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Introduction

Fig. 1: Examples of dressed characters from video-game or movie production.

When animating a scene in most industrial production, a special care is given to the
modeling of contacts between objects. In the real world, dynamic objects collide with
each other, and different phenomena -such as bouncing or friction- impact their dynamics
and their appearance. However, in 3D graphics, objects are not natively following such
behavior. Indeed, the notion of contact between virtual objects is not trivial, and they
can perfectly visually penetrate each other which causes visual artifacts and will also
be wrong in term of the subsequent dynamics of the scene. In that case, such objects
should be detected and processed as in collision. As such, a whole research area has
been to handle collisions between virtual objects. This include the detection of actual
or impending collision between objects, and a way to actually correct or prevent them,
while trying to mimic real world behavior.
In this topic, three main types of objects can be differentiated : rigid , volumetric bodies,
deformable volumetric bodies and deformable surfaces such as thin-shell or clothes (we
do not consider the case of strands, which are even more intricate to consider and are
handled by very specific method, in the context of hair interaction for instance). For
the first type, while it brings its own challenge, handling collision is made easier by the
fact that these objects can be defined by only three sets of parameters : their shape,
their position and their orientation. For instance, two rigid spheres of radius r and of
respective centers c1 and c2 will be colliding if and only if ||c2 − c1|| < 2r. Collision with
or between deformable volumes becomes harder to solve as far more parameters are to
be taken into account : the shape of such body changes during simulation, becoming
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Introduction

a set of interconnected parameters. However, collisions are still handled pretty easily
thanks to the fact that these objects are volumetric : it can often be determined easily
if a part of an object is actually inside another volumetric one, and using some kind
of penetration depth, some global displacement -usually including some deformation to
adequately model contact- can be performed.
While collisions of deformable surfaces with volumetric bodies can take advantages of
some of these symplifying assumptions, collisions between two deformable surfaces do
not benefit from them : there is no easy way to tell what side of a surface something
is located, penetration depth is ill-defined, and we often have to resort to more tedious
approaches to actually handle the collision of such objects. In this work, I focus on the
collision of clothes, which fall in this last category of objects. More precisely, I will restrain
to clothes modeled by triangle meshes as it is one of the most used representation.
Three main issues have been tackled in the past decades regarding collision handling
for clothes. The first issue is efficient collision detection between deformables surfaces.
As mentioned above, no or only few simplifying assumptions exist for such objects, and
existing methods rely mostly on one scheme : iterating over each pair of triangles in
the scene and perform elementary tests between them to decide if they are intersecting.
Because this is computationnaly expensive, these methods also rely on dedicated routines
to actually reduce the number of pairs to test, to which a whole branch of research has
dedicated itself. The second issue to be noted is the one of the order of correction :
because näıvely trying to correct an intersection might worsen another, of even create a
new one, special care has to be given to this matter. It is often dealt with using iterative
method, along with some kind of fail-safe if no satisfactory correction has been found in
a few iterations. Finally, the last issue is the one of modeling the contact between the
clothes in a plausible way : not only the collisions need to be solved, but in order to
correspond to how real clothes behave when in contact, phenomena such as friction also
need to be modelled.
In this work, I focus on the first two of these issues : we propose two approaches to
the intersection-free animation of clothes, using volumetric fields (including both scalar
field and vector field). We stand appart from existing methods as no primitive tests
are performed over the triangles of the objects. As such, while our methods also scale
on other parameters, they scale only linearly with the number of triangles in the scenes.
Moreover, we do not split the handling of collision between some detection and then some
correction, and handle it instead in a single-pass, without having to care about any order
of resolution.
I will discuss in more details the existing techniques in the chapter 1, first introducing the
collision handling technique for deformables meshes in section 1.1, and how both scalar
field and vector field have been used in 3D modeling and animation in section 1.2. The
next two chapters will then be focused on our contributions :

• The first method is dedicated to the static untangling of layers of garments using
scalar fields. Garments meshes are first approximated by an implicit surface, defined
as the iso-surface of a scalar-field. Then, those surfaces are combined using a n-ary
operator we defined specifically for this problem. Finally, each garment’s geometry
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Introduction

is projected on a new position, ensuring that intersections between them has been
solved and replaced by a contact situation. Chapter 2 will be dedicated to this
method.

• The second work adresses the dynamic animation of clothes. We handle collision
by embedding the clothes inside a vector field discretized in a 3D grid which is
filled with the local velocities of the vertices of the cloth. Then, we solve for a
least-square problem constraining the velocities to be divergence-free, along with
smoothing constraint, which modify the trajectories of the vertices of the clothes in
order to prevent collision when needed. Chapter 3 will focus on this approach.

Publications

Vector field based collision avoidance between arbitrary number of dynamic shapes
In preparation
Thomas Buffet, Damien Rohmer, Löıc Barthe, Marie-Paule Cani

Implicit Untangling : A Robust Method for Modeling Layered Clothing
ACM Transaction On Graphics (TOG) 2019, Special issue SIGGRAPH 2019
Thomas Buffet, Damien Rohmer, Löıc Barthe, Laurence Boissieux, Marie-Paule Cani

Untangling Layered Garments : An Implicit Approach
ACM Symposium on Computer Animation (SCA) 2018, Poster
Thomas Buffet, Damien Rohmer, Marie-Paule Cani

Une approche implicite pour l’animation de vêtement
Journées du Groupe du Travail en Modélisation Géométrique (GTMG) 2018
Thomas Buffet, Damien Rohmer, Marie-Paule Cani
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Introduction

Fig. 2: The most frequent examples of cloth in Computer Animation are the garments
worn by virtual characters. The mesh of this dress (courtesy of Laurence Boissieux)
contains tens of thousands of vertices.
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Chapter 1

Related work

In this chapter, we will first cover works related to the problem of collision handling
between cloths. We will then focus on the usage of volumetric field in 3D modeling and
animation.

1.1 Handling collisions for cloth animations

We will review how collision processing has been performed for clothes in the past few
years. We will first discuss some fundamental notions about collision detection and re-
sponse used by the vast majority of methods, and will then focus more precisely on two
different problems: the prevention of collision when an initial intersection-free config-
uration is available, and if not, its correction using only the knowledge of the current
configuration.

1.1.1 Fundamental notions

Discrete triangle/triangle intersection test

As mentioned in the introduction, detecting collision in a classical way is done with pair-
wise tests over the triangles of the scene. More precisely, in order to decide if two triangles
are intersecting, one shall check if any of the edges of one triangle intersect the other tri-
angle. This can be done by first computing the intersection of an edge with the plane
containing the triangle, and then checking if this intersection is in fact contained inside
the triangle by computing its barycentric coordinates and check where they fall. Iterating
over all edges of the two triangles is necessary in order not to miss any collision (cf fig 1.1).

Some optimizations are possible: for instance, one can note that when checking if
an edge intersects a triangle, a particular discarding condition is to first check if both
vertices at the end of the edge are on opposite side of the plane of the triangle. This
amounts to two dot-products, which already improves the computation compared to the
näıve approach in case of non-intersection. Nonetheless, the full-test of intersecting tri-
angles remains a succession of several geometric tests, and as such can be considered as
a non-trivial matter. Overall, such computation can get particularly heavy especially if
all possible pairs of triangles have to be tested : let n be the total number of triangles,
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Chapter 1. Related work

Fig. 1.1: Two different types of intersection of triangles. On the right, the second one is
decomposed into the two line/triangle tests that detected it.

testing all possible pairs amounts to a quadratic O(n2) algorithmic complexity. Because
cloth simulations typically counts tens or hundred of thousands of triangle, this is not
tractable. In fact, a lot of effort has been put into being able to reduce the number of
pair of triangle to test, as discussed in the next section.

Acceleration schemes

In order to reduce the number of triangle pairs to be tested, so called broad phases have
been developped. Taking place before the narrow phase of checking the intersection
between a set of pairs of triangles, the broad phase aims at discarding pairs that are
”clearly” not intersecting, based on different heuristics. A lot of these are based upon
bounding-volumes and bounding volume-hierarchies (cf Fig 1.2). These hierarchies are
typically tree-structures whose leaves bound primitives (in our case, triangles) and whose
progressively coarser levels bound aggregate, enabling groups of primitives to be quickly
tested against other groups, without having to iterate over each primitive [KHM+98].

In addition to this, other and more specific schemes have been considered (1.3). For
instance, Volino et al. [VCMT95] noted that if curvature of a cloth is locally-low, then
local triangles cannot intersect each other, effectively discarding some local pairs when
testing for self-collisions. [WLH+13] fires rays from a set of observers defined beforehand,
and detect invert-oriented triangles (improved, adapted to clothes and implemented on
GPU over [WLW+14] and [WC14]). Tang et al. [TCYM08] first improved the curvature
based scheme, and introduced the notion of orphan-set to drastically reduce the number
of tests between adjacent triangles. [GRLM03] uses visibility computations to provide
potentially colliding sets based on the rendering of the scene.

Altogether, such broad culling phases have been a prevalent research area, as it is
vital for the animation to effectively reduce the number of primitive tests. Typically, while
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1.1. Handling collisions for cloth animations

Fig. 1.2: Different bounding volume (from [FH05])

Fig. 1.3: Exemple of culling phase : curvature based (left, from [VCMT95]), radial-view
culling(middle, from [WC14]), and rendering based (right, from [GRLM03])
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Chapter 1. Related work

the algorithmic complexity effectively achieved varies with the method, and is some time
not trivially derivable, it is safe to assume that using such acceleration method actually
reduces the collision detection complexity from O(n2) to O(nlog(n)), which is the actual
complexity when ”simply”using bounding volume hierarchies. For the rest of this section,
whenever a test between two triangles is mentioned, it should be kept in mind that these
two triangles have passed the broad phase and have been selected to be tested.

1.1.2 Preventing collision

A sub-part of the collision handling problem is the one of preventing the intesections be-
tween objects : given an intersection-free state, one shall guarantee that at the end of the
next time-step of animation, the clothes are still intersection-free. From frame to frame,
such guarantee ensures that a full animation can then be computed without intersection
at any time.

The ”response” scheme

To this end, one of the most popular pipeline is the one described in [BFA02], and I will
describe it in more details as a lot of methods appearing afterwards are actually based
on this one.
In this method, a time-step is explicitely splitted into two half time-steps: a simulation
part -in which the internal law of the clothes along with external forces are integrated-
and a collision handling part. Here is the full algorithm as described in the paper :
Starting from time t = 0, and with cloth position x0 and velocity v0,

• (1) Select a collision time step size ∆t and set tn+1 = tn +∆t

• (2) Advance to candidate positions x̄n+1 and velocities v̄n+1 at time tn+1 with the
cloth internal dynamics

• (3) Compute the average velocity v̄n+
1

2 = (x̄n+1 − xn)/∆t

• (4) Check xn for proximity, then apply repulsion impulses and friction to the average

velocity to get ṽn+
1

2

• (5) Check linear trajectories from xn with ṽn+
1

2 for collisions, resolving them with

a final midstep velocity vn+
1

2

• (6) Compute the final positions xn+1 = xn +∆tvn+
1

2

• (7) If there were no repulsions or collisions, set vn+1 = v̄n+1

8



1.1. Handling collisions for cloth animations

Fig. 1.4: CCD aims at detecting collision by finding the exact time of impact between
primitives.

• (7b) Else, advance the midstep velocity vn+
1

2 to vn+1 = v̄n+1 throug an implicit
integration.

The collision handling part is divided among the parts (4) to (7b). Future collisions are
prevented using proximity queries between pair of triangles. Two types of queries are
performed: vertex/face queries and edge/edge queries. If primitives happens to be too
close to each other, repulsive forces are used to prevent their collisions. However, collisions
might have already been caused by the ”näıve” time-stepping performed in (1). Therfore,
pairs of triangles are tested in step (5) using Continuous Collision Detection (or CCD).
Opposed to the Discrete Intersection Detection mentioned earlier, Continuous Detection
aims at computing the exact time at which the collision took place, using the knowledge
of the previous position of the primitives (cf 1.4). [Pro97] showed that it amounts to solve
a third degree polynomial equation, which is typically an order of magnitude more costly
than simply testing for discrete collision [YMJ+17], but gives valuable information about
the collision.
After CCD, colliding pairs are given a velocity impulse at (6). Both the repulsion forces
and those impulses are then integrated over the half-time step that is left. However,
because correcting a collision gives no guarantee that no other collisions are created, this
whole collision handling process (namely, the computation of an acceleration structure
based on bounding volume hierarchy, a culling phase, proximity tests and CCD) is iterated
a few-times, hoping for convergence. As it happens, the repulsion forces are able on their
own to prevent a lot of the collisions, but from the experiments reported by the authors
some tedious cases are problematic and need a lot of iterations to converge. To circumvent
this problem, they use a fail-safe called Rigid Impact Zone (or RIZ). Introduced in [Pro97],
this fail-safe catches problematic primitives, for which a few iterations are not enough,
and agglomerate them into clusters of primitives spatially close to each others. Then,
each cluster is treated as a rigid-body for the whole time-step, for which the velocity and
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Chapter 1. Related work

Fig. 1.5: The response scheme introduced by [BFA02] and improved by [HVTG08],
[SSIF09] and [LTT+20] robustly handle collisions and friction between clothes.

the angular momentum derive from the velocities at half-the time step of the vertices
included in the cluster. This aims at modeling extreme friction behavior caused by the
proximity of the triangles in such region, while also guaranteeing that collisions will be
resolved in finite time.
This method proved to be a robust way of dealing with collisions, and the ”two half-time
steps” paradigm became well used in both industry and research.

The collision response part was improved by [HVTG08], and more precisely the Rigid
Impact Zone. In this work, a new-formulation based on projection along some constraint
gradient enabled for the rigid impact zone to allow sliding or shearing motion, along with
the translation and rotation that was already present. This proved efficient to more ac-
curately model friction behavior.
The response scheme introduced by [BFA02] was also the base of the work of Selle et
al. [SSIF09]. One of their contribution is to provide a parallelizable expression of the
method, achieving the same kind of result in a much faster way. The other is to explicitely
compute any inversion of orientation between pairs of triangle between two-time steps,
effectively basing themselves on the history of the clothes.
Finally, following on the parallelization process, Li et al. [LTT+20] (succeeding to
[TWL+18] and [TWT+16]) efficiently adapted the algorithm to be parallelized over mul-
tiple GPUs. Their works contains a GPU-parallelizable formulation for the update of the
Bounding Volume Hierarchy used to cull pair of triangles away, an algorithm to assemble
their Contact-aware Matrix and solve the system associated to it in parallel, and the effi-
cient workload distribution between processes. They achieved results of the same quality
than previous work, but at interactive framerate of several frames per seconds.

Volume based methods

Based on the two half-time steps paradigm of [BFA02], Sifakis et al. [SMT08] kept contin-
uous collision detection but replaced the collision response part with a volume preserving
impulse. This is motivated by the observation of the air behavior between two colliding
thin layer, that can act as a cushion.
They identify so-called stencils, or quadruplet of vertices, involved in a collision at half
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1.1. Handling collisions for cloth animations

Fig. 1.6: Volume based method such as [SMT08] (left) and [MCKM15] (right) tetrahedrize
the space between the objects.

the time step. This quadruplet gives a tetrahedra on which they derive formulas based
on pressure to compute an impulse preserving its volume. They obtain a set of non-linear
equations solved using iterative solver. Through this method, they found that Rigid Im-
pact Zone fail-safe was no longer needed.
Air meshes are another structure involving tetrahedra [MCKM15]. This work is based
on position based dynamics [MHHR07], and express both the cloth internal laws and the
handling of collisions as constraints only depending on the positions of vertices. These
constraints are then solved sequentially through many Gauss-Seidel iterations, thus ef-
fectively mixing the cloth dynamics and the collision processing step (at the opposite
of the collision scheme discussed earlier). Contrary to the previous method, this time a
full tetrahedrisation of the scene is computed and maintained throughout the simulation.
Each of the tetrahedras keep track of a possible inversion of its volume, which converts
into a constraint over its 4 vertices. The method is in the continuity of position based
approaches: a non-physicial and approximate way to deal with the simulation - though
achieving plausible results - in exchange for a pretty low cost of computation.

Asynchronous methods

Harmon et al. ([HVS+09]) adapted algorithms from robotics or from rigid body dynamics.
This work adapts Kinetic Data Structure (KDS,[BGH99]) for use with Asynchronous
Variational Integrator (AVI, [LMO03]) to provide robust collision handling. The paradigm
of asynchrony is the following : each object (in our case, each triangle) moves at its own
rythm, following a queue of events sorted in causal order. When no events -such as
collision- occurs during a large period of time, this allows to use high time-step as over-
sampling time is a waste of computation power. On the other hand, collision regions are
handled through a succession of micro-time steps, ensuring robustness and correctness of
the result. As acknowledged in the paper, reducing the computational time was not a
goal in this work, and their result took hours to make for rather simple simulation (tens
of thousands of vertices, and rather short simulations), but the visual realism of their
results was astonishing (see the tied knot, figure 1.7).
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Fig. 1.7: Asynchronous (left, from [HVS+09]) and implicit solvers (right, from [OTSG09]
and [LDN+18]) methods focus on hyper-realistic result by extending rigid body mechanics
to deformable objects in order to handle contact response.

