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(Laboratoire de Physique des Interfaces et des Couches Minces)

Nicolas Triantafyllidis Invité (Co-encadrant)
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A B S T R A C T

The study of step dynamics on vicinal surfaces is a long-standing problem
in crystal growth, dating back to the seminal work of Burton, Cabrera, and
Frank (BCF) in 1951. On these surfaces, the crystal grows by step flow, i.e., by
propagation of the atomic steps, which may develop instabilities breaking the
regularly spaced, straight-step initial configuration. Step bunching corresponds
to situations where steps coalesce together resulting in an alternating pattern
of bunches and wide atomic terraces, and step meandering to situations where
the initially straight steps exhibit a distinct waviness.

Using nonequilibrium thermodynamics and the formalism of configurational
forces, we derive a generalized Gibbs–Thomson relation for the step chemical
potential which natively accounts for the contribution of the elastic bulk and
incorporates the necessary coupling between the diffusion fields on adjacent
terraces (the chemical effect). This leads to a free-boundary problem that general-
izes the BCF model for the governing equations of step flow where full account
is taken of the dynamics terms. In doing so, we circumvent the quasistatic
approximation that prevails in the existing literature.

Through comprehensive numerical simulations, scaling laws governing the
coarsening behaviour of step bunches are identified. Taking the discrete-to-
continuum limit of the step-flow equations leads to a nonlinear partial differ-
ential equation that describes the macroscopic evolution of the surface profile,
from which we recover the numerically obtained scaling laws. Importantly,
we demonstrate that the chemical and dynamical effects can account for the
onset of step bunching and for the scaling laws experimentally observed in the
coarsening regime.

In the context of a general stability analysis, we discuss the influence on step
bunching and step meandering of all the mechanisms independently, as well as
their interplay, and we demonstrate the significant impact of the chemical and
dynamical effects on stability, even in the slow deposition/evaporation regime
where the dynamics were deemed negligible. Consequently, we set forth the
possible coexistence of bunching and meandering, in contrast with the BCF
model which predicts that the two instabilities are mutually exclusive.

In light of these findings, we show that the chemical and dynamical effects
offer interesting alternative explanations to account for the step instabilities
observed in some experiments, notably in the setting of electromigration under
extreme deposition flux for which we correctly predict the unexplained step
pairing instability. A full accounting of the stability reversals observed on
Si(111) under electromigration remains an open problem as the chemical and
dynamical effects do not modify the stability dependence on the direction of
the current.

vii



R É S U M É

L’étude de la dynamique des marches sur les surfaces vicinales est un pro-
blème de longue date dans le domaine de la croissance cristalline, qui remonte
aux travaux précurseurs de Burton, Cabrera et Frank (BCF) en 1951. Sur ces
surfaces, le cristal croît par écoulement de marches, qui peuvent développer des
instabilités rompant la configuration initiale de marches droites et équidistantes.
La mise en paquet correspond à des situations où les marches coalescent, tel
que se développe à la surface un motif de larges terrasses séparées par des pa-
quets de marches, et le méandrage à des situations où les marches initialement
rectilignes développe une ondulation distinctive.

En utilisant le formalisme de la thermodynamique hors-équilibre et des forces
configurationnelles, nous établissons une relation de Gibbs–Thomson générali-
sée pour le potentiel chimique des marches qui incorpore le couplage nécessaire
entre les champs de diffusion de terrasses adjacentes (l’effet chimique) et inclut
la contribution du substrat élastique. Celle-ci généralise l’approche usuelle de
la littérature qui se limite souvent à des marches rectilignes et postule d’em-
blée une énergie d’interaction dipolaire entre les marches. Nous aboutissons
finalement à un problème à frontière libre qui généralise le modèle BCF, et
où les termes dynamiques sont pleinement pris en compte. Ce faisant, nous
contournons l’approximation quasi-statique qui prévaut dans la littérature
existante.

Les lois d’échelle régissant le mûrissement de la mise en paquet sont identi-
fiées par simulation numérique et sont extrêmement robustes. La limite conti-
nue des équations de l’écoulement de marches conduit à une équation aux
dérivées partielles non-linéaire qui décrit l’évolution macroscopique du profil
de la surface, et dont les coefficients diffèrent de ceux reportés dans la litté-
rature puisqu’ils incluent les effets chimique et dynamique. Via une analyse
asymptotique multi-échelles, nous pouvons extraire analytiquement de cette
équation aux dérivées partielles des lois d’échelle qui corroborent celles ob-
tenues numériquement. De ce fait, nous soulignons que l’identification des
préfacteurs des lois d’échelle offre une piste intéressante pour la détermina-
tion des paramètres microscopique de la surface vicinale (tels que le taux de
couverture à l’équilibre ou le coefficient d’attachement/détachement) à partir
de grandeurs macroscopiques (comme la taille des paquets). Enfin, et c’est un
des résultats clés de notre travail, nous démontrons que les effets chimique et
dynamique à eux seuls suffisent à expliquer la mise en paquet ainsi que les
lois d’échelle observées expérimentalement pour leur mûrissement. En d’autres
termes, en prenant en compte tous les mécanismes requis, sans en négliger a
priori, nous sommes capables d’expliquer les résultats expérimentaux dans un
cadre unifié, sans avoir besoin d’introduire d’effets supplémentaires tel que
l’effet Ehrlich–Schwoebel (ES) inverse.

Avec pour dessein une analyse générale de la stabilité, nous discutons de
l’influence de chaque mécanisme, agissant indépendamment ou de concert, sur
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les instabilités de mise en paquet et de méandrage, et nous démontrons l’impact
significatif des effets chimique et dynamique sur la stabilité, et ce, même dans
le régime de déposition/évaporation lente où les termes dynamiques étaient
considérés comme négligeables. Nous mettons aussi en évidence la possible
coexistence des instabilités de mise en paquet et de méandrage, contrairement
au modèle BCF qui prévoit que les deux instabilités sont mutuellement exclu-
sives. Par ailleurs, étant donné que les effets chimique et dynamique partagent
certaines caractéristiques communes avec l’effet Ehlrich–Schwoebel inverse,
nous proposons qu’ils puissent en quelque sorte être interprétés comme un
effet ES inverse effectif, réconciliant ainsi les théories qui requièrent un effet ES
inverse pour déclencher l’instabilité et l’invraisemblance de l’existence d’une
telle barrière énergétique dans les faits.

À la lumière de ces résultats, nous montrons que les effets chimique et
dynamique offrent des alternatives intéressantes pour expliquer les instabilités
observées dans certaines expériences. Dans le cadre de l’électromigration avec
un courant remontant (step-up) sous un flux de déposition extrême, nous
prédisons correctement l’instabilité d’appariement des marches auparavant
inexpliquée. En présence d’un courant descendant (step-down), nous montrons
qu’une transition d’une instabilité de mise en paquet à une instabilité de
méandrage est possible en jouant sur la largeur des terrasses, en accord avec
l’expérience. Enfin, en réexaminant la relation mesurée expérimentalement entre
le champ électrique critique (c’est-à-dire le champ requis pour déclencher la
mise en paquet) et la largeur des terrasses, nous établissons une valeur robuste
pour le coefficient d’attachement/détachement, très peu sensible aux valeurs
des autres paramètres, qui place la surface dans un régime intermédiaire entre
le régime cinétiquement limité et le régime limitée par la diffusion de surface,
avec une tendance vers ce dernier, en accord avec la littérature. Toutefois,
une explication complète des inversions de stabilité observées sur Si(111)
sous électromigration reste un problème ouvert car les effets chimique et
dynamique n’affectent pas la dépendance de la stabilité à la direction du
courant d’électromigration.
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1
I N T R O D U C T I O N

The term epitaxy, coined by Royer (1928) from the Greek roots epi (above)
and taxis (order), refers to a type of crystal growth which consists in growing a
crystalline layer upon a crystalline substrate that imposes its order. If the layer
and substrate are different materials, one speaks of heteroepitaxy, whereas the
term homoepitaxy is used when the two materials are identical, which is the
situation of interest here.

Typically, and as will be the case in the present approach, the film is grown
from a vapor, but liquid-phase epitaxy or solid-phase epitaxy are also possible.
Three primary growth modes may be identified — Volmer-Weber (island for-
mation), Frank-van-der-Merwe (layer-by-layer), and Stransk-Krastanov (hybrid)
— based on thermodynamic considerations (Bauer, 1958), and therefore apply
to growth near thermodynamic equilibrium. For further details, the reader is
referred to Michely and Krug (2012).

In this work, we are concerned with out-of-equilibrium growth conditions,
such that the surface evolution is not only governed by the energetics of the
crystal but also by the kinetics of deposition/evaporation, which play a decisive
role. Consequently, we focus our attention on homoepitaxial layer-by-layer
growth. Indeed, as this mode corresponds to the thermodynamic prediction,
any deviation from perfect layer-by-layer growth must have a kinetic origin,
thus furnishing an ideal framework for studying the kinetics of growth in thin
film.

To promote this mode over the others, the epitaxial growth is performed
not on high-symmetry crystallographic planes but on surfaces deliberately
misoriented from one: the vicinal surfaces, as shown in Figure 1.1. Such surfaces
present as a staircase of atomically smooth terraces separated by atom-high
steps. If the width of the terraces, i. e., the distance between steps, is smaller
than the nucleation length, adatoms diffusing on the terraces will reach a

miscut
terrace

stepcrystal

(a) (b)

Figure 1.1: (a) Schematic of a crystal cut forming a vicinal surface. (b) Reflection
electron microscopy image of an array of monoatomic steps on Si(111)
(reprinted from Latyshev et al. (2017) with permission from Elsevier).
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2 introduction

deposition/
evaporation

diffusion

attachment/
detachment

step-edge diffusion

kinkstep-up current

step-down current

electromigration force:

step-up step-down

Figure 1.2: Microscopic processes underlying atomic step dynamics. Adatoms are
shown in purple, step atoms in green and the vapor atom in blue.

step and attach to it (because it provides an energetically-favorable kink site)
before they nucleate. As a result, the steps propagate forward, achieving a
layer-by-layer growth called the step-flow regime.

atomic processes of step flow To lay the foundation for the derivation
of the governing equations of step flow, we review the different microscopic
processes underlying the step dynamics depicted in Figure 1.1:

1. Deposition/evaporation: When an atom from the vapor reaches the surface,
it has a chance to get adsorbed and become an adatom ("adsorbed atom").
Reciprocally, an adatom may re-evaporate to the gas phase. Depending
on the balance between the deposition and evaporation rates, the net
evolution of the crystal will correspond to either growth or sublimation.
At sufficiently low temperature, the evaporation probability is so low that
a pure deposition regime can be assumed. Conversely, experiments of
crystal annealing in vacuum correspond to pure evaporation.

2. Diffusion on terraces: The adatoms move by diffusion on the terraces.

3. Attachment/detachment to steps: When an adatom reaches a step, it has
some probability to attach to it, thus advancing the step front.

4. Step-edge diffusion: More precisely, adatoms attach to (and detach from)
steps at kink sites (see Figure 1.2) after diffusing along the step edges.

5. Electromigration: In the presence of an electric field, adatoms experience
a drift, which is referred to as electromigration, that biases the diffusion
process in one direction. This corresponds to experimental situations
where the substrate is heated by circulating a direct electric current
of typically a few amperes through it. To explain this drift, adatoms
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step bunching step meandering

Figure 1.3: (left) Schematic for the two principal step instabilities. (right) Reflection
electron microscope image of Si(111) at 900�C: (top) regular atomic steps
and (bottom) initial stage of step bunches (reprinted from Kosolobov and
Latyshev (2011) with permission from Springer). Note that the aspect ratio
of 30:1 between vertical and horizontal directions makes the steps appear
wavy while they are essentially straight.

are endowed with an effective charge qe, which makes them subject
to an electrostatic force (Stoyanov, 1991). Experimental estimates place
this effective charge in the range of one hundredth to one tenth of the
elementary charge (Fu et al., 1997; Liu et al., 1998; Thürmer et al., 1999;
Homma and Aizawa, 2000; Pierre-Louis and Métois, 2004).

In addition, a permeability mechanism is sometimes invoked, notably to
explain the reversals of stability observed in electromigration experiment on
Si(111) (Métois and Stoyanov, 1999; Pierre-Louis, 2003), whereby adatoms may
directly cross a step without attaching to it when the kink density is too low
(Liu et al., 1996; Stoyanov, 1998). However, while this hypothesis allows to
predict the existence of an instability, many inconsistencies remain unsolved
(e. g., the effective charge prediction or the permeability reversals explanation).
Moreover, it has been shown that fast step kinetics and high permeability are
essentially indistinguishable (Pierre-Louis, 2003) and could in fact be two ways
of modeling the same physical process (Guin, 2018). Therefore, we do not
consider permeable steps in the present investigation.

observations of step instabilities In the standard case of step flow
growth, all the steps propagate at the same velocity and therefore maintain
their original equidistant configuration (e. g., MBE growth of Si(111)� 7� 7 at
650�C, see Omi et al. (2005)). However, under certain conditions, this uniform
propagation breaks down, and some steps, or portions of steps, may accelerate
while others slow down, leading to the two main types of instabilities observed
on vicinal surfaces (Figure 1.3):



4 introduction

1. Step bunching, when straight atomic steps propagate at different velocities,
eventually coalescing together in an alternating pattern of high step-
density regions (the bunches) and wide flat terraces.

2. Step meandering, when portions of the same step propagate at different
velocities, leading the initially straight steps to become wavy.

models of step flow The study of instabilities and subsequent nonlinear
evolution of vicinal surfaces is crucial to our understanding of the microscopic
mechanisms governing crystal growth in the step-flow regime. Not only of
fundamental interest, it also paves the way for such applications as the nanopat-
terning of semiconductor surfaces (Ronda and Berbezier, 2004; Wise et al.,
2005).

There exist three main approaches to model step flow, corresponding to three
different scales of study.

1. Kinetic Monte Carlo (KMC) simulations, whereby all kinetic processes (dif-
fusion on terraces and along steps, deposition/evaporation from/to the
vapor, attachment/detachment at the step) are modeled with correspond-
ing energies and hopping rates. Being the closest representation of the
actual physical motion of adatoms, this method allows to easily model
nontrivial mechanisms such as diffusion anisotropy or surface reconstruc-
tion, in very good agreement with experimental observations (Šmilauer
and Vvedensky, 1995; Mysliveček et al., 2002). On the downside, Monte
Carlo simulations are computationally expensive.

2. Continuum step model, whereby adatoms are described on terraces through
an adatom density ρ (number of adatoms per unit area), and steps are
seen as moving smooth interfaces across which the adatom density is
discontinuous, leading to the formulation of a free boundary problem.
Relative to the KMC simulations, this approach provides a more synthetic
view of the surface evolution (the individual motions of adatoms are now
described in terms of fluxes), and thus requires less computational power,
while giving comparable results (Misbah et al., 2010).

3. Continuum evolution equation, whereby the surface is described by a contin-
uous height function, abandoning the resolution of the step discreteness.
This approach results in one compact, although highly nonlinear, partial
differential equation to which the tools of calculus may be applied to
derive many fundamental properties of step flow growth.

In the present work, we focus on the derivation of a thermodynamically
consistent continuum step model in Chapter 2, which we also coarse-grain into a
continuum evolution equation for the analysis of the coarsening behavior of step
bunching in Chapter 3.

step governing equations The free boundary problem of the continuum
step model accounts for the step dynamics via a reaction-diffusion equation
for adatoms on each terrace, supplemented by two boundary conditions at the
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step, and an interface motion equation that describes the movement of steps.
Denoting F the deposition flux and ν the evaporation rate, the form of the
reaction-diffusion equation is generally accepted as:

Btρ = ∇2ρ + F� νρ, (1.1)

although we show that it implicitly assumes near-equilibrium crystal growth,
which corresponds to the linearization of its far-from-equilibrium counterpart
derived in Chapter 2. On the other hand, the boundary conditions are subject
to more discussions as they depend on which mechanisms are incorporated in
the model, and often rely on physically sensible phenomenological arguments.

Historically, in the first formulation by Burton et al. (1951), the boundary
conditions simply expressed the equilibrium of the terrace adatoms with the
reservoir of atoms constituted by the steps, i. e.,

ρ = ρ�eq, (1.2)

along the steps, where ρ�eq is the equilibrium adatom density. As this is essen-
tially equivalent to infinitely fast kinetics at the steps, these boundary conditions
where modified by Chernov (1961) and Schwoebel (1969) to account for the
finite kinetics of attachment/detachment, as well as their possible asymmetry.
Indeed, depending on whether adatoms reach the step from the upper or lower
terrace, they do not have the same chance of incorporation. This is usually due
to the presence of an extra energy barrier that upper terrace adatoms need to
overcome to attach to the step: the Ehrlich–Scwhoebel barrier. Including curvature
effects, much like in the classical formulation of the Gibbs–Thomson relation,
the corresponding boundary conditions read:

�D(∇ρ)� � n = κ�(ρ
� � ρ�eq + γ̃K), (1.3)

where D is the coefficient of diffusion on terraces, n the step normal, γ̃ the
step stiffness, K the step curvature, κ� (κ+) the kinetic coefficients for the
attachment/detachment of adatoms from the upper (lower) terraces, and ρ�

(ρ+) the limit value of adatom density at the upper (lower) side of the step.
Further classical refinements include elastic interactions between steps and
electromigration (see Chapter 2).

By contrast with these previous approaches, we strive to derive constitutive
relations in consistency with the principles of thermodynamics, following the
approach developed by Jabbour (2005) and Cermelli and Jabbour (2005). Based
on nonequilibrium thermodynamics, this method, which we review and extend
to include elasticity in Chapter 2, leads to modified boundary conditions with a
term that couples the adatom diffusion fields on adjacent terraces in the form of
a jump in the adatom density across the step, which we refer to as the chemical
effect. Moreover, an advection term �ρ+vK (with vK the normal velocity of the
step) is also required on the left hand side of (1.3), that takes into account the
motion of the step through the adatom density field. With the transient term
Btρ in the reaction-diffusion equation, we refer to these terms collectively as
the dynamical effect. While their contribution is predominantly neglected in the
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literature,1 these two effects have a significant impact on the stability of the
vicinal surface and cannot be neglected a priori, as shown in a one-dimensional
setting by Guin et al. (2020, 2021b).

stability analyses of the step flow model The study of step insta-
bilities relies on analyzing the stability of the step governing equations against
perturbations of the principal solution. There are two aspects:

1. The linear stability analysis, which predicts the onset of instabilities.

2. The long-term, post-instability, evolution of the surface morphology.

In this work, we extend the results of Guin et al. (2021a,b) to the two-dimensional
setting for the linear stability analysis, and to the post-instability regime in the
one-dimensional setting.

In the literature, the stability analysis is generally conducted under the
so-called quasistatic approximation, whereby the dynamical effect is deemed
negligible for low enough deposition/evaporation rates. This approach, which
we develop in Section 4.3, has the advantage of permitting an analytical treat-
ment of the linear stability analysis, which yields closed-form expressions for
the growth rate of the perturbation and allows to study in detail the effect of
each mechanism and their interplay.

However, as was shown in Guin (2018) and Guin et al. (2020, 2021a), the
quasistatic approximation is not well justified, even in the regime of low depo-
sition/evaporation rates. Because of the transient term in the reaction-diffusion
equation, it is no longer possible to obtain a closed-form solution for the adatom
density in the general case, and a more involved numerical treatment is re-
quired for the linear stability analysis, based on an Arbitrary Lagrangian-Eulerian
formulation inspired by fluid-structure interaction problems in hydrodynamics
(Guin et al., 2020). The dynamical effect proves to be a stabilizing/destabi-
lizing mechanism of its own. For straight steps, under deposition, it has a
destabilizing effect in the kinetically limited regime, and a stabilizing effect in
the diffusion-limited regime (the effects are reversed under evaporation). In
Section 4.4, we extend these preliminary results to the general two-dimensional
setting, where steps are not restricted to a rectilinear shape.

Likewise, in the context of long-term evolution, the dynamical effect is
seldom taken into account, as it imposes the resolution of a coupled system of
equations, and the chemical effect is not considered, being a relatively recent
addition to the framework of the continuum step model. In Chapter 3, we
present extensive numerical simulations from which we extract scaling laws for
characteristic length scales of the step bunches. Comparison with experimental
results on Si(111) � 7� 7 (Omi et al., 2005) shows that the dynamical and
chemical effects can provide a novel explanation for the observed coarsening
behavior of bunches. To further our understanding of step bunching, we also

1 A few works have studied the influence of the dynamical effect, often in a simplified setting as
in Ghez et al. (1993), Keller et al. (1993), Ranguelov and Stoyanov (2007), and Dufay et al. (2007),
more rarely accounting for all dynamics terms as in Gillet et al. (2000) and Bänsch et al. (2004).
Cermelli and Jabbour (2007) and Chen (2019) studied the influence of the chemical effect.
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provide the nonlinear partial differential equation governing the evolution of the
surface height derived from a consistent coarse-graining of the one-dimensional
continuum step model.

outline This thesis is organized as follows. We present in Chapter 2 the
governing equations of step-flow growth with our starting point a thermo-
dynamically consistent generalization of the BCF model that relies on a clear
separation between general balance laws, derived in Section 2.1, and consti-
tutive relations, made explicit in Section 2.2. Special attention is given to the
contribution of bulk elasticity in Section 2.3. Section 2.4 summarizes the results
of the previous sections, recording the working set of equations for step-flow
epitaxy used in the rest of the thesis.

Chapter 3 is dedicated to the investigation of step bunching beyond the linear-
stability regime. The numerical resolution process is detailed in Section 3.2,
along with the resulting scaling laws for the coarsening process. The continuum
limit, whereby a continuous function is used to describe the surface height, is
derived in Section 3.3 via Taylor expansions with respect to the terrace size. In
Section 3.4, the exponents that enter the scaling laws are extracted analytically
and compared to the ones obtained numerically.

The step meandering analysis is developed in Chapter 4. After establishing
the framework for a general linear stability analysis in Section 4.2, we discuss
the effect of each mechanism and their interplay, under the quasistatic approx-
imation in Section 4.3, and in the general case, including dynamics terms, in
Section 4.4. A comparison to some experimental results follows in Section 4.5.

The last Chapter 5 is devoted to the problem of electromigration. Using a
different method for the stability analysis (the so-called transpiration method),
we derive in Section 5.2 an approximate analytical expression for the growth
rate of instabilities, which we use in the subsequent Section 5.4 to reinterpret
several experimental results.





2
S T E P F L O W E Q UAT I O N S

In this chapter, the governing equations of step flow are derived from the
thermodynamics of nonequilibrium processes. This derivation follows the work
of Jabbour (2005) and Cermelli and Jabbour (2005), built on the approach
presented in Fried and Gurtin (2004) that is based on

1. A global atomic balance as well as adatom balances on the upper and
lower terrace that account for surface diffusion and attachment/detach-
ment fluxes at the step.

2. Newtonian balance laws for forces and moments that account for Newto-
nian stresses in bulk, at the surface, and at the step.

3. An independent balance law for configurational forces that accounts for
configurational stresses in bulk, at the surface, and at the step.

4. A mechanical (i. e., isothermal) version of the first two laws of thermody-
namics in the form of a free-energy imbalance that accounts for temporal
changes in free energy, energy flows due to adatom transport, and power
expended by both Newtonian and configurational forces.

5. Thermodynamically consistent constitutive relations.

In most published works (Natori, 1994; Houchmandzadeh and Misbah, 1995;
Tersoff et al., 1995; Paulin et al., 2001; Pierre-Louis, 2003; Xiang, 2002; Luo et al.,
2016) the study of elastic step-step interactions is limited to straight steps,1 and
the contribution of elasticity is included via a correction to the equilibrium
adatom concentration at a step, assuming dipolar interaction between steps
based on the seminal work of Marchenko and Parshin (1980). In that regard,
two studies stand out, that generalize step-step interactions beyond the usual
dipolar representation. Recently, Guin (2018) considered the contribution of
elasticity to the step driving force via the J-integral of the energy-momentum
tensor, representing the elastic driving force on the mobile elastic singularity
that is the step (Eshelby and Mott, 1951). In their treatment of the heteroepitaxial
growth of a strained, substitutional, binary alloy, Haußer et al. (2007) describe
the growing film as a discrete-continuum atomistically layered structured that
captures the contribution of the elastic bulk to the step driving force in the
form of the Helmholtz free-energy density of each layer.

Compared to the present theory, we underline that the approach in Guin
(2018) does not account, from the outset, for the contribution of the stress field
to the energetics of the system, but instead adds it a posteriori to the driving
force. Besides, it is restricted to the one-dimensional setting of straight steps. On

1 Notable exceptions are Houchmandzadeh and Misbah (1995) and Paulin et al. (2001).

9
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Figure 2.1: Schematic 3D view of atomic terraces separated by an atomic step S show-
ing the different control surfaces and fluxes.

the other hand, elasticity is an integral part of the derivation we present here in
the full two-dimensional setting, in the form of the Newtonian force balance,
where surface stress and line traction at the step are also considered. As such,
it differs from the approach in Haußer et al. (2007), where only bulk stress is
considered. Additionally, while their description of the film as a nanolayered
structure is an interesting alternative to our own approach, it introduces a
separate mechanical-equilibrium condition for each layer of the film, limiting
its practical applications. By contrast, we account for the effect of elasticity via a
J-integral, where the derivation of the elastic fields can be reduced to textbook
elasticity problems.

2.1 general principles

In a continuum theory, the step height a is negligible relative to the height
of thin film. The step is therefore modeled as a time dependent line defect
S(t) separating the crystal surface Ω into the upper atomic terrace Ω�(t) and
the lower one Ω+(t). The curve S(t) is parametrized with x = xs(s, t) where s
is the arclength parameter oriented such that the lower terrace Ω+ is locally
on the left of S (see Figure 2.1). Denote by t the unit tangent to S and n the
unit normal obtained by a counter-clockwise rotation of t by π/2. n makes an
angle ϑ with e1. The signed curvature K of S is defined by the following Frénet
relation: Bst = Kn, which entails K = Bsθ. Let the velocity of the step v := Btxs

and denote by vK := v � n and v∥ := v � t its normal and tangential components.
Consider a control surface R intersected by the step curve S and let Σ(t) :=

S(t)XR, R�(t) := RXΩ�(t) and R+(t) := RXΩ+(t). The boundaries of
R� and R+ are decomposed as BR� Y Σ and BR+ Y Σ, respectively. The end
points of Σ (intersection with BR) are denoted A and B, chosen such that the
arc parameters sA(t) and sB(t) of A and B defined by xA(t) = xs(sA(t), t) and
xB(t) = xs(sB(t), t) satisfy sA ¤ sB.
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2.1.1 Transport theorems

surface integral Let φ(x, t) be a scalar field defined on Ω which expe-
riences a discontinuity at crossing S . For x P S , we denote by φ�(x, t) and
φ+(x, t) the limit values of φ approaching S from Ω� and Ω+, respectively.
The jump of φ as crossing S is written [[φ(x, t)]] := φ+(x, t)� φ�(x, t).

We recall the Reynolds transport theorems (Fried and Gurtin, 2003) for R
(i. e., a fixed domain with a moving discontinuity),

d
dt

»
R

φ da =

»
R
Bt φ da�

»
Σ
[[φ]]vK ds, (2.1)

and for R� and R+ taken independently (i. e., time-dependent domains),

d
dt

»
R�

φ da =

»
R�

Bt φ da	
»

Σ
φ�vK ds. (2.2)

line integral As S evolves, the endpoints of Σ move with velocity

Vα(t) := ẋα(t) = ṡα(t)tα(t) + v(sα(t), t) for α = A, B, (2.3)

where the dot notation is used for the time derivative and tα(t) := t(sα(t), t)
with α = A, B are the tangents at the endpoints. Denote by Vα

∥ (t) := Vα(t) � tα(t)
the tangential velocities for α = A, B, which by (2.3) can be rewritten

Vα
∥ (t) = ṡα(t) + v∥(sα(t), t). (2.4)

Let ξ(s, t) a scalar field defined along S . Introducing the normal time derivative
of ξ defined by

□

ξ := Btξ � v∥Bsξ, (2.5)

the transport theorem for a line integral on a portion Σ of S reads

d
dt

»
Σ

ξ ds =
»

Σ

(□
ξ � ξKvK)ds +

»
BΣ

ξVBΣ
∥ . (2.6)

where the boundary term denotes»
BΣ

ξVBΣ
∥ = ξ(sB(t), t)VB

∥ (t)� ξ(sA(t), t)VA
∥ (t). (2.7)

Finally, we also record the transport identity (Fried and Gurtin, 2004):

□

ϑ = BsvK. (2.8)

2.1.2 Mass balance

Let ρ(x, t) the adatom density, ρb the bulk density (assumed constant) and
ȷȷȷ(x, t) the adatom surface diffusion flux on the atomic terraces, and denote by
r(x, t) the net evaporation/deposition flux of adatoms on the terraces.



12 step flow equations

adatom balance on upper and lower terraces The balance of
adatoms written on the regions R� and R+ independently reads

d
dt

»
R�

ρ da =

»
R�

r da�
»
BR�

ȷȷȷ � nBR dℓ�
»

Σ
J� ds, (2.9)

where J�(s, t) and J+(s, t) are the net attachment rate of adatoms to the step
from the upper and lower terraces, respectively. Using the Reynolds transport
theorem (2.2) along with the divergence theorem, (2.9) is rewritten»

R�

(Btρ� r +∇� ȷȷȷ)da +
»

Σ

(	 ρ�vK + J� � ȷȷȷ� � n)ds = 0, (2.10)

Localization of (2.10) on the terraces yields the diffusion equation,

Btρ = r�∇� ȷȷȷ on Ω, (2.11)

while localization at the step provides the local mass balances,#
J� = ȷȷȷ� � n� ρ�vK,

J+ = �ȷȷȷ+ � n + ρ+vK.
(2.12)

global atomic balance In the above adatom balances, the step is seen
as an exterior sink/source term of adatoms for the lower and upper terraces.
We now write a global balance of atoms over R, which accounts for the fact that
adatoms attaching to the step contribute to the extension of the top crystal layer
of the upper terrace. In addition, we introduce a diffusion current of adatoms
along the step but neglect the contribution of the step linear density of adatoms
to the total number of atoms. Let Js(s, t) be the scalar diffusive flux along the
step (see Figure 2.1, Js is oriented such that Js = Jst). Accounting for adatom
diffusion on terraces and for adsorption/desorption on terraces, the global
balance reads

d
dt

"»
R

ρ da +
»
R�

aρb da
*
=

»
R

r da�
»
BR

ȷȷȷ � nBR dℓ�
»
BΣ

Js. (2.13)

Appealing to the Reynolds transport theorems (2.1) and (2.2) and the divergence
theorem in the presence of a discontinuity, specifically,»

BR
ȷȷȷ � nBR dℓ =

»
R
∇� ȷȷȷ da +

»
Σ
[[ȷȷȷ]] � n ds, (2.14)

(2.13), combined with (2.9), yields»
R

(Btρ� r +∇� ȷȷȷ)da +
»

Σ

[
(aρb � [[ρ]])vK + [[ȷȷȷ]] � n + Bs Js]ds = 0. (2.15)

With the help of (2.12), localization of (2.15) along the step provides the follow-
ing step velocity equation:

aρbvK = J� + J+ � Bs Js along S . (2.16)
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2.1.3 Newtonian force balance

Before we can turn to the force and moment balances, we introduce in
Figure 2.2 the migrating volume V , bounded by R = R+ YR� at the surface
(with associated velocity field wBR) and BV in the bulk (with associated velocity
field wBV ).

{

Figure 2.2: Schematic 3D view of the different control volumes considered.

force balance Let T be the bulk stress tensor, Tt its surface analog (where
the superscript t stands for terrace), and Ts the line traction at the step. In the
absence of body forces, the force balance takes the form:»

BV
TnBV da +

»
BR

TtnBR dℓ+
»
BΣ

Ts = 0. (2.17)

Since T is singular at the step, we write the divergence theorem on the control
volume V from which we have excluded a cylindrical tube Cζ of radius ζ enclos-
ing the step with boundaries BCζ

ℓ = BCζ X V as lateral surface, Rζ = BCζ XR
as top surface, and BV ζ(A) and BV ζ(B) as front and back faces (see Figure 2.2).2

In the integrals involving these surfaces, we will denote their corresponding
normal vectors by nBC . On that newly defined control volume V ∖ Cζ , we may
use the divergence theorem in the usual manner and write»

V∖Cζ
∇�T dV =

»
BV∖BV ζ

TnBV da +
»
R∖Rζ

T|R e3 da�
»
BCζ

ℓ

TnBC da. (2.18)

We rearrange the last integral on the right-hand side as»
BCζ

ℓ

TnBC da =

»
BCζ

TnBC da�
»
Rζ

T|R e3 da

�
»
BV ζ (A)

TnBV da�
»
BV ζ (B)

TnBV da,
(2.19)

2 We choose a cylindrical tube for convenience, but any family of “regular enough” regions that
tends to the step as ζ Ñ 0 would work equally well.
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to conclude that»
V∖Cζ

∇�T dV =

»
BV

TnBV da +
»
R

T|R e3 da�
»
BCζ

TnBC da. (2.20)

Thus, if limζÑ0
³
BCζ TnBC da exists, then

³
V ∇�T dV exists as the limit»

V
∇�T dV = lim

ζÑ0

»
V∖Cζ

∇�T dV, (2.21)

and we obtain the generalized divergence theorem:»
V
∇�T dV =

»
BV

TnBV da +
»
R

T|R e3 da�
»

step
TnBC da, (2.22)

where»
R

T|R e3 da is taken in the sense of its Cauchy principal value,»
step

TnBC da = lim
ζÑ0

»
BCζ

TnBC da.
(2.23)

Similarly the fundamental theorem for line integrals takes the form:»
R
∇S �Tt da =

»
BR

TtnBR dℓ�
»

Σ
[[Tt(xs(s, t), t)]]n ds, (2.24)

with:

∇S = ∇� n(n �∇) the surface gradient, for a surface of normal n,»
R
∇S �Tt da defined in terms of its Cauchy principal value,

and Tt is assumed smooth along the surface up to the step.

