural Environments”. In: International Journal of Research Robotics, 2018.

InteriorNet https://interiornet.org/ Imperial College 2018 Indoor Hand
Li, Wenbin, et al . “InteriorNet: Mega-scale multi-sensor photo-realistic indoor scenes dataset.” arXiv preprint arXiv:1809.00716 (2018).

SPO Dataset https://www.h-ka.de/isrg/publications/vod TUM, Karlsruhe 2018 Urban Hand
N. Zeller, F. Quint, U. Stilla (2018): A Synchronized Stereo and Plenoptic Visual Odometry Dataset, arXiv:1807.09372.

KAIST Day/Night https://sites.google.com/view/multispectral/home KAIST-RCV 2018 Urban Veh
Choi, Yukyung, et al . “KAIST Multi-Spectral Day/Night Data Set for Autonomous and Assisted Driving.” IEEE Transactions on Intelligent Transportation Systems 19.3 (2018): 934-948.

TUM-Visual-Inertial https://vision.in.tum.de/data/datasets/visual-inertial-dataset TUM 2018 Indoor, Urban Hand
Schubert, David, et al . “The TUM VI Benchmark for Evaluating Visual-Inertial Odometry.” arXiv preprint arXiv:1804.06120 (2018).

Complex Urban https://sites.google.com/view/complex-urban-dataset KAIST-IRAP 2018 Urban Veh
Jinyong Jeong ; Younggun Cho ; Young-Sik Shin ; Hyunchul Roh and Ayoung Kim. “Complex Urban Dataset with Multi-level Sensors from Highly Diverse Urban Environments”. IJRR, 2019,

Multi Vech Event https://daniilidis-group.github.io/mvsec/ Upenn 2018 Urban Veh
Zhu, Alex Zihao, et al . “The Multi Vehicle Stereo Event Camera Dataset: An Event Camera Dataset for 3D Perception.” IEEE Robotics and Automation Letters (2018).

VI Canoe https://databank.illinois.edu/datasets/IDB-9342111 UIUC 2018 Terrain USV
Miller, Martin, Soon-Jo Chung, and Seth Hutchinson. “The Visual–Inertial Canoe Dataset.” The International Journal of Robotics Research 37.1 (2018): 13-20.

RPG-event http://rpg.ifi.uzh.ch/davis_data.html ETH-RPG 2017 Indoor UAV / Hand
Mueggler, Elias, et al . “The event-camera dataset and simulator: Event-based data for pose estimation, visual odometry, and SLAM.” The International Journal of Robotics Research, 2017

Underwater Cave http://cirs.udg.edu/caves-dataset/ UDG 2017 Underwater AUV
Mallios, Angelos, et al . “Underwater caves sonar data set.” The International Journal of Robotics Research (2017): 0278364917732838.

Robot @ Home http://mapir.isa.uma.es/mapirwebsite/index.php/mapir-downloads/203-robot-at-home-dataset.html MRPT 2017 Indoor Mob
Ruiz-Sarmiento et al . “Robot@ home, a robotic dataset for semantic mapping of home environments.” The International Journal of Robotics Research (2017)

Zurich Urban MAV http://rpg.ifi.uzh.ch/zurichmavdataset.html ETH-RPG 2017 Urban UAV
Andras L. Majdik, Charles Till, Davide Scaramuzza. “The Zurich Urban Micro Aerial Vehicle Dataset”. International Journal of Robotics Research, April 2017.

SceneNet RGB-D https://robotvault.bitbucket.io/scenenet-rgbd.html Imperial 2017 Indoor Hand
John McCormac et al . “Scenenet rgb-d: Can 5m synthetic images beat generic imagenet pre-training on indoor segmentation.” IEEE International Conference on Computer Vision (ICCV), 2017.

Symphony Lake http://dream.georgiatech-metz.fr/?q=node/79 Georgia Tech 2017 Terrain (Lake) USV
Griffith, Shane, Georges Chahine, and Cédric Pradalier. “Symphony Lake Dataset.” The International Journal of Robotics Research 36.11 (2017): 1151-1158.

Agricultural robot http://www.ipb.uni-bonn.de/data/sugarbeets2016/ Bonn 2017 Terrain Mob
Chebrolu, Nived, et al . “Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields.” The International Journal of Robotics Research 36.10 (2017)

Beach Rover https://robotics.estec.esa.int/datasets/katwijk-beach-11-2015/ TEC-MMA 2017 Terrain Mob
Hewitt, Robert A., et al . “The Katwijk beach planetary rover dataset.” The International Journal of Robotics Research (2017): 0278364917737153.

CARLA (Simulator) https://carla.org/ Intel 2017 Urban Veh
Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez,Vladlen Koltun. “CARLA: An Open Urban Driving Simulator”. Proceedings of the 1st Annual Conference on Robot Learning, 2017.

Airsim (Simulator) https://microsoft.github.io/AirSim/ Microsoft 2017 Urban Veh, UAV
Shital Shah, Debadeepta Dey, Chris Lovett, Ashish Kapoor. “AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles”. arXiv:1705.05065

EuRoc http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets ETH-ASL 2016 Indoor UAV
M. Burri et al . “The EuRoC Micro Aerial Vehicle Datasets”. The International Journal of Robotics Research (IJRR), 2016.

TUM-MONO https://vision.in.tum.de/data/datasets/mono-dataset TUM 2016 Indoor, Urban Hand
Engel, Jakob, Vladyslav Usenko, and Daniel Cremers. “A photometrically calibrated benchmark for monocular visual odometry.” arXiv preprint arXiv:1607.02555 (2016).

