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Abstract

Predictive modeling of energy consumption in buildings is essential for intelligent
control and efficient planning of energy networks. A powerful way to perform this task
is through machine learning approaches. Relevant buildings operational data are thus
a prerequisite, notably when deep learning is used. However, operational data are not
always available, such is the case in newly built or newly renovated buildings.

The goal of this dissertation is to address the predictive modeling tasks of building
energy consumption when no historical operational data are available for the given tar-
get building. To that end, existing data collected from multiple different source build-
ings are leveraged. This is increasingly relevant with the growth of open data initiatives
in the building energy sector.

The main idea is to transfer knowledge across building models. There is little
research at the intersection of building energy modeling and knowledge transfer. A
main challenge when dealing with multi-source data is that prominent domain shift
can exist between the different sources and also between each source and the target.
As a first contribution, a two-fold query-adaptive methodology is developed for cross-
building predictive modeling. The first process recommends relevant training data to
a target building solely by using a minimal contextual description on it (metadata). To
enable a task-specific recommendation, a deep similarity learning framework is used.
The second process trains multiple predictive models based on recommended training
data. These models are combined together using an ensemble learning framework to
ensure a robust performance.

A following contribution consists in the implementation of our methodology based
on microservices. “Logically independent” workflows are modeled as separate mi-
croservices. Building metadata and operational data (time series) collected from differ-
ent sources are integrated into a unified ontology-based view.

Finally, experimental evaluations of the predictive models factory is performed
for the use case of building energy modeling. Results validate its effectiveness and
its applicability. Moreover, because of its generic design, the methodology for query-
adaptive cross-domain predictive modeling can be re-used for a diverse range of use
cases in different fields.
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Résumé

La modélisation prédictive au sein des bâtiments est essentielle pour le contrôle in-
telligent, la coordination et la planification efficaces des réseaux d’énergie. Un moyen
puissant de modélisation prédictive utilise l’apprentissage automatique Avoir des don-
nées opérationnelles pertinentes des bâtiments est ainsi un prérequis essentiel pour
cette tâche, notamment quand l’apprentissage profond est utilisé. Cependant, les don-
nées opérationnelles ne sont pas toujours disponibles, tel est le cas des bâtiments nou-
vellement construits ou nouvellement rénovés.

Cette thèse s’intéresse à la tâche de modélisation prédictive de la consommation
énergétique des bâtiments quand aucune donnée historique n’est disponible. Pour
cela, des données collectées à partir de plusieurs différents bâtiments sources sont ex-
ploitées. Ceci est de plus en plus pertinent compte tenu la croissance des initiatives de
données ouvertes dans le secteur d’énergie des bâtiments.

Ainsi, l’idée est de transférer la connaissance entre les modèles de bâtiments. Peu
de travaux de recherche sont menés à l’intersection des domaines de modélisation de
l’énergie des bâtiments et le transfert d’apprentissage. Le traitement de données multi-
sources constitue un défi important, vu l’écart de concept qui peut exister entre les
différentes sources et aussi entre chaque source et le cible. Comme première contribu-
tion, une méthodologie adaptative aux requêtes des utilisateurs est développée pour
la modélisation prédictive entre bâtiments. Le premier processus est responsable de la
recommandation de données d’apprentissage pertinentes vis-à-vis d’un bâtiment cible,
seulement en utilisant une description contextuelle minimale sur ce dernier (métadon-
nées). Pour permettre des recommandations spécifiques à la tâche cible, l’apprentissage
profond de métrique de similarité est utilisé. Le second processus est responsable de
l’entraînement de plusieurs modèles prédictifs sur les données d’apprentissage recom-
mandées par le processus précédent. Ces modèles sont combinés avec une méthode
ensembliste pour assurer une bonne performance.

La contribution suivante consiste à l’implémentation de notre méthodologie en se
basant sur les microservices. Les processus “logiquement indépendants” sont, par con-
séquent, modélisés en tant que microservices séparés. Les métadonnées des bâtiments
et leurs données opérationnelles (séries temporelles) recueillies auprès de nombreuses
sources sont intégrées au sein d’une vue unifiée et basée sur des ontologies.

Enfin, des évaluations expérimentales de l’usine de modèles prédictifs sont effec-
tuées à la tâche de modélisation énergétique des bâtiments. Les résultats valident son
efficacité et son applicabilité. Par ailleurs, vu le caractère générique de sa conception,
la méthodologie peut être réutilisée dans d’autres applications dans divers secteurs.
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Chapter 1

General Introduction

1.1 General Context

Predictive modeling of energy consumption in buildings is crucial to define specific
strategies for optimizing energy use within buildings. It therefore helps to achieve
intelligent control and efficient planning of energy networks. Specifically, in the con-
text of smart buildings, which are a fundamental part of smart cities, it is increasingly
prevalent to apply intelligent algorithms to produce predictive models for anticipat-
ing and eventually responding effectively to specific events, such as peaks in energy
consumption or changing occupancy patterns.

One increasingly common approach to perform predictive modeling of building
energy is through machine learning (ML) [225, 36]. As energy data are time series in
nature, time series forecasting approaches are used [63]. These approaches are time effi-
cient and ensure an easy integration of buildings in smart environments [9]. However,
the performance of machine learning models highly depends on the relevance and the
availability of a sufficient amount of building operational data used for training (mul-
tiple months to years of data). This is especially true when deep learning is used due
to their inherent complexity [216, 144, 175].

In many cases, historical operational data are not available for training, namely in
newly built or newly renovated buildings. With improvements in energy efficiency of
such buildings, predictive modeling of energy consumption can not anymore be based
on their historical pattern. Moreover, in the field of energy assessment of buildings,
energy efficiency is usually verified before construction or renovation. In such cases,
only contextual information about the future building is available, namely its design,
construction, occupancy, etc.

1.2 A Predictive Model Factory for Building Energy

With the increasing availability of open data in many sectors, existing energy consump-
tion data about other buildings may be obtained. The main idea of this work is, there-
fore, to leverage data collected from multiple different source buildings when no data
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are available on a given target building.

An important challenge arises when working with multi-source data, as large
domain shift may exist between different sources and also between each source and
the target [235]. Consequently, models trained on source-combined data from dis-
parate sources can interfere with one another during the training process and gener-
alize poorly when applied to a new previously unseen target domain [283, 207]. This
phenomenon is referred to as negative transfer [255]. More precisely, within the context
of building energy modeling, energy consumption depends greatly on several contex-
tual factors, such as the building typology (i.e. residential, industrial or commercial),
shape, size and age [264]. Combining energy data from very disparate source buildings
is consequently counterproductive and will adversely impact the target performance in
the target building.

Proposed approaches addressing the aforementioned challenges fall into the broader
field of knowledge transfer, and more particularly domain adaptation and domain gener-
alization sub-fields. Domain adaptation [260, 37, 213] uses labeled source data as well
as sparsely labeled or unlabeled target data to build an efficient model for the target
domain. Whereas domain generalization (DG) [286, 28, 179] requires no data in the
target domain and uses multiple source domains.

Our work lies somewhere between multi-source domain adaptation and domain
generalization areas of research. We aim to train accurate predictive models that per-
form well on new previously unseen target domains via source domain recommendation.
Source domain recommendation allows to select most similar sources to the target do-
main. Hence, we suppose that target metadata, which consist in a contextual description
of the target domain, are available beforehand to guide the similarity-based selection
process. This contextual description provides a minimal a priori knowledge about the
unseen target building, and mainly consists of design properties that are easy to ac-
cess. Conventionally, similarity measures that are used for source domains selection
are based on measuring the discrepancy between the distributions of source domains
data and target domain data [74, 44, 214]. However, this is not suitable in our case due
to the unavailability of target domain data during training.

In this work, we aim to learn a metric space, in which source domain recommen-
dation is achieved by computing distances between learned representations of each
building. Hence, similarity learning techniques are leveraged to learn building-level
representations, so that similar buildings with similar energy consumption profiles are
mapped close to each other in the learned feature space, and dissimilar building pairs
are mapped far from each other. Representations are generated by training a Siamese
network [40, 172] on buildings’ contextual descriptions (metadata). In other words,
distance between learned domains representations will reflect similarity between their
corresponding data, all while requiring only the domains metadata to compute dur-
ing test. Similarity learning has been proposed in the context of domain adaptation in
[195]. However, they assume that unlabeled target domain data are accessible during
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training. Selecting most similar source domains with the use of target domain metadata
rather than actual data via metric learning, as in our work, has yet to be explored.

For the experimental study, we perform predictive modeling of a target building
using similar source buildings data. Machine learning based predictive modeling of
buildings energy is performed using time series forecasting techniques. As such, a wide
range of techniques exists [123, 225, 216], namely artificial neural networks [80, 27] and
support vector machines [149, 116]. Conventionally, energy modeling requires many
months to years of data on the corresponding building, such as historical consumption
data, weather data and occupancy profiles, in order to build an accurate predictive
model. A predictive model is, therefore, trained and evaluated on the same building
context. Our approach goes beyond such methods and proposes to transfer knowledge
across similar buildings. Arguably, there is no single predictive model that works best
for every test scenario. This is known as the no free lunch theorem [263]. Hence, we
use an ensemble learning framework for the predictive modeling task. This allows to
combine predictions from several learning algorithms. Ensemble learning generally
yields better generalization performance than only one contributing model. As this
work aims to provide a generic framework to allow predictive energy modeling for a
diverse range of target scenarios, we develop a query-adaptive workflow. Thus, we
model metadata on target buildings as queries.

An efficient implementation of the above-described predictive models factory rely
on data collected from multiple heterogeneous sources. To provide a unified global
view of data, we follow an ontology-based data integration [143, 96]. Defined ontol-
ogy allows to capture our specific domain knowledge in a formal way. Furthermore,
we seek to design different processes of our methodology so that they are sufficiently
generic, modular and adaptable. This will allow an easy reuse in similar use cases
in other fields, namely finances and healthcare. Therefore, we opt for a microservice-
based architecture [72]

1.3 Contributions

This PhD research has the following contributions :

• To our best knowledge, this work is a first attempt to transfer knowledge across
buildings with no historical data available about the target building during train-
ing. To that end, a novel methodology is developed. Two levels of information
about buildings are leveraged, namely contextual description about the building
(metadata) and historical data. As such, to mitigate historical data unavailability
for a given target building, metadata (easy to acquire) about it are used instead.

Firstly, most similar buildings from available source buildings are selected based
on task-specific inter-domain similarity information. Historical data from these



4 Chapter 1. General Introduction

buildings are subsequently retrieved and recommended as training data. An ap-
propriate similarity measure is learned for this task using a deep similarity met-
ric learning framework. Secondly, predictive models are trained using recom-
mended data. To improve robustness and accuracy, an ensemble learning frame-
work is used. The experimental evaluations validate the effectiveness and the
applicability of this methodology.

Given the generic nature of its design, our methodology can be re-used for differ-
ent use cases in various sectors.

• A microservice-based implementation of cross-building energy modeling is de-
signed. Logically independent tasks are consequently designed as individual
microservices. In the context of this work, we propose to collect building energy-
related data from different data sources, such as open data and simulation results.
For efficient integration of such data, a unified global view is used. More partic-
ularly, metadata about buildings (contextual descriptions) are integrated using
ontologies. We extend ThinkHome ontology [205] to describe building design
and thermal parameters, and basic information about occupants. Historical time
series data are, on the other hand, integrated in specific data stores and referenced
from corresponding building’s metadata view.

1.4 Outline of the thesis

The rest of this report is structured as follows. The first part provides an overview of
the necessary concepts to understand the research aspects of this PhD work. It also pro-
vides a review of related literature used to formulate the research proposal. Chapter 2
presents the general use case of building energy modeling. Chapter 3 provides a brief
background on machine learning and deep learning, and an in-depth background on
various time series forecasting techniques. Chapter 4 focuses on various approaches
for cross-domain knowledge transfer. The second part details the main contributions
of this PhD research work. Chapter 5 details the proposed methodology and its main
components. Chapter 6 presents the proposed microservice-based implementation and
data specification. Chapter 7 details the experimental setup and discusses experimental
findings. Finally, in Chapter 8, we conclude with possible directions for future work.
Figure 1.1 illustrates the outline of this manuscript.
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Figure 1.1: Outline of the manuscript structure.
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Part 1

State of the Art
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Chapter 2

Building Energy Consumption
Modeling

2.1 Introduction

Buildings account for over one-third of the global energy consumption as for recent
years, and nearly 40% of greenhouse gas emissions. As population and floor area
growth continues, global energy demand in buildings is rapidly increasing. Conse-
quently, improving the energy efficiency of buildings has become a key issue of concern
in innovative research, construction industry, and government programs and policies.

Several efforts and initiatives are carried out to improve building-level energy effi-
ciency by helping to measure, monitor, optimize and evaluate energy-related building
services such as heating, ventilation, air conditioning and lightning. Optimal manage-
ment and conservation of building energy rely on accurate prediction of future energy
consumption. This is assured by building energy modeling (BEM) tools. In addition,
when evaluating building energy use, BEM is used for benchmarking and rating, by
measuring energy performance of an individual building over time and compare it to
other similar buildings or reference buildings. BEM is therefore a multi-purpose mod-
ule that is employed for various cases, including assessment of new buildings design,
renovation and retrofit of existing building, real-time management and control of en-
ergy consumption and utility incentives.

This chapter is structured as follows. Section 2.2 provides a brief overview on
building energy modeling, including its common uses and its taxonomy. Section 2.3
provides a deeper view into machine learning based approaches as well as their limi-
tations. Section 2.4 broadly presents determinants of energy consumption in buildings,
and reviews existing information models. Finally, in Section 2.5, we draw some conclu-
sions.



10 Chapter 2. Building Energy Consumption Modeling

2.2 Building Energy Modeling

Mathematical modeling is an approach to describe complex systems using mathemati-
cal concepts in order to help understand them and make predictions about their behav-
ior. As such, building energy modeling involves the development of models that can
capture key properties of a system - in this case building energy consumption - where
subsequently simulations can be performed with different sets of input data to study
future changes [222].

Building energy modeling (BEM) plays an important role for the efficient plan-
ning and operation of energy networks. It mainly consists in predicting future energy
consumption. As such, an accurate prediction of energy consumption at the build-
ing level will promote the building energy utilization rate, and will directly improve
the efficiency of the planning process of the entire energy network [175]. Despite the
long-standing interest in BEM, it remains as a challenging problem given the wide
range of factors that may affect the energy use in a building, namely economic and
socio-demographic factors [84, 50, 87], weather conditions, occupants’ behaviors [65],
physical building characteristics, operation of sub-level components such as HVAC
systems (heating, ventilation and air-conditioning), lighting systems and electric ap-
pliances [282].

2.2.1 Common use cases

Building energy modeling has multiple uses. It can be used in the context of energy
performance assessment at building-level. This is generally performed for new build-
ings at its design process, or for existing buildings at its renovation process. In fact, a
building life-cycle is composed of three main stages: design stage, construction stage
and operation and maintenance stage (see Figure 2.1). Design stage involves a detailed
planning of building space layout, envelope, etc. There are several aspects required
to take into account such as energy efficiency, environmental and health impacts, life-
cycle costs and urban integration. Energy efficient buildings are designed to ensure
minimum energy demand. Once constructed, a building enters its operation stage (also
called occupancy stage). Operational energy is important during this stage, to provide
lighting, heating, ventilation, air conditioning, power control systems, and appliances.
During its operation, a building may undergo many changes in its design and function.
Changes ranges from minor such as replacing appliances (remodeling) to more signifi-
cant such as expanding the building or upgrading the thermal envelope for improved
energy efficiency (renovation). To conclude, BEM is used to study and benchmark the
overall building performance of an existing or a new building in order to establish con-
struction or energy renovation strategies. As any product, buildings have finite lives.
End-of-life stage thus consists in demolition [58].

BEM is also generally used in the context of urban energy modeling. Urban energy
modeling aims to better understand energy consumption in new or existing districts,
cities, etc. This allows an effective planning of energy retrofitting programs or changes
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Figure 2.1: Broad view of building life-cycle.

in energy supply infrastructure. For instance, urban energy modeling techniques can
be distinguished into two main categories (1) Top-down approaches and (2) bottom-
up approaches. Top-down approaches rely on load data profiles of the entire district or
city, and then it is increasingly down-scaled into smaller sub-sections until reaching
building-level energy consumption. By contrast, bottom-up approaches use information
on the building stock and predict the energy consumption based on the current and
predicted characteristics of the building stock itself. As such, BEM is commonly used
for bottom-up approach to build archetypes that represent “typical” building stock’s
categories.

More recently, BEM is increasingly prevalent in the context of smart buildings,
which are a fundamental part of smart cities. A smart building is controlled by a build-
ing management system (BMS) which gathers data from sensors and meters. BMS
therefore relies on energy data to dynamically determine in real time the most suitable
decisions to undertake in order to improve the building energy efficiency, such as peak
clipping, load shifting and valley filling. Peak clipping/shaving includes introduced
techniques to reduce peak power demands on the system. Load shifting involves shift-
ing power consumption to another time period, typically during off-peak hours and
when energy prices are lower. Valley filling a power consumption profile consists on
encouraging additional energy use during periods of lowest system demand. There-
fore, BEM is crucial for forecasting building-level power loads and peak loads. It al-
lows to accurately and dynamically identifying future energy consumption and energy
saving opportunities for building energy management systems.

2.2.2 Taxonomy of Building Energy Modeling Approaches

Mathematical modeling encompasses a variety of techniques including physical prin-
ciples, applied statistics and machine learning. Physics-based modeling is application-
domain specific as it largely depends on physical relationships within the studied sys-
tem. While statistical and machine learning modeling is data-driven. Some hybrid
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approaches that lies between both axis also exist. More precisely, mathematical mod-
eling of building energy approaches can be distinguished into three approaches [36,
8, 282]: (1) white-box based, (2) grey-box based and (3) black-box based. White-box
based models (also known as physics-based models or engineering-based models) [8]
consist in providing a simplified explicit representation of the building components us-
ing physical equations, and resolving it. These models require a detailed description of
the geometrical structure and thermo-physical characteristics of the building, and the
environmental conditions. A lot of specialized and mature white-box software tools
exist, such as EnergyPlus [59], ESP-r [244], eQuest and TRNSYS [247]. A white-box
based approach allows the creation of flexible and transparent benchmarking models
for the assessment of the effectiveness of design alternatives of new buildings and the
potential of deep energy retrofits of older buildings. However, these models are com-
putationally expensive and require a considerable amount of time and expertise for
the identification of detailed information about the building phenomena, and the cal-
ibration of the dedicated simulation engine for each building [253]. This makes this
approach not amenable to scale to the urban level and unsuitable for online or near
real-time applications. Studies also find that white-box models may inaccurately pre-
dict energy use in real-world operational buildings given their high complexity [46].
As such, white-box models may fail to account for the stochastic occupant energy use
behavior [218], complexity of the built environment, uncertain inputs, and inefficien-
cies in operational buildings due to improper maintenance and operation of building
systems [170].

The grey-box based models (also known as hybrid models) [119, 126] are a modifi-
cation of the white-box based models through the use of statistical methods. They use
a simplified physical description of the building energy systems. An unknown sub-
set of the model parameters are then estimated using historical data through statistical
algorithms. Even though grey-box approach has some advantages, such as low calcula-
tion time and flexibility, it also combines limitations of the white-and-black-box based
approaches, such as the computational inefficiency and the failure to account for the
complex interactions between building elements.

The black-box based models (also known as data-driven models) [216, 8] use histor-
ical data to model the energy consumption of buildings, instead of detailed physical
descriptions. We distinguish between statistical and artificial intelligence methods [216].
Statistical methods use historical data to find a correlation between the most influential
features as input and the energy consumption. Instances of statistical models include
auto-regressive moving average (ARMA) [182], conditional demand analysis (CDA)
[150], Gaussian mixture models (GMM) [225], etc. Artificial intelligence (AI) methods
use historical data to model the behavior of the process to be modeled. Instances of
AI models include artificial neural networks (ANN) [80, 27], support vector machines
(SVM) [149, 116] and decision trees [275]. The scope of this research is focused on the
data-driven approaches, and more precisely machine learning based techniques.
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We summarize pros and cons of white-box, grey-box and black-box approaches in
Table 2.1.

Table 2.1: A summary of the pros and cons of three time series forecasting techniques

Approach Pros Cons

White-box
• Based on detailed de-

scription of the building
physics

• Transparent
• No need for training

• Computationally expen-
sive and time consuming

• Difficult to model real sce-
narios

• Generally require over-
simplifying assumptions

Grey-box
• Based on simplified phys-

ical description of the
building

• Computationally expen-
sive

• Fail to model real scenar-
ios

Black-box
• Deep understanding of

underlying principles not
required

• Fast computation
• Suitable for real-time data

processing
• Suitable for non-linear

modeling
• Easy integration in smart

environments
• Generally more accurate

than white-box model

• Require large amount of
historical data

• May not be transparent
(deep learning)

2.3 Machine Learning for Building Energy Modeling

Machine learning (ML) is a subset of artificial intelligence that provides the ability to
automatically learn and improve using data. One main advantage of using ML-based
models, or data-driven models in general, is that they allow a facilitated integration
into smart systems. Consequently, it is increasingly prevalent to apply machine learn-
ing algorithms to produce predictive models. Smart buildings generally rely on an
automated energy management infrastructure that include smart meters, sensors and
the communication network. Smart meters continuously collect data such as energy
consumption, while sensors gather environmental data such as motion, temperature or
lighting. As such, building energy-related data are collected are time series. Technolo-
gies like internet-of-things (IoT) are used to simplify tasks like building control and to
effectively manage building devices.
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Works on BEM in literature may be distinguished depending on several factors [8],
such as:

• Type of building, including residential, commercial or office buildings.
• Time-resolution of predictions, including short-term (e.g. sub-hourly, hourly,

daily) or long-term (e.g. yearly).
• Input features, including historical consumption data, weather data and building

design parameters.
• Dataset size as the number of timesteps used for training and testing the ML

model.
• Machine learning algorithm, including support vector machines, artificial neural

networks and decision trees [63, 225, 36].
• Target variables, including whole-building level energy consumption (total) or

sub-level components, such as cooling, heating or lighting.

Several reviews on machine learning-based BEM approaches and their classifica-
tion are proposed in literature [63, 8].

Most commonly-used machine learning algorithms for BEM are support vector
machines (SVM) [149, 229, 116, 123, 175] and artificial neural networks (ANN) [22,
80, 27, 175]. Jain et al. [116] studied a SVM with a radial basis function (RBF) kernel
for predicting electricity consumption in a multi-family residential building, based on
different temporal granularity (daily, hourly, every 10min) and different spatial gran-
ularity (whole building, by floor, by unit). Two datasets are used, that contain data
over respectively 6 months and 3.5 months. As input features, authors used historical
consumption data, current outdoor temperature data, current solar flux data, week-
end/holiday or weekday indicator, sine of current hour, and cosine of current hour.
Zhao et al. [281] proposed a parallel implementation of SVM with RBF kernel to pre-
dict hourly heating consumption and hourly electricity consumption for multiple office
buildings. Energy data were simulated using EnergyPlus. Number of buildings in the
dataset is 100 and each building has hourly data for over 5 months. Input features are
historical data, holiday indicator, weather conditions, zone mean air temperatures, in-
filtration volume, heat gain through each window, heat gain through lights and people
and zone internal total heat gain.

Biswas et al. [27] proposed an ANN-based models to predict daily total and heat
pump energy consumption in an unoccupied residential building. Input features are
number of days, outdoor dry-bulb temperature and solar radiation. The dataset spans 3
months. Ben-Nakhi et al. [22] proposed a general regression neural networks (GRNN)
to predict hourly cooling loads in office buildings. The experimental dataset was gen-
erated using ESP-r and contains 3 buildings. Corresponding data cover a time span of
5 years. Input features consist only on previous day’s external dry-bulb temperature.
Outputs consist in hourly cooling loads of subsequent day.

In recent years, deep learning is widely adopted for energy modeling tasks, and
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becomes the state of the art when large amount of historical data are available. Vari-
ous deep learning models have been used, such as recurrent neural networks (RNNs)
[175, 168, 129, 252, 130], or a combination of convolutional neural network (CNN) and
RNN (CNN-RNN) [245, 127]. Kong et al. [130] proposed a long short-term memory
(LSTM) RNN model for load forecasting in residential buildings. The proposed model
was compared to conventional backpropagation neural network, k-nearest neighbors
and extreme learning machine. Dataset spans over 3 months and contains 69 build-
ings. Data are recorded every 30 minutes. Input features are the sequences for past
K time steps (K = 2, 6, 12) of historical consumption data, day time indices, day of
week indices and binary holiday marks. Output is the energy consumption forecast for
the target time interval. Kim et al. [127] proposed a CNN-RNN model for predicting
minutely electric power consumption in a residential building. Dataset spans over 4
years. CNN-RNN model takes as input a 60-min window and provides as output the
predictions of the next 60 minutes.

A detailed explanation of machine learning notion and the most common algo-
rithms discussed above is found in Chapter 3.

Despite their success in the context of energy modeling, machine learning ap-
proaches have two main limitations. First limitation is that ML requires a sufficiently
large amount of data to produce accurate models, notably when deep learning is used.
As such, buildings for which no (or few) energy consumption data are available (e.g.
newly built buildings or newly renovated buildings) can not be successfully modeled.

Secondly, and more importantly, machine learning models trained on a source dis-
tribution (training dataset) may perform poorly when used in the context of a different
target distribution. For instance, a model trained on building A may not generalize well
on a different building B (e.g. different locations, different types of buildings, different
design, etc.). Similarly, a model that predicts energy consumption in a building, may
become unusable when this building changes over time. Changes in energy consump-
tion are generally attributed to renovation works, changes in occupancy (e.g. change
of tenants), changes in operations schedule, etc. As such, a different predictive model
is generally trained for each building, and a predictive model of a particular building
is often required to be re-trained to be up-to-date. Alternatively, solutions for train-
ing models that generalize well across different data distributions are proposed in the
framework of knowledge transfer. A detailed presentation of this field and its common
techniques can be found in Chapter 4.

2.4 Building Energy Data

Data-driven approaches in general, and machine learning based approaches in particu-
lar, typically require a sufficient amount of data on several exogenous variables. These
determinant variables of energy consumption are numerous and diverse. It is therefore
required to identify most relevant variables for accurate BEM.



16 Chapter 2. Building Energy Consumption Modeling

2.4.1 Determinants of Energy Consumption

Buildings are complex systems that must ensure the comfort of occupants, and there-
fore must provide heating, ventilation and possibly air conditioning, which are respon-
sible for a significant proportion of the total energy consumption within buildings.

Building Envelope

To model the energy demand, it is necessary to take into account heat and mass transfer
phenomena. Heat transfer occurs via three mechanisms: conduction, convection and
radiation [136]. Conduction occurs within any material body through propagation of
thermal energy in case of temperature gradients. In buildings, heat conduction occurs
through the envelope in response to weather fluctuations, solar radiations and ground
temperature, as well as through partition walls, indoor floors and ceilings. Building
heat conduction problems are generally multi-dimensional and transient. However,
for the sake of computational efficiency, one-dimensional multi-layer numerical mod-
els are generally used. Such models allow accurate understanding of heat conduction
through building envelope under the assumption that heat flow is normal to the sur-
face. A multi-dimensional analysis is more relevant in case of building corners, bal-
conies, and other potential thermal bridges.

Convection, which results from fluid displacement, causes convective exchanges
at the interface of solid surfaces. This kind of exchanges through inner and outer sur-
faces of the building envelope are of major importance in the thermal balance of a
building and must be considered. In buildings, convection occurs through inter and
intra-surface air motion as result of temperature and pressure differences, or through
outer envelope due to air infiltration.