(2.25)

Substitution of (2.22) and (2.24) into (2.17) yields, after localization:$''''&''''%
∇�T = 0 in the bulk,

� T|R e3 +∇S �Tt = 0 on Ω,»
s

TnBB da + [[Tt]]n + BsTs = 0 along S ,

(2.26)

where we have defined»
s

TnBB da = lim
ζÑ0

»
BBζ (s)

TnBB da, (2.27)

with BBζ(s) a closed half-sphere of radius ζ centered at the curvilinear abscissa s
(see Figure 2.2).3

3 Again, a half-sphere is chosen for convenience, but any family of “regular enough” regions that
tends to the point of curvilinear abscissa s as ζ Ñ 0 would work.
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moment balance Using index notation, we write:

a� b = ϵijkaibjek,

with ϵijk the Levi–Civita symbol.4 We use roman letters for indices in t1, 2, 3u
and Greek letters for indices in t1, 2u. Relative to the origin, the moment balance
takes the form»

BV
x� TnBV da +

»
BR

x� TtnBR dℓ+
»
BΣ

x� Ts = 0, (2.28)

or, in index notation,»
BV

ϵijkxiTjℓn
BV
ℓ da +

»
BR

ϵαjkxαTt
jδnBRδ dℓ+

»
BΣ

δ3kϵαβkxαTs
β = 0. (2.29)

The divergence theorem applied to the surface R and to the volume V respec-
tively, allows us to write:»

R

B
Bxδ

(ϵαjkxαTt
jδ)da =

»
BR

ϵαjkxαTt
jδnBRδ dℓ

�
»

Σ
ϵαjkxs

α[[T
t
jδ(x

s(s, t), t)]]nδ ds
(2.30)

and»
V

B
Bxℓ

(ϵijkxiTjℓ)dV =

»
BV

ϵijkxiTjℓn
BV
ℓ da +

»
R

ϵαjkxαTj3
��
R da

�
»

step
ϵijkxiTjℓn

BC
ℓ da.

(2.31)

Further, using (2.26)1,2,$''&''%
B
Bxδ

(ϵαjkxαTt
jδ) = ϵαjkxα Tj3

��
R + ϵαjkTt

jα,

B
Bxℓ

(ϵijkxiTjℓ) = ϵijkTji.
(2.32)

Finally,»
step

ϵijkxiTjℓn
BC
ℓ da = lim

ζÑ0

»
BCζ

ϵijk(xs
i + ζnBCi )Tjℓn

BC
ℓ da

=

»
step

ϵαjkxs
αTjℓn

BC
ℓ da + ϵijk lim

ζÑ0
(ζ

»
BCζ

nBCi Tjℓn
BC
ℓ da)

=

»
step

ϵαjkxs
αTjℓn

BC
ℓ da, (2.33)

4 Also known as the permutation symbol, ϵijk is 1 if (i, j, k) is an even permutation (i. e., (1, 2, 3),
(2, 3, 1), or (3, 1, 2)), �1 if it is an odd permutation (i. e., (1, 3, 2), (2, 1, 3), or (3, 2, 1)), and 0 if
any index is repeated.
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where we have assumed that T is “regular enough” that limζÑ0
³
BCζ nBCi Tjℓn

BC
ℓ da

exists. After substitution of the above identities into (2.28), localization, with
the help of (2.26)3, then yields:$''&''%

ϵijkTji = 0 in the bulk,

ϵαjkTt
jα = 0 on Ω,

ϵ3αβtαTs
β = 0 along S .

(2.34)

In other words,$''&''%
T = T⊺,

Tt
31 = Tt

32 = 0; Tt
12 = Tt

21,

Ts = Tst.

(2.35)

Note that the last column Tt
i3 is irrelevant because Tt is contracted with an

in-plane vector. As such, and without loss of generality, Tt is a symmetric tensor
with Tt

i3 = Tt
3i = 0.

2.1.4 Configurational force balance

Following Gurtin (1995), we augment the mass balances and Newtonian force
balance with a configurational force balance, as this formalism allows a unified
treatment of problems with multiple phases or defects. Like Newtonian defor-
mation forces describe the response of a body to deformation, configurational
accretive forces are associated with the addition and deletion of material points
at the boundary of a portion of a body. Indeed, two kinematics govern the
problem: one associated with the material velocity, to which Newtonian forces
are conjugate; and another associated with the step propagation velocity, to
which configurational forces are conjugate; each kinematic system being subject
to a balance law. For configurational forces, the general balance law is assumed
to take the form:»

BV
CnBV da +

»
BR

CtnBR dℓ+
»

Σ
g ds +

»
BΣ

Cs = 0, (2.36)

where C is the bulk configurational stress tensor, that acts in response to the
exchange of material at the boundary; Ct the surface configurational stress
tensor, a generalization of surface tension that acts in response to increases
in interfacial area or changes in the orientation of the interface; Cs the step
configurational stress vector, a generalization of line tension; and g the step
configurational internal force. By contrast with the Newtonian force balance,
which involves external forces, the configurational force balance involves an
internal force, associated with the exchange of adatoms, at the step, between
the crystallized bulk and the terraces.

$''''&''''%
∇ �C = 0 in the bulk,

� C|R e3 +∇S �Ct = 0 on Ω,»
s

CnBB da + [[Ct]]n + g + BsCs = 0 along S .

(2.37)
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Letting Cs = σt + τn and g = g � n, the normal component of this last equation
is: »

s
n �CnBB da + n � [[Ct]]n + g + Bsτ + σK = 0, (2.38)

where we have used the identity Bst = Kn. Since g � t is indeterminate, the
tangential component of (2.37)3 is inconsequential to the theory (Fried and
Gurtin, 2003).

2.1.5 Dissipation inequality

external power expenditures By definition, we assume that configura-
tional forces expend power in consort with transfers of material, and take wBV ,
wBR, and VBΣ to be appropriate power-conjugate velocities for CnBV , CtnBR,
and Cs, respectively (Gurtin, 1995, 2000; Fried and Gurtin, 2004).

Classically, for a control volume V , the Newtonian traction Tn would be
power-conjugate to the velocity u̇. However, when migrating, BV has no intrinsic
material description, and the appropriate power-conjugate velocity should
instead be the induced velocity field w = u̇ + (∇u)w, i. e., the motion velocity
following BV as described by w. Invoking an analogous argument for the
surface and line tractions, the external power expended on RY BV takes the
form:

W(V) =
»
BV

TnBV �wBV da +
»
BV

CnBV �wBV da

+

»
BR

TtnBR �wBR dℓ+
»
BR

CtnBR �wBR dℓ

+

»
BΣ

Ts �VBΣ +

»
BΣ

Cs �VBΣ,

(2.39)

where wBV = u̇ + (∇u)wBV , wBR = u̇ + (∇S u)wBR, and VBΣ =
□
u + (Bsu)V

∥
BΣ.

After substitution,

W(V) =
»
BV

[
TnBV � u̇ +

(
(∇u⊺)TnBV + CnBV

)
�wBV

]
da

+

»
BR

[
TtnBR � u̇ +

(
(∇S u⊺)TtnBR + CtnBR

)
�wBR

]
dℓ

+

»
BΣ

Ts �VBΣ +

»
BΣ

Cs �VBΣ.

(2.40)

We require that our theory be independent of the choice of parametrization
for the velocity fields wBV and wBR. Given that a change in parametrization
affects the tangential component of the velocity fields, but leaves the normal
component unaltered, invariance of (2.40) under reparametrization is equivalent
to the requirement that, for all tangential fields tBV and tBR,$'&'%

(
(∇u⊺)TnBV + CnBV

)
� tBV = 0,(

(∇S u⊺)TtnBR + CtnBR
)
� tBR = 0.

(2.41)

(2.42)



18 step flow equations

For a migrating control volume with associated velocity field w, the expression
for the velocity Vα (α = A, B) becomes

Vα = ṡα(t)t + v(sα(t)) +
wKt

t � nBR
. (2.43)

Note that it only depends on the normal component of w, which is why no con-

straint is imposed on Cs at this stage. Then, since V is arbitrary,
(
(∇u⊺)T + C

)
nBV

and
(
(∇S u⊺)Tt + Ct

)
nBR must be parallel to nBV and nBR, respectively, so that#

(∇u⊺)T + C = πI,

(∇S u⊺)Tt + Ct = πtI.
(2.44)

The external power expenditure expression (2.40) takes the form

W(V) =
»
BV

TnBV � u̇ da +
»
BV

πwK

BV da

+

»
BR

TtnBR � u̇ ds +
»
BR
pπwK

BR dℓ

+

»
BΣ

Ts �VBΣ +

»
BΣ

Cs �VBΣ

(2.45)

We now focus on the work of the Newtonian tractions. Starting with the bulk
term, we have, by the divergence theorem:»

BV
TnBV � u̇ da +

»
R

T|R e3 � u̇ da�
»

step
TnBC � u̇ da ds =

»
V
∇�(T⊺u̇)dV,

(2.46)

where ∇�(T⊺u̇) = ����(∇�T) � u̇ + T � ∇̇u. Adding and subtracting (∇u)vKn in the
step integral, and recalling that

□
u = u̇ + (∇u)vKn:»

BV
TnBV � u̇ da =

»
V

T � ε̇εε dV �
»
R

T|R e3 � u̇ da +
»

step
TnBC � □

u da

�
»

step
vKn � ((∇u⊺) � T)nBC da,

(2.47)

where, T being symmetric by (2.35)2, T � ∇̇u = T � ε̇εε. Next, for the surface
boundary BR term:»

BR
TtnBR � u̇ ds�

»
Σ
[[Ttn � u̇]]dℓ =

»
R
∇S �((Tt)⊺u̇)da, (2.48)

where, by (2.26)2, ∇S �((Tt)⊺u̇) = T|R e3 � u̇ + Tt � ˙∇S u. Adding and subtracting
(∇S u)vKn in the brackets:5»

BR
TtnBR � u̇ dℓ =

»
R

[
T|R e3 � u̇ + Tt � ε̇εεt

]
da

+

»
Σ
[[Ttn]] � □

u ds�
»

Σ
vKn � [[(∇S u⊺)Ttn]]ds,

(2.49)

5 ∇ or ∇S does not matter in fine as it is contracted with Ttn in the plane.
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where εεεt = 1
2 (∇S u|R + ∇S u⊺|R) is the interfacial strain tensor, and Tt being

symmetric, Tt � ˙∇S u = Tt � ε̇εεt. We have also used the fact that [[
□
u]] = 0, which

stems from the continuity condition

u((xS)+(s, t), t) = u((xS)�(s, t), t) (2.50)

differentiated with respect to time. Finally, for the line term, introducing the
interfacial strain

es = (∇u)t = Bsu = γn + εst, (2.51)

with γ the interfacial shear strain and εs the interfacial tensile strain, we get»
BΣ

Ts � □
u =

»
Σ

[
(BsTs) � □

u + Ts � (
□

es � KvKes)
]

ds, (2.52)

where the identity Bs
□
u =

□

es � KvKes is used. Substituting (2.47), (2.49), and
(2.52) back into (2.45), and using (2.26)3, we conclude:

W(V) =
»
V

T � ε̇εε dV +

»
R

Tt � ε̇εεt da +
»

Σ
Ts �

□

es ds�
»

Σ
TsεsKvK ds

�
»

step
vKn �

[
((∇u⊺) � T)nBC + [[(∇S u⊺)Ttn]]

]
da

+

»
BV

πwK

BV da +
»
BR

πtwK

BR dℓ+
»
BΣ

[
TsεsVBΣ

∥ + Cs �VBΣ

]
.

(2.53)

free-energy imbalance Denote by

F (R) =

»
R

µvr da�
»
BR

µ(ȷȷȷ� ρwBR) � nBR dℓ�
»
BΣ

µs Js (2.54)

the energy intake that accompanies the flow of atoms into or out of R by
adsorption/desorption on the terraces, as well as diffusion across BR and along
Σ (bulk diffusion is neglected), where µv is the vapor chemical potential (taken,
for simplicity, to be constant), µ(x, t) the chemical potential of adatoms on
terraces, and µs the chemical potential of adatoms attached to the step. Using
(2.11) and (2.12), we rewrite

F (R) =

»
R

[
µBtρ� (µ� µv)r� ȷȷȷ �∇µ

]
da +

»
BR

µρwK

BR dℓ

+

»
Σ

[
(µ+ � µs)J+ + (µ� � µs)J�

� (aρbµs + [[µρ]])vK � JsBsµ
s
]

ds.

(2.55)

In addition, in the presence of an electric field e = �∇Φ, assuming adatoms
behave as particles with an effective charge qe, we denote by

WL(R) = �
»
R

qe(∇Φ) � ȷȷȷ da�
»

Σ
qe(∇Φ) � Js ds (2.56)
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the work of the Lorentz force. In an isothermal setting, the energy imbalance
and entropy imbalance combine to deliver the free-energy imbalance:

d
dt

(»
V

ψb(x, t)dV +

»
R

ψ(x, t)da +
»

Σ
ψs(xs(s, t), t)ds

)
¤ W(V) + F (R) +WL(R), (2.57)

with ψb the bulk free energy (per unit volume), ψ the terrace free energy (per
unit area) and ψs the step free energy (per unit length).

At this point, we also need the following transport identity for the bulk free
energy ψb

d
dt

»
V

ψb dV =

»
V
Btψ

b dV +

»
BV

ψbwK

BV da�
»

step
vKn � ψbnBC da. (2.58)

Using transport identities (2.1) and (2.58), the LHS reduces to:»
V
Btψ

b dV +

»
R
Btψ da +

»
Σ

[ □

ψs � ([[ψ]] + ψsK)vK
]

ds

�
»

step
vKn � ψbnBC da +

»
BV

ψbwK

BV da +
»
BR

ψwK

BR dℓ+
»
BΣ

ψsVBΣ
∥ .

(2.59)

Substituting (2.53), (2.55), (2.56), and (2.59) in (2.57), we obtain, using the
relations (2.8), (2.38), and (2.44):

»
BV

(ψb � π)wK

BV da +
»
BR

(ψ� µρ� πt)wK

BR dℓ+
»
BΣ
(ψs � (σ + Tsεs))VBΣ

∥

+

»
V

[
Btψ

b � T � ε̇εε
]

dV +

»
R

[
Btψ� Tt � ε̇εεt � µBtρ + (µ� µv)r + ȷȷȷ �∇µe

]
da

+

»
Σ

[ □

ψs � Ts �
□

es � τ
□

ϑ� (aρbµs � g)vK

� (µ+ � µs)J+ � (µ� � µs)J� + JsBsµs
e

]
ds ¤ 0,

(2.60)

where we denote µe := µ + qeΦ the electrochemical potential of adatoms and
µs

e := µs + qeΦ the electrochemical potential of step adatoms. Then, invoking
the arbitrariness of the velocity fields wK

BV , wK

BR, and VBΣ
∥ , the following relations

must hold:$''&''%
π = ψb,

πt = ψ� µρ,

σ = ψs � Tsεs,

(2.61)

which yields the final dissipation inequality:
»
V

[
Btψ

b � T � ε̇εε
]

dV +

»
R

[
Btψ� Tt � ε̇εεt � µBtρ + (µ� µv)r + ȷȷȷ �∇µe

]
da

+

»
Σ

[ □

ψs � Ts �
□

es � τ
□

ϑ� (aρbµs � g)vK

� (µ+ � µs)J+ � (µ� � µs)J� + JsBsµs
e

]
ds ¤ 0.

(2.62)
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Hence, away from the surface, the bulk dissipation inequality has the form:

Btψ
b � T � ε̇εε ¤ 0, (2.63)

where localization arguments, as pertaining to an arbitrary control volume,
have been invoked and w = 0 assumed. At the surface but away from the step,
the terrace dissipation inequality reads:

Btψ� Tt � ε̇εεt � µBtρ + (µ� µv)r + ȷȷȷ �∇µe ¤ 0, (2.64)

where the arbitrariness of R permits localization and w = 0 is assumed. Finally,
at the step, the dissipation inequality can be written as:

□

ψs � Ts
□

εs � τ̃
□

ϑ�GvK � (µ+ � µs)J+ � (µ� � µs)J� + JsBsµ
s
e ¤ 0, (2.65)

where τ̃ = τ � Tsγ is the reduced configurational shear, G = aρbµs � g the

thermodynamic driving force, and we have used the identities
□
n = �

□

ϑt and
□

t =
□

ϑn to compute
□

es = (
□
γ + εs

□

ϑ)n + (
□

εs � γ
□

ϑ)t.

2.2 constitutive relations

2.2.1 Thermodynamic restrictions

Following the Coleman-Noll procedure (Coleman and Noll, 1963), the dis-
sipation inequalities (2.63), (2.64) and (2.65), valid for any admissible process,
furnish restrictions on the constitutive relations. Assume ψb to be a function
of εεε, ψb := ψb(εεε), by (2.63) the bulk stress reads

T = Bεεεψ
b. (2.66)

Likewise, assume ψ to be a function of εεεt and ρ, ψ := ψ(εεεt, ρ), by (2.64) the
surface stress and the adatom chemical potential read#

Tt = Bεεεt ψ,

µ = Bρψ.
(2.67)

Finally, assume ψs to be a function of εs and ϑ, ψs := ψs(εs, ϑ), by (2.65) the line
traction and reduced configurational shear read:#

Ts = Bεs ψs,

τ̃ = Bϑψs.
(2.68)

Assuming the dissipative fluxes at the step to depend linearly on the thermo-
dynamic forces, we write, in the most general case:

Js

J+

J�

vK

 = L


�Bsµ

s
e

µ+ � µs

µ� � µs

G

 , (2.69)
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where, by (2.64) and (2.65), L P R4�4 is positive semi-definite. Restricting our
attention to the most simple case of negligible couplings,6 we can write the
deposition/evaporation rate as

r = �γv(µ� µv), (2.70)

and the different fluxes as$''''&''''%
ȷȷȷ = �ρM(∇µe),

Js = �MsBsµ
s
e,

J+ = γ+(µ
+ � µs),

J� = γ�(µ
� � µs),

(2.71)

where, by (2.64) and (2.65), γv, M, Ms, and γ� are all scalar positive coefficients.
Lastly, from (2.65) we assume the following linear kinetic relation, with positive
coefficient b, between the velocity vK and thermodynamic driving force G at
the step:

vK = bG. (2.72)

Using the configurational force balance at the step (2.38),

g = �n �
»

s
CnBB da� n � [[Ct]]n� Bsτ� σK, (2.73)

and using the definition of the reduced configurational shear, we have, by
differentiation:

Bsτ = Bsτ̃ + (BsTs)γ + Ts(Bsγ). (2.74)

Moreover, from the constitutive relation (2.68),

Bsτ̃ = Bsϑψs = (Bsε
s)(BϑTs) + KBϑϑψs. (2.75)

Hence, substituting (2.73), (2.74), and (2.75) in the thermodynamic driving
force:

G = aρbµs + n �
»

s
CnBB da + n � [[Ct]]n + K(ψs + Bϑϑψs � Tsεs)

+ (Bsε
s)(BϑTs) + Bs(Tsγ).

(2.76)

2.2.2 Step chemical potential

As the step velocity is already prescribed by (2.16), (2.76) can be seen as a
generalized Gibbs–Thomson relation furnishing the step chemical potential,

µs = � 1
aρb

(
f + n � [[Ct]]n + γ̃K + (Bsε

s)(BϑTs) + Bs(Tsγ)� vK
b

)
, (2.77)

6 We investigate in Appendix A the effect of a coupling between the fluxes J� and the thermody-
namic forces (µ� � µs).
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with$'&'% f := n �
»

s
CnBB da,

γ̃ := ψs + Bϑϑψs � Tsεs.
(2.78)

If we neglect surface stress and line traction, in line with the existing literature,
the relation simplifies to

µs = � 1
aρb

(
f + [[ω]] + γ̃K� vK

b

)
, (2.79)

with ω := ψ � µρ the adatom grand canonical potential. Compared to the
classical Gibbs–Thomson relation

µs = � 1
aρb γ̃K, (2.80)

one can see that with the nonequilibrium thermodynamics approach we adopt
here, full account is taken of:

1. the energetics of the global system {crystal monolayer+step+adatom layer}
via the coupling of diffusion fields on adjacent terraces [[ω]],

2. the dissipation related to the finite velocity of the step �vK/b, akin to
kinetic undercooling in solidification problems (Davis, 2001),

3. the contribution of the elastic bulk to the driving force via the elastic
fields generated by the steps on the vicinal surface f.

2.2.3 Choice of a free energy

The restrictions on the constitutive relations derived in Section 2.2.1 need to
be completed by a constitutive assumption for the adatom free-energy density.
Assume the adatom layer over terraces to be an ideal gas, its free energy reads

ψ(ρ) = ρkBT

(
ln
(

ρ

ρ�eq

)
� 1
)

, (2.81)

where ρ�eq is the equilibrium adatom density, whose physical meaning is further
explained below. By (2.67), we have

µ(ρ) = kBT ln
(

ρ

ρ�eq

)
. (2.82)

Noting that µ(ρ�eq) = 0, it appears that ρ�eq is the adatom density in equilibrium with
a straight isolated step. Indeed, in such a situation, by (2.77), the step chemical
potential reduces to 0 (cf. K = 0, [[ψ� µρ]] = 0 since in equilibrium ρ = ρ�eq
over all Ω, and vK = 0 at equilibrium) and µ(ρ�eq) = 0 is then the expression of
equilibrium of the adatom layer with the step reservoir.

Using the free energy assumption, we explicit some of the constitutive rela-
tions (2.71) and (2.77). Letting D = kBTM and Ds = kBTMs, in the most simple
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case where we neglect the step-edge deformation and stress, and the surface
stress, these constitutive relations are rewritten as$'''''''''&'''''''''%

ȷȷȷ = D
[
�∇ρ +

qeρ

kBT
e
]

, r = γv

[
µv � kBT ln

(
ρ

ρ�eq

)]
,

Js = �DsBs

[
� 1

aρb

( f

kBT
� [[ρ]] +

γ̃

kBT
K� vK

kBTb

)
+

qe

kBT
Φ
]

,

J� = γ�

[
kBT ln

(
ρ�

ρ�eq

)
+

1
aρb

(
f� kBT[[ρ]] + γ̃K� vK

b

)]
.

(2.83)

2.3 elastic interactions between steps

This section is dedicated to the derivation of the elastic contribution f to
the driving force that appears in the step chemical potential (2.77). Note that,
for simplicity, we will assume that the elasticity and diffusion problems are
uncoupled. After showing how the steps can be equivalently represented as
force dipoles acting on a flat surface (in the absence of a far field stress), we
establish the following identity for two dipoles A and B, with associated dipolar
tensors dA and dB, interacting at distance x0, for an arbitrary control volume V
enclosing only dipole B:»

BVYR
Cijnj da = dB

jkuA
k,ij(x

0). (2.84)

In Section 4.2.2, the above result is used to compute explicitly the step-step
interaction for infinitesimally perturbed meanders in the context of linear
stability analysis.

2.3.1 Multipole representation of steps

A simple continuum representation of the elastic field generated by a step
consists in replacing the stepped surface by an elastic half space subjected to a
surface distribution of forces fs(x1, x2) exerted by the step system on the bulk.
This distribution of forces is assumed localized on a surface domain L around
the step (Figure 2.3).

The displacement field u(x) generated by this distribution of forces can be
described as a convolution with the appropriate Green’s function:

ui(x) =
»
L

Gij(x1 � x11, x2 � x12, x3) f s
j (x11, x12)dx11 dx12, (2.85)

with Gij the components of the tensor Green’s function for a half-space, given
in Appendix B (in the absence of surface stress). Assuming the extent of the
region L is small compared to the distance between steps, we Taylor-expand
(2.85):

ui(x) =
¸
n¥0

(�1)n

n!

( »
L
(x1k1

...x1kn
) f s

j (x11, x12)dx11 dx12
) BnGij

Bxk1 ...Bxkn

(x), (2.86)
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Figure 2.3: Representation in a continuum picture of the effect of a step on the bulk
through a surface distribution of forces fs(x1, x2).

where indices ki span t1, 2u. This is the multipole expansion. Correspondingly,
the stress associated to this displacement field solves:

Tij,j +
¸
n¥0

(�1)n

n!

( »
L
(x1k1

...x1kn
) f s

j (x11, x12)dx11 dx12
) Bnδ

Bxk1 ...Bxkn

(x) = 0, (2.87)

with δ Dirac delta function. Integrating (2.87) over V , applying the divergence
theorem, and using the properties of the delta function, we obtain:»

BVYR
TnBV da +

»
L

fs(x11, x12)dx11 dx12 = 0. (2.88)

Along with (2.17), this result suggests:»
L

fs(x11, x12)dx11 dx12 = �
»
BR

TtnBR dℓ�
»
BΣ

Ts. (2.89)

In the classical derivation of the elastic field induced by a step, surface stress
and line tension are neglected. Consequently, the monopole is found to be
zero and the dominant contribution is expected to be dipolar. To allow for the
computation of an explicit expression for step interactions, we will proceed with
this simplification as well. Based on the work of Koguchi (2008), this should
have minimal impact on the linear stability analysis. Indeed, the author showed
that the influence of surface stress and elasticity is limited to a few tenths of
nanometers around the step, while we consider interactions between steps that
are typically several nanometers apart. In conclusion, neglecting the higher
order moment multipoles, as they are associated with higher order derivatives
of the Green’s function, which scale as r�k, with k ¥ 3, and thus decay more
rapidly than the dipolar contribution, which scales as r�2, we model a portion
of a step as a dipolar tensor d with an associated displacement field:

ui(x) = �Gij,k(x)dkj, (2.90)

where dkj =

»
L

xk f s
j (x11, x12)dx11 dx12.
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B

A

Figure 2.4: Interaction of two dipoles A and B, with associated dipolar tensors dA and
dB. The control volume encloses dipole B but not A.

2.3.2 Interaction of two elastic dipoles

From (2.44) and (2.61), we recover the classical expression for the configura-
tional bulk stress tensor C

C = ψb1� (∇u)⊺T, (2.91)

which corresponds to the Eshelby energy-momentum tensor. Recalling that ψb =

ψb(εεε), its spatial derivative reads

ψb
,i = εεε,i � T, (2.92)

where we have used the identity (2.66): T = Bεεεψ
b. Next, the divergence theorem,

combined with (2.91) and (2.92), yields:»
BVYR

Cijnj da =

»
V

(
ε jk,iTjk � uj,ikTjk � uj,iTjk,k

)
dV. (2.93)

Using the symmetry of T, the first two terms on the right hand side cancel out,
and the relation simplifies to:»

BVYR
Cijnj da = �

»
V

uj,iTjk,k dV, (2.94)

From (2.87), we have, for α = A, B:

Tα
jk,k � dα

kj
Bδ

Bxk
(x� xα) = 0.7 (2.95)

Decomposing the total displacement and stress fields as u = uA + uB and
T = TA + TB, it is then immediate to see that»

V
uj,iTA

jk,k dV = 0, (2.96)

7 Note that this relation also allows us to verify the self-consistency of our formulation as it
immediately shows that limζÑ0

³
BCζ TnBC da = 0 and thus converges.
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as dipole A is outside the control volume V . Hence, using the properties of the
Dirac delta function, (2.94) reduces to

�
»
V

uj,iTjk,k dV = dB
kju

A
j,ik(x

B) + Uself, (2.97)

where Uself corresponds to the J-integral of an isolated dipole, i. e.,

Uself =

»
BVYR

CB
ij nj da. (2.98)

In the present setting of dipolar interaction, this “self-energy” integral is not
convergent, which violates the assumption used in the derivation of the gen-
eralized divergence theorem for the bulk configurational stress tensor. This
is consistent with the breakdown of linear elasticity theory near the step, as
evidenced by the atomistic simulations of Stewart et al. (1994). To circumvent
this core singularity, noticing that the term dB

kju
A
j,ik(x

B) is not affected by the
core behavior of the displacement field for two distant-enough dipoles, we
may introduce in the dipolar displacement field a regularized region of finite
width centered around the dipole’s position, such that the self-energy integral
converges to a finite value, dependent on the specific choice of regularization.
Finally, because the J-integral only contributes via the step-chemical potential,
which is defined up to an additive constant, we may always set

Uself = 0 (2.99)

via a redefinition of the chemical potential reference. Hence, after centering the
origin at dipole A, we obtain»

BVYR
Cijnj da = dB

kju
A
j,ik(x

0), (2.100)

where x0 = xB � xA.

2.4 step dynamics model

2.4.1 Governing equations

We combine (2.11), (2.12), (2.16), and (2.83) to write the step dynamics gov-
erning equations as a partial differential system for ρ over Ω with boundary
conditions along S and a condition on vK for the computation of the motion of
S . $'''''''''''&'''''''''''%

Btρ = D∇�
(
∇ρ� qeρ

kBT
e
)
+ γv

[
µv � kBT ln

(
ρ

ρ�eq

)]
,

� ρ�vK �D
(
(∇ρ)� � qeρ

�

kBT
e
)
� n = J�,

ρ+vK +D
(
(∇ρ)+ � qeρ

+

kBT
e
)
� n = J+,

aρbvK = J� + J+ � Bs Js,

(2.101)
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e

Figure 2.5: Schematic 3D view of the terraces and the different processes taking place
at their surface.

with J+, J�, and Js given in (2.83). As shown in Figure 2.5, we denote xn(s, t)
the position of the nth step, and ρn(x, t) the adatom density on the nth terrace
(comprised between steps n and n + 1). We also use subscript n to describe
quantities relating to step n, such as its curvature Kn and the elastic interaction
with the rest of the steps

fn := nn �
»

sn

CnBC da. (2.102)

Assuming small departures of the adatom density from its equilibrium value
(|ρ� ρ�eq| ! ρ�eq), we linearize ln(ρ/ρ�eq) � (ρ� ρ�eq)/ρ�eq. Defining$'''''''''&'''''''''%

ν :=
kBTγv

ρ�eq
the evaporation rate,

F := γv(µ
v + kBT) the deposition flux,

κ� :=
kBTγ�

ρ�eq
the attachment/detachment kinetic coefficients,

vn := (Btxn) � n the normal velocity,

(2.103)

the governing equations read$'''''''''''&'''''''''''%

Btρn = D∇�
(
∇ρn � qeρn

kBT
e
)
+ F� νρn,

�ρ�n vn+1 �D
(
(∇ρn)

� � qeρ
�
n

kBT
e
)
� n = J�n+1,

ρ+n vn +D
(
(∇ρn)

+ � qeρ
+
n

kBT
e
)
� n = J+n ,

aρbvn = J�n + J+n � Bs Js
n,

(2.104)
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with$''''''''&''''''''%

J�n = κ�

[
ρ�n�1 � ρ�eq + a2ρ�eq

( fn
kBT

� [[ρ]]xn +
γ̃

kBT
Kn � vn

kBTb

)]
,

J+n = κ+

[
ρ�n � ρ�eq + a2ρ�eq

( fn
kBT

� [[ρ]]xn +
γ̃

kBT
Kn � vn

kBTb

)]
,

Js
n = DsBs

[
a2
( fn

kBT
� [[ρ]]xn +

γ̃

kBT
Kn � vn

kBTb

)
� qe

kBT
Φ
]

,

(2.105)

where we have used the following notations$''&''%
ρ�n := ρn(xn+1, t), ρ+n := ρn(xn, t),

(∇ρn)� := ∇ρn(xn+1, t), (∇ρn)+ := ∇ρn(xn, t),

[[ρ]]xn := ρn+1(xn, t)� ρn(xn, t).

(2.106)

2.4.2 Nondimensionalization

We nondimensionalize the free-boundary value problem (2.104) and (2.105)
with the initial terrace width L0 as a characteristic length, ρ�eq for the adatom
density and L2

0/D as a characteristic time, and consequently identify twelve
dimensionless parameters in the dimensionless formulation of the problem.
The equilibrium adatom coverage is described by

Θ := a2ρ�eq. (2.107)

Necessarily, 0 ¤ Θ ¤ 1, since it represents a fraction of the available lattice
sites. The deposition and evaporation of adatoms are characterized by the
dimensionless counterpart of F and ν:

F :=
FL2

0
ρ�eqD

=

(
L0

Ldep
d

)2

, (2.108)

which quantifies the ratio of the initial terrace width to the diffusion length
under deposition and

ν̄ :=
νL2

0
D =

(
L0

Leva
d

)2

, (2.109)

that similarly gives the ratio of the initial terrace width to the diffusion length
under evaporation. Note that the natural requirement that ρ ¤ 1/a2 and the
more compelling assumption that ρ deviates little from ρ�eq implies upper
bounds on the values of F and ν̄ discussed in Appendix D. Next, we introduce
the Péclet number

P =
V0L0

D , (2.110)

which gives the ratio of step velocity V0 to a characteristic diffusion velocity
D/L0, and is central in the discussion of the quasistatic approximation (see
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Section 4.3.1). The electromigration force and potential are given by their
dimensionless counterparts

ē :=
qeL0

kBT
e (2.111)

and

Φ :=
qeΦ
kBT

. (2.112)

Given that the adatom attachment/detachment from above and below are
related to similar atomistic mechanisms, they shall have comparable orders of
magnitude, hence the kinetic coefficients are rewritten in terms of

κ̄ :=
κ�L0

D , (2.113)

expressing the ratio of the initial terrace width to the attachment/detachment
kinetic length D/κ� associated to the upper terrace (Krug, 2005). κ̄ is an im-
portant parameter that allows to distinguish between the attachment/detachment
limited regime and the diffusion limited regime. These notions refer to the two
kinetic processes: attachment/detachment at steps and diffusion on terraces. κ̄

can be seen as the ratio of a characteristic step attachment/detachment velocity
κ� to a characteristic diffusion velocity D/L0. Then, κ̄ ! 1 corresponds to
situations where the attachment/detachment is the limiting kinetic process and
conversely κ̄ " 1 is associated to cases where the diffusion is limiting.

To quantify the asymmetry of attachment/detachment at steps from the
upper and lower terraces, we introduce

S :=
κ+
κ�

, (2.114)

giving the strength of the Ehrlich-Schwoebel (ES) effect. The case 0   S   1
(S ¡ 1) correspond to an inverse (direct) ES effect, while S = 1 is for a symmetric
attachment/detachment.