Cityscape https://www.cityscapes-dataset.com/ Daimler AG 2016 Urban Veh
M. Cordts et al . The Cityscapes Dataset for Semantic Urban Scene Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016

Table A.1 – List of published SLAM datasets, part 1.

139

Name Link Affiliation Year Environment Platform
Solar-UAV http://projects.asl.ethz.ch/datasets/doku.php?id=fsr2015 ETHZ 2016 Terrain UAV

P. Oettershagen et al . “Long-Endurance Sensing and Mapping Using a Hand-Launchable Solar-Powered UAV”. International Conference on Field and Service Robotics (FSR), 2016
Oxford-robotcar http://robotcar-dataset.robots.ox.ac.uk Oxford 2016 Urban Veh

Maddern, Will, et al . “1 year, 1000 km: The Oxford RobotCar dataset.” The International Journal of Robotics Research (2016): 0278364916679498.
NCLT http://robots.engin.umich.edu/nclt/ UMich 2016 Urban Mob

Carlevaris-Bianco et al . “University of Michigan North Campus long-term vision and lidar dataset.” The International Journal of Robotics Research (2016)
MPO-Japan http://robotics.ait.kyushu-u.ac.jp/kyushu_datasets/outdoor_dense.html Kyushu U 2016 Urban, Terrain Veh

Jung, Hojung, et al . “Multi-modal panoramic 3D outdoor datasets for place categorization.” Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016.
Cartographer https://google-cartographer-ros.readthedocs.io/en/latest/data.html Google 2016 Indoor Hand

W. Hess, D. Kohler, H. Rapp, and D. Andor, Real-Time Loop Closure in 2D LIDAR SLAM, in Robotics and Automation (ICRA), 2016 IEEE International Conference on. IEEE, 2016. pp. 1271–1278.
Virtual KITTI https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-1/ Never Labs 2016 Urban Veh

Adrien Gaidon et al . “Virtual worlds as proxy for multi-object tracking analysis”. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2016.
CCSAD https://aplicaciones.cimat.mx/Personal/jbhayet/research CIMAT 2015 Urban Veh

R. Guzman et al . “Towards Ubiquitous Autonomous Driving: The CCSAD Dataset”. In Conference on Computer Analysis of Images and Patterns (CAIP), 2015.
TUM-Omni https://vision.in.tum.de/data/datasets/omni-lsdslam TUM 2015 Indoor, Urban Hand

David Caruso et al . “Large-scale direct slam for omnidirectional cameras.” Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference 2015.
Augmented ICL-NUIM http://redwood-data.org/indoor/index.html Redwood 2015 Indoor Hand

Sungjoon Choi et al . “Robust reconstruction of indoor scenes.” Computer Vision and Pattern Recognition (CVPR), 2015
Cambridge Landmark http://mi.eng.cam.ac.uk/projects/relocalisation/ Cambridge 2015 Urban Hand

A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional network for real-time 6-dof camera relocalization,” in ICCV, 2015.
SFU http://autonomy.cs.sfu.ca/sfu-mountain-dataset/ QUT 2015 Outdoor Veh

Jake Bruce et al . “The SFU Mountain Dataset: Semi-Structured Woodland Trails Under Changing Environmental Conditions,” IEEE Int. Conf. on Robotics and Automation Workshop, 2015.
ICL-NUIM https://www.doc.ic.ac.uk/∼ahanda/VaFRIC/iclnuim.html Imperial 2014 Indoor Hand

A. Handa et al . “A Benchmark for RGB-D Visual Odometry, 3D Reconstruction and SLAM”. IEEE International Conference on Robotics and Automation (ICRA), 2014
MRPT-Malaga https://www.mrpt.org/robotics_datasets MRPT 2014 Urban Veh

J.L. Blanco-Claraco et al . “The Málaga Urban Dataset: High-rate Stereo and Lidars in a realistic urban scenario“, The International Journal of Robotics Research (IJRR), 2014
KITTI http://www.cvlibs.net/datasets/kitti/index.php KIT 2013 Urban Veh

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision Meets Robotics: The KITTI Dataset. The International Journal of Robotics Research (IJRR), 32(11):1231–1237, 2013
Canadian Planetary http://asrl.utias.utoronto.ca/datasets/3dmap/#Datasets UToronto 2013 Terrain Mob

Tong, C., Gingras, D., Larose, K., Barfoot, T. D., and Dupuis, E. “The Canadian Planetary Emulation Terrain 3D Mapping Dataset.” International Journal of Robotics Research, 2013
Microsoft 7 scenes https://www.doc.ic.ac.uk/∼ahanda/VaFRIC/iclnuim.html Microsoft 2013 Indoor Hand

J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. Fitzgibbon, “Scene coordinate regression forests for camera relocalization in rgb-d images,” in CVPR, June 2013.
SeqSLAM http://www.tu-chemnitz.de/etit/proaut/datasets/nordland/64x32-grayscale-1fps.tar QUT 2012 Urban Veh

M. J. Milford and G. F. Wyeth. “SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights”. IEEE International Conference on Robotics and Automation (ICRA), 2012
ETH-challenging http://projects.asl.ethz.ch/datasets/doku.php?id=laserregistration:laserregistration ETH-ASL 2012 Urban, Terrain Hand

