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Chapter 1

Introduction

Computational design of materials reflects the dream of creating new mate-
rials with desired properties for various applications, such as photovoltaics,
thermoelectrics or nanotechnologies. It is well known in condensed matter
physics that the properties of materials originate from a collective behavior
of particles, namely, electrons and nuclei which are the fundamental con-
stituents of matter. In most cases, understanding the collective behavior of
electrons is necessary to predict and design a large number of materials fea-
tures. The challenge then is to describe a system with many interacting elec-
trons, which are governed by the laws of quantum mechanics. This problem
is known as the quantum many-body problem.

In principle, any system of interacting particles can be fully described
via the wavefunctions which are the solutions of the Schrödinger equation.
However, the solution of this equation is complicated, and even computa-
tionally impossible, for systems of more than a few particles. One possi-
ble way to proceed is to approximate the ground state wavefunction and
some excited state wavefunctions using stochastic methods such as Quan-
tum Monte Carlo (QMC) [1, 2]. Such methods are based on the minimization
of the energy with respect to a trial many-body wavefunctions. They involve
very expensive calculations and their cost increases rapidly with the size of
the system. This price is due to the excellent quality of the approximation; in
particular they yield near-exact estimation for the total energy of the system.

Another possible way to tackle the problem is based on building func-
tionals of more compact quantities. An example is the one-body Green’s
function [1, 3], which describes the likelihood that an electron added to (or
removed from) a material at position r and time t is found at another position
r′ and time t′. The one-body Green’s function is the basic building block in
Green’s function functional theory (GFFT). Much of the success of GFFT is
due to the assumption that the interaction between the particles is weak and
it can be treated within Many Body Perturbation Theory [4, 1]. However,
the perturbation expansion suffers from convergence problems, and making
high-order expansions, which implies high computational cost, does not nec-
essarily lead to an improvement.

Another approach to deal with the many body problem is density func-
tional theory (DFT) [5, 6]. It is so efficient that it allows one to run high
throughput calculations [7, 8, 9, 10, 11]. According to DFT any observable is
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a functional of the ground-state density of electrons, which is the probabil-
ity to find one of N electrons in a volume of space. The density is a three-
dimensional function which makes DFT much cheaper than QMC, however,
the DFT functionals are not known and there is no useful systematic prescrip-
tion how to construct them.

The aim of this thesis is to give a systematic and general approach for
approximating observables or other objects. This approach is based on two
pillars : first, it suggests to calculate and store the desired quantity in a model
system, which is usually a simple system. This allows us to do the calcula-
tion with high precision using high-level methods, or to profit from available
results. The computational cost does not matter a lot since these calcula-
tions are done once and for all. The second pillar consists of making the
connection between the model and real systems, i.e, the prescription how to
optimize the use of the model data in order to approximate quantities in real
systems. This prescription, termed connector, is very general and in principle
exact. In practice, it has to be approximated. Once a good connector has been
established, one can obtain results for many materials with a modest compu-
tational cost. Moreover, it can be seen as a generator for new functionals.

In the next chapter, I will present the theoretical framework of this the-
sis, mainly the many body problem, density functional theory and density
functional matrix theory [12, 13].

Then, in chapter 3, I will introduce the general connector theory and I will
show how it can be applied to any quantity, and under which conditions. The
discussion will be accompanied with a simple physical example in order to
clarify the mathematical scheme. The examples and applications chosen in
this thesis are mostly extended systems, although the connector approach is
not limited to those in principle.

The aim of chapter 4 is to use the connector theory in order to build a
new approximation for the exchange correlation (xc) potential. This quantity
plays a central role in DFT, and it is very interesting to study since it describes
the most intriguing ingredient of an interacting-particle system, namely the
exchange and correlation effects.

As a first attempt toward testing the connector approximation of the xc
potential, I evaluated and studied the performance of the approximation of
a non-local functional in chapter 5. The encouraging results obtained from
this study was the primary motivation for chapter 6, in which I considered
the true xc potential functional. The purpose of this chapter is to conduct a
comparative study of the electronic densities obtained using the connector
functional and several popular DFT functionals with respect to a benchmark
density of a given material. This topic initiates a collaboration with S. Chen
and S. Zhang who calculated the benchmark densities in three prototypical
solids using Auxiliary Field QMC [14], which is known to be very accurate.
Given the availability of the QMC density, I inverted it in order to obtain a
near-exact xc potential. This allowed me to directly compare it to the approx-
imate functionals, including the connector approximation. The details of the
inversion and the results are discussed in chapter 7. After accomplishing
this, I used the inverted xc potential to extract the xc contribution from the
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total energy, which was computed using QMC [14]. This xc energy served as
a benchmark to test a connector functional which I designed specifically for
the xc energy in chapter 8.

In chapters 9 and 10, I present two different applications of the connector
theory beyond DFT and the xc potential. In the first application, I discuss a
way to estimate for a given Hamiltonian, the density directly from a connec-
tor potential. In the second application, I use the Kohn-Sham density matrix
to illustrate how the connector can approximate a non-local object. Finally,
in chapter 11 I will draw conclusions and give my vision of promising direc-
tions for the future.
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Chapter 2

Theoretical Background

The underlying physical laws
necessary for the mathematical theory
of a large part of physics and the whole
of chemistry are thus completely
known, and the difficulty is only that
the exact application of these laws
leads to equations much too
complicated to be soluble.

Paul Dirac

In this chapter, I will review the theoretical concepts and the methods
used to accomplish my thesis. I will start by the original problem which
is the description of a system of interacting electrons. Then, I will discuss
some independent-electron approximations as a way to tackle the many body
problem. These approximations paved the way to density functional theory
(DFT), which is considered as the state-of-art method to study the electronic
structure. I will introduce the DFT formalism and I will present the approx-
imations that make it practical. Following that, I will present the density
matrix functional theory which requires more information than DFT but pro-
vides direct access to more observables. In all the rest of my thesis, equations
are written in atomic units: e2 = h̄ = me = 1 where e is the electron charge
and me its mass. The unit of length is then a Bohr≈ 0.529Å and the unit of
energy is a Hartree≈ 27.211eV.

2.1 The Many Body Problem

One of the most important and challenging problems in physics and chem-
istry is the many-body problem. The issue is to describe a system of many in-
teracting electrons and nuclei. The size of these systems ranges from few par-
ticles, as in the case of atoms, to the order of the Avogadro number N ∼ 1023

particles, which is the case of solids. The good news is that, at least as far
as today’s insight allows us to judge, we know all the laws that govern
these particles from quantum and statistical mechanics. We can then write
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their Hamiltonian, which contains the main information about the system. It
reads1

Ĥ = −∑
i

∇2
i

2
− ∑

I

∇2
I

2MI
+

1
2 ∑

i ̸=j

1
|ri − rj|

+
1
2 ∑

I ̸=J

ZIZJ

|RI − Rj|
− ∑

i,I

ZI

|ri − RI |
,

(2.1)
where electrons and their positions are denoted by i and ri, nuclei by I and
RI . MI is the I-th nucleus mass and ZI its atomic number. The first two
terms represent the kinetic energy of electrons and nuclei. The next two terms
represents electron-electron interaction and nucleus-nucleus interaction. The
last term is the Coulomb interaction between electrons and nuclei.

2.1.1 Schrödinger equation

According to the first postulate of quantum mechanics, the state of the sys-
tem at time t is completely specified by a mathematical object, called the
wavefunction2 ψ({RI}, {ri}, t) ≡ ψ(R1, R2, ..., RN, r1, r2, ..., rN, t). This wave-
function is the solution of the time-dependent Schrödinger equation, which
reads

i
∂ψ({RI}, {ri}, t)

∂t
= Ĥψ({RI}, {ri}, t). (2.2)

The eigenstate of Ĥ at time t = 0 satisfies the time-independent Schrödinger
equation

Ĥψ({RI}, {ri}) = Eψ({RI}, {ri}). (2.3)

The solution of this equation allows us to extract all the information con-
tained in the Hamiltonian (2.1) at t = 0. This is more than enough for a
system in equilibrium to determine many of its properties. However, equa-
tion (2.3) can be solved analytically at most for two particles and numerically
for very few particles. The challenge arises from the Coulomb interaction,
which couples the motions of all particles in the system, and hence requires
simultaneous solution of (2.3) for the entire system. Furthermore, the wave-
function ψ depends on the positions and spins of the system’s N ∼ 1023

particles. Thus, even if we were able to compute the wavefunction, storing
it would need an astronomical number of memory units, which is simply
beyond the capabilities of modern computers and is expected to stay so in
the foreseeable future. To address this difficulty, clearly we need to make
approximations [15].

2.1.2 The Born–Oppenheimer approximation

The difficulty of the many-body problem lies in the fact that the Hamiltonian
(2.1) cannot be written as a sum of independent particles, since the Coulomb

1Relativistic effects and external perturbation are not considered.
2The spin coordinates will not be shown for the rest of the thesis.
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interaction completely couples the motions of electrons and nuclei. How-
ever, the kinetic energy operator of the nuclei in (2.1) is proportional to the
inverse nuclear mass 1/M, which is very small compared to the electronic
mass, me

M ≈ 10−4. Therefore, one can assume the nuclei to be fixed in their
instantaneous positions and treat their kinetic energy as a perturbation. The
electrons then move under the effect of the nuclear potential Vext,R(r ≡ {ri})
with fixed R ≡ {RI}, and the electron-electron Coulomb repulsion. The per-
tinent Hamiltonian for the electrons is then

Ĥ = −∑
i

∇2
i

2
+

1
2 ∑

i ̸=j

1
|ri − rj|

+ Vext,R
(
r). (2.4)

For a given state l and configuration R, the Schrödinger equation for the elec-
tronic system reads[

−∑
i

∇2
i

2
+

1
2 ∑

i ̸=j

1
|ri − rj|

+ Vext,R
(
r)

]
φ
(l)
R (r) = E(l)(R)φ

(l)
R (r), (2.5)

where φ
(l)
R (r) is an electronic wavefunction, which is a function of the po-

sition of all electrons r. It also depends on the nuclear positions: this de-
pendence is included as a subscript R. The superscript l labels the element
of the complete set of eigenstates for the electrons at each R. The eigenval-
ues E(l)(R) are the associated electronic energies, which also depend on the
nuclear position.

Let us now decompose the full wavefunction for a given state starting
from the following ansatz

ψ(r, R) = ∑
l

η(l)(R)φ
(l)
R (r), (2.6)

where η(l)({R}) are functions of the nuclear positions. They are the coeffi-
cients that weight the electronic states φ(l). Now we apply the Hamiltonian
(2.1) to (2.6) and, using (2.5), we obtain

Ĥ ∑
l

η(l)(R)φ
(l)
R (r) = ∑l η(l)(R)

(
E(l)(R) + V̂nn + ∑J

−∇2
J

2MJ

)
φ
(l)
R (r)

+∑J,l φ
(l)
R (r)

−∇2
J η(l)(R)

2MJ
+ ∑J,l

−∇Jη(l)(R)∇J φ
(l)
R (r)

MJ
,(2.7)

where V̂nn = 1
2 ∑I ̸=J

ZI ZJ
|RI−Rj| is the nuclear Coulomb interaction. We multiply

this equation on the left by φ
∗(m)
R (r) and we integrate over r. Using (2.3), this

yields

E η(m)(R) =

(
E(m)(R) + V̂nn + ∑

i
Al,m(R) + ∑

J

−∇2
J

2MJ
+ ∑

i
Bl,m(R)

)
η(m)(R),

(2.8)
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with

Al,m(R) = −∑
J

1
2MJ

∫
drφ

∗(m)
R (r)∇2

J φ
(l)
R (r), (2.9)

Bl,m(R) = −∑
J

1
MJ

∫
drφ

∗(m)
R (r)∇J φ

(l)
R (r) ∇J . (2.10)

In the Born-Oppenheimer approximation [16], the electrons are assumed to
follow adiabatically the motion of the nuclei, i.e., they remain in the given
state m as the nuclei move, and there is no change of state from m to l. This
means all the off-diagonal terms of Al,m and Bl,m are neglected. The diagonal
terms Bm,m vanish if the φm

R(r) can be chosen to be real and the number of
electrons, N, is fixed. This can be shown as follows

Bm,m = −∑
J

1
MJ

∫
dR

∫
drφ

∗(m)
R (r)∇J φ

(m)
R (r) ∇J

= −∑
J

1
MJ

∫
dR∇J

∫
dr

1
2

∣∣∣φ(m)
R (r)

∣∣∣2 ∇J

= −∑
J

1
MJ

∫
dR∇J

N
2

∇J

= 0. (2.11)

Thus, for each electronic state m, the nuclear motion is given by a purely
nuclear equation, which reads[

−∑
J

1
2MJ

∇2
J + U(m)(R)

]
= Eη(m)(R), (2.12)

with U(m)(R) = Vnn(R) + E(m)(R) + Am,m(R), which represents a modified
potential for the nuclei. The term Am,m(R) is very small since it is propor-
tional to the inverse nuclear mass. It can also be neglected if the electron are
more localized around the nuclei. Here, the term E(m)(R) can be interpreted
as an electronic glue for the lattice [17].

In conclusion, the Born-Oppenheimer approximation allows us to decou-
ple the dynamics of the electrons from the one of the nuclei. It is considered
as excellent approximation [18], except when the adiabatic surfaces, defined
by E(m)(R), are degenerate or nearly degenerate. In this case, the transition
probability between different electronic states is significant, and so we cannot
neglect the off-diagonal terms of Al,m and Bl,m. For all systems studied in this
thesis, we will use the Born-Oppenheimer approximation. Moreover, we will
use the frozen-core approximation. This means the inner electrons, known as
core electrons, will be attached to their nuclei in a fixed state which makes
a positively charged ion structure. This approximation is justified since only
the valence electrons play an important role in the interatomic interaction.
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Even with these approximations, the many-body problem remains very dif-
ficult due to the long range Coulomb interaction between electrons, and it is
still impossible to store their wavefunction.

2.2 Observables

Our aim when studying the many-body problem is to understand and pre-
dict materials properties. These properties can be measured experimentally
and we call them observables. For electrons whose state is described by the
wavefunction φ, any time-independent observable at zero temperature can
be calculated as an expectation value of a linear operator Ô〈

Ô
〉
= ⟨φ| Ô |φ⟩ , (2.13)

where φ is assumed to be normalized.
One interesting observable, that we will use often in this thesis, is the

charge density of electrons. It is given by the expectation value of the density
operator n̂(r) = ∑i δ(r − ri),

n(r) = N
∫

dr2...drN|φ(r, r2, r3, ..., rN)|2, (2.14)

where N is the total number of electrons.
The other natural observables of the electronic system is the total energy,

which is the expectation value of the Hamiltonian (2.4). Since we use the
adiabatic approximation, the energy that results from the nuclear Coulomb
interaction, Enn, is a constant. This constant can be added to the zero of
energy which yields

E =
〈
Ĥ
〉
+ Enn =

〈
T̂e
〉
+
〈
V̂ee
〉
+
∫

drVext(r)n(r) + Enn, (2.15)

where T̂e denotes the kinetic energy of electrons, and V̂ee denotes the elec-
tronic Coulomb interaction operator.

One can see from above that observables are integrated objects and by
calculating the wavefunction we have obtained too many details that we do
not necessarily need to calculate physical quantities.

2.3 The variational principle

Here, we present the variational principle, which is a very powerful concept
in mathematics and is widely used in theoretical physics. Suppose that we
have a system with a Hamiltonian Ĥ, and we do not know the ground state
energy, E0, and the ground state wavefunction, φ0, that verifies

Ĥφ0 = E0φ0. (2.16)
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Now, if we choose any trial wavefunction φ, and we calculate its energy E,
then the variational theorem guarantees

E[φ] = ⟨φ| Ĥ |φ⟩ ≥ E0. (2.17)

Thus, the wavefunction which most accurately describes the ground state of
the system is the one which minimizes the total energy, i.e.,

E0 = min
{φ}

⟨φ| Ĥ |φ⟩ . (2.18)

This makes physical sense because the ground-state energy is, by definition,
the lowest energy; hence, the energy E cannot be less than the energy of the
ground-state wavefunction. The latter can be found using the method of
Lagrange multipliers, by varying the wavefunction φ in (2.17), subject to the
constraint ⟨φ|φ⟩ = 1.

The variational principle is very useful for guiding approximations for
the ground-state many-body wavefunction. It is the essence of stochastic
methods like variational Monte Carlo [1].

2.4 Independent-particle methods

The solution of the many-body Schrödinger equation is challenging due to
the Coulomb interaction between electrons. This interaction takes the form
of a two-body operator in the Hamiltonian. Because of the Coulomb inter-
action, it is not possible to write the Hamiltonian as a sum of one body op-
erators, and so we cannot factorize the many-body wavefunction. However,
the independent-particle methods give us a way to approximate the inter-
acting system by a non-interacting one, where the Schrödinger equation can
be solved easily. The idea is to replace the two-body interaction term by
an effective term representing the average action of all electrons on one of
them. In other words, we admit that there is an approximation where finally
the two-body term is replaced by a term depending only on the variables
of one electron. Hence, we formally find a picture of the system where the
effective Hamiltonian is a sum of independent pieces, and thus the many-
body wavefunction is expressed as product or Slater determinant of a set of
single-electron orbitals. Indeed, in this picture we assume that electrons are
uncorrelated, although it is possible to make them obey the Pauli exclusion
principle.

2.4.1 Hartree approximation

One of the earliest attempts to approximate the many-body problem using an
independent-particle picture was made by Hartree [19]. The approximation
is based on two steps: first we assume the wavefunction to be a product of a
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set of single-electron orbitals3

φH(r1, r2, ..., rN) = ϕ1(r1)ϕ2(r2)... ϕN(rN), (2.19)

where the orbitals are orthonormal. The second step is to use the variational
principle (2.18) to obtain the effective Hamiltonian whose eigenstates are the
orbitals that construct the full wavefunction φH. To do this, we use the La-
grange multipliers method to perform the minimization (2.18), under the
normalization condition of the orbitals. This implies that we vary the ex-
pectation value of the Hamiltonian (2.4) with respect to the orbitals ϕi(ri),
and introduce the normalization condition via the Lagrange multipliers εi

δ

[〈
φH
∣∣∣H ∣∣∣φH

〉
− ∑

i
εi(⟨ϕi|ϕi⟩ − 1)

]
= 0. (2.20)

The Hamiltonian H, defined in (2.4), can be written as

Ĥ = ∑
i

Ĥ1(i) +
1
2 ∑

i ̸=j
V̂ee(i, j), (2.21)

where Ĥ1(i) is the single-electron Hamiltonian and V̂ee(i, j) = 1
|ri−rj| . Using

(2.21) in (2.20) and considering only the variation of the bra
〈

φH
∣∣, we get for

the first term 〈
δφH

∣∣∣∑
i

Ĥ1(i)
∣∣∣φH

〉
= ∑

i
⟨δϕi| Ĥ1(i) |ϕi⟩ . (2.22)

For the operator V̂ee(i, j), we get

1
2 ∑

i ̸=j

〈
δφH

∣∣∣ V̂ee(i, j)
∣∣∣φH

〉
=

1
2

(
∑
i ̸=j

〈
δϕiϕj

∣∣ V̂ee(i, j)
∣∣ϕiϕj

〉
+ ∑

i ̸=j

〈
ϕiδϕj

∣∣ V̂ee(i, j)
∣∣ϕiϕj

〉)
= ∑

i ̸=j
⟨δϕi|

(〈
ϕj
∣∣ V̂ee(i, j)

∣∣ϕj
〉)

|ϕi⟩ . (2.23)

Now we sum all the resulting terms from (2.20), which yields

∑
i

[
⟨δϕi|

(
Ĥ1(i) + ∑′

j ̸=i

〈
ϕj
∣∣ V̂ee(i, j)

∣∣ϕj
〉
− εi

)
|ϕi⟩

]
= 0 (2.24)

Since this must hold for all possible
〈
δφH

i

∣∣ and
∣∣δφH

i
〉
, this can be satisfied

only if [
Ĥ1(i) + ∑′

j ̸=i

〈
ϕj
∣∣ V̂ee(i, j)

∣∣ϕj
〉]

|ϕi⟩ = εi |ϕi⟩ , (2.25)

where the primed sum is a single sum over all j different from i. We rewrite
equation (2.25), replacing the notation ri by r, we obtain

3To be more precise, we should include the spin by expressing the wavefunction in terms
of spinors.
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[
−∇2

2
+ Vext(r) + VHartree(r) + Vi

SIC(r)
]

ϕi(r) = εiϕi(r), (2.26)

where

VHartree(r) =
∫

dr′
n(r′)
|r − r′| and Vi

SIC(r) = −1
2

∫
dr′

|ϕi(r′)|2
|r − r′| . (2.27)

The term VHartree(r) is known as Hartree potential, and the potential Vi
SIC(r)

is the self-interaction correction of the Hartree potential. It guarantees that an
electron in orbital ϕi(r) does not interact with itself, but only with the (N −
1) remaining electrons of the system. The term Vi

SIC(r) is often neglected,
that is why we often say that the Hartree equations contain a self-interaction
term. This was not the case in the original derivation of Hartree equations,
as shown in (2.26).

In conclusion, the Hartree approximation allows us to treat each elec-
tron as an independent particle living in an effective potential, generated
by the other electrons. This picture yields an approximation for the many-
body wavefunction, and hence we can calculate properties of real systems.
Unfortunately, the Hartree approximation does not yield particularly satis-
factory results. For instance, it predicts that there will be no binding energy
keeping the electrons in a uniform system [20]. This, of course, contradicts
experimental evidence that electrons require a finite amount of energy to be
released from solids. The shortcomings of Hartree approximation can be un-
derstood from two points of view: first, the electrons are treated indepen-
dently and so the correlation of their motion, due to the Coulomb interaction,
is neglected. Second, we supposed that the wavefunction can be written as
product of orbitals, and so the variational principle can only search through a
restricted domain of wavefunctions, which does not necessarily contain the
exact ground-state wavefunction. In addition to that, a wavefunction that
takes the form (2.19) does not obey the Pauli exclusion principle. This last
issue was resolved by an improved approximation, which we will present in
the following section.

2.4.2 Hartree-Fock approximation

In order to satisfy the Pauli principle, Fock proposed to replace the wavefunc-
tion used in Hartree theory with an appropriate linear combination, known
as a Slater determinant [21]

φHF (r1, r2, . . . , rN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣

ϕ1 (r1) ϕ1 (r2) . . . ϕ1 (rN)
ϕ2 (r1) ϕ2 (r2) . . . ϕ2 (rN)

... . . . . . . ...

... . . . . . . ...
ϕN (r1) ϕN (r2) . . . ϕN (rN)

∣∣∣∣∣∣∣∣∣∣∣
, (2.28)
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where 1/
√

N! is the normalization factor. By writing the wavefunction as in
(2.28), the Pauli principle is taken into account mathematically. Indeed, the
determinant ensures that the wavefunction of the system is antisymmetric
under exchange of any pair of electrons. This means if we swap an elec-
tron for another, the wavefunction remains unchanged except for a change
of sign. The wavefunction will then vanish, indicating zero probability, as
two electrons with the same orbital and spin approach each other.

Similarly to the previous section, we apply the variational principle using
the ansatz (2.28), and we obtain the Hartree-Fock equations[−∇2

2
+ Vext(r) + VHartree(r) + Vi

x(r)
]

ϕi(r) = εiϕi(r), (2.29)

with

Vi
x(r) = −1

2

[
∑

j

∫
dr′

ϕ∗
j (r

′)ϕi(r′)

|r − r′|

]
ϕj(r)
ϕi(r)

. (2.30)

This term is the so-called exchange potential. It is the direct result of incor-
porating the Pauli principle via an antisymmetrised wavefunction. Note that
the sum in (2.30) can be separated as

Vi
x(r) = −1

2

[
∑
j ̸=i

∫
dr′

ϕ∗
j (r

′)ϕi(r′)

|r − r′|

]
ϕj(r)
ϕi(r)

− 1
2

∫
dr′

|ϕi(r′)|2
|r − r′| . (2.31)

The second term is exactly the self-interaction correction of the Hartree po-
tential, Vi

SIC(r). This is to say that the Hartree-Fock Hamiltonian is free of the
self-interaction. Note also that the term Vi

x(r) is always negative, which leads
to a lower total energy energy than in the Hartree approximation. Thus, the
Hartree-Fock approximation is better than the Hartree one. It improves the
electron density, and it binds atoms into molecules and solids. However, this
binding is usually too weak [20]. The deficiency stems from the fact that elec-
trons are still treated independently, by neglecting their correlation, which is
of course incorrect.

2.4.2.1 Koopmans’ theorem

In order to make use of the variational principle, taking into account the
normalization condition, we introduced the Lagrange multipliers εi. These
quantities have a dimension of energy as one can see from the Hartree-Fock
equations (2.29), but do they have a physical meaning? To answer this ques-
tion let us calculate the required energy to remove an electron from a given
orbital k

EN − EN−1
k = ⟨φ| Ĥ |φ⟩ −

〈
φN−1

k

∣∣∣ ĤN−1
k

∣∣∣φN−1
k

〉
, (2.32)
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where EN−1
k , and φN−1

k is the energy and the wavefunction of the system
respectively, after removing an electron from an orbital k, and

ĤN−1
k = ∑

i ̸=k
Ĥ1(i) +

1
2 ∑

i ̸=j
i,j ̸=k

V̂ee(i, j). (2.33)

To evaluate this difference , we first make the following assumptions:

• the wavefunction of the system, φ, is a single Slater determinant.

• removing the k-th electron has no effect on the orbitals of other elec-
trons.

Clearly, these are approximations. In principle, the many-body wavefunction
is not a single Slater determinant, and the removal of one electron will affect
the entire system, and so the orbitals would not be the same. By considering
these approximations, the wavefunction φN−1

k is then obtained by omitting
the k-th row and the k-th column of the Slater determinant. This yields

EN
k − EN−1

k = ⟨ϕk|
[−∇2

2
+ Vext(r) + VHartree(r) + Vk

x (r)
]
|ϕk⟩

= εk. (2.34)

So the meaning of the eigenvalue εk is the energy required to remove an elec-
tron from orbital k. This result is known as Koopmans’ theorem [22].

2.5 Exchange and correlation

Electrons are interacting particles and it is difficult to describe them within
an independent-particle picture. Indeed, the Hartree-Fock approximation
succeeded to capture a very important effect, known as the exchange, but
it ignores another effect resulting from the electrostatic correlation of elec-
trons. This correlation effect is essential in the description of electrons; to-
gether with the exchange, they make a sort of glue that binds atoms together
to form molecules and solids [20].

