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Résumé

La génération de seconde harmonique (SHG) est un processus au cours duquel
deux photons d’énergie sont absorbés par un matériau et un photon d’énergie
2ω est émis. Ce processus est théoriquement décrit par la susceptibilité macro-
scopique du second ordre χ(2). Cette spectroscopie est utilisée pour étudier les
propriétés optiques des matériaux et elle révèle des informations supplémentaires
inaccessibles aux spectroscopies optiques linéaires. En effet, comme les règles de
sélection dipolaire interdisent la SHG dans les matériaux centro-symétriques, il
est possible d’obtenir une caractérisation structurale et électronique de systèmes
complexes, comme les surfaces et les interfaces. De plus, l’absence de symétrie
d’inversion du temps, due à un ordre magnétique, fait apparaître de nouvelles
contributions dans la génération de seconde harmonique. Dans le cas de matéri-
aux antiferromagnétiques, la symétrie magnétique détermine la polarisation du
matériau et la génération de seconde harmonique révèle alors l’arrangement des
spins dans le solide. Cette spectroscopie peut ainsi être utilisée pour l’étude de
processus ultra-rapides dans les matériaux magnétiques, tels que les phénomènes
de démagnétisation en champs forts. Ces dernières années, un formalisme perme-
ttant de modéliser les spectres de seconde harmonique pour les semi-conducteurs
traditionnels a été développé, mais il existe peu de descriptions théoriques ab initio
satisfaisantes pour les processus non-linéaires dans les matériaux magnétiques. Ces
approches théoriques doivent être capables de traiter sur le même pied les inter-
actions électron-électron, les effets de champs locaux (reflétant les inhomogénéités
microscopiques dans le matériau) et la distribution en spin des électrons.

Le but de ma thèse était de calculer numériquement les réponses optiques,
linéaires et du second ordre, pour des matériaux antiferromagnétiques. J’ai cal-
cule ces deux reponses pour un oxyde de chrome (Cr2O3) dans le cadre d’un
formalisme ab-initio, reposant sur la TDDFT (Théorie de la Fonctionnelle de la
Densité Dépendante du Temps). Dans cette approche, la distribution en spin a
été prise en compte explicitement et cette extension a été implémentée dans le
code 2light développé au laboratoire.

L’interaction électron-électron est décrite mathématiquement par le noyau
d’échange et de corrélation fxc. Ce noyau n’est pas connu exactement et nous
devons en trouver des approximations. Trouver une bonne approximation pour
fxc est extrêmement important car la modélisation et l’interprétation des expéri-
ences repose fondamentalement sur ces approximations. En particulier, fxc doit
être en mesure de décrire les effets excitoniques (interactions électron-trou) dans
la réponse optique. Différentes approximations sont disponibles dans la littérature
et j’ai étudié l’influence de ces noyaux approximés sur les propriétés optiques de
Cr2O3. J’ai également calculé les spectres de seconde harmonique avec ces noy-
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aux. Dans le cas des spectres d’absorption, j’ai comparé mes résultats aux spectres
calculés à partir de l’équation de Bethe-Salpeter qui prend en compte explicite-
ment les effets excitoniques et j’ai pu ainsi mettre en évidence la présence d’un
exciton fortement lié. A partir de l’équation de Bethe-Salpeter et en comparant
aux résultats obtenus en TDDFT, j’ai pu définir un noyau d’échange-corrélation
dynamique, modélisant l’exciton lié. Ce noyau a ensuite été utilisé pour le calcul
de la génération de seconde harmonique. J’ai ainsi pu observer la signature de
l’exciton lié dans les processus non-linéaires.

L’oxyde de chrome Cr2O3 existe sous trois formes ayant une structure an-
tiferromagnétique. Je me suis finalement intéressée à ces différentes structures
possibles, ne différant entre elles que par la distribution des spins. J’ai montré
que mes résultats permettaient de discriminer de façon caractéristique entre ces
structures. En particulier, les spectres de seconde harmonique sont très caractéris-
tiques car une des structures conserve la centro-symmétrie, malgré son caractère
antiferromagnétique.

ii



Acknowledgement

First and foremost, I would like to extend my deepest gratitude to my supervisor,
Valérie Veniard, for her unsurpassed support, patience, expertise, and kindness
without which this thesis would have not been possible. Through her constant
guidance, I have gained a better understanding of the subject. Thanks to her,
I have been able to develop my own research skills since she gave me sufficient
working autonomy. Thanks to her for helping me adjust to a new culture and for
helping me with other things besides research.

Furthermore, I would like to thank the jury members Elena Degoli and Hans-
Christian Weissker for reviewing the thesis work; Henri Jean Drouhin, and Fabrice
Catoire for evaluating the thesis work. It is an honor and a pleasure to have them
all on this jury.

I am grateful for all the help and support I have received from my colleagues
- Lucia Reining, Matteo Gatti, Christine Giorgetti, Andrea Cucca and Francesco
Sottile. I will be indebted to you all for the knowledge we exchanged and the
fruitful discussions we had. I would also like to thank Ayoub Aouina, Georg
Michelitsch, Abdallah El Sahili, Alam Osorio, Stefano Mazzei, Jack Wetherell,
Vitaly Gorelov, Rajarshi Sinha Roy, Laura Urquiza, Lionel Lacombe, Arnaud
Lorin, Ilya Iagupov, Jaakko Koskelo, and Paula Kleij. Due to their friendships,
encouragement and lively discussions, work became fun too. I thank you all for
creating a warm and welcoming atmosphere. For always being happy to lend a
hand when I needed it. I will always miss the parties we had the last three years.

Also, I would like to thank all the institutions that have supported me along
the way, including École polytechnique and Laboratoire des Solides Irradiés and
European Theoretical Spectroscopy Facility (ETSF) for providing me with this
opportunity. In addition, I would like to thank CEA Numerics International PhD
program for providing me with funding to work in France, and for hosting me
there.

In my humble opinion, this journey would not have been possible without my
friends over the years. We spent a lot of time together Yogendra Singh, Pragya
Vishwakarma, Surbhi Jagtap, and I am grateful for everyone’s constant presence,
attention, and fun. Thank you so much. My gratitude goes out to Ankush Bhatia,
Shubham Biswas, Sonali Khurana , Arunima Thakral for all the delightful time we
spent together, especially during the thesis writing phase. Thanks a lot, Bhrigu
Mahajan, Amrut Battuwar, Anand Kumar, Amit Kumar, Abir Ezzedine ,Valeria,
Pranjal Nandi, Shipra Sethi for being a part of this journey. Also, I would like
to thank Ankit Tomar , Sachin Kaushik , Surishi Vashishth , Rohit Attri, Vinita
Ahuja, Sharon Horta, Omeshwari Bisen , Tusharadri Mohapatra , Rahul Yadav,
Kunal Kosarkar, Rajendra Singh, Manish Negi, Pushpendra Gupta, Himanshi

iii



Dua and Deepa Sharma, for always being there for me no matter how far away
we were. I would also like to express my gratitude towards Lochan Kumar for his
support.

Last but not least, I would like to thank my family, whose support and effort
are indescribable.

iv



Contents

1 Introduction 1

I Background 5

2 Linear and Non-linear optical properties of solids 7
2.1 Linear optical properties . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 The complex refractive index and dielectric constant . . . . 9

2.2 Nonlinear optical properties . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Nonlinear optical susceptibility tensor . . . . . . . . . . . . . 11
2.2.2 Second-order nonlinear effect . . . . . . . . . . . . . . . . . . 11
2.2.3 Second harmonic generation . . . . . . . . . . . . . . . . . . 12

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Density Functional Theory 15
3.1 Many body approach . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Hohenberg and Kohn theorems . . . . . . . . . . . . . . . . 16
3.2.2 Energy functional . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Kohn-Sham approach . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4 Approximation for the exchange-correlation potential . . . . 19
3.2.5 Practical use of DFT . . . . . . . . . . . . . . . . . . . . . 20

3.3 Pseudopotential approximation . . . . . . . . . . . . . . . . . . . . 21
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Time-dependent density functional theory 23
4.1 Time-dependent many-body problem . . . . . . . . . . . . . . . . . 23
4.2 Time-dependent density functional theory . . . . . . . . . . . . . . 24

4.2.1 Runge-Gross Theorem . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 Time-dependent Kohn Sham scheme . . . . . . . . . . . . . 24
4.2.3 Linear response . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.4 Linear response including spin-polarization in TDDFT . . . 27
4.2.5 Second-order response function . . . . . . . . . . . . . . . . 29

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



CONTENTS

5 GW approximation 33
5.1 Many Body Perturbation Theory Green’s function method . . . . . 33
5.2 Equation of motion for the one-body Green’s function . . . . . . . . 34
5.3 Hedin’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 GW approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5 Band gap within GW approximation . . . . . . . . . . . . . . . . . 39

5.5.1 Quasiparticle energies from Green’s function . . . . . . . . . 39
5.6 Quasiparticle energies using Kohn-Sham equations . . . . . . . . . . 40
5.7 Scissor operator approximation . . . . . . . . . . . . . . . . . . . . 40
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Bethe Salpeter Equation 43
6.1 Bethe Salpeter Equation for the response function . . . . . . . . . . 43

6.1.1 RPA approximation . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.2 GW approximation . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.3 Macroscopic dielectric function . . . . . . . . . . . . . . . . 45
6.1.4 Two particle Hamiltonian . . . . . . . . . . . . . . . . . . . 46

6.2 BSE calculations starting from the DFT . . . . . . . . . . . . . . . 47
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

II Development and Application 49

7 Electronic properties of Cr2O3 51
7.1 Antiferromagentic Cr2O3 structure . . . . . . . . . . . . . . . . . . 51
7.2 Ground state properties of Cr2O3 . . . . . . . . . . . . . . . . . . . 51

7.2.1 Calculation details . . . . . . . . . . . . . . . . . . . . . . . 52
7.2.2 Electronic bandstructure of Cr2O3 . . . . . . . . . . . . . . . 54

7.3 GW band gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.3.1 GW Band gap calculated using pseudopotential with the

valence electrons . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3.2 GW band gap calculated using pseudopotential with the

semicore electrons . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3.3 Effect of semicore electrons on band gap . . . . . . . . . . . 59
7.3.4 Comparison of band gap with previously reported value . . . 59

8 Linear response of Cr2O3 61
8.1 Linear response calculated using TDDFT . . . . . . . . . . . . . . . 61

8.1.1 Calculation details . . . . . . . . . . . . . . . . . . . . . . . 62
8.1.2 Linear response in IPA and RPA . . . . . . . . . . . . . . . 62
8.1.3 Linear response including spin-polarization . . . . . . . . . . 63
8.1.4 Effect of the exchange-correlation kernel in TDDFT . . . . . 65
8.1.5 Effect of including semicore electrons on the Linear Response 73

8.2 Linear response using Bethe Salpeter Equation . . . . . . . . . . . . 75
8.2.1 Calculations details . . . . . . . . . . . . . . . . . . . . . . . 75
8.2.2 Comparison of RPA and BSE spectra . . . . . . . . . . . . . 75

8.3 Comparison of BSE spectra with the spectra calculated using TDDFT
approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vi



CONTENTS

8.3.1 Comparison of alpha-kernel and BSE spectra . . . . . . . . . 77
8.3.2 BSE spectra compared to RPA Bootstrap kernel, JGM kernel 79

8.4 Bethe Salpeter Equation spectra including
spin-polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.4.1 Calculation details . . . . . . . . . . . . . . . . . . . . . . . 80

9 Exciton binding energy using Wannier-Mott model 81
9.1 Wannier-Mott model . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2 Application of Wannier-Mott Model to calculate the excitonic bind-

ing energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.3 Effective mass calculations . . . . . . . . . . . . . . . . . . . . . . . 84
9.4 Effective mass for the Cr2O3 . . . . . . . . . . . . . . . . . . . . . . 85
9.5 Exciton binding energy . . . . . . . . . . . . . . . . . . . . . . . . . 86

10 Second-order response function 89
10.1 Second-order response function . . . . . . . . . . . . . . . . . . . . 89

10.1.1 Second-order response function including
spin-polarization . . . . . . . . . . . . . . . . . . . . . . . . 89

10.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.2 Second-order response of Cr2O3 . . . . . . . . . . . . . . . . . . . . 92

10.2.1 Calculations details . . . . . . . . . . . . . . . . . . . . . . . 93
10.2.2 Second-order response using IPA and RPA . . . . . . . . . . 94
10.2.3 Effect of spin-polarization in second-order response using

RPA approximation . . . . . . . . . . . . . . . . . . . . . . . 94
10.2.4 Second-order response function derived from the standard

kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.2.5 Comparison of different component of second-order response

function of Cr2O3 . . . . . . . . . . . . . . . . . . . . . . . . 97
10.3 Development of a frequency dependent xc kernel for second-order

processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
10.3.1 Second-order spectra of Cr2O3 using frequency dependent

kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.4 Effect of the semicore electrons on second-order response of Cr2O3

structure in IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

11 Study of different AFM structures of Cr2O3 103
11.1 Electronic ground state properties of three different AFM Cr2O3 . . 103

11.1.1 Structure relaxation . . . . . . . . . . . . . . . . . . . . . . 103
11.1.2 Total energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
11.1.3 Band gap of three different AFM Cr2O3 . . . . . . . . . . . 104

11.2 GW band gap of three different structures . . . . . . . . . . . . . . 105
11.3 Linear response of three AFM Cr2O3 structures . . . . . . . . . . . 106

11.3.1 Calculation details . . . . . . . . . . . . . . . . . . . . . . . 106
11.3.2 Linea response using RPA approximation . . . . . . . . . . . 106
11.3.3 Linear response using JGM kernel . . . . . . . . . . . . . . . 107
11.3.4 Linear response using BSE . . . . . . . . . . . . . . . . . . . 108

11.4 Second-order response of two different non-centrosymmetric struc-
tures of Cr2O3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

vii



CONTENTS

12 Effect of semicore electrons on electronic and optical properties
of all AFM Cr2O3 111
12.1 Effect of semicore electrons on ground state properties of the three

different AFM Cr2O3 . . . . . . . . . . . . . . . . . . . . . . . . . . 111
12.1.1 Structure relaxation . . . . . . . . . . . . . . . . . . . . . . 111
12.1.2 Effect of semicore electrons on DFT band gap of three dif-

ferent AFM Cr2O3 . . . . . . . . . . . . . . . . . . . . . . . 112
12.2 Effect of semicore electrons on the GW band gap . . . . . . . . . . 114
12.3 Effect of semicore electrons on linear response of three different

AFM Cr2O3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
12.3.1 Effect of semicore electrons on linear response of AF2 and

AF3 structures in RPA . . . . . . . . . . . . . . . . . . . . 115

13 Concluding Remarks 117

A Relation of absorption coefficient and dielectric function 119

B Convergence study in linear response calculations 123
B.1 Convergence in terms of number of bands in IPA . . . . . . . . . . 123

B.1.1 Other convergence parameters value . . . . . . . . . . . . . . 124
B.2 Convergence in terms of number of planewaves (npwwfn) in IPA . . 124

B.2.1 Convergence in terms of number of planewaves (npwwfn) in
IPA for valence electrons pseudopotential . . . . . . . . . . . 124

B.2.2 Convergence in terms of number of planewaves (npwwfn) in
IPA for semicore electrons pseudopotential . . . . . . . . . . 126

B.3 Convergence in terms of kpoints in IPA . . . . . . . . . . . . . . . . 127
B.3.1 Other convergence parameters value . . . . . . . . . . . . . . 127

B.4 Convergence in BSE calculations . . . . . . . . . . . . . . . . . . . 128
B.4.1 Convergence in terms of number of band in screening . . . . 128
B.4.2 Convergence in terms of number of band in BSE . . . . . . . 129

C Convergence study in case of Second-order response function 131
C.1 Convergence in terms of number of bands . . . . . . . . . . . . . . . 131

D Convergence study in the GW band gap calculations 133
D.1 Convergence study of GW calculations using valence electrons pseu-

dopotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
D.1.1 Convergence in terms of number of bands in the self energy

calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
D.1.2 Convergence in terms of number of planewave for wavefunc-

tion (ecutwfn) in the self-energy calculations . . . . . . . . . 134
D.1.3 Convergence in terms of number of planewave for exchange

part (ecutsigx) in the self-energy calculations . . . . . . . . . 134
D.1.4 Convergence in terms of number of bands in screening pa-

rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
D.1.5 Convergence in terms of ecuteps in screening parameters . . 135
D.1.6 Convergence in terms of number of planewave for wave-

function (ecutwfn) in screening parameters . . . . . . . . . 136

viii



CONTENTS

D.2 Convergence study of GW calculations using semicore electrons
pseudopotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
D.2.1 Convergence in terms of number of bands in the self energy

calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
D.2.2 Convergence in terms of number of planewave for wavefunc-

tion (ecutwfn) . . . . . . . . . . . . . . . . . . . . . . . . . . 138
D.2.3 Convergence in terms of number of planewave for exchange

part (ecutsigx) in the self-energy calculations . . . . . . . . . 138
D.2.4 Convergence in terms of number of planewave for wave-

function (ecutwfn) in screening parameters . . . . . . . . . . 139

ix



CONTENTS

x



List of Figures

1.1 SHG signal at three different pump photon energy . . . . . . . . . . 2

2.1 Reflection, propagation, and transmission of a light beam incident
on an optical medium . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Phenomena that can occur as a light beam propagates through an
optical medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Feynman diagram representing SFG and DFG . . . . . . . . . . . . 12
2.4 Second harmonic generation . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Energy level diagram of SHG . . . . . . . . . . . . . . . . . . . . . 13

3.1 Flow chart to describe KS approach . . . . . . . . . . . . . . . . . . 20
3.2 Description of pseudopotential approximation . . . . . . . . . . . . 21

5.1 Photoemission and inverse-photoemission experiments . . . . . . . . 34
5.2 Hedin’s Pentagon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 GW approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 G0W 0 approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Flow chart of G0W 0 calculation starting from the KS-DFT calculation 41
5.6 Scissor operator approximation . . . . . . . . . . . . . . . . . . . . 42

6.1 BSE starting from DFT . . . . . . . . . . . . . . . . . . . . . . . . 48

7.1 Structure of Cr2O3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2 Comparison of bandstructure of Cr2O3 using LDA and LSDA . . . 54
7.3 Comparison of bandstructure of Cr2O3 using two different pseu-

dopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.1 Scissor value for Cr2O3 . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.2 Linear response of Cr2O3 calculated using IPA and RPA in TDDFT 63
8.3 Linear response of different component of Cr2O3 calculated using

RPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.4 Effect of spin-polarization in the spectra calculated using IPA . . . 65
8.5 Effect of spin-polarization in the spectra calculated using RPA . . . 66
8.6 Linear response of Cr2O3 calculated using LDA and RPA in TDDFT 67
8.7 Linear response of Cr2O3 calculated using RPA and alpha-kernel in

TDDFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.8 Linear response of Cr2O3 calculated using RPA and alpha-kernel in

TDDFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.9 Linear response of Cr2O3 calculated using JGM, alpha and RPA . . 70

xi



LIST OF FIGURES

8.10 Linear response of Cr2O3 calculated using Bootstrap, Bootstrap
RPA and Jellium Gap Model kernel in TDDFT . . . . . . . . . . . 71

8.11 Linear response of Cr2O3 calculated using RPA, Bootstrap and al-
pha kernel in TDDFT . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.12 Effect of Semicore electron on Linear Response of Cr2O3 in RPA . . 74
8.13 Effect of Semicore electron on Linear Response of Cr2O3 using JGM 74
8.14 Linear response of Cr2O3 calculated using Bethe Salpeter Equation

and RPA in TDDFT . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.15 Linear response of different component of Cr2O3 calculated using

BSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.16 Linear response of Cr2O3 calculated using Bethe Salpeter Equation

and alpha kernel in TDDFT . . . . . . . . . . . . . . . . . . . . . . 78
8.17 Linear response of Cr2O3 calculated using Bethe Salpeter Equation

and alpha kernel and RPA in TDDFT . . . . . . . . . . . . . . . . 78
8.18 Linear response of Cr2O3 calculated using Bethe Salpeter Equation

and RPA Bootstrap in TDDFT . . . . . . . . . . . . . . . . . . . . 79
8.19 Effect of spin-polarization in the spectra calculated using BSE . . . 80

9.1 Exciton representation . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.2 Two band model representation . . . . . . . . . . . . . . . . . . . . 82
9.3 Flow chart for excitonic binding energy . . . . . . . . . . . . . . . . 84
9.4 Transition plot for the excitonic peak . . . . . . . . . . . . . . . . . 87

10.1 Second-order response function using IPA and RPA . . . . . . . . . 94
10.2 Effect of spin-polarization in second-order response using RPA ap-

proximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.3 Second-order response function using LDA and RPA . . . . . . . . 96
10.4 Second-order response function using RPA and alpha-kernel . . . . 97
10.5 Two component (xxx and zzz) of Second-order response function of

Cr2O3 using RPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10.6 Second-order response function (xxx component)using xc kernel de-

rived from BSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.7 Second-order response function (zzz component) using xc kernel

derived from BSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
10.8 Effect of semicore electrons on second-order Response of AF1 struc-

ture in IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

11.1 Three AFM Cr2O3 structures . . . . . . . . . . . . . . . . . . . . . 104
11.2 Comparison of three AFM Cr2O3 bandstructures . . . . . . . . . . 105
11.3 Linear response of three magnetic structures of Cr2O3 in RPA . . . 107
11.4 Linear response calculated using RPA and JGM kernel for three

AFM structures of Cr2O3 . . . . . . . . . . . . . . . . . . . . . . . . 107
11.5 Linear response of three different magnetic structures of Cr2O3 us-

ing the JGM kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.6 Linear response calculated using RPA, JGM kernel and BSE for

three different AFM structures of Cr2O3 . . . . . . . . . . . . . . . 109
11.7 Linear response of three different magnetic structures of Cr2O3 us-

ing BSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

xii



LIST OF FIGURES

11.8 Comparison of second-order response function of two different spin
non-centrosymmetric structures of Cr2O3 using RPA . . . . . . . . 110

12.1 Comparison of bandstructure of Cr2O3 using semicore electrons
pseudopotential for three different AFM structures . . . . . . . . . 113

12.2 Comparison of bandstructure of different AFM structures of Cr2O3

using valence electrons pseudopotential . . . . . . . . . . . . . . . . 113
12.3 Effect of semicore electrons on linear response of AF2 structure in

RPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
12.4 Effect of semicore electrons on linear response of AF3 structure in

RPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B.1 Convergence in terms of number of bands for linear response of
Cr2O3 using IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.2 Convergence in terms of number of bands for linear response of
Cr2O3 using IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.3 Convergence in terms of npwwfn for linear response of Cr2O3 using
IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.4 Convergence in terms of npwwfn for linear response of Cr2O3 using
IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.5 Convergence in terms of npwwfn for linear response of Cr2O3 using
IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.6 Convergence in terms of npwwfn for linear response of Cr2O3 using
IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.7 Convergence in terms of kpoints for linear response of Cr2O3 using
IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.8 Convergence in terms of number of bands in screening for linear
response of Cr2O3 in BSE . . . . . . . . . . . . . . . . . . . . . . . 128

B.9 Convergence in terms of number of bands in BSE for linear response
of Cr2O3 in BSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B.10 Convergence in terms of number of bands in BSE parameters for
linear response of Cr2O3 in BSE . . . . . . . . . . . . . . . . . . . . 130

C.1 Convergence in terms of number of band for second-order response
of Cr2O3 in IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

C.2 Convergence in terms of number of band for second-order response
of Cr2O3 in IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

xiii



LIST OF FIGURES

xiv



List of Tables

7.1 Reduced coordinates of atoms . . . . . . . . . . . . . . . . . . . . . 53
7.2 High symmetric point coordinates . . . . . . . . . . . . . . . . . . . 54
7.3 DFT band gap of Cr2O3 . . . . . . . . . . . . . . . . . . . . . . . . 55
7.4 DFT band gap of Cr2O3 calculated using two pseudopotentials . . . 55
7.5 Converged value of parameters in the screening calculation . . . . . 57
7.6 Converged value of parameters in the self-energy calculation . . . . 58
7.7 Converged value of parameters in the screening calculation . . . . . 58
7.8 Converged value of parameters in the self-energy calculation . . . . 58
7.9 Band gap comparison using two different pseudopotentials . . . . . 59
7.10 Comparison of calculated band gap with previously reported exper-

imental band gap of Cr2O3 . . . . . . . . . . . . . . . . . . . . . . 59
7.11 Comparison of calculated band gap with previously reported theo-

retical band gap of Cr2O3 . . . . . . . . . . . . . . . . . . . . . . . 60

8.1 TDDFT converged parameters value . . . . . . . . . . . . . . . . . 62
8.2 Different alpha values extracted using three different approaches . . 72
8.3 Screening converged parameters value . . . . . . . . . . . . . . . . . 75
8.4 BSE converged parameters value . . . . . . . . . . . . . . . . . . . 75
8.5 BSE converged parameters value . . . . . . . . . . . . . . . . . . . 80

10.1 Converged parameters value in second-order response function cal-
culations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

11.1 Lattice constant for three different AFM Cr2O3 . . . . . . . . . . . 103
11.2 Angle for three different AFM Cr2O3 . . . . . . . . . . . . . . . . . 104
11.3 Total energy of three different AFM Cr2O3 . . . . . . . . . . . . . . 105
11.4 DFT band gap of three AFM structures . . . . . . . . . . . . . . . 105
11.5 GW band gap of three AFM structures . . . . . . . . . . . . . . . 105
11.6 Scissor value obtained for three AFM structures . . . . . . . . . . . 106

12.1 Effect of semicore electrons Lattice constant for three different AFM
Cr2O3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

12.2 Effect of semicore electrons angle for three different AFM Cr2O3 . . 112
12.3 Effect of semicore electrons on DFT band gap of three different

AFM structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
12.4 Effect of semicore electrons on GW band gap of three different AFM

structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

D.1 Convergence in terms of number of band in self energy . . . . . . . 134

xv



LIST OF TABLES

D.2 Convergence in terms of ecutwfn in self-energy . . . . . . . . . . . . 134
D.3 Convergence in terms of number of planewave for exchange part

(ecutsigx) in self-energy . . . . . . . . . . . . . . . . . . . . . . . . 135
D.4 Convergence in terms of number of bands in screening . . . . . . . 136
D.5 Convergence in terms of ecuteps in screening . . . . . . . . . . . . 136
D.6 Convergence in terms of number of planewave for wave-function

(ecutwfn) in screening . . . . . . . . . . . . . . . . . . . . . . . . . 137
D.7 Convergence in terms of number of bands in self-energy calculations 138
D.8 Convergence in terms of ecutwfn in self-energy . . . . . . . . . . . . 138
D.9 Convergence in terms of number of planewave for exchange part

(ecutsigx) in self-energy . . . . . . . . . . . . . . . . . . . . . . . . 139
D.10 Convergence in terms of number of planewaves for wave-function

(ecutwfn) in screening . . . . . . . . . . . . . . . . . . . . . . . . . 139

xvi



Chapter 1

Introduction

Second harmonic generation (SHG) is a non-linear process in which two photons,
of energy ω are absorbed by a material, and a photon of energy 2ω is emitted. This
process is theoretically described by the second-order macroscopic susceptibility
χ(2). This spectroscopy is used to study the optical properties of materials, and it
reveals additional information which cannot be accessed with linear optical spec-
troscopies. Indeed, as the dipolar selection rules prohibit SHG in centrosymmetric
materials, it is possible to obtain complex a structural and electronic characteriza-
tion of complex system. In particular, due to a magnetic order, the absence of time
inversion symmetry reveals new contributions in second harmonic generation. For
the specific case of antiferromagnetic materials, magnetic symmetry determines
the polarization of the material and SHG then reveals the arrangement of spins
in the solid. It was shown to be used to study ultrafast processes in magnetic
materials, such as demagnetization [1].

