Benoît Charrier

Predictive modeling of energy consumption in buildings is essential for intelligent control and efficient planning of energy networks. A powerful way to perform this task is through machine learning approaches. Relevant buildings operational data are thus a prerequisite, notably when deep learning is used. However, operational data are not always available, such is the case in newly built or newly renovated buildings.

The goal of this dissertation is to address the predictive modeling tasks of building energy consumption when no historical operational data are available for the given target building. To that end, existing data collected from multiple different source buildings are leveraged. This is increasingly relevant with the growth of open data initiatives in the building energy sector.

The main idea is to transfer knowledge across building models. There is little research at the intersection of building energy modeling and knowledge transfer. A main challenge when dealing with multi-source data is that prominent domain shift can exist between the different sources and also between each source and the target.

First and foremost, I would like to thank my thesis

As a first contribution, a two-fold query-adaptive methodology is developed for crossbuilding predictive modeling. The first process recommends relevant training data to a target building solely by using a minimal contextual description on it (metadata). To enable a task-specific recommendation, a deep similarity learning framework is used.

The second process trains multiple predictive models based on recommended training data. These models are combined together using an ensemble learning framework to ensure a robust performance.

A following contribution consists in the implementation of our methodology based on microservices. "Logically independent" workflows are modeled as separate microservices. Building metadata and operational data (time series) collected from different sources are integrated into a unified ontology-based view.

Finally, experimental evaluations of the predictive models factory is performed for the use case of building energy modeling. Results validate its effectiveness and its applicability. Moreover, because of its generic design, the methodology for queryadaptive cross-domain predictive modeling can be re-used for a diverse range of use cases in different fields.

Résumé

La modélisation prédictive au sein des bâtiments est essentielle pour le contrôle intelligent, la coordination et la planification efficaces des réseaux d'énergie. Un moyen puissant de modélisation prédictive utilise l'apprentissage automatique Avoir des données opérationnelles pertinentes des bâtiments est ainsi un prérequis essentiel pour cette tâche, notamment quand l'apprentissage profond est utilisé. Cependant, les données opérationnelles ne sont pas toujours disponibles, tel est le cas des bâtiments nouvellement construits ou nouvellement rénovés.

Cette thèse s'intéresse à la tâche de modélisation prédictive de la consommation énergétique des bâtiments quand aucune donnée historique n'est disponible. Pour cela, des données collectées à partir de plusieurs différents bâtiments sources sont exploitées. Ceci est de plus en plus pertinent compte tenu la croissance des initiatives de données ouvertes dans le secteur d'énergie des bâtiments.

Ainsi, l'idée est de transférer la connaissance entre les modèles de bâtiments. Peu de travaux de recherche sont menés à l'intersection des domaines de modélisation de l'énergie des bâtiments et le transfert d'apprentissage. Le traitement de données multisources constitue un défi important, vu l'écart de concept qui peut exister entre les différentes sources et aussi entre chaque source et le cible. Comme première contribution, une méthodologie adaptative aux requêtes des utilisateurs est développée pour la modélisation prédictive entre bâtiments. Le premier processus est responsable de la recommandation de données d'apprentissage pertinentes vis-à-vis d'un bâtiment cible, seulement en utilisant une description contextuelle minimale sur ce dernier (métadonnées). Pour permettre des recommandations spécifiques à la tâche cible, l'apprentissage profond de métrique de similarité est utilisé. Le second processus est responsable de l'entraînement de plusieurs modèles prédictifs sur les données d'apprentissage recommandées par le processus précédent. Ces modèles sont combinés avec une méthode ensembliste pour assurer une bonne performance.

La contribution suivante consiste à l'implémentation de notre méthodologie en se basant sur les microservices. Les processus "logiquement indépendants" sont, par conséquent, modélisés en tant que microservices séparés. Les métadonnées des bâtiments et leurs données opérationnelles (séries temporelles) recueillies auprès de nombreuses sources sont intégrées au sein d'une vue unifiée et basée sur des ontologies.

Enfin, des évaluations expérimentales de l'usine de modèles prédictifs sont effectuées à la tâche de modélisation énergétique des bâtiments. Les résultats valident son efficacité et son applicabilité. Par ailleurs, vu le caractère générique de sa conception, la méthodologie peut être réutilisée dans d'autres applications dans divers secteurs.

Chapter 1

General Introduction 1.1 General Context

Predictive modeling of energy consumption in buildings is crucial to define specific strategies for optimizing energy use within buildings. It therefore helps to achieve intelligent control and efficient planning of energy networks. Specifically, in the context of smart buildings, which are a fundamental part of smart cities, it is increasingly prevalent to apply intelligent algorithms to produce predictive models for anticipating and eventually responding effectively to specific events, such as peaks in energy consumption or changing occupancy patterns.

One increasingly common approach to perform predictive modeling of building energy is through machine learning (ML) [START_REF] Seyedzadeh | Machine learning for estimation of building energy consumption and performance: a review[END_REF][START_REF] Bourdeau | Modeling and forecasting building energy consumption: A review of data-driven techniques[END_REF]. As energy data are time series in nature, time series forecasting approaches are used [START_REF] Deb | A review on time series forecasting techniques for building energy consumption[END_REF]. These approaches are time efficient and ensure an easy integration of buildings in smart environments [START_REF] Apanaviciene | Smart Building Integration into a Smart City (SBISC): Development of a New Evaluation Framework[END_REF]. However, the performance of machine learning models highly depends on the relevance and the availability of a sufficient amount of building operational data used for training (multiple months to years of data). This is especially true when deep learning is used due to their inherent complexity [START_REF] Runge | Forecasting energy use in buildings using artificial neural networks: a review[END_REF][START_REF] Li | Building energy consumption prediction: An extreme deep learning approach[END_REF][START_REF] Mocanu | Deep learning for estimating building energy consumption[END_REF].

In many cases, historical operational data are not available for training, namely in newly built or newly renovated buildings. With improvements in energy efficiency of such buildings, predictive modeling of energy consumption can not anymore be based on their historical pattern. Moreover, in the field of energy assessment of buildings, energy efficiency is usually verified before construction or renovation. In such cases, only contextual information about the future building is available, namely its design, construction, occupancy, etc.

A Predictive Model Factory for Building Energy

With the increasing availability of open data in many sectors, existing energy consumption data about other buildings may be obtained. The main idea of this work is, therefore, to leverage data collected from multiple different source buildings when no data are available on a given target building.

An important challenge arises when working with multi-source data, as large domain shift may exist between different sources and also between each source and the target [START_REF] Sugiyama | Mixture regression for covariate shift[END_REF]. Consequently, models trained on source-combined data from disparate sources can interfere with one another during the training process and generalize poorly when applied to a new previously unseen target domain [START_REF] Zhao | Multi-source Domain Adaptation in the Deep Learning Era: A Systematic Survey[END_REF][START_REF] Riemer | Learning to learn without forgetting by maximizing transfer and minimizing interference[END_REF]. This phenomenon is referred to as negative transfer [START_REF] Wang | Characterizing and avoiding negative transfer[END_REF]. More precisely, within the context of building energy modeling, energy consumption depends greatly on several contextual factors, such as the building typology (i.e. residential, industrial or commercial), shape, size and age [START_REF] Won | Factors affecting energy performance of largescale office buildings: Analysis of benchmarking data from New York City and Chicago[END_REF]. Combining energy data from very disparate source buildings is consequently counterproductive and will adversely impact the target performance in the target building.

Proposed approaches addressing the aforementioned challenges fall into the broader field of knowledge transfer, and more particularly domain adaptation and domain generalization sub-fields. Domain adaptation [START_REF] Wilson | A survey of unsupervised deep domain adaptation[END_REF][START_REF] Bousmalis | Domain separation networks[END_REF][START_REF] Rozantsev | Beyond sharing weights for deep domain adaptation[END_REF] uses labeled source data as well as sparsely labeled or unlabeled target data to build an efficient model for the target domain. Whereas domain generalization (DG) [START_REF] Zhou | Domain generalization: A survey[END_REF][START_REF] Blanchard | Generalizing from several related classification tasks to a new unlabeled sample[END_REF][START_REF] Muandet | Domain generalization via invariant feature representation[END_REF] requires no data in the target domain and uses multiple source domains.

Our work lies somewhere between multi-source domain adaptation and domain generalization areas of research. We aim to train accurate predictive models that perform well on new previously unseen target domains via source domain recommendation.

Source domain recommendation allows to select most similar sources to the target domain. Hence, we suppose that target metadata, which consist in a contextual description of the target domain, are available beforehand to guide the similarity-based selection process. This contextual description provides a minimal a priori knowledge about the unseen target building, and mainly consists of design properties that are easy to access. Conventionally, similarity measures that are used for source domains selection are based on measuring the discrepancy between the distributions of source domains data and target domain data [START_REF] Duan | Exploiting web images for event recognition in consumer videos: A multiple source domain adaptation approach[END_REF][START_REF] Chattopadhyay | Multisource domain adaptation and its application to early detection of fatigue[END_REF][START_REF] Ruder | Data selection strategies for multidomain sentiment analysis[END_REF]. However, this is not suitable in our case due to the unavailability of target domain data during training.

In this work, we aim to learn a metric space, in which source domain recommendation is achieved by computing distances between learned representations of each building. Hence, similarity learning techniques are leveraged to learn building-level representations, so that similar buildings with similar energy consumption profiles are mapped close to each other in the learned feature space, and dissimilar building pairs are mapped far from each other. Representations are generated by training a Siamese network [START_REF] Bromley | Signature verification using a" siamese" time delay neural network[END_REF][START_REF] Melekhov | Siamese network features for image matching[END_REF] on buildings' contextual descriptions (metadata). In other words, distance between learned domains representations will reflect similarity between their corresponding data, all while requiring only the domains metadata to compute during test. Similarity learning has been proposed in the context of domain adaptation in [START_REF] Pinheiro | Unsupervised domain adaptation with similarity learning[END_REF]. However, they assume that unlabeled target domain data are accessible during training. Selecting most similar source domains with the use of target domain metadata rather than actual data via metric learning, as in our work, has yet to be explored.

For the experimental study, we perform predictive modeling of a target building using similar source buildings data. Machine learning based predictive modeling of buildings energy is performed using time series forecasting techniques. As such, a wide range of techniques exists [START_REF] Kaytez | Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines[END_REF][START_REF] Seyedzadeh | Machine learning for estimation of building energy consumption and performance: a review[END_REF][START_REF] Runge | Forecasting energy use in buildings using artificial neural networks: a review[END_REF], namely artificial neural networks [START_REF] Ferlito | Predictive models for building's energy consumption: An Artificial Neural Network (ANN) approach[END_REF][START_REF] Biswas | Prediction of residential building energy consumption: A neural network approach[END_REF] and support vector machines [START_REF] Li | Prediction model of annual energy consumption of residential buildings[END_REF][START_REF] Jain | Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy[END_REF]. Conventionally, energy modeling requires many months to years of data on the corresponding building, such as historical consumption data, weather data and occupancy profiles, in order to build an accurate predictive model. A predictive model is, therefore, trained and evaluated on the same building context. Our approach goes beyond such methods and proposes to transfer knowledge across similar buildings. Arguably, there is no single predictive model that works best for every test scenario. This is known as the no free lunch theorem [START_REF] Wolpert | The lack of a priori distinctions between learning algorithms[END_REF]. Hence, we use an ensemble learning framework for the predictive modeling task. This allows to combine predictions from several learning algorithms. Ensemble learning generally yields better generalization performance than only one contributing model. As this work aims to provide a generic framework to allow predictive energy modeling for a diverse range of target scenarios, we develop a query-adaptive workflow. Thus, we model metadata on target buildings as queries.

An efficient implementation of the above-described predictive models factory rely on data collected from multiple heterogeneous sources. To provide a unified global view of data, we follow an ontology-based data integration [START_REF] Lenzerini | Data integration: A theoretical perspective[END_REF][START_REF] Guarino | What is an ontology?[END_REF]. Defined ontology allows to capture our specific domain knowledge in a formal way. Furthermore, we seek to design different processes of our methodology so that they are sufficiently generic, modular and adaptable. This will allow an easy reuse in similar use cases in other fields, namely finances and healthcare. Therefore, we opt for a microservicebased architecture [START_REF] Dragoni | Microservices: How to make your application scale[END_REF]

Contributions

This PhD research has the following contributions :

• To our best knowledge, this work is a first attempt to transfer knowledge across buildings with no historical data available about the target building during training. To that end, a novel methodology is developed. Two levels of information about buildings are leveraged, namely contextual description about the building (metadata) and historical data. As such, to mitigate historical data unavailability for a given target building, metadata (easy to acquire) about it are used instead.

Firstly, most similar buildings from available source buildings are selected based on task-specific inter-domain similarity information. Historical data from these buildings are subsequently retrieved and recommended as training data. An appropriate similarity measure is learned for this task using a deep similarity metric learning framework. Secondly, predictive models are trained using recommended data. To improve robustness and accuracy, an ensemble learning framework is used. The experimental evaluations validate the effectiveness and the applicability of this methodology.

Given the generic nature of its design, our methodology can be re-used for different use cases in various sectors.

• A microservice-based implementation of cross-building energy modeling is designed. Logically independent tasks are consequently designed as individual microservices. In the context of this work, we propose to collect building energyrelated data from different data sources, such as open data and simulation results. For efficient integration of such data, a unified global view is used. More particularly, metadata about buildings (contextual descriptions) are integrated using ontologies. We extend ThinkHome ontology [START_REF] Reinisch | Thinkhome energy efficiency in future smart homes[END_REF] to describe building design and thermal parameters, and basic information about occupants. Historical time series data are, on the other hand, integrated in specific data stores and referenced from corresponding building's metadata view.

Outline of the thesis

The rest of this report is structured as follows. The first part provides an overview of the necessary concepts to understand the research aspects of this PhD work. It also pro-

Introduction

Buildings account for over one-third of the global energy consumption as for recent years, and nearly 40% of greenhouse gas emissions. As population and floor area growth continues, global energy demand in buildings is rapidly increasing. Consequently, improving the energy efficiency of buildings has become a key issue of concern in innovative research, construction industry, and government programs and policies.

Several efforts and initiatives are carried out to improve building-level energy efficiency by helping to measure, monitor, optimize and evaluate energy-related building services such as heating, ventilation, air conditioning and lightning. Optimal management and conservation of building energy rely on accurate prediction of future energy consumption. This is assured by building energy modeling (BEM) tools. In addition, when evaluating building energy use, BEM is used for benchmarking and rating, by measuring energy performance of an individual building over time and compare it to other similar buildings or reference buildings. BEM is therefore a multi-purpose module that is employed for various cases, including assessment of new buildings design, renovation and retrofit of existing building, real-time management and control of energy consumption and utility incentives. This chapter is structured as follows. Section 2.2 provides a brief overview on building energy modeling, including its common uses and its taxonomy. Section 2.3 provides a deeper view into machine learning based approaches as well as their limitations. Section 2.4 broadly presents determinants of energy consumption in buildings, and reviews existing information models. Finally, in Section 2.5, we draw some conclusions.

Building Energy Modeling

Mathematical modeling is an approach to describe complex systems using mathematical concepts in order to help understand them and make predictions about their behavior. As such, building energy modeling involves the development of models that can capture key properties of a system -in this case building energy consumption -where subsequently simulations can be performed with different sets of input data to study future changes [START_REF] Sandels | Modeling office building consumer load with a combined physical and behavioral approach: Simulation and validation[END_REF].

Building energy modeling (BEM) plays an important role for the efficient planning and operation of energy networks. It mainly consists in predicting future energy consumption. As such, an accurate prediction of energy consumption at the building level will promote the building energy utilization rate, and will directly improve the efficiency of the planning process of the entire energy network [START_REF] Mocanu | Deep learning for estimating building energy consumption[END_REF]. Despite the long-standing interest in BEM, it remains as a challenging problem given the wide range of factors that may affect the energy use in a building, namely economic and socio-demographic factors [START_REF] Frederiks | The socio-demographic and psychological predictors of residential energy consumption: A comprehensive review[END_REF][START_REF] Chen | The factors affecting electricity consumption and the consumption characteristics in the residential sector-A case example of Taiwan[END_REF][START_REF] Fuerst | Determinants of energy consumption and exposure to energy price risk: a UK study[END_REF], weather conditions, occupants' behaviors [START_REF] Delzendeh | The impact of occupants' behaviours on building energy analysis: A research review[END_REF], physical building characteristics, operation of sub-level components such as HVAC systems (heating, ventilation and air-conditioning), lighting systems and electric appliances [START_REF] Zhao | A review on the prediction of building energy consumption[END_REF].

Common use cases

Building energy modeling has multiple uses. It can be used in the context of energy performance assessment at building-level. This is generally performed for new buildings at its design process, or for existing buildings at its renovation process. In fact, a building life-cycle is composed of three main stages: design stage, construction stage and operation and maintenance stage (see Figure 2.1). Design stage involves a detailed planning of building space layout, envelope, etc. There are several aspects required to take into account such as energy efficiency, environmental and health impacts, lifecycle costs and urban integration. Energy efficient buildings are designed to ensure minimum energy demand. Once constructed, a building enters its operation stage (also called occupancy stage). Operational energy is important during this stage, to provide lighting, heating, ventilation, air conditioning, power control systems, and appliances.

During its operation, a building may undergo many changes in its design and function.

Changes ranges from minor such as replacing appliances (remodeling) to more significant such as expanding the building or upgrading the thermal envelope for improved energy efficiency (renovation). To conclude, BEM is used to study and benchmark the overall building performance of an existing or a new building in order to establish construction or energy renovation strategies. As any product, buildings have finite lives.

End-of-life stage thus consists in demolition [START_REF] Crawford | Life cycle assessment in the built environment[END_REF].

BEM is also generally used in the context of urban energy modeling. Urban energy modeling aims to better understand energy consumption in new or existing districts, cities, etc. This allows an effective planning of energy retrofitting programs or changes in energy supply infrastructure. For instance, urban energy modeling techniques can be distinguished into two main categories (1) Top-down approaches and (2) bottomup approaches. Top-down approaches rely on load data profiles of the entire district or city, and then it is increasingly down-scaled into smaller sub-sections until reaching building-level energy consumption. By contrast, bottom-up approaches use information on the building stock and predict the energy consumption based on the current and predicted characteristics of the building stock itself. As such, BEM is commonly used for bottom-up approach to build archetypes that represent "typical" building stock's categories.

More recently, BEM is increasingly prevalent in the context of smart buildings, which are a fundamental part of smart cities. A smart building is controlled by a building management system (BMS) which gathers data from sensors and meters. BMS therefore relies on energy data to dynamically determine in real time the most suitable decisions to undertake in order to improve the building energy efficiency, such as peak clipping, load shifting and valley filling. Peak clipping/shaving includes introduced techniques to reduce peak power demands on the system. Load shifting involves shifting power consumption to another time period, typically during off-peak hours and when energy prices are lower. Valley filling a power consumption profile consists on encouraging additional energy use during periods of lowest system demand. Therefore, BEM is crucial for forecasting building-level power loads and peak loads. It allows to accurately and dynamically identifying future energy consumption and energy saving opportunities for building energy management systems.

Taxonomy of Building Energy Modeling Approaches

Mathematical modeling encompasses a variety of techniques including physical principles, applied statistics and machine learning. Physics-based modeling is applicationdomain specific as it largely depends on physical relationships within the studied system. While statistical and machine learning modeling is data-driven. Some hybrid approaches that lies between both axis also exist. More precisely, mathematical modeling of building energy approaches can be distinguished into three approaches [START_REF] Bourdeau | Modeling and forecasting building energy consumption: A review of data-driven techniques[END_REF][START_REF] Amasyali | A review of data-driven building energy consumption prediction studies[END_REF][START_REF] Zhao | A review on the prediction of building energy consumption[END_REF]: [START_REF] Abdi | Principal component analysis[END_REF] white-box based, (2) grey-box based and (3) black-box based. White-box based models (also known as physics-based models or engineering-based models) [START_REF] Amasyali | A review of data-driven building energy consumption prediction studies[END_REF] consist in providing a simplified explicit representation of the building components using physical equations, and resolving it. These models require a detailed description of the geometrical structure and thermo-physical characteristics of the building, and the environmental conditions. A lot of specialized and mature white-box software tools exist, such as EnergyPlus [START_REF] Crawley | EnergyPlus: creating a new-generation building energy simulation program[END_REF], ESP-r [START_REF]The Energy Systems Research Unit (ESRU)[END_REF], eQuest and TRNSYS [247]. A white-box based approach allows the creation of flexible and transparent benchmarking models for the assessment of the effectiveness of design alternatives of new buildings and the potential of deep energy retrofits of older buildings. However, these models are computationally expensive and require a considerable amount of time and expertise for the identification of detailed information about the building phenomena, and the calibration of the dedicated simulation engine for each building [START_REF] Wang | A review of artificial intelligence based building energy prediction with a focus on ensemble prediction models[END_REF]. This makes this approach not amenable to scale to the urban level and unsuitable for online or near real-time applications. Studies also find that white-box models may inaccurately predict energy use in real-world operational buildings given their high complexity [START_REF] Chen | The graybox based modeling approach integrating both mechanism-model and datamodel: The case of atmospheric contaminant dispersion[END_REF].

As such, white-box models may fail to account for the stochastic occupant energy use behavior [START_REF] Ryan | Validation of building energy modeling tools under idealized and realistic conditions[END_REF], complexity of the built environment, uncertain inputs, and inefficiencies in operational buildings due to improper maintenance and operation of building systems [START_REF] Mathew | Big-data for building energy performance: Lessons from assembling a very large national database of building energy use[END_REF].

The grey-box based models (also known as hybrid models) [START_REF] Kämpf | A simplified thermal model to support analysis of urban resource flows[END_REF][START_REF] Kim | Urban energy simulation: Simplification and reduction of building envelope models[END_REF] are a modification of the white-box based models through the use of statistical methods. They use a simplified physical description of the building energy systems. An unknown subset of the model parameters are then estimated using historical data through statistical algorithms. Even though grey-box approach has some advantages, such as low calculation time and flexibility, it also combines limitations of the white-and-black-box based approaches, such as the computational inefficiency and the failure to account for the complex interactions between building elements.

The black-box based models (also known as data-driven models) [START_REF] Runge | Forecasting energy use in buildings using artificial neural networks: a review[END_REF][START_REF] Amasyali | A review of data-driven building energy consumption prediction studies[END_REF] use historical data to model the energy consumption of buildings, instead of detailed physical descriptions. We distinguish between statistical and artificial intelligence methods [START_REF] Runge | Forecasting energy use in buildings using artificial neural networks: a review[END_REF].

Statistical methods use historical data to find a correlation between the most influential features as input and the energy consumption. Instances of statistical models include auto-regressive moving average (ARMA) [START_REF] Nepal | Electricity load forecasting using clustering and ARIMA model for energy management in buildings[END_REF], conditional demand analysis (CDA) [START_REF] Li | Modeling urban building energy use: A review of modeling approaches and procedures[END_REF], Gaussian mixture models (GMM) [START_REF] Seyedzadeh | Machine learning for estimation of building energy consumption and performance: a review[END_REF], etc. Artificial intelligence (AI) methods use historical data to model the behavior of the process to be modeled. Instances of AI models include artificial neural networks (ANN) [START_REF] Ferlito | Predictive models for building's energy consumption: An Artificial Neural Network (ANN) approach[END_REF][START_REF] Biswas | Prediction of residential building energy consumption: A neural network approach[END_REF], support vector machines (SVM) [START_REF] Li | Prediction model of annual energy consumption of residential buildings[END_REF][START_REF] Jain | Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy[END_REF] and decision trees [START_REF] Yu | A decision tree method for building energy demand modeling[END_REF]. The scope of this research is focused on the data-driven approaches, and more precisely machine learning based techniques.

We summarize pros and cons of white-box, grey-box and black-box approaches in

Machine Learning for Building Energy Modeling

Machine learning (ML) is a subset of artificial intelligence that provides the ability to automatically learn and improve using data. One main advantage of using ML-based models, or data-driven models in general, is that they allow a facilitated integration into smart systems. Consequently, it is increasingly prevalent to apply machine learning algorithms to produce predictive models. Smart buildings generally rely on an automated energy management infrastructure that include smart meters, sensors and the communication network. Smart meters continuously collect data such as energy consumption, while sensors gather environmental data such as motion, temperature or lighting. As such, building energy-related data are collected are time series. Technologies like internet-of-things (IoT) are used to simplify tasks like building control and to effectively manage building devices.

Works on BEM in literature may be distinguished depending on several factors [START_REF] Amasyali | A review of data-driven building energy consumption prediction studies[END_REF],

such as:

• Type of building, including residential, commercial or office buildings.

• Time-resolution of predictions, including short-term (e.g. sub-hourly, hourly, daily) or long-term (e.g. yearly).

• Input features, including historical consumption data, weather data and building design parameters.

• Dataset size as the number of timesteps used for training and testing the ML model.

• Machine learning algorithm, including support vector machines, artificial neural networks and decision trees [START_REF] Deb | A review on time series forecasting techniques for building energy consumption[END_REF][START_REF] Seyedzadeh | Machine learning for estimation of building energy consumption and performance: a review[END_REF][START_REF] Bourdeau | Modeling and forecasting building energy consumption: A review of data-driven techniques[END_REF].

• Target variables, including whole-building level energy consumption (total) or sub-level components, such as cooling, heating or lighting.

Several reviews on machine learning-based BEM approaches and their classification are proposed in literature [START_REF] Deb | A review on time series forecasting techniques for building energy consumption[END_REF][START_REF] Amasyali | A review of data-driven building energy consumption prediction studies[END_REF].

Most commonly-used machine learning algorithms for BEM are support vector machines (SVM) [START_REF] Li | Prediction model of annual energy consumption of residential buildings[END_REF][START_REF] Solomon | Forecasting energy demand in large commercial buildings using support vector machine regression[END_REF][START_REF] Jain | Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy[END_REF][START_REF] Kaytez | Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines[END_REF][START_REF] Mocanu | Deep learning for estimating building energy consumption[END_REF] and artificial neural networks (ANN) [START_REF] Ben-Nakhi | Cooling load prediction for buildings using general regression neural networks[END_REF][START_REF] Ferlito | Predictive models for building's energy consumption: An Artificial Neural Network (ANN) approach[END_REF][START_REF] Biswas | Prediction of residential building energy consumption: A neural network approach[END_REF][START_REF] Mocanu | Deep learning for estimating building energy consumption[END_REF]. Biswas et al. [START_REF] Biswas | Prediction of residential building energy consumption: A neural network approach[END_REF] proposed an ANN-based models to predict daily total and heat pump energy consumption in an unoccupied residential building. Input features are number of days, outdoor dry-bulb temperature and solar radiation. The dataset spans 3 months. Ben-Nakhi et al. [START_REF] Ben-Nakhi | Cooling load prediction for buildings using general regression neural networks[END_REF] proposed a general regression neural networks (GRNN)

to predict hourly cooling loads in office buildings. The experimental dataset was generated using ESP-r and contains 3 buildings. Corresponding data cover a time span of 5 years. Input features consist only on previous day's external dry-bulb temperature.

Outputs consist in hourly cooling loads of subsequent day.

In recent years, deep learning is widely adopted for energy modeling tasks, and becomes the state of the art when large amount of historical data are available. Various deep learning models have been used, such as recurrent neural networks (RNNs) [START_REF] Mocanu | Deep learning for estimating building energy consumption[END_REF][START_REF] Marino | Building energy load forecasting using deep neural networks[END_REF][START_REF] Kong | Short-term residential load forecasting based on resident behaviour learning[END_REF][START_REF] Wang | Short-term load forecasting with multisource data using gated recurrent unit neural networks[END_REF][START_REF] Kong | Short-term residential load forecasting based on LSTM recurrent neural network[END_REF], or a combination of convolutional neural network (CNN) and RNN (CNN-RNN) [START_REF] Tian | A deep neural network model for shortterm load forecast based on long short-term memory network and convolutional neural network[END_REF][START_REF] Kim | Predicting residential energy consumption using CNN-LSTM neural networks[END_REF]. A detailed explanation of machine learning notion and the most common algorithms discussed above is found in Chapter 3.

Despite their success in the context of energy modeling, machine learning approaches have two main limitations. First limitation is that ML requires a sufficiently large amount of data to produce accurate models, notably when deep learning is used.

As such, buildings for which no (or few) energy consumption data are available (e.g.

newly built buildings or newly renovated buildings) can not be successfully modeled.

Secondly, and more importantly, machine learning models trained on a source dis-

Building Energy Data

Data-driven approaches in general, and machine learning based approaches in particular, typically require a sufficient amount of data on several exogenous variables. These determinant variables of energy consumption are numerous and diverse. It is therefore required to identify most relevant variables for accurate BEM.

Determinants of Energy Consumption

Buildings are complex systems that must ensure the comfort of occupants, and therefore must provide heating, ventilation and possibly air conditioning, which are responsible for a significant proportion of the total energy consumption within buildings.

Building Envelope

To model the energy demand, it is necessary to take into account heat and mass transfer phenomena. Heat transfer occurs via three mechanisms: conduction, convection and radiation [START_REF] Kusuda | Fundamentals of building heat transfer[END_REF]. Conduction occurs within any material body through propagation of thermal energy in case of temperature gradients. In buildings, heat conduction occurs through the envelope in response to weather fluctuations, solar radiations and ground temperature, as well as through partition walls, indoor floors and ceilings. Building heat conduction problems are generally multi-dimensional and transient. However, for the sake of computational efficiency, one-dimensional multi-layer numerical models are generally used. Such models allow accurate understanding of heat conduction through building envelope under the assumption that heat flow is normal to the surface. A multi-dimensional analysis is more relevant in case of building corners, balconies, and other potential thermal bridges.

