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préparée à l’Ecole Polytechnique
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Résumé

Cette thèse comprend six parties. La première lie les Øux d’ordres anonymes et les variations de
prix à l’aide de modèles d’impact croisé statiques et linéaires. Nous énumérons les propriétés
souhaitables de ces modèles, caractérisons ceux qui les satisfont et les testons sur di�érents
marchés. La deuxième partie étend cette approche aux produits dérivés aÆn d’obtenir une
méthode d’estimation pour l’impact croisé que nous appliquons aux options SP500 et aux
contrats à terme VIX. Dans la troisième partie, nous généralisons les modèles précédents pour
prendre en compte l’inØuence des ordres passés sur les prix. La quatrième partie utilise des
données de méta-ordres sur les actions et les contrats à terme pour proposer une formule
d’impact croisé qui généralise la loi de la racine carrée de l’impact. Dans la cinquième partie,
nous présentons un modèle tick-par-tick pour la dynamique des prix multivariés en utilisant
les processus de Hawkes. La dernière partie résout le problème de la calibration des modèles
de volatilité en utilisant des réseaux de neurones.

La première partie étudie les modèles statiques linéaires pour l’impact croisé. Ces mod-
èles dépendent des covariances des transactions et des prix. Nous introduisons des propriétés
pour qu’un modèle se comporte correctement dans di�érentes conditions de marché. Nous
montrons qu’il existe un seul modèle qui satisfait toutes ces propriétés. Nous appliquons
di�érents modèles sur des actions et des contrats à terme. Le modèle précédent est l’un des
deux modèles robustes sur les marchés étudiés. Il s’agit donc d’un bon candidat pour une
vision uniÆée du processus de formation des prix.

La deuxième partie généralise l’approche précédente aux produits dérivés. Nous dérivons une
méthode d’estimation pour l’impact croisé à partir de covariances de faible dimension. Sur
des données de produits dérivés sur le SP500 et des contrats à terme VIX, le modèle explique
en partie les Øuctuations du sous-jacent et de la surface de volatilité implicite.

Dans la deuxième partie, nous étudions des modèles linéaires à noyaux pour l’impact croisé.
Nous examinons deux classes de modèles : ceux qui anticipent le Øux d’ordres pour Æxer
des prix martingale et ceux qui empêchent l’arbitrage statistique. Nous montrons qu’il existe
au plus un noyau appartenant aux deux classes mais qu’il n’empêche pas nécessairement
l’arbitrage. Pour résoudre ce problème, nous introduisons un second noyau qui empêche
l’arbitrage statistique et qui est le plus proche possible à donner des prix martingale. EnÆn,
nous calibrons ces noyaux sur des données de contrats à terme.

La troisième partie mesure l’impact croisé avec deux bases de données d’ordres envoyés
par des gestionnaires d’actifs sur des actions et des contrats à terme. Nous proposons une
formule pour l’impact croisé qui généralise la loi de la racine carrée et donne des prédictions
plus précises sur nos données.

Dans la quatrième partie, nous modélisons le processus de prix tick-par-tick avec des processus
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de Hawkes. Pour capturer l’endogénéité des marchés Ænanciers, nous étudions la limite où la
norme L1 du rayon spectral du noyau de Hawkes devient égale à un. Certains modèles de
volatilité rugueuse multivariée émergent alors comme la limite macroscopique de la dynamique
microscopique des prix. Le processus de volatilité de ces modèles est une combinaison de
facteurs de variance entraînés par un mouvement brownien fractionnaire d’indice de Hurst
commun.

EnÆn, la dernière partie de cette thèse examine la calibration des modèles de volatilité
à l’aide de réseaux de neurones. Nous approchons la fonction donnant les prix des contrats à
partir des paramètres du modèle en utilisant des réseaux de neurones. Cette approximation
est ensuite utilisée pour obtenir les paramètres du modèle à partir de prix de marché des
contrats. Nous mettons en évidence l’applicabilité de la méthode en utilisant des données de
marché synthétiques et réelles.
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Abstract

This thesis comprises six parts. The Ærst relates anonymous order Øow and price changes using
static, linear cross-impact models. We list desirable properties of such models, characterise
those which satisfy them and test their predictions on di�erent markets. The second part
extends this approach to derivatives to obtain a tractable estimation method for cross-impact
which is applied to SP500 options and VIX futures. In the third part, we generalise the
previous setup to derive and estimate cross-impact models which account for the inØuence of
past trades on current prices. The fourth part uses meta-order databases on stocks and futures
to propose a formula for cross-impact which generalises the square-root law of market impact.
In the Æfth part, we propose a tick-by-tick model for price dynamics using Hawkes processes.
We investigate scaling limits of prices in the high endogeneity regime to derive multivariate
macroscopic price dynamics of rough Heston type. Finally, the last part solves the calibration
problem of volatility models using neural networks.

In the Ærst part, we study linear cross-impact models which relate asset prices to anony-
mous order Øow. These models are functions of the covariances of these variables. We
introduce properties models should satisfy to behave well across market conditions and show
that there exists a unique model which satisÆes all such properties. We apply models on stocks
and futures and Ænd that the latter model is one of two robust across markets. Thus, it is
a good candidate model for a unifying view of the price formation process on stocks and futures.

The second part leverages the candidate model identiÆed in the Ærst part to extend the
previous setup to derivatives. We derive an estimation method for the large cross-impact
matrix which depends on low-dimensional covariances. Using SP500 options and VIX futures
data, we show cross-impact captures salient features of the price formation process on deriva-
tives.

The second part examines cross-impact kernels, which account for the lasting inØuence
of past trades on current prices. We focus on two kernel classes: kernels that anticipate future
order Øow to set martingale prices and those that prevent statistical arbitrage. We show that
there is at most one kernel belonging to both classes. This kernel sets martingale prices but
may not prevent arbitrage. To Æx this, we introduce a methodology to obtain a second kernel
which prevents statistical arbitrage and is the closest to setting martingale prices. Finally, we
derive a calibration methodology for both kernels and apply it to futures data.

The third part measures cross-impact from using two databases of proprietary orders sent by
asset managers on U.S stocks and futures. These databases allow us to study the cross-impact
of individual investor orders. We propose a formula for cross-impact which generalises the
square-root law to account for price and order correlations. On both stocks and futures, we
Ænd that this generalisation gives more precise predictions than the square-root law.
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In the fourth part, we model the tick-by-tick price process using Hawkes processes. To
capture the high endogeneity of Ænancial markets, we investigate the limit where the L1 norm
of the spectral radius of the Hawkes kernel goes to one. We show that some multivariate rough
volatility models emerge as the macroscopic limit of the microscopic price dynamics. In these
models, volatility is a combination of underlying variance factors, each driven by a fractional
Brownian motion of common Hurst index.

Finally, the last part examines the calibration of volatility models by using neural networks.
We Ærst approximate the map from model parameters to contract prices using neural networks.
This approximation can then be used to recover model parameters given market prices of
contracts. We highlight the applicability of the method using synthetic and real market data.
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Introduction

The general objective of this thesis is to understand the multivariate price formation process:
how and why prices of Ænancial assets move, and what makes them move together. Our goal
is to build models which are theoretically plausible, can be estimated on empirical data and
produce predictions in line with observations. These models can be used in applications where
execution costs play an important role. For example, regulators may leverage estimates of the
liquidation costs of large portfolios to assess systemic risk. Investors may use these models
to optimize their trading strategies and reduce trading costs. To build these models, a large
part of the thesis focuses on the link between orders and prices. We begin by presenting and
motivating the di�erent questions on which we want to shed some light in this thesis.

Motivations

A key stylized fact of price formation is that on average, trades on an asset move its price. In
fact, a large fraction of the Øuctuations of an asset’s price can be explained solely from trades
on that asset. Thus, trades form a critical part of the price formation process. But models
relating trades on an asset to its price most often ignore the inØuence of other assets. To
understand how and why asset prices move together, we need to consider cross-impact: how
trades on one asset push the price of another asset. Anonymous order Øow data, both plentiful
and public, is an ideal candidate to begin studying this question. However, even in a static
setting where we ignore the lasting inØuence of past trades, there are many possible models
for cross-impact. We might thus ask ourselves the following question:

Question 1. How can we model static cross-impact from anonymous order Øow?

Among the possible models for cross-impact, our goal is to Ænd a unifying model, applicable
across assets. This includes derivatives, which poses challenges for two main reasons. First, in
an e�cient market, the prices of derivatives should be locked by no-arbitrage. This should
constrain cross-impact. Second, for a given underlying, there are thousands of individually
illiquid derivatives. Therefore, to estimate cross-impact, we need to aggregate the liquidity of
many instruments. This leads us to ask:

Question 2. How can we estimate cross-impact from anonymous order Øow on derivatives?

A unifying static cross-impact framework is a Ærst step towards understanding the multivariate
price formation process across asset classes. However, we also need to understand the dynamics
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of the price formation process. In particular, the average price change induced by a trade
on the traded asset is maximum right after the trade and decays over time. We expect the
same e�ect to be true of trades on one asset on the price of another. This raises the issue of
accounting for this property:

Question 3. How can we model dynamic cross-impact from anonymous order Øow?

Questions 1 and 3 analyse cross-impact from anonymous order Øow. This aggregates the
actions of all market participants to explain price moves. To understand how individual agents
shape prices by trading, we need to analyze labeled order Øow, where we know which market
participants sent orders. This would give us a microscopic perspective on the price formation
process so that we are interested in this e�ect:

Question 4. How can we measure cross-impact from labeled order Øow?

All previous questions explain the price formation process through anonymous or labeled order
Øow. We may ask which price dynamics we can derive solely from properties of asset prices,
beginning at the high-frequency scale, where prices evolve on a discrete grid, and examining
the resulting dynamics at the macroscopic scale, where asset prices appear continuous. This
leads to the following question:

Question 5. What macroscopic multivariate price dynamics emerge from microscopic stylized facts?

A key ingredient in the macroscopic price dynamics of the previous question, and in most
models of asset prices, is the volatility process. While increasingly accurate models for volatility
have emerged, these models have proved hard to adopt because of the long computation time
required to obtain market prices of derivatives. In turn, this makes calibrating the parameters
of these models from market data prohibitive. To make these volatility models applicable, we
should answer the following question:

Question 6. How can we quickly calibrate computationally-intensive volatility models?

Outline

Each question presented above corresponds to a part of the thesis.

Chapter I answers Question 1 by viewing cross-impact models as functions of covariances which
are measured on empirical data. This allows us to abstract the particular numerical calibration
of a model on a dataset and look for robust models across asset classes. Chapter I introduces
desirable properties cross-impact models should satisfy to behave well across markets. We
show that there exists a unique cross-impact model which satisÆes all such properties. Then,
we stress test a variety of cross-impact models on stocks and futures and Ænd that this model
is one of two robust across markets.

Using the candidate model identiÆed in Chapter I, Chapter II models cross-impact on deriva-
tives to answer Question 2. In this setting, we Ænd a dimensional reduction recipe to aggregate
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non-stationary liquidity of thousands of options into few, stationary liquidity factors. We
apply this framework on SP500 options and VIX futures data and Ænd that the cross-impact
model explains Øuctuations of the underlying and the implied volatility surface. Therefore,
the candidate model of Chapter I provides a unifying view of the price formation process on
stocks, futures and derivatives.

Chapter III treats Question 3 by setting up a toy market model which reproduces the long-range
auto-correlation property of order Øow. Within this market, we focus on two distinct classes of
propagator models for cross-impact: those that anticipate future order Øow to set martingale
prices (martingale-admissible kernels) and those that prevent statistical arbitrage. Each class
embodies a di�erent notion of price e�ciency. We Ænd that there is at most one cross-impact
kernel belonging to both classes, which sits as an ideal candidate for a cross-impact model.
However, depending on the auto-correlation structure of trades, there may be no model
belonging to both classes. Therefore, we introduce a methodology to obtain two plausible
cross-impact kernels. The Ærst is martingale-admissible and satisÆes necessary conditions for
no-arbitrage. The second prevents statistical arbitrage and is the closest kernel (in a certain
norm) to kernels leading to martingale prices. We Ænd that the boundary values of both of
these kernels can be interpreted as the candidate cross-impact model of Chapters I and II with
di�erent input parameters. Finally, we derive a calibration methodology for both kernels and
apply it to empirical data.

Chapter IV tackles Question 4 by using two databases of proprietary orders sent by as-
set managers on U.S. stocks and futures. These databases allow us to study the cross-impact
of individual investor orders. We introduce the concept of cross-impact diagonalisation to
tackle the curse of dimensionality. Using that principle, we propose a generalisation of the
square-root law which accounts for price and order correlations. On both stocks and futures,
this generalisation gives more accurate predictions than the square-root law.

Chapter V examines Question 5 by modelling tick-by-tick price dynamics using multivariate
Hawkes processes. To capture the high endogeneity of Ænancial markets, we investigate the
limit where the L1 norm of the spectral radius of the Hawkes kernel goes to one. We show
that some speciÆc multivariate rough volatility models emerge as the macroscopic limit of
the microscopic price dynamics. In these models, volatility is a combination of underlying
variance factors, each of which is driven by a fractional Brownian motion of common Hurst
index. Furthermore, we are able to conciliate clusters of asset jumps on short time scales with
rough volatility and asset return correlations structures on larger time scales.

Finally, Chapters VIA and VIB treat Question 6 by replacing computationally expensive
numerical methods to estimate option prices from parameters with neural networks. Then, in
the calibration step, this fast approximation is used to search the space of parameters to Æt
market data. Chapter VIA introduces this approach for di�erent volatility models and shows
that it achieves similar levels of precision to standard computational methods while providing
a signiÆcant speedup of the computation time. We illustrate it by calibrating parameters of a
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computationally intensive model on historical data. Chapter VIB examines variations of the
setup, including leveraging priors on the distribution of model parameters in the calibration
step.

Let us now rapidly review the main results of the thesis.

1 Chapter I: Static cross-impact models

Chapter I studies linear static cross-impact models. These models classically assume that the
net anonymous order Øow pushes prices linearly, so that all information concerning cross-
impact can be encoded in a single matrix, called the cross-impact matrix. In practice, most
simple cross-impact matrices can be expressed as a function of statistics of order Øows and
prices. We dub these functions cross-impact models and introduce axioms: desirable properties
of cross-impact models. We show that only one cross-impact model satisÆes all axioms and
give its form. Finally, we stress-test cross-impact models on various asset classes to identify
which models best explain price changes from anonymous order Øow.

1.1 Cross-impact models as functions

To relate anonymous order Øow to market prices, we assume that we observe anonymous
trades and prices on a universe of d assets. Both are binned on a regular time interval of
length ¢t . We denote by qt the net market order Øow traded in the time window [t , t +¢t ].
On a given trading day, our goal is to relate the time series of prices {p0, p¢t , · · · , pT } with
the time series of order Øows {q0, q¢t , · · · , qT }. For a given asset, it is classically admitted that
price changes and net order Øow are linearly related [PB18], although the linear relationship
breaks down for large order Øow values. Inspired by this, we also assume this is true across
assets.

Assumption 1. Price changes ¢pt := pt+¢t °pt and order Øow imbalances qt are linearly related,

i.e.

¢pt =§(ßt ,≠t ,Rt )qt +¥t , (1)

where ßt = Cov(¢pt ), ≠t := Cov(qt ), Rt = E[¢pt q>
t ], § is a matrix-valued function of these

second-order statistics called a cross impact model and ¥t = (¥1
t , . . . ,¥d

t ) is a vector of zero-mean

random variables representing exogenous noise.

In Equation (1), price changes and order Øow imbalances are known and we have to choose
the cross-impact model §. Assumption 1 states that cross-impact models only depend on
parameters of the true data generating process, which is not assumed to be stationary. When
price changes, order Øows and exogenous noise are Gaussian random variables, then it only
depends on (ßt ,≠t ,Rt ), which motivates the simpliÆcation of Assumption 1.

The previous assumption discards the role of past order Øow imbalances to focus on the
inØuence of same-time order Øows. Thus, these models are dubbed static models. Past
order Øow imbalances do play a role [BMEB17, SL19, WNG17], but we focus on equal-time
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1. Chapter I: Static cross-impact models

relationships between prices and volumes with the time resolution of ¢t = 1 minute. In this
regime, the e�ect of order Øow imbalances of previous time windows is typically much smaller
than that of the order Øow imbalance of the current time window. We will study in detail the
inØuence of past order Øows in Chapter III.

A cross-impact model is a function of the three key second-order statistics which describe our
system. Thus, we are not only interested in a particular model designed speciÆcally for a given
market (i.e., for a given set of second-order statistics). Rather, this view allows us to examine
how a model behaves in a variety of market conditions.

1.2 Axioms: the desirable properties of cross-impact models

Given the many possible choices for cross-impact models, we are concerned with identifying
those which are theoretically more plausible. To do so, we introduce axioms which reØect
desirable properties of cross-impact models. Each axiom can be expressed mathematically as
a constraint on the cross-impact model. For brevity, we present a selection of di�erent axioms,
the full list being detailed in Chapter I.

1.2.1 Symmetry axioms

We begin with symmetry axioms which constrain the behaviour of cross-impact models under
natural transformations of second-order statistics. One example is that the cross-impact model
should adapt to the re-ordering of the assets, which we call permutation invariance. We can
translate this mathematically: a cross impact model § is permutation-invariant if, for any
permutation matrix P and (ß,≠,R) 2 (S +

n (R)£S
++

n (R)£Mn(R)),

§(PßP>,P≠P>,PRP>) = P§(ß,≠,R)P>. (2)

Other axioms can be translated mathematically, but we omit these details in this introduction
for conciseness.

While the previous axiom is fairly simple, other symmetry axioms may be more intricate. For
example, stock splits can double the number of outstanding shares and halve their values.
The split modiÆes the second-order statistics of the system. However, barring microstructural
e�ects, cross-impact should be consistent between before and after the stock split. This axiom
is dubbed split invariance.

Overall, symmetry axioms are simple (although important) properties we should ask of
cross-impact models.

1.2.2 Fragmentation axioms

Cross-impact models which respect fragmentation invariance are adapted to scenarios of
extreme price correlations. For example, consider a stock traded on multiple markets (say,
Apple traded on the Nasdaq and on the Bats venues). In our framework, this corresponds to
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two di�erent instruments. However, we expect that, abstracting microstructural e�ects, the
prices on both venues is the same. Thus, buying a volume q = qNasdaq+qBats of Apple stock
should yield the same cost no matter how one fragments the qNasdaq units bought on Nasdaq
and the qBats units bought on Bats. For this reason, this class of axiom is dubbed fragmentation
invariance.

Fragmentation invariance axioms are critical to apply cross-impact models in strong cor-
relation regimes.

1.2.3 Stability axioms

Stability axioms control cross impact models when instruments have di�erent levels of liquidity.
Intuitively, it should not be possible to manipulate the price of a liquid product by trading an
illiquid product (and vice-versa). Stability axioms prevent this.

Stability axioms are particularly important in markets where some assets are much more liquid
than others.

1.2.4 No-arbitrage axioms

No-arbitrage axioms prevent the presence of statistical arbitrages: trading strategies which
generate proÆts on average, as deÆned in [Gat10]. We distinguish between two types of statisti-
cal arbitrages. Static statistical arbitrages generate positive average proÆts on a single time
period and dynamic statistical arbitrages, which generate positive average proÆts by trading
on multiple time periods.

No-arbitrage axioms are particularly useful for practical applications such as portfolio con-
struction or optimal execution since they exclude trading strategies which manipulate prices
to make a proÆt.

Again, recall that each axiom can be expressed mathematically as a constraint on the
cross-impact model, in the spirit of Equation (2).

1.2.5 Characterisation of cross-impact models

Finally, Chapter I shows that the set of cross-impact models which satisÆes all axioms reduces
to a singleton, which is the topic of the next result.

Result 1. There is a unique cross-impact model which satisÆes all axioms, the kyle model, deÆned

for any (ß,≠,R) 2 (S +
n (R)£S

++
n (R)£Mn(R)), as

§kyle(ß,≠,R) := (L>)°1
p

L>ßL L
°1, (3)

where L is a matrix such that L L
> =≠ and

p
M is the symmetric square root of the matrix M .
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1. Chapter I: Static cross-impact models

The model from Result 1 is dubbed kyle because it was Ærst derived from a multivariate
generalisation of the Kyle insider trading framework [Kyl85, CK94, GdMMBB20]. Interestingly,
the kyle model only depends on covariances of prices and order Øows. Furthermore, a key
matrix in the kyle model is

p
L>ßL . This matrix can be interpreted as the risk-weighted

liquidity which mixes information about volatility and liquidity to estimate cross-impact. We
will see that the kyle model appears in an even more general setting, as in Chapter III. Result 1
provides some theoretical explanation for its seemingly fundamental role.

Beyond the special role of the kyle model among all cross-impact models, we are inter-
ested in stress-testing models on empirical data to assess their robustness.

1.3 Fit on empirical data

Chapter I analyses a variety of cross-impact models, but we focus our results on four key
models, which correspond to di�erent choices of the function §:

1. The r-direct cross-impact model which ignores cross-sectional e�ects and serves as a
benchmark.

2. The r-el model, suggested in [BMEB17], which pools liquidity of di�erent assets using
the structure of the price change correlation matrix.

3. The kyle model Ærst introduced in [GdMMBB20, CK94], which is the only model that
satisÆes all axioms.

4. The ml model which maximises empirical Æt.

Given a cross-impact model §, a time series of net traded order Øows {qt }T
t=1 and a time

series of price changes {¢pt }T
t=1 along with the second-order statistics ßt ,≠t ,Rt we build the

residuals:
"t :=¢pt °§(ßt ,≠t ,Rt )qt .

To compare impact models, we use three di�erent indicators of performance which emphasize
di�erent aspects of prediction errors. For a given matrix M , the M-weighted generalized R

2 is
deÆned as

R
2(M) := 1°

P
1∑t∑T ">t M"tP

1∑t∑T ¢p>
t M¢pt

.

To highlight di�erent sources of error, we consider the following choices of M :

1. To measure the average errors relative to the typical deviation of each asset, we choose
M = Iæ := diag(æ°2). This score gives a proxy for the fraction of volatility explained by
the cross-impact model for each asset.

2. To measure the model’s accuracy to explain global price changes, we choose M = Jæ :=

(ß°1/2
i i

ß
°1/2
j j

)1∑i , j∑m . This score highlights how well the cross-impact model explains the
price changes of a risk-weighted index made up of all assets.
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Model Crude Futures Bond and index Futures Stocks

R
2
out(Iæ) R

2
out(Jæ) R

2
out(ß

°1) R
2
out(Iæ) R

2
out(Jæ) R

2
out(ß

°1) R
2
out(Iæ) R

2
out(Jæ) R

2
out(ß

°1)

r-direct 0.27±0.01 0.40±0.01 °1 0.23±0.01 0.27±0.02 °1.71±0.05 0.274±0.004 0.479±0.010 0.180±0.003

r-el 0.37±0.01 0.46±0.01 0.31±0.02 0.27±0.01 0.17±0.02 0.13±0.03 0.249±0.003 0.644±0.005 0.124±0.004

kyle 0.35±0.01 0.46±0.01 0.29±0.02 0.38±0.01 0.29±0.02 0.11±0.03 0.336±0.003 0.808±0.004 0.211±0.003

ml 0.37±0.01 0.45±0.01 0.31±0.02 0.40±0.01 0.30±0.02 0.20±0.03 0.358±0.003 0.803±0.004 0.208±0.003

Table .1: Goodness of Æt of cross impact models on di�erent datasets.

Goodness of Æt was measured using two years of data sampled at a time interval of one minute.
Out-of-sample goodness of Æt was obtained by applying the calibrated models on never seen
before data. We reported as 1 the scores of models which are numerically inÆnite, but due to
clipping appear Ænite.

3. To measure how well the model explains price changes of portfolios of varying volatility,
we choose M = ß

°1. This score emphasizes the errors of cross-impact models in
directions of small volatility and downplays errors in directions of large volatility.1

Table .1 summarises the scores for the di�erent models on three di�erent datasets. To account
for varying daily volatility and liquidity, the second-order statistics ß,≠,R are reestimated for
each trading day. Cross-impact models on a given trading day are computed using the daily
estimators for ß,≠,R . Table .1 highlights the following result.

Result 2. The kyle and ml models are robust across futures and stocks and outperform models

which ignore cross-sectional e�ects.

This empirical analysis, combined with the result that the kyle model is the only model which
satisÆes all axioms, suggests that it is an ideal candidate to understand static cross-impact
from anonymous order Øow across asset classes.

2 Chapter II: Static cross-impact on derivatives

To further assess if the kyle model is robust across asset classes, Chapter II models cross-
impact on derivatives with the kyle model, in a slightly generalised setup of Chapter I. We
show that, within this framework, the cross-impact matrix can be estimated using a low-
dimensional formula which circumvents the estimation of very large covariances. We apply
our methodology on SP500 options and VIX futures and Ænd that it explains subtle Øuctua-
tions of the implied volatility surface. This reinforces the Ænding of Chapter I that the kyle
cross-impact model is an ideal candidate for a unifying view of cross-impact across asset classes.

We begin with the setup for our results.

1Note that this measure strongly penalizes models violating fragmentation invariance: errors along modes of
zero risk should a-priori be enhanced by an inÆnite amount.
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2. Chapter II: Static cross-impact on derivatives

2.1 Setup

We consider a universe comprising two classes of Ænancial instruments, that we refer to as
factors and derivatives. Factors are modeled by N stochastic processes and we denote their
prices by pt = (p1

t , . . . , pN
t ). Factors correspond to all stochastic factors on which derivative

prices depend, such as the spot, the forward variance curve, the yield curve, etc. Derivatives
are a set of M instruments, whose prices Pt = (P 1

t , . . . ,P M
t ) at maturity depend on the values

of the factors.

As in Chapter I, we assume that impact is linear in the total signed Øows of market or-
ders and we denote by qt = (q1

t , . . . , q N
t ) the stochastic process corresponding to the net traded

order Øows on factors and by Qt = (Q1
t , . . . ,QM

t ) the stochastic process corresponding to the
net traded order Øows on derivatives. As we are interested in a simple, inÆnitesimal framework
for the inØuence of trades on prices, we assume that order Øow dynamics on each asset are
continuous stochastic processes driven by Brownian motions, described in the next assumption.

Assumption 2. The order Øow follows the following stochastic dynamics

dqt = ∫q (pt , t )dt +Lqq (pt , t )dZ
q
t +LQq (pt , t )dZ

Q
t

dQt = ∫Q (pt , t )dt +LQq (pt , t )dZ
q
t +LQQ (pt , t )dZ

Q
t ,

where Z q , Z Q are uncorrelated standard Brownian motions, ∫q : RN £R!RN and ∫Q : RN £R!
RM encode order Øow drift, Lqq : RN £R!MN (R), LQQ : RN £R!MM (R), LQq : RN £R!
MM ,N (R), LqQ : RN £R!MN ,M (R) encode co-trading among assets.

Assumption 2 allows for co-trading of factor and derivatives, which is a typical feature ex-
pected in derivative markets. However, the continuous modeling framework for order Øows is
somewhat unrealistic. At the high-frequency scale, trades arrive punctually and trade arrivals
are clustered so that a more realistic modeling is driven by point processes which respect
this property. Such modeling requires lengthy mathematical treatment and is addressed in
Chapter III.

We now move to the dynamics of factor prices in our setup.

Assumption 3. We assume that factor prices are given by

dpt =µp (pt , t )dt +Gp (pt , t )dWt +§pq (pt , t )dqt +§pQ (pt , t )dQt (4)

where W is a standard N -dimensional Brownian motion, µp : RN £R ! RN is the factor drift,

Gp : RN £R!GLN (R) is the factor di�usion matrix, and §pq : RN £R!MN (R), §pQ : RN £R!
MN ,M (R) capture cross-impact.

The factor dynamics of Assumption 3 are quite general. They encompass traditional stochastic
volatility models and allow for cross-impact between factors and between factors and deriva-
tives.

9
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We assume that factors are chosen so that derivatives are priced in a Markovian manner with
respect to the factors, which leads us to the next assumption.

Assumption 4. There exists a function F : RN £R!RM , twice di�erentiable with respect to the

Ærst argument and di�erentiable with respect to the second argument, such that Pt = F (pt , t ).

Note that we could relax Assumption 4 to include the inØuence of order Øows without much
modiÆcation of our results. Applying Ito’s formula to Equation (4) and using Assumptions 2
to 4, we obtain the following corollary.

Corollary 1. The derivative dynamics are given by

dPt =µP (pt , t )dt +GP (pt , t )dWt +§P q (pt , t )dqt +§PQ (pt , t )dQt , (5)

where µP : RN £R!RM is the derivative drift, GP : RN £R!MM ,N (R) is the derivative di�usion

matrix, §P q : RN £R!MM ,N (R) and §PQ : RN £R!MM (R) encode cross-impact. In particular,

we have the constraints §P q =•§pq , §PQ =•§pQ , GP =•Gp , where • := ( @P i

@p j )i , j is the M by N

sensitivity matrix.

Corollary 1 does not make explicit the dependence of the derivative drift on other variables as
it will not play an important role.

Cross-impact matrices can be compactly rearranged into a single matrix, §, which we refer to
as the cross-impact matrix since it describes the cross-impact of the complete system

§(pt , t ) :=

µ
§pq §pQ

§P q §PQ

∂
(pt , t ) . (6)

The cross-impact matrix may depend, along with covariances, on prices of the factors and
may evolve over time, which generalises the framework of Chapter I.

The static cross-impact model we choose involves two parameters, the price covariance
matrix and the order Øow covariance matrix. The factor-factor price covariance matrix
ßpp : RN £R!S

+
N

(R) and factor-factor order Øow covariance matrix ≠qq : RN £R!S
+

N
(R)

are deÆned as
ßpp (pt , t )dt := dhp, pit , ≠qq (pt , t )dt := dhq, qit

where hX ,Y i is the quadratic covariation of the processes X ,Y . Using similar notations for
other covariance matrices (such as ≠qQ (pt , t )dt := dhq,Qit ), introduced below, the covariance
structure of prices and order Øows for the whole system can be arranged compactly as

ß(pt , t ) =

√
ßpp ßpP

ß
>
pP ßPP

!
(pt , t ) ≠(pt , t ) =

√
≠qq ≠qQ

≠
>
qQ ≠QQ

!
(pt , t ) .

Motivated by the results of Chapter I, we choose to use the kyle model to capture cross-impact.

10



2. Chapter II: Static cross-impact on derivatives

Assumption 5. The cross-impact matrix § is of the form

§ :=
p

Y (L °1)>
p

L>ßL L
°1 ,

where L is a matrix such that L L
> =≠, Y is a constant such that 0 < Y < 1, and we have

omitted the dependence on (pt , t ) for compactness.

The choice of the kyle model has important consequences, which we detail in the next section.

2.2 Properties of the chosen cross-impact model

A main result implied by our choice of cross-impact model is a derivation of § which is
tractable for applications. We Ærst show that the inØuence of order Øows can be absorbed in
Brownian motions.

Result 3. Using the notation of Assumptions 3 and 5 and Corollary 1, we have

dpt = µ̃p (pt , t )dt +
1

p
1°Y

Gp (pt , t )dBt (7)

dPt = µ̃P (pt , t )dt +
1

p
1°Y

GP (pt , t )dBt , (8)

where µ̃p : RN £R!RN , µ̃P : RN £R!RM and B is a standard N dimensional Brownian motion.

Result 3 underscores a convenient property of our framework: the sensitivities of derivative
prices with respect to factors are independent of the order Øow dynamics. In particular, the
Greeks can be computed using traditional derivative pricing methods since derivative prices
satisfy the classic stochastic di�erential system of Result 3. The next result expresses the large
N +M £N +M cross-impact matrix § as a function of the much smaller N £N cross-impact
matrix §pq and the derivative sensitivities •.

Result 4. We have

§(pt , t ) =

µ
§pq §pq•

>

•§pq •§pq•
>

∂
(pt , t ) , (9)

where we recall that • := ( @P i

@p j )i , j is the M by N sensitivity matrix.

Note that Result 4 shows that the chosen cross-impact matrix satisÆes the constraints of
Corollary 1. Thanks to Result 3, the sensitivity matrix can be computed as the usual Greeks of
our derivative pricing model. Thus, given a formula for §pq , the cross-impact matrix § can
be computed. The next result shows that the cross-impact matrix §pq can be expressed as a
function of the factor price covariance matrix ßpp and a modiÆed covariance matrix of order
Øows.

Result 5. We have

§pq =
p

Y (L °1
•

)>
q

L
>
•
ßppL•L

°1
•

, (10)

where we have omitted the dependence on (pt , t ), ≠• :=≠qq +•
>
≠QQ•+•

>
≠Qq +≠qQ•, and

L• is a matrix such that L•L
>
•
=≠•.

11
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Combined, Results 4 and 5 give a formula for the cross-impact matrix § as a function of
the measurable quantities ßpp and ≠•. Furthermore, by Result 3, • can be computed using
usual derivative pricing methods. Overall, we have thus derived a scheme for estimating the
cross-impact matrix § on derivatives.

A relevant insight of Equation (10) for applications is that even if factors are not traded,
as long as derivatives with sensitivities to these factors are traded, i.e. •>

≠QQ• is positive
deÆnite, then the inverses appearing in Equation (10) are well-deÆned. This is not obvious
from the form of the Kyle cross-impact matrix in Assumption 5. This property is important for
applications where most factors correspond to non-tradeable instruments, such as volatility
factors.

2.3 Application to SP500 options and VIX futures

We illustrate our approach on a set of instruments which includes includes the front-month
maturity of SP500 futures, the two front-month VIX futures and a large set of SP500 options.
We bin price and order Øow data on a 5 minute timescale using the same approach as in
Chapter I. We begin by describing the modeling choices for the factors of this system.

2.3.1 A simple factor model for the implied volatility surface

To analyse this set of instruments, we take as factors the price of the SP500 future closest to
expiry, which we refer as the spot factor, and a set of Q volatility factors &t = (&1

t , . . . ,&
Q
t ). We

assume that the implied volatility surface is completely described by these factors, i.e. that the
implied volatility æ̂i

t of Derivative i is such that

æ̂i
t = F i (&t ) ,

where F i : RQ !R is some function of these factors. We consider a linear approximation of
the implied volatility surface with volatility factors, so that F i (&) =

PQ
q=1Ø

i q&q , where (Øi q )

are parameters to be calibrated. We choose Q = 3 and Æt these parameters using a principal
component analysis of the implied volatility surface, as in [CFD02]. More details are given in
Chapter II. The resulting factors are described in Figure .1.

The Ærst volatility factor is a classic implied volatility level factor and we make the rough
approximation that the price changes of VIX futures solely depend on this factor. The second
volatility factor corresponds to the skew of the implied volatility surface, referred to as the
skew factor hereafter. The third volatility factor explains the term structure of the implied
volatility, hence the name the term factor in the following.

12



2. Chapter II: Static cross-impact on derivatives

Figure .1: E�ect of the di�erent volatility factors on the implied volatility surface.

Starting from a historical implied volatility surface (æ̂i ), we show the modiÆed implied volatility
surface (æ̂i + "Øi q ) after adding a contribution of size " from the volatility factor q . The
original (non-modiÆed) implied volatility surface is shown in light opacity for reference.

2.3.2 Quality of Æt

To assess quality of Æt, we use the same methodology as in Chapter I. In this case, we focus on
the quality of the predictions of each model on the spot and volatility factors. We highlight
three di�erent types of models, whose expressions are given in Chapter II but omitted here for
conciseness:

1. The black-scholes model which accounts for impact only in the spot direction. It
serves as a benchmark model if we believe option prices have the same, constant, implied
volatility.

2. The direct-2d model uses order Øow on the spot and level directions to compute
impact, but ignores cross-sectional e�ects. The direct-4d model does the same with
all four directions.

3. Finally, the kyle-2d model only accounts for spot and level modes while the kyle-4d
model accounts for all directions.
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Model Scores

R
2
in(¶spot) R

2
in(¶level) R

2
in(¶skew) R

2
in(¶term)

black-scholes 0.18±0.01 °0.00±0.02 °0.00±0.01 °0.00±0.02

direct-2d 0.18±0.01 °0.03±0.02 °0.01±0.01 0.00±0.02

direct-4d 0.18±0.01 °0.03±0.02 °0.14±0.02 °0.26±0.02

kyle-2d 0.20±0.01 0.12±0.01 °0.01±0.01 0.01±0.02

kyle-4d 0.20±0.01 0.14±0.01 °0.12±0.02 0.04±0.01

Table .2: Scores of di�erent cross-impact models.

All scores were computed in-sample using the same data used for the calibration of the
cross-impact models.

Table .2 suggests that, as expected from the liquidity structure, most price changes on the spot
are explained by trades made on the spot or the delta-weighted contribution of trades made
on options. Remarkably, only models which account for cross-impact are able to explain a
large fraction of the level direction. This is the topic of the next result.

Result 6. Fluctuations of the level factor are mostly explained through trades on the spot or

delta-weighted contributions of trades on options.

Furthermore, we observe a slight score improvement for models which account for trades in
the level direction. This suggests that there is a small explanatory power in trades in the level
direction.

Result 7. A small fraction of Øuctuations of the spot can be explained through trades on VIX

futures or vega-weighted contributions of trades on options.

Finally, scores improve when we consider a more detailed description of the dynamics of the
implied volatility surface. This suggests that the kyle cross-impact model becomes more
accurate as our description of option dynamics become more precise, and there may be room
for improvement beyond the simple volatility factor modelling that we have chosen.

Result 8. The kyle model becomes more accurate when the description of the implied volatility

surface becomes more precise.

Overall, our approach reinforces the result of Chapter I that the kyle model is an ideal
candidate to understand static cross-impact from anonymous order Øow across asset classes,
including on complex assets such as derivatives.

3 Chapter III: Dynamic cross-impact models from anonymous

order Øow

Chapter III examines dynamic models for cross-impact from anonymous order Øow. These
models capture the lasting inØuence of past trades on current prices. We setup a toy market
model and look for dynamic cross-impact models, dubbed cross-impact kernels, which yield

14



3. Chapter III: Dynamic cross-impact models from anonymous order Øow

realistic price dynamics. We derive two such cross-impact kernels and calibrate them on
empirical data. Interestingly, the boundary values of these cross-impact kernels are related to
the kyle model of Chapters I and II.

3.1 Setup

We consider a market made of d di�erent assets, of prices p := (p1, · · · , pd ), and we denote the
cumulative anonymous order Øow at the ask (resp. bid) by q a (resp. qb ) and the net traded
volume by q := q a °qb .

Although ignored for simplicity in Chapters I and II, anonymous order Øow is highly persistent
[BBDG18]. To account for this, we classically model order Øow dynamics with a multivariate
Hawkes process [Haw71a]. More precisely we assume that the number of orders at the ask N a

and the bid N b is a counting process N = (N a , N b) of intensity ∏ which satisÆes

∏t =µ+

Zt

0
©(t ° s)dNs ,

where µ is a vector of positive entries and © a positive matrix-valued function with integrable
entries such that the spectral radius of k©k1 is below unity. Hawkes processes are classical
models in Ænance to capture self-excitation and cross-excitation across time and instruments
[BMM15] and allow for rich order Øow dynamics. To simplify results, we assume that each
order on Asset i is of constant size vi so that q a

i
= vi N a , qb

i
= vi N b .

Our goal is to generalise the static cross-impact models of Chapters I and II to account
for the inØuence of past order Øows. To do so, kernel or propagator models are popular in
the single-asset case [BBDG18] and have recently been examined in the multivariate case
[AKS16, BMEB17, SL19]. Thus, we focus on cross-impact kernels, as described in the next
assumption.

Assumption 6 (Price dynamics). There exists some function K : t 2R+ 7! K (t ) 2Md (R), called

cross-impact kernel, such that the price process p satisÆes, for all t 2R+

pt = p0 +

Zt

0
K (t ° s)dqs , (11)

and K (t ) !
t!1

§, where § is an invertible d £d matrix called the permanent cross-impact matrix.

The matrix § is called the permanent cross-impact matrix since §i j quantiÆes how much the
price of Asset i is moved by the net order Øow on Asset j after a long period.

Our goal is to Ænd suitable choices of cross-impact kernels. To do so, we focus on those which
yield realistic price dynamics. We examine two notions of e�ciency: martingale prices and
absence of statistical arbitrage, that is of round-trip trading strategies which generate a proÆt
on average.

15



Introduction

We begin by introducing the class of cross-impact kernels which gives martingale prices.
Since it also includes trivial examples such as K = 0, requiring martingale prices only does not
necessarily lead to relevant kernels. To focus on pertinent kernels, we introduce martingale-
admissible kernels, which anticipate the impact contribution of the order Øow and lead to
martingale prices. Such kernels generate non-trivial price dynamics since they incorporate the
impact contribution of trades in prices. In the univariate case d = 1, Theorem 2.1 of [Jai15]
shows that when prices are martingales and trades impact prices, we have

pt °p0 = ∑ lim
s!1

E[q a
s °qb

s |Ft ] ,

where ∑ > 0 is the permanent market impact contribution. This motivates the following
deÆnition for martingale-admissible kernels.

DeÆnition 1 (Martingale-admissible kernels). A cross-impact kernel K is said to be martingale-

admissible if

pt °p0 =

Zt

0
K (t ° s)dqs =§ lim

s!1
E[qs |Ft ] . (12)

Martingale-admissible kernels set prices according to the linear permanent market impact
induced by the predictable component of all future trades. We show in Chapter III that
martingale-admissible kernels indeed lead to martingale prices. Such kernels prevent agents
who successfully forecast order Øow to trade proÆtably. However, they do not forbid statistical
arbitrages entirely. We call no-statistical-arbitrage-admissible (or nsa-admissible for short)
cross-impact kernels that prevent statistical arbitrage.

DeÆnition 2 (No-statistical-arbitrage-admissible kernels). A cross-impact kernel K is said to be

no-statistical-arbitrage-admissible, or nsa-admissible for short, if there are no possible statistical

arbitrages, i.e. no round-trip trading strategies with average negative cost.

We now describe the main results of Chapter III in the next section.

3.2 Characterisation of martingale-admissible and nsa-admissible kernels

We show in Chapter III that martingale-admissible kernels must satisfy constraining conditions
but that their boundary values are not Æxed. On the other hand, nsa-admissible kernels must
satisfy a soft constraint but their boundary values are Æxed. In particular, the values at zero of
nsa-admissible kernels can be expressed compactly, which is the topic of the next result.

Result 9. For any nsa-admissible kernel K , we have

K (0) =
1
p

2
(L °1

0 )>
q

L
>
0 ßL0L

°1
0 , (13)

where

1. the matrix L0 is any matrix such that L0L
>
0 = diag(µ1v2

1 , · · · ,µd v2
d

),
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3. Chapter III: Dynamic cross-impact models from anonymous order Øow

2. the matrix ß := lim
t!1

E[dhP,Pit ] is loosely speaking the stationary instantaneous covariance

matrix of returns. The existence of this limit is shown in Chapter III.

We further show that the value at inÆnity of cross-impact kernels which are both martingale-
admissible and nsa-admissible is constrained and has an explicit expression given in the next
result.

Result 10. For any nsa-admissible, martingale-admissible kernel K , we have

lim
t!1

K (t ) =§=
1
p

2
(L °1

1 )>
q

L>
1ßL1L

°1
1 , (14)

where the matrix L1 is any matrix such that L1L
>
1 =

R1
0 ≠(ds), where ≠ is the reduced

covariance measure of the stationary version of the point process q (see Chapter III for more details).

We can interpret
R1

0 ≠(ds) as the stationary total autocovariance matrix of order Øows.

The matrices K (0) and lim
t!1

K (t ) have an interpretation in terms of the kyle model discussed in

Chapters I and II. The matrix K (0) corresponds to the kyle model where the price-covariance
matrix is ß and the order-Øow covariance matrix is diag(µ1v2

1 , · · · ,µd v2
d

), which is actually the
reduced covariance measure evaluated at the singleton zero: ≠({0}) = diag(µ1v2

1 , · · · ,µd v2
d

). On
the other hand, lim

t!1
K (t ) corresponds to the kyle model where the price-covariance matrix is

ß and the order-Øow covariance matrix is
R1

0 ≠(ds). Thus, both K (0) and lim
t!1

K (t ) can be

interpreted as kyle models with the same price-covariance matrix but with di�ering order-Øow
covariance matrices. We can interpret the order-Øow covariance matrix associated to K (0) as
the immediate available liquidity and the order-Øow covariance matrix associated to lim

t!1
K (t )

as the total market liquidity, combining immediate available liquidity with liquidity due to the
order-Øow correlation structure.

Results 9 and 10 show that any martingale and nsa-admissible kernel has Æxed bound-
ary values. The next result shows that there is at most one martingale and nsa-admissible
kernel.

Result 11. There exists a unique cross-impact kernel K that is martingale-admissible and which

satisÆes the necessary conditions for arbitrage-admissibility outlined in Equations (13) and (14). Its
expression is given in Chapter III. Therefore, there exists at most one martingale and nsa-admissible

kernel.

Given Result 11, there exists only one martingale-admissible kernel which satisÆes the boundary
conditions of nsa-admissible kernels and may additionally be nsa-admissible. This kernel is of
particular interest, and we dub it the K 1 kernel.

As we have no guarantee that K 1 is nsa-admissible, this poses issues in certain applica-
tions. For example, in portfolio optimization, a trading cost model which allows for arbitrages
induces spurious round-trip strategies, as shown in [AKS16]. Thus, we introduce a regu-
larisation method to Ænd the closest nsa-admissible kernel to K 1, which we write K 2. The
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regularisation method is motivated and explained in Chapter III.

We now turn to applications of our framework on market data.

3.3 Estimation of cross-impact kernels

A key result of Chapter III is a numerical method for calibration of K 1 and K 2. We leave the
details in Chapter III and show the calibration results on two maturities of SP500 futures
in Figure .2. The K 1 kernel shows a power-law decay consistent with previous studies
[SL19, BMEB17]. Slightly more surprising however is the shape of the nsa-admissible kernel K 2.
We believe this is a numerical e�ect due to the regularisation procedure to compute K 2, which
involves Fourier transforms.

Despite the di�erent shapes of the two kernels, their predictions on empirical data are markedly
similar, as shown in Figure .3.

4 Chapter IV: Measuring cross-impact from labeled order Øow

Chapters I to III focused on calibrating cross-impact models from anonymous order Øow. This
part examines how indidivual agents push prices when trading, by measuring cross-impact
from labeled order Øow. To do so, we use two databases of proprietary orders from asset
managers. We propose measures of cross-impact in the bases of cross-impact models studied
in Chapter I. These yield generalisations of the square-root law of market impact which Æt
data more precisely by accounting for price and order Øow correlations.

Figure .2: Values of the K 1 and K 2 kernels.

We report the values of the transient part of the martingale-admissible K 1 ° limt!1 K 1(t ) =

K 1 °§ (left, red) and of the transient part of the nsa-admissible kernel K 2 ° limt!1 K 2(t ) =

K 2 °§ (right, blue). Each subplot shows the matrix elements of the kernels. For instance, the
top left plot of the left inset shows K 1

11°§11 and the top right shows K 1
12°§12. The permanent

cross-impact matrix § has been removed to highlight the power-law decay of the cross-impact
kernels toward their limit.
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Figure .3: Example of predicted prices from K 1 and K 2.

Di�erence between realized price and the predicted impact-induced price from Equation (2)
with the martingale-admissible cross-impact kernel K 1, given by bp1

t = p0 +
P

s<t K 1(t ° s)qs ,
(red) and with the nsa-admissible cross-impact kernel K 2, given by bp2

t = p0 +
P

s<t K 2(t ° s)qs ,
(blue), where (qt ) are measured signed volumes of market orders. Price di�erence is reported
in dollars per lot.

4.1 Dealing with the curse of dimensionality

We begin with the deÆnition of cross-impact from labeled order Øow.

DeÆnition 3. An asset manager decides to buy or sell a portfolio Q = (Q1, · · · ,Qd ) of d di�erent

assets, each made up of Qi dollar-risks of Asset i where dollars of risk := number of shares£
volatility£daily opening price. He, or his broker, splits his meta-order in smaller orders and
executes them on the market. The cross-impact of a meta-order of the portfolio Q is

C I (Q) := E[s |Q] , (15)

where s = (s1, · · · , sd ) are the normalized daily returns of the assets, si :=
Si

c°Si
o

æi Si
o
being the normalized

daily asset return of Asset i , Si
c is the price of Asset i at the end of the trading day, So is the price of

Asset i at the beginning of the trading day, æi := (Si
high°Si

low)/Si
o is a proxy for the daily return

volatility of Asset i .

Directly measuring cross-impact as deÆned in Equation (15) is arduous since we need to
measure the average of a random variable conditioned with d random variables, where d is
large. To tackle this problem, the next section introduces the concept of diagonalisation of
cross-impact.

4.2 Diagonalisation of cross-impact and proposed cross-impact law

Before introducing the concept of diagonalisation of cross-impact, we note that we can apply a
change of basis to simplify the problem. Let ¶ := (º1, · · · ,ºd ) be an orthonormal basis of Rd .
Then, since ¶ is a basis of Rd , there is a one to one correspondence between the distribution
of the family of N random variables E[si |Q1, · · · ,Qd ] and the distribution of the family of N

random variables
E[sºi

|Qº1
, · · · ,Qºd

] ,

19



Introduction

where sºi
:=º>

i
s is the portfolio return and Qºi

:=º>
i

Q is the traded volume of dollar-risk of
the portfolio. If, for this portfolio, we had

E[sºi
|Qº1

, · · · ,Qºd
] = E[sºi

|Qºi
] ,

then the price impact on portfolio ºi would only depend on what is traded on portfolio ºi .
This leads to the following deÆnition.

DeÆnition 4 (Diagonal basis for cross-impact). An orthonormal basis ¶= (º1, · · · ,ºd ) of Rd is

said to diagonalise cross-impact if, for all 1 ∑ i ∑ d , we have

E[sºi
|Qº1

, · · · ,Qºd
] = E[sºi

|Qºi
] , (16)

where sºi
:= º>

i
s is the daily normalized return of the portfolio and Qºi

:= º>
i

Q is the traded

volume of dollar-risk of the portfolio.

Naturally, the challenge is then to Ænd a basis such that Equation (16) holds. Inspired by the
previous deÆnition, for a given orthonormal basis ¶, we associate the following prediction for
cross-impact:

dC I¶(Q) :=
dX

k=1

Iºk
(Qºk

)ºk , (17)

where Iºk
(Qºk

) := E[sºk
|Qºk

] are functions to be estimated. This prediction is motivated by
the fact that when a basis respects Equation (16), cross-impact can be reduced to Equation (17).
We have restricted our study to orthonormal bases: the portfolios of these bases have unit risk
and no overlap, i.e. º>

i
º j = 0 for two di�erent portfolios ºi and º j . Their components can be

interpreted as positions in each asset expressed in units of risk.

Depending on the choice of basis ¶, Equation (17) may yield sensible predictions or not.
The next sections examine relevant choices of bases.

4.3 Bases of interest

4.3.1 Canonical basis

The Ærst basis examined is the canonical basis which ignores cross-sectional e�ects and we
thus dub the direct basis:

¶direct := (e1, · · · ,ed ) ,

where the ei are the canonical vectors of Rd . This basis uses the predictions for market impact
on each asset to predict cross-impact. The functions Iei

correspond to the usual market
impact and are well described by the square-root law [BBDG18, ATHL05, Tor97, ZTFL15,
BBLB18, BBLB19, BR13, BILL15].
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4.3.2 Random basis

The second basis of interest is the random basis deÆned as

¶random := (o1, · · · ,od ) ,

where the basis (o1, · · · ,od ) has been randomly sampled in the orthogonal group. This basis
serves as a zero-intelligence basis which accounts for cross-sectional e�ects. Contrary to the
direct basis where it is known that the square-root law applies, we have no prior knowledge
of the functions Ioi

, so that we will need to estimate it using meta-order data.

4.3.3 Eigenliquidity model basis

The third selected basis accounts for return correlations. It is taken using the eigenvectors of
the normalized return correlation matrix % :=Corr(s):

¶el := eigenvectors(%) .

This basis is dubbed eigenliquidity model (el for short) basis since it is inspired by the
eigenliquidity cross-impact model [TMB20, BMEB17, MTB14] which has the same eigenvectors
as %. Given the goodness-of-Æt of the linear eigenliquidity model on anonymous data, the
cross-impact predictions associated to this basis may Æt empirical data well. As in the random
basis, we will have to estimate empirically the functions Iº where º is in the basis ¶el.

4.3.4 Kyle model basis

The Ænal basis chosen uses both return and order Øow structure, encoded in the normalized
return correlation matrix % and the co-trading e�ects encoded in the traded risk covariance
matrix ≠ := Cov(q), where q := (q1, · · · , qd ) is the daily signed traded risk of each asset. The
kyle basis is deÆned as

¶kyle := eigenvectors((L °1)>
q

L>%L L
°1) ,

where L is such that L L
> =≠. We refer to this basis as the kyle basis since comes from the

multivariate Kyle cross-impact model studied in Chapters I and II. Once again, the functions
Iº where º is in the basis ¶kyle have to be estimated.

4.4 Meta-order datasets

This study uses two databases of proprietary meta-orders to analyse cross-impact. We present
the characteristics of each dataset below.

4.4.1 ANcerno dataset

The Ærst database is made available by ANcerno, formerly Abel Noser Corporation, which is a
leading consulting Ærm that works with institutional investors to monitor their equity trading
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costs. This database contains orders executed by di�erent institutional investors in the U.S.
equity market. Our sample of this database contains stocks and orders from 2000 to 2014.

In the following we will identify a meta-order as a series of consecutive orders performed by a
single investor, through a single broker within a single day, on a given stock and with a Æxed
direction (buy/sell). To avoid an elaborate analysis of when precisely each meta-order starts
and ends, how they overlap and which reference price to take, we consider impact at the daily
scale. Doing so, we aggregate the meta-orders of di�erent asset managers on a given stock.
For a given trading day and asset, the signed daily risk is the sum of the signed risk of all
meta-orders on that day. We assume that the daily meta-order starts when the market opens
and Ænishes when the market closes.

The Ænal dataset contains 2708 stocks, distributed among di�erent sectors. With our daily
aggregation methodology, we are left with around 2.8 million meta-orders. To keep the number
of distinct stocks tractable, we select 1000 random stocks among our dataset. We are left with
1.6 million meta-orders.

4.4.2 CFM Futures dataset

The second dataset employed contains data on the proprietary meta-orders executed by the
asset manager Capital Fund Management (CFM) on the futures market. After cleaning, the
dataset covers around 250 di�erent futures, with approximately 200,000 meta-orders from
2012 to 2019.

Contrary to the ANcerno dataset, meta-orders of this dataset are only those executed by CFM.
Thus, a meta-order is identiÆed with a future code, the signed number of exchanged dollars
of risk (counted positively for buy orders and negatively for sell orders), executed during a
physical time interval [ts , te ] with ts the start time and te the end time of the execution. To
apply a consistent methodology with the ANcerno dataset, we aggregate orders at the daily
scale.

4.5 Diagonalisation in bases of linear cross-impact models

This section examines how close di�erent bases are to satisfying the diagonalisation condition
of Equation (16). To do so, for a given orthonormal basis ¶, we introduce the residual
di�erences

Z¶

i j :=
°
E[sºi

|Qºi
,Qº j

]°E[sºi
|Qºi

]
¢2

, (18)

which measure the error of the approximation. A global metric for our diagonalisation
approximation error in the basis ¶ is then

Z¶
=

1

d

X

1∑i , j∑d
i 6= j

Z¶

i j , (19)
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4. Chapter IV: Measuring cross-impact from labeled order Øow

which measures the average error made with the approximation. Table .3 reports the separation
metric for the chosen bases and underscores the following result.

Result 12. The bases el and kyle bases are much closer to saÆsfying the diagonalisation condition

than the direct and random bases.

This result is interesting because the random basis is a benchmark which should be close to
satisfying the diagonalisation condition since both sides of Equation (18) should be close to
zero.

Dataset Basis

direct random el kyle

ANcerno stocks 11.0±0.9 0.61±0.01 0.50±0.05 0.54±0.05

CFM futures 2.02±0.01 0.977±0.003 0.55±0.02 0.68±0.02

Table .3: Separation metric Z¶ in the bases of di�erent impact models.