Constraint-based implicit solvers

Also borrowing from rigid-body simulation, [OTSG09] implemented an implicit formula-
tion for contact-handling. In the case of rigid-body, this kind of method achieves robust
and efficient collision process, but suffers a complexity explosion when extended to de-
formable objects, as the degrees of freedoms involved and the number of contacts grow
exponentially. They use continuous collision detection, then generate a set of non-linear
constraints, some of them insuring non-penetration while others model friction between
objects. They then iteratively solve for all the constraints simultaneously, making the
method tractable for deformable objects by interlacing relaxation steps.
[LDN+18] notes that the approximations used in this method introduce artificial anisotropic
motion for objects in contact, and aims at correcting such behavior. They adaptively re-
fine the mesh (using a method similar to [NSO12]) in order for a new vertex to be situated
exactly at every contact-point (while the method previously consider contact point being
inside triangles or on edges). They then derive the constraints accordingly (for instance
introducing a pin constraint), and propose a solver specifically designed for the task.
As for the asynchronous one, this family of methods builds on the robustness of rigid-
body mechanics, and adds Coulomb-friction approximation to achieve realistic looking
results, at the cost of pretty low framerates. (Several seconds per frame for pretty ”sim-
ple” meshes composed of only thousands of vertices).

Discussions

We presented the main methods dealing with the prevention of collisions. Starting from
an intersection-free configuration, they all compute some acceleration schemes enabling
them to cull away un-necessary tests. They then perform some kind of CCD to iden-
tify problematic sets of triangles, and then deal with collision response using a variety
of method, modeling friction and preventing inter-penetration in different ways. The

12



1.1. Handling collisions for cloth animations

problem of the order of correction is dealt with by either :

• using an iterative method and some fail-safe if no fast-convergence is achieved (this
is the case of the ”collision scheme” methods, or of the volume-based ones);

• or by expressing and solving simultaneous constraints using rigid-body mechanics
methods adapted for this problem (eg. based on asynchrony or implicit solvers).

However, these methods tackle only a sub-part of cloth intersection problem, as they
need to start from a situation in which no collision are occuring, else no CCD is possible.
Next sections describes methods designed for handling the case of already intersecting or
self-intersecting clothes.

1.1.3 The untangling problem

The previous approaches start from an intersection-free configuration, and prevent the
intersection at each frame of the animation. However, such a configuration is not always
available. First, at the beginning of an animation, meshes might be already intersecting.
Moreover, external constraints (suh as the limbs of a character colliding themselves and
pinchiong the clothes between them) might cause un-preventable intersections between
the clothes.
This leads to an ill-defined problem : given an intersection and no prior knowledge about
the position of the meshes, one should choose which part of the objects are actually on
the wrong side of the other one. Also, there are potentially infinite ways to correct an
intersection, and while the knowledge of previous state would help defining some repul-
sion direction, here some other heuristic needs to be used to infer such decision. Those
problems might be the reason why this issue has not been tackled as much as the more
general prevention of collisions.
While multiple heuristics have been used in various applications, only a few generic ap-
proaches have been developed, and we cover them in this section.

Global Intersection Analysis

The first method has been introduced by Baraff et al. [BWK03], and is based on Global
Intersection Analysis, or GIA. This time using only discrete intersection detection between
pairs of meshes, and also between each mesh and itself, they agglomerate the geometric
intersecting path of the triangles into intersection paths. They differentiate 4 types of
intersections :

• the intersection can follow a simple, ”circular” intersection path;
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Chapter 1. Related work

• it can follow an intersection path that goes through a loop-vertex (applies only to
intersection of a mesh with itself;

• it can follow a path that ends at the boundaries of the meshes;

• or it can follow a path that might not end at the boundaries of the cloth, and that
do not loop around.

As depicted in Fig. 1.8, the first three of these intersections trivially partition the meshes
into two parts. This is a necessary condition for the rest of the method to work, and
because the last type of intersection does not partition the mesh, it is left as a non-handled
case in this work. For intersections partitioning the clothes, a flood-fill algorithm is used
to color the vertices of the meshes and to compute the area of each part of the partition.
From this, the authors are able to define an inside region as being the region that is on
the wrong side of the other cloth (or of itself): they choose the regions with the smallest
area. This is motivated by the fact that, during a simulation with time-steps that are
likely to be small, only small interference should happen, or at least small with respect
to the side of the mesh.
If an intersection path is of the first or third type, it traces two distinct correspondent
closed paths on the mesh or meshes involved (cf figure 1.8, (a) for example). From this
correspondance, two inside regions are correspondant if the closed pathes bounding them
are correspondant. In that case, one of the regions will be colored in whitei while the
other one is colored in blacki, with i denoting one specific intersection (it can be noted
that a vertex can have any number of colors). For a region defined by an intersection path
of the second type (which contains loop-vertices), the region is colored in red. Afterward,
all is left in the algorithm is to effectively correct the intersections. To do so, forces are
applied at all vertices. Taking a vertex p and a nearby triangle T :

• if p is colored in black (resp. white) and all the vertices of T are colored in white
(resp. black), then attractive forces are applied between p and T;

• if p and all the vertices of T are red, then no force is applied, and the those 4
vertices are able to move freely;

• if none of the above apply, then repulsive forces are applied between p and T.

The conjonction of the first and third conditions is supposed to effectively correct inter-
sections that belong to the first and third type of intersections (with no loop-vertices).
The third condition alone helps correct the intersections with loop-vertices, with the sec-
ond condition being motivated by the fact that it is ambiguous to decide where the red
vertices should move.
As acknowledge by the authors, there is no guarantee for their iterative scheme to con-
verge, but they could not find counter-examples, and achieved good results overall.
The method was further enhanced by [WLG] who treated the last case of intersections
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1.1. Handling collisions for cloth animations

Fig. 1.8: GIA relies on categorizing types of possible intersections, and use the fact that
most of them partition the clothes into inside and outside region. Here, (a), (b) and
(c) trivially partition the clothes as noted in [BWK03], while (d), (e), (f) and (g) were
handled in [WLG] (image from [WLG])

left un-handled by [BWK03]. To do so, they actually make the number of different in-
tersections grow up to 7, with one of them being a degenerate case, and 3 of them being
variants of the originally un-handled cases. They also rely on the definition of inside
regions in which vertices are attracted to other ones. They notice that in 2 of the 3
variants unhandled by [BWK03], one can actually define an inside region and still apply
the algorithm.

While the method in [BWK03] originally introduced attractive forces between all
neighboring candidate primitives, this time a more intricate approach is developped. It
is motivated by the fact that, using CCD, we are able to compute the exact point at
which a vertex has crossed another primitive. This time, the information is not available,
except for the set that lies on the intersection path : looking at this in a ”CCD-fashion”,
those points are actually at the exact time of intersection. A sampling of the intersection
path is used to obtain boundary conditions for a RBF fitting [BB03]. This gives them a
smooth function mapping each point of a region to a point in its corresponding region,
and attractive forces are set between these vertices and their associated point. For the
last sub-case, for which no inside region can definitely be defined, they basically push the
intersection towards the boundaries of the clothes to solve the problem.

Intersection contour minimization

The second impactful scheme is introduced in [VMT06]. Here, the intersection contour
between the meshes is also considered, albeit in another way. They derive how displace-
ment of the vertices surrounding an intersection influence the intersection path length.
They note that reducing this intersection curve’s length can be seen as the minimization
of an energy. They do so by inducing small displacements of the vertices along its gradi-
ent. While each vertex follows its own local gradient, they note that in some cases, it is
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Fig. 1.9: Intersection contour minimization derives a gradient for the length of the inter-
section contour, and performs gradient descent to minimize it (from [VMT06]).

far more effective to compute a global gradient that each vertex follows, which they call
a global scheme. All this derivation can be adapted to force-based approaches, and thus
be implemented inside a pipeline for cloth animation.

Compared to the GIA, this method does not partition the set of possible intersec-
tions, and does not rely on the partitioning of the clothes into region. It instead deals
with any intersection the same way. However, intersection contour minimization suffers
from the expression of the problem as an optimization when dealing with local minima,
that they cannot escape from.

Finally, it can be noted that [YMJ+17] implemented a method for dealing with cloth
intersection using only discrete collision detection, in which they unify all of the above
(GIA and contour minimization) into a single pipeline.

1.1.4 Discussions

We presented the main method dealing with static intersection handling for clothes, or
untangling. Given a tangled configuration, heuristic such as Global Intersection Analysis
or Intersection Contour Minimization are used to untangle the meshes. Along with their
own problems, these method also suffer from classical drawbacks due to the use of forces
to pull appart clothes: these forces need to be tuned, often complemented with additional
parameters, which makes the final result hard to control.

Overall, the method exposed in Section 1.1.2 (prevention of intersection) and 1.1.3 (un-
tangling of clothes initially intersected) share similarities. All of these methods test
triangle primitives against each others for intersection: because this would typically be of
quadratic complexity, a broad phase is performed to cull away unnecessary tests, typically
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1.1. Handling collisions for cloth animations

reducing the complexity of almost an order of magnitude. Moreover, the problem of order
of correction is dealt with using iterative method. , and fail-safe when it fails to produce
good results in a reasonable amounts of iterations, or using complex and computationnaly
heavy procedures derived from rigid-body mechanics.

In this work, we propose two methods tackling the problem of collision handling
between clothes which bypass the need of a broad phase and of tests on pairs of primitives
for collision detection. Interestingly, we follow the idea of approach such as the volumetric
one (see Section 1.1.2). However, while these methods use volumetric structures as a tool,
we propose natively volumetric approaches by embedding the clothes in a scalar field for
the first approach, and in a vector field for the second one. In next sections, we cover
some related works about the use of such types of fields to solve modeling and animation
problems in Computer Graphics.
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1.2 Volumetric fields in 3D modeling and animation

In this section, we briefly focus on the specifities of two type of volumetric field used in
modeling and animation : scalar fields and vector fields.

1.2.1 Scalar fields and implicit surfaces

A scalar field f can be defined as

f : R3 → R

ie function mapping each point in space to a real-value. Given a sufficiently smooth scalar
field f , and a real value iso, an implicit surface Sf,iso can be defined as :

{p ∈ R
3|f(p) = iso}

If f is at least C1, one can also consider ∇f as a vector field directed toward (or away
from, depending on the sign of f − iso) the implicit surface S. Also, for any point p on
S, 1

||∇f(p)||
∇f(p) is actually a normal vector to the surface at p.

A typical example of implicit surface is the the definition of a sphere of radius r and of
center p0 : let f be defined as f : p → ||p− p0||− r, then the aforementioned sphere is the
implicit surface defined as f = 0.
By convention, two types of implicit surfaces, and of scalar field, are usually used :

• if the scalar field is actually zero everywhere except inside a given boundary, then
its image is an interval, usually mapped back to the interval [0, 1], and the iso value
usually considered is 0.5. These field are often named soft-objects or metaballs.

• if not, then the field value typically grows toward infinity as the distance to the
surface grows. The iso value considerd in that case will usually be 0. Those field
are often refered to as R-function.

In practice, the use of one or the other type of field depends on the needs : the first one are
bounded, often computationnaly cheaper, and benefits from easy blending as discussed in
the next sections; the second one are usually more expensive to compute, but give useful
information about the distance to their iso-surface.

Collision detection

Implicit surfaces are well known for their ability to ease collision detection. Given a point
p, the sign of f(p)− iso gives valuable information about the position of p with respect to
Sf,iso. Indeed, we can first note that this surface actually partitions space into two regions

18



1.2. Volumetric fields in 3D modeling and animation

Fig. 1.10: First and second pictures, two implicit circle in green defined as the isolevel of
f1 and f2. In red (resp. blue) negative (resp.positive) level-sets of these field. Third and
fourth picture, new field have been defined as the minimum (resp. the maximum) of the
two initial fields, actually outlining the sharp union (resp. sharp intersection) of the two
disk bounded by the intial circles.

: one region in which f − iso < 0, and one in which f − iso > 0, with the implicit surface
for which f − iso = 0 being the interface between these two. By convention, we can de-
fine the volume inside the surface Sf (not always bounded) as the set of point for which
f − iso <= 0. Then, by definition, the point p is inside the volume if f(p)− iso <= 0.
This gives a simple test enabling to decide if a point is inside a volume, which does not
exist for the volume defined by a closed mesh.

Composition using closed-form blending operators

Implicit surfaces are also known for their ability to seamlessly blend into more complex
surfaces using simple operators. For instance, given two R-function f1 and f2, a point p,
and the field g : p → min(f1(p), f2(p)), by definition p will be inside the volume of the
implicit surface associated to g if g(p) < 0, which is equivalent to f1(p) < 0 or f2(p) < 0 :
as such, the interior of Sg,0 is the exact volumetric union of the interior of Sf1,0 and Sf2,0,
as shown in figure 1.10. One can actually describe the same way the intersection of the
two surfaces as the maximum of the two associated field. For soft-objects, such behavior
can also be observed when interverting the max and min operators.
In general, given two scalar fields f1 and f2, and a binary operator O : R2 → R, another
field g can be created by considering g : p → O(f1(p), f2(p)). For the sake of simplicity,
this notation can often be simplified as g = O(f1, f2). The min and max operator are the
first and most simple examples of analytical composition operator. An obvious shortcom-
ing is that they produce sharp union (or intersection) : even if the initial fields f1 and f2
were C1, the resulting field is not smooth everywhere anymore. This is a problem when
dealing with subsequent composition, as in CSG modeling. For soft-objects, the operator
+ can play the role of a smooth union, and Ricci’s super elliptic operator [Ric73] actually
controls the level of smoothness thanks to an extra parameter (cf. the operator OR in
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OR : (f1, f2) → n
�

fn
1 + fn

2

OP : (f1, f2) → f1 + f2 +
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)2+(
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Fig. 1.11: Closed form parameterized operators that enable the transition between sharp
and smooth union.

Fig. 1.12: First and second pictures: max and min operators represented in the implicit
space by their isolevels. Third and fourth picture : the smooth versions obtained in
[BDS+03]. The blue values indicate positive value of the operators, while the white
values indicate negative values. While the axis of the figure from [BDS+03] are labeled
X and Y, they actually refer to field values.

Figure 1.11). An equivalent formulation for the smooth blending of R-function, along
with all the CSG related operations (union, intersection and difference), is proposed in
[PASS95a] (cf the operator OP in figure 1.11). However, the use of extra parameters make
these operators intricate to use.

Building operators using the implicit space

In order to overcome this issue, methods were developped to allow intuitive building of
binary composition operators using the so-called implicit space. Introduced by Hoffmann
et al. [HH85], each coordinate in this space corresponds to a field, and binary composition
operators are visualized thanks to their level-set (cf. Figure 1.12).

An interesting property of operators defined in this space is the following : let O
be a binary operator represented in the implicit space, f1 and f2 two R-functions, g =
O(f1, f2), Sf1,0 and Sf2,0 associated implicit surface, and let the volume inside the implicit
surface be defined as the set of points for which the fields are negative, as a convention.
Then, the position of the iso-value of O in the implicit space actually dictates the position
of the implicit surface Sg,iso in the world space. For instance, in Figure 1.10, the 0 iso-value
of the min operator lies between the blue and white region, more precisely :

• on f1 = 0 if f2 > 0;
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• on f2 = 0 if f1 > 0.

This is in fact how the analytical min operator is supposed to behave : only the part of
the surfaces Sf1,0 and Sf2,0 that are outside of the other volume are kept in the resulting
surface.
This new point of view on composition operator allows to build new operators by directly
operating in the implicit space. For instance, Barthe et al. blend implicit lines [BDS+03]
or deform existing operators [BWDG04] in order to define novel composition. They thus
obtained operators such as a smooth union and a smooth intersection operators, which
maintain the C1 continuity of the combined fields everywhere except on the surface (cf
Fig 1.12).

N-ary composition

In fact, the composition of scalar fields is not limited to binary composition. Some oper-
ators trivially extend to N parameters (max/min, the sum, or the super-elliptic blend),
and other N-ary methods include blending with range control [dWv09, HL03, Hsu18], set
theoretic operations [PASS95a], or extended convolution operators for topology control
[ZBQC13].
To the best of our knowledge, no field-space-based definition of N-ary operator existed so
far (we will introduce one in chapter 2).

Contact modeling

Leveraging on the fact that implicit surfaces ease collision detection, and on the modular-
ity of their composition, some work used them to accurately model the contact between
objects. While Cani proposed a closed form solution [Can93], it has since then been
given more controls thanks to the usage of the implicit space. For instance, Vaillant et al.
[VGB+14] define the 0.5 iso-level of their operators as to encapsulate a contact surface
between two intersecting implicit surfaces. One of their operators is depicted on figure
1.13, on the far left. Its 0.5 isovalue is depicted in yellow, purple and green : it is in fact
the union of three sets of values :

• {(f1, f2)/f1 = 0.5 = & f2 < 0.5}, which represents the initial surface Sf1,0.5 where
it does not intersect the other initial implicit surface Sf2,0.5;

• {(f1, f2)/f2 = 0.5 = & f1 < 0.5}, which represents the initial surface Sf2,0.5 where
it does not intersect the other initial implicit surface Sf1,0.5;

• a third set representing the contact surface. This set is located in the region where
f1 > 0.5 and f2 > 0.5, which intuitively places the contact surface between the two
initial intersecting surfaces, only where they are actually intersecting.
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Fig. 1.13: Contact is directly modeled as an isolevel in the field space by Vaillant et Al.
([VGB+14],left) and Angles et Al. ([ATW+17], right)

In [ATW+17], this isovalue is sketched by the user in the world space, and interactively
converted in the field space as an operator (Fig. 1.13, right).