Radiative heat transfer is caused by the thermal electromagnetic emission of ma-
terial bodies with respect to their temperature. In building physics, distinction is made
between short-wavelength and long-wavelength radiations. Short-wavelength radia-
tion, either direct or diffuse, originates mainly from solar light emissions. In buildings,
solar radiation is absorbed by opaque outer surfaces, transmitted by transparent or
translucent surfaces, and eventually absorbed and reflected by interior surfaces and
glazed openings. Long-wavelength heat exchanges are, on the other hand, a charac-
teristic of heat exchange between building components. In buildings, long-wavelength
heat is emitted from exterior surfaces to the sky, the ground and other surrounding ob-
jects, exchanged among interior walls, as well as between interior walls and occupants.

Building thermal balance relies on several factors related to building geometry,
materials, occupancy, weather, etc. For example, on a sunny day, solar radiation passes
through glazed openings (windows or doors), resulting in heat gain within the inner
volume. Heat gain depends on the transmission rate of the glazing and on the orien-
tation of the openings, hence the need to have a notion of building orientation. More-
over, heat from solar radiation will also contribute to the energy balance by conduction
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through the outer wall to the inside wall surface from which it is convected and radi-
ated into the building.

The thermo-physical properties of the building envelope is of major importance
in determining the indoor air temperature, and thus the energy demand for heating
and cooling. Therefore, information about construction material, dimensions and other
building parameters is of high value. Fundamental thermo-physical properties of build-
ing parameters are thermal conductivity, density and heat capacity. Information about
occupancy and equipment profiles and schedules is also fundamental. For instance,
human body generates sensible and latent heat through metabolism, and dissipates it
by radiation, convection, and evaporation.

Occupants Behavior and Activities

Occupants behavior and activities greatly influence energy consumption within build-
ings in several manners [65]. Occupants continuously interact with building systems to
control indoor environment and ensure comfort. This includes indoor air quality (e.g.
circulate fresh air and eliminate indoor air pollution), thermal comfort (e.g. control
indoor temperature set-points for heating and air conditioning), visual comfort (e.g.
control view, luminance ratios and avoid screen reflections) and acoustic comfort (e.g.
minimize intruding noise and vibrations) [30].

Socio-economic and Demographic Factors

Socio-economic and demographic aspects also play a role in impacting energy con-
sumption. Demographics factors may include age of occupants and level of urban-
ization, [98]. Economic factors include energy prices, pricing schemes and household
revenue. Namely, building adopting time-of-use pricing will modify their energy con-
sumption patterns voluntarily to reduce their energy expenses. Other factors are time
spent at building, culture, social status, and education and awareness level of occu-
pants. For instance, according to some researchers, the higher is the occupants educa-
tion level, the more likely they are to engage in saving energy [25].

Outdoor Conditions

Moreover, outdoor conditions, such as surrounding urban morphology and environ-
mental factors like air temperature, wind and humidity, highly impact energy con-
sumption. High air drought induce more pressure on the building wind-ward walls,
which leads to higher indoor air change. Air infiltration also occur due to differences
between indoor and outdoor temperature.

To summarize, energy consumption in buildings is often complex as it depends
on many determinant variables. Consequently, several parameters are required to per-
form building energy modeling. Such parameters broadly consist of its corresponding
geometric shape, orientation, physical properties of the building envelope and interior
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elements, occupation scenarios, and systems. Information about meteorological fac-
tors, such as wind speed, relative humidity, air temperature, and solar irradiance is
also often required. Figure 2.2 provides an overview on some determinant variables of
energy consumption within buildings.

Figure 2.2: Categorization of building energy data on determinant variables.

As such, two forms of data are required for an accurate building energy modeling,
namely time series data and contextual descriptions. Time series data represent vari-
ables whose values follow a temporal ordering, such as historical energy consumption
and meteorological conditions. Contextual descriptions, on the other hand, represent
static features of the building, such as type, design, construction, etc. We refer to con-
textual descriptions of buildings as metadata for the rest of this work.

2.4.2 Metadata Schemas for Building Energy Modeling

Building energy modeling require detailed information about the building design and
operation parameters. Parameter instances are structured in information models. Tra-
ditional pipeline goes from a 2D or 3D building model that is realized with Computer-
Aided Design (CAD) tools (i.e. REVIT and SketchUp). Data are then sequentially ex-
changed between actors throughout the building life-cycle. At each exchange, data are
translated into suitable formats for different applications. Such approach leads to nu-
merous issues as it lacks coordination between building professionals, it fails to provide
a common data platform for distributed organizations and among concurrent decision
processes, and it induces inefficient project management and costs estimation. Building
Information Models (BIM) technology was therefore introduced to establish synergis-
tic workflows that link the Architecture, Engineering and Construction (AEC) industry.
BIM achieves a higher level of interoperability which enables data sharing without any
loss information throughout the building life-cycle. BIM offers a richer representation
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of the building through multidimensional models [3]: 3D is a visualization model, 4D is
the time monitoring, 5D is the costs estimation, 6D is the energetic analyses and the 7D
correspond to the facility management of a building. Data interoperability includes the
ability to exchange and accurately interpret information across heterogeneous appli-
cations. Interoperability consists on transforming each application’s internal data into
an universal model and vice versa through data mapping [185]. Consequently, great
attention was paid to standardize BIM processes.

Over the years, several data models have reached a high level of maturity in sup-
porting the whole building life-cycle. First proposed building data exchange models
were STEP [261, 198], ARMILLA [100], IBDE [79], ICADS [196], which are mainly in-
terested on building geometrical information and therefore not sufficient. Later gener-
ation of data models sought to include domain-specific processes, such as building en-
ergy simulation, thermal comfort evaluation, building design evaluation, project plan-
ning, etc. The hierarchical model [19] focuses on life-cycle cost modeling. KNODES
[217] further covers building energy modeling. SEMPER-II [141] proposes a platform
that supports integrated concurrent design support. The last generation of data mod-
els offers the potential to encapsulate all information related to the built environment,
yielding the BIM paradigm.

Currently, two prevalent data exchange formats are used in AEC industry; Indus-
try Foundation Classes (IFC) developed by buildingSMART and Green Building XML
(gbXML) [88] developed by Green Building Studio. IFC represents a major effort to
standardize AEC data, and is widely accepted as a mature and comprehensive model
within the industry. IFC is based on ISO STEP data modeling standards. Data are thus
specified in EXPRESS modeling language. Its goal is to provide a platform-neutral
open data format that enable interoperability across BIM applications. The IFC schema
defines objects and relationships that cover core building information such as building
elements, the geometry and construction material properties, cost management, con-
struction scheduling, and organizations.

A gbXML model captures geometric information (e.g. walls, shading surface and
windows) and non-geometric information including occupancy, equipment, lighting,
HVAC (heating, ventilation and air-conditioning) system set points, and operation
schedules. Because gbXML is based on XML, it is structured as a tree of elements with
attributes as shown in Figure 2.3. Geometry information is contained in “Campus”
element. The child element “Surface” represents all surfaces in the geometry. Walls,
ceilings and floors are usually modeled as planar surfaces. A planar surface is defined
by four boundary points given their Cartesian coordinates. Openings (e.g. windows,
doors) are modeled as rectangles co-planar to the walls to which they belong. Semantic
information such as construction, layer and material is related to its corresponding ge-
ometry using reference attributes. A construction consists of a building material com-
posite. A building material composite consists of corresponding layers. Material layers
are described by their physical and thermal parameters (e.g. thickness, conductivity,
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density). Alternatively, material layers representation can be simplified as one layer
representing the thickness and the U-value of the composite. U-value expresses the
thermal transmittance of the composite.

Figure 2.3: Graphical visualization of a subset of gbXML model elements [10]. gbXML
elements are represented with solid rectangles, while their attributes are represented
with dashed rectangles. Arrows represent parent/child relationships among elements.

However, IFC and gbXML do not ensure semantic interoperability. For instance,
the IFC does not allow the specifications of all elements required to express HVAC sys-
tems. To achieve semantic interoperability, semantic data models were proposed e.g.
BOT [204], SAREF4BLDG [197], ThinkHome [205], DogOnt [31], ifcOWL [193]. Ontolo-
gies seeks to add a richer semantic layer on top of objects, parameters definitions and
relationships defined in other schemas, as well as reasoning and inferring possibilities.
Other models extend and focus on other aspects of the built environment such as the
IoT infrastructure [200][14].

2.5 Summary and conclusions

Building energy modeling is a versatile and multi-purpose module that enables de-
signers, end users, energy suppliers and policymakers to model buildings energy us-
age in both new buildings during design and existing buildings during renovation and
retrofits. BEM is also used in the context of smart buildings to promote intelligent en-
ergy management. BEM is essential to promote energy efficiency within buildings and
effective energy planning at the whole energy network.

In this chapter, a categorization and a comparison are established of different BEM
approaches, namely white-box, black-box and grey-box based. In particular, BEM us-
ing machine learning, which is a subset of the black-box based modeling, is increasingly



2.5. Summary and conclusions 21

prevalent given its numerous advantages. In addition to its accuracy, this approach is
time and computationally efficient, and allows an easy integration of buildings into
smart systems. An introduction to machine learning, and a detailed review of tech-
niques that may be used in the context of BEM are found in Chapter 3.

We categorize ML-based approaches reported in literature, depending on learning
algorithms, time resolution of predictions, target variables, etc. Building energy con-
sumption data, being time series in nature, are modeled commonly using support vec-
tor machines and artificial neural networks. In addition to historical energy consump-
tion, several exogenous variables may influence consumption patterns in buildings,
namely thermo-physical properties of building envelope, occupancy, weather condi-
tion and socio-economic factors. Data on these exogenous variables provide contex-
tual description about building energy, and therefore considered as metadata for BEM.
We overview commonly proposed schemas for the integration of buildings metadata,
namely IFC and gbXML. Moreover, several ontologies are proposed in the context of
BEM, such as ThinkHome. Ontologies add a layer of semantics that delivers a common
and formal description of knowledge.

Despite their success, accurate ML models generally rely on large amount of data.
This limits its usability in cases when no or few historical data are available for train-
ing, such is the case in newly built or newly renovated buildings. In addition, models
that were trained on data from source building may generalize poorly when used in
the context of a different target building. As such, historical data unavailability for a
given building can not be always overcome by simply training a model on a different
building (on which enough data are available). This is also frequently the case of in-
dividual building that have undergone renovation works, which results in changes in
energy consumption profiles. Example of solutions that were proposed to overcome
such challenge are made in the context of Knowledge transfer. A deeper view of this
field of research and proposed techniques is found in Chapter 4.
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Chapter 3

Machine Learning for Time
Series Forecasting

3.1 Introduction

One powerful way to perform building energy modeling is through machine learning.
Machine learning represents a profound paradigm shift in programming. Traditional
programming refers to manually create deterministic algorithms, that detail every step
that should be taken to perform a specific task. Traditional programs thus takes data as
input and process them as stated by the rules. When data do not fit within explicit rules,
they are unable to process them. Similarly, when rules are too complex for a human
to explicitly and accurately program, traditional programming is not appropriate. By
contrast, machine learning refers to training a model that learn from data themselves
without the need of an explicit program. Figure 3.1 illustrates the difference between
traditional programming and machine learning.

Figure 3.1: Traditional programming vs machine learning.

Machine learning based building energy modeling aims to accurately predict fu-
ture energy use in buildings. Energy use data are time series in nature. Hence, most
applied ML techniques in this context are artificial neural networks and support vec-
tor machines. More recently, deep learning is increasingly adopted and becomes the
state-of-the-art approach when large amount of historical data are available.
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This chapter is structured as follows. Section 3.2 overviews the taxonomy of ma-
chine learning approaches, and details the classic machine learning workflow. Sec-
tion 3.4 presents techniques that are proposed for time series forecasting. Section 3.5
concludes this chapter.

3.2 Learning from Data

Machine learning is a subset of artificial intelligence that uses statistical decision theory
to build systems that have the ability to automatically learn from data. In [174], a def-
inition of learning is provided: “A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E”. In general, a well-posed
learning problem relies on the identification of these three features: class of tasks, mea-
sure of performance to be improved, and source of experience.

A task is different from the learning itself. The learning is simply the process of
attaining the ability to perform the task [92]. A performance measure is a quantita-
tive measure that is used to evaluate the machine learning algorithm. The choice of a
performance measure depends mainly on the task carried out by the system. An expe-
rience refers to the past information available to the learner, which typically consists of
data collected for analysis. The amount and the quality of data are crucial to the suc-
cess of learning algorithms. As an example, a robot that learns to drive in a four-lane
highway using visual sensors, might improve its performance as measure of average
distance traveled before an error, through experience obtained by a sequence of images
and steering commands recorded while observing a human driver (example taken from
[174]).

Data used for machine learning forms a dataset. A dataset consists of data instances
called examples, data points or inputs. An example is a collection of features that are quan-
titatively measured of a particular observation of the phenomenon that the machine
learning system is designed to process. Typically, an example is represented as a vector
x ∈ Rn, where each entry xi is a feature. A common way of representing a dataset
is with design matrix. A design matrix is a matrix where each row corresponds to an
example and each column corresponds to a feature. A machine learning task depends
on the way we are processing an example. Typical examples of tasks are classifica-
tion and regression. For classification tasks, the computer program maps examples to
categories they belong to. For example, in email classification, each email is mapped
to either spam or not spam categories. We therefore seek to learn a target function
f : Rn 7→ 1, . . . , K, where 1, . . . , K are numerical codes for the categories. In a regres-
sion task, the computer program predicts numerical values given input examples. The
unknown target function is f : Rn 7→ R. An example of a regression task is the predic-
tion of sale prices of houses [6].
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3.2.1 Taxonomy of Machine Learning Techniques

The primary premise of machine learning is the use of data to uncover an underly-
ing process [2]. Several learning paradigms have been introduced to address different
settings and different assumptions. A common learning paradigm classifies ML tech-
niques based on available information. We distinguish between supervised, unsuper-
vised, and reinforcement learning.

Supervised learning

Supervised learning denotes learning problems where the training data consists of an
input and an output (also called label, target or response). The goal of supervised
learning is to make label predictions for unlabeled unseen data.

The training dataset D thus consists of input-output pairs :

(x(1), y(1)), (x(2), y(2)), ..., (x(N), y(N)) ⊆ X ×Y

where N is the number of training examples, X is the input space (set of all possible
inputs x), and Y is the output space (set of all possible outputs y), y is supposed to be
deductible from x by a process set up by learning.

The learning is said “supervised” in the sense that we assume there is a knowl-
edgeable external “supervisor” that will provide outputs. Supervised learning tasks
are related to classification or regression.

Unsupervised learning

Unsupervised learning consists in handling data that are not labeled. The goal is to
discover underlying patterns and structure in the data. This is also known as knowl-
edge discovery. Often, unsupervised learning tasks are related to density estimation,
uncovering a manifold structure that data lies near, learning to draw samples from a
distribution, learning to denoise data from a distribution, clustering data into groups
of similar examples [92]. Unsupervised learning can also be used to extract high-level
representations from data. This is particularly useful to learn lower-dimensional data
representations, that preserve as much information about the original data to perform
the target task.

Reinforcement learning

Reinforcement learning (RL) differs from other ML techniques. RL paradigm concerns
control problems, rather than analyzing given data. For example, consider the problem
of a robot learning how to navigate or play chess. In reinforcement learning, there is
no target output, but instead a set of possible outputs and a measure of how good each
output is. The goal of RL is teaching an agent how to behave optimally using rewards
and penalties as signals for positive and negative behavior.
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In Figure 3.2, we provide a broad classification of various examples of machine
learning algorithms.

Figure 3.2: Broad Classification of Some Machine Learning Algorithms.

Other learning paradigms

Other learning paradigms exist to distinguish different learning techniques:

• Passive vs Active : Passive learning consists in standard supervised learning,
where training data pairs are readily available. By contrast, active learning is the
case where the supervisor can be actively queried to request labels for only a part
of the training data. The remaining training labels can be inferred using a ML
model. This is particularly useful when a large amount of unlabeled data are
available during the training of a supervised model, but labeling data is expen-
sive[176].

• Batch vs Online : Batch learning is performed on all available dataset. By con-
trast, online learning is where the dataset is provided to the learning algorithm
one example at a time. Online learning is useful when we have limitations on
computation and storage that prevent the possibility to process the whole dataset
as a batch.

3.2.2 The Learning Process

The machine learning process is typically composed of the following steps.

Problem Definition

Once the need to use machine learning is established to solve the given problem, sev-
eral elements must be defined and acquired. As discussed at the beginning of this
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Figure 3.3: An overview on the machine learning workflow.

Chapter 3.2, these elements are: class of tasks, measure of performance to be improved,
and source of experience. Class of tasks consists in the space of hypothesis. In super-
vised learning, the space of hypothesis stands for space of all possible hypotheses for
mapping inputs to outputs. Measure of performance consists in a measure for eval-
uating the machine learning model. The measure that qualifies the project as being
successful and that we aim to achieve as objective, should be established from the start.
Source of experience consists in observations of the phenomenon we want to model.

Data Collection

The first step of a machine learning workflow is to collect data for analysis. However,
How much data is needed? The amount of data needed for good performance depends on
several factors, such as the complexity of the learning problem, the complexity of the
machine learning model that will be used, the target performance to achieve, project
constraints (time and computation), etc. It is therefore difficult to accurately estimate
the minimum amount of data required for a successful learning project.

Data collection can broadly categorized into two aspects [208]: data acquisition and
data labeling. The goal of data acquisition is to get datasets that can be used for the
machine learning process. Data acquisition is generally performed through data dis-
covery, data augmentation and/or data generation. Data discovery is the process of
sharing and searching new relevant datasets. In the era of big data and with the growth
in open data initiatives, sharing datasets among data holders or releasing open datasets
to the public frequently occurs. However, the representativeness of data available and
discoverable online with respect to the target ML task often remains a challenge.

Modern machine learning models, namely deep learning, require large amount
of data to train, which are often not available. A common solution to mitigate data
scarcity is to augment data. Data augmentation consists in acquiring new data in or-
der to augment an existing dataset. Data augmentation can be performed by synthet-
ically altering already existing data to create modified copies. For instance, in case of
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images, common modifications include changing orientation, location, scale or bright-
ness. Otherwise, external datasets may be acquired and integrated to existing data. If
no dataset is available for the machine learning task, data are generated. Data genera-
tion can be performed manually through crowd-sourcing or automatically. An increas-
ingly popular approach to generate synthetic data automatically is through Generative
Adversarial Networks (GANs) [93]. GANs offers a low cost and flexible way to gen-
erate plausible new examples from an existing distribution of examples. Very briefly, a
GAN is composed of two contesting sub-networks, a generator and a discriminator. The
generator is responsible for generating new data examples, while the discriminator is
responsible for differentiating synthetic examples from true examples. The generator
thus needs to learn how to produce sufficiently realistic examples in order to reliably
trick the discriminator.

In case of supervised ML setting, once sufficient amount of data is acquired, exam-
ples should be labeled. Data labeling may be performed manually via crowd-sourcing.
A time efficient crowd-based approach for labeling is through active learning. Active
learning is the process of manually labeling just a subset of the available examples and
infer the remaining labels automatically using a ML model. A second approach con-
sists in weakly annotating a large amount of data (i.e. weak labels). Weak supervision
branch argues that weakly labeled data in large amounts can be employed to create
more accurate models than when using strongly labeled data alone.

Data Preparation

Data preparation mainly consists in transforming data to a format that is amenable
to processing by machine learning algorithms. Gartner1 defines data preparation as
“an iterative and agile process for exploring, combining, cleaning and transforming
raw data into curated datasets for data integration, data science, data discovery and
analytics/business intelligence use cases”. Data cleaning is the process of detecting and
removing noisy data. Noise is defined as the random error or variance in a measured
variable. Noise in data is an effective problem for ML algorithms, as it prevents them
from learning properly and causes them to miss out patterns in data.

In the context of ML, as the dimensionality (i.e. number of features) of data in-
creases, the amount of data that is required to deliver a reliable analysis also rises ex-
ponentially. Bellman referred to this phenomenon as “Curse of Dimensionality” [21].
High-dimensional data are, therefore, challenging as they cause unnecessary compu-
tational complexity. The problem with high-dimensional data can be mitigated with
dimensionality reduction, which consists in projecting the data onto a lower-dimensional
subspace, while preserving information as much as possible. Dimensionality reduc-
tion techniques are proposed and implemented by using feature extraction and feature
selection. Feature extraction, sometimes referred to as feature transformation, aims to
extract a low-dimensional representation of data. Some feature extraction techniques

1https://www.gartner.com/reviews/market/data-preparation-tools

https://www.gartner.com/reviews/market/data-preparation-tools
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are principal component analysis (PCA) [1] and auto-encoders (AE) [23]. Deep auto-
encoders are also widely used for feature extraction tasks. Unlike PCA, AE relies on a
non-linear transformations. The goal is to map inputs into a lower-dimensional latent
space, that enables decoding back to the original input space with minimal information
loss. The basic architecture (see Figure 3.4) of an AE is decomposed into two compo-
nents: an encoder that maps the input into a latent representation, and a decoder that
maps the latent representation to a reconstruction of the original input. Different types
of AE exist [23], such as denoising AE, variational AE, etc.

Figure 3.4: Basic architecture of an auto-encoder.

Feature selection simplifies a machine learning problem by choosing which subset
of the available features should be used. There are three categories of feature selec-
tion methods [135]: filter methods (also called screening or ranking methods), wrapper
methods and embedded methods. The simplest approach to feature selection is the
filter method. It evaluates the relevance of each feature individually to the learning
problem, and then takes the top K features, where K is chosen based on some trade-off
between performance and complexity [135].

Machine Learning Modeling

The core of a ML workflow is to design and to train a model that is capable of best
explaining some data or phenomena, or to predict future data. Let us consider an input
vector x ∈ X to a decision making process, and its corresponding output y ∈ Y . y
may be continuous (regression) or categorical (classification). We suppose that there is
a function f : X 7→ Y that describes the approximate relationship between x and y. The
goal of machine learning is therefore to provide an approximation of function f with a
model or estimate f̂ (often called hypothesis). The learning algorithm chooses f̂ from a
set of candidate functions, which we call a hypothesis space H. The hypothesis space
H is generally an arbitrary choice when no prior knowledge is available about the true
underlying function f . Otherwise, the best hypothesis space H is selected using the
prior knowledge. For instance, H can be the set of all linear function, from which a
linear regression algorithm will choose to fit the data.

An hypothesis f (.; θ, φ) ∈ H is generally controlled by a set of hyper-parameters
φ and a set of parameters θ. A hyper-parameter controls the learning algorithm itself.
It differs from a parameter in the fact that it can not be fitted to training data during
the training process. In that sense, a better notation would be fφ(.; θ). Examples of
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hyper-parameters are number of clusters k in a k-means model [115] or degree of the
polynomial in Polynomial regression [188]. Running a learning algorithm over a train-
ing dataset with different hyper-parameter settings will result in different models. In a
machine learning context, we typically seek to select the best-performing model from
this set. Note that some learning models do not have parameters [92]. Such models are
called non-parametric models [92], in contrast to parametric models.

The learning problem may be decomposed into the following main tasks;

• fitting the model parameters to training data, referred to as model training [92],

• estimating the generalization performance of the model on unseen data, referred
to as model evaluation [203],

• selecting the best-performing model from a given algorithm’s hypothesis space
by tweaking the learning algorithm , referred to as hyper-parameters tuning or
model selection [97, 203],

• identifying the best-suited learning algorithm for the problem at hand, referred
to as algorithm selection [203].

For modeling, data are often split into three distinct subsets for the purpose of train-
ing, validation, and testing the model. Training data are used to adjust parameters θ

of the model. Validation data are used to fine-tune hyper-parameters φ of the learning
algorithm. Test data are used to estimate the generalization performance (or generaliz-
ability) of the model. Generalization performance of a model refers to its ability to adapt
to new, previously unseen examples [92]. Thereby, it represents the true performance
of a model when deployed in the real world.

However, holding out data reduces the amount available for training. This can
be mitigated by performing cross-validation [69]. The idea is as follows : we randomly
split the training data into K non-overlapping subsets, called folds, hold out each fold
k ∈ 1...K while training on the remaining, test each trained model on the examples of
the fold it did not see, average the K results to evaluate how well the particular hyper-
parameter setting does [69]. Figure 3.5 illustrates the k-fold cross validation scheme.

Figure 3.5: Illustration of k-fold cross-validation scheme.
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Model Deployment and Performance Monitoring

Building the model is generally not the end of a machine learning workflow. The next
step is deployment and integration of this model into an existing production environ-
ment. Several challenges arise with model deployment, namely scalability, portability
and reproduciblity. Different strategies can be adopted to deploy a pre-trained model.
For example, we can wrap the model and serve it as a web-service.

A deployed model also needs to be actively tracked and monitored. This allows to
get feedback in case of concept drift [256]. Concept drift refers to changes over time in
the data distribution. This results in significant deterioration of the model performance.
Quantitatively measuring this phenomenon will allow early detection and handling,
namely with performance scoring. One way to handle concept drift is by periodically
updating the model with more recent data [159]. This prevents completely putting
aside a model to train a new one, which is costly. Another way is to build an ensemble
of multiple models to boost their performance [159]. Note that concept drift is particu-
larly a challenge in case of static models, meaning the case of batch learning. By contrast,
in the case of online learning, models are updated continuously and on the fly.

3.3 Deep Learning

Deep learning (DL) [92] is a specific kind of machine learning. It refers to a set of ma-
chine learning techniques, namely neural networks which learn effective representa-
tions of data with multiple levels of abstraction. In contrast to “classic” machine learn-
ing, in which representations are manually refined through feature engineering, deep
learning aims to incorporate and completely automate this step. This has substantially
simplified machine learning workflows, and successfully replaced multi-stage hand-
tuned pipelines with end-to-end deep learning model [83].

Neural networks (NNs), interchangeably referred to as artificial neural network
(ANNs), are complex programs that involve more parameters than a human can tweak.
Deep learning does not require human intervention to learn, but instead requires a large
amount of relevant data. This concept is referred to by some researchers as Software 2.0
[120].

A brief glance back into the history of deep learning reveals three major waves
[92]: DL known as Cybernetics during 1940–1960, DL known as Connectionism during
1980–1990, and the current emergence under the name "deep learning" beginning in
2006. The history of NNs [7] began in 1943 when neuro-physiologist Warren McCul-
loch and mathematician Walter Pitts proposed the first computational model of a neu-
ron by mimicking the functionality of a biological neuron, which was called threshold
logic unit [171]. The first modern neural network was introduced by Frank Rosenblatt
in 1957 under the name Perceptron [209]. Minsky and Papert published a book to argue
about severe limitations of Perceptrons in 1969 [173]. This has contributed in discredit-
ing and halting research in the field of neural networks for almost a decade, hence the
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naming “AI winter”. It was until 1985 that the field was revitalized by the presentation
of back-propagation by Geoffrey Hinton [4]. Hinton showed that back-propagataion can
successfully train deep neural networks (more than two or three layers). It should be
mentioned that back-propagation was first introduced by Paul Werbos, in the context
of neural networks training. However, this approach was not popularized until 1985.
During the ensuing neural network revival in the 1980s, key works had laid the founda-
tion of modern deep learning. However, the introduction of support vector machines
with non-linear kernels by Vladimir Vapnik [57] had contributed in stalling neural net-
works research. The third wave emerged in 2006 with the published work of Hinton
[102, 103].