In the case of the Hartree-Fock approximation, the exchange effect leads
to a term that lowers the total energy. The physical picture of this term lies
in the Pauli principle. It implies that the region surrounding each electron is
depleted from any electron with the same quantum number, which creates
a positive exchange hole. The same thing happens in the case of correlation
because of the electrostatic repulsion, which gives rise to a correlation hole.
In order to give a more quantitative aspect to the exchange and correlation
holes, it is convenient to work with the joint probability, n(r, r′), of finding
two electrons at the point r and r′

n(r, r′) =
∫

dr3... drN|φ(r, r′, ..., rN)|2, (2.35)
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which can be seen as a sum of the joint probability of uncorrelated electrons
and an extra term ∆n(r, r′)

n(r, r′) = n(r)n(r′) + ∆n(r, r′), (2.36)

where ∆n(r, r′) is a measure of the interdependence of the electrons, which
vanishes in case of independent electrons. This term can be written as

∆n(r, r′) = n(r)nxc(r, r′), (2.37)

where nxc(r, r′) is the exchange correlation hole, which can be expressed as a
sum of an exchange and a correlation hole

nxc(r, r′) = nx(r, r′) + nc(r, r′). (2.38)

There are at least two exact constraints on the exchange hole, nx(r, r′): (i)
it is always negative, and (ii) the integral of nx(r, r′) over r′ yields4 -1. The
correlation hole, instead, must integrate to zero, which means that it just re-
distributes the hole’s density.

Similarly to the exchange, the correlation energy is always negative for
the ground state [23].

In conclusion, exchange and correlation are essential physical contribu-
tions to the interacting electrons system. Their importance was highlighted
thanks to Hartree and Hartree-Fock theory. To improve these approxima-
tions further, it is critical to accurately describe the exchange and correlation
effects. The theory that made a further improvement and revolutionized the
field of electronic structure came in 1964 [5]. It can also be formulated us-
ing an independent-particle picture, but it includes the exchange correlation
effects in a smart way, making an in principle exact theory.

2.6 Density Functional Theory

The wavefunction is a powerful fundamental quantity, and once it is known
all the properties of the system follow. However, it is too complicated to deal
with, since it depends on the position and the spin of each electron of the
system, which leads to a huge number of degrees of freedom. In addition to
that, the wavefunction does not have a clear physical interpretation and it is
not interesting for itself. What makes it interesting is the fact that all observ-
ables are expectation values of the wavefunction. This implies an integration
over all its variables. Therefore the wavefunction is a kind of an intermediate
object that reveals to us what we want to know about the system with too
much cost. Thus, one can ask whether there is another optimized way to cal-
culate the observables, without passing by the wavefunction. In fact, if we

4This is a consequence of the Pauli exclusion principle.
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compute the Hartree energy we get

〈
V̂Hartree

〉
=

1
2

∫
drdr′

n(r)n(r′)
|r − r′| , (2.39)

which means that the only needed quantity here is the electronic density.
However, this is no longer obvious when it comes to the kinetic energy

〈
T̂e
〉
= −1

2 ∑
i

∫
dr1...drN φ∗(r1, r2, .., rN)∇2

i φ(r1, r2, .., rN). (2.40)

Thomas-Fermi theory [24, 25] was the first attempt to change the paradigm
by giving an approximation to the kinetic energy in terms of the density. The
approximation consists in replacing the homogeneous density in the kinetic
energy function of the homogeneous electron gas (HEG) by the local density
of the system. This yields the following functional for the total energy:

ETF[n] = C
∫

drn(r)5/3 +
1
2

∫
drdr′

n(r)n(r′)
|r − r′| +

∫
n(r)Vext(r), (2.41)

with C = 3
10(3π2)2/3. In order to find the ground state density, the Thomas-

Fermi functional (2.41) must be minimized with respect to n(r), and subject
to the constraint that the number of electrons is conserved

∫
drn(r) = N. This

approach yields good approximations for the density and the total energy of
an atom, but it turns out to be very rough for molecules and solids [26, 27,
28]. This shortcoming is due to two main factors:

• Using a very simple approximation for the kinetic energy, which repre-
sents a significant portion of the total energy, and so even a small error
has an important impact on the result.

• Treating the electrons interaction classically in the functional (2.41), and
so a very important term is missed, which is the exchange and correla-
tion energy, as discussed in Sec. 2.4.2.

In 1964, Hohenberg and Kohn [5] confirmed the usefulness of using the
ground-state density instead of the many-body wavefunction. Most impor-
tantly, they proved that it is the the sufficient information to know all the
ground-state observables. This breakthrough led to an in principle exact
theory known as Density functional theory (DFT), with approximations in
practice, which makes electronic structure calculations much faster without
sacrificing too much the accuracy.

2.6.1 The Hohenberg-Kohn theorem

Hohenberg and Kohn (HK) [5] formulated and proved the following two the-
orems, which provide a strong mathematical foundation for the development
of modern DFT methods:



Chapter 2. Theoretical Background 16

FIGURE 2.1: One-to-one mapping between the density and the
external potential.

HK theorem I: Proof of existence the external potential Vext(r) is, up to a
constant, a unique functional of the density n(r); since, in turn Vext(r) defines
the many-body Hamiltonian Ĥ, then the full many-body state is a unique
functional of n(r).

HK theorem II: Variational principle The ground-state energy functional
has a minimum at the exact ground state density n(r).

In other words, the first theorem states that there is one-to-one mapping
between the density and the wavefunction. In fact, if we know the wavefunc-
tion then it is evident, from the definition of the density (2.14), that it is well
defined. Now, our goal is to prove the opposite. For the sake of simplicity,
let us first assume that the ground state is non-degenerate. Then we suppose
that we have two different external potentials Vext(r) and V′

ext(r
′) where

Vext(r)− V′
ext(r) ̸= constant. (2.42)

The two potentials define two different Hamiltonians, Ĥ and Ĥ′, which have
two different ground-state wavefunctions, φ and φ′. Let us now assume that
φ and φ′ have the same ground-state density n(r), this yields

E0 = ⟨φ| Ĥ |φ⟩ <
〈

φ′∣∣ Ĥ ∣∣φ′〉 = 〈φ′∣∣ Ĥ′ − ∑
i

V′
ext(ri) + ∑

i
Vext(ri)

∣∣φ′〉 ,

(2.43)
from which it follows

E0 < E′
0 +

〈
φ′∣∣∑

i

[
Vext(ri)− V′

ext(ri)
] ∣∣φ′〉 , (2.44)

or
E0 < E′

0 +
∫

dr
[
Vext(r)− V′

ext(r)
]

n(r). (2.45)
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Similarly for E′
0 = ⟨φ′| Ĥ′ |φ′⟩ we obtain

E′
0 < E0 −

∫
dr
[
Vext(r)− V′

ext(r)
]

n(r) (2.46)

Now we sum the right and left hand side of (2.44) and (2.46), and we get

E0 + E′
0 < E0 + E′

0, (2.47)

which is a contradiction. Hence, we have proved by reductio ad absurdum
that two different ground-state wavefunctions cannot yield the same ground-
state density. In conclusion we have demonstrated that there is a one-to-one
correspondence between the ground-state wavefunction and the density.

The first Hohenberg-Kohn theorem implies that the expectation value of
any physical observable of the system is a unique functional of the ground-
state density n(r). Therefore, the total ground-state energy is a functional of
the density, and it can be written as

Ev[n] = F[n] +
∫

drn(r)Vext(r), (2.48)

where F[n] is a universal functional for any many-electrons system. The sub-
script v denotes that the functional of the energy is well defined, once the
external potential is fixed. Since there is a bijection between the wavefunc-
tion and the density, one can reformulate the variational principle to be a
search for the density that minimizes Ev[n], keeping the number of electrons
fixed. This is the second HK theorem.

The Hohenberg-Kohn theorems establish the uniqueness of the density-
potential, they do not give access neither to the density n(r), nor to the en-
ergy functional Ev[n]. This may seem useless from a practical point of view.
In any case, these theorems gave birth to an in principle exact theory, which
is a very useful as a guideline to build and improve approximations. Putting
this together with the fact that an important portion of F[n] is accessible from
Hartree theory, namely the Hartree energy, these facts are probably the ma-
jor motivation that fueled the search to make DFT practical. This goal was
achieved thanks to the Kohn-Sham method.

2.6.2 Kohn-Sham approach

DFT is the most widely used method to study interacting electrons. The
credit for its success goes largely to the Kohn-Sham (KS) approach [29]. The
idea of this approach is similar to Hartree and Hartree-Fock theory. It consists
of using the independent-particle picture to calculate properties of the inter-
acting system. While in the Hartree-Fock approximation one uses the wave-
function as fundamental variable to calculate observables, the Hohenberg-
Kohn theorem has proved that a three dimensional function, namely the den-
sity n(r), is sufficient to know everything about the system. In the Kohn-Sham
approach, the density is used as the fundamental variable, and instead of us-
ing an independent-particle system to construct the wavefunction, it is used
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to calculate the exact density of the interacting system

n(r) = ∑
i
|ϕi(r)|2, (2.49)

where ϕi(r) are the orbitals of the independent-particle system, which is
called the auxiliary system.

In addition, Kohn and Sham suggested to re-write the total energy func-
tional (2.48) as follows

EKS[n] = Ts[n] +
∫

drn(r)Vext(r) + EHartree[n] + Exc[n], (2.50)

with Ts[n] is the kinetic energy functional of the non-interacting system, which
can be calculated as :

Ts[n] = ∑
i
⟨ϕi| −

∇2
i

2
|ϕi⟩ , (2.51)

and EHartree[n] is the Hartree energy functional given in (2.39). The last term,
Exc[n], encompasses the exchange correlation effects. Equation (2.50) reflects
the genius of the Kohn-Sham approach for two reasons:

• First, it explicitly separates out the non-interacting kinetic energy, which
is very useful since we have learned from Thomas-Fermi theory that
it is particularly important to approximate the kinetic energy as accu-
rately as possible.

• Second, it encodes all the unkown interacting information in the ex-
change correlation functional, Exc[n], which represents a small part of
the energy. This term does not have the same quantitative definition as
in the case of Hartree-Fock theory, but it describes the same qualitative
effect.

Note that it is not obvious in (2.51) that Ts[n] is a functional of the density;
but this becomes clear, if we apply the HK theorem to the non-interacting
system.

Now, we need to determine the non-interacting system. In order to do
so, we make use of the variational principle and we minimize the KS func-
tional (2.50) subject to a normalization constraint. Since Ts is expressed as a
functional of the orbitals, it is more convenient to vary EKS[n] with respect to
ϕ∗

i (r). This yields

δEKS

δϕ∗
i (r)

=
δTs

δϕ∗
i (r)

+
∫

dr′
δ
{∫

dr′′n(r′′)Vext(r′′) + EHartree[n] + Exc[n]
}

δn(r′)
δn(r′)
δϕ∗

i (r)

=
δTs

δϕ∗
i (r)

+
∫

dr′VKS(r′)
δn(r′)
δϕ∗

i (r)
, (2.52)

where VKS(r′) is called the Kohn-Sham potential. Using the expressions of
n(r) and Ts given in (2.49) and (2.51) respectively, we get
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δTs

δϕ∗
i (r)

= −1
2
∇2ϕi(r) and

δn(r′)
δϕ∗

i (r)
= ϕi(r′)δ(r − r′). (2.53)

Now we introduce the Lagrange multipliers, εi, to take into account the or-
thonormalization constraints∫

drϕ∗
i (r)ϕj(r) = δi,j, (2.54)

and it follows {
−1

2
∇2 + VKS(r)

}
ϕi(r) = εiϕi(r). (2.55)

Hence, we obtained single-electron equations, which are known as Kohn-
Sham equations. They are self-consistent equations, since the term VKS(r)
requires the density as an input. The KS potential represents an effective
local potential acting on an electron at point r. Being local is a very useful
feature of this potential, since it extremely simplifies the calculations.

From (2.52) we can see that VKS(r, [n]) is a functional derivative of density
functionals, and so it is a functional of the density, it reads

VKS(r, [n]) = Vext(r) + VHartree(r, [n]) + vxc(r, [n]), (2.56)

where Vext(r) is the external potential that defines the system and fixes the
non-universal part of the energy functional. The term VHartree(r, [n]) refers
to the Hartree potential defined previously in (2.27), and vxc(r, [n]) is the ex-
change correlation (xc) potential. It is the unknown part in the KS potential,
that is not accessible in any practical way and must be approximated. The
approximation of the xc potential is critical in DFT since it determines the
quality of the estimated density and total energy.

2.6.2.1 Local density approximation

The first approximation that has been considered for the exchange correla-
tion potential was proposed by Kohn and Sham in their original paper [29].
They suggested to consider a system with slowly varying density5 locally as
a homogeneous electron gas (HEG), and so one can write

ELDA
xc [n] =

∫
drn(r)ϵxc(n(r)), (2.57)

where ϵxc(n = n(r)) in a point r is the exchange-correlation energy per parti-
cle of a HEG with constant density n = n(r). It can be viewed as the sum of
an exchange and correlation contribution

ϵxc(n) = ϵx(n) + ϵc(n). (2.58)

5Kohn and Shame defined the regime of slowly varying density by the conditions
rs/r ≪ 1, where rs is the Wigner Seitz radius, and r0 is a typical length over which there
is a noticeable change in the density
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The exchange term, ϵx(n), commonly called Dirac exchange [30], is known
exactly: it reads

ϵx(n) =
−3
4

(
3n
π

)1/3

. (2.59)

For the correlation part, ϵc(n), there is no exact analytical expression. Nev-
ertheless, this term has been calculated in the HEG to a near-exact accuracy
with Quantum Monte Carlo (QMC) methods by Ceperley and Alder [31].
These calculations proved to be extremely useful in developing approxima-
tions for the xc potential, which were critical in making DFT practical. One
of the widely used parametrization of the QMC results was established by
Perdew and Zunger [32]. It reads

ϵc(rs) =

{
− 0.0480 + 0.0311 ln(rs)− 0.0116rs + 0.0020rs ln(rs), for rs < 1
− 0.1423/(1 + 1.0529

√
rs + 0.3334rs), for rs > 1,

(2.60)
with rs = (4πn/3)−1/3. The local density approximation (LDA) for the xc
potential is the functional derivative of (2.57), which can be written as

vh
xc(r) = ϵxc(n(r)) + n(r)

dϵxc(n)
dn

∣∣∣∣
n=n(r)

. (2.61)

The basic idea of the LDA is then to estimate the xc potential of an inhomo-
geneous system by using at each point r the results of a HEG with homoge-
neous density equal to the local density n(r) of the inhomogeneous system,
as illustrated in Fig. 2.2. This approximation is reasonable for a system where
the density varies slowly, but this condition is not always satisfied in practice.
However, the LDA is surprisingly efficient: it yields fairly good description
of bulk solids and their surfaces [33]. Its application covers even very in-
homogeneous systems like atoms and molecules. This success was justified
later by the fact that LDA satisfies several exact constraints, and especially
the sum rule on the xc hole [34]. In general, the LDA works well when the
physics of the system is nearsighted [35], i.e., an effect at r′ beyond a certain
distance does not significantly influence the physics at point r. It is worth
noting that LDA is the basis of most modern exchange-correlation function-
als.

2.6.2.2 Generalized Gradient approximation

The largest source of error in the LDA comes from the exchange energy,
which is often underestimated, while the correlation energy is often over-
estimated even though, in absolute value, its contribution to the total energy
is smaller [23]. These two errors tend to cancel each other. To improve the ac-
curacy of DFT calculations, we need better approximations for the exchange-
correlation functional. Some attempts [36] were based on the idea of defin-
ing a functional of the local density n(r) and the magnitude of its gradient
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FIGURE 2.2: LDA scheme. On the left we have the density of sil-
icon along direction (100). On the right we have the xc potential
of the HEG, vh

xc, as a function of the homogeneous density nh.
To estimate the xc potential at point r we read the density n(r),
then we approximate the value of vxc(r) for silicon by vh

xc(n(r)).

|∇n(r)| in order to take into account the inhomogeneity of the system. In or-
der to obtain this kind of functionals, the LDA is treated as the first term of a
Taylor series development, then the exchange-correlation energy is expanded
in terms of the gradients of the density [37, 38]. This form of functionals is
known as the Gradient Expansion Approximation (GEA). Unfortunately, this
gives worse results than the LDA. Indeed, the xc hole no longer satisfies the
conditions [39] which ensured that LDA has some physical sense. In order
to correct these problems, the GEA functionals have been modified to make
them respect some desired properties in the limit of large gradient. This led
to the Generalized Gradient Approximation (GGA), which contributed sig-
nificantly to the success of DFT [23]. The form of this functional can be writ-
ten as

EGGA
xc [n] =

∫
drn(r)ϵx(n(r))Fxc(n(r), |∇n(r)|), (2.62)

with Fxc is the xc enhancement factor. Often the contributions for exchange
and correlation are developed separately:

Fxc (n(r), |∇n(r)|) = Fx (n(r), |∇n(r)|) + Fc (n(r), |∇n(r)|) . (2.63)

There are numerous forms for the enhancement factors proposed by Becke
[40], and Perdew and coworkers [41, 42, 43]. They constructed these factors
in a non-empirical way by imposing as many exact constraints as possible
on the xc functional. Among the non-empirical GGA functionals, here we
present the Perdew, Burke and Ernzerhof (PBE) functional [44] which is one
of the most remarkable and successful ones.

The exchange enhancement factor for PBE is given by

Fx = 1 + κ − κ

1 + βπ2s(r)2/3κ
, (2.64)
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with κ = 0.804, β = 0.066725, and s(r) is the dimensionless reduced density
gradient defined as

s(r) =
|∇n(r)|

2n(r)kF(r)
, (2.65)

where kF(r) is the Fermi wavevector associated to the local density n(r),
which is related to the density as kF(r) =

(
3π2n(r)

)1/3.
For the correlation part, we have

Fc =
1

ϵx(n(r))

[
ϵc(n(r)) + γ ln

{
1 +

(
1 + At2) βt2/γ

1 + At2 + A2t4

}]
, (2.66)

where t = |∇n(r)|/2ks(r)n(r), with the Thomas-Fermi screening wave num-
ber ks(r) =

√
4kF(r)/π, γ = 0.031091, and

A =
β/γ

exp [−ϵc(n(r))/γ]− 1
. (2.67)

Compared to the LDA, the computational cost of PBE is modestly higher, but
it yields more accurate results for the exchange and correlation energies of
atoms and for the atomization energies of molecules and solids.

Finally, in order to obtain the xc potential of the GGA functional, one has
to calculate the functional derivative of (2.62). This derivative is not straight-
forward as in case of LDA, but there are different approaches [23] to handle
it.

2.6.2.3 Hybrid functionals

Another class of approximations for the xc potential consists of using the
Hartree-Fock method to add the exact exchange energy part, or the exact ex-
change hole, while the correlation part is calculated using DFT approximated
functional, e.g., LDA, non-empirical or empirical GGA functionals. This class
of approximations is called "hybrid functionals". They were first introduced
by Becke [45] and have since undergone many improvements [46, 47]. They
are often used by going beyond the Kohn-Sham scheme with its local poten-
tial to a generalized Kohn-Sham (GKS) scheme [48, 49], where the potential
is non-local, similar to Hartree-Fock. This changes the nature of the auxil-
iary system and is the reason for the fact that one finds in general band gaps
closer to the measured ones. This improvement comes with high increase in
computing cost.

2.7 One-body reduced density matrix

So far we have discussed two extreme approaches to calculate observables
of a real system. The first one is based approximating the wavefunction,
which is sufficient to obtain a comprehensive description of the system, but
it is highly challenging to approximate. The second one is DFT, which tells
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us that all the physical properties of the system are functionals of the den-
sity, however there is no systematic way to determine these functionals. So
the fewer details we calculate, the more it becomes difficult to express ob-
servables. This suggests to look for a compromise: one could try to build
functionals of an intermediate object between the wavefunction and the den-
sity, in order to directly access more observables and at the same time avoid
the challenge of storing functions that depend on a larger number of electron
coordinates.

In particular, instead of using the wavefunction, on can consider the den-
sity matrix, Γ(N), which conceptually plays the same role as the wavefunction
since it encodes all of the system’s information. It is defined as follows:

Γ(N)
(
r1, . . . , rN; r′1, . . . , r′N

)
≡ N!φ∗ (r′1, . . . , r′N

)
φ (r1, . . . , rN) . (2.68)

The n-body reduced density matrix (n-RDM) is then obtained as

Γ(n) (r1, . . . , rn; r′1, . . . , x′n
)
=

N!
(N − n)!

∫
drn+1 . . . drN φ∗ (r′1, . . . , r′n, rn+1, . . . , rN

)
× φ (r1, . . . , rn, rn+1, . . . , rN) .

(2.69)
For the one-body reduced density matrix (1-RDM) γ ≡ Γ(1), the expression
reduces to

γ
(
r, r′
)
= N

∫
dr2 . . . drN φ∗ (r′, r2, . . . , rN

)
φ (r, r2, . . . , rN) . (2.70)

By definition, the diagonal elements of the 1-RDM yield the density

n(r) = γ(r, r) = N
∫

dr2 . . . drN φ∗ (r, r2, . . . , rN) φ (r, r2, . . . , rN) , (2.71)

and their sum is normalized to the number of electrons

Tr γ
(
r, r′
)
≡
∫

drγ(r, r) = N. (2.72)

As one can see from (2.70), the 1-RDM provides us with additional non-local
information about the system while maintaining a manageable storage size.

2.7.1 Observables as functional of the 1-RDM

The Gilbert extension [12] of the Hohenberg-Kohn theorem states that there
is one-to-one mapping between the 1-RDM and the ground-state wavefunc-
tion, which means that any observable can in principle be expressed as func-
tional of the 1-RDM. If the observable has a bi-local operator, it can be cast
explicitly as

O[γ] =
∫

drdr′Ô(r, r′)γ(r, r′). (2.73)
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This allows us to write the entire kinetic energy functional as

T[γ] = −1
2

∫
dr′∇2 γ(r, r′)

∣∣∣∣
r=r′

. (2.74)

The exchange energy is also accessible using the 1-RDM: it reads

Ex[γ] = −1
2

∫
dr′dr

γ(r′, r)γ(r, r′)
|r − r′| . (2.75)

Trivially, the Hartree energy can be expressed using the 1-RDM since we
know its explicit functional in terms of the density. The only unknown term
of the total energy is the correlation energy, which still needs to be approxi-
mated in this case. The correlation energy is typically very small compared
to other terms. However, it is important, and is difficult to find in RDMFT.
One remarkable approximation to Exc is given by Müller [50]. Thus, the 1-
RDM provides access to the biggest part of the total energy. In practice, the
1-RDM, for the ground state, is determined via minimization of the total en-
ergy functional, subject to the constraint that it is ensemble N-representable
[12, 51].

As in DFT we have to find the functionals and the density, in RDMFT we
also have to find the RDM functionals and the 1-RDM. In a later chapter, I
will try to find an approximation for the functional γ[n].
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Chapter 3

Connector theory

In physics, modeling plays a central role to explain real phenomenons. It
consists of generating physical representations that approximate a real sys-
tem in order to understand and predict its behavior. Clearly, the simpler this
representation, the more accurate we can calculate the quantities that we are
interested in. In this thesis we call a model a simple system that can be de-
scribed with high precision. Very often, this kind of systems are far from
reality and connection to real materials is needed. To illustrate this point, let
us take an example. Suppose that we want to calculate the frequency, ωp,
of a plasmon in a simple semiconductor like silicon. This quantity can be
expressed by a simple formula for the homogeneous electron gas (HEG). In
atomic units, it reads

ωh
p =

√
4πnh,

where nh is the homogeneous density of the gas. To make use of this formula,
one can use the HEG as model for the material by substituting nh by the
average density of the material n̄. The resulting plasmon frequency is

ωp =
√

4πn̄.

In silicon n̄ = 0.0296 a−3
0 and the resulting ωp is 16.6 eV, which is a fairly good

estimate of the experimental value 16.8 eV [52]. This approximate description
can be turned into a new question: how to choose the density nh in order
to optimize the approximation of the real plasmon frequency ωp, or even
to get the exact value? This question can be generalized for any quantity
that we want to import from a model. In this chapter we will answer the
general question by a prescription termed connector theory. I will keep the
discussion very general to be valid for any quantity of interest. I describe the
general ideas of the theory and I set the conditions that must be fulfilled in
order to use it. Then, in the next chapters I will discuss the application of the
connector theory to approximate the charge density and related quantities
like the exchange correlation potential and the density matrix.

3.1 The idea of connector

Here we first start by introducing the idea of the connector in a simple exam-
ple where we know all quantities. The aim of using that example is to give a
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concrete description of the idea. Then, we present the general formalism of
the connector theory.

3.1.1 Introductory example

Suppose that we want to calculate, for example, the Hartree potential vH(r, [n])
of some real finite system. This quantity is known in the model system that
we choose as a sphere of HEG of given radius R, characterized by the homo-
geneous density nh inside the sphere, and with Hartree potential vH,sphere

R (nh).
A similar model has been used in [53] to construct exchange functionals. The
Hartree potentials in the real and the model system read, respectively

vH(r, [n]) =
∫

dr′
n(r′)
|r − r′| and vH,sphere

R (nh) = nh

∫
R

dr′
1

|r − r′| . (3.1)

In a nutshell, the connector approach suggests to calculate and store the
result for a series of homogeneous spheres of different densities nh. Then, we
ask the question: what is the density nc

h ≡ nh that enables us to import the
Hartree potential from the table of the model to simulate the result of a real
molecule? In this example, the exact answer is the solution of the following
equation ∫

dr′
n(r′)
|r − r′| = nc

h

∫
R

dr′
1

|r − r′| . (3.2)

This yields

nc
h(r, [n], R) =

∫
dr′

n(r′)
|r − r′| /

∫
R

dr′
1

|r − r′| (3.3)

The result, nc
h, is a positive and real number, so it is a well defined density

for the model. Knowing this exact connector, one could determine the exact
Hartree potential from the table of model results as follows

vH(r, [n]) = vH,sphere
R (nc(r, [n], R)). (3.4)

However, the lhs of (3.2) is in principle unknown. It is the full Hartree po-
tential of the real system that we want to approximate. As a solution to this
issue, the connector scheme suggests to use equivalent approximations for
vH(r, [n]) and vH,sphere

R (nh) on the left and right hand sides of (3.2). A very
rough approximation is to set 1

|r−r′| ≈ c′ δ(|r − r′|) in (3.2), and by making
use of (3.4), we obtain

nc
h(r, [n], R) = n(r) and vH(r) ≈ n(r)

∫
R

dr′
1

|r − r′| , (3.5)

for r inside the sphere of radius R. This is simply the LDA, with a final result
that depends on the radius R that was chosen for the model. The result does
not depend on the constant factor, c′, which cancels out. Instead, if we think
that the interaction is so long range that it is essentially constant over some
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range of interest, 1
|r−r′| ≈ c′′, then we get

nc
h(r, [n], R) = n̄ and vH(r) ≈ n̄

∫
R

dr′
1

|r − r′| , (3.6)

where n̄ is the average density in the sphere. In order to see whether we
have gained anything, we have to compare these two connector results with
the results that we would have obtained with a similar effort, by making the
same approximations directly on the quantities of interest. This yields for the
first and second case, respectively

vH(r) ≈ c′ n(r) and vH(r) ≈ c′′N, (3.7)

where N is the number of electrons in the sphere.
The comparison of these and the corresponding connector results illus-

trates two points. First, the connector results are stable with respect to de-
tails of the approximation (in this example, they are independent of c′ or
c′′). Second, whereas the direct approximation screws up the results brutally,
the connector results are still correct in certain regimes. For example, the
first approximation is correct for r inside a molecule with a slowly varying
charge distribution if its size is smaller than R, while in the second approxi-
mation the connector result recovers the correct long range limit far from the
molecule.

