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There is no knowledge and science like pondering and thought; and there is no prosperity and 
advancement like knowledge and science 
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Abstract 

The thermal behavior of industrially valuable aqueous alkali silicates is of particular interest 

especially in fire-resistant applications owing to their intumescent nature. It has been investigated 

for Na, K and Li-silicates of two different molar ratios to better understand the macroscopic and 

microscopic structural evolution in terms of foaming and network condensation. A quantitative 

experimental strategy involving a combination of tools (TGA, 29Si NMR spectroscopy, XRD) has 

been utilized to probe the state of the network on thermal evolution starting mainly from 

‘xerogels’. Heating alkali silicates leads to structural changes due to the evolution of water where 

the quantity of leftover water (network silanols or solvating water) in the xerogel, when observed 

from TGA, obeys an Arrhenian evolution for Na-silicates with an activation energy of 30 kJ.mol-1 

below 400°C, consistent with the geochemistry literature. In contrast, multiple activation energies 

are displayed by K and Li-silicates due to crystallization.  

Foaming is observed at temperatures above 150°C in Na and K-silicates mainly due to the 

condensation of silanols and subsequent removal of solvating water molecules with dependence 

upon the composition and heating rate. Increasing the alkali concentration, for instance Na, results 

in a larger quantity of water retained in the xerogel, which correlates with a lower softening 

temperature of the material and is, macroscopically, related to a higher foaming of the silicate. K-

silicate solutions foam extensively at a heating rate of 10°C/min, however, suppression of foaming 

is a consequence of crystallization on heating at either lower rate (especially for lower K content) 

or pre-drying at 150°C. A combined effect of phase separation and crystallization is responsible 

for no foaming observed in Li-silicate solutions and xerogels, irrespective of the heating rate, 

resulting from a relatively less mobile nature of the network due to limited quantity of silanols and 

alkali ions. High temperature measurements in the case of Na-silicates suggest the systems to 

exhibit a xerogel-to-glass evolution at 400°C above which a behavior similar to conventional 

glasses is observed until 1100°C when seen under a Hot-stage Microscope. Finally, homogeneous 

and thick silicate gradient coatings (of the order of microns) developed from these solutions show 

a critical thickness for: foaming in Na-silicates, crystallization and foaming in K-silicates depending 

upon the composition, or cracking in Li-silicates. Furthermore, the addition of foreign entities like 

ethylene glycol and tetramethylammonium silicate limits foaming in the case of Na-silicates. Such 

a study has allowed to have a better in-depth understanding of the thermal behavior of alkali 

silicates for addressing the issues being faced in the industrial sector. 
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Résumé 

Les silicates alcalins aqueux sont des matériaux bon marchés, stables et respectueux de 

l'environnement avec un potentiel dans un certain nombre d'applications industrielles, dont les 

verres résistants au feu, les cartons et les peintures. La nature intumescente de ces matériaux est 

d’un intérêt pratique pour des applications devant résister au feu. Ce comportement a été étudié 

pour les silicates de sodium, potassium ou lithium (avec deux rapports molaires M2O/SiO2). Les 

évolutions structurelles macro- et microscopiques en termes de moussage et de condensation du 

réseau ont été étudiées avec la température. Les solutions de silicates initiales sont séchées à 

150°C pour obtenir des xérogels, dans lesquels l’eau est censée être éliminée. Pour sonder l'état 

du réseau en fonction de la température, une combinaison d'outils a été utilisée. À l'échelle 

microscopique, la spectroscopie RMN en phases liquide et solide a permis la quantification des 

unités structurelles Qn. La RMN à l'état solide associée à la spectroscopie Raman permet de 

caractériser l'arrangement structurel local, en particulier dans les silicates de sodium. Des analyses 

quantitatives par DRX ont aidé à évaluer la cristallisation et l'impact correspondant sur le 

moussage des silicates de potassium et de lithium. 

Le chauffage des silicates alcalins à plus de 500 °C conduit à des changements structuraux. Le 

matériau se déshydrate par condensation des silanols ou évaporation des molécules d’eau de 

solvatation. La perte de masse associée est quantifiée par ATG et obéit à une évolution de type 

Arrhénien. Pour les silicates de sodium l’énergie d'activation unique est conforme à la littérature 

(30 kJ/mol en dessous de 400 °C). Une approche quantitative combinatoire impliquant des 

données d’ATG et de RMN suggère que l'existence de cette énergie d'activation unique est une 

conséquence d'un équilibre entre la condensation des silanols et la présence d'eau de solvatation. 

A contrario, les multiples énergies d'activation pour les silicates de potassium et de lithium sont 

observées et expliquées par la cristallisation ou séparation de phase. Un moussage est observé à 

des températures supérieures à 150 °C en raison principalement de la condensation des silanols 

et de l'élimination subséquente des molécules d'eau solvatées. Cette température dépend de la 

composition, du type d'alcalin et de la vitesse de chauffage. L'augmentation de la concentration 

en alcalin, par exemple en sodium, entraîne une rétention d’eau plus importante dans le xérogel. 

Cette rétention est corrélée à une température de ramollissement inférieure du matériau et est, 

macroscopiquement, liée à un moussage plus élevé du silicate.  

Les solutions de silicate de potassium moussent abondamment pour une rampe de température 

de 10 °C/min. Ce moussage peut néanmoins être supprimé par la cristallisation qui intervient soit 

à une vitesse plus faible de chauffage (en particulier pour une teneur en potassium plus faible), 

soit lors d’un pré-séchage à 150 °C. Un effet combiné de séparation de phases et de cristallisation 

est responsable de l'absence de moussage observée dans les solutions de silicate de lithium et les 

xérogels, quelle que soit la vitesse de chauffage. Ce qui s’explique par une mobilité réduite du 

réseau en raison de la quantité limitée des silanols et d'ions alcalins. Des observations au 

microscope optique équipé d’une platine chauffante sur les silicates de sodium suggèrent que les 

systèmes présentent une évolution du xérogel vers le verre à 400 °C. Au-dessus de cette 
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température, un comportement similaire aux verres (préparés par la voie conventionnelle de 

fusion et de trempe) est observé suggérant des variations de viscosité similaires. 

Enfin, des revêtements de silicate homogènes et épais (de l'ordre du micron) développés à partir 

de ces solutions aqueuses sont étudiés. Ils présentent une épaisseur critique pour (i) le moussage 

dans les silicates de sodium, (ii) la cristallisation et le moussage dans les silicates de potassium 

selon la composition, ou (iii) le craquage dans les silicates de lithium. L'existence de cette épaisseur 

critique est attribuée à la distribution et à la longueur de diffusion des molécules d'eau 

s'échappant des systèmes. En outre, l'ajout d'entités étrangères telles que l'éthylène glycol et le 

silicate de tétraméthylammonium a permis de supprimer le moussage dans les silicates de sodium. 

En bilan, cette étude a permis d'avoir une meilleure compréhension du comportement thermique 

des silicates alcalins aqueux pour répondre aux problématiques rencontrées dans le secteur 

industriel. 
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Aqueous alkali silicates: Industrially crucial, 

fundamentally less understood 

Industrial context  

Aqueous alkali silicates have garnered quite an extensive industrial attraction over the decades 

particularly due to their ability of withstanding elevated temperatures – a source of fire-

protection1,2 in several construction materials including fire-resistant glasses. Furthermore, the 

capacity of such silicate materials to act as strong binders (especially in geopolymers3–6 and 

coatings7–9) makes them a potential candidate for a low-cost, stable and green (environmentally 

friendly) alternative to several organic systems as they are not derived from oil. Furthermore, they 

don’t emit any volatile organic compounds potentially reducing the associated health hazards. 

Vetrotech, Saint-Gobain’s Contraflam fire-resistant glass systems rely on the intumescent nature 

of environmentally friendly, transparent and UV-stable alkali silicate mixtures that allow for 

compartmentalization in the case of a fire break out providing with a 30-45 min safety window. 

Their utilization for other products including paints, where gluing/binding or mechanical 

flexibilities are of interest, has also been researched.  

 
Figure I: Saint-Gobain products based on aqueous silicates.  

Intumescent/Foaming properties of aqueous alkali silicates are of particular interest, with the 

corresponding behavior being a consequence of endothermic removal of water on contacting fire 

resulting in a rigid foam that is thermally insulating. However, limitations on the availability of a 

solid in-depth understanding on the way these silicates behave thermally has led to their sluggish 

improvement that has hindered, over the years, their true potential for industrial systems. Thus, 

a fundamental understanding for a better structural analysis in terms of thermal evolution of 

aqueous alkali silicates has to be established to allow for new avenues that are expected to aid in 

further exploitation of their properties. 

Motivations & objectives 

Alkali silicates, despite being quite advantageous industrially, pose issues arising from the fact 

that they are less stable as compared to pure SiO2. Thermally-induced intumescence (shown in 

Figure II(b)) is not well understood fundamentally apart from it being unnecessary in applications 

involving the use of alkali silicates as binders in paints or other coating-related prospects. The 
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comprehension on rheological properties of these systems is not well-established either owing to 

the diffusion-related concerns of species, for instance, protons or alkali ions. Cracking, imparted 

by mechanical fragility of the alkali silicate network, is generally observed in thicker coatings 

(Figure II(d)) and is linked to the generation of strains due to condensation reactions during the 

coating processing (especially on drying). Furthermore, diffusion of alkali ions leads to the 

formation of surface carbonates10,11 (see Figure II(e) and (f)) when these silicates are deposited as 

thin films or thick coatings impacting directly the mechanical properties of the network, rendering 

it brittle.  

 
Figure II: Na-silicate coatings on glass: thick coating (a) before and (b) after thermal treatment, step coating with 
variable thickness (c) as-deposited on glass showing cracking after thermal treatment (d) and (e, f11) surface 
carbonation on ageing the as-deposited sample.  

Macroscopic thermal behavior of these silicates has a direct link to the changes in structural 

properties at the microscopic scale, that are not clearly understood and there remains a need to 

create a link between the real-time performance of the materials and the underlying 

phenomenon. An in-depth understanding of fundamental properties is, therefore, of interest to 

follow the structural evolution with temperature in terms of water removal, condensation of 

silanols and its link to volumetric structural expansion related to foaming, xerogel-to-glass 

transition and crystallization. Such an investigation is expected to aid in the improvement of 

existing systems.   

Application-related challenges are mainly linked to the rheological properties of the coatings as 

determined by alkali and water content as well as mass diffusion phenomena (surface carbonation 

and exchanges with the substrate). One difficulty when trying to understand these phenomena is 

that the composition of aqueous alkali silicates evolves with temperature or ageing as water is 

being removed from the material, due to the possibilities of crystallization, or diffusion of the alkali 

ions. A major goal is, therefore, to try to probe the macroscopic state of aqueous alkali silicates as 
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a function of temperature (and time if relevant), and then their structure as a more refined 

measure, in order to understand if it is possible to use the vast literature on alkali silicates (with a 

small water content) prepared from the traditional melt and quench preparation method and 

studied in particular in the geochemistry community. A comparative analysis is important to 

fundamentally understand the thermal evolution of alkali silicates based on the type of alkali ion 

and the corresponding variations in composition. Thermal treatments are of interest because of 

the utilization of alkali silicates in fire-retardant applications. And, secondly, due to the fact that 

industrial glasses are tempered at temperatures approaching 650°C for the processing of 

functional layers. Furthermore, such coatings tend to crack resulting in inhomogeneous and poor-

quality systems that has limited their use for some potential products.  

In order to address the limitations of aqueous alkali silicates keeping in view the industrial 

relevance, this thesis aims at their fundamental understanding upon thermal evolution by: 

▪ Development of a characterization strategy and precise protocols to be able to efficiently 

study the macroscopic and microscopic structural properties.  

▪ Linking the chemical composition of alkali silicates with thermal history i.e. qualitative and 

quantitative investigation as a function of temperature for an in-depth analysis of foaming 

phenomenon. 

▪ Investigating the structure in terms of aqueous preparation method and thermal 

treatment as well as comparison with glasses produced by industrial melt and quench 

process, for probing the possibility of having systems (e.g. functional coatings) with glass-

like properties through sol-gel processing.  

▪ Development of thick (≥ 30 µm), homogeneous and high-quality inorganic coatings 

without any cracks followed by the investigation of their thermal behavior and possibilities 

of limiting/controlling foaming. 

The preceding work (at LPMC in collaboration with SGR Paris) related to this subject focused 

more on the diffusion-related aspects of thin films (few 100s of nm) that were relatively 

homogeneous and crack-free.11 Different compositions of Na, K and Li-silicate films were prepared 

and analyzed for structural changes at  room temperature and 450°C showing a densification of 

the silica network on annealing due to condensation.11 Surface carbonation was observed on 

ageing for Na and K-based coatings while Li-silicate films were relatively stable. However, for a 

comprehensive understanding of the structural properties in thin films or thicker coatings, a 

fundamental comprehension of the thermal behavior of solutions or pre-dried powders is 

necessary at first.  
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Outline of the thesis 

This work showcases the fundamental understanding of aqueous alkali silicates in solutions, 

powders and coatings. A combination of characterization tools has been used to probe the state 

of alkali silicate network in starting solutions and pre-dried powders (obtained by pre-drying 

solutions) on thermal evolution. A link between macroscopic and microscopic structural evolution 

has been established by comparing the behavior of different alkali silicates and compositions. 

Thermal properties of thick and homogeneous coatings obtained from the various aqueous alkali 

silicates have also been investigated.  

The thesis is structured into the following 5 Chapters:   

Chapter 1 gives a literature overview of the various binary alkali silicates including soluble 

silicates, xerogels, glasses and the corresponding crystalline compounds. Their preparation 

methods and the various properties especially those concerning the structure are discussed along 

with the different techniques generally used for their characterization.   

Chapter 2 discusses the experimental methodology followed. Starting materials and their 

preparation methods are listed followed by the discussion on the developed ‘characterization 

strategy’ involving a combination of several tools for investigating the structural properties.  

Chapter 3 gives a detailed analysis on the ‘thermal behavior of aqueous alkali silicates’ starting 

from the structural properties in solutions. Macroscopic and microscopic structural evolution of 

pre-dried powders, in terms of the evolution of proton-related species and alkali ions, is then 

discussed where Na, K and Li-silicates of two different molar ratios each are compared 

quantitatively in terms of their network-related properties below 450°C. Impact of water release, 

crystallization and phase separation on the corresponding thermal evolution is presented in detail. 

In-situ evolution of pre-dried pellets above 450°C has also been discussed.   

Chapter 4 is dedicated more to the macroscopic structural changes of solutions and pre-dried 

powders in terms of foaming i.e. volumetric changes observed visually. A comparison on thermal 

evolution is also drawn for the thick and homogeneous coatings developed from the various alkali 

silicate solutions along with some possibilities of limiting the extent of foaming.  

Chapter 5 concludes globally the main outcomes of the work followed by the possibilities of the 

various future directions for further structural investigation mainly in coatings.  
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Chapter 1.  

 

Binary alkali silicates: An overview 

Glass has been an integral part of our lives since centuries with modern applications ranging 

from glasses for drinking, building windows, lenses, biomedical implants, optical fibers to aircraft 

windshields. The main structural component of glass is the network former which in most cases is 

silica (SiO2), with compositions that correspond to roughly a third of the earth’s crust by weight, 

and is arranged in the form of corner/edge sharing tetrahedrons. Both crystalline and amorphous 

forms of SiO2 are possible depending upon the cooling rate once molten SiO2 is cooled down.12 

Foreign elements such as alkali ions (sodium Na, potassium K, lithium Li) can be added that act as 

network modifiers and change the properties of the network.13–16 Aqueous solutions with similar 

structural arrangements are also possible and have been termed as water-soluble or aqueous 

alkali silicates.  

1.1. Aqueous alkali silicates  

Large amount of alkali ions leads to soluble silicates commonly referred to as ‘water glass’, a 

term coined by Johann Nepomuk von Fuchs while investigating their industrial production around 

the 1820s. Solid glassy materials with various multiscale structures can be produced through 

drying of these aqueous solutions and represent a silicate network as shown in Figure 1.1 with the 

structure depending upon the amount of alkali ions and water.17–20  

 
Figure 1.1: Schematic illustration of the network structure in aqueous alkali silicates. 

These commercially available (or lab-prepared) solutions are generally defined in terms of their 

molar ratio M2O/SiO2 (or sometimes weight ratio for practical purposes) where M represents the 

alkali ion (Na, K, Li) in the network. They are composed of SiO2 tetrahedrons linking up to make 

long chains with the network comprising of bridging oxygens (BOs) and non-bridging oxygens 
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(NBOs) depending upon the connectivity. BOs are the oxygens that are further connected to 

nearby Si atoms while those linked to alkali ions or protons are referred to as NBOs. Proton-related 

species in the solution are available as free water, network silanols and solvating water (molecules 

H-bonded to silanols or alkali ions).21 The nature of alkali ion and the corresponding composition 

including the concentration of alkali, silica and water has a direct influence on the overall 

properties of the network including solubility, viscosity, glass transition temperature (Tg) and 

diffusion behavior.  

1.1.1. Preparation 

Soluble silicates were prepared formally and have been in use ever since the mid-late 1900s. 

Several refinements in the conventional production route of these aqueous silicates, involving the 

reaction of carbonate or sulfate-based precursors with sand above 1300°C, have been made over 

the years.22 Modern routes for obtaining these silicates utilize similar methods with possibilities 

of their commercial as well as lab-scale preparation.   

1.1.1.1. Commercial 

Current commercial production of aqueous alkali silicates is based on melting22–26 or 

hydrothermal process22,25,26 shown schematically in Figure 1.2. The raw materials used in the 

process include sand (pure silica-Quartz or other sources), alkali carbonates (Na2CO3, K2CO3, 

Li2CO3), alkali hydroxides (NaOH, KOH, LiOH) and water. SiO2 and alkali carbonates are the 

ingredients for production through the melting/solving process while hydroxides are reacted with 

SiO2 when employing the hydrothermal route.  

 
Figure 1.2: Schematic illustration of (a) melting and (b) hydrothermal process for the commercial production of 
aqueous alkali silicates (reproduced from Woellner group’s document available online25).   
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The initial step in the production of alkali silicates through the melting process is the direct fusion 

of Quartz with the corresponding alkali carbonate at temperatures above 1300°C followed by 

cooling and crushing to obtain glass lumps (Figure 1.2(a)) according to eq. 1.1 as: 

𝑀2𝐶𝑂3  + 𝑥𝑆𝑖𝑂2  →  𝑀2𝑂. 𝑥𝑆𝑖𝑂2 + 𝐶𝑂2 (1.1) 

2𝑀𝑂𝐻 + 𝑥𝑆𝑖𝑂2  →  𝑀2𝑂. 𝑥𝑆𝑖𝑂2 + 𝐻2𝑂 (1.2) 

where ‘M’ corresponds to the alkali ion while ‘x’ indicates the SiO2/M2O molar ratio. The glass 

lumps’ composition is non-stoichiometric and depends upon the ratio of starting constituents. 

These lumps or stones are then dissolved in hot water under pressure in an autoclave to obtain a 

solution that is then filtered to remove turbidity and non-reacted/dissolved glass constituents.  

Hydrothermal process involves a reaction between the reactive SiO2 source (sand) and alkali 

hydroxide solution, represented by the eq. 1.2, to obtain alkali silicates followed by dissolution in 

water and subsequent filtering as shown in Figure 1.2(b). The commercially produced aqueous 

silicates are available in various compositions, which can be used directly for lab-scale 

manipulation of molar ratios or prepared through solution-based routes.  

1.1.1.2. Lab-scale 

Solutions of varying compositions of Na, K and Li silicates can be prepared by addition of known 

quantities of corresponding alkali hydroxide pellets6 or solutions18,27,28  and SiO2 amorphous 

fumes6 or colloidal solutions27 into the commercially available aqueous alkali silicates depending 

upon the target molar ratio. Furthermore, mixing directly known quantities of alkali hydroxide 

with SiO2 (colloidal,20,28–30 gel,18,31 amorphous fumed18,32–34 or crystallized35) and water (if required) 

results in the formation of aqueous silicates rather easily at the lab-scale with properties similar 

to commercially available compositions.   

1.1.2. Properties 

The concentration of constituents i.e. alkali and SiO2 is directly related to the relevant properties 

of soluble silicates. For practical purposes, solutions are generally prepared in particular molar 

ratio (M2O/SiO2) ranges that correspond to the stability regime of aqueous solutions depending 

upon the alkali type. Commercial solutions from Woellner are available in the ranges shown in 

Table 1.1. while higher molar ratio values approaching 1.4 for Na17 and 2.2 for K-silicate36 solutions 

have also been reported. Alkalinity, buffering ability, solubility, bound moisture, drying time and 

reactivity decrease on lowering the molar ratio while an inverse behavior is observed for other 

properties including dried strength, viscosity and chemical resistance.23,25,26  

Table 1.1: Molar ratio range for the various aqueous alkali silicates currently produced by Woellner25 and the 
corresponding conversion factor for weight ratio.8,23,25 

Soluble Silicate 
Molar Ratio  
(M2O/SiO2) 

Conversion factor 
(Molar Ratio/Weight Ratio) 

Na-silicate 0.24 – 0.59 1.031 

K-silicate 0.25 – 1 1.568 

Li-silicate 0.2 – 0.4 0.497 

 



 

 

8 Chapter 1. Binary alkali silicates: An overview 

1.1.2.1. Viscosity 

From an application point of view, the usefulness of soluble silicates is strongly dependent upon 

the viscosity of these solutions with, for instance, a lower viscosity being preferred in cases where 

adhesive action is required. Changes in viscosity of the silicate solutions are associated with the 

variations in molar ratio as well as the solid content.37 Viscosity, in general, tends to increase with 

an increase in the amount of SiO2 in the system for the molar ratio range given in Table 1.1. 

Moreover, as a function of alkali concentration and above the molar ratio ranges shown, a steeper 

increase in viscosity is seen for the solutions with relatively higher content of SiO2 with an even 

increased viscosity as a function of solid content.23,37,38 Viscosity variations in K-silicates are more 

abrupt as compared to their Na-silicate counterparts with K-silicates showing higher viscosities for 

similar molar ratios26,37 and thus are utilized accordingly for industrial purposes.  

Viscosity is directly related to the ability of the network to form bonds with foreign species, a 

property useful for adhesive applications, with lower viscosity allowing for an increased 

reactivity.23,25 It has also been seen, especially in the case of Na-silicates, that there exists a break 

point in the viscous behavior of molar ratios approaching 0.25 above which a slight loss of water 

may result in a steep increase in the viscosity values generating a semi-solid behavior.8,37 This 

break point is shown in Figure 1.3 with the effect being more pronounced on increasing SiO2 

concentration (Figure 1.3(a)).  

 
Figure 1.3: Viscosity of (a) sodium silicate solutions as a function of concentration and molar ratio, and (b) the 
molar ratio Na2O/SiO2=0.31 at 20°C as a function of concentration.37  

For instance, Figure 1.3(b) shows the viscosity break point for the molar ratio Na2O/SiO2=0.31 

whereby removal of around 2% water increases the viscosity to 11.1 Pa.s.37 A slight further 

removal of water above this point results in an exponential increase in viscosity up to the specific 

gravity (density of Na-silicate/density of water) value of 1.48 (or 1.4 wt% Na2O) with further 

viscosity increase inducing gel-like properties.37 This results in the loss of the tackiness of the 

solutions. Hence, changes in viscosity of the solutions on changing the composition tend to impact 

their stability in terms of the ability of the solutions to gel or phase separate.   
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1.1.2.2. Stability  

The stability of soluble silicates in terms of molar ratio (M2O/SiO2) is dependent upon the 

solution properties with respect to the SiO2 constituents in the form of particles. Size of colloidal 

particles (few nm) does not depend on the type of cation and increases on increasing the SiO2 

content with linear relation in the molar ratio ranges shown in Table 1.1, while below such values 

the increase is less steep.27,39 The monomer (isolated SiO2 tetrahedrons) concentration increases 

rapidly on going from molar ratio of 0.25 to higher values while it remains relatively constant 

below this range. Gelling of the solutions is observed for Na and K-silicates27 below the molar ratio 

range shown here. The instability of solutions at higher SiO2 concentrations leads to phase 

separation, gelation or turbidity in Na-silicates. This is due to the changes associated with network 

condensation when properties were investigated using a combination of Fourier-Transform 

Infrared (FTIR) spectroscopy, Small Angle X-Ray Scattering (SAXS) and Dynamic Light Scattering 

(DLS) measurements.39 Monomeric species are in abundance in the lower SiO2 content solutions 

with a rapid increase in the polymerization of the network (within the stability molar ratio regime) 

associated to condensation of these monomeric species as shown schematically in Figure 1.4(a). 

Above a molar ratio of 0.25 (in Figure 1.4(a)), less monomeric species are available as compared 

to clusters of condensed particles. Higher SiO2 content systems tend to be unstable due to the 

formation of large sized spheres, as a result of condensation of clusters, that can agglomerate 

resulting in gelation of the solution.  

 
Figure 1.4: Schematic illustration of (a) main constituents39 of Na-silicate solutions and (b) the corresponding 
gelation observed as a consequence of increased SiO2 concentration and decreased pH.40  

Gelation behavior in alkali silicates was also studied by manipulating the concentration as well 

as pH of the solutions.18,40,41 Lowering pH and increasing SiO2 concentration in Na-silicates tends 

to shift the viscosity towards higher values with Newtonian behavior observed for lower 

concentration and higher pH while shear thickening at highest concentration and lowest pH at 

higher shear rates.40 Increasing concentration or lowering the pH (typically <11.2 or even 10)26 

tends to shift the system towards a gel-like state. As a function of increasing SiO2, a greater number 

of smaller particles (with an increased surface area) are formed from the larger ones while 

condensation of smaller particles leads to larger particles on decreasing pH as indicated in Figure 

1.4(b). Thus, changing the molar ratio tends to impact the solution properties both in terms of the 

physical changes observed as well as the structural changes at the microscopic scale.  
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1.1.2.3. Structural variations upon changing composition 

The structural organization of aqueous alkali silicates has been investigated by a number of 

different techniques to probe the properties of the network. FTIR spectroscopy has provided a 

more qualitative measure of the distribution of the silicate structure as shown in Figure 1.5.42 

Bands, corresponding to various structural building blocks, are generally observed in the range 

700-1250 cm-1,6,42 with the stretching vibration of Si-O-Si appearing in 900-1250 cm-1 range. 

Increasing the quantity of SiO2 i.e. reducing the molar ratio leads to a more condensed network 

with the intensity of the band moving towards higher wavenumber.6,17,30,39,42 Such measurements 

have allowed to get a more general information on the structure and are not very quantitative.  

 
Figure 1.5: Impact of changing the Na2O/SiO2 molar ratio on the structure of sodium silicate solutions determined 
through FTIR spectroscopy.42 

Quantitative analysis of the network in aqueous alkali silicates has been studied in-depth 

through liquid-state 29Si Nuclear Magnetic Resonance (NMR) spectroscopy 

measurements.17,18,20,28,31–34,43,44 It has been found that changing the quantity of constituents 

causes variations in the relevant structural properties of soluble silicates which are generally 

characterized for their structure in terms of Qn units that serve as the building blocks of the 

network. A schematic illustration of the Qn units is shown in Figure 1.6(a) and (b). ‘Q’ represents 

the silicon atom of a tetrahedron while ‘n’ indicates the number of corresponding BOs. Q0 

indicates an isolated tetrahedra also referred to as a monomer. If one of the oxygen atoms of the 

tetrahedron is further connected to silicon atom of another tetrahedron, the linkage is referred to 

as Q1. Similarly, Q2, Q3 and Q4 units indicate the subsequent connectivity of 2, 3 and 4 oxygen 

atoms, respectively. NMR has been employed to study the distribution of these Qn units. One such 

example is shown in Figure 1.6(c), (d) and (e) for Na-silicates solutions18 indicating the distribution 

of Qn units corresponding to specific chemical shift values. These peaks can be integrated for the 

area to obtain the exact amount of each specie giving a plausible quantitative information relevant 

to the network.  
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Figure 1.6: Schematic illustration of the various (a) commonly observed Qn unit forms from 29Si NMR and (b) the 
different organizations possible, (c), (d) & (e) the corresponding spectrum for molar ratio Na2O/SiO2 of 0.29, 0.36 
and 0.44, respectively (Q2

y also represents middle groups while Q3
y indicates branching groups of the chain), and 

(f) the variation of Qn units as a function of pH and molar ratio reproduced from Svensson et al.18  

The broadness in each peak is indicative of the various arrangements possible with 4 for Q1, 10 

for Q2, 20 for Q3 and 35 for Q4, respectively, along with the existence of different cyclic or branched 

species (as shown in Figure 1.6(b)) at similar chemical shift values making it difficult to resolve the 

complete distribution44 at lower field e.g. 8.4 T. Increasing the amount of alkali ion in the network 

tends to shift the spectrum towards lower Qn units indicating depolymerization of the 

structure,17,18,34,42,44 irrespective of the type of alkali silicate, as shown in Figure 1.6(c), (d), (e) and 

(f) for Na-silicates. A similar trend is observed on dilution or increasing pH.18,42 Moreover, gelation 

was observed for solutions approaching Na2O/SiO2 molar ratios of 0.25 on increasing SiO2 

content18 due to increases in viscosity suggesting a direct relation between the distribution of the 

network structure to the properties observed.  

For instance, binding strength is higher for lower molar ratios (more depolymerized state), as 

that allows for more bonding options (in the form of siloxane bonds) to the incoming mineral 

fillers17,18,28 when these silicates are used as binders in some applications. The quantitative 

measure of the polymeric state of a solution,28 representative of its activity in terms of binding, is: 

𝑆 =
𝜌𝑐𝑆𝑖𝑂2

10𝑀𝑆𝑖𝑂2

∑(4 − 𝑛)𝑐𝑄𝑛

4

𝑛=0

(1.3) 
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where ‘S’ represents the total concentration (mol/L) of SiO-M+ and SiOH, ‘ρ’ is the solution density, 

‘c’ the concentration in wt%, ‘M’ the molar mass of SiO2 and ‘n’ the number of BOs. A higher value 

of ‘S’ would suggest a lower connectivity of the solution and, therefore, a higher binding activity.  

Apart from FTIR and NMR techniques, Raman spectroscopy has also been utilized17,29,45,46 to 

study the structure and, hence, the properties of soluble silicates but provides a more qualitative 

assessment, in terms of the evolution of Qn units, in general. Various bands are seen in the 

spectrum (as shown in Figure 1.7) with that corresponding to alkali network modifiers (-M+-O--) 

centered at 340-360 cm-1, the range 400-700 cm-1 represents the Si-O-Si scattering while the 

distribution of Qn units lies in the Raman shift range 800-1300 cm-1. Increasing the SiO2 content in 

the silicate17,29,46 or reducing the pH of solutions29 tends to shift the Qn band towards higher Raman 

shift values suggesting the network to be proceeding towards a more polymerized state while an 

inverse behavior is observed on increasing the alkali content with the corresponding band at 340-

360 cm-1 increasing in contribution.17,46  

 
Figure 1.7: Evolution of the structure of K-silicate solution as a function of molar ratio (and pH) observed through 
Raman spectroscopy.29   

Raman spectroscopic data, although being qualitative, can also provide a quantitative measure 

of the state of the network when correlated with the Qn units obtained from NMR spectroscopy. 

For instance, deconvolution of the Qn band gives information on the structural variations in terms 

of each individual Qn unit or the area under the peak for -M+-O-- when correlated with NMR Qn 

units suggests a decreased network connectivity on increasing the concentration of alkali in the 

silicate.17 

The structural investigation of aqueous silicates provides a plausible information on the way 

these systems are expected to behave practically. Physical properties change as a function of the 

structural variations that can be tuned by changing the molar ratio of aqueous silicates and 

characterized to probe the state of the silicate for imparting the relevant properties important in 

industrial systems.  
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1.1.3. Applications 

Aqueous alkali silicates present a cheap, stable, high temperature resistant and green class of 

materials with a number of applications relevant for various industrial sectors with the main 

contribution being towards construction-related needs. Intumescent property of alkali silicates 

has garnered quite an extensive research and industrial attraction over the decades particularly 

due to their ability of withstanding elevated temperatures – a source of fire-protection1,2,47,48 in 

several construction materials including fire-resistant glasses. They have been quite extensively 

studied for applications in geopolymers,3,4,6,36,49 refractory cements26 and coatings7–9,26 mainly 

because of their binding ability. Moreover, these systems have also been researched for 

applications involving coatings with tunable optical properties.11,50 Furthermore, their useful 

properties are also being utilized in detergents, water treatment, textiles and petroleum 

processing.26   

1.2. Xerogels  

Drying at ambient/higher temperatures or thermally treating aqueous alkali silicates removes 

water from the system turning the material into a solid called ‘xerogel’, from the Greek word 

‘xeros’ meaning dry. This leads to changes in the structural organization of the material.51–53 In 

order to relate the network reorganization to accommodate the loss of water from the system, an 

understanding of how the sol-gel reaction proceeds in the case of silica is thus necessary.  

1.2.1. Sol-gel chemistry of silica 

Monosilicic acid – Si(OH)4, the chemical source of silica, is soluble in water at SiO2 concentrations 

below 100 ppm. Above 100-200 ppm, the monomer tends to polymerize to form higher molecular 

weight species as a consequence of condensation.54 A schematic illustration of the process 

proposed by Iler54 is shown in Figure 1.8(a). Dimers, trimers or even cyclic species are formed to 

which further addition of monomers may take place. This leads to the formation of particles that 

tend to grow in size due to a reduced quantity of terminal SiOH groups with the core of the 

particles being anhydrous. These particles serve as nuclei and may grow further due to Ostwald 

ripening whereby smaller particles, having a high surface charge density, merge with the larger 

ones resulting in an increase in the size of particles along with a reduction in total quantity. 

Growth of particles into sols or three-dimensional gel networks is dependent mainly upon the 

pH and is influenced also by the addition of salts (e.g. NaCl, HCl). At high pH values (7-10), in the 

absence of salt, silica particles are negatively charged and repel each other so the particle growth 

occurs without aggregation (Figure 1.8(b)) and continues until the size is 5-10 nm after which the 

growth is slower. However, adding some salt reduces the charge repulsion by neutralization of the 

particles leading to aggregation and gelation. The rate of polymerization and depolymerization is 

slower at lower pH (<7) limiting the particle growth once the size reaches 2-4 nm. Furthermore, 

the ionic charge on silica particles is low at low pH values that may lead to aggregation and gel 

formation.  
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Figure 1.8: (a) Polymerization behavior in aqueous silica showing the impact of pH and salts on the network 
organization (basic conditions (B) let particles in sol grow in size with decrease in numbers while acidic conditions 
(A) cause aggregation of particles into three-dimensional gel networks) and (b) effect of pH on the gelling of silica 
sols. (Both the figures are reproduced from literature54,55)   

1.2.1.1. Dependence on pH 

The polymerization process is divided into three pH ranges i.e. pH<2, pH=2-7 and pH>7. pH=2 

represents the point of zero charge where the total net charge on the particles’ surface is zero 

while the isoelectric point is also in the pH range 1-3. Polymerization is a consequence of the 

catalytic activity of H+ (or F- from HF) at pH<2 and OH- at pH>2. In the pH range 2-7, the gel times 

reduce and condensation is proportional to the concentration of OH- governed by the following 

reactions: 

≡ 𝑆𝑖 −  𝑂𝐻 +  𝑂𝐻− → ≡ 𝑆𝑖− 𝑂− + 𝐻2𝑂 (1.4) 
≡ 𝑆𝑖− 𝑂−  +  𝑂𝐻 −  𝑆𝑖 ≡ → ≡ 𝑆𝑖 −  𝑂 −  𝑆𝑖 ≡ + 𝑂𝐻− (1.5) 

Polymerization is a consequence of intermediate ionization of silanol groups to ≡SiO- (eq. 1.4) 

that react with a non-ionized silanol leading to condensation (eq. 1.5). Condensation thus occurs 

between a more condensed species and a less condensed one suggesting the rate of dimers’ 

formation to be low as at lower pH values, Si(OH)4 is ionized to a small degree. If dimer is a stronger 

acid (i.e. greater number of siloxane linkages of Si than silanols) than monomer, the following 

reaction leads to a trimer: 

(𝑂𝐻)3𝑆𝑖𝑂𝑆𝑖(𝑂𝐻)2𝑂−  +  (𝑂𝐻)4𝑆𝑖 →  (𝑂𝐻)3𝑆𝑖𝑂𝑆𝑖(𝑂𝐻)2𝑂𝑆𝑖(𝑂𝐻)3 + 𝑂𝐻− (1.6) 

Dimers, once formed, react with monomer to form trimers that in turn may react with another 

monomeric unit to result in a tetramer (schematic illustration of the species is shown in Figure 

1.9(a)). Furthermore, cyclic species tend to form owing to the fact that SiOH end groups of linear 

polymers have close enough proximity for condensation to occur. As the cyclic species dominate, 

further condensation of silanol groups leads to three-dimensional species in the form of a particle 

with anhydrous core and surface silanols as shown by the model in Figure 1.9(b).54 Further growth 

of the particles continues with monomers or oligomers reacting with the surface silanols until 
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most of the oligomers are consumed at which point the particles start to grow at the expense of 

smaller particles while decreasing in number at the same time. Addition of an acid would tend to 

reduce the possibilities of dissolution of the particles by limiting the depolymerization reaction i.e. 

preventing siloxane bonds from being hydrolyzed once they are formed. The particles, which are 

2-4 nm in size at this point due to limited solubility of silica at lower pH values, may coalesce to 

form siloxane linkages through the interaction of ionized groups and neutral silanols at the 

particle’s surface shown schematically in Figure 1.9(c). This type of agglomeration or coalescence 

would then continue until a larger three-dimensional gel-like network is formed.  

 
Figure 1.9: Schematic illustration of (a) the various linkages present in the solution, (b) A-cyclic trisilicic acid, B-
cubic octasilicic acid and C, D-corresponding theoretical colloidal particles formed with open circles representing 
oxygen atoms while black dots indicating surface hydrogens, and (c) Aggregation resulting in bond formation 
between silicate particles.54  

Above the pH value of 7, ionization of the polymer species is very high and that leads to a rapid 

reduction in the number of monomers or oligomers. Coalescence or aggregation of particles is not 

observed due to their repelling nature induced by surface charges. Thus, the polymerization 

reaction involves only an increase in the size of particles along with a reduction in their quantity 

with monomers depositing on the surface of particles. At pH approaching 12 and above, most of 

the silanols are available as deprotonated species with cyclic trimers and tetramers being the 

building blocks of the network suggesting the dissolution of silica as silicate.  

1.2.2. Alkali silicate xerogels 

The starting aqueous alkali silicates are synonymous to colloidal dispersions of amorphous 

silica,27,40,52,56 referred to as alkali silicate sols22,56 and can be aggregated in the size range 30-100 

nm56 (or approaching even 1300 nm when dried)57 along with the availability of smaller 1-5 nm 

particles,22 depending highly upon the molar ratio used, with pH values above 10 in general. The 
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colloidal dispersions are stabilized by a double layer comprising of negatively charged SiOH groups 

that are covered by hydrated alkali ions e.g. Na+. Reducing the molar ratio of the silicate i.e. 

increasing SiO2 content, tends to increase the size of the polysilicate species in the solution 

impacting directly the structural arrangement and distribution.  

1.2.2.1. Drying of aqueous solutions 

On drying, structural modifications are induced in aqueous silicates to the extent that the 

volume of interstitial solution (i.e. voids between particles) is reduced until aggregates are in 

proximity resulting in the formation of new connections and a rigid structure.52 Drying kinetics are 

influenced by the way water is released from the system. During the drying process of porous gels, 

a constant water loss is observed initially when surface water is removed followed by a decay in 

the rate of this evaporation once the evaporation front moves towards the inside of the material.55 

The rate of mass loss during drying may be given by Hertz-Knudsen equation58 as: 

d𝑚

d𝑡
= (𝑝𝑣 − 𝑝𝑝)√

𝑚𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒

2𝜋𝑘𝑏𝑇
(1.7) 

where ‘m’ is the mass of drying body, ‘t’ the time, ‘pv’ the vapor pressure of liquid, ‘pp’ the partial 

pressure of evaporating molecule in gas phase, ‘mmolecule’ the mass of evaporating molecule, ‘kb’ 

the Boltzmann constant and ‘T’ the absolute temperature. Eq. 1.7 suggests that the mass loss 

would stop once the vapor pressure of the drying liquid becomes equivalent to the vapor pressure 

of water in the gas phase i.e. ∆𝑝 =  (𝑝𝑣 − 𝑝𝑝) becomes zero.  

Na-silicate solutions, when dried at 80°C for longer durations approaching 50 days, tend to show 

the mass loss behavior shown in Figure 1.10(a)57 with a constant weight observed for longer drying 

times indicating a thermodynamic equilibrium between the vapor pressure of atmospheric water 

and dried sodium silicate. Water content decreases with increasing drying temperature, and 

decreasing molar ratio i.e. increasing SiO2.57 At the structural scale, an initial rearrangement of 

interstitial species (attributed to Na+, OH-, H2O distributed randomly) has been suggested to occur 

around 60-80°C as shown in Figure 1.10(b) where the entities organize themselves towards more 

energetically favorable sites.51 Drying may also lead to the formation of larger particles 

approaching sizes of 1300 nm due to aggregation.57 The manner in which these changes take place 

is quite related to the way the sol-gel reaction proceeds in the case of silica and has in fact been 

called as a sol-colloid glass transition or a sol-gel transition due to the aggregates forming a 

random closed packing, solidifying the sol into a dense gel by reducing the distance between the 

colloids.52 The structure of the material is believed to proceed from a sol to that of a particulate 

with further drying inducing a finer structure.  

If the dried water glass microstructure is assumed to be composed of random close packing of 

particles, capillary forces can be calculated considering that capillaries represent voids (with sizes 

in the range 0.7-10 nm) between the particles saturated with solution.57 On drying, deformation 

of the particles is suggested  to be induced as a consequence of aggregation as shown 

schematically in Figure 1.10(c). The volume of the solid is reduced due to the capillary pressures 
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imposed whereby their values exceed those of the stresses required to generate plastic 

deformation.57 Once dried at relatively higher temperatures (approaching 130°C), structural 

changes are induced at the network scale51–53 due to reorganization and condensation leading to 

the formation of a xerogel, modifying the degree of polymerization of the system in the process. 

Condensation occurs when adjacent terminal silanol groups interact resulting in the formation of 

siloxane bonds, and the process continues as enough water is available to catalyze further 

reactions (Figure 1.10(d) and (e)).51 

 
Figure 1.10: (a) Water content in sodium silicates with M2O/SiO2=0.45, 0.3 and 0.26 as a function of drying time 
(in days) at 80°C,57 and schematic illustration of structural variations on drying of sodium silicates: (b) gently dried 
material with silicate ions shown in lightly stippled units of various shapes, sodium ions in back, hydroxyl groups 
containing one and water molecules two lobes, respectively,51 (c) aggregation of particles leading to neck 
formation due to plastic deformation,57 (d) reaction between silanol groups to form siloxane bond,51 and (e) 
mechanism for water to act as a catalyst.51 Note that black circles in (d) and (e) represent oxygen atoms. 