One of the major breakthroughs of deep learning happened in 2012 when Alex
Krizhevsky designed Alexnet [133], a convolutional neural network that outperformed
the then current state-of-the-art in the ImageNet competition, and brought error rate
down to 15.3%, compared to 26.2% achieved by second best team. Even though the
main idea of training deep neural networks was not new, these results had success-
fully demonstrated the capability of deep learning to solve a complex task on a large
and complicated dataset like ImageNet. This is attributed in great part to the increase
of computational power and memory capacity of machines. Deep learning grew to
prominence and had attracted great interest since 2012. Nowadays, deep learning is
delivering state-of-the-art results in many fields.

3.3.1 Feed-forward Networks

Feed-forward Neural Networks (FNNs) [92], often called Multi-Layer Perceptrons (MLPs),
are the most basic and widely used artificial neural networks. Hence, it is sometimes
referred to as “vanilla” neural networks.

FNNs [92] consist on connected neurons in a finite directed acyclic graph. Given
the absence of cycles, a FNN can be arranged into different layers in which each layer
can only communicate with the upper layer. These models are called feed-forward be-
cause information flows unidirectionally from input layer to output layer. As a whole,
a FNN is a chain of composed functions, where each layer is a function that takes as
input the output of the previous layer. This chain of composed functions is optimized
to perform a task. For instance, let’s suppose that a network is composed of three func-
tions f (1), f (2) and f (3). The final function f is written as f (x) = f (3)( f (2)( f (1)(x)))
[92]. The input layer corresponds to the input vector x, f (1) is called the first layer, f (2)

is called the second layer, and so on. The output layer corresponds to predictions f (x).
Layers that are situated between the input layer and the output layer are also called
hidden layers given that their outputs are not directly observable from the training data.
The length of the chain is the depth of the network. Deep learning is defined in terms of
the depth of the neural networks architecture. However, there is no universally agreed
upon threshold of depth that divide “shallow” neural networks and “deep” neural net-
works.
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Figure 3.6 shows an example of a FNN with a single hidden layer. Input layer
is composed of D neurons, corresponding to each of the D input variable x1, x2, ..., xD.
Hidden layer is composed of M neurons. Output layer is composed of K neurons. Each
jth neuron of the hidden layer is obtained by :

• Linear combination aj of input vector x = (xi)i=1...D, written as:

a(1)j =
D

∑
i=1

w(1)
ji xi + b(1)j ∀j ∈ {1...M} (3.1)

D is the total number of input variables. The superscript (1) indicates that the
corresponding parameters are in the first layer of the network. Parameters wji are
referred to as weights, whereas parameters bj are referred to as biases. Quantities
aj are known as activations.

• and a nonlinear transformation f : R 7→ R as follows :

h(1)j = f
(

a(1)j

)
∀j ∈ {1..M} (3.2)

h(1)j are referred to as hidden units, f is referred to as activation function.

Figure 3.6: Architecture of a Deep Feed-Forward Neural Network; The input layer is
in blue, the hidden layers are in gray and the output layer is in orange. The arrows
represent the forward pass across different layers.

Output vector ŷ is calculated in a same manner. Output unit activations are obtained
using a weighted linear combination of hidden units, followed by an element-wise
transformation using a nonlinear activation function, as follows:

ak =
M

∑
j=1

w(2)
kj f (

D

∑
i=1

w(1)
ji xi + b(1)j ) + b(2)k ∀k ∈ {1...K}

ŷk = f (ak)

(3.3)

We can combine these various stages to give the overall network function in Fig-
ure 3.6 that takes the form :
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ŷk(x, w) = f
( M

∑
j=1

w(2)
kj f

( D

∑
i=1

w(1)
ji xi + b(1)j

)
+ b(2)k

)
∀x∀k ∈ {1...K} (3.4)

where the set of all adjustable parameters (weights and biases) were grouped to-
gether into a vector w. Different terminology is used in literature for counting the
number of layers composing a neural network. Some studies count the number of lay-
ers of units, including input and output layers. Others count the number of hidden
layers. Following the first mentioned terminology, the network shown in Figure 3.6
is described as three-layer network, whereas, when following the second terminology,
it is described as one-layer network. In this manuscript, we follow the terminology
that describes networks by the number of layers of adjustable parameters. Figure 3.6 is
therefore called a two-layer network.

Many choices of activation functions can be made in the framework of NNs, namely
sigmoid (also called logistic) function, hyperbolic tangent (tanh). They respectively cal-
culate σ(x) = 1

1+e−x and tanh(x) = ex−e−x

ex+e−x . Rectified Linear Unit (ReLU) is also widely
used for deep learning, since it substantially reduces the computational cost for training
of the network. ReLU calculates f (x) = max(0, x).

The activation function at the output layer depends upon the task. For regression,
we generally use a linear function, f (x) = ax.

NNs as universal approximators Neural networks are known to be universal approxi-
mators. Theoretical results show that, a two-layer network with no-polynomial activa-
tion function can approximate any continuous function on a compact set of Rn to any
desired degree of accuracy [61, 108, 109]. Although such result proves the existence of
a solution, no methods are provided for finding it. Furthermore, the main challenge
is how to find the most suitable parameters given a set of training data. Motivated
by the current success of deep learning, several studies investigated the approxima-
tion capabilities of deep neural network, compared to ’shallow’ neural networks. An
interesting result [64] shows that there exist a deep sum-product network that can not
be approximated by shallow sum-product networks, unless they use an exponentially
larger number of neurons.

Despite their power, FNN present several limitations. Notably, they rely on the
assumption of independence between training examples [155]. However, this is not
the case when data point are related in time or space, i.e. sequence of video frames or
audio signal.

3.3.2 Error Back-propagation

Neural networks accept an input x and outputs a prediction ŷ. Information flows from
input units, through hidden units in each layer, and to the output units. This is called
forward propagation or forward pass. During training, forward propagation results in
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an error. Back-propagation [215] propagates the error from output units back towards
the input units, in order to compute gradients, and make updates accordingly to all
parameters in all layers. The process of forward propagation and back-propagation is
repeated until reaching an optimal error. As such, back-propagation is a method for
computing gradients, which are used by training algorithms like stochastic gradient
descent (SGD).

Typically, error functions in neural networks are non-convex, which means that
finding “provably” optimal solution is NP-hard. Moreover, a very large number (pos-
sibly infinite) of local minima is present in deep networks error functions. However,
these local minima have almost equivalent cost for sufficiently deep and/or large neu-
ral networks. Reaching a local minimum is therefore sufficient [91, 53].

3.4 Time Series Forecasting

A time series is a set of observation ordered sequentially in time, observed at a discrete
set of evenly spaced time intervals; {xt}t=1..N , where N is the length of the time series.

Usually, time series analysis can be divided into univariate and multivariate anal-
ysis. Univariate time series refers to a time series containing a single observation
recorded sequentially over time, such as daily energy consumption of a building. Mul-
tivariate time series is used when a group of time series variables are involved and their
interactions are to be considered. Each variable thus depends not only on its past values
but also has some dependency on other variables. For instance, energy consumption in
buildings is affected by several time-variant exogenous factors like weather conditions,
human activities, holidays, etc.

The goal of time series forecasting is to predict future values of a target yi,t for a
given entity i at a given time t. An entity consists in a logical collection of temporal
information, such as vital signs of different patients in healthcare, stock prices of differ-
ent companies in finances, or power consumption measurements of different buildings
in the field of energy efficiency. Time series forecasting models can be written as:

ŷi,t+1 = f (yi,t−k:t, xi,t−k:t) + e(t) (3.5)

where ŷi,t+1 is the one-step ahead model prediction at time t + 1, yi,t−k:t and xi,t−k:t are
previous values of respectively the target and exogenous variables over a look-back
time window of size k, e(t) is the noise term and f (.) is the actual prediction model
[153].

3.4.1 Multi-step Time Series Forecasting

Multi-step ahead time series forecasting consists in predicting h next values of a target
{yi,n+1, yi,n+2, ..., yi,n+h} from past n observations of the target {yi,1, yi,2, ..., yi,n} (and
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some exogenous variables if applicable), h > 1 is the forecasting horizon, n is the num-
ber of observations of the historical time series. There are mainly three strategies for
multi-step time series forecasting [240, 230]: (1) recursive strategy, (2) direct strategy,
and (3) multi-input multi-output (MIMO) strategy. Hybrid strategies that combine two
or more strategies also exist, such as DirRec (direct and recursive) and DIRMO (direct
and MIMO).

In what follows, let {yi,t:t+l be a shorthand notation for {yi,t, yi,t+1, ..., yi,t+l}.

Recursive strategy (also called iterative or multi-stage) [230] is the most intuitive
strategy. It consists in recursively iterating a single step model to enable multi-step
forecasting. This implies that previous predictions are subsequently introduced with
the true observations of the target as inputs to predict future time steps. Figure 3.7 il-
lustrates the recursive strategy. For a prediction horizon H, a trained single step model
f̂ , multi-step prediction is performed as follows:

ŷi,t+h =


f̂ (yi,t−k+1:t) if h = 1

f̂ (ŷi,t+1:t+h−1, yi,t−k+h:t) if 2 ≤ h ≤ k

f̂ (ŷi,t+1:+h−k) if k < h ≤ H

(3.6)

Figure 3.7: Recursive strategy.

Given that a potential error is induced at each one-step ahead forecast, re-using
of predictions will create a feedback loop, and will therefore lead to accumulation of
errors over the forecasting horizon.

Direct strategy (also called independent) [230] consists in predicting each future time
step independently. This implies that h prediction models are trained. Let f̂h be the
trained one-step model for predicting time step h, such as:

ŷi,t+hŷi,t+h = f̂h(yi,t−k+1:t) for 1 ≤ h ≤ H (3.7)

In this strategy, there is no accumulation of errors because only true observations of
target variable are used for the prediction at future time steps. However, the main issue
of the direct strategy is that underlying dependencies between predictions are not taken
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into consideration. Given that one model is trained at each time step, computational
and maintenance cost is also significant, especially as the forecast horizon increases.

DirRec strategy DirRect is a hybrid strategy that combines both RECursive and DI-
Rect strategies [230]. It uses a different model at each future time step (direct strategy)
and feeds predictions from previous time steps into the inputs (recursive strategy).
DirRec strategy can be written as:

ŷi,t+h =

 f̂h(yi,t−k+1:t) if h = 1

f̂h(ŷi,t+1:t+h−1, yi,t−k+1:t) if 2 ≤ h ≤ H
(3.8)

DirRec strategy avoids the accumulation of errors problem encountered in the re-
cursive strategy, and the conditional independence assumption between predictions
across the horizon encountered in the direct strategy. However, by definition, the input
set in DirRec strategy grows linearly with horizon H, thus yielding significant compu-
tational cost.

MIMO strategy Recursive, direct and DirRec strategies rely on multi-input and single-
output models [240]. By contrast, MIMO strategy considers a multi-input and multi-
output model. This is motivated by the need to model stochastic dependencies between
future values of the time series and past observations [32]. MIMO strategy can be writ-
ten as:

ŷi,t+1:t+h = f̂ (yi,t−k+1:t) (3.9)

MIMO strategy alleviates the conditional independence assumption between H
predictions of the direct strategy. It also avoids accumulation of errors as in the recur-
sive strategy. However, MIMO strategy uses only one model to predict all the horizons.
This may constrain the flexibility of the forecasting approach, and hence may induce a
highly biased model [240].

DIRMO strategy (also called Multi-Input Several Multi-Output (MISMO)) DIRMO
combines the DIRect and the MIMO strategies [240]. DIRMO forecasts the horizon in
portions, where for each portion, there is a MIMO predictor. For a prediction horizon
H, the prediction task is decomposed to n = H

s prediction sub-tasks, where s ∈ {1...H}
is the output size of each sub-task. DIRMO strategy can be written as:

ŷi,t+(p−1)s+1:t+ps = f̂p(yi,t−k+1:t) (3.10)

where p ∈ {1...n}. Notice that for s = 1, the approach is equivalent to the direct
strategy. Whereas, for s = H, the approach is equivalent to the MIMO strategy.
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3.4.2 Overview on Machine Learning Techniques

Traditionally, time series forecasting mostly relies on statistical models like vector auto-
regression (VAR) [157], and auto-regressive integrated moving average (ARIMA) [184]
and its many variations. ARIMA was first proposed by Box and Jenkins [38]. ARIMA
model has elements of other time series models including autoregressive (AR) model
and moving average (MA) model. The multivariate version of ARIMA is called ARIMA
with eXogenous inputs (ARIMAX). However, despite their popularity, ARIMA and its
variants are generally not used for high-dimensional multivariate time series forecast-
ing tasks due to their high computational demand [140]. Another main issue with
ARIMA is the linearity assumption on the data. If this assumption is violated, the
statistical model may be biased and misleading as it fails to capture non-linear data
relationships.

VAR is the extension of AR models to multivariate problems. VAR has proven to
be powerful technique due to its flexibility and simplicity. It is also successfully used
for multi-step ahead time forecasting. Nonetheless, like ARIMA, VAR fails to capture
complex non-linear relationships of multivariate time series data. VAR algorithm is
also limited by linear complexity over the width of the temporal window and quadratic
complexity over the number of variables [140]. VAR is thus prone to over-fitting when
modeling long-run temporal patterns. This also hinders the performance for highly
dimensional multivariate time series.

Gaussian process is a way of performing a non-parametric Bayesian inference. GPs
provide a Bayesian prior distribution over unknown functions, and then sequentially
update this distribution by conditioning on the data. GPs excel at capturing complex
dynamics and nonlinear relationships in data. The main shortcoming for GP is the high
computational complexityO(n3) for a number of observations n. This hinders GP from
scaling up to large datasets.

Time series forecasting may be seen as a standard regression setting. Common su-
pervised regression models can therefore be applied, such as support vector machine
(SVM). A major breakthrough in time series forecasting area occured with the introduc-
tion of SVM [57]. Support vector machine was applied to regression, and was therefore
called support vector regression (SVR). SVR is practically simple and SVR techniques
employ kernels in order to capture non-linear patterns in time series data. Commonly
used kernels are the polynomial kernel and the radial basis function kernel. Extension
of SVR to multi-step ahead setting were proposed in [167, 221, 18].

Over the past decade, deep learning has achieved remarkable success in a broad
range of applications, namely time series forecasting. Deep learning [92], as subset of
ML based on deep ANN, attempts to extract meaningful representations with differ-
ent levels of abstraction using nonlinear transformations [23]. Neural networks alle-
viate the need for manual feature extraction. For multi-step ahead forecasting with
multivariate time series, several deep learning techniques were proposed [78], namely
convolutional neural networks (CNN) and recurrent neural networks (RNN).
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Recurrent neural networks (RNN) [156] have been historically proposed for se-
quence modeling tasks. It was therefore naturally applied to time series forecasting.
The reason behind the effectiveness of RNN comes from its ability to capture past in-
formation from data, and use it to inform upcoming sequence steps. Two variants of
RNN in particular, namely the Long Short Term Memory (LSTM) [284, 41] and the
Gated Recurrent Unit (GRU) have significant success in several sequential data model-
ing applications. LSTM and GRU offer the ability to capture long-term dependencies,
while addressing vanishing/exploding gradients problem [192] often encountered in
recurrent networks. This is essentially achieved via special gates that determine which
past information should be passed and which should be forgotten [89].

Convolutional neural networks (CNN) [142] have gained a lot of attention with
their applications in the fields of computer vision and pattern recognition. Given their
success, CNN were adopted to time series forecasting tasks. CNNs have powerful fea-
ture extraction capabilities. Furthermore, Dilated convolutions allow to capture long-
term temporal dependencies. To enable multi-step ahead forecasting, a CNN is usually
combined with a RNN to form a hybrid model.

3.4.3 Support Vector Regression

Support vector machine (SVM) [57] is a linear model that is proposed for classification
and regression problems. Support vector regression [228] have been successfully and
widely employed for time series regression in the context of building energy modeling.
The main idea behind SVM is to find a hyperplane that linearly separates the data
with the largest margin. With support vector regression (SVR), the goal is also to find a
hyperplane that can be used for regression.

Define a dataset D = {(x(i), y(i)) ⊂ X × Y , where i = 1...N} where N is the size
of the dataset, x(i) ∈ Rn is the input feature vector and y(i) ∈ R is its corresponding
label. In case of multivariate time series forecasting, x is the vector of past values of the
target y combined with the exogenous features. Otherwise, it will be simply the vector
of past values of the target. For a given tolerance ε, the ε-insensitive SVR consists in
finding a function f (x) = wTx + b, such that all data points are within a strip bounded
by two parallel hyperplanes (as shown in Figure 3.8). All data points are therefore
allowed to deviate at most a certain margin ε ≥ 0 from the targets to be predicted.

Mathematically, this is achieved through the following optimization problem [228].

min
w,b

‖w‖2

s.t.

y(i) −wTx(i) − b ≤ ε

wTx(i) + b− y(i) ≤ ε

(3.11)

Depending on the value of ε, it is possible that a function f , that satisfies these
constraints, does not exist. A relaxation extension is to introduce slack variable ξi ≥ 0
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Figure 3.8: Illustration of a support vector regression function [223].

(for the upper boundary) and ξ∗i ≥ 0 (for the lower boundary) for each point (as shown
in Figure 3.9. The slack variables allow regression errors. The optimization problem is
therefore modified as follows [228].

min
w,b,ξ,ξ∗

1
2
‖w‖2 + C

N

∑
i=1

(ξi + ξ∗i )

s.t.


y(i) −wTx(i) − b ≤ ξi + ε

wTx(i) + b− y(i) ≤ ξ∗i + ε

ξi ≥ 0, ξ∗i ≥ 0 ∀i = 1...N

(3.12)

Figure 3.9: Illustration of a support vector regression function [223].

Here ξ and ξ∗ are shorthand notations for respectively ξ = {ξi}N
i=1 and ξ∗ =

{ξ∗i }N
i=1. The regularization constant C determines the trade-off between the achieving

low training errors and the overfitting. The bigger C is, the more errors are accepted.
The regression problem may be solved using Lagrangian multipliers αi, α∗i , ηi, η∗i , to
incorporate the constraints as follows :
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L =
1
2
‖w‖2 + C

N

∑
i=1

(ξi + ξ∗i )−
N

∑
i=1

(ηiξi + η∗i ξ∗i )

−
N

∑
i=1

αi(ξi + ε− y(i) + wTx(i) + b)

−
N

∑
i=1

α∗i (ξ
∗
i + ε−wTx(i) − b + y(i))

(3.13)

Optimality can be achieved by solving the equations ∂L
∂w = 0, ∂L

∂b = 0, ∂L
∂ξ = 0, and

∂L
∂ξ∗ = 0. Namely, w can be written as a linear combination of the training observations
as follows [228].

w =
N

∑
i=1

(αi + α∗i )x
(i) (3.14)

In addition, we have
∂L
∂b

=
N

∑
i=1

(α∗i − αi) = 0 (3.15)

And

∂L
∂ξi

= C− ηi − αi = 0 ⇒ηi = C− αi

∂L
∂ξ∗i

= C− η∗i − α∗i = 0 ⇒η∗i = C− α∗i

(3.16)

Given that ηi ≥ 0 and η∗i ≥ 0, we have αi ∈ [0, C] and α∗i ∈ [0, C]. For chosen α and
α∗, we compute :

b = y(k) −
N

∑
i=1

(αi + α∗i )x
(i)Tx(k) (3.17)

Therefore, for a test point x ∈ Rn, the predicted value y is defined as

y =
N

∑
i=1

(αi + α∗i )x
(i)Tx + b (3.18)

Non-linear case One of the main forces of SVM is that it can be easily extended to
linearly inseparable data [34]. This is done by mapping the data in the input space
into a higher-dimensional space where they become linearly separable (as shown in
Figure 3.9). This is known as kernel method. One problem is that the input vectors
may be mapped to a very high-dimensional space, and possibly infinite, which results
in very expensive computations of dot products. An easy solution here is the use of
kernel trick. Kernel trick allows to operate in the input space without the need to com-
pute new coordinates in the transformed feature space, via replacing the dot product
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Figure 3.10: Illustration of kernel mapping in SVM for binary classification task [177].
φ maps input data point to a higher dimensional feature space. Transformed represen-
tations of data points are linearly separable in the new feature space.

< φ(x), φ(z) > with a function K(x, z). As a result, we will only use K in the train-
ing algorithm, without needing to explicitly compute or even know what the feature
mapping φ is.

Notice that input vectors only appear in the form of dot products in the training
problem, i.e. equation 3.18. Then we just replace dot products with the kernel as fol-
lows.

y =
N

∑
i=1

(αi + α∗i )K(x
(i), x) + b (3.19)

In addition to support vector machines, kernels are used in other algorithms [106], such
as non-linear variant of PCA [211].

For a function to be a valid kernel, necessary and sufficient condition is as fol-
lows: Let G be a kernel matrix or Gram matrix be a N × N matrix where each entry
i, j corresponds to Gi,j = K(x(i), x(j)) where {x(i), x(j)} are feature vectors of the dataset
D. K : X × X 7→ R is a valid kernel if and only if matrix G is symmetric, positive
semi-definite. This is known as the Mercer’s theorem.

Several kernels are commonly used, namely :

• Linear : K(x, z) = xTz,
• Polynomial : K(x, z) = (1 + xTz)p where p ∈N is the degree of the polynomial,
• Radial basis function (RBF), also known as Gaussian or radial :

K(x, z) = exp(−γ‖x− z‖2) where γ is a free parameter.

Multi-output SVR So far, the explained SVR algorithm can be applied to multivari-
ate one-step ahead time series forecasting. However, it would need to be adopted for
multi-step ahead time series forecasting. MIMO SVR (M-SVR) [167, 221, 18] was pro-
posed. Compared to the standard SVR, output y becomes multi-dimensional ∈ RM.
The objective function therefore becomes:
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min
W,b,ξ,ξ∗

1
2

M

∑
j=1
‖w(j)‖2 + C

N

∑
i=1

(ξi + ξ∗i )

s.t.


y(i) −w(j)Tx(i) − b(j) ≤ ξi + ε for j = 1...M

w(j)Tx(i) + b(j) − y(i) ≤ ξ∗i + ε for j = 1...M

ξi ≥ 0, ξ∗i ≥ 0 ∀i = 1...N

(3.20)

where W = {w(1), ..., w(M)} and b = {b(1), ..., b(M)} are respectively weights and
biases.

Another possibility for implementing a multi-output consists in using multiple
SVR models as proposed in [280]. These models are trained individually using the
same input samples but different targets. As such, for a prediction horizon H, H single-
output SVR models are trained, where the h-the model predicts the h-step ahead value.
Generated predictions are finally combined and served as a multi-output prediction.

3.4.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [156] are a powerful class of supervised machine
learning models that are capable of modeling sequential data. In contrast to a MLP that
maps one fixed-sized input to one fixed-sized output, a RNN can handle sequential
data of arbitrary sequence length in the input, the output, or more generally both. Fig-
ure 3.11 illustrates different types of sequential data that can be handled by RNNs; (1)
many-to-many and synced many-to-many networks used for tasks like machine trans-
lation by taking a sentence (sequence of words) as input and producing a translated
sentence in another language as output, (2) many to one network used for example for
sentiment classification by taking a text as input and predicting its sentiment, (3) one-
to-many network that can be used for music generation by taking a single musical note
as input and producing a piece of music as output.

Figure 3.11: Different types of sequential data handled by RNNs [121]; Each rectangle
represents a vector while arrows represent operations. The inputs are in blue, the out-
puts in orange and the hidden states in white. From right to left, we have: (1) sequential
output (2) sequential input (3) sequential input and output (4) Synced sequential input
and output..
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RNNs rely on the standard computational graph of feed-forward networks. RNNs
add the possibility to pass information between adjacent time-steps, and hence the abil-
ity to learn long-term dependencies. This is done by sharing parameters across multiple
time-steps. Figure 3.12 depicts a simple architecture of a recurrent neural network with
one hidden layer.

Figure 3.12: A simple one-layer recurrent neural network with one hidden layer; a
feed-forward neural network that has a layer for each timestep. At time step t, nodes
(white circles) with recurrent edges receive input from the current data point x(t) (blue
circles) and from the hidden node values h(t−1) in the network’s previous state and
calculate the current hidden state h(t). The output prediction ŷ(t) (orange circles) is
then provided by the output layer.

The dynamics of recurrent networks across multiple time-steps can be seen by
“unfolding” it as in figure 3.13. At time step t, hidden nodes with recurrent edges take
input vector x(t) and the previous hidden state h(t−1) to compute the current hidden
state h(t). The hidden vector h(t) and the output vector ŷ(t) are written as.

h(t) =

{
fh(Wxhx(t) + Whhh(t−1) + bh) if t ≥ 1
0 otherwise

ŷ(t) = fy(Whyh(t) + by)

(3.21)

where fh is the non-linear activation function at the hidden layer, Wxh is the weights
matrix between the input and the hidden layer, Whh is the weight matrix between the
hidden layer and itself at adjacent time, bh is the bias parameter at the hidden layer
which allow each node to learn an offset. The initial hidden state h(0) is often fixed to a
vector of zero values, set as a learnable parameter, or initialized based on some other in-
formation. fy is the non-linear activation function at the output layer, Why is the weight
matrix between the hidden layer and the output layer, by is the bias parameter at the
output layer.

Training a recurrent neural network involves iteratively adjusting the weights and
biases, generally using some method of gradient descent and back-propagation through
time (BPTT). The most widely used back-propagation algorithm for recurrent networks
is back-propagation through time algorithm (BPTT) [257]. Truncated BPTT (TBPTT)
[259] is often used as an approximation of BPTT that has the computational efficiency
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Figure 3.13: Unfolded view of a simple recurrent Neural Network; a feed-forward neu-
ral network that has a hidden layer for each timestep. Weights and biases are shared
across time steps.

of BPTT, all while tackling its high computational and memory cost. The main idea is
to split long sequences into small batches and treating them as separate training cases
[237].

A major challenge with training recurrent networks is the vanishing/exploding
gradient [191]; The gradient expresses the change in all weights with regard to the
change in error. If the gradient is unknown, no further adjustments can be applied
to the weights in a direction that will decrease error, and thus, the network ceases to
learn. There are two factors that affect the magnitude of gradients; the weights and
the non-linear activation functions that the gradient passes through. If either of these
factors is smaller than 1, by repeatedly multiplying gradients through every layer dur-
ing back-propagation, the gradients may vanish fast in time Likewise, if larger than
1, the gradients will decrease exponentially until vanishing. Note that the problem of
vanishing/exploding gradient can occur in deep learning in general. However, it is
particularly a challenge in RNNs due when learning long-time dependencies. “Un-
folding” the RNN will hence result in propagating the gradients through many time
steps.

Exploding gradients can be addressed by gradient clipping technique, which “clips”
gradients whenever their values are greater than a pre-defined threshold. Vanishing
gradients may be partially resolved when using TBTT given that it restricts the number
of steps over which back-propagation is run. However, this is usually not enough. One
of the most commonly used solutions to the vanishing/exploding gradients problem is
Long Short-Term Memory (LSTM) architecture.

Long-Short Term Memory LSTM was first proposed in [104] as a solution to the van-
ishing/exploding gradient problem. The main idea of LSTM is to allow incoming in-
formation to alter the state of the memory cell or block it via special gates.

As any classic RNN architecture, there are input layer, recurrent layers and out-
put layer. The hidden layer is constructed by hidden neuron, which is called memory
block. A memory block can contain one or several memory cells [104]. A common
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LSTM structure is usually composed of four main elements: input gate, self-recurrent
connection, forget gate and output gate. The input gate controls the flow of informa-
tion to the the memory cell. The forget gate aims to determine which past information
should be passed and which should be forgotten between memory cells from the prior
to the current time step. The output gate controls the flow of information from the
memory cell to the next layer.