The motivation of the project is the results shown by S. Wall et al. article
entitled "Resonant optical control of the structural distortions that drive ultrafast
demagnetization in Cr2O3" [1]. Cr2O3 is a centrosymmetric material with the
crystallographic point group 3̄m. Below the Neel temperature (308K), Cr ions
order antiferromagnetically (AFM) along the trigonal z-axis and enable the SHG
to occur as shown in figure (1.1). Therefore, S. Wall et al. used second-harmonic
generation (SHG) to probe the demagnetization process in the AFM Cr2O3. In a
pump-probe experiment, S. Wall et al. show that the color of the wavelength of the
pump can be used to control the demagnetization process of the antiferromagnetic
insulator Cr2O3. The second harmonic produced by the probe was used to follow
in time the change in the magnetic and structural state of the material. Time-
resolved SHG signals for three different pump photon energies are measured as
shown in figure (??). A strong decrease in the SHG signal is measured at a short
delay, which depends on the pump photon energy. After 1ps, the change in the
signal for all energy becomes very slow, as shown in figure (1.1).

After studying this fast dynamic in detail, they concluded that it is possible to
control the demagnetization rate by 25% in AFM Cr2O3 by changing the photon
energy used to excite the system.

This project aims to provide accurate calculations of the second-order response
for antiferromagnetic materials. It is based on time-dependent density functional
theory (TDDFT), in a spin-dependent framework, including accurate exchange
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1. Introduction

Figure 1.1: SHG signal at three different pump photon energy

correlations kernels.
In the first part of the thesis, the various theoretical approaches have been

described and the same have been used to calculate the properties of Cr2O3. In
the latter part, the results and development are discussed.

It is necessary to first examine the ground state properties of the system before
proceeding to the study of the second-order response function.

In chapter (7), the ground state properties using the density functional theory
(DFT) are studied.

The bandstructure and direct band gap of Cr2O3 in the density functional
theory framework is studied. The impact of incorporating spin-polarization at
the ground state level on the properties of Cr2O3 is investigated. Additionally,
the effect of various pseudopotentials on the DFT band gap of Cr2O3 is studied.
The band gap determined by DFT is not the correct band gap, and therefore,
the band gap estimated using the GW method is examined as well. Also the
influence of semicore electrons pseudopotential on the GW band gap is addressed.
Finally, the estimated band gap of Cr2O3 with previously reported theoretical and
experimental band gaps are compared. The band gap computed using the GW
method incorporating semicore electrons agrees with the previously reported band
gap.

In the chapter (8), the linear response of the Cr2O3 is calculated using the
time-dependent density functional theory and the many body perturbation the-
ory. In this chapter, first, the linear response calculated using different approx-
imations in TDDFT for Cr2O3 is discussed. The local field and excitonic effect
in the TDDFT on Cr2O3 linear spectra is discussed. The local field effect is in-
corporated in TDDFT through RPA approximation. The impact of incorporating
spin-polarization in the linear response function for Cr2O3 is investigated. The
excitonic effect is incorporated in the TDDFT through the exchange-correlation
kernel. Various approximations of the exchange-correlation kernel exist, which is
discussed in the chapter (8). The impact of different xc kernels on Cr2O3 is stud-
ied. An alternative to the TDDFT for calculating absorption spectra is the Bethe
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Salpeter Equation (BSE) approach, which is discussed later in this chapter. The
BSE spectrum was compared to previously computed spectra using TDDFT. This
comparison helps to determine the accuracy of different xc kernels of TDDFT for
the Cr2O3 spectrum, which is useful for the further calculation of second-order
response using TDDFT. Additionally, the BSE spectra show the bound excitonic
peak, not seen in the TDDFT spectrum. Additionally, the binding energy of the
exciton is very high when calculated using the BSE spectrum, indicating that the
exciton is a bound exciton.

In the chapter (9), the Wannier model is studied, that is used to compute the
excitonic binding energy of a material. In comparison to the BSE computations,
this model is simpler and less time-consuming.

The alternative goal of this thesis is to calculate the second-order response
function, which describes the second harmonic generation, and it is discussed in
the chapter (10). The second-order response function equation, which includes
spin-polarization, has been discussed in detail in the chapter (10) for the first
time. Further, the second-order spectra for Cr2O3 in the TDDFT framework are
analyzed. As for the linear response, the local field and excitonic effect, in the
second-order response, in TDDFT framework, is discussed. We also discussed
similar effect for the second-order response function.

First, the influence of local fields on second-order spectra is examined. Later,
the excitonic influence on the spectra through the exchange-correlation kernel is
explored. The accuracy of the spectra computed using the TDDFT method relies
on the xc kernel’s accuracy.

Since the first order xc kernel is the same in both the linear and second-order
cases, the BSE result for the linear spectra can be used to get the first order xc
kernel, which is significant in second-order spectra. The results obtained with this
kernel is compared to the spectra obtained with a previously computed kernel.

Further, all these properties for the different AFM structures of the Cr2O3 is
discussed in the chapter (11). Starting from ground state theory to the second-
order, all the properties for the different spin structures of Cr2O3 are compared.

It has been described that changing the spin structure has a remarkable effect
on the properties of materials.

Later on, it has been discussed in detail in the chapter (12) that the effect of
using different pseudopotentials have different impacts on all three structures of
AFM Cr2O3.

Finally, the conclusion of the thesis work and future perspective is discussed
in the chapter (13).
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Chapter 2

Linear and Non-linear optical
properties of solids

In this chapter, we will first define the phenomena, and the coefficients that are
used to quantify them. Solid-state materials exhibit a large range of optical prop-
erties which can be subdivided into a small number of fundamental phenomena.
In figure (2.1), we show the basic set of phenomena: reflection, propagation, and
transmission.

Figure 2.1: Reflection, propagation, and transmission of a light beam incident on
an optical medium

The figure (2.1) shows a light beam incident on an optical medium. Some light
is reflected from the front surface, while the rest enters the medium and propagates
through it. If any of this light reaches the back surface, it can be reflected again
or transmitted to the other side. Therefore, the amount of light transmitted is
related to the reflectivity at the front and back surfaces and the way the light
propagates through the medium.

The phenomena that can occur while light propagates through an optical
medium is illustrated schematically in figure (2.2).

7



2. Linear and Non-linear optical properties of solids

Figure 2.2: Phenomena that can occur as a light beam propagates through an
optical medium

Refraction results in a decrease in the wave’s velocity, while absorption results
in attenuation. Scattering causes the light to be redirected. Absorption, amongst
other phenomena is a topic of interest in this thesis.

When the light propagating through the medium has a low intensity, the only
linear phenomena occurs; in contrast, if the beam’s intensity is high, the non-linear
phenomena occurs.

This chapter provides an overview of the linear and non-linear properties of
solids.

2.1 Linear optical properties
From a macroscopic perspective, optical absorption, reflection, and light scattering
are the measurable quantities that determine the linear optical properties of the
system.

2.1.1 Absorption

If the frequency of the light is resonant with the transition frequencies of the
atoms in the medium, absorption occurs during propagation. This will result in
attenuation of the beam as it travels. Only the light that has not been absorbed
by the medium will be transmitted.

Absorption coefficient
The optical phenomena may be characterized using a number of parameters

that define the macroscopic properties of the medium.
The absorption of light by an optical medium is quantified by its absorption

coefficient α. The fraction of the power absorbed in a unit length of the medium
is defined as the α. If the beam is propagating in the z direction, and the intensity
(optical power per unit area) at position z is I(z), then the decrease of the intensity
in an incremental slice of thickness dz is given by,

dI = −αdz × I(z) (2.1)

This can be integrated to obtain Beer’s law (assuming ∂α
∂z

= 0)

I(z) = I0e
−αz (2.2)

where, I0 is the optical intensity at z = 0. The absorption coefficient of optical
materials depends strongly on their frequency, so they may absorb one color but
not another.
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2.1. Linear optical properties

2.1.2 The complex refractive index and dielectric constant

The complex refractive index is a single quantity that describes the absorption
and refraction properties of a medium. This is often denoted as ñ and is defined
through the equation,

ñ = n+ iκ (2.3)

The real part of ñ, namely n, is the refractive index and the imaginary part of
ñ, namely κ, is called the extinction coefficient. As we have shown in the appendix
(A), the absorption coefficient α of the medium is related to κ by,

α =
2ωκ

c
(2.4)

The complex refractive index (ñ) is related to the complex dielectric constant(ε)
as,

ñ =
√
ε = n+ ιk (2.5)

Where the real and the imaginary part of ñ are the refraction index n and the
extinction coefficient k are related to the real part ε1 and the imaginary part ε2
of the complex dielectric constant as (detail derivation is shown in the appendix
(A).

ε1 = n2 − κ2 (2.6)

ε2 = 2nκ (2.7)

so that,

n =
1√
2

(
ε1 +

(
ε21 + ε22

)1/2
)1/2

(2.8)

κ =
1√
2

(
−ε1 +

(
ε21 + ε22

)1/2
)1/2

(2.9)

It demonstrates the link between the real and imaginary parts of ε and ñ. Note
that if the medium is only weakly absorbing, then it can be assumed that κ is
very small, so that equations (2.6) and (2.7) simplify to,

n =
√
ε1

κ = ε2
2n
.

(2.10)

and hence, the absorption coefficient(α) can be written as,

α =
2ωκ

c
=
ωε2
nc

(2.11)

which is related to the imaginary part of the dielectric constant.
It can be seen from these equations that the refractive index depends mainly

on the real component of the dielectric constant and that the absorption depends
primarily on the imaginary component. As a result, if the medium has a very high
absorption coefficient, this generalization becomes invalid.
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2.2 Nonlinear optical properties

In linear optics, the refractive index, absorption coefficient, and reflectivity are
considered to be independent of the optical power. This approximation holds true
only for low power level. Using a high-power laser, it is possible to explore a new
domain of behavior known as nonlinear optics.

Nonlinear optics is a new field of study that has gained prominence as laser ap-
plications have become more popular. The polarization P, is a nonlinear function
of E. In the linear case, however, P takes a simple linearized form [2],

P(r, t) =

∫ ∞
−∞

χ(1)(r− r′, t− t′) · E(r′, t′)dr′dt′ (2.12)

where χ(1) is the linear susceptibility. The Fourier transformation of (2.12) yields
the familiar relation,

P(k, ω) = χ(1)(k, ω) · E(k, ω) (2.13)

with,

χ(1)(k, ω) =

∫ ∞
−∞

χ(1)(r, t) exp(−ik · r + iωt)drdt (2.14)

The linear dielectric constant ε(k, ω) is related to χ(1)(k, ω) by,

ε(k, ω) = 1 + 4πχ(1)(k, ω) (2.15)

In the nonlinear case, when E is sufficiently weak, the polarization P, as a
function of E can be expanded into a power series of E [2] as,

P(r, t) = P(1)(r, t) + P(2)(r, t) + P(3)(r, t) + · · · (2.16)

As in the linear case, the Fourier transform of 2.16 gives

P(k, ω) = P(1)(k, ω) + P(2)(k, ω) + P(3)(k, ω) + · · · (2.17)

with
P(1)(k, ω) =χ(1)(k, ω) · E(k, ω) (2.18)

P(2)(k, ω) = χ(2)(k = ki + kj, ω = ωi + ωj) · E(ki, ωi)E(kj, ωj) (2.19)

P(3)(k, ω) = χ(3)(k = ki + kj + kl, ω = ωi + ωj + ωl) · E(ki, ωi)E(kj, ωj)E(kl, ωl)
(2.20)
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2.2. Nonlinear optical properties

2.2.1 Nonlinear optical susceptibility tensor

The nonlinear susceptibilities of various orders result in a variety of nonlinear
phenomena. The majority of these phenomena can be attributed to either the
χ(2) or χ(3) terms in the polarization and are referred to as second-order or third-
order nonlinear effects, respectively.

Due to the well-defined axes of crystalline materials, it is vital to consider that
the medium’s nonlinear response may be direction dependent.

For example, two optical fields in different directions could be applied and then
a nonlinear polarization along a third direction can be generated. The components
of the second-order nonlinear polarization P(2) can be written in the following form,

P
(2)
i =

∑
j,k

χ
(2)
ijkEjEk (2.21)

The quantity χ(2)
ijk that appears in equation (2.21) is the second-order nonlinear

susceptibility tensor, and the subscripts i, j, and k correspond to the coordinate
axis x, y, and z. Whenever feasible, it is typically more practical to define these
axes such that they coincide with the crystal’s principal axes. Equation (2.21)
shows that there are 27 susceptibilities.

All these components are not independent, and the number of non-zero and
independent components depend on the degree of symmetry present in the crystal.

2.2.2 Second-order nonlinear effect

The nonlinear second-order polarization described in equation (2.19) contains a
range of nonlinear second order effects.

These are classified into two categories based on their frequency, a), one in
which both the input frequencies are equal (ωi = ωj = ω) and b), the other in
which two input frequencies are not equal (ωi = ω1, ωj = ω2).

The effects that occur when two input frequencies are not identical, and they
are as follows:

1. Sum-frequency generation(SFG) Sum-frequency generation (SFG) gov-
erned by the nonlinear susceptibilities χ(2)

SFG = χ(2)(ωSF ;ω1, ω2) where ωSF =
ω1 + ω2. The Feynman diagram to represent the SFG is shown in the figure
(2.3a).

2. Difference-frequency generation(DFG)Difference-frequency generation
(DFG) governed by the nonlinear susceptibilities χ(2)

DFG = χ(2)(ωDF ;ω1, ω2)
where ωDF = ω1−ω2. The Feynman diagram to represent the DFG is shown
in the figure (2.3b).

The effects that occur when two input frequencies are identical, and they are
as follows:

1. Second harmonic generation is a particular case of frequency doubling
when the two input frequencies are equal and sum up. The associated non-
linear susceptibility is χ(2)

SHG = χ(2)(2ω;ω, ω).

11
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(a) Sum frequency generation
(SFG)

(b) Difference frequency generation
(DFG)

Figure 2.3: Feynman diagram representing SFG and DFG

2. Optical rectification is a particular case of difference-frequency generation
when the two input frequencies are identical. The result is a static field
corresponding to ω = 0.

2.2.3 Second harmonic generation

Amongst all the nonlinear phenomena existing in nature, a significant role is played
by the second-order process i.e. second harmonic generation (SHG). When a light
of frequency ω is incident on the nonlinear optical medium, then it could emit
light at frequency 2ω, schematically represented in figure (2.4).

Figure 2.4: Second harmonic generation

In SHG, two photons of frequency ω are absorbed by the material, and due to
energy conservation, a photon of frequency 2ω is emitted. This process was first
evidenced by P. A. Franken et al. at the University of Michigan, Ann Arbor, in
1961 [3].

The invention of the laser, which produced the requisite monochromatic light at
a high intensity made the experiment possible. SHG is possible only in a medium
without inversion symmetry.

12



2.3. Summary

Figure 2.5: Energy level diagram of SHG

Application of SHG

SHG has a wide range of applications in various scientific fields, including physics,
chemistry, and biology. Several of them are listed below.

• The generation of new frequencies using fixed-wavelength lasers is one of the
most significant applications of the SHG.

• Due to its high sensitivity to the symmetries of the system, it is extremely
useful for studying surfaces [4, 5], superlattices [6, 7] and interfaces [8, 9].

• Nowadays, this technique is also used for characterizing systems such as
interfaces of nanocrystals [10] or as a probe for molecular chirality in poly-
mers [11, 12] and nanotubes [13].

• Furthermore, SHG is also interesting for developing optoelectronic devices.
Many experimental efforts are made toward the design, fabrication, and
search for new nonlinear optical materials, and SHG techniques play a central
role in these studies [14].

2.3 Summary
In this chapter, the linear and nonlinear macroscopic properties were discussed.
Also, the second harmonic generation and its applications within the nonlinear
properties were discussed.The second harmonic generation and its applications
within the nonlinear properties were discussed.
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Chapter 3

Density Functional Theory

3.1 Many body approach
To determine theoretically the characteristics of solids, it is essential to solve the
many body Schrödinger equation. The ground-state properties can be calculated
by solving the time-independent Schrodinger equation, which will be discussed in
this section.

Atomic units are employed here and throughout this thesis (unless otherwise
specified): the length unit is the Bohr radius a0(= 0.5292) units, the charge unit
is the charge of the electron, e, and the mass unit is the mass of the electron, me.

The Schrödinger equation can be written as,

ĤΨ = EΨ (3.1)

where, E is the electronic energy, Ψ = Ψ(x1,x2, . . . ,xn) is the wave function,
The coordinates xi of electron i contain space coordinates ri and spin coordinates
si and Ĥ is the Hamiltonian operator, which can be written as,

Ĥ = T̂ + V̂ne + V̂ee (3.2)

where,

T̂ =
N∑
i=1

(
−1

2
∇2
i

)
(3.3)

is the kinetic energy operator,

V̂ne =
N∑
i=1

Vext(ri) (3.4)

is the electron-nucleus attraction energy operator, in which,

Vext(ri) = −
∑
α

Zα
riα

(3.5)

is the external potential acting on electron i due to the potential of nuclei of
charges Zα
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3. Density Functional Theory

V̂ee =
N∑
i<j

1

rij
(3.6)

is the electron-electron repulsion energy operator.
We may write (3.2) as,

Ĥ =
N∑
i=1

(
−1

2
∇2
i

)
+

N∑
i=1

Vext(ri) +
N∑
i<j

1

rij
(3.7)

It is known that the electron-electron interaction mediated by the Coulomb
potential (3.6) is important for the properties of a solid or a molecule. However,
including the electron-electron interaction into the many body problem in a sys-
tematic and correct way is a difficult task. The issue was addressed using the
Hartree Fock (HF) method [15]. Accounting for the electron-electron interaction
using the HF method is computationally challenging. The formulation of many
body problem in terms of densities and density matrices opens the way for a new
approach of electron systems. As a consequence, determining the density becomes
a critical task. The next section (3.2) illustrates the concept of density functional
theory (DFT). In DFT, the density of an interacting system of electrons is used to
characterize the system rather than the many body wave function of the system.

3.2 Density functional theory

Density functional theory (DFT) represents arguably the most popular and suc-
cessful method for calculating properties of solid-state materials relevant to tech-
nology from first principles. The birth of density functional theory is the work of
Hohenberg and Kohn [16] which will be discussed in this section (3.2.1). Within
the Kohn-Sham (KS) framework discussed in the section (3.2.3)), the many body
problem of interacting electrons is replaced by a system of non-interacting fermions
moving in an effective mean-field potential (with the condition that the non-
interacting system reproduces the electron density of the interacting one) and
it became practically possible to solve the many body problem.

3.2.1 Hohenberg and Kohn theorems

The Hohenberg-Kohn (HK) theorems [16] are the starting point for any discussion
of DFT. Rather than refining an approximate theory like the Thomas-Fermi-Dirac
one, Hohenberg and Kohn followed the objective of formally defining the DFT as
an accurate theory of many body systems, at least for the ground state description.

First H-K theorem H-K first theorem states that any observable is a unique
functional of the ground state density n(r) [16].

There is a one-to-one correspondence between the external potential Vext in
the Hamiltonian, the (nondegenerate) ground state |Ψ0〉 resulting from solution
of the Schrödinger equation and the associated ground state density n0, can be
represented as,
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3.2. Density functional theory

Vext(r)⇐⇒|Ψ0〉 ⇐⇒ n0(r) = 〈Ψ0|n̂(r)|Ψ0〉 (3.8)

Second H-K theorem The second theorem establishes a variational principle;
For any positive definite trial density n, such that

∫
n(r)dr = N we have

E[n] ≥ E0, where E0 denotes the ground state density.
From the first theorem we know that the trial density determines a unique trial

Hamiltonian H and thus wave-function Ψ: E[n]=〈Ψ|H|Ψ〉 ≥ E0 follows immedi-
ately from the variational theorem of the Schrödinger equation. This theorem
restricts density functional theory to studies of the ground state.

The Hohenberg-Kohn shows that the density can be used to calculate the
ground state energy of the system, but practical applications were still unknown.
The Kohn Sham theory, which will be described in the section (3.2.3), enabled
the realistic solution of the many body problem via the application of two H-K
theorems.

3.2.2 Energy functional

From the H-K theorems, it is known that the total energy E of the ground state
is a universal functional of the corresponding density.

From equation (3.2) we can write the energy as a functional of density as,

E[n] = T [n] +

∫
drn(r)Vext(r) + Eee[n] (3.9)

where, E[n] is the total energy of an interacting system. On the other hand,
the kinetic energy T [n] and the electron-electron interaction term Eee[n] are un-
known for an interacting system. The kinetic energy(T s[n]) and electron-electron
interaction (Es

ee[n]) term for the non-interacting system is known.
The total energy of an interacting system can be reformulated in terms of a

non-interacting system as:

E[n] = T [n] +

∫
drn(r)Vext(r) + Eee[n] + T s[n]− T s[n] + Es

ee[n]− Es
ee[n] (3.10)

In the Hartree theory, the energy functional for the non-interacting system can
be written as,

EH [n] = T s[n] +

∫
drn(r)Vext(r) + Es

ee[n] (3.11)

where,

Es
ee[n] =

1

2

∫
drdr′

n(r)n(r′)

|r− r′|
(3.12)

and hence the energy of the interacting system can be written as,

E[n] = EH [n] + Exc[n] (3.13)
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3. Density Functional Theory

where the unknown term Exc is the exchange-correlation (xc) energy which is
written,

Exc[n] = T [n]− T s[n] + Eee[n]− Es
ee[n] (3.14)

and has to be approximated to be a useful expression.

3.2.3 Kohn-Sham approach

The Kohn-Sham approach states that for each system of interacting electrons, an
auxiliary system of non-interacting electrons exists which has the same electronic
density. The wavefunction of a system of N independent particles can be written as
a Slater determinant of N single-particle orbitals. These orbitals are the solution
of a Schrödinger-like equation, containing a kinetic term and a potential term Veff :[

−1

2
∇2 + Veff(r)

]
φi(r) = Eiφi(r) (3.15)

where,
Veff(r) = Vext(r) + V H([n], r) + Vxc([n], r) (3.16)

with,

V H([n], r) =

∫
dr′

n(r′)

|r− r′|
, Vxc([n], r) =

δExc[n]

δn(r)
(3.17)

In this case, the electron density is simply the sum of the square modulus of the
first N states occupied by the first N electrons.

n(r) =
N∑
i

|φi(r)|2 (3.18)

The energy of the system of independent particle is described by the effective
potential Veff so that,

Es[n] = T s[n] +

∫
drn(r)Veff(r) (3.19)

using the expression of equation (3.16), we get the energy of the non-interacting
system as,

Es[n] = T s[n] +

∫
drn(r)Vext(r) +

1

2

∫
drdr′

n(r)n(r′)

|r− r′|
+ Exc[n] (3.20)

which is the same as equation (3.13) the energy of the interacting system.
Hence the Kohn-Sham approach substitutes the problem of interacting electrons
with an auxiliary independent-particle problem, in which all many body effects
beyond the Hartree term is incorporated in an explicit exchange-correlation func-
tional.

However, the main difficulty before solving these equations is to find an ex-
plicit form of the exchange-correlation potential. Then, the equations are solved
self-consistently, and the ground state density n(r) of the interacting system is
constructed by the solutions of the non-interacting system.
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3.2. Density functional theory

3.2.4 Approximation for the exchange-correlation potential

The exchange and correlation term can be written separately in the Exc as,

Exc[n] = Ex[n] + Ec[n] (3.21)

Local density approximation

There are many approximations for the exchange-correlation potential. The sim-
plest approximation is the local density approximation (LDA) [17], in which the
potential is a local functional of the density and is based on the homogeneous
electron gas.

The energy density for a homogeneous electron gas can be written as a sum of
a kinetic energy density and an exchange-correlation energy density as,

Ehom = Ehom
kin + Ehom

xc (3.22)

where, the kinetic energy is given as,

Ehom
kin =

(3π2n)
5/3

10π2
(3.23)

and the exchange terms is given as,

ELDA
x [n] =

∫
d3rn(r)εHES

x (n(r)) (3.24)

where, εx is known as a function of the density n, which is constant and is
given as,

εHES
x =

(3π2n)
4/3

4π3
(3.25)

No exact analytical formula is known for the correlation energy density, but
approximate formulas based on Quantum Monte Carlo (QMC) data [18–20] are
provided.

In LDA, the exchange-correlation energy of the real system at one point r,
with density n̄ = n(r), is approximated by the exchange-correlation energy of the
homogeneous electron gas with the same density at that point.

Local spin density approximation

In the local spin density approximation (LSDA) [21], the exchange part can be
written as,

ELSDA
x [n↑, n↓] =

∫
d3rn(r)εHES

x (n↑(r), n↓(r)) (3.26)

εHES
x (n↑(r), n↓(r)) = εHES

x (n(r)) [1+ζ(r)]4/3+[1−ζ(r)]4/3

2

= −3(3π2n(r))
1/3

4π
[1+ζ(r)]4/3+[1−ζ(r)]4/3

2

(3.27)
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3. Density Functional Theory

Figure 3.1: Flow chart to describe KS approach

where,

ζ(r) =
n↑(r)− n↓(r)

n↑(r) + n↓(r)
n = n↓ + n↑ (3.28)

is the induced spin-polarization. The correlation part is given as,

ELDA
c [n↑, n↓] =

∫
d3rn(r)εHES

c (n(r), ζ(r)) (3.29)

Exact εHES
c (n, ζ) is not known analytically, but there are plenty of approximate

results from the theory, and numerically exact results from QMC [18].

3.2.5 Practical use of DFT

Here, the use of DFT to determine the ground-state electronic properties of a
system is showed, as schematized in the figure (3.1). To determine the effective
potential Veff , the procedure begins by considering an arbitrary density value.
Following that, the KS equations are solved and a new density is built with the
solution of the KS equations. If the resulting density corresponds with the initially
considered arbitrary density, it will be taken as the system’s density by using
convergence criterion. The procedure is repeated if the new density is not identical
to the estimated density. The effective potential is now determined using the
new density, and the Kohn-Sham equations are solved once again. This step is
repeated until the self-consistent density is obtained. This self-consistent density
will be considered the true ground state density of the system and will be used to
determine the properties of the system.
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3.3. Pseudopotential approximation

Figure 3.2: Description of pseudopotential approximation

3.3 Pseudopotential approximation

The pseudopotential approximation has been used in the DFT calculations. This
approximation is described in detail here.

Electrons in condensed matter are classified into two types: core electrons and
valence electrons. The electrons with closed shells that are close to the nucleus
are referred to as core electrons. Valence electrons are located beyond the core
area and are responsible for the system’s physical properties.

We observed that core electron orbitals are highly localized, and the numerical
evaluation of these orbitals is challenging.

In order to account for this, the pseudopotential approximation has been pro-
posed. In this approximation, the core electrons and the strong nuclear potential
are removed and replaced by a smoother and weaker pseudopotential. This pseu-
dopotential acts on a set of pseudo wavefunctions rather than the true valence
wavefunctions. In fact, the pseudopotential can be optimized so that, in practice,
it is even weaker than the frozen core potential.

The schematic diagram in figure (3.2) shows these quantities. Due to the strong
ionic potential, the valence wavefunctions oscillate rapidly in the region inhabited
by the core electrons. These oscillations ensure that the core and valence electrons
remain orthogonal. The pseudopotential is constructed in such a way that there
are no radial nodes in the pseudo wavefunction in the core area and that the pseudo
wavefunctions and pseudopotentials are identical to the all-electron wavefunctions
and potentials outside a region defined by a radius cut-off. This requirement
must be examined carefully, since the pseudopotential may introduce additional
non-physical states (referred to as ghost states) into the calculation.
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3. Density Functional Theory

3.4 Summary
In this chapter, we discussed the many body problem. The density functional
approach is a way to solve the many body problems discussed in this chapter.
An approximation to the exchange-correlation kernel, the key quantity in the
DFT, has been discussed. Furthermore, the practical uses of DFT on real systems
the use of pseudopotential approximation in DFT has been discussed. However,
DFT is limited to calculate only the ground-state properties of a system. In
order to calculate the excited state properties of a system, time-dependent density
functional theory (TDDFT) is used and will be discussed in the next chapter.
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Chapter 4

Time-dependent density functional
theory

Excited state calculations are not possible using static ground-state DFT. Inter-
preting KS eigenvalues as electron addition or removal energies or KS eigenvalue
differences as optical excitation energies often results in significant disparities be-
tween theory and experiment. Time-dependent many-body Schrödinger equation,
described in section (4.1), is used to obtain the solution to the excited states
properties. As a consequence, a time-dependent DFT, also known as a TDDFT
extension of static DFT (which will be discussed in the section (4.2)), and has been
proposed as a potential substitute [22,23], to solve the time-dependent many-body
problems. Thereafter, using this theory, the calculation of the linear and second-
order response functions is described in detail in the following sections (4.2.3) and
(4.2.5) respectively. For the linear response, two cases are presented correspond-
ing to non-magnetic and magnetic materials. For the second-order, only response
functions for non-magnetic materials will be described in this chapter.