F. Pomerleau, M. Liu, F. Colas, and R. Siegwart. Challenging data sets for point cloud registration algorithms. The International Journal of Robotics Research (IJRR), 31(14):1705–1711, 2012
TUM-RGBD https://vision.in.tum.de/data/datasets/rgbd-dataset TUM 2012 Indoor Hand / Mob

J. Sturm et al . “A Benchmark for the Evaluation of RGB-D SLAM Systems”. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012
ASRL-Kagara-airborn https://michaelwarren.info/docs/datasets/kagaru-airborne-stereo/ UToronto 2012 Terrain UAV

M. Warren et al . “Large Scale Monocular Vision-only Mapping from a Fixed-Wing sUAS”. International Conference on Field and Service Robotics (FSR), 2012
Devon Island Rover http://asrl.utias.utoronto.ca/datasets/devon-island-rover-navigation/ UToronto 2012 Terrain Mob

P. T. Furgale et al . “The Devon Island Rover Navigation Dataset.” International Journal of Robotics Research, 2012
ACFR Marine http://marine.acfr.usyd.edu.au/datasets/ ACFR 2012 Underwater AUV

UTIAS Multi-Robot http://asrl.utias.utoronto.ca/datasets/mrclam/ UT-IAS 2011 Urban Mob
K. Y. K. Leung et al . “The UTIAS multi-robot cooperative localization and mapping dataset”. The International Journal of Robotics Research (IJRR), 2011

Ford Campus http://robots.engin.umich.edu/SoftwareData/Ford UMich 2011 Urban Veh
G. Pandey, J. R. McBride, and R. M. Eustice. Ford Campus vision and LIDAR data set. The International Journal of Robotics Research (IJRR), 2011

San Francisco https://sites.google.com/site/chenmodavid/datasets Stanford 2011 Urban Veh
Chen, David M., et al . “City-scale landmark identification on mobile devices.” Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011.

MIT-DARPA-Urban http://grandchallenge.mit.edu/wiki/index.php?title=PublicData MIT 2010 Urban Veh
A. S. Huang et al . “A High-rate, Heterogeneous Data Set From The DARPA Urban Challenge”. The International Journal of Robotics Research (IJRR), 2010

St Lucia Stereo http://asrl.utias.utoronto.ca/∼mdw/uqstluciadataset.html UToronto 2010 Urban Veh
M. Warren et al . “Unaided Stereo Vision based Pose Estimation”. Australasian Conference on Robotics and Automation (ACRA), 2010.

Marulan http://sdi.acfr.usyd.edu.au/ ACFR 2010 Terrain Mob
Thierry Peynot et al . “The marulan data sets: Multi-sensor perception in a natural environment with challenging conditions.” International Journal of Robotics Research, 2010.

COLD https://www.pronobis.pro/#data KTH 2009 Indoor Hand
A. Pronobis and B. Caputo. COLD: The CoSy Localization Database. The International Journal of Robotics Research (IJRR), 28(5):588–594, 2009.

NewCollege http://www.robots.ox.ac.uk/NewCollegeData/ Oxford-Robot 2009 Urban Mob
M. Smith et al . “The New College Vision and Laser Data Set”. International Journal of Robotics Research (IJRR), 2009.

Rawseeds-indoor http://www.rawseeds.org/home/category/benchmarking-toolkit/datasets/ Milano 2009 Indoor Mob
A. Bonarini et al . “Rawseeds: Robotics advancement through web-publishing of sensorial and elaborated extensive data sets”. IROS workshop, 2006

Rawseeds-outdoor http://www.rawseeds.org/home/category/benchmarking-toolkit/datasets/ Milano 2009 Urban Mob
A. Bonarini et al . “Rawseeds: Robotics advancement through web-publishing of sensorial and elaborated extensive data sets”. IROS workshop, 2006

FABMAP http://www.robots.ox.ac.uk/∼mobile/IJRR_2008_Dataset/ Oxford-Robot 2008 Urban Veh
Cummins, Mark, and Paul Newman. “FAB-MAP: Probabilistic localization and mapping in the space of appearance.” International Journal of Robotics Research, 2008

Older SLAM Benchmarks http://ais.informatik.uni-freiburg.de/slamevaluation/datasets.php Intel, MIT 2008

Table A.2 – List of published SLAM datasets, part 2.

140 APPENDIX A. PUBLISHED SLAM DATASETS

Appendix B

Complementary information

B.1 Influence of the number of features on SLAM performance
This section presents the full results corresponding to the experiments with Weighted ATE RMSE and
Tracking Rate in section 3.2.2.

Figure B.1 – Benchmark of ORB-SLAM using the GFTT keypoint detector. We show the Weighted
ATE RMSE and Tracking Rate. The red line indicates ORB-SLAM 2’s performance in the original
paper.

141

142 APPENDIX B. COMPLEMENTARY INFORMATION

Figure B.2 – Benchmark of ORB-SLAM using the Shi keypoint detector. We show the Weighted ATE
RMSE and Tracking Rate. The red line indicates ORB-SLAM 2’s performance in the original paper.

Figure B.3 – Benchmark of ORB-SLAM using the Shi-Harris keypoint detector. We show the Weighted
ATE RMSE and Tracking Rate. The red line indicates ORB-SLAM 2’s performance in the original
paper.

B.1. INFLUENCE OF THE NUMBER OF FEATURES ON SLAM PERFORMANCE 143

Figure B.4 – Benchmark of ORB-SLAM using the SIFT keypoint detector. We show the Weighted
ATE RMSE and Tracking Rate. The red line indicates ORB-SLAM 2’s performance in the original
paper.