Likewise, to quantify the relative strength of surface diffusion and step-edge
diffusion, we introduce

Π :=
a2Ds

L0D
, (2.115)

which can be seen as the ratio of the step-edge diffusion Ds to a characteristic
terrace diffusion velocity DL0/a2. As such, Π ! 1 corresponds to situations
where the diffusion process is dominated by surface diffusion and Π " 1 is
associated to cases where step-edge diffusion is the main diffusion process.

The strength of the elastic dipoles is represented by the dimensionless coun-
terpart of d,

d =

d
a2

kBTL3
0

d, (2.116)
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such that we write the dimensionless step-step interaction as

fn =
a2

kBTL3
0
fn. (2.117)

The step stiffness is rewritten in dimensionless form

γ̄ =
a2γ̃

kBTL0
, (2.118)

and the kinetic coefficient b

b =
L0kBTb

a2D . (2.119)

Without relabeling the dimensionless time and space variables, the governing
equations for the adatom diffusion problem (2.104) and (2.105) read in their
dimensionless form$'''''''''''&'''''''''''%

Btρn = ∇�
(
∇ρn � ρnē

)
+ F� ν̄ρn,

�ρ�n vn+1 �
(
(∇ρn)

� � ρ�n ē
)
� n = J�n+1,

ρ+n vn +

(
(∇ρn)

+ � ρ+n ē
)
� n = J+n ,

vn = Θ(J�n + J+n )� Bs Js
n,

(2.120)

with$''''''&''''''%

J�n = κ̄
(

ρ�n�1 � 1�Θ(ρ+n � ρ�n�1) + fn + γ̄Kn � vn

b

)
,

J+n = κ̄S
(

ρ+n � 1�Θ(ρ+n � ρ�n�1) + fn + γ̄Kn � vn

b

)
,

Js
n = ΠBs

(
�Θ(ρ+n � ρ�n�1) + fn + γ̄Kn � vn

b
�Φ

)
.

(2.121)

Note that the term in 1/b in (2.121) accounts for the dissipation related to
the nonequilibrium processes underlying the propagation of the step. Although
an experimental estimation of b is out of reach, if we assume the step is in local
thermodynamic equilibrium, i. e., G = 0, Equation 2.72 imposes b Ñ 8 to allow
for step motion at finite velocity. Consequently, the contribution of the term in
1/b to the step governing equation may be neglected.8

2.4.3 Arbitrary Lagrangian-Eulerian formulation

The problem under consideration being a free boundary problem, the domain
of definition of the adatom density is not constant but varies with the steps’ po-
sitions, which can pose additional difficulties for the linear stability analysis as

8 We also performed numerical simulations with a finite b that showed no visible difference with
the limit case b Ñ8.
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well as the numerical integration of the system. Thus, in order to eliminate this
dependence, the system of partial differential equations (2.120)1�3 is rewritten
on a fixed domain by introducing the Lagrangian space variable u related to
(x, y) on (xn, xn+1)�R by the diffeomorphism gn defined by

u = gn(x, t) :=
|x� xn(s, t)|

ℓn(s, t)
where ℓn(sn, t) := |xn+1(sn+1, t)� xn(sn, t)|.

(2.122)

If the curvilinear abscissae sn can be written as single-valued functions of the
coordinate y, i. e.,

sn := hn(y), (2.123)

which is guaranteed for small deviations from the straight-step configuration,
we can describe the step profiles as functions of the coordinate y instead of
the curvilinear abscissae sn, so that xn = xn(y = h�1

n (sn), t) = xn(y, t)e1 + ye2,
where h�1

n designates the reciprocal function of hn. Consequently, we redefine

u = gn(x, t) :=
x� xn(y, t)
ℓn(y, t)

where ℓn(y, t) := xn+1(y, t)� xn(y, t), (2.124)

and obtain, denoting y-derivatives with primes,$'''&'''%
Kn =

x2na
1 + (x1n)2

,

nn =
1a

1 + (x1n)2
(e1 � x1ne2).

(2.125)

Let g�1
n be the reciprocal function of gn, then the Lagrangian adatom density ρ̃n is

defined by

ρ̃n(u, y, t) := ρn(x = g�1
n (u, y, t), y, t), (2.126)

on the spatial domain (0, 1)�R which is now independent of the steps’ posi-
tions.

Differentiating u:$''''''''''''&''''''''''''%

Btu = � ẋn + ℓ̇nu
ℓn

,

Bxu =
1
ℓn

,

Byu = �x1n + ℓ1nu
ℓn

,

Byyu = �x2n + ℓ2nu
ℓn

+ 2
ℓ1n
ℓn

x1n + ℓ1nu
ℓn

,

(2.127)
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we explicit the relations between the partial derivatives of ρn and ρ̃n:$''''''''''''''&''''''''''''''%

Btρn = (Btu)Buρ̃n + Btρ̃n = � ẋn + ℓ̇nu
ℓn

Buρ̃n + Btρ̃n,

Bxρn = (Bxu)Buρ̃n =
1
ℓn
Buρ̃n,

Bxxρn =
1
ℓ2

n
Buuρ̃n,

Byρn = (Byu)Buρ̃n + Byρ̃n = �x1n + ℓ1nu
ℓn

Buρ̃n + Byρ̃n,

Byyρn = (Byu)2Buuρ̃n + Byyρ̃n + 2(Byu)Buyρ̃n + (Byyu)Buρ̃n.

(2.128)

Substituting back, (2.120) is rewritten with Lagrangian variables$'''''''''''''''''&'''''''''''''''''%

ℓ2
nBtρ̃n = [1 + (x1n + ℓ1nu)2]Buuρ̃n + ℓ2

nByyρ̃n � 2ℓn(x1n + ℓ1nu)Buyρ̃n

+ ℓn[ẋn + ℓ̇nu� x2n � ℓ2nu + 2ℓ1n(x1n + ℓ1nu)]Buρ̃n + ℓ2
n(F� ν̄ρ̃n),

J�n+1 = �ρ�n vn+1

� 1a
1 + (x1n)2

[
1
ℓn
[1 + x1n(x1n + ℓ1nu)](Buρ̃n)

� � x1n(Byρ̃n)
�

]
,

J+n = ρ+n vn

+
1a

1 + (x1n)2

[
1
ℓn
[1 + x1n(x1n + ℓ1nu)](Buρ̃n)

+ � x1n(Byρ̃n)
+

]
,

vn = Θ(J+n + J�n )�ΠByy[�Θ(ρ̃+n � ρ̃�n�1) + γKn + fn],

(2.129)

Except for replacing ρ with ρ̃, the definition of J�n and J+n is unchanged:$'&'%
J�n = κ̄

(
ρ̃�n�1 � 1�Θ(ρ̃+n � ρ̃�n�1) + fn + γ̄Kn

)
,

J+n = κ̄S
(

ρ̃+n � 1�Θ(ρ̃+n � ρ̃�n�1) + fn + γ̄Kn

)
.

(2.130)



34 step flow equations

2.5 key results

We have derived a thermodynamically consistent generalization of the BCF
model for the governing equations of step-flow growth. With our starting point
general mass balance laws for the {step+terrace} system, full account is also taken
of elasticity in the bulk, at the surface, and at the step, via balance laws for the
Newtonian forces and moments. Further, invoking the formalism of configurational
forces, we introduce a configurational force balance, as postulated by Gurtin (1995)
to allow for a unified treatment of problems with multiple phases or defects
(e. g., the step line defect separating an upper-terrace adatoms “phase” from the
lower-terrace adatoms “phase”).

Unlike the prevailing phenomenological approach, we invoke consistency with
the second law of thermodynamics, in the form of a free-energy imbalance in the
present isothermal setting, to prescribe appropriate constitutive laws relating the
thermodynamic fluxes to the associated thermodynamic forces. In particular, we
obtain the kinetic relation linking the step velocity to the associated driving force,
which, after substitution back in the configurational force balance at the step,
yields the generalized Gibbs–Thomson relation for the step chemical potential:

µs = �
1

aρb

(
f + [[ω]] + γ̃K�

vK
b

)
,

in the absence of surface stress and line traction. Besides the curvature effect from
the classical Gibbs–Thomson relation, this expression states that the step chemical
potential differs from its bulk counterpart through three additional contributions,
stemming from:

1. the energetics of the global system {crystal monolayer+step+adatom layer}
via the coupling of diffusion fields on adjacent terraces [[ω]],

2. the dissipation related to the nonequilibrium processes underlying the
propagation of the step �vK/b, akin to kinetic undercooling in solidification
problems,

3. the elastic bulk via the elastic fields generated by the steps on the vicinal sur-
face f = n �

³
s CnBB da, where C = ψbI� (∇u)⊺T is the bulk configurational

stress tensor, corresponding to the energy-momentum tensor.

This last contribution generalizes the usual approach in the literature that is
often limited to the straight-step setting and assumes a dipole-dipole interaction
energy between steps from the outset. Then, for the sake of obtaining explicit
expressions, we have followed the standard procedure which consists in replacing
the stepped surface by a flat surface with an appropriate surface distribution
of forces. Applying the multipole expansion to the displacement field induced
by this force distribution, we have shown that in order to recover the classical
prediction of a dipolar leading order for the step elastic field, line and surface
tension must be neglected as they contribute to the monopolar order.

In addition to these contributions, we have also considered the full effect
of dynamics, in contract with the BCF model which relies on the quasistatic
approximation, by including the transient term Btρ in the reaction diffusion
equation and the convective terms ρ+vK and ρ�vK in the boundary conditions.



3
S T E P B U N C H I N G N O N L I N E A R E V O L U T I O N

In this chapter, we analyze the nonlinear evolution of a vicinal surface
after the onset of the step-bunching instability, specialized to the case without
electromigration (ē = 0).

The numerical resolution process and obtained scaling laws are presented in
Section 3.2. After taking the discrete-to-continuum limit of the continuum step
model in Section 3.3, the resulting nonlinear PDE is used to derive analytical
scaling laws in Section 3.4.

3.1 review of existing theories

Computing the evolution of the surface profile past the onset of instability
is a challenging task. Indeed, the system of governing equations for step-flow
growth is a nonlinear coupled free-boundary problem that needs to be solved
to large times, for a large number of steps, in order to establish the relevant
coarsening laws for the surface. Nonlinear simulations of discrete systems like
(2.120) have been carried out in numerous works—e. g., Natori (1994), Sato
and Uwaha (1999b), and Chang et al. (2006) with electromigration; Misbah
and Pierre-Louis (1996), Sato et al. (2000a), and Krug et al. (2005) without.
However, with two exceptions (Gillet, 2000; Ranguelov and Stoyanov, 2007),
these analyses are performed under the quasistatic approximation, whereby the
dynamical terms Btρn in (2.120)1, �ρ�n vn+1 in (2.120)2, and �ρ+n vn in (2.120)3
are deemed negligible for a slow enough deposition rate, i. e., |F � ν̄|Θ ! 1
(Michely and Krug, 2012). Under this assumption, the simulation process is
greatly simplified as it becomes possible to derive a closed-form expression for
the adatom density field. As a result, letting X := txnunPN, the behavior of the
surface can be described by a system of coupled ordinary differential equations
of the form:

dX
dt

= f (X). (3.1)

which can readily be integrated with conventional time-stepping schemes.
However, Guin et al. (2020, 2021a) recently showed that this approximation
is erroneous and unjustified: even for a vanishing growth rate, the dynamical
effect plays an essential role in the stability of the system. In addition, the
classical model also ignores the chemical effect which, again, was shown to
have a notable impact on stability (Cermelli and Jabbour, 2007; Guin et al.,
2021b).

We now briefly review the two existing works that include the effects of
dynamics in the nonlinear simulations of step bunching. Ranguelov and Stoy-
anov (2007) address the problem of step dynamics in the simplified framework
of infinitely fast terrace diffusion (D Ñ 8), which allows them to consider a

35
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constant adatom density across a terrace, and slow attachment/detachment
kinetics (κ̄ ! 1). Further, they neglect the advective contribution of the dynamics
terms and solely focus on the transient term in the diffusion equation. More
precisely, looking at the system in the comoving frame (i. e., introducing the
change of variables x̂ = x� xn and ρn(x, t) = ρ̂n(x̂, t)), the partial time deriva-
tive Btρn becomes Btρ̂n � ẋnBx̂ρ̂n. We refer to the first term Btρ̂n as the transient
contribution and to the second term �ẋnBx̂ρ̂n, grouped with the terms �ρ�n ẋn+1

and �ρ+n ẋn in the boundary conditions, as the advective contribution. In our
simulations, no such approximations are introduced: there is no constraints on
the model parameters, all the dynamics terms are considered, and the adatom
density profile is resolved during the numerical integration. Additionally, al-
though several snapshots of their numerical simulations are presented, they are
essentially illustrative and only aim at highlighting the presence of step-density
compression waves, which is the main focus of their work.

As part of his thesis, Gillet (2000) uses spatiotemporal Green functions
to solve the integral version of the reaction-diffusion equation, including all
the dynamics terms. Following this formalism, the adatom density field is
calculated at each time step, and then serves to compute the velocity of steps
through the interface motion equation (2.120)4. However, as the main motivation
behind his work is the continuum limit of the discrete system of equations,
the numerical simulation of the latter is limited to one example with minimal
discussion.

In contrast, we strive to conduct simulations over a wide range of parameters
which allows us to establish the scaling laws with respect to all model parame-
ters and show the robustness of the power-law coarsening with time. Further,
it offers a ground for comparison with the continuum limit, which requires
additional assumptions to be derived whose validity can be checked against
the discrete simulations. On a final note, neither work take into account the
chemical effect, which we include in our analysis given its proven impact on
stability.

In view of the existing literature which extensively resorts to the quasistatic
approximation and the almost nonexistent works on simulations of the discrete
system including the dynamics terms, our objective is to propose a comprehen-
sive overview of step bunching on a vicinal surface, including the dynamical
and chemical effects. The results of this extensive simulation process are pre-
sented in section Section 3.2. General scaling laws are extracted with respect
to each model parameter. Furthermore, in Appendix D, with the aim of com-
pleting the general analysis, we estimate for Si(111) values and ranges of the
physical parameters, aggregated from several experimental works. On that
basis, we show quantitatively in section Section 3.3 that the dynamical effect
can explain step bunching without recourse to the debated existence of an
inverse Ehrlich-Schwoebel effect.



3.2 nonlinear simulations of the discrete system 37

3.2 nonlinear simulations of the discrete system

3.2.1 One-dimensional equations

Quantitative studies of step bunching in the absence of electromigration (Omi
et al., 2005) are conducted at such temperatures (  900�C) that evaporation
can be safely neglected (Alfonso et al., 1993; Jung et al., 1994; Cohen et al.,
2002). Moreover, since we are concerned in this chapter with the step-bunching
instability, which is one-dimensional by essence, we specialize the general
system (2.129) and (2.130) derived in Chapter 2 to the case of straight steps in
the pure deposition regime with no electromigration:$'''''''''''&'''''''''''%

χaℓ
2
nBtρ̃n = Buuρ̃n + χaℓn(ẋn + ℓ̇nu)Buρ̃n + ℓ2

n(F� ν̄ρ̃n),

J�n+1 = �χaρ�n ẋn+1 � 1
ℓn
(Buρ̃n)

�,

J+n = χaρ+n ẋn +
1
ℓn
(Buρ̃n)

+,

ẋn = Θ(J+n + J�n ).

(3.2)

with$'&'%
J�n = κ̄

(
ρ̃�n�1 � 1� χcΘ(ρ̃+n � ρ̃�n�1) + fn

)
,

J+n = κ̄S
(

ρ̃+n � 1� χcΘ(ρ̃+n � ρ̃�n�1) + fn

)
,

(3.3)

where we have introduced χc and χa to follow the impact of the chemical and
dynamical effect respectively, so that the standard BCF model corresponds to
χa = χc = 0 and the full model to χa = χc = 1.

For straight steps, the expression for fn is widely available (Marchenko and
Parshin, 1980; Stewart et al., 1994; Tersoff et al., 1995) and reads:

fn =
a2

kBTL3
0

¸
rPZ�

�α0

(xn+r � xn)3 =
¸

rPZ�

�ᾱ0

(xn+r � xn)3 , (3.4)

where the coefficient α0 accounting for the dipole-dipole interactions between
step is computed in Section 4.2.2. In the context of a numerical study, the
infinite sum has to be truncated, and we substitute fn with fn(R), the step-step
interaction of the R nearest neighbors of step n, i. e.,

fn(R) =
¸

rPt�R,...,Ru∖0

�ᾱ0

(xn+r � xn)3 . (3.5)

3.2.2 Numerical method

The resolution of a free boundary problem may be approached two ways.
One may directly solve the discrete system of equations via classical numerical
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schemes (such as finite differences or finite elements), tracking explicitly the
moving domain boundaries (i. e., the step fronts). Even though this approach
is straightforward for a one-dimensional system, it remains computationally
expensive due to the size of the system needed to mitigate finite size effects and
the coupling between terraces introduced by the chemical effect. A fair amount
of optimization is thus required to reach large simulation times for reasonable
computation times. As a result, an extension to a two-dimensional treatment
seems prohibitively intensive. In that regard, we mention the work of Bänsch
et al. (2004) on the simulation of island evolution, who propose an adaptive
finite-element method with two independent meshes and element marking.

The second approach relies on the phase-field theory, whereby step flow is
governed by a system of two coupled partial differential equations (PDE) for a
global adatom density field and an order parameter (the phase field). The latter
is constant on the terraces but varies rapidly inside narrow transition regions
around the steps (Otto et al., 2003), which allows to forgo explicit tracking of
the fronts, thereby alleviating the computational cost (Liu and Metiu, 1994).
The main feature of the phase-field model is that it automatically captures
such topological changes as island nucleation or step coalescence, making
it particularly efficient at predicting the evolution of island shapes in two
space dimensions (Torabi et al., 2009; Hu et al., 2012). However, in the present
one-dimensional setting and in the absence of nucleation and coalescence,
the phase-field model is not more advantageous than the direct numerical
resolution of the sharp-interface free boundary problem (3.2).

Therefore, in order to simulate the evolution of a sufficient number of steps
while retaining the transient and advective terms in the free boundary problem,
we use finite elements to discretize the terraces by the Galerkin method, and
solve for the adatom densities and the step positions concomitantly. As we have
to work with a finite system numerically, we need to specify the boundary con-
ditions at the edges of the system. Periodic boundary conditions are imposed
such that xNs+1 = x1 + Ns, where Ns is the number of steps simulated in the
system. Regarding the initial condition, two different configurations are used.
Under natural bunching conditions, the integration is initiated from a vicinal
surface with 500 steps whose deviation from their equidistant equilibrium
position follows a uniform distribution in [�0.1, 0.1]. After the onset of insta-
bility, the surface profile consists of many bunches separated by large terraces
(Figure 3.8), whose characteristic length scales coarsen with time. Under forced
bunching conditions, a number of steps (from 10 to 200) are initially placed in
close proximity (@n, ℓn =0.1 is arbitrarily chosen) so that, as time progresses,
they will relax towards a stable arrangement, providing the actual quasisteady
bunch shape.

In the next sections, we review the finite element formulation, and present
the results of the two convergence tests that were used to optimize the number
of elements per terrace and number of neighbors included in the computation
of the step-step elastic interaction.
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3.2.2.1 Discretization using the Galerkin method

The system is discretized in space following the classical Galerkin method.
We multiply (3.2)1 by a weight function ϕ and integrate:» 1

0
(Btρ̃n)ϕ du =

1
ℓ2

n

» 1

0
(Buuρ̃n)ϕ du +

ẋn

ℓn

» 1

0
(Buρ̃n)ϕ du

+
ℓ̇n

ℓn

» 1

0
(uBuρ̃n)ϕ du + F

» 1

0
ϕ du.

(3.6)

Next, integrating by parts the term with the double derivative:» 1

0
(Btρ̃n)ϕ du =

1
ℓ2

n

[
(Buρ̃n)ϕ

]1

0
� 1

ℓ2
n

» 1

0
(Buρ̃n)ϕ

1 du

+
ẋn

ℓn

» 1

0
(Buρ̃n)ϕ du +

ℓ̇n

ℓn

» 1

0
(uBuρ̃n)ϕ du + F

» 1

0
ϕ du.

(3.7)

Finally, introducing the number of nodes per terrace N and shape functions
φµ,1 we write

ρ̃n(u, t) =
Ņ

µ=1

ρ̆
(µ)
n (t)φµ(u) (3.8)

and substitute ϕ for an arbitrary φν in (3.7) to obtain the following system at
the nth terrace (n P N�):

M ˙̆ρ
��
n = A� 1

ℓ2
n

D(2)ρ̆
��
n +

ẋn

ℓn
D(1)ρ̆

��
n +

ℓ̇n

ℓn
D(u)ρ̆

��
n + FB, (3.9)

where ρ̆
��
n = tρ̆(µ)n uµPt1,...,Nu. From the boundary conditions (2.129)2,3,

Aµ =
1
ℓ2

n

[
(Buρ̃n)φµ

]1

0

=
1
ℓn

(
� J�n+1 � ρ̃�n ẋn+1

)
φµ(1)� 1

ℓn

(
J+n � ρ̃+n ẋn

)
φµ(0),

(3.10)

and$''''''''''''''''''&''''''''''''''''''%

Mµν =

» 1

0
φµ(u)φν(u)du,

D(2)
µν =

» 1

0
φ1µ(u)φ1ν(u)du,

D(1)
µν =

» 1

0
φµ(u)φ1ν(u)du,

D(u)
µν =

» 1

0
uφµ(u)φ1ν(u)du,

Bµ =

» 1

0
φµ(u)du.

(3.11)

1 We use Greek letters to denote indices in t1, ..., Nu, and lower case letters for indices in t1, ..., Nsu.



40 step bunching nonlinear evolution

Figure 3.1: Adatom concentration profiles for different values of Ne.

Note the 1/ℓ2
n factor associated to D(2). Once the instability is triggered and

steps start coalescing, the terrace width ℓn will, by definition, become greatly
reduced in the bunches and thus 1/ℓ2

n will take extremely high values. As a
result, equation (3.9) is a stiff equation which requires special attention to be
efficiently integrated. For instance, the commonly used 4th order Runge–Kutta
explicit scheme will fail as the time step required to maintain the solution’s
accuracy becomes prohibitively small. Instead, an implicit scheme must be
used. We rely on Julia’s implementation of Sundials’ CVODE routine with
Backward Differentiation Formula, which implements a variable step, variable
order, multistep method (The Julia Programming Language n.d.; CVODE Solver
Description n.d.).2 With an implicit scheme, the time steps may be taken much
larger than with an explicit scheme, at the cost of more computationally in-
tensive operations at each time step. Indeed, proceeding to the next time step
typically requires the computation of the jacobian matrix of the system and
its inversion. While the jacobian may be computed numerically with relative
efficiency, the associated additional cost for large systems like the one we are
interested in would still make the simulations excessively long. To circumvent
this issue, we derive the jacobian analytically (see Appendix E) and provide it
to the solver for a dramatic increase of the simulation speed.

3.2.2.2 Convergence analysis

For a complete optimization of the resolution process, we further need to
determine (i) the minimum number of elements per terrace Ne in the finite
element discretization, and (ii) the minimum number of nearest neighbors
R that need to be included in the calculation of the elastic interaction fn(R),
to make the numerical resolution as fast as possible while retaining a good
accuracy. All simulations in this section are run with the set of parameters:
F = 10�4, ν̄ = 0, Θ = 0.02, κ̄ = 10�2, ᾱ0 = 10�5, motivated by experimental
values for Si (see Appendix D).

2 Matlab’s ode15s is also used for the preliminary convergence tests
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(a) Deviation error of the adatom
density field.

(b) Deviation error of the step
positions.

Figure 3.2: Dependence on Ne of the deviation error of (a) the adatom density field
and (b) the step positions.

number of elements per terrace We study the convergence with
mesh refinement by running simulations under natural bunching conditions,
where each terrace is discretized with 2n elements for n P t1, ..., 7u and a linear
shape function is used. An additional simulation is also run where each terrace
consists of only one element but a quadratic shape function is used. The results
presented are obtained after simulating the deposition of 500 monolayers. The
adatom density fields and step positions are used to analyze convergence.
As can be checked visually from Figure 3.1, all simulations give extremely
close results. Using the simulation with the finest discretization (Ns = 128) as
reference to obtain quantitative error estimates, we plot the deviation error of
the adatom density field and the step positions in Figure 3.2, where we define
the deviation error between two functions or vectors as the euclidean norm of
their difference.

Because the output of the simulations also depends on the time integration,
it is not surprising that the error is not monotonously decreasing. In fact, the
time integration algorithm automatically adjusts the time steps to maximize
their amplitude while maintaining the integration error below a set threshold.
The point of this section is to show that the time stepping error dominates
the space discretization error. Indeed, notice that even in the coarsest case, the
error remains extremely small, of the order of 2� 10�5 for the adatom density
fields and 3.5� 10�3 for the step positions, which are the crucial variables for
the ulterior study of the coarsening of step bunches. Given that the bunch
characteristic length scales are typically of order 10�1 and above, we conclude
that mesh refinement is unnecessary. Additionally, in terms of computation
times, simulations with the linear shape function and the coarsest mesh (two
elements, three degrees of freedom per terrace) take as much time to complete
as simulations with the quadratic shape function (one element, three degrees
of freedom per terrace). Since a parabolic adatom density profile represents
the exact solution in the quasistatic case and an approximation to O(P2) in
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Figure 3.3: Superposition of the bunch profile (left axis, black) with the step-step elastic
interaction (right axis, blue). There is virtually no interaction outside the
bunched region.

(a) General view of the bunch.

(b) Zoom on the upper edge of the
bunch.

(c) Zoom on the lower edge of the
bunch.

Figure 3.4: The relaxed shape of bunches for different values of R.
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(a) Deviation error on ℓmin (b) Computational cost

Figure 3.5: Dependence on R of (a) the deviation error on ℓmin and (b) the computa-
tional cost.

the complete case, we favor the 1-element per terrace discretization with a
quadratic shape function to conduct all the simulations presented in this work.

number of elastically interacting steps R To determine the cutoff
R on the infinite sum, i. e., the number of nearest neighbors considered in
the calculation of the elastic interaction, we run simulations under forced
bunching conditions with 50 steps. We focus our attention on a mature bunched
morphology and not the initial small bunches because the elastic repulsion
scales as the cube of the inverse of the distance between steps, which means
that outside of bunches, where steps are far apart, the elastic interactions are
negligible (Figure 3.3).

A visual comparison of the bunch profiles for R = 1, R = 4, R = 16,
and R = 50, suggests that R has a discernible influence on the bunch shape
(Figure 3.4). To quantify the difference, we plot the minimal interstep distance
in the bunch ℓmin against R (Figure 3.5). ℓmin quickly reaches an asymptote,
such that for R = 9, the deviation from the asymptotic value (estimated from
the case R = 50) is less than 1%. Note that as expected, ℓmin increases with R:
including more neighbors in the calculation of the elastic repulsion increases
its intensity and therefore causes steps to stay further apart. Additionally, we
also compare the computational cost of the simulations for the different values
of R, and find that it scales as

?
R (Figure 3.5).

In conclusion, all simulations presented in this work are conducted using
only the five nearest neighbors as a good compromise between accuracy and
computational strain. Indeed for R = 5, the values for ℓmin, whose scaling we
ultimately want to establish, are within 3% of the asymptotic value while the
simulations run three times faster, compared to the case R = 50.

In all the displayed figures, we use the normalized time t = P t, which
amounts to measuring time in terms of the number of monolayers deposited,
thus removing the dependence on the deposition rate. An example of the for-
mation and evolution of step bunches is shown in the spatiotemporal diagram
of Figure 3.6, where each line represents a step trajectory. The lines are initially
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Figure 3.6: Spatiotemporal evolution of a vicinal surface with 500-step periodicity. Each
line is a step trajectory. Only 45 steps are shown for clarity.
Parameters: S= 1, Θ=0.02, F=10�4, κ̄=10�2, and ᾱ0=10�5.

straight and parallel as the steps propagate at a constant velocity corresponding
to the steady-state solution, until the instability develops (visible already after
20 monolayers) and the lines swerve towards each other as steps start to coalesce.
At later times, the bunched structure is clearly visible. Note that step bunching
is a dynamic process: a bunch is not a fixed entity which contains identifiable
steps, as can be the case under certain electromigration conditions (Sato and
Uwaha, 1999b; Homma and Aizawa, 2000; Toktarbaiuly et al., 2018), but rather
continually emits and receives steps to and from neighboring bunches, which
we refer to as crossing steps. Moreover, the number of bunches decreases as they
increase in size: this is a direct manifestation of the coarsening process. Finally,
bunches move much slower than steps, with a seemingly inverse correlation
between their velocity and size.

We also take this opportunity to compare our nonlinear simulations of step
dynamics to the linear stability predictions of Guin et al. (2020, 2021a). We
focus on the two sets of parameters (FA, κ̄A) = (10�4, 10�1) and (FB, κ̄B) =

(10�3, 10�1), with S = 1, Θ = 0.02, ᾱ0 = 10�5, for which the linear stability anal-
ysis predicts the most unstable modes are k = 0.8335 and k = π, respectively.
Running the simulations for each set of parameters, we show in Figure 3.7(a)
and (b) typical spatiotemporal diagrams of the quantity xn �P t, i. e., the step
positions relative to the steady-state solution. From the spatiotemporal diagram
of A, it is quite evident that the most unstable mode is one of step pairing,
corresponding to the theoretical prediction of k = π. Regarding the spatiotem-
poral diagram of B, it is easy to deduce that the most unstable mode is not step
pairing, but determining the actual wavenumber is not immediate. Introducing
the average separation Λ between the extrema of xn � n�P t, i. e., the deviation
of the steps from the principal solution, we may calculate k as follows:

k =
2π

Λ
. (3.12)

After averaging over 100 runs (see Figure 3.7(c)), we again find excellent agree-
ment between the numerical simulations k � 0.83 and the theoretical prediction
k = 0.8335, which comforts the validity of both.
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(a) (F, κ̄) = (10�3, 10�1) (b) (F, κ̄) = (10�4, 10�1)

(c) Most unstable wavenumber k
computed from the simulations

Figure 3.7: Comparison of the predictions for the most unstable mode from the linear
stability analysis and the numerical simulations. (a) and (b) spatiotemporal
diagrams of the steps, and (c) most unstable wavenumber computed from
the numerical simulations. Parameters: S = 1, Θ = 0.02, ᾱ0 = 10�5.

3.2.3 Coarsening behavior

3.2.3.1 Bunch parameters

Before proceeding with the quantitative analysis of the coarsening process,
we introduce some characteristic parameters to describe the bunched surface. A
difference is made between a bunch, which corresponds to the high step-density
region only, and a bunch cell, which comprises a bunch and the terraces running
to the next bunch. We denote H the height and W the width of a bunch, ℓmin
and ℓmax the narrowest and widest terrace on the surface, and N the number of
steps in a bunch cell, which corresponds to the distance between bunches in
units of L0, as shown in Figure 3.8. Since vicinality requires the average slope
of the surface to remain constant, H � N.

Among these parameters, we choose to focus on the scaling of H with t and
the scaling of ℓmin with N, as they are the most reliable indicators and can be
easily computed from theoretical models for comparison. Indeed, monitoring
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N

H

Figure 3.8: Height profile of a surface with 500 steps after deposition of 3� 104 mono-
layers. Same parameters as those of Figure 3.6. H is the bunch height and
N the distance separating two bunches.

the evolution of bunches requires the introduction of an arbitrary threshold
on the interstep distance, which determines whether steps belong to the same
bunch or not. While some quantities (e.g., ℓmin and ℓmax) are independent of
any threshold, others (e.g., H and W) are sensitive to this choice, especially so
because of the asymmetrical distribution of crossing steps between bunches.
While there is an abrupt change in the terrace length at the upper edge of the
bunch, making the transition with the low step-density region clear cut, at the
lower edge, steps gradually depart from the bunch, blurring this transition
zone, as observed in Figure 3.8.3 This asymmetrical distribution of steps around
a bunch is not specific to our thermodynamically consistent model. It is also
observed in the case of ES-triggered step bunching under evaporation (Krug
et al., 2005), in the generic model of Slanina et al. (2005) where the step velocity
is a linear combination of the neighboring terrace widths, and in the Cellular
Automaton-based model of Krzyżewski et al. (2017).

We verify however that the bunch height is only weakly impacted: as all steps
have the same height, the total bunch height is not dramatically modified by a
few additional steps at the boundaries of the bunch, especially for large bunches.
On the other hand, since terraces further from the bunch center are much wider
than terraces close to it, the same additional steps have a considerable impact
on the total bunch width. Hence, W is strongly conditioned by the choice of
threshold and cannot serve as a reliable indicator of the coarsening process in
the presence of crossing steps. Lastly, as the distance between two bunches can
be precisely determined as the distance between their respective sharp edges,
N is also a robust quantity.

3 This hold true under net deposition conditions. Under net evaporation conditions, the “sharp”
and “blurred” edges are reversed.
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(a) Bunch height H (b) Minimal interstep distance ℓmin

Figure 3.9: Scaling laws for (a) the bunch height H with time t, and (b) the minimal
interstep distance ℓmin with N. The black trend line shows the theoretical
predictions H � t1/2 and ℓmin � N�2/3. Same parameters as those of Fig-
ure 3.6.

3.2.3.2 Scaling laws

The typical evolution of H(t) and ℓmin(N) are plotted in Figure 3.9, where
steps are considered as bunched when their distance is smaller than the initial
terrace width (Tonchev, 2012). It is interesting to comment on the nondimen-
sional physical parameters of our model. Based on experiments (Chung and
Altman, 2002; Ichimiya et al., 2000), the kinetics of deposition on Si(111) at
low temperatures (less than 900�C) is expected to be kinetic-limited (κ̄ ! 1) for
miscut angles greater than 0.2�, and we thus restrict the parameter space to
κ̄ ¤ 10�1. To obey the near-equilibrium hypothesis, additional restrictions are
necessary. From the steady-state solution of (3.2), the maximum departure of the
adatom density from its equilibrium value can be estimated as max(F/8, F/κ̄)

so that the near-equilibrium hypothesis imposes F ! 10 and F ! κ̄. Hence,
the latter condition being more restrictive here, F ¤ κ̄/10 is assumed in our
simulations.