4.1 Time-dependent many-body problem

The Time-dependent many-body problem can be expressed using the Schrödinger
equation as,

Ĥ(t)Ψ(t) = i
∂Ψ(t)

∂t
, (4.1)

where,
Ĥ(t) = T̂ + V̂ee + V̂ext(t) (4.2)

where, T̂ is the kinetic energy which is expressed by the equation (3.3) and the V̂ee

is the electron-electron repulsion, which can be expressed by the equation (3.4).
The "external potential(V̂ext(t))" represents the potential that the electrons

experience due to the nuclear attraction and to any time-dependent field applied
to the system (e.g. laser).

V̂ext(t) =
N∑
i=1

Vext(ri, t) (4.3)
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4. Time-dependent density functional theory

For a large number of electrons the equation (4.1) is very difficult to solve. As
time-dependent external potentials adds an additional layer of complexity to the
equations. Similar to how DFT offered a method for solving the time-independent
many-body issue, TDDFT offers a method for solving the time-dependent many-
body problem as discussed in the next section.

4.2 Time-dependent density functional theory

Over the years, Time-Dependent Density Functional Theory (TDDFT) has be-
come one of the well-established first-principles’ approaches to describe the time-
dependent phenomena for a large variety of systems, both in the linear-response
regime and beyond. Similar to the Hohenberg-Kohn and Kohn-Sham approach,
Runge and Gross have proposed an approach to solve the time-dependent many-
body problem. It is based on the following theorem.

4.2.1 Runge-Gross Theorem

For every single-particle potential Vext(r, t) which can be expanded into a Taylor
series with respect to the time coordinates around t = t0, a mapVext(r, t) →
n(−→r , t) is defined by solving the time-dependent Schrödinger equation with a
fixed initial state Ψ(t0) = Ψ0 and calculating the corresponding densities n(r, t).
This map can be inverted up to an additive merely time-dependent function in
the potential.

Using this theorem it is possible to practically solve the time-dependent prob-
lem and to get the time-dependent density.

4.2.2 Time-dependent Kohn Sham scheme

The density of the interacting system can be obtained from,

n(r, t) =
N∑
j=1

|φj(r, t)|2 (4.4)

where, the orbitals φj(r, t) satisfy the time-dependent KS equation which can
be written as one particle equation like in static case.

i
∂

∂t
φj(r, t) =

(
−∇

2

2
+ Veff [n](r, t)

)
φj(r, t) (4.5)

By analogy with the static case the single-particle potential Veff [n] is written
as,

Veff [n](r, t) = Vext(r, t) +

∫
d3r′

n(r′, t)

|r− r′|
+ Vxc[n](r, t) (4.6)

In this approach also, the main difficulty is to get a good approximation for
the accurate exchange correlation potential.
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4.2. Time-dependent density functional theory

4.2.3 Linear response

When a system is submitted to a time-dependent external perturbation, the elec-
tronic density is changing in time. For sufficiently weak perturbation, the relation
between the change of the density and the perturbation can be evaluated in the
framework of perturbation theory. In the following we briefly present the deriva-
tion of the linear response, in the case of non-magnetic material. This will allow
us to define the important quantities and the approximations routinely used in
numerical calculations.

Due to the change of the external potential, V (1)
ext , the density is written, to

first-order as ,
n(r, t) = n(0)(r, t) + n(1)(r, t) (4.7)

and the Hartree and exchange-correlation potentials become,

V H(n, r, t) =

∫
dr′

n(0)(r′, t) + n(1)(r′, t)

|r− r′|
(4.8)

Vxc(n, r, t) = Vxc(n
(0), r, t) +

∫
dr′dt′

δVxc(r, t)

δn(r′, t′)
n(1)(r′, t′)

Defining the exchange-correlation kernel fxc by,

fxc(r, t, r
′, t′) =

δVxc(r, t)

δn(r′, t′)
(4.9)

fvxc(r, t, r
′, t′) =

δ(t− t′)
|r− r′|

+ fxc(n, r, t, r
′, t′) (4.10)

the linear change in the effective potential is,

V
(1)

eff (r, t) = V
(1)
ext (r, t) +

∫
dr′dt′fuxc(r, t, r

′, t′)n(1)(r′, t′) (4.11)

The response function χ
(1)
0 is defined through the relation between the effective

potential Veff and the first-order induced density,

n(1)(r, t) =

∫
dr′dt′χ

(1)
0 (r, t, r′, t′)V

(1)
eff (r′, t′) (4.12)

In frequency space, we get,

n(1)(r, ω) =

∫
dr′χ

(1)
0 (r, r′, ω)V

(1)
eff (r′, ω) (4.13)

Equation (4.11) becomes,

V
(1)

eff (r, ω) = V
(1)
ext (r, ω) +

∫
dr′fvxc(r, r

′, ω)n(1)(r′, ω) (4.14)

Taking equations (4.13) and (4.14) together, we get,

n(1)(r, ω) =

∫
dr′χ

(1)
0 (r, r′, ω)V

(1)
ext (r

′, ω) +

+

∫
dr′dr′′χ

(1)
0 (r, r′, ω)fvxc(r

′, r′′, ω)n(1)(r′′, ω) (4.15)
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The induced density n(1) is also related to the external potential (Vext), as,

n(1)(r, ω) =

∫
dr′χ(1)(r, r′, ω)V

(1)
ext (r

′, ω) (4.16)

where χ(1)(r, r′, ω) is a response function called full polarizability.
The relation between χ(1) and χ(1)

0 is,

χ(1)(r, r′, ω) = χ
(1)
0 (r, r′, ω) +

∫
dr′′dr′′′χ

(1)
0 (r, r′′, ω)fvxc(r

′′, r′′′, ω)χ(1)(r′′′, r′, ω)

(4.17)

which can also be expressed in momentum space as

χ(1)(q + G,q + G′, ω) = χ
(1)
0 (q + G,q + G′, ω)+∑

G1G2

χ
(1)
0 (q + G,q + G1, ω) fvxc(q + G1,q + G2, ω)χ(1)(q + G2,q + G′, ω)

(4.18)

For simplicity, this Dyson equation, in position space or in momentum space,
can be formally written as,

χ(1) = χ
(1)
0 + χ

(1)
0 fvxcχ

(1) (4.19)

The response function χ(1)
0 , called Independent Particle Response Function

is,

χ
(1)
0 (r, r′, ω) =

∑
ij

(fi − fj)
φ∗i (r)φj(r)φ

∗
j(r
′)φi(r

′)

Ei − Ej + ω + iη
(4.20)

where φi and Ei denote the Kohn-Sham(KS) eigenfunctions and eigenvalues and
η is a small positive quantity acting as a broadening (η → 0+).

In reciprocal space, using Bloch functions, we can write,

χ
(1)
0 (q + G,q + G′, ω) =

2

V

∑
nn′k

(fn,k − fn′,k+q)

En,k − En′,k+q + ω + iη

< φn,k|e−i(q+G)r|φn′,k+q >< φn′,k+q|e−i(q+G′)r′|φn,k > (4.21)

where the factor 2 comes from the summation over spins.

Exchange correlation kernel

In the linear response regime, as shown in equations (4.17) and (4.18), the main
element is the so-called exchange-correlation kernel fxc. Equation (4.9) defines
this quantity as the functional derivative of the xc potential with respect to the
density. Its functional form is unknown and has to be approximated. Finding
a good approximation for fxc is challenging, as it has to incorporate the exci-
tonic interaction, which is important for an accurate description of the absorption
processes.

Several approximations for the exchange-correlation kernel are already avail-
able and implemented in numerical codes. The simplest ones are described below.
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4.2. Time-dependent density functional theory

Independent Particle Approximation

Among all, the simplest approximation is the Independent Particle Approxima-
tion, where only χ(1)

0 , defined by (4.21), is used with G = G′ = 0, and

εM(q, ω) = 1− v0χ
(1)
0 (q,q, ω) (4.22)

where, εM is the macroscopic dielectric function and v is the coulomb potential.

Random Phase Approximation (RPA)

In RPA, we set fxc = 0, and the Dyson equation becomes

χ(1) = χ
(1)
0 + χ

(1)
0 vχ(1) (4.23)

Using equation 4.22 and 4.23, the inverse dielectric function is defined as,

ε−1 = 1 + vχ(1) (4.24)

Other approximations for the xc kernels are available, and the description of
these kernels will be provided in the last part of the thesis.

4.2.4 Linear response including spin-polarization in TDDFT

In magnetic material, the spin components of the density has to be taken into
account explicitly in the derivation of the Dyson equation. The total density is
the sum of the two components n↑ and n↓ which can be different (n↑(r) 6= n↓(r))
and the exchange correlation potential is defined by,

V α
xc =

∂Exc
∂nα

(4.25)

In the following, for simplicity, only the spin-dependence will be written explicitly.

Due to the perturbation, the exchange correlation kernel becomes to first-order

V α
xc = V (0)α

xc +
∑
β

δV α
xc

δnβ
n(1)β (4.26)

and the spin-dependent kernel fαβxc is defined as,

fαβxc =
δV α

xc

δnβ
(4.27)

By using the same procedure as the one explained for the spin-independent case
in the previous subsection, we obtain,

χ(1)αβ = χ
(1)αβ

0 +
∑
γδ

χ
(1)αγ

0 fγδuxcχ
(1)δβ (4.28)

where, spin-dependent response functions are defined as

χ(1)αβ =
δn(1)α

δV β
ext

χ
(1)αβ
0 =

δn(1)α

δV β
(4.29)
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As we are interested in optical processes we will only consider Vext not acting
on the spin. The non-interacting response function χ0 being diagonal in spin, we
get two sets of decoupled equations(

χ↑↑

χ↓↑

)
=

(
χ↑0
0

)
+M

(
χ↑↑

χ↓↑

)
(
χ↑↓

χ↓↓

)
=

(
0

χ↓0

)
+M

(
χ↑↓

χ↓↓

)
with,

M =

(
χ↑0f

↑↑
uxc χ↑0f

↑↓
uxc

χ↓0f
↓↑
uxc χ↓0f

↓↓
uxc

)
Summing the 2 matrix equations, the resulting equation is(

χ↑↑ + χ↑↓

χ↓↑ + χ↓↓

)
=

(
χ↑0
χ↓0

)
+M

(
χ↑↑ + χ↑↓

χ↓↑ + χ↓↓

)
This matrix equation can be written as a Dyson equation for the two new response
functions χ↑ = χ↑↑ + χ↑↓ and χ↓ = χ↓↑ + χ↓↓,(

χ↑

χ↓

)
=

(
χ↑0
χ↓0

)
+M

(
χ↑

χ↓

)
Considering that the external potential does not depend on the spin, the total

density n(1) =
∑

α n
(1)α is given by

n(1) =
∑
αβ

χαβV
(1)
ext (4.30)

and the total response function is defined as,

χ =
∑
α

∑
β

χαβ =
∑
α

χα (4.31)

Defining the spin-dependent dielectric function (ε−1)αβ by,

V α =
∑
β

(ε−1)αβV β
ext (4.32)

which gives,

(ε−1)αβ = δαβ + v
∑
γ

χγβ (4.33)

For spin-independent external potentials, (V ↑ext = V ↓ext = Vext) the spin-averaged
quantity is defined by summing over β

(ε−1)α =
∑
β

(ε−1)αβ = 1 + v
∑
β

∑
γ

χγβ = 1 + vχ (4.34)

which does not depend on the spin. The macroscopic dielectric function is then
obtained from ε−1 as in the spin-independent case. Note that such a derivation
of the macroscopic dielectric function has already been given in the framework of
many-body perturbation theory in reference [24].
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4.2. Time-dependent density functional theory

4.2.5 Second-order response function

Independent Particle Approximation (IPA)

The reference [25] describes an ab initio theory of second-order optical processes
in solids that accounts for both microscopic quantum mechanical (many-body)
effects and their macroscopic counterparts.

The microscopic second-order response χ(2)
0 in the framework of perturbation

theory is

χ
(2)
0 (r, r′, r′′, ω′, ω′′) =

∑
ijk

φ∗i (r)φj(r)

(Ei − Ej + ω′ + ω′′ + 2iη)[
(fi − fk)

φ∗j(r
′)φk(r

′)φ∗k(r
′′)φi(r

′′)

(Ei − Ek + ω′′ + iη)
+ (fi − fk)

φ∗k(r
′)φi(r

′)φ∗j(r
′′)φk(r

′′)

(Ei − Ek + ω′ + iη)

+(fj − fk)
φ∗k(r

′)φi(r
′)φ∗j(r

′′)φk(r
′′)

(Ek − Ej + ω′′ + iη)
+ (fj − fk)

φ∗j(r
′)φk(r

′)φ∗k(r
′′)φi(r

′′)

(Ek − Ej + ω′ + iη)

]
(4.35)

where η → 0+ and χ(2)
0 in the momentum space is written below,

χ
(2)
0 (q1 + q2 + G,q1 + G′,q2 + G′′, ω, ω) =

2

V

∑
n,n′,n′′,k

< φn,k|e−i(q1+q2+G)r|φn′,k+q1+q2 >

(En,k − En′,k+q1+q2 + 2ω + 2iη)[
(fn,k − fn′′,k+q2)

< φn′,k+q1+q2|ei(q1+G′)r′|φn′′,k+q2 >< φn′′,k+q2 |ei(q2+G′′)r′′ |φn,k >
(En,k − En′′,k+q2 + ω + iη)

+(fn,k − fn′′,k+q1)
< φn′′,k+q1|ei(q1+G′)r′|φn,k >< φn′,k+q1+q2|ei(q2+G′′)r′′ |φn′′,k+q1 >

(En,k − En′′,k+q1 + ω + iη)

+(fn′,k+q1+q2 − fn′′,k+q1)
< φn′′,k+q1|ei(q1+G′)r′|φn,k >< φn′,k+q1+q2|ei(q2+G′′)r′′|φn′′,k+q1 >

(En′′,k+q1 − En′,k+q1+q2 + ω + iη)

+(fn′,k+q1+q2 − fn′′,k+q2) +
< φn′,k+q1+q2|ei(q1+G′)r′|φn′′,k+q2 >< φn′′,k+q2 |ei(q2+G′′)r′′ |φn,k >

(En′′,k+q2 − En′,k+q1+q2 + ω + iη)

]
(4.36)

Dyson equation of second-order response function

As detailed for the linear response function, the crystal local field effects as well
as exchange-correlation effects are accounted for by solving a Dyson-like equation
that relates the KS response function to the full full polarizability. Such a Dyson
equation can also be derived for second-order response functions and we briefly
outline the derivation for the spin-independent case, as shown in Ref [25].

In this case a second-order exchange correlation kernel gxc appears

gxc(r, t, r
′, t′, r′′, t′′) =

δ2Vxc(r, t)

δn(r′, t′)δn(r′′, t′′)
(4.37)
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4. Time-dependent density functional theory

and the change in the density and in the effective potential can be written in
frequency space,

n(2)(r, ω) =

∫
dr′χ

(1)
0 (r, r′, ω)V

(2)
eff (r′, ω)

+
1

2

∫
dr′dr′′dω′χ

(2)
0 (r, r′, r′′, ω′, ω − ω′)V (1)

eff (r′, ω′)V
(1)

eff (r′′, ω − ω′)

(4.38)

V
(2)

eff (r, ω) =

∫
dr′fuxc(r, r

′, ω)n(2)(r′, ω)

+
1

2

∫
dr′dr′′dω′gxc(r, r

′, r′′, ω′, ω − ω′)n(1)(r′, ω′)n(1)(r′′, ω − ω′) (4.39)

Taking equation (4.38) and equation (4.39) together, we have

n(2)(r, ω) =

∫
dr′dr′′χ

(1)
0 (r, r′, ω)fuxc(r

′, r′′, ω)n(2)(r′′, ω)

+
1

2

∫
dr′dr′′dr′′′dω′χ

(1)
0 (r, r′, ω)gxc(r

′, r′′, r′′′, ω′, ω − ω′)n(1)(r′′, ω′)

n(1)(r′′′, ω − ω′) +
1

2

∫
dr′dr′′dω′χ

(2)
0 (r, r′, r′′, ω′, ω − ω′)[

V
(1)
ext (r

′, ω′) +

∫
dr′′′fuxc(r

′, r′′′, ω′)n(1)(r′′′, ω′)

]
[
V

(1)
ext (r

′′, ω − ω′) +

∫
dr′′′′fuxc(r

′′, r′′′′, ω − ω′)n(1)(r′′′′, ω − ω′)
]

(4.40)

With equation (4.16) and the definition of the second-order polarizability

n(2)(r, ω) =
1

2

∫
dr′dr′′dω′χ(2)(r, r′, r′′, ω′, ω−ω′)V (1)

ext (r
′, ω′)V

(1)
ext (r

′′, ω−ω′) (4.41)

we get the relation between χ(2), χ(2)
0 and χ(1)

χ(2)(r, r′, r′′, ω1, ω2) = χ
(2)
0 (r, r′, r′′, ω1, ω2)

+

∫
dx dx′ χ

(1)
0 (r,x, ω1 + ω2)fuxc(x,x

′, ω1 + ω2)χ(2)(x′, r′, r′′, ω1, ω2)

+

∫
dx dx′ dx′′ χ

(1)
0 (r,x, ω1 + ω2)gxc(x,x

′,x′′, ω1, ω2)χ(1)(x′, r′, ω1)χ(1)(x′′, r′′, ω2)

+

∫
dx dx′ χ

(2)
0 (r,x, r′′, ω1, ω2)fuxc(x,x

′, ω1)χ(1)(x′, r′, ω1)

+

∫
dx dx′ χ

(2)
0 (r, r′,x, ω1, ω2)fuxc(x,x

′, ω2)χ(1)(x′, r′′, ω2)

+

∫
dx dx′ x′′ x′′′ χ

(2)
0 (r,x,x′, ω1, ω2)fuxc(x,x

′′, ω1)fuxc(x
′,x′′′, ω2)χ(1)(x′′, r′, ω1)

χ(1)(x′′′, r′′, ω2)

(4.42)
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4.3. Summary

This relation leads to a Dyson-like equation for the response functions, formally
written as,

[
1− χ(1)

0 (ω1 + ω2)fuxc(ω1 + ω2)
]
χ(2)(ω1, ω2)

= χ
(2)
0 (ω1, ω2)

[
1 + fuxc(ω2)χ(1)(ω2)

][
1 + fuxc(ω1)χ(1)(ω1)

]
+χ

(1)
0 (ω1 + ω2)gxc(ω1, ω2)χ(1)ω1)χ(1)(ω2) (4.43)

The second-order Dyson equation (4.43) and the calculation of the response
function χ(2)

0 have been implemented in the code 2light as described in ref ( [26]).
The spin-dependent derivation of Eq. (4.43) is one of the main point of this work
and will be presented in Chapter 10.

4.3 Summary
In this chapter we have presented the main points of the time-dependent DFT. We
have also shown how the Kohn-Sham equations can be solved in the framework of
perturbation theory, using response functions. It appears that the accuracy of the
TDDFT calculation depends on the xc kernels as they contain all the ingredients
for the description of the excitonic interactions.
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Chapter 5

GW approximation

Spectroscopic measurements are a tool of material characterization. Any spec-
troscopic method introduces perturbation into the system under study, propelling
it into an excited state. Experimentally, the difficulty is to interpret the sys-
tem’s response correctly. However, from a theoretical standpoint, the difficulty is
identifying (or creating) an appropriate, accurate, and, most importantly, com-
putationally tractable method for describing the system’s response. Many body
Perturbation Theory (MBPT) offers a rigorous and systematic framework for de-
scribing a system’s spectral characteristics by connecting essential quantities such
as the Green’s function, self-energy, and dielectric function described in this chap-
ter. The poles of the Green’s function for a single particle, the primary object in
MBPT, are described in the section (5.1).

In electronic structure theory, the GW approximation(defined in section (5.4))
has become a widely used technique for predicting electronic excitation in chemical
compounds and materials. The GW approximation can overcome many of the
most notorious shortcomings of conventional density functionals, including the
self-interaction error, the lack of long-range polarization effects, and the Kohn-
Sham band-gap issue. The GW technique is well recognized for its ability to
accurately predict the band gaps of solids, which will be addressed in this chapter.

5.1 Many Body Perturbation Theory Green’s func-
tion method

The electronic Hamiltonian is composed of two components: the single-particle
Hamiltonian ĥ0, which is dependent on the coordinates of individual electrons,
and the Coulomb interaction that couples two electrons coordinates together. In
the electronic systems, the interaction between electrons is responsible for various
phenomena such as finite lifetime and plasmonic excitations represented by addi-
tional energies in the spectra, which cannot be seen in the KS DFT independent
particle approximation.

However, our efforts to solve an electronic system are hindered by the Coulomb
interaction energy that occurs between electrons coordinates. In MBPT, the
Coulomb interaction is introduced as an external perturbation to a non-interacting
system. Green’s function is used as the basic quantity to determine the electronic
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5. GW approximation

properties of materials in this theory.
Time ordered Green’s function [27] is defined as follows,

G(1, 2) = −i
〈
N
∣∣T [ψ(1)ψ†(2)

]∣∣N〉
=

{
−i
〈
N
∣∣ψ(1)ψ†(2)

∣∣N〉t1 > t2

i
〈
N
∣∣ψ†(2)ψ(1)

∣∣N〉t1 < t2

(5.1)

Where ψ and ψ† are the field operators, T is the time order operator and,
|N > is the N electrons many body state. Here, we use the compact notation
1 = (r1, σ1, t1) for a space, spin, time argument.
G is described as a propagator that describes the probability of an amplitude
changing when a particle propagates from one place to another.

In frequency space, G is written as the follows,

G(x, x′)(ω) =
∑
s

[
〈Nψ̂†(x′) |N − 1〉s 〈N − 1|s ψ̂(x)N〉

ω − (EN
0 − EN−1

s )− iη

+
〈N |ψ̂(x) |N + 1〉s 〈N + 1|sψ̂†(x′)|N |〉

ω − (EN+1
s − EN

0 ) + iη

]
(5.2)

Where
∑

s is the total number of potential states. Its poles indicate the dif-
ference in energies between the N and N ± 1 electron systems, which is equal to
the energies obtained from photoemission and inverse photoemission experiments
used to construct the band structure of materials. Thus, the one-body Green’s
function can be used to obtain band structure and, consequently, gap energies for
materials.

Figure 5.1: Photoemission and inverse-photoemission experiments

5.2 Equation of motion for the one-body Green’s
function

In condensed matter electronic structure theory, we avoid calculating the many
body wave function; instead, we use the equation of motion to get the one-body
Green’s function. Then, in order to formulate the equation of motion, we begin
by propagating in time the time-ordered Green’s function stated in the equation
(5.1).
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5.2. Equation of motion for the one-body Green’s function

∂

∂t
G(1, 2) =

∂

∂t

[
− i
〈
N
∣∣T [ψ(1)ψ†(2)

]∣∣N〉] (5.3)

Using Heisenberg equation of motion for the field operator,

i
∂ψ

∂t
= [ψ,H] (5.4)

The equation of motion of the Green function has been derived [27], which
contains the two particle Green’s function due to the two body coulomb interac-
tion operator, according to an infinite sequence of higher-order Green’s function.
Thus, the difficulty is how to avoid this coupled equation, which cannot be solved
mathematically. This is where the MBPT concept is discussed, based on the ap-
proximation of where we apply a time-dependent external perturbation vext(t). to
the system.

The total Hamiltonian without external perturbation consists of,

Ĥ = −1

2

∫
drψ†(r)∇2ψ(r) +

∫
drψ†(r)Vext(r)ψ(r)+

1

2

∫
drdr′ψ†(r)ψ†(r′)v(r, r′)ψ(r′)ψ(r)

(5.5)

and the interaction Hamiltonian is,

Ĥ ′(t) =

∫
drdr′ψ̂†(r)vext(r, r

′, t)ψ̂(r′) (5.6)

So the total Hamiltonian becomes,

ĤTotal = Ĥ + Ĥ ′(t) (5.7)

The Green’s function has the following definition in such system (system with
external perturbation),

G(x, t;x′, t′) = −i〈N |T̂ [Ŝψ̂(x, t)ψ̂†(x′, t′)]|N〉
〈N |T̂ [Ŝ]|N〉

(5.8)

where Ŝ is the operator that transforms the system from its ground state to
an excited state.

Ŝ = e

(
−i

∫+∞
−∞ dtĤ′I(t)

)
(5.9)

The variation of the one-body Green’s function, with respect to the external
perturbation, yields to the very useful relation,

δG

δvext
= GG−G2 (5.10)

where G2 is the two particle Green’s function. We can now compute the two-
body green’s function in terms of the one-body green’s function using equation
(5.10), which solves the previously described issue of coupled equation.
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5. GW approximation

This will lead us to the well-known equation of motion, which includes the
self-energy associated with exchange-correlation, given by,[

i
∂

∂t1
−H0(1)

]
G(1, 2)−

∫
d3Σ(1, 3)G(3, 2) = δ(1, 2) (5.11)

where
H0(1) = −1

2
∇2

1 + Vext(1) + VH(1) (5.12)

and Σ is referred to as the exchange-correlation self-energy, which plays the
key role here and whose mathematical formulation is well known and given by,

Σ(1, 2) = −i
∫
d(34)V (1+, 3)G(1, 4)

δG−1(4, 2)

δvext(3)
(5.13)

where 1+ = (r1, σ1, t1 + δ) where δ is positive infinitesimal.
Σxc contains all the many body quantum effect of the electronic system that

influences the propagation of an electron in the system.
The condition Σxc = 0 defines a similar equation to for the non-interacting (it

still contains the Hartree potential(VH)) Green function G0[
i
∂

∂t1
−H0(1)

]
G0(1, 2) = δ(1, 2) (5.14)

From equation (5.11) and (5.14) we have

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σxc(3, 4)G(4, 2) (5.15)

which represents the Dyson [28,29] equation for the Green function.

5.3 Hedin’s equations
In electronic systems, screening is essential when two charges interact via the
dressed Coulomb interaction W , commonly referred to as a screened Coulomb in-
teraction, which means that the interaction between two charges is modified by
the rearrangement of the other charges, generally to the detriment of the interac-
tion (often but not always). As a result, Hedin attempted [30,31] to construct the
equations(given below) in such a manner that W is clearly stated.

Σxc(1, 2) = i

∫
d(34)G(1, 3)Γ(3, 2, 4)W

(
4, 1+

)
(5.16)

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σxc(3, 4)G(4, 2) (5.17)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d(4567)

δΣxc(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3) (5.18)

W (1, 2) = v(1, 2) +

∫
d(34)v(1, 3)P (3, 4)W (4, 2) (5.19)
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P (1, 2) = −i
∫
d(34)G(1, 3)G

(
4, 1+

)
Γ(3, 4, 2) (5.20)

Fig. 5.2 illustrates the Hedin’s pentagon. It is a set of five coupled integral
equations, which should in principle be solved iteratively. However, in practice, it
is not feasible, and it relies on the so-called GW approximation.

Figure 5.2: Hedin’s Pentagon

5.4 GW approximation

As previously stated, Hedin’s Pentagon is the method for calculating self-energy.
In practice, the self-energy may be calculated using the GW approximation (GWA)
[32]. The method for calculating self-energy is detailed below,

1. Assuming that Σxc = 0, the green function will be G = G0, i.e the indepen-
dent particle Green’s function.

2. In this approximation the vertex function Γ set to a delta function, which
can be represented as,

ΓGWA(1, 2, 3) = δ(1, 2)δ(1, 3) (5.21)

As a result, Γ = 1 is taken as a starting point.

3. This approximated vertex yields to the Random Phase Approximation (RPA)
for P , which is defined by the figure (5.3b). where,

P 0(1, 2) = −iG0(1, 2)G0
(
2, 1+

)
(5.22)

is called as RPA polarizability.
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(a) GW approximation for the exchange-correlation
self-energy

(b) Random Phase Approxi-
mation for P

Figure 5.3: GW approximation

4. Using P 0, we can calculate screening W 0 which is,

W 0(1, 2) = v(1, 2) +

∫
d(34)v

(
1+, 3

)
P 0(3, 4)W 0(4, 2) (5.23)

5. Then further we calculate the self-energy ΣGW
xc = G0W 0,which is represented

by the figure (5.3a can be used to calculate the quasiparticle energies.