144 APPENDIX B. COMPLEMENTARY INFORMATION

Bibliography

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. Slic superpixels compared
to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(11):2274–2282, 2012.

[2] R. Austin and R. Guy. Binary sequences without isolated ones. In Tfte Fibonacci Quarterly 16.1
(1978):84-86; MR 57 nb. 5778; Zbl, 1978.

[3] I. Ballester, A. Fontan, J. Civera, K. H. Strobl, and R. Triebel. DOT: Dynamic object tracking
for visual SLAM. CoRR (Arxiv), 2020.

[4] V. Balntas, K. Lenc, A. Vedaldi, and K. Mikolajczyk. Hpatches: A benchmark and evaluation of
handcrafted and learned local descriptors. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[5] D. Barnes, W. Maddern, G. Pascoe, and I. Posner. Driven to distraction: Self-supervised distrac-
tor learning for robust monocular visual odometry in urban environments. In IEEE International
Conference on Robotics and Automation (ICRA), 2018.

[6] A. Benzine, B. Luvison, Q. C. Pham, and C. Achard. Single-shot 3d multi-person pose estimation
in complex images. Pattern Recognition, 112:107534, 2021.

[7] B. Besbes, S. N. Collette, M. Tamaazousti, S. Bourgeois, and V. Gay-Bellile. An interactive
augmented reality system: a prototype for industrial maintenance training applications. In
Proceedings of the IEEE International Symposium on Mixed and Augmented Reality (ISMAR),
pages 269–270, 2012.

[8] B. Bescos, J. M. Fácil, J. Civera, and J. Neira. DynaSLAM: Tracking, mapping, and inpainting
in dynamic scenes. IEEE Robotics and Automation Letters, 2018.

[9] J. L. Blanco-Claraco. A tutorial on SE(3) transformation parameterizations and on-manifold
optimization, 2021.

[10] A. Bojko, R. Dupont, M. Tamaazousti, and H. Le Borgne. De slam robuste à slam dynamique par
auto-apprentissage d’outliers. In Reconnaissance des Formes, Image, Apprentissage et Perception
(RFIAP), 2020.

[11] A. Bojko, R. Dupont, M. Tamaazousti, and H. Le Borgne. Learning to segment dynamic objects
using slam outliers. In 25th International Conference on Pattern Recognition (ICPR), 2021.

[12] A. Bojko, H. Le Borgne, R. Dupont, and M. Tamaazousti. Procédé de localisation et car-
tographie simultanées intégrant un masquage temporel auto-supervisé et modèle d’apprentissage
automatique pour générer un tel masquage., 2021. FR patent 2112893.

[13] S. Bourgeois, B. Meden, V. Gay-Bellile, M. Tamaazousti, and S. Knodel. Modeling, tracking,
annotating and augmenting a 3d object in less than 5 minutes. IEEE ISMAR Joint Workshop
on Tracking Methods & Applications and TrakMark, 2013.

145

146 BIBLIOGRAPHY

[14] F. Bousefsaf, M. Tamaazousti, S. H. Said, and R. Michel. Image completion using multispectral
imaging. IET Image Processing, 12(7):1164–1174, 2018.

[15] E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel, S. Gumhold, and C. Rother. DSAC
— Differentiable RANSAC for Camera Localization. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2492–2500, July 2017.

[16] H. M. S. Bruno and E. L. Colombini. LIFT-SLAM: a deep-learning feature-based monocular
visual SLAM method. arXiv:2104.00099 [cs], Mar. 2021. arXiv: 2104.00099.

[17] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J.
Leonard. Past, present, and future of simultaneous localization and mapping: Toward the robust-
perception age. IEEE Transactions on Robotics, 2016.

[18] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,
and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. arXiv preprint
arXiv:1903.11027, 2019.

[19] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In European Conference on Computer
Vision (ECCV), 2018.

[20] J. Cheng, Y. Sun, W. Chi, C. Wang, H. Cheng, and M. Q. Meng. An accurate localization
scheme for mobile robots using optical flow in dynamic environments. In IEEE International
Conference on Robotics and Biomimetics (ROBIO), 2018.

[21] J. Cheng, Y. Sun, and M. Q.-H. Meng. Improving monocular visual SLAM in dynamic environ-
ments: an optical-flow-based approach. Advanced Robotics, 2019.

[22] G. Chican and M. Tamaazousti. Constrained patchmatch for image completion. In Proceedings
of the 10th International Symposium on Visual Computing, pages 560–568. Springer, 2014.

[23] R. Clark, M. Bloesch, J. Czarnowski, S. Leutenegger, and A. J. Davison. Learning to Solve
Nonlinear Least Squares for Monocular Stereo. In V. Ferrari, M. Hebert, C. Sminchisescu, and
Y. Weiss, editors, Computer Vision – ECCV 2018, Lecture Notes in Computer Science, pages
291–306. Springer International Publishing, 2018.

[24] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth,
and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[25] E. Corona, A. Pumarola, G. Alenyà, and F. Moreno-Noguer. Context-aware Human Motion
Prediction. arXiv:1904.03419 [cs], Mar. 2020. arXiv: 1904.03419.

[26] J. Czarnowski, T. Laidlow, R. Clark, and A. J. Davison. DeepFactors: Real-Time Probabilistic
Dense Monocular SLAM. IEEE Robotics and Automation Letters, 5(2):721–728, Apr. 2020.
arXiv: 2001.05049.

[27] Q. Dai, V. Patil, S. Hecker, D. Dai, L. Van Gool, and K. Schindler. Self-supervised Object Motion
and Depth Estimation from Video. arXiv:1912.04250 [cs], May 2020. arXiv: 1912.04250.

