
HAL Id: tel-03662478
https://theses.hal.science/tel-03662478v1

Submitted on 9 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph Representation Learning : from Kernel to Neural
Networks

Changmin Wu

To cite this version:
Changmin Wu. Graph Representation Learning : from Kernel to Neural Networks. Artificial Intelli-
gence [cs.AI]. Institut Polytechnique de Paris, 2021. English. �NNT : 2021IPPAX135�. �tel-03662478�

https://theses.hal.science/tel-03662478v1
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
1I

P
PA

X
13

5

Graph Representation Learning: from
Kernel to Neural Networks

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’École Polytechnique

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Palaiseau, le 25/11/2021, par

CHANGMIN WU

Composition du Jury :

Mme Catuscia Palamidessi
Directrice de recherche, INRIA Saclay (COMETE) Président

M. Dimitrios Gunopulos
Professor, University of Athens (Department of Informatics and
Telecommunications) Rapporteur

M. Jiliang Tang
Associate Professor, Michigan State University (Computer Science
and Engineering Department) Rapporteur

Mme Florence d’Alché-Buc
Professor, Télécom Paris (Laboratoire Traitement et Communication
de l’Information - LTCI) Examinateur

M. Stéphane Gaïffas
Professor, Université Paris Diderot (Laboratoire de Probabilités,
Statistique et Modélisation - LPSM) Examinateur

M. Nikos Komodakis
Assistant Professor, University of Crete (Computer Science
Department) Examinateur

M. Michalis Vazirgiannis
Professor, École Polytechnique (Laboratoire d’informatique - LIX) Directeur de thèse

imprint

Graph Representation Learning: from Kernels to Neural Networks
Copyright © 2022 by Changmin WU.
All rights reserved. Compiled at home, printed in France.

colophon

This thesis was typeset using LATEX and the memoir documentclass. It is a mixture
of the typographical look-and-feel classicthesis developed by André Miede
and Ivo Pletikosić1, and Diego Di Carlo’s thesis Echo-aware signal processing for au-
dio scene analysis2, itself based on Aaron Turon’s thesis template re-implemented
by Friedrich Wiemer3.

Graphics and plots are made with Matplotlib4 and Seaborn5. Drawings and
schemes are made with PGF/TikZ6 and draw.io7. The bibliography was pro-
cessed by Biblatex.

1 https://bitbucket.org/amiede/classicthesis
2 https://github.com/Chutlhu/PhD_manuscript
3 https://github.com/pfasante/phd_thesis
4 https://matplotlib.org
5 https://seaborn.pydata.org
6 https://ctan.org/pkg/pgf
7 https://app.diagrams.net

https://bitbucket.org/amiede/classicthesis
https://github.com/Chutlhu/PhD_manuscript
https://github.com/pfasante/phd_thesis
https://matplotlib.org
https://seaborn.pydata.org
https://ctan.org/pkg/pgf
https://app.diagrams.net

To my father,
who nurtured my taste for science.

A B S T R A C T

Graphs are ubiquitous as most real-world data can be naturally represented
in the form of graphs. Capturing information from graph-structured data, i.e.
graph mining or graph representation learning, has thus long become and
remains an important topic. In this dissertation, we present a series of research
contributions on subjects of machine learning on graphs using kernel methods
and the emerging graph neural networks (GNNs).

In the first part, we present a novel framework for constructing a valid optimal
assignment graph kernel that computes the similarity between two graphs by
computing a correspondence of their node embeddings residing in the same
space. Using a clustering algorithm, we construct a hierarchy of the vertices in
this space, through which the proposed kernel can find an optimal matching of
the vertices that maximises the overall similarity of all the pairs. This framework
is not limited to graphs. It can be used to compare any objects that are set of
vectors. Moreover, the kernel feature map is a more expressive node embedding
than the original embedding methods. We demonstrate the efficiency of the
proposed kernel empirically on graph classification, link prediction and text
categorisation tasks.

The second part of this dissertation is devoted to the GNNs, particularly
the Message-Passing Neural Networks (MPNNs), a dominating class of GNNs.
As an emerging model, the MPNN soon became a leading tool for graph
representation learning, mainly due to its power of projecting attributed graphs
into high-level embeddings, making it versatile to different types of graphs and
different application areas.

We first demonstrate the power of MPNNs by an application in the field of
temporal networks. We tackle the evolution prediction of dynamic graphs by
proposing a sequential framework. Precisely, we use MPNNs to encode the
sequence of evolving graphs into a sequence of embeddings in a latent space
correlated by time. A recurrent architecture then generates the prediction of
embedding at the next timestep. Finally, a generative model is employed to re-
construct the graph instance corresponding to that prediction of embedding in
the latent space. GNNs significantly improve the performance against traditional
models such as random graph models on predicting the topology of evolving
graphs.

iv

The following two works move closer to the fundamentals of MPNNs by
addressing their limitations in terms of computational cost and robustness
against structural noise. We notice that the MPNN can be divided into two
disjoint steps: one is related to the graph structure, namely the aggregation step,
and the other only concerns node features, namely the update step. Through
extensive experiments, we found that the update step seems to play a less
important role in model performance, as it can be substantially simplified by
sparsifying, or in some cases, even omitting the whole, as long as the non-linear
activation stays.

This finding indicates that the MPNN might be vulnerable to graph-structural
noise. Indeed, if the main contribution to model performance comes from the
aggregation step, then the impact of structural noise would also be amplified.
This work proposes a theoretical model based on random matrix theory to
analyse the interaction between graph structure information and node feature
information, precisely when graph structure is heavily perturbed. The main
result is that graph structural noise will heavily overshadow node feature
information. When a graph is structurally perturbed enough, node feature
information will have no contribution to model performance. Even itself might
be informative. This theoretical finding inspires us to robustify MPNNs against
graph structural noise with a node feature kernel. Empirical evaluations show
the effectiveness of our proposed kernel as it improves the model performance
significantly when the graph structure is heavily perturbed.

v

R É S U M É E N F R A N Ç A I S

Les graphes sont omniprésents en tant que structure de données, de par leur
capacité à modéliser des informations relationnelles entre objets. La capture
d’informations à partir de données structurées en graphes, soit l’exploration
de graphes ou l’apprentissage de la représentation de graphes, est donc un
sujet important. Dans cette thèse, nous présentons une série de contributions
de recherche sur les sujets de l’apprentissage automatique sur les graphes en
utilisant des méthodes à noyau et les émergents réseaux neuronaux de graphes
(RNGs).

Dans la première partie, nous présentons un nouveau modèle pour construire
un noyau de graphe optimal en un certain sens, qui calcule la similarité entre
deux graphes en calculant une correspondance de leurs plongements de nœuds
résidant dans le même espace. En utilisant un algorithme de clustering, nous
construisons une hiérarchie des sommets dans cet espace, à travers laquelle le
noyau proposé peut trouver une correspondance optimale des sommets qui
maximise la similarité globale de toutes les paires. Ce modèle n’est pas limité
aux graphes. Il peut être utilisé pour comparer tout objet qui est un ensemble
de vecteurs. De plus, la carte de caractéristiques du noyau est un plongement
de nœuds plus expressif que les approches de plongement originales. Nous
démontrons l’efficacité du noyau proposé de manière empirique sur des tâches
de classification de graphes, de prédiction de liens et de catégorisation de textes.

La deuxième partie de cette thèse est consacrée aux RNG, en particulier aux
réseaux de neurones à passage de messages (RNPM), une classe dominante
de RNG. En tant que modèle émergent, le RNPM est rapidement devenu
un des premiers outils pour l’apprentissage de la représentation de graphes,
principalement en raison de sa capacité à projeter des graphes attribués dans
des plongements de haut niveau, ce qui le rend polyvalent pour différents types
de graphes et différents domaines d’application.

Nous démontrons d’abord la puissance des RNPMs par une application dans
le domaine des réseaux temporels. Nous nous attaquons à la prédiction de
l’évolution de graphes dynamiques en proposant un modèle séquentiel. Pré-
cisément, nous utilisons les RNPMs pour encoder la séquence de graphes en
évolution en une séquence de plongements dans un espace latent corrélés par le
temps. Une architecture récurrente génère ensuite la prédiction du plongement
au prochain pas de temps. Enfin, un modèle génératif est utilisé pour reconstru-

vi

ire l’instance de graphe correspondant à cette prédiction de plongement dans
l’espace latent. Les RNGs améliorent considérablement les performances par
rapport aux modèles traditionnels, tels que les modèles de graphes aléatoires,
pour la prédiction de la topologie des graphes évolutifs.

Les deux travaux suivants se rapprochent des principes fondamentaux des
RNPMs en abordant leurs limites en termes de coût de calcul et de robustesse au
bruit structurel. Nous remarquons que le RNPM peut être divisé en deux étapes
disjointes : l’une est liée à la structure du graphe, à savoir l’étape d’agrégation,
et l’autre ne concerne que les caractéristiques des nœuds, à savoir l’étape de
mise à jour. Grâce à des expériences extensives, nous avons constaté que l’étape
de mise à jour semble jouer un rôle moins important en terme de performance
du modèle, car elle peut être considérablement simplifiée en sparsifiant, ou dans
certains cas, même en omettant la phase de mise à jour, tant que l’activation non
linéaire reste.

Ce résultat indique que le RNPM pourrait être vulnérable au bruit de struc-
ture des graphes. En effet, si la principale contribution à la performance du
modèle provient de l’étape d’agrégation, alors l’impact du bruit structurel serait
également amplifié. Ce travail propose un modèle théorique basé sur la théorie
des matrices aléatoires pour analyser l’interaction entre l’information sur la
structure du graphe et l’information sur les caractéristiques des nœuds, lorsque
la structure du graphe est fortement perturbée. Le résultat principal est que
le bruit structurel du graphe éclipse fortement l’information sur les caractéris-
tiques des nœuds.Lorsqu’un graphe est suffisamment perturbé sur le plan
structurel, l’information sur les caractéristiques des nœuds ne contribuera pas à
la performance du modèle, même si elle peut elle-même être informative. Cette
découverte théorique nous inspire à renforcer les RNPMs contre le bruit struc-
turel du graphe avec un noyau de caractéristiques de nœuds. Les évaluations
empiriques montrent l’efficacité du noyau que nous proposons, car il améliore
de manière significative les performances du modèle lorsque la structure du
graphe est fortement perturbée.

vii

P U B L I C AT I O N S

The following publications and manuscripts are included in parts or in an
extended version in this dissertation:

Lutzeyer*, Johannes F., Changmin Wu*, and Michalis Vazirgiannis (2021). “Spar-
sifying the Update Step in Graph Neural Networks.” In: CoRR abs/2109.00909.
arXiv: 2109.00909.

Seddik, Mohamed El Amine, Changmin Wu, Johannes F. Lutzeyer, and Michalis
Vazirgiannis (2022). “Node Feature Kernels Increase Graph Convolutional
Network Robustness.” In: Proceedings of The 25th International Conference on
Artificial Intelligence and Statistics (AISTATS). Proceedings of Machine Learning
Research. PMLR.

Wu, Changmin, Giannis Nikolentzos, and Michalis Vazirgiannis (2019). “Match-
ing Node Embeddings Using Valid Assignment Kernels.” In: Complex Networks
and Their Applications VIII - Volume 1 Proceedings of the Eighth International Con-
ference on Complex Networks and Their Applications COMPLEX NETWORKS 2019,
Lisbon, Portugal, December 10-12, 2019. Ed. by Hocine Cherifi, Sabrina Gaito,
José Fernendo Mendes, Esteban Moro, and Luis Mateus Rocha. Vol. 881. Stud-
ies in Computational Intelligence. Springer, pp. 810–821. doi: 10.1007/978-3-
030-36687-2_67.

Wu, Changmin, Giannis Nikolentzos, and Michalis Vazirgiannis (2020). “EvoNet:
A Neural Network for Predicting the Evolution of Dynamic Graphs.” In:
Artificial Neural Networks and Machine Learning - ICANN 2020 - 29th International
Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15-18,
2020, Proceedings, Part I. Ed. by Igor Farkas, Paolo Masulli, and Stefan Wermter.
Vol. 12396. Lecture Notes in Computer Science. Springer, pp. 594–606. doi:
10.1007/978-3-030-61609-0_47.

viii

https://arxiv.org/abs/2109.00909
https://doi.org/10.1007/978-3-030-36687-2_67
https://doi.org/10.1007/978-3-030-36687-2_67
https://doi.org/10.1007/978-3-030-61609-0_47

A C K N O W L E D G M E N T S

Firstly, I would like to express my sincere gratitude to my supervisor Prof.
Michalis Vazirgiannis. He guided me through every step of this long journey
with his patience and motivation, while always leaving me with sufficient space
to explore on my own. I deeply admire his research vision and the scope of his
scientific knowledge, which he mobilises well in our meetings and discussions.
Above all, he has built a great team with a friendly, open-minded and cooperative
atmosphere. I could not imagine a better place to conduct the Ph.D. in.

Besides my supervisor, I would like to thank my rapporteurs, Prof. Dimitrios
Gunopulos and Prof. TANG Jiliang, for reviewing my thesis and for their helpful
and insightful comments. I am very grateful that they had made every effort to
hand in the reports in time so that my defence did not need to postpone, even
in a difficult situation where I sent them late the draft of this thesis. I also want
to thank all my jury members, Prof. Florence d’Alché-Buc, Prof. Stéphane Gaïffa,
Prof. Nikos Komodakis and Prof. Catuscia Palamidessi, for contributing their
time and energy to this evaluation process and offering valuable feedback. A
special thanks goes to Prof. Florence d’Alché-Buc, who had an injury the night
before the defence but still insisted and managed to participate and brought up
many thought-provoking questions.

I must not forget to thank my two close collaborators, Dr. Giannis Nikolentzos
and Dr. Johannes Lutzeyer. As senior researchers, they took on the role, partially
and unofficially, but nonetheless excellently, as my advisor/mentor. Giannis led
me into the door of research. He is the first researcher that I have collaborated
with. In our first project, he taught me hand by hand how to concrete and tackle a
research problem, as well as many other aspects, from technical competencies to
writing/presentation skills. I have also learned a lot from Johannes. Despite that
he only joined the group near the end of my second year, his integrity, scientific
rigour and highly organised and efficient working style soon made a strong
impact and left me with a deep impression. Not only a pleasant collaborator,
but he is also a sincere friend. I am always grateful for his kindness, availability
and support when I need it.

Furthermore, I would like to thank all my friends and colleagues that I had
the chance to interacted with, who believe in me and are co-protagonists of this
adventure, specifically Hadi Abdine, CHEN Dong, George Dasoulas, FANG
Chengran, Christos Giatsidis, GUO Yanzhu, Chrysoula Kosma, Moussa Eddine

ix

Kamal, Sammy Khalife, Stratis Limnios, Olivier Pallanca, George Panagopou-
los, QIU Yang, Jesse Read, Maria Rossi, Guillaume Salha-Galvan, Mohamed El
Amine Seddik, SHANG Guokan, Konstantinos Skianis, Antoine Tixier, Nikolaos
Tziortziotis, Christos Xypolopoulos and many others. Their technical and emo-
tional supports were fundamental. I also want to take this occasion to address
my special thanks to Jessica Gameiro, secretary and saviour of the group: French
bureaucracy is a nightmare, especially the Direction des Étrangers, but it was
much less painful with Jessica’s help.

In the end, I would like to thank my parents, WANG Guolan and WU Dejin,
for their love and continuous support throughout these three years of Ph.D.
study. I owe them so much, and this thesis will not be possible without them.

Changmin Wu
Paris, February 2022

x

C O N T E N T S

List of Figures xiv

List of Tables xvii

List of Symbols xx

List of Acronyms xxi

1 introduction 1

1.1 Context and Scope 1

1.2 Outline and Contributions 3

2 basic notions and preliminaries 7

2.1 Definitions, Properties and Functions of Graphs 7

2.2 Problems on Graphs 12

2.2.1 Graph Similarity and Isomorphism 12

2.2.2 Machine Learning Tasks on Graphs 12

2.3 Graph Kernel 13

2.3.1 Kernel Methods 13

2.3.2 R-convolution Kernel 14

2.3.3 Some Examples of R-Convolution Kernel 15

2.3.4 Optimal Assignment Kernel 16

2.4 Graph Neural Network 17

2.4.1 Message-Passing Neural Network 17

2.4.2 Some examples of Message-Passing Neural Network 19

2.4.3 Relation between Graph Convolutional Neural Network
(GCN) and spectral Graph Neural Networks (GNNs) 21

2.5 Software and Libraries 22

2.6 Overview of Datasets 22

i kernel methods

3 a valid optimal assignment kernel 27

3.1 Introduction 27

3.2 Proposed Kernel 29

3.2.1 Preliminaries 30

3.2.2 Valid Optimal Assignment Kernel 31

3.2.3 Extensions 43

3.3 Experiments and Discussion 44

3.3.1 Graph Classification 44

xi

contents xii

3.3.2 Link Prediction 46

3.3.3 Text Categorisation 50

3.4 Chapter Conclusion 52

ii graph neural networks

4 showcase : topology prediction for dynamic graphs 54

4.1 Introduction 54

4.2 Related Work 56

4.3 EvoNet: A Neural Network for Predicting Graph Evolution 56

4.3.1 Preliminaries 57

4.3.2 Proposed Architecture 58

4.4 Experiments and Discussion 63

4.4.1 Datasets 63

4.4.2 Baselines 65

4.4.3 Experimental Setup and Evaluation Metric 66

4.4.4 Experiment Analysis 67

4.5 Chapter Conclusion 71

5 simplified graph neural networks 72

5.1 Introduction 72

5.2 Related Work 74

5.3 Investigating the Role of the Update step 75

5.3.1 Message-Passing Neural Networks 76

5.3.2 Sparsifying the Update step: Expander GNN 76

5.3.3 An Extreme Case: Activation-Only GNN 79

5.4 Experiments and Discussion 80

5.4.1 General Settings and Baselines 82

5.4.2 Graph Classification 84

5.4.3 Graph Regression 84

5.4.4 Node Classification 89

5.4.5 Expander Sparsification 89

5.4.6 Convergence Behaviour 91

5.5 Chapter Conclusion 91

6 robust graph convolutional neural networks 93

6.1 Introduction 93

6.2 Related Work 95

6.3 Analysis of the Random GCN 96

6.3.1 Spectral Behaviour of the Gram Matrix 98

6.3.2 Spectral Behaviour of X̃X̃⊺
101

6.3.3 Message Passing through Node Feature Kernels 105

contents xiii

6.4 Experiments and Discussion 106

6.4.1 Datasets and Implementation Details 107

6.4.2 Experiment Analysis 109

6.5 Chapter Conclusion 115

iii conclusion

7 conclusion 117

7.1 Summary of Contributions 117

7.2 Future Directions 119

7.3 Epilogue 122

iv appendix

a appendix to chapter 4 124

a.1 Additional Experiments 124

a.1.1 Synthetic Datasets 124

b appendix to chapter 6 133

b.1 Preliminaries of Random Matrix Theory 133

b.2 Proof of Theorem 3.4 135

b.3 Proof of Corollary 3.5 136

b.4 Additional Experiments 138

b.4.1 Multiple Splits 138

b.4.2 Models beyond GCN 138

b.4.3 Deeper GCN architecture and Benchmark Models 138

b.4.4 Node Feature Noise 140

bibliography 142

L I S T O F F I G U R E S

Figure 1.1 Illustration of a Graph-of-Word (Rousseau and Vazirgian-
nis, 2013) which is an unweighted and directed graph.
The edge indicates that the two terms (vertices) it con-
nected co-occurred at least once (with the same direction
as the edge) in a window of 3 in the text. 2

Figure 2.1 Left: Illustration of a product graph. Right: All 3,4,5-
nodes Graphlets (Rahman et al., 2014). 10

Figure 2.2 Illustration of a Link Prediction problem. The dash lines
between (b, c) and (a, d) in the right part indicates poten-
tial links. 13

Figure 3.1 An illustration based on real data for the algorithm. The
red points represent embeddings in the vector space and
they are recursively separated by the dash lines. Blue
points are the centroids. 36

Figure 3.2 Left: An example of a hierarchy where each vertex v
is annotated by its weights w(v) : ω(v) and its colour
indicates the graph to which it belongs; Right: the derived
feature vectors. 38

Figure 3.3 Histograms of graph G1, G2, G3 corresponding to the
feature mapping in Figure 3.2. 41

Figure 4.1 Illustration of the proposed architecture 59

Figure 4.2 Illustration of synthetic graphs. n is the number of nodes;
m is the number of edges. 63

Figure 4.3 Comparison of graph size: predicted size (blue) vs. real
size (orange). From left to right: Path graph, Ladder
graph and Cycle graph. 68

Figure 4.4 2D projection of dynamic graph embeddings. Left: syn-
thetic datasets following different dynamics. Right: syn-
thetic datasets with different structures. 68

Figure 4.5 Similarity histograms on real-world datasets. Blue one
is the result of EvoNet, which is compared against 6
random graph models. From top to bottom, from left to
right: BTC-OTC, BTC-Alpha, UCI-Forum, UCI-Message,
EU-Core-Emails and DNC datasets. 69

xiv

list of figures xv

Figure 5.1 Illustration of the main computational steps in Expander GNNs.
(Left) Aggregation or graph propagation step and (Right)
Update step. The red lines in the Update step represent
preserved connections in MLPs sampled as expander spar-
sifier structures. In the Aggregation step only a subset of
the exchanged messages are illustrated. 78

Figure 5.2 (a,b): Accuracy vs. Number of parameters plot on a loga-
rithmic x-axis on (a) ogbn-arxiv for GCN models with dif-
ferent sparsifiers and (b) on CORA/CITESEER/PUBMED
for vanilla and Expander GCN under the same parameter
budget. 90

Figure 5.3 Training loss (cross-entropy) convergence behaviour of
the different model types for the GCN used for graph
classification on the PROTEINS dataset. 91

Figure 6.1 (a) Eigenvalues distribution of X̃X̃⊺ versus the theoretical
density as per Theorem 6.3.7 (the theoretical density is
obtained as f (x) = 1

π limϵ→0 ℑ[q(x + iϵ)] where q(z) =
1
n Tr(Q̄X̃(z))). (b) Eigenvector of X̃X̃⊺ corresponding to
its largest eigenvalue which correlates with ȳ. 103

Figure 6.2 Alignment between the largest eigenvector of X̃X̃⊺ and
the labels vector ȳ for different added node feature ker-
nel message passing strategies in terms of η. The kernel
matrix has entries Kij = x⊺i xj, mean and std computed
over 100 runs. The GCN with message passing opera-
tor Ã + PKP outperforms other models when the graph
structure is noisy (i.e., low values of η). 105

Figure 6.3 Performance change over the embedding dimension with
different models: random GCN, vanilla GCN and MLP. 109

Figure A.1 Comparison of graph size: predicted size (blue) vs. real
size (orange). Left: Path graphs with removal; Right:
Cycle graphs with adding extra structures. 125

Figure A.2 Similarity histograms on synthetic datasets. Blue one is
the result of EvoNet, which is compared against 6 random
graph models. From top to bottom: Path graphs; Path
graphs with removal; Ladder graphs; Cycle graphs; Cycle
graphs with adding extra structures. 126

Figure A.3 Examples of predictions on Path graphs. Left: Real graphs;
Right: Predicted graphs. 127

list of figures xvi

Figure A.4 Examples of predictions on small sized Ladder graphs.
Left: Real graphs; Right: Predicted graphs. 128

Figure A.5 Examples of predictions on large sized Ladder graphs.
Left: Real graphs; Right: Predicted graphs. 129

Figure A.6 Examples of predictions on Cycle graphs. Left: Real graphs;
Right: Predicted graphs. 130

Figure A.7 Examples of predictions on Path graphs with removal.
Left: Real graphs; Right: Predicted graphs. 131

Figure A.8 Examples of predictions on Cycle datasets with adding
extra structures. Left: Real graphs; Right: Predicted graphs. 132

Figure B.1 Experiment Results with the co-appearance of graph
structural noise and node feature noise on three cita-
tion datasets. The vertical line at a rate of 1 represents
the performance on the unperturbed graph. On its left
is the edge deletion case, with rate less than 1, where the
most perturbed case corresponds to rate 0; on the right is
the edge insertion case, where the perturbations grow with
the rate. Different colours represent the extent of node
feature perturbation. 141

L I S T O F TA B L E S

Table 2.1 Statistics of the datasets used in our experiments 25

Table 3.1 10-fold cross validation accuracy - mean (± standard de-
viation) - of the graphlet kernel (GL), shortest path kernel
(SP), Weisfeiler-Lehman subtree kernel (WL), Weisfeiler-
Lehman optimal assignment kernel (WL-OA), pyramid
match graph kernel (PM), and the two variants of the
proposed kernel that compute a correspondence between
sets of embeddings (E-OA-SP and E-OA) on the 10 graph
classification datasets. We set the best results to bold and
underline the second best ones. 47

Table 3.2 Statistics of 8 real-word networks for Link Prediction 48

Table 3.3 AUC scores of heuristics (Adamic-adar, Jaccard) and node
embedding frameworks (EOA embedding combined with
"xor", original embedding with hadamard product) for
Link Prediction with different level of edge removal on 8
real world datasets. The format follows Table 3.1. 49

Table 3.4 Statistics of 5 real-word networks for text categorisation.
CV stands for Cross Validation. 50

Table 3.5 Classification accuracy of the 3 variants of the proposed
kernel (using pretrained and randomly initialised em-
beddings), the bag-of-words representation with TF-IDF

weights (BOW TF-IDF) and the centroid representation
(CR) on the 5 text categorisation datasets. The format
follows Table 3.1. 51

Table 4.1 Statistics of 6 real-world datasets. 65

Table 4.2 Statistics on the similarity distribution of different models.
The best results are set to bold and the second best ones
are underlined. 70

Table 5.1 Model Equations of the Vanilla, Expander and Activation-
Only GNN. 81

xvii

list of tables xviii

Table 5.2 10-fold Cross Validation results (mean ± std) of the
GCN/GIN on the graph classification task performed on
the ENZYMES/DD/PROTEINS/IMDB-BINARY datasets.
We set the best results to bold and underline the second
best result. In addition, if the result of Activation-Only
GCN is better than the SGC model, we put ∗ next to the
result. 85

Table 5.3 Results of the GCN/GIN on graph classification for the
MNIST/CIFAR10 datasets. The format follows Table 5.2. 86

Table 5.4 Results of the GCN/GIN/GraphSage/PNA on graph re-
gression for the ZINC dataset. The format follows Ta-
ble 5.2. The symbol ↓ highlights that smaller values cor-
respond to better performance. 87

Table 5.5 10-fold Cross Validation results (mean ± std) of the
GCN/GIN on node classification for the CORA/CiteSeer/PubMed/OGBN-
Arxiv datasets. The format follows Table 5.2. 88

Table 6.1 Performance of GCN with and without node-feature ker-
nel under perturbation on synthetic SBM graphs. Results
are set to bold if they are significantly better than their
counterparts. 110

Table 6.2 Performance of MLP using only node features on six real-
world datasets. 111

Table 6.3 Performance of GCN with and without node-feature ker-
nel under perturbation on six real-world datasets. The
format follows Table 6.1. We add ↓ next to a value when
it is smaller that of the MLP in Table 6.2, which indicates
that the corresponding model performs worse than the
MLP using only node features. 112

Table 6.4 Performance of GCN with and without node-feature ker-
nel under perturbation on deep GCN models, compared
with jump knowledge and GCNII. The format follows
Table 6.1, where in addition we underline the second best
result. 113

Table 6.5 Performance of GCN with and without node-feature ker-
nel under both graph-structural and node-feature per-
turbation on PubMed dataset. The format follows Table
6.1. 114

list of tables xix

Table B.1 Performance of the GCN with and without node-feature
kernel under perturbation on six real-world datasets with
multiple train/valid/test splits. The format follows Ta-
ble 6.1. 137

Table B.2 Performance of the GIN/GraphSage/GAT with and with-
out node-feature kernel under perturbation on three cita-
tion datasets. The format follows Table 6.1. 139

Table B.3 Performance of the GCN with and without node-feature
kernel under perturbation on deep GCN models, com-
pared with jump knowledge and GCNII. The format
follows Table 6.1, where in addition we underline the
second best result. 140

L I S T O F S Y M B O L S

x A scalar (integer or real)

x A vector

X A matrix

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied
by context

X A set

R The set of real numbers

Rn The set of real-valued vectors of dimension
n

Rn×n The set of square, real-valued matrices with
n rows and n columns

{0, 1} The set containing 0 and 1

{0, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

G A graph

| · | Cardinality of a set or the absolute value of
a real number

[
· ∥ ·

]
concatenation of two vectors

∥ · ∥ Euclidean (resp., spectral) norm for vectors
(resp., matrices)

∥ · ∥F Frobenius norm

⊙ hadarmard product or element-wise product

1n n-dimensional all-ones vector

xx

L I S T O F A C R O N Y M S

AUC Area Under Curve . 48

CNN Convolutional Neural Network . 3

DGL Deep Graph Library . 83

FLOPs Floating Point Operations . 77

GAT Graph Attention Network . 138

GCN Graph Convolutional Neural Network 3

GIN Graph Isomorphism Network . 19

GNN Graph Neural Network . 3

GPU Graphics Processing Unit . 22

GRU Gated Recurrent Unit . 59

IPU Intelligence Processing Unit . 79

LSTM Long Short-Term Memory . 61

MAE Mean Absolute Error . 84

MLP Multi-Layer Perceptron . 1

MPNN Message-Passing Neural Network 3

NLP Natural Language Processing . 30

PCA Principle Component Analysis . 69

PNA Principle Neighborhood Aggregation 20

PyG PyTorch Geometric . 107

RKHS Reproducing Kernel Hilbert Space 14

RNN Recurrent Neural Network . 3

RREC Regular Rotating Edge Construction 89

SBM Stochastic Block Model . 66

SGC Simple Graph Convolution . 72

SLAC Sparse Linear Algebra Compute . 79

SVM Support Vector Machine . 28

TF-IDF Term Frequency–Inverse Document Frequency 51

xxi

1
I N T R O D U C T I O N

1.1 context and scope

We live now in a networked world. With the fast growth of social networks in the
last two decades, we witness a blossom of theories, models and tools in network
science. From network property analysis such as small-world phenomenon
(Buchanan, 2003; Watts and Strogatz, 1998) to link prediction (Lü and Zhou,
2011), from community detection (Leskovec et al., 2009) to recommendation (Fan
et al., 2019; Wang, Tan, and Zhang, 2010), from academic networks of citations or
co-authors (Tang et al., 2008) to web and blog networks of hyperlinks (Leskovec
et al., 2009), social network analysis is the driving force that pushes forward the
research in graph mining or graph representation learning.

Graphs do not only shine in the field of social networks. As a natural rep-
resentation for modelling relations between objects, graphs are perhaps the
most frequent data modality that we retrieve from the real world. They have
demonstrated their power of providing meaningful information about relation-
s/interactions in a plethora of applications. In biology, the graph is a straightfor-
ward representation of molecules (Kriege and Mutzel, 2012). In bioinformatics,
the graph is used to model the precise interaction between biological or chem-
ical compounds, such as protein-protein interaction (Borgwardt et al., 2005).
In neural science, connections between neurons in the brain are represented
as graphs (networks), which has inspired the design of the first Multi-Layer
Perceptron (MLP) (LeCun, Bengio, and Hinton, 2015).

Moreover, graphs can even be extended to areas where data does not contain
an inherent graph structure. For example, in natural language processing, a
sentence/piece of text can be transformed into a graph, called Graph-of-Word
(Rousseau and Vazirgiannis, 2013), whose vertices are the unique terms and the
edges represent term proximity, i. e., co-occurrence relationships. In computer
vision, the images can be converted to k-regular graphs whose vertices are the
super-pixels, i. e., small regions of homogeneous intensity in images, and edges
represent spatial proximity between these super-pixels, constructed in a fashion
of k-nearest neighbours (Achanta et al., 2012; Knyazev, Taylor, and Amer, 2019).

1

1.1 context and scope 2

Figure 1.1: Illustration of a Graph-of-Word (Rousseau and Vazirgiannis, 2013) which is
an unweighted and directed graph. The edge indicates that the two terms
(vertices) it connected co-occurred at least once (with the same direction as
the edge) in a window of 3 in the text.

However, the omnipresence of graphs has brought many challenges for graph
learning as it is tough to analyse the various types of graphs from different
areas under a unified framework. Indeed, we have directed/undirected, weight-
ed/unweighted, dynamic/static and heterogeneous/homogeneous graphs. Each
requires different methods to process.

Despite the difficulties, researchers were still able to propose some efficient
and effective algorithms for specific graph-related problems. These algorithms
are usually related to the random graph theory, such as random walks, e. g., the
PageRank algorithm (Page et al., 1999), or graph combinatorics, such as graph
kernels (Haussler, 1999; Kondor and Lafferty, 2002). Inspired by kernel methods
in classic machine learning, graph kernels utilise hand-crafted combinatorial
features to measure the similarity between two graphs. They enjoy the advan-
tages of kernel methods as being easy to train and with provable theoretical
guarantees.

Seeing the success of deep learning (Goodfellow, 2016) in classic machine
learning, such as computer vision, the researchers are also motivated to bring
the power of deep learning into graph analysis. However, this migration is
not straightforward. Unlike in computer vision, where the data (images) is

1.2 outline and contributions 3

euclidean in the form of a regular grid, graph-structured data usually has a
non-uniform distribution of vertices, is permutation invariant and often has
extra attributes on the edges. These properties make it challenging to define
a convolution operation on graphs which is the essential part of Convolutional
Neural Networks (CNNs). Initial attempts begin from the spectral domain of
graphs, as convolution is a more natural notion there. The spectral Graph Neural
Networks (GNNs) have some success (Bruna et al., 2014; Duvenaud et al., 2015;
Henaff, Bruna, and LeCun, 2015), but they suffer from high computational
cost and a lack of induction ability. Kipf and Welling (2017) proposes Graph
Convolutional Neural Network (GCN), which defines the convolution operation
on the spatial domain of graphs and paves the way to Message-Passing Neural
Networks (MPNNs), the current dominating paradigm of GNN designs. The GNNs

inherit the expressive power of deep learning and soon take over as the primary
tool in graph representation learning. However, just like their parent in classic
machine learning, we do not have theoretical guarantees or even understand
how GNNs work.

Graph kernels and MPNNs are the two main subjects of this dissertation. The
explosion of graph-structured data always calls for more advanced algorithms
that are powerful, resource-friendly, and we have a deeper understanding. We
will introduce in the next section the improvement we made towards these
directions on the two methods.

1.2 outline and contributions

In this dissertation, we contribute new graph learning algorithms, models and
tools with different applications. In particular, we have developed

• a new class of optimal assignment kernel for graph classification which
leverages the expressiveness of bag of vectors representations for graphs
and the validity of histogram intersection kernel,

• an encoder-decoder framework for predicting the topology evolution of tem-
poral graphs: this approach takes a GNN as the encoder, a graph generation
model as the decoder and a Recurrent Neural Network (RNN) residing in
the code space to capture the temporal information,

• a series of parsimonious GNN models which are smaller and cheaper in
practice without performance loss for various graph learning tasks: these
models reduce the number of parameters by successively sparsifying the
Update step in existing GNN architectures,

1.2 outline and contributions 4

• a robust GNN architecture along with theoretical insights from random
matrix theory to improve the model performance against graph structural
noise: this approach enhances the information from node features by
inserting a node feature kernel in the graph propagation step.

Indeed, the ultimate goal of our research is to provide more effective, more
efficient, more robust and more versatile algorithms for graph-related tasks. We
will elaborate on our contributions, and introduce the outline of this dissertation
as follows.

In Chapter 2, we begin with some useful notions of graphs and graph theory.
We then introduce the machine learning tasks that involve graph-structured
data and two major classes of graph representation learning methods that
we focus on in our work: Graph Kernel and Graph Neural Network (GNN). We
conclude this chapter by presenting a set of essential libraries that we use in our
implementation and a brief introduction to the datasets we experiment on in
the following chapters.

Part i is dedicated to the study of graph kernel methods. Most existing
kernels belong to the class of R-convolution kernel. It decomposes graphs
into substructures and obtains the similarity between each pair of graphs by
computing and adding the similarities between every pair of their substructures.
This exhaustive computation sometimes causes the problem of diagonal dominance
where the graph is only similar to itself under the R-convolution kernel.Another
class of kernels called assignment kernels improves expressiveness by finding
an optimal correspondence between the substructures, but it is not always
positive semi-definite. In Chapter 3, we propose a new framework to construct
an optimal assignment kernel that is guaranteed to be valid. The framework
consists of two steps. In the first step, with the help of node embedding methods,
we represent each graph as a bag of vectors that is assumed to reside in the same
embedding space. We recursively split the space into irregular multi-resolution
partitions by clustering in the second step. A corresponding hierarchy is then
constructed on which the distance between nodes (substructures) measures their
correspondence. Finally, we obtain a histogram whose entry corresponds to a
vertex of the hierarchy for each graph. A histogram intersection kernel can then
be applied. Our proposed framework can measure the similarity between any
set of vectors object, including but not limited to graphs. Moreover, its kernel
feature map is a more expressive embedding for nodes than the original vectors.
Experiments on graph classification, link prediction and text categorisation tasks
show that the proposed kernel outperforms state-of-the-art baselines and is thus
effective.

1.2 outline and contributions 5

Part ii is devoted to Graph Neural Networks, with particular emphasis on
MPNN, a dominating class of GNN models. We begin by showing the power
of GNNs on graph-related tasks with a concrete example in Chapter 4. We
study the problem of predicting the graph’s topology at the next timestep given
a sequence of evolving graphs. It is traditionally tackled by random graph
models such as Kronecker graphs (Leskovec et al., 2010). These models generate
graphs that exhibit specific properties of real-world networks, e. g., shrinking
diameter or densification power law (Leskovec, Kleinberg, and Faloutsos, 2005).
We propose an encoder-decoder framework for a precise prediction of the topology
evolution. The encoder is a GNN that maps the graph into an embedding, and
the decoder is an autoregressive graph generation model that reconstructs the
graph topology as a sequence of adjacency vectors from an embedding. The
choices of GNNs and graph generation models are flexible. This framework takes
as input a sequence of graphs, passes them through the GNN and transform the
graphs into a sequence of embeddings. Then this sequence is processed by a
RNN in order to plug in the temporal relation. The output of RNN is considered
as dynamic graph embedding as it captures both temporal dependencies of a
sequence and structural information from a graph. The decoder then reconstructs
the topology at the next timestep from this output. The framework is end-to-end
trainable with a cross-entropy loss over the prediction of adjacency. Experiments
on synthetic and real-world dynamic graphs show that our proposed model has
a significant advantage over random graph models on predicting the evolving
topology at the next timestep, where its prediction is most similar to the ground
truth, measured by a graph kernel.

Chapter 5 focuses on simplifying GNNs, specifically the MPNN. Noticing that
the MPNN can be divided into a graph-related Aggregation step and a graph-
agnostic Update step, we study the role of the Update step by successively
sparsifying its linear transform layer and monitoring the performance change.
Our model differs from the current neural network sparsification literature
dominated by pruning methods in that the proposed model can identify the
sparse sub-network only based on graph properties without training. In our
work, we identify the sub-network as an expander subgraph from the original
bipartite fully connected layer, because of the good property of this type of graph
of being sparse and highly connected at the same time. Extensive experiments
on three graph learning tasks and various datasets from different domains
unanimously drive us to the conclusion that the linear transform layer of the
Update step can be sparsified almost arbitrarily without performance loss in
most cases. Moreover, this layer can even be wholly omitted on some tasks and

1.2 outline and contributions 6

datasets, leaving only the nonlinear activation while the model performance
remains unharmed.

This observation indicates that the Update step plays a less important role than
the Aggregation step in a MPNN in terms of model performance. A natural con-
cern then arises: what if the graph structure is perturbed? Since the graph-related
part contributes more to the model performance, the MPNNs are supposed to be
vulnerable to graph structural noises. In Chapter 6, we further study the inter-
action between the graph-related step and the graph-agnostic step, particularly
under a noisy setting with structural perturbation. We propose random GCN,
where the weight of the linear transform layer in the Update step is a random
Gaussian matrix sampled before training and kept unchanged afterwards. We
demonstrate empirically that this random GCN performs as well as the vanilla
GCN in high-dimensional regimes. This model, although lacking practical im-
portance as it can only match the performance of the vanilla model when the
dimension is high enough, allows us to introduce tools from random matrix
theory and analyse the relation between graph structure information (in the
Aggregation step) and node feature information (in the Update step) theoretically.
With certain assumptions on the data, we can conclude that perturbation on graph
structures heavily overshadows information from node features. Specifically, if the
graph structure is completely perturbed, we can not benefit from node feature
information. Inspired by the theoretical results, we propose adding a node
feature kernel to the message-passing step to robustify the GCN model against
structural noise. Experiments demonstrate that our proposed kernel is very
effective against graph structural perturbations, especially in the edge-insertion
case, where random edges are added to the original graph.

Finally, we conclude this dissertation in Chapter 7 by detailing our contribu-
tions and sharing insights on future research directions.

2
B A S I C N O T I O N S A N D P R E L I M I N A R I E S

In this chapter, we will provide the definitions and background materials used
throughout this dissertation. In Section 2.1, we present the notions and tools
of graphs and graph theory. We give an introduction to some problems in
the graph learning area in Section 2.2. Then, Section 2.3 and Section 2.4 are
dedicated to introducing graph kernels and MPNNs, the two main subjects of
this dissertation. Finally, we provide an overview of the software and the major
datasets we used, in Section 2.5 and Section 2.6, respectively.

2.1 definitions , properties and functions of graphs

definition 2 .1 (graph). A graph or a network is a structure amounting to a
set of entities with some relationships. Commonly it is represented as an ordered pair
G := (V, E) in which V is a set of vertices and E is a set of edges with E ⊆ V × V.
Given two nodes vi, vj ∈ V, we denote eij = (vi, vj) ∈ E as the edge pointing from
vi to vj.

definition 2 .2 (adjacency matrix). The adjacency matrix of a graph
G = (V, E) is defined as A = {Aij}|V|×|V| with

Aij =

1 if (i, j) ∈ E,

0 otherwise.

definition 2 .3 (labelled graph). A graph G = (V, E) is a node-labelled
graph if it is associated with a function ϕ : V 7→ Σ ⊂ N that assigns labels (integers)
to the vertices of the graph from a discrete set of labels Σ. We denote τv as the label
vector for the nodes where [τv]i = l(vi).

Similarly we can define edge-labelled graph endowed with the function ψ : E 7→
R ⊂ N and label vector τe for the edges.

7

2.1 definitions , properties and functions of graphs 8

definition 2 .4 (attributed graph). A graph G = (V, E) is a node-
attributed graph if it is associated with a function f : V 7→ Rd that assigns assigns
real-valued vectors to the vertices of the graph. We denote X ∈ R|V|×d as the feature
matrix for the nodes where Xi = f (vi).

Similarly we can define edge-attributed graph endowed with the mapping f ′ :
E 7→ Rd′ and feature matrix E ∈ R|V|×d′ for the edges.

definition 2 .5 (heterogeneous and homogeneous graph). A het-
erogeneous graph is a graph of form G = (V, E, F, ϕ, ψ) with F being the node
feature set, ϕ : V 7→ Σ and ψ : E 7→ R being the node/edge label (or type) mappings
that satisfy |Σ|+ |R| > 2. Denote Vσ as the node set of label σ ∈ Σ, the feature set
F is composed of |Σ| feature matrix,

F = {Fσ|σ ∈ Σ}, F ∈ R|Vσ|×dσ .

where dσ stands for the feature dimension of nodes with label σ. A homogeneous
graph is then defined as a graph with a single type of nodes and a single type of edges.

remark 2 .1 .1. Apart from (V, E), a graph can also be represented by its adjacency
matrix and/or its node/edge labels and/or features (A, τv, τe, X, E). We obtain differ-
ent classes of graphs, depending on the existence of label mapping or feature mapping
and their types. Note that in this dissertation, we focus only on the homogeneous
graph. In Part i, our main research object is the node-labelled graph (A, τv), while in
Part ii, our main research object is the attributed graph (A, X, E). The difference in
the complexity of these two objects reflects the difference in the expressive power of
the two methods studied respectively in this dissertation.

definition 2 .6 (directed and undirected graph). A directed graph
is a graph G = (V, E) where every edge e(vi, vj) is an ordered pair of nodes that
links node vi to vj. An undirected graph is a special case of directed graph where
if e(vi, vj) ∈ E then e(vj, vi) ∈ E. Apparently, the adjacency matrix A for an
undirected graph is symmetric.

In this dissertation, we focus mainly on the undirected graphs and thus, all
the graphs mentioned afterwards are undirected without specification. Note
that however, both methods in Part i and Part ii can be extended to the directed
case by choice of node embedding methods and GNNs.

2.1 definitions , properties and functions of graphs 9

definition 2 .7 (neighbourhood). Given a node vi ∈ V, we define its
neighbourhood or the neighbours of vi as N (vi) = {vj ∈ V|(vi, vj) ∈ E}.

definition 2 .8 (degree). Given an undirected graph G = (V, E) and vertex
vi, the degree of vi is defined as the number of edges incident to vi,

degG(vi) = |{vj|e(vi, vj) ∈ E}| = N (vi).

definition 2 .9 (induced subgraph). Given a graph G = (V, E) and a
subset of vertices S ⊆ V, the subgraph of G induced by S is GS = (S, ES) where the
vertex set is S and the edge set ES is

ES = {(vi, vj) ∈ E|(vi, vj) ∈ S}.

definition 2 .10 (walk , path , circle). A walk on a graph G = (V, E)

is defined as a sequence of vertices W = {v1, v2, . . . , vl} ⊆ V, where for all
1 ≤ i ≤ l − 1, we have (vi, vi+1) ∈ E. The length of the walk is equal to the number
of edges in the sequence, i. e., l in the above case. If there is no repeated nodes in the
sequence, then the walk is called a path. If vl = v1, it is called a circle.

definition 2 .11 (shortest path and diameter). A shortest path from
vertex vi to vertex vj of a graph G is a path from vi to vj such that there exist no
other path between these two vertices with smaller length. The diameter of a graph
G is the length of the longest shortest path between any pair of vertices of G.

definition 2 .12 (tree). A tree is an undirected graph in which any two vertices
are connected by a unique path, i. e., a connected acyclic undirected graph.

definition 2 .13 (bipartite graph). A bipartite graph is a graph whose
vertices can be divided into two disjoint and independent sets U and Γ such that
every edge connects a vertex in U to one in Γ.

2.1 definitions , properties and functions of graphs 10

a

b

c

d
e

ac

ad

ae

bc

bd

be

Figure 2.1: Left: Illustration of a product graph. Right: All 3,4,5-nodes Graphlets (Rah-
man et al., 2014).

definition 2 .14 (product graph). Given two graphs G = (V, E) and
G ′ = (V′, E′), the product of these two graphs G ×G ′ is defined as G× = (V×, E×),
with

V× = {(vi, v′j)|vi ∈ V ∧ v′j ∈ V′},

E× = {
(
(vi, v′i), (vj, v′j)

)
∈ V× × V×}.

G× is called a product graph. An illustration is given in Figure 2.1.

definition 2 .15 (graphlet). A graphlet is a denomination for a small sub-
graph of a large network parameterised by its size. A network can contain many
graphlets of different sizes. An illustration is given in Figure 2.1.

definition 2 .16 (connectedness). Given an undirected graph G = (V, E),
two vertices vi and vj are connected if there is a path in G from node vi to node vj.

definition 2 .17 (boundary). The boundary of a set S ⊆ V denoted ∂S is the
set of all vertices, which are connected to a vertex in S by an edge but are not in S.
The boundary of a single vertex v is its neighbourhood N (v).

definition 2 .18 (expander graph). For 0 < δ ∈ R, a graph G is an
δ-expander graph if for all S ⊆ V such that |S| ≤ |V|

2 , we have |∂S|
|S| ≤ δ.

definition 2 .19 (expander ratio). The expansion ratio h(G) of a graph G
is defined to be the minimal δ such that G is an δ-expander graph.