The common LSTM architecture is defined in terms of the following equations:

i(t) = ψ(Wxix(t) + Whih(t−1) + bi) (3.22)

f (t) = ψ((Wx f x(t) + Wh f h(t−1) + b f ) (3.23)

u(t) = φ(Wxux(t) + Whuh(t−1) + bu) (3.24)

c(t) = i(t) � u(t) + f (t) � c(t−1) (3.25)

o(t) = ψ(Wxox(t) + Whoh(t−1) + bo) (3.26)

h(t) = o(t) � φ(c(t)) (3.27)

ψ and φ are non-linear activation functions. Equation 3.24 is the update operation
which is basically the same as standard RNN. Equations 3.22 and 3.26 are respectively
the input gate and output gate of the LSTM cell. The main idea of gates is to either
allow incoming information to alter the state of the memory cell or block it. All of the
gates perform an linear transform followed by a non-linear activation function.

The output of the input gate is later used to get the current cell state, by performing
a component wise multiplication respectively with the update operation’s output u(t)

and the cell state c(t−1) of the previous time-step, as shown in Equation 3.25. We should
note that the latter equation is the one that prevents the vanishing/exploding gradient
problem from occurring by ensuring that ∂c(t)

∂c(t−1) = 1.

Finally, Equation 3.27 calculates the hidden state, by performing a component wise
multiplication between the output of the output gate and the scaled value of the cell
state. This hidden output is the one that will be used to compute the predictions ŷ(t).

Gated Recurrent Unit Gated Recurrent Unit (GRU) [54] is a simplified version of
LSTMs. Similarly to LSTMs, GRU is a variation of RNN architectures that were explic-
itly designed to deal with vanishing/exploding gradients and efficiently learn long-
range dependencies. The dynamics of a gated recurrent unit is defined by the following
equations.

r(t) = ψ(Wxrx(t) + Whrh(t−1) + br) (3.28)

z(t) = ψ((Wxzx(t) + Whzh(t−1) + bz) (3.29)
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h̃(t) = φ(Wxhx(t) + Whh(r(t) � h(t−1)) + bh) (3.30)

h(t) = (1− z(t))h(t−1) + z(t) h̃(t) (3.31)

Where z(t) and r(t) are respectively the update gate and the reset gate. h̃(t) is a
candidate hidden state which is a classic RNN update except of the part where it inter-
polates a modulation using the reset gate. The final update hidden state interpolates
between the candidate state and the previous hidden state in terms of the update gate.
Compared to LSTM, GRU has fewer parameters. Therefore, GRU was deployed to
reduce computational cost and time.

Sequence to Sequence Model (Seq2Seq) [238] (sometimes referred to as encoder-
decoders or auto-encoders) Seq2Seq models are a special architecture of RNNs. They
are widely used in a many tasks such as machine translation, image/video captioning
and question answering. The main idea is to use two sub-networks; and encoder and
a decoder. An encoder takes an input sequence and summarizes information into a
encoder state. An encoder state aims to encapsulate information that are useful for the
target task, and serves as “context” of the decoder. A decoder predict the target se-
quence given the encoder state. Figure 3.14 illustrates the dynamics of Seq2Seq model.

Figure 3.14: The architecture of a sequence-to-sequence model.

Seq2Seq models are usually trained using teacher forcing approach [258]. Instead
of re-injecting the decoder’s predictions into the decoder, teacher forcing uses ground
truth target values as the next input for the decoder. This allows faster convergence
and more model stability. Teacher forcing updates can be written as:

ŷt+h =

 f̂ (yt, c) if h = 1

f̂ (yt+h−1, ht+h−1) if 1 < h ≤ H
(3.32)

where ŷt is the predicted target at timestep t, yt−1 is actual target, ht−1 is decoder
last hidden state. c is the encoder context. H is the forecast horizon. f̂ is the estimated
decoder. Teacher forcing approach is further illustrated in Figure 3.15.

During inference, the ground truth target values are not available, and therefore re-
placed by the predicted values (as depicted in Figure 3.14. This approach is sometimes
referred to as free running model or self-generated samples. It can be written as:
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Figure 3.15: The architecture of a sequence-to-sequence model with "teacher forcing"
training approach.

ŷt+h =

 f̂ (yt, c) if h = 1

f̂ (ŷt+h−1, ht+h−1) if 1 < h ≤ H
(3.33)

Attention mechanisms Encoder-decoder models in general, and Seq2seq models in
particular, usually employ attention layers [77, 55]. Attention mechanism [13, 45] al-
lows to model dependencies with no regard to their distance in the look-back window.
The main idea is to assign soft weights to the hidden states of the encoder to model
the relevance of each hidden state to a given query state. Query states are the hidden
states of the decoder. This allows to “pay attention” to positions in the input sequence
that are most relevant to the target task. A weighted sum is subsequently computed to
obtain the corresponding feature [45], as follows:

cj =
d

∑
i=1

αijhi (3.34)

where cj is the context vector at decoding position j, d is the length of the input
sequence, αij ∈ [0, 1] is the attention weight that encodes the relevance of encoder
hidden state hj to decoder hidden state hj. A common weighting function is softmax.
More recently, attention mechanism is used in the context of transformers [248] which
are increasingly used for natural language processing tasks.

3.4.5 Convolutional Neural Networks

Convolutional neural networks (CNNs) [142] are a class of deep learning models that
process data that have grid pattern, like images. This is inspired by the organization of
cells in the primate primary visual cortex [112]. CNNs are typically composed of three
basic building blocks [92]: a convolution layer, a pooling layer and a fully-connected
layer. A convolution is the process of applying filters that slide across the time series.
The number of elements by which the filter slides at a time is called stride (e.g. 1). A
filter, also known as kernel, performs an element-wise multiplication with the corre-
sponding receptive field at each location of the time series, followed by summing to
obtain the output value in the corresponding position, resulting in a feature map. As
such, the more convolution layers are stacked, the faster spatial size of feature maps
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decreases. In some cases, this needs to be avoided using padding. Padding is simply
adding elements (e.g. zeros) at borders of the original input.

Considering a one-dimensional time series data y on size N and no zero padding,
and a one dimensional kernel w of size k, the i-th element of the output feature map is
written as:

(w ∗ x)(i) =
k−1

∑
j=0

x(i− j)w(j) (3.35)

A pooling, such as average or max pooling, takes feature maps as input and re-
duces their length by aggregating over a sliding window. Max-pooling simply selects
the maximum value of each patch of the input data. Instead, average pooling computes
the average value. The final fully-connected layers maps the extracted representation
of the input time series into final predictions. Note that convolution and pooling lay-
ers aim to extract multi-level hierarchical feature representation, while fully-connected
layer learn the target objective function (regression or classification).

In convolutional neural networks, each neuron is connected to only a subset of
neurons in the previous layer, unlike in the case of FNNs where all neurons are fully
connected. This is referred to as local connectivity [92]. In addition, all neurons in a
particular feature map share the same weights [78]. The same filter or kernel is there-
fore used at each location. Local connectivity and parameter sharing allow to reduce
the number of parameters and improve the computational efficiency of learning, espe-
cially when dealing with high-dimensional data. Convolutional neural networks have
gained a lot of attention with their applications in the fields of computer vision and
pattern recognition [132, 132]. Given their success, CNN were adopted to time series
analysis tasks [153].

1D Convolutions when processing time series data, filters are one-dimensional (time)
instead of two-dimensional (image width and height) [78]. For processing multivari-
ate time series, multi-channel CNNs [270] and multi-head CNNs [42] are used. Both
multi-channel and multi-head CNNs separate multivariate time series into multiple
univariate time series. In multi-channel CNN [270], each channel corresponds to an
univariate time series. Hence, a single feature map is obtained as a final result for all
time series. By contrast, multi-head CNN [42] uses a separate sub-CNN model, coined
convolution head, for each univariate time series. Hence, an independent feature map
is obtained for each time series. Resulted convolutional features are subsequently con-
catenated together and sent to the fully connected layer for regression [42]. Figure 3.16
illustrates the difference in architecture between multi-channel and multi-head CNNs.
Note that in several works, multi-head CNN may be referred to as multi-channel CNN,
while a multi-channel CNN is considered as conventional CNN as in [285]. However,
we choose the former terminology, to not confuse between channels as existing compo-
nent of conventional CNN and channels as separate convolution heads.
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(a) Multi-channel CNN

(b) Multi-head CNN

Figure 3.16: Illustrations of different architectures of CNN for multivariate time series
forecasting: Multi-channel CNN (top) and Multi-head CNN (bottom).

Causal Convolutions refer to the type of convolution that ensures that an output at
time t is derived only from inputs from time t or earlier. This is particularly required for
time series forecasting, where information should not be “leaked” from future to past.
In one-dimensional convolutions, causal structure is implemented by simply shifting
the output to the right direction by a number of time steps [187]. An example of causal
convolution in three-layer network is illustrated in Figure 3.17.

Figure 3.17: An illustrative example of causal convolutional neural network composed
of three layers.
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Dilated Convolutions (also called “à trous”) standard convolutions are computation-
ally expensive when dealing with long-term dependencies, as we are increasing the
size of the receptive field. Dilated convolutions [274] use “inflated” kernels that allow
to access more distant past when forecasting, without requiring additional parameters.
This is done by inserting spacing (gaps) between the kernel elements, unlike standard
convolution where kernel elements are adjacent. An example of a structure of causal
and dilated convolutions in three-layer network is illustrated in Figure 3.18.

Figure 3.18: An illustrative example of causal and dilated convolutional neural net-
work composed of three layers.

A dilated convolution operation ∗d with dilation factor d is written as:

(w ∗d x)(i) =
k−1

∑
j=0

x(i− dj)w(j) (3.36)

In [274], authors show that stacking dilated convolutions with increasingly large
d results in expanding receptive fields exponentially. This is particularly useful when
modeling long-term dependencies.

An example of model that uses causal and dilated convolutions is deepMind’s
WaveNet [187]. WaveNet was proposed for generating raw audio waveforms.

3.4.6 Comparative Analysis

To summarize, we have presented three techniques that are usually implemented in
the context of multi-step multivariate time series forecasting, which are support vec-
tor regression, recurrent neural networks and convolutional neural networks. SVR is
a “shallow” machine learning model that is time and memory efficient. Unlike neural
networks, traditional machine learning algorithms like SVR are interpretable and ex-
plainable. However, SVR is generally outperformed by RNNs and CNNs in the context
of time series forecasting [73]. SVR also fails to capture long-term dependencies across
time series data.

RNNs were proposed for modeling sequential data and capture short and long-
term dependencies in sequential data [155].. They shown great results in a variety
of application, such as speech recognition, machine translation or image captioning
[121] In addition, sequence-to-sequence architecture has been successfully proposed
for multi-step ahead time series forecasting [238].
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CNNs were initially proposed and intensively investigated in the context of im-
age processing. Motivated by its success, researchers have adopted CNNs for time
series forecasting [78]. Intuitively, spatial correlations present in images is analogous to
temporal correlations present in time series data. Thanks to the nice local connectivity
and parameter sharing properties in CNNs [78, 92], number of parameters of network
is considerably reduced, hence a lower memory requirement than RNNs. Given the
absence of recurrent connections, CNNs computations can happen fully in parallel.
RNNs, on the other hand, need (for the most part) to be processed sequentially [191,
78]. As a result, CNNs computations are generally faster than RNNs’. Furthermore,
CNNs are also often better at feature extraction from data, mainly due to position-
invariant local patterns [92]. This is particularly useful for transfer learning task which
generally require high-level abstract representation learning.

Multi-step ahead forecasting with CNN, however, require some workarounds.
One approach consists in combining CNN and RNN [269]. Some works uses CNN for
feature extraction from time series data, along with RNN for prediction [269]. Another
approach consists simply output a vector instead of one value, while using multi-head
or multi-channel CNN [42].

We summarize pros and cons of each of these techniques in Table 3.1.

Table 3.1: A summary of the pros and cons of three time series forecasting techniques

Strategy Pros Cons

SVR
• Interpretable AI (white box),
• Simple,
• Computationally cheap and effi-

cient

• Generally outperformed
by RNNs and CNNs,

• Depend on feature selec-
tion

RNN
• Native support for sequential

data,
• Good performance in short-term

and long-term forecasting (abil-
ity to capture long-term depen-
dencies)

• Requires large amount of
historical data,

• Prone to vanishing and ex-
ploding gradients issue,

• Computationally expen-
sive

CNN
• Fully parallelizable computa-

tions,
• Good feature extraction ability,
• Computational efficiency (no re-

current connections, parameter
sharing),

• Lower memory requirement (lo-
cal connectivity and parameter
sharing)

• Requires large amount of
historical data
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3.4.7 Walk-Forward Validation

In classic machine learning tasks, a train-test split consists simply in splitting the data
by observation. For example, 80% of observations for training and remaining 20% is
held-out for test. The common k-fold cross-validation scheme was previously illus-
trated in Figure 3.5. This mainly relies on the assumption that observations are inde-
pendent. However, this assumption is violated in case of sequential data. When per-
forming classic cross-validation on tile series data, it makes no sense to mix the order of
the observations give that the model will get to peek into the future. This is sometimes
referred to as data leakage. Data leakage usually results in overly optimistic estimated
performance of trained model.

Walk-forward validation is cross-validation equivalent for time-series data. Two
major approaches exist: expanding window (also called forward chaining) and sliding win-
dow. Expanding window consists in training the model on all available historical data,
whereas sliding window consists in training the model on only most recent observa-
tions. Figure 3.19 gives a visual illustration of both walk-forward approaches.

(a) Expanding window (b) Sliding window

Figure 3.19: Walk-forward validation strategies for time series data.

3.4.8 Evaluation Metrics for Time Series Forecasting

Performance evaluation involves assessing the accuracy of predictive models and con-
sists on a primordial step of the machine learning pipeline. Different set of metrics are
chosen depending on the learning task, such as regression, classification, clustering,
etc., and the specific requirements of the problem to solve. In the context of our work,
we are dealing with time series forecasting. Common regression primary metrics [35]
used to assess prediction models are; Mean Absolute Error (MAE), Mean Bias Error
(MBE), Root Mean Squared Error (RMSE), etc.

MAE measures the average magnitude of the errors in a set of predictions, using
the formula:

MAE =
1
N

N

∑
i=1
|yi − ŷi| ,

where yi and ŷi respectively denote the true value of the predicted value of the i-th
data sample, and N denotes the size of the dataset. If the absolute value is not taken,
the MAE becomes the MBE. MBE however suffers from a cancellation effect, where
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positive bias and negative bias cancel out. RMSE is defined as the square root of the
average squared distance between prediction and ground truth, using the formula:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2

These primary metrics are often extended with additional normalization. The Nor-
malized RMSE (NRMSE) is for example defined by the normalization of the RMSE ei-
ther by dividing it by the standard variation of the ground truth data, by the difference
of the maximum and the minimum values of the ground truth data, or by the mean.
The latter normalization by the mean is also known as Coefficient of Variation of Root
Mean Square Error (CVRMSE). The Normalized Mean Error (NME) involves the nor-
malization of the MAE by the sum of the ground truth values, and is defined as follows:

NME =
∑N

i=1 |yi − ŷi|
∑N

i=1 ŷi

An example of relative error metric for time series forecasting is mean absolute
percentage error (MAPE), also known as mean absolute percentage deviation (MAPD).
MAPE computes the average absolute percentage errors of forecasts. MAPE is written
as follows:

MAPE =
100
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣
MAPE treats equal errors above the ground truth value and below the ground

truth value differently. It comes down to the fact that forecasts that are greater than the
ground truth are penalized heavier than forecasts that are lower than the ground truth
[11]. To mitigate this issue, symmetric MAPE (sMAPE) was proposed:

SMAPE =
100
N

N

∑
i=1

|yi − ŷi|
|yi|+ |ŷi|

Furthermore, MAPE produces infinite or undefined values when the actual values
are zero or close to zero, which is a common occurrence in energy consumption field.
If the actual values are very small (usually less than one), MAPE yields extremely large
percentage errors (outliers), while zero actual values result in infinite MAPEs.

Other composite metrics are also used in practice by combining one or more pri-
mary metrics. Coefficient of determination, also denoted as R2, measures the propor-
tion of variance explained by the prediction model to the total variance in the observed
data. R2 normally ranges between 0 and 1, with 1 indicating the perfect fit. Values may,
however, fall outside the range of 0 to 1 if the predictive model is worse than using
an horizontal hyperplane that passes through the mean value. R2 is defined using the



3.5. Summary and conclusions 55

formula:

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ȳi)2

,

where ȳ is the mean of the ground truth data. Authors in [148] considered that R2 is
biased, insufficient and misleading. Thus, it should not be used to assess the accuracy
of predictive models.

3.4.9 Similarity Measures for Time Series Data

Time series forecasting is crucial for decision making in several domains, namely build-
ing energy modeling. In several cases, it is important to study the similarity between
time series data in order to improve forecasting performance [17].

Dynamic time warping (DTW) [180] is one of the most popular distance measures
used for time series data. DTW was originally proposed for speech recognition appli-
cations to compare disparate speech patterns [180]. Classical distance measures such
as Euclidean and Manhattan distances are not suitable when dealing with time series
data due to time distortions and time shifts. By contrast, DTW is able to measure simi-
larity between two time series that may differ in duration and speed by aligning them.
As DTW suffers from quadratic complexity, several algorithms are proposed to speed
it up, such as FastDTW [220] and PrunedDTW [227]. Wang et al. [251] compared sev-
eral distance metrics and demonstrated that no other metric significantly outperforms
DTW.

Izakian et al. [114] proposed a time series clustering framework based on DTW.
Fawaz et al. [43] used DTW to quantify the similarity between source and target dataset
in their transfer learning framework.

3.5 Summary and conclusions

Machine learning (ML) allows systems to improve automatically with experience using
data. Once thoroughly defined, a classical ML process generally starts with collecting
relevant data in a sufficient amount for the target task. This is an important step for a
successful ML project. ML has demonstrated great success in learning complex tasks
and delivering predictions that guide decision making. Decision making became more
insightful and accurate with the emergence of deep learning.

In this work, we are particularly interested in the task of building energy modeling
(BEM). Historical data on building energy consumption are time series. Consequently,
BEM using machine learning relies on time series forecasting techniques. In addition to
building energy field, time series forecasting is becoming very important in a broader
range of real-world applications, such as healthcare and finance [153]. Most used ma-
chine learning techniques for this task are support vector regression (SVR) and neural
networks (NN), such as convolutional neural networks (CNN) and recurrent neural
networks (RNN).
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Compared to NN, SVR is simple and computationally cheap [73]. However, it
is generally outperformed by NN. RNN is widely used in the context of time series
forecasting due to its ability to capture short and long term dependencies [121, 155].
CNN is computationally efficient and is characterized by its powerful feature extraction
capabilities [92]. RNN and CNN require, on the other hand, a large amount of training
data compared to SVR.

To improve time series forecasting results, it is sometimes required to cluster or
classify available data. Most popular similarity measure for time series data is dy-
namic time warping (DTW). Existing research works show that DTW is not signifi-
cantly outperformed by any other well-known distance metrics in the context of time
series processing [251].

Training accurate models mainly rely on collected dataset. The main factors to
study the suitability of the dataset are quantity and respresentativeness. A relatively
large amount of historical data must be collected beforehand. More particularly, in the
context of building energy modeling, reported works usually rely on multiple months
to years of historical data [127, 22]. Representativeness refers to the relevance of avail-
able data to the target task. Namely, for BEM, labeled data collected from the building
to model are generally required to reliably model its energy consumption. However,
in many cases, buildings do not yet provide historical data, such as newly built and
newly renovated buildings.

To alleviate data unavailability challenge, transfer learning is usually required.
This allows to reuse available existing data or existing models for the training of models
for an unseen target. A detailed description of this area of research is in Chapter 4.
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Chapter 4

Cross-Domain Knowledge
Transfer

4.1 Introduction

Traditional machine learning applications usually assume that the training and the test
data are in the same feature space and are drawn from the same distribution. However,
in many real-life applications, this assumption does not hold. For example, in the field
of building energy modeling, energy consumption is complex and is heavily affected by
a wide range of variables. As such, energy profiles may vary greatly with small changes
in such variables (e.g. renovation, different operation schedules, change of tenants,
varying weather conditions, etc.). Similarly, in computer vision, photos and sketches
do not follow the same distributions. To mitigate this issue, the transfer learning (TL)
area of research was introduced. TL is also referred to in literature as knowledge transfer.

This chapter is structured as follows. Section 4.2 introduces the main field of
transfer learning from which derive domain adaptation and domain generalization
sub-fields. Section 4.3, Section 4.4 and Section 4.5 provides an overview of various
approaches proposed in the context of respectively domain adaptation, multi-source
domain adaptation and domain generalization. Section 4.6 summarizes different simi-
larity metrics usually used for transfer learning.

4.2 Overview on Transfer learning

The notations and definitions provided in this section follow the survey paper by Pan
et al. [190]. The definition of TL relies on two main concepts, the domain and the task.
A domain D is composed of a feature space X and a marginal probability distribution
P(X), where X = {x1, x2, ..., xn} ∈ X is a set of examples of size n. A domain is de-
noted by D = (X , P(X)). If two domains are different, then their feature spaces are
different and/or their marginal probability distributions are different. For a particu-
lar domain D, a task T is composed of a label space Y and an objective function f (.)
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that is learned from the training data pairs (xi, yi), where xi ∈ X is the feature vec-
tor of example i and yi ∈ Y is its corresponding label. The objective function f (.) is
used to predict a label y of each new example x. From a probabilistic viewpoint, f (.)
consists in the conditional probability P(y/x). A task is denoted by T = (Y , f (.)).
We consider a source domain DS and a target domain DT . The source domain data
are denoted as DS{(xS1 , yS1), ..., (xSn , ySn)}, where the data instance xSi ∈ XS and
its corresponding label ySi ∈ YS. Similarly, the target domain data are denoted as
DT{(xT1 , yT1), ..., (xTn , yTn)}, where xTi ∈ XT and yTi ∈ YT .

More precisely, for the task of building energy modeling, energy consumption de-
pends greatly on several building-specific contextual characteristics, namely typology
(residential, industrial, or commercial), shape, size and age [264]. Hence, buildings
have varying probability distributions, over different characteristics. Here, each build-
ing setting may be considered as a disparate domain with a different distribution.

Transfer learning is defined as [190]: “Given a source domain DS and a learning
task TS, a target domain DT and a learning task TT , transfer learning aims to help
improve the learning of the target objective function fT(.) in DT using the knowledge
in DS and TS, where DS 6= DT , or TS 6= TT .”

Given that a domain consists of the pair D = (X , P(X)), the expression DS 6= DT

implies that (1) the feature spaces between the source and the target domain are differ-
ent, i.e. XS 6= XT , or (2) the feature spaces are the same but the marginal probability dis-
tribution between the source and the target domains are different, i.e. PS(X) 6= PT(X).
Similarly, a task consists of the pair T = (Y , f (.)), the expression TS 6= TT implies
that (1) the label spaces between the source and the target domains are different, i.e.
YS 6= YT , or (2) the label spaces are the same but the objective functions between the
source and the target domains are different, i.e. fS(.) 6= fT(.). A traditional machine
learning problem is thus characterized by the same source and target domains , i.e.
DS = DT and the same source and target tasks, i.e. TS = TT .

Authors in [190] first classify transfer learning techniques into three settings as de-
picted (see Figure 4.1): (1) inductive transfer learning, (2) transductive transfer learn-
ing and (3) unsupervised transfer learning. Inductive transfer learning refers to the case
where the target task is different from the source task. Labeled data are however re-
quired in the target domain to be able to train the target model. Inductive TL models
learn from labeled/unlabeled data from the source domain and labeled data from the
target domain. Therefore, inductive transfer learning setting is categorized into various
sub-settings, depending on whether the source domain data are labeled or unlabeled,
and depending on how target and source tasks are learned. Namely, multi-task learn-
ing refers to the case where a lot of labeled are available in the target domain and source
and target tasks are learned simultaneously [190]. By contrast, sequential transfer learn-
ing refers to the case where source and target tasks are learned sequentially. Self-taught
learning refers, on the other hand, to the case where no labeled data are available in the
source domain.
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Unsupervised transfer learning setting is similar to inductive transfer learning in the
sense that the target task is different from the source task. However, unsupervised
transfer learning is related to unsupervised learning tasks, such as clustering, dimen-
sionality reduction and density estimation, where no labeled data are available in both
the source and the target domains.

Figure 4.1: Overview of different settings of transfer learning. Dotted rectangles in-
dicate assumptions. Rectangles indicate transfer learning sub-classes. Adapted from
[190].

Transductive transfer learning setting consists in having the same target and source
tasks, but different target and source domains. In transductive TL setting, we assume
that we have a relatively large amount of labeled data in the source domain.Typically,
more data are available in the source domain than in the target domain. In this work,
we focus on two main sub-settings of transductive transfer learning, which are domain
adaptation and domain generalization. Domain adaptation (DA) fits the scenario where
labeled data are available in the source domain and unlabeled or few labeled data are
available in the target domain. Multi-source domain adaptation (MDA) is an extension of
DA in which we have access to multiple source domains.

Domain generalization (DG) fits the scenario where multiple source domains are
available, but no data are required in the target domain. In other words, DG assumes
no prior knowledge on the target domain during training, and therefore aims to build
models that can directly generalize out-of-the-box to any new domain. Arguably, do-
main generalization is a harder problem than domain adaptation.

Broadly, four different transfer learning approaches are to be distinguished [190]:
(1) instance-based transfer, (2) feature-representation-based transfer, (3) model-based
transfer, and (4) relational-knowledge-based transfer. Instance-based transfer learning
consists in re-weighting labeled instances of the source domain and re-use them in the
target domain. Feature-representation-based transfer learning seeks to find a common
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(a) Traditional machine learning (b) Domain adaptation

Figure 4.2: Different learning processes between traditional machine learning and do-
main adaptation [190]

feature representation of the source and target domain, that reduces domain discrep-
ancy. Model-based approaches aim to discover shared parameters or priors between
models of the source and the target domains. Relational-knowledge-based methods
build a relational knowledge mapping between the source and the target domains.
Generally, for DA and DG, instance-based, feature-representation-based and model-
based approaches are proposed.

4.3 Domain Adaptation

4.3.1 Taxonomy of Domain Adaptation settings

Domain adaptation can be categorized into two main classes; homogeneous and het-
erogeneous DA. In the case where the feature representations for the target and the
source domains are the same XT = XS, we refer to the problem as homogeneous DA.
Consequently, it is the data distributions that differ between the target and the source
domains PT(X) 6= Ps(X). In the case where the feature representations for the target
and the source domains XT 6= XS, we refer to the problem as heterogeneous DA. The
above mentioned classes may be further split into supervised, semi-supervised, and
unsupervised DA. In supervised DA, we have a small amount of labeled data in the
target domain. In semi-supervised DA, we have both labeled and unlabeled data in the
target domain. In unsupervised DA, we have no labeled data in the target domain. This
classification is depicted in Figure 4.3. It is also essential to note that in some works [62],
the unsupervised DA that we defined here is rather considered as a semi-supervised DA
given that we have labeled data in the source domain and unlabeled data in the tar-
get domain. The unsupervised DA naming in this case refers to the domain adaptation
unsupervised learning problems such as clustering, dimensionality reduction, etc. For
what follows, we will consider the former classification.

The approach proposed by Wang et al. in [250] distinguished one-step DA and
multi-step DA. In one-step DA, the knowledge transfer is directly accomplished in one-
step between the source and the target domains. By contrast, in multi-step DA, we seek
to identify intermediate domains that play the role of bridges that connect seemingly
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Figure 4.3: Overview of different settings of domain adaptation [250].

unrelated source and target domains. Multi-step DA [242] considers the distance be-
tween domains.