1.2.2.2. Foaming and xerogel-to-glass transition 

Dried sodium silicates with water content less than 45% have been suggested to have a 

transparent and amorphous aspect, comparable to vitreous materials.59 Heating Na-silicates (pre-

dried at <100°C for varying amount of time and up to even 64 days) to temperatures approaching 

300°C under hydrothermal conditions leads to the release of water inducing physical changes to 

the aspect of the material59 with water-related species being removed as free water, solvating 

water molecules and silanols.53 At temperatures approaching 150-180°C (corresponds to a step in 

Differential Scanning Calorimetry – DSC measurements), foaming53,59–61 is observed as shown in 

Figure 1.11(a) and (b) due to rapid dehydration of the system. This coincides with a DSC peak 

corresponding to glass transition at which a solid-liquid transformation takes place.59  
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Figure 1.11: (a) In-situ Hot-Stage Microscopy images of dried Na-silicate (Na2O/SiO2=0.29) heated up to 180°C,61 
hydrous sodium silicate heated to (b) 175°C & (c) 300°C at 10°C/min,59 (d) swelling observed in boards based on 
Na-silicates as a function of molar ratio1 and (e) schematic illustration of foaming in K-silicates.53  

The Hot-stage Microscopy images shown in Figure 1.11(a) suggest that the dried Na-silicate 

pellet composed of free water, solvating water and silanols shrinks around 100°C61 due to the fact 

that the system is losing free water and undergoing structural modifications shown in Figure 

1.10(c–e). Volumetric expansion of the material or foaming occurs due to pressure imposed by 

the release of solvating water and silanols at temperatures approaching 180°C.61 The extent of 

this expansion is linked directly to the composition or molar ratio of the silicate with an increased 

expansion exhibited on increasing molar ratio as shown for Na-silicates in  Figure 1.11(d). Once all 

the water is removed from the system as a consequence of this transition, the material goes back 

to behave as a solid with a curved and cracked surface observed at and above 300°C (Figure 

1.11(c)). A schematic illustration of this foaming process has also been proposed for K-silicate gels, 

as shown in Figure 1.11(e), to be a consequence of the gradual release of various water-related 

species.53 Free water is removed up to 150°C that leads to a little volumetric expansion followed 

by the subsequent release of adsorbed water and water from the condensation of silanols 

increasing further the size of foam until all the silanols are released leaving behind a vitrified 

product.53  

The Tg of these silicate xerogels, a consequence of the rapid release of water when the system 

foams, appears to be quite low when compared with those of silicate glasses that approach 

temperatures reaching 500°C or higher. Figure 1.12 gives a comparison of the Tg of hydrous 

sodium silicates with varying amount of water content (on pre-drying at lower temperatures) and 

a corresponding glass composition (<0.1 mass% water) prepared by the conventional melt and 

quench route.59 It can be seen that, indeed, reducing the water content in the silicate tends to 

shift the Tg towards higher temperatures until at some point, the values overlap with that of the 

conventional glass once most of the water is removed from the system.  
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Figure 1.12: Glass transition temperatures (obtained from DSC measurements) of the Na2O3·3.3SiO2 – H2O system 
as a function of water content after drying,59 the pure H2O point is the reported Tg of water.62 

Thus, the silicate xerogels obtained by drying aqueous solutions exhibit structural changes on 

thermal evolution; macroscopically in terms of foaming and microscopically in terms of network 

organization. Once the rapid dehydration (or foaming) temperature range is crossed, further 

microstructural changes are expected to be induced in the system. This happens due to the 

removal of left-over water until the material begins to exhibit glass-like behavior suggesting a 

xerogel-to-glass transition on thermal treatment of aqueous silicates. The microscopic state of the 

material appears to have similar structural organization as that observed in corresponding glasses 

for which water content is negligible. Structural properties of glasses are strongly dependent upon 

the starting composition and generally don’t change much below the Tg, however, the behavior 

may be dependent upon the preparation route as discussed in the upcoming section.  

1.3. Silicate glasses 

Glasses are in general defined as supercooled liquids or solids that lack periodicity in the 

structure unlike that observed in crystals. Silica-based glasses have been quite extensively studied 

and represent the most widely used class. Silica may exist in different forms depending upon the 

temperature range as shown in Figure 1.13(a) with tridymite, cristobalite and quartz being the 

crystalline phases comprising of α and β polymorphs that represent low temperature inversions.13 

SiO2 is in molten form above 1710°C, and if cooled rapidly forms the corresponding glass phase 

that has a metastable or frozen structure of the melt.  

Temperature at which thermodynamic properties of a glass-forming liquid change abruptly is 

referred to as the glass transition temperature (Tg) as shown in Figure 1.13(b) and is the point 

where the material becomes a solid due to an increase in viscosity. The structural rearrangements 

tend to be rapid in a liquid while their frozen nature in a glassy solid makes them relatively slow. 

The rate at which liquid is cooled down impacts the value of Tg (or fictive temperature Tf) with 

faster cooling rates resulting in higher values.63,64 Crystallization appears once the system is cooled 

down slowly or set at values above the Tg for longer durations. Once in-between the melting point 

(TM) and Tg, the system is referred to as a supercooled liquid. Tg can be detected by a jump in the 
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specific heat (Cp) measurements in DSC (Figure 1.13(c)), also called as the calorimetric Tg, when a 

glass is heated to higher temperatures.63  

 
Figure 1.13: (a) Stable phases observed for silica,13 (b) thermodynamic properties as a function of temperature 
and the corresponding forms,63 and (c) variation of heat capacity (Cp) with temperature on heating a glass 
showing Tg.63  

The resulting network organization of the crystals is periodic with corner-sharing SiO2 

tetrahedrons arranged as shown by the 2D schematic illustration for quartz in Figure 1.14(a).12 

Since glass is amorphous, the tetrahedrons arrange themselves randomly without any plausible 

long-range order indicative of a continuous random network (CRN) shown in Figure 1.14(b).12 

Adding a network modifier, i.e. Na2O, K2O or Li2O, tends to disrupt the connectivity of the network 

resulting in the formation of NBOs (Figure 1.14(c)) with one alkali ion contributing to one NBO by 

occupying the empty spaces in the network. The resulting structure is composed of channels 

created by the addition of alkali ions shown schematically in Figure 1.14(d) and called as the 

modified random network (MRN)65 since the position of alkali is not random as in early models. 

 
Figure 1.14: Schematic illustration of the network arrangement in (a) crystalline silica, (b) silica glass with a 
continuous random network (CRN)12,13 and (c) & (d) sodium silicate glass with a modified random network 
(MRN).12,13,65 Black dots in (a), (b) and (c) represent Si atoms while O is represented by open circles. In (d), big 
open circles correspond to O atoms, small open circles to Si atoms while bold black circles to Na atoms.   
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1.3.1. Preparation 

Silicate glasses have been prepared quite extensively at the industrial and lab scale utilizing the 

conventional melt and quench route. However, the possibilities of obtaining glasses starting from 

a solution at room temperature have also been widely reported as efficient methods of silicate 

glass production. Figure 1.15 shows the various steps involved in both the processes.66  

 
Figure 1.15: (a) Conventional melt & quench and (b) sol-gel route for glass preparation.66 

1.3.1.1. Conventional  

The conventional method of making alkali silicate glasses involves melting of the precursors (SiO2 

source, and alkali carbonates) followed by rapid quenching to room temperature14,15,67–70 

according to the scheme (a) in Figure 1.15. The precursors are heated to temperatures above 

1000°C in general, or above the liquidus temperature, in a ceramic71 or platinum crucible with the 

reaction taking place above the Tg of the material following the eq 1.1. Refining of the melt is done 

to make it more homogeneous and remove bubbles of either trapped air, nitrogen or 

decomposition products of raw materials like CO2. If large enough, the bubbles rise to the surface 

and can be removed easily. Adding fining agents like arsenic, antimony oxides or sodium sulfate 

(mostly used today) tend to change the oxidation state of the melt resulting in the collapse of 

smaller bubbles inside the melt.71 Once refined, forming into the desired shapes takes place that 

may include fiber drawing, casting, blowing or pressing etc. followed by cooling to ambient. The 

obtained glass may also be tempered/annealed above the Tg to relieve the stresses generated 

during quenching.  

1.3.1.2. Sol-gel 

Sol-gel route of glass production involves thermal treatment of the starting raw solution that 

contains precursors for obtaining the gel to be converted into glass (Figure 1.15(b)). One way is to 

heat the soluble alkali silicates obtained through the colloidal silica production route until molten, 

followed by quenching to obtain glass. Another method involves a chemical reaction leading to 



 

 

22 Chapter 1. Binary alkali silicates: An overview 

hydrolysis and polycondensation of metal alkoxide chemical compounds72–74 that results in a gel 

of high purity on drying. The corresponding reactions involved (hydrolysis in eq. 1.8, 1.10 and 

polycondensation in eq. 1.9) when using tetramethoxysilane (Si(OCH3)4) and sodium methylate 

(NaOCH3) as precursors73,74 are:  

𝑆𝑖(𝑂𝐶𝐻3)4  +  4𝐻2𝑂 →  𝑆𝑖(𝑂𝐻)4 +  4𝐶𝐻3𝑂𝐻 (1.8) 

≡ 𝑆𝑖 −  𝑂𝐻 +  𝑂𝐻 −  𝑆𝑖 ≡ → ≡ 𝑆𝑖 −  𝑂 −  𝑆𝑖 ≡ + 𝑂𝐻− (1.9) 

𝑁𝑎𝑂𝐶𝐻3  +  𝐻2𝑂 ≡ →  𝑁𝑎+ + 𝑂𝐻− + 𝐶𝐻3𝑂𝐻 (1.10) 

≡ 𝑆𝑖 −  𝑂 −  𝑆𝑖 ≡  + 𝑁𝑎+ + 𝑂𝐻−  → ≡ 𝑆𝑖− 𝑂−𝑁𝑎++ ≡ 𝑆𝑖 − 𝑂𝐻 (1.11) 

Drying the gel (at ambient for months75 or at higher temperatures e.g. 250°C72,75) leads to the 

removal of water from the system resulting in a xerogel that is dense but relatively porous as 

compared to glass and has a similar short-range order.66,72 CH3OH evaporates rather rapidly at 

room temperature as it has a high vapor pressure.74 Heating a xerogel to the viscous sintering 

regime (approaching >500°C) leads to densification resulting in a solid similar to glass.  

1.3.2. Structural properties  

The properties of binary alkali silicate glasses have been quite extensively studied in terms of 

the impact on the material based on changes in composition and type of alkali. Such changes lead 

to variations in the structure of the material that has been researched using a number of different 

techniques. It has been found that increasing the alkali concentration in the glass tends to reduce 

the Tg (calculated from DSC measurements) irrespective of the type of alkali ion, though some 

dependence of this behavior is linked to phase separation as shown in Figure 1.16(a).15 Tg values 

remain constant until 33% Li2O and 20% Na2O content in Li and Na-silicate glasses due to the fact 

that these compositions correspond to the phase separation dome in the phase diagrams,76 above 

which a decrease in Tg is seen as a function of alkali concentration.  

A more structural analysis of alkali silicate glasses is given by Raman spectroscopy14,77–80 that is 

considered as one of the go-to tools for the characterization of glasses in general. Such 

measurements give information on the type of network organization in terms of both the silica 

network and Qn units as given in Figure 1.16(b) and (c). The spectrum consists of several bands 

with two of them being the main contributors i.e. the stretching vibrational modes of Si-O-Si and 

Qn units. Pure silica has major characteristic bands around 400 cm-1 corresponding to stretching 

while 800 cm-1 representative of bending vibrational modes of the network.14 Adding network 

modifiers tends to disrupt this organization resulting in further contributions mainly in the Qn 

range centered around 1100 cm-1. The characteristic silica bands (440 cm-1 and 800 cm-1) decrease 

in intensity on increasing alkali content.14 This is shown in Figure 1.16(b) and (c) where an 

increased concentration of alkali ions leads to changes in the lower frequency range as well as an 

increased contribution for the Qn units irrespective of the alkali type. An increase in bands 

between 500-600 cm-1 is observed along with a shift in band position near 500 cm-1 to higher 

frequency on increasing alkali content.14,78,81  

Li-containing glasses exhibit a behavior slightly different than that observed for Na and K-

silicates, with bands centered around 500 cm-1 and 600 cm-1 decreasing in intensity up to 15% Li2O 
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content in glass and contain a broad feature of these bands instead of being distinct bands. Silica 

features decrease progressively in the order Li<Na<K, band width is increasingly broadened in the 

order K<Na<Li and intensity of the 950 cm-1 band increase in the order K<Na<Li.14,77 All this 

indicates a more disordered structure, in terms of bond lengths and bond angles for Li-silicate 

glasses and a more ordered structure for K-silicates with Na-silicates showing an intermediate 

behavior.77 With increasing order, the fluctuations in bond angles and distortions of the tetrahedra 

are reduced. Li tends to cluster in some regions within the glass leaving the other regions relatively 

less altered in terms of the silica glass structure. This regional clustering is indicative of phase 

separation.14  

 
Figure 1.16: Properties of alkali silicate glasses: (a) variation of Tg with increasing concentration of alkali oxide,15 
Raman spectra14 for (b) 5% and (c) 30% alkali oxide, solid-state 29Si NMR spectra at 4.7 T69 (d) on increasing Na2O 
content in the glass and (e) the deconvolution of the metasilicate composition, and (f) comparison of the 
evolution of NMR Qn units as a function of increasing alkali oxide concentration.69  

The structure of silicate glasses also shows marked differences in the Qn band range as a function 

of increasing alkali content with an increase in intensity in the range 850-1250 cm-1.14,77,78,81 These 

Qn species in glasses have been proposed to follow a disproportionation reaction, especially in 

disilicate systems, given as: 

2𝑄𝑛  ⇌  𝑄𝑛−1 + 𝑄𝑛+1        (𝑛 = 1, 2, 3) (1.12) 

Investigation of the Qn bands has led to their deconvolution revealing information related to the 

distribution of individual units.67,78,80,81 Quantitative analysis from Raman spectroscopy suggests 
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an increase in lower Qn units on increasing alkali concentration.78,81 The impact of temperature on 

the evolution of bands was also investigated78,80,81 suggesting an increase in the intensity of Qn 

bands (Q2 and Q4) with increasing temperature linked to the changes associated with structural 

reorganization above the Tg in accordance with the equilibrium proposed in the reaction given by 

eq. 1.12.  

An exact quantitative measure of the structural organization, mainly in terms of the Qn units, 

has been widely discussed from solid-state 29Si NMR spectroscopic measurements.69,70,82,83 Wider 

distribution of atomic arrangements around the silicon atom results in a broader linewidth of the 

NMR spectrum obtained as shown in Figure 1.16(d) and (e) with the possibility to deconvolute the 

bands into individual components. Increasing the concentration of alkali in the system tends to 

shift the distribution towards less negative chemical shifts i.e. towards an organization with higher 

quantity of lower Qn units69,83 suggesting a reduction in shielding of 29Si nuclei.69,70 Figure 1.16(f) 

gives a comparison on the evolution of Qn units for Na, K and Li-silicate glasses on increasing the 

alkali concentration. The general evolution is similar for all the systems with the amount of Q3 up 

to 40% alkali oxide content being higher in the order K>Na>Li.69 Increasing the size of the cation 

(Li+<Na+<K+) tends to shift the equilibrium in eq. 1.12 towards the left suggesting more Q3 presence 

in the system. Furthermore, it is suggested that Li2O addition into Li-silicate glasses may not really 

indicate that all the Li is distributed over the network rather some quantity may stay as isolated 

Li2O due to a higher energetic stability as a consequence of a more covalent character of Li-O as 

compared to Na-O and K-O bonds.69  

The structural properties in binary silicate glasses are thus influenced strongly by the presence 

of the various alkali ions that tend to impact the network organization of the systems. Glasses, in 

general, are composed of negligible quantity of water that may be present in various forms. 

However, properties do change once the amount of water in system is increased influencing 

directly the physical behavior of the systems.  

1.3.2.1. Hydrated silicate glasses  

Water tends to change the composition of silicate glasses, in the sense that a ternary system is 

then established. Water bearing glasses can be achieved either by heating the crushed glass in an 

autoclave in the presence of water84,85 or sealed Pt crucible for 5-24 h under pressure and 

hydrothermal conditions86–89 until water diffuses homogeneously in the form of solvating water 

molecules (solvating silanols or alkali ions) or isolated silanols.84,86,90  

Adding water tends to change the network organization of the glass structure inducing 

depolymerization of the network.86,91 The impact of added water content on Na tetrasilicate glass 

is shown by the solid-state 29Si NMR spectra in Figure 1.17(a) and (b). Increasing the water content 

from 2.6 wt% to 10 wt% tends to increase the amount of Q2 and Q3 at the expense of Q4 following 

the reaction in eq. 1.13 leading to the generation of silanols.91 

≡ 𝑆𝑖 −  𝑂 −  𝑆𝑖 ≡  + 𝐻2𝑂 → ≡ 𝑆𝑖 −  𝑂𝐻 +  𝑂𝐻 −  𝑆𝑖 ≡ (1.13) 
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Figure 1.17(c) shows the global variation of NBOs/Si as a function of increasing alkali amount in 

hydrated Na-silicate glasses.86 Assuming that all the introduced water is a part of the network as 

silanols, the total NBOs/Si show a linear increasing behavior indicated by the upper solid line in 

Figure 1.17(c). The actual points obtained from NMR measurements (indicated by black points in 

Figure 1.17(c)) suggest that protons are, indeed, not only as silanols but also as solvating water 

molecules.86 At very high sodium content, the dissolved water does not impart depolymerization 

and the structure is similar to anhydrous Na-silicate glass.86,91 At lower Na concentrations, 

however, H exists mostly in the form of SiOH. Thus, a more quantitative information on the various 

arrangements possible for water-related species and their corresponding concentration gives a 

better insight into the exact structural changes imparted on addition of water or increasing Na 

content in already hydrated Na-silicate glasses.  

 
Figure 1.17: (a) & (b) Solid-state 29Si NMR spectrum for Na tetrasilicate glass with 2.6 wt% and 10 wt% H2O, 
respectively,91 (c) total NBOs/Si including Na and H ions as a function of increasing Na content in the glass86 and 
(d) variation of Tg as function of water content in Na-silicate glasses (note that the lines are guide for the eyes 
and x, y and z indicate the mole fraction of H2O, Na2O and SiO2 representing disilicate (z=0.667), trisilicate (z=0.75) 
and tetrasilicate compositions (z=0.8)).87 

Thermally treating hydrated Na-silicate glasses results in the loss of water as indicated by weight 

loss measurements obtained through Thermogravimetric Analysis (TGA).89 Further investigation 

suggests that an increased water content in silicate glasses tends to reduce the Tg
87,89 to values as 

low as 175°C as shown by the Figure 1.17(d). Such low values of Tg are attributed to the existence 

of a mixed alkali effect on addition of water, with more OH reducing the mobility of Na. Addition 
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of water increases the global mobility and reduces the viscosity of the network leading to a 

reduction in Tg.87  

This kind of a behavior suggests a strong correlation between aqueous alkali silicates and their 

glass counterparts with a conversion of such solutions into actual glassy materials on thermal 

treatment (at relatively lower temperatures i.e. the Tg would be expected to be reduced)59 once 

water is lost from the system. Furthermore, the structural properties of silicate glasses tend to be 

dependent not only on the water content but also the actual composition of the material in terms 

of alkali or silica concentration, impacting directly the physical properties showing further 

similarities among glasses prepared by the melt and quench route and soluble silicates.  The 

structural changes induced in glasses in terms of variations in Tg or the degree of polymerization 

on added water content or increasing alkali concentration are not the only expected phenomena. 

Rather crystallization may occur depending upon the conditions and has been observed for a 

number of silicate glass compositions.  

1.4. Crystalline silicate compounds 

Thermal treatments of a glass to an annealing temperature above its Tg (or holding above Tg) 

and below TM for some time during cooling results in crystallization71,92,93 inducing changes in glass 

properties like viscosity and coefficient of thermal expansion. Growth of crystals within the glass 

tends to change its optical properties such as transparency. Depending upon the application, 

crystallization may or may not be required. For instance, optical fibers need transparency to 

ensure long distance transmission and thus crystallization is undesirable. However, for 

applications involving the use of glasses as refractories, insulators or where mechanical strength 

is crucial, glass-ceramics play a crucial role. Such materials are obtained by inducing crystallization 

on special heat treatments of some specific glass compositions (especially Li-based silicates)94–97 

in order to obtain a uniform dispersion of crystals.  

1.4.1. Mechanism of crystallization 

Crystallization follows a mechanism of nucleation and growth of crystals. Nucleation involves 

the rearrangement of amorphous matrix molecules to become part of the nucleating crystalline 

phase. The steady-state nucleation rate ‘𝐼’ for homogeneous crystal nucleation71 is given as:  

𝐼 = 𝐵 𝑒𝑥𝑝 (
−𝑄 + 𝑊∗

𝑘𝑇
) (1.14) 

where ‘B’ is a constant, ‘Q’ the activation energy for molecular transport in the matrix phase, ‘k’ 

the Boltzmann’s constant, ‘T’ the temperature and ‘W∗’ the work of critical nucleus formation as: 

𝑊∗ =
−16𝜋𝛾3

3(∆𝐺𝑣)2
(1.15) 

where ‘γ’ is the interfacial energy between matrix phase and nucleus, ‘∆Gv’ the thermodynamic 

force per unit volume for transformation from matrix to the critical nucleus, whose radius ‘r∗’ is: 

𝑟∗ =
2𝛾

∆𝐺𝑣

(1.16) 
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Heterogeneous nucleation is quite common in glasses and may be a consequence of foreign 

particles, bubbles, surfaces or defects acting as catalysts.71 Surface nucleation is observed due to 

dust particles or some alkali impurities like Na or Ca adhering to the melt during cooling. 

Furthermore, addition of foreign elements like metals (Au, Ag, Pt, Pd, Cu) or non-metals (TiO2, 

P2O5, ZrO2) can result in the nucleation of uniform crystallization in glasses.71 Glasses containing 

nucleating agents generally follow a two-step heat treatment process. Heating just above the Tg 

causes nucleation also referred to as the ‘nucleation treatment’ followed by heating to higher 

temperatures for crystallization. Phase separation has also been reported to be a driving force for 

crystallization (especially in Li-silicates) 71,98,99 as the role of the catalyst may be played by the 

boundary between the phases i.e. direct heterogeneous crystal nucleation may occur at the 

interface.98,99 It is also possible that the crystalline phase may have the same composition as that 

of the matrix or dispersed phase, or there might be precipitation from one of the phases.98,99  

 Growth of the crystals occurs in three ways once the nuclei is formed and the size is above the 

critical radius of nucleation (r > r∗), where accidental attachments and detachments from the 

nuclei surface take place.98 Normal growth (on an atomically unsmooth surface) involves the 

movement of the nuclei-matrix interface along its normal whereby the motion is provided by 

accidental attachments of the structural units to growing crystal’s surface. In the case of stepwise 

growth (on an atomically smooth surface), emergence of screw dislocations or a layer due to 

attachment of several structural units leads to a tangential motion of the interface over the 

surface. Lastly, the growth through surface nucleation mechanism is related to the formation of 

2D nuclei that lead to the generation of steps on the crystal surface resulting in the formation of 

new mononuclear layers. 

1.4.2. Structural evolution towards crystallinity 

1.4.2.1. Silicate glasses 

Crystallization in alkali silicate glasses suggests that anhydrous (M2SiO3 – metasilicate, M2Si2O5 – 

disilicate) and their hydrous crystalline counterparts are possible depending upon the starting 

composition and temperature of thermal treatment.22 Anhydrous crystalline phases appear on 

annealing glasses above the Tg. The size of critical nucleus ‘r∗’ was calculated for binary alkali 

silicate glasses and found to be dependent on the starting composition (smaller nuclei with 

increasing alkali content), the type of alkali ion (larger nuclei for larger alkali) and the annealing 

temperature (larger size at higher temperatures).100 Nuclei with sizes of 12.5-14.8 Å closer to the 

disilicate composition while 8.9-10.6 Å for monosilicate composition have been reported for 

binary Na-silicates.100 Similarly, for Li-silicate systems, the disilicate composition has a critical 

nucleus in the size range 6-9 Å as compared to 4-5.3 Å for the metasilicate glasses.100  

It has been suggested that increasing the heating rate increases crystallization temperature in 

Li-silicate based glasses (with Tg approaching 475°C) along with a similar increase on increasing 

the SiO2 content in the system as observed from DSC measurements.95 When samples are heated 

all the way up to 900°C,95,96 crystalline Li2SiO3 is observed at 750°C with needle-like features while 

Li2Si2SO5 appears in abundance at 900°C with crystals having a granular shape, suggesting the 

formation of a glass-ceramic.95 Similar behavior has been seen on heating Li-silicate binary glasses 
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around 450°C for longer durations indicating the formation of both meta and disilicate crystalline 

phases concurrently with the metasilicate crystalline phase in abundance up to 10 h due to its 

ease of formation when the system phase separates.93 On heating for 120 h, the number of 

metasilicate crystals decreases with none being seen for longer durations and the disilicate phase 

then dominates as indicated by the X-ray Diffraction (XRD) measurements shown in Figure 

1.18(a).93   

 
Figure 1.18: (a) XRD diffractograms of binary 34.6 mol% Li2O silicate glass heated at 454°C for 120-600 h with the 
vertical lines corresponding to Li2Si2O5 crystalline phase,93 solid-state 29Si NMR at 7 T for (b) 28 wt% Li2O based 
glass on annealing at 530°C, with glass-ceramic formed at 650°C and 850°C94 & 14.1 T for (c) K-silicate glasses and 
crystalline K2Si2O5,92 and (d) gel-processing diagram for Na2O-SiO2 system with Tce=carbonate elimination, 
Tdb=beginning of densification and Tcl=start of crystallization.101 

Li-silicate based glass of the composition (28% Li2O – 66.9% SiO2 and traces of Al2O3, K2O, P2O5) 

presents a strong response for the Q3 and Q4 species at 530°C when the structure is observed 
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through solid-state 29Si NMR spectroscopy as shown in Figure 1.18(b).94 Increasing the annealing 

temperature to 650°C results in crystallization with metasilicate Q2 being the abundant crystalline 

phase (24%) as compared to 10% Q3 disilicate. This temperature evolution follows the 

disproportionation reaction shown in eq. 1.12 suggesting the conversion of glassy Q3 into 

crystalline Q2 and glassy Q4. Increasing the temperature further to 850°C results in the diminishing 

of metasilicate altogether with around 63% contribution from the disilicate Q3 component 

indicating the conversion of crystalline Q2 and glassy Q4 into crystalline Q3. It must be noted that 

phase separation occurs, prior to the formation of metasilicate, even below 650°C but is not 

detected due to the features being nanoscale and thus contributing to the broadness in the 

spectrum observed at 530°C.94   

In the case of binary K-silicate glasses, characterization by 17O NMR indicates the existence of a 

broader, lower frequency peak corresponding to BO while a narrower, higher frequency peak to 

NBO.92 Narrower and sharper peaks are observed in the case of crystalline K2Si2O5 (obtained by 

heating 33% K2O glass to 755°C for 24 h) system suggesting a more ordered structure as compared 

to glasses. 29Si NMR data, shown in Figure 1.18(c) also confirms that the amorphous structure 

observed in glasses with a broader distribution of signal tends to become relatively narrow for the 

Q3 K2Si2O5 crystalline phase observed at 755°C with the disappearance of Q2 and Q4 contribution 

as that seen for the 34% K2O glass.92  

Unidirectional crystallinity (by generating a heat gradient) is also possible in binary 40% K2O glass 

heated to temperatures approaching 950°C, with the formation of K2Si2O5 phase confirmed by 

XRD measurements, though the rapid conversion of crystalline phase into hydrated form makes 

characterization a bit problematic.102 Further quantification of the crystalline components in 

phosphate-based systems has been reported103 where deconvoluting the peaks observed in XRD 

diffractogram using the Rietveld refinement approach has aided to classify the systems in which 

multiple crystalline phases may coexist along with some amorphous character. 

Binary Na-silicate glasses also show crystallization once the melt and quench glass samples are 

heat treated to temperatures above the Tg.104,105 A two-step heat treatment – nucleation at 400-

500°C for varying amount of time followed by development (where the growth rate is much higher 

than the nucleation temperature) at 590°C for 4 min – of 46, 48.1 and 50 mol% Na2O glass resulted 

in the formation of Na2SiO3 crystals, confirmed by XRD measurements, with maximum rate of 

metasilicate crystals being observed at 460°C.104 Moreover, the rate at which the nuclei achieve a 

critical radius for growth was calculated to be rather fast or instant especially for the 46 mol% 

Na2O glass.104 In-situ 29Si NMR study on 40 mol% Na2O – 60 mol% SiO2 glass has also revealed the 

appearance of crystalline phases corresponding to both Q2 metasilicate and Q3 disilicate 

composition at temperatures approaching 600°C with distinct amorphous bands coalescing within 

200°C of the Tg of such glasses.105 

Hence, crystallization appears to be a common phenomenon in binary alkali silicate glass 

systems linked to a gradual nucleation and growth of meta and disilicate crystals with Li and Na-

based glasses being the most widely researched. The usual characterization techniques used for 
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structural evaluation of glasses (like NMR and XRD) are generally enough for detecting 

crystallization events. Such a behavior should also be expected for glassy compositions prepared 

from sol-gel based routes as well as aqueous silicates indicating similarities among the different 

systems.     

1.4.2.2. Gels and aqueous silicates 

Crystallization is also observable in the case of binary alkali-silicate gels depending upon the 

composition.101,106–108 Figure 1.18(d) shows a gel-processing diagram for Na2O-SiO2 system101 

indicating the possibility of crystallization once the binary Na-silicate composition is heated above 

the densification temperature range, though crystallization precedes densification at very low 

Na2O concentrations. Li-silicate gels of varying compositions were obtained through the sol-gel 

route by drying the parent mixture at 30-70°C for 7 days followed by melting in steps all the way 

up to 1450°C to obtain glass.108 The two-step heat treatment involved nucleation in the 400-500°C 

range followed by growth at 600°C for 10 min. XRD measurements indicate the presence of 

crystalline Li-disilicate up to 33 mol% Li2O while metasilicate is observed above 40.7 mol% Li2O.108 

The sol-gel method leads to glasses with a homogeneous spatial arrangement of crystals. Meta 

and disilicate crystallization from the Li-silicate gel compositions has also been reported on direct 

heating of gels to temperatures approaching 500°C and beyond107 suggesting a reasonable 

tendency of gels to crystallize in a manner similar to glasses. Furthermore, a combination of DSC, 

XRD and 29Si NMR has also helped in the evaluation of the crystallization behavior in Li-silicate gels 

with the formation of both meta and disilicate phases depending upon the heating rate 

employed.106  

Soluble alkali silicates also undergo structural changes on thermal treatments with crystallization 

appearing in some cases with the phases being the same as those observed in glasses produced 

by conventional melt and quench route as well as sol-gel methods. For instance, sodium silicate 

water glass with a molar ratio Na2O/SiO2=0.33 dried at ambient conditions for 5 h followed by 

heating to 850°C with a dwell time of 24 h resulted in crystallization.109 Crystalline Na2Si2O5 began 

to appear around 400°C with increasing intensity of the XRD peaks up to 550°C where phase 

separation of the crystalline components takes place between the disilicate and cristobalite 

phase.109 The disilicate disappears at 750°C with the formation of Na6Si8O19 phase while a glassy 

behavior prevails around 850°C.109 Disilicate crystalline phases have also been seen in the case of 

aqueous K and Li silicates when the systems were heated to 500°C47 with K-silicate showing the 

tendency to form hydrated disilicate.  

1.5. Summary – Missing links and scientific questions 

Structural properties of binary soluble silicates, xerogels, glasses and the corresponding 

crystalline compounds have been quite extensively studied. In the case of soluble silicates, there 

exists a tendency to have a glass-like behavior depending upon the thermal history. Aqueous alkali 

silicates have emerged as an industrially important class of materials with their thermal behavior 

being of particular interest due to their intumescent nature. They foam, i.e. expand volumetrically, 

on contacting fire as a consequence of the release of water from the system that imparts structural 
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changes at the microscopic scale. Microscopic properties, at the scale of the network, have been 

studied through a number of techniques sometimes utilizing a combinatory approach (resorting 

to qualitative as well as quantitative methods) for addressing network-related queries in both 

glasses and alkali silicate solutions.  

The structural properties have generally been fundamentally and thoroughly investigated below 

150°C in the case of aqueous silicates and above 400/500°C in the case of glasses. Some 

mechanisms have been proposed that add to the understanding of the densification of xerogels 

or pre-dried aqueous silicates before foaming starts but an in-depth understanding on how the 

structure is evolving microscopically (using quantitative approaches) and the corresponding 

impact on the foaming behavior has not been clearly elaborated. Furthermore, the impact of 

water evolution in the system on the Tg of silicates is not evident and the crystallization behavior 

of aqueous alkali silicates is not well understood either, and it is not clear how the systems would 

behave if crystallization or phase separation is observed below 400°C. Thus, it is necessary to find 

solutions to the missing links by establishing a thorough qualitative and quantitative 

understanding of the macroscopic and microscopic thermal evolution of aqueous alkali silicates to 

be able to predict their properties as a function of composition as well as the type of alkali.    

Specifically, this manuscript addresses the thermal behavior of aqueous Na, K and Li-silicates of 

two different molar ratios by utilizing the experimental methodology devised. Structural 

properties in terms of microscopic network organization and foaming have been investigated both 

qualitatively and quantitatively. Such an in-depth investigation has allowed to address several 

scientific questions: How does the composition (solid and water content) and structure (structure 

of the silicate network, nature of amorphous or crystalline phases) of alkali silicates evolve with 

temperature below 400/450°C? Is there a difference in the thermal evolution of solutions/ 

xerogels based on the alkali cations such as Na, K and Li? Do any of these systems exhibit a Tg? 

Furthermore, we would like to relate this microscopic thermal evolution to the macroscopic 

behavior in terms of foaming. We have addressed this question for two different kinds of 

geometries corresponding to different industrial applications: bulk geometry, related more to the 

geometry of intumescent materials, and liquid films, corresponding to the case where alkali 

silicates are used as coatings.  
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Chapter 2.  

 

Experimental methodology 

2.1. Starting materials & preparation methods 

Aqueous alkali silicates based on Na, K and Li were thermally treated to various temperatures to 

study their structural properties depending upon the starting state of these materials. The details 

on the various samples used for the investigation of their thermal behavior are given explicitly in 

the forthcoming sub-sections.  

2.1.1. Solutions and Glasses 

Commercially available and lab prepared alkali silicate solutions as well as reference Na-silicate 

glasses obtained by the industrial melt & quench route (at SGR Paris) were used as the starting 

materials. They have been defined in terms of their Molar Ratio as nM2O/nSiO2 (where M 

corresponds to the type of alkali ion i.e., Na, K or Li). Note that all the alkali silicate systems would, 

from now on, be denoted by their molar ratio throughout the manuscript. Solutions (and Na-

silicate glasses) with two different molar ratios were used in all the cases and the respective 

composition of each system is given in Table 2.1. Na-silicate extra pure solution (Na2O/SiO2=0.29) 

was purchased from Sigma-Aldrich, Na-silicate crystal 0095 solution (Na2O/SiO2=0.5) from PQ 

Corporation, K-silicate K 35 T (K2O/SiO2=0.29) and K-silicate Geosil 14517 (K2O/SiO2=0.59) 

solutions from Woellner while Lithium polysilicate solution (Li2O/SiO2=0.2), Ludox AS-30 colloidal 

silica (30 wt% suspension in H2O), Lithium hydroxide monohydrate (≥98%) and 

TetramethylAmmonium silicate (TMAS) from Sigma-Aldrich. Ethylene glycol (pure) was procured 

from Carlo Alba, Sodium hydroxide solution (cNaOH=1 mol/L) from Merck and pellets from Fluka 

whereas sodium carbonate powder (anhydrous ≥ 99.5%) was purchased from VWR Chemicals 

BDH.  

Table 2.1: Composition (in wt%) of the starting alkali silicate solutions and Na-silicate glasses. 

Alkali 
Silicate 

M2O 
(wt%) 

SiO2 

(wt%) 
H2O 

(wt%) 
Molar Ratio 

(nM2O/nSiO2) 
Preparation 

Na 
8.25 27.75 64 0.29 Commercial 

13.75 27.25 59 0.5 Commercial 

Na 
(Glass) 

23 77 - 0.29 Melt & Quench 

33 67 - 0.5 Melt & Quench 

K 
11 24 65 0.29 Commercial 

17 23 60 0.5 K-Silicate 0.59 + Ludox AS-30 

Li 

1.8 18.2 80 0.2 Commercial 

2.6 17.8 79.6 0.29 Li-silicate 0.2 + LiOH powder 

3.4 17.3 79.3 0.4 Li-silicate 0.2 + LiOH powder 
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K-silicate (K2O/SiO2=0.5) solution was prepared by mixing known amount of Ludox AS-30 in K-

silicate Geosil 14517 (K2O/SiO2=0.59) with constant stirring until the solution becomes 

transparent. Li-silicate solutions (Li2O/SiO2=0.29 and 0.4) were prepared by adding known quantity 

of Lithium hydroxide monohydrate powder into Lithium polysilicate solution (Li2O/SiO2=0.2) with 

constant stirring at 60°C until the solutions become transparent. Note that the molar ratio of 0.4 

represents the upper limit of stability for Li-silicate solutions. 

Tests were also made to check the effect of preparation route on the stability and structure of 

the starting Na-silicate solutions. For this purpose, known amount of NaOH solution/pellet was 

added into the commercial Na-silicate 0.29 solution to obtain a molar ratio of 0.5. Furthermore, 

Ludox AS-30 was mixed with Na-silicate 0.5 solution to check for the possibility of tuning the molar 

ratio i.e. achieving a lower molar ratio value of 0.33.  

Mixing of alkali silicates and the addition of foreign entities to the commercial Na-silicate 

solutions was also investigated. Li-silicate 0.2 solution was mixed with Na-silicate solutions as well 

as known quantities of TMAS and ethylene glycol solutions were also added into the pure Na-

silicate solutions. Details of the respective compositions are given with the results (Chapter 4).  

Thermal treatments on the solutions were generally carried out at 150°C, 275°C, 350°C, 400°C 

and 450°C at a heating ramp of 5°C/min. Some heating experiments were performed at 300°C 

especially those for K-silicate solutions. The impact of varying heating rate from 1 to 5 to 10°C/min 

was also investigated for all the silicates by heating in a rate-controlled oven at 250°C for 30 min.  

2.1.2. Powders  

Alkali silicate dried powders were prepared by heating the initial solutions in an oven at 150°C 

for 17 h to remove maximum amount of free water and limit the extent of foaming while 

performing further analyses. A porcelain crucible was used as the jar for solutions. For our 

investigations, powders were also obtained by thermally treating the solutions at 275°C, 350°C, 

400°C and 450°C at a heating rate of 5°C/min for 2 h each. Obtained powders or reference glasses 

were grinded and stored in sealed glass vials. Grinding of powders obtained from the solutions 

was achieved using a mortar and pestle while a planetary ball mill (Fritsch Pulverisette 6 operated 

at 400 rpm for 10 min with 10 repetitions) was used for grinding the Na-silicate glass chunks.  

Table 2.2:  Techniques and the corresponding substrates used for the deposition of alkali silicate coatings.  

Coating Method Substrate Pre-Cleaning 

Spin Coating 

Silicon wafer (single and 
double side polished) 

Acetone, then ethanol followed by UV-Ozone 
treatment at 50°C for 15 min (utilizing Novascan 
PSD-UV – Benchtop UV-Ozone Cleaner) 

Microscopic glass slide Acetone and ethanol 

Tantalum-coated glass Ethanol followed by UV-Ozone treatment 

Blade/Pool Coating Microscopic glass slide Acetone and ethanol 

Gradient Bar Coating 
Planiclear glass plate 
(Saint-Gobain) 

Rubbing with Cerox (20% in H2O) followed by 
rinsing with distilled water 
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2.1.3. Coatings 

Properties and thermal evolution of thin films and thick coatings obtained by depositing raw 

aqueous alkali silicates were also investigated. Table 2.2 lists the different coating techniques and 

the pre-cleaned substrates used for the deposition of thin and thick alkali silicate coatings.  

2.1.3.1. Spin Coating 

Thin (250 nm) and homogeneous coatings of diluted pure 1.5 M (in terms of SiO2 concentration) 

Na2O/SiO2=0.29 and carbonated solutions were spin coated on double side polished silicon wafers 

(1x1.5 cm) at 2000 rpm for 60 s for infra-red spectroscopic analysis. Pure Na2O/SiO2=0.29 and 0.5 

solutions were used for obtaining similar thin films on tantalum (Ta)-coated glass substrate 

followed by heat treatment at different temperatures for Raman spectroscopic measurements. A 

20 nm layer of Ta was sputtered on glass using magnetron sputtering. Thin films of Na2O/SiO2=0.29 

solution on single side polished silicon wafers (1x1.5 cm) were also prepared for secondary ion 

mass spectroscopy.  

Raw concentrated Na-silicate solutions were used as received for the deposition of thicker 

coatings (on silicon wafer and glass substrates at 2000 rpm for 60 s) i.e. in the range 5-8 µm and 

were thermally treated at and above 250°C. Some multi-layered coatings (with a pre-drying step 

of 70°C) were also achieved from both the molar ratios of Na-silicates, however, glass was finally 

chosen as the substrate for further thick coating experiments as delamination of the layers was 

observed on ageing of spin coated silicon wafer substrates. Furthermore, thicker coatings of the 

order of 10s of microns were difficult to be prepared by spin coating route so the process had to 

be changed.  

 

Figure 2.1: Schematic illustration of (a) spin, (b) blade/pool and (c) gradient bar coating (and the corresponding 
adjustable bars used)110 process.  

2.1.3.2. Blade/Pool Coating 

Thicker coatings, in the order of 10s of microns, for all the alkali silicates were achieved using 

blade/pool coating setup shown in Figure 2.1(b). A double-sided tape (with a thickness of 170 µm) 

was used to create a square/rectangular pool on the substrate to prevent the flow of solution. The 

extra solution at the top was removed using a blade to achieve a relatively flat surface and the 
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coating was dried both at ambient as well as 70°C followed by subsequent heating. This setup 

allows for generating coatings with thickness values reaching 100s of microns retaining the 

homogeneity depending upon the composition.  

2.1.3.3. Gradient Bar Coating 

Coatings with gradient in thickness for the different alkali silicates and molar ratios were 

deposited using an Elcometer 3530 thickness adjustable bar, 25 cm in length, shown in Figure 

2.1(c). Pre-cleaned Planiclear glass plates (30x30 cm) were used as the substrates and three 

gradient coatings were tested by adjusting the bar ends at 10-100, 10-200 and 10-250 µm. 

Depositions were generally made using Elcometer 4340 Automatic Film Applicator (carriage speed 

position was set to 3 that allows for the bar movement speed of 20 mm/s). Samples were pre-

dried at 70°C for 5 min followed by thermal treatments at 250°C and 450°C. An impact of the 

heating rate was also investigated by varying from 1 to 5 to 10°C/min in a rate-controlled oven.   

2.2. Characterization strategy 

Alkali silicate solutions, powders and coatings have all been investigated for their thermal 

behavior to establish a concrete fundamental understanding of the structural properties at both 

the macroscopic and microscopic scales. Figure 2.2 lists the various techniques utilized to create 

a strategy for being able to efficiently characterize the systems in terms of the different structural 

properties of interest.  

 

Figure 2.2: Schematic illustration of the characterization methodology followed for extracting the various macro 
and microscopic structural properties of aqueous alkali silicates at ambient conditions and on thermal treatment.  
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The developed methodology is based on the expertise and availability of various characterization 

tools in the laboratories involved in the project. For instance, liquid and solid-state Nuclear 

Magnetic Resonance (NMR) spectroscopic know-how and equipment at LPMC, Ecole 

Polytechnique has been used to investigate quantitatively the structural organization of alkali 

silicates in terms of the silicate network evolution on thermal treatment. Raman spectroscopy, the 

expertise of which lie at SVI, Saint-Gobain Research Paris, has provided a qualitative information 

complementary to NMR. A combination of different techniques has thus helped in providing 

information on the state of alkali silicates.  

2.2.1. Macroscopic View 

Thermally treating aqueous alkali silicates leads to the removal of water from the system. The 

global evolution of this water content and the corresponding influence of macroscopic structural 

evolution in terms of foaming has been analyzed using visual methods involving real-time 

observation of solutions and powder pellets. For a more accurate description of this evolution, 

powders obtained by pre-drying solutions at 150°C, referred throughout the manuscript as ‘pre-

dried’, have been used to follow the behavior from Thermogravimetric Analysis (TGA) in terms of 

mass loss and Differential Scanning Calorimetry (DSC). It is worth noting here that only pre-dried 

powders (and not the solutions) were used for TGA/DSC measurements due to the experimental 

limitations posed by the volumetric expansion of some alkali silicate compositions. Furthermore, 

the release of water from solutions is too abrupt to disrupt the readings (or damage the 

equipment as a consequence of splashing) due to blowing away of crucible lid especially in the 

case of DSC measurements.    