Figure 5.4: G0W 0 approximation

The GW approximation for self-energy is very efficient because it captures
a screening correlation. Thus, GW works effectively for many materials where
screening is critical, and electrons are weakly to moderately correlated but fail
to represent highly correlated systems. The GWA described in figure (5.4) is
widely used in condensed matter physics [27] and became a standard calculation
of quasiparticle band structure and band gap for materials.

38



5.5. Band gap within GW approximation

5.5 Band gap within GW approximation

From the GW approximation for the self-energy we can calculate the Green’s
function using equation (5.17). The poles of Green’s function represent the quasi-
particle energies and the plasmonic excitation. Using the quasiparticle energies,
we can calculate the band gap. In the next section, we will see how to calculate
the quasiparticle energies using Green’s function.

5.5.1 Quasiparticle energies from Green’s function

The quasiparticle enery is the energy of a non-interacting particles modified by
the effect of the other particles in the system, contained in the self-energy and
especially in the real part of Σxc. A formalism based on the Green’s function can
be used to calculate the quasiparticle energies. The inverse of the Green’s function
can be written as,

G−1 = (G0)−1 − Σ (5.24)

where Σ = ΣH + Σxc. ΣH is the Hartree self-energy and Σxc is the exchange-
correlation self-energy and G0 is defined by non-interacting equation,

G =
1

(G0)−1 − Σ
(5.25)

Using (G0)−1 = ω − E − iη (the removal part for instance), we can write the
Green’s function as,

G =
1

ω − E − iη − Σ
(5.26)

where Σ is the complex quantity and we can write it as Σ = Re(Σ) + iIm(Σ)
and hence the above equation becomes,

G =
1

ω − E − iη − (Re(Σ) + iIm(Σ))
(5.27)

where G can be also simplified as,

G =
(ω − E −Re(Σ))− iη(η + Im(Σ))

(ω − E −Re(Σ))2 + (η + Im(Σ))2 (5.28)

It shows that the imaginary part of the Green’s function,known as the spectral
function, has poles at the quasiparticle energies and can be written as,

A = (
1

π
)

(η + Im(Σ))

(ω − E −Re(Σ))2 + (η + Im(Σ))2 (5.29)

The spectral function is used to compute the quasiparticle energies. The spec-
tral function has a pole at ω = E−Re(Σ). This gives us the quasiparticle energies.
If we use E = EKS

a , the KS energies, then we can write the quasiparticle energies
Ea = EKS

a +Re(Σxc)−vxca . Where vxca is the KS exchange-correlation potential [27].
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5.6 Quasiparticle energies using Kohn-Sham equa-
tions

The GW approximation given above is useful for obtaining accurate values of
excitation energies and quasiparticle band gaps in solids.

G0W0 calculations are usually performed on top of KS-DFT or HF calculations.
A flowchart for a typical G0W0 calculation starting from a KS-DFT Hamiltonian
is shown in figure (5.5) and illustrated as below,

1. Figure starts with the KS energies
{
EKS
a

}
,KS orbitals

{
φKS
a

}
and the exchange-

correlation potential Vxc from a DFT calculation. The exchange part of the
self-energy Σx

a is directly computed from the DFT orbitals.

2. For the correlation term Σc
a, the frequency integral over G0 (or G0)and W0

(or W 0) must be computed. If the integral is evaluated numerically, W0 is
computed for a set of frequencies {ω}. The procedure to obtain W0 is as
follows: First, the irreducible polarizability (χ0) is computed with the KS
energies and orbitals. Then the dielectric function (ε) is calculated using
(χ0). Using the ε and the bare Coulomb interaction v, we finally obtain the
correlation part of the screened Coulomb interaction, represented by W c

0 in
the flow chart.

3. Now, an iterative procedure is required. More precisely, the correlation term
of the self-energy depends on Ea and must be updated at each step. Note
that only G0 is a function of the QP energies, while W c

0 depends solely on
the frequencies of the integration grid. Therefore, W c

0 can be precomputed
before entering the QP cycle, as shown in the picture (5.5)

4. The correlation self-energy Σc
a is a complex quantity. However, the imaginary

part of Σc
a is generally small for frequencies around the QP energies,

5.7 Scissor operator approximation
The band gap problem in DFT is well-known and has been attributed as the
primary reason for often insufficient agreement between experimental and LDA-
derived dielectric tensor functions. A very accurate solution is the computation
of the GW bandgap for all bands and all k-points. However, due to the numerical
complexity of the GW calculation, this is a difficult task. A simple approximation
has been proposed, the scissor operator approximation, by Levine, Allan(133) and
Gonze and Lee [81], and gives very satisfactory results for solving this issue.

It is based on the following observation for semiconductors: after a GW cal-
culation, the valence bands are not strongly modified, while the low conduction
bands are shifted upwards, keeping the same shape. The scissor approximation
assumes that using only shifted values for the energy of the conduction bands in
the construction of the KS response function is enough to account for the GW
corrections in many situations. This constant value ∆ is called the scissor value
and is added to the conduction band energies ELDA

g .
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Figure 5.5: Flow chart of G0W 0 calculation starting from the KS-DFT calculation
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Figure 5.6: Scissor operator approximation

This approximation is straightforward to implement. The scissor operator
approximation is described by image (5.6). It requires only the calculation of the
GW corrections for the band gap. The value of the scissor is then usually obtained
as the difference between the GW band gap and the LDA band gap. It can also
be taken as the difference between the experimental band gap, if available, and
the LDA band gap.

5.8 Summary
In this chapter, we discussed Green’s function in the context of MBPT. Equation
of motion of the one-body Green’s function, which leads to the Dyson equation
for Green’s function, has been discussed. Additionally, the set of self-consistent
coupled equations was addressed. There has been discussion about the GW ap-
proximation to self-energy. It was described how to calculate the band gap using
the GW approximation. It has been explained how to determine the quasipar-
ticle energy beginning from the KS. Additionally, the scissor approximation was
explained.
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Chapter 6

Bethe Salpeter Equation

Bethe Salpeter Equation (BSE) is another method for calculating the absorption
spectra. BSE comes within the context of the Many Body Perturbation Theory.
When the system is excited by an external perturbation, such as light, bound
excitons, or electron-hole pairs, are detected. Certain material properties, such
as bound excitons, are not described by the TDDFT owing to the lack of a good
approximation for the exchange-correlation kernel.

The BSE is effective in capturing these kinds of characteristics. In this chapter,
we will briefly describe the BSE.

6.1 Bethe Salpeter Equation for the response func-
tion

Whenever we think about light absorption, we are particularly interested in neu-
tral excitations, which do not alter the overall charge of the system. When light
is incident on the material, an electron moves from the valence band to the con-
duction band and leaves a hole behind. In the presence of interaction, a hole and
an electron (an exciton pair) interact with the rest of the system and each other.
Their propagation is given by the two particles Green’s function. Therefore, it is
crucial for the absorption to study the two particles Green’s function.

Formally, the two particle correlation function (L) can be written in terms of
Green’s function as [27,33],

L(1, 2, 3, 4) = −i δG(1, 3)

δVext(4, 2)
= −i

∫
d(5)

δG(1, 5)

δVext(4, 2)
δ(5, 3) (6.1)

The Green’s function and its inverse is defined by:∫
d(6)G−1(5, 6)G(6, 3) = δ(5, 3) (6.2)

using equation (6.2) in equation (6.1), L can be written as,

L(1, 2, 3, 4) = i

∫
d(56)

δG(1, 5)

δVext(4, 2)
G−1(5, 6)G(6, 3) (6.3)

and,

43



6. Bethe Salpeter Equation

∫
d(56)

δG(1, 5)

δVext(4, 2)
G−1(5, 6)G(6, 3) =

∫
d(56)G(1, 5)G(6, 3)

δG−1(5, 6)

δVext(4, 2)
(6.4)

and hence,

L(1, 2, 3, 4) = i

∫
d(56)G(1, 5)G(6, 3)

δG−1(5, 6)

δVext(4, 2)
(6.5)

Where,

G−1(5, 6) = (i
∂

∂t
+∇2/2)δ(5, 6)− Vext(5, 6) + VH(5)δ(5, 6)− Σxc(5, 6) (6.6)

Using equation (6.6) in equation (6.1),

L(1, 2, 3, 4) = i

∫
d(56)G(1, 5)G(6, 3)

[
− δVext(5, 6)

δVext(4, 2)
− δVH(5)

δVext(4, 2)
δ(5, 6)

− δΣxc(5, 6)

δVext(4, 2)

]
(6.7)

L(1, 2, 3, 4) = L0(1, 2, 3, 4)− i
∫
d(56)G(1, 5)G(6, 3)

[
δVH(5)

δVext(4, 2)
δ(5, 6) +

δΣxc(5, 6)

δVext(4, 2)

]
(6.8)

L(1, 2, 3, 4) = L0(1, 2, 3, 4)−i
∫
d(5678)G(1, 5)G(6, 3)

[
δVH(5)

δG(7, 8)

δG(7, 8)

δVext(4, 2)
δ(5, 6)

+
δΣxc(5, 6)

δG(7, 8)

δG(7, 8)

δVext(4, 2)

]
(6.9)

This leads to the Dyson like equation [32] for the polarizability L,

L(1, 2, 3, 4) = L0(1, 2, 3, 4)+

∫
d(5678)L0(1, 6, 3, 5)K(5, 7, 6, 8)L(8, 2, 7, 4) (6.10)

The equation (6.10) is known as the Bethe Salpeter Equation for the response
function.

where the kernels K can be defined as,

K(5, 6, 7, 8) = δ(5, 6)δ(7, 8)v(5, 7) + iΞ(5, 6, 7, 8) (6.11)

with the kernel Ξ(5, 6, 7, 8) representing an effective two-particle interaction
defined as,

Ξ(5, 6, 7, 8) =
δΣ(6, 5)

δG(7, 8)
(6.12)
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6.1. Bethe Salpeter Equation for the response function

As mentioned in (6.11), the kernel K is comprised of two terms: the first
component is the Coulomb interaction v, also known as an electron-hole exchange,
and the second term Ξ which is defined by equation (6.12) is the variation of the
self-energy due to the Green function variation.

The independent-electron-hole polarizability,

L0(1, 2, 3, 4) = iG(1, 3)G(4, 2) (6.13)

L0 describes the propagation of a hole and an electron separately and also the
two-particle correlation function in the absence of interaction between the two
particles.

The four point density correlation functional L can be written using the two
particle Green’s function,

L(1, 2, 3, 4) = L0(1, 2, 3, 4)−G(1, 2, 3, 4) (6.14)

where the two particle green function can be defined as,

G(1, 2, 3, 4) = (−i)2
〈
N
∣∣T [ψ(1)ψ(3)ψ†(4)ψ†(2)

]∣∣N〉 (6.15)

6.1.1 RPA approximation

In this approximation, we consider that Ξ=0. The only term remaining is the
electron-hole exchange term computed using the Coulomb interaction. Note that
without Ξ, BSE reduces to the Time-dependent Hartree-Fock approximation.

6.1.2 GW approximation

To solve the equation 6.10 we must know Ξ. To calculate the Ξ we should know
the self-energy (Σ). The self-energy may be defined using the GW Approximation
as Σ = iG(1, 2)W (2, 1). This directly leads to,

K(1, 2, 3, 4) = δ(1, 2)δ(3, 4)v̄(1, 3)− δ(1, 3)δ(2, 4)W (1, 2) (6.16)

Where in the derivation of the self-energy, we have omitted the term iG(1, 2) δW (1,2)
δG(3,4)

,
i.e. the variation of the screening due to the excitation.

6.1.3 Macroscopic dielectric function

The absorption coefficients of a material can be obtained from χ, the density-
density response function. The χ can be written in terms of L as,

χ(r1, r2; t1 − t2) = −iL(r1, t1, r1, t1, r2, t2, r2, t2) (6.17)

and hence the macroscopic dielectric function [34] can be written in terms of
L as,

εM(ω) = 1− lim
q→0

v(q)

∫
drdr′eiq·(r−r

′)L(r, r, r′, r′, ω) (6.18)

The imaginary part of the dielectric function as defined by 6.18 gives the
absorption spectrum.
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6. Bethe Salpeter Equation

6.1.4 Two particle Hamiltonian

As a further approximation, the quasiparticle approximation is often used for G
(5.4) in L0, and the frequency dependency ofW in the kernel of the BSE is omitted.
In equilibrium, L is then dependent on a single time difference or frequency after
Fourier transformation. Rather than calculating the BSE for each frequency, the
resultant equation may be rewritten as an eigenvalue problem with an effective
electron-hole Hamiltonian Hexc, where vc and W represent effective electron-hole
interactions [35–38], respectively. The Hamiltonian is usually expressed in the
basis of pair of orbitals as,

Hexc(n1, n2, n3, n4) = [EQP
n2
− EQP

n1
]δn1n3δn2n4 −W n1n3

n2n4
+ v̄n1n2

n3n4
(6.19)

and
v̄n1n2
n3n4

= 〈n1n2|vc|n3n4〉 = 2
∫
drdr′φ∗n2

(r)φn1(r)vc(r, r
′)

φn4(r
′)φ∗n3

(r′)
(6.20)

W n1n3
n2n4

= 〈n1n2|W |n3n4〉 =
∫
drdr′φ∗n2

(r)φn4(r)W (r, r′)
φn1(r

′)φ∗n3
(r′)

(6.21)

Where n denotes the bands, and the φ’s are the KS wave-functions. Here, we
have omitted the index k, associated with each vertical transition vk → ck. As a
result, the basis is composed of resonant (valence band to conduction band) and
antiresonant transitions (Conduction band to Valence band), and Hexc takes the
form of a block matrix.

Hexc =

(
R KR,A

KA,R A

)
(6.22)

With the resonant matrix R, the anti-resonant A, and the coupling elements
K. The diagonal blocks A and R are hermitian, and the coupling blocks K are
symmetric. We can write the polarizability using the above equation as,

L(n1n2)(n3n4) =
[
H2p − Iω

]−1

(n1n2)(n3n4)
(fn3 − fn4) (6.23)

At each frequency, the issue of inverting a matrix has been projected onto the
challenge of diagonalizing that matrix once and for all. As,

Hexc(n1, n2, n3, n4)Aλ(n3, n4) = Eexc
λ Aλ(n1, n2) (6.24)

We can calculate the spectral function({Aλ}) and energy ({Eλ}) from the
diagonalization.

The {Aλ} and {Eλ}, are used to build the polarizability function in the tran-
sition framework as shown below,

L(n1n2)(n3n4) =
∑
λ,λ′

A
(n1n2)
λ S−1

λλ′A
∗(n3n4)
λ′

Eexc
λ − ω

(6.25)
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6.2. BSE calculations starting from the DFT

where S is the overlap matrix. using equation in equation 6.18 gives,

εM(ω) = 1− lim
q→0

v0(q)
∑
λλ′

 ∑
(n1n2)

〈
n1

∣∣e−iq·r∣∣n2

〉 A
(n1n2)
λ

Eexc
λ − ω − iη

×

×S−1
λλ′

∑
(n3n4)

〈
n4

∣∣∣eiq·r′∣∣∣n3

〉
A
∗(n3n4)
λ (fn4 − fn3)

 (6.26)

Within the Tamm-Dancoff approximation (TDA) [39, 40], the coupling terms
are omitted. Assuming that we are only concerned with the resonant component
of the excitonic Hamiltonian(Hreso

exc ), i.e., the portion that contains only positive
frequency transitions, it can be written as,

R = Hreso
exc (ck, vk, c

′
k
′
, v
′
k
′
) = [EQP

c (k)− EQP
v (k)]δcc′δvv′δkk′ −W kk′

cc′
vv′

+ 2v̄kk
′

cv
c′v′
(6.27)

where the energy [EQP
c (k)− EQP

v (k)] is the difference between an unoccupied
and an occupied quasiparticle state, calculated in the GWA (described in the
section (5.4)).

In this case, the eigenstates Aλ are mutually orthogonal if Hreso
exc is Hermitian;

the dielectric function can simply be written as,

εM(ω) = 1− lim
q→0

v0(q)
∑
λ

∣∣∣∑(n1n2)〈n1|e−iq·r|n2〉A(n1n2)
λ

∣∣∣2
Eexc
λ − ω − iη

(6.28)

6.2 BSE calculations starting from the DFT

The general procedure to account for many body effects in optical spectra consists
of three steps (as shown in figure (6.1)) [32]

• Preparation of a starting electronic, i.e. DFT, in which neutral pair excita-
tion occurs in an electronic structure that comprises xc but does not contain
the excitation aspect structure.

• An improvement due to quasiparticle effects, i.e. GWA, in which the excita-
tion of a pair of neutral quasiparticles occurs in an electronic structure that
includes the excitation aspect.

• The inclusion of electron-hole attraction and exchange, i.e. BSE, it includes
not only the quasiparticle nature of the individual electron and hole, but
also their screened and unscreened Coulomb correlations.

Their combination produces novel quasiparticles known as excitons.
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6. Bethe Salpeter Equation

Figure 6.1: BSE starting from DFT

6.3 Summary
This chapter discussed the two particle response function, which can be calculated
using two particle Green’s function. Further, the two particles Hamiltonian has
been discussed. Then the eigenvalues and eigenfunction of these two particles
resonant Hamiltonian are used to calculate the macroscopic dielectric function.
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Development and Application
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Chapter 7

Electronic properties of Cr2O3

First, the ground state calculation for the AFM Cr2O3 has been performed. In
the ground state calculation, we calculated the band gap and the bandstructure of
the AFM Cr2O3 using the DFT approach. Further, we studied the GW band gap
of the Cr2O3 using valence electrons pseudopotential and using semicore electrons
pseudopotential.

The effect of the semicore electrons of Cr on the GW band gap has been
discussed. Finally, we compared the calculated band gap using GW to the exper-
imental band gap and the previously calculated band gap theoretically.

7.1 Antiferromagentic Cr2O3 structure

Cr2O3 is the most stable magnetic-dielectric oxide material [41]. Furthermore,
bulk Cr2O3 is an antiferromagnet at temperatures below the Neel temperature
of 308K [42]. Cr2O3 is a corundum crystal with a space group of R3c, with O
atoms organized in hexagonal close-packed (001) layers and Cr atoms occupying
two-thirds of the octahedral spaces between as shown in the figure (7.1).

Cr2O3 has three different magnetic structures : AF1(+−+−), AF2(+ +−−),
and AF3(+ − −+). The stable phase is AF1, which has a magnetic structure
corresponding to a (+−+−) or (↑↓↑↓) spin sequence on the Cr atoms along the
threefold axis, where the symmetry reduces to R3c. It is also possible to have a
second antiferromagnetic configuration (AF2) with the (+ + −−) or (↑↑↓↓) spin
sequence. The next structure AF3 has a (+−−+) or (↑↓↓↑) spin sequence.

In all three instances, the primitive unit cell contains two independent metal
atoms denoted by Cr (↑) and Cr(↓) as shown in (7.1).

The most stable structure is the AF1 structure, which we will study in detail
in this chapter. In cases where the structural type is not mentioned throughout
the manuscript, it is inferred that the AF1 structure is used.

7.2 Ground state properties of Cr2O3

The first step towards the calculation of various properties of the Cr2O3 using the
ab-initio (or first principles) approach is the calculation of ground state properties
using DFT.
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7. Electronic properties of Cr2O3

Figure 7.1: Structure of Cr2O3

Among the various ground state properties, we will discuss the most crucial
properties, which is band gap and bandstructure of the Cr2O3. We will also
calculate the ground state density and DFT orbitals.

7.2.1 Calculation details

A first principle study of the electronic structure of Cr2O3 is carried out within
the framework of planewave pseudopotential density functional theory (DFT).

All DFT calculations are performed using the Abinit code [43]. Unless other-
wise specified, all calculations are done using the local spin density approximation
(LSDA) for the exchange-correlation potential used in DFT. The spin-polarization
is included in the calculations through LSDA.

In the calculations, two distinct pseudopotentials have been used. The first
one is a valence electrons pseudopotential, which implies that we considered the
pseudopotential for Cr with six electrons in the valence, namely 4s1, 3d5. In this
case, the total number of electrons is 60.

The second one is the pseudopotential with semicore electrons, where we con-
sidered the pseudopotential for Cr with six valence electrons, namely 4s1, 3d5, and
extra semicore 3s2,3p6 electrons acting as valence electrons. In this case, the total
number of electrons is 92.

Structure relaxation

The first step in the calculation is structure relaxation. This ensures that the
initial crystalline structure is completely relaxed and optimized (within specific
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7.2. Ground state properties of Cr2O3

approximate tolerance requirements that are monitored), allowing for correct and
realistic property calculations to be performed on it throughout the rest of the
procedure.

"Structure relaxation" refers to the process of methodically allowing the mate-
rial’s unit cell to experience a series of successive modest structural modifications
in terms of its lattice parameters and atomic position. This results in an effec-
tive sampling of the material’s free energy landscape, which the crystal structure
configuration can traverse (except for significant energy barriers), and can thus be
fully optimized by the time the calculation is terminated according to the various
thresholds criteria outlined below.

• Equilibrium condition on the internal stress tensor. By optimized (or re-
laxed) crystal structure, it is typically intended that the internal stress tensor
components of the material should match the externally applied pressure as
precisely as possible, which corresponds to the ambient atmospheric pressure
for material at equilibrium conditions.

• Equilibrium condition on the inter-atomic forces. A relaxation calculation
guarantees that the interatomic forces inside the crystal structure are simi-
larly reduced to negligible levels.

Together with the previously described pressure criteria, this feature helps the
overall structure to remain as stable as possible and minimize the potential energy.

All geometry relaxations are performed using a 4×4×4 k-point mesh to force
tolerance of less than 10−6 Rydberg/Bohr per unit cell, resulting in highly con-
verged crystal structures.

As a result, the converged value of lattice constant for AF1 Cr2O3 is 10.18
Bohr. The converged value of the angle is 55.13◦. The reduced coordinate of the
atoms which we used in our calculations is given below:

Atom Reduced coordinates
Cr 0.1525 0.1525 0.1525
Cr 0.3475 0.3475 0.3475
Cr 0.6525 0.6525 0.6525
Cr 0.8475 0.8475 0.8475
O 0.2500 0.5560 0.9440
O 0.5560 0.9440 0.2500
O 0.0560 0.7500 0.4440
O 0.9440 0.2500 0.5560
O 0.7500 0.4440 0.0560
O 0.4440 0.0560 0.7500

Table 7.1: Reduced coordinates of atoms

Converged parameters in ground state calculations

The ground state density is computed using a kinetic energy cutoff of 85Ry, and
the electronic orbitals are expanded on a plane-wave basis set using a 6 6 6 k-point
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(a) LSDA (b) LDA

Figure 7.2: Comparison of bandstructure of Cr2O3 using LDA and LSDA

grid and a kinetic energy cutoff of 85Ry. The convergence test for the kpoints is
shown in the appendix (B.3).

7.2.2 Electronic bandstructure of Cr2O3

Bandstructure calculated using valence electrons pseudopotential

We calculated the band-structure of Cr2O3 using DFT in the local spin density
approximation (LSDA), which is shown in figure (7.2a) and in the local density
approximation (LDA) which is shown in figure (7.2b). First, we used the valence
electrons pseudopotential.

The blue colour shows the highest valence band (HVB), and the red colour
shows the lowest conduction band (LCB) in all the bandstructures given in this
thesis.

The path of the bandstructure is from A → F, F → H, H → Γ, Γ → F ,F →
S, where the reduced coordinates for these points are given in the table (7.2)

High symmetric points Reduced coordinates
A 0.2 0.7 0.7
F 0.0 0.5 0.5
H -0.2 0.3 0.3
Γ 0.0 0.0 0.0
F 0.0 0.5 0.5
S -0.2 0.2 0.0

Table 7.2: High symmetric point coordinates

The bandstructure predicted using LSDA indicates a semiconductor, while
the bandstructure calculated using LDA indicates a metallic structure. It clearly
shows that including the spin in the calculation via LSDA is mandatory to get an
accurate description of the structure since Cr2O3 is known to be a semiconductor.
The calculated value of the DFT gap is given in table (7.3). As we will discuss
later, the calculated DFT gap underestimates the experimental band gap.
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7.3. GW band gap

Direct band gap 1.90eV at F Point
Indirect band gap 1.85eV between F and S point

Table 7.3: DFT band gap of Cr2O3

(a) Valence electrons (b) Semicore electrons

Figure 7.3: Comparison of bandstructure of Cr2O3 using two different pseudopo-
tentials

Bandstructure calculated using semicore electrons pseudopotential

Additionally, the bandstructure was computed using the semicore electrons pseu-
dopotential and compared to the pseudopotential with valence electrons as shown
in figure (7.3). We see in figure (7.3), although the two bandstructures look quite
similar, there is a discernible difference in the bandstructure, namely the shape of
the bands at the Γ point. In contrast to the valence electrons bandstructure, the
curvature of the bands becomes opposite at the Γ point in the semicore electrons
bandstructure.

The DFT band gap using semicore electrons pseudopotential is calculated and
compared with the band gap calculated using the valence electrons band gap in
the table (7.4).

Semicore electrons band gap Valence electrons band gap
1.72eV 1.90eV

Table 7.4: DFT band gap of Cr2O3 calculated using two pseudopotentials

7.3 GW band gap

DFT calculations in the LDA for the exchange-correlation potential [16,17] can de-
scribe the ground state properties, such as the total energy and the bond lengths
accurately, for a large array of systems, but are inappropriate for excited-state
properties, such as the quasiparticle energies and band gap. The band gaps re-
sulting from KS-DFT calculations are systematically underestimated [44–46].
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To obtain a better representation of the electronic structure and an accurate
band gap for Cr2O3, the inclusion of self-energy corrections to the quasiparticle
energies are needed (as discussed in Chapter 5).

The application of the GWmethod to compute self-energy corrections on top of
ab-initio DFT results has become a quite well-established and standard technique,
giving energy levels generally in good agreement with experiments for a variety
of materials, ranging from narrow-gap semiconductors such as InSb to wide band
gap insulators such as LiF, [47–49].

In this section, we examine the quasiparticle bandstructure of Cr2O3 using the
GW approximation. Note that this is also the basis for introducing the so-called
“scissors operator” often invoked to correct the discrepancies by rigidly shifting
the DFT empty bands upwards, hence avoiding explicit self-energy calculations
for all bands and k-points.

In GW calculations for semiconductors, the calculation of G and W to correct
the DFT bandstructure usually starts, for computational purposes, with valence
electrons pseudopotentials, omitting the semicore states, which have been frozen
in the pseudopotential technique(described in the section (3.3)).

However, as shown in [50], the exchange-correlation contributions to the self-
energy of Copper at the 3s and 3p core levels are essential. It is shown that,
when Σ is computed neglecting the 3s and 3p atomic core states, the resulting
QP corrections on the d bands are clearly non physical: GW corrections move
the highest occupied d band above the DFT-LDA fermi level. On the other hand,
the situation for s and p states is much more reasonable, with correlation and
exchange parts of the self-energy. It was explained that, even though the 3s and
3p states are physically distinct from the 3d states in terms of energy, they have
a significant spatial overlap. As a result, the exchange contributions between 3d
and 3s, 3p states are expected to be significant for self-energy.

For these reasons, we have examined the influence of 3s and 3p states of Cr
in Cr2O3 on the GW QP energies by calculating the GW band gap using the two
different pseudopotentials already presented, one with valence electrons only and
the other with valence and semicore electrons.

7.3.1 GW Band gap calculated using pseudopotential with
the valence electrons

We performed the GW calculations using the pseudopotential, which has valence
electrons only, i.e. 4s1, 3d5. The total number of electrons is 60.

Calculations details

We calculated the quasiparticle (QP) energies within many body perturbation
theory using the GW method, using the Abinit code. The spin polarization is
included in the GW calculations.

The procedure for calculating QP energies using GW approximation starting
from DFT eigenvalues and eigenfunctions is explained in section (5.6). Following
that, we will compute the screening using the KS eigenfunctions and eigenvalues,
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and then we will use this screening to determine the self-energy. In the end, we
will use this self-energy to calculate the QP energies.

In this section the convergence parameters and the procedure for calculating
the screening and the self-energy calculations is discussed.

Convergence parameters

• Screening : The independent-particle susceptibility is determined and it is
used to create the inverse dielectric matrix, as described in the section (5.6).
The screening is then calculated using inverse dielectric matrix. The param-
eters that need to be converged in screening are nband, ecutwfn and ecuteps,
where nband defines the number of bands and ecuteps determines the cut-
off energy of the planewave set used to represent the independent-particle
susceptibility, the dielectric matrix. ecutwfn determines the cut-off energy
of the planewave set used to represent the KS-orbitals.