Convection, which results from fluid displacement, causes convective exchanges at the interface of solid surfaces. This kind of exchanges through inner and outer surfaces of the building envelope are of major importance in the thermal balance of a building and must be considered. In buildings, convection occurs through inter and intra-surface air motion as result of temperature and pressure differences, or through outer envelope due to air infiltration.

Radiative heat transfer is caused by the thermal electromagnetic emission of material bodies with respect to their temperature. In building physics, distinction is made between short-wavelength and long-wavelength radiations. Short-wavelength radiation, either direct or diffuse, originates mainly from solar light emissions. In buildings, solar radiation is absorbed by opaque outer surfaces, transmitted by transparent or translucent surfaces, and eventually absorbed and reflected by interior surfaces and glazed openings. Long-wavelength heat exchanges are, on the other hand, a characteristic of heat exchange between building components. In buildings, long-wavelength heat is emitted from exterior surfaces to the sky, the ground and other surrounding objects, exchanged among interior walls, as well as between interior walls and occupants.

Building thermal balance relies on several factors related to building geometry, materials, occupancy, weather, etc. For example, on a sunny day, solar radiation passes through glazed openings (windows or doors), resulting in heat gain within the inner volume. Heat gain depends on the transmission rate of the glazing and on the orientation of the openings, hence the need to have a notion of building orientation. Moreover, heat from solar radiation will also contribute to the energy balance by conduction through the outer wall to the inside wall surface from which it is convected and radiated into the building.

The thermo-physical properties of the building envelope is of major importance in determining the indoor air temperature, and thus the energy demand for heating and cooling. Therefore, information about construction material, dimensions and other building parameters is of high value. Fundamental thermo-physical properties of building parameters are thermal conductivity, density and heat capacity. Information about occupancy and equipment profiles and schedules is also fundamental. For instance, human body generates sensible and latent heat through metabolism, and dissipates it by radiation, convection, and evaporation.

Occupants Behavior and Activities

Occupants behavior and activities greatly influence energy consumption within buildings in several manners [START_REF] Delzendeh | The impact of occupants' behaviours on building energy analysis: A research review[END_REF]. Occupants continuously interact with building systems to control indoor environment and ensure comfort. This includes indoor air quality (e.g. circulate fresh air and eliminate indoor air pollution), thermal comfort (e.g. control indoor temperature set-points for heating and air conditioning), visual comfort (e.g. control view, luminance ratios and avoid screen reflections) and acoustic comfort (e.g. minimize intruding noise and vibrations) [START_REF] Bluyssen | The indoor environment handbook: how to make buildings healthy and comfortable[END_REF].

Socio-economic and Demographic Factors

Socio-economic and demographic aspects also play a role in impacting energy consumption. Demographics factors may include age of occupants and level of urbanization, [START_REF] Haas | Energy efficiency indicators in the residential sector: What do we know and what has to be ensured?[END_REF]. Economic factors include energy prices, pricing schemes and household revenue. Namely, building adopting time-of-use pricing will modify their energy consumption patterns voluntarily to reduce their energy expenses. Other factors are time spent at building, culture, social status, and education and awareness level of occupants. For instance, according to some researchers, the higher is the occupants education level, the more likely they are to engage in saving energy [START_REF] Bhattacharjee | Socio-economic factors affecting individual household energy consumption: A systematic review[END_REF].

Outdoor Conditions

Moreover, outdoor conditions, such as surrounding urban morphology and environmental factors like air temperature, wind and humidity, highly impact energy consumption. High air drought induce more pressure on the building wind-ward walls, which leads to higher indoor air change. Air infiltration also occur due to differences between indoor and outdoor temperature.

To summarize, energy consumption in buildings is often complex as it depends on many determinant variables. Consequently, several parameters are required to perform building energy modeling. Such parameters broadly consist of its corresponding geometric shape, orientation, physical properties of the building envelope and interior elements, occupation scenarios, and systems. Information about meteorological factors, such as wind speed, relative humidity, air temperature, and solar irradiance is also often required. Figure 2.2 provides an overview on some determinant variables of energy consumption within buildings. static features of the building, such as type, design, construction, etc. We refer to contextual descriptions of buildings as metadata for the rest of this work.

Metadata Schemas for Building Energy Modeling

Building energy modeling require detailed information about the building design and operation parameters. Parameter instances are structured in information models. Traditional pipeline goes from a 2D or 3D building model that is realized with Computer-Aided Design (CAD) tools (i.e. REVIT and SketchUp). Data are then sequentially exchanged between actors throughout the building life-cycle. At each exchange, data are translated into suitable formats for different applications. Such approach leads to numerous issues as it lacks coordination between building professionals, it fails to provide a common data platform for distributed organizations and among concurrent decision processes, and it induces inefficient project management and costs estimation. Building Information Models (BIM) technology was therefore introduced to establish synergistic workflows that link the Architecture, Engineering and Construction (AEC) industry.

BIM achieves a higher level of interoperability which enables data sharing without any loss information throughout the building life-cycle. BIM offers a richer representation of the building through multidimensional models [START_REF] Achille | Interoperability matter: Levels of data sharing, starting from a 3D information modelling[END_REF]: 3D is a visualization model, 4D is the time monitoring, 5D is the costs estimation, 6D is the energetic analyses and the 7D correspond to the facility management of a building. Data interoperability includes the ability to exchange and accurately interpret information across heterogeneous applications. Interoperability consists on transforming each application's internal data into an universal model and vice versa through data mapping [START_REF]United States national building information modeling standard version 1-Part 1: Overview, principles, and methodologies[END_REF]. Consequently, great attention was paid to standardize BIM processes.

Over the years, several data models have reached a high level of maturity in supporting the whole building life-cycle. First proposed building data exchange models were STEP [START_REF] Wilson | Iso step baseline requirements document (ipim)[END_REF][START_REF] Pratt | Introduction to ISO 10303-the STEP standard for product data exchange[END_REF], ARMILLA [START_REF] Haller | ARMILLA-ein Installationsmodell[END_REF], IBDE [START_REF] Fenves | Integrated software environment for building design and construction[END_REF], ICADS [START_REF] Pohl | A computer-based design environment: implemented and planned extensions of the ICADS model[END_REF], which are mainly interested on building geometrical information and therefore not sufficient. Later generation of data models sought to include domain-specific processes, such as building energy simulation, thermal comfort evaluation, building design evaluation, project planning, etc. The hierarchical model [START_REF] Bedell | A hierarchical model for building applications[END_REF] focuses on life-cycle cost modeling. KNODES [START_REF] Rutherford | KNODES: knowledge-based design decision support[END_REF] further covers building energy modeling. SEMPER-II [START_REF] Lam | SEMPER-II: an internet-based multi-domain building performance simulation environment for early design support[END_REF] proposes a platform that supports integrated concurrent design support. The last generation of data models offers the potential to encapsulate all information related to the built environment, yielding the BIM paradigm.

Currently, two prevalent data exchange formats are used in AEC industry; Industry Foundation Classes (IFC) developed by buildingSMART and Green Building XML (gbXML) [START_REF] Gbxml | Green Building XML[END_REF] developed by Green Building Studio. IFC represents a major effort to standardize AEC data, and is widely accepted as a mature and comprehensive model within the industry. IFC is based on ISO STEP data modeling standards. Data are thus specified in EXPRESS modeling language. Its goal is to provide a platform-neutral open data format that enable interoperability across BIM applications. The IFC schema defines objects and relationships that cover core building information such as building elements, the geometry and construction material properties, cost management, construction scheduling, and organizations.

A gbXML model captures geometric information (e.g. walls, shading surface and windows) and non-geometric information including occupancy, equipment, lighting, HVAC (heating, ventilation and air-conditioning) system set points, and operation schedules. Because gbXML is based on XML, it is structured as a tree of elements with attributes as shown in However, IFC and gbXML do not ensure semantic interoperability. For instance, the IFC does not allow the specifications of all elements required to express HVAC systems. To achieve semantic interoperability, semantic data models were proposed e.g.

BOT [START_REF] Rasmussen | Proposing a central AEC ontology that allows for domain specific extensions[END_REF], SAREF4BLDG [START_REF] Poveda-Villalón | SAREF extension for building devices[END_REF], ThinkHome [START_REF] Reinisch | Thinkhome energy efficiency in future smart homes[END_REF], DogOnt [START_REF] Bonino | Dogont-ontology modeling for intelligent domotic environments[END_REF], ifcOWL [START_REF] Pauwels | EXPRESS to OWL for construction industry: Towards a recommendable and usable ifcOWL ontology[END_REF]. Ontologies seeks to add a richer semantic layer on top of objects, parameters definitions and relationships defined in other schemas, as well as reasoning and inferring possibilities.

Other models extend and focus on other aspects of the built environment such as the IoT infrastructure [200] [START_REF] Balaji | Brick: Metadata schema for portable smart building applications[END_REF].

Summary and conclusions

Building energy modeling is a versatile and multi-purpose module that enables de-

Chapter 3

Machine Learning for Time Series Forecasting

Introduction

One powerful way to perform building energy modeling is through machine learning.

Machine learning represents a profound paradigm shift in programming. Traditional programming refers to manually create deterministic algorithms, that detail every step that should be taken to perform a specific task. Traditional programs thus takes data as input and process them as stated by the rules. When data do not fit within explicit rules, they are unable to process them. Similarly, when rules are too complex for a human to explicitly and accurately program, traditional programming is not appropriate. By This chapter is structured as follows. Section 3.2 overviews the taxonomy of machine learning approaches, and details the classic machine learning workflow. Section 3.4 presents techniques that are proposed for time series forecasting. Section 3.5 concludes this chapter.

Learning from Data

Machine learning is a subset of artificial intelligence that uses statistical decision theory to build systems that have the ability to automatically learn from data. In [START_REF] Mitchell | Machine learning[END_REF], a definition of learning is provided: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E". In general, a well-posed learning problem relies on the identification of these three features: class of tasks, measure of performance to be improved, and source of experience.

A task is different from the learning itself. The learning is simply the process of attaining the ability to perform the task [START_REF] Goodfellow | Deep learning[END_REF]. A performance measure is a quantitative measure that is used to evaluate the machine learning algorithm. The choice of a performance measure depends mainly on the task carried out by the system. An experience refers to the past information available to the learner, which typically consists of data collected for analysis. The amount and the quality of data are crucial to the success of learning algorithms. As an example, a robot that learns to drive in a four-lane highway using visual sensors, might improve its performance as measure of average distance traveled before an error, through experience obtained by a sequence of images and steering commands recorded while observing a human driver (example taken from [START_REF] Mitchell | Machine learning[END_REF]).

Data used for machine learning forms a dataset. A dataset consists of data instances called examples, data points or inputs. An example is a collection of features that are quantitatively measured of a particular observation of the phenomenon that the machine learning system is designed to process. Typically, an example is represented as a vector

x ∈ R n , where each entry x i is a feature. A common way of representing a dataset is with design matrix. A design matrix is a matrix where each row corresponds to an example and each column corresponds to a feature. A machine learning task depends on the way we are processing an example. Typical examples of tasks are classification and regression. For classification tasks, the computer program maps examples to categories they belong to. For example, in email classification, each email is mapped to either spam or not spam categories. We therefore seek to learn a target function f : R n → 1, . . . , K, where 1, . . . , K are numerical codes for the categories. In a regression task, the computer program predicts numerical values given input examples. The unknown target function is f : R n → R. An example of a regression task is the prediction of sale prices of houses [START_REF] Alfiyatin | Modeling house price prediction using regression analysis and particle swarm optimization[END_REF].

Taxonomy of Machine Learning Techniques

The primary premise of machine learning is the use of data to uncover an underlying process [START_REF] Abu-Mostafa | Learning from data[END_REF]. Several learning paradigms have been introduced to address different settings and different assumptions. A common learning paradigm classifies ML techniques based on available information. We distinguish between supervised, unsupervised, and reinforcement learning.

Supervised learning

Supervised learning denotes learning problems where the training data consists of an input and an output (also called label, target or response). The goal of supervised learning is to make label predictions for unlabeled unseen data.

The training dataset D thus consists of input-output pairs :

(x (1) , y (1)), (x (2) , y (2)), ..., (x (N) ,

y (N)) ⊆ X × Y
where N is the number of training examples, X is the input space (set of all possible inputs x), and Y is the output space (set of all possible outputs y), y is supposed to be deductible from x by a process set up by learning.

The learning is said "supervised" in the sense that we assume there is a knowledgeable external "supervisor" that will provide outputs. Supervised learning tasks are related to classification or regression.

Unsupervised learning

Unsupervised learning consists in handling data that are not labeled. The goal is to discover underlying patterns and structure in the data. This is also known as knowledge discovery. Often, unsupervised learning tasks are related to density estimation, uncovering a manifold structure that data lies near, learning to draw samples from a distribution, learning to denoise data from a distribution, clustering data into groups of similar examples [START_REF] Goodfellow | Deep learning[END_REF]. Unsupervised learning can also be used to extract high-level representations from data. This is particularly useful to learn lower-dimensional data representations, that preserve as much information about the original data to perform the target task.

Reinforcement learning

Reinforcement learning (RL) differs from other ML techniques. RL paradigm concerns control problems, rather than analyzing given data. For example, consider the problem of a robot learning how to navigate or play chess. In reinforcement learning, there is no target output, but instead a set of possible outputs and a measure of how good each output is. The goal of RL is teaching an agent how to behave optimally using rewards and penalties as signals for positive and negative behavior.

Other learning paradigms

Other learning paradigms exist to distinguish different learning techniques:

• Passive vs Active : Passive learning consists in standard supervised learning,

where training data pairs are readily available. By contrast, active learning is the case where the supervisor can be actively queried to request labels for only a part of the training data. The remaining training labels can be inferred using a ML model. This is particularly useful when a large amount of unlabeled data are available during the training of a supervised model, but labeling data is expensive [START_REF] Mohri | Foundations of machine learning[END_REF].

• Batch vs Online : Batch learning is performed on all available dataset. By contrast, online learning is where the dataset is provided to the learning algorithm one example at a time. Online learning is useful when we have limitations on computation and storage that prevent the possibility to process the whole dataset as a batch.

The Learning Process

The machine learning process is typically composed of the following steps.

Problem Definition

Once the need to use machine learning is established to solve the given problem, several elements must be defined and acquired. As discussed at the beginning of this Chapter 3.2, these elements are: class of tasks, measure of performance to be improved, and source of experience. Class of tasks consists in the space of hypothesis. In supervised learning, the space of hypothesis stands for space of all possible hypotheses for mapping inputs to outputs. Measure of performance consists in a measure for evaluating the machine learning model. The measure that qualifies the project as being successful and that we aim to achieve as objective, should be established from the start.

Source of experience consists in observations of the phenomenon we want to model.

Data Collection

The first step of a machine learning workflow is to collect data for analysis. However, How much data is needed? The amount of data needed for good performance depends on several factors, such as the complexity of the learning problem, the complexity of the machine learning model that will be used, the target performance to achieve, project constraints (time and computation), etc. It is therefore difficult to accurately estimate the minimum amount of data required for a successful learning project.

Data collection can broadly categorized into two aspects [START_REF] Roh | A Survey on Data Collection for Machine Learning: a Big Data-AI Integration Perspective[END_REF]: data acquisition and data labeling. The goal of data acquisition is to get datasets that can be used for the machine learning process. Data acquisition is generally performed through data discovery, data augmentation and/or data generation. Data discovery is the process of sharing and searching new relevant datasets. In the era of big data and with the growth in open data initiatives, sharing datasets among data holders or releasing open datasets to the public frequently occurs. However, the representativeness of data available and discoverable online with respect to the target ML task often remains a challenge.

Modern machine learning models, namely deep learning, require large amount of data to train, which are often not available. A common solution to mitigate data scarcity is to augment data. Data augmentation consists in acquiring new data in order to augment an existing dataset. Data augmentation can be performed by synthetically altering already existing data to create modified copies. For instance, in case of images, common modifications include changing orientation, location, scale or brightness. Otherwise, external datasets may be acquired and integrated to existing data. If no dataset is available for the machine learning task, data are generated. Data generation can be performed manually through crowd-sourcing or automatically. An increasingly popular approach to generate synthetic data automatically is through Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative adversarial nets[END_REF]. GANs offers a low cost and flexible way to gen- In case of supervised ML setting, once sufficient amount of data is acquired, examples should be labeled. Data labeling may be performed manually via crowd-sourcing.

A time efficient crowd-based approach for labeling is through active learning. Active learning is the process of manually labeling just a subset of the available examples and infer the remaining labels automatically using a ML model. A second approach consists in weakly annotating a large amount of data (i.e. weak labels). Weak supervision branch argues that weakly labeled data in large amounts can be employed to create more accurate models than when using strongly labeled data alone.

Data Preparation

Data preparation mainly consists in transforming data to a format that is amenable to processing by machine learning algorithms. Gartner1 defines data preparation as "an iterative and agile process for exploring, combining, cleaning and transforming raw data into curated datasets for data integration, data science, data discovery and analytics/business intelligence use cases". Data cleaning is the process of detecting and removing noisy data. Noise is defined as the random error or variance in a measured variable. Noise in data is an effective problem for ML algorithms, as it prevents them from learning properly and causes them to miss out patterns in data.

In the context of ML, as the dimensionality (i.e. number of features) of data increases, the amount of data that is required to deliver a reliable analysis also rises exponentially. Bellman referred to this phenomenon as "Curse of Dimensionality" [START_REF] Bellman | Dynamic programming[END_REF].

High-dimensional data are, therefore, challenging as they cause unnecessary computational complexity. The problem with high-dimensional data can be mitigated with dimensionality reduction, which consists in projecting the data onto a lower-dimensional subspace, while preserving information as much as possible. Dimensionality reduction techniques are proposed and implemented by using feature extraction and feature selection. Feature extraction, sometimes referred to as feature transformation, aims to extract a low-dimensional representation of data. Some feature extraction techniques are principal component analysis (PCA) [START_REF] Abdi | Principal component analysis[END_REF] and auto-encoders (AE) [START_REF] Bengio | Representation learning: A review and new perspectives[END_REF]. Deep autoencoders are also widely used for feature extraction tasks. Unlike PCA, AE relies on a non-linear transformations. The goal is to map inputs into a lower-dimensional latent space, that enables decoding back to the original input space with minimal information loss. The basic architecture (see Figure 3.4) of an AE is decomposed into two components: an encoder that maps the input into a latent representation, and a decoder that maps the latent representation to a reconstruction of the original input. Different types of AE exist [START_REF] Bengio | Representation learning: A review and new perspectives[END_REF], such as denoising AE, variational AE, etc. Feature selection simplifies a machine learning problem by choosing which subset of the available features should be used. There are three categories of feature selection methods [START_REF] Kumari | Filter versus wrapper feature subset selection in large dimensionality micro array: A review[END_REF]: filter methods (also called screening or ranking methods), wrapper methods and embedded methods. The simplest approach to feature selection is the filter method. It evaluates the relevance of each feature individually to the learning problem, and then takes the top K features, where K is chosen based on some trade-off between performance and complexity [START_REF] Kumari | Filter versus wrapper feature subset selection in large dimensionality micro array: A review[END_REF].

Machine Learning Modeling

The core of a ML workflow is to design and to train a model that is capable of best explaining some data or phenomena, or to predict future data. Let us consider an input vector x ∈ X to a decision making process, and its corresponding output y ∈ Y. y may be continuous (regression) or categorical (classification). We suppose that there is a function f : X → Y that describes the approximate relationship between x and y. The goal of machine learning is therefore to provide an approximation of function f with a model or estimate f (often called hypothesis). The learning algorithm chooses f from a set of candidate functions, which we call a hypothesis space H. The hypothesis space H is generally an arbitrary choice when no prior knowledge is available about the true underlying function f . Otherwise, the best hypothesis space H is selected using the prior knowledge. For instance, H can be the set of all linear function, from which a linear regression algorithm will choose to fit the data.

An hypothesis f (.; θ, φ) ∈ H is generally controlled by a set of hyper-parameters φ and a set of parameters θ. A hyper-parameter controls the learning algorithm itself. It differs from a parameter in the fact that it can not be fitted to training data during the training process. In that sense, a better notation would be f φ (.; θ). Examples of Chapter 3. Machine Learning for Time Series Forecasting hyper-parameters are number of clusters k in a k-means model [START_REF] Jain | Data clustering: 50 years beyond K-means[END_REF] or degree of the polynomial in Polynomial regression [START_REF] Ostertagová | Modelling using polynomial regression[END_REF]. Running a learning algorithm over a training dataset with different hyper-parameter settings will result in different models. In a machine learning context, we typically seek to select the best-performing model from this set. Note that some learning models do not have parameters [START_REF] Goodfellow | Deep learning[END_REF]. Such models are called non-parametric models [START_REF] Goodfellow | Deep learning[END_REF], in contrast to parametric models.

The learning problem may be decomposed into the following main tasks;

• fitting the model parameters to training data, referred to as model training [START_REF] Goodfellow | Deep learning[END_REF],

• estimating the generalization performance of the model on unseen data, referred to as model evaluation [START_REF] Raschka | Model evaluation, model selection, and algorithm selection in machine learning[END_REF],

• selecting the best-performing model from a given algorithm's hypothesis space by tweaking the learning algorithm , referred to as hyper-parameters tuning or model selection [START_REF] Guyon | Model Selection: Beyond the Bayesian/Frequentist Divide[END_REF][START_REF] Raschka | Model evaluation, model selection, and algorithm selection in machine learning[END_REF],

• identifying the best-suited learning algorithm for the problem at hand, referred to as algorithm selection [START_REF] Raschka | Model evaluation, model selection, and algorithm selection in machine learning[END_REF].

For modeling, data are often split into three distinct subsets for the purpose of training, validation, and testing the model. Training data are used to adjust parameters θ of the model. Validation data are used to fine-tune hyper-parameters φ of the learning algorithm. Test data are used to estimate the generalization performance (or generalizability) of the model. Generalization performance of a model refers to its ability to adapt to new, previously unseen examples [START_REF] Goodfellow | Deep learning[END_REF]. Thereby, it represents the true performance of a model when deployed in the real world. However, holding out data reduces the amount available for training. This can be mitigated by performing cross-validation [START_REF] Domingos | A few useful things to know about machine learning[END_REF]. The idea is as follows : we randomly split the training data into K non-overlapping subsets, called folds, hold out each fold k ∈ 1...K while training on the remaining, test each trained model on the examples of the fold it did not see, average the K results to evaluate how well the particular hyperparameter setting does [START_REF] Domingos | A few useful things to know about machine learning[END_REF]. Figure 3.5 illustrates the k-fold cross validation scheme.

Model Deployment and Performance Monitoring

Building the model is generally not the end of a machine learning workflow. The next step is deployment and integration of this model into an existing production environment. Several challenges arise with model deployment, namely scalability, portability and reproduciblity. Different strategies can be adopted to deploy a pre-trained model.

For example, we can wrap the model and serve it as a web-service.

A deployed model also needs to be actively tracked and monitored. This allows to get feedback in case of concept drift [START_REF] Webb | Characterizing concept drift[END_REF]. Concept drift refers to changes over time in the data distribution. This results in significant deterioration of the model performance.

Quantitatively measuring this phenomenon will allow early detection and handling, namely with performance scoring. One way to handle concept drift is by periodically updating the model with more recent data [START_REF] Lu | Learning under concept drift: A review[END_REF]. This prevents completely putting aside a model to train a new one, which is costly. Another way is to build an ensemble of multiple models to boost their performance [START_REF] Lu | Learning under concept drift: A review[END_REF]. Note that concept drift is particularly a challenge in case of static models, meaning the case of batch learning. By contrast, in the case of online learning, models are updated continuously and on the fly.

Deep Learning

Deep learning (DL) [START_REF] Goodfellow | Deep learning[END_REF] is a specific kind of machine learning. It refers to a set of machine learning techniques, namely neural networks which learn effective representations of data with multiple levels of abstraction. In contrast to "classic" machine learning, in which representations are manually refined through feature engineering, deep learning aims to incorporate and completely automate this step. This has substantially simplified machine learning workflows, and successfully replaced multi-stage handtuned pipelines with end-to-end deep learning model [START_REF] Francois | Deep learning with Python[END_REF].

Neural networks (NNs), interchangeably referred to as artificial neural network (ANNs), are complex programs that involve more parameters than a human can tweak. Deep learning does not require human intervention to learn, but instead requires a large amount of relevant data. This concept is referred to by some researchers as Software 2.0 [START_REF] Karpathy | Software 2.0[END_REF].

A brief glance back into the history of deep learning reveals three major waves [START_REF] Goodfellow | Deep learning[END_REF]: DL known as Cybernetics during 1940-1960, DL known as Connectionism during 1980-1990, and the current emergence under the name "deep learning" beginning in 2006. The history of NNs [START_REF] Alom | The history began from alexnet: A comprehensive survey on deep learning approaches[END_REF] began in 1943 when neuro-physiologist Warren McCulloch and mathematician Walter Pitts proposed the first computational model of a neuron by mimicking the functionality of a biological neuron, which was called threshold logic unit [START_REF] Mcculloch | A logical calculus of the ideas immanent in nervous activity[END_REF]. The first modern neural network was introduced by Frank Rosenblatt in 1957 under the name Perceptron [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF]. Minsky and Papert published a book to argue about severe limitations of Perceptrons in 1969 [START_REF] Minsky | Perceptrons: An introduction to computational geometry[END_REF]. This has contributed in discrediting and halting research in the field of neural networks for almost a decade, hence the naming "AI winter". It was until 1985 that the field was revitalized by the presentation of back-propagation by Geoffrey Hinton [START_REF] Ackley | A learning algorithm for Boltzmann machines[END_REF]. Hinton showed that back-propagataion can successfully train deep neural networks (more than two or three layers). It should be mentioned that back-propagation was first introduced by Paul Werbos, in the context of neural networks training. However, this approach was not popularized until 1985.

During the ensuing neural network revival in the 1980s, key works had laid the foundation of modern deep learning. However, the introduction of support vector machines with non-linear kernels by Vladimir Vapnik [START_REF] Cortes | Support-vector networks[END_REF] had contributed in stalling neural networks research. The third wave emerged in 2006 with the published work of Hinton [START_REF] Hinton | A fast learning algorithm for deep belief nets[END_REF][START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF].

One of the major breakthroughs of deep learning happened in 2012 when Alex Krizhevsky designed Alexnet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], a convolutional neural network that outperformed the then current state-of-the-art in the ImageNet competition, and brought error rate down to 15.3%, compared to 26.2% achieved by second best team. Even though the main idea of training deep neural networks was not new, these results had successfully demonstrated the capability of deep learning to solve a complex task on a large and complicated dataset like ImageNet. This is attributed in great part to the increase of computational power and memory capacity of machines. Deep learning grew to prominence and had attracted great interest since 2012. Nowadays, deep learning is delivering state-of-the-art results in many fields.

Feed-forward Networks

Feed-forward Neural Networks (FNNs) [START_REF] Goodfellow | Deep learning[END_REF], often called Multi-Layer Perceptrons (MLPs), are the most basic and widely used artificial neural networks. Hence, it is sometimes referred to as "vanilla" neural networks.

FNNs [START_REF] Goodfellow | Deep learning[END_REF] consist on connected neurons in a finite directed acyclic graph. Given the absence of cycles, a FNN can be arranged into different layers in which each layer can only communicate with the upper layer. These models are called feed-forward because information flows unidirectionally from input layer to output layer. As a whole, a FNN is a chain of composed functions, where each layer is a function that takes as input the output of the previous layer. This chain of composed functions is optimized to perform a task. For instance, let's suppose that a network is composed of three functions f (1) , f (2) and f (3) . The final function f is written as

f (x) = f (3) (f (2) (f (1) (x)
)) [START_REF] Goodfellow | Deep learning[END_REF]. The input layer corresponds to the input vector x, f (1) is called the first layer, f (2) is called the second layer, and so on. The output layer corresponds to predictions f (x). Layers that are situated between the input layer and the output layer are also called hidden layers given that their outputs are not directly observable from the training data.

The length of the chain is the depth of the network. Deep learning is defined in terms of the depth of the neural networks architecture. However, there is no universally agreed upon threshold of depth that divide "shallow" neural networks and "deep" neural networks. Hidden layer is composed of M neurons. Output layer is composed of K neurons. Each j th neuron of the hidden layer is obtained by :

• Linear combination a j of input vector x = (x i) i=1...D , written as:

a (1) j = D ∑ i=1 w (1) ji x i + b (1) j ∀j ∈ {1...M} (3.1)
D is the total number of input variables. The superscript [START_REF] Abdi | Principal component analysis[END_REF] indicates that the corresponding parameters are in the first layer of the network. Parameters w ji are referred to as weights, whereas parameters b j are referred to as biases. Quantities a j are known as activations.