[28] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. Monoslam: Real-time single camera
slam. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29(6):1052–1067, 2007.

[29] D. DeTone, T. Malisiewicz, and A. Rabinovich. SuperPoint: Self-Supervised Interest Point
Detection and Description. arXiv:1712.07629 [cs], Dec. 2017. arXiv: 1712.07629.

BIBLIOGRAPHY 147

[30] D. DeTone, T. Malisiewicz, and A. Rabinovich. Self-improving visual odometry.
arXiv:1812.03245 [cs], 2018.

[31] L. Ding and C. Feng. DeepMapping: Unsupervised Map Estimation From Multiple Point Clouds.
arXiv:1811.11397 [cs], Nov. 2018. arXiv: 1811.11397.

[32] G. Dissanayake, S. Huang, Z. Wang, and R. Ranasinghe. A review of recent developments in
simultaneous localization and mapping. 2011 6th International Conference on Industrial and
Information Systems, pages 477–482, 2011.

[33] H. Durrant-Whyte, D. Rye, and E. Nebot. Localization of autonomous guided vehicles. In
G. Giralt and G. Hirzinger, editors, Robotics Research, pages 613–625, London, 1996. Springer
London.

[34] E. Eade. Lie groups for 2d and 3d transformations., 2013.

[35] J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40:611–625, 2018.

[36] J. Engel, T. Schoeps, and D. Cremers. Lsd-slam: large-scale direct monocular slam. In Eur.
Conf. Comput. Vis., volume 8690, pages 1–16, 09 2014.

[37] Y. Feng, Z. Liang, and H. Liu. Efficient deep learning for stereo matching with larger image
patches. In 2017 10th International Congress on Image and Signal Processing, BioMedical En-
gineering and Informatics (CISP-BMEI), pages 1–5, Oct. 2017.

[38] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual worlds as proxy for multi-object tracking
analysis. In CVPR, 2016.

[39] X. Gao, R. Wang, N. Demmel, and D. Cremers. LDSO: Direct sparse odometry with loop closure.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018.

[40] G. Gay-Bellile, S. Bourgeois, M. Tamaazousti, S. Naudet-Collette, and S. Knodel. A mobile
markerless augmented reality system for the automotive field. In IEEE ISMAR Workshop on
Tracking Methods and Applications (TMA), 2012.

[41] V. Gay-Bellile, S. Bourgeois, D. Larnaout, and M. Tamaazousti. Applications of augmented re-
ality for the automobile industry. Fundamentals of Wearable Computers and Augmented Reality,
Second Edition, pages 433–456, 2015.

[42] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision
benchmark suite. In Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

[43] P. Geneva, J. Maley, and G. Huang. An Efficient Schmidt-EKF for 3D Visual-Inertial SLAM.
arXiv:1903.08636 [cs], Mar. 2019. arXiv: 1903.08636.

[44] B. A. Griffin and J. J. Corso. Learning Object Depth from Camera Motion and Video Object
Segmentation. In A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, editors, Computer Vi-
sion – ECCV 2020, Lecture Notes in Computer Science, pages 295–312, Cham, 2020. Springer
International Publishing.

[45] C. G. Harris and M. J. Stephens. A combined corner and edge detector. In Alvey Vision
Conference, 1988.

[46] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge Univer-
sity Press, 2 edition, 2003.

148 BIBLIOGRAPHY

[47] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-CNN. In IEEE International Conference
on Computer Vision (ICCV), 2017.

[48] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[49] B. Horn. Closed-form solution of absolute orientation using unit quaternions. Journal of the
Optical Society A, 4:629–642, 04 1987.

[50] Z. Huang, S. Zhang, J. Jiang, M. Tang, R. Jin, and M. H. Ang. Self-supervised motion learning
from static images. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1276–1285, June 2021.

[51] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges,
D. Freeman, A. Davison, and A. Fitzgibbon. Kinectfusion: real-time 3d reconstruction and
interaction using a moving depth camera. In In Proc. UIST, pages 559–568, 2011.

[52] S. Jiang, D. Campbell, Y. Lu, H. Li, and R. Hartley. Learning to estimate hidden motions
with global motion aggregation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 9772–9781, October 2021.

[53] M. Kaneko, K. Iwami, T. Ogawa, T. Yamasaki, and K. Aizawa. Mask-SLAM: Robust feature-
based monocular SLAM by masking using semantic segmentation. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), 2018.

[54] G. Klein and D. Murray. Parallel tracking and mapping for small AR workspaces. In Proc. Sixth
IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR’07), Nara,
Japan, November 2007.

[55] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti, C. Stachniss, and A. Kleiner.
On measuring the accuracy of slam algorithms. Autonomous Robots, 27:387–407, 2009.

[56] J. Lamarca and J. M. M. Montiel. Camera tracking for slam in deformable maps. In ECCV
Workshops, 2018.

[57] P. Lenz, J. Ziegler, A. Geiger, and M. Roser. Sparse scene flow segmentation for moving object
detection in urban environments. In 2011 IEEE Intelligent Vehicles Symposium (IV), 2011.

[58] J. J. Leonard and H. F. Durrant-Whyte. Simultaneous map building and localization for an au-
tonomous mobile robot. Proceedings IROS ’91:IEEE/RSJ International Workshop on Intelligent
Robots and Systems ’91, pages 1442–1447 vol.3, 1991.