• self-energy : The parameters that need to be converged in self-energy calcu-
lations are nband, ecutwfn and ecutsigx. The convergence parameter ecut-
sigx, determines the cut-off energy of the planewave set used to generate the
exchange part of the self-energy operator.

Convergence procedure

• We start by converging the self-energy parameter ecutwfn, ecuteps and ecut-
sigx using a well converged KS electronic structure i.e. containing many
bands and a screening determined with "reasonable" values for the parame-
ters nband, ecutwfn and ecuteps. The self-energy parameters are converged
one by one.

• Once all of the self-energy parameters were converged, we increase the screen-
ing matrix’s size and check the convergence of the self-energy parameters
once again.

• We repeat this procedure until screening and self-energy are fully converged.

The energy gaps in the GW approximation have a significant dependence on
the number of unoccupied bands that is slow to converge in many cases.

Converged parameters The convergence study in the GW calculations is
shown in the appendix (D). The converged parameters in the screening and self-
energy calculations are given below in tables (7.5) and (7.6) respectively.

ecuteps 17 Ha
ecutwfn 20 Ha
nband 390

Table 7.5: Converged value of parameters in the screening calculation
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ecutsigx 28 Ha
ecutwfn 20 Ha
nband 800

Table 7.6: Converged value of parameters in the self-energy calculation

Calculated band gap

DFT direct band gap is 1.90eV at the F point (0.0 0.5 0.5) and hence GW correc-
tions to the KS eigenvalues are calculated at this point. The calculated GW band
gap is 3.46eV.

7.3.2 GW band gap calculated using pseudopotential with
the semicore electrons

We performed the GW calculation using pseudopotential, which also has semicore
electrons.

Calculations details

The convergence study in the GW calculations is shown in the appendix (D).
The value of the converged parameters is different due to the different number of
electrons included in the pseudopotential.

Converged parameter The ground state KS-orbitals are calculated using a
k-point grid 4 4 4. The converged parameters in the screening and self-energy
calculations are given below.

ecuteps 23 Ha
ecutwfn 26 Ha
nband 450

Table 7.7: Converged value of parameters in the screening calculation

ecutsigx 30 Ha
ecutwfn 24 Ha
nband 1000

Table 7.8: Converged value of parameters in the self-energy calculation

Calculated band gap

DFT direct band gap is 1.72eV. GW band gap is 2.68eV. The value of scissor
in this case is 0.96eV.
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7.3. GW band gap

7.3.3 Effect of semicore electrons on band gap

In the above two sections (7.2) and (7.3), we have shown the results for the band
gap using two different pseudopotentials (with and without semicore electrons).

Comparing the band gaps calculated using the two different pseupotentials
using two different approximations (LDA and GW) are given in table (7.9). There
is a substantial difference between DFT band gaps that include semicore electrons
and those that do not. The inclusion of semicore electrons in the calculation
modifies the LDA band gap by 0.1-0.2eV and the GW band gap by around 0.8-
0.9eV. Previous studies [41] have described that the semicore electrons plays a
more important role in the GW calculations than in LDA. We observe a similar
pattern for the Cr2O3. However, for Cr2O3, the difference in the DFT gap is also
significant.

We can consider that the GW band gap(= 2.68eV) using semicore electrons
at point 0.0 0.5 0.5 is the theoretically most accurate one due to the inclusion of
semicore electrons and the corresponding scissor value 0.96eV.

The corrected band gap at F is smaller than in the experiment.
The GW corrected band gap calculated using the semi core electrons pseu-

dopotential is significantly smaller than those obtained with valence electrons
pseudopotential. This shows that including 3s and 3p state in the pseudopo-
tential significantly impacts the quasi-particle energy. As discussed previously, it
is due to the exchange contribution between the 3s,3p and 3d states.

Band gap Valence Semicore
LDA 1.90 eV 1.70 eV
GW 3.46 eV 2.68 eV

Table 7.9: Band gap comparison using two different pseudopotentials

7.3.4 Comparison of band gap with previously reported value

Approach name Band gap(eV) Difference with GW
Band gap with
Semicore electrons
(2.68eV)

Exp thin film Cr2O3 2.9-3.09 [51] 0.37
Exp nanoparticle
Cr2O3

3.2 [52] 0.57

Experiment α− Cr2O3

nanoparticles
3.080 [53] 0.37

Table 7.10: Comparison of calculated band gap with previously reported experi-
mental band gap of Cr2O3

This section compares the band gap value measured or computed in previous
studies with the values we have obtained.
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Approach name Band gap(eV) Difference with GW
Band gap with
semicore electrons
(2.63eV)

Bulk Cr2O3 LDA+U 2.8 [54] 0.17
Bulk Cr2O3 PBE+U 2.9 [54] 0.27
Bulk PBE+U 2.92 [53] 0.29
Screened exchange
(sX) Hybrid func-
tional

3.31 [55] 0.68

B3LYP functional 4.4 [56] 1.77
GW RPA 4.75eV [57] 2.12

Table 7.11: Comparison of calculated band gap with previously reported theoret-
ical band gap of Cr2O3

Our calculated values are shown in table (7.9). Table (7.10) shows the previ-
ously reported experimental band gaps, and calculated band gaps that have been
published are included in the table (7.11). Among all our calculated values shown
in table (7.9), we consider that the GW band gap value obtained using semi-
core electrons is the most accurate one. As a result, we compare the previously
published values to this value, i.e. 2.68eV.

We first compare our calculated value for the band gap to the experimental
band gap shown in the table (7.10). We see that the difference is around 0.4eV.
Comparing with previously published band gaps calculated using ab-initio ap-
proaches, in table (7.11), we see that the calculated band gaps spread over a wide
range. We see that our value is in good agreement with the value reported in [54]
using LDA+U.
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Chapter 8

Linear response of Cr2O3

We will discuss the linear optical properties of Cr2O3 in this chapter. We studied
the linear response of Cr2O3 in the TDDFT framework. We compared the linear
spectra calculated using a different approximation in TDDFT. Also, the linear
spectra of Cr2O3 has been studied in the BSE framework. At last, we compared
the BSE spectra with the spectra calculated using a different approximation in
TDDFT.

8.1 Linear response calculated using TDDFT
In this section we present the linear properties of Cr2O3 in the framework of
TDDFT. We first built the independent-particle response function χ(0) for the
Cr2O3 using Kohn-Sham DFT orbitals. To account for the GW quasiparticle
energies and the opening of the band gap, we used a scissor value ∆ = 0.73
eV, which is the difference between the GW band gap calculated using semicore
electron pseudopotential and LDA band gap calculated using valence electron
pseudopotential for Cr2O3 (described in the figure (8.1)).

Figure 8.1: Scissor value for Cr2O3

We compared the linear spectra obtained with RPA, and we examined the
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8. Linear response of Cr2O3

effect of incorporating spin-polarization at the IPA and RPA levels in Cr2O3.
Finally, we will characterize the linear spectrum of Cr2O3 using TDDFT with

several exchange-correlation kernels.

8.1.1 Calculation details

To compute the linear response in the TDDFT framework, the DFT-LDA KS
electronic structure of the Cr2O3 is first determined by a ground state calculation.
The numerical details for the ground state DFT calculation are given in the section
(7.2.1).The linear response using TDDFT calculations is carried out in this thesis
using the DP code [58].

Details of the convergence parameters, which are employed in the TDDFT
calculations, are provided in the following table (8.1)

nband npwmat npwwfn
70 113 3000

Table 8.1: TDDFT converged parameters value

Where nband specifies the number of bands that were considered in the inde-
pendent particle response function χ(0). Convergence in terms of number of bands
is shown in the appendix (B.1). Convergence in terms of number of planewaves
is shown in the appendix (B.2). Crystal local-field effects were taken into consid-
eration by solving the Dyson equation (4.18) in momentum space, where npwmat
is the number of G-vectors, and the parameter npwwfn defines the number of
planewaves used to describe the KS orbitals.

Unless otherwise stated, the value of these parameters remains constant through-
out this section (8.1). Also, for Cr2O3, εM(xx) = εM(yy) 6= εM(zz). where εM(xx),
εM(yy) and εM(zz) denoted the xx, yy and zz component of the dielectric function
respectively. If we did not indicate the component for the εM , it is assumed that
it has the zz component throughout the chapter.

8.1.2 Linear response in IPA and RPA

We determined the linear response of Cr2O3 using various TDDFT approxima-
tions. As indicated in figure (8.2), we estimated the linear response using Inde-
pendent Particle Approximation (IPA) which is described in section (4.2.3).

The response functions can be evaluated in a straightforward manner using
the RPA also, which includes only the Hartree contribution to the linear response
kernel.

We plotted the imaginary part of the (εM), which represent the absorption as
described in the chapter (2). We compared the spectra obtained in IPA (no local
field effect) and RPA (with local field effect) in figure (8.2). We note that the local
field effects decrease the amplitude of the RPA spectrum, but the change is very
small.

Because the structure of Cr2O3 is anisotropic, it is crucial to look at the linear
spectra in different directions. Further, we compared the different components of
the linear response of Cr2O3 in the RPA approximation in figure (8.3). The first
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8.1. Linear response calculated using TDDFT

Figure 8.2: Linear response of Cr2O3 calculated using IPA and RPA in TDDFT

two components, xx and yy, are identical; however, the third component, zz, is
drastically different, as seen in figure (8.3). The first peak in the zz component
has a very high intensity as compared to the two other components.

8.1.3 Linear response including spin-polarization

As shown in section (7.2), including the spin-polarization at the DFT level is
mandatory for getting the antiferromagnetic structure of Cr2O3. In this section,
we wish to investigate the effect of spin-polarization in the linear response. We
performed linear response calculations, including spin-polarization and without in-
cluding spin-polarization. Here, we want to specify in detail the effect of including
the spin-polarization.

Effect of spin-polarization in IPA

In the IPA, the response function can be written as,

χ
(1)
0 (q + G,q + G′, ω) =

1

V

∑
nn′ks

(fn,ks − fn′,k+qs)

En,k,s − En′,k+q,s + ω + iη

< φn,k,s|e−i(q+G)r|φn′,k+q,s >< φn′,k+q,s|e−i(q+G′)r′|φn,k,s > (8.1)

where s denotes the spin. The response function can then be written as,

χ
(1)
0 = χ

(1)(↑)
0 + χ

(1)(↓)
0 (8.2)

For non-magnetic materials, the two spin components are equal, and the summa-
tion over spins leads to an overall factor 2, but for magnetic materials, χ(1)(↑)

0 and
χ

(1)(↓)
0 can be different. In the IPA one only retains the G = 0, G′ = 0 reciprocal
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8. Linear response of Cr2O3

Figure 8.3: Linear response of different component of Cr2O3 calculated using RPA

space vectors, and one can show that for antiferromagnetic structures, such as
Cr2O3, the ↑ and ↓ components satisfy,

χ
(1)(↑)
0 (q,q, ω) = χ

(1)(↓)
0 (q,q, ω) (8.3)

and using the relation

εM(q, ω) = 1− v(q)χ
(1)
0 (q,q, ω) (8.4)

the imaginary part of the dielectric function εM is,

Im εM(q, ω) = 2Im ε↑M(q, ω) = 2Im ε↓M(q, ω) (8.5)

This feature is visible in (8.4) spectrum, where the two graphs are stacked as
expected.

Effect of spin-polarization in RPA

On the contrary, in RPA the response function can be written as,

χ(1)(q + G,q + G′, ω) = χ
(1)
0 (q + G,q + G′, ω) +

+
∑
G′′

χ
(1)
0 (q + G,q + G′′, ω)v(q + G′′)χ(1)(q + G′′,q + G′, ω) (8.6)

where the summation over G” runs over the reciprocal space can be written as,

χ
(1)(↑)
0 (q + G,q + G

′
, ω) 6= χ

(1)(↓)
0 (q + G,q + G

′
, ω) (8.7)

for G 6= 0 and G′ 6= 0, one expects

χ(1)(q,q, ω) 6= χ(1)↑(q,q, ω) (8.8)
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Figure 8.4: Effect of spin-polarization in the spectra calculated using IPA

In the following, 2*Spin up/down means that we show the results of the
calculation where we use only one spin component, and we multiply at the end by
a factor to account for the spin

χ
(1)
0 = 2χ

(1)(↑)
0 (q,q, ω) = 2χ

(1)(↓)
0 (q,q, ω) (8.9)

Spin-Polarization means that the dyson equation has been solved taking
explicitly into account the 2 spin-components

χ
(1)
0 = χ

(1)(↑)
0 (q + G,q + G

′
, ω) + χ

(1)(↓)
0 (q + G,q + G

′
, ω) (8.10)

One sees in the RPA spectrum (8.5) that the difference between the two graphs
is very small.

8.1.4 Effect of the exchange-correlation kernel in TDDFT

In TDDFT, the exact linear-response function may be formally connected to the
noninteracting Kohn-Sham linear-response function via the exchange-correlation
kernel fxc, which is the functional derivative of the exchange-correlation potential
with respect to the density. Thus, the knowledge of the exchange-correlation kernel
is critical for determining the system’s exact response function. As with the static
case, the Kohn-Sham formulation of TDDFT simplifies the many body problem
by reducing it to finding a suitable estimate for the exchange-correlation kernel.

Many distinct kernels have previously been designed, which are briefly listed
below. The objective of the present section is to provide some insight into the
nature of the exchange-correlation kernel for Cr2O3.

TDLDA is one of the simplest xc kernels, and it requires less computational
effort and is hence suitable for the larger system [59]. However, this approximation
fails to produce satisfying results in some circumstances due to the lack of long-
range contribution.
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Figure 8.5: Effect of spin-polarization in the spectra calculated using RPA

Although the long-range component of the exchange-correlation kernel fxc is
not present in local density or generalized gradient approximations, it is assumed
to exist in the precise fxc.

Additionally, a static long-range contribution is insufficient to generate a good
total fxc to be used on top of the KS-LDA bandstructure rather than the GW
bandstructure previously used in this work. Such a fxc should simultaneously
push the spectrum to higher energies while also enhancing the low-energy struc-
tures. This difficult task cannot be accomplished through a single effective LRC
contribution.

For several xc kernels proposed in the literature, including the long-range xc
kernel [60], Bootstrap , RPA-Bootstrap [61], and Jellium-with-gap model(JGM)
kernels [62] it is reported that the long-range part contributes the most to the
results for optical spectra in solids.

In this section, the influence of exchange-correlation effects beyond the RPA
are studied in detail for optical spectra of Cr2O3.

As stated above, the quasiparticle corrections have been included at the level
of a scissor operator.

Linear response calculated using the LDA kernel in TDDFT

The homogeneous electron gas (HEG) model [63], [64] has been used in the con-
struction of xc kernels since the very beginning of DFT, and one of the most widely
used approach is time-dependent local density approximation (TDLDA), which is
derived from the local-density approximation (LDA) xc potential vxc in the static
regime, i.e. the adiabatic LDA (ALDA) [63], and can be written as

fALDA
xc (r, r′) =

δvLDA
xc (r, ω)

δn(r′, ω)

∣∣∣∣
ω=0

= δ(r− r′)
dvLDA

xc [n(r)]

dn(r)
(8.11)

ALDA is responsible for redistributing oscillator strength and modifying exci-
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8.1. Linear response calculated using TDDFT

Figure 8.6: Linear response of Cr2O3 calculated using LDA and RPA in TDDFT

tation energies. It has been effectively used for atoms and clusters [65], [63], but it
has been shown to be inefficient in many cases in condensed matter, where the gain
over the random-phase approximation (RPA, with trivial fxc = 0) is small [66].
We see that for Cr2O3, Fig.(8.6), we have also such a behavior, as the spectra
obtained in RPA and in ALDA are almost identical.

As seen in Fig.(8.2), the local-field effects, introduced in the Hartree contri-
bution, are already weak and so including fxc within TDLDA does not result in
a significant improvement in this scenario. Consequently, we need to go beyond
TDLDA.

Linear response calculated using long-range kernel in TDDFT

The long-range contribution (LRC) to the xc kernel can be written as,

fLRCxc (r, r′) = − α

4π|r − r′|
(8.12)

(where α is a material dependent parameter). It has been shown to significantly
improve the optical absorption spectra for solids with continuum excitons as com-
pared to computations using the adiabatic local-density approximation [60].

The Fourier transform of the equation (8.12) is given as,

fxc(q,G,G
′) = −αδG,G′/|q + G|2 (8.13)

In the report [60] it is shown that the crucial part of the electron-hole interac-
tion (8.13) comes from its G = 0,G′ contribution (which diverges for q → 0): the
results obtained with only the head of the kernel (G = 0,G′ = 0) were indistin-
guishable from those obtained for G 6= 0 for the same value of α. Hence, in the
following we will use the kernel fxc neglecting all G 6= 0 terms which then has the
form of α

q2
.
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Figure 8.7: Linear response of Cr2O3 calculated using RPA and alpha-kernel in
TDDFT

In [60] the implications of a static long-range contribution − α
q2

to the time-
dependent density functional theory exchange-correlation kernel fxc(q) is examined
for a variety of semiconductors. The linear response of several semiconductors has
been computed in the TDDFT framework using the static long-range kernel and
by solving the Bethe-Salpeter Equation. Comparing these two approaches made
it possible to find a "good" value for the α parameter. It was shown that α varies
linearly with ε−1

∞ for semiconductors with a high value of the dielectric constant.
As a result, they illustrate the values of α in relation to the inverse of the dielectric
constant which is given as,

α = 4.615ε−1
∞ − 0.213 (8.14)

where, ε∞ is the static dielectric constant. This approximation produces very good
agreement with the experimental results for a wide range of semiconductors [60].

With the help of the fit given by the equation (8.14), the estimated value of α
is 0.5 for Cr2O3.

After witnessing this kernel’s remarkable success with a variety of semiconduc-
tors, we wanted to investigate whether similar good results could be obtained for
Cr2O3 by using the LRC kernel with a workload equivalent to that of a basic RPA
calculation.

We began by calculating the spectra using arbitrary values for α. As we can
see in figure (8.7), increasing α increased the amplitude of the main peak. And
for all value of α we observed that the amplitude of the peak is larger than the
peak in RPA. We also note that, as the value of α increases, the absorption edge
shifts to the left (redshift). If we increase the value of α to 1.0, we see a dramatic
change in the spectrum (8.8). For example, for α = 1 peak is redshifted by 0.29 eV
relative to the α = 0.5 peak, and by approximately 0.35 eV relative to GW-RPA.
In fact, there is a non-uniform shift in peak positions.
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Figure 8.8: Linear response of Cr2O3 calculated using RPA and alpha-kernel in
TDDFT

Note that the shape of the absorption peak remains quite similar for all the
values of α, and the second peak shape and height are the same for all values of
α.

We do not know a priori which is the best value for the α parameter for Cr2O3.
However, we see that the spectra are different for various values of α, and it is
essential to have an appropriate value of alpha for Cr2O3 in order to get accurate
spectra.

Several kernels can provide α for a given material. We further extended the
spectra calculation by using these kernels in the TDDFT framework.

Linear response calculated using Jellium Gap Model kernel

Another static approximation to the exchange-correlation kernel, based on the
Jellium-with-gap (JGM) model, is presented within the TDDFT framework. This
kernel has been designed to account for electron-hole interactions at low compu-
tational cost and should be able for accounting for both strongly bound and weak
excitonic effects in some materials, as shown in [62]. The JGM kernel is based on
a well-known physical model system, the Homogeneous Electron Gas (HEG). It
provides a straightforward and analytical formula for the α coefficient, which is
described below.

As described in [62], the JGM kernel can be expressed in terms of density(n)
and band gap (Eg) as,

fJGM
xc (q;n,Eg) =

4π

q2
B′(n,Eg)

[
e−k

′
n,E8

q2 − 1
]
− 4π

k2
F

C ′(n,Eg)

1 + 1/q2
(8.15)

where k′n, B
′
(n,Eg) and C ′(n,Eg) are defined in reference [67]. k′n and C ′(n,Eg)

are constructed from the HEG constraint and B′(n,Eg) is constructed from HEG
diffusion Monte Carlo data.
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Figure 8.9: Linear response of Cr2O3 calculated using JGM, alpha and RPA

In the article [62] the limit for q → 0 is presented: the second term of the
equation (8.15) vanishes and the fxc becomes,

lim
q→0

fJGM
xc (q;n,Eg) ≈ −αJGM(n,Eg)/q

2 (8.16)

where,

αJGM(n,Eg) = 4πB′(n,Eg)
[
1− e−E2

g/4πnB
′(n,E8)

]
(8.17)

Thus, an explicit value for the LRC α parameter is provided as the mean value
of (αJGM).

〈α〉 ≡
∫
αJGM(n(r), Eg)dr (8.18)

This section will examine the results obtained using the nonempirical static xc
kernel based on the JGM and compare them to those previously obtained using
RPA and the long-range kernel.

The value of α, as determined from the JGM kernel, is close to 0.2. In com-
parison to the α-kernel, the advantage of this kernel is that it provides the value
of alpha thus we do not have to specify it beforehand.

We show in figure (8.9) the absorption spectra obtained using a long-range
approximation with α = 0.19 and the JGM kernel. We can see that the spectra
obtained using the two kernels exhibit only small differences. This minor variation
is caused by the presence of the G-vector in JGM kernel, while only G = 0 is
considered in the long-range kernel. The RPA and JGM kernels differ only in the
amplitude of the first peak, the JGM kernel considerably amplifies the first peak,
but the high energy parts of the spectra are comparable.
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Figure 8.10: Linear response of Cr2O3 calculated using Bootstrap, Bootstrap RPA
and Jellium Gap Model kernel in TDDFT

Linear response calculated using Bootstrap and Bootstrap RPA kernels
in TDDFT

Recently, a new family of exchange-correlation kernels has been developed based
on a "bootstrap" approach [68]. In this approach, a heuristic form is derived based
on the screening that must be calculated self-consistently.

fBootxc = ε−1/χ0 (8.19)

Where ε−1 denotes the microscopic inverse dielectric function, and χ0 is the
Kohn-Sham response function. It has been used successfully to calculate optical
spectra for a wide variety of bulk materials.

Another approach is the Bootstrap-RPA kernel [61] which can be written as,

fRPA−Bootxc = ε−1
RPA/χ̃RPA (8.20)

where, χ̃RPA is the solution of the Dyson equation in which only the short
range part of the Coulomb potential v̄ is considered.

It is a parameter-free kernel for exciton binding energies of semiconductors and
insulators.

Using the Bootstrap XC kernels to calculate optical spectra has been shown to
capture some features of the absorption peaks that correspond to excitonic effects.

Note that, in some cases, the exciton binding energies can be calculated using
the Bootstrap kernel, as demonstrated [68] [69].

The report [69] demonstrates that the exciton binding energy computed us-
ing the Bootstrap xc kernel is significantly underestimated for transition metal
dichalcogenides.

We used these two kernels to compute the Cr2O3 optical spectra. To begin, we
compared the spectra obtained with these two kernels to the spectrum calculated
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Figure 8.11: Linear response of Cr2O3 calculated using RPA, Bootstrap and alpha
kernel in TDDFT

with the JGM kernel shown in figure (8.10). As illustrated in the graph, the com-
puted spectra for the Bootstrap and RPA Bootstrap kernels are slightly different.
The only difference is the amplitude of the first peak. At high frequencies, both
peaks are directly above one another. The absorption edge is identical in both
cases. This behaviour observed for Cr2O3 is identical to that observed in the study
for silicon [61]. However, this behaviour is quite different from that reported [61]
for LiF and Ar, where there is a blue shift in the Bootstrap peak as compared to
the RPA Bootstrap peak.

In the same way, the difference between the spectra generated using the Boot-
strap and JGM kernels is the strength of the first peak. Compared to the two
Bootstrap spectra, the first peak amplitude for the JGM spectrum is less intense.
By comparing these spectra to the one obtained in the framework of LRC, we can
compute an effective value of α for these kernels, as shown in the table (8.2).

Approach Bootstrap RPA Bootstrap JGM
α value 0.27 0.33 0.19

Table 8.2: Different alpha values extracted using three different approaches

Further, it is interesting to see the difference between the two spectra calculated
using the RPA Bootstrap kernel and the long-range kernel using the alpha value
calculated from the RPA Bootstrap kernel. We also compared these results with
the RPA spectra, as shown in the figure (8.11).

Due to the small difference between the two spectra (Bootstrap and RPA
Bootstrap), we chose Bootstrap for these comparisons. As illustrated in the figure
(8.11), there is no difference between the spectra generated using the long-range
and RPA Bootstrap kernels. Whereas, the distinction between RPA and Bootstrap
is significant. Due to the excitonic effect, using the Bootstrap kernel improves the
intensity of the peaks. However, at extremely high frequencies, the intensity of
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two peaks is identical. Whereas, the spectra estimated with the Bootstrap kernel
exhibit a little redshift. The effect of using the Bootstrap kernel in linear spectra
of Cr2O3 is comparable to the one observed for SiC and GaAs, except for the
strength of the first peak. The Bootstrap kernel significantly strengthens the first
peak in Cr2O3 when compared to SiC and GaAs (as shown in the reference [68]).

As a result, we may state that the excitonic effect present in the Bootstrap
kernel contributes significantly to the Cr2O3 spectra.

8.1.5 Effect of including semicore electrons on the Linear
Response

As discussed in section (7.3.3), considering the semicore electron pseudopotential
has a significant impact on the GW band gap. This leads us to investigate the
effect of incorporating semicore electrons on the Cr2O3 linear response.

As discussed in the previous section, we got the value of the GW band gap for
both the cases, i.e. valence electron and semicore electron pseudopotential. We
considered the GW band gap with semicore electron case to be the most accurate
one. For both calculations of the linear response (valence and semicore electron),
we will use the GW band gap calculated using semicore electron which is 2.63eV.
As a result, the scissor value used for the linear spectra of semicore electron is
0.93eV, while the scissor value used for the linear response of valence electron is
0.78eV.

Effect of semicore electrons on the linear response of Cr2O3 structure in
RPA and JGM kernel

We present the effect of including the semicore electrons in the calculation on the
absorption spectra, calculated in the framework of RPA in the figure (8.12). The
change in the spectra is quite important. Incorporating the semicore electrons
of the Chromium atom strengthens the first peak in the Cr2O3 spectrum. Sur-
prisingly, it also strengthens the second peak. This phenomenon has never been
observed previously in any linear spectrum of Cr2O3.

Another interesting aspect visible in the figure is that the first peak of the
semicore spectrum is redshifted, although the it does not come from a change in
the band gap. On the contrary, the second peak is significantly blueshifted relative
to the valence peak and another peak, which we might refer to as the third peak,
can be seen in the higher energy plateau.

The frequency range across which we plotted the two peaks are clealy distinct.
Additionally, spectra calculated using semicore electron have broader peak width.

Additionally, we compare the linear response of Cr2O3 the JGM kernel to
determine the effect of the semicore electron pseudopotential when using a xc
kernel. As can be shown in figure (8.13), introducing semicore electrons has the
same qualitative effect on the RPA and JGM spectra. This shows that inserting
the xc kernel has no additional effect on the semicore electron spectra.

73



8. Linear response of Cr2O3

Figure 8.12: Effect of Semicore electron on Linear Response of Cr2O3 in RPA

Figure 8.13: Effect of Semicore electron on Linear Response of Cr2O3 using JGM
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8.2 Linear response using Bethe Salpeter Equation
Since new techniques and increased computer power make numerical simulations
viable for real systems, the theoretical description of electronic excitations in the
framework of MBPT discussed in the chapter (6) has advanced rapidly. This
section is devoted to the calculation of the absorption spectra for Cr2O3 in the
framework of BSE, which will be used as reference and compared to the results
obtained in the framework of TDDFT.

8.2.1 Calculations details

No well-converged values are, to our knowledge, available yet from the BSE ap-
proach for these very simple materials, which stresses again the necessity to find
an alternative strategy. A few parameters value need to be converged while doing
the BSE calculations. Also, to do the accurate BSE calculations, we need to con-
verge the screening parameters. The converged screening parameters are given in
the table (8.3). The convergence in terms of the number of bands in the screen-
ing calculations is shown in the appendix (B.4.1). The BSE converged parameter
value is shown in the table 8.4. The convergence in terms of the number of band
in BSE is shown in the appendix (B.4.2).

nband npwmat npwwfn
200 113 1600

Table 8.3: Screening converged parameters value

nband npwmat npwwfn
60 113 3000

Table 8.4: BSE converged parameters value

Where npwwfn defines the number of planewave to describe wavefunctions,
npwmat defines the G-vector needed to close the shell related to the local field.
Calculations of BSE are performed using the exc code [70].