• and a nonlinear transformation f : R → R as follows :

h (1) j = f a (1) j ∀j ∈ {1..M} (3.2) h (1)
j are referred to as hidden units, f is referred to as activation function. Output vector ŷ is calculated in a same manner. Output unit activations are obtained using a weighted linear combination of hidden units, followed by an element-wise transformation using a nonlinear activation function, as follows:

a k = M ∑ j=1 w (2) kj f (D ∑ i=1 w (1) ji x i + b (1) j) + b (2) k ∀k ∈ {1...K} ŷk = f (a k) (3.3)
We can combine these various stages to give the overall network function in Fig-

ure 3.6 that takes the form : ŷk (x, w) = f M ∑ j=1 w (2) kj f D ∑ i=1 w (1) ji x i + b (1) j + b (2) k ∀x∀k ∈ {1...K} (3.4)
where the set of all adjustable parameters (weights and biases) were grouped together into a vector w. Different terminology is used in literature for counting the number of layers composing a neural network. Some studies count the number of layers of units, including input and output layers. Others count the number of hidden layers. Following the first mentioned terminology, the network shown in Figure 3.6 is described as three-layer network, whereas, when following the second terminology, it is described as one-layer network. In this manuscript, we follow the terminology that describes networks by the number of layers of adjustable parameters. Figure 3.6 is therefore called a two-layer network.

Many choices of activation functions can be made in the framework of NNs, namely sigmoid (also called logistic) function, hyperbolic tangent (tanh). They respectively calculate σ(x) = 1 1+e -x and tanh(x) = e x -e -x e x +e -x . Rectified Linear Unit (ReLU) is also widely used for deep learning, since it substantially reduces the computational cost for training of the network. ReLU calculates f (x) = max(0, x).

The activation function at the output layer depends upon the task. For regression, we generally use a linear function, f (x) = ax.

NNs as universal approximators

Neural networks are known to be universal approximators. Theoretical results show that, a two-layer network with no-polynomial activation function can approximate any continuous function on a compact set of R n to any desired degree of accuracy [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Hornik | Approximation capabilities of multilayer feedforward networks[END_REF][START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF]. Although such result proves the existence of a solution, no methods are provided for finding it. Furthermore, the main challenge is how to find the most suitable parameters given a set of training data. Motivated by the current success of deep learning, several studies investigated the approximation capabilities of deep neural network, compared to 'shallow' neural networks. An interesting result [START_REF] Delalleau | Shallow vs. deep sum-product networks[END_REF] shows that there exist a deep sum-product network that can not be approximated by shallow sum-product networks, unless they use an exponentially larger number of neurons.

Despite their power, FNN present several limitations. Notably, they rely on the assumption of independence between training examples [START_REF] Lipton | A critical review of recurrent neural networks for sequence learning[END_REF]. However, this is not the case when data point are related in time or space, i.e. sequence of video frames or audio signal.

Error Back-propagation

Neural networks accept an input x and outputs a prediction ŷ. Information flows from input units, through hidden units in each layer, and to the output units. This is called forward propagation or forward pass. During training, forward propagation results in an error. Back-propagation [START_REF] Rumelhart | Parallel Distributed Processing: Explorations in the Microstructure of Cognition[END_REF] propagates the error from output units back towards the input units, in order to compute gradients, and make updates accordingly to all parameters in all layers. The process of forward propagation and back-propagation is repeated until reaching an optimal error. As such, back-propagation is a method for computing gradients, which are used by training algorithms like stochastic gradient descent (SGD).

Typically, error functions in neural networks are non-convex, which means that finding "provably" optimal solution is NP-hard. Moreover, a very large number (possibly infinite) of local minima is present in deep networks error functions. However, these local minima have almost equivalent cost for sufficiently deep and/or large neural networks. Reaching a local minimum is therefore sufficient [START_REF] Goodfellow | Deep Learning[END_REF][START_REF] Choromanska | The loss surfaces of multilayer networks[END_REF].

Time Series Forecasting

A time series is a set of observation ordered sequentially in time, observed at a discrete set of evenly spaced time intervals; {x t } t=1..N , where N is the length of the time series.

Usually, time series analysis can be divided into univariate and multivariate analysis. Univariate time series refers to a time series containing a single observation recorded sequentially over time, such as daily energy consumption of a building. Multivariate time series is used when a group of time series variables are involved and their interactions are to be considered. Each variable thus depends not only on its past values but also has some dependency on other variables. For instance, energy consumption in buildings is affected by several time-variant exogenous factors like weather conditions, human activities, holidays, etc.

The goal of time series forecasting is to predict future values of a target y i,t for a given entity i at a given time t. An entity consists in a logical collection of temporal information, such as vital signs of different patients in healthcare, stock prices of different companies in finances, or power consumption measurements of different buildings in the field of energy efficiency. Time series forecasting models can be written as:

ŷi,t+1 = f (y i,t-k:t , x i,t-k:t) + e(t) (3.5)
where ŷi,t+1 is the one-step ahead model prediction at time t + 1, y i,t-k:t and x i,t-k:t are previous values of respectively the target and exogenous variables over a look-back time window of size k, e(t) is the noise term and f (.) is the actual prediction model [START_REF] Lim | Time Series Forecasting With Deep Learning: A Survey[END_REF].

Multi-step Time Series Forecasting

Multi-step ahead time series forecasting consists in predicting h next values of a target {y i,n+1 , y i,n+2 , ..., y i,n+h } from past n observations of the target {y i,1 , y i,2 , ..., y i,n } (and some exogenous variables if applicable), h > 1 is the forecasting horizon, n is the number of observations of the historical time series. There are mainly three strategies for multi-step time series forecasting [START_REF] Taieb | Long-term prediction of time series by combining direct and mimo strategies[END_REF][START_REF] Sorjamaa | Time series prediction using DirRec strategy[END_REF]: (1) recursive strategy, (2) direct strategy, and (3) multi-input multi-output (MIMO) strategy. Hybrid strategies that combine two or more strategies also exist, such as DirRec (direct and recursive) and DIRMO (direct

and MIMO).

In what follows, let {y i,t:t+l be a shorthand notation for {y i,t , y i,t+1 , ..., y i,t+l }.

Recursive strategy (also called iterative or multi-stage) [START_REF] Sorjamaa | Time series prediction using DirRec strategy[END_REF] is the most intuitive strategy. It consists in recursively iterating a single step model to enable multi-step forecasting. This implies that previous predictions are subsequently introduced with the true observations of the target as inputs to predict future time steps. Figure 3.7 illustrates the recursive strategy. For a prediction horizon H, a trained single step model f , multi-step prediction is performed as follows: Given that a potential error is induced at each one-step ahead forecast, re-using of predictions will create a feedback loop, and will therefore lead to accumulation of errors over the forecasting horizon.

ŷi,t+h =          f (y i,t-k+1:t) if h = 1 f (ŷi,t+1:t+h-1 , y i,t-k+h:t) if 2 ≤ h ≤ k f (ŷi,t+1:+h-k) if k < h ≤ H (3.6)
Direct strategy (also called independent) [START_REF] Sorjamaa | Time series prediction using DirRec strategy[END_REF] consists in predicting each future time step independently. This implies that h prediction models are trained. Let fh be the trained one-step model for predicting time step h, such as:

ŷi,t+h ŷi,t+h = fh (y i,t-k+1:t) for 1 ≤ h ≤ H (3.7)
In this strategy, there is no accumulation of errors because only true observations of target variable are used for the prediction at future time steps. However, the main issue of the direct strategy is that underlying dependencies between predictions are not taken into consideration. Given that one model is trained at each time step, computational and maintenance cost is also significant, especially as the forecast horizon increases.

DirRec strategy

DirRect is a hybrid strategy that combines both RECursive and DI-Rect strategies [START_REF] Sorjamaa | Time series prediction using DirRec strategy[END_REF]. It uses a different model at each future time step (direct strategy) and feeds predictions from previous time steps into the inputs (recursive strategy).

DirRec strategy can be written as:

ŷi,t+h =    fh (y i,t-k+1:t) if h = 1 fh (ŷi,t+1:t+h-1 , y i,t-k+1:t) if 2 ≤ h ≤ H (3.8)
DirRec strategy avoids the accumulation of errors problem encountered in the recursive strategy, and the conditional independence assumption between predictions across the horizon encountered in the direct strategy. However, by definition, the input set in DirRec strategy grows linearly with horizon H, thus yielding significant computational cost.

MIMO strategy Recursive, direct and DirRec strategies rely on multi-input and singleoutput models [START_REF] Taieb | Long-term prediction of time series by combining direct and mimo strategies[END_REF]. By contrast, MIMO strategy considers a multi-input and multioutput model. This is motivated by the need to model stochastic dependencies between future values of the time series and past observations [START_REF] Bontempi | Long term time series prediction with multi-input multi-output local learning[END_REF]. MIMO strategy can be written as:

ŷi,t+1:t+h = f (y i,t-k+1:t) (3.9)

MIMO strategy alleviates the conditional independence assumption between H predictions of the direct strategy. It also avoids accumulation of errors as in the recursive strategy. However, MIMO strategy uses only one model to predict all the horizons. This may constrain the flexibility of the forecasting approach, and hence may induce a highly biased model [START_REF] Taieb | Long-term prediction of time series by combining direct and mimo strategies[END_REF].

DIRMO strategy (also called Multi-Input Several Multi-Output (MISMO)) DIRMO combines the DIRect and the MIMO strategies [START_REF] Taieb | Long-term prediction of time series by combining direct and mimo strategies[END_REF]. DIRMO forecasts the horizon in portions, where for each portion, there is a MIMO predictor. For a prediction horizon H, the prediction task is decomposed to n = H s prediction sub-tasks, where s ∈ {1...H} is the output size of each sub-task. DIRMO strategy can be written as: ŷi,t+(p-1)s+1:t+ps = fp (y i,t-k+1:t)

(3.10)

where p ∈ {1...n}. Notice that for s = 1, the approach is equivalent to the direct strategy. Whereas, for s = H, the approach is equivalent to the MIMO strategy.

Overview on Machine Learning Techniques

Traditionally, time series forecasting mostly relies on statistical models like vector autoregression (VAR) [START_REF] Liu | A vector autoregression weather model for electricity supply and demand modeling[END_REF], and auto-regressive integrated moving average (ARIMA) [START_REF] Newsham | Building-level occupancy data to improve ARIMAbased electricity use forecasts[END_REF] and its many variations. ARIMA was first proposed by Box and Jenkins [START_REF] Box | Time series analysis: forecasting and control[END_REF]. ARIMA model has elements of other time series models including autoregressive (AR) model and moving average (MA) model. The multivariate version of ARIMA is called ARIMA with eXogenous inputs (ARIMAX). However, despite their popularity, ARIMA and its variants are generally not used for high-dimensional multivariate time series forecasting tasks due to their high computational demand [START_REF] Lai | Modeling long-and short-term temporal patterns with deep neural networks[END_REF]. Another main issue with ARIMA is the linearity assumption on the data. If this assumption is violated, the statistical model may be biased and misleading as it fails to capture non-linear data relationships.

VAR is the extension of AR models to multivariate problems. VAR has proven to be powerful technique due to its flexibility and simplicity. It is also successfully used for multi-step ahead time forecasting. Nonetheless, like ARIMA, VAR fails to capture complex non-linear relationships of multivariate time series data. VAR algorithm is also limited by linear complexity over the width of the temporal window and quadratic complexity over the number of variables [START_REF] Lai | Modeling long-and short-term temporal patterns with deep neural networks[END_REF]. VAR is thus prone to over-fitting when modeling long-run temporal patterns. This also hinders the performance for highly dimensional multivariate time series.

Gaussian process is a way of performing a non-parametric Bayesian inference. GPs provide a Bayesian prior distribution over unknown functions, and then sequentially update this distribution by conditioning on the data. GPs excel at capturing complex dynamics and nonlinear relationships in data. The main shortcoming for GP is the high computational complexity O(n 3) for a number of observations n. This hinders GP from scaling up to large datasets. Time series forecasting may be seen as a standard regression setting. Common supervised regression models can therefore be applied, such as support vector machine (SVM). A major breakthrough in time series forecasting area occured with the introduction of SVM [START_REF] Cortes | Support-vector networks[END_REF]. Support vector machine was applied to regression, and was therefore called support vector regression (SVR). SVR is practically simple and SVR techniques employ kernels in order to capture non-linear patterns in time series data. Commonly used kernels are the polynomial kernel and the radial basis function kernel. Extension of SVR to multi-step ahead setting were proposed in [START_REF] Mao | Research of load identification based on multipleinput multiple-output SVM model selection[END_REF][START_REF] Sánchez-Fernández | SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems[END_REF][START_REF] Bao | Multi-step-ahead time series prediction using multiple-output support vector regression[END_REF].

Over the past decade, deep learning has achieved remarkable success in a broad range of applications, namely time series forecasting. Deep learning [START_REF] Goodfellow | Deep learning[END_REF], as subset of ML based on deep ANN, attempts to extract meaningful representations with different levels of abstraction using nonlinear transformations [START_REF] Bengio | Representation learning: A review and new perspectives[END_REF]. Neural networks alleviate the need for manual feature extraction. For multi-step ahead forecasting with multivariate time series, several deep learning techniques were proposed [START_REF] Fawaz | Deep learning for time series classification: a review[END_REF], namely convolutional neural networks (CNN) and recurrent neural networks (RNN).

Recurrent neural networks (RNN) [START_REF] Lipton | A Critical Review of Recurrent Neural Networks for Sequence Learning[END_REF] have been historically proposed for sequence modeling tasks. It was therefore naturally applied to time series forecasting.

The reason behind the effectiveness of RNN comes from its ability to capture past information from data, and use it to inform upcoming sequence steps. Two variants of RNN in particular, namely the Long Short Term Memory (LSTM) [START_REF] Zheng | Electric load forecasting in smart grids using long-short-term-memory based recurrent neural network[END_REF][START_REF] Bui | Power Demand Forecasting Using Long Short-Term Memory Neural Network based Smart Grid[END_REF] and the Gated Recurrent Unit (GRU) have significant success in several sequential data modeling applications. LSTM and GRU offer the ability to capture long-term dependencies, while addressing vanishing/exploding gradients problem [START_REF] Pascanu | On the difficulty of training recurrent neural networks[END_REF] often encountered in recurrent networks. This is essentially achieved via special gates that determine which past information should be passed and which should be forgotten [START_REF] Gers | Learning to forget: Continual prediction with LSTM[END_REF].

Convolutional neural networks (CNN) [START_REF] Lecun | Convolutional networks for images, speech, and time series[END_REF] have gained a lot of attention with their applications in the fields of computer vision and pattern recognition. Given their success, CNN were adopted to time series forecasting tasks. CNNs have powerful feature extraction capabilities. Furthermore, Dilated convolutions allow to capture longterm temporal dependencies. To enable multi-step ahead forecasting, a CNN is usually combined with a RNN to form a hybrid model.

Support Vector Regression

Support vector machine (SVM) [START_REF] Cortes | Support-vector networks[END_REF] is a linear model that is proposed for classification and regression problems. Support vector regression [START_REF] Smola | A tutorial on support vector regression[END_REF] have been successfully and widely employed for time series regression in the context of building energy modeling.

The main idea behind SVM is to find a hyperplane that linearly separates the data with the largest margin. With support vector regression (SVR), the goal is also to find a hyperplane that can be used for regression.

Define a dataset D = {(x (i) , y (i)) ⊂ X × Y, where i = 1...N} where N is the size of the dataset, x (i) ∈ R n is the input feature vector and y (i) ∈ R is its corresponding label. In case of multivariate time series forecasting, x is the vector of past values of the target y combined with the exogenous features. Otherwise, it will be simply the vector of past values of the target. For a given tolerance , the -insensitive SVR consists in finding a function f (x) = w T x + b, such that all data points are within a strip bounded by two parallel hyperplanes (as shown in Figure 3.8). All data points are therefore allowed to deviate at most a certain margin ≥ 0 from the targets to be predicted.

Mathematically, this is achieved through the following optimization problem [START_REF] Smola | A tutorial on support vector regression[END_REF].

min w,b w 2 s.t.    y (i) -w T x (i) -b ≤ w T x (i) + b -y (i) ≤ (3.11)
Depending on the value of , it is possible that a function f , that satisfies these constraints, does not exist. A relaxation extension is to introduce slack variable ξ i ≥ 0 (for the upper boundary) and ξ * i ≥ 0 (for the lower boundary) for each point (as shown in Figure 3.9. The slack variables allow regression errors. The optimization problem is therefore modified as follows [START_REF] Smola | A tutorial on support vector regression[END_REF].

min w,b,ξ,ξ * 1 2 w 2 + C N ∑ i=1 (ξ i + ξ * i) s.t.          y (i) -w T x (i) -b ≤ ξ i + w T x (i) + b -y (i) ≤ ξ * i + ξ i ≥ 0, ξ * i ≥ 0 ∀i = 1...N (3.12)
Figure 3.9: Illustration of a support vector regression function [START_REF] Sayad | Support Vector Machine -Regression[END_REF].

Here ξ and ξ * are shorthand notations for respectively ξ = {ξ i } N i=1 and ξ * = {ξ * i } N i=1 . The regularization constant C determines the trade-off between the achieving low training errors and the overfitting. The bigger C is, the more errors are accepted. The regression problem may be solved using Lagrangian multipliers α i , α * i , η i , η * i , to incorporate the constraints as follows :

L = 1 2 w 2 + C N ∑ i=1 (ξ i + ξ * i) - N ∑ i=1 (η i ξ i + η * i ξ * i) - N ∑ i=1 α i (ξ i + -y (i) + w T x (i) + b) - N ∑ i=1 α * i (ξ * i + -w T x (i) -b + y (i)) (3.13)
Optimality can be achieved by solving the equations ∂L ∂w = 0, ∂L ∂b = 0, ∂L ∂ξ = 0, and ∂L ∂ξ * = 0. Namely, w can be written as a linear combination of the training observations as follows [START_REF] Smola | A tutorial on support vector regression[END_REF].

w = N ∑ i=1 (α i + α * i)x (i) (3.14)
In addition, we have ∂L ∂b

= N ∑ i=1 (α * i -α i) = 0 (3.15)
And

∂L ∂ξ i = C -η i -α i = 0 ⇒η i = C -α i ∂L ∂ξ * i = C -η * i -α * i = 0 ⇒η * i = C -α * i (3.16)
Given that η i ≥ 0 and η * i ≥ 0, we have

α i ∈ [0, C] and α * i ∈ [0, C].
For chosen α and α * , we compute :

b = y (k) - N ∑ i=1 (α i + α * i)x (i)T x (k) (3.17)
Therefore, for a test point x ∈ R n , the predicted value y is defined as

y = N ∑ i=1 (α i + α * i)x (i)T x + b (3.18)
Non-linear case One of the main forces of SVM is that it can be easily extended to linearly inseparable data [START_REF] Boser | A training algorithm for optimal margin classifiers[END_REF]. This is done by mapping the data in the input space into a higher-dimensional space where they become linearly separable (as shown in Figure 3.9). This is known as kernel method. One problem is that the input vectors may be mapped to a very high-dimensional space, and possibly infinite, which results in very expensive computations of dot products. An easy solution here is the use of kernel trick. Kernel trick allows to operate in the input space without the need to compute new coordinates in the transformed feature space, via replacing the dot product < φ(x), φ(z) > with a function K(x, z). As a result, we will only use K in the training algorithm, without needing to explicitly compute or even know what the feature mapping φ is.

Notice that input vectors only appear in the form of dot products in the training problem, i.e. equation 3.18. Then we just replace dot products with the kernel as follows.

y = N ∑ i=1 (α i + α * i)K(x (i) , x) + b (3.19)
In addition to support vector machines, kernels are used in other algorithms [START_REF] Hofmann | Kernel methods in machine learning[END_REF], such as non-linear variant of PCA [START_REF] Rosipal | Kernel PCA for feature extraction and de-noising in nonlinear regression[END_REF].

For a function to be a valid kernel, necessary and sufficient condition is as follows: Let G be a kernel matrix or Gram matrix be a N × N matrix where each entry i, j corresponds to G i,j = K(x (i) , x (j)) where {x (i) , x (j) } are feature vectors of the dataset D. K : X × X → R is a valid kernel if and only if matrix G is symmetric, positive semi-definite. This is known as the Mercer's theorem.

Several kernels are commonly used, namely :

• Linear : K(x, z) = x T z, • Polynomial : K(x, z) = (1 + x T z) p
where p ∈ N is the degree of the polynomial,

• Radial basis function (RBF), also known as Gaussian or radial :

K(x, z) = exp(-γ x -z 2)
where γ is a free parameter.

Multi-output SVR So far, the explained SVR algorithm can be applied to multivariate one-step ahead time series forecasting. However, it would need to be adopted for multi-step ahead time series forecasting. MIMO SVR (M-SVR) [START_REF] Mao | Research of load identification based on multipleinput multiple-output SVM model selection[END_REF][START_REF] Sánchez-Fernández | SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems[END_REF][START_REF] Bao | Multi-step-ahead time series prediction using multiple-output support vector regression[END_REF] was proposed. Compared to the standard SVR, output y becomes multi-dimensional ∈ R M . The objective function therefore becomes:

min W,b,ξ,ξ * 1 2 M ∑ j=1 w (j) 2 + C N ∑ i=1 (ξ i + ξ * i) s.t.          y (i) -w (j)T x (i) -b (j) ≤ ξ i + for j = 1...M w (j)T x (i) + b (j) -y (i) ≤ ξ * i + for j = 1...M ξ i ≥ 0, ξ * i ≥ 0 ∀i = 1...N (3.20)
where W = {w (1) , ..., w (M) } and b = {b (1) , ..., b (M) } are respectively weights and biases.

Another possibility for implementing a multi-output consists in using multiple SVR models as proposed in [START_REF] Zhang | Iterated time series prediction with multiple support vector regression models[END_REF]. These models are trained individually using the same input samples but different targets. As such, for a prediction horizon H, H singleoutput SVR models are trained, where the h-the model predicts the h-step ahead value. Generated predictions are finally combined and served as a multi-output prediction.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [START_REF] Lipton | A Critical Review of Recurrent Neural Networks for Sequence Learning[END_REF] are a powerful class of supervised machine learning models that are capable of modeling sequential data. In contrast to a MLP that maps one fixed-sized input to one fixed-sized output, a RNN can handle sequential data of arbitrary sequence length in the input, the output, or more generally both. RNNs rely on the standard computational graph of feed-forward networks. RNNs add the possibility to pass information between adjacent time-steps, and hence the ability to learn long-term dependencies. This is done by sharing parameters across multiple time-steps. Figure 3.12 depicts a simple architecture of a recurrent neural network with one hidden layer.

Figure 3.12:

A simple one-layer recurrent neural network with one hidden layer; a feed-forward neural network that has a layer for each timestep. At time step t, nodes (white circles) with recurrent edges receive input from the current data point x (t) (blue circles) and from the hidden node values h (t-1) in the network's previous state and calculate the current hidden state h (t) . The output prediction ŷ(t) (orange circles) is then provided by the output layer.

The dynamics of recurrent networks across multiple time-steps can be seen by "unfolding" it as in figure 3.13. At time step t, hidden nodes with recurrent edges take input vector x (t) and the previous hidden state h (t-1) to compute the current hidden state h (t) . The hidden vector h (t) and the output vector ŷ(t) are written as.

h (t) = f h (W xh x (t) + W hh h (t-1) + b h) if t ≥ 1 0 otherwise ŷ(t) = f y (W hy h (t) + b y) (3.21)
where f h is the non-linear activation function at the hidden layer, W xh is the weights matrix between the input and the hidden layer, W hh is the weight matrix between the hidden layer and itself at adjacent time, b h is the bias parameter at the hidden layer which allow each node to learn an offset. The initial hidden state h (0) is often fixed to a vector of zero values, set as a learnable parameter, or initialized based on some other information. f y is the non-linear activation function at the output layer, W hy is the weight matrix between the hidden layer and the output layer, b y is the bias parameter at the output layer.

Training a recurrent neural network involves iteratively adjusting the weights and biases, generally using some method of gradient descent and back-propagation through time (BPTT). The most widely used back-propagation algorithm for recurrent networks is back-propagation through time algorithm (BPTT) [START_REF] Werbos | Backpropagation Through Time: What It Does and How to Do It[END_REF]. Truncated BPTT (TBPTT) [START_REF] Williams | An Efficient Gradient-Based Algorithm for On-Line Training of Recurrent Network Trajectories[END_REF] is often used as an approximation of BPTT that has the computational efficiency of BPTT, all while tackling its high computational and memory cost. The main idea is to split long sequences into small batches and treating them as separate training cases [START_REF] Sutskever | Training Recurrent Neural Networks -Ilia Sutskever -PhD thesis[END_REF].

A major challenge with training recurrent networks is the vanishing/exploding gradient [START_REF] Pascanu | On the Difficulty of Training Recurrent Neural Networks[END_REF]; The gradient expresses the change in all weights with regard to the change in error. If the gradient is unknown, no further adjustments can be applied to the weights in a direction that will decrease error, and thus, the network ceases to learn. There are two factors that affect the magnitude of gradients; the weights and the non-linear activation functions that the gradient passes through. If either of these factors is smaller than 1, by repeatedly multiplying gradients through every layer during back-propagation, the gradients may vanish fast in time Likewise, if larger than 1, the gradients will decrease exponentially until vanishing. Note that the problem of vanishing/exploding gradient can occur in deep learning in general. However, it is particularly a challenge in RNNs due when learning long-time dependencies. "Unfolding" the RNN will hence result in propagating the gradients through many time steps.

Exploding gradients can be addressed by gradient clipping technique, which "clips" gradients whenever their values are greater than a pre-defined threshold. Vanishing gradients may be partially resolved when using TBTT given that it restricts the number of steps over which back-propagation is run. However, this is usually not enough. One of the most commonly used solutions to the vanishing/exploding gradients problem is

Long Short-Term Memory (LSTM) architecture.

Long-Short Term Memory LSTM was first proposed in [START_REF] Hochreiter | Long Short-Term Memory[END_REF] as a solution to the vanishing/exploding gradient problem. The main idea of LSTM is to allow incoming information to alter the state of the memory cell or block it via special gates.

As any classic RNN architecture, there are input layer, recurrent layers and output layer. The hidden layer is constructed by hidden neuron, which is called memory block. A memory block can contain one or several memory cells [START_REF] Hochreiter | Long Short-Term Memory[END_REF]. A common LSTM structure is usually composed of four main elements: input gate, self-recurrent connection, forget gate and output gate. The input gate controls the flow of information to the the memory cell. The forget gate aims to determine which past information should be passed and which should be forgotten between memory cells from the prior to the current time step. The output gate controls the flow of information from the memory cell to the next layer.

The common LSTM architecture is defined in terms of the following equations:

i (t) = ψ(W xi x (t) + W hi h (t-1) + b i) (3.22)
f (t) = ψ((W x f x (t) + W h f h (t-1) + b f) (3.23)
u (t) = φ(W xu x (t) + W hu h (t-1) + b u) (3.24) c (t) = i (t) u (t) + f (t) c (t-1) (3.25)
o (t) = ψ(W xo x (t) + W ho h (t-1) + b o) (3.26) h (t) = o (t) φ(c (t)) (3.27)
ψ and φ are non-linear activation functions. Equation 3.24 is the update operation which is basically the same as standard RNN. Equations 3.22 and 3.26 are respectively the input gate and output gate of the LSTM cell. The main idea of gates is to either allow incoming information to alter the state of the memory cell or block it. All of the gates perform an linear transform followed by a non-linear activation function.

The output of the input gate is later used to get the current cell state, by performing a component wise multiplication respectively with the update operation's output u (t) and the cell state c (t-1) of the previous time-step, as shown in Equation 3.25. We should note that the latter equation is the one that prevents the vanishing/exploding gradient problem from occurring by ensuring that ∂c (t) ∂c (t-1) = 1. Finally, Equation 3.27 calculates the hidden state, by performing a component wise multiplication between the output of the output gate and the scaled value of the cell state. This hidden output is the one that will be used to compute the predictions ŷ(t) .

Gated Recurrent Unit Gated Recurrent Unit (GRU) [START_REF] Chung | Empirical evaluation of gated recurrent neural networks on sequence modeling[END_REF] is a simplified version of LSTMs. Similarly to LSTMs, GRU is a variation of RNN architectures that were explicitly designed to deal with vanishing/exploding gradients and efficiently learn longrange dependencies. The dynamics of a gated recurrent unit is defined by the following equations.

r (t) = ψ(W xr x (t) + W hr h (t-1) + b r) (3.28) z (t) = ψ((W xz x (t) + W hz h (t-1) + b z) (3.29) h (t) = φ(W xh x (t) + W hh (r (t) h (t-1)) + b h) (3.30) h (t) = (1 -z (t))h (t-1) + z (t) h (t) (3.31)
Where z (t) and r (t) are respectively the update gate and the reset gate. h (t) is a candidate hidden state which is a classic RNN update except of the part where it interpolates a modulation using the reset gate. The final update hidden state interpolates between the candidate state and the previous hidden state in terms of the update gate.

Compared to LSTM, GRU has fewer parameters. Therefore, GRU was deployed to reduce computational cost and time.

Sequence to Sequence Model (Seq2Seq) [START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF] (sometimes referred to as encoderdecoders or auto-encoders) Seq2Seq models are a special architecture of RNNs. They are widely used in a many tasks such as machine translation, image/video captioning and question answering. The main idea is to use two sub-networks; and encoder and a decoder. An encoder takes an input sequence and summarizes information into a encoder state. An encoder state aims to encapsulate information that are useful for the target task, and serves as "context" of the decoder. A decoder predict the target sequence given the encoder state. Seq2Seq models are usually trained using teacher forcing approach [START_REF] Williams | A learning algorithm for continually running fully recurrent neural networks[END_REF]. Instead of re-injecting the decoder's predictions into the decoder, teacher forcing uses ground truth target values as the next input for the decoder. This allows faster convergence and more model stability. Teacher forcing updates can be written as:

ŷt+h =    f (y t , c) if h = 1 f (y t+h-1 , h t+h-1) if 1 < h ≤ H (3.32)
where ŷt is the predicted target at timestep t, y t-1 is actual target, h t-1 is decoder last hidden state. c is the encoder context. H is the forecast horizon. f is the estimated decoder. Teacher forcing approach is further illustrated in Figure 3.15.