2.2.2. Microscopic structural evolution 

In order to study the changes at the scale of silicate network configuration, NMR spectroscopy 

has been utilized to quantify the Qn structural units (where ‘n’ corresponds to the number of 

bridging oxygens or BOs, while non-bridging oxygens are referred to as NBOs) that are expected 

to change as a function of water/silanols’ evolution on thermal treatment. A complementary and 

more qualitative description of the network has been provided by Raman spectroscopic 

measurements. Powders obtained by drying the solutions at different temperatures were used for 

both these techniques.  

A further quantitative analysis has been performed by combining TGA mass loss curves with Qn 

units obtained from NMR in order to predict accurately the exact evolution of the different proton-

related species in the network that gives a more solid understanding on how water or protons are 

actually leaving the network during the macroscopic foaming phenomenon. Some alkali silicate 

compositions present crystallization which has also been quantitatively investigated in 

combination with TGA and NMR data for predicting the changes occurring in the network and the 

corresponding link to the macroscopic thermal evolution when alkali ions leave the host matrix. 

Macroscopic changes in the systems are linked to changes in rheology/viscosity once water starts 

leaving the network and the material starts to approach the Tg. High temperature evolution i.e. 
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>500°C has been observed on powder pellets under a Hot-stage Microscope that has allowed for 

the calculation of viscosity curves especially in the case of Na-silicates.  

Coatings developed from these aqueous alkali silicates have been investigated for their 

morphology and thickness using Scanning Electron Microscopy (SEM) while the structure has been 

identified using X-Ray Diffraction (XRD) and Raman spectroscopy. Diffusion-related properties of 

thin Na-silicate films, in terms of Na ions, have been explored by combining the carbonation 

studies performed by Fourier-Transform Infra-Red (FT-IR) spectroscopy with diffusion profiles 

obtained from Secondary Ion Mass Spectroscopy (SIMS) and carbonates observed under SEM.  

2.2.3. Experimental parameters 

2.2.3.1. Thermal Analysis 

Thermogravimetric Analysis (TGA) was performed using a NETZSCH STA 409 Thermal Analyzer 

for obtaining mass loss curves up to 1200°C to monitor the evolution of leftover water or silanols 

with temperature in Na-silicate powders pre-dried at 150°C. An alumina crucible was used as the 

container and a moisture-free atmosphere was provided by continuously flowing N2/O2 gases in 

nearly equal volume. The measurement was repeated twice. Temperature calibration was 

performed at heating rates of 5, 10 and 20°C/min from the DTA signal using metal standards with 

different melting temperatures. Note that the calibration is not accurate at low temperature 

sweeps when the DTA signal is significantly broadened. Only small quantities of samples could be 

analyzed for Na and K-silicate, typically 15 mg of the powder pre-dried at 150°C, because of 

foaming. This led to improper correction of the buoyancy effects in the RT-150°C temperature 

range. 50 mg powder was used for the analysis of Li-silicate pre-dried systems. 

Differential scanning calorimetry (DSC) was utilized for measuring the heat capacity of these 

silicates on a NETZSCH DSC 404 C under continuous N2 flow. Typically, 10 mg of pre-dried powders 

prepared at 150°C were used as the starting material and loaded as-received into a platinum-

rhodium crucible without compressing. A heating rate of 10°C/min was employed. For heat 

capacity measurements, calibration was done by recording a baseline (without the sample) and a 

reference measurement with Sapphire which gives an energy calibration allowing subsequent 

calculations to be made using the processing software.      

2.2.3.2. Nuclear Magnetic Resonance Spectroscopy  

Liquid-state NMR: The structure of Alkali-silicate solutions in terms of Qn units was analyzed 

using liquid-state 29Si NMR. Spectra were recorded at 59.63 MHz on a 300 MHz AVANCE II Bruker 

spectrometer with a BBO probe.  A π/2 pulse was used with a repetition delay optimized at 5 s. 30 

vol% heavy water (D2O) was added to the samples for locking. All 29Si chemical shifts were 

referenced to tetraethoxysilane (TEOS) as external reference [Chemical shift (Si)=-82 ppm vs TMS]. 

The contribution of glass tube was corrected by subtracting the spectrum of empty tube from the 

final spectrum of silicate solutions. The relative proportion of Qn units was determined by 

integrating the area under the curve of each peak for an exact quantification of the various species.  

Solid-state MAS NMR: The samples treated at different temperatures were analyzed with solid-

state magic angle spinning (MAS) NMR experiments. The 1D 29Si NMR spectra were acquired at 



 

 

38 Chapter 2. Experimental methodology 

71.53 MHz on a Tecmag Apollo360 spectrometer equipped with a 4 mm Bruker probe head 

operating at a spinning frequency (νrot) of 15 kHz. The acquisitions were performed with a 3.55 µs 

pulse length (corresponding to a π/2 flip angle), 3000 transients and a repetition delay of 20 s. The 

repetition delay was optimized by going up to 1500 s for Na while 2000 s for Li-silicate but that 

does not provide higher signal intensity. 29Si chemical shifts were referred to TEOS at -82 ppm. 

Deconvolution of the 29Si NMR spectra was performed using the Dmfit software111 with Gaussian 

fitting function because of the chemical shift distribution of amorphous structures.   

For Na-silicates, some measurements were carried out in collaboration with Grégory Tricot 

(Laboratoire de Spectrochimie Infrarouge et Raman-LASIR, Université de Lille). 23Na and 1H MAS-

NMR experiments were recorded at 211.6 and 800 MHz, respectively, on an 18.8 T Bruker 

spectrometer. All the experiments were performed with a 3.2 mm probe head operating at νrot of 

20 kHz. 23Na MAS-NMR experiments were obtained with a 1 µs pulse length (corresponding to a 

π/8 flip angle), 256 transients and an optimized repetition delay of 0.5 s. 1H MAS-NMR spectra 

were obtained with a 2.7 µs pulse length (corresponding to π/2 flip angle), 64 transients and an 

optimized repetition delay of 5 s.  The NMR spectra were corrected from the signal coming from 

the probe. 23Na and 1H chemical shifts were referred to NaCl and TMS solutions at 0 and 0 ppm, 

respectively. In order to analyze the 1H/29Si and 23Na/29Si interactions, correlation NMR was also 

applied at 9.4 T with an HXY-4 mm probe head operating at νrot of 8 kHz. 1D 29Si (23Na) Cross 

Polarization (CP) NMR technique was used to determine how the Na ions are distributed within 

the silicate network. The experiment was performed with optimized low radio-frequency fields 

(around 5-6 kHz for both channels) allowing for an efficient transfer, a contact time of 6 ms and 

400 k transients separated by a repetition delay of 0.2 s. 2D 29Si (1H) CP spectra were acquired to 

trace the Si-OH linkages. The 2k x 10 acquisition points were recorded under rotor-synchronized 

conditions with 1H and 29Si radiofrequency fields of 50 and 34 kHz and a contact time of 6 ms. Each 

direct slice was recorded with 512 transients and a repetition delay of 4 s. 

2.2.3.3. X-Ray Diffraction 

Powder (and some thick coating) XRD experiments were carried out on a high-resolution D8 

Advance Bruker AXS (Germany) - powder diffractometer equipped with the LynxEye XE-T 

detector (1D mode, maximum detector opening), automatic anti-scatter screen position and a Cu 

radiation (Kα1 = 1.5406 Å and Kα2 = 1.5445 Å). Samples were analyzed at room temperature using 

2.5° Soller slits and a divergence slit of 0.6° in the 5-70° 2 range with a step size of 0.025° at 1 

s/step. Phase identification was performed with the Bruker AXS DIFFRAC.EVA (V5) software using 

the PDF2 (release 2004) database. Deconvolution of the XRD diffractograms was carried out on 

Bruker AXS TOPAS (V6) software. The fundamental parameter approach was used to model the 

optic contribution and the emission profile of the X-Ray tube was established using LaB6 NIST 

standard (Standard Reference Material 660a, cell parameter = 0.41569162 nm – 0.00000097 nm 

at 22.5 °C). The background was described using a Chebychev polynomial. Since the diffractograms 

were a combination of amorphous and crystalline characters, split pseudo-voigt (SPV) function 

was used to define both the amorphous bump (using the single peak method) and crystalline peaks 

corresponding to the different phases detected. The Crystallographic Information File (.cif) for 
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each phase was downloaded from the Crystallography Open Database (COD)112, Inorganic Crystal 

Structure Database (ICSD) and MaterialsProject.113 For the Rietveld refinements, cell parameters, 

microstructure (double-Voigt approach, only crystallite size refined) and preferred orientation 

(March-Dollase model) were fitted whereas atomic positions and site occupancies were fixed 

according to the .cif files used. 

2.2.3.4. Raman Spectroscopy 

Structural changes in terms of densification and polymerization of the Na-silicate network with 

temperature were studied qualitatively using Raman spectroscopy. The data were acquired on Na-

silicate powder pellets (500 mg; 13 mm diameter; load of 2 tons for 60 s by a Specac Manually 

Operated 15-ton Hydraulic Press) using a Renishaw Qontor Raman Spectrometer equipped with a 

532 nm green laser and 50 mW power. A 50X objective lens was utilized for acquiring 992 spectra 

in the range 300-1300 cm-1 with a 90 µm step-size and an exposure time of 20 s. These spectra 

were averaged using principle component analysis (PCA) for denoising and homogenizing the 

composition variations from grain to grain over the pellet surface. Spectra were also acquired for 

Na-silicate thin films deposited on Ta-coated glass substrates using a 100X objective lens. 100 

spectra in the extended range 300-4000 cm-1 with a 10 µm step-size and an exposure time of 10 s 

were acquired using 532 nm green laser with a power of 10 mW followed by averaging by PCA.  

2.2.3.5. Hot-stage Microscopy 

 

 

Figure 2.3: Hot-stage Microscope setup used for obtaining image recording of pellets upon thermal treatment.  

For precise in-situ monitoring of thermal evolution of pre-dried powder pellets, a LINSEIS in-situ 

Hot-stage Microscope (see Figure 2.3) equipped with a 10X objective was utilized to record a video 

by capturing several images (1 image/s) on ramping up to 400°C as well as 1200°C (Na-silicate 

pellets were pre-foamed at 400°C followed by preparation of a pellet out of this powder for 

heating to 1200°C). 50 and 100 mg pellets with a 5 mm diameter were obtained at a load of 1 ton 
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for 10 s for the different alkali silicate compositions. Heating ramps of 1, 5 and 10°C/min were 

investigated for Na-silicates while 10°C/min for K and 5°C/min for Li-silicate powder pellets. 

Viscosity measurements on Na-silicates and reference glasses were realized by developing models 

based on pellet shape changes observed above 450°C. These models were obtained by utilizing 

the viscosity values available in literature models for silicate glass compositions.114,115  

2.2.3.6. Fourier Transform Infra-Red spectroscopy 

Carbonation kinetics of Na-silicate starting solutions and films was followed by utilizing a Bruker 

Equinox 55 FT-IR spectrometer. Thin films (from as received and carbonated commercial solution) 

of the order of 250nm were deposited on double-side polished silicon wafer substrate followed 

by analysis in transmission mode in the range 400-4000 cm-1. A sample holder with a 45° tilt was 

used for obtaining a spectrum averaged over 200 accumulations under continuous N2 flow. 

Measurements were also performed on thick Na-silicate coatings pre-dried at different 

temperatures to follow the evolution of water.    

2.2.3.7. Secondary Electron Microscopy 

A Hitachi S-4800 FEG-SEM was employed for cross-sectional and planar views of thin films and 

thick coatings in secondary electron (SE) mode. Samples were cut to expose the cross-section and 

a few nm thick Pt layer was sputtered prior to investigation to prevent any charge accumulation 

on films. Images were recorded at various accelerating voltages and magnifications. Thickness 

measurements were also carried out on a FEI Quanta 400 SEM mainly for thicker coatings.   

2.2.3.8. Secondary Ion Mass Spectroscopy 

SIMS analysis was performed by IONTOF TOF.SIMS 5 spectroscope for obtaining diffusion 

profiles of Na+ ions present in the thin Na-silicate layer spin coated on silicon wafer substrate. 

Different sputter sources were used including Cs+ ion source (2 keV), O2
+ ion source (20 keV), O2 

cluster source (20 keV) and O2 cluster source at low temperature (-100°C). A bismuth (Bi) source 

operated at 30 keV was used for analysis of the sputtered region. O2 cluster source at low 

temperature was chosen as the source for future experiments as all other methods resulted in 

distorted diffusion profiles due to the ions in the films being highly sensitive to the incoming ions. 

There were issues of charging of the samples that led to ions being pushed inside the films 

resulting in inhomogeneous profiles.  
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Chapter 3.  

 

Thermal behavior of aqueous alkali silicates 

The structure of aqueous alkali silicates has intrigued much attention due to their important 

contribution to industrial systems where they are employed in a number of ways with particular 

interest being in their fire-resistant properties. Literature studies have mainly focused on their 

structural properties at ambient conditions and do not inform much about their thermal evolution 

from a more fundamental approach. The structural properties of two different molar ratios of 

aqueous Na, K and Li-silicate solutions at room temperature as well as on thermal treatment are 

discussed here in details to draw comparisons among the various alkali silicates. Heating these 

solutions induces changes at both the macroscopic and microscopic scale due to the removal of 

water from the system resulting in foaming in some cases. This induces microscopic structural 

variations that have been studied quantitatively using a combination of characterization tools to 

predict the actual state of the system and its link to the behavior observed macroscopically. A 

comparison of the thermal behavior with glasses of similar compositions is also presented. 

Structural properties of the starting solutions are discussed followed by qualitative and a more 

quantitative analysis of xerogels in terms of thermal evolution of proton-related species and the 

corresponding impact on the actual microscopic state of the system below 500°C. Evolution above 

500°C in terms of viscosity variations has also been presented using in-situ measurements.  

3.1. Structure and reactivity of soluble silicates at room temperature  

Aqueous alkali silicates are a mixture of silica network dissolved in water comprising of Qn 

structural units (where n=0, 1, 2, 3, 4 corresponds to the number of bridging oxygens referred to 

as BOs, otherwise non-bridging as NBOs) shown in Figure 3.1.  

 

Figure 3.1: Schematic illustration of Qn species used for defining alkali silicates. 
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This kind of a classification is generally used for defining the properties of these solutions in 

terms of the degree of polymerization and is dependent highly on the composition of the systems 

i.e. alkali and SiO2 concentration, influencing directly the global changes in viscosity. 

3.1.1. Na-silicates  

The structure of Na-silicate solutions with two different molar ratios (Na2O/SiO2=0.29 and 0.5) 

has been investigated quantitatively by liquid-state 29Si Nuclear Magnetic Resonance (NMR) 

spectroscopy. Their spectra exhibit multiple peaks indicative of the coexistence of different Qn 

species. The relative proportion of each Qn unit was determined by taking the integral under each 

peak and is shown in the corresponding NMR spectrum in Figure 3.2. Q0, Q1, Q2∆, Q2, Q3 and Q4 

are all present for the solution with lower amount of Na (Na2O/SiO2=0.29). Increasing the amount 

of Na in the solution (Na2O/SiO2=0.5) tends to depolymerize the network causing Q4 to disappear 

altogether accompanied with a conversion into lower Qn units. The amount of Q1, Q2 and Q2∆ 

(cyclic species of Q2) increases while Q3 decreases with the appearance of Q3∆ (branched cyclic 

species of Q3) around a chemical shift of -87.4 ppm confirming network depolymerization with the 

relative positions staying roughly the same for the two molar ratios (cyclic species with different 

structures have been proposed in the literature for soluble Na-silicates).18,31,33,34,42  

 
Figure 3.2: Liquid-state 29Si NMR spectrum of Na-silicate solutions with a molar ratio of 0.29 with 27 wt% SiO2 
and 0.5 with 26 wt% SiO2 detailing the chemical shift (ppm/TMS) and percentage fraction of each Qn unit for the 
two molar ratios according to band assignments proposed in literature.11,18,31–34,42,43,116 Note that a repetition 
delay of 5 s was chosen as the optimum after performing measurements at 0.5, 1, 5, 10 and 20 s as shown in 
Figure A 3.1.  

Lower Na2O/SiO2 ratio leads to more condensed species indicating an increased polymerization 

for which the structure is less defined (i.e. larger distribution of possible structure) leading to 

broader peaks and less structures in the spectra. This broadness may also be a result of higher 

viscosity of Na2O/SiO2=0.29 solution. Higher amount of Na leads to the splitting of peaks as 

observed for Q2∆, Q2, Q3∆ and Q3 in Figure 3.2 indicating the presence of multiple network 

configurations upon depolymerization.17,18,28,42 
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The structural dependency on preparation method was also investigated to evidence some 

possible kinetic effects for reaching a stable structure and it was found that the structure depends 

on only two parameters i.e. dilution level and molar ratio. We were able to tune continuously the 

molar ratio of our solutions by adding NaOH or Ludox (colloidal SiO2) as shown in Figure 3.3. The 

obtained solutions have the same structure as the commercial ones except slight changes due to 

some differences in dilution level as it tends to depolymerize the network.42 Thus, it would also be 

interesting to do the same experiments on solutions with similar dilution levels.  

 
Figure 3.3: Changing the structure by (a) addition of NaOH into Na2O/SiO2=0.29 and (b) Ludox followed by NaOH 
in Na/Si=0.5 solution through Liquid-state 29Si NMR. Black curves represent the as received commercial solutions. 

Addition of Ludox into Na2O/SiO2=0.5 solution to obtain the molar ratio Na2O/SiO2=0.33 changes 

the structure as can be seen in the red spectrum in Figure 3.3(b). Adding NaOH to the same 

solution changes the molar ratio back to 0.5 but the structure is not exactly the same as the 

commercial solution because dilution is different. Thus, we are able to produce Na-silicate (or 

other alkali silicate) solutions of the desired composition by addition of a known amount of Ludox 

or NaOH. The silicate structure is only dependent on concentration and molar ratio and not on the 

way it is prepared suggesting the kinetics of the reaction to be rapid.  

3.1.2. K and Li-silicates 

K and Li-silicate solutions have a structure in terms of the Qn units as shown by the liquid-state 
29Si NMR spectra in Figure 3.4. K-silicates are composed of a structure (Figure 3.4(a)) quite the 

same as that observed in Na-silicates.17,20,28 On increasing the concentration of K in the solution 

i.e. to achieve a molar ratio of 0.5, network tends to depolymerize resulting in the conversion of 

higher Qn units into lower ones. Li-silicates, on the other hand, seem to have a behavior different 

than that observed in Na and K-silicates.28 Li2O/SiO2=0.29 has a structure in solution similar to Na 

and K-silicates. However, addition of further Li ions in the solution doesn’t seem to strongly impact 

the network structure28 as observed for Li2O/SiO2=0.4 shown in Figure 3.4(b).  

Note that Li-silicate solutions were prepared by addition of LiOH powder into Li2O/SiO2=0.2 

commercial solution. Adding LiOH into Li2O/SiO2=0.29 to obtain Li2O/SiO2=0.4 changes the 

network slightly with a reduction in the quantity of Q3 from 54% to 50% accompanied with an 

increase in Q2 from 30% to 35%. The resulting solutions are transparent indicating the added LiOH 
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to have been dissolved thus suggesting an already saturated network that cannot accommodate 

more Li ions. Furthermore, LiOH seems to be present as it is and it may or may not be H-bonded 

to the network, thus, impacting the global thermal evolution of the systems.    

 
Figure 3.4: Liquid-state 29Si NMR of (a) K and (b) Li-silicate solutions. 

Hence, liquid-state 29Si NMR allows to study the structural variations of aqueous alkali 

silicates. It is possible to tune the molar ratio of these silicates by manipulating the starting 

composition to obtain the desired structural properties. Increasing the alkali content in the 

solution tends to depolymerize the network connectivity in both Na and K-silicates while Li-

silicates don’t show an abrupt change in organization due to a network already saturated with 

Li ions. Thermal treatments of these solutions are expected to change further the microscopic 

arrangement as water will be released impacting directly the network polymerization and the 

macroscopic properties.  

3.2. Xerogel formation 

The starting aqueous alkali silicate solutions are composed of free water, solvating water 

(molecules H-bonded to alkali ion or network protons) and silanols21,117 as shown in Figure 3.5.  

 
Figure 3.5: Pre-dried silicate obtained by removing free water from raw alkali silicate solutions at 150°C. 

In order to investigate the thermal behavior of these silicates keeping in view the experimental 

limitations posed by the various characterization tools (splashing and foaming-related problems), 

xerogels were prepared by pre-drying the solutions at 150°C for 17 h to remove maximum amount 
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of free water from the system. Note that longer durations did not result in further weight loss as 

evident from isothermal Thermogravimetric (TGA) measurements shown in the appendix (Figure 

A 3.2). These dried but still hydrated powders will be referred to as ‘pre-dried’ silicates. 

The structure of these pre-dried silicates is possible to be observed using solid-state 29Si NMR as 

shown by the spectra in Figure 3.6. Broad bands are observed due to the glassy character of these 

materials that have been deconvoluted using Gaussian function by Dmfit software111 to obtain the 

distribution of individual Qn units. Since all the free water and a small amount of solvating water 

is expected to be removed during this pre-drying step, polymerization of the network is achieved 

when compared to the structure in solutions. The structure of these xerogels is more dominant in 

terms of the quantity of Q3 and Q4 that are much higher than the solutions. Furthermore, 

depolymerization is observed on increasing the alkali concentration in both Na and K silicates 

while Li-silicates don’t show much difference in the relative distribution of the species. Further 

details on such solid-state NMR measurements are given in later sections along with the discussion 

on sharp peaks observed in the case of K-silicates (corresponding to crystallization). 

 
Figure 3.6: Solid-state 29Si NMR at 8.4 T for (a) Na, (b) K and (c) Li-silicate xerogels obtained by pre-drying solutions 
at 150°C. Note that a drying time of 17 h was used for all the compositions except K2O/SiO2=0.5 that was dried 
for 1 week due to its very hygroscopic nature. Note that all the measurements were performed at repetition 
delay of 20 s and 3000 scans were acquired after calibrating the parameters (see Figure A 3.3). 

It must be noted here that these xerogels or pre-dried silicates are the starting point for 

temperature evolution in order to have a state that is more or less reproducible, keeping in mind 

also the hygroscopic nature of alkali silicates. Heating these pre-dried systems is expected to 

induce further changes to the structure of the material, thus, inculcating interest in the 

fundamental understanding of their thermal behavior.  

3.3. Water evolution on thermal treatment 

Thermally treating alkali silicates leads to macroscopic and microscopic structural changes due 

to the release of water from the system. Macroscopically speaking, intumescence/foaming is 

observed for Na and K-silicates on heating. The material expands volumetrically, depending upon 
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the starting composition and state of the microscopic network, while Li-silicates don’t show any 

expansion. The macroscopic foaming behavior of the different compositions is discussed in detail 

in Chapter 4. Foaming is related to the release of water from the system and thus necessitates an 

investigation of the structural evolution of alkali silicates in terms of this water release and its link 

to the corresponding structural changes observed visually as well as at the scale of the network. 

Both qualitative and quantitative analysis of the structure is, therefore, important for probing the 

thermal behavior in terms of water evolution and other relevant phenomenon that may, at the 

global scale, have an impact on the intumescent nature of the different alkali silicates.  

3.3.1. Macroscopic evolution: global water content  

Pre-dried alkali silicate powders were subjected to further heating for investigation of properties 

at both macroscopic (global water evolution) and microscopic (structural) scale. In this section, we 

describe the macroscopic evolution of these silicate powders and the effect of alkali type and 

concentration.  

 
Figure 3.7: TGA mass loss curves (a) at three different heating rates for the Na-silicate powder with a molar ratio 
of 0.29 prepared at 150°C and at 10°C/min for both molar ratios of (b) Na, (c) K & (d) Li pre-dried silicates.   

Thermal evolution of the pre-dried alkali silicates was derived from TGA measurements. Before 

acquiring data on the respective silicates, Na2O/SiO2=0.29 silicate powder was subjected to mass 

loss measurements at heating ramps of 5, 10 and 20°C/min to determine if the evolution was 

controlled by kinetic effects (see Figure 3.7(a)). The behavior is the same at 10 and 20°C/min 

ramping rate, with a first plateau up to 150°C because of the removal of almost all the free water 
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upon drying at this temperature, and then a gradual weight loss above 200°C. The evolution is 

slightly different at 5°C/min heating rate maybe because of a limitation of initial calibration of the 

equipment with metal standards. A heating rate of 10°C/min was chosen for further studies as the 

mass loss seemed to be only temperature dependent, at least for the range of heating rates 

studied. Furthermore, the impact of pre-drying temperature was also explored but no differences 

in the thermal behavior were found (see Figure A 3.4). Note that the inconsistency in the TGA 

measurement below 150°C arises from the very small quantities of samples analyzed because of 

foaming i.e. typically 15 mg of the Na2O/SiO2=0.29 powder pre-dried at 150°C. This led to improper 

correction of the buoyancy effects in the room temperature (RT)-150°C temperature range. 

3.3.1.1. Na-silicates 

The mass loss curves for the two molar ratios of Na-silicates at a heating rate of 10°C/min are 

shown in Figure 3.7(b) while the percentage of leftover water (calculated by subtracting 

percentage mass loss at 275, 350, 400, 450, 500, 600 and 1200°C from the overall mass lost in TGA 

measurements) is plotted as a function of temperature in Figure 3.8(a). Note that the step around 

400°C for Na2O/SiO2=0.29 in Figure 3.7(b) and Figure 3.8(a) is a consequence of splashing or 

bubble bursting from the powder and corresponds to a mass loss of 0.4% which is not significant 

and is, thus, a part of the calculations made here. Dehydration occurs very quickly after heating at 

temperatures higher than 150°C (pre-drying temperature). Interestingly, DSC curves shown in 

Figure 3.8(b) suggest that the silicates experience a glass transition (Tg) around 210°C for 

Na2O/SiO2=0.29 and 175°C for Na2O/SiO2=0.5, in the same range of temperature where 

dehydration starts. Note that there is an interplay between glass transition and water removal 

which means that decreasing the water content changes the (supposed) Tg and when the DSC-

determined glass transition is reached, water removal increases since the silica network is more 

mobile and water diffusion is enhanced within the material. 

Table 3.1: Comparison of the composition (in wt% and mol%) of Na-silicates before and after pre-drying at 150°C. 

Alkali 

Silicate 

Molar Ratio 

(nM2O/nSiO2) 

Pre-

drying 

SiO2 

(wt%) 

M2O 

(wt%) 

H2O 

(wt%) 

SiO2 

(mol%) 

M2O 

(mol%) 

H2O 

(mol%) 

Molar Ratio 

(nM2O/nH2O) 

Na 

0.29 
None 27.75 8.25 64 11.2 3.2 85.6 0.04 

150°C 69.3 20.7 10 56.5 16.4 27.1 0.61 

0.5 
None 27.25 13.75 59 11.5 5.6 82.9 0.07 

150°C 58.7 29.3 12 46.1 22.3 31.6 0.71 

K 

0.29 
None 24 11 65 9.7 2.8 87.5 0.03 

150°C 63.6 29 7.4 59.5 17.4 23.1 0.75 

0.5 
None 23 17 60 9.8 4.6 85.6 0.05 

150°C 50.3 37.1 12.6 43.3 20.4 36.3 0.56 

Li 

0.29 
None 17.8 2.6 79.6 6.2 1.8 92 0.02 

150°C 80.2 11.6 8.2 61.4 17.8 20.8 0.85 

0.4 
None 17.3 3.4 79.3 6 2.4 91.6 0.03 

150°C 78.1 15.4 6.5 59.8 23.7 16.6 1.43 
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More overall mass is lost for the silicate with higher Na content in the network indicating a 

slightly more retention of leftover water in the starting powder prepared at 150°C. Assuming that 

all water is lost at 1200°C, total water retention is 12% in Na2O/SiO2=0.5 and 10% in 

Na2O/SiO2=0.29 starting powder as shown in Table 3.1. This slight difference in the amount of 

water may explain the offset of temperature observed by DSC suggesting a connection between 

the water content and softening (more mobile network) of the material. Near 150°C, the presence 

of more retained water when there is higher Na content in the silicate can be attributed to 

solvating water (linked to silanols or ionic hydration)21 and a higher number of silanols. 

 
Figure 3.8. (a) Evolution of total water left in the network for the two molar ratios (TGA measurement performed 
at 10°C/min); note that both y-axes on the right, red corresponding to Na2O/SiO2=0.29 and black to 
Na2O/SiO2=0.5, represent nOH/nSi, (b) DSC measurements for heat capacity at 10°C/min also performed on pre-
dried powder (the onset of the peaks are identified as a glass transition and match well with the macroscopic 
foaming temperature), (c) Arrhenian plot of TGA mass loss curves (the fitting temperature range is 220-450°C for 
Na2O/SiO2=0.29 and 180-400°C for Na2O/SiO2=0.5, respectively) and (d) comparison of our TGA curves 
(represented by solid lines) with glass transition temperature reported for hydrated glasses85,87,89 (Q represents 
the mole fraction of water while  the molar content of SiO2 (at 150-500°C), represented by z, is in the range 0.56-
0.77 moles for Na2O/SiO2=0.29 and 0.46-0.66 moles for Na2O/SiO2=0.5, respectively, while constant for literature 
points). 

The global evolution behavior of TGA mass loss is almost the same for the two molar ratios 

although the two curves are just shifted. For a better comparison of the two molar ratios, we plot 

the leftover water content versus inverse temperature in an Arrhenian diagram in Figure 3.8(c). 

Since TGA data is independent of the ramping speed, we can consider that the Arrhenius law may 

describe temperature dependence of reaction rates. Considering that all free water has been 
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removed by the pre-drying step at 150°C, the following possible reactions leading to water release 

are considered:  

2𝑆𝑖𝑂𝐻 ⇌  𝑆𝑖 − 𝑂 − 𝑆𝑖 + 𝐻2𝑂𝑎𝑡𝑚 (3.1) 

𝑆𝑖𝑂−𝐻+/ 𝐻2𝑂𝑠𝑜𝑙𝑣 (𝑜𝑟 𝑆𝑖𝑂− − 𝐻3𝑂+) ⇌ 𝑆𝑖𝑂𝐻 + 𝐻2𝑂𝑎𝑡𝑚 (3.2) 

𝑆𝑖𝑂−𝑁𝑎+/ 𝐻2𝑂𝑠𝑜𝑙𝑣 ⇌  𝑆𝑖𝑂𝑁𝑎 + 𝐻2𝑂𝑎𝑡𝑚 (3.3) 

where the left-hand side of eq. (3.1, 3.2 and 3.3) represent proton-related species i.e. isolated 

silanols as well as silanols and Na-linked NBOs solvated by water molecules in the silicate, while 

the right-hand side indicates water evaporating into the atmosphere on thermal treatment.  

As a rough approximation, we consider that reaction 3.1 prevails in the Arrhenius plot since its 

activation energy is expected to be much higher than the two other reactions associated to the 

removal of solvated water. The reaction constant (k) of reaction 3.1 can, therefore, be expressed 

as:  

𝑘 =
𝑝[𝐻2𝑂]

𝑐[𝑆𝑖𝑂𝐻]2
= 𝐴 𝑒𝑥𝑝 (

−𝐸𝑎

𝑅𝑇
) (3.4) 

where ‘p’ is the partial pressure, ‘c’ the concentration, ‘A’ the pre-exponential factor, ‘Ea’ the 

activation energy, ‘R’ the gas constant (8.3145 J.mol-1.K-1) and ‘T’ the temperature in K. 

Considering that the partial pressure of water is fixed by a large atmospheric reservoir, therefore, 

making it constant, the Ea is linked to protons as: 

[𝑆𝑖𝑂𝐻] ~ 𝑒𝑥𝑝 (
𝐸𝑎

2𝑅𝑇
) (3.5) 

The calculated Ea values in the low temperature range (below 450°C) are 34.1 kJ.mol-1 and 29.4 

kJ.mol-1 for the molar ratio Na2O/SiO2=0.29 and Na2O/SiO2=0.5, respectively, suggesting same 

order of magnitude for the two Na-silicates. Such low values of Ea are consistent with literature 

studies on hydrated Na-based silicate glass melts with values approaching 30 kJ.mol-1.118,119 

Therefore, this suggests that the removal of water is controlled by two simultaneous mechanisms: 

the removal of solvated water, and the transformation of some hydroxyl groups into solvated 

water to maintain a ratio corresponding to the equilibrium speciation of water at a given 

temperature. The latter mechanism also implies that the proton-involving network is relatively 

mobile.   

Regarding the mobility of the network, literature data were obtained from geochemistry 

studies85,87,89 on the Tg (corresponding to a viscosity of 1012 Pa.s) of hydrated sodium silicate 

glasses obtained by dissolving water into the melts at high pressure. These values are reported in 

Figure 3.8(d) for different molar ratios along the pure sodium oxide to pure water line. Note that 

Tg values of these hydrated glasses are much lower than the ones of dry glasses (which would be 

in the range 500-650°C). Indeed, water decreases the viscosity of silicate melts; one mechanism 

being the formation of silanols and the depolymerization of the network.120 We have also included 

in this figure the TGA curves corresponding to specific water over sodium content at particular 
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temperature points. Interestingly, the onset of the mass loss corresponds to a temperature just 

above the literature data for the glass transition, suggesting that water removal is possible only 

after the network becomes mobile. As the temperature increases, the water content of the 

material remains high enough so that the glass transition for the obtained composition is lower 

than the actual temperature, meaning that the network always keeps some mobility. 

Nevertheless, the difference between the temperature (for a given composition resulting from 

water loss) and the corresponding Tg is small, suggesting that the system loses water until the 

viscosity of the system becomes too high. It is possible that in the temperature range of our 

observations, the composition versus temperature evolution corresponds to an iso-viscosity line 

with a viscosity close to the one of the glass transition 1012 Pa.s. 

3.3.1.2. K and Li-silicates 

Water content evolution in pre-dried K and Li-silicate powders was also investigated and is 

shown by the TGA mass loss curves in Figure 3.7(c, d) as well as in the Figure 3.9(a, b) in terms of 

leftover water content. Both the Na-silicate compositions (Figure 3.8(a)) as well as K2O/SiO2=0.5 

(Figure 3.9(a)) show a rapid and homogeneous release of water while K2O/SiO2=0.29 and Li-silicate 

pre-dried powders tend to evolve in a slightly different manner in the sense that dehydration 

seems to occur in steps over the temperature interval studied (see Figure 3.9(b)).  

One commonality among all the systems is that on increasing the alkali concentration, a different 

offset temperature of mass loss is observed. Higher alkali content silicates tend to start losing 

water at lower temperatures e.g. K2O/SiO2=0.29 sees a gradual drop in the TGA curve around 

220°C and the system seems to retain water till higher temperatures while the temperature for 

the start of dehydration drops to around 190°C for K2O/SiO2=0.5 followed by a gradual evolution 

as observed in Na-silicates. Li-silicates show a similar behavior in terms of the offset in 

temperature for the start of dehydration with a higher value (200°C) seen for Li2O/SiO2=0.29 (the 

mass loss behavior seems to be slightly different when compared to Na or K silicates). A water 

retention of 12.6% is observed in K2O/SiO2=0.5 while 7.4% in K2O/SiO2=0.29 suggesting a behavior 

similar to that observed in Na-silicates. In contrast, an inverse impact of increasing alkali 

concentration is observed in Li-silicates i.e. Li2O/SiO2=0.29 retains ∼8% of water after the pre-

drying step while a lower value (6.5%) is observed in Li2O/SiO2=0.4. 

Na-silicates exhibit a single Ea approaching 30 kJ.mol-1, irrespective of the starting alkali 

concentration, for the release of water content from the system as discussed previously. K and Li-

silicates, on the other hand, tend to show multiple activation energies suggesting a combination 

of several mechanisms. This can be linked to the macroscopic foaming behavior observed on 

heating the solutions or pre-dried powders. Na-silicates foam extensively at a heating rate of 

5°C/min, Li-silicates don’t foam while an intermediate behavior is seen for K-silicates as discussed 

in Chapter 4.  

K and Li-silicates have multiple Ea values due to several slopes as shown in Figure 3.9(c) and (d), 

respectively, and hence several mechanisms. The existence of these multiple Ea values happens 

to be a consequence of microscopic structural changes linked to the release of water and an 
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underlying phenomenon related to crystallization not at all observed in Na-silicates below 500°C, 

where the network happens to be mobile enough to let the water molecules escape resulting in 

extensive foaming. 

 
Figure 3.9: TGA mass loss evolution of total water left in the system for two different molar ratios of (a) K-silicate 
& (b) Li-silicate powders pre-dried at 150°C (all the measurements were acquired at a heating ramp of 10°C/min), 
activation energy (Ea) obtained from TGA mass loss data indicating (c) Arrhenian behavior for K2O/SiO2=0.5 while 
(c, d) multiple values for K2O/SiO2=0.29 & Li-silicate pre-dried powders, and DSC curves at 10°C/min on pre-dried 
(e) K & (f) Li-silicates showing peaks corresponding to the intrinsic changes.   

Changes in the structural properties of aqueous alkali silicates and the link to the stability of 

different phases could be studied through Phase Diagrams. Ternary phase diagrams were plotted 

from FactSage121 (at room temperature and 1 atm) to determine the stable phases in the starting 

solutions as shown in Figure 3.10. All the three silicate systems (Na2O-SiO2-H2O, K2O-SiO2-H2O and 

Li2O-SiO2-H2O) were simulated through the amorphous phase-related data available in the 
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FactSage database, however, accurate calculations could not be made for Li-silicates due to 

unavailability of relevant information. Starting solutions are all in the phase regions termed as 

‘Liquid + Hydrated Amorphous’ (corresponding to the blue dots at arrow tails in Figure 3.10) 

suggesting the existence of an amorphous alkali silicate network dissolved in water. ‘Hydrated 

Amorphous’ refers to the amorphous network composed of silanols and solvating water 

molecules. Blue arrows in Figure 3.10 serve as a guide for the eyes and point towards a completely 

dried state once all the proton-related species are removed from the system. However, that does 

not mean the solutions would pass through the regions indicated in-between as that would be 

dependent upon the composition of the starting solution, especially, the water content that is 

expected to change as a function of temperature leading to physical and chemical structural 

changes.  

 
Figure 3.10: Ternary phase diagram at 25°C, 1 atm for (a) Na2O-SiO2-H2O, (b) K2O-SiO2-H2O and (c) Li2O-SiO2-H2O 
obtained from FactSage. The blue dots are indicative of the starting solutions and the expected composition on 
complete drying with arrows serving as a guide for the eyes. 

The stability regime in the pre-dried state (obtained by drying the solutions at 150°C) is expected 

to directly influence the thermal behavior. Binary phase diagrams (in terms of total water and total 

amorphous composition) for Na and K-silicates calculated from FactSage (see Figure 3.11) show 

the temperature range for the existence of different phases upon dehydration. Phases referred to 

as ‘Hydrated Amorphous’ are indicative of the amorphous alkali silicate network that is 

independent of free water but is composed of network silanols and solvating water molecules. 

‘Vapor’ corresponds to the water molecules that are released on thermal treatment while ‘Liquid’ 

is representative of free water in the system. Starting solution compositions are shown by the blue 
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dots while TGA data, at the temperature points studied for quantitative analysis later on, is marked 

with black points. Note that the black points at 150°C in Figure 3.11 are the starting points for TGA 

measurements and represent the water content in the pre-dried silicate powders.  

 

Figure 3.11: Binary phase diagram for (a) Na2O/SiO2=0.29, (b) Na2O/SiO2=0.5, (c) K2O/SiO2=0.29 and (d) 
K2O/SiO2=0.5, obtained from FactSage at 1 atm, indicating the presence of various phases as a function of 
temperature and mole fraction of H2O. Light blue points on the diagrams are representative of the starting 
solutions while black points indicate the TGA evolution of pre-dried powders prepared at 150°C (by drying 
solutions for 17 h), whereas dashed grey line in (c) is just a rough assumption indicating the loss of water on 
drying the starting solutions with dark blue points showing the leftover water content after 15 min, 1 h 40 min 
and 3 h drying at 150°C. Note also that these diagrams were calculated without considering the possibility of 
crystallization, the corresponding binary diagrams for K-silicates are shown in Figure A 3.5.  

Evolution of the proton-related species and the extent of foaming observed is expected to be 

dependent on the stability of different phases in the relevant temperature range. Extensive 

foaming observed in Na-silicates above 150°C stems from the fact that the system is in the range 

where the network is in equilibrium with evaporating water as shown by the black points at and 

above 150°C in Figure 3.11(a, b). This means that water can escape rather easily at temperatures 

as low as around 90°C which is quite close to the boiling point of water. The dehydration in 

K2O/SiO2=0.29 is somewhat similar to Na-silicates above 150°C but the pre-drying step at 150°C, 

on viewing from the phase diagram in Figure 3.11(c), implies the system to be in a state where the 

thermodynamic stability of free water may be higher than that observed for Na-silicates 

suggesting it to be more hygroscopic in terms of rheological aspects and thus might influence the 

foaming behavior. K2O/SiO2=0.5 (very hygroscopic), in contrast, has a broad temperature range 
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100-300°C within which ‘Liquid + Hydrated Amorphous + Vapor’ co-exist as shown in Figure 

3.11(d) indicating that the pre-dried powder at 150°C may not be a xerogel, or a dried gel, and the 

extent of foaming is reduced as compared to Na-silicates due to the relatively stable nature of 

proton-related species. The system being extremely hygroscopic, thus, is also one of the reasons 

for the very high amount of retained water in pre-dried K2O/SiO2=0.5 i.e. 12.6% as compared to 

7.4% observed in K2O/SiO2=0.29. 

Differences in the foaming/thermal behavior of alkali silicates can further be linked to the 

network mobility that seems to be limited in the case of K and Li-silicates with the formation of 

crystallites corresponding to KHSi2O5 observed in K2O/SiO2=0.299,21 (KHSiO3 may be observed in 

K2O/SiO2=0.5 depending upon the drying time) while Li2SiO3 and Li2Si2O5 being the crystalline 

components in the case of Li-silicates93,95–98,122,123 explained in detail in the upcoming sections. 

Furthermore, the Li-silicate compositions studied here lie in the phase separation regime of the 

binary phase diagram for glasses93,98,99,124 also suggesting the network to be relatively less mobile 

due to the formation of a phase with pure SiO2 network that may well be contributing to the 

absence of any intumescence.  

Globally speaking (and as will be discussed macroscopically in Chapter 4), Na-silicates show 

extensive foaming, K-silicates may or may not foam depending upon whether the system is 

crystallized, while Li-silicates do not foam due to the possibilities of phase separation and 

crystallization. This thermal evolution of alkali silicates is linked to the release of water from the 

system. TGA evolution suggests the existence of an onset of mass loss in all the alkali silicates 

with higher alkali content silicate showing a lower onset temperature of mass loss. Na-silicates 

exhibit a single 𝑬𝒂 value approaching 30 kJ.mol-1, irrespective of the Na2O/SiO2 molar ratio, 

linked to the release of solvating water molecules and silanols. Multiple 𝑬𝒂 values are observed 

in the case of K and Li-silicates due to the possibility of having several mechanisms involving 

crystallization. The ability of a material to release water, crystallize or even phase separate is 

expected to influence directly the microscopic state of the material in terms of the network 

organization that would globally impact the foaming-related properties.  

These measurements give us a global picture of how water evolves in alkali silicate powders with 

temperature once the free water has been mostly removed. For a microscopic view of the 

structure of the material, and in particular the distribution of water between solvated water and 

silanols, it is important to investigate structural evolution using spectroscopic measurements. And 

in order to establish the role crystallization plays in reducing or completely suppressing 

intumescence/foaming, a thorough quantitative structural investigation is required for 

understanding how the structural mobility may be limited on thermal evolution in the case of K 

and Li-silicates.    
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3.3.2. Structural properties  

The structure of alkali silicate solutions has been investigated quantitatively by liquid-state NMR 

as discussed in section 3.1. Their spectra exhibit multiple peaks indicative of the coexistence of 

different Qn species, where n represents the number of bridging or bonded oxygens (BOs) in the 

silica network while the other oxygens are referred to as non-bridging or non-bonding oxygens 

(NBOs).  