The table reports the separation metric Z¶ on both datasets. For a given pair of portfolios
ºi ,º j from a given basis, Z¶

i j
is computed by estimating both sides of Equation (18) using

empirical averages. Then, due to the large number of portfolio pairs to examine to compute
Equation (19), Z¶ is estimated by averaging Z¶

i j
on a smaller sample of portfolio pairs and the

error bars correspond to the 95% conÆdence interval for our subsampled estimate of Z¶.

4.6 Estimation of the functions Iº

The previous section showed that the random, el and kyle bases were much closer to satisfying
the diagonalisation condition than the direct basis. For a given basis ¶ = (º1, · · · ,ºd ),
the associated predicted cross-impact of Equation (17) requires estimating the functions
Iºk

(Qºk
) := E[sºk

|Qºk
]. These functions are already known for the direct basis, since they

correspond to market impact and are described by the square-root law. However, they need
to be estimated for the random, el and kyle bases. Figure .4 reports the estimation of the
functions for di�erent bases and shows the following result.

Result 13. For each portfolio º in the random, el and kyle bases, the function Iº is well-described

by a square-root law like Æt:

E[sº |Qº ] º Y æº

µ
Qº

Vº

∂•±
, (20)

where ±º 0.4°0.6, Y is a dimensionless prefactor (where Y º 0.3 on stocks and Y º 0.5 on futures),

V 2
º :=º>

≠º is a proxy for the liquidity in the direction of the portfolio, æ2
º :=º>%º is a proxy for

the volatility of the portfolio.

A key di�erence with the square-root law is the scale of the dimensionless prefactor Y .
Although it is independent of the portfolio, it changes depending on the dataset and, in
particular, the number of assets d .
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Figure .4: Market impact in di�erent bases on both datasets.

Left: ANcerno stocks dataset. Right: CFM futures dataset. Each point for the di�erent
bases el (blue triangles), kyle (green squares) and random (red circles) is computed by
averaging normalized returns on binned traded risk. Error bars shown are computed using
95% conÆdence intervals. The ANcerno dataset has signiÆcantly more data, which allows us
to obtain more precision. On both datasets, for participation ratios ¥º :=

Qº

Vº
in the range

10°3 . ¥º . 10°1, the square-root law Æt is a good approximation.

4.7 Goodness-of-Æt of the proposed cross-impact law

Using the results of the previous section we can plug the functional form of Equation (20) in
the prediction of cross-impact of Equation (17) to associate with a given basis ¶ among the
direct, random, el and kyle bases the following prediction for cross-impact:

dC I¶(Q) º Y
dX

k=1

ºkæºk

µ
Qºk

Vºk

∂•±
= Y

dX

k=1

ºk

q
º>

k
%ºk

0
B@

º>
k

Q
q
º>

k
≠ºk

1
CA

•±

. (21)

Equation (21) accounts for all portfolios, many of which may have small volatility and provide
negligible contributions. To assess the quality of Æt of Equation (21) as a function of the number
of portfolios considered, we consider the truncated predictions dC I¶,n(Q) deÆned as

dC I¶,n(Q) := Y
nX

k=1

ºkæºk

µ
Qºk

Vºk

∂•±
= Y

nX

k=1

ºk

q
º>

k
%ºk

0
B@

º>
k

Q
q

º>
k
≠ºk

1
CA

•±

, (22)

where the portfolios ºk are sorted in decreasing order of volatility º>
k
%ºk . To evaluate the

goodness-of-Æt of the predictions obtained with Equation (22), we compute the r 2 between
realized returns and the predictions given by dC I¶,n(Q) as

r 2
= 1°

1

d

dX

i=1

Var(si °e>
i

dC I¶,n(Q))

Var(si )
,

where Var(X ) is the variance of the random variable X . To favour the direct basis, the
i -th variance in the sum is estimated on empirical data only using days where a meta-order
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on Asset i was executed. Figure IV.3 reports the estimated r 2 as a function of the fraction

of explained variance
Pn

i=1 º
>
i
%ºiPN

i=1 º
>
i
%ºi

associated to the chosen basis. In particular, it shows the

following result.

Result 14. The proposed cross-impact law associated to the el and kyle bases has better empirical

Æt on both datasets than the single-asset square-root law.

Figure .5: Fit of di�erent impact models on both datasets.

Left: ANcerno stocks dataset. Right: CFM futures dataset. The r 2-squared measure of
Æt is computed for the el (blue triangles), kyle (green squares), random (red circles) and
direct (black star) bases as a function of the cumulative explained variance. As expected, the
random model shows poor performance on both datasets. Strikingly, both cross-impact bases
outperform the direct basis. The di�erence is more pronounced on stocks than on futures.
The quality of Æt improves for both models as the explained variance grows.

Our analysis on labeled meta-orders proposed a cross-impact law which generalises the square-
root law while accounting for return and order Øow correlations. These results conÆrm the
importance of the linear cross-impact models which have been used throughout Chapters I
to III.

5 Chapter V: Microfounding multivariate price dynamics

without order Øows

Chapters I to IV examined the links between trades and prices to understand the price
formation process. Chapter V focuses on Ænding micro-founded multivariate price dynamics.
We introduce a tick-by-tick model for prices at the microscopic level and study macroscopic
limits of this price process.
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5.1 A microscopic model for prices

As in previous parts, we model the prices of a universe of d assets. At the high-frequency
scale, the price of each asset is a piecewise constant process with upward and downward jumps
denoted by the counting process N i+, N i°. The global counting process is a 2d-dimensional
process N = (N 1+, N 1°, . . . , N d+, N d°).

To capture self and mutually exciting features of the trade process, we model the count-
ing process as a Hawkes process so that its intensity ∏ satisÆes

∏t =µt +

Zt

0
©(t ° s)dNs ,

where µ is a vector-valued function of positive entries and © a positive matrix-valued function
with integrable entries such that the spectral radius of k©k1 is below unity. However, calibration
results suggest, that for models of the above form to Æt data, the spectral radius of the L1

norm of the kernel must be close to one [LC14, FS12, HBB13]. This motivated a nearly-unstable
framework where it is close to one [JR16, JR15, EEFR18]. In this framework, the dynamics of
the market up to time T are modeled with a Hawkes process N T of baseline µT and kernel
©

T , so that its intensity ∏T satisÆes

∏T
t =µ

T
t +

Zt

0
©

T (t ° s)dN T
s .

In order to obtain macroscopic dynamics, as time horizon T goes to inÆnity, the spectral radius
of

∞∞©T
∞∞

1 goes to one. In a simpliÆed framework examined in [EEFR18], a single eigenvalue
almost saturates the stability condition, which leads to a single volatility factor at the limit
for all assets. To obtain more general dynamics, we assume the Hawkes kernel is of the form,
using block matrix notation

©
T (t ) =O

µ
AT (t ) 0

B T (t ) C T (t )

∂
O°1,

where O is an invertible 2d £ 2d matrix, AT : R+ ! Mdc
(R), B T : R+ ! M2d°dc ,dc

(R) and
C T : R+ !M2d°dc

(R). This block structure allows for richer limiting dynamics. We assume
that the stability condition is saturated at the speed T °Æ so that the saturation condition
translates to

T Æ
°
I °

Z1

0
AT (s)ds

¢
!

T!1
K ,

where K is an invertible matrix. We encode the long memory property of the order Øow by
imposing a heavy-tail condition for A := lim

T!1
AT with the same exponent Æ:

ÆxÆ
Z1

x
AT (s)ds !

x!1
M ,

where M is an invertible matrix.
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5. Chapter V: Microfounding multivariate price dynamics without order Øows

5.2 Multivariate rough Heston

In the framework described above, we show that the macroscopic limit of prices is a multivari-
ate version of the rough Heston model introduced in [EEGRR20, EEGR19], where the volatility
process is a solution of a multivariate rough stochastic Volterra equation.

We introduce the rescaled microscopic price process P T deÆned for t 2 [0,1] as

P T
t =

1

T 2Æ
(N T,1+

tT
°N T,1°

tT
, · · · , N T,d+

tT
°N T,d

tT
). (23)

The rescaled microscopic price process corresponds to the tick-by-tick price of each asset,
properly scaled so that it admits a non-trivial limit as T goes to inÆnity. This limit is dubbed
the macroscopic price process. We show in Chapter V the following result.

Result 15. Under some technical and no statistical arbitrage assumptions, there exists a dc

dimensional process Ṽ , matrices £1 2 Mdc
(R),£2 2 Mn°dc

(R),°0 2 Mdc
(R),°1 2 Mdc

(R),°2 2
Mdc ,n°dc

(R),µ0 2Rdc , with explicit expressions given in Chapter V, and two independent Brownian

motions W, Z such that

• Any macroscopic limit point P of the sequence P T satisÆes

Pt =ß

Zt

0
diag

q
£1ṼsdWs +ß

Zt

0
diag

q
£2ṼsdZs ,

where Ṽ is deÆned below.

• Ṽ has Hölder regularity Æ°1/2°≤ for any ≤> 0.

• For any t in [0,1], Ṽ satisÆes

Ṽt =

Zt

0
(t°s)Æ°1(µ0°°0Ṽs)ds+

Zt

0
(t°s)Æ°1

°1diag
q

£1ṼsdWs+

Zt

0
(t°s)Æ°1

°2diag
q

£2ṼsdZs .

Thus the volatility process is driven by Ṽ , which represents volatility factors, of which there are as

many as there are critical directions. The matrices µ0,£1,£2,°0,°1,°2,ß are given explicitly in

Chapter V.

We can use this result to provide microscopic foundations for some empirical properties
of correlation matrices. Informally, the parameters appearing in the previous result are
connected to the limiting matrices K and M . We show in Chapter V that coupling price
jumps of multiple assets at the high-frequency scale, roughly mimicking the co-jumps observed
in [BCT+15, CBT+18], leads to ß which has one very large eigenvalue followed by smaller
eigenvalues that we can interpret as due to the presence of sectors and a bulk of eigenvalues
much smaller than the others, which is typical of stock correlation matrices [LCBP99].
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6 Chapters VIA and VIB: Deep learning volatility

Multivariate rough volatility models emerged in Chapter V from tick-by-tick models for
prices. Such models are computationally intensive and thus hard to calibrate on market
data. Chapters VIA and VIB addresses this issue. We begin by introducing the setup of the
calibration problem.

6.1 The calibration problem

In plain words, for a given set of parameters of a volatility model, one can compute a set of
contract prices. The calibration procedure of volatility models is meant to Æx parameters such
that the model yields prices as close as possible to market prices.

We formalise this by setting the notation M := M (µ)µ2£ which represents an abstract
model with parameters µ in the set £ΩRn , for some n 2N. Thus the model M (µ) and the
corresponding prices of Ænancial contracts are fully speciÆed by the choice of the parame-
ter combination µ 2£. Furthermore, we introduce a pricing map P : M (µ,≥) ! Rm , where
≥ : (C (R) !Rm), m 2N denote the Ænancial products we aim to price, such as vanilla options
for (a set of) given maturities and strikes. We denote the observed market data corresponding
to the contracts by P

MK T (≥) 2Rm , m 2N. The generic setup of the calibration problem is
introduced in the next deÆnition.

DeÆnition 5. The parameter conÆguration µ̂ solves an (ideal) ±-calibration problem for a model

M (£) for the conditions P
MK T (≥) if

µ̂ = argmin
µ2£

±(P (M (µ),≥),P MK T (≥)) (24)

where ±(·, ·) is a suitable choice of metric for the Ænancial contract ≥ at hand.

Equation (24) represents an idealised form of the calibration problem as in practice there
rarely exists an analytical formula for the option price P (M (µ),≥) and for the vast majority of
Ænancial models it needs to be computed by some numerical approximation scheme, which
motivates the following deÆnition.

DeÆnition 6. We say that the parameter conÆguration µ̂ 2£ solves an approximate ±-calibration

problem for the model M (£) for the conditions P
MK T (≥) if

µ̂ = argmin
µ2£

±( eP (M (µ),≥),P MK T (≥)) (25)

where ±(·, ·) is a suitably chosen metric and eP is a numerical approximation of the pricing map P .

The next section introduces the two-step approach to solve the approximate calibration
problem.
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6.2 The two step approach

Whenever for a stochastic volatility model the computation time of option prices is slow, it
causes a bottleneck in calibration time. This is the case in particular for the family of rough
volatility models (see [AGLM18, BFG16, EER19, GJR18], among others). To address this issue,
we propose to split the calibration procedure into two parts:

• We Ærst approximate the pricing map by a neural network that maps parameters of
a stochastic model to option prices and store this map during an o�-line training
procedure.

• We calibrate the volatility model using the deterministic approximation of the price map,
which speeds up the on-line calibration by orders of magnitude.

To formalise the two step approach, we write for a payo� ≥ and a model M with parameters
µ 2£ the two steps

(i) Learn: eF (£,≥) = eP (M (£,≥)) (ii) Calibrate: µ̂ = argmin
µ2£

±( eF (µ,≥),P MK T (≥)). (26)

Part (i) in (26) denotes an approximation of the pricing map through a neural network, which
is calibrated in a supervised training procedure using the original numerical pricing maps for
training. We give details for the training procedure in Chapters VIA and VIB.

Part (ii) of (26) we essentially replaced eP (M (£,≥)) in Equation (25) by a neural-network
eF (£,≥) from (i). Therefore, this second calibration is considerably faster than calibration of all
those traditional stochastic models which involve numerical simulation of the expected payo�
P (M (µ,≥)) = E[≥(X (µ))] for some underlying stochastic process X (µ).

In the two step approach, we distinguish between two approximation methods which yields
distinct results: the pointwise and grid-based approximations. The pointwise approach learns
the map from model parameters and contract characteristics (such as strike and time to
maturity) to the contract’s price. The grid-based approach Æxes a priori a set of options of
varying characteristics (strikes and maturities) and learns the map of model parameters to
these option prices. The details of each method are presented in Chapters VIA and VIB.

The next section tests the accuracy of both stages of the two step approach.

6.3 Accuracy of the method

The methodology can be applied to any volatility model but to illustrate the approach we
focus on one particular model, the rough Bergomi model [BFG16], which we introduce below.

DeÆnition 7. In the abstract model framework, the rough Bergomi model is represented by

M
r Ber g omi (£r Ber g omi ), with parameters µ = (ª0,∫,Ω, H) 2£

r Ber g omi . On a given Æltered proba-
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Figure .6: Relative errors of the neural network approximation.

We compare surface relative errors of the neural network approximator against the Monte Carlo
benchmark across all training data (68,000 random parameter combinations) in the rough
Bergomi model. Relative errors are given in terms of Average-Standard Deviation-Maximum
(Left-Middle-Right).

bility space (≠,F , (Ft )t∏0,P) the model corresponds to the following system

d X t =°
1

2
Vt d t +

p
Vt dWt , for t > 0, X0 = 0,

Vt = ª0(t )E

µp
2H∫

Zt

0
(t ° s)H°1/2d Zs

∂
, for t > 0, V0 = v0 > 0

(27)

where H 2 (0,1) denotes the Hurst parameter, ∫> 0 , E (·) the stochastic exponential [DD70], and

ª0(·) > 0 denotes the initial forward variance curve (see [Ber15, Section 6]), and W and Z are

correlated standard Brownian motions with correlation parameter Ω 2 [°1,1]. To Æt the model

parameters into our abstract model framework £
r Ber g omi ΩRn for some n 2N, the initial forward

variance curve ª0(·) > 0 is approximated by a piecewise constant function.

The numerical computation of option prices from the rough Bergomi model is computationally
expensive but feasible through Monte-Carlo methods [HJM17].

6.3.1 Approximation step

To assess the quality of the neural network approximation, we compare predicted option prices
of the neural network with prices obtained via Monte Carlo methods. The experiment details
are given in Chapters VIA and VIB. Figure .6 shows the accuracy of the neural network used
to approximate the pricing function in the grid-based approach. In particular, it highlights the
following result.

Result 16. The average error of the neural network approximation for the grid-based approach is

within the bid-ask spread of option prices.

Given Result 16, our fast approximation of option prices may be accurate enough for calibration,
which we examine in the next step.
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6.3.2 Calibration step

To assess the precision of the calibration results, we generate an implied volatility surface from
a given set of parameters, obtain a set of parameters using the two-step approach and Ænally
compare the real parameters and the estimated parameters. The precision of the calibration
of the pointwise method in Figure .7 and the precision of the grid-based method is given in
Figure .8. The numerical experiments suggest the following result.

Result 17. The calibration method for the pointwise and grid-based methods recover parameters

close to the original set of model parameters.

6.4 Historical calibration

Finally, to illustrate the suitability of our approach for practical settings, we show numerical
calibration results on real option prices. We showcase the pointwise approach with a liquidity-
weighted Bayesian regression against SPX implied volatilities from 19th May 2017 in Figure .9
and the grid-based approach on a historical implied volatilities of the SPX in Figure .10. The
calibration results highlight the following result.

Result 18. The calibration results on historical data yield model parameters in line with typical

parameter values and evolving regularly in time.
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Figure .7: Synthetic parameter calibration in the pointwise approach.

Bayes calibration in the pointwise approach against synthetic implied volatility surface. The
posterior distribution of estimated parameters is shown in black, while solid vertical blue lines
indicate true parameter values. Details for the construction of the posterior distributions of the
parameters given the data are given in Chapter VIB. The histograms show that the posterior
distribution calibration is centered around true parameter values, thus being close to the exact
parameters.

Figure .8: Synthetic parameter and implied volatility surface error in the grid-based

approach.

Cumulative Distribution Function (CDF) of 1 Factor Bergomi parameter relative errors (left)
and RMSE (right) after Levengerg-Marquardt calibration across test set random parameter
combinations.
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Figure .9: Historical parameter calibration in the pointwise approach.

Liquidity-weighted Bayes calibration against SPX market implied volatility surface from 19th
May 2017. Liquidity proxies are given by inverse bid-ask-spreads of market prices. The
posterior distribution of estimated parameters is shown in black, while solid vertical blue lines
indicate true parameter values. Details for the construction of the posterior distributions of
the parameters given the data are given in Chapter VIB.

Figure .10: Historical parameter calibration in the grid-based approach.

Historical Evolution of parameters of the rough Bergomi model with a piecewise constant
forward variance term structure calibrated on SPX.
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CHAPTER I

Static cross-impact models

Abstract

Trading a Ænancial instrument pushes its price and those of other assets, a phenomenon
known as cross-impact. To be of use, cross-impact models must Æt data and be well-
behaved so they can be applied in applications such as optimal trading. To address these
issues, we introduce a set of desirable properties which constrain cross-impact models. We
classify cross-impact models according to which properties they satisfy and stress them
on three di�erent asset classes to evaluate goodness-of-Æt. We Ænd that two models are
robust across markets, but only one satisÆes all desirable properties and is appropriate for
applications.

From:
How to build a cross-impact model: Theoretical requirements and empirical results
M. Tomas, I. Mastromatteo, M. Benzaquen

Introduction

Trading pressure moves prices, a now well-established phenomenon known as market impact
[BBDG18, ATHL05, Tor97]. In fact, market impact has been measured in many independent
studies and it is robust across assets, time periods and markets. A more subtle e�ect is that
trading pressure from one asset can move the price of another. This e�ect has been dubbed
cross-impact. cross-impact transmits information across assets and ampliÆes market shocks.
Many papers incorporate cross-impact in applications but assume that the parameters of the
model are known [ELMK18, EMK19, GP16, TWG19]. To be applied in practice, they require a
calibration technique to estimate cross-impact from data.

The importance of cross-impact has sparked recent interest in devising calibration method-
ologies from empirical data [HS01, PV15, BMEB17, WSG16, SL19, TMB21, RT21a]. However,
empirical studies focus on goodness-of-Æt to calibrate cross-impact models or make simplifying
assumptions which may work well on certain asset classes but break on others. Therefore, from
the literature, we cannot determine whether there exists a universally robust and statistically
accurate cross impact model, nor more speciÆcally one which is suitable in other applications,
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I. Static cross-impact models

such as optimal trading.

This chapter seeks to bridge this gap by introducing desirable properties of cross-impact
models, classifying models according to which properties they satisfy and stress-testing these
models on di�erent markets to assess which provide good empirical Æt. In particular, we
Ænd that there is a single cross-impact model robust across asset classes and well-suited for
applications.

We brieØy comment on the links between our approach and the literature.

The paper most related to our work is [RT21a]. There, the authors characterise suitable
cross-impact models within a market where trades are modeled with Hawkes processes. The
resulting cross-impact models are well-behaved and can be calibrated, which the authors
illustrate on E-Mini S&P 500 futures.

This chapter stress-tests many di�erent cross-impact models and thus contributes to the
literature on the calibration and goodness-of-Æt testing of cross-impact models [BMEB17, SL19,
RT21a]. However, papers on the literature focus on one (or few) models at a time on a particular
asset class. Thus, this chapter shines light on which models perform best on a variety of
markets.

A set of theoretical studies have attempted to characterise suitable cross-impact models
from certain properties. Unfortunately, a pure no-arbitrage framework as in [AKS16, SL19] is
not su�ciently restrictive to prescribe a calibration methodology. We use some of their results
to classify static cross-impact models which allow for arbitrage.

Other studies obtain cross-impact models via interactions of di�erent agents. While the
mean-Æeld framework for optimal execution of [LM19] provides one explanation of the many
possible phenomena underlying cross-impact, it does not provide a recipe one may use on
empirical data. In the optimal market making literature, [BEGV18] Ænds that the liquidation
costs of a market maker faces when he holds an inventory q is of the form °q>

§q , where §

can be estimated in practice. In fact, the same § can be derived from the multivariate Kyle
framework [GdMMBB20, CK94]. We show that this § plays a special role, as it is the only
cross-impact model which satisÆes all desirable properties. This partially explains why this
cross-impact model appears in a variety of seemingly unrelated settings.

The chapter is organized as follows. Section 1 introduces the setup of the chapter. Sec-
tion 2 lists axioms and Section 3 cross-impact models of interest, along with the axioms they
satisfy. Section 4 stress-tests cross-impact models on a variety of markets. We conclude by
stressing the main contributions of the chapter and discussing open questions and directions
for future work.
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1. Cross-impact models as functions of market data

Notation

The set of n by n real-valued square matrices is denoted by Mn(R), the set of orthogonal
matrices by On , the set of real symmetric positive semi-deÆnite matrices by S

+
n (R) and the

set of real symmetric positive deÆnite matrices by S
++

n (R). Given a matrix A in Mn(R), A>

denotes its transpose. Given A in S
+

n (R), we write A1/2 for a matrix such that A1/2(A1/2)> = A

and
p

A for the matrix square root, the unique positive semi-deÆnite symmetric matrix such
that (

p
A)2 = A. We write ker(M) for the null space of a matrix M 2 Mn(R), ¶V for the

projector on a linear subspace of V 2Rn and ¶̄V = I °¶V for the orthogonal projector. Finally,
given a vector v 2 Rn , we write v = (v1, . . . , vn) and diag(v) for the diagonal matrix with
diagonal components the components of v .

1 Cross-impact models as functions of market data

To relate trades to prices, we observe the mid-prices and trades of d di�erent assets, both
being binned on a regular time interval of length ¢t . We denote by p i

t the opening price
of Asset i in the time window [t , t +¢t ] and by pt = (p1

t , · · · , pd
t ) the vector of asset prices.

We write q i
t the net market order Øow traded in the same period, i.e. the signed sum of the

volumes of all trades in that window, counting buy trades volume positively and sell trades
volume negatively. Similarly, qt = (q1

t , · · · , qd
t ) is the vector of net traded order Øow.

On a given trading day, our goal is to relate the time series of net order Øows {q0, q¢t , · · · , qT }

with the time series of prices {p0, p¢t , · · · , pT }. For a given asset, it is classically admitted that
price changes and net order Øow are linearly related, although the linear relationship breaks
down for large order Øow values [PB18]. Inspired by this, we also assume this is true across
assets. Furthermore, to emphasize the cross-sectional features of the problem, we discard the
inØuence of past order Øows. This leads to the following assumption.

Assumption 1. Price changes ¢pt := pt+¢t °pt and order Øow imbalances qt are linearly related,

i.e.

¢pt =§t qt +¥t , (1)

where the d £d matrix §t is called the cross-impact matrix and ¥t = (¥1
t , . . . ,¥d

t ) is a vector of

zero-mean random variables representing exogenous noise.

In Equation (1), price changes and order Øow imbalances are known and we have to choose the
cross-impact matrix §t . Our choice of cross-impact matrix inØuences the quality of Æt of the
model via the size of the residuals of Equation (1). The focus of this chapter is to Ænd the right
choice for the cross-impact matrix §t .

While many choices for the cross-impact matrix are possible, we focus on those which
depend on the parameters of the true data generating process. In the particular context where
all random variables are Gaussian, then second-order statistics are su�cient statistics. This
motivates the next assumption.
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I. Static cross-impact models

Assumption 2. In the rest of the chapter, we assume that price dynamics are given by

¢pt =§(ßt ,≠t ,Rt )qt +¥t , (2)

where § : S
+

n (R)£S
++

n (R)£Mn(R) ! Mn(R) is called a cross-impact model, ßt = Cov(¢pt )

is the price change covariance matrix, ≠t := Cov(qt ) is the order Øow covariance matrix, Rt =

E
£
(¢pt °E[¢pt ])(qt °E[qt ])>

§
is the response matrix and ¥t = (¥1

t , . . . ,¥d
t ) is a vector of zero-mean

random variables representing exogenous noise.

The cross-impact model § of Equation (2) is a function of the three key second-order statistics
which describe our market. Indeed, ßt quantiÆes the co-variation of returns, ≠t captures
co-trading of di�erent assets, and Rt reØects the average change of asset prices with traded
order Øow. By examining cross-impact models, we abstract the particular value of a cross-
impact model for a given set of second-order statistics. Instead, this allows us to examine the
cross-impact model across markets.

The main purpose of this chapter is to Ænd a suitable cross-impact impact model § in
Equation (2) given a set of observations of market data and corresponding statistics ßt ,≠t ,Rt .
The next section discusses how to choose a proper cross-impact model §. First, we comment
on the validity of our assumptions.

Remark 1 (Validity of the static approximation). Overall, Assumption 1 is relevant to describe
price impact shortly induced after trading for small portfolios. To assess its validity, we compare our

setup to models which account for past order Øow imbalances [SL19, AKS16, BMEB17] where price

dynamics are

pt =
X
s∑t

G(t ° s)qs +ªt ,

where G : t 7! G(t ) 2 Md (R) captures the dependence on past order Øow and ªt is a vector of

zero-mean random variables. Then

¢pt =G(0)qt +¥t +
X
s<t

(G(t +¢t ° s)°G(t ° s)) qs ,

where ¥t := ªt+¢t °ªt is a vector of zero-mean random variables. Assumption 1 ignores the last

term of the right hand side in the above equation. Therefore, we can measure the validity of our ap-

proximation by comparing Gi j :=
P

s<t Gi j (t+¢t°s)°Gi j (t°s) and Gi j (0), say with ∑i j :=
Gi j

Gi j (0)
.

For ¢t = 5 minutes and on stocks, Figure 3 of [BMEB17] shows ∑i j º 20%. Figure 5 of [SL19]

works in transaction time on bonds but a rough estimate for ¢t = 1 minute yields ∑i j º 30%. This

indicates our setup is relevant to capture the salient features of cross-impact.

Before proceeding, we comment on the structure of the trading costs in our setup.

Remark 2 (Trading costs). Equation (2) gives a prediction of portfolio trading costs. In particular,
if one assumes that the di�erence between the arrival price and the execution price is given by ¢pt ,

the cost incurred after the execution of the portfolio ª is

C (ª) = ª>¢pt = ª>§tª+ª>§t q̄t +ª>¥t , (3)
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2. Axioms: the desirable properties of cross-impact models

where q̄t is the order Øow imbalance due to trades of other market participants. Thus

E[C (ª)] = ª>§tª+ª>§tE[q̄t | ª]+ª>¥t ,

where E[q̄t | ª] represents the alignment of the market trades’ conditioned to the traded portfolio. This

may be non-zero because of herding, where our trades cause other investors to trade. The treatment of

this term depends on the trading strategy and is outside of the scope of this chapter. Thus, we assume

that E[q̄t | ª] = E[q̄t ] = 0 so that the average impact costs of trading the portfolio ª in our setting is

E[C (ª)] = ª>§tª.

The next section examines desirable properties we want cross-impact models to satisfy.

2 Axioms: the desirable properties of cross-impact models

To Ænd a proper cross-impact model for Equation (2), we have two potentially conØicting
objectives. The Ærst is goodness of Æt, or how well our model captures the inØuence of order
Øow to explain price changes. Cross-impact models are often selected on this basis alone
[BMEB17, SL19, WSG16]. This may yield good empirical Æt but these models neglect another
important aspect: the theoretical implications of our market model of Equation (2). For
example, does our choice of cross-impact model imply that agents can abuse cross-impact to
make a proÆt on average? These properties are critical if we want to use cross-impact models
in applications, such as [ELMK18, EMK19, GP16, TWG19].

To select a model on the basis of its implications, we need to establish which properties
we would like a cross-impact model to satisfy. To address this issue, this section proposes a list
of desirable properties of cross-impact models, which we dub axioms. Each axiom translates a
desired behaviour of cross-impact model, grounded in the implications of the cross-impact
model for the evolution of prices.

2.1 Symmetry

The Ærst type of axioms we introduce are symmetry axioms. They ensure that the cross-
impact is well-behaved under Ænancially-grounded transformations of its variables. First, the
cross-impact model should adapt to a re-ordering of the assets. This yields the following
axiom.

Axiom 1 (Permutational invariance). A cross-impact model § is permutation-invariant if, for
any permutation matrix P and (ß,≠,R) 2 (S +

n (R)£S
++

n (R)£Mn(R)),

§(PßP>,P≠P>,PRP>) = P§(ß,≠,R)P>.

In the absence of any return or order Øow correlation among assets, we expect price changes
to be independent. The cross-impact model should then respect this property. This motivates
the following axiom.
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I. Static cross-impact models

Axiom 2 (Direct invariance). A cross-impact model § is direct-invariant if, for any æ,! 2 Rn
+

r 2Rn ,

§(diag(æ)2,diag(!)2,diag(r )) =
nX

i=1

§(æ2
i ei e>i ,!2

i ei e>i ,ri ei e>i ) ,

where ei is the i -th element of the canonical basis.

Impact is expressed in a choice of currency units. However, the chosen currency should not
matter and cross-impact models should adapt accordingly. The next axiom translates this
property.

Axiom 3 (Cash invariance). A cross-impact model § is cash-invariant if, for any Æ > 0, and

(ß,≠,R) 2 (S +
n (R)£S

++
n (R)£Mn(R)),

§(Æ2
ß,≠,ÆR) =Æ§(ß,≠,R).

Similarly, cross-impact models should account for changes in volume units. For example,
stock splits can double the number of outstanding shares and halve their values (if we ignore
microstructural e�ects such as tick size and lot rounding). This leads to the following axiom.

Axiom 4 (Split invariance). A cross-impact model § is split-invariant if, for any diagonal matrix
of positive elements D 2Mn(R) and (ß,≠,R) 2 (S +

n (R)£S
++

n (R)£Mn(R)),

§(D°1
ßD°1,D≠D,D°1RD) = D°1

§(ß,≠,R)D°1.

The proÆt and loss of traders is invariant under orthogonal transformations (see Equation (3)).
It is natural to look for cross-impact models that share this property. As before, this ignores
microstructural e�ects such as exchange trading fees, bid-ask spreads, etc. The following
axiom introduces this property.

Axiom 5 (Rotational invariance). A cross-impact model § is rotation-invariant if, for any real
orthogonal matrix O 2On and (ß,≠,R) 2 (S +

n (R)£S
++

n (R)£Mn(R)),

§(OßO>,O≠O>,ORO>) =O§(ß,≠,R)O>.

We say of a model which does not satisfy Axiom 5 that it has a privileged basis. Note that
any cross-impact model which satisÆes Axioms 4 and 5 is invariant under the action of any
non-singular matrix M .

Among symmetry axioms, we expect permutational, direct and cash invariance (Axioms 1
and 3) to be of critical importance as models which do not respect them would behave
oddly. Split invariance (Axiom 4) is realistic but it may break on small timescales due to
microstructural e�ects. On the other hand, rotational invariance (Axiom 5) is less plausible
because markets have transaction costs, leverage constraints and other e�ects which break this
symmetry.
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2. Axioms: the desirable properties of cross-impact models

2.2 Arbitrage

This family of axioms clariÆes what properties a cross-impact model should satisfy to excludes
any statistical arbitrage in the sense of [Gat10], i.e. round-trip trading strategies with positive
average proÆt. The Ærst axiom involves static arbitrages: single period trading strategies with
average negative costs.

Axiom 6 (Positive semi-deÆniteness). The cross-impact model § takes values in the space of

positive semi-deÆnite matrices.

The next axiom involves dynamic arbitrages, i.e. multi-period trading strategies in the spirit
of [AKS16, Gat10, SL19]. Even though these arbitrages cannot be exploited in our single-period
setup, they would emerge by generalizing our setup to the multi-period setting as shown
in [SL19]. This is why we choose to also consider this class of arbitrages.

Axiom 7 (Symmetry). The cross-impact model § takes values in the space of symmetric matrices.

Axioms 6 and 7 together are su�cient to guarantee absence of statistical arbitrages. Arbitrage-
related axioms are of great important in applications where the presence of arbitrages leads
to odd behaviour. For example, [AKS16] highlights how arbitrageable cross-impact models
lead to ill-behaved optimal trading strategies. Although outside the scope of this chapter, it is
interesting to assess if real markets admit some kind of statistical arbitrage, and whether these
hold when factoring other transaction costs (see [SL19]).

2.3 Fragmentation

While the previous axioms ruled out statistical arbitrage, another related issue is what happens
when trading assets (or combination of assets) which have constant prices. For example,
consider a stock traded on multiple markets (say, Apple traded on the Nasdaq and on the Bats
venues). For a reasonably large interval of time ¢t (and abstracting microstructural e�ects),
we expect pNasdaq°pBats = 0. Thus, buying a volume q = qNasdaq+qBats of Apple stock should
yield the same cost no matter how one fragments the qNasdaq units bought on Nasdaq and the
qBats units bought on Bats. For this reason, this axiom is dubbed fragmentation invariance.

We distinguish between three di�erent forms of fragmentation invariance. The Ærst, weak
fragmentation invariance, concerns the price changes given by a cross-impact model and is
detailed in the next Axiom.

Axiom 8 (Weak fragmentation invariance). A cross-impact model § is weakly fragmentation
invariant if, for any (ß,≠,R) 2 (S +

n (R)£S
++

n (R)£Mn(R)) and ;ΩV µ kerß,

¶V §(ß,≠,R) = 0,

where we recall that ¶V denotes the projector on the linear subspace V .

In practice, if the price of a linear combination of assets is constant, weak fragmentation
invariance guarantees that its price cannot be moved through trading.

41



I. Static cross-impact models

Remark 3. From now on, we will implicitly assume that ker(ß) µ ker(R>), which is consistent

with the interpretation of ß and R as covariations of prices and order Øows. This implies that from

the point of view of the fragmentation-related axioms, any condition involving the the kernel of ß

will be naturally related to the kernel of R> as well.

We obtain a stronger condition if we require volume traded in zero-volatility directions to
induce no price impact. This leads to the following Axiom.

Axiom 9 (Semi-Strong fragmentation invariance). A cross-impact model satisÆes semi-strong
fragmentation invariance if, besides satisfying the weak fragmentation invariance Axiom 8, for
any (ß,≠,R) 2 (S +

n (R)£S
++

n (R)£Mn(R)) and ;ΩV µ kerß,

§(ß,≠,R)¶V = 0.

We can go one step further by ensuring that the cross-impact model itself should also not
depend on how zero-volatility directions are traded by other market members. This is strong
fragmentation invariance, the subject of the next Axiom.

Axiom 10 (Strong fragmentation invariance). A cross-impact model § is strongly fragmentation
invariant if, besides satisfying semi-strong fragmentation invariance (Axiom 9), for any (ß,≠,R) 2
(S +

n (R)£S
++

n (R)£Mn(R)) and ;ΩV µ ker(ß),

§(ß,≠,R) =§(¶̄V ß¶̄V ,¶̄V ≠¶̄V ,¶̄V R¶̄V ) .

Weak fragmentation invariance (Axiom 8) is critical since it prevents models from predicting
price changes for zero-volatility instruments. Furthermore, it properly aggregates liquidity of an
asset traded on multiple venues. For the same reasons, semi-strong and strong fragmentation
invariance (Axioms 9 and 10) should be of crucial importance.

2.4 Stability

Fragmentation invariance axioms constrain cross-impact models in extreme regimes of price
correlations. Similarly, stability axioms control behaviour in extremes of liquidity. Intuitively,
price manipulation of liquid products using illiquid instruments should be excluded.

We model this by deÆning a set V of illiquid instruments. We consider the matrix ¶̄V +"¶V

that multiplies by "ø 1 the liquidity of all instruments belonging to V . After multiplying the
traded order Øow by this matrix, the observables become

ß
q
" :=ß

≠
q
" := (¶̄V +"¶V )≠(¶̄V +"¶V )

R
q
" := R(¶̄V +"¶V ) .

We are now ready to formulate liquidity axioms. First, trading illiquid instruments should not
lead to large impact on liquid instruments. We would otherwise be able to manipulate the
prices of liquid instruments. The converse should be true: we should not be able to manipulate
prices of illiquid instruments by trading liquid instruments. This motivates the next axiom.
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2. Axioms: the desirable properties of cross-impact models

Axiom 11 (Weak Cross-Stability). A cross-impact model § is weakly cross-stable if, for any
(ß,≠,R) 2 (S +

n (R)£S
++

n (R)£Mn(R)) and linear subspace V and using the above notations,

¶̄V §(ß
q
" ,≠

q
" ,R

q
" )¶V =

"!0
O(1) (4)

¶V §(ß
q
" ,≠

q
" ,R

q
" )¶̄V =

"!0
O(1) . (5)

We can formulate a stronger cross-stability property. The next axiom formalizes the intuition
that impact among liquid assets should be independent of the behavior of illiquid assets.

Axiom 12 (Strong Cross-Stability). A cross-impact model § is strongly cross-stable if, in addition
to satisfying weak-cross stability ( Axiom 11), for any (ß,≠,R) 2 (S +

n (R)£S
++

n (R)£Mn(R)) and

linear subspace V and using the above notations,

¶̄V §
°
ß

q
" ,≠

q
" ,R

q
"

¢
¶̄V !

"!0
¶̄V §

°
¶̄V ß¶̄V ,¶̄V ≠¶̄V ,¶̄V R¶̄V

¢
¶̄V

An unresolved question is the e�ect of trading illiquid instruments on illiquid products. The
following axiom deals with this issue.

Axiom 13 (Self-Stability). A cross-impact model is self-stable if, for any (ß,≠,R) 2 (S +
n (R)£

S
++

n (R)£Mn(R)), subspace V and using the above notations,

¶V §(ß
q
" ,≠

q
" ,R

q
" )¶V =

"!0
O(1). (6)

Intuitively we want to avoid this property since it indicates that, even though a product is
illiquid (q / ", so that one would expect a diverging impact) the predicted cost of trading such
product can be Ænite.

We believe weak cross-stability (Axiom 11) is fundamental. Indeed, it should be impossi-
ble to manipulate prices from liquid assets by trading illiquid assets and vice-versa. We would
also like the stronger version of this axiom (Axiom 12) to hold: liquid instruments should be
insensitive to trading on illiquid ones. On the other hand, self-stability (Axiom 13) does not
penalize trading illiquid instruments. Thus, it is undesirable in applications.

2.5 Predicted covariance

Finally, it can be interesting to consider whether a cross-impact model predicts a contribution
to the return covariance that is proportional to ß or not.

Axiom 14 (Return covariance consistency). A cross-impact model § is return covariance
consistent if, for any (ß,≠,R) 2 (S +

n (R)£S
++

n (R)£Mn(R)), it satisÆes (up to a multiplicative

constant):

ß=§(ß,≠,R)≠§(ß,≠,R)>.
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This axiom is motivated by the fact that under the model in Equation (2), we expect return
covariances to be given by

ß= Cov(¢p) =§≠§
>
+Cov(¥) ,

so that if one assumes that the fundamental return covariance is proportional to the predicted
one, i.e. E[¥¥>] /ß, one would recover return covariance consistency. This property controls
the predicted price changes of the model, but we have no strong reason to believe cross-impact
models should satisfy it.

2.6 Link between axioms

Fragmentation and cross-stability are related for split and rotation-invariant cross-impact
models. The next proposition shows that fragmentation invariance implies cross-stability
properties for continuous cross-impact models.

Proposition 1. Let § be a jointly continuous cross-impact model which satisÆes split and rotational

invariance (Axioms 4 and 5). Then

1. If § satisÆes semi-strong fragmentation invariance (Axiom 9), then it is weakly cross-stable

(Axiom 11).

2. If § is strongly fragmentation invariant (Axiom 10), then it is strongly cross-stable (Axiom 12).

We prove Proposition 1 in Section I.A.1. While the converse is not true, the next proposition
shows that, given an additional regularity condition, cross-stability implies fragmentation
invariance.

Proposition 2. Let § be a jointly continuous cross-impact model which satisÆes split and rotational

invariance (Axioms 4 and 5). We further assume that, for any linear subspace V and using the

notations of the previous section, "2
§(ß

q
" ,≠

q
" ,R

q
" ) !

"!0
0. Then

1. If § is weakly cross-stable (Axiom 11), then it satisÆes semi-strong fragmentation invari-

ance (Axiom 9).

2. If § is strongly cross-stable (Axiom 12), then it is strongly fragmentation invariant (Axiom 10).

We prove Proposition 2 in Section I.A.1. A particularly interesting result of Propositions 1
and 2 is that for continuous cross-impact models which satisfy the regularity property of
Proposition 2, fragmentation invariance and cross-stability are equivalent.

3 Candidate cross-impact models

Now that we have characterized the desirable properties of cross-impact models, we provide a
set of cross-impact models and detail which axioms they satisfy. Their empirical performance
will be assessed in Section 4. We divide these models in two classes; those that are based on
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the return covariance ß and those based on the response R .

Before presenting the di�erent cross-impact models, we introduce some notation. For conve-
nience, we will note the price volatility æ := (

p
ß11, · · · ,

p
ßdd ), the signed order Øow volatil-

ity ! := (
p
≠11, · · · ,

p
≠dd ), and the price and Øow correlations Ω := diag(æ)°1

ßdiag(æ)°1,
Ω≠ := diag(!)°1

≠diag(!)°1.

3.1 Return covariance based models

Let us start with the simplest possible linear impact model: one without cross-impact.

DeÆnition 1 (directmodel). The direct model is deÆned for any (ß,≠,R) 2 (S +
n (R)£S

++
n (R)£

Mn(R)) as

§direct(ß,≠,R) := diag(æ)1/2diag(!)°1/2. (7)

To generalize this model to the multivariate setting while respecting cash invariance, weak
fragmentation invariance and consistency with correlations, a Ærst idea is to use the matrices
ß

1/2 and ≠
°1/2. Since ≠

°1/2q is a whitening transformation, this model is referred to as the
whitening model.

DeÆnition 2 (whitening model). Recall that given M 2 S
+

n (R), M 1/2 indicates a symmetric

matrix factorization (i.e., M 1/2(M 1/2)> = I ). The whitening model1 is deÆned, for any (ß,≠,R) 2
(S +

n (R)£S
++

n (R)£Mn(R)), as

§whitening(ß,≠,R) :=ß
1/2

≠
°1/2. (8)

Unfortunately, this model does not respect symmetry, positive-deÆniteness, strong fragmen-
tation invariance or weak cross-stability (Axioms 6, 7, 10 and 11). To impose symmetry and
strong fragmentation invariance, the el model2 proposed in [MBEB17] is directly expressed in
the basis of the return covariance matrix.

DeÆnition 3 (el model). The eigenliquidity ( el) model is deÆned, for any (ß,≠,R) 2 (S +
n (R)£

S
++

n (R)£Mn(R)), as

§el(ß,≠,R) :=
nX

a=1

sa

p
∏a

(s>a ≠sa)1/2
s>a , (9)

where we have introduced the eigenvalue decomposition of ß=
Pn

a=1 sa∏a s>a .

The el model is cross-stable, self-stable (Axioms 11 to 13) and is return covariance inconsistent
(Axiom 14). As mentioned above, there is in fact only one model which satisÆes all the axioms
that we have provided: the so-called multivariate kyle model, see [GdMMBB20, CK94].

1The whitening model is not independent of the symmetric factorization chosen for ß and ≠. As convention,
we will take the square root obtained by an orthogonal decomposition of each matrix and the square root of their
eigenvalues.

2The model proposed in [MBEB17] is actually the response-based one, referred later as r-el? model.
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DeÆnition 4 (kyle model). The kyle model is deÆned, for any (ß,≠,R) 2 (S +
n (R)£S

++
n (R)£

Mn(R)), as

§kyle(ß,≠,R) := (≠°1/2)>
p

(≠1/2)>ß≠1/2≠
°1/2. (10)

The kyle model plays a fundamental role as it is the only model which satisÆes all axioms.
This may explain why it appears in many di�erent settings, seemingly unrelated to the Kyle
insider trading setup [Gué17, EV18, RT21a]. The next proposition shows it is the only model
which satisÆes arbitrage axioms and return covariance consistency.

Proposition 3. Let § be a symmetric, positive-semideÆnite and return covariance consistent

cross-impact model (Axioms 6, 7 and 14). Then §=§kyle up to a multiplicative constant.

The proof of Proposition 3 is given in Section I.A.2. The next proposition further shows that
the kyle model is also the only return covariance based model which satisÆes all symmetry
axioms.

Proposition 4. A return covariance based cross-impact model § that is both split-invariant and

rotation-invariant (Axioms 4 and 5) can always be written in the form

§(ß,≠) =L
°>U F (µ)U>

L
°1,

where

≠=L L
> ; ß̂ :=L

>
ßL ; U>

ß̂U := diag(µ) ; F (µ) :=§(diag(µ), I ).

Furthermore, if § is cash-invariant and direct-invariant (Axioms 2 and 3), then F (µ) = diag(µ)1/2

up to a multiplicative constant and §=§kyle up to a multiplicative constant.

The proof of Proposition 4 is given in Section I.A.2.

3.2 Response based models

All the models presented above assume that it is possible to relate the e�ect of the order Øow
imbalance solely with the return and order Øow covariances. This section examines models
which also use the response matrix R . First, we can deÆne a response-based direct impact
model similar to Equation (7).

DeÆnition 5 (r-direct model). The response direct ( r-direct) model is deÆned, for any
(ß,≠,R) 2 (S +

n (R)£S
++

n (R)£Mn(R)), as

§r-direct(ß,≠,R) := diag(R11, · · · ,Rdd )diag(!)°1 .

This model corresponds to the maximum likelihood estimator of the cross-impact matrix §

under the constraint §i j = 0 for i 6= j . Removing this constraint, one obtains the multiavariate
maximum likelihood estimator deÆned below.

DeÆnition 6 (ml model). The maximum likelihood ( ml) model is deÆned, for any (ß,≠,R) in

(S +
n (R)£S

++
n (R)£Mn(R)), as

§ml(ß,≠,R) := R≠
°1.
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The ml does not satisfy desirable arbitrage or liquidity axioms. Thus, for similar reasons the
el was introduced, we introduce a r-el model, so to have a response-based model satisfying
more axioms while coinciding with the ml model when R and ≠ commute.

DeÆnition 7 (r-el model). The response-based eigenliquidity ( r-el) model is deÆned, for any
(ß,≠,R) in (S +

n (R)£S
++

n (R)£Mn(R)), as

§r-el(ß,≠,R) :=
X
a

sa
s>a Rsa

s>a ≠sa

s>a , (11)

where sa are the eigenvectors of ß.

Finally, we can replicate the construction of the kyle estimator in a response-based context to
obtain the following model.

DeÆnition 8 (r-kyle model). The response-based Kyle ( r-kyle) model is deÆned, for any (ß,≠,R)

in (S +
n (R)£S

++
n (R)£Mn(R)), as

§r-kyle(ß,≠,R) := (≠°1/2)>
p

(≠1/2)>R≠°1R>≠1/2≠
°1/2. (12)

3.3 The ? transformation

Some of the models deÆned in the previous section (whitening, el, r-el) violate split
invariance even though they are well-behaved under rotation. We can trade one for the other
through the following transformation.

DeÆnition 9 (The ? transformation). Given a cross-impact model §, the starred version of §,
written §

?, is a cross-impact model deÆned for any (ß,≠,R) in (S +
n (R)£S

++
n (R)£Mn(R)) as

§
?(ß,≠,R) := diag(æ)§(Ω,≠?,R?)diag(æ) ,

where we have deÆned ≠
? = diag(æ)≠diag(æ) and R? = diag(æ)°1Rdiag(æ).

In practice, the starred version of a cross-impact model applies the original cross-impact
model after rescaling all the observables in units of risk via a multiplication by the volatility æ.
Naturally, this transformation has no e�ect on models that satisfy split invariance.

3.4 Axioms satisÆed by each model

Table I.1 summarises the axioms satisÆed by each model. Most results are straightforward
and omitted for conciseness. We include some of the slightly less trivial proofs of the axioms
satisÆed by the kyle model in Section I.A.3. We summarise some of the connections between
Axioms in Table I.2.
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Model Symmetries Arbitrage Fragmentation Liquidity Covariances

PI DI CI SI RI SA DA WFI SSFI SFI WCS SCS SS PCC
direct 3 3 3 3 7 3 3 7 7 7 3 3 7 7

whitening 3 3 3 7 3 7 7 3 7 7 7 7 7 3

whitening? 3 3 3 3 7 7 7 3 7 7 7 7 7 3

el 3 3 3 7 3 3 3 3 3 3 3 3 3 7

el? 3 3 3 3 7 3 3 3 3 3 3 3 3 7

kyle 3 3 3 3 3 3 3 3 3 3 3 3 7 3

r-direct 3 3 3 3 7 3 7 7 7 7 3 3 7 7

ml 3 3 3 3 3 7 7 3 7 7 7 7 7 7

r-el 3 3 3 7 3 7 3 3 3 3 3 3 3 7

r-el? 3 3 3 3 7 7 3 3 3 3 3 3 3 7

r-kyle 3 3 3 3 3 3 3 3 3 3 3 3 7 7

Table I.1: Summary of axioms satisÆed by di�erent cross-impact model.

We use the symbol 3 for axioms that are satisÆed and 7 for axioms that are violated. We
use the color green in order to label a desirable property of the model, red for an undesirable
property of the model. Yellow is used for properties/models whose violation might not be
particularly relevant in order to explain empirical data, although they are interesting to
consider. Axioms are grouped by category and the order in which they were presented in the
text.

Result Symmetries Arbitrage Fragmentation Liquidity Covariances

PI DI CI SI RI SA DA WFI SSFI SFI WCS SCS SS PCC
Proposition 1 (1) H H H 3

Proposition 1 (2) H H H 3

Proposition 2 (1) H H 3 H
Proposition 2 (2) H H 3 H
Proposition 3 3 3 3 3 3 H H 3 3 3 3 3 7 H
Proposition 4 3 H H H H 3 3 3 3 3 3 3 7 3

Table I.2: Salient relations among the axioms introduced in the chapter.

The table summarises the results of di�erent propositions relating axioms together. For a given
result, we use the symbol H to denote a condition that holds by hypothesis. On the same row,
we mark satisÆed axioms using the notation of Table I.1.

4 Goodness-of-Æt of cross-impact models

Sections 2 and 3 listed desirable properties of cross-impact models and examined which were
satisÆed by a variety of candidate models. This enabled us to understand the theoretical
implications of a given cross-impact model. However, well-behaved models which poorly
explain data are of little use. The goal of this section is to assess the goodness-of-Æt of the
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4. Goodness-of-Æt of cross-impact models

cross-impact models listed in Section 3 to understand which models satisfy desirable properties
and Æt data well.

4.1 Methodology

To assess goodness-of-Æt, we select the timescale ¢t to be one minute in order to avoid
microstructural e�ects while being small. For a given cross-impact model §, the predicted
price change for the time window [t , t +¢t ] due to the measured order Øow imbalance qt on
that time window is

c¢p t :=§(ßt ,≠t ,Rt )qt ,

where ßt ,≠t ,Rt are the covariances deÆned in Assumption 2, which we will estimate using
empirical data.

To evaluate quality of Æt of the cross-impact model §, we compare the predicted price
changes c¢p t to the realised price changes ¢pt , using three di�erent indicators of performance
which emphasize di�erent aspects of prediction errors. All three indicators are parametrized by
a symmetric, positive deÆnite matrix M 2S

+
n (R), M 6= 0. Given a realization of the price pro-

cess {¢pt }T
t=1 of length T and a corresponding series of predictions { c¢p t }T

t=1, the M-weighted
generalized R

2 is deÆned as

R
2(M) := 1°

P
1∑t∑T (¢pt ° c¢p t )>M(¢pt ° c¢p t )

P
1∑t∑T ¢p>

t M¢pt

.

The close the score is to one, the better the Æt to empirical data. To highlight di�erent sources
of error, we consider the following choices of M :

1. M = Iæ := diag(æ)°1, to account for errors relative to the typical deviation of the asset
considered. This type of error is relevant for strategies predicting idiosyncratic moves of
the constituents of the basket, rather than strategies betting on correlated market moves.

2. M = Jæ := (ß°1/2
i i

ß
°1/2
j j

)1∑i , j∑m , to check if the model successfully forecasts the overall
direction of all assets. This is relevant for strategies predicting global moves of the
constituents of the basket.

3. M =ß
°1, to consider how well the model predicts the individual modes of the return

covariance matrix. This would be the relevant error measure for strategies that place
a constant amount of risk on the modes of the correlation matrix, leveraging up
combinations of products with low volatility and scaling down market direction that
exhibit large Øuctuations. 3

Given M 2 S
+

n (R), M 6= 0, we compute scores on empirical data in the following manner.
First, we divide data into two subsets of roughly equal length: data from 2016 on the one

3Note that this measure strongly penalizes models violating fragmentation invariance: errors along modes of
zero risk should a-priori be enhanced by an inÆnite amount. In this study we have decided to clip the eigenvalues
of ß to a small, non-zero amount equal to 10°15.
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hand and in 2017 on the other hand. Given data from year X and year Y , we calibrate
estimators and cross-impact models on year X and use models to predict price changes in
year Y , writing R

2
X!Y (M) for the average score. In-sample scores are deÆned as R

2
in(M) :=

1
2

(R2
2016!2016(M)+R

2
2017!2017(M)) while out-of-sample scores are deÆned as R

2
out(M) :=

1
2

(R2
2016!2017(M)+R

2
2017!2016(M)).

4.2 Data used

To assess goodness-of-Æt in a variety of di�erent conditions, we stress-test models on three
di�erent markets with di�erent key characteristics. We detail each dataset here and the reason
we chose them. Detailed descriptions of each dataset, the estimation of covariance matrices
and of the cross-impact models is given in Section II.B.1.

The Ærst dataset comprises two NYMEX Crude Oil future contracts and the correspond-
ing Calendar Spread contract. The Ærst two contracts (respectively, CRUDE0 and CRUDE1)
entail an agreement to buy or sell 1000 barrels of oil either at the next month or at the
subsequent month. The Calendar Spread CRUDE1_0 swaps the front month future with the
contract settling on the following month. Because of the strong correlations among the two
futures, the price of the calendar spread has very small Øuctuations. This dataset allows us
to test the importance of fragmentation axioms. Further details about this data are given in
Section I.B.1.

While relevant to illustrate the importance of fragmentation invariance, the previous dataset
corresponds to a pathological case where ß has only one large non-zero eigenvalue, so that
cross-impact models give similar results. To circumvent this issue, we look at 10-year US
Treasury note futures and E-Mini S&P500 futures. We collect data from the Chicago Mercantile
Exchange and use the Ærst two upcoming maturities of both contracts (respectively called
SPMINI and SPMINI3 for E-Mini S&P500 futures and 10USNOTE and 10USNOTE3 for 10-year
US treasury notes). Further details about this data are given in Section I.B.2.