[59] P. Li, X. Chen, and S. Shen. Stereo R-CNN based 3D Object Detection for Autonomous Driving.
arXiv:1902.09738 [cs], Feb. 2019. arXiv: 1902.09738.

[60] R. Li, S. Wang, Z. Long, and D. Gu. UnDeepVO: Monocular Visual Odometry Through Unsu-
pervised Deep Learning. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 7286–7291, May 2018.

[61] S. Li and D. Lee. RGB-d SLAM in dynamic environments using static point weighting. IEEE
Robotics and Automation Letters, 2017.

[62] S. Li, X. Wang, Y. Cao, F. Xue, Z. Yan, and H. Zha. Self-supervised deep visual odometry
with online adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020.

BIBLIOGRAPHY 149

[63] Z. Li, T. Dekel, F. Cole, R. Tucker, N. Snavely, C. Liu, and W. T. Freeman. Learning the depths
of moving people by watching frozen people. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[64] K.-N. Lianos, J. L. Schönberger, M. Pollefeys, and T. Sattler. VSO: Visual Semantic Odometry.
In V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, editors, Computer Vision – ECCV
2018, Lecture Notes in Computer Science, pages 246–263. Springer International Publishing,
2018.

[65] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft coco: Common objects in context. In Computer Vision, 2014.

[66] X. Lu, W. Wang, C. Ma, J. Shen, L. Shao, and F. Porikli. See more, know more: Unsupervised
video object segmentation with co-attention siamese networks. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

[67] H. Luo, Y. Gao, Y. Wu, C. Liao, X. Yang, and K. Cheng. Real-time Dense Monocular SLAM
with Online Adapted Depth Prediction Network. IEEE Transactions on Multimedia, pages 1–1,
2018.

[68] W. Luo, A. G. Schwing, and R. Urtasun. Efficient Deep Learning for Stereo Matching. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5695–5703, Las
Vegas, NV, USA, June 2016. IEEE.

[69] J. M. Mendes Filho, E. Lucet, and D. Filliat. Real-time distributed receding horizon motion
planning and control for mobile multi-robot dynamic systems. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 657–663, 2017.

[70] Z. Min and E. Dunn. VOLDOR-SLAM: For the Times When Feature-Based or Direct Methods
Are Not Good Enough. arXiv:2104.06800 [cs], Apr. 2021. arXiv: 2104.06800.

[71] K. Minoda, F. Schilling, V. Wüest, D. Floreano, and T. Yairi. VIODE: A simulated dataset to
address the challenges of visual-inertial odometry in dynamic environments. IEEE Robotics and
Automation Letters, 2021.

[72] A. Morgand, M. Tamaazousti, and A. Bartoli. An empirical model for specularity prediction
with application to dynamic retexturing. In International Symposium on Mixed and Augmented
Reality (ISMAR), pages 44–53. IEEE, 2016.

[73] A. Morgand, M. Tamaazousti, and A. Bartoli. A geometric model for specularity prediction
on planar surfaces with multiple light sources. Transactions on Visualization and Computer
Graphics, 24(5):1691–1704, 2017.

[74] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd. Real time localization and 3d
reconstruction. In Conference on Computer Vision and Pattern Recognition (CVPR), volume 1,
pages 363–370. IEEE, 2006.

[75] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. ORB-SLAM: A versatile and accurate
monocular SLAM system. IEEE Transactions on Robotics, 2015.

[76] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: An open-source SLAM system for monocular,
stereo, and RGB-d cameras. IEEE Transactions on Robotics, 2017.

[77] N. D. Reddy, M. Vo, and S. G. Narasimhan. Occlusion-net: 2d/3d occluded keypoint localiza-
tion using graph networks. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7318–7327, 2019.

150 BIBLIOGRAPHY

[78] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative to sift or surf.
In 2011 International Conference on Computer Vision, pages 2564–2571, 2011.

[79] S. H. Said, M. Tamaazousti, and A. Bartoli. Image-based models for specularity propagation in
diminished reality. IEEE transactions on visualization and computer graphics, 24(7):2140–2152,
2017.

[80] M. R. U. Saputra, P. P. B. de Gusmao, C. X. Lu, Y. Almalioglu, S. Rosa, C. Chen, J. Wahlström,
W. Wang, A. Markham, and N. Trigoni. DeepTIO: A Deep Thermal-Inertial Odometry with
Visual Hallucination. arXiv:1909.07231 [cs], Jan. 2020. arXiv: 1909.07231 version: 2.

[81] M. R. U. Saputra, A. Markham, and N. Trigoni. Visual SLAM and structure from motion in
dynamic environments: A survey. ACM Comput. Surv., 2018.

[82] M. Schorghuber, D. Steininger, Y. Cabon, M. Humenberger, and M. Gelautz. SLAMANTIC
- leveraging semantics to improve VSLAM in dynamic environments. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, 2019.

[83] J. L. Schönberger, M. Pollefeys, A. Geiger, and T. Sattler. Semantic Visual Localization.
arXiv:1712.05773 [cs], Dec. 2017. arXiv: 1712.05773.

[84] R. Scona, M. Jaimez, Y. R. Petillot, M. Fallon, and D. Cremers. StaticFusion: Background
reconstruction for dense RGB-d SLAM in dynamic environments. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), 2018.

[85] M. E. A. Seddik, M. Tamaazousti, and R. Couillet. A kernel random matrix-based approach for
sparse pca. In International Conference on Learning Representations (ICLR), 2019.