We distinguish three main approaches to domain adaptation, instance-based ap-
proaches, feature representation-based approaches and model-based approaches. A
comprehensive review of domain adaptation can be found in [278]. Instance-based
adaptation assumes that certain data points of the source domain are more similar to
the target domain than others, and thus seek to reweigh instances correspondingly;
similar instances will have stronger weights. Feature-representation-based methods
assume that there exist a feature space in which source and target features are indistin-
guishable. These methods aim to find this feature space. Model-based adaptation aim
to adapt models trained on the source domain in order to perform well on the target
domain.

4.3.2 Early Approaches of Domain Adaptation

Instance re-weighting methods These methods aim to re-weight or select data in-
stances that reduce the discrepancy between source and target domains. Instance re-
weighting schemes are well documented in literature. As seen in Chapter 3, given a
data set and a hypothesis space H, a machine learning algorithm might aim to learn
the optimal hypothesis f ∗ ∈ H that minimizes the expected risk, such that:

f ∗ = arg min
f∈H

E(x,y)∈X×Y [L( f (x), y)]

where L is the loss function, X is the input space, and Y is the output space.

Ideally, in the domain adaptation setting, we want to learn the optimal model for
the target domain that minimizes the empirical risk over the target distribution:
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f ∗T = arg min
f∈H

E(x,y)∈X×Y [L( f (x), y)]

= arg min
f∈H

∑
(x,y)∈X×Y

[PT(x, y)L( f (x), y)]

However, since no labeled data are generally available in the target domain, we
learn the optimal model on the source data instead. If the target and the source data
follows the same distribution, we can simply learn an optimal model on the source
data. The learned model may be directly used in the target domain without further
optimization:

f ∗ = arg min
f∈H

E(x,y)∈X×YL( f (x), y)

Otherwise, when the probability distributions between the target and the source
domains differ, we rather need to consider the following optimization problem:

f ∗T = arg min
f∈H

∑
(x,y)∈X×Y

PS(x, y)
PS(x, y)

PT(x, y)L( f (x), y)

= arg min
f∈H

∑
(x,y)∈X×Y

PT(x, y)
PS(x, y)

PS(x, y)L( f (x), y)

≈ arg min
f∈H

NS

∑
i=1

PT(xSi , ySi )

PS(xSi , ySi )
L( f (xSi ), ySi )

Hence, we can learn an accurate model for the target domain by weighting the im-

portance of each instance (xSi , ySi ) of the source domain by assigning a weight
PT(xSi

,ySi
)

PS(xSi
,ySi

)
.

Note that for approach, we assume a homogeneous DA setting. Given that we generally

do not have labeled data in the target domain, the density ratio
PT(xSi

,ySi
)

PS(xSi
,ySi

)
is difficult to

compute. As a consequence of Bayes’ rule, two research ways have been proposed in
literature to tackle this challenge. In the first approach, we assume that the source and
the target domains have the same conditional distribution of X PS(x/y) = PT(x/y)
and different class distributions PS(y) 6= PT(y). The different class distributions be-
tween the two domains is usually referred to as target shift [277], prior probability shift
[201] or class imbalance [117]. In the second approach, we assume that the source and
the target domains have the same conditional distribution Y PS(y/x) = PT(y/x) and
different marginal distributions of X PS(x) 6= PT(x). The different between the two
domains is referred to as covariate shift [201] or sample selection bias.
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Under covariate shift, the ratio between the source and the target domains joint
distributions is rewritten as:

PT(x, y)
PS(x, y)

=
PT(x)
PS(x)

Therefore, we compute importance weights by estimating the ratio of the data marginal
distributions PT(x)

PS(x) . As such, instances with high ratio are more important to the target
domain than instances with low ratio. The problem of estimating importance weights
is also referred to as density ratio estimation (DRE). Several DRE methods have been
proposed in literature, such as kernel density estimation, kernel mean matching, and
the use of probabilistic classifiers.

Indirect DRE methods estimate the marginal distribution of each domain inde-
pendently and subsequently take their ratio. By contrast, direct DRE methods di-
rectly estimate weights by minimizing the discrepancy between the source and the
target domains (without density estimation). A popular domain discrepancy measure
is maximum mean discrepancy (MMD) [94, 189, 111]. Minimizing MMD in a high-
dimensional space, namely a reproducing kernel Hilbert space (RKHS), is called kernel
mean matching (KMM) [111]. KMM methods can be successfully used to re-weight in-
dividual instances. However, their time complexity is cubic in the size of training data,
which is computationally impractical on large data [131].

Another direct DRE is through Kullback-Leibler Importance Estimation Procedure
(KLIEP) [234]. KLIEP uses KL-divergence as domain discrepancy measure. The major
benefit of KLIEP is that it can estimate the values of the importance of new target in-
stances without further weight estimation, as opposed to KMM [131]. Another simple
method transforms the DRE problem into a binary classification problem; by trying to
predict whether each instance is coming from the source or the target domain data [276,
26]. As such, importance weights are computed by inverting posterior probabilities.

Under prior probability shift, the ratio between the source and the target domains
joint distributions is rewritten as:

PT(x, y)
PS(x, y)

=
PT(y)
PS(y)

Therefore, we compute importance weights by the estimation of PT(y)
PS(y)

. Note that in this
case, it consists in weighing the importance of domain labels rather than data instances
[154].

Feature representation-based methods These approaches argue that there exists a
common feature space that minimizes discrepancy between source and target domains.
Existing works in this context may be classified into three approaches [278], namely
feature transformation [62], subspace learning [279, 81], feature reconstruction [118]
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and feature coding [266]. A detailed review of domain adaptation approaches can be
found in [278].

Model-based methods Model-based methods aim to adapt models trained on the
source domain in order to perform well on the target domain. Generally, these methods
require at least a small set of labeled target data, therefore they can be applied only to
the supervised or the semi-supervised DA scenarios [60]. Yang et al. [271] proposed
an adaptive SVM (A-SVM) for adapting source classifiers to a target domain. Authors
also propose a performance evaluation metric that enables to select the best source
classifiers for adaptation.

4.3.3 Deep domain Adaptation

Deep learning [92] has demonstrated its powerful capability to learn highly salient rep-
resentations from raw data. These representation usually perform better than tradi-
tional hand-engineered features in many fields. However, fully-supervised deep net-
works trained on limited data would often dramatically over-fit [70]. Domain adapta-
tion thus seeks to exploit deep learning advances to learn feature representations that
are robust to domain shift. Deep domain adaptation approaches can be classified un-
der three axes [60]: (1) using deep models to extract deep representations that can be
then used by shallow domain adaptations methods, (2) train a deep network on the
source domain and later further fine-tune it to the target domain, and (3) use a deep
network architecture that is specifically designed to domain adaptation. Work pre-
sented by Wang et al. in [250] further categorized the latter axis into three approaches:
(1) Discrepancy-based approaches that aim to minimize the domain shift by fine-tuning
deep networks using labeled or unlabeled target data, (2) Adversarial-based approaches
that promote domain confusion using domain discriminators through adversarial ob-
jectives, and (3) Reconstruction-based approaches that enforce feature domain invariance
using data reconstruction as auxiliary task.

Adversarial-based approaches is further categorized into generative and non gen-
erative methods. Generative methods typically aim to use source domain data, noise
vectors, or both to generate samples that are similar to target domain. These sim-
ulated samples along with annotations from source domain will constitute training
data. Non-generative methods learn discriminative feature representations using labels
in the source domain, and later map target data to the same feature space through
a domain-confusion loss. Similarly, reconstruction-based approaches are categorized
into encoder-decoder and adversarial reconstruction methods. Encoder-decoder recon-
struction methods use an encoder for representation learning, and a decoder for data
reconstruction. Adversarial reconstruction methods are based on reconstruction error
between original and reconstruction example in each domain [250]. Table 4.1 summa-
rizes one-step deep DA approaches as presented in [250].
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Table 4.1: One-step deep domain adaptation approaches. Adapted from [250].

Deep DA approach Description Sub-settings

Discrepancy-based minimize the domain shift
by fine-tuning deep net-
works using labeled or unla-
beled target data

class-criterion, statistic crite-
rion, architecture criterion,
geometric criterion

Adversarial-based promote domain confusion
using domain discrimina-
tors through adversarial ob-
jectives

generative, non-generative

Reconstruction-based enforce feature domain in-
variance using data recon-
struction as auxiliary task

encoder-decoder [288], dis-
criminative

Zhuang et al. [288] proposed a supervised deep encoder-decoder for learning
domain-invariant feature representations. Taigman et al. [241] proposed a generative
adversarial network (GAN)-based for unsupervised DA. The main idea is to generate
data in the target domain by transforming source domain data (to seem as if drawn
from target domain).

4.4 Multi-source Domain Adaptation

Above mentioned methods were designed for cases where we have a single source do-
main and a single target domain. By contrast, multi-source domain adaptation [166,
236] deals with source data collected from different sources. A straightforward ap-
proach consists in concatenating different available source domains into a single source
set. We refer to this approach as source-combined DA. However, this approach might
yield a poor performance because of the domain shift between the multiple source do-
mains. Because domain shift not only exist between each source and the target but
also among multiple source domains, models trained on source-combined data from
disparate sources can interfere with one another during the training process and gen-
eralize poorly when applied to the target domain [283, 207].

Assuming that the target distribution can be represented as mixture of multi-source
distributions, Mansour et al. [165] proposed a distribution weight combining rule that
combines source models and uses as weights mixture coefficients. Xu et al. [267] pro-
posed a deep cocktail network, inspired by [165], that uses multiple domain discrim-
inators to achieve latent space alignment. Zhu and al. [287] proposed a two-stage
alignment framework, that aligns domain-specific distributions of each source-target
domain pair and aligns outputs of domain-specific classifiers for each target sample.

Another approach for MDA is through source domain selection. Source domain se-
lection [74, 49] mainly consists in selecting source domains that are the most pertinent
to the target domain, or assigning a weight to each source domain depending on its
similarity to the target domain. In other words, it consists in selecting source domains
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that holds relevant information to transfer, and discarding the ones that might neg-
atively impact the target model [60]. Duan et al. [74] proposed a domain selection
machine that is trained on loosely labeled web images from disparate source domains.
Proposed domain selection relies on a weighted combination of source classifiers as
well as a domain-dependent regularizer for selecting most pertinent source domains.
Chen et al. [49] proposes a re-weighting vector to match the source domain label dis-
tribution to the unknown target one. Bhat et al. [24] propose to select the best source
domains based on both H-similarity and complementary properties, and then to itera-
tively learn a shared representation.

Generally, one source dataset is considered as one domain. For instance, images
collected from ImageNet, from Caltech and from Bing are considered to represent three
source domains. However, this assumption does not always hold, because domain shift
may exist among data from one source. Several works have thus proposed to discover
latent domains in multi-source data [105, 265, 164].

Multi-source DA is sometimes referred to as multi-domain learning (MDL) [272].
Yang et al. [272] propose a unified framework that tackles both multi-domain learning
(MDL) and multi-task learning (MTL) problems, where we deal with respectively mul-
tiple source domains and multiple learning tasks. The main idea is to exploit available
semantic descriptors (or metadata) (e.g. indexes of domains or tasks) about each fea-
ture vector. As such, the need to distinguish between different domains and different
tasks is alleviated. Their proposed network is two-sided; one performs representation
learning from feature vector, and one from associated semantic descriptor. Both sides
outputs are subsequently combined into a single output. This work can be further
applied for zero-shot domain adaptation (ZSDA) (or domain generalization) setting
which assumes that no target data are available during training-time.

4.5 Domain Generalization

Domain generalization (DG) approach tackles the domain shift problem as in DA. DG
addresses building models that by design generalize well even in new previously un-
seen target domains. DG is related to the multi-domain learning (MDL), in the sense
that it also aims to learn a single model that is effective for multiple known domains.
However, in contrast to MDL, DG models can be generalized to new unknown tar-
get/testing domains. In literature, DG may be investigated under different names,
i.e. zero-shot domain adaptation (ZSDA) and zero-shot learning (ZSL) [272]. Note
that several works use the aforementioned names to describe an unsupervised domain
adaptation setting, where training unlabeled target data are available [29]. ZSL naming
is also often used to describe multi-task learning setting, e.g. recognizing new classes.

Domain generalization approaches proposed in literature may be roughly clas-
sified into three axis: (1) data representation based approaches, (2) ensembling ap-
proaches and (3) meta-leaning approaches. Our taxonomy of domain generalization
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approaches is summarized in table 4.2.

Table 4.2: Our taxonomy of domain generalization approaches.

Approaches Description Reference

Representation-based aim to learn a generalized data represen-
tation for unseen target domains. (1) sev-
eral works propose to learn a domain-
invariant feature representation that min-
imizes the domain discrepancy between
multiple source domains, (2) while others
rely on the assumption that a domain is
composed of a domain-specific and a un-
derlying domain-agnostic parts. The goal
is hence to learn to extract the domain-
agnostic part so that knowledge can be
transferred to the unseen target domains

[179, 90, 37,
178, 147, 151,
254], [125,
68, 145]

Ensembling training domain-specific models for each
source domain, and then optimally fuse
them at test time.

[268, 163]

Meta-learning present model agnostic training strategies
to train more robust models to domain shift

[146, 16, 152,
71]

Given multiple source datasets, Khosla et al.[125] proposed an SVM based ap-
proach, in which the learned weight vectors are common to all datasets. Muandet
et al. [179] proposed to learn new domain-invariant feature representations by mini-
mizing the dissimilarity across domains via domain-invariant component analysis and
a kernel-based optimization algorithm. Ghifary et al. [90] proposes a multi-task au-
toencoder MTAE that extends autoencoders into a model that jointly learns to perform
self-domain data reconstruction and between-domain data reconstruction. Li and al.
in [147] proposed adversarial autoencoders with Maximum Mean Discrepancy (MMD)
measure as domain-distance regularization to learn a universal feature representation
across domains. Authors propose to jointly minimize reconstruction error, classifica-
tion error and domain difference while imposing a prior distribution in the learned
feature space via adversarial training. Li et al. [145] proposed a low-rank parameter-
ized convolutional neural network model for end-to-end DG learning.

Xu et al. [268] trained low-rank exemplar-SVMs, which can be defined as a linear
SVM classifier trained on a single positive training instance and all negative training
instances, for both domain adaptation and domain generalization. For domain gener-
alization, the authors propose to whether equally fuse all exemplar classifiers, or use
the exemplar classifiers in the latent domain which the target data more likely belongs
to. Mancini et al. [163] proposed to train domain-specific classifiers, one on each source
domain. Classifiers are then optimally combined at test time based on similarity be-
tween target image and source images.

Li et al. [146] propose a meta-learning domain generalization approach MLDG.
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It consists on a model agnostic training procedure that can improve the domain gen-
erality of a base learner. This procedure is based on synthesizing virtual training and
virtual testing domains within each mini-batch. The meta-optimization objective con-
sists on minimizing the loss in the training domains, while simultaneously improving
the virtual testing loss. Balagi et al. [16] propose a scheme for learning regularization
functions that generalize to novel distributions.

Mancini et al. [162] propose to use target domain metadata and model domain de-
pendencies using a graph in the context predictive domain adaptation. Authors in
[162] propose to build multiple domain-specific models on each source domain, and
then regress a model for the target domain based on nearby domains in the graph. Do-
main metadata for transfer learning was also explored by Yang et al. [273]. Yang et
al. [273] proposed a cross-domain multivariate regression approach by mapping from
domain metadata to points in a Grassmanian manifold. Given this mapping and target
domain metadata, two solutions are proposed to infer a classifier in the unseen target
domain.

4.6 Similarity Measures between Domains

For a successful generalization across multiple domains, a domain similarity measure
is necessary to compute discrepancy between data distributions. Numerous metrics
are proposed in literature, such as maximum mean discrepancy [33, 158, 147, 287],
Kullback-Leibler divergence [234, 241], f-divergence [186], Wasserstein metric [226],
Kolmogorov-Smirnoff statistic [131], or Rényi divergence [56]. However, these metrics
require at least unlabeled data from the target domain to compute similarities.

Several works choose to rather learn a good similarity metric that fits specific re-
quirements. For instance, Pinheiro et al. [195] proposed an unsupervised DA approach
based on similarity learning. The authors aim to find a representation space in which
instances of a given category (independently of their domains) are mapped around this
category’s prototype. A prototype of a category is computed by averaging representa-
tions of all data instances that belong to this category. At test time, the most similar
prototype to a target sample is selected.

A detailed review on metric learning from data can be found in [20]. In general,
similarity metric learning [134] aims to learn a task-specific distance metric using sim-
ilarity information delivered by training data. This is needed when general-purpose
distance metrics (e.g. Euclidean distance or cosine similarity) fail to capture data char-
acteristics and relationships [20]. It is also required when usual distance metrics are
not well-suited for particular tasks and requirements. The simplest and standard ap-
proach for learning similarity metrics is to find a linear transformation on data (often
called Mahalanobis metric learning [82]), so that similar data points are brought closer
together while dissimilar data points are pushed farther apart.
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More recently, non-linear metric learning is used to capture non-linear character-
istics within data. Most existing works in this framework are inspired from Siamese
networks [122] due to their powerful representation capabilities [212]. A Siamese net-
work [40, 52] contains two identical sub-networks. During training, it takes two inputs,
one in each sub-network, and learns to predict similarity between these inputs. Maoti-
ian et al. [178] used a Siamese network in the context of visual supervised domain
adaptation and generalization. Their work aims to find a shared embedding subspace
for source and target distributions that promotes both domain confusion and semantic
alignment. Semantic alignment ensures that data points from different domains but
similar labels are mapped close together in the learned embedding subspace.

4.7 Summary and conclusions

To summarize, we categorized the field of transfer learning, and presented shallow
and deep approaches of domain adaptation. DA setting is characterized by having the
same learning task but different domains across the source and the target settings. In
contrast to DA, domain generalization deals with scenarios where no data are available
in the target domain. The goal is therefore to study how a model accurately performs
out-of-the box in new domains [146].

Generally, cross-domain knowledge transfer applications assume that the source
and the target domains are related, and seek to adapt data instances, feature represen-
tations or models from the source domains to the target domain. However, this is not
always the case. In real-world large-scale scenarios, many source domains are available
and are potentially very dissimilar. In consequence, applying techniques that were pro-
posed for relatively related domain may not hold good generalization performance.

Some works proposed to select most similar source domains to the target domain.
For studying similarity across different domains, distance metrics generally rely on the
availability of target data. However, target data are not always available. This is par-
ticularly the case in newly built or newly renovated buildings, in which no operational
data are preliminarily generated.

Most of TL research was interested in fields like computer vision and natural lan-
guage processing. TL has therefore not been thoroughly investigated for time series
forecasting tasks, which are useful across various applications such as energy, finances,
network traffic or healthcare.
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Chapter 5

Query-adaptive Training Data
Recommendation

5.1 Introduction

Machine learning is increasingly and successfully used in many sectors and industries.
However, successful machine learning application depends heavily on the availabil-
ity of sufficiently large amount of relevant data, notably when deep learning is used.
Training accurate models when no data are available in the target domain (for which
the model is intended), is therefore challenging.

With the growth of open data initiatives in many fields, existing data about other
related domains may be accessible. The main idea of our work is, thus, to leverage data
collected from multiple different and related source domains when no data are available
on a target domain. An important challenge arises when handling multi-source data,
as large domain shift may exist between different source domains, as well as between
each source domain and target domain [235]. Consequently, models trained on source-
combined data collected from disparate sources can interfere with one another during
the training process, and generalize poorly when applied to a new previously unseen
target domain [283, 207]. This phenomenon is referred to as negative transfer [255].

To address this challenge, we propose an inter-domain similarity-based approach
to recommend relevant training data by selecting most similar source domains to a
target domain. Conventionally, inter-domain similarity measures compute the discrep-
ancy between the distributions of source domains data and target domain data [74, 44,
214]. However, this is not suitable in our case due to the unavailability of target domain
data during training. Consequently, we rely on a task-specific deep metric learning
based framework which requires solely metadata about the target domain during in-
ference for training data recommendation. Metadata provide contextual description
about the target domain, and are modeled as user query. Once training data are rec-
ommended, target model is trained. For this, we propose an ensemble learning frame-
work to combine multiple learning algorithms. Ensemble learning generally yields
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better generalization performance than simply one model. As target task, we focus on
predictive modeling using time series data.

We consider the use case of building energy modeling. More particularly, we fo-
cus on buildings on which no operational data are available, such as newly built or
newly renovated buildings. Metadata about the unseen target building mainly consist
of design properties that are easy to access, such as the building’s use type (residential,
industrial, or commercial), shape, size and age.

The remainder of this chapter is structured as follows. Section 5.2 gives a brief re-
view of most related works. Section 5.3 provides an overview on our proposed method-
ology. Section 5.4 and Section 5.5 describe the operation of respectively training data
recommendation and predictive modeling components. Section 5.6 illustrates the ap-
plication of our proposed methodology for the use case of building energy modeling,
and discusses other possible use cases. Finally, in Section 5.7, we draw conclusions and
present suggestions for future research.

5.2 Originality of our Methodology

Proposed approaches addressing the domain shift challenge in multi-source data fall
into the broader field of knowledge transfer, and more particularly multi-source domain
adaptation and domain generalization sub-fields (more details in Chapter 4). Domain gen-
eralization assumes that the target data are not accessible during training and aims
to leverage multiple source domains, as in our work. However, we assume that a
contextual description of the target domain (metadata) is available to perform source
domain selection. We argue that a preliminary selection of most similar domains is
necessary when multiple source domains are available, in order to effectively avoid
negative transfer [210].

Source domain selection has been investigated in the context of multi-source do-
main adaptation [74, 49]. It mainly consists in selecting source domains that are the
most relevant to the target domain, or assigning a weight to each source domain de-
pending on its similarity to the target domain. However, this generally requires un-
labeled data from the target domain to compute similarity measures between target
domain and available source domains (see Chapter 4). Instead, we focus on domain
selection with no target data available during training. Hence, we exploit target domain
metadata that are easily accessible. Mancini et al. in [162] propose to use target domain
metadata and model domain dependencies using a graph in the context of predictive
domain adaptation. Authors in [162] propose to build multiple domain-specific models
on each source domain, and then regress a model for the target domain based on nearby
domains in the graph. Instead of training multiple domain-specific models, we propose
to initially select data from most relevant source domains using target domain metadata,
and use the data to build a model for the unseen target domain. Metadata about target
domain is also modeled as a user query. Moreover, we propose to combine multiple
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learning algorithms simultaneously. For this, we use an ensemble learning framework.
As a result, our framework is by design generic and easily extensible.

Distance between domains in [162] is computed as a measure between their re-
spective metadata. However, small distance between domains metadata does not nec-
essarily imply a small distance between these domains data, on which final task per-
formance is based. Thus, we use a similarity metric learning approach that captures
similarities between domains data, while requiring only domain metadata during test
to identify most similar source domains.

Yang et al. in [272, 273] proposed to exploit available metadata about domains
or tasks for respectively multi-domain learning and multi-task learning. Metadata in
[272] consisted of descriptors that semantically characterize the corresponding domain
or task, and that are fed into the model as additional input during training along with
data. Instead of combining domain metadata and data, we propose to exploit only tar-
get domain metadata for source data selection. Then combine data collected from most
similar source domains to train predictive models. This way, we are able to address
the domain generalization setting in which no target domain data are accessible during
training.

As use case, we consider the application on building energy modeling tasks. Trans-
fer learning is recently being investigated for this task [206, 86, 107]. However, these
works focus on domain adaptation, and therefore on historical data scarcity rather than
their total absence. To the best of our knowledge, our work is a first cross-building
knowledge transfer attempt for predictive modeling of building energy consumption
when no historical data are accessible during training.

5.3 Overview of the Proposed Methodology

We present a workflow for relevant existing data recommendation and reuse in the
general context of cross-domain predictive modeling tasks. Our system main objective
is to train accurate predictive models for new previously unseen target domains based
solely on their metadata. As such, we distinguish between two types of information:
data and metadata. Domain data are a collection about recorded facts such as measure-
ments, observations or descriptions about anything. On the other hand, domain meta-
data provides contextual information to the data and the domain itself. For instance, in
the framework of building energy modeling, data are produced by the building during
its operation, such as measurements of energy consumption and weather conditions.
Whereas, metadata summarize contextual information about the building, such as the
building type, size, year of construction, location, number of occupants, etc. We should
note that various definitions of “metadata” exist depending on the field of study. The
definition that we have provided is thus specific to our work and should not be con-
fused with similar terms used in, for example, the field of data management. Figure 5.1
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illustrates the relation between domain metadata and domain data in our proposed
methodology.

Figure 5.1: Relation between domain metadata and domain data in our proposed
methodology. Domain metadata offers a key-value contextual description of the do-
main. Domain data is historical time-based profiles that we use for predictive model-
ing.

Our workflow is composed of two main processes. The first process is responsible
for recommending most similar source domains with respect to the new previously
unseen target domain metadata. The second process is responsible for collecting data
from the recommended domains and training a predictive model. We model the input
target metadata as a user query. Upon receiving a query, our workflow is launched.
We present an overview of our methodology in Figure 5.2. Hereafter, we detail each
service of the workflow.

Figure 5.2: Overview of cross-domain knowledge transfer workflow.

1. Training Data Recommendation We use a novel inter-domain deep similarity
metric learning approach to build a recommendation framework that selects the
most similar source domains to a target domain. Inter-domain similarity must
rely solely on the target domain metadata and not actual data, given the fact we
are interested on the non-availability of historical data. However, predictive mod-
eling depends mainly on such data and therefore recommended source domains
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must have similar data patterns as in the target domain. To mitigate this issue, we
propose a Siamese network [40] based recommendation framework whose train-
ing logic relies simultaneously on metadata and historical data within domains.
During inference, it only requires the metadata of the target domain. In brief, our
similarity metric learning approach will learn a domain-level feature representa-
tion, so that similar domain pairs (having similar data patterns) are mapped close
to one another in the feature space, and dissimilar domain pairs are mapped far
from one another. This is described in further details in Section 5.4.

2. Predictive Modeling Once similar source domains are identified by the training
data recommendation component, their corresponding multivariate data are re-
trieved and combined to form a training dataset for predictive modeling task.
Based on the loaded dataset, we learn predictive models from historical data of
recommended source domains. These predictive models will later allow us to
accurately predict future changes of the new previously unseen target domain
described in the user query (metadata). In this work, we use an ensemble learn-
ing technique to combine trained predictive models. This establishes the generic
nature of our query-adaptive methodology, and ensures better generalization per-
formance as described in Section 5.5

5.4 Training Data Recommendation

Training data recommendation allows to perform a preliminary contextual selection,
which is arguably required when generalizing the applicability of cross-domain knowl-
edge transfer. Predictive model training will be subsequently limited to data retrieved
from source domains that are sufficiently related and similar to the target domain de-
scribed in the query. This also avoids negative transfer [210] by filtering out unrelated
source domains. Common approaches for domain selection compute the discrepancy
between source domains data and target domain data [74, 49]. However, as previously
established, we focus on the case of unavailability of historical data in the target domain.

The main challenge therefore lies in the definition of an adequate domain-level
similarity metric that is simultaneously:

1. defined suitably to reflect similarity between target domain and source domains
data patterns. This is due to our target task of predictive modeling, which is
mainly based on historical data.

2. not require data about the target domain during inference.

Consequently, we propose a training data recommendation process that requires
solely contextual metadata about the target domain in order to select most similar
source domains. Metadata will provide a minimal a priori knowledge about the new
previously unseen target domain, and therefore consist of contextual information that
are easy to access. Our recommendation approach relies on deep metric learning. Metric
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learning [134] aims to automatically find a task-specific distance function to measure
the similarity between samples. Metric learning techniques may be either supervised
or unsupervised. Unsupervised metric learning maps useful information into a low-
dimensional subspace. Supervised metric learning formulates the problem as an opti-
mization problem with an objective function on labeled training data [160]. Objective
function is designed with respect to the target task.