During inference, the ground truth target values are not available, and therefore replaced by the predicted values (as depicted in Figure 3.14. This approach is sometimes referred to as free running model or self-generated samples. It can be written as:

=    f (y t , c) if h = 1 f (ŷt+h-1 , h t+h-1) if 1 < h ≤ H (3.33)
Attention mechanisms Encoder-decoder models in general, and Seq2seq models in particular, usually employ attention layers [START_REF] Fan | Multi-horizon time series forecasting with temporal attention learning[END_REF][START_REF] Cinar | Position-based content attention for time series forecasting with sequenceto-sequence rnns[END_REF]. Attention mechanism [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF][START_REF] Chaudhari | An attentive survey of attention models[END_REF] allows to model dependencies with no regard to their distance in the look-back window.

The main idea is to assign soft weights to the hidden states of the encoder to model the relevance of each hidden state to a given query state. Query states are the hidden states of the decoder. This allows to "pay attention" to positions in the input sequence that are most relevant to the target task. A weighted sum is subsequently computed to obtain the corresponding feature [START_REF] Chaudhari | An attentive survey of attention models[END_REF], as follows:

c j = d ∑ i=1 α ij h i (3.34)
where c j is the context vector at decoding position j, d is the length of the input sequence, α ij ∈ [0, 1] is the attention weight that encodes the relevance of encoder hidden state h j to decoder hidden state h j . A common weighting function is softmax.

More recently, attention mechanism is used in the context of transformers [START_REF] Vaswani | Attention is all you need[END_REF] which are increasingly used for natural language processing tasks.

Convolutional Neural Networks

Convolutional neural networks (CNNs) [START_REF] Lecun | Convolutional networks for images, speech, and time series[END_REF] are a class of deep learning models that process data that have grid pattern, like images. This is inspired by the organization of cells in the primate primary visual cortex [START_REF] Hubel | Receptive fields and functional architecture of monkey striate cortex[END_REF]. CNNs are typically composed of three basic building blocks [START_REF] Goodfellow | Deep learning[END_REF]: a convolution layer, a pooling layer and a fully-connected layer. A convolution is the process of applying filters that slide across the time series.

The number of elements by which the filter slides at a time is called stride (e.g. 1). A filter, also known as kernel, performs an element-wise multiplication with the corresponding receptive field at each location of the time series, followed by summing to obtain the output value in the corresponding position, resulting in a feature map. As such, the more convolution layers are stacked, the faster spatial size of feature maps decreases. In some cases, this needs to be avoided using padding. Padding is simply adding elements (e.g. zeros) at borders of the original input.

Considering a one-dimensional time series data y on size N and no zero padding, and a one dimensional kernel w of size k, the i-th element of the output feature map is written as: In convolutional neural networks, each neuron is connected to only a subset of neurons in the previous layer, unlike in the case of FNNs where all neurons are fully connected. This is referred to as local connectivity [START_REF] Goodfellow | Deep learning[END_REF]. In addition, all neurons in a particular feature map share the same weights [START_REF] Fawaz | Deep learning for time series classification: a review[END_REF]. The same filter or kernel is therefore used at each location. Local connectivity and parameter sharing allow to reduce the number of parameters and improve the computational efficiency of learning, especially when dealing with high-dimensional data. Convolutional neural networks have gained a lot of attention with their applications in the fields of computer vision and pattern recognition [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. Given their success, CNN were adopted to time series analysis tasks [START_REF] Lim | Time Series Forecasting With Deep Learning: A Survey[END_REF].

(w * x)(i) = k-1 ∑ j=0 x(i -j)w(j) (3.
1D Convolutions when processing time series data, filters are one-dimensional (time) instead of two-dimensional (image width and height) [START_REF] Fawaz | Deep learning for time series classification: a review[END_REF]. For processing multivariate time series, multi-channel CNNs [START_REF] Yang | Deep convolutional neural networks on multichannel time series for human activity recognition[END_REF] and multi-head CNNs [START_REF] Canizo | Multi-head CNN-RNN for multi-time series anomaly detection: An industrial case study[END_REF] are used. Both multi-channel and multi-head CNNs separate multivariate time series into multiple univariate time series. In multi-channel CNN [START_REF] Yang | Deep convolutional neural networks on multichannel time series for human activity recognition[END_REF], each channel corresponds to an univariate time series. Hence, a single feature map is obtained as a final result for all time series. By contrast, multi-head CNN [START_REF] Canizo | Multi-head CNN-RNN for multi-time series anomaly detection: An industrial case study[END_REF] uses a separate sub-CNN model, coined convolution head, for each univariate time series. Hence, an independent feature map is obtained for each time series. Resulted convolutional features are subsequently concatenated together and sent to the fully connected layer for regression [START_REF] Canizo | Multi-head CNN-RNN for multi-time series anomaly detection: An industrial case study[END_REF]. Figure 3.16 illustrates the difference in architecture between multi-channel and multi-head CNNs.

Note that in several works, multi-head CNN may be referred to as multi-channel CNN, while a multi-channel CNN is considered as conventional CNN as in [START_REF] Zheng | Time series classification using multi-channels deep convolutional neural networks[END_REF]. However, we choose the former terminology, to not confuse between channels as existing component of conventional CNN and channels as separate convolution heads. Causal Convolutions refer to the type of convolution that ensures that an output at time t is derived only from inputs from time t or earlier. This is particularly required for time series forecasting, where information should not be "leaked" from future to past.

In one-dimensional convolutions, causal structure is implemented by simply shifting the output to the right direction by a number of time steps [START_REF] Oord | Wavenet: A generative model for raw audio[END_REF]. An example of causal convolution in three-layer network is illustrated in Figure 3.17.

(w * d x)(i) = k-1 ∑ j=0 x(i -dj)w(j) (3.36)
In [START_REF] Yu | Multi-scale context aggregation by dilated convolutions[END_REF], authors show that stacking dilated convolutions with increasingly large d results in expanding receptive fields exponentially. This is particularly useful when modeling long-term dependencies.

An example of model that uses causal and dilated convolutions is deepMind's WaveNet [START_REF] Oord | Wavenet: A generative model for raw audio[END_REF]. WaveNet was proposed for generating raw audio waveforms.

Comparative Analysis

To summarize, we have presented three techniques that are usually implemented in the context of multi-step multivariate time series forecasting, which are support vector regression, recurrent neural networks and convolutional neural networks. SVR is a "shallow" machine learning model that is time and memory efficient. Unlike neural networks, traditional machine learning algorithms like SVR are interpretable and explainable. However, SVR is generally outperformed by RNNs and CNNs in the context of time series forecasting [START_REF] Du | Multivariate time series forecasting via attention-based encoder-decoder framework[END_REF]. SVR also fails to capture long-term dependencies across time series data.

RNNs were proposed for modeling sequential data and capture short and longterm dependencies in sequential data [START_REF] Lipton | A critical review of recurrent neural networks for sequence learning[END_REF].. They shown great results in a variety of application, such as speech recognition, machine translation or image captioning [START_REF] Karpathy | The Unreasonable Effectiveness of Recurrent Neural Networks[END_REF] In addition, sequence-to-sequence architecture has been successfully proposed for multi-step ahead time series forecasting [START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF].

CNNs were initially proposed and intensively investigated in the context of image processing. Motivated by its success, researchers have adopted CNNs for time series forecasting [START_REF] Fawaz | Deep learning for time series classification: a review[END_REF]. Intuitively, spatial correlations present in images is analogous to temporal correlations present in time series data. Thanks to the nice local connectivity and parameter sharing properties in CNNs [START_REF] Fawaz | Deep learning for time series classification: a review[END_REF][START_REF] Goodfellow | Deep learning[END_REF], number of parameters of network is considerably reduced, hence a lower memory requirement than RNNs. Given the absence of recurrent connections, CNNs computations can happen fully in parallel. RNNs, on the other hand, need (for the most part) to be processed sequentially [START_REF] Pascanu | On the Difficulty of Training Recurrent Neural Networks[END_REF][START_REF] Fawaz | Deep learning for time series classification: a review[END_REF]. As a result, CNNs computations are generally faster than RNNs'. Furthermore, CNNs are also often better at feature extraction from data, mainly due to positioninvariant local patterns [START_REF] Goodfellow | Deep learning[END_REF]. This is particularly useful for transfer learning task which generally require high-level abstract representation learning.

Multi-step ahead forecasting with CNN, however, require some workarounds.

One approach consists in combining CNN and RNN [START_REF] Yan | Multi-step short-term power consumption forecasting with a hybrid deep learning strategy[END_REF]. Some works uses CNN for feature extraction from time series data, along with RNN for prediction [START_REF] Yan | Multi-step short-term power consumption forecasting with a hybrid deep learning strategy[END_REF]. Another approach consists simply output a vector instead of one value, while using multi-head or multi-channel CNN [START_REF] Canizo | Multi-head CNN-RNN for multi-time series anomaly detection: An industrial case study[END_REF].

We summarize pros and cons of each of these techniques in Table 3.1. • Requires large amount of historical data

Walk-Forward Validation

In classic machine learning tasks, a train-test split consists simply in splitting the data by observation. For example, 80% of observations for training and remaining 20% is held-out for test. The common k-fold cross-validation scheme was previously illustrated in Figure 3.5. This mainly relies on the assumption that observations are independent. However, this assumption is violated in case of sequential data. When performing classic cross-validation on tile series data, it makes no sense to mix the order of the observations give that the model will get to peek into the future. This is sometimes referred to as data leakage. Data leakage usually results in overly optimistic estimated performance of trained model.

Evaluation Metrics for Time Series Forecasting

Performance evaluation involves assessing the accuracy of predictive models and consists on a primordial step of the machine learning pipeline. Different set of metrics are chosen depending on the learning task, such as regression, classification, clustering, etc., and the specific requirements of the problem to solve. In the context of our work, we are dealing with time series forecasting. Common regression primary metrics [START_REF] Botchkarev | Performance Metrics (Error Measures) in Machine Learning Regression, Forecasting and Prognostics: Properties and Typology[END_REF] used to assess prediction models are; Mean Absolute Error (MAE), Mean Bias Error (MBE), Root Mean Squared Error (RMSE), etc.

MAE measures the average magnitude of the errors in a set of predictions, using the formula:

MAE = 1 N N ∑ i=1 |y i -ŷi | ,
where y i and ŷi respectively denote the true value of the predicted value of the i-th data sample, and N denotes the size of the dataset. If the absolute value is not taken, the MAE becomes the MBE. MBE however suffers from a cancellation effect, where positive bias and negative bias cancel out. RMSE is defined as the square root of the average squared distance between prediction and ground truth, using the formula:

RMSE = 1 N N ∑ i=1 (y i -ŷi) 2
These primary metrics are often extended with additional normalization. The Normalized RMSE (NRMSE) is for example defined by the normalization of the RMSE either by dividing it by the standard variation of the ground truth data, by the difference of the maximum and the minimum values of the ground truth data, or by the mean.

The latter normalization by the mean is also known as Coefficient of Variation of Root Mean Square Error (CVRMSE). The Normalized Mean Error (NME) involves the normalization of the MAE by the sum of the ground truth values, and is defined as follows:

N ME = ∑ N i=1 |y i -ŷi | ∑ N i=1 ŷi
An example of relative error metric for time series forecasting is mean absolute percentage error (MAPE), also known as mean absolute percentage deviation (MAPD).

MAPE computes the average absolute percentage errors of forecasts. MAPE is written as follows:

MAPE = 100 N N ∑ i=1 y i -ŷi y i
MAPE treats equal errors above the ground truth value and below the ground truth value differently. It comes down to the fact that forecasts that are greater than the ground truth are penalized heavier than forecasts that are lower than the ground truth [START_REF] Armstrong | Error measures for generalizing about forecasting methods: Empirical comparisons[END_REF]. To mitigate this issue, symmetric MAPE (sMAPE) was proposed:

SMAPE = 100 N N ∑ i=1 |y i -ŷi | |y i | + | ŷi |
Furthermore, MAPE produces infinite or undefined values when the actual values are zero or close to zero, which is a common occurrence in energy consumption field.

If the actual values are very small (usually less than one), MAPE yields extremely large percentage errors (outliers), while zero actual values result in infinite MAPEs.

Other composite metrics are also used in practice by combining one or more primary metrics. Coefficient of determination, also denoted as R 2 , measures the proportion of variance explained by the prediction model to the total variance in the observed data. R 2 normally ranges between 0 and 1, with 1 indicating the perfect fit. Values may, however, fall outside the range of 0 to 1 if the predictive model is worse than using an horizontal hyperplane that passes through the mean value. R 2 is defined using the formula:

R 2 = 1 - ∑ N i=1 (y i -ŷi) 2 ∑ N i=1 (y i -ȳi) 2
, where ȳ is the mean of the ground truth data. Authors in [START_REF] Li | Assessing the accuracy of predictive models for numerical data: Not r nor r2, why not? Then what?[END_REF] considered that R 2 is biased, insufficient and misleading. Thus, it should not be used to assess the accuracy of predictive models.

Similarity Measures for Time Series Data

Time series forecasting is crucial for decision making in several domains, namely building energy modeling. In several cases, it is important to study the similarity between time series data in order to improve forecasting performance [START_REF] Bandara | Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach[END_REF].

Dynamic time warping (DTW) [START_REF] Müller | Dynamic time warping[END_REF] is one of the most popular distance measures used for time series data. DTW was originally proposed for speech recognition applications to compare disparate speech patterns [START_REF] Müller | Dynamic time warping[END_REF]. Classical distance measures such as Euclidean and Manhattan distances are not suitable when dealing with time series data due to time distortions and time shifts. By contrast, DTW is able to measure similarity between two time series that may differ in duration and speed by aligning them.

As DTW suffers from quadratic complexity, several algorithms are proposed to speed it up, such as FastDTW [START_REF] Salvador | Toward accurate dynamic time warping in linear time and space[END_REF] and PrunedDTW [START_REF] Silva | Speeding up all-pairwise dynamic time warping matrix calculation[END_REF]. Wang et al. [START_REF] Wang | Experimental comparison of representation methods and distance measures for time series data[END_REF] compared several distance metrics and demonstrated that no other metric significantly outperforms DTW.

Izakian et al. [START_REF] Izakian | Fuzzy clustering of time series data using dynamic time warping distance[END_REF] proposed a time series clustering framework based on DTW.

Fawaz et al. [START_REF] Chang | An approach for time series similarity search based on Lucene[END_REF] used DTW to quantify the similarity between source and target dataset in their transfer learning framework.

Summary and conclusions

Machine learning (ML) allows systems to improve automatically with experience using data. Once thoroughly defined, a classical ML process generally starts with collecting relevant data in a sufficient amount for the target task. This is an important step for a successful ML project. ML has demonstrated great success in learning complex tasks and delivering predictions that guide decision making. Decision making became more insightful and accurate with the emergence of deep learning.

In this work, we are particularly interested in the task of building energy modeling (BEM). Historical data on building energy consumption are time series. Consequently, BEM using machine learning relies on time series forecasting techniques. In addition to building energy field, time series forecasting is becoming very important in a broader range of real-world applications, such as healthcare and finance [START_REF] Lim | Time Series Forecasting With Deep Learning: A Survey[END_REF]. Most used machine learning techniques for this task are support vector regression (SVR) and neural networks (NN), such as convolutional neural networks (CNN) and recurrent neural networks (RNN).

Compared to NN, SVR is simple and computationally cheap [START_REF] Du | Multivariate time series forecasting via attention-based encoder-decoder framework[END_REF]. However, it is generally outperformed by NN. RNN is widely used in the context of time series forecasting due to its ability to capture short and long term dependencies [START_REF] Karpathy | The Unreasonable Effectiveness of Recurrent Neural Networks[END_REF][START_REF] Lipton | A critical review of recurrent neural networks for sequence learning[END_REF].

CNN is computationally efficient and is characterized by its powerful feature extraction capabilities [START_REF] Goodfellow | Deep learning[END_REF]. RNN and CNN require, on the other hand, a large amount of training data compared to SVR.

To improve time series forecasting results, it is sometimes required to cluster or classify available data. Most popular similarity measure for time series data is dynamic time warping (DTW). Existing research works show that DTW is not significantly outperformed by any other well-known distance metrics in the context of time series processing [START_REF] Wang | Experimental comparison of representation methods and distance measures for time series data[END_REF].

Training accurate models mainly rely on collected dataset. The main factors to study the suitability of the dataset are quantity and respresentativeness. A relatively large amount of historical data must be collected beforehand. More particularly, in the context of building energy modeling, reported works usually rely on multiple months to years of historical data [START_REF] Kim | Predicting residential energy consumption using CNN-LSTM neural networks[END_REF][START_REF] Ben-Nakhi | Cooling load prediction for buildings using general regression neural networks[END_REF]. Representativeness refers to the relevance of available data to the target task. Namely, for BEM, labeled data collected from the building to model are generally required to reliably model its energy consumption. However, in many cases, buildings do not yet provide historical data, such as newly built and newly renovated buildings.

To alleviate data unavailability challenge, transfer learning is usually required.

This allows to reuse available existing data or existing models for the training of models for an unseen target. A detailed description of this area of research is in Chapter 4.

Chapter 4

Cross-Domain Knowledge Transfer

Introduction

Traditional machine learning applications usually assume that the training and the test data are in the same feature space and are drawn from the same distribution. However, in many real-life applications, this assumption does not hold. For example, in the field of building energy modeling, energy consumption is complex and is heavily affected by a wide range of variables. As such, energy profiles may vary greatly with small changes in such variables (e.g. renovation, different operation schedules, change of tenants, varying weather conditions, etc.). Similarly, in computer vision, photos and sketches do not follow the same distributions. To mitigate this issue, the transfer learning (TL) area of research was introduced. TL is also referred to in literature as knowledge transfer.

This chapter is structured as follows.

Overview on Transfer learning

The notations and definitions provided in this section follow the survey paper by Pan et al. [START_REF] Pan | A survey on transfer learning[END_REF]. The definition of TL relies on two main concepts, the domain and the task.

A domain D is composed of a feature space X and a marginal probability distribution P(X), where X = {x 1 , x 2 , ..., x n } ∈ X is a set of examples of size n. A domain is denoted by D = (X , P(X)). If two domains are different, then their feature spaces are different and/or their marginal probability distributions are different. For a particular domain D, a task T is composed of a label space Y and an objective function f (.)

that is learned from the training data pairs (x i , y i), where x i ∈ X is the feature vector of example i and y i ∈ Y is its corresponding label. The objective function f (.) is used to predict a label y of each new example x. From a probabilistic viewpoint, f (.) consists in the conditional probability P(y/x). A task is denoted by T = (Y, f (.)).

We consider a source domain D S and a target domain D T . The source domain data are denoted as D S {(x S 1 , y S 1), ..., (x S n , y S n)}, where the data instance x S i ∈ X S and its corresponding label y S i ∈ Y S . Similarly, the target domain data are denoted as

D T {(x T 1 , y T 1), ..., (x T n , y T n)}, where x T i ∈ X T and y T i ∈ Y T .
More precisely, for the task of building energy modeling, energy consumption depends greatly on several building-specific contextual characteristics, namely typology (residential, industrial, or commercial), shape, size and age [START_REF] Won | Factors affecting energy performance of largescale office buildings: Analysis of benchmarking data from New York City and Chicago[END_REF]. Hence, buildings have varying probability distributions, over different characteristics. Here, each building setting may be considered as a disparate domain with a different distribution.

Transfer learning is defined as [START_REF] Pan | A survey on transfer learning[END_REF]: "Given a source domain D S and a learning task T S , a target domain D T and a learning task T T , transfer learning aims to help improve the learning of the target objective function f T (.) in D T using the knowledge in D S and T S , where D S = D T , or T S = T T ."

Given that a domain consists of the pair D = (X , P(X)), the expression D S = D T implies that (1) the feature spaces between the source and the target domain are different, i.e. X S = X T , or (2) the feature spaces are the same but the marginal probability distribution between the source and the target domains are different, i.e. P S (X) = P T (X). Similarly, a task consists of the pair T = (Y, f (.)), the expression T S = T T implies that (1) the label spaces between the source and the target domains are different, i.e. Y S = Y T , or (2) the label spaces are the same but the objective functions between the source and the target domains are different, i.e. f S (.) = f T (.). A traditional machine learning problem is thus characterized by the same source and target domains , i.e. D S = D T and the same source and target tasks, i.e. T S = T T .

Authors in [START_REF] Pan | A survey on transfer learning[END_REF] first classify transfer learning techniques into three settings as depicted (see Figure 4.1): (1) inductive transfer learning, (2) transductive transfer learning and (3) unsupervised transfer learning. Inductive transfer learning refers to the case where the target task is different from the source task. Labeled data are however required in the target domain to be able to train the target model. Inductive TL models learn from labeled/unlabeled data from the source domain and labeled data from the target domain. Therefore, inductive transfer learning setting is categorized into various sub-settings, depending on whether the source domain data are labeled or unlabeled, and depending on how target and source tasks are learned. Namely, multi-task learning refers to the case where a lot of labeled are available in the target domain and source and target tasks are learned simultaneously [START_REF] Pan | A survey on transfer learning[END_REF]. By contrast, sequential transfer learning refers to the case where source and target tasks are learned sequentially. Self-taught learning refers, on the other hand, to the case where no labeled data are available in the source domain.

Unsupervised transfer learning setting is similar to inductive transfer learning in the sense that the target task is different from the source task. However, unsupervised transfer learning is related to unsupervised learning tasks, such as clustering, dimensionality reduction and density estimation, where no labeled data are available in both the source and the target domains. Broadly, four different transfer learning approaches are to be distinguished [START_REF] Pan | A survey on transfer learning[END_REF]:

Domain Adaptation

Taxonomy of Domain Adaptation settings

Domain adaptation can be categorized into two main classes; homogeneous and heterogeneous DA. In the case where the feature representations for the target and the source domains are the same X T = X S , we refer to the problem as homogeneous DA.

Consequently, it is the data distributions that differ between the target and the source domains P T (X) = P s (X). In the case where the feature representations for the target and the source domains X T = X S , we refer to the problem as heterogeneous DA. The above mentioned classes may be further split into supervised, semi-supervised, and unsupervised DA. In supervised DA, we have a small amount of labeled data in the target domain. In semi-supervised DA, we have both labeled and unlabeled data in the target domain. In unsupervised DA, we have no labeled data in the target domain. This classification is depicted in Figure 4.3. It is also essential to note that in some works [START_REF] Daumé | Frustratingly easy domain adaptation[END_REF],

the unsupervised DA that we defined here is rather considered as a semi-supervised DA

given that we have labeled data in the source domain and unlabeled data in the target domain. The unsupervised DA naming in this case refers to the domain adaptation unsupervised learning problems such as clustering, dimensionality reduction, etc. For what follows, we will consider the former classification.

The approach proposed by Wang et al. in [START_REF] Wang | Deep visual domain adaptation: A survey[END_REF] distinguished one-step DA and multi-step DA. In one-step DA, the knowledge transfer is directly accomplished in onestep between the source and the target domains. By contrast, in multi-step DA, we seek to identify intermediate domains that play the role of bridges that connect seemingly unrelated source and target domains. Multi-step DA [START_REF] Tan | Distant domain transfer learning[END_REF] considers the distance between domains.

We distinguish three main approaches to domain adaptation, instance-based approaches, feature representation-based approaches and model-based approaches. A comprehensive review of domain adaptation can be found in [START_REF] Zhang | Transfer adaptation learning: A decade survey[END_REF]. Instance-based adaptation assumes that certain data points of the source domain are more similar to the target domain than others, and thus seek to reweigh instances correspondingly; similar instances will have stronger weights. Feature-representation-based methods assume that there exist a feature space in which source and target features are indistinguishable. These methods aim to find this feature space. Model-based adaptation aim to adapt models trained on the source domain in order to perform well on the target domain.

Early Approaches of Domain Adaptation

Instance re-weighting methods These methods aim to re-weight or select data instances that reduce the discrepancy between source and target domains. Instance reweighting schemes are well documented in literature. As seen in Chapter 3, given a data set and a hypothesis space H, a machine learning algorithm might aim to learn the optimal hypothesis f * ∈ H that minimizes the expected risk, such that:

f * = arg min f ∈H E (x,y)∈X ×Y [L(f (x), y)]
where L is the loss function, X is the input space, and Y is the output space.

Ideally, in the domain adaptation setting, we want to learn the optimal model for the target domain that minimizes the empirical risk over the target distribution:

f * T = arg min f ∈H E (x,y)∈X ×Y [L(f (x), y)] = arg min f ∈H ∑ (x,y)∈X ×Y [P T (x, y)L(f (x), y)]
However, since no labeled data are generally available in the target domain, we learn the optimal model on the source data instead. If the target and the source data follows the same distribution, we can simply learn an optimal model on the source data. The learned model may be directly used in the target domain without further optimization:

f * = arg min f ∈H E (x,y)∈X ×Y L(f (x), y)
Otherwise, when the probability distributions between the target and the source domains differ, we rather need to consider the following optimization problem: Hence, we can learn an accurate model for the target domain by weighting the importance of each instance (x S i , y S i) of the source domain by assigning a weight P T (x S i ,y S i) P S (x S i ,y S i) . Note that for approach, we assume a homogeneous DA setting. Given that we generally do not have labeled data in the target domain, the density ratio P T (x S i ,y S i) P S (x S i ,y S i) is difficult to compute. As a consequence of Bayes' rule, two research ways have been proposed in literature to tackle this challenge. In the first approach, we assume that the source and the target domains have the same conditional distribution of X P S (x/y) = P T (x/y) and different class distributions P S (y) = P T (y). The different class distributions between the two domains is usually referred to as target shift [START_REF] Zhang | Domain adaptation under target and conditional shift[END_REF], prior probability shift [START_REF] Quionero-Candela | Dataset Shift in Machine Learning[END_REF] or class imbalance [START_REF] Japkowicz | The class imbalance problem: A systematic study[END_REF]. In the second approach, we assume that the source and the target domains have the same conditional distribution Y P S (y/x) = P T (y/x) and different marginal distributions of X P S (x) = P T (x). The different between the two domains is referred to as covariate shift [START_REF] Quionero-Candela | Dataset Shift in Machine Learning[END_REF] or sample selection bias.

f * T = arg min f ∈H ∑ (x,
Under covariate shift, the ratio between the source and the target domains joint distributions is rewritten as:

P T (x, y) P S (x, y) = P T (x) P S (x)
Therefore, we compute importance weights by estimating the ratio of the data marginal distributions P T (x) x) . As such, instances with high ratio are more important to the target domain than instances with low ratio. The problem of estimating importance weights is also referred to as density ratio estimation (DRE). Several DRE methods have been proposed in literature, such as kernel density estimation, kernel mean matching, and the use of probabilistic classifiers.

P S (
Indirect DRE methods estimate the marginal distribution of each domain independently and subsequently take their ratio. By contrast, direct DRE methods directly estimate weights by minimizing the discrepancy between the source and the target domains (without density estimation). A popular domain discrepancy measure is maximum mean discrepancy (MMD) [START_REF] Gretton | Covariate shift by kernel mean matching[END_REF][START_REF] Pan | Domain adaptation via transfer component analysis[END_REF][START_REF] Huang | Correcting sample selection bias by unlabeled data[END_REF]. Minimizing MMD in a highdimensional space, namely a reproducing kernel Hilbert space (RKHS), is called kernel mean matching (KMM) [START_REF] Huang | Correcting sample selection bias by unlabeled data[END_REF]. KMM methods can be successfully used to re-weight individual instances. However, their time complexity is cubic in the size of training data, which is computationally impractical on large data [START_REF] Kouw | A review of domain adaptation without target labels[END_REF].

Another direct DRE is through Kullback-Leibler Importance Estimation Procedure (KLIEP) [START_REF] Sugiyama | Direct importance estimation with model selection and its application to covariate shift adaptation[END_REF]. KLIEP uses KL-divergence as domain discrepancy measure. The major benefit of KLIEP is that it can estimate the values of the importance of new target instances without further weight estimation, as opposed to KMM [START_REF] Kouw | A review of domain adaptation without target labels[END_REF]. Another simple method transforms the DRE problem into a binary classification problem; by trying to predict whether each instance is coming from the source or the target domain data [START_REF] Zadrozny | Learning and evaluating classifiers under sample selection bias[END_REF][START_REF] Bickel | Dirichlet-enhanced spam filtering based on biased samples[END_REF]. As such, importance weights are computed by inverting posterior probabilities.

Under prior probability shift, the ratio between the source and the target domains joint distributions is rewritten as:

P T (x, y) P S (x, y) = P T (y) P S (y)
Therefore, we compute importance weights by the estimation of P T (y) P S (y) . Note that in this case, it consists in weighing the importance of domain labels rather than data instances [START_REF] Lipton | Detecting and correcting for label shift with black box predictors[END_REF].

Feature representation-based methods

These approaches argue that there exists a common feature space that minimizes discrepancy between source and target domains.