Other applications of implicit surfaces

Interestingly implicit surfaces have also been used for other types of applications such as

• the use of convolution surfaces and their extension to scale invariant integrale sur-
faces (SCALIS)[BS00],[ZBQC13],[ZGC15],[FSHZ19] to overcome the limitations of
simple soft-objects;

• controlling blending location by enabling it only where needed [PASS95b, dWv09,
BBCW10] or using composition operators that depend on the orientation of the
fields [Roc89], [GBC+13],[CGB13]

• the simulation of highly deformable and non-constant topology objects, such as
fluids [SS03],[Kim10] or magnetic substances [NZWC20], where the implicit surface
represents the interface between phases.

Discussions

Scalar field enable to define closed surfaces with a built-in volumetric model. This allows
to easily define an interior and exterior regions, thus offering an easy way to detect
potential collisions. The contact between objects can be modeled through composition
operators, and its form and location can be tweaked and parameterized in the field space.
However, as far as we know none of the aforementioned operators deal with the problem
we tackle in chapter 2, that is the untangling of any number N of nested implicit surfaces.
Moreover, most of the methods for contact modeling only operate on two fields by the
mean of binary operators (eventually completemented by a third parameter which is not a
field), while we propose a N-ary operator, for which the state of the art is rather succint.
This operator is defined in the field space. Moreover, while previous method offered
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numerical method to compute and store their operator, we propose a closed-form formula
for its definition.
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1.2.2 Divergence-free vector fields

A vector field u can be defined in all generality as

u : R3 → R
p

ie function mapping each point in space to a p-dimensional value, with p usually equal to
2 or 3. We will assume p = 3 in the remainder of this section, as we are mostly dealing
with 3D modeling and animation.

Divergence of a vector field

The divergence of a vector field u is defined in cartesian coordinates as

∇.u =
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z

using the ∇ operator ∇ = ( ∂

∂x
, ∂

∂y
, ∂

∂z
). An interpretation of its value is given by the

divergence theorem : the divergence at one point p is the limit of the integral of the flux
going in and out of a volume around p as the volume shrinks to 0. If the vector field
represent a velocity field, ∇.u(p) is positive (resp. negative) if the matter advected by
the field is compressing (resp. dilating) around p. In particular, ∇.u = 0 if the velocity
field represents an incompressible flow.

Fig. 1.14: Different divergence configurations for a vector field u. Top left, p is a sink.
Middle top, p is a source. Bottom right: note the swirl motion typically observed in
incompressible fluid simulation.

24
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Fig. 1.15: The Chorin projection method (left, image from [Sta99]) is used to obtained
vector field modeling incompressible behavior in fluids such as gas (middle, [Sta99]) or
water (right, [EMF02]).

Divergence constraint in 3D modeling and simulation

Constraining the divergence of a velocity field to zero has been extensively done to model
incompressible material. The most known example would be the simulation of incom-
pressible fluids. Chorin [CM79] first introduced the projection method which relies on the
Helmhotz-Hodge decomposition : any vector field w can be decomposed into

w = u+∇(q)

with u a divergence-free velocity-field, q a scalar field and ∇(q) its gradient (not to be
mistaken with ∇.q). Multiplying both side of the equation by the ∇ operator thus gives
∇.w = ∆q with ∆q the laplacian -divergence of the gradient- of q. This is a Poisson
equation that can be solved to obtain q. Finally, u is obtained with u = w − ∇(q),
and represents the divergence-free projection of w. This scheme has been used to obtain
divergence-free velocity fields in fluid simulation in works such as [Sta99], [EMF02] or
[NNC+20]. However, other methods exist : for instance, using the fundamental property
that ∇.∇ × u = 0, Bridson et al [BHN07] used the curl of a Perlin noise to generate
divergence-free turbulence.

While such constrained vector field has been prominently used in fluid simulation,
it is not limited to this domain. For instance in modeling, Angelidis et al. [ACWK04]
composed severeal swirling sweepers, showing that they form a deformation field that
preserves volume, and thus with null divergence. Their method thus provided a modeling
tool conserving volume of material. Clebsch decomposition [Kot91] is used in [vFTS06]
to decompose a deformation field into two scalar field, and a divergence-free deformation
field is obtained by the cross-product of their gradients. This forces the field to locally
preserve volume, which prevents self-collision during deformation. Such decomposition
is also used in [AS07] to adapt a deformation field to volume-preserving skinning. Re-
cently, Eisenberger et al. [ELC18] introduced a basis of divergence-free vector field with
which they create deformation fields to both interpolate and find correspondances be-
tween shapes.
Divergence-free vector field have been used in simulation of other body than fluids as well:
Irving et al. [ISF07] solved for a pressure term, the gradient of which they used to correct
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Fig. 1.16: Divergence-free deformation fields are used to deform initial shape while pre-
serving its volume (left, [ACWK04]) or to prevent self-collision (right, [vFTS06]).

Fig. 1.17: Narain et al. (left and middle,[NGCL09]) and McAdams et al. (right,
[MSW+09]) constrain an existing velocity field to be divergence-free in order to avoid
collision between people in a crowd, or between strands of hair.

their velocity field, and perform volume conserving simulation of deformable volumetric
body. Diziol et al. [DBB11] used the divergence theorem on the surface of a closed mesh,
and derived a position based constraint that they minimize in order to preserve volume
during animation. The idea of avoiding collision of [vFTS06] can also be encountered in
works like [NGCL09] in which Narain et al. use a linear complementarity problem on the
density of people to find a divergence-free vector field for their crowd not to collide with
itself. McAdams et al. [MSW+09] constrained the divergence of their velocity field to
avoid that strands of hair cross each other during a time-step, thus preserving the global
volume of hair.

1.2.3 Discussions

Vector-fields have been extensively used to model deformation fields or velocity fields.
Constraining the divergence of a vector field to be 0 makes it conserve the volume of
the material it advects. This allows to model the behavior of continuous, incompressible
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matter such as fluid, but also of discretely modelised matter which can aggregate but
should not collide (such as hair or people in a crowd). This has not been applied to
cloths yet : one can argue that volumetric null-divergence might be overshooting for
cloths which are mostly 2-dimentional objects. However, we believe that approaches such
as the one of McAdams et al. [MSW+09] can be adapted to clothes. Beside, considering
that clothes are volumetric body where they aggregate is the idea behind the Rigid Impact
Zone mentioned in Section 1.1, which furthermore reinforces this intuition.
In Chapter 3, we propose an adaptation of the method of Narain et al. [NGCL09] and
McAdams et al. [MSW+09] to thin, surfacic bodies such as clothes. They are embedded
in a 3D velocity field that we make locally divergence-free in order to prevent collision
when necessary, while maintaining the initial velocity when not.
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Chapter 2

Implicit Untangling: Using scalar fields
to untangle layers of clothes

Fig. 2.1: Cloth individually fit-
ting a mannequin.

In this chapter, we tackle a specific problem of untan-
gling. In real world, garments are often worn in mul-
tiple layers, which impact both their visual appearance
and their dynamics. In order to mimics such behav-
ior, virtual characters need to be dressed with multiple
layers as well. Given a 3D avatar, and a pre-existing
wardrobe composed of well-sized garments modeled by
triangular meshes, one might want to try to manually
fit several garments to the character by applying rigid
transformation to them. However, chances are high to
obtain a tangled configuration , that is a configuration
in which meshes are intersecting each other. Correcting
these intersections would require local deformations to
be applied on the meshes, which are particularly com-
plex to set using interactive tools when multiple layers

are intersecting. Indeed, each mesh layer could be finely tuned and added on top of the
other ones in a specific configuration, but this approach would be particularly tedious
and time-consuming as the number of layers increases.

Fig. 2.2:
When worn
altogether,
the meshes
heavily in-
tersect each
others.

Intersecting garments can typically be encountered by an artist try-
ing to dress a character given a set of garment meshes, or can be seen
in games when selecting garments to dress an avatar. Intersecting start-
ing configuration are problematic as most cloth simulators need a con-
figuration without intersections to start an animation, or just to provide
guarantees that the meshes shall remain intersection-free. This issue is
often circumvented by only proposing a set of garments with simple or
specific shapes which cannot intersect other layers, or even in considering
only a single layer of cloth that solely visually mimics the appearance of
superimposed garments. A naive solution would be to consider each layer
acting as a rigid body constraint for the one on top of it. An iterative
algorithm based in this idea could consists in pushing the first layer out
of the body, and then recursively consider a new body as being the union
of the old body and the previous layer to correct subsequent layer by also
pushing them away. While this approach would ensure a result without
collision, the relative influence of the outer layer would not be taken into
account on the inner one: a leather jacket would not be flattening lighter
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Fig. 2.3: Our method is able, from a set of garments possibly exhibiting deep interpene-
tration, to compute an untangled state, which takes the relative rigidity and thicknesses
of layers into account and is animation ready.

layers underneath it.
The method we propose to solve this problem uses an intermediate representation of the
meshes as implicit surfaces, along with a co-variant field. The intersecting implicit sur-
faces are combined using a new family of N-ary composition operators, specially designed
for untangling layers. These operators are parameterised by the relative influence of each
garment on the other which allows to model deformations caused by the superposition of
layers of clothes. Garment meshes are finally projected to the deformed and collision-free
implicit surfaces, while trying to best preserve triangles and avoiding the loss of details
(see Section 2.1).
Our method stands appart from existing ones as no primitive test between triangle of the
intersecting meshes are necessary to untangle them. As such, given a fixed number of
layers, our method achieves linear complexity in term of the number of triangles in the
scene, allowing for the use of high-resolution meshes. Additionally, no arbitrary order of
correction is fixed, and all the corrections are done in one go, without having to resort
to iterative method to ensure correction. Finally, the operators we created are defined
for any number of layers, allowing for the stacking of high number of garments, while
methods in the litterature often restricted themselves to 2 or 3 layers simultaneously
interacting.
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2.1 Overview

We aim at untangling an arbitrary number of intersecting garments. The key insight is
to take benefits from the ability of volumetric representations to model contact through
the composition of scalar fields. To achieve this, garments need to be converted to some
implicit representation, while contact modeling by iso-surface composition needs to be
extended to the untangling of an arbitrary number of nested surfaces.

2.1.1 Notations and input

In this chapter, the implicit surfaces Si we consider are closed surfaces defined as the 0-
iso-surface of a scalar field fi. By convention, we define the interior of the volume within
Si by {p ∈ R

3 | fi(p) < 0}. This is the convention used by HRBFs (Hermite Radial Basis
Functions) [Wen05] on which we will build on. They enable a user to reconstruct closed
implicit surfaces from a set of sample points and the associated normal directions.

We consider a set of N predefined garment models given by their input meshes, which
are already wrapped over an input character body. The user specifies the desired order
between these garments, where layer 1 is the closest to the body and layer N is worn
above the other layers.

Virtual thickness values ti are specified for each layer, enabling the tuning of the
minimal distance between the centered meshes representing each garment, while weights
wi > 0, acting as a stiffness parameter, enable the tuning of their relative influence when
deformed during contact. Small values of wi mimic very flexible material that tends to
match the geometry of other surfaces in contact regions, while large values mimic stiffer
layers that tend to keep their shape. Note that the body is handled as a fully rigid layer
wi = +∞. The deformation we want to output for each garment is to account for the
combined effect of all the other layers (above and under) both in terms of thicknesses and
weights.

2.1.2 Processing pipeline and challenges

Our processing pipeline, depicted in fig. 2.4, includes a prepossessing step—namely im-
plicit approximation of all garments in a library, which can be done independently from a
specific set-up. At run time, the user selects layers, sets their parameters, and untangles
them. More precisely, for each mesh vertex, gradient descent and tangential relaxation
are interleaved to deform each garment towards a target implicit surface, computed by
applying an untangling operator to the input fields. Let us detail the main problems to
be solved.
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Implicit representation of garments: While implicit surface reconstruction from sample
points is a solved problem for closed surfaces such as the character’s body, extending it
to open surfaces with boundaries such as garments is a challenge. In particular, the new
representation needs to generalize the notion of inside and outside to these open surfaces,
to be able to detect the interpenetration regions between layers, in which corrections need
to be applied through the field composition operator.

Therefore, our first contribution, presented in Section 2.2, is a general solution for
approximating open surfaces with boundaries using a double implicit representation: we
combine the field fi which embeds the mesh among iso-surfaces with a co-variant field
hi, computed from the open borders of the mesh. This enables us to define the region
where a garment layer could cause intersections, accounting for the fact that it does not
cover the full 0-iso-surface of fi.

Untangling operators for nested implicit surfaces: Once the user sets a new configu-
ration with a character and some ordered layers of garments from the library, implicit
composition is used to untangle the associated fields, generating contact surfaces through
deformation in the regions where garments interpenetrate (see fig. 2.4-middle). Here, we
are not looking for a single composition operator but for N operators Oi, parameterized
by the layers weights wi, and able to generate N new fields f̂i whose respective 0-iso-
surfaces coincide in the previously intersecting regions while remaining intersection-free
elsewhere.

We introduce a closed-form solution for these operators, enabling us to apply them
whatever the number of colliding layers and their relative rigidities. Section 2.3 first
explains how these operators can be defined in the general case of N layers, before detailing
it for the specific case of two and three layers.

Using the deformed fields for updating the garments: In our case, the untangling com-
position is not to be applied to some abstract, nested implicit surface, but to meshes rep-
resenting garments. Similarly to Vailllant et al [VGB+14], output meshes are computed
by displacing vertices of the original input meshes along the gradient of their respective
field ∇f̂i until reaching the zero value of f̂i.

Several changes however need to be made: first, the meshes should not lie on the
same 0-iso-surface in contact regions, but at some offset distance from each other, to
avoid visual artifacts and allow subsequent physically-based animation. Secondly, some
tangential relaxation is required to ensure that the local mesh deformation remains min-
imal while well approximating the 0-iso-surface of f̂i. Indeed, over-elongated triangles
could cause geometric intersection even while implicit layers do not intersect, and could
lead to unstable subsequent simulations.

Section 2.4 explains our practical solution for applying the deformation to meshes,
which involves an extended composition operator accounting for the required thicknesses
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ti of each layer to guarantee nested target surfaces, and a new relaxation method that we
interleave with gradient descent to reduce tangential distortions.

Fig. 2.4: Processing pipeline: Implicit reconstruction of all garments are computed
as a preprocess (left). At run-time, the user selects a number of garments, sets their
order, thicknesses and weights (center). The associated fields are composed using our
new untangling operators, leading to a variety of possible results after mesh projection
(right). For instance, the T-shirt (low weight during deformation) can either be worn
below or above the thicker leather jacket.

2.2 Implicit approximation for garments

While we use standard HRBFs to approximate the character’s body, we need to extend
implicit reconstruction to the case of open surfaces with boundaries for handling garments.
The main challenge is to characterize regions where the garment might interpenetrate with
others during field composition, used to test for interpenetration: indeed, using the full
0-iso-surface of fi to approximate a cloth layer would not work, since extra collisions
could then be wrongly detected, leading to unwanted deformations of the other layers,
such as in the region below the jacket and t-shirt in Fig. 2.5. The key idea to achieve this
is to use a second implicit volume, defined by a co-variant field hi.

More precisely, the input mesh is first sampled using Poisson dart-throwing. Sam-
ples are used to compute a HRBF approximation fi ([Isk02] , [MGV11]), such that for
each pair point/normal (ps, ns) in the sample, fi(ps) = 0 and ∇fi(ps) = ns. The implicit
surface defined by {p ∈ R

3 | fi(p) = 0} is then close to the initial mesh anywhere near one
of its vertices. As in former works combining meshes and implicit modeling [VBG+13],
each mesh vertex keeps track of its exact iso-value in the reconstructed field fi, so that no
detail is lost (eg. thicker parts such as seam-lines or pockets would be adequately recon-
structed after deformation). Note that in practice, we pre-store the values of fi(p) and
∇fi(p) in a grid. Evaluating fi and its gradient at any spatial position is then efficiently
approximated using a tri-linear interpolation. Due to the continuity of the HRBF model,
the 0-iso-surface of fi is a closed surface. In order to be able to discard parts where inter-
actions with the other garments should not be considered, we also compute a co-variant
field hi, aimed at capturing the region ”inside borders”. While the use of two scalar fields
was already introduced in order to reconstruct open surfaces from incomplete point-set
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2.3. Untangling nested implicit surfaces

Fig. 2.5: From left to right: a jacket and a T-shirt, with the associated field fi and co-
variant field hi. The iso-values of each field are depicted on a 2D plane set to intersect
the model, where positive isovalues are in blue, negative ones in red, and the 0-iso-
value in green. Note that the negative part of the covariant field (in red) enables us to
characterize the part of space where a garment might interact with other layers. This
enables to discard, for instance, the rounded part at the bottom of fi’s 0-iso-surface for
the T-shirt.

acquisition using evolving level-sets [SH04], we propose a new efficient formulation for the
field hi, based on HRBF, specifically adapted to take advantage of meshes with bound-
aries . More precisely, the HRBF is computed from the open-boundary samples (ps� , ns�),
where the gradient ∇hi(ps�) = ns� is set to the unit vector both orthogonal to the open-
boundary curve and in the tangent plane with respect to the surface (see Fig.2.5). The
region where hi(p) > 0 is called the zero-influence region of the layer, meaning that
it should not be considered for processing interactions with this layer. Conversely, the
influence region of a layer is defined by hi(p) < 0.