Another closely related concept to metric learning is similarity learning. For in-
stance, metric learning can be seen as a subset of similarity learning. A metric or a
distance function d : X ×X 7→ R has to satisfy four axioms:

1. Non-negativity: d(x, y) ≥ 0, ∀x, y ∈ X

2. Identity of indiscernibles: d(x, y) = 0 ⇐⇒ x = y, ∀x, y ∈ X

3. Symmetry: d(x, y) = d(y, x), ∀x, y ∈ X

4. Triangular inequality: d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X

Examples of metric functions are Euclidean and cosine distances.

Existing metric learning approaches often aim to first find a feature transforma-
tion to map examples into a new feature space (or embedding space) and then find a
discriminative distance metric in this new space [110]. Figure 5.3 illustrates the con-
cept of metric learning. Transformation can be linear or non-linear [134]. Non-linear
methods for metric learning are proven effective in addressing the non-linearity prob-
lem, which is often encountered in case of real-world data. Non-linear transformation
may be implemented using kernel tricks. However, kernel tricks suffer from scalabil-
ity limitations [160]. As an alternative, deep neural networks are successfully applied.
Combination of metric learning and deep learning is referred to as deep metric learning.

Figure 5.3: Illustration of metric learning by learning a new embedding space that bring
similar examples closer to each others and dissimilar examples farther from each other.

In our work, we leverage supervised deep metric learning to learn a distance func-
tion between domain pairs to effectively measure their similarity. As such, we utilize la-
beled source domain pairs to learn a domain-level feature representation (embedding)
so that similar domains are mapped close to one another in the transformed feature
space, whereas dissimilar domains are mapped as far from one another as possible.
This simplifies the following source domain recommendation, by simply selecting the
closest domains to the target domain in the new feature space.
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We use a Siamese network based recommendation workflow whose training logic
relies simultaneously on metadata and historical data within source domains. Fig-
ure 5.4 gives an overview of the Siamese network based recommendation framework.
Once trained, recommendation workflow is executed at each reception of a query that
contains a minimal contextual description (metadata) of the target domain.

Figure 5.4: Overview on the proposed data recommendation workflow.

The Siamese network [40, 52, 212] is an architecture for non-linear metric learning
with pairwise similarity information. As such, a Siamese network learns representa-
tions through explicit information about similarity between pairs of objects. Siamese
networks were first introduced in [40] in the study of signature verification. It consists
of two identical networks both sharing the same weights and architecture. The two
networks accept distinct inputs that are then joined via a loss function. The goal is to
obtain a representation that preserves the distance between similar entries. This way
similar domains can be matched and related through their learned representations.

5.4.1 Deep Metric Learning with Siamese network

Siamese networks have commonly been trained using the contrastive loss function.
Contrastive loss function [99] is employed to learn the shared parameters vector W of
a parameterized mapping function GW that ensures that semantically similar examples
are embedded close to one another, while semantically dissimilar examples are embed-
ded far from one another. We use the same contrastive loss function defined in [99].
However, in our methodology, we work with continuous (or soft labels) rather than bi-
nary labels (or hard labels). Let X1 and X2 be the input pair. Let Y the label associated
to this pair, Y is close to 0 if X1 and X2 are deemed similar, and Y is close to 1 otherwise.
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The label Y can therefore be seen as score of similarity between input pair. In our case
study, X1 and X2 consist in the metadata vectors of respectively a source domain 1 and
a source domain 2, whereas Y consists in the scaled distance between historical data of
the pair of input source domains into the range of (0, 1).

The parameterized distance function DW to be learned between inputs X1 and X2

is defined as the Euclidean distance between the outputs of mapping function GW , i.e.
DW(X1, X2) = ‖GW(X1) − GW(X2)‖2. To shorten notation, DW(X1, X2) is written as
DW . We use the general form of contrastive loss function L(W) which is defined as
follows [99].

L(W) =
P

∑
i=1

L(W, (Y, X1, X2)
i) (5.1)

L(W, (Y, X1, X2)
i) = (1−Y)LS(Di

W) + YLD(Di
W) (5.2)

where (Y, X1, X2)
i is the labeled sample pair of index i, P is the number of training

pairs, LS is the partial loss function for a pair of similar domains, and LD is the partial
loss function of a pair of dissimilar domains. LS and LD are designed so that DW has
low values for similar inputs and high values for dissimilar inputs [99]. As such, LW

has low values if similar inputs have “closer” embeddings and dissimilar inputs have
“farther” embeddings. LS and LD are written as follows :

LS(W, X1, X2) =
1
2
(DW)2 (5.3)

LD(W, X1, X2) =
1
2

max(0, m− DW)2 (5.4)

where m > 0 is a margin that is used to hold constraint, i.e. when two inputs
are dissimilar, and if the distance between them is greater than a margin, they do not
contribute to the loss. This ensures that no computations are wasted on enlarging dis-
tance between embeddings of dissimilar inputs when these are distant enough. The
contrastive term LD involving dissimilar inputs is crucial in avoiding the loss reaches
zero by setting embeddings GW to a constant [99].

5.4.2 Data labeling with Dynamic Time Warping

Particularly, in our study, we learn domain-level embeddings so that similar source
domains are mapped close to each other in the learned feature space, and dissimilar
source domains are mapped far from each other. As aforementioned, the Siamese net-
work learns feature representations via a supervised approach with explicit pairwise
similarity information. We therefore need to represent our dataset as pairs of metadata
vectors, each corresponding to a domain. For each domain pair, there corresponds a
similarity score [113] between their respective historical data. In our work, we mainly



5.4. Training Data Recommendation 81

focus on time series data given our target task of predictive modeling. As such, se-
lection of most similar domains from the metadata embedding space, will result in
selection of domains with most similar historical data.

Several distance metrics are proposed for evaluation of similarity between time
series data [251], namely Euclidean distance [76], DISSIM [85], dynamic time warp-
ing (DTW) [180], longest common subsequence (LCSS) [249], edit sequence on real se-
quence (EDR) [48], edit distance with real penalty (ERP) [47], threshold queries based
similarity search (TQuEST) [12], etc. In our work, we chose to label domain pairs using
Dynamic Time Warping (DTW) distance [219]. DTW was first introduced in the context
of speech recognition [219], and is a widely accepted distance measure for time series
data [124, 67].

Namely, DTW is part of the so-called elastic measures for computing similarity
between time series data. Elastic measures allow comparison between one-to-many
points in the time series. This by contrast to lock-step measures which only allow com-
parison between fixed pairs of points (one-to-one), such as in Lp norms [251]. Figure 5.5
illustrates the difference between Euclidean distance and DTW. Another type of simi-
larity measures is edit distance based measures. Edit distance was used in the context of
string, by computing the minimum number of operations needed to convert one string
into the other. Authors in [251] conducted a comparative study between different dis-
tance measures for time series data, and established that DTW generally performs bet-
ter than lock-step measures (e.g. Euclidean distance, DISSIM) and TQuEST, and very
similarly to some edit distance based measures (e.g. LCSS, EDR and ERP). Euclidean
distance and other Lp norms are not suitable in the context of time series because of
time shifts and time distortions. DTW is on the other hand able to measure similarity
between two time series which may vary in time and speed.

(a) Euclidean distance (b) Dynamic Time Warping

Figure 5.5: Euclidean distance vs dynamic time warping [202]. DTW allows similar
points to match even if they are out of phase in the time axis.

DTW computes similarity by temporally aligning (or warping) two time series in an
optimal manner by minimizing the distance between them. Suppose we have two time
series x and y, x = x1, x2, ..., xM of length M and y = y1, y2, ..., yN of length N. To align
these two time series, DTW first constructs an accumulated cost matrix C of size M×N.
Accumulated cost matrix C can be defined using Bellman’s dynamic programming, by
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recursively computing [224]:

Ci,j = f (xi, yj) + min{Ci−1,j, Ci,j−1, Ci−1,j−1} (5.5)

for i = 1...M and j = 1...N. The first element C0,0 is initialized to 0, f is the
local cost function. For uni-dimensional time series, f (xi, yj) is generally defined as the
squared distance (xi − yj)

2. As such, Ci,j is the cost at (i, j)th element and the minimum
accumulated cost from the three adjacent elements. The final DTW measure correspond
to the total accumulated cost which is written as:

dDTW(x, y) = CM,N (5.6)

One major drawback of DTW computation is the high time and space complexity
(O(n2)). This largely limits its applicability [251]. As in many fields, such as building
energy modeling, the time series are relatively lengthy and often high-dimensional, the
quadratic complexity becomes nontrivial [161]. Therefore, we use FastDTW. FastDTW
[220] provides an accurate approximation of DTW that runs in linear time and space
complexity (O(n)).

5.4.3 Similarity Search

Once Siamese network is trained, we will utilize the learned mapping function GW

to extract embeddings from all source domains descriptions as background process.
Source embeddings will be stored in a data store. At each received query, most similar
source domains to the described target domain are identified.

Let Xt be the input target domain’s metadata. The final recommendation process
will be computing distances between the target embedding GW(Xt) and all source em-
beddings, such that :

DW(Xt, Xi) = ‖GW(Xt)− GW(Xi)‖2 for i = 1, 2, ..., S (5.7)

where S is the number of source domains. The recommendation process will be
then identifying the references of the most similar k domains via a simple k nearest
neighbors (k-NN) algorithm. k is an user-defined parameter.

5.5 Predictive Modeling via Ensemble Learning

Time series data retrieved from recommended source domains allow us to train an
accurate predictive model for the new previously unseen target domain. Predictive
modeling has for objective to forecast future values of time series.

In our work, we developed a generic query-adaptive framework that allows pre-
dictive modeling for multiple target domains. Final users are only required to provide
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as query the contextual description (metadata) about the target domain, and receive
as output the corresponding predictive model. As we focus on time series forecasting,
we leverage most used and successfully applied learning algorithms proposed in this
context, which are support vector machines and artificial neural networks. Support
vector machine was applied to regression estimation, and was therefore called support
vector regression (SVR). SVR techniques employ kernels in order to capture non-linear
patterns often present in time series data. Commonly used kernels are the polynomial
kernel and the radial basis function kernel.

On the other hand, ANNs, and deep learning in particular, allows to automati-
cally extract meaningful features from raw data using nonlinear transformations [23].
Within multivariate time series setting, commonly used deep learning techniques [78]
are multi-layer Perceptron (MLP), convolutional neural networks (CNN), recurrent
neural networks (RNN) and its specific architectures long short-term memory (LSTM)
[284, 41] and gated recurrent unit (GRU). A thorough review of machine learning tech-
niques for time series forecasting is done in Chapter 3.

Given the generic nature of our framework, we need to adaptively select most
accurate algorithm (and then model) for each invocation, and hence for each unseen
target domain. However, simply comparing and selecting the learning algorithm that
yields best results for an evaluation subset of target domains, will not necessary work
best for all possible cases that our framework might encounter once deployed. This
phenomenon is explained by the “no free lunch” theorem (NFL) [263]. Essentially, NFL
theorem states that all optimization algorithms perform equally good when averaged
over all possible problems. This implies that there is no single algorithm that best
perform on all possible problems and data sets.

Consequently, we combine several algorithms, and combine their predictions us-
ing ensemble learning techniques. Rather than finding one hypothesis that best explains
the data, ensemble learning consists on building a set of hypotheses, often called an
ensemble, and then combine these predictions of hypotheses to produce final predic-
tions on new data points [66]. Ensemble learning typically yields better generalization
performance than any single one of the trained models.

The main ensemble learning techniques are bagging, boosting and stacked general-
ization. In brief, bagging stands for bootstrap aggregating, and mainly aims to reduce
variance. It generates multiple sets from the original training set and with the same
size, using uniform sampling with replacement. Then, a weak learner is produced
on each generated set of samples. Outputs are aggregated by averaging them for re-
gression, and hard or soft voting for classification. By contrast, boosting mainly aims
to reduce bias. It consists in a sequence of weak learners, where each model in the
sequence is trained with more focus on samples that were "badly" learned by the pre-
vious model. For bagging and boosting, the same learning algorithm is used in order
to have homogeneous ensemble.
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In our work, we use stacked generalization technique [262, 246]. Unlike bag-
ging and boosting approaches, stacked generalization allows to combine heteroge-
neous models as in our context. It also targets both variance and bias. There are two
types of models in a stacked generalization framework: several base models, also called
level-0 models, and one meta-model, also called level-1 model. The main idea behind
stacked generalization is to use the level-1 model to learn from predictions of level-
0 models. In general, a stacked generalization framework can obtain more accurate
results compared to the best level-0 model [262]. Figure 5.6 illustrates the concept of
stacked generalization. As such, level-0 models can be trained independently from one
another in a parallel way.

Figure 5.6: Illustration of stacked generalization.

The training data for level-1 model is obtained using cross-validation technique.
Given a dataset D = {(yi, xi), i = 1..N}, where yi is the target value and xi represents
feature vectors for the ith instance, randomly split the data into K folds {D1,D2, ...,DK}.
Define Dk and D(−k) = D −Dk as respectively the test and the training set of the kth

split of the K-fold cross-validation. Given J different level-0 models {M1, M2, ..., MJ},
each Mj is trained on D(−k) and predicts each sample xn in Dk. Let zjn denote the
prediction of the model Mj on xn. At the end of all cross-validation process, the dataset
assembled from the outputs of J level-0 models is:

DCV = {(yi, z1n, z2n, ..., zJn), n = 1, 2, ..., N} (5.8)

DCV is the training set for the level-1 model Mmeta. In our experiments, we use a
linear regression model to determine y as a function of (z1, z2, ..., zJ). Level-0 models
Mj, j = 1, 2, ..., J are on the other hand trained using the dataset D.

The final prediction process will therefore use level-0 models Mj, j = 1, 2, ..., J, in
conjunction with level-1 model Mmeta. Given a new target instance, trained level-0
models produce a vector of outputs {z1, z2, ..., zJ}, where zj is the output of model Mj.
This vector is the input to the trained level-1 model Mmeta, whose output is the final
prediction for that instance.
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5.6 Use Case of Building Energy Modeling

To verify the effectiveness of our methodology, we perform our experimental study
on the use case of energy consumption prediction in buildings. Predictive modeling
of energy consumption in buildings is a key task for the optimal management and
conservation of building energy within buildings. Yet, accurate predictive models rely
heavily on collecting historical operational data about the corresponding building and
in a sufficient amount [216, 144, 175].

However, in many cases, historical data are not available for effective training of
machine learning models. This is particularly the case in newly built or newly reno-
vated buildings. As such, predictive modeling of energy consumption in renovated
buildings can not be based on their historical pattern, given energy efficiency improve-
ments that they had undergone. Moreover, it is common to assess the energy efficiency
of buildings before construction or renovation. In such cases, only a contextual de-
scription about the future building and its design is available. For all these cases, a
contextual description about the target building and its design is available.

Even when few historical data are available, training an accurate model remains
a challenge. As for BEM, or more generally time series forecasting, we require train-
ing data that cover a long span of time (generally years) to train sufficiently accurate
predictive models. For instance, in the case of daily energy consumption prediction,
reported research works employ training data for a span of several months (e.g. 10
months) to several years (e.g. 2, 3, 4 years) [8].

BEM therefore represents an interesting use case of our proposed methodology. As
such, the training data recommendation allows to recommend relevant training data to
a previously unseen target building solely by providing metadata on it. It relies on
inter-building similarity metric that assures that similar buildings with similar energy
consumption profiles are mapped close to each other in the embedding space, whereas
dissimilar buildings are mapped far from each other. Metadata contain minimal contex-
tual information, such as the building type, size, year of construction, location, number
of occupants, etc. The deployed framework thus offers a generic method for cross-
building predictive modeling. This is particularly convenient given the growing avail-
ability of open data in the field of building energy. Existing energy consumption data
about multiple source buildings can consequently be obtained. Figure 5.7 illustrates the
application of our proposed methodology for the use case of cross-building predictive
modeling.

Within the context of predictive modeling of building energy, most applied ML
techniques are SVM and ANN. For the experimental evaluation of this use case, we
leverage mainly four machine learning techniques; MLP, LSTM-RNN, CNN and kernel
SVR. Models are trained to predict daily energy consumption. Building energy con-
sumption depends on multiple exogenous time-based variables, namely weather data
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Figure 5.7: Application for the use case of cross-building predictive modeling.

(e.g. air temperature, relative humidity) and calendar data (e.g. weekday, weekend,
holiday). Experimental evaluation can be found in Chapter 7.

5.6.1 Genericity of our Methodology

In its design, our methodology performs cross-domain knowledge transfer for a spe-
cific task, by using: contextual description about entities (easily acquired metadata),
and historical data (with respect to the task), in a way that it requires minimal descrip-
tion and no historical data about a new entity to predictively model it. As such, we
believe that our proposed methodology can be considered as a possible solution to a
broader range of applications in different fields, and not solely for the use case of cross-
building energy modeling.

For instance, time series modeling is increasingly used as a major part of multiple
applications, such as healthcare, finances, climate science, biological science, to name a
few. Given the data requirements for accurate predictive modeling, we believe that our
methodology offers an interesting workaround to effectively perform modeling with-
out the need to have historical data for training and draw advantage from the growth
in open data availability. For example, in health care, our methodology may be used
for prediction of availability of hospital resources, or patient outcomes, by providing
contextual information about the target hospital (e.g. capacity, location). Similarly, in
finances, we may want to predict stock prices providing contextual information about
a target company.



5.7. Summary and conclusions 87

5.7 Summary and conclusions

Our methodology addresses mainly the issue of non-availability of sufficient historical
data in the tasks of predictive modeling. We develop a novel query-adaptive two-step
methodology for cross-domain knowledge transfer. As such, two levels of information
on buildings are distinguished: (1) metadata which refer to the contextual description
about the building, e.g. occupation type, size, location, construction, etc. (2) data which
refer to the time series data gathered during building operation.

The first step of the proposed methodology is to recommend most similar source
domains in terms of data to a target domain, based solely on its corresponding meta-
data. For this purpose, an appropriate inter-domain similarity metric is learned using
a Siamese network. This ensures the learning of task-specific discriminatory represen-
tations of domains. As such, similar domains will be mapped closer together, while
dissimilar domains will be mapped farther apart. Consequently, the recommendation
process is performed simply by selecting closest learned representations of source do-
mains to the learned representation of the unseen target domain.

The second step is to load historical data from the recommended source domains,
and to train multiple heterogeneous predictive models. These models are subsequently
combined together via a stacked generalization framework to ensure a robust perfor-
mance.

Overall, our developed methodology is generic by design as it allows query-adaptive
predictive modeling for a diverse range of target domains. To illustrate our method-
ology, we detail its application for the use case of building energy modeling. To our
best knowledge, this work is a first attempt to knowledge transfer across buildings
when no operational data available during training. The experimental evaluation of
our methodology for the use case of BEM can be found in Chapter 7.
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Chapter 6

A Microservice-based
Framework for Cross-Building
Knowledge Transfer

6.1 Introduction

Our proposed methodology aims to build query-adaptive predictive models for new
unseen target buildings based on existing data on multiple source buildings. Hence,
we refer to it as predictive models factory. The workflow may be logically split into inde-
pendent components as microservices. Each with a separate concern and requirements.
In doing so, the microservice-based architecture is more flexible to changes than a clas-
sic monolithic architecture. For the effective software implementation of our predictive
models factory, we therefore propose a microservice-based framework. In this chapter,
we present the design of our system and detail the flow of data through it.

This chapter is structured as follows. Section 6.2 summarizes the system require-
ments and the primary actors. Section 6.3 presents our proposed architecture and its
main microservices. In Section 6.4, we detail how data is integrated in our system and
the used building metadata schema. Section 6.5 concludes this chapter.

6.2 System Requirements

Our system main objective is to train energy predictive models for new previously un-
seen target buildings based solely on their contextual description. In our application,
contextual descriptions concern high-level information about the target building we
seek to model, such as its typology, year of construction, location, etc. (details in Chap-
ter 5). Figure 6.1 illustrates the use case of our proposed predictive models factory. As
such, predictive models factory is required to integrate and leverage data about multi-
ple source buildings. The source data may be retrieved from open datasets, automatic
generation and simulations or real buildings.
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Figure 6.1: Use case of our proposed system.

System actors are mainly building energy professionals and third-party building
management systems which seek to accurately model a building on which operational
energy data are not available.

6.3 Proposed System Architecture

We establish a microservices-based architecture (MSA) for our predictive model fac-
tory. Each individual microservice is fully-independent, self-contained, and specific to
a single task. Unlike monolithic applications, the MSA breaks down the application
into a suite of flexible, independently deployable and loosely coupled modules that
are accessible via a lightweight language-agnostic application programming interface
(API). APIs can be based on asynchronous messaging protocols.

MSA offers several benefits, such as an increase in agility in development and
delivery, resilience to failure, reliability in operation, maintainability, separation of con-
cerns, and ease of deployment [72, 39]. Compared to service-oriented architecture
(SOA), the core intent of the MSA pattern is to limit a service to a single purpose, en-
abling it to be fully decoupled and thus much more easily scaled and swapped out.
Contrary to MSA, component sharing is one of the core tenets of SOA. SOA therefore
relies on multiple services to fulfill a business request. Whereas MSA minimizes the
need to share components through bounded context, which allows the coupling of a
component and its data as a single unit with minimal dependencies. Figure 6.2 shows
the various microservices and their coupling in our proposed system. The predictive
model factory is composed of the following microservices: building data handling,
similarity learning, training data recommendation, and predictive modeling, which are
detailed hereafter.

Building Data Handling Microservice Our system is capable of continuously ingest-
ing and integrating data from external providers, such as weather data web services,
open energy data hubs and building energy management systems. Time series data
about building energy consumption and weather data are respectively stored in the
time series store and the weather data store. These two data stores are linked together
through the contextual information. In addition, contextual information provides a
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Figure 6.2: The microservice-based architecture for proposed predictive model factory.
Dotted rectangles represent individual microservices. Grey rectangles represent exter-
nal third-party microservices.

high-level description about the building environment, such as layout, age, informa-
tion about occupants, etc. Building data handling microservice plays the role of data
provider when learning a relevant similarity metric space, recommending training data
and training predictive models. Building data handler provides contextual information
and energy consumption time series data to the similarity learning microservice to learn
an efficient feature representation model. It also provides building-related time series
data (about weather and energy consumption) to the predictive modeling microservice to
learn a accurate predictive model. The actual automation of data integration and data
stores population is beyond the scope of our work.

Similarity Learning Microservice Similarity learning is designed as a microservice
that can run in background regularly in order to perform deep representation learning
(described in Chapter 5). Deep representation learning aims to train models that trans-
forms contextual descriptions or metadata about a building to an appropriate vector
embedding. Once a new feature representation model is trained, contextual descrip-
tions about available source buildings are loaded to produce corresponding vector em-
beddings. Vector embeddings of source buildings, as well as trained feature represen-
tation model, are consequently stored for later use by other micoservices. We illustrate
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the relations between contextual description, vector embeddings and feature represen-
tation models in Figure 6.3. The workflow of the similarity learning microservice is
depicted in Figure 6.4.

Figure 6.3: Relations between contextual descriptions, vector embeddings and feature
representation models.

Figure 6.4: Sequence diagram of the similarity learning microservice workflow.

Training Data Recommendation Microservice The entry point of our system work-
flow is the training data recommendation step. Via our system’s API, users define the
required use case by providing a key-value description of the unseen target building
to model via a user friendly interface. No prior knowledge on the target building’s
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energy consumption is needed. The microservice parses the contextual description or
the metadata about the target building contained in the user request, and transforms it
to an intermediate representation. Vector embeddings are produced using previously
trained models by the similarity learning microservice (as described in Chapter 5). Most
relevant time series data corresponding to most similar source buildings that are al-
ready available in our data hub, are then identified and selected. Similar source build-
ings are identified based on the vector embeddings on the target building and the vec-
tor embeddings on other source buildings available within the system. The training
data recommendation microservice loads source vector embeddings from their corre-
sponding data store via message queues.

Predictive Modeling Microservice Once similar source buildings identifiers are avail-
able, predictive modeling service will load corresponding energy data from the time se-
ries store and/or weather data store via message queues. Training dataset will be then
aligned and prepared using data transformation techniques, e.g. missing data imputa-
tion, outlier removal, etc. Finally, predictive model is trained in order to predict future
energy consumption for a pre-defined forecasting horizon. In current work, we rely on
a recurrent neural network, convolutional neural network and support vector machines
for predictive modeling. The final model is then built by combining trained models via
ensemble learning techniques. The workflow enabled upon receiving a user request is
depicted in Figure 6.5.

Data in our system are shared between microservices following an event-based
communication. Microservices therefore communicates via event messages. This en-
ables loose coupling between collaborating microservices and privileges asynchronous
behavior. For instance, once similar source buildings are successfully identified by the
training data recommendation microservice, their identifiers are shared with the pre-
dictive modeling microservice. In addition, in order to have fully independent mi-
croservices, we propose to restrict access of relevant microservices to backup copies of
databases. For instance, building data handling and predictive modeling microservices
share the energy time series store and weather data store, whereas similarity learn-
ing and training data recommendation microservices share the contextual descriptions
store and the feature representation models store (see Figure 6.5 and Figure 6.4). As
it is, database sharing in considered as anti-pattern in a MSA [239], given that it re-
sults in significant interdependence and introduces a single point of failure. Alter-
natively, training data recommendation microservice has access to backup copies of
feature representation models store and vector embeddings store. Whereas, predictive
modeling microservice has access to an aggregated and reduced time series data from
energy data store and weather data store. These backup data stores copies and ag-
gregated data store will be populated periodically through event-based model using
publisher/subscriber. This solution is referred to as data pump model [183].
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Figure 6.5: Sequence diagram of training data recommendation and predictive model-
ing microservices workflow.

6.4 Data Specification

To deal with potentially large-scale data, we rely on a multi-modal data store in the
back-end. Time series data (weather and energy consumption) are stored in a tradi-
tional relational data base management system (RDBMS) like PostgreSQL Timeseries1.
Our system is transparent to the specific database technology used. Contextual data
about buildings and their associated time series is stored in a graph database. As
such, we propose an ontology-based data integration for building-related metadata.
An overview on building-related data management behind our API is shown in Fig-
ure 6.6. Each contextual description about a given source building acts as the core
element, by linking both its associated time series data, namely historical energy data
and weather data.

Intermediate vector embeddings for the selection of most similar source buildings
are stored . Feature representation models trained by the similarity learning microser-
vice are serialized and restored with Python package, Joblib2. They can therefore be
stored in document-oriented databases, such as MongoDB3, or databases supporting

1https://www.timescale.com/
2https://joblib.readthedocs.io/
3https://www.mongodb.com/

https://www.timescale.com/
https://joblib.readthedocs.io/
https://www.mongodb.com/
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Figure 6.6: Contextual information and time series data management component dia-
gram of our proposed system.

BLOB data type like MySQL4.

6.4.1 Ontology-based Data Integration

As aforementioned, our system allows to integrate data from different data sources,
such as open datasets, test buildings or automatic simulations. Multi-source data gen-
erally use heterogeneous data formats, such as web pages, text file or XML documents.
As result, a different and specifically designed method is employed for each data source
to process its data. Alternatively, we propose a unified view of data [143]. This ap-
proach for data integration is referred to as view-based. The runtime automated data
collection and integration processes fall beyond the scope of our work.