8.2.2 Comparison of RPA and BSE spectra

To begin with, we compared the BSE spectra to the RPA spectra in the figure
(8.14). The first observation is that the BSE spectrum contains a bound excitonic
peak absent from the RPA spectrum. The binding energy of the exciton is EB =
1.38eV , indicating that it is a strongly bound exciton.

Second, there is a discernible variation between the two spectra’s absorption
edges. Due to the significant excitonic impact, the absorption edge of the BSE
spectrum is redshifted. The final distinction is the peak amplitude. The first peak
intensity is increased by 50% over the RPA. Even at high frequencies, the two
spectra are distinct.

As we compared the RPA spectra in three different directions for Cr2O3 we also
wanted to compare the BSE spectra in three directions. Therefore, using the BSE
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8. Linear response of Cr2O3

Figure 8.14: Linear response of Cr2O3 calculated using Bethe Salpeter Equation
and RPA in TDDFT

Figure 8.15: Linear response of different component of Cr2O3 calculated using
BSE
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8.3. Comparison of BSE spectra with the spectra calculated using TDDFT
approximations

technique, we also estimated the distinct components of linear spectra of Cr2O3.
The outcome can be seen in figure (8.15), where the xx and yy components are
stacked on top of each other due to the symmetry of material, but the zz component
is visibly distinct. Another remarkable difference comes from the location of the
excitonic peak for the xx(or yy) component, which is redshifted compared to the zz
component. The amplitude of the main peak for the xx direction is also decreased
as compared to the zz component. The excitonic binding energy for the xx and
yy component is the EB = 1.83eV

8.3 Comparison of BSE spectra with the spectra
calculated using TDDFT approximations

Because the RPA spectrum does not contain excitonic interaction, the disparity
in the spectra was expected. However, the contrast in these spectra reveals the
excitonic effect’s function in Cr2O3.

As far as we know, the BSE spectra is believed to be the most accurate tech-
nique thus so far, as it accurately accounts for the excitonic effect. Thus, we
can compare the BSE spectrum to the TDDFT spectra derived using different
exchange-correlation kernels. This can provide information about the correctness
of the various kernels outlined in the preceding section (8.1.4).

This section will compare the spectra estimated using BSE and different xc
kernels in TDDFT.

8.3.1 Comparison of alpha-kernel and BSE spectra

We first compared the α kernel result to the BSE spectra. Based on this compar-
ison, we can compute the precise value of α for the Cr2O3 and determine if the fit
described in section (8.1.4) to calculate the α works well for Cr2O3 or not.

We determined α by adjusting it until the BSE and TDDFT-LRC spectra are
similar, which is trivial because the calculations are fast for TDDFT.

Based on the comparison with the first peak, we conclude that α=0.33 is the
best match with the BSE spectra. However, the two spectra remain different at
high energy in that case.

We calculated α to be 0.5 using the fit provided by the equation (8.14). The
first conclusion we can draw from this is that the fit provided by the equation
(8.14) does not work for the Cr2O3, probably because this fit has been proposed
for materials with high dielectric constant.

Further, we compared the spectra calculated using α=0.33 with the BSE and
RPA spectra in figure (8.17) to point out the difference of excitonic effect in
the alpha kernel and BSE in the graph. We can see in figure (8.17) that one
effect of the LRC kernel is an apparent shift of peak in the Cr2O3 spectra. This
is in agreement with the behaviour of the Bethe-Salpeter approach in the case
of materials dominated by continuum excitons, i.e. materials with a small to
moderate electron-hole interaction.
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8. Linear response of Cr2O3

Figure 8.16: Linear response of Cr2O3 calculated using Bethe Salpeter Equation
and alpha kernel in TDDFT

Figure 8.17: Linear response of Cr2O3 calculated using Bethe Salpeter Equation
and alpha kernel and RPA in TDDFT
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8.4. Bethe Salpeter Equation spectra including
spin-polarization

Figure 8.18: Linear response of Cr2O3 calculated using Bethe Salpeter Equation
and RPA Bootstrap in TDDFT

However, the BSE and TDDFT-LRC approaches operate significantly differ-
ently in the case of materials with strongly bound excitons when absorption peaks
are located within the band gap. Indeed, the Bethe-Salpeter technique generates
new poles within the band gap that correspond to excitonic peaks observed in
the experimental spectrum, assigning them the appropriate weight and simulta-
neously redistributing the oscillator strength appropriately at higher energies. On
the other hand, this is not the case for the LRC kernel. This can already be
determined by inspecting the Cr2O3 results, as illustrated in the figure (8.17).

8.3.2 BSE spectra compared to RPA Bootstrap kernel, JGM
kernel

Likewise, we compared the BSE spectrum to the TDDFT spectrum generated
using the other two kernels (RPA bootstrap and JGM)in the figure (8.18).

The first thing we noticed is that the RPA bootstrap gives results closer to BSE
than JGM in terms of the intensity of the initial peak. Whereas the second peak
in both cases is quite dissimilar to the second peak of BSE. Both kernel spectra’
second peaks are blueshifted compared to the BSE spectra’s second peak. There
is a noticeable variation in the estimated spectra when using the kernel and the
BSE at high frequencies. Finally, the spectra estimated using both the kernel in
the TDDFT framework do not contain any bound exciton peak.

8.4 Bethe Salpeter Equation spectra including
spin-polarization

As seen in the section (7.2) concerning ground state properties, it is mandatory to
introduce the spin-polarization, as it radically alters the Cr2O3’s properties. We
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8. Linear response of Cr2O3

Figure 8.19: Effect of spin-polarization in the spectra calculated using BSE

have also seen that the optical properties are not dramatically modified, including
or not the spin-polarization in TDDFT calculations. This section examines the
influence of spin-polarization in the BSE spectra.

The figure (8.19) illustrates the effect of spin-polarization. As can be seen,
incorporating spin-polarization at the BSE level has a minor effect, and the exciton
peak is still present.

8.4.1 Calculation details

The BSE calculation is already computationally intensive; adding spin makes it
even more complex to compute. To observe the influence of spin-polarization at
the BSE level, the convergence parameter must be decreased.

As a result, the BSE spectra provided here may not exactly match the spectra
shown in the preceding section (8.2).

The table (8.5) contains the value of the parameter that we utilized for these
comparisons.

nband npwmat npwwfn lomo
45 113 3000 15

Table 8.5: BSE converged parameters value

Where npwwfn defines the number of planewaves to describe wavefunctions,
npwmat defines the G-vector needed to close the shell, related to the local field.
Lomo denotes the number of the first band (lowest energy) to be included in the
calculation.
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Chapter 9

Exciton binding energy using
Wannier-Mott model

In the previous chapter, we calculated the absorption spectra using the Bethe
Salpeter equation (BSE). In the figure (8.14), we show that in the spectra calcu-
lated using BSE, there is a peak located at 1.3eV, which is absent from the spectra
computed using RPA in TDDFT. We refer to this peak at 1.3eV as the excitonic
peak. The difference between the excitonic and the GW band gap is referred to as
the exciton’s binding energy. This binding energy is equal to 1.38 eV, which is very
large, indicating that the exciton present in the AFM Cr2O3 is a strongly bound
exciton. To get more insight into the excitonic process and to interpret the results
of the BSE calculation, we have used a simple analytical model, described in the
reference [32]. This model, called the Wannier-Mott model, will be described in
the section (9.1) and applied to the case of Cr2O3. We will also point out the
difficulties we have encountered in the calculation of the binding energy.

9.1 Wannier-Mott model

The Wannier-Mott model is a simplification of the BSE in order to determine the
excitonic binding energy. To begin with, we shall describe the creation of the
exciton. When the light is incident on the material, a photon can be absorbed.
The minimum energy absorbed by the material is equal to its band gap. An
electron from the valence band is promoted into a conduction band and leaves a
hole behind. The interaction between the electron and the hole strongly impacts
the system, and we have to study the system taking into account the electron-hole
pair as a particle. The electron-hole pair is referred to as an exciton, as seen in
the diagram (9.1),
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9. Exciton binding energy using Wannier-Mott model

Figure 9.1: Exciton representation

The exciton is described by the Bethe Salpeter equation, which can be written
as, [32],

∑
c′ ,v′

∑
k′

H(ck, vk|c′k′ , v′k′)AΛ(c
′
k
′
, v
′
k
′
) = EΛAΛ(ck, vk) (9.1)

where, H denotes the electron-hole pair Hamiltonian, c denotes the conduction
bands, v denotes the valence bands, k denotes the k-points. Equation (9.1) is an
eigenvalue equation where AΛ is the wave-function and EΛ is the energy eigenvalue.
To simplify this equation, we will consider only a two-band model, modelling a
semiconductor, as described in the picture (9.2).

Figure 9.2: Two band model representation

In that case, the Hamiltonian in equation (9.1) can be written as,

H(ck, vk|ck′, vk′) = (Eck − Evk)δkk′δcc′δvv′ −W (ck, vk|c′k′, v′k′) + 2v̄(ck, vk|c′k′, v′k′)(9.2)

Where W is the screened Coulomb potential and v̄ is the bare Coulomb potential.
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9.1. Wannier-Mott model

If the bands are isotropic and parabolic, they can be described within the effec-
tive mass approximation. Within this approximation, the electron-hole exchange
vanish(i.e v̄ =0) and,

Ec(k) = Eg +
~2

2m∗c
k2 Ev(k) = − ~2

2m∗v
k2 (9.3)

If the band extrema are located at the same position (same k-point), then

Ec(k)− Ev(k) = Eg +
~2

2µex
k2 (9.4)

where the reduced effctive mass is defined as

1

µex
=

1

m∗c
+

1

m∗v
(9.5)

Hence we can write the Hamiltonian in the Wannier-Mott model as,

HWM(k, k′) = [Eg +
~2

2µex
k2]δkk′ −

1

Ω
ε−1(k − k′, k − k′, 0)ṽ(|k − k′|) (9.6)

ε is the dielectric function, and Ω is the crystal volume. In the following, the
wave-vector dispersion of the inverse dielectric constant will be neglected, and ε
will be taken as the constant ε∞.

The Hamiltonian (9.6) is,

HWM(k, k′) = [Eg +
~2

2µex
k2]δkk′ −

1

Ωε∞
ṽ(|k − k′|) (9.7)

and the eigenvalue equation becomes∑
k′

HWM(k, k′)AΛ(k′) = EΛAΛ(k) (9.8)

Fourier transforms the eigenvalue equation; we get a Schrödinger-like equation,

{Eg −
~2

2µex
∇2
R −

1

ε∞
v(R)}ΦΛ(R) = EΛΦΛ(R) (9.9)

which is similar to the hydrogen atom eigenvalue problem with the three modifi-
cations:

• a shift of the ionization energy by Eg.

• a reduced mass µex of the particle instead of the free electron mass m.

• the fictitious proton charge is reduced to the value 1/ε∞ by the screening.
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9. Exciton binding energy using Wannier-Mott model

The eigenvalue equation can then be solved and the result is expressed in terms
of the scaled Rydberg energy,

Rex =
R∞µex
ε2∞

(9.10)

The energy eigenvalues are given by,

Enlm = Eg −
Rex

n2
(9.11)

and
EB =

Rex

n2
(9.12)

is the exciton binding energy of the system.

9.2 Application of Wannier-Mott Model to calcu-
late the excitonic binding energy

The flow chart (9.3) illustrates the procedure for calculating the exciton binding
energy. The key quantity for the calculation of EB are the effective masses of con-
duction and valence bands (i.e Ec(k) and Ev(k)). Once they have been obtained,
we can calculate the reduced mass described as the second step in the flow chart.
This allows us to determine the Rex value, which is required for the computation
of the excitonic binding energy.

Figure 9.3: Flow chart for excitonic binding energy

9.3 Effective mass calculations

The energy of a band can be written at an extremum k0 as,
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9.4. Effective mass for the Cr2O3

E(k) = E(k0) +
1

2

∑
ij

∂2E

∂ki∂kj
∆ki∆kj

= E(k0) +
1

2

[
∂2E

∂k2
x

∆k2
x +

∂2E

∂k2
y

∆k2
y +

∂2E

∂k2
z

∆k2
z

+2
∂2E

∂kx∂ky
∆kx∆ky + 2

∂2E

∂kx∂kz
∆kx∆kz + 2

∂2E

∂ky∂kz
∆ky∆kz

]
(9.13)

The effective masses are defined as

1

mij

=
∂2E

∂ki∂kj
(9.14)

and the effective mass tensor can be written as

1

M
=


d2E
dk2x

d2E
dkxdky

d2E
dkxdkz

d2E
dkxdky

d2E
dk2y

d2E
dkydkz

d2E
dkxdkz

d2E
dkydkz

d2E
dk2z

 =


1

mxx
1

mxy
1

mxz
1

myx
1

myy
1

myz
1

mzx
1

mzy
1

mzz

 (9.15)

For isotropic material the tensor is diagonal, the effective masses 1
mii

are
the same in all directions, and only one calculation is needed. The bandstructure
is accurately calculated around the point k0, and the effective mass is obtained
using a parabolic fit.

In the general case the calculation of the effective mass tensor is more
involved. Cr2O3 is an anisotropic material, and several directions have to be
considered for the fitting procedure.

9.4 Effective mass for the Cr2O3

Effective mass: Conduction band First, we calculated the effective mass
of the conduction band ( 1

m∗c
). In principle, for an anisotropic material, we need

to calculate all the matrix elements in (9.15) and diagonalize it to determine
the eigenvalues 1

mi
and the eigenvectors. To simplify further the calculation, we

consider an average effective mass as,

3

m̄
=

1

m1

+
1

m2

+
1

m3

(9.16)

Using the invariance of the trace of the symmetric tensor M , only 3 directions are
needed for the calculation, i.e

3

m̄
=

1

mxx

+
1

myy

+
1

mzz

=
1

m1

+
1

m2

+
1

m3

(9.17)
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9. Exciton binding energy using Wannier-Mott model

Fitting the conduction band along the cartesian coordinates x, y and z at point
F, we get,

1

mxx

=
∂2E

∂k2
x

= 0.480

1

myy

=
∂2E

∂k2
y

= 0.374

1

mzz

=
∂2E

∂k2
z

= 0.216 (9.18)

and the average effective mass is 1
m∗c

= 0.357

Effective mass : Valence band We perform the same set of calculations
for the F point for the valence band, and we get,

1

mxx
=

1

myy
= 0.262

1

mzz
= 0.522 (9.19)

The average value is 1
m∗v

= 0.349

9.5 Exciton binding energy

With the obtained values for m∗c and m∗v the reduced mass is

1

µex
=

1

m∗c
+

1

m∗v
= 0.706 (9.20)

and the binding energy for the exciton for Cr2O3 is approximated by

EB = R∞
µex
mε2∞

= 0.5eV (9.21)

where we used, ε∞ = 6.2 [71].
The binding energy calculated using equation (9.21) is underestimated as com-

pared to the binding energy calculated using BSE (EB=1.38eV).

Although this model does not provide a precise estimation for the binding en-
ergy of Cr2O3, it indicates the presence of a bound exciton in the gap, as observed
in the BSE calculation. Because this model is relatively simple in comparison
to the whole BSE computation, we may still consider it as a suitable model for
computing the binding energy despite the low accuracy in this case.

This model has been used for several semiconductors and has shown an excel-
lent agreement with the BSE calculation for EB when continuum excitons were
involved., as shown in reference [32].

We considered several explanations for the observed discrepancy in the case of
Cr2O3 :
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9.5. Exciton binding energy

Figure 9.4: Transition plot for the excitonic peak

1. We considered a two-band model, but additional bands can contribute to the
building of the exciton. To address this question, we determined the num-
ber of transitions contributing to the excitonic peak using equation (6.28),
discussed in the chapter (6). As illustrated in the figure (9.4), the excitonic
peak results from the contribution of several transitions in terms of band in-
dex. This suggests that a large number of bands contribute to the excitonic
peak. As a result, we may speculate that the excitonic binding energy is not
as high as it should be using this model.

2. In calculating the binding energy, we have used the static dielectric constant.
This quantity comes from two contributions: the electronic and the ionic,
but we have only evaluated the electronic contribution, which might lead to
incorrect results. Note that the ionic contribution can be either positive or
negative depending on the material.

3. The last argument we could come up with is linked to the bandstructure
itself. The model has been derived for materials with a direct gap, which is
not the case of Cr2O3. However, we have considered that this approximation
could be satisfied due to the flatness of the bands.
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Chapter 10

Second-order response function

In this chapter, we derive the second-order response function for Second Harmonic
Generation (SHG), in terms of spin-polarization (10.1.1). SHG spectra are cal-
culated and discussed using various approximations for the xc kernels. We also
derive and discuss a new kernel for Cr2O3 based on the Bethe Salpeter equation.
Finally, we analyze the effects of the semicore electrons pseudo-potential on the
second-harmonic spectra.

10.1 Second-order response function

An ab-initio formalism for the calculation of macroscopic second-order responses
within the framework of TDDFT has been presented in the article [25], and cor-
responds to the state of the art at the beginning of my work for second harmonic
generation . In this chapter, we will show how it can be extended to include the
spin-polarization.

10.1.1 Second-order response function including
spin-polarization

While the second-order response function has already been calculated for a large
set of non-magnetic materials, the effect of spin polarization on second harmonic
generation is not widely documented. In particular, although it is known that SHG
can occur in antiferromagnetic materials because the spin polarization breaks the
centro-symmetry, few calculations have been performed in this case, see however
ref [1] and references therein. In the following, we present our extension to the
spin-polarised case for the second-order calculation. This extension has been im-
plemented in the 2light code.

For the sake of simplicity, all the quantities will be written explicitly with the
spin variables; all the others, such as reciprocal space vectors and frequencies, are
implicit. The two kernels fxc and gxc are defined by

fαβxc =
δV α

xc

δnβ
gαβγxc =

δ2V α
xc

δnβδnγ
(10.1)

where α, β and γ denotes the spin (↑ or ↓).
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10. Second-order response function

The second-order contributions to the effective potential and to the induced
density are given by

V (2)α =
∑
β

fαβuxcn
(2)β +

1

2

∑
βγ

gαβγxc n(1)βn(1)γ (10.2)

n(2)α =
∑
α

χ
(1)αβ
0 V (2)β +

1

2

∑
βγ

χ
(2)αβγ
0 V (1)βV (1)γ (10.3)

Taking equations (10.3) and (10.2) together, the induced density is

n(2)α =
∑
βγ

χ
(1)αβ
0 fβγuxcn

(2)γ +
1

2

∑
βγδ

χ
(1)αβ
0 gβγδxc n

(1)γn(1)δ

+
1

2

∑
βγδε

χ
(2)αβγ
0

[
V

(1)β
ext + fβδuxcn

(1)δ
][
V

(1)γ
ext + fγεuxcn

(1)ε
]

(10.4)

Using the definition of χ(2) and χ(1) in terms of the external potential

n(2)α =
1

2

∑
βγ

χ(2)αβγV
(1)β
ext V

(1)γ
ext n(1)α =

∑
β

χ(1)αβV
(1)β
ext (10.5)

and after some tedious calculations similar to the case presented in section (4.2.4)
the relation between χ(2), χ(2)

0 and χ(1) is

χ(2)αβγ = χ
(2)αβγ
0 +

∑
δε

χ
(1)αδ
0 f δεuxcχ

(2)εβγ +
∑
µνδ

χ
(1)αµ
0 gµνδxc χ

(1)νβχ(1)δγ

+
∑
εµ

χ
(2)αβµ
0 fµεuxcχ

(1)εγ +
∑
δν

χ
(2)ανγ
0 f νδuxcχ

(1)δβ +
∑
δεµν

χ
(2)αµν
0 fµδuxcχ

(1)δβf νεuxcχ
(1)εγ

(10.6)

Eight components can be defined, such as χ(2)ααα, χ(2)βαα, χ(2)αβα, and considering
first, the two equations satisfied by the components χ(2)ααα and , χ(2)βαα, we get
the following matrix equation, (

χ(2)ααα

χ(2)βαα

)
−M

(
χ(2)ααα

χ(2)βαα

)
=( ∑

µν χ
(2)ανµ
0

[
δαν +

∑
δ f

νδ
uxcχ

(1)δα
][
δαµ +

∑
ε f

µε
uxcχ

(1)εα
]∑

µν χ
(2)βνµ
0

[
δαν +

∑
δ f

νδ
uxcχ

(1)δα
][
δµα +

∑
ε f

µε
uxcχ

(1)εα
] )

+

(
χ

(1)αµ
0 gµνδxc χ

(1)ναχ(1)δα

+χ
(1)βµ
0 gµνδxc χ

(1)ναχ(1)δα

)

with

M =

(
χ

(1)αδ
0 f δαuxc χ

(1)αδ
0 f δβuxc

χ
(1)βδ
0 f δαuxc χ

(1)βδ
0 f δβuxc

)
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10.1. Second-order response function

where the summation over the repeated index δ is implicit.
We have also for the other components(

χ(2)αβα

χ(2)ββα

)
−M

(
χ(2)αβα

χ(2)ββα

)
=( ∑

µν χ
(2)ανµ
0

[
δβν +

∑
δ f

νδ
uxcχ

(1)δβ
][
δαµ +

∑
ε f

µε
uxcχ

(1)εα
]∑

µν χ
(2)βνµ
0

[
δβν +

∑
δ f

νδ
uxcχ

(1)δβ
][
δαµ +

∑
ε f

µε
uxcχ

(1)εα
] )

+

(
χ

(1)αµ
0 gµνδxc χ

(1)νβχ(1)δα

χ
(1)βµ
0 gµνδxc χ

(1)νβχ(1)δα

)

(
χ(2)ααβ

χ(2)βαβ

)
−M

(
χ(2)ααβ

χ(2)βαβ

)
=( ∑

µν χ
(2)ανµ
0

[
δνα +

∑
δ f

νδ
uxcχ

(1)δα
][
δµβ +

∑
ε f

µε
uxcχ

(1)εβ
]∑

µν χ
(2)βνµ
0

[
δνα + +

∑
δ f

νδ
uxcχ

(1)δα
][
δµβ +

∑
ε f

µε
uxcχ

(1)εβ
] )

+

(
χ

(1)αµ
0 gµνδxc χ

(1)ναχ(1)δβ

χ
(1)βµ
0 gµνδxc χ

(1)ναχ(1)δβ

)

(
χ(2)αββ

χ(2)βββ

)
−M

(
χ(2)αββ

χ(2)βββ

)
=( ∑

µν χ
(2)ανµ
0

[
δβν +

∑
δ f

νδ
uxcχ

(1)δβ
][
δβµ +

∑
ε f

µε
uxcχ

(1)εβ
]∑

µν χ
(2)βνµ
0

[
δβν +

∑
δ f

νδ
uxcχ

(1)δβ
][
δβµ +

∑
ε f

µε
uxcχ

(1)εβ
] )

+

(
χ

(1)αµ
0 gµνδxc χ

(1)νβχ(1)δβ

χ
(1)βµ
0 gµνδxc χ

(1)νβχ(1)δβ

)

Summing up the 4 matrix equations and using the definitions χ(1)β =
∑

ν χ
(1)νβ,

we have

(
χ(2)ααα + χ(2)αβα + χ(2)ααβ + χ(2)αββ

χ(2)βαα + χ(2)ββα + χ(2)βαβ + χ(2)βββ

)
−M

(
χ(2)ααα + χ(2)αβα + χ(2)ααβ + χ(2)αββ

χ(2)βαα + χ(2)ββα + χ(2)βαβ + χ(2)βββ

)
=( ∑

µν χ
(2)ανµ
0

[
δαν + δβν +

∑
δ f

νδ
uxcχ

(1)δ
][
δαµ + δµβ +

∑
ε f

µε
uxcχ

(1)ε
]∑

µν χ
(2)βνµ
0

[
δαν + δβν +

∑
δ f

νδ
uxcχ

(1)δ
][
δµα + δµβ +

∑
ε f

µε
uxcχ

(1)ε
] )

+

( ∑
µνδ χ

(1)αµ
0 gµνδxc χ

(1)νχ(1)δ∑
µνδ χ

(1)βµ
0 gµνδxc χ

(1)νχ(1)δ

)

As χ(1)
0 and χ(2)

0 are spin-diagonal, we have finally(
χ(2)α

χ(2)β

)
−M

(
χ(2)α

χ(2)β

)
=

+

(
χ

(2)ααα
0

[
1 +

∑
δ f

αδ
uxcχ

(1)δ
][

1 +
∑

ε f
αε
uxcχ

(1)ε
]

χ
(2)βββ
0

[
1 +

∑
δ f

βδ
uxcχ

(1)δ
][

1 +
∑

ε f
βε
uxcχ

(1)ε
] )+

( ∑
νδ χ

(1)αα
0 gανδxc χ

(1)νχ(1)δ∑
νδ χ

(1)ββ
0 gβνδxc χ

(1)νχ(1)δ

)
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10. Second-order response function

where we have defined two new response functions,

χ(2)α = χ(2)ααα + χ(2)αβα + χ(2)ααβ + χ(2)αββ

χ(2)β = χ(2)βαα + χ(2)ββα + χ(2)βαβ + χ(2)βββ (10.7)

Note also that, as χ(1)
0 is diagonal in spin, the matrix M defined in Eq.(10.7) is

the same as the one defined for the linear spin-dependent case.
As for the linear case, the external potential does not depend on the spin

V
(1)α
ext = V

(1)β
ext = V

(1)
ext and with V (2)

ext = 0, we get

n(2) = n(2)↑ + n(2)↓ =
1

2

∑
αβγ

χ(2)αβγV
(1)
ext V

(1)
ext (10.8)

The final result of this section is the definition of a total response function, defined
as

χ(2) =
∑
αβγ

χ(2)αβγ (10.9)

where all intermediate spin-dependent components satisfy, two by two, a matrix
Dyson equation.

10.1.2 Implementation

In this subsection, we present the main modifications done in the code 2light.
• In the original version of 2light, the response functions χ(1)

0 , χ(1), χ(2)
0 and

χ(2) depend on the frequency and on the vectors q+G. They no depend on
the spin-component ↑ or ↓. New definitions for all the quantities related to
spin have been implemented.

• The subroutine dedicated to the solution of the Dyson equation has been
modified to account for the spin.

• Some of the exchange correlation kernels depend explicitly on the spin-
component and have been adapted (ALDA for instance). In the case of
scalar kernels, such as the alpha-kernel, they correspond to spatial average
densities and for antiferromagnetic materials they are identical for ↑ or ↓.

Numerical checks have been performed. Concerning the implementation of the
Dyson equation, we have compared our results for first-order quantities (χ(1)

0 and
χ(1)) to the quantities obtained with the DP code.

10.2 Second-order response of Cr2O3

In the dipole approximation, SHG is a second-order nonlinear optical phenomenon
that is forbidden in a material with inversion-symmetry. Because of sensitivity to
the symmetry of the material, it is commonly used in the study of interfaces and
surfaces, where inversion symmetry is inevitably broken. Despite the fact that
Cr2O3 is centrosymmetric, its symmetry has been disrupted by the spin structure.
As a result, SHG occurs. In this chapter, we study the SHG of Cr2O3.
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10.2. Second-order response of Cr2O3

A second-order response function describes the SHG process, which is detailed
in the section (4.2.5).

The TDDFT calculations of linear optical properties with LRC kernel produce
satisfactory results [60]. Similarly, it has been observed that the ab-initio approach
is quite successful in describing nonlinear optical processes for simple materials,
e.g. SiC, AlAs [25,72].

In the subsequent sections, we will discuss the relevance of the two effects (crys-
tal local-field and excitonic effects) on the second-order response function of Cr2O3,
when spin-polarization is taken into account. We will first discuss the second-
harmonic generation spectra for the Cr2O3, starting with the independent-particle
approximation for χ(2). We will discuss the crystal local field effects (RPA), and
finally, we will discuss the excitonic effect by using different xc kernels in the cal-
culations. We will show how the different levels of approximation affect the result
of second harmonic spectra of Cr2O3. As for the linear case, all these studies will
be performed in the quasiparticle framework, where we will use a scissor correction
derived from the GW calculation presented in section (5.7).