3.3.2.1. Evolution of structure with temperature 

Heating alkali silicate solutions leads to microscopic structural changes along with changes at 

the macroscopic scale. Evolution of structural properties with temperature was studied on 

powders by solid-state 29Si MAS-NMR in terms of the evolution of Qn units (note that the repetition 

delay is enough to be quantitative as confirmed by measurements shown in Figure A 3.3 in the 

appendix). Broad peaks are observed due to the glassy character of the silicates i.e. broad 

distribution of chemical shifts due to various chemical environments in the structure. These broad 

bands can be deconvoluted into individual Qn units by using a Gaussian function through Dmfit 

software111 as shown in Figure 3.12 for Na-silicates. The deconvolution error is estimated to be a 

few percent for the different units. 

(a) Na-silicates 

Solid-state 29Si NMR spectra for Na-silicate powders obtained by drying solutions at different 

temperature is shown in Figure 3.12. Q2, Q3 and Q4 are the only species observed for 

Na2O/SiO2=0.29 powders with a variation in the relative proportion of each on increasing 

temperature. Network polymerization occurs on heating as indicated by the increase of Q4 along 

with the decrease of Q2 as shown in Figure 3.12(a). Q2 vanishes at 400°C while the amount of Q4 

increases from 25% at 150°C to 39% at 400°C indicating an increase in the network connectivity. 

A similar trend is observed in the system with higher Na content (Na2O/SiO2=0.5) as shown in 

Figure 3.12(b). Higher Q2 fraction is measured for higher Na content in the initial solution due to 

an already depolymerized network. Q1, Q2 and Q3 units represent the majority species up to 350°C, 

whereas a small Q4 contribution (7%) appears at 400°C. Q1 vanishes at 275°C while a decrease 

from 33% at 150°C to 9% at 450°C is observed for Q2 indicating network polymerization. Q3 is 

observed to increase until 350°C while the appearance of Q4 is observed at 400°C. This 

polymerization of the network is a result of the condensation reaction of silanols present in the 

network as NBOs. A detailed analysis on the role of free water, solvating water and silanols is given 

later on.  

The structure in terms of the relative fraction of Qn units of these xerogels after heating to 400°C 

indicates a structural arrangement very similar to that found in the corresponding glasses 

prepared by melt and quench process as shown in Figure 3.12(c) and (d). The evolution of Qn 

fractions with temperature for the two molar ratios and corresponding fraction of Qn units for 

glasses is compared in Figure 3.12(d). Q2 and Q4 follow a similar trend for the two molar ratios 

while a relatively different behavior is observed for Q3. The fraction of Q3 does not change much 

for Na2O/SiO2=0.29 on increasing temperature suggesting it to be relatively independent of the 

polymerization reaction. For Na2O/SiO2=0.5, Q2 converts into Q3
 until 350°C followed by the 



 

 

56 Chapter 3. Thermal behavior of aqueous alkali silicates 

formation of Q4 at 400°C where the fraction of structural units roughly equates to that of the 

corresponding glasses for both the molar ratios. Interestingly, for a molar ratio of 0.5, the 

additional structural disorder associated to the Q3 dismutation reaction (in our case, 2Q3 ↔ 

Q2+Q4, representing the average structure corresponding exactly to Q3), is the same for the 

materials prepared from the solution and from the melt and quench protocol. The fact that the 

structure of the material is close to the one of the melt’s is another hint that the material crosses 

a glass transition and its silicate network is able to rearrange in order to reach equilibrium. 

 
Figure 3.12. Deconvoluted experimental solid-state 29Si MAS-NMR spectra at 8.4 T for Na-silicate powders with 
a molar ratio (a) Na2O/SiO2=0.29 & (b) Na2O/SiO2=0.5 and (c) Na-silicate glasses (77% SiO2 – 23% Na2O and 67% 
SiO2 – 33% Na2O), together with fitted curves, individual components and their relative fractions, and (d) 
variation of Qn fractions with temperature for the two molar ratios (  for Na2O/SiO2=0.29 and  for 
Na2O/SiO2=0.5) and points for the corresponding glasses (  for 77% SiO2 – 23% Na2O and   for 67% SiO2 – 33% 
Na2O) showing the same fraction of Qn units at 400/450°C. Deconvolution parameters are given in Table A 3.1.  

The local structural reorganization of the silicate network can also be determined by Raman 

spectroscopy which, although being not quantitative, is sensitive to mid-range structural units 

(e.g. rings) and allows to have a qualitative assessment of the silica network modifications with 

temperature. Figure 3.13 shows the Raman response of Na-silicate powder pellets at different 

temperatures along with the spectrum of glasses corresponding to each molar ratio. 

Each spectrum shows two major bands usually observed in sodo-silicates,14,81,125,126 one 

corresponding to the bending vibrational mode of Si-O-Si network (centered between 535-550 cm-

1 for Na2O/SiO2=0.29 and 575-590 cm-1 for Na2O/SiO2=0.5) while the other in the range 825-1250 
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cm-1 is representing the symmetrical stretching vibration of Si-O bonds related to the Qn units. The 

small localized contribution centered around 1080 cm-1 corresponds to the presence of carbonates 

that are formed due to high reactivity of Na ions at the surface of the sample. From literature,126–

128 the different Qn configurations have specific vibrational fingerprints inside the stretching 

envelope with the contribution of Q1, Q2, Q3 and Q4 near 850, 920, 1080 and 1140 cm-1, 

respectively (see Figure 3.13). The increase in lower wave number contribution (Q1, Q2) with 

increasing Na content shows the proportion of lower Qn species to be higher, as observed from 

the spectra at 150°C and the reference glasses in Figure 3.13, due to silica network 

depolymerization. 

 
Figure 3.13. Evolution of Raman spectrum (in black) of Na-silicate pellets with temperature for (a) 
Na2O/SiO2=0.29 and (b) Na2O/SiO2=0.5. Raman spectra of the corresponding glasses (77% SiO2 – 23% Na2O and 
67% SiO2 – 33% Na2O) are shown by red curves for both the molar ratios. The peak centered at 1080 cm-1 (or 
slight shoulder at 1078 cm-1) is indicative of the presence of carbonates/hydrogen carbonates which are expected 
to be formed due to the mobility of Na ions and a subsequent reaction with atmospheric CO2. 

The general trend in terms of network polymerization with increasing temperature is the same 

as observed from 29Si NMR data. A change in the shape of the broad band representing Qn units is 

observed for both the molar ratios on going from 150°C to 400°C resulting from the reduction in 

contribution of lower Q species (Q1, Q2) and an increase in the signal from Q4 indicating a tendency 

towards more network connectivity on increasing temperature. A slight peak shift is also observed 

i.e. Qn band moves from a Raman shift of 1070 cm-1 at 150°C to 1097 cm-1 at 400°C for 

Na2O/SiO2=0.29 while a shift in position from 1079 cm-1 at 150°C to 1100 cm-1 at 400°C is observed 

for Na2O/SiO2=0.5, as shown in Figure 3.13(a) and (b) respectively. 

The intensity of the band centered at lower Raman shift values, attributed to the different Si-O-

Si angles or other local configurational variations, is observed to change on changing Na content 

in the silicate. The different contributions at this band could be due to the existence of different 

types of bridging oxygens (Q3-O-Q3, Q4-O-Q4, Q2-O-Q3 etc.) or ring configurations.129,130 

Furthermore, network consolidation increases on going from 150°C to 400°C as evident from the 

left shift in the peak position of Si-O-Si vibration, representative of the variation of Si-O-Si bond 

angles with temperature. These constraints on bond angles have been reported for Na-silicate 

glasses131 where ab-initio calculations showed a variation in the distribution of bond angles on 
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changing Na content. The spectrum at 400°C for both the molar ratios is very similar to the one 

obtained for corresponding melt and quench glasses suggesting glass-like structural properties 

(especially in terms of Qn units) to have been achieved. Taking the area ratio of the peak at lower 

Raman shift value to that at higher frequency shows a decreasing trend on increasing temperature 

indicative of network condensation132 as shown in Figure 3.14. Furthermore, the ratio of peaks is 

very high for the corresponding reference glasses suggesting the silicate structure for our Na-

silicates to be more chain-like than the ring-type observed in glasses. Thus, Raman spectroscopy 

has provided a complementary understanding of the structural evolution of Na-silicates. At 400°C, 

the short-range structure (Qn units) of the xerogel is very close to the one of a melt and quench 

glass, but at a longer range (at the scale of silica rings), the structure is different, in particular it is 

less dense.   

 
Figure 3.14: Area ratio of Raman peak at lower frequency to higher frequency for Na-silicates and the 
corresponding reference glass compositions.  

The microscopic structural information obtained through solid-state 29Si NMR and Raman 

spectroscopy suggests an increased polymerization of the Na-silicate network due to 

condensation of silanols. A xerogel-to-glass conversion is observed at 400/450°C in terms of the 

Qn units once the material crosses the foaming regime.  

Structural changes at the microscopic scale are also linked to and influenced by the existence 

and distribution of Na ions and protons in the structure as well as the presence of solvating water. 

Therefore, it is important to understand the interaction and evolution of these species with the 

silicate network. Further details of each of these species are discussed in the upcoming sub-

sections. 

Na distribution within the silicate network 

The nature, distribution and specific connectivity of Na in the network was determined by 

performing 23Na and 23Na/29Si NMR on Na2O/SiO2=0.29 powders and 77% SiO2 – 23% Na2O 

reference glass (measurements were performed by Grégory Tricot at LASIR-Université de Lille; 

18.8 T field was used for 23Na, 9.4 T for 23Na/29Si). The corresponding spectra are shown in Figure 

3.15(a). A peak centered at a chemical shift of -2.5 ppm is observed in the 23Na MAS-NMR 

experiments for the silicate powders at each temperature and glass indicating the environment of 
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Na to be the same in all the cases. Furthermore, a slight shoulder centered at 10 ppm can also be 

seen for each temperature and this corresponds to the presence of carbonates. Also, we did not 

find a signature of NaOH (generally a sharp intense signal close to 0 ppm), meaning that all sodium 

ions belong to the silicate network. Information about the distribution was given by the 1D Cross-

Polarization (CP) NMR spectrum between 29Si and 23Na (Figure 3.15(b)). This spectrum shows only 

the signature of silicate species experiencing a very close spatial proximity to Na ions. In other 

words, the spectrum in Figure 3.15(b) shows the silicate units involved in Si-O- +Na linkages. 

Therefore, the presence of Q3, Q2 and Q1 signals in the CP spectrum indicates that Na ions are 

homogeneously distributed within the silicate network. This suggests that Na is connected to both 

Q2 and Q3 for Na2O/SiO2=0.29 and Q1, Q2 and Q3 for Na2O/SiO2=0.5, respectively. 

 

 
Figure 3.15. Solid-state (a) 23Na NMR spectra at 18.8 T for Na-silicate powder with Na2O/SiO2=0.29 and the 
corresponding glass, (b) 29Si (23Na) Cross-Polarization (CP) NMR spectrum at 9.4 T for the powder with 
Na2O/SiO2=0.5 at 150°C and (c) the corresponding connectivity of Na in the network for Na2O/SiO2=0.29. 

Evolution of water/silanols 

Apart from the structural/network changes in terms of Qn units, another important aspect to be 

considered is the evolution of solvating water and silanols. After the removal of free water around 

the boiling temperature, the network is mainly composed of solvating water (water molecules H-

bonded to the network or due to some dipole-dipole interactions) and silanols. Figure 3.16(a) 

shows the 1H NMR spectra for Na2O/SiO2=0.29 powders and 77% SiO2 – 23% Na2O reference glass. 

Multiple bands can be seen in all the spectra, especially for the Na-silicate powder at 150°C and 

275°C indicating the presence of multiple proton-related species. The band in the range of 

chemical shift 3-8 ppm, in case of silica, corresponds to silanols133–135 with possible multiple 

configurations as well as adsorbed or solvating water molecules.134,136,137 Hydrous Na-silicate 

glasses have been reported to have a characteristic connectivity of proton-related species in the 

network86,138–140 very similar to the one shown in Figure 3.16(a) and (d). Isolated silanols and those 

solvated by water molecules appear to be centered around 3.9 ppm and 5.7 ppm, respectively. 

The origin of the band from 8 to 17 ppm is representative of water molecules solvating Na ions (or 

NaOH) and long-range SiOH-O- H-bonding. Long range H-bonding has been proposed to be a 

consequence of inter-lamellar interaction, especially in the case of Kanemite (NaHSi2O5.3H2O) 

where the structure is composed of consecutive sheets of SiO2 tetrahedra arranged in the form of 

rings.141,142 This might be representative of inter-silanol interaction in our case as we do not expect 

our Na-silicates to be composed of a lamellar arrangement.  
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Figure 3.16. Solid-state (a) 1H NMR spectra at 18.8 T for Na-silicate (Na2O/SiO2=0.29) powder and the 
corresponding reference glass (band assignment according to literature86,139,140), (b) 2D 29Si (1H) CP-HETCOR NMR 
spectrum at 9.4 T for the powder with Na2O/SiO2=0.29 at 150°C, (c) connectivity of H in the network for 
Na2O/SiO2=0.29 at 150°C, (d) Solid-state 1H NMR spectra at 18.8 T for Na2O/SiO2=0.5 powder at 150°C and the 
corresponding (d) 2D 29Si (1H) CP-HETCOR NMR spectrum at 9.4 T. The peaks between 0-2 ppm in (a) correspond 
to signal of the probe. 
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The detected species in our case are linked to mainly Q3 as shown by the 2D 29Si (1H) CP-HETCOR 

NMR spectrum for Na2O/SiO2=0.29 in Figure 3.16(b) suggesting the structure to be composed of 

silanols and solvating water, with some inter-silanol H-bonding (see Figure 3.16(c)). The fraction 

of each proton-related specie is reduced on thermal evolution until a proportion quite similar to 

the reference glass is obtained. Thus, the initial hypothesis that the silicate is converting into 

hydrated metastable melts (in terms of structural properties) seems to be further cemented with 

the removal of solvating water and silanols, and the connectivity of protons to the network. 

1H NMR spectrum for Na2O/SiO2=0.5 in Figure 3.16(d) shows the existence of isolated silanols, 

solvating water molecules and inter-silanol interaction as that observed in Na2O/SiO2=0.29, 

however, the quantities of each specie tend to vary slightly as a function of Na concentration with 

an increase in the relative proportion of solvating water molecules as well as silanols observed for 

Na2O/SiO2=0.5. 2D 29Si (1H) CP-HETCOR NMR spectrum of Na2O/SiO2=0.5 at 150°C shown in Figure 

3.16(e) indicates the presence of both Q2 and Q3 connectivity for silanols. This may be indicative 

of the fact that the amount of silanols is higher when the concentration of Na is increased leading 

to a lower softening temperature and higher volumetric expansion in terms of foaming. Thus, a 

chain-like structural arrangement is also predictable for Na2O/SiO2=0.5 that is expected to evolve 

as a function of temperature and have an impact on the thermal behavior.  

Figure 3.17 shows the overall schematic illustration of the existence of solvating water and 

silanols in terms of the variation of NBOs with temperature for Na2O/SiO2=0.29. The red curve 

represents potentially available network modifiers obtained from the same TGA data shown in 

Figure 3.8(a), assuming that all the proton-related species as well as alkali ions in the system are 

a part of the actual network, and calculated from eq. 3.6 as: 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑟𝑠

𝑆𝑖
=

𝑛𝑁𝑎

𝑛𝑆𝑖
+

𝑛𝑂𝐻

𝑛𝑆𝑖
(3.6) 

where ‘n’ represents the number of moles.  

The black curve in Figure 3.17 represents NBOs calculated from the NMR data shown in Figure 

3.12(a) using the eq. 3.7 given as: 

𝑁𝐵𝑂𝑠

𝑇𝑒𝑡𝑟𝑎ℎ𝑒𝑑𝑟𝑎
= 4𝑄0 + 3𝑄1 + 2𝑄2 + 𝑄3 (3.7) 

where Q0 is multiplied by a factor of 4 because it has four NBOs per tetrahedron, Q1 has three and 

so on. The relative amount of Na as NBOs is shown in blue and remains constant with 

temperature143 (assuming that all Na ions are acting as network modifiers). For Na2O/SiO2=0.29, 

using the NMR results that all the protons in silanol units are linked to Q3, eq. (3.7) implies that 

45% of Na ions are connected to Q2 and 55% to Q3 (i.e. 48% Q3 sites are occupied by protons and 

the remaining 52% by Na).144–147 

Initial silicate solution at room temperature is composed of free water, solvating water and 

silanols that act as NBOs as shown by the region ‘a’ in Figure 3.17. Region ‘b’ represents the 

difference between TGA and NMR NBOs and corresponds to solvating water that is still present 
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(though in very small amount) at 400°C. Silanols in the network are represented by the region ‘c’ 

which is the difference in NMR and Na as NBOs. Their amount is less than half of the solvating 

water at 150°C but the ratio between silanols and solvating water increases with temperature, 

consistent with results on the speciation of water obtained in the geochemistry community.118,119 

Fully condensed state is shown by the region ‘d’ where there are no more solvating water 

molecules or silanols in the network and all the NBOs correspond to the presence of Na linked to 

Q3 unit only.  

 
Figure 3.17. Total Network Modifiers/Si from both ( ) TGA and ( ) solid-state 29Si NMR spectra of Na-silicate 
(Na2O/SiO2=0.29) powder with region ‘b’ corresponding to the amount of adsorbed/solvating water linked to the 
network, ‘c’ corresponding to the relative proportion of OH as NBO and ‘d’ referring to a completely condensed 
state at temperatures well above 800°C.   

Interestingly, there seems to be some kind of a proportionality between Si-OH and solvating H2O 

molecules suggesting a possible existence of an equilibrium between the two species that is 

proposed to be a consequence of the following reaction: 

2𝑆𝑖𝑂𝐻 ⇌  𝑆𝑖𝑂𝑆𝑖 + 𝐻2𝑂𝑠𝑜𝑙𝑣 𝑎𝑑𝑠⁄ ⇌  𝑆𝑖 − 𝑂 − 𝑆𝑖 + 𝐻2𝑂𝑎𝑡𝑚 (3.8) 

The existence of such an equilibrium indicates that silanols, after all, may not be resulting in the 

direct evaporation of water on condensation rather they seem to be converting into water 

molecules that tend to behave as solvating species followed by their release into the atmosphere. 

Thus, the existence of a single Ea for Na-silicates (as discussed in section 3.3.1.1) appears to be a 

consequence of this equilibrium.  

The molar ratio Na2O/SiO2 is expected to directly influence the amount of silanols in the 

network. Higher Na concentration in the network has been found to result in higher amount of 

silanols as NBOs.148 This suggests the network to possess more H as NBOs for Na2O/SiO2=0.5 as 
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also evident from the comparison shown in Figure 3.16(a) and (d) and Figure 3.18. The correlation 

between the concentration of sodium ions and silanol units suggests an equilibrium between 

sodium and protons in network-modifier sites of the silicate network. The trend is same for both 

the molar ratios with the existence of all the regions mentioned in Figure 3.17, the only major 

difference being the amount of Na in the initial silicate. Na and H ions acting as network modifiers 

or NBOs are influencing the overall structural properties. The amount of calculated NBOs is less 

for the Na2O/SiO2=0.29 silicate due to the structure being in a more condensed state than 

Na2O/SiO2=0.5.  

 

Figure 3.18: Total Network Modifiers/Si for the two Na-silicate molar ratios with the corresponding amount of 
Na in the network for each represented by the dotted line. 

The removal of solvating water and silanols has a direct influence not only on the degree of 

densification or polymerization but also the extent of volumetric expansion of Na-silicates 

observed visually upon foaming. Though the structural properties start corresponding to glasses 

at around 400°C where most of the solvating water and silanols have been removed, experimental 

evaluation (grinding using mortar and pestle) suggests the existence of a much softer material as 

compared to glass, probably because of the presence of protons as network modifiers when 

compared to the dry glass. Apart from the evolution of Qn units and NBOs, revisiting the 

macroscopic evolution of Na-silicates from a visual perspective is, therefore, also necessary to 

understand how the material might behave in different industrial applications especially those 

related to fire retardance. Hence, the next chapter (Chapter 4) is devoted to a detailed description 

of what happens macroscopically upon heating a liquid droplet or a pre-dried powder.  

In general, extensive foaming has been observed for Na-silicates due to the rapid dehydration 

behavior and the corresponding aforementioned structural changes. It has been shown that, 

indeed, silanols are responsible for the volumetric expansion of the material. The existence of a 

single 𝑬𝒂 for Na-silicates is due to the equilibrium evolution between silanols and solvating 

water molecules. This suggests condensation to be the main mechanism on thermal treatment 

and the driving force for foaming, hinting towards a mobile enough microscopic network of the 

material. Changing the molar ratio i.e. increasing the concentration of Na in the system allows 
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for a higher volumetric expansion due to a reduced Tg and increased mobility which are also a 

consequence of an enhanced quantity of silanols.  

Changes to the microscopic network are induced on changing the concentration of Na-silicate 

as well as the thermal history. Furthermore, not only is the molar ratio expected to induce 

structural changes, but also the type of alkali silicate may impact the thermal behavior. Changing 

the type of alkali ion may influence directly the microscopic state of the network impacting 

strongly the thermal evolution. TGA measurements on K and Li-silicates shown in Figure 3.9 show 

the existence of multiple Ea values. This might be attributed to structural modifications different 

than those observed in Na-silicates, and is discussed in details in the upcoming section in terms of 

the microscopic structural changes on thermal evolution of K and Li-silicates. An in-depth 

quantitative analysis is presented along with a comparison for the evolution of various species for 

all the alkali silicates studied.  

(b) K and Li-silicates 

The network organization in K and Li-silicates is also expected to change as a consequence of 

changing water content that is expected to give a concrete information on the link between the 

state of the network and macroscopic evolution in terms of foaming behavior. Figure 3.19 shows 

the behavior of K-silicates in terms of the Qn units calculated from Solid-state 29Si NMR. As in Na-

silicates, broad bands can be seen due to the glassy nature of the samples, which have to be 

deconvoluted to extract quantitative information on the relative distribution of various species. 

These broad bands indicate the presence of broad peaks representative of the amorphous content 

as well as sharp peaks shown in orange (see Figure 3.19(a, b)) resulting from the fact that the 

samples have crystallized. For both the K-silicate molar ratios, the system globally tends to move 

towards a more polymerized state evident from the fact that the fraction of Q4 in the system 

increases with temperature.  

At 150°C (pre-dried powder obtained through a drying step of 17 h), K2O/SiO2=0.29 is already 

crystallized evident from the appearance of two crystalline polymorphs of KHSi2O5, namely, 

monoclinic denoted by Q3
cM with a fraction of 45% while orthorhombic by Q3

cO contributing 15% 

to the total sum. On increasing the temperature, a variation in the contribution of these 

polymorphs is observed i.e. the orthorhombic crystalline phase increases while monoclinic 

reduces and melting of the crystalline phases is seen at 450°C where the crystalline peaks are no 

more visible (also confirmed from XRD discussed later in Figure 3.21(a)) . Globally, Q3 tends to 

reduce while Q4 increases suggesting network polymerization as a function of temperature.  

K2O/SiO2=0.5 shows a tendency towards network polymerization as a function of thermal 

treatment and a behavior quite similar to that observed for Na-silicates. Crystallization is not 

observed at 150°C for a 17 h-long drying step, however, the powder doesn’t really seem to be a 

xerogel due to the extremely hygroscopic nature as also evident from the phase diagram in Figure 

3.11(d). The solid-state 29Si NMR for this powder is shown in Figure A 3.6(a) that indicates the 

presence of all the Qn units due to the hygroscopic nature as well as issues with the rotation inside 

the rotor used for NMR measurements. Thus, the solution was pre-dried at 150°C for 1 week, 
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whereby, it presented crystallization with the formation of orthorhombic KHSiO3 crystalline phase 

contributing 23% to the total fraction of Qn units (Figure A 3.6(b)). Globally, the quantity of Q3 

increases from 46% to ∼90% at the expense of the condensation seen for Q2 units on increasing 

temperature up to 450°C where 8% of Q4 is also observed as shown in Figure 3.19(b) and (c).  

 
Figure 3.19: Evolution of Qn units for (a) K2O/SiO2=0.29 & (b) K2O/SiO2=0.5 powders dried at different 
temperatures determined from 29Si solid-state NMR spectroscopy at 8.4 T (note that the sharp deconvoluted 
peaks in orange in (a) represent crystalline phases i.e. Q3

cO for orthorhombic KHSi2O5 and Q3
cM for monoclinic 

KHSi2O5 while those in (b) at 150°C correspond to KHSiO3 as given in Figure A 3.6) and (c) comparison of Qn units 
evolution for the two molar ratios of K-silicates with ‘ ’ representing the molar ratio of 0.29 while ‘ ’ for 
K2O/SiO2=0.5, respectively.149 Deconvolution parameters are given in Table A 3.1 in appendix. 

Li-silicates show a completely amorphous behavior at 150°C (Figure 3.20) with a similar 

distribution of Qn units for both the molar ratios suggesting the network to have not changed 

much on increasing the concentration of Li. Crystalline peaks appear at 275°C and above (as shown 

later in Figure 3.21(b) and (c)) – Q2
c representing Li2SiO3 while Q3

c indicating the presence of 

Li2Si2O5 observed also in binary Li-silicate glasses with the same composition.94 Crystallization of 

the system increases as a function of temperature for both the molar ratios suggesting the 

existence of the disproportionation reaction: 2Q3(glassy) ↔ Q2 (crystalline) + Q4 (glassy). Globally, 

as observed in case of Na and K-silicates, the system tends to evolve towards a more condensed 

state with Q4 approaching 60% contribution until 350°C (in both cases) above which it does not 

change much for Li2O/SiO2=0.4. Melting of the crystalline phase is observed for Li2O/SiO2=0.4 at 

450°C, reducing the Q4 contribution to 25%, similar to what has been reported for glasses at very 
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high temperatures (800°C)94 suggesting a behavior relatively similar to binary glasses, though not 

a lot of information is available on such glass systems with added water content. A comparison on 

the evolution of Qn units for Li-silicates is given in Figure 3.20.     

 
Figure 3.20: Evolution of Qn units for (a) Li2O/SiO2=0.29 & (b) Li2O/SiO2=0.4 powders dried at different 
temperatures determined from 29Si solid-state NMR spectroscopy at 8.4 T (note that the sharp deconvoluted 
peaks in orange represent crystalline phases i.e. Q2

c for orthorhombic Li2SiO3 and Q3
c for orthorhombic Li2Si2O5 

phase in Li-silicates) and (c) comparison of Qn units evolution for the two molar ratios of Li-silicates with ‘ ’ 
representing the molar ratio of 0.29 while ‘ ’ for Li2O/SiO2=0.4, respectively. Deconvolution parameters are given 
in Table A 3.1 in appendix 

In essence, Na, K and Li-silicates all tend to show structural changes on thermal treatments. 

Polymerization of the network is observed in all the cases as a consequence of condensation of 

silanols. However, the existence of crystallization in both K and Li-silicates does also seem to 

influence the microstructure of the systems, rendering the network relatively less mobile and 

impacting the way the silicates behave macroscopically in terms of intumescence. 29Si solid-state 

NMR has, thus, given us a more in-depth information on how the network is behaving in terms 

of its mobility suggesting a relatively rigid and polymerized network depending upon the 

composition. Further quantification is, however, required to probe the state of the K and Li-

silicates’ network in terms of both the evolution of proton-related species and the exact impact of 

crystallization for being able to compare the foaming behavior with Na-silicates.  
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Crystallization behavior 

To further investigate the crystallization behavior of K and Li-silicates for establishing a 

quantitative understanding, diffractograms were obtained from powder XRD measurements 

shown in Figure 3.21. The patterns for K2O/SiO2=0.29 suggest the existence of a combination of 

amorphous and crystalline character as represented in Figure 3.21(a) and also evident from the 
29Si NMR discussed previously. Two different polymorphs exist i.e. monoclinic and orthorhombic 

KHSi2O5.9,21 The XRD patterns have been deconvoluted (using Rietveld refinement approach) to 

extract quantitative information on the exact amount of crystalline and amorphous phases that 

has been further utilized to probe the quantity of alkali in the amorphous and crystalline phases, 

respectively. The degree of crystallinity (DOC)150 given as:  

𝐷𝑂𝐶 =  
𝐶𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑒 (𝑤𝑡%)

𝐴𝑚𝑜𝑟𝑝ℎ𝑜𝑢𝑠 (𝑤𝑡%) +  𝐶𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑒 (𝑤𝑡%)
(3.9) 

remains roughly 60% at 150°C and 275°C for K2O/SiO2=0.29 while an increase to 80% is observed 

at 350°C and 400°C. This behavior seems to be consistent with the plots in Figure 3.9(c) where the 

values of Ea tend to change above 330°C suggesting a direct link between the crystallization 

behavior and mass loss evolution. Details of the fitting parameters and the relative quantities of 

the crystalline and amorphous phases are given in Table A 3.2.  

 
Figure 3.21: XRD data showing a combination of amorphous and crystalline phases in (a) K2O/SiO2=0.29 with two 
polymorphs of KHSi2O5 and (b) Li2O/SiO2=0.29 & (c) Li2O/SiO2=0.4 indicating the presence of crystalline 
orthorhombic Li2SiO3 and Li2Si2O5. Deconvolution of the peaks allows for quantification of the different 
phases/species through Rietveld refinement method. Detailed parameters of this quantification are listed in 
Table A 3.2 and Table A 3.3.   

The contribution from monoclinic KHSi2O5 decreases as a function of temperature while the 

orthorhombic phase increases until partial melting of the crystalline phases along with the 

appearance of crystalline K2O is observed at 450°C. Quantification hasn’t been done for the 



 

 

68 Chapter 3. Thermal behavior of aqueous alkali silicates 

powder at 450°C due to a lack of availability of the crystallographic information file for various 

phases present at that particular temperature. K2O/SiO2=0.5, in contrast, doesn’t readily crystallize 

at the drying times (at 150°C) used for this study (17 h) rather longer durations tend to favor 

crystallization with the formation of orthorhombic KHSiO3 phase as shown in Figure A 3.6(b).  

Li-silicates are amorphous at 150°C and show both crystalline and amorphous character at and 

above 275°C as shown in Figure 3.21(b) and (c) for Li2O/SiO2=0.29 and Li2O/SiO2=0.4, respectively. 

Two different crystalline phases, orthorhombic Li2SiO3 and Li2Si2O5, are observed with a tendency 

towards increasing disilicate character suggesting the existence of the reaction: Li2SiO3 + SiO2 –> 

Li2Si2O5. The DOC increases from roughly 8% at 275°C to 50% at 450°C for Li2O/SiO2=0.29 while an 

increase in the crystalline character up to 400°C followed by a decrease due to partial melting of 

the crystalline phases is observed for Li2O/SiO2=0.4 (see Figure 3.21(c)). Here again, the fact that 

DOC remains in the range of 50% from 350°C to 450°C (depending upon the composition), 

crystallization seems to be directly linked to the existence of multiple and changing Ea values. 

Therefore, a direct correlation of crystallization seems to be a relatively suppressed macroscopic 

expansion both in K and Li-silicates (furthermore, phase separation in Li-silicates shouldn’t be 

excluded). Note that the DSC curves shown in Figure 3.9 are not easily linkable to the 

crystallization events observed here probably due to limited intensity of the signals in the 

temperature range of crystallization.  

Thus, XRD gives a quantitative measure of the crystallization behavior in K and Li-silicates. 

These quantified values from the XRD data have allowed to calculate the relative fraction of 

alkali in the crystalline and amorphous phases at each temperature that may help in predicting 

the microstructural network evolution on thermal treatment. In order to provide concrete 

information on the actual evolution of various proton and alkali-related species and their link to 

the foaming behavior, a combination of TGA, NMR and XRD data has thus been utilized to estimate 

the quantitative microstructural thermal evolution, in a manner similar to Na-silicates discussed 

for Figure 3.17. 

Variation of network modifiers 

The starting aqueous alkali silicates, as discussed previously, are composed of large amounts of 

free water along with solvating water molecules and network silanols. The pre-drying step 

removes all the free water leaving behind a network containing silanols and H-bonded solvating 

water. Eq. 3.6 and 3.7 were used to plot the evolution of the various species as Network 

Modifers/Si for Na-silicates shown in Figure 3.17. The same approach has been used here for K 

and Li-silicates.  

From TGA mass loss data (Figure 3.9), and assuming that all the proton-related species as well 

as alkali ions in the system are a part of the actual network, the ‘Total Network Modifiers’ can be 

plotted using eq. 3.6 as shown by the red curves in Figure 3.22 for K-silicates. The concentration 

of alkali ion, i.e. K, is already known, stays constant143 and is shown by the blue lines. NMR data 

provides an exact quantification of the actual number of network modifiers shown in black and 

computed from eq. 3.7 using the quantification discussed in Figure 3.19. 
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Figure 3.22: Evolution of Total Network Modifiers/Si as a function of temperature for (a) K2O/SiO2=0.29 and (b) 
K2O/SiO2=0.5 extracted from a combination of TGA (solid red curve), 29Si solid-state NMR (solid black curve) as 
well as powder XRD (dotted blue line) data.  

 

Since K2O/SiO2=0.29 tends to crystallize on thermal treatment (note that the kinetics of heating 

may influence the DOC) with the formation of KHSi2O5 crystallites suggesting that a part of total K 

ions leaves the amorphous phase, the quantity of alkali in the amorphous and crystalline phases 

is possible to be plotted from the quantified XRD data shown in Figure 3.21. For K2O/SiO2=0.29, 

the dashed blue line (with top filled triangles) in Figure 3.22(a) shows the amount of K left in the 

amorphous phase after the formation of KHSi2O5 crystallites. The proportion of solvating water is 

marked with red, network silanols with black while K in crystalline or amorphous phase with blue 

arrows. It is worth noting that not all the network silanols at 150°C belong to the amorphous phase 

i.e. only a fraction of the total is linked to the amorphous network while the major chunk 

represents protons in the crystalline phase. On the contrary, K2O/SiO2=0.5 doesn’t seem to 

crystallize (linked to kinetics of drying) as discussed before and, thus, a behavior similar to that for 

Na-silicates is observed as shown in Figure 3.22(b). Note that the system would potentially 

crystallize on longer drying times, however, that has not been investigated extensively in this work 

(except for the point at 150°C).  

Similar analysis for Li-silicates shown in Figure 3.23 suggests a slightly different behavior than 

that observed for Na or K-silicates. The quantity of ‘Actual Network Modifiers’ from NMR data 

(given in Figure 3.20) seems to cross the dashed blue line, more so for Li2O/SiO2=0.4 even at 275°C 

as compared to the point at 350°C for Li2O/SiO2=0.29. This points to the fact that the network may 

not actually have all the Li as its component, rather some Li may well be in the form of LiOH as 

also evident from the liquid-state 29Si NMR data in Figure 3.4(b) impacting directly the thermal 

evolution. Furthermore, as discussed for K-silicates, crystallization in Li-silicates resulting in the 

formation of Li2SiO3 and Li2Si2O5 leads to the removal of Li ions from the amorphous (network) 

phase. The dashed blue lines in Figure 3.23 give the amount of Li remaining in the amorphous 

phase for both the molar ratios. Amorphous network of Li2O/SiO2=0.29 is Li free at 350°C similar 

to what is seen for Li2O/SiO2=0.4 where a minute quantity of Li ions is still intact within the 

amorphous phase. The increase in the quantity of Li seen for Li2O/SiO2=0.4 at 450°C in Figure 

3.23(b) is a consequence of Q2 (crystalline) + Q4 (glassy) ↔ 2Q3 (glassy) reaction.   



 

 

70 Chapter 3. Thermal behavior of aqueous alkali silicates 

 
Figure 3.23: Evolution of Total Network Modifiers/Si as a function of temperature for (a) Li2O/SiO2=0.29 and (b) 
Li2O/SiO2=0.4 extracted from a combination of TGA (solid red curve), 29Si solid-state NMR (solid black curve) as 
well as powder XRD (dotted blue line) data. 

Hence, the combination of TGA, NMR and XRD data has allowed for following the thermal 

evolution of K and Li-silicates in terms of quantitative microscopic network-related changes at 

the scale of NBOs. The mobility of the network appears to be reduced due to crystallization 

events along with the condensation of silanols. The formation of crystallites causes the alkali ion 

(and also protons in the case of K-silicates) to leave the amorphous phase rendering the network 

relatively brittle as compared to Na-silicates where crystallization events don’t occur. This is 

expected to directly influence the macroscopic thermal evolution of the materials. Furthermore, 

in the case of Li-silicates, presence of LiOH outside the amorphous network is also expected to 

impact the corresponding mobility. Thus, a quantitative comparison of Na, K and Li silicates is 

important, and now possible, to distinguish the different compositions at the scale of the actual 

network in terms of its mobility and the corresponding link to the foaming behavior.  

(c) Quantitative comparison of network evolution and the impact on foaming  

Figure 3.24 shows the quantitative evolution of the different species present in the system 

calculated from Figure 3.18 for Na-silicates, Figure 3.22 for K-silicates and Figure 3.23 for Li-

silicates to compare the overall evolution and its impact on the structural properties in terms of 

the alkali silicate composition and type of alkali ion. Evolution of solvating water is shown by green, 

silanols in the amorphous phase by purple, silanols in the crystalline phase by yellow and the 

amount of alkali remaining in the amorphous phase by orange bars. The red dotted line indicates 

the initial quantity of alkali ions in the systems.  

Na-silicates 

For Na2O/SiO2=0.29, as evident from Figure 3.24(a), all the silanols are part of the amorphous 

network and evolve gradually with solvating water molecules as a function of temperature leading 

to extensive foaming. Similar behavior is observed for Na2O/SiO2=0.5 (Figure 3.24(b)) with an 

increased quantity of solvating water molecules and silanols available in pre-dried powder at 

150°C resulting in more volumetric expansion than Na2O/SiO2=0.29, mainly due to the higher 

network mobility imparted by the network modifiers either Na ions or protons.  
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Figure 3.24: Quantitative thermal evolution of different species i.e solvating water, silanols (in amorphous or 
crystalline phase) and alkali ions for (a, b) Na, (c, d) K and (e, f) Li-silicates extracted from the information given 
in Figure 3.18, Figure 3.22 and Figure 3.23. The dotted line in red is indicative of the initial quantity of alkali ions. 
Note that Na-silicates and K2O/SiO2=0.5 do not exhibit any crystalline behavior and thus the alkali is expected to 
stay constant in the amorphous phase.  

Crystallization or phase separation is not observed in our Na-silicate solutions below 500°C 

suggesting the network to be indeed relatively mobile enough to allow for extensive foaming. The 

absence of crystallization or phase separation allows to preserve a silicate network with a 
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substantial amount of network modifiers up to a rather high temperature (around 450°C), above 

the apparent Tg (210°C for Na2O/SiO2=0.29 and 175°C for Na2O/SiO2=0.5), so that the network is 

mobile enough to ensure foaming while silanols condense thus releasing water. 

K and Li-silicates being crystallized show a different behavior for the evolution of the various 

species as shown in Figure 3.24(c–f). It is worth recalling here that Li-silicates don’t foam at all 

while an intermediate behavior (between Na and Li-silicates) is observed for K-silicates (at a 

heating rate of 5°C/min). 

Li-silicates 

The mobility of the network is reduced a lot in the case of Li-silicates. This stems from the fact 

that the starting compositions studied here lie in the phase separation regime (note that the 

starting solutions become whitish at rather lower temperatures i.e < 150°C) when compared to 

the reported data for binary Li2O-SiO2 glass systems93,98,124 indicating the formation of a pure SiO2 

phase that is not mobile at all due to the absence of any Li ions or protons in the network. 

On thermal treatment of Li-silicates, apart from phase separation, the system tends to crystallize 

resulting in the loss of Li ions from the amorphous phase. As can be seen from Figure 3.23(a) and 

Figure 3.24(e) for Li2O/SiO2=0.29, all the Li ions leave the amorphous phase around 350°C 

rendering the amorphous network brittle. Furthermore, silanols in the amorphous network are 

also more or less removed at roughly 275°C adding further to the rigidity of the network resulting 

in a structure that is not mobile enough to expand due to a very viscous nature, thus, suppressing 

the structure from expanding altogether. Solvating water is, therefore, mainly responsible for the 

mass loss observed in TGA shown in Figure 3.9(b). Moreover, the actual amount of solvating water 

molecules in Li-silicates, for instance, Li2O/SiO2=0.29 shown in Figure 3.24(e) could be a 

combination of solvating water as well as protons in LiOH. Since silanols are all lost below 300°C, 

solvating water molecules maybe linked to Q2 and Q3 crystalline phases as well as LiOH (especially 

above 275°C) or the LiOH molecules maybe H-bonded to the Q3 amorphous phase. Li2O/SiO2=0.4 

shows a similar behavior in terms of the evolution of the different species and thus has a network 

mobility similar to Li2O/SiO2=0.29 resulting in no foaming.  

K-silicates 

K-silicate compositions, on the other hand, are not in the phase separation regime; however, 

crystallization does appear on thermal treatment at temperatures as low as 150°C (depending 

upon the kinetics) as shown in Figure 3.21(a), Figure 3.22(a) and Figure 3.24(c) for K2O/SiO2=0.29. 

It is worth noting here that direct heating of the K-silicate solutions (for instance at 10°C/min or 

higher) leads to extensive foaming especially for K2O/SiO2=0.29 as discussed later in Chapter 4. 

However, drying of the systems at 150°C for a few hours may result in the formation of crystallites 

suppressing to a large extent the intumescent behavior of K-silicates. For pre-dried crystallized 

powders, crystalline content represents almost 60 wt% of the total network configuration at 150°C 

and 275°C while the value goes up to 80% at 350°C and 400°C, however, all the K ions don’t leave 

the amorphous phase at any point allowing for enough network mobility to be retained, although 

reduced, for the structure to expand as shown in Figure 3.24(c). The leftover silanols in the 

amorphous phase after crystallization are all lost around 275°C while those in the crystalline phase 
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remain more or less constant up to 400°C whereas solvating water molecules are lost gradually on 

increasing temperature representative of the mass loss in TGA curves (Figure 3.9(a)). It is worth 

noting here that NMR data doesn’t seem to give a precise measure of quantification for crystalline 

components. For instance, in Figure 3.22(a) the NMR NBOs/Si curve tends to reduce as a function 

of temperature and it might be suggestive of a decrease in the quantity of OH in the crystalline 

phase which happens to be not true according to the more accurate XRD data. This reduction 

might arise from the inability of NMR data to show exact quantification of the crystalline phases 

with respect to the amorphous part (due to the 8.4 T magnetic field strength used that may not 

be enough to have the best resolution whereas a higher field strength may allow to enhance the 

sensitivity). It might also be dependent upon the polymorph i.e. determination of orthorhombic 

KHSi2O5 may be less accurate as the values reported from XRD data (Table A 3.2 in appendix) do 

not correspond well with NMR data. So, the yellow bars representing OH in the crystalline phase 

in Figure 3.24(c) correspond to the values computed from the deconvoluted XRD diffractograms 

given in Figure 3.21(a). Thus, the foaming behavior for pre-dried K2O/SiO2=0.29 system tends to 

be intermediate between Na and Li-silicates mainly due to the existence of enough network 

mobility at the beginning and throughout. Solvating water molecules appear to be linked to 

silanols in the amorphous phase (until 150°C), K ions in amorphous Q3 and crystalline Q3 phases.  

K2O/SiO2=0.5, evolution shown in Figure 3.24(d), behaves in a manner similar to Na-silicates and 

a similar extensive foaming behavior may be expected, however, that is not the case as the system 

tends to be very hygroscopic i.e. water is thermodynamically more stable until 300°C as shown by 

the phase diagram in Figure 3.11(d). Therefore, although the network is mobile as observed for 

Na-silicates, a behavior intermediate to Li and K-silicates is seen in terms of macroscopic evolution.  

Literature report21 on the thermal evolution of K-silicate solutions suggests the foaming of these 

systems to be a consequence of the evolution and amount of solvating water molecules. It could 

partly be true given the fact that silanols tend to convert into solvating water molecules due to 

the existence of an equilibrium between the two species as has been established for Na silicates, 

however, a more rigorous quantitative analysis using a combination of different tools (TGA, NMR, 

XRD) suggests that foaming happens to be a consequence of mainly network mobility and the 

amount of protons as silanols in the network thus allowing us to clearly distinguish among the 

various alkali types in terms of their thermal behavior. Moreover, the reported data available in 

literature concerns more the thick coatings developed from these aqueous solutions for which a 

global thermal evolution has been presented in Chapter 4.  