For the effective integration of buildings information within our system, we have
opted for an ontology-based data integration. The use of ontologies allow better seman-
tic interoperability, automatic verification of data consistency, and flexible querying of
data. In brief, an ontology provides "formal, explicit specification of a shared conceptual-
ization" [233, 95]. Conceptualization refers to an abstract and simplified definition of a
phenomenon. Specification is the encoding of a conceptualization in a knowledge rep-
resentation language. As such, an ontology is a representation of knowledge about a
domain, as essentially a set of concepts (or classes), relationships among these concepts
(or relations) and instances of these concepts (or individuals) [95, 96]. These components
constitute a ontological vocabulary. A class represents a set of objects within the domain
of interest, and is described via its properties (or attributes). An attribute has a name
and a value of specific data type. An attribute can be a class or an individual. A relation
semantically connects classes, individuals, or classes and individuals. Specific types of

4https://www.mysql.com/

https://www.mysql.com/
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relations exist in an ontology, essentially subsumption and instantiation. Ontologies
may also contain restrictions and rules.

Thereby, used metadata ontology in our data hub is required to capture contex-
tual building information from datasets collected from multiple heterogeneous data
sources. Each building should also reference its corresponding time series data about
weather and energy consumption. Figure 6.7 illustrates the flow of data through our
system.

Figure 6.7: An overview of the flow of data through our proposed data hub.

6.4.2 Contextual Building Information

Several ontologies have been proposed in the framework of building information [75,
199], such as BOT [204], SAREF4BLDG [197], ThinkHome [205], DogOnt [31], ifcOWL
[193], BOnSAI [232], Brick [15], HTO [101]. The building topology ontology (BOT) [204]
is a minimal ontology developed by W3C Linked Building Data Community Group.
BOT describes basic topological concepts of a building, such as sites, buildings, storeys
and spaces. Hence, it is mainly designed to be reused and extended in order to be
adopted for different use cases. The ifcOWL [193] ontology provides an Ontology
Web Language (OWL) for Industry Foundation Classes (IFC) model, by replicating the
original EXPRESS schema. The resulting graph model allows easy referencing to geo-
graphic information systems data, construction material data or product manufacturer
data. The ifcOWL therefore covers knowledge related to building design and construc-
tion phases of the building life cycle, but not the operation phase. SAREF4BLDG is an
extension of Smart Appliances REFerence Ontology (SAREF) [197] ontology for build-
ings. SAREF4BLDG aims to provide interoperability among IoT devices developed by
different smart appliance manufacturers. It is therefore used to decouple information
about smart devices from building-specific information. The DogOnt [31] is one of the
first ontologies proposed in the context of smart homes. DogOnt formalizes intelli-
gent domotic environment (IDE) elements. It primarily aims to locate smart devices
within the building, and describes their capabilities and system interfaces. Hence, it
does not provide information about building specific design or energy parameters. For
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our work, we aim to consider an ontology that capture basic knowledge about build-
ing design and energy-related parameters, as well as basic information about building
operation (e.g. occupants, setpoints). Hence, aforementioned ontologies do not match
our current requirements.

Haystack Tagging Ontology (HTO) [101] is an OWL ontology for the project Haystack.
The project Haystack is a domain vocabulary that defines tag taxonomies and entities
for mapping building equipment and operational data. In the current version of our
system, we handle building-level aggregate energy data. We therefore do not cover
knowledge about sensors, smart meters, and operational data collected from them.
However, as future work, it would be interesting to extend or adapt our current on-
tology to such aspects. In the same sense, the Brick [15] ontology proposes to represent
buildings and their subsystems. Similarly to the project Haystack, brick uses a tagging
scheme to promote flexibility of annotation, while associating tags a semantic model.

The ThinkHome ontology is published by the university of Vienna. The unique
characteristic of ThinkHome ontology (with respect to our work) is that it includes all
relevant energy related concepts, to perform energy analysis and simulation. Knowl-
edge is logically split into independent modules, as BuildingOntology, ActorOntology,
EnergyResourceOntology, etc. For instance, basic information about building design
and physics (e.g. layout, materials, walls) are described in the BuildingOntology mod-
ule, whereas information about actors and their preferences for the smart building
system (e.g. age, gender, thermal comfort) are described in the ActorOntology mod-
ule. The concepts related to smart home automation (e.g. sensor networks) are de-
scribed in the EnergyResourceOntology module. As such, we have chosen to utilize
these Thinkhome metadata schemas to represent contextual information about source
buildings. The thinkHome ontology has however some limitations, namely lack of doc-
umentation and absence of an ontology license, which may limit its re-usability [75].

ThinkHome ontology [205] In our current version of predictive model factory, we
propose to utilize both ThinkHome BuildingOntology and ActorOntology. The Buildin-
gOntology provides basic knowledge about building design and operation, and in-
cludes the required concepts for energy-efficient and optimized control processes for
smart homes. The ActorOntology provides information about the actors within the
building and their preferences. The OWL definition of the ontology is generated using
XSLT (eXtensible Stylesheet Language Transformations) from gbXML schema (green
building XML)5. As a result, BuildingOntology concepts and semantic relations are de-
rived from gXML. The gbXML is the most widely used data model for building energy
modeling and simulation systems. In our work, we particularly use gbXML for the
generation of our evaluation dataset (see Chapter 7). As such, a building is situated
in a campus. The location of the campus is defined as its global origin using latitude,
longitude, azimuth orientation, elevation, etc.

5https://www.gbxml.org/

https://www.gbxml.org/
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The ShellGeometry class is defined as a union of closed shells, where there is no
intersection of any two of the given shells. A closed shell is the collection of surfaces
bounding a space or a building. Each facet of the closed shell is defined by at least three
Cartesian points. These Cartesian points define a three-dimensional plane. All coordi-
nates thus must lie in the same plan. Heat transfer to or from spaces in a building
happens through surfaces. A surface can be an exterior wall, a roof, an interior wall, a
ceiling, etc. Similarly to gbXML, the BuildingOntology represents surface geometry in
two ways: planar and rectangular. Planar geometry uses Cartesian point coordinates
which defines the position, shape and area of the surface. Rectangular geometry uses
numerical values for height, width, tilt and azimuth. Each surface references a con-
struction. A construction consists of a construction material composite. A construction
material composite is composed of material layers, is characterized by solar absorp-
tance, reflectance, an U-value, etc. U-value expresses the thermal transmittance of the
composite. Thermal characteristics about each material layer include its thickness, con-
ductivity, density, R-value, etc. R-value measures the thermal resistance of a material
to the transfer of heat across it. Openings are modeled as co-planar to surfaces they be-
long to. An opening can be a door, a window, just air, etc. Characteristics of an opening
include U-value, it glazing conductivity, transmittance, etc. We provide an overview
of a subset of the concepts of ThinkHome BuildingOntology and ActorOntology in re-
spectively Figure 6.8 and Figure 6.9.

An actor can be human or a system agent. A human actor is characterized by its
gender and its age. Each human actor adjusts ranges that provide acceptable indoor
environmental conditions for operative temperature (for heating and cooling), humid-
ity, lighting, etc. These preference values can be adjusted differently for each day. The
set of preference values associated to hours of a day forms a preference profile.

In the current version of our building metadata schema, we re-use the Thinkhome
BuildingOntology and AtorOntology to describe building design and thermal param-
eters, and basic information about occupants. We therefore start by aligning them via
appropriate relations connecting relevant concepts from both ontologies. Alignment
is performed with subsumption and equivalence relations. Namely, actor concept and
building concept were matched via subsumption relation.

We also include additional properties to denote supplementary information re-
quired for our application. We present added properties in Table 6.1.

6.4.3 Time series Information

Each source building in our data hub is generally associated to time series data about
outdoor weather and energy consumption. We model time series information as shown
in Figure 6.10. A timer series has an identifier, a description, and is associated to a
building, referenced by its identifier or URI (unified resource identifier). A time series
instance also references the identifier or primary key of the data in the corresponding
database. It contains one or many observation or variable sets. An observation set is
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Figure 6.8: Class diagram of a subset of ThinkHome BuildingOntology concepts and
properties.

characterized by a name, an unit value, and is composed of one or many observations
or measurements. The observation are values taken at different time steps.

6.4.4 Example of Instantiation

The described metadata schema was instantiated as an example using the REFIT Elec-
trical Load Measurements dataset [181]. The dataset contains pre-processed electrical
consumption measurements for 20 households at aggregate and appliance level. De-
scriptions about each building comprises information related to occupancy (number,
age, gender, etc.), size in terms of number of bedrooms, construction year, typology,
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Figure 6.9: Class diagram of a subset of ThinkHome ActorOntology concepts and prop-
erties.

Table 6.1: Additional properties in the used building metadata schema.

Property Domain Description

ASHRAE climate zone Building Climate designation used by the Ameri-
can Society of Heating, Refrigerating and
Air-Conditioning Engineers (ASHRAE).
ASHRAE climate zone depends on build-
ing location. In total, there are 16 climate
zones: 1A (very hot, humid), 2A (hot, hu-
mid), 2B (hot, dry), 3A (warm, humid), etc.

Built form typology Building Type of the built form. We distinguish
between; detached, attached from one
side (or semi-detached), attached from
two sides (or terraced), and attached from
three sides (or apartment).

Volume Building Measure of the building volume. It re-uses
the Volume concept associated to Space.

Construction year Building The year of construction of the building
will provide information about its age,
which is a strong indicator of energy con-
sumption [5]. For this object property, we
propose two ways: the exact year or an in-
terval between two years.

Presence at building HumanActor We provide information about whether an
actor is permanently present at the build-
ing or not.

and total number of owned appliances. All buildings are located near to the town
of Loughborough, UK. Figure 6.11 shows the example of an instantiation as stored in
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Figure 6.10: Class diagram of Time series related data model.

GraphDB6. For reading contextual information contained in the metadata model (in-
stance of metadata schema), the similarity learning microservice uses SparQL7 query
language.

Figure 6.11: An example of an instantiation of our ontology-based unified view of
building metadata using REFIT dataset.

6.5 Summary and conclusions

To summarize, we present a microservice-oriented architecture for the implementation
of our proposed predictive models factory [138]. Logically independent workflows are
therefore modeled as microservices with single purposes and separate data sources.
Thereby, four microservices are developed, namely building data handling, similarity

6https://graphdb.ontotext.com/
7https://www.w3.org/TR/rdf-sparql-query/

https://graphdb.ontotext.com/
https://www.w3.org/TR/rdf-sparql-query/


102 Chapter 6. A Microservice-based Framework for Cross-Building Modeling

learning, training data recommendation and predictive modeling. Building data han-
dling microservice is responsible for ingesting and integration building energy data
and metadata within our system. Similarity learning microservice builds task-specific
feature representation models from source buildings metadata and based on similarity
information between corresponding data. Training data recommendation microservice
select most similar source buildings at each reception of an user query describing the
target building. Historical data about selected source buildings will serve as training
for target predict models. Predictive modeling microsevice builds target predictive
models based on recommended training data.

By design, MSA offers increased evolvability and scalability of the system as well
as accelerated development velocity. Our designed system also performs integration of
building metadata and time series data collected from multiple sources into a unified
global view. In this view, building metadata models are transformed into ontologies.
Ontologies provide a common semantic framework to represent domain knowledge.
Time series data associated to each building are referenced from the relevant ontology
concepts. We extend for this purpose ThinkHome BuildingOntology and OccupantOn-
tology.
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Chapter 7

Experimental Evaluations

7.1 Introduction

The present experimental study considers the use case of building energy modeling,
which aims to accurately predict future energy consumption in buildings. Energy con-
sumption prediction is important for the efficient planning and operation of power
systems. Our methodology transfers knowledge from several source buildings, to one
new, previously unseen target building. A preliminary training data recommendation
is performed by selecting most similar source buildings to a target building using only
contextual features about respectively available source buildings and the target build-
ing.

The remainder of this chapter is structured as follows. In Section 7.2, we detail
our evaluation data set and the data generation process. Section 7.4 details the exper-
imental setting and results of the evaluation of similarity learning and training data
recommendation processes. Section 7.5 details the experimental setup and discusses
experimental findings in the evaluation of predictive modeling component. Lastly, in
Section 5.7, we summarize and conclude the chapter with future directions.

7.2 Energy Consumption Data Generation

For the efficient execution of the developed predictive model factory, two levels of in-
formation about buildings are leveraged, namely metadata and data. Metadata consist
of a minimal contextual description about the building that is easy to acquire in real
world scenarios, namely information about its design, year of construction, etc.

Moreover, metadata/data about a relatively large number of different source build-
ings needed to be available to feed the developed data hub, and to inter-building
similarity learning. Review of open datasets that fulfill the above listed requirements
yielded the REFIT dataset [181]. However, due to the limited data (20 buildings), the
different processes of the predictive model factory could not be decisively evaluated.
This was also due to the contextual similarity between buildings in REFIT, namely all
available buildings were residential and located in the same city.
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Hence, we resorted to the generation of a sufficiently large and heterogeneous eval-
uation dataset. This dataset features 105 synthetic buildings with different character-
istics. The data set is built as follows. Initially, 21 base building models are available.
Each building’s model was re-parameterized to augment data using a random combi-
nation of design parameter values. Randomly generated parameter values follow an
uniform distribution. On average, 4 augmented building models were obtained from
each base building model. The measurements were later obtained by automatic simu-
lation of building energy models. The 21 base buildings were held out to serve as test
set for both the recommendation component and the predictive modeling component.
The remaining 84 buildings, obtained after augmentation, served as training set. Note
that the validation set and hyperparameter tuning are made from the training set.

Buildings were modeled and simulated using DesignBuilder; a building energy
simulation software that uses EnergyPlus as simulation engine [59]. Fig. 7.1 depicts
the 3D representations of a subset of seven base buildings. Building models properties
provide static descriptions about buildings, and comprise information related to occu-
pancy, total area, volume, building’s activity sector and typology, location, orientation,
etc. As this work aims to select similar buildings for the predictive modeling task of
building energy consumption, some information about the building thermal envelope
was included in contextual descriptions about buildings. Namely, thermal conductiv-
ity and heat capacity of building external walls, window-to-total-wall-area ratio, and
heating and cooling thermostat set points. In addition, we further characterize build-
ings by their power generation units.

After simulation, energy consumption and energy generation measurements of
one year were recorded. This data cover several aspects, including total energy con-
sumption, heating, air conditioning, and domestic hot water generation. In addition,
per-site weather data were recorded, mainly outside air temperature, atmospheric pres-
sure, wind speed, wind direction, etc. In this work, we are mainly interested in heating
energy consumption and several weather variables. We work with one-day resolution
data which were obtained by summing the original data. Input data were also scaled
between 0 and 1.

We should note that we have made sure that generated buildings metadata, and
hence data, are sufficiently heterogeneous to reduce the risk of bias in our experimental
evaluations. This is mainly ensured by random generation of parameter set in our
buildings models augmentation process. Heterogeneity of our data can be seen by
plotting the distribution of pairwise dynamic time warping (DTW) distances between
buildings total heating energy consumption as in Figure 7.2.

7.3 Hardware and Software Setup

The prototypes of the main processes of the methodology are built on a portable per-
sonal computer with Intel i7 processor with 8 cores up to 1.9 GHz and 32GB of memory.
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Figure 7.1: 3D view of a subset of base buildings used for data generation.

Figure 7.2: Distribution of pairwise DTW distances between available source buildings
pairs.

Deep learning models are implemented using the Keras library [51] with Tensorflow
backend [169]. Data pre-processing and support vector regression models are imple-
mented using Scikit-learn [194].

7.4 Recommendation of Similar Buildings

As further described in Chapter 5, the workflow is mainly composed of two main
processes in the use case of building energy modeling (BEM): (1) Recommendation
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of training data which relies on deep similarity learning logic to identify most similar
buildings, (2) predictive modeling of building energy. Deep similarity learning is per-
formed using a Siamese network that is composed of two identical neural networks
sharing the same parameters. These networks are trained to find a feature transforma-
tion that maps metadata about buildings into a new feature space, in which new feature
representations of similar buildings are mapped close to each others, and new feature
representations of dissimilar buildings are mapped far from each others.

7.4.1 Data Preparation

Available metadata about buildings in our generated dataset include features related
to building activity’s sector and typology, location, number of occupants, and thermo-
physical properties of exterior wall materials. From which, we consider a total of 13
features in our training data recommendation workflow. Table 7.1 summarizes the used
metadata features.

Input metadata features are scaled to the range of (0, 1). We use the min-max nor-
malization for numerical features. Categorical features (i.e. climate zone, typology) are
one-hot encoded. The one-hot encoding transforms each element from original vector
into a new vector with n (binary) elements, depending on the number of categories
(unique values of the feature) present in the categorical feature. As such, only the cor-
responding category is set to 1 while the rest of new elements are zeroes. The main
advantage of one-hot encoding is that it does not allow machine learning models to
assume ordering between different categories.

Table 7.1: Contextual energy features of building metadata.

Feature Unit Description

ASHRAE climate zone - climate designation used by the Amer-
ican Society of Heating, Refrigerat-
ing and Air-Conditioning Engineers
(ASHRAE). ASHRAE climate zone de-
pends on building location. In total,
there are 16 climate zones.

Orientation ◦ angle in degrees (◦) of the building
plan view with respect to anti-zenithal
direction, North being 0◦. For instance,
a value of 45◦ means North East.

Typology of building activity - type of the building occupancy. Dif-
ferent types are modeled as taxonomic
hierarchy. We mainly distinguish be-
tween residential, industrial, commer-
cial, office, etc.
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Number of zones - total number of thermal zones in a
building. A thermal zone is a space or
collection of connected spaces within
the building that have the same ther-
mal behavior.

Building heated/cooled floor
area

m2 area of heated or cooled floors. -

Building volume m3 -

U-value of external walls struc-
ture

W/m2K also called overall heat transfer coef-
ficient or thermal transmittance. U-
value of an external wall is defined as
the rate of heat transmitted through a
square meter of the wall with respect to
temperature difference between the in-
side and the outside. A lower U-value
thus reflects good thermal insulation
properties.

Thermal capacity of external
walls structure

kJ/K also called thermal mass or thermal ca-
pacitance. Thermal capacity of an ob-
ject is defined by the amount of heat
required to change its temperature by
one unit. It thus reflects the capacity to
absorb, store and release heat.

Building area-weighted average
U-value (including bridging)

W/m2K combines different U-values of vari-
ous surfaces of the building into a sin-
gle value. Thermal bridging refers
to building’s areas that has a greater
heat transfer rate than the surround-
ing materials. These bridges mainly
occur at junctions between building el-
ements and insulation materials, or at
junctions of building enclosure compo-
nents, such as wall to window or wall
to roof.

Window-to-total-Wall-area ratio % ratio of vertical fenestration area to to-
tal exterior wall area. The fenestration
area is the total window rough open-
ing, including fenestration and frame
components.

Number of occupants - total number of occupants within a
building.
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Temperature set-points for
Heating and Cooling

◦C expresses the ideal temperature (i.e.
the setting of the heating or cooling
thermostat) in the space when heating,
or respectively cooling, is required.

A subset of these properties is depicted in Figure 7.3

Figure 7.3: Overview on a subset of the dataset characteristics using scatter plot.
Namely, building’s activity sector, total area (m2), occupation density (pers/m2), and
orientation (◦).

7.4.2 Model Training

We employ a Siamese multi-layer perceptron. Each MLP model is composed of two
hidden layers both of size 128. A dropout rate of 0.1 was applied to each of the hidden
layer. Dropout regularization [231] in the context of deep learning models consists
in randomly ignoring, or “dropping out”, neurons (and their connections) during the
training phase. As such, a dropout rate of 0.1 means that we are randomly setting
10% of neurons of a given layer to 0 at each update (i.e. 90% probability of retaining
any given neuron). This prevents any neuron from co-adaptation on the training data,
which otherwise leads to over-fitting.

The Rectified Linear Unit (ReLU) is used as the non-linear activation function for
hidden layers. The output layer consists of a fully-connected layer of size 25. Note that
model hyperparameters were chosen empirically during validation.
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7.4.3 Experimental Results

Several metrics may be used for the evaluation of the training data recommendation
component. Namely, we compare between the average DTW distance within the rec-
ommended list of source buildings operational data and the average DTW distance
between the actual list of most similar source buildings operational data. We refer to
this value as intra-list distance. The actual list (ground truth) is identified by selecting
source buildings with lowest pairwise DTW distances between their data and the target
building’s data. The predicted list is identified by selecting the source buildings with
closest metadata embeddings in the learned new feature space, to the unseen target
building’s metadata embedding. As detailed in Chapter 5, a metadata embedding of
a given building is the output of the trained Siamese network’s MLP when providing
the metadata of this building as input.

Our predicted intra-list distance is of 42.95 Wh as opposed to a true intra-list dis-
tance of 24.79 Wh. Figure 7.4 compares between elements of the actual list and the
predicted list of most similar source buildings, when setting the number of recommen-
dations to 3. The number of recommendations refer to the number of source buildings
that are selected for each target building. We set it to 3 as an example. As such, if each
source building had one year energy-related data (as in our case), predictive modeling
would be based on a total of three years data. This is particularly common for daily
modeling tasks [8]. In Figure 7.4, we present the identifiers of the three recommended
source buildings for each query. Each query corresponds to an unseen target building
(from the held-out test buildings), which is also presented by its identifier.

Moreover, we experimentally evaluate the motivation behind our proposed simi-
larity learning framework for the task of selection of most similar source buildings. As
such, this raises the question of why not simply select the source buildings that have
closest metadata vectors to the metadata data vector of the target buildings, and why
would we require to go through a similarity learning framework. For this, we compute
the average intra-list distance of metadata vector-based recommendations, and find a
value of 163.91 Wh. The proposed deep similarity framework is therefore experimen-
tally proven to be effective, and yields closer recommendations to ground truth.

7.4.4 Discussion

From experimental results, we can notice that using a deep similarity learning frame-
work to learn task-specific metadata embeddings that capture similarity between build-
ings, yields good performance.

This is particularly useful in the context of a generic query-adaptive predictive
model factory, as in this case. For instance, the query-adaptive model factory is required
to train predictive models on data retrieved from recommended buildings. Predictive
modeling results therefore rely on the quality of source buildings recommendation. By
dynamically learning task-specific metadata embeddings, we are able to select most
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(a) Ground truth (b) Prediction

Figure 7.4: Comparison between the actual list (left) and the predicted list (right) of
most similar buildings identifiers. Queries stand for the unseen target building and
is presented by their identifiers. Common elements between the actual list and the
predicted list are highlighted in blue in the predicted list. Order of recommendations
is ignored given that we will later combine data from recommended buildings with no
regard to it.

similar source buildings using raw building metadata. This avoids the need to thor-
oughly study metadata features importance, and identify their different weights for
the target task. As such, not all features are equally important and contain information
about energy consumption (target task).

7.5 Predictive Modeling of Energy Consumption

Once most similar source buildings are recommended, their corresponding operational
data are retrieved for predictive modeling of new previously unseen target building.
Predictive modeling in buildings aim to accurately forecast future energy consumption,
which supports projects at building-level, such as energy-efficient design, benchmark-
ing, or control. Predictive modeling is a complex problem that requires consideration
to various variables, mainly historical data, weather conditions, occupants’ behaviors,
calendar effects, etc. In our work, we mainly focus on historical energy consumption,
weather conditions and some calendar effects.

7.5.1 Data Preparation

In our experimental work, the goal of the target predictive model is to predict future
daily heating energy consumption after a pre-defined time horizon. Input data consist
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in related information about historical heating energy consumption, outside air tem-
perature, solar irradiation, atmospheric pressure and weekday/weekend index.

As historical energy consumption data, we use a series of measurements at pre-
vious time steps. These measurements are generally referred to as lag observations in
the context of auto-regressive models. An auto-regressive model is when a value from
a time series is regressed on previous values from that same time series. The number
of lag observations is generally chosen depending on auto-correlation analysis. For
instance, partial auto-correlation function (PACF) can be used to study partial auto-
correlation between a time series and its own lagged observations. Figure 7.5 illus-
trates the partial auto-correlation of heating energy consumption time series for a given
building, along with the approximate 95% confidence intervals. We can notice partial
auto-correlation coefficients are outside the confidence intervals at lags of 1, 2, 13 and
14. Auto-correlation at these lags is therefore statistically significant. Other buildings
available in our dataset showcase similar results at these lags. Given these results,
we consider in our predictive modeling task historical energy consumption data for
previous two weeks ([t − 14 : t − 1]) in order to predict future energy consumption
([t + 1 : t + h], h being the prediction horizon.

Figure 7.5: Partial auto-correlation plot for 50 lags of heating energy consumption time
series. The blue shaded area stands for the approximate 95% confidence intervals. Au-
tocorrelation outside these confidence intervals is a statistically significant correlation
while those which are inside the confidence intervals are due to random noise.

For weather variables selection, we consecutively eliminate variables that are not
correlated with the target variable (heating energy consumption), and variables that are
redundant via a multicollinearity analysis. The choice to work with outside air temper-
ature, solar irradiance and atmospheric pressure was made based on Pearson correla-
tion coefficients between available weather variables and heating energy consumption
for several buildings in our dataset. We summarize the matrix of correlation coefficients
in Figure 7.6. Dry-bulb temperature is what we usually refer to as air temperature. It
is called “dry-bulb” to indicate that the thermometer is shielded from moisture of the
air (and radiation). Dew-point temperature is the temperature at which air is saturated
with water vapor, and can no longer hold it. As such, if dew-point temperature is close
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to air temperature, the relative humidity is high. Otherwise, if it is significantly below
air temperature, the relative humidity is low.

Figure 7.6: Matrix of Pearson correlation coefficients between available weather vari-
ables and heating energy consumption variable.

Throughout the day, solar radiation strikes the surface at different angles, ranging
from 0◦ (above horizon) to 90◦ (zenith). This radiant energy is measured as the solar ir-
radiance. Figure 7.7 illustrates the different components of the solar radiation reaching
the ground level. As such, during its travel, solar radiation is depleted by scattering,
reflection and absorption by constituents of the atmosphere (e.g. aerosols, clouds, pol-
lutants). Direct normal irradiance (DNI) is the component that comes in a straight line
from the direction of the sun. Diffuse horizontal irradiance (DHI) is the component
of the remaining radiation (scattered or reflected) that is reflected back to the surface
[243]. The combination of DNI, DHI and ground reflected radiation (albedo) forms
global horizontal irradiance (GHI).

Figure 7.7: Different components of the sunlight (GHI, DNI, DHI). GHI is the combi-
nation of DNI, DHI and Albedo [243].

From Figure 7.6, wind speed and wind direction have minimal correlation with
heating energy consumption (target variable), hence discarded. We can however notice
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that energy consumption for heating has very high negative correlation with outside
dry-bulb temperature, outside dew-point temperature and diffuse horizontal irradi-
ance. We also notice a relatively high positive correlation with atmospheric pressure,
and a relatively high negative correlation with direct normal irradiance (also called
solar radiance). Correlation matrix shows that multicollinearity is present in weather
data. Multicollinearity occurs when an independent variable can be predicted by other
independent variables in a regression model. In our experimental work, we used vari-
able inflation factors (VIF) to detect it. In brief, VIF technique incrementally selects
each explanatory variable and regress it against every other variable. VIF therefore
measure how well each variable can be explained by other variables. Generally, a VIF
above 10 indicates that there is a significant multicollinearity. Following VIF-based
multicollinearity analysis, we exclude outside dry-bulb temperature from our predic-
tive modeling dataset. The correlation between heating energy consumption and se-
lected weather variables is further depicted by plotting in Figure 7.8.

Note that the above-described feature selection is not necessary when working
with deep learning based predictive models. However, it helps reduce models com-
plexity.

The target value is a real value or vector denoting the heating energy consumption
at future time steps after a pre-defined time horizon. In our experiments, we consider
both cases of one-step ahead, and multi-step ahead time series forecasting. For one-step
ahead forecasting, our models predict the next day’s heating energy consumption as
output. For multi-step ahead forecasting, our models predict next week’s daily heating
energy consumption. To re-frame time series data as supervised learning problem, we
use sliding window method as illustrated in Figure 7.9. For re-framing training data,
at each iteration, we slide over 1 time step (1 day) by having overlapping windows.
Whereas, for re-framing test data, we slide over one whole week to avoid data leakage
(Chapter 3). Size of output window size is 1 for one-step ahead forecasting and 7 for
multi-step ahead forecasting.