The previous datasets give us no clear conclusion on the role of stability axioms. In both
examples illiquid assets were highly correlated to other liquid assets. This extreme regime of
correlations makes it harder to analyse the role of liquidity. To circumvent this issue, we study
the behavior of cross-impact models in the low-correlation, many assets regime, using stocks
data. Further details about this data are given in Section I.B.3.

4.3 Goodness-of-Æt

The goodness-of-Æt results for each model, dataset and score are presented in Table I.4 in
Section I.C. Overall, on all datasets, the cross-impact models with the best goodness-of-Æt are
the r-el, kyle and ml models. They signiÆcantly outperform models which do not account
for cross-sectional e�ects, such as the r-direct model. In high-correlation regimes, such as
on the Crude and Bonds and Indices datasets, this gap is more pronounced. Among these
models, it is remarkable that the kyle model satisÆes all axioms and achieves comparable
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4. Goodness-of-Æt of cross-impact models

Figure I.1: Idiosyncratic scores as a function of liquidity.

For each stock in our dataset, we compute the the in-sample stock-speciÆc scores R
2(¶i )

scores on 2016 data. We then represent the average in-sample stock-speciÆc score as a function
of the liquidity !i , binning data by !i to smooth out noise. Results for the ml (in pink),
kyle (in green), r-direct (in blue) and r-el (in orange) models are shown. We have further
indicated the 10% and 90% quantiles of liquidity !10% and !90%.

performance to the ml model, which maximises empirical Æt but has issues related to arbitrage.

Given these results, we focus on analysing the inØuence of certain market parameters on the
goodness-of-Æt of cross-impact models. The next section examines the role of the liquidity.

4.4 Goodness-of-Æt relative to liquidity

An interesting feature of our stocks dataset is the heterogeneous liquidity among assets. This
allows us to explore the inØuence of the liquidity of a given stock on the performance of
di�erent models. Figure I.1 shows the results of this analysis. Consistent with Table I.4, we
Ænd that overall, in score terms, ml>kyle>r-direct>r-el. The r-direct model fares better
for liquid stocks, where a larger fraction of variance can be explained by same-stock trades.
Surprisingly, the same holds for ml and kyle models. The r-el model stands as an exception.
It better explains price moves for stocks which are within the band of typical liquidity, between
!10% and !90%. This makes sense since the r-el model is self-stable as it aggregates liquidity
of all stocks. Thus, though this assumption is justiÆed for stocks of liquidity close to the
average, it is violated outside of this zone. The ml and kyle models are not self-stable and
better deal with very liquid or illiquid stocks. To further reinforce this point, for stocks of
liquidity close to the average in our pool of stocks, the di�erence scores of the el and kyle

models reach a minimum. This is consistent with the fact that in the approximation ≠º!2
50%

I ,
the two models coincide. Thus, violating self-stability (Axiom 13) is key to explain price
changes for all ranges of liquidity within a basket of instruments.

4.5 Robustness of goodness-of-Æt

The previous section compared the descriptive power of di�erent cross-impact models. How-
ever, robustness of the di�erent cross-impact models is also of interest. In Figure I.2, we show
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I. Static cross-impact models

Figure I.2: Idiosyncratic score and overÆtting as a function of the number of assets and

bin timescale.

Left column: average out-of-sample idiosyncratic score R
2
out(Iæ) (top left) and overÆtting

coe�cient R
2
out(Iæ)

R
2
in(Iæ)

(bottom left) computed using stocks data. Out-of-sample and in-sample

scores were computed by randomly selecting a subset of stocks and computing scores on the
given subset, repeating the procedure more when there are fewer stocks are selected than when
a large proportion of stocks from our sample is considered. The average score for each models
across all samples is then shown. Scores are shown for the ml (in pink), the kyle (in green),
r-direct (in blue) and r-el (in orange). Stars show results for crude contracts, crosses for
bonds and indices and triangles for all 393 stocks of our sample. Right column: idiosyncratic
scores (top right) and overÆtting coe�cient (bottom right) as a function of the bin timescale.
Scores were computed using the same procedure described in Section I.C, varying the bin
parameter from 10 seconds up to around an hour.

the out-of-sample score and overÆtting coe�cient for idiosyncratic price changes for our set of
393 stocks, as a function of the bin timescale and number of instruments.

As expected, the number of degrees of freedom controls the overÆtting of di�erent mod-
els. This explains why, in terms of overÆtting with respect to the number of instruments at the
minute timescale, r-direct< kyle< mlº r-el. In contrast, models overÆt less on futures,
which suggests that overÆtting decreases as the pairwise correlation between instruments
increases. Furthermore, out-of-sample idiosyncratic scores for the ml and kyle model increase
with the number of assets. A somewhat surprising result, despite the small pairwise correlation
of instruments in our stock dataset and the large number of stocks considered in this study, is
that idiosyncratic scores appear to keep increasing for more than 400 assets. This suggests that
there is still latent explanatory power in the dataset but only two models manage to extract it.
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Focusing on the inØuence of the bin timescale, there is little overÆtting at the minute timescale
but it increases with the bin timescale. In particular, the good Æt of the ml at small timescales
quickly breaks down for larger timescales. On the other hand, both the r-el and kyle models
are quite robust up until the 10 minute timescale. At this timescale, we expect our static
approximation described in Section 1 to break down.

Conclusion

Let us summarize what we have achieved. Our main objective was to Ænd suitable static
cross-impact models given a set of empirical observations encoded in the su�cient statistics
(ß,≠,R) which Æt data well and led to well-behaved market dynamics. To do so, we introduced
axioms, desirable properties of cross-impact models. We classiÆed existing cross-impact
models and characterised those which satisfy certain subset of axioms.

In all markets studied, our analysis conÆrms that cross-impact models are well suited to
explain price changes, showing signiÆcant improvement compared to impact models in which
cross-sectional e�ects are disregarded (see Table I.4). However, only the kyle and ml models
perform well on all markets studied, whereas only the kyle model prevents arbitrage and is
well-behaved when trading both liquid and illiquid instruments. This makes it an ideal model
for other applications, such as optimal execution.

Independently of our speciÆc model implementations, we also established a few charac-
terisation results of cross-impact models from axioms. In particular, we showed that symmetry
axioms (Axioms 1 to 5) alone completely characterise return-based cross-impact models and
that the kyle model is the only model to satisfy all cross-impact axioms.

Even though we have considered a linear, single-period scenario, the ideas introduced in
this chapter could be generalised. For instance, the framework can be adapted to deal with
derivatives [TMB21]. Another topic is the generalisation of this framework to account for
the auto-correlation of the order Øow. This question is examined in [RT21b, RT21a] but an
axiom-Ærst approach is still lacking.

Finally, our results can be used to choose adequate cross-impact models for applications
discussed in the literature. For optimal trading applications [ELMK18, EMK19, GP16, LM19],
it is natural to favor models which satisfy arbitrage axioms to prevent ill-behaved trading
strategies. When modeling cross-impact at the microstructural level [TWG19] then arbitrage,
fragmentation and liquidity axioms are all important to rule out price manipulation. For each
domain, we highlighted which cross-impact models would be good candidates.
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I.A Proofs

This section contains proofs of some results stated in the main text.

I.A.1 Proof of Propositions 1 and 2

In this section, we establish some links between fragmentation and liquidity axioms. To do
so, in the rest of this section, we will make use of two kinds of regularised covariance and
response matrices. Given a linear subspace V , we Ærst introduce the order Øow regularised
estimators:

ß
q
" :=ß

≠
q
" := (¶̄V +"¶V )≠(¶̄V +"¶V )

R
q
" := R(¶̄V +"¶V ) .

These correspond to the multiplication of liquidity of instruments in V by ". Similarly, we
introduce the price regularised estimators:

ß
p
" := (¶̄V +"¶V )ß(¶̄V +"¶V )

≠
p
" :=≠

R
p
" := (¶̄V +"¶V )R .

These correspond to the multiplication of price Øuctuations of instruments in V by ". We
begin with a convenient lemma that relates liquidity properties to fragmentation properties.

Lemma 1. Let § be a split-invariant and rotation-invariant (Axioms 4 and 5) cross-impact model

and a linear subspace V such that ;ΩV µRn . Then, for all "> 0, we have

§(ß
q
" ,≠

q
" ,R

q
" ) =¶̄V §(ß

p
" ,≠

p
" ,R

p
" )¶̄V

+"°1
£
¶̄V §(ß

p
" ,≠

p
" ,R

p
" )¶V +¶V §(ß

p
" ,≠

p
" ,R

p
" )¶̄V

§

+"°2
¶V §(ß

p
" ,≠

p
" ,R

p
" )¶V .

Proof. Let (u1, · · · ,uk ) an orthonormal basis for the linear subspace V , where k = dim(V ) and
(u1, · · · ,ud ) a completed orthonormal basis on Rd . We write A := (u1 | u2 | · · · | uk ) 2Md ,k (R)

and U := (u1 | u2 | · · · | ud ) 2 Md ,d (R). Then ¶V = A A> and ¶̄V = I ° A A>. By rotation
invariance, we have

U§(ß
q
" ,≠

q
" ,R

q
" )U>

=§(Uß
q
"U>,U≠

q
"U>,U R

q
" U>) .

Since (u1, · · · ,ud ) is an orthonormal basis, U A only has non-zero entries along the diagonal.
Writing bA :=U A we can apply split invariance with D = (I ° bA bA>+" bA bA>) to obtain

U§(ß
q
" ,≠

q
" ,R

q
" )U>

= D§(D°1Uß
q
"U>D°1,DU≠

q
"U>D,D°1U R

q
" U>D)D .
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Straightforward computations show that

D°1Uß
q
"U>D°1

=Uß
p
"U> DU≠

q
"U>D =U≠

p
"U> D°1U R

q
" U>D =U R

p
" U> .

Therefore

U§(ß
q
" ,≠

q
" ,R

q
" )U>

=(I ° bA bA>
+"°1 bA bA>)§

°
Uß

p
"U>,U≠

p
"U>,U R

p
" U>¢

(I ° bA bA>
+"°1 bA bA>) .

Applying rotational invariance once again we get
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q
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This Ænally yields
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which concludes the proof.

In a similar fashion as Lemma 1, one can prove the following Lemma.

Lemma 2. Let § be a split-invariant and rotation-invariant (Axioms 4 and 5) cross-impact model

and a subspace V such that ;ΩV µRn . Then we have

§(ß
p
" ,≠
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Lemmas 1 and 2 enable us to relate cross-stability to fragmentation invariance. This is the
topic of the next proposition.

Proposition 1. Let § be a jointly continuous cross-impact model which satisÆes split and rotational

invariance (Axioms 4 and 5). Then

1. If § satisÆes semi-strong fragmentation invariance (Axiom 9), then it is weakly cross-stable

(Axiom 11).

2. If § is strongly fragmentation invariant (Axiom 10), then it is strongly cross-stable (Axiom 12).

Proof. We Ærst prove (1). Since the cross-impact model § is continuous and satisÆes semi-strong
fragmentation invariance we have

§(ß
p
" ,≠

p
" ,R

p
" )¶V !

"!0
0

¶V §(ß
p
" ,≠

p
" ,R

p
" ) !

"!0
0.
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Plugging the above in the results of Lemma 2 yields

¶̄V §(ß
p
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p
" ,R

p
" )¶V = "°1

¶̄V §(ß
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" ,≠

q
" ,R

q
" )¶V !
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p
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p
" )¶̄V = "°1

¶V §(ß
q
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q
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q
" )¶̄V !

"!0
0.

Thus § is weakly cross-stable. We now prove (2). Continuity at "= 0 and strong fragmentation
invariance yield

¶̄V §(ß
p
" ,≠

p
" ,R

q
" )¶̄V !

"!0
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Plugging the above into the results of Lemma 2 gives
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This implies that § is strongly cross-stable.

Interestingly, the converse of Proposition 1 does not hold, thus indicating that the fragmentation
invariance properties play a more fundamental role than liquidity related axioms. The next
proposition shows the converse, provided some additional regularity of the cross-impact model.

Proposition 2. Let § be a jointly continuous cross-impact model which satisÆes split and rotational

invariance (Axioms 4 and 5). We further assume that, for every linear subspace V and using the

previous notations, "2
§(ß

q
" ,≠

q
" ,R

q
" ) !

"!0
0. Then

1. If § is weakly cross-stable (Axiom 11), then it satisÆes semi-strong fragmentation invari-

ance (Axiom 9).

2. If § is strongly cross-stable (Axiom 12), then it is strongly fragmentation invariant (Axiom 10).

Proof. We Ærst prove (1). Since the cross-impact model § is weakly cross-stable we have
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Furthermore, by assumption we have
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Plugging the above in the results of Lemma 1 yields
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Combining the above and using continuity, we obtain

¶V §(ß
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Thus this proves that § is semi-strongly fragmentation invariant. We now prove (2). Continuity
at "= 0 and strong cross-stability yield

¶̄V §(ß
q
" ,≠

q
" ,R

q
" )¶̄V !

"!0
¶̄V §(¶̄V ß¶̄V ,¶̄V ≠¶̄V ,¶̄V R¶̄V )¶̄V .

Plugging the above into the results of Lemma 1 gives

¶̄V §(ß
q
" ,≠

q
" ,R

q
" )¶̄V = ¶̄V §(ß

p
" ,≠

p
" ,R

p
" )¶̄V !

"!0
¶̄V §(¶̄V ß¶̄V ,¶̄V ≠¶̄V ,¶̄V R¶̄V )¶̄V .

This implies that § is strongly fragmentation invariant.

Propositions 1 and 2 show that fragmentation and cross-stability axioms are related. Further-
more, for cross-impact models which satisfy the regularity property of Proposition 2, the two
sets of axioms are equivalent.

I.A.2 Proof of Propositions 3 and 4

In this section, we characterise the models which satisfy the axioms introduced in Section 2.
We begin with the following proposition, the proof of which is heavily inspired by [CK94,
GdMMBB20].

Proposition 3. Let § be a symmetric, positive-semideÆnite and return covariance consistent

cross-impact model (Axioms 6, 7 and 14). Then §=§kyle up to a multiplicative constant.

Proof. Let § be a cross-impact model which satisÆes Axioms 6 and 14 and (ß,≠,R) 2 (S +
n (R)£

S
++

n (R)£Mn(R)). We assume for convenience that the multiplicative constant in Axiom 14 is
one. Writing § for §(ß,≠,R), and L for a matrix such that ≠=L L

>, we have

ß=§≠§
>
=§L L

>
§

>
= (§L )(§L )>.

Thus, by unicity up to a rotation of the square root decomposition, writing G for a matrix
such that ß=GG

>, there exists a rotation O such that §=GOL
°1. Furthermore, since § is

symmetric,
GOL

°1
= (GOL

°1)>.

Rewriting, we Ænd
L

>
GO =O>

G
>
L ,

so that the matrix L
>
GO is symmetric and satisÆes

(L>
GO)(L>

GO)> = (LG )(L>
G )> .
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Since (L>
G )(L>

G )> is symmetric positive semi-deÆnite, the symmetric square root is unique
and

L
>
GO =

p
(L>G )(L>G )>.

Plugging this back into the expression of the cross-impact matrix yields the result:

§=GOL
°1

=L
°>

p
(L>G )(L>G )>L

°1
=L

°>
p

L>ßL L
°1 .

Hence, there is a single symmetric, positive-semideÆnite, covariance-consistent, cross-impact
model. Given that the fragmentation-related axioms seem so fundamental, one might wonder
how many models one can build that satisfy that family of properties. Surprisingly, we Ænd
that the class of models enjoying both split invariance and rotational invariance is quite small,
as shown in the next lemma.

Lemma 3. Let § be a cross-impact model which satisÆes Axioms 4 and 5. Then, for all (ß,≠,R) 2
(S +

n (R)£S
++

n (R)£Mn(R)), it can be written as

§(ß,≠,R) =L
°>U§(U>

ß̂U , I ,U>R̂U )U>
L

°1,

where

≠=L L
>

ß̂=L
>
ßL

R̂ =L
>RL

°>

and U is an orthogonal matrix (i.e., UU> = I ).

Proof. The lemma is obtained by applying sequentially rotational invariance, split invariance
and again rotational invariance. The Ærst two transformations can be used in order to remove
the dependency in ≠ as the second argument of the §(ß,≠,R) function.

When one discards the inØuence of the response matrix, the model can further be characterised
as shown by the next proposition.

Proposition 4. A return covariance based cross-impact model § that is both split-invariant and

rotation-invariant (Axioms 4 and 5) can always be written in the form

§(ß,≠) =L
°>U F (µ)U>

L
°1,

where

≠=L L
> ; ß̂ :=L

>
ßL ; U>

ß̂U := diag(µ) ; F (µ) :=§(diag(µ), I ).

Furthermore, if § is cash-invariant and direct-invariant Axioms 2 and 3, then F (µ) / diag(µ)1/2

and §=§kyle up to a multiplicative constant.
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Proof. For a return covariance based model, we can simply choose from Lemma 3 to Æx U as
the rotation that diagonalizes the symmetric matrix ß̂, obtaining:

U>
ß̂U = diag(µ) .

This choice implies

§(ß,≠) =L
°>U§(diag(µ), I )U>

L
°1,

which yields the result of the Ærst part of the proposition. Furthermore, if we assume § is
cash-invariant and direct-invariant (Axioms 2 and 3), we have

§(diag(µ), I ) =
dX

i=1

p
µi§(ei e>i ,ei ,e>i )

which yields the kyle model up to a constant.

The above shows that the only return-based cross-impact model which satisÆes all symmetry
axioms Axioms 1 to 5 is the kyle model.

I.A.3 Proof of important properties of the kyle model

This section is dedicated to showing that the kyle model satisÆes all the axioms outlined in
section Section 2. As the fragmentation and invariance axioms were discussed in the previous
section, the next lemma shows that the kyle model is also cross-stable.

Lemma 4. The kyle model is strongly cross-stable in the sense of Axioms 12 and 13 and is not

self-stable in the sense of Axiom 13.

Proof. Let V be a linear subspace of Rn ) and "> 0. Note that, writing G for a matrix such that
GG

> =ß, for any matrix L" such that L"L
>
" =≠

q
" , we previously showed that there exists a

rotation matrix O" = (L>
" G )°1

q
(L>

" G )(L>
" G )> such that we have

§kyle(ß
q
" ,≠

q
" ,R

q
" ) =GO"L

°1
" .

However, ≠q
" = (¶̄V +"¶V )≠(¶̄V +"¶V ) = (¶̄V +"¶V )L L

>(¶̄V +"¶V ) = [(¶̄V +"¶V )L ][(¶̄V +

"¶V )L ]>. Thus,

§kyle(ß
q
" ,≠

q
" ,R

q
" ) =GO"[(¶̄V +"¶V )L ]°1

=GO"L
°1(¶̄V +

1

"
¶V )

=GO"L
°1
¶̄V +

1

"
GO"L

°1
¶V .

Using the symmetry of the kyle model, the above yields:

§kyle(ß
q
" ,≠

q
" ,R

q
" ) = ¶̄V L

°>O>
" G

>
+

1

"
¶V L

°>O>
" G

>.
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Thus, we have

¶̄V §kyle(ß
q
" ,≠

q
" ,R

q
" )¶V = ¶̄V L

°>O>
" G

>
¶V

¶V §kyle(ß
q
" ,≠

q
" ,R

q
" )¶̄V =¶V GO"L

°1
¶̄V .

Since O>
" is an orthogonal matrix, we have

¶̄V §kyle(ß
q
" ,≠

q
" ,R

q
" )¶V =

"!0
O(1)

¶V §kyle(ß
q
" ,≠

q
" ,R

q
" )¶̄V =

"!0
O(1) ,

which proves that kyle satisÆes Axiom 11. Furthermore,

¶V §kyle¶V =
1

"
¶V L

°>O>
" G

>
¶V ,

so that unless ¶V L
°>O>

" G
>
¶V = 0, we have:

||¶V §kyle¶V || = "°1
||¶V L

°>O>
" G

>
¶V || !

"!0
1 .

Choosing diagonal ß and ≠ such that ¶V L 6= 0 and G¶V 6= 0, we see that ¶V L
°>O>

" G
>
¶V =

0 cannot hold for all ß,≠. This shows that kyle does not satisfy Axiom 13. Finally, notice
that by using Lemma 3 one can make ≠ appear only in the combination L

>
ßL , which

is insensitive to the components of ≠ belonging to the kernel of ß, which proves strong
cross-stability (Axiom 12).
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Figure I.3: Number of traded NYMEX Crude oil futures and Calendar Spread contracts

(in thousands) relative to daily number of traded contracts.

The number of contracts sold relative to the daily average is shown for the front month
contract (in blue), the subsequent month (in orange) and the Calendar Spread (in green). The
average number of traded NYMEX Crude oil futures and Calendar Spread contracts V̄ over
2016 is shown in the upper right corner. Vertical dashed lines show speciÆc dates. An example
of Ærst notice date for the front month contract is shown in bold black. After the Ærst notice
date, holders of the future contract may ask for physical delivery of the underlying. We also
show two dates away from a Ærst notice date: the 6th and 15th of June 2016. Colored triangles
show the relative number of contracts exchanged on these dates. Note that the number of
contracts is represented in thousands and was not adjusted by the basis point, so that the
underlying of each contract is 1000 barrels of oil.

I.B Data

This appendix contains details on the datasets and processing used to apply the di�erent
models.

I.B.1 Crude contracts

Description of the dataset We collected trades and quotes data from January 2016 to
December 2017, between 9:30AM to 7:30PM UTC, where most of the trading takes place in
our dataset, removing 30 minutes around the opening of trading hours to mitigate intraday
seasonality. After Æltering and processing, we have a total of 430 days in our sample (237 in
2016 and 193 in 2017). We highlight below two important features of our pre-processing for the
estimation of ß, ≠ and R .

Pre-processing: accounting for non-stationarity Overall, the front month contract
CRUDE0 is by far the most liquid, followed by the subsequent month contract CRUDE1
and the calendar spread CRUDE1_0. However, there are strong seasonal dependencies which
are shown in Figure I.3. For example, the subsequent month contract becomes more liquid as
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one approaches the maturity of the front month contract. Global estimators of ß, ≠ and R

would thus be biased by this varying liquidity ! (æ also appears to follow a non-stationary
pattern, but is not shown here). Thus, we used local (daily) estimators of price volatility æt

and liquidity !t , and built local covariance estimators ßt and ≠t by assuming stationarity of
the correlations %= diag(æt )°1

ßtdiag(æt )°1 and %≠ = diag(!t )°1
≠tdiag(!t )°1. We estimate

volatility and liquidity with a simple standard deviation: æ2
i ,t

= h¢p2
i ,t
i and !2

i ,t
= hq2

i ,t
i, where

the average h·i is computed using data on day t .

Figure I.4: Estimates of %, ≠ and R for Crude contracts (in MUSD).

The return correlation matrix Ω (left), order Øow covariance matrix ≠ (center) and response
matrix R (right) were estimated using 2016 data and computed on the 6th of June 2016. This
date represents the typical behavior of these contracts far away from the Ærst notice date,
before rolling e�ects become relevant. To highlight the amount of notional traded, order Øow
is reported in millions of exchanged dollars according to the average value of each contract on
the 6th of June 2016. Though non-nill, order Øow covariance of Calendar Spread thus appears
small because traded notional is much smaller than on each leg of the futures contract.

Structure of Ω, ≠ and R Figure I.4 reports the estimators of %, ≠ and R for the 6th of June
2016. The Ægure shows % has one zero-volatility direction and one direction of very small
Øuctuations. Thus models which satisfy fragmentation invariance (Axioms 8 to 10) should give
better predictions. On the other hand, ≠ highlights the di�erence in liquidity of our assets.
Thus, we should be cautious of models which do not satisfy stability axioms. Indeed, these
will not penalize trading directions of small liquidity.

Pre-processing: cleaning estimators As illustrated in Figure I.4, where the structure of
ß, ≠ and R are shown for a typical day, one can appreciate that the correlation between the
two future contracts CRUDE0 and CRUDE1 is close to one, whereas the correlation with the
Calendar Spread contract is very small, due to the small volatility of the Øuctuations along
the relative mode. Because of these e�ects, the sign of the Calendar Spread correlations with
CRUDE0 and CRUDE1 is non-trivial to estimate: due to microstructural e�ects, the measured
correlation is dominated by tick-size related e�ects 4. In fact, empirical price changes of the

4To test this hypothesis, we estimated the empirical smallest eigenvalue of the covariance matrix for multiple
futures contract as a function of relative tick size (not shown). If price changes of the Calendar Spread were
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Calendar Spread are not given by the di�erence of price changes of the legs. To solve this
issue, we impose the price changes of the Calendar Spread according to the price changes of
the futures contracts.

Figure I.5: Values of di�erent cross-impact models for Crude contracts.

We report the values of the ml (left), r-el? (center) and kyle (right) cross-impact models for
the covariances of the 6th of June 2016. Units are chosen to represent the relative price change
in basis points (10°4 of the asset price) by hundred million USD worth of contract traded.

Cross-impact models for Crude oil contracts Figure I.5 shows the calibrated ml, r-el?
and kyle models. Each satisÆes weak fragmentation invariance (Axiom 8). Therefore, they
prevent arbitrage which would trade the physical Calendar Spread contract against the
synthetic Calendar Spread (made up of CRUDE0 and CRUDE1). However, ml and kyle are
not self-stable (Axiom 13) while the r-el? model is. This explains why impact from trading
the illiquid Calendar Spread is much larger in the ml and kyle models than in the r-el?

model.

I.B.2 Bonds and indices

Description of the dataset We look at 10-year US Treasury note futures and the E-MINI
futures. We collect data from the Chicago Mercantile Exchange and use the Ærst two upcoming
maturities of both contracts (respectively called SPMINI and SPMINI3 for E-MINI contracts
and 10USNOTE and 10USNOTE3 for 10-year US treasury notes). E-Mini futures are quarterly,
Ænancially settled contracts with maturities in March, June, September and December. At
expiry, the Ænal settlement price of E-MINI futures is a proxy for the S&P500 index using
the opening prices of the underlying stocks belonging to the index. Similarly, the 10-year
treasury note futures are quaterly, Ænancially settled contracts with maturities in March, June,
September and December. At expiry, the Ænal settlement price is volume weighted average

given by the legs of the contract, this eigenvalue should be equal to zero. However, we found that as the tick size
increases, so does the smallest eigenvalue away from zero. This thus validates our hypothesis and justiÆes the need
for additional processing of futures data.
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price of past trades on the underlying treasury note.5 We collected trades and quotes data
from January 2016 to December 2017, between 9AM to 7PM UTC, where most of the trading
takes place in our dataset. After Æltering days for which data for one product was missing,
we keep a total of 160 days (75 in 2016 and 85 in 2017). We highlight below one important
pre-processing step for the estimation of ß, ≠ and R .

Pre-processing: accounting for non-stationarity The same non-stationary behavior ob-
served for Crude Oil futures contract is observed here. Thus we adopt the same estimation
procedure for the local covariance estimators ßt and ≠t by assuming stationarity of the
correlations %= diag(æt )°1

ßtdiag(æt )°1 and %≠ = diag(!t )°1
≠tdiag(!t )°1.

Figure I.6: Estimates of %, ≠ and R for bonds and indices (in MUSD).

The return correlation matrix Ω (left), order Øow covariance matrix ≠ (center) and response
matrix R (right) were estimated using 2016 data and computed on the 17th of August 2016. To
highlight the amount of notional traded, order Øow is reported in millions of exchanged dollars
according to the average value of each contract on the 17th of August 2016. Basis points were
accounted for, so that one traded unit of the futures contracts entitles the owner to one unit of
the underlying.

Structure of Ω, ≠ and R Figure I.6 shows the estimators of %, ≠ and R for the 17th of August
2016. Contracts with the same underlying are strongly correlated. Thus, Ω shows 2 by 2 blocks
of strongly correlated contracts and an anti-correlation between bonds and futures. Liquidity
is heterogeneous as front month contracts are more actively traded. In this conÆguration, the
discriminating factor between models should be stability axioms rather than fragmentation
axioms.

5This is a simpliÆcation of the settlement rules to emphasize the expected value of the Ænal settlement price.
Further details about the Ænal settlement price of E-MINI futures and 10-year US Treasury Note futures can be
found in the CME Rulebook.
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Figure I.7: Values of di�erent cross-impact models for bonds and indices.

We report the values of the ml (left), r-el? (center) and kyle (right) cross-impact models for
the covariances of the 17th of August 2016. Units are chosen to represent the relative price
change in basis points (10°4 of the asset price) by hundred million USD worth of contract
traded.

Cross-impact models for bonds and indices Figure I.7 shows the ml, r-el? and kyle

models calibrated on bonds and indices. The r-el and kyle models are weakly cross-stable
while the ml model is not. Thus ml assigns large impact to the less liquid contracts 10USNOTE3
and SPMINI3. Similarly, the self-stability of r-el explains the small impact predicted if one
trades illiquid contracts. Reassuringly, all models correctly capture the negative index-bonds
correlation.

I.B.3 Stocks

Description of the dataset We chose stocks which were in the S&P500 index between
January 2016 and December 2017. The resulting universe is made up of with 393 high market
cap and liquid stocks. We chose such stocks to build a similar asset universe as in previous
studies [WSG15, WSG16, WNG17, BMEB17, PV15]. We collect trades and quotes data between
2PM and 9:30PM UTC, removing the beginning and end of the trading period to focus on
the intraday behavior of liquidity and volatility and circumvent intraday non-stationary issues.
We collected trades and quotes data from January 2016 to December 2017, between 2PM and
9:30PM UTC, to focus on the intraday behavior of liquidity and volatility and circumvent
intraday non-stationary issues. After Æltering days for which data for one product was missing,
we keep a total of 302 days (154 in 2016 and 148 in 2017). Some summary characteristics of
our sample are presented in Table I.3. The distribution of stocks in each sector is given in
Figure I.8.

Quantile

10% 50% 90%

Relative tick size (in %) 1.6 2.5 4.6
Number of trades per day (in thousands) 5.9 12.6 29.4
Daily turnover (in MUSD) 28.5 56.1 116.2

Table I.3: Summary statistics for our sample of stocks.
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Figure I.8: Sector breakdown for the 393 of stocks used in the stocks dataset.

Pre-processing To a lesser degree than on the previous datasets, the stock dataset shows
non-stationarity in both volatility and liquidity. Thus we adopt the same estimation procedure
for the local covariance estimators ßt and ≠t by assuming stationarity of the correlations
%= diag(æt )°1

ßtdiag(æt )°1 and %≠ = diag(!t )°1
≠tdiag(!t )°1.

Figure I.9: Estimated price and order Øow correlation matrices %, %≠ for stocks.

We represent the return correlation matrix Ω (left), order Øow correlation matrix %≠ (right)
estimated on 2016. To highlight the amount of notional traded, order Øow is reported in
millions of exchanged dollars according to the average value of each contract on the 17th of
August 2016. Correlation matrices were represented instead of covariance matrices due to the
large volume heterogeneities between stocks. Stocks were grouped by sectors to highlight the
blockwise structure of these matrices.

Structure of %, %≠ and R Figure I.9 shows estimators of %, %≠. We report correlations
instead of covariances to highlight the blockwise structure of these matrices. For the same
reasons, R is not shown but presents a bandwise structure one expects from heterogeneity
in liquidity. Pairwise price and order Øow correlations between assets are small. Thus,
improvement of cross-impact models over direct models should be lower than in previous
applications. For more details about the structure of the price and volume covariance matrices,
see [BMEB17].
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Figure I.10: Values of di�erent cross-impact models for stocks.

We report the values of the ml (left), r-el? (center) and kyle (right) cross-impact models.
Units are chosen to represent the relative price change in basis points (10°4 of the asset price)
by hundred million USD worth of instruments traded.

Cross-impact models for stocks Figure I.10 shows the ml, r-el? and kyle models cal-
ibrated on the stocks dataset. At Ærst glance, each model appears to present a blockwise
structure similar to that of %, %≠. However, the ml model does not satisfy weak cross-stability
and thus predicts large impact on liquid stocks if one trades illiquid stocks. By construction
the r-el? model weighs most impact on the market mode. Finally, the kyle model looks like
a symmetrized version of the r-el? model.

I.C Goodness-of-Æt

We report in Table I.4 the numerical results of the goodness-of-Æt tests run on each model and
dataset.
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Dataset Score direct whitening whitening? el el? kyle r-direct ml r-el r-el? r-kyle

Crude Futures
R

2
in(Iæ) 0.01±0.01 0.03±0.01 0.06±0.01 0.18±0.01 0.18±0.01 0.35±0.01 0.27±0.01 0.37±0.01 0.37±0.01 0.37±0.01 0.22±0.01

R
2
out(Iæ) 0.01±0.01 0.04±0.01 0.06±0.01 0.18±0.01 0.18±0.01 0.35±0.01 0.27±0.01 0.37±0.01 0.37±0.01 0.37±0.01 0.22±0.01

R
2
in(Jæ) 0.33±0.01 0.32±0.01 0.22±0.01 0.27±0.01 0.27±0.01 0.46±0.01 0.40±0.01 0.45±0.01 0.46±0.01 0.46±0.01 0.31±0.01

R
2
out(Jæ) 0.33±0.01 0.32±0.01 0.22±0.01 0.27±0.01 0.27±0.01 0.46±0.01 0.40±0.01 0.45±0.01 0.46±0.01 0.46±0.01 0.31±0.01

R
2
in(ß°1) °1 °0.05±0.02 °0.01±0.02 0.07±0.02 0.07±0.02 0.29±0.02 °1 0.32±0.02 0.31±0.02 0.31±0.02 0.16±0.02

R
2
out(ß

°1) °1 °0.05±0.02 °0.01±0.02 0.07±0.02 0.07±0.02 0.29±0.02 °1 0.31±0.02 0.31±0.02 0.31±0.02 0.16±0.02

Bonds and indices
R

2
in(Iæ) °0.11±0.02 0.03±0.02 0.05±0.02 0.19±0.01 0.02±0.02 0.38±0.01 0.23±0.01 0.40±0.01 0.38±0.01 0.27±0.01 0.25±0.01

R
2
out(Iæ) °0.11±0.02 0.03±0.02 0.04±0.02 0.19±0.01 0.02±0.02 0.38±0.01 0.23±0.01 0.40±0.01 0.38±0.01 0.27±0.01 0.24±0.01

R
2
in(Jæ) 0.09±0.02 °0.09±0.03 °0.05±0.03 0.09±0.02 °0.21±0.03 0.29±0.02 0.27±0.02 0.30±0.02 0.29±0.02 0.17±0.02 0.14±0.02

R
2
out(Jæ) 0.09±0.02 °0.10±0.03 °0.05±0.03 0.09±0.02 °0.21±0.03 0.29±0.02 0.27±0.02 0.30±0.02 0.29±0.02 0.17±0.02 0.14±0.02

R
2
in(ß°1) °7.24±0.21 °0.37±0.04 °0.36±0.04 °0.26±0.03 °0.37±0.03 0.11±0.03 °1.69±0.05 0.20±0.03 0.19±0.03 0.13±0.03 0.07±0.03

R
2
out(ß

°1) °7.23±0.21 °0.37±0.04 °0.36±0.04 °0.26±0.03 °0.37±0.03 0.11±0.03 °1.71±0.05 0.20±0.03 0.19±0.03 0.13±0.03 0.07±0.03

Stocks
R

2
in(Iæ) 0.038±0.004 °0.025±0.004 0.059±0.004 °0.631±0.010 °0.128±0.008 0.343±0.003 0.276±0.004 0.373±0.003 0.257±0.003 0.236±0.004 0.239±0.004

R
2
out(Iæ) 0.038±0.004 °0.031±0.004 0.047±0.004 °0.642±0.010 °0.133±0.008 0.336±0.003 0.274±0.004 0.358±0.003 0.249±0.003 0.227±0.004 0.232±0.004

R
2
in(Jæ) 0.732±0.006 °0.047±0.012 0.277±0.010 °1.770±0.038 0.727±0.005 0.822±0.003 0.480±0.010 0.829±0.003 0.661±0.005 0.753±0.004 0.788±0.004

R
2
out(Jæ) 0.732±0.006 °0.192±0.013 0.152±0.012 °1.785±0.038 0.701±0.005 0.808±0.004 0.479±0.010 0.803±0.004 0.644±0.005 0.733±0.005 0.776±0.004

R
2
in(ß°1) °0.311±0.004 °0.061±0.003 °0.056±0.003 °0.262±0.005 °0.369±0.008 0.214±0.003 0.180±0.003 0.215±0.003 0.126±0.004 0.090±0.004 0.082±0.004

R
2
out(ß

°1) °0.293±0.004 °0.061±0.003 °0.056±0.004 °0.260±0.005 °0.360±0.008 0.211±0.003 0.180±0.003 0.208±0.003 0.124±0.004 0.089±0.004 0.081±0.004

Table I.4: Goodness-of-Æt scores for each model and dataset.

Goodness of Æt was measured using two years of data sampled at a time interval of one minute. In-sample data was used to calibrate
each cross impact model. Out-of-sample goodness of Æt was obtained by applying the calibrated models on never seen before data.
We reported as 1 the scores of models which are numerically inÆnite, but due to clipping appear Ænite.
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CHAPTER II

Static cross-impact on derivatives

Abstract

Trading a Ænancial asset pushes its price as well as the prices of other assets, a phenomenon
known as cross-impact. The empirical estimation of this e�ect on complex Ænancial
instruments, such as derivatives, is an open problem. To address this, we consider a
setting in which the prices of derivatives is a deterministic function of stochastic factors
where trades on both factors and derivatives induce price impact. We show that a
speciÆc cross-impact model satisÆes key properties which make its estimation tractable in
applications. Using E-Mini futures, European call and put options and VIX futures, we
estimate cross-impact and show our simple framework successfully captures some of the
empirical phenomenology. Our framework for estimating cross-impact on derivatives may
be used in practice for estimating hedging costs or building liquidity metrics on derivative
markets.

From:
Cross-impact in derivative markets
M. Tomas, I. Mastromatteo, M. Benzaquen

Introduction

Market impact describes how trades on one asset translate into its price. The many studies
on the topic have deepened our understanding of how markets digest trades into prices
[BBDG18, ATHL05, Tor97]. However, market impact ignores the e�ects of order Øows of
other assets on an asset’s price. This phenomena, dubbed cross-impact, has received growing
attention in recent years [HS01, PV15, SL19, WSG15, TMB20, RT21a]. Estimating models which
account for cross-impact poses new challenges and led the authors to investigate in [TMB20]
which cross-impact models satisfy desirable properties while Ætting empirical data well.

This chapter contributes to the literature on estimating cross-impact by focusing on a particular
asset class: derivatives. In this asset class, cross-sectional impact e�ects are expected to play
a major role. Indeed, in an e�cient market, the prices of derivatives should be locked by
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II. Static cross-impact on derivatives

no-arbitrage. Therefore, the impact of trades on di�erent derivatives should be related. Fur-
thermore, since there are thousands of strongly correlated and individually illiquid derivatives,
we need to aggregate the liquidity of instruments to properly estimate impact.

We set up a continuous-time, state-dependent static cross-impact framework which gen-
eralises the setup of [TMB20]. In this framework, derivative prices are functions of stochastic
factors and trades impact prices of all instruments. The main result of this chapter is a cali-
bration formula for cross-impact on derivatives, which we Ænd provides better goodness-of-Æt
than simple impact models.

We now comment on the links between our approach and the literature.

The methodology of this chapter is most similar to a previous paper on cross-impact by
the authors [TMB20]. This chapter introduces an inÆnitesimal extension of the framework
of the previous paper in which cross-impact also depends on state variables (such as fac-
tor prices). These are slight modiÆcations to handle the speciÆc challenges posed by derivatives.

The cross-impact model used in this chapter is the Kyle cross-impact model, Ærst derived using
a multivariate version of the Kyle insider trading framework [CK94, Kyl85, GdMMBB20]. The
properties of this model were examined in [TMB20] and this chapter leverages some results
from [TMB20].

This chapter focuses on linearly relating anonymous trade data to option prices. This
linear approximation is roughly justiÆed for anonymous order Øow but not for a particular
investor’s trades. The papers [TEB16, Sai19] study this question by using databases of propri-
etary investor orders to estimate the price impact of trades on the implied volatility surface.
In particular, [TEB16] shows that option trades have a vega-weighted impact on the level of
the implied volatility surface. The work [Sai19] Ænds that trades also impact the skew or term
structure of the implied volatility surface. When applying our framework to empirical data, we
recover a linear version of these two e�ects, along with an estimation of the importance of
each e�ect’s contributions.

Finally, this chapter focuses on how market prices of options are a�ected by trades and
ignores the intricacies of the replication problem. Thus, it is separate from works which model
how price impact modiÆes option prices and the associated hedging strategies under di�erent
replication constraints [Loe18, BLZ17]. However, the current framework may be useful to give
empirical estimates to the impact coe�cients appearing in these papers.

The chapter is organized as follows. Section 1 presents our modeling framework. Sec-
tion 2 derives a tractable calibration formula for cross-impact. Section 3 provides illustrative
examples of the framework. Section 4 applies the setup to estimate cross-impact on options.
Finally, we conclude on the contributions of the chapter, open questions, and directions for
future work.
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1. Setup

Notation

The set of n by n real-valued square matrices is denoted by Mn(R), the set of orthogonal
matrices by On , the set of real non-singular n by n matrices by GLn(R), the set of real n by
n symmetric positive semi-deÆnite matrices by S

+
n (R), and the set of real n by n symmetric

positive deÆnite matrices by S
++

n (R). Further, given a matrix A in Mn(R), A> denotes its
transpose. Given A in S

+
n (R), we write A1/2 for a matrix such that A1/2(A1/2)> = A and

p
A for

the matrix square root, the unique positive semi-deÆnite symmetric matrix such that (
p

A)2 = A.

All stochastic processes in the text are deÆned on a probability space (≠,F , (Ft )t2R ,P)

and adapted to the Æltration (Ft )t2R unless stated otherwise. Standard Brownian motions
are deÆned with respect to the probability measure P. All stochastic di�erential equations
introduced will be assumed to have a unique strong solution and correspondingly the functions
appearing in these equations will be assumed to be su�ciently regular for this to be true. We
denote by E the expectation with respect to the probability measure P. We denote by hX ,Y i
the quadratic covariation of the continuous stochastic processes X and Y .

1 Setup

We consider a universe comprising two classes of Ænancial instruments, that we will refer to as
factors and derivatives.

Factors represent a set of N stochastic processes from which one can derive derivative prices.
These may include the factor of derivative contracts, such as the spot, as well as stochastic
or local volatility, forward variance, yield curves, etc. The prices of factors at time t is
denoted by pt = (p1

t , . . . , pN
t ). Derivatives are a set of M contracts, whose prices at maturity de-

pend on the values of the factors. We write Pt = (P 1
t , . . . ,P M

t ) for the prices of these instruments.

Factors and derivatives are traded continuously and we denote by qt = (q1
t , . . . , q N

t ) the
stochastic process corresponding to the market net traded order Øows on factors and by
Qt = (Q1

t , . . . ,QM
t ) the stochastic process corresponding to the market net traded order Øows

on derivatives. These are aggregate order Øow, corresponding to the sum of all trades sent by
market participants.

As we are interested in a simple, inÆnitesimal framework for the inØuence of trades on
prices, we assume that order Øow dynamics on each asset are continuous stochastic processes
driven by Brownian motions.

Assumption 1 (Order Øow dynamics). The order Øow follows the following stochastic dynamics

dqt = ∫q (pt , t )dt +Lqq (pt , t )dZ
q
t +LQq (pt , t )dZ

Q
t (1)

dQt = ∫Q (pt , t )dt +LQq (pt , t )dZ
q
t +LQQ (pt , t )dZ

Q
t , (2)
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II. Static cross-impact on derivatives

where Z q , Z Q are uncorrelated standard Brownian motions, ∫q : RN £R!RN and ∫Q : RN £R!
RM encode order Øow drift, Lqq : RN £R!MN (R), LQQ : RN £R!MM (R), LQq : RN £R!
MM ,N (R), LqQ : RN £R!MN ,M (R) encode co-trading among assets.

Assumption 1 allows for correlations of order Øows between assets, so that our model accounts
for co-trading of factor and derivatives, which is a typical feature expected in derivative mar-
kets. However, the continuous modeling framework for order Øows Assumption 1 is somewhat
unrealistic. Indeed, at the high-frequency scale, trades arrive punctually and trade arrival are
auto-correlated so that a more realistic modeling is driven by point processes which respect
this property. Such modeling requires lengthy mathematical treatment and is outside the scope
of this chapter, so that we choose a simple continuous order Øow model. We refer the reader
to [RT21a] for a model which accounts for these e�ects.

We now move to the dynamics of factor prices in our setup.

Assumption 2 (Factor dynamics). We assume that factor prices are given by

dpt =µp (pt , t )dt +Gp (pt , t )dWt +§pq (pt , t )dqt +§pQ (pt , t )dQt (3)

where W is a standard N -dimensional Brownian motion, µp : RN £R ! RNare the factor drift,

Gp : RN£R!GLN (R) are the factor and derivative di�usion matrices, and §pq : RN£R!MN (R),

§pQ : RN £R!MN ,M (R) capture cross-impact.

The factor dynamics of Assumption 2 are quite general. They encompass local and stochastic
volatility models and allow for cross-impact between factors and between factors and deriva-
tives. We assume that factors are chosen so that derivatives are priced in a Markovian manner
with respect to the factors, which leads us to the next assumption.

Assumption 3 (Derivative prices). There exists a function F : RN £R!RM , twice di�erentiable

with respect to the Ærst argument and di�erentiable with respect to the second argument, such that

Pt = F (pt , t ).

Applying Ito’s formula to Equation (3) and using Assumptions 1 and 3, we obtain the following
corollary.

Corollary 1. The derivative dynamics are given by

dPt =µP (pt , t )dt +GP (pt , t )dWt +§P q (pt , t )dqt +§PQ (pt , t )dQt , (4)

where µP : RN £R!RM is the derivative drift, GP : RN £R!GLM (R) is the derivative di�usion

matrix, §P q : RN£R!MM ,N (R) and §PQ : RN£R!MN ,M (R) encode cross-impact. In particular,

we have the constraints §P q =•§pq , §PQ =•§pQ , GP =•Gp , where • := ( @P i

@p j )i , j is the M by N

sensitivity matrix.

Corollary 1 does not make explicit the dependence of the derivative drift on other variables as
it will not play an important role.
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1. Setup

For convenience cross-impact matrices appearing in Equations (3) and (4) can be compactly
rearranged into a single matrix, §, which we refer to as the cross-impact matrix since it
describes the cross-impact of the complete system

§(pt , t ) :=

µ
§pq §pQ

§P q §PQ

∂
(pt , t ) . (5)

The impact model we propose involves two parameters, the return covariance matrix and the
order Øow covariance matrix.

The factor-factor return covariance matrix ßpp : RN £R!S
+

N
(R) is deÆned as

ßpp (pt , t )dt := dhp, pit , (6)

and we similarly denote ßpP ,ßP p =ß
>
pP ,ßPP for the factor-derivative, derivative-factor and

derivative-derivative return covariance matrices. Naturally, since derivative prices are deter-
ministic function of factors, these matrices are all related to ßpp .

We denote by ≠qq : RN £R!S
+

N
(R) the factor-factor order Øow covariance matrix

≠qq (pt , t )dt := dhq, qit , (7)

and we denote ≠qQ , ≠Qq = ≠
>
qQ and ≠QQ for the factor-derivative, derivative-factor and

derivative-derivative order Øow covariances. Contrary to return covariance matrices, there
are no constraints betweeen these order Øow covariance matrices and ≠qq . The covariance
structure of returns and Øows for the whole system can be arranged compactly as

ß(pt , t ) =

√
ßpp ßpP

ß
>
pP ßPP

!
(pt , t ) ≠(pt , t ) =

√
≠qq ≠qQ

≠
>
qQ ≠QQ

!
(pt , t ) .

The cross-impact matrix that we propose to use, dubbed the Kyle cross-impact model, was Ærst
derived in [CK94] and then analyzed in [GdMMBB20, TMB20]. The next assumption makes
explicit the formula of the Kyle cross-impact matrix within our framework.

Assumption 4 (Cross-impact matrix). The cross-impact matrix § is of the form

§ :=
p

Y (L °1)>
p

L>ßL L
°1 , (8)

where L is a matrix such that L L
> =≠, Y is a constant such that 0 < Y < 1, and we have

omitted the dependence on (pt , t ) for compactness.

The choice of the Kyle cross-impact matrix is motivated by the goodness-of-Æt observed in
previous work [TMB20] and some key properties it satisÆes, which will be outlined in the
next section. Note that the cross-impact matrix of Assumption 4 must, at the very least, be
compatible with the constraints on the cross-impact matrix outlined in Corollary 1. We will
show that this is true in the next section.

Our framework being set up, we move to the derivation of key properties of our cross-
impact framework in the next section. These properties motivate the choice of the Kyle
cross-impact model as the only well-behaved model for cross-impact on derivatives.
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II. Static cross-impact on derivatives

2 A practical formula for the cross-impact matrix

This section shows how one can derive the cross-impact matrix § in a tractable form for
applications.

The next proposition shows that the impact contributions to factor and derivative prices
can be absorbed inside Brownian motions.

Proposition 1. Using the notation of Assumptions 2 and 4 and Corollary 1, we have

dpt = µ̃p (pt , t )dt +
1

p
1°Y

Gp (pt , t )dBt (9)

dPt = µ̃P (pt , t )dt +
1

p
1°Y

GP (pt , t )dBt , (10)

where µ̃p : RN £R!RN , µ̃P : RN £R!RM and B is a standard N dimensional Brownian motion.

The proof of Proposition 1 is given in Section II.A. Proposition 1 underscores a convenient
property of our framework: the sensitivities of derivative prices with respect to factors are
independent of the order Øow dynamics. In particular, the Greeks can be computed using
traditional methods since derivative prices satisfy the classic stochastic di�erential system of
Proposition 1.

The next proposition shows that the large cross-impact matrix § can be expressed solely as a
function of the derivative sensitivities and the compact cross-impact matrix §pq .

Proposition 2. We have

§(pt , t ) =

µ
§pq §pq•

>

•§pq •§pq•
>

∂
(pt , t ) , (11)

where we recall that • := ( @P i

@p j )i , j is the M by N sensitivity matrix.

The proof of Proposition 2 is given in Section II.A. Note that Proposition 2 shows that the
chosen cross-impact model satisÆes the constraints of Corollary 1. Furthermore, it expresses
the large N +M by N +M cross-impact matrix § as a function of the much smaller N by N

cross-impact matrix §pq and the derivative sensitivities •. Thanks to Proposition 1, the latter
can be computed as the usual Greeks of our derivative pricing model. Thus, given a formula
for §pq , we could express §. The next proposition proves that the cross-impact matrix §pq

can be expressed as a function of the factor return covariance matrix ßpp and a modiÆed
covariance matrix of order Øows.

Proposition 3. We have

§pq =
p

Y (L °1
•

)>
q

L
>
•
ßppL•L

°1
•

, (12)

where we have omitted the dependence on (pt , t ), ≠• :=≠qq +•
>
≠QQ•+•

>
≠Qq +≠qQ•, and

L• is a matrix such that L•L
>
•
=≠•.
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The proof of Proposition 3 is given in Section II.A. Combined, Propositions 2 and 3 give a
formula for the cross-impact matrix § as a function of the measurable quantities ßpp and ≠•.
Furthermore, by Proposition 1, • can be computed using usual derivative pricing methods.
Overall, we have thus derived a scheme for estimating a cross-impact matrix on derivatives.

A relevant insight of Equation (12) for applications is that even if factors are not traded,
as long as derivatives with sensitivities to these factors are traded, i.e. •>

≠QQ• is positive
deÆnite, then the inverses appearing in Equation (12) are well-deÆned. This is not obvious
from the form of the Kyle cross-impact matrix in Assumption 4. This property is important for
applications where most factors correspond to non-tradeable instruments, such as volatility
factors.

3 Examples

To illustrate the Øexibility of our setup and the usefulness in practice of the properties of the
Kyle cross-impact model, we discuss examples in increasing complexity below.

3.1 Futures

For our Ærst example, we consider a universe of N = M = 1 instruments, consisting in a spot
with price pt and a futures contract delivering one unit of the spot and expiring at a later
time T . By assuming a constant, continuously compounded, deterministic interest rate r the
derivative price is given by

P (pt , t ) = er (T°t )pt .

Therefore, in this case •(pt , t ) = @p P (pt , t ) = er (T°t ) and Equation (11) yields

§(pt , t ) =
p

Y pt
æ(pt , t )

!(pt , t )

µ
1 er (T°t )

er (T°t ) e2r (T°t )

∂
,

where æ2(pt , t )dt := dhp, pit and !2(pt , t ) := (1,er (T°t ))>≠(pt , t )(1,er (T°t )). The meaning of
this formula is simple: in a constant interest-rate model, the market liquidity should mix
liquidity traded the spot and on the future, after properly adjusting for the interest rate.

3.2 Black-Scholes model

We now consider a system with a single factor (N = 1) and M derivatives. The factor is the
spot with price pt and the derivatives are a set of European call or put options with di�erent
strikes and maturities. We assume that the spot price pt follows log-normal dynamics with
cross-impact, given by

dpt =µptdt +
p

1°Y æptdWt +§pqdqt +§pQdQt ,

where Wt is a one-dimensional standard Brownian motion, µ is the drift and æ is the implied
volatility. The parameter æ is the implied volatility since Proposition 1 implies that there exists
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II. Static cross-impact on derivatives

some drift µ̃ such that
dpt = µ̃ptdt +æptdBt ,

where B is a one-dimensional standard Brownian motion. Then, with the usual notation for
the Black-Scholes ¢, we have

•
i (pt , t ) = @p P i (pt , t ) =¢

i (pt , t ) ,

and, writing ¢ := (@p P 1(pt , t ), · · · ,@p P M (pt , t )), Equation (11) yields

§(pt , t ) =
p

Y pt
æ

!(pt , t )

µ
1 ¢

>

¢ ¢¢
>

∂
(pt , t ) ,

where
!2(pt , t ) = (1,¢(pt , t ))>≠(pt , t )(1,¢(pt , t )) .

Thus, as in the previous example, there is a single liquidity pool, with volumes traded on
options adjusted for the options’ ¢. Volume traded on deep in-the-money options (¢i º 1)
contribute to the overall liquidity pool as if it was the spot itself that was traded, whereas
deeply out-of-the-money options (¢i º 0) give negligible contributions.

3.3 Volatility factors

3.3.1 General setup

We build on our previous example and consider a spot and a strip of M European call and
put options, with di�erent implied volatilities for each option. The spot price in this example
is denoted by st , while option prices are given by P i

t (st , æ̂i
t ) where æ̂i

t is the implied volatility
of this option.

In order to reduce the dimensionality of the M implied volatilities æ̂i
t , we assume that

they are completely described by a set of volatility factors &t = (&1
t , . . . ,&

Q
t ) such that the

implied volatility of each option is given by

æ̂i
t = F i (&t ) , (13)

where F i : RQ !R is some function of these factors. With some abuse of notation, we write

P i (st , F̂ i (&t ), t ) = P i (st ,&t , t ) ,

and we will employ a similar notation for other functions of the implied volatility æ̂i
t . Our

instruments thus comprise N = 1+Q factors, of which only one is tradeable (the spot), and
where the other Q factors correspond to non-tradeable volatility factors. The sensitivities of
the system in this case correspond to

•
i 1
t (st ,&t , t ) =¢

i
t (st ,&t , t ) :=

@P i (st ,&t , t )

@s

•
i (q+1)
t (st , æ̂i

t , t ) =
@P i (st , æ̂i

t , t )

@æ̂i

@F i (&t )

@&q
:= V

i
t (st ,&t , t )Øi q (st ,&t , t ) =: ®i q ,

76



4. Empirical Results

where q = 1, . . . ,Q and where, as it is customary in the literature on option pricing, we have
introduced the vega

V
i

t (st , æ̂i
t , t ) =

@P i
t (st , æ̂i

t , t )

@æ̂i
,

and the sensitivities of the volatility surface to &t

Øi q (st ,&t , t ) =
@F i (&t )

@&q
.

This simple setup allows us to capture some of the salient implied volatility surface dynamics
and we will make use of it in the next section.