Hence, thermal evolution of aqueous alkali silicates leads to structural changes at the 

microscopic scale that are directly linked to their macroscopic behavior in terms of foaming. Na-

silicates foam because the microscopic network is mobile enough to let that happen as the 

systems don’t crystallize or phase separate. Silanols condense on gradual increase in 

temperature leading to volumetric expansion of the material. Li-silicates don’t foam as the 

starting compositions lie in the phase separation regime as well as crystallization occurs around 

275°C. Furthermore, all the Li ions and silanols leave the amorphous network below 350°C 

adding further to the reduction in network mobility, thus, preventing volumetric expansion. K-
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silicates show an intermediate foaming behavior with K2O/SiO2=0.29 crystallizing on pre-drying 

at 150°C (or heating solutions at slower rates i.e. 1 or 5°C/min as discussed in Chapter 4). The 

silanols are all lost below 200°C reducing the network mobility and limiting foaming once the 

system is crystallized. On the other hand, K2O/SiO2=0.5 shows reduced foaming due to water 

being thermodynamically more stable up to 300°C.   

The thorough investigation on the evolution of the structural properties thus gives a 

comprehensive view of how exactly does the network evolve on thermal treatment, that happens 

to impact directly the macroscopic evolution in terms of foaming behavior, depending upon the 

composition and type of alkali silicate. The above discussion has been limited to temperatures 

approaching 450°C where, especially, Na-silicates have indicated a xerogel-to-glass transition in 

terms of the evolution of Qn units. The changes in the structural properties over the temperature 

range studied are in fact linked to the viscosity changes in the system once the quantity of water 

tends to evolve. Hence, a knowledge of such properties is also important for a complete 

comprehension of the exact cause of this structural expansion. One step in that direction is to 

investigate the behavior of these aqueous alkali silicates above 500°C to explore the kind of 

changes associated with each system in terms of the rheological properties.  

Furthermore, foaming is generally not observed for glasses below the Tg and corresponds to 

structural changes at elevated temperatures due to variations in viscosity. Thus, it is worth 

investigating the structural variations at temperatures above 450°C once the foaming regime of 

alkali silicates has been covered, and that necessitates development of a model that can predict 

viscosity variations.  

3.3.3. High temperature evolution 

Macroscopic structural changes in terms of foaming and microscopic in terms of network 

polymerization occur on heat treating aqueous alkali silicates (with Na-silicate showing extensive 

foaming, K-silicate’s behavior depends on crystallization while Li-silicates show negligible 

expansion) up to 450°C above which further expansion is limited due to a reduced amount of 

water/silanols in the network. Silicates at this stage may be referred to as ‘pre-foamed’ i.e. the 

silicate foamed. This foam can then be crushed and used as the starting material for further 

analysis. Heating to even higher temperatures after the foaming regime has been crossed is 

expected to induce further structural changes, and thus inducing interest in understanding 

rheological issues. The investigation of these changes is important to draw a comparison with the 

rheological evolution of the melted glass. For this purpose, powder pellets of these alkali silicates 

(pre-foamed Na and K-silicates while pre-dried Li-silicates) were heated to temperatures reaching 

1200°C in an in-situ Hot-stage Microscope for visualizing the macroscopic evolution as well as 

being able to compute the viscosity by developing theoretical models by defining various 

temperature points as shown in Figure 3.25. Viscosity of glasses has been theoretically calculated 

by developing models based on Vogel–Fulcher–Tamman’s (VFT) equation151,152 given as:     

log 𝜂 = 𝐴 + 
𝐵

𝑇 −  𝑇𝑜 
(3.10) 
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where ‘η’ is the viscosity, ‘A’, ‘B’ and ‘To’ are the fitting constants while ‘T’ represents temperature 

in K.   

 
Figure 3.25: Hot-stage Microscopy images of ball-milled (a) 77% SiO2 – 23% Na2O reference glass, (b) pre-foamed 
Na2O/SiO2=0.29, (c) 67% SiO2 – 33% Na2O reference glass & (d) pre-foamed Na2O/SiO2=0.5 pellets heated to 
1200°C at a ramp of 5°/min in air, and viscosity variation (based on theoretical model and experimental values) 
above 450°C for (e) Na2O/SiO2=0.29 & corresponding reference glass and (f) Na2O/SiO2=0.5 & corresponding 
reference glass. Model values114 in (e) and (f) are shown by the lines (where literature VFT parameters have been 
followed) while symbols indicate experimental values obtained from Hot-stage Microscopy analysis.  

Figure 3.25(a-d) show the microscopic images of pre-foamed Na-silicate and reference glass 

pellets at six distinct points, which represent the general trend of evolution observed. These 

different points correspond to shape changes on heating: the point of first shrinkage occurs at the 

instant when pellet starts to sinter (due to porosities in the pellet) followed by a maximum 

shrinkage point, deformation or softening temperature (pellet shape starts to deform or becomes 

curved along the corners), full ball temperature, half ball and the fusion point that represents free 

flow or melting of the pellet. The viscosity of glasses corresponding to these distinct temperatures 

have been measured experimentally114 and by theoretical modelling.153–156 Sintering of the pellets 
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is dependent upon the particle size,115,154 which in turn can vary the estimated viscosity of the 

system. The impact of particle size distribution is assumed to be minimized in our case due to the 

long and same grinding procedure followed153 for both glasses and alkali silicate xerogels. 

Employing Hot-stage Microscopy, each temperature point is extracted from the recorded images 

and plotted against the corresponding viscosity values to compute the evolution with 

temperature.  

The shape changes observed for Na-silicates and the corresponding dry reference glasses 

indicate a good agreement between the two, providing evidence to the xerogel-to-glass transition 

observed for Na-silicates at 400/450°C as discussed previously and shown in Figure 3.12. 

Na2O/SiO2=0.5 (Figure 3.25(d)) shows the same shape evolution in terms of the extent of ‘Full Ball’ 

and ‘Half Ball’ formation as that observed for 67% SiO2 – 33% Na2O reference glass given in Figure 

3.25(c) while Na2O/SiO2=0.29 (Figure 3.25(b)) has an expanded ‘Full Ball’ and ‘Half Ball’ shape, 

probably due to the decomposition of any sodium carbonates or the removal of leftover silanols 

at elevated temperatures, when compared with the shape changes for 77% SiO2 – 23% Na2O 

reference glass Figure 3.25(a). 

Temperature evolution of viscosity of Na-silicate systems is shown in Figure 3.25(e) and (f) for 

Na2O/SiO2=0.29 and Na2O/SiO2=0.5, respectively, and an exponentially decreasing trend can be 

seen which is consistent with literature models. Both the Na-silicates and their corresponding 

reference glasses show similar experimental and computed values indicating a good agreement 

between our silicates and reference glasses. This suggests that indeed Na-silicates tend to behave 

in the same manner as glasses once the initial microstructural conversion is complete at 

400/450°C. Viscous sintering tends to occur around viscosity values approaching 109 Pa.s for both 

the molar ratios.  

 

Figure 3.26: Hot-stage Microscopy images of pre-dried (a) K2O/SiO2=0.29 and (b) Li2O/SiO2=0.29 powder pellets 
obtained at 5°C/min. 

High temperature evolution of K and Li-silicate pellets was also investigated in order to compare 

the behavior with Na-silicates. Figure 3.26 shows the changes in shape for K2O/SiO2=0.29 and 

Li2O/SiO2=0.29 powder pellets (obtained by pre-drying solutions at 150°C, as negligible foaming is 

expected). The behavior above 400°C, in terms of shape change on crossing the Tg, for 

K2O/SiO2=0.29 (Figure 3.26(a)) appears to be quite similar to Na-silicates with the pellet going 

through all the steps from initial shrinkage to fusion, the only difference being the temperature of 
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these various shape changes suggesting a behavior potentially similar to glasses. Li2O/SiO2=0.29, 

in contrast to both Na and K-silicates, appears to be more stable to even higher temperatures. The 

first shrinkage of the system appearing at 800°C, maximum shrinkage at 1080°C with the absence 

of fusion (in terms of visual evolution) within the temperature range (up to 1200°C) investigated.  

The differences in the behavior observed between Na, K and Li-silicates appears to be directly 

linked to the rheological properties of the system indicated by the Hot-stage Microscopy images 

as well as the network evolution investigated using quantitative approach. A link in the thermal 

evolution observed below 400°C and above has to be, therefore, created to fully understand how 

the rheological properties of the system, including viscosity, are changing. Viscosity models 

obtained above 400°C are a step in the right direction to calculate the viscosity changes below 

400°C. An extrapolation of this viscosity evolution by introducing more data points is required at 

this stage to be able to extract an exact Tg for the alkali silicates (especially Na-silicate) as well as 

the behavior around foaming regime towards a better understanding of the rheological evolution 

upon thermal treatment. 

3.4. Conclusions 

Structural properties of aqueous alkali silicates of two different molar ratios (M2O/SiO2=0.29 and 

0.5 for Na, K while 0.29 and 0.4 for Li-silicate) have been investigated at ambient and on thermal 

evolution to establish an in-depth fundamental understanding of the structural properties at both 

macroscopic and microscopic scale. It has been shown that alkali silicate solutions of any desired 

composition can be prepared by the addition of colloidal SiO2 and NaOH (for Na-silicates), KOH 

(for K-silicates) and LiOH for (Li-silicates) provided they are soluble and the molar ratio is low 

enough. Increasing the amount of alkali ion tends to reduce the degree of polymerization in the 

network, especially for Na and K-silicates for which a similar liquid-state 29Si NMR response is 

observed while the network does not change much on going from Li2O/SiO2=0.29 to Li2O/SiO2=0.4.  

Mass loss evolution is dependent upon temperature (mainly for Na-silicates) and alkali content 

in the silicate. Thermally treating powders (or xerogels) prepared by pre-drying solutions at 150°C 

suggests the existence of an offset of mass loss with higher alkali content systems showing a lower 

initial rapid dehydration temperature referred to as the softening point or apparent Tg. For Na-

silicates, increasing the Na content tends to reduce the softening temperature (from 210°C for 

Na2O/SiO2=0.29 to 175°C for Na2O/SiO2=0.5) along with a higher amount of overall water 

retention after the initial pre-drying step at 150°C. Such low values of apparent Tg are consistent 

with the literature on Tg of hydrated glasses suggesting the Na-silicates to retain enough mobility 

during thermal evolution. A same order of magnitude for mass loss evolution is observed for both 

the Na-silicate molar ratios with an Ea of 29.4 kJ.mol-1 for Na2O/SiO2=0.5 as compared to 34.1 

kJ.mol-1 for Na2O/SiO2=0.29.  

Heating pre-dried Na-silicate powders tends to increase the degree of polymerization. A xerogel-

to-glass evolution in terms of Qn units at around 400°C is observed for Na-silicates when compared 

with reference glasses. Complementary information provided by Raman spectroscopy also 

indicates that the structure condenses and the Raman spectra at 400°C become similar to that of 
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the corresponding glasses (especially in terms of Qn units) for both the Na-silicate molar ratios 

with ring-type structure being more dominant in glasses. Furthermore, high temperature 

evolution (above 400°C) under the Hot-stage Microscope indicates the pre-foamed Na-silicate 

powder pellets to have the same macroscopic behavior as the melt & quench reference glasses. 

An exponentially decreasing trend and similar values of viscosity are observed for both the Na-

silicate molar ratios and glasses suggesting, indeed, the existence of a xerogel-to-glass conversion 

of silicates prepared from solutions.  

Further structural investigation below 400°C indicates that Na ions are connected to both Q2 and 

Q3 silicon sites for Na2O/SiO2=0.29 suggesting a completely random distribution, while all protons 

are connected to Q3 (both Q2 and Q3 connectivity is observed in case of Na2O/SiO2=0.5) i.e. no free 

water is present at 150°C. Initial solutions are composed of free water, solvating water and silanols 

which tend to evolve depending upon the heating temperature with the free water mostly 

removed on heating to 150°C. For Na-silicates, NBO contribution from the network modifiers (Na 

and H) shows that both silanols and solvating water are present even at high temperature, 

suggesting an equilibrium between the two structural units for protons. The amount of initial 

water in the silicate and molar ratio Na2O/SiO2 directly influence the amount of silanols in the 

network. Higher overall water retained for the molar ratio Na2O/SiO2=0.5 suggests the network to 

possess more H as NBOs when compared to Na2O/SiO2=0.29 leading to extensive volumetric 

expansion in terms of foaming.  

In contrast, slightly different structural changes are observed on thermal evolution of pre-dried 

K and Li-silicate powders. Multiple activation energies for both silicates are seen mainly due to the 

formation of different crystalline phases confirmed by the deconvoluted solid-state 29Si NMR as 

well as XRD data. Na-silicate solutions do not crystallize on heating up to 450°C. K2O/SiO2=0.29 is 

crystallized even at 150°C with a DOC of 60% when dried for 17 h. Orthorhombic and monoclinic 

KHSi2O5 crystalline phases are formed that tend to evolve with temperature (DOC increases to 

∼80% at 400°C) until partial melting is observed at 450°C. Both Li-silicate molar ratios, on the other 

hand, are amorphous at 150°C while crystallization appears at 275°C with the formation of 

orthorhombic Li2SiO3 and Li2Si2O5 phases. DOC increases as a function of temperature with the 

gradual conversion of Li2SiO3 into Li2Si2O5. This crystallization behavior in K and Li-silicates is 

suggested to have a direct impact on the macroscopic evolution of the silicates. Rietveld 

refinement of XRD diffractograms has helped in the deconvolution of the data that has aided in 

establishing a quantitative measure of the evolution of alkali ions and proton-related species.  

Pre-dried Na-silicates have a gradual and continuous evolution of amorphous network silanols 

and solvating water molecules leading to extensive foaming stemming from the fact that the 

network is relatively mobile as well as water can leave the system easily. K2O/SiO2=0.5 behaves in 

a similar manner as that observed for Na-silicates, however, phase diagram suggests the system 

to contain thermodynamically more stable water content indicating the system to be mobile while 

being extremely hygroscopic at the same time.  
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Amorphous silanols in the network are lost altogether at 275°C for both K2O/SiO2=0.29 and Li-

silicates while those linked to KHSi2O5 phase stay intact until 400°C. The network in K2O/SiO2=0.29 

retains somewhat its mobility due to leftover K ions in the amorphous phase even after 

crystallization as well as the possibility of some solvating water molecules to be intact, however, 

crystallization is expected to reduce quite a bit the foaming capacity when compared to Na-

silicates. The network in Li-silicates is less mobile due to the existence of strong cross-links 

between Li ions and polysilicate particles. Furthermore, the studied compositions lie in the phase 

separation regime indicating the formation of a SiO2 rich matrix phase that is reasonably brittle 

and prevents the structure from being mobile. Crystallization at temperatures approaching 250°C 

leads to the removal of Li ions from the amorphous phase whereby all Li ions move into the 

crystalline counterpart at 350°C reducing further the already low mobility in Li-silicate systems, 

thus, supposedly limiting the volumetric expansion.  
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3.5. Appendix 

Liquid-state 29Si NMR repetition delay measurements on Na-silicate solution 

Figure A 3.1 shows the impact of liquid-state 29Si NMR spectra on changing the repetition delay 

(rd) for measurements acquired on Na2O/SiO2=0.29 solution. A total of 5000 scans were run for 

each rd of 0.5, 1, 5, 10 and 20 s. A reduction in the noise intensity can be seen on increasing rd and 

5 s (using 5000 scans) was chosen as the optimum value for all the liquid-state 29Si NMR spectra 

shown in section 3.1 in the main text.  

 
Figure A 3.1: Liquid-state 29Si NMR for Na2O/SiO2=0.29 solution at repetition delay of 0.5 s, 1 s, 5 s, 10 s and 20 s 
and 5000 scans each. 
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Isothermal TGA mass loss evolution of Na-silicate solution at 150°C 

Isothermal TGA mass loss plot at 150°C for Na2O/SiO2=0.29 solution is shown in Figure A 3.2. On 

heating at 10°C/min to 150°C for 4 h, the system does not seem to lose any more water after 2 

hours of drying. 

 
Figure A 3.2: Isothermal TGA mass loss of Na2O/SiO2=0.29 solution at 150°C for 4 h. 
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Solid-state 29Si NMR repetition delay measurements on Na and Li-silicate 

The impact of changing rd on the response of Na and Li-silicate powders is shown in Figure A 3.3. 

Solid-state 29Si NMR spectra were acquired for Na2O/SiO2=0.29 powder pre-dried at 150°C at 20, 

100, 200, 300 and 1500 s for 789 scans. An increase in signal intensity is observed on going from 

20 to 1500 s as shown in Figure A 3.3(a), however, the response is the same.  

 
Figure A 3.3: Repetition delay experiments for fixing parameters for solid-state 29Si NMR at 8.4 T: (a) 
Na2O/SiO2=0.29 powder obtained by pre-drying at 150°C with 789 spectra acquired at 20 s, 100 s, 200 s, 300 s & 
1500 s, (b) deconvoluted  Na2O/SiO2=0.29 spectrum acquired at 1500 s, (c)  Li2O/SiO2=0.29 powder obtained by 
pre-drying at 350°C with 300 spectra acquired at 0.2 s, 20 s, 50 s, 100 s, 200 s & 2000 s and (d) deconvoluted  
Li2O/SiO2=0.29 spectrum acquired at 2000 s. 

 Similarly, spectra were also acquired for Li2O/SiO2=0.29 powder pre-dried at 350°C (since it’s a 

combination of both crystalline and amorphous character) to check for the impact of changing the 

alkali type on the NMR response. Figure A 3.3(c) indicates only an increase in the intensity of the 

signal on going through the rd values 0.2, 20, 50, 100, 200 and 2000 s for 300 scans each with the 

relative proportion of different Qn units remaining the same.   

Deconvolution of the spectrum at a rd of 1500 s for Na2O/SiO2=0.29 (Figure A 3.3(b)) and 2000 s 

for Li2O/SiO2=0.29 (Figure A 3.3(d)) corresponds well with that observed for Na2O/SiO2=0.29 150°C 

(Figure 3.12(a)) and  Li2O/SiO2=0.29 350°C (Figure 3.20(a)), respectively, in the main text.   
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Impact of pre-drying time on the thermal evolution of Na-silicate  

Figure A 3.4 shows the thermal behavior of powders obtained by pre-drying Na2O/SiO2=0.5 

solution at 120°C and 150°C for 17 h to see the impact of the retained water content on global 

water evolution. Both the powders behave the same way in terms of mass loss evolution, the only 

difference being the amount of retained water that happens to be higher for the powder pre-dried 

at 120°C thus suggesting (along with Figure 3.7(a) in the main text) that the kinetics of mass loss 

evolution in Na-silicates is dependent mainly on temperature.  

 
Figure A 3.4: Impact of pre-drying temperature on the thermal evolution of Na2O/SiO2=0.5 powders observed 
through TGA mass loss measurement. 
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Binary phase diagrams for crystallization in K-silicates 

The crystallization binary phase diagrams for K-silicates are shown in Figure A 3.5. The different 

crystalline phases possible are denoted by the relevant chemical formulas. ‘gas_real’ corresponds 

to the water molecules that are released on thermal treatment while ‘Aqueous_DD’ is 

representative of free water in the system. Note that we observed hydrated crystalline phases 

(KHSi2O5 or KHSiO3) and as a function of drying time thus making it difficult to relate our systems 

directly with these phase diagrams.  

 
Figure A 3.5: Binary crystallization phase diagram for (a) K2O/SiO2=0.29 and (b) K2O/SiO2=0.5 calculated from 
FactSage software.   
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Solid-state 29Si NMR deconvolution parameters 

Table A 3.1: Fitting parameters used for deconvolution of solid-state 29Si NMR spectra obtained at 8.4 T. 

Na-silicate 
T 

(°C) 

Q1 (ppm) Q2 (ppm) Q3 (ppm) Q4 (ppm) 

Pos. Wid. Pos. Wid. Pos. Wid. Pos. Wid. 

Na2O/SiO2 

= 

0.29 

150 - - -82.9 10.1 -92.7 10.6 -104.9 13.6 

275 - - -81.6 9.4 -91.7 10.8 -105.6 14.5 

350 - - -78.8 7.1 -91.5 10.7 -105.9 13.9 

400 - - - - -92.0 10.7 -105.5 12.9 

450 - - - - -91.5 10.8 -105.9 13.3 

23% Na2O Glass RT - - - - -92.1 10.4 -105.2 12.5 

Na2O/SiO2 

= 

0.5 

150 -70.0 11.7 -81.6 9.6 -90.1 10.8 - - 

275 - - -80.9 11.3 -89.1 10.0 - - 

350 - - -78.8 10.3 -88.3 9.8 - - 

400 - - -78.9 9.0 -88.8 9.4 -98.7 12.0 

450 - - -78.9 9.0 -88.8 9.3 -98.7 13.5 

33% Na2O Glass RT - - -78.1 5.9 -89.4 9.8 -100.9 13.5 

          

K-silicate 
T 

(°C) 

Q1 (ppm) Q2 (ppm) Q3 (ppm) 
Q3

c (ppm) 
Q4 (ppm) 

Orthorhombic Monoclinic 

Pos. Wid. Pos. Wid. Pos. Wid. Pos. Wid. Pos. Wid. Pos. Wid. 

K2O/SiO2 

= 

0.29 

150 - - - - -89.2 12.6 -91.7 2.6 -99.3 3.8 -101.7 8.3 

275 - - - - -90.6 10.6 -91.4 1.8 -98.8 4.7 -101.8 10.3 

350 - - - - -91.9 8.5 -91.4 1.6 -98.8 4.9 -102.0 10.9 

400 - - - - -92.8 8.8 -91.6 1.8 -98.8 4.1 -102.1 11.0 

450 - - - - -93.2 9.1 - - - - -103.9 12.1 

K2O/SiO2 

= 

0.5 

150 -74.6 4.6 -82.3 9.4 -91.8 10.2 -87.4 3.2 -94.9 1.6 - - 

275 - - -82.1 9.9 -95.2 12.1 - - - - - - 

350 - - -81.9 10.4 -91.6 11.0 - - - - - - 

400 - - -79.9 7.4 -91.4 10.7 - - - - - - 

450 - - -78.2 6.6 -91.7 11.2 - - - - -102.7 12.6 

              

Li-

silicate 

T 

(°C) 

Q2 (ppm) Q2
c (ppm) Q3 (ppm) Q3

c (ppm) Q4 (ppm) 

Pos. Wid. Pos. Wid. Pos. Wid. Pos. 
Wid

. 
Pos. Wid. 

Li2O/SiO2 

= 

0.29 

150 -81.4 14.0 - - -93.5 14.4 - - -107.9 10.7 

275 - - -74.8 2.3 -95.2 15.5 - - -111.4 10.6 

350 - - -74.8 1.4 -95.0 15.4 -92.5 1.5 -111.9 11.1 

400 - - -74.8 1.6 -94.5 15.3 -92.6 1.6 -112.2 11.6 

450 - - -74.7 1.5 -92.4 14.1 -92.4 1.9 -111.4 11.3 

Li2O/SiO2 

= 

0.4 

150 -81.6 11.4 - - -91.1 11.4 - - -107.1 11.8 

275 - - -75.3 1.4 -96.7 16.9 -93.4 1.3 -112.2 9.7 

350 - - -75.1 1.5 -94.5 16.4 -92.6 1.7 -111.6 9.9 

400 - - -75.0 1.4 -94.1 14.2 -92.7 1.4 -111.7 11.1 

450 -79.5 5.9 -74.7 1.9 -91.6 15.6 -92.8 2.3 -109.1 12.5 
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Hygroscopic nature of K2O/SiO2=0.5 and the possibility of crystallization 

The extremely hygroscopic nature of K2O/SiO2=0.5 makes it difficult to acquire the exact solid-

state 29Si NMR spectrum at a pre-drying step of 150°C as the resulting spectrum shows the 

existence of all the Qn species as shown in Figure A 3.6(a) that is more like the structure observed 

in solutions. It could also be because the powder after the pre-drying step at 150°C is not exactly 

a xerogel. Therefore, the pre-drying at 150°C was done over a week, that shows the appearance 

of orthorhombic KHSiO3 crystalline phase as given in Figure A 3.6(b) corresponding to the solid-

state NMR spectrum shown in Figure 3.19(b) in the main text. 

 
Figure A 3.6: (a) Solid-state 29Si NMR spectrum at 8.4 T for K2O/SiO2=0.5 pre-dried at 150°C for 17 h showing the 
existence of all the Qn units due to extremely hygroscopic nature and issues with spinning of sample in the rotor 
and (b) XRD diffractogram suggesting the formation of orthorhombic KHSiO3 crystalline phase on pre-drying 
K2O/SiO2=0.5 solution at 150° for 1 week. 

 

 

 

 

Fitting parameters for the deconvolution of K and Li-silicate XRD spectra  

Table A 3.2 and Table A 3.3 show all the unit cell fitting parameters used for the deconvolution 

of XRD diffractograms (Figure 3.21 in the main text) and the corresponding outputs in terms of 

degree of crystallinity (DOC) for K and Li-silicates, respectively. The different phases observed in 

each system, the relevant space group and reference numbers for crystallographic information 

files are all mentioned discreetly.  
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Chapter 4.  

 

Intumescent properties 

Thermally treating aqueous alkali silicates leads to macroscopic and microscopic structural 

changes. A detailed fundamental analysis, at the microscopic scale, on the evolution of two 

different molar ratios of Na, K and Li-silicate is given in Chapter 3. The combination of various 

characterization tools has suggested the temperature evolution below 500°C to be linked to the 

type and concentration of alkali ion in the silicate network as well as the quantity of proton-related 

species. Structural changes at the microscopic scale directly influence the macroscopic evolution 

of alkali silicates in terms of intumescence/foaming. Thus, it is essential to investigate the behavior 

of these systems from a more macroscopic or visual standpoint due to its industrial relevance. This 

chapter on the mechanism of foaming is dedicated to the analysis of aqueous alkali silicates in 

solutions, pre-dried powders and thick coatings in terms of their foaming/intumescent behavior 

by linking with the discussion in Chapter 3.  

4.1. Foaming behavior  

4.1.1. Solutions 

Macroscopic structural changes in terms of volumetric expansion are observed when some alkali 

silicates undergo thermal treatments.53,59,157,158 For instance, on heating a droplet of Na-silicate 

solution with a heating gun, evolution from liquid to solid occurs as shown in Figure 4.1(a) for 

Na2O/SiO2=0.29 and is explained schematically in Figure 4.1(b). As a result of solvent evaporation, 

a viscous membrane-like layer appears at the top at lower temperatures which is linked to the 

formation of strains at the surface due to condensation of the gel,159 slowing down the removal 

of free water from the inside of the material. Therefore, compared to the mg-sized samples we 

studied with thermogravimetric analysis (TGA) as discussed in Chapter 3, the droplet is further 

from equilibrium due to the small quantity of material used. At 130-150°C, the ‘skin’ membrane 

becomes very viscous, preventing bubbles of boiling water from escaping. Increasing the 

temperature further allows the membrane-like layer to cross the glass transition (Tg) (as in Figure 

4.1(b)) and, hence, results in the removal of the trapped free water. Most of the free water is 

removed around 150-200°C leaving behind a solid that is hard. Increasing temperature further 

causes transition from a hard to soft phase (as also observed during grinding of the xerogel) with 

an abrupt structural expansion of the solid mass due to the pressure imposed by water bubbles. 

This occurs at the ‘softening point’ or ‘foaming temperature’ which represents the apparent Tg of 

the silicate responsible for an actual softening of the structure resulting in the formation of a 

viscous phase. The temperature referred here as the softening point is different from the formal 

temperature defined as the viscosity of 106 Pas. It does not correspond to one single value but 

rather a more general process i.e. significant mobility of the network which means that once this 
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particular temperature value is crossed, the system keeps on losing water continuously as a 

consequence of condensation due to the fact that the network is mobile enough to let that 

happen. Note that the existence and the value of a softening temperature or glass transition for 

materials heated from a solution needs to be further investigated in future work, since we only 

measured it on materials pre-dried at 150°C due to foaming-related experimental challenges. This 

may be achieved by following the thermal evolution of room temperature dried solution under a 

Hot-stage Microscope to observe the shape changes associated with the underlying transitions.61  

 
Figure 4.1: Foaming mechanism of molar ratio Na2O/SiO2=0.29 (a) solution under a heating gun, (b) schematic 
illustration of foaming mechanism of liquid.  

Such a low value of softening temperature in Na-silicates is due to the presence of water and 

has already been reported in the literature for glasses in terms of Tg.87,148 Foaming phenomenon 

itself indicates that we have a soft glass once we cross the softening point, with the structure 

becoming more and more condensed on increasing temperature. Heating further to temperatures 

above 250°C tends to cause further foaming but the extent of expansion is reduced due to a 

reduction in the amount of available silanols. Similar trend is observed on heating silicate with 

higher Na content (Na2O/SiO2=0.5) resulting in an increased swelling (Figure 4.2) due to the 

presence of higher amount of retained water in the structure. Thus, the lower softening 

temperature of 175°C observed for Na2O/SiO2=0.5 as compared to 210°C for Na2O/SiO2=0.29 in 

Figure 3.7(a) and (b) is mainly a consequence of higher amount of silanols in the silicate network. 

Qualitatively, we explain the foaming mechanism by an out-of-equilibrium build-up of water vapor 

pressure inside the material after the xerogel transition, when the material becomes too viscous 

(especially in a dried skin) for water to diffuse out of the material.  
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Extensive volumetric expansion observed for Na-silicates is, thus, a consequence of the release 

of proton-related species from the system present as silanols and solvating water molecules with 

the concentration of Na ion in the network also playing a role in increasing network mobility. The 

impact of changing the alkali type was also investigated in order to draw a comparison in the 

thermal behavior of each system. 2 ml solutions (in 5 cm long glass vials) of Na, K and Li-silicates 

were heated to 250°C, maximum achievable temperature, in a rate-controlled oven to compare 

the different molar ratios and the corresponding impact of heating rate on their foaming behavior. 

Figure 4.2(a) shows all the solutions before thermal treatment where the height of each solution 

is 5 mm. Na-silicates show extensive foaming with more expansion observed for Na2O/SiO2=0.5 as 

discussed above, irrespective of the heating rate, and shown in Figure 4.2(b), (c) and (d). However, 

reducing the heating rate tends to reduce the extent of expansion in both cases i.e. going from a 

heating rate of 10°C/min (Figure 4.2(b)) to 1°C/min (Figure 4.2(d)) reduces the expansion from 

450% to 280%, respectively, owing to a reduction in the abruptness of water release form the 

system.  

 
Figure 4.2: Aqueous alkali silicates of two different compositions each in glass vials (a) before and (b, d, f) after 
heat treatment to 250°C.  2 ml initial solution was used in each case with an initial height equivalent to 5 mm in 
the measurement scale shown in (b, d, f). (b) 10°C/min, (c) 5°C/min and (d) 1°C/min heating ramps were used for 
the rate-controlled oven set at 250°C.  

K-silicates foam as well53 with extensive foaming (more than Na2O/SiO2=0.29) at 10°C/min 

observed especially in the case of K2O/SiO2=0.29 shown in Figure 4.2(b) suggesting a behavior 

similar to that observed for Na-silicates. K2O/SiO2=0.5 does not expand as much due to the fact 

that the composition has, up to 300°C, a water content that is relatively more thermodynamically 

stable as compared to K2O/SiO2=0.29 (refer to phase diagrams in Chapter 3) and Na-silicates 

discussed in the phase diagrams shown in Figure 3.10 with the resulting foam being relatively 

hollow (and hygroscopic) when viewed from the top. Reducing the heating rate tends to impact 

quite a bit the way K-silicates behave, in particular for K2O/SiO2=0.29. The behavior of K2O/SiO2=0.5 

is not influenced much on going from 10°C/min to 1°C/min with a minor reduction in the extent of 

the foam. However, foaming seems to have been suppressed for K2O/SiO2=0.29 with 470% 
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expansion observed at 10°C/min to a roughly non-foamed state at 1°C/min as shown in Figure 

4.2(d). This suppression of foaming is in fact a consequence of crystallization (formation of 

KHSi2O5) as discussed extensively in Chapter 3 that tends to render the network of the material 

relatively less mobile (and more viscous) with K ions and silanol protons leaving the amorphous 

matrix to participate in crystallization. Even at a rate of 5°C/min (Figure 4.2(c)), the system does 

not expand as extensively as that observed at 10°C/min, and foaming seems to have been 

suppressed due to crystallization. Note that the apparent foam type shape for K2O/SiO2=0.29 in 

Figure 4.2(c) is in actual a small portion of the silicate that expanded, but it is completely hollow 

from inside like a bubble with the major mass of the material limited to roughly 70% expansion 

from initial volume of the liquid.  

No apparent foaming seems to occur in Li-silicates but rather a dried powder is obtained, 

irrespective of the composition and heating rate as shown in Figure 4.2. This stems from the fact 

that our starting compositions are in the phase separation regime93 where the very viscous SiO2 

matrix phase, that is supposedly independent of any silanols or Li ions, is much less mobile 

(discussed in details in Chapter 3). A further heating to temperatures approaching 400°C might 

have an influence on the expansion as network silanols and all the Li ions leave the system (with 

Li participating in crystallization) at temperatures approaching 350°C (Figure 3.23(e) and (f)) but a 

drastic change is not expected.  

Briefly, Na-silicate solutions foam extensively without any limitations posed by crystallization or 

phase separation for the composition range studied, while crystallization tends to suppress 

foaming in K-silicates. Li-silicates don’t show any foaming on thermal treatments up to 250°C, a 

consequence of the studied compositions being in the phase separation regime. Ideally, 

microscopic structural investigation starting directly from the solutions would have provided with 

a more real-time evaluation of the systems. However, due to the foaming-related limitations (i.e. 

powder falling out of the crucible on heating) posed by the experimental techniques like TGA, 

solutions could not be directly used for the measurements shown in Chapter 3, so a pre-drying 

step was necessary.   

4.1.2. Pre-dried powders 

Pre-dried powders were prepared by drying the solutions at 150°C (below the foaming 

temperature) for 17 h to remove all the free water. In order to investigate the effect of this pre-

drying step on the foaming behavior, powder pellets were prepared to follow their thermal 

evolution under a Hot-stage Microscope as shown in Figure 4.3. Na2O/SiO2=0.29 pre-dried powder 

pellet, when heated to 400°C at 10°C/min, shows extensive foaming61 (Figure 4.3(a)) similar to 

how solution evolves above 200°C suggesting that foaming is indeed a consequence of the 

condensation and removal of solvating water molecules and is not influenced much by the 

quantity of free water in the system. 

Heating a pre-dried K2O/SiO2=0.29 pellet does not show any expansion as the system is 

crystallized (Figure 4.3(b)) i.e. longer drying times seem to favor the formation of crystallites21 that 

in turn suppress any expected structural expansion. Figure A 4.1 shows the impact of drying time 
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at 150°C on foaming of K2O/SiO2=0.29. A 15 min drying time is not enough for the system to 

crystallize and thus on further thermal treatment to 300°C, extensive foaming is observed as the 

network is mobile enough to expand. Drying for 3 h results in crystallization (that seems to be 

saturated) with the formation of KHSi2O5 phase suppressing foaming altogether. So, a pre-drying 

step of 17 h induces enough crystallization in the K2O/SiO2=0.29 powder to prevent any foaming.  

 
Figure 4.3: Thermal behavior up to 400°C, under a 10X Objective Hot-stage Microscope, of (a) Na2O/SiO2=0.29 
(at 10°C/min), (b) K2O/SiO2=0.29 at (10°C/min) and (c) Li2O/SiO2=0.29 (at 5°C/min) pre-dried powder pellets 
prepared by drying solutions at 150°C (for 17 h) using a 5 mm die and a load of 1 ton. 

No foaming is observed for Li2O/SiO2=0.29 pre-dried pellet either, but up to 250°C above which 

a very slight expansion is observed on going all the way to 400°C as shown in Figure 4.3(c). This 

arises from the fact that even though the starting composition is in the phase separation regime 

and the matrix phase is pure SiO2 that should prevent any foaming from occurring, the release of 

leftover silanols from the amorphous Li-silicate network (that is still mobile) at 275°C (discussed 

in Figure 3.23(e)) is enough to cause this expansion visible under a microscope. Furthermore, 

crystallization seems to happen within the same temperature range starting at 275°C with all Li 

ions leaving the amorphous phase at 350°C leading to the formation of Li2Si2O5 and Li2SiO3 

crystalline phases. Crystallite formation might also be a reason for the slight expansion observed 

up to 350°C above which no further expansion is observed.  

 Thus, the volumetric expansion observed in pre-dried alkali silicate powders is dependent on 

whether the system crystallizes or phase separation takes place. Pre-dried Na-silicates foam 

extensively, K-silicates don’t due to crystallization while Li-silicates also don’t foam due to phase 

separation and crystallization. Hence, a global fundamental understanding has been established 

for the thermal evolution of these aqueous alkali silicates in terms of their foaming properties by 

creating a link between macroscopic and microscopic structural variations that is expected to help 

in providing some solutions to application-related challenges. These include utilization or tuning 

of foaming for fire-resistant applications or others where foaming may not be required. The 

understanding of the influence of heating rate and composition (amount of water, alkali content) 

is expected to open up possibilities of developing targeted systems for catering industrial needs.   

Employment of such systems especially as thick coatings (>50 µm) for industrial applications is 

important but limited and demands an investigation into the thermal behavior as rheological 
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issues related to inhomogeneous and cracked coatings have been reported. Prior studies were 

mostly concerned with properties of thin films11,50 that were homogeneous but do not inform 

about thick coatings and their corresponding thermal properties. Therefore, it is important to 

investigate the possibilities of developing homogeneous, thick and high-quality coatings to follow 

their thermal evolution as a starting approach towards achieving industrially viable systems.    

4.1.3. Deposition as coatings 

4.1.3.1. Thin films 

Deposition of homogeneous thin films (200-250 nm) is possible by spin coating the aqueous 

solutions onto a silicon wafer or glass substrate. Figure 4.4(a) shows a 250 nm Na2O/SiO2=0.29 

thin film spin coated at 2000 rpm for 60 s that happens to be homogeneous and without cracks. 

Thermal treatment (450°C) leads to a reduction in thickness (around 60%) as a consequence of 

condensation as shown in Figure 4.4(b). Further analysis suggests the formation of surface 

carbonates11 (Figure 4.4(c) and (d)) due to a supposed diffusion of Na ions towards the surface 

where a reaction with atmospheric CO2 results in the formation of Na2CO3.  

 
Figure 4.4: SEM image of Na2O/SiO2=0.29 thin film spin-coated on a silicon wafer at 2000 rpm for 60 s (a) before 
and (b) after thermal treatment to 450°C indicating a reduction in thickness due to condensation while surface 
carbonates in the form of (c) petals and (d) crystals appear on the surface on ageing.   

Fourier-Transform Infra-Red (FT-IR) spectra of the corresponding as-deposited film is shown in 

Figure 4.5(a). On ageing the film for a few days, carbonation peaks tend to appear at 860 cm-1 and 

1440 cm-1. These peaks keep on increasing in intensity due to the continuous diffusion of ions. 

After 2 weeks of ageing under ambient conditions, these surface carbonates start converting into 

HCO3
- as a result of prolonged exposure to moisture in the atmosphere. Carbonation is detrimental 

to overall mechanical properties of the system as the structure tends to become brittle due to the 

continuous loss of Na ions, leaving the network more polymerized and relatively less flexible.  
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Figure 4.5: (a) FT-IR spectra of Na2O/SiO2=0.29 thin film and (b) amount of carbonates inside the starting 
Na2O/SiO2=0.29 solution and thin film upon ageing (the initial solution corresponds to the molar ratio 
Na2CO3/SiO2=0.28). The two blue points in (b) represent the amount of surface carbonates that have been 
formed on ageing a thin film obtained from a non-carbonated commercial Na2O/SiO2=0.29 solution. 

For investigating the stability of starting solutions regarding carbonation and to be sure that 

carbonates on the surface were formed after deposition of the film, a study was performed to 

check for the amount of dissolved carbonates in the commercial Na2O/SiO2=0.29 solution. A 

known concentration of Na2CO3 was added into the original solution followed by the deposition 

of corresponding solution to form a thin film. FT-IR spectra were obtained and the relative area of 

the carbonate peak was plotted against the initial concentration of dissolved carbonates in the 

solution as shown by the black curve in Figure 4.5(b). A maximum concentration of 4 mM 

corresponding to dissolved carbonates was obtained which is negligible as compared to the initial 

total amount of Na ions (3.6 M) in the commercial solution, thus, indicating that the initial 

solutions were not carbonated. This plot has also been utilized to study the kinetics of carbonation 

in thin films as shown by the blue dots in Figure 4.5(b) indicating 10% Na ions to have been 

converted into carbonates after 2 days.   

 
 

Figure 4.6: Na+ ion diffusion profiles for Na2O/SiO2=0.29 thin film using the O2 cluster source in TOF-SIMS at -
100°C. 
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Mass diffusion of ions is not only towards the surface that results in the formation of surface 

carbonates, but also towards the interface if the substrate is glass that can further impact the 

overall properties of the film. A detailed analysis on the diffusion-related aspects of alkali ions is 

also necessary to fully understand the microscopic structural details and the relevance with 

thermal treatments. Thus, this two-way mobility needs to be characterized thoroughly to be able 

to control or limit the movement of Na ions but that is out of the scope of the work reported here. 

However, to aid in possible future studies, extensive calibration of parameters was done on 

secondary ion mass spectroscopy (SIMS) with profiles shown in Figure 4.6 and Figure A 4.2.  To 

obtain the distribution of ions, diffusion profiles of Na were acquired throughout the 

Na2O/SiO2=0.29 spin coated thin film on silicon wafer substrate. Different sputter sources were 

used for SIMS analysis, including O2
+ ion source, Cs+ ion source and O2 cluster source at room 

temperature and low temperature (-100°C), to calibrate the diffusion profiles of Na+. O2 cluster 

source at low temperature gave the best profiles as shown in Figure 4.6 suggesting a 

homogeneous distribution of ions within the depth of the film. On washing the deposited film with 

water, surface carbonates as well as Na+ ions in the film are removed resulting in films that rarely 

carbonate any further but at the expense of mechanical properties.11  

Spin coating route generally allows to deposit thinner films (few 100s of nm) that are quite 

homogeneous and without any cracks. From a more industrial point of view, the requirement is 

to deposit thicker coatings with thickness in the order of 10s of microns. Furthermore, thin films 

are not easy to characterize in terms of structural properties using Raman spectroscopy where the 

resolution is not enough and thickness values >5 µm are generally preferred to reduce substrate 

contribution. The upcoming section discusses the possibilities of depositing thicker coatings using 

various methods, along with the impact of thermal treatment in terms of the foaming-related 

evolution to draw comparisons with solutions and powder systems studied earlier.   

4.1.3.2. Thick coatings 

Coatings that are thick are expected to be cracked as a consequence of the accumulation of 

strains due to composition and rheological issues related to viscosity and water release. 

Na2O/SiO2=0.5, having a lower viscosity than Na2O/SiO2=0.29, is expected to result in relatively 

crack-free coatings and, thus, was chosen for some initial experiments in the process of 

determining the possibility of achieving thicker coatings from other alkali silicate compositions and 

the corresponding impact of thermal treatments.   

4.1.3.2.1. Spin coating 

Thicker coatings can be deposited by spin coating. Figure 4.7 shows the SEM images of coatings 

obtained by changing the starting concentration of Na2O/SiO2=0.5 solution used for deposition at 

2000 rpm and 60 s. An 800 nm thick coating condenses (instead of foaming as observed for 

solutions and powders) on heating to 400°C (Figure 4.7(a) and (b)). Depositing raw commercial 

solution without any dilution leads to a coating with thickness approaching 4 µm that is 

homogeneous and crack-free as shown in Figure 4.7(c). A further increase in thickness values 

approaching 9 µm (Figure 4.7(d)) is possible, without inducing inhomogeneities or cracks before 

thermal treatment, by depositing multiple layers of the same solution one above the other once 
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the initial coating is pre-dried at 60°C for 5 min. Thus, thicker coatings have been developed 

through spin coating. However, the process is time consuming and is limited to a few 10s of micron 

thickness values along with posing limitations of substrate size, making it is less relevant for 

industrial scale tests.   