In consequence, the inside of the garment, which should be used to test for collision
with outer cloth layers is defined as {p ∈ R

3|fi(p) < 0 & hi(p) < 0} while the outside
of the garment, where collisions with inner cloth layers are detected, is given by {p ∈
R

3|fi(p) > 0 & hi(p) < 0}.

2.3 Untangling nested implicit surfaces

In this section, we describe our implicit untangling operator in the general case of N
implicit surfaces defined as the 0-iso-surfaces of fields (fi)i∈[1,N ]. Without loss of gener-
ality, we consider in the following that i refers to their nesting order. The application
to garments defined by both a field and a co-variant field is presented in Section 2.4.
The objective is to define a set of closed-form composition operators enabling the defor-
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Chapter 2. Implicit Untangling: Using scalar fields to untangle layers of clothes

mation of each of the surfaces so that contact is modeled in regions where they previ-
ously interpenetrated. Untangling is performed by replacing each field fi by f̂i such that
∀p ∈ R

3, f̂i(p) = Oi(f1(p), .., fN(p)), where Oi is a composition operator i.e. a function
from R

N to R, and where each of the resulting isosurfaces {p ∈ R
3 | f̂i(p) = 0} does not

intersect any of the other ones. To simplify notation, we consider the fi, ie. functions
applied to a position in space and returning fi(p) ∈ R, as a set of independent real vari-
ables. This enables us to define the N-dimensional vector f = (f1, . . . , fN) ∈ R

N , lying
in the so-called fields-space, and to write the operator as Oi(f). Inspired from Angles et
al. [ATW+17], the operators are built in two steps: First, we build a desired zero-set Zi

in fields-space, i.e. in R
N in our case. Secondly, we build Oi from Zi such that Oi(f) is

the signed Euclidean distance between f and Zi, thus ensuring that Zi is the zero-set of
Oi.
Finally, applying this operator to a position p in 3D space, consists in evaluating Oi(f(p)),
where f is now considered as a function of the input position p.

In the following, we present the construction of the zero sets Zi, first by defining
their general closed-form expression in the N -dimensional case (sec. 2.3.1), and then by
explaining their intuitive construction in the special cases N = 2 (sec. 2.3.2), N = 3
(sec. 2.3.3) .

2.3.1 General formulation in the N-dimensional case

Let us consider a given layer i. We define its zero-set Zi as the union of d = i(N − i+ 1)
sub-spaces (Hb,c

i )b∈[0,i−1],c∈[0,N−i].

∀i ∈ [1, N ] , Zi =
�

b,c

Hb,c
i . (2.1)

Each subspace Hb,c
i is itself defined by a hyperplane with normal vector nb,c

i ∈ R
N ,

and N − 1 additional inequalities expressed as linear combinations of the (fi), formally
described using a matrix M b,c

i .

∀i ∈ [1, N ], ∀b ∈ [0, i− 1], ∀c ∈ [0, N − i],

Hb,c
i =

�

f ∈ R
N
�

� nb,c
i · f = 0 and M b,c

i f > 0
�

.
(2.2)

As further detailed in the next sections, Hb,c
i corresponds to a subset of RN that

expresses the interactions between the layer i and all other layers within the interval
[i − b, i + c] \ i. Intuitively, the equality constraint (related to the normal n) shifts
the layers to be coincident rather than interpenetrating, and the inequality constraints
(related to the matrix M) select whether this shift should be applied based on what
interpenetrations are present.
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2.3. Untangling nested implicit surfaces

The vector nb,c
i is defined as

∀j ∈ [1, N ], nb,c
i [j] =

�

wj if j ∈ [i− b, i+ c]
0 otherwise,

(2.3)

where the wj are the weights associated with each layer, and acting as stiffness parameters

during the untangling process. Note that nb,c
i can be multiplied by a scalar value without

changing the zero-set.

The matrix M b,c
i of size (N − 1)×N defining the inequality constraints on Hb,c

i can
be expressed using four squared triangular blocks, respectively, A of size (i− b−1)2, B of
size b2, C of size c2, D of size (N − i− c)2. These matrices have the following expression,
when layer i is in collision with its b inner, and c above layers.

M b,c
i =









A 0 0 0 0
0 B 0 0 0
0 0 0 C 0
0 0 0 0 D









, with (2.4)

A =











w1 w2 . . . wi−b−1

0 w2 . . . wi−b−1

. . .
...

0 . . . 0 wi−b−1











B =











−wi−b 0 . . . 0
...

. . .

−wi−b . . . −wi−2 0
−wi−b . . . −wi−2 −wi−1











C =











wi+1 wi+2 . . . wi+c

0 wi+2 . . . wi+c

. . .
...

0 . . . 0 wi+c











D =











−wi+c+1 0 . . . 0
...

. . .

−wi+c+1 . . . −wN−1 0
−wi+c+1 . . . −wN−1 −wN











Matrices B and C represent the conditions for layer i and its direct neighbors to be
in collision, while matrices A and D represent the absence of collision between layer i and
the other layers. Note that each line of these matrices is defined up to a positive scaling
factor, since M b,c

i is used to express the N-1 conditions M b,c
i f > 0.

2.3.2 Case of two layers (N = 2)

To give some intuition, let us explain in more details the construction of the zero-sets in
the simple case of two layers N = 2, and show the correspondences with the variables
previously defined.

Let f1 and f2 be the two fields representing the two implicit surfaces to be nested,
where f1 corresponds to the inner one and f2 to the outer one. Let us detail the creation
of the zero-set Z1, which drives the creation of the operator O1 (see Fig. 2.6 for a visual
illustration in field-space). Let us consider a point p ∈ R

3 on the inner implicit surface
such that f1(p) = 0. We can then consider two cases:
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1. f2(p) < 0: p is inside the outer layer. This is a legal position in field-space, ie. an
expected configuration compatible with the absence of collision. In such case, the
iso-surface from layer 1 defined by f1 = 0 should remain unchanged around p.

2. f2(p) > 0: p is outside the outer layer which is an illegal position, meaning that
there is some intersection between the two layers. Intuitively, in this case we would
want the inner iso-surface to be pushed inward by the outer one to solve such
collision. We choose to correct the iso-surface by making it lie on w1f1 +w2f2 = 0.
Indeed, this expression can be written as f1 = −w2

w1

f2 < 0: following the conventions
expressed in Section 3, the resulting surface is in fact placed inward with respect to
f1 = 0. As depicted in Fig.2.7, modifying the relative weights (w1, w2) moves the
corrected iso-surface continuously from f1 = 0 to f2 = 0.

The zero-set Z1 can therefore be expressed as the following subset of R2:

Z1 =
�

f = (f1, f2) ∈ R
2 | (f2 < 0 & f1 = 0) ||

(f2 > 0 & w1f1 + w2f2 = 0)
�

.
(2.5)

This relation can be rewritten under the general form described previously as:















Z1 = H0,0
1

�

H0,1
1

H0,0
1 = {f ∈ R

2 | n0,0
1 · f = 0 and M0,0

1 f > 0}

H0,1
1 = {f ∈ R

2 | n0,1
1 · f = 0 and M0,1

1 f > 0} ,

(2.6)

with n0,0
1 = (1, 0), n0,1

1 = (w1, w2), and M0,0
1 = (0,−1),M0,1

1 = (0, 1). As explained
previously, vector n and the lines of matrix M can be multiplied by positive scalars, and
can equivalently be defined to match with the general notation of the equations (2.3) and
(2.4), as n0,0

1 = (w1, 0), n
0,1
1 = (w1, w2), and M0,0

1 = (0,−w2),M
0,1
1 = (0, w2), respectively.

In these cases, H0,0
1 and H0,1

1 represent half-lines in the 2D fields-space. M0,0
1 =

(0, D), with D = (−w2) (no collision with the single outer layer), while the other matrices
A, B, C are empty. Similarly, M0,1

1 = (0, C) with C = (w2) (expressing collision with the
single outer layer). Z2 is defined in a symmetric way. For a point p lying on the outer
implicit surface, for which f2(p) = 0, two similar cases can arise:

1. f1(p) > 0, denoting a legal position for which the second implicit surface should
remain unchanged;

2. f1(p) < 0, denoting an illegal position for which we set the new iso-surface to lie
on w1f1 + w2f2 = 0, which can be rewritten as f2 = −w1

w2

f1 > 0. The corrected
iso-surface then lies outward the input one, which models the action of the inner
implicit surface pushing the outer one away.
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2.3. Untangling nested implicit surfaces

Fig. 2.6: N=2 with fixed w1 and w2: Left and middle: Visualisation of the subparts
forming Zi. Right: Visualisation of Zi and some iso-lines of Oi, computed as the distance
to Zi. Notice how H0,1

1 and H1,0
2 are similar, leading eventually to the contact between

the two corrected iso-surface.

This leads to the following definition for the zero-set:














Z2 = H0,0
2

�

H1,0
2

H0,0
2 = {f ∈ R

2 | n0,0
2 · f = 0 and M0,0

2 f > 0}

H1,0
2 = {f ∈ R

2 | n1,0
2 · f = 0 and M1,0

2 f > 0} ,

(2.7)

with n0,0
2 = (0, 1), n1,0

2 = (w1, w2), M
0,0
2 = (1, 0) andM1,0

2 = (−1, 0). Using the convention
from Section 2.3.1, this can be re-expressed as n0,0

2 = (0, w2), n
1,0
2 = (w1, w2), M

0,0
2 =

(w1, 0) and M1,0
2 = (−w1, 0).

As we can check, both operators push points formerly on one of the implicit surfaces,
but in the intersection region, to the same iso-surface w1f1 + w2f2 = 0, which untangles
the two volumes and creates a contact surface instead. Note that the weights w1 and
w2 do not need to sum to one: only their relative value is important, since the contact
surface they define can be re-written as f1 +

w1

w2

f2 = 0. Playing with their relative value
enables us to tune the position of the contact surface anywhere between f1 = 0 (layer 1
not changed, ie. behaving rigidly during untangling) and f2 = 0 (layer 2 not changed, ie.
behaving rigidly, as illustrated in Figure 2.7).

2.3.3 Case of three layers (N = 3)

The case of three layers is slightly more complex. Indeed, a collision between layer 1
and layer 3 should not be handled directly without taking into account the influence
of layer 2 in-between. To solve such inter-dependence, we consider first the collision of
layer 2 and 3 independently from layer 1, and set, in case of collision, an intermediate
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Chapter 2. Implicit Untangling: Using scalar fields to untangle layers of clothes

Fig. 2.7: Case of two layers. From left to right: two intersecting implicit surfaces in cross
section, where the red one should be kept at the right; view of Zi and iso-lines of the
operators Oi in field-space ; untangled results. Modifying the orientation of the half-lines
by tuning the ratio between w1 and w2 brings the contact surfaces after untangling from
the former position of the blue layer to the one of the red layer (right, top to bottom)

corrected iso-surface defined as w2f2 + w3f3 = 0. Then the collision is handled between
the intermediate iso-surface and layer 1.

To define Z1, we are left with three cases when classifying the possible interpenetra-
tion states at a point p on the first layer such that f1(p) = 0:

1. No intersection occurs if f2(p) < 0 (layer 2 is above, see Fig. 2.8.a ), and w2f2(p) +
w3f3(p) < 0 (layer 3, after intermediate correction, is above, see Fig. 2.8.b ). In
this case, we keep layer 1 non-deformed by maintaining the zero-set on f1 = 0.

2. Only layer 2 is intersecting layer 1 if f2(p) > 0 and f3(p) < 0 (Fig. 2.8.c). In this
case, similarly to N = 2, we chose to model coherently the corrected zero-set using
w1f1 + w2f2 = 0.

3. Layers 2 and 3 are both interacting with layer 1 when f3(p) > 0 (p is outside layer
3) and w2f2(p) + w3f3(p) > 0. In this case, even if layer 2 is not intersecting layer
1 in its initial configuration, it is pushed by layer 3, and the resulting intermediate
iso-surface ends up in collision with layer 1. (see Fig. 2.8 (e)). In this case, we set
the corrected 0-set of layer 1 to w1f1 + w2f2 + w3f3 = 0
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2.3. Untangling nested implicit surfaces

Fig. 2.8: Partial view of three implicit layers in cross section. The inner side is at the
right of f1, and the outer side is on the left of f3. The dashed line represents, in case
where it is needed, the intermediate surface profile between layer 2 and 3 represented by
w2f2 + w3f3 = 0. (a) and (b): No interaction with layer 1; (c): layer 1 intersects only
layer 2; (d) and (e): All three layers are interacting (note: the corrected state between 1
and the other layers is not represented).

These three cases turn into the 3 sub-spaces forming Z1:























Z1 = H0,0
1

�

H0,1
1

�

H0,2
1

H0,0
1 = {f ∈ R

3 | n0,0
1 · f = 0 and M0,0

1 f > 0}

H0,1
1 = {f ∈ R

3 | n0,1
1 · f = 0 and M0,1

1 f > 0}

H0,2
1 = {f ∈ R

3 | n0,2
1 · f = 0 and M0,2

1 f > 0} ,

(2.8)

with n0,0
1 = (1, 0, 0), n0,1

1 = (w1, w2, 0), n
0,2
1 = (w1, w2, w3), and

M0,0
1 =

�

0 −1 0
0 −w2 −w3

�

, M0,1
1 =

�

0 1 0
0 0 −1

�

, M0,2
1 =

�

0 w2 w3

0 0 1

�

.

Using the convention from Section 2.3.1 where 1 is replaced by the corresponding weight,
this can be rewritten as:
n0,0
1 = (w1, 0, 0), n

0,1
1 = (w1, w2, 0), n

0,2
1 = (w1, w2, w3), and

M0,0
1 =

�

0−w2 0
0−w2 −w3

�

, M0,1
1 =

�

0 w2 0
0 0 −w3

�

, M0,2
1 =

�

0 w2 w3

0 0 w3

�

In this case, we have M0,0
1 =

�

0 D
�

with D =

�

−w2 0
−w2 −w3

�

, M0,1
1 =

�

0 C 0
0 0 D

�

with C = (w2) and D = (−w3), and M0,2
1 =

�

0 C
�

with C =

�

w2 w3

0 w3

�

.

While the constraints associated to layer 3 can be derived symmetrically to the ones
we just described for layer 1, the set of constraints to set up for the second layer are
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slightly different. Indeed, layer 1 and 3 can be directly compared to layer 2 without
requiring the consideration of any intermediate corrected surface. We therefore identify
four possibles cases:

1. No collision: f1 > 0 and f3 < 0, leading to the isosurface f2 = 0.

2. Collision with layer 1 only: f1 < 0 and f3 < 0 leading to the isosurface w1f1+w2f2 =
0.

3. Collision with layer 3 only: f1 > 0 and f3 > 0 leading to the isosurface w2f2+w3f3 =
0.

4. Collision with layer 2 and 3: f1 < 0 and f3 > 0 leading to the isosurface w1f1 +
w2f2 + w3f3 = 0.

Using the previous formulations, vector nb,c
i and matrices M b,c

i are defined as follows:

n0,0
2 = (0, w2, 0), n

1,0
2 = (w1, w2, 0),

n0,1
2 = (0, w2, w3), n

1,1
2 = (w1, w2, w3),

M0,0
2 =

�

w1 0 0
0 0 −w3

�

, M1,0
2 =

�

−w1 0 0
0 0 −w3

�

,

M0,1
2 =

�

w1 0 0
0 0 w3

�

, M1,1
2 =

�

−w1 0 0
0 0 w3

�

.

and


































Z2 = H0,0
2

�

H1,0
2

�

H1,0
2

�

H1,1
2

H0,0
2 = {f ∈ R

3 | n0,0
2 · f = 0 and M0,0

2 f > 0}

H1,0
2 = {f ∈ R

3 | n1,0
2 · f = 0 and M1,0

2 f > 0}

H0,1
2 = {f ∈ R

3 | n0,1
2 · f = 0 and M0,1

2 f > 0}

H1,1
2 = {f ∈ R

3 | n1,1
2 · f = 0 and M1,1

2 f > 0}.

(2.9)

Again, note that the equalities n0,1
1 = n1,0

2 and n0,2
1 = n1,1

2 allow to model the same
contact iso-surface between, respectively, layer 1 interacting with layer 2, and all layers
1, 2, 3 interacting.
As in the case of two layers, the relative values given to the weights can be used to
tune the amount of deformation applied to each layer in interpenetration situations. For
instance, in the deep intersection case when all three surfaces interact and end up on
w1f1 + w2f2 + w3f3 = 0, this contact surface can be pushed towards f1 = 0 (w1 >>
w2 &w3), f2 = 0 (w2 >> w1 &w3), or f3 = 0 (w3 >> w1 &w2).