2.1 definitions , properties and functions of graphs 11

In graph theory, Expander graphs are a well-studied class of graphs, intuitively
understood as highly connected, sparse graphs (Hoory, Linial, and Widgerson,
2006; Lubotzky, 2012), characterised by the expansion ratio. A high expansion
ratio indicates that each small set of vertices has a relatively large neighbourhood
in comparison, which ties in nicely with the qualitative definition as highly
connected sparse graphs by Lubotzky (2012). We will demonstrate further in
Chapter 5 how the notion of expander graph is helpful in graph learning
problems.

definition 2 .20 (graph laplacian). Given a graph G = (V, E), its
adjacency matrix A and the degree matrix D which is a diagonal matrix with
Dii = ∑j Aij, we define the graph laplacian as

L = D − A,

and the normalised Laplacian as

L̃ = I|V| − D− 1
2 AD− 1

2 ,

where I|V| is the identity matrix.

definition 2 .21 (graph fourier transform and inverse fourier

transform). Given a graph G = (V, E), let X ∈ R|V|×d denotes a graph signal
associated with the node feature mapping f : V 7→ Rd, we define the graph Fourier
transform on the signal X as

F (X) = U⊺X,

where U is the matrix of eigenvectors of the normalised graph Laplacian. As L̃ is a
real symmetric positive semi-definite matrix, it can be factorised as UΛU⊺ with Λ
being a diagonal matrix of the eigenvalues. The inverse Fourier transform is then

F−1(X ′) = UX ′.

2.2 problems on graphs 12

2.2 problems on graphs

2.2.1 Graph Similarity and Isomorphism

In a graph comparison problem, we measure the closeness between two graphs.
It can be formulated formally as finding a mapping from graph space to a real
value that quantifies the similarity between the two graphs.

definition 2 .22. (Graph Comparison Problem) Given two graphs G,G ′ ∈ G, the
graph comparison problem aims to find a mapping s

s : G × G 7→ R

where s(G,G ′) measures the similarity between G,G ′.

The measurement for similarity or closeness is related to the notion of graph
isomorphism.

definition 2 .23 (graph and subgraph isomorphism). Given two
graphs G = (V, E) and G ′ = (V′, E′), G and G ′ are isomorphic if and only if
there exists a mapping f : V 7→ V′ such that ∀vi, vj ∈ V, if e(vi, vj) ∈ E, then
e
(

f (vi), f (vj)
)
∈ E′. The mapping f is called an isomorphism.

If, without loss of generality, assuming G contains a subgraph S that is isomorphic
with G ′, then G and G ′ are subgraph isomorphic.

However, both graph isomorphism and subgraph isomorphism are NP prob-
lems, with subgraph isomorphism being NP-complete. Thus measuring graph
similarity with isomorphism is in general infeasible for relatively large graphs.
Efficient approximation methods that accurately measure the similarity between
two graphs within a reasonable (polynomial) time are needed.

2.2.2 Machine Learning Tasks on Graphs

node classification The objective is to find a mapping f : V 7→ N, which
categorises nodes into discrete classes.

node regression The objective is to find a mapping f : V 7→ R, which
assigns continuous value to each node.

edge classification The objective is to find a mapping f : E 7→ N, similar
to node classification.

2.3 graph kernel 13

a

b

c

d

e

a

b

c

d

e

Figure 2.2: Illustration of a Link Prediction problem. The dash lines between (b, c) and
(a, d) in the right part indicates potential links.

link prediction The objective is to find a mapping f : V × V 7→ {0, 1},
which predicts the existence of potential connections when given two
nodes. Figure 2.2 gives an illustration of the link prediction problem.

graph classification The objective is to find a mapping f : G 7→ N, which
categorises graphs into discrete classes.

graph regression The objective is to find a mapping f : G 7→ R, which
predicts continuous value for each graph.

2.3 graph kernel

2.3.1 Kernel Methods

definition 2 .24 (positive semi-definite matrix). A real matrix Mn×n

is positive semi-definite if

Q(v) = v⊺Mv ≥ 0, ∀v ∈ Rn.

definition 2 .25 (positive semi-definite kernel). Let X be a non-
empty set, a symmetric function K : X × X 7→ R is called positive semi-definite
kernel if the matrix Kn×n with Kij = K(xi, xj) is a positive semi-definite matrix.

A kernel function is a symmetric continuous function that measures the
similarity between two objects. The positive semi-definiteness assures that it can
be represented as the inner products between the vector representations of these
objects and links the kernel to a Hilbert space. Precisely, if we define a kernel K
on X ×X , then there exists a mapping ϕ : X 7→ H from X to a Hilbert space H
with inner product ⟨·, ·⟩H, such that,

K(xi, xj) = ⟨xi, xj⟩H, ∀xi, xj ∈ X .

2.3 graph kernel 14

H is also known as Reproducing Kernel Hilbert Space (RKHS) (Aronszajn, 1950).
The kernel methods can be naturally generalised to the graph space:

definition 2 .26 (graph kernel). The graph kernel K is a positive semi-
definite function G × G 7→ R defined on G × G with a corresponding Hilbert space
H, inner product ⟨·, ·⟩H and a mapping ϕ : G 7→ H such that:

K(G,G ′) = ⟨ϕ(G), ϕ(G ′)⟩H ∀G,G ′ ∈ G.

2.3.2 R-convolution Kernel

As mentioned above, it is often hard to measure the similarity between two
graphs because of the complexity of graph isomorphism. The standard approxi-
mation method decomposes the graph into smaller subgraphs and measures
similarities between the small pieces instead. A dominating class of graph ker-
nels built upon this concept is the R-convolution kernel. It decomposes the
input two graphs into two sets of small substructures, computes the similarity
between every pair of substructures from these two sets respectively, and then
sums the computed values together as the total similarity between two graphs.

definition 2 .27 (decomposition). A decomposition R of graph G = (V, E)

is a set of graphs {S1,S2, . . . ,Sn} where Si,∀i=1,...,n is a subgraph of G such that
⋃

1≤i≤n Si = G and ESi

⋂
ESj = ∅, ∀i, j.

definition 2 .28 (R-convolution kernel). The R-convolution kernel
between two graphs G, G ′ is defined as

Kconv(G,G ′) = ∑
S∈RG

∑
S ′∈RG′

Kbase(S ,S ′)

where R is the decomposition of graph which decomposes the graph into a set of
substructures {S} and Kbase is usually a simple function, i. e.,

Kbase(S ,S ′) = 1 if S ,S ′ isomorphic,

= 0 otherwise.

2.3 graph kernel 15

2.3.3 Some Examples of R-Convolution Kernel

2.3.3.1 Random Walk Kernel (Nikolentzos, Siglidis, and Vazirgiannis, 2019)

The random walk kernel counts common walks (of potentially infinite length)
on the input graphs, where the matching walks can be seen as a random walk
performed on their product graph. Given input graphs G and G ′, the product
graph G× = G × G ′ and its adjacency matrix A×, we have

K(G,G ′) =
|V×|
∑

p,q=1

∞

∑
l=0

[λl Al
×]pq = 1⊺(I|V×| − λA×)−11,

where the weight coefficient λ ∈ R≥0.

2.3.3.2 Shortest Path Kernel (Borgwardt and Kriegel, 2005)

The shortest path kernel decomposes input graphs into shortest paths and
compares their length and/or labels of the endpoints. We first transfer the input
graphs G = (V, E) to shortest-path graphs S = (V, E′), where

E′ = {(vi, vj)|vi and vj are connected in G}.

Each edge of S is also assigned with a label that equals the length of the shortest
path between the two endpoints in the original graph G. Then, given G, G ′, and
their shortest-path graphs S , S ′, we have

K(G,G ′) = ∑
e∈E

∑
e′∈E′

K(1)
base(e, e′),

with K(1)
base(e, e′) being a positive semi-definite kernel comparing the edge walks

of length 1 by,

K(1)
base(e, e′) = Kv

(
l(vi), l(v′i)

)
Ke
(
l(e), l(e′)

)
Kv
(
l(vj), l(v′j)

)

+ Kv
(
l(vi), l(v′j)

)
Ke
(
l(e), l(e′)

)
Kv
(
l(vj), l(v′i)

)
,

where e = (vi, vj) and e′ = (v′i, v′j). Kv and Ke are simple functions, e. g., Dirac
kernel, that compare between node labels and edge labels.

2.3 graph kernel 16

2.3.3.3 Graphlet Kernel (Shervashidze et al., 2009)

The graphlet kernel decomposes input graphs into limit-size subgraphs called
graphlets. Given a set of graphlets {S1,S2, . . . ,Snk} the complete set of max
k-size graphlets, we count the frequency of occurrence of graphlet Si in the
original graph G, denoted as fi. Then the vector fG = (f1, f2, . . . , fnk) is called
the k-spectrum of G and we have:

K(G,G ′) = f ⊺G fG ′ .

2.3.3.4 Weisfeiler-Lehman Subtree Kernel (Shervashidze et al., 2011)

The Weisfeiler-Lehman Subtree Kernel comparing the number of shared subtrees
extracted from input graphs under the Weisfeiler–Lehman framework inspired
by the Weisfeiler–Lehman test of graph isomorphism.

Given two inputs G and G ′, let us define Σi ⊆ Σ as the set of letters that
occur as node labels at least once in G or G ′ at the end of the ith iteration of the
Weisfeiler-Lehman algorithm. Let Σ0 be the set of original node labels of G and
G ′. Assume all Σi are pairwise disjoint. Without loss of generality, assume that
every Σi = {σi,1, . . . , σi,|Σi|} is ordered. Define a map ci : {G,G ′} × Σi 7→ N such
that ci(G, σi,j) is the number of occurrences of the letter σi,j in the graph G.

The Weisfeiler-Lehman Subtree Kernel on G and G ′ with h iterations of the
Weisfeiler-Lehman algorithm is then defined as

K(G,G ′) =
〈
ϕh(G), ϕh(G ′)

〉
,

with

ϕh(G) =
(

c0(G, σ0,1), . . . , c0(G, σ0,|Σ0|), . . . , ch(G, σh,1), . . . , ch(G, σh,|Σh|)
)

,

ϕh(G ′) =
(

c0(G ′, σ0,1), . . . , c0(G ′, σ0,|Σ0|), . . . , ch(G ′, σh,1), . . . , ch(G ′, σh,|Σh|)
)

.

2.3.4 Optimal Assignment Kernel

Similar to the R-convolution kernel, the optimal assignment kernel also decom-
poses the graph into small pieces. However, instead of computing similarity
between every pair of them, the optimal assignment kernel finds a bijection
(assignment) between the two sets of substructures that maximises the total
similarity.

2.4 graph neural network 17

definition 2 .29 (optimal assignment kernel). The optimal assignment
kernel Kassign : G × G 7→ R is defined for every G,G ′ ∈ G as

Kassign(G,G ′) =

maxπ∈Γn ∑n
i=1 Kbase(Si,S ′

π(i)) if |R′| > |R|,

maxπ∈Γn′ ∑n′
i=1 Kbase(Sπ(i),S ′

i) otherwise.

where R = (S1,S2, . . . ,Sn) is a decomposition of G and Γn is the set of all possible
permutations of n elements.

Comparing to the R-convolution kernel, the optimal assignment kernel can
reveal the structural correspondence between two graphs and is less likely to
have the diagonal dominance problem1 which is common in the R-convolution
kernel.

However, Vert (2008) has given a counterexample showing that the optimal
assignment kernel is not in every case positive semi-definite.

theorem 2 .3 .1 (Vert , 2008). The optimal assignment kernel is not always
positive semi-definite.

2.4 graph neural network

In recent years, GNNs have become a highly impactful model type for the analysis
of graph-structured data. This is mainly due to their ability to process attributed
graphs composed of node information and an underlying graph structure, and
their dominating empirical performance in various application areas, including
chemistry (Duvenaud et al., 2015), social networks (Monti et al., 2019), natural
language processing (Yao, Mao, and Luo, 2019) and neural science (Griffa et al.,
2017).

Among various GNN models, the MPNN draws our attention as a prominent
paradigm that arose recently for performing machine learning tasks on graphs.

2.4.1 Message-Passing Neural Network

Given graphs as G = (A, X, E) with A ∈ {0, 1}n×n being the adjacency matrix
which contains the information of the graph’s vertex set V, X ∈ Rn×d. being the

1 Mathematically, diagonal dominance indicates that for every row i of the kernel matrix K, |Kii| ≥
∑i ̸=j |Kij| where | · | denotes the absolute value. In a practical sense of graph comparison, the
graphs will be only similar to themselves and dissimilar to all the others, which does not yield
a meaningful comparison.

2.4 graph neural network 18

node features and E ∈ Rn×d′ . being the edge features, a graph representation
learning task aims at learning meaningful embeddings (high-level representa-
tions) on the node or graph level that can be used in downstream tasks. MPNNs,
probably the current most common class of GNNs, learn such embeddings by
iteratively aggregating information from the neighbourhoods of each node and
updating their representations based on this information. Precisely, the learning
procedure of MPNNs can be divided into the following phases:

initial (optional) In this phase, the initial node features X is mapped from
the feature space to a hidden space by a parameterised neural network
Φ(0), usually a fully-connected linear layer.

H(1) = Φ(0)(X) =
(

h(1)
1 , . . . , h(1)

n

)
,

where the hidden representation of node i is denoted as h(1)
i , which will

be used as the initial point for later iterations. A similar operation could
be performed on edge features E, but is less common.

aggregation In this phase, MPNNs gather, for each node, information from
the node’s neighbourhood N (i), and its incident edges. The gathered
pieces of information are called messages, denoted by mi. Formally, if
Ψ(l)(·) denotes the aggregation function at iteration l, then

m(l)
i = Ψ(l)

(
h(l)

i ,
{

h(l)
j , Eij|j ∈ N (i)

})
.

Due to the isotropic nature of graphs (arbitrary node labelling), this func-
tion needs to be permutation equivariant or invariant. It also has to be
differentiable so that the framework will be end-to-end trainable.

update The nodes then update their hidden representations based on their
current representations and the received messages. Let Φ(l) denote the
update function at iteration l. For node i, we have

h(l+1)
i = Φ(l)

(
h(l)

i , m(l)
i

)
.

The Aggregation step and the Update step sometimes are informally referred
to as graph propagation or message-passing procedure (hence the name
Message-Passing Neural Network) in this dissertation. After k iterations
of the message passing procedure, each node obtains a feature vector that
captures the structural information within its k-hop neighbourhood.

2.4 graph neural network 19

readout (optional) After L Aggregation and Update iterations, depending
on the downstream tasks, the MPNN will either output node representa-
tions directly or generate a graph representation via a differentiable and
permutation invariant readout function,

g = Θ
({

h(L)
i |i ∈ V

})
.

2.4.2 Some examples of Message-Passing Neural Network

2.4.2.1 Graph Convolutional Neural Network (Kipf and Welling, 2017)

The message-passing procedure in GCN, at iteration l, can be written as

m(l)
i =

1√
di

∑
j∈N (i)

h(l)
j

1√
dj

, (2.1)

h(l+1)
i = σ(m(l)

i W (l)), (2.2)

where di is the degree of node i, σ(·) is the activation function and W (l) is the
weight matrix of the linear transform layer in the lth Update step. Equation 2.1
corresponds to the Aggregation step that constructs message as a weighted average
of the neighbours’ embeddings, then equation 2.2, as the Update step, updates
node i’s representation based on the constructed message.

2.4.2.2 Graph Isomorphism Network (Xu et al., 2019)

The message-passing procedure of the Graph Isomorphism Network (GIN) is very
similar to that of the GCN, except that, at the Aggregation step, the GIN takes
into account the central node’s representation parameterised by a learnable
coefficient. Precisely,

m(l)
i = (1 + ϵ)h(l)

i + ∑
j∈N (i)

h(l)
j . (2.3)

The Update step is the same with equation 2.2.

2.4 graph neural network 20

2.4.2.3 GraphSage (Hamilton, Ying, and Leskovec, 2017)

GraphSage also incorporates explicitly the central node’s representation in the
Aggregation step by concatenating with the embeddings from the neighbourhood.
The message-passing procedure is then,

m(l)
i =

[
h(l)

i

∥∥∥ max
j∈N (i)

σ(h(l)
j W (l)

1)

]
, (2.4)

h(l+1)
i =

ĥi
(l+1)

∥∥∥ĥi
(l+1)

∥∥∥
2

, ĥi
(l+1)

= σ(m(l)
i W (l)

2). (2.5)

where max(·) takes maximum along each feature dimension, σ(·) is the acti-
vation function and W (l)

1 , W (l)
2 are the weight matrices of the linear transform

layer in the Aggregation and Update steps respectively.

2.4.2.4 Principle Neighborhood Aggregation (Corso et al., 2020)

In the Aggregation step, the Principle Neighborhood Aggregation (PNA) model
concatenates the messages obtained via different combinations of scalars (coeff-
cients) and aggregators (functions). This step can be written as,

m(l)
i =

⊕

j∈N (i)

σ
(

h(l)
j W (l)

)
, (2.6)

where
⊕

is a concatenation of the tensor product, denoted by ⊗, between the
arrays of scalars and aggregators as follow,

I

S(D, α = 1)

S(D, α = −1)

︸ ︷︷ ︸
scalars

⊗

mean

std

max

min

︸ ︷︷ ︸
aggregators

,

where S(D, α) is a degree-based normalisation coefficient defined in Corso
et al. (2020) and std is the standard deviation aggregation. For example, for
combination S(D, α = 1) ∗ std(·), we have

[m(l)
i]S(D,α=1),std =

log(di + 1)
δ

stdj∈N (i)

[
σ
(

h(l)
j W (l)

)]
,

2.4 graph neural network 21

where δ is a data-dependent normalisation factor. The Update step is the same
as equation 2.2.

2.4.3 Relation between GCN and spectral GNNs

The MPNN belongs to the class of spatial GNN where the convolution operation
is defined on the spatial domain as the aggregation over neighbourhoods of
each node. There exists another class of GNNs called spectral GNN where the
convolution operation is defined on the spectral domain as,

X ∗ g = F−1 (F (X)⊙F (g)) = U (U⊺X ⊙ U⊺g) ,

where ∗ is the convolution operation following classic signal processing (Mallat,
2009), X and g are the graph signal and the filter respectively. Parameterising
the convolution kernel U⊺g as θ, we have,

X ∗ g = U (U⊺X ⊙ θ) = U (θ⊙ U⊺X) = UgθU⊺X,

where gθ in the simplest form is a diagonal matrix with diagonal θ. Intuitively,
the procedure of spectral GNN can be understood as follow: the graph signal
is first transformed from the spatial domain to the spectral domain by graph
Fourier transform. It is filtered in the spectral domain with the filter gθ, and
then transformed back to the spatial domain by the inverse Fourier transform.

It is interesting to show the relation between GCN, one of the first spatial GNNs,
and the spectral GNNs. Indeed, let us write the message-passing procedure of the
GCN in a matrix form,

H(l+1) = σ
(

ÃH(l)W (l)
)

,

where Ã = D− 1
2 AD− 1

2 .2 We have

ÃH(l) = D− 1
2 AD− 1

2 H(l) = (I|V| − L̃)H(l) = U(I|V| − Λ)U⊺H(l),

with gθ = I|V|−Λ ∈ (−1, 1). Thus, GCN can be written in the form of the spectral
GNN and serves as a low-pass filter in the graph spectral domain (Balcilar et al.,
2021; NT and Maehara, 2019; Zhou et al., 2020).

2 Note that here A corresponds to the original graph with self-loops Aorigin + I.

2.5 software and libraries 22

2.5 software and libraries

The primary software and libraries that we use in this thesis are listed below:

• PyTorch (Paszke et al., 2019). A Python machine learning library that
provides strong Graphics Processing Unit (GPU)-accelerated tensor com-
putation and deep neural network implementations built on a tape-based
auto-grad system.

• PyTorch Geometric (Fey and Lenssen, 2019). A PyTorch-based library
designed to facilitate the implementation and training of Graph Neural
Networks.

• Deep Graph Library (Wang et al., 2019). Another library designed to facil-
itate the implementation and scalable training of Graph Neural Networks.
Compatible with PyTorch, TensorFlow (Abadi et al., 2015) and Apache
MXNet (Chen et al., 2015).

• NetworkX (Hagberg, Schult, and Swart, 2008). A Python library for the
creation, manipulation, and study of the structure, dynamics, and functions
of complex networks.

• Igraph (Csardi and Nepusz, 2006). A library for the creation and manipu-
lation and fast analysis of (large) graphs.

• Numpy (Harris et al., 2020). A Python library for scientific computing that
supports large, multi-dimensional arrays and matrices.

• Scikit-learn (Pedregosa et al., 2011). A Python machine learning library
that provides simple and efficient tools for predictive data analysis.

• Matplotlib (Hunter, 2007). A Python-based comprehensive library for the
creation of static, animated, and interactive visualisations.

2.6 overview of datasets

tu datasets TU Benchmark datasets (Morris et al., 2020) are mainly small and
medium-sized benchmark datasets for graph classification or regression.
In this thesis, we use

• datasets of small molecules including MUTAG, PTC-MR, NCI1 and
ZINC, where for each graph, the nodes represent atoms, the edges

2.6 overview of datasets 23

are chemical bonds, and they are annotated by the atom and bond
types. Additional chemical attributes are possibly available.

• datasets of proteins including D&D, ENZYMES and PROTEINS,
where for each graph, the nodes are secondary structure elements
and two nodes are connected if they are neighbours along the amino
acid sequence or one of the three nearest neighbours in space. The
node labels encode their type, i. e., helix, sheet or turn, and several
physical and chemical information (Borgwardt et al., 2005).

• datasets of social networks including IMDB-BINARY, IMDB-MULTI,
REDDIT-BINARY, REDDIT-MULTI-5K and REDDIT-MULTI-12K, where
the IMDB graphs are the ego-network of actor collaborations and the
REDDIT graphs are discussion threads where the nodes represent
users, and the edges correspond to the responses from one user to
the comments of the other.

ogb benchmark datasets OGB Benchmark datasets (Hu et al., 2020) is a
collection of large-scale and diverse datasets for graph classification or
regression, link prediction and node classification. In this thesis, we use

• dataset of the citation network between all Computer Science arXiv pa-
pers, ogbn-arxiv, where each node represents a paper, and a directed
edge is added between two papers if one cited the other. The nodes
are annotated by the average of word embeddings in the paper’s title
and abstract.

others Other than the two primary sources of benchmark datasets for graph
learning algorithms evaluation, we also use in this thesis,

• datasets of computer vision, including MNIST and CIFAR10, where
the images are transferred into graphs following Knyazev, Taylor,
and Amer (2019), with the nodes being super-pixels, and the edges
corresponding to their spatial proximity in the two-dimensional space.

• datasets of the citation networks including Cora, CiteSeer, PubMed
(Yang, Cohen, and Salakhutdinov, 2016) and an extended version of
Cora, CoraFull (Shchur et al., 2018).

• dataset of the co-author network, CS (Shchur et al., 2018), part of
the Microsoft Academic Graph, where the nodes represent authors
in the Computer Science area, and two nodes are connected if the
two authors co-authored a paper. The nodes are annotated by the
keywords of the author’s papers.

2.6 overview of datasets 24

• datasets of the co-purchase network, Photo, segment of the Amazon
co-purchase graph, where the nodes represent goods, and edges
indicate that the two goods are frequently bought together. The nodes
are annotated by the bag of words representation of product reviews.

The statistics of the datasets mentioned above are summarised in Table 2.1.
Note that “#Features” corresponds to the dimension of feature vectors if the
graph is attributed and the dimension of one-hot embeddings of the categorical
value if the graph is labelled.

2.6 overview of datasets 25

Ta
bl

e
2

.1
:S

ta
ti

st
ic

s
of

th
e

da
ta

se
ts

us
ed

in
ou

r
ex

pe
ri

m
en

ts

So
ur

ce
D

at
as

et
#G

ra
ph

s
#N

od
es

(a
vg

.)
#E

dg
es

(a
vg

.)
#F

ea
tu

re
s

#c
la

ss
es

Ta
sk

Sm
al

lm
ol

ec
ul

es
M

U
TA

G
18

8
17

.9
3

19
.7

9
7

2

G
ra

ph
C

la
ss

ifi
ca

ti
on

PT
C

-M
R

34
4

25
.5

6
25

.9
6

19
2

N
C

I1
4,

11
0

29
.8

7
32

.3
0

37
2

Bi
oi

nf
or

m
at

ic
s

D
&

D
1,

17
8

28
4.

32
71

5.
66

82
2

EN
Z

Y
M

ES
60

0
32

.6
3

62
.1

4
3

6

PR
O

TE
IN

S
1,

11
3

39
.0

6
72

.8
2

4
2

So
ci

al
ne

tw
or

ks

IM
D

B-
BI

N
A

R
Y

1,
00

0
19

.7
7

96
.5

3
—

2

IM
D

B-
M

U
LT

I
1,

50
0

13
.0

0
65

.9
3

—
3

R
ED

D
IT

-B
IN

A
R

Y
2,

00
0

42
9.

61
49

7.
75

—
2

R
ED

D
IT

-M
U

LT
I-

5
K

4,
99

9
50

8.
50

59
4.

87
—

5

R
ED

D
IT

-M
U

LT
I-

1
2

K
11

,9
29

39
1.

40
45

6.
89

—
11

C
om

pu
te

r
vi

si
on

M
N

IS
T

70
00

0
70

.5
7

28
2.

27
—

10

C
IF

A
R

10
60

00
0

11
7.

63
47

0.
53

—
10

Sm
al

lm
ol

ec
ul

es
Z

IN
C

24
9,

45
6

23
.1

4
24

.9
1

28
—

G
ra

ph
R

eg
re

ss
io

n

C
it

at
io

n

C
O

R
A

1
2,

70
8

5,
27

8
1,

43
3

7

N
od

e
C

la
ss

ifi
ca

ti
on

C
IT

ES
EE

R
1

3,
32

7
4,

55
2

3,
70

3
6

PU
BM

ED
1

19
,7

17
44

,3
24

50
0

3

C
O

R
A

-F
ul

l
1

18
,7

03
62

,4
21

8,
71

0
67

og
bn

-a
rx

iv
1

16
9,

34
3

1,
16

6,
24

3
12

8
40

C
o-

au
th

or
C

S
1

18
,3

33
81

,8
94

6,
80

5
15

A
m

az
on

co
-p

ur
ch

as
e

Ph
ot

o
1

7,
48

7
11

9,
04

3
74

5
8

Part I

K E R N E L M E T H O D S

3
A VA L I D O P T I M A L A S S I G N M E N T K E R N E L

As an extension of kernel methods onto graphs, graph kernels were and remain
today a favourable approach in graph classification for tackling the graph
similarity and learning tasks at the same time. Most graph kernels are instances
of the R-convolution framework. These kernels decompose graphs into their
substructures and sum over all pairs of these substructures. A more promising
family of kernels are the assignment kernels, which compute a matching between
substructures of two objects such that the total similarity between the matched
substructures is maximum.

In this chapter, we present a kernel which compares graphs by computing an
assignment of their node embeddings. After embedding the vertices of all graphs
in a vector space, we construct a hierarchy of the vertices using a clustering
algorithm. Based on this hierarchy, we define a kernel that computes an optimal
assignment of the vertices of two graphs.

The proposed kernel is not limited to graph comparison, but can be applied
to measure the similarity between any objects represented as sets of vectors. The
proposed kernel is evaluated on several graph classification, link prediction and
text categorisation datasets. Our results indicate that the proposed approach
either outperforms or performs comparably to traditional and the state-of-the-art
techniques.

3.1 introduction

In recent years, graph-structured data has experienced an enormous growth
in many domains, ranging from social networks to bioinformatics. Several
problems of increasing interest call for the use of machine learning techniques
on graph-structured data. As a consequence, graph classification has emerged
as a very important task, and has found applications in several fields such as
in computational biology (Schölkopf, Tsuda, and Vert, 2004), in information
retrieval (Hermansson et al., 2013) and in cybersecurity (Gascon et al., 2013).

Although in the past few years several neural network models have been
generalised to work on graph-structured data (Kondor et al., 2018; Niepert,
Ahmed, and Kutzkov, 2016; Zhang et al., 2018), graph kernels are still the

27

3.1 introduction 28

dominant approach for the classification of small and medium-sized graph
datasets.

A graph kernel is a symmetric, positive semi-definite function on the set
of graphs G. Have we defined such a function k, it is known that there exists
a map ϕ : G → H from the graph space into a Hilbert space H such that
k(G,G ′) = ⟨ϕ(G), ϕ(G ′)⟩H for all G,G ′ ∈ G. Hence, a graph kernel k implicitly
computes the inner product between the representations of the input graphs
in the Hilbert space H, and allow kernel classifiers such as Support Vector
Machine (SVM) to work directly on graphs.

The majority of graph kernels are instances of the R-convolution framework
(Haussler, 1999). These kernels decompose each graph into a set of substructures
and compute the similarity of two graphs by comparing each possible pair
of these substructures. Different types of substructures give rise to different
kernels. Hence, there are kernels that compare graphs based on shortest paths
(Borgwardt and Kriegel, 2005), subtrees (Ramon and Gärtner, 2003) or graphlets
(Shervashidze et al., 2009), just to name a few.

A more promising family of kernels are the assignment kernels. In general,
these kernels compute a matching between substructures of one object and
substructures of a second object such that the overall similarity of the two
objects is maximised. Such a matching can reveal structural correspondences
between the two objects. Furthermore, the emerging kernel matrices do not
suffer from the diagonal dominance problem (Yanardag and Vishwanathan,
2015). Unfortunately, the assignment functions are not in general positive semi-
definite which complicates their use in kernel methods. For example, an optimal
assignment kernel that was proposed in the early days of graph kernels to
compute a correspondence between the atoms of molecules (Fröhlich et al., 2005),
was later proven not to always be positive semi-definite (Vert, 2008). Despite
the difficulty of defining valid assignment kernels, there are some assignment
methods that respect the constraint of positive semi-definiteness, such as a
method that capitalises on the well-known pyramid match kernel to match
the node embeddings of graphs (Nikolentzos, Meladianos, and Vazirgiannis,
2017). More importantly, it was recently shown that there exists a class of base
kernels used to compare substructures that guarantees positive semi-definite
optimal assignment kernels (Kriege, Giscard, and Wilson, 2016). While the above
work paves the way for breaking away from the R-convolution framework and
for designing new kernels based on optimal assignments, to the best of our
knowledge, no subsequent papers have considered this problem.

3.2 proposed kernel 29

In this work, we design an assignment kernel between sets of vectors. We cap-
italise on the work of Kriege, Giscard, and Wilson (2016), and we propose a base
kernel for comparing vectors which approximates the linear kernel. In contrast
to the linear kernel, the proposed base kernel guarantees positive semi-definite
assignment kernels. The base kernel is obtained from a hierarchical partition of
the input space allowing the optimal assignment to be computed in linear time
by histogram intersection. We use the proposed kernel to compare graphs and
textual documents by comparing their parts (i. e., their node embeddings and
word embeddings respectively). We evaluate the proposed approach on several
datasets from graph classification, link prediction and text categorisation.

Our main contributions are summarised as follows:

• We take as starting point, the theory of valid optimal assignment kernels
developed by Kriege, Giscard, and Wilson (2016), and we propose a kernel
that computes a correspondence between two sets of vectors.

• We demonstrate the utility of the proposed kernel in concrete applica-
tions, namely, in the tasks of graph classification, link prediction and text
categorisation.

• We show that our proposed kernel is very competitive comparing with
several state-of-the-art graph kernels.

The rest of this paper is organised as follows. Section 3.2 provides a detailed
description of the proposed method that computes an optimal assignment of sets
of embeddings. Section 3.3 evaluates the proposed framework on several stan-
dard datasets from graph classification, link prediction and text categorisation.
Finally, Section 3.4 concludes.

3.2 proposed kernel

In this section, we first present the set of vectors representation for graphs
and how the nodes of the graphs are embedded in the vector space. We then
introduce the notion and theory of valid optimal assignment kernels. We finally
present the our proposed approach for computing an optimal correspondence
between set of vectors (graphs).

3.2 proposed kernel 30

3.2.1 Preliminaries

3.2.1.1 Graph as Bag of Vectors

Bag of words is a common term in Natural Language Processing (NLP), which
refers to representing a document as a set of its containing words, ignoring their
order. Though one may expect that word order could play an important role in
linguistics, this method works surprisingly well in some specific tasks of NLP.

This notion can be naturally generalised to the case of graphs, where each
graph is represented as a set of the nodes. In fact, it might be more natural than
the notion in linguistics as there is no canonical ordering of the nodes in a graph.
As each node is represented by a vector in the Euclidean space, a graph will
finally become a bag of vectors. The essential part of this method is the vector
representation of the vertices, commonly referred to as Node Embedding, which
corresponds to a mapping that maps the nodes into a low-dimensional vector
space while keeping some invariant properties on graphs.

definition 3 .1 (bag of vectors). A graph G = (V, E) can be represented
as a set of vectors {x1, x2, . . . , x|V|} with xi ∈ Rd and xi = f (vi), ∀i, where

f : V 7→ Rd and dV(vi, vj) = dRd(f (vi), f (vj)),

dV, dRd are similarity measures defined respectively on V and Rd.

There are various node embedding methods, differing from each other in
terms of the invariant properties that they keep. Most of these methods can be
unified under a general framework of matrix factorisation (Qiu et al., 2018). In
this work, we mainly use a simple embedding method based on eigenvector
decomposition of graph adjacency matrix. However, it should be noted that
the proposed framework is flexible with the different embedding methods
and indeed they have an impact on the expressive ability of the kernel, as
demonstrated in Section 3.3.2.

3.2.1.2 Embeds graph by Adjacency Matrix Decomposition

Given a graph G = (V, E), an embedding algorithm projects the vertices of G
into a vector space. Embedding graphs into low-dimensional vector spaces has
proven to be valuable in many tasks such as in node classification and in link
prediction. In case these embeddings are consistent across different graphs, it
can also be useful for graph comparison.

3.2 proposed kernel 31

In this work, we generate embeddings for the vertices of a graph G = (V, E)

using the eigenvectors of its adjacency matrix A. Given the eigenvalue decompo-
sition of the adjacency matrix A = UΛU⊺ , the ith row ui of U corresponds to the
embedding of vertex vi ∈ V. Since the signs of these eigenvectors are arbitrary,
we replace all their components by their absolute values. Specifically, we embed
all vertices in the d-dimensional vector space Rd using the eigenvectors of the d
largest in magnitude eigenvalues. In case of multiple graphs such as the task in
Section 3.3.1, we generate low-dimensional representations for vertices of each
graph and assume they reside in the same Rd space.

Instead of the adjacency matrix, we could have employed other matrices
derived from graphs such as the Laplacian matrix, or other more sophisticated
methods for generating embeddings (Donnat et al., 2018; Grover and Leskovec,
2016; Ribeiro, Saverese, and Figueiredo, 2017). Note that the operation of the
proposed approach remains the same regardless of the embedding algorithm.

3.2.2 Valid Optimal Assignment Kernel

3.2.2.1 Strong Kernels and Hierarchies

Let X, X′ be two sets containing d-dimensional vectors. In our setting, X and X′

are the bag of vectors representation of two graphs G and G ′. Note, however, that
the two sets are not limited to embeddings of vertices, they may contain feature
vectors extracted from any substructure of the two graphs. For simplicity, we
assume that the size of both sets is the same.

Let B(X, X′) denote the set of all bijections between the two sets. We are
interested in computing the overall similarity of the two sets by matching their
elements as follow:

KB(X, X′) = max
B∈B(X,X′)

∑
(x,x′)∈B

⟨x, x′⟩ (3.1)

A kernel (which we call base kernel) is employed to measure the similarity
between the elements of the two sets. In the above definition, we use the linear
kernel k(x, x′) = ⟨x, x′⟩ as our base kernel.

Unfortunately, the above function KB(X ,X ′) is not always a valid kernel as
we mentioned in Section 2.3.4. More specifically, Kriege, Giscard, and Wilson
(2016) show that KB(X, X′) can be a valid kernel if the base kernel k is strong.
They define a strong kernel as follow

3.2 proposed kernel 32

definition 3 .2 (strong kernel). A function k : X × X → R≥0 is called a
strong kernel if

k(x, y) ≥ min{k(x, z), k(z, y)}, ∀x, y, z ∈ X.

The authors also introduce another class of kernels that is derived from a
hierarchy on the set X ∪ X′. More specifically, let T be a rooted tree such that
the leaves of T are the elements of X ∪ X′. Let V(T) be the set of vertices of T.
Each inner vertex v in T corresponds to a subset of X ∪ X′ comprising all leaves
of the subtree rooted at v. Let w : V(T) → R≥0 be a weight function such that
w(v) ≥ w(p(v)) for all v in T where p(v) is the parent of vertex v. Then, the
tuple (T, w) defines a hierarchy. Let lca(u, v) be the lowest common ancestor
of vertices u and v, that is, the unique vertex with maximum depth that is an
ancestor of both u and v.

definition 3 .3 (hierarchy-induced kernel). Let H = (T, w) be a
hierarchy on X, then the function defined as k(x, y) = w(lca(x, y)) for all x, y in
X is the kernel on X induced by H.

The authors show that the above two classes of kernels are equivalent.

theorem 3 .2 .1 (Kriege , Giscard , and Wilson , 2016). A kernel k on X

is strong if and only if it is induced by a hierarchy on X.

Sketch of proof. We can prove “a hierarchy-induced kernel is a strong kernel”
by contradiction. Suppose a hierarchy-induced kernel is not strong, then there
exists at least three leaves x, y, z satisfy k(x, y) < min{k(x, z), k(z, y)}, i. e.,
w(lca(x, y)) < w(lca(x, z)) and w(lca(x, y)) < w(lca(z, y)). By definition of
a tree, there is a unique path from x to the root that contains lca(x, z) and
lca(x, y), and a unique path from y to the root that contains lca(z, y) and
lca(x, y). Since w(·) is a decreasing function along the path from leave to root,
we have lca(x, y) as the ancestor of both lca(x, z) and lca(z, y). Then we find
the contradictory as there exists two paths from z to root: z → lca(z, y) →
lca(x, y) → root and z → lca(x, z) → lca(x, y) → root.

We prove the inverse direction by construction. We can show that a hierarchy
can be constructed from a strong kernel by successively inserting element of X

into a tree. The idea is to insert the new element to the location closest to the the
existing element to which it is the most similar under the given strong kernel,
i. e., inserting a parent inner vertex to the tree so that the two nodes become
child nodes to this vertex.

3.2 proposed kernel 33

The relation between strong kernel and hierarchy-induced kernel can also be
demonstrated by the ultrametric.

definition 3 .4 (ultrametric). A metric space (X, d) is said to be ultrametric
if

d(x, y) ≤ max{d(x, z), d(z, y)}, ∀x, y, z ∈ X

theorem 3 .2 .2 (Ismagilov , 1997). Any ultrametric space admits an isometric
embedding in a Hilbert space.

In fact, for every ultrametric d on X, we can find a rooted tree T with leaves X

that satisfies the properties:

• d is the path length between leaves in T,

• the path lengths from a leaf to the root are all equal.

Theorem 3.2.2 tells us that for every ultrametric, there also exists an isometric
embedding in the Hilbert space, from which we have an associated kernel k and
the following relation,

d2(x, y) = d2
H(x, y) = ⟨ϕH(x)− ϕH(y), ϕH(x)− ϕH(y)⟩

= k(x, x) + k(y, y)− 2k(x, y).

Set w(a) := k(x, y) where a is a inner vertex of T and the lca of leaves x and
y, (T, w) is then a hierarchy and k is a (T, w)-induced kernel. k is also a strong
kernel by the property of ultrametric. Precisely, for every (x, y, z) in X, we have

d2(x, y) ≤ max{d2(x, z), d2(z, y)},

which is the same with

k(x, x) + k(y, y)− 2k(x, y) ≤ max{k(x, x) + k(z, z)− 2k(x, z),

k(z, z) + k(y, y)− 2k(z, y)}.

For the isometric embedding associated with the ultrametrix, we also have
k(x, x) = k(y, y) = k(z, z), see Ismagilov (1997, pp. 188). Thus, we obtain the
strong property

k(x, y) ≥ min{k(x, z), k(z, y)}.

3.2 proposed kernel 34

3.2.2.2 Kernel Construction

In the previous section, we learn that the design of a valid optimal assignment
kernel is related to deriving a hierarchy and a strong kernel. In this section, we
will propose our approach to find the hierarchy and using the hierarchy-induced
(strong) kernel to build a valid kernel that is an optimal assignment between
substructures of two graphs1.

from vectors to hierarchies Since we are interested in computing a
valid kernel that approximates the function defined in Equation 3.1, we design
a hierarchy-induced kernel which approximates the linear kernel.

By constructing a hierarchy on the set of node embeddings, we can derive a
strong kernel k and ensure that the emerging function Kk

B(X, X′) defined below
is a valid kernel:

Kk
B(X, X′) = max

B∈B(X,X′)
∑

(x,x′)∈B

k(x, x′) (3.2)

To build the hierarchy, we resort to clustering. By embedding the vertices of
all graphs into a common vector space and employing a clustering algorithm,
we can create the tree T and then, by defining a valid weight function w(·), a
strong kernel on the set of embeddings is directly produced.

Hierarchical clustering techniques, such as agglomerative clustering, are
particularly attractive for this task, since they represent the hierarchy of clusters
as a tree allowing us to directly generate T. Such methods, however, turn out to
be problematic when the number of input graphs and their sizes (i. e., number
of vertices) increase, since they require computing the similarities (i. e., inner
products) between all vertices of all graphs. In such cases, hierarchical clustering
techniques are not feasible. Instead, we generate the tree of the hierarchy by
repeatedly performing a variant of k-means clustering which uses the inner
product as a similarity measure, and which is known as spherical k-means
(Dhillon and Modha, 2001).

Given a set of embeddings which are encoded as unit-norm vectors x ∈ Rd,
and a parameter k ∈ N, spherical k-means maximises the following function:

Q({Ci}k
i=1) =

k

∑
i=1

∑
x∈Ci

⟨x, ci⟩

1 The substructures correspond to the vertices in our case

3.2 proposed kernel 35

where C1, . . . , Ck and c1, . . . , ck are the k clusters and their normalised centroids,
respectively.

Spherical k-means scales well to large number of samples, however, it con-
verges to a local optimum and not necessarily to the global optimum. To generate
the tree T, we initially perform spherical k-means on the set of embeddings from
all graphs and we cluster them into k top-level groups. Then, the clustering is
repeated recursively on each of these clusters until each cluster contains a single
vertex. The number of levels L of the emerging tree T is equal to the length of
its longest path.

If the initial corpus of embeddings is very large, for computational purposes,
we may not execute the algorithm up to the point where each cluster contains a
single vertex, but we may terminate it earlier. Each cluster of vertices corresponds
to an inner vertex in the generated hierarchy. For example, the set of all data
points corresponds to the root r of the tree T, while the k clusters that are
produced from those data points correspond to the k children of the root vertex
r. The clustering process, and hence, the structure of the emerging hierarchy
depends on two parameters:

• the branching factor k,

• the number of levels in the tree L.

The former is a trade-off parameter between the the breadth and the depth of
the tree T, while the latter can reduce the number of inner vertices.

Let T be the tree that emerges after performing the clustering process de-
scribed above. Since a hierarchy H is a tuple (T, w), besides T, it is necessary to
define a weight function w : V(T) → R≥0 such that w(v) ≥ w(p(v)) for all v in
T where p(v) is the parent of vertex v.

We set the weights of all inner vertices of T equal to the minimum of the
inner product between the data points of the cluster and its normalised centroid.
Therefore, given, an inner node v that corresponds to a cluster C of data points,
its weight is set equal to:

w(v) = min
x∈C

⟨x, c⟩

where c is the normalised centroid of the cluster. The weight of the leaf vertices
is set equal to 1, that is, if v is a leaf, then w(v) = 1.

Let S be a set of data points and µ their mean vector. Let also C1, . . . , Ck and
c1, . . . , ck be k clusters and their centroids, respectively, that we obtain after
running the spherical k-means clustering algorithm described above on the set
S. If v is the vertex of T that corresponds to S and u1, . . . , uk the vertices that

3.2 proposed kernel 36

Figure 3.1: An illustration based on real data for the algorithm. The red points represent
embeddings in the vector space and they are recursively separated by the
dash lines. Blue points are the centroids.

correspond to C1, . . . , Ck, then, in order for w(v) ≤ w(u) to hold, it is necessary
that

min
x∈S

⟨x, µ⟩ ≤ min
x∈Ci

⟨x, ci⟩, ∀i = 1, . . . , k.

Although this holds in almost all practical settings, there are some extreme cases
where it may not hold. In such cases, we set the weight of the child equal to that
of its parent. Note that the weight of all inner vertices of the tree T is at most
equal to 1. The equality holds only if the data points of the cluster have equal
coordinates. Hence, if v is a leaf and u an inner vertex, it holds w(v) = 1 ≥ w(u),
and the emerging hierarchy H = (T, w) is valid.

Algorithm 1 shows the pseudo code for constructing the hierarchy with spher-
ical k-means. An illustration of this procedure based on real data is also given
in Figure 3.1. Note that the idea of recursively dividing the embedding space
is reminiscent of the Pyramid Matching Kernel (Nikolentzos, Meladianos, and
Vazirgiannis, 2017) where the authors divide the space with uniform regular
grids, which would fail to capture non-uniform distribution of graph embed-
dings, as shown by the irregular cluster of embeddings on the top-left corner of
this illustration.

feature map With the built hierarchy, we next derive the explicit feature
map of the strong kernel k that is induced by the hierarchy H = (T, w) defined
above. Let ω : V(T) → R≥0 be an additive weight function defined as ω(v) =
w(v) − w(p(v)) and ω(r) = w(r) for the root r. Note that the property of a
hierarchy assures that the values of the ω(·) function are non-negative. For

3.2 proposed kernel 37

Algorithm 1: Hierarchy Construction by Spherical k-means
Data: A set of vectors X = {xi}, branching factor k, tree max depth L.
Result: Constructed hierarchy H = (T, w).
Initialisation: create cluster set S0 = ∅, create tree T with root r and set
weight w(r) = minx∈X⟨x, µ⟩, where µ is the mean vector of X;

while i ≤ L do
if i = 0 then

Apply spherical k-means on X;
for j = 1, . . . , k do

Add {C0
j , c0

j } to S0;
Add vertex c0

j to T and attach to r;
Set w(c0

j) = minx∈C0
j
⟨x, c0

j ⟩;
end
Create cluster set S1 = ∅;

else
for every (CL−1

i , cL−1
i) ∈ SL−1 do

Apply Spherical k-means on CL−1
i ;

for j = 1, . . . , k do
Add {CL−1

i,j , cL−1
i,j } to SL;

Add vertex cL
i,j to T and attach to cL−1

i ;

Set w(cL
i,j) = minx∈CL

i,j
⟨x, cL−1

i,j ⟩;
end

end
end

end

v ∈ V(T) let P(v) ⊆ V(T) denote the vertices on the path from v to the root
r. The strong kernel k induced by the hierarchy H can be defined using the
mapping ϕ : X → Rn, where n = |V(T)| and the components indexed by
v ∈ V(T) are

ϕ(v) =

√
ω(u) if u ∈ P(v),

0 otherwise.
(3.3)

proposition 3 .2 .3. ϕ(·) defined in equation 3.3 is a feature map corresponding
to the strong kernel k : X × X 7→ R, such that:

k(x, y) = ⟨ϕ(x), ϕ(y)⟩Rn ∀x, y ∈ X

3.2 proposed kernel 38

r

u1 u2 u3

u5

u7 u8u6

u4

u9 u10 u11

: inner vertices

: G1

: G2

: G3

.2; .2

.5; .3 .6; .4 .4; .2

.7; .2

1; .3 1; .4 1; .4 1; .2

.8; .4

1; .2 1; .2

r u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11
φ(u6)

√
.2
√
.3 0 0

√
.2 0

√
.3 0 0 0 0 0

φ(u11)
√
.2 0 0

√
.2 0

√
.4 0 0 0 0 0

√
.4

φ(u7)
√
.2 0

√
.4 0 0 0 0

√
.4 0 0 0 0

φ(u10)
√
.2 0 0

√
.2 0

√
.4 0 0 0 0

√
.4 0

φ(u8)
√
.2 0

√
.4 0 0 0 0 0

√
.4 0 0 0

φ(u9)
√
.2 0 0

√
.2 0

√
.4 0 0 0

√
.4 0 0

Figure 3.2: Left: An example of a hierarchy where each vertex v is annotated by its
weights w(v) : ω(v) and its colour indicates the graph to which it belongs;
Right: the derived feature vectors.