To summarize, in this example we have used a new approach, termed the
connector theory, to approximate the Hartree potential in a finite real system.
This approach requires the knowledge of two ingredients, (i) the quantity of
interest in the model, which was the Hartree potential of the HEG sphere in
this example; (ii) an approximation for the quantity in the real system. In our
case we obtained an approximate vH(r, [n]) by making 1

|r−r′| ≈ c′ δ(|r − r′|)
or 1

|r−r′| ≈ c′′. The next step is to use an equivalent approximation in the
model and establish a connection between the model and the real system via
a connector, nc

h in our example. Finally, we use this connector to take the real
quantity from the model table, as done in (3.5) and (3.6).

3.1.2 General formalism

The connector theory is a general approach, it is not limited to a specific ex-
ample. The idea can be generalized as follows: suppose that we want to
calculate an observable or quantity O for real system. Generally, this quan-
tity is a function or functional of a set of parameters or function Q, and it can
depend on additional variable x, so O = O(x; Q). In the example above, O is
the Hartree potential vH(r, [n]), Q is a function: the density n(r′) and x is the
position vector r. In most cases O(x; Q) is difficult or impossible to calculate
in a real material without approximations, or even unknown. However, it
may be possible to calculate O(x; Q) for some Q in a restricted domain: this
restricted domain defines a model. For the Hartree potential example, Q is
the electron density and we restrict it to homogeneous densities, the model is



Chapter 3. Connector theory 28

a sphere of HEG. Connector theory aims at using the model results in order
to simulate systems where Q lies outside the model domain. The underly-
ing hypothesis is that not all details of the parameters that describe the real
system are equally important. The aim is therefore to find, for a given real
system where Q ≡ QR, another Q ≡ Qc that lies in the model domain, such
that

O(x; QR) = O(x; Qc
x). (3.8)

Note the subscript x of Qc
x, which indicates that Qc is allowed to be different

for every value of the argument x. Of course, it could still be impossible to
fulfill equality (3.8) if one restricts the model domain too severely. However,
if the model is flexible enough such that the equation can be satisfied in prin-
ciple, one can try to find the one or more Qc

x for which the equality holds. We
call Qc

x the connector.
In the following we suppose that the model is described by only one ef-

fective parameter Q or, when there are more parameters, we can choose one
that will be used to fulfill (3.8). This restriction can be dropped, but it is often
useful and we keep it here for clarity. In this case, in the model the func-
tional or multi-dimensional function can be represented by a scalar function,
O(x; Qc

x) → Ox(Qc
x). For example, in the HEG sphere the one parameter Q

is its number density nh, so vH(r; [n]) → vH,sphere
R (nh), where vH,sphere

R corre-
sponds to O and nh to Q. Equation (3.8) is then formally solved,

Qc
x = O−1

x (O(x; QR)). (3.9)

and the resulting connector Qc
x is used to get the final result for the real sys-

tem using the model,
O(x; QR) = Ox(Qc

x). (3.10)

In practice, one will tabulate Ox, and once a connector Qc
x is given, for any

real system we will simply use these data instead of calculating O(x; QR),
which will make calculations extremely efficient.

In order for the method to be useful, three conditions should be fulfilled.
The first is the validity of the underlying connector hypothesis:

• [A] On its domain of definition, Ox(Qc
x) must yield all values that

O(x; QR) can take on its domain, i.e., the QR of interest.

The QR which define the domain of interest depend on the range of physi-
cal systems one wants to explore; this range does not necessarily include all
possible physical systems. The domain of O, on the other hand, defines the
model system. If for certain QR and/or x (3.8) cannot be fulfilled, we have to
change model by changing its domain, i.e. the range of allowed Qc

x.
[A] is the only necessary condition, but there is also a question of unique-

ness in (3.9): O−1 may require boundary conditions in order to be well de-
fined. This is not a problem of principle, but may create difficulties for the
design of approximations. We therefore require:

• [B] When the inverse O−1 of O is not unique, it should at least be pos-
sible to specify a unique choice among the possible O−1

i .
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Conditions [A] and [B] settle the framework, but nothing has been gained in
practice: the unknown O(x; QR) still enters the calculation of the connector
in (3.9). Therefore, for connector theory to be of practical interest we have to
add:

• [C] The connector ansatz must suggest a strategy for approximations.

In the introductory example, we have approximated the Coulomb in-
teraction by making 1

|r−r′| ≈ c′ δ(|r − r′|). This has enabled us to calcu-
late an approximation for the connector in (3.9) without knowing the full
O(x; QR) ≡ vH(r, [n]). This step is fundamental for the connector scheme. It
suggests to make in the calculation of the connector (3.9) an equivalent approxi-
mation to O and O,

Qc,approx
x = (Oapprox

x )−1(Oapprox(x; QR)). (3.11)

The final approximate connector result is obtained as

O(x; QR) ≈ Oc
x ≡ Ox(Qc,approx

x ). (3.12)

While the model observable O is supposed to be well known, it is im-
portant to approximate it in (3.11) in the same way as O of the real system,
whereas the exact model function O is used in (3.12): in this way, the result
becomes exact in two limits: when the approximation becomes increasingly
good, even for a very restricted model, and when the domain of the model
system tends towards that of the real system, even using a very rough ap-
proximation. In practice, one will not be able to perform the exact calcu-
lation, but away from these limits, using the equivalent approximation for
Oapprox(x; QR) and Oapprox

x (Q) still leads to error canceling, and the limiting
behavior indicates that results can be improved in a controllable way. How
far the model system can be chosen from the real system depends on the
quality of the approximation, and vice versa, how rough the approximation
is that one can tolerate depends on the closeness of the model and the real
system. This dual dependence is a source of the power of the connector ap-
proach. It implies that the approximate connector result (3.12) is expected to
be superior to the direct approximation Oapprox(x; QR), without additional
computational cost. This benefit is magnified when the model incorporates
significant characteristics of the real system, such as the same Coulomb inter-
action as in the example above. Therefore, the primary effort and intuition in
connector theory will be directed at selecting an appropriate model. In Fig.
3.1 we present a summary of the connector scheme discussed in this section.

3.2 First order connector

The approximation of the real and the model quantity shown in (3.11) is a
crucial step to design a connector. One interesting and intuitive approxima-
tion is the first order expansion around a fixed function or parameter, Q0,



Chapter 3. Connector theory 30

FIGURE 3.1: Summary of the connector scheme. The quantities
in green are supposed to be available, while those in red are
unknown. Importing the model table via the exact connection,
Qc

x, is not possible since it requires the knowledge of O(x; Q).
Instead, the connector scheme suggests to approximate, equiva-
lently, the right and left hand sides of the exact connection equa-
tion. Then, we invert the resulting equation to get Qc,approx

x .
Finally, we use this connector to import the model table and

approximate the real quantity as O(x; QR) ≈ Ox(Oc,approx
x ).

from the domain that defines the model. This approximation yields the so-
called, first order connector. It reads

Qc,approx
x =

∫
dx′w(x, x′)QR(x′)∫

dx′w(x′, x)
, (3.13)

where

w(x, x′) ≡ δO(x; Q)

δQ(x′))

∣∣∣∣
Q=Q0

. (3.14)

We can interpret this first order connector as follows: in order to use the
model table effectively, we need an amount of information about the physics
of the real system. This information is contained in Q, and it is selected by
the weight w linearly. In the next chapters we will mainly use this connector
to test the theory.

3.2.1 Features of this connector

In order to design the first order connector for a quantity O we need two
ingredients

• Table of O in the model system.

• Linear response, w, of O evaluated in the model system.

By construction, this connector guarantees :

• The zero-order term of the quantity O expansion, O(x; Q)
∣∣
Q=Q0

, pro-
vided that the model is a limit case of the real system.
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• The exact first-order term that results from expanding the real Q around
a particular point, which we call the reference point.

Then, the connector extrapolates the higher-order terms of O. The quality
of this extrapolation depends, mainly, on the error cancellation, which is the
reason why the connector approximation can go beyond the linear approxi-
mation. Physically, it depends on how well the model reflects properties of
the real system.

3.2.2 Optimizing the reference point

In general, the quality of the connector approximation depends also on the
reference point of the expansion. An optimized choice can improve the qual-
ity of the connector in this situation. The choice of the reference point can be
based on physical intuition or on a more systematic method like using the
known exact constraints or minimizing a cost function that makes a compro-
mise between the desired constraints.

3.3 High order connector or other approximations

While the first order expansion is one possibility for approximating the con-
nector, it is not the only one. To improve the connector approximation, we
may use higher order expansions. This is particularly useful for inhomo-
geneous systems such as molecules. Another feasible approximation is to
approximate the Coulomb interaction’s long range behavior or to make use
of the single electron case, which we will do in the chapter about the density
matrix. A more promising way to improve the connector approximations,
however, is to tabulate new inhomogeneous models that go beyond the HEG.
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Chapter 4

The exchange correlation potential

In Kohn-Sham (KS) density functional theory (DFT) [29], the exchange cor-
relation (xc) potential, vxc(r, [n]), is a central quantity that needs to be ap-
proximated. A lot of of work has been invested in order to give an accurate
approximation to the xc potential. One famous approximation to vxc is the
local density approximation (LDA) which was proposed from the very be-
ginning by Kohn and Sham. It suggests to see the real system locally as a
homogeneous electron gas (HEG) with a density, nh, equal to the local den-
sity of the real system. The xc potential is then approximated as

vxc(r, [n]) = vh
xc

(
nh = n(r)

)
,

where vh
xc(nh) is the xc potential of the HEG at density nh. This function

can be derived from the xc energy per particle of the HEG, which is avail-
able thanks to an analytical parameterization based on quantum Monte Carlo
(QMC) calculations [31, 32]. Using the LDA for the vxc, the KS-DFT becomes
a practical method that gives a remarkably realistic description of bulk solids
and their surfaces. However, the LDA showed many shortcomings. For ex-
ample, it fails in predicting the image potential [54], it does not accurately
describe the dissociation of molecules [55] and it is less reliable in the case of
localized electron charge [56]. These shortcomings and other motivated the
search for reliable xc potential functionals beyond the LDA, which is still a
subject of intense research (see e.g. [57, 58, 59, 60, 61, 62, 39, 63, 44, 64, 65, 66,
67]). The aim of this chapter is to use the connector theory to design a new
density functional for the xc potential, and to explain in which way it leads
to an improvement with respect to the LDA.

Let us first analyze the LDA from a connector point of view. The LDA
uses the HEG as a model system in which the correlation energy has been
calculated once for all using QMC. The HEG’s results are then reused indefi-
nitely. This is a tremendous benefit and it is one of the most important reason
for the early success of DFT. In order to use these results in the real system,
the LDA proposes the local density as a connector. This suggestion is based
on Kohn’s intuition of nearsightedness [29, 68, 35], where the xc potential at
point r is not influenced by any change of the density at point r′ different
from r. This hypothesis leads to a simple connector that allows us to use
the HEG results for any system. However, it provides no guidance on how
to optimize the model’s use in a systematic way. Instead, this guidance is
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provided by the connector scheme discussed in the previous chapter. Here,
as in LDA, I will use the HEG to simulate the xc potential in a real system.
However, the connector will not be the local density but it will be based on a
first order expansion of the exact connection between the model and the real
system. I will design a non local approximation and I will explain how to
improve it systematically. The Ch. 6 will be dedicated to examine the quality
of the connector approximation of the xc potential by looking at the resulting
density.

4.1 Exact connector

In order to design improvable approximations, it is very useful to start from
an in principle exact solution that represents the objective that we are head-
ing for. This is the first step of the connector scheme, Fig. 3.1. In the case of
the xc potential with the HEG as a model system, we are looking for a ho-
mogeneous density nc

r that makes vh
xc(nc

r) equal to the xc potential of the real
material in each point r. This is equivalent to looking for the exact connector
from condition (3.10), which reads in this case

vxc(r, [n]) = vh
xc(n

c
r). (4.1)

Note that nc
r is a homogeneous density, the subscript r indicates that at each

point r, where we want to calculate the xc potential, we may choose a dif-
ferent homogeneous density nh ≡ nc

r for the HEG. This flexibility is crucial,
because otherwise the exact condition (4.1) could not be fulfilled. In this way,
instead, all vxc of real systems can be reached as long as they are negative, as
the HEG spans all negative values, so condition [A] is fulfilled. It should be
noted that the condition will often be fulfilled straight away, but there could
be exceptions. In particular, if one is interested, for example, in the dissoci-
ation of linear molecules, one must be aware of the fact that the correlation
contribution of these one-dimensional systems leads to a positive bump in
vxc(r), see, e.g., [69, 70, 71, 72, 73] whereas the exchange-correlation poten-
tial in the HEG is always negative. Therefore, if one wants to use the HEG
to simulate these systems, additional action, such as an extension of the do-
main, would be required to fulfill condition [A]. In what follows, we assume
the vxc of real systems is always negative, which is the most common case.
The exact connector is the solution of (4.1), which reads

nc
r = (vh

xc)
−1(vxc(r, [n])). (4.2)

Indeed, we gain nothing from this equation in practice. We have just moved
the problem from looking for the vxc(r, [n]) to the search of the connector nc

r.
However, this connector serves as the objective that we seek to achieve in
order to optimize the use of the model results. Once the model is chosen,
the next step that turns the connector theory into a useful tool is to apply
an equivalent approximation to both sides of (4.1). This allows us to invert
the equation and obtain an approximate connector. It should be noted that
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a very rough approximation can yield a very good connector, which is close
to the exact one. This is due to the error cancellation that may occur when
we generalize, i.e., we plug in the exact function of the HEG, the connector
obtained at the approximation level.

4.2 Using the first order connector

Our goal now is to find an approximate connector, for which (3.11) reads

nc,approx
r = (vh,approx

xc )−1(vapprox
xc (r, [n])) . (4.3)

One interesting nc,approx
r is the first order connector presented in the last chap-

ter. This means we use a first order expansion of the vxc around a given ho-
mogeneous density n0 [29, 74] and use this approximation in the connector
scheme, as shown in Fig. 4.1, to derive a new functional.

Using a first-order expansion as approximation in (4.1) yields:∫
dr′(n(r′)− n0) fxc(|r − r′|, n0) = (nc,approx

r − n0) f h
xc(n0), (4.4)

where fxc(|r − r′|, n0) = δvxc(r, [n])/δn(r′)|n=n0
is the static nonlocal xc ker-

nel of the HEG with density n0, and f h
xc(n0) = dvh

xc(nh)/dnh
∣∣
nh=n0

is its limit
of zero wavevector, which corresponds to the case where variations are re-
stricted such that the density remains homogeneous, i.e., we remain within
the parameter space given by the model. The zeroth order term vh

xc(n0) can-
cels on both sides. Finally, inverting the equation we get the approximate
connector

nc,approx
r ([n]) =

1
f h
xc(n0)

∫
dr′ n(r′) fxc(|r − r′|, n0). (4.5)

For a density of the real system that varies slowly with respect to variations
of the fxc we can take out the density from the integral and the connector
yields the LDA, which is exact in this limit [29]. For a very quickly varying
density in a periodic system the connector yields the mean density, as one
would expect, and which is instead completely missed by the LDA. The ap-
proximate connector interpolates between these two limits: it displays the
degree of nearsightedness of the xc potential, which is given by

vc
xc(r, [n]) = vh

xc

(
nh = nc,approx

r ([n])
)

. (4.6)

This equation is equivalent to (3.12). The functional vc
xc(r, [n]) is non-local,

i.e., a variation of the density at point r′ different from r influences the con-
nector xc potential at point r. However, the impact of this variation depends
on the distance between the two points, |r − r′|, and it is averaged by the xc
kernel of the HEG, fxc(|r − r′|, n0). The latter has been computed using QMC
calculations [75], and a parametrization of the results is available [76]. This
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FIGURE 4.1: Connector scheme for the xc potential. The quanti-
ties in green are available, while those in red are unknown. The
exact connector nc

r is unknown. In order to get an approximate
connector, we the linear expansion in the right and left hand
sides of the exact connection equation. Then, we invert the re-
sulting equation to get nc,approx

r . Finally, we use this connector
in the function vh

xc to import the xc potential of the HEG that
approximates the real quantity at each point r.

means that, similarly to the LDA, one can in principle benefit from high-level
calculations performed once and for all in the model.

The connector approximation is not yet well defined, because the lin-
ear approximation in (4.4) depends on the homogeneous density n0 around
which we expand. This reference density may be chosen to be a different one
for every point r where we calculate the potential. The following sections
will examine several possible choices for n0.

4.3 The reference density of the expansion

Here, we discuss two ways to select the density at which we evaluate the
first order expansion. The first way relies on physical intuitions to determine
which density best represents the real system at each point r. The second way
is to define the optimal reference density as the one that fulfills the maximum
number of exact constraints on the xc potential.

4.3.1 Intuitive choices

Here we presents four intuitive and remarkable choices for n0, which will be
tested in Ch. 6.
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4.3.1.1 Mean density

One of the simplest choice to the reference density n0 is the mean density.
With this n0 the linear approximation can work well for a system with a den-
sity that oscillate about its mean. In practice, this means at each iteration of
the KS-loop we take n0 = 1

V

∫
drn(r), where V is the volume of the finite

system or the unit cell in a periodic system, and n(r) is the output density in
that iteration.

4.3.1.2 Local density

One may think that the most important physics of the system is nearsighted
and so use the local density to evaluate the xc kernel in (4.5). This yields
n0 = n(r), note here that n0 is different for each point r. In the next chapter
we will use this choice in the connector to approximate a target functional
and compare the results to those obtained via direct linear approximation
and LDA.

4.3.1.3 Symmetric choice with an equivalent one in the model

As we can see in (4.5), the xc kernel, fxc(|r − r′|, n0), depends on the distance
between two points, r and r′. In order to specify the density, n0, we can make
an analogy with LDA and consider the xc kernel to be bi-nearsighted. Then
we take the average of the density at the two points to get n0 = n(r)+n(r′)

2 [77].
This choice of n0 is not suitable for the macroscopic xc kernel, f h

xc(n0), which
stems from approximating the model. In fact if n(r) represents the density of
the real inhomogeneous system, then n(r′) will not find a meaning in f h

xc(n0).
As a solution to that and for the sake of approximating the model and the real
system in an equivalent way, we use the following reference density for the

model: nmodel
0 = n(r)+nc,approx

r
2 . At the end we get for the connector

nc,approx
r =

1

fxc

(
n(r)+nc,approx

r
2

) ∫ dr′ fxc

(
|r − r′|, n(r) + n(r′)

2

)
n(r′). (4.7)

This is a self-consistent equation, so to solve it numerically, we pick a first
guess for the connector nc,approx

r and we keep iterating until convergence.

4.3.1.4 Self consistent connector

If we have a functional of the density, its linear approximation should be
exact at the density where we perform the expansion. And it should ap-
proximate the functional around this reference density relatively well. In our
case, we want to design a connector, nc,approx

r , that makes the vh
xc(n

c,approx
r )

very close to the real functional. At the same time, we have vh
xc(n0) which

appears as the zero-order term of the linear expansion. If we want this term
to be close to the real functional, vxc([n], r), for any density [n], we should set
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n0 to be equal to the connector density, n0 = nc,approx
r , because it is designed

for this purpose. This leads to a self-consistent connector.
Another way to obtain the self-consistent connector is to look for the den-

sity n0 that makes the first order term of the expansion vanish. This means∫
dr′ fxc(|r − r′|, n0)(n(r′)− n0) = 0. (4.8)

Solving this equation for n0 we re-find n0 = nc,approx
r . To use this connector

in practice we start from an initial guess for n0 then we update n0 as follows

nk+1
0 =

1
fxc(nk

0)

∫
dr′ fxc(|r − r′|, nk

0)n(r
′), (4.9)

where k labels the iterations. After sufficient iterations, nk
0 converge to a spe-

cific homogeneous density and so the value of n0 is no longer arbitrary.

4.3.2 Using exact constraints

Another way to fix the reference density, n0, can be to use exact constraints on
the xc potential, which is a strategy that can successfully lead to the develop-
ment of new functionals [66]. Suppose that n0 is a functional of the density,
so it can be written as

n0 =
∫

dr′n(r′)g([n], r, r′), (4.10)

where g([n], r, r′) is a functional that can depend on the density or not. In the
limit where the density n(r) tends to a homogeneous density n̄, i.e., the real
system becomes equal to the HEG model, the connector (4.5) should tend to
the same density n̄. This implies n0 → n̄, and so:∫

dr′g(n̄, r, r′) = 1. (4.11)

This condition is satisfied by all the reference density choices discussed in the
previous section. In order to make a further step one can choose an ansatz for
g([n], r, r′), a normalized Gaussian weight for example, and tune its param-
eters to satisfy the zero force theorem [78, 79]. This theorem reflects the fact
that interaction among particles cannot generate a net force, it can be written
as: ∫

drn(r)∇vxc(r, [n]) = 0, (4.12)

and so in our case ∫
drn(r)∇vh

xc(n
c,approx
r [n]) = 0. (4.13)

In practice, the parameters that define g([n], r, r′) can be different for each
material, they are determined numerically, which makes it easier to satisfy
(4.13). For additional constraints, one can define a cost function and mini-
mize it to satisfy as many constraints as possible.
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The use of exact constraints can be an interesting strategy to fix the ref-
erence density. I have not yet used it in the practical applications, but more
analysis is planned for future work. In the present thesis I have explored the
performance of the intuitive choices described in 4.3.1.

4.4 Separation of the exchange and correlation con-
tributions

In DFT, the majority of the approximate xc functionals are constructed by
summing separately the exchange and correlation components. Separating
the exchange component from the full functional can be useful, since exact
relations exist for exchange under uniform density and spin scaling. Us-
ing connector theory, we can also separate vxc(r) into two contributions,
e.g., vx(r) + vc(r), and design distinct connectors for each contribution. This
means that, for the systems of interest, we suppose that condition [A] of Ch.
2 can be met, and thus an exact connector exists in principle, for both pieces.
This would mean that

vx(r) = vh
x(n

c
r,x)

vc(r) = vh
c(n

c
r,c) , (4.14)

where nc
r,xand nc

r,c are the exact connector for the exchange and correlation
potentials, respectively. In this case, the first order connector for the ex-
change (correlation) is obtained by substituting the xc kernel, fxc, in (4.5)
exclusively by the exchange (correlation) kernel. One way to extract this ex-
change (correlation) kernel from the Corradini’s one [76] is to exclude terms
generated from the correlation (exchange) contributions. The same separa-
tion technique was used for another xc kernel in [80].

The exchange and correlation contributions can then be easily separated
in the connector approach. However, it is useful to clarify some points. Ac-
cording to (4.14), each contribution is calculated with its own connector in
principle, and there is no reason to suppose the connector that reproduces
exactly the exchange contribution, nc

r,x = (vh
x)

−1(vx(r; [n])), to be the same as
the exact connector for the correlation contribution nc

r,c = (vh
c)

−1(vc(r; [n])),
nor to equal the xc connector, nc

r. As a consequence, even when a consistent
approximation, such as the linear expansion, is chosen for all pieces, most
often also the approximate connectors will be different. This is a general re-
mark about dividing an object of interest into two or more contributions; it is
not specific to the separation presented here or to vxc. This kind of separation
can be used to improve results: suppose that the individual contributions are
of quite different nature, for example, that they exhibit a different degree of
nearsightedness or naturally suggest a perturbation expansion in a different
parameter, or around a different zero order. This would allow one to find a
more accurate approximation for each contribution on its own and hence also
to improve the final result in many cases. Even when it is not advantageous,
however, the fact that connectors are in principle different for every piece of
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interest has to be kept in mind whenever one is interested, for some reason,
in the individual pieces: when the connector nc is designed to approximate
the sum, it is possible that some single pieces are not well described. This is
not a failure of the connector approximation, but of the way it is applied.

4.5 Gradient correction

The first order connector can work well for periodic systems but is probably
less accurately for an atom, because this real system is far from the model,
which is the HEG. For this reasons I followed the reasoning done in [38] to
derive an explicit gradient correction to the connector xc potential defined in
(4.6). I obtained the expression

vxc([n], r) = vc
xc([n], r)− α1δn(r)∇2

r n(r) + (α1 −
α2

2
)|∇rn(r)|2 (4.15)

where α1 and α2 are coefficients related to the functional derivatives of the
xc potential, and they are numerically available. The detailed derivation
of (4.15) and the expressions of α1 and α2 are given in the appendix A. For
weakly varying density, the expression above goes back to the original first
order connector result.

To summarize, in this chapter I have developed a non-local functional
for the xc potential based on connector theory. The free parameter of this
functional can be chosen and optimized using nearsightedness arguments
and/or exact constraints. In practice, this functional can be used to calculate
the charge density of materials using the self-consistent Kohn-Sham equa-
tion. Additionally, a gradient correction to the connector functional has been
proposed. I have implemented and tested the gradient corrected expression
for model cases, with results that are promising in some respects but not
conclusive. In the present work, I concentrate on the straightforward linear
expansion and the question of the starting point of the expansion.
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Chapter 5

Approximating a non-local
functional

In the previous chapter, I proposed an approximate functional for the xc po-
tential using connector theory. The next natural step is to evaluate the quality
of the resulting functional. Since the exact functional is unknown, it is not
possible to make a direct comparison. The alternative is to investigate the
charge density that is created by the connector potential for given materials.
This requires the implementation of the connector approximation in a DFT-
code and use it in a self consistent cycle to obtain the density. Of course, this
is an interesting topic and I will discuss it in the next chapter. However, this
study is technically demanding, so I thought it would be better to start first
with an analytical study for a toy system before jumping to real materials.