 
Figure 4.7: SEM image of thicker coatings obtained from the spin coating route at 2000 rpm, 60 s for 
Na2O/SiO2=0.5 by changing the concentration of the starting solution with 3 M solution (in terms of c[SiO2]) film 
(a) before & (b) after heating to 400°C while (c) single and (d) multiple thick layers obtained from raw as deposited 
5.7 M (in terms of c[SiO2]) commercial solution.   

4.1.3.2.2. Blade/Pool coating 

A homogeneous 30 µm thick Na2O/SiO2=0.5 coating, as shown by the SEM image in Figure 4.8(a), 

can be developed by creating a pool for the solution to dry in. Note that the surface roughness on 

the cross-section is due to the cutting procedure and not the actual aspect of the coating itself. 

Figure 4.8(b) shows a 1 mm thick coating on glass substrate deposited using the same method. 

Heat treating thicker coatings of the order of 10s of microns leads to extensively foaming1,21,47 as 

evident from the heat treatment at 300°C in Figure 4.8(b).  

The striking contrast in the behavior of thin films condensing while thicker films foaming on 

thermal treatment suggests the existence of a critical thickness for foaming to occur. To probe the 

existence of this behavior, raw Na2O/SiO2=0.5 solution was spin coated to obtain single and 

multiple layer samples as shown in Figure 4.8(c). A single layer of 4 µm thickness does not foam 

on heating to 400°C while 2, 3 and 4 layered samples show extensive foaming with an increase in 

the size of foam with thickness of the coating giving a clear indication of a critical thickness for 

foaming.  

4.1.3.2.3. Gradient coating 

Na-silicates 

A homogeneous gradient in thickness coating was deposited on a glass plate using a thickness 

adjustable bar coater with values set to 10-100 µm. The critical thickness value of around 6 µm 

(after drying and before thermal treatment) is observed for Na2O/SiO2=0.5 on heating to 300°C 
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above which a gradual increase in foam bubbles is observed as shown in Figure 4.8(d), (e) and (f). 

The existence of such a behavior is linked to the release of water from the system.  

 
Figure 4.8: Thick Na2O/SiO2=0.5 coatings: (a) SEM image of a 30 µm, (b) 1 mm thick coating (before and after 
heating to 300°C) obtained from blade/pool coating route, (c) single and multi-layer coatings (before and after 
heating to 300°C) obtained from the spin coating route at 2000 rpm for 60 s, (d) gradient coating (after heating 
to 300°C) obtained by depositing raw solution using a bar coater (note that the bar was set to the range 10-100 
µm) showing the existence of a critical thickness for foaming and (e, f) close-up images of the foam showing a 
gradual increase in bubble size as a function of thickness.  

Figure 4.9 shows the schematic illustration of the proposed mechanism for the existence of 

critical thickness for foaming. On heating a gradient in thickness coating, surface condensation 

takes place due to the release of water molecules closer to the surface resulting in a condensed 

layer of a particular thickness value depending upon the starting composition. The thickness of 

this condensed layer is proposed to be related to the diffusion length of evaporating water 
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molecules. Below the critical thickness, the coating is a fully surface condensed membrane as that 

observed on heating the solutions (Figure 4.1) preventing any extensive condensation leading to 

foaming. Above the critical thickness, water is available under this surface condense layer that 

escapes on increasing temperatures and provides the necessary driving force for expansion.  

 
Figure 4.9: Schematic illustration of the existence of critical thickness for foaming in gradient coatings.  

 

 
Figure 4.10: Na-silicate gradient coatings (obtained from bar coating method with bar values set to 10-100 µm) 
after heating to 250°C: (a) Na2O/SiO2=0.5 at 5°C/min, (b) Na2O/SiO2=0.29 at 5°C/min, (c) close-up image of 
Na2O/SiO2=0.29 coating above the critical thickness showing the presence of both cracks and foam bubbles and 
Na2O/SiO2=0.5 gradient coating at a heating rate of (d) 10°C/min & (e) 1°C/min.    

Figure 4.10 shows the impact of changing the Na-silicate concentration on the corresponding 

thermal behavior. Na2O/SiO2=0.29 also shows a critical thickness for foaming (Figure 4.10(b)) but 
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a higher value of 7.5 µm (before heating) is observed in contrast to 6 µm seen for Na2O/SiO2=0.5 

system mainly due to a reduced mobility and amount of silanols in the system as that seen for pre-

dried powder samples. 

The difference in the critical thickness region values before and after heating are given in Figure 

A 4.4. which show a condensation of the coating below the critical thickness. Furthermore, the 

Na2O/SiO2=0.29 coating tends to crack on heating to 250°C at 5°C/min as shown in Figure 4.10(c) 

due to the release of strains generated in the structure linked, again, to the increased viscosity, 

reduced mobility and lower amount of network silanols as predicted from the discussion in 

Chapter 3.  

The impact of heating rate was also investigated in order to analyze the variations in critical 

thickness of foaming and is shown for Na2O/SiO2=0.5 in Figure 4.10(d) and (e) where the coating 

was heated to 250°C at 10°C/min and 1°C/min, respectively. A difference of 1 µm is observed on 

going from 10°C/min to 1°C/min suggesting not a drastic impact of the heating rate. Furthermore, 

the extent of expansion of bubbles is higher for the high heating rate due to the abruptness of the 

water release. Thus, the critical thickness and extent of foaming seems to be mainly dependent 

upon the composition of Na-silicates similar to what is observed in solutions and pre-dried 

powders which also show extensive foaming.  

K-silicates 

Foaming behavior of K-silicate solutions and pre-dried powders is dependent upon the 

composition as well as kinetics of thermal treatment in the sense that crystallization plays a role 

in suppressing volumetric expansion. Impact of thermal treatment on gradient coatings (bar value 

set at 10-250 µm) for the two K-silicate molar ratios deposited from the aqueous solutions is given 

in Figure 4.11. K2O/SiO2=0.5 gradient coating on heating to 250°C at 5°C/min shows a behavior 

similar to that observed for Na2O/SiO2=0.5 with the existence of a critical thickness for foaming 

(Figure 4.11(a)), however, the exact value could not be determined due to difficulties in acquiring 

SEM images as the sample was very hygroscopic.  

K2O/SiO2=0.29, on the other hand, seems to have two critical thicknesses: for (1) crystallization 

(light scattering by crystals) which approaches 4.4 µm (before heating) and (2) foaming, for which 

the value could not be ascertained, as shown in Figure 4.11(b). The corresponding SEM images 

showing cross-section of the coating are given in Figure A 4.5. Above the critical thickness (2), 

crystallization and foaming seem to co-exist (synonymous to the behavior of solution at 5°C/min 

as shown in Figure 4.2(c)) suggesting that the heating rate might have an influence on the 

thickness for foaming. A lower heating ramp would thus be expected to either fully suppress 

foaming or shift the corresponding critical thickness to values larger than the experimental limits 

of the bar. Orthorhombic and monoclinic KHSi2O5 crystallites are formed (as in pre-dried powders) 

up to 250°C as shown in Figure 4.11(d) and (e) along with the appearance of KHCO3
- corresponding 

to the formation of some surface carbonates due to diffusion of ions. Appearance of crystallites is 

a consequence of the network releasing protons and some K ions. 
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Heating the K2O/SiO2=0.29 sample to 450°C leads to the melting of these crystallites, a behavior 

similar to pre-dried powders of the same composition, with SEM image in Figure 4.11(e) showing 

the respective grain boundaries of melted crystallites and XRD diffractogram in Figure 4.11(f) 

indicating the disappearance of KHSi2O5 phase. Furthermore, the coating becomes transparent on 

heating to 450°C as shown in Figure 4.11(c) once the whitish aspect due to crystallization is gone.  

 
Figure 4.11: K-silicate gradient coatings heated at 5°C/min: (a) K2O/SiO2=0.5 (bar was set to 10-100 µm) to 250°C, 
K2O/SiO2=0.29 (bar was set to 10-250 µm) to (b) 250°C & (c) 450°C with the respective SEM images in (d) & (e) 
and (f) XRD confirming the presence of KHSi2O5 (Monoclinic-C2/m: JCPDS 00-045-0020, mp-1201235; 
Orthorhombic-Pcmn: JCPDS 01-083-2393, ICSD 200612) as well as KHCO3 (Monoclinic-P21/a: JCPDS 01-070-0995, 
ICSD 002074).   

K-silicates, thus, show a critical thickness irrespective of composition with K2O/SiO2=0.5 showing 

a critical thickness for foaming while K2O/SiO2=0.29 exhibiting a critical thickness for crystallization 

as well as foaming at 5°C/min.  
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Li-silicates 

Li-silicate gradient coatings obtained by setting bar values to 10-100 µm and thermally treated 

to 250°C at 5°C/min show the existence of critical thickness of cracking rather than crystallization 

or foaming as shown in Figure 4.12(a) and (b). This stems from the fact that the starting Li-silicate 

compositions are relatively concentrated in the quantity of SiO2 because not all the Li ions are a 

part of the network. Li ions are also present as LiOH that leaves the network more brittle and 

strained. Since the compositions are in the phase separation regime, heat treatment leads to 

cracking rather than foaming consistent with the results obtained for solutions or pre-dried 

powders. A higher critical thickness value is observed for Li2O/SiO2=0.4 than Li2O/SiO2=0.29, a 

behavior similar in all the alkali silicates investigated. A homogeneous aspect of the coating is 

observed for Li2O/SiO2=0.4 while Li2O/SiO2=0.29 presents micro-cracking even below the global 

critical thickness as evident from the SEM images in Figure 4.12(e) and (f), respectively.  

 
Figure 4.12: Li-silicate gradient coatings heated at 5°C/min (bar was set to 10-100 µm): (a) Li2O/SiO2=0.4 to 250°C, 
(b) Li2O/SiO2=0.29 to 250°C, (c) Li2O/SiO2=0.4 to 450°C, (d) XRD confirming the presence of Li2Si2O5 
(Orthorhombic-Ccc2: JCPDS 01-072-0102, ICSD 15414)) at 450°C and (e, f, g) SEM images below and above the 
critical thickness.   

Heat treating the systems to 450°C leads to crystallization mainly in the region above critical 

thickness, as shown in Figure 4.12(c) and confirmed by XRD in Figure 4.12(d), suggesting the 

coexistence of cracks and crystallites with the formation of orthorhombic Li2Si2O5 phase, seen also 

in pre-dried Li-silicates above 275°C as discussed in the quantitative analysis in Chapter 3. Thus, 

Li-silicates present a single critical thickness for cracking and crystallization (depending upon the 

temperature) for both molar ratios. Note that crystallization measurements couldn’t be carried 
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out for Li2O/SiO2=0.29 as the coating delaminated due to extensive cracking resulting from the 

rigidity of the network.  

The analysis of flat thick coatings and gradient in thickness coatings discussed above suggests 

that it is indeed possible to deposit homogeneous, thick and high-quality alkali silicate coatings 

but that is dependent upon the starting composition and the hydration level. Thermal treatment 

leads to macroscopic structural changes in terms of the existence of a critical thickness of foaming 

for Na-silicates and K2O/SiO2=0.5, crystallization and foaming for K2O/SiO2=0.29 whereas cracking 

and crystallization for Li-silicates. The existence of the different phenomenon, apart from critical 

thickness, is consistent with the macroscopic evolution observed for solutions and pre-dried 

silicates. However, limitations on the possibilities of characterization using tools like ex-situ and in-

situ Raman spectroscopy, mainly for the distribution and evolution of proton-related species, has 

restricted an in-depth analysis synonymous to the one discussed in Chapter 3 for pre-dried 

powders. Hence, conclusive discussion has not been provided in terms of the questions related to 

the existence of various critical thicknesses depending upon the alkali type and, thus, further 

investigation is required in the category of perspective work.   

4.2. Foaming control 

Aqueous alkali silicates present a thermal behavior strongly dependent upon the type of alkali 

ion with Na-silicates showing extensive foaming in solution, pre-dried powder and thick coatings. 

This intumescent behavior is of industrial interest for applications involving fire-resistant 

properties e.g. fire-resistant glasses. Tuning their foaming behavior by manipulating the 

composition can improve the existing systems as well as open new avenues of their potential 

utilization. Hence, some trials were made to control/limit the extent of this foaming observed by 

adding some foreign entities in Na-silicates solutions.  

4.2.1. Addition of ethylene glycol  

Ethylene glycol (EG), an organic compound and a well-known anti-foaming agent160 with a 

chemical formula (CH2OH)2, was mixed with the commercial Na-silicate solutions to be able to 

limit/control the extent of foaming. Figure 4.13(a) shows the foaming behavior of a 

Na2O/SiO2=0.29 solution droplet on heating to 300°C, the detailed description of which has been 

provided in section 4.1.1. Adding known quantity of EG into this solution appears to change the 

thermal behavior i.e. the extent of foaming seems to have been reduced on going up to 300°C as 

shown in Figure 4.13(b). This appears to be a consequence of the release of large amount of 

solvent before the membrane-like layer is formed as the boiling point of EG is around 200°C 

reducing considerably the extent of expansion. Furthermore, it may be possible that EG molecules 

tend to replace the silanols in the Na-silicate network (further investigation required), causing a 

change in density, and limiting the possibilities of condensation that has been linked to the 

expansive nature.     

The impact of thermal treatment was also investigated on the coatings developed from a 

mixture (in vol%) of Na2O/SiO2=0.5 and EG. Figure 4.13(c) shows double-layer spin coated samples 

(roughly 8 µm thick) of pure Na2O/SiO2=0.5 solution with a coating above the critical thickness 



 

 

103 Chapter 4. Intumescent properties 

value (6 µm). Heating the sample to 250°C causes foaming to occur. On addition of 20 vol% EG in 

Na2O/SiO2=0.5 commercial solution, the extent of foaming is reduced to a large extent. Similarly, 

very thick coatings (>30 µm in thickness) using the blade/pool coating approach were also 

obtained from the mixture of the solutions. A similar behavior of reduction in the extent of foaming 

is observed on increasing the concentration of EG in the silicate from 5 vol% to 20 vol% where the 

foaming seems to have been suppressed as shown in Figure 4.13(d). Thus, EG acts as a reasonable 

anti-foaming agent by replacing the network silanols to reduce the driving force for structural 

expansion. However, this anti-foaming property of EG is limited to temperatures below 400°C 

whereas decomposition of the species at ≥ 500°C leads to structural expansion. The density of the 

system is expected to be different that could potentially have an impact on the fire-resistant 

properties at temperatures approaching 500/600°C.  

 
Figure 4.13: Foaming behavior of (a) commercial Na2O/SiO2=0.29 & (b) commercial Na2O/SiO2=0.29 + Ethylene 
Glycol (EG) solution droplet, and EG mixed Na2O/SiO2=0.5 (c) spin coated (double layer with 8 µm thickness) & 
(d) blade/pool coated samples (single tape used with thickness=170 µm) heat treated to 250°C. Note that EG was 
mixed in terms of the vol% indicated.  
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4.2.2. Addition of tetramethylammonium silicate  

Tetramethylammonium silicate (TMAS), with a linear formula (CH3)4N(OH).2SiO2, has a structure 

quite similar to alkali silicates, the main difference being the replacement of alkali ion in the 

network with organic TMA+
 ion. Thermally treating a thick coating (>30 µm) of TMAS solution to 

300°C results in no structural expansion as shown in Figure 4.14(a) with the appearance of a 

whitish aspect all over the coating attributed to the presence of micro-cracks. Thick coatings (>60 

µm) obtained from a mixture of TMAS solution in commercial Na2O/SiO2=0.5 are shown in Figure 

4.14(b) suggesting a reduction in the extent of foaming observed in pure Na2O/SiO2=0.5 coating 

on increasing the concentration (in vol%) of TMAS. Even at 10 vol% TMAS, the coating tends to 

have a different aspect for foaming with the system appearing to be more viscous in terms of its 

rheological properties. At 50 vol% TMAS, the suppression of foaming seems to appear especially 

in the middle region while the edges are too thick to show any plausible reduction in foaming. This 

suggests that the reduction in foaming may well be thickness dependent with very thick TMAS-

based coatings offering a lower degree of foaming suppression.  

 
Figure 4.14: Thermal behavior (on heating to 300°C) of (a) pure tetramethylammonium silicate (TMAS) thick 
coating (single tape used with thickness=170 µm), (b) TMAS mixed Na2O/SiO2=0.5 thick coating obtained from 
blade/pool coating route (two tape layers used with total tape thickness=340 µm) and (c) TMAS mixed 
Na2O/SiO2=0.5 double-layer coating (≥8 µm) obtained from spin coating route. Note that TMAS was mixed in 
terms of the vol% indicated. 
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Double-layer spin coated systems (≥ 8 µm thick) offer a similar behavior, in terms of reduction in 

foaming extent, as that observed for thicker coatings as shown in Figure 4.14(c). Pure 

Na2O/SiO2=0.5 coating shows extensive foaming while the addition of TMAS reduces the extent on 

increasing the concentration with 50 vol% TMAS concentration moving closer to transparency. 

Note that the whitish aspect in TMAS added coatings Figure 4.14(c) corresponds to small-sized 

foam bubbles (and possibly some by product on thermal treatment that vanishes after a week with 

coatings appearing relatively transparent). The reason for the suppression of foaming on the 

addition of TMAS may be attributed to a mechanism similar to that observed with the addition of 

EG with TMA+ ions replacing the silanol sites or forming a cross-link with a nearby silanol hindering 

in a way the condensation reaction. However, further analysis is needed to explore in detail the 

exact structural changes associated with the addition of TMAS into commercial Na-silicate 

solution.  

Thus, it is indeed possible to reduce the extent of foaming observed in Na-silicates, mainly by 

the addition of foreign elements that tend to change the viscosity of the system by replacing the 

silanols in the alkali silicate network. EG and TMAS are two reasonable candidates but an in-depth 

study needs to be carried out for ascertaining their efficiency keeping in view the industrial 

priorities as both of these solutions appear to be incompatible with optical transparency.  

4.3. Conclusions 

Thermally treating aqueous alkali silicates leads to macroscopic structural changes depending 

upon the type of alkali ion and the corresponding composition of the system. Foaming is observed 

in some cases that is linked to the removal of water from the systems present as solvating water 

and silanols. Na-silicate solutions show extensive foaming with the formation of a viscous 

condensed membrane on the droplet followed by the gradual release of water from the system 

on increasing temperature. Na2O/SiO2=0.5 solution foams more as compared to Na2O/SiO2=0.29 

due to a higher amount of network silanols. Reducing the heating rate reduces the extent of 

foaming in Na-silicates. K-silicate solutions foam at 10°C/min with extensive foaming, comparable 

to Na-silicates, observed in K2O/SiO2=0.29. Reducing the heating rate to 5°C/min or 1°C/min results 

in the suppression of volumetric expansion due to crystallization (KHSi2O5). Li-silicate solutions 

don’t show any foaming when heated to 250°C irrespective of the heating rate mainly because of 

the compositions being in the phase separation regime.  

Pre-dried powder pellets obtained by drying solutions for 17 h at 150°C show the existence of 

extensive foaming in Na-silicates suggesting the foaming behavior to be a consequence of 

condensation of silanols and the corresponding removal of solvating water molecules. No foaming 

is seen in pre-dried K2O/SiO2=0.29 due to crystallization while Li2O/SiO2=0.29 does not foam until 

250°C but a slight expansion in the pellet size is observed around 300°C linked to the removal of 

leftover silanols in the network as well as crystallization since all Li is lost around 350°C above 

which no further expansion is observed.  

Thick and homogeneous coatings can be deposited through multi-layer spin coating approach 

(less efficient), blade/pool coating method (results in coatings of 100s of microns in thickness) and 
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bar coating route (for gradient coatings). Furthermore, the quality of the coatings is dependent 

highly on the type of alkali ion and the composition of the alkali silicates including the hydration 

level. A critical thickness is observed on thermal treatment of gradient coatings obtained from all 

the studied compositions and is linked to the way water is released from the system. Na-silicates 

show a critical thickness of foaming below which the coating is relatively stable and homogenous 

with condensation observed on thermal treatment to 250°C. K2O/SiO2=0.5 shows a critical 

thickness of foaming similar to Na-silicates while K2O/SiO2=0.29 exhibits two critical thicknesses, 

one for crystallization (with the formation of KHSi2O5, which tends to disappear on heating to 

450°C) and the second where foaming seems to appear along with crystallization. Li-silicates also 

show a critical thickness on thermal treatment of gradient coatings with extensive cracking 

observed above it for both the molar ratios linked to the higher SiO2 percentage as compared to 

Na or K-silicates. Crystallization (Li2Si2O5) is also observed on thermally treating Li-silicate coatings 

to 450°C. 

Finally, addition of foreign entities e.g. ethylene glycol and tetramethylammonium silicate tends 

to impact the foaming behavior of Na-silicates with an increasing concentration of these solutions 

resulting in the suppression of foaming in thicker coatings, that may be a consequence of the 

replacement of Na-silicate network silanols.   
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4.4. Appendix 

Impact of drying time on foaming behavior of K2O/SiO2=0.29 

Figure A 4.1 shows the impact of drying time on foaming properties of K2O/SiO2=0.29 solution. 

Drying the solution for 15 min followed by thermal treatment to 300°C results in extensive foaming 

due to the release of water. A 3 or 15 h drying step at 150°C tens to suppress the volumetric 

expansion on further heating to 300°C due the formation of orthorhombic and monoclinic KHSi2O5 

crystalline phase as confirmed by powder XRD diffractograms shown in Figure A 4.1(c). 

Furthermore, drying at 200°C for 15 min or 2 h leads to foaming, but no further expansion is 

observed on heating to 300°C. 

 
Figure A 4.1: Impact of drying time on the foaming behavior of K2O/SiO2=0.29 on heating at (a) 150°C & 200°C 
followed by thermal treatment to (b) 300°C. Crystallization appears within 3h of dehydration at 300°C as shown 
in (c) with the formation of KHSi2O5 phase limiting foaming.   
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Calibration of SIMS diffusion profiles for Na2O/SiO2=0.29 thin film 

The SIMS diffusion profiles of 250 nm spin coated Na2O/SiO2=0.29 film are shown in Figure A 

4.2. Different sputtering sources were used for acquiring the Na+ and Si+ profiles. O2
+ ion source 

results in inhomogeneous Na+ diffusion profile as shown in Figure A 4.2(a) for the as-deposited 

sample. This is caused by the ‘charging effect’ of incoming ions suggesting Na+ ions to be highly 

sensitive. A ‘shadowing effect’ due to the formation of surface carbonates could also lead to these 

inhomogeneities but that seems to be less likely due to the relatively fresh nature of the sample. 

Changing the ion source to Cs+ results in slightly better profile, shown in Figure A 4.2(b), due to 

relatively larger size of the incoming ions, but the charging effect still happens to impact the 

distribution of Na+ ions in the coating. Using and O2
 cluster source at ambient conditions leads to 

reasonable diffusion profiles for the as-deposited sample (Figure A 4.2(c)) while the impact of 

charging is still observed in washed sample (Figure A 4.2(d)) where the amount of Na+ ions is 

reduced quite a bit. Using the O2
 cluster source at -100°C, finally, results in linear profiles as shown 

in Figure 4.6 (in the main text) representative of the actual distribution of ions throughout the 

coating.  

 
Figure A 4.2: SIMS profiles obtained on the as-deposited Na2O/SiO2=0.29 thin film using (a) O2

+ ion source, (b) 
Cs+ ion source & (c) O2 cluster source at room temperature, and on the washed sample  using (d) O2 cluster source 
at room temperature.   
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Thickness measurements thick alkali silicate coatings 

Figure A 4.3 shows the cross-section of a thick coating (single and double-layer) obtained by spin 

coating raw concentrated Na2O/SiO2=0.29 commercial solution. The coting is relatively 

homogeneous with the crack-like appearance of the cross0-section resulting from the cutting 

procedure and is not representative of the actual aspect of the coating. 

 
Figure A 4.3: SEM image showing the cross-section of Na2O/SiO2=0.29 raw solution (a) single-layer and (b) multi-
layer thick coating obtained by spin coating at 2000 rpm for 60 s.  

Figure A 4.4, Figure A 4.5 and Figure A 4.6 show the cross-sectional SEM images of Na, K and Li-

silicate gradient coatings, respectively, before and after thermal treatments. A reduction in 

thickness is observed in the regions below the critical thickness due to condensation.   

 
Figure A 4.4: Cross-sectional SEM images of the critical thickness (CT) region in Na-silicate gradient coatings (a, 
c) before and (b, d, e, f) after heating to 250°C. 
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Figure A 4.5: Cross-sectional SEM images of the critical thickness (CT) region in K2O/SiO2=0.29 gradient coating 
(a) before and (b) after heating to 250°C at 5°C/min. 

 

 

 
Figure A 4.6: Cross-sectional SEM images of the critical thickness (CT) region in Li-silicate gradient coatings before 
and after heating to 250°C at 5°C/min. 
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Chapter 5.  

 

Outcomes & perspectives 

5.1. Global conclusions 

Structural properties of aqueous alkali silicates based on sodium (Na), potassium (K) and lithium 

(Li) have been investigated to probe the macroscopic and microscopic state of the materials for 

establishing an in-depth fundamental understanding of their thermal behavior. An experimental 

strategy involving the utilization of a combination of characterization tools has been developed in 

the process to monitor the systems. Analysis has been performed visually in terms of 

foaming/intumescent behavior of aqueous alkali silicates followed by the prediction of structural 

changes at the network scale. Hence, a link created between macroscopic changes and the 

corresponding microscopic thermal evolution has allowed to gain insights interesting from an 

industrial standpoint. 

5.1.1. Macroscopic behavior 

Aqueous alkali silicates of two different molar ratios (M2O/SiO2=0.29 and 0.5 for Na and K while 

0.29 and 0.4 for Li-silicate) were investigated in this work. Thermal treatment of these solutions 

leads to structural changes associated with the removal of proton-related species from the system 

available as free water, network silanols and solvating water (molecules H-bonded to network 

silanols or alkali ions). Macroscopically speaking, foaming or intumescence is observed in some 

cases whereby the silicate structure expands volumetrically as shown in Figure 5.1. Na-silicate 

solutions show extensive foaming with, initially at lower temperatures, the formation of a viscous 

surface condensed membrane followed by an out-of-equilibrium build-up of water vapor pressure 

inside the material as the temperature increases. Na2O/SiO2=0.5 solution foams more as 

compared to Na2O/SiO2=0.29 due to a higher amount of network silanols confirmed from 

microscopic measurements. Reducing the heating rate from 10°C/min to 1°C/min reduces the 

extent of foaming in Na-silicates due to a less abrupt water release. 

K-silicate solutions foam at 10°C/min with extensive foaming, comparable to Na-silicates, 

observed in K2O/SiO2=0.29. Reducing the heating rate to 5°C/min or 1°C/min results in the 

suppression of volumetric expansion due to crystallization (monoclinic or orthorhombic KHSi2O5). 

K2O/SiO2=0.5 foams, irrespective of the heating rate, but not extensively as the system is highly 

hygroscopic due to water being in a relatively stable state up to 300°C. Li-silicate solutions don’t 

show any foaming when heated to 250°C irrespective of the compositions and heating rate mainly 

because of the starting compositions being in the phase separation regime. In general, at a rate of 

5°C/min that has been used as the standard way for drying of solutions at different temperatures 

for quantitative analysis, Na-silicate solutions foam extensively, Li-silicates don’t foam while an 

intermediate behavior is observed for K-silicates. 
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Figure 5.1: Aqueous alkali silicates of two different compositions each in glass vials (a) before and (b) after heat 
treatment to 250°C at 5°C/min.  

Pre-dried powder (necessary due to experimental limitations associated with various 

techniques) pellets obtained by drying solutions for 17 h at 150°C (to remove all the free water) 

show the existence of extensive foaming in Na-silicates on heating to 400°C suggesting the 

foaming behavior to be a consequence of condensation of silanols and the corresponding removal 

of solvating water molecules. Foaming seems to be suppressed in pre-dried K2O/SiO2=0.29 due to 

crystallization while Li2O/SiO2=0.29 does not foam until 250°C. A slight expansion in the pellet size 

is observed around 300°C linked to the removal of leftover silanols in the network as well as 

crystallization since all Li is lost around 350°C above which no further expansion is observed. 

Mass loss evolution, obtained from TGA, is dependent upon temperature (independent of 

kinetics in Na-silicates), the pre-drying time (for K-silicates) and alkali content in the silicate. 

Thermally treating pre-dried powders suggests the existence of an offset of mass loss with higher 

alkali content systems showing a lower initial dehydration temperature. For Na-silicates, 

increasing the Na content tends to reduce the softening temperature (175°C for Na2O/SiO2=0.5 

and 210°C for Na2O/SiO2=0.29) along with a higher amount of overall water retention after the 

initial pre-drying step at 150°C. Such low values of an apparent Tg are consistent with the Tg values 

reported in the literature for water-containing glasses of similar composition. A same order of 

magnitude for mass loss evolution is observed for both the Na-silicate molar ratios with an 

activation energy of 29.4 kJ.mol-1 for Na2O/SiO2=0.5 as compared to 34.1 kJ.mol-1 for 

Na2O/SiO2=0.29. In contrast, multiple activation energies are observed for K and Li-silicates mainly 

due to the formation of different crystalline phases, confirmed by XRD, suggesting the structure 

to be behaving differently than Na-silicates, as observed macroscopically. 

5.1.2. Microscopic thermal evolution 

Heating pre-dried Na-silicate powders tends to increase the degree of network polymerization 

apart from the macroscopic volumetric expansion observed on foaming. The system moves 

towards a state with more Q4 at the expense of lower Qn units. A xerogel-to-glass evolution in 

terms of Qn units at around 400°C is observed for Na-silicates when compared with reference 

glasses. Complementary information provided by Raman spectroscopy also indicates that the 

structure condenses and the Raman spectra at 400°C become similar to that of the corresponding 

glasses (especially in terms of Qn units) for both the Na-silicate molar ratios with ring-type 

structure being more dominant in glasses.  
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Further structural investigation indicates that Na ions are connected to both Q2 and Q3 silicon 

sites for Na2O/SiO2=0.29 suggesting a completely random distribution, while all protons are 

connected to Q3 (both Q2 and Q3 connectivity is observed in the case of Na2O/SiO2=0.5) i.e. no free 

water is present at 150°C. For Na-silicates, NBO contribution from the network modifiers (Na and 

H) shows that both silanols and solvating water molecules are present even at high temperature, 

suggesting an equilibrium between the two structural units for protons as shown in Figure 5.2 

(obtained by combining TGA mass loss curves and solid-state 29Si NMR data). Thus, the extensive 

foaming observed in pre-dried systems confirms the actual cause of this phenomenon to be the 

release of water molecules as a consequence of condensation of silanols. Condensation of silanols 

leads to solvating water molecules that in turn leave the system indicating the existence of a single 

activation energy approaching 30 kJ.mol-1 in Na-silicate systems. The amount of initial water in the 

silicate and molar ratio Na2O/SiO2 directly influence the amount of these condensing silanols in 

the network. Higher overall water is retained after the pre-drying step for the molar ratio 

Na2O/SiO2=0.5 suggesting the network to possess more H as NBOs when compared to 

Na2O/SiO2=0.29 leading to more volumetric expansion in terms of foaming as observed in Figure 

5.1(b).  

 
Figure 5.2. Total Network Modifiers/Si from both ( ) TGA and ( ) solid-state 29Si NMR spectra of Na-silicate 
(Na2O/SiO2=0.29) powder with region ‘b’ corresponding to the amount of adsorbed/solvating water linked to the 
network, ‘c’ corresponding to the relative proportion of OH as NBO and ‘d’ referring to a completely condensed 
state at temperatures well above 800°C.   

Na-silicate solutions or pre-dried powders do not crystallize on heating up to 450°C. A direct 

heating of K2O/SiO2=0.29 solution to 450°C at heating rates ≥ 10°C/min would show a behavior 

similar to Na-silicates in terms of foaming with the possibility to quantify the amount of silanols in 

the amorphous network and the corresponding solvating water molecules. However, 

K2O/SiO2=0.29 tends to crystallize even at 150°C (depending upon the time of drying, 1 h and 30 
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min is enough) with a degree of crystallinity (DOC) of 60% when dried for 17 h. Orthorhombic and 

monoclinic KHSi2O5 crystalline phases are formed that tend to evolve with temperature (DOC 

increases to ∼80% at 400°C) until partial melting is observed at 450°C. Both Li-silicate molar ratios, 

on the other hand, are amorphous at 150°C while crystallization appears at 275°C with the 

formation of orthorhombic Li2SiO3 and Li2Si2O5 phases. DOC increases as a function of temperature 

with the gradual conversion of Li2SiO3 into Li2Si2O5. This crystallization behavior in K and Li-silicates 

is suggested to have a direct impact on the macroscopic evolution of the silicates. Rietveld 

refinement of XRD diffractograms has helped in the deconvolution of the data that has aided in 

establishing a quantitative measure of the evolution of alkali ions and proton-related species in 

crystallized systems.  

Pre-dried Na-silicates have a gradual and continuous evolution of amorphous network silanols 

and solvating water molecules (Figure 5.3(a)) leading to extensive foaming stemming from the 

fact that the network is relatively mobile as well as water can leave the system easily. K2O/SiO2=0.5 

behaves in a similar manner as that observed for Na-silicates, however, phase diagram suggests 

the system to contain thermodynamically more stable water content indicating the system to be 

mobile while being extremely hygroscopic at the same time.  

 
Figure 5.3: Quantitative thermal evolution of different species i.e solvating water, silanols (in amorphous or 
crystalline phase) and alkali ions for (a) Na2O/SiO2=0.29, (b) K2O/SiO2=0.29 and (c) Li2O/SiO2=0.29.  

Amorphous silanols in the network (for pre-dried powders) are lost altogether at 275°C for both 

K2O/SiO2=0.29 and Li-silicates (Figure 5.3(b) and (c), respectively) while the protons linked to 

KHSi2O5 phase stay intact until 400°C. The network in K2O/SiO2=0.29 retains somewhat its mobility 

due to leftover K ions in the amorphous phase even after crystallization as well as the possibility 

of some solvating water molecules to be intact. However, crystallization is expected to reduce 

quite a bit the foaming capacity when compared to Na-silicates as the amorphous network 

mobility is reduced along with the absence of any silanols above 150°C. The network in Li-silicates 

is less mobile due to the existence of strong cross-links between Li ions and polysilicate particles. 

Furthermore, the studied compositions lie in the phase separation regime indicating the formation 

of a SiO2 rich matrix phase that is reasonably brittle and prevents the structure from being mobile. 

Crystallization at temperatures approaching 275°C leads to the removal of Li ions from the 

amorphous phase whereby all Li ions move into the crystalline counterpart at 350°C reducing 

further the already low mobility in Li-silicate systems, thus, supposedly limiting the volumetric 

expansion.  
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The xerogel-to-glass evolution in Na-silicates at 400/450°C suggests a high temperature 

evolution (>450°C) of the pre-foamed Na-silicate powder pellets to have the same macroscopic 

behavior as the reference (dry) glasses. An exponentially decreasing trend of viscosity is observed 

for both the molar ratios consistent with the reference glasses and literature models suggesting 

glass-like properties to indeed have been achieved. A behavior similar to Na-silicates is observed 

for pre-dried K2O/SiO2=0.29 pellet while Li2O/SiO2=0.29 doesn’t evolve much up to 1200°C apart 

from being sintered. Further investigation is required where an extrapolation of the current data 

is expected to aid in the investigation of rheological properties in the foaming regime in terms of 

variations in viscosity.  

5.1.3. Foaming in coatings 

Thick and homogeneous coatings are possible to deposit through multi-layer spin coating 

approach (less efficient), blade/pool coating method (results in coatings of 100s of microns in 

thickness) and bar coating route (for gradient coatings). The quality of the developed coatings is 

dependent highly on the type of alkali ion and the composition of the alkali silicates including the 

hydration level. In general, compositions with higher alkali content tend to reduce cracking that 

may otherwise be the case. A critical thickness is observed on thermal treatment of gradient 

coatings obtained from all the studied compositions and is linked to the way water is released 

from the system.  

 
Figure 5.4: Na2O/SiO2=0.5 gradient coating (after heating to 300°C) showing the existence of a critical thickness 
for foaming (a), and the close-up images of the foamed region from (b) top and (c) edge. 

Na-silicates show a critical thickness of foaming (Figure 5.4) below which the coating is relatively 

stable and homogenous with condensation observed on thermal treatment to 250°C. The 

existence of this critical thickness is linked to the release of water from the system. Below the 

critical thickness value, the coating corresponds to a viscous condensed surface layer similar to 

that observed in solutions with limited possibilities for water molecules to form bubbles due to 

limitations of diffusion path length. Above the critical thickness value, surface condensed layer has 

the same thickness as that observed below, with a gradual increase in the amount of water 

molecules resulting in the structural expansion. K2O/SiO2=0.5 gradient coating shows a critical 

thickness of foaming similar to Na-silicates while K2O/SiO2=0.29 exhibits two critical thicknesses, 

one for crystallization (with the formation of KHSi2O5, which tends to disappear on heating to 

450°C) and the second where foaming seems to appear along with crystallization. Li-silicates also 

show a critical thickness on thermal treatment of gradient coatings with extensive cracking 
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observed above it for both the molar ratios linked to the higher SiO2 percentage as compared to 

Na or K-silicates. Crystallization (Li2Si2O5) is also observed on thermally treating Li-silicate coatings 

to 450°C. 

Finally, it is possible to alter the foaming behavior of alkali silicates by manipulating the 

composition. Addition of foreign entities e.g. ethylene glycol (EG) and tetramethylammonium 

silicate (TMAS) tends to impact the foaming behavior of Na-silicates with an increasing 

concentration of these solutions resulting in the suppression of foaming in thicker coatings, a 

consequence of the replacement of Na-silicate network silanols.  

The in-depth fundamental understanding of the macroscopic and microscopic thermal behavior 

of aqueous alkali silicates has brought about a meaningful advancement to the subject. The 

structural changes associated with and responsible for foaming-related aspects of these materials 

have been analyzed qualitatively along with a more quantitative approach for being able to predict 

accurately the differences among Na, K and Li-silicates. However, further exploration of these 

systems is still required for a comprehensive know-how of their structural properties in, especially, 

coatings for providing a more close-to-industrial R&D solution.  

5.2. Perspectives 

For further advancement in the understanding of aqueous alkali silicate-based systems, various 

directions are possible to be explored.   

5.2.1. Quantitative analysis of coatings 

5.2.1.1. Qn units 

NMR data discussed in this work gives a quantitative information on the structural organization 

of alkali silicates, however, the technique is limited to mainly solutions and pre-dried powder 

samples. For thick coatings-related understanding of thermal evolution, Raman spectroscopy may 

provide with a plausible information but the corresponding measurements obtained add more to 

the qualitative understanding. Deconvolution of the Raman spectra into individual Qn units is thus 

required, but it is not directly quantitative due to the existence of this intensity factor associated 

to the various structural units (QRaman=IRaman x Qquantity) with lower Qn units being more visible. 

Figure 5.5 shows the deconvoluted Raman spectra (in terms of area under each peak) of Na-

silicate powders in the range 825-1250 cm-1. A decreasing trend for Q2 and increasing for Q3 and 

Q4 is observed suggesting the network to be moving towards a more polymerized state until glass-

like values are obtained.  

For making the values quantitative, a correlation can be established by plotting the NMR Qn units 

vs the %Area of these species from Raman spectroscopy as shown for Q2 and Q3 in Figure 5.5(d). 

This indicates that in the absence of tabulated cross-section values, we have made a calibration 

to get quantitative data out of Raman spectroscopy as it not only allows for faster measurements 

but also enables to acquire data for other samples including thin films or thicker coatings which 

may not be so convenient with NMR spectroscopy. However, issues related to the exact way of 
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deconvoluting these Raman bands associated with Qn units (and whether absolute or relative 

values should be used) needs further probing.131  

 
Figure 5.5: (a), (b) Deconvoluted experimental Raman spectra (825-1250 cm-1) of Na-silicate powders, together 
with fitted curves, individual components (in terms of %Area, not the actual quantity) and their relative fractions, 
(c) variation of %Area of Qn with temperature for the two molar ratios (  for Na2O/SiO2=0.29 and   for 
Na2O/SiO2=0.5) and points for the corresponding glasses (  for 77% SiO2 – 23% Na2O and   for 67% SiO2 – 33% 
Na2O), and (d) correlation between Raman and NMR data (extracted from Figure 3.11) for Q2 and Q4 (  for 
Na/Si=0.29 and   for Na/Si=0.5) in order to make Raman quantitative. 

Raman spectra were successfully obtained on Na-silicate thin films (a few 100s of nm) deposited 

on tantalum (Ta)-coated glass (to remove signal from the substrate) shown in Figure 5.6(a) and (b) 

suggesting that the network indeed tends to polymerize on thermal treatment in a manner similar 

to that observed for pre-dried powders. Note that thicker coatings could not be used for these 

measurements due to problems arising from foaming. So, the coating thicknesses should be below 

the critical thickness values observed from gradient coating samples. Further analysis is required 

for quantifying the distribution of these Qn units by utilizing the ‘to be obtained precise’ NMR-

Raman correlation plot in a manner similar to the one shown in Figure 5.5(d). 

5.2.1.2. Evolution of proton-related species 

Apart from the network changes in terms of the Qn units, evolution of proton-related species 

has to be investigated to establish an understanding similar to that achieved for pre-dried 

powders. One way of following the evolution of water is to use in-situ Raman spectroscopy on Ta-

coated substrates. Some initial trials and adjustments were made to the home-built in-situ Raman 
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spectroscopy setup but the measurements could not be properly realized due to the formation of 

bubbles in some regions as well as the fact that the water band signal (in the range 2400-3400 cm-

1) was not intense enough at temperatures approaching 200-250°C to draw some solid 

conclusions, suggesting further improvements to be made. Another way of following the evolution 

of proton-related species is to use FT-IR on thicker coatings (≤ 5 µm) as shown for Na2O/SiO2=0.29 

in Figure 5.6(c). It is, thus, possible to extract a more precise information for free water, solvating 

water and silanols on deconvoluting the broad water band observed in FT-IR spectra.  

 
Figure 5.6: Raman spectra thermal evolution on tantalum (Ta)-coated glass for (a) Na2O/SiO2=0.29 and (b) 
Na2O/SiO2=0.5 spin coated samples, and (c) the evolution of water peaks obtained from FTIR spectroscopy 
measurements on Na2O/SiO2=0.29 spin-coated on double-side polished Si wafer.  

5.2.1.3. Better understanding of critical thickness 

Understanding of the foaming behavior and existence of critical thickness in gradient coatings is 

also necessary. Critical thickness has been suggested to be related to the amount of water and the 

corresponding diffusion length for which a more quantitative analysis is required. Surface and 

depth mapping of the water band through Raman spectroscopy could give an indication of the 

distribution of water below and above critical thickness regions mainly for the as-deposited 

coating and the one heated to temperatures just below the values where foaming starts. Some 

initial trials have already been made on such systems but the current results are, for the moment, 

not so easy to interpret to provide conclusive evidence.   
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5.2.2. Controlling foaming 

Being able to control the foaming behavior or extent in Na and K-silicate solutions, pre-dried 

powders and coatings by manipulating the starting composition could be a step forward in terms 

of the industrial significance of these alkali silicates. Addition of foreign entities into the aqueous 

silicates or mixing of the silicates needs further investigation in this regard. The general goal, in 

coatings, would be to shift the critical thickness to very high thickness values by somehow 

controlling the hydration level of these systems.  

5.2.2.1. Addition of foreign elements 

Initial trials made by mixing ethylene glycol and tetramethylammonium silicate solutions show 

promising results in the reduction of foaming in Na-silicates. However, further exploration is 

required for an in-depth analysis in terms of the changes induced at the structural scale using TGA, 

NMR & Raman spectroscopy and XRD.  