Proof. By definition,

k(x, y) = w(lca(x, y)) = ∑
v∈P(x)∩P(y)

ω(v)

From equation 3.3, we have also

[ϕ(x)]v[ϕ(y)]v =

ω(v) if v ∈ P(x) ∩ P(y),

0 otherwise.

Thus ϕ(x)⊺ϕ(y) = ∑v∈P(x)∩P(y) ω(v) = k(x, y).

Being the mapping of vertices to the Hilbert space, ϕ(·) can also be seen as an
embedding method for nodes, which could be useful for some tasks, e. g., Link
Prediction, which we will elaborate in Section 3.2.3.2.

Figure 3.2 shows an example of a valid hierarchy and the derived feature
vectors.

So far, we have assumed that the embeddings are unit vectors with non-
negative components. When dealing with such kind of vectors, there is a close
relationship between Euclidean distances and inner products.

lemma 3 .2 .4. Let x, y, z be three non-negative valued unit vectors, x, y, z ∈ Rd.
Then, it holds that

∥x − y∥2 ≥ ∥x − z∥2 if and only if ⟨x, y⟩ ≤ ⟨x, z⟩.

3.2 proposed kernel 39

Proof. For a unit vector x it holds that ∥x∥2 =
√
⟨x, x⟩ = 1 and therefore,

⟨x, x⟩ = 1. The Euclidean distance between two unit vectors x and y is defined
as

∥x − y∥2 =
√
⟨x, x⟩ − 2⟨x, y⟩+ ⟨y, y⟩

=
√

2(1 − ⟨x, y⟩).

Then, if we know that z is closer to x than y to x, we have:

∥x − y∥2 ≥ ∥x − z∥2

⇔
√

2
(
1 − ⟨x, y⟩

)
≥
√

2
(
1 − ⟨x, z⟩

)

⇔ 2
(
1 − ⟨x, y⟩

)
≥ 2

(
1 − ⟨x, z⟩

)

⇔ ⟨x, y⟩ ≤ ⟨x, z⟩.

Hence, for unit vectors, the squared Euclidean distance is inversely propor-
tional to the inner product.

We next give a lower bound on the inner product between the data points of
a cluster.

proposition 3 .2 .5. Let C be the set of points of a cluster and c its centroid. Let
also x, y be any two points of C. Then, it holds that

⟨x, y⟩ ≥ 4 min
z∈C

⟨z, c⟩ − 3.

Proof. From Lemma 3.2.4, it is clear that the lowest inner product between the
data points of a cluster is the one between those whose distance is maximum.
Let v, w be these two data points. Let also u be the data point whose distance
from the centroid of the cluster c is maximum,

u = arg max
z∈C

∥z − c∥2 = arg min
z∈C

⟨z, c⟩,

and let d∗ be that distance. Then,

∥u − c∥2 =
√

2
(
1 − ⟨u, c⟩

)
= d∗.

3.2 proposed kernel 40

Note that this data point is not necessarily one of the two most distant data
points v and w. Clearly, the distance between v and w will be at most 2d∗. Then,
for any two points x, y ∈ C,

∥x − y∥2 =
√

2
(
1 − ⟨x, y⟩

)
≤ ∥v − w∥2

≤ 2d∗

= 2
√

2
(
1 − ⟨u, c⟩

)
.

Therefore,
√

2
(
1 − ⟨x, y⟩

)
≤ 2

√
2
(
1 − ⟨u, c⟩

)

⇔ 2
(
1 − ⟨x, y⟩

)
≤ 8

(
1 − ⟨u, c⟩

)

⇔ ⟨x, y⟩ ≥ 4⟨u, c⟩ − 3.

The above bound is useful especially for clusters that appear at the low levels
of the hierarchy. For such clusters that contain a small number of vertices and
the pairwise inner products of all their points are very high, the bound becomes
tight. Hence, for data points that are sufficiently close to each other and appear
together in the same cluster, we can accurately estimate the real values of the
inner products. Since we are interested in matching highly similar data points, in
cases where such pairs of data points exist, the proposed kernel can approximate
accurately the function shown in equation 3.1, and remain at the same time
positive semi-definite.

kernel computation Let H = (T, w) be a hierarchy on the set of the
embeddings of all graphs X. The hierarchy H induces a strong kernel k with
feature mapping ϕ(·). The kernel Kk

B defined in equation 3.2 can be computed
in linear in the number of vertices of the tree T time by histogram intersection.

definition 3 .5 (histogram). The histogram of a graph with set of vertices X

generated by the feature mapping ϕ(·) is

HX = ∑
x∈X

ϕ(x)⊺ϕ(x).

An illustration is given in Figure 3.3.

3.2 proposed kernel 41

r u1 u2 u3 u4 u5
0

0.2

0.4

0.6

Figure 3.3: Histograms of graph G1, G2, G3 corresponding to the feature mapping in
Figure 3.2.

theorem 3 .2 .6 (Kriege , Giscard, and Wilson, 2016). Given the hi-
erarchy H = (T, w), two graphs G, G ′ and their histograms HX, HX′ computed as
above, we define the histogram intersection kernel as,

K(G,G ′) =
|V(T)|
∑
i=1

min
(
[HX]i, [HX′]i

)
.

Then we have,
K(G,G ′) = Kk

B(X, X′)

Proof. As Kk
B(X, X′) = maxB∈B(X,X′) ∑(x,x′)∈B k(x, x′) and k(·, ·) is a strong ker-

nel, we can rewritten the equation as,

Kk
B(X, X′) = max

B∈B(X,X′)
∑

(x,x′)∈B

∑
v∈P(x)∩P(x′)

ω(v) = max
B∈B(X,X′)

∑
v∈V(T)

cB
v ω(v).

where cB
v is the times of repetition of tree node v in the assignment B.

We have also histogram intersection kernel as,

KH(X, X′) =
|V(T)|
∑
i=1

min
(
[HX]i, [HX′]i

)
= ∑

v∈V(T)
min

(
|Xv|, |X′

v|
)
ω(v).

Denote cv = min
(
|Xv|, |X′

v|
)
. As cB

v counts only when v is common ancestor
of x and x′ (and for all x ∈ X, x′ ∈ X′ only counted once), while cv counts
when v is an ancestor of x or x′, we have naturally cB

v ≤ cv, ∀B ∈ B. Thus the
histogram intersection kernel is the upper bound of the optimal assignment

3.2 proposed kernel 42

kernel defined in equation 3.2 and the upper bound is reached when we have
the optimal assignment B.

The histogram intersection kernel is known to be a valid kernel on Rn (Barla,
Odone, and Verri, 2003; Swain and Ballard, 1991). Hence, the proposed optimal
assignment kernel is also a valid kernel. Its complexity depends on the size
of the tree T, which, as mentioned above, depends on the L parameter. Thus,
by setting L to small values, we can reduce the number of vertices of T, and
therefore, the complexity of the kernel.

More concretely, given a pair of graphs G,G ′ ∈ G, let X, X′ ⊆ X be their
sets of vertex embeddings and HX and HX′ their histograms. The size of these
histograms is equal to the number of vertices of the tree T (denoted by n), and
are generated as follows for each graph: each embedding x ∈ X corresponds to
a leaf v of the tree T and there is a single path from the root r to that leaf. Let Px

denote the set of vertices in that path. For each embedding of the graph and for
each vertex u ∈ Px, we increase the value of the component of HX corresponding
to vertex u by ω(u). Then, to compute the kernel between the two graphs, we
have,

K(G,G ′) =
n

∑
i=1

min
(
[HX]i, [HX′]i

)
.

By Theorem 3.2.6, this kernel is the optimal assignment kernel Kk
B(X, X′). In

what follows, we denote the kernel described above by E-OA.
Besides E-OA, we also computed a variant of it, by designing an alternative

hierarchy H′ = (T′, w′). Specifically, to create the tree T′, we performed k-
means on the unnormalised embeddings (instead of spherical k-means on the
normalised embeddings). We defined the weighting function w′(·) implicitly by
directly defining an ω′(·) function.

Regarding the ω′ value of the root r, we set it equal to 1. For each vertex
v ∈ V(T′), we directly set ω′(v) = d(v,r)−1

d(v,r) where d(v, r) is the length of the path
between the root r and vertex v. Hence, ω′(·) weights more vertices appearing
lower in the hierarchy than those appearing higher. We denote this variant of
the proposed kernel by E-OA-SP.

E-OA-SP seems naive compared to E-OA, since it does not take into account
the true similarity between matched embeddings. For example, given two pairs
of matched embeddings where the lowest common ancestor of both pairs is
at the same level of the hierarchy H′, the kernel values of the two pairs are
considered to be equal to each other regardless of their true similarity.

3.2 proposed kernel 43

3.2.3 Extensions

3.2.3.1 Text Categorisation

Our approach is not limited to the graphs. It is straightforward to apply it to
any case where we need to deal with a set of vectors, e. g., in text mining, we
can represent the document as a set of words (vectors). Efficiency of our method
in this task will be demonstrated in Section 3.3.3.

3.2.3.2 Link Prediction

As stated in Section 2.2.2, the Link Prediction problem is that given an observed
network, we want to predict the likelihood of the existence of potential links
between two nodes. It has different concrete meanings in different scenarios: in
Social Networks, we predict the future association between two nodes (evolution
of network); in Biology, we infer links that are likely to exist, but are missing
in the observation (invisible) due to certain constraints, e. g., observation noise,
resolution of the equipments, etc.

Most common method to tackle this problem is by heuristics, based on the
hypothesis that if two nodes share neighbourhood with similar properties, they
are likely to be connected. Here, we focused on two heuristics:

• Adamic-Adar Index. L(u, v) = ∑w∈N (u)∩N (v)
1

log |N (w)|

• Jaccard Index. L(u, v) = |N (u)∩N (v)|
|N (u)∪N (v)|

where N (·) denotes the neighbourhood of the node.
Grover and Leskovec (2016) propose that this problem could be formulated

as a supervised problem, that given an observed network, we could use the
features of existing edges as the input to train a model and then use the model to
predict the existence (or nonexistence) of potential links. The feature of an edge
can be represented by a combination of its two ends. In Grover and Leskovec
(2016), they propose that

f (e) = xv ⊙ xw ∀v, w ∈ V, e = (v, w) ∈ E.

where x is the vertex embedding, ⊙ is the Hadamard product and f (e) is the
feature of edge e (or edge embedding).

Seeing the feature map ϕ(·) of our approach as a new type of node embed-
ding, it is also useful in Link Prediction problems. With the hierarchy H = (T, w)

3.3 experiments and discussion 44

derived from the original embeddings {x}, one may naturally think of repre-
senting an edge by the path between its two ends in the tree T. This intuition
can be unified with Grover and Leskovec (2016)’s framework as:

proposition 3 .2 .7. Define

f (e) =
(
ϕ(v)⊙ ϕ(v)

)
⊕
(
ϕ(w)⊙ ϕ(w)

)
∀v, w ∈ V, e = (v, w) ∈ E,

where ϕ(·) is the vertex embedding induced by the feature map in Section 3.2.2.2, ⊕
is the exclusive dis-junction operator (XOR). Then f (e) can be written as

f (e = (v, w)) =

ω(u) if u ∈ P(v) ∩ P(w),

0 otherwise.

which is the path between a and b in tree T.

We demonstrate empirically in Section 3.3.2 that f (e) is also an expressive
representation of edges in Link Prediction problem. The common evaluation
procedure is that with a given network, we mask a certain percentage of its
edges, use edges in residual network and a set of randomly-sampled non-edges2

as training data, and evaluate by the performance of the predictive model on
the existence of previously masked edges. Details can be found in Section 3.3.2.

3.3 experiments and discussion

In this section, we empirically evaluate our proposed kernel on real-world data,
of three different tasks: graph classification, network link prediction and text
categorisation, and compare with several baseline methods.

3.3.1 Graph Classification

3.3.1.1 Datasets

We evaluate the proposed framework on 10 publicly available graph classifi-
cation datasets from the TU benchmark, including 5 bioinformatics datasets:
MUTAG, ENZYMES, NCI1, PTC-MR and D&D, as well as 5 social network
datasets: IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, REDDIT-MULTI-5K
and REDDIT-MULTI-12K.

2 They serve as negative samples, usually the same number with the existing edges

3.3 experiments and discussion 45

Note that the bioinformatics datasets come with vertex labels, however, we do
not take these labels into account in our experimental evaluation. The proposed
approach can be easily modified to account for such labels by creating a separate
histogram for vertices sharing each label, and computing a different kernel for
each type of vertices. Then, the overall kernel can be obtained as the sum of the
separate kernels. The summary of statistics of the 10 datasets can be found in
Table 2.1.

3.3.1.2 Experiment Setup

We compare the proposed kernel against several state-of-the-art graph kernels.
More specifically, our baseline competitors are the graphlet kernel (GL) (Sher-
vashidze et al., 2009), the shortest path kernel (SP) (Borgwardt and Kriegel,
2005), the Weisfeiler-Lehman subtree kernel (WL) Shervashidze et al., 2011,
the Weisfeiler-Lehman optimal assignment kernel (WL-OA) Kriege, Giscard,
and Wilson, 2016, and the pyramid match graph kernel (PM) (Nikolentzos,
Meladianos, and Vazirgiannis, 2017).

It should be mentioned that the proposed kernel is very related to the pyramid
match graph kernel. However, instead of partitioning the feature space into
uniformly-shaped regions, the proposed kernel uses an adaptive grid whose
boundaries depend on the distribution of the input data (i. e., node embeddings),
allowing it to remain accurate even in the case of high-dimensional data.

To perform graph classification, we employ the LIBSVM implementation of
the C-SVM classifier (Chang and Lin, 2011) and perform 10-fold cross-validation.
The whole process was repeated 10 times with random fold assignments for
each dataset and each kernel. Within each fold all necessary parameters, such
as the parameter C of the SVM and any parameters of the kernels, were selected
by cross-validation based on the training set.

We chose parameters for the graph kernels as follows. For the Weisfeiler-
Lehman subtree kernel and for the Weisfeiler-Lehman optimal assignment
kernel, we chose the number of iterations from h = {4, 5, 6, 7}. For the pyramid
match graph kernel, the dimensionality of the embeddings was chosen from
d = {4, 6, 8, 10} and the number of levels was selected from L = {3, 4, 5, 6}.
Note that the Weisfeiler-Lehman kernels assume node-labelled graphs. Since
the graphs contained in our datasets are either unlabelled or we ignore the
node labels, we set the label of each vertex equal to its degree. The graphlet
kernel that we implemented samples 500 graphlets of size up to 6 from each
graph, while the shortest path kernel is a Dirac kernel that counts shortest
paths of equal length. As regards the proposed kernel, the dimensionality of

3.3 experiments and discussion 46

the embeddings was chosen from d = {4, 6, 8, 10}, the branching factor k of
the clustering procedure was chosen from k = {2, 5, 10, 20}, while we did not
restrict the depth of the generated trees (i. e., using parameter L). The proposed
kernel was implemented in Python based on Scikit-learn (Pedregosa et al., 2011).

3.3.1.3 Results

Table 3.1 illustrates average prediction accuracy and standard deviations. We
observe that the proposed assignment kernels that compute a correspondence
between node embeddings outperform the baselines on 4 out of the 10 datasets,
while they provide the second or third best accuracy on the rest of the datasets.
The most successful kernel is WL-OA which performs best on 5 of the 10
datasets, Furthermore, on 3 of them it outperforms the proposed kernels with
quite wide margins (on the other 2, the proposed kernels are the second best).
Note, however, that we could have combined the proposed kernels with the WL
relabelling procedure to also improve their performance.

On most datasets, GL and SP fail to yield accuracy comparable to those of
the optimal assignment kernels. This indicates that optimal assignment kernels
better capture the similarity between graphs than R-convolution kernels in the
considered classification tasks.

As regards the two variants of the proposed kernel, quite surprisingly, E-OA-
SP outperforms E-OA on most datasets. One possible explanation for this is
that some useful information about the structure of the graph is lost due to the
normalisation of the embeddings.

3.3.2 Link Prediction

3.3.2.1 Datasets

The performance of our proposed kernel on the link prediction task is evaluated
on 8 real-world network datasets, same as in Zhang and Chen (2017). They
are USAir, NS, PB, Yeast, Celegans, Power, Router, and E.coli. USAir, Power
and Router are real networks: USAir is the US Air lines network; Power is
the electrical grid network in western US and Router is a router-level Internet
network. NS and PB are social networks with NS being the collaboration net-
work of researchers who publish papers on network science and PB being a
network of political blogs in the US. The rest are biological networks: Yeast is
the protein-protein interaction network in yeast, Celegans is the neural network
of Caenorhabditis elegans and E.coli is the pairwise reaction network of metabo-

3.3 experiments and discussion 47

Ta
bl

e
3
.1

:1
0

-f
ol

d
cr

os
s

va
lid

at
io

n
ac

cu
ra

cy
-

m
ea

n
(±

st
an

da
rd

de
vi

at
io

n)
-

of
th

e
gr

ap
hl

et
ke

rn
el

(G
L)

,s
ho

rt
es

tp
at

h
ke

rn
el

(S
P)

,W
ei

sf
ei

le
r-

Le
hm

an
su

bt
re

e
ke

rn
el

(W
L)

,W
ei

sf
ei

le
r-

Le
hm

an
op

tim
al

as
si

gn
m

en
tk

er
ne

l(
W

L-
O

A
),

py
ra

m
id

m
at

ch
gr

ap
h

ke
rn

el
(P

M
),

an
d

th
e

tw
o

va
ri

an
ts

of
th

e
pr

op
os

ed
ke

rn
el

th
at

co
m

pu
te

a
co

rr
es

po
nd

en
ce

be
tw

ee
n

se
ts

of
em

be
dd

in
gs

(E
-O

A
-S

P
an

d
E-

O
A

)
on

th
e

10
gr

ap
h

cl
as

si
fic

at
io

n
da

ta
se

ts
.W

e
se

t
th

e
be

st
re

su
lt

s
to

bo
ld

an
d

un
de

rl
in

e
th

e
se

co
nd

be
st

on
es

.

M
et

ho
d

D
at

as
et

s
M

U
TA

G
EN

Z
Y

M
ES

N
C

I1
PT

C
-M

R
D

&
D

G
L

80
.2

9
(±

0.
70

)
22

.1
8

(±
0.

74
)

62
.5

2
(±

0.
14

)
55

.7
1

(±
0.

19
)

74
.5

5
(±

0.
36

)
SP

83
.7

9
(±

1.
09

)
28

.8
6

(±
0.

94
)

61
.8

5
(±

0.
11

)
56

.6
3

(±
0.

59
)

76
.0

2
(±

0.
37

)
W

L
80

.8
4

(±
1.

87
)

39
.9

8
(±

0.
98

)
78

.0
3

(±
0.

10
)

55
.9

9
(±

0.
84

)
74

.6
5

(±
0.

47
)

W
L-

O
A

81
.1

3
(±

2.
20

)
40

.3
6

(±
2.

30
)

81
.2

2
(±

0.
41

)
55

.4
7

(±
0.

98
)

76
.4

4
(±

0.
33

)
PM

82
.9

0
(±

1.
40

)
28

.6
5

(±
0.

72
)

66
.1

7
(±

0.
19

)
55

.4
4

(±
1.

12
)

75
.4

0
(±

0.
60

)

E-
O

A
-S

P
86

.6
4

(±
0.

64
)

34
.9

8
(±

1.
34

)
75

.2
5

(±
0.

32
)

59
.3

7
(±

1.
76

)
76

.1
5

(±
0.

22
)

E-
O

A
87

.6
4

(±
0.

73
)

33
.2

3
(±

0.
82

)
71

.4
1

(±
0.

43
)

56
.8

5
(±

1.
05

)
75

.6
9

(±
0.

21
)

M
et

ho
d

D
at

as
et

s
IM

D
B

IM
D

B
R

ED
D

IT
R

ED
D

IT
R

ED
D

IT
BI

N
A

R
Y

M
U

LT
I

BI
N

A
R

Y
M

U
LT

I-
5

K
M

U
LT

I-
1

2
K

G
L

60
.3

3
(±

0.
25

)
36

.5
3

(±
0.

93
)

76
.1

5
(±

0.
21

)
35

.4
1

(±
0.

12
)

22
.5

2
(±

0.
15

)
SP

60
.2

1
(±

0.
58

)
39

.6
2

(±
0.

57
)

83
.6

0
(±

0.
18

)
49

.1
3

(±
0.

14
)

35
.9

6
(±

0.
08

)
W

L
73

.3
6

(±
0.

38
)

51
.0

6
(±

0.
47

)
75

.1
2

(±
0.

44
)

49
.3

3
(±

0.
28

)
33

.6
8

(±
0.

10
)

W
L-

O
A

73
.6

1
(±

0.
60

)
50

.4
8

(±
0.

33
)

79
.3

4
(±

0.
43

)
53

.3
3

(±
0.

25
)

44
.1

2
(±

0.
13

)
PM

67
.9

1
(±

0.
98

)
45

.0
3

(±
0.

77
)

82
.3

5
(±

0.
52

)
43

.0
4

(±
0.

46
)

37
.9

8
(±

0.
16

)

E-
O

A
-S

P
69

.1
6

(±
0.

43
)

30
.4

7
(±

0.
92

)
90

.6
7

(±
0.

21
)

50
.6

8
(±

0.
31

)
44

.2
6

(±
0.

08
)

E-
O

A
64

.7
1

(±
0.

56
)

44
.5

8
(±

1.
16

)
87

.9
2

(±
0.

12
)

47
.9

4
(±

0.
47

)
42

.8
0

(±
0.

22
)

3.3 experiments and discussion 48

Table 3.2: Statistics of 8 real-word networks for Link Prediction

USAir NS PB Yeast Celegans Power Router E.coli

#Nodes 332 1, 589 1, 222 2, 375 297 4, 941 5, 022 1, 805
#Edges 2, 126 2, 742 16, 714 11, 693 2, 148 6, 594 6, 258 14, 660

lites in Escherichia coli. A summary of statistics of these datasets is shown in
Table 3.2.

3.3.2.2 Experiment Setup

We compared our proposed kernel with two commonly used heuristics that
we introduce in Section 3.2.3.2: Adamic-Adar index and Jaccard index. We also
compared with the framework proposed in Grover and Leskovec (2016) where
they use hadamard product over node embeddings to generate vector represen-
tation for edges. Three different node embedding methods were implemented
for this task in our experiments: wavelet2vec (a spectra-based algorithm named
GraphWave in Donnat et al. (2018)), node2vec (Grover and Leskovec, 2016), and
eigen-vectors of adjacency matrix. These methods are tested in the case that we
removed 10%, 50% and 75% edges of the original networks. Their performances
were then evaluated under a supervised learning setting, where we employed
logistic regression classifier and Area Under Curve (AUC) score as the metric.
Hyper-parameters of the logistic regression classifier were optimised using
10-fold cross validation, same with the graph classification task.

3.3.2.3 Results

Table 3.3 shows the results of our experiments. One general conclusion we can
make is that our framework, the EOA embedding combined with "xor" operator
performs better that the original node embedding combined with hadamard
product in term of AUC score, sometimes with up to 20% improvement (see
Router). It achieve the best results on most of the experiments, especially in
cases when we have little information (with 50%/75% edges removed), where
the embedding methods tend to perform more robustly. Among the embed-
dings methods, node2vec seems to have a relatively stable performance over
all datasets, potentially because it is a method that depend less on the one-hop
neighbourhood structure (adjacency matrix).

3.3 experiments and discussion 49

Ta
bl

e
3
.3

:A
U

C
sc

or
es

of
he

ur
is

tic
s

(A
da

m
ic

-a
da

r,
Ja

cc
ar

d)
an

d
no

de
em

be
dd

in
g

fr
am

ew
or

ks
(E

O
A

em
be

dd
in

g
co

m
bi

ne
d

w
ith

"x
or

",
or

ig
in

al
em

be
dd

in
g

w
ith

ha
da

m
ar

d
pr

od
uc

t)
fo

r
Li

nk
Pr

ed
ic

tio
n

w
ith

di
ff

er
en

tl
ev

el
of

ed
ge

re
m

ov
al

on
8

re
al

w
or

ld
da

ta
se

ts
.T

he
fo

rm
at

fo
llo

w
s

Ta
bl

e
3
.1

.

M
et

ho
d

D
at

as
et

s
U

SA
ir

Po
w

er
Ye

as
t

C
el

eg
an

s

1
0
%

5
0
%

7
5
%

1
0
%

5
0
%

7
5
%

1
0
%

5
0
%

7
5
%

1
0
%

5
0
%

7
5
%

A
da

m
ic

-a
da

r
97

.2
2

91
.1

4
71

.4
1

62
.2

3
60

.5
6

60
.4

0
91

.1
5

84
.4

4
63

.8
9

84
.2

5
74

.4
4

59
.3

2

Ja
cc

ar
d

92
.8

4
86

.0
0

69
.8

8
62

.2
3

60
.5

6
60

.4
0

90
.9

3
84

.2
5

63
.8

4
76

.5
1

70
.8

1
58

.6
9

W
av

el
et

2
Ve

c
EO

A
-x

or
93

.0
5

90
.9

7
88

.6
1

58
.6

8
58

.5
5

59
.4

6
88

.5
5

86
.2

1
79

.3
5

74
.3

6
72

.6
4

70
.8

3

ha
da

m
ar

d
84

.1
8

82
.1

7
75

.4
5

59
.8

0
55

.6
7

55
.9

4
86

.9
3

84
.9

3
77

.2
4

62
.7

5
60

.7
2

56
.5

1

N
od

e2
Ve

c
EO

A
-x

or
95

.3
2

91
.0

2
85

.8
7

80
.7

5
74

.7
6

75
.0

2
95

.3
7

93
.2

0
86

.3
9

83
.4

0
79

.0
9

69
.5

8

ha
da

m
ar

d
88

.1
4

82
.5

1
68

.9
1

86
.7

4
81

.6
8

82
.1

0
94

.6
0

92
.8

2
86

.5
8

77
.3

9
73

.3
5

61
.9

5

A
dj

ac
en

cy
EO

A
-x

or
93

.0
0

91
.5

7
88

.0
5

81
.8

8
80

.1
5

80
.9

7
90

.8
4

88
.4

4
81

.3
7

75
.1

9
72

.7
4

69
.3

1

ha
da

m
ar

d
92

.3
7

89
.6

1
86

.7
2

64
.9

4
70

.9
6

69
.7

9
87

.9
2

86
.8

2
79

.8
3

76
.0

4
71

.9
2

67
.5

4

M
et

ho
d

D
at

as
et

s
PB

N
S

R
ou

te
r

Ec
ol

i

1
0
%

5
0
%

7
5
%

1
0
%

5
0
%

7
5
%

1
0
%

5
0
%

7
5
%

1
0
%

5
0
%

7
5
%

A
da

m
ic

-a
da

r
93

.3
6

87
.0

1
73

.8
7

99
.6

2
83

.5
3

73
.9

3
67

.1
0

52
.9

4
52

.9
7

96
.8

4
89

.5
3

78
.0

3

Ja
cc

ar
d

88
.4

6
83

.1
0

72
.3

2
99

.6
1

83
.5

3
73

.9
2

67
.0

2
52

.9
3

52
.9

6
81

.3
2

83
.2

8
75

.6
6

W
av

el
et

2
Ve

c
EO

A
-x

or
90

.8
9

90
.1

2
89

.3
4

93
.6

7
85

.6
2

86
.1

1
93

.3
8

92
.1

4
91

.4
7

94
.1

7
93

.1
1

91
.3

4

ha
da

m
ar

d
81

.2
2

81
.0

3
75

.7
5

88
.6

4
81

.4
9

78
.6

5
81

.3
7

71
.1

7
73

.6
3

90
.1

1
87

.6
3

82
.5

4

N
od

e2
Ve

c
EO

A
-x

or
91

.4
6

87
.8

9
84

.8
0

99
.6

3
97

.4
5

95
.5

1
96

.9
6

88
.7

8
88

.9
5

95
.5

2
93

.2
7

89
.4

4

ha
da

m
ar

d
84

.8
5

80
.1

7
75

.0
9

99
.3

4
98

.7
1

97
.9

3
92

.0
1

81
.9

5
81

.0
1

86
.2

1
79

.9
3

71
.0

1

A
dj

ac
en

cy
EO

A
-x

or
91

.0
7

89
.7

2
88

.4
9

91
.0

0
90

.0
2

87
.7

9
91

.8
9

76
.2

1
81

.0
5

94
.5

5
93

.1
4

90
.9

9

ha
da

m
ar

d
91

.2
5

89
.6

3
87

.6
7

75
.6

5
77

.0
8

67
.6

4
88

.3
5

63
.4

8
66

.6
3

93
.9

8
92

.3
7

88
.3

5

3.3 experiments and discussion 50

Table 3.4: Statistics of 5 real-word networks for text categorisation. CV stands for Cross
Validation.

BBCSport Subjectivity Polarity TREC Twitter

#Training examples 348 10, 000 10, 662 5, 452 3, 115
#Test examples 389 CV CV 500 CV
Vocabulary size 14, 340 21, 335 18, 777 9, 513 6, 266

#Classes 5 2 2 6 3

3.3.3 Text Categorisation

3.3.3.1 Datasets

To demonstrate the versatility of the proposed kernel to compare any type of
objects represented as sets of embeddings, we applied it to the text categorisation
problem. We evaluated the variants of the proposed kernel on five standard
datasets for text categorisation:

• BBCSport (Greene and Cunningham, 2006), which consists of sports news
articles from the BBC Sport website.

• Subjectivity (Pang and Lee, 2004), which consists of subjective sentences
gathered from the Rotten Tomatoes website and objective sentences gath-
ered from the Internet Movie Database.

• Polarity (Pang and Lee, 2004), which contains positive and negative snip-
pets acquired from the Rotten Tomatoes website.

• TREC (Li and Roth, 2002), which consists of a set of questions classified
into 6 different types.

• Twitter (Sanders, 2011), which contains a set of tweets labelled by its
sentiment.

A summary of statistics of the 5 text categorisation datasets can be found in
Table 3.4.

3.3.3.2 Experiment Setup

In this experiment, each document is represented as a set of word embeddings,
which are obtained from a publicly available pretrained model consisting of
300-dimensional vectors (Mikolov et al., 2013). Words that are not contained in
this model are initialised to random vectors. Besides pretrained vectors, we also
used randomly initialised vectors, denoted as “RAND-OA”.

3.3 experiments and discussion 51

Table 3.5: Classification accuracy of the 3 variants of the proposed kernel (using pre-
trained and randomly initialised embeddings), the bag-of-words representa-
tion with TF-IDF weights (BOW TF-IDF) and the centroid representation (CR)
on the 5 text categorisation datasets. The format follows Table 3.1.

Method

Datasets
BBCSport Subjectivity Polarity TREC Twitter

BOW TF-IDF 98.38 90.67 77.14 97.00 75.12

CR 99.59 90.90 77.79 96.60 72.65

RAND-OA 96.08 89.89 75.72 97.00 75.25

E-OA-SP 99.05 91.25 76.96 97.00 75.41

E-OA 99.45 91.92 77.87 97.80 76.34

We compare “RAND-OA” along with the other two pretrained vectors-based
variants against

bow tf-idf where each document is represented as a “Bag Of Words” vector
with the entry being 1 if and only if the corresponding word presents
in the document, otherwise 0. This vector is then weighted by the Term
Frequency–Inverse Document Frequency (TF-IDF) (Leskovec, Rajaraman,
and Ullman, 2014, pp. 8-9).

cr where each document is projected into the word embedding space as the
centroid of the point cloud that its words form, i. e., the mean vector of the
embeddings of a document’s terms.

To perform graph classification, both baselines are combined with a linear
SVM classifier.

3.3.3.3 Results

Table 3.5 illustrates the performance of the proposed kernel and the baselines
on the five datasets.

E-OA outperforms the other methods on all datasets except one (BBCSport)
where CR yields the best performance. In contrast to the graph classification
task, in this setting, E-OA outperforms E-OA-SP on all datasets. BOW TF-IDF
achieves very good accuracy on all datasets, considering that it does not utilise
word embeddings.

Our baseline kernel with all word embeddings randomly initialised (RAND-
OA) is generally outperformed by the two kernels that use pretrained embed-
dings. However, on the TREC and Twitter datasets, it performs comparably to the

3.4 chapter conclusion 52

rest of the methods. In general, we expected larger performance gains through
the use of pretrained vectors. Hence, our results suggest that the pretrained
embeddings may not consistently yield good results across all datasets.

3.4 chapter conclusion

In this work, we propose a kernel for comparing sets of vectors. The kernel
computes an optimal assignment between the elements of the sets. We applied
the kernel to the problem of graph comparison, where each graph is represented
as a set containing the embeddings of its vertices. After embedding the vertices
of all graphs in a vector space, we construct a hierarchy of them using clustering.
Based on this hierarchy, we define a kernel that computes an optimal assignment
of the vertices of two graphs. The proposed kernel can be applied to any problem
where instances are represented as sets of vectors.

The kernel is evaluated on standard graph classification, link prediction and
text categorisation datasets, where it shows a great performance with respect to
traditional and state-of-the-art techniques.

Part II

G R A P H N E U R A L N E T W O R K S

4
S H O W C A S E : T O P O L O G Y P R E D I C T I O N F O R D Y N A M I C
G R A P H S

Bringing the expressive power of deep learning into non-Euclidean data such
as graphs, GNNs have emerged in recent years as an effective tool for analysing
graph-structured data (Gilmer et al., 2017; Wu et al., 2021). In this chapter, we
demonstrate the power of GNNs over traditional methods on a long-existing
problem of topology prediction of dynamic graphs. Predicting the evolution of
dynamic graphs is a task of high significance in the area of graph mining as most
real-world networks are evolving over time. Despite its practical importance,
the task has not been explored in depth so far, mainly due to its challenging
nature. In this work, we propose a GNN-based model to tackle this problem.
Specifically, we use a MPNN along with a recurrent architecture to capture the
temporal evolution patterns of dynamic graphs. Then, we employ a generative
model which predicts the topology of the graph at the next (or future) time
step and constructs a graph instance that corresponds to that topology. We
evaluate the proposed model on several synthetic datasets following common
network evolving dynamics, as well as on real-world datasets, and demonstrate
the effectiveness of our proposed model over traditional methods.

4.1 introduction

Neural networks for structured data such as graphs have been studied exten-
sively in recent years (Wu et al., 2021; Zhou et al., 2020; Zhou, Zheng, and Huang,
2020). They have demonstrated convincing performance in several graph mining
tasks, including graph classification (Morris et al., 2019), link prediction (Zhang
and Chen, 2017), and community detection (Chen, Li, and Bruna, 2019). So far,
the bulk of research GNNs focused mainly on tasks that involve static graphs.
However, most real-world networks are dynamic, e. g., nodes and edges are
added or removed over time. Despite the success of GNNs in various applications,
it is still not clear if these models are useful for learning in dynamic scenarios.

Among the few models that have been applied to this type of data, most stud-
ies focused on predicting a low-dimensional representation (i. e., embedding)
of the graph for the next time step (Goyal et al., 2018; Li, Guo, and Mei, 2016;

54

4.1 introduction 55

Nguyen et al., 2018; Pareja et al., 2020; Seo et al., 2018). These representations
can then be used in downstream tasks (Goyal et al., 2018; Li, Guo, and Mei,
2016; Meng et al., 2018; Pareja et al., 2020). However, predicting the topology of
the graph (and not only its low-dimensional representation) is a task that has
not been properly addressed yet.

Graph generation, another important task in graph mining, has attracted
a lot of attention from the deep learning community in recent years. The
objective of this task is to generate graphs that exhibit specific properties,
e. g., degree distribution, node triangle participation, community structure, etc.
Traditionally, graphs are generated based on some network generation model
such as the Erdős-Rényi model (Erdős and Rényi, 1960). These models focus
on modelling one or more network properties, and neglect the others. Neural
network approaches, on the other hand, can better capture the properties of
graphs since they follow a supervised approach (Bojchevski et al., 2018; Grover,
Zweig, and Ermon, 2019; You et al., 2018). These architectures minimise a loss
function such as the reconstruction error of the adjacency matrix or the value of
a graph comparison algorithm.

Capitalising on recent developments in neural networks for graph-structured
data and graph generation, we propose in this work, to the best of our knowl-
edge, the first framework for predicting the evolution of the topology of networks
in time. The proposed framework can be viewed as an encoder-predictor-decoder
architecture. The encoder network takes a sequence of graphs as input and uses
a GNN to produce a low-dimensional representation for each of these graphs.
These representations capture structural information about the input graphs.
Then, the predictor network employs a recurrent architecture which predicts a
representation for the future instance of the graph. The decoder network corre-
sponds to a graph generation model which utilises the predicted representation,
and generates the topology of the graph for the next (or future) time step. The
proposed model is evaluated over a series of experiments on synthetic and
real-world datasets, and is compared against several baseline methods.

To measure the effectiveness of the proposed model and the baselines, the
generated graphs need to be compared with the ground-truth graph instances
using some graph comparison algorithm. To this end, we use the Weisfeiler-
Lehman subtree kernel which scales to very large graphs and has achieved state-
of-the-art results on many graph datasets (Shervashidze et al., 2011). Results
show that the proposed model yields good performance, and in most cases,
outperforms the competing methods.

4.2 related work 56

The rest of this chapter is organised as follow. Section 4.2 provides an overview
of the related work and elaborates our contribution. Section 4.3 introduces
some preliminary concepts and definitions related to the graph generation
problem, followed by a detailed presentation of the components of the proposed
framework. Section 4.4 evaluates the proposed model on several tasks. Finally,
Section 4.5 concludes.

4.2 related work

Our work is directly linked to the line of research in random graph models.
These models are very popular in graph theory and network science. The Erdős-
Rényi model (Erdős and Rényi, 1960), the preferential attachment model (Albert
and Barabási, 2002), and the Kronecker graph model (Leskovec et al., 2010) are
some typical examples of such models. To predict how a graph structure will
evolve over time, the values of the parameters of these models can be estimated
based on the corresponding values of the observed graph instances, and based
on the estimated values, these models are able to generate graphs that have not
been observed yet.

Other work along a similar direction includes neural network models which
combine GNNs with RNNs (Manessi, Rozza, and Manzo, 2020; Pareja et al., 2020;
Seo et al., 2018). These models use GNNs to extract features from a graph and
RNNs for sequence learning from the extracted features. Some similar approaches
do not use GNNs, but instead they perform random walks or employ deep auto-
encoders (Goyal et al., 2018; Nguyen et al., 2018).

All these works focus on predicting how the node representations or the
graph representations will evolve over time. However, some applications require
predicting the topology of the graph, and not just its low-dimensional represen-
tation. The proposed model constitutes the first step towards this objective.

4.3 evonet : a neural network for predicting graph evolution

In this Section, we begin by introducing basic concepts of dynamic graph
and formalise our task. We then present EvoNet, the proposed framework for
predicting the evolution of graphs. Since the proposed model comprises of
several components, we describe all these components in detail.

4.3 evonet : a neural network for predicting graph evolution 57

4.3.1 Preliminaries

Let G = (V, E) be an undirected, unweighted graph, where V is the set of
nodes and E is the set of edges. We will denote by n the number of vertices
and by m the number of edges. We define a permutation of the nodes of G as a
bijective function π : V → V, under which any graph property of G should be
invariant.

We are interested in the topology of a graph which is described by its adja-
cency matrix Aπ ∈ Rn×n with a specific ordering of the nodes π1. Each entry
of the adjacency matrix is defined as Aπ

ij = 1(π(vi),π(vj))∈E where vi, vj ∈ V. In
what follows, we consider the topology, structure and adjacency matrix of a graph
equivalent to each other.

In many real-world networks, besides the adjacency matrix that encodes
connectivity information, nodes and/or edges are annotated with a feature
vector of dimension d or d′, which we denote as X ∈ Rn×d and E ∈ Rm×d′ ,
respectively. Hence, a graph object can be also written in the form of a triplet
G = (A, X, E). In this work, we use this triplet to represent all graphs. If a graph
does not contain node/edge attributes, we assign to it some artificial attributes
based on local properties (e. g., degree, k-core number, number of triangles, etc).

An evolving network is a graph whose topology changes as a function of
time. Interestingly, almost all real-world networks evolve over time by adding
and removing nodes and/or edges. For instance, in social networks, people
make and lose friends over time, while there are people who join the network
and others who leave the network. An evolving graph is a sequence of graphs
{G0,G1, . . . ,GT} where Gt = (At, Xt, Et) represents the state of the evolving
graph at time step t. It should be noted that not only nodes and edges can
evolve over time, but also node and edge attributes. However, in this work, we
keep attributes of each node and edge fixed, and we allow only the node and
edge sets of the graphs to change as a function of time. The sequence can thus
be written as {Gt = (At, X, E)}t∈[0,T]

2.
We are often interested in predicting what “comes next” in a sequence, based

on data encountered in previous time steps. In our setting, this is equiva-
lent to predicting Gt based on the sequence {Gk}k<t. In sequential modelling,
we usually do not take into account the whole sequence, but only those in-
stances within a fixed small window of size w before Gt, which we denote as

1 For simplicity, the ordering π will be omitted in what follows.
2 Note that here At corresponds to the vertex set V that contains all the nodes which have

appeared on the evolving graphs within the time range of interest. Nodes that are not on Gt at
time step t are considered as isolated nodes of Gt.

4.3 evonet : a neural network for predicting graph evolution 58

{Gt−w,Gt−w+1, . . . ,Gt−1}. We refer to these instances as the graph history. The
problem is then to predict the topology of Gt given its history.

4.3.2 Proposed Architecture

The proposed architecture is very similar to a typical sequence learning frame-
work. The main difference lies in the fact that instead of vectors, in our setting,
the elements of the sequence correspond to graphs. The combinatorial nature
of graph-structured data increases the complexity of the problem and calls for
more sophisticated architectures than the ones employed in traditional sequence
learning tasks.

Specifically, the proposed model consists of three components:

1. a GNN which generates a vector representation for each graph instance,

2. a RNN for sequential learning,

3. a graph generation model for predicting the graph topology at the next
time step.

This framework can also be viewed as an encoder-predictor-decode model. The first
two components correspond to an encoder network which maps the sequence
of graphs into a sequence of vectors and another network that predicts a
representation for the next in the sequence graph. The decoder network is the
last component of the model, and transforms the above representation into a
graph. Figure 4.1 illustrates the proposed model. In what follows, we present
the above three components of EvoNet.

4.3.2.1 Encoding Graphs using Graph Neural Networks

Graph Neural Network (GNN) has recently emerged as a dominant paradigm for
performing machine learning tasks on graphs. Its ability of learning meaningful
low-dimensional embedding from graph structure makes it a natural choice for
the encoder component of our framework. From various GNN models, We pick
MPNN as the implementation choice. Described in Section 2.4.1, the learning
process of MPNN can be divided into three phases: (1) aggregation, (2) update,
and (3) readout.

aggregation In this phase, for each node of the graph, the network com-
putes a message, which is the aggregation of the representations from its neigh-

4.3 evonet : a neural network for predicting graph evolution 59

Figure 4.1: Illustration of the proposed architecture

bourhood. Formally, at iteration step l + 1, a message vector ml+1
v is computed

from the representations of the neighbours N (v) of v by

ml+1
v = f1(xl

v) + ∑
w∈N (v)

xl
w f2(evw), (4.1)

where xl
w is the hidden embedding of node w at iteration l, evw is the edge

embedding between node v and w, and f1(·), f2(·) are two MLPs. Suppose m
and x are both vectors of the same dimension d, note that f2(·) transform the
edge vector evw ∈ Rd′ into Rd∗d.

update The new representation xl+1
v of v is then computed by combining its

current feature vector xl
v with the message vector ml+1

v :

xl+1
v = GRU

(
xl

v, ml+1
v
)
, (4.2)

where GRU is the Gated Recurrent Unit (GRU) (Cho et al., 2014), a class of RNN

whose exact form is:

zl+1
v = σ(Wzml+1

v + Uzxl
v + bz)

rl+1
v = σ(Wrml+1

v + Urxl
v + br)

x̂l+1
v = ϕ

(
Whml+1

v + Uh(rl+1
v ⊙ xl

v) + bh
)

xl+1
v = (1 − zl+1

v)⊙ xl
v + zl+1

v ⊙ x̂l+1
v .

(4.3)

4.3 evonet : a neural network for predicting graph evolution 60

where W , U, h are the weights and bias, σ(·), ϕ(·) are sigmoid activation
function and hyperbolic tangent activation function respectively. The aggregation
and update steps are similar to those of Li et al. (2016).

readout After repeating aggregation and update steps for L iterations, we
get a sequence of node representations {xL

v}v∈V. They are then merged into a
single vector which corresponds to the representation of the entire graph at the
readout step:

g = set2set

({
xL

v | v ∈ V
})

, (4.4)

where set2set is a iterative attention-based method that can learn the represen-
tation from a set (Vinyals, Bengio, and Kudlur, 2016). Its exact form is:

qk = lstm(q∗
k−1)

αi,k = softmax(xiq
⊺
k) =

exiq
⊺
k

∑n
j=1 exjq

⊺
k

rk =
n

∑
i=1

αi,kxi

q∗
k = [qk, rk],

(4.5)

where the final output g = q∗
K is twice the dimension of the node representation

x. This vector captures the topology of the input graph. Of course, as stated
in Section 2.4.1, there are many choices for the global pooling function of the
readout step, as long as it is differentiable and permutation invariant. Other
functions, e. g., a simple sum, were indeed considered, but were found less
effective in preliminary experiments.

4.3.2.2 Predicting Graph Representations using Recurrent Neural Networks

Given an input sequence of graphs, we use the aforementioned MPNN to gen-
erate a vector representation for each graph in the sequence. Then, to process
this sequence, we use the Recurrent Neural Network (RNN). The RNNs use
their internal state, i. e., memory, to preserve sequential information. These net-
works exhibit temporal dynamic behaviour, and can find correlations between
sequential events.

4.3 evonet : a neural network for predicting graph evolution 61

Specifically, a RNN processes the input sequence in a series of time steps, e. g.,
one for each element in the sequence. For a given time step t, the hidden state
hGt at that time step is updated as:

hGt = Θ(hGt−1 , gt) (4.6)

where Θ is a non-linear function, whose exact form depends on the choice of
the RNN.

The generative RNNs output a probability distribution over the next element
of the sequence given its current state. Precisely, they are able to predict the next
element (e. g., graph embedding) in the sequence, by learning the conditional
distribution p(hGt |g1, . . . , gt−1).