Existing works in this context may be classified into three approaches [START_REF] Zhang | Transfer adaptation learning: A decade survey[END_REF], namely feature transformation [START_REF] Daumé | Frustratingly easy domain adaptation[END_REF], subspace learning [START_REF] Zhang | Guide subspace learning for unsupervised domain adaptation[END_REF][START_REF] Fernando | Unsupervised visual domain adaptation using subspace alignment[END_REF], feature reconstruction [START_REF] Jhuo | Robust visual domain adaptation with low-rank reconstruction[END_REF] and feature coding [START_REF] Xu | Bridging the Domain Shift by Domain Adaptive Dictionary Learning[END_REF]. A detailed review of domain adaptation approaches can be found in [START_REF] Zhang | Transfer adaptation learning: A decade survey[END_REF].

Model-based methods

Model-based methods aim to adapt models trained on the source domain in order to perform well on the target domain. Generally, these methods require at least a small set of labeled target data, therefore they can be applied only to the supervised or the semi-supervised DA scenarios [START_REF] Csurka | Domain adaptation for visual applications: A comprehensive survey[END_REF]. Yang et al. [START_REF] Yang | Cross-domain video concept detection using adaptive svms[END_REF] proposed an adaptive SVM (A-SVM) for adapting source classifiers to a target domain. Authors also propose a performance evaluation metric that enables to select the best source classifiers for adaptation.

Deep domain Adaptation

Deep learning [START_REF] Goodfellow | Deep learning[END_REF] has demonstrated its powerful capability to learn highly salient representations from raw data. These representation usually perform better than traditional hand-engineered features in many fields. However, fully-supervised deep networks trained on limited data would often dramatically over-fit [START_REF] Donahue | Decaf: A deep convolutional activation feature for generic visual recognition[END_REF]. Domain adaptation thus seeks to exploit deep learning advances to learn feature representations that are robust to domain shift. Deep domain adaptation approaches can be classified under three axes [START_REF] Csurka | Domain adaptation for visual applications: A comprehensive survey[END_REF]: (1) using deep models to extract deep representations that can be then used by shallow domain adaptations methods, (2) train a deep network on the source domain and later further fine-tune it to the target domain, and (3) use a deep network architecture that is specifically designed to domain adaptation. Work presented by Wang et al. in [START_REF] Wang | Deep visual domain adaptation: A survey[END_REF] further categorized the latter axis into three approaches:

(1) Discrepancy-based approaches that aim to minimize the domain shift by fine-tuning deep networks using labeled or unlabeled target data, (2) Adversarial-based approaches that promote domain confusion using domain discriminators through adversarial objectives, and (3) Reconstruction-based approaches that enforce feature domain invariance using data reconstruction as auxiliary task.

Adversarial-based approaches is further categorized into generative and non generative methods. Generative methods typically aim to use source domain data, noise vectors, or both to generate samples that are similar to target domain. These simulated samples along with annotations from source domain will constitute training data. Non-generative methods learn discriminative feature representations using labels in the source domain, and later map target data to the same feature space through a domain-confusion loss. Similarly, reconstruction-based approaches are categorized into encoder-decoder and adversarial reconstruction methods. Encoder-decoder reconstruction methods use an encoder for representation learning, and a decoder for data reconstruction. Adversarial reconstruction methods are based on reconstruction error between original and reconstruction example in each domain [START_REF] Wang | Deep visual domain adaptation: A survey[END_REF]. Table 4.1 summarizes one-step deep DA approaches as presented in [START_REF] Wang | Deep visual domain adaptation: A survey[END_REF].

Multi-source Domain Adaptation

Above mentioned methods were designed for cases where we have a single source domain and a single target domain. By contrast, multi-source domain adaptation [START_REF] Mansour | Domain adaptation: Learning bounds and algorithms[END_REF][START_REF] Sun | A two-stage weighting framework for multi-source domain adaptation[END_REF] deals with source data collected from different sources. A straightforward approach consists in concatenating different available source domains into a single source set. We refer to this approach as source-combined DA. However, this approach might yield a poor performance because of the domain shift between the multiple source domains. Because domain shift not only exist between each source and the target but also among multiple source domains, models trained on source-combined data from disparate sources can interfere with one another during the training process and generalize poorly when applied to the target domain [START_REF] Zhao | Multi-source Domain Adaptation in the Deep Learning Era: A Systematic Survey[END_REF][START_REF] Riemer | Learning to learn without forgetting by maximizing transfer and minimizing interference[END_REF].

Assuming that the target distribution can be represented as mixture of multi-source distributions, Mansour et al. [START_REF] Mansour | Domain adaptation with multiple sources[END_REF] proposed a distribution weight combining rule that combines source models and uses as weights mixture coefficients. Xu et al. [START_REF] Xu | Deep cocktail network: Multi-source unsupervised domain adaptation with category shift[END_REF] proposed a deep cocktail network, inspired by [START_REF] Mansour | Domain adaptation with multiple sources[END_REF], that uses multiple domain discriminators to achieve latent space alignment. Zhu and al. [START_REF] Zhu | Aligning domain-specific distribution and classifier for cross-domain classification from multiple sources[END_REF] proposed a two-stage alignment framework, that aligns domain-specific distributions of each source-target domain pair and aligns outputs of domain-specific classifiers for each target sample.

Another approach for MDA is through source domain selection. Source domain selection [START_REF] Duan | Exploiting web images for event recognition in consumer videos: A multiple source domain adaptation approach[END_REF][START_REF] Chen | Re-weighted adversarial adaptation network for unsupervised domain adaptation[END_REF] mainly consists in selecting source domains that are the most pertinent to the target domain, or assigning a weight to each source domain depending on its similarity to the target domain. In other words, it consists in selecting source domains that holds relevant information to transfer, and discarding the ones that might negatively impact the target model [START_REF] Csurka | Domain adaptation for visual applications: A comprehensive survey[END_REF]. Duan et al. [START_REF] Duan | Exploiting web images for event recognition in consumer videos: A multiple source domain adaptation approach[END_REF] proposed a domain selection machine that is trained on loosely labeled web images from disparate source domains.

Proposed domain selection relies on a weighted combination of source classifiers as well as a domain-dependent regularizer for selecting most pertinent source domains.

Chen et al. [START_REF] Chen | Re-weighted adversarial adaptation network for unsupervised domain adaptation[END_REF] proposes a re-weighting vector to match the source domain label distribution to the unknown target one. Bhat et al. [START_REF] Bhatt | Multi-Source Iterative Adaptation for Cross-Domain Classification[END_REF] propose to select the best source domains based on both H-similarity and complementary properties, and then to iteratively learn a shared representation.

Generally, one source dataset is considered as one domain. For instance, images collected from ImageNet, from Caltech and from Bing are considered to represent three source domains. However, this assumption does not always hold, because domain shift may exist among data from one source. Several works have thus proposed to discover latent domains in multi-source data [START_REF] Hoffman | Discovering latent domains for multisource domain adaptation[END_REF][START_REF] Xiong | Latent domains modeling for visual domain adaptation[END_REF][START_REF] Mancini | Boosting domain adaptation by discovering latent domains[END_REF].

Multi-source DA is sometimes referred to as multi-domain learning (MDL) [START_REF] Yang | A unified perspective on multi-domain and multi-task learning[END_REF].

Yang et al. [START_REF] Yang | A unified perspective on multi-domain and multi-task learning[END_REF] propose a unified framework that tackles both multi-domain learning (MDL) and multi-task learning (MTL) problems, where we deal with respectively multiple source domains and multiple learning tasks. The main idea is to exploit available semantic descriptors (or metadata) (e.g. indexes of domains or tasks) about each feature vector. As such, the need to distinguish between different domains and different tasks is alleviated. Their proposed network is two-sided; one performs representation learning from feature vector, and one from associated semantic descriptor. Both sides outputs are subsequently combined into a single output. This work can be further applied for zero-shot domain adaptation (ZSDA) (or domain generalization) setting which assumes that no target data are available during training-time.

Domain Generalization

Domain generalization (DG) approach tackles the domain shift problem as in DA. DG addresses building models that by design generalize well even in new previously unseen target domains. DG is related to the multi-domain learning (MDL), in the sense that it also aims to learn a single model that is effective for multiple known domains.

However, in contrast to MDL, DG models can be generalized to new unknown target/testing domains. In literature, DG may be investigated under different names, i.e. zero-shot domain adaptation (ZSDA) and zero-shot learning (ZSL) [START_REF] Yang | A unified perspective on multi-domain and multi-task learning[END_REF]

Given multiple source datasets, Khosla et al. [START_REF] Khosla | Undoing the damage of dataset bias[END_REF] proposed an SVM based approach, in which the learned weight vectors are common to all datasets. Muandet et al. Li et al. [START_REF] Li | Learning to generalize: Metalearning for domain generalization[END_REF] propose a meta-learning domain generalization approach MLDG.

It consists on a model agnostic training procedure that can improve the domain generality of a base learner. This procedure is based on synthesizing virtual training and virtual testing domains within each mini-batch. The meta-optimization objective consists on minimizing the loss in the training domains, while simultaneously improving the virtual testing loss. Balagi et al. [START_REF] Balaji | Metareg: Towards domain generalization using meta-regularization[END_REF] propose a scheme for learning regularization functions that generalize to novel distributions.

Mancini et al. [START_REF] Mancini | Adagraph: Unifying predictive and continuous domain adaptation through graphs[END_REF] propose to use target domain metadata and model domain dependencies using a graph in the context predictive domain adaptation. Authors in [START_REF] Mancini | Adagraph: Unifying predictive and continuous domain adaptation through graphs[END_REF] propose to build multiple domain-specific models on each source domain, and then regress a model for the target domain based on nearby domains in the graph. Domain metadata for transfer learning was also explored by Yang et al. [START_REF] Yang | Multivariate regression on the grassmannian for predicting novel domains[END_REF]. Yang et al. [START_REF] Yang | Multivariate regression on the grassmannian for predicting novel domains[END_REF] proposed a cross-domain multivariate regression approach by mapping from domain metadata to points in a Grassmanian manifold. Given this mapping and target domain metadata, two solutions are proposed to infer a classifier in the unseen target domain.

Similarity Measures between Domains

For a successful generalization across multiple domains, a domain similarity measure is necessary to compute discrepancy between data distributions. Numerous metrics are proposed in literature, such as maximum mean discrepancy [START_REF] Borgwardt | Integrating structured biological data by kernel maximum mean discrepancy[END_REF][START_REF] Long | Learning transferable features with deep adaptation networks[END_REF][START_REF] Li | Domain generalization with adversarial feature learning[END_REF][START_REF] Zhu | Aligning domain-specific distribution and classifier for cross-domain classification from multiple sources[END_REF],

Kullback-Leibler divergence [START_REF] Sugiyama | Direct importance estimation with model selection and its application to covariate shift adaptation[END_REF][START_REF] Taigman | Unsupervised cross-domain image generation[END_REF], f-divergence [START_REF] Nowozin | f-gan: Training generative neural samplers using variational divergence minimization[END_REF], Wasserstein metric [START_REF] Shen | Wasserstein distance guided representation learning for domain adaptation[END_REF],

Kolmogorov-Smirnoff statistic [START_REF] Kouw | A review of domain adaptation without target labels[END_REF], or Rényi divergence [START_REF] Cortes | Learning Bounds for Importance Weighting[END_REF]. However, these metrics require at least unlabeled data from the target domain to compute similarities.

Several works choose to rather learn a good similarity metric that fits specific requirements. For instance, Pinheiro et al. [START_REF] Pinheiro | Unsupervised domain adaptation with similarity learning[END_REF] proposed an unsupervised DA approach based on similarity learning. The authors aim to find a representation space in which instances of a given category (independently of their domains) are mapped around this category's prototype. A prototype of a category is computed by averaging representations of all data instances that belong to this category. At test time, the most similar prototype to a target sample is selected.

A detailed review on metric learning from data can be found in [START_REF] Bellet | A survey on metric learning for feature vectors and structured data[END_REF]. In general, similarity metric learning [START_REF] Kulis | Metric learning: A survey[END_REF] aims to learn a task-specific distance metric using similarity information delivered by training data. This is needed when general-purpose distance metrics (e.g. Euclidean distance or cosine similarity) fail to capture data characteristics and relationships [START_REF] Bellet | A survey on metric learning for feature vectors and structured data[END_REF]. It is also required when usual distance metrics are not well-suited for particular tasks and requirements. The simplest and standard approach for learning similarity metrics is to find a linear transformation on data (often called Mahalanobis metric learning [START_REF] Fetaya | Learning local invariant mahalanobis distances[END_REF]), so that similar data points are brought closer together while dissimilar data points are pushed farther apart.

More recently, non-linear metric learning is used to capture non-linear characteristics within data. Most existing works in this framework are inspired from Siamese networks [START_REF] Kaya | Deep metric learning: A survey[END_REF] due to their powerful representation capabilities [START_REF] Roy | Siamese networks: The tale of two manifolds[END_REF]. A Siamese network [START_REF] Bromley | Signature verification using a" siamese" time delay neural network[END_REF][START_REF] Chopra | Learning a similarity metric discriminatively, with application to face verification[END_REF] contains two identical sub-networks. During training, it takes two inputs, one in each sub-network, and learns to predict similarity between these inputs. Maotiian et al. [START_REF] Motiian | Unified deep supervised domain adaptation and generalization[END_REF] used a Siamese network in the context of visual supervised domain adaptation and generalization. Their work aims to find a shared embedding subspace for source and target distributions that promotes both domain confusion and semantic alignment. Semantic alignment ensures that data points from different domains but similar labels are mapped close together in the learned embedding subspace.

Summary and conclusions

To summarize, we categorized the field of transfer learning, and presented shallow and deep approaches of domain adaptation. DA setting is characterized by having the same learning task but different domains across the source and the target settings. In contrast to DA, domain generalization deals with scenarios where no data are available in the target domain. The goal is therefore to study how a model accurately performs out-of-the box in new domains [START_REF] Li | Learning to generalize: Metalearning for domain generalization[END_REF].

Generally, cross-domain knowledge transfer applications assume that the source and the target domains are related, and seek to adapt data instances, feature representations or models from the source domains to the target domain. However, this is not always the case. In real-world large-scale scenarios, many source domains are available and are potentially very dissimilar. In consequence, applying techniques that were proposed for relatively related domain may not hold good generalization performance.

Some works proposed to select most similar source domains to the target domain.

For studying similarity across different domains, distance metrics generally rely on the availability of target data. However, target data are not always available. This is particularly the case in newly built or newly renovated buildings, in which no operational data are preliminarily generated.

Most of TL research was interested in fields like computer vision and natural language processing. TL has therefore not been thoroughly investigated for time series forecasting tasks, which are useful across various applications such as energy, finances, network traffic or healthcare.

Part 2

Scientific Contributions

Chapter 5

Query-adaptive Training Data Recommendation

Introduction

Machine learning is increasingly and successfully used in many sectors and industries.

However, successful machine learning application depends heavily on the availability of sufficiently large amount of relevant data, notably when deep learning is used.

Training accurate models when no data are available in the target domain (for which the model is intended), is therefore challenging.

With the growth of open data initiatives in many fields, existing data about other related domains may be accessible. The main idea of our work is, thus, to leverage data collected from multiple different and related source domains when no data are available on a target domain. An important challenge arises when handling multi-source data, as large domain shift may exist between different source domains, as well as between each source domain and target domain [START_REF] Sugiyama | Mixture regression for covariate shift[END_REF]. Consequently, models trained on sourcecombined data collected from disparate sources can interfere with one another during the training process, and generalize poorly when applied to a new previously unseen target domain [START_REF] Zhao | Multi-source Domain Adaptation in the Deep Learning Era: A Systematic Survey[END_REF][START_REF] Riemer | Learning to learn without forgetting by maximizing transfer and minimizing interference[END_REF]. This phenomenon is referred to as negative transfer [START_REF] Wang | Characterizing and avoiding negative transfer[END_REF].

To address this challenge, we propose an inter-domain similarity-based approach to recommend relevant training data by selecting most similar source domains to a target domain. Conventionally, inter-domain similarity measures compute the discrepancy between the distributions of source domains data and target domain data [START_REF] Duan | Exploiting web images for event recognition in consumer videos: A multiple source domain adaptation approach[END_REF][START_REF] Chattopadhyay | Multisource domain adaptation and its application to early detection of fatigue[END_REF][START_REF] Ruder | Data selection strategies for multidomain sentiment analysis[END_REF]. However, this is not suitable in our case due to the unavailability of target domain We consider the use case of building energy modeling. More particularly, we focus on buildings on which no operational data are available, such as newly built or newly renovated buildings. Metadata about the unseen target building mainly consist of design properties that are easy to access, such as the building's use type (residential, industrial, or commercial), shape, size and age.

The remainder of this chapter is structured as follows. Section 5.2 gives a brief review of most related works. Section 5.3 provides an overview on our proposed methodology. Section 5.4 and Section 5.5 describe the operation of respectively training data recommendation and predictive modeling components. Section 5.6 illustrates the application of our proposed methodology for the use case of building energy modeling, and discusses other possible use cases. Finally, in Section 5.7, we draw conclusions and present suggestions for future research.

Originality of our Methodology

Proposed approaches addressing the domain shift challenge in multi-source data fall into the broader field of knowledge transfer, and more particularly multi-source domain adaptation and domain generalization sub-fields (more details in Chapter 4). Domain generalization assumes that the target data are not accessible during training and aims to leverage multiple source domains, as in our work. However, we assume that a contextual description of the target domain (metadata) is available to perform source domain selection. We argue that a preliminary selection of most similar domains is necessary when multiple source domains are available, in order to effectively avoid negative transfer [START_REF] Rosenstein | To transfer or not to transfer[END_REF].

Source domain selection has been investigated in the context of multi-source domain adaptation [START_REF] Duan | Exploiting web images for event recognition in consumer videos: A multiple source domain adaptation approach[END_REF][START_REF] Chen | Re-weighted adversarial adaptation network for unsupervised domain adaptation[END_REF]. It mainly consists in selecting source domains that are the most relevant to the target domain, or assigning a weight to each source domain depending on its similarity to the target domain. However, this generally requires unlabeled data from the target domain to compute similarity measures between target domain and available source domains (see Chapter 4). Instead, we focus on domain selection with no target data available during training. Hence, we exploit target domain metadata that are easily accessible. Mancini et al. in [START_REF] Mancini | Adagraph: Unifying predictive and continuous domain adaptation through graphs[END_REF] propose to use target domain metadata and model domain dependencies using a graph in the context of predictive domain adaptation. Authors in [START_REF] Mancini | Adagraph: Unifying predictive and continuous domain adaptation through graphs[END_REF] propose to build multiple domain-specific models on each source domain, and then regress a model for the target domain based on nearby domains in the graph. Instead of training multiple domain-specific models, we propose to initially select data from most relevant source domains using target domain metadata, and use the data to build a model for the unseen target domain. Metadata about target domain is also modeled as a user query. Moreover, we propose to combine multiple learning algorithms simultaneously. For this, we use an ensemble learning framework.

As a result, our framework is by design generic and easily extensible.

Distance between domains in [START_REF] Mancini | Adagraph: Unifying predictive and continuous domain adaptation through graphs[END_REF] is computed as a measure between their respective metadata. However, small distance between domains metadata does not necessarily imply a small distance between these domains data, on which final task performance is based. Thus, we use a similarity metric learning approach that captures similarities between domains data, while requiring only domain metadata during test to identify most similar source domains.

Yang et al. in [START_REF] Yang | A unified perspective on multi-domain and multi-task learning[END_REF][START_REF] Yang | Multivariate regression on the grassmannian for predicting novel domains[END_REF] proposed to exploit available metadata about domains or tasks for respectively multi-domain learning and multi-task learning. Metadata in [START_REF] Yang | A unified perspective on multi-domain and multi-task learning[END_REF] As use case, we consider the application on building energy modeling tasks. Transfer learning is recently being investigated for this task [START_REF] Ribeiro | Transfer learning with seasonal and trend adjustment for cross-building energy forecasting[END_REF][START_REF] Fu | A Building Energy Consumption Prediction Method Based on Integration of a Deep Neural Network and Transfer Reinforcement Learning[END_REF][START_REF] Hooshmand | Energy Predictive Models with Limited Data using Transfer Learning[END_REF]. However, these works focus on domain adaptation, and therefore on historical data scarcity rather than their total absence. To the best of our knowledge, our work is a first cross-building knowledge transfer attempt for predictive modeling of building energy consumption when no historical data are accessible during training.

Overview of the Proposed Methodology

We present a workflow for relevant existing data recommendation and reuse in the general context of cross-domain predictive modeling tasks. Our system main objective is to train accurate predictive models for new previously unseen target domains based solely on their metadata. As such, we distinguish between two types of information: data and metadata. Domain data are a collection about recorded facts such as measurements, observations or descriptions about anything. On the other hand, domain metadata provides contextual information to the data and the domain itself. For instance, in the framework of building energy modeling, data are produced by the building during its operation, such as measurements of energy consumption and weather conditions.

Whereas, metadata summarize contextual information about the building, such as the building type, size, year of construction, location, number of occupants, etc. We should note that various definitions of "metadata" exist depending on the field of study. The definition that we have provided is thus specific to our work and should not be confused with similar terms used in, for example, the field of data management. We present an overview of our methodology in Figure 5.2. Hereafter, we detail each service of the workflow. propose a Siamese network [START_REF] Bromley | Signature verification using a" siamese" time delay neural network[END_REF] based recommendation framework whose training logic relies simultaneously on metadata and historical data within domains.

During inference, it only requires the metadata of the target domain. In brief, our similarity metric learning approach will learn a domain-level feature representation, so that similar domain pairs (having similar data patterns) are mapped close to one another in the feature space, and dissimilar domain pairs are mapped far from one another. This is described in further details in Section 5.4. Based on the loaded dataset, we learn predictive models from historical data of recommended source domains. These predictive models will later allow us to accurately predict future changes of the new previously unseen target domain described in the user query (metadata). In this work, we use an ensemble learning technique to combine trained predictive models. This establishes the generic nature of our query-adaptive methodology, and ensures better generalization performance as described in Section 5.5

Predictive Modeling

Training Data Recommendation

Training data recommendation allows to perform a preliminary contextual selection, which is arguably required when generalizing the applicability of cross-domain knowledge transfer. Predictive model training will be subsequently limited to data retrieved from source domains that are sufficiently related and similar to the target domain described in the query. This also avoids negative transfer [START_REF] Rosenstein | To transfer or not to transfer[END_REF] by filtering out unrelated source domains. Common approaches for domain selection compute the discrepancy between source domains data and target domain data [START_REF] Duan | Exploiting web images for event recognition in consumer videos: A multiple source domain adaptation approach[END_REF][START_REF] Chen | Re-weighted adversarial adaptation network for unsupervised domain adaptation[END_REF]. However, as previously established, we focus on the case of unavailability of historical data in the target domain.

The main challenge therefore lies in the definition of an adequate domain-level similarity metric that is simultaneously:

1. defined suitably to reflect similarity between target domain and source domains data patterns. This is due to our target task of predictive modeling, which is mainly based on historical data.

2. not require data about the target domain during inference.

Consequently, we propose a training data recommendation process that requires solely contextual metadata about the target domain in order to select most similar source domains. Metadata will provide a minimal a priori knowledge about the new previously unseen target domain, and therefore consist of contextual information that are easy to access. Our recommendation approach relies on deep metric learning. Metric learning [START_REF] Kulis | Metric learning: A survey[END_REF] aims to automatically find a task-specific distance function to measure the similarity between samples. Metric learning techniques may be either supervised or unsupervised. Unsupervised metric learning maps useful information into a lowdimensional subspace. Supervised metric learning formulates the problem as an optimization problem with an objective function on labeled training data [START_REF] Lu | Deep metric learning for visual understanding: An overview of recent advances[END_REF]. Objective function is designed with respect to the target task.

Another closely related concept to metric learning is similarity learning. For instance, metric learning can be seen as a subset of similarity learning. A metric or a distance function d : X × X → R has to satisfy four axioms:

1. Non-negativity: d(x, y) ≥ 0, ∀x, y ∈ X Existing metric learning approaches often aim to first find a feature transformation to map examples into a new feature space (or embedding space) and then find a discriminative distance metric in this new space [START_REF] Hu | Discriminative deep metric learning for face verification in the wild[END_REF]. Figure 5.3 illustrates the concept of metric learning. Transformation can be linear or non-linear [START_REF] Kulis | Metric learning: A survey[END_REF]. Non-linear methods for metric learning are proven effective in addressing the non-linearity problem, which is often encountered in case of real-world data. Non-linear transformation may be implemented using kernel tricks. However, kernel tricks suffer from scalability limitations [START_REF] Lu | Deep metric learning for visual understanding: An overview of recent advances[END_REF]. As an alternative, deep neural networks are successfully applied.

Combination of metric learning and deep learning is referred to as deep metric learning. The Siamese network [START_REF] Bromley | Signature verification using a" siamese" time delay neural network[END_REF][START_REF] Chopra | Learning a similarity metric discriminatively, with application to face verification[END_REF][START_REF] Roy | Siamese networks: The tale of two manifolds[END_REF] is an architecture for non-linear metric learning with pairwise similarity information. As such, a Siamese network learns representations through explicit information about similarity between pairs of objects. Siamese networks were first introduced in [START_REF] Bromley | Signature verification using a" siamese" time delay neural network[END_REF] in the study of signature verification. It consists of two identical networks both sharing the same weights and architecture. The two networks accept distinct inputs that are then joined via a loss function. The goal is to obtain a representation that preserves the distance between similar entries. This way similar domains can be matched and related through their learned representations.

Deep Metric Learning with Siamese network

Siamese networks have commonly been trained using the contrastive loss function.

Contrastive loss function [START_REF] Hadsell | Dimensionality reduction by learning an invariant mapping[END_REF] is employed to learn the shared parameters vector W of a parameterized mapping function G W that ensures that semantically similar examples are embedded close to one another, while semantically dissimilar examples are embedded far from one another. We use the same contrastive loss function defined in [START_REF] Hadsell | Dimensionality reduction by learning an invariant mapping[END_REF].

However, in our methodology, we work with continuous (or soft labels) rather than binary labels (or hard labels). Let X 1 and X 2 be the input pair. Let Y the label associated to this pair, Y is close to 0 if X 1 and X 2 are deemed similar, and Y is close to 1 otherwise.

The label Y can therefore be seen as score of similarity between input pair. In our case study, X 1 and X 2 consist in the metadata vectors of respectively a source domain 1 and a source domain 2, whereas Y consists in the scaled distance between historical data of the pair of input source domains into the range of (0, 1).

The parameterized distance function D W to be learned between inputs X 1 and X 2 is defined as the Euclidean distance between the outputs of mapping function G W , i.e.

D W (X 1 , X 2) = G W (X 1) -G W (X 2) 2 .
To shorten notation, D W (X 1 , X 2) is written as D W . We use the general form of contrastive loss function L(W) which is defined as follows [START_REF] Hadsell | Dimensionality reduction by learning an invariant mapping[END_REF].

L(W) = P ∑ i=1 L(W, (Y, X 1 , X 2) i) (5.1) L(W, (Y, X 1 , X 2) i) = (1 -Y)L S (D i W) + YL D (D i W) (5.2)
where (Y, X 1 , X 2) i is the labeled sample pair of index i, P is the number of training pairs, L S is the partial loss function for a pair of similar domains, and L D is the partial loss function of a pair of dissimilar domains. L S and L D are designed so that D W has low values for similar inputs and high values for dissimilar inputs [START_REF] Hadsell | Dimensionality reduction by learning an invariant mapping[END_REF]. As such, L W has low values if similar inputs have "closer" embeddings and dissimilar inputs have "farther" embeddings. L S and L D are written as follows :

L S (W, X 1 , X 2) = 1 2 (D W)2 (5.3) L D (W, X 1 , X 2) = 1 2 max(0, m -D W) 2 (5.4)
where m > 0 is a margin that is used to hold constraint, i.e. when two inputs are dissimilar, and if the distance between them is greater than a margin, they do not contribute to the loss. This ensures that no computations are wasted on enlarging distance between embeddings of dissimilar inputs when these are distant enough. The contrastive term L D involving dissimilar inputs is crucial in avoiding the loss reaches zero by setting embeddings G W to a constant [START_REF] Hadsell | Dimensionality reduction by learning an invariant mapping[END_REF].

Data labeling with Dynamic Time Warping

Particularly, in our study, we learn domain-level embeddings so that similar source domains are mapped close to each other in the learned feature space, and dissimilar source domains are mapped far from each other. As aforementioned, the Siamese network learns feature representations via a supervised approach with explicit pairwise similarity information. We therefore need to represent our dataset as pairs of metadata vectors, each corresponding to a domain. For each domain pair, there corresponds a similarity score [START_REF] Iglesias | Analysis of similarity measures in times series clustering for the discovery of building energy patterns[END_REF] between their respective historical data. In our work, we mainly focus on time series data given our target task of predictive modeling. As such, selection of most similar domains from the metadata embedding space, will result in selection of domains with most similar historical data.

Several distance metrics are proposed for evaluation of similarity between time series data [START_REF] Wang | Experimental comparison of representation methods and distance measures for time series data[END_REF], namely Euclidean distance [START_REF] Faloutsos | Fast subsequence matching in time-series databases[END_REF], DISSIM [START_REF] Frentzos | Index-based most similar trajectory search[END_REF], dynamic time warping (DTW) [START_REF] Müller | Dynamic time warping[END_REF], longest common subsequence (LCSS) [START_REF] Vlachos | Discovering similar multidimensional trajectories[END_REF], edit sequence on real sequence (EDR) [START_REF] Chen | Robust and fast similarity search for moving object trajectories[END_REF], edit distance with real penalty (ERP) [START_REF] Chen | On the marriage of lp-norms and edit distance[END_REF], threshold queries based similarity search (TQuEST) [START_REF] Aßfalg | Similarity search on time series based on threshold queries[END_REF], etc. In our work, we chose to label domain pairs using Dynamic Time Warping (DTW) distance [START_REF] Sakoe | Dynamic programming algorithm optimization for spoken word recognition[END_REF]. DTW was first introduced in the context of speech recognition [START_REF] Sakoe | Dynamic programming algorithm optimization for spoken word recognition[END_REF], and is a widely accepted distance measure for time series data [START_REF] Keogh | Exact indexing of dynamic time warping[END_REF][START_REF] Ding | Querying and mining of time series data: experimental comparison of representations and distance measures[END_REF].