The case N > 3 can be further developed by considering more intermediate layers
for higher values of N , to reach the formulation given in Section 2.3.1. To provide a
better insight on the construction of the matrices in the general case, N = 4 is given
some insight in the next subsection.
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2.3.4 General evaluation of the operator

The operatorOi can be evaluated at any position f ∈ R
N as the signed Euclidean distance

between f and Zi. To evaluate this distance, we compute, as an intermediate step, the
closest point f b0,c0

i such that

(b0, c0) = minb,c ||f − f b,c
i ||,

where f b,c
i is the closest point to f on (Hb,c

i ).

Computing closest point in the implicit space

The algorithm to compute efficiently f b,c
i for any (b, c) is as follows. Given f ∈ RN and

(b, c), we want to compute the closest point f b,c
i ∈ Hb,c

i to f . This closest point can lie
on different subspaces of Hb,c

i . For N = 2, each Hb,c
i is a half-line stopping at (0, 0), and

f b,c
i can either lie on the half-line, or be (0, 0).
For N = 3, each Hb,c

i is a plane bounded by two half-lines described by two vectors
m1 and m2 which are the lines of the matrix M b,c

i , such that ∀f, f ∈ Hb,c
i ⇔ m1.f >

0,m2.f > 0 and nb,c
i .f = 0. Therefore, f b,c

i can lie in 4 different locations:

1. ”inside” the plane;

2. on the extremity of the plane such that m1.f = 0;

3. on the extremity of the plane such that m2.f = 0;

4. on the corner of the plane such that m1.f = 0 and m2.f = 0.

In fact, there are 2N−1 possible locations for f b,c
i . Rather than explicitly testing each

of the subspaces, which would lead to an exponential complexity in the number of layers,
we use the following algorithm of quadratic complexity. Note that, in our tests, even for
a small number of layers, our algorithm performs faster than the naive exhaustive test.

The first step is to use an adapted basis for RN in order to lower the number of tests.
The algorithm 1 returns such a base. In this base, we can easily partition RN into 2N−1

sub-spaces. Each sub-space correspond to one of the possible location for f b,c
i . We can

determine to which space f belongs with only N − 1 tests over the vi. The base and the
associated sub-spaces are illustrated in figure 2.9.
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ALGORITHM 1: Computing an adequate basis of RN

Data: (nb,c
i , (mj)j∈[1.N−1]the lines of M b,c

i )
Result: V basis of RN

for j=1 .. N-1 do
Compute vj as a solution of unit norm of the system :

nb,c
i · x = 0

∀l �= j,ml · x = 0
if vj ·mj < 0 then

vj ← −vj
end

end
return V = (vj)j

Fig. 2.9: Representation of an Hb,c
i for N=3. The vectors vi are adapted to simple test to

know where the projection of any f will lie.

This basis and its inverse are computed once for every Hb,c
i when the weights (wi)i

are fixed.
Then, f b,c

i is computed using the Algorithm 2 below, which aims at re-orthogonalizing
the adapted basis computed in Algorithm 1, in a well chosen order relative to the position
of f compared to Hb,c

i , which is obtained through the tests illustrated on figure 2.9 (for
sake of readability, we use the same notation for a basis V and the matrix whose columns
are the basis vectors):
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ALGORITHM 2: Computing projection over an Hb,c
i

Data: V , V−1, f
Result: f b,c

i

d = V−1f the decomposition of f into V
I=[0] a set in which there is only 0
for i=1..N-1 do

if dk < 0 And vk · f < 0 then
Push k into I

end

end
Reorder V into V2 = ( (vi)i/∈I , (vi)i∈I)
V3 = GramSchmidt(V2)
p = size(I)
V4 = the sub-family consisting of the p last vectors of V3

c=V−1
4 f =t V4f

f b,c
i = f − V4c
Return f b,c

i

As explained in section 5.4, this algorithm is iterated over the i(N − i − 1) hyper-
planes to find all the f b,c

i and compute f �. The algorithmic complexity of Gram-Schmidt’s
re-orthogonalization method (given below for sake of completeness) being O(N2), so is
the complexity of Algorithm 2. Therefore, the complexity of computing Oi(f) amount to
O(N3).
Note that the order of the vectors given as input to the re-orthogonalization influences
the result basis, hence the re-ordering of the basis in algorithm 2.

ALGORITHM 3: Gram-Schmidt Orthogonalisation

Data: B = (bi)i∈[1,N ]

Result: O orthogonal basis
o1 = b1
for i=2 .. N do

oi = bi for j=1 .. i-1 do
oi = oi − (oi · bj)bj

end
oi = oi/||oi||

end
Return O = (oi)i∈[1,N ]

Evaluation of Oi

The final signed distance is then computed as:

Oi(f) = sign(nb0,c0
i · f) ||f − f b0,c0

i || . (2.10)
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Fig. 2.10: Various untangled clothing on top of the same mannequin body (the initial
colliding configuration is shown on the left of each example). Note that the resulting
silhouette is strongly influenced by the worn layers. Right: application of our method on
a different pose.

Once f b0,c0
i is known, we can note that computing the gradient of the operator∇Oi =

(∂Oi/∂fj)j∈[1,N ] (which will be used in Section 2.4.3) is straightforward. Indeed, Oi is the
Euclidean distance function, therefore its gradient at position f is given by:

∇Oi(f) = sign(nb0,c0
i · f) (f − f b0,c0

i )/�f − f b0,c0
i �. (2.11)

2.4 Application to untangling garment meshes

In this Section, we present the extension of field composition to open surfaces using the
co-variant fields introduced in Section 2.2, the modification of the operators to take cloth
thickness into account, and the computation of the resulting deformation of garment
meshes.

2.4.1 Using co-variant fields to detect active layers

In practice, garments on top of a mannequin are only locally nested. For instance a jacket
and trousers may only be overlapping around the hips of the character. As a result,
detected inter-penetrations between the associated implicit surfaces should be discarded,
except within the overlapping region.

More precisely, we define the active layers at a point p in space as the set of garment
layers j whose influence region includes p, ie. such that hj(p) < 0 (see Section 2.2).
This enables us to compute the corrected 0-iso-surface of a given layer i — giving the
deformation to be applied to a mesh point p of layer i, while only considering the other
locally-active layers j.

In the implicit space F , canceling-out the effect of a layer j consists in not taking its
corresponding field fj into account within the computation of the operator, while keeping
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2.4. Application to untangling garment meshes

the nesting order unchanged. Thus, the operator must be applied at each point p on the
subset of fields (fj)j∈J (p), with J = {j ∈ [1, N ] | hj(p) < 0}. The corrected field for
garment i at p is thus given by:

f̂i(p) = Oi

�

(fj(p))j∈J (p)

�

. (2.12)

Note that the closed-form solution for our operators enable us to seamlessly switch to this
lower-dimensional implicit space. In the remainder of this section, for sake of simplicity,
we re-number the M active layers as p within [1...M ].

2.4.2 Taking cloth thickness into account

Applying the operators on values f = (f1, . . . , fM) leads to 0-iso-surfaces that are in
exact contact when inter-penetrations are corrected. While this property was desirable
to design our untangling operator, we actually aim at modeling cloth layers that may have
a non-negligible physical thickness, and that will anyway need to be located on different
surfaces for launching an animation. In the following, we include the required void space
between garment layers aimed at avoiding ill-conditioned simulation within the notion of
”thickness” of a cloth layer.

A naive approach to handle thickness would be to leave some geometric gaps between
garment meshes and their target implicit surfaces, during the process of meshes projection
to the associated implicit surfaces. Unfortunately, this could result in new collisions with
neighboring layers due to this extra thickness. In contrast, our approach relies on directly
integrating thickness values (ti)i∈[1,N ] within the expression of the operators, allowing to
seamlessly and robustly handle collisions between thick layers.

Let us consider that the cloth surface, and thus the iso-surfaces defined by Oi(f) = 0,
is centered within the associated, thick cloth layer. As a result, layer i should remain at a
minimal distance of ti/2+ti+1/2 from layer i+1, at a minimal distance ti/2+ti+1+ti+2/2
from layer i+ 2, etc.

We model this effect by applying offsets in the implicit space which convert into
adequate displacements of the iso-surfaces in the 3D space. More precisely, applying an
offset to a field fj leads to a geometric displacement of the layer j along the gradient of
the field ∇fj. In our case, fj is computed as a HRBF having, by construction, a unit
gradient norm on the sampled surface points, and thus, at first approximation, � 1 in
the neighborhood of the 0-isosurface. Therefore applying a small offset δ in the implicit
space leads to displacement of the layer j along its normal by a length � δ.

Thanks to this property, we take into account the offset on the M active layers
with respect to the current layer i by applying a change of variables before applying
the operator. More precisely, we replace Oi(f) in Equation (2.12) by Oi(f̃), with f̃ =
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(f̃1, . . . , f̃M) defined as:

f̃j =







fj if i = j

fj +
ti
2
+

tj
2
+
�j−1

k=i+1 tk if j > i

fj − ti
2
− tj

2
−�j+1

k=i−1 tk if j < i.

(2.13)

2.4.3 Projecting mesh vertices to their iso-surface

The modified operators we just presented are the ones used for deforming the meshes
towards their corrected, untangled configuration. This is done by interleaving two relax-
ation processes at each vertex of the mesh: gradient relaxation consists in moving points
along the gradient ∇f̂i, toward their original iso-value, while tangential relaxation tends
to make them slide along the iso-surfaces of f̂i so that the distortion of mesh triangles is
minimized.

Gradient relaxation is computed using Newton iterations using the gradient value
given by

∇f̂i =
�

j

∂Oi

∂fj
∇fj , (2.14)

where the ∇fj are obtained using trilinear interpolation of field values pre-stored in a

grid and ∂Oi

∂fj
is computed from the closest point f b0,c0

i as mentioned in Section 2.3. In

practice, we use a step length = 0.3.

Tangential relaxation is inspired from As Rigid As Possible deformations (ARAP)
[SA07]. The key adaptation to our case is to compute per-edge rotations and length
changes: the rotation computed for each edge is the minimal rotation around its center
that makes it tangential to the field, and the additional length change is a symmetric
displacement of the vertices enabling the edge to restore its original length. These are
used as target displacements for the two vertices defining the edge. At each tangential
relaxation step, each mesh vertex applies an average of the displacements assigned the
the adjacent edges.

Interleaving this second relaxation process with the more standard gradient descent
enables-us to avoid over-elongated or inverted triangles, ensuring that the corrected iso-
surface will be well approximated in deformed regions.

2.5 Results and discussion

2.5.1 Implementation

All times measured in this chapter were taken on a standard laptop computer with an
Intel quad Core i7 CPU, clocked at 3.1GHz with 32GB of RAM. Our software uses up to
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1Gb of RAM memory at run-time for the presented examples (including the storage of all
fields and their gradients stored in uniform grid of size 256× 256× 64) As our approach
treat each vertex independently during mesh deformation described in Section 2.4, we use
OpenMP to trivially parallelize our code. The rendered images were computed off-line
using Blender and 3DSMax renderer for the animations.

2.5.2 Qualitative results

Several results of our method are depicted in Fig. 2.3 and Fig. 2.10, showing it can be used
to model a variety of layered clothing while ensuring collision-free states. We note that
although aimed at providing a collision-free configuration for the garments, our method
is also able to generate a quite plausible initial configuration, enabling the user to test
the look of the virtual character even before launching animations.

Fig. 2.11-left illustrates a change of layer order between a rigid jacket and a flexible
t-shirt. Note how the strong rigidity of the jacket influences the visible silhouette of the
t-shirt when the latter is above. Another example of exchange of layer order is shown in
Fig. 2.3-middle between a t-shirt and a trouser. Fig. 2.11-right shows the action of the
mannequin body which is modeled as a layer of infinite rigidity and has visible action
around the hips.

Fig. 2.11: Influence of the interior layers on the visible silhouette. Left: Exchange between
a rigid leather jacket and a flexible t-shirt. Right: Result with and without the mannequin
body.

We tested our approach on the extreme case of a character wearing 9 layers (including
the body) and show the result in Fig. 2.12. This validates the robustness of the method in
high dimensional fields space, with strongly tangled initial configuration, and deep inter-
penetration. Vertical and top-to-bottom cuts are provided to illustrate the well behaved
collision-free geometry of all internal layers, in comparison to the initial state.
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As explained previously, user defined weights wi can model the relative influence
between layers when collision is corrected. Changing these weights allows us to tune the
relative amount of deformation of the layers from fully rigid to fully flexible. Fig. 2.13
shows a horizontal cut through the dresses of the model shown in Fig. 2.3-left when
weights are modified.

Finally, as shown in Fig. 2.3-right, our untangled model can be directly plugged in
as the initial condition of common cloth simulators to be animated without requiring any
manual modification on the surface geometry. Note that the animated version of this
model is provided in the accompanying video.

Fig. 2.12: Untangling an extreme configuration made of nine initially colliding layers.
Cuts along layers are shown on both the initial input (left) and on the untangled result
(right). A horizontal cut is shown across the dress in bottom, while the left-most and
right-most cuts are performed on a 45◦ corner and zoomed-in to check that the resulting
surfaces are fully exempt of collisions.
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Fig. 2.13: Horizontal cut through the red dress layers shown in Fig. 2.3-left. Top-left:
initial colliding configuration. Top-right: untangled configuration when all layers have
the same weights. Bottom: layers weights are set, respectively from left to right, to
(w1, w2, w3) = (2.5, 1, 1), (w1, w2, w3) = (1, 2.5, 1), (w1, w2, w3) = (1, 1, 2.5). Note how
the most-rigid layer mostly-keeps its original shape and deforms the surrounding ones.

2.5.3 Quantitative results

The overall number of operations to untangle a model is O(nKN3), where N is the num-
ber of cloth layers, n is the number of vertices, and K is the number of steps required in
the iterative deformation. Indeed, the cubic complexity is brought by the field evaluation,
while this evaluation has to be performed for every vertex until converging toward the
0-iso-surface. For all our examples we have K ≤ 15, while N is at most 9. As a result
for a constant number of layers and iterations, our untangling algorithm is linear with
respect to the number of vertices. Time variation with respect to N in shown in Table 2.1.
Table 2.2 shows our computation time for different cases and validates the roughly lin-
ear dependency of the computation time with respect to n. We can also note that, in
practice, timings strongly depend on the number of vertices in collisions that need to be
corrected. Therefore deep penetration of multiple layers are more computationally costly
that correcting slight superficial ones. Table 2.3 provides a measure of the error in the
user-defined layer thickness due to the approximation detailed in Section 2.4.2. Lastly,
the precomputation of the fields for each garment takes less than 4 seconds for all our
examples.
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Table 2.1: Runtime in seconds with respect to the number of layers and of vertices, for
two examples of increasing complexity. The 3 left (resp. right) columns correspond to
the example depicted Fig. 2.3-middle (resp. Fig. 2.12) on which we added layers one by
one. On the right, notice how deep penetrations involving the 3 first layers cause the
runtime to drop for the entire example, while on the left the penetrations are superficial
and are resolved in a few iterations.

N #Vertices n Time(s) N #Vertices n Time(s)
3 6460 0.12 3 7751 1.04
4 9658 0.20 4 9200 1.29
5 15543 0.36 5 13673 2.35
6 18740 0.87 6 16871 3.45
7 19672 1.45 7 22453 4.54

8 23385 6.80

Table 2.2: Each pair of lines correspond to the same example, on which we subdivided
the meshes two times. Line one and two : example Fig. 2.3-middle, with one less layer.
Line three and four : example Fig. 2.3-right. Line 5 and 6 : example Fig. 2.11-second
picture. We can note that our method exhibits a linear complexity with respect to the
number of vertices.

N #Vertices1 #Vertices2 #Vertices3

3 5062 20062 79816
Time 0.22 s 0.76 s 2.71 s

4 7502 29635 117785
Time 0.28 s 1.06 s 3.56 s

5 10694 42315 168275
Time 0.57 s 2.1 s 7.15 s

2.5.4 Limitations

Although our method tends to generate plausible configurations in most cases — thanks
to the proper handling of relative weights, and thicknesses — it stops considering the
influence of a layer as soon as a point is out of the associated influence region. While this
is not a problem with respect of getting correct collision-free configurations, this results
in an overly distorted shape for the underlying layers, such as we can see in Fig. 2.14 for
the parts of the skirts immediately below the jacket. If our method is an initialization
before animation this is not a problem, but if our results are to be directly used as an
illustration, some local relaxation is required, as shown in Figure 2.14 (right).

To achieve a better level of plausibility, our method would also need to consider the
fact that garments deform isometrically with the associated 2D pattern: even is the cloth
is slightly extensible, they tend to fold rather than compress. Consequently, folds should
be added to the new shapes of inner layers, when they get compressed by a stiffer layer
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Table 2.3: Measures of error between user defined thickness value and computed one.
Note that the error increases with the thickness value and local curvature of the surface.

Mesh δtarget δobtained Relative error
Jacket 0.20 0.1983 0.85%
PullV 0.09 0.0901 0.11%
TShirt 0.04 0.0406 1.5%
Petticoat 0.04 0.0421 5.3%

Fig. 2.14: Left : limitations. The salient distortion that occurs near the border of the
influence zone of a top layer (left) can be attenuated using relaxation (center), if our
results are to be directly used as plausible shapes. Right : Even when launched in
collision-free states, standard cloth simulators often fail to generate collision-free motion
for layered garments.

on top. This could be done by using inspiration from Rohmer et al. [RPC+10], which
makes use of an implicit model for folds. The latter could be integrated as an additional
displacement within our operator.