In our implementation, we use Long Short-Term Memory (LSTM) network
that reads sequentially the vectors {gi}i∈[t−w,t−1] produced by the MPNN, and
generates a vector hGt that represents the embedding of Gt. The embedding incor-
porates topological information and will serve as input to the graph generation
module.

The MPNN component presented above can be seen as a form of an encoder
network. It takes as input a sequence of graphs and projects them into a low-
dimensional space. Then, this RNN component takes the sequence of graph
representations as input and predicts the representation of the graph at the next
time step. We name the predicted representation as dynamic graph embedding, for
that it captures both the structure of a graph and the temporal dependency of
the sequence.

4.3.2.3 Graph Generation

To generate a graph that corresponds to the evolution of the current graph
instance, we capitalise on a sequential framework for learning generative models
of graphs (You et al., 2018). This framework models a graph in an auto-regressive
manner (i. e., a sequence of additions of new nodes and edges) to capture the
complex joint probability of all nodes and edges in the graph. Formally, given a
node ordering π, it considers a graph G as a sequence of vectors:

Sπ
G = (sπ

1 , sπ
2 , . . . , sπ

n) (4.7)

where sπ
i = [a1,i, . . . , ai−1,i] ∈ {0, 1}i−1 is the adjacency vector between node π(i)

and the nodes preceding it ({π(1), . . . , π(i − 1)}). We adapt this framework to
our supervised setting.

4.3 evonet : a neural network for predicting graph evolution 62

The objective of the generative model is to maximise the likelihood of the
observed graphs of the training set p(G|θ). Since a graph can be expressed as
a sequence of adjacency vectors (given a node ordering), we consider instead
the likelihood p(Sπ

G |θ), which can be decomposed in an auto-regressive manner
into the following product:

p(Sπ
G |θ) =

n

∏
i=1

p(sπ
i |sπ

k:k<i, θ) =
n

∏
i=1

i−1

∏
j=1

p(aπ
ji |aπ

li:l<j, sπ
k:k<i, θ) (4.8)

This product can be parameterised by a neural network. Following You et al.
(2018), we use a hierarchical RNN consisting of two levels:

1. a graph-level RNN which generates new nodes by updating the state of
adjacency vectors, i. e., learns the distribution p(sπ

i |sπ
k:k<i),

2. a edge-level RNN which generates links between current generated node
and those previously-generated, i. e., learns the distribution p(âπ

ji |âπ
li:l<j)

More formally, we have:

h0 = hGT hi = Θ1(hi−1, sπ
i−1)

e0,i = hi ej,i = Θ2(ej−1,i, âπ
j−1,i)

âπ
j,i ∼ p p(âπ

j,i = 1) = f (ej,i)

(4.9)

where hi is the state vector of the graph-level RNN (Θ1) that encodes the current
state of the graph sequence {sπ

k:k<i} and is initialised by hGT , the predicted
embedding of the graph at the next time step T. The output of the graph-level
RNN corresponds to the initial state of the edge-level RNN (Θ2), whose state at
the last time step is then processed by a function f to produce the probability
of existence of an edge âj,i,3 e. g., MLP stacked with a sigmoid function. In other
words, the model learns the probability distribution of the existence of edges
and a graph can then be sampled from this distribution, which will serve as the
predicted topology for the next time step T.

To train the model, the cross-entropy loss between existence of each edge and
its probability of existence is minimised:

L = −
n

∑
i=1

i−1

∑
j=1

[
aπ

j,i log
(

p(âπ
j,i = 1)

)
+ (1 − aπ

j,i) log
(
1 − p(âπ

j,i = 1)
)]

(4.10)

3 We denote the predicted adjacency value as âj,i in order to distinguish from the ground truth
value aj,i.

4.4 experiments and discussion 63

Path Graph n = 15, m = 14 Cycle Graph n = 15, m = 15 Ladder Graph n = 30, m = 43

Figure 4.2: Illustration of synthetic graphs. n is the number of nodes; m is the number
of edges.

4.4 experiments and discussion

In this section, we evaluate the performance of EvoNet on synthetic and real-
world datasets for predicting the evolution of graph topology, and we compare
it against several baseline methods.

4.4.1 Datasets

4.4.1.1 Synthetic Datasets

The synthetic datasets consist of sequences of graphs where there is a specific
pattern on how each graph emerges from the previous graph instance, i. e.,
adding/removing some graph structure at each time step. The patterns we
experimented on are paths, cycles and ladders. An illustration of these patterns
can be found in Figure 4.2.

The real-world datasets correspond to single graphs whose nodes incorporate
temporal information, which We decompose into sequences of snapshots based
on their timestamps. The size of the graphs in each sequence ranges from tens
of nodes to several thousand of nodes. We summarise the statistics of these
datasets in Table 4.1.

4.4.1.2 Synthetic Datasets

path graph We denote a path graph of n nodes as Pn. It can be drawn
such that all vertices and edges lie on a straight line, i. e., the path graph Pn is
a tree with two nodes of degree 1, and the other n − 2 nodes of degree 2. We
consider two scenarios. In both cases the initial graph in the sequence is P3.
In the first scenario, at each time step, we add one new node to the previous
graph instance and we also add an edge between the new node and the last

4.4 experiments and discussion 64

node according to the previous ordering. The second scenario follows the same
pattern, however, every three steps, instead of adding a new node, we remove
the first node according to the previous ordering (along with its edge).

cycle graph A cycle graph Cn is a graph on n nodes containing a single
cycle through all the nodes. Note that if we add an edge between the first and
the last node of Pn, we obtain Cn. Similar to the above case, we use C3 as the
initial graph in the sequence, and we again consider two scenarios. In the first
scenario, at each time step, we increase the size of the cycle, e. g., we obtain Ci+1

from Ci by inserting a new node between the first and the last node according to
the previous ordering and connect them. In the second scenario, besides adding
a new node at each time step, every 3 (or other value) steps, we also attach a
special structure to the newly added node (e. g., K3 or K5

4).

ladder graph The ladder graph Ln is a planar graph with 2n vertices
and 3n − 2 edges. It is the Cartesian product of two path graphs, as follows:
Ln = Pn × P2. As the name indicates, the ladder graph Ln can be drawn as
a ladder consisting of two rails and n rungs between them. We consider the
following scenario: at each time step, we attach one rung (P2) to the tail of the
ladder. The two nodes of the rung are then connected to the two last nodes
according to the previous ordering, respectively).

For all synthetic graphs, we set the attribute of each node equal to its degree,
while we set the attribute of all edges to the same value (e. g., to 1).

4.4.1.3 Real-World Datasets

We also evaluate our model on six real-world datasets. They can be divided into
three groups based on the nature of their sources.

bitcoin transaction networks This group contains graphs derived
from the Bitcoin transaction network, a who-trust-whom network of people who
trade using Bitcoin (Kumar et al., 2018, 2016). Due to the anonymity of Bitcoin
users, platforms seek to maintain a record of users’ reputation in Bitcoin trades
to avoid fraudulent transactions. The nodes of the network represent Bitcoin
users, while an edge indicates that a trade has been executed between its two
endpoint users. Each edge is annotated with an integer between −10 and 10,
which indicates the rating of the one user given by the others. The datasets are
collected separately from two platforms: Bitcoin OTC and Bitcoin Alpha. For

4 Complete graph with n nodes is denoted as Kn. e. g., K3 is a triangle.

4.4 experiments and discussion 65

Table 4.1: Statistics of 6 real-world datasets.

#Nodes #Edges % Pos.Edges Timespan
Begin End

BTC-OTC 5, 881 35, 592 89% 2010-11-08 2016-01-25

BTC-Alpha 3, 783 24, 186 93% 2010-11-08 2016-01-22

UCI-Forum 899 33, 720 — 2004-05-15 2004-10-26

UCI-Message 1, 899 59, 835 — 2004-04-15 2004-10-26

EU-Core 986 332, 334 — 1970-01-01 1972-03-14

DNC 1, 891 39, 264 — 2013-09-16 2016-05-25

all graphs in these two datasets, we set the attribute of each node equal to the
average rating that the user has received from the rest of the community, and
the attribute of each edge equal to the rating between its two endpoint users.

social networks This group contains graphs generated from an online
social network at the University of California, Irvine (Opsahl, 2013; Opsahl and
Panzarasa, 2009). It has two datasets: one is derived from the private message
exchange between users (UCI-Message); the other is based on the same user
community, but focuses on their activity in the forum, i. e., public comment on a
specific topic (UCI-Forum). The nodes of the networks represent users and the
edges represent a message exchange or a shared interest (on a topic). All graphs
in these two datasets are unweighted and unlabelled, thus we simply set the
attribute of each node equal to its degree.

email exchange networks This group contains two datasets derived
from different sources. The first is generated using email data from a large
European research institution (Paranjape, Benson, and Leskovec, 2017), i. e., all
incoming and outgoing email between members of the research institution. The
second is collected from the 2016 Democratic National Committee (DNC) email
leak (Rossi and Ahmed, 2015), where the links denote email exchanges between
DNC members. Similar to social network datasets, the graphs in these two
datasets are also unweighted and unlabelled. We treat them the same way.

4.4.2 Baselines

We compare EvoNet against several random graph generators, which are the
traditional methods to study the topology evolution of temporal graphs, by
proposing a driven mechanism behind the evolution. These models distinguish
between each other by their rules to connect new emerged nodes with existing

4.4 experiments and discussion 66

ones. They usually have an initial graph, from which they gradually grow into
the graph with expected size following the rule. To be precise, we have,

• Erdős-Rényi (ER) model proposed by Erdős and Rényi (1960). The topology
of predicted graph at time step t is a binomial graph of size nt whose
edges are sampled from a binomial distribution B(nt(nt−1)

2 , p), where p is
a tunable parameter;

• Barabási–Albert (BA) model proposed by Albert and Barabási (2002). At
each step, a new node k is added to the graph, and connect to every
existing node i with a probability di

∑j∈V\k dj
. The topology of predicted

graph at time step t is the result of such process;

• Powerlaw Clustering (Power) model proposed by Holme and Kim (2002).
An improved version of Barabási–Albert model, where, after adding a
node, an extra step is performed that every edge will be connected to its
neighbours (forming a triangle) by a chance;

• Stochastic Block model (SBM) proposed by Airoldi et al. (2008). The topol-
ogy of predicted graph at time step t is a Stochastic Block Model (SBM)
graph of size nt with 3 communities and fixed probabilities to connect
within and between the communities;

• Kronecker Graph (Kron-fix, Kron-rand) model proposed by Leskovec
et al. (2010). The topology of predicted graph at time step t is the Kro-
necker product Gt = Gt−1

⊗ Gbase, i. e., the tth Kronecker power of Gbase,
which is the initial graph at time step 0. “Kron-fix” means that the initial
graph is fixed and deterministic. “Kron-rand” corresponds to the stochas-
tic Kronecker graph model, where the initial graph is a random graph
parameterised by some tunable probabilities.

4.4.3 Experimental Setup and Evaluation Metric

In general, it is very challenging to measure the performance of a graph genera-
tive model since it requires comparing two graphs to each other, a long-existing
problem in mathematics and computer science (Conte et al., 2004). We propose
to use graph kernels to compare graphs to each other, and thus to evaluate the
quality of the generated graphs.

Graph kernels are considered as one of the most effective tools for graph
comparison (Nikolentzos, Siglidis, and Vazirgiannis, 2019). A graph kernel is a
symmetric positive semi-definite function which takes two graphs as input, and

4.4 experiments and discussion 67

measures their similarity. In our experiments, we employ the Weisfeiler-Lehman
subtree kernel which counts label-based subtree-patterns (Shervashidze et al.,
2011). Note that we normalise the kernel values, so that the emerging values lie
between 0 and 1.

As previously mentioned, each dataset corresponds to a sequence of graphs
of length k. where each sequence represents the evolution of the topology of a
single graph in k time steps. We use the first 80% of these graph instances for
training and the rest of them serve as our test set. The window size w is set
equal to 10, which means that we feed 10 consecutive graph instances to the
model and predict the topology of the instance that directly follows the last of
these 10 input instances. Each graph of the test set along with its corresponding
predicted graph is then passed on to the Weisfeiler-Lehman subtree kernel which
measures their similarity and thus the performance of the model.

The hyperparameters of EvoNet are chosen based on its performance on a
validation set. The parameters of the random graph models are set under the
principle that the generated graphs need to share similar properties with the
ground-truth graphs. For instance, in the case of the Erdős-Rényi model, the
probability of adding an edge between two nodes is set to some value such
that the density of the generated graph is identical to that of the ground-truth
graph. However, since the model should not have access to such information
(e. g., density of the ground-truth graph), we use an MLP to predict this property
based on past data (e. g., the number of nodes and edges of the previous graph
instances). This is in par with how the proposed model computes the size of the
graphs to be generated (i. e., using also an MLP).

4.4.4 Experiment Analysis

We next present the experimental results and compare the performance of
EvoNet against that of the baselines.

synthetic datasets Figure 4.3 illustrates the experimental results on the
synthetic datasets. Since the graph structures contained in the synthetic datasets
are fairly simple, it is easy for the model to generate graphs very similar to
the ground-truth graphs (normalised kernel values > 0.9). Hence, instead of
reporting the kernel values, we compare the size of the predicted graphs against
that of the ground-truth graphs. The figures visualise the increase of graph size
on real sequence (orange) and predicted sequence (blue).

4.4 experiments and discussion 68

0 50 100 150 200 250 300
Graph Index

0

50

100

150

200

250

300

Gr
ap
h
Si
ze
 (n

um
be
r o

f n
od
es
)

Path graph Size: Real vs. Predict

0 100 200 300 400 500 600 700 800
Graph Index

0

500

1000

1500

2000

2500

3000

Gr
ap

h
Si
ze
 (n

um
be

r o
f n

od
es
)

Ladder graph Size: Real vs. Predict

0 20 40 60 80 100 120 140
Graph Index

20

40

60

80

100

120

140

160

Gr
ap

h
Si
ze

 (n
um

be
r o

f n
od

es
)

Cycle graph Size: Real vs. Predict

Figure 4.3: Comparison of graph size: predicted size (blue) vs. real size (orange). From
left to right: Path graph, Ladder graph and Cycle graph.

−0.5 0.0 0.5 1.0 1.5 2.0

PCA-Dimension 1

0.0

0.1

0.2

0.3

0.4

0.5

PC
A-
Di
m
en
sio

n
2

Projection of Dynamic Gra h Embeddings (different dynamic rocess)

 ath-remove

 ath
Co

lo
r B

ar
 fo

r d
iff
er
en
t d

yn
am

ic
gr
a
hs

−0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

PCA-Dimension 1

−0.05

0.00

0.05

0.10

0.15

0.20

PC
A-

Di
m

en
sio

n
2

P ojection of Dynamic G aph Embeddings (diffe ent st uctu es)

path

ladde

Co
lo

 B
a

 fo
 d

iff
e

en
t d

yn
am

ic
g

ap
hs

Figure 4.4: 2D projection of dynamic graph embeddings. Left: synthetic datasets follow-
ing different dynamics. Right: synthetic datasets with different structures.

For path graphs, in spite of small variance, we have an accurate prediction
on the graph size. For ladder graph, we observe a mismatch at the beginning
of the sequence for small size graphs but then a coincidence of the two lines
on large size graphs. This mismatch on small graphs may be due to a more
complex structure in ladder graphs such as cycles, as supported by the results
of cycle graph on the right figure, where we completely fail to predict the size
of cycle graphs. In fact, we were not able to reconstruct the cycle structure in the
prediction, with all the predicted graphs being path graphs. This failure could be
related to the limitations of GNN model mentioned in Xu et al. (2018). Additional
results of synthetic graphs, such as similarity histograms, size comparison for
more complex dynamic scenario, and examples of generated graphs can be
found in Appendix A.

dynamic graph embedding It is also important to check whether, in our
encode-decoder framework, the learned code, which we refer to as “dynamic graph
embedding”, is really meaningful, i. e., whether it is capable of capturing both
structural feature of the graph class and temporal evolution of the series. We
design two experiments to verify the effectiveness of our embedding, with the
help of synthetic graphs.

4.4 experiments and discussion 69

0.0 0.2 0.4 0.6 0.8
Similarity

0

25

50

75

100

125

150

175

200

Nu
m
be
r o

f i
ns
ta
nc
es

Distribution of Similarities between real and predicted graphs (BTC-OTC)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Similarity

0

50

100

150

200

250

300

350

Nu
m

be
r o

f i
ns

ta
nc

es

Distribution of Similarities between real and predicted graphs (BTC-ALPHA)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Similarity

0

20

40

60

80

100

120

140

160

Nu
m
be

r o
f i
ns
ta
nc
es

Distribution of Similarities between real and predicted graphs (UCI-Forum)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

0.0 0.2 0.4 0.6 0.8
Similarity

0

25

50

75

100

125

150

175

200

Nu
m
be
r o

f i
ns
ta
nc
es

Distribution of Similarities between real and predicted graphs (UCI-Message)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Similarity

0

10

20

30

40

50

60

Nu
m
be
r o

f i
ns
ta
nc
es

Distribution of Similarities between real and predicted graphs (Eu-Core-Emails)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0

50

100

150

200

250

300

Nu
m

be
r o

f i
ns

ta
nc

es

Distribution of Similarities between real and predicted graphs (DNC)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

Figure 4.5: Similarity histograms on real-world datasets. Blue one is the result of EvoNet,
which is compared against 6 random graph models. From top to bottom,
from left to right: BTC-OTC, BTC-Alpha, UCI-Forum, UCI-Message, EU-
Core-Emails and DNC datasets.

In the first experiment, we take as input two sequences of graphs belonging to
the same class but following different evolution dynamics. Specifically, we took
path graph and path graph with removal. In the second experiment, we control the
evolution dynamic and vary the structures of graphs, where we use path graph
and ladder graph following the same evolution of increasing size.

The dynamic graph embeddings of different datasets learned from these
experiments are recorded and visualised in Figure 4.4. Each point represents the
projections of embeddings of each graph in the sequence into a 2-dimensional
space by Principle Component Analysis (PCA). As we can see from the figure,
embeddings learned from different datasets, either with different dynamics
or with different structure, are both well separated, which suggests that the
embeddings are meaningful and can be use to predict the graph at the future
time step. Those from the same dataset form special patterns such as a line in
the space, which suggests a temporal dependency between these embeddings
as they are learned from sequential data.

4.4 experiments and discussion 70

Table 4.2: Statistics on the similarity distribution of different models. The best results
are set to bold and the second best ones are underlined.

Model
Stat. BTC-OTC BTC-ALPHA UCI-Forum

Mean 90%ile Mean 90%ile Mean 90%ile

ER 0.28 0.40 0.22 0.32 0.15 0.16
SBM 0.21 0.30 0.18 0.27 0.10 0.10
BA 0.35 0.48 0.23 0.28 0.29 0.31
Power 0.35 0.48 0.23 0.28 0.29 0.31
Kron-Rand 0.62 0.64 0.44 0.47 0.59 0.62
Kron-Fix 0.21 0.23 0.08 0.11 0.44 0.47

EvoNet 0.82 0.84 0.55 0.59 0.64 0.68

Model
Stat. UCI-Mesg EU-Core DNC

Mean 90%ile Mean 90%ile Mean 90%ile

ER 0.16 0.26 0.06 0.09 0.82 1.00
SBM 0.13 0.22 0.03 0.05 0.84 1.00
BA 0.23 0.33 0.12 0.16 0.85 1.00
Power 0.23 0.33 0.12 0.16 0.85 1.00
Kron-Rand 0.62 0.65 0.60 0.65 0.01 0.02
Kron-Fix 0.18 0.20 0.53 0.55 0.01 0.06

EvoNet 0.71 0.75 0.76 0.81 0.83 1.00

real-world datasets Finally, we analyse the performance of our model
on the six real-world datasets. We obtain the similarities between each pair of
real and predicted graphs in the sequence and draw a histogram to illustrate
the distribution of similarities. We show in Figure 4.5 the histogram plots of the
six datasets. Among all the traditional random graph models, Kronecker graph
model with learnable parameter (“Kron-Rand”) performs the best. However, on
every dataset (except DNC), our proposed method EvoNet (in blue) outperforms
tremendously all the other methods. Statistics of the similarity distribution (e. g.,
average similarity, the value at 90th percentile) of all datasets are summarised in
Table 4.2, where we find that our proposed model has a consistent advantage
over the traditional methods.

Overall, despite a failure in capturing some specific structures discovered in
synthetic datasets, our experiments demonstrate the advantage of EvoNet over
the traditional random graph models on predicting the evolution of dynamic
graphs, especially for real world data with complex structures.

4.5 chapter conclusion 71

4.5 chapter conclusion

In this work, we propose EvoNet, a model that predicts the evolution of dynamic
graphs, following an encoder-decoder framework. The proposed model consists
of three components:

1. a graph neural network which transforms graphs to vectors,

2. a recurrent architecture which reads the input sequence of graph embed-
dings and predicts the embedding of the graph at the next time step,

3. a graph generation model which takes this embedding as input and
predicts the topology of the graph.

We also propose an evaluation methodology for this task which capitalises on
the well-established family of graph kernels. We apply the above methodology
to demonstrate the predictive power of EvoNet. Experiments show that the pro-
posed model outperforms traditional random graph methods on both synthetic
and real-world datasets.

Improving the efficiency of the proposed model and its scalability on large
graphs are potential directions for future work, as this model currently is not
very computational friendly. This motivates us to simplify the “encoder” module
in this framework, in particular, the MPNN, which we are going to present in the
next chapter.

5
S I M P L I F I E D G R A P H N E U R A L N E T W O R K S

In this chapter, we focus on the sparsification of GNN models, in particular the
MPNN, that we used in Chapter 4. Indeed, the high complexity and computa-
tional cost of the EvoNet model proposed in Chapter 4 motivates us to find
a fast, light-weight and efficient alternative. Concurrently attracting a great
amount of academic and industrial interest, the sparsification of neural network
models become a promising direction to follow.

Thus, we conduct a structured study of the effect of sparsification on the
trainable part of MPNNs known as the Update step. To this end, we design a
series of models to successively sparsify the linear transform in the Update step.
Specifically, we propose the Expander GNN model with a tuneable sparsification
rate and the Activation-Only GNN, which has no linear transform in the Update
step. In agreement with a growing trend in the literature the sparsification
paradigm is changed by initialising sparse neural network architectures rather
than expensively sparsifying already trained architectures.

Our novel benchmark models enable a better understanding of the influence
of the Update step on model performance and outperform existing simplified
benchmark models such as the Simple Graph Convolution (SGC) (Wu et al.,
2019). The Expander GNNs, and in some cases the Activation-Only models, achieve
performance on par with their vanilla counterparts on several downstream tasks,
while containing significantly fewer trainable parameters. In experiments with
matching parameter numbers our benchmark models outperform the state-of-
the-art GNN models.

5.1 introduction

Among various GNN models, MPNNs (Gilmer et al., 2017) and their variants
are currently considered to be the dominating class. In MPNNs, the learning
procedure can be separated into three major steps: Aggregation, Update and Read-
out, where Aggregation and Update are repeated iteratively so that each node’s
representation is updated recursively based on the transformed information
aggregated over its neighbourhood.

72

5.1 introduction 73

There is thus a division of labour between the Aggregation and the Update
step, where the Aggregation utilises local graph structure, while the Update step
is only applied to single node representations at a time independent of the local
graph structure. From this a natural question then arises:

What is the impact of the graph-agnostic Update step on the performance of
GNNs?

Since the Update step is the main source of model parameters in MPNNs,
understanding its impact is fundamental in the design of parsimonious GNNs.

Wu et al. (2019) first challenged the role of the Update step by proposing
the SGC model where they removed the non-linearities in the Update steps
and collapsed the consecutive linear transforms into a single transform. Their
experiments showed, surprisingly, that in some instances the Update step of
GCN (Kipf and Welling, 2017) can be left out completely without the models’
accuracy decreasing.

In the same spirit, we propose in this work to analyse the impact of the Update
step and its sparsification in a systematic way. To this end, we propose two
nested model classes, where the Update step is successively sparsified. In the
first model class which we refer to as Expander GNN, the linear transform layers
of the Update step are sparsified; while in the second model class, the linear
transform layers are removed and only the activation functions remain in the
model. We name the second model Activation-Only GNN and it contrasts the SGC

where the activation functions where removed to merge the linear layers.
Inspired by the recent advances in the literature of sparse CNN architectures

(Prabhu, Varma, and Namboodiri, 2018), we propose to utilise a random sparsi-
fication scheme, which is motivated by the study of expander graphs (hence the
model’s name).

Here the sparsification is performed at intialisation and accordingly saves
the cost of more traditional methods, which often iteratively prune connections
during training.

Through a series of empirical assessments on different graph learning tasks
(graph and node classification as well as graph regression), we demonstrate that
the Update step can be heavily simplified without inhibiting performance or
relevant model expressivity. Our findings partly agree with the work in Wu et al.
(2019), in that dense Update steps in GNN are expensive and often ineffectual.
In contrast to their proposition, we find that there are many instances in which
leaving the Update step out completely significantly harms performance. In
these instances our Activation-Only model shows superior performance while
matching the number of parameters and efficiency of the SGC.

5.2 related work 74

Our contributions can be summarised as follows.

1. We explore the impact of the Update step and its sparsification in MPNNs

through the newly proposed model class of Expander GNNs with tune-
able density. We show empirically that a sparse Update step matches the
performance of the standard model architectures.

2. As an extreme case of the Expander GNN, as well as an alternative to the SGC,
we propose the Activation-Only GNNs that remove the linear transformation
layer from the Update step and keep non-linearity in tact. We observe the
Activation-Only models to exhibit comparable, sometimes significantly
superior performance to the SGC while being equally time and memory
efficient.

Both of our proposed model classes can be extrapolated without further efforts
to a variety of models in the MPNN framework and hence provide practitioners
with an array of efficient and often highly performant benchmark models.

The rest of this chapter is organised as follows. In Section 5.2, we provide an
overview of the related work. Section 5.3 presents in detail our two proposed
model classes. Section 5.4 discusses our experimental setting and empirical
evaluation of the proposed models in a variety of downstream graph learning
tasks.

5.2 related work

In recent years the idea of utilising expander graphs in the design of neural networks
is starting to be explored in the CNN literature. Most notably, Prabhu, Varma,
and Namboodiri (2018) propose to replace linear fully connected layers in deep
networks using an expander graph sampling mechanism and hence, propose a
novel CNN architecture they call X-nets. The great innovation of this approach is
that well-performing sparse neural network architectures are initialised rather
than expensively calculated. Furthermore, they are shown to compare favourably
in training speed, accuracy and performance trade-offs to several other state-
of-the-art architectures. McDonald and Shokoufandeh (2019) and Kepner and
Robinett (2019) build on the X-net design and propose alternative expander
sampling mechanisms to extend the simplistic design chosen in the X-nets.

Independent of this literature branch, Bourely, Boueri, and Choromonski
(2017) explore 6 different mechanisms to randomly sample expander graph
layers. Across the literature the results based on expander graph layers are
encouraging.

5.3 investigating the role of the update step 75

The Sparisification and Pruning of neural networks is a very active research topic
(Blalock et al., 2020; Hoefler et al., 2021). In particular, a wealth of algorithms
sparsifying neural network architectures at initialisation has recently been
proposed (Lee, Ajanthan, and Torr, 2019; Tanaka et al., 2020; Wang, Zhang, and
Grosse, 2020). While these algorithms make pruning decisions on a per-weight
basis, Frankle et al. (2021) find that these algorithms produce equivalent results
to a per-layer choice of a fraction of weights to prune, as is directly done in our
chosen sparsification scheme. All of these research efforts are pruning CNNs,
typically the VGG and ResNet architectures. To the best of our knowledge, our work
is the first investigating the potential of sparsifying the trainable parameters in GNNs.
This allows us to observe that conclusions drawn for CNNs do not directly carry
over to GNNs. We observe that in the majority of cases pruning 90% of trainable
weights at initialisation using our relatively simple sparsification scheme comes
at no performance cost. The presence of the Aggregation step in the graph neural
network architecture appears to significantly impact the response of the model
to pruning.

Both Wu et al. (2019) and Salha, Hennequin, and Vazirgiannis (2019) observed
that simplifications in the Update step of the GCN model is a promising area of
research. Wu et al. (2019) proposed the SGC model, where simplification is
achieved by removing the non-linear activation functions from the GCN model.
This removal allows them to merge all linear transformations in the Update
steps into a single linear transformation without sacrificing expressive power.
Salha, Hennequin, and Vazirgiannis (2019) followed a similar rationale in their
simplification of the graph autoencoder and variational graph autoencoder
models. These works have had an immediate impact on the literature featuring
as benchmark models and object of study in many recent papers: The idea of
omitting the Update step guided Chen et al. (2020) in the design of simplified
models and has found successful application in various areas where model
complexity needs to be reduced (He et al., 2020; Waradpande, Kudenko, and
Khosla, 2020) or very large graphs need to be processed (Salha, Hennequin, and
Vazirgiannis, 2020). In our work we aim to extend these efforts by providing
more simplified benchmark models for GNNs without a specific focus on the
GCN.

5.3 investigating the role of the update step

We present in this section the two proposed model classes, where we sparsify or
remove the linear transform layer in the Update step of MPNNs, with the aim to

5.3 investigating the role of the update step 76

systematically analyse the impact of the Update step. We begin in subsection 5.3.1
by introducing the model structure of MPNN that we choose to work with.
We then demonstrate how the Expander GNN and Activation-Only GNN are
constructed in subsections 5.3.2 and 5.3.3, respectively.

5.3.1 Message-Passing Neural Networks

The general model structure of MPNNs has been introduced in subsection 2.4.1.
Note that various choices of Aggregation, Update and Readout functions are
proposed in the literature. To avoid shifting from the subject of this work, we
stay with the simplest and most widely used function choices, such as sum,
mean and max aggregators for the Aggregation, the MLP for the Update step
and summation for the Readout. As an example to visualise our models in
subsections 5.3.2 and 5.3.3 we use the following matrix representation of the
GCN’s model equation,

H(L) = σ
(

Â . . . σ
(

ÂH(1)W (1)
)

. . . W (L)
)

, (5.1)

where σ denotes a nonlinear activation function, W (i) contains the trainable
weights of the linear transform in the Update step and Â = D̃− 1

2 ÃD̃− 1
2 is the

symmetric normalised adjacency matrix with Ã = A + I denoting the adjacency
matrix with added self-loops and D̃ being the corresponding degree matrix.

5.3.2 Sparsifying the Update step: Expander GNN

In this subsection we propose the ExpanderGNN model where sampled expander
graphs are used to initialise sparse linear layers in the Update step. We begin
by discussing how linear layers in a neural networks can be represented by
bipartite graphs.

5.3.2.1 Linear Layer as a graph

The fully-connected linear transform layer in the MLP can be represented by a
bipartite graph B(S1, S2, E), where S1 and S2 are two sets of nodes and E the
set of edges that satisfy

∀u ∈ S1, ∀v ∈ S2, ∃(u, v) ∈ E;

∀u, v ∈ S1(resp.S2),∄(u, v) ∈ E.

5.3 investigating the role of the update step 77

The number of edges, i. e., parameters, is |S1||S2| and the edges can be encoded
in matrix form by W ∈ R|S1|×|S2|, the weight matrix in (5.1), that maps the input
node features of dimension |S1| to output node features of dimension |S2|.

5.3.2.2 Expander Linear Layer

Given the bipartite graph corresponding to a linear transform layer B(S1, S2, E),
we follow the design of Prabhu, Varma, and Namboodiri (2018) to construct the
sparsifier by sampling its subgraph of specific expander structure.

definition 5 .1 (expander linear layer). Suppose |S1| ≤ |S2|. For each
vertex u ∈ §1, we uniformly sample d vertices {vu

i }i=1,...,d from S2 to be connected
to u. Then, the constructed graph B′(S1, S2, E′) is a subgraph of B with edge set
E′ = {(u, vu

i) : u ∈ S1, i ∈ {1, . . . , d}}. Else if |S1| > |S2|, we define the expander
sparsifier with the roles of S1 and S2 reversed meaning that we sample nodes from
S1. We call a linear layer with a computational graph B′(S1, S2, E′) an expander
linear layer.

The theoretical computational cost of an expander linear layer is then equal
to 2nd min(|S1|, |S2|) Floating Point Operations (FLOPs). The tunable parameter
d can therefore lead to significant computational savings as the computational
cost of a fully connected linear layer equals 2n|S1||S2| FLOPs.

We refer to the density of the expander linear layer as the ratio of the num-
ber of sampled connections to the number of connections in the complete
bipartite graph. For example, the fully-connected layer has density 1. The sam-
pling scheme in Definition 5.1 returns an expander linear layer of density
d/ max(|S1|, |S2|).

When we replace all linear layers in the Update steps of a GNN with expander
linear layers constructed by the sampling scheme in Definition 5.1, we get the
Expander GNN. An illustration can be found in Figure 5.1.

When compared to pruning algorithms which sparsify neural network layers
by iteratively removing parameters according to certain metric during training,
the expander sparsifiers have two advantages:

1. The expander design assures that paths exist between consecutive layers,
avoiding the risk of layer-collapse that is common in many pruning algo-
rithms, where the algorithm prunes all parameters (weights) in one layer
and cuts down the flow between input and output (Tanaka et al., 2020).

2. The expander sparsifier removes parameters at initialisation and keeps
the sparsified structures fixed during training, which avoids the expensive

5.3 investigating the role of the update step 78

Figure 5.1: Illustration of the main computational steps in Expander GNNs. (Left) Aggre-
gation or graph propagation step and (Right) Update step. The red lines in the
Update step represent preserved connections in MLPs sampled as expander
sparsifier structures. In the Aggregation step only a subset of the exchanged
messages are illustrated.

computational cost stemming from adapting the neural network architec-
ture during or after training and then retraining the network as is done in
the majority of pruning algorithms (Frankle and Carbin, 2019; Han et al.,
2015).

5.3.2.3 Motivation of Expander Linear Layer

The sampling scheme in Definition 5.1 samples bipartite graphs with good ex-
pansion properties, which are commonly discussed in the field of error correcting
codes under the name “lossless expanders” (Hoory, Linial, and Widgerson, 2006,
pp. 517-522). Expander graphs can be informally defined to be highly connected
and sparse graphs (Lubotzky, 2012). They are successfully applied in communi-
cation networks where communication comes at a certain cost and is to be used
such that messages are spread across the network efficiently (Lubotzky, 2012).

Equally, in a neural network each parameter (corresponding to an edge in
the neural network architecture) incurs a computational cost and is placed to
optimise the overall performance of the neural network architecture. Therefore,
the use of expander graphs in the design of neural network architectures is
conceptually well motivated.

In Bölcskei et al. (2019), the connectedness of a sparse neural network ar-
chitecture was linked to the complexity of a given function class which can
be approximated by sparse neural networks. Hence, utilising neural network

5.3 investigating the role of the update step 79

parameters to optimise the connectedness of the network maximises the expres-
sivity of the neural network.

In Kepner and Robinett (2019) and Bourely, Boueri, and Choromonski (2017)
the connectedness of the neural network architecture graph was linked – via the
path-connectedness and the graph Laplacian eigenvalues – to the performance
of neural network architectures. Therefore, for both the expressivity of the
neural network and its performance, the connectedness, which is optimised in
expander graphs, is a parameter of interest.

5.3.2.4 Implementation of Expander Linear Layer

The most straightforward way of implementing the expander linear layer is to
store the weight matrix W as a sparse matrix. Sparse matrix multiplications can
be accelerated on several processing units released in 2020 and 2021 such as
the Sparse Linear Algebra Compute (SLAC) cores used in the Cerebras WSE-2
(Cerebras Systems, INC, 2021), the Intelligence Processing Unit (IPU) produced
by Graphcore (Moor Insights and Strategy, 2020) and the NVIDIA A100 Tensor
Core GPU (NVIDIA, 2020).

However, since we ran experiments on a NVIDIA RTX 2060 GPU, we use
masks in our implementation, similar to those of several existing pruning
algorithms, to achieve the sparsification. A mask M ∈ {0, 1}|S1|×|S2| is of the
same dimension as weight matrix and Mu,v = 1 if and only if (u, v) ∈ E′. The
entrywise multiplication, denoted by ⊙, is then applied to the mask and the
weight matrix so that undesired parameters in the weight matrix are removed,
i. e., (5.1) can be rewritten as,

H(L) = σ
(

Â . . . σ
(

ÂH(1)M(1) ⊙ W (1)
)

. . . M(L) ⊙ W (L)
)

. (5.2)

5.3.3 An Extreme Case: Activation-Only GNN

In Gama, Ribeiro, and Bruna (2020) it is argued that the non-linearity present in
GNNs, in form of the activation functions, has the effect of frequency mixing in
the sense that “part of the energy associated with large eigenvalues” is brought
“towards low eigenvalues where it can be discriminated by stable graph filters.”
The theoretical insight that activation functions help capture information stored
in the high energy part of graph signals is strong motivation to consider an
alternative simplification to the one made in the SGC.

In this alternative simplification, which we refer to as the Activation-Only
GNN models, we remove linear transformations instead of activation functions

5.4 experiments and discussion 80

such that each message-passing step is immediately followed by a point-wise
activation function. The resulting model can be seen as a natural extension of the
Expander GNN, where the linear transformation of the Update step is completely
forgone. Hence, in a Activation-Only GNN, (5.1) will be rewritten as,

H(L) = σ
(

Â . . . σ
(

ÂH(1)
))

. (5.3)

This proposed simplification is applicable to a wide variety of GNN models
as we will demonstrate in our extensive set of experiments in Section 5.4. For
comparison we display the model equation of the SGC (Wu et al., 2019),

H(L) = ÂLH(1)Θ, (5.4)

where Θ = W (1) . . . W (L). Here the nonlinear activation functions have been
removed and the linear transformations have been collapsed into a single linear
transformation layer.

Interestingly, we observe that the repeated application of the symmetric matrix
Â to the input data X is equivalent to an unnormalised version of the power
method approximating the eigenvector corresponding to the largest eigenvalue
of Â. Hence, if sufficiently many layers L are used then inference is drawn in
the SGC model simply on the basis of the first eigenvector of Â.

5.4 experiments and discussion

In order to study the influence of the Update step in GNNs, we proposed a series
of models in Section 5.3, where its linear transform is gradually sparsified. By
observing the trend of model performance change (on downstream tasks) with
respect to the sparsity of the linear transform layer, we measure the impact of the
Update step. In subsection 5.4.1 we provide an overview of our experimentation
setup. Then, in subsections 5.4.2, 5.4.3 and 5.4.4, we observe the performance
of the proposed benchmark models on the tasks of graph classification, graph
regression and node classification, respectively. In subsection 5.4.5, we compare
the performance of Expander GNNs and vanilla GNNs when they have equally
many parameters and in subsection 5.4.6 we compare the convergence behaviour
of the studied models.

5.4 experiments and discussion 81

Ta
bl

e
5

.1
:M

od
el

Eq
ua

ti
on

s
of

th
e

V
an

ill
a,

Ex
pa

nd
er

an
d

A
ct

iv
at

io
n-

O
nl

y
G

N
N

.

M
od

el
A

gg
re

ga
ti

on
U

pd
at

e
R

em
ar

ks

G
C

N
V

an
ill

a/
Ex

pa
nd

er
m

(l
)

i
=

1 √
d i

∑
j∈
N
(i
)

h(
l) j

1 √
d j

h(
l+

1)
i

=
σ
(m

(l
)

i
M

(l
)
⊙

W
(l
))

1
.

G
C

N
:d

i
de

no
te

s
th

e
de

gr
ee

of
no

de
i.

2
.

G
IN

:ϵ
is

a
le

ar
na

bl
e

ra
ti

o
ad

d
ed

ex
pl

ic
it

ly
to

th
e

ce
nt

ra
ln

od
e’

s
ow

n
re

pr
es

en
ta

ti
on

.

3
.

PN
A

:⊕
co

rr
es

po
nd

s
to

an
op

er
at

or
fo

rm
ed

by
ta

ki
ng

th
e

te
ns

or
p

ro
d

u
ct

of
a

ve
ct

or
co

nt
ai

ni
ng

th
re

e
sc

al
ar

fu
nc

ti
on

s
an

d
fo

ur
ag

gr
eg

at
or

fu
nc

ti
on

s,
re

su
lt

in
g

in
a

te
ns

or
in

d
ex

ed
by

i,
s,

a,
w

he
re

th
e

in
d

ex
i

co
rr

e-
sp

on
d

s
to

th
e

cu
rr

en
tl

y
co

ns
id

er
ed

no
d

e,
s

co
rr

es
po

nd
s

to
th

e
sc

al
ar

d
im

en
si

on
an

d
a

in
d

ex
es

th
e

ag
gr

eg
at

or
d

im
en

si
on

.
Fo

r
m

or
e

de
ta

ils
se

e
C

or
so

et
al

.,
2
0
2
0

.

A
ct

iv
at

io
n-

O
nl

y
h(

l+
1)

i
=

σ
(m

(l
)

i

)

G
IN

V
an

ill
a/

Ex
pa

nd
er

m
(l
)

i
=

(1
+

ϵ)
h(

l) i
+

∑
j∈
N
(i
)

h(
l) j

h(
l+

1)
i

=
σ
(m

(l
)

i
M

(l
)
⊙

W
(l
))

A
ct

iv
at

io
n-

O
nl

y
h(

l+
1)

i
=

σ
(m

(l
)

i

)

G
ra

ph
Sa

ge
V

an
ill

a/
Ex

pa
nd

er
m

(l
)

i
=

C
O

N
C

A
T
(h(

l) i
,M

A
X

j∈
N
(i
)σ
(h

(l
)

j
M

(l
)

1
⊙

W
(l
)

1
))

h(
l+

1)
i

=
σ
(m

(l
)

i
M

(l
)

2
⊙

W
(l
)

2
)

∥σ
(m

(l
)

i
M

(l
)

2
⊙

W
(l
)

2
)∥

2

A
ct

iv
at

io
n-

O
nl

y
m

(l
)

i
=

h(
l) i
+

M
A

X
j∈
N
(i
)σ
(h

(l
)

j
)

h(
l+

1)
i

=
σ
(m

(l
)

i
)

∥σ
(m

(l
)

i
)∥

2

PN
A

V
an

ill
a/

Ex
pa

nd
er

m
(l
)

i
=

C
O

N
C

A
T

s,
a

(⊕
j∈
N
(i
)

h(
l) j

)
h(

l+
1)

i
=

σ
(m

(l
)

i
M

(l
)
⊙

W
(l
))

A
ct

iv
at

io
n-

O
nl

y
m

(l
)

i
=

1 12
∑

s,
a

[⊕
j∈
N
(i
)

h(
l) j

] i,s
,a

h(
l+

1)
i

=
σ
(m

(l
)

i

)

5.4 experiments and discussion 82

5.4.1 General Settings and Baselines

5.4.1.1 Considered GNNs

Throughout this section we refer to the standard, already published, architec-
tures as “vanilla” architectures. We compare the performance of the vanilla
GNN models, the Expander GNN models with different densities (10% and 50%),
the Activation-Only GNN model (we report the best result obtained from the
ReLU, PReLU and Tanh activation functions), as well as the SGC for the GCN

models. To ensure that our inference is not specific to a certain GNN architecture
only, we evaluate the performance across four representative GNN models of
the literature state-of-the-art. The considered models are the GCN (Kipf and
Welling, 2017), the GIN (Xu et al., 2018), the GraphSage (Hamilton, Ying, and
Leskovec, 2017), and the PNA (Corso et al., 2020). The precise model equations
of our proposed architectures applied to these GNNs can be found in Table 5.1.

5.4.1.2 Datasets

We experiment on eleven datasets from areas such as chemistry, social networks,
computer vision and academic citation, for three major graph learning tasks.

For graph classification, we have four TU datasets (Kersting et al., 2016)
which are either chemical or social network graphs, and two Image datasets
(MNIST/CIFAR10) that are constructed from original images following the
procedure in Knyazev, Taylor, and Amer (2019). To perform this conversion they
first extract small regions of homogeneous intensity from the images, named
“Superpixels” (Dwivedi et al., 2020), and construct a K-nearest neighbour graph
from these superpixels. The technique we implemented to extract superpixels,
the choice of K and distance kernel for constructing a nearest neighbour graph
are the same as in Knyazev, Taylor, and Amer (2019) and Dwivedi et al. (2020).

For graph regression, we consider molecule graphs from the ZINC dataset
(Irwin et al., 2012). And for node classification, we use four citation datasets (Hu
et al., 2020; Sen et al., 2008; Wang et al., 2020), where the nodes are academic
articles linked by citations. Details of the used datasets can be found in Table 2.1.

5.4.1.3 Experimentation Details

Since we aim to observe the performance of our benchmark models independent
of the GNN choice, we use the model hyper-parameters found to yield a fair
comparison of GNN models in Dwivedi et al. (2020).

5.4 experiments and discussion 83

Specifically, we follow the same training procedure, such as train/valid/test
dataset splits, choice of optimiser, learning rate decay scheme, as well as the
same hyper-parameters, such as initial learning rate, hidden feature dimensions
and number of GNN layers. We also implement the same normalisation tricks
such as adding batch normalisation after non-linearity of each Update step.

For the node classification task on citation datasets, we follow the settings
from Wu et al. (2019). Our experiments found that the node classification task
on citation graphs of small to medium size can be easily overfit and model
performances heavily depend on the choice of hyper-parameters. Using the
same parameters with Wu et al. (2019), such as learning rate, number of training
epochs and number of GNN layers, helps us achieve similar results with the
paper on the same model, which allows a fair comparison between the proposed
Activation-Only models and the SGC. Our implementation is built upon the open
source library Deep Graph Library (DGL) (Wang et al., 2019). The experiments
are run on a Intel(R) Xeon(R) W-2123 processor with 64GB ram and a NVIDIA
GeForce RTX 2080Ti GPU with 12GB ram.

5.4.1.4 Loss functions

After L message-passing iterations, we obtain

H(L) =
[

h(L)
1 , . . . , h(L)

n

]T
∈ Rn×p,

as the final node embedding, where we denote p as its feature dimension.
Depending on the downstream task, we either keep working with H(L) or
construct a graph-level representation g from H(L),

g =
1
n ∑

i∈V

h(L)
i ,

which we referred to as the Readout step in Section 2.4.1. g or H(L) is then fed
into a fully-connected network (MLP) to be transformed into the desired form of
output for further assessment, e. g., a scalar value as a prediction score in graph
regression. We denote this network as f (·), which, in our experiments, is fixed
to be a three-layer MLP of the form

f (x) = σ(σ(xW1)W2)W3,

where W1 ∈ Rp×(p/2), W2 ∈ R(p/2)×(p/4), W3 ∈ R(p/4)×k with k being the
desired output dimension. The final output, either f (g) or f (H(L)), is compared

5.4 experiments and discussion 84

to the ground-truth by a task-specific loss function. For graph classification and
node classification, we choose cross-entropy loss and for graph regression, we
use Mean Absolute Error (MAE).

5.4.2 Graph Classification

Table 5.2 shows the experiment results of the vanilla GCN/GIN models and
their Expander and Activation-Only variants on the ENZYMES, DD, PROTEINS
and IMDB-BINARY datasets for graph classification. The evaluation metric is
classification accuracy, where the average accuracy, obtained from a 10-folder
cross validation, is used. Note that we also report in Table 5.2 the number of
parameters of the different models, normalised by the number of parameters in
the vanilla model, e.g. 0.37 means that the number of parameters in Activation-
Only model is 37% of the vanilla one.