5.2.2.2. Mixing of silicates 

Mixing different alkali silicates could impact the way they behave thermally. For instance, Figure 

5.7 shows the impact of mixing Na2O/SiO2=0.29 and Li2O/SiO2=0.2 on thermal treatment to 300°C. 

Pure Na-silicate solution droplet foams while Li-silicate does not due to the solution composition 

being in the phase separation regime. Adding 5% Na2O/SiO2=0.29 doesn’t lead to any foaming 

while some expansion is observed on increasing the concentration to 50%. This might suggest that 

the addition of Na tends to move the Li-silicate composition out of the phase separation regime, 

giving an indication of the ability to control the thermal behavior of the two silicates as required.  

 
Figure 5.7: Impact of mixing Na2O/SiO2=0.29 and Li2O/SiO2=0.2 on thermal treatment to 300°C.  

5.2.3. High temperature properties 

Thermal properties at higher temperatures (≥ 500°C) are required to understand the behavior 

of K and Li-silicates. Na-silicates behave in a manner similar to the reference glasses while similar 

viscosity models are to be predicted for other alkali silicate compositions by comparing with the 

respective glasses. Furthermore, high temperature evolution of pre-foamed Na and K-silicates 

suggests the shrinkage of these materials, a property interesting to be exploited for applications 

requiring sintering of glass. This property could also be used for acting as a binder in coatings, e.g. 

mixing pigments with pre-foamed Na-silicates could allow to have pigmented glass coatings.  

Moreover, the interest could also lie in understanding the thermal evolution of compositions 

other than those studied here in order to predict, through the quantitative methods developed, 

what controls the quantity of water up to 400°C. Different molar ratio values or even mixture of 
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alkali silicates could potentially have interesting thermal evolution and several intrinsic 

phenomena. 

5.2.4. Diffusion studies 

Lastly, diffusion-related properties of coatings obtained from aqueous alkali silicates need to be 

investigated further. A SIMS protocol is already in place for investigation of the diffusion behavior 

for different systems. Ageing of these systems, especially, Na-silicates, leads to surface 

carbonation as shown in Figure 5.8 resulting in not only reduced aesthetics but also impacting the 

mechanical stability of the coating network i.e. rendering it more brittle and as a consequence 

prone to cracking.  

 
Figure 5.8: Impact of ageing on Na2O/SiO2=0.5 spin coated glass slide with a step coating containing 1, 2 and 3 
layers.  

Addition of foreign elements e.g. Al ions/Al2O3 nanoparticles, divalent ions (Ca2+, Mg2+) to the 

solutions could allow to limit or completely control surface carbonation in coatings by limiting the 

diffusion of alkalis. Al has the ability to act as a charge center for, let’s say, Na ions and can thus 

pin them preventing their diffusion.  
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(26)  PQ Europe. Sodium and Potassium Silicates https://www.pqcorp.com/docs/default-
source/recommended-literature/pq/lithium-silicate/sodium-and-potassium-silicates-
brochure-eng-oct-2004.pdf?sfvrsn=d22426fb_3 (accessed 2021 -09 -30). 

(27)  Otterstedt, J.-E. A.; Ghuzel, M.; Sterte, J. P. Colloidal Components in Solutions of Alkali 
Silicates. J. Colloid Interface Sci. 1987, 115 (1), 95–103. 

(28)  Brykov, A. S.; Danilov, V. V.; Aleshunina, E. Y. State of Silicon in Silicate and Silica-
Containing Solutions and Their Binding Properties. Russ. J. Appl. Chem. 2008, 81 (10), 
1717–1721. 

(29)  Hunt, J. D.; Kavner, A.; Schauble, E. A.; Snyder, D.; Manning, C. E. Polymerization of 
Aqueous Silica in H2O-K2O Solutions at 25-200°C and 1bar to 20kbar. Chem. Geol. 2011, 
283 (3–4), 161–170. 

(30)  Beard, W. C. Infrared Studies of Aqueous Silicate Solutions. In Molecular Sieves; Meier, 
W. M., Uytterhoeven, J. B., Eds.; American Chemical Society: Washington DC, 1973; pp 
162–168. 

(31)  McCormick, A. V; Bell, A. T.; Radke, C. J. Quantitative Determination of Siliceous Species 



 

  

123 References 

in Sodium Silicate Solutions by 29Si n.m.r. Spectroscopy. Zeolites 1987, 7 (3), 183–190. 

(32)  Kinrade, S. D.; Pole, D. L. Effect of Alkali-Metal Cations on the Chemistry of Aqueous 
Silicate Solutions. Inorg. Chem. 1992, 31, 4558–4563. 

(33)  Kinrade, S. D.; Swaddle, T. W. Silicon-29 NMR Studies of Aqueous Silicate Solutions. 1. 
Chemical Shifts and Equilibria. Inorg. Chem. 1988, 27, 4253–4259. 

(34)  Harris, R. K.; Bahlmann, E. K. F.; Metcalfe, K.; Smith, E. G. Quantitative Silicon-29 NMR 
Investigations of Highly Concentrated High-Ratio Sodium Silicate Solutions. Magn. 
Reson. Chem. 1993, 31, 743–747. 

(35)  Autef, A.; Joussein, E.; Gasgnier, G.; Rossignol, S. Role of the Silica Source on the 
Geopolymerization Rate. J. Non. Cryst. Solids 2012, 358 (21), 2886–2893. 

(36)  Gharzouni, A.; Joussein, E.; Samet, B.; Baklouti, S.; Pronier, S.; Sobrados, I.; Sanz, J.; 
Rossignol, S. The Effect of an Activation Solution with Siliceous Species on the Chemical 
Reactivity and Mechanical Properties of Geopolymers. J. Sol-Gel Sci. Technol. 2015, 73 
(1), 250–259. 

(37)  Vail, J. G. Soluble Silicates; Reinhold Publishing Corporation: New York, 1952. 

(38)  Yang, X.; Zhang, S. Characterizing and Modeling the Rheological Performances of 
Potassium Silicate Solutions. J. Solution Chem. 2016, 45, 1890–1901. 

(39)  Nordström, J.; Sundblom, A.; Jensen, G. V.; Pedersen, J. S.; Palmqvist, A.; Matic, A. 
Silica/Alkali Ratio Dependence of the Microscopic Structure of Sodium Silicate 
Solutions. J. Colloid Interface Sci. 2013, 397, 9–17. 

(40)  Nordström, J.; Nilsson, E.; Jarvol, P.; Nayeri, M.; Palmqvist, A.; Bergenholtz, J.; Matic, A. 
Concentration- and PH-Dependence of Highly Alkaline Sodium Silicate Solutions. J. 
Colloid Interface Sci. 2011, 356 (1), 37–45. 

(41)  Tognonvi, M. T.; Rossignol, S.; Bonnet, J. P. Effect of Alkali Cation on Irreversible Gel 
Formation in Basic Medium. J. Non. Cryst. Solids 2011, 357 (1), 43–49. 

(42)  Bass, J. L.; Turner, G. L. Anion Distributions in Sodium Silicate Solutions. Characterization 
by 29Si NMR and Infrared Spectroscopies, and Vapor Phase Osmometry. J. Phys. Chem. 
B 1997, 101, 10638–10644. 

(43)  Harris, R. K.; Knight, C. T. G. Silicon-29 Nuclear Magnetic Resonance Studies of Aqueous 
Silicate Solutions. J. Chem. Soc., Faraday Trans. 2 1983, 79, 1539–1561. 

(44)  Engelhardt, G.; Michel, D. 29Si NMR of Silicate Solutions. In High-Resolution solid-state 
NMR of silicates and zeolites; John Wiley & Sons Ltd., 1987; pp 75–105. 

(45)  Halasz, I.; Agarwal, M.; Li, R.; Miller, N. Molecular Spectroscopy of Alkaline Silicate 
Solutions. Stud. Surf. Sci. Catal. 2008, 174 (B), 787–792. 

(46)  Vidal, L.; Gharzouni, A.; Joussein, E.; Colas, M.; Cornette, J.; Absi, J.; Rossignol, S. 
Determination of the Polymerization Degree of Various Alkaline Solutions: Raman 
Investigation. J. Sol-Gel Sci. Technol. 2017, 83 (1), 1–11. 

(47)  Langille, K. B.; Nguyen, D.; Bernt, J. O.; Veinot, D. E.; Murthy, M. K. Mechanism of 
Dehydration and Intumescence of Soluble Silicates Part II Effect of the Cation. J. Mater. 



 

  

124 References 

Sci. 1991, 26, 704–710. 

(48)  Langille, K.; Nguyen, D.; Veinot, D. E. Inorganic Intumescent Coatings for Improved Fire 
Protection of GRP. Fire Technol. 1999, 35 (2), 99–110. 

(49)  Essaidi, N.; Laou, L.; Yotte, S.; Ulmet, L.; Rossignol, S. Comparative Study of the Various 
Methods of Preparation of Silicate Solution and Its Effect on the Geopolymerization 
Reaction. Results Phys. 2016, 6, 280–287. 

(50)  Boudot, M.; Boissière, C.; Burov, E.; Gacoin, T. Engineering of Silica Thin-Film 
Nanoporosity via Alkali-Ion-Assisted Reconstruction. Chem. Mater. 2019, 31 (7), 2390–
2400. 

(51)  Dent Glasser, L. S.; Lee, C. K. Drying of Sodium Silicate Solutions. J. Appl. Chem.  
Biotechnol. 1971, 21, 127–133. 

(52)  Roggendorf, H.; Böschel, D.; Trempler, J. Structural Evolution of Sodium Silicate 
Solutions Dried to Amorphous Solids. J. Non. Cryst. Solids 2001, 293–295 (1), 752–757. 

(53)  Xu, L.; Hu, Y.; Mu, Y.; Zhang, F.; Wang, J.; Chen, W.; Li, Y.; Zu, C. Kinetics of Foaming 
Process of Potassium Silicate Gel at High Temperature. Mater. Lett. 2020, 281, 128614. 

(54)  Iler, R. K. Polymerization of Silica. In The Chemistry of Silica; Wiley-Interscience, John 
Wiley & Sons, 1979; pp 172–311. 

(55)  Brinker, C. J.; Scherer, G. W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel 
Processing; Academic Press Limited: London, 1990. 

(56)  Roggendorf, H. Structural Characterization of Concentrated Alkaline Silicate Solutions 
by 29Si-NMR Spectroscopy, FT-IR Spectroscopy, Light Scattering, and Electron 
Microscopy-Molecules, Colloid. Glas. Ber. Glas. Sci. Technol. 1996, 69, 216–231. 

(57)  Roggendorf, H.; Fischer, M.; Roth, R.; Godehardt, R. Influence of Temperature and 
Water Vapour Pressure on Drying Kinetics and Colloidal Microstructure of Dried Sodium 
Water Glass. Adv. Chem. Eng. Sci. 2015, 05 (01), 72–82. 

(58)  Knudsen, M. Die Gesetze Der Molekularströmung Und Der Inneren Reibungsströmung 
Der Gase Durch Röhren. Ann. Phys. 1909, 333 (1), 75–130. 

(59)  Roggendorf, H.; Böschel, D.; Rödicker, B. Differential Scanning Calorimetry at 
Hydrothermal Conditions of Amorphous Materials Prepared by Drying Sodium Silicate 
Solutions. J. Therm. Anal. Calorim. 2001, 63 (3), 641–652. 

(60)  Roggendorf, H.; Böschel, D. Hydrous Sodium Silicate Glasses Obtained by Drying Sodium 
Silicate Solutions. Glas. Sci. Technol. Glas. Berichte 2002, 75 (2), 103–111. 

(61)  Hesky, D.; Aneziris, C. G.; Groß, U.; Horn, A. Water and Waterglass Mixtures for Foam 
Glass Production. Ceram. Int. 2015, 41 (10), 12604–12613. 

(62)  Widmann, G.; Riesen, R. The Glass Transition of Water and Aqueous Systems. J. Therm. 
Anal. 1998, 52, 109–113. 

(63)  Greaves, G. N.; Sen, S. Inorganic Glasses, Glass-Forming Liquids and Amorphizing Solids. 
Advances in Physics. January 2007, pp 1–166. 



 

  

125 References 

(64)  Moynihan, C. T.; Easteal, A. J.; Wilder, J.; Tucker, J. Dependence of the Glass Transition 
Temperature on Heating and Cooling Rate. J. Phys. Chem. 1974, 78 (26), 2673–2677. 

(65)  Greaves, G. N. EXAFS and the Structure of Glass. J. Non. Cryst. Solids 1985, 71 (1–3), 
203–217. 

(66)  Phalippou, J. From Gel to Glass. C. R. Chim. 2002, 5, 855–863. 

(67)  Tan, J.; Zhao, S.; Wang, W.; Davies, G.; Mo, X. The Effect of Cooling Rate on the Structure 
of Sodium Silicate Glass. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2004, 106 
(3), 295–299. 

(68)  Husung, R. D.; Doremus, R. H. The Infrared Transmission Spectra of Four Silicate Glasses 
before and after Exposure to Water. J. Mater. Res. 1990, 5 (10), 2209–2217. 

(69)  Maekawa, H.; Maekawa, T.; Kawamura, K.; Yokokawa, T. The Structural Groups of Alkali 
Silicate Glasses Determined from 29Si MAS-NMR. J. Non. Cryst. Solids 1991, 127, 53–64. 

(70)  Emerson, J. F.; Stallworth, P. E.; Bray, P. J. High-Field 29Si NMR Studies of Alkali Silicate 
Glasses. J. Non. Cryst. Solids 1989, 113 (2–3), 253–259. 

(71)  Doremus, R. H. Glass Science, Second.; Wiley-Interscience, John Wiley & Sons: New 
York, 1994. 

(72)  Yasumori, A.; Inoue, S.; Yamane, M. Preparation of Na2O-SiO2 Glasses in the Metastable 
Immiscibility Region. J. Non. Cryst. Solids 1986, 82, 177–182. 

(73)  Prassas, M.; Phalippou, J.; Hench, L. L. Preparation of XNa2O-(1-x)SiO2 Gels for the Gel-
Glass Process II. The Gel-Glass Conversion. J. Non. Cryst. Solids 1984, 63 (3), 375–389. 

(74)  Hench, L. L.; Prassas, M.; Phalippou, J. Preparation of 33 Mol% Na2O-67 Mol% SiO2 Glass 
by Gel-Glass Transformation. J. Non. Cryst. Solids 1982, 53, 183–193. 

(75)  Puyané, R.; James, P. F.; Rawson, H. Preparation of Silica and Soda-Silica Glasses by the 
Sol-Gel Process. J. Non. Cryst. Solids 1980, 41, 105–115. 

(76)  Kim, S. S.; Sanders, T. H. Thermodynamic Modeling of Phase Diagrams in Binary Alkali 
Silicate Systems. J. Am. Ceram. Soc 1991, 74 (8), 1833–1840. 

(77)  Brawer, S. A.; White, W. B. Raman Spectroscopic Investigation of the Structure of 
Silicate Glasses. I. The Binary Alkali Silicates. J. Chem. Phys. 1975, 63 (6), 2421–2432. 

(78)  Malfait, W. J.; Zakaznova-Herzog, V. P.; Halter, W. E. Quantitative Raman Spectroscopy: 
High-Temperature Speciation of Potassium Silicate Melts. J. Non. Cryst. Solids 2007, 353 
(44–46), 4029–4042. 

(79)  Hass, M. Raman Spectra of Vitreous Silica, Germania and Sodium Silicate Glasses. J. 
Phys. Chem. Solids  1970, 3 (1), 41–422. 

(80)  McMillan, P. F.; Wolf, G. H.; Poe, B. T. Vibrational Spectroscopy of Silicate Liquids and 
Glasses. Chem. Geol. 1992, 96 (3–4), 351–366. 

(81)  Malfait, W. J.; Zakaznova-Herzog, V. P.; Halter, W. E. Quantitative Raman Spectroscopy: 
Speciation of Na-Silicate Glasses and Melts. Am. Mineral. 2008, 93 (10), 1505–1518. 



 

  

126 References 

(82)  Nesbitt, H. W.; Bancroft, G. M.; Henderson, G. S.; Ho, R.; Dalby, K. N.; Huang, Y.; Yan, Z. 
Bridging, Non-Bridging and Free (O2

-) Oxygen in Na2O-SiO2 Glasses: An X-Ray 
Photoelectron Spectroscopic (XPS) and Nuclear Magnetic Resonance (NMR) Study. J. 
Non. Cryst. Solids 2011, 357 (1), 170–180. 

(83)  Malfait, W. J.; Halter, W. E.; Morizet, Y.; Meier, B. H.; Verel, R. Structural Control on Bulk 
Melt Properties: Single and Double Quantum 29Si NMR Spectroscopy on Alkali-Silicate 
Glasses. Geochim. Cosmochim. Acta 2007, 71, 6002–6018. 

(84)  Uchino, T.; Sakka, T.; Lwasaki, M. Interpretation of Hydrated States of Sodium Silicate 
Glasses by Infrared and Raman Analysis. J. Am. Ceram. Soc. 1991, 74 (2), 306–313. 

(85)  Bartholomew, R. F. High-Water Containing Glasses. J. Non. Cryst. Solids 1983, 56, 331–
342. 

(86)  Cody, G. D.; Mysen, B. O.; Lee, S. K. Structure vs. Composition: A Solid-State 1H and 29Si 
NMR Study of Quenched Glasses along the Na2O-SiO2-H2O Join. Geochim. Cosmochim. 
Acta 2005, 69 (9), 2373–2384. 

(87)  Zietka, S.; Deubener, J.; Behrens, H.; Müller, R. Glass Transition and Viscosity of 
Hydrated Silica Glasses. Phys. Chem. Glas. Eur. J. Glas. Sci. Technol. Part B 2007, 48 (6), 
380–387. 

(88)  Yamashita, S.; Behrens, H.; Schmidt, B. C.; Dupree, R. Water Speciation in Sodium 
Silicate Glasses Based on NIR and NMR Spectroscopy. Chem. Geol. 2008, 256 (3–4), 231–
241. 

(89)  Tomozawa, M.; Takata, M.; Acocella, J.; Bruce Watson, E.; Takamori, T. Thermal 
Properties of Na2O·3SiO2 Glasses with High Water Content. J. Non. Cryst. Solids 1983, 
56 (1–3), 343–348. 

(90)  Pandya, N.; Muenow, D. W.; Sharma, S. K.; Sherriff, B. L. The Speciation of Water in 
Hydrated Alkali Silicate Glasses. J. Non. Cryst. Solids 1994, 176, 140–146. 

(91)  Zotov, N.; Keppler, H. The Influence of Water on the Structure of Hydrous Sodium 
Tetrasilicate Glasses. Am. Mineral. 1998, 83, 823–834. 

(92)  Stebbins, J. F.; Sen, S. Oxide Ion Speciation in Potassium Silicate Glasses: New Limits 
from 17O NMR. J. Non. Cryst. Solids 2013, 368, 17–22. 

(93)  Soares, P. .; Zanotto, E. .; Fokin, V. .; Jain, H. TEM and XRD Study of Early Crystallization 
of Lithium Disilicate Glasses. J. Non. Cryst. Solids 2003, 331 (1–3), 217–227. 

(94)  Bischoff, C.; Eckert, H.; Apel, E.; Rheinberger, V. M.; Höland, W. Phase Evolution in 
Lithium Disilicate Glass-Ceramics Based on Non-Stoichiometric Compositions of a Multi-
Component System: Structural Studies by 29Si Single and Double Resonance Solid State 
NMR. Phys. Chem. Chem. Phys. 2011, 13 (10), 4540–4551. 

(95)  Soares, R. S.; Monteiro, R. C. C.; Lima, M. M. R. A.; Silva, R. J. C. Crystallization of Lithium 
Disilicate-Based Multicomponent Glasses - Effect of Silica/Lithia Ratio. Ceram. Int. 2015, 
41, 317–324. 

(96)  Fernandes, H. R.; Tulyaganov, D. U.; Pascual, M. J.; Ferreira, J. M. F. Structure-Property 
Relationships and Densification-Crystallization Behaviours of Simplified Lithium 



 

  

127 References 

Disilicate Glass Compositions. Ceram. Int. 2014, 40, 129–140. 

(97)  Zhang, P.; Li, X.; Yang, J.; Xu, S. The Crystallization and Microstructure Evolution of 
Lithium Disilicate-Based Glass-Ceramic. J. Non. Cryst. Solids 2014, 392–393, 26–30. 

(98)  Sycheva, G. A. Phase Separation and Crystallization in Glasses of the Lithium Silicate 
System XLi2O · (100 - X)SiO2 (x = 23.4, 26.0, 33.5). Glas. Phys. Chem. 2011, 37 (2), 135–
149. 

(99)  Zanotto, E. D. Effect of Liquid Phase Separation on Crystal Nucleation in Glass-Formers. 
Case Closed. Ceram. Int. 2020, 46 (16), 24779–24791. 

(100)  Sycheva, G. A. Determination of the Size of the Critical Nucleus of Crystals in Lithium 
and Sodium Silicate Glass. Glas. Phys. Chem. 2015, 41 (3), 302–306. 

(101)  Prassas, M.; Hench, L. L. Ultrastructure Processing of Ceramics, Glasses and Composites; 
Hench, L. L., Ulrich, D. R., Eds.; Wiley: New York, 1984. 

(102)  Lu, G.; Klein, L. C. Unidirectional Crystallization of Potassium Disilicate II. Experimental 
Study. J. Cryst. Growth 1983, 64 (3), 479–484. 

(103)  Masoudi Alavi, A.; Sax, A.; Quirmbach, P. Interaction of Aluminum Metaphosphates in 
the Setting of Potassium Silicate Solutions in Terms of the Crystalline Phase 
Composition. ChemistryOpen 2020, 9 (5), 631–636. 

(104)  Sycheva, G. A. Evalution of the Surface Energy at the Crystal-Glass Interface in Sodium 
Silicate Glass 46Na2O∙54 SiO2. Glas. Phys. Chem. 1998, 24 (1), 47–53. 

(105)  Stebbins, J. F.; Sen, S. Silicate Species Exchange, Viscosity, and Crystallization in a Low-
Silica Melt: In Situ High-Temperature MAS NMR Spectroscopy. Am. Mineral. 1995, 80, 
861–864. 

(106)  Zhang T, B.; Easteal, A. J.; Edmonds, N. R.; Bhattacharyya, D. Sol-Gel Preparation and 
Characterization of Lithium Disilicate Glass-Ceramic. J. Am. Ceram. Soc. 2007, 90 (5), 
1592–1596. 

(107)  Li, P.; Ferguson, B. A.; Francis, L. F. Sol-Gel Processing of Lithium Disilicate Part I 
Crystalline Phase Development of Gel-Derived Powders. J. Mater. Sci. 1995, 30, 4076–
4086. 

(108)  Sycheva, G. A.; Kostyreva, T. G. Nucleation and Morphology of Crystals in Simple and 
Complex Silicate Glasses R′2O-SiO2, R′2O-R″O-SiO2, (R′ = Li, Na, K; R″ = Ca, Mg) 
Synthesized by the Sol-Gel Method. Glas. Phys. Chem. 2014, 40 (5), 513–520. 

(109)  Subasri, R.; Näfe, H. Phase Evolution on Heat Treatment of Sodium Silicate Water Glass. 
J. Non. Cryst. Solids 2008, 354 (10–11), 896–900. 

(110)  Elcometer Web Page: https://www.elcometer.com/fr/inspection-
revetements/materiel-dessai-physique-et-de-laboratoire/application-de-film/bar-
coaters-applicateurs-de-film/applicateurs-de-film-baker-rglables-elcometer-3525-
3530.html (accessed 2021 -09 -04). 

(111)  Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J. O.; Bujoli, 
B.; Gan, Z.; Hoatson, G. Modelling One- and Two-Dimensional Solid-State NMR Spectra. 



 

  

128 References 

Magn. Reson. Chem. 2002, 40 (1), 70–76. 

(112)  Vaitkus, A.; Merkys, A.; Grazulis, S. Validation of the Crystallography Open Database 
Using the Crystallographic Information Framework. J. Appl. Crystallogr. 2021, 54, 661–
672. 

(113)  Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, 
D.; Skinner, D.; Ceder, G.; Persson, K. A. Commentary: The Materials Project: A Materials 
Genome Approach to Accelerating Materials Innovation. APL Mater. 2013, 1, 011002-
1-011002–011011. 

(114)  Knoche, R.; Dingwell, D. B.; Seifert, F. A.; Webb, S. L. Non-Linear Properties of 
Supercooled Liquids in the System Na2O-SiO2. Chem. Geol. 1994, 116, 1–16. 

(115)  Lara, C.; Pascual, M. J.; Prado, M. O.; Durán, A. Sintering of Glasses in the System RO-
Al2O3-BaO- SiO2 (R=Ca, Mg, Zn) Studied by Hot-Stage Microscopy. Solid State Ionics 
2004, 170 (3–4), 201–208. 

(116)  Harris, R. K.; Newman, R. H. 29Si N.M.R. Studies of Aqueous Silicate Solutions. J. Chem. 
Soc. Faraday Trans. 2 1977, 73, 1204–1215. 

(117)  Mohsin, H.; Maron, S.; Maurin, I.; Burov, E.; Tricot, G.; Devys, L.; Gouillart, E.; Gacoin, T. 
Thermal Behavior of Waterglass: Foaming and Xerogel-to-Glass Evolution. J. Non. Cryst. 
Solids 2021, 566, 120872-undefined. 

(118)  Shen, A.; Keppler, H. Infrared Spectroscopy of Hydrous Silicate Melts to 1000 °C and 10 
Kbar: Direct Observation of H2O Speciation in a Diamond-Anvil Cell. Am. Mineral. 1995, 
80 (11–12), 1335–1338. 

(119)  Nowak, M.; Behrens, H. The Speciation of Water in Haplogranitic Glasses and Melts 
Determined by in Situ Near-Infrared Spectroscopy. Geochim. Cosmochim. Acta 1995, 59 
(16), 3445–3450. 

(120)  Stolper, E. Contributions to Mineralogy and Petrology Water in Silicate Glasses: An 
Infrared Spectroscopic Study. Contrib. to Mineral. Petrol. 1982, 81, 1–17. 

(121)  Bale, C. W.; Chartrand, P.; Degterov, S. A.; Eriksson, G.; Hack, K.; Mahfoud, R. Ben; 
Melanqon, J.; Pelton, A. D.; Petersen, S. FactSage Thermochemical Software and 
Databases. Calphad 2002, 26 (2), 189–228. 

(122)  Huang, S.; Zhang, B.; Huang, Z.; Gao, W.; Cao, P. Crystalline Phase Formation, 
Microstructure and Mechanical Properties of a Lithium Disilicate Glass-Ceramic. J. 
Mater. Sci. 2013, 48, 251–257. 

(123)  Huang, S.; Zujovic, Z.; Huang, Z.; Gao, W.; Cao, P. Crystallization of a High-Strength 
Lithium Disilicate Glass-Ceramic: An XRD and Solid-State NMR Investigation. J. Non. 
Cryst. Solids 2017, 457, 65–72. 

(124)  Shelby, J. E. Property/Morphology Relations in Alkali Silicate Glasses. J. Am. Ceram. Soc.  
1983, 66 (11), 754–757. 

(125)  Furukawa, T.; Fox, K. E.; White, W. B. Raman Spectroscopic Investigation of the 
Structure of Silicate Glasses. III. Raman Intensities and Structural Units in Sodium 
Silicate Glasses. J. Chem. Phys. 1981, 75 (7), 3226–3237. 



 

  

129 References 

(126)  McMillan, P. Structural Studies of Silicate Glasses and Melts-Applications and 
Limitations of Raman Spectroscopy. Am. Mineral. 1984, 69, 622–644. 

(127)  Matson, D. W.; Sharma, S. K.; Philpotts, J. A. The Structure of High-Silica Alkali-Silicate 
Glasses. A Raman Spectroscopic Investigation. J. Non. Cryst. Solids 1983, 58 (2–3), 323–
352. 

(128)  Mysen, B. O.; Frantz, J. D.; Mysen, B. O.; Frantz, J. D. Silicate Melts at Magmatic 
Temperatures: In-Situ Structure Determination to 1651°C and Effect of Temperature 
and Bulk Composition on the Mixing Behavior of Structural Units. Contrib Miner. Pet. 
1994, 117, 1–14. 

(129)  Sharma, S. K.; Mammone, J. F.; Nicol, M. F. Raman Investigation of Ring Configurations 
in Vitreous Silica. Nature 1981, 292, 140–141. 

(130)  Galeener, F. L. Planar Rings in Vitreous Silica. J. Non. Cryst. Solids 1982, 49, 53–62. 

(131)  Kilymis, D.; Ispas, S.; Hehlen, B.; Peuget, S.; Delaye, J. M. Vibrational Properties of 
Sodosilicate Glasses from First-Principles Calculations. Phys. Rev. B 2019, 99, 054209. 

(132)  Colomban, P.; Paulsen, O. Non-Destructive Determination of the Structure and 
Composition of Glazes by Raman Spectroscopy. J. Am. Ceram. Soc. 2005, 88 (2), 390–
395. 

(133)  Vega, A. J.; Scherer, G. W. Study of Structural Evolution of Silica Gel Using 1H and 29Si 
NMR. J. Non. Cryst. Solids 1989, 111, 153–166. 

(134)  Kinney, D. R.; Chuang, I.-S.; Maciel, G. E. Water and the Silica Surface As Studied by 
Variable-Temperature High-Resolution NMR. J. Am. Chem. Soc 1993, 115, 6786–6794. 

(135)  Brus, J.; Dybal, J. Hydrogen-Bond Interactions in Organically-Modified Polysiloxane 
Networks Studied by 1D and 2D CRAMPS and Double-Quantum 1H MAS NMR. 
Macromolecules 2002, 35 (27), 10038–10047. 

(136)  D’Espinose de la Caillerie, J.-B.; Aimeur, M. R.; Kortobi, Y. El; Legrand, A. P. Water 
Adsorption on Pyrogenic Silica Followed by 1H MAS NMR. J. Colloid Interface Sci. 1997, 
194, 434–439. 

(137)  Leboda, R.; Turov, V. V.; Marciniak, M.; Malygin, A. A.; Malkov, A. A. Characteristics of 
the Hydration Layer Structure in Porous Titania-Silica Obtained by the Chemical Vapor 
Deposition Method. Langmuir 1999, 15 (24), 8441–8446. 

(138)  Kümmerlen, J.; Merwin, L. H.; Sebald, A.; Hans, K. Structural Role of H2O in Sodium 
Silicate Glasses: Results from 29Si and 1H NMR Spectroscopy. J. Phys. Chem. 1992, 96, 
6405–6410. 

(139)  Robert, E.; Whittington, A.; Fayon, F.; Pichavant, M.; Massiot, D. Structural 
Characterization of Water-Bearing Silicate and Aluminosilicate Glasses by High-
Resolution Solid-State NMR. Chem. Geol. 2001, 174, 291–305. 

(140)  Schaller, T.; Sebald, A. One-and Two-Dimensional 1H Magic-Angle Spinning Experiments 
on Hydrous Silicate Glasses. Solid State Nucl. Magn. Reson. 1995, 5, 89–102. 

(141)  Simakin, A. G.; Salova, T. P.; Zavelsky, V. O. Mechanism of Water Dissolution in Sodium-



 

  

130 References 

Silicate Melts and Glasses: Structural Interpretation of Spectroscopic Data. 
Geochemistry Int. 2008, 46 (2), 107–115. 

(142)  Hayashi, S. Solid-State NMR Study of Locations and Dynamics of Interlayer Cations and 
Water in Kanemite. J. Mater. Chem 1997, 7 (6), 1043–1048. 

(143)  Beerkens, R. G. C. Modeling the Kinetics of Volatilization from Glass Melts. J. Am. Ceram. 
Soc. 2004, 84 (9), 1952–1960. 

(144)  Brandriss, M. E.; Stebbins, J. F. Effects of Temperature on the Structures of Silicate 
Liquids: 29Si NMR Results. Geochim. Cosmochim. Acta 1988, 52, 2659–2669. 

(145)  Dupree, R.; Holland, D.; Mortuza, M. G. A MAS-NMR Investigation of Lithium Silicate 
Glasses and Glass Ceramics. J. Non. Cryst. Solids 1990, 116, 148–160. 

(146)  Koroleva, O. N.; Bychinskii, V. A.; Tupitsyn, A. A.; Shtenberg, M. V.; Krenev, V. A.; 
Fomichev, S. V. Physicochemical Model as a Method for Calculating and Making 
Consistent Thermodynamic Properties of Structural Units in Alkali Silicate Melts. Russ. 
J. Inorg. Chem. 2015, 60 (9), 1104–1109. 

(147)  Zhang, P.; Dunlap, C.; Grandinetti, P.; Farnan, I.; Stebbins, J. Silicon Site Distributions in 
an Alkali Silicate Glass Derived by Two-Dimensional 29Si Nuclear Magnetic Resonance. 
J. Non. Cryst. Solids 1996, 204, 294–300. 

(148)  Deubener, J.; Müller, R.; Behrens, H.; Heide, G. Water and the Glass Transition 
Temperature of Silicate Melts. J. Non. Cryst. Solids 2003, 330 (1–3), 268–273. 

(149)  Mysen, B. O.; Frantz, J. D. Structure and Properties of Alkali Silicate Melts at Magmatic 
Temperatures. Eur. J. Mineral. 1993, 5 (3), 393–407. 

(150)  Madsen, I. C.; Scarlett, N. V. Y.; Kern, A. Description and Survey of Methodologies for 
the Determination of Amorphous Content via X-Ray Powder Diffraction. Zeitschrift fur 
Krist. 2011, 226 (12), 944–955. 

(151)  Scherer, G. W. Editorial Comments on a Paper by Gordon S. Fulcher. J. Am. Ceram. Soc.  
1992, 75 (5), 1060–1062. 

(152)  Fulcher, G. S. Analysis of Recent Measurements of Viscosity of Glasses. J. Am. Ceram. 
Soc.  1925, 8 (6), 339–355. 

(153)  Montanari, F.; Miselli, P.; Leonelli, C.; Boschetti, C.; Henderson, J.; Baraldi, P. Calibration 
and Use of the Heating Microscope for Indirect Evaluation of the Viscosity and 
Meltability of Archeological Glasses. Int. J. Appl. Glas. Sci. 2014, 5 (2), 161–177. 

(154)  Pascual, M. J.; Durán, A.; Prado, M. O. A New Method for Determining Fixed Viscosity 
Points of Glasses. Phys. Chem. Glas. 2005, 46 (5), 512–520. 

(155)  Panna, W.; Wyszomirski, P.; Kohut, P. Application of Hot-Stage Microscopy to 
Evaluating Sample Morphology Changes on Heating. J. Therm. Anal. Calorim. 2016, 125 
(3), 1053–1059. 

(156)  Pascual, M. J.; Pascual, L.; Durán, A. Determination of the Viscosity-Temperature Curve 
for Glasses on the Basis of Fixed Viscosity Points Determined by Hot Stage Microscopy; 
2001; Vol. 42. 



 

  

131 References 

(157)  Zhang, S.; Lee, Y. R.; Ahn, J. W.; Ahn, W. S. Sodium Silicate Insulating Foam Reinforced 
with Acid-Treated Fly Ash. Mater. Lett. 2018, 218, 56–59. 

(158)  Li, Y.; Cheng, X.; Cao, W.; Gong, L.; Zhang, R.; Zhang, H. Fabrication of Adiabatic Foam 
at Low Temperature with Sodium Silicate as Raw Material. Mater. Des. 2015, 88, 1008–
1014. 

(159)  Pauchard, L.; Allain, C. Buckling Instability Induced by Polymer Solution Drying. 
Europhys. Lett. 2003, 62 (6), 897–903. 

(160)  Kekevi, B.; Berber, H.; Yıldırım, H. Synthesis and Characterization of Silicone-Based 
Surfactants as Anti-Foaming Agents. J. Surfactants Deterg. 2012, 15 (1), 73–81. 



 

 

132 

Publications 

1. H. Mohsin et al, Intumescent behavior of alkali silicate thick coatings obtained from solution 

route (in submission phase) 

2. H. Mohsin et al, Crystallization induced suppression of intumescence in aqueous alkali 

silicates (in submission phase) 

3. H. Mohsin et al, Thermal behavior of waterglass: foaming and xerogel-to-glass evolution, 

Journal of Non-Crystalline Solids, 2021, 566, 120872 

 

Conferences/Seminars/Workshops 

- GOMD ‘21 Virtual Conference – Oral (Dec 2021) 

- PhD seminar, Saint-Gobain Research Paris – Oral (Jun 2021) 

- SiO2 2021 Virtual Conference – Oral (Jun 2021) 

- GERM Virtual Conference – Poster (Apr 2021) 

- RFL Group, Saint-Gobain Research Paris – Oral (Dec 2020) 

- PhD seminar, Saint-Gobain Research Paris – Oral (Nov 2020) 

- PhD seminar, Saint-Gobain Research Paris – Oral (Nov 2019) 

- ED Interface Day, UniversitéParis-Saclay – Poster (Nov 2019) 

- 11th ICG Montpellier Summer School, France (Jul 2019) 

- Gay-Lussac Day, Saint-Gobain Research Paris – Poster (July 2019) 

- DGG-USTV Joint Conference, Germany – Poster (May 2019) 

- PhD seminar, Saint-Gobain Research Paris – Oral (Feb 2019) 

 

  



Journal of Non-Crystalline Solids 566 (2021) 120872

Available online 8 May 2021
0022-3093/© 2021 Elsevier B.V. All rights reserved.

Thermal behavior of waterglass: foaming and xerogel-to-glass evolution 
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A B S T R A C T   

Structural properties of aqueous Na-silicates at both room and high temperature (below 500◦C) have been 
investigated to better understand the microscopic evolution of structure and the macroscopic phenomenon of 
foaming. NMR spectroscopy has provided a direct quantification of structural units defined as Qn. Solid-state 
NMR along with Raman spectroscopy has indicated the extent of local structural reorganization on heating 
the silicates. Heating an aqueous Na-silicate leads to structural changes due to the removal of water, where the 
quantity of leftover water in the system obeys an Arrhenian evolution with an activation energy of 30 kJ.mol− 1. 
TGA, NMR and Raman measurements suggest that the structure becomes similar to the one of hydrated silicate 
glasses studied in geochemistry. Increasing the Na concentration results in a larger quantity of water retained 
after a pre-drying treatment, which correlates with a lower softening temperature of the material and is, 
macroscopically, related to foaming of the silicate.   

1. Introduction 

Aqueous sodium silicates represent a cheap and green class of alkali 
silicates that find potential in several industrial applications such as 
binders,1,2 coatings3–5 and fire-retardant materials6–8 to name a few. 
Fire-resistant properties of these silicates are of particular interest due to 
growing urban demand in the construction sector. Their intumescent 
behavior is a consequence of endothermic removal of water on con-
tacting fire, resulting in a rigid foam (see Figure S1) that is thermally 
insulating. This motivates a thorough structural investigation at both the 
microscopic and macroscopic levels for a better understanding of their 
evolution with temperature and the underlying foaming phenomenon. 

Sodium silicate solutions, which are a mixture of sodium oxide 
(Na2O) and silicon dioxide (SiO2) dissolved in water, are in general 
characterized by the Na2O/SiO2 molar ratio and the silicon concentra-
tion, that determine the structure of the polymeric silicate network. 
Microscopic structure of these silicate solutions at room temperature has 
been widely reported with particular emphasis on the effect of changing 
the initial concentration of Na on the distribution of Qn (where ‘n=0 to 
4’ represents structural units that correspond to the number of bridging 
oxygens (BOs) in the SiO4 tetrahedrons).9–12 Several techniques 

including Raman,11,13 infra-red (IR)2,11,14 and 29Si nuclear magnetic 
resonance (NMR)11,14 spectroscopy as well as small angle X-ray scat-
tering (SAXS)15 have suggested an increased degree of polymerization of 
the network with decreasing Na content in aqueous Na-silicates due to a 
reduction in their occupancy of non-bridging oxygens (NBOs). On the 
other hand, widely conducted studies have also been reported at both 
room16–21 and elevated temperatures17,22–25 for binary Na-silicate 
glasses prepared by conventional melt and quench process using the 
aforementioned characterization tools. 

A majority of the studies on Na-silicates have focused on the solution 
properties at ambient conditions and therefore do not inform about the 
temperature stability of dried silicate and its behavior in the tempera-
ture range relevant for fire-retardant applications. Above 100◦C, a 
limited number of studies have been reported on the microscopic evo-
lution during drying of Na-silicate solutions with temperature, mainly 
suggesting the condensation of silanols associated to water evapora-
tion.26 Macroscopic changes including structural expansion corre-
sponding to foaming at and above 150◦C have been observed on drying 
Na-silicate solution,27–30 and the extent of this expansion decreases on 
increasing the SiO2 concentration while keeping Na content constant.6 

Heating further to temperatures as high as 800◦C leads to a progressive 
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transition between a dried gel i.e. a xerogel, and a compound with 
glass-like properties. Similar to glasses obtained from the melt and 
quench technique, crystallization31 may also be observed, especially 
when considering compositions with high sodium content. 

However, a lack of in-depth studies on microscopic structural evo-
lution with temperature above 100◦C and below 500◦C (i.e. before any 
crystallization occurs) using quantification techniques like NMR and 
Raman spectroscopy has limited the thorough understanding of prop-
erties that might influence the behavior at macroscopic scale (e.g. 
foaming). Furthermore, this temperature range crosses the frontier be-
tween soft chemistry and conventional glass chemistry, and a clear gap 
exists in linking the structural properties of Na-silicate solutions and sol- 
gel derivatives to the corresponding binary glasses prepared by the in-
dustrial melt and quench process. 

An important motivation to fill this gap is the understanding of the 
structural evolution occurring while heating a silicate xerogel, starting 
from a sol-gel condensed siloxane network to a glass-like network 
exhibiting a typical glass transition temperature (Tg). Over which tem-
perature range does this transition occur? How does the progressive 
elimination of water from condensation lead to foaming? What is the 
effect of water on the rheology of the network and how does it impact 
the Tg? Only little is known on these queries while it is evident that 
water drastically impacts the glass properties. As an example, glass 
transition values as low as 180◦C have been reported for glasses with a 
direct dependency on the amount of water in the silicate32 and the 
concentration of Na2O in the network.33 Therefore, it is also interesting 
to compare the evolution of alkali silicate solutions at high temperatures 
with the large body of research on the structure of hydrated alkali sili-
cate glasses and melts in geochemistry and glass science.32,34–38 

In this work, we report on the investigation of temperature evolution 
of commercially available aqueous Na-silicates starting from solutions to 
450◦C for creating a link between the microscopic properties of these 
solutions and the corresponding Na2O-SiO2 glasses prepared by melt and 
quench process. The effect of changing the Na2O/SiO2 molar ratio has 
also been investigated. Thermogravimetric analysis (TGA) has been 
performed to measure the mass loss of hydrated silicate powders while 
NMR spectroscopy has allowed to have a quantitative as well as quali-
tative information on the polymerization and connectivity of the silicate 
network. Raman spectroscopy has been utilized as a complementary tool 
to NMR for qualitative comparison of different Na2O/SiO2 molar ratios. 
From the combination of these techniques, we estimate the amount of 
water remaining in the material under its different forms (free water, 
solvating water and silanols)39 as a function of temperature. This pro-
vides structural information allowing to explain macroscopic evolution 
of the silicate upon thermal treatment, such as rheological behavior and 
foaming. 

2. Materials and Methods 

2.1. Raw materials and sample preparation 

Commercially available Na-silicate solutions were used as the start-
ing materials. They have been defined in terms of their molar ratio as 
X¼nNa2O/nSiO2. Na-silicate extra pure solution (27.75 wt% SiO2 – 
8.25 wt% Na2O – 64 wt% H2O) corresponding to the molar ratio X=0.29 
was purchased from Sigma-Aldrich while Na-silicate crystal 0095 solu-
tion (27.25 wt% SiO2 – 13.75 wt% Na2O – 59 wt% H2O) corresponding 
to the molar ratio X=0.5 was purchased from PQ Corporation. Both 
solutions were used as received. Reference bulk glasses of the compo-
sition 77% SiO2 – 23% Na2O (corresponding to X=0.29 silicate solution) 
and 67% SiO2 – 33% Na2O (corresponding to X=0.5 solution) were 
prepared by melt and quench process. 