[86] S. Shah, D. Dey, C. Lovett, and A. Kapoor. AirSim: High-Fidelity Visual and Physical Simula-
tion for Autonomous Vehicles, pages 621–635. Springer, 2018.

[87] X. Shi, D. Li, P. Zhao, Q. Tian, Y. Tian, Q. Long, C. Zhu, J. Song, F. Qiao, L. Song, Y. Guo,
Z. Wang, Y. Zhang, B. Qin, W. Yang, F. Wang, R. Chan, and Q. She. Are we ready for service
robots? the openloris-scene datasets for lifelong slam. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), May 2020.

[88] G. Silveira, E. Malis, and P. Rives. An efficient direct method for improving visual slam. In
Proceedings 2007 IEEE International Conference on Robotics and Automation, pages 4090–4095,
2007.

[89] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the evaluation
of RGB-d SLAM systems. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2012.

[90] K. Su, D. Yu, Z. Xu, X. Geng, and C. Wang. Multi-Person Pose Estimation with Enhanced
Channel-wise and Spatial Information. arXiv:1905.03466 [cs], May 2019. arXiv: 1905.03466.

[91] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for Optical Flow Using Pyramid,
Warping, and Cost Volume. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018.

[92] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou,
Y. Chai, B. Caine, et al. Scalability in perception for autonomous driving: Waymo open dataset.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2446–2454, 2020.

[93] Y. Sun, M. Liu, and M. Q. H. Meng. Improving RGB-d SLAM in dynamic environments: A
motion removal approach. Robotics and Autonomous Systems, 2017.

BIBLIOGRAPHY 151

[94] Y. Sun, M. Liu, and M. Q. H. Meng. Motion removal for reliable RGB-d SLAM in dynamic
environments. Robotics and Autonomous Systems, 2018.

[95] M. Tamaazousti. L’ajustement de faisceaux contraint comme cadre d’unification des méthodes
de localisation: application à la réalité augmentée sur des objets 3D. PhD thesis, PhD thesis,
Université Blaise Pascal-Clermont-Ferrand II, 2013.

[96] M. Tamaazousti, S. Naudet-Collette, V. Gay-Bellile, S. Bourgeois, B. Besbes, and M. Dhome.
The constrained slam framework for non-instrumented augmented reality. Multimedia Tools and
Applications, 75(16):9511–9547, 2016.

[97] K. Tateno, F. Tombari, I. Laina, and N. Navab. CNN-SLAM: Real-Time Dense Monocular
SLAM with Learned Depth Prediction. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6565–6574, July 2017.

[98] L. Tiwari, P. Ji, Q.-H. Tran, B. Zhuang, S. Anand, and M. Chandraker. Pseudo RGB-D for Self-
Improving Monocular SLAM and Depth Prediction. arXiv:2004.10681 [cs], Aug. 2020. arXiv:
2004.10681.

[99] S. Ullman. The interpretation of structure from motion. Proceedings of the Royal Society of
London. Series B. Biological Sciences, 203:405 – 426, 1979.

[100] C. Ventura, M. Bellver, A. Girbau, A. Salvador, F. Marques, and X. Giro-i Nieto. Rvos: End-
to-end recurrent network for video object segmentation. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[101] F. Wang, S. Ainouz, C. Petitjean, and A. Bensrhair. Specularity removal: A global energy min-
imization approach based on polarization imaging. Computer Vision and Image Understanding,
158:31–39, 2017.

[102] H. Wang, Y. Sun, and M. Liu. Self-Supervised Drivable Area and Road Anomaly Segmentation
Using RGB-D Data For Robotic Wheelchairs. IEEE Robotics and Automation Letters, 4(4):4386–
4393, Oct. 2019.

[103] K. Wang, Y. Lin, L. Wang, L. Han, M. Hua, X. Wang, S. Lian, and B. Huang. A unified
framework for mutual improvement of SLAM and semantic segmentation. In 2019 International
Conference on Robotics and Automation (ICRA), 2019.

[104] Q. Wang, Z. Yan, J. Wang, F. Xue, W. Ma, and H. Zha. Line flow based simultaneous localization
and mapping. IEEE Transactions on Robotics, 37(5):1416–1432, 2021.

[105] Q. Wang, L. Zhang, L. Bertinetto, W. Hu, and P. H. S. Torr. Fast online object tracking and
segmentation: A unifying approach. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019.

[106] S. Wang, R. Clark, H. Wen, and N. Trigoni. DeepVO: Towards end-to-end visual odometry
with deep Recurrent Convolutional Neural Networks. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pages 2043–2050, Singapore, Singapore, May 2017. IEEE.

[107] S. Wang, R. Clark, H. Wen, and N. Trigoni. End-to-end, sequence-to-sequence probabilistic
visual odometry through deep neural networks. The International Journal of Robotics Research,
2018.

[108] X. Wei, Y. Zhang, Z. Li, Y. Fu, and X. Xue. DeepSFM: Structure From Motion Via Deep Bundle
Adjustment. arXiv:1912.09697 [cs], Aug. 2020. arXiv: 1912.09697.

152 BIBLIOGRAPHY

[109] L. Xiao, J. Wang, X. Qiu, Z. Rong, and X. Zou. Dynamic-SLAM: Semantic monocular vi-
sual localization and mapping based on deep learning in dynamic environment. Robotics and
Autonomous Systems, 2019.

[110] B. Xu, W. Li, D. Tzoumanikas, M. Bloesch, A. Davison, and S. Leutenegger. MID-fusion: Octree-
based object-level multi-instance dynamic SLAM. In International Conference on Robotics and
Automation (ICRA), 2019.