One direct observation from Table 5.2 is that the Expander GCN models, even
at 10% density, perform on par with the vanilla models. Surprisingly, the same
is true for the Activation-Only model on the ENZYMES, DD and PROTEINS
datasets. IMDB-BINARY is our only graph classification dataset where the node
attributes are initialised to all be equal. This uninformative initialisation seems
to lead to an increased performance if the linear Update step is present, visible
in the performance gap of the Activation-Only models and the Expander GCN

models. While for GIN model we still observe the Activation-Only model and to
match the performance of the vanilla and Expander GIN. In most cases, the SGC

performs worse than the Activation-Only GCN model.
Table 5.3 shows the graph classification results for the MNIST and CIFAR10

datasets. Due to the large computational cost implied by the size of these
datasets we were unable to produce confidence intervals for the provided
results. The GCN Activation-Only model outperforms the SGC by a larger margin
than we observed on the TU datasets in Table 5.2. It seems that especially for
these computer vision datasets the presence of activation functions in the GCN

architecture has a large positive impact on model performance in the graph
classification task. Additional experiments on the GIN architecture reaffirm the
conclusions drawn on the GCN model on graph classification.

5.4.3 Graph Regression

In Table 5.4 the MAE of our studied and proposed models on the ZINC dataset
for graph regression is displayed. Similar to the graph classification task, the

5.4 experiments and discussion 85

Ta
bl

e
5
.2

:1
0
-f

ol
d

C
ro

ss
V

al
id

at
io

n
re

su
lt

s
(m

ea
n

±
st

d
)

of
th

e
G

C
N

/
G

IN
on

th
e

gr
ap

h
cl

as
si

fi
ca

ti
on

ta
sk

p
er

fo
rm

ed
on

th
e

E
N

Z
Y

M
E

S/
D

D
/

P
R

O
T

E
IN

S/
IM

D
B

-B
IN

A
R

Y
d

at
as

et
s.

W
e

se
t

th
e

be
st

re
su

lt
s

to
bo

ld
an

d
u

nd
er

lin
e

th
e

se
co

nd
be

st
re

su
lt

.
In

ad
di

ti
on

,i
f

th
e

re
su

lt
of

A
ct

iv
at

io
n-

O
nl

y
G

C
N

is
be

tt
er

th
an

th
e

SG
C

m
od

el
,w

e
pu

t
∗

ne
xt

to
th

e
re

su
lt

.

EN
Z

Y
M

ES
D

D
Pr

ot
ei

ns
IM

D
B-

BI
N

A
R

Y
G

C
N

A
C

C
.

Pa
ra

m
s.

A
C

C
.

Pa
ra

m
s.

A
C

C
.

Pa
ra

m
s.

A
C

C
.

Pa
ra

m
s.

V
an

ill
a

66
.5

0
±

8.
71

1.
00

75
.1

3
±

3.
44

1.
00

76
.7

3
±

3.
85

1.
00

72
.7

0
±

5.
68

1.
00

SG
C

63
.6

7
±

8.
06

0.
37

75
.9

0
±

3.
93

0.
43

67
.6

5
±

2.
21

0.
38

61
.3

0
±

3.
61

0.
35

Ex
pa

nd
er

-5
0%

64
.8

3
±

8.
64

0.
57

74
.5

3
±

3.
50

0.
56

76
.3

6
±

3.
43

0.
57

72
.4

0
±

5.
70

0.
57

Ex
pa

nd
er

-1
0%

66
.3

3
±

6.
78

0.
22

74
.2

8
±

2.
52

0.
21

76
.5

5
±

1.
90

0.
22

71
.6

0
±

5.
50

0.
22

A
ct

iv
at

io
n-

O
nl

y
66

.6
7
±

6.
71
∗

0.
37

76
.5

7
±

5.
20
∗

0.
43

75
.9

2
±

2.
88
∗

0.
38

62
.7

0
±

3.
32
∗

0.
35

G
IN

A
C

C
.

Pa
ra

m
s.

A
C

C
.

Pa
ra

m
s.

A
C

C
.

Pa
ra

m
s.

A
C

C
.

Pa
ra

m
s.

V
an

ill
a

67
.6

7
±

7.
68

1.
00

68
.7

6
±

5.
55

1.
00

72
.5

1
±

2.
39

1.
00

69
.0

0
±

6.
23

1.
00

Ex
pa

nd
er

-5
0%

67
.0

0
±

6.
05

0.
54

70
.0

3
±

4.
20

0.
51

70
.0

8
±

2.
69

0.
52

68
.8

0
±

5.
90

0.
52

Ex
pa

nd
er

-1
0%

65
.8

3
±

7.
75

0.
16

68
.5

9
±

2.
70

0.
12

70
.5

3
±

3.
96

0.
13

72
.0

0
±

6.
16

0.
13

A
ct

iv
at

io
n-

O
nl

y
62

.8
3
±

7.
15

0.
10

72
.4

9
±

4.
30

0.
19

72
.4

0
±

5.
03

0.
08

69
.5

0
±

3.
88

0.
03

5.4 experiments and discussion 86

Table 5.3: Results of the GCN/GIN on graph classification for the MNIST/CIFAR10

datasets. The format follows Table 5.2.

MNIST CIFAR10

GCN ACC. Params. ACC. Params.
Vanilla 90.77 1.00 52.04 1.00

SGC 24.48 0.36 27.90 0.36
Expander-50% 90.75 0.57 50.69 0.57
Expander-10% 89.00 0.23 50.27 0.23

Activation-Only 83.84∗ 0.36 48.31∗ 0.36

GIN ACC. Params. ACC. Params.
Vanilla 90.33 1.00 42.46 1.00

Expander-50% 92.31 0.56 40.35 0.56
Expander-10% 88.73 0.20 35.93 0.20

Activation-Only 79.49 0.11 39.71 0.11

Expander GCN and Expander GraphSage models are on the same level with their
corresponding vanilla models, regardless of their densities. The performance
of the Expander GIN and Expander PNA models exhibits greater variance across
the different densities, especially in the case of the PNA models the performance
increases as the network gets denser indicating that the density of the Update
step does positively contribute to the model performance of the PNA for the task
of graph regression on the ZINC dataset. The Activation-Only models perform
worse than their Expander counterparts on this task, again confirming the insight
from the results of the Expander GNNs that the linear transform in the Update
step does improve performance in this graph regression task. Again we see that
Activation-Only GCN outperforms the SGC benchmark in this set of experiments.

Hence, for the task of graph regression we observe that both the linear
transformation and non-linear activation function in the Update step have a
positive impact on model performance. We might have been able to expect that
the addition of the transformation performed in the Update step is of greater
impact in a regression task, which is evaluated on a continuous scale, than in a
classification task, where only a discrete label needs to be inferred.

5.4 experiments and discussion 87

Ta
bl

e
5
.4

:R
es

ul
ts

of
th

e
G

C
N

/G
IN

/G
ra

ph
Sa

ge
/P

N
A

on
gr

ap
h

re
gr

es
si

on
fo

r
th

e
Z

IN
C

da
ta

se
t.

Th
e

fo
rm

at
fo

llo
w

s
Ta

bl
e

5
.2

.T
he

sy
m

bo
l↓

hi
gh

lig
ht

s
th

at
sm

al
le

r
va

lu
es

co
rr

es
po

nd
to

be
tt

er
pe

rf
or

m
an

ce
.

G
C

N
G

IN
G

ra
ph

Sa
ge

PN
A

M
A

E
↓

Pa
ra

m
s.

M
A

E
↓

Pa
ra

m
s.

M
A

E
↓

Pa
ra

m
s.

M
A

E
↓

Pa
ra

m
s.

V
an

ill
a

0.
38

23
1.

00
0.

49
39

1.
00

0.
45

30
1.

00
0.

31
80

1.
00

SG
C

0.
69

63
0.

35
—

—
—

—
—

—
Ex

pa
nd

er
-5

0%
0.

38
56

0.
57

0.
52

74
0.

51
0.

45
80

0.
54

0.
33

80
0.

51
Ex

pa
nd

er
-1

0%
0.

39
58

0.
22

0.
48

88
0.

12
0.

47
20

0.
17

0.
38

00
0.

12
A

ct
iv

at
io

n-
O

nl
y

0.
58

55
∗

0.
13

0.
52

20
0.

01
0.

49
10

0.
07

0.
44

90
0.

02

5.4 experiments and discussion 88

Ta
bl

e
5
.5

:1
0

-f
ol

d
C

ro
ss

V
al

id
at

io
n

re
su

lt
s

(m
ea

n
±

st
d

)
of

th
e

G
C

N
/

G
IN

on
no

d
e

cl
as

si
fi

ca
ti

on
fo

r
th

e
C

O
R

A
/

C
it

eS
ee

r/
Pu

bM
ed

/
O

G
B

N
-

A
rx

iv
da

ta
se

ts
.T

he
fo

rm
at

fo
llo

w
s

Ta
bl

e
5
.2

.

C
or

a
C

it
eS

ee
r

Pu
bM

ed
O

G
BN

-A
rx

iv
G

C
N

A
C

C
.

Pa
ra

m
s.

A
C

C
.

Pa
ra

m
s.

A
C

C
.

Pa
ra

m
s.

A
C

C
.

Pa
ra

m
s.

V
an

ill
a

80
.5

4
±

0.
44

1.
00

69
.5

0
±

0.
19

1.
00

79
.0

4
±

0.
12

1.
00

71
.2

2
±

0.
76

1.
00

SG
C

80
.4

0
±

0.
00

0.
03

72
.7

0
±

0.
00

0.
02

78
.9

0
±

0.
00

0.
01

66
.5

3
±

0.
07

0.
05

Ex
pa

nd
er

-5
0%

80
.4

2
±

0.
28

0.
50

69
.4

3
±

0.
34

0.
50

79
.3

4
±

0.
28

0.
50

71
.4

2
±

0.
55

0.
56

Ex
pa

nd
er

-1
0%

80
.5

9
±

0.
64

0.
10

68
.6

8
±

0.
73

0.
10

78
.9

5
±

0.
63

0.
11

70
.7

0
±

0.
42

0.
19

A
ct

iv
at

io
n-

O
nl

y
80

.4
0
±

0.
00

0.
03

72
.7

0
±

0.
00

0.
02

78
.9

0
±

0.
00

0.
01

68
.2

9
±

0.
13

0.
05

G
IN

A
C

C
.

Pa
ra

m
s.

A
C

C
.

Pa
ra

m
s.

A
C

C
.

Pa
ra

m
s.

A
C

C
.

Pa
ra

m
s.

V
an

ill
a

76
.5

7
±

1.
36

1.
00

68
.3

3
±

0.
56

1.
00

76
.5

5
±

0.
84

1.
00

69
.3

7
±

0.
34

1.
00

Ex
pa

nd
er

-5
0%

77
.0

6
±

0.
81

0.
52

67
.2

4
±

0.
49

0.
51

76
.0

6
±

1.
14

0.
51

69
.1

1
±

0.
86

0.
59

Ex
pa

nd
er

-1
0%

77
.0

8
±

0.
96

0.
13

64
.8

3
±

0.
49

0.
12

76
.9

1
±

0.
51

0.
12

68
.7

8
±

0.
31

0.
26

A
ct

iv
at

io
n-

O
nl

y
78

.6
5
±

0.
36

0.
07

66
.7

0
±

0.
65

0.
06

77
.4

6
±

0.
67

0.
02

64
.1

0
±

0.
32

0.
08

5.4 experiments and discussion 89

5.4.4 Node Classification

Results from the node classification experiments on four citation graphs (CORA,
CITESEER, PUBMED and ogbn-arxiv) can be found in Table 5.5. For medium-
sized datasets such as CORA, CITESEER and PUBMED, we have the same
observation as for the graph classification and graph regression tasks discussed
in Sections 5.4.2 and 5.4.3, the Expander models, regardless of their sparsity,
are performing on par with the vanilla ones. Only on the CITESEER dataset,
we observe that the Expander GIN model with 10% density shows a small but
non-negligible drop in performance compared to the vanilla model; while the
50% and 90% dense Expander models remain comparable to the vanilla one.
The Activation-Only models also perform as well as or even better than (on
CITESEER) the vanilla model. The performance of the GCN Activation-Only
model and SGC is equally good across all three datasets.

These conclusions remain true for the large-scale dataset ogbn-arxiv with
169, 343 nodes and 1, 166, 243 edges. The ExpanderGCNs are on par with the
vanilla GCN while the Activation-Only model and SGC perform slightly worse.
However, the training time of Activation-Only model and SGC is five times
faster than that of the Expander and vanilla models. The Activation-Only model
outperforms the SGC.

We observe that in the node classification task both the linear transformation
and the non-linear activation function offer no benefit for the medium scale
datasets. For the large-scale dataset we find that the linear transformation can
be sparsified heavily without a loss in performance, but deleting it entirely does
worsen model performance.

5.4.5 Expander Sparsification

different samplers In Figure 5.2(a) we compare the results from an Ex-
pander GCN to those achieved by a GCN model, where the expander linear layer,
presented in Definition 5.1, is replaced by a deterministic sparsification construc-
tion from Bourely, Boueri, and Choromonski (2017) the “Regular Rotating Edge
Construction (RREC)”. Bourely, Boueri, and Choromonski (2017) observe that
sparsifiers obtained from the RREC sampler have a significant lower algebraic
connectivity than the Expander Linear Layer sampler which we chose to utilise
in the Expander GNNs. We observe that Expander GCN outperforms the RREC

sampled GCN for almost all parameter budgets. Therefore, we confirm that the

5.4 experiments and discussion 90

10
5

#Parameters(log)

67.5

68.0

68.5

69.0

69.5

70.0

70.5

71.0

71.5

Ac
cu

ra
cy

ogbn-arxiv

(a)

10
3

10
4

10
5

#Parameters(log)

45

50

55

60

65

70

75

80

Citations

(b)

ogbn-arxiv
Cora

Citeseer
PubMed

Expander GCN
RREC GCN

Vanilla GCN

Figure 5.2: (a,b): Accuracy vs. Number of parameters plot on a logarithmic x-axis
on (a) ogbn-arxiv for GCN models with different sparsifiers and (b) on
CORA/CITESEER/PUBMED for vanilla and Expander GCN under the same
parameter budget.

Expander Linear Layer is an appropriate choice for the Expander GNN model
class.

sparse wide model vs . dense narrow model The experiments in Sec-
tions 5.4.2, 5.4.3 and 5.4.4 show that the linear transform layer in the Update step
of GNNs can often be sparsified to an arbitrary level without loss of performance.
From this a natural question then arises:

Will a shrunk model, i. e., a model with a smaller hidden dimension
used in the Update step, matching the number of parameters of the
sparsified Expander GNN, perform on par with its Expander GNN

counterpart?

To study this question we compare the performance of vanilla GCNs to Ex-
pander GCNs with equally many parameters, but doubling the size of the hidden
dimension of the vanilla GCN. Figure 5.2(b) shows the experiment results on
the three citation datasets. We observe that for most parameter values the Ex-
pander GCN outperforms the vanilla GCN. This phenomenon becomes more
evident when the number of parameter is small. In conclusion, it seems to be
beneficial to choose a sparsified large model rather than a compact model with
equally many parameters.

5.5 chapter conclusion 91

� �� ��� ��� ��� ��� 	�� 	��
��
��$#��&

��
*�

��
�

�%
��

"�
�#

&&
���

#�
�&

��
 �

�

��!$ �����
�'�(�'�#"&���������
�'�(�'�#"&����������
�'�(�'�#"&���"�����
�)$�"��%��������
�)$�"��%��������
�)$�"��%��������
��"� �����

Figure 5.3: Training loss (cross-entropy) convergence behaviour of the different model
types for the GCN used for graph classification on the PROTEINS dataset.

5.4.6 Convergence Behaviour

In Figure 5.3 we observe the training loss convergence of the vanilla GCN,
Expander GCNs, Activation-Only GCNs and the SGC. When training these models
we have implemented a learning rate decay scheme, where the training process
is terminated if the learning rate drops below 10−6. We are able to observe,
that the number of epochs required for convergence is roughly equal for the
Activation-Only GCN and SGC, as well as the Expander GCN and the vanilla GCN.
For both pairwise comparisons we are able to observe, that our proposed models
converge to a lower training loss than their counterparts.

5.5 chapter conclusion

With extensive experiments across different GNN models and graph learning
tasks, we are able to confirm that the Update step can be sparsified heavily
without a significant performance cost.

In fact for seven of the eleven tested datasets across a variety of tasks we found
that the linear transform can be removed entirely without a loss in performance,
i. e., the Activation-Only models performed on par with their vanilla counterparts,
with around 70% reduction in number of parameters. The Activation-Only GCN

model consistently outperformed the SGC model and especially in the computer
vision datasets we witnessed that the activation functions seem to be crucial for
good model performance accounting for an accuracy difference of up to 59%.

5.5 chapter conclusion 92

In Wu et al. (2019) it is hypothesised that “the non-linearity between GCN

layers is not critical - but that the majority of the benefit arises from the local
averaging.” The above findings partially support this hypothesis as our results
on the Expander GNNs also indicate that the Update step can be simplified
significantly without a loss in performance. Contrary to Wu et al. (2019), we
find that in many tasks and datasets, nonlinear activation functions result in a
significant accuracy boost and it is in fact the linear transformation in the Update
step that can be removed or heavily sparsified.

The Activation-Only GNN is an effective and simple benchmark model frame-
work for any Message-Passing Neural Network. It enables practitioners to test
whether they can cut the large amount of model parameters used in the linear
transform of the Update steps. If the linear transform does contribute positively
to the model’s performance then the Expander GNNs provide a model class of
tuneable sparsity which allows efficient parameter usage.

The finding in this work also raises a disturbing concern:

Since the Aggregation step of graph structure plays a most important
role in the MPNN, will it as well be more vulnerable to the graph
structure noise?

We will investigate this issue in the next chapter on how will the disturbance of
graph structure impact the learning process of the MPNN.

6
R O B U S T G R A P H C O N V O L U T I O N A L N E U R A L N E T W O R K S

In this chapter, we further investigate the division of labour between the Ag-
gregation and the Update step in MPNNs and how one impacts the other. We
learned from Chapter 5 that the Aggregation step which incorporates graph
structure information plays a more important role than the Update step that
utilise node feature information. Does there exist an approach to enhance the node
feature information in MPNNs? This question is in particular useful under the noisy
setting when the graph structure is perturbed, to which the MPNN architecture
is a priori vulnerable.

Thus in this work, we study the robustness of MPNNs to perturbations of their
input. We focus on the much used GCN and introduce the random GCN for which
a random matrix theory analysis is possible. This analysis suggests that if the
graph is sufficiently perturbed, or in the extreme case random, then the GCN

fails to benefit from the node features. It is furthermore observed that enhancing
the message passing step in GCNs by adding the node feature kernel to the
adjacency matrix of the graph structure solves this problem. An empirical study
of a GCN utilised for node classification on both synthetic and six real datasets
further confirms the theoretical findings and demonstrates that perturbations of
the graph structure can result in GCNs performing significantly worse than MLPs

run on the node features alone. In practice, adding a node feature kernel to the
message passing of perturbed graphs results in a significant improvement of the
GCN’s performance, thereby rendering it more robust to graph perturbations.

6.1 introduction

With GNNs being a more and more impactful model type for the analysis of
graph data, many architectures have been proposed in recent years, successively
improving on weaknesses of previous architectures (e.g. Corso et al. (2020),
Hamilton, Ying, and Leskovec (2017), and Xu et al. (2019)). A popular GNN archi-
tecture which has remained a benchmark throughout the past years, partly due
to the simplicity of its model equation and partly due to its good performance is
GCN (Kipf and Welling, 2017). The GCN is part of the MPNN model class, where
the computations are split into a message passing step in which node features

93

6.1 introduction 94

are aggregated over neighbourhoods in the underlying graph structure and an
update step in which node features are processed, most commonly by a MLP.

While much work is being done in the empirical exploration of GNNs, relatively
fewer advances have been made in their theoretical analysis. A major advance in
the theoretical line of research was the expressivity analysis of different message
passing operators performed by Xu et al. (2019) and Morris et al. (2019). These
analyses inspired many researchers to further investigate the expressivity of
GNNs and resulted in a multitude of new architectures being proposed (Dasoulas
et al., 2020; Maron et al., 2019). Another upcoming topic in the development
of GNNs is their robustness to perturbations of the underlying graph structure
(Sun et al., 2018; Zügner and Günnemann, 2019).

In this work, we introduce the random GCN, in which parameters of the Update
step are randomly sampled from Gaussian distributions rather than trained
as is commonly the case. The random GCN allows us to make use of several
powerful random matrix theory tools to gain a theoretical understanding of the
factors driving the inference obtained from the GCN model. Our most insightful
hypothesis obtained in this way is that,

the message passing step dilutes (or in the extreme case completely ignores)
information present in the node features if the underlying graph structure
is noisy (or in the extreme case completely random).

In our theoretical analysis we observe that if information of the node features
is introduced to the message passing operation, then this loss of information
is avoided. This leads us to hypothesise that the addition of the node feature
kernel to the message passing operators in GNNs could render them more robust
to noise or mispecification of the underlying graph structure.

In a second part of our presented work we test the hypotheses, obtained in our
study of the random GCN, on the state-of-the-art GCN architecture applied to both
synthetic and six real-world benchmark datasets. This allows us to empirically
verify our theoretical insight, rendering the random features approach for
theoretical analysis a promising avenue for further theoretical study of GNN

architectures, and the inclusion of node feature information in the message
passing step a valid method to increase the robustness of GNNs.

Our main findings may be summarised as:

1. We contribute both a theoretical and an empirical understanding of how
graph and node feature information is processed by the GCN.

2. Most importantly, we find that the preservation of node feature information
is entirely dependent on an informative underlying graph structure.

6.2 related work 95

3. We furthermore, propose a novel GCN message passing scheme which
results in more robust inference from a GCN to structural noise.

The remainder of this paper is organised as follows. In Section 6.2 we intro-
duce related literature. In Section 6.3 we propose the random GCN and analyse it
using tools from random matrix theory. The theoretical insight from Section 6.3
is then empirically verified in Section 6.4, where we confirm our hypotheses on
the standard GCN on synthetic and six real benchmark datasets and observe the
robust performance of the GCN when the node feature kernel matrix is added
in the message passing step.

6.2 related work

The robustness of GNNs to perturbations of their input is becoming a topic
of increasing importance. There exists an extensive literature branch which
studies adversarial attack and defence strategies on graph data in the context of GNNs

summarised in Günnemann (2022), Zhou, Zheng, and Huang (2020) and Sun
et al. (2018) with the latter pointing out directly the need for the development
of more robust GNNs. In this work, we present one approach to robustifying
the performance of GNNs to graph perturbations. In this literature the focus
often lies on specific attack strategies perturbing the graph structure in order to
alter the inference obtained from a GNN, most commonly the GCN, and defence
strategies which aim to develop methodology which is robust to these attacks.

Recent advances in this literature include, Zügner and Günnemann (2019)
proposing a meta learning approach to find optimal graph perturbations. Their
perturbation mechanism is found to drastically decrease the global performance
of GNNs to be in some cases worse than simple benchmarks such as logistic re-
gression run on the node features only. Zügner and Günnemann (2020) propose
an algorithm which certifies robustness of individual nodes for the GCN used
for node classification under perturbations of the graph structure. In Geisler,
Zügner, and Günnemann (2020) and Jin et al. (2021) the message passing opera-
tor in the GCN is replaced by the Soft Mediod function and the sum of several
distance based adjacency matrices, respectively, with the aim of more robust
GCN performance. Jin et al. (2020) propose to learn the graph structure jointly
with the GNN parameters to robustify performance and also Entezari et al.
(2020) propose to alter the graph structure by using a low rank approximation of
the adjacency matrix. The works of Zhu et al. (2019) and Zhang and Zitnik (2020)
are most closely related to our proposition of using a node feature kernel to
reweight edges in Section 6.3.3 as they both propose to reweight edges based on

6.3 analysis of the random gcn 96

the node features. Our theoretical findings in Section 6.3 support this approach
of more directly taking the node features into account in the aggregation scheme
of GNNs to increasing their robustness.

This work distinguishes itself from adversarial attacks and defence literature
fundamentally in that we study untargeted, random graph perturbations which
arise as a result of mispecification of the data or uncertainty in the recording
methods of the networks. For this kind of perturbation we are able to provide
both theoretical (on a toy data example) and empirical understanding, which
enables us to offer a distinction between the node feature data and the graph
data in networks data sets and how these different information sources are
processed by a GNN architecture.

Our work is also related to the literature studying the challenges that het-
erophilic graphs pose for GNNs (Pei et al., 2020; Zhu et al., 2021, 2020). This
literature distinguishes homophilic and heterophilic graphs, in which edges in
the graph predominantly connect nodes of equal and unequal classes, respec-
tively. Both of these structures can be, from a theoretical standpoint, equally
class-informative, it is only the structure of the class-information which varies.
In our work here we consider an orthogonal problem, which is the situation
of a diminishing class-structure in the graph, independent of its homo- or het-
erophilic nature, and the effect this diminishment has on the ability of GNNs to
process the information contained in the node features.

6.3 analysis of the random gcn

In this section we present our theoretical analysis and main findings. Specifically,
we consider a random GCN model1, defined as

Φ = σ(ÃXW), (6.1)

where Ã ∈ Rn×n denotes the normalised adjacency operator encoding the
graph structure (see (6.3) for its definition), X ∈ Rn×p corresponds to the node
features, W ∈ Rp×d is a random matrix with Wij ∼ N (0, 1) independent and
identically distributed (i.i.d.) and σ is an activation function applied entry-wise.

1 In Section 6.4.2.1, we show that the performance of the large random GCN matches that of the
vanilla GCN.

6.3 analysis of the random gcn 97

In particular, we will study the spectral behaviour of the Gram matrix2 defined
as

G =
1
d

ΦΦ⊺ =
1
d

σ(ÃXW)σ(W⊺X⊺Ã⊺). (6.2)

Before getting into the analysis of G we require assumptions on the node
features and graph structure.

assumption 1 (node features). We suppose that X⊺ = [x1, . . . , xn] ∈
Rp×n, where x1, . . . , xn are independent node feature vectors, each being a sample
from one of k = 2 distribution classes C1 and C2. We further assume that the
node feature vectors xi follow a Gaussian mixture model; Specifically, for xi ∈ Ca,
xi = (−1)a µ√

p + zi for some vector µ ∈ Rp and zi ∼ N (0, Ip/p).

We stress that Assumption 1 can be relaxed to a larger class of random
vectors x ∈ X , where X denotes any normed space, satisfying the concentration
property,

P(|φ(x)− E[φ(x)]| > t) ≤ Ce−(t/σ)q
,

with q ∈ R+, for all 1-Lipschitz functions φ : X → R.
Such vectors are called random concentrated vectors and have the particular

property to be stable by Lipschitz transformations (Louart and Couillet, 2018).
The simplest example of concentrated vectors is the standard Gaussian vector
z ∼ N (0, Ip) (Ledoux, 2001). A more complicated class of examples arises from
the fact that the concentration property is stable through Lipschitz maps:

remark 6 .3 .1. if z ∈ Rd is concentrated and g : Rd → Rp is 1-Lipschitz, then
g(z) is also concentrated.

A large family of generative models falls under this more complicated class of
examples, such as, the “fake” images generated by due to these images being
constructed as Lipschitz transformations of random Gaussian vectors (Seddik
et al., 2020).

Now we introduce the underlying model that defines the graph structure. We
assume that the adjacency matrix A of the graph is generated by a SBM (Karrer
and Newman, 2011).

assumption 2 (graph structure). We assume that the entries of A are
independent (except for Aii = 1 for all i) Bernoulli random variables with parameter

2 G provides access to the internal functioning and performance evaluation of the random GCN.

6.3 analysis of the random gcn 98

πij = q2Cab ∈ (0, 1) for xi ∈ Ca and xj ∈ Cb. In particular, q ∈ (0, 1) represents
the probability of an edge occurring between two nodes, while Cab represents the
probability of an edge arising between nodes in classes Ca and Cb.

Note that self-loops are implicitly added in Assumption 2, where we assume
Aii = 1 for all i. Therefore, we consider that the normalised adjacency operator
in (6.1) is defined as

Ã =
1√
n
(A − qq⊺) , (6.3)

where q = q1n
3. The centring with qq⊺ is necessary for the eigenvectors corre-

sponding to the extremal eigenvalues of the operator to be class informative
(Li, Han, and Wu, 2018), i.e., the centring operation removes the uninformative
eigenvector corresponding to the largest eigenvalue of the adjacency matrix,
simplifying the theoretical analysis. Specifically, for our analysis in the asymp-
totic regime where n → ∞ (see Assumption 3 subsequently), the centring with
qq⊺ and the normalisation by 1√

n are required so that Ã has a bounded spectral
norm asymptotically. In practice, the centring by qq⊺ is not feasible as it results
in a dense matrix. In our experiments in Section 6.4, we see this discrepancy to
be of little consequence in practice.

remark 6 .3 .2. Assumption 2 allows us to sample directed as well as undirected
graphs. Often the spectral analysis of graphs needs to be restricted to undirected
graphs, since the analysis of complex-valued spectra arising for directed graphs poses
a significant challenge. We are able to include directed graphs since the Gram matrix,
analysed in Section 6.3.1, and X̃X̃⊺, analysed in Section 6.3.2, have real spectra even
if the underlying graph structure is directed.

6.3.1 Spectral Behaviour of the Gram Matrix

Let X̃⊺ = [x̃1, . . . , x̃n] = X⊺Ã ∈ Rp×n, the entries of the Gram matrix defined in
(6.2) are given by

Gij =
1
d

σ(W⊺x̃i)
⊺σ(W⊺x̃j) =

1
d

d

∑
ℓ=1

σ(w⊺
ℓ x̃i)σ(w

⊺
ℓ x̃j),

3 The vectors q can be consistently estimated through the degree vector d = A1n as q ≈ d/
√

d⊺1n.

6.3 analysis of the random gcn 99

where w⊺
ℓ denotes the ℓ-th row of W⊺. Since all the wℓ follow the same distri-

bution N (0, Ip), taking the expectation over w ∼ N (0, Ip) (conditionally on X
and A) yields the average Gram matrix Ḡ defined with entries

Ḡij = E
w|X,A

[
σ(w⊺x̃i)σ(w⊺x̃j)

]
. (6.4)

In particular, in the large n, p, d limit, it has been shown in Louart, Liao, and
Couillet (2018) that the spectrum (and largest eigenvectors) of G are fully
described by Ḡ. Specifically, the resolvent of G defined as,

Q(z) = (G + zIn)
−1 , (6.5)

for z ∈ C+ (with ℑ(z) > 0), has a deterministic equivalent Q̄(z) (conditionally on
X and A).

definition 6 .1 (deterministic equivalent). A squared deterministic
matrix Q̄(z) is said to be a deterministic equivalent for the symmetric random
matrix Q(z) if, for all deterministic matrix M ∈ Rn×n and vectors u, v ∈ Rn of
bounded norms (spectral and Euclidean, respectively), we have, as n → ∞, with
some probability or almost surely

1
n

Tr (M(Q(z)− Q̄(z))) → 0, u⊺(Q(z)− Q̄(z))v → 0,

which we will simply express using the notation Q(z) ↔ Q̄(z).

remark 6 .3 .3. The notion of deterministic equivalent of a resolvent matrix Q is
related to the existence of a non-asymptotic deterministic matrix having, in probability
or almost surely, the same scalar observations as the random observations through Q.

remark 6 .3 .4. Such a deterministic equivalent is a standard object within random
matrix theory (Hachem, Loubaton, and Najim, 2007) since it allows us to characterise
the behaviour of the eigenvalues of G as well as its largest (often informative)
eigenvectors. Specifically, the spectral measure of G,

µn =
1
n

n

∑
i=1

δλi(G),

6.3 analysis of the random gcn 100

where λi(G) denotes the ith eigenvalue of G, is related to Q(z) through the Stieltjes
transform

qn(z) =
∫
(t − z)−1µn(dt) =

1
n

Tr(Q(−z)).

While the eigenvector ûi ∈ Rn corresponding to eigenvalue λi(G) is related to
Q(z) through the Cauchy-integral ûiû

⊺
i = −1

2πi

∮
Γi

Q(−z)dz where Γi is a positively
oriented complex contour surrounding λi(G).

A large dimensional growth rate assumption provides the existence of Q̄(z).

assumption 3 (growth rate). As n → ∞,

1. p/n → c ∈ (0, ∞) and d/n → r ∈ (0, ∞);

2. lim supn ∥X̃∥ < ∞4 and |Ca|/n → ca ∈ (0, 1);

3. σ is λσ-Lipschitz continuous with λσ > 0 constant.

Under Assumption 3, we have from (Louart, Liao, and Couillet, 2018)

Q(z) ↔ Q̄(z) =
(

Ḡ
1 + δg(z)

+ zIn

)−1

, (6.6)

where δg(z) is the unique positive solution to the fixed point equation δg(z) =
1
n Tr(ḠQ̄(z)).

From (6.6), to describe the behaviour of G one needs to address the non-
linearity σ in the matrix Ḡ, this is achieved by approximating Ḡ by a more
tractable form in the large n limit. An additional regularity condition on σ is
needed which we formulate now.

assumption 4 (regularity of σ). Suppose that σ is twice differentiable with
lim supn,x∈R |σ′′(x)| < ∞. Furthermore, for ξ ∼ N (0, 1) suppose E[σ(ξ)] = 0
and E[σ2(ξ)] = 1.

Denote the quantity bσ = E[σ′(ξ)]. Under Assumptions 3-4, from (Fan and
Wang, 2020, Lemma F.1), the average Gram matrix Ḡ can be approximated by
the n × n matrix G̃ = b2

σX̃X̃⊺ + (1 − b2
σ)In, since almost surely as n → ∞

1
n
∥Ḡ − G̃∥2

F → 0. (6.7)

This approximation ensures in particular that Ḡ and G̃ share the same spectrum.

4 This assumption holds if additional assumptions on the node feature mean vector µ and the
graph parameters Cab, which shall be provided Assumption 5, are placed.

6.3 analysis of the random gcn 101

remark 6 .3 .5. The approximation of Ḡ by G̃ in (6.7) is valid when the matrix
X̃X̃⊺ is of bounded spectral norm. This will be ensured in Assumption 5 where
additional assumptions are placed on our model parameters µ and Cab. Furthermore,
since the node features xi follow a Gaussian mixture model (as per Assumption 1), if
Ã has a bounded spectral norm , then the matrix X̃ falls under the setting of (Fan
and Wang, 2020) in which the relation in (6.7) holds.

Since the behaviour of the average Gram matrix Ḡ reduces to the analysis of
the spectral behaviour of the matrix X̃X̃⊺ as per the approximation in (6.7), we
will analyse X̃X̃⊺ for the remainder of Section 6.3.

6.3.2 Spectral Behaviour of X̃X̃⊺

We first need further controls on the quantities µ and Cab as we describe in the
following assumption.

assumption 5. As n → ∞,

1. lim supn ∥µ∥ < ∞;

2. Caa = 1 + ηa√
n for a ∈ {1, 2} and Cab = 1 for a ̸= b ∈ {1, 2}, where

ηa = (−1)aη and lim supn η < ∞.

remark 6 .3 .6. Assumption 5.2 defines a dense graph such that the clustering with
spectral methods is not asymptotically trivial. Real-World graphs are usually sparse
and fall within our theoretical analysis by considering the entry-wise multiplication of
the adjacency matrix A by a random binary mask as is done by Zarrouk et al. (2020).
Furthermore without loss of generality, we have specified ηa = (−1)aη for clarity
of exposition of our theoretical results (Theorem 6.3.7), which can be generalised to
different choices of the inter-class similarities (choices of ηa).

Our main result (Theorem 6.3.7) provides a deterministic equivalent for the
resolvent of X̃X̃⊺ defined as

QX̃(z) =
(
X̃X̃⊺ + zIn

)−1 . (6.8)

6.3 analysis of the random gcn 102

theorem 6 .3 .7. Define the quantities γ f = ∥µ∥2, γg = q2η, ν = q2(1− q2) and

the matrices U =
[
ȳ ϕ

]
∈ Rn×2,

B =

γ2

g(
γ f
c + 1) γg(

γ f
c + 1)

γg(
γ f
c + 1)

γ f
c

 , T =

1 0

0 ν

 ,

where ȳ = y√
n (with y ∈ {−1, 1}n the vector of labels) and ϕ = 1√

n Nȳ with
N ∈ Rn×n a random matrix having random i.i.d. entries with zero mean and variance
ν. Under Assumptions 1, 2, 3 and 5, the resolvent QX̃(z) has a deterministic5

equivalent defined as

Q̄X̃(z) = ζ · (1 + δ1)

(
In − ζU

[
B−1 + ζT

]−1
U⊺
)

,

where ζ = 1+δ2
ν+z(1+δ1)(1+δ2)

and (δ1, δ2) is the unique couple solution of the fixed
point equations system

δ1 =
1
c

ν(1 + δ1)

ν + z(1 + δ1)(1 + δ2)
, δ2 =

ν(1 + δ2)

ν + z(1 + δ1)(1 + δ2)
.

Sketch of proof. The proof starts by determining a random equivalent of the
adjacency matrix A. Since Aij is Bernoulli distributed (see Assumption 2) with
parameter q2(1+ (−1)ki δki=kj η/

√
n) with ki ∈ {1, 2} the class of node i, we may

write Aij = q2 + q2(−1)ki δki=kj η/
√

n + Nij where Nij is a zero mean random

variable with variance ν + O(n− 1
2). Hence, ∥Ã − (q2ηȳȳ⊺ + 1√

n N)∥ → 0 as
n → ∞. Finally, exploiting standard random matrix theory tools from (Hachem,
Loubaton, and Najim, 2007; Louart and Couillet, 2018) provides the deterministic
equivalent Q̄X̃(z).

In essence, Theorem 6.3.7 shows that the deterministic equivalent Q̄X̃(z) is
composed of two main terms: a diagonal matrix

ζ · (1 + δ1)In,

5 The matrix Q̄X̃(z) is not deterministic since it depends on the random vector ϕ. However, since
we are interested in evaluating quantities of the forms 1

n Tr(MQ̄X̃(z)) or u⊺Q̄X̃(z)v for M, u
and v independent of ϕ, Q̄X̃(z) has a deterministic behaviour asymptotically as n → ∞.

6.3 analysis of the random gcn 103

0.0 0.5 1.0 1.5 2.0 2.5

eigenvalues
0

1

2

3

4

5

6

7

8

de
ns

ity

Largest eigenvalue

(a)
Theoretical density
Eigenvalues distribution

0 25 50 75 100 125 150 175 200

eigenvector index

0.10

0.05

0.00

0.05

0.10

0.15

ei
ge

nv
ec

to
r v

al
ue

s

(b)
y
y

Figure 6.1: (a) Eigenvalues distribution of X̃X̃⊺ versus the theoretical density as per
Theorem 6.3.7 (the theoretical density is obtained as f (x) = 1

π limϵ→0 ℑ[q(x+
iϵ)] where q(z) = 1

n Tr(Q̄X̃(z))). (b) Eigenvector of X̃X̃⊺ corresponding to
its largest eigenvalue which correlates with ȳ.

which describes the behaviour of the noise in the data model (both adjacency
and node features), and an informative rank-2 matrix

U
[

B−1 + ζT
]−1

U⊺,

6.3 analysis of the random gcn 104

which correlates with the vector of labels ȳ if the adjacency matrix and/or the
node features are informative, i. e., values γg and γ f , respectively, are sufficiently
large.

An example with parameters p = 1000, n = 200, q = 0.5, η = 4 and µ =

[2, 0p−1]
⊺ is illustrated in Figure 6.1. Figure 6.1(a) depicts the histogram of the

eigenvalues of X̃X̃⊺ which converges to the limiting distribution described by
Theorem 6.3.7, as well as (b) shows its dominant eigenvector which correlates
with ȳ.

Importantly, our analysis allows us to conclude that when the graph structure
is completely noisy (i. e., η = 0), the dominant eigenvector of X̃X̃⊺ is no longer
aligned with ȳ even if the node features are informative (i.e., γ f large) as will
be clarified in Corollary 6.3.8.

corollary 6 .3 .8 (case η = 0). Recall the notation and Assumptions of
Theorem 6.3.7, for η = 0 (i.e., a non-informative graph structure), Q̄X̃(z) takes the
form

Q̄X̃(z) = ζ · (1 + δ1)

(
In −

ζ2γ f

c + ζνγ f
ϕϕ⊺

)
. (6.9)

And, for ŷ the eigenvector of X̃X̃⊺ corresponding to its largest eigenvalue, |ȳ⊺ŷ|2 −−−→
n→∞

0.

Sketch of proof. Expression (6.9) follows from Theorem 6.3.7 by simply taking
the limit as η → 0. The second part of the Corollary is obtained by computing

|ȳ⊺ŷ|2 =
−1
2iπ

∮

Γ
ȳ⊺QX̃(−z)ȳdz,

where Γ is a small positively oriented complex contour surrounding the largest
eigenvalue of X̃X̃⊺.

Hence, using Q̄X̃(z) as a proxy allows us to state

|ȳ⊺ŷ|2 + 1
2iπ

∮

Γ
ȳ⊺Q̄X̃(−z)ȳdz → 0

almost surely as n → ∞.
The final result is obtained by showing that ȳ⊺ϕϕ⊺ȳ concentrates around its

expectation with

E [ȳ⊺ϕϕ⊺ȳ] =
1
n

Var[ȳ⊺Nȳ] =
ν

n
→ 0,

6.3 analysis of the random gcn 105

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

| y
y|

2

(c)

mlp
GCN (A)
GCN (A + In)
GCN (A + PKP)
GCN (A + PKP + In)
Spectral Clustering

Figure 6.2: Alignment between the largest eigenvector of X̃X̃⊺ and the labels vector ȳ
for different added node feature kernel message passing strategies in terms
of η. The kernel matrix has entries Kij = x⊺i xj, mean and std computed over
100 runs. The GCN with message passing operator Ã + PKP outperforms
other models when the graph structure is noisy (i.e., low values of η).

and by evaluating
1

2iπ

∮

Γ
ζ(−z)(1 + δ1(−z))dz = 0.

The main conclusion from Corollary 6.3.8 is that when the graph structure
is completely random (when η = 0, ∥Ã − 1√

n N∥ → 0), the largest eigenvector

of X̃X̃⊺ (which is intuitively supposed to be informative) does not correlate
with the labels vector ȳ independently of the information contained in the node
features. To overcome this issue, we propose in the now following subsection
6.3.3 to utilise node feature kernels to ensure the preservation of node feature
information.

6.3.3 Message Passing through Node Feature Kernels

As discussed in subsection 6.3.2, when the graph structure (in the extreme case)
is completely random, the random GCN model fails to extract information from
the node features. To make the message passing informative and thereby to
robustify the GCN, we propose to consider the operator Ã + K̄ instead of Ã,
where K̄ is a kernel matrix computed on the node features X. Indeed, let K be a
matrix with entries Kij = κ(x⊺i xj) for some smooth function κ : R → R. Relying

6.4 experiments and discussion 106

on (El Karoui, 2010), the kernel matrix K can be approximated in spectral norm
asymptotically as n → ∞ by

K̃ = κ(0)1n1⊺n + κ′(0)
(

γ f

c
ȳȳ⊺ + ZZ⊺

)
+ ∆, (6.10)

where ∆ = κ′′(0)
2p 1n1⊺n + (κ(1)− κ(0)− γ f

c κ′(0))In. Hence, considering the matrix

Ã+PKP, where P = In − 1
n 1n1⊺n (the centring matrix), maintains the informative

nature of the message passing step (through the term
γ f
c ȳȳ⊺) even in the case

where the operator Ã is not informative. Intuitively, the addition of the node
feature kernel can be interpreted as considering both the originally recorded
graph and a node feature similarity graph in the message passing architecture.
This addition gives GNNs the necessary expressive ability to preserve information
present in the node features, which is lost in the case of uninformative or noisy
graph structures.

Figure 6.2 shows the performance of different message passing strategies
(compared to random MLP and spectral clustering; involving only node features
or adjacency matrix, respectively) on an example with parameters p = 500, n =

250, q = 0.4, µ = [1.7, 0p−1]
⊺, which confirms the effectiveness of introducing a

node feature kernel in the regime where the graph similarity is noisy (i.e., low
values of η), a property which is also validated for practical GCNs as we will
discuss in Section 6.4.

6.4 experiments and discussion

In order to validate our theoretical findings in real-world scenarios, we ex-
periment on the node classification task using GCNs on perturbed data. In
subsection 6.4.2, we begin by justifying the use of the random GCN in the theoret-
ical analysis. Then, we discuss results from experiments on both synthetic and
real-world graphs involving a perturbation scheme on their edges. We show
that the observed phenomena extend to deeper GCN models under structural
perturbation. Importantly, we demonstrate that, under this setting, our proposed
method is comparable with state-of-the-art GNN models also placing a particular
emphasis on the node features and can be further improved when combined
with other techniques. Finally, we examine the robustness of our proposed
method under the setting where node features are also perturbed.

6.4 experiments and discussion 107

6.4.1 Datasets and Implementation Details

We work on synthetic SBM graphs aligned with Assumption 5, with the intra-
community link probability being q2(1 + η√

n) and the inter-community link

probability being q2. We vary the parameter η to generate SBM graphs with
different types of community structure and keep other parameters fixed as
q = 0.5, p = 2500, n = 1600, µ = (2, 0, . . . , 0).

We furthermore work with six real-world datasets which often serve as node
classification benchmarks. These are the three well-studied citation networks
of Cora, CiteSeer and PubMed (Sen et al., 2008), an extended version of Cora
(Bölcskei et al., 2019), called CoraFull, an Amazon co-purchase graph of Photo
and a Co-author network from the authors of Computer Science (CS) (Shchur
et al., 2018).

We follow the semi-supervised node classification setting proposed by Yang,
Cohen, and Salakhutdinov (2016), i.e., we use their train/valid/test split for
Cora/CiteSeer/PubMed, and we randomly sample 20 nodes from each class
as training set, 500 nodes as validation set and another 1000 nodes as test set
for CoraFull/Photo/CS. The statistics of these aformentioned datasets can be
found in Table 2.1.

In line with our theoretical analysis, the main GCN architecture on which
we experimented in this paper is a single-layer GCN (one iteration of message
passing) stacked with a Multi-Layer Perception (MLP). The objective of the
experiments is to validate our theoretical hypotheses and experiment with the
robustness of GCN models under graph structure perturbation.

We also study empirically to what extent the validated hypotheses extrapolate
to scenarios where deeper GCN architectures with multiple layers of graph
propagation are used and/or node features are also perturbed. In comparison
to the state-of-the-art models, in particular to those which also place particular
emphasis on the node features, we demonstrate that our proposed method
has superior or comparable performance and can be further improved when
combined with other techniques.

All the experiments are performed using the Adam optimiser (Kingma and Ba,
2015) and the same set of hyper-parameters, with learning rate being 1e-2, num-
ber of epochs being 200 and hidden feature dimension being 128. We repeat each
experiment 10 times and report the resulting means and standard deviations
to accurately report the impact of random initialisation. Our implementation is
built upon the open source library PyTorch Geometric (PyG) under MIT license
(Fey and Lenssen, 2019). The experiments are run on a Intel(R) Xeon(R) W-2123

6.4 experiments and discussion 108

processor with 64GB ram and a NVIDIA GeForce RTX 2080Ti GPU with 12GB
ram.

perturbation scheme The studied perturbation scheme involves both
edge-deletion noise, where a certain amount of existing edges are randomly
sampled and removed from original graph, and edge-insertion noise, where we
add a certain amount of connections sampled from the non-existing edges in
the original graph. We consider scenarios where edges are removed or added or
both. The ratio of edges changed, i. e., the perturbation ratio, is denoted by α for
edge-deletion and β for edge-insertion.