Namely, DTW is part of the so-called elastic measures for computing similarity between time series data. Elastic measures allow comparison between one-to-many points in the time series. This by contrast to lock-step measures which only allow comparison between fixed pairs of points (one-to-one), such as in L p norms [START_REF] Wang | Experimental comparison of representation methods and distance measures for time series data[END_REF]. Accumulated cost matrix C can be defined using Bellman's dynamic programming, by recursively computing [START_REF] Serra | An empirical evaluation of similarity measures for time series classification[END_REF]:

C i,j = f (x i , y j) + min{C i-1,j , C i,j-1 , C i-1,j-1 } (5.5)
for i = 1...M and j = 1...N. The first element C 0,0 is initialized to 0, f is the local cost function. For uni-dimensional time series, f (x i , y j) is generally defined as the squared distance (x iy j) 2 . As such, C i,j is the cost at (i, j) th element and the minimum accumulated cost from the three adjacent elements. The final DTW measure correspond to the total accumulated cost which is written as:

d DTW (x, y) = C M,N (5.6)
One major drawback of DTW computation is the high time and space complexity (O(n 2)). This largely limits its applicability [START_REF] Wang | Experimental comparison of representation methods and distance measures for time series data[END_REF]. As in many fields, such as building energy modeling, the time series are relatively lengthy and often high-dimensional, the quadratic complexity becomes nontrivial [START_REF] Ma | Emerging Technologies and Applications in Data Processing and Management[END_REF]. Therefore, we use FastDTW. FastDTW [START_REF] Salvador | Toward accurate dynamic time warping in linear time and space[END_REF] provides an accurate approximation of DTW that runs in linear time and space complexity (O(n)).

Similarity Search

Once Siamese network is trained, we will utilize the learned mapping function G W to extract embeddings from all source domains descriptions as background process.

Source embeddings will be stored in a data store. At each received query, most similar source domains to the described target domain are identified.

Let X t be the input target domain's metadata. The final recommendation process will be computing distances between the target embedding G W (X t) and all source embeddings, such that :

D W (X t , X i) = G W (X t) -G W (X i) 2 for i = 1, 2, ..., S (5.7)
where S is the number of source domains. The recommendation process will be then identifying the references of the most similar k domains via a simple k nearest neighbors (k-NN) algorithm. k is an user-defined parameter.

Predictive Modeling via Ensemble Learning

Time series data retrieved from recommended source domains allow us to train an accurate predictive model for the new previously unseen target domain. Predictive modeling has for objective to forecast future values of time series.

In our work, we developed a generic query-adaptive framework that allows predictive modeling for multiple target domains. Final users are only required to provide as query the contextual description (metadata) about the target domain, and receive as output the corresponding predictive model. As we focus on time series forecasting, we leverage most used and successfully applied learning algorithms proposed in this context, which are support vector machines and artificial neural networks. Support vector machine was applied to regression estimation, and was therefore called support vector regression (SVR). SVR techniques employ kernels in order to capture non-linear patterns often present in time series data. Commonly used kernels are the polynomial kernel and the radial basis function kernel.

On the other hand, ANNs, and deep learning in particular, allows to automatically extract meaningful features from raw data using nonlinear transformations [START_REF] Bengio | Representation learning: A review and new perspectives[END_REF].

Within multivariate time series setting, commonly used deep learning techniques [START_REF] Fawaz | Deep learning for time series classification: a review[END_REF] are multi-layer Perceptron (MLP), convolutional neural networks (CNN), recurrent neural networks (RNN) and its specific architectures long short-term memory (LSTM) [START_REF] Zheng | Electric load forecasting in smart grids using long-short-term-memory based recurrent neural network[END_REF][START_REF] Bui | Power Demand Forecasting Using Long Short-Term Memory Neural Network based Smart Grid[END_REF] and gated recurrent unit (GRU). A thorough review of machine learning techniques for time series forecasting is done in Chapter 3.

Given the generic nature of our framework, we need to adaptively select most accurate algorithm (and then model) for each invocation, and hence for each unseen target domain. However, simply comparing and selecting the learning algorithm that yields best results for an evaluation subset of target domains, will not necessary work best for all possible cases that our framework might encounter once deployed. This phenomenon is explained by the "no free lunch" theorem (NFL) [START_REF] Wolpert | The lack of a priori distinctions between learning algorithms[END_REF]. Essentially, NFL theorem states that all optimization algorithms perform equally good when averaged over all possible problems. This implies that there is no single algorithm that best perform on all possible problems and data sets.

Consequently, we combine several algorithms, and combine their predictions using ensemble learning techniques. Rather than finding one hypothesis that best explains the data, ensemble learning consists on building a set of hypotheses, often called an ensemble, and then combine these predictions of hypotheses to produce final predictions on new data points [START_REF] Dietterich | Ensemble learning[END_REF]. Ensemble learning typically yields better generalization performance than any single one of the trained models.

The main ensemble learning techniques are bagging, boosting and stacked generalization. In brief, bagging stands for bootstrap aggregating, and mainly aims to reduce variance. It generates multiple sets from the original training set and with the same size, using uniform sampling with replacement. Then, a weak learner is produced on each generated set of samples. Outputs are aggregated by averaging them for regression, and hard or soft voting for classification. By contrast, boosting mainly aims to reduce bias. It consists in a sequence of weak learners, where each model in the sequence is trained with more focus on samples that were "badly" learned by the previous model. For bagging and boosting, the same learning algorithm is used in order to have homogeneous ensemble.

In our work, we use stacked generalization technique [START_REF] Wolpert | Stacked generalization[END_REF][START_REF] Ting | Stacked Generalization: when does it work?[END_REF]. Unlike bagging and boosting approaches, stacked generalization allows to combine heterogeneous models as in our context. It also targets both variance and bias. There are two types of models in a stacked generalization framework: several base models, also called level-0 models, and one meta-model, also called level-1 model. The main idea behind stacked generalization is to use the level-1 model to learn from predictions of level-0 models. In general, a stacked generalization framework can obtain more accurate results compared to the best level-0 model [START_REF] Wolpert | Stacked generalization[END_REF]. Figure 5.6 illustrates the concept of stacked generalization. As such, level-0 models can be trained independently from one another in a parallel way. The training data for level-1 model is obtained using cross-validation technique.

Given a dataset D = {(y i , x i), i = 1..N}, where y i is the target value and x i represents feature vectors for the i th instance, randomly split the data into K folds {D 1 , D 2 , ..., D K }. Define D k and D (-k) = D -D k as respectively the test and the training set of the k th split of the K-fold cross-validation. Given J different level-0 models {M 1 , M 2 , ..., M J }, each M j is trained on D (-k) and predicts each sample x n in D k . Let z jn denote the prediction of the model M j on x n . At the end of all cross-validation process, the dataset assembled from the outputs of J level-0 models is:

D CV = {(y i , z 1n , z 2n , ..., z Jn), n = 1, 2, ..., N} (5.8)
D CV is the training set for the level-1 model M meta . In our experiments, we use a linear regression model to determine y as a function of (z 1 , z 2 , ..., z J). Level-0 models M j , j = 1, 2, ..., J are on the other hand trained using the dataset D.

The final prediction process will therefore use level-0 models M j , j = 1, 2, ..., J, in conjunction with level-1 model M meta . Given a new target instance, trained level-0 models produce a vector of outputs {z 1 , z 2 , ..., z J }, where z j is the output of model M j . This vector is the input to the trained level-1 model M meta , whose output is the final prediction for that instance.

Use Case of Building Energy Modeling

To verify the effectiveness of our methodology, we perform our experimental study on the use case of energy consumption prediction in buildings. Predictive modeling of energy consumption in buildings is a key task for the optimal management and conservation of building energy within buildings. Yet, accurate predictive models rely heavily on collecting historical operational data about the corresponding building and in a sufficient amount [START_REF] Runge | Forecasting energy use in buildings using artificial neural networks: a review[END_REF][START_REF] Li | Building energy consumption prediction: An extreme deep learning approach[END_REF][START_REF] Mocanu | Deep learning for estimating building energy consumption[END_REF].

However, in many cases, historical data are not available for effective training of machine learning models. This is particularly the case in newly built or newly renovated buildings. As such, predictive modeling of energy consumption in renovated buildings can not be based on their historical pattern, given energy efficiency improvements that they had undergone. Moreover, it is common to assess the energy efficiency of buildings before construction or renovation. In such cases, only a contextual description about the future building and its design is available. For all these cases, a contextual description about the target building and its design is available.

Even when few historical data are available, training an accurate model remains a challenge. As for BEM, or more generally time series forecasting, we require training data that cover a long span of time (generally years) to train sufficiently accurate predictive models. For instance, in the case of daily energy consumption prediction, reported research works employ training data for a span of several months (e.g. 10 months) to several years (e.g. 2, 3, 4 years) [START_REF] Amasyali | A review of data-driven building energy consumption prediction studies[END_REF].

BEM therefore represents an interesting use case of our proposed methodology. As such, the training data recommendation allows to recommend relevant training data to a previously unseen target building solely by providing metadata on it. It relies on inter-building similarity metric that assures that similar buildings with similar energy consumption profiles are mapped close to each other in the embedding space, whereas dissimilar buildings are mapped far from each other. Metadata contain minimal contextual information, such as the building type, size, year of construction, location, number of occupants, etc. The deployed framework thus offers a generic method for crossbuilding predictive modeling. This is particularly convenient given the growing availability of open data in the field of building energy. Existing energy consumption data about multiple source buildings can consequently be obtained. (e.g. air temperature, relative humidity) and calendar data (e.g. weekday, weekend, holiday). Experimental evaluation can be found in Chapter 7.

Genericity of our Methodology

In its design, our methodology performs cross-domain knowledge transfer for a specific task, by using: contextual description about entities (easily acquired metadata), and historical data (with respect to the task), in a way that it requires minimal description and no historical data about a new entity to predictively model it. As such, we believe that our proposed methodology can be considered as a possible solution to a broader range of applications in different fields, and not solely for the use case of crossbuilding energy modeling.

For instance, time series modeling is increasingly used as a major part of multiple applications, such as healthcare, finances, climate science, biological science, to name a few. Given the data requirements for accurate predictive modeling, we believe that our methodology offers an interesting workaround to effectively perform modeling without the need to have historical data for training and draw advantage from the growth in open data availability. For example, in health care, our methodology may be used for prediction of availability of hospital resources, or patient outcomes, by providing contextual information about the target hospital (e.g. capacity, location). Similarly, in finances, we may want to predict stock prices providing contextual information about a target company.

Summary and conclusions

Our methodology addresses mainly the issue of non-availability of sufficient historical data in the tasks of predictive modeling. We develop a novel query-adaptive two-step methodology for cross-domain knowledge transfer. As such, two levels of information on buildings are distinguished: (1) metadata which refer to the contextual description about the building, e.g. occupation type, size, location, construction, etc. (2) data which refer to the time series data gathered during building operation.

The first step of the proposed methodology is to recommend most similar source domains in terms of data to a target domain, based solely on its corresponding metadata. For this purpose, an appropriate inter-domain similarity metric is learned using a Siamese network. This ensures the learning of task-specific discriminatory representations of domains. As such, similar domains will be mapped closer together, while dissimilar domains will be mapped farther apart. Consequently, the recommendation process is performed simply by selecting closest learned representations of source domains to the learned representation of the unseen target domain.

The second step is to load historical data from the recommended source domains, and to train multiple heterogeneous predictive models. These models are subsequently combined together via a stacked generalization framework to ensure a robust performance.

Overall, our developed methodology is generic by design as it allows query-adaptive predictive modeling for a diverse range of target domains. To illustrate our methodology, we detail its application for the use case of building energy modeling. To our best knowledge, this work is a first attempt to knowledge transfer across buildings when no operational data available during training. The experimental evaluation of our methodology for the use case of BEM can be found in Chapter 7.

Chapter 6 A Microservice-based

Framework for Cross-Building Knowledge Transfer

Introduction

Our proposed methodology aims to build query-adaptive predictive models for new unseen target buildings based on existing data on multiple source buildings. Hence, we refer to it as predictive models factory. The workflow may be logically split into independent components as microservices. Each with a separate concern and requirements.

In doing so, the microservice-based architecture is more flexible to changes than a classic monolithic architecture. For the effective software implementation of our predictive models factory, we therefore propose a microservice-based framework. In this chapter, we present the design of our system and detail the flow of data through it. This chapter is structured as follows. Section 6.2 summarizes the system requirements and the primary actors. Section 6.3 presents our proposed architecture and its main microservices. In Section 6.4, we detail how data is integrated in our system and the used building metadata schema. Section 6.5 concludes this chapter.

System Requirements

Our system main objective is to train energy predictive models for new previously unseen target buildings based solely on their contextual description. In our application, contextual descriptions concern high-level information about the target building we seek to model, such as its typology, year of construction, location, etc. (details in Chapter 5). Figure 6.1 illustrates the use case of our proposed predictive models factory. As such, predictive models factory is required to integrate and leverage data about multiple source buildings. The source data may be retrieved from open datasets, automatic generation and simulations or real buildings. System actors are mainly building energy professionals and third-party building management systems which seek to accurately model a building on which operational energy data are not available.

Proposed System Architecture

We establish a microservices-based architecture (MSA) for our predictive model factory. Each individual microservice is fully-independent, self-contained, and specific to a single task. Unlike monolithic applications, the MSA breaks down the application into a suite of flexible, independently deployable and loosely coupled modules that are accessible via a lightweight language-agnostic application programming interface (API). APIs can be based on asynchronous messaging protocols.

MSA offers several benefits, such as an increase in agility in development and delivery, resilience to failure, reliability in operation, maintainability, separation of concerns, and ease of deployment [START_REF] Dragoni | Microservices: How to make your application scale[END_REF][START_REF] Bravetti | A formal approach to microservice architecture deployment[END_REF]. Compared to service-oriented architecture (SOA), the core intent of the MSA pattern is to limit a service to a single purpose, enabling it to be fully decoupled and thus much more easily scaled and swapped out.

Contrary to MSA, component sharing is one of the core tenets of SOA. SOA therefore relies on multiple services to fulfill a business request. Whereas MSA minimizes the need to share components through bounded context, which allows the coupling of a component and its data as a single unit with minimal dependencies. Figure 6.2 shows the various microservices and their coupling in our proposed system. The predictive model factory is composed of the following microservices: building data handling, similarity learning, training data recommendation, and predictive modeling, which are detailed hereafter.

Building Data Handling Microservice Our system is capable of continuously ingesting and integrating data from external providers, such as weather data web services, open energy data hubs and building energy management systems. Time series data about building energy consumption and weather data are respectively stored in the time series store and the weather data store. These two data stores are linked together through the contextual information. In addition, contextual information provides a

Training Data Recommendation Microservice

The entry point of our system workflow is the training data recommendation step. Via our system's API, users define the required use case by providing a key-value description of the unseen target building to model via a user friendly interface. No prior knowledge on the target building's energy consumption is needed. The microservice parses the contextual description or the metadata about the target building contained in the user request, and transforms it to an intermediate representation. Vector embeddings are produced using previously trained models by the similarity learning microservice (as described in Chapter 5). Most relevant time series data corresponding to most similar source buildings that are already available in our data hub, are then identified and selected. Similar source buildings are identified based on the vector embeddings on the target building and the vector embeddings on other source buildings available within the system. The training data recommendation microservice loads source vector embeddings from their corresponding data store via message queues.

Predictive Modeling Microservice Once similar source buildings identifiers are available, predictive modeling service will load corresponding energy data from the time series store and/or weather data store via message queues. Training dataset will be then aligned and prepared using data transformation techniques, e.g. missing data imputation, outlier removal, etc. Finally, predictive model is trained in order to predict future energy consumption for a pre-defined forecasting horizon. In current work, we rely on a recurrent neural network, convolutional neural network and support vector machines for predictive modeling. The final model is then built by combining trained models via ensemble learning techniques. The workflow enabled upon receiving a user request is depicted in Figure 6.5. Data in our system are shared between microservices following an event-based communication. Microservices therefore communicates via event messages. This enables loose coupling between collaborating microservices and privileges asynchronous behavior. For instance, once similar source buildings are successfully identified by the training data recommendation microservice, their identifiers are shared with the predictive modeling microservice. In addition, in order to have fully independent microservices, we propose to restrict access of relevant microservices to backup copies of databases. For instance, building data handling and predictive modeling microservices share the energy time series store and weather data store, whereas similarity learning and training data recommendation microservices share the contextual descriptions store and the feature representation models store (see Figure 6.5 and Figure 6.4). As it is, database sharing in considered as anti-pattern in a MSA [START_REF] Taibi | Microservices anti-patterns: A taxonomy[END_REF], given that it results in significant interdependence and introduces a single point of failure. Alternatively, training data recommendation microservice has access to backup copies of feature representation models store and vector embeddings store. Whereas, predictive modeling microservice has access to an aggregated and reduced time series data from energy data store and weather data store. These backup data stores copies and aggregated data store will be populated periodically through event-based model using publisher/subscriber. This solution is referred to as data pump model [START_REF] Newman | Building microservices: designing fine-grained systems[END_REF].

Data Specification

To deal with potentially large-scale data, we rely on a multi-modal data store in the back-end. Time series data (weather and energy consumption) are stored in a traditional relational data base management system (RDBMS) like PostgreSQL Timeseries1 .

Our system is transparent to the specific database technology used. Contextual data about buildings and their associated time series is stored in a graph database. As such, we propose an ontology-based data integration for building-related metadata.

An overview on building-related data management behind our API is shown in Fig-

Ontology-based Data Integration

As aforementioned, our system allows to integrate data from different data sources, such as open datasets, test buildings or automatic simulations. Multi-source data generally use heterogeneous data formats, such as web pages, text file or XML documents.

As result, a different and specifically designed method is employed for each data source to process its data. Alternatively, we propose a unified view of data [START_REF] Lenzerini | Data integration: A theoretical perspective[END_REF]. This approach for data integration is referred to as view-based. The runtime automated data collection and integration processes fall beyond the scope of our work.

For the effective integration of buildings information within our system, we have opted for an ontology-based data integration. The use of ontologies allow better semantic interoperability, automatic verification of data consistency, and flexible querying of data. In brief, an ontology provides "formal, explicit specification of a shared conceptualization" [START_REF] Studer | Knowledge engineering: Principles and methods[END_REF][START_REF] Gruber | A translation approach to portable ontology specifications[END_REF]. Conceptualization refers to an abstract and simplified definition of a phenomenon. Specification is the encoding of a conceptualization in a knowledge representation language. As such, an ontology is a representation of knowledge about a domain, as essentially a set of concepts (or classes), relationships among these concepts (or relations) and instances of these concepts (or individuals) [START_REF] Gruber | A translation approach to portable ontology specifications[END_REF][START_REF] Guarino | What is an ontology?[END_REF]. These components constitute a ontological vocabulary. A class represents a set of objects within the domain of interest, and is described via its properties (or attributes). An attribute has a name

Contextual Building Information

Several ontologies have been proposed in the framework of building information [START_REF] Esnaola-Gonzalez | Ontologies for observations and actuations in buildings: A survey[END_REF][START_REF] Pritoni | Metadata Schemas and Ontologies for Building Energy Applications: A Critical Review and Use Case Analysis[END_REF], such as BOT [START_REF] Rasmussen | Proposing a central AEC ontology that allows for domain specific extensions[END_REF], SAREF4BLDG [START_REF] Poveda-Villalón | SAREF extension for building devices[END_REF], ThinkHome [START_REF] Reinisch | Thinkhome energy efficiency in future smart homes[END_REF], DogOnt [START_REF] Bonino | Dogont-ontology modeling for intelligent domotic environments[END_REF], ifcOWL [START_REF] Pauwels | EXPRESS to OWL for construction industry: Towards a recommendable and usable ifcOWL ontology[END_REF], BOnSAI [START_REF] Stavropoulos | BOnSAI: a smart building ontology for ambient intelligence[END_REF], Brick [START_REF] Balaji | Brick: Towards a unified metadata schema for buildings[END_REF], HTO [101]. The building topology ontology (BOT) [START_REF] Rasmussen | Proposing a central AEC ontology that allows for domain specific extensions[END_REF] is a minimal ontology developed by W3C Linked Building Data Community Group.

BOT describes basic topological concepts of a building, such as sites, buildings, storeys and spaces. Hence, it is mainly designed to be reused and extended in order to be adopted for different use cases. The ifcOWL [START_REF] Pauwels | EXPRESS to OWL for construction industry: Towards a recommendable and usable ifcOWL ontology[END_REF] ontology provides an Ontology Web Language (OWL) for Industry Foundation Classes (IFC) model, by replicating the original EXPRESS schema. The resulting graph model allows easy referencing to geographic information systems data, construction material data or product manufacturer data. The ifcOWL therefore covers knowledge related to building design and construction phases of the building life cycle, but not the operation phase. SAREF4BLDG is an extension of Smart Appliances REFerence Ontology (SAREF) [START_REF] Poveda-Villalón | SAREF extension for building devices[END_REF] ontology for buildings. SAREF4BLDG aims to provide interoperability among IoT devices developed by different smart appliance manufacturers. It is therefore used to decouple information about smart devices from building-specific information. The DogOnt [START_REF] Bonino | Dogont-ontology modeling for intelligent domotic environments[END_REF] is one of the first ontologies proposed in the context of smart homes. DogOnt formalizes intelligent domotic environment (IDE) elements. It primarily aims to locate smart devices within the building, and describes their capabilities and system interfaces. Hence, it does not provide information about building specific design or energy parameters. For our work, we aim to consider an ontology that capture basic knowledge about building design and energy-related parameters, as well as basic information about building operation (e.g. occupants, setpoints). Hence, aforementioned ontologies do not match our current requirements.

Haystack Tagging Ontology (HTO) [101] is an OWL ontology for the project Haystack.

The project Haystack is a domain vocabulary that defines tag taxonomies and entities for mapping building equipment and operational data. In the current version of our system, we handle building-level aggregate energy data. We therefore do not cover knowledge about sensors, smart meters, and operational data collected from them.

However, as future work, it would be interesting to extend or adapt our current ontology to such aspects. In the same sense, the Brick [START_REF] Balaji | Brick: Towards a unified metadata schema for buildings[END_REF] ontology proposes to represent buildings and their subsystems. Similarly to the project Haystack, brick uses a tagging scheme to promote flexibility of annotation, while associating tags a semantic model.

The ThinkHome ontology is published by the university of Vienna. The unique characteristic of ThinkHome ontology (with respect to our work) is that it includes all relevant energy related concepts, to perform energy analysis and simulation. Knowledge is logically split into independent modules, as BuildingOntology, ActorOntology, EnergyResourceOntology, etc. For instance, basic information about building design and physics (e.g. layout, materials, walls) are described in the BuildingOntology module, whereas information about actors and their preferences for the smart building system (e.g. age, gender, thermal comfort) are described in the ActorOntology module. The concepts related to smart home automation (e.g. sensor networks) are described in the EnergyResourceOntology module. As such, we have chosen to utilize these Thinkhome metadata schemas to represent contextual information about source buildings. The thinkHome ontology has however some limitations, namely lack of documentation and absence of an ontology license, which may limit its re-usability [START_REF] Esnaola-Gonzalez | Ontologies for observations and actuations in buildings: A survey[END_REF].

ThinkHome ontology [START_REF] Reinisch | Thinkhome energy efficiency in future smart homes[END_REF] In our current version of predictive model factory, we propose to utilize both ThinkHome BuildingOntology and ActorOntology. The Buildin-gOntology provides basic knowledge about building design and operation, and includes the required concepts for energy-efficient and optimized control processes for smart homes. The ActorOntology provides information about the actors within the building and their preferences. The OWL definition of the ontology is generated using XSLT (eXtensible Stylesheet Language Transformations) from gbXML schema (green building XML) 5 . As a result, BuildingOntology concepts and semantic relations are derived from gXML. The gbXML is the most widely used data model for building energy modeling and simulation systems. In our work, we particularly use gbXML for the generation of our evaluation dataset (see Chapter 7). As such, a building is situated in a campus. The location of the campus is defined as its global origin using latitude, longitude, azimuth orientation, elevation, etc.

The ShellGeometry class is defined as a union of closed shells, where there is no intersection of any two of the given shells. A closed shell is the collection of surfaces bounding a space or a building. Each facet of the closed shell is defined by at least three Cartesian points. These Cartesian points define a three-dimensional plane. All coordinates thus must lie in the same plan. Heat transfer to or from spaces in a building happens through surfaces. A surface can be an exterior wall, a roof, an interior wall, a ceiling, etc. Similarly to gbXML, the BuildingOntology represents surface geometry in two ways: planar and rectangular. Planar geometry uses Cartesian point coordinates which defines the position, shape and area of the surface. Rectangular geometry uses numerical values for height, width, tilt and azimuth. Each surface references a construction. A construction consists of a construction material composite. A construction material composite is composed of material layers, is characterized by solar absorptance, reflectance, an U-value, etc. U-value expresses the thermal transmittance of the composite. Thermal characteristics about each material layer include its thickness, conductivity, density, R-value, etc. R-value measures the thermal resistance of a material to the transfer of heat across it. Openings are modeled as co-planar to surfaces they belong to. An opening can be a door, a window, just air, etc. Characteristics of an opening include U-value, it glazing conductivity, transmittance, etc. We provide an overview of a subset of the concepts of ThinkHome BuildingOntology and ActorOntology in respectively Figure 6.8 and Figure 6.9.

An actor can be human or a system agent. A human actor is characterized by its gender and its age. Each human actor adjusts ranges that provide acceptable indoor environmental conditions for operative temperature (for heating and cooling), humidity, lighting, etc. These preference values can be adjusted differently for each day. The set of preference values associated to hours of a day forms a preference profile.

In the current version of our building metadata schema, we re-use the Thinkhome BuildingOntology and AtorOntology to describe building design and thermal parameters, and basic information about occupants. We therefore start by aligning them via appropriate relations connecting relevant concepts from both ontologies. Alignment is performed with subsumption and equivalence relations. Namely, actor concept and building concept were matched via subsumption relation.

We also include additional properties to denote supplementary information required for our application. We present added properties in Table 6.1.

Time series Information

Each source building in our data hub is generally associated to time series data about outdoor weather and energy consumption. We model time series information as shown in Figure 6.10. A timer series has an identifier, a description, and is associated to a building, referenced by its identifier or URI (unified resource identifier). A time series instance also references the identifier or primary key of the data in the corresponding database. It contains one or many observation or variable sets. An observation set is

Example of Instantiation

The described metadata schema was instantiated as an example using the REFIT Electrical Load Measurements dataset [START_REF] Murray | An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study[END_REF]. The dataset contains pre-processed electrical consumption measurements for 20 households at aggregate and appliance level. Descriptions about each building comprises information related to occupancy (number, age, gender, etc.), size in terms of number of bedrooms, construction year, typology, The year of construction of the building will provide information about its age, which is a strong indicator of energy consumption [START_REF] Aksoezen | Building age as an indicator for energy consumption[END_REF]. For this object property, we propose two ways: the exact year or an interval between two years. Presence at building HumanActor We provide information about whether an actor is permanently present at the building or not.

and total number of owned appliances. All buildings are located near to the town of Loughborough, UK. Figure 6.11 shows the example of an instantiation as stored in

Summary and conclusions

To summarize, we present a microservice-oriented architecture for the implementation of our proposed predictive models factory [START_REF] Labiadh | A microservice-based framework for exploring data selection in cross-building knowledge transfer[END_REF]. Logically independent workflows are therefore modeled as microservices with single purposes and separate data sources.

Thereby, four microservices are developed, namely building data handling, similarity learning, training data recommendation and predictive modeling. Building data handling microservice is responsible for ingesting and integration building energy data and metadata within our system. Similarity learning microservice builds task-specific feature representation models from source buildings metadata and based on similarity information between corresponding data. Training data recommendation microservice select most similar source buildings at each reception of an user query describing the target building. Historical data about selected source buildings will serve as training for target predict models. Predictive modeling microsevice builds target predictive models based on recommended training data.

By design, MSA offers increased evolvability and scalability of the system as well as accelerated development velocity. Our designed system also performs integration of building metadata and time series data collected from multiple sources into a unified global view. In this view, building metadata models are transformed into ontologies.

Ontologies provide a common semantic framework to represent domain knowledge.

Time series data associated to each building are referenced from the relevant ontology concepts. We extend for this purpose ThinkHome BuildingOntology and OccupantOntology.

Chapter 7

Experimental Evaluations

Introduction

The present experimental study considers the use case of building energy modeling, which aims to accurately predict future energy consumption in buildings. Energy consumption prediction is important for the efficient planning and operation of power systems. Our methodology transfers knowledge from several source buildings, to one new, previously unseen target building. A preliminary training data recommendation is performed by selecting most similar source buildings to a target building using only contextual features about respectively available source buildings and the target building.