In addition, due to the low temperatures, we assume a low equilibrium
adatom coverage Θ=0.02. This value is conservatively low in the sense that it
minimizes the strength of the dynamical and chemical effects, as their associated
growth rates scale as Θ2 compared to Θ for the other mechanisms (see Guin
(2018) and Chapter 4). Indeed, estimates from the literature place this value
closer to 0.04 for Si (Yang and Williams, 1994) and as high as 0.2 for GaAs
(Johnson et al., 1996). Finally, the elastic coefficient is set to ᾱ0 = 10�5. With
these restrictions, systematic simulations were conducted every decade for
F from 10�5 to 10�2 and κ̄ from 10�4 to 10�1. Additional simulations were
conducted with F=10�4 and κ̄=10�2 for various values of Θ and ᾱ0 in order to
ascertain the scaling with respect to these parameters. From all the simulations
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(a) Rescaled bunch height H/Θ0.7 (b) Rescaled minimal interstep dis-
tance ℓmin/(κ̄ᾱ0/FΘ)1/3

Figure 3.10: Dependence of the rescaled quantities (a) H/Θ0.7 on t, and (b)
ℓmin/(κ̄ᾱ0/FΘ)1/3 on N. The theoretical trend lines and their slopes are
shown in red.

performed, robust scaling laws emerge, and we find, in the absence of any ES
barrier (S=1):$'&'%

H � 2.5Θ0.7�0.05 t1/2,

ℓmin � 1.55
( κ̄ ᾱ0

FΘ

)1/3
N�2/3.

(3.13)

The rescaled quantities H/Θ0.7 and ℓmin/(κ̄ᾱ0/FΘ)1/3 are plotted in Figure 3.10.
Note how, regardless of the physical parameters, all the curves merge into a
universal trend.

Systematic quantitative experiments on coarsening without electromigration
are scarce. Of the three studies found in the literature, one concerns Si(001)
(Schelling et al., 2000), on which adatom diffusion is strongly anisotropic, and
another concerns GaAs(001) (Ishizaki et al., 1996), where the surface is grown
by metalorganic vapor phase epitaxy, so that precursor interactions need to
be taken into account. Since we are interested in investigating the influence
of the dynamical and chemical effects on the step bunching instability, effects
that are basic to step flow in the sense that they are present irrespective of
whether adatom diffusion is anisotropic or not and whether chemical reaction
between distinct species occur or not, we only consider Si(111) (Omi et al., 2005),
which is the ideal candidate to test our model due to its isotropy and weak (or
absent) ES barrier. On this surface, the bunch height and width were monitored
and found to grow as tβ and t1/α with β = 0.49�0.09 and 1/α = 0.54�0.08.
In the framework of universality classes based on the classical BCF model
(Pimpinelli et al., 2002), the destabilizing mechanism leading to the closest
match (β=1/α=1/2) is the iES effect, whose existence remains controversial
(Pimpinelli and Videcoq, 2000; Vladimirova et al., 2001; Slanina et al., 2005),
with contradictory experimental results (Voigtländer et al., 1995; Ichimiya et al.,
1996; Chung and Altman, 2002; Rogilo et al., 2013). Importantly, our simulations
of the thermodynamically consistent model reproduce the bunch height scaling
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(β = 1/2) without recourse to an iES (S = 1). In other words, by accounting
for all the necessary mechanisms without a priori assumptions, we are able
to explain experimental results in a unified framework, without the need to
introduce additional effects.

Since there are no experimental studies for the scaling of ℓmin in the absence
of electromigration, we are not able to test our prediction. However, we note
that the exponent we find is identical to the one obtained in the simulations of
Popkov and Krug (2005).

3.3 continuum evolution equation

While precious to produce quantitative results, numerical resolutions pre-
clude a more qualitative understanding of the nature of step-bunching. Because
the resolution of the discrete system is intractable analytically, the idea is in-
stead to represent the stepped surface profile as a continuous height function,
whose temporal evolution is governed by a partial differential equation ob-
tained from taking the continuum limit of the discrete step-flow equations (3.2).
This nonlinear PDE that governs the evolution of the surface height allows us
to gain insight into the mechanisms responsible for step bunching and explain
the coarsening behavior observed in the simulations, by rendering possible the
analytical derivation of scaling laws.

3.3.1 Discrete-to-continuum limit

We briefly review the different existing works addressing this transition from
discrete to continuum. One may employ a general continuum growth equation
Bth = �∇j (in the absence of desorption from the surface), using system
symmetries (Lai and Das Sarma, 1991) or a phenomenological expression
(Johnson et al., 1994) to obtain the surface current dependence on the gradients
of h. This places step-bunching in a very generic framework of nonlinear models.
However, proceeding as such forbids the derivation of the relation between the
microscopic and macroscopic parameters.

To remedy that, it is important to start from the microscopic model and ho-
mogenize it to a macroscale. In Krug et al. (2005), a hybrid approach is adopted
in which the nonlinear elastic repulsion term is treated using a first-order
correspondence between finite differences and derivatives, and the remaining
terms, which form a linear combination of the adjacent terrace widths in the
model considered, are coarse-grained through a Fourier transform (Krug, 1997).

Another way to achieve that is to use the well-known multiscale expansion
method. The linear stability analysis yields the characteristic length and time
scales, and the distance to the instability threshold serves as the small expansion
parameter (Bena et al., 1993; Pierre-Louis et al., 1998; Gillet et al., 2001). This
approach is very instructive as it sets the problem in a generic framework
(e. g., Kuramoto–Sivashinsky, Korteweg–De–Wries, or Benney, depending on
the regime) but we do not consider it here as it relies on a heavy formalism (the
multiscale expansion method requires the successive resolution of equations at
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increasing orders) that assumes an analytical expansion for the surface height,
which needs to be increasingly refined to capture higher-order nonlinearities.

In contrast, in the approach we adopt here following the work of Xiang (2002)
and Margetis et al. (2005), the discrete step velocity equation is interpreted as a
numerical scheme for a differential equation, with the step height representing
the grid constant—in a process reminiscent of the modified equation technique
(Warming and Hyett, 1974)—that directly captures the relevant nonlinearities.
Further, our derivation incorporates the dynamical and chemical effects, which
are unaccounted for in the cited works, and ensures all terms are expanded to
the same order in their Taylor-series representation. The expansion is based on
the assumption that the terrace widths are small compared to the mesoscopic
length scale L characterizing the spatial variations of step density on the
vicinal surface (Margetis and Kohn, 2006). Let ε=L0/L be the nondimensional
parameter for the Taylor expansion. All functions and their derivatives are
assumed to be bounded, i.e., O(1).

Since the equations of (3.2) constitute a free-boundary problem with time-
dependent coefficients that cannot be solved analytically, we will only retain
the main advective contributions to the dynamical effect, neglecting the transient
term Btρ̃n and the velocity difference ℓ̇n,4 so that (3.2)1 reduces to

0 = Buuρ̃n + χaℓn ẋnBuρ̃n + ℓ2
nF. (3.14)

The solution of (3.14) can be expressed as

ρ̃n(u, t) = ρ̃+n φn(u, t) + ρ̃�n ψn(u, t) + cn(u, t), (3.15)

where the expressions for φn(u, t), ψn(u, t) and cn(u, t) are given in Appendix F.
In the boundary conditions (3.2)2,3, the chemical effect couples the diffusion

fields on adjacent terraces. We use the interface motion equation (3.2)4 to
express ρ̃+n+1 as a function of ẋn+1 and ρ̃�n , and ρ̃�n�1 as a function of ẋn and ρ̃+n .
Inserting these expressions in (3.2)2,3, and appealing to (3.15) to express the
derivatives of ρ̃n in terms of ρ̃+n and ρ̃�n , we obtain a linear system that can be
solved for ρ̃+n and ρ̃�n (whose explicit expressions are given in Appendix F).

Substituting the resulting expressions in (3.2)4, we obtain:

ẋn = P
[ ℓn + ℓn�1

2
+

C2 � C1

2
δ
( ℓn�1

Bn�1

)]
� κ̄SΘ δ

(δ(fn�1)

Bn�1

)
+ ΘC0δ

(δ(ẋn�1)

Bn�1

)
�Θ(χa � χc)

S + 1
2

δ
( ẋn + ẋn�1

Bn�1

)
+O(P2,P ᾱ0), (3.16)

where, for any zn, δ(zn) := zn+1 � zn, and$''''&''''%
Bn := 1 + S + κ̄Sℓn,

C0 := (1� S)(χa + χc)/2 + χaχcΘ(S + 1),

C1 := 1 + χcΘ(S + 1),

C2 := S� χcΘ(S + 1).

(3.17)

4 We argue in Chapter 5 that these terms have no impact on the stability analysis at first order in
F and ν̄.
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y x

Figure 3.11: In black, correspondence between the discrete and continuous surface
profiles at time τ. In blue, the surface profile at a later time τ + ∆τ.

In the kinetic-limited regime, κ̄ ! 1, so that Bn � 1 + S. We can now proceed
to the homogenization of (3.16). To approximate the profile of the vicinal surface,
we introduce the continuous function X(τ, y) such that

xn(t) = ε�1X(τ = εP t, y = �nε), (3.18)

where the space variable has been normalized and the time appropriately
rescaled to reflect the change from microscopic length scale L0 to macroscopic
length scale L. Taylor-expanding the different terms in (3.16) up to order 3 (the
dominant order of the elastic repulsion term), we get:$'''''''''''''''''&'''''''''''''''''%

ℓn + ℓn�1

2
= �Xy � ε2

6
Xy3 +O(ε4),

δ
(ℓn�1

Bn�1

)
=

ε

S + 1

(
Xy2 +

ε2

12
Xy4

)
+O(ε5),

δ
(δfn�1

Bn�1

)
= �γ(R)

ᾱ0ε3

S + 1

[ 1
X3

y

]
y3
+O(ε5),

δ
(δ(ẋn�1)

Bn�1

)
=

ε2

S + 1
PXτy2 +O(ε4),

δ
(ẋn + ẋn�1

Bn�1

)
= � 2ε

S + 1
P
(

Xτy +
ε2

6
Xτy3

)
+O(ε5).

(3.19)

In the limit R Ñ8, γ(R) =
°R

r=1 r�2 Ñ π2/6 � 1.64. If the infinite sum is
instead truncated at 5 terms like in the numerical simulations, γ(5) � 1.46.
Although this introduces an error of 11%, it has effectively no impact on the
scaling law for the bunch height as H is independent of the strength of the
elastic repulsion.

In order to obtain an equation for the the surface height h(τ, x), we start by
introducing the nonlinear transform

τ + h(τ, εxn(t)) = �nε,

i. e., τ + h(τ, X(τ, y)) = y,
(3.20)
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such that we absorb the constant deposition term (see Figure 3.11), yielding:

Xτ = �1 + hτ

hx
, Xy =

1
hx

, Xyy =
1
hx

[ 1
hx

]
x
, (3.21)

and so on for higher-order derivatives. To eliminate the cross-derivative terms,
we rearrange the terms of the equation by repeated differentiation, division by
hx, and substitutions, resulting in the sought-after PDE:

hτ � εK1

[ 1
hx

]
x
+ ε3K2

[ 1
hx

(h2
x)xx

]
x

+ ε2K4

[hxx

h3
x

]
x
+ ε3K5

[ 1
hx

[hxx

h3
x

]
x

]
x
= O(ε4), (3.22)

where$'''''''''''''''''&'''''''''''''''''%

K0 :=
C0

S + 1
,

K1 := χaΘ� 1
2

S� 1
S + 1

,

K2 :=
3
2

S
S + 1

γ(R)
κ̄ ᾱ0

F
,

K3 :=
1
12

[
(2χa � χc)Θ� 1

2
S� 1
S + 1

]
,

K4 :=
1
6
+ ΘK0 + K1Θ(χa � χc),

K5 := K3 + ΘK0K1 + K4Θ(χa � χc).

(3.23)

The prevailing equation in the literature (Pimpinelli et al., 2002; Krug, 2005),
based on the quasistatic BCF model, can be recovered from (3.22) by neglecting
the dynamical and chemical effects (χa =χc =0) and setting K5=0. While the
first condition ensues naturally from the definitions of χa and χc, the second
amounts to neglecting a term that is of the same order as the K2 term of elastic
repulsion, which is not justified a priori. Numerical integration of (3.22) in the
presence and absence of the K5 term show that its impact on the bunch profile
is limited to narrow regions at the upper and lower edges, with no visible effect
on the bunch shape. Nevertheless, we show in the next section that the K5 term
plays an important role in the onset of instability, where its influence cannot be
neglected.

In addition, using the relations (3.23) as guides, we are able to generalize the
scaling laws (3.13) of H and ℓmin determined in the absence of ES barrier, to the
general case of an arbitrary ES barrier:$'&'%

H � 2.5K0.7�0.05
1 t1/2,

ℓmin � 1.55
(K2

K1

)1/3
N�2/3.

(3.24)

3.3.2 Linear stability analysis

The linear-stability analysis of (3.22) is performed by setting

h(τ, x)=�x + δh eik̂x+λ̂τ, (3.25)
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where h(τ, x)=�x corresponds to the fundamental solution, and expanding
(3.22) to linear order in δh. Time and space are then rescaled (k= εk̂ and λ= εP λ̂)
for comparison with the discrete system, yielding the dispersion relation

Re(λ) = K1k2 � (2K2 + K5)k4. (3.26)

We conclude from (3.26) that a step-bunching instability exists as long as
K1¡0. For the quasistatic BCF model, K1 = (S� 1)/2(S + 1), so that an iES
barrier (S 1) is necessary to fulfill that condition, and its absence (S=1) or the
presence of a direct ES barrier (S¡1) leads to a stable step flow (Schwoebel and
Shipsey, 1966). In contrast, the inclusion of the dynamical and chemical effects
renders the recourse to an iES barrier unnecessary to explain instability, as long
as the attachment/detachment asymmetry satisfies S  (1 + 2Θ)/(1� 2Θ).

Note that setting S=(1� 2Θ)/(1 + 2Θ) in the quasistatic BCF model mimics
the same K1 coefficient than setting S=1 in the full model with the dynamical
effect. In other words, the dynamical effect may be interpreted as an effective
iES effect, analogously to chemical reactions (Pimpinelli and Videcoq, 2000) or
diffusion anisotropy (Schelling et al., 2000). This interpretation also sheds a new
light on the experimental uncertainty surrounding the nature of the ES barrier
on Si(111). Indeed, the smallness of Θ implies a weak effective iES barrier, and
since only indirect methods are available to determine this value, it is likely
that the measurement accuracy is insufficient to conclude.

Regarding the chemical effect, the complete linear-stability analysis (Guin,
2018) shows that its destabilizing effect is strongest for the step pairing mode
but that its impact is reduced in the limit of large wavelengths, which is the
relevant one when passing to the continuum limit, thus explaining its absence
from the dominant destabilizing contribution in (3.26).

Going back to the discrete equation (3.16) and setting xn =n +P t + δx eikn+λt,
we obtain:

λ = i sin(k) +
[

4(K1 � (χa � χc)Θ� K0Θλ)�Θ(χa � χc)i sin(k) λ

+ 32
γd(R, k)

γ(R)
K2

]
sin2(k/2),

(3.27)

with γd(R, k) :=
Ŗ

r=1

sin2(kr/2)
r4 .

Solving for λ, taking the real part, and expanding for long wavelengths
(k Ñ 0) up to O(k5), we recover the exact same expression (3.26) as in the
continuum limit. This confirms the validity and relevance of the continuum
limit (3.22), notably regarding the new K5 term. Indeed, as K5 Á K2 for typical
values of the model parameters, it has a significant influence on the max-
imum growth rate λm =(2K2 + K5)�1(K1/2)2 and the most unstable mode
km =

a
(2K2 + K5)�1K1/2 .
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increasing time

Figure 3.12: Bunch steepening. Each curve corresponds to the rescaled bunch profile
after a 4-fold time increase.

3.4 analytical scaling laws

There are two scaling laws of interest to describe the asymptotic behavior of
the surface profile. The scaling of H with time is an indicator of the evolution
of surface roughness and the scaling of ℓmin with N characterizes the bunch
shape. We also look at the bunch velocity v scaling with N as an additional
descriptor of the coarsening process.

3.4.1 Bunch height H

A common approach to obtain scaling laws from PDE’s relies on identifying
self-similar or self-affine solutions, depending on whether the scaling is identical
or differs between the x and y directions. In the present case, the evolution of the
surface profile cannot be self-affine as it would violate the vicinality constraint.
Nonetheless, when limiting the analysis to a bunch, and not the whole surface
profile, self-affine solutions are possible, as introduced by Pimpinelli et al. (2002)
based on a simplified version of (3.22) where only the transient term hτ, the
destabilizing K1 term and the stabilizing K2 term are considered. We do not
follow that approach here because of the ambiguous definition of the lateral
extent of the bunch, as previously mentioned.

Looking for self-similar solutions of (3.22) in the form h(τ, x)=τaϕ(ζ), with
ζ= x/τa, we find

τa�1(aϕ� aξϕ1)� εK1τ�a
[ 1

ϕ1

]1
+ τ�2aε2K4

[ ϕ2

ϕ13

]1
+ τ�3aε3K2

[ 1
ϕ1
(ϕ12)2

]1
+ τ�3aε3K5

[ 1
ϕ1

[ ϕ2

ϕ13

]1]1
= 0. (3.28)

Since this equation cannot be made scale invariant, it does not admit self-
similar solutions. This is consistent with the profiles obtained from numerical
simulations of the discrete step-flow equations which shows the steepening of
the bunch despite rescaling it as per the expected τ1/2 scaling law (Figure 3.12).

Analyzing (3.28) further, we note that the K4 and K5 terms, which preclude
scale-invariance, present a τ�2a and a τ�3a factors, respectively. This indicates
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that they possibly become negligible at long times compared to the K1 term
exhibiting a τ�a factor, provided that the associated functions (ϕ2/ϕ13)1 and
(1/ϕ1(ϕ2/ϕ13)1)1 are regular enough. While this is the case inside the bunched
and quasiflat regions, at the transition zones (which become sharper as the
surface coarsens), these functions diverge, and the associated terms cannot be
neglected, precluding the existence of self-similar solutions.

Nonetheless, it seems clear from Figure 3.12 that the τ1/2 scaling plays a
crucial role, despite not obeying strict self-similarity. To see this, we modify the
existing analysis to focus on the quasiflat region, so that the K4 and K5 terms
may be neglected, and we consider asymptotic expansions for the characteristic
height and length of the region of the form:$'''&'''%

h(τ, x) = h0(τ, x) +
¸
i¥0

τai φi(ζ),

ζ =
x°

j¥0 cjτ
bj

,
(3.29)

where h0(τ, x)=�x represents the steady-state solution of equidistant steps,
and @i P N, ai¡ ai�1, bi¡bi�1, φi(ζ)=O(1) and c0=1. Thus,

hx = �1 +
°

i¥0 τai φ1i(ζ)°
j¥0 cjτ

bj
, (3.30)

where vicinality imposes a0 = b0.5 Next, steps being far apart in the quasiflat
region, we neglect the elastic term, and (3.22) becomes:

¸
i¥0

τai�1

[
ai φi �

°
j¥0 bjcjτ

bj°
j¥0 cjτ

bj
ζφ1

]
� εK1°

j¥0 cjτ
bj

[
1

�1 +
°

i¥0 τai φ1i(ζ)
°

j¥0 cjτ
bj

]1
= 0. (3.31)

Looking at the dominant contribution, we get:

a0τa0�1
[

φ0 � ζφ10

]
� εK1τ�a0

[ 1
�1 + φ10

]1
= 0. (3.32)

Hence, scale invariance imposes a0 � 1 = �a0 = �1/2 which shows that the
deviation of the surface profile from the fundamental solution scales asymptoti-
cally as τ1/2. From geometrical arguments, one can verify that this deviation
scales like the bunch height and we thus recover the scaling law reported in the
literature (Krug et al., 2005; Omi et al., 2005).

3.4.2 Minimal terrace size ℓmin

As the previous analysis is conducted in the quasiflat region, a different
approach is needed to determine the scaling law for ℓmin in the bunch. In the

5 Indeed, as the slope in the quasiflat region must remain finite as τ Ñ8, a0 ¤ b0 must hold.
Moreover, as it cannot coincide with the �1 slope of the stable solution, strict inequality is not
possible.
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Figure 3.13: Comparison of the surface slope obtained from simulations of the discrete
system under forced bunching (x) with the analytic expression (3.35),
where the coefficients are given by (3.36) and v is determined from the
numerical resolution of (3.34). The inset focuses on the bunched region.

stationary regime, the scaling of the bunch can be well approximated (Krug
et al., 2005; Stoyanov et al., 2000) and leads, for large enough bunches, to

ℓmin �
(16

3
K2

K1

)1/3
N�2/3 = 41/3

( κ̄ ᾱ0

FΘ

)1/3
N�2/3. (3.33)

This expression predicts exactly the different exponents observed for each
physical parameter and the theoretical prefactor 41/3 � 1.58 is in excellent
agreement with the 1.6 numerical estimate found in (3.13).

However, although the scaling behavior of ℓmin is accurately described in
the context of the stationary approximation, a closer inspection reveals that
the predicted slope of the bunch is symmetric with respect to its center, in
disagreement with previous simulations (Popkov and Krug, 2005) and our
own. Specifically, even though the velocity of a bunch decreases with its size,
which a priori legitimizes the stationary approximation for large bunches, it
still has a crucial influence on the bunch shape. Indeed, if the bunch velocity
is included, while neglecting other dynamical contributions, the expected
asymmetric bunch shape is recovered (Popkov and Krug, 2005). Nonetheless,
as this adjustment only introduces a 6% correction (Popkov and Krug, 2005)
in the numerical prefactor of (3.33), we argue that its validity can be extended
from the stationary to the quasisteady regime.

3.4.3 Bunch velocity

In this section, we analytically derive an expression for the bunch velocity,
which was previously only assessed via numerical simulations (Popkov and
Krug, 2005). Neglecting the K5 term in equation (3.22), which we verify numeri-
cally has no impact on the bunch shape, we apply the traveling-wave change of
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Figure 3.14: Bunch velocity v scaling with N. The asymptote is at 8.3.

variable h(τ, x)= g(x� vτ) + Ωτ to transform the PDE into an ODE. Denoting
derivatives with respect to ξ= x� vτ by primes, we obtain:

�v(1 + g1)� εK1

[ 1
g1
]1
+ ε3K2

[ (g12)2

g1
]1
+ ε2K4

[ g2

g13
]1
= 0, (3.34)

after identifying Ω=�v from the fundamental solution for which g1=�1.
Denoting M the absolute value of the maximum slope in the bunch, we use

a (2,3) Padé approximant to estimate the shape of the bunch slope:

g1(ξ) =
�M + a1ξ + a2ξ2

1 + b1ξ + b2ξ2 + b3ξ3 , (3.35)

where the ξ-origin is set at the point of maximum slope. The condition g2(0)=0
imposes b1=�a1/M. The remaining coefficients a1, a2, b2, and b3 are determined
following the procedure detailed in Appendix G. Setting η := v/(ε3K2), we
obtain, at leading order:#

a1 � A1η1/3M, a2 � A2η2/3M,

b2 � B2η2/3, b3 � B3η,
(3.36)

The exact expressions for the Ai and Bi are not reported, as they consist of
tedious polynomial roots with no special interest.

To compute the relationship between M and v, we use the fact that the height
of the bunch is normalized to 1. When integrating the slope, we neglect the
contribution of the quasiflat terraces and assume that the main contribution
comes from the bunched region, i.e., the region between the roots ξ� and ξ+ of
g1 (Figure 3.13). Hence:» ξ+

ξ�

g1(ξ)dξ � �1. (3.37)

As the exact integration is unnecessarily laborious, we use a third-order Gauss
quadrature (higher orders procure negligible corrections) to get an approximate
expression. The dominant contribution yields:

M � 0.303 η1/3. (3.38)
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Recalling that the velocity of a moving bunch mainly impacts its shape but
has a negligible effect on the maximum slope M (Popkov and Krug, 2005), we
finally conclude:

0.3033 v
ε3K2

� 3
16

K1

ε2K2
, (3.39)

yielding the expression

v � 6.74
K1

N
. (3.40)

While we correctly predict the scaling v � K1/N, in agreement with (Popkov
and Krug, 2005) and our own simulations, the prefactor is 20% smaller than
the expected value of 8.3 derived from the numerical simulations (Figure 3.14).
This can be traced back to the fact that the Padé approximant does not capture
the exact bunch shape (Figure 3.13). In addition, the error is also expanded by
the cubic power applied in (3.40).

3.5 key results

numerical simulations We have conducted extensive numerical simu-
lations for a wide range of physical parameters from which we have extracted the
relevant scaling laws describing the coarsening behavior of step bunching. The
obtained scaling laws for the bunch height H as a function of the time t (expressed
in number of monolayers deposited) and for the minimal interstep distance ℓmin
as a function of the bunch size N are extremely robust and read
$'&
'%

H � 2.5K0.7�0.05
1 t1/2,

ℓmin � 1.55
(K2

K1

)1/3
N�2/3,

with
$''&
''%

K1 = χaΘ�
1
2

S� 1
S + 1

,

K2 =
3
2

S
S + 1

π2

6
κ̄ ᾱ0

F
.

Crucially, we have shown that the dynamical and chemical effects can account for
the onset of step bunching and for the scaling laws observed in the coarsening
regime, thereby circumventing the need for an inverse Ehrlich-Schwoebel barrier
required by the classical BCF model. In other words, by accounting for all the
necessary mechanisms without a priori assumptions, we are able to explain experi-
mental results in a unified framework, without the need to introduce additional
effects.

continuum limit We have conducted a coherent discrete-to-continuum
derivation, leading to the following nonlinear PDE to describe the macroscopic
evolution of the surface profile:

hτ � εK1

[
1
hx

]
x
+ ε3K2

[
1
hx

(h2
x)xx

]
x
+ ε2K4

[
hxx

h3
x

]
x
+ ε3K5

[
1
hx

[
hxx

h3
x

]
x

]
x
= 0,
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where the coefficients
$'''''''&
'''''''%

K0 :=
χa + χc

2
S� 1
S + 1

+ χaχcΘ; K1 := χaΘ�
1
2

S� 1
S + 1

;

K2 :=
3
2

S
S + 1

π2

6
κ̄ ᾱ0

F
; K3 :=

1
12

[
(2χa � χc)Θ�

1
2

S� 1
S + 1

]
;

K4 :=
1
6
+ ΘK0 + K1Θ(χa � χc); K5 := K3 + ΘK0K1 + K4Θ(χa � χc);

differ from the ones reported in the literature in that they incorporate the dy-
namical and chemical effects. Moreover, the K5 term is never mentioned in the
literature whereas it cannot be neglected a priori. While we have verified that
its impact on the bunch evolution is indeed negligible, we have also shown that
its influence on the onset of instability is not. We have presented a multiscale
asymptotic analysis of the PDE that allows to recover the H � t1/2 scaling law
without introducing considerations of the ambiguously defined bunch width. We
have also proposed an analytical derivation of the bunch velocity as a function
of the bunch size, valid for large bunches, which was previously assessed via
numerical simulations only. Based on a Padé approximation of the bunch shape,
the final formula reads

v � 6.74
K1

N
.

Incidentally, the identification of the prefactors of the scaling laws offers an inter-
esting alternative for determining microscopic parameters of the vicinal surface
(e. g., the equilibrium adatom coverage Θ, the attachment/detachment coefficient
κ̄, the ES barrier S, or the elastic repulsion coefficient ᾱ0) from macroscopic fea-
tures (e. g., the bunch height H, the minimal interstep distance ℓmin, the bunch
size N, and the bunch velocity v).





4
L I N E A R S TA B I L I T Y A N A LY S I S O F M E A N D E R I N G

In this chapter, we analyze the stability of vicinal surfaces with the governing
equations (2.129) in the absence of electromigration (ē = 0).1

We start by establishing the general framework of the linear stability analysis
in Section 4.2, which we specialize to the quasistatic case in Section 4.3 before
presenting the general case with dynamics terms in Section 4.4. We interpret
some experimental results in view of our findings in Section 4.5.

4.1 review of existing theories

Meandering steps are a common feature in step-flow epitaxy experiments,
which may have two distinct origins. While thermal fluctuations are responsible
for some of the observations (Leamy et al., 1975; van Leeuwen and Mischgofsky,
1975; Voronkov, 1983), other experiments point instead towards a deterministic
origin (Ino, 1989; Alfonso et al., 1993; Pierre-Louis and Misbah, 1996; Maroutian
et al., 2001). Based on the BCF model, Bales and Zangwill (1990) showed that,
under deposition, the straight-step configuration is unstable in the presence
of a direct ES effect, and steps manifest a distinct waviness, distinguishable
from the meandering due to thermal roughening (see Figure 4.1). Like most
of the literature on step-flow growth, their analysis was derived under the
so-called quasistatic approximation. Additionally, only the in-phase mode
was considered, and the effects of step interactions (entropic and elastic) and
diffusion along the step were ignored. In the following years, the model was
successively refined to include the aforementioned effects.

Pimpinelli et al. (1994) extended the model to account for an arbitrary phase
shift between steps, and showed that in the presence of a direct ES effect,
the most unstable mode is not always in-phase like considered by Bales and
Zangwill (1990) but is actually anti-phase under evaporation.

The same year, Liu and Metiu (1994) and Saito and Uwaha (1994) studied the
linear stability of the system beyond the quasistatic approximation. However,
Saito and Uwaha (1994) were mainly preoccupied by the effect of diffusion
kinetics on step fluctuation, i. e., due to thermal noise. And while their analysis
of the stability shows that the asymmetry between the forward and backward
directions of the step, due to its motion, is destabilizing under both deposition
and evaporation conditions, their study is restricted to an isolated step with
infinitely fast symmetric attachment/detachment kinetics, where only the ad-
vective contribution of the growth velocity of a straight step is considered. Using
Green’s function formalism, Liu and Metiu (1994) were able to additionally
take into account the transient term of the dynamics (the partial time derivative
in the diffusion equation), but the rest of their analysis of the meandering

1 The case with electromigration is treated in Chapter 5.
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Figure 4.1: AFM image of meandering steps on Si(111) after growth of 20 nm at 3�C
below the 7� 7 Ø 1� 1 transition temperature (reprinted from Hibino et al.
(2003) with permission from Elsevier).

instability suffers from the same restrictions, as the bulk of their work is instead
focused on the step-bunching instability and the impact of thermal noise. In
summary, in both articles the stability analysis is restricted to very specific
cases and not much discussed, with little insight on how the dynamical effect
interplays with other stabilizing and destabilizing mechanisms.

In the late 90’s and early 2000’s, Ihle et al. (1998), Gillet et al. (2000), and
Danker et al. (2003) included step-edge diffusion to the equation of mass conser-
vation at the step. The study by Ihle et al. (1998) is very detailed and complete,
as it also incorporates the contributions of elastic interactions and thermal noise
in the framework of a nonlocal linear Langevin equation. However, it is cen-
tered around the scaling behavior of the temporal correlation function in global
equilibrium and does not provide a stability analysis. Likewise, the studies
by Gillet et al. (2000) and Danker et al. (2003) are focused on the nonlinear
behavior of meanders, in a quasistatic framework, and only give a brief linear
stability analysis, which is not discussed but rather serves as a stepping stone
to their nonlinear derivation. Although not based on the BCF framework but
rather on Kinetic Monte Carlo simulations, Nita and Pimpinelli (2005) have
shown that unhindered step-edge diffusion along the step was able to explain
the meandering instability observed on real Cu surfaces.

Based on a terrace-step-kink model, Caflisch et al. (1999) and Balykov and
Voigt (2006) proposed a more refined approach of step-edge diffusion that
accounts for step adatom and kink densities. In an effort to better incorporate
atomistic processes in the mesoscopic BCF equations and extend their validity
to far-from-equilibrium conditions, they describe the adatom fluxes from the
terraces to the step via kinetic fluxes due to atomistic exchange processes,
essentially counting all possible ways an adatom and a step adatom can be
incorporated into the crystal lattice, under a mean field assumption. This
approach has undeniable advantages as it combines a detailed microscopic
description, whose parameters can be computed from first principles, with
the computational efficiency of a continuum model. Its main interest however
resides in the study of island growth, while we are concerned with a train of
steps.
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Few studies have been dedicated to the impact of elasticity on the stability of
meanders. In their seminal work, Houchmandzadeh and Misbah (1995) showed
for the first time that elasticity may destabilize straight steps; a counter-intuitive
result as the interaction between straight steps of the same sign is known to
be repulsive. In their analysis, the z-component of the displacement field is
neglected based on an argument by Lau and Kohn (1977): “If we ignore the
forces exerted by the adatom on the lattice atoms below the surface layer, then
the z-component of the displacement does not contribute to the interaction
energy. These forces are actually quite small; (...) the magnitudes are about 10%
compared to those involving the surface atoms” Using the dipoles obtained on
Si for example, we find that including the z-component causes the strength of
the interaction between straight steps to increase by 16%. We also recall that
their derivation implicitly relies on the integral of sine functions over R to be
zero, which entails that infinitesimally meandering steps behave as straight
steps at first order, in contrast with our results in Section 4.2.2.

In the following years, based on the results of Houchmandzadeh and Misbah
(1995), Pierre-Louis and Misbah (1996) and Paulin et al. (2001) have included
elasticity in their formulation. However, neither offer a stability analysis. The
work of Pierre-Louis and Misbah (1996) focuses on the meander amplitude scal-
ing and the interaction of noise and determinism, while the work of Paulin et al.
(2001) is concerned with nonlinear evolution equations and scaling laws. Finally,
Yeon et al. (2007) conducted a complete linear stability analysis of the standard
BCF model extended to include monopole interactions between steps (that
arise e. g., in heteroepitaxial growth), but used the quasistatic approximation,
neglected evaporation, and did not take into account dipole interactions.

More recently, Chen (2019) considered the influence of the chemical effect on
the stability of the vicinal surface, but used the quasistatic approximation and
restricted the analysis to in-phase meanders.