10.2.1 Calculations details

To calculate the second-order spectra we first have to perform the ground state
DFT calculations. We determine the electronic structure of the material in the
ground state with DFT in the LDA, using norm-conserving pseudopotential [73]
and plane-wave basis set with the ABINIT code [43]. The kpoint grid 4 4 4 is used
in this case.

For the calculation of the nonlinear optical spectra, we use the nonlinear-
response code named 2light. The values for the parameters used in the second-
order calculations of Cr2O3 are given in the table 10.1. The convergence in terms
of the number of bands is described in the appendix (C).

nbands npwmat npwwfn
200 59 2500

Table 10.1: Converged parameters value in second-order response function calcu-
lations

The significance of these parameters has been described in the section (8.1.1).
The scissor value is 0.73eV. Despite recent advances in computational resources,
the ab-initio calculation of Second-Harmonic Generation (SHG) in solids remains
a significant technical challenge. Convergence calculation requires a significant
amount of time and computational resources.

The convergence parameter’s value remains constant throughout the chapter
unless otherwise specified. Also, all calculations are performed using the valence
electrons pseudopotentials unless otherwise specified. We have studied two com-
ponents of the second-order response function (xxx and zzz), which are non-zero
for Cr2O3. Unless otherwise specified, we address the xxx component.
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10. Second-order response function

Figure 10.1: Second-order response function using IPA and RPA

10.2.2 Second-order response using IPA and RPA

The IPA is the simplest approximation for computing the second-order response
from a computational standpoint. However, it has been observed that within this
approximation, the second-order susceptibility deviates significantly from experi-
mental data, [74] and we have to consider alternatives to the IPA.

In order to go beyond the independent particle description, we will consider the
inhomogeneity of the electron density, which causes a variation of the screening
fields on the microscopic scale, i.e. the local field effects [75]. In the RPA, we solve
the Dyson equation presented in the previous section with the kernels fxc = 0 and
gxc = 0.

In figure (10.1), we present the results of the IPA and RPA calculations, in-
cluding quasiparticle corrections via the scissors operator. The local fields have an
overall effect of decreasing the low frequency range amplitude of the second-order
susceptibility spectra relative to IPA without strongly altering the spectra’ shape.
This is general feature, that has already been evidenced in article [25], for the case
of several semiconductors GaAs, AlAs, and SiC. In the present case, the spectrum
is only slightly changed compared to IPA.

We conclude here that, whereas local-field effects are required for a rigorous
description, in theory, they contribute only to a modest amount to the spectrum.

10.2.3 Effect of spin-polarization in second-order response
using RPA approximation

The independent particle response function χ(2)
0 can be written as the sum of two

terms
χ

(2)
0 = χ

(2)↑
0 + χ

(2)↓
0 (10.10)

A simple way to consider the effect of spin-polarization on the second-order
response function is to solve the Dyson equation using either χ(2)

0 defined by the
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10.2. Second-order response of Cr2O3

Figure 10.2: Effect of spin-polarization in second-order response using RPA ap-
proximation

previous equation or by χ
(2)
0 = 2χ

(2)↑
0 . The result of these two calculations is

shown in figure (10.2). It is clear that the effect is small, even smaller than the
local fields. Note that this result can be used in a certain case, as the amount of
computer time needed for the evaluation of the χ(2) is strongly reduced (a factor
2) when neglecting the spin-polarization.

10.2.4 Second-order response function derived from the stan-
dard kernel

We investigated the local field impact within the RPA approximation solely. Addi-
tionally, because the SHG process generates virtual excitation states, the electron-
hole interaction [38] must be included in χ(2)

Chang et al. [76] demonstrated that the combined influence of crystal lo-
cal fields and excitonic effects increases the amount of second-order polarization
in comparison to an independent-particle calculation, resulting in a satisfactory
agreement with experimental evidence in the static limit. This was also evidenced
in [75].

As previously stated in the section (8.1.4), the excitonic effect is incorporated
into the TDDFT via the xc kernel and finding the appropriate exchange-correlation
kernel is a critical issue.

Numerous kernels currently exist to describe the excitonic effect; some of them
provide good results for the linear response of a wide variety of semiconductors,
and their effect on Cr2O3 is discussed in section 8.1.4.

We present in the following the influence of the xc kernels on the second-order
Cr2O3 spectra. Note that in the following, we will study only the influence of fxc,
the kernel gxc is being kept to 0.
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10. Second-order response function

Figure 10.3: Second-order response function using LDA and RPA

Second-order response function calculated using ALDA

In the linear processes, the adiabatic local density approximation (ALDA) fails to
describe the optical absorption due to the long-range aspect of the electron-hole
interaction coming from the excitons, which are important in optical processes.
Despite this fact, we have examined the influence of ALDA on the second-order
spectra of Cr2O3.

The comparison of ALDA with the RPA is shown in the figure (10.3). We
observe that the output is remarkably similar to that of RPA. This effect is even
smaller than what has been obtained for the absorption spectra in Cr2O3 shown
in figure 8.6.

Second-order response function calculated using long-range kernels

We first study the excitonic effect on the second harmonic generation of Cr2O3

using the α-kernel described in section (8.1.4). This kernel depends on a param-
eter, which is material-dependent and has to be determined. In the following, we
use the value obtained in section (8.3.1) by comparing it with BSE results for the
linear case. This comparison yields α = 0.33.

The comparison between results obtained in RPA (where the exchange-correlation
kernel is set to zero) and with the α-kernel is presented in figure (10.4). This com-
parison shows that excitonic effects have a significant influence on the second
harmonic spectrum for Cr2O3. Compared to RPA, the α- kernel increased the
peak amplitude by a factor of two at ω = 2.85 eV. Note that this effect disappears
at high frequencies, where the two calculations yield the same results.
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10.3. Development of a frequency dependent xc kernel for second-order
processes

Figure 10.4: Second-order response function using RPA and alpha-kernel

10.2.5 Comparison of different component of second-order
response function of Cr2O3

We have already pointed out that two components of the second-order response
functions of Cr2O3 are non-zero. Here we compare these two components in the
figure (10.5). As can be seen, the two components are quite different. The two
second-order peaks are distinct for the component zzz, as shown in the figure
(10.5). Also, the first peak of the zzz component has a very high amplitude
compared to the first peak of the xxx component.

10.3 Development of a frequency dependent xc ker-
nel for second-order processes

As shown in the preceding section and throughout the chapter (8), each kernel we
have employed so far has its limitations owing to non-locality, frequency depen-
dence, and memory effects.

To account for the electron–hole interaction, one has to solve the Bethe-
Salpeter equation with an effective two-particle Hamiltonian. Then, highly sat-
isfactory results are obtained when compared to experimental data for linear re-
sponse [38].

A generalization of the Bethe-Salpeter equation to second-order processes has
been published in [32] but the results obtained for GaAs did not show the same
improvement as the one obtained in the case of absorption spectra. Moreover,
the complexity and numerical cost of such an approach for second-order processes
prevent us for the moment from considering it for a material such as Cr2O3.

The "Nanoquanta" kernel has been derived analytically by comparing the
Bethe-Salpeter, and the TDDFT equations [77] [34] and can reproduce, within the
TDDFT framework, the spectra obtained with BSE with great accuracy. However,
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10. Second-order response function

Figure 10.5: Two component (xxx and zzz) of Second-order response function of
Cr2O3 using RPA

for the same reasons of complexity and computational cost, such a kernel has not
been used in this work.

To go beyond the static long-range kernels, we proposed a simple approach
based on the fact that i) the first-order and second-order Dyson equations contain
the same fxc kernels. ii) The Dyson equation can be split into two equations,
one corresponding to the inclusion of v and a second one corresponding to the
inclusion of fxc. iii) If fxc is scalar, i.e. only the component corresponding to
G = G′ = 0 is nonzero, the second Dyson equation can then be solved analytically.
The procedure is detailed below.

The first-order dyson equation, written in condensed notations as,

χ = χ0 + χ0(v + fxc)χ (10.11)

can be split as,

χRPA = χ0 + χ0 v χ
RPA χ = χRPA + χRPA fxc χ (10.12)

For a scalar kernel, we have χ00 = χRPA00 + χRPA00 fxc χ00, which leads to,

fxc =
1

χRPA00

− 1

χ00

(10.13)

where χ00 is evaluated in terms of the macroscopic dielectric function εM = 1/ε−1
00

1

χ00

=
vεM

1− εM
(10.14)

Inserting in equation (10.14) the macroscopic dielectric function obtained from
the solution of the Bethe-Salpeter equation εBSEM (ω) and εRPAM (ω) , we are able to
construct numerically a frequency-dependent long-range kernel.

In a second step, this kernel fxc(ω) is introduced in the scalar second-order
Dyson equation.
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10.3. Development of a frequency dependent xc kernel for second-order
processes

10.3.1 Second-order spectra of Cr2O3 using frequency de-
pendent kernel

The second-order spectra calculated using this frequency-dependent kernel de-
scribed above are shown in the figures (10.6) and (10.7). We compared the spectra
obtained with this derived kernel to those obtained using RPA and the alpha-
kernel method. As this kernel is derived from BSE, it is anisotropic. For this
reason, we compared both the xxx and zzz components of the second-order re-
sponse functions, as shown in the figures (10.6) and (10.7) respectively. As we can
see in the figure (10.6), the spectra calculated using this BSE-kernel (represented
by fxc_BSE) is very close to the one calculated using the alpha-kernel method.
However, we may see a slight red-shift in the spectra predicted using the BSE
kernel. This slight difference may be attributed to the frequency dependence of
the kernel. Similarly, we also compared the zzz component of the second-order
response function. As we can see in the figure (10.7) there is a visible difference
in the zzz component of the spectra calculated using the alpha-kernel method
and the one calculated using the BSE-kernel. We can notice a small peak at low
energy (around 0.7eV) in the spectrum calculated with the BSE-kernel which is
absent from the alpha-kernel spectra. This peak is the signature of the bound
exciton. Thus, we may conclude that using this frequency-dependent kernel, we
can capture a bound excitonic feature absent from the spectra obtained using the
alpha-kernel approach. Additionally, we found a difference between the second
peak position calculated using this derived kernel and the alpha-kernel approach.

Figure 10.6: Second-order response function (xxx component)using xc kernel de-
rived from BSE
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10. Second-order response function

Figure 10.7: Second-order response function (zzz component) using xc kernel de-
rived from BSE

10.4 Effect of the semicore electrons on second-
order response of Cr2O3 structure in IPA

As previously stated, the semicore electrons effect on the ground state and linear
response is significant. As a result, we are interested in seeing what influence
the semicore electrons has on the second-order spectra. We have calculated and
compared the second-order spectra in the figure (10.8) using the valence electrons
pseudopotential and the semicore electrons pseudopotential. In terms of calcu-
lation details for the semicore electrons pseudopotential, we changed the scissor
value, which is 0.92 eV in this case.

As seen in the figure (10.8), the second-order spectra obtained with the two
pseudopotentials are quite different. Two main structures are present in the semi-
core electrons case at around 1 eV and 2.5 eV, clearly separated but not in the
valence electrons pseudopotential case. A remarkable difference is a static value
obtained in the two noticeably different calculations. However, at high frequency,
the two spectra are quite similar.
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10.4. Effect of the semicore electrons on second-order response of Cr2O3

structure in IPA

Figure 10.8: Effect of semicore electrons on second-order Response of AF1 struc-
ture in IPA

101



10. Second-order response function

102



Chapter 11

Study of different AFM structures
of Cr2O3

There are three distinct AFM structures for Cr2O3, which are discussed in the
section (7.1), also shown in the figure (11.1)

AF1, the most stable of these three structures, has been studied in the pre-
ceding chapters. In this chapter, we will examine and analyze the remaining two
structures. Then we will attempt to decipher the differences between the electronic
and the optical properties of the three distinct AFM structures.

11.1 Electronic ground state properties of three
different AFM Cr2O3

As previously stated in the ab-initio framework, the first step is to compute the
ground state properties. This section calculates and compares the ground state
properties of three AFM structures.

11.1.1 Structure relaxation

We have calculated the relaxed structure geometry using DFT. While performing
these calculations, we noticed that changing the spin structure significantly alters
the lattice constant and angle, despite the fact that the atomic coordinates remain
relatively constant.

Lattice constant

The relaxed lattice constants for the three distinct AFM structures are given in
the table (11.1).

Type of structure Lattice constant(Bohr)
AF1 (+−+−) 10.18
AF2 (+ +−−) 10.28
AF3 (+−−+) 10.09

Table 11.1: Lattice constant for three different AFM Cr2O3
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11. Study of different AFM structures of Cr2O3

Figure 11.1: Three AFM Cr2O3 structures

We see that the lattice constant varies substantially when the spin structure
of the AFM Cr2O3 is changed.

Angle

We also determined the angle for each of the three distinct AFM structures as
shown in table (11.2).

Type of structure Angle
AF1 (+−+−) 55.23◦
AF2 (+ +−−) 54.19◦
AF3 (+−−+) 56.44◦

Table 11.2: Angle for three different AFM Cr2O3

Similarly, we found that the angle varies significantly when the spin structure
is changed.

11.1.2 Total energy

The total energy of Cr2O3 was calculated using DFT calculations for the three
AFM structures and compared in the table (11.3). This demonstrates that the AF1
structure has the lowest energy, and hence the AF1 is the most stable structure of
Cr2O3. The calculations details are identical to those given in the section (7.2.1)

11.1.3 Band gap of three different AFM Cr2O3

We have computed the DFT band gap for the three AFM Cr2O3. The results
are given in table (11.4). As seen in the table (11.4), changing the spin structure
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11.2. GW band gap of three different structures

Type of structure Total Energy(eV)
AF1 -3.670947E+03
AF2 -3.670752E+03
AF3 -3.670445E+03

Table 11.3: Total energy of three different AFM Cr2O3

(a) AF1 (b) AF2 (c) AF3

Figure 11.2: Comparison of three AFM Cr2O3 bandstructures

substantially alters the gap. AF1 and AF2 are non-centrosymmetric structures,
and their band gap is nearly the same as the AF3, a centrosymmetric structure.

Then, we compared the bandstructures of three AFM Cr2O3 in figure (11.2).
The first significant difference is related to the band gap which is located at the F
point for the AF1 and AF3 structures, while it is located at the Γ point for AF2.

The curvature of the bands at AF2 becomes the opposite of the AF1 and AF3
at the high symmetric point, which is the second major difference between these
structures.

Type of structure DFT band gap(eV) Location
AF1 1.90 F
AF2 2.05 Γ
AF3 2.30 F

Table 11.4: DFT band gap of three AFM structures

11.2 GW band gap of three different structures

Type of structure GW band gap (eV)
AF1 3.46
AF2 3.35
AF3 3.72

Table 11.5: GW band gap of three AFM structures
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11. Study of different AFM structures of Cr2O3

11.3 Linear response of three AFM Cr2O3 struc-
tures

Additionally, we also compared the linear response of three AFM Cr2O3. We
were interested in determining if changing the spin structures impacted the linear
spectra.

We calculated the linear response of the remaining two structures using TDDFT,
as we did before. We performed the computations using RPA and the JGM ker-
nel and compared them with the BSE spectra. The results are presented in the
following section.

11.3.1 Calculation details

For the TDDFT calculation of the linear spectra, we used the same calculation
parameters as we described in the section (8.1.1). However, the scissor value is
different for the three structures. The linear calculations are done using the valence
electrons pseudopotential. But we calculated the scissor for the three structures
using the GW band gap calculated using semicore electrons pseudopotential (as
we described in the section (8.1)). The effect of the semicore electrons on the GW
bandgap will be discussed in more detail in the next chapter (12). The scissor
value which we used here is given in the table (11.6).

Type of structure Scissor correction(eV)
AF1 0.92
AF2 1.05
AF3 1.10

Table 11.6: Scissor value obtained for three AFM structures

11.3.2 Linea response using RPA approximation

A comparison of Linear Response using RPA for three AFM Cr2O3 is shown in
the figure (11.3). It shows a substantial difference in the linear spectra for the
three structures.

As, we can observe that the AF1 has a first peak of high intensity and the
second peak of lower intensity. For AF2 and AF3, on the other hand, the first peak
has a modest intensity, while the second peak has a higher intensity. We also found
that the intensity of the first peak is lowest in AF3 than in the other two. This
difference could be attributed either to the fact that AF3 has a centrosymmetric
structure, while AF1 and AF2 are non-centrosymmetric or due to the changes
observed in the bandstructures. However, it is not easy to disentangle these two
effects. The first peak intensity of AF2 is in the centre of the other two structures.
Thereafter we observed that the intensity of the second peak of the AF2 and AF3
structures are the same, while it is significantly different from the AF1 structure.
Finally, we see that the AF2 and AF3 peaks moved to lower frequencies.
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11.3. Linear response of three AFM Cr2O3 structures

Figure 11.3: Linear response of three magnetic structures of Cr2O3 in RPA

(a) AF1 (b) AF2 (c) AF3

Figure 11.4: Linear response calculated using RPA and JGM kernel for three AFM
structures of Cr2O3

11.3.3 Linear response using JGM kernel

Furthermore, we have studied the effect of the JGM kernel on the linear spectra
of the two structures, AF2 and AF3, as we did on the AF1 structure.

First, we compared the RPA and JGM spectra for all three structures. As
shown in graph (11.4), the excitonic effect has a different influence on each Cr2O3

structure. For the AF1, adding the excitonic peak through the JGM kernel signifi-
cantly enhances the strength of the first peak, but a slight increase in the intensity
of the second peak is observed as shown in figure (11.4a). However, for AF2, the
effect of the JGM kernel strengthens both peaks, as shown in the graph (11.4b).
The impact of the JGM kernel on the third case is bit unexpected; it does not
enhance the strength of any peak and only changes the shape of the second peak
slightly.

Then, we compared the linear spectra computed using the JGM kernel for
three different structures types as indicated in the graph (11.5). The differences
between the three structures with the JGM kernel follow the same trend observed
with RPA for the first peak. However, the second peak of the AF2 and AF3
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11. Study of different AFM structures of Cr2O3

structures were superimposed in the RPA case, whereas in the case of JGM, they
are distinct.

This implies that the excitonic effect has a different impact on Cr2O3 depending
on how the spins are arranged.

Figure 11.5: Linear response of three different magnetic structures of Cr2O3 using
the JGM kernel

11.3.4 Linear response using BSE

As shown in the preceding section, the excitonic kernel has a different influence on
the various AFM structures. As stated in the section (8.2), the excitonic effect is
more appropriately incorporated in the BSE. We conducted BSE calculations on
all three structures, using the same parameters described in the previous section
(8.2.1).

First of all, we compared the BSE results to those of the RPA and JGM kernels
for all three AFM structures in graph (11.6).

By performing BSE calculations on the AF1 structure, the intensity of the
first peak is increased while the second peak is redshifted. Additionally, we see an
excitonic peak in the gap.

We found a similar trend for the AF2 structure on both peaks. However, we
now observe two small peaks in the gap, which can be referred as the bound-
excitonic peaks and have very low intensity.

The effect of BSE calculations on the AF3 is different: the excitonic effect
through BSE has a negligible influence on the spectra. There is a peak in the gap
with an even lower intensity than AF1 and AF2. This is comparable to the effect
of the JGM kernel for this structure.

Further, we compared the BSE spectra for three different AFM Cr2O3. We
can see that they all have different intensities for the first and second peaks and
varied positions.
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11.4. Second-order response of two different non-centrosymmetric structures
of Cr2O3

(a) AF1 (b) AF2 (c) AF3

Figure 11.6: Linear response calculated using RPA, JGM kernel and BSE for three
different AFM structures of Cr2O3

Figure 11.7: Linear response of three different magnetic structures of Cr2O3 using
BSE

Concerning the peaks observed in the gap, for the AF1 structure, and position
and amplitude have been obtained with good accuracy, despite the small amplitude
of the peak. The situation is different with AF2 and AF3, the amplitude of the
peaks is not enough to provide fully converged results. As a matter of fact, due
to memory problems, we could not increase the parameters of the computation to
higher values, and we cannot say with certainty that the energy and the amplitude
are fully converged.

To summarize, we can say that the altering spin structure has a significant
impact on the Cr2O3 linear optical properties.

11.4 Second-order response of two different non-
centrosymmetric structures of Cr2O3

The AF1 and AF2 are non-centrosymmetric structures, whereas the AF3 is cen-
trosymmetric. Hence the second-order response function for AF1 and AF2 is

109



11. Study of different AFM structures of Cr2O3

Figure 11.8: Comparison of second-order response function of two different spin
non-centrosymmetric structures of Cr2O3 using RPA

non-zero, whereas, for AF3, it is zero. The xxx and zzz components for the AF1
structure are non-zero, while it zero for the AF2 structure. On the contrary, the
yyy component is not vanishing in AF2 as observed in AF1. These components
are plotted in the figure (11.8). As we can see in the figure (11.8), the yyy com-
ponent of AF2 structure contains the features of both xxx and zzz component of
the AF1 structure.
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Chapter 12

Effect of semicore electrons on
electronic and optical properties of
all AFM Cr2O3

The impact of adding semicore electrons in the pseudopotential at each level of
the theoretical computation for AF1 Cr2O3 has previously been addressed in the
chapters (7), (8), and (10). Since it has a significant effect on the AF1 structure
properties, our goal is to examine the influence of the pseudopotential on the other
structures. This study will be done on the GW bandgap and on the absorption
spectra.

12.1 Effect of semicore electrons on ground state
properties of the three different AFM Cr2O3

We used a similar pattern of calculations to those used in the last chapters. We
first calculated the ground state of all three configurations with semicore electrons
using DFT, and we compared them with the one calculated in the previous chapter
i.e. the valence electrons case.

12.1.1 Structure relaxation

In this case, we conducted complete geometry optimizations on the lattice param-
eters, angle and atomic positions for all structures. All structural optimizations
are carried out using Brillouin zone meshes 444.

The relaxed lattice constant and angle are shown below. The atomic position
remained relatively constant.

Lattice constant

The values of relaxed lattice constant with and without semicore for each of three
structures are listed in table (12.1) given below,

As seen in the table (12.1), the lattice constant changes similarly for the three
AFM structures with and without semicore electrons.
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Lattice constant(Bohr) With semicore Without semicore
AF1 10.22 10.18
AF2 10.32 10.28
AF3. 10.07 10.09

Table 12.1: Effect of semicore electrons Lattice constant for three different AFM
Cr2O3

Angle

The values of relaxed angles with and without semicore for each of the three
structures are listed in the table (12.2) given below,

Structures With semicore Without semicore
AF1 54.42◦ 55.23 ◦
AF2 53.43◦ 54.19◦
AF3 56.36◦ 56.44◦

Table 12.2: Effect of semicore electrons angle for three different AFM Cr2O3

12.1.2 Effect of semicore electrons on DFT band gap of
three different AFM Cr2O3

We investigated the effect of including a semicore electrons in the DFT band gap
for three AFM Cr2O3 structures. The results are shown in the table (12.3).

We see that using semicore electrons pseudopotential decreases the DFT band
gap for all three structures.

However, the degree of decrease varies according to the structure. The band
gap of the AF1 structure, calculated using semicore electrons pseudopotential,
decreases by 0.2eV, whereas the band gap of the AF2 structure calculated using
semicore electrons pseudopotential decreases by 0.78eV, and the band gap of the
AF3 structure calculated using semicore electrons pseudopotential decreases by
0.86eV. It is reasonable to deduce from this pattern of behaviour that the inclusion
of semicore states has different effects on different AFM structures.

The AF1 has the largest band gap out of the three structures if the calculations
are done with semicore electrons. However, the AF3 structure has the largest gap
in the valence electrons case.

DFT band gap(eV) With semicore Without semicore Location
AF1 1.71 1.90 F
AF2 1.27 2.05 Γ
AF3 1.44 2.30 F

Table 12.3: Effect of semicore electrons on DFT band gap of three different AFM
structures

Effect of semicore electrons has been studied for many semiconductors for
various properties; for example, it has been studied for Si, Ge and GaAs in the
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12.1. Effect of semicore electrons on ground state properties of the three
different AFM Cr2O3

(a) AF1 (b) AF2 (c) AF3

Figure 12.1: Comparison of bandstructure of Cr2O3 using semicore electrons pseu-
dopotential for three different AFM structures

(a) AF1 (b) AF2 (c) AF3

Figure 12.2: Comparison of bandstructure of different AFM structures of Cr2O3

using valence electrons pseudopotential

reference [78]. The semicore effects are negligible in Si; they are important if one
aims at a good quantitative agreement with experiments in Ge and GaAs. [78].
Similarly, we may deduce from the result shown in the table (12.3) that using
semicore electrons in ground state DFT calculations of Cr2O3 has a considerable
effect on the DFT band gap.

We have also compared the bandstructure calculated using pseudopotential
with and without semicore electrons for the three different AFM structures in the
figure (12.1).

We again plotted the valence electrons pseudopotential bandstructure in order
to compare it to the semicore electrons pseudopotential bandstructure of three
distinct AFM structures in graph (12.2).

As seen in the band gap case, the inclusion of semicore electrons has a unique
effect on each AFM structure.

The difference in the bandstructure of AF1 structure with and without semi-
core electrons is plotted in the figures (12.1a) and (12.2a) and has already been
discussed in the section (7.2.2).

The two plots (12.1b) and (12.2b) represent the bandstructure of the AF2
structure with and without semicore electrons, respectively. We see the band gap
for the AF2 structure is at the Γ point for both with and without semicore calcu-
lations. In both cases, the bands in the AF2 bandstructure are nearly identical.

We compare finally the bandstructure of AF3 in the two different situations
(12.1c) and (12.2c). We noticed that the highest bands of the VBM are identical
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in both situations; however, in the first set of conduction bands, the semicore
electrons case has a substantially larger number of conduction bands than the
valence electrons case.

12.2 Effect of semicore electrons on the GW band
gap

We investigate the impact of using semicore electrons pseudopotential in the GW
calculations for three different structures in this section, and we provide the values
of the GW band gap for the three distinct structures, both with and without
semicore electrons in the table (12.4).

As seen in the table (12.4), using semicore electrons pseudopotential decreases
the band gap of all three AFM structures when compared to the results obtained
using valence electrons. However, this decrease varies according to the kind of
structure we used. When the semicore electrons is used on the AF1 structure, the
GW band gap is reduced by 0.82eV. It decreases by 1.03eV for AF2 and 1.17eV for
AF3. This demonstrates that the semicore electrons used in the GW computations
has a varied impact on the AFM structures of Cr2O3.

GW band gap(eV) With semicore Without semicore
AF1 2.63 3.46
AF2 2.32 3.35
AF3 2.54 3.72

Table 12.4: Effect of semicore electrons on GW band gap of three different AFM
structures

The impact of the semicore electrons pseudopotential on the GW band gap
Cr2O3 is significant. This point has been already discussed in the literature and
our present result was expected. For instance, in ref [78], even if the effect of
the semicore electrons included in the pseudopotential for Silicon is negligible, the
results obtained for Ge and GaAs show that semicore electrons are important for
a good quantitative agreement with experiment in Ge and GaAs.

12.3 Effect of semicore electrons on linear response
of three different AFM Cr2O3

The purpose of this section is to compare the impact of employing a semicore
electrons pseudopotential on the linear response spectrum for the three structures
of Cr2O3. This is done in the Random Phase Approximation. On the other hand,
impact of semicore electrons on the GW band gap Cr2O3 is very large as we
discussed above.
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12.3. Effect of semicore electrons on linear response of three different AFM
Cr2O3

Figure 12.3: Effect of semicore electrons on linear response of AF2 structure in
RPA

12.3.1 Effect of semicore electrons on linear response of AF2
and AF3 structures in RPA

The graph (12.3) compares the RPA spectra obtained using the semicore electrons
pseudopotential to those obtained using the valence electrons pseudopotential for
the AF2 structure.

When semicore electrons are used, the strength of both peaks increases. Addi-
tionally, there is an increase in the intensity of the high-frequency region. We may
infer from this comparison that adding semicore electrons has a significant effect
on the spectra. Furthermore, when we used semicore electrons, the peak width
widened, and the peaks became more distinct.

The graph (12.4) compares the RPA spectra for the AF3 structure produced
using the semicore electrons pseudopotential and those obtained using the valence
electrons pseudopotential.

As can be seen in graph, the use of semicore electrons pseudopotential enhances
the intensity of both peaks, and there is also a blue shift of both peaks.