The remainder of this chapter is structured as follows. In Section 7.2, we detail our evaluation data set and the data generation process. Section 7.4 details the experimental setting and results of the evaluation of similarity learning and training data recommendation processes. Section 7.5 details the experimental setup and discusses experimental findings in the evaluation of predictive modeling component. Lastly, in Section 5.7, we summarize and conclude the chapter with future directions.

Energy Consumption Data Generation

For the efficient execution of the developed predictive model factory, two levels of information about buildings are leveraged, namely metadata and data. Metadata consist of a minimal contextual description about the building that is easy to acquire in real world scenarios, namely information about its design, year of construction, etc.

Moreover, metadata/data about a relatively large number of different source buildings needed to be available to feed the developed data hub, and to inter-building similarity learning. Review of open datasets that fulfill the above listed requirements yielded the REFIT dataset [START_REF] Murray | An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study[END_REF]. However, due to the limited data (20 buildings), the different processes of the predictive model factory could not be decisively evaluated. This was also due to the contextual similarity between buildings in REFIT, namely all available buildings were residential and located in the same city.

Hence, we resorted to the generation of a sufficiently large and heterogeneous evaluation dataset. This dataset features 105 synthetic buildings with different characteristics. The data set is built as follows. Initially, 21 base building models are available. Each building's model was re-parameterized to augment data using a random combination of design parameter values. Randomly generated parameter values follow an uniform distribution. On average, 4 augmented building models were obtained from each base building model. The measurements were later obtained by automatic simulation of building energy models. The 21 base buildings were held out to serve as test set for both the recommendation component and the predictive modeling component.

The remaining 84 buildings, obtained after augmentation, served as training set. Note that the validation set and hyperparameter tuning are made from the training set.

Buildings were modeled and simulated using DesignBuilder; a building energy simulation software that uses EnergyPlus as simulation engine [START_REF] Crawley | EnergyPlus: creating a new-generation building energy simulation program[END_REF]. Fig. 7.1 depicts the 3D representations of a subset of seven base buildings. Building models properties provide static descriptions about buildings, and comprise information related to occupancy, total area, volume, building's activity sector and typology, location, orientation, etc. As this work aims to select similar buildings for the predictive modeling task of building energy consumption, some information about the building thermal envelope was included in contextual descriptions about buildings. Namely, thermal conductivity and heat capacity of building external walls, window-to-total-wall-area ratio, and heating and cooling thermostat set points. In addition, we further characterize buildings by their power generation units.

After simulation, energy consumption and energy generation measurements of one year were recorded. This data cover several aspects, including total energy consumption, heating, air conditioning, and domestic hot water generation. In addition, per-site weather data were recorded, mainly outside air temperature, atmospheric pressure, wind speed, wind direction, etc. In this work, we are mainly interested in heating energy consumption and several weather variables. We work with one-day resolution data which were obtained by summing the original data. Input data were also scaled between 0 and 1.

We should note that we have made sure that generated buildings metadata, and hence data, are sufficiently heterogeneous to reduce the risk of bias in our experimental evaluations. This is mainly ensured by random generation of parameter set in our buildings models augmentation process. Heterogeneity of our data can be seen by plotting the distribution of pairwise dynamic time warping (DTW) distances between buildings total heating energy consumption as in Figure 7.2.

Hardware and Software Setup

The prototypes of the main processes of the methodology are built on a portable personal computer with Intel i7 processor with 8 cores up to 1.9 GHz and 32GB of memory. Deep learning models are implemented using the Keras library [51] with Tensorflow backend [START_REF] Abadi | Tensor-Flow: Large-Scale Machine Learning on Heterogeneous Systems[END_REF]. Data pre-processing and support vector regression models are implemented using Scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF].

Recommendation of Similar Buildings

As further described in Chapter 5, the workflow is mainly composed of two main processes in the use case of building energy modeling (BEM): (1) Recommendation of training data which relies on deep similarity learning logic to identify most similar buildings, (2) predictive modeling of building energy. Deep similarity learning is performed using a Siamese network that is composed of two identical neural networks sharing the same parameters. These networks are trained to find a feature transformation that maps metadata about buildings into a new feature space, in which new feature representations of similar buildings are mapped close to each others, and new feature representations of dissimilar buildings are mapped far from each others.

Data Preparation

Available metadata about buildings in our generated dataset include features related to building activity's sector and typology, location, number of occupants, and thermophysical properties of exterior wall materials. From which, we consider a total of 13 features in our training data recommendation workflow. Table 7.1 summarizes the used metadata features.

Input metadata features are scaled to the range of (0, 1). We use the min-max normalization for numerical features. Categorical features (i.e. climate zone, typology) are one-hot encoded. The one-hot encoding transforms each element from original vector into a new vector with n (binary) elements, depending on the number of categories (unique values of the feature) present in the categorical feature. As such, only the corresponding category is set to 1 while the rest of new elements are zeroes. The main advantage of one-hot encoding is that it does not allow machine learning models to assume ordering between different categories. Temperature set-points for

Heating and Cooling

• C expresses the ideal temperature (i.e.

the setting of the heating or cooling thermostat) in the space when heating, or respectively cooling, is required.

A subset of these properties is depicted in Figure 7.3

Model Training

We employ a Siamese multi-layer perceptron. Each MLP model is composed of two hidden layers both of size 128. A dropout rate of 0.1 was applied to each of the hidden layer. Dropout regularization [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF] in the context of deep learning models consists in randomly ignoring, or "dropping out", neurons (and their connections) during the training phase. As such, a dropout rate of 0.1 means that we are randomly setting 10% of neurons of a given layer to 0 at each update (i.e. 90% probability of retaining any given neuron). This prevents any neuron from co-adaptation on the training data, which otherwise leads to over-fitting.

The Rectified Linear Unit (ReLU) is used as the non-linear activation function for hidden layers. The output layer consists of a fully-connected layer of size 25. Note that model hyperparameters were chosen empirically during validation.

Experimental Results

Several metrics may be used for the evaluation of the training data recommendation component. Namely, we compare between the average DTW distance within the recommended list of source buildings operational data and the average DTW distance between the actual list of most similar source buildings operational data. We refer to this value as intra-list distance. The actual list (ground truth) is identified by selecting source buildings with lowest pairwise DTW distances between their data and the target building's data. The predicted list is identified by selecting the source buildings with closest metadata embeddings in the learned new feature space, to the unseen target building's metadata embedding. As detailed in Chapter 5, a metadata embedding of a given building is the output of the trained Siamese network's MLP when providing the metadata of this building as input.

Our predicted intra-list distance is of 42.95 Wh as opposed to a true intra-list distance of 24.79 Wh. Figure 7.4 compares between elements of the actual list and the predicted list of most similar source buildings, when setting the number of recommendations to 3. The number of recommendations refer to the number of source buildings that are selected for each target building. We set it to 3 as an example. As such, if each source building had one year energy-related data (as in our case), predictive modeling would be based on a total of three years data. This is particularly common for daily modeling tasks [START_REF] Amasyali | A review of data-driven building energy consumption prediction studies[END_REF]. In Figure 7.4, we present the identifiers of the three recommended source buildings for each query. Each query corresponds to an unseen target building (from the held-out test buildings), which is also presented by its identifier.

Moreover, we experimentally evaluate the motivation behind our proposed similarity learning framework for the task of selection of most similar source buildings. As such, this raises the question of why not simply select the source buildings that have closest metadata vectors to the metadata data vector of the target buildings, and why would we require to go through a similarity learning framework. For this, we compute the average intra-list distance of metadata vector-based recommendations, and find a value of 163.91 Wh. The proposed deep similarity framework is therefore experimentally proven to be effective, and yields closer recommendations to ground truth.

Discussion

From experimental results, we can notice that using a deep similarity learning framework to learn task-specific metadata embeddings that capture similarity between buildings, yields good performance. This is particularly useful in the context of a generic query-adaptive predictive model factory, as in this case. For instance, the query-adaptive model factory is required to train predictive models on data retrieved from recommended buildings. Predictive modeling results therefore rely on the quality of source buildings recommendation. By dynamically learning task-specific metadata embeddings, we are able to select most Queries stand for the unseen target building and is presented by their identifiers. Common elements between the actual list and the predicted list are highlighted in blue in the predicted list. Order of recommendations is ignored given that we will later combine data from recommended buildings with no regard to it. similar source buildings using raw building metadata. This avoids the need to thoroughly study metadata features importance, and identify their different weights for the target task. As such, not all features are equally important and contain information about energy consumption (target task).

Predictive Modeling of Energy Consumption

Once most similar source buildings are recommended, their corresponding operational data are retrieved for predictive modeling of new previously unseen target building.

Predictive modeling in buildings aim to accurately forecast future energy consumption, which supports projects at building-level, such as energy-efficient design, benchmarking, or control. Predictive modeling is a complex problem that requires consideration to various variables, mainly historical data, weather conditions, occupants' behaviors, calendar effects, etc. In our work, we mainly focus on historical energy consumption, weather conditions and some calendar effects.

Data Preparation

In our experimental work, the goal of the target predictive model is to predict future daily heating energy consumption after a pre-defined time horizon. Input data consist in related information about historical heating energy consumption, outside air temperature, solar irradiation, atmospheric pressure and weekday/weekend index.

As historical energy consumption data, we use a series of measurements at previous time steps. These measurements are generally referred to as lag observations in the context of auto-regressive models. An auto-regressive model is when a value from a time series is regressed on previous values from that same time series. The number of lag observations is generally chosen depending on auto-correlation analysis. For instance, partial auto-correlation function (PACF) can be used to study partial autocorrelation between a time series and its own lagged observations. Figure 7.5 illustrates the partial auto-correlation of heating energy consumption time series for a given building, along with the approximate 95% confidence intervals. We can notice partial auto-correlation coefficients are outside the confidence intervals at lags of 1, 2, 13 and 14. Auto-correlation at these lags is therefore statistically significant. Other buildings available in our dataset showcase similar results at these lags. Given these results, we consider in our predictive modeling task historical energy consumption data for previous two weeks ([t -14 : t -1]) in order to predict future energy consumption ([t + 1 : t + h], h being the prediction horizon. The target value is a real value or vector denoting the heating energy consumption at future time steps after a pre-defined time horizon. In our experiments, we consider both cases of one-step ahead, and multi-step ahead time series forecasting. For one-step ahead forecasting, our models predict the next day's heating energy consumption as output. For multi-step ahead forecasting, our models predict next week's daily heating energy consumption. To re-frame time series data as supervised learning problem, we use sliding window method as illustrated in Figure 7.9. For re-framing training data, at each iteration, we slide over 1 time step (1 day) by having overlapping windows.

Whereas, for re-framing test data, we slide over one whole week to avoid data leakage (Chapter 3). Size of output window size is 1 for one-step ahead forecasting and 7 for multi-step ahead forecasting.

For each building, we have one-year data. We use 70% of the data for training (approximately nine months) and remaining data for testing. The data set was further scaled so all values will be between 0 and 1, using min-max normalization.

Experimental Metrics

We assess our proposed predictive models using three standard performance metrics; root mean squared error (RMSE), mean area error (MAE), and coefficient of determination, also denoted as R 2 . RMSE computes the square root of the mean squared difference between prediction and ground truth. MAE measures the mean absolute difference between prediction and ground truth. R 2 measures the proportion of variance explained by the prediction model to the total variance in the observed data. The value of R 2 normally ranges between 0 and 1, with 1 indicating the perfect fit. Values may, however, fall outside the range of 0 to 1 if the predictive model is worse than using an horizontal hyperplane that passes through the mean value. where y i denotes the true observed value of the i-th sample, ŷi denotes the predicted value of the i-th sample, ȳ denotes the mean of the observed data, N denotes the size of the data set.

RMSE = 1 N N ∑ i=1 (y i -ŷi) 2 MAE = 1 N N ∑ i=1 |y i -ŷi | R 2 = 1 - ∑ N i=1 (y i -ŷi) 2 ∑ N i=1 (y i -ȳi) 2

Evaluation with Different Scenarios

The training data recommendation based methodology was compared to two other case scenarios, which are namely random selection and intra-domain cases:

• Recommendation consists in our proposed methodology. Each target building from the held-out test set is provided as input (query) to our workflow. As such, a new feature embedding is obtained from the metadata vector of this target building using our trained representation learning model (see Section7.4). Most similar source buildings are subsequently identified using a simple k-nearest neighbors algorithm between target building embedding and source buildings embeddings.

Trained data are finally retrieved from recommended source buildings and used to train the predictive model of the target building.

• Random selection consists in the case where training and test data were retrieved from respectively randomly selected source and target buildings. The case of random selection would enable us to establish that, predictive modeling built on training data from recommended similar buildings is significantly more accurate than randomly selecting data without regard to inter-building similarity.

• Intra-domain consists on training and testing on the same building data, hence the same domain. Intra-domain therefore stands for the classical machine learning framework in the context of building energy predictive modeling. The case of intra-domain learning would establish the relevance of the experimental results of our proposed methodology when compared to the classical machine learning framework, in which training and test data are sampled from the same domain.

Note that each case is executed 21 times (without replacement), which corresponds to the total number of held-out (unseen) target buildings used for testing. As such, each case is executed for each query, and hence each unseen target. building This ensures reliable evaluation of our methodology.

Given that we dispose of one year energy data for each building in our experimental dataset, we train predictive models using two source buildings (in random selection and recommendation-based scenarios). This way, we will form a training dataset that spans approximately 2 years. For intra-domain scenario, no source buildings are used, given that the training and test are performed on the same target building.

Setting 1: One-step Ahead Prediction

For one-step ahead predictive modeling, evaluations are performed using four predictive models, which are a kernel SVR, a MLP, a LSTM-RNN, and a CNN. A detailed description of machine learning algorithms proposed for multivariate time series forecasting can be found in Chapter 3.

In brief, SVR formulates and solves the regression problem using convex optimization. SVR can be extended to solve non-linear regression problems using kernel tricks. to capture long-term dependencies, while addressing vanishing/exploding gradients problem [START_REF] Pascanu | On the difficulty of training recurrent neural networks[END_REF] often encountered in recurrent networks. This is essentially achieved via special gates that determine which past information should be passed and which should be forgotten [START_REF] Gers | Learning to forget: Continual prediction with LSTM[END_REF]. Hereafter, we detail their respective hyper-parameters. We empirically explored variants of each models architecture to fine-tune their hyperparameters, and eventually retained the settings that yielded the best evaluation results.

1. kernel SVR Regularization parameter C is fixed to 1. Margin of tolerance = 0.1. We use a polynomial kernel of degree 5.

MLP

In case of MLP model, lag observations must be flattened into features.

Therefore, the input layer will correspond to a 28-dimensional feature vector (sequence length×number of input features), whereas the output layer is composed of a single neuron. MLP network is composed of one hidden layer of size 100.

LSTM-RNN

The input sequence is of length 14. The input layer accepts a 6dimensional feature vector, whereas the output layer is composed of a single neuron. Our network is composed of two hidden layers; one LSTM layer of size 8, and one fully-connected layer of size 16.). Therefore, as output, the dimension of feature maps is divided by 2, i.e. 12/2 = 6. The subsequent fully-connected layer is of size 50.

Multi-channel CNN

Given that we are performing a one-step ahead time series forecasting, the output fully-connected layer is of size 1. For neural networks, namely MLP, LSTM-RNN and CNN models, the output layer consists of a fully-connected layer with linear activation function. The Rectified Linear Unit (ReLU) is used as the non-linear activation function for hidden layers. Fine-tuning of weights is done using Adam optimization algorithm [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]. Adam (adaptive moment estimation) optimization is an extension of classic stochastic gradient descent (SGD).

Multi-head CNN

Adam is proven to be computationally efficient and fast coverging [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]. Adam computes individual adaptive learning rates for different parameters instead of manually setting it as in SGD.

Weights initialization follows a normal distribution with zero mean and standard CNNs. However, by contrast to one-step ahead time series forecasting, we simply modify output layer to serve a vector instead of one value.

We may use the seq2seq architecture for LSTM-RNN to predict multiple future time steps. Seq2seq consists in an encoder-decoder architecture, which uses two subnetworks: an encoder reads the input sequence and summarizes useful information into a context vector, and a decoder that read this context vector and predicts the target sequence. An attention mechanism is also used on the encoder outputs at each decoding step as in [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF]. In addition, we test hybrid CNN and LSTM-RNN model that couple both of these approaches. We refer to this model as ConvLSTM. This model benefits from both CNN feature extraction and LSTM sequential data processing capabilities.

We detail hyperparameters used for different algorithms hereafter. As in previous experiments, we retain those that yielded best prediction results in each algorithm.

1. Multi-output kernel SVR We use the same architecture as in the previous section for each constituent single-output SVR model. Regularization parameter C = 1. Margin of tolerance = 0.1. We use a polynomial kernel of degree 5.

Multi-head MLP

The network is composed of 7 MLP heads, each corresponding to an input time series variable. Heads are composed of a two fully-connected layer of respectively size 200 and 100. Outputs of separate heads are merged and fed to a MLP composed of two hidden layers of respectively size 200 and 100.

3. Seq2seq For encoding the input sequence, we use a single LSTM layer of size 200.

For decoding, we use an LSTM layer 200, followed by a fully-connected layer of size 100, and the output layer. An attention mechanism is adopted on the encoder outputs.

4. Multi-channel CNN We use 5 hidden layers in total, namely three 1D convolution layers, a flattening layer and one fully-connected (MLP) layer. First and second convolution layer use 32 filters of size 3 and zero padding, whereas, third layer uses 16 filters, and contains max-pooling with a stride of 2. Flattening layer transforms resulting 3-dimensional vector into a 2-dimensional vector. This vector is served to subsequent fully-connected layer, which contains 100 units.

Multi-head CNN

As in one-step ahead setting, the trained network is composed of 7 heads, each corresponding to input time series variables. Each head is composed of two 1D convolution layers. Both use 32 filters of size 3 and no padding.

Second convolution layer includes in addition a max-pooling operation with a stride of 2. Outputs of the CNN heads are subsequently concatenated, and passed through 2 fully connected hidden layers containing respectively 200 and 100 units. Finally, a flattening layer transforms the results to a 2D vector. For the decoder, we use one LSTM layer followed by a hidden and an output fully-connected layers. The LSTM layer contains 200 units, whereas, the following hidden fullyconnected layer contains 100 units.

As in one-step ahead predictive modeling, for neural networks, we use linear activation function in output layers and ReLU activation function in hidden layers. Optimization of weights is conducted using Adam algorithm.

Experimental Results

The experimental results are shown for respectively one-step ahead time series forecasting in table 7.3, and multi-step ahead time series forecasting in table 7.4. In both experiments, we provide average errors and standard deviations across all 21 executions (number of held out test buildings), for each case scenario and each model. In Figure 7.12, we further detail results of one-step ahead predictive modeling using a box and whisker plot which shows the distribution of experimental results and skewness. Multi-step ahead From Table 7.4, we notice that best generalization results are obtained with recommendation-based scenario. Among predictive modeling algorithms, we notice that Seq2seq with attention mechanism and MH-MLP perform the best compared to other models. Similarly to one-step ahead setting, we also notice great variation in performance across all metrics in intra-domain scenario. Ensemble learning model further improves generalization performance and yield an R 2 of 93%.

Discussion

Overall, comparison shows that the recommendation-based methodology exhibits better generalization performance compared to both intra-domain learning and random selection cases, for all models in one-step ahead and multi-step ahead predictive modeling.

We can therefore conclude that the predictive model factory has enabled us to train robust models that perform better, on average, in cross-domain setting than in intradomain setting. The hypothesis is that this is due to the fact that we are training disparate models with fixed hyper-parameters across all executions. Hyper-parameters were therefore not fine-tuned and optimized for each training set, as traditionally done in a classical machine learning frameworks. Generally, a model with fixed hyperparameters is less likely to have optimal performance across all training sets (across all executions), which are retrieved from different buildings. However, our methodology delivered stable near-optimal results in almost every trial.

Therefore, this workflow offers a generic methodology for cross-building predictive modeling by recommendation of training data retrieved from similar buildings.

Predictive modeling workflow is proven to output models that are generalizable and performs relatively well independently of target building.

Summary and conclusions

In this chapter, we evaluate our predictive model factory for the use case of heating energy prediction in buildings. Experimental dataset was generated using simulation tool DesignBuilder. Heterogeneity within simulated data is established through random setting of several parameters in building models during augmentation process.

This ensures a reduced risk of bias in our experimental evaluations. As building metadata, several contextual features are considered, namely activity sector, typology, location, occupation and construction properties. Evaluations were conducted on similar buildings recommendation process and predictive modeling process of our methodology.

For the process of buildings recommendation, a feature representation model is used to extract new task-specific features from buildings metadata. For this, a deep similarity metric learning is performed using a Siamese multi-layer perceptrons. Evaluation of recommendations shows that source buildings selection based on deep similarity learning offers more relevant recommendations to target buildings, when compared to simple metadata-based selection.

For the predictive modeling process, two experimental settings are considered: Finally, trained models predictions are combined using a generalization stacking framework. Experimental evaluations show that stacked generalization further improves prediction results in both one(step ahead and multi-step ahead settings.

Chapter 8

Conclusions and Directions for

Future Work

The scope of this thesis is to present a methodology for predictive modeling of target buildings on which no historical data are available. To that end, predictive models are dynamically constructed using solely contextual descriptions (metadata) about the given target building. This is particularly useful in the context of newly built and newly renovated buildings.

The core idea is to leverage available historical data about other source buildings.

Our methodology is two-fold. The first process recommends most similar source buildings to a target building using their contextual descriptions (metadata). Contextual description about the target building is provided as input query. Similarity distance between metadata is learned specifically to our target task of predictive modeling. Hence, buildings metadata are mapped to new discriminative feature space, in which similar buildings are mapped close to each other, and dissimilar building pairs are mapped far from each other.

A deep similarity learning framework with Siamese network is adopted. For a task-specific similarity learning, similarity measures between pairs of buildings should be based on their historical data, rather than their metadata. This is due to the fact that target predictive models are trained on historical data. Thereby, we propose to use dynamic time warping (DTW) for the training of the Siamese network. However, during inference, our recommendation workflow only requires target building metadata.

The second process trains predictive models for the target building using training data recommended by the previous process. Historical data of buildings energy are multivariate time series data. Machine learning models that are used in this context are support vector regression and artificial neural networks. As neural networks, multi-layer Perceptron (MLP), along with recurrent neural networks (RNN), convolutional neural networks (CNN), and combination of both are used. These models are subsequently combined together via stacking to ensure a robust performance.

A microservice-based implementation of our predictive model factory is designed.

Logically independent workflows are designed as microservices. Thereby, four microservices are developed. The first process of our methodology is performed by two disparate microservices: similarity learning and training data recommendation. The similarity learning microservice trains feature transformation models from labeled pairwise similarity information between source buildings data. This microservice can be run periodically in background. The training data recommendation microservice is launched at each user query. It processes metadata about the target building contained in the query, and use them to recommend most similar source buildings available in our system. The second process is also performed by a single predictive modeling microservice.

In addition, we design a building data handling microservice. This microservice is responsible for integrating building-related data collected from multiple data sources.

For data integration, a unified global view is used. Information about source buildings consist of historical data (time series) and metadata (contextual description). As such, historical data, consisting of energy data and weather data, are stored in corresponding time series stores. These time series data are linked together through building metadata, which are modeled based on ontologies. We extend ThinkHome ontology to describe building design and thermal parameters, and basic information about occupants.

Experimental evaluations of our predictive modeling factory is conducted using a simulated heterogeneous dataset. Buildings simulation models are generated via augmentation of a set of base buildings. Overall, the experimental results have shown that our methodology can be used effectively for the use case of cross-building heating energy forecasting. More specifically, evaluation of the first process of our methodology shows that deep similarity learning based on DTW between buildings data offers better results than directly using raw building metadata. Also, comparison between recommended source buildings using our methodology and ground truth validates its usefulness.

Evaluation of the second process of our methodology shows that it performs better than random selection and intra-domain scenarios. According to our hypothesis, this is due to the fact that we are using predictive models with fixed hyper-parameters across all test executions. Hyper-parameters were therefore not fine-tuned and optimized for each training set, as traditionally done in a classical machine learning framework.

Hence, we conclude that our methodology offers a generic framework that is faster and performs better on average than classical machine learning framework (intra-domain scenario).

Different models were evaluated. Namely, we apply a multi-head MLP, multihead and multi-channel CNNs, a seq2seq model with attention mechanism, and an hybrid CNN and LSTM-RNN model. On average, multi-head CNN offers best results for one-step ahead time series forecasting, whereas seq2seq model offers best results for multi-step time series forecasting. However, a more detailed look at our results shows that there is no single model that performs better than any other model for each test building. Hence, an ensemble learning framework is adopted via stacked generalization. This allows a more robust predictive modeling, and further contributes to the genericity and extensibility of the developed predictive model factory.

Our methodology helps to model a wide variety of target buildings, given its generic nature that allows it to dynamically adapt to target buildings using queries.

More generally, our methodology should not only be considered as an answer to the use case of cross-building energy modeling, but as a possible solution to a broader range of applications. In its design, our methodology performs cross-domain knowledge transfer for a specific task, by utilizing two types of information; contextual description about entities (easily acquired metadata), and training data (with respect to the task), in a way that it requires minimal description and no training data about a new entity to model it.

Limitations and Future work

This thesis is a first step towards a larger research agenda that aims at developing a fully automated predictive model factory. We present some limitations of our work and potential directions for future work hereafter.

The short-term perspectives consist in improving different processes of our proposed methodology. Particularly, in the training data recommendation process, we perform representation learning using homogeneous buildings metadata, in terms of metadata features. Namely, we estimate that available source buildings and target buildings (described in user queries) have the same features, such as building typology, area, number of occupants, etc. It is therefore interesting to extend our methodology, and more specifically our similarity learning and training data recommendation processes, to handle multi-modal contextual descriptions on available source buildings [START_REF] Lahat | Multimodal data fusion: an overview of methods, challenges, and prospects[END_REF]. This will add further flexibility of our system by allowing the exploitation of source buildings on which different metadata are available.

Another aspect that merits further consideration is the evolution of the deployed target predictive model. As such, in our work, the target model is trained on recommended data collected from most similar source domains. Experimental evaluation demonstrated that the proposed target models offer good results when tested on the new previously unseen target domains. This is particularly useful in cases where target data are not or are not yet available. However, it is useful to consider the case where target data are progressively made available after the predictive model deployment.

This can be tackled by refining target predictive models once target data are accessible.

For instance, Mancini et al. [START_REF] Mancini | Adagraph: Unifying predictive and continuous domain adaptation through graphs[END_REF] have proposed a continuous refinement strategy for deep models by leveraging the incoming stream of target data. Furthermore, we only performed experimental evaluations for the use case of building energy modeling. However, given its generic design, our methodology can be re-used for other applications in other sectors, such as healthcare and finances. As future work, it is therefore important to validate the genericity of our methodology for other use cases.

The long-term perspectives consist in investigating new research directions raised by our work. Firstly, for the purpose of our work, we suppose that collected data and metadata on source buildings are already integrated into an unified ontology-based global view. data collection [START_REF] Roh | A Survey on Data Collection for Machine Learning: a Big Data-AI Integration Perspective[END_REF] and integration [START_REF] Lenzerini | Data integration: A theoretical perspective[END_REF] processes therefore falls beyond the scope of this research. However, it is primordial to automate these tasks to exploit existing data on buildings from multiple heterogeneous sources. As such, automated data collection involves the discovery of relevant datasets online (i.e open data), or acquiring data through simulation and/or augmentation. Automated data integration involves the definition of mappings between the sources and the unified global view.

Big data nowadays play an important role in various sectors. In the context of predictive modeling with time series data, big data offer great opportunities in decision making, as well as numerous computational challenges [START_REF] Grolinger | Machine learning with big data: Challenges and approaches[END_REF]. It is therefore interesting to investigate computational efficiency and scalability of our system, and its constituent microservices, when processing larger-scale data.

 vides a review of related literature used to formulate the research proposal. Chapter 2 presents the general use case of building energy modeling. Chapter 3 provides a brief background on machine learning and deep learning, and an in-depth background on various time series forecasting techniques. Chapter 4 focuses on various approaches for cross-domain knowledge transfer. The second part details the main contributions of this PhD research work. Chapter 5 details the proposed methodology and its main components. Chapter 6 presents the proposed microservice-based implementation and data specification. Chapter 7 details the experimental setup and discusses experimental findings. Finally, in Chapter 8, we conclude with possible directions for future work.

Figure 1 .Figure 1 . 1 :

 111 Figure 1.1 illustrates the outline of this manuscript.

Figure 2 . 1 :

 21 Figure 2.1: Broad view of building life-cycle.

Figure 2 . 2 :

 22 Figure 2.2: Categorization of building energy data on determinant variables.

Figure 2 . 3 .

 23 Geometry information is contained in "Campus" element. The child element "Surface" represents all surfaces in the geometry. Walls, ceilings and floors are usually modeled as planar surfaces. A planar surface is defined by four boundary points given their Cartesian coordinates. Openings (e.g. windows, doors) are modeled as rectangles co-planar to the walls to which they belong. Semantic information such as construction, layer and material is related to its corresponding geometry using reference attributes. A construction consists of a building material composite. A building material composite consists of corresponding layers. Material layers are described by their physical and thermal parameters (e.g. thickness, conductivity, density). Alternatively, material layers representation can be simplified as one layer representing the thickness and the U-value of the composite. U-value expresses the thermal transmittance of the composite.