A node feature kernel matrix is added to study its impact in practice, as
shown in the following equation,

X(i+1) = σ
(
(ϵÂ + (1 − ϵ)N (K))X(i)W

)
, (6.11)

where Â is the GCN message passing operator of the perturbed graph, N (K) =

D−1/2
K KD−1/2

K is the normalised kernel matrix built from node features (DK =

diag(K1n)). We are degree normalising the kernel to match the graph represen-
tation of the GCN message passing operator.

node feature kernels As stated in Section 6.3.3, we use the kernel to
introduce information from the node features to the message passing structure.
The choices of qualified smooth kernel functions are many. In our experiment,
we perform a proof of concept using the simple linear kernel, defined as the
inner product between node features Kij = x⊺i xj.

kernel sparsification Using the full kernel matrix, where the kernel
value is recorded between every pair of nodes, is both computationally costly and
may incorporate redundant information. Therefore, we adopt a sparsification
method using the adjacency matrix of the graph, with which (6.11) can be
rewritten as,

X(i+1)=σ
(
(ϵÂ + (1 − ϵ)N (K ◦ Â))X(i)W

)
, (6.12)

where ◦ denotes Hadamard product. A consequence of this sparsification
method is that the added computational cost stemming from the consider-
ation of the node feature kernel is linear in the number of edges in the graph |E|,
where E denotes the graph’s edge set, and the node feature dimension p, i.e., of
order O(|E|p). Our initial experiments sparsifying the kernel matrix by using a
threshold below which all entries are set to zero resulted in worse performance

6.4 experiments and discussion 109

0 1000 2000 3000 4000 5000
Hidden dimension

30

40

50

60

70

80

N
od

e
C

la
ss

ifi
ca

tio
n

Ac
cu

ra
cy

 (%
)

(a) Cora

0 1000 2000 3000 4000 5000
Hidden dimension

20

30

40

50

60

70
(b) CiteSeer

0 1000 2000 3000 4000 5000
Hidden dimension

40

45

50

55

60

65

70

75

80
(c) PubMed

MLP Vanilla GCN Random GCN

Figure 6.3: Performance change over the embedding dimension with different models:
random GCN, vanilla GCN and MLP.

and introduced the threshold as an extra hyperparameter. Therefore, we chose
to only pursue the sparsification scheme in (6.12). This preliminary observation
could be a result of the particular node features that are recorded in the datasets.

6.4.2 Experiment Analysis

6.4.2.1 Asymptotic Analysis of Random GCN

To validate the practical applicability of the theoretical analysis in Section 6.3,
we study the asymptotic behaviour of the random GCN, the vanilla GCN and a
MLP baseline when the hidden dimension of node features grows. In Figure
6.3, we observe that with increasing hidden dimension, the performance of both
the vanilla GCN and MLP remains stable, while the performance of random
GCN converges to vanilla GCN’s accuracy. Between hidden dimensions of 2000
and 3000 the performance of random GCN starts to match that of vanilla GCN.
Hence, we have given an empirical indication of the conditions under which
our theoretical model, the random GCN, and the vanilla GCN are equivalent.

6.4.2.2 Robustness to Structural Noise: Synthetic SBM

We first test the performance of the proposed model on synthetic SBM graphs.
Three types of SBM graph are considered, which are distinguished by the param-
eter η. η = 0, η = 4 and η = −4 correspond to the cases where the synthetic
graph has no, a homophilic and a heterophilic community structure, respectively.
We experiment on perturbation scenarios with different egde-deletion and edge-
insertion ratios. For each scenario, we record the performance of the vanilla GCN

6.4 experiments and discussion 110

Ta
bl

e
6
.1

:P
er

fo
rm

an
ce

of
G

C
N

w
it

h
no

d
e-

fe
at

u
re

ke
rn

el
u

nd
er

p
er

tu
rb

at
io

n
on

sy
nt

he
ti

c
SB

M
gr

ap
hs

.T
he

be
st

re
su

lt
s

ar
e

se
t

to
b

ol
d

if
th

ei
r

ra
ng

e
of

on
e

st
an

da
rd

de
vi

at
io

n
do

es
no

t
ov

er
la

p
w

it
h

th
e

st
an

da
rd

de
vi

at
io

n
of

th
ei

r
co

un
te

rp
ar

t.

SB
M

(q
=

0.
5,

η
=

0)
SB

M
(q

=
0.

5,
η
=

4)
SB

M
(q

=
0.

5,
η
=

−
4)

(α
,β

)
G

C
N

G
C

N
-k

G
C

N
G

C
N

-k
G

C
N

G
C

N
-k

(0
.0

,0
.0

)
50

.5
3
±

0.
49

66
.3

6
±

0.
81

64
.4

2
±

0.
43

62
.2

6
±

1.
04

63
.2

0
±

0.
94

61
.0

3
±

1.
08

D
el

et
io

n
(0

.2
,0

.0
)

51
.0

3
±

0.
56

65
.4

4
±

1.
07

58
.6

3
±

0.
68

71
.5

7
±

1.
42

60
.8

9
±

0.
83

54
.9

1
±

1.
00

(0
.5

,0
.0

)
49

.2
9
±

0.
59

64
.1

4
±

1.
01

60
.7

6
±

1.
29

68
.8

0
±

2.
04

58
.4

1
±

1.
11

59
.5

1
±

2.
47

In
se

rt
io

n
(0

.0
,0

.5
)

50
.5

7
±

0.
75

68
.5

7
±

1.
25

60
.4

9
±

0.
40

68
.2

0
±

1.
38

58
.8

2
±

1.
16

63
.5

4
±

0.
97

(0
.0

,1
.0

)
49

.1
9
±

0.
47

59
.3

1
±

0.
58

53
.6

7
±

1.
11

66
.5

7
±

1.
73

54
.8

7
±

0.
53

60
.8

4
±

0.
75

D
el

et
.+

In
se

rt
.

(0
.5

,0
.5

)
49

.2
6
±

0.
59

68
.8

4
±

0.
86

50
.5

0
±

0.
37

63
.3

6
±

1.
67

50
.9

4
±

0.
86

63
.0

2
±

0.
91

(0
.5

,1
.0

)
49

.8
4
±

0.
69

65
.4

9
±

1.
22

48
.3

4
±

0.
22

60
.1

6
±

1.
21

49
.2

3
±

0.
45

59
.6

4
±

1.
33

6.4 experiments and discussion 111

Table 6.2: Performance of MLP using only node features on six real-world datasets.
Cora CiteSeer PubMed CoraFull Photo CS

MLP 57.88 ± 0.58 57.23 ± 0.73 72.94 ± 0.32 41.56 ± 1.34 76.06 ± 0.95 87.97 ± 0.67

as well as its performance after adding the node-feature kernel, denoted by an
appendage "-k"6 in Table 6.1.

When a graph has no community structure, structural perturbation has little
impact and adding node-feature information boosts the performance. When
the graphs are homophilic and with a clear community structure, the impact
from graph-structural noise become more visible. Adding a node-feature kernel
significantly improves the model’s robustness against edge-deletion and edge-
insertion noise and their mix. The same conclusion can be drawn on heterophilic
graphs perturbed by edge-insertion noise.

6.4.2.3 Robustness to Structural Noise: Real-World datasets

In this set of experiments, we study the change of model performance under
the same perturbation setting on real-world datasets. Table 6.3 shows the results
over different perturbation scenarios.

Naturally the performance decreases gradually when edges are removed or
added, as we can see from each column. Edge-insertion noise seems to have a
larger impact on the performance than the edge-deletion noise on these real-world
datasets. When the noise ratio is large, the performance of vanilla GCN starts to
be outperformed by the MLP that utilise only node feature information, whose
results are shown in Table 6.2. But this influence can be largely compensated by
adding the node feature kernel. Unlike results from synthetic SBM graphs, for
edge-deletion noise, the addition of the kernel on real-world datasets seems to
have almost no impact.

6.4.2.4 Deeper GCN architecture and Benchmark Models

The previous experiments are based on a single-layer GCN model. In practice, the
best-performing GCN models on these datasets often contain several message-
passing layers and therefore, we want to observe whether our theoretical results
can be extrapolated to the multi-layer case. We build a 4-layer GCN model and
repeat our experiments on the Cora and CS datasets.

The results are shown in Table 6.4. Results of the remaining datasets can be
found in the Appendix B.4.2. Moreover, we also consider varying the weight

6 If not specified, the weight coefficient ϵ of the added kernel in graph propagation is set to 0.5.

6.4 experiments and discussion 112

Ta
bl

e
6
.3

:P
er

fo
rm

an
ce

of
G

C
N

w
it

h
an

d
w

it
ho

u
t

no
d

e-
fe

at
u

re
ke

rn
el

u
nd

er
p

er
tu

rb
at

io
n

on
si

x
re

al
-w

or
ld

d
at

as
et

s.
T

he
fo

rm
at

fo
llo

w
s

Ta
bl

e
6
.1

.W
e

ad
d
↓

ne
xt

to
a

va
lu

e
w

he
n

it
is

sm
al

le
r

th
at

of
th

e
M

LP
in

Ta
bl

e
6
.2

,w
hi

ch
in

di
ca

te
s

th
at

th
e

co
rr

es
po

nd
in

g
m

od
el

pe
rf

or
m

s
w

or
se

th
an

th
e

M
LP

us
in

g
on

ly
no

de
fe

at
ur

es
.

C
or

a
C

it
eS

ee
r

Pu
bM

ed

(α
,β

)
G

C
N

G
C

N
-k

G
C

N
G

C
N

-k
G

C
N

G
C

N
-k

(0
.0

,0
.0

)
79

.3
7
±

0.
65

76
.9

4
±

0.
35

67
.4

5
±

0.
82

68
.0

8
±

0.
91

76
.0

4
±

0.
67

74
.6

8
±

0.
76

D
el

et
io

n
(0

.2
,0

.0
)

76
.1

5
±

0.
81

74
.8

3
±

1.
24

66
.7

9
±

0.
57

66
.9

4
±

0.
82

75
.8

2
±

0.
99

74
.2

8
±

0.
39

(0
.5

,0
.0

)
72

.4
9
±

0.
50

71
.1

8
±

1.
00

63
.5

3
±

0.
75

64
.8

4
±

1.
14

73
.9

5
±

0.
64

73
.2

5
±

0.
75

In
se

rt
io

n
(0

.0
,0

.5
)

68
.5

7
±

0.
73

73
.1

0
±

1.
10

59
.8

5
±

0.
89

66
.1

1
±

1.
34

64
.1

8
±

0.
67

↓
72

.3
8
±

0.
79

↓
(0

.0
,1

.0
)

64
.1

4
±

1.
02

73
.3

6
±

0.
98

55
.3

9
±

0.
93

↓
64

.9
4
±

0.
77

60
.5

6
±

0.
80

↓
71

.3
1
±

0.
51

↓

D
el

et
.+

In
se

rt
.

(0
.5

,0
.5

)
54

.9
8
±

1.
13

↓
66

.4
6
±

1.
03

52
.8

4
±

0.
68

↓
59

.0
3
±

1.
04

62
.6

2
±

0.
72

↓
70

.3
2
±

0.
82

↓
(0

.5
,1

.0
)

48
.0

9
±

0.
88

↓
62

.5
2
±

0.
59

42
.2

8
±

1.
07

↓
58

.0
7
±

1.
34

53
.2

5
±

1.
57

↓
69

.6
5
±

0.
60

↓
C

or
aF

ul
l

Ph
ot

o
C

S

(α
,β

)
G

C
N

G
C

N
-k

G
C

N
G

C
N

-k
G

C
N

G
C

N
-k

(0
.0

,0
.0

)
57

.2
1
±

0.
84

56
.8

8
±

0.
48

90
.9

4
±

0.
49

90
.0

9
±

0.
65

92
.8

9
±

0.
41

92
.6

3
±

0.
31

D
el

et
io

n
(0

.2
,0

.0
)

57
.2

5
±

0.
67

55
.5

6
±

0.
69

91
.8

7
±

0.
40

92
.1

9
±

0.
45

90
.5

8
±

0.
48

90
.8

9
±

0.
48

(0
.5

,0
.0

)
53

.9
0
±

0.
70

54
.6

2
±

0.
87

91
.1

0
±

0.
40

87
.9

7
±

0.
54

89
.7

5
±

0.
60

91
.2

7
±

0.
67

In
se

rt
io

n
(0

.0
,0

.5
)

48
.1

1
±

0.
89

51
.7

9
±

0.
65

82
.7

9
±

1.
43

84
.1

8
±

1.
27

87
.1

6
±

0.
65

↓
90

.8
1
±

0.
70

(0
.0

,1
.0

)
41

.7
6
±

1.
03

51
.9

1
±

1.
00

72
.7

0
±

6.
40

↓
79

.5
8
±

1.
80

80
.3

4
±

0.
80

↓
90

.6
1
±

0.
37

D
el

et
.+

In
se

rt
.

(0
.5

,0
.5

)
34

.7
0
±

0.
47

↓
46

.5
0
±

0.
61

69
.7

0
±

3.
70

↓
74

.6
5
±

2.
36

↓
73

.7
5
±

0.
98

↓
87

.2
8
±

0.
72

↓
(0

.5
,1

.0
)

27
.5

0
±

1.
04

↓
43

.0
4
±

0.
77

61
.1

3
±

2.
49

↓
63

.7
3
±

5.
04

↓
66

.2
6
±

0.
95

↓
87

.5
1
±

0.
58

↓

6.4 experiments and discussion 113

Ta
bl

e
6
.4

:P
er

fo
rm

an
ce

of
G

C
N

w
it

h
an

d
w

it
ho

u
t

no
d

e-
fe

at
u

re
ke

rn
el

u
nd

er
p

er
tu

rb
at

io
n

on
d

ee
p

G
C

N
m

od
el

s,
co

m
p

ar
ed

w
it

h
ju

m
p

kn
ow

le
dg

e
an

d
G

C
N

II
.T

he
fo

rm
at

fo
llo

w
s

Ta
bl

e
6
.1

,w
he

re
in

ad
di

ti
on

w
e

un
de

rl
in

e
th

e
se

co
nd

be
st

re
su

lt
.

C
or

a

(α
,β

)
G

C
N

G
C

N
-k

(ϵ
=

0.
5)

G
C

N
-k

(ϵ
=

0.
2)

G
C

N
-jk

G
C

N
II

G
C

N
-k

-jk

(0
.0

,0
.0

)
79

.0
5
±

1.
36

79
.6

7
±

1.
17

79
.2

7
±

1.
50

80
.3

9
±

1.
13

79
.6

2
±

1.
24

79
.7

4
±

0.
75

D
el

et
io

n
(0

.2
,0

.0
)

76
.4

5
±

1.
39

77
.7

3
±

0.
79

77
.5

4
±

1.
63

77
.8

4
±

0.
99

75
.9

8
±

0.
87

77
.6

2
±

0.
57

(0
.5

,0
.0

)
74

.2
0
±

1.
15

72
.2

2
±

1.
25

72
.7

4
±

1.
23

74
.9

7
±

0.
71

73
.8

7
±

0.
91

74
.1

6
±

0.
77

In
se

rt
io

n
(0

.0
,0

.5
)

64
.9

1
±

1.
87

71
.1

8
±

1.
25

73
.2

0
±

0.
84

73
.0

5
±

0.
54

71
.9

8
±

1.
39

76
.0

8
±

0.
84

(0
.0

,1
.0

)
53

.4
8
±

3.
49

63
.2

0
±

1.
78

71
.2

4
±

1.
04

65
.8

6
±

0.
62

68
.2

6
±

1.
15

72
.9

4
±

0.
67

D
el

et
.+

In
se

rt
.

(0
.5

,0
.5

)
47

.4
0
±

1.
73

57
.3

4
±

1.
53

60
.7

7
±

1.
57

57
.9

4
±

0.
92

62
.5

4
±

1.
55

67
.1

1
±

0.
93

(0
.5

,1
.0

)
35

.2
7
±

3.
48

48
.8

2
±

1.
03

60
.1

2
±

1.
29

48
.8

5
±

1.
06

59
.8

2
±

1.
59

62
.6

7
±

1.
15

C
S

(α
,β

)
G

C
N

G
C

N
-k

(ϵ
=

0.
5)

G
C

N
-k

(ϵ
=

0.
2)

G
C

N
-jk

G
C

N
II

G
C

N
-k

-jk

(0
.0

,0
.0

)
88

.4
4
±

0.
84

89
.8

1
±

0.
52

91
.6

4
±

0.
39

90
.1

9
±

0.
59

92
.1

3
±

0.
39

91
.7

3
±

0.
26

D
el

et
io

n
(0

.2
,0

.0
)

89
.1

9
±

0.
57

88
.4

1
±

0.
53

91
.6

8
±

0.
55

91
.0

4
±

0.
65

91
.5

6
±

0.
53

91
.8

9
±

0.
77

(0
.5

,0
.0

)
86

.6
8
±

0.
57

86
.1

7
±

1.
06

88
.9

1
±

0.
62

88
.4

4
±

0.
69

90
.0

1
±

0.
69

91
.4

3
±

0.
60

In
se

rt
io

n
(0

.0
,0

.5
)

70
.9

4
±

2.
59

84
.3

6
±

1.
19

88
.8

4
±

0.
57

87
.3

7
±

0.
66

90
.3

6
±

0.
58

92
.6

6
±

0.
49

(0
.0

,1
.0

)
35

.8
4
±

6.
91

81
.0

6
±

3.
94

88
.2

7
±

0.
92

81
.7

0
±

0.
63

89
.3

3
±

1.
02

91
.4

2
±

0.
48

D
el

et
.+

In
se

rt
.

(0
.5

,0
.5

)
45

.0
8
±

4.
82

76
.2

7
±

1.
08

82
.2

3
±

1.
08

73
.0

8
±

1.
07

88
.6

6
±

0.
70

87
.5

3
±

0.
85

(0
.5

,1
.0

)
18

.1
6
±

3.
86

53
.1

2
±

6.
21

80
.8

0
±

0.
99

63
.8

4
±

0.
95

88
.7

7
±

0.
89

87
.8

9
±

0.
37

6.4 experiments and discussion 114

Table 6.5: Performance of GCN with and without node-feature kernel under both graph-
structural and node-feature perturbation on PubMed dataset. The format
follows Table 6.1.

γ = 0.5 γ = 1.0 γ = 5.0

(α, β) GCN GCN-k GCN GCN-k GCN GCN-k

(0.0, 0.0) 72.78 ± 1.62 73.88 ± 2.04 68.40 ± 2.95 66.82 ± 1.81 42.43 ± 2.95 39.14 ± 2.60

Deletion (0.2, 0.0) 70.11 ± 2.77 71.95 ± 1.70 68.28 ± 2.77 67.19 ± 1.62 40.23 ± 3.27 40.04 ± 2.43

(0.5, 0.0) 71.61 ± 1.31 70.33 ± 2.38 63.81 ± 3.43 64.93 ± 2.14 40.41 ± 1.92 38.11 ± 1.99

Insertion (0.0, 0.5) 62.93 ± 2.23 70.52 ± 2.08 59.85 ± 1.66 64.77 ± 2.37 40.00 ± 1.20 38.92 ± 1.71

(0.0, 1.0) 58.23 ± 1.79 68.14 ± 1.67 55.37 ± 3.33 63.35 ± 2.30 38.25 ± 1.93 38.72 ± 1.93

coefficient of the added node-feature kernel in graph propagation and compare
with two models specifically proposed for deep GNN architectures: Jumping
Knowledge (JK, Xu et al. (2018)) and a GCN with residual connections and an
identity mapping (GCNII, Chen et al. (2020)). Although not designed to tackle
the graph-structural perturbation problem that we study in this work, the two
models both utilise node feature information, which makes them reasonable
competitors to our proposed method.

As we can see from Table 6.4, there is no fundamental change in the trends
observed for the single-layer model. Adding node-feature kernel helps robustify
model performance against perturbation when edges are inserted and/or re-
moved. The improvement is even more significant when the weight coefficient
ϵ on the kernel in graph propagation is increased. Additionally, our proposed
method, with a high weight on the kernel, is comparable to GCNII model and
in general performs better than the JK model. However, since JK can easily be
combined with our method, the node-feature kernel and JK architecture yields
the best-performing model as can be seen in the rightmost column of Table 6.4.

6.4.2.5 Node feature noise

We now study how node feature noise interacts with our proposed model. We
perform the experiments with the same perturbation setting on the PubMed
dataset. But add Gaussian noise N (0, γ diag(σi)) to the node features where
σi is the estimated variance of the ith feature and γ is a scaling parameter. The
results are recorded in Table 6.5. We observe that only when the node feature
noise is five times larger than the graph structure noise (γ = 5), the addition of
the node feature kernel stops to benefit the model performance. Our previous
findings still hold if the node feature noise is reasonably small (γ ≤ 1).

6.5 chapter conclusion 115

6.5 chapter conclusion

In this work, we have introduced , for the first time to the best of our knowledge,
the random GCN, which we analysed theoretically using random matrix theory.
Our analysis shed light on the way in which the GCN processes the different
sources of information present in attributed graphs. In particular, this leads us
to conclude that

Perturbations of the graph structure strongly influence the perfor-
mance of the GCN regardless of the information contained in the
node features.

For SBM graphs the presence of community structure (and the degree to which
this structure is present) is required (beneficial) for a message passing scheme
which leads to eigenvectors of the message passing operator’s Gram matrix
that align with the node labels. These conclusions were confirmed in multiple
experiments with the standard GCN architecture on synthetic and real-world
datasets.

As expected from our theoretical analysis, we empirically observed graph
structure perturbations to have a strong negative impact on the performance
of standard GNN architectures, which drops rapidly below the performance of
a MLP using only node features. And on both synthetic and real-world data
we observe the introduction of a node feature kernel to the GCN’s message passing
scheme to significantly improve the performance of the GCN in the presence of a noisy
graph structure. We believe that the introduced random GCN model is likely to be
a suitable analysis framework for further GNN models, which combined with
random matrix theory can allow us to gain further insight into the inference
obtained from these models.

Part III

C O N C L U S I O N

7
C O N C L U S I O N

In this dissertation, we navigate the topic of graph representation learning
from graph kernels to graph neural networks. Both methods are migrated from
approaches in the classic machine learning domain, kernel methods and neural
networks, respectively, to graph-structured data. They also inherit the advantages
and drawbacks of their parents, with one being theoretically motivated, rigor-
ous, effective with limited data but not very scalable. The other is end-to-end,
powerful, scaling well to big data but lacking theoretical justification. With this
in mind, our research focuses on tackling the drawbacks and developing more
effective, efficient and robust methods for graph representation learning.

In the following sections, we summarise our main contributions reported in
detail in the previous chapters and discuss future research directions that were
not explored at the time of writing.

7.1 summary of contributions

The contributions of the thesis can be summarised as follow:

valid optimal assignment kernel We propose in Chapter 3 a novel ker-
nel that finds an optimal assignment between the graph substructures
and is guaranteed to be valid. We first represent the graphs as a set of
node embeddings. These node embeddings are generated as the eigen-
vectors of the graph adjacency matrix, where structural information is
naturally encoded. Assuming that all node embeddings from all graphs of
the dataset reside in the same vector space, we then recursively partition
this space by clustering methods and create a hierarchy corresponding to
these hierarchical partitions, which includes a tree and a weight function
defined on each cluster centroid that is associated with the compactness
of the cluster. This hierarchy enables us to construct a histogram of each
graph whose entry is the inner vertex of the tree. A histogram-intersection
kernel is then applied to compare the similarity between the two graphs
and assures the validity of the proposed kernel constructed following the
procedure mentioned above. Our framework is flexible as we can switch
between the node embedding methods as well as clustering algorithms. We

117

7.1 summary of contributions 118

demonstrate that the proposed kernel is a competitive method to compare
sets of vectors on graph classification and text categorisation tasks. We also
show that the feature map of the vertices associated with the proposed
kernel can be seen as a new and more expressive node embedding method
compared with the original node embedding by experiments on the link
prediction task.

predicting topology evolution of temporal graphs Since its birth,
GNNs have soon become the dominating force in the field of graph repre-
sentation learning. In Chapter 4, we demonstrate the power of GNNs over
traditional methods on a long-existing problem of predicting the topology
evolution of dynamic graphs. We propose an encoder-decoder framework, as
one may frequently see in classic machine learning. The ability of GNNs of
transforming attributed graphs into vector representations makes them the
perfect fit for the role of the encoder in this framework. The transformed
embeddings are processed by an LSTM and output a prediction of the
future embedding at the next time step. A decoder reads this embedding
and generates the prediction of graph topology with the help of an autore-
gressive graph generation model. The proposed framework is flexible with
the choice of GNNs, graph generation models, and the RNN that encodes
temporal information, e. g., adding attention mechanism. These variants
are not fully explored in our work. However, the primary choice, as we
showed in Chapter 4, has already demonstrated a superior advantage
over traditional methods such as random graph models in predicting the
topology of future graphs that is the most similar to the reality (measured
by the graph kernel), by experiments on both synthetic and real-world
datasets.

analysing the role of the update step in mpnn We observe that the
MPNN, the primary class of GNN, has two disjoint parts: one is the Aggre-
gation step which utilises the graph structure information, and the other
is the Update step which is graph-agnostic and only concerns node fea-
ture information. In Chapter 5, we study the role of the Update step in
the MPNN framework. To this end, we monitor the performance change
of the MPNN model while we sparsify the weight W of the Update step
to different levels, even to an extreme case where the W corresponding
to the linear transform is completely omitted. We denote the sparsified
model as Expander GNN and the extreme model as Activation-Only GNN.
Extensive experiments on graph classification, graph regression and node

7.2 future directions 119

classification over datasets across domains from biology to social networks
have led us to two conclusions:

1. the Aggregation step plays a more critical role in GNN learning than
the Update step as the Update step can be sparsified to an arbitrary
level without undermining the model performance,

2. the non-linear activation function is a valuable component in MPNNs

as removing the activation is consistently outperformed by keeping
this component.

towards a more robust gcn In Chapter 6, we further investigate the inter-
action between graph structure information and node feature information
in the GCN model. We start from a simple synthetic example which is a 2-
community SBM graph with node features being random vectors following
2 distinct multi-variate Gaussian distribution. We then propose a random
GCN model, whose weight W in the Update step is a high-dimensional
random Gaussian matrix fixed during training. Performance of this model
approaches asymptotically that of a vanilla GCN, as the dimension of W
is high enough (∼ 103 in practice). The assumption on the data and the
random GCN allow us to introduce the tools from the random matrix theory
developed in recent years to analyse classic machine learning. Theoretically,
we analyse the spectral behaviour of the model after graph propagation
and show that the noise in graph structure will heavily shadow the infor-
mation from node features. If the graph structure is sufficiently perturbed,
the node features cannot contribute to the model performance even if
they are precise and informative. Inspired by the theoretical results, we
propose adding a node feature kernel directly to the graph propagation
step to robustify the model performance against structural perturbation.
Experiments on node classification of both synthetic and realistic datasets
demonstrate the effectiveness of the proposed node feature kernel in
lessening the impact of graph structure noises.

7.2 future directions

We discuss in this section the future research interests and highlight two exciting
directions that remain to be investigated.

sparsifying the aggregation step in mpnn Chapter 5 proposes sparsi-
fying the linear transform in the Update step in MPNNs to reduce computa-

7.2 future directions 120

tional costs. However, the conclusion lead us to believe that sparsifying the
Aggregation step could be more beneficial. A natural question then arise:

Does there exist a sparse subgraph in the graph structure that
reduces computational cost without losing performance?

This question is similar to the lottery ticket hypothesis in a classic machine
learning setting (Frankle and Carbin, 2019). It is argued that there exists
a sub-network in the original neural network, which can achieve compa-
rable performance to the original one with a heavily reduced number of
parameters. This sub-network is usually obtained by successively pruning
the network weights during training.

There have also been efforts in the GNN area to reduce the computational
cost of graph propagation. Most GNN models following the message-
passing framework will face exponential growth of neighbourhoods and
cause severe memory and time cost. Researchers tried to tackle this neigh-
bours explosion by sampling strategies. Hamilton, Ying, and Leskovec (2017)
first proposed randomly sampling a fixed number of neighbours for each
node in graph propagation rather than using the whole neighbourhood, in
order to make the GNN more scalable. Chen, Ma, and Xiao (2018) proposed
to sample a set of nodes as a shared neighbourhood for all nodes at each
propagation, by which they can limit the growth rate of the neighbourhood
to linear. More recently Zeng et al. (2020) proposed to sample subgraphs
as input to GNNs instead of the original graph. All these works speed up
the training of GNNs and make GNNs available to large graphs.

Differing from the sampling strategy, we are more interested in finding a
single, fixed subgraph that replaces the original graph without harming
performance. The closest work to our knowledge might be Chen et al.
(2021), where the authors performed the same pruning on the adjacency
matrix during GNN training and identified at the end a winning subgraph
that is sparse and high-performing.

Encouraged by the finding in Chen et al. (2021), we believe our work
in Chapter 5 can be extended to the Aggregation step in MPNNs. Since
we demonstrated that other than pruning during training, the winning
lottery ticket in neural networks can also be identified by a pre-defined sub-
graph that exhibits good properties, e. g., expander graphs are sparse but
highly-connected. The same logic may apply to GNNs as we can identify a
subgraph which is sparse or with heavily reduced size but, under some
measure, is not too far away from the original graph, such as subgraphs ob-

7.2 future directions 121

tained by K-core decomposition (Alvarez-Hamelin et al., 2005) or spectral
approximation (Hermsdorff and Gunderson, 2019).

combining kernel and neural network There is a growing interest in
linking kernels and neural networks. The initial motivation is theoretical,
as our sound understanding of kernels can provide some new perspectives
for deep neural networks. For example, the learning dynamics of gradient
descent for over-parameterised deep neural networks are shown to be
governed by a particular kernel obtained at the initialisation (Bietti and
Mairal, 2019; Jacot, Hongler, and Gabriel, 2018). However, researchers soon
realised that there is also a benefit to combining these two methods in
practice. Mairal (2016) propose combining kernel with CNNs. This new ar-
chitecture can encode the invariance with the kernel and thus improve the
performance over vanilla CNNs. Chen, Jacob, and Mairal (2019) proposed a
combination of kernel methods and RNNs and showed its advantage over
existing methods for modelling biological sequences.

Indeed, kernels and neural networks have different characteristics. The ker-
nels are unsupervised, easy-to-regularise and decoupled from downstream
tasks, while the neural networks are scalable and end-to-end trainable.
Bridging the gap between the two methods seems beneficial to inherit both
their advantages.

It is also an exciting direction for us, as working throughout this disserta-
tion, we have already set foot on both fields of Graph Kernels and Graph
Neural Networks. Several links have been drawn between both methods.
Nikolentzos et al. (2018) proposed generating features for a graph by com-
puting its similarity with a series of pre-defined indicator graphs using
graph kernels. The features are then fed into a traditional neural network
for downstream tasks. Du et al. (2019) presented a new class of graph
kernel, which is equivalent to infinitely-wide GNNs initialised with ran-
dom weights and trained with gradient descent, and thus enjoys the full
expressive power of GNNs. Chen, Jacob, and Mairal (2020) and Nikolentzos
and Vazirgiannis (2020) both proposed an end-to-end trainable kernel GNN

by leveraging the specific type of kernels (random walk kernel for one
and path kernel for the other) and their continuous relaxation or kernel
approximation.

One possible extension of our work towards this direction might be to
explore further the optimal assignment kernel framework proposed in
Chapter 3. This framework has two essential steps: (1) generating a bag of

7.3 epilogue 122

vectors for each graph, (2) constructing a valid kernel that can compute
similarities/distances between sets. A new kernel class might be designed
by leveraging the recent advance in optimal transport kernel (Mialon
et al., 2021) and the expressive power of GNNs for node embeddings
(Mrabah et al., 2021). Another possible direction is based on Nikolentzos
et al. (2018), where the authors proposed obtaining graph feature maps
using graph kernels with pre-defined indicator graphs. These graphs are
fixed before training, but it will be interesting to update them according
to the loss during training. As we do not want to limit the choices of
graph kernels, unlike in Chen, Jacob, and Mairal (2020) and Nikolentzos
and Vazirgiannis (2020), this problem is complex as graph kernels, in
general, is not differentiable. In this case, gradient-free optimisation such
as evolutionary algorithms or functional gradient descent (Shen et al.,
2020) that restricts all operations in the Hilbert space instead of the graph
space might be helpful.

7.3 epilogue

The domain of graph representation learning has grown very fast in recent
years. Exciting works come out every day and week. I am fortunate to spend my
doctoral years during this era as I witnessed closely the emerge of Graph Neural
Networks and the shift of paradigm since then in the graph representation
learning area. Significant advances have been made, but many questions and
challenges remain. I sincerely hope that the works described in this dissertation
will help research move forward and shed some light on future studies towards
more efficient, robust and versatile algorithms for graph-structured data.

Part IV

A P P E N D I X

A
A P P E N D I X T O C H A P T E R 4

a.1 additional experiments

a.1.1 Synthetic Datasets

graph size comparison We compare the size of generated graph with the
real graph at the corresponding time step in Figure A.1. We show two scenario:
Path graph with removal and Cycle graph with adding extra structure. Both
show similar behaviour with the scenario considered in Figure 4.3.

similarity histogram We record the similarity histogram of synthetic
graphs in Figure A.2. As stated in Section 4.4, our proposed method is able to
generate graphs very similar to the ground truth.

examples of the prediction We show some examples of the predicted
graph and compare them with the ground truth. See Figure A.3, A.4, A.5, A.6,
A.7, A.8, respectively for Path graphs, Ladder graphs with small size, Ladder
graphs with large size, Cycle graphs, Path graphs with removal, Cycle graphs
with adding extra structures. Our model is able to reconstruct some characteristic
structures from the ground truth, but the exact size recovery is still difficult, in
particular for the complex scenario.

124

A.1 additional experiments 125

0 200 400 600 800 1000 1200 1400 1600
Graph Index

0

100

200

300

400

500

Gr
ap

h
Si

ze
 (n

um
be

r o
f n

od
es

)

Path graph (with removal) Size: Real vs. Predict

0 200 400 600 800 1000 1200 1400 1600
Graph Index

0

500

1000

1500

2000

2500

3000
Gr
ap
h
Si
ze
 (n

um
be
r o

f n
od
es
)

Cycle graph (with extra structure) Size: Real vs. Predict

Figure A.1: Comparison of graph size: predicted size (blue) vs. real size (orange). Left:
Path graphs with removal; Right: Cycle graphs with adding extra structures.

A.1 additional experiments 126

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0

50

100

150

200

250

300

Nu
m

be
r o

f i
ns

ta
nc

es

Distribution of Similarities between real and predicted graphs (Path)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0

200

400

600

800

1000

1200

1400
Nu

m
be

r o
f i

ns
ta

nc
es

Distribution of Similarities between real and predicted graphs (Path-Removal)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

0.0 0.1 0.2 0.3 0.4 0.5
Similarity

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f i
ns

ta
nc

es

Distribution of Similarities between real and predicted graphs (Ladder)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0

20

40

60

80

100

120

140

Nu
m

be
r o

f i
ns

ta
nc

es

Distribution of Similarities between real and predicted graphs (Circle)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Similarity

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f i
ns

ta
nc

es

Distribution of Similarities between real and predicted graphs (Cycle-Add)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

Figure A.2: Similarity histograms on synthetic datasets. Blue one is the result of EvoNet,
which is compared against 6 random graph models. From top to bottom:
Path graphs; Path graphs with removal; Ladder graphs; Cycle graphs; Cycle
graphs with adding extra structures.

A.1 additional experiments 127

Real graphs Predicted graphs

Figure A.3: Examples of predictions on Path graphs. Left: Real graphs; Right: Predicted
graphs.

A.1 additional experiments 128

Real graphs Predicted graphs

Figure A.4: Examples of predictions on small sized Ladder graphs. Left: Real graphs;
Right: Predicted graphs.

A.1 additional experiments 129

Real graphs Predicted graphs

Figure A.5: Examples of predictions on large sized Ladder graphs. Left: Real graphs;
Right: Predicted graphs.

A.1 additional experiments 130

Real graphs Predicted graphs

Figure A.6: Examples of predictions on Cycle graphs. Left: Real graphs; Right: Predicted
graphs.

A.1 additional experiments 131

Real graphs Predicted graphs

Figure A.7: Examples of predictions on Path graphs with removal. Left: Real graphs;
Right: Predicted graphs.

A.1 additional experiments 132

Real graphs Predicted graphs

Figure A.8: Examples of predictions on Cycle datasets with adding extra structures.
Left: Real graphs; Right: Predicted graphs.

B
A P P E N D I X T O C H A P T E R 6

b.1 preliminaries of random matrix theory

We begin recalling several random matrix theory tools that are needed to
establish our main results. First, we recall a fundamental result (Theorem B.1.1)
from Louart and Couillet, 2018 which provides a deterministic equivalent for
the resolvent of a sample covariance matrix.

theorem b .1 .1 (deterministic equivalent for sample covari-
ance matrices , Louart and Couillet, 2018). Let M ∈ Rn×n such
that ∥MM⊺∥ < ∞1 w.r.t. n and Z̃ ∈ Rn×p some random matrix with i.i.d. entries
having zero mean, unit variance and a finite forth order moment. In the limit n → ∞

with p/n → c ∈ (0, ∞), the resolvent Q(z) =
(

1
p MZ̃Z̃⊺M⊺ + zIn

)−1
for z ∈ C

with ℑ(z) > 0, admits a deterministic equivalent Q̄(z) defined as

Q̄(z) =
(

MM⊺

1 + δ(z)
+ zIn

)−1

,

where δ(z) is the unique solution to the fixed point equation δ(z) = 1
p Tr (M⊺Q̄(z)M).

Proof. Denote ai = Mz̃i, hence

Q(z) =

(
1
p

n

∑
i=1

aia
⊺
i + zIn

)−1

= Q−i −
Q−i

1
p aia

⊺
i Q−i

1 + 1
p a⊺

i Q−iai
,

where Q−i =
(

1
p ∑n

j ̸=i aja
⊺
j + zIn

)−1
, and we also have

Q(z)ai =
Q−iai

1 + 1
p a⊺

i Q−iai
.

1 ∥MM⊺∥ remains constant as n goes to infinity.

133

B.1 preliminaries of random matrix theory 134

A deterministic equivalent for Q(z) (which approximates E[Q(z)]) is of the
form Q̄(z) = (F + zIn)

−1 for some deterministic matrix F, by computing the
difference Q̄(z)− E[Q(z)] using the above identities, we obtain

Q̄(z)− E[Q(z)] =
1
n

n

∑
i=1

E

[
Q−i

(
aia

⊺
i

1 + 1
p a⊺

i Q−iai
− F

)
Q̄(z)

]

+
1
n2

n

∑
i=1

E
[
Q−i(z)aia

⊺
i Q−i(z)FQ̄(z)

]
.

It can be shown that the matrix 1
n2 ∑n

i=1 E
[
Q−i(z)aia

⊺
i Q−i(z)FQ̄(z)

]
has a van-

ishing operator norm as n → ∞. Therefore, F can be taken as

F =
E
[
aia

⊺
i
]

1 + E
[

1
p a⊺

i Q−iai

] =
MM⊺

1 + 1
p Tr(M⊺E [Q−i] M)

Which provides the defined deterministic equivalent in Theorem B.1.1.

Another useful result which is known as the perturbation lemma (Silverstein
and Bai, 1995) is also needed here.

lemma b .1 .2 (perturbation lemma , Silverstein and Bai , 1995).
Let A, B ∈ Rn×n some symmetric matrices, u ∈ Rn, γ ∈ R and z ∈ C with
ℑ(z) > 0, then

∣∣∣Tr
(

A(B + γuu⊺ + zIn)
−1
)
− Tr

(
A(B + zIn)

−1
)∣∣∣ ≤ ∥A∥

|ℑ(z)| .

In particular, for A = 1
n In, we have 1

n Tr(B + γuu⊺+ zIn)−1 = 1
n Tr(B + zIn)−1 +

O(n−1), which shows that the spectral measure of B + γuu⊺ is asymptotically close
to that of B in the large n limit.

Finally, we will need the Woodbury matrix identity from the following
Lemma.

lemma b .1 .3 (woodbury identity). Let A ∈ Rn×n and B ∈ Rk×k invertible
and U ∈ Rn×k, then

(A + UBU⊺)−1 = A−1 − A−1U
(

B−1 + U⊺A−1U
)−1

U⊺A−1.

B.2 proof of theorem 3 .4 135

b.2 proof of theorem 3 .4

The proof starts by establishing a random equivalent for the normalised Ad-
jacency operator given by Ã = 1√

n (A − qq⊺). By Assumptions 2, 3 and 5, we
have straightforwardly that, almost surely

∥∥∥∥Ã −
(

q2ηȳȳ⊺ +
1√
n

N
)∥∥∥∥→ 0, (B.1)

where N is a random matrix with i.i.d. entries of zero mean and variance
ν = q2(1 − q2). Besides, since E [XX⊺] =

∥µ∥2

c ȳȳ⊺ + In, letting γ f = ∥µ∥2 and
γg = q2η, we consider the equivalent multiplicative model for Y defined as

Y =

(
γgȳȳ⊺ +

1√
n

N
)(

γ f

c
ȳȳ⊺ + In

) 1
2

Z,

where Z is random matrix with i.i.d. entries of zero mean and variance 1
p . Condi-

tionally on N, applying Theorem B.1.1 for M =
(

γgȳȳ⊺ + 1√
n N
) (

γ f
c ȳȳ⊺ + In

) 1
2 ,

a deterministic equivalent of QY(z) = (YY⊺ + zIn)
−1 is given by

Q̄Y |N(z) =

(
γgȳȳ⊺ + 1√

n N
) (

γ f
c ȳȳ⊺ + In

) (
γgȳȳ⊺ + 1√

n N
)

1 + δ1(z)
+ zIn

−1

(B.2)

=

(
UBU⊺ + 1

n NN⊺

1 + δ1(z)
+ zIn

)−1

(B.3)

where

U = [ȳ, ϕ] ∈ Rn×2, B =

γ2

2
(γ1

c + 1
) (γ1

c + 1
)

γ2(γ1
c + 1

)
γ2

γ1
c

 (B.4)

with ϕ = 1√
n Nȳ, ȳ = y/

√
n and δ1(z) = 1

p Tr
((

UBU⊺ + 1
n NN⊺

)
Q̄Y |N(z)

)
.

Applying Lemma B.1.2, δ1(z) is simply the solution to δ1(z) = 1
p Tr

(
1
n NN⊺Q̄Y |N(z)

)
.

Moreover, defining the matrix Q̄−B
Y |N(z) =

(
1
n NN⊺

1+δ1(z)
+ zIn

)−1

, we have by Lemma

B.1.3

Q̄Y |N(z) = Q̄−B
Y |N(z)− Q̄−B

Y |N(z)U
(
(1 + δ1(z))B−1 + U⊺Q̄−B

Y |N(z)U
)−1

U⊺Q̄−B
Y |N(z).

(B.5)

B.3 proof of corollary 3 .5 136

Again by Theorem B.1.1, a deterministic equivalent of Q̄−B
Y |N(z) is given by

Q̄−B
Y (z) =

(
νIn

(1 + δ1(z))(1 + δ2(z))
+ zIn

)−1

=
(1 + δ1(z))(1 + δ2(z))

ν + z(1 + δ1(z))(1 + δ2(z))
In

(B.6)

where δ2(z) is the unique solution to δ2(z) = 1
n Tr

(
νIn

(1+δ1(z))
Q̄−B

Y (z)
)
= ν(1+δ2(z))

ν+z(1+δ1(z))(1+δ2(z))
,

and similarly δ1(z) satisfies δ1(z) = 1
c

ν(1+δ1(z))
ν+z(1+δ1(z))(1+δ2(z))

. Therefore, replacing

Q̄−B
Y |N(z) in (B.5) by its deterministic equivalent Q̄−B

Y (z) and since U⊺U → T
almost surely, provides the final result of Theorem 3.4.

b.3 proof of corollary 3 .5

Following the same procedure as in Section B.2, when η = 0, a deterministic
equivalent for QY(z) takes the form

Q̄Y(z) = ζ(z)(1 + δ1(z))

(
In −

ζ2(z)γ f

c + νγ f ζ(z)
ϕϕ⊺

)
. (B.7)

By definition of the deterministic equivalent, we have almost surely

|ȳ⊺ŷ|2 =
−1
2πi

∮

Γ
ȳ⊺QY(−z)ȳdz →n→∞

−1
2πi

∮

Γ
ȳ⊺Q̄Y(−z)ȳdz. (B.8)

Hence, we need to evaluate the Cauchy-integral −1
2πi

∮
Γ ȳ⊺Q̄Y(−z)ȳdz. In partic-

ular, the quadratic form ȳ⊺Q̄Y(z)ȳ evaluates as

ȳ⊺Q̄Y(z)ȳ = ζ(z)(1 + δ1(z))

(
1 − ζ2(z)γ f

c + νγ f ζ(z)
ȳ⊺ϕϕ⊺ȳ

)
→n→∞ ζ(z)(1 + δ1(z)).

Indeed, since the mapping X 7→ 1√
n ȳ⊺Xȳ is 1√

n -Lipschitz transformation w.r.t.
the Frobenius norm ∥ · ∥F, then we have the concentration inequality, for all
t ≥ 0

P

(∣∣∣∣
1√
n

ȳ⊺Nȳ − E

[
1√
n

ȳ⊺Nȳ
]∣∣∣∣ > t

)
≤ C e− (

√
n t/ν)2

, (B.9)

B.4 additional experiments 137

Table B.1: Performance of the GCN with and without node-feature kernel under pertur-
bation on six real-world datasets with multiple train/valid/test splits. The
format follows Table 6.1.

Cora CiteSeer PubMed

(α, β) GCN GCN-k GCN GCN-k GCN GCN-k

(0.0, 0.0) 76.25 ± 2.32 75.48 ± 1.87 66.31 ± 2.04 66.53 ± 2.10 74.80 ± 2.07 76.93 ± 2.20

Deletion (0.2, 0.0) 74.82 ± 1.68 73.26 ± 1.88 64.96 ± 1.57 64.27 ± 2.34 75.14 ± 2.06 74.21 ± 2.84

(0.5, 0.0) 70.78 ± 1.53 70.80 ± 1.83 63.14 ± 1.49 62.74 ± 1.80 74.17 ± 1.75 74.11 ± 2.06

Insertion (0.0, 0.5) 67.01 ± 2.11 71.96 ± 1.79 57.35 ± 2.02 62.19 ± 1.68 63.70 ± 2.95 71.62 ± 2.01

(0.0, 1.0) 58.92 ± 2.29 68.50 ± 1.45 50.53 ± 2.13 59.60 ± 2.04 57.07 ± 1.94 69.56 ± 1.92

CoraFull Photo CS

(α, β) GCN GCN-k GCN GCN-k GCN GCN-k

(0.0, 0.0) 58.42 ± 2.12 57.64 ± 1.45 91.48 ± 0.94 91.05 ± 1.28 92.09 ± 0.98 92.62 ± 0.92

Deletion (0.2, 0.0) 56.36 ± 1.70 57.18 ± 1.68 90.51 ± 1.29 91.30 ± 1.22 91.37 ± 1.26 91.79 ± 0.91

(0.5, 0.0) 54.58 ± 1.33 53.44 ± 1.47 90.07 ± 1.63 90.16 ± 1.10 89.78 ± 1.04 91.08 ± 1.27

Insertion (0.0, 0.5) 48.53 ± 1.58 53.55 ± 1.44 81.77 ± 2.31 83.52 ± 1.43 88.19 ± 0.96 91.25 ± 1.00

(0.0, 1.0) 43.18 ± 1.73 50.77 ± 1.89 75.21 ± 4.30 79.02 ± 3.04 83.83 ± 1.60 90.32 ± 0.89

for some constant C ≥ 0 independent of n. In particular, since E
[

1√
n ȳ⊺Nȳ

]
= 0,

we have

P

(∣∣∣∣∣

(
1√
n

ȳ⊺Nȳ
)2

− E

[(
1√
n

ȳ⊺Nȳ
)2
]∣∣∣∣∣ > t

)
≤ C e−

√
n t

2ν , (B.10)

which shows that ȳ⊺ϕϕ⊺ȳ =
(

1√
n ȳ⊺Nȳ

)2
concentrates around its mean value,

with

E

[(
1√
n

ȳ⊺Nȳ
)2
]
=

1
n

Var [ȳ⊺Nȳ] =
1
n

n

∑
i,j=1

ȳ2
i ȳ2

j Var[Nij] =
∥ȳ∥4 ν

n
→ 0.