We know that the xc potential is a non-local density functional. If the
connector approximation works for an arbitrary density functional, it is likely
to work for the true xc potential as well. That is why I decided to take an
established non-local functional as target and investigate the performance of
the connector approximation on it. In principle, any functional can be the
target, but to increase the likelihood of the result’s transferability, I picked a
non-local xc potential functional based on a weighted density approximation.

In the following, I will start by presenting the target functional and ex-
plain how it is constructed. Then, I will study two distinct connector de-
scriptions for the target functional. The first one is obtained by using an
approximation of the Coulomb interaction in the connector scheme. The sec-
ond description is obtained thanks to the first order connector. The connector
results will be compared to direct approximations1 in order to estimate error
cancellation and emphasize the improvement made by connector theory. Fi-
nally, I will consider the question of treating the exchange and correlation
contributions separately by constructing a connector for each part. A sum-
mary of the results of this chapter can be found in [81].

1A direct approximation means the one that yields an approximation for the quantity
of interest without using the model. The result of this approximation is denoted by
Oapprox(x; QR) in the connector scheme illustrated in Fig. 3.1. It can be a linear expansion or
any other approximation.
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5.1 Target functional

We choose as target functional an expression based on a weighted density
approximation (WDA) of the xc hole nxc [57, 58, 59, 60], with the weight
function proposed in [61]. The xc energy reads:

EWDA
xc [n] =

∫
drdr′

n(r)n(r′)
2|r′ − r| C(ñ(r, r′))

(
1 − e

−λ(ñ(r,r′))
|r−r′ |5

)
, (5.1)

with ñ(r, r′) = [n(r) + n(r′)]/2 [82]. The functions C and λ, which depend
on ñ, are determined by making Exc exact in the HEG limit, i.e.,

lim
[n]→n̄

∫ n(r′)
2|r′ − r|C(ñ(r, r′))

(
1 − e

−λ(ñ(r,r′))
|r−r′ |5

)
= ϵxc(n̄), (5.2)

and by ensuring the validity of the xc hole sum rule, which reads∫
dr′nxc(r, r′ − r) = −1. (5.3)

By taking the functional derivative of EWDA
xc with respect to the density, we

obtain the exchange-correlation potential vWDA
xc given in the appendix (B.2),

as well as the functions C and λ (B.1). This potential is the target functional
that we want to reproduce. We should emphasize here that our purpose is to
compare the connector functional to the target one, not to analyze the quality
of the density produced by each potential.

As a "real" system, we choose a toy example for solids with periodic inho-
mogeneous density, n(r) = A cos(a · r) + B, that depends on the parameters
A and B, and the reciprocal lattice vector a which determines the speed of
variation of the density. In the following, the density parameters are chosen
so that the maximum density and a correspond to the case of solid argon. For
the connector scheme, we will use the HEG as a model.

5.2 Connector from approximating the Coulomb
interaction

The target functional vWDA
xc depends explicitly on the Coulomb interaction,

as we can see in (B.2). This enables us to design connectors based on approxi-
mations of the Coulomb interaction itself. A first rough approximation could
be to cut the Coulomb interaction 1/r beyond a short distance r = rc, with-
out renormalizing the remaining short-range part of the interaction. Because
vWDA

xc entirely arises from the Coulomb interaction, removing a significant
part of the interaction reduces the potential, and even makes it vanish with
the cutoff radius rc → 0. This means that the cutoff-Coulomb approxima-
tion applied directly to the system of interest completely suppresses the xc
potential and is therefore a very bad approximation. For the case of the con-
nector, the same approximation is applied to the xc potential of the HEG,
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vh
xc(nh) ≡ vWDA

xc (r, nh). The approximate connector is then obtained by solv-
ing

vh,approx
xc (nc,approx

r ) = vWDA,approx
xc (r, [n]) (5.4)

By decreasing the radius rc, the density in (B.2) becomes slowly varying be-
tween the integration limits, for a given point r. The right hand side of (5.4)
therefore tends to vh,approx

xc (n(r)) and nc,approx
r → n(r). Thus, the connector

result, vh
xc

(
nh = nc,approx

r

)
, tends to LDA. This means that the connector does

not apply the previous approximation globally to the potential, but only to
how the potential in a given point “sees” the environment, limiting it, for
rc → 0, to the environment close to the point r where the potential is calcu-
lated. We can therefore expect a much more meaningful result than what one
would obtain by using the approximation directly in the system of interest,
namely here, vxc ≈ 0.

In Fig. 5.1 we show the target potential vWDA
xc for our toy system. We

also show the resulting potential obtained when the Coulomb interaction 1/r
is truncated beyond a very short distance rc = 0.1a0 where a0 is the Bohr
radius, less than 2% of the unit cell length. Applying this approximation
directly to vWDA

xc yields a nearly vanishing xc potential, as shown in the figure
and as expected. The result of the connector using the same approximation
shows a huge improvement over the direct approximation. It does not tend
towards zero but to the LDA which gives a much better description of the
target. As explained above, this is thanks to the use of the model to simulate
the real system and the error cancellation due to the connector construction.
Therefore, the LDA can be seen as a prototype illustration of the power of the
connector theory in this example.

Nevertheless, the LDA description is not perfect: it has large errors, espe-
cially in low-density regions. From the point of view of the connector, this
is due to the crude approximation to the Coulomb interaction. In principle,
we can fix this inaccuracy by increasing the range of the Coulomb interaction
and thus systematically approaching the exact result. However, this approx-
imation would be of limited practical interest.

5.3 Results of first order connector

The first order connector is a general and practical approximated connector.
It can be used for any quantity as shown in (3.13). In the last chapter, we have
derived this connector, (4.5), in order to build an approximate functional for
the unknown xc potential. Here, we want to test this connector by reproduc-
ing vWDA

xc . Before using (4.5), we must adapt it to the target functional, the xc
kernel fxc has to be consistent with the vxc that one is heading for. Therefore,
for this test we should not use expressions for fxc given in the literature, but
we have to calculate the functional derivative of our target xc potential, and
evaluate it at the constant density n0. The resulting f WDA

xc can be found in the
Appendix, B.3.
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FIGURE 5.1: Target vWDA
xc (r) (red line), and approximations,

for a system with periodic density. Coulomb cutoff at short-
range (s.-r.): direct approximation (dotted green) and used in
COT (dotted green with filled circles); linear expansion: direct
approximation (blue dashed) and used in COT (blue dashed
with filled circles); LDA (yellow line). Minimum and maximum
densities are 0.0402 a−3

0 and 0.3776 a−3
0 , reciprocal lattice vector

a = 0.93 a−1
0 . Note that regions of high and low density can be

deduced by looking at vLDA
xc , which is a monotoneous function

of n(r).

As discussed in the previous chapter, there are several possibilities for
the homogeneous density n0 around which we expand. This density can be
chosen differently for every point r at which we calculate the potential. To
focus on the improvement over the LDA, we choose the local density n(r)
for n0. This means that the direct approximation is a first-order expansion
around the LDA.

Let us begin by analyzing the performance of the linear approximation
itself, applied directly to the potential without using the connector scheme.
The comparison in Fig. 5.1 demonstrates that the WDA potential is well de-
scribed by the direct linear approximation in regions of high density (large
|vWDA

xc |), but not in the low density regions.
We now move on to connector results, and first investigate the connector

density nc
r given by (4.5) and shown in Fig. 5.2 for the same periodic system.

The connector density that yields the LDA is simply the density itself, which
has its minimum at the center of the unit cell. The exact connector spans a
smaller range of values than the local density, confirming that it is an effec-
tive density, suitably averaged over a range around the local density. It is far
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FIGURE 5.2: Target exact connector (red line), connector based
on a linear expansion in the density as given by 4.5 (blue line),
and the density itself, corresponding to the local density ap-
proximation connector (yellow line), for the periodic system of

Fig. 5.1.

from trivial, even in this simple system: where the density is very low, the ex-
act connector shows a bump, which is a feature that is not easy to guess. One
may explain this by the fact that the system is more far-sighted in regions
of low density, which mixes in more of the higher densities in the present
system, and by the non-monotonous distance dependence of effective inter-
actions, such as f WDA

xc . This effect is very well captured by the approximate
connector density, with a remaining disagreement that is much smaller than
the error of the LDA.

Finally, Fig. 5.1 shows the xc potential produced by the first order con-
nector. It gives by far the best result when compared to all approximations,
illustrating the fact that the connector (4.5) takes into account a significant
amount of non-locality. It shows that, by employing exactly the same linear
expansion via the connector scheme, strong improvement is obtained, with-
out additional cost.

Because the connector tends to the LDA when the density varies slowly,
the improvement over LDA is especially significant when the density varies
rapidly; however, some improvement is also seen in the case of more slowly
varying density, i.e, when a is smaller, as illustrated in Fig. 5.3. The fig-
ure also shows how the connector result approaches the LDA, which in turn
tends to the exact result, when the density approaches the homogeneous
limit.
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FIGURE 5.3: Comparison between the target WDA xc poten-
tial (red line) and different approximations: LDA (yellow line),
direct linear approximation (blue dashed) and using the con-
nector (blue dashed with filled cycles) for slowly varying den-
sity. In this case n(r) = A cos(a · r) + B, where a = 0.3 a−1

0 ,
nmax = 0.3776 a−3

0 and nmin = 0.0402 a−3
0 .

5.4 Distinct connectors for exchange and correla-
tion

In the case of the vxc one is often interested in the exchange and correlation
contributions separately [83, 34, 84]. Here, we benefit from the analytic ex-
pression of the target functional to address this point. Indeed, the results of
the study of vWDA

xc might not necessarily hold for the unknown xc potential,
but they can provide some useful insights into it. The exchange contribution
of the WDA potential, vWDA

x , is defined in this case by applying the sum rule
to the exchange hole and the correct limit to the HEG. The correlation con-
tribution, vWDA

c , is the difference from the total WDA functional. Here we
always use the first order connector via (4.5), replacing fxc by the exchange
kernel f WDA

x for the exchange connector and by the correlation kernel f WDA
c

for the correlation connector.
In Fig. 5.4 we show the result of considering the exchange and correla-

tion connectors separately for the WDA functional. The exchange potential
(upper panel) is an order of magnitude larger than the correlation contribu-
tion; notice the scale change. The picture for the exchange is therefore pretty
similar to the full xc result. The correlation contribution exhibits a distinct
pattern, with the LDA being too shallow. The correlation connector accu-
rately reproduces the target vWDA

c for higher densities.
However, for very low densities the linear expansion around the LDA
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yields negative connector densities, so that the connector result (curve with
blue filled circles) for r in the range [2.43, 4.32] is not present. This is not
due to a violation of condition [A] stated in Chapter 3, which is indeed sat-
isfied, but due to the fact that the approximate result of (3.11) falls outside
of the allowed domain, such that (3.12) cannot be evaluated. The problem
can be solved in several ways, the simplest being to modify the approxima-
tion. Indeed, the result of the linear approximation depends on the refer-
ence density of the expansion n0. Fig. 5.4 also shows result of the direct
approximation obtained by expanding around a much lower density than
previously, here n0 = n(r)/6 rather than the local density n(r). Contrary to
before, now the straightforward linear expansion of vWDA

c exhibits a bump at
low densities, but it is exaggerated, and moreover the results at larger densi-
ties are very poor. However, now the resulting connector density is always
positive, and the connector vc can be computed over the entire range. With
respect to n0 = n(r), there is very little change at high densities: this again
shows the strong error cancellation inherent in the connector approach and
consequently makes the result very stable. Indeed, because the HEG’s vc is
very steep at low densities, the connector result depends significantly on the
choice of n0. The latter is a free parameter of the linear approximation; it has
been set to the local density for the purpose of comparison, but can be fur-
ther optimized for the exact xc potential using exact constraints, as discussed
in Ch. 4. For the present illustration, we simply highlight that the issue can
be resolved by changing n0, following the indication given by the connector
density itself, which falls below the LDA.

In summary, by studying the WDA functional, we have shown that the
connector theory is a suitable framework to derive a simple approximate
functional that reproduces the nonlocal dependence on density for an in-
homogeneous system. Using the HEG data and the linear expansion, the
connector potential goes beyond the LDA. Moreover, by separating the ex-
change and correlation contribution, we demonstrated how critical it is to
design a separate connector for each object of interest. The above results are
very promising and they were the motivation for the next chapter, where we
apply the expressions in the self-consistent calculation of the density for real
materials without using the weighted density approximation.
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FIGURE 5.4: Comparison between the target WDA potential
(red line) and different approximations: LDA (yellow line), di-
rect linear approximation (dashed blue and brown) and using
the connector (dashed blue and brown, with symbols). Ex-
change only (upper panel) and correlation only (bottom panel).
Note that in the correlation potential the connector result is
missing for r in the range [2.43, 4.32], since the connector den-
sity becomes negative. To solve this problem, it is enough to
change the density n0 around which one expands. The dashed
brown curve is the result of the direct linear expansion around
a density n0 = n(r)/6, labeled “approx 2”, as opposed to “ap-
prox 1” which stands for n0 = n(r). The brown curve with
stars is the corresponding approx 2 connector result. Finally,
the green curve with filled squares represents the potential
vc(r) = vh

c (n
c,approx
r ) obtained using the full xc connector, which

is not consistent and therefore worsens the result.
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Chapter 6

The charge density from a
connector exchange correlation
potential

As discussed in previous chapter, the connector has shown a very good per-
formance in approximating non-local density functional. It describes very
well the weighted density approximation (WDA) xc potential for a toy sys-
tem. This promising result was the motivation to check the quality of the con-
nector approximation for the exact xc potential. The latter is unknown and
so a direct comparison is impossible. As a solution, one can look at the target
quantity that is obtained from the Kohn-Sham (KS) system, i.e, the charge
density. To do so, I wrote a DFT-code1 that solves the KS equations and cal-
culates the density. In this code I implemented the connector xc potential in
order to compare the resulting density to a benchmark. The benchmark is
a density obtained using Quantum Monte Carlo (QMC) method [14] which
is supposed to give very accurate results. In this chapter, I discuss the re-
sults of testing the connector functional on two very different materials. One
is a widely studied semiconductor, which is silicon, and the other one is an
insulator, namely, sodium chloride.

The main questions that I want to answer in this chapter are :

• How does the connector compare to other popular functionals?

• What is the optimized choice of the connector free parameter n0?

• What are the limits of using the HEG model?

The structure of this chapter is as follows. First, I remind the formula
of the connector derived using linear expansion. Then, I discuss the choice
of the benchmark density. Next, I carry a detailed study about using the
connector xc potential to obtain the density of silicon. In this study, I try
several versions of the connector and I determine the optimized one. I also
check the performance of the linear expansion as an approximation to the xc
potential. I finish the silicon study by comparing the quality of the connector
functional with other popular DFT functionals. Finally I use the NaCl case to
test the connector in a system with very localized density. I profit from this

1see the appendix C
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case to confirm my conclusion about the best version of the connector, and to
explore the limit of the model.

6.1 The unknown xc potential

So far, we have developed a connector approximation for the xc potential,
using the homogeneous electron gas (HEG) as a model. The connector ap-
proximation reads

vxc(r, [n]) ≈ vh
xc(n

c,approx
r ), (6.1)

where
nc,approx

r =
1

f h
xc(n0)

∫
dr′ fxc(|r − r′|, n0)n(r′), (6.2)

with n0 the reference density around which we do the linear expansion. This
connector results from a first order approximation made in both the real sys-
tem and the HEG. In the real system this approximation reads

vxc(r, [n]) ≈ vxc(n0) +
∫

dr′ fxc(|r − r′|, n0)(n(r′)− n0). (6.3)

In the following, while checking the quality of the density resulting from
the connector xc potential, it will also be interesting to compare with the
linear approximation results. This allows us to estimate the error cancellation
obtained by the connector.

6.2 The charge density

The xc potential is difficult to judge by itself since it is not an observable. The
motivation behind developing good approximation to this potential is to ob-
tain an accurate estimation for real observables. In DFT, the first interesting
observable is the electronic density. In principle, if we have the exact xc po-
tential we get the same density for the KS system and the real one. Hence,
we can check the quality of the connector xc potential, vxc(n

c,approx
r ), by using

it to calculate the density. Then we compare with a benchmark density.
In the following we will use the connector approximation for the xc po-

tential in order to calculate the density of Si and NaCl. As a benchmark we
take densities calculated by S. Chen et al. [14]. These densities are obtained
using the ab initio auxiliary-field quantum Monte Carlo (AFQMC) method,
which has been shown to be excellent in calculating the total energy, which
is the reason why the resulting density is considered to be near-exact. We
will compare the benchmark with DFT-KS densities using various approxi-
mations for the xc potential. In order to measure the error with respect to
AFQMC density, nAFQMC(r), we calculate the following difference for each
density, napprox(r), resulting from a given approximation of the xc potential

∆n(r) = napprox(r)− nAFQMC(r), (6.4)
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and the percentage difference as

∆np(r) = 100 × napprox(r)− nAFQMC(r)
nAFQMC(r)

. (6.5)

The Mean Absolute Error (MAE) is calculated as

MAE =
1

Vcell

∫
dr
∣∣∆np(r)

∣∣, (6.6)

with Vcell the volume of the unit cell.

6.3 Silicon

As a semi-conductor prototype we have studied the covalent-bond crystal
silicon. The density is calculated in a basis of plane waves. To be consistent
with the AFQMC study we used the same system parameters. We considered
the primitive cell, which is a Face Centered Cubic (FCC) cell: it contains two
Si atoms located at (0, 0, 0) and (1

4 , 1
4 , 1

4). The volume of the primitive cell is
a quarter of the conventional cubic one which has a lattice constant of 10.263
Bohr. To construct the KS potential, we used a Ne-core pseudopotential (the
same as the AFQMC study [14]). We have then calculated the density by di-
agonalizing the Hamiltonian and summing the square of the wavefunctions
over the four occupied valence bands and all k points. We used a plane wave
cutoff of 25 Ry, and 6 × 6 × 6 k-point grid.

In order to give a simple visualization of the density, as done in [14], the
density is presented along line cuts, see Fig. 6.1, following the triangular
route
O—⟨001⟩—O′—⟨110⟩—O′′—⟨111⟩—O. The origin O is taken to be the mid-
dle point between two neighboring Si atoms, while O′ and O′′ are translated
from O by lattice constants along the direction connecting them.

6.3.1 Density using the connector xc potential

In order to use the connector approximation of the xc potential as shown
in (6.1) and (6.2), we need to specify the reference density of the expansion,
n0. The choices of n0 can be based on physical intuitions or on some known
constraint on the xc potential. In the following we compare several choices
of the reference density n0 discussed in Ch. 4, namely, the mean density, the
local density, the self consistent connector and the symmetric density with an
equivalent choice in the model.

6.3.1.1 The best connector

In Fig. 6.2 we show a comparison between the densities resulting from the
connector approximation of vxc for various choices of n0. The LDA is added
to check whether or not the non-locality of the connector functional improves
the density. In table 6.1, we give the MAE of the connector approximation
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FIGURE 6.1: The benchmark charge density of silicon from
AFQMC[14]. The density is plotted along the route indicated

in the inset.

Choice of n0 in connector MAE along the route (%) MAE in 3D grid (%)
Mean density 3.89 2.24
Local density 2.34 1.32

Self-Consistent 2.36 1.41
Symmetric 0.56 0.89

TABLE 6.1: Mean average error (MAE) of the resulting density
using connector xc potential with several choices of n0 for Si.
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for several choices of the reference density n0. For n0 taken at the mean den-
sity, the connector does not seem optimized for this choice. Except on atoms
its error is the largest. The MAE for the connector mean is 3.36%, along the
triangular route. With n0 being the local density the connector yields a bet-
ter approximation. This was also the case for the functional studied in Ch.
5. The MAE now decreases to 2.34% and we can see a clear improvement
comparing to LDA. This happens thanks to the non-locality of the connec-
tor which captures more information about the system environment. For the
self consistent connector, as we can see in Fig. 6.2, it converges to the choice
n0 = n(r). This connector is slightly better on atoms and it gives 2.36% as a
MAE. Interestingly, the connectors discussed so far have a similar error in the
middle region of the triangular route. They are close to the LDA and their er-
rors show wiggles that follow the variation of the local density shown in Fig.
6.1. The reason behind this behavior might be the fact that these approxima-
tions give too much importance to the local density. If they had a sufficient
non-local information about the density and its gradient, then they would
take the mean density itself as a connector to plug in the vxc function of the
HEG. Finally, the symmetric connector seems to be the best choice. Its error
is the smallest one with 0.56% as MAE. It is less than the AFQMC error bar in
the majority of the middle region , where the LDA and all other connectors
seem unable to describe the target.

6.3.2 Linear approximation

To design the connector discussed in previous section, we have used the lin-
ear expansion in (6.3) as an approximation for the xc potential functional.
Alternatively, one can use directly this approximation as the vxc of the KS
system, as done in [74], and compute the corresponding density. In Fig. 6.3
we compare the density resulted from the direct linear expansion and the
one obtained through the connector for two different choices for n0: the local
and the mean density. For both choices, the direct approximation yields a
reasonable density which is comparable to LDA and the connector results.
This is can appear surprising, since the linear expansion does not even guar-
antee a physical result. We also see, In Fig. 6.3, for n0 taken at mean density
and along the direction (110), where the density is large, the direct linear
expansion yields the best density comparing to its corresponding connector
approximation and the LDA. Along the entire route it yields 2.19% as a MAE,
while for the connector, the MAE is 3.36%. This is an example where the er-
ror canceling does not happen. In the case of n0 taken at the local density,
the connector result and the linear expansion one are very similar along the
triangular route. The only clear difference appears on atoms, where the con-
nector is improving the density. The MAE using this choice of n0 is 2.56% for
the linear expansion and decreases to 2.34% for the connector.

The results of this section suggest that an optimized linear expansion for
the xc potential could help to obtain a good estimation of the density. They
also suggest that a higher order expansion may be a good approximation for
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FIGURE 6.2: The upper panel shows the difference between the
benchmark density and the densities resulting from approxi-
mating the xc potential using LDA or connector. The lower
panel shows the corresponding percentage difference. The gray
line is the error bar of AFQMC. The connector results are shown
for several choices of the density n0 in (6.2). These choices are
mean density, local density (LD), self consistent (SC) connector
and the Symmetric (Symm) n0 which we have introduced in the

text.
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FIGURE 6.3: Similarly to Fig. 6.2, we show here a comparison
between the resulting density using the connector vxc and the
corresponding linear approximation for two choices of n0 : the

mean and the local density.

the vxc. However, in general, the connector approximations, particularly that
of the symmetric connector, provide superior performance.

6.3.3 Comparison with other functionals

After selecting the connector that yields the best density, now we compare it
with the densities obtained using several popular functionals for the xc po-
tential. This functionals are: LDA; PBE, a general-gradient approximation
by Perdew-Burke-Ernzerhof [44]; PBEsol, a revised version of PBE for solids
[65]; PBE0, a hybrid functional between PBE and Hartree-Fock [85]; B3LYP,
one of the most commonly used versions of hybrid functionals [86]. For all
these functionals we use the same pseudo-potential used for AFQMC calcu-
lations.

In Fig. 6.4 we present the density differences and the percentage errors
with respect to the benchmark. Along the triangular route, LDA and PBEsol
yield the largest errors, but they are better than B3LYP for the entire cell as
shown in table 6.2. PBE yields a better density along the route, it shows
a larger error on atoms and its MAE in 3D grid is about 1%. Finally, the
connector yields the most accurate density along the route. It significantly
improves the LDA by capturing non-local effects, and it gives the the smallest
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FIGURE 6.4: Similar to Fig. 6.2, a comparison between the re-
sulting density using several functionals for the xc potential.

one among all functionals. This error becomes a little bit larger and similar
to PBE0 for the entire cell.

6.4 Sodium chloride

In the previous section, we have seen that the connector performs very well
for silicon. It produces a very accurate density when compared to the bench-
mark. This raised the question to what extent the connector good perfor-
mance is transferable to other materials. The purpose of this section is to

Approximation MAE along the route (%) MAE in 3D grid (%)
LDA 3.10 1.93
PBE 1.87 1.07

PBEsol 3.13 1.77
B3LYP 2.74 2.17
PBE0 1.10 0.87

Connector Symm 0.56 0.89

TABLE 6.2: Mean average error of various approximated den-
sities with respect to QMC density for bulk silicon.
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FIGURE 6.5: The benchmark charge density of sodium chloride
from AFQMC [14]. The density is plotted along the route indi-

cated in the inset.

evaluate the connector xc potential in a material that differs significantly
from silicon. It is the sodium chloride, an insulating ionic crystal.

Again for the sake of consistency, the system parameters and the pseudo-
potential are the same as in the AFQMC study [14]. We used the primitive
cell which contains one Na atom at lattice points and one Cl atom at bulk
center. The volume of this cell is one quarter the FCC cubic one. The lattice
constant used for the latter is 10.7563 Bohr. The plane wave cutoff is fixed
to 40 Ry and we used 6 × 6 × 6 k-point grid. In this case a He-core pseudo-
potential is used for Na and Ne-core one for Cl. This implies eight occupied
valence bands. For the visualization of the density we consider the same
triangular route as we did in the case of Si, but we modify the origin O to be
on Na atom in this case. The AFQMC density for NaCl is displayed along
the triangular route in Fig. 6.5.

6.4.1 Does the symmetric connector stay the best?

Optimizing the reference density of the expansion, n0, can help to improve
the connector vxc. For silicon, we have tested several choices of n0, the best
one was the symmetric n0 with an equivalent choice in the model. The ar-
gument of this choice was based on symmetry and bi-nearsightedness which
are not limited to Si. In table 6.3, we present the MAE for the different n0
studied in the Si case. As expected, the symmetric connectors wins over all
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Choice of n0 in connector MAE along the route (%) MAE in 3D grid (%)
Mean density 4.89 4.75
Local density 7.46 8.58

Self-Consistent 6.76 6.82
Symmetric 2.07 2.03

TABLE 6.3: MAE of the resulting density using connector xc
potential with several choices of n0 for NaCl.

Approximation MAE along the route (%) MAE in 3D grid (%)
LDA 4.47 5.13
PBE 0.86 0.81

PBEsol 2.40 2.49
B3LYP 0.67 0.61
PBE0 1.61 1.30

Connector Symm 2.07 2.03

TABLE 6.4: MAE of various approximated densities with re-
spect to QMC density for NaCl.

other choices. This supports the generality of the argument behind that con-
nector.