The work of Sato and Uwaha (1999a) and Danker et al. (2003) on anisotropy is
also worth mentioning, even though their focus is on the nonlinear behavior of
step meanders. Sato and Uwaha (1999a) considered anisotropic attachment/de-
tachment kinetics, and Danker et al. (2003) considered anisotropic step-edge
diffusion and step stiffness, with both showing that it does not affect the onset
of instability (for the case of in-phase meandering they consider) but only the
subsequent coarsening pattern.

Importantly, we do not consider the possibility of nucleation along the step or
on a terrace (as our model is entirely deterministic) nor the existence of a kink
ES effect, which is the one-dimensional equivalent for the step of the ES barrier
for terraces, i. e., an additional energy barrier adatoms diffusing along the step
must overcome to go around a kink. Indeed, while the kink ES effect has been
shown to impact the stability of the surface by several authors (Pierre-Louis
et al., 1999; Politi and Krug, 2000; Kallunki et al., 2002; Kallunki and Krug, 2003),
it seems to mainly concern metal surfaces like Pt(111) or Cu(001) (Ikonomov
et al., 2007), which also present strong ES barriers. On semiconductor surfaces
like Si(111), the existence of an ES barrier is already debated, and there is no
evidence that would point to a kink ES barrier. Moreover, we recall that the core
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objective of the present work is to investigate the influence of the dynamical and
chemical effects on the stability of vicinal surfaces, that play a role irrespective
of which additional mechanisms are considered.

In conclusion, a complete and systematic stability analysis, including all
aforementioned mechanisms to study their interplay, has yet to be established.
We remedy this situation here with analytic expressions for the instability
growth rate in the quasistatic framework and numerical results of the complete
problem with dynamics.

4.2 linear stability analysis

4.2.1 General framework

In this section, we establish the general framework for the linear stability
analysis, which consists in studying the growth rate of perturbations of the
principal solution, where all the steps propagate at the same velocity and the
adatom density profile is identical on all terraces.

linear perturbation equation Denoting ρ̃(0) the principal (steady-
state) solution, in order to derive the linear perturbation equation we consider
the perturbed state#

xn(y, t) = n + P t + εδxn(y, t) +O(ε2),

ρ̃n(u, y, t) = ρ̃(0)(u) + εδρ̃n(u, y, t) +O(ε2),
(4.1)

where ε is a small parameter and we recall u = (x � xn(t, y))/ℓn(t, y), the
Lagrangian variable. Writing the perturbation as

pn(u, y, t) :=
(

δxn(y, t), δρ̃n(u, y, t)
)

, (4.2)

inserting (4.1) in (2.129), and collecting terms of order ε, yields a linear au-
tonomous system for pn, which reads in abstract form

A(pn�1, pn, pn+1, pn+2) = B(Btpn, Btpn+1), (4.3)

where A and B denote linear operator involving u-derivatives of δρ̃n. Conse-
quently, the perturbation may be put in the form

pn(u, y, t) = p̃n(u, y) exp(λt), (4.4)

with λ the growth rate.

fourier modes Further, as the system has no explicit dependence on the
coordinate y, a Fourier transform of the perturbation along y allows to write

p̃n(u, y) = p̂n(u) exp(iqy), (4.5)

where q is the wavenumber of the meandering mode.
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Figure 4.2: Step profile used in the linear stability analysis.

bloch-wave analysis Finally, like Guin (2018), we follow the stability
method of hydrodynamics (Chandrasekhar, 1961) to write an arbitrary pertur-
bation p̂n as a combination of normal modes and obtain the stability of the
system by checking the stability with respect to each of these modes. Using the
linearity of (4.3), and the fact that the operators A and B are n-independent
(i. e., invariant under a 1-terrace translation), the perturbation is written as a
combination of the normal modes given by the Bloch waves,

p̂n(u) = p̌(u) exp(ikn), (4.6)

where k P (�π, π) is interpreted as either the wavenumber of the step bunching
mode (if q = 0) or the phase shift between steps (if q � 0).

To summarize, we look at the perturbed state#
xn(y, t) = n + P t + ε exp(ikn + iqy + λt) +O(ε2),

ρ̃n(u, y, t) = ρ̃(0)(u) + ερ̃(1)(u) exp(ikn + iqy + λt) +O(ε2),
(4.7)

illustrated in Figure 4.2. The stability of the principal solution of equidistant
straight steps is then entirely determined by Re(λ). Indeed, for Re(λ)   0, the
amplitude of the perturbation decays and the step profiles converge to the
principal solution: the system is stable. On the other hand, for Re(λ) ¡ 0, the
amplitude of the perturbation increases exponentially: the system is unstable.

4.2.2 Step-step elastic interaction

Before we can proceed with the main stability analysis, we compute the
explicit expression for the step-step elastic interaction f in the case of infinitesi-
mally perturbed meanders, whose profile is described by (4.7).

Let f(m,n) the elastic interaction of step m with step n. As a consequence of
the superposition principle, we can decompose the elastic interaction of step n
with the rest of the steps as:

fn =
¸

rPZ�

f(n,n+r). (4.8)
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Using the results from Section 2.3.1 and Section 2.3.2, we combine (2.84) and
(2.90) to obtain:

f(n,n+r) =� nn
i (s

n, t)dn
pℓ(s

n, t)

�
»

R

dn+r
jk (sn+r, t)Gkℓ,pij(xn+r(sn+r, t)� xn(sn, t))dsn+r,

(4.9)

where implicit summation is assumed on repeated subscript indices, sn is the
curvilinear abscissa along step n, xn(sn, t) is the position of the portion of step
n at abscissa sn, nn(sn, t) is the normal of step n at abscissa sn, dn(sn, t) is the
dipole tensor of step n at abscissa sn, and G,pij(xn+r(sn+r, t)� xn(sn, t)) is the
third derivative of the Green’s function detailed in Appendix B evaluated at
xn+r(sn+r, t)� xn(sn, t).

Examining the displacement field generated by each dipole, (Pimpinelli and
Villain, 1998) showed that:

• the effect of dzz can be equivalently incorporated into (dxx, dyy)Ð (dxx �
dzz, dyy � dzz);

• the effect of dyx, dzx, and dzy can be equivalently incorporated into dxy Ð
dxy � dyx, dxz Ð dxz � dzx, and dyz Ð dyz � dzy, respectively.

Therefore, without loss of generality, we set dzz = dyx = dyz = dzx = 0.
Further, for steps aligned with a principal crystal direction, symmetry imposes
dxy = dyz = 0. In conclusion, we find that three nonzero dipolar moments are
required to describe a step aligned with a principal crystal direction: dxx, dyy,
and dxz. For the sake of simplicity, we restrict the study to these well-aligned
steps.

Let f(r) denote the elastic interaction of step 0 with steps r and �r, such that

f(m,m+r) + f(m,m�r) := f(r)ε exp(ikm + iqy + λt). (4.10)

For the step profiles considered, the result of the explicit calculation is quite
lengthy and we report it in Appendix C. Instead, focusing on the limit q ! 1,
which should be verified for all practical purposes due to the smoothening
effect of step stiffness, we obtain:

f(r)(k, q) = 12α0
sin2(kr/2)
(rL0)4 +

1
2

α1
cos(kr)
(rL0)2 q2 +O(q4), (4.11)

with

α0 =
4(1� ν2)

πE
(d2

xx + d2
xz),

α1 =
4(1 + ν)

πE
(2d2

yy � d2
xx � νdxx(4dyy � 3dxx)� (1� ν)d2

xz).
(4.12)

Therefore, for q Ñ 0, we recover the formula for straight steps found in
Marchenko and Parshin (1980), Stewart et al. (1994), and Tersoff et al. (1995). It
is also worth noting that in contrast with Houchmandzadeh and Misbah (1995),
who report, based on the interaction energy of two dipoles, no contribution of
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the meandered profile to the elastic interaction at order ε (i. e., infinitesimally
modulated steps behave like straight steps at first order), our own approach,
which directly computes the elastic force between steps, clearly shows that this
contribution is nonzero. We believe this difference ultimately stems from the
fact that, in their calculation, Houchmandzadeh and Misbah (1995) seemingly
assume the integral of sine functions over R to be zero. While this might
make sense in the context of distributions, this integral is divergent in the
Riemannian sense. Besides, as the elastic interaction force between steps results
from differentiating the interaction energy, setting this integral to zero will
result in a missing term after differentiation.

4.2.3 Generalized eigenvalue problem

Letting$''''''&''''''%

ρ̃
(0)
+ := ρ̃(0)(0),

ρ̃
(0)
� := ρ̃(0)(1),

(Buρ̃(0))+ := (Buρ̃(0))(0),

(Buρ̃(0))� := (Buρ̃(0))(1),

(4.13)

substituting (4.7) back into (2.129) and collecting terms of order 0, we have:$'''''''''&'''''''''%

0 = (Buuρ̃(0)) + χaP(Buρ̃(0)) + F� ν̄ρ̃(0),

� ρ̃
(0)
� χaP � (Buρ̃(0))� = κ̄

[
ρ̃
(0)
1 � 1� χcΘ(ρ̃

(0)
+ � ρ̃

(0)
� )
]
,

ρ̃
(0)
+ χaP + (Buρ̃(0))+ = κ̄S

[
ρ̃
(0)
+ � 1� χcΘ(ρ̃

(0)
+ � ρ̃

(0)
� )
]
,

P = κ̄Θ(S + 1)
[ ρ̃

(0)
� + Sρ̃

(0)
+

S + 1
� 1� χcΘ(ρ̃

(0)
+ � ρ̃

(0)
� )
]
.

(4.14)

Likewise, collecting terms of order ε:$'''''''''''''''''''''''''&'''''''''''''''''''''''''%

0 = (Buuρ̃(1)) + χaP(Buρ̃(1))� (ν̄ + q2 + χaλ)ρ̃(1)

+ (Buρ̃(0))
[
(χaλ + q2)(1 + (eik � 1)u) + χaP(eik � 1)

]
+ 2(eik � 1)(F� ν̄ρ̃(0)),

�ρ̃
(0)
� χaλeik � χaP ρ̃

(1)
� + (eik � 1)(Buρ̃(0))� � (Buρ̃(1))�

= κ̄
[
ρ̃
(1)
� � χcΘ(eikρ̃

(1)
+ � ρ̃

(1)
� )� eikFR(k, q)� γ̄q2eik

]
,

ρ̃
(0)
+ χaλ + χaP ρ̃

(1)
+ � (eik � 1)(Buρ̃(0))+ + (Buρ̃(1))+

= κ̄S
[
ρ̃
(1)
+ � χcΘ(ρ̃

(1)
+ � e�ikρ̃

(1)
� )� FR(k, q)� γ̄q2

]
,

λ = κ̄Θ
[
C1(q)e�ikρ̃

(1)
� + C2(q)ρ̃

(1)
+

� (FR(k, q) + γ̄q2)(S + 1 +
Π
κ̄Θ

q2)
]
,

(4.15)
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where$''''''''&''''''''%

C1(q) := 1 + χcΘ(S + 1) + χc
Π
κ̄

q2,

C2(q) := S� χcΘ(S + 1)� χc
Π
κ̄

q2,

FR(k, q) :=
Ŗ

r=1

f
(r)
(k, q).

(4.16)

Like in Chapter 3, χc and χa are introduced to follow the impact of the chemical
and dynamical effect respectively.

Equation 4.15 takes the form of a generalized eigenvalue problem that can be
solved analytically under the quasistatic approximation (χa = 0) but requires a
numerical treatment when the dynamics terms are included (χa = 1). Numerical
resolution of the generalized eigenvalue problem for a given (k, q) provides a
set of eigenvalues (whose number depends on the numerical mesh resolution),
where the one corresponding to the most unstable mode is the one with largest
real part. Computing the eigenvalue with largest real part for a set of (k, q), we
can determine the dispersion relation Re(λ(k, q)) accounting for the dynamics
terms.

The numerical resolution is based on the Chebyshev collocation method, a
spectral method adapted to nonperiodic problems, whose details are given in
Appendix H.

4.3 quasistatic approximation stability analysis

In this section, we conduct the linear stability analysis of the steady-state
solution under the quasistatic approximation, as it permits the derivation of
an analytical expression for the growth rate λ of a perturbation, offering clear
insights into the effect of the different mechanisms, and of their interplay, on
stability. Under the quasistatic approximation, the dynamics terms are cast
aside (χa = 0). (4.14) and (4.15) reduce to$''''''''''&''''''''''%

0 = ρ̃
(0)
uu + F� ν̄ρ̃(0),

�(Bρ̃(0))� = κ̄
[
ρ̃
(0)
� � 1� χcΘ(ρ̃

(0)
+ � ρ̃

(0)
� )
]
,

(Bρ̃(0))+ = κ̄S
[
ρ̃
(0)
+ � 1� χcΘ(ρ̃

(0)
+ � ρ̃

(0)
� )
]
,

P = κ̄Θ(S + 1)
[

ρ̃
(0)
� + Sρ̃

(0)
+

S + 1
� 1�Θ(ρ̃

(0)
+ � ρ̃

(0)
� )

]
,

(4.17)
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and$'''''''''''''''''''''&'''''''''''''''''''''%

0 = (Buuρ̃(1))� (ν̄ + q2)ρ̃(1) + (Buρ̃(0))(1 + (eik � 1)u)q2

+ 2(eik � 1)(F� ν̄ρ̃(0)),

(eik � 1)(Buρ̃(0))� � (Buρ̃(1))�

= κ̄
[
ρ̃
(1)
� � χcΘ(eikρ̃

(1)
+ � ρ̃

(1)
� )� eik(FR(k, q) + γ̄q2)

]
,

�(eik � 1)(Buρ̃(0))+ + (Buρ̃(1))+

= κ̄S
[
ρ̃
(1)
+ � χcΘ(ρ̃

(1)
+ � e�ikρ̃

(1)
� )� FR(k, q)� γ̄q2

]
,

λ = κ̄Θ
[
C1(q)e�ikρ̃

(1)
� + C2(q)ρ̃

(1)
+

� (FR(k) + γ̄q2)(S + 1 +
Π
κ̄Θ

q2)
]
.

(4.18)

4.3.1 Prevailing justification for the quasistatic approximation

Before proceeding with the derivation, we briefly revisit the justification for
the quasistatic approximation presented in the literature.

quasistatic approximation for the steady-state solution For
the steady-state solution, the idea is to compare the order of magnitude of the
dynamics terms in the reaction-diffusion equation (4.14)1 and in the boundary
conditions (4.14)2,3 to their diffusive counterparts. Since we are working with
nondimensional quantities, we estimate Buρ̃(0) � 1 and Buuρ̃(0) � 1, noting that
ρ̃(0) is of order 1 and typically varies over a distance of 1. Therefore, the ratio
of the dynamics term over its diffusive counterpart is simply P . Likewise, the
terms ρ̃

(0)
+ P and ρ̃

(0)
+ P are both of order P , compared to the diffusion currents

Buρ̃(0) of order 1.
As such, this analysis suggests that deriving the steady-state solution under

the quasistatic approximation is justified in the regime of small Péclet number
P ! 1 (Michely and Krug, 2012). However, using the quasistatic approximation,
the steady-state solution in the pure deposition regime (4.19) reveals that the
reasoning above for the order of magnitude of the different terms is erroneous
as the terms (Buρ̃(0))+ and (Buρ̃(0))� show a dependence with F. Since P = FΘ
for pure deposition conditions, a more accurate ratio between the dynamics
terms and their diffusion counterpart would actually be Θ. As the adatom
coverage Θ may take values up to 0.25 (see Appendix D), it is clear that the
quasistatic approximation cannot be applied to arbitrary surfaces, even in the
limit P ! 1.

quasistatic approximation for the stability analysis Further,
in the literature, it has been assumed that the smallness of dynamics terms,
a claim we just showed is actually incorrect, is sufficient for neglecting them
in the derivation of the linear stability analysis. However, this is not the case
and, as demonstrated in details in Section 4.4, the contribution of the dynamics
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terms does not vanish as P Ñ 0. As pointed out by Guin (2018), this shortcut,
which consists in neglecting the dynamics terms in the stability analysis based
on their supposed smallness relative to their diffusive counterparts, led to a
quasi-absence of discussion in the literature of what we refer to as the dynamical
effect on the stability of steps.

interest of the quasistatic approximation Although the quasistatic
approximation, as explained above, is not valid simply under the condition
P ! 1, there exist particular cases where the stability results with and without
the quasistatic approximation converge.2 Most notably, the quasistatic approxi-
mation remains of interest as it allows to derive a closed-form expression for
the dispersion relation, thus facilitating the analysis of the effect of the different
mechanisms on stability (unlike the general stability analysis which relies on
the numerical resolution of a generalized eigenvalue problem).3

4.3.2 Fundamental solution

Integrating (4.17)1 yields the function ρ̃(0) up to the two unknown integration
constants ρ̃

(0)
+ and ρ̃

(0)
� , which are then determined via (4.17)2,3. Finally, (4.17)4

is used to derive the expression of P .
In the general case, the analytical expressions for ρ̃(0) and P are quite lengthy

and we relegate them to Appendix F. However, in the case of pure deposition
(ν̄ = 0), they take the simple form:

ρ̃(0)(u, t) = �1
2

Fu(u� 1) + (ρ̃
(0)
� � ρ̃

(0)
+ )u + ρ̃

(0)
+ , (4.19)

where

ρ̃
(0)
+ = 1 +

F(κ̄C1(0) + 2)
2κ̄B

and ρ̃
(0)
� = 1 +

F(κ̄C2(0) + 2)
2κ̄B

, (4.20)

with

B := 1 + S + κ̄S. (4.21)

The resulting propagation velocity is

P = FΘ. (4.22)

4.3.3 Stability results

In the general case, the linear stability analysis results in an implicit transcen-
dental equation for the growth rate (Gillet, 2000; Liu and Metiu, 1994), as the

2 For instance, when F Ñ 0 (or ν̄ Ñ 0), elasticity and step stiffness, because they are energetic
mechanisms which scale independently of F and ν̄, dominate while the dynamical effect, as a
kinetic mechanism which scales with F (or ν̄), becomes negligible.

3 Nevertheless, we will see in Chapter 5 that it is possible to derive an approximate analytical form
of the dispersion relation by using a different method for the stability analysis.
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Figure 4.3: Diagram of the physical factors that determine the stability of steps, adapted
from Guin (2018).

density field explicitly depends on it via the λ terms in (4.15)1. Nevertheless,
under the quasistatic approximation considered in this section, this dependence
is absent and it is possible to derive an analytical expression for the growth
rate in the form:

λ := g(k, q)� (FR(k, q) + γ̄q2) f (k, q). (4.23)

The expressions for f (k, q) and g(k, q) are presented and examined in detail in
the next sections (see (4.24), (4.28), and (4.29)), distinguishing, as sketched in
Figure 4.3, between:

1. The mechanisms: they are physical processes that have a stabilizing or
destabilizing effect on the surface, namely the ES effect S, the chemical
effect χc, the dynamical effect χa, elasticity d, and step stiffness γ̄.

2. The operational regimes: they correspond to deposition and evaporation,
which we consider independently. They serve to distinguish between ener-
getic mechanisms, which are independent of the deposition/evaporation
rates, and the kinetic mechanisms, which grow linearly with these rates.

3. The material parameters: they determine the relative weights of the different
mechanisms involved and consist of the equilibrium adatom coverage Θ,
the attachment/detachment coefficient κ̄, and the step-edge diffusion Π.

In the stability diagrams presented, we do not directly plot λ but λ = λ/P
which corresponds to measuring time in terms of the number of monolayers
deposited/evaporated.

step-step interaction and step stiffness Interestingly, we note
that the contributions of elastic interactions and step stiffness can be factored
together. The expression for f is:

f (k, q) :=
N1(Λq)N2

D
(4.24)
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where, letting Λq :=
a

ν̄ + q2,$'''''''&'''''''%

N1(x) := κ̄(S + 1)Λq cosh(x) + (x2 + κ̄2S) sinh(x)

� χcΘκ̄(S� 1)Λq(cosh(x)� cos(k)),

N2 := κ̄Λq(2κ̄SΘ(cosh(Λq)� cos(k)) + Πq2(S + 1) cosh(Λq))

+ (κ̄(S + 1)ΘΛ2
q + Πq2(Λ2

q + κ̄2S)) sinh(Λq),

D := N2
1 + (χcΘκ̄Λq(S + 1))2 sin2(k).

(4.25)

Clearly, N2 and D are always positive. As for N1, the additional condi-
tion Θ ¤ 0.5 (always satisfied in practice) is required to obtain positiveness.
Therefore, as expected, step stiffness is stabilizing and has as a smoothening
effect on the step profiles by preventing the formation of high-q modes, i. e.,
short-wavelength meanders.

Regarding step-step elastic interactions, we see by (4.24) that their influence
on stability is determined by the sign of FR: FR ¡ 0 corresponds to a repulsive,
stabilizing, interaction and FR   0 to an attractive, destabilizing, one. To
elucidate the sign of the expression, we restrict the study to nearest-neighbor
interactions, i. e., R = 1, and start by analyzing the influence of each dipole
moment acting independently. A first important observation is that dxx and dxz

have similar behaviors. For low enough k and q, there is a region where f(1)

changes sign, which entails that the elastic interaction shifts from repulsive to
attractive.

Regarding dyy, the diagram is split into four zones. At low q, f(1) is positive
(repulsive) for k   π/2 and negative (attractive) for k ¡ π/2. There exists a
critical value of q for which the effect of the interaction is reversed. However,
it is again unlikely that such a short-wavelength meander develops as it is
prevented by step stiffness for all practical purposes.

To study in more details the existence of unstable modes when all moments
dxx, dyy, and dxz are present, we set dxx and explore the space (dyy/dxx, dxz/dxx)
looking for the most unstable mode, under the assumption of reasonable mean-
dering wavelength, i. e., restricting q such that q ¤ qc. We consider qc = 0.01,
qc = 0.1 and qc = 1. As the resulting diagrams are qualitatively similar, we only
show the case qc = 1 in Figure 4.5. Indeed, regardless of the value of qc, we
observe a band of stability, for which the elastic interaction is always repulsive,
that separates two unstable regions, one with in-phase meanders, the other
with anti-phase ones. Interestingly, the left boundary of this stable region is
independent of qc (for qc À 0.5), while the right boundary gets pushed further
to the right with decreasing qc. Based on Equation 4.11 we can shed light on
this behavior. For in-phase modes (k = 0), the term of order 0 vanishes, so
that all contributions scale identically as q2. Consequently, the sign of f(1), and
thus its stabilizing/destabilizing behavior, is only determined by the sign of
ᾱ1, which explains why the left boundary of the stable region in Figure 4.5
is independent of qc. On the other hand, for anti-phase modes (k = π), the
term of order 0, to which only dxx and dxz contribute, is maximally stabilizing,
whereas the destabilizing contribution of dyy still scales quadratically with q.
As such, for decreasing values of qc, dyy must take increasingly large values to
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Figure 4.5: Most unstable modes of f(1) for ν = 0.3 and qc = 1.
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compensate, hence why the right boundary of the stable region in Figure 4.5 is
pushed to the right with decreasing qc.

Moreover, Equation 4.11 also furnishes an explanation for the shape of the
region. Indeed, the left and right boundaries essentially correspond to ᾱ1 = 0
and 24ᾱ0 � ᾱ1q2 = 0, resp., i. e., for qc ! 1$''''&''''%

dleft
yy = ν +

c
1� ν

2
(1� 2ν + d2

xz) (left boundary),

dright
yy =

2
a

3(1� ν)(1 + d2
xz)

qc
(right boundary).

(4.26)

Note how, as expected, dleft
yy is independent of qc while dright

yy is proportional to
q�1

c . Further, for dxz ! 1, these expressions are independent of dxz, correspond-
ing to the vertical part of the stability band in the diagram, while for dxz " 1,
they scale linearly with dxz, explaining the slope of 1. This again illustrates
the fact that dxx and dxz play comparable roles. As long as either dxx or dxz

dominates over dyy, the elastic interaction destabilizes in-phase meandering,
so that the determining parameter really is max(dxx, dxz). For convenience, we
assume dxz = 0. If on the contrary dyy dominates the two other dipole moments,
in-phase meandering is always stable and only anti-phase meanders may be
destabilized.

On Si, estimations are dxx = 15 eV/nm and dxz = 6 eV/nm, i. e., dxz/dxx =

6/15 = 0.4 (Stewart et al., 1994). Therefore, an attractive interaction may
theoretically exist depending on the value of dyy. Unfortunately, the studies
dedicated to the determination of the step dipolar moments are generally
restricted to straight steps, for which the moment dyy plays no role, and we
are not aware of any study that tries to determine this parameter. While the
anisotropy required (dyy/dxx � 0.7) for an unstable mode to exist could be
realistically reached, we will see that even in that case, the effect of the step-step
interaction is mostly negligible compared to the stabilizing influence of step
stiffness.

As illustrated in Figure 4.6, we verify that taking into account more neighbor-
ing steps (described by the parameter R) has no influence on the conclusion of
the previous analysis. Additionally, in agreement with Guin et al. (2021b), we
note that including only the nearest-neighbor in the calculation of the step-step
interaction is already a very good approximation. For R ¥ 2, the boundaries of
the stable domain are basically indistinguishable.

In conclusion, the effect of elasticity is contingent on the ratio rd = max(dxx ,dxz)
dyy

.
For rd ! 1 or rd " 1, there exists an unstable region for which the elastic inter-
action is attractive while for rd � 1 it is always repulsive, and thus stabilizing.
The dispersion curves of Figure 4.7 and Figure 4.8 illustrate this result further.
Once again, notice how the unstable region in the case rd " 1 (corresponding
to (dxx, dyy) = (0.1, 0)) has a very small growth rate, which would not lead to
a developed instability in a reasonable amount of time in practice. Likewise,
in the case of rd ! 1 (corresponding to (dxx, dyy) = (0, 0.1)), while the growth
rate is not negligible in absolute terms, we show that it is still often negligible
relative to step stiffness.
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Figure 4.6: Most unstable modes of
°

1¤r¤R f(r) for ν = 0.3 and qc = 1.
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Figure 4.7: Dispersion curves Re(λ(k, q)) associated to the elastic interaction for
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of the growth rate. The red isolines correspond to a positive growth rate,
i. e., an unstable system, and the blue isolines correspond to a negative
growth rate, i. e., a stable system. Parameters: χa = χc = 0, F = 10�4,
Θ = 0.1, S = 1, κ̄ = 1, γ̄ = 0, Π = 0.

Indeed, based on dimensional analysis, α9Ea4 while γ̃9Ea2 (Ihle et al., 1998;
Paulin et al., 2001), and thus ᾱ/γ̄ � (a/L0)2 ! 1 as a is typically a few tenths
of nanometers whereas L0 is in the range of tens of nanometers. Alternatively,
using direct experimental estimates from Jeong and Williams (1999), we can
determine an upper bound for the ratio, reached for semi-conductors:

ᾱ

γ̄
� α

γL2
0
À 3

0.3�L2
0
=

10
L2

0
, (4.27)

meaning that elasticity effects will be negligible compared to step stiffness in
all situations, except for very narrow terraces (L0 À 10 nm).

To be more accurate, this conclusion applies directly to the competition
between dyy and step stiffness, as both effects carry a q2 factor, but needs to
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Figure 4.8: Dispersion curves Re(λ(k, q)) associated to the elastic interaction for (a)
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Figure 4.9: Dispersion curve Re(λ(k, q)) associated to the total contribution of dxx and
step stiffness. Parameters: χa = χc = 0, F = 10�4, Θ = 0.1, S = 1, κ̄ = 1,
dyy = 0, γ̄ = 10�2, Π = 0. [see color legend on Figure 4.7]

be nuanced for dxx. Indeed, the elastic interaction associated to dxx maximally
stabilizes straight steps, i. e., the q = 0 mode. Consequently, as can be seen
from Figure 4.9, for small enough q, the contribution of dxx dominates and
further stabilizes quasi-straight steps. However, beyond that small region it has
minimal impact and step stiffness dominates instead.
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ehrlich-schwoebel effect The results for an arbitrary Ehrlich-Schwoebel
barrier, in the absence of the chemical effect, have long been known (Bales and
Zangwill, 1990) and g reads:

gES(k, q) = �(F� ν̄)(S� 1)
Θκ̄2

?
ν̄N1(

?
ν̄)N1(Λq)

�
[
ν̄Λq(S + 1)(cosh(

?
ν̄) cosh(Λq)� cos(k))

+ (κ̄q2S(cosh(
?

ν̄)� 1)�?ν̄Λq sinh(
?

ν̄)) sinh(Λq)
]
.

(4.28)

Therefore, under deposition (ν̄ = 0), a direct ES effect (S ¡ 1) stabilizes straight-
step bunching modes (the most stabilized one being the step-pairing mode
(k, q) = (π, 0)) and destabilizes in-phase meandering modes (k = 0). For
an inverse ES effect (S   1), the opposite holds: it destabilizes straight-step
bunching modes (the most destabilized one being the step-pairing mode) and
stabilizes in-phase meandering modes. Under evaporation (F = 0), the effects
of the direct and inverse ES barriers are reversed (Figure 4.10).

chemical effect In the case of symmetric attachment/detachment barriers
(S = 1), g reads:

gCE(k, q) = 4χcΘκ̄(F� ν̄)
N2N3?

ν̄N1(
?

ν̄)D

�
[?

ν̄ cosh(
?

ν̄/2)(Λq cosh(Λq) + κ̄ sinh(Λq))

�Λq sinh(
?

ν̄/2)(κ̄ cosh(Λq) + Λq sinh(Λq))

�ΛqN3 cos(k)
]
,

(4.29)

with

N3 =
?

ν̄ cosh(
?

ν̄/2) + κ̄ sinh(
?

ν̄/2). (4.30)

It is worth noting that under deposition, the least stable mode is anti-phase
(k = π), while under evaporation, it is in-phase (k = 0), and in that regard the
chemical effect behaves qualitatively as an inverse ES barrier (see Figure 4.11).

step-edge diffusion We note that step-edge diffusion has no impact on
the stability by itself, in the sense that it does not affect stability when other
mechanisms are disabled (S = 1, χc = 0, d̄ = 0, and γ̄ = 0): it is absent from
the expression of gES and its contribution in f and gCE, through the term N2,
does not change the sign of the expression. Further, since N2 can be factored
out of f and gCE, we conclude that even in the presence of elasticity, step-
stiffness, and/or the chemical effect, step-edge diffusion still has no impact
on the stability domain. As we will see, this conclusion does not hold when
including an ES barrier or the dynamical effect, due to the different dependence
on Π of these mechanisms. In addition, while the boundary of the instability
domain in the (k, q) space may be unaffected by step-edge diffusion, the most
unstable mode can be strongly impacted.
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Figure 4.10: Dispersion curves Re(λ(k, q)) associated to the ES effect, i. e., gES(k, q). All
mechanisms other than the ES effect are disabled: χa = χc = 0, F = 10�4,
Θ = 0.1, κ̄ = 1, d̄ = 0, γ̄ = 0, Π = 0. [see color legend in Figure 4.7]

4.3.4 Influence of the operational and material parameters

The actual stability of a vicinal surface is the result of the interplay of the
different mechanisms which were studied independently in the previous section.
Here, we discuss how the relative weight of each effect, ruled by the operational
(F and ν̄) and material (Θ, κ̄, and Π) parameters, affects the overall stability.

deposition F and evaporation ν̄ The deposition (F) and evaporation
(ν̄) parameters distinguish between the kinetic mechanisms, characteristic of
out-of-equilibrium evolution, and the energetic ones. As seen from (4.24), (4.28),
and (4.29), the growth rate associated with the ES effect and the chemical effect
is proportional, for ν̄ ! 1, to F� ν̄ (they are kinetic mechanisms), unlike the
contribution of the elastic interaction and step stiffness which is independent
of F � ν̄ (for ν̄ ! 1), as expected from energetic mechanisms. Hence as the
net deposition flux increases, kinetic mechanisms become more prominent
compared to energetic mechanisms.
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Figure 4.11: Dispersion curves Re(λ(k, q)) associated to the chemical effect, i. e.,
gCE(k, q). From left to right, κ̄ = 0.01, κ̄ = 1, κ̄ = 100. All mechanisms
other than the chemical effect are disabled: S = 1, Θ = 0.1, d̄ = 0, γ̄ = 0,
Π = 0. [see color legend in Figure 4.7]

equilibrium adatom coverage Θ The equilibrium adatom coverage
Θ differentiates between the chemical effect, whose associated growth rate
scales as Θ2, and the other mechanisms, whose scaling is linear in Θ. This is
consistent with the stability diagrams (Figure 4.12), as we indeed notice that for
low values of Θ, the chemical effect becomes negligible. At higher values of Θ, it
it interesting to note that, under deposition, the presence of the chemical effect
modifies the critical S that separates in-phase meandering from straight-step
pairing, while under evaporation, the critical S = 1 is unchanged with only an
impact on the wavenumbers (k, q) of the most unstable mode. To summarize,
the chemical effect will have a stronger influence on materials with a high
adatom coverage such as GaAs(001) or Si(111)� 1� 1 for which experimental
observations place Θ between 0.1 and 0.2.

attachment/detachment kinetics coefficient κ̄ The scaling with
the attachment/detachment kinetics coefficient κ̄ is not as straightforward and
we focus our attention on the two limiting cases κ̄ ! 1 and κ̄ " 1. In the

4 We speak of “effective” stability in the sense that the surface might theoretically be unstable in
the white region but with such a small growth rate (λ ¤ 10�5) that the instability would take a
nonphysical amount of time to develop and can therefore not be observed.
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Figure 4.12: Stability diagrams showing the q and k wavenumbers of the most unstable
mode as a function of S and Θ for pure deposition and pure evaporation
conditions. The white region is “effectively” stable4, the colored region
is unstable, such that the isolines represent the logarithm of the growth
rate and the color gradient represents the wavenumber. Parameters κ̄ = 1,
γ̄ = 10�2, ᾱ = 0, Π = 0.

kinetically limited regime (κ̄ ! 1), ignoring step-edge diffusion, we find that
the energetic mechanisms (elastic interaction and step stiffness) are linear in
κ̄ while the kinetic mechanisms are quadratic in κ̄. In the diffusion-limited
regime (κ̄ " 1), the scaling of the energetic mechanisms becomes independent
of κ̄ and that of the kinetic mechanisms proportional to κ̄�1, or even κ̄�2 for
the bunching modes (q = 0) of the ES effect. Overall, the magnitude of the
energetic mechanisms is always greater than that of the kinetic mechanisms, and
we verify that this conclusion also holds when including step-edge diffusion,
although the specific scaling relations are modified. This is consistent with
the fact that the kinetic mechanisms logically have more influence when the
surface evolution is kinetically controlled and become irrelevant compared to
the energetic mechanisms when attachment/detachment kinetics are not the
limiting process.
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Figure 4.13: Stability diagrams showing the q and k wavenumbers of the most unstable
mode as a function of S and κ̄ for pure deposition with and without the
chemical effect. Parameters F = 10�4, Θ = 0.1, γ̄ = 10�2, ᾱ = 0, Π = 0.
[see color legend on Figure 4.12]

Taking a closer look at the stability diagrams in Figure 4.13, we can further
analyze the role of κ̄. For instance, in the absence of chemical effect and elastic
interaction, the stability is independent of κ̄, which only influences the growth
rate and wavenumbers of the most unstable mode. However, with the chemical
effect, the stability diagram is profoundly modified. For slow kinetic (κ̄ ! 1),
the critical value of S to switch from bunching to meandering is increased. And
for fast kinetics (κ̄ " 1), the most unstable mode remains straight-step pairing
even for a strong direct ES effect. The dispersion curves at (S, κ̄) = (5, 0.4),
(S, κ̄) = (5, 4), and (S, κ̄) = (5, 40) allow to better understand the stability
diagram (Figure 4.14). They show that the in-phase meandering mode is always
present but for sufficiently fast kinetics and strong direct ES effect, a second,
more unstable, region of straight-step pairing appears with a greater growth
rate. In particular, this implies that there exists a set of parameters for which
the in-phase meandering mode and the straight-step pairing mode are equally
unstable.
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Figure 4.14: Dispersion curves associated to Figure 4.13 at points (S, κ̄) = (5, 0.4),
(S, κ̄) = (5, 4), and (S, κ̄) = (5, 40), from left to right. Here, γ̄ was set to
10�5 to make both unstable regions visible. With γ̄ = 10�2, the diagram
is qualitatively similar but the in-phase meandering unstable region is
so narrow that it is barely visible when k spans (0, π). Note the different
vertical scales. [see color legend on Figure 4.7]

step-edge diffusion Step-edge diffusion establishes a distinction between
the ES effect, which is independent of Π, and the other mechanisms which
vary linearly with Π (this is for q ¡ 0 as the effect of step-edge diffusion is
proportional to q2).