Figure 2 . 3 :

 23 Figure 2.3: Graphical visualization of a subset of gbXML model elements [10]. gbXML elements are represented with solid rectangles, while their attributes are represented with dashed rectangles. Arrows represent parent/child relationships among elements.

 contrast, machine learning refers to training a model that learn from data themselves without the need of an explicit program. Figure 3.1 illustrates the difference between traditional programming and machine learning.

Figure 3 . 1 :

 31 Figure 3.1: Traditional programming vs machine learning.

In Figure 3 . 2 ,

 32 we provide a broad classification of various examples of machine learning algorithms.

Figure 3 . 2 :

 32 Figure 3.2: Broad Classification of Some Machine Learning Algorithms.

Figure 3 . 3 :

 33 Figure 3.3: An overview on the machine learning workflow.

 erate plausible new examples from an existing distribution of examples. Very briefly, a GAN is composed of two contesting sub-networks, a generator and a discriminator. The generator is responsible for generating new data examples, while the discriminator is responsible for differentiating synthetic examples from true examples. The generator thus needs to learn how to produce sufficiently realistic examples in order to reliably trick the discriminator.

Figure 3 . 4 :

 34 Figure 3.4: Basic architecture of an auto-encoder.

Figure 3 . 5 :

 35 Figure 3.5: Illustration of k-fold cross-validation scheme.

Figure 3 .

 3 Figure 3.6 shows an example of a FNN with a single hidden layer. Input layer is composed of D neurons, corresponding to each of the D input variable x 1 , x 2 , ..., x D .

Figure 3 . 6 :

 36 Figure 3.6: Architecture of a Deep Feed-Forward Neural Network; The input layer is in blue, the hidden layers are in gray and the output layer is in orange. The arrows represent the forward pass across different layers.

Figure 3 . 7 :

 37 Figure 3.7: Recursive strategy.

Figure 3 . 8 :

 38 Figure 3.8: Illustration of a support vector regression function [223].

Figure 3 . 10 :

 310 Figure 3.10: Illustration of kernel mapping in SVM for binary classification task[START_REF] Moreira | Learning to rank academic experts[END_REF]. φ maps input data point to a higher dimensional feature space. Transformed representations of data points are linearly separable in the new feature space.

 Figure 3.11 illustrates different types of sequential data that can be handled by RNNs; (1)many-to-many and synced many-to-many networks used for tasks like machine translation by taking a sentence (sequence of words) as input and producing a translated sentence in another language as output, (2) many to one network used for example for sentiment classification by taking a text as input and predicting its sentiment, (3) oneto-many network that can be used for music generation by taking a single musical note as input and producing a piece of music as output.

Figure 3 . 11 :

 311 Figure 3.11: Different types of sequential data handled by RNNs [121]; Each rectangle represents a vector while arrows represent operations. The inputs are in blue, the outputs in orange and the hidden states in white. From right to left, we have: (1) sequential output (2) sequential input (3) sequential input and output (4) Synced sequential input and output..

Figure 3 . 13 :

 313 Figure 3.13: Unfolded view of a simple recurrent Neural Network; a feed-forward neural network that has a hidden layer for each timestep. Weights and biases are shared across time steps.

Figure 3 .

 3 [START_REF] Balaji | Brick: Metadata schema for portable smart building applications[END_REF] illustrates the dynamics of Seq2Seq model.

Figure 3 . 14 :

 314 Figure 3.14: The architecture of a sequence-to-sequence model.

Figure 3 . 15 :

 315 Figure 3.15: The architecture of a sequence-to-sequence model with "teacher forcing" training approach.

 35)A pooling, such as average or max pooling, takes feature maps as input and reduces their length by aggregating over a sliding window. Max-pooling simply selects the maximum value of each patch of the input data. Instead, average pooling computes the average value. The final fully-connected layers maps the extracted representation of the input time series into final predictions. Note that convolution and pooling layers aim to extract multi-level hierarchical feature representation, while fully-connected layer learn the target objective function (regression or classification).

(a)Figure 3 . 16 :

 a316 Figure 3.16: Illustrations of different architectures of CNN for multivariate time series forecasting: Multi-channel CNN (top) and Multi-head CNN (bottom).

Figure 3 . 17 :

 317 Figure 3.17: An illustrative example of causal convolutional neural network composed of three layers.

Figure 3 . 18 :

 318 Figure 3.18: An illustrative example of causal and dilated convolutional neural network composed of three layers.

Figure 3 . 19 :

 319 Figure 3.19: Walk-forward validation strategies for time series data.

 Section 4.2 introduces the main field of transfer learning from which derive domain adaptation and domain generalization sub-fields. Section 4.3, Section 4.4 and Section 4.5 provides an overview of various approaches proposed in the context of respectively domain adaptation, multi-source domain adaptation and domain generalization. Section 4.6 summarizes different similarity metrics usually used for transfer learning.

Figure 4 . 1 :

 41 Figure 4.1: Overview of different settings of transfer learning. Dotted rectangles indicate assumptions. Rectangles indicate transfer learning sub-classes. Adapted from [190].

(1)

 1 instance-based transfer, (2) feature-representation-based transfer, (3) model-based transfer, and (4) relational-knowledge-based transfer. Instance-based transfer learning consists in re-weighting labeled instances of the source domain and re-use them in the target domain. Feature-representation-based transfer learning seeks to find a common

(a)

 a Traditional machine learning (b) Domain adaptation

Figure 4 . 2 :

 42 Figure 4.2:Different learning processes between traditional machine learning and domain adaptation[START_REF] Pan | A survey on transfer learning[END_REF]

Figure 4 . 3 :

 43 Figure 4.3: Overview of different settings of domain adaptation [250].

[179]

 179 proposed to learn new domain-invariant feature representations by minimizing the dissimilarity across domains via domain-invariant component analysis and a kernel-based optimization algorithm. Ghifary et al. [90] proposes a multi-task autoencoder MTAE that extends autoencoders into a model that jointly learns to perform self-domain data reconstruction and between-domain data reconstruction. Li and al. in [147] proposed adversarial autoencoders with Maximum Mean Discrepancy (MMD) measure as domain-distance regularization to learn a universal feature representation across domains. Authors propose to jointly minimize reconstruction error, classification error and domain difference while imposing a prior distribution in the learned feature space via adversarial training. Li et al. [145] proposed a low-rank parameterized convolutional neural network model for end-to-end DG learning. Xu et al. [268] trained low-rank exemplar-SVMs, which can be defined as a linear SVM classifier trained on a single positive training instance and all negative training instances, for both domain adaptation and domain generalization. For domain generalization, the authors propose to whether equally fuse all exemplar classifiers, or use the exemplar classifiers in the latent domain which the target data more likely belongs to. Mancini et al. [163] proposed to train domain-specific classifiers, one on each source domain. Classifiers are then optimally combined at test time based on similarity between target image and source images.

 data during training. Consequently, we rely on a task-specific deep metric learning based framework which requires solely metadata about the target domain during inference for training data recommendation. Metadata provide contextual description about the target domain, and are modeled as user query. Once training data are recommended, target model is trained. For this, we propose an ensemble learning framework to combine multiple learning algorithms. Ensemble learning generally yields better generalization performance than simply one model. As target task, we focus on predictive modeling using time series data.

 consisted of descriptors that semantically characterize the corresponding domain or task, and that are fed into the model as additional input during training along with data. Instead of combining domain metadata and data, we propose to exploit only target domain metadata for source data selection. Then combine data collected from most similar source domains to train predictive models. This way, we are able to address the domain generalization setting in which no target domain data are accessible during training.

Figure 5 . 1 illustrates

 51 the relation between domain metadata and domain data in our proposed methodology.

Figure 5 . 1 :

 51 Figure 5.1: Relation between domain metadata and domain data in our proposed methodology. Domain metadata offers a key-value contextual description of the domain. Domain data is historical time-based profiles that we use for predictive modeling.

Figure 5 . 2 : 1 .

 521 Figure 5.2: Overview of cross-domain knowledge transfer workflow.

 Once similar source domains are identified by the training data recommendation component, their corresponding multivariate data are retrieved and combined to form a training dataset for predictive modeling task.

2 .

 2 Identity of indiscernibles: d(x, y) = 0 ⇐⇒ x = y, ∀x, y ∈ X 3. Symmetry: d(x, y) = d(y, x), ∀x, y ∈ X 4. Triangular inequality: d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X Examples of metric functions are Euclidean and cosine distances.

Figure 5 . 3 :

 53 Figure 5.3: Illustration of metric learning by learning a new embedding space that bring similar examples closer to each others and dissimilar examples farther from each other.

Figure 5 . 4 :

 54 Figure 5.4: Overview on the proposed data recommendation workflow.

 Figure 5.5 illustrates the difference between Euclidean distance and DTW. Another type of similarity measures is edit distance based measures. Edit distance was used in the context of string, by computing the minimum number of operations needed to convert one string into the other. Authors in [251] conducted a comparative study between different distance measures for time series data, and established that DTW generally performs better than lock-step measures (e.g. Euclidean distance, DISSIM) and TQuEST, and very similarly to some edit distance based measures (e.g. LCSS, EDR and ERP). Euclidean distance and other L p norms are not suitable in the context of time series because of time shifts and time distortions. DTW is on the other hand able to measure similarity between two time series which may vary in time and speed.

Figure 5 . 5 :

 55 Figure 5.5: Euclidean distance vs dynamic time warping[START_REF] Ranacher | How to compare movement? A review of physical movement similarity measures in geographic information science and beyond[END_REF]. DTW allows similar points to match even if they are out of phase in the time axis.

Figure 5 . 6 :

 56 Figure 5.6: Illustration of stacked generalization.

Figure 5 .

 5 7 illustrates the application of our proposed methodology for the use case of cross-building predictive modeling. Within the context of predictive modeling of building energy, most applied ML techniques are SVM and ANN. For the experimental evaluation of this use case, we leverage mainly four machine learning techniques; MLP, LSTM-RNN, CNN and kernel SVR. Models are trained to predict daily energy consumption. Building energy consumption depends on multiple exogenous time-based variables, namely weather data

Figure 5 . 7 :

 57 Figure 5.7: Application for the use case of cross-building predictive modeling.

Figure 6 . 1 :

 61 Figure 6.1: Use case of our proposed system.

Figure 6 . 2 :

 62 Figure 6.2: The microservice-based architecture for proposed predictive model factory. Dotted rectangles represent individual microservices. Grey rectangles represent external third-party microservices.

Figure 6 . 3 :

 63 Figure 6.3: Relations between contextual descriptions, vector embeddings and feature representation models.

Figure 6 . 4 :

 64 Figure 6.4: Sequence diagram of the similarity learning microservice workflow.

Figure 6 . 5 :

 65 Figure 6.5: Sequence diagram of training data recommendation and predictive modeling microservices workflow.

ure 6 . 6 .

 66 Each contextual description about a given source building acts as the core element, by linking both its associated time series data, namely historical energy data and weather data.Intermediate vector embeddings for the selection of most similar source buildings are stored . Feature representation models trained by the similarity learning microservice are serialized and restored with Python package, Joblib 2 . They can therefore be stored in document-oriented databases, such as MongoDB 3 , or databases supporting

Figure 6 . 6 :

 66 Figure 6.6: Contextual information and time series data management component diagram of our proposed system.

 and a value of specific data type. An attribute can be a class or an individual. A relation semantically connects classes, individuals, or classes and individuals. Specific types of relations exist in an ontology, essentially subsumption and instantiation. Ontologies may also contain restrictions and rules.Thereby, used metadata ontology in our data hub is required to capture contextual building information from datasets collected from multiple heterogeneous data sources. Each building should also reference its corresponding time series data about weather and energy consumption.

Figure 6 .

 6 7 illustrates the flow of data through our system.

Figure 6 . 7 :

 67 Figure 6.7: An overview of the flow of data through our proposed data hub.

Figure 6 . 8 :

 68 Figure 6.8: Class diagram of a subset of ThinkHome BuildingOntology concepts and properties.

Figure 6 . 9 :

 69 Figure 6.9: Class diagram of a subset of ThinkHome ActorOntology concepts and properties.

Figure 6 . 10 :

 610 Figure 6.10: Class diagram of Time series related data model.

Figure 6 . 11 :

 611 Figure 6.11: An example of an instantiation of our ontology-based unified view of building metadata using REFIT dataset.

Figure 7 . 1 :

 71 Figure 7.1: 3D view of a subset of base buildings used for data generation.

Figure 7 . 2 :

 72 Figure 7.2: Distribution of pairwise DTW distances between available source buildings pairs.

Figure 7 . 3 :

 73 Figure 7.3: Overview on a subset of the dataset characteristics using scatter plot. Namely, building's activity sector, total area (m 2), occupation density (pers/m 2), and orientation (•).

Figure 7 . 4 :

 74 Figure 7.4:Comparison between the actual list (left) and the predicted list (right) of most similar buildings identifiers. Queries stand for the unseen target building and is presented by their identifiers. Common elements between the actual list and the predicted list are highlighted in blue in the predicted list. Order of recommendations is ignored given that we will later combine data from recommended buildings with no regard to it.

Figure 7 . 5 :

 75 Figure 7.5: Partial auto-correlation plot for 50 lags of heating energy consumption time series. The blue shaded area stands for the approximate 95% confidence intervals. Autocorrelation outside these confidence intervals is a statistically significant correlation while those which are inside the confidence intervals are due to random noise.

Figure 7 . 8 :

 78 Figure 7.8: Line plots of respectively: heating energy consumption, outside air temperature (top), and atmospheric pressure (bottom) for a given building.

Figure 7 . 9 :

 79 Figure 7.9: Sliding window method to re-frame time series data as supervised learning problem.

 MLP represents the most basic form of artificial neural networks. A MLP is created by "stacking" several fully-connected linear layers of neurons, with non-linear activation functions in between them. The output of one layer is the input of the subsequent layer. The output of the last layer gives the final prediction of the learning model. MLP design does not intuitively take into account multiple temporal variables as in RNN. Therefore, when processing multivariate time series, we can simply flatten multi-dimensional input time series into one input vector. Otherwise, we can use a multi-head MLP (MH-MLP). This way, each univariate time series is handled by an individual head and outputs of each head are subsequently combined to give the final predictions.

Figure 7 . 10 :

 710 Figure 7.10: Illustration of the architecture of multi-head MLP.

Figure 7 . 11 :

 711 Figure 7.11: Multi-head CNN model architecture.

deviation σ = 1 ,

 1 whereas biases are initialized to zeroes. The gradients are backpropagated through batches of length 80. For the training epochs number, we have fixed 1000 as the maximum number of epochs. To avoid over-fitting, we have implemented an early stopping mechanism which breaks the training loop when training cost does not improve on the training set after 20 epochs.7.5.5 Setting 2: Multi-step Ahead PredictionFor multi-step ahead predictive modeling, we seek to forecast daily energy consumption for the subsequent week given data about previous two weeks. We use the same input data as in one-step ahead predictive modeling task. As machine learning algorithms, we leverage multi-output SVR, multi-head MLP, LSTM-RNN and CNN. Details about machine learning models proposed in the context of multi-step ahead time series forecasting are provided in Chapter 3. Multi-output SVR is a generalization of the classic single-output SVR. It consists in iteratively training multiple SVR models, where each individual model predicts a time step of the prediction horizon. As CNN, we test both multi-head and multi-channel

6 .

 6 ConvLSTM For the encoder, we use three 1D convolution layers. First two layers use 32 filters of length 3 and zero padding. Third layer use 16 filters of size 3 and zero padding. This layer include a max-pooling operation with a stride of 2.

Figure 7 . 12 :

 712 Figure 7.12: Boxplot of the experimental results grouped for each predictive model and for each evaluation scenario. The whiskers illustrate the ranges for the lower 25% and the upper 25% of the experimental results, excluding outliers. Outliers are identified by circles (•).

Figure 7 . 13 :

 713 Figure 7.13: Barplot of the experimental results of our recommended methodology for each predictive model and for each evaluation iteration.

 one-step ahead and multi-step ahead predictions. In the one-step ahead setting, used ML algorithms are kernel SVR, MLP, LSTM-RNN, multi-channel CNN and multi-head CNN. Best average prediction results of our recommendation-based methodology are obtained using CNN models. In the multi-step ahead setting, we also use a multioutput kernel SVR, a multi-head MLP, a sequence-to-sequence LSTM-RNN, a multihead CNN, a multi-channel CNN and a combination of CNN and LSTM-RNN. Best average results of our methodology are obtained using sequence-to-sequence and multihead MLP models. Overall, for both experimental settings, and for all used ML algorithms, we demonstrate that our recommendation-based methodology offers a generic framework that performs better in average than intra-domain and random selection scenarios. Intra-domain scenario represents a classical ML setting where training and test data are sampled from the same building. Random selection scenario stands for randomly selecting training buildings from available source buildings to produce a predictive model for the held-out target building.

Table 2 .

 2 1.

Table 2 . 1 :

 21 A summary of the pros and cons of three time series forecasting techniques

	Approach Pros	Cons
	White-box	• Based on detailed de-	• Computationally expen-
		scription of the building	sive and time consuming
		physics	• Difficult to model real sce-
		• Transparent	narios
		• No need for training	• Generally require over-
			simplifying assumptions
	Grey-box	• Based on simplified phys-	• Computationally expen-
		ical description of the	sive
		building	• Fail to model real scenar-
			ios
	Black-box	• Deep understanding of	• Require large amount of
		underlying principles not	historical data
		required	• May not be transparent
		• Fast computation	(deep learning)
		• Suitable for real-time data	
		processing	
		• Suitable for non-linear	
		modeling	
		• Easy integration in smart	
		environments	
		• Generally more accurate	
		than white-box model	

 Kong et al. [130] proposed a long short-term memory (LSTM) RNN model for load forecasting in residential buildings. The proposed model was compared to conventional backpropagation neural network, k-nearest neighbors and extreme learning machine. Dataset spans over 3 months and contains 69 buildings. Data are recorded every 30 minutes. Input features are the sequences for past K time steps (K = 2, 6, 12) of historical consumption data, day time indices, day of week indices and binary holiday marks. Output is the energy consumption forecast for the target time interval. Kim et al.[START_REF] Kim | Predicting residential energy consumption using CNN-LSTM neural networks[END_REF] proposed a CNN-RNN model for predicting minutely electric power consumption in a residential building. Dataset spans over 4

years. CNN-RNN model takes as input a 60-min window and provides as output the predictions of the next 60 minutes.

Table 3 . 1 :

 31 A summary of the pros and cons of three time series forecasting techniques

	Strategy Pros	Cons
	SVR	• Interpretable AI (white box),	• Generally outperformed
		• Simple,	by RNNs and CNNs,
		• Computationally cheap and effi-	• Depend on feature selec-
		cient	tion
	RNN	• Native support for sequential	• Requires large amount of
		data,	historical data,
		• Good performance in short-term	• Prone to vanishing and ex-
		and long-term forecasting (abil-	ploding gradients issue,
		ity to capture long-term depen-	• Computationally expen-
		dencies)	sive
	CNN	• Fully parallelizable computa-	
		tions,	
		• Good feature extraction ability,	
		• Computational efficiency (no re-	
		current connections, parameter	
		sharing),	
		• Lower memory requirement (lo-	
		cal connectivity and parameter	
		sharing)	

Table 4 . 1 :

 41 One-step deep domain adaptation approaches. Adapted from[START_REF] Wang | Deep visual domain adaptation: A survey[END_REF].

	Deep DA approach	Description	Sub-settings
	Discrepancy-based	minimize the domain shift	class-criterion, statistic crite-
		by fine-tuning deep net-	rion, architecture criterion,
		works using labeled or unla-	geometric criterion
		beled target data	
	Adversarial-based	promote domain confusion	generative, non-generative
		using domain discrimina-	
		tors through adversarial ob-	
		jectives	
	Reconstruction-based enforce feature domain in-	encoder-decoder [288], dis-
		variance using data recon-	criminative
		struction as auxiliary task	
	Zhuang et al. [288] proposed a supervised deep encoder-decoder for learning

domain-invariant feature representations. Taigman et al.

[START_REF] Taigman | Unsupervised cross-domain image generation[END_REF]

proposed a generative adversarial network (GAN)-based for unsupervised DA. The main idea is to generate data in the target domain by transforming source domain data (to seem as if drawn from target domain).

Table 4 . 2 :

 42 Our taxonomy of domain generalization approaches.

	. Note

sified into three axis: (1) data representation based approaches, (2) ensembling approaches and (3) meta-leaning approaches. Our taxonomy of domain generalization

Table 6 . 1 :

 61 Additional properties in the used building metadata schema.

	Property	Domain	Description
	ASHRAE climate zone Building	Climate designation used by the Ameri-
			can Society of Heating, Refrigerating and
			Air-Conditioning Engineers (ASHRAE).
			ASHRAE climate zone depends on build-
			ing location. In total, there are 16 climate
			zones: 1A (very hot, humid), 2A (hot, hu-
			mid), 2B (hot, dry), 3A (warm, humid), etc.
	Built form typology	Building	Type of the built form. We distinguish
			between; detached, attached from one
			side (or semi-detached), attached from
			two sides (or terraced), and attached from
			three sides (or apartment).
	Volume	Building	Measure of the building volume. It re-uses
			the Volume concept associated to Space.
	Construction year	Building	

Table 7 . 1 :

 71 Contextual energy features of building metadata.

	Feature	Unit	Description
	ASHRAE climate zone	-	climate designation used by the Amer-
			ican Society of Heating, Refrigerat-
			ing and Air-Conditioning Engineers
			(ASHRAE). ASHRAE climate zone de-
			pends on building location. In total,
			there are 16 climate zones.
	Orientation	•	angle in degrees (•) of the building
			plan view with respect to anti-zenithal
			direction, North being 0 • . For instance,
			a value of 45 • means North East.
	Typology of building activity	-	type of the building occupancy. Dif-
			ferent types are modeled as taxonomic
			hierarchy. We mainly distinguish be-
			tween residential, industrial, commer-
			cial, office, etc.

 consumption for heating has very high negative correlation with outside dry-bulb temperature, outside dew-point temperature and diffuse horizontal irradiance. We also notice a relatively high positive correlation with atmospheric pressure,

	and a relatively high negative correlation with direct normal irradiance (also called
	solar radiance). Correlation matrix shows that multicollinearity is present in weather
	data. Multicollinearity occurs when an independent variable can be predicted by other
	independent variables in a regression model. In our experimental work, we used vari-
	able inflation factors (VIF) to detect it. In brief, VIF technique incrementally selects
	each explanatory variable and regress it against every other variable. VIF therefore
	measure how well each variable can be explained by other variables. Generally, a VIF
	above 10 indicates that there is a significant multicollinearity. Following VIF-based
	multicollinearity analysis, we exclude outside dry-bulb temperature from our predic-
	tive modeling dataset. The correlation between heating energy consumption and se-
	lected weather variables is further depicted by plotting in Figure 7.8.
	Note that the above-described feature selection is not necessary when working
	with deep learning based predictive models. However, it helps reduce models com-
	plexity.
	redundant via a multicollinearity analysis. The choice to work with outside air temper-
	ature, solar irradiance and atmospheric pressure was made based on Pearson correla-
	tion coefficients between available weather variables and heating energy consumption
	for several buildings in our dataset. We summarize the matrix of correlation coefficients
	in Figure 7.6. Dry-bulb temperature is what we usually refer to as air temperature. It

For weather variables selection, we consecutively eliminate variables that are not correlated with the target variable (heating energy consumption), and variables that are is called "dry-bulb" to indicate that the thermometer is shielded from moisture of the air (and radiation). Dew-point temperature is the temperature at which air is saturated with water vapor, and can no longer hold it. As such, if dew-point temperature is close that energy

 This model is composed of 5 layers in total. We detail the architecture of the trained multi-channel CNN model in Table7.2. First input layer is of shape [BATCH × 14 × 6], where BATCH corresponds to the batch size which is set depending on the number of samples fed to the model during training or inference, 14 corresponds to the number of time series steps, and 6 corresponds to the number of time series variables (i.e. number of channels). The subsequent one-dimensional convolution layer applies 64 filters of length 3 ([1 × 3]), with no padding and stride of length 1. This results in 64 feature maps of size[BATCH × 12]. The one-dimensional max-pooling in the convolution layer has a stride of 2 ([1× 2]

Table 7 . 3 :

 73 Evaluation results of one-step ahead predictive modeling. Bold font indicates best results obtained across each evaluation metrics for each model and for each test case. "_" stands for R 2 values that fall outside of the range of 0% to 100%.

	Model	Test Case	MAE (kWh) RMSE (kWh)		R 2 (%)
			Mean Std	Mean Std	Mean Std
		Random selection 12.89 6.95	16.87 8.70	_	_
	MLP	intra-Domain	5.05	4.24	6.64	5.41	88.64 10.58
		Recommendation 3.95	3.25	5.18	4.22	91.74 5.67
		Random selection 13.91 12.62 17.89 15.04 _	_
	RNN-LSTM	intra-Domain	6.84	5.14	9.60	7.22	74.11 22.87
		Recommendation 3.93	3.67	5.23	4.72	91.26 6.03
		Random selection 25.08 14.58 33.14 19.59 _	_
	MH-CNN	intra-Domain	8.78	8.07	11.36 10.15 67.33 41.24
		Recommendation 2.77	2.89	3.40	3.44	93.80 6.28
		Random selection 22.71 15.71 30.03 20.63 _	_
	MC-CNN	intra-Domain	4.91	5.93	5.87	6.71	80.97 23.30
		Recommendation 2				

.78 2.65 3.47 3.21 92.85 6.77 SVR

-Kernel Random selection 17.62 20.84 34.26 45.86 _ _ intra-Domain 8.69 7.57 13.37 10.99 62.80 16.72 Recommendation 3

.21 3.20 5.70 5.39 92.37 6.08

	Proposed Ensemble	Recommendation 2.06	2.21	3.27	3.46	97.82 1.39

Table 7 . 4 :

 74 Evaluation results of multi-step ahead predictive modeling. Bold font indicates best results obtained across each evaluation metrics for each model and for each test case. "_" stands for R 2 values that fall outside of the range of 0% to 100%.

	Model	Test Case	MAE (kWh) RMSE (kWh)	R 2 (%)
			Mean Std	Mean Std	Mean Std
		Random selection 14.82 10.44 20.44 14.21 _	_
	MH-MLP	intra-Domain	10.97 9.84	15.49 13.80 48.11 57.54
		Recommendation 2.97	2.90	4.96	5.09	92.61 7.53
		Random selection 15.20 10.83 21.27 12.59 _	_
	Seq2seq	intra-Domain	13.03 9.29	18.06 15.25 48.28 34.80
		Recommendation 2.95	2.88	4.96	5.16	92.0	8.46
		Random selection 15.10 8.55	21.81 11.86 _	_
	MH-CNN	intra-Domain	10.58 7.42	14.10 9.08	47.15 27.17
		Recommendation 3.33	3.22	5.54	5.31	91.16 8.40
		Random selection 26.14 15.86 38.02 22.94 _	_
	MC-CNN	intra-Domain	8.54	7.78	11.93 10.02 62.07 45.76
		Recommendation 3.46	2.94	5.73	5.04	90.26 7.50
		Random selection 24.89 17.48 35.93 25.53 _	_
	ConvLSTM	intra-Domain	11.27 8.81	15.11 11.55 45.11 40.47
		Recommendation 3.22	2.97	5.40	5.13	91.19 7.82
		Random selection 17.06 12.84 22.25 17.94 _	_
	MO-SVR	intra-Domain	11.91 11.08 15.95 15.32 53.60 18.10
		Recommendation 3.89	4.38	6.57	6.62	90.13 8.32
	Proposed Ensemble	Recommendation 2.78	2.85	4.60	4.97	93.02 7

.40 One-step ahead Given

 Table7.3 and Figure7.12, best generalization results are provided by kernel SVR model. However, as noticed, averaged evaluation results are approximately similar across studied prediction models. More detailed visualization of experimental results for all 21 executions is depicted in Figure7.13. This plot shows that there is no specific predictive modeling algorithm that outperforms all other algorithms in every scenario. As such, MC-CNN and MH-CNN models hold best for test buildings number 2, 9 and 18. However, they hold worse performance for test buildings 3 and 17. Similarly, SVR model performs best for test buildings 11 and 21, while worst for test building 9. This phenomenon may be explainable by the no free lunch (NFL) theorem (seeChapter 6). As a result, we also resorted to combining several algorithms using stacked generalization technique. Ensemble model allows to have the best performance as shown in table7.3.

https://www.gartner.com/reviews/market/data-preparation-tools

https://www.timescale.com/

https://joblib.readthedocs.io/

https://www.mongodb.com/

https://www.mysql.com/

https://www.gbxml.org/

https://graphdb.ontotext.com/

https://www.w3.org/TR/rdf-sparql-query/

Acknowledgements

project and for his valuable suggestions. His motivation and shared expertise were invaluable in steering this research in the right direction. Also an acknowledgment goes to EDF R&D for contributing in the funding of my work.

Furthermore, I am deeply grateful to all members of the jury for agreeing to read

to air temperature, the relative humidity is high. Otherwise, if it is significantly below air temperature, the relative humidity is low. From Figure 7.6, wind speed and wind direction have minimal correlation with heating energy consumption (target variable), hence discarded. We can however notice layers, and a flattening layer. Input layer is of shape [14 × 1]. First convolution layer applies 32 filters of length 3. Max-pooling is applied in second convolution layer with a stride of 2. We subsequently concatenate the output of the convolution heads and apply three fully-connected layers. First and second fully connected layer is of respectively size 200 and 100, whereas output fully-connected layer is of size 1.