6.4.2 Comparison with other functionals

As we have already done for Si in previous section, here we carry out the
same comparative study for NaCl density. In Fig 6.6 we show the error on
the computed density using several DFT functionals for vxc including the
connector one. The best description of the benchmark density is given by
B3LYP and PBE: they are very accurate along the route, except between the
Na and Cl atoms along the direction (111) where the density is very low.
They both yield a very small MAE as shown in table 6.4. PBE0 and connector
perform better than PBEsol and LDA. Thanks to its non-locality, the connec-
tor reduces the MAE by more than a factor of two compared to LDA. The
resulting density from the connector xc potential suffers more on the sodium
atoms, as we see in the upper panel of Fig. 6.6. This result could be ex-
plained by the fact that NaCl density is highly localized, whereas we use a
homogeneous model for the connector. This shortcoming is not a handicap
for the connector in principle, since one may improve the results by choosing
a model closer to the real system. The use of inhomogeneous model systems
in the connector approach raises new challenges, but it is probably one of the
most promising direction for future developments.

In conclusion, the connector functional of the xc potential, derived in Ch.
4 performs well when used in the self-consistent Kohn-Sham equation to cal-
culate the charge density. It improves the LDA in a systematic way. The
connector result can be improved by optimizing the reference density n0 of
the linear expansion. A symmetric n0 in the xc kernel, in particular, produces
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FIGURE 6.6: Same as Fig. 6.4 but for NaCl.

a very accurate density for silicon and outperforms the other connectors in
NaCl. However, compared to PBE, the connector approximation does not
adequately describe the density on the Na and Cl atoms, this can be due to
the use of the HEG model, which is quite far from the real system with its
highly localized density. On the other hand, as we will also see in the fol-
lowing chapter, in particular the region of the Na atoms is very delicate, and
further inhomogeneous models should be considered in the future in order
to disentangle different effects and uncertainties.
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Chapter 7

Reverse engineering the xc
potential from the density

In the previous chapter we have compared densities, but this is still a quite
indirect indicator for the quality and features of the xc potential. Therefore,
in the present chapter, I discuss the construction of accurate exchange cor-
relation potentials from numerically exact densities of the simple semicon-
ductor bulk silicon and insulating sodium chloride obtained from Auxiliary
Field (AF) QMC calculations [14]. In such extended systems, to the best of
our knowledge, no results for vxc obtained directly from a numerically ex-
act density are available, contrary to the situation in finite systems [87, 88,
89]. This may have several reasons: besides new technical difficulties that
may arise when trying to invert the KS equations in, for example, a periodic
solid, it cannot be excluded a priori that the high sensitivity of the potential
on the density could be even worse in solids than in atoms. Moreover, while
the absolute scale of the potential in a finite system can be fixed by forcing
the potential to be zero at infinity, such a condition cannot be imposed in
an infinite system. Finally, and most importantly, data for numerically exact
densities of solids were not available in the literature.

For these reasons, many important and fundamental questions arise, in
particular:

• Can one invert the KS equations in an extended system and if yes,
how, and which kind of precision can be obtained? How different
is the resulting vxc from standard approximations such as the LDA
or Perdew-Burke-Ernzerhof (PBE) generalised gradient approximation
[90] (GGA)? What about the connector vxc ?

• What about observables in this numerically exact KS system, and in
particular, the band gap?

• How much does vxc depend on details of the density? And if it de-
pends significantly, do the resulting changes have an impact on other
KS observables?

In order to answer these questions, I will first discuss how to extend a sim-
ple inversion algorithm from finite systems to solids, and then demonstrates
its ability to reproduce the LDA xc potential for silicon. After performing
this verification, I use the algorithm to calculate the xc potential from the



Chapter 7. Reverse engineering the xc potential from the density 60

AFQMC densities of Si and NaCl, and I explain how to deal with the prob-
lem of stochastic noise in the density. Next, I calculate the numerically exact
band gap of the Kohn-Sham system using the inverted xc potentials. I com-
pare the result with the LDA and PBE band gap, and I highlight the fact that
the true KS band gap is significantly smaller than the measurable photoe-
mission gap, confirming previous estimates. Finally, I use the resulting xc
potentials to determine the Kohn-Sham band structure and extract the xc en-
ergy from the total energies of Si and NaCl computed in [14]. The results can
serve as a benchmark for existing approximations.

7.1 How to invert the KS problem in infinite sys-
tems

The probably simplest algorithm to obtain the KS potential from a given den-
sity has been proposed for finite systems by van Leeuwen and Baerends [91].
In its original form it was derived by solving the KS equations for the KS po-
tential vKS. The result was then translated into an iteration procedure which
relates a potential vi+1 at step i + 1 to the potential vi at step i by the ratio of
the target density nref and the density ni at step i. As pointed out in [88], the
best use of this ratio depends on the sign of the potential that is updated: for
example, v may be either the usually negative total vKS, or its rather positive
interaction part vH + vxc with vH the Hartree potential. Here we use

vi+1
xc (r) =

nref(r) + a
ñi(r) + a

vi
xc(r) , (7.1)

where a is a parameter that avoids instabilities in regions of very low density
as suggested in [91], and the mixing

ñi = αni−1 + (1 − α)ni, (7.2)

with 0 < α < 1, is introduced to smooth the convergence. This density ñi is
also used to update the Hartree potential at each iteration. (7.1) is clearly a
good strategy if vxc is negative, and if the density in a point r is determined
only by the KS potential in that same point: suppose that at a given iteration,
ñi(r) is larger than nref(r). The algorithm then decreases the absolute value
of vxc(r) in that point. If the xc potential is negative, this step makes the
potential more shallow, and less density will be attracted to the point at the
next iteration, which pushes the solution in the good direction. Of course, it
is not true that n(r) depends only on vxc(r) in the same point r, and it has
to be seen to which extent the relation is nearsighted enough to make the
algorithm work in a solid.

7.1.1 Choice of the initial guess

The negative sign of the potential that is updated in (7.1) is crucial for the al-
gorithm to work, because a positive sign would drive the result in the wrong
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direction. However, contrary to the homogeneous electron gas a real system
can also exhibit regions of positive vxc. Moreover, in a finite system, one can
impose that the potential tends to zero at large distances. In a solid, however,
the zero of the potential is not defined. This fact represents both an advantage
and a drawback: on the upside, it allows us to introduce a rigid negative shift
in the initial guess of the potential such that it remains negative throughout
the iteration. This shift is arbitrary within reasonable limits: if it is too small,
positive regions may appear and be an obstacle for convergence. If it is too
large, the algorithm becomes unstable, because also the shift is multiplied at
every step by the density ratio. Reasonable values lie within the maximum
amplitude of the potential. On the downside, iteration of (7.1) yields vxc only
up to a constant. This is not due to our introduction of a shift, but to the fact
that the density does not contain information about the absolute value of the
potential. This problem can therefore not be overcome. The resulting poten-
tial can, however, be used to calculate a well defined density, xc energy and
KS observables such as (besides the meaningless constant shift) the KS band
structure.

For the results shown in the following, we use as initial guess 0.3 × vLDA
xc

with a rigid downwards shift of 0.2 a.u. for silicon and 0.4 a.u. for NaCl.

7.1.2 Reproducing the LDA xc potential

To illustrate the reliability of the procedure it is instructive to examine a case
where the density-potential relation is well known; here, we choose the LDA.
This means that in (7.1), nref = nLDA is the density obtained in a standard
LDA Kohn-Sham self-consistent calculation with xc potential vLDA

xc at con-
vergence. Ideally, for i → ∞ we should find vLDA,i

xc → vLDA
xc and ni → nLDA.

Fig. 7.1 and 7.2 show results for silicon.
In Fig. 7.1 the absolute value of the maximum (over the unit cell) relative

error of the density compared to the reference LDA one

∆i = maxr

∣∣∣∣ ni(r)
nLDA(r)

− 1
∣∣∣∣ (7.3)

is shown as a function of the number of iterations. It decreases smoothly and
very fast. The same is true for the mean (of absolute values, over the unit
cell) relative error, given in the inset. In Fig. 7.2 snapshots for the errors on
density and vxc are presented. The upper panel gives the percentage error
of the density (ni(r)/nLDA(r)− 1)× 100 % along a path through the unit cell
(the same as in Ref. [14]) at i = 500 iterations, multiplied by 104 in order
to make it visible. It is largest, with a maximum of 6.55 ×10−4 %, in places
where the LDA density, shown by the thin magenta line in the upper panel
(scale on the right side), is low. The percentage error of the potential is shown
in the bottom panel. Because of the arbitrary shift, only a comparison of the
variations of the potential is pertinent. Indeed, during the iterations the aver-
age potential continuously moves upwards. The figure has been obtained by
re-aligning at the end of the iterations the average potentials. This requires a
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FIGURE 7.1: Errors of the iteration procedure as a function of
number of iterations i. The curves in the main panel show the
maximum (over the unit cell) relative error of the density versus
the iteration number for the inverted LDA, inverted noisy LDA
and QMC xc potentials. Each inverted density is compared to
its corresponding reference result. Symbols give the maximum
(over the unit cell) relative error of the xc potential for the in-
verted LDA and inverted noisy LDA. In these cases the error
is defined with respect to vxc of KS LDA, since the xc potential
that yields the noisy density is unknown. In the inset: Curves
show the mean (over the unit cell) relative error of the density
versus the iteration number for the inverted LDA, noisy LDA
and QMC xc potentials. Symbols are for the inverted LDA and
inverted noisy LDA potentials. For all calculations, the starting

vxc is 30% LDA with a shift of -0.2 a.u..
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FIGURE 7.2: Density and xc potential of bulk silicon along a
path across the unit cell. The position of atoms are indicated by
a white vertical line. For the LDA, the xc potential is obtained
from a self-consistent KS calculation (vLDA

xc ), or using the itera-
tive procedure, after i iterations, with the KS LDA density nLDA

as reference density nref (vLDA,i
xc ). The density nLDA,i is then

recalculated using vLDA,i
xc in the KS equation. Upper panel: or-

ange, relative error (in percent) of the density from the iteration
procedure compared to the reference LDA density, defined as
(nLDA,i(r)/nLDA(r)− 1)× 100 % after i = 500 iterations, where
the maximum relative error of the density over the unit cell is
6.55 × 10−4%. The error is multiplied by 104 in order to make it
visible on the scale of the figure. For comparison, in green the
unscaled relative difference (nPBE(r)/nLDA(r) − 1) × 100 % of
the PBE and LDA self-consistent densities as well as in blue, the
unscaled relative difference (nQMC(r)/nLDA(r)− 1)× 100 % of
the QMC and the self-consistent LDA densities. Thin magenta
line, LDA density (scale on right side). Lower panel: relative
difference of vLDA,i=500

xc with respect to vLDA
xc , and, for compari-

son, the relative difference of the self-consistent PBE potential
vPBE

xc with respect to vLDA
xc in green. All relative differences of

potentials are given in percent and unscaled.
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downwards shift of the iterative potential of 0.06 a.u.. Again, the maximum
error is found in places of lower density, here in particular on the atoms. Note
that, contrary to the case of the density, the error of the potential has not been
scaled. Indeed, the relative error is significantly larger for the potential than
for the density. This can also be appreciated in Fig. 7.1, where the open circles
give the maximum and mean absolute errors on the xc potential as a function
of iterations. In order to illustrate that the remaining errors are small enough
to make discussions meaningful, the errors in Fig. 7.2 are compared to the
difference between two different functionals, here, between PBE and LDA.
The top panel contains the relative difference (nPBE(r)/nLDA(r)− 1)× 100 %
of the PBE and LDA self-consistent densities; note that this difference is not
scaled, and therefore more than 104 times larger than the inversion error. The
relative difference (vPBE

xc (r)/vLDA
xc (r)− 1) of the KS PBE and LDA xc poten-

tials can be found in the bottom panel. Differences can be seen throughout
the path, although regions of lower density show larger differences. These
differences are, though slightly larger, of the same order as the differences
in the density. Except for the atoms, they are, like in the case of the density,
much larger than the error of the inversion. This demonstrates that the in-
version yields meaningful results, with an error bar that is much smaller than
the differences we wish to discuss.

7.2 Exchange correlation potential from QMC den-
sities

Given the findings of the previous section, we can now examine the results
obtained by applying the algorithm with the very same choices in order to
obtain the xc potential from the QMC densities for Si and NaCl.

7.2.1 Silicon

For silicon, the maximum relative error of the density, ñi, as a function of the
number of iterations i is given by the blue curve in Fig. 7.1. Interestingly, it
shows an overall decrease, but with a pronounced minimum at i = 20. At
this point, it has decreased to 0.38 %. The minimum is followed by a modest
increase, after which the error decreases again monotonously. In correspon-
dence to the minimum, the mean relative error in the inset, instead, reaches a
plateau of about 0.02 %, and a higher precision cannot be reached. The upper
panel of Fig. 7.3 shows the local relative error on the density after 20 itera-
tions, (nQMC,i=20(r)/nQMC(r) − 1) × 100 %, along the same path as in Fig.
7.2. The result stays well within the stochastic error bar of the QMC calcula-
tion. For comparison, we also show the unscaled deviations of the reference
LDA, PBE and Connector1 densities, i.e., (nLDA(r)/nQMC(r) − 1) × 100 %,
(nPBE(r)/nQMC(r)− 1)× 100 %, and (nconnector(r)/nQMC(r)− 1)× 100 %. As

1the Connector density is th density resulting from the self-consistent KS calculation us-
ing vconnector

xc ≡ vh
xc(n

c,approx
r ) with nc,approx

r given by (4.7).
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also shown in Ref. [14], differences between LDA, PBE and the QMC den-
sities are largest on the atoms and also in other regions of low density, but
can still be significant in regions of higher density above the diagonal of a
face (second segment of the path), where LDA and PBE are very similar, in
contrast to the Connector, which is more similar to the QMC result. Most
importantly, the differences between different densities are much larger than
the error due to the inversion of the QMC density: while the mean relative
error at i = 20 is 0.04%, the mean relative differences between the approxi-
mate and QMC densities are: 1.93 % for LDA, 1.07 % for PBE and 0.89% for
Connector. The inversion error is, however, larger than in the case of the in-
verted LDA, by about a factor 500 for the maximum relative error and 103 for
the mean average error. The xc potentials are compared in the middle panel
of Fig. 7.3. All three potentials have a similar shape. However, there are dif-
ferences, and they are largest between QMC on one side, and LDA ,PBE, and
Connector on the other side. In other words, our numerically determined
and supposedly most accurate KS xc potential turns out to be similar, but
still significantly different, from other approximations. This becomes clearer
in the bottom panel, where the relative differences of LDA, PBE and Connec-
tor with respect to the QMC xc potential (aligned at their average value) are
shown: these differences are significant, and they are similar for LDA and
PBE along most of the path. The mean relative difference with respect to the
QMC result for potentials is 3.90 % for the LDA, 3.88 % for the PBE, and 2.36
% for the Connector, of similar order, though larger, than the mean relative
difference of the densities. This result is stable: the figure also shows the
QMC result obtained at i = 10, where the maximum and mean absolute er-
rors on the density are 0.90 % and 0.09 %, respectively. The differences with
respect to the potential obtained at i = 10 can hardly be seen.

Although we have reached sufficient precision on the density, which lies
within the QMC error bar, and the xc potential, which shows significant and
stable differences with respect to common functionals, one may want to con-
tinue the iterations, since Fig. 7.1 shows that the maximum error of the QMC
inversion could be decreased further. However, the fact that a plateau is
reached in the mean relative error, as the inset in Fig. 7.1 shows, anticipates
that one might encounter problems when doing so. The blue curve in the up-
per panel of Fig. 7.4 shows the density from the QMC inversion at i = 500,
where the maximum error has decreased from 0.38% to 0.21 %. Indeed, the
error is now further away from the QMC error bar in the most critical points
along the path, with respect to the i = 20 result shown in Fig. 7.2. This,
however, merely corresponds to a redistribution of the error, since the mean
absolute error has changed from 0.04 % at i = 20 to 0.02 % at i = 500. Most
strikingly, the xc potential obtained from the QMC inversion, shown in the
bottom panel of Fig. 7.4, is no longer smooth. It develops spikes that become
even more pronounced when one iterates further, while still decreasing the
maximum relative error on the density.

Visibly, the algorithm does not succeed in improving the result any fur-
ther and introduces unexpected features when trying to do so. Difficulties
with the inversion procedure have also been reported for finite systems, and
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FIGURE 7.3: Density and exchange correlation potential of
bulk silicon along a path across the unit cell. The position of
atoms are indicated by white vertical lines. For the LDA, PBE,
and Connector, density and potential are obtained from a self-
consistent KS calculation. For the QMC, the iterative procedure
with the QMC density as reference density nref=nQMC has been
carried out. The iterative procedure starts at 0.3 vLDA

xc . The
initial potential is shifted by -0.2 a.u.. The potential vQMC,i

xc is
obtained after i = 20 iterations. The density nQMC,20 is then
recalculated using vQMC,20

xc in the KS equation. The maximum
error on the density at i = 20 compared to the reference nQMC
is 0.38 %, and the mean absolute error is 0.04%. Top panel: in
blue, relative error in percent of the density nQMC,20(r) with re-
spect to the reference QMC density nQMC(r). For comparison,
the relative differences (in percent) with respect to nQMC(r) of
the self-consistent LDA (orange), PBE (green), and Connector
(black) densities are also shown. In grey, the stochastic error
bar of QMC. Middle panel: vQMC,20

xc (blue), and, for compari-
son, vLDA

xc (orange), vPBE
xc (green), and vconnector

xc (black), as well as
vQMC,10

xc (red). The average potentials are aligned. Bottom panel:
relative difference (in percent) of LDA (orange), PBE (green),
Connector (black), and QMC at i=10, xc potentials, respectively,

with respect to vQMC,20
xc (r).
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FIGURE 7.4: Density and exchange correlation potential of bulk
silicon along a path across the unit cell. The position of atoms
are indicated by white vertical lines. Top panel: For the den-
sity, relation between noise and errors of the iterative proce-
dure. The yellow curve is (nLDA+noise(r)/nLDA(r)− 1) in per-
cent, where nLDA+noise(r) is the LDA density from the KS cal-
culation decorated with a multiplicative gaussian noise. The
noise lies within the stochastic error bar of the QMC calcu-
lation (grey lines). The red curve uses nLDA+noise(r) as ref-
erence density, from which the xc potential is obtained after
i = 150 iterations (vLDA+noise,150

xc ), where the maximum rela-
tive error is 0.54 %. The density nLDA+noise,150 is then recal-
culated using vLDA+noise,150

xc in the KS equation. The iterative
procedure starts at 0.3 vLDA

xc . The initial potential is shifted by
-0.2 a.u.. The curve shows (nLDA+noise,150(r)/nLDA+noise(r)− 1)
in percent. For comparison, the same result but for i = 39 is
shown (in purple), where the noisy LDA maximum absolute
relative error on the density has its first minimum, which is
0.56 %, and the mean absolute relative error is 0.15 %. The blue
curve is (nQMC,500(r)/nQMC(r)− 1), the QMC error at 500 iter-
ations (with a maximum absolute relative error of 0.21 % and a
mean absolute relative error 0.02%). Bottom panel: exchange-
correlation potential. The orange curve gives the LDA potential
calculated with the clean LDA density. In red, potential ob-
tained by inversion with the noisy LDA density as reference, at
i = 150. In purple and brown, same but at i = 39 and i = 24,

respectively. In blue, vQMC,500
xc (r).
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they have been attributed to the finite basis set which may introduce an in-
consistency between density and external potential [92, 87, 93, 94, 95].

7.2.2 Simulating the QMC stochastic noise

As we have verified above, the results of the inversion are sufficiently well
converged, but another problem arises: the QMC density has stochastic noise.
In order to show that this small noise may be responsible for the observed
behavior, Fig. 7.4 shows results for the inversion of the LDA system, but
where the LDA density has been decorated with a multiplicative gaussian
noise within the QMC stochastic error bar. To appreciate what this means,
the yellow curve in the upper panel gives the relative difference of the noisy
LDA density with respect to the clean one. The error of the inversion of the
noisy LDA data is displayed in Fig. 7.1 (purple curve). It behaves similarly
to the QMC inversion error: the maximum absolute relative error decreases
rapidly and reaches a minimum, from whereon a slight increase followed
by a decrease is noted. The mean absolute relative error, instead, reaches a
plateau. The inversion error on the density is given by the purple curve in the
upper panel of Fig. 7.4, representing (nLDA+noise,i=39(r)/nLDA+noise(r) − 1)
in percent. The relative error is of similar magnitude as the noise itself, as
in the QMC case. The bottom panel shows xc potentials: the red curve is
the xc potential resulting from inversion of the noisy LDA data at i = 150.
It has spikes that are of the same order as those of vQMC,500

xc and that are in
percentage orders of magnitude larger than the noise of the density, again
as in the case of vQMC,500

xc . With such an error bar, one would not be able
to distinguish the LDA and QMC potentials. By the way of contrast, the xc
potential resulting from the noisy LDA data but at only i = 39 iterations,
where the maximum absolute relative error on the density has its minimum,
shows only very small spikes. The result is stable in the range of iterations
preceding that minimum: the figure also shows the result for i = 24, with
a virtually indistinguishable potential. Moreover, this potential is close to
the clean LDA potential, given by the orange curve. In this range of itera-
tions, the remaining difference may reflect the difference between noisy and
clean densities, and we can consider the resulting potential to be reliable.
The spikes that develop by iterating further, instead, will increasingly also be
triggered by the fact that the noisy density and the KS LDA hamiltonian are
not completely consistent, which means that the ultimately converged result
cannot be found.

The observations concerning the behavior of the noisy LDA are strictly
analogous to our QMC-based results. This gives strong evidence for the fact
that the inversion problem of the QMC data after a certain number of itera-
tions is indeed due to the stochastic noise of the QMC. Moreover, it suggests
that a sufficiently reliable xc potential is obtained by taking the result in the
range where a stable and relatively smooth potential is obtained, and before
the mean error on the density stops to decrease. In the present case, this con-
firms the choice i = 20, for which the QMC xc potential is given in Fig. 7.3. In
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other words, this xc potential is, to the best of our knowledge, today’s most
precise estimate for the true xc potential of bulk silicon.

7.2.3 Sodium Chloride

In Fig. 7.5 we show the errors as a function of the number of iterations, for
sodium chloride. The errors of the inverted QMC density reflect the same
trends as the silicon case. They decrease rapidly before reaching a plateau
around the iteration i = 150, with a maximum absolute error of 0.32% and
a mean absolute error of 0.04%. The errors then decrease slightly, reaching
0.29% and 0.03% for the maximum and the mean absolute error, respectively,
at i = 200. Contrary to the case of Si, the stochastic QMC noise does not lead
to the appearance of spikes in the xc potential, as illustrated in Fig. 7.6. This
could be because the noise is very small on the Na and Cl atoms where the
density is extremely significant. In order to investigate this further, the LDA
decorated with a Gaussian noise of the same magnitude as the QMC, is also
shown in Fig. 7.5. Its xc potential does not have any significant spikes, at least
until i = 200, the errors of this potential as function of the iteration number
are plotted in 7.5 with open circles. Similarly to Fig. 7.3 for silicon, in Fig. 7.7
we show the error on the density and the xc potential along a path for NaCl.
The QMC-derived xc potential differs from the LDA, PBE, and Connector es-
pecially on the sodium atoms, where the density shows a rapid oscillation.
At first sight, however, and as in the case of silicon, it is difficult to detect
important differences between the approximate and the QMC-derived po-
tentials. While it is exciting to see the numerically exact xc potential for real
semiconductors and insulators, in order to gain more insight and elucidate
several general fundamental points, it is useful to switch to a representation
that highlights the essence of the difference.

7.3 Non-locality of the KS exchange correlation func-
tional

In the LDA, vxc(r) is a monotonic function of n(r). The exact KS potential
is a functional of the density everywhere, which means that the potential
can take different values in different points r where the density, instead, is
the same. This expresses the fact that vxc(r) depends not just on the local
density, but also on the environment. Scattering of the map n(r) → vxc(r)
therefore exhibits the non-locality of a potential. One could also imagine
some particularly simple systems, where in a given density range only one
kind of environment exists. In that case the potential might remain a function
vxc(n(r)), but it could be different from vh

xc(n) of the homogeneous electron
gas, and hence the LDA, due to the influence of the environment. This is
therefore also a possible consequence of non-locality of the true functional.
In the general case, one would expect several curves reflecting several kinds
of environment, maybe superposed by some scattering of the results.
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FIGURE 7.5: Same as Fig. 7.1, but for NaCl. For these calcula-
tions, the starting vxc is 30% LDA with a shift of -0.4 a.u.. The
shift has been changed compared to silicon case in order to en-

sure the negativity of the potential.

Fig. 7.8 and 7.9 show our results for the map n(r) → vxc(r) in silicon and
NaCl, respectively. The reference LDA result simply reproduces the univer-
sal function vxc(n) of the homogeneous electron gas. In silicon, the PBE and
Connector results are also dominated by a simple monotonic function, but
they are steeper than the LDA. Moreover, they are slightly scattered, and a
new branch appears at low densities. The points on the new branch stem
from data close to the atoms, where the potential is rapidly varying and the
LDA breaks down. As expected, inversion of the noisy LDA data leads to a
more scattered potential, shown in the inset for i = 24 and i = 39. However,
the result is essentially a scattered version of the clean LDA result, slightly
blurred according to the number of iterations, and no additional features are
caused by the noise. The QMC xc potential is blurred similarly to the noisy
LDA result, and we can therefore not discern to which extent some scattering
around a function is an intrinsic feature of the exact KS potential. However,
similarly to the PBE and Connector, one can identify a dominant curve, and
with respect to the LDA, two main changes are seen: the curve is steeper
than the LDA one, and near the atoms an additional branch appears. The
change in slope of the main branch with respect to the LDA goes in the same
direction as in the PBE result, and it is more pronounced as the Connector
result suggests. Also the branching happens in a similar region as in the case
of PBE and Connector. It departs in the same direction as the Connector con-
trary to PBE which goes in the wrong direction. We have carefully examined
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FIGURE 7.6: Influence of the noise on the inverted xc potential
for NaCl, similar to Fig. 7.4. Here we show the error on den-
sity (upper panel) and the xc potential (lower panel) from the
last iteration for both QMC and noisy LDA. The yellow curve
is (nLDA+noise(r)/nLDA(r)− 1) in percent, where nLDA+noise(r)
is the LDA density from the KS calculation decorated with a
multiplicative gaussian noise. For all iterations, neither vQMC

xc
nor vLDA+noise

xc develop significant spikes as in the case of sili-
con. Nevertheless, the influence of the noise on the noisy LDA
is slightly visible between atoms. In the same regions the QMC-

derived potential shows a similar spikes.