Moreover, as previously mentioned, step-edge diffusion can have a strong
effect on the mode of the instability. For example, under deposition, the most
unstable mode is always anti-phase (k = π) but there exists a critical value of
Π for which it changes from straight-step pairing (q = 0, k = π) to anti-phase
meandering (q ¡ 0, k = π) as illustrated in Figure 4.15. This is consistent
with the fact that step-edge diffusion only appears in the dispersion relation
combined to a positive factor multiplied by q2, thus favoring meandering modes
(q ¡ 0) for the instability.

Under evaporation, step-edge diffusion does not exhibit the same special
behavior as the most unstable mode is already in-phase meandering for Π = 0,
and stays as such for Π ¡ 0. Besides, for typical values of γ̄ � 0.01 and ν̄ � 10�6,
step stiffness completely stabilizes the steps under evaporation.

4.4 general stability analysis including dynamics terms

The impact of the dynamical effect on step-bunching has been extensively
reviewed by Guin et al. (2021a). In this section, we extend this review to include
meandering modes.

Under deposition, the dynamical effect always stabilizes large q wavenumbers.
For smaller q wavenumbers, an unstable region is present, whose most unstable
mode shifts from k = π/2 in the kinetic-limited regime κ̄ ! 1 to k Ñ 0 in the
diffusion-limited regime κ̄ " 1, as shown in Figure 4.16. Under evaporation, the
stable and unstable domains are switched.

In the case of deposition in the diffusion-limited regime (κ̄ " 1), we should
mention that, while the growth rate is theoretically positive and the system
of steps is thus unstable, its value is so small that physically the associated
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Figure 4.15: Stability diagrams showing the (k, q) wavenumbers of the most unstable
mode as a function of Π and κ̄ for pure deposition conditions (ν̄ = 0).
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on Figure 4.12]
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Figure 4.16: Dispersion curves Re(λ(k, q)) associated to the dynamical effect. From
left to right, κ̄ = 0.01, κ̄ = 1, κ̄ = 100. All mechanisms other than the
dynamical effect are disabled: S = 1, ᾱ = 0, γ̄ = 0, Π = 0, Θ = 0.1,
ν̄ = 10�4. [see color legend on Figure 4.7]
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(a) Deposition: scaling with F. (b) Deposition: scaling with Θ.

(c) Evaporation: scaling with ν̄. (d) Evaporation: scaling with Θ.

Figure 4.17: Scaling of the dispersion curves with F, ν̄, and Θ (κ̄ = 1, S = 1, ᾱ = 0,
γ̄ = 0, Π = 0, χa = 1, χc = 0). The set of blue curves correspond to
k = π/6 and orange curves to k = π. Deposition (ν̄ = 0) with (a) Θ = 0.1
and (b) F = 10�4. Evaporation (F = 0) with (c) Θ = 0.1 and (d) ν̄ = 10�4.

instability might not develop in the typical time scale of the deposition. For
instance, for a growth rate of 10�6, the deposition of almost 7� 105 ML (e.g.,
over 200 µm of Si) would be necessary to simply double the amplitude of
an initial perturbation. Likewise, under evaporation, the stable region for fast
attachment/detachment kinetics is likely larger in practice than portrayed in
the theoretical diagram.

Like in the straight-step context, the growth rate is proportional to F (ν̄)
under deposition (evaporation) for F ! 1 (ν̄ ! 1) and proportional to Θ2

(Figure 4.17), which is the same as the chemical effect. Note that for F Á 10�1

and ν̄ Á 10�1 the scaling loses validity, particularly for k = π (Figure 4.17).
While no exact analytical expression is available for the growth rate when the
dynamical effect is included, we derive in Chapter 5 an approximate expression
using the transpiration method for the stability analysis that is consistent with
the scaling laws observed numerically with the Chebyshev collocation method.
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Figure 4.18: Stability diagrams showing the interplay of the dynamical effect with the
chemical effect (S = 1, ᾱ = 0, Π = 0, γ̄ = 0 for (a) and (b), and γ̄ = 10�5

for (c) and (d)). In (a) and (b), the most unstable mode is always for q = 0;
i. e., straight steps. In (c) and (d), the most unstable k mode is always k = 0;
i. e., in-phase. [see color legend on Figure 4.12]

4.4.1 Interplay between the dynamical and chemical effects

While both the chemical and dynamical effects taken separately scale in the
same fashion (� FΘ2), their combined contribution exhibits a more complex
behavior (Figure 4.18).

Under deposition, note the stabilizing influence of the dynamical effect at
high κ̄ (the growth rate is smaller than in the quasistatic case in this regime)
and its destabilizing influence at low κ̄. This is also evidenced by the shift
in the wavenumber of the most unstable mode. Indeed, for a high enough
deposition rate, k goes from π in the quasistatic context to values close to 0 in
the diffusion-limited regime (κ̄ " 1), and close to π/2 in the kinetically-limited
regime (κ̄ ! 1), when including the dynamics terms. This is consistent with the
scaling presented in Figure 4.16, and reflects the fact that the dynamical effect
becomes dominant with increasing deposition rate, as expected from a kinetic
mechanism.
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Figure 4.19: Stability diagrams showing the interplay of elasticity and step stiffness
(a) under deposition and (b) under evaporation. Parameters: χa = χc = 1,
Θ = 0.1, S = 1, κ̄ = 1. [see color legend on Figure 4.12]

Under evaporation, the surface is completely stable in the quasistatic case
and the dynamical effect introduces an unstable domain of in-phase step
meandering for high enough values of ν̄ and low enough values of κ̄. Again,
this is a testament to the destabilizing impact of the dynamical effect in the
regime κ̄ ! 1 and shows that the evaporation rate rules the competition between
the destabilizing dynamical effect and the stabilizing step stiffness.

4.4.2 Elasticity, step stiffness and step-edge diffusion

Like in the quasistatic case, the most unstable mode is independent of step
stiffness, which is consistent with the fact that the most unstable mode in
that context is always straight-step bunching, on which step stiffness has no
impact. However, with the inclusion of dynamics effect, the wavenumber of the
step-bunching instability now depends on the strength of the elastic interaction.
If it is weak enough, the most unstable mode is step-pairing (k = π). As the
strength of the elastic interaction increases, the growth rate and wavenumber
of the most unstable mode decrease (see Figure 4.19).

In the case of evaporation, the inclusion of dynamics effect makes an unstable
region appear, which did not exist in the quasistatic case. The most unstable
mode is always in-phase meandering, and does not depend on the strength of
the elastic interaction. For a strong enough step stiffness, the system is stable.
A weaker step stiffness results in a shorter wavelength for the most unstable
mode, with a larger growth rate.

The introduction of step-edge diffusion modifies this behavior. For instance,
under deposition, step-edge diffusion introduces a region of anti-phase mean-
dering instability for small enough elasticity and step stiffness (Figure 4.20). In
addition, step stiffness now significantly impacts the growth rate and wavenum-
ber of the most unstable mode, for weak enough elasticity.

However, under evaporation, step-edge diffusion further stabilizes the system,
so much so that while the growth rate is theoretically positive, its smallness
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Figure 4.20: Stability diagrams showing the influence of step-edge diffusion under
deposition. Parameters: χa = χc = 1, F = 10�4, Θ = 0.1, S = 1, κ̄ = 1,
Π = 102.
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Figure 4.21: Stability diagrams showing the interplay of the dynamical effect with the
Schwoebel effect, under deposition. Parameters: χa = χc = 1, F = 10�4,
Θ = 0.1, d̄ = 0, γ̄ = 10�2, Π = 0.

implies, once again, that physically the instability will likely not develop in the
typical time scale of experiments.

4.4.3 Schwoebel effect

Under deposition, having in mind the scaling of the dynamical effect with κ̄,
we look at the stability diagrams of the most unstable mode as a function of S
and κ̄ (see Figure 4.21). Interestingly, the anti-phase meandering zone observed
with chemical effect alone (see Figure 4.13) is no longer present. Instead, the
diagram is very similar to the one obtained in the standard, quasistatic, BCF
model except the critical value of the ES barrier Sc separating meandering
(S ¡ Sc) from bunching (S   Sc) is greater, fitting Sc = (1 + 2Θ)/(1� 2Θ)

instead of simply Sc = 1.
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Figure 4.22: Stability diagrams showing the interplay of the dynamical effect with the
Schwoebel effect, under evaporation. Parameters: χa = χc = 1, ν̄ = 10�4,
Θ = 0.1, d̄ = 0, γ̄ = 10�2, Π = 0.
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Figure 4.23: Stability diagrams showing two equally unstable modes (a) under deposi-
tion, and (b) under evaporation. Parameters for (a): F = 10�4, Θ = 0.06,
κ̄ = 1, S = 2, d̄ = 0, γ̄ = 10�6, Π = 0.1, and for (b): ν̄ = 10�4, Θ = 0.1,
S = 2, κ̄ = 1, d̄xx = 0.01, γ̄ = 10�7, Π = 0.05.

The case of evaporation is the symmetric of the case of deposition. The
critical value of the ES barrier is identical at (1+ 2Θ)/(1� 2Θ) but the unstable
meandering region is now for S   Sc, and the unstable bunching for S ¡ Sc

(Figure 4.22).

4.4.4 Simultaneous instabilities

Since the Schwoebel effect and the chemodynamical effect have opposite
impact on the stability, with different scaling relations (notably with respect to
Θ, κ̄, and Π), it should be possible to obtain stability diagram with two unstable
regions, as hinted at by Figure 4.14 in the quasistatic approximation. Indeed, it
is theoretically possible, both under deposition or evaporation, as illustrated
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in Figure 4.23 where one can see that there exist two unstable regions whose
respective maximum growth rates are equal. Under deposition, in-phase and
anti-phase meanders may be equally unstable, and under evaporation, in-phase
meandering and step-pairing may co-develop. It is important to emphasize
that in the standard BCF model, where only the ES effect (direct or inverse) is
responsible for the destabilization of the system, such a situation cannot arise.
The dynamical and chemical effects can thus be added to the list of mecha-
nisms that possibly trigger simultaneous bunching and meandering, besides
heteroepitaxy (Yu et al., 2011) and diffusion anisotropy between alternating
terraces Frisch and Verga (2006).

In practice however, the physically expected order of magnitude of each
parameter makes this task much more challenging. For instance, for typical
values of the step stiffness, its stabilizing effect dominates the destabilizing
influence of the ES barrier on in-phase meandering so that a strong barrier or
deposition flux (remember that it enhances the effect of kinetic mechanisms
relative to energetic ones) is required, limiting the applicability of the theory to
specific experimental situations.

In the pure evaporation regime, the evaporation rate is unlikely to be suffi-
cient to allow for the chemodynamical effect to be strong enough to compete
with step stiffness. In the pure deposition regime, the possibility of simultane-
ous instabilities still exists, although the associated growth rate is quite small
(see Figure 4.24).

4.5 comparison to experiments

There are not many experimental results showcasing meandering of vicinal
surfaces. Apart from the systematic set of studies by Maroutian et al. (2001)
and Néel et al. (2003) on Cu surfaces, the other example by Omi and Ogino
(2000) concerns a Si surface. More examples are available in the context of
electromigration, which we review in Chapter 5.

In the case of Cu, several obstacles hinder the study of the chemodynamical
effect. First, the experiments are conducted at room temperature (T = 280K)
so that a very low adatom coverage Θ is expected, which entails a negligible
influence of the chemodynamical effect based on its quadratic scaling with Θ
as previously discussed. Moreover, Cu, like other metals, presents a very high
ES barrier (Camarero et al., 1999; Xiang and Huang, 2008; Benlattar et al., 2017),
which further undermines the impact of the chemodynamical effect.

On the other hand, on Si, the adatom coverage has been measured at a few
percents (Yang and Williams, 1994) and no evidence of a strong ES barrier is
found (Pimpinelli and Videcoq, 2000; Vladimirova et al., 2001; Slanina et al.,
2005). However, the experimental situation remains complex as the behaviour is
dependent on the steps’ orientation. With [112̄] steps, for temperatures between
570 and 650�C, and a deposition flux ranging from 0.01 to 0.7 nm/s, Omi and
Ogino (2000) observe that initially equidistant triple-layer-high steps evolve
into randomly distributed zig-zag shaped steps that eventually grow in phase
after the deposited film reaches a certain thickness of around 100 nm. In a
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Figure 4.24: Stability diagrams showing two equally unstable modes under deposition
with physically relevant parameters. Parameters: F = 10�2, Θ = 0.1, κ̄ = 1,
S = 2, d̄xx = 0.1, γ̄ = 10�3, Π = 5/8. [see color legend on Figure 4.11]

later work, with [1̄1̄2] steps,5 for temperatures between 550 and 675�C, and a
deposition flux of � 0.01 nm/s, Omi et al. (2005) observe initially equidistant
single-layer-high steps that maintain their configuration after the deposition
of 100 nm. They also show that the surface stability domain is dependent on
the miscut angle, such that at a given temperature, larger miscut angles tend to
destabilize the surface against step bunching.6 Despite the similar temperature
range and deposition flux, the resulting morphologies are radically different,
which might be an indication that the physical parameters at the step (namely
the ES barrier S, the attachment/detachment coefficient κ̄, step stiffness γ̄, and
step-edge diffusion Π) are strongly dependent on the step orientation.

5 Although [1̄1̄2] and [112̄] represent the same direction, the steps created by a miscut towards
one or the other differ due to the crystallographic asymmetry of Si(111) (Suzuki and Yagi, 1997).

6 We note that there seems to be some confusion about the relation between the miscut angle and
the initial terrace width in the corresponding diagram (at Fig. 3). Indeed, denoting ϕ the miscut
angle and a the step height, from simple trigonometry we must have tan(ϕ) = a/L0. Based on
the authors’ observations of single-layer steps at the surface, we infer that a = 0.314 nm from
which we derive that a 1� miscut angle corresponds to an initial terrace width of L0 = 18 nm.
Yet, in their diagram at Fig.3, the 1� angle is associated to L0 = 57 nm, which is consistent with
a triple-layer step instead, such that a = 0.942 nm.
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Figure 4.25: Growth rate as a function of the initial terrace width L0. The parameters
at L0 = 18 nm (i. e., a miscut angle of 1�) are: F = 10�4, S = 1, Θ = 0.05,
κ̄ = 10�2, dxx = 15 eV/nm, dxz = 6 eV/nm, γ̄ = 10�2, Π = 0.

Bearing this in mind, we analyze the stability of a Si(111) surface based
on experimental estimates of the parameters given in Appendix D. A first
observation in the case of step bunching, illustrated in Figure 4.25, is that
increasing the initial terrace width increases the growth rate of the instability,
i. e., makes the surface more unstable, which is at odds with the experiments
of Omi et al. (2005). This is expected as the step-step interaction coefficient ᾱ0,
whose associated mechanism is stabilizing, has the strongest scaling with L0

of all parameters as ᾱ0 � L�3
0 which entails that the surface is more stabilized

for smaller L0, i. e., larger miscut angles. It seems the only way to reconcile
the experimental observations with the theory would be to assume that the
parameters themselves depend on L0 and not simply their nondimensional
counterpart.

In the general case, we find that the surface is unstable, against either step
bunching or anti-phase meandering depending on the competition between
step-edge diffusion, step-step interaction and step stiffness (see Figure 4.26).
While the exact dependence of those parameters with temperature is unclear,
it shows that the two instabilities of step bunching and step meandering may
theoretically be triggered on Si surfaces, as observed in Omi et al. (2005) where
step bunching is reported for temperatures below 800�C but step meandering
develops above 800�C. However, the predicted stability diagrams do not con-
form with the experimental results of Omi and Ogino (2000). Indeed, because
the meandering instability predicted is always anti-phase, it is stabilized by the
elastic step-step interaction, so that if single-layer-high steps do not meander
(Omi et al., 2005), we would expect the same behavior from triple-layer-high
step as the strength of the elastic step-step interaction increases with step
height (Williams et al., 1993). On the other hand, this discrepancy could also
suggest that the step meandering instability observed experimentally is actually
triggered by the initial step bunching (from single-layer steps to triple-layer
steps) and results from nonlinear effects which are beyond the scope of our
linear stability analysis. For instance, the case of step meandering acting as a
precursor of step bunching has been reported by Néel et al. (2003).
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Figure 4.26: Stability diagrams showing the competition between step-edge diffusion
and step stiffness for two values of the step-step interaction strength.
Parameters: F = 10�4, Θ = 0.05, S = 1, κ̄ = 10�2.

In addition to these considerations, it is interesting to note that for tem-
peratures between 650 and 800�C, Omi and Ogino (2000) still observe step
meandering whereas Omi et al. (2005) see step bunching. In the framework of
the standard BCF model, this would imply a drastic change from an inverse to
a direct ES barrier. On the other hand, taking into account the chemical and
dynamical effects, we observe that a slight variation of the equilibrium adatom
coverage Θ (from 8% to 10%) leads to a dramatic change in the most unstable
mode, from in-phase meandering to step bunching (Figure 4.27).

Given the uncertainty on several of the material parameters, it is extremely
hard to interpret the experiments in light of our model and we cannot reach
a definitive conclusion. What is certain is that additional experiments would
be extremely welcome to offer greater accuracy on the model parameters.
Nevertheless, this does not change the principal point of our work: we have
provided a new instability mechanism that can trigger both step-bunching and
step-meandering instabilities independently of an ES barrier, whether it be
direct or inverse.
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Figure 4.27: Stability diagrams showing a drastic switch in the most unstable mode
from in-phase meandering to step bunching due to a small variation of Θ.
Parameters: F = 10�3, ν̄ = 0, κ̄ = 10�2, S = 1.5, d = 0, γ̄ = 10�3, Π = 0.
[see color legend on Figure 4.11]

4.6 key results

The stability landscape on vicinal surfaces is extremely complex, as it results
from the competition between five stabilizing/destabilizing mechanisms (the
ES effect S, the chemical effect χc, the dynamical effect χa, the step-step elastic
interaction d, and the step stiffness γ̄) whose relative weights are governed not
only by their respective magnitude, but also by the four operational and material
parameters (the deposition/evaporation rates F and ν̄, the equilibrium adatom
coverage Θ, the attachment/detachment coefficient κ̄, and the step-edge diffusion
coefficient Π). Although the exact stability diagram depends on a specific choice of
the set of parameters, we summarize in Table 4.1 and schematically in Figure 4.28

the impact on stability of each mechanism acting independently. Additionally,
the scaling of these mechanisms with the operational and material parameters is
shown in Table 4.2, at the exception of κ̄ given the complexity of the associated
scaling that depends on the mode, the magnitude of κ̄, and the operational regime
considered.

We have extended the analysis of Guin et al. (2021a) in the one-dimensional
context of step bunching to the general two-dimensional context where steps are
allowed to meander, and have shown that the dynamical and chemical effects
have a significant impact on the stability of vicinal surfaces. On a related note, as
these two effects share some common characteristics with the inverse ES effect,
they could be interpreted as an effective inverse ES effect, reconciling the theories
that require an inverse ES effect to trigger instability and the unlikelihood of the
existence of an actual energetic inverse ES barrier.
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0

Figure 4.28: Diagram of the (k, q) space. For each mechanism, the most stabilized
mode is shown in blue and the most destabilized one in red.

S   1 S ¡ 1 χc χa dxx/dxz dyy γ̄

S (0,8) (π, 0) (0,8) (π,8) (π, q1) (0, q2) (π,8)

U (π, 0) (0,8) (π, 0) (k0, 0) (0, q1) (π, q2)

Table 4.1: Most stable and unstable mode for each mechanism taken independently.
S denotes the most stable modes, U the most unstable ones, where a
mode is described as (k, q). k0, q1, and q2 are values such that 0   k0  

π/2 and 0   qi   8. Under evaporation, the most destabilized and most
stabilized modes are reversed for kinetic mechanisms (first 4 columns),
and unchanged for energetic mechanisms (last three columns).

χc χa S d and γ̄

F or ν̄ 1 1 1 0

Θ 2 2 1 1

Π 1 0 0 1

Table 4.2: Scaling of each mechanism with the operational and material param-
eters. The numbers presented correspond to the exponents of a scal-
ing law of the type Fc1 Θc2(AΠc3 + B). For example, the first column
tells us that the growth rate associated to the chemical effect scales as
F1Θ2(AΠ1 + B).



5
E L E C T R O M I G R AT I O N

This chapter is dedicated to the special case of crystal growth with electromi-
gration. Indeed, vicinal surfaces exhibit a complex behavior when subject to
an electric current. While alternate-current heating of the substrate results in
stable growth, a direct-current heating, depending on the current direction, the
temperature, and the deposition/evaporation regime, may cause step bunching
or meandering.

Of particular interest is the Si(111)� 1� 1 surface, whose behavior, detailed
in Section 5.1, exhibits an intriguing dependence on temperature. After pre-
senting the general stability results in Section 5.2, we derive in Section 5.3 an
alternate stability analysis, the so-called transpiration method, which provides an
approximate, but extremely accurate, analytical expression for the dispersion
relation. In Section 5.4, we focus on three experiments into which the dynamical
and chemical effects offer new insights.

5.1 review of existing theories

First described by Latyshev et al. (1989), four different temperature regimes
can be identified on Si(111) surfaces, that are characterized by the direction of
the current required to trigger the step-bunching instability in free evaporation
conditions. In regimes I (860

�C – 960
�C) and III (1200

�C – 1300
�C) (Homma and

Aizawa, 2000; Leroy et al., 2009), step-bunching occurs at step-down current and
is well accounted for by the standard BCF model, extended to account for the
adatom drift induced by the electric current by introducing an electromigration
force in the reaction-diffusion equation. However, the same model is incapable
of describing the dynamics in regimes II (1060

�C – 1200
�C) and IV (¡ 1320�C)

(Homma and Aizawa, 2000; Leroy et al., 2009), where step-up current triggers
step-bunching. Note the temperature gaps between regimes I and II, and
regimes III and IV, for which no bunching occurs, irrespective of the current’s
direction, and which could correspond to a gradual change of step properties
or adatom transport mechanism (Homma and Aizawa, 2000).

At first, the possibility of a change in the sign of the adatom effective charge
was considered by Kandel and Kaxiras (1996) but ruled out by the experiments
of Degawa et al. (2000), which show that the adatom drift direction corresponds
to the current direction, irrespective of the temperature.

In the late 90’s, it was proposed that the stability reversal in regime II is due
to step permeability, whereby adatoms can hop directly from one terrace to
another without attaching and detaching from a step (Stoyanov, 1998; Métois
and Stoyanov, 1999). Indeed, it was shown that sufficiently permeable steps
are unstable against step-bunching in the step-up direction (Stoyanov, 1998;
Pierre-Louis, 2003). However, it is not clear why, as temperature increases, steps

95
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are alternatively permeable and impermeable. Kink density at the step was
suggested as a possible permeability mechanism (Sato, 2007), but is inconsistent
with the fact that step-bunching does not depend on step orientation (Homma
and Aizawa, 2000) while kink density does (Lin et al., 1998). Nevertheless, it
should be noted that only zero azimuthal orientations (1̄1̄2), (112̄) and (01̄0) are
considered by Homma and Aizawa (2000), which may all possess similar kink
densities as they are principal crystal directions, so that their conclusion may
not be generalizable to an arbitrary step orientation.

Another postulate to explain the I Ñ II stability reversal is the transition from
a state with high activation energy for desorption (Taganayaki-like adatoms) to
a state with low activation energy, effectively causing a transition from local to
global mass transport (Métois and Stoyanov, 1999). However, this would entail
a low equilibrium coverage in regime II, which is not observed experimentally,
with estimates at 0.25 ML instead (Fukaya and Shigeta, 2000; Rogilo et al., 2016).

In addition, a recent experimental study by Usov et al. (2011) on the scaling
exponents of the maximal bunch slope with bunch size and applied electric field
could not be explained by a self-consistent permeable-step model, but instead
had to resort to out-of-equilibrium and near-equilibrium hypotheses to match
the observed exponents. The transparent-step model also gives unrealistic
values for the effective charges of adatoms (Fujita et al., 1999; Homma and
Aizawa, 2000).

Finally, note that fast step kinetics and high permeability are essentially
indistinguishable (Pierre-Louis, 2003) and could in fact be two ways of modeling
the same physical process (Guin, 2018). Therefore, while appealing at first
glance, the permeable-step model has many limitations and does not seem to
be the right answer to explain the stability reversals.

At higher temperatures, surface melting was evidenced for T Á 1200�C
(Homma et al., 1997) or T Á 1290�C (Fukaya and Shigeta, 2000) which could
have a strong impact on the diffusion properties and attachment/detachment
kinetics of adatoms. Likewise, for the high temperature (T ¡ 1180�C) tran-
sitions II Ñ III and III Ñ IV, advacancies are likely to play a role (Sitnikov
et al., 2017) but theoretically were only shown to have an impact when the step
spacing is large compared to the diffusion length (Misbah et al., 1995), which is
not verified experimentally (Alfonso et al., 1993; Homma et al., 1997; Homma,
1998).

An alternative approach consists in considering a space-dependent diffusion
coefficient or electromigration force (Zhao and Weeks, 2005; Pierre-Louis, 2006),
which could emanate from different surface reconstructions in the step area and
on the terrace. Matching the obtained dynamics to a BCF-type model yields
a negative kinetic coefficient (Zhao and Weeks, 2005), which results in the
expected stability reversal. While this is still essentially a thought experiment,
the need for different reconstructed regions could conform with the existence
of stable temperature gaps between some regimes.

Furthermore, the complex stability landscape on Si(111) surfaces under
electromigration is not limited to step bunching. Indeed, ten years after the
first observations of the peculiar behavior of step bunching by Latyshev et al.



5.1 review of existing theories 97

Evaporation Net deposition

Step-down Step-up Step-down Step-up

Regime I

� 850� 950�C
SB2,4,6,7 R2,4,6,7 SB2,7 R7

Regime II

� 1050� 1200�C

SM6,8

R1�5,7
SB1�7 R7,�

SB3,5,:

SB7,�

SP3,:

Regime III

� 1200� 1300�C
SB1�6,8 R1�6 SB3,5 R3,9,:

SB9,;

Regime IV

¡ 1320�C
R1,4 SB1,4

Table 5.1: Compilation of the experimental observations of the stability against step
bunching for Si(111) under electromigration. SB denotes step bunching
(with coarsening), SP step pairing (no coarsening), R regular spacing (stable
configuration) and SM step meandering. The superscripts correspond to 1.
Latyshev et al. (1989), 2. Yang et al. (1996), 3. Métois and Stoyanov (1999),
4. Homma and Aizawa (2000), 5. Stoyanov et al. (2000), 6. Minoda (2003),
7. Gibbons et al. (2005), 8. Leroy et al. (2009), 9. Ranguelov et al. (2017), �
“low” deposition flux (0.03 ML/s), : “moderate” deposition flux (  1 ML/s),
; “high” deposition flux (5 ML/s).

(1989), Degawa et al. (1999a) found in-phase step meandering at step-down
current in regime II, which was previously believed to yield a stable surface.
While they used a cylindrical groove to observe at once step-up and step-down
regions over a range of miscut angles (from 0 to 14�), they obtained the same
result using standard vicinal surfaces (Degawa et al., 1999c). Additionally, still
in regime II, (Degawa et al., 1999b) also studied the formation of in-phase
step meanders in antibands during step-bunching at step-up direction of the
current (thus locally step-down for the antibands). Degawa et al. (2001a) then
extended the study to arbitrary directions of the direct current, such that it is
not necessarily aligned with the direction perpendicular to steps, and Degawa
et al. (2001b) studied the precise temperature and off-angle dependence of the
instability domains. A complete review of these works can be found in Minoda
(2003). All these experimental results are summarized in Table 5.1.

While it has been shown than the dynamical and chemical effects cannot
explain the stability reversals observed on Si(111) vicinal surface (Guin, 2018),
our objective in this chapter is to offer a reinterpretation of some experimental
results for which the dynamical and chemical effects might play a crucial role.
In order to reach that goal, an alternative linear stability analysis is proposed,
that yields an approximate analytical expression for the growth rate which is
much less computationally intensive than the Chebyshev collocation method
presented in Appendix H while preserving an excellent accuracy.
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Figure 5.1: Stability diagrams of (top) the BCF model, (middle) the quasistatic model,
and (bottom) the full model for step-down electromigration under pure
evaporation (F = 0). Parameters: Θ = 0.2, S = 1, ē = 10�5, d̄xx = 0.01,
γ̄ = 10�3, Π = 0. [see color legend Figure 4.12]
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Figure 5.2: Stability diagrams of the full model for step-up electromigration under
pure evaporation (F = 0). The BCF and quasistatic models are not shown
as the entire domain is stable in both cases. Parameters: Θ = 0.2, S = 1,
ē = �10�5, d̄xx = 0.01, γ̄ = 10�3, Π = 0. [see color legend Figure 4.12]

5.2 stability results under electromigration

In this section, we briefly review how the stability results presented in
Chapter 4 are modified by electromigration. Even under the quasistatic approx-
imation, the expression of the growth rate is too complex to be interpreted and
we instead rely on numerical results.

The general conclusions are essentially the same as in the absence of electro-
migration, although some interesting features appear. First, we observe that
step-down current destabilizes the entire domain, no matter what model we
consider (see Figure 5.1). However, while only step bunching is predicted in
the BCF model, the inclusion of the chemical and dynamical effects introduces
a region of step meandering in the stability diagram, as expected from their re-
spective dispersion curves under evaporation (see Figure 4.11 and Figure 4.16).
This means that a transition from step bunching to step meandering (and vice
versa) may take place on the surface, depending notably on the temperature
and the initial terrace width, which we study in more details in Section 5.4.2.

On the other hand, step-up electromigration acts as a stabilizing mechanism
which, in the BCF model, stabilizes the whole domain. In that case, even the
destabilizing influence of the chemical effect is not enough to counteract the
stabilizing effect from the step-up current. However, as illustrated in Figure 5.2,
the dynamical effect does have the sufficient strength to overcome the step-up
current stabilization and actually induce step meandering, which once shows
its significant impact on stability.

Regarding the different scaling laws, we can show that the growth rate
associated to electromigration is linear with Θ and independent of Π. The
dependence on the deposition/evaporation rates and attachment/detachment
coefficient are more intricate and do not fit a simple power law.
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5.3 linear stability analysis by the transpiration method

The ALE formulation of Section 2.4.3 combined with the Chebyshev col-
location method of Appendix H allows for an exact analysis of the stability,
presented in Guin et al. (2020) for the one-dimensional setting, and in Chapter 4

and Section 5.2 for the two-dimensional one, which uncovered previously ne-
glected stability criteria relating to the dynamical and chemical effects. However,
its numerical form makes a systematic study fastidious, as the stability analysis
need to be run for each choice of parameters, and limits the quantitative un-
derstanding of the mechanisms to extreme regimes and general scaling laws
(see Section 4.3.4). To overcome this drawback, we instead apply the so-called
transpiration technique, which consists in an asymptotic development of the
variables near their steady-state values.

For conciseness, we will restrict the derivation to straight steps, but the
process is transferable to two space dimensions. We work in the comoving
frame, where we denote position as x̂ = x� n�P t and concentration ρ̂n(x̂, t) =
ρn(x, t). To keep notations light, we will drop the hats in the following.

The fundamental solution is
0
xn = 0 and ρn(x, t) = ρ(0)(x) where the function

ρ(0) is given in Appendix F.1 We consider the perturbed state:

xn(t) = εζn(t) +O(ε2),

ρn(x, t) = ρ(0)(x) + ερ
(1)
n (x, t) +O(ε2).