In addition, our method suffers from a few failure cases. Indeed, it only applies when
a well-defined nesting between different cloth layers can be defined. This is not the case
for a single, self-intersecting garment (see Fig. 2.15-left). In such case, the self-intersecting
cloth surface cannot be reconstructed as some zero-sets of implicit fields to be untangled,
which prevent the use of our method. Enabling implicit untangling to be applied on local
surface patches computed on the fly would be a nice extension of our method, since it
could allow us to handle the challenging case of self-collision states [AVGT12].

Another possible failure case is illustrated in Fig. 2.15-right, where a shorty is worn
on top of a long dress. In this case, the nesting order is not captured globally by the field
hi, which leads to a final result where collision still occurs. Extending the definition of
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Fig. 2.15: Failure cases: on the left, a shawl folded back onto itself and a large skirt in
deep intersection with itself cause the implicit reconstruction to fail: no clean 0-isosurface
can be defined, which makes our approach inadequate for processing such self-collision
case. On the right, the co-variant field hi computed for a shorty does not capture the
influence zone of the shorty between the legs, leading the shorty to be ignored as an outer
layer when the vertices of the dress are processed in this zone.

hi, possibly taking into account user indications, could also be handled as a future work.

Lastly, being able to apply our untangling method at each step of an animation
would be highly desirable, since cloth simulation engines may not be able to maintain
collision-free states during highly dynamic motion, even if we provide one to start with.
While applying our current method is feasible, it would require reconstructing the field
and co-variant field of each garment at each frame, leading to a few tenths of seconds of
computational time. Taking temporal coherence into account to allow us a more efficient
reconstruction over time would be an interesting direction for future work.

2.5.5 Extension to animation

We studied a possible adaptation of the method to speed up the evaluation of the field for
animation purposes during the internship of Yohann Kazoula that I supervised. Because
one of the computational bottleneck remains in the computations of the HRBF, we aimed
at circumventing it: given a point p, fetching the value of each fi(p) in the grid they are
stored in is fast, but requires the computation and storage of each HRBF beforehand.
While this was seen as precomputation in the scope of static untangling, it needs to be
done each frame during animation which induces large computational overhead. Com-
puting instead a signed distance to the garment i is slower than only fetching for a value,
but does not require heavy computation beforehand -or at least not as heavy as for the
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Fig. 2.16: On the left, the difference between the HRBF reconstruction of a dress, and
the signed distance field computed in our extension.On the right, a few starting frames
of a ball falling through 2 sheets of clothes.

HRBF. For this reason, we chose to replace HRBFs with signed distance fields computed
only where needed.
Given a point p, computing the distance di(p) of p to the mesh i is done by computing
closei(p) the closest point to p that lies on the mesh, and computing the distance to this
point. Then, the signed distance gi(p) is obtained by the relative normal position of p
with respect to the mesh. We used an uniform grid structure, in order not to loop on all
the triangles of the mesh.
We kept the computation of the co-variant fields gi as they are, using HRBF functions,
because they are less expensive to compute than the approximating fields fi, and because
we focused on the replacement of the approximating field in this extension.
We computed a small animation of a kinematic ball going through two sheets of cloth
(figure 2.16). Computing a few frames using distance field to untangle the layers each
frame took around 4 time less than recomputing and storing the reconstructing field as
HRBF each frame (1.5 frames per second instead of 0.4 frames per second). While still
outperformed by state of the art methods, this showcases how one of our bottleneck lies in
the use of HRBF. In order to go further, a replacement for the covariant field should also
be considered, along with better optimizations (such as hierarchical acceleration struc-
ture instead of an uniform grid). Moreover, our method would still not natively handle
self-collisions, and a work-around would still be needed. As mentioned below, we decided
to take another direction presented in Chapter 3.

2.6 Conclusion

We described a solution for untangling layered garments using scalar field and implicit
surfaces. Our method allows to robustly convert penetration states into collision-free
contact regions, while taking into account both a thickness parameter for cloth layers
and their relative rigidity. The configuration we generate for the dressed character can
serve as valid initial state for launching simulations as layers are guarantee to not intersect,
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and are even separated by a user defined distance modeling the thickness of the clothes.
Moreover, since relative cloth rigidity can be considered, this configuration remains close
to the rest state in contact regions. This enables our method to be used for quickly
generating plausible static shapes of garments that take any number of layers of underwear
into account.
As discussed in section 2.5.4 and briefly prototyped in section 2.5.5, one obvious and
useful extension would be to directly extend this method to animation. At each frame,
one would :

• compute the approximating field and the co-variant field for each cloth;

• and then project, the clothes toward new-isosurfaces generated to correct possible
intersections between the layers.

However, the previously described shortcoming are actually preventing this approach and
should be adressed first. In fact, the computation of all the HRBF amounts to solve sev-
eral dense linear systems, which is computationally prohibitive for interactive animation
applications. As discussed previously, replacing these fields with distance fields coupled
with basic optimizations already gives better performances.
While this issue is only related to performance, the use of HRBF -or other smooth implicit
surfaces- to represent garments actually introduces another issue which conceptually pre-
vents a straightforward extension to animation. Indeed, as discussed in Section 2.5.4,
some configurations of clothes are not easily compatible with the global notion of inside
and outside (see fig 2.15), including -in particular- the case of self-collision. Self collision
is very likely to happen during physically-based animation of cloths and should therefore
necessarily be accounted for. Mitchell et al. [MASS15] proposed a dedicated multivari-
ate non manifold implicit surface model to handle self-collision. Orthogonally to our
approach, this work is restricted to self-collision response and cannot handle intersection
caused by different layers as it lacks the notion of interior/exterior. Ideally, both types
of collisions should be handled using a single, unified approach.
For these reasons, we propose to introduce an unified methodology able to avoid both
collision between different layers and objects as well as self-collision during an animation.
The approach described in the next chapter will be based on the use of divergence-free
vector fields, describing this time a velocity in space instead of a single scalar. This rep-
resentation will notably be easily coupled with the use of a physically-based animation
where the simulated velocities will serve as input for the vector field to be computed.
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Chapter 3

Vector field based collision avoidance
between an arbitrary number of dynamic
shapes

The recent approaches on interactive cloth simulations are able to efficiently animate de-
tailed cloth surfaces: as explained in Chapter 1.1 these approaches, carefully optimized to
be computed on high-end GPU [TWL+18, LTT+20], are based on exhaustive per-triangle
collision detection and response using the following pipe-line: implicit time integration
on vertex positions, continuous collision detection, and impact zone solver. These ap-
proaches can now achieve impressive results on a few interacting cloth layers, but are not
well suited to scale toward a large number of highly interacting cloth surfaces, such as for
instance, modeling garments in a washing machine where multiple garments are clashing
back and forth toward each other. Indeed, these approaches correct collisions once they
already occurred, and are limited by the complexity of the collision constraints they have
to solve to retrieve an untangled configuration. Typically deep collision in complex sce-
narios may not be fully solved, and can then lead to a locking situation where triangles in
collision remain interlocked at future animation steps. In this chapter, we show that the
use of a field-based approach can robustly handle an animation with an arbitrary number
of surfaces sliding on each other instead of intersecting.

In contrat with the standard pipe-line based on collision detection and response, our
method does not solve existing collisions but rather avoids them beforehand, and can
even run with existing collisions without being trapped in locking situations for the rest
of the animation. Our method relies on the use of a vector field modeling a single velocity
for a given position in space. This vector field is computed to match the simulated cloth
velocity at their specific surface positions, but is constrained to be globally divergent free
in space, or even to have positive divergence when surfaces are close-by and are moving
toward each other. The vertices of the surfaces embedded in this field are displaced along
the newly computed velocity, thus modeling a collision free deformation and, possibly, a
separation behavior.

The use of divergent-free vector fields to guide shape motions is very generic as it is
independent of both the types of objects and the simulation, which is solely used to pro-
vide velocity constraints. As long as the field resolution is computed accordingly, this
approach can handle, in a unified way, an arbitrary number of interacting surfaces mov-
ing and sliding back and forth towards each other, as well as avoiding self-intersection.
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dynamic shapes

Furthermore, the velocity field resolution can be chosen independently of the number of
vertices of the surfaces embedded in it. Therefore the computational time of the approach
is mostly independent of the mesh resolution and the number of layers. While projecting
the entire velocity field directly onto a divergent free constraint, similarly to a incom-
pressible fluid model [Sta99, EMF02], allows to guarantee an intersection free behavior,
the general motion of the embedded surfaces would be highly impacted, even in regions
that are not in a quasi-collision state. In addition, deformable surfaces like garments are
sparsely defined in space and do not need to be embedded in a dense velocity field. These
two reasons lead us to propose a solution enabling to locally adjust such sparse velocity
field towards null divergence.

The key idea of our method is to efficiently localize and set adapted constraints on
the divergence such that they only act in the vicinity of nearby surfaces where collisions
may happen, while automatically adapting to the proximity and velocity between sur-
faces. Our contribution consists in extending the use of divergent free, and divergent
constrained, vector fields to arbitrary collision avoidance between deformable surfaces
guided by a simulation. To this end, we first propose a local shape density expressed as a
scalar field, estimating, in a unified way, surface proximity, ie. proximity between different
surfaces as well as self-proximity. Second, we propose a spatial localization mechanism
enabling to detect where collisions are likely to happen from proximity and velocity clues,
and where the velocity should therefore be modified. This localization computation does
not require any geometrical intersection computation, and is only computed from the
density and velocity field. Third, we propose a set of linear constraints to be applied
on the surface velocities to avoid collision and handle friction. Thanks to the linearity
of the constraints, the solution can be expressed as a sparse least square problem and
efficiently solved, while remaining robust to challenging situations with several rapidly
moving garments.

3.1 Method Overview

Our method aims at avoiding collision between deformable surfaces representing garments
in modifying their velocity at every time step of an animation.
Let us suppose that the surfaces are represented as triangular meshes. Each mesh is
associated with a physically-based simulation that computes a velocity for each vertex.
These velocities will be used as a target velocity, given as input to our method. Note that
the simulation does not need to consider any collision nor self-collision between objects,
and can therefore be computed separately on each garment. Furthermore, the remainder
of our method is independent from the choice of simulation model and solver, which can
be adapted to the type of garments we wish to represent. In our case, we considered an
elastic simulation solved using Position Based Dynamics [MHHR07].
From the input our current vertex positions and target velocities along all surfaces, we
build two discrete fields on a 3D grid:
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Fig. 3.1: Our method takes as input meshes with velocities at their vertices, and computes
a vector field constrained to avoid imminent collision and correct proximity. The meshes
are then advected by this vector field.

• First, a discrete vector field computed in rasterizing the simulated per-vertex veloc-
ities onto the grid. This field is initially solely defined in the discrete neighborhood
of the garment surfaces.

• Second, a discrete density field, ie. a scalar field whose value indicates the proximity
between different surfaces, or between a folded surface and itself (see Section 3.2).

The next, and most important, step of our approach consists in modifying the velocity
field. To this end, a set of linear constraints are expressed on each voxel of the grid, and
are locally adapted depending on the value of the density field. More precisely, when
the density value indicates than two or more surfaces are approaching, the divergence
of the velocity field is constrained to be null, or even set to a positive value to prevent
the collision and separate these surfaces. The discrete velocity field is modified globally
in solving the resulting, sparse linear system. This step is described in more details in
Section 3.3.
The final step is to assign to each vertex a new velocity, interpolated from the grid of
corrected velocities. Each vertex is then advected along its velocity, and a new simulation
step is performed from which we restart our collision algorithm.
The general pipeline of our method is inspired from [MSW+09] and [NGCL09]. It differs in
that our approach handles surfaces, while they respectively focus on curves and particules.
More precisely, we adapted the rasterization of velocities and the measure of density to
handle surfaces such as clothes.
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dynamic shapes

3.2 Defining discrete velocity and density field

In the following, we consider a cubic Cartesian grid indexed by (i, j, k) indices and set to
be sufficiently large to cover the entire domain where the animated surfaces are allowed
to move. Calling h the edge-length of a voxel, the 3D position of a grid cell can therefore
be expressed as gi,j,k = h (i, j, k) assuming the first voxel is at the origin. Note that only
sparse information is stored for both velocities and density fields. Therefore only non-zero
values are explicitely stored.

3.2.1 Rasterizing the velocity

Given a set of triangular meshes with prescribed velocity at each vertex, we rasterize this
velocity in the neighboring cells of the triangle. To this end, we inspired from the method
from McAdams et al. [MSW+09]. However, while their approach is defined for curves
assumed to have globally coherent speed (the speed of the hair), we extend the approach
to work on triangles exhibiting possibly large speed differences (since they may belong to
different pieces of clothes).
Let us consider a triangle indexed by n. We note pn,(i,j,k) the closest point from gi,j,k on
the triangle n. The velocity vi,j,k stored at gi,j,k is computed as

vi,j,k =

�

wn,(i,j,k)vn,(i,j,k)
�

wn,(i,j,k)

(3.1)

where

• vn,(i,j,k) is the velocity at position pn,(i,j,k) on the triangle n, computed as the inter-
polation of the vertex velocities of the triangle using barycentric coordinates.

• wn,(i,j,k) is a weight modeling the influence of vn,(i,j,k) over the distant position gi,j,k.

Following the definition of McAdams et al. [MSW+09] we consider a linearly decreas-
ing influence with respect to the distance between the voxel position and the triangle.
However, we also consider the triangle speed in order to propagate the triangle influence
further away when its speed is high.
In practice, we compute the integer value ln = 1 + ceil(dt

h
||vn,(i,j,k)||) for the triangle n,

representing the number of consecutive neighboring grid cells that are influenced by the
triangle. Then the weight is expressed as wn,(i,j,k) = max( (2ln−1)

2
h− d(pn,(i,j,k), g(i,j,k)), 0),

with d the euclide an distance. We can finally define for any voxel (i, j, k) a weight as
wi,j,k =

�

n wn,(i,j,k).

Kinematic obstacles: Rigid volumetric kinematic obstacles are handled by rasterizing
their local velocities at their discrete boundaries, ie. the first voxels directly outside their
volume, weighted by a virtually infinite value. In practice, this enables to ignore velocities
of surrounding clothes in those voxels, and impose the speed of the kinematic rigid bodies.
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3.2.2 Rasterizing density

We introduce a discrete density field di,j,k indicating proximity between different surfaces,
or between a surface and itself. This field is used in the next section to localize possible
collision regions, as well as guiding the divergence value of the velocity field.
We compute this density field such that its value be equals to 0 in empty regions, 1
on the position of a single surface, and greater than one when several surface parts are
close to each other. Note that a collision between two surfaces lead to a value of 2 at
the intersection position. This field should also take into account the notion of garment
thickness in its definition, and should be fast to compute on the grid.

The general idea is to sum the contributions of oriented density samples scattered on the
mesh surfaces.
To this end, we precompute a Poisson sampling of radius rad on the garment surfaces.
As garment surfaces do not exhibits large variation of lengths through the animation,
these samples are only computed once and stored as barycentric coordinates on their
corresponding triangles. In our scenarios we empirically found that rad = h

√
3 provides

a sufficiently dense sampling without arbitrarily increasing the computational cost.
Then each sample m is associated with a density function Dm(p) at position p. Dm

is expressed as an exponentially decreasing function of the distance between p and the
sample, with an anisotropy expressed in the normal direction n of the surface:

Dm(p) = exp(−||SR(p− pm)||
2) (3.2)

where pm is the position of the sample, R is the rotation matrix such that Rn =
(0, 0, 1), and S = diag(σt, σt, σn) is a diagonal matrix expressing the anisotropy of the
density. We choose σt =

�

3/2h to ensure that the density of a single, non-self-colliding
garment, does not exceed 1. And σn = thick 1√

(−ln(0.5))
modeling the thickness of the

cloth.
The final density d is computed as the sum of all the contributions d(p) =

�

m Dm(p),
and is stored in the discrete grid di,j,k = d(gi,j,k).

3.3 Collision avoidance using a constrained velocity field

We detail in this section how we compute the new velocity field from the input one and
the density field. The clothes are then advected in this field for collision avoidance.