Our main conclusion is that the impact of employing the semicore electrons
pseudopotential on the linear spectra of the three structures is the same. It con-
trasts with the band gap characteristics, where we have shown that the influence
of using semicore electrons varies depending on the structure.
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Figure 12.4: Effect of semicore electrons on linear response of AF3 structure in
RPA
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Chapter 13

Concluding Remarks

Second harmonic generation is widely used to study materials without inversion
symmetry as additional information can be obtained compared to traditional lin-
ear spectroscopies. It can also be used to probe the spin dynamics in antifer-
romagnetic materials as SHG reveals the spin arrangement inside the materials.
The purpose of this thesis was to describe this second-order process in magnetic
material, include the spin-polarization in the time-dependent density functional
theory framework, and apply this formalism to chromia (Cr2O3), a prototypical
antiferromagnetic material.

The ground state properties have been calculated for Cr2O3 in the framework
of DFT. We have checked that, as already pointed out, it is mandatory to use spin-
DFT to get a correct description of the electronic properties: a metallic structure
is obtained while a semiconductor material is expected. We have studied the
bandstructure of the material and evaluated the quasiparticle corrections in the
GW approximation.

The influence of the pseudopotential has also been analyzed in the bandgap
calculation. We have shown that incorporating the Cr semicore electrons (as a
valence) has a considerable impact on the quasiparticle energies of Cr2O3 and lead
to a value in good agreement with the experimental band gap.

In a second step, we have calculated the linear response of the Cr2O3, and we
have studied in detail the optical absorption spectra. We have shown that incorpo-
rating the spin-polarization and the local field effects has a negligible contribution
to the linear response of the material. However, accounting for the excitonic effects
is particularly important. Long-range kernels, such as the α-kernel, the bootstrap,
or the JGM kernel, lead to a systematic increase of the absorption and to a red-
shift of the absorption edge. For comparison, we have solved the Bethe-Salpeter
equation and determined the "best" parameter for the α-kernel. Moreover, we
have evidenced a strongly bound exciton, which manifests itself by a peak in the
gap of the material. To get further insight, we have computed the binding energy
of the exciton using the Wannier-Mott model, but the energy obtained within
this model is underestimated. Several reasons have been proposed to explain this
discrepancy.

While the codes available for calculating the ground state properties and the
linear response already accounted for the spin-polarization, we had to derive the
second-order Dyson equations for antiferromagnetic materials. These equations
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13. Concluding Remarks

have been implemented in the 2light code [26]. As for the absorption spectra,
we have demonstrated the influence of the spin-polarization and of the crystal
local-fields on the second-order spectra for Cr2O3 is weak. We have used the α
kernel for the calculation of the excitonic effects in the second-harmonic spectra of
Cr2O3, with the α value obtained from the linear response function. Incorporating
excitonic effects significantly influences the second-order spectra as the amplitude
of the peaks is strongly enhanced.

Solving the Bethe-Salpeter for second-order processes in antiferromagnetic ma-
terials cannot be considered at the moment. To go further than the α-kernel, we
have derived a frequency-dependent long-range kernel based on the linear spectra
obtained with BSE. This simple approximation for Cr2O3 shows some deviations
from the spectrum obtained with a static kernel, but these results have to be
further investigated.

Several structures can be obtained for Cr2O3. These structures are identical
in terms of crystallographic structure; the only variation is in terms of spin. Two
of them, including the one we have studied corresponding to the ground state,
are non-centrosymmetric, and one is centrosymmetric. We have found that the
three distinct AFM structures exhibit a wide range of different properties. We
have found that the band gaps and the bandstructures for the three structures
are significantly different. Similarly, the difference between the GW band gaps
for the three structures is important. We have computed the linear response and
the Second Harmonic Generation and analyzed the differences. We have noticed
that the effect of the xc-kernel depends strongly on the structure. Moreover, the
amplitude of the excitonic peak is much higher in the ground state structure.

The most striking difference in the Second Harmonic spectra comes from the
change of symmetry between the two non-centrosymmetric structures. We demon-
strate that the xxx and zzz components of the ground state structure are non-zero,
while only the yyy component for the other structure is non-zero. This has sig-
nificant consequences for future experimental work, as it can help to discriminate
easily between several possible structures.
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Appendix A

Relation of absorption coefficient
and dielectric function

By studying the propagation of plane electromagnetic waves through a medium
with a complex refractive index, the connection between absorption coefficient
(α) and extinction coefficient (κ) can be deduced. If the wave propagates in the z
direction, the electric field’s spatial and temporal dependency is given by

E(z, t) = E0ei(kz−ωt) (A.1)

where k is the wave vector of the light, ω is the angular frequency and E0

is the amplitude at z = 0. In a non-absorbing medium of refractive index n,
the wavelength of the light is reduced by a factor n compared to the free-space
wavelength λ. Therefore the k and ω are therefore related to each other through

k =
2π

(λ/n)
=
nω

c
(A.2)

This can be generalized to the case of an absorbing medium by allowing the
refractive index to be complex

k = ñ
ω

c
= (n+ iκ)

ω

c
(A.3)

On substituting eqn (A.3) into eqn (A.1), we obtain

E(z, t) = E0ei(ωñz/c−ωt)

= E0e−κωz/cei(ωnz/c−ωt) (A.4)

This shows that a non-zero extinction coefficient leads to an exponential decay
of the wave in the medium. whereas the refractive index n still determines the
phase velocity of the wave front.

The optical intensity of a light wave is proportional to the square of the electric
field, namely I ∝ EE∗. We can therefore deduce from eqn (A.4) that the intensity
falls off exponentially in the medium with a decay constant equal to 2 × (κω/c).
On comparing this to Beer’s law given in eqn (2.2) we conclude that

α =
2κω

c
=

4πκ

λ
(A.5)
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A. Relation of absorption coefficient and dielectric function

where λ is the vacuum wavelength of the light. This shows that κ is directly
proportional to the absorption coefficient.

We can relate the refractive index of a medium to its relative dielectric constant
εr by using the standard result derived from Maxwell’s equations.

In the presence of Matter the Maxwell’s equations are written as this

∇×H = 1
c
∂D
∂t

+ 4π
c
jext

∇× E = −1
c
∂B
∂t

∇ ·D = 4πnext
∇ ·B = 0

(A.6)

where E and H are the electric and magnetic fields, D is the electric displace-
ment, B is the magnetic induction, next is the external charge (or free charge)
density and jext the external current density. By combining the first and the third
of the Eq. A.6 we have the continuity equation

∂next
∂t

+∇ · jext = 0 (A.7)

which takes into account the conservation of the charge. The complex dielectric
function and complex conductivity are introduced once the constitutive equations

D = D[E,H] (A.8)

are specified.
When non-linear effects are neglected we can write linear relations for the

constitutive equations. So let’s define the complex tensors ε through

D(r, t) =

∫
dr′
∫
dt′ε(r, r′, t− t′)E(r′, t′) (A.9)

This equations define the complex quantities ε. The latter are in general ten-
sors, but from now on, this fact will be ignored. In frequency domain the equations
read

D(ω) = ε(ω)E(ω) (A.10)

where ε is the dielectric tensor. we also have the important relations

ε(−ω) = ε∗(ω) (A.11)

We can also relate the electric field E with their derived fields D , by the
polarisation P via

D = E + 4πP (A.12)

The quantities P can be (linearly) related to the macroscopic fields via the

P = χeE (A.13)

where χe is the electric susceptibility. and Hence,
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ε = 1 + 4πχe (A.14)

Without external sources, Maxwell’s equations yield

∇×∇× E = −1

c

∂

∂t
(∇×B) (A.15)

∇(∇ · E)−∇2E = −1

c

∂

∂t
(
µ

c

∂D

∂t
) (A.16)

∇2E =
µε

c2

∂2E

∂t2
(A.17)

E = E0 expι(k.r−ωt) (A.18)

with
k2 =

ω2

c2
µε (A.19)

If we suppose that the propagation vector is in x direction,

k =
ω

c

√
µε (A.20)

and
E(x, t) = E0e

ιω
c

√
µεxe−iωt (A.21)

The solution of inside a medium of finite conductivity is the damped wave.

E(x, t) = E0e
ιω
c
ñxe−iωt (A.22)

where the complex refractive index

ñ =
√
ε = n+ ιk (A.23)

The real and the imaginary part of ñ are the refraction index and the extinction
coefficient, respectively, and they are related to the real ε1 and the imaginary part
ε2

ε1 = n2 − κ2 (A.24)

ε2 = 2nκ (A.25)

the absorption coefficient α

α =
2ωκ

c
=
ωε2
nc

(A.26)

the latter giving a linear relation between the absorption coefficient and the
imaginary part of the dielectric function.

n =
√
εr (A.27)
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A. Relation of absorption coefficient and dielectric function

This shows us that if n is complex, then εr must also be complex. We therefore
define the complex relative dielectric constant ε̃r according to

ε̃r = ε1 + iε2 (A.28)

By analogy with eqn A.27, we see that ñ and ε̃r are related to each other
through

ñ2 = ε̃r (A.29)

We can now work out explicit relationships between the real and imaginary
parts of ñ and ε̃r by combining eqns A.28 A.29 A.23 . These are

ε1 = n2 − κ2

ε2 = 2nκ
(A.30)

and
n =

1√
2

(
ε1 +

(
ε21 + ε22

)1/2
)1/2

(A.31)

κ =
1√
2

(
−ε1 +

(
ε21 + ε22

)1/2
)1/2

(A.32)

This analysis shows us that ñ and ε̃r are not independent variables: if we know
ε1 and ε2 we can calculate n and κ, and vice versa. Note that if the medium is
only weakly absorbing, then we can assume that κ is very small, so that eqns A.31
and A.32 simplify to

n =
√
ε1

κ = ε2
2n
.

(A.33)

These equations show us that the refractive index is basically determined by
the real part of the dielectric constant, while the absorption is mainly determined
by the imaginary part. This generalization is obviously not valid if the medium
has a very large absorption coefficient.
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Appendix B

Convergence study in linear
response calculations

Several convergence tests have been performed in the Linear response calculation
of Cr2O3, and some of them are detailed below.

B.1 Convergence in terms of number of bands in
IPA

This section discusses convergence in terms of number of bands(nbands) for the
linear response of Cr2O3 in the IPA approximation.

The figure (B.2 and (B.1) describes the convergence in terms of number of
band for the real and imaginary part of dielectric function respectively.

Figure B.1: Convergence in terms of number of bands for linear response of Cr2O3

using IPA

The imaginary part of the dielectric function is converged at nband=40, whereas
the real component is converged at nband=70. As a result, we chose nband=70 as
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B. Convergence study in linear response calculations

Figure B.2: Convergence in terms of number of bands for linear response of Cr2O3

using IPA

the converged value for the rest of the calculations with the valence electrons pseu-
dopotential. In the case of semicore electrons pseudopotential, we have checked
that 70 bands was also enough for the imaginary part of the dielectric function.

We have tested the convergence for the RPA calculations and we have seen
that 70 bands was enough in both cases. This was expected because the local field
effects are very weak for Cr2O3.

B.1.1 Other convergence parameters value

The other convergence parameters value used in these tests is shown below.

1. npwwfn 3000

2. kpoint grid 666

B.2 Convergence in terms of number of planewaves
(npwwfn) in IPA

B.2.1 Convergence in terms of number of planewaves (npwwfn)
in IPA for valence electrons pseudopotential

This section discuss the convergence in terms of number of planewaves (npwwfn)
to describes the wave function for the linear response of Cr2O3 in the IPA approx-
imation for the valence electrons pseudopotential.

The figure (B.3 and (B.4) describes the convergence in terms of npwwfn .
The imaginary part of the dielectric function is converged at npwwfn 3000

completely. As a result, we chose npwwfn 3000 as the converged value for the rest
of the calculations.
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B.2. Convergence in terms of number of planewaves (npwwfn) in IPA

Figure B.3: Convergence in terms of npwwfn for linear response of Cr2O3 using
IPA

Figure B.4: Convergence in terms of npwwfn for linear response of Cr2O3 using
IPA

Other convergence parameters value

The other convergence parameters value used in these tests is shown below.

1. nband 70

2. kpoint grid 666
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B. Convergence study in linear response calculations

B.2.2 Convergence in terms of number of planewaves (npwwfn)
in IPA for semicore electrons pseudopotential

This section discuss the convergence in terms of number of planewaves (npwwfn)
to describes the wave function for the linear response of Cr2O3 in the IPA approx-
imation for the semicore electrons pseudopotential.

The figure (B.5 and (B.6) describes the convergence in terms of npwwfn .

Figure B.5: Convergence in terms of npwwfn for linear response of Cr2O3 using
IPA

Figure B.6: Convergence in terms of npwwfn for linear response of Cr2O3 using
IPA

The imaginary part of the dielectric function is converged at npwwfn 3000
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B.3. Convergence in terms of kpoints in IPA

completely. As a result, we chose npwwfn 3000 as the converged value for the rest
of the calculations.

Other convergence parameters value

The other convergence parameters value used in these tests is shown below.

1. nband 70

2. kpoint grid 666

B.3 Convergence in terms of kpoints in IPA
This section discusses convergence in terms of number of kpoints used for the
linear response of Cr2O3 in the IPA approximation.

The figure (B.7 describes the convergence in terms of kpoint grid for imaginary
part of dielectric function.

Figure B.7: Convergence in terms of kpoints for linear response of Cr2O3 using
IPA

As we can see in the figure that the imaginary part of the dielectric function
is converged for the kpoint grid 666.

B.3.1 Other convergence parameters value

The other convergence parameters value used in these tests is shown below.

1. npwmat 1

2. npwwfn 3000

3. nband 70
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B. Convergence study in linear response calculations

B.4 Convergence in BSE calculations

Their are various input parameters that has to be converged in the BSE calcu-
lations. To compute BSE, one must first perform convergence on the screening
parameters and then on the BSE parameters.

In both screening and BSE computations, there are various parameters that
must be converged. Convergence in terms of a few parameters in both screening
and BSE calculations is discussed below.

B.4.1 Convergence in terms of number of band in screening

The convergence in terms of number of bands in the screening is shown in the figure
(B.8. As we can see in the figure that the value of nband 200 is the converged
value for screening.

Figure B.8: Convergence in terms of number of bands in screening for linear
response of Cr2O3 in BSE

Other convergence parameters value

Other parameters value used in this convergence test is given below.
Screening parameters

1. npwmat 113

2. npwwfn 1600

3. lomo 1

BSE parameters

1. npwmat 113
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B.4. Convergence in BSE calculations

2. npwwfn 3000

3. nbands 60

4. lomo 1

B.4.2 Convergence in terms of number of band in BSE

The convergence in the BSE calculations are given in the figure (B.9) and (B.10).
Because the BSE calculations are computationally intensive, we were only able to
go up to nband 60 for Cr2O3.

To ensure that the calculations were converged, we suppressed some bands in
the valence bands using the parameter lomo. lomo describes the lowest occupied
band.

In the figure (B.9) and (B.10) we used two different value of lomo to check
the convergence for higher bands. As we can see in both the figure that the effect
of higher bands in less on the spectra which say that number of bands 60 are
converged value.

Hence in our calculations we considered number of bands 60 with lomo 1.

Figure B.9: Convergence in terms of number of bands in BSE for linear response
of Cr2O3 in BSE

Other convergence parameters value

The other parameters value used in this convergence test is given below.
Screening parameters

1. npwmat 113
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Figure B.10: Convergence in terms of number of bands in BSE parameters for
linear response of Cr2O3 in BSE

2. npwwfn 1600

3. nbands 200

4. lomo 1

BSE parameters

1. npwmat 113

2. npwwfn 3000

3. lomo 1
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Appendix C

Convergence study in case of
Second-order response function

Several convergence tests have been performed in the Second-order response cal-
culation of Cr2O3, and one of them are detailed below.

C.1 Convergence in terms of number of bands
The figure (C.1) and (C.2) shows that the convergence in terms of number of
band in the second-order response. The nband converged value is 200 for the
second-order response of Cr2O3.

Other convergence parameters value

The other parameters value used in the convergence study is given below,

1. npwwfn 3000

2. lomo 1

131



C. Convergence study in case of Second-order response function

Figure C.1: Convergence in terms of number of band for second-order response of
Cr2O3 in IPA

Figure C.2: Convergence in terms of number of band for second-order response of
Cr2O3 in IPA
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Appendix D

Convergence study in the GW band
gap calculations

To get the accurate GW band gap various parameters in the screening, and also in
the self energy, has to be converged. The convergence test is done at the Γ points.
We did the convergence study in GW calculations using both pseudopotentials (va-
lence and semicore electrons pseudopotentials). Many convergence test has been
performed while doing the calculations. A few of the many tests for convergence
are shown in this appendix.

D.1 Convergence study of GW calculations using
valence electrons pseudopotential

We started our calculations with the valence electrons pseudopotential. In this
section, the convergence test using valence electrons pseudopotential has been
shown.

D.1.1 Convergence in terms of number of bands in the self
energy calculations

The convergence test in terms of number of bands for the self energy calculations
is given in the table (D.1). The nband value 800 is the converged value within
0.01eV as shown in the table (D.1).

Other convergence parameters value

Parameters in screening calculations
ecuteps 17
ecutwfn 8
nband 240

Parameters in self-energy calculations
ecutsigx 30.0
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D. Convergence study in the GW band gap calculations

ecutwfn 16

Number of band E0(eV) EGW (eV) ∆EGW (eV)
600 2.254 3.754 1.5
650 2.254 3.744 1.49
700 2.254 3.739 1.485
750 2.254 3.739 1.48
800 2.254 3.729 1.475
850 2.254 3.729 1.475

Table D.1: Convergence in terms of number of band in self energy

In the table (D.1), E0 is the KS band gap, EGW is the GW band gap and
∆EGW is the difference between the GW band gap and KS band gap.

D.1.2 Convergence in terms of number of planewave for
wavefunction (ecutwfn) in the self-energy calculations

The convergence in terms of number of planewave for wavefunction (ecutwfn) is
shown in the table (D.2). As we can see in the table (D.2) that ecutwfn 20 is
converged within 0.01eV.

Other convergence parameters value

Parameters in screening calculations
ecuteps 17
ecutwfn 8
nband3 240

Parameters in self energy calculation
ecutsigx 30.0
nband 800

ecutwfn E0(eV) EGW (eV) ∆EGW (eV)
16 2.254 3.729 1.475
20 2.254 3.750 1.496
24 2.254 3.752 1.499
28 2.254 3.752 1.499

Table D.2: Convergence in terms of ecutwfn in self-energy

D.1.3 Convergence in terms of number of planewave for ex-
change part (ecutsigx) in the self-energy calculations

The convergence in terms of number of planewave for exchange part (ecutsigx) is
shown in the table (D.3). As we can see in the table (D.3), that ecutsigx 28 is
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D.1. Convergence study of GW calculations using valence electrons
pseudopotential

consider as converged within 0.01eV.

Other convergence parameters value

Parameter in screening calculations
ecuteps 17
ecutwfn 8
nband 240

Parameter in self energy calculations
ecutwfn 16
nband 800

ecutsigx E0 (eV) EGW (eV) ∆EGW (eV)
20 2.254 3.814 1.56
24 2.254 3.744 1.49
28 2.254 3.728 1.475
32 2.254 3.728 1.475

Table D.3: Convergence in terms of number of planewave for exchange part (ecut-
sigx) in self-energy

D.1.4 Convergence in terms of number of bands in screening
parameters

The convergence in terms of number of band in screening is shown in the table
(D.4). The nband value 390 is converged within 0.01eV.

Other convergence parameters value

Parameters in screening calculations
ecuteps 17
ecutwfn 8

Parameters in self energy calculations
ecutsigx 28
ecutwfn 20
nband 800

D.1.5 Convergence in terms of ecuteps in screening param-
eters

ecuteps determines the cut-off energy of the planewave set used to represent the
independent-particle susceptibility χ(0) , the dielectric matrix , and its inverse.

135



D. Convergence study in the GW band gap calculations

Number of bands E0 (eV) EGW (eV) ∆EGW (eV)
240 2.254 3.804 1.55
290 2.254 3.714 1.53
340 2.254 3.754 1.5
390 2.254 3.749 1.496
440 2.254 3.749 1.496

Table D.4: Convergence in terms of number of bands in screening

The Convergence in terms of ecuteps is shown in table (D.5). As can be seen in
the table that ecuteps 17 is converged within 0.01eV.

Other convergence parameters value

Parameters in screening calculations
ecutwfn 8
nband 390

Parameters in self energy calculations
ecutsigx 28
ecutwfn 20
nband 800

ecuteps E0(eV) EGW (eV) ∆EGW (eV )
17 2.254 3.749 1.496
21 2.254 3.751 1.497
25 2.254 3.752 1.498
29 2.254 3.752 1.498

Table D.5: Convergence in terms of ecuteps in screening

D.1.6 Convergence in terms of number of planewave for
wave-function (ecutwfn) in screening parameters

The Convergence in terms of number of planewave for wave-function (ecutwfn) is
shown in the table (D.6). The ecutwfn value 20 is converged within 0.01eV.

Other convergence parameters value

Parameters in screening calculations
ecuteps 17
nband 390

Parameters in self energy calculations
ecutsigx 28
ecutwfn 20
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nband 800

ecutwfn E0(eV) EGW (eV) ∆EGW (eV)
8 2.254 3.749 1.496
10 2.254 3.536 1.283
12 2.254 3.440 1.187
14 2.254 3.384 1.130
16 2.254 3.429 1.176
20 2.254 3.440 1.187
24 2.254 3.441 1.188

Table D.6: Convergence in terms of number of planewave for wave-function
(ecutwfn) in screening

D.2 Convergence study of GW calculations using
semicore electrons pseudopotential

The convergence study using semicore electron pseudopotential is started with the
converged value calculated using valence electrons pseudopotential.

D.2.1 Convergence in terms of number of bands in the self
energy calculations

The convergence test in terms of number of bands for the self energy calculations
is given in the table (D.7). The nband value 1000 is the converged value within
0.01eV as shown in the table (D.7).

Other convergence parameters value

Parameters in screening calculations
ecuteps 23
ecutwfn 20
nband 450

Parameters in self energy calculations
ecutsigx 30
ecutwfn 25

In the table (D.7), E0 is the KS band gap, EGW is the GW band gap and
∆EGW is the difference between the GW band gap and KS band gap.
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Number of bands E0(eV) EGW (eV) ∆EGW (eV)
800 1.975 3.025 1.05
850 1.975 3.025 1.05
900 1.975 2.975 1.0
1000 1.975 2.968 0.993
1050 1.975 2.968 0.993

Table D.7: Convergence in terms of number of bands in self-energy calculations

D.2.2 Convergence in terms of number of planewave for
wavefunction (ecutwfn)

The Convergence in terms of number of planewave for wavefunction (ecutwfn) is
shown in the table (D.8). As we can see in the table (D.8) that ecutwfn 24 is
converged within 0.01eV.

Other convergence parameters value

Parameters in screening calculations
ecuteps 23
ecutwfn 20
nband 450

Parameters in self energy calculations
ecutsigx 30
nband 800

ecutwfn E0(eV) EGW (eV) ∆EGW (eV)
20 1.975 3.045 1.07
24 1.975 2.965 0.99
28 1.975 2.965 0.99

Table D.8: Convergence in terms of ecutwfn in self-energy

D.2.3 Convergence in terms of number of planewave for ex-
change part (ecutsigx) in the self-energy calculations

The convergence n terms of number of planewave for exchange part (ecutsigx) is
shown in the table (D.9). As we can see in the table (D.9), that ecutsigx 30 is
consider as converged within 0.01eV.

Other convergence parameters value

Parameter in screening calculations
ecuteps 23
ecutwfn 20
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pseudopotential

nband 450

Parameter in self-energy calculations
ecutwfn 25
nband 800

ecutsigx E0 (eV) EGW (eV) ∆EGW (eV)
28 1.975 2.985 1.01
30 1.975 2.965 0.99
34 1.975 2.965 0.99

Table D.9: Convergence in terms of number of planewave for exchange part (ecut-
sigx) in self-energy

D.2.4 Convergence in terms of number of planewave for
wave-function (ecutwfn) in screening parameters

The Convergence in terms of number of planewave for wave-function (ecutwfn) in
the screening calculations is shown in the table (D.10). The ecutwfn value 26 is
converged within 0.01eV.

Other convergence parameters value

Parameters in screening calculations
ecuteps 23
nband 390

Parameters in self-energy calculations
ecutsigx 30
ecutwfn 24
nband 1000

ecutwfn E0(eV) EGW (eV) ∆EGW (eV)
20 1.975 2.966 0.991
23 1.975 2.955 0.98
26 1.975 2.941 0.966
30 1.975 2.941 0.966

Table D.10: Convergence in terms of number of planewaves for wave-function
(ecutwfn) in screening
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Titre : Description théorique des processus non-linéaires dans les matériaux magnétiques

Mots clés : SHG, TDDFT, Cr2O3

Résumé : La génération de seconde harmonique
(SHG) est un processus au cours duquel deux pho-
tons d’énergie sont absorbés par un matériau et un
photon d’énergie 2ω est émis. Ce processus est décrit
par la susceptibilité macroscopique du second ordre
χ(2). Cette spectroscopie est utilisée pour étudier les
propriétés optiques des matériaux et elle révèle des
informations inaccessibles aux spectroscopies op-
tiques linéaires. En effet, les règles de sélection di-
polaire interdisent la SHG dans les matériaux centro-
symétriques et il est possible d’obtenir une ca-
ractérisation structurale et électronique de systèmes
complexes. L’absence de symétrie d’inversion du
temps, due à un ordre magnétique, fait apparaı̂tre
de nouvelles contributions dans la génération de se-
conde harmonique. Dans le cas de matériaux antifer-
romagnétiques, la symétrie magnétique détermine la
polarisation du matériau et SHG révèle alors l’arran-
gement des spins dans le solide.Elle peut ainsi être
utilisée pour l’étude de processus ultrarapides dans

les matériaux magnétiques, tels que les phénomènes
de démagnétisation. Il existe peu de descriptions
théoriques ab initio satisfaisantes pour les processus
non-linéaires dans les matériaux magnétiques. Ces
approches théoriques doivent être capables de traiter
sur le même pied les interactions électron-électron,
les effets de champs locaux et la distribution en spin
des électrons. Le but de ma thèse était de calcu-
ler numériquement les réponses optiques, linéaires
et du second ordre, pour des matériaux antiferro-
magnétiques. J’ai calcule ces deux reponses pour un
oxide de chrome( Cr2O3) dans le cadre d’un forma-
lisme ab-initio, reposant sur la TDDFT. Dans cette ap-
proche, la distribution en spin a été prise en compte
explicitement et cette extension a été implémentée
dans le code 2light. Je me suis finalement intéressée
à différentes structures possibles pour Cr2O3, ne
différant entre elles que par la distribution des spins,
et j’ai montré que mes résultats permettaient de dis-
criminer de façon caractéristique entre ces structures.

Title : Theoretical description of non-linear processes in magnetic materials.

Keywords : SHG, TDDFT, Cr2O3

Abstract : Second harmonic generation (SHG) is a
process in which two photons of energy are absor-
bed by a material and a photon of energy 2ω is emit-
ted. This process is theoretically described by the se-
cond order macroscopic susceptibility χ(2). This spec-
troscopy is used to study the optical properties of ma-
terials and it reveals additional information which can-
not be accessed with linear optical spectroscopies.
Indeed, as the dipolar selection rules prohibit SHG
in centro-symmetric materials, it is possible to obtain
a structural and electronic characterization of com-
plex systems. In particular, the absence of time inver-
sion symmetry, due to a magnetic order, reveals new
contributions in second harmonic generation. For the
specific case of antiferromagnetic materials, magnetic
symmetry determines the polarization of the material
and SHG then reveals the arrangement of spins in the
solid. It was shown that it can be used to study ultra-

fast processes in magnetic materials, such as dema-
gnetization. There are few satisfactory ab initio theo-
retical descriptions for nonlinear processes in magne-
tic materials. These theoretical approaches must be
able to treat the electron-electron interactions, the ef-
fects of local fields and the spin distribution of the elec-
trons on the same footing. The aim of my thesis was
to numerically calculate the optical, linear and second
order responses for antiferromagnetic materials. I cal-
culated these two response functions for a chromium
oxide (Cr2O3) as part of an ab-initio formalism, based
on TDDFT. In this approach, the spin distribution was
taken into account explicitly and this extension was
implemented in the 2light code. I was finally interes-
ted in different possible structures for Cr2O3, differing
from each other only in the spin distribution, and I sho-
wed that my results can discriminate between these
structures.
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