Na-silicate dried powders were prepared by heating the initial so-
lutions in an oven at 150◦C for 15 h to remove maximum amount of free 
water and limit the extent of foaming while performing further analyses. 
For our investigations, further thermal treatments were achieved on 

these powders at 275◦C, 350◦C, 400◦C and 450◦C at a heating rate of 
5◦C/min for 2 h each. Obtained powders or reference glasses were 
grinded and stored in sealed glass vials. 500 mg powder pellets were 
prepared by a Specac Manually Operated 15-ton Hydraulic Press using a 
13 mm diameter die at a load of 2 tons for 60 s. 

2.2. Characterization tools 

2.2.1. Thermal analysis 
Thermogravimetric analysis (TGA) was performed using a 

NETZSCH STA 409 Thermal Analyzer for obtaining mass loss curves up 
to 1200◦C to monitor the evolution of leftover water or silanols with 
temperature in Na-silicate powders pre-dried at 150◦C. An alumina 
crucible was used as the container and a moisture-free atmosphere was 
provided by continuously flowing N2/O2 gases in nearly equal volume. 
The measurement was repeated twice. Temperature calibration was 
performed at heating rates of 5, 10 and 20◦C/min from the DTA signal 
using metal standards with different melting temperatures. Note that the 
calibration is not accurate at low temperature sweeps when the DTA 
signal is significantly broadened. Only small quantities of samples could 
be analyzed, typically 15 mg of the powder pre-dried at 150◦C, because 
of foaming. This led to improper correction of the buoyancy effects in 
the RT-150◦C temperature range. 

Differential scanning calorimetry (DSC) was utilized for 
measuring the heat capacity of these silicates on a NETZSCH DSC 404 C 
under continuous N2 flow. Typically, 10 mg of pre-dried powders pre-
pared at 150◦C were used as the starting materials and loaded as- 
received into a platinum-rhodium crucible without compressing. A 
heating rate of 10◦C/min was employed. For heat capacity measure-
ments, calibration was done by recording a baseline (without the sam-
ple) and a reference measurement with Sapphire which gives an energy 
calibration allowing subsequent calculations to be made using the pro-
cessing software. 

2.2.2. Nuclear Magnetic Resonance Spectroscopy 
Liquid-state 29Si NMR: The structure of Na-silicate solutions in 

terms of Qn units was analyzed using liquid-state 29Si NMR. Spectra were 
recorded at 59.63 MHz on a 300 MHz AVANCE II Bruker spectrometer 
with a BBO probe. A π/2 pulse was used with a repetition delay opti-
mized at 5 s. 30 vol% heavy water (D2O) was added to the samples for 
locking. All 29Si chemical shifts were referenced to tetraethoxysilane 
(TEOS) as external reference [Chemical shift (Si)=-82 ppm vs TMS]. The 
contribution of the glass tube was corrected by subtracting the spectrum 
of empty tube from the final spectrum of silicate solutions. The relative 
proportion of Qn units was determined by integrating the area under the 
curve of each peak for an exact quantification of the various species. 

Solid-state MAS NMR: The samples treated at different tempera-
tures and the prepared glasses were analyzed with solid-state magic 
angle spinning (MAS) NMR experiments. The 1D 29Si NMR spectra were 
acquired at 71.53 MHz on a Tecmag Apollo360 spectrometer equipped 
with a 4 mm Bruker probe head operating at a spinning frequency (νrot) 
of 15 kHz. The acquisitions were performed with a 3.55 µs pulse length 
(corresponding to a π/2 flip angle), 3072 transients and a repetition 
delay of 20 s. The repetition delay was optimized by going up to 1500 s 
but that does not provide higher signal intensity. 23Na and 1H MAS-NMR 
experiments were recorded at 211.6 and 800 MHz, respectively, on an 
18.8 T Bruker spectrometer. All the experiments were performed with a 
3.2 mm probe head operating at νrot of 20 kHz. 23Na MAS-NMR exper-
iments were obtained with a 1 µs pulse length (corresponding to a π/8 
flip angle), 256 transients and an optimized repetition delay of 0.5 s. 1H 
MAS-NMR spectra were obtained with a 2.7 µs pulse length (corre-
sponding to π/2 flip angle), 64 transients and an optimized repetition 
delay of 5 s. The NMR spectra were corrected from the signal coming 
from the probe. 29Si, 23Na and 1H chemical shifts were referred to TEOS, 
NaCl and TMS solutions at -82, 0 and 0 ppm, respectively. Deconvolu-
tion of the 29Si NMR spectra was performed using the Dmfit software40 
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with Gaussian fitting function because of the chemical shift distribution 
of amorphous structures. In order to analyze the 1H/29Si and 23Na/29Si 
interactions, correlation NMR was also applied at 9.4 T with an HXY-4 
mm probe head operating at νrot of 8 kHz. 1D 29Si (23Na) Cross Polari-
zation (CP) NMR technique was used to determine the distribution of Na 
ions within the silicate network. The experiment was performed with 
optimized low radio-frequency fields (around 5-6 kHz for both channels) 
allowing for an efficient transfer, a contact time of 6 ms and 400 k 
transients separated by a repetition delay of 0.2 s. 2D 29Si (1H) CP 
spectra were acquired to trace the Si-OH linkages. The 2k x 10 acqui-
sition points were recorded under rotor-synchronized conditions with 
1H and 29Si radiofrequency fields of 50 and 34 kHz and a contact time of 
6 ms. Each direct slice was recorded with 512 transients and a repetition 
delay of 4 s. 

2.2.3. Raman spectroscopy 
Structural changes in terms of densification and polymerization of 

the silicate network with temperature were studied qualitatively using 
Raman spectroscopy. The data was acquired on Na-silicate powder 
pellets using a Renishaw Qontor Raman Spectrometer equipped with a 
532 nm green laser and 50 mW power. A 50X objective lens was utilized 
for acquiring 992 spectra in the range 300-1300 cm− 1 with a 90 µm step- 
size and an exposure time of 20 s. These spectra were averaged using 
principle component analysis (PCA) for denoising and homogenizing the 
composition variations from grain to grain over the pellet surface. 

2.2.4. Visual monitoring of foaming process 
The foaming behavior of a liquid droplet was visually inspected by 

recording a video of the droplet using a smartphone during heating 
under a temperature adjustable Steinel HL 220 E heat gun. Images at 
different temperatures were extracted from the video to show the cor-
responding thermal evolution of the droplet (details are given in section 
3.2.4). The schematic illustration and description of the setup used is 
given in SI 2. 

Images of a powder pellet (500 mg; diameter=13 mm; load=2 tons 
for 60 s) discussed in section 3.2.4 were captured using a smartphone at 
different temperatures during heating in a box furnace. This was ach-
ieved by manually opening the furnace door at set temperature points 
during the 5◦C/min ramp. For a precise in-situ monitoring of thermal 
evolution of a powder pellet, a hot-stage microscope equipped with a 
10X objective was utilized to record a video by capturing several images 
on ramping up to 400◦C. Further details of the experimental parameters 
and the setup can be found in SI 2. 

3. Results and discussion 

3.1. Macroscopic evolution: global water content 

Dried Na-silicate powders prepared from the two commercial solu-
tions (X=0.29 and 0.5) by heating overnight at 150◦C were subjected to 
further heating for investigation of properties at both macroscopic 
(global water evolution) and microscopic (structural) scale. These 
powders, dried but still hydrated will be referred to as “pre-dried” sili-
cates. In this section, we describe the macroscopic evolution of these 
silicate powders and the effect of initial Na content. 

Thermal evolution of the pre-dried Na-silicates was derived from 

Figure 1. (a) Evolution of total water left in the network for the two molar ratios (TGA measurement performed at 10◦C/min); note that both y-axes on the right, red 
corresponding to X=0.29 and black to X=0.5, represent nOH/nSi, (b) DSC measurements for heat capacity at 10◦C/min also performed on pre-dried powder (the 
onset of the peaks are identified as a glass transition and match well with the macroscopic foaming temperature), (c) Arrhenian plot of TGA mass loss curves (the 
fitting temperature range is 220-450◦C for X=0.29 and 180-400◦C for X=0.5, respectively) and (d) comparison of our TGA curves (represented by solid lines) with 
glass transition temperature reported for hydrated glasses32,35,36 (Q represents the mole fraction of water whereas the molar content of SiO2 (at 150-500◦C), rep-
resented by z, is in the range 0.56-0.77 moles for X=0.29 and 0.46-0.66 moles for X=0.5, respectively, while constant for literature points). 
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TGA measurements as shown in Figure 1. X=0.29 silicate powder was 
subjected to mass loss measurements at heating ramps of 5, 10 and 
20◦C/min to determine if the evolution was controlled by kinetic effects 
(see Figure S3(a)). A heating rate of 10◦C/min was chosen for further 
studies as the mass loss seemed to be only temperature dependent, at 
least for the range of heating rates tested. 

The mass loss curves for the two molar ratios at a heating rate of 
10◦C/min are shown in Figure S3(b) while the percentage of leftover 
water (calculated by subtracting percentage mass loss at 275, 350, 400, 
450, 500, 600 and 1200◦C from the overall mass lost in TGA measure-
ments) is plotted as a function of temperature in Figure 1(a). Note that 
the step around 400◦C for X=0.29 in Figure 1(a) is a consequence of 
splashing or bubble bursting from the powder and corresponds to a mass 
loss of 0.4% which is not significant and is, thus, a part of the calcula-
tions made here. Dehydration occurs very quickly after heating at 
temperatures higher than 150◦C (pre-drying temperature). Interest-
ingly, DSC curves shown in Figure 1(b) suggest that the silicates expe-
rience a Tg around 210◦C for X=0.29 and 175◦C for X=0.5, in the same 
range of temperature where dehydration starts. Note that there is an 
interplay between glass transition and water removal which means that 
decreasing the water content changes the (supposed) Tg and when the 
DSC-determined glass transition is reached, water removal increases 
since the silica network is more mobile and water diffusion is enhanced 
within the material. 

More overall mass is lost for the silicate with higher Na content in the 
network indicating a slightly more retention of leftover water in the 
starting powder prepared at 150◦C. Assuming that all water is lost at 
1200◦C, total water retention is 12% in X=0.5 and 10% in X=0.29 
starting powder as shown in Table 1. This slight difference in the amount 
of water may explain the offset of temperature observed by DSC sug-
gesting a connection between the water content and softening (more 
mobile network) of the material. Near 150◦C, the presence of more 
retained water when there is higher Na content in the silicate can be 
attributed to solvating water (linked to silanols or ionic hydration)39 and 
a higher number of silanols. 

The global evolution behavior of TGA mass loss is almost the same 
for the two molar ratios although the two curves are just shifted. For a 
better comparison of the two molar ratios, we plot the leftover water 
content versus inverse temperature in an Arrhenian diagram in Figure 1 
(c). Since TGA data is independent of the ramping speed, we can 
consider that the Arrhenius law may describe temperature dependence 
of reaction rates. Considering that all free water has been removed by 
the pre-drying step at 150◦C, the following possible reactions leading to 
water release are considered: 

2SiOH⇌ Si − O − Si+ H2Oatm (1)  

SiO− H+/H2Osolv(orSiO− − H3O+)⇌SiOH + H2Oatm (2)  

SiO− Na+/H2Osolv⇌ SiONa+ H2Oatm (3)  

where the left-hand side of eq. 1, 2 and (3) represent proton-related 
species i.e. isolated silanols as well as silanols and Na-linked NBOs sol-
vated by water molecules in the silicate, while the right-hand side in-
dicates water evaporating into the atmosphere on thermal treatment. 

As a rough approximation, we consider that reaction 1 prevails in the 
Arrhenius plot since its activation energy is expected to be much higher 

than the two other reactions associated to the removal of solvated water. 
The reaction constant (k) of reaction 1 can, therefore, be expressed as: 

k =
p[H2O]
c[SiOH]

2 = Aexp
(
− Ea

RT

)

(4)  

where ‘p’ is the partial pressure, ‘c’ the concentration, ‘A’ the pre- 
exponential factor, ’Ea’ the activation energy, ‘R’ the gas constant 
(8.3145 J.mol− 1.K− 1) and ‘T’ the temperature in K. Considering that the 
partial pressure of water is fixed by a large atmospheric reservoir, 
therefore, making it constant, the Ea is linked to protons as: 

[SiOH] ∼ exp
(

Ea

2RT

)

(5) 

The calculated Ea values in the low temperature range (below 450◦C) 
are 34.1 kJ.mol− 1 and 29.4 kJ.mol− 1 for the molar ratio X=0.29 and 
X=0.5, respectively, suggesting same order of magnitude for the two Na- 
silicates. Such low values of Ea are consistent with literature studies on 
Na-based silicate glass melts with values approaching 30 kJ.mol− 1.37,38 

Therefore, this suggests that the removal of water is controlled by two 
simultaneous mechanisms: the removal of solvated water, and the 
transformation of some hydroxyl groups into solvated water to maintain 
a ratio corresponding to the equilibrium speciation of water at a given 
temperature. The latter mechanism also implies that the 
proton-involving network is relatively mobile. 

Regarding the mobility of the network, literature data were obtained 
from geochemistry studies32,35,36 on the Tg (corresponding to a viscosity 
of 1012 Pa.s) of hydrated sodium silicate glasses obtained by dissolving 
water into the melts at high pressure. These values are reported in 
Figure 1(d) for different molar ratios along the pure sodium oxide to 
pure water line. We have also included in this figure the TGA curves 
corresponding to specific water over sodium content at particular tem-
perature points. Interestingly, the onset of the mass loss corresponds to a 
temperature just above the literature data for the glass transition, sug-
gesting that water removal is possible only after the network becomes 
mobile. As the temperature increases, the water content of the material 
remains high enough so that the glass transition for the obtained 
composition is lower than the actual temperature, meaning that the 
network always keeps some mobility. Nevertheless, the difference be-
tween the temperature (for a given composition resulting from water 
loss) and the corresponding Tg is small, suggesting that the system loses 
water until the viscosity of the system becomes too high. It is possible 
that in the temperature range of our observations, the composition 
versus temperature evolution corresponds to an iso-viscosity line. 

These measurements give us a global picture of how water evolves in 
Na-silicate powders with temperature once the free water has been 
mostly removed. For a microscopic view of the structure of the material, 
and in particular the distribution of water between solvated water and 
silanols, it is important to investigate structural evolution using spec-
troscopic measurements. 

3.2. Structural properties 

The structure of Na-silicate solutions (X=0.29 and X=0.5) has been 
investigated quantitatively by liquid-state NMR. Their spectra exhibit 
multiple peaks indicative of the coexistence of different Qn species, 
where n represents the number of bridging or bonded oxygens (BOs) in 
the silicate network while the other oxygens are referred to as non- 
bridging or non-bonding oxygens (NBOs) as shown in Figure S4. The 
relative proportion of each Qn was determined by taking the integral 
under each peak and is shown in the corresponding NMR spectrum in 
Figure S4(a) and (b). 

3.2.1. Evolution of structure with temperature 
Heating Na-silicate solutions leads to microscopic structural changes 

along with changes at the macroscopic scale. Evolution of structural 

Table 1 
Comparison of the composition (in wt%) of Na-silicates before and after pre- 
drying at 150◦C.  

X¼nNa2O/nSiO2 Pre-drying SiO2 (%) Na2O (%) H2O (%) 
0.29 None 27.75 8.25 64 

150◦C 69.3 20.7 10 
0.5 None 27.25 13.75 59 

150◦C 58.7 29.3 12  
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properties with temperature was studied on powders by solid-state 29Si 
MAS-NMR in terms of the evolution of Qn units. Broad peaks are 
observed due to the glassy character of the silicates i.e. broad distribu-
tion of chemical shifts due to various chemical environments in the 
structure. These broad bands were deconvoluted into individual Qn units 
as shown in Figure 2(a), (b) and (c). The deconvolution error is esti-
mated to be a few percent for the different units. 

Q2, Q3 and Q4 are the only species observed for X=0.29 powders with 
a variation in the relative proportion of each on increasing temperature. 
Network polymerization occurs on heating as indicated by the increase 
of Q4 along with the decrease of Q2 as shown in Figure 2(a). Q2 vanishes 
at 400◦C while the amount of Q4 increases from 25% at 150◦C to 39% at 
400◦C indicating an increase in the network connectivity. A similar 
trend is observed in the system with higher Na content (X=0.5) as shown 
in Figure 2(b). Higher Q2 fraction is measured for higher Na content in 
the initial solution due to an already depolymerized network. Q1, Q2 and 
Q3 units represent the majority species up to 350◦C, whereas a small Q4 

contribution (7%) appears at 400◦C. Q1 vanishes at 275◦C while a 
decrease from 33% at 150◦C to 9% at 450◦C is observed for Q2 indicating 
network polymerization. Q3 is observed to increase until 350◦C while 
the appearance of Q4 is observed at 400◦C. This polymerization of the 
network is a result of the condensation reaction of silanols present in the 
network as NBOs. A detailed analysis on the role of free water, solvating 
water and silanols is given later in section 3.2.3 and 3.2.4. 

The structure in terms of the relative fraction of Qn units of these 
xerogels after heating to 400◦C indicates a structural arrangement very 
similar to that found in the corresponding glasses prepared by melt and 

quench process as shown in Figure 2(c) and (d). The evolution of Qn 

fractions with temperature for the two molar ratios and corresponding 
fraction of Qn units for glasses is compared in Figure 2(d). Q2 and Q4 

follow a similar trend for the two molar ratios while a relatively different 
behavior is observed for Q3. The fraction of Q3 does not change much for 
X=0.29 on increasing temperature suggesting it to be relatively inde-
pendent of the polymerization reaction. For X=0.5, Q2 converts into Q3 

until 350◦C followed by the formation of Q4 at 400◦C where the fraction 
of structural units roughly equates to that of the corresponding glasses 
for both the molar ratios. Interestingly, for a molar ratio of 0.5, the 
additional structural disorder associated to the Q3 dismutation reaction 
(in our case, 2Q3 ↔ Q2+Q4, representing the average structure corre-
sponding exactly to Q3), is the same for the materials prepared from the 
solution and from the melt and quench protocol. The fact that the 
structure of the material is close to the one of the melt is another hint 
that the material crosses a glass transition and its silicate network is able 
to rearrange in order to reach equilibrium. 

The local structural reorganization of the silicate network can also be 
determined by Raman spectroscopy which, although being not quanti-
tative, is sensitive to mid-range structural units (e.g. rings) and allows to 
have a qualitative assessment of the silica network modifications with 
temperature. Figure 3 shows the Raman response of Na-silicate pellets at 
different temperatures along with the spectrum of glasses corresponding 
to each molar ratio. 

Each spectrum shows two major bands usually observed in sodo- 
silicates,17,18,41,42 one corresponding to the bending vibrational mode of 
Si-O-Si network (centered between 535-550 cm− 1 for X=0.29 and 

Figure 2. Deconvoluted experimental solid-state 29Si MAS-NMR spectra of Na-silicate powders with a molar ratio (a) X=0.29 & (b) X=0.5 and (c) Na-silicate glasses 
(77% SiO2 – 23% Na2O and 67% SiO2 – 33% Na2O), together with fitted curves, individual components and their relative fractions, and (d) variation of Qn fractions 
with temperature for the two molar ratios ( for X=0.29 and for X=0.5) and points for the corresponding glasses ( for 77% SiO2 – 23% Na2O and for 67% SiO2 – 33% 
Na2O) showing the same fraction of Qn units at 400/450◦C. 
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575-590 cm− 1 for X=0.5) while the other in the range 825-1250 cm− 1 is 
representing the symmetrical stretching vibration of Si-O bonds related 
to the Qn units. The small localized contribution centered around 1080 
cm− 1 corresponds to the presence of carbonates that are formed due to 
high reactivity of Na ions at the surface of the sample. From litera-
ture,17,22,43 the different Qn configurations have specific vibrational 
fingerprints inside the stretching envelope with the contribution of Q1, 
Q2, Q3 and Q4 near 850, 920, 1080 and 1140 cm− 1, respectively (see 
Figure 3). The increase in lower wave number contribution (Q1, Q2) with 
increasing Na content shows the proportion of lower Qn species to be 
higher, as observed from the spectra at 150◦C and the reference glasses 
in Figure 3, due to silica network depolymerization. 

The general trend in terms of network polymerization with 
increasing temperature is the same as observed from 29Si NMR data. A 
change in the shape of the broad band representing Qn units is observed 
for both the molar ratios on going from 150◦C to 400◦C resulting from 
the reduction in contribution of lower Q species (Q1, Q2) and an increase 
in the signal from Q4 indicating a tendency towards more network 
connectivity on increasing temperature. A slight peak shift is also 
observed i.e. Qn band moves from a Raman shift of 1070 cm− 1 at 150◦C 
to 1097 cm− 1 at 400◦C for X=0.29 while a shift in position from 1079 
cm− 1 at 150◦C to 1100 cm− 1 at 400◦C is observed for X=0.5, as shown in 
Figure 3(a) and (b) respectively. 

The intensity of the band centered at lower Raman shift values, 
attributed to the different Si-O-Si angles or other local configurational 
variations, is observed to change on changing Na content in the silicate. 
The different contributions at this band could be due to the existence of 
different types of bridging oxygens (Q3-O-Q3, Q4-O-Q4, Q2-O-Q3 etc.) or 
ring configurations.44,45 Furthermore, network consolidation increases 
on going from 150◦C to 400◦C as evident from the left shift in the peak 
position of Si-O-Si vibration, representative of the variation of Si-O-Si 
bond angles with temperature. These constraints on bond angles have 
been reported for Na-silicate glasses46 where ab-initio calculations 
showed a variation in the distribution of bond angles on changing Na 
content. The spectrum at 400◦C for both the molar ratios is very similar 
to the one obtained for corresponding melt and quench glasses sug-
gesting glass-like structural properties (especially in terms of Qn units) to 
have been achieved. Taking the area ratio of the peak at lower Raman 
shift value to that at higher frequency shows a decreasing trend on 
increasing temperature indicative of network condensation47 as shown 
in Figure S5. Furthermore, the ratio of peaks is very high for the cor-
responding reference glasses suggesting the silicate structure for our 

Na-silicates to be more chain-like than the ring-type observed in glasses. 
Thus, Raman spectroscopy has provided a complementary understand-
ing of the structural evolution of Na-silicates. At 400◦C, the short-range 
structure (Qn units) of the xerogel is very close to the one of a melt and 
quench glass, but at a longer range (at the scale of silica rings), the 
structure is different, in particular it is less dense. 

Structural changes at the microscopic scale are linked to and influ-
enced by the existence and distribution of Na ions and protons in the 
structure as well as the presence of solvating water. Therefore, it is 
important to understand the interaction and evolution of these species 
with the silicate network. Further details of each of these species are 
discussed in the upcoming sub-sections. 

3.2.2. Na distribution within the silicate network 
The nature, distribution and specific connectivity of Na in the 

network was determined by performing 23Na and 23Na/29Si NMR on 
X=0.29 powders and 77% SiO2 – 23% Na2O reference glass. The cor-
responding spectra are shown in Figure 4(a). A peak centered at a 
chemical shift of -2.5 ppm is observed in the 23Na MAS-NMR experi-
ments for the silicate powders at each temperature and glass indicating 
the environment of Na to be the same in all the cases. Furthermore, a 
slight shoulder centered at 10 ppm can also be seen for each temperature 
and this corresponds to the presence of carbonates. Also, we did not find 
a signature of NaOH, meaning that all sodium ions belong to the silicate 
network. Information about the distribution was given by the 1D 29Si 
(23Na) CP NMR spectrum (Figure 4(b)). This spectrum shows only the 
signature of silicate species experiencing a very close spatial proximity 
to Na ions. In other words, the spectrum in Figure 4(b) shows the silicate 
units involved in Si-O− +Na linkages. Therefore, the presence of Q3, Q2 

and Q1 signals in the CP spectrum indicates that Na ions are homoge-
neously distributed within the silicate network. This suggests that Na is 
connected to both Q2 and Q3 for X=0.29 and Q1, Q2 and Q3 for X=0.5, 
respectively. 

3.2.3. Evolution of water/silanols 
Apart from the structural/network changes in terms of Qn units, 

another important aspect to be considered is the evolution of solvating 
water and silanols. After the removal of free water around the boiling 
temperature, the network is mainly composed of solvating water (water 
molecules H-bonded to the network or due to some dipole-dipole in-
teractions) and silanols. Figure 5(a) shows the 1H NMR spectra for 
X=0.29 powders and 77% SiO2 – 23% Na2O reference glass. Multiple 

Figure 3. Evolution of Raman spectrum (in black) of Na-silicate pellets with temperature for (a) X=0.29 and (b) X=0.5. Raman spectra of the corresponding glasses 
(77% SiO2 – 23% Na2O and 67% SiO2 – 33% Na2O) are shown by red curves for both the molar ratios. The peak centered at 1080 cm− 1 (or slight shoulder at 1078 
cm− 1) is indicative of the presence of carbonates/hydrogen carbonates which are expected to be formed due to the mobility of Na ions and a subsequent reaction with 
atmospheric CO2. 
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bands can be seen in all the spectra, especially for the Na-silicate powder 
at 150◦C and 275◦C indicating the presence of multiple proton-related 
species. The band in the range of chemical shift 3-8 ppm, in case of 
silica, corresponds to silanols48–50 with possible multiple configurations 
as well as adsorbed or solvating water molecules.49,51,52 Hydrous 
Na-silicate glasses have been reported to have a characteristic connec-
tivity of proton-related species in the network53–56 very similar to the 
one shown in Figure 5(a). Isolated silanols and those solvated by water 
molecules appear to be centered at ~3.9 ppm and ~5.7 ppm, respec-
tively. The origin of the band from 8-17 ppm is representative of water 
molecules solvating Na ions (or NaOH) and long-range SiOH-O−

H-bonding. Long range H-bonding has been proposed to be a conse-
quence of inter-lamellar interaction, especially in the case of Kanemite 
(NaHSi2O5.3H2O) where the structure is composed of consecutive sheets 
of SiO2 tetrahedra arranged in the form of rings.57,58 This might be 
representative of inter-silanol interaction in our case as we do not expect 
our Na-silicates to be composed of a lamellar arrangement. 

The detected species in our case are linked mainly to Q3 as shown by 
the 2D 29Si (1H) CP-HETCOR NMR spectrum for X=0.29 (see Figure S6 
for X=0.5) in Figure 5(b) suggesting the structure to be composed of 
silanols and solvating water, with some inter-silanol H-bonding (see 
Figure 5(c)). The fraction of each proton-related specie is reduced on 

Figure 4. Solid-state (a) 23Na NMR spectra of Na-silicate powder with X=0.29 and the corresponding glass, (b) 29Si (23Na) CP NMR spectrum for the powder with 
X=0.5 at 150◦C and (c) the corresponding connectivity of Na in the network for X=0.29. 

Figure 5. Solid-state (a) 1H NMR spectra of Na-silicate (X=0.29) powder and the corresponding reference glass (band assignment according to literature54–56), (b) 2D 
29Si (1H) CP-HETCOR NMR spectrum for the powder with X=0.29 at 150◦C and (c) connectivity of H in the network. The peaks between 0-2 ppm in (a) correspond to 
signal of the probe. 
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thermal evolution until a proportion quite similar to the reference glass 
is obtained. Thus, the initial hypothesis that the silicate is converting 
into hydrated metastable melt (in terms of structural properties) seems 
to be further cemented with the removal of solvating water and silanols, 
and the connectivity of protons to the network. 

Figure 6 shows the overall schematic illustration of the existence of 
solvating water and silanols in terms of the variation of NBOs with 
temperature for X=0.29. The red curve represents potentially available 
network modifiers from the same TGA data shown in Figure 1(a) and 
calculated from eq. (6) as: 

Network Modifiers
Si

=
nNa
nSi

+
nOH
nSi

(6)  

where ‘n’ represents the number of moles. The black curve in Figure 6 
represents NBOs calculated from the NMR data shown in Figure 2(a) 
using the eq. (7) given as: 

NBOs
Tetrahedra

= 4Q0 + 3Q1 + 2Q2 + Q3 (7)  

where Q0 is multiplied by a factor of 4 because it has four NBOs per 
tetrahedron and so on. The relative amount of Na as NBOs is shown in 
blue and remains constant with temperature (assuming that all Na ions 
are acting as network modifiers). For X=0.29, using the NMR results that 
all the protons in silanol units are linked to Q3, eq. (7) implies that 45% 
of Na ions are connected to Q2 and 55% to Q3 (i.e. 52% Q3 sites are 
occupied by protons and the remaining 48% by Na). 

Initial silicate solution at room temperature is composed of free 
water, solvating water and silanols that act as NBOs as shown by the 
region ‘a’ in Figure 6. Region ‘b’ represents the difference between TGA 
and NMR NBOs and corresponds to solvating water that is still present 
(though in very small amount) at 400◦C. Silanols in the network are 
represented by the region ‘c’ which is the difference in NMR and Na as 
NBOs. Their amount is less than half of the solvating water at 150◦C but 
the ratio between silanols and solvating water increases with tempera-
ture, consistent with results on the speciation of water obtained in the 

geochemistry community.37,38 Fully condensed state is shown by the 
region ‘d’ where there are no more solvating water molecules or silanols 
in the network and all the NBOs correspond to the presence of Na linked 
only to Q3 structural unit. 

Interestingly, there seems to be some kind of a proportionality be-
tween Si-OH and solvating water molecules suggesting a possible exis-
tence of an equilibrium between the two species that is proposed to be a 
consequence of the following reaction: 

2SiOH⇌ SiOSi+ H2Osolv/ads⇌ Si − O − Si+ H2Oatm (8) 

The existence of such an equilibrium indicates that silanols, after all, 
may not be resulting in the direct evaporation of water on condensation 
rather they seem to be converting into water molecules that tend to 
behave as solvating species followed by their release into the atmo-
sphere. Thus, the existence of a single Ea (as discussed in section 3.1) 
appears to be a consequence of this equilibrium. 

The comparison of the two molar ratios in terms of NBOs from TGA 
and NMR data is shown in Figure S7. The trend is the same for both 
molar ratios with the existence of all the regions mentioned in Figure 6, 
the only major difference being the amount of Na in the initial silicate. 
Na and H ions acting as network modifiers or NBOs are influencing the 
overall structural properties. The amount of calculated NBOs is less for 
the X=0.29 silicate due to the structure being in a more condensed state 
than X=0.5. 

The molar ratio X is expected to directly influence the amount of 
silanols in the network. Higher Na concentration in the network has 
been found to result in higher amount of silanols as NBOs34 (evident also 
from the comparison of Figure 5 and Figure S6). This suggests the 
network to possess more H as NBOs for X=0.5 as also evident from 
Figure S7. The correlation between the concentration of sodium ions and 
silanol units suggests an equilibrium between sodium and protons at 
network-modifier sites of the silicate network. 

The removal of solvating water and silanols has a direct influence not 
only on the degree of densification or polymerization but also the extent 
of volumetric expansion of Na-silicates observed visually. Though the 

Figure 6. Total Network Modifiers/Si from both ( ) TGA and ( ) solid-state 29Si NMR spectra of Na-silicate (X=0.29) powder with region ‘b’ corresponding to the 
amount of adsorbed/solvating water linked to the network, ‘c’ corresponding to the relative proportion of OH as NBO and ‘d’ referring to a completely condensed 
state at temperatures well above 800◦C. 
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structural properties start corresponding to glasses at around 400◦C 
where most of the solvating water and silanols have been removed, 
experimental evaluation suggests the existence of a much softer material 
as compared to glass, probably because of the presence of water as 
compared to the dry glass. Apart from the evolution of Qn units and 
NBOs, revisiting the macroscopic evolution of Na-silicates from a visual 
perspective is, therefore, also necessary to understand how the material 
might behave in different industrial applications especially those related 
to fire retardance. Hence, the next section is devoted to a qualitative 
description of what happens upon heating a liquid droplet. 

3.2.4. Foaming 
On heating a droplet of Na-silicate solution with a heating gun, 

evolution from liquid to solid occurs as shown in Figure 7(a) for X=0.29 
and is explained schematically in Figure 7(c). A viscous membrane-like 
layer appears at the top at lower temperatures which is linked to the 
formation of strains at the surface due to condensation of the gel,59 

slowing down the removal of the free water from the inside of the ma-
terial. Therefore, compared to the mg-sized samples we studied with 
TGA, the droplet is further from equilibrium. At 130-150◦C, the “skin” 
membrane becomes very viscous, preventing bubbles of boiling water 
from escaping. Increasing the temperature further allows the 
membrane-like layer to cross the Tg (as in Figure 7(c)) and, hence, re-
sults in the removal of the trapped free water. Most of the free water is 
removed around 150-200◦C leaving behind a solid that is hard. 

Increasing temperature further causes transition from a hard to soft 
phase (as also observed during grinding) with an abrupt structural 
expansion of the solid mass due to the pressure imposed by water bub-
bles. This occurs at the ‘softening point’ or ‘foaming temperature’ which 
represents the apparent Tg of the silicate responsible for an actual soft-
ening of the structure resulting in the formation of a viscous solid. The 
temperature referred here as the softening point is different from the 
formal temperature defined as the viscosity of 106 Pas. It does not 
correspond to one single value but rather a more general process i.e. 
significant mobility of the network which means that once this partic-
ular temperature value is crossed, the system keeps on losing water 
continuously due to the fact that the network is mobile enough to let that 
happen. Note that the existence and the value of a softening temperature 
or glass transition for materials heated from a solution needs to be 
further investigated in future work, since we only measured it on 
pre-dried materials due to foaming-related experimental challenges. 

Such a low value of softening temperature is due to the presence of 
water and has already been reported in the literature for glasses in terms 
of Tg.32,34 Foaming phenomenon itself indicates that we have a soft glass 
once we cross the softening point, with the structure becoming more and 
more condensed on increasing temperature. Heating further to tem-
peratures above 250◦C tends to cause further foaming but the extent of 
expansion is reduced due to a reduction in the amount of available 
silanols. Similar trend is observed on heating silicate with higher Na 
content (X=0.5) resulting in an increased swelling due to the presence of 

Figure 7. Foaming mechanism of molar ratio X=0.29 (a) solution under a heating gun (video in SI, schematic illustration of the experimental setup in Figure S2(a)), 
(b) pellet pre-dried at 150◦C followed by heat treatment in a furnace and (c) schematic illustration of foaming mechanism of liquid. 
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higher amount of retained water in the structure. Thus, the lower soft-
ening temperature of 175◦C observed for X=0.5 as compared to 210◦C 
for X=0.29 in Figure 1(a) and (b) is mainly a consequence of higher 
amount of silanols in the silicate network. 

Figure 7(b) shows the corresponding foaming behavior of a pre-dried 
X=0.29 powder pellet. The pellet remains unchanged until 200◦C and 
tends to foam partially on reaching 250◦C due to the powder being in a 
compressed state. Major swelling occurs on going up to 300◦C as the 
pressure tends to buildup due to mainly the condensation of remaining 
silanols and solvating water. 

Qualitatively, we explain the foaming by an out-of-equilibrium 
build-up of water vapor pressure inside the material after the xerogel 
transition, when the material becomes too viscous (especially in a dried 
skin) for water to diffuse out of the material. Change in viscosity is 
therefore expected to be one of the driving forces behind this structural 
expansion but the role of silanols and solvating water on rheological 
properties and the exact conditions for the existence of this foaming 
phenomenon need further research evidence. The rheological properties 
of the silicate network need to be addressed in this regard along with the 
influence of boiling water bubbles as a viscous liquid maybe formed at 
some point that may not be completely permeable to let these bubbles 
escape. Investigations using hot-stage microscopy (video of preliminary 
test in SI and corresponding details of the experimental parameters and 
setup in Figure S2(b)) and in-situ Raman spectroscopy are expected to 
aid in better understanding of the foaming behavior. 

4. Conclusions 

Structural properties of Na-silicates of two different molar ratios 
(X=0.29 and X=0.5) investigated at both the macroscopic and micro-
scopic scale have allowed to have a better understanding of structural 
evolution with temperature. Mass loss evolution is dependent on tem-
perature and Na content in the silicate. Increasing the Na content tends 
to reduce the softening temperature along with a higher amount of 
overall water retention after the initial pre-drying step. A same order of 
magnitude for mass loss evolution is observed for both molar ratios with 
an Ea of 29.4 kJ.mol− 1 for X=0.5 as compared to 34.1 kJ.mol− 1 for 
X=0.29. Furthermore, the higher the amount of Na in the network, the 
more depolymerized the Qn structural units tend to be with no Q4 

observed by liquid-state 29Si NMR for the molar ratio X=0.5. 
Heating pre-dried Na-silicate powders tends to increase the degree of 

polymerization until the xerogel shows glass-like structural properties in 
terms of Qn units at around 400◦C when compared with reference Na- 
silicate glasses. Complementary information provided by Raman spec-
troscopy also indicates that the structure condenses and the Raman 
spectra at 400◦C become similar to that of the corresponding glasses 
(especially in terms of Qn units) for both the molar ratios with ring-type 
structure being more dominant in glasses. 

Further structural investigation indicates that Na ions are connected 
to both Q2 and Q3 silicon sites for X=0.29 suggesting a completely 
random distribution, while all the protons are connected to Q3 (both Q2 

and Q3 connectivity is observed in case of X=0.5) i.e. no free water is 
present at 150◦C. 

Initial solutions are composed of free water, solvating water and 
silanols which tend to evolve depending upon the heating temperature 
with the free water mostly removed on heating to 150◦C. NBO contri-
bution from the network modifiers (Na and H) shows that both silanols 
and solvating water molecules are present even at high temperature, 
suggesting an equilibrium between the two structural units for protons. 
The amount of initial water in the silicate and molar ratio X directly 
influence the amount of silanols in the network. Higher overall water 
retained for the molar ratio X=0.5 suggests the network to possess more 
H as NBOs when compared to X=0.29. From a macroscopic point of 
view, heating a silicate solution tends to induce structural changes due 
to the removal of water. Structural expansion is observed once the 
softening temperature threshold is crossed due to the expulsion/ 

condensation of water resulting from the buildup of bubbles inside. The 
existence of volumetric expansion is linked to the foaming phenomenon, 
a better understanding of which is required at this stage to aid in further 
exploration of the potential of silicate coatings in fire-retardant indus-
trial applications. 
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[30] H. Roggendorf, D. Böschel, Hydrous Sodium Silicate Glasses Obtained by Drying 
Sodium Silicate Solutions, Glas. Sci. Technol. Glas. Berichte 75 (2) (2002) 
103–111. 
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Résumé : Le comportement thermique des silicates alcalins 

aqueux pour l’industrie est d'un intérêt particulier en particulier 

dans les applications résistantes au feu en raison de leur nature 

intumescente. Ils ont été étudiés pour les silicates de Na, K et 

Li de deux rapports molaires différents afin de mieux 

comprendre l'évolution structurelle macroscopique et 

microscopique en termes de moussage et de condensation du 

réseau. Une stratégie expérimentale quantitative impliquant 

une combinaison d'outils (ATG, spectroscopie RMN du 29Si, 

DRX) a été utilisée pour sonder l’évolution thermique de l'état 

du réseau en partant essentiellement de « xérogels ». Le 

chauffage des silicates alcalins entraîne des modifications 

structurelles dues à l'évolution de l'eau où la quantité d'eau 

restante (des silanols de réseau ou d’eau de solvatation) dans 

le xérogel, lorsqu'elle est observée à partir d’ATG, suit une loi 

d'Arrhénius pour les silicates de sodium avec une énergie 

d'activation de 30 kJ.mol-1 en dessous de 400 °C, conforme à 

la littérature géochimique. En revanche, de multiples énergies 

d'activation sont présentes pour les silicates de potassium et de 

lithium en raison de leur cristallisation. 

Un moussage est observé à des températures supérieures à 

150 °C dans les silicates de Na et de K, principalement en 

raison de la condensation des silanols et de l'élimination 

subséquente des molécules d'eau de solvatation en fonction de 

la composition et de la vitesse de chauffage. L'augmentation 

de la concentration en alcalin, par exemple en Na, entraîne une 

plus grande quantité d'eau retenue dans le xérogel, ce qui est 

corrélé à une température de ramollissement inférieure du  

matériau et est, macroscopiquement, lié à un moussage plus 

élevé du silicate. Les solutions de silicate de potassium 

moussent abondamment à une vitesse de chauffage de 

10 °C/min ; cependant, la suppression du moussage est une 

conséquence de la cristallisation lors du chauffage soit à une 

vitesse plus faible (en particulier pour une teneur en K plus 

faible) soit lors du pré-séchage à 150°C. Un effet combiné de 

séparation de phases et de cristallisation est responsable de 

l'absence de mousse observée dans les solutions de silicate de 

Li et les xérogels, quelle que soit la vitesse de chauffage, 

résultant d'une nature relativement moins mobile du réseau en 

raison de la quantité limitée de silanols et d'ions alcalins. Des 

mesures à haute température dans le cas des silicates de 

sodium suggèrent que les systèmes présentent une évolution 

xérogel-verre à 400 °C au-dessus de laquelle un 

comportement similaire aux verres conventionnels est observé 

jusqu'à 1100 °C sous un microscope à platine chauffante. 

Enfin, des revêtements homogènes et épais à gradient de 

silicate (de l'ordre du micron) développés à partir de ces 

solutions présentent une épaisseur critique pour : le moussage 

dans les silicates de Na, la cristallisation et le moussage dans 

les silicates de K selon la composition, ou le craquage dans les 

silicates de Li. De plus, l'ajout d'entités étrangères comme 

l'éthylène glycol et le silicate de tétraméthylammonium limite 

le moussage dans le cas des silicates de sodium. Une telle 

étude a permis d'avoir une meilleure compréhension du 

comportement thermique des silicates alcalins pour répondre 

aux problématiques rencontrées dans le secteur industriel. 
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Abstract: The thermal behavior of industrially valuable 

aqueous alkali silicates is of particular interest especially in 

fire-resistant applications owing to their intumescent nature, 

and has been investigated for Na, K and Li-silicates of two 

different molar ratios to better understand the macro and 

microscopic structural evolution in terms of foaming and 

network condensation. A quantitative experimental strategy 

involving a combination of tools (TGA, 29Si NMR 

spectroscopy, XRD) has been utilized to probe the state of the 

network on thermal evolution starting mainly from ‘xerogels’. 

Heating alkali silicates leads to structural changes due to the 

evolution of water where the quantity of leftover water 

(network silanols or solvating water) in the xerogel, when 

observed from TGA, obeys an Arrhenius evolution for Na-

silicates with an activation energy of 30 kJ.mol-1 below 

400°C, consistent with the geochemistry literature. In 

contrast, multiple activation energies are displayed by K and 

Li-silicates due to crystallization.  

Foaming is observed at temperatures above 150°C in Na and 

K-silicates due to mainly the condensation of silanols and 

subsequent removal of solvating water molecules with 

dependence upon the composition and heating rate. Increasing 

the alkali concentration, for instance Na, results in a larger 

quantity of water retained in the xerogel, which correlates  

with a lower softening temperature of the material and is, 

macroscopically, related to a higher foaming of the silicate. 

K-silicate solutions foam extensively at a heating rate of 

10°C/min, however, suppression of foaming is a consequence 

of crystallization on heating at either lower rate (especially 

for lower K content) or pre-drying at 150°C. A combined 

effect of phase separation and crystallization is responsible 

for no foaming observed in Li-silicate solutions and xerogels, 

irrespective of the heating rate, resulting from a relatively less 

mobile nature of the network due to limited quantity of 

silanols and alkali ions. High temperature measurements in 

the case of Na-silicates suggest the systems to exhibit a 

xerogel-to-glass evolution at 400°C above which a behavior 

similar to conventional glasses is observed when seen under 

a Hot-stage Microscope. Finally, homogeneous and thick 

silicate gradient coatings (in the order of microns) developed 

from these solutions show a critical thickness for: foaming in 

Na-silicates, crystallization and foaming in K-silicates 

depending upon the composition, or cracking in Li-silicates. 

Furthermore, the addition of foreign entities like ethylene 

glycol and tetramethylammonium silicate limit foaming in the 

case of Na-silicates. Such a study has allowed us to have a 

better understanding of the thermal behavior of alkali silicates 

for addressing the issues being faced in the industrial sector. 
 

 