3.3.1 Localizing the constraints

As explained in the introduction, our method applies different constraints locally depend-
ing on the evaluated risk of collision and density of interaction between surfaces. This
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Fig. 3.2: On the left, a few meshes at the bottom of a bowl. On the right, a 2D view of
the density, visualized on a plane cutting the scene. Red value represent a density close
to 1, while darker shade represent density superior to 1.

localisation is expressed as a subset of the grid, and is fully defined from the input velocity
field vi,j,k and density field di,j,k.
Note that in the following, we will use the same notation for continuous operators such
as div, and their discrete counterpart expressed using finite difference.
We consider in our approch three regions noted V0, V1 and V2 as follows :

• V0 corresponds to the union of the neighborhood of the clothes surfaces and of the
voxels on their trajectories. Using the notation of Section 3.2, it can be defined as
the set of voxels for which the weight wi,j,k is non-zero:

V0 = {(i, j, k)|wi,j,k �= 0} (3.3)

• V1 ⊂ V0 corresponds to the set of voxels where a possible collision may occur. It
first contains the voxels in which density is superior to 1, as this indicates nearby
surfaces. Moreover, we want to allow the separation of surfaces : several surfaces
might naturally move away from each other without any action from our method.
In that case, defining a constraint on the divergence of the velocity would introduce
an artificial bond between them.
To further consider regions where surfaces are currently approaching toward each-
other, we add the condition that the initial velocity has a negative divergence, thus
leading to

V1 = {(i, j, k) ∈ V0 | di,j,k ≥ 1 or ∇.vi,j,k ≤ 0} (3.4)

• V2 ⊂ V0 corresponds to the set of voxels in the neighbors of surfaces on which
friction should be applied. We typically consider the discrete neighborhood of rigid
obstacles.
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3.3.2 Velocity constraints

Given the three possible localization, we are now looking to express a new velocity ṽi,j,k
that preserves, at best, the initial simulated velocity vi,j,k while avoiding possible colli-
sions. To compute this velocity efficiently we consider three linear constraints on ṽi,j,k.
First, we consider a general anchoring constraint used to maintain the initial velocity of
the garment surfaces when no other constraint apply. This constraint is applied in all the
voxels on the trajectory of the clothes, along with their direct neighborhood, namely V0 :

∀(i, j, k) ∈ V0, ṽi,j,k = vi,j,k (3.5)

The second constraint aims at setting a specific value for the divergence of the ve-
locity. This value shall be null in order to avoid collision, or positive in order to force
surfaces to separate from each other. This constraint is applied in the region V1:

∀(i, j, k) ∈ V1,∇.ṽi,j,k = si,j,k (3.6)

with si,j,k = max(0, h(di,j,k − 1)/dt) acting as a virtual source of velocity which increases
linearly with the density. In particular, when di,j,k approaches 2, meaning that a collision
is about to happen, the divergence term is similar to applying an impulse of magnitude
h/dt, effectively aiming at separating objects by 1 voxel during the time step dt.
Finally, the last constraint is used to model friction at the neighborhood or kinematic
obstacles. As mentioned in Section 3.2, the voxels in V2 store the rasterized velocity
of their neighboring kinematic objects. We use a null-laplacian constraint in order to
smoothly transition to these velocities when approaching these voxels :

∀(i, j, k) ∈ V2,∆.ṽi,j,k = 0 (3.7)

In order to better avoid collision with kinematic object, we weighted the anchor constraint
in these voxels. In practice, this amounts to multiply both side of the anchor constraint
by a weight wkinematic. In our example, we typically fixed wkinematic = 5.
The conjunction of these constraint gives an overconstrained sytem of linear equations
over the ṽi,j,k, that we solve in the least square sense using a conjugate gradient algorithm.

3.3.3 Length-preserving velocity advection

The last step of our algorithm is to advect the vertices of the mesh along the newly
computed velocity field ṽi,j,k.

To avoid unwanted length distortions of the garment surfaces during the advection
process, we compute it in several substeps – about 10 in our experiments. Each subset
interleaves a small vertex displacement along its velocity computed as a tri-linear interpo-
lation of ṽi,j,k, with a constraint of edge-length preservation. In our case, the edge-length
constraint is solved using a similar Position Based Dynamics approach that we used to
initialize the velocity, but in considering in this case very few iterations over the length
constraints.
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3.4 Results and discussion

We present in this section the results of our approach applied to various cloth surfaces
animations.

3.4.1 Qualitative results

We first illustrate the results of our approach on a 2D animation in Fig. 3.3 where two
curves are initially moving toward each other. As shown in Fig. 3.3-right, applying our
local divergence contraints on the velocity fields allows to make the curves deform to
respond to upcoming collision, rather than merely crossing each other.
Fig.3.4 shows a 3D simulation where two squared pieces of cloth fall under gravity on each
other between various spherical rigid obstacles. Note that our method handle collision
avoidance between a surface and the rigid sphere, the plat ground, or the other sheet in
a unified way using velocity constraints at the grid level. The animation ends-up in a
stable state where the two cloths lies on top of each other.

As our approach computes collision (and self-collision) avoidance in a local and uni-
fied way, it can handle 3D scenes containing a large number of deformable surfaces in
contact, or even constantly moving and sliding on each other.
We present two examples of such challenging animations in Fig.3.5 and 3.6. Fig.3.5 de-
scribes up to 60 t-shirts falling on a rotating bowl that periodically change of rotation
direction. This scene involves complex motions and shape deformation that can be no-
ticed in the last image and does not suffer from locking or numerical divergence issues. In
addition, the efficiency of the linearly depends on the number of triangles, and is almost
independent from the complexity of the apparent contacts between the surfaces.
Fig.3.6 illustrates 60 T-shirts in a ”washing-machine” represented by the surrounding ro-
tating half-cylinder. In this case, the fast motion of the cylinder induces fast local velocity
on the deformable surfaces, and thus lots of chock-like motions toward each others. in-

Fig. 3.3: Left: Three frames of a 2D animation where the green and blue curves are
initially moving toward each other. Right: Close-up of the animation with a display of
the velocity field before, and after, application of our constraints. the result is assymetric
because the right cloth has initially a higher velocity than the left one.
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teractions.

Presence of collisions We can note that, although limiting them, our approach does not
guarantee to be fully free from collision and self-collision throughout the animation.
First, our constraints on the velocity are solved in a least-square sense, therefore the
solution may still exhibit negative divergence values locally. Second, advection is only
computed using discrete time steps, so vertices integrates errors with respect to streamline
paths. Third, and most importantly, the divergence constraint is discretized over the
voxels of the grid. This leads to a distance of a few voxels maintained between the
clothes. However, if the voxel size is small with respect to the size of the edges of the
cloth meshes, the length preservation contraint interleaved with the advection mentioned
in Section 3.3.3 may resault in displacements spanning one or several voxels.
While our approach cannot guarantee the absence of collision, the overall computation
is fully independent from the existence of collision between the embedded surfaces. This
is actually a benefit of our method and a key element of its robustness, enabling to
handle very complex scenes with lots of intricated surfaces, where collisions would be very
hard, or time consuming, to explicitly avoid and handle. In fact, the same process that
causes collision -the relaxation step mentioned above- is responsible for their resolution
as the simulation goes on, and surfaces in collision then continue their motion, guided by
their individual simulated velocity and the mesh-based length preservation constrained
during the advection, without necessarily locking to each other, nor diverging as the
least-square problem remains well conditioned. Contrary to other approaches based on
explicit geometric collision computation, our approach is thus able to seamlessly animate
embedded surfaces that possibly collide. In several examples, and as illustrated in Fig.3.7,
one may observe that shallow collisions between surfaces may occur during a few time
step, but then seamlessly resolve themselves thanks to the continuation of their respective
motion.

Fig. 3.4: Two pieces of cloth falling on rigid obstacle and converging toward a stable final
rest state.
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Fig. 3.5: 60 T-shirts agglomerating on top of each other in a rotating bowl. Each T-Shirt
is spawned every 45 frames. Bottom left : a zoom without rendering the bowl.

Fig. 3.6: 60 agglomerated T-Shirts are dropped inside rotating cylinder modeling a
washing-machine.
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Fig. 3.7: Zoom on a mesh of figure 3.6 during a few frames of simulation. Self-intersection
does locally occur, but disappears after a few frames.

Influence of the positive divergence As previously noted, the divergence constraint is
only approximated in our approach. To further enforce near-by surfaces to move away
from each other, we apply a positive divergence term si,j,k in Equation 3.6. This term
helps to compensate for non-perfect collision avoidance, and can be understood as the
effect of ”insuflating artificial air velocity” between the surfaces. Fig. 3.8 compares the
results obtained when using only si,j,k = 0 (enforcing divergence-free only), with respect
to the use of our locally positive divergence. We can note that this term largely limits
intersections between surfaces and leads to a less compact set of surfaces with thin air
layers between them.

Thickness parameterization The thickness parameter exposed in Section 3.2 can be used
to model a thickness attribute for each cloth surface in increasing the nearest distance
between surfaces with increasing thick value. This effect is illustrated in Figure 3.9 on
a 2D-simulated scenario. Because this also increases the distance for self-collision, this
does also model in a way the rigidity of more thick clothes.

3.4.2 Computational time

All times measured in this chapter were taken on a standard laptop computer with an
Intel quad Core i7 CPU, clocked at 3.1GHz with 32GB of RAM. Our software uses up to
1Gb of RAM memory at run-time for the presented examples (mostly due to the raster-
izing of velocities and densities inside a sparse 3D grid). We used OpenMP to trivially
parallelize rasterization and advection. We used the Eigen library for all matrix related
operation, and especially its Least Square Conjugate Gradient implementation to solve
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Fig. 3.8: The use of our positive divergence term (eq. 3.6) helps to prevent collision be-
tween packed surfaces (right) compared to a simple null-divergence approximation (left).

Fig. 3.9: A 2D animation illustrating the influence of an increasing thickness parametr.
Note the increasing space between the layers.
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Fig. 3.10: A few garments are dropped inside a bowl. Bottom left, middle and right :
three results after a few frame of simulation using different voxel size (and thus different
ratio r between the voxels size and the mean size of edges of the meshes). Note how high
r rigidifies the clothes and maintains large distances between them.

our least square formulation.

One of the most important parameter on which depends the computation time of
our method is the number of voxels in which a velocity has been rasterized : increasing
this number also increases the size of the linear system to be solved.
This number of voxels is not directly controlled, but through the size of the voxels used
in a scene h: if the grid we used was dense, the number of voxels would typically increase
with 1

h3 . However, only the voxels with non-null wi,j,k (using the notation of Section
3.2) are actually considered in the method. Because those voxels are located around the
surfaces and on their trajectory, their number actually increases with 1

hp with 2 < p < 3.
Figure 3.10 shows an experiment we did to evaluate this relationship, and the related
increase in computation time: given fixed meshes, we define e as the mean edge-length of
the triangles composing the meshes. Then, we define r = h

e
the ratio between the size of

the voxels and e. We simulated an animation involving these meshes using different values
of h (and so different values of r). We counted the mean number of voxels during each
simulation: as showcased in Figure 3.11, this number varies between 5000 for r = 2.8, to
430k for r = 0.2, effectively varying almost proportionally to 1

h2 .
We also measured the mean computational time per frame for each simulation. As ex-
pected, this time also increases quadratically as the size of the voxels diminishes, increas-
ing their number.

The other parameter influencing the computation time is the number of triangles.
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Fig. 3.11: Graph showing the increasing of voxels when decreasing their size in the scene
of figure 3.10.

Fig. 3.12: Mean running time of the simulation of Figure 3.10 in seconds per frame with
respect to the ratio r between the mean size of edges of the clothes and the size of the cell
h. As the size of the voxel decreases, the computational time quadratically increases. A
minimum time is reached for high r as a minimal rasterization is done for every triangle,
regardless of voxel size.
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Fig. 3.13: Running time in seconds per frame for the example of Figure 3.5. The T-shirts
are spawned throughout the simulation, which increases the number of triangles by a
constant value each time. With a constant cell size h, our method exhibits empirical
linear complexity with respect to the number of triangles.
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Given a fixed voxel size h, we show in Figure 3.13 that the computational complexity of
our method scales linearly with the number of triangles. Our typical examples involving 2
surfaces of about 5k triangles each using a grid size of 0.2 - we typically choose r = h/e = 1
in our examples - were computed at about 50 to 100 ms per frame. More complex
simulations such as the bowl of Figure 3.5 or the washing machine (Figure 3.6) totalling
350 to 400 thousands triangles went up to 8 seconds per frame. The time spent assembling
and solving the linear system of constraints typically represents half of this time, with the
other half being mostly shared between the rasterization of velocities and of densities.
For comparison sake, Li et al. [LTT+20] used multiple GPU to perform between 0.2
to 0.9 second per frame on average on example ranging from 500k to 1.6M triangles.
Their result however depends heavily on the complexity of the contact involved, and they
perform better the lesser the surfaces are close to each other (and thus the lesser they are
prone to intersect each other), while ours depends mostly on the number of triangle and
the grid resolution.

3.4.3 Discussion and extensions

As explained previously, and shown in Figure 3.10, our method does not provide a col-
lision free-animation in all situations. While our approach usually handles well shallow-
intersections, deep interpenetrations, which can happen when voxels size are too small
with respect to the edges of the surfaces, might lead to surfaces that will remain tangled
for the remainder of the animation.
Experimentally, the best trade-off between collision avoidance, visual quality, and ef-
ficiency seems to be reached when the grid cell size is roughly similar to the triangle
edge-length. Indeed, taking large grid cells allows to achieve small computational time,
and will even lead to fewer collisions, but the effect of the discretized velocity field will
be more clearly visible. Our current approach empirically requires an interval of at least
three voxels wide between the two surfaces, to act on their relative speeds and avoid
interpenetrations (as can be clearly seen in Figure 3.3). Using large grid cell therefore
leads to surfaces that stop far away from each other, and which will look thicker and
stiffer than expected (shown in Figure 3.10).
Symmetrically, considering small grid cells will quadratically increase the computational
time. In addition, while the vector field has more degrees of freedom to avoid large space
between surfaces, it also leads to larger local displacements. These displacements then
need to be corrected for length preservation in the advection step, which turns out to gen-
erate new intersections. In the future, adding extra smoothing constraints in the system
should however be able to improve this behavior.

Directional divergence constraints

Related to this limitation, we can also propose, and already started to experiment, the
use of anisotropic divergence constraints. While divergence-free vector fields are naturally
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well suited for isotropic behavior such as incompressible liquids, garment like surfaces have
differents behaviors in their orthogonal and tangential directions. They typically bulge in
their orthogonal direction, and slide, but cannot extend nor compress in their tangential
one.
Our idea is to better capture such surface behavior in introducing the notion of directional
divergence expressed as

div((v.d)d) (3.8)

where d is an oriented normalized vector field.
First, considering the constraint div((v.n)n) = s, where n is given by the local nor-
mal of the surfaces, may improve the quality of our result in avoiding vortices within
the field, while still ensuring collision avoidance in their orthogonal direction (cf Figure
3.14). Our initial test with such constraints showed very promising results as collision
avoidance quality was preserved as much as with the isotropic behavior, but led to faster
least-square convergence (15% improvement), possibly associated to simpler constraints
with less degrees of freedom. In addition, surfaces considered to be in contact slides on
each other without additional numerical friction, initially caused by the isotropy of the
classical divergence constraint. Still, we could observe some discretization artifacts due
to orientation directions that were not aligned with the axis of the grid, leading to unex-
pected deformation of the surface even when no external force was applied. In addition,
when collision still occured between two surfaces, the possible sudden inversion of nor-
mal directions introduced large variations in the velocity field. Therefore, this method
may require specific adaptation in the future to blend between directional and isotropic
divergence.
Second, considering constraints oriented along the tangent planes of the surfaces could
help modeling length-preserving behavior of the surfaces. Let us consider a 1D curve
with tangent vector t. Applying the constraint div( (v.t) t)=0 is similar to constrain-
ing the length of the curve to remain constant. Extending this constraint in a surface
could be expressed by the use of two as-orthogonal-as-possible tangential vector fields t1
and t2, and then simultaneously using two directional constraints div((v.t1)t1)=s1 and
div((v.t2)t2)=s2. While such fields may not always be easy to compute and can lead to
opposite constraints, another possibility would be to consider a single constraint on the
tangent plane div(v-(v.n)n)=s, which would lead to a relaxed constraint targeting only
area preservation.

Unified approach for collision handling

Another extension we further started to explore is the use of our generic approach to
handle collision between other types of shapes beyond garment-like deforming surfaces.
In Figure 3.15 we illustrate the use of our approach for rigid objects.
While rigid objects can be simulated individually using standard rigid body models, the
key idea is that our approach can handle both deformable surfaces and rigid objects
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within the same framework. In the illustrated case in Figure 3.15, collision between the
rigid bodies is fully handled using the divergence constraint of their velocities, while their
rigid behaviors are enforced through the use of a shape-matching algorithm [MHTG05].
Similarly to garments, collision between the shapes can still occur and should be further
investigated to ensure that the objects can separate after a few steps.

Improving efficiency

Another improvement could focused toward improving the computational cost of our
method. The use of multi-grid methods [Wes95] should allow to iteratively solve for the
low-frequency solution in a coarse grid, and then use these intermediate results to com-
pute high-frequency features at higher resolution. This approach would not only allow
accelerating convergence, but possibly allow a finer control on the spatial frequency of
the velocity field on more defined grids. Specific implementation in the case of sparse
grids is however still in progress.
Finally, while our computational cost and artifacts are mostly limited by the grid resolu-
tion and associated discretization, using adapted continuous basis functions of divergence-
free vector fields, such as the one proposed in the recent work from Eisenberger et
al.[ELC18], could be of great interest. Their use in our context still remains an open
question, but they could ultimately allow fast and concise representation of low fre-
quency solutions, while providing an exact-continuous representation compatible with
artifact-free derivative operators.