Chapter 7. Reverse engineering the xc potential from the density 72

Na Cl Na Na Na Cl Na

0

5

er
ro

r o
n 

de
ns

ity
 (%

)

Na Cl Na Na Na Cl Na2

1

0

v x
c(r

)

0

50

100

er
ro

r o
n 

po
te

nt
ia

l (
%

)

(001) (110) (111)

QMC error bar
inv QMC 200th it 
ref LDA
ref PBE
Connector

FIGURE 7.7: Density and exchange correlation potential of
sodium chloride along a path across the unit cell, similar to Fig.
7.3. Here, the iterative procedure starts at 0.3 vLDA

xc . The initial
potential is shifted by -0.4 a.u.. The potential vQMC,i

xc is obtained
after i = 200 iterations. The density nQMC,200 is then recalcu-
lated using vQMC,200

xc in the KS equation. The maximum error
on the density at i = 200 compared to the reference nQMC is

0.29 %, and the mean absolute error is 0.03%.
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FIGURE 7.8: Map of the xc potential versus the local density
in silicon. Results of the inversion of noisy LDA and QMC are
compared to clean LDA, PBE, and Connector potentials. Each
vxc is plotted against its own density. The main panel shows
KS LDA, PBE and Connector potentials compared to the QMC
inversion result at 20 (minimum of maximum absolute relative
error of the density) iterations. In the inset, KS LDA is com-
pared to the inversion of noisy LDA at 24 (smooth potential)
and 39 (minimum of maximum relative error of the density) it-

erations.
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12

3 4

FIGURE 7.9: Map of the xc potential versus the local density in
NaCl. The result of the inversion of the QMC density is com-
pared to LDA and PBE potentials. Each vxc is plotted against
its own density. The main panel shows KS LDA, PBE and Con-
nector potentials compared to the QMC inversion result at the
200th iteration. In the background, density of NaCl along the
path (scale on right side). Numbers indicates the regions to
which the data points belong. Data point 1 corresponds to the
potential on a Na atom, while data point 2 which has the same
density corresponds to the potential in an environment very
close to the atom. Similarly, data point 3 from the lower branch
corresponds to the potential on a Cl atom, while the data point

4 corresponds to the potential in the vicinity of this atom.
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the branch results. The QMC branch is stable as a function of the iterations,
which suggests that it is reliable. Interestingly, the correction of the main
branch with respect to the LDA vLDA

xc may be translated in different ways,
in particular: vcorr

xc (r) = Fe(n(r))vLDA
xc (n(r)) with a correction factor Fe that

depends on the local density and that is determined by the environment e, or
vcorr

xc (r) = vLDA
xc (Fe(n(r))n(r)), where Fe stretches the density axis. Such cor-

rection factors are reflected in the GGAs, where the environment-dependence
is obtained through the gradient, as we can see in (2.62).

The QMC map for NaCl in Fig. 7.9 looks different, but it suggests a similar
interpretation: we find a main branch that corresponds to a slightly modified
LDA, an additional branch at low densities and another additional branch
at high density. In background, the figure also shows the density along the
path. Numbers indicate to which place selected data points correspond. For
example, data point 1 on the additional high-density branch corresponds to
the potential on the sodium atom, where the density is very quickly vary-
ing, which explains why the LDA completely fails. Data point 2, instead,
corresponds to a place with similar density but located in a more gentle envi-
ronment, although the gradient of the density is still significant. As expected,
here we are on the main branch, which is however modified with respect to
the LDA. Both PBE and Connector yield an extra branch at low density near
the Cl atom (data point 3 and 4). It is not clear in the map which one is more
accurate, however Fig. 7.7 may suggest that PBE describes better the envi-
ronment in this regime, since it yields a smaller error on the density in these
regions. In the high-density regime, the Connector overestimates the poten-
tial. This is due to the high densities of the surrounding points, as one can
see from the sketch of the density. In fact, the Connector takes a weighted
average of this environment, and so it misses the reduction of the density on
the Na atom (data point 1). Instead, PBE better captures this information.
This is likely due to its explicit dependence on the gradient of the density. In
the main branch PBE and Connector show a similar performance.

More QMC results for different materials presented as maps such as the
one in Fig. 7.8 may give precious insight about the most efficient way to
introduce a correction factor, e.g., F versus F , and about the most important
features distinguishing different environments.

7.4 Significance of the Kohn-Sham potential

The iteration procedure for inverting the xc potential of silicon reveals a strik-
ing observation: very different vxc(r) can yield very similar densities2. In
particular, the extremely spiky potentials obtained at higher iterations in the
inversion of the noisy densities still correspond to a very small error in the
density, of the order of, or smaller than, the noise itself. This raises the ques-
tion what will happen to other KS observables: even though, as discussed
above, these do not by themselves have direct physical meaning in an exact
sense, they can still be seen as an approximation to the physical quantities

2a similar observation for finite systems has been pointed out in Ref. [89].
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FIGURE 7.10: Band gap of silicon: convergence with number
of iterations for QMC (upper panel) and clean and noisy LDA
(lower panel). Horizontal lines are the KS gap for the clean
LDA, and estimated best result from iterative procedure for

noisy LDA and QMC. Note the change in scale.

[96, 97], and they are frequently used as starting points for calculations in
a more appropriate framework, such as many-body perturbation theory [1].
We therefore show in Fig. 7.10 the KS band gap of silicon as a function of
the number i of iterations at which the KS potential and corresponding den-
sity were calculated. The result converges very rapidly with i and remains
stable even after the potential has developed huge spikes. The same good
convergence property is found for NaCl, as shown in Fig. 7.11. This means
that very different xc potentials can yield not only very similar densities, but
also very similar KS observables more in general. Moreover, Fig. 7.10 shows
that the gaps corresponding to clean and noisy LDA densities are almost in-
distinguishable, i.e., the noise does not affect KS observables. It confirms the
statement, mostly based on findings from finite systems, that examining the
xc potential alone is not sufficiently meaningful [98]. It also suggests that
an effort is needed to distinguish in the KS potential crucial features, which
must be contained in good functionals, from others that may be quantita-
tively strong in the potential, but insignificant for its effects.
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FIGURE 7.11: Band gap of NaCl: convergence with number of
iterations for QMC. Horizontal line is the converged KS gap

iterative procedure.
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7.4.1 Kohn-Sham band gap

The study of the KS band gap is interesting by itself, since there is long-
standing debate concerning the difference between observables in the real
and in the Kohn-Sham auxiliary system. In absence of knowledge of the
exact Kohn-Sham potential, it was not possible to discriminate between the
discrepancies due to approximations of the functional, and discrepancies due
to the difference between the (even exact) Kohn-Sham system itself and the
real material. Precious hints were already given by work on model systems;
for example, Knorr and Godby [99] determined the xc potential by inversion
from the density of a finite one-dimensional model semiconducting wire that
was then extrapolated to infinite length. Most of the band gap error was
shown to be due to the fact that the exact KS eigenvalue gap differs from the
fundamental electron addition and removal gap, and not to approximations.
Indeed, the KS eigenvalue gap calculated at fixed particle number disregards
the derivative discontinuity of the exact xc potential upon change of particle
number [100, 101, 102]. Since the numerically exact density and/or xc po-
tential can be obtained only for very few systems, several studies used the
link between the xc potential and the self-energy given by the Sham-Schlüter
equation [101] in order to extract vxc from the self-energy. These include work
on a two-plane wave model [101, 103], the surface barrier for semi-infinite jel-
lium [54], and the study of several real semiconductors and insulators [104,
105, 106, 107, 108, 109]. These studies confirmed that the error inherent in
using Kohn-Sham eigenvalues instead of true electron addition and removal
energies is significant. However, the approaches used to determine the po-
tential involved themselves approximations whose quantitative impact on
the findings are not known: first, the Sham-Schlüter equation was linearized
in all studies. Second, the self-energy itself was approximated in many-body
perturbation theory, mostly on the GW level. With the present study, we fi-
nally do have a numerically exact Kohn-Sham potential at hand for real ma-
terials, and we can therefore draw definite conclusions concerning the band
gap, of standard semiconductors and insulators.

Results for the converged band gap of silicon and NaCl are shown in Ta-
ble 7.1. For silicon, our numerically exact minimum indirect KS band gap is
0.82 eV, about 30 % larger than the KS gap of 0.63 eV calculated in LDA, and
significantly smaller than the experimental gap of 1.17 eV. The Connector and
PBE gaps of 0.86 eV and 0.80 eV, respectively, are close to the QMC-derived
value of 0.82 eV. In NaCl, the situation is similar, with the QMC-derived gap
about 14% greater than the LDA one, 7% larger than the Connector, and just
3% larger than the PBE gap. Our QMC derived KS gaps confirm the con-
clusion of Ref.[104, 105] and thus definitely highlight the fact that a good KS
potential will not yield a “good” band gap. Overall, the band gap is an excel-
lent illustration for the fact that the exact Kohn-Sham system is an auxiliary
system designed to use the exact density, but not other observables.
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TABLE 7.1: Exact KS band gaps

vxc KS gap Si (ev) KS gap NaCl
AFQMC 0.82 5.25

PBE 0.80 5.08
Connector 0.86 4.87

LDA 0.63 4.59

7.4.2 Exchange correlation energy

So far, we have obtained numerically exact xc potentials for silicon and sodium
chloride. Here, we use these results together with the total energy calculated
by Chen et al. [14] to give benchmarks for the xc energy of Si and NaCl.

From the total energy, Etot, the xc energy, Exc, can be extracted as follows

Exc = Etot −
{

N/2

∑
i

ϵi − EHartree −
∫

drn(r)vxc(r) + EEwald + EPspCore

}
,

(7.4)
where ϵi are KS eigenvalues, and EEwald contains the resulting energy from
the ion-ion interaction as well as the interaction of the average electron den-
sity with the ions and with itself. The term EPspCore is a contribution due to
the non-Coulombic part of the local pseudopotential.

The xc energy of Si and NaCl is plotted in Fig. 7.12 as a function of the
number of iterations at which the xc potential and corresponding density
were calculated. In the case of silicon, the result converges very rapidly, and
the value of the xc energy resulting from the use of the smooth potential
at the 20th iteration remains stable, even after the potential develops enor-
mous spikes. This confirms our prior observation regarding the KS band
gap, namely that extremely very different xc potentials can yield very simi-
lar observables. The same good convergence property is found for NaCl. In
this case, we take the xc energy from the last iteration, because the xc poten-
tial does not develop spikes when the number of iterations increases, which
means that we can trust the inverted xc potential even after large number of
iteration.

7.5 Conclusion

In conclusion, we have constructed accurate xc potentials for Si and NaCl
using a simple algorithm that involves working with the xc potential alone
and imposing a shift that ensures the potential is always negative. Using the
resulting potentials we calculated the band gap of the corresponding Kohn-
Sham system and the xc energy of Si and NaCl. In the case of silicon, we
showed that the stochastic noise of the QMC data may limit the precision
that can be reached for the xc potential in itself. The reasons may be that
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FIGURE 7.12: Exchange correlation energy : convergence with
number of iterations for Si (upper panel) and NaCl (lower
panel). Horizontal lines are the xc energy that we used in the

rest of the thesis. Note the change in scale.

noisy data reflect a more non-local dependence of the density on the poten-
tial, which is not included in the algorithm, or that the noise makes the den-
sity inconsistent with the external potential. Whereas the calculation of the
xc potential is delicate and suffers from noise, KS band gap, charge density
and xc energy do not, and can be determined with high precision. This means
that the noise does not affect observables in general. We have also shown that
the exact KS band structure and band gaps are slightly larger than the LDA
ones for the systems studied here, and significantly smaller than the mea-
surable quasi-particle gaps, such definitely confirming a prior hypothesis.
For both NaCl and Si, The exact (from QMC) xc potential can be described
as an ensemble of multiple simple functions of the local density. Which of
these functions is appropriate depends on the environment, which means,
the non-locality is taken into account through an environment-dependence
of the function to choose. In the case of silicon, the connector xc potential
is capable of recovering the majority of the environment-dependence of the
simple functions. PBE, on the other hand, works better with NaCl, but it
underestimates this dependence.



81

Chapter 8

Approximating the exchange
correlation energy

The results of the connector xc potential for the density of silicon and sodium
chloride in Ch. 6, confirm that connector theory is a promising strategy for
developing new simple functionals capable of outperforming the LDA and
many other functionals. In this chapter, we will first examine whether we
can construct a functional for the xc energy using the connector xc poten-
tial. Then, we will discuss another connector designed specifically for the
xc energy density, ϵxc(r). Here, we also use silicon and sodium chloride to
evaluate the approximations. The benchmark xc energies are extracted from
total energies computed using QMC [14]. In order to do so, we make use of
the inverted xc potentials calculated in the previous chapter, which yield the
QMC densities.

8.1 Energy from the exchange correlation potential

The xc potential is the functional derivative of the xc energy functional, so
one can think about a functional integration of the connector xc potential
in order to obtain the corresponding energy functional [110]. Nevertheless,
we want to avoid this complicated scheme since it is an ill defined problem
and very heavy numerically. Instead, in the following we will express the xc
energy explicitly in terms of the xc potential, so that we can profit from the
accurate approximation of the latter to estimate the xc energy. In principle,
the xc energy functional can be written as

Exc[n] =
∫

dr′n(r′)ϵxc([n], r′). (8.1)

By taking the functional derivative of this equation we get

vxc([n], r) = ϵxc([n], r) +
∫

dr′n(r′)
δϵxc([n], r′)

δn(r)
, (8.2)

or

ϵxc([n], r) = vxc([n], r)−
∫

dr′n(r′)
δϵxc([n], r′)

δn(r)
. (8.3)
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Hence, we can write the xc energy using the xc potential term explicitly as

Exc[n] =
∫

drn(r)vxc([n], r)−
∫

drdr′n(r)n(r′)
δϵxc([n], r′)

δn(r)
. (8.4)

From this equation we see that we need two ingredients to construct the xc
energy function: the xc potential and the functional derivative of the xc en-
ergy density, δϵxc([n],r′)

δn(r) . For the first term, we aim to use the connector xc
potential (6.2) in order to examine its utility in improving the energy. How-
ever, because we lack a similar connector approximation for the second term,
we will approximate it using well-known functionals such as LDA and PBE.
Before we discuss the approximate xc energy for Si and NaCl, let us first con-
sider the contribution of each term in (8.4), as this allows us to determine
what is the dominant term, whose approximation is more significant for the
xc energy.

8.1.1 Dominant term of the exchange correlation energy

The exchange correlation energy in (8.4) can be divided into two terms:

Ev =
∫

drn(r)vxc([n], r), (8.5)

and

Eδϵ = −
∫

drdr′n(r)n(r′)
δϵxc([n], r′)

δn(r)
. (8.6)

We estimated these terms for three materials: silicon, sodium chloride, and
solid helium, using various approximations. The data, summarized in table
8.1, show that Ev is always the part that contributes the most to the total xc
energy, with an absolute value more than four times that of Eδϵ. This is in-
teresting because we can readily estimate this term using the connector xc
potential, allowing us to investigate the transferability of the connector ap-
proximation quality from the potential to a new observable, the xc energy. It
is worth noting that in an extended system, the inverted potential is defined
up to a constant, and therefore comparing the LDA or PBE estimation of each
term separately to the QMC one is not necessary significant. However, the
sum of Ev and Eδϵ, i.e., the xc energy, is well defined.

8.1.2 Results and comparison with other approximations

In table 8.2 we benchmark the xc energy of silicon and sodium chloride re-
sulting from using LDA, PBE and the connector approximation. The latter
consists of two parts: first, Ev that is calculated using the connector (4.7) for
the xc potential. The remaining part, Eδϵ, is calculated using LDA or PBE.
For silicon, the results indicate that using the connector vxc for the xc energy
yields an improvement over both the LDA and PBE. The optimal result is
found by coupling Econnector

v and EPBE
δϵ ; this approximation reduces the PBE
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Si NaCl He
Ev (eV) Eδϵ (eV) Ev (eV) Eδϵ (eV) Ev (eV) Eδϵ (eV)

LDA -85.09 19.83 -314.20 75.73 -28.93 6.78
PBE -86.98 21.22 -320.17 73.62 -32.20 7.34
QMC -85.68 19.15 -323.69 76.86 – –

TABLE 8.1: Comparison of the term (8.5) and (8.6) of the ex-
change correlation energy for bulk silicon, sodium chloride and
solid helium. The results show that Ev is always the largest
term, regardless the approximate functional. The QMC results
are obtained using the inverted xc potential discussed in the

previous chapter.

Si NaCl
LDA -62.26 -238.47
PBE -65.76 -246.55
Connector (with LDA) -67.56 -242.32
Connector (with PBE) -66.17 -244.43
QMC -66.53 -246.83

TABLE 8.2: Exchange correlation energy in (eV) for Si and NaCl
using several approximations. The connector with LDA (PBE)
means that we use the connector xc potential for the term Ev

and the LDA (PBE) for Eδϵ.

error by a factor of two. The same trend is observed for NaCl, however in
this case the PBE is the most accurate functional. This is expected since the
PBE xc potential is more accurate for NaCl, as we have shown in Ch. 6, when
we compared the densities.

Note that taking Ev and Eδϵ from distinct functionals is consistent here,
because the LDA, PBE and connector xc potentials all tend to zero when the
density becomes infinitesimally small. That is to say that they are not defined
up to a constant as the inverted xc potential from the QMC density.

8.2 Connector for the exchange correlation energy

According to the connector scheme discussed in Ch. 3, the connector is in
principle different for each object of interest. So there is no optimal density
of a HEG for simulating a given material; rather, there is an optimal den-
sity of a HEG for simulating a given observable, possibly in a given point
and/or at a given frequency. For instance, in Ch. 4, we have discussed an ap-
proximate connector that yields a good1 approximation of the xc potential as
shown in Ch. 6. This does not imply that the same connector will also yield
a good approximation to the xc energy density, ϵxc and so to the total energy.

1in the sense that a good vxc is the one that yields a good density compared to a bench-
mark.
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Notably, this does not mean that vxc(r) = vh
xc(nc

r,xc) is functional derivative
of

Ec
xc[n] ≡

∫
drn(r)ϵxc(nc

r,xc) : (8.7)

the functional derivative of the such defined Ec
xc[n] yields

δEc
xc[n]

δn(r)
=
∫

dr′
δ
(

n(r′)ϵxc(nc
r′,xc)

)
δn(r)

(8.8)

=
∫

dr′
[

δ(r − r′)ϵxc(nc
r′,xc)

+ n(r′)
dϵxc(nc

r′,xc)

dnc
r′,xc

δnc
r′,xc

δn(r)

]

=ϵxc(nc
r,xc) +

∫
dr′n(r′)

dϵxc(nc
r′,xc)

dnc
r′,xc

δnc
r′,xc

δn(r)

while the connector xc potential using the same connector, nc
xc, would read

vc
xc(r) = ϵxc(nc

r,xc) + nc
r,xc

dϵxc(nc
r,xc)

dnc
r,xc

. (8.9)

In order for the two vc
xc(r) to be the same, the following relation should hold:

∫
dr′n(r′)

dϵxc(nc
r′,xc)

dnc
r′,xc

δnc
r′,xc

δn(r)
= nc

r,xc
dϵxc(nc

r,xc)

dnc
r,xc

. (8.10)

This is possible in some circumstances; for example, the first-order connector
outlined in (4.5) has a free variable, namely the density at which the deriva-
tive is taken, which can be chosen to satisfy the relation. Whether this is a
reasonable technique for improving energy and/or potential approximations
remains an open question.

A more natural technique to approximate the xc energy is to design a
different connector for the xc energy density. If we consider the first-order
connector for ϵxc, we obtain

nc,approx
r,ϵ =

∫
dr′ fϵ(r − r′; n0)n(r′)

f h
ϵ (n0)

(8.11)

where, in analogy to fxc, we define fϵ ≡ δϵxc/δn. To determine this quantity,
let us take the functional derivative of (8.3), this yields

fϵ([n], r, r′) = fxc([n], r, r′)− fϵ([n], r, r′)−
∫

dr′′n(r′′)
δ2ϵxc([n], r′′)
δn(r)δn(r′)

. (8.12)
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Now we approximate the second derivative of ϵxc using that of the LDA, and
we evaluate the derivative at n0 , i.e. :

δ2ϵxc([n], r′′)
δn(r)δn(r′)

∣∣∣∣
n0

≈ d2ϵxc(n(r′′))
dn(r′′)2

∣∣∣∣
n(r′′)=n0

δ(r′ − r′′)δ(r − r′′), (8.13)

which yields

fϵ([r − r′|, n0) =
1
2

(
fxc(n0, |r − r′|)− n0

d2ϵxc(n0)

dn2
0

δ(r − r′)

)
. (8.14)

If we use this in (8.11), we get

nc,approx
ϵ (r) =

1
2

 f h
xc(n0)n

c,approx
xc (r)− n0

d2ϵxc(n0)
dn2

0
n(r)

dϵxc(n0)
dn0

 , (8.15)

where nc,approx
xc (r) is the first order connector of the xc potential. By using

nc,approx
ϵ (r) in (8.7) we get an approximate functional for the xc energy, Ec

xc[n].
In table 8.3, we present the error on the xc energy of various density func-

tionals for Si and NaCl. To focus on the functionals’ quality, we use the same
densities for all of them, namely the QMC densities calculated in [14]. It was
observed in this reference that the total energy is not particularly sensitive to
the density’s quality, but rather to the functional used. For both materials,
the accuracy of the connector approximations depends to some extent on the
reference density n0. A straight-forward use of the connector nc,approx

xc , which
was designed initially for the xc potential, in 8.7 yields a similar estimation of
the xc energy as other functionals, namely, LDA and PBE. However, the con-
nector functional designed especially for this purpose is systematically better
than nc

xc for the two materials. In the case of silicon, the connector nc,approx
ϵ

with a symmetric choice for n0 improves the xc energy by about a factor of
ten compared to LDA and PBE; a similar performance can be obtained using
nc,approx

xc with n0 equal to the local density. However, the error of the latter
becomes larger in the case of NaCl. In this case, we also observe that nc,approx

ϵ

becomes nonphysical, i.e., it yields negative values if we use the local density
or the symmetric choice for n0. The reason is an overshooting of the linear ex-
pansion around small densities. To cure this issue, we used rather the mean
density for n0 in all terms of (8.15) except for nc,approx

xc where we keep the
original n0. For NaCl, the resulting xc energy from this connector can reach
almost the same accuracy as the PBE, which gives the closest density and xc
energy to QMC results for this material. For silicon, a significant improve-
ment is obtained. To conclude, the results shown in 8.3 are favorable to the
connector approximation constructed for the xc energy. This approximation
is a functional of the density, which means that it can be tested and used for
any system. It can be also used to derive a new functional for the xc potential.

More generally, starting with a connector nc
r for ϵxc, one may obtain vxc
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error on Exc (%)
Si NaCl

LDA 1.90 3.38
PBE 1.15 0.11

mean density 1.61 3.13
local density 0.22 1.15Connector nc,approx

xc with n0 =
symmetric 0.52 1.84
mean density 1.67 2.99
local density 0.67|0.80* 0.21*Connector nc,approx

ϵ with n0 =
symmetric 0.18|0.31* 0.16*

TABLE 8.3: The error of the xc energy of Si and NaCl using var-
ious approximate functionals. We use the QMC density in all
functionals. For NaCl, the connector nc,approx

ϵ (r) becomes nega-
tives if we take n0 at the local density or the symmetric choice
described in Sec. 4.3.1.3. To solve this problem, we changed
the density n0 to the mean density in all terms of (8.15) except
the nc,approx

xc (r) term. The resulting values of this treatment are
highlighted by the symbol: *. The equivalent results for Si are

given for the sake of comparison.

as the functional derivative of the connector approximation Ec
xc, as done in

(8.8), because the connector approach generates nc
r as a density functional.

The resulting vc
xc can be written as

vc
xc(r) = ϵxc(nc

r,ϵ) +
∫

dr′n(r′)
f h
ϵ (nc

r′,ϵ)

f h
ϵ (n0)

fϵ(r − r′; n0)

= vh
xc(n

c
r,ϵ)− nc

r,ϵ
dϵxc(nc

r,ϵ)

dnc
r,ϵ

+
∫

dr′n(r′)
f h
ϵ (nc

r′,ϵ)

f h
ϵ (n0)

fϵ(r − r′; n0) , (8.16)

if we neglect the dependence of n0 on the density n(r). This vc
xc(r) will in gen-

eral be different from (8.9). The consistent connector density that represents
the vc

xc(r) in (8.16), instead, is obtained by inverting the HEG and reads

nc
r,xc = vh,−1

xc

(
vh

xc(n
c
r,ϵ)− nc

r,ϵ f h
ϵ (n

c
r,ϵ)

+
∫

dr′n(r′)
f h
ϵ (nc

r′,ϵ)

f h
ϵ (n0)

fϵ(r − r′; n0)
)

. (8.17)

The two connector densities fulfill nc
r,xc ≈ nc

r,ϵ only under special conditions,
for example, if we had nc

r′,ϵ ≈ nc
r,ϵ in the integral.

In conclusion, we have shown two promising ways to use the connector
for the xc energy: either by using the connector, nc

xc, from the vxc or from the
extra connector for ϵxc. Here we have explored only the first order approx-
imation, and the results are good enough to motivate further work in this



Chapter 8. Approximating the exchange correlation energy 87

direction.
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Chapter 9

Charge density as functional of the
potential

In this chapter I discuss an example of application of the connector theory
for real materials other than the development of a density functional. In
DFT, the ground state density can be calculated in principle by minimiza-
tion of the total energy functional. However, because the density functional
for kinetic energy is unknown, in practice one calculates orbitals using the
Kohn-Sham Hamiltonian. In this chapter, we will show that the connector
theory enables us to take a different route, namely, to derive an explicit ex-
pression for the density as functional of the KS potential. This functional
requires only knowledge of the KS potential and the input from the HEG,
without the need for the KS orbitals. So, the first step to proceed is to gener-
ate a KS potential and construct the independent particles Hamiltonian. The
resulting density from this Hamiltonian represents the target density in this
case. Then, using the connector scheme we build a potential functional for
that density that takes the KS potential as input to calculate an approximation
for the density. Finally, we compare the connector results and other approx-
imations against the target density. As we will see, the findings suggest that
the resulting functional can be useful in some real applications. In particular,
the connector functional yields a rapid estimate of the density, n(r), which
would be desirable in many situations, for example, when discussing charge
accumulation at an interface or as an initial guess for the density in the KS
self-consistency loop.