3.3.2 Single factor model

This section examines the particular case when the volatility surface depends on a single
volatility factor, i.e. Q = 1. The following lemma shows that given some additional assumptions,
we can derive an explicit formula for §pq .

Lemma 1. We denote by ¢c := (1,0, @P 1

@s
, · · · , @P M

@s
), Vc := (0,1, @P 1

@& , · · · , @P M

@& ) the vectors of sensitivi-

ties. Then, if ¢>
c ≠Vc = 0, we have

§pq (st ,&t , t ) =

p
Y

q
æ2!2

¢
+ª2!2

V
+2æªΩ!¢!V

√
æ2 +

!V

!¢

æª
p

1°Ω2 æªΩ

æªΩ ª2 +
!¢

!V
æª

p
1°Ω2

!
(st ,&t , t ) ,

(14)
where !2

¢
:=¢

>
c ≠¢c is the delta-aggregated liquidity, !

2
V

:= V
>
c ≠Vc is the vega-aggregated liquidity,

æ2(st ,&t , t )dt := dhs, sit is the spot volatility, ª
2(st ,&t , t )dt := dh&,&it is the volatility of volatility

and Ω(st ,&t , t )dt :=
dh&, sit

ª(st ,&t , t )æ(st ,&t , t )
is the spot-vol correlation.

The proof of Lemma 1 is given in Section II.A. An interesting result of Equation (14) is that a
delta-hedged trade induces impact on the spot because of the negative spot-vol correlation.
We will make use of this single factor model in the next section.

4 Empirical Results

We now illustrate our setup with an empirical analysis of cross-impact on derivatives markets
which makes use of the results derived in Section 2. Section 4.1 describes the universe of
instruments and the chosen derivative modeling. Section 4.2 shows the empirical observables
ßpp and ≠• used in Section 4.3 to compute the resulting cross-impact matrix §pp . Finally,
Section 4.4 stress-tests the Æt of cross-impact models and Section 4.5 examines non-parametric
evidence of cross-impact.
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II. Static cross-impact on derivatives

4.1 Setup

The universe of instruments is made up of (i) the front-month E-mini future, (ii) the two
front-month VIX futures, (iii) a set of M °2 call and put options on the E-mini. We thus have
M derivatives.

We bin returns and order Øows on a time window ¢t of Æve minutes. We write ±pt for
the factor price change between time t and time t +¢t , ±qt for the signed order Øow traded
on factors within that time window and ±Qt for the signed order Øow traded on derivatives.
Prices and order Øows for these instruments are taken from trades and quotes data and more
detail on the dataset is provided in Section II.B.1.

We consider a linear approximation of the implied volatility surface with volatility factors, so
that using the notations of Section 3.3, we have F i (&) =

PQ
q=1Ø

i q&q where i = 1, . . . , M . To Æt
surfaces, we choose Q = 3 and perform a principal component analysis of implied volatility
surface returns (see, for example, [CFD02]). These factors are given Figure II.1. The Ærst factor
is a classic implied volatility level factor and we make the rough approximation that VIX
futures are solely explained by such level factor. The second factor corresponds to the skew of
the implied volatility surface, referred to as the skew factor hereafter. The third factor explains
the term structure of the implied volatility, hence the name term factor in the following.

Figure II.1: E�ect of the di�erent volatility factors on the implied volatility surface.

Starting from a historical implied volatility æ̂i , we show the modiÆed implied volatility surface
after adding a small contribution from the factor q : æ̂i +≤Øi q . The original (non-modiÆed)
implied volatility surface is shown in light opacity for reference.
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4.2 Estimated covariances

Proposition 3 shows that we need to estimate ßpp and ≠• to compute §pq . We detail
the estimation procedure in Section II.B.2. Figure II.2 shows the estimated factor return
correlation matrix %pp := diagæ°1

ßppdiagæ°1 and the risk order Øow covariance matrix
≠
risk
•

:= diagæ≠•diagæ where æ= ((ß11
pp )1/2, · · · , (ßN N

pp )1/2) is the factor volatility.

The factor return correlation matrix correlation matrix shows strong negative correlation
between the spot and level mode. This is a well-known stylised fact, sometimes referred to as
the "leverage e�ect". This will play an important role in the form of the cross-impact model,
as highlighted in Equation (18). Unsurprisingly, the correlation between spot and level order
Øow is much smaller, although still noticeable (around -0.15%).

The traded risk (volatility times liquidity) is concentrated on the spot and level directions.
This justiÆes approximating cross-impact on options using solely the spot and the level factor,
which we delve in more detail in Section 4.3. The traded risk in the skew direction is much
smaller than all other directions and is thus expected to play a lesser role.

Figure II.2: Empirical estimates of the factor return correlation matrix % and aggregate

order Øow covariance ≠•.

The factor return correlation matrix % (left) and the aggregate order Øow covariance matrix ≠

(right) estimates on our dataset. The order Øow is reported in thousands of dollars of risk.

4.3 Cross-impact models

We can now use the empirical estimates of ßpp and ≠• from the previous section to compute
the cross-impact matrix §. For comparison purposes, we also introduce other choices of
cross-impact matrices. All cross-impact matrices involve a prefactor Y which is calibrated
to maximise goodness-of-Æt. The Ærst cross-impact matrix used for comparison is the Black-
Scholes cross-impact model introduced in Section 3.2 which has a single factor: the spot. It is
deÆned as

§bs(pt , t ) :=
p

Y
æ

q
¢>
c ≠¢c

¢c¢
>
c , (15)

79



II. Static cross-impact on derivatives

where ¢c := (1,0,0,0,0,0,¢3(pt , t ), · · · ,¢M (pt , t )) is the delta vector, which places one on the
spot, zero on the three volatility factors, zero on the two VIX futures, and the usual Black-
Scholes delta on put and call options. The Black-Scholes model coincides with the Kyle
cross-impact model if all the liquidity is concentrated on the spot. In particular, this model is
unable to account for changes in the volatility factors. We thus introduce the two-dimensional
direct model §direct-2d which accounts for the spot and implied volatility factor but ignores
cross-sectional e�ects, deÆned as

§direct-2d(pt , t ) :=
p

Y
æ

q
¢>
c ≠¢c

¢c¢
>
c +

p
Y

ª
q

V >
c ≠Vc

VcV
>
c , (16)

where Vc := (0,1,0,0,1,1,V 3(pt , t ), · · · ,V M (pt , t ) is the vega vector, which places zero on the
spot, one on the level factor, zero on the other two volatility factors, and the usual Black-Scholes
vega on put and call options. To account for all factor without correcting for cross-sectional
e�ects, we introduce the four-dimensional direct model

§direct-4d(pt , t ) :=
p

Y
æ

q
¢>
c ≠¢c

¢c¢
>
c +

p
Y

ª
q

V >
c ≠Vc

VcV
>
c +

p
Y

Q+1X

i=3

vuutß
i i
pp

≠
i i
•

•
·i (pt , t )(•·i (pt , t ))> .

(17)
Direct models ignore the o�-diagonal structure of ßpp and ≠•. In particular they do not
account for the leverage e�ect, which is an essential characteristic of the factor return
covariance matrix ßpp . To Æx this, we introduce the two-dimensional Kyle cross-impact model
§2d which captures the two dominating factor of the system: the spot and level factor. Since
Figure II.2 shows that the delta and vega order Øow correlation is small (around °0.15%) and
ª!V øæ!¢, we can use Equation (14) to obtain the approximation

§2d(pt ,&t , t ) º
p

Y
æ

q
¢>
c ≠¢c

¢c¢
>
c +

p
Y
ª
p

1°Ω2

q
V >
c ≠Vc

VcV
>
c +

p
Y

ªΩ
q
¢>
c ≠¢c

(Vc¢
>
c +¢cV

>
c ). (18)

The two-dimensional Kyle cross-impact model predicts that when trading options, one pushes
the price in the amount of notional V traded divided by the typical V liquidity, which is
compatible with Ændings from the meta-order study [TEB16].

The full, four-dimensional Kyle cross-impact model §4d (with calibrated prefactor Y = 0.5) is
shown in Figure II.3. Compared to the two-dimensional Kyle cross-impact model, it decouples
the contribution of options on the level mode depending on the direction. This increases the
explanatory power of the model, as will be clear in the next section.

4.4 Explanatory power of cross-impact models

For practical applications, a good cross-impact model should explain realized price changes
from order Øows. Thus to compare the models previously introduced, we now examine
their explanatory power on empirical data. Given a realization of the factor price process
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Figure II.3: Four dimensional Kyle cross-impact model on options.

We report the four dimensional Kyle model estimated using empirical estimates of the covari-
ances of Figure II.2. The cross-impact matrix are reported in units of risk and in basis points
so that §i j encodes by how many basis points of volatility Asset i is pushed by trading one
dollar of risk on Asset j .

(±pt )1∑t∑T of length T , a corresponding series of predictions ( c±p t )1∑t∑T and a symmetric
positive semi-deÆnite matrix M , we introduce the generalized R

2
in(M) error as

R
2
in(M) := 1°

P
1∑t∑T (±pt ° c±p t )>M(±pt ° c±p t )

P
1∑t∑T ±p>

t M±pt

.

The matrix M is used to examine a model’s predictive power for di�erent portfolios. As the
factor of our system are natural directions to consider, we report R

2
in(M) in Table II.1 for

e1e>1 =: ¶spot, e2e>2 =: ¶level, e3e>3 =: ¶skew and e4e>4 =: ¶term.

Model Scores

R
2
in(¶spot) R

2
in(¶level) R

2
in(¶skew) R

2
in(¶term)

§bs 0.18±0.01 °0.00±0.02 °0.00±0.01 °0.00±0.02

§direct-2d 0.18±0.01 °0.03±0.02 °0.01±0.01 0.00±0.02

§direct-4d 0.18±0.01 °0.03±0.02 °0.14±0.02 °0.26±0.02

§2d 0.20±0.01 0.12±0.01 °0.01±0.01 0.01±0.02

§4d 0.20±0.01 0.14±0.01 °0.12±0.02 0.04±0.01

Table II.1: Scores of di�erent cross-impact models.

All scores were computed in-sample using the same data used for the calibration of the
cross-impact models.

The goodness-of-Æt score in the spot direction R
2
in(¶spot) is similar for all models, with cross-

impact models being slightly better. Furthermore, there is no di�erence between §2d and §4d.
This is consistent with the liquidity reported in Figure II.6. Indeed, most of the liquidity is
placed on the spot and the order Øow traded on other factors is small in comparison. Models
which only take into account the spot thus capture most of the order Øow explanatory power.
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II. Static cross-impact on derivatives

There is also a small advantage in using order Øow on the level mode since §2d and §4d score
better, but using term and skew order Øow provides no improvement.

While using solely spot liquidity to explain spot returns is a good approximation, R
2
in(¶level)

shows the same is not true for the level factor. Indeed, only models with cross-impact between
spot and level factors properly explain changes in the level factor. This is natural as most of
the traded order Øow is on the spot but there is a high negative correlation between spot and
level factor (see Figure II.6). Unfortunately, all models fail to explain skew returns. We suspect
this comes from the low signal to noise ratio and low liquidity (in risk terms) of the skew factor
(see Figure II.6).

On all metrics, §4d performs at least as well as §2d, which shows that the model is able to
combine additional factors without su�ering from noise. The additional factor also help weigh
trades appropriately on the implied volatility surface, which improves the R

2
in(¶level) score.

Finally, we report the expected realized return conditional on the prediction of §4d in
Figure II.4. This shows that, skew aside, §4d provides a good Æt for the realized returns of the
di�erent factor as E[±pt | ±p̂t ] º ±pt .

Figure II.4: Predictions of the four-dimensional Kyle model on the main directions of

the system.

We report the expected price change conditional on the predicted price change of the four-
dimensional Kyle model for the four main directions of the system: in red for the spot, blue for
the level, green for the skew and purple for the term structure. Predicted price changes and
conditional averages are both normalized by the standard deviation of price changes along the
given direction.
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4.5 Non-parametric evidence of cross-impact on options

Section 4.4 showed that only cross-impact models are able to explain returns for the level
and term factor. Aside from this explanatory power, this section tests their ability to explain
other features of our data. To do so, we introduce the cross aggregate impact metric. The
cross aggregate impact induced from the portfolio u 2 RN+M on the return of the portfolio
v 2RN+M is

Aggu,v (x) := E[v>(±pt ,±Pt ) | u>(±qt ,±Qt ) = x] .

If returns are given by a linear cross-impact model ™ and if we further assume (±qt ,±Qt ) is a
zero-mean Gaussian, then

Aggu,v (x) = E[v>
™(±qt ,±Qt ) | u>(±qt ,±Qt )] :=Agg™u,v (x) = a™x ,

where the slope a™ depends on the cross-impact model ™ and on the order Øow covariance.
Even in the absence of cross-impact, the presence of order Øow correlations between two
portfolios u and v may lead to a non-zero cross aggregate impact. Thus, to test whether
there is cross-impact, we compare the empirically measured Aggu,v to the prediction Agg™u,v

for di�erent cross-impact models ™. We di�erentiate models between those which have no
o�-diagonal contributions (§bs,§direct-4d,§direct-2d) and thus ignore cross-impact and those
that take it into account (§2d,§4d).

We report Aggu,v in Figure II.4 for di�erent portfolios u, v described in Table II.2. Di-
agonal plots show aggregate direct impact. As expected, buying the E-Mini increases, on
average, the price of the E-Mini as shown by the u, v = spot plot (Ærst row, Ærst column). We
see from the u, v = level plot (second row, second column) that buying options and VIX futures
increases, on average, the implied volatility. Furthermore, buying options and VIX futures
decreases, on average, the E-Mini price as shown by the u = level, v = spot plot (Ærst row,
second column). This same plot, among others of Figure II.4, shows that direct models provide
a poor Æt for cross aggregate impact. This suggests that the cross aggregate impact can only
be explained by using a cross-impact model with o�-diagonal elements, such as §4d. Further,
the Æt is noticeably better for §4d than §2d which highlights the importance of taking into
account the skew and term factors.

Name Components

spot VIX0 VIX1 options

spot (1, 0, 0, 0, · · · ,0)

level (0, Ø11, Ø21, Ø31, · · · ,ØM1)

skew (0, Ø12, Ø22, Ø32, · · · ,ØM2)

term (0, Ø13, Ø23, Ø33, · · · ,ØM3)

Table II.2: Description of di�erent directions used in this section.
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Figure II.5: Normalized cross aggregate impact curves.

We report the cross aggregate cross impact curves for the spot, level, skew and term struc-
ture directions. Aggregate traded volumes are normalized by the typical deviations !2

u :=

Et [(u>(±qt ,±Qt ))2] and portfolio returns by the typical deviations æ2
v := Et [(v>(±pt ,±Pt ))2].

Estimated cross aggregate impact Aggu,v is reported along with predicted cross aggregate
impact Agg™u,v for di�erent choices of linear cross-impact models ™.

Conclusion

The goal of this chapter was to derive an estimation methodology for cross-impact on deriva-
tives. To do so, we introduced a market where derivatives and factors, variables which
determine the prices of derivatives are co-traded and trades on one instrument induce impact
on all instruments. We derived an explicit formula for cross-impact which is consistent with
Ito’s lemma and can be leveraged in practice. We applied the framework to E-Mini and VIX
futures along with call and put options on the E-Mini.

One key result of this chapter is an estimation formula for linear cross-impact which is
adaptable to the derivative modeling framework and is compatible with popular stochastic
volatility models. This formula Æts in conveniently with existing option pricing frameworks
and could be readily adapted in applications, provided one has access to the net traded order
Øow on derivatives.

Finally, our framework gives a recipe for aggregating liquidity of derivative markets which
accounts for the joint dynamics of order Øows and is tractable in practice. This is a topic of
interest for regulators and practitioners alike, as option liquidity is very fragmented.
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II.A Proofs

This section contains proofs of the results of Sections 2 and 3. We begin with the proof of
Proposition 1.

Proposition 1. Using the notation of Assumptions 2 and 4 and Corollary 1, we have

dpt = µ̃p (pt , t )dt +
1

p
1°Y

Gp (pt , t )dBt

dPt = µ̃P (pt , t )dt +
1

p
1°Y

GP (pt , t )dBt ,

where µ̃p : RN £R!RN , µ̃P : RN £R!RM and B is a standard N dimensional Brownian motion.

Proof. We have, from Equations (3) and (4)

dpt =µp (pt , t )dt +Gp (pt , t )dWt +§pq (pt , t )dqt +§pQ (pt , t )dQt

dPt =µP (pt , t )dt +GP (pt , t )dWt +§P q (pt , t )dqt +§PQ (pt , t )dQt .

Using the order Øow dynamics given in Assumption 1, we have

dpt =
°
µp (pt , t )+§pq (pt , t )∫q (pt , t )+§pQ (pt , t )∫Q (pt , t

¢
dt

+Gp (pt , t )dWt +§pq (pt , t )Lqq (pt , t )dZ
q
t +§pQ (pt , t )LqQ (pt , t )dZ

Q
t

dPt =
°
µP (pt , t )+§P q (pt , t )∫q (pt , t )+§PQ (pt , t )∫Q (pt , t

¢
dt

+GP (pt , t )dWt +§P q (pt , t )LQq (pt , t )dZ
q
t +§PQ (pt , t )LQQ (pt , t )dZ

Q
t .

Thus, deÆning µ̃p :=µp +§pq∫q +§pQ∫Q and µ̃P :=µP +§P q∫q +§PQ∫Q , the above reduces
to

dpt = µ̃p (pt , t )dt +Gp (pt , t )dWt +§pq (pt , t )Lqq (pt , t )dZ
q
t +§pQ (pt , t )LqQ (pt , t )dZ

Q
t

dPt = µ̃P (pt , t )+GP (pt , t )dWt +§P q (pt , t )LQq (pt , t )dZ
q
t +§PQ (pt , t )LQQ (pt , t )dZ

Q
t .

The Kyle model is covariance-consistent (see [TMB20] for a proof): we have §(pt , t )≠(pt , t )§>(pt , t ) =

Y ß(pt , t ). By construction

h(p,P )i=
µ
GpG

>
p + GpG

>
P

GP G
>
p GP G

>
P

∂
+§≠§

>
=ß

So that we have µ
GpG

>
p + GpG

>
P

GP G
>
p GP G

>
P

∂
= (1°Y )ß

Therefore, there exists a standard Brownian motion B such that

dpt = µ̃p (pt , t )dt +
1

p
1°Y

Gp (pt , t )dBt

dPt = µ̃P (pt , t )dt +
1

p
1°Y

GP (pt , t )dBt .
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We now prove Proposition 2.

Proposition 2. We have

§(pt , t ) =

µ
§pq §pq•

>

•§pq •§pq•
>

∂
(pt , t ) ,

where we recall that • := ( @P i

@p j )i , j is the M by N sensitivity matrix.

Proof. First, note that by Assumption 2 combined with Proposition 1, we have that Pt = F (pt , t )

and

dpt = µ̃p (pt , t )dt +
1

p
1°Y

Gp (pt , t )dBt

dPt = µ̃P (pt , t )dt +
1

p
1°Y

GP (pt , t )dBt .

Therefore, from using Ito’s lemma, we have that GP =•Gp , where •i j :=
@P i

@p j
. Therefore, as

shown in the proof of Proposition 1, we have
µ
GpG

>
p + GpG

>
P

GP G
>
p GP G

>
P

∂
=

µ
GpG

>
p GpG

>
p •

>

•GpG
>
p •GpGp•

>

∂
= (1°Y )ß

Thus, the factor covariance matrix has the form

ß=

µ
ßpp ßpp•

>

•ßpp •ßpp•
>

∂
.

The Kyle cross-impact model is fragmentation invariant (see [TMB20] for a proof): if x is in
ker(ß) then x is in ker(§). The above implies that, for every u 2RM , the vector (•>u,u) is in
ker(ß), so that, by fragmentation invariance, (•>u,u) is in ker(§). Therefore, this implies that
§pQ =§pq•

>.

Since § is symmetric, we also have that §pq is symmetric and that §P q = §
>
pQ = •§pq .

Another application of fragmentation invariance implies that §PQ =§P q•
> =•§pq•

>. Sum-
marising, we have

§=

µ
§pq §pq•

>

•§pq •§pq•
>

∂

Finally, we prove the last proposition, Proposition 3.

Proposition 3. We have

§pq =
p

Y (L °1
•

)>
q

L
>
•
ßppL•L

°1
•

,

where we have omitted the dependence on (pt , t ), ≠• :=≠qq +•
>
≠QQ•+•

>
≠Qq +≠qQ•, and

L• is a matrix such that L•L
>
•
=≠•.
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Proof. From Proposition 2, we have that

§=

µ
§pq §pq•

>

•§pq •§pq•
>

∂

The Kyle cross-impact model is covariance-consistent (see [TMB20] for a proof), i.e. we have

µ
ßpp ßpP

ßP p ßPP

∂
= Y §≠§

>.

Therefore, we obtain from the above that

ßpp = Y §pq≠•§
>
pq ,

where ≠• :=≠qq +•
>
≠QQ•+•

>
≠Qq +≠qQ•. In particular, note that ≠• is a symmetric

positive deÆnite matrix. Since § is a symmetric positive deÆnite matrix (see [TMB20] for a
proof), so is §pq . From [TMB20], we know that §pq is the unique symmetric positive deÆnite
solution of the system ßpp =§pq≠•§

>
pq and that its form is given by

§pq =
p

Y (≠°1/2
•

)>
q

(≠1/2
•

)>ßpp≠
1/2
•

≠
°1/2
•

.

Lemma 1. We denote by ¢c := (1,0, @P 1

@s
, · · · , @P M

@s
), Vc := (0,1, @P 1

@& , · · · , @P M

@& ) the vectors of sensitivi-

ties. Then, if ¢>
c ≠Vc = 0, we have

§pq (st ,&t , t ) =

p
Y

q
æ2!2

¢
+ª2!2

V
+2æªΩ!¢!V

√
æ2 +

!V

!¢

æª
p

1°Ω2 æªΩ

æªΩ ª2 +
!¢

!V
æª

p
1°Ω2

!
(st ,&t , t ) ,

where !2
¢

:=¢
>
c ≠¢c is the delta-aggregated liquidity, !

2
V

:= V
>
c ≠Vc is the vega-aggregated liquidity,

æ2(st ,&t , t )dt := dhs, sit is the spot volatility, ª
2(st ,&t , t )dt := dh&,&it is the volatility of volatility

and Ω(st ,&t , t )dt :=
dh&, sit

ª(st ,&t , t )æ(st ,&t , t )
is the spot-vol correlation.

Proof. Using the results of Proposition 3, the cross-impact matrix §pq is of the form

§pq (st ,&t , t )
p

Y (L °1
•

)>
q

L
>
•
ßppL•L

°1
•

(st ,&t , t ) ,

where ≠• :=≠qq +•
>
≠QQ•+•

>
≠Qq +≠qQ•, and L• is a matrix such that L•L

>
•

=≠•.
Using the notations of the lemma, we have

ßpp (st ,&t , t ) =

µ
æ2 æªΩ

æªΩ ª2

∂
(st ,&t , t ) ≠•(st ,&t , t ) =

µ
!2
¢

0

0 !2
V

∂
(st ,&t , t ) .

Plugging the above into the formula for §pq and applying some straightforward linear algebra
gives the result.
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II.B Empirical details

II.B.1 Data

This section gives motivation about our choice of instruments, details on the data and
methodology which were omitted in the main text for conciseness.

Figure II.6: Distribution of liquidity among VIX futures and options.

Choice of instruments To stress-test our approach, we sought an actively traded derivative
market with many derivatives. Thus we considered E-mini vanilla options and their factor
(both quoted on the CME), the front-month futures contract. However, a large fraction of
the traded risk in derivatives comes from VIX futures (quoted on the CBOE) as shown in
Figure II.6. The VIX index is computed using options with maturities between 23 and 37 days
and is meant to track the level of the implied volatility for options expiring in one month.
Thus, because of their liquidity and close relationship with the implied volatility of options,
order Øow traded on VIX futures play an important role and should not be ignored.

Filtering instruments Given the very large number of options quoted on the market, we
kept options within a given range of strikes and maturities to limit the size of the data set.

Resolution and time frame Our dataset contains the trades and quotes of all previously
selected products, at the Æve minute time scale, from January 2019 to September 2019. This
time frame was chosen because of the large level of noise on derivatives’ prices and the size
of the data set which encumbered analysis. In a given Æve minute bin, signed trades were
aggregated on their volumes, so that we have the opening and closing prices of instruments
along with the aggregated signed traded order Øow. We considered hours where both options
and their factor are liquid, further removing 30 minutes around opening and closing for
stationarity purposes. Doing so, data ranges between 3PM and 8:30PM UTC.

Implied volatility and greeks We now explain how implied volatility and Greeks were
computed. For a given day and for a particular option, we have access to the opening bid
and ask prices of that option for each Æve minute window. Furthermore, the bid and ask
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Black-Scholes implied volatilities are computed using the bid and ask price of the option
and the price of the E-mini future contract with closest maturity. Correspondingly, the usual
Black-Scholes Greeks ¢ and V are computed for both the bid and ask sides. In our analysis,
we use the mid of bid and ask quantities (option prices, implied volatilities and greeks) to
perform computations.

II.B.2 Estimation of covariances

This section details the estimation of the covariances ßpp and ≠• used in Section 4.

Estimation of ≠• In order to compute ≠•, we begin by computing •(pt , t ). Using Propo-
sition 1, the sensitivities of the option prices are computed according to the usual Greeks
adjusted for the option’s sensitivity as described in Section 3.3. Thus, for a given time window
[t , t+¢t ] of length ¢t = 5 minutes, we measure the net traded order Øow on factors ±qt and on
derivatives ±Qt . We weigh order Øow traded on derivatives according to sensitivities and build
the aggregate net order Øow on that time window: ±qt +•(pt , t )±Qt . We measure this quantity
over all available time windows and Ænd that it is roughly stationary and does not depend on
the value of the factors. This motivates dropping the dependence of these variables and the
estimation of ≠• as the covariance of the aggregate order Øow: ≠• º Cov(±qt +•(pt , t )±Qt ).

Estimation of ßpp After selection of the relevant factors detailed in Section 4.1, we estimate
the factor return covariance matrix in the following manner. Given a time window [t , t +¢t ]

of length ¢t = 5 minutes, we measure the opening and closing price of all factors. The spot
factor’s price is taken as the price of the E-Mini future closest to expiry. For options, the factor
values are computed by projecting option implied volatilities in the direction of the implied
volatility surfaces: &q =

PM
i=1Ø

i q æ̂i . This formula holds since, by construction, (Øi q ) satisÆes
Ø>Ø= I . Thus, we compute opening and closing prices of the factors of the implied volatility
surface. The factor covariance matrix ßpp is then estimated as the covariance matrix of price
changes.
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CHAPTER III

Dynamic cross-impact from anonymous

order Øow

Abstract

Trading a Ænancial asset pushes its price as well as the prices of other assets, a phenomenon
known as cross-impact. We consider a general class of kernel-based cross-impact models
and investigate suitable parametrisations for trading purposes. We focus on kernels
that guarantee that prices are martingales and anticipate future order Øow (martingale-
admissible kernels) and those that ensure there is no possible price manipulation (no-
statistical-arbitrage-admissible kernels). We determine the overlap between these two
classes and provide formulas for calibration of cross-impact kernels on data. We illustrate
our results using SP500 futures data.

From:
A characterisation of cross-impact kernels
M. Rosenbaum, M. Tomas

Introduction

How do trades move prices of Ænancial securities? It is well-known among practitioners and
academics that buying a Ænancial asset tends to push its price up while selling it tends to push its
price down. This observation is one aspect of market impact, which describes how trades on one
asset translate into its price. The many studies on market impact [BBDG18, ATHL05, Tor97]
have deepened our understanding of how markets digest trades into prices. In turn, this has
helped us understand key properties of dynamics of asset prices. For instance, market impact
explains why price volatilities are well-modeled by rough fractional Brownian motions [JR18].

Yet classical market impact does not tell us how our trades inØuence prices of other as-
sets. Thus, it ignores a potentially important aspect of price formation. As many assets are
simultaneously traded in Ænancial markets, this element is required to generate complete
market dynamics and, ultimately, answer the question of how markets digest liquidity.
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To solve this issue, a recent strand of works [RT21b, TMB20, WSG16, WNG17, BMEB17,
AKS16, TMB21, SL19] has studied cross-impact, which describes how transactions on a universe
of instruments drive their prices. This chapter contributes to the literature by characterising
cross-impact models which lead to well-behaved market dynamics. We show how these models
can be calibrated from empirical data and provide an example using SP500 futures.

We consider a stylised market made of d Ænancial securities, continuously quoted and
traded by market participants. Trading activity on Ænancial markets is highly endogenous:
statistically, trades trigger other trades [HBB13, BBDG18]. To capture this e�ect, we model
trade dynamics in our market by Hawkes processes [Haw71a] and introduce the d-dimensional
counting processes N a

t /N b
t denoting the number of buy/sell orders of all market participants

over [0, t ]. We classically assume that trades induce permanent impact which is linear in
the traded volume, for reasons related to no-arbitrage [SL19, Gat10]. A large class of models
which satisfy this property and has been well-studied when d = 1 is the class of propagator
models [BBDG18]. Thus we restrict ourselves to this class and assume that d-dimensional price
process P evolves as

Pt = P0 +

Zt

0
K (t ° s)(dN a

s °dN b
s ) , (1)

where K : t 2R+ 7! K (t ) 2Md (R) is a cross-impact kernel. The cross-impact kernel encodes all
information about cross-impact in our market but, contrary to prices and trades, it is not
directly observable. When it exists, the limit of the cross-impact kernel § := lim

t!1
K (t ) is called

the permanent cross-impact matrix since §i j quantiÆes the permanent price impact of a trade
on Asset j on the price of Asset i .

Within Equation (1), we examine two di�erent classes of cross-impact kernels: those that antici-
pate upcoming order Øow and yield martingale prices, which we dub martingale-admissible, and
those that prevent statistical arbitrage, which we dub no-statistical-arbitrage-admissible, or nsa-
admissible for short. Statistical arbitrage is meant in the sense of [Gat10]: a statistical arbitrage
is a trading strategy that starts and ends with no asset holdings and has negative expected costs.

Martingale-admissible and nsa-admissible kernels enforce di�erent aspects of price e�ciency.
Martingale-admissible kernels ensure that prices are not predictable and that information Øow
is reØected in the current price, so that no trading strategy can make a proÆt by forecasting
prices or order Øows. On the other hand, nsa-admissible kernels prevent price manipulation
by large agents who could push prices to make a proÆt.

The main contribution of this chapter is the characterisation of the class of martingale-
admissible and nsa-admissible kernels with respect to price and order Øow statistics. In
particular, at most one cross-impact kernel is both martingale-admissible and nsa-admissible.
This characterisation can be used for calibration on real data and we provide an application
on market data to illustrate our results.

We now comment on the links between our approach and the literature.
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This market model using Hawkes processes in a propagator framework is a generalisation of
the model from [JR18, Jai15], where only one asset is considered. In the single-asset case, this
market dynamic is consistent with many empirical results concerning market impact. Therefore
the multivariate generalisation of this framework will stay consistent with these Ændings while
providing insights into cross-impact.

The chapters [SL19, BMEB17] study a class of cross-impact kernels which give rise to martingale
prices. This condition is used to obtain a calibration methodology. Though the calibration
methodology based on maximum likelihood is straightforward, the resulting cross-impact
kernels are noisy, prone to overÆtting and they have no guarantees of no-arbitrage. We show
that all martingale-admissible kernels, including those presented in [SL19, BMEB17], have a
certain form.

The class of nsa-admissible kernels has been described in [AKS16]. However, the provided
characterisation is quite theoretical and gives no insight into which cross-impact kernels to
choose in practice. This chapter extends some of the results of [AKS16]. In particular, we show
that nsa-admissible kernels have constrained values at zero and inÆnity which are related to
price and order Øow statistics. Unfortunately, there are many kernels which are nsa-admissible
but which lead to ill-behaved market dynamics, as pointed out in [AKS16]. We provide a
methodology for obtaining a nsa-admissible kernel which is close to a martingale-admissible
kernel. Doing so, we obtain a kernel which is still faithful to empirical data while preventing
statistical arbitrage.

The resulting kernels can be used on market data to estimate cross-impact. Thus, the
chapter adds to the literature focusing on calibrating cross-impact kernels [HS01, PV15, SL19,
WSG15, BMEB17]. While some kernels are nsa-admissible such as the eigenliquidity cross-
impact kernels [BMEB17], others are martingale-admissible [BMEB17, SL19]. This chapter
provides kernels which can be easily calibrated in both classes.

Finally, the boundary values K (0) and lim
t!1

K (t ) of any cross-impact kernel K which is

martingale-admissible and satisÆes necessary conditions for nsa-admissability have a mi-
croscopic foundation. Indeed, both can be interpreted as solutions to the multivariate version
of Kyle’s insider trading problem [GdMMBB20]. Thus, although cross-impact is purely a
reaction to order Øow imbalance in our model, the cross-impact kernel can also be interpreted
through the lens of information revelation.

The chapter is organized as follows. In Section 1, we describe our Ænancial market. In
Section 2, we characterise the classes of martingale-admissible and nsa-admissible kernels.
Finally, we apply our results on market data in Section 3 before concluding in Section 4. Some
proofs and additional results are relegated to an appendix.
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III. Dynamic cross-impact from anonymous order Øow

Notation

The set of d £d real-valued square matrices is denoted by Md (R), the set of orthogonal (also
called rotation) matrices by Od , the set of real symmetric matrices by S

+
d

(R) and the set of real
symmetric positive matrices by S

++
d

(R). Furthermore, given a matrix A in Md (R), A> denotes
its transpose. Given A in S

++
d

(R), we write A1/2 for a matrix such that A1/2(A1/2)> = A andp
A for the square root matrix, the unique positive semi-deÆnite symmetric matrix such that

(
p

A)2 = A. Finally, given a vector v 2Rd , we write v = (v1, . . . , vd ) and diag(v) for the diagonal
matrix with entries the elements of v .

A matrix M 2 Md (R) is called non-negative if for any x 2 Rd , x>M x ∏ 0. It is called
non-negative deÆnite if z§M z ∏ 0 for any z 2 Cd . A matrix M 2 Md (C) is called strictly
positive if x>M x > 0 for any nonzero x 2Rd and strictly positive deÆnite if z§M z > 0 for any
nonzero z 2Cd . The conjugate transpose of a matrix M 2Md (C) is written M§.

A function f : R ! R is called causal if f (t ) = 0 for all negative t . The same is said of
a vector-valued or matrix-valued function if all its entries are causal. Given an integrable
function f , we denote its Fourier transform bf : C! C deÆned, for all ! 2 C such that the
integral converges, by

bf (!) =

Z1

°1
f (t )e°i!tdt .

Similarly, we deÆne the Fourier transform of a vector-valued or matrix-valued function with
integrable entries by the vector-valued or matrix-valued function Fourier transform of all its
entries. For a given real-valued measure µ : B(R) ! R, we denote its Fourier transform by
bµ : C!C deÆned, for all ! 2C such that the integral converges, by

bµ(!) =

Z1

°1
e°i!t

µ(dt ) .

Similarly, we deÆne the Fourier transform of a vector or matrix with measure entries by
the Fourier transform of all its entries. All stochastic processes in the text are deÆned on
a probability space (≠,F , (Ft )t2R,P). Given two semi-martingale processes X and Y , we
denote by hX , X i the predictable quadratic variation of X and hX ,Y i the predictable quadratic
covariation of X and Y .

1 Market model

This section presents the stylised market model in force throughout the chapter. Our setting
extends [Jai15, JR18] to the multivariate case. For a lengthier discussion about these assump-
tions in the univariate case, we refer the reader to [Jai15, JR18].

We consider a market made of d di�erent assets, quoted and traded continuously in time.
We greatly simplify the market by abstracting away microstructural features and assume that
agents can buy and sell Asset i at time t at the unique quoted price P i

t . The d-dimensional
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1. Market model

price process is denoted by P := (P 1, · · · ,P d ). We assume that agents trade from time 0 onward.
During this period, the cumulative traded volume by all agents at the ask (resp. bid) is denoted
by V a (resp. V b ) and the net traded volume by V :=V a °V b .

A key property of the order Øow in Ænancial markets is its persistence: the sign correla-
tion of orders is slowly decaying in time [BBDG18]. Because of this e�ect, a particularly
successful model for order Øow dynamics is the Hawkes process which can capture self-
excitation and cross-excitation across time and instruments [Haw71a, BMM15]. Thus we will
assume that the order Øow dynamics are given by a Hawkes process.

Assumption 1 (Hawkes order Øow). The number of buy and sell market orders follows a Hawkes

process (N a , N b), of intensity (∏a ,∏b) and kernel ©=

µ
©

a/a
©

a/b

©
b/a

©
b/b

∂
such that

∏a
t =µ+

Zt

0
©

a/a(t ° s)dN a
s +

Zt

0
©

a/b(t ° s)dN b
s

∏b
t =µ+

Zt

0
©

b/a(t ° s)dN a
s +

Zt

0
©

b/b(t ° s)dN b
s ,

where in the above

• the vector µ 2Rd
+ is the exogenous intensity of buy and sell market orders;

• the entry-wise integrable matrix function ©
a/a : t 7! ©

a/a(t ) 2 Md (R+) (resp. ©
b/b : t 7!

©
b/b(t ) 2Md (R+)) encodes the endogenous contribution of past buy (resp. sell) market orders

on the intensity of buy (resp. sell) market orders;

• the entry-wise integrable matrix function ©
a/b : t 7! ©

a/b(t ) 2 Md (R+) (resp. ©
b/a : t 7!

©
b/a(t ) 2Md (R+)) encodes the endogenous contribution of past sell (resp. buy) market orders

on the intensity of buy (resp. sell) market orders.

We assume that the Hawkes parameters are such that E[∏a
t ] = E[∏b

t ] for any t . Each market order

on Asset i is assumed to be of constant size vi and the spectral radius of the L1 norm of the Hawkes

kernel © is assumed to be below one. The latter assumption allows us to deÆne the stationary version

of the Hawkes process (in fact stationary intensity).

This framework allows for rich multivariate dynamics since we can account for self-excitation
and buy/sell interactions between di�erent assets through ©

b/a
i j

and ©
a/b
j i

. We assumed that
the market there are as many buy market orders than sell market orders on the small time
scales of the market model.

While the order Øow is persistent, the order Øow at time t should not give information
about the order Øow at time t 0 ¿ t . We formalize this in the next assumption.

Assumption 2 (Finitely predictable orderØow). For all t ∏ 0, E[V a
s °V b

s | Ft ] converges in

probability to some Ænite limit as s tends to inÆnity.
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III. Dynamic cross-impact from anonymous order Øow

Note that this assumption implies additional constraints on the Hawkes parameters.

In our market, prices are driven by the transactions of all agents. To exclude trivial ar-
bitrages and keep the model simple, it is natural to assume that the permanent component
of the cross-impact is a linear function of the order Øow (see for example Corollary 3.7 of
[SL19]) and to consider a propagator framework as explained in the introduction [BBDG18].
This leads to the following assumption.

Assumption 3 (Price dynamics). There exists some function K : t 2R+ 7! K (t ) 2Md (R), called a

cross-impact kernel, such that the price process P satisÆes, for all t 2R+

Pt = P0 +

Zt

0
K (t ° s)(dN a

s °dN b
s ) , (2)

and K (t ) !
t!1

§, where § is an invertible d £d matrix called the permanent cross-impact matrix.

The diagonal functions Ki i of the cross-impact kernel relate past order Øow on a security to
its price. O�-diagonal elements Ki j relate past order Øow of Asset j to the price of Asset i .
The matrix § is called the permanent cross-impact matrix since §i j quantiÆes how much the
price of asset i is moved by the net order Øow on asset j after a long period.

Finally, we make a technical assumption about the continuity of the Hawkes kernel at the
origin and its decay at inÆnity.

Assumption 4. The Hawkes order Øow kernel © is continuously di�erentiable at zero and

square-integrable.

This assumption is not really constraining since Hawkes kernels for order Øows are found to
be square-integrable when calibrated on Ænancial data [HBB13].

Previous hypotheses have not touched on the e�ciency of prices in our market. Without
imposing additional assumptions, prices may be highly predictable or agents could manipulate
them through trading to generate proÆts. These two concepts of price e�ciency are not always
compatible, even in this stylised model. As such, we need to distinguish between cross-impact
kernels which give martingale prices and those that prevent statistical arbitrage.

The class of cross-impact kernels which give rise to martingale prices also includes triv-
ial examples, such as K = 0. To exclude these, we introduce martingale-admissible kernels,
which anticipate the impact contribution of the order Øow and lead to martingale prices. Such
kernels generate non-trivial price dynamics since they incorporate the impact contribution of
trades in prices. In the univariate case d = 1, Theorem 2.1 of [Jai15] shows that when prices are
martingales and trades impact prices, we have

Pt °P0 = ∑ lim
s!1

E[V a
s °V b

s |Ft ] ,

where ∑ > 0 is the permanent market impact contribution. This motivates the following
deÆnition for martingale-admissible kernels.
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1. Market model

DeÆnition 1 (Martingale-admissible kernels). A cross-impact kernel K is said to be martingale-

admissible if

Pt °P0 =

Zt

0
K (t ° s)(dN a

s °dN b
s ) =§ lim

s!1
E[V a

s °V b
s |Ft ] . (3)

We later show that martingale-admissible kernels lead to martingale prices. Such kernels
anticipate the market order Øow to set martingale prices according to linear permanent cross-
impact. This prevents agents who successfully forecast order Øow to trade proÆtably. However,
it does not forbid statistical arbitrages entirely. Before introducing relevant deÆnitions, we
deÆne trading strategies within our market model below.

DeÆnition 2 (Trading strategy). The buy and sell trades sent under the trading strategy f : R!Rd

are d -dimensional Poisson processes na and nb , independent of the Hawkes process (N a , N b), with

intensities given by f a := max( f ,0) and f b := max(° f ,0). The (average) cost of the trading strategy

f is

C ( f ) :=

Z1

0

Zt

0
f (t )>K (t ° s) f (s)dsdt . (4)

If
R1

0 f (s)ds = 0, the trading strategy is called a round-trip strategy and if f has Ænite support, it is

called a Ænite-horizon trading strategy.

All trading strategies considered in this chapter have deterministic intensity, ignore exchange
fees, bid-ask spreads and other microstructural trading costs, so that trading costs are
exclusively induced by market impact. The average cost Equation (4) is derived since under
the agent’s trading strategy the price process becomes

Pt = P0 +

Zt

0
K (t ° s)(dN a

s °dN b
s +dna

s °dnb
s ) ,

so that the average trading cost of the strategy is

E

∑Z1

0
(dna

t °dnb
t )>(Pt °P0)

∏
= E

∑Z1

0
( f a(t )° f b(t ))>(Pt °P0)dt

∏

= E

∑Z1

0

Zt

0
( f a(t )° f b(t ))>K (t ° s)(dN a

s °dN b
s +dna

s °dnb
s )dt

∏
.

Therefore, since the counting processes na and nb are independent from each other and from
the Hawkes process (N a , N b) and E[∏a

t ] = E[∏b
t ] for all t , we obtain

E

∑Z1

0
(dna

t °dnb
t )>(Pt °P0)

∏
=

Z1

0

Zt

0
( f a(t )° f b(t ))>K (t ° s)( f a(s)° f b(s))dsdt

=

Z1

0

Zt

0
f (t )>K (t ° s) f (s)dsdt .

This justiÆes Equation (4). Trading strategies which are proÆtable on average are called
statistical arbitrages and deÆned below.
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III. Dynamic cross-impact from anonymous order Øow

DeÆnition 3 (Statistical arbitrage). A statistical arbitrage is a Ænite horizon, round-trip trading
strategy such that its costs are negative:

C ( f ) < 0.

Cross-impact kernels which allow for statistical arbitrage induce important issues for appli-
cations. For example, they would bias trading strategies which seek to minimise trading
costs towards trading-induced price manipulation. For such problems, we require trading
costs models with theoretical guarantees of no statistical arbitrage. We call no-statistical-
arbitrage-admissible (or nsa-admissible for short) cross-impact kernels that prevent statistical
arbitrage.

DeÆnition 4 (No-statistical-arbitrage-admissible kernels). A cross-impact kernel K is said to be

nsa-admissible if there are no possible statistical arbitrages, i.e. no round-trip trading strategies with

average negative cost.

Finally, we make the distinction between readily available information, such as prices and
trades, and non-directly observable information, such as the cross-impact kernel K or the
permanent cross-impact matrix §. We refer to empirical observables for information which is
easily mesaurable.

DeÆnition 5 (Empirical observables). An empirical observable is a Ærst or second-order moment
measure of the price or order Øows counting processes.

DeÆnition of the moment measures are given in Section III.A. Loosely speaking, they can be
seen as the moments of our market variables. Empirical observables play an important role:
they can be understood as key features of our stylised market, which we measure and use
to derive the cross-impact kernel K . The next section shows that they constrain the class of
relevant cross-impact kernels.

Our model being set, the next section presents the main results of the chapter.

2 Characterisation of cross-impact kernels

The previous section introduced the framework in force throughout the chapter. We now
characterise the cross-impact kernels K which emerge from these assumptions, depending on
the hypotheses on the market. We characterise martingale-admissible kernels in Section 2.1
and nsa-admissible kernels in Section 2.2. Finally, Section 2.3 concludes on the cross-impact
kernels which are both martingale-admissible and nsa-admissible.

2.1 Characterisation of martingale-admissible kernels

In this section, we focus on characterising martingale-admissible kernels. We begin by
characterising martingale-admissible cross-impact kernels as a function of Hawkes parameters
and the permanent cross-impact matrix §. Then, we express these cross-impact kernels as a
function of empirical observables.
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2. Characterisation of cross-impact kernels

2.1.1 Cross-impact kernel as a function of Hawkes parameters

The following proposition derives the martingale-admissible cross-impact kernels K as a
function of Hawkes parameters and the permanent cross-impact matrix §.

Proposition 1. For any martingale-admissible kernel K , the price is a martingale, ©b/b °©
a/b =

©
a/a °©

b/a and for all t 2R+

K (t ) = K (0)(Id °
Zt

0
'(s)ds) ,

where we have introduced the imbalance kernel

' :=©
b/b °©

a/b
=©

a/a °©
b/a .

Furthermore, the immediate cross-impact matrix and permanent cross-impact matrix are related as

follows:

K (0) =§

µ
Id °

Z1

0
'(s)ds

∂°1

diag(v)°1 .

The proof of Proposition 1 is given in Section III.C.1. Note that, by Proposition 1 and Assump-
tion 4, any martingale-admissible cross-impact kernel K is almost-everywhere di�erentiable
and its derivative is square-integrable. Proposition 1 provides an expression for K as a function
of Hawkes parameters and the permanent cross-impact matrix §. However, the imbalance
kernel ' is hard to estimate and we cannot measure the permanent cross-impact matrix § on
real data. We would like to derive an analogous expression using solely empirical observables
which can be easily measured on empirical data. This is the topic of the next section.

2.1.2 Cross-impact kernel as a function of empirical observables

To derive an expression for martingale-admissible cross-impact kernels, it is convenient to
introduce the stationary version of the Hawkes order Øow process. We write Ñ for the sta-
tionary version of the Hawkes process with baseline µ and kernel © (this process exists and
is unique since the spectral radius of the L1 norm of © is smaller than one, see e.g. [BM96]).
Loosely speaking, Ñ describes the long-term behaviour of N . The stationary version allows us
to deÆne properly empirical observables but we still consider that the order Øow process is
given by the non-stationary process.

We write ≠
Ñ and ≠ for the reduced covariance measures, deÆned in Section III.A, of

the multivariate stationary point processes Ñ and Ñ a ° Ñ b . By construction, we have
≠= (Id ,°Id )≠Ñ (Id ,°Id )>.

Using the above notations, the following proposition relates martingale-admissible kernels
to empirical observables and the boundary values of the cross-impact kernel K (0) and
lim

t!1
K (t ) =§.
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Proposition 2. Any martingale-admissible cross-impact kernel K satisÆes, for almost all ! 2R

cK 0
(!) =

1
p

2
GOL (!)°1 °K (0) , (5)

where G is any matrix such that GG
> = §

R1
0 ≠(ds)§>, L is any spectral factor of ≠ (see

DeÆnition 14) and O is the unique rotation matrix such that

§=
1
p

2
GOL (0)°1 ,

where we recall that lim
t!1

K (t ) =§ and, by Proposition 1 and Assumption 4, K is almost-everywhere

di�erentiable and its derivative is square-integrable.

The proof of Proposition 2 is given in Section III.C.2. Proposition 2 completely characterises
the derivative of martingale-admissible cross-impact kernels as a function of quantities easily
measurable on data through ß,≠ and the boundary values K (0) and §. However, these are
not known a priori. Thus, for a given set of empirical observables, martingale-admissible
cross-impact kernels may only di�er by their boundary values.

The above characterisation for martingale-admissible cross-impact kernels is useful to calibrate
martingale-admissible kernels and we make use of it in Section 3. However, to do so, we
must choose values for K (0) and §. An outstanding question is thus that of appropriate
values, which we address in the next section where we Ænd that nsa-admissible kernels have
constrained boundary values.

2.2 Characterisation of nsa-admissible kernels

The previous section examined martingale-admissible cross-impact kernels. We found that
such cross-impact kernels are completely constrained – except at the boundaries. In this
section, we focus on nsa-admissible cross-impact kernels. Contrary to the previous section,
we will Ænd that nsa-admissible cross-impact kernels are largely unconstrained, except at the
boundary values. We begin by showing the latter.

2.2.1 Constraints on the boundary values of the cross-impact kernel

This section derives the boundary values for nsa-admissible cross-impact kernels. The following
proposition characterises the immediate cross-impact matrix for any nsa-admissible kernel.
We introduce µ := (Id °©

a/a)µ+©
a/b

µ which represents the stationary average of the intensity
of incoming buy or sell orders.

Proposition 3. For any nsa-admissible kernel K , we have

K (0) =
1
p

2
(L °1

0 )>
q

L
>
0 ßL0L

°1
0 , (6)

where
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1. the matrix L0 is any matrix such that L0L
>
0 = diag(µ1v2

1 , · · · ,µd v2
d

),

2. the matrix ß := lim
t!1

E[dhP,Pit ] is loosely speaking the stationary instantaneous covariance

matrix of returns. The existence of this limit is shown in the proof of the proposition.

The proof of Proposition 3 is given in Section III.C.3. Note that K (0) does not depend on
the choice of L0 such that L0L

>
0 = diag(µ1v2

1 , · · · ,µd v2
d

). The matrix K (0) has a microscopic
interpretation. Indeed, within Kyle’s insider trading model [Kyl85] extended to multiple assets
[GdMMBB20, CK94] the market-maker adjusts his quotes according to the pricing rule Gq ,
where G is called the Kyle cross-impact matrix and q = qI T +qN T is the aggregate order Øow of
the insider and noise traders. In this model, if the price-covariance matrix is ß and the noise
order-Øow covariance matrix E[(qN T )>qN T ] is ≠({0}) = diag(µ1v2

1 , · · · ,µd v2
d

), then G = K (0),
where K (0) is given by Proposition 3. In our model, ≠({0}) represents the instantaneous
covariance matrix of order Øow, which is diagonal since there are no simultaneous orders
on di�erent assets. Thus, although no agents in our model have information, K (0) can be
interpreted through the lens of information revelation.

With a quite similar proof as that of Proposition 3, we can show that the permanent cross-impact
matrix for any nsa-admissible kernel is symmetric non-negative.

Proposition 4. For any nsa-admissible kernel K , the matrix lim
t!1

K (t ) = § is symmetric non-

negative.

The proof of Proposition 4 is given in Section III.C.4. Importantly, the elements of Equation (6)
can be estimated quite easily on data. Thus, for any nsa-admissible kernel K , K (0) can be
expressed solely as a function of market observables. On the other hand, the permanent
cross-impact matrix lim

t!1
K (t ) =§ is only constrained by symmetry and non-negativeness.

2.2.2 Constraints on the Fourier transform of the cross-impact kernel

The previous section showed that boundary values of nsa-admissible kernels are constrained
and that their boundary value at zero is completely characterised. In this section, we
derive necessary and su�cient conditions for nsa-admissible kernels. We begin with a result
from [AKS16], which holds in a more general setting than the one in force in this chapter,
given in the lemma below.

Lemma 1 (Theorem 2.10 of [AKS16]). A continuous cross-impact kernel K is nsa-admissible if

and only if there exists a matrix-valued non-negative deÆnite Hermitian measure M such that for

all t 2R we have

Z (t ) =

Z

R

e i∞tM(d∞) ,

where

Z (t ) :=

8
>><
>>:

K (t ) if t > 0

K (0) if t = 0 .

K (°t )> if t < 0
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Proof. Since K (0) is symmetric and K is continuous this result stems from Theorem 2.10 of
[AKS16].

In our framework, we can extend the previous result and prove some properties concerning
the smoothness of nsa-admissible kernels, which is the topic of the next proposition.

Proposition 5. A continuous cross-impact kernel K is nsa-admissible kernel if and only if, using

the notations of Lemma 1, one of the following identities holds for almost all t 2R

Z
0
(t ) = i

Z

R

∞e i∞tM(d∞)

Z
00
(t ) =°

Z

R

∞2e i∞tM(d∞) ,

whereM is a matrix-valued non-negative deÆnite Hermitian measure such that Z (t ) =
R
R e i∞tM(d∞)

and each integral converges absolutely, i.e. each integrand is absolutely integrable with respect to

the measure M. If any of these conditions is satisÆed, the matrix function Z has twice continously

di�erentiable entries.

The proof of Proposition 5 is given in Section III.C.5. The regularity properties of Proposition 5
enable us to check monotonicity and convexity of continuous nsa-admissible cross-impact
kernels, a topic of interest as discussed in [AKS16].

2.3 Characterisation of martingale and nsa-admissible kernels

This section summarises the results from the two previous ones to characterise kernels which
are martingale-admissible and nsa-admissible. We have seen that martingale-admissible
kernels are constrained everywhere except at the boundaries, while nsa-admissible kernels are
constrained at the boundaries but are largely unconstrained elsewhere. It is thus natural to
observe that there is at most one kernel that is both martingale-admissible and nsa-admissible.
In practice, this candidate kernel is not always nsa-admissible. For applications, it may
be interesting to slightly relax the martingale property in order to guarantee no statistical
arbitrage. Thus, we introduce a regularisation technique to obtain a kernel close to the kernel
which gives martingale prices but that prevents arbitrage.

The next proposition shows that for kernels which are both nsa-admissible and martingale-
admissible, the permanent cross-impact matrix is Æxed. We recall that the matrix ß =

lim
t!1

E[dhP,Pit ] is loosely speaking the stationary instantaneous covariance matrix of returns.

Proposition 6. For any nsa-admissible, martingale-admissible kernel K , we have

lim
t!1

K (t ) =§=
1
p

2
(L °1

1 )>
q

L>
1ßL1L

°1
1 , (7)

where the matrix L1 is any matrix such that L1L
>
1 =

R1
0 ≠(ds), which is loosely speaking the

stationary total autocovariance matrix of order Øows.
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Proof. As K is both martingale-admissible and nsa-admissible, Propositions 2 to 4 imply that
§ is a symmetric, non-negative matrix that satisÆes

§

Z1

0
≠(ds)§>

=
1

2
ß .

The result follows.

The previous proposition highlights that, as K (0) in Proposition 3, the permanent cross-impact
matrix given in Equation (7) has a microscopic interpretation. However, while K (0) can be
interpreted as the market-maker pricing rule in a market where the price covariance is ß and
the noise order Øow covariance matrix is ≠({0}) = diag(µ1v2

1 , · · · ,µd v2
d

), the permanent cross-
impact matrix § can be interpreted as the market-maker pricing rule in a market where the
price covariance is ß and the order Øow covariance is

R1
0 ≠(ds). The latter can be interpreted

as the total order Øow covariance which encapsulates instantaneous and non-instantaneous
liquidity.

The next theorem summarises the results of the chapter to completely characterise cross-impact
kernels which are both martingale-admissible and nsa-admissible.