3.5 Conclusion

In this chapter, we presented a method based on vector fields to avoid collision between
any number of deformable meshes. The velocities of the clothes are rasterized within a
grid, along with a measure of their spatial density. The divergence of the resulting veloc-
ity field is then constrained to a locally null value to preserve the air volume between close
enough surfaces and avoid collision, or to a positive value to separate too close objects.
This allows to simulate any number of meshes potentially interacting with each other
in challenging cases. While the method presented in Chapter 2 was not able to handle
self-collisions, and was thus only applicable to static intersections of differents meshes,
the method presented in this chapter handles in a unified way collisions and self-collisions
by the mean of a generalized density estimation.

The actual precision of the method is, however, limited by the use of a discrete ras-
terization of the velocity field in a 3D grid, as well as a least square solution that cannot
guarantee the lack of collision. These limitations generates artifacts when the grid size
is respectively too large, or too small, with respect to the triangle edge length. Several
improvements have, however, been proposed and remain currently under investigation to
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Fig. 3.14: On the left, a simple anchor constraint on the middle voxel. On the right,
the result when adding a divergence constraint: on the top result, classic null divergence
is wanted, which result in vortices appearing around the middle voxel. On the bottom,
directional divergence is used and no vortex appear.

Fig. 3.15: Simulating 7 rigid monkey heads with our method by applying shape matching
between each frame.
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limit such artifacts and allow to alleviate the dependence to the grid resolution.
In addition, while the divergence of the velocity field has only been used to avoid intersec-
tion, its use along specific directions may be able to capture length preserving behavior,
allowing to integrate this constraint within the unified framework, and without additional
cost.

While our algorithm brings interesting theoretical computational complexity compared
to standard methods, our actual timings remains roughly an order of magnitude slower
than state of the art collision correction. Indeed, mesh-based approaches have been highly
and iterativelly optimized through years, to reach dedicated multi-GPU implementations
[LTT+20]. On the other hand, our prototype was not optimized for efficiency, and is run-
ning on CPU only. Due to their natural local structure that can be easilly parallelized,
field based approaches should however be very good candidates for highly efficient GPU
friendly implementations, and optimized implementation of vector-field based collision
handling would also be an interesting avenue for future work.
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In this work, we proposed two approaches to the intersection-free animation of clothes.
These methods stand apart from existing ones through the use of volumetric fields as the
main structure to handle the collisions. Standards methods usually split the detection of
impending or occured collisions, and their prevention or correction. In contrast, the use of
volumetric field allows our methods to unify these two steps, bypassing at the same time
the need for using various acceleration structures and the need of defining an arbitrary
order of correction, affecting results.
Chapter 2 proposed a method dedicated to the static untangling of layers of garments
using scalar fields. Deep initial intersections are solved thanks to a novel implicit repre-
sentation for open surfaces such as clothes, which gives information about the depth of
collision between the layers. Such representation allows to replace intersections by con-
tact surfaces : inspired by contact modeling approaches such as [VGB+14] or [ATW+17],
we extend them by proposing a N-ary composition operator modeling contact between an
arbitrary number of subsequent layers. This provides an intersection-free starting point
for a simulation, which is often needed in order to compute a valid animation. However,
the use of scalar fields used to define the geometry of the shapes is associated to two limi-
tations when applied to garment animation. First, the sudden change of geometry applied
as collision correction does not integrate simulation parameters such as surface velocity.
Second, self-collisions cannot be easily detected on a single isosurface, which would blend
in collision areas. This led us to chose another approach to tackle the intersection-free
animation of clothes, this time using a vector field.
This new approach is discussed in Chapter 3. We build on the process used in [NGCL09]
or [MSW+09], which is to constrain a vector-field modeling the velocity of the objects
in the scene, and adapt it to be used on deformable surfaces. The velocity field, initial-
ized from a cloth simulation, is modified using dedicated linear constraints applied to
its divergence and depending of a local density measurement. The volume between the
garment surfaces is then either preserved or inflated in order to prevent collisions during
the animation.

We have shown through this work that the use of volumetric fields share a common
set of advantages.
First, they encode properties locally in space, which leads to computations that are inde-
pendant from the discretization of the shape they embed. For instance, collision between
isosurfaces encoded with their scalar field rely on the knowledge of interior/exterior which
is a simple query of the field value, while surface moving towards each other can be de-
tected from the divergence of the associated velocity field. As a result, we were able to
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propose algorithms with computational complexity scaling linearily with the number of
triangles, while raw collision detection would require quadratic complexity, and therefore
be non applicable without some spatial sorting structure.
Second, they offer a robust model for handling intersections between objects. While the
use of classical mesh-based methods needs dedicated treatment for special cases (dif-
ferent types of triangle intersection, extreme cases of intersection with geometry at the
same location), using a volumetric representation often allows to alleviate those problems.
Moreover, adding an arbitrary number of objects is done seamlessly, without having to
care about an arbitrary order of correction. Finally, volumetric approaches do not suffer
from numerical divergence caused by force-based approaches, or by degenerated primi-
tives.
Third, those approaches are pretty generic. While we use some volumetric representation
to represent deformable surfaces –either static as in Chapter 2 or dynamic in Chapter 3,
we are free to include any kind of object in our method (albeit potentially necessitating
a modification in the method, as for the case of rigid-bodies mentioned in Section 3.4.3).

However, these field-based approaches come with their own limitations. One of these
is a trade-off between computational time and precision: either their computation is ex-
pensive in order to obtain closed-form field, arbitrarly precise but also costly to evaluate
(as with HRBF in Chapter 2), or the choice is made to obtain a discrete representation,
typically faster to compute but parameterized by its resolution. Our methods are a good
example of this property: in Chapter 2, we analytically compute scalar fields encoding
the contact between several surfaces. Their evaluation are quite expensive, but they ac-
curately model the contact constraint we were aiming at. In Chapter 3, this time our
vector field is not analytically computed, but instead is discretized over a grid. This
makes the different constraints we want the vector field to follow pretty straight-forward
to express and enforce, and also makes the resulting field evaluation computationally
cheap. However this comes at the cost of features heavily dependant of the resolution of
the discretization (such as the minimal distances between clothes, visual rigidity etc.).
Another limitation is that, in general, volumetric fields lack local control of results.
Adding local control over simulation results is an interesting challenge that has been
tackled by several works for specific problems. Examples related to scalar fields in mod-
eling include [GBC+13] for implicit surfaces blending based on gradient, or [ZBQC13]
for detail-preserving blending between skeleton-based implicit surfaces. In the case of
vector fields used in animation, details are often handled through hybrid models mixing
lagrangian modelisation (mesh, particule system etc.) with a vector field. As an example,
we can cite how the hair in [MSW+09] is subject to geometrical intersection correction
even though individual hair strands have been advected by a supposedly divergence-free
vector field, or -in our method- how we interleave advection with length-preserving con-
straints solved on the meshes themselves: this showcases how vector fields have difficulties
to handle the problematic of collision handling on their own.

We encountered specific problems in our research. In Chapter 2, the most important
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Conclusion

one was the lack of self-collision handling. This effectively led us to use another type
of field in Chapter 3. However we believe that a lot can still be done on that matter.
First, self-collison has been tackled in the case of level-set surfaces by [MASS15], which
proves that this is a solvable problem. Second, the advances in composition operators
over the past few years are promising in showing that these operators can be created with
high flexibility. While several works already modeled contact between different surfaces
using a variety of composition operators, trying to model contact between a surface and
itself using some transformation operator could be an interesting attempt to tackle this
problem.
In Chapter 3, we presented some avenues for improvement concerning modeling of behav-
ior such as edge-length preservation, directly inside the vector-field. However, the most
problematic issue in our opinion is how our result are far from the state of the art in term
of ”minimal distance” between the surfaces. This is directly linked to the use of a discrete
grid to store the velocity field, and a really interesting challenge would be to try to find
some analytical formulation of the problem. As mentioned in Section 3.4.3, a basis for
divergence-free vector fields is used for example in [ELC18], and we do think that trying
to adapt their method to the case of collision-free animation would be interesting.
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Damien Rohmer, Brian Wyvill, Olivier Gourmel, and Mathias Paulin. Im-
plicit skinning: Real-time skin deformation with contact modeling. ACM
Trans. Graph., 32(4), 2013. 32

[VCMT95] Pascal Volino, Martin Courchesne, and Nadia Magnenat Thalmann. Versatile
and efficient techniques for simulating cloth and other deformable objects.
In Proceedings of the 22Nd Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’95, pages 137–144, New York, NY, USA,
1995. ACM. 6, 7

[vFTS06] Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. Vector field based
shape deformations. ACM Trans. Graph., 25(3):1118–1125, July 2006. 25, 26
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Annexe : Résumé en Français /

French summary

Gérer de manière robuste et efficace les collisions entre des surfaces 3D déformables en
animation reste un challenge, d’autant plus lorsque ces surfaces sont potentiellement en
contact sur de larges zones, comme c’est le cas pour les vêtements. Par conséquent, les
avatars virtuels ne portent souvent qu’une seule couche de vêtements. En plus de limiter
les possibilités créatives, ceci nuit à la modélisation de phénomènes physiques comme la
friction entre les couches, et nuit donc aussi au réalisme de la scène.

Le principal challenge existant lors de la coexistence de plusieurs couches de vêtements en
animation est la gestion (détection et correction) des collisions entre elles. Les méthodes
classiques usuelles reposent sur les maillages de chaque vêtement, en testant différentes
paires de triangles pour une éventuelle intersection géométrique.
Une fois les primitives en intersections identifiées, ce qui représente déjà un travail con-
séquent auquel s’est attelé tout un pan de la recherche

”
il reste à résoudre la collision, on

identifie alors deux grands type de solutions : prévenir l’intersection, ou la résoudre une
fois qu’elle est apparu. Les premières méthodes se servent de l’histoire de la simulation
pour déduire certaines informations (comme, par exemple, les positions relatives préal-
ables des objets) pour ensuite parvenir à corriger la simulation actuelle et empêcher la
collision. Ces méthodes sont inutilisables dans le cas d’une simulation qui commencerait
avec des intersections.
La seconde famille de méthode contourne ce problème en n’utilisant pas d’informations an-
térieures à la situation de collision, et se contentent de critères géométriques et d’heuristiques
adaptées pour la résoudre. Cependant, ces méthodes reposent souvent sur l’utilisation de
forces et/ou de procédé itératif, et souffrent des inconvénients classiques liés à leur usage :
des paramètres additionnels qui influent sur le résultat obtenu, ainsi qu’une convergence
vers un résultat stable pas toujours garanti.
Dans ce manuscrit, nous proposons deux méthodes alternatives aux approches classiques,
se reposant cette fois-ci sur l’usage de champ tridimensionnel.

En particuliers, notre première méthode fait usage de champs scalaires. Ceux-ci sont
connus dans le milieu des modèles 3D dans lequel ils sont utilisés pour modéliser des
surfaces implicites. Ces surfaces peuvent ensuite être combinées aisément, pour -par
exemple- résoudre des situations de collisions et modéliser un contact exact entre deux
objets. Les méthodes existantes se focalisent cependant sur des objets volumiques, tan-
dis que les vêtements sont des surfaces fines. De plus, les méthodes de combinaisons de



surface sont pour la plupart limitées à deux surfaces, tandis que nous nous intéresserons
à un nombre quelconque de couches de vêtements.
Notre méthode, intitulé “Implicit untangling”, ou démêlage implicite, se décompose en
trois étapes :

• Une reconstitution implicite de chaque couche de vêtements, à l’aide de champs de
type HRBF;

• La combinaison des surfaces implicites ainsi obtenues, qui fournit de nouvelles sur-
faces implicites modélisant le contact aux endroits ou d’éventuelles intersections
sont détectés. Cette combinaison s’effectue grâce à des opérateurs N-aires que nous
avons inventé pour résoudre ce problème;

• La projection des maillages sur leur surfaces implicites corrigées respectives, ce qui
corrige effectivement les intersections entre vêtements.

Bien que les temps de calculs évoluent de manière cubique avec le nombre de couches
de vêtements, ceux-ci évoluent aussi en complexité linéaire avec le nombre de triangles
des maillages étudiés (contre une complexité quadratique pour des algorithmes classiques
sans structures d’accélération). Cette méthode permet par ailleurs de modéliser le con-
tact exact entre un nombre arbitraire de vêtements portés. De plus, les intersections sont
résolues d’une traite, sans avoir à itérer sur des paires d’objets comme le feraient des
méthodes itératives. Cependant, les temps de calcul élevés de la première étape empêche
d’appliquer cet algorithme à chaque pas d’une simulation pour effectivement corriger les
intersections d’une animation entière en temps réel. Nous pouvons tout de même obtenir
une un état initial sans collision, dans l’optique d’appliquer des méthodes de prévention
d’intersections.

Notre deuxième méthode se range dans cette catégorie, et repose sur l’usage de champ
vectoriel à divergence nulle. Représentant mathématiquement l’advection d’une matière
incompressible, ceux-ci ont naturellement essentiellement été utilisés dans le milieu de la
simulation de fluide, mais aussi en modélisation, ou plus particulièrement en simulation
de foule, pour empêcher la collision de ses membres. Nous nous inspirons de ce type de
méthode et les adaptons à l’animation de vêtements : nous discrétisons l’espace dans
lequel se trouvent les vêtements, et y créons un champ vectoriel représentant la vitesse
des différents objets, pour enfin y résoudre un système linéaire contraignant la divergence
de ce champ de vitesse. Bien que limitée par la résolution de la grille discrète utilisée,
notre méthode possède une complexité empiriquement linéaire en terme du nombre de
triangles des vêtements, et empêche effectivement la collision des vêtements durant leur
simulation.



Titre : Approches basées champ pour l’animation de couches de vêtements sans collision

Mots clés : Gestion de collision, Animation de vêtments, Surfaces Implicites, Champ scalaire, Champ de

vecteur

Résumé : Gérer de manière robuste et efficace les

collisions entre des surfaces 3D déformables en ani-

mation reste un challenge, d’autant plus lorsque ces

surfaces sont potentiellement en contact sur de larges

zones, comme c’est le cas pour les vêtements. Par

conséquent, les avatars virtuels ne portent souvent

qu’une seule couche, ce qui nuit à la modélisation de

phénomènes comme la friction entre les vêtements, et

limite aussi les possibilités créatives. Dans ce manus-

crit, nous proposons deux approches alternatives à

la détection et la gestion de collisions classique, basé

maillage, en nous basant sur l’utilisation de champ vo-

lumiques.

Plus précisément, nous présentons deux méthodes,

la première utilisant une représentation par sur-

face implicite des couches de vêtements pour gérer

d’éventuelles intersections statiques, et la seconde

plongeant les vêtements dans un champ de vecteur

modélisant leur vitesse.

Premièrement, nous présentons une méthode de

démêlement statique de vêtement. Cette méthode

se base sur une réprésentation intermédiaire des

vêtements en tant que surfaces implicites -iso-niveau

d’un champ scalaire- ouvertes. Pour N couches de

vêtements, les N surfaces implicites associées sont

combinés à l’aide d’opérateur N-aire que nous avons

créé pour ce problème. Nous obtenons N nouvelles

surfaces, telles que les intersections entre les sur-

faces initiales ont été remplacés par des zones de

contact.

Deuxièmement, nous proposons une méthode uti-

lisant un champ de vecteur pour l’animation sans

collisions d’un nombre quelconque de couches de

vêtements. A chaque pas de temps et après simu-

lation, la vitesse des vêtements est convertie en un

champ de vecteurs discret, dont nous contraignons lo-

calement la divergence pour éviter les collisions entre

des surfaces advectés par ce champ.

Title : Field-based approaches for the collision-free animation of layered and dynamic clothing

Keywords : Collision handling, Cloth animation, Implicit surfaces, Scalar field, Vector field

Abstract : While real world garments are commonly

worn as several layers on top of each other, 3D virtual

garment animation in current entertainment produc-

tion are often simplifying this modeling in considering

only a single cloth layer on top of the virtual manne-

quin. Such simplification may limit the creative pos-

sibilities, as well as failing to model key physical as-

pects related to friction between cloth layers. Indeed,

robustly and efficiently handling collision avoidance

between 3D surface layers in contact, possibly exhibi-

ting complex shapes and dynamic behaviors, remains

a challenge in Computer Graphics.

This Phd proposes an alternative approach to mesh-

based collision handling. More precisely, we propose

two contributions using respectively, an implicit sur-

face representation for static garment layer untan-

gling, and a vector field embedding for the animation

of dynamic layers.

We first present a static method for untangling layers

of garments that do not require the knowledge of a

previous collision-free state. Our method relies on an

intermediate representation of garments as open im-

plicit surfaces embedded in a scalar field. The im-

plicit surfaces associated with each layer are com-

bined using a new family of N-ary composition ope-

rators, specially designed for untangling layers. The

N-resulting implicit surfaces correspond to untangled

surfaces where collision is replaced by contact.

Secondly, we propose a vector-field-based approach

that allows collision free garment animation in inter-

leaving fast simulation steps with volume based velo-

city optimization. The simulation step is used to com-

pute a per-vertex speed without consideration for col-

lision. These speeds are converted as a grid-based

velocity field which is then optimized to locally enforce

constraints on its divergence , thus avoiding collision

between layers as well as self-collision. This is done

while preserving as much as possible their simulated

speed in the other regions. The optimization is based

on an efficient least-square representation and leads

to a velocity field that can robustly handle a large num-

ber of animated garments, as well as allowing a uni-

fied framework for the animation of collision-free dy-

namic objects.
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