9.1 Charge density of Silicon

In order to give a realistic example, we used the charge density of bulk silicon
as a target. Here we are not concerned about the quality of the target density
itself, but rather by how well the approximations can reproduce it. To ob-
tain the density, we used the GPAW code [111]. We first express the original
Kohn-Sham potential in a plane wave basis. Then, using this potential, we
have extracted an effective local potential that contains the effect of non-local
pseudo-potentials. The Hamiltonian was then constructed using the effective
local potential, and the target charge density was computed by diagonalizing
this Hamiltonian and summing the squares of the wavefunctions in the four
occupied valence bands. We utilized a real space grid with 16 × 16 × 16 grid
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points, which corresponds to a 11 Ha plane wave cutoff, and a k-point grid
with 8 × 8 × 8 grid points.

9.2 In principle exact connector

The aim is to calculate the density n(r) at a given point in space r by taking
its value from a a to-be-determined HEG. Because the absolute energy scale
in an extended system is arbitrary, the density in the HEG is determined by
the relative values of the Kohn-Sham and chemical potentials,vh and µh. We
therefore set µh = 0 in the following, thus the density of the HEG becomes a
function nh(vh). Similarly, in the real system with the chemical potential set
to zero, the density is a potential functional n(r, [vKS]) The exact connector
condition is then

n(r, [vKS]) = nh(vc
h), (9.1)

which defines the connector potential vc
h. Since the relation between the den-

sity and the potential in the HEG for µh = 0 reads

nh =
[−2vh]

3/2

3π2 , (9.2)

the exact connector potential in a point r is

vc
hr = − [3π2n(r)]2/3

2
. (9.3)

Note that v(r) is one r-dependent potential, whereas vc
hr represents a different,

homogeneous potential for each point in space, as indicated by the use of a
subscript for r. Finally, the density is obtained as follows:

nc(r) = nh(vc
hr) =

[−2vc
hr]

3/2

3π2 . (9.4)

This is naturally equal to the target density. In practice, we do not know the
target density, thus we have to approximate the expression (9.3).

9.3 Linear response approximation

In order to get an estimate of the target density, we may expand it in small
variations of the potential around some homogeneous potential v0,

n(r, [vKS]) ≈ nh(v0) +
∫

dr′
δn(r)

δvKS(r′)

∣∣∣∣
v0

[
vKS(r′)− v0

]
. (9.5)

In the HEG, this approximation reads

nh(vh) ≈ nh(v0) +
dnh(vh)

dvh

∣∣∣∣
v0

[vh − v0] . (9.6)
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These are straightforward approximations by themselves. However, in the
following we will employ them in order to design an approximate connector
that yields a more accurate result than this direct approximation.

9.4 Linear response connector

Here we build an approximate functional for the density by following the
connector scheme described in Fig. 3.1, with O ≡ n(r, [vKS]), and O ≡
nh(vh). To accomplish this, we use the linear response approximations (9.5)
and (9.6) in the exact connector condition (9.1). Then, we solve for vh to ob-
tain the approximate connector

vc,approx
hr =

( dnh(vh)

dvh

∣∣∣∣
v0

)−1 ∫
dr′χ0(|r − r′|, v0) vKS(r′), (9.7)

where

χ0(|r − r′|, v0) =
δn(r)

δvKS(r′)

∣∣∣∣
v0

(9.8)

is the Lindhard function [112] and

dnh(vh)

dvh

∣∣∣∣
v0

= −
√−2v0

π2 (9.9)

is its macroscopic average. Given that the Lindhard function is known an-
alytically as a function of the density, and hence of v0,1 expression (9.7) is
easily computed and input into (9.2) to obtain the final density

nc,approx(r) =
[−2vc,approx

hr ]3/2

3π2 . (9.10)

For vc,approx
hr equal to the local potential,2 this approximation yields the Thomas-

Fermi potential functional. The latter functional and other work on potential
functionals can be found in this Ref. [113]. To avoid confusion, note again
that here the density, nc,approx(r) is the observable that we want to calcu-
late, whereas the potentiel vc,approx

hr is used as connector. The connector ap-
proximation (9.10) depends on the homogeneous potential, v0, around which
the system is expanded. If a clear set of criteria can be established, one can
exploit this dependency to optimize the approximation without turning the
approach into a fitting procedure. In this example, we propose a reasonable

1it can be written in the reciprocal space as

χ0(q, v0) = − kF

2π2

{
1 − Q

4

(
1 − 4

Q2

)
ln
∣∣∣∣Q + 2
Q − 2

∣∣∣∣} ,

where Q = q/kF, and kF =
√−2v0.

2this can be seen as a local potential approximation analogous to the LDA.
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FIGURE 9.1: Charge density of silicon in the (100) plane. Left,
linear response approximation. Middle, reference result. Right,

linear response connector approximation.

and unambiguous choice, which is an expansion around the local KS poten-
tial: this means that in each point r we choose a different starting homoge-
neous potential v0r = vKS(r). All of the preceding formulas can then be used
by simply substituting v0 → v0r. Now the connector result is in principle
well defined, yielding an approximate average density as well as approxi-
mate density variations. In practice one is not interested in computing the
average density, which is given by the number of electrons, but only in the
density variations. This allows us to impose the correct number of electrons
as a condition on the connector, by adjusting the energy scale of the external
potential to reach the correct average density.

In Fig. 9.1 we show the results for the density of silicon in the (100) plane.
Already the linear response result (9.5) on the left is similar to the target den-
sity obtained by diagonalizing the hamiltonian (middle). However, for this
approximation the total relative error

∫
dr |n(r)− napprox (r)| /N, with N the

number of electrons, is about 24%. There are even unphysical regions, where
the density is negative. Using the connector approximation (9.10), the error is
decreased by more than a factor of two , as illustrated in the right panel. Ad-
ditionally, the connector does not lead to negative densities. This improve-
ment is accomplished at no additional computational expense.

While the precision of the connector approximation, discussed in this
chapter, is not yet sufficient, it results in a very simple and direct expres-
sion for calculating the density. This can be quite advantageous as a starting
point for iterative procedures. For future work, it seems to be encouraging to
take into account the lessons learned from the previous chapters, in particu-
lar, the idea to build connectors based on a symmetric choice for n0, which
could be easily done also in the present case, and might further improve the
results.
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Chapter 10

Density matrix as functional of the
density

The one-body reduced density matrix (DM) is a very interesting quantity. It
provides access to many observables, such as the kinetic energy, the occupa-
tion numbers and the exchange energy. As a consequence of the Hohenberg-
Kohn theorem, the DM is a functional of the density as shown in Ch. 2. Un-
fortunately, this functional is not known, except for simple systems. Many ef-
forts have been made to study the DM, but there are still no suitable approx-
imations to express it as a simple functional of the density. In this chapter,
I will discuss building connector approximations for the DM as a functional
of the density. Previously, in Ch. 6 and in Ch. 9 the density was our target,
while here it will be our variable, via which we connect the model and the
real system. As in that chapter, here I used the same DFT code to compute
the Kohn-Sham density matrix (KS-DM) which will serve as a benchmark
in the case of real materials. In the following, I will first present the study
of the single electron case where the exact DM is known analytically. I will
use it as a target and discuss how to approximate it using expansions and
connector theory. Then I will discuss how well these approximations per-
form. Following that, I will use the single electron DM expression as a direct
approximation for the KS many electron DM. Using connector theory, this
approximation is then utilized to construct a density functional for the KS-
DM. In the connector scheme, I used the HEG as a model to simulate the
KS-DM of solid Helium and bulk silicon. Finally, I will compare the con-
nector and the direct approximation results by analyzing their performance
in describing the benchmark KS-DM and estimating the corresponding ex-
change energy. The results of this chapter have been published in the article
[114].

10.1 Single electron density matrix

First, let us consider the case of a single electron, which is far more straight-
forward than the case of a many electron density matrix. In this case, the
exact answer can be found analytically, which is quite valuable for gaining
some insight into the general case.
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For one electron, the occupied orbital is the square root of the density, and
the exact density matrix reads

n(r1, r2) =
√

n(r1)n(r2). (10.1)

This DM depends only on the densities in r1 and r2: this can be seen as a
generalized nearsightedness [68, 35] for an object evaluated in points (r1, r2).

In the next sections, we will consider the exact expressions as the bench-
mark, which we will describe using approximations based on expansions
and connector theory.

10.1.1 Expansions

One of the most intuitive approximations that one can consider are Taylor
expansions. To get some insight, let us expand the single electron DM around
the density of a model system.

10.1.1.1 First order expansion

A first order expansion of (10.1) around a model density, nm, yields

n(r1, r2) ≈ nm(r1, r2)
[
1 +

∆n(r2)

2nm(r2)
+

∆n(r1)

2nm(r1)

]
, (10.2)

where nm(r1, r2) ≡
√

nm(r1)nm(r2) is the DM of the model. Note that here
“nearsightedness” only applies to the difference ∆n, not to the density itself;
this is perfectly suitable for our purpose of finding approximations given the
results of the model system, but different from the more general topic about
the behavior of the system. If the model is the HEG, then “nearsighted-
ness” refers to the nearsightedness with respect to density variations, which
is closer to the general concept.

10.1.1.2 Choice of the zero order

The result of (10.2) and higher orders depend on the choice of the model den-
sity nm(r), and consequently, on ∆n(r1)/nm(r1) and ∆n(r2)/nm(r2). These
ratios must be small for the expansion to converge. This can be used as guide-
line to choose the zero-order of the expansion.

The simplest choice would be to start the expansion with one and the
same HEG to approximate all elements of the DM, nm(r1) = nm(r2) = nm,
for example, the average density of the system. However, whereas this might
be good if the density is quasi-homogeneous, in strongly inhomogeneous
systems one could have ∆n(r1)/nm ≥ 1, which would lead to divergence
of the series. Instead of the average density, one could take the average be-
tween the highest and lowest occurring density, (nmax + nmin)/2. In that case
∆n(r1)/nm ≤ 1 everywhere. Still, the series will converge less well when the
density is close to the maximum or minimum in points r1 and/or r2, and
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extremely slowly when the minimum density is zero. So, such an expansion
would work straightforwardly for systems where the density variation has a
small amplitude compared to the average density.

The choice of the HEG as model system can be optimized further by al-
lowing a different HEG for each pair (r1, r2). The most natural choice would
be a homogeneous density defined as nm

r1r2
(r) = (n(r1) + n(r2))/2, indepen-

dent of r but different for each pair (r1, r2). In that case, ∆n(r1)/nm(r1) =
(n(r1)− n(r2))/(n(r1) + n(r2)) ≤ 1, as desired, and similarly for r2. Again,
however, one would expect bad convergence when one of the densities ap-
proaches zero. Note that taking n( r1+r2

2 ) would be meaningless.
To go further, let us make the hypothesis that even beyond a single elec-

tron the density matrix is generalized nearsighted, in the sense that for a
matrix element at given (r1, r2) only the density near r1 and r2 is important.
Supposing, as in the LDA, that close to those points the density is slowly
varying, one could build an inhomogeneous model, with the requirement that
(n(ri)− nm

r1r2
(ri))/nm

r1r2
(ri) ≪ 1 for i = 1, 2. The density nm

r1r2
(r) of this model

would in general be different for every (r1, r2). Although inhomogeneous,
such a model should still be simple enough to be solved with advanced meth-
ods for the entire sequence of its parameters. An example could be crystals
with only one fourier component. Such a venture would have been unthink-
able when DFT was founded, but is today possible.

10.1.1.3 Second order expansion

If the model is homogeneous, for any density nm the first order Eq. 10.2 yields

n(r1, r2) =
n(r1) + n(r2)

2
. (10.3)

Instead, if we expand to the second order, the result depends on nm, yielding:

n(r1, r2) ≈
n(r1) + n(r2)

2
− (n(r1)− n(r2))2

8nm .

If nm
r1r2

= (n(r1) + n(r2))/2,

n(r1, r2) ≈
n(r1) + n(r2)

4
+

n(r1)n(r2)

n(r1) + n(r2)
. (10.4)

For a general non-homogeneous model the result reads:

n(r1, r2) ≈ nm(r1, r2)

(
1 +

∆n(r1)

2nm(r1)
+

∆n(r2)

2nm(r2)

+
∆n(r1)∆n(r2)

4nm(r1)nm(r2)
− (∆n(r1))

2

8(nm(r1))2 − (∆n(r2))2

8(nm(r2))2

)
. (10.5)

The second order correction is of course small when ∆n is small, but it is also
small when the ratio between the real and the model densities is similar in
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r1 and r2, which is a less demanding requirement that a non-homogeneous
model can satisfy.

10.1.2 Connector approximation

In the connector philosophy, our principal aim is to use the model data to
simulate the real system. In order to accomplish this, we need to establish
a connector between the two systems and this the reason why we use ap-
proximations. When we use expansions around the model parameter, the
zero-order term becomes equivalent to the model quantity. Thus, by using
the connector approach, we do not want to find the best expansion of the
result around some point, but to optimize the zero-order term, which means
that we aim to find the model parameter that gives directly the correct result.
As explained in Ch. 3, one way to find the parameter of this model is to use a
first order expansion. So the expansion is not used to produce directly the fi-
nal result, but only to determine the parameters of the model, from which the
result is taken. We will examine the connector approximation for the single-
electron case, where we do not need it, of course, but where we can hope to
learn something about connector approximations based on expansions.

The DM for the single homogeneous electron is peculiar, because its den-
sity matrix is linear in the density: it is simply the density itself (see (10.3)
with homogeneous density). Therefore, the first-order expansion is exact
in the homogeneous model. Following the general notation of Ch. 3, this
means for the model O−1

approx = O−1 and therefore the approximate connec-
tor is given by Qc,approx = O−1(Oapprox(QR)), where O is O on the sub-
space of model densities. The final result proposed by the connector is then
Oc = O(Qc,approx) = Oapprox(QR), which is equal to the first-order approxi-
mation itself. Since the approximation equals the exact solution in the model,
there is no error cancelling, and nothing is gained by the connector. In order
for the first-order connector to be useful in the single-electron example, the
model system must therefore be inhomogeneous. To fulfill this requirement,
we choose a model system with a density that has only one Fourier compo-
nent, nm(r) = Am cos(amr) + Bm, with parameters Am, am and Bm that can
be varied to match the connector equality condition. The latter reads√

n(r1)n(r2) =
√
(Am cos(am.r1) + Bm)(Am cos(am.r2) + Bm). (10.6)

In principle the exact real DM, which is the left hand side of this equation, is
unknown. However, an approximate version of the equality is accessible by
performing a first order expansion for the real and the model DM around a
homogeneous density (see (10.3)). This yields

n(r1) + n(r2) = Am (cos(am.r1) + cos(am.r2)) + 2Bm. (10.7)

The three model parameters Am, am and Bm cannot be uniquely defined by
this equation. This requires one to impose additional constraints and solve
for the remaining free model parameter(s), to finally obtain the connector set
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Ac, ac, Bc. Since we have never studied the connector for such a case in the
previous chapters, it is interesting to explore what is the most promising way
to set the model parameters.

In the following, we will test different approximations, including various
connector approximations, for single-electron systems.

10.1.3 Comparative analysis of the approximations

Although the single-electron case can be solved exactly, testing approxima-
tions to it will give guidelines for the many-electron case. We therefore start
with a numerical illustration for a single electron with density

n(r) = A1 cos(a1r) + A2 cos(a2r) + A3 cos(a3r) + B, (10.8)

where a = ax̂ in a cube of side length 2π.
To study the performance of different approximations, we show in Fig.

10.1 the relative error of the approximate density matrix with respect to the
exact one, with r1 and r2 in direction x̂. To characterize the results in a single
number, the captions also show the mean relative errors (MRE). The three
panels in the left column display the result of first- and second-order expan-
sions around different starting homogeneous densities. The same scale has
been imposed to all results, which implies that in the bright yellow regions
the error exceeds the maximum error set by the scale. The upper panel is
the first order result. The error is largest in points (r1, r2) for which the den-
sity is very small in one point and and large in the other, which may lead to
∆n(ri)/nm ≥ 1. As pointed out above, the result of the first order expansion
does not depend on the homogeneous starting point. The next two panels
are the results of second order expansion, evaluated at the mean density of
the system, or at nm

r1r2
= 0.5(n(r1) + n(r2)), respectively. In the first case, the

error is larger than that of the first order result, with maxima where one of
the two densities is small, i.e. in regions where already the first order is prob-
lematic. In the second case instead, where a different homogeneous system
is chosen for each pair (r1, r2), which can be seen as a generalization of the
LDA, the result improves significantly.

The three panels in the right column of Fig. 10.1 show the result of the
first order connector approximation. This result is obtained using the same
approximation as the one that gave the topmost panel in the left column, but
now used within the connector scheme. Fig. 10.1 shows that the connector
result depends strongly on the way the parameters are set: the best result
is obtained when the average density of the model, Bc

r1r2
, is used as free pa-

rameter to optimize each pair of points (r1, r2), while the amplitude and pe-
riodicity of the dominant Fourier component equals that of the real system,
i.e. Am = A1 and am = a1. As can be seen by comparing the left and right
panels of Fig. 10.1a, using the same first-order expansion the connector re-
sult is clearly superior with respect to the direct approximation while, when
the model results are tabulated, the workload to calculate a real system is the
same in both cases. The connector result worsens when the amplitude of the
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(A) First order approximation.(Left) Direct approximation. Mean relative error (MRE) =
4.33% (Right) CT fixing Ac = A1 and ac = a1. MRE =2.88% .
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(B) (Left) Second order approximation starting from nm = B. MRE = 8.48% (Right) First-
order CT fixing Ac = (A1 + A2 + A3)/3 and ac = a1. MRE = 3.51%
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(C) (Left) As (b), with nm = 0.5(n(r1) + n(r2)). MRE = 0.19%
(Right) First-order CT fixing Bc = B and ac = a1. MRE = 27.95 %

FIGURE 10.1: Relative error of approximations to the density
matrix for a system with n(r) = A1 cos(a1r) + A2 cos(a2r) +
A3 cos(a3r) + B, where a = ax̂, with A1 = 2, A2 = 1, A3 = 0.5,
a1 = 1, a2 = 2, a3 = 3 and B = 3.1 . Left column: first and
second order expansions. Right column: connector theory (CT)
approximations based on first-order expansion around a homo-
geneous system, using for the connector a model with density
nm(r) = A cos(ax̂r) + B. In principle A, a and/or B can be var-
ied to connect the real and the model system; the results shown

in the different panels are obtained with different choices.
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first Fourier component is set to an average value, Am = (A1 + A2 + A3)/3,
but it is still better than the direct approximation. The worst results are ob-
tained when the average density is kept fixed, and the connector is set by the
amplitude of the oscillation, as shown in the last panel. In all cases, the worst
results are obtained when one of the densities, n(r1) or n(r2), is small. Note
that in the last panel the connector equation would even yield regions with
negative densities; in those cases, the density matrix has been set to zero.

The best result is the second-order expansion in panel (c) in the left col-
umn; however, it would require in practice a higher computational effort.
When the average density B is much lower, e.g., B = 1, results become
worse. Still, for nm = (nmax + nmin)/2 the expansion converges, though
more slowly. Altogether, the results indicate that one may obtain practica-
ble approximations using expansions, even around a homogeneous system,
and that in particular connector combined with a low-order expansion is a
promising direction.

10.2 Many-electron density matrix

Real systems cannot be solved analytically in general, but we can try to use
insight from the single-electron case to approximate the density matrix of
real systems1. In the following, we will use the single electron DM to ap-
proximate the non-interacting, or Kohn-Sham, DM of extended systems such
as bulk silicon and helium in two different ways. The simplest one is to di-
rectly substitute the density n(r) in (10.1) by the density of the real system.
The smarter one is to use the exact single-electron results as an approximation
to design a connector for the many-electron case.

10.2.1 Helium and silicon

As a first guess, one could assume that generalized nearsightedness holds for
the many-electron system and derive direct approximation based on it. When
the nearsightedness fails, one can go a step further and design connector
approximations, which can be helpful because they can interpolate between
the nearsightedness and the farsightedness. This will be illustrated in the
following, with a focus on the connector theory.

First, we should keep in mind that expansions are only one possible way
to design practical connectors. The general strategy requires to do equiva-
lent approximations on the real and the model system, regardless of the type
of approximation. Thus, here instead of expanding the many-electron DM,
which is a possibility, we will benefit from the analytic single electron case
by using its DM as an approximation to build the connector.

We will study two real systems, bulk silicon [116] and solid He [117], at
the Kohn-Sham level. Our model system will be the homogeneous electron

1Also in the asymptotic region r1, r2 → ∞ of a finite system the density matrix n(r1, r2)

behaves like[115]
√

n(r1)n(r2) .
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FIGURE 10.2: DM and relative error of approximations to the
DM for solid helium along the [1,1,1] direction.
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FIGURE 10.3: DM and relative error of approximations to the
DM for bulk silicon along the [1,1,1] direction.

gas, its density matrix, γ,is characterized by the density, nh, and it reads [118]

γ(x, nh) =
sin(kFx)− kFxcos(kFx)

π2x3 , (10.9)

with x = |r1 − r2| and kF = (3π2nh)1/3. Employing the single electron ap-
proximation for both γ(x, nc) and the real DM n(r1, r2), we obtain the follow-
ing connector equality

nc
r1r2

=
√

n(r1)n(r2). (10.10)

The density matrix n(r1, r2) in a pair of points is then obtained in the connec-
tor approximation by evaluating the density matrix of the HEG with homo-
geneous density nc

r1r2
. This result which consists of using the HEG with ge-

ometric mean density as an approximation is quiet intuitive, and it has been
used, for example, as ingredient for an energy functional describing van der
Waals interaction [119].
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Figs. 10.2 and 10.3 show, for helium and silicon, respectively, the Kohn-
Sham density matrix n(r1, r2), the direct single-electron approximation

n(r1, r2) ≈
√

n(r1)n(r2), (10.11)

and the connector approximation

n(r1, r2) ≈ γ(|r1 − r2|, nc
r1r2

). (10.12)

Figs. 10.2 and 10.3 also show results of the connector approximation with
guesses for the connector inspired by the single electron case. The error on
diagonal terms is zero for all approximations since by construction they give
the exact density. For the off diagonal terms the connector approximation
looks better than the direct ones along the direction [1,1,1]. To get an idea
about the quality of the approximated DM in the entire unit cell, one could
look at the total error on the DM and the resulting exchange energy, which
can be calculated using (2.75). The relative error on DM and the exchange
energy calculated over one unit cell is given in in Table 10.1.

TABLE 10.1: Total error on density matrix (DM) and the ex-
change energy, Ex, (in %) for solid helium and bulk silicon.

He Si
DM Ex DM Ex

Direct single-electron 6056 167 64660 575
Direct 0.5(n(r1) + n(r2)) 18008 1117 7098 663
Direct average density 126190 1455 72524 663
Connector single-electron 3741 51 1510 6
Connector 0.5(n(r1) + n(r2)) 5883 134 1548 6
Connector average density 65143 833 1854 10

Errors are now significantly larger than in the previous section, this was
expected since a single-electron system is far from an infinite many-electron
material. However, the results show the same trend as before: the connector
significantly improves the results compared to using direct approximations.
The exchange energy errors are far smaller than the error in the density ma-
trix itself. This is due to the small terms of the DM that contribute very little
to the exchange energy but lead to a large relative error on the DM. When we
use the connector to estimate the exchange energy of silicon, which is closer
to the HEG, i.e., closer to the model, we get an interesting result with an error
that might even be acceptable for some applications. Also for helium the con-
nector improves the results, but compared to silicon the direct approximation
is better and the connector result is worse. This can be the consequence of us-
ing the HEG as model for this very in-homogeneous system.
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10.3 Conclusion

In this chapter we have concentrated on the density matrix as object to be
approximated. This was done as a part of the study to investigate if the
connector theory is an appealing direction to build simple and explicit den-
sity functionals. Our analysis and numerical results indicate a positive an-
swer. In the study of the single electron density matrix, we have shown
that expansions can be a suitable starting point for approximations, they
may converge quickly for systems where the variations in the density are
significantly smaller than the average density. The starting point of expan-
sions turns out to be crucial. In the simplest case one expands around the
HEG, and the best results are obtained when a different HEG is taken for
each pair of points (r1, r2) in n(r1, r2), namely a homogeneous density with
nm

r1,r2
= (n(r1) + n(r2))/2. This approach follows a generalized local den-

sity approximation. Using the connector theory on top of the expansions im-
proves the result while incurring the same computational cost. This is thanks
to two factors : the availability of the model data and the optimize use of the
latter by the connector approach.

In this study we have also explored the use of inhomogeneous model, de-
scribed by one Fourier component. This kind of model can be generalized for
periodic system since it is described by a limited number of parameters, and
could still be tabulated if it proves to be useful. For the case of many elec-
tron density we have shown that the connector is not limited to expansions,
and that other approximations, such as the single electron case, can be used.
Even though we used very rough approximations, the connector result on
exchange energy was very interesting for silicon. For helium, the exchange
energy could be brought into an acceptable level by using non-homogeneous
model or by substituting the single electron approximation with that of a pe-
riodic array of single electrons. Finally we note that finding simple density
functionals for the non-interacting density matrix is an important topic be-
cause it could for example allow one to speed up calculations based on hy-
brid functionals. The practical part of the second section was devoted to the
exchange energy. The results indicate that it may be worthwhile to investi-
gate the connector strategy for the interacting scenario in the future.
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Chapter 11

Conclusion and outlook

In this thesis, I presented an exact and very broad approach inspired by the
Kohn-Sham strategy for approximating density functionals using the homo-
geneous electron gas. The aim of this approach is to calculate and store, once
and for all, an observable or another object in a model system with the high-
est possible precision. These results are then used smartly to approximate
the same object in real systems using a prescription called connector theory
(COT). Each target object requires a distinct connector, which must be ap-
proximated. The quality of the connector results depends mainly on two
critical factors: the model and the chosen approximation, which require care
and physical insight. However, through the applications discussed in this
thesis, I have demonstrated, and explained why, a given approximation is
often far more powerful when applied within connection theory than when
applied directly to the object of interest.

The connector theory can be used to improve density functionals by de-
signing non-local approximations. This was demonstrated by using the con-
nector to reproduce the weighted density approximation functional. In this
example, I gave two practical ways to approximate the exact connector: one
is based on expansions and the other one is a modification of the Coulomb
interaction. The results show a significant improvement by COT compared
to directly applying the approximation to the observable of interest.