(5.1)

The essence of the transpiration method resides in how the boundary conditions
are expressed. Because the concentrations at the steps bordering terrace n are
defined at the moving points εζn(t) and 1 + εζn+1(t), we use Taylor series to
expand them around the fixed points x = 0 and x = 1.

ρ+n = ρn(xn(t), t) = ρn(0, t) + εζn(t)Bxρn(0, t) +O(ε2)

= ρ(0)(0) + ε
(

ρ
(1)
n (0, t) + ζn(t)ρ

(0)
x (0)

)
+O(ε2),

ρ�n = ρn(xn+1(t), t) = ρn(n + 1, t) + εζ1(t)Bxρn(1, t) +O(ε2)

= ρ(0)(1) + ε
(

ρ
(1)
n (1, t) + ζ1(t)ρ

(0)
x (1)

)
+O(ε2).

(5.2)

Since we are interested in the linear stability analysis, it suffices to study the
stability with respect to the normal modes$&% ζn(t) = eikn+λt,

ρ
(1)
n (x, t) = eikn+λtρ(1)(x),

(5.3)

where, as in Chapter 4, λ represents the growth rate, whose real part determines
the stability of the system.

1 Note that in the steady-state setting, the variable x coincides with the Lagrangian variable u.
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Inserting back and collecting terms of order ε:$'''''''''''''''''&'''''''''''''''''%

0 = ρ
(1)
xx + (χaP� ē)ρ(1)x � (ν̄ + χdλ)ρ(1),

(ρ(1)(1) + ρ
(0)
x (1)eik)(χaP� ē) + χaρ(0)(1)eikλ + (ρ

(1)
x (1) + ρ

(0)
xx (1)eik)

= �κ̄(ρ(1)(1) + ρ
(0)
x (1)eik � FR(k, 0)eik)

+ χcκ̄Θ
[
(ρ(1)(0) + ρ

(0)
x (0))eik � (ρ(1)(1) + ρ

(0)
x (1)eik)

]
,

(ρ(1)(0) + ρ
(0)
x (0))(χaP� ē) + χaρ(0)(0)λ + ρ

(1)
x (0) + ρ

(0)
xx (0)

= κ̄S(ρ(1)(0) + ρ
(0)
x (0)� FR(k, 0))

� χcκ̄SΘ
[
ρ(1)(0) + ρ

(0)
x (0)� (ρ(1)(1) + ρ

(0)
x (1)eik)e�ik

]
.

(5.4)

Note that we have introduced χd in addition to χa to differentiate the transient
term Btρ̃n from the advective contribution among the dynamics terms. The
solution to the diffusion equation takes the form:$''&''%

ρ(1)(x) = C+ exp(r+x) + C� exp(r�x),

r� = r�(λ) = �χaP� ē
2

�
d(

χaP� ē
2

)2

+ ν̄ + χdλ,
(5.5)

with boundary condition written as a system

A(λ)

(
C+(λ)

C�(λ)

)
= b(λ), (5.6)

where$'''''''''''''''''''&'''''''''''''''''''%

A11(λ) = �(χaP� ē + r+(λ) + κ̄)er+(λ) + χcκ̄Θ(eik � er+(λ)),

A12(λ) = �(χaP� ē + r�(λ) + κ̄)er�(λ) + χcκ̄Θ(eik � er�(λ)),

b1(λ) =
[
(χaP� ē + κ̄)ρ

(0)
x (1) + χaρ(0)(1)λ + ρ

(0)
xx (1)

� κ̄FR(k, 0)� χcκ̄Θ(ρ
(0)
x (0)� ρ

(0)
x (1))

]
eik,

A21(λ) = (χaP� ē + r+(λ)� κ̄S) + χcκ̄SΘ(1� e�ik+r+(λ)),

A22(λ) = (χaP� ē + r�(λ)� κ̄S) + χcκ̄SΘ(1� e�ik+r�(λ)),

b2(λ) = (�χaP + ē + κ̄S)ρ(0)x (0)� χaρ(0)(0)λ� ρ
(0)
xx (0)

� κ̄SFR(k, 0)� χcκ̄SΘ(ρ
(0)
x (0)� ρ

(0)
x (1)).

(5.7)

The system can easily be inverted to give C+ and C� as:(
C+

C�

)
=

1
det(A)

(
A22b1 � A12b2

A11b2 � A21b1

)
. (5.8)

Finally, using the interface motion we get the following analytical expression
for λ:[
1� χaΘ(ρ(0)(0)� ρ(0)(1))

]
λ = Θ

[
(r+(λ) + χaP� ē)(1� e�ik+r+(λ))C+(λ)

+ (r�(λ) + χaP� ē)(1� e�ik+r�(λ))C�(λ) + ν̄(ρ(0)(0)� ρ(0)(1))
]
. (5.9)
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In the absence of evaporation (ν̄ = 0), electromigration (ē = 0) and the chemical
effect (χc = 0), this expression matches the one reported in Gillet (2000). In the
present form, this implicit equation is unusable due to its complex nonlinearities.
However, it can be simplified and made explicit under the assumptions:

F ! 1, ν̄ ! 1, ē ! 1, and ᾱ ! 1, (5.10)

which are expected in experimental conditions. We refer to first order terms
as terms of the form O(F), O(ν̄), O(ē) and O(ᾱ). Second order and third or-
der terms are terms of the form O(pi pj) and O(pi pj pk) respectively, where
tpi, pj, pku P tF, ν̄, ē, ᾱu3. Under those hypotheses, neglecting third and higher
order terms, we establish the expression for the nondimensional fundamental
velocity, i. e., the Péclet number:

P � (F� ν̄)Θ� ν̄Θ
12κ̄B

"
6(C2 � C1)κ̄ē + (F� ν̄)C3

*
, (5.11)

where$'''''''&'''''''%

B := 1 + S + κ̄S,

C0 := (1� S)(χa + χc)/2 + χaχcΘ(S + 1),

C1 := 1 + χcΘ(S + 1),

C2 := S� χcΘ(S + 1),

C3 := (κ̄ + 4)(κ̄S + 4) + 4(3κ̄ΘC0 � 1).

(5.12)

Likewise, we expand (5.9) up to order 2, such that λ � λ1 + λ2 with λ1 and λ2

of order 1 and 2 respectively. At first order:

λ1=
1

D1

#
4S(S+1)ēκ̄Θ

(
1+4

Θ
B

C0sin2(k/2)
)

sin2(k/2)

�48ᾱκ̄SBΘ
(

1+4
Θ
B

C0sin2(k/2)
)

sin4(k/2)+2(S+1)(F�ν̄)Θsin2(k/2)

�
[
(A1�A2)

(
1+4

Θ
B

C0sin2(k/2)
)
+2(χc�χa)BΘ

(
1+4

Θ
B

C0

)
sin2(k/2)

]+
,

(5.13)

where$''&''%
D1 :=

[
B + 4ΘC0 sin2(k/2)

]2
+ (χc � χa)(S + 1)2Θ2 sin2(k),

A1 := 1 + χaΘ(S + 1),

A2 := S� χaΘ(S + 1).

(5.14)

As χd does not appear in this expression, we conclude that the transient term
has no impact at first order, which contributes to legitimize the approximation
made in Chapter 3 for the discrete-to-continuum limit of the continuum step
model. Moreover, if we now look at the growth rate for each mechanism acting
independently, we get, for the ES effect:

λES
1 =

�2(S2 � 1)(F� ν̄)Θ sin2(k/2)
B2 9 (F� ν̄)Θ, (5.15)
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for the chemical effect:

λCE
1 =

4(κ̄ + 2)(F� ν̄)Θ2 sin4(k/2)
(κ̄ + 2)2 + 4Θ2 sin2(k)

9 (F� ν̄)Θ2, (5.16)

for the dynamical effect:

λDE
1 =

8(F� ν̄)Θ2 sin2(k/2)
[
2� (κ̄ + 2) sin2(k/2)

]
(κ̄ + 2)2 � 4Θ2 sin2(k)

9 (F� ν̄)Θ2, (5.17)

and for the elastic step-step interaction:

λEL
1 =

�48ᾱκ̄Θ sin4(k/2)
κ̄ + 2

9 Θ, (5.18)

so that we recover the scaling laws determined with the quasistatic approxima-
tion for the ES effect, the chemical effect, and the elastic step-step interaction
(Section 4.3.4), and with the numerical resolution for the dynamical effect
(Section 4.4). We are also able to provide an explanation for the discrepancy
observed with the scaling laws at large values of F and ν̄. Indeed, as this is only
a first order approximation, the terms in F2 and ν̄2 become important in the
large deposition/evaporation regime, invalidating the simple linear scaling law
with F� ν̄.

In the general context of χa = χc = χ = 1, the dispersion relation simplifies
to:

λ1 =
sin2(k/2)

B + 4ΘC0 sin2(k/2)

�
[
2(S + 1)

Θ
B
(2κ̄Sē + (F� ν̄)(A1 � A2))� 48ᾱκ̄SΘ sin2(k/2)

]
,

(5.19)

meaning there exists an unstable mode as long as:

2κ̄Sē + (F� ν̄)(A1 � A2) ¡ 0. (5.20)

Further, ignoring the ES barrier (S = 1):

λ1 =
sin2(k/2)

κ̄ + 2 + 8χΘ2 sin2(k/2)

�
[ 8Θ

κ̄ + 2
(κ̄ē + 2χ(F� ν̄)Θ)� 48ᾱκ̄Θ sin2(k/2)

]
,

(5.21)

and the instability condition reduces to:

κ̄ē + 2χ(F� ν̄)Θ ¡ 0. (5.22)

Compared to the standard BCF model (χ = 0), for which stability is entirely
dictated by the sign of ē in the case of symmetric attachment/detachment, note
how the chemodynamical effect introduces a lower bound 2ν̄Θ/κ̄ for a step-
down current to trigger instability in the evaporation regime. This qualitatively
agrees with the experimental observations of O Coileain et al. (2011) and Usov
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Figure 5.3: Superimposed stability diagrams for evaporation with electromigration ob-
tained from the Chebyshev numerical method (black) and the transpiration
method (red): (a) order 1 and (b) order 2. We do not show the k wavenumber
of the most unstable mode as it is mostly constant at k = π. Parameters:
Θ = 0.2, S = 1, ē = 10�5, ᾱ = 10�8.
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Figure 5.4: Superimposed stability diagrams for pure deposition (ν̄ = 0) obtained from
the Chebyshev numerical method (black) and the transpiration method
(red): (top) order 1 and (bottom) order 2, (left) growth rate and (right) k
wavenumber of the most unstable mode. Parameters: Θ = 0.05, S = 1,
ᾱ = 10�5.
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et al. (2011), which measure the strength of the electric field required to trigger
instability, and is the object of a detailed analysis in Section 5.4.3. Further, in the
deposition regime, we see that there exists an upper bound 2FΘ on the absolute
value of the step-up current below which unstable growth will take place. This
allows us to reinterpret, in Section 5.4.1, an experiment by Ranguelov et al.
(2017) in the step-up regime under extreme deposition flux.

At second order, the complete expression becomes unmanageable. Given
the expected value of model parameters, we only keep terms of order Θ2 at
most and assume S = 1. As illustrated in Figure 5.3 and Figure 5.4, this second
order correction is only relevant at strong net deposition or evaporation flux,
i.e. |F� ν̄| Á 10�2. Therefore, for the majority of experimental conditions, the
first order expression is already an excellent approximation. We find, again in
the context of χa = χc = χ = 1:

λ2 =
1

D2

#
χē2 16

3
κ̄2(κ̄ + 2)3Θ2 (�24� 27κ̄� 7κ̄2 + κ̄(κ̄ + 3) cos(k)

)
� ēν̄

2
3

κ̄2(κ̄ + 2)5Θ(κ̄ + 6)

+ χ(F� ν̄)2 1
3
(κ̄ + 2)7Θ2(12 + 6κ̄ + κ̄2)(cos(k)� κ̄� 2

κ̄ + 2
)

� χν̄(F� ν̄)
16
3
(κ̄ + 2)5Θ2(6 + 6κ̄ + κ̄2)

+ ē(F� ν̄)
2
3

κ̄(κ̄ + 2)6Θ(12 + 6κ̄ + κ̄2)

+
sin2(k/2),

where

D2 := κ̄
[
(κ̄ + 2)2 + 4χ2Θ2 sin2(k)

]
D3

1. (5.23)

With this second order correction, the stability diagram from the approximate
analytical expression coincides perfectly with the one obtained numerically
from the Chebyshev collocation method. One may notice in Figure 5.3 an
extraneous red line in the bottom right hand corner which seems to indicate
that the analytical expression predicts an instability whereas the surface is
actually stable. Nevertheless, this is not an issue as the restriction ν̄/κ̄ ! 1,
required for the validity of the near-equilibrium assumption, and which we use
when Taylor expanding, is violated in that region, making it irrelevant in the
present study.

5.4 reinterpreting experimental results

5.4.1 Extreme deposition regime in step-up electromigration

As was demonstrated in Guin (2018), the dynamical and chemical effects
do not provide a novel reversal mechanism to explain the different high-
temperature regimes on Si(111). However, their inclusion in the step continuum
model offers a more fitting interpretation of a recent experiment performed
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Figure 5.5: LODREM images of Si(111) at 1220�C, with step-up current and deposition
flux of 5 bi-layers per second. (top) initial vicinal surface with almost equidis-
tant monoatomic steps and (bottom) pairs of steps after 12s (reprinted from
Ranguelov et al. (2017) with permission from Elsevier).

by Ranguelov et al. (2017) at a reported temperature of 1220
�C under a very

high deposition rate, for which a step-pairing instability is shown to develop.
However, before proposing our interpretation, we need to tackle one caveat in
the experimental setup to make sense of the result, as we believe the authors
erroneously assume the growth to take place in regime II whereas regime III
seems more logical based on their observations.

Indeed, to cite Ranguelov et al. (2017), their “experiments are done at a
temperature below 1250

�C and step-up direction of the electromigration force”
as they claim the “vicinal surface is known to be stable in classical growth
conditions, that means when exposed to ‘reasonable’ incident flux of silicon
atoms”. This last claim is accompanied by a reference to Leroy et al. (2009),
which compiles different experimental results from the literature regarding the
stability of Si(111) surface under electromigration. While several examples are
given for the pure evaporation regime (Latyshev et al., 1989, 1990; Homma et al.,
1990; Yang et al., 1996; Métois and Stoyanov, 1999; Gibbons et al., 2006), only one
source is cited for a surface under net deposition (Métois and Stoyanov, 1999),
disregarding the results of Gibbons et al. (2005, 2006). The conclusion drawn in
Leroy et al. (2009) from that unique source is that step-bunching always occurs
at step-down direction of the current, regardless of the temperature. However,
even in the referenced work of Métois and Stoyanov (1999), step-pairing at step-
up direction of the current is mentioned in regime II (with a net deposition flux
of 0.7 ML/s) while in Gibbons et al. (2005) complete step-bunching is reported
(with a net deposition flux of 0.03 ML/s), thus contradicting the argument
made by Ranguelov et al. (2017) that a vicinal surface at step-up direction of
the current under net deposition is classically stable.

Further, if the experiment in Ranguelov et al. (2017) truly took place in
regime II, it would not be possible to conclude definitively on the origin of
the instability as the surface has already been shown to be unstable at weak
(Gibbons et al., 2005) and intermediate (Métois and Stoyanov, 1999) intensities
of the deposition flux. However, given the uncertainty on temperature intervals
(which may vary by as much as 50�C (Leroy et al., 2009)) and on the (7 � 7) to
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Figure 5.6: Stability diagrams of (a) the model by Ranguelov et al. (2017) and (b) our
model. Colorbar for unstable mode wave-number. Contours for logarithm
of growth rate. Parameters: Θ = 0.2, ν̄ = 10�3, S = 1, ē = �10�5, ᾱ = 10�8.

(1 � 1) transition temperature (from 830�C (Telieps and Bauer, 1985) to 870�C
(Bennett and Webb, 1981; Miki et al., 1992), with a dependence on the miscut
angle (Phaneuf et al., 1988; Suzuki et al., 1993; Minoda, 2003)), it is possible
that the surface temperature Ranguelov et al. (2017) report as 1220�C is in fact
closer to 1250�C, placing it in regime III (which is classically stable for step-up
current, see Table 5.1) rather than regime II. Moreover, this analysis is consistent
with the fact that under mild deposition fluxes, Ranguelov et al. (2017) do not
observe instability, contrary to the observations in Métois and Stoyanov (1999).
Based on these explanations, we come to the conclusion that the experiment
in Ranguelov et al. (2017) takes place in the regime III, and not the regime
II assumed by the authors. Nevertheless, only additional experiments would
resolve this interpretation uncertainty.

In regime III, at step-up current, the vicinal surface is classically observed
to be stable, under both evaporation and deposition conditions, in line with
the theoretical predictions of the BCF model. However, the authors show that
while this is true for weak to medium deposition flux, the surface exhibits a
step-pairing instability at high deposition flux (5 ML/s), shown in Figure 5.6.
Based on the classical BCF framework, they derive a model without recourse
to the quasistatic approximation, although fast surface diffusion and slow
attachment/detachment kinetics of adatoms at the steps are assumed, which
allow them to consider that the adatom density is constant across each terrace
(but varies between terraces) in the absence of electromigration. To take into
account the bias induced by the electromigration force, they rely on a linear
approximation for the concentration profile such that the adatom density is
higher at the ascending (descending) step edge for step-up (step-down) current,
respectively (Ranguelov and Stoyanov, 2008).

Under these hypotheses, the authors set forth a new type of instability due to
dynamics effect, that they refer to as the “kinetic memory effect”. However, we
find that although it predicts instability, it does not predict the correct unstable
mode of step-pairing (k = π) but rather an intermediate mode k � π/2 as
illustrated in Figure 5.6. On the other hand, our model, which includes the
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Figure 5.7: A “phase diagram” of dc-heating induced step instabilities on Si(111) show-
ing the temperature and miscut angle dependence of step configuration
(reprinted from Minoda (2003) with permission from IOP Publishing).

thermodynamically derived chemical term as well as all dynamics terms, is
able to predict the step-pairing instability. The quasistatic theory actually shows
an instability but only at very high kinetics (which is unlikely) and for weak
deposition fluxes, which is at odds with the observations.

5.4.2 Step-bunching to step-meandering transition

As mentioned in the introduction, step meandering can also be observed in
situations of step-down current in regime II, transitioning from step bunching in
regime I. Interestingly, this transition is dependent both on the temperature and
the miscut angle of the surface as can be seen from the pseudo phase diagram
in Figure 5.7 taken from Minoda (2003). While the temperature dependence
is challenging to accurately describe, given the uncertainty on the activation
energy of the different processes, the miscut dependence is relatively accessible.

Based on experimental estimates (see Appendix D), our model indeed pre-
dicts a transition from step meandering at large miscut angles to step bunching
at low miscut angles (see Figure 5.8).

Despite this qualitative agreement, this interpretation suffers from the major
drawback that our model does not predict the step-bunching instability at step-
up current, as expected from impermeable-step boundary conditions. We also
note that the surface is predicted to be unstable against step meandering even
in the absence of direct-current heating. This does not necessarily go against
experimental observations of stable surfaces under alternative-current heating
(Latyshev et al., 1989; Houchmandzadeh et al., 1994). Indeed, step-up current is
predicted to stabilize the surface and the frequency used in the aforementioned
experiments (50 Hz) is high enough that the growth rate associated to the
step meandering instability is not large enough for the instability to visibly
develop in the short time span when the alternative current is step-down. An
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Figure 5.8: Wavenumbers k and q of the most unstable mode as a function of the initial
terrace width L0. The parameters at L0 = 18 nm (i. e., a miscut angle of 1�)
are: ν̄ = 10�6, S = 1, Θ = 0.2, κ̄ = 0.5, ē = 10�6, dxx = 5 eV nm, γ̄ = 10�3,
Π = 0.

experimental setup with only radiative indirect heating would be required to
clarify that point.

5.4.3 Critical field as a function of initial step spacing

In the experimental studies of electromigration, a minimum electric field (the
critical field) has to be applied to the sample to trigger step bunching. From
the instability condition (5.22), under pure evaporation, the expression for the
critical field is:

ēcr = 2
ν̄Θ
κ̄

. (5.24)

However, this places no lower limit on the growth rate, which goes to zero as
ē Ñ ēcr, making it virtually undetectable in practice, as experiments must have
a finite duration. Consequently, a more sensible choice would be to look at the
maximum growth rate λm and compute ēcr as the minimal value of ē required to
put that maximum growth rate above a pre-specified threshold λ0, dependent
on the experiment’s duration. Given the complexity of the expression for λm,
we rely on a numerical resolution to determine the critical field as a function of
the initial terrace length L0.

We aggregate different studies from the literature to compile a physical set
of parameters (see Appendix D for more details)$''''&''''%

Leva = 100 µm,

α = 0.015 eV nm,

Θ = 0.2,

λ0 � 10�3 at 1130�C, λ0 � 5� 10�3 at 1270�C,

(5.25)

where we have considered an instability to be detectable after a 10-fold increase
of the initial perturbation of the step position.

For the �0.8 exponent, the BCF model and ours give indistinguishable results
as κ̄� � 19, which agrees with the general condition κ̄� Á 1 deduced from
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Figure 5.9: Dependence of the critical field Ecr on the initial interstep distance L0 for
different values of κ̄� (experimental data adapted from O Coileain et al.
(2011) with permission from APS).

Figure 5.10: Dependence of the power-law exponent of the critical field with κ̄� (the
value of κ̄ at L = 18 nm) for different Leva

d .

Gibbons et al. (2005). Discrepancies start appearing in the attachment/detach-
ment limited regime (κ̄� À 1), as the relation we derive depends on the various
parameters Leva, λ0, or dxx, while the one obtained from the BCF model does
not, but instead corresponds to the limit Leva " 1, λ0 " 1, or dxx " 1 as evi-
denced in Figure 5.10, Figure 5.11, and Figure 5.12. In contrast, O Coileain et al.
(2011) use a formula derived in the quasistatic setting by Stoyanov (2011) who
established Ecr � L�3

0 for κ̄ ! 1 and Ecr � L�1
0 for κ̄ " 1, but is limited to small

wavenumbers, and as such gives erroneous results for arbitrary wavenumbers,
which can be the most unstable ones. Besides, they define the critical field with
no consideration for the growth rate, which, as we have demonstrated, has a
strong impact on the analysis. As such, even though our work does not provide
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Figure 5.11: Dependence of the power-law exponent of the critical field with κ̄� (the
value of κ̄ at L = 18 nm) for different λ0.

Figure 5.12: Dependence of the power-law exponent of the critical field with κ̄� (the
value of κ̄ at L = 18 nm) for different dxx.

new insights into the stability reversals, it gives a proper interpretation of the
experimental results showcased in O Coileain et al. (2011).
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5.5 key results

We have completed the linear stability analysis of Chapter 4 by studying
the effects of electromigration. A step-down current destabilizes the surface
towards step-bunching and a step-up current stabilizes the surface completely.
However, the chemical and dynamical effects are sufficiently strong to trigger step
meandering in a certain region of the parameter space. This is consistent with
the fact that the equilibrium adatom coverage is usually large in electromigration
experiments due to the high temperatures involved, so that the chemical and
dynamical effects, which scale quadratically with Θ, dominate the electromigration
effect, which only scales linearly with Θ.

The behavior of Si(111) under electromigration is extremely complex and the
dynamical and chemical effects do not elucidate all the open questions regarding
the stability of the surface. Nevertheless, they do provide new insights regard-
ing some experimental results. In the extreme deposition regime, under step-up
current, we were able to accurately predict the step-pairing instability observed.
Under step-down current, we have shown that a transition from step-bunching
to step-meandering is possible by changing the initial terrace width, in agree-
ment with experiments. Finally, revisiting the experimentally measured relation
between the critical electric field (i. e., the field required to trigger step bunching)
and the initial terrace width, we have derived a robust value for the attachmen-
t/detachment kinetics coefficient, in the sense that it is not sensitive to the values
of other parameters, at κ̄� = 19 (i. e., the value of κ̄ at L0 = 18 nm). As κ̄� ¡ 1 but
we do not have κ̄� " 1, this places the surface in an intermediate regime between
kinetics- and diffusion-limited, leaning towards the latter, in line with previous
estimates.

Using the transpiration method for the linear stability analysis of the step
continuum equation, we have also provided an approximate analytical expression
of the growth rate including the dynamics terms, which coincides precisely with
the exact numerical results from the Chebyshev collocation method, offering a
clearer view of the interplay between the different mechanisms.

The fact that the stability reversals observed with increasing temperature on
Si(111) still elude our complete theory seems to suggest that more complex
mechanisms are at play, e. g., a dependence on the electric field of the parame-
ters or reconstructions at the surface that introduce a space-dependence in the
parameters.
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S U M M A RY A N D D I S C U S S I O N

We have proposed an overview of morphological instabilities on vicinal
surfaces, from the fundamental derivation of the step-flow governing equations
to the interpretation of experimental results, putting emphasis on the seldom
considered chemical and dynamical effects.

Using nonequilibrium thermodynamics and the formalism of configurational
forces, we have derived a generalized Gibbs–Thomson relation for the step
chemical potential which accounts, from the outset, for the contribution of the
elastic bulk, leading to a thermodynamically consistent generalization of the
BCF model for the step dynamics equations. Furthermore, in contrast with
the prevailing derivations in the literature, we do not have recourse to the
quasistatic approximation, and consider all the dynamics terms, which are
composed of the transient term in the reaction-diffusion equation and the
advective terms in the boundary conditions. After studying in detail the dipolar
representation of step-step interaction, we have shown, in the context of step-
flow growth, that one dipolar moment suffices to capture the behavior of elastic
interaction between steps.

Based on that model, we have studied the coarsening of step bunches via
extensive numerical simulations and established scaling laws which describe the
nonlinear evolution of bunches. To confirm our findings, we have conducted
a discrete-to-continuum derivation leading to a nonlinear PDE to describe
the macroscopic evolution of the surface profile, which allowed us to recover
exactly the numerically obtained scaling laws. Importantly, we have shown
that the dynamical and chemical effects can account for the onset of step
bunching and for the scaling laws observed in the coarsening regime, thereby
circumventing the need for an inverse Ehrlich-Schwoebel barrier required by
the classical BCF model. Further, we have demonstrated how these scaling
laws permit the determination of microscopic parameters of the surface from
macroscopic features of the bunches. Unfortunately, they do not allow to
differentiate between the different destabilizing mechanisms.

Regarding the stability analysis method, we have started by deriving a closed-
form expression of the dispersion relation under the quasistatic approximation,
before proposing a numerical approach taking into account all the dynamics
terms, which generalizes the method developed in Guin (2018) to two dimen-
sions. As both the function (the adatom density field) and the domain (the
terraces delimited by steps) are subjected to perturbations, we have used an
arbitrary Lagrangian-Eulerian transformation to reformulate the problem on a
fixed domain. Checking the stability of the system against infinitesimal per-
turbations of the principal solution, we have exploited the time and space
translation invariance of the resulting linear perturbation equation to write
the perturbation as a combination of normal modes and obtain the stability of
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the system by checking the stability with respect to each of these modes. The
stability problem hence reduces to a generalized eigenvalue problem which was
solved numerically using Chebyshev collocation method. Alternatively, we have
also derived an approximate analytical expression for the dispersion relation
with dynamics terms, using the transpiration method and Taylor expansions,
which is in excellent agreement with the exact numerical results and offers a
clearer view of the interplay between mechanisms.
We have then analyzed the influence on stability of all the mechanisms inde-
pendently (ES effect, chemical effect, dynamical effect, elasticity, step stiffness)
as well as their interplay, and discussed the influence of the operational and
material parameters (deposition/evaporation rates, equilibrium adatom cov-
erage, attachment/detachment coefficient, step-edge diffusion) on the relative
weight between the mechanisms.
Like in the one-dimensional straight-step context, we have shown that the chem-
ical and dynamical effect have a significant impact on stability, which increases
with the equilibrium adatom coverage relative to the other mechanisms. Under
deposition, the chemical effect maximally destabilizes the step-pairing mode
and maximally stabilizes in-phase meandering. The dynamical effect maximally
destabilizes a bunching mode with wavenumber 0   k   π/2 and maximally
stabilizes anti-phase meandering. In both cases, the stabilizing/destabilizing
nature of the effect is reversed under evaporation. We have pointed out the
similarities with an inverse ES effect, and proposed that the dynamical and
chemical effect may be seen as an effective inverse ES effect, reconciling the
theories that require an inverse ES effect to trigger instability and the unlike-
lihood of the existence of an actual energetic inverse ES barrier. Furthermore,
we have shown how the combination of the chemical and dynamical effect
with a direct ES barrier allows for the coexistence of bunching and meandering,
in contrast with the BCF model which predicts that the two instabilities are
mutually exclusive.

We have also striven to provide a comparison with crystal growth experi-
ments, combining several experimental studies to estimate the physical parame-
ters of the problem, and quantitatively evaluate the importance of the chemical
and dynamical effects. We have shown that in specific situations, these effects
offer interesting alternative explanations to account for the step instabilities
observed, in particular in the context of electromigration. However, the stability
reversals on Si(111) under electromigration still remain unsolved.

The chemical and dynamical effects provide valuable new insights into
the stability of vicinal surfaces and the coarsening behavior of step bunches.
However, given the multiple possible origins of step instabilities and the large
uncertainties surrounding many of the physical parameters, which can span
several orders of magnitude, it is often difficult to ascribe the occurrence of
a step instability to a precise mechanism. We had hoped that the study of
step-bunching patterns would help ascertain the mechanism responsible for
the instability by providing additional information compared to the onset of
instability, but we have shown that while the dynamical and chemical effects
can trigger step bunching without recourse to an inverse ES effect, they are
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essentially indiscernible from it in the scaling laws describing the coarsening
of the surface profile. In this respect, the study of the nonlinear behavior
of meanders, which has successfully been used in the past to discriminate
between destabilizing mechanisms based on Kinetic Monte Carlo simulations
(Nita and Pimpinelli, 2005; Blel et al., 2017), could provide further insights into
the influence of the dynamical and chemical effects. Additionally, while we
have focused on a train of initially straight steps, a next natural step would be to
investigate island stability, as was done by Kuhn et al. (2005) and Haußer et al.
(2007) in the framework of the classical BCF model, and revisit the intriguing
possibilities of shape control (Haußer et al., 2010; Hu et al., 2012) in light of our
thermodynamically consistent model with dynamics terms. Finally, regarding
electromigration, it would be interesting to derive an atomistic description of
the electromigration force that could perhaps provide novel insights into the
intriguing stability reversals of Si(111).
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A
I N F L U E N C E O F C O U P L I N G I N T H E C O N S T I T U T I V E
R E L AT I O N S

When deriving the constitutive relations for the different fluxes, we restricted
the analysis to the simplest solution, neglecting all couplings. In this appendix,
we investigate the influence of a possible coupling between the fluxes arriving
at the step from the lower and upper terraces, which is the most likely to have
an impact given how the chemical effect couples the adatom density fields of
adjacent terraces. The fluxes are written:#

J+ = γ+(µ+ � µs) + γ+�(µ� � µs),

J� = γ�(µ� � µs) + γ�+(µ+ � µs),
(A.1)

where the dissipation inequality imposes the positiveness of γ+ and γ�, and the
inequality γ+�+ γ�+ ¤ 2

a
γ+γ�. Considering the simplest case γ+ = γ� = γ

and γ+� = γ�+ = cγγ, the inequality becomes cγ ¤ 1.
As illustrated with the dispersion curves of Figure A.1, this coupling does not

influence the stability domains: it is not a stabilizing/destabilizing mechanism
per se but a material parameter that controls the relative weights of the different
mechanisms. Increasing cγ further destabilizes step pairing and stabilizes in-
phase meandering. While its impact is already noticeable for coupling values of
cγ � 0.2, we have no way of experimentally evaluating cγ, and cannot conclude
on whether this value is realistic. Interestingly, the effect of the coupling appears
to effectively simulate a higher adatom coverage (see Figure A.2). On surfaces
at low temperatures, for which the adatom coverage Θ is typically small and
thus the chemodynamical effect is expected to be negligible given it scales as
Θ2 in the dispersion relation for the growth rate, the existence of this coupling
could provide additional weight to the destabilizing effect of the chemical and
dynamical effects.
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Figure A.1: Dispersion curves showing the influence of the coupling parameter cγ.
From left to right, cγ = 0, cγ = 0.2, and cγ = 0.5. Parameters: F = 10�4,
Θ = 0.1, κ̄ = 10�2. [see color legend in Figure 4.7]
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Figure A.2: Comparison of the dispersion curves for (a) (cγ, Θ) = (0.5, 0.1) and (b)
(cγ, Θ) = (0, 0.15). Parameters: F = 10�4, Θ = 0.1, κ̄ = 10�2. [see color
legend in Figure 4.7]



B
G R E E N ’ S F U N C T I O N F O R A H A L F - S PA C E

The components of the tensor Green’s function for a half space in the absence
of surface stress are taken from (Lifshitz et al., 1986). They read:$'''''''''''''''''''''''''''''''''''&'''''''''''''''''''''''''''''''''''%

G11(x1, x2, x3) =
1 + ν

2πE

(2(1� ν)r + x3

r(r + x3)
+

2r(νr + x3) + x2
3

r3(r + x3)2 x2
1

)
,

G12(x1, x2, x3) =
1 + ν

2πE
2r(νr + x3) + x2

3
r3(r + x3)2 x1x2,

G13(x1, x2, x3) =
1 + ν

2πE

( x3

r2 �
1� 2ν

r + x3

) x1

r
,

G21(x1, x2, x3) =
1 + ν

2πE
2r(νr + x3) + x2

3
r3(r + x3)2 x1x2,

G22(x1, x2, x3) =
1 + ν

2πE

(2(1� ν)r + x3

r(r + x3)
+

2r(νr + x3) + x2
3

r3(r + x3)2 x2
2

)
,

G23(x1, x2, x3) =
1 + ν

2πE

( x3

r2 �
1� 2ν

r + x3

) x2

r
,

G31(x1, x2, x3) =
1 + ν

2πE

( x3

r2 +
1� 2ν

r + x3

) x1

r
,

G32(x1, x2, x3) =
1 + ν

2πE

( x3

r2 +
1� 2ν

r + x3

) x2

r
,

G33(x1, x2, x3) =
1 + ν

2πE

( x2
3

r3 +
2(1� ν)

r

)
,

(B.1)

with r =
b

x2
1 + x2

2 + x2
3.