Theorem 1. There exists a unique cross-impact kernel K that is martingale-admissible and which

satisÆes the necessary conditions for arbitrage-admissibility outlined in Equations (6) and (7). Its
expression is given by inverting Equation (5) and setting the boundary values given by Equations (6)
and (7). Furthermore, if it satisÆes Proposition 5, then K is also nsa-admissible.

Proof. Let K be a cross-impact kernel which is both martingale-admissible and satisÆes
Equations (6) and (7). Then by Proposition 1, it is continuous. Furthermore, it must satisfy
Propositions 1 and 3 so that it is unique and its boundary values are given by Equations (6)
and (7). Since it is continuous, it is nsa-admissible if and only if it satisÆes the necessary and
su�cient conditions of Proposition 5 (or Lemma 1).

The theorem shows there exists only one martingale-admissible kernel which satisÆes the
boundary conditions of nsa-admissible kernels. Though it may not be nsa-admissible, it is
certainly closer to being nsa-admissible than other martingale-admissible kernels since it
satisÆes necessary conditions of nsa-admissible kernels. Given its importance, we write this
cross-impact kernel K 1 in the following.

DeÆnition 6 (K 1 kernel). The cross-impact kernel K 1 is the unique martingale-admissible kernel

that satisÆes Equations (6) and (7).

While K 1 is a good candidate for applications, we have no guarantee that this kernel is
nsa-admissible. This naturally poses issues in certain applications. For example, in portfolio
optimization, a trading cost model which allows for arbitrages induces spurious round-trip
strategies, as shown in [AKS16]. Thus, we introduce a regularisation method to Ænd a kernel
close to this candidate but which is nsa-admissible, which we write K 2. This motivates to the
following deÆnition.
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DeÆnition 7 (K 2 kernel). The cross-impact kernel K 2 is deÆned as

K 2
= argmin

K arbitrage°admissible

∞∞∞cK 1 ° bK
∞∞∞

F
,

where k·kF is the Frobenius norm.

The kernel K 2 exists and is unique so that the previous deÆnition is justiÆed. Indeed, by
Lemma 1 and Proposition 5, any nsa-admissible kernel K must be such that bK + bK § is
non-negative. Therefore

argmin
K arbitrage°admissible

∞∞∞cK 1 ° bK
∞∞∞

F
= argmin

bK+ bK §∏0

∞∞∞cK 1 ° bK
∞∞∞

F
.

Thus, K 2 can be computed from K 1 by replacing each eigenvalue % of cK 1 + cK 1
§
by max(%,0).

Loosely speaking, K 2 trades martingale-admissibility for arbitrage-admissibility while staying
close to K 1.

The next section applies our results to market data to compute K 1 and K 2.

3 Application to Ænancial data

This section focuses on applying the previous results to compute the kernels K 1 and K 2 on
market data. Details on the methodology and data used are given in Section III.D.

The dataset used comprises of 4 years of volumes and price data for two maturities of
E-Mini SP500 futures traded on the CME, so that d = 2. These futures are Ænancially settled
at expiry (in addition to daily settlements) according to the value of the SP500 index. The
two futures selected are the lead month future, referred to as SPMINI, and the next upcoming
future, referred to as SPMINI3. This data has been explored in a previous study and we refer
the reader to [TMB20] for more details into the underlying data and processing methodology.1

We begin by reporting the relevant empirical observable of our system, namely the reduced
covariance measure ≠ and the price-covariance matrix ß.

Figure III.1 reports empirical estimates of ≠([øøs , (ø+1)øs[) for di�erent values of ø, for a time
resolution of øs = 1 second. By a slight abuse of notation, we write ≠(ø) for ≠([øøs , (ø+1)øs[).
With these conventions, ≠(0) represents the trade covariance, so that ≠11(0) is the instan-
taneous variance of signed order Øow on the front month future SPMINI and ≠22(0) the
instantaneous variance of signed order Øow on SPMINI3. These quantities reØect the liquidity
of the underlying assets since they increase with the daily traded volume [TMB20]. The Ægure
shows that the front-month maturity SPMINI is approximately 10 times more liquid than the
SPMINI3, which highlights that most trading occurs on the leading month contract. The order

1The authors thank the Econophysics & Complex Systems Research Chair for providing access to this data.
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Øow auto-covariances ≠11(ø) and ≠22(ø) are slowly decaying in ø, although ≠11(ø) exhibits
faster decay than ≠22(ø). Furthermore, we observe that ≠12(ø) º ≠21(ø) so that there are
no lead-lag e�ects in the order Øows. This shows that ≠ cannot be easily factorized under
the form ≠(ø) º ø°ØC , with some Ø < 1 and C 2 Md (R). This hypothesis is used in certain
cross-impact kernels [BMEB17].

The price-covariance matrix ß, not shown here but reported in [TMB20], shows strong
correlation (º 90%) between the two maturities. This is natural since both futures have the
same underlying.

Figure III.1: Order Øow auto-covariance ≠.

Diagonal elements of the auto-covariance measure (left) and o�-diagonal elements of the
auto-covariance measure (right). Dashed lines represent power-law Æts of the auto-covariances.
Order Øow is in product units: number of contracts traded times the contract valpoint (which
is 50 for these futures). Details about the estimation procedure are given in Section III.D.2.

Figure III.2 shows the estimated boundary values of the K 1 and K 2 kernels which are by
deÆnition the same for K 1 and K 2, computed using Propositions 3 and 6. The calibrated
values conÆrm some intuitive ideas:

• price impact on the liquid future is lower than on the illiquid future: K11(0) < K22(0) and
§11 <§22;

• buying a future immediately pushes the price of the other, as K12(0),K21(0) > 0, and the
permanent impact contribution is positive since §12,§21 > 0;

• permanent impact is lower that immediate impact, as each component of the immediate
impact matrix is larger than the permanent cross-impact matrix: K 1(0) = K 2(0) >§.
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Figure III.2: Boundary values of K 1 and K 2.

The boundary values of the martingale-admissible kernel K 1 and the nsa-admissible kernel
K 2, the immediate cross-impact matrix K 1(0) = K 2(0) and the permanent cross-impact matrix
§= limt!1 K 1(t ) = limt!1 K 2(t ), estimated using Proposition 3 and Proposition 6. Values
are reported in basis points (i.e. 104 of their units). Details about the estimation procedure are
given in Section III.D.4.

Figures III.3 and III.4 show both cross-impact kernels. The boundary values of K 1 and K 2 are
identical and given in Figure III.2. As could be checked numerically, the martingale-admissible
kernel K 1 is not nsa-admissible. Thus, there is no kernel which is both martingale-admissible
and nsa-admissible here. Given the very strong correlations between both assets, it is not
surprising that K 2

21 º K 2
11 and K 1

21 º K 1
11: trading the Ærst maturity pushes the price of each

future by roughly the same amount. Finally, a somewhat surprising feature of K 2 is that it is
non-monotonous. The cross-impact kernel K 2 is sensitive to numerical errors in the estimation
methodology detailed in Section III.D.4, which may explain the strange value of a point of K 2

22.
Nevertheless, it has little incidence on the kernel’s Æt to data (as we can see from Figure III.5).

Figure III.3: Values of the K 1 kernel.

The values of the transient part of the martingale-admissible K 1 ° limt!1 K 1(t ) = K 1 °§ (red)
are reported. Each subplot shows the matrix elements of the kernels. For instance, the top left
plot shows K 1

11 °§11 and the top right shows K 1
12 °§12. The permanent cross-impact matrix

§ has been removed to highlight the power-law decay of the cross-impact kernel K 1 toward its
limit.
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Figure III.4: Values of the K 2 kernel.

The values of the transient part of the nsa-admissible kernel K 2° limt!1 K 2(t ) = K 2°§ (blue)
are reported. Each subplot shows the matrix elements of the kernels. For instance, the top left
plot shows K 2

11 °§11 and the top right shows K 2
12 °§12. The permanent cross-impact matrix

§ has been removed to highlight the behaviour of the transient part of the cross-impact kernel
K 2.

We illustrate the predictions of the di�erent kernels in Figure III.5. For a given trading day
taken on the 31st of January 2017, we measure the traded order Øows and build the predicted
price changes according to the cross-impact rule Equation (2). We complete this procedure with
the martingale-admissible kernel K 1 and the nsa-admissible kernel K 2. We then compare the
predicted price changes to the actual price changes. As is consistent with the literature on price
impact, we see that price changes predicted from our cross-impact models are qualitatively
consistent with realised price changes. However, cross-impact models are able to use trades on
the liquid maturity (SPMINI) to explain price changes on the illiquid maturity (SPMINI3). This
is critical since the prices of the two maturities are strongly correlated but most trades occur on
the the leading month contract. Although the two kernels are quite di�erent, their predictions
are strikingly similar. This highlights that our regularisation procedure was successful in
Ænding an nsa-admissible kernel that Æts data well and prevents statistical arbitrage.
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Figure III.5: Example of predicted prices from K 1 and K 2.

The di�erence between predicted prices between the realized price and the impact-induced
price from Equation (1) with the martingale-admissible cross-impact kernel K 1, given by
bp1

t = p0 +
P

s<t K 1(t ° s)qs , (red) and with the nsa-admissible cross-impact kernel K 2, given by
bp2

t = p0 +
P

s<t K 2(t ° s)qs , (blue), where (qt ) are measured signed volumes of market orders.
Price di�erence is reported in dollars per lot.

4 Conclusion

The goal of this chapter was to characterise the class of cross-impact kernels which anticipate
order Øows and lead to martingale prices (martingale-admissible kernels) and the class of cross-
impact kernels which prevent statistical arbitrage (no-statistical-arbitrage-admissible kernels).
To do so, we introduce a market where trades are self-exciting and price impact is linear
in the total market order Øow. In this model, we derive necessary and su�cient conditions
for nsa-admissible and martingale-admissible kernels. In particular, we show that only one
candidate, dubbed the K 1 kernel, could be both martingale-admissible and nsa-admissible. As
there are no theoretical guarantees that the K 1 kernel prevents arbitrage, we introduce the K 2

kernel which is close to K 1 and prevents arbitrage. We Ænd formulas for calibration of both
kernels and apply them on SP500 futures.

One key result of this chapter is that, given a set of market conditions, namely the as-
set price covariance which encodes co-movement of assets and the auto-covariance of trades
which captures the way agents trade in the market, it may not be possible to conciliate the two
notions of price e�ciency: martingale prices and no-arbitrage. This is speciÆc to the multi-
asset case since in the single-asset case the two notions nicely co-exist [JR18, Jai15]. Therefore,
a problem we hope to address in future work is to Ænd non-trivial market conditions where
there exists a cross-impact kernel which is both nsa-admissible and martingale-admissible.

Finally, the results outlined in the chapter have applications in market-making and trad-
ing costs estimation. For market-makers, the cross-impact kernels can be calibrated in practice
to better capture adverse selection or price decay after trades. For portfolio managers, these
models provide better estimate of trading costs and could be used to derive more optimal
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trading strategies which account for cross-impact and its decay.
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III.A Moment measures for point processes

This section presents deÆnitions of moment measures for point processes. Throughout this
section, X denotes some Borelian subset of Rd and X =B(X).

DeÆnition 8 (n-th moment measure). Given a univariate stationary point process N on X, the

Ærst and second order moment measure of the point process N are measures on X and X2 deÆned for

all A,B 2X as

M1(A) = E[N (A)]

M2(A£B) = E[N (A)N (B)]

whenever these expectations exist.

A key quantity is the reduced measure second order measure which we introduce below.

DeÆnition 9 (Reduced measure (Proposition 12.6.III of [DVJ08])). There exist a reduced measure,

noted
_

M2, such that for any bounded measurable function f on X2 we have
Z

X

f (x1, x2)M2(dx1,dx2) =

Z

X

Z

X

f (x, x + y)
_

M 2(dy)dx

The existence result of the reduced measure satisfying the above is shown in Proposition
12.6.III of [DVJ08]. Of particular interest to us are the second-order reduced covariance
measure introduced below.

DeÆnition 10 (Reduced covariance measure). The reduced covariance measure of a stationary
point process is deÆned as

_
C 2(du) =

_
M 2(du)°m2l (du) ,

where l is the Lebesgue measure, m is the mean intensity i.e the non-negative constant such that

M1(du) = ml (du).

Extensions of the above concepts to multivariate point processes are straightforward. In
particular we have the following deÆnition.

DeÆnition 11 (second order auto-moment measure). Given a k-dimensional, stationary point

process N on X, the second order auto-moment measure of the point process N is a measure on X2

deÆned for all A,B 2X and 1 ∑ i , j ∑ k as

Mi j (A£B) = E[Ni (A)N j (B)] ,

whenever this expectation exists.

DeÆnition 12 (reduced covariance measure). The reduced covariance measure of a k-dimensional,

stationary point process is deÆned, for all 1 ∑ i , j ∑ k as

_
C i j (du) =

_
M i j (du)°mi m j l (du) ,

where l is the Lebesgue measure, mi is the mean intensity i.e the non-negative constant such that

Mi (du) = mi l (du).
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III.B Technical results

This section presents some key technical results necessary for the proofs. We begin by
introducing an important functional space for our results, the Hardy space H2.

DeÆnition 13 (Hardy space H2). The Hardy space H2 is the space of functions F : C!C such that

the following conditions are satisÆed:

1. the function F is holomorphic in the upper half of the complex plane,

2. there exists a constant C > 0 such that, for all ª> 0

Z1

°1
|F (!+ iª)|2d!<C ,

3. for almost all ! 2R, we have

lim
ª!0

F (!+ iª) = F (!) .

Functions in the Hardy space H2 are closely related to the Fourier transform of causal functions
as shown by the so-called Titchmarsh theorem below.

Theorem 2 (Titchmarsh theorem [Tit48]). Given a real, complex-valued square-integrable function
F , the following conditions are equivalent:

1. the inverse Fourier transform of F is a causal function,

2. the function F belongs to the Hardy space H2.

A key theorem used in the chapter to derive the form of martingale-admissible cross-impact
kernels is the matrix spectral factorization theorem.

Theorem 3 (Matrix spectral factorization theorem [WM57, WA59]). Let F : C! Md (R) be

a matrix function such that F is positive deÆnite almost everywhere on the unit circle T := {z 2
C : |z| = 1} with integrable entries on the unit circle such that the Paley-Wiener condition

logdetF 2 L1(T) (8)

is satisÆed. Then F admits a factorization on T

F (z) = F+(z)F+(z)§ , (9)

where F+ is an analytic function with entries in the Hardy space H
2. Furthermore, the spectral factor

F+ is unique up to right multiplication by a unitary matrix (i.e. a matrix U such that UU§ = Id ).

As spectral factors are referenced throughout the chapter, we introduce for convenience a
deÆnition below.

DeÆnition 14 (Spectral factor). Let F : C ! Md (R) be a matrix function which satisÆes the

hypotheses of Theorem 3. Then, a spectral factor F+ of F is an analytic function F+ with entries in

the Hardy space H2 which satisÆes Equation (9).

111



III. Dynamic cross-impact from anonymous order Øow

III.C Proofs

III.C.1 Proof of Proposition 1

The proof is adapted from [Jai15]. Throughout this section we assume that there exists a
martingale-admissible kernel K such that the price satisÆes

Pt = P0 +

Zt

0
K (t ° s)d(N a

s °N b
s ) = P0 +§ lim

s!1
E[V a

s °V b
s |Ft ] .

To compute the right hand side term, we use a classical result on Hawkes processes [BMM15,
Jai15, JR18]: for all t ∏ 0, we have

µ
∏a

t

∏b
t

∂
=

µ
µ

µ

∂
+

Zt

0
™(t ° s)

µ
µ

µ

∂
ds +

Zt

0
™(t ° s)dMs , (10)

where ™ :=
P

n∏1©
§n , ©§n being the n-th convolution product of the matrix function © and M

is a martingale. The next lemma shows that the compuation of the conditional expectation of
the Hawkes process reduces to the compuation of the conditional expectation of the intensity.

Lemma 2. For all t , s ∏ 0 such that s ∏ t , we have

E[N a
s °N b

s |Ft ] = N a
t °N b

t +

Zs

t
E[∏a

u °∏b
u |Ft ]du .

Proof. Using the martingale decomposition of the Hawkes process, we have Nt = Mt +
Rt

0 ∏sds

where M is a martingale. Therefore,

N a
s °N b

s = M a
s °M b

s +

Zt

0
(∏a

u °∏b
u)du +

Zs

t
(∏a

u °∏b
u)du .

Using the martingale property, we obtain

E[N a
s °N b

s |Ft ] = N a
t °N b

t +

Zs

t
E[∏a

u °∏b
u |Ft ]du .

The next lemma computes the conditional expectation of the intensity for our Hawkes processes.
It generalises Proposition 3.2 of [Jai15].

Lemma 3. For all t , s ∏ 0 such that s ∏ t , we have
Zs

t
E[∏a

u °∏b
u |Ft ]du =

Zt

0

Zs°r

t°r
•(u)du(dN a

r °dN b
r )

°
Zt

0

Zs°r

t°r

Zt°r

0
•(u °x)©a/a(x)dxdudN a

r °
Zt

0

Zs°r

t°r

Zt°r

0
•(u °x)©b/a(x)dxdudN a

r

+

Zt

0

Zs°r

t°r

Zt°r

0
•(u °x)©a/b(x)dxdudN b

r +

Zt

0

Zs°r

t°r

Zt°r

0
•(u °x)©b/b(x)dxdudN b

r ,

where • :=™
a/a °™

b/a =™
b/b °™

a/b .
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Proof. We use Equation (10) to derive
Zs

t
E[∏a

u |Ft ]du =E

∑Zs

t

Zu

0
™

a/a(u °x)dM a
x du |Ft

∏
+E

∑Zs

t

Zu

0
™

a/b(u °x)dM b
x du |Ft

∏
.

Using the fact that M is a martingale, we have

E

∑Zs

t

Zu

0
™

a/a(u °x)dM a
x du |Ft

∏
=

Zs

t

Zt

0
™

a/a(u °x)dM a
x du

=

Zs

t

Zt

0
™

a/a(u °x)

µ
dN a

x ° (µ+

Zt

0
©

a/a(x ° r )dN a
r +

Zt

0
©

a/b(x ° r )dN b
r )dx

∂
du

=

Zs

t

Zt

0
™

a/a(u °x)dN a
x du °

Zs

t

Zt

0
™

a/a(u °x)µdxdu

°
Zs

t

Zt

0
™

a/a(u °x)

Zt

0
©

a/a(x ° r )dN a
r dxdu

°
Zs

t

Zt

0
™

a/a(u °x)

Zt

0
©

a/b(x ° r )dN b
r dxdu .

Consequently,
Zs

t
E[∏a

u |Ft ]du =

Zs

t

Zt

0
™

a/a(u °x)dN a
x du +

Zs

t

Zt

0
™

a/b(u °x)dN b
x du

°
Zs

t

Zt

0
(™a/a

+™
a/b)(u °x)µdxdu

°
Zs

t

Zt

0
™

a/a(u °x)

Zt

0
©

a/a(x ° r )dN a
r dxdu °

Zs

t

Zt

0
™

a/b(u °x)

Zt

0
©

b/a(x ° r )dN a
r dxdu

°
Zs

t

Zt

0
™

a/a(u °x)

Zt

0
©

a/b(x ° r )dN b
r dxdu °

Zs

t

Zt

0
™

a/b(u °x)

Zt

0
©

b/b(x ° r )dN b
r dxdu .

Regrouping terms from ∏a and ∏b we obtain
Zs

t
E[∏a

u °∏b
u |Ft ]du =

Zs

t

Zt

0
(™a/a °™

b/a)(u °x)dN a
x du +

Zs

t

Zt

0
(™a/b °™

b/b)(u °x)dN b
x du

°
Zs

t

Zt

0
(™a/a

+™
a/b °™

b/a °™
b/b)(u °x)µdxdu

°
Zs

t

Zt

0
(™a/a °™

b/a)(u °x)

Zt

0
©

a/a(x ° r )dN a
r dxdu

°
Zs

t

Zt

0
(™a/b °™

b/b)(u °x)

Zt

0
©

b/a(x ° r )dN a
r dxdu

°
Zs

t

Zt

0
(™a/a °™

b/a)(u °x)

Zt

0
©

a/b(x ° r )dN b
r dxdu

°
Zs

t

Zt

0
(™a/b °™

b/b)(u °x)

Zt

0
©

b/b(x ° r )dN b
r dxdu .

By Assumption 2, the above must converge to a Ænite limit as s tends to inÆnity. Therefore, as
µ 6= 0 and all elements of the matrix function © are non-negative we must have for all t ∏ 0
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that ™a/a(t )+™
a/b(t ) =™

b/a(t )+™
b/b(t ). Therefore, writing • :=™

a/a °™
b/a =™

b/b °™
a/b ,

we have
Zs

t
E[∏a

u °∏b
u |Ft ]du =

Zs

t

Zt

0
•(u °x)(dN a

x °dN b
x )du

°
Zs

t

Zt

0
•(u °x)

Zt

0
©

a/a(x ° r )dN a
r dxdu °

Zs

t

Zt

0
•(u °x)

Zt

0
©

b/a(x ° r )dN a
r dxdu

+

Zs

t

Zt

0
•(u °x)

Zt

0
©

a/b(x ° r )dN b
r dxdu +

Zs

t

Zt

0
•(u °x)

Zt

0
©

b/b(x ° r )dN b
r dxdu .

Using the change of variables u0 = u ° r and x 0 = x ° r we obtain
Zs

t
E[∏a

u °∏b
u |Ft ]du =

Zt

0

Zs°x

t°x
•(u0)du0(dN a

x °dN b
x )

°
Zt

0

Zs°r

t°r

Zt°r

0
•(u0°x 0)©a/a(x 0)dx 0du0dN a

r

°
Zt

0

Zs°r

t°r

Zt°r

0
•(u0°x 0)©b/a(x 0)dx 0du0dN a

r

+

Zt

0

Zs°r

t°r

Zt°r

0
•(u0°x 0)©a/b(x 0)dx 0du0dN b

r

+

Zt

0

Zs°r

t°r

Zt°r

0
•(u0°x 0)©b/b(x 0)dx 0du0dN b

r .

The next lemma uses the previous results to compute the conditional expectation of the
counting process.

Lemma 4. We have for all t , s ∏ 0 such that s ∏ t

E[N a
s °N b

s |Ft ] =N a
t °N b

t +

Zt

0

Zs°r

t°r
•(u)du(dN a

r °dN b
r )

°
Zt

0

Zs°r

t°r

Zt°r

0
•(u °x)©a/a(x)dxdudN a

r °
Zt

0

Zs°r

t°r

Zt°r

0
•(u °x)©b/a(x)dxdudN a

r

+

Zt

0

Zs°r

t°r

Zt°r

0
•(u °x)©a/b(x)dxdudN b

r +

Zt

0

Zs°r

t°r

Zt°r

0
•(u °x)©b/b(x)dxdudN b

r ,

Proof. Applying Lemma 2 along with Lemma 3, the result is straightforward.

The next lemma derives the limit of the conditional expectation of the process N a
s °N b

s .

Lemma 5. For all t ∏ 0, we have

lim
s!1

E[N a
s °N b

s |Ft ] = N a
t °N b

t +

Zt

0

µZ1

t°x
•(u)du

∂
(dN a

x °dN b
x )

°
Zt

0

µZ1

t°x

Zt°x

0
•(u ° v)(©a/a

+©
b/a)(v)dvdu

∂
dN a

x

+

Zt

0

µZ1

t°x

Zt°x

0
•(u ° v)(©a/b

+©
b/b)(v)dvdu

∂
dN b

x ,
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where • :=™
a/a °™

b/a =™
b/b °™

a/b .

Proof. Taking the limit as s tends to inÆnity of Lemma 3 we obtain the almost sure convergence
of

Rs
t E[∏a

u °∏b
u |Ft ]du towards

Z1

t
E[∏a

u °∏b
u |Ft ]du =

Zt

0

µZ1

t°x
•(u)du

∂
(dN a

x °dN b
x )

°
Zt

0

µZ1

t°x

Zt°x

0
•(u ° v)(©a/a

+©
b/a)(v)dvdu

∂
dN a

x

+

Zt

0

µZ1

t°x

Zt°x

0
•(u ° v)(©a/b

+©
b/b)(v)dvdu

∂
dN b

x ,

where we have used that • is integrable. Finally, using Lemma 2 with the above yields the
result.

In order to show that the price is a martingale, we establish some elementary results about the
convergence of the conditional expectations.

Lemma 6. For all t , s ∏ 0 such that s ∏ t , we write Z t
s := E[N a

s °N b
s |Ft ] and Z t := lims!1E[N a

s °
N b

s |Ft ]. Then, we have that

1. the random variable Z t is integrable,

2. the random variables (Z t
s ) converge almost surely to Z t ,

3. there exists an integrable random variable Y t such that for all s ∏ t , |Z t
s |∑ Y t .

Proof. By Lemma 4, we have for all t , s ∏ 0 such that s ∏ t

Z t
s = E[N a

s °N b
s |Ft ] =N a

t °N b
t +

Zt

0

Zs°r

t°r
•(u)du(dN a

r °dN b
r )

°
Zt

0

Zs°r

t°r

Zt°r

0
•(u °x)©a/a(x)dxdudN a

r °
Zt

0

Zs°r

t°r

Zt°r

0
•(u °x)©b/a(x)dxdudN a

r

+

Zt

0

Zs°r

t°r

Zt°r

0
•(u °x)©a/b(x)dxdudN b

r +

Zt

0

Zs°r

t°r

Zt°r

0
•(u °x)©b/b(x)dxdudN b

r .

Therefore, writing |A| for the matrix of absolute values of all entries of A, we have

|Z t
s |∑N a

t +N b
t +

Zt

0

Zs°r

t°r
|•(u)|du(dN a

r +dN b
r )

+

Zt

0

Zs°r

t°r

Zt°r

0
|•(u °x)©a/a(x)|dxdudN a

r +

Zt

0

Zs°r

t°r

Zt°r

0
|•(u °x)©b/a(x)|dxdudN a

r

+

Zt

0

Zs°r

t°r

Zt°r

0
|•(u °x)©a/b(x)|dxdudN b

r +

Zt

0

Zs°r

t°r

Zt°r

0
|•(u °x)©b/b(x)|dxdudN b

r

∑N a
t +N b

t +

Zt

0

Z1

t°r
|•(u)|du(dN a

r +dN b
r )

+

Zt

0

Z1

t°r

Zt°r

0
|•(u °x)©a/a(x)|dxdudN a

r +

Zt

0

Z1

t°r

Zt°r

0
|•(u °x)©b/a(x)|dxdudN a

r

+

Zt

0

Z1

t°r

Zt°r

0
|•(u °x)©a/b(x)|dxdudN b

r +

Zt

0

Z1

t°r

Zt°r

0
|•(u °x)©b/b(x)|dxdudN b

r .
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Writing Y t for the last random variable, Y t is independent from s, positive and we can easily
check that it is of Ænite expectation since • is integrable. This proves (iii). Furthermore, we
also have |Z t |∑ Y t so that Z t is integrable and (i) is veriÆed. Finally, Lemma 5 proved point
(ii).

Lemma 7. The price is a martingale.

Proof. Since, for all t ,ø∏ 0 such that ø∑ t we have

E[Pt |Fø] =P0 +§diag(v)E[ lim
s!1

E[N a
s °N b

s |Ft ] |Fø]

=P0 +§diag(v) lim
s!1

E[E[N a
s °N b

s |Ft ] |Fø]

=P0 +§diag(v) lim
s!1

E[N a
s °N b

s |Fø]

=Pø ,

where the second equality is an application of the dominated convergence theorem with the
random variables Z t

s := E[N a
s °N b

s | Ft ] and Z t := lims!1E[N a
s °N b

s | Ft ], the conditions
being met by Lemma 6.

We can simplify the expression of the price process using martingale-admissibility. This is the
topic of the next lemma.

Lemma 8. The price process is of the form

Pt = P0 +§diag(v)

Zt

0
&(t ° s)(dN a

s °dN b
s ) ,

where &(t ) = Id +
R1

t°x •(u)du+
R1

t°v

Rt°v
0 •(u°v)(©a/a+©

b/a)(v)dvdu. Furthermore, K is almost

everywhere di�erentiable.

Proof. By assumption, we know there exists some cross-impact kernel K such that for all t ∏ 0

Pt = P0 +

Zt

0
K (t ° s)(dN a

s °dN b
s ) .

Therefore Lemma 5 implies that for all t ∏ 0

Z1

t°v

Zt°v

0
•(u ° v)(©a/a

+©
b/a)(v)dvdu =

Z1

t°v

Zt°v

0
•(u ° v)(©a/b

+©
b/b)(v)dvdu .

And Lemma 5 yields

Pt = P0 +§diag(v)

Zt

0
&(t ° s)(dN a

s °dN b
s ) ,

with &(t ) = Id +
R1

t°x •(u)du +
R1

t°v

Rt°v
0 •(u ° v)(©a/a +©

b/a)(v)dvdu. In particular, we must
have §diag(v)&= K almost everywhere and K is almost everywhere di�erentiable.
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To obtain a simpler expression for K and the other results of the proposition, we adapt the
proof of Proposition 3.3 of [Jai15] to our structure of Hawkes processes. At time t ∏ 0, either:

• there are no market orders and the price is di�erentiable with P
0

t =
Rt

0 K
0
(t ° s)d(N a °

N b)s ;

• there is a buy market order on some asset, say Asset i , which happens with intensity
∏b,i

t and yields a price jump of K (0)vi ei ;

• there is a sell market order on some asset, say Asset i , which happens with intensity ∏b,i
t

and yields a price jump of °K (0)vi ei .

Therefore, we have for all t ∏ 0

lim
h!0

E[Pt+h |Ft ]°Pt

h
=

Zt

0
K

0
(t ° s)(dN a

s °dN b
s )+

dX

i=1

K (0)vi ei (∏a,i
t °∏b,i

t )

=

Zt

0
K

0
(t ° s)(dN a

s °dN b
s )+K (0)diag(v)(∏a

t °∏b
t )

=

Zt

0
K

0
(t ° s)(dN a

s °dN b
s )°K (0)diag(v)

Zt

0
(©b/b °©

a/b)(t ° s)dN b
s

+K (0)diag(v)

Zt

0
(©a/a °©

b/a)(t ° s)dN a
s

=0,

where the last equality holds since the price is a martingale by Lemma 7. Thus, we must have
for all t ∏ 0

K
0
(t ) =°K (0)diag(v)(©b/b(t )°©

a/b(t ))

K
0
(t ) =°K (0)diag(v)(©a/a(t )°©

b/a(t )) .

To conclude, we need to derive the expression of K (0). Since ©
b/b °©

a/a is integrable, K

converges to a Ænite limit and by deÆnition of the permanent cross-impact matrix: lim
t!1

K (t ) =§.

Thus

lim
t!1

K (t ) = K (0)diag(v)

µ
Id °

Z1

0
(©b/b(s)°©

a/b(s))ds

∂
=§ .

Since by Assumption 1 we have Ω(
R1

0 ©(s)ds) < 1, we get

K (0) =§

µ
Id °

Z1

0
(©b/b(s)°©

a/b(s))ds

∂°1

diag(v)°1 .

Since the matrix § is non-singular by Assumption 3 so is the matrix K (0) and we must also
have

©
b/b °©

a/b
=©

a/a °©
b/a .

This completes the proof of Proposition 1.
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III.C.2 Proof of Proposition 2

Because of the autocovariance structure of Hawkes processes, this section makes extensive
use of Fourier transforms of measures. We recall from the notation section that the Fourier
transform of a measure ∑ at ! 2C is deÆned, when the integral converges, as

b∑(!) =

Z1

°1
e°i!t∑(dt ) .

Writing µ := (Id °©
a/a)µ+©

a/b
µ for the average of the intensity of the stationary version of

the Hawkes process we know from [BDM12] that

b≠Ñ (!) = (Id ° b©(!))°1diag(µ)((Id ° b©(°!))°1)> .

In particular, the Fourier transform of the reduced covariance measure ≠ has integrable entries.

We begin the proof of Proposition 2 with a useful lemma.

Lemma 9. For all ! 2R, we have

(cK 0
(!)+K (0))b≠(!)(cK 0

(!)+K (0))§ =§≠1§
> .

Proof. Writing µ := (Id °©
a/a)µ+©

a/b
µ for the average of the intensity of the stationary version

of the Hawkes process we know from [BDM12] that

b≠Ñ (!) = (I° b©(!))°1diag(µ)((I° b©(°!))°1)> .

Therefore we have

b≠Ñ (!) = (Id ° b©(!))°1diag(µ)((Id ° b©(!))°1)§

b≠(!) = (Id ,°Id )b≠Ñ (!)(Id ,°Id )> .

Using pseudo-inverses we obtain

b≠(!)°1
=

1

4
(Id ,°Id )(b≠Ñ (!))°1(Id ,°Id )>

= (Id ° b'(!))§diag(µ)°1(Id ° b'(!))

= (Id ° b'(!))§((Id ° b'(0))°1)§≠°1
1 (Id ° b'(!))°1(Id ° b'(0)) ,

where we have introduced ≠1 := b≠(0). Therefore, since § is real, by Proposition 1 we get

(cK 0
(!)+K (0))b≠(!)(cK 0

(!)+K (0))§ =§≠1§
> .
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We now prove Proposition 2. First, note that b≠ admits a spectral factor. since it is positive-
deÆnite almost everywhere on the unit circle. Furthermore, by Theorem 2 and Assumption 4,
' is square-integrable and causal. Thus, Lemma 9 shows that (Id ° b')°1diag(

p
µ) is a spectral

factor of b≠. Since there exists a spectral factor, the Paley-Wiener condition Equation (8) is
necessarily satisÆed.

As b≠ satisÆes the conditions of Theorem 3, let L be any spectral factor of b≠. Then,
since the products of two functions of causal inverse Fourier transform also has a causal inverse
Fourier transform, the inverse Fourier transform of cK 0

L is causal. Furthermore, since cK 0 and
L are both integrable functions, their product is square-integrable. Thus, the product satisÆes
the Ærst condition of Theorem 2 and therefore the product belongs to the Hardy space H2.
Therefore, by Lemma 9, cK 0

L is a spectral factor of the positive-deÆnite matrix §≠1§
>. It

follows by the uniqueness of spectral factors up to a unitary matrix that there exists some
unitary matrix O such that for almost all ! 2R

cK 0
(!) =GOL (!)°1 °K (0) ,

where GG
> =§≠1§

>. This concludes the proof.

III.C.3 Proof of Proposition 3

The immediate cross-impact matrix K (0) describes how trades push prices on very short time
scales. As such, we intuitively expect that it must be constrained to prevent pair-trading
arbitrage. In fact, we show in this section that it can be completely characterised. The Ærst
lemma shows that the immediate cross-impact matrix must be symmetric non-negative.

Lemma 10. The immediate cross-impact matrix K (0) is symmetric and non-negative.

Proof. This proof uses no-arbitrage arguments. It is inspired from [SL19] but adapted here
since assumptions are slightly di�erent. We consider a deterministic trading strategy ending at
time T given by the function f : [0,T ] !Rd which determines the buy and sell market orders
according to DeÆnition 2. We re-write the cross-impact contributions as K (t ) = M + H(t ),
where M is the immediate impact matrix and H(0) = 0. From Proposition 1 we know that H is
continuous at zero. With these conventions, the average cost C ( f ) of the trading strategy f

given in DeÆnition 2 is written as

C ( f ) =

ZT

0
f (t )>

Zt

0
M f (s)dsdt +

ZT

0
f (t )>

Zt

0
H(t ° s) f (s)dsdt =: Ci ( f )+Cs( f ),

where we have split costs into two parts. The Ærst, Ci ( f ), represents immediate impact costs
and the second, Cs( f ), represents the rest. Then

Ci ( f ) =
1

2

dX

i=1

Mi i

∞∞ fi

∞∞2
1 +

dX

i 6= j

Mi j

ZT

0

Zt

0
fi (t ) f j (s)dsdt .
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Similarly, for the other impact costs, we have

Cs( f ) =
dX

i=1

ZT

0

Zt

0
fi (t )Hi i (t ° s) fi (s)dsdt +

dX

i 6= j

ZT

0

Zt

0
fi (t )Hi j (t ° s) f j (s)dsdt .

We choose two distinct assets, Asset a and Asset b and consider, as in [SL19], a round-trip
pair-trading strategy of the following form, where vp , vq 2R:

fp (t ) :=

8
>><
>>:

vp for 0 ∑ t ∑ T /3

0 for T /3 ∑ t ∑ 2T /3

°vp for 2T /3 ∑ t ∑ T

, fq (t ) :=

8
>><
>>:

vq for 0 ∑ t ∑ T /3

°vq for T /3 ∑ t ∑ 2T /3

0 for 2T /3 ∑ t ∑ T

.

This strategy only trades Asset p and Asset q , so that for all other Asset i , fi = 0. This is a
round-trip strategy since

RT
0 f = 0. Then, the immediate impact costs contribution is

Ci ( f ) =
T 2

18
(Mpq °Mqp )vp vq .

For the other impact costs, we have

Cs( f ) =

ZT

0

Zt

0
fa(t )Hpp (t ° s) fp (s)dsdt +

ZT

0

Zt

0
fq (t )Hqq (t ° s) fq (s)dsdt

+

ZT

0

Zt

0
fp (t )Hpq (t ° s) fq (s)dsdt +

ZT

0

Zt

0
fq (t )Hqp (t ° s) fq (s)dsdt .

Therefore, since H(0) = 0 and H is continous at t = 0, for small enough execution times T

we have that for all t 2 [0,T ], | Hi j (t ) |∑ ≤ for all (i , j ) 2 {p, q}2. Thus, combining both impact
terms, we get

C ( f )

T 2
∑

va vb

18
(Mqp °Mpq )+≤.

So, unless Mpq = Mqp , the volumes vp and vq can be chosen so that trading costs of this
round trip strategy are negative. Thus, if Mpq 6= Mqp , arbitrages are possible. Therefore the
immediate cross-impact matrix M = K (0) is necessarily symmetric.

Since K (0) is symmetric and K is continuous by Proposition 1, Lemma 2.8 of [AKS16] implies
that K (0) is non-negative deÆnite and hence non-negative. This completes the proof.

The previous results show that the immediate cross-impact matrix is symmetric non-negative.
By further using the price dynamics, we are able to relate it to the instantaneous covariance
matrix of prices and order Øows.

We have
dPt = K (0)diag(v)(dN b

t °dN a
t ) .

Taking the predictable quadratic variation of the processes, we obtain

dhP,Pit = K (0)diag(v2)diag(∏a
t +∏b

t )K (0)>dt
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Taking expectations on both sides and writing the return covariance matrix ßtdt := E[dhP,Pit ]

and the average intensity µt := E[∏b
t ] = E[∏a

t ] we get

1

2
ßt = K (0)diag(v2µt )K (0)> .

Since this holds for all t , and µt !
t!1

µ = (Id °©
a/a)µ+©

a/b
µ, it must hold as t tends to inÆnity

and we get
1

2
ß= K (0)diag(µv2)K (0)> ,

where ß= lim
t!1

E[dhPt ,Pt i], which is well-deÆned by passing to the limit in the above. Since,

by Lemma 10, K (0) is symmetric non-negative and satisÆes the above, it must be of the form
(see for example Proposition 3 of [TMB20])

K (0) =
1
p

2
(L °1

0 )>
q

L
>
0 ßL0L

°1
0 ,

where L is given in the proposition. This completes the proof of Proposition 3.

III.C.4 Proof of Proposition 4

As in the proof of Section III.C.3, we consider a trading strategy ending at time T given by the
function f : [0,T ] !Rd . We re-write the cross-impact contributions as K (t ) =§+°(t ), where
°(t ) !

t!1
0. Then, average cost C ( f ) of the trading strategy f given by DeÆnition 2 can be

re-written as

C ( f ) :=

ZT

0
f (t )>

Zt

0
§ f (s)dsdt +

ZT

0
f (t )>

Zt

0
°(t ° s) f (s)dsdt =Cp ( f )+Ct ( f ) ,

where we have split into permanent and temporary impact costs. Then

Cp ( f ) =
1

2

dX

i=1

§i i

∞∞ fi

∞∞2
1 +

dX

i 6= j

§i j

ZT

0

Zt

0
fi (t ) f j (s)dsdt .

Similarly, for the temporary impact costs, we have

Ct ( f ) =
dX

i=1

ZT

0

Zt

0
fi (t )°i i (t ° s) fi (s)dsdt +

dX

i 6= j

ZT

0

Zt

0
fi (t )°i j (t ° s) f j (s)dsdt .

Consider two distinct assets, Asset a and Asset b. Consider, as in [SL19], a round-trip trading
strategy of the following form, here vp , vq 2R:

fa(t ) :=

8
>><
>>:

vp for 0 ∑ t ∑ T /3

0 for T /3 ∑ t ∑ 2T /3

°vp for 2T /3 ∑ t ∑ T

, fq (t ) :=

8
>><
>>:

vq for 0 ∑ t ∑ T /3

°vq for T /3 ∑ t ∑ 2T /3

0 for 2T /3 ∑ t ∑ T

.

121



III. Dynamic cross-impact from anonymous order Øow

Then, the permanent impact costs contribution is of the form

Cp ( f ) =(§pq °§qp )
T 2

18
vp vq .

Similarly, for the temporary impact costs, we have

Ct ( f ) =

ZT

0

Zt

0
fp (t )°pp (t ° s) fp (s)dsdt +

ZT

0

Zt

0
fq (t )°qq (t ° s) fq (s)dsdt

+

ZT

0

Zt

0
fp (t )°pq (t ° s) fq (s)dsdt +

ZT

0

Zt

0
fq (t )°qp (t ° s) fp (s)dsdt .

Therefore, since ° is power-law with all exponents strictly below 1, we have

C ( f )

T 2
=

T!1

vp vq

18
(§qp °§pq )+o(1),

so that if §qp 6=§pq , arbitrages are possible. Therefore § is necessarily symmetric.

We now show that § is non-negative. Let ø 2 R and ¥ 2 Rd and consider a trading strategy
f which buys portfolio ¥ and waits ø units of time to sell it. Then, the cost of this trading
strategy is

C ( f ) = ¥>(§+°(ø))¥,

and by no-arbitrage, C ( f ) ∏ 0. Therefore, for all ø 2R and ¥ 2Rd , we have

¥>§¥∏°¥>°(ø)¥,

so that using the fact that °(ø) !
ø!1

0, § is non-negative. This concludes the proof of

Proposition 4.

III.C.5 Proof of Proposition 5

To prove Proposition 5, we proceed in three steps. First, we use polarization to show that it
su�ces to prove the result for ª§Z ª for any ª 2Cd . Second, we use su�cient conditions for
smoothness on characteristic functions. Finally, we show that these conditions are satisÆed in
our setting.

We begin with a polarization identity. Since Z is a continuous positive deÆnite function,
Theorem 2.10 of [AKS16] shows that for every ª 2Cd the continuous function Zª : t 7! ª§Z (t )ª

is positive deÆnite. Furthermore, for all 1 ∑ a,b ∑ d , the component e>
b
Z (t )ea is equal to

1

2
(Zea+eb

(t )° iZea°i eb
(t )° (1° i )Zea

(t )° (1° i )Zeb
(t )) .

Thus it su�ces to prove the result for Zª for ª 2Cd , which we show below.
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For all ª 2 Cd , we introduce the measure Qª :=
ª§Mª

ª§M(R)ª
. For any ª 2 Cd , Qª is indeed a

probability measure since the matrix-valued measure M is non-negative deÆnite and of Ænite
total variation. Thus, the function Zª is the characteristic function associated to the proba-

bility measure Qª =
ª§Mª

ª§M(R)ª
. We now use Theorem 2.3.1 of [Luk70] which gives a su�cient

condition for the smoothness of a characteristic function. To apply the theorem, we must show
that for all ª 2Cd we have

liminf
t!0

|Zª(2t )°Zª(0)+Zª(°2t )°Zª(0) |

4t 2
<1 .

Using the deÆnition of Zª, the above condition is equivalent to

liminf
t!0

| ª§
°
K (2t )°K (0)+K (2t )>°K (0)>

¢
ª |

4t 2
<1 .

However, by Assumption 4, K and its derivative are continuously di�erentiable at zero and
Proposition 3 shows that K (0) is symmetric, so that

K (2t )°K (0)+K (2t )>°K (0)>

4t 2
=

t!0

1

2t
(K

0
(0)+K

0
(0)>)+K

00
(0)+K

00
(0)>+o(1) .

Therefore the condition will be satisÆed and the proposition proven if K
0
(0) =°K

0
(0)>, that is if

K
0
(0) is antisymetric. Then Theorem 2.3.1 of [Luk70] yields that Zª is twice di�erentiable and

the integrals converge absolutely. To prove this result, we will use the no-arbitrage condition
and the smoothness of the cross-impact kernel around zero.

As in the proofs of Sections III.C.3 and III.C.4, we consider a trading strategy ending at
time T given by the function f : [0,T ] ! Rd . We re-write the cross-impact contributions as
K (t ) = K (0)+ tK

0
(0)+R(t ), where R is such that R(0) = 0, R is continuously di�erentiable at

zero and R(t ) =
t!0

o(t ). For convenience, we write M(t ) := K (0)+ tK (0). Then the trading cost

of the trading strategy is

C ( f ) :=

ZT

0
f (t )>

Zt

0
M(t ° s) f (s)dsdt +

ZT

0
f (t )>

Zt

0
R(t ° s) f (s)dsdt =C1( f )+C2( f ).

Where we have split contributions. Consider two distinct assets, Asset a and Asset b and the
round-trip trading strategy of the following form, where va , vb 2R:

fa(t ) :=

8
>><
>>:

va for 0 ∑ t ∑ T /3

0 for T /3 ∑ t ∑ 2T /3

°va for 2T /3 ∑ t ∑ T

, fb(t ) :=

8
>><
>>:

vb for 0 ∑ t ∑ T /3

°vb for T /3 ∑ t ∑ 2T /3

0 for 2T /3 ∑ t ∑ T

.

This strategy only trades Asset a and Asset b, i.e. for all other Asset i , fi = 0. This is a
round-trip strategy since

RT
0 f = 0. Then, computing contributions as in Lemma 10 and using

the fact that K (0) is symmetric, we obtain

C1( f ) =
°5T 3

162
va vb(K

0
(0)ab +K

0
(0)ba).
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For the other contribution, we have

C2( f ) =

ZT

0

Zt

0
fa(t )Raa(t ° s) fa(s)dsdt +

ZT

0

Zt

0
fa(t )Rbb(t ° s) fa(s)dsdt

+

ZT

0

Zt

0
fa(t )Rab(t ° s) fb(s)dsdt +

ZT

0

Zt

0
fb(t )Rba(t ° s) fa(s)dsdt .

Therefore, since R(0) = 0 and R(t ) =
t!0

o(t ), for small enough execution times T we have that

for all t 2 [0,T ], | Ri j (t ) |∑ ≤t for all (i , j ) 2 {a,b}2. Thus, we then have, where c1 > 0 is a
constant independent of f , T and ≤

C2( f ) ∑ ≤c1T 3 .

Thus, combining both terms we obtain

C ( f )

T 3
∑ c2va vb(K

0
(0)ab +K

0
(0)ba)+≤,

where c2 6= 0 is a constant independent of f , T and ≤. Therefore, unless K
0
(0)ab =°K

0
(0)ba ,

the round-trip strategy yields negative costs and arbitrages are possible. Therefore K
0
(0) is

necessarily antisymmetric. The proposition then follows.

III.D Calibration methodology details

This section details the calibration methodology. The objective is to calibrate the cross-impact
kernels K 1 and K 2 on empirical data. Section III.D.1 gives additional details on the dataset.
Section III.D.2 details the methodology for the estimation of the empirical observables ß

and ≠. Section III.D.3 explains how spectral factors of the reduced covariance measure are
computed. Finally, Section III.D.4 explains the construction of both kernels.

III.D.1 Data preparation and processing

The data is processed according to the procedure outlined in [TMB20]. For the reader’s
convenience, we recall some key elements here. The two instruments selected are the leading
and third month E-Mini Futures. Prices and trades are gathered from anonymous trades and
quotes data from the CME and prices are taken as the mid-price of the best bid and ask prices
of each instrument. To avoid stationarity issues, we remove data outside the commonly traded
hours of both instruments and the Ærst and last 30 minutes of the trading period. Data ranges
from January 2015 to December 2018.

III.D.2 Estimation of empirical observables

Using the data outlined in Section III.D.1, we detail here the estimation methodology for ß
and ≠. To simplify computations and reduce noise, we aggregate order Øows and prices by
bins of 1 seconds. Each bin contains the opening and closing price po

t and pc
t as well as
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III.D. Calibration methodology details

the total signed order Øow qt . Both of these random variables have zero mean. Using these
conventions, we use naive statistical estimators to compute the price-covariance and the order
Øow auto-covariance, namely, for a daily timeseries of prices and signed order Øows {pt }T

t=1

and {qt }T
t=1 at bins of one second:

ß=
1

T °1

TX
t=1

(pc
t °po

t )(pc
t °po

t )>

≠(ø) =
1

T

TX
t=1

qt+øq>
t .

This procedure is averaged across days to obtain an empirical estimate of ß and ≠ using
approximately 800 days of available data. For stationary ergodic point processes, these averages
do converge towards the theoretical price-covariance and reduced covariance measure by
Proposition 8.3.1 of [DVJ08].

III.D.3 Estimation of a spectral factor of ≠

Once ß and ≠ have been estimated, the cross-impact kernel K 1 can be computed by solving nu-
merically Equation (5) and setting the boundary conditions imposed by arbitrage-admissibility.
To do so, we need to compute a spectral factor of ≠.

To solve Equation (9), we use the SBR2 algorithm [MBC+07, WMW15], a polynomial eigen-
value decomposition method, to compute a numerical approximation of a spectral factor of
≠, L . The implementation details follow the simple version of this algorithm (and not its
subsequent improvements) outlined in Equation (9). The algorithm was tested on the examples
provided in both papers and results were similar to those reported in the papers. To estimate
the accuracy of the spectral decomposition, we computed the Frobenius norm of the error

matrix
k≠(z)°L (z)L (1/z)§kF

k≠(z)kF
º 6 ·10°8. Thus, numerically, L is a good approximation for

a spectral factor of ≠.

A key property is that this spectral factor has the convenient form L (z) = D(z)H(z) where H

is a para-unitary polynomial matrix and D is (close to) a diagonal polynomial matrix. Both D

and H are outputs of the SBR2 algorithm. To check how close D is to a diagonal matrix, we
compute the Frobenius norm of its o�-diagonal elements relative to its diagonal elements. The
numerical results yield 10°15, which shows that the decomposition was successful. Once this
spectral factor has been obtained, we need to compute the matrix polynomial L

°1 to obtain
the martingale-admissible kernel K 1.

III.D.4 Computation of the cross-impact kernels

Because of the structure of L (z), computing its inverse is straightforward. One the one hand,
the inverse of the para-unitary polynomial matrix H(z) is H(1/z)§. On the other hand, the
inverse of D(z) is obtained by taking the inverse of its diagonal elements, which is straightfor-
ward using pole decomposition. This allows us to compute numerically the polynomial matrix
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L
°1 and, using Equation (5), the martingale-admissible kernel K 1.

The numerical computation of the poles of polynomials is done using the residuez function
of the signal library of the scipy module [VGO+20] of the python programming language
[VRD09]. All poles found were strictly inside the unit circle. However, they were numerically
close to modulus one, which is consistent with the long-range auto-correlations of ≠ reported
in Figure III.1.

Once the martingale-admissible kernel K 1 has been obtained, we derive the nsa-admissible
kernel K 2 in the following manner. First, we compute the (numerical) Fourier transform of
K 1. The symmetric part of this Fourier transform is then modiÆed so that all its eigenvalues
are non-negative. Finally, this clipped Fourier transform is added to the asymmetric part
of the Fourier transform of K 1. The (numerical) inverse Fourier transform then yields the
nsa-admissible kernel K 2.
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CHAPTER IV

Measuring cross-impact from labeled order

Øow

Abstract

Using two databases of meta-orders on stocks and futures, we measure cross-impact: the
inØuence trades on one asset have on the prices of other assets. We propose generalisations
of the square-root law which account for return and order Øow correlations and provide
signiÆcantly better Æt than the single-asset square-root law. Finally, we provide a recipe
for predicting transaction costs of portfolios from daily price and volume data on stocks
and futures.

From:
Cross-impact on meta-orders
M. Tomas, I. Mastromatteo, M. Benzaquen

Introduction

A key goal of market microstructure is to understand how markets digest trades to form
prices. Thanks to growing amounts of Ænancial data, studies have been able to precisely
measure subtle e�ects. Many focused on market impact: the average price change induced
after a meta-order (a sequence of trades from the same investor in the same direction)
[BBDG18, ATHL05, Tor97, ZTFL15, BBLB18, BBLB19, BR13, BILL15]. These studies Ænd that,
when an investor buys or sells Q dollars of risk (where dollars of risk := number of shares£
volatility£asset price) of an asset on a given trading day, he pushes on average the price of
the asset according to the "square-root law":

E[s |Q] º Y

µ
Q

V

∂•±
, (1)

where s :=
Sc°So

æSo
is the normalized daily asset return, Sc is the price at the end of the trading

day, So the price at the beginning of the trading day, æ := (Shigh°Slow)/So is the daily return
volatility of the asset, V is the daily traded dollars of risk, ±º 0.5 captures the concavity of
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market impact, x•± = |x|±sgn(x) and Y is a prefactor of unit scale. This Ænding is robust across
asset classes and time periods, holding even on Bitcoin [DB15] and options [TEB16, Sai19].
ReÆnements of the square-root law suggest that the relationship is linear for small values of
the traded volume [BBLB19, ZTFL15].

Yet market impact and the square-root law do not tell us how trading portfolios a�ects
market prices. Thus, it provides an incomplete picture of the price formation process.
For practitioners, estimating transaction costs of portfolios using Equation (1) may severely
misrepresent actual costs. This led to some recent work which measures cross-impact
[RT21b, TMB20, WSG16, WNG17, BMEB17, TMB21, SL19], the multivariate version of market
impact. These studies use plentiful anonymous trades data to calibrate models. While they
may make model-founded predictions, to our knowledge there is no study which has provided
empirical measures of cross-impact from meta-orders.

To address this, this chapter measures cross-impact using two databases of meta-orders.
The Ærst database contains trades executed by multiple investors in the U.S. Equity market.
The second covers meta-orders executed by a single asset manager in the futures markets.

The main contribution of this chapter is a generalisation of the square-root law which
accounts for the cross-section of returns and order Øows. To do so, we propose models for the
average normalized return conditioned on a traded amount of risk Q := (Q1, · · · ,Qd ) where Qi

is the net traded dollars of risk on Asset i . Using meta-order data and previous studies on
linear cross-impact models [CK94, GdMMBB20, BMEB17, MBEB17, TMB20, TMB21] we Ænd
that there exist a set of portfolio directions ¶= (º1, · · · ,ºd ) such that, for a portfolio º in ¶,
the projected normalized returns sº =º>s have a concave dependence on the projected traded
dollars of risk Qº =º>Q similar to the square-root law:

E[sº |Qº ] º Y æº

µ
Qº

Vº

∂•±
, (2)

where æ2
º :=º>%º is the daily volatility of the portfolio, % :=Corr(s) is the daily normalized

return correlation matrix, V 2
º := º>

≠º is a proxy for the liquidity of the portfolio where
≠ := Cov(q) is the daily traded risk covariance matrix (where q = (q1, · · · , qd ) is the daily
traded risk on all assets), ±º 0.5 and Y is a prefactor of unit scale.

Equation (2) gives predictions for portfolio returns according to the traded meta-order dollars
of risk. For a given basis ¶, we propose the following impact law for the average normalized
return of Asset i conditioned on the net traded risk on each asset:

E[si |Q1, · · · ,Qd ] º Y
dX

k=1

ºi
kæºk

µ
Qºk

Vºk

∂•±
= Y

dX

k=1

ºk

q
º>

k
%ºk

0
B@

º>
k

Q
q

º>
k
≠ºk

1
CA

•±

. (3)

We Ænd that on both datasets, Equation (3) has signiÆcantly better Æt with º which depends
on the correlation structure of asset returns and liquidity than for the basis ¶= (e1, · · · ,ed ),
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1. Cross-impact

which ignores cross-sectional e�ects. As such, we can view Equation (3) as a more precise
generalisation of the square-root law which accounts for the structure of returns and liquidity.