[111] F. Xue, X. Wang, S. Li, Q. Wang, J. Wang, and H. Zha. Beyond Tracking: Selecting Memory and
Refining Poses for Deep Visual Odometry. arXiv:1904.01892 [cs], Apr. 2019. arXiv: 1904.01892.

[112] F. Xue, X. Wang, J. Wang, and H. Zha. Deep Visual Odometry with Adaptive Memory.
arXiv:2008.01655 [cs], Aug. 2020. arXiv: 2008.01655.

[113] N. Yang, L. von Stumberg, R. Wang, and D. Cremers. D3VO: Deep Depth, Deep Pose and
Deep Uncertainty for Monocular Visual Odometry. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1278–1289, Seattle, WA, USA, June 2020. IEEE.

[114] X. Yang, H. Luo, Y. Wu, Y. Gao, C. Liao, and K.-T. Cheng. Reactive obstacle avoidance of
monocular quadrotors with online adapted depth prediction network. Neurocomputing, 325:142–
158, Jan. 2019.

[115] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua. LIFT: Learned Invariant Feature Transform. In
B. Leibe, J. Matas, N. Sebe, and M. Welling, editors, Computer Vision – ECCV 2016, pages
467–483, Cham, 2016. Springer International Publishing.

[116] C. Yu, Z. Liu, X. Liu, F. Xie, Y. Yang, Q. Wei, and Q. Fei. DS-SLAM: A semantic visual SLAM
towards dynamic environments. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018.

[117] X. Zhang, L. Wang, Y. Zhao, and Y. Su. Graph-Based Place Recognition in Image Sequences
with CNN Features. Journal of Intelligent & Robotic Systems, Aug. 2018.

[118] Y. Zhang and J. J. Leonard. A front-end for dense monocular SLAM using a learned outlier
mask prior. CoRR (Arxiv), 2021.

[119] H. Zhou, B. Ummenhofer, and T. Brox. DeepTAM: Deep Tracking and Mapping. In V. Ferrari,
M. Hebert, C. Sminchisescu, and Y. Weiss, editors, Computer Vision – ECCV 2018, Lecture
Notes in Computer Science, pages 851–868. Springer International Publishing, 2018. ECCV
2018.

[120] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsupervised Learning of Depth and Ego-
Motion from Video. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6612–6619, July 2017.

	Introduction
	Motivation: the SLAM Challenge
	Context of the thesis
	Contributions
	General approach
	Hypothesis of our thesis
	Main contributions

	Structure of the document

	SLAMs and Dynamic SLAMs
	SLAM: Simultaneous Localization and Mapping
	Problem Formulation
	Sensors
	Brief history SLAMs
	Model-based SLAM
	Learning-Based SLAM
	Hybrid approaches

	Dynamic SLAM: SLAM in Dynamic Environments
	Problem formulation and choice of a feature-based Dynamic SLAM
	Motion-based, geometrical masking
	Semantic masking approaches
	Hybrid approaches

	Understanding the relation between image features and Dynamic SLAM performance
	Keypoints as the cornerstone of feature-based SLAMs
	The use of keypoints in SLAMs
	Filtering keypoints in Dynamic SLAMs

	Influence of the number of features on SLAM performance
	Experimental Setup
	Evolution of SLAM performance with the number of features

	Relation between keypoint detector repeatability and SLAM performance
	The main keypoint detector metric: repeatability
	Experiments
	Thoughts on keypoint detector repeatability, SLAM repeatability and self-supervision

	Relation between outliers and Dynamic SLAM
	Experimental setup
	Methods to filter features on moving objects with outliers
	Methods to densify outliers into masks of moving objects

	The importance of temporality in keypoint filtering for Dynamic SLAM
	Conclusion

	SLAM Robustness: Metrics and Datasets
	Introduction
	SLAM Robustness
	General Evaluation Criteria
	Difficulties of Dynamic Scenarios

	Current Metrics, Datasets, and their Limitations
	Core Metrics
	Datasets
	Limitations

	Proposed Metrics
	Penalized ATE RMSE and Success Rate
	USM: Unified SLAM Metric

	Proposed Datasets
	Ground Truth computation
	CI Dataset
	ConsInv Dataset

	Conclusion

	From a Robust SLAM to a Dynamic SLAM by Self-Learning of Outliers
	Introduction
	Learning to Segment Dynamic Objects
	Overview of the method
	Outlier and inlier preprocessing
	Mask creation and network training
	SLAM Integration

	Experiments
	Experimental setup
	Results
	Limitations

	Conclusion

	Dynamic SLAM with Temporal Masking
	Introduction
	SLAM Pipeline
	Temporal Masking Network
	Temporal Annotation Methods
	Baseline Methods
	Self-Supervised Method

	Main Experiments
	Experimental setup
	Comparison between annotation methods
	Comparison with the State of the Art
	Interpretation of Inferred Masks
	Degraded mask quality tests
	Computation time analysis and sampling computational tractability.
	Data requirement for training
	Hyperparameter tuning
	Limitations: tests in out-of-context

	Complementary work: Dynamic SLAM with Weakly Supervised Temporal Masking
	Temporal Masking Network for Weak Supervision
	Experiments

	Conclusion

	Conclusion and Perspectives
	Conclusion
	Perspectives
	Further Research
	Improving Technology Readiness Level for Future Industrialization
	New Applications

	Published SLAM datasets
	Complementary information
	Influence of the number of features on SLAM performance