121





C
F O R M U L A F O R T H E S T E P - S T E P I N T E R A C T I O N O F
M E A N D E R I N G S T E P S

Computing f(r) requires the calculation of complex integrals, which heavily
involve Meijer G-function Gm,n

p,q . Denoting K5 the 5th modified Bessel function
of the second kind and letting

Mn(r, q) = G2,1
1,3

(
q2r2

4

����n� 9/2

0, n, 1/2

)
, (C.1)

the expression for f(r) takes the form:

f(r) =
4(1� ν2)

πE(rL0)4

[
d2

xx

(
6 +

8
315

1
1� ν

cos(kr)M̃xx(r, q)
)

+ d2
xz

(
6� 8

315
cos(kr)M̃xz(r, q)

)
� dxxdyy

ν

1� ν
cos(kr)M̃xy(r, q)

+ d2
yy

1
1� ν

cos(kr)M̃yy(r, q)
]
,

(C.2)

where$''''''''''''''''''&''''''''''''''''''%

M̃xx(r, q) := �6(1� 5ν)M2(r, q) + 6(7� 60ν)M3(r, q)

+ 16(2 + 15ν)M4(r, q)� r5q5K5(rq),

M̃xz(r, q) := 6M2(r, q)� 42M3(r, q)� 32M4(r, q) + r5q5K5(rq),

M̃xy(r, q) :=
128
105

M2(r, q)� 1696
105

M3(r, q)

+
4352
315

M4(r, q)� 16
315

r5q5K5(rq),

M̃yy(r, q) :=
64

315
(1 + 2ν)M2(r, q)� 16

315
(23 + 136ν)M3(r, q)

� 16
315

(23� 159ν)M4(r, q) +
4

315
(1� 3ν)r5q5K5(rq).

(C.3)
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D
S E L E C T I O N O F T H E M AT E R I A L PA R A M E T E R S F O R
S I ( 1 1 1 ) - 7� 7

Based on experimental estimates found in the literature, we propose phys-
ically relevant values and ranges for the nondimensional parameters of the
model on the Si(111)� 7� 7 surface. In addition to a dependence on intrinsic
material properties, note that many of the parameters also involve the initial
terrace width L0. Given that L0 may vary between 1 nm and 1 µm , it can have
a considerable impact on the value of the different parameters. Therefore, we
arbitrarily pick a reference terrace width of L�

0 = 18 nm, corresponding to a
1� miscut angle on Si, to express reference values for the different parameters,
which are denoted by a star. The value for an arbitrary terrace width can then
simply be obtained with a relation of the type

X =

(
L0

L�
0

)p

X�, (D.1)

with p the power associated to the parameter considered.
Before proceeding with our review, another important remark is in order

regarding the near-equilibrium assumption. Taking the steady-state solution
(4.19) in the case of pure deposition, we can easily calculate the maximum
density on the terrace and show that the upper bound is obtained for S = 0 as

ρmax = 1 +
F
2κ̄

(
κ̄(1 + χcΘ + (χcΘ)2) + 2

)
, (D.2)

meaning that for the near-equilibrium assumption to be valid, i. e., |ρ� 1| ! 1,
we must always verify

F
κ̄
! 1 and F ! 1. (D.3)

In the case of evaporation, the calculations, although more involved, yield the
exact same identities:

ν̄

κ̄
! 1 and ν̄ ! 1. (D.4)

Moreover, the deposition rate is also restricted by the constraint of step-flow
regime. Indeed, as developed in Michely and Krug (2012) and Krug (2005), an
excessively high deposition rate (quantitatively FΘ ¡ 1) would lead to island
nucleation, i. e., Volmer-Weber island formation growth mode.

equilibrium adatom coverage Θ

The equilibrium adatom coverage is usually measured by rapid quenching of
the vicinal surface at equilibrium and analysis of the island coverage resulting
from the crystallization of adatoms.
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The Si(111) surface undergoes a phase transition from a 7� 7 reconstruction
at low temperatures (650 to 850�C) to a disordered 1� 1 phase at high tem-
peratures (850�C to 1200�C), each phase exhibiting distinct properties. Yang
and Williams (1994) measured Θ = 0.041 for a 7� 7 reconstructed surface in
the low temperature regime, and Θ = 0.2 for the disordered 1� 1 phase in
the high temperature regime. More recently, Rogilo et al. (2016) found values
of Θ = 0.14 and Θ = 0.23 at 1000�C and 1100�C, respectively. By means of
medium-energy ion scattering measurements, Hibino et al. (1998) observed a
fairly constant adatom coverage Θ � 0.2 to 0.25 over the temperature range
830�C to 1200�C.

In sum, the equilibrium adatom coverage is expected to be of the order of a
few percents at low temperature and around 0.2 at high temperature.

deposition rate F

The value of F is essentially tied to the terrace diffusion coefficient D, for
which measurements are difficult and, as a result, often lack accuracy. The
values most commonly reported for the activation energy lie between 1.1 and
1.6 eV, from experiments and first-principle calculations, across all temperature
regimes (Bedair, 1974; Latyshev et al., 1990, 1996; Sato et al., 2000b; Chang
and Wei, 2003). Assuming a hop frequency of 1013, and a temperature range
from 650�C to 1300�C, this yields D in the range 103 to 108 nm2/S, or 106 to
108 if we only consider the activation energy of 1.1 eV. The deposition rate in
experiments can be as low as 0.01 nm/s (Omi et al., 2005) and as high as 1.6
nm/s (Ranguelov et al., 2017).

As a result, one can expect F� to range typically from 5� 10�4�1 at 650�C to
3� 10�6 at 1250�C. This means that on surfaces with extra-wide terraces, e. g.,
in Ranguelov et al. (2017) where L0 = 1 µm, F can reach values of up to 0.1,
which still complies with the near-equilibrium restrictions.

evaporation rate ν̄

The evaporation rate can be directly deduced from the diffusion length
of adatoms, which has been measured by Rogilo et al. (2016) at 1000�C to
Leva

d = 31µm, implying ν̄� = 3.4� 10�7. Using an activation energy of 2.45 eV
for ν̄, as determined by Rogilo et al. (2016) (and consistent with a previous
estimate of 2.65 eV by Pang et al. (2008)), we find ν̄� = 9� 10�6 at 1200�C, and
thus Leva

d = 6 µm.
Measuring the velocity of a step as a function of the width of the terraces at

1200�C, Métois and Audiffren (1997) observed a linear relation up to L0 = 10
µm, which, based on the theoretical relation, suggests a lower bound of 10
µm for Leva

d , which mostly agrees with the above estimate. It should be noted
however that this relation is only valid if step motion is a direct result of
attachment and detachment of adatoms to and from the step. Indeed, if the
contribution of surface vacancies to the step motion is substantial, which might
well be the case on Si above 1250�C, the step velocity will be proportional to
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the width of the terrace regardless of how the diffusion length compares to the
interstep distance (Fujita et al., 1999).

In the case of extra-wide terraces (L0 = 1 µm), ν̄ can reach values of up to
10�3, which again complies with the near-equilibrium restrictions.

For completeness, we also report measurements of actual evaporation rates,
that we use in Section 5.4.3 to translate the duration of experiments into a
number of layers evaporated. Homma and Finnie (1999) found � 0.05 ML/s at
1130�C and � 1 ML/s at 1270�C, so that in O Coileain et al. (2011) the 12-hour
annealing at 1130�C corresponds to � 2000 ML and the 6-minute annealing at
1270�C corresponds to � 500 ML.

attachment/detachment coefficient κ̄

As it involves microscopic kinetics at the step, measuring the attachment/de-
tachment coefficient κ̄ is particularly difficult. However, given that the kinetic
length Lk must be larger than one atomic spacing, we can at least determine an
upper bound of κ̄� � 50.

In the low temperature regime, based on the study of the size of nucleated
islands, Chung and Altman (2002) estimated that any of the values Lk = 61, 330,
or 910 nm produced a good fit with experimental observations at 527�C. More
recently, analyzing the critical terrace width for adatom nucleation, Rogilo et al.
(2013) estimated Lk � 4� 104 at 700�C. Given the wide spread in the values, an
accurate value for κ̄ is out of reach. Nevertheless, these results do suggest that
κ̄ ! 1 in the low temperature regime, i. e., the surface kinetics is controlled by
the attachment/detachment processes.

The work of Rogilo et al. (2013) also suggests that the growth mode switches
to diffusion-limited beyond 720�C, which the experiments by Gibbons et al.
(2005) at 940, 1090, and 1290�C seem to indicate as well. Their work focuses on
the scaling of the quantity ℓminN2/3 which they show does not depend on the
initial terrace width down to L0 = 20 nm.1 A comparison with theoretically
derived expressions shows that this is consistent with diffusion-limited kinetics,
and thus implies Lk   20 nm, i. e., κ̄� Á 1.

This value would also be consistent with our own estimate of κ̄� � 19, which
we detail in Section 5.4.3 and is based on the experimental work of O Coileain
et al. (2011).

ehrlich-schwoebel barrier S

On Si(111) � 7� 7, measurements of the Schwoebel effect have been per-
formed by different techniques—comparison in the growth and decay rates of
islands and holes (Ichimiya et al., 1996), denuded zones around steps (Voigtlän-
der et al., 1995; Rogilo et al., 2013), island nucleation distributions (Chung and
Altman, 2002)—and lead to contradictory conclusions, i. e., , a direct, negligible
or inverse ES effect. As a result, we use the general range of S between 0.1 and
10 for the discussions relative to this surface.

1 We recall that ℓmin is the minimal interstep distance in a bunch and N the size of the bunch.
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dipolar tensor d̄

The only available dipole moments in the literature are dxx and dxz, as the
measurements and calculations are carried out on a straight step for which
dyy plays no role. Combining experimental measurements of the displacement
field of a step with atomistic simulations, Stewart et al. (1994) determined
dxz = 6eV/nm and dxx = 15eV/nm on a Si(111)� 7� 7 surface.

Based on a nearest-neighbour square-lattice model with elastic step-step
interactions whose two parameters are fitted to match experimental observa-
tions, Williams et al. (1993) determine, on Si(111)� 7� 7, α0 = 0.08 eV nm for
[2̄11] single-layer steps and α0 = 0.72 eV nm for [21̄1̄] triple-layer steps, and,
on Si(111)� 1� 1, α0 = 0.03 eV nm. Based on the average values of Young’s
modulus E = 165 GPa = 1030 eV nm�3 and Poisson coefficient ν = 0.22 for
Si, this allows to compute, assuming dxz = 0: dxx = 8 eV/nm, 25 eV/nm, and
5 eV/nm, respectively, which conform well with the estimate of Stewart et al.
(1994).

Being deterministic, our model does not account for the entropic repulsion be-
tween steps due to thermal wandering, which, like the elastic repulsion, scales
as the inverse of the squared distance between steps, so that their cumulative
effect can be described by an “effective” α0. While its influence is negligible
at 900�C, and step interaction is mainly energetic, Akutsu and Akutsu (1999)
showed, via simulations of a two-dimensional honeycomb lattice-gas model
with both nearest- and next-nearest-neighbour interactions, that entropic re-
pulsion dominates step interaction at higher temperatures, with estimates of
α0 ranging from 0.12 to 0.46 eV nm. Translating these values into the dipolar
moment yields dxx = 10� 20 eV/nm.

In sum, dxx is always of the order of a few eV/nm, but we note that since
ᾱ09L�3

0 , L0 is actually the crucial parameter that determines the strength of
step-step interaction, which may vary over several decades and may a have
small or large effect on the stability depending on the initial miscut angle.

electromigration force ē

The value of ē is essentially contingent on the effective charge qe, for which
various estimates, as a fraction of the elementary charge, are, at around 950�C:

1. 0.001 (Métois and Audiffren, 1997), from the critical alternative-current
frequency above which step bunching is observed,

2. 0.006 (Fu et al., 1997) or 0.01 (Williams et al., 1996), from the decay rate of
metastable step bunch structures,

3. 0.1 or 0.02� 0.06 (depending on the choice of elastic repulsion coefficient)
(Homma and Aizawa, 2000), from the scaling between bunch slope and
bunch height,

and, at around 1250�C:
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1. 0.07 (Rodyakina et al., 2011), from the position of antisteps as a function
of the distance between bunches,

2. 0.35 (Fujita et al., 1999), from the scaling between bunch slope and bunch
height, 0.13 (Thürmer et al., 1999), from the S-shape of steps between
bunches.

All these estimates suggest an effective charge of the order of one hundredth of
the elementary charge at 950�C and of the order of one tenth at 1250�C.

The electric field being of the order of e = 5 V/cm typically, this means
ē� = 8� 10�7�1, depending on the true value of the effective charge, which
varies by at most 25% over the range of temperatures from 950 to 1250�C.

step stiffness γ̄

As step stiffness quantifies the tendency of steps to maintain their straightness,
its value is typically determined from the analysis of the standard deviation of
the step position due to thermal wandering. For an isolated step, Alfonso et al.
(1992) obtained γ̃ = 0.69 eV/nm.

Using their square-lattice model, Williams et al. (1993) are able to deter-
mine γ̃ = 0.55 eV/nm for [2̄11] steps, γ̃ = 1.2 eV/nm for [21̄1̄] steps, and
γ̃ = 0.4eV/nm for the 1� 1 phase at 800�C (which is a little surprising as the
7� 7 Ø 1� 1 takes place at around 830�C).

Likewise, with their simulations of a two-dimensional honeycomb lattice-gas
model, Akutsu and Akutsu (1999) showed γ̃ = 0.1 eV/nm for [2̄11] steps and
γ̃ = 3 eV/nm for [21̄1̄] steps at 700�C, and γ̃ = 0.03 eV/nm for the 1� 1 phase
at 1000�C in agreement with the experimental estimate of Bartelt et al. (1993).

In conclusion, we expect γ̄� � 0.1 at low temperatures and γ̄� � 2� 10�3 at
high temperatures.

step-edge diffusion Π

Like for the attachment/detachment coefficient, step-edge diffusion, because
it involves microscopic processes at the step, is particularly difficult to measure.
As a matter of fact, we have not found any experimental value in the literature of
Si(111) surfaces. The works dedicated to the study of the influence of step-edge
diffusion on the surface evolution are mostly theoretical and qualitative.

The only quantitative result is a suggestion by Bartelt et al. (1993) that, at
900�C, step-edge diffusion plays no role for large-wavelength meanders, as the
theoretical prediction derived ignoring step-edge diffusion fit the experimental
data points very well.

As a result, when discussing step-edge diffusion, we explore the range
Π P [10�2, 102].





E
J A C O B I A N O F T H E F E M S Y S T E M O F G O V E R N I N G
E Q UAT I O N S

The system (3.9) obtained after discretization with the finite element method
of the governing equations may be rewritten as

q̇ = F (q), (E.1)

where we have concatenated the step positions and the node values of the
adatom density fields in q = (x1, ..., xNs , ρ̆

��
1, ..., ρ̆

��
Ns
), recalling ρ̆

��
n = (ρ̆

(µ)
n )µPt1,..,Nu

with N the number of nodes per terrace. We also introduce an alternative, sub-
script only, indexing as ρ̆(n�1)N+µ = ρ̆

(µ)
n , and ρ̆ = (ρ̆

��
n)nPt1,...,Nsu the global

vector of all node values of the adatom density.
Our objective is to derive the jacobian JF of F , which we decompose into

four submatrices as

JF =


Bẋi

Bxj
P RNs�Ns

Bẋi

Bρ̆J
P RNs�Ns N

B ˙̆ρI

Bxj
P RNs N�Ns

B ˙̆ρI

Bρ̆J
P RNs N�Ns N

 . (E.2)

By convention, we use greek letters for indices in t1, ..., Nu, lower case letters
for indices in t1, ..., Nsu, and upper case letters for indices in t1, ..., N � Nsu.
Denoting δi,j the Kronecker delta, we start by computing two recurring jacobian
submatrices:$''''&''''%

Bfi
Bxj

= 3ᾱ0
¸

r

δi,j+r � δi,j

(xi+r � xi)4 ,

Bẋi

Bρ̆J
= κ̄

(
C2δJ,(i�1)N+1 + C1δJ,(i�1)N

)
.

(E.3)

Using the fact that

Bẋi

Bxj
= κ̄Θ(S + 1)

Bfi
Bxj

, (E.4)

the top two submatrices can now been determined.
For the bottom two submatrices, we recall the decomposition

˙̆ρ
��
n = (D(2) + D(1) + D(u))ρ̆

��
n + FB, (E.5)

and, letting INs the identity matrix of size Ns, VNs = (1, ..., 1) a vector of length
Ns, and b the Kronecker product, we introduce the global matrices$'''''&'''''%

D̆(2) = INs bD(2),

D̆(1) = INs bD(1),

D̆(u) = INs bD(u),

B̆ = VNs b B,

(E.6)
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such that

˙̆ρ = (D̆(2) + D̆(1) + D̆(u))ρ̆ + FB̆. (E.7)

We can then compute the local jacobian of each term on the nth terrace, before
reconstructing the complete jacobian. Letting$'''''&'''''%

µ = I � (n� 1)N,

ν = J � (n� 1)N,

b(0)n = J̃+n � ρ̃+n ẋn,

b(1)n = J̃�n+1 � ρ̃�n ẋn+1,

(E.8)

and summing on the repeated index λ P t1, ..., Nu, we find:$''''''''''''''''''''''''''''''''''''''''''''''''''''''&''''''''''''''''''''''''''''''''''''''''''''''''''''''%

B(D̆(2)ρ̆)I

Bxj

�����
n

=
B
Bxj

[
� 1

ℓ2
n
(D(2)ρ̆

��
n)µ

]
=

2
ℓ3

n
(δj,n+1 � δj,n)(D(2)ρ̆

��
n)µ,

B(D̆(1)ρ̆)I

Bxj

�����
n

=
B
Bxj

[
ẋn

ℓn
(D(1)ρ̆

��
n)µ

]
=

[
1
ℓn

Bẋn

Bxj
� ẋn

ℓ2
n
(δj,n+1 � δj,n)

]
(D(1)ρ̆

��
n)µ,

B(D̆(u)ρ)I

Bxj

�����
n

=
B
Bxj

[
ẋn+1 � ẋn

ℓn
(D(u)ρ̆

��
n)µ

]
=

[
1
ℓn

B(ẋn+1 � ẋn)

Bxj

� ẋn+1 � ẋn

ℓ2
n

(δj,n+1 � δj,n)

]
(D(u)ρ̆

��
n)µ,

BB̆I

Bxj

����
n
=

B
Bxj

[
1
ℓn
(�b(0)n δI,(n�1)N+1 + b(1)n δI,nN)

]
=

1
ℓn

[
� κ̄S

Bfi
Bxj

+ ρ̃+n
Bẋi

Bxj

� 1
ℓn
(δj,n+1 � δj,n)b

(0)
n

]
δI,(n�1)N+1

+
1
ℓn

[
κ̄
Bfi+1

Bxj
+ ρ̃�n

Bẋi+1

Bxj

+
1
ℓn
(δj,n+1 � δj,n)b

(1)
n

]
δI,nN ,

(E.9)



jacobian of the fem system of governing equations 133

and$'''''''''''''''''''''''''''''''''''&'''''''''''''''''''''''''''''''''''%

B(D̆(2)ρ)I

Bρ̆J

�����
n

= � 1
ℓ2

n
D(2)

µλ

Bρ̆
(λ)
n

Bρ̃J
= � 1

ℓ2
n

D(2)
µλ δJ,(n�1)N+λ

= � 1
ℓ2

n
D(2)

µν ,

B(D̆(1)ρ̆)I

Bρ̆J

�����
n

=
1
ℓn

[Bẋn

Bρ̆J
(D(1)ρ̆

��
n)µ + ẋnD(1)

µν

]
,

B(D̆(u)ρ̆)I

Bρ̆J

�����
n

=
1
ℓn

[B(ẋn+1 � ẋn)

Bρ̆J
(D(u)ρ̆

��
n)µ + (ẋn+1 � ẋn)D(u)

µν

]
,

BB̆I

Bρ̆J

����
n
=
�κ̄S
ℓn

[
(1�Θ� ẋn)δJ,(n�1)Ns+1

+ ΘδJ,(n�1)N � ρ̃+n
Bẋn

Bρ̆J

]
δI,(n�1)N+1

+
κ̄

ℓn

[
� (1 + Θ + ẋn+1)δJ,nN

ΘδJ,nN+1 � ρ̃�n
Bẋn+1

Bρ̆J

]
δI,nN ,

(E.10)

thus completing the jacobian.





F
PA RT I C U L A R S O L U T I O N S O F T H E S T E P - F L O W
F R E E - B O U N D A RY P R O B L E M

Fundamental solution

In the context of linear stability analysis, we investigate the stability of the
step-flow free-boundary problem to perturbations of the fundamental solution,
i. e., the solution of Equation 4.14, which takes the form:

ρ̃(0)(u) = (ρ̃+ � F
ν̄
) f+(u) + (ρ̃� � F

ν̄
) f�(u) +

F
ν̄

, (F.1)

where$'''''''''&'''''''''%

Λ =

d
ν̄ +

(
χaV0

2

)2

,

f+(u) = exp(�1
2

χaV0u)
sinh(Λ(1� u))

sinh(Λ)
,

f�(u) = exp(
1
2

χaV0(1� u))
sinh(Λu)
sinh(Λ)

.

(F.2)

The boundary conditions give a linear system for the two unknowns ρ̃+ and
ρ̃� in the form

A

(
ρ̃+

ρ̃�

)
= b, (F.3)

where$''''''''''''''''''''&''''''''''''''''''''%

A11 = �κ̄S(1� χcΘ)�Λ coth(Λ) + χa
V0

2
,

A12 = �κ̄SχcΘ + exp(χa
V0

2
)

Λ
sinh Λ

,

A21 = κ̄χcΘ + exp(�χa
V0

2
)

Λ
sinh Λ

,

A22 = �κ̄(1 + χcΘ)�Λ coth(Λ)� χa
V0

2
,

b1 = κ̄S +
F
ν̄

(
Λ coth(Λ) + χa

V0

2
� exp(χa

V0

2
)

Λ
sinh(Λ)

)
,

b2 = κ̄ +
F
ν̄

(
Λ coth(Λ)� χa

V0

2
� exp(�χa

V0

2
)

Λ
sinh(Λ)

)
,

(F.4)

and therefore$'''&'''%
ρ̃+ =

1
det(A)

(A22b1 � A12b2),

ρ̃� =
1

det(A)
(A11b2 � A21b2).

(F.5)
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Under the quasistatic approximation (χa = 0), in the limit of pure deposition
(ν̄ Ñ 0), we recover the expressions presented in Section 4.3.2.

Regarding the fundamental step velocity P , we can verify that in the case of
pure deposition (ν̄ = 0) we get

P = FΘ. (F.6)

In the general case with evaporation, the expression is not as straightforward:

P = (F� ν̄)Θ
κ̄SC(ν̄) + (S + 1)S(ν̄)

(S + 1)(1 + ν̄
2C(ν̄)) + ( ν̄

κ̄ + κ̄S)S(ν̄)� χcΘ(S� 1) ν̄
2C(ν̄)

. (F.7)

with

C(x) = 2
cosh(

?
x)� 1

x
, S(x) =

sinh(
?

x)?
x

. (F.8)

In the limit ν̄ ! 1, C(x)Ñ 1, S(x)Ñ 1, and we find

P � (F� ν̄)Θ. (F.9)

Approximate solution neglecting the transient term

The functions ψn, φn, and cn introduced in (3.15) are given by$''''''&''''''%
ψn(u, t) =

exp(�χa ẋnℓnu)� 1
exp(�χa ẋnℓn)� 1

,

φn(u, t) = 1� ψn(u, t),

cn(u, t) = F
ℓn

χa ẋn
(ψn(u, t)� u).

(F.10)

From the boundary conditions, the linear system for the two unknowns ρ̃+n and
ρ̃�n reads

An

(
ρ̃+n

ρ̃�n

)
= bn, (F.11)

where$'''''''''''&'''''''''''%

An,11 =
1
ℓn

φ1n(0)�
κ̄S
C1

+ χa ẋn, An,12 =
1
ℓn

ψ1
n(0),

An,21 =
1
ℓn

φ1n(1), An,22 =
1
ℓn

ψ1
n(1) +

κ̄S
C2

+ χa ẋn+1,

bn,1 =
1
ℓn

c1n(0)�
κ̄S
C1

(fn � 1)� χcS
C1

ẋn,

bn,2 =
1
ℓn

c1n(1) +
κ̄S
C2

(fn+1 � 1)� χc

C2
ẋn+1,

(F.12)

and like before$'''&'''%
ρ̃+n =

1
det(An)

(An,22bn,1 � An,12bn,2),

ρ̃�n =
1

det(An)
(An,11bn,1 � An,21bn,2).

(F.13)



G
PA D É A P P R O X I M A N T O F T H E B U N C H P R O F I L E

The coefficients a1, a2, b2, and b3 in (3.35) are determined as follows. We
substitute (3.35) in (3.34), Taylor-expand in ξ, and look at the four lowest orders,
which yields a nonlinear system of four equations with the four coefficients as
unknowns.

As this system is impossible to solve analytically, we instead solve an approx-
imated version. We proceed by first solving the system numerically for a wide
range of model parameters to determine the dominant scaling of the unknown
coefficients with ε, and find#

a1 � ε�5/3, a2 � ε�8/3,

b2 � ε�2, b3 � ε�3.
(G.1)

Next, using these scaling relations and M= ℓ�1
min� ε�2/3, we approximate each

equation of the system by its two leading contributions in ε:$''''''''''''''''&''''''''''''''''%

� v(1 + M) +
12K2

M
Σ2ε2 = 0,

� 16K2(�3a1Σ2 + MΣ1(a2 + 4Mb2))ε
2 = 0,

� 120K2M2a2
1Σ2ε2 + M5Σ1v + 24K2M3(a1Σ1(3a2 + 13Mb2)ε

2

+ M2b3(8a2 + 13Mb2))ε
2 = 0,

� M3Σ2v + 8K2(30a3
1Σ2 � 5Ma2

1Σ1(5a2 + 23Mb2)

� 2M3a1b3(47a2 + 77Mb2) + M2(�4a2
2(a2 � Mb2)

+ 50M2a2b2
2 + 3M3(14b3

2 � 13b2
3)))ε

2 = 0.

(G.2)

where#
Σ1 = a2 + Mb2,

Σ2 = a1Σ1 + M2b3.
(G.3)

This approximate system can now be solved analytically and yields (3.36) at
leading order in ε.
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H
T H E C H E B Y S H E V C O L L O C AT I O N M E T H O D

The Chebyshev collocation method is used to solve the generalized eigenvalue
problem Equation 4.15, written in the form

Akp̌ = λBkp̌, (H.1)

where the expressions for Ak and Bk can be deduced from (4.15).
A detailed description of the resolution process is given in Guin (2018), whose

principal steps we summarize here:

1. Consider a function f P C(0,1) and let its Chebyshev series approximation
fN truncated at order N,

fN :=
Ņ

n=0

f̆nT̆n, (H.2)

where f̆n are the Chebyshev coefficients and T̆n denote the Chebyshev
polynomials shown in Figure H.1 and defined on (0, 1) by

T̆0(u) = 1, T̆1(u) = 2u� 1, (H.3)

and the recurrence relationship

T̆n � (4u� 2)T̆n�1 + T̆n�2 = 0. (H.4)

2. The coefficients f̆n are obtained by the collocation method from the N + 1
equations deriving from the interpolation of f on the Gauss-Lobatto
points (u0, ..., uN),

fN(un) =
Ņ

j=0

f̆ jT̆j(un) = f (un), (H.5)

Figure H.1: Representation of the first six Chebyshev polynomials T̆n along with the
six Gauss-Lobatto points for N = 5.
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where the Gauss-Lobatto mesh is composed of the N + 1 points defined
by

un =
1
2

(
cos(

(N � n)π
N

) + 1
)

, for n = 0...N, (H.6)

illustrated on Figure H.1 for N = 5.

3. The first and second derivatives of f can be approximated by

f 1N(un) = D̆n,j fN(uj) and f 2N(un) = (D̆2)n,j fN(uj), (H.7)

with D̆ an appropriate differentiation matrix.

4. The operators Ak and Bk are decomposed as a sum of operators acting
separately on δx̌, δρ̌, and its derivatives, and then approximated using
the (N + 2)� (N + 2) matrices Ăk and B̆k:#

Ăkp̆ = Ă1
k(D̆

2)δρ̆ + Ă2
kD̆δρ̆ + Ă3

kδρ̆ + Ă4
kδx̌,

B̆kp̆ = B̆1
kδρ̆ + B̆2

kδx̌.
(H.8)

where δρ̆ = (δρ̌(u0), ..., δρ̌(uN)) and p̆ = (δx̌, δρ̆).

5. We can now finally solve the discretized (N + 2)� (N + 2) version of the
generalized eigenvalue problem

Ăkp̆ = λB̆kp̆, (H.9)

and obtain the leading eigenvalue which corresponds to the most critical
growth rate.
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Titre : Instabilités morphologiques des surfaces vicinales pendant la croissance épitaxiale
Mots clés : couplage chimico-mécanique, stabilité, écoulement de marches, épitaxie, mise en paquet,
mûrissement, méandrage
Résumé : L’étude de la dynamique des marches sur les
surfaces vicinales est un problème de longue date dans le
domaine de la croissance cristalline, qui remonte aux tra-
vaux précurseurs de Burton, Cabrera et Frank (BCF) en
1951. Sur ces surfaces, le cristal croı̂t par écoulement de
marches, qui peuvent développer des instabilités rompant
la configuration initiale de marches droites et équidistantes.
La mise en paquet correspond à des situations où se
développe à la surface un motif de larges terrasses
séparées par des paquets de marches, et le méandrage
à des situations où les marches développe une ondulation
disctinctive.
En utilisant le formalisme de la thermodynamique hors-
équilibre et des forces configurationnelles, nous établissons
une relation de Gibbs–Thomson généralisée pour le poten-
tiel chimique des marches qui inclut la contribution du sub-
strat élastique et incorpore le couplage nécessaire entre
les champs de diffusion de terrasses adjacentes (l’effet chi-
mique). Cela conduit à un problème à frontière libre qui
généralise le modèle BCF, et où les termes dynamiques
sont pleinement pris en compte. Ce faisant, nous contour-
nons l’approximation quasi-statique qui prévaut dans la
littérature existante.
Les lois d’échelle régissant le mûrissement de la mise
en paquet sont identifiées par simulation numérique, et
corroborées analytiquement en prenant la limite continue

des équations de l’écoulement de marches. Surtout, nous
démontrons que les effets chimique et dynamique à eux
seuls suffisent à expliquer les lois d’échelle observées
expérimentalement pour le mûrissement des paquets.
Avec pour dessein une analyse générale de la stabilité,
nous discutons de l’influence de chaque mécanisme, agis-
sant indépendamment ou de concert, sur les instabilités
de mise en paquet et de méandrage, et nous démontrons
l’impact significatif des effets chimique et dynamique. Nous
mettons ainsi en évidence la possible coexistence des insta-
bilités de mise en paquet et de méandrage, contrairement
au modèle BCF qui prévoit que les deux instabilités sont
mutuellement exclusives.
À la lumière de ces résultats, nous montrons que les
effets chimique et dynamique offrent des alternatives
intéressantes pour expliquer les instabilités observées
dans certaines expériences, notamment dans le cadre de
l’électromigration sous un flux de déposition extrême pour
laquelle nous prédisons correctement l’instabilité d’apparie-
ment des marches auparavant inexpliquée. Toutefois, une
explication complète des inversions de stabilité observées
sur Si(111) sous électromigration reste un problème ou-
vert car les effets chimique et dynamique n’affectent pas
la dépendance de la stabilité à la direction du courant
d’électromigration.

Title : Morphological instabilities of vicinal surfaces during epitaxial growth
Keywords : chemomechanical coupling, stability, step flow, epitaxy, bunching, coarsening, meandering
Abstract : The study of step dynamics on vicinal surfaces
is a long-standing problem in crystal growth, dating back
to the seminal work of Burton, Cabrera, and Frank (BCF)
in 1951. On these surfaces, the crystal grows by step flow,
i.e., by propagation of the atomic steps, which may deve-
lop instabilities breaking the regularly spaced, straight-step
initial configuration. Step bunching corresponds to situa-
tions where steps coalesce together resulting in an alterna-
ting pattern of bunches and wide atomic terraces, and step
meandering to situations where steps develop a distinct wa-
viness.
Using nonequilibrium thermodynamics and the formalism
of configurational forces, we derive a generalized Gibbs–
Thomson relation for the step chemical potential which ac-
counts, from the outset, for the contribution of the elastic
bulk and incorporates the necessary coupling between the
diffusion fields on adjacent terraces (the chemical effect).
This leads to a free-boundary problem that generalizes the
BCF model for the governing equations of step flow where
full account is taken of the dynamics terms. In doing so, we
circumvent the quasistatic approximation that prevails in the
existing literature.
Through comprehensive numerical simulations, scaling
laws governing the coarsening behavior of step bunches are

identified, and corroborated analytically by the discrete-to-
continuum limit of the step-flow equations. Importantly, we
demonstrate that the chemical and dynamical effects can
account for the scaling laws experimentally observed in the
coarsening regime.
In the context of a general stability analysis, we discuss the
influence on step bunching and step meandering of all the
mechanisms independently, as well as their interplay, and
we demonstrate the significant impact of the chemical and
dynamical effects. Consequently, we set forth the possible
coexistence of bunching and meandering, in contrast with
the BCF model which predicts that the two instabilities are
mutually exclusive.
In light of these findings, we show that the chemical and
dynamical effects offer interesting alternative explanations
to account for the step instabilities observed in some ex-
periments, notably in the setting of electromigration under
extreme deposition flux for which we correctly predict the
unexplained step pairing instability. A full accounting of the
stability reversals observed on Si(111) under electromigra-
tion remains an open problem as the chemical and dyna-
mical effects do not modify the stability dependence on the
direction of the current.
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