For each building, we have one-year data. We use 70% of the data for training
(approximately nine months) and remaining data for testing. The data set was further
scaled so all values will be between 0 and 1, using min-max normalization.

7.5.2 Experimental Metrics

We assess our proposed predictive models using three standard performance metrics;
root mean squared error (RMSE), mean area error (MAE), and coefficient of determi-
nation, also denoted as R2. RMSE computes the square root of the mean squared dif-
ference between prediction and ground truth. MAE measures the mean absolute dif-
ference between prediction and ground truth. R2 measures the proportion of variance
explained by the prediction model to the total variance in the observed data. The value
of R2 normally ranges between 0 and 1, with 1 indicating the perfect fit. Values may,
however, fall outside the range of 0 to 1 if the predictive model is worse than using an
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(a) Outside Air Temperature

(b) Direct Normal Irradiation

(c) Diffuse Horizontal Irradiation

(d) Atmospheric Pressure

Figure 7.8: Line plots of respectively: heating energy consumption, outside air temper-
ature (top), and atmospheric pressure (bottom) for a given building.

horizontal hyperplane that passes through the mean value.
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Figure 7.9: Sliding window method to re-frame time series data as supervised learning
problem.

where yi denotes the true observed value of the i-th sample, ŷi denotes the pre-
dicted value of the i-th sample, ȳ denotes the mean of the observed data, N denotes the
size of the data set.

7.5.3 Evaluation with Different Scenarios

The training data recommendation based methodology was compared to two other
case scenarios, which are namely random selection and intra-domain cases:

• Recommendation consists in our proposed methodology. Each target building
from the held-out test set is provided as input (query) to our workflow. As such, a
new feature embedding is obtained from the metadata vector of this target build-
ing using our trained representation learning model (see Section7.4). Most similar
source buildings are subsequently identified using a simple k-nearest neighbors
algorithm between target building embedding and source buildings embeddings.
Trained data are finally retrieved from recommended source buildings and used
to train the predictive model of the target building.

• Random selection consists in the case where training and test data were retrieved
from respectively randomly selected source and target buildings. The case of
random selection would enable us to establish that, predictive modeling built on
training data from recommended similar buildings is significantly more accurate
than randomly selecting data without regard to inter-building similarity.

• Intra-domain consists on training and testing on the same building data, hence
the same domain. Intra-domain therefore stands for the classical machine learn-
ing framework in the context of building energy predictive modeling. The case of
intra-domain learning would establish the relevance of the experimental results
of our proposed methodology when compared to the classical machine learning
framework, in which training and test data are sampled from the same domain.

Note that each case is executed 21 times (without replacement), which corresponds
to the total number of held-out (unseen) target buildings used for testing. As such, each
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case is executed for each query, and hence each unseen target. building This ensures
reliable evaluation of our methodology.

Given that we dispose of one year energy data for each building in our experimen-
tal dataset, we train predictive models using two source buildings (in random selection
and recommendation-based scenarios). This way, we will form a training dataset that
spans approximately 2 years. For intra-domain scenario, no source buildings are used,
given that the training and test are performed on the same target building.

7.5.4 Setting 1: One-step Ahead Prediction

For one-step ahead predictive modeling, evaluations are performed using four predic-
tive models, which are a kernel SVR, a MLP, a LSTM-RNN, and a CNN. A detailed
description of machine learning algorithms proposed for multivariate time series fore-
casting can be found in Chapter 3.

In brief, SVR formulates and solves the regression problem using convex optimiza-
tion. SVR can be extended to solve non-linear regression problems using kernel tricks.
MLP represents the most basic form of artificial neural networks. A MLP is created
by “stacking” several fully-connected linear layers of neurons, with non-linear acti-
vation functions in between them. The output of one layer is the input of the sub-
sequent layer. The output of the last layer gives the final prediction of the learning
model. MLP design does not intuitively take into account multiple temporal variables
as in RNN. Therefore, when processing multivariate time series, we can simply flat-
ten multi-dimensional input time series into one input vector. Otherwise, we can use
a multi-head MLP (MH-MLP). This way, each univariate time series is handled by an
individual head and outputs of each head are subsequently combined to give the final
predictions.

Figure 7.10: Illustration of the architecture of multi-head MLP.

RNN has been historically proposed for sequence modeling tasks. It was there-
fore naturally applied to time series forecasting. The reason behind the effectiveness
of RNN comes from its ability to capture past information from data, and use it to
inform upcoming sequence steps. LSTM is an RNN architecture. It offers the ability
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to capture long-term dependencies, while addressing vanishing/exploding gradients
problem [192] often encountered in recurrent networks. This is essentially achieved
via special gates that determine which past information should be passed and which
should be forgotten [89].

Time series can be defined as one-dimensional vectors. Hence, one-dimensional
convolutions are applied and slided over time dimension to extract relevant features.
For processing multivariate time series, we can use either multi-channel CNN (MC-
CNN) or multi-head CNN (MH-CNN). Both multi-channel and multi-head CNN pro-
cess multivariate time series as multiple univariate time series. In multi-channel CNN
each univariate time series is processed a separate channel, whereas, in multi-head
CNN, each univariate time series is processed by a separate sub-model.

Hereafter, we detail their respective hyper-parameters. We empirically explored
variants of each models architecture to fine-tune their hyperparameters, and eventually
retained the settings that yielded the best evaluation results.

1. kernel SVR Regularization parameter C is fixed to 1. Margin of tolerance ε = 0.1.
We use a polynomial kernel of degree 5.

2. MLP In case of MLP model, lag observations must be flattened into features.
Therefore, the input layer will correspond to a 28-dimensional feature vector (se-
quence length×number of input features), whereas the output layer is composed
of a single neuron. MLP network is composed of one hidden layer of size 100.

3. LSTM-RNN The input sequence is of length 14. The input layer accepts a 6-
dimensional feature vector, whereas the output layer is composed of a single neu-
ron. Our network is composed of two hidden layers; one LSTM layer of size 8,
and one fully-connected layer of size 16.

4. Multi-channel CNN This model is composed of 5 layers in total. We detail the ar-
chitecture of the trained multi-channel CNN model in Table 7.2. First input layer
is of shape [BATCH× 14× 6], where BATCH corresponds to the batch size which is
set depending on the number of samples fed to the model during training or in-
ference, 14 corresponds to the number of time series steps, and 6 corresponds
to the number of time series variables (i.e. number of channels). The subse-
quent one-dimensional convolution layer applies 64 filters of length 3 ([1× 3]),
with no padding and stride of length 1. This results in 64 feature maps of size
[BATCH × 12]. The one-dimensional max-pooling in the convolution layer has a
stride of 2 ([1× 2]). Therefore, as output, the dimension of feature maps is di-
vided by 2, i.e. 12/2 = 6. The subsequent fully-connected layer is of size 50.
Given that we are performing a one-step ahead time series forecasting, the out-
put fully-connected layer is of size 1.

5. Multi-head CNN We process each univariate time series using 6 convolution
head. We detail the architecture of the trained multi-head CNN model in Fig-
ure 7.11. Each convolution head is composed of an input layer, two convolution
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layers, and a flattening layer. Input layer is of shape [14× 1]. First convolution
layer applies 32 filters of length 3. Max-pooling is applied in second convolution
layer with a stride of 2. We subsequently concatenate the output of the convo-
lution heads and apply three fully-connected layers. First and second fully con-
nected layer is of respectively size 200 and 100, whereas output fully-connected
layer is of size 1.

Table 7.2: Multi-channel CNN model architecture. A.F stands for activation function.
Max-pool. stands for max-pooling.

# Layer type Units A.F Kernel shape Max-pool. Output

1 Input - - - - (- x 14)x6
2 Convolutional 64 ReLU 3 2 (−× 6)× 64
3 Flattening - - - - (−× 384)
4 MLP 50 - - - (−× 50)
5 MLP 1 - - - (−× 1)
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For neural networks, namely MLP, LSTM-RNN and CNN models, the output layer
consists of a fully-connected layer with linear activation function. The Rectified Linear
Unit (ReLU) is used as the non-linear activation function for hidden layers. Fine-tuning
of weights is done using Adam optimization algorithm [128]. Adam (adaptive moment
estimation) optimization is an extension of classic stochastic gradient descent (SGD).
Adam is proven to be computationally efficient and fast coverging [128]. Adam com-
putes individual adaptive learning rates for different parameters instead of manually
setting it as in SGD.

Weights initialization follows a normal distribution with zero mean and standard
deviation σ = 1, whereas biases are initialized to zeroes. The gradients are back-
propagated through batches of length 80. For the training epochs number, we have
fixed 1000 as the maximum number of epochs. To avoid over-fitting, we have imple-
mented an early stopping mechanism which breaks the training loop when training
cost does not improve on the training set after 20 epochs.

7.5.5 Setting 2: Multi-step Ahead Prediction

For multi-step ahead predictive modeling, we seek to forecast daily energy consump-
tion for the subsequent week given data about previous two weeks. We use the same
input data as in one-step ahead predictive modeling task. As machine learning algo-
rithms, we leverage multi-output SVR, multi-head MLP, LSTM-RNN and CNN. Details
about machine learning models proposed in the context of multi-step ahead time series
forecasting are provided in Chapter 3.

Multi-output SVR is a generalization of the classic single-output SVR. It consists in
iteratively training multiple SVR models, where each individual model predicts a time
step of the prediction horizon. As CNN, we test both multi-head and multi-channel
CNNs. However, by contrast to one-step ahead time series forecasting, we simply mod-
ify output layer to serve a vector instead of one value.

We may use the seq2seq architecture for LSTM-RNN to predict multiple future
time steps. Seq2seq consists in an encoder-decoder architecture, which uses two sub-
networks: an encoder reads the input sequence and summarizes useful information
into a context vector, and a decoder that read this context vector and predicts the target
sequence. An attention mechanism is also used on the encoder outputs at each decod-
ing step as in [13]. In addition, we test hybrid CNN and LSTM-RNN model that couple
both of these approaches. We refer to this model as ConvLSTM. This model benefits
from both CNN feature extraction and LSTM sequential data processing capabilities.

We detail hyperparameters used for different algorithms hereafter. As in previous
experiments, we retain those that yielded best prediction results in each algorithm.

1. Multi-output kernel SVR We use the same architecture as in the previous section
for each constituent single-output SVR model. Regularization parameter C = 1.
Margin of tolerance ε = 0.1. We use a polynomial kernel of degree 5.
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2. Multi-head MLP The network is composed of 7 MLP heads, each corresponding
to an input time series variable. Heads are composed of a two fully-connected
layer of respectively size 200 and 100. Outputs of separate heads are merged and
fed to a MLP composed of two hidden layers of respectively size 200 and 100.

3. Seq2seq For encoding the input sequence, we use a single LSTM layer of size 200.
For decoding, we use an LSTM layer 200, followed by a fully-connected layer of
size 100, and the output layer. An attention mechanism is adopted on the encoder
outputs.

4. Multi-channel CNN We use 5 hidden layers in total, namely three 1D convo-
lution layers, a flattening layer and one fully-connected (MLP) layer. First and
second convolution layer use 32 filters of size 3 and zero padding, whereas, third
layer uses 16 filters, and contains max-pooling with a stride of 2. Flattening layer
transforms resulting 3-dimensional vector into a 2-dimensional vector. This vec-
tor is served to subsequent fully-connected layer, which contains 100 units.

5. Multi-head CNN As in one-step ahead setting, the trained network is composed
of 7 heads, each corresponding to input time series variables. Each head is com-
posed of two 1D convolution layers. Both use 32 filters of size 3 and no padding.
Second convolution layer includes in addition a max-pooling operation with a
stride of 2. Outputs of the CNN heads are subsequently concatenated, and passed
through 2 fully connected hidden layers containing respectively 200 and 100 units.

6. ConvLSTM For the encoder, we use three 1D convolution layers. First two layers
use 32 filters of length 3 and zero padding. Third layer use 16 filters of size 3
and zero padding. This layer include a max-pooling operation with a stride of 2.
Finally, a flattening layer transforms the results to a 2D vector. For the decoder,
we use one LSTM layer followed by a hidden and an output fully-connected lay-
ers. The LSTM layer contains 200 units, whereas, the following hidden fully-
connected layer contains 100 units.

As in one-step ahead predictive modeling, for neural networks, we use linear acti-
vation function in output layers and ReLU activation function in hidden layers. Opti-
mization of weights is conducted using Adam algorithm.

7.5.6 Experimental Results

The experimental results are shown for respectively one-step ahead time series fore-
casting in table 7.3, and multi-step ahead time series forecasting in table 7.4. In both
experiments, we provide average errors and standard deviations across all 21 execu-
tions (number of held out test buildings), for each case scenario and each model. In
Figure 7.12, we further detail results of one-step ahead predictive modeling using a box
and whisker plot which shows the distribution of experimental results and skewness.
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Table 7.3: Evaluation results of one-step ahead predictive modeling. Bold font indicates
best results obtained across each evaluation metrics for each model and for each test
case. "_" stands for R2 values that fall outside of the range of 0% to 100%.

Model Test Case MAE (kWh) RMSE (kWh) R2 (%)

Mean Std Mean Std Mean Std

MLP
Random selection 12.89 6.95 16.87 8.70 _ _
intra-Domain 5.05 4.24 6.64 5.41 88.64 10.58
Recommendation 3.95 3.25 5.18 4.22 91.74 5.67

RNN-LSTM
Random selection 13.91 12.62 17.89 15.04 _ _
intra-Domain 6.84 5.14 9.60 7.22 74.11 22.87
Recommendation 3.93 3.67 5.23 4.72 91.26 6.03

MH-CNN
Random selection 25.08 14.58 33.14 19.59 _ _
intra-Domain 8.78 8.07 11.36 10.15 67.33 41.24
Recommendation 2.77 2.89 3.40 3.44 93.80 6.28

MC-CNN
Random selection 22.71 15.71 30.03 20.63 _ _
intra-Domain 4.91 5.93 5.87 6.71 80.97 23.30
Recommendation 2.78 2.65 3.47 3.21 92.85 6.77

SVR-Kernel
Random selection 17.62 20.84 34.26 45.86 _ _
intra-Domain 8.69 7.57 13.37 10.99 62.80 16.72
Recommendation 3.21 3.20 5.70 5.39 92.37 6.08

Proposed
Ensemble Recommendation 2.06 2.21 3.27 3.46 97.82 1.39

Figure 7.12: Boxplot of the experimental results grouped for each predictive model and
for each evaluation scenario. The whiskers illustrate the ranges for the lower 25% and
the upper 25% of the experimental results, excluding outliers. Outliers are identified
by circles (◦).
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Table 7.4: Evaluation results of multi-step ahead predictive modeling. Bold font indi-
cates best results obtained across each evaluation metrics for each model and for each
test case. "_" stands for R2 values that fall outside of the range of 0% to 100%.

Model Test Case MAE (kWh) RMSE (kWh) R2 (%)

Mean Std Mean Std Mean Std

MH-MLP
Random selection 14.82 10.44 20.44 14.21 _ _
intra-Domain 10.97 9.84 15.49 13.80 48.11 57.54
Recommendation 2.97 2.90 4.96 5.09 92.61 7.53

Seq2seq
Random selection 15.20 10.83 21.27 12.59 _ _
intra-Domain 13.03 9.29 18.06 15.25 48.28 34.80
Recommendation 2.95 2.88 4.96 5.16 92.0 8.46

MH-CNN
Random selection 15.10 8.55 21.81 11.86 _ _
intra-Domain 10.58 7.42 14.10 9.08 47.15 27.17
Recommendation 3.33 3.22 5.54 5.31 91.16 8.40

MC-CNN
Random selection 26.14 15.86 38.02 22.94 _ _
intra-Domain 8.54 7.78 11.93 10.02 62.07 45.76
Recommendation 3.46 2.94 5.73 5.04 90.26 7.50

ConvLSTM
Random selection 24.89 17.48 35.93 25.53 _ _
intra-Domain 11.27 8.81 15.11 11.55 45.11 40.47
Recommendation 3.22 2.97 5.40 5.13 91.19 7.82

MO-SVR
Random selection 17.06 12.84 22.25 17.94 _ _
intra-Domain 11.91 11.08 15.95 15.32 53.60 18.10
Recommendation 3.89 4.38 6.57 6.62 90.13 8.32

Proposed
Ensemble Recommendation 2.78 2.85 4.60 4.97 93.02 7.40

One-step ahead Given Table 7.3 and Figure 7.12, best generalization results are pro-
vided by kernel SVR model. However, as noticed, averaged evaluation results are ap-
proximately similar across studied prediction models. More detailed visualization of
experimental results for all 21 executions is depicted in Figure 7.13. This plot shows
that there is no specific predictive modeling algorithm that outperforms all other algo-
rithms in every scenario. As such, MC-CNN and MH-CNN models hold best for test
buildings number 2, 9 and 18. However, they hold worse performance for test build-
ings 3 and 17. Similarly, SVR model performs best for test buildings 11 and 21, while
worst for test building 9. This phenomenon may be explainable by the no free lunch
(NFL) theorem (see Chapter 6). As a result, we also resorted to combining several al-
gorithms using stacked generalization technique. Ensemble model allows to have the
best performance as shown in table 7.3.

Multi-step ahead From Table 7.4, we notice that best generalization results are ob-
tained with recommendation-based scenario. Among predictive modeling algorithms,
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Figure 7.13: Barplot of the experimental results of our recommended methodology for
each predictive model and for each evaluation iteration.

we notice that Seq2seq with attention mechanism and MH-MLP perform the best com-
pared to other models. Similarly to one-step ahead setting, we also notice great vari-
ation in performance across all metrics in intra-domain scenario. Ensemble learning
model further improves generalization performance and yield an R2 of 93%.

7.5.7 Discussion

Overall, comparison shows that the recommendation-based methodology exhibits bet-
ter generalization performance compared to both intra-domain learning and random
selection cases, for all models in one-step ahead and multi-step ahead predictive mod-
eling.

We can therefore conclude that the predictive model factory has enabled us to train
robust models that perform better, on average, in cross-domain setting than in intra-
domain setting. The hypothesis is that this is due to the fact that we are training dis-
parate models with fixed hyper-parameters across all executions. Hyper-parameters
were therefore not fine-tuned and optimized for each training set, as traditionally done
in a classical machine learning frameworks. Generally, a model with fixed hyper-
parameters is less likely to have optimal performance across all training sets (across
all executions), which are retrieved from different buildings. However, our methodol-
ogy delivered stable near-optimal results in almost every trial.

Therefore, this workflow offers a generic methodology for cross-building predic-
tive modeling by recommendation of training data retrieved from similar buildings.
Predictive modeling workflow is proven to output models that are generalizable and
performs relatively well independently of target building.
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7.6 Summary and conclusions

In this chapter, we evaluate our predictive model factory for the use case of heating
energy prediction in buildings. Experimental dataset was generated using simulation
tool DesignBuilder. Heterogeneity within simulated data is established through ran-
dom setting of several parameters in building models during augmentation process.
This ensures a reduced risk of bias in our experimental evaluations. As building meta-
data, several contextual features are considered, namely activity sector, typology, loca-
tion, occupation and construction properties. Evaluations were conducted on similar
buildings recommendation process and predictive modeling process of our methodol-
ogy.

For the process of buildings recommendation, a feature representation model is
used to extract new task-specific features from buildings metadata. For this, a deep
similarity metric learning is performed using a Siamese multi-layer perceptrons. Eval-
uation of recommendations shows that source buildings selection based on deep sim-
ilarity learning offers more relevant recommendations to target buildings, when com-
pared to simple metadata-based selection.

For the predictive modeling process, two experimental settings are considered:
one-step ahead and multi-step ahead predictions. In the one-step ahead setting, used
ML algorithms are kernel SVR, MLP, LSTM-RNN, multi-channel CNN and multi-head
CNN. Best average prediction results of our recommendation-based methodology are
obtained using CNN models. In the multi-step ahead setting, we also use a multi-
output kernel SVR, a multi-head MLP, a sequence-to-sequence LSTM-RNN, a multi-
head CNN, a multi-channel CNN and a combination of CNN and LSTM-RNN. Best av-
erage results of our methodology are obtained using sequence-to-sequence and multi-
head MLP models. Overall, for both experimental settings, and for all used ML algo-
rithms, we demonstrate that our recommendation-based methodology offers a generic
framework that performs better in average than intra-domain and random selection
scenarios. Intra-domain scenario represents a classical ML setting where training and
test data are sampled from the same building. Random selection scenario stands for
randomly selecting training buildings from available source buildings to produce a
predictive model for the held-out target building.

Finally, trained models predictions are combined using a generalization stacking
framework. Experimental evaluations show that stacked generalization further im-
proves prediction results in both one(step ahead and multi-step ahead settings.
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Chapter 8

Conclusions and Directions for
Future Work

The scope of this thesis is to present a methodology for predictive modeling of target
buildings on which no historical data are available. To that end, predictive models
are dynamically constructed using solely contextual descriptions (metadata) about the
given target building. This is particularly useful in the context of newly built and newly
renovated buildings.

The core idea is to leverage available historical data about other source buildings.
Our methodology is two-fold. The first process recommends most similar source build-
ings to a target building using their contextual descriptions (metadata). Contextual de-
scription about the target building is provided as input query. Similarity distance be-
tween metadata is learned specifically to our target task of predictive modeling. Hence,
buildings metadata are mapped to new discriminative feature space, in which similar
buildings are mapped close to each other, and dissimilar building pairs are mapped far
from each other.

A deep similarity learning framework with Siamese network is adopted. For a
task-specific similarity learning, similarity measures between pairs of buildings should
be based on their historical data, rather than their metadata. This is due to the fact that
target predictive models are trained on historical data. Thereby, we propose to use dy-
namic time warping (DTW) for the training of the Siamese network. However, during
inference, our recommendation workflow only requires target building metadata.

The second process trains predictive models for the target building using train-
ing data recommended by the previous process. Historical data of buildings energy
are multivariate time series data. Machine learning models that are used in this con-
text are support vector regression and artificial neural networks. As neural networks,
multi-layer Perceptron (MLP), along with recurrent neural networks (RNN), convolu-
tional neural networks (CNN), and combination of both are used. These models are
subsequently combined together via stacking to ensure a robust performance.
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A microservice-based implementation of our predictive model factory is designed.
Logically independent workflows are designed as microservices. Thereby, four mi-
croservices are developed. The first process of our methodology is performed by two
disparate microservices: similarity learning and training data recommendation. The
similarity learning microservice trains feature transformation models from labeled pair-
wise similarity information between source buildings data. This microservice can be
run periodically in background. The training data recommendation microservice is
launched at each user query. It processes metadata about the target building contained
in the query, and use them to recommend most similar source buildings available in
our system. The second process is also performed by a single predictive modeling mi-
croservice.

In addition, we design a building data handling microservice. This microservice is
responsible for integrating building-related data collected from multiple data sources.
For data integration, a unified global view is used. Information about source build-
ings consist of historical data (time series) and metadata (contextual description). As
such, historical data, consisting of energy data and weather data, are stored in corre-
sponding time series stores. These time series data are linked together through building
metadata, which are modeled based on ontologies. We extend ThinkHome ontology to
describe building design and thermal parameters, and basic information about occu-
pants.

Experimental evaluations of our predictive modeling factory is conducted using a
simulated heterogeneous dataset. Buildings simulation models are generated via aug-
mentation of a set of base buildings. Overall, the experimental results have shown
that our methodology can be used effectively for the use case of cross-building heating
energy forecasting. More specifically, evaluation of the first process of our methodol-
ogy shows that deep similarity learning based on DTW between buildings data offers
better results than directly using raw building metadata. Also, comparison between
recommended source buildings using our methodology and ground truth validates its
usefulness.

Evaluation of the second process of our methodology shows that it performs better
than random selection and intra-domain scenarios. According to our hypothesis, this is
due to the fact that we are using predictive models with fixed hyper-parameters across
all test executions. Hyper-parameters were therefore not fine-tuned and optimized
for each training set, as traditionally done in a classical machine learning framework.
Hence, we conclude that our methodology offers a generic framework that is faster and
performs better on average than classical machine learning framework (intra-domain
scenario).

Different models were evaluated. Namely, we apply a multi-head MLP, multi-
head and multi-channel CNNs, a seq2seq model with attention mechanism, and an
hybrid CNN and LSTM-RNN model. On average, multi-head CNN offers best results
for one-step ahead time series forecasting, whereas seq2seq model offers best results
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for multi-step time series forecasting. However, a more detailed look at our results
shows that there is no single model that performs better than any other model for each
test building. Hence, an ensemble learning framework is adopted via stacked general-
ization. This allows a more robust predictive modeling, and further contributes to the
genericity and extensibility of the developed predictive model factory.

Our methodology helps to model a wide variety of target buildings, given its
generic nature that allows it to dynamically adapt to target buildings using queries.
More generally, our methodology should not only be considered as an answer to the
use case of cross-building energy modeling, but as a possible solution to a broader
range of applications. In its design, our methodology performs cross-domain knowl-
edge transfer for a specific task, by utilizing two types of information; contextual de-
scription about entities (easily acquired metadata), and training data (with respect to
the task), in a way that it requires minimal description and no training data about a
new entity to model it.

8.1 Limitations and Future work

This thesis is a first step towards a larger research agenda that aims at developing a
fully automated predictive model factory. We present some limitations of our work
and potential directions for future work hereafter.

The short-term perspectives consist in improving different processes of our pro-
posed methodology. Particularly, in the training data recommendation process, we
perform representation learning using homogeneous buildings metadata, in terms of
metadata features. Namely, we estimate that available source buildings and target
buildings (described in user queries) have the same features, such as building typol-
ogy, area, number of occupants, etc. It is therefore interesting to extend our method-
ology, and more specifically our similarity learning and training data recommendation
processes, to handle multi-modal contextual descriptions on available source buildings
[139]. This will add further flexibility of our system by allowing the exploitation of
source buildings on which different metadata are available.

Another aspect that merits further consideration is the evolution of the deployed
target predictive model. As such, in our work, the target model is trained on recom-
mended data collected from most similar source domains. Experimental evaluation
demonstrated that the proposed target models offer good results when tested on the
new previously unseen target domains. This is particularly useful in cases where target
data are not or are not yet available. However, it is useful to consider the case where
target data are progressively made available after the predictive model deployment.
This can be tackled by refining target predictive models once target data are accessible.
For instance, Mancini et al. [162] have proposed a continuous refinement strategy for
deep models by leveraging the incoming stream of target data.
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Furthermore, we only performed experimental evaluations for the use case of
building energy modeling. However, given its generic design, our methodology can
be re-used for other applications in other sectors, such as healthcare and finances. As
future work, it is therefore important to validate the genericity of our methodology for
other use cases.

The long-term perspectives consist in investigating new research directions raised
by our work. Firstly, for the purpose of our work, we suppose that collected data and
metadata on source buildings are already integrated into an unified ontology-based
global view. data collection [208] and integration [143] processes therefore falls beyond
the scope of this research. However, it is primordial to automate these tasks to exploit
existing data on buildings from multiple heterogeneous sources. As such, automated
data collection involves the discovery of relevant datasets online (i.e open data), or
acquiring data through simulation and/or augmentation. Automated data integration
involves the definition of mappings between the sources and the unified global view.

Big data nowadays play an important role in various sectors. In the context of
predictive modeling with time series data, big data offer great opportunities in decision
making, as well as numerous computational challenges [137]. It is therefore interesting
to investigate computational efficiency and scalability of our system, and its constituent
microservices, when processing larger-scale data.
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