Therefore, ȳ⊺ϕϕ⊺ȳ → 0 almost surely as n → ∞. The final step consists in
evaluating the integral 1

2πi

∮
Γ ζ(−z)(1 + δ1(−z))dz = 0 since the function z 7→

ζ(−z)(1 + δ1(−z)) does not have singularities on the contour Γ. Indeed, this
integral corresponds to the only noise case from the data model (i.e., Y =

1√
n NZ).

B.4 additional experiments 138

b.4 additional experiments

b.4.1 Multiple Splits

Shchur et al. (2018) argue that different train/valid/test splits of datasets may
have a non-negligible impact on the performance of GNN models for the
node classification task. To investigate the influence of different splits on our
hypothesis, we construct train/valid/test split for each dataset following Yang,
Cohen, and Salakhutdinov (2016) over 10 random seeds. As each experiment
is repeated 10 times, a total of 100 results is obtained for a specific setting,
i.e., specific α, β or ϵ. Similar to the results of one split, we report the mean
and standard deviations of the 100 results in Table B.1. Although the standard
deviation increases since we introduce more variation in the multi-split setting,
the general trend remains the same, as shown in Table B.1. Our conclusion
drawn in the main paper still holds: perturbations of the graph structure strongly
influence the performance of the GCN and adding a node feature kernel can robustify
the GCN against such perturbations.

b.4.2 Models beyond GCN

We also study the behaviour of our proposed method in a more general MPNN

setting beyond GCN. We choose three characteristic models, which are GIN (Xu et
al., 2019), GraphSage (Hamilton, Ying, and Leskovec, 2017) and Graph Attention
Network (GAT) (Velickovic et al., 2018) models, and observe their performance
under graph structural perturbation with node feature kernel (our proposed
method) on three citation datasets. The models are also implemented as a single
graph-propagation layer followed by a MLP readout, as was the case for the
GCN. Results are gathered in Table B.2. Similar to the results of the GCN, we
can observe from Table B.2 that on every model and every dataset, adding
a node-feature kernel in the graph propagation helps to robustify the model
performance against structural noises, in particular when edges are added. This
empirical evidence demonstrates the versatility of our proposed method for a
general MPNN model.

b.4.3 Deeper GCN architecture and Benchmark Models

In this set of experiments, we observe to what extent the conclusions drawn in
our theoretical analysis carry over to deeper GCN architectures, and how our

B.4 additional experiments 139

Table B.2: Performance of the GIN/GraphSage/GAT with and without node-feature
kernel under perturbation on three citation datasets. The format follows
Table 6.1.

Cora

(α, β) GIN GIN-k Sage Sage-k GAT GAT-k

(0.0, 0.0) 78.56 ± 1.12 78.59 ± 0.8 75.94 ± 0.25 77.12 ± 0.65 78.20 ± 0.54 78.55 ± 0.69

Deletion (0.2, 0.0) 76.61 ± 0.58 76.73 ± 1.79 73.87 ± 0.92 75.29 ± 1.25 75.54 ± 0.77 77.01 ± 0.30

(0.5, 0.0) 71.31 ± 1.06 70.57 ± 0.63 67.35 ± 0.92 71.98 ± 0.99 71.25 ± 0.89 72.37 ± 0.74

Insertion (0.0, 0.5) 71.08 ± 1.08 72.19 ± 0.87 70.24 ± 1.01 71.42 ± 1.23 67.45 ± 1.21 72.13 ± 0.53

(0.0, 1.0) 66.21 ± 1.52 67.96 ± 0.67 66.0 ± 1.23 70.57 ± 0.95 62.14 ± 1.46 67.68 ± 0.89

Delet.+Insert. (0.5, 0.5) 56.82 ± 1.35 62.41 ± 1.07 61.86 ± 1.32 63.61 ± 0.94 53.82 ± 0.86 61.04 ± 1.24

(0.5, 1.0) 51.20 ± 2.04 59.28 ± 0.97 60.56 ± 0.81 64.13 ± 0.52 46.97 ± 1.15 52.13 ± 1.36

CiteSeer

(α, β) GIN GIN-k Sage Sage-k GAT GAT-k

(0.0, 0.0) 66.24 ± 0.89 66.96 ± 0.86 67.74 ± 0.85 68.97 ± 0.60 68.19 ± 0.92 67.82 ± 0.87

Deletion (0.2, 0.0) 62.24 ± 1.19 66.70 ± 1.44 65.97 ± 1.06 66.22 ± 0.78 66.31 ± 0.93 66.90 ± 0.94

(0.5, 0.0) 62.01 ± 1.01 62.30 ± 1.24 63.24 ± 0.59 64.97 ± 1.03 63.61 ± 1.03 65.43 ± 0.83

Insertion (0.0, 0.5) 58.90 ± 1.31 64.75 ± 1.49 64.71 ± 0.94 66.21 ± 0.72 59.44 ± 1.34 62.61 ± 1.30

(0.0, 1.0) 54.61 ± 1.28 59.25 ± 0.99 62.08 ± 0.99 63.04 ± 1.07 50.34 ± 0.99 58.46 ± 0.98

Delet.+Insert. (0.5, 0.5) 50.46 ± 2.02 57.90 ± 1.51 57.88 ± 1.35 63.56 ± 0.67 50.75 ± 1.21 55.81 ± 1.04

(0.5, 1.0) 43.98 ± 1.55 48.40 ± 1.47 58.51 ± 1.13 59.52 ± 1.07 43.56 ± 1.19 50.17 ± 1.35

PubMed

(α, β) GIN GIN-k Sage Sage-k GAT GAT-k

(0.0, 0.0) 77.13 ± 0.36 77.02 ± 0.58 76.44 ± 0.59 77.09 ± 0.64 76.08 ± 0.81 76.63 ± 0.47

Deletion (0.2, 0.0) 75.96 ± 0.47 75.45 ± 0.44 75.38 ± 0.34 75.83 ± 0.83 75.93 ± 0.46 76.17 ± 0.55

(0.5, 0.0) 74.29 ± 0.79 76.09 ± 0.45 72.10 ± 1.60 76.24 ± 0.49 73.46 ± 0.45 76.05 ± 0.51

Insertion (0.0, 0.5) 71.85 ± 0.79 73.63 ± 1.10 73.48 ± 0.48 74.18 ± 0.43 67.42 ± 0.63 69.80 ± 0.69

(0.0, 1.0) 64.27 ± 1.60 69.61 ± 1.30 74.37 ± 0.72 74.44 ± 0.32 64.73 ± 0.98 65.38 ± 0.73

Delet.+Insert. (0.5, 0.5) 64.65 ± 1.07 68.24 ± 0.61 72.59 ± 0.61 74.87 ± 0.37 62.66 ± 0.81 66.51 ± 0.90

(0.5, 1.0) 59.12 ± 1.19 63.20 ± 1.41 73.77 ± 0.37 72.64 ± 0.45 58.58 ± 0.80 63.60 ± 1.27

proposed model performs against similar methods in the deeper architecture
setting. We add three extra message passing layer to the previous single-layer
model and repeat our experiments on this deeper model as well as two state-
of-the-art methods, the Jumping Knowledge (JK) and the GCN with residual
connections and an identity mapping (GCNII), which are specifically designed
for deeper models and take also advantage of the node feature information.
Part of the results have already been shown in Section 4.1 of the main paper. In
Table B.3 we show the results of the remaining four datasets, which agree with
the trends observed in the main paper.

B.4 additional experiments 140

Table B.3: Performance of the GCN with and without node-feature kernel under pertur-
bation on deep GCN models, compared with jump knowledge and GCNII.
The format follows Table 6.1, where in addition we underline the second best
result.

CiteSeer

(α, β) GCN GCN-k (ϵ = 0.5) GCN-k (ϵ = 0.2) GCN-jk GCNII GCN-k-jk

(0.0, 0.0) 66.72 ± 1.93 66.76 ± 0.78 67.75 ± 1.39 68.70 ± 1.06 67.59 ± 0.81 69.10 ± 0.92

Deletion (0.2, 0.0) 66.57 ± 1.66 66.27 ± 1.34 66.91 ± 1.63 67.21 ± 0.41 66.13 ± 1.31 67.06 ± 0.97

(0.5, 0.0) 62.68 ± 1.39 64.52 ± 2.03 62.72 ± 1.65 65.49 ± 0.94 61.91 ± 1.52 63.82 ± 2.01

Insertion (0.0, 0.5) 55.76 ± 1.54 57.8 ± 0.99 62.44 ± 0.94 61.17 ± 0.85 60.52 ± 1.82 63.15 ± 1.39

(0.0, 1.0) 45.14 ± 1.89 48.39 ± 1.88 56.69 ± 1.91 53.26 ± 1.44 57.41 ± 1.67 62.83 ± 1.06

Delet.+Insert. (0.5, 0.5) 39.68 ± 1.96 48.26 ± 1.91 51.10 ± 1.26 49.50 ± 0.86 53.19 ± 1.58 58.12 ± 1.02

(0.5, 1.0) 33.19 ± 2.1 40.5 ± 2.51 47.24 ± 2.41 44.8 ± 0.93 50.25 ± 1.2 55.3 ± 0.92

PubMed

(α, β) GCN GCN-k (ϵ = 0.5) GCN-k (ϵ = 0.2) GCN-jk GCNII GCN-k-jk

(0.0, 0.0) 76.50 ± 0.71 77.82 ± 0.86 77.80 ± 0.92 77.36 ± 0.74 78.14 ± 0.87 77.56 ± 1.62

Deletion (0.2, 0.0) 74.80 ± 1.29 74.91 ± 1.33 77.01 ± 0.74 75.37 ± 0.94 75.83 ± 0.81 76.67 ± 1.20

(0.5, 0.0) 73.92 ± 0.64 74.53 ± 0.97 76.19 ± 0.73 73.00 ± 0.93 75.00 ± 0.65 75.60 ± 1.09

Insertion (0.0, 0.5) 57.89 ± 8.91 71.41 ± 0.91 75.23 ± 0.94 70.62 ± 0.97 72.01 ± 1.00 73.71 ± 1.10

(0.0, 1.0) 46.98 ± 2.87 68.29 ± 7.93 72.42 ± 1.11 65.01 ± 1.70 72.86 ± 0.75 73.20 ± 0.89

Delet.+Insert. (0.5, 0.5) 62.35 ± 1.01 65.19 ± 1.78 70.79 ± 1.08 65.07 ± 0.83 69.06 ± 0.67 66.28 ± 1.37

(0.5, 1.0) 44.52 ± 0.88 55.64 ± 4.64 66.16 ± 1.57 65.20 ± 0.74 70.22 ± 0.65 66.29 ± 0.70

CoraFull

(α, β) GCN GCN-k (ϵ = 0.5) GCN-k (ϵ = 0.2) GCN-jk GCNII GCN-k-jk

(0.0, 0.0) 49.33 ± 0.61 55.27 ± 0.97 52.38 ± 1.62 58.56 ± 1.20 56.83 ± 0.67 56.10 ± 0.89

Deletion (0.2, 0.0) 48.74 ± 1.34 50.71 ± 0.90 52.08 ± 1.26 57.09 ± 1.16 52.87 ± 1.06 53.61 ± 0.91

(0.5, 0.0) 46.80 ± 1.35 45.33 ± 1.37 46.71 ± 1.12 51.42 ± 1.48 51.57 ± 1.03 51.76 ± 1.32

Insertion (0.0, 0.5) 17.53 ± 3.15 24.48 ± 3.19 33.3 ± 2.78 49.47 ± 1.56 51.19 ± 0.94 53.67 ± 1.19

(0.0, 1.0) 3.52 ± 0.76 9.60 ± 2.62 19.59 ± 2.42 42.07 ± 0.92 48.79 ± 1.28 52.00 ± 0.87

Delet.+Insert. (0.5, 0.5) 7.10 ± 1.60 12.98 ± 1.56 22.06 ± 1.27 38.74 ± 0.86 41.27 ± 1.31 45.74 ± 1.22

(0.5, 1.0) 3.69 ± 0.49 3.98 ± 1.15 5.33 ± 1.39 26.71 ± 0.77 42.11 ± 1.48 43.23 ± 1.33

Photo

(α, β) GCN GCN-k (ϵ = 0.5) GCN-k (ϵ = 0.2) GCN-jk GCNII GCN-k-jk

(0.0, 0.0) 87.67 ± 1.59 89.59 ± 0.63 88.64 ± 1.19 91.82 ± 0.58 92.05 ± 0.88 92.42 ± 0.58

Deletion (0.2, 0.0) 90.35 ± 0.41 88.22 ± 0.77 85.66 ± 0.62 91.86 ± 0.70 92.58 ± 0.57 90.85 ± 0.59

(0.5, 0.0) 88.04 ± 1.02 88.81 ± 0.33 87.23 ± 1.20 90.44 ± 1.07 87.65 ± 1.85 91.45 ± 0.52

Insertion (0.0, 0.5) 35.12 ± 6.56 42.44 ± 11.1 47.5 ± 14.67 83.34 ± 2.74 87.54 ± 1.40 83.04 ± 4.58

(0.0, 1.0) 27.75 ± 3.39 29.6 ± 3.22 24.05 ± 2.56 77.54 ± 3.44 85.68 ± 1.94 81.89 ± 3.24

Delet.+Insert. (0.5, 0.5) 31.27 ± 4.58 27.65 ± 6.01 29.32 ± 4.17 75.38 ± 5.41 87.32 ± 1.11 73.57 ± 5.92

(0.5, 1.0) 28.39 ± 2.12 24.89 ± 1.09 25.41 ± 4.25 62.97 ± 6.77 81.10 ± 1.22 68.29 ± 3.92

b.4.4 Node Feature Noise

We now provide further experiment results in Figure B.1 studying how node
feature noise interacts with our proposed model. We observe that only when
the node feature noise is five times larger than the graph structure noise, it

B.4 additional experiments 141

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Perturbation Ratio: |E| vs. |E|

20

30

40

50

60

70

80

N
od

e
C

la
ss

ifi
ca

tio
n

Ac
cu

ra
cy

 (%
)

(a) Cora

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Perturbation Ratio: |E| vs. |E|

20

30

40

50

60

(b) CiteSeer

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Perturbation Ratio: |E| vs. |E|

40

50

60

70

(c) PubMed

Feature Noise Ratio=0.0
Feature Noise Ratio=0.5

Feature Noise Ratio=1.0
Feature Noise Ratio=5.0

= 1.0
= 0.4

= 0.0

Figure B.1: Experiment Results with the co-appearance of graph structural noise and
node feature noise on three citation datasets. The vertical line at a rate
of 1 represents the performance on the unperturbed graph. On its left is
the edge deletion case, with rate less than 1, where the most perturbed case
corresponds to rate 0; on the right is the edge insertion case, where the
perturbations grow with the rate. Different colours represent the extent of
node feature perturbation.

starts to overshadow the benefit of adding the node feature kernel, as we can
see from the pink curves, with-kernel (dashed or dotted line) performs worse
than without-kernel (solid line). Otherwise, the performance of our kernel is
robust and matches the observed trend repeatedly demonstrated in the previous
experiments.

B I B L I O G R A P H Y

Abadi, Martín et al. (2015). TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. url: https://www.
tensorflow.org/ (cit. on p. 22).

Achanta, Radhakrishna, Appu Shaji, Kevin Smith, Aurélien Lucchi, Pascal Fua,
and Sabine Süsstrunk (2012). “SLIC Superpixels Compared to State-of-the-Art
Superpixel Methods.” In: IEEE Trans. Pattern Anal. Mach. Intell. 34.11, pp. 2274–
2282. doi: 10.1109/TPAMI.2012.120 (cit. on p. 1).

Airoldi, Edoardo M., David M. Blei, Stephen E. Fienberg, and Eric P. Xing
(2008). “Mixed Membership Stochastic Blockmodels.” In: J. Mach. Learn. Res. 9,
pp. 1981–2014. url: https://dl.acm.org/citation.cfm?id=1442798 (cit. on
p. 66).

Albert, Réka and Albert-László Barabási (2002). “Statistical mechanics of complex
networks.” English. In: Reviews of Modern Physics 74.1, pp. 47–97. issn: 0034-
6861. doi: 10.1103/RevModPhys.74.47 (cit. on pp. 56, 66).

Alvarez-Hamelin, J. Ignacio, Luca Dall’Asta, Alain Barrat, and Alessandro
Vespignani (2005). “k-core decomposition: a tool for the visualization of large
scale networks.” In: CoRR abs/cs/0504107. arXiv: cs/0504107. url: http:
//arxiv.org/abs/cs/0504107 (cit. on p. 121).

Aronszajn, N. (1950). “Theory of Reproducing Kernels.” In: Transactions of the
American Mathematical Society 68.3, pp. 337–404. issn: 00029947. url: http:
//www.jstor.org/stable/1990404 (cit. on p. 14).

Balcilar, Muhammet, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien
Adam, and Paul Honeine (2021). “Analyzing the Expressive Power of Graph
Neural Networks in a Spectral Perspective.” In: 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net. url: https://openreview.net/forum?id=-qh0M9XWxnv (cit.
on p. 21).

Barla, Annalisa, Francesca Odone, and Alessandro Verri (2003). “Histogram
intersection kernel for image classification.” In: Proceedings of the 2003 Inter-
national Conference on Image Processing, ICIP 2003, Barcelona, Catalonia, Spain,
September 14-18, 2003. IEEE, pp. 513–516. doi: 10.1109/ICIP.2003.1247294
(cit. on p. 42).

142

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1109/TPAMI.2012.120
https://dl.acm.org/citation.cfm?id=1442798
https://doi.org/10.1103/RevModPhys.74.47
https://arxiv.org/abs/cs/0504107
http://arxiv.org/abs/cs/0504107
http://arxiv.org/abs/cs/0504107
http://www.jstor.org/stable/1990404
http://www.jstor.org/stable/1990404
https://openreview.net/forum?id=-qh0M9XWxnv
https://doi.org/10.1109/ICIP.2003.1247294

bibliography 143

Bietti, Alberto and Julien Mairal (2019). “On the Inductive Bias of Neural Tangent
Kernels.” In: Advances in Neural Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada. Ed. by Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett,
pp. 12873–12884. url: https://proceedings.neurips.cc/paper/2019/hash/
c4ef9c39b300931b69a36fb3dbb8d60e-Abstract.html (cit. on p. 121).

Blalock, Davis W., Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John V.
Guttag (2020). “What is the State of Neural Network Pruning?” In: Proceedings
of Machine Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March
2-4, 2020. Ed. by Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and Vivienne
Sze. mlsys.org. url: https://proceedings.mlsys.org/book/296.pdf (cit. on
p. 75).

Bojchevski, Aleksandar, Oleksandr Shchur, Daniel Zügner, and Stephan Gün-
nemann (2018). “NetGAN: Generating Graphs via Random Walks.” In: Pro-
ceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed. by Jennifer G. Dy and
Andreas Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR,
pp. 609–618. url: http://proceedings.mlr.press/v80/bojchevski18a.html
(cit. on p. 55).

Bölcskei, Helmut, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen (2019).
“Optimal Approximation with Sparsely Connected Deep Neural Networks.”
In: SIAM J. Math. Data Sci. 1.1, pp. 8–45. doi: 10.1137/18M118709X (cit. on
pp. 78, 107).

Borgwardt, Karsten M. and Hans-Peter Kriegel (2005). “Shortest-Path Kernels on
Graphs.” In: Proceedings of the 5th IEEE International Conference on Data Mining
(ICDM 2005), 27-30 November 2005, Houston, Texas, USA. IEEE Computer
Society, pp. 74–81. doi: 10.1109/ICDM.2005.132 (cit. on pp. 15, 28, 45).

Borgwardt, Karsten M., Cheng Soon Ong, Stefan Schönauer, S. V. N. Vish-
wanathan, Alexander J. Smola, and Hans-Peter Kriegel (2005). “Protein func-
tion prediction via graph kernels.” In: Proceedings Thirteenth International
Conference on Intelligent Systems for Molecular Biology 2005, Detroit, MI, USA,
25-29 June 2005, pp. 47–56. doi: 10.1093/bioinformatics/bti1007 (cit. on
pp. 1, 23).

Bourely, Alfred, John Patrick Boueri, and Krzysztof Choromonski (2017). “Sparse
Neural Networks Topologies.” In: CoRR abs/1706.05683. arXiv: 1706.05683
(cit. on pp. 74, 79, 89).

https://proceedings.neurips.cc/paper/2019/hash/c4ef9c39b300931b69a36fb3dbb8d60e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c4ef9c39b300931b69a36fb3dbb8d60e-Abstract.html
https://proceedings.mlsys.org/book/296.pdf
http://proceedings.mlr.press/v80/bojchevski18a.html
https://doi.org/10.1137/18M118709X
https://doi.org/10.1109/ICDM.2005.132
https://doi.org/10.1093/bioinformatics/bti1007
https://arxiv.org/abs/1706.05683

bibliography 144

Bruna, Joan, Wojciech Zaremba, Arthur Szlam, and Yann LeCun (2014). “Spectral
Networks and Locally Connected Networks on Graphs.” In: 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. url:
http://arxiv.org/abs/1312.6203 (cit. on p. 3).

Buchanan, Mark (2003). Nexus: small worlds and the groundbreaking science of
networks. W. W. Norton & Company. isbn: 978-0393324426. doi: 10.5860/
choice.40-3362. url: https://books.google.fr/books?id=vdB83tHSZooC
(cit. on p. 1).

Cerebras Systems, INC (2021). Cerebras White Paper 3: Cerebras Systems: Achieving
Industry Best AI Performance Through A Systems Approach. https://cerebras.net/wp-
content/uploads/2021/04/Cerebras-CS-2-Whitepaper.pdf. accessed May 2021

(cit. on p. 79).

Chang, Chih-Chung and Chih-Jen Lin (2011). “LIBSVM: A library for support
vector machines.” In: ACM Trans. Intell. Syst. Technol. 2.3, 27:1–27:27. doi:
10.1145/1961189.1961199 (cit. on p. 45).

Chen, Dexiong, Laurent Jacob, and Julien Mairal (2019). “Recurrent Kernel
Networks.” In: Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada. Ed. by Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Ro-
man Garnett, pp. 13431–13442. url: https://proceedings.neurips.cc/
paper/2019/hash/d60743aab4b625940d39b3b51c3c6a78-Abstract.html (cit.
on p. 121).

Chen, Dexiong, Laurent Jacob, and Julien Mairal (2020). “Convolutional Kernel
Networks for Graph-Structured Data.” In: Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event.
Vol. 119. Proceedings of Machine Learning Research. PMLR, pp. 1576–1586.
url: http://proceedings.mlr.press/v119/chen20h.html (cit. on pp. 121,
122).

Chen, Jie, Tengfei Ma, and Cao Xiao (2018). “FastGCN: Fast Learning with
Graph Convolutional Networks via Importance Sampling.” In: 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. url: https:
//openreview.net/forum?id=rytstxWAW (cit. on p. 120).

http://arxiv.org/abs/1312.6203
https://doi.org/10.5860/choice.40-3362
https://doi.org/10.5860/choice.40-3362
https://books.google.fr/books?id=vdB83tHSZooC
https://doi.org/10.1145/1961189.1961199
https://proceedings.neurips.cc/paper/2019/hash/d60743aab4b625940d39b3b51c3c6a78-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d60743aab4b625940d39b3b51c3c6a78-Abstract.html
http://proceedings.mlr.press/v119/chen20h.html
https://openreview.net/forum?id=rytstxWAW
https://openreview.net/forum?id=rytstxWAW

bibliography 145

Chen, Ming, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li (2020).
“Simple and Deep Graph Convolutional Networks.” In: Proceedings of the
37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event. Vol. 119. Proceedings of Machine Learning Research. PMLR,
pp. 1725–1735. url: http://proceedings.mlr.press/v119/chen20v.html
(cit. on pp. 75, 114).

Chen, Tianlong, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang
(2021). “A Unified Lottery Ticket Hypothesis for Graph Neural Networks.”
In: Proceedings of the 38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event. Ed. by Marina Meila and Tong Zhang.
Vol. 139. Proceedings of Machine Learning Research. PMLR, pp. 1695–1706.
url: http://proceedings.mlr.press/v139/chen21p.html (cit. on p. 120).

Chen, Tianqi, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang (2015). “MXNet: A Flexible
and Efficient Machine Learning Library for Heterogeneous Distributed Sys-
tems.” In: CoRR abs/1512.01274. arXiv: 1512.01274. url: http://arxiv.org/
abs/1512.01274 (cit. on p. 22).

Chen, Zhengdao, Lisha Li, and Joan Bruna (2019). “Supervised Community
Detection with Line Graph Neural Networks.” In: 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net. url: https://openreview.net/forum?id=H1g0Z3A9Fm (cit.
on p. 54).

Cho, Kyunghyun, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio (2014). “Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Trans-
lation.” In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting
of SIGDAT, a Special Interest Group of the ACL. Ed. by Alessandro Moschitti, Bo
Pang, and Walter Daelemans. ACL, pp. 1724–1734. doi: 10.3115/v1/d14-1179
(cit. on p. 59).

Conte, Donatello, Pasquale Foggia, Carlo Sansone, and Mario Vento (2004).
“Thirty Years of Graph Matching in Pattern Recognition.” In: Int. J. Pattern
Recognit. Artif. Intell. 18.3, pp. 265–298. doi: 10.1142/S0218001404003228 (cit.
on p. 66).

Corso, Gabriele, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Velick-
ovic (2020). “Principal Neighbourhood Aggregation for Graph Nets.” In:
Advances in Neural Information Processing Systems 33: Annual Conference on

http://proceedings.mlr.press/v119/chen20v.html
http://proceedings.mlr.press/v139/chen21p.html
https://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1512.01274
https://openreview.net/forum?id=H1g0Z3A9Fm
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.1142/S0218001404003228

bibliography 146

Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual. Ed. by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin. url: https://proceedings.neurips.
cc/paper/2020/hash/99cad265a1768cc2dd013f0e740300ae-Abstract.html

(cit. on pp. 20, 81, 82, 93).

Csardi, Gabor and Tamas Nepusz (2006). “The igraph software package for
complex network research.” In: InterJournal Complex Systems, p. 1695. url:
http://igraph.sf.net (cit. on p. 22).

Dasoulas, George, Ludovic Dos Santos, Kevin Scaman, and Aladin Virmaux
(2020). “Coloring Graph Neural Networks for Node Disambiguation.” In:
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intel-
ligence, IJCAI 2020. Ed. by Christian Bessiere. ijcai.org, pp. 2126–2132. doi:
10.24963/ijcai.2020/294 (cit. on p. 94).

Dhillon, Inderjit S. and Dharmendra S. Modha (2001). “Concept Decompositions
for Large Sparse Text Data Using Clustering.” In: Mach. Learn. 42.1/2, pp. 143–
175. doi: 10.1023/A:1007612920971 (cit. on p. 34).

Donnat, Claire, Marinka Zitnik, David Hallac, and Jure Leskovec (2018). “Learn-
ing Structural Node Embeddings via Diffusion Wavelets.” In: Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2018, London, UK, August 19-23, 2018. Ed. by Yike Guo and
Faisal Farooq. ACM, pp. 1320–1329. doi: 10.1145/3219819.3220025 (cit. on
pp. 31, 48).

Du, Simon S., Kangcheng Hou, Ruslan Salakhutdinov, Barnabás Póczos, Ru-
osong Wang, and Keyulu Xu (2019). “Graph Neural Tangent Kernel: Fusing
Graph Neural Networks with Graph Kernels.” In: Advances in Neural Informa-
tion Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. Ed. by
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett, pp. 5724–5734. url: https://proceedings.
neurips.cc/paper/2019/hash/663fd3c5144fd10bd5ca6611a9a5b92d-Abstract.

html (cit. on p. 121).

Duvenaud, David, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-
Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams (2015).
“Convolutional Networks on Graphs for Learning Molecular Fingerprints.”
In: Advances in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Que-
bec, Canada. Ed. by Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi

https://proceedings.neurips.cc/paper/2020/hash/99cad265a1768cc2dd013f0e740300ae-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/99cad265a1768cc2dd013f0e740300ae-Abstract.html
http://igraph.sf.net
https://doi.org/10.24963/ijcai.2020/294
https://doi.org/10.1023/A:1007612920971
https://doi.org/10.1145/3219819.3220025
https://proceedings.neurips.cc/paper/2019/hash/663fd3c5144fd10bd5ca6611a9a5b92d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/663fd3c5144fd10bd5ca6611a9a5b92d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/663fd3c5144fd10bd5ca6611a9a5b92d-Abstract.html

bibliography 147

Sugiyama, and Roman Garnett, pp. 2224–2232. url: https://proceedings.
neurips.cc/paper/2015/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.

html (cit. on pp. 3, 17).

Dwivedi, Vijay Prakash, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson (2020). “Benchmarking Graph Neural Networks.” In: CoRR
abs/2003.00982. arXiv: 2003.00982 (cit. on p. 82).

El Karoui, Noureddine (2010). “The spectrum of kernel random matrices.”
English. In: The Annals of Statistics 38.1, pp. 1–50. issn: 0090-5364. doi: 10.
1214/08-AOS648 (cit. on p. 106).

Entezari, Negin, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos E
Papalexakis (2020). “All you need is low (rank) defending against adversarial
attacks on graphs.” In: Proceedings of the 13th International Conference on Web
Search and Data Mining, pp. 169–177 (cit. on p. 95).

Erdős, Pál and Alfréd Rényi (1960). “On the evolution of random graphs.”
English. In: Publications of the Mathematical Institute of the Hungarian Academy
of Sciences, Series A 5, pp. 17–61 (cit. on pp. 55, 56, 66).

Fan, Wenqi, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and
Dawei Yin (2019). “Graph Neural Networks for Social Recommendation.” In:
The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17,
2019. Ed. by Ling Liu, Ryen W. White, Amin Mantrach, Fabrizio Silvestri,
Julian J. McAuley, Ricardo Baeza-Yates, and Leila Zia. ACM, pp. 417–426. doi:
10.1145/3308558.3313488 (cit. on p. 1).

Fan, Zhou and Zhichao Wang (2020). “Spectra of the Conjugate Kernel and
Neural Tangent Kernel for linear-width neural networks.” In: Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed. by
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin. url: https://proceedings.neurips.cc/paper/2020/
hash/572201a4497b0b9f02d4f279b09ec30d-Abstract.html (cit. on pp. 100,
101).

Fey, Matthias and Jan Eric Lenssen (2019). “Fast Graph Representation Learning
with PyTorch Geometric.” In: CoRR abs/1903.02428. arXiv: 1903.02428 (cit. on
pp. 22, 107).

Frankle, Jonathan and Michael Carbin (2019). “The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks.” In: 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

https://proceedings.neurips.cc/paper/2015/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html
https://arxiv.org/abs/2003.00982
https://doi.org/10.1214/08-AOS648
https://doi.org/10.1214/08-AOS648
https://doi.org/10.1145/3308558.3313488
https://proceedings.neurips.cc/paper/2020/hash/572201a4497b0b9f02d4f279b09ec30d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/572201a4497b0b9f02d4f279b09ec30d-Abstract.html
https://arxiv.org/abs/1903.02428

bibliography 148

OpenReview.net. url: https://openreview.net/forum?id=rJl-b3RcF7 (cit.
on pp. 78, 120).

Frankle, Jonathan, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin
(2021). “Pruning Neural Networks at Initialization: Why Are We Missing
the Mark?” In: 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net. url: https://
openreview.net/forum?id=Ig-VyQc-MLK (cit. on p. 75).

Fröhlich, Holger, Jörg K. Wegner, Florian Sieker, and Andreas Zell (2005).
“Optimal assignment kernels for attributed molecular graphs.” In: Machine
Learning, Proceedings of the Twenty-Second International Conference (ICML 2005),
Bonn, Germany, August 7-11, 2005. Ed. by Luc De Raedt and Stefan Wrobel.
Vol. 119. ACM International Conference Proceeding Series. ACM, pp. 225–232.
doi: 10.1145/1102351.1102380 (cit. on p. 28).

Gama, Fernando, Alejandro Ribeiro, and Joan Bruna (2020). “Stability of Graph
Neural Networks to Relative Perturbations.” In: 2020 IEEE International Con-
ference on Acoustics, Speech and Signal Processing, ICASSP 2020, Barcelona, Spain,
May 4-8, 2020. IEEE, pp. 9070–9074. doi: 10.1109/ICASSP40776.2020.9054341
(cit. on p. 79).

Gascon, Hugo, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck (2013). “Struc-
tural detection of android malware using embedded call graphs.” In: AISec’13,
Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security,
Co-located with CCS 2013, Berlin, Germany, November 4, 2013. Ed. by Ahmad-
Reza Sadeghi, Blaine Nelson, Christos Dimitrakakis, and Elaine Shi. ACM,
pp. 45–54. doi: 10.1145/2517312.2517315 (cit. on p. 27).

Geisler, Simon, Daniel Zügner, and Stephan Günnemann (2020). “Reliable graph
neural networks via robust aggregation.” In: Advances in Neural Information
Processing Systems 33, pp. 13272–13284 (cit. on p. 95).

Gilmer, Justin, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George
E. Dahl (2017). “Neural Message Passing for Quantum Chemistry.” In: Proceed-
ings of the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017. Ed. by Doina Precup and Yee Whye Teh.
Vol. 70. Proceedings of Machine Learning Research. PMLR, pp. 1263–1272.
url: http://proceedings.mlr.press/v70/gilmer17a.html (cit. on pp. 54,
72).

Goodfellow, Ian (2016). Deep learning. Ed. by Yoshua Bengio and Aaron Courville.
Adaptive computation and machine learning. Weitere Infos unter http://www.deeplearningbook.org/.

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=Ig-VyQc-MLK
https://openreview.net/forum?id=Ig-VyQc-MLK
https://doi.org/10.1145/1102351.1102380
https://doi.org/10.1109/ICASSP40776.2020.9054341
https://doi.org/10.1145/2517312.2517315
http://proceedings.mlr.press/v70/gilmer17a.html

bibliography 149

Cambridge, Massachusetts: The MIT Press. xxii, 775 Seiten. isbn: 9780262035613

(cit. on p. 2).

Goyal, Palash, Nitin Kamra, Xinran He, and Yan Liu (2018). “DynGEM: Deep
Embedding Method for Dynamic Graphs.” In: CoRR abs/1805.11273. arXiv:
1805.11273 (cit. on pp. 54–56).

Greene, Derek and Padraig Cunningham (2006). “Practical solutions to the
problem of diagonal dominance in kernel document clustering.” In: Machine
Learning, Proceedings of the Twenty-Third International Conference (ICML 2006),
Pittsburgh, Pennsylvania, USA, June 25-29, 2006. Ed. by William W. Cohen and
Andrew W. Moore. Vol. 148. ACM International Conference Proceeding Series.
ACM, pp. 377–384. doi: 10.1145/1143844.1143892 (cit. on p. 50).

Griffa, Alessandra, Benjamin Ricaud, Kirell Benzi, Xavier Bresson, Alessandro
Daducci, Pierre Vandergheynst, Jean-Philippe Thiran, and Patric Hagmann
(2017). “Transient networks of spatio-temporal connectivity map communica-
tion pathways in brain functional systems.” In: NeuroImage 155, pp. 490–502.
doi: 10.1016/j.neuroimage.2017.04.015 (cit. on p. 17).

Grover, Aditya and Jure Leskovec (2016). “node2vec: Scalable Feature Learning
for Networks.” In: Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-
17, 2016. Ed. by Balaji Krishnapuram, Mohak Shah, Alexander J. Smola,
Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi. ACM, pp. 855–864. doi:
10.1145/2939672.2939754 (cit. on pp. 31, 43, 44, 48).

Grover, Aditya, Aaron Zweig, and Stefano Ermon (2019). “Graphite: Iterative
Generative Modeling of Graphs.” In: Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Pro-
ceedings of Machine Learning Research. PMLR, pp. 2434–2444. url: http:
//proceedings.mlr.press/v97/grover19a.html (cit. on p. 55).

Günnemann, Stephan (2022). “Graph Neural Networks: Adversarial Robust-
ness.” In: Graph Neural Networks: Foundations, Frontiers, and Applications. Ed. by
Lingfei Wu, Peng Cui, Jian Pei, and Liang Zhao. Springer. Chap. 8, pp. 149–
176 (cit. on p. 95).

Hachem, Walid, Philippe Loubaton, and Jamal Najim (2007). “Deterministic
equivalents for certain functionals of large random matrices.” English. In: The
Annals of Applied Probability 17.3, pp. 875–930. issn: 1050-5164. doi: 10.1214/
105051606000000925 (cit. on pp. 99, 102).

https://arxiv.org/abs/1805.11273
https://doi.org/10.1145/1143844.1143892
https://doi.org/10.1016/j.neuroimage.2017.04.015
https://doi.org/10.1145/2939672.2939754
http://proceedings.mlr.press/v97/grover19a.html
http://proceedings.mlr.press/v97/grover19a.html
https://doi.org/10.1214/105051606000000925
https://doi.org/10.1214/105051606000000925

bibliography 150

Hagberg, Aric A., Daniel A. Schult, and Pieter J. Swart (2008). “Exploring
Network Structure, Dynamics, and Function using NetworkX.” In: Proceedings
of the 7th Python in Science Conference. Ed. by Gaël Varoquaux, Travis Vaught,
and Jarrod Millman. Pasadena, CA USA, pp. 11 –15 (cit. on p. 22).

Hamilton, William L., Zhitao Ying, and Jure Leskovec (2017). “Inductive Repre-
sentation Learning on Large Graphs.” In: Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett, pp. 1024–1034. url: https://proceedings.neurips.cc/
paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html (cit.
on pp. 20, 82, 93, 120, 138).

Han, Song, Jeff Pool, John Tran, and William J. Dally (2015). “Learning both
Weights and Connections for Efficient Neural Network.” In: Advances in Neural
Information Processing Systems 28: Annual Conference on Neural Information
Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada. Ed. by
Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and
Roman Garnett, pp. 1135–1143. url: https://proceedings.neurips.cc/
paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html (cit.
on p. 78).

Harris, Charles R. et al. (Sept. 2020). “Array programming with NumPy.”
In: Nature 585.7825, pp. 357–362. doi: 10.1038/s41586-020-2649-2. url:
https://doi.org/10.1038/s41586-020-2649-2 (cit. on p. 22).

Haussler, David (1999). Convolution Kernels on Discrete Structures. Tech. rep.
Department of Computer Science, University of California at Santa Cruz. doi:
10.1.1.110.638 (cit. on pp. 2, 28).

He, Xiangnan, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng
Wang (2020). “LightGCN: Simplifying and Powering Graph Convolution
Network for Recommendation.” In: Proceedings of the 43rd International ACM
SIGIR conference on research and development in Information Retrieval, SIGIR 2020,
Virtual Event, China, July 25-30, 2020. Ed. by Jimmy Huang, Yi Chang, Xueqi
Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu. ACM,
pp. 639–648. doi: 10.1145/3397271.3401063 (cit. on p. 75).

Henaff, Mikael, Joan Bruna, and Yann LeCun (2015). “Deep Convolutional
Networks on Graph-Structured Data.” In: CoRR abs/1506.05163. arXiv: 1506.
05163. url: http://arxiv.org/abs/1506.05163 (cit. on p. 3).

https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1.1.110.638
https://doi.org/10.1145/3397271.3401063
https://arxiv.org/abs/1506.05163
https://arxiv.org/abs/1506.05163
http://arxiv.org/abs/1506.05163

bibliography 151

Hermansson, Linus, Tommi Kerola, Fredrik Johansson, Vinay Jethava, and
Devdatt P. Dubhashi (2013). “Entity disambiguation in anonymized graphs
using graph kernels.” In: 22nd ACM International Conference on Information
and Knowledge Management, CIKM’13, San Francisco, CA, USA, October 27 -
November 1, 2013. Ed. by Qi He, Arun Iyengar, Wolfgang Nejdl, Jian Pei, and
Rajeev Rastogi. ACM, pp. 1037–1046. doi: 10.1145/2505515.2505565 (cit. on
p. 27).

Hermsdorff, Gecia Bravo and Lee M. Gunderson (2019). “A Unifying Framework
for Spectrum-Preserving Graph Sparsification and Coarsening.” In: Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada. Ed. by Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, pp. 7734–7745. url:
https://proceedings.neurips.cc/paper/2019/hash/cd474f6341aeffd65f93084d0dae3453-

Abstract.html (cit. on p. 121).

Hoefler, Torsten, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra
Peste (2021). “Sparsity in Deep Learning: Pruning and growth for efficient
inference and training in neural networks.” In: CoRR abs/2102.00554. arXiv:
2102.00554 (cit. on p. 75).

Holme, Petter and Beom Jun Kim (2002). “Growing scale-free networks with tun-
able clustering.” In: Phys. Rev. E 65. issn: 1063-651X. doi: 10.1103/physreve.
65.026107 (cit. on p. 66).

Hoory, Shlomo, Nathan Linial, and Avi Widgerson (2006). “Expander graphs and
their applications.” English. In: Bulletin of the American Mathematical Society.
New Series 43.4, pp. 439–561. issn: 0273-0979. doi: 10.1090/S0273-0979-06-
01126-8 (cit. on pp. 11, 78).

Hu, Weihua, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec (2020). “Open Graph Benchmark:
Datasets for Machine Learning on Graphs.” In: Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed. by Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin. url: https://proceedings.neurips.cc/paper/2020/hash/
fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html (cit. on pp. 23, 82).

Hunter, J. D. (2007). “Matplotlib: A 2D graphics environment.” In: Computing
in Science & Engineering 9.3, pp. 90–95. doi: 10.1109/MCSE.2007.55 (cit. on
p. 22).

https://doi.org/10.1145/2505515.2505565
https://proceedings.neurips.cc/paper/2019/hash/cd474f6341aeffd65f93084d0dae3453-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/cd474f6341aeffd65f93084d0dae3453-Abstract.html
https://arxiv.org/abs/2102.00554
https://doi.org/10.1103/physreve.65.026107
https://doi.org/10.1103/physreve.65.026107
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.1090/S0273-0979-06-01126-8
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://doi.org/10.1109/MCSE.2007.55

bibliography 152

Irwin, John J., Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan
G. Coleman (2012). “ZINC: A Free Tool to Discover Chemistry for Biology.”
In: J. Chem. Inf. Model. 52.7, pp. 1757–1768. doi: 10.1021/ci3001277 (cit. on
p. 82).

Ismagilov, R. S. (1997). “Ultrametric spaces and related Hilbert spaces.” En-
glish. In: Mathematical Notes 62.2, pp. 186–197. issn: 0001-4346. doi: 10.1007/
BF02355907 (cit. on p. 33).

Jacot, Arthur, Clément Hongler, and Franck Gabriel (2018). “Neural Tangent
Kernel: Convergence and Generalization in Neural Networks.” In: Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada.
Ed. by Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grau-
man, Nicolò Cesa-Bianchi, and Roman Garnett, pp. 8580–8589. url: https://
proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-

Abstract.html (cit. on p. 121).

Jin, Ming, Heng Chang, Wenwu Zhu, and Somayeh Sojoudi (2021). “Power up!
Robust Graph Convolutional Network via Graph Powering.” In: Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2021,Virtual Event, February 2-9,
2021. AAAI Press, pp. 8004–8012. url: https://ojs.aaai.org/index.php/
AAAI/article/view/16976 (cit. on p. 95).

Jin, Wei, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang
(2020). “Graph structure learning for robust graph neural networks.” In:
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 66–74 (cit. on p. 95).

Karrer, Brian and M. E. J. Newman (Jan. 2011). “Stochastic blockmodels and
community structure in networks.” In: Physical Review E 83.1, 016107, p. 016107.
doi: 10.1103/PhysRevE.83.016107. arXiv: 1008.3926 [physics.soc-ph]. url:
https://ui.adsabs.harvard.edu/abs/2011PhRvE..83a6107K (cit. on p. 97).

Kepner, Jeremy and Ryan A. Robinett (2019). “RadiX-Net: Structured Sparse
Matrices for Deep Neural Networks.” In: IEEE International Parallel and Dis-
tributed Processing Symposium Workshops, IPDPSW 2019, Rio de Janeiro, Brazil,
May 20-24, 2019. IEEE, pp. 268–274. doi: 10.1109/IPDPSW.2019.00051 (cit. on
pp. 74, 79).

Kersting, Kristian, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion
Neumann (2016). Benchmark Data Sets for Graph Kernels. http://graphkernels.cs.tu-
dortmund.de. url: http://graphkernels.cs.tu-dortmund.de (cit. on p. 82).

https://doi.org/10.1021/ci3001277
https://doi.org/10.1007/BF02355907
https://doi.org/10.1007/BF02355907
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://ojs.aaai.org/index.php/AAAI/article/view/16976
https://ojs.aaai.org/index.php/AAAI/article/view/16976
https://doi.org/10.1103/PhysRevE.83.016107
https://arxiv.org/abs/1008.3926
https://ui.adsabs.harvard.edu/abs/2011PhRvE..83a6107K
https://doi.org/10.1109/IPDPSW.2019.00051
http://graphkernels.cs.tu-dortmund.de

bibliography 153

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for Stochastic
Optimization.” In: 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by
Yoshua Bengio and Yann LeCun. arXiv: 1412.6980 (cit. on p. 107).

Kipf, Thomas N. and Max Welling (2017). “Semi-Supervised Classification with
Graph Convolutional Networks.” In: 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. url: https://openreview.net/forum?id=
SJU4ayYgl (cit. on pp. 3, 19, 73, 82, 93).

Knyazev, Boris, Graham W. Taylor, and Mohamed R. Amer (2019). “Understand-
ing Attention and Generalization in Graph Neural Networks.” In: Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada. Ed. by Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, pp. 4204–4214. url:
https://proceedings.neurips.cc/paper/2019/hash/4c5bcfec8584af0d967f1ab10179ca4b-

Abstract.html (cit. on pp. 1, 23, 82).

Kondor, Risi and John D. Lafferty (2002). “Diffusion Kernels on Graphs and
Other Discrete Input Spaces.” In: Machine Learning, Proceedings of the Nineteenth
International Conference (ICML 2002), University of New South Wales, Sydney,
Australia, July 8-12, 2002. Ed. by Claude Sammut and Achim G. Hoffmann.
Morgan Kaufmann, pp. 315–322 (cit. on p. 2).

Kondor, Risi, Hy Truong Son, Horace Pan, Brandon M. Anderson, and Shub-
hendu Trivedi (2018). “Covariant Compositional Networks For Learning
Graphs.” In: 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings.
OpenReview.net. url: https://openreview.net/forum?id=SkIv3MAUf (cit. on
p. 27).