We now comment on the links between our chapter and the literature.

The proposed impact law gives predictions of cross-impact from meta-orders. We can
use it to compare the predictions of di�erent cross-impact models studied in empirical studies
[SL19, BMEB17, MBEB17, TMB21, TMB20, RT21a, WSG16, WSG15] and inform modeling de-
cisions. In particular, our Ændings motivate the choice of particular propagator models for
cross-impact, favoring those introduced in [RT21a, BMEB17, MBEB17].

Furthermore, while the proposed impact law was only examined on stocks and futures,
it could be extended to deal with more general cases, such as derivatives, thanks to results
discussed in [TMB21]. It would then yield predictions consistent with what has been observed
in meta-order studies on options [TEB16, Sai19]. This suggests the chapters’ results hold in
more generality than simply on stocks and futures.

The proposed impact law gives predictions for transaction costs. These could be incorporated
in portfolio construction problems and prescribe speciÆc choices for cross-impact modeling
in these frameworks, where the cross-impact model is often left unspeciÆed [EMK19, GP16].
Furthermore, they could help regulators better assess the liquidation risk of portfolios.

The chapter is organized as follows. Section 1 proposes a formula for cross-impact asso-
ciated to a given orthonormal basis and introduces the di�erent bases examined in the chapter.
Section 2 applies our framework on the meta-order datasets to measure goodness-of-Æt of
our predictions. Finally, we conclude on the contributions of the chapter, open questions, and
directions for future work.

1 Cross-impact

This section proposes a formula to estimate cross-impact. We begin with its deÆnition.

DeÆnition 1 (Cross-impact). An asset manager decides to buy or sell a portfolio Q = (Q1, · · · ,Qd )

of d di�erent assets, each made up of Qi dollar-risks of Asset i . He, or his broker, splits his order in

smaller orders and executes them on the market. The cross-impact of a meta-order of the portfolio Q

is

C I (Q) := E[s |Q] , (4)

where s = (s1, · · · , sd ) are the normalized daily returns of the assets.

Directly measuring cross-impact as deÆned in Equation (4) is arduous since we need to
measure the average of a random variable conditioned with d random variables, where d

is large. Since precise measures of market impact require on the scale of 105 meta-orders
[ZTFL15, BBLB18, BBLB19, ATHL05, TEB16], precise measures of cross-impact would require
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on the scale of 105d meta-orders. Thus, we are unable to directly measure cross-impact. To
tackle this problem, the next section introduces the concept of diagonalisation of cross-impact.

1.1 Diagonalisation of cross-impact and proposed cross-impact law

Before introducing the concept of diagonalisation of cross-impact, we note that we can apply a
change of basis to simplify the problem. Let ¶ := (º1, · · · ,ºd ) be an orthonormal basis of Rd .
Then, since ¶ is a basis of Rd , there is a one to one correspondence between the distribution
of the family of N random variables E[si |Q1, · · · ,Qd ] and the distribution of the family of N

random variables

E[sºi
|Qº1

, · · · ,Qºd
] ,

where sºi
:= º>

i
s is the portfolio return and Qºi

:= º>
i

Q is the traded volume of dollar-risk
of the portfolio. This reformulation does not yield a straightforward solution since it is
similarly di�cult to estimate the above d random variables. However, it suggests an alternative
approach. If we had

E[sºi
|Qº1

, · · · ,Qºd
] = E[sºi

|Qºi
] ,

then the price impact on portfolio ºi only depends on what is traded on portfolio ºi . This
leads to the following deÆnition.

DeÆnition 2 (Diagonal basis for cross-impact). An orthonormal basis ¶= (º1, · · · ,ºd ) of Rd is

said to diagonalise cross-impact if, for all 1 ∑ i ∑ d , we have

E[sºi
|Qº1

, · · · ,Qºd
] = E[sºi

|Qºi
] , (5)

where sºi
:= º>

i
s is the daily normalized return of the portfolio and Qºi

:= º>
i

Q is the traded

volume of dollar-risk of the portfolio.

Naturally, the challenge is then to Ænd a basis such that Equation (5) holds. Inspired by the
previous deÆnition, for a given orthonormal basis ¶, we associate the following prediction for
cross-impact:

dC I¶(Q) := Y
dX

k=1

Iºk
(Qºk

)ºk , (6)

where Iºk
(Qºk

) := E[sºk
|Qºk

] are functions to be estimated. This prediction is motivated by
the fact that when a basis respects Equation (5), cross-impact can be reduced to Equation (6).
For this chapter, we have restricted our study to orthonormal bases. The portfolios of these
bases have unit risk and no overlap, i.e. º>

i
º j = 0 for two di�erent portfolios ºi and º j . Their

components can be interpreted as positions in each asset expressed in units of risk.

Depending on the choice of basis ¶, Equation (6) may yield sensible predictions or not.
The next sections examine relevant choices of bases.
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1. Cross-impact

1.2 Bases of interest

1.2.1 Canonical basis

The Ærst basis examined is the canonical basis which ignores cross-sectional e�ects and we
thus dub the direct basis:

¶direct := (e1, · · · ,ed ) ,

where the ei are the canonical vectors of Rd . This basis uses the predictions for market impact
on each asset to predict cross-impact. As underscored in the introduction, the functions Iei

are
well described by the square-root law of Equation (1). As a basis which ignores cross-sectional
e�ects, we expect this basis of being far from satisfying the diagonalisation condition of
Equation (5). Overall, this basis should work best when asset prices and order Øows are not
correlated and break down when there is strong structure in prices and order Øows.

1.2.2 Random basis

The second basis of interest is the random basis deÆned as

¶random := (o1, · · · ,od ) ,

where the basis (o1, · · · ,od ) has been randomly sampled in the orthogonal group. This
basis serves as a zero-intelligence basis which accounts for cross-sectional e�ects. Since this
choice randomly mixes the information of all assets, it should be closer to satisfying the
diagonalisation condition of Equation (5) than the direct basis. However, the cross-impact
predictions associated to this basis of Equation (6) may have worse Æt than those associated to
the direct basis because the portfolios oi have little economic interpretation. Contrary to
the direct basis, we have no prior knowledge of the functions Ioi

, so that we will need to
estimate it using meta-order data.

1.2.3 Eigenliquidity model basis

The third selected basis accounts for return correlations. It is taken using the eigenvectors of
the normalized return correlation matrix % :=Corr(s):

¶el := eigenvectors(%) .

This basis is dubbed eigenliquidity model basis (el for short) basis since it is inspired by the
eigenliquidity cross-impact model [TMB20, BMEB17, MTB14] which has the same eigenvectors
as %. Given the goodness-of-Æt of the linear eigenliquidity model on anonymous data, the
cross-impact predictions associated to this basis may Æt empirical data well. As in the random
basis, we will have to estimate empirically the functions Iº where º is in the basis ¶el.

1.2.4 Kyle model basis

The Ænal basis chosen uses both return and order Øow structure, encoded in the normalized
return correlation matrix % and the co-trading e�ects encoded in the traded risk covariance
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matrix ≠ := Cov(q), where q := (q1, · · · , qd ) is the daily signed traded risk of each asset. The
kyle basis is deÆned as

¶kyle := eigenvectors((L °1)>
q

L>%L L
°1) ,

where L is such that L L
> =≠. We refer to this basis as the kyle basis since it is inspired

by the multivariate Kyle model for cross-impact [TMB20, GdMMBB20, CK94], which has also
shown good Æt on empirical data [TMB20]. Once again, the functions Iº where º is in the
basis ¶kyle have to be estimated.

2 Empirical results

This section assesses the quality of the predictions of our setup on meta-order datasets.

2.1 Meta-order datasets

This study uses two databases of proprietary meta-orders to analyse cross-impact. We present
the characteristics of each dataset below.

2.1.1 ANcerno dataset

The Ærst database is made available by ANcerno, formerly Abel Noser Corporation, which
is one of leading consulting Ærm that works with institutional investors to monitor their
equity trading costs. This database contains orders executed by di�erent institutional in-
vestors in the U.S. equity market. Our sample of this database contains stocks and orders
from 2000 to 2014. For previous studies on the ANcerno database, we refer the reader
to [BBLB18, BBLB19, ZTFL15].

In the following we will identify a meta-order as a series of consecutive orders performed by a
single investor, through a single broker within a single day, on a given stock and with a Æxed
direction (buy/sell). Thus each meta-order is characterised by a broker label, a stock symbol,
the signed number of exchanged shares (counted positively for buy orders and negatively for
sell orders), executed during a physical time interval [ts , te ] with ts the start time and te the
end time of the execution.

There are many entries in the ANcerno database and some Æltering is needed to remove
possibly erroneous data. To do so, we follow the cleaning procedure introduced in [ZTFL15],
which we recall below:

(i) remove meta-orders which last for more than one day;
(ii) remove meta-orders which end after 4pm;
(iii) remove meta-orders which last for less than 2 minutes;
(iv) remove meta-orders with participation ratio larger than 30%.

The statistical properties of the remaining meta-orders are in line with the previous studies
[ZTFL15, BBLB19, BBLB18].
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To avoid an elaborate analysis of when precisely each meta-order starts and ends, how
they overlap and which reference price to take, we consider impact at the daily scale. Doing so,
we aggregate the meta-orders of di�erent asset managers on a given stock. For a given trading
day and asset, the signed daily volume is the sum of the signed volume of all meta-orders on
that day. We assume that the daily meta-order starts when the market opens and Ænishes when
the market closes.

The resulting dataset is combined with daily open/high/low/close price data and sector
classiÆcation. To do so, we match symbols from the ANcerno database using available market
data. Around 40% of stocks do not match our market data and are removed in this procedure.

The Ænal dataset contains 2708 stocks, distributed among di�erent sectors. With our daily
aggregation methodology, we are left with around 2.8 million meta-orders. To keep the number
of distinct stocks tractable, we select 1000 random stocks among our dataset. We are left with
1.6 million meta-orders.

2.1.2 CFM Futures dataset

The second dataset employed in this study contains data on the proprietary meta-orders
executed by the asset manager Capital Fund Management (CFM) on the futures market. After
cleaning, the dataset covers around 250 di�erent futures, with approximately 200,000 meta-
orders from 2012 to 2019.

Contrary to the ANcerno dataset, meta-orders of this dataset are only those executed by CFM.
Thus, a meta-order is identiÆed with a future code, the signed number of exchanged lots
(counted positively for buy orders and negatively for sell orders), executed during a physical
time interval [ts , te ] with ts the start time and te the end time of the execution. To apply a
consistent methodology with the ANcerno dataset, we aggregate orders at the daily scale.

2.2 Estimates of % and ≠

This section details the estimation of the normalized return correlation matrix % and traded
risk covariance matrix ≠. In this chapter, we only have access to daily price and volume
data. Therefore, we are unable to directly compute ≠ which requires access to signed trades.
Instead, we propose to use an estimate of the liquidity corelation matrix based on the return
correlation matrix. From previous studies [BMEB17, TMB20, TMB21], we know that the order
Øow correlation matrix shares the Ærst eigenvectors of the return correlation matrix, although
the order Øow correlation matrix is much more diagonal. Thus, we set %≠ :=ÆI + (1°Æ)% for
some choice of Æ which captures the scale of %. For the ANcerno dataset, previous studies
[TMB20, BMEB17] motivate the choice Æ= 0.9 as the traded risk correlation matrix was found
to have some of the structure of % - although more diagonal than %. For the CFM futures
dataset, the previous study [TMB20] suggests Æ = 0.1 as the traded risk correlation matrix
was found to be close to the return correlation matrix, in particular because the liquidity of
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strongly correlated instruments is strongly correlated. For example, two futures with the same
underlying have signiÆcant co-trading.

Using the above estimate for %≠, the daily traded risk covariance matrix on a given day
is approximated by ≠t := diag(Vt )%≠diag(Vt ), where Vt is the vector of daily traded risk of
each asset. To compute the eigenvectors of the kyle basis, we compute the average daily
traded risk covariance matrix as ≠̄ := diag(V̄ )%≠diag(V̄ ), where V̄ is the vector of average
daily traded risk of each asset.

Figure IV.1 shows the structure of the daily normalized return correlation matrix % on both
datasets.

Figure IV.1: Price correlation matrix % on both datasets.

Left: ANcerno dataset. Right: CFM dataset. Correlation matrices are grouped by sector to
highlight the block-wise structure. For the ANcerno dataset, the average pair-wise correlation
value of stocks is removed to remove the inØuence of the market mode. Both correlation
matrices show strong structure, with the correlation matrices on future highlighting the strong
correlation within futures of the same sector. We can also distinguish sub-blocks within a
particular sector, which correspond to futures with the same underlying.

2.3 Diagonalisation in bases of linear cross-impact models

Given the estimates for % and ≠ of the previous section, we can now stress-test di�erent
bases. This section examines how close di�erent bases are to satisfying the diagonalisation
condition of Equation (5). To do so, for a given orthonormal basis ¶, we introduce the residual
di�erences

Z¶

i j :=
°
E[sºi

|Qºi
,Qº j

]°E[sºi
|Qºi

]
¢2

, (7)

which measure the error of the approximation. A global metric for our diagonalisation
approximation error in the basis ¶ is then

Z¶
=

1

d

X

1∑i , j∑d
i 6= j

Z¶

i j , (8)

which measures the average error made with the approximation.
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Table IV.1 reports the separation metric for the di�erent bases introduced in Section 1.2.
All models from bases which account for cross-sectional e�ects have better scores than the
direct basis model. As previously mentioned, the random model is expected to perform
best since both elements of Equation (7) are close to zero. It is noteworthy then that, in
both instances, the el and kyle bases reach comparable scores to the random basis, which
suggests they are e�cient in separating the information and somewhat close to satisfying the
diagonalisation condition.

Dataset Basis

direct random el kyle

ANcerno stocks 11.0±0.9 0.61±0.01 0.50±0.05 0.54±0.05

CFM futures 2.02±0.01 0.977±0.003 0.55±0.02 0.68±0.02

Table IV.1: Separation metric Z¶ in the bases of di�erent impact models.

The table reports the separation metric Z¶ on both datasets. For a given pair of portfolios
ºi ,º j from a given basis, Z¶

i j
is computed by estimating both sides of Equation (7) using

empirical averages. Then, due to the large number of portfolio pairs to examine to compute
Equation (8), Z¶ is estimated by averaging Z¶

i j
on a smaller sample of portfolio pairs and the

error bars correspond to the 95% conÆdence interval for our subsampled estimate of Z¶.

2.4 Fit of the functions Iº

The previous section showed that the random, el and kyle bases were much closer to satisfy-
ing the diagonalisation condition than the direct basis. For a given basis ¶= (º1, · · · ,ºd ),
the associated predicted cross-impact of Equation (6) requires estimating the functions
Iºk

(Qºk
) := E[sºk

| Qºk
]. These functions are already known for the direct basis, since

they correspond to market impact and are described by the square-root law. However, they
need to be estimated for the random, el and kyle bases.

Figure IV.2 shows that, for each portfolio º in these bases, the functions Iº is well-described
by a square-root law like Æt:

E[sº |Qº ] º Y æº

µ
Qº

Vº

∂•±
, (9)

where ±º 0.4°0.6, Y is a dimensionless prefactor (where Y º 0.3 on stocks and Y º 0.5 on
futures), V 2

º :=º>
≠º is a proxy for the liquidity in the direction of the portfolio, æ2

º :=º>%º

is a proxy for the volatility of the portfolio. A key di�erence with the square-root law is the
scale of the dimensionless prefactor Y . Although it is independent of the portfolio, it changes
depending on the dataset and, in particular, the number of assets d (see [TMB20] for more
details).
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Figure IV.2: Fit of Iº in di�erent bases on both datasets.

Left: ANcerno stocks dataset. Right: CFM futures dataset. Each point is computed by
averaging normalized returns on binned traded risk. Error bars shown are computed using
95% conÆdence intervals. The ANcerno dataset has signiÆcantly more data, which allows us
to obtain more precision. On both datasets, for participation ratios ¥º :=

Qº

Vº
in the range

10°3 . ¥º . 10°1, the square-root law Æt is a good approximation.

2.5 Goodness-of-Æt

Using the results of Section 2.4 we can plug the functional form of Equation (9) in the prediction
of cross-impact of Equation (6) to associate with a given basis ¶ among the direct, random,
el and kyle bases the following prediction for cross-impact:

dC I¶(Q) º Y
dX

k=1

ºkæºk

µ
Qºk

Vºk

∂•±
= Y

dX

k=1

ºk

q
º>

k
%ºk

0
B@

º>
k

Q
q
º>

k
≠ºk

1
CA

•±

. (10)

Equation (10) accounts for all portfolios, many of which may have small volatility and provide
negligible contributions. To assess the quality of Æt of Equation (10) as a function of the number
of directions considered, we consider the truncated predictions dC I¶,n(Q) deÆned as

dC I¶,n(Q) := Y
nX

k=1

ºkæºk

µ
Qºk

Vºk

∂•±
= Y

nX

k=1

ºk

q
º>

k
%ºk

0
B@

º>
k

Q
q

º>
k
≠ºk

1
CA

•±

, (11)

where the portfolios ºk are sorted in decreasing order of volatility º>
k
%ºk . To evaluate the

goodness-of-Æt of the predictions obtained with Equation (11), we compute the r 2 between
realized returns and the predictions given by dC I¶,n(Q) as

r 2
= 1°

1

d

dX

i=1

Var(si °e>
i

dC I¶,n(Q))

Var(si )
,

where Var(X ) is the variance of the random variable X . To favour the direct basis, the i -th
variance in the sum is estimated on empirical data only using days where a meta-order on
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Asset i was executed.

Figure IV.3 reports the estimated r 2 as a function of the fraction of explained variancePn
i=1 º

>
i
%ºiPN

i=1 º
>
i
%ºi

associated to the chosen basis. On both datasets, the goodness-of-Æt of cross-impact

predictions given in the bases of the kyle and el models is higher than for the direct model.
This suggests that, in these bases, Equation (6) gives a more precise generalisation of the
square-root law which accounts for the structure of returns and liquidity.

Figure IV.3: Fit of di�erent impact models on both datasets.

Left: ANcerno stocks dataset. Right: CFM futures dataset. The r 2-squared measure of
Æt is computed for the el (blue triangles), kyle (green squares), random (red circles) and
direct (black star) bases as a function of the cumulative explained variance. As expected, the
random model shows poor performance on both datasets. Strikingly, both cross-impact bases
outperform the direct basis. The di�erence is more pronounced on stocks than on futures.
The quality of Æt improves for both models as the explained variance grows.

Conclusion

The goal of this chapter was to use two meta-order databases to measure the cross-impact of
investor orders. To do so, we proposed a generalisation of the square-root law which accounts
for the structure of returns and liquidity. Section 2.5 showed that this generalisation gives
more precise predictions than the square-root law.

A key result of this chapter is a recipe to compute the cross-impact of meta-orders from
daily data. As a Ærst step, this chapter has opens the door to other relevant questions concern-
ing the cross-impact of meta-orders. For example, one could study how cross-impact decays
after the meta-order. Similarly, one could try to relate the microscopic price formation process
to the observed cross-impact. One possible approach would be to extend limit order book
models of the type of [MTB14, TLD+11, DBMB15] to multiple assets. This study would give
benchmarks for the predictions of such models.
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IV. Measuring cross-impact from labeled order Øow

The setup presented in this chapter is limited to the case of orthonormal bases and it
would be interesting to examine non-orthonormal bases. For example, one could gener-
alise the linear Kyle cross-impact model to a non-linear setting. Such a model would yield a
recipe for aggregating trades and prices which di�ers from the models presented in this chapter.

Finally, an area of interest which we omitted in this chapter are the properties satisÆed
by the proposed cross-impact law. It would be relevant to examine which desirable properties
outlined in [TMB20] are satisÆed by the presented models. This could help us understand how
to further improve the proposed cross-impact laws.
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CHAPTER V

Microfounding multivariate price dynamics

without order Øows

Abstract

Rough volatility is a well-established statistical stylised fact of Ænancial assets. This
property has lead to the design and analysis of various new rough stochastic volatility
models. However, most of these developments have been carried out in the mono-asset
case. In this work, we show that some speciÆc multivariate rough volatility models arise
naturally from microstructural properties of the joint dynamics of asset prices. To do
so, we use Hawkes processes to build microscopic models that reproduce accurately
high frequency cross-asset interactions and investigate their long term scaling limits. We
emphasize the relevance of our approach by providing insights on the role of microscopic
features such as momentum and mean-reversion on the multidimensional price formation
process. We in particular recover classical properties of high-dimensional stock correlation
matrices.

From:
From microscopic price dynamics to multidimensional rough volatility models
M. Rosenbaum, M. Tomas

Introduction

A microstructural viewpoint on rough volatility

It is now widely accepted that volatility is rough (see [GJR18] and among others [DFZ19,
LMPR18]): the log-volatility process is well-approximated by a fractional Brownian motion
with small Hurst parameter H º 0.1, which corresponds to Hölder regularity of order H °≤,
≤> 0. Furthermore, rough volatility models capture key features of the implied volatility surface
and its dynamics (see [BFG16, EEGR19, HMT21]).

The macroscopic phenomenon of rough volatility is seemingly universal: it is observed
for a large class of Ænancial assets and across time periods. This universality may stem from
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V. Microfounding multivariate price dynamics without order Øows

fundamental properties such as market microstructure or no arbitrage. This raised interest
in building microscopic models for market dynamics which reproduce rough volatility at a
macroscopic scale. For us, the microscopic time scale is of the order of milliseconds, where
asset prices are jump processes, while the macroscopic scale is approximately of the order of
days, where asset prices appear essentially continuous.

Hawkes processes, Ærst introduced in [Haw71a, Haw71b, HO74] to model earthquake aftershocks,
are nowadays very popular to model the high frequency dynamics of prices of Ænancial assets
(see [BMM15] for an overview of applications). In particular, the papers [EEFR18, JR15, JR16]
successfully establish a link between rough volatility and history dependent Hawkes-type point
processes which reproduce:

1. the no statistical arbitrage property: it is very hard to design strategies which are on
average proÆtable at the high frequency scale;

2. the long memory property of order Øow due to the splitting of large orders (meta-orders)
into smaller orders;

3. the high degree of endogeneity of Ænancial markets: the large majority of market activity
(including price moves, cancellations and market and limit orders) occurs in response to
previous market activity (as opposed to exogenous information such as news).

We refer to [EEFR18, HBB13] for details about these three stylised facts. This Hawkes-based
microscopic framework can easily account for other features of markets: for example [JR18]
examines the issue of permanent market impact, [EEGRR20] studies how a bid/ask asymmetry
creates a negative price/volatility correlation, while the so-called Zumbach e�ect is considered
in [DJR19].

Inspired by [EEFR18, JR15, JR16], the goal of this chapter is to use Hawkes processes to
Ænd a micro-founded setting of multivariate rough volatility which:

1. enforces no statistical arbitrage between multiple assets;

2. is consistent with the long memory property of the order Øow and the high degree of
endogeneity of Ænancial markets;

3. explains stylised facts from the microscopic price formation process, with a focus on the
structure of high-dimensional stock correlation matrices.

This approach enables us to characterise the type of price dynamics arising from those
constraints. Readers interested in multivariate rough volatility may consult [CT19] for general
construction of a class of a�ne multivariate rough covariance models. Our goal is more modest
here: we are interested in Ænding macroscopic dynamics originating from microscopic insights,
not in a full mathematical analysis of the class of possible models for multivariate rough
volatility. Note also that in the concomitant work [JCLP19], the authors study weak solutions
of stochastic Volterra equations in a very comprehensive framework. Some of our technical
results can be derived from their general approach. In our setting, we rather provide simple
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and natural proofs inspired from [EEFR18, JR15, JR16], allowing us to emphasize Ænancial
interpretations of the results, which is the core of this work.

Modeling endogeneity of Ænancial markets

We Ærst introduce the asymptotic framework which models the high endogeneity of Ænancial
markets in the mono-asset case (as in [BDHM13, EEFR18, JR15, JR16]) for clarity purposes
before moving to the multivariate setting of interest. At the high frequency scale, the price is a
piecewise constant process with upward and downward jumps captured by a bi-dimensional
counting process N = (N 1+, N 1°), with N 1+ counting the number of upward price moves and
N 1° the number of downward price moves. Assuming that all jumps are of the same size, the
microscopic price of the asset is the di�erence of the number of upward and downward jumps
(where the initial price is set to zero for simplicity) and therefore can be written

Pt = N 1+
t °N 1°

t .

Our assumption is that N is a Hawkes process with intensity ∏= (∏1+,∏1°) such that

∏1+
t =µ

1+
t +

Zt

0
¡1+,1+(t ° s)d N 1+

s +

Zt

0
¡1+,1°(t ° s)d N 1°

s

∏1°
t =µ

1°
t +

Zt

0
¡1°,1+(t ° s)d N 1+

s +

Zt

0
¡1°,1°(t ° s)d N 1°

s ,

where the µ : R+ !2R2
+ is called the baseline and ¡ : R+ !M2(R+) is called the kernel, where

we write vectors and matrices in bold and Mn,m(X ) (resp. Mn(X )) for the set of X -valued
n £m (resp. n £n) matrices. From a Ænancial perspective, we can easily interpret the di�erent
terms above:

• on the one hand, µ+
1 (resp. µ°

1 ) is an exogenous source of upward (resp. downward) price
moves;

• on the other hand, ¡ is an endogenous source of price moves. For example, ¡1+,1°
increases the intensity of upward price jumps after a downward price jump, creating a
mean-reversion e�ect (while ¡1+,1+ creates a trending e�ect).

To further encode the long-memory property of the order Øow, [EEFR18, JR15] consider heavy-
tailed kernels where, writing Ω(M) for the spectral radius of a matrix M , for some c > 0 and
Æ 2 (1/2,1) we have

Ω
°Z1

t
¡(s)d s

¢
ª

t!1
ct°Æ.

Such a model satisÆes the stability property of Hawkes processes (see for example [JR15]) as
long as Ω(

∞∞¡
∞∞

1) < 1 (writing k·k1 for the L1 norm). In fact, calibration of Hawkes processes
on Ænancial data suggests that this stability condition is almost violated. To account for this
e�ect, the authors of [EEFR18, JR15] model the market up to time T with a Hawkes process
N T of baseline µT and kernel ¡T . The microscopic price until time T is then

P T,1
t = N T,1+

t °N T,1°
t .
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V. Microfounding multivariate price dynamics without order Øows

In order to obtain macroscopic dynamics, the time horizon must be large, thus the sequence
Tn tends towards inÆnity (from now on, we write T for Tn ). As T tends to inÆnity, ¡T almost
saturates the stability condition: lim

n!1
Ω(

∞∞¡T
∞∞

1) = 1. A macroscopic limit then requires scaling

the processes appropriately to obtain a non-trivial limit. Details on the proper rescaling of the
processes are given in the introduction.

Multivariate setting

Having described the asymptotic setting in the mono-asset case, we now model m dif-
ferent assets. The associated counting process is now a 2m-dimensional process N T =

(N T,1+, N T,1°, N T,2+, . . . , N T,m°) and its intensity satisÆes

∏T
t =µ

T
t +

Zt

0
¡(t ° s)T d N T

s .

The counting process N includes the upward and downward price jumps of m di�erent assets
and the microscopic price of Asset i , where 1 ∑ i ∑ m, is simply

P T,i
t = N T,i+

t °N T,i°
t .

This allows us to capture correlations between assets since, focusing for example on Asset 1,
we have

∏T,1+
t =µ

T,1+
t +

Zt

0
¡T

1+,2+(t ° s)d N T,2+
s +

Zt

0
¡T

1°,2+(t ° s)d N T,2+
s +·· · .

Therefore ¡T
1+,2+ increases the intensity of upward jumps on Asset 1 after an upward jump of

Asset 2 while ¡T
1°,2+ increases the intensity of downward jumps, etc.

We now need to adapt the nearly-unstable setting to the multidimensional case. Thus
we have to Ænd how to saturate the stability condition and to translate the long memory
property of the order Øow.

In [EEFR18], ¡T (t ) is taken diagonalisable (in a basis independent of T and t ) with a maximum
eigenvalue ªT (t ) such that lim

T!1

∞∞ªT
∞∞

1 = 1. However this structure leads to the same volatility

for all assets and thus cannot be a satisfying solution for realistic market dynamics. We take
here a sequence of trigonalisable (in a basis O independent of T and t ) kernels ¡T (t ) with
nc > 0 eigenvalues almost saturating the stability condition. Thus the Hawkes kernel is taken
of the form (using block matrix notation in force throughout the chapter)

¡T (t ) =O

µ
AT (t ) 0

B T (t ) C T (t )

∂
O°1,

where AT : R+ ! Mnc
(R), B T : R+ ! M2m°nc ,nc

(R) and C T : R+ ! M2m°nc
(R). Note that we

will see that in the limit, macroscopic volatilities and prices are independent of the chosen
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basis. We assume that the stability condition is saturated at the speed T °Æ where Æ 2 (1/2,1) is
again related to the tail of the matrix kernel (see below). The saturation condition translates to

T Æ
°
I °

Z1

0
AT

¢
!

T!1
K ,

where K is an invertible matrix.

We now need to encode the long memory property of the order Øow. We can expect
orders to be sent jointly on di�erent assets (this can be due, for example, to portfolio rebal-
ancing, risk management or optimal trading) and split under di�erent time scales depending
on idiosyncratic components (such as daily traded volume or volatility). Empirically the
approximation that despite idiosyncrasies a common time scale for order splitting exists is
partially justiÆed: for example [BMEB17] shows that market impact, which is directly related
to the order Øow, is well-approximated by a single time scale for many stocks. Finally, this
property is encoded by imposing a heavy-tail condition for A := lim

T!1
AT with the previous

exponent Æ:

ÆxÆ
Z1

x
A(s)d s !

x!1
M ,

with M an invertible matrix.

Main results and organization of the chapter

In the framework described above, we show that the macroscopic limit of prices is a mul-
tivariate version of the rough Heston model introduced in [EEGRR20, EEGR19], where the
volatility process is a solution of a multivariate rough stochastic Volterra equation. Thus we
derive a natural multivariate setting for rough volatility using nearly-unstable Hawkes processes.

More precisely, deÆne the rescaled processes (see [JR15] for details), for t 2 [0,1]:

X T
t :=

1

T 2Æ
N T

tT (1)

Y T
t :=

1

T 2Æ

ZtT

0
∏sd s (2)

Z T
t := T Æ(X T

t °Y T
t ) =

1

T Æ
M T

tT (3)

P T
t =

1

T 2Æ
(N T,1+

tT
°N T,1°

tT
, · · · , N T,m+

tT
°N T,m°

tT
). (4)

We refer to P T as the (rescaled) microscopic price process. Under some additional technical and
no statistical arbitrage assumptions, there exists an nc dimensional process Ṽ , matrices £1 2
Mnc

(R),£2 2Mn°nc
(R),§0 2Mnc

(R),§1 2Mnc
(R),§2 2Mnc ,n°nc

(R),µ0 2Rnc and a Brownian
motion B such that

• Any macroscopic limit point P of the sequence P T satisÆes

Pt = (I +¢)†Q

Zt

0
diag(

p
Vs)dBs ,
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V. Microfounding multivariate price dynamics without order Øows

where Q := (e1 °e2 | · · · | e2m°1 °e2m), writing †Q for the transpose of Q, (ei )1∑i∑2m for
the canonical basis of R2m and ¢= (¢i j )1∑i , j∑m 2Mm(R) is deÆned in Section 2 while
V is deÆned below.

• £
1Ṽ = (V 1, · · · ,V nc ) and £

2Ṽ = (V nc+1, · · · ,V n).

• Ṽ has Hölder regularity Æ°1/2°≤ for any ≤> 0.

• For any t in [0,1], Ṽ satisÆes

Ṽt =

Zt

0
(t°s)Æ°1(µ0°§0Ṽs)d s+

Zt

0
(t°s)Æ°1

§1diag(

q
£1Ṽs)dWs+

Zt

0
(t°s)Æ°1

§2diag(

q
£2Ṽs)d Zs ,

where W := (B 1, · · · ,B nc ), Z := (B nc+1, · · · ,B n) and we write
p

x for the component-wise
square root of vectors of non-negative entries.

Thus the volatility process V is driven by Ṽ , which represents volatility factors, of which there
are as many as there are critical directions.

We can use this result to provide microstructural foundations for some empirical proper-
ties of correlation matrices. Informally, considering that our assets have similar self-exciting
features in their microscopic dynamics, we show that any macroscopic limit point P of the
sequence P T satisÆes P

Pt =ß

Zt

0
diag(

p
Vs)dWs ,

where W is a Brownian motion, V satisÆes a stochastic Volterra equation and ß has one very
large eigenvalue followed by smaller eigenvalues that we can interpret as due to the presence
of sectors and a bulk of eigenvalues much smaller than the others. This is typical of actual
stock correlation matrices (see for example [LCBP99] for an empirical study).

The chapter is organised as follows. Section 1 rigorously introduces the technical frame-
work sketched in the introduction. We present and discuss the main results in Section 2 which
are then applied in examples developed in Section 3. Proofs and technical results are available
in an appendix.

1 Assumptions

Before presenting the main results, we make precise the framework sketched out in the in-
troduction. Di�erent examples of Hawkes processes satisfying our assumptions are given in
Section 3.

Consider a sequence of measurable functions ¡T : R+ !M2m(R+) and µT : R+ !R2m
+ , where

the pair (µT ,¡T ) will be used to model the market dynamics until time T via a Hawkes process
N T of baseline µT and kernel ¡T . Each kernel ¡T is stable (Ω

°∞∞¡T
∞∞

1

¢
< 1).
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1. Assumptions

Assumption 1. There exists O an invertible matrix such that each ¡T can be written as

¡T
=O

µ
AT 0

B T C T

∂
O°1,

where AT : R+ ! Mnc
(R), B T : R+ ! M2m°nc ,nc

(R), C T : R+ ! M2m°nc
(R). Furthermore, the

sequence ¡T converges towards ¡ : R+ !M2m(R+) as T tends to inÆnity and, writing A,B ,C for

the limits of AT ,B T ,C T as T tends to inÆnity, Ω(
R1

0 C ) < 1.

Additionally, there exists Æ 2 (1/2,1), K , M invertible matrices and µ : [0,1] !R+ such that

T Æ(I °
∞∞AT

∞∞
1) !

T!1
K (5)

ÆxÆ
Z1

x
A(s)d s !

x!1
M (6)

T 1°Æ
µ

T
tT !

T!1
µt , (7)

where K M°1 has strictly positive eigenvalues.

Realistic market dynamics require enforcing no statistical arbitrage conditions on the kernels,
as in the spirit of [JR15]. To determine which conditions need to be satisÆed to prevent such
arbitrage, we write the intensity of the counting process ∏T using the compensator process
M T

t := N T
t °∏T

t and √T =
P

k∏1(¡T )§k (see for example Proposition 2.1 in [JR15]). We have

∏T
t =µ

T
+

Zt

0
√T (t ° s)µT

s d s +

Zt

0
√T (t ° s)d M T

s . (8)

Thus, the expected intensities of upward and downward price jumps of Asset i are

E[∏T,i+
t ] =µT,i+

t +
X

1∑ j∑2m

Zt

0
√T

i+, j°(t ° s)µ
T, j°
s d s +

X

1∑ j∑2m

Zt

0
√T

i+, j+(t ° s)µ
T, j+
s d s

E[∏T,i°
t ] =µT,i°

t +
X

1∑ j∑2m

Zt

0
√T

i°, j°(t ° s)µ
T, j°
s d s +

X

1∑ j∑2m

Zt

0
√T

i°, j+(t ° s)µ
T, j+
s d s.

The above leads us to the following assumption.

Assumption 2. For any 1 ∑ i , j ∑ m:

1. √T
i+, j+

+√T
i+, j° =√T

i°, j+
+√T

i°, j° (no pair-trading arbitrage)

2. lim
T!1

≥R1
0 √T

i+, j
°

R1
0 √T

i+, j+

¥
<1 (suitable asymptotic behaviour of the intensities)

Under the above conditions and if µT,i+ =µT,i° for all 1 ∑ i ∑ m, then E[∏T,i+
t ] = E[∏T,i°

t ] and
there are on average as many upward than downward jumps, which we interpret as a no
statistical arbitrage property.
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DeÆne, for any 1 ∑ i , j ∑ m,

±T
i j :=√T

j+,i+°√T
j°,i+ (9)

¢i j := lim
T!1

∞∞∞√T
j+,i+

∞∞∞
1
°

∞∞∞√T
j°,i+

∞∞∞
1

. (10)

We can make the following remark.

Remark 1. Note that for any 1 ∑ k ∑ m, deÆning vk := ek+°ek° and using (1) of Assumption 2,
we have

†
√T vk =

†
√T (ek+°ek°)

= (√T
k+,1+°√T

k°,1+)e1++ (√T
k+,1°°√T

k°,1°)e1°+·· ·+ (√T
m+,1+°√T

m°,1+)em°

= (√T
k+,1+°√T

k°,1+)e1+° (√T
k+,1+°√T

k°,1+)e1°+·· ·+ (√T
m+,1+°√T

m°,1+)em°

= (√T
k+,1+°√T

k°,1+)v1 +·· ·+ (√T
k+,m+

°√T
k°,m+

)vm

= ±T
k1v1 +·· ·+±T

kn vm .

A su�cient condition for the no pair-trading arbitrage Equation (1) of Assumption 2 to hold is that,
for all 1 ∑ i ∑ m,

†
¡T vi =

X

1∑ j∑m

(
†
¡T vi · v j )v j ,

since then we have, for any 1 ∑ k ∑ m,
X

1∑l∑m

(√T
k+,l+°√

T
k°,l+)el+°(√T

k+,l+°√
T
k°,l+)el° =

X

1∑l∑m

(√T
k+,l+°√

T
k°,l+)el+°(√T

k+,l°°√
T
k°,l°)el°.

In our applications in Section 3 we will use this condition as it is easier to check assumptions on ¡

than on √.

2 Main results

We are now in the position to rigorously state the main results of this chapter. We use the
processes X T ,Y T and Z T deÆned in the introduction (see Equations (1), (2) (3)) and write

O°1
=

√
O(°1)

11 O(°1)
12

O(°1)
21 O(°1)

22

!
, O =

µ
O11 O12

O21 O22

∂
.

We set

£
1 :=

°
O11 +O12(I °

Z1

0
C )°1

Z1

0
B

¢
K °1

£
2 :=

°
O21 +O22(I °

Z1

0
C )°1

Z1

0
B

¢
K °1

µ0 :=

√
O(°1)

11 0

0 O(°1)
12

!
µ

§ :=
Æ

°(1°Æ)
K M°1.
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2. Main results

We have the following theorem.

Theorem 1. The sequence (X T ,Y T , Z T ) is C -tight for the Skorokhod topology. Furthermore, for

every limit point (X ,Y , Z ) of the sequence, there exists a positive process V and an 2m-dimensional

Brownian motion B such that

1. X t =
Rt

0 Vsd s, Zt =
Rt

0 diag(
p

Vs)dBs .

2. There exists Ṽ a process of Hölder regularity Æ°1/2° " for any " > 0 such that £1Ṽ =

(V 1, · · · ,V nc ), £2Ṽ = (V nc+1, · · · ,V 2m) and Ṽ is solution of the following stochastic Volterra

equation:

8t 2 [0,1],Ṽt =
1

°(Æ)
§

Zt

0
(t ° s)Æ°1(µ0 ° Ṽs)d s

+
1

°(Æ)
§

Zt

0
(t ° s)Æ°1O(°1)

11 diag(

q
£1Ṽs)dW 1

s

+
1

°(Æ)
§

Zt

0
(t ° s)Æ°1O(°1)

12 diag(

q
£2Ṽs)dW 2

s ,

(11)

where W 1 := (B 1, · · · ,B nc ), W 2 := (B nc+1, · · · ,B 2m), £1, £2, O(°1)
11 , O(°1)

12 ,µ0 do not depend

on the chosen basis.

Finally, any limit point P of the rescaled price processes P T satisÆes

Pt = (I +¢)†Q(

Zt

0
diag(

p
Vs)dBs +

Zt

0
µsd s),

where ¢ is deÆned in Equation (10).

Theorem 1 links multivariate nearly unstable Hawkes processes and multivariate rough volatility.
We note that:

• The resulting stochastic Volterra equation has non-trivial solutions, as the examples in
Section 3 will show.

• From a Ænancial perspective, Theorem 1 shows that the limiting volatility process for
a given asset is a sum of di�erent factors. The matrix ¢ mixes them and is therefore
responsible for correlations between asset prices. Remarks and comments on I +¢ are
developed in Section 3.

• The theorem implies that adding/removing an asset to/from a market has an impact on
the individual volatility of other assets. We can estimate the magnitude of such volatility
modiÆcations by calibrating Hawkes processes on price changes.

• Since there is a one to one correspondence between the Hurst exponent H and the long
memory parameter of the order Øow Æ, our model yields the same roughness for all
assets. Extensions to allow for di�erent exponents to coexist, for example by introducing
an asset-dependent scaling through D = (Æ1, · · · ,Æm) and studying T °D∏T

tT , are more
intricate. In particular, one needs to use a special function extending the Mittag-Le�er
matrix function such that its Laplace transform is of the form (I +§t D )°1.
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V. Microfounding multivariate price dynamics without order Øows

3 Applications

In this section, we give examples of processes obtained through Theorem 1 under di�erent
assumptions on the microscopic parameters. The Ærst example highlights the Øexibility of
our framework and shows that the obtained limit in Theorem 1 is non-trivial. We then
study the inØuence of microscopic parameters on the limiting price and volatility processes
when modeling two assets. Finally, we model many di�erent assets to reproduce realistic
high-dimensional correlation matrices.

3.1 An example of non-trivial volatility process obtained through Theorem 1

Before presenting some truly relevant results for Ænance, we develop an example demonstrating
that the solutions to the Volterra equations of the form of Equation (11) are non-trivial. The
structure of our Volterra equations is close to those studied in [AJLP19], which proves existence
and uniqueness of a�ne Volterra equations. In particular, this paper covers Volterra equations
of the following type, for Æ 2 (1/2,1):

X t = X0 +

Zt

0
(t ° s)Æ°1b(Xs)d s +

Zt

0
(t ° s)Æ°1æ(Xs)dBs ,

where b : R!Rn and æ : R!Mn(R) are continuous functions. A key condition required for
existence and uniqueness is sublinear growth condition on b and æ, that is

kb(x)k2 _kæ(x)k2 ∑ c(1+kxk2), (12)

for some constant c > 0 where k·k2 is the usual Euclidian norm for vectors and matrices. Thus,
this setting covers equations of the type

X t = X0 +

Zt

0
(t ° s)Æ°1b(Xs)d s +

Zt

0
(t ° s)Æ°1diag(

p
Xs)dBs ,

which are a particular case of Theorem 1. However, note that Condition 12 fails when
æ(x) =ßdiag(

p
x) for some non-diagonal matrix ß. Interestingly, this setting is covered in our

approach as illustrated by the following corollary.

Corollary 1. We can Ænd a microscopic process satisfying the assumptions of Theorem 1 such that V

is a non-negative process which satisÆes, for any t in [0,1],

Vt =

Zt

0
(t ° s)Æ°1(µ°GVs)d s +

Zt

0
(t ° s)Æ°1

ßdiag(
p

Vs)dBs ,

where µ is a 4-dimensional vector, G ,ß are 4£4 non-diagonal matrices and B is a 4-dimensional

Brownian motion.

Thus, our framework yields non-trivial solutions and leads to interesting new examples of
processes. We now focus on building realistic models to discuss the correspondence between the
microscopic parameters of the Hawkes kernel and macroscopic quantities such as correlations
and volatility.
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3. Applications

3.2 InØuence of microscopic properties on the price dynamics of two

correlated assets

Our Ærst model to understand the price formation process focuses on two assets. Let µ1,µ2 > 0,
Æ 2 (1/2,1),∞1,∞2 in [0,1], H c

21, H a
21, H c

12, H a
12 in [0,1] 1 such that (here

p
· is the principal square

root, so that if x < 0,
p

x = i
p
°x):

0 ∑ (H c
12 +H a

12)(H c
21 +H a

21) < 1

0 ∑| 1° (∞1 +∞2)°
q

(H c
12 °H a

12)(H c
21 °H a

21)+ (∞1 °∞2)2 |< 1

0 ∑| 1° (∞1 +∞2)+
q

(H c
12 °H a

12)(H c
21 °H a

21)+ (∞1 °∞2)2 |< 1.

We now have to choose a kernel which satisÆes the di�erent assumptions of Section 1 to model
the interactions between our two assets. Theorem 1 states that the only relevant parameters
for the macroscopic price are K and M . For simplicity we choose the kernel such that M =ÆI .
This leads us to deÆne, for t ∏ 0,

¡T
1 (t ) = (1°∞1)Æ(1°T °Æ)1t∏1t°(Æ+1) ¡T,c

21 (t ) =ÆT °ÆH c
211t∏1t°(Æ+1)

¡T
2 (t ) = ∞1Æ(1°T °Æ)1t∏1t°(Æ+1) ¡T,a

21 (t ) =ÆT °ÆH a
211t∏1t°(Æ+1)

¡̃T
1 (t ) = (1°∞2)Æ(1°T °Æ)1t∏1t°(Æ+1) ¡T,c

12 (t ) =ÆT °ÆH c
121t∏1t°(Æ+1)

¡̃T
2 (t ) = ∞2Æ(1°T °Æ)1t∏1t°(Æ+1) ¡T,a

12 (t ) =ÆT °ÆH a
121t∏1t°(Æ+1).

For a realistic model, we impose the exogenous source of upward and downward price moves
to be equal: µ1+ =µ1° and µ2+ =µ2°. Thus, the sequence of baselines and kernels are chosen
as

µ
T
= T Æ°1

0
BBB@

µ
1

µ
1

µ
2

µ
2

1
CCCA , ¡T

=

0
BBB@

¡T
1 ¡T

2 ¡T,c
12 ¡T,a

12

¡T
2 ¡T

1 ¡T,a
12 ¡T,c

12

¡T,c
21 ¡T,a

21 ¡̃T
1 ¡̃T

2

¡T,a
21 ¡T,c

21 ¡̃T
2 ¡̃T

1

1
CCCA .

Applying theorem 1 yields the following result.

Corollary 2. Consider any limit point P of P T . Under the above assumptions, it satisÆes

Pt =

p
2

4∞1∞2 ° (H c
12 °H a

12)(H c
21 °H a

21)

µ
2∞2 H c

21 °H a
21

H c
12 °H a

12 2∞1

∂Zt

0

0
@
q

V 1
s dW 1

sq
V 2

s dW 2
s

1
A , (13)

with
µ
V 1

t

V 2
t

∂
=

Æ

°(Æ)°(1°Æ)

Zt

0
(t ° s)Æ°1

µµ
µ

1

µ
2

∂
°

1

1° (H c
12 +H a

12)(H c
21 +H a

21)

µ
1 H c

21 +H a
21

H c
12 +H a

12 1

∂µ
V 1

s

V 2
s

∂∂
d s

+
p

2
Æ

°(Æ)°(1°Æ)

Zt

0
(t ° s)Æ°1

0
@
q

V 1
s d Z 1

sq
V 2

s d Z 2
s

1
A , (14)

1The superscripts c (resp. a) stand for continuation (resp. alternation) to describe that after a price move in
a given direction, Hc (resp. H a ) encodes the tendency to trigger other price moves in the same (resp. opposite)
direction will follow.
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V. Microfounding multivariate price dynamics without order Øows

where W and Z are bi-dimensional independent Brownian motions. This model helps us
understand how microscopic parameters drive the price formation process to generate a
macroscopic price and volatility. We begin our remarks with some deÆnitions.

We call momentum the trend (i.e., the imbalance between the number of upward and downward
jumps) created by jumps of one asset on itself . The opposite e�ect is referred to as mean-

reversion. For example, the parameter ∞1 controls the intensity of self-induced bid-ask bounce
on Asset 1: when ∞1 close to zero corresponds to a strong momentum while ∞1 close to one
corresponds to a strong mean-reversion.

We call cross-asset momentum the trend created by jumps of one asset on another. For
example, cross-asset momentum from Asset 2 to Asset 1 (resp. Asset 1 to Asset 2) appears via
H c

21 °H a
21 (resp. H c

12 °H a
12): when both H c

21 °H a
21 and H c

12 °H a
12 are nill, the prices of Asset 1

and Asset 2 are uncorrelated. We now turn to comments on the volatility process.

Because of its role in the single-asset case, we refer to V as the fundamental variance:
for example V 1 is the fundamental variance of Asset 1. The equation satisÆed by V only
depends on the sum of the feedback e�ects between each asset through H c

12 +H a
12: from a

volatility viewpoint, upward and downward jumps have the same impact. Furthermore, we can
compute the expected fundamental variance using Mittag-Le�er functions (see Section V.A).

Mean-reversion drives down volatility while cross-asset momentum increases it. Indeed,
computing E[(P 1

t )2] for example we get:

E[(P 1
t )2] = 2

4∞2
2

Rt
0 E[V 1

s ]d s + (H c
12 °H a

12)(H c
21 °H a

21)
Rt

0 E[V 2
s ]d s

[4∞1∞2 ° (H c
12 °H a

12)(H c
21 °H a

21)]2
.

In particular, increasing ∞1 or ∞2 does not change V but reduces E[(P 1
t )2]. This example may

be particularly relevant to understand the contribution of Asset 2 to the volatility of Asset 1
through calibration to market data since if Asset 2 were removed from the market, we would

have E[(P 1
t )2] =

1

2∞1
. Focusing now on the price formation process, we see that it results from

a combination of momentum, mean-reversion and cross-asset momentum. We illustrate this in
two extreme cases: when there is no cross-asset momentum and when cross-asset momentum
is strong.

• When there is no cross-asset momentum (i.e. H c
12 = H a

12 and H c
21 = H a

21) at the micro-
scopic scale a price move on Asset 2 has the same impact on the intensity of upward
and downward price moves of Asset 1. Thus the di�erence between the expected number
of upward and downward jumps does not change after a price move on Asset 2: the
expected microscopic price of Asset 1 is una�ected and price moves of Asset 2 generate
no trend on Asset 1. This results in macroscopic prices being uncorrelated (see Equation
(13)).

• On the other hand, when cross-asset momentum is strong (i.e. (H c
12 °H a

12)(H c
21 °H a

21) º
4∞1∞2, for example if H c

12°H a
12 = 2∞1

p
1°≤, H c

12°H a
12 = 2∞2

p
1°≤ for some small ≤> 0),
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3. Applications

at the microscopic scale, a price move on Asset 2 signiÆcantly increases the probability
of a future price move of Asset 1 in the same direction (and vice-versa). In this context
we have

¢+ I =
1

2∞1∞2≤

µ
∞2 ∞2

p
1°≤

∞1

p
1°≤ ∞1

∂
.

Using Equation (13) we can check that
E[P 1

t P 2
t ]

q
E[(P 1

t )2]E[(P 2
t )2]

!
≤!0

1 and prices evolve in

unison.

This example underlines that in our approach (thanks to our no-arbitrage constraint) micro-
scopic features transfer to macroscopic properties in an intuitive way.

3.3 Reproducing realistic correlation matrices of large number of assets using

microscopic properties

It is well-known that the correlation matrix of stocks has few large eigenvalues outside of a
"bulk" of eigenvalues attributable to noise (see for example [LCBP99]). The largest eigenvalue
is referred to as the market mode (because the associated eigenvector places a roughly equal
weight on each asset) and is much larger than other eigenvalues. Other signiÆcant eigenvalues
can be related to the presence of sectors: groups of companies with similar characteristics.

How can we provide microstructural foundations for this stylised fact? The large eigen-
value associated to the market mode implies that, in a Ærst approximation, stock prices move
together: a price increase on one asset is likely followed by a price increase on all other assets.
Translating this in our framework, an upward (resp. downward) jump on a given asset increases
the probability of an upward (resp. downward) jump on all other assets. We further expect
that an upward price move on an asset increases this probability much more on an asset from
the same sector than on an unrelated one.

The above remarks lead us to consider a model where:

• All stocks share some fundamental high-frequency properties by having similar self-
excitement parameters in the kernel.

• Stocks have a stronger inØuence on price changes of stocks within the same sector.

• Within the same sector, all stocks have the same microscopic parameters.

The technical details of our setting are presented in Appendix V.C.3 and we only provide here
essential elements to understand the framework. Let µ1, . . . ,µm > 0 be the baselines of each
asset. Using the same notations as before, take ∞ in [0,1], Æ in (1/2,1) and H c , H a > 0. We
consider R > 0 di�erent sectors, Sector r having mr stocks. For a pair of stocks which we dub
1,2 to make an analogy with the previous example, we have that:

• The self excitement parameters are equal: ∞1 = ∞2 = ∞ where ∞ is the same for all stocks.
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V. Microfounding multivariate price dynamics without order Øows

• If Stock 1 and Stock 2 do not belong to the same sector, H c
21 = H c

12 = H c , H a
21 = H a

12 = H a

where H c , H a are the same for all stocks.

• If Stock 1 and Stock 2 belong to the same sector r , H c
21 = H c

12 = H c +H c
r , H a

21 = H a
12 =

H a +H a
r where H c

r , H a
r are the same for all stocks belonging to sector r .

The asymptotic framework is built as in the previous example, with the details given in the
proof of Corollary 3 in Appendix V.C.3. We write ir := m0+m1+·· ·+mr°1 for 1 ∑ r ∑ R (with
convention m0 = 1) so that stocks from sector r are indexed between ir and ir+1 excluded and
deÆne the following vectors

w :=
1

p
m

(e1 +·· ·+em)

wr :=
1

p
mr

X

ir ∑i<ir+1

ei

µ :=
X

1∑i∑m

µ
i ei .

We consider an asymptotic framework where the number of assets will eventually grow
to inÆnity. As will become clear in the proof, the only non-trivial regime appears when
H c , H a , H c

r , H a
r =

m!1
O (m°1). Thus we assume that mH c ,mH a ,mH c

r ,mH a
r converge to

H̄ c , H̄ a , H̄ c
r , H̄ a

r as m tends to inÆnity. We also assume that the proportion of stocks in
a given sector relative to the total number of stocks does not vanish: for each 1 ∑ r ∑ R,
mr

m
!

m!1
¥r > 0. DeÆne the following constants which will appear in the price and volatility

processes: ∏+ := H̄ c + H̄ a ,∏+
r := H̄ c

r + H̄ c
r , ∏

° := H̄ c ° H̄ a ,∏°
r := H̄ c

r ° H̄ a
r . Applying Theorem 1

yields the following result.

Corollary 3. Consider any limit point P of P T . Under the above assumptions, it satisÆes:

Pt =
p

2ß"

Zt

0
diag(

p
Vs)dWs ,

where W is a Brownian motion, ß" := (2∞I °∏°v†v °
P

1∑r∑R ¥r∏
°
r vr

†vr + ")°1 with ≤ a de-

terministic m £m matrix such that Ω(≤) =
m!1

o(m°1) and V satisÆes the stochastic Volterra

equation

Vt =
Æ

°(Æ)°(1°Æ)

Zt

0
(t ° s)Æ°1(µ°V≤Vs)d s +

p
2Æ

°(Æ)°(1°Æ)

Zt

0
(t ° s)Æ°1diag(

p
Vs)d Zs ,

with Z a Brownian motion independent from W and V≤ :=
°
I °∏+v†v °

P
1∑r∑R ¥r∏

+
r vr

†vr +≤
¢°1

where " is a deterministic m £m matrix such that Ω(") =
m!1

o(m°1).

Under the previous corollary, writing / for equality up to a multiplicative constant, the
expected fundamental variance can be written using the cumulative Mittag-Le�er function

E[Vt ] / FÆ,V≤(t )µ.
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3. Applications

Since Ω(≤) =
m!1

o(m°1), we neglect it in further comments and use the approximation V≤ º V0.

Writing ª for the largest eigenvalue of V0 and neglecting other eigenvalues (which is reasonable
if ∏++

P
1∑r∑R ¥r∏

+
r º 1) and z for the associated eigenvector, using the deÆnition of the

Mittag-Le�er function (see DeÆnition 4 in Appendix V.B.2), we have

E[Vt ] / FÆ,ª(t )(†µz)z.