Along the same lines, I have used the homogeneous electron gas as a
model to develop a connector non-local density functional approximation to
the exchange correlation potential. From this functional we can derive the lo-
cal density approximation as a limit case in the regime of slowly varying den-
sity. It is worth to note that the free parameters in this connector, which stem
from the expansion, can be turned into strength for the connector functional
by adjusting them to satisfy exact constraints. Used within the Kohn-Sham
scheme, the connector approximation turns out to yield a very accurate den-
sity for silicon and quite good result for sodium chloride, without increasing
the computational cost. This result can be always improved since the con-
nector is based on a systematic approach. By improving the approximation
used in the connector scheme or choosing a model closer to the system, the
approximate connector tends to the exact answer.

The connector approach also allows us to profit from the model data that
are already available in the literature, and any improvement of these quanti-
ties increases the accuracy of the connector approximation as well.
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Independently of COT, I have constructed accurate xc potentials for sili-
con and sodium chloride by inverting densities calculated with QMC meth-
ods [14]. These potentials can serve as a benchmark to guide the develop-
ment of new approximations for the xc functional. They were used in Ch. 7
in order to extract the near-exact xc energy from the QMC total energy. Then,
by using this xc energy as a reference, I have evaluated the performance of
the COT approximation and the other xc energy functionals. After optimiz-
ing the first order expansion, the connector functional yields the closest esti-
mation of the QMC energy. This is a promising result, but of course to get a
conclusive evaluation on its quality, this connector energy functional and its
corresponding xc potential should be tested on more systems.

The connector theory is not limited to DFT, indeed, I have shown, through
the example discussed in Ch. 9, that COT can be used to approximate observ-
ables as functionals of the external potential. This application paves the way
for fast computational methods, which I have illustrated with a quick esti-
mation the density. In addition to that, I discussed, in Ch. 10, the use of COT
to approximate a non-local object, namely the density matrix. I have demon-
strated again the improvement of the connector over the direct approxima-
tion, this time for the density matrix and the exchange energy as the observ-
ables. In the single electron case, I have highlighted that non-homogeneous
models can be used, instead of the HEG.

As an outlook, one can use models beyond the HEG that are closer to the
real system of interest. For example one can choose germanium as model
for wide range of semiconductors. Indeed, more complex models may ne-
cessitate high-throughput calculations, but with today’s computer power it
is worth going in this way and exploring whether the use of new interact-
ing model systems beyond the HEG could be a promising direction to take,
as this would theoretically allow for the calculation of the majority of the
interaction effects once and for all. The results of these calculations can be
then interpolated using modern machine learning methods or stored using
today’s storage capacities. Thus, from a COT point of view, the calculations
for a variety of real materials would essentially consist of assembling the
Lego pieces obtained from the model.

One can also explore the generalization of the connector xc potential de-
veloped in Ch. 4 to the time-dependent case, this should be in principle pos-
sible since a non-local and non adiabatic xc kernel is available in the litera-
ture [120]. Besides that, since the connector can build non-local density func-
tionals, one can investigate whether it is possible to describe Van der Waals
quantum interactions using connector theory. Finally, we can reformulate the
connector theory by using Green’s functions instead of density, which would
make it easier to work with approximations of the Coulomb interaction, since
the interaction appears explicitly in many-body perturbation theory. This of-
fers even more freedom to build new functionals for electronic properties in
general.

In conclusion, in this thesis I have contributed to bring the connector ap-
proach from an abstract idea to the level of a clear scheme that can be used in
practice in various contexts. I used this approach to construct new non-local
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approximations to the Kohn-Sham xc potential and the xc energy. I tested
these approximations for real materials. The findings show that the connec-
tor theory is a promising strategy to develop powerful approximations, and
they motivate us to calculate more complex models beyond the HEG.
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Appendix A

Correction to first-order connector
approximation from second-order
density response theory

Here I will show how to obtain the explicit gradient correction (4.15) to the
connector xc potential defined in (4.6).

The exact functional vxc([n], r), being a differentiable functional of the
density n, can be expanded to the second order around a fixed density n0:

vxc([n], r) = vxc(n0) +
∫

dr1 fxc(|r − r1|, n0)δn(r1)

+
1
2

∫
dr1dr2gxc(r, r1, r3, n0)δn(r1)δn(r2) (A.1)

The expression of the approximate functional that comes from first-order
connector is:

vc
xc([n], r) = vxc(nc

xc),

with nc
xc = 1

fxc(n0)

∫
dr′ fxc(|r − r′|, n0)n(r′). Also the potential vc

xc can be ex-
panded to second order in the density deviations from a constant density of
the electron gas n0:

vc
xc([n], r) = vxc(n0) +

∫
dr1 fxc(|r − r1|, n0)δn(r1)+

+
1

2( fxc(n0))2

∫
dr1dr2 fxc(|r − r1|, n0) fxc(|r − r2|, n0)gxc(n0)

× δn(r1)δn(r2) (A.2)

Since the connector is exact for a linear functional, the first two terms of
this expression are the same as the first two terms on rhs of (A.1). Subtracting
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(A.2) from (A.1) yields:

vxc([n], r) = vc
xc([n], r) +

1
2

∫
dr1dr2δn(r1)δn(r2)×[

gxc(r, r1, r3, n0)−
fxc(|r − r1|, n0) fxc(|r − r2|, n0)

( fxc(n0))2 gxc(n0)

]
(A.3)

In the reciprocal space and because of the translation invariance of gas,
we can write:

fxc(r, r1, n0) = ∑
q

fxc(q, n0)eiq.(r−r1) (A.4)

and
gxc(r, r1, r2, n0) = ∑

q,q′
gxc(q, q′, n0)eiq.(r−r2)e−iq′.(r1−r2) (A.5)

where ∑q is short for
∫

d3q(2π)−3. Using these definitions in (A.3) we obtain:

vxc([n], r) = vc
xc([n], r) +

1
2 ∑

q,q′
δnq′δnq−q′eiq.r×[

gxc(q, q′, n0)−
fxc(q′, n0) fxc(q − q′, n0)

( fxc(n0))2 gxc(0, n0)

]
(A.6)

Assuming that both response functions fxc and gxc are analytic, we can write
in the small-q limit :

fxc(q, n) = f (0)xc (n) + f (2)xc (n)q2 + ... (A.7)

Based on symmetry arguments [38], gxc can be expanded as :

gxc(q, q′, n) = g(0)xc (n) + g(2)xc (n)(q2 + q′2 − q.q′) + ... (A.8)

Using this expansion in (A.6), we obtain:

vxc([n], r) = vc
xc([n], r) +

1
2 ∑

q,q′
δnq′δnq−q′eiq.r ×

(
α1q2 + α2q′2 − α2q.q′

)
(A.9)

where :

α1 =

(
g(2)xc (n0)−

f (2)xc (n0)g(0)xc (n0)

fxc(n0)

)

α2 =

(
g(2)xc (n0)− 2

f (2)xc (n0)g(0)xc (n0)

fxc(n0)

)
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Now we show how the dependencies on q in (A.9) become a gradient
corrections in real space. First we need to show the following:

∑
q,q′

(q′2 + q2 − 2q.q′)δnq′δnq−q′eiq.r = − ∑
q,q′

eiq.r
∫

dr1δn(r1)e−ir1.q′
∫

dr2δn(r2)∇2
r2

e−ir2.(q−q′)

= − ∑
q,q′

eiq.r
∫

dr1δn(r1)e−ir1.q′
∫

dr2e−ir2.(q−q′)∇2
r2

δn(r2)

= −
∫

dr1dr2δn(r1)δ(r1 − r2)δ(r − r2)∇2
r2

δn(r2)

Then:

∑
q,q′

(q′2 + q2 − 2q.q′)δnq′δnq−q′eiq.r = −δn(r)∇2
r n(r) (A.10)

We have also:

∑
q,q′

q′2δnq′δnq−q′eiq.r = − ∑
q,q′

eiq.r
∫

dr1δn(r1)∇2
r1

e−ir1.q′
∫

dr2δn(r2)e−ir2.(q−q′)

= − ∑
q,q′

eiq.r
∫

dr1e−ir1.q′∇2
r1

δn(r1)
∫

dr2δn(r2)e−ir2.(q−q′)

= −
∫

dr1dr2δn(r2)δ(r1 − r2)δ(r − r2)∇2
r1

δn(r1)

Then:
∑
q,q′

q′2δnq′δnq−q′eiq.r = −δn(r)∇2
r n(r) (A.11)

We have also:

∑
q,q′

(q′2 − q.q′)δnq′δnq−q′eiq.r = ∑
q,q′

eiq.r
∫

dr1δn(r1)∇r1 e−ir1.q′
∫

dr2δn(r2)∇r2e−ir2.(q−q′)

= ∑
q,q′

eiq.r
∫

dr1e−ir1.q′∇r1 δn(r1)
∫

dr2e−ir2.(q−q′)∇r2 δn(r2)

=
∫

dr1dr2δ(r1 − r2)δ(r − r2)∇r1 δn(r1)∇r2 δn(r2)

Then:
∑
q,q′

(q′2 − q.q′)δnq′δnq−q′eiq.r = −|∇rn(r)|2 (A.12)

From (A.10) and (A.11) we deduce :

∑
q,q′

q2δnq′δnq−q′eiq.r = ∑
q,q′

2q.q′δnq′δnq−q′eiq.r
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By subtracting (A.12) from (A.11) we get:

∑
q,q′

q.q′δnq′δnq−q′eiq.r = |∇rn(r)|2 − δn(r)∇2
r n(r)

Now we have all the ingredients to write (A.9) in real space:

vxc([n], r) = vc
xc([n], r) − α1δn(r)∇2

r n(r) + (α1 − α2

2
)|∇rn(r)|2 (A.13)

This equation gives a gradient correction to first order connector. The coeffi-
cient α1 and α2 can be determined by noticing:

∂ fxc(q, n0)

∂n0
= gxc(q, q, n0)

This equation together with (A.7) and (A.8) yield :

∂ fxc(n0)

∂n0
= g(0)xc (n0)

∂ f (2)xc (n0)

∂n0
= g(2)xc (n0)

So all we need to determine α1 and α2 is the coefficient f (2)xc (n0). These coeffi-
cients can be derived from an available result for the static nonlocal xc kernel
of the HEG [75, 76].
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Appendix B

Weighted Density Approximation

In the following, I will give more details concerning the target functional
used in Ch. 5. It is based on the weighted density approximation (WDA)
of the xc hole nxc introduced in [57, 58, 59, 60], with the weight function
proposed in [61]. The xc energy is given in (5.1). The two functions λ and C
are

λ(n) =

(
−3Γ

(3
5

)
4Γ
(2

5

)
εxc(n)

)5

and C(n) =
−3/4π

Γ
(2

5

)
(λ(n))

3
5 n

, (B.1)

where εxc(n) is the exact xc energy per particle of the HEG, whose correlation
part we take from the Perdew-Zunger parameterization [32].

To get the target xc potential we perform the functional derivative of the
xc energy, δExc[n]

δn(r) . It yields :

vWDA
xc (r, [n]) =

1
2

[∫
dr′

2n(r′)
|r′ − r|C(ñ(r

′, r))

(
1 − e

−λ(ñ(r′ ,r))
|r′−r|5

)

+ n(r)
∫

dr′
n(r′)
|r′ − r|C

′(ñ(r′, r))

(
1 − e

−λ(ñ(r′ ,r))
|r′−r|5

)

+n(r)
∫

dr′
n(r′)

|r′ − r|6
C(ñ(r′, r))λ′(ñ(r′, r))e

−λ(ñ(r′ ,r))
|r′−r|5

]
, (B.2)

with ñ(r, r′) = [n(r) + n(r′)]/2 [82]. Further functional derivative yields the
exchange-correlation kernel, which can be expressed as the sum of six terms,
f WDA
xc (|r − r′|; n0) = ∑6

i=1 fi. Evaluated in the HEG with density n0 these
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terms read:

f1 =
[
C(n0) + n0C′(n0) +

1
4 n2

0C′′(n0)
]

1−e

−λ(n0)

|r−r′ |5

|r−r′|

f2 = 2πΓ
(3

5

)
(λ(n0))

2
5
[
n0C′(n0) +

1
4 n2

0C′′(n0)
]

δ(r − r′)

f3 =
[
n0C(n0)λ

′(n0) +
1
2 n2

0C′(n0)λ
′(n0) +

1
4 n2

0C(n0)λ
′′(n0)

]
× e

−λ(n0)

|r−r′ |5

|r−r′|6

f4 =
4πΓ( 3

5)

5(λ(n0))
3
5

[
n0C(n0)λ

′(n0) +
1
2 n2

0C′(n0)λ
′(n0)

+1
4 n2

0C(n0)λ
′′(n0)

]
δ(r − r′)

f5 = −1
4 n2

0C(n0) (λ
′(n0))

2 e
−λ(n0)

|r−r|5

|r−r|11

f6 = − πΓ( 8
5)

5(λ(n0))
8
5

n2
0C(n0) (λ

′(n0))
2

δ(r − r′|) . (B.3)
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Appendix C

DFT code

Here I present the code that I used to calculate the charge density in Ch. 6
and the Kohn-Sham (KS) density matrix in Ch. 10. With small adjustments,
the same code was used to invert the exchange correlation potential from the
density in Ch. 7. Indeed, many DFT codes already exist, but since I need
to use some connector approximations and to control specific parameters, I
opted to implement my own code. This also gives me more flexibility to use
any external potential and easily modify any part of the code.

The code uses the plane wave method [23] to solve the Kohn-Sham equa-
tions presented in Ch. 2. This method is particularly well-suited for studying
periodic crystals, where it offers an intuitive understanding and simple algo-
rithms for practical calculations, thanks to the Bloch theorem.

C.1 Input file

The code is written in Python. To use it, we first need to generate the pseudo
potential in the plane wave basis, using abinit [121] for example, then prepare
the input file and execute the following command

$ python run_DFT_KS . py − i <input f i l e > <output f i l e >

In the input file one should define the specific material parameters and
choose an approximation for the xc potential. Here below I show an example
of an input file for silicon.

1 #Definition of the unit cell
2

3 acell= [10.263087]*3 # [bohr]; same as
[10.263087 ,10.263087 ,10.263087]

4 Mt= [[1, 0, 0], # FCC primitive vectors (to be scaled by
acell)

5 [0, 1, 0],
6 [0, 0, 1]]
7

8 n_occup =8 # number of electrons in the valence band
9

10 # Definition of the plane wave basis set
11

12 nkpt = [4,4,4] # Density of k points in Brillouin Zone
13 ecut= 12.5 # Maximal kinetic energy cut -off , in Hartree
14
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15 #Path to read the local and the non -local part of the pseudo
potential

16

17 local_pseudo= "VPSP_loc.dat"
18 non_local_pseudo= "VPSP_nl.dat"
19

20 #By Default the code use the Perdew -Zunger parameterization for
the correlation energy of the HEG.

21 #To use the Chachiyo parameterization turn on the following
variable

22

23 Chachiyo =0
24

25 # specify the choice of the xc potential functional.
26

27 choose_vxc="connector_n0mean" # or "LDA" or other functional.
28

29 tol_e= 1e-8 # Tolerance on the total energy , which defines the
convergence condition.

30

31

32 density_matrix =0 #Change to True to calculate and write the
density matrix

33

34 #initial_density ="dens.dat" # Uncomment this line to specify
the initial density

LISTING C.1: Input file for silicon

C.2 Calculation of the density and the density ma-
trix

The most important operation in any DFT code is the self-consistent solution
of the KS equation to calculate the electronic density. It is calculated as a
modulus squared sum of the KS orbitals. Using these orbitals one can easily
calculate the KS density matrix. Here we give a brief presentation of the
method that I have adopted for calculating the density.

For a periodic system, or a crystal, treated using KS DFT theory, the den-
sity can be written as

n(r) = ∑
k,i

f (ϵi,k)ni,k(r), with ni,k(r) = |ψi,k(r)|2, (C.1)

where k lies in the first Brillouin Zone, i denotes a band and f is the Fermi
function. The function ψi,k(r) denotes the KS orbital for each point k and
band i. It can be written as

ψi,k(r) = ∑
G

ci,k(G)× 1√
Ω

ei(k+G)·r = eik·r 1√
Nk

ui,k(r), (C.2)

where ci,k(G) are the eigenvectors of the KS Hamiltonian in the basis of
orthonormal plane waves |k + G⟩, Ω is the volume of the crystal and so
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Ω = NkΩcell, and

ui,k(r) =
1√

Ωcell
∑
G

ci,G(k) eiG·r, (C.3)

which has the periodicity of the crystal according to Bloch theorem. The
density can be then calculated from one primitive cell as

n(r) =
1

Nk
∑
k,i

f (ϵi,k)|ui,k(r)|2 (C.4)

and in the reciprocal space as

n(G) =
1

Nk
∑
k,i

∑
G,G′

f (ϵi,k)u∗
i,k(G)ui,k(G′) ei(G−G′)·r. (C.5)

Similarly, the density matrix reads

n(r, r′) =
1

Nk
∑
k,i

f (ϵi,k)u∗
i,k(r)ui,k(r′)eik·(r−r′). (C.6)

Fig. C.1 illustrates the algorithm implemented in the code to obtain the den-
sity using (C.3) and (C.4).

In practice, to calculate the density, we first define the material parameters
in the input file, then we execute the file run_DFT_KS.py. The code begins by
importing the necessary functions, then on the basis of the energy cut-off,
Ecutoff, it generates a list of the reciprocal lattice vector, G, corresponding to
each point k in the first Brillouin zone, so that

1
2
|k + G|2 < Ecutoff. (C.7)

It also generates a larger list of G vectors to perform the double sum needed
for the Fourier transform of the density defined in (C.5). The next step is
to construct the Hamiltonian matrix, Hk(G, G′), in the plane wave basis
|k + G⟩. To achieve this, we sum the matrix of the kinetic energy operator,
the Hartree potential, the xc potential and the pseudo potential

Hk(G, G′) =
1
2
|k + G|2 + 4π

n (G − G′)
|G − G′|2 + vxc

(
G − G′)+ VPSP

k
(
G − G′) ,

(C.8)
where VPSP is the pseudo potential. Once the Hamiltonian matrix is built,
it will be diagonalized for each point k to obtain the eigenvalues and the
eigenvectors, ci,k(G), which represent the KS orbitals in the reciprocal space.
Next, the code determines the Fermi level and calculate the sum (C.4) using
the scheme shown in Fig. C.1 to obtain the density n(r) for the first iteration.
The resulting density will be used to construct the Hamiltonian for the next
iteration. The code keep iterating using a while loop until the total energy is
converged. At the end, if the KS density matrix was requested in the input
file, the converged KS orbitals will be used to calculate it, see Fig. C.1.

The code generates an output file that contains, by default, the density, the
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xc potential, the Hartree potential, the total energy and its component, and
the density matrix if it was requested. Other quantities can also be retrieved
by making slight modification to the script run_DFT_KS.py.
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FIGURE C.1: Self consistent scheme to calculate the density and
density matrix: The input file contains the choice of the approx-
imation for the xc potential, and the initial density, if specified,
otherwise the algorithm start with a constant density. The nota-
tion {G} and {r} denotes the sets of the reciprocal space vectors
G selected according to the cut-off energy, and the grid points
r in real space. The fast Fourier transform (FFT) is used here
to calculate n{G} in N log N operations instead of the double
sum (C.5) that scales as N2, where N is the size of the set {r}.
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List of publications

• A. Aouina, M. Gatti and L. Reining, Strategies to build functionals of the
density, or functionals of Green’s functions: what can we learn?, Faraday
Discussions 224, 27 (2020) [114].

• M. Vanzini 1, A. Aouina 1 , M. Panholzer, M. Gatti and L. Reining, Re-
using model results to determine materials properties: connector theory ap-
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• A. Aouina, M. Gatti, S. Chen, S. Zhang, and L. Reining, Kohn-Sham
exchange-correlation potential of solids: answers from the ground state den-
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Titre : Un nouveau raccourci pour la conception computationnelle des matériaux

Mots clés : Théorie de la matière condensée, Développement de théorie, Conception computationnelle des
matériaux

Résumé : La théorie de la fonctionnelle de la densité (DFT) nous
apprend que toute propriété d’un système en interaction est une fonc-
tionnelle de la densité électronique de l’état fondamental. L’approche
de Kohn-Sham a fait de la DFT une méthode de calcul utile pour
étudier la structure électronique des matériaux. Le potentiel d’échange
et corrélation (xc) est la quantité clé, mais il reste inconnu. Dans l’ap-
proximation de la densité locale (LDA), le système réel est traité loca-
lement comme un gaz d’électrons homogène (HEG) dont la densité est
égale à la densité locale du système réel. Le potentiel xc est alors im-
porté du HEG, qui sert de modèle. Il a été obtenu, une fois pour toutes,
par des calculs de Monte Carlo Quantique (QMC). Ces calculs ont gran-
dement contribué au succès de la DFT dans la modélisation des so-
lides et des molécules. Inspirés par la LDA et l’utilisation du HEG, nous
généralisons dans cette thèse l’idée d’utiliser des modèles pour simuler
des systèmes réels. Notre approche, appelée “théorie du connecteur”
(COT), est une prescription en principe exacte de comment utiliser les
données des modèles pour calculer les propriétés des matériaux. La
force de la COT est double : premièrement, partir d’une théorie en prin-
cipe exacte permet de construire des approximations systématiques.
Deuxièmement, comme les modèles sont généralement des systèmes
plus simples, on peut se permettre de calculer les quantités dans le
modèle avec une grande précision. L’avantage est énorme puisque ces
calculs sont effectués une fois pour toutes et servent de briques de
base pour l’approximation de quantités réelles. Après avoir présenté
le schéma général de la COT, nous l’avons utilisé pour construire des
fonctionnelles non locales pour le potentiel xc. Nous avons montré que
la LDA peut être dérivée comme un cas particulier d’une approximation
de la COT. Afin de tester la stratégie de la COT, nous l’avons appliquée
pour reproduire une fonctionnelle non locale basée sur la ≪ Weigh-

ted Density Approximation ≫. Les résultats ont été très prometteurs:
d’une part, nous avons pu obtenir la LDA dans le cadre de la COT
en négligeant la partie à longue portée de l’interaction coulombienne.
D’autre part, nous avons construit une description non locale qui va
au-delà de la LDA. Pour examiner le potentiel xc COT, nous l’avons
implémenté dans la boucle Kohn-Sham et avons calculé les densités du
silicium, un semi-conducteur, et du chlorure de sodium, un isolant. Com-
parées aux résultats QMC de référence, les densités produites à partir
de ce potentiel xc COT étaient très précises. Indépendamment du COT,
nous avons examiné la question de l’obtention du potentiel xc à partir de
la densité QMC. L’objectif principal était de comparer les propriétés du
potentiel xc exact à la COT et d’autres approximations DFT. Nous avons
abordé diverses questions techniques liées à l’algorithme d’inversion,
qui a été appliqué pour la première fois aux solides, notamment l’effet
d’une base incomplète et l’erreur statistique de QMC. Le potentiel xc
résultant nous a permis de calculer les énergies xc exactes, les bandes
interdites de Kohn-Sham et les structures de bande de Si et de NaCl,
et de comparer avec les approximations COT. Cela nous a aussi motivé
à construire une fonctionnelle COT pour l’énergie xc. Enfin, nous avons
montré que la COT n’est pas limitée à la DFT, en l’utilisant pour estimer
la densité sans diagonaliser un hamiltonien à particules indépendantes.
Nous avons également expliqué comment utiliser la COT pour approxi-
mer des objets non locaux tels que la matrice densité; dans cet exemple,
nous avons montré qu’un modèle non homogène peut améliorer les ap-
proximations de la COT. Ces modèles plus complexes pourraient être
résolus grâce aux capacités de calcul actuelles, et les résultats pour-
raient être paramétrés grâce aux méthodes d’apprentissage automa-
tique.

Title : A novel shortcut for computational materials design

Keywords : Condensed matter theory, Computational materials design, Theory development

Abstract : Density functional theory (DFT) tells us that any pro-
perty of an interacting system is a functional of the ground-state elec-
tronic density. The Kohn-Sham scheme has made DFT a practical com-
putational tool to study the electronic structure of materials. The main
quantity that needs to be approximated is the exchange correlation (xc)
potential. In the local density approximation (LDA), the real system is
treated locally as a homogeneous electron gas (HEG) with a density
equal to the local density of the real system. The xc potential is then
imported locally from the HEG, which serves as a model. It has been
obtained, once for all, by accurate quantum Monte Carlo calculations
(QMC) of the HEG at various densities. These calculations contributed
immensely to the success of DFT being one of the most widely used
method for modelling solids and molecules. Inspired by the LDA and the
use of the HEG, in this thesis we generalise the idea of using models to
simulate real systems. Our approach, called “Connector Theory” (COT),
is an in principle exact prescription of how to use data from models to
calculate quantities in materials. The power of this approach is twofold:
first, starting from an in principle exact theory provides a guideline to
build systematic and improvable approximations. Second, since models
are usually simpler systems, one can also afford high level calculations
with great precision for new model quantities. The benefit is enormous
since these calculations are done once and for all and serve as buil-
ding blocks to approximate real quantities. After introducing the general
scheme of COT, we used it to build non-local functionals of the density
for the xc potential, starting from a linear expansion. We showed that
the LDA can be derived as a particular case of the COT approximation.
In order to test the COT strategy, we applied it to reproduce a non-local
functional of the xc potential based on the weighted density approxima-
tion. The results were very promising: on the one hand, we could obtain

the LDA within the COT scheme by making the Coulomb interaction
short range. On the other hand, we constructed a non-local description
of the functional that goes beyond the LDA and the linear expansion.
To examine the COT approximation of the xc potential, we implemented
it in the self-consistent Kohn-Sham loop and computed the electronic
densities of silicon, a semiconductor, and sodium chloride, an insulator.
When compared to benchmark QMC results, the densities produced
from this COT xc potential were very accurate. This was due to the abi-
lity of COT functional to capture a significant amount of the non-local
information of the system. Independently of the COT, we have exami-
ned the inverse question of obtaining the xc potential from the accurate
QMC density. The main aim was to analyse the features of the exact xc
potential and to compare them with the COT and other DFT approxima-
tions. We addressed various technical issues related to the algorithm of
the inversion, which was applied for the first time in solids, including the
influence of the basis set and the statistical error of QMC. The inverted
xc potential enabled us to determine the exact xc energies, Kohn-Sham
band gaps and band structures of Si and NaCl, and to benchmark cor-
responding COT approximations. This also provided the motivation to
build and test a new COT functional optimised for the xc energy. Finally,
we demonstrated that COT is not limited to DFT by using it to estimate
the density without diagonalising an independent-particle Hamiltonian.
We have also explained how to use COT to approximate non-local ob-
jects such as the density matrix; in this example, we showed that a non-
homogenous model can boost COT approximations. These more com-
plex models could be calculated using nowadays computer capacities,
and the results could be interpolated and parametrised using available
machine learning techniques.
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