Kriege, Nils M., Pierre-Louis Giscard, and Richard C. Wilson (2016). “On Valid
Optimal Assignment Kernels and Applications to Graph Classification.”
In: Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain.
Ed. by Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon,
and Roman Garnett, pp. 1615–1623. url: https://proceedings.neurips.
cc/paper/2016/hash/0efe32849d230d7f53049ddc4a4b0c60-Abstract.html

(cit. on pp. 28, 29, 31, 32, 41, 45).

https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://proceedings.neurips.cc/paper/2019/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://openreview.net/forum?id=SkIv3MAUf
https://proceedings.neurips.cc/paper/2016/hash/0efe32849d230d7f53049ddc4a4b0c60-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/0efe32849d230d7f53049ddc4a4b0c60-Abstract.html

bibliography 154

Kriege, Nils M. and Petra Mutzel (2012). “Subgraph Matching Kernels for At-
tributed Graphs.” In: Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012. icml.cc /
Omnipress. url: http://icml.cc/2012/papers/542.pdf (cit. on p. 1).

Kumar, Srijan, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos,
and V. S. Subrahmanian (2018). “REV2: Fraudulent User Prediction in Rating
Platforms.” In: Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, February 5-9,
2018. Ed. by Yi Chang, Chengxiang Zhai, Yan Liu, and Yoelle Maarek. ACM,
pp. 333–341. doi: 10.1145/3159652.3159729 (cit. on p. 64).

Kumar, Srijan, Francesca Spezzano, V. S. Subrahmanian, and Christos Faloutsos
(2016). “Edge Weight Prediction in Weighted Signed Networks.” In: IEEE
16th International Conference on Data Mining, ICDM 2016, December 12-15,
2016, Barcelona, Spain. Ed. by Francesco Bonchi, Josep Domingo-Ferrer, Ri-
cardo Baeza-Yates, Zhi-Hua Zhou, and Xindong Wu. IEEE Computer Society,
pp. 221–230. doi: 10.1109/ICDM.2016.0033 (cit. on p. 64).

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning.” In:
Nature 521, pp. 436–444. issn: 0028-0836. doi: 10.1038/nature14539 (cit. on
p. 1).

Ledoux, Michel (2001). The concentration of measure phenomenon. Mathematical
surveys and monographs v. 89. Includes bibliographical references (p. 171-179)
and index. Providence, R.I: American Mathematical Society. x, 181 p. isbn:
0821828649 (cit. on p. 97).

Lee, Namhoon, Thalaiyasingam Ajanthan, and Philip H. S. Torr (2019). “Snip:
single-Shot Network Pruning based on Connection sensitivity.” In: 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net. url: https://openreview.net/forum?id=
B1VZqjAcYX (cit. on p. 75).

Leskovec, Jure, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos, and
Zoubin Ghahramani (2010). “Kronecker Graphs: An Approach to Modeling
Networks.” In: J. Mach. Learn. Res. 11, pp. 985–1042. url: https://dl.acm.
org/citation.cfm?id=1756039 (cit. on pp. 5, 56, 66).

Leskovec, Jure, Jon M. Kleinberg, and Christos Faloutsos (2005). “Graphs over
time: densification laws, shrinking diameters and possible explanations.” In:
Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Chicago, Illinois, USA, August 21-24, 2005. Ed. by

http://icml.cc/2012/papers/542.pdf
https://doi.org/10.1145/3159652.3159729
https://doi.org/10.1109/ICDM.2016.0033
https://doi.org/10.1038/nature14539
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX
https://dl.acm.org/citation.cfm?id=1756039
https://dl.acm.org/citation.cfm?id=1756039

bibliography 155

Robert Grossman, Roberto J. Bayardo, and Kristin P. Bennett. ACM, pp. 177–
187. doi: 10.1145/1081870.1081893 (cit. on p. 5).

Leskovec, Jure, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney
(2009). “Community Structure in Large Networks: Natural Cluster Sizes and
the Absence of Large Well-Defined Clusters.” In: Internet Math. 6.1, pp. 29–123.
doi: 10.1080/15427951.2009.10129177 (cit. on p. 1).

Leskovec, Jure, Anand Rajaraman, and Jeffrey D. Ullman (2014). Mining of
Massive Datasets, 2nd Ed. Cambridge University Press. isbn: 978-1107077232.
url: http://www.mmds.org/ (cit. on p. 51).

Li, Cheng, Xiaoxiao Guo, and Qiaozhu Mei (2016). “DeepGraph: Graph Structure
Predicts Network Growth.” In: CoRR abs/1610.06251. arXiv: 1610.06251 (cit.
on pp. 54, 55).

Li, Qimai, Zhichao Han, and Xiao-Ming Wu (2018). “Deeper Insights Into Graph
Convolutional Networks for Semi-Supervised Learning.” In: Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018. Ed. by Sheila A. McIlraith and Kilian Q.
Weinberger. AAAI Press, pp. 3538–3545. url: https://www.aaai.org/ocs/
index.php/AAAI/AAAI18/paper/view/16098 (cit. on p. 98).

Li, Xin and Dan Roth (2002). “Learning Question Classifiers.” In: 19th Interna-
tional Conference on Computational Linguistics, COLING 2002, Howard Interna-
tional House and Academia Sinica, Taipei, Taiwan, August 24 - September 1, 2002.
url: https://aclanthology.org/C02-1150/ (cit. on p. 50).

Li, Yujia, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel (2016).
“Gated Graph Sequence Neural Networks.” In: 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. arXiv:
1511.05493 (cit. on p. 60).

Louart, Cosme and Romain Couillet (May 2018). “Concentration of Measure and
Large Random Matrices with an application to Sample Covariance Matrices.”
In: arXiv: 1805.08295 [math.PR] (cit. on pp. 97, 102, 133).

Louart, Cosme, Zhenyu Liao, and Romain Couillet (2018). “A random matrix
approach to neural networks.” English. In: The Annals of Applied Probability
28.2, pp. 1190–1248. issn: 1050-5164. doi: 10.1214/17-AAP1328 (cit. on pp. 99,
100).

Lubotzky, Alexander (2012). “Expander graphs in pure and applied mathemat-
ics.” English. In: Bulletin of the American Mathematical Society. New Series 49.1,

https://doi.org/10.1145/1081870.1081893
https://doi.org/10.1080/15427951.2009.10129177
http://www.mmds.org/
https://arxiv.org/abs/1610.06251
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://aclanthology.org/C02-1150/
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1805.08295
https://doi.org/10.1214/17-AAP1328

bibliography 156

pp. 113–162. issn: 0273-0979. doi: 10.1090/S0273-0979-2011-01359-3 (cit. on
pp. 11, 78).

Lü, Linyuan and Tao Zhou (Mar. 2011). “Link prediction in complex networks:
A survey.” In: Physica A: Statistical Mechanics and its Applications 390. doi:
10.1016/j.physa.2010.11.027 (cit. on p. 1).

Mairal, Julien (2016). “End-to-End Kernel Learning with Supervised Convolu-
tional Kernel Networks.” In: Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016, December 5-
10, 2016, Barcelona, Spain. Ed. by Daniel D. Lee, Masashi Sugiyama, Ulrike von
Luxburg, Isabelle Guyon, and Roman Garnett, pp. 1399–1407. url: https://
proceedings.neurips.cc/paper/2016/hash/fc8001f834f6a5f0561080d134d53d29-

Abstract.html (cit. on p. 121).

Mallat, Stéphane (2009). A Wavelet Tour of Signal Processing - The Sparse Way. 3rd.
Academic Press. isbn: 978-0-12-374370-1. url: https://www.elsevier.com/
books/a-wavelet-tour-of-signal-processing/mallat/978-0-12-374370-

1 (cit. on p. 21).

Manessi, Franco, Alessandro Rozza, and Mario Manzo (2020). “Dynamic graph
convolutional networks.” In: Pattern Recognit. 97. doi: 10.1016/j.patcog.
2019.107000 (cit. on p. 56).

Maron, Haggai, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman (2019).
“Provably Powerful Graph Networks.” In: Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. Ed. by
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett, pp. 2153–2164. url: https://proceedings.
neurips.cc/paper/2019/hash/bb04af0f7ecaee4aae62035497da1387-Abstract.

html (cit. on p. 94).

McDonald, Andrew W. E. and Ali Shokoufandeh (2019). “Sparse Super-Regular
Networks.” In: 18th IEEE International Conference On Machine Learning And
Applications, ICMLA 2019, Boca Raton, FL, USA, December 16-19, 2019. Ed. by
M. Arif Wani, Taghi M. Khoshgoftaar, Dingding Wang, Huanjing Wang, and
Naeem Seliya. IEEE, pp. 1764–1770. doi: 10.1109/ICMLA.2019.00286 (cit. on
p. 74).

Meng, Changping, S. Chandra Mouli, Bruno Ribeiro, and Jennifer Neville (2018).
“Subgraph Pattern Neural Networks for High-Order Graph Evolution Pre-
diction.” In: Proceedings of the Thirty-Second AAAI Conference on Artificial In-

https://doi.org/10.1090/S0273-0979-2011-01359-3
https://doi.org/10.1016/j.physa.2010.11.027
https://proceedings.neurips.cc/paper/2016/hash/fc8001f834f6a5f0561080d134d53d29-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/fc8001f834f6a5f0561080d134d53d29-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/fc8001f834f6a5f0561080d134d53d29-Abstract.html
https://www.elsevier.com/books/a-wavelet-tour-of-signal-processing/mallat/978-0-12-374370-1
https://www.elsevier.com/books/a-wavelet-tour-of-signal-processing/mallat/978-0-12-374370-1
https://www.elsevier.com/books/a-wavelet-tour-of-signal-processing/mallat/978-0-12-374370-1
https://doi.org/10.1016/j.patcog.2019.107000
https://doi.org/10.1016/j.patcog.2019.107000
https://proceedings.neurips.cc/paper/2019/hash/bb04af0f7ecaee4aae62035497da1387-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bb04af0f7ecaee4aae62035497da1387-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bb04af0f7ecaee4aae62035497da1387-Abstract.html
https://doi.org/10.1109/ICMLA.2019.00286

bibliography 157

telligence, (AAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. Ed. by
Sheila A. McIlraith and Kilian Q. Weinberger. AAAI Press, pp. 3778–3787. url:
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16941

(cit. on p. 55).

Mialon, Grégoire, Dexiong Chen, Alexandre d’Aspremont, and Julien Mairal
(2021). “A Trainable Optimal Transport Embedding for Feature Aggrega-
tion and its Relationship to Attention.” In: 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. Open-
Review.net. url: https://openreview.net/forum?id=ZK6vTvb84s (cit. on
p. 122).

Mikolov, Tomás, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean
(2013). “Distributed Representations of Words and Phrases and their Composi-
tionality.” In: Advances in Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems 2013. Proceedings of a meeting
held December 5-8, 2013, Lake Tahoe, Nevada, United States. Ed. by Christopher
J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger,
pp. 3111–3119. url: https://proceedings.neurips.cc/paper/2013/hash/
9aa42b31882ec039965f3c4923ce901b-Abstract.html (cit. on p. 50).

Monti, Federico, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael
M. Bronstein (2019). “Fake News Detection on Social Media using Geometric
Deep Learning.” In: CoRR abs/1902.06673. arXiv: 1902.06673 (cit. on p. 17).

Moor Insights and Strategy (2020). Graphcore White Paper: The Graphcore Second
Generation IPU. https://www.graphcore.ai/hubfs/MK2-%20The%20Graphcore%202nd%20Generation%20IPU%20Final%20v7.14.2020.pdf?hsLang=en.
accessed May 2021. url: https://www.graphcore.ai/hubfs/MK2-\%The\
%Graphcore\%2nd\%Generation\%IPU\%Final\%v7.14.2020.pdf?hsLang=en

(cit. on p. 79).

Morris, Christopher, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra
Mutzel, and Marion Neumann (2020). “TUDataset: A collection of bench-
mark datasets for learning with graphs.” In: ICML 2020 Workshop on Graph
Representation Learning and Beyond (GRL+ 2020). arXiv: 2007 . 08663. url:
www.graphlearning.io (cit. on p. 22).

Morris, Christopher, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan
Eric Lenssen, Gaurav Rattan, and Martin Grohe (2019). “Weisfeiler and Le-
man Go Neural: Higher-Order Graph Neural Networks.” In: The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative
Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Sym-
posium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu,

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16941
https://openreview.net/forum?id=ZK6vTvb84s
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://arxiv.org/abs/1902.06673
https://www.graphcore.ai/hubfs/MK2-\%The\%Graphcore\%2nd\%Generation\%IPU\%Final\%v7.14.2020.pdf?hsLang=en
https://www.graphcore.ai/hubfs/MK2-\%The\%Graphcore\%2nd\%Generation\%IPU\%Final\%v7.14.2020.pdf?hsLang=en
https://arxiv.org/abs/2007.08663
www.graphlearning.io

bibliography 158

Hawaii, USA, January 27 - February 1, 2019. AAAI Press, pp. 4602–4609. doi:
10.1609/aaai.v33i01.33014602 (cit. on pp. 54, 94).

Mrabah, Nairouz, Mohamed Bouguessa, Mohamed Fawzi Touati, and Riadh
Ksantini (2021). “Rethinking Graph Auto-Encoder Models for Attributed
Graph Clustering.” In: CoRR abs/2107.08562. arXiv: 2107.08562. url: https:
//arxiv.org/abs/2107.08562 (cit. on p. 122).

NT, Hoang and Takanori Maehara (2019). “Revisiting Graph Neural Networks:
All We Have is Low-Pass Filters.” In: CoRR abs/1905.09550. arXiv: 1905.09550.
url: http://arxiv.org/abs/1905.09550 (cit. on p. 21).

NVIDIA (2020). NVIDIA White Paper: NVIDIA A100 Tensor Core GPU Architecture.
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-
architecture-whitepaper.pdf. accessed May 2021. url: https://images.nvidia.
com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-

whitepaper.pdf (cit. on p. 79).

Nguyen, Giang Hoang, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eu-
nyee Koh, and Sungchul Kim (2018). “Continuous-Time Dynamic Network
Embeddings.” In: Companion of the The Web Conference 2018 on The Web Confer-
ence 2018, WWW 2018, Lyon , France, April 23-27, 2018. Ed. by Pierre-Antoine
Champin, Fabien Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis. ACM,
pp. 969–976. doi: 10.1145/3184558.3191526 (cit. on pp. 54, 56).

Niepert, Mathias, Mohamed Ahmed, and Konstantin Kutzkov (2016). “Learning
Convolutional Neural Networks for Graphs.” In: Proceedings of the 33nd Interna-
tional Conference on Machine Learning, ICML 2016, New York City, NY, USA, June
19-24, 2016. Ed. by Maria-Florina Balcan and Kilian Q. Weinberger. Vol. 48.
JMLR Workshop and Conference Proceedings. JMLR.org, pp. 2014–2023. url:
http://proceedings.mlr.press/v48/niepert16.html (cit. on p. 27).

Nikolentzos, Giannis, Polykarpos Meladianos, Antoine Jean-Pierre Tixier, Kon-
stantinos Skianis, and Michalis Vazirgiannis (2018). “Kernel Graph Convolu-
tional Neural Networks.” In: Artificial Neural Networks and Machine Learning -
ICANN 2018 - 27th International Conference on Artificial Neural Networks, Rhodes,
Greece, October 4-7, 2018, Proceedings, Part I. Ed. by Vera Kurková, Yannis
Manolopoulos, Barbara Hammer, Lazaros S. Iliadis, and Ilias Maglogiannis.
Vol. 11139. Lecture Notes in Computer Science. Springer, pp. 22–32. doi:
10.1007/978-3-030-01418-6_3. url: https://doi.org/10.1007/978-3-
030-01418-6_3 (cit. on pp. 121, 122).

https://doi.org/10.1609/aaai.v33i01.33014602
https://arxiv.org/abs/2107.08562
https://arxiv.org/abs/2107.08562
https://arxiv.org/abs/2107.08562
https://arxiv.org/abs/1905.09550
http://arxiv.org/abs/1905.09550
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://doi.org/10.1145/3184558.3191526
http://proceedings.mlr.press/v48/niepert16.html
https://doi.org/10.1007/978-3-030-01418-6_3
https://doi.org/10.1007/978-3-030-01418-6_3
https://doi.org/10.1007/978-3-030-01418-6_3

bibliography 159

Nikolentzos, Giannis, Polykarpos Meladianos, and Michalis Vazirgiannis (2017).
“Matching Node Embeddings for Graph Similarity.” In: Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San
Francisco, California, USA. Ed. by Satinder P. Singh and Shaul Markovitch.
AAAI Press, pp. 2429–2435. url: http://aaai.org/ocs/index.php/AAAI/
AAAI17/paper/view/14494 (cit. on pp. 28, 36, 45).

Nikolentzos, Giannis, Giannis Siglidis, and Michalis Vazirgiannis (2019). “Graph
Kernels: A Survey.” In: CoRR abs/1904.12218. arXiv: 1904.12218 (cit. on
pp. 15, 66).

Nikolentzos, Giannis and Michalis Vazirgiannis (2020). “Random Walk Graph
Neural Networks.” In: Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual. Ed. by Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin. url: https://

proceedings.neurips.cc/paper/2020/hash/ba95d78a7c942571185308775a97a3a0-

Abstract.html (cit. on pp. 121, 122).

Opsahl, Tore (2013). “Triadic closure in two-mode networks: Redefining the
global and local clustering coefficients.” In: Soc. Networks 35.2, pp. 159–167.
doi: 10.1016/j.socnet.2011.07.001 (cit. on p. 65).

Opsahl, Tore and Pietro Panzarasa (2009). “Clustering in weighted networks.”
In: Soc. Networks 31.2, pp. 155–163. doi: 10.1016/j.socnet.2009.02.002
(cit. on p. 65).

Page, Lawrence, Sergey Brin, Rajeev Motwani, and Terry Winograd (1999). The
pagerank citation ranking: bringing order to the web. Tech. rep. Stanford InfoLab.
doi: 10.1.1.31.1768 (cit. on p. 2).

Pang, Bo and Lillian Lee (2004). “A Sentimental Education: Sentiment Analysis
Using Subjectivity Summarization Based on Minimum Cuts.” In: Proceedings
of the 42nd Annual Meeting of the Association for Computational Linguistics, 21-
26 July, 2004, Barcelona, Spain. Ed. by Donia Scott, Walter Daelemans, and
Marilyn A. Walker. ACL, pp. 271–278. doi: 10.3115/1218955.1218990. url:
https://aclanthology.org/P04-1035/ (cit. on p. 50).

Paranjape, Ashwin, Austin R. Benson, and Jure Leskovec (2017). “Motifs in Tem-
poral Networks.” In: Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining, WSDM 2017, Cambridge, United Kingdom, February
6-10, 2017. Ed. by Maarten de Rijke, Milad Shokouhi, Andrew Tomkins, and
Min Zhang. ACM, pp. 601–610. doi: 10.1145/3018661.3018731 (cit. on p. 65).

http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14494
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14494
https://arxiv.org/abs/1904.12218
https://proceedings.neurips.cc/paper/2020/hash/ba95d78a7c942571185308775a97a3a0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ba95d78a7c942571185308775a97a3a0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ba95d78a7c942571185308775a97a3a0-Abstract.html
https://doi.org/10.1016/j.socnet.2011.07.001
https://doi.org/10.1016/j.socnet.2009.02.002
https://doi.org/10.1.1.31.1768
https://doi.org/10.3115/1218955.1218990
https://aclanthology.org/P04-1035/
https://doi.org/10.1145/3018661.3018731

bibliography 160

Pareja, Aldo, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson (2020).
“EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs.”
In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
New York, NY, USA, February 7-12, 2020. AAAI Press, pp. 5363–5370. url:
https://aaai.org/ojs/index.php/AAAI/article/view/5984 (cit. on pp. 55,
56).

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance
Deep Learning Library.” In: Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada. Ed. by Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,
and Roman Garnett, pp. 8024–8035. url: https://proceedings.neurips.
cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

(cit. on p. 22).

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python.” In: Journal
of Machine Learning Research 12, pp. 2825–2830 (cit. on pp. 22, 46).

Pei, Hongbin, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang
(2020). “Geom-gcn: Geometric graph convolutional networks.” In: International
Conference on Learning Representations (ICLR) (cit. on p. 96).

Prabhu, Ameya, Girish Varma, and Anoop M. Namboodiri (2018). “Deep Ex-
pander Networks: Efficient Deep Networks from Graph Theory.” In: Computer
Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part XIII. Ed. by Vittorio Ferrari, Martial Hebert, Cristian
Sminchisescu, and Yair Weiss. Vol. 11217. Lecture Notes in Computer Science.
Springer, pp. 20–36. doi: 10.1007/978-3-030-01261-8_2 (cit. on pp. 73, 74,
77).

Qiu, Jiezhong, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang
(2018). “Network Embedding as Matrix Factorization: Unifying DeepWalk,
LINE, PTE, and node2vec.” In: Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA,
USA, February 5-9, 2018. Ed. by Yi Chang, Chengxiang Zhai, Yan Liu, and
Yoelle Maarek. ACM, pp. 459–467. doi: 10.1145/3159652.3159706 (cit. on
p. 30).

Rahman, Mahmudur, Mansurul Alam Bhuiyan, Mahmuda Rahman, and Mo-
hammad Al Hasan (2014). “GUISE: a uniform sampler for constructing fre-

https://aaai.org/ojs/index.php/AAAI/article/view/5984
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1007/978-3-030-01261-8_2
https://doi.org/10.1145/3159652.3159706

bibliography 161

quency histogram of graphlets.” In: Knowl. Inf. Syst. 38.3, pp. 511–536. doi:
10.1007/s10115-013-0673-3 (cit. on p. 10).

Ramon, Jan and Thomas Gärtner (2003). “Expressivity versus Efficiency of Graph
Kernels.” In: Proceedings of the First International Workshop on Mining Graphs,
Trees and Sequences, pp. 65–74. doi: 10.1.1.132.692 (cit. on p. 28).

Ribeiro, Leonardo Filipe Rodrigues, Pedro H. P. Saverese, and Daniel R. Figueiredo
(2017). “struc2vec: Learning Node Representations from Structural Identity.”
In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017. ACM,
pp. 385–394. doi: 10.1145/3097983.3098061 (cit. on p. 31).

Rossi, Ryan A. and Nesreen K. Ahmed (2015). “The Network Data Repository
with Interactive Graph Analytics and Visualization.” In: Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015,
Austin, Texas, USA. Ed. by Blai Bonet and Sven Koenig. AAAI Press, pp. 4292–
4293. url: http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/
9553 (cit. on p. 65).

Rousseau, François and Michalis Vazirgiannis (2013). “Graph-of-word and TW-
IDF: new approach to ad hoc IR.” In: 22nd ACM International Conference
on Information and Knowledge Management, CIKM’13, San Francisco, CA, USA,
October 27 - November 1, 2013. Ed. by Qi He, Arun Iyengar, Wolfgang Nejdl,
Jian Pei, and Rajeev Rastogi. ACM, pp. 59–68. doi: 10.1145/2505515.2505671
(cit. on pp. 1, 2).

Salha, Guillaume, Romain Hennequin, and Michalis Vazirgiannis (2019). “Keep
It Simple: Graph Autoencoders Without Graph Convolutional Networks.” In:
CoRR abs/1910.00942. arXiv: 1910.00942 (cit. on p. 75).

Salha, Guillaume, Romain Hennequin, and Michalis Vazirgiannis (2020). “Simple
and Effective Graph Autoencoders with One-Hop Linear Models.” In: Machine
Learning and Knowledge Discovery in Databases - European Conference, ECML
PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part I. Ed. by
Frank Hutter, Kristian Kersting, Jefrey Lijffijt, and Isabel Valera. Vol. 12457.
Lecture Notes in Computer Science. Springer, pp. 319–334. doi: 10.1007/978-
3-030-67658-2_19 (cit. on p. 75).

Sanders, Niek J. (2011). Twitter Sentiment Corpus. Sanders Analytics LLC (cit. on
p. 50).

Schölkopf, Bernhard, Koji Tsuda, and Jean-Philippe Vert (2004). Kernel Methods
in Computational Biology. MIT press (cit. on p. 27).

https://doi.org/10.1007/s10115-013-0673-3
https://doi.org/10.1.1.132.692
https://doi.org/10.1145/3097983.3098061
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9553
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9553
https://doi.org/10.1145/2505515.2505671
https://arxiv.org/abs/1910.00942
https://doi.org/10.1007/978-3-030-67658-2_19
https://doi.org/10.1007/978-3-030-67658-2_19

bibliography 162

Seddik, Mohamed El Amine, Cosme Louart, Mohamed Tamaazousti, and Ro-
main Couillet (2020). “Random Matrix Theory Proves that Deep Learning
Representations of GAN-data Behave as Gaussian Mixtures.” In: Proceedings of
the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event. Vol. 119. Proceedings of Machine Learning Research. PMLR,
pp. 8573–8582. url: http://proceedings.mlr.press/v119/seddik20a.html
(cit. on p. 97).

Sen, Prithviraj, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher,
and Tina Eliassi-Rad (2008). “Collective Classification in Network Data.” In:
AI Mag. 29.3, pp. 93–106. doi: 10.1609/aimag.v29i3.2157 (cit. on pp. 82, 107).

Seo, Youngjoo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson
(2018). “Structured Sequence Modeling with Graph Convolutional Recurrent
Networks.” In: Neural Information Processing - 25th International Conference,
ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part I.
Ed. by Long Cheng, Andrew Chi-Sing Leung, and Seiichi Ozawa. Vol. 11301.
Lecture Notes in Computer Science. Springer, pp. 362–373. doi: 10.1007/978-
3-030-04167-0_33 (cit. on pp. 55, 56).

Shchur, Oleksandr, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann (2018). “Pitfalls of Graph Neural Network Evaluation.” In: CoRR
abs/1811.05868. arXiv: 1811.05868 (cit. on pp. 23, 107, 138).

Shen, Zebang, Zhenfu Wang, Alejandro Ribeiro, and Hamed Hassani (2020).
“Sinkhorn Barycenter via Functional Gradient Descent.” In: Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed. by
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin. url: https://proceedings.neurips.cc/paper/2020/
hash/0a93091da5efb0d9d5649e7f6b2ad9d7-Abstract.html (cit. on p. 122).

Shervashidze, Nino, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M. Borgwardt (2011). “Weisfeiler-Lehman Graph Kernels.” In: J.
Mach. Learn. Res. 12, pp. 2539–2561. url: http://dl.acm.org/citation.cfm?
id=2078187 (cit. on pp. 16, 45, 55, 67).

Shervashidze, Nino, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, and
Karsten M. Borgwardt (2009). “Efficient graphlet kernels for large graph
comparison.” In: Proceedings of the Twelfth International Conference on Artificial
Intelligence and Statistics, AISTATS 2009, Clearwater Beach, Florida, USA, April
16-18, 2009. Ed. by David A. Van Dyk and Max Welling. Vol. 5. JMLR Pro-

http://proceedings.mlr.press/v119/seddik20a.html
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1007/978-3-030-04167-0_33
https://doi.org/10.1007/978-3-030-04167-0_33
https://arxiv.org/abs/1811.05868
https://proceedings.neurips.cc/paper/2020/hash/0a93091da5efb0d9d5649e7f6b2ad9d7-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0a93091da5efb0d9d5649e7f6b2ad9d7-Abstract.html
http://dl.acm.org/citation.cfm?id=2078187
http://dl.acm.org/citation.cfm?id=2078187

bibliography 163

ceedings. JMLR.org, pp. 488–495. url: http://proceedings.mlr.press/v5/
shervashidze09a.html (cit. on pp. 16, 28, 45).

Silverstein, Jack W. and Z. D. Bai (1995). “On the empirical distribution of
eigenvalues of a class of large dimensional random matrices.” English. In:
Journal of Multivariate Analysis 54.2, pp. 175–192. issn: 0047-259X. doi: 10.
1006/jmva.1995.1051 (cit. on p. 134).

Sun, Lichao, Ji Wang, Philip S. Yu, and Bo Li (2018). “Adversarial Attack and
Defense on Graph Data: A Survey.” In: CoRR abs/1812.10528. arXiv: 1812.
10528 (cit. on pp. 94, 95).

Swain, Michael J. and Dana H. Ballard (1991). “Color indexing.” In: Int. J. Comput.
Vis. 7.1, pp. 11–32. doi: 10.1007/BF00130487 (cit. on p. 42).

Tanaka, Hidenori, Daniel Kunin, Daniel L. Yamins, and Surya Ganguli (2020).
“Pruning neural networks without any data by iteratively conserving synaptic
flow.” In: Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual. Ed. by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Had-
sell, Maria-Florina Balcan, and Hsuan-Tien Lin. url: https://proceedings.
neurips.cc/paper/2020/hash/46a4378f835dc8040c8057beb6a2da52-Abstract.

html (cit. on pp. 75, 77).

Tang, Jie, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su (2008). “Ar-
netMiner: extraction and mining of academic social networks.” In: Proceedings
of the 14th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008. Ed. by Ying Li, Bing
Liu, and Sunita Sarawagi. ACM, pp. 990–998. doi: 10.1145/1401890.1402008
(cit. on p. 1).

Velickovic, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio (2018). “Graph Attention Networks.” In: 6th Interna-
tional Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. url:
https://openreview.net/forum?id=rJXMpikCZ (cit. on p. 138).

Vert, Jean-Philippe (2008). “The optimal assignment kernel is not positive defi-
nite.” In: CoRR abs/0801.4061. arXiv: 0801.4061 (cit. on pp. 17, 28).

Vinyals, Oriol, Samy Bengio, and Manjunath Kudlur (2016). “Order Matters:
Sequence to sequence for sets.” In: 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track

http://proceedings.mlr.press/v5/shervashidze09a.html
http://proceedings.mlr.press/v5/shervashidze09a.html
https://doi.org/10.1006/jmva.1995.1051
https://doi.org/10.1006/jmva.1995.1051
https://arxiv.org/abs/1812.10528
https://arxiv.org/abs/1812.10528
https://doi.org/10.1007/BF00130487
https://proceedings.neurips.cc/paper/2020/hash/46a4378f835dc8040c8057beb6a2da52-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/46a4378f835dc8040c8057beb6a2da52-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/46a4378f835dc8040c8057beb6a2da52-Abstract.html
https://doi.org/10.1145/1401890.1402008
https://openreview.net/forum?id=rJXMpikCZ
https://arxiv.org/abs/0801.4061

bibliography 164

Proceedings. Ed. by Yoshua Bengio and Yann LeCun. arXiv: 1511.06391 (cit. on
p. 60).

Wang, Chaoqi, Guodong Zhang, and Roger B. Grosse (2020). “Picking Winning
Tickets Before Training by Preserving Gradient Flow.” In: 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net. url: https://openreview.net/forum?id=
SkgsACVKPH (cit. on p. 75).

Wang, Kuansan, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,
and Anshul Kanakia (2020). “Microsoft Academic Graph: When experts are
not enough.” In: Quant. Sci. Stud. 1.1, pp. 396–413. doi: 10.1162/qss_a\
_00021 (cit. on p. 82).

Wang, Minjie et al. (2019). “Deep Graph Library: Towards Efficient and Scalable
Deep Learning on Graphs.” In: CoRR abs/1909.01315. arXiv: 1909.01315
(cit. on pp. 22, 83).

Wang, Ziqi, Yuwei Tan, and Ming Zhang (2010). “Graph-Based Recommendation
on Social Networks.” In: Advances in Web Technologies and Applications, Proceed-
ings of the 12th Asia-Pacific Web Conference, APWeb 2010, Busan, Korea, 6-8 April
2010. Ed. by Wook-Shin Han, Divesh Srivastava, Ge Yu, Hwanjo Yu, and Zi He-
len Huang. IEEE Computer Society, pp. 116–122. doi: 10.1109/APWeb.2010.60
(cit. on p. 1).

Waradpande, Vikram, Daniel Kudenko, and Megha Khosla (2020). “Deep Re-
inforcement Learning with Graph-based State Representations.” In: CoRR
abs/2004.13965. arXiv: 2004.13965 (cit. on p. 75).

Watts, Duncan J. and Steven H. Strogatz (1998). “Collective dynamics of ‘small-
world’ networks.” In: Nature 393, pp. 440–442. issn: 0028-0836. doi: 10.1038/
30918 (cit. on p. 1).

Wu, Felix, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and
Kilian Q. Weinberger (2019). “Simplifying Graph Convolutional Networks.” In:
Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA. Ed. by Kamalika Chaudhuri and
Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research.
PMLR, pp. 6861–6871. url: http://proceedings.mlr.press/v97/wu19e.html
(cit. on pp. 72, 73, 75, 80, 83, 92).

Wu, Zonghan, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu (2021). “A Comprehensive Survey on Graph Neural Networks.”

https://arxiv.org/abs/1511.06391
https://openreview.net/forum?id=SkgsACVKPH
https://openreview.net/forum?id=SkgsACVKPH
https://doi.org/10.1162/qss_a_00021
https://doi.org/10.1162/qss_a_00021
https://arxiv.org/abs/1909.01315
https://doi.org/10.1109/APWeb.2010.60
https://arxiv.org/abs/2004.13965
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
http://proceedings.mlr.press/v97/wu19e.html

bibliography 165

In: IEEE Trans. Neural Networks Learn. Syst. 32.1, pp. 4–24. doi: 10.1109/TNNLS.
2020.2978386 (cit. on p. 54).

Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka (2019). “How
Powerful are Graph Neural Networks?” In: 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net. url: https://openreview.net/forum?id=ryGs6iA5Km (cit.
on pp. 19, 93, 94, 138).

Xu, Keyulu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi,
and Stefanie Jegelka (2018). “Representation Learning on Graphs with Jump-
ing Knowledge Networks.” In: Proceedings of the 35th International Confer-
ence on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018. Ed. by Jennifer G. Dy and Andreas Krause. Vol. 80. Pro-
ceedings of Machine Learning Research. PMLR, pp. 5449–5458. url: http:
//proceedings.mlr.press/v80/xu18c.html (cit. on pp. 68, 82, 114).

Yanardag, Pinar and S. V. N. Vishwanathan (2015). “Deep Graph Kernels.” In:
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Sydney, NSW, Australia, August 10-13, 2015. Ed.
by Longbing Cao, Chengqi Zhang, Thorsten Joachims, Geoffrey I. Webb,
Dragos D. Margineantu, and Graham Williams. ACM, pp. 1365–1374. doi:
10.1145/2783258.2783417 (cit. on p. 28).

Yang, Zhilin, William W. Cohen, and Ruslan Salakhutdinov (2016). “Revisiting
Semi-Supervised Learning with Graph Embeddings.” In: Proceedings of the
33nd International Conference on Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016. Ed. by Maria-Florina Balcan and Kilian Q. Weinberger.
Vol. 48. JMLR Workshop and Conference Proceedings. JMLR.org, pp. 40–48.
url: http://proceedings.mlr.press/v48/yanga16.html (cit. on pp. 23, 107,
138).

Yao, Liang, Chengsheng Mao, and Yuan Luo (2019). “Graph Convolutional
Networks for Text Classification.” In: The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, Honolulu, Hawaii, USA, January 27 - February
1, 2019. AAAI Press, pp. 7370–7377. doi: 10.1609/aaai.v33i01.33017370
(cit. on p. 17).

You, Jiaxuan, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec
(2018). “GraphRNN: Generating Realistic Graphs with Deep Auto-regressive
Models.” In: Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed. by
Jennifer G. Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning

https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://openreview.net/forum?id=ryGs6iA5Km
http://proceedings.mlr.press/v80/xu18c.html
http://proceedings.mlr.press/v80/xu18c.html
https://doi.org/10.1145/2783258.2783417
http://proceedings.mlr.press/v48/yanga16.html
https://doi.org/10.1609/aaai.v33i01.33017370

bibliography 166

Research. PMLR, pp. 5694–5703. url: http://proceedings.mlr.press/v80/
you18a.html (cit. on pp. 55, 61, 62).

Zarrouk, Tayeb, Romain Couillet, Florent Chatelain, and Nicolas Le Bihan (2020).
“Performance-Complexity Trade-Off in Large Dimensional Statistics.” In: 30th
IEEE International Workshop on Machine Learning for Signal Processing, MLSP
2020, Espoo, Finland, September 21-24, 2020. IEEE, pp. 1–6. doi: 10.1109/
MLSP49062.2020.9231568 (cit. on p. 101).

Zeng, Hanqing, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and
Viktor K. Prasanna (2020). “GraphSAINT: Graph Sampling Based Inductive
Learning Method.” In: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. url:
https://openreview.net/forum?id=BJe8pkHFwS (cit. on p. 120).

Zhang, Muhan and Yixin Chen (2017). “Weisfeiler-Lehman Neural Machine
for Link Prediction.” In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August
13 - 17, 2017. ACM, pp. 575–583. doi: 10.1145/3097983.3097996 (cit. on
pp. 46, 54).

Zhang, Muhan, Zhicheng Cui, Marion Neumann, and Yixin Chen (2018). “An
End-to-End Deep Learning Architecture for Graph Classification.” In: Proceed-
ings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018. Ed. by Sheila A. McIlraith and
Kilian Q. Weinberger. AAAI Press, pp. 4438–4445. url: https://www.aaai.
org/ocs/index.php/AAAI/AAAI18/paper/view/17146 (cit. on p. 27).

Zhang, Xiang and Marinka Zitnik (2020). “Gnnguard: Defending graph neu-
ral networks against adversarial attacks.” In: Advances in Neural Information
Processing Systems 33, pp. 9263–9275 (cit. on p. 95).

Zhou, Jie, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan
Liu, Lifeng Wang, Changcheng Li, and Maosong Sun (2020). “Graph neural
networks: A review of methods and applications.” In: AI Open 1, pp. 57–81.
doi: 10.1016/j.aiopen.2021.01.001 (cit. on pp. 21, 54).

Zhou, Yu, Haixia Zheng, and Xin Huang (2020). “Graph Neural Networks:
Taxonomy, Advances and Trends.” In: CoRR abs/2012.08752. arXiv: 2012.
08752 (cit. on pp. 54, 95).

Zhu, Dingyuan, Ziwei Zhang, Peng Cui, and Wenwu Zhu (2019). “Robust graph
convolutional networks against adversarial attacks.” In: Proceedings of the 25th

http://proceedings.mlr.press/v80/you18a.html
http://proceedings.mlr.press/v80/you18a.html
https://doi.org/10.1109/MLSP49062.2020.9231568
https://doi.org/10.1109/MLSP49062.2020.9231568
https://openreview.net/forum?id=BJe8pkHFwS
https://doi.org/10.1145/3097983.3097996
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17146
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17146
https://doi.org/10.1016/j.aiopen.2021.01.001
https://arxiv.org/abs/2012.08752
https://arxiv.org/abs/2012.08752

bibliography 167

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 1399–1407 (cit. on p. 95).

Zhu, Jiong, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K
Ahmed, and Danai Koutra (2021). “Graph neural networks with heterophily.”
In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 11168–11176

(cit. on p. 96).

Zhu, Jiong, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and
Danai Koutra (2020). “Beyond homophily in graph neural networks: Current
limitations and effective designs.” In: Advances in Neural Information Processing
Systems 33, pp. 7793–7804 (cit. on p. 96).

Zügner, Daniel and Stephan Günnemann (2019). “Adversarial Attacks on Graph
Neural Networks via Meta Learning.” In: 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net. url: https://openreview.net/forum?id=Bylnx209YX (cit. on pp. 94,
95).

Zügner, Daniel and Stephan Günnemann (2020). “Certifiable Robustness of
Graph Convolutional Networks under Structure Perturbations.” In: KDD ’20:
The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Virtual Event, CA, USA, August 23-27, 2020. Ed. by Rajesh Gupta, Yan Liu,
Jiliang Tang, and B. Aditya Prakash. ACM, pp. 1656–1665. doi: 10.1145/
3394486.3403217 (cit. on p. 95).

https://openreview.net/forum?id=Bylnx209YX
https://doi.org/10.1145/3394486.3403217
https://doi.org/10.1145/3394486.3403217

Titre : Apprentissage de la Représentation des Graphes : des Noyaux aux Réseaux Neuronaux

Mots clés : Noyau de Graphe, Réseaux Neuronaux de Graphes, Apprentissage de la Représentation, Graphe
Dynamique, Sparsification des Réseaux Neuronaux, Matrice Aléatoire

Résumé : Les graphes sont omniprésents en tant
que structure de données, de par leur capacité à
modéliser des informations relationnelles entre objets.
Ainsi, la capture d’informations à partir de données
structurées en graphes, soit l’exploration de graphes
ou l’apprentissage automatique des graphes, est un
sujet important. Dans cette thèse, nous présentons
une série de contributions de recherche sur les sujets
de l’apprentissage automatique des graphes en utili-
sant des méthodes à noyau et le modèle émergent
des réseaux neuronaux de graphes (RNGs). Dans la
première partie, nous présentons un nouveau noyau
de graphe qui calcule la similarité entre deux graphes
en calculant une affectation optimale de leurs plon-
gements de nœuds dans le même espace vecto-
riel. En utilisant un algorithme de clustering, nous
construisons une hiérarchie des sommets dans cet
espace, à travers laquelle le noyau proposé peut trou-
ver une correspondance optimale des sommets qui
maximise la similarité globale. L’efficacité de ce noyau
est démontrée empiriquement sur plusieurs datasets
de classification de graphes. La deuxième partie de
cette thèse est consacrée aux RNGs. Nous appli-
quons d’abord cette avancée récente au domaine

des réseaux temporels, en proposant un modèle
séquentiel pour prédire l’évolution des graphes dyna-
miques. Plus précisément, nous utilisons les RNGs et
une architecture récurrente pour encoder la séquence
de graphes en évolution dans un espace latent, puis
nous employons un modèle génératif pour prédire la
topologie du graphe à l’étape suivante et construire
l’instance de graphe correspondant à cette topologie
à partir de l’espace latent. Les travaux suivants se
rapprochent des principes fondamentaux des RNGs
en abordant leurs limites en termes de coût de calcul
et de robustesse au bruit structurel. Dans le premier
cas, nous démontrons que les réseaux de neurones
de passage de messages, un type courant de RNG,
peuvent être considérablement simplifiés en sparifiant
ou, dans certains cas, en omettant leurs étapes de
mise à jour. Pour le second, nous proposons de ro-
bustifier les RNGs avec un noyau de caractéristiques
de nœuds pour contrer les perturbations potentielles
sur les structures de graphes. Tous les modèles pro-
posés sont évalués empiriquement sur des tâches
correspondantes et se montrent compétitifs par rap-
port aux méthodes de référence.

Title : Graph Representation Learning: from Kernel to Neural Networks

Keywords : Graph Kernel, Graph Neural Networks, Representation Learning, Dynamic Graph, Neural Net-
work Sparsification, Random Matrix

Abstract : Graphs are ubiquitous as they can natu-
rally represent most real-world data. Thus, capturing
information from graph-structured data, i.e., graph mi-
ning and machine learning for graphs, has long be-
come and remains an important topic. In this the-
sis, we introduce a series of research contributions
on subjects of machine learning for graphs using ker-
nel methods and the emerging graph neural networks
(GNNs) framework. In the first part, we present a no-
vel graph kernel that computes the similarity between
two graphs by computing an optimal assignment of
their node embeddings in the same vector space.
Using a clustering algorithm, we construct a hierar-
chy of the vertices in this space, through which the
proposed kernel can find an optimal matching of the
vertices that maximizes the overall similarity. The ef-
ficiency of this kernel is demonstrated empirically on
several graph classification datasets. The second part
of this presentation is devoted to GNNs. We first ap-
ply this recent advancement to the field of temporal

networks, proposing a sequential framework to pre-
dict the evolution of dynamic graphs. Specifically, we
use GNNs and a recurrent architecture to encode the
sequence of evolving graphs into a latent space and
then employ a generative model to predict the topo-
logy of the graph at the next step and construct the
graph instance corresponding to that topology back
from the latent space. The following work moves clo-
ser to the fundamentals of GNNs by addressing their
limitations in terms of computational cost and robust-
ness against structural noise. For the first one, we de-
monstrate that message-passing neural networks, a
common type of GNNs, can be substantially simplified
by sparsifying, or in some cases omitting their update
steps. For the second, we propose to robustify GNNs
with a node feature kernel to counter potential pertur-
bations on their graph structures. All proposed models
are evaluated empirically on corresponding tasks and
are proven to be competitive with state-of-the-art me-
thods.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Dedication
	Abstract
	Résumé
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Figures

	List of Tables
	List of Tables

	List of Symbols
	List of Symbols

	List of Acronyms
	List of Acronyms

	1 Introduction
	1.1 Context and Scope
	1.2 Outline and Contributions

	2 Basic Notions and Preliminaries
	2.1 Definitions, Properties and Functions of Graphs
	2.2 Problems on Graphs
	2.2.1 Graph Similarity and Isomorphism
	2.2.2 Machine Learning Tasks on Graphs

	2.3 Graph Kernel
	2.3.1 Kernel Methods
	2.3.2 R-convolution Kernel
	2.3.3 Some Examples of R-Convolution Kernel
	2.3.4 Optimal Assignment Kernel

	2.4 Graph Neural Network
	2.4.1 Message-Passing Neural Network
	2.4.2 Some examples of Message-Passing Neural Network
	2.4.3 Relation between GCN and spectral GNN

	2.5 Software and Libraries
	2.6 Overview of Datasets

	 Kernel Methods
	3 A Valid Optimal Assignment Kernel
	3.1 Introduction
	3.2 Proposed Kernel
	3.2.1 Preliminaries
	3.2.2 Valid Optimal Assignment Kernel
	3.2.3 Extensions

	3.3 Experiments and Discussion
	3.3.1 Graph Classification
	3.3.2 Link Prediction
	3.3.3 Text Categorisation

	3.4 Chapter Conclusion

	 Graph Neural Networks
	4 Showcase: Topology Prediction for Dynamic Graphs
	4.1 Introduction
	4.2 Related Work
	4.3 EvoNet: A Neural Network for Predicting Graph Evolution
	4.3.1 Preliminaries
	4.3.2 Proposed Architecture

	4.4 Experiments and Discussion
	4.4.1 Datasets
	4.4.2 Baselines
	4.4.3 Experimental Setup and Evaluation Metric
	4.4.4 Experiment Analysis

	4.5 Chapter Conclusion

	5 Simplified Graph Neural Networks
	5.1 Introduction
	5.2 Related Work
	5.3 Investigating the Role of the Update step
	5.3.1 Message-Passing Neural Networks
	5.3.2 Sparsifying the Update step: Expander GNN
	5.3.3 An Extreme Case: Activation-Only GNN

	5.4 Experiments and Discussion
	5.4.1 General Settings and Baselines
	5.4.2 Graph Classification
	5.4.3 Graph Regression
	5.4.4 Node Classification
	5.4.5 Expander Sparsification
	5.4.6 Convergence Behaviour

	5.5 Chapter Conclusion

	6 Robust Graph Convolutional Neural Networks
	6.1 Introduction
	6.2 Related Work
	6.3 Analysis of the Random GCN
	6.3.1 Spectral Behaviour of the Gram Matrix
	6.3.2 Spectral Behaviour of XXT
	6.3.3 Message Passing through Node Feature Kernels

	6.4 Experiments and Discussion
	6.4.1 Datasets and Implementation Details
	6.4.2 Experiment Analysis

	6.5 Chapter Conclusion

	 Conclusion
	7 Conclusion
	7.1 Summary of Contributions
	7.2 Future Directions
	7.3 Epilogue

	 Appendix
	A Appendix to Chapter 4
	A.1 Additional Experiments
	A.1.1 Synthetic Datasets

	B Appendix to Chapter 6
	B.1 Preliminaries of Random Matrix Theory
	B.2 Proof of Theorem 3.4
	B.3 Proof of Corollary 3.5
	B.4 Additional Experiments
	B.4.1 Multiple Splits
	B.4.2 Models beyond GCN
	B.4.3 Deeper GCN architecture and Benchmark Models
	B.4.4 Node Feature Noise

	 Bibliography