In the further approximation that ¥r∏
+
r is independent r , we have z / (1, · · · ,1) and

E[Pt
†Pt ] /ß"diag(E[Vt ])†

ß"

/ß"diag(z)†
ß"

/ß"
†
ß" /ß"

2.

Therefore the eigenvectors of E[Pt
†Pt ] are those of ß". As Ω(") =

m!1
o(m°1), we neglect it in

further comments and use the approximation ß" ºß0. When ∏°+
P

1∑r∑R ¥r∏
°
r º 2∞, ß0 has

one large eigenvalue followed by R °1 smaller eigenvalues and much smaller eigenvalues. This
is consistent with stylised facts of high-dimensional stock correlation matrices and we have
thus built a microscopic model to explain the macroscopic structure of correlation matrices.

The conditions ∏°+
P

1∑r∑R ¥r∏
°
r º 1 and ∏++

P
1∑r∑R ¥r∏

+
r º 1 correspond to the parameters

being close to the point where all directions are critical: when ∏°+
P

1∑r∑R ¥r∏
°
r º 2∞ or

∏°+
P

1∑r∑R ¥r∏
°
r º 1, the spectral radius of

R1
0 C is equal to one and we cannot split the

kernel into a critical and a non-critical component.

It would be interesting to study other implications of this model. In particular, we be-
lieve that encoding a negative price/volatility correlation into the microscopic parameters
could explain the so-called index leverage e�ect (see [RAB11] for a deÆnition and empirical
analysis of this stylised fact).
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V. Microfounding multivariate price dynamics without order Øows

V.A Proof of Theorem 1

We split the proof into four steps. Our approach is inspired by [EEFR18, JR15, JR16]. First, we
show that the sequence (X T ,Y T , Z T ) is C -tight. Second, we use tightness and representation
theorems to Ænd equations satisÆed by any limit point (X ,Y , Z ) of (X T ,Y T , Z T ). Third,
properties of the Mittag-Le�er function enable us to prove Equation (11). Fourth and Ænally,
we derive the equation satisÆed by any limit point P of P T .

Preliminary lemmas

We start with lemmas that will be useful in the proofs. Lemma A.1 from [EEFR18] yields

1

T Æ
∏T

tT =
µ

T
tT

T Æ
+

1

T Æ

ZtT

0
√T (tT ° s)µT

s d s +
1

T Æ

ZtT

0
√T (tT ° s)d M T

s . (15)

Thus to investigate the limit of
1

T Æ
∏T
·T we need to study

1

T Æ
√T (T ·), which we will do

through its Laplace transform. Given a L1(R+) function f , we write its Laplace transform
f̂ (t ) :=

R1
0 f (x)e°t x d x, for t ∏ 0 (and similarly for matrix-valued functions F = (Fi j ) where

each Fi j 2 L1(R+)). Remark that df §k = f̂ k , where §k is the convolution product iterated k

times. The following lemma holds.

Lemma 1. We have the following convergence for any t ∏ 0:

T °Æ ‡√T (T ·)(t ) !
T!1

O

0
BB@

∑
°(1°Æ)

Æ
tÆM +K

∏°1

0

(I °
R1

0 C )°1
R1

0 B

∑
°(1°Æ)

Æ
tÆM +K

∏°1

0

1
CCAO°1, (16)

where K and M are deÆned in Equation (5) and (6).

Proof. DeÆne 'T :=O°1¡̂T O. Then

√̂T (t ) =
X

k∏1

¡̂T,§k
=O(I ° '̂T )°1'̂T O°1.

We can use the shape of 'T and matrix block inversion to rewrite this expression. Doing so,
we Ænd

√̂T (t ) =O

√
(I ° ÂT (t ))

°1
ÂT (t ) 0

(I ° Ĉ T (t ))°1B̂ T (t )(I ° ÂT (t ))°1 ÂT (t )° (I ° Ĉ T (t ))°1B̂ T (t ) (I ° Ĉ T (t ))°1Ĉ T (t )

!
O°1.

To derive the limiting process, we use Equations (5) and (6). Using integration by parts and a
Tauberian theorem as in [EEFR18, JR16], we have

Z1

0
AT ° ÂT (t/T ) =

T!1

°(1°Æ)

Æ
tÆMT °Æ

+o(T °Æ)

I °
Z1

0
AT

=
T!1

K T °Æ
+o(T °Æ).

154



V.A. Proof of Theorem 1

Therefore

T (I ° ÂT (t/T )) = T (

Z1

0
AT ° ÂT (t/T ))+T (I °

Z1

0
AT )

=
T!1

∑
°(1°Æ)

Æ
tÆM +K

∏
T 1°Æ

+o(T 1°Æ).

Consequently

T Æ°1T (I ° ÂT (t/T )) =
T!1

°(1°Æ)

Æ
tÆM +K +o(1).

By Assumption 1 M is invertible and K M°1 has strictly positive eigenvalues. Thus M t +K =

(K M°1 + t I )M is invertible for any t ∏ 0. The Laplace transform of T °Æ√T (T ·) being
T 1°Æ b√T (·/T ), we have proved for any t ∏ 0,

·T °Æ√T (T ·)(t ) !
T!1

O

0
BB@

∑
°(1°Æ)

Æ
tÆM +K

∏°1

0

(I °
R1

0 C )°1
R1

0 B

∑
°(1°Æ)

Æ
tÆM +K

∏°1

0

1
CCAO°1.

We show in the technical appendix that the inverse Laplace transform of §(tÆI +§)°1, where
§ 2Mn(R) has positive eigenvalues, is a simple extension of the Mittag-Le�er density function
to matrices (see DeÆnition 4 in the appendix) denoted by f Æ,§. Thus we deÆne for any t 2 [0,1]

f (t ) :=O

0
BB@

K °1 f
Æ,

Æ

°(1°Æ)
K M°1

0

(I °
R1

0 C )°1
R1

0 BK °1 f
Æ,

Æ

°(1°Æ)
K M°1

0

1
CCAO°1. (17)

The following lemma shows the weak convergence of √T towards f .

Lemma 2. For any bounded measurable function g and 1 ∑ i , j ∑ n

Z

[0,1]
g (x)T °Æ√T

i j (T x)d x !
T!1

Z

[0,1]
g (x) fi j (x)d x.

Proof. First note that when
∞∞ fi j

∞∞
1
= 0 (which implies fi j = 0), using Equation (16) with t = 0

we have ∞∞∞T 1°Æ√T
i j

∞∞∞
1

!
T!1

∞∞ fi j

∞∞
1
= 0,

which implies, since 1°Æ∏ 0, ∞∞∞√T
i j

∞∞∞
1

!
T!1

0.

Therefore, as √T
i j
∏ 0, for any bounded measurable function g

ØØØ
Z

[0,1]
g (x)T °Æ√T

i j (T x)d x
ØØØ∑ c

Z

[0,1]
T °Æ√T

i j (T x)d x ∑ c
∞∞∞T 1°Æ√T

i j

∞∞∞
1

,
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and the result holds. Assume now that
∞∞ fi j

∞∞
1
> 0. It will be convenient for us to proceed with

random variables, so deÆne

ΩT
i j :=

T °Æ√T
i j

(T ·)
∞∞∞T 1°Æ√T

i j

∞∞∞
1

.

We can view ΩT
i j

as the density of a random variable taking values in [0,1], say S. Lemma 1
gives the convergence of the characteristic functions of S towards

Ω̂i j :=
f̂i j∞∞ fi j

∞∞
1

.

Since Ωi j is continuous (as √T
i j

is continuous), Levy’s continuity theorem guarantees that ΩT
i j

converges weakly towards Ωi j . Therefore for any bounded measurable function g

Z

[0,1]
g (x)ΩT

i j (x)d x !
T!1

Z

[0,1]
g (x)Ωi j (x)d x

Z

[0,1]
g (x)

T °Æ√T
i j

(T x)
∞∞∞T 1°Æ√T

i j

∞∞∞
1

d x !
T!1

Z

[0,1]
g (x)

fi j (x)∞∞ fi j

∞∞
1

d x.

Equation (16) implies
∞∞∞T 1°Æ√T

i j

∞∞∞
1

!
T!1

∞∞ fi j

∞∞
1
, so that together with the above we have

Z

[0,1]
g (x)T °Æ√T

i j (T x)d x !
T!1

Z

[0,1]
g (x) fi j (x)d x.

We introduce the cumulative functions

F T (t ) =

Zt

0
T °Æ√T (Ts)d s

F (t ) =

Zt

0
f (s)d s.

We have just shown in particular that F T converges pointwise towards F and therefore, by
Dini’s theorem, converges uniformly towards F .

V.A.1 Step 1: C-tightness of (X T ,Y T , Z T )

Recall the deÆnition of the rescaled processes:

X T
t :=

1

T 2Æ
N T

tT

Y T
t :=

1

T 2Æ

ZtT

0
∏sd s

Z T
t := T Æ(X T

t °Y T
t ) =

1

T Æ
M T

tT .
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As in [EEFR18] and [JR16] we show that the limiting processes of X T and Y T are the same and
that the limiting process of Z T is the quadratic variation of the limiting process of X T . We
have the following proposition:

Proposition 1 (C-tightness of (X T ,Y T , Z T )). The sequence (X T ,Y T , Z T ) is C-tight and if (X , Z )

is a possible limit point of (X T , Z T ), then Z is a continuous martingale with [Z , Z ] = diag(X ).

Furthermore, we have the convergence in probability

sup
t2[0,1]

∞∞Y T
t °X T

t

∞∞
2

P!
T!1

0.

Proof. The proof is esentially the same as in [EEFR18], adapting for our structure of Hawkes
processes. We have

∏T
t =µ

T
t +

Zt

0
√T (t ° s)µT

s d s +

Zt

0
√T (t ° s)d M T

s ,

and therefore

E[N T
T ] = E[

ZT

0
∏T

s d s]

=

ZT

0
µ

T
t d t +

ZT

0

Zt

0
√T (t ° s)µT

s d sd t ∑ cT 2Æ
∞∞µ

∞∞
1 ,

where we used the convergence of T 1°Æ
µ

T
T ·

(see Equation (7)) together with the weak conver-
gence of T °Æ√T (T ·) (see Lemma 2). It follows then that

E[X T
1 ] = E[Y T

1 ] ∑ c,

and since the processes are increasing, X T and Y T are tight. As the maximum jump size
of X T and Y T tends to 0, we have the C -tightness of (X T ,Y T ). Since N T is the quadratic
variation of M T , (M T,i )2 °N T,i is an L2 martingale starting at 0 and Doob’s inequality yields

X

1∑i∑n

E[ sup
t2[0,1]

(X T,i
t °Y T,i

t )2] ∑ 4
X

1∑i∑n

E[(X T,i
1 °Y T,i

1 )2]

∑ 4T °4Æ
X

1∑i∑n

E[(M T,i
T

)2]

∑ 4T °4Æ
X

1∑i∑n

E[N T,i
T

]

∑ cT °2Æ.

Using the same approach as in [EEFR18] we conclude that Z is a continuous martingale and
[Z , Z ] is the limit of [Z T , Z T ].
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V.A.2 Step 2: Rewriting of limit points of (X T ,Y T , Z T )

By Proposition 1, for any limit point (X ,Y ) of (X T ,Y T ), we have X = Y almost surely. We

use Y T to derive an equation for Y = X . As Y T =
1

T 2Æ

RtT
0 ∏T

s d s, we Ærst study ∏T
sT . Using

Equation (15) we get

Zt

0
∏T

s d s =

Zt

0
µ

T
s d s +

Zt

0

Zu

0
√T (s °u)µT

u dud s +

Zt

0
√T (t ° s)M T

s d s

=

Zt

0
µ

T
s d s +

Zt

0
√T (t ° s)

Zs

0
µ

T
u dud s +

Zt

0
√T (t ° s)M T

s d s.

A change variables of leads to

ZtT

0
∏T

s d s =

ZtT

0
µ

T
s d s +

ZtT

0
√T (tT ° s)

Zs

0
µ

T
u dud s +

ZtT

0
√T (tT ° s)M T

s d s

=

ZtT

0
µ

T
s d s +T

Zt

0
√T (tT ° sT )

ZsT

0
µ

T
u dud s +

Zt

0
√T (tT ° sT )M T

sT T d s

= T

Zt

0
µ

T
sT d s +T

Zt

0
√T (T (t ° s))

ZsT

0
µ

T
u dud s +T

Zt

0
√T (T (t ° s))M T

sT d s.

Therefore

T 2ÆY T
t = T

Zt

0
µ

T
sT d s +T

Zt

0
√T (T (t ° s))

ZsT

0
µ

T
u dud s +T

Zt

0
√T (T (t ° s))M T

sT d s (18)

=: T 2Æ(Y T,1
t +Y T,2

t +Y T,3
t ), (19)

with obvious notations. Thus, to obtain our limit we use the convergence properties of F T

which we derived previously. We have the following proposition.

Proposition 2. Consider (X , Z ) a limit point of (X T , Z T ). Then,

X t =

Zt

0
F (t ° s)µsd s +

Zt

0
F (t ° s)d Zs .

Proof. Let (X ,Y , Z ) be a limit point of (X T ,Y T , Z T ). First, since T 1°Æ
µ

T
tT !

T!1
µt (see Equation

(7)), Y T,1
t converges to 0 as T tends to inÆnity. Moving on to Y T,2, by integration by parts we

have

Y T,2
t =

Zt

0
T 1°Æ√T (T (t ° s))T °Æ

ZsT

0
µ

T
u dud s

=

∑
F T (t ° s)T °Æ

ZsT

0
µ

T
udu

∏t

0

+

Zt

0
F T (t ° s)T 1°Æ

µ
T

sT d s

=

Zt

0
F T (t ° s)T 1°Æ

µ
T

sT d s.
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Using Equation (7) again together with the uniform convergence of F T (see Lemma 2) we have
the convergence

Y T,2
t !

T!1

Zt

0
F (t ° s)µsd s.

Finally, Y T,3
t can be written as

Y T,3
t = T 1°2Æ

Zt

0
√T (T (t ° s))M T

sT d s =

Zt

0
F T (t ° s)d Z T

s

=

Zt

0
F (t ° s)d Zs +

Zt

0
F (t ° s)(d Z T

s °d Zs)+

Zt

0
(F T (t ° s)°F (t ° s))d Z T

s .

The Skorokhod representation theorem applied to (Z T , Z ) yields the existence of copies in
law (Z̃ T , Z̃ ), Z̃ T converging almost surely to Z̃ . We proceed with (Z̃ T , Z̃ ) and keep previous
notations. The stochastic Fubini theorem [Ver12] gives, almost surely

Zt

0
F (t ° s)(d Z T

s °d Zs) =

Zt

0
f (s)(Z T

t°s °Zt°s)d s.

From the dominated convergence theorem we obtain the almost sure convergence

Zt

0
f (s)(Z T

t°s °Zt°s)d s !
T!1

0.

Furthermore, since [Z T , Z T ] = diag(X T ) we have

X

1∑i∑n

E

"µZt

0
(F T (t ° s)°F (t ° s))d Z T

s

∂2

i

#
∑

X

1∑i , j∑n

Zt

0
(F T

i j (t ° s)°Fi j (t ° s))2T 1°ÆE[∏
T, j

sT
]d s.

Using Equation (15) together with Lemma 1 we can bound E[∏
T, j

sT
] independently of T and

X

1∑i∑n

E

"µZt

0
(F T (t ° s)°F (t ° s))d Z T

s

∂2

i

#
∑ c

X

1∑i , j∑n

Zt

0
(F T

i j (t ° s)°Fi j (t ° s))2d s.

The right hand side converges to 0 by the dominated convergence theorem together with the
uniform convergence of F T towards F (see Lemma 2). From Proposition 1 we know that Y = X

almost surely. Putting everything together, almost surely,

X t =

Zt

0
F (t ° s)µsd s +

Zt

0
F (t ° s)d Zs .

This is valid for any limit point (X , Z ) of (X T , Z T ), which concludes the proof.

The previous proposition gives suitable martingale properties of limit points of Z T to apply
the martingale representation theorem, which is the topic of the following proposition.

159



V. Microfounding multivariate price dynamics without order Øows

Proposition 3. Let (X , Z ) be a limit point of (X T , Z T ). There exists, up to an extension of the

original probability space, an n-dimensional Brownian motion B and a non-negative process V such

that

X t =

Zt

0
Vsd s

Zt =

Zt

0
diag(

p
Vs)dBs

Vt =

Zt

0
f (t ° s)µsd s +

Zt

0
f (t ° s)diag(

p
Vs)dBs .

Proof. This proof relies on the martingale representation theorem applied to Z . Consider
(X , Z ) a limit point of (X T , Z T ). Following the proof of Theorem 3.2 in [JR16], X can be
written as the integral of a process V

X t =

Zt

0
Vsd s,

with V satisfying the equation

Vt =

Zt

0
f (t ° s)µsd s +

Zt

0
f (t ° s)d Zs .

Therefore, as [Z , Z ]t = diag(X t ) = diag(
Rt

0 Vsd s) and Z is a continuous martingale, by the
martingale representation theorem (see for example Theorem 3.9 from [RY13]), there exists
(up to an enlargement of the probability space) a multivariate Brownian motion B and a
predictable square integrable process H such that

Zt =

Zt

0
HsdBs .

Furthermore, note that as V is a non-negative process as X is a non-decreasing process and
we have

Zt =

Zt

0
diag(

p
Vs)diag(

p
Vs)°1HsdBs .

A simple computation shows that, since [Z , Z ]t =
Rt

0 Hs
†Hsd s = X t =

Rt
0 Vsd s, the process

B̃t :=
Rt

0 diag(
p

Vs)°1HsdBs is a Brownian motion. Finally,

Vt =

Zt

0
f (t ° s)µsd s +

Zt

0
f (t ° s)diag(

p
Vs)dB̃s .

A straightforward application of Lemma 4.4 and Lemma 4.5 in [JR16] yields the following
lemma.

Lemma 3. Consider a (weak) non-negative solution V of the stochastic Volterra equation

Vt =

Zt

0
f (t ° s)µsd s +

Zt

0
f (t ° s)diag(

p
Vs)dBs ,

where B is a Brownian motion. Then every component of V has pathwise Hölder regularity Æ°1/2°≤
for any ≤> 0.
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V.A.3 Step 3: proof of Equation (11)

Properties of the Mittag-Le�er function (as in [EEFR18]) enable us to rewrite the previous
stochastic di�erential equation using power-law kernels, which is the subject of the next
proposition. Let £1 := (O11+O12(I°

R1
0 C )°1

R1
0 B)K °1, £2 := (O21+O22(I°

R1
0 C )°1

R1
0 B)K °1

and § :=
Æ

°(1°Æ)
K M°1.

Proposition 4. Given an m-dimensional Brownian motion B , a non-negative process V is solution

of the following stochastic di�erential equation

Vt =

Zt

0
f (t ° s)µsd s +

Zt

0
f (t ° s)diag(

p
Vs)dBs ,

if and only if there exists a process Ṽ of Hölder regularity Æ° 1/2° ≤ for any ≤ > 0 such that

£
1Ṽt = (V 1, · · · ,V nc ) and £

2Ṽt = (V nc+1, · · · ,V 2m) are non-negative processes and Ṽ is solution of

the following stochastic Volterra equation

Ṽt =
1

°(Æ)
§

Zt

0
(t ° s)Æ°1(O(°1)

11 µ
1
+O(°1)

12 µ
2 ° Ṽs)d s

+
1

°(Æ)
§

Zt

0
(t ° s)Æ°1O(°1)

11 diag(

q
£1Ṽs)dW 1

s +
1

°(Æ)
§

Zt

0
(t ° s)Æ°1O(°1)

12 diag(

q
£2Ṽs)dW 2

s ,

where W 1 := (B 1, · · · ,B nc ) and W 2 := (B nc+1, · · · ,B 2m).

Proof. We begin by showing the Ærst implication. Starting from Proposition 3 we have

Vt =

Zt

0
f (t ° s)µsd s +

Zt

0
f (t ° s)diag(

p
Vs)dBs .

Developing from the deÆnition of f in Equation (17), for any t 2 [0,1], f can be written

f (t ) =

µ
(O11 +O12(I °

R1
0 C )°1

R1
0 B)K °1 f Æ,§(t ) 0

(O21 +O22(I °
R1

0 C )°1
R1

0 B)K °1 f Æ,§(t ) 0

∂√
O(°1)

11 O(°1)
12

O(°1)
21 O(°1)

22

!
.

DeÆning V 1 := (V 1, · · · ,V nc ) and V 2 := (V nc+1, · · · ,V 2m), we have

V 1
t =£

1

Zt

0
f Æ,§(t ° s)O(°1)

11 µ
1
s d s +£

1

Zt

0
f Æ,§(t ° s)O(°1)

12 µ
2
s d s

+£
1

Zt

0
f Æ,§(t ° s)O(°1)

11 diag(

q
V 1

s )dW 1
s +£

1

Zt

0
f Æ,§(t ° s)O(°1)

12 diag(

q
V 2

s )dW 2
s .

If £1 were non-singular, we could express V 1 with power-law kernels thanks to the same
approach as in [EEFR18]. In general we deÆne

Ṽt :=

Zt

0
f Æ,§(t ° s)(O(°1)

11 µ
1
s +O(°1)

12 µ
2
s )d s

+

Zt

0
f Æ,§(t ° s)O(°1)

11 diag(

q
V 1

s )dW 1
s +

Zt

0
f Æ,§(t ° s)O(°1)

12 diag(

q
V 2

s )dW 2
s .
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V. Microfounding multivariate price dynamics without order Øows

From the same arguments as in Lemma 3, Hölder regularity of V carries to Ṽ , and the
components of Ṽ are of Hölder regularity Æ°1/2° ≤ for any ≤> 0, hence Lemma 3 shows
K := I 1°ÆṼ is well-deÆned, where I 1°Æ is the fractional integration operator of order 1°Æ

(see DeÆnition 1 in Appendix V.B.2). Note that for any t in [0,1], using Lemma 4 of Appendix
V.B.2, we have

Kt =

Zt

0
§(I °FÆ,§(t ° s))(O(°1)

11 µ
1
s +O(°1)

12 µ
2
s )d s

+

Zt

0
§(I °FÆ,§(t ° s))O(°1)

11 diag(

q
V 1

s )dW 1
s +

Zt

0
§(I °FÆ,§(t ° s))O(°1)

12 diag(

q
V 2

s )dW 2
s

=§

Zt

0
(O(°1)

11 µ
1
s +O(°1)

12 µ
2
s )d s +

Zt

0
§O11diag(

q
V 1

s )dW 1
s +

Zt

0
§O(°1)

12 diag(

q
V 2

s )dW 2
s

°§

Zt

0

∑
FÆ,§(t ° s)O(°1)

11 µ
1
s +

Zs

0
f Æ,§(s °u)O(°1)

11 diag(

q
V 1

u )dW 1
u

∏
d s

°§

Zt

0

∑
FÆ,§(t ° s)O(°1)

12 µ
2
s +

Zs

0
f Æ,§(s °u)O(°1)

12 diag(

q
V 2

u )dW 2
u

∏
d s.

The last two terms can be rewritten using the deÆnition of Ṽ , so that

Kt =§

Zt

0
(O(°1)

11 µ
1
s +O(°1)

12 µ
2
s ° Ṽs)d s +§

Zt

0
O(°1)

11 diag(

q
£1Ṽs)dW 1

s +§

Zt

0
O(°1)

12 diag(

q
£2Ṽs)dW 2

s .

Thanks to the Hölder regularity of Ṽ , we can now apply the fractional di�erentiation operator
of order 1°Æ (see DeÆnition 1 in Appendix V.B.2) together with the stochastic Fubini Theorem
to deduce

Ṽt =
1

°(Æ)
§

Zt

0
(t ° s)Æ°1(O(°1)

11 µ
1
s +O(°1)

12 µ
2
s ° Ṽs)d s

+
1

°(Æ)
§

Zt

0
(t ° s)Æ°1O(°1)

11 diag(

q
£1Ṽs)dW 1

s +
1

°(Æ)
§

Zt

0
(t ° s)Æ°1O(°1)

12 diag(

q
£2Ṽs)dW 2

s .

This concludes the proof of the Ærst implication. We now show the second implication. Suppose
there exists Ṽ of Hölder regularity Æ°1/2°≤ for any ≤> 0 such that £1Ṽ and £

2Ṽ are positive,
solution of the following stochastic Volterra equation:

Ṽt =
1

°(Æ)
§

Zt

0
(t ° s)Æ°1(O(°1)

11 µ
1
s +O(°1)

12 µ
2
s ° Ṽs)d s

+
1

°(Æ)
§

Zt

0
(t ° s)Æ°1O(°1)

11 diag(

q
£1Ṽs)dW 1

s +
1

°(Æ)
§

Zt

0
(t ° s)Æ°1O(°1)

12 diag(

q
£2Ṽs)dW 2

s .

Let us write for this proof µ :=§O(°1)
11 µ

1+§O(°1)
12 µ

2,§1 :=§O(°1)
11 ,§2 :=§O(°1)

12 so that, for any
t in [0,1],

Ṽt =
1

°(Æ)

Zt

0
(t ° s)Æ°1(µs °§Ṽs)d s

+
1

°(Æ)

Zt

0
(t ° s)Æ°1

§1diag(

q
£1Ṽs)dW 1

s +
1

°(Æ)

Zt

0
(t ° s)Æ°1

§2diag(

q
£2Ṽs)dW 2

s .
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Remark that the above can be written

Ṽt = IÆ(µ°§Ṽ )t + IÆ
B 1 (§1diag(

p
£1Ṽ ))t + IÆ

B 2 (§2diag(
p
£2Ṽ ))t ,

where IÆ
B
is the fractional integration operator with respect to B (see DeÆnition 2 in Appendix

V.B.2). Iterating the application of IÆ we Ænd that, for any N ∏ 1, Ṽ satisÆes

Ṽ =
X

1∑k∑N

§
k°1(°1)k°1I (k°1)Æ[IÆµ+ IÆ

B 1 (§1diag(
p

£1Ṽ ))+ IÆ
B 2 (§2diag(

p
£2Ṽ ))]+§

N (°1)N I (N+1)ÆṼ .

Now, note that µ, diag(
p

£1Ṽ ), diag(
p

£2Ṽ ) and Ṽ are square-integrable processes and
Lemma 8 in Appendix V.B.2 shows that the sum converges almost surely to the series while
§

N (°1)N I (N+1)ÆṼ converges almost surely to zero as N tends to inÆnity. Thus we have

Ṽ =
X

k∏0

§
k (°1)k I kÆ[IÆµ+ IÆ

B 1 (§1diag(
p
£1Ṽ ))+ IÆ

B 2 (§2diag(
p

£2Ṽ ))]

=
X

k∏0

§
k (°1)k I kÆIÆµ+

X

k∏0

§
k (°1)k I kÆIÆ

B 1 (§1diag(
p
£1Ṽ ))+ IÆ

B 2 (§2diag(
p
£2Ṽ ))]

=§
°1

X

k∏0

§
k+1(°1)k I (k+1)Æµ+

X

k∏0

§
k (°1)k I kÆIÆ

B 1 (§1diag(
p
£1Ṽ ))+ IÆ

B 2 (§2diag(
p

£2Ṽ ))].

Lemmas 5 and 7 shown in Appendix V.B.2 enable us to rewrite the above using the matrix
Mittag-Le�er function. This yields, for any t in [0,1] and almost surely,

Ṽt =§
°1

Zt

0
f Æ,§(t ° s)µsd s +§

°1

Zt

0
f Æ,§(t ° s)§1diag(

q
£1Ṽs)dW 1

s +§
°1

Zt

0
f Æ,§(t ° s)§2diag(

q
£2Ṽs)dW 2

s .

Replacing µ,§1,§2 by their expressions, almost surely and for any t in [0,1],

Ṽt =

Zt

0
f Æ,§(t ° s)(O(°1)

11 µ
1
s +§O(°1)

12 µ
2
s )d s

+

Zt

0
f Æ,§(t ° s)O(°1)

11 diag(

q
£1Ṽs)dBs

1
+

Zt

0
f Æ,§(t ° s)O(°1)

12 diag(

q
£2Ṽs)dBs

2.

This concludes the second implication and the proof.

V.A.4 Step 4: Equation satisÆed by the limiting price process

The previous results on the convergence of the intensity process enable us to now turn to the
question of the limiting price dynamics. Recall that the sequence of rescaled price processes
P T is deÆned as

P T := †Q X T ,

where Q =
°
e1 °e2 | · · · | e2m°1 °e2m

¢
. We have the following result.

Proposition 5. Let (X , Z ) be a limit point of (X T , Z T ) and P = †QX . Then

Pt = (I +¢)†Q(Zt +

Zt

0
µsd s).

where ¢= (
R1

0 ±T
i j

)1∑i , j∑m .
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Proof. Let (X , Z ) be a limit point from (X T , Z T ). For any 1 ∑ i ∑ m we can compute the
di�erence between upward and downard jumps on Asset i

vi ·N T
t = vi ·M T

t + vi ·

Zt

0
∏sd s,

with the following expression for the integrated intensity:

ZtT

0
∏T

sd s = T

Zt

0
µ

T
sT d s +T

Zt

0

ZT (t°s)

0
√T (u)duµT

Tsd s +
∞∞√T

∞∞
1M T

tT °
ZtT

0

Z1

tT°s
√T (u)dud M T

s .

Thus the microscopic price for the Asset i satisÆes

T °Ævi ·N T
tT = T 1°Æ

Zt

0
vi ·µ

T
sT d s +T 1°Æ†∞∞√T

∞∞
1vi ·

Zt

0
µ

T
Tsd s + vi ·Z T

t +
†∞∞√T

∞∞
1vi ·Z T

t

°T °Æ
Zt

0

Z1

T (t°s)

†
√T (u)vi ·µ

T
Tsdud s °T °Æ

ZtT

0

Z1

tT°s
√T (u)dud M T

s

=
X

1∑k∑m

(1i k +

Z1

0
±T

i k ), vk ·Z T
t +

X

1∑k∑m

(1i k +

Z1

0
±T

i k )T 1°Æ
Zt

0
vk ·µ

T
sT d s

°
Zt

0

Z1

tT°s

†
√T (u)vi du ·d Z T

s °T °Æ
Zt

0

Z1

T (t°s)

†
√T (u)vi ·µ

T
Tsdud s.

It is straightforward to show that the last two terms converge to zero and thus, any limit point
P of P T = †QX T is such that

Pt = (I +¢)†Q(Zt +

Zt

0
µsd s).

Replacing Z by the expression obtained in Proposition 3 concludes the proof of Theorem 1
since

Pt = (I +¢)†Q
°Zt

0
diag(

p
Vs)dBs +

Zt

0
µsd s

¢
.

V.B Technical results

V.B.1 Independence of Equation (11) from chosen basis

We consider two representations which satisfy Assumption 1. Let P, P̃ be invertible matrices,
0 ∑ nc ,nc

0 ∑ n and AT 2 F (Mnc
(R)), C T 2 F (Mn°nc

(R)), B T 2 F (Mn°nc ,nc
(R)) and ÃT 2

F (Mn
c
0 (R)), C̃ T 2F (Mn°n

c
0 (R)), B̃ T 2F (Mn°n

c
0 ,n

c
0 (R)) such that

¡T
= P

µ
AT 0

B T C T

∂
P°1

= P̃

µ
ÃT 0

B̃ T C̃ T

∂
P̃°1.

We write A for the limit of AT (and similarly for B T ,C T , etc.). First, remark that we must
have nc = nc

0 . Indeed, since Ω(
R1

0 C ) < 1 and Ω(
R1

0 C̃ ) < 1, 1 is neither an eigenvalue of
R1

0 C
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nor of
R1

0 C̃ . Yet, since A = I and Ã = I , 1 is an eigenvalue of ¡ with multiplicity nc and nc
0 .

Therefore nc = nc
0 .

We have, writing L = P°1P̃ ,

µ
A 0

B C

∂
= L

µ
Ã 0

B̃ C̃

∂
L°1.

Since A = Ã = I because of Equation (5), developing and using the assumption that I °C is
invertible, we get

L12 = 0

(I °C )L21 = BL11 °L22B̃

C L22 = L22C̃ .

Since LL°1 = I , L11 = I , L22 = I , L21 =°L(°1)
21 , we deduce

L11 = I , L22 = I , L12 = 0, (I °C )L21 = B ° B̃ , C = C̃ .

As L = P°1P̃ , we have

P°1
=

µ
I 0

(I °C )°1(B ° B̃) I

∂
P̃°1

=

√
P̃ (°1)

11 P̃ (°1)
12

(I °C )°1(B ° B̃)P̃ (°1)
11 + P̃ (°1)

21 (I °C )°1(B ° B̃)P̃ (°1)
12 + P̃ (°1)

22

!
.

Developing P̃ = PL together with the above, we Ænd

P̃ (°1)
11 = P (°1)

11 , P̃ (°1)
12 = P (°1)

12 , P̃12 = P12, P̃22 = P22

P̃11 = P11 +P12(I °C )°1(B ° B̃)

P̃21 = P21 +P22(I °C )°1(B ° B̃).

Thus

P̃ (°1)
11 = P (°1)

11 , P̃ (°1)
12 = P (°1)

12

P̃11 + P̃12(I °C )°1B̃ = P11 +P12(I °C )°1B

P̃21 + P̃22(I °C )°1B̃ = P21 +P22(I °C )°1B.

Therefore regardless of the chosen basis, Equation (11) is the same, which concludes the proof.

V.B.2 Fractional operators

This section is a brief reminder on fractional operators which are used in proofs. We also
introduce the matrix extended Mittag-Le�er function.
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V. Microfounding multivariate price dynamics without order Øows

DeÆnition 1 (Fractional di�erentiation and integration operators). For Æ 2 (0,1), the fractional

di�erentiation (resp. integration) operator denoted by DÆ is deÆned as

DÆ f (t ) :=
1

°(1°Æ)

d

d t

Zt

0
(t ° s)°Æ f (s)d s,

where f is a measurable, Hölder continuous function of order strictly greater than Æ. The fractional

integration operator denoted by IÆ is deÆned as

IÆ f (t ) :=
1

°(Æ)

Zt

0
(t ° s)Æ°1 f (s)d s.

where f is a measurable function.

It will be convenient for us to deÆne fractional integration with respect to a Brownian motion.

DeÆnition 2 (Fractional integration operator with respect to a Brownian motion). Given a
Brownian motion B and Æ 2 (1/2,1), the fractional integration operator with respect to B , denoted

by IÆ
B
, is deÆned as

IÆB f (t ) =
1

°(Æ)

Zt

0
(t ° s)1°Æ f (s)dBs .

for f a measurable, square integrable stochastic process.

Remark 2. The fractional integration of a matrix-valued stochastic process f with respect to a

multivariate Brownian motion B is:

IÆB f (t ) =
1

°(Æ)

Zt

0
(t ° s)1°Æ f (s)dBs .

We now extend the Mittag-Le�er function to matrices (for a theory of matrix-valued functions,
see for example [Hig08]). We have the following deÆnition.

DeÆnition 3 (Matrix-extended Mittag-Le�er function). Let Æ,Ø 2C such that Re(Æ),Re(Ø) > 0,

§ 2Mn(R). Then the matrix Mittag-Le�er function is deÆned as

EÆ,Ø(§) :=
X

n∏0

§
n

°(Æn +Ø)
.

We also extend the Mittag-Le�er density function for matrices.

DeÆnition 4 (Mittag-Le�er density for matrices). Let Æ 2C such that Re(Æ) > 0, § 2Mn(R).

Then, the matrix Mittag-Le�er density function f Æ,§ is deÆned as

f Æ,§(t ) :=§tÆ°1EÆ,Æ(°§tÆ)

We write FÆ,§ for the cumulative matrix Mittag-Le�er density function

FÆ,§(t ) :=

Zt

0
f Æ,§(s)d s
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Using DeÆnition 3, it is easy to show the following lemma.

Lemma 4. Let Æ 2C such that Re(Æ) > 0, § 2Mn(R). Then,

I 1°Æ f Æ,§
=§(I °FÆ,§).

Furthermore, if Æ 2 (1/2,1)
Åf Æ,§(z) =§(I zÆ

+§)°1.

We need another important property relating Mittag-Le�er functions with fractional integra-
tion operators.

Lemma 5. Let Æ> 0 and § 2Mm(R). Then

I 1 f Æ,§
=

X
n∏1

(°1)n°1
§

n I nÆ(1)

Proof. Using Lemma 4 and repeated applications of IÆ, for all N ∏ 1 we have

I f Æ,§
=

X

1∑n∑N

(°1)n°1
§

n I nÆ(1)+ (°1)N°1
§

N I NÆI f Æ,§.

Therefore, if we show that
(°1)N°1

§
N I NÆI f Æ,§ !

N!1
0,

the result will follow. To prove this we make use of the series expansion of I NÆ f Æ,§ to deduce
bounds which will converge to zero. Writing C a constant independent of t and N which may

change from line to line, NÆ = b
1

Æ
c and k·kop for the operator norm, we have

∞∞§N f Æ,§(t )
∞∞
op =

∞∞∞∞§N+1
X

n∏0

(°1)n t (n+1)Æ°1

°((n +1)Æ)

∞∞∞∞
op

∑

∞∞∞∞∞§
N+1

X

0∑n∑NÆ

(°1)n t (n+1)Æ°1

°((n +1)Æ)
+§

N+1C

∞∞∞∞∞
op

.

Therefore, when applying the fractional integration operator of order NÆ we have, writing
gn : t 7! t (n+1)Æ°1

I NÆ
∞∞§N f Æ,§(t )

∞∞
op ∑

∞∞∞∞∞§
N+1I NÆ(

X

0∑n∑NÆ

(°1)n gn

°((n +1)Æ)
)+§

N+1I NÆ(C )

∞∞∞∞∞
op

∑
X

0∑n∑NÆ

1

°((n +1)Æ)

∞∞§N+1I NÆ(gn)
∞∞
op+

∞∞§N+1I NÆ(C )
∞∞
op .

An explicit computation of I NÆ(gn) shows the convergence to zero of the right hand side as N

tends to inÆnity, which concludes the proof.

Finally, we need to combine fractional integration IÆ with IÆ
B
. We have the following lemma.
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V. Microfounding multivariate price dynamics without order Øows

Lemma 6. Let m ∏ 1, B an m-dimensional Brownian motion, X a m£m matrix valued adapted

square-integrable stochastic process and Æ,Ø> 0. Then we have:

IÆI
Ø

B
(X ) = I

Æ+Ø

B
(X ).

Proof. The proof is a straightforward application of the deÆnition of the operators together
with the stochastic Fubini theorem.

The next lemma is useful to transform stochastic convolutions of stochastic processes with the
Mittag-Le�er density function into series of repeated applications of IÆ

B
.

Lemma 7. Let m ∏ 1, B an m-dimensional Brownian motion, X a m £m matrix valued adapted

and square-integrable stochastic process, Æ > 0 and § 2 Mm(R). Then, for all t ∏ 0 and almost

surely Zt

0
f Æ,§(t ° s)XsdBs =

X
n∏1

(°1)n°1
§

n I nÆ
B (X ),

where the series converges almost surely.

Proof. Using Lemma 5, we can write the integral using a series of fractional integration
operators and apply the stochastic Fubini theorem (as X is square-integrable) to obtain

Zt

0
f Æ,§(t ° s)XsdBs =

Zt

0

X
n∏1

(°1)n°1
§

n I nÆ°1(1)t°s XsdBs

=
X

n∏1

Zt

0
(°1)n°1

§
n I nÆ°1(1)t°s XsdBs

=
X

n∏1

(°1)n°1
§

n

Zt

0
I nÆ°1(1)t°s XsdBs

=
X

n∏1

(°1)n°1

°(nÆ°1)
§

n

Zt

0

Zt°s

0
(t ° s °ø)nÆ°2døXsdBs .

After a change of variables and using the stochastic Fubini theorem (see for example [Ver12]),
we deduce the simpler expression

Zt

0
f Æ,§(t ° s)XsdBs =

X
n∏1

(°1)n°1

°(nÆ°1)
§

n

Zt

0
(t °ø)nÆ°2

Zø

0
XsdBsdø.

Integrating by parts, we Ænally obtain the result:

Zt

0
f Æ,§(t ° s)XsdBs =

X
n∏1

(°1)n°1

°(nÆ°1)(nÆ°1)
§

n

Zt

0
(t °ø)nÆ°1XødBø,

=
X

n∏1

(°1)n°1

°(nÆ)
§

n

Zt

0
(t °ø)nÆ°1XødBø,

=
X

n∏1

(°1)n°1
§

n I nÆ
B (X ).
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The last lemma gives convergence for terms of a series of repeated iterations of IÆ.

Lemma 8. Let Æ> 0, § 2Mm(R), B an m-dimensional Brownian motion and X a m-dimensional

vector valued square-integrable stochastic process. Then, almost surely and for all t 2 [0,1]

(°1)N°1
§

N I NÆ(X )t !
N!1

0

X

n∏N

(°1)n°1
§

n I nÆ
B (diag(X ))t !

N!1
0.

Proof. Let N§ > NÆ := b
1

Æ
c. Since X is square-integrable, we have

E

h∞∞∞
X

N>N§

§
N I (N+1)Æ

B
(diag(X ))t

∞∞∞
2i

∑
X

N1,N2>N§

E[
†
(§N1 I

(N1+1)Æ
B

(diag(X ))t )(§N2 I
(N2+1)Æ
B

(diag(X ))t )].

Using the Cauchy-Schwartz inequality and writing k·kop for the operator norm associated to
the Euclidian norm, we Ænd

E

h∞∞∞
X

N>N§

§
N I (N+1)Æ

B
(diag(X ))t

∞∞∞
2i

∑
X

N1,N2>N§

k§kN1+N2
op

X

1∑k,l∑m

E[I
(N1+1)Æ

B k (X k )t I
(N2+1)Æ

B l (X l )t ]

∑
X

N1,N2>N§

k§kN1+N2
op

1

°((N1 +1)Æ)°((N2 +1)Æ)

X

1∑i∑m

Zt

0
(t ° s)(N1+N2)Æ°2E[(X i

s )2]d s

∑ c
X

N1,N2>N§

k§kN1+N2
op

°((N1 +1)Æ)°((N2 +1)Æ)

∑ c
≥ X

N>N§

k§kN
op

°((N +1)Æ)

¥2
.

Thus by comparison of functions (for example by application of Stirling’s formula), for all ≤> 0,
X

N>NÆ

P

≥∞∞∞
X

N>N§

§
N I (N+1)Æ

B
(diag(X ))t

∞∞∞> ≤∑
1

≤2

X

N§∏NÆ

E

h∞∞∞
X

N>N§

§
N I (N+1)Æ

B
(diag(X ))t

∞∞∞
2i

<1.

The Borel-Cantelli lemma yields the almost sure convergence to zero of §N I (N+1)Æ
B

(diag(X )) as
N !1. The same approach yields the almost sure convergence to zero of (°1)N°1

§
N I NÆ(X )

as N !1.

V.C Proof of Corollaries

V.C.1 Proof of Corollary 1

Take µ1,µ2 > 0, Æ 2 (1/2,1),∑ 2 [0,1], H b
21, H s

21, H b
12, H s

12 2 [0,1] such that (here
p
· is the princi-

pal square root, so that if x < 0,
p

x = i
p
°x):

0 ∑ (H b
12 +H s

12)(H b
21 +H s

21) < 1

0 ∑| ∑°
q

(H b
12 °H s

12)(H b
21 °H s

21) |< 1

0 ∑| ∑+

q
(H b

12 °H s
12)(H b

21 °H s
21) |< 1.
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V. Microfounding multivariate price dynamics without order Øows

DeÆne now the following functions, for t ∏ 0, which will appear in the structure of the kernel:

¡T
1 (t ) :=Æ(1+∑/2)1t∏1t°(Æ+1) ¡b,T

3 (t ) =ÆT °ÆH b
211t∏1t°(Æ+1)

¡T
2 (t ) :=Æ(1+∑/2)1t∏1t°(Æ+1) ¡s,T

3 (t ) =ÆT °ÆH s
211t∏1t°(Æ+1)

∏T (t ) :=Æ(∑°∑T °Æ)1t∏1t°(Æ+1) ¡b,T
4 (t ) :=ÆT °ÆH b

121t∏1t°(Æ+1)

∏̃T (t ) :=Æ(∑°∑T °Æ)1t∏1t°(Æ+1) ¡s,T
4 (t ) =ÆT °ÆH s

121t∏1t°(Æ+1).

The sequence of baselines and kernels are chosen as:

µ
T
= T Æ°1

0
BBB@

µ
1

µ
1

µ
2

µ
2

1
CCCA , ¡T

=

0
BBB@

¡T
1 ¡T

1 °∏T ¡T,b
3 ¡T,s

3

¡T
2 °∏T ¡T

2 ¡T,s
3 ¡T,b

3

¡T,b
4 ¡T,s

4 ¡T
1 ¡T

1 ° ∏̃T

¡T,s
4 ¡T,b

4 ¡T
2 ° ∏̃T ¡T

2

1
CCCA .

The above sequence naturally satisÆes the di�erent assumptions outlined in Section 1. Indeed,
using the following change of basis

O =

0
BBB@

1 0 1 0

1 0 °1 0

0 1 0 0

0 1 0 °1

1
CCCA ,

we have, with notations from Section 1,

A =

µ
¡1 +¡2 °∏ ¡b

3 +¡s
3

¡b
4 +¡s

4 ¡1 +¡2 ° ∏̃

∂

B = (¡1 °¡2)I

C =

µ
∏ ¡b

3 °¡s
3

¡b
4 °¡s

4 ∏̃

∂

M =ÆI

K =

µ
∑ H b

21 +H s
21

H b
12 +H s

12 ∑

∂
.

Furthermore, we can check that the assumptions of Section 1 are satisÆed if

0 ∑ H21H12 < 1

0 ∑| ∑°
q

(H b
12 °H s

12)(H b
21 °H s

21) |< 1

0 ∑| ∑+

q
(H b

12 °H s
12)(H b

21 °H s
21) |< 1.

Under those conditions, we can apply Theorem 1 and compute the relevant quantities which
appear in the limiting stochastic di�erential equation of volatility. We note for convenience

µ
x y

z w

∂
:=

≥
I °

Z1

0
C

¥°1
Z1

0
B.
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Then, straightforward linear algebra yields

O11 +O12

≥
I °

Z1

0
C

¥°1
Z1

0
B =

µ
1+x y

1°x °y

∂

≥
O11 +O12

≥
I °

Z1

0
C

¥°1
Z1

0
B

¥
O(°1)

11 =
1

2

µ
1+x 1+x

1°x 1°x

∂

≥
O11 +O12

≥
I °

Z1

0
C

¥°1
Z1

0
B

¥
O(°1)

12 =
1

2

µ
y y

°y °y

∂
,

so that, using the notations of Theorem 1 for the Brownian motion B , W 1 and W 2, we have

≥
O11 +O12

≥
I °

Z1

0
C

¥°1
Z1

0
B

¥
O(°1)

11

Zt

0
diag

≥q
£1Ṽs

¥
dW 1

s =
1

2

Zt

0

0
@(1+x)

°q
V 1

t dB 1
s +

q
V 2

t dB 2
s

¢

(1°x)
°q

V 1
t dB 1

s +

q
V 2

t dB 2
s

¢

1
A

≥
O11 +O12

≥
I °

Z1

0
C

¥°1
Z1

0
B

¥
O(°1)

12 diag
≥q

£2Ṽs

¥
dW 2

t =
1

2

Zt

0

0
@ y

°q
V 3

t dB 3
t +

q
V 4

t dB 4
t

¢

°y
°q

V 3
t dB 3

t +

q
V 4

t dB 4
t

¢

1
A .

Therefore, writing

ß1 :=
1

2

µ
1+x 1+x y y

1°x 1°x °y °y

∂
,

we have the following equation for the fundamental variance of Asset 1

°(1°Æ)°(Æ)

Æ

µ
V 1

t

V 2
t

∂
=

Zt

0
(t ° s)Æ°1

hµ
1+x y

1°x °y

∂µ
µ1

µ2

∂
°

µ
1+x y

1°x °y

∂
K °1

µ
1+x y

1°x °y

∂°1 µ
V 1

s

V 2
s

∂i
d s

+

Zt

0
(t ° s)Æ°1

ß1diag(
p

Vs)dBs .

By symmetry, we can Ænd the analogue to the above on the second asset. Using the following
notations

ß :=
Æ

°(1°Æ)°(Æ)

1

2

0
BBB@

1+x 1+x y y

1°x 1°x °y °y

z z 1+w 1+w

°z °z 1°w 1°w

1
CCCA , D :=

Æ

°(1°Æ)°(Æ)

0
BBB@

1+x y

1°x °y

1+w z

1°w °z

1
CCCA ,

G :=
Æ

°(1°Æ)°(Æ)

0
BBB@

µ
1+x y

1°x °y

∂
K °1

µ
1+x y

1°x °y

∂°1

0

0

µ
z 1+w

°z 1°w

∂
K °1

µ
z 1+w

°z 1°w

∂°1

1
CCCA ,

where we have written for convenience
µ

x y

z w

∂
:=

R1
0 ¡1 °

R1
0 ¡2R1

0 ∏
R1

0 ∏̃° (
R1

0 ¡b
4 °

R1
0 ¡s

4)(
R1

0 ¡b
3 °

R1
0 ¡s

3)

µ R1
0 ∏̃ °(

R1
0 ¡b

3 °
R1

0 ¡s
3)

°(
R1

0 ¡b
4 °

R1
0 ¡s

4)
R1

0 ∏

∂
.
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Therefore V satisÆes the following stochastic Volterra equation

°(1°Æ)°(Æ)

Æ
Vt =

Zt

0
(t ° s)Æ°1

h
D

µ
µ1

µ2

∂
°GVs

i
d s +

Zt

0
(t ° s)Æ°1

ßdiag(
p

Vs)dBs .

This concludes the proof of Corollary 1.

V.C.2 Proof of Corollary 2

We split the proof into two steps. First, we show that the structure of the kernel satisÆes the
assumptions of Section 1. Then we compute the equations satisÆed by variance and prices.

Checking for the assumptions of Theorem 1

We write

O1 :=

0
BBB@

1

1

0

0

1
CCCAO2 :=

0
BBB@

0

0

1

1

1
CCCAO3 :=

0
BBB@

1

°1

0

0

1
CCCAO4 :=

0
BBB@

0

0

1

°1

1
CCCA .

Then, setting O :=
°
O1 |O2 |O3 |O4

¢
, we have

¡T
=O

0
BBB@

¡T
1 +¡T

2 ¡T,c
12 +¡T,a

12 0 0

¡b
21 +¡s

21 ¡̃T
1 + ¡̃T

2 0 0

0 0 ¡T
1 °¡T

2 ¡T,c
12 °¡T,a

12
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It is straightforward to check that the assumptions are satisÆed if
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21)+ (∞1 °∞2)2 |< 1.

Under those conditions K = I ° H has positive eigenvalues and therefore K M°1 =
1

Æ
K has

positive eigenvalues. Therefore all the assumptions of Theorem 1 are satisÆed.

Limiting variance process

Since we can apply Theorem 1, we now compute the relevant quantities. As B = 0, writing
H 12 := H a

12 +H c
12 and H 21 := H a

21 +H c
21, we have
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One can check that the equations satisÆed by £
1Ṽ and £

2Ṽ are, where B is a Brownian
motion,

£
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Ṽ 1

s
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Note that the above implies that V 1+ =V 1° and V 2+ =V 2°. This property is due to the the
symmetric structure of the baselines and kernels. Therefore, the joint dynamics can be fully
captured by considering the joint dynamics of (V 1+,V 2+). Thus, writing V 1 :=V 1+ =V 1° and
V 2 :=V 2+ =V 2°, we have
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s )d s +

Zt

0

q
V 2

t (dB 3
s +dB 4

s ).

We can write the above without Ṽ as
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Limiting price process

Turning now to the price process, it remains to compute ¢ (see Equation (10)) using the
deÆnition. We have
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which, by deÆnition of ¢, yields
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Therefore,
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Finally, any limit point P of the sequence of microscopic price processes satisÆes the following
equation
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This concludes the proof of Corollary 2.

V.C.3 Proof of Corollary 3

We deÆne the interaction kernel between Asset i and Asset j , for 1 ∑ i , j ∑ m, deÆne
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As in the previous example, the proof is split into three steps. First, we show that the structure
of the kernel satisÆes the assumptions required to apply Theorem 1. Then, we compute the
equation satisÆed by the variance and Ænally the limiting price process.

Checking assumptions of Theorem 1

We can examine the structure of the kernel as in the two-asset example. DeÆne the following
basis:

Oi :=

Ω
e2i +e2i+1 if 1 ∑ i ∑ m,

e2i °e2i if m +1 ∑ i ∑ 2m.
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Using the notations of Section 1, straightforward computations allow us to write
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where we can compute AT and C T . Checking the assumptions is done as in the two-asset case,
though the conditions have changed here due to the new structure of the kernel. For example,
since
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Since we are interested in the limit where the number of assets grows to inÆnity, we also impose
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Combined, we have veriÆed all the assumptions on the structure of the kernel. We thus move
to assumptions on K and § := K M°1. As in the two-asset example, we have here M = ÆI .
Since K = I ° (H c +H a)J °

P
1∑r∑R (H c

r +H a
r )Jr , the eigenvalues of K (and therefore those of

§) are all strictly positive. Thus we have checked all necessary conditions to apply Theorem 1.
We can thus state the equation satisÆed by the variance process.

Limiting variance process

As in the previous example, we have V i+ =V i°. Thus, we write the underlying variance of
asset i V i and use the (slight) abuse of notation and deÆne V := (V 1,V 2, · · · ,V m). Then V

satisÆes
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where B is a Brownian motion. We can rewrite K °1 as
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It is easy to check that Ω(≤) =
m!1

o(
1

m
), which concludes our study of the variance process.

We now turn to the equation satisÆed by the limiting price process.

Limiting price process

Using the same approach as in the two-asset case, computing ¢ boils down to computing
(I °

R1
0 C )°1. Using the expression for

R1
0 C derived previously, we have
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Therefore, repeating the same approach we used for K °1 yields
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). Thus, we have the expression of ¢
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Plugging this into Theorem 1, we have the equation satisÆed by macroscopic prices, which
concludes the proof of Corollary 3.
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CHAPTER VIA

Deep learning volatility

Abstract

We present a neural network based calibration method that performs the calibration
task within a few milliseconds for the full implied volatility surface. The framework
is consistently applicable throughout a range of volatility models—including the rough
volatility family—and a range of derivative contracts. The aim of neural networks in
this work is an o�-line approximation of complex pricing functions, which are di�cult to
represent or time-consuming to evaluate by other means. We highlight how this perspective
opens new horizons for quantitative modelling: The calibration bottleneck posed by a slow
pricing of derivative contracts is lifted. This brings several numerical pricers and model
families (such as rough volatility models) within the scope of applicability in industry
practice. The form in which information from available data is extracted and stored
inØuences network performance. This approach is inspired by representing the implied
volatility and option prices as a collection of pixels. In a number of applications we
demonstrate the prowess of this modelling approach regarding accuracy, speed, robustness
and generality and also its potentials towards model recognition.

From:
Deep learning volatility: a deep neural network perspective on pricing and calibration in
(rough) volatility models
B. Horvath, A. Muguruza, M. Tomas

Introduction

Approximation methods for option prices came in all shapes and forms in the past decades
and they have been extensively studied in the literature and well-understood by risk managers.
Clearly, the applicability of any given option pricing method (Fourier pricing, PDE methods,
asymptotic methods, Monte Carlo, . . . etc.) depends on the regularity properties of the particu-
lar stochastic model at hand. Therefore, tractability of stochastic models has been one of the
most decisive qualities in determining their popularity. In fact it is often a more important
quality than the modelling accuracy itself: It was the (almost instantaneous) SABR asymptotic
formula that helped SABR become the benchmark model in Æxed income desks, and similarly
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the convenience of Fourier pricing is largely responsible for the popularity of the Heston
model, despite the well-known hiccups of these models. Needless to say that it is the very same
reason (the concise Black Scholes formula) that still makes the Black-Scholes model attractive
for calculations even after many generations of more realistic and more accurate stochastic
market models have been developed. On the other end of the spectrum are rough volatility
models, for which (despite a plethora of modelling advantages, see [BFG16, EER18, GJR18]
to name a few) the necessity to rely on relatively slow Monte Carlo based pricing methods
creates a major bottleneck in calibration, which has proven to be a main limiting factor with
respect to industrial applications. This dichotomy can become a headache in situations when
we have to weigh up the objectives of accurate pricing vs. fast calibration against one another
in the choice of our pricing model. In this work we explore the possibilities provided by
the availability of an algorithm that –for a choice of model parameters– directly outputs the
corresponding vanilla option prices (as the Black-Scholes formula does) for a large range of
maturities and strikes of a given model.

In fact, the idea of mapping model parameters to shapes of the implied volatility surface directly
is not new. The stochastic volatility inspired SSVI, eSSVI surfaces (see [Gat04, GJ14, HM17])
do just that: A given set of parameters is translated directly to di�erent shapes of (arbitrage-
free) implied volatility surfaces, bypassing the step of specifying any stochastic dynamics for
the underlying asset. For stochastic models that admit asymptotic expansions, such direct
mappings from model parameters to (approximations of) the implied volatility surface in
certain asymptotic regimes can be obtained (one example is the famous SABR formula). Such
asymptotic formulae are typically limited to certain asymptotic regimes along the surface by
their very nature. Complementary to asymptotic expansions we explore here a direct (ap-
proximative) mapping from di�erent parameter combinations of stochastic models to di�erent
shapes of implied volatility surface for intermediate regimes. Its appeal is that it combines the
advantages of direct parametric volatility surfaces (of the SSVI family) with the possibility to
link volatility surfaces to the stochastic dynamics of the underlying asset.

In this chapter we apply deep neural networks (merely) as powerful high-dimensional func-
tional approximators to approximate the multidimensional pricing functionals from model
parameters to option prices. The advantage of doing so via deep neural networks over
standard (Æxed-basis) functional approximations is that deep neural networks are agnostic to
the approximation basis [GBC16]. This makes them robustly applicable to several stochastic
models consistently. Our objective in doing so is to move the (often time-consuming) numerical
approximation of the pricing functional into an o�-line preprocessing step. This preprocessing
amounts to storing the approximative direct pricing functional in form of the network weights
after a supervised training procedure. Using available numerical approximations of option
prices as ground truth (in a stochastic model of our choice), we train a neural network to learn
an accurate approximation of the pricing functional. After training, the network outputs–for
any choice of model parameters–the corresponding implied volatilities within milliseconds
for a large range of maturities and strikes along the whole surface. Furthermore, we show
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that this procedure generalises well for unseen parameter combinations: the accuracy of price
approximation of our neural network pricing functional on out-of-sample data is within the
same range as the accuracy of the original numerical approximation used for training. The
accuracy of this direct pricing map is demonstrated in our numerical experiments.

One of the striking advantages of this approach is that it speeds up the (on-line) calibration
Rough Volatility models to the realm of just a few milliseconds. There have been several recent
contributions on neural network calibrations of stochastic models [BHM+19, BGTW19, Her16,
Kon18, DSMRS18]. Clearly, much depends on the Ænesse of the particular network design
with respect to the performance of these networks. One contribution of this chapter is to
achieve a fast and accurate calibration of the rough Bergomi model of [BFG16] with a general
forward variance curve (approximated by piecewise constant function). To demonstrate this,
we Ærst perform calibration experiments on simulated data and show calibration accuracy
in controlled experiments. To demonstrate the speed and prowess of the approach we then
calibrate the rough Bergomi model to historical data and display the evolution of parameters
on a dataset consisting of 10 years of SPX data. Another advantage of our modelling choice is
that by its very design it can be applied to portfolios including multiple strikes and maturities
at the same time which is the Ærst step towards their application as hedging instruments. See
for example Buehler et al. [BGTW19] for a motivation.

The chapter is organised as follows: In Section 1 we present a neural network perspec-
tive on model calibration and recall stochastic models that are considered in later sections.
Section 2 reviews di�erent possible setup and motivates our own approach. In Section 4 we
present numerical experiments of price approximations of vanilla and some exotic options,
calibration to synthetic data and to historical data. We conclude with further potential appli-
cations and outlook to future work.

Numerical experiments and codes are provided on GitHub: NN-StochVol-Calibrations, where
an accessible code demo of our results can be downloaded. We also created a library of
stochastic models where this approach is demonstrated to work well.
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1 A neural network perspective on model calibration

In plain words, any calibration procedure is meant to Æx the model parameters such that
the model is as close as possible to the observed reality. In a Ænancial context, our model
represents the underlying (stocks, indices, volatility, etc.) and we are interested in calibrating
the model to available market prices of Ænancial contracts based on this underlying.

Let us Ærst formalise this by setting the notation M := M (µ)µ2£ which represents an abstract
model with parameters µ in the set £ΩRn , for some n 2N. Thus the model M (µ) (stochas-
tic or parametric) and the corresponding prices of Ænancial contracts are fully speciÆed by
the choice of the parameter combination µ 2£. Furthermore, we introduce a pricing map
P : M (µ,≥) ! Rm , where ≥ : (C (R) !Rm), m 2N denote the Ænancial products we aim to price,
such as vanilla options for (a set of) given maturities and strikes. Let us denote the observed
market data corresponding to the contracts by P

MK T (≥) 2Rm , m 2N.

Parameter Calibration: The parameter conÆguration µ̂ solves an (ideal) ±-calibration problem
for a model M (£) for the conditions P

MK T (≥) if

µ̂ = argmin
µ2£

±(P (M (µ),≥),P MK T (≥)) (1)

where ±(·, ·) is a suitable choice of metric for the Ænancial contract ≥ at hand.

For most Ænancial models however (1) represents an idealised form of the calibration problem as
in practice there rarely exists an analytical formula for the option price P (M (µ),≥) and for the
vast majority of Ænancial models it needs to be computed by some numerical approximation
scheme.

Approximate Parameter Calibration We say that the parameter conÆguration µ̂ 2£ solves
an approximate ±-calibration problem for the model M (£) for the conditions P

MK T (≥) if

µ̂ = argmin
µ2£

±( eP (M (µ),≥),P MK T (≥)) (2)

where ±(·, ·) is a suitably chosen metric and eP is a numerical approximation of the pricing
map P .

In the remainder of this chapter it is this second type of calibration problem that we will be
concerned with: In our numerical experiments (Section 4) we consider the numerical approx-
imation eP of the pricing map P as the benchmark (available truth) for generating synthetic
training samples in the training a neural network to approximate pricing maps. Clearly, the
better the original numerical approximations, the better the network approximation will be. In
a separate work we will illuminate this perspective with a Bayesian analysis of the calibration
procedure.
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1.1 A brief reminder of some (rough) models considered

We would like to emphasize that our methodology can in principle be applied to any (classical
or rough) volatility model. From the classical Black Scholes or Heston models to the rough
Bergomi model of [BFG16], also to large class of rough volatility models (see Horvath, Jacquier
and Muguruza [HJM17] for a general setup). In fact the methodology is not limited to stochastic
models, also parametric models of implied volatility could be used for generating training
samples of abstract models, but we have not pursued this direction further.

The Rough Bergomi model

In the abstract model framework, the rough Bergomi model is represented by M
r Ber g omi (£r Ber g omi ),

with parameters µ = (ª0,∫,Ω, H) 2£
r Ber g omi . On a given Æltered probability space (≠,F , (Ft )t∏0,P)

the model corresponds to the following system

d X t =°
1

2
Vt d t +

p
Vt dWt , for t > 0, X0 = 0,

Vt = ª0(t )E

µp
2H∫

Zt

0
(t ° s)H°1/2d Zs

∂
, for t > 0, V0 = v0 > 0

(3)

where H 2 (0,1) denotes the Hurst parameter, ∫> 0 , E (·) the stochastic exponential [DD70],
and ª0(·) > 0 denotes the initial forward variance curve (see [Ber15, Section 6]), and W and Z

are correlated standard Brownian motions with correlation parameter Ω 2 [°1,1]. To Æt the
model parameters into our abstract model framework £

r Ber g omi Ω Rn for some n 2N, the
initial forward variance curve ª0(·) > 0 is approximated by a piecewise constant function in
our numerical experiments in Sections 3.1.1 and 3.2.1. We refer the reader to Horvath, Jacquier
and Muguruza [HJM17] for one general setting of rough volatility models and their numerical
simulation.

The Heston model

The Heston model is described by the system

dSt =
p

Vt St dWt for t > 0, S0 = s0

dVt = a(b °Vt )d t + v
p

Vt d Zt for t > 0, V0 = v0

(4)

with W and Z Brownian motions with correlation parameter Ω 2 [°1,1], a,b, v > 0 and
2ab > v2. In our framework it is denoted by M

Heston(µ) with µ = (a,b, v,Ω) 2£
Heston Ω R4.

The Heston model was considered by [BHM+19, DRF18] in di�erent neural network contexts.

The Bergomi model

In the general n-factor Bergomi model, the volatility is expressed as

Vt = ª0(t )E

√
¥i

nX

i=1

Zt

0
exp

≥
°∑i (t ° s)dW i

s

¥!
for t > 0, V0 = v0 > 0, (5)

where ¥1, . . . ,¥n > 0 and (W 1, . . . ,W n) is an n-dimensional correlated Brownian motion, E (·)

the stochastic exponential [DD70], and ª0(·) > 0 denotes the initial forward variance curve, see
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[Ber15, Section 6] for details. In this work we consider the Bergomi model for n = 1,2 in Section
4. Henceforth, M

1F Ber g omi (ª0,Ø,¥,Ω) represents the 1 Factor Bergomi model, corresponding
to the following dynamics:

d X t =°
1

2
Vt d t +

p
Vt dWt for t > 0, X0 = 0

Vt = ª0(t )E

µ
¥

Zt

0
exp(°Ø(t ° s))d Zs

∂
for t > 0, V0 = v0 > 0,

(6)

where ∫> 0, and W and Z are correlated standard Brownian motions with correlation parame-
ter Ω 2 [°1,1]. To Æt the model parameters into our abstract model framework £

1F Ber g omi ΩRn ,
for some n 2N, the initial forward variance curve ª0(·) > 0 is approximated in our numerical
experiments by a piecewise constant function in Sections 3.1.1, and 3.2.1.

The SABR model

The stochastic alpha beta rho model of Hagan et al. [HKLW02, HLW15] is denoted in our
setting as M

S ABR (Æ,Ø,Ω) and is deÆned as

dSt =Vt S
Ø
t dWt for t > 0, S0 = s0.

dVt =ÆVt d Zt for t > 0, V0 = v0

(7)

where v0, s0,Æ> 0 and Ø 2 [0,1]. The SABR model is considered by McGhee in [McG18] in a
neural network context (see also Section 1.3).

1.2 Calibration bottlenecks in volatility modelling and deep calibration

Whenever for a stochastic volatility model the numerical approximate calibration procedures
(2) are computationally slow, a bottleneck in calibration time can deem the model of limited
applicability for industrial production irrespective of other desirable features the model might
have. This is the case in particular for the family rough volatility models, where the rough
fractional Brownian motion in the volatility dynamics rules out usual Markovian pricing meth-
ods such as Ænite di�erences. So far such calibration bottlenecks have been a major limiting
factor for the class of rough volatility models, whose overwhelming modelling advantages have
been explored and highlighted in rapidly expanding number of academic articles [AGLM18,
ALV07, BFG16, BFG+20, BFG+19, BLP17, EER19, Fuk11, GJR18, JMM18, HJL19, JPS18] in the
past years. Other examples include models with delicate degeneracies (such as the SABR
model around zero forward) which for a precise computation of arbitrage-free prices require
time consuming numerical pricing methods such as Finite Element Methods [HR18], Monte
Carlo [COVDW11, LGO17b] or the evaluation of multiple integrals [AKS13].

Contrary to Hernandez’s [Her16] pioneering work, where he develops a direct calibation
via NN, we set up and advocate a two setp calibration approach.

Two Step Approach (i) Learn a model and (ii) Calibrate to data: One separates the
calibration procedure described in (2) into two parts: (i) We Ærst learn (approximate) the
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pricing map by a neural network that maps parameters of a stochastic model to pricing
functions (or implied volatilities (cf. section (1.1) and we store this map during an o�-line
training procedure. In a second step (ii) we calibrate (on-line) the now deterministic approxi-
mative learned price map, which speeds up the on-line calibration by orders of magnitude. To
formalise the two step approach, we write for a payo� ≥ and a model M with parameters µ 2£

(i) Learn: eF (£,≥) = eP (M (£,≥)) (ii) Calibrate: µ̂ = argmin
µ2£

±( eF (µ,≥),P MK T (≥)). (8)

Note that in part (ii) of (8) we essentially replaced eP (M (£,≥)) in equation (2) by its learned
(deterministic) counterpart eF (£,≥) (which will be a Neural Network see Section 3.1) from
(i). Therefore, this second calibration is–by its deterministic nature–considerably faster than
calibration of all those traditional stochastic models, which involve numerical simulation of the
expected payo� P (M (µ,≥)) = E[≥(X (µ))] for some underlying stochastic process X µ . The Ærst
part (i) in (8) denotes an approximation of the pricing map through a neural network, which
is calibrated in a supervised training procedure using the original (possibly slow) numerical
pricing maps for training (see sections 3.1 and 4 for details in speciÆc examples).

In the following sections we elaborate on the objectives and advantages of this two step
calibration approach and present examples of neural network architectures, precise numerical
recipes and training procedures to apply the two step calibration approach to a family of
stochastic volatility models. We also present some numerical experiments (corresponding
codes are available on GitHub: NN-StochVol-Calibrations ) and report on learning errors and
on calibration times.

1.3 Challenges in neural network approximations of pricing functionals

In general problem (1) and henceforth (2) is solved using suitable numerical optimisation
techniques such as gradient descent [GBC16], speciÆc methods for certain metrics (such
as Lavenberg-Marquadnt [Lev44] for L2), neural networks, or tailor-made methods to the
complexity of the optimisation problem and objective function at hand1. But irrespective of
their level of sophistication all optimisers for calibration share a common property: repeated
(iterative) evaluation of the pricing map µ 7! P (M (µ),≥) (resp. an approximation eP thereof)
on each instance µ of consecutive parameter combinations until a su�ciently small distance
±( eP (M (µ),≥),P MK T (≥) between model prices and observed prices is achieved. Consequently,
the pricing map is arguably the computational cornerstone of a calibration algorithm. Main
di�erences between speciÆc calibration algorithms e�ectively lie in the way the speciÆc choice
of evaluated parameter combinations {µ1,µ2 . . .} are determined, which hence determines the
total number N of functional evaluations of the pricing function

°
P (M (µi ),≥)

¢
i=1...N used in

the calibration until the desired precision ±( eP (M (µ̂),≥),P MK T (≥)) is achieved. In case the
pricing map

P (M (·),≥) : £°! P (M )

µ 7! P (M (µ),≥)

1For details and an overview on calibration methods see [GBC16].
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involved in (1) is available in closed form, and can be evaluated instantaneously, the calibration
(2) is fast even if a high number N of functional evaluations is used. If the pricing map is
approximated numerically, calibration time depends strongly on the time needed to generate a
functional evaluation of the numerical approximation

µi 7! eP (M (µi ),≥), µi 2 {µ1, . . .µN } (9)

at each iteration i = 1, . . . , N of the calibration procedure. Slow functional evaluations poten-
tially cause substantial bottlenecks in calibration time. This is where we see the most powerful
use of the prowess of neural network approximation:

A neural network is constructed to replace in (i) of (8) the pricing map, that is to approximate
(for a given Ænancial contract ≥) the pricing map from the full set2 of model parameters £ of
the model to the corresponding prices P (M (µ,≥)). The Ærst challenge for the neural network
approximator of pricing functionals is to speed up this process and enable us to obtain faster
functional evaluations and thereby lift the bottleneck of calibration. The second challenge is to
do so with an accuracy that remains within the error bounds of the original numerical pricing
discretisation:

eF : £°! eP (M )

µ 7! eF (µ,≥)
(10)

More precisely (motivated by (2)), for any parameter combination µ 2£ we aim to approximate
the numerical approximation eP of the true option price P with the neural network eF up to the
same order of precision ≤> 0 up to which eP approximates P . That is, for any µ 2£

eF (µ) = P (M (µ),≥)+O (≤) whenever eP (M (µ),≥) = P (M (µ),≥)+O (≤).

Therefore, our training objective is

eF (µ) = eP (M (µ),≥)+O (≤). (11)

where eP is the available numerical approximation of the pricing function, which is considered
as ground truth. In our numerical experiments in Section 4 we demonstrate that our approx-
imation network achieves this approximation accuracy and yields a substantial speedup in
terms of functional evaluations.

1.4 Motivations for our choice of training setup and features of neural

networks as approximators of pricing functionals

There are several advantages of separating the tasks of pricing and calibration which we
address in full detail in a separate work. Here we recall some of the most convincing reasons
to do so. Above all, the most appealing reason is that it allows us to build upon the knowledge

2Note that the set µ1, . . . ,µN in (9) is extended to the full set of possible parameter combinations £ in (10).
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we have gained about the models in the past decades, which is of crucial importance from
a risk management perspective. By its very design, deep learning the price approximation (i)

combined with (ii) deterministic calibration does not cause more headache to risk managers
and regulators than the corresponding stochastic models do. Designing the training as
described above demonstrates how deep learning techniques can successfully extend the
toolbox of Ænancial engineering, without making compromises on any of our objectives.

1. The knowledge gathered in many years of experience with traditional models remains
useful and risk management libraries of models remain valid. The neural network is
only used as a computational enhancement of models.

2. The availability of training data for training the deep neural network does not cause
any constraints as it is synthetically generated by traditional numerical methods.

3. This can be extended beyond the models presented in this work: Whenever a consistent
numerical pricer exists for a model, it can be approximated and replaced by a deep
neural network that provides fast numerical evaluations of the pricing map.

Here, we identify the grid-based apporach as our choice of training. Though a thorough
analysis of the best training approaches is subject to further research, we have good reason to
believe that the grid-based approach provides a powerful and robust methodology for training:

1.4.1 Reasons for the choice of grid-based implicit training

In the grid-based approach we evaluate the values of implied volatility surface along 8£11

gridpoints with 80,000 di�erent parameter combinations we e�ectively evaluate the "Æt" of
the surface to numerically generated ones across the same number of points. By moving the
evaluation of the implied volatilities into the objective function we improve the learning in
many aspects:

• The Ærst advantage of implicit training is that it e�ciently exploits the structure of the
data. Updates in neighbouring volatility points æn°1 and æn can be incorporated in the
learning process. If the output is a full grid as in (16) this e�ect is further enhanced.
Updates of the network on each gridpoint also imply additional information for updates
of the network on neighbouring gridpoints. One can say that we regard the implied
volatility surface as an image with a given number of pixels.

• A further advantage of the image based implicit training is, that by evaluating the
objective function on a larger set of (grid) points, injectivity of the mapping can be more
easily guaranteed than in the pointwise training: Two distinct parameter combinations
are less likely to yield the same value across a set of gridpoints, then if evaluated only
on a single point.
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• We do not limit ourselves to one speciÆc grid on the implied volatility surface. We store
the generated 60,000 sample paths for the training data and chose a set of maturities
(here 8) and strikes (here 11) to evaluate prices corresponding to these paths. But we
can easily add and evaluate additional maturities and strikes to the same set of paths.
Note in particular that in this training design we can reÆne the grid on the implied
volatility surface without increasing the number of training samples needed and without
signiÆcantly increasing the computational time for training as the portfolio of vanilla
options on the same underlying grows with di�erent strikes and maturities.

1.4.2 Some relevant properties of deep neural networks as functional approximators

Deep feed forward3 neural networks are the most basic deep neural networks, originally
designed to approximate some function F§, which is not available in closed form but only
through sample pairs of given input data x and output data y = F§(x). In a nutshell, a
feed forward network deÆnes a mapping y = F (x, w) and the training determines (calibrates)
the optimal values of network parameters bw that result in the best function approximation4

F§(·) º F (·, bw) of the unknown function F§(·) for the given pairs of input and output data
(x, y), cf. [GBC16, Chapter 6].
To formalise this, we introduce some notation and recall some basic deÆnitions and principles
of function approximation via (feedforward) neural networks:

DeÆnition 1 (Neural network). Let L 2N and the tuple (N1, N2 · · · , NL) 2NL denote the number

of layers (depth) and the number of nodes (neurons) on each layer respectively. Furthermore, we

introduce the a�ne functions

w l : RNl °!RNl+1 for 1 ∑ l ∑ L°1

x 7! Al+1x +bl+1
(12)

acting between layers for some Al+1 2 RNl+1£Nl . The vector bl+1 2 RNl+1 denotes the bias term
and each entry Al+1

(i , j )
denotes the weight connecting node i 2 Nl of layer l with node j 2 Nl+1

of layer l +1. For the the collection of a�ne functions of the form (12) on each layer we Æx the
notation w = (w1, . . . , wL). We call the tuple w the network weights for any such collection of
a�ne functions. Then a Neural Network F (w, ·) : RN0 !RNL is deÆned as the composition:

F := FL ± · · ·±F1 (13)

where each component is of the form Fl := æl ±W l . The function æl : R! R is referred to as the

activation function. It is typically nonlinear and applied component wise on the outputs of the

a�ne function W l . The Ærst and last layers, F1 and FL , are the input and output layers. Layers in

between, F2 · · ·FL°1, are called hidden layers.

3The network is called feed forward if there are no feedback connections in which outputs of the model are
fed back into itself.

4In our case y is a 8£11-point grid on the implied volatility surface and x are model parameters µ 2£, for
details see Section 2.
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The following central result of Hornik justiÆes the use of neural networks as approximators for
multivariate functions and their derivatives.

Theorem 1 (Universal approximation theorem (Hornik, Stinchcombe and White [HSW89])).
Let N N

æ
d0,d1

be the set of neural networks with activation function æ : R 7!R, input dimension

d0 2N and output dimension d1 2N. Then, if æ is continuous and non-constant, N N
æ
d0,1

is dense

in Lp (µ) for all Ænite measures µ.

There is a rapidly growing literature on approximation results with neural networks, see
[Hor91, HSW90, Mha93, SCC18] and the references therein. Among these we would like to
single out one particular result:

Theorem 2 (Universal approximation theorem for derivatives (Hornik, Stinchcombe and White
[HSW90])). Let F§ 2C

n and F : Rd0 !R and N N
æ
d0,1

be the set of single-layer neural networks

with activation function æ : R 7!R, input dimension d0 2N and output dimension 1. Then, if the

(non-constant) activation function is æ 2C
n(R), then N N

æ
d0,1

arbitrarily approximates f and all

its derivatives up to order n.

Remark 1. Theorem 2 highlights that the smoothness properties of the activation function are of

signiÆcant importance in the approximation of derivatives of the target function F§. In particular,

to guarantee the convergence of l -th order derivatives of the target function, we choose an activation

function æ 2C l (R). Note that the ReLu activation function , æReLu(x) = (x)+ is not in C
l (R) for

any l > 0, while æEl u(x) =Æ(ex °1) is smooth.

x2 ai ,2 bi +

3X

j=1

ai , j x j æELU

Activation
function

y

Output

x1 ai ,1

Weights

x3 ai ,3

Bias
b

Node inputs

Figure VIA.1: In detail neuron behaviour.

The following Theorem provides theoretical bounds for the above rule of thumb and establishes
a connection between the number of nodes in a network and the number of training samples
needed to train it.

Theorem 3 (Estimation bounds for Neural Networks (Barron [Bar94])). Let N N
æ
d0,d1

be the

set of single-layer neural networks with Sigmoid activation function æ(x) = ex

ex+1
, input dimension
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d0 2N and output dimension d1 2N. Then:

EkF§° F̂k2
2 ∑O

√
C 2

f

n

!
+O

µ
nd0

N
log N

∂

where n is the number of nodes, N is the training set size and CF§ is the Ærst absolute moment of

the Fourier magnitude distribution of F§.

Remark 2. Barron’s [Bar94] insightful result gives a rather explicit decomposition of the error in

terms of bias (model complexity) and variance:

• O

µ
C 2

F§
n

∂
represents the model complexity, i.e. the larger n (number of nodes) the smaller the

error

• O

≥
nd0

N
log N

¥
represents the variance, i.e. a large n must be compensated with a large training

set N in order to avoid overÆtting.

Finally, we motivate the use of multi layer networks and the choice of network depth. Even
though a single layer might theoretically su�ce to arbitrarily approximate any continuous
function,in practice the use of multiple layers dramatically improves the approximation
capacities of network. We informally recall the following Theorem due to Eldan and Shamir
[ES16] and refer the reader to the original paper for details.

Theorem 4 (Power of depth of Neural Networks (Eldan and Shamir [ES16])). There exists a
simple (approximately radial) function on Rd , expressible by a small 3-layer feedforward neural

networks, which cannot be approximated by any 2-layer network, to more than a certain constant

accuracy, unless its width is exponential in the dimension.

Remark 3. In spite of the speciÆc framework by Eldan and Shamir [ES16] being restrictive, it

provides a theoretical justiÆcation to the power of “deep" neural networks (multiple layers) against

“shallower” networks (i.e. few layers) as in [McG18] with a larger number of neurons. On the other

hand, multiple Ændings indicate [BHM+19, IS15] that adding hidden layers beyond 4 hidden layers

does not signiÆcantly improve network performance.

2 Pricing and calibration with neural networks: Optimising

network and training

In this section we compare di�erent objective functions (direct calibration to data to an
image-based implicit learning approach) and motivate our choice of image-based objective
function. We give details about network architectures for the approximation network and
compare di�erent optimisers for the calibration step.
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2.1 The objective function

1. Learn the map F§(µ) = {PM (µ)(≥i )}n
i=1

via neral network, where {≥i }i=1,...,n represents
the exotic product attributes (such as maturity, strike or barrier level) on a prespeciÆed
grid with size n.

ŵ = argmin
w2Rn

NTr ai nX
u=1

nX

i=1

°
F (µu , w)i °F§(µu)i

¢2
.

2. Solve

µ̂ := argmin
µ2£

nX

i=1

( eF (µ)i °P MK T (≥i ))2. (14)

2.1.1 For vanillas

As in many academic and industry research papers, we pursue the calibration of vanilla
contracts via approximation of the implied volatility surface5.

We take this idea further and design an implicit form of the pricing map that is based
on storing the implied volatility surface as an image given by a grid of "pixels". This image-
based representation has a formative contribution in the performance of the network we
present in Section 4. We present our contribution here; Let us denote by ¢ := {ki ,T j }n, m

i=1, j=1
a

Æxed grid of strikes and maturities, then we propose the following two step approach:

1. Learn the map F§(µ) = {æM (µ)
BS

(Ti ,k j )}n, m
i=1, j=1

via neural network eF (µ) := F (µ, ŵ) where

F§ : £°!Rn£m (16)

µ 7! F§(µ)

where the input is a parameter combination µ 2£ of the stochastic model M (£) and
the output is a n £m grid on the implied volatility surface {æM (µ)

BS
(Ti ,k j )}n, m

i=1, j=1
where

5For sake of completeness we introduce the Black-Scholes Call pricing function in terms of log-strike k, initial
spot S0, maturity T and volatility æ:

BS(æ,S0,k,T ) := S0N (d+)°K N (d°), d± :=
log(S0)°k

p
Tæ

±

p
Tæ

2
,

where N (·) denotes the Gaussian cumulative distribution function. The implied volatility induced by a Call option
pricing function P (K ,T ) is then given by the unique solution æBS (k,T ) of the following equation

BS(æBS (k,T ),S0,k,T ) = P (k,T ).

Precisely, we seek to solve the following calibration problem

µ̂ := argmin
µ2£

d(ßM (µ)
BS

,ßMK T
BS ) (15)

where ß
M (µ)
BS

:= {æM (µ)
BS

(ki ,T j )}i=1,..,n, j=1,...,m represents the set of implied volatilities generated by the model

pricing function P (M (µ),k,T ) and ß
MK T
BS

:= {æMK T
BS

(ki ,T j )}i=1,..,n, j=1,...,m are the corresponding market implied
volatilities, for some metric d : Rn£m £Rn£m !R+.
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n,m 2N are chosen appropriately (see Section 3.1). Then,

ŵ = argmin
w2Rn

NTr ai nX
u=1

nX

i=1

mX

j=1

°
F (µu , w)i j °F§(µu)i j

¢2
.

2. Solve

µ̂ := argmin
µ2£

nX

i=1

mX

j=1

( eF (µ)i j °æMK T
BS (Ti ,k j ))2.

Remark 4. Notice that ŵ(¢) depends on ¢ implicitly, consequently so does eF (µ) = F (µ, ŵ(¢))

(hence the name implicit learning). This setting is similar to that of image recognition and exploits

the structure of the data to reduce the complexity of the Network (see Section 4 for details).

Remark 5. In our experiments we chose n = 8 and m = 11. At Ærst, a criticism of mapping

(16) might be the inability to extrapolate/interpolate between maturities/strikes outside the grid
¢. However, one is free to choose the grids ¢ as Æne as needed. In addition, one may use

standard (arbitrage free) uni/bi-variate splines techniques to extrapolate/interpolate across strikes

and maturities, as with traditional market data observable only at discrete points.

Figure VIA.2: Volatility surface generated by the neural network approximator and the
corresponding original counterpart on a grid given by 8 maturities and 11 strikes.

2.1.2 Some exotic payo�s

Our framework extends to a number of exotic products such as: Digital barriers, no-touch (or
double no-touch) barrier, cliquets or autocallables.

We present some numerical experiments in Section 3.3, to demonstrate the pricing of digital
barrier options. More precisely, in Section 3.3 we consider down-and-in such as down-and-out
digital barrier options, the main building blocks of many Autocallable products. For a barrier
level B < S0 and maturity T the payo� is given by:

P Down°and°In(B ,T ) = E
£
11{øB∑T }

§
(17)

P Down°and°Out (B ,T ) = E
£
11{øB∏T }

§
(18)

where øB = inf
t

{St = B}. In this setting, we may easily generate a grid for barrier levels and

maturities ¢B ar r i er := {Bi ,T j }n, m
i=1, j=1

that we can Æt in the objective function speciÆed in (14)
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2.2 Network architecture and training

Motivated by the above analysis, we choose to set up the calibration in the implicit two-step
approach. This involves a separation of the calibration procedure into (i) “Deep approximation"
an approximation network with an implicit training and (ii) “Calibration" a calibration layer
on top. We Ærst start by describing the approximation network in the implicit image-based
training and discuss the calibration in Section 3.2 below. In addition, we will highlight speciÆc
techniques that contribute to the robustness and e�ciency of our design.

2.2.1 Network architecture of the implied volatility map approximation

Here we motivate our choice of network architecture for the following numerical experiments
which were inspired by the analysis in the previous sections. Our network architecture is
summarised in the graph VIA.3 below.

1. A fully connected feed forward neural network with 4 hidden layers (due to Theorem 4)
and 30 nodes on each layers (see Figure VIA.3 for a detailed representation)

2. Input dimension = n, number of model parameters

3. Output dimension = 11 strikes£ 8 maturities for this experiment, but this choice of grid
can be enriched or modiÆed.

4. The four inner layers have 30 nodes each, which adding the corresponding biases results
on a number

(n +1)£30+4£ (1+30)£30+ (30+1)£88 = 30n +6478

of network parameters to calibrate (see Section 1.4.2 for details).

5. Motivated by Theorem 2 we choose the Elu æElu =Æ(ex °1) activation function for the
network.
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Figure VIA.3: Neural network architecture.

Our neural network architecture with 4 hidden layers and 30 neurons on each hidden layer,
with the model parameters of the respective model on the input layer and with the 8£11

implied volatility grid on the output layer.

2.2.2 Training of the approximation network

We follow the common features of optimization techniques and choose mini-batches, as de-
scribed in Goodfellow, Bengio and Courville [GBC16]. Typical batch size values range from
around 10 to 100. In our case we started with small batch sizes and increased the batch size
until training performance consistently reached a plateau. Finally, we chose batch sizes of
32, as performance is similar for batch sizes above this level, and larger batch sizes increase
computation time by computing a larger number of gradients at a time.

In our training design, we use a number of regularisation techniques to speed up convergence
of the training, to avoid overÆtting and improve the network performance.

1) Early stopping: We choose the number of epochs as 200 and stop updating network
parameters if the error has not improved in the test set for 25 steps.

2) Normalisation of model parameters: Usually, model parameters are restricted to a
given domain i.e. µ 2 [µmi n ,µmax ]. Then, we perform the following normalisation transform:

2µ° (µmax +µmi n)

µmax °µmi n
2 [°1,1].
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3) Normalisation of implied volatilities: The normalisation of implied volatilities is a more
delicate matter, since æBS(T,k,µtr ai n) 2 [0,1), for each T and k . Therefore, we choose to
normalise the surface subtracting the sample empirical mean and dividing by the sample
standard deviation.

2.3 The calibration step

Once the pricing map approximation eF for the implied volatility is found, only the calibration
step in (2) is left to solve. In general, for Ænancial models the pricing map F§ is assumed to be
smooth (at least C 1 di�erentiable) with respect to all its input parameters µ.

Gradient-based optimizers

A standard necessary Ærst order condition for optimality in (2) is that

rµ±
° eF (M (µ),≥),P MK T (≥)

¢
= 0, (19)

provided that the objective function is smooth. Then, a natural update rule is to move along
the gradient via Gradient Descent i.e.

µi+1 = µi °∏rµ±
° eF (M (µi ),≥),P MK T (≥)

¢
, ∏> 0. (20)

A common feature of gradient based optimization methods building on (20) is the use of the
gradient rµ±

° eF (M (µ),≥),P MK T (≥)
¢
, hence its correct and precise computation is crucial for

subsequent success. Examples of such algorithms, are Levenberg-Marquardt [Lev44, Mar63],
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [NW06], L-BFGS-B [ZBLN97] and SLSQP
[Kra88]. The main advantage of the aforementioned methods is the quick convergence towards
condition (19). However, (19) only gives necessary and not su�cient conditions for optimality,
hence special care must be taken with non-convex problems.

Remark 6. Notably, making use of Theorem 2 we use a smooth activation functions in order to

guarantee rµ eP ºrµ eF

Gradient-free optimizers

Gradient-free optimization algorithms are gaining popularity due to the increasing num-
ber of high dimensional nonlinear, non-di�erentiable and/or non-convex problems Øourishing
in many scientiÆc Æelds such as biology, physics or engineering. As the name suggests,
gradient-free algorithms make no C 1 assumption on the objective function. Perhaps, the most
well known example is the Simplex based Nelder-Mead [NM65] algorithm. However, there are
many other methods such as COBYLA [Pow94] or Di�erential Evolution [SP97] and we refer
the reader to [RS13] for an excellent review on gradient-free methods. The main advantage of
these methods is the ability to Ænd global solutions in (2) regardless of the objective function.
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In contrast, the main drawback is a higher computational cost compared to gradient methods.

To conclude, we summarise the advantages of each approach in Table VIA.1.

Gradient-based Gradient-free

Convergence Speed Very Fast Slow
Global Solution Depends on problem Always

Smooth activation
function needed

Yes to apply Theorem 2 No

Accurate gradient
approximation needed

Yes No

Table VIA.1: Comparison of Gradient vs. Gradient-free methods.

3 Numerical experiments

In our numerical experiments we demonstrate that the accuracy of the approximation network
indeed remains within the accuracy of the Monte Carlo error bounds and proclaimed in the
introductory sections’ objectives. For this we Ærst compute the benchmark Monte Carlo errors
in Figures VIA.4-VIA.5 and compare this with the neural network approximation errors in
Figures VIA.6 and VIA.7. For this separation into steps (i) and (ii) to be computationally
meaningful, the neural network approximation has to be a reasonably accurate approximation
of the true pricing functionals and each functional evaluation (i.e. evaluation an option price
for a given price and maturity) should have a considerable speed-up in comparison to the
original numerical method. In this section we demonstrate that our network achieves both of
these goals.

3.1 Numerical accuracy and speed of the price approximation for vanillas

As mentioned in Section 1 one crucial di�erence that sets apart this work from direct neural
network approaches, as pioneered by Hernandez [Her16], is the separation of (i) the implied
volatility approximation function, mapping from parameters of the stochastic volatility model
to the implied volatility surface–thereby bypassing the need for expensive Monte-Carlo
simulations—and (ii) the calibration procedure, which (after this separation) becomes a simple
deterministic optimisation problem. As outlined in Section 1.3 our aim for the Step (i) in the
two-step training approach is to achieve a considerable speedup per functional evaluation
of option prices while maintaining the numerical accuracy of the original pricer. Here we
demonstrate how our NN training for Step (i) achieves these goals outlined in Section 1.3:

1. Approximation accuracy: here we compare the error of the approximation network error
to the error of Monte Carlo evaluations. We compute Monte Carlo prices with 60,000

paths as reference at the nodes where we compute the implied volatility grid using
Algorithm 3.5 in Horvath, Jacquier and Muguruza [HJM17]. In Figures VIA.4 and VIA.5
the approximation accuracy of the Monte Carlo method for the full implied volatility
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surface is computed using pointwise relative error with respect to the 95% Monte Carlo
conÆdence interval. Figures VIA.6 and VIA.7 demonstrate that the same approximation
accuracy for the neural network is achieved as for the Monte Carlo approximation (i.e.
within a few basis points). For reference, the spread on options is around 0.2% in implied
volatility terms for the most liquid and those below a year. This translates into 1% relative
error for a implied volatility of 20%.

2. Approximation speed: Table VIB.1 shows the CPU computation time per functional
evaluation of a full surface under two di�erent models; rBergomi 3 and 1 Factor Bergomi
6 (for a reminder see Section 3.1.1 for details).

MC Pricing
1F Bergomi
Full Surface

MC Pricing
rBergomi

Full Surface

NN Pricing
Full Surface

NN Gradient
Full Surface

Speed up
NN vs. MC

Piecewise constant
forward variance

300,000µs 500,000µs 30.9µs 113µs 9,000°16,000

Table VIA.2: Computational time of pricing map (entire implied volatility surface) and
gradients via Neural Network approximation and Monte Carlo (MC). If the forward variance
curve is a constant value, then the speed-up is even more pronounced

Figure VIA.4: Error metrics for rough Bergomi prices obtained by Monte-Carlo evalua-

tions.

As benchmark we recall average relative errors of Monte Carlo prices computed across 80,000

random parameter combinations of the Rough Bergomi model. Relative errors are given
in terms of Average-Standard Deviation-Maximum (Left-Middle-Right) on implied volatility
surfaces in the Rough Bergomi model, computed using 95% conÆdence intervals.
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Figure VIA.5: Error metrics for 1 Factor Bergomi prices obtained by Monte-Carlo

evaluations.

As benchmark we recall average relative errors of Monte Carlo prices computed across 80,000

random parameter combinations of the 1 Factor Bergomi model. Relative errors are given
in terms of Average-Standard Deviation-Maximum (Left-Middle-Right) on implied volatility
surfaces in the 1 Factor Bergomi model, computed using 95% conÆdence intervals.

3.1.1 Neural network price approximation in (rough) Bergomi models with piecewise

constant forward variance curve

We consider a piecewise constant forward variance curve ª0(t ) =
Pn

i°1
ªi 11{ti°1<t<ti } where

t0 = 0 < t1 < ... < tn and {ti }i = 1, ..,n are the option maturity dates (n = 8 in our case). This
is the modelling approach suggested by Bergomi [Ber15]. We will consider again the rough
Bergomi 3 and 1 Factor Bergomi models 6

• Normalized parameters as input and normalised implied volatilities as output

• 4 hidden layers with 30 neurons and Elu activation function

• Output layer with Linear activation function

• Total number of parameters: 6808

• Train Set: 68,000 and Test Set: 12,000

• Rough Bergomi sample:(ª0,∫,Ω, H) 2U [0.01,0.16]8£U [0.5,4.0]£U [°0.95,°0.1]£U [0.025,0.5]

• 1 Factor Bergomi sample:(ª0,∫,Ω,Ø) 2 U [0.01,0.16]8 £U [0.5,4.0] £U [°0.95,°0.1] £
U [0,10]

• strikes={0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,1.5}

• maturities={0.1,0.3,0.6,0.9,1.2,1.5,1.8,2.0}
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• Training data samples of Input-Output pares are computed using Algorithm 3.5 in
Horvath, Jacquier and Muguruza [HJM17] with 60,000 sample paths and the spot
martingale condition i.e. E[St ] = S0, t ∏ 0 as control variate.

Figure VIA.6: Error metrics for rough Bergomi prices obtained by neural network

approximation.

We compare surface relative errors of the neural network approximator against the Monte
Carlo benchmark across all training data (68,000 random parameter combinations)in the rough
Bergomi model. Relative errors are given in terms of Average-Standard Deviation-Maximum
(Left-Middle-Right).

Figure VIA.7: Error metrics for 1 Factor Bergomi prices obtained by neural network

approximation.

We compare surface relative errors of the neural network approximator against the Monte Carlo
benchmark across all training data (68,000 random parameter combinations)in the 1 Factor
Bergomi model. Relative errors are given in terms of Average-Standard Deviation-Maximum
(Left-Middle-Right).

Figures VIA.6 and VIA.7 show that the average (across all parameter combinations) relative er-
ror between neural network and Monte Carlo approximations is far less than 0.5% consistently
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(left image in Figures VIA.6 and VIA.7) with a standard deviation of less than 1% (middle
image in Figures VIA.6 and VIA.7). The maximum relative error goes as far as 25%. We
conclude that the methodology generalises adequately to the case of non-constant forward
variances, by showing the same error behaviour.

3.2 Calibration speed and accuracy for implied volatility surfaces

Figure VIA.8 reports average calibration times on test set for di�erent parameter combinations
on each of the models analysed. We conclude that gradient-based optimizers outperform (in
terms of speed) gradient-free ones. Moreover, in Figure VIA.8 one observes that computational
times in gradient-free methods are heavily a�ected by the dimension of the parameter space,
i.e. Øat forward variances are much quicker to calibrate than piecewise constant ones. We Ænd
that Lavenberg-Marquardt is the most balanced optimizer in terms of speed/convergence and
we choose to perform further experiments with this optimizer. The reader is encouraged to
keep in mind that a wide range of optimizers is available for the calibration and the optimal
selection of one is left for future research.

Figure VIA.8: Average calibrations times for all models using a range of optimizers.

In order to assess the accuracy, we report the calibrated model parameters bµ compared to the
synthetically generated data with the set of parameters µ that was chosen for the generation of
our synthetic data. We measure the accuracy of the calibration via parameter relative error i.e.

ER (bµ) =
|bµ°µ|

|µ|

as well as the root mean square error (RMSE) with respect to the original surface i.e.

RMSE(bµ) =

vuut
nX

i=1

mX

j=1

( eF (bµ)i j °æMK T
BS

(Ti ,k j ))2.
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Therefore, on one hand a measure of good calibration is a small RMSE. On the other hand,
a measure of parameter sensitivity on a given model is the combined result of RMSE and
parameter relative error.

3.2.1 A calibration experiment with simulated data in (rough) Bergomi models with

piecewise constant forward variances

We consider the rough Bergomi model (3) and the Bergomi model (6) with a piecewise constant
term-structure of forward variances. Figures VIA.9 and VIA.10 show that the 99% quantile of
the RMSE is below 1% and shows that the Neural Network approach generalises properly to
the piecewise constant forward variance. Again, we Ænd that the largest relative errors per
parameter are concentrated around 0, consequence of using the relative error as measure. This
suggests a successful generalisation to general forward variances, which to our knowledge has
not been addressed before by means of neural networks or machine learning techniques.

Figure VIA.9: Synthetic parameter and implied volatility surface error of the neural

network based calibration for the rough Bergomi model.

Cumulative Distribution Function (CDF) of Rough Bergomi parameter relative errors (left)
and RMSE (right) after Levengerg-Marquardt calibration across test set random parameter
combinations.
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Figure VIA.10: Synthetic parameter and implied volatility surface error of the neural

network based calibration for the 1 Factor Bergomi model.

Cumulative Distribution Function (CDF) of 1 Factor Bergomi parameter relative errors (left)
and RMSE (right) after Levengerg-Marquardt calibration across test set random parameter
combinations.

3.2.2 Calibration in the rough Bergomi model with historical data

As previously mentioned, the natural use of neural network approximators is the model
calibration to historical data. We discussed that as along as the approximation is accurate,
the calibration task should be performed within the given tolerance. Furthermore, one should
expect such tolerance to be aligned with the neural network accuracy obtained in both training
and test sets.

In this section we will perform a historical calibration using the neural network approxi-
mation and compare it with that of the brute force monte carlo calibration. Precisely we seek
to solve the following optimisation problem for the rough Bergomi model

ˆµr Ber g omi := argmin
µr Ber g omi2£r Ber g omi

5X

i=1

9X

j=1

( eF (µ)i j °æMK T
BS (Ti ,k j ))2.

where µr Ber g omi = (ª1,ª2,ª3,ª4,ª5,∫,Ω, H) and £
r Ber g omi = [0.01,0.25]5 £ [0.5,4]£ [°1,0]£

[0.025,0.5]. As for the time grid we choose

(T1,T2,T3,T4,T5) :=
1

12
£ (1,3,6,9,12)

and for the strike grid

ki := 0.85+ (i °1)£0.05 for i = 1, ...,9.

We consider SPX market smiles between 01/01/2010 and 18/03/2019 on the pre-speciÆed time
and strike grid. Figure VIA.11 shows the historical evolution of rough Bergomi parameters
calibrated to SPX using the neural network price. In particular we note that H <

1
2
as
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previously discussed in many academic papers [AGLM18, ALV07, BFG16, BFG+20, BFG+19,
BLP17, EER19, Fuk11, GJR18, JMM18, HJL19, JPS18], moreover we may conÆrm that under Q,
H 2 [0.1,0.15] as found in Gatheral, Jaisson and Rosenbaum [GJR18] under P. Figure VIA.12,
benchmarks the NN optimal Æt using Levenberg-Marquardt and Di�erential Evolution against
a brute force MC calibration via Levenberg-Marquardt. Again, we Ænd that the discrepancy
between both is below 0.2% most of the time and conclude that the Di�erential Evolution
algorithm does outperform the Levenberg-Marquardt. This in turn, suggests that the neural
network might not be precise enough on Ærst order derivatives. This observation, is left as
an open question for further research. Perhaps surprisingly, we sometimes obtain a better Æt
using the neural network than the MC pricing itself. This could be caused by the fact that
gradients in the neural network are exact, whereas when using MC brute force calibration we
resort to Ænite di�erences to approximate gradients.

201



VIA. Deep learning volatility

Figure VIA.11: Historical Evolution of parameters in the rough Bergomi model with a

piecewise constant forward variance term structure calibrated on SPX.

Figure VIA.12: Comparison of quality of Æt of di�erent calibration approaches.

The image above compares historical RMSE obtained by the neural network best Æt via
Levenberg-Marquardt (dashed orange line) and Di�erential Evolution (dotted purple line)
against the brute force MC calibration (green line) via Levenberg-Marquardt. Picture below
shows the di�erence against MC brute force calibration.

202



3. Numerical experiments

3.3 Numerical experiments with barrier options in the rough Bergomi model

In this section we show that our methodology can be easily extended to exotic options. To
do so we test our image-based approach on digital barrier options. We follow the same
architecture and experimental design described in Section 3.1 for the rough Bergomi model. As
described in Section 2.1.2 we adapt the objective function to the payo�s given in (17) and (18)
and replace the strike grid by a barrier level grid. Figure VIA.13 conÆrm the accuracy of the
neural network approximation with average absolute errors of less than 10bps with standard
deviation of 10bps.

Figure VIA.13: Error metrics for neural network approximation of exotic derivatives’

prices.

Picture above: Down-and-Out neural network absolute error analysis on test set. Picture below:
Down-and-In neural network absolute error analysis on test set.

Conclusions and outlook: “best-Æt” models

To sum up, neural networks have the potential to e�ciently approximate complex functions,
which are di�cult to represent and time-consuming to evaluate by other means. Using deep
neural networks, as we will do here, to approximate the pricing map (or equivalently the
implied volatility mapping) from parameters of traditional models to shapes of the implied
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volatility surface represented by grid of implied volatility values speeds up each functional
evaluation, while maintaining control over reliability and interpretability of network outputs.
The implicit grid based approach that we advocate here, also allows further applications that
opens up further landscapes for Ænancial modelling.

Potential applications and outlook towards mixture of “expert" models: In the previous
sections we set up a powerful approximation method to closely approximate implied volatilities
under di�erent stochastic models and highlighted that the choice of the objective function
(evaluation of the surface on a grid, inspired by pixels of an image) was crucial for the
performance of the network. Now we are interested in the inverse task and ask whether a neural
network—trained by this objective function to multiple stochastic models simultaneously—can
identify which stochastic model a given set of data comes from. By doing so, potential
applications we have in mind are twofold:

• Ultimately we are interested in which model (or what mixture of existing stochastic
models) best describes the market.

• From a more academic and less practical perspective, we are interested whether and to
what extent is it possible to“translate" parameters of one stochastic model to parameters
of another.

We conduct a further, preliminary experiment as a proof of concept in the classiÆcation setting.
We train a further neural network to identify which of three given stochastic volatility model
generated a given implied volatility surface.

Training procedure: Implied volatility surfaces in this experiment were generated by the
Heston, Bergomi and rough Bergomi models (see Section 1.1 for a reminder). For each volatility
surface, a “Øag" was assigned corresponding to the model (eg: 1 for Heston, 2 for Bergomi and
3 for rough Bergomi). The training set thus consists of surfaces of the form: (ßM (µ)

BS
, I ), where

M is one of the three models M
Heston, M

Bergomi, M
rBergomi, µ an admissible combination of

parameters for that model (thus in £
Heston, £Bergomi or £rBergomi) and I the Øag identifying the

model which generated the surface (I = 1 if M =M
Heston, I = 2 if M =M

Bergomi and I = 3 if
M =M

rBergomi).

We deÆne a mixture of these surfaces as ßM
Mixture((a,b,c))

:= aßM
Heston

+bßM
Bergomi

+cßM
rough Bergomi

,
where a,b,c ∏ 0 and a +b + c = 1. So far the training is suitable for recognition of a single
model surface (either a = 0,b = 0,c = 1, a = 0,b = 1,c = 0 or a = 1,b = 0,c = 0). To generalise
this to mixtures, we randomly select surfaces (one from each model) and compute the mixture
surface ß

M
Mixture((a,b,c))

= aßM
Heston

+bßM
Bergomi

+cßM
rough Bergomi

. The corresponding probabilities
are (a,b,c = 1°a °b).

Network Architecture: The classiÆer is a small, fully connected feedforward network for
the same reasons as those outlined in section 3.1. The network is composed of 2 hidden
layers (of 100 and 50 output nodes respectively) with exponentially linear activation functions

204



3. Numerical experiments

and an output layer with a softmax activation function. Thus, the output of the network
represents the probabilities of a given surface belonging to a particular model. We used
stochastic gradient descent with 20 epochs to minimize cross-entropy (the cross-entropy of
two discrete distributions (p, q) with K possible distinct values is H(p, q) :=°

P
1∑i∑K pi log qi .).

A numerical experiment on model recognition: We report on one of many experiments
here as a proof of concept: We test the method on mixtures of rough Bergomi and Heston
surfaces (hence setting b = 0 in the training). To vary the type of mixtures generated, we
chose a 2 {0,0.1, · · · ,0.9,1}. For each a, the mixture surface is computed as the convex com-
bination of a randomly chosen surface from the rough Bergomi and the Heston model, and
repeated 20 times. The training set has 320,000 surfaces. To further test the robustness
of the model, validation surfaces were generated using a Æner grid of mixture parameters:
a 2 {0,0.05, · · · ,0.95,1}. In total, the validation set is made up of 105,000 surfaces.

We report the classiÆers’ e�ectiveness and comment on the results in Figure VIA.14.

Figure VIA.14: Error of the neural network classiÆer depending on the mixture coe�cient

a.

Each point of the plot corresponds to the average estimated coe�cient by the neural network
for all mixture surfaces with a given a. For example, for a = 0, the surfaces are generated from
the rough Bergomi model. For each parameter combination from those surfaces, we compute
the predicted mixture coe�cient and average all of them over the validation set to report â.
The network never sets the mixture coe�cient very close to 1 or 0, attributing the surface to
one speciÆc model. This may be explained using Bayesian reasoning.
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CHAPTER VIB

On deep calibration of rough volatility

models

Abstract

Techniques from deep learning play a more and more important role for the important
task of calibration of Ænancial models. The pioneering paper by Hernandez [Risk, 2017]
was a catalyst for resurfacing interest in research in this area. In this chapter we advocate
an alternative (two-step) approach using deep learning techniques solely to learn the
pricing map – from model parameters to prices or implied volatilities. Having a fast and
accurate neural-network-based approximating pricing map (Ærst step), we can then (second
step) use traditional model calibration algorithms. In this work we showcase a direct
comparison of di�erent potential approaches to the learning stage and present algorithms
that provide a su�cient accuracy for practical use. In particular provide the Ærst and
simplest neural network-based calibration methods for rough volatility models with a
constant intitial volatility for which calibration can be done on the Øy. We demonstrate the
method via a hands-on calibration engine on the rough Bergomi model, for which classical
calibration techniques are di�cult to apply due to the high cost of all known numerical
pricing methods. Furthermore, we display and compare di�erent types of sampling and
training methods and elaborate on their advantages under di�erent objectives. As a
further application we use the fast pricing method for a Bayesian analysis of the calibrated
model.

From:
On deep calibration of (rough) stochastic volatility models
C. Bayer, B. Horvath, A. Muguruza, B. Stemper, M. Tomas

Introduction

Almost half a century after its publication, the option pricing model by Black, Scholes and
Merton remains one of the most popular analytical frameworks for pricing and hedging
European options in Ænancial markets. A part of its success stems from the availability of
explicit and hence instantaneously computable closed formulas for both theoretical option
prices and option price sensitivities to input parameters (Greeks), albeit at the expense of
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Figure VIB.1: SPX Market Implied Volatility surface on 15th February 2018.

IVs have been inverted from SPX Weekly European plain vanilla call mid prices and the
interpolation is a (non-arbitrage-free) Delaunay triangulation. Axes denote log-moneyness
m = log(K /S0) for strike K and spot S0, time to maturity T in years and market implied
volatility æiv(m,T ).

assuming that volatility – the standard deviation of log returns of the underlying asset price –
is deterministic and constant. Still, in Ænancial practice, the Black-Scholes model is considered
as the sophisticated transform between option prices and Black-Scholes (BS) implied volatility
(IV) æiv where the latter is deÆned as the constant volatility input needed in the BS formula to
match a given (market) price. It is a well-known fact that in empirical IV surfaces obtained by
transforming market prices of European options to IVs, it can be observed that IVs vary across
moneyness and maturities, exhibiting well-known smiles and at-the-money (ATM) skews and
thereby contradicting the Øat surface predicted by Black-Scholes (Figure VIB.1). In particular,
Bayer, Friz, and Gatheral [BFG16] report empirical at-the-money volatility skews of the form

ØØØØ
@

@m
æiv(m,T )

ØØØØª T °0.4, T ! 0, (1)

for log moneyness m and time to maturity T .
While plain vanilla European call and put options often show enough liquidity to be marked-to-
market, pricing and hedging path-dependent options (so-called exotics) necessitates an option
pricing model that prices European options consistently with respect to observed market IVs
across moneyness and maturities. In other words, it should parsimoniously capture stylized
facts of empirical IV surfaces. In the past, in order to address the shortcomings of standard
models such as Black-Scholes and to incorporate the stochastic nature of volatility itself,
popular bivariate di�usion models such as SABR [HKLW02] or Heston [Hes93] have been
developed to capture some important stylized facts. However, according to Gatheral [Gat11],
di�usive stochastic volatility models in general fail to recover the exploding power-law nature
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(1) of the volatility skew as time to maturity goes to 0 and instead predict a constant behaviour.

Sparked by the seminal work of [ALV07, Fuk11, GJR18], we have since seen a shift from
classical di�usive modeling towards so-called rough stochastic volatility models. They may
be deÆned as a class of continuous-path stochastic volatility models where the instantaneous
volatility is driven by a stochastic process with Hölder regularity smaller than Brownian
Motion, typically modeled by a fractional Brownian Motion with Hurst parameter H <

1
2
. The

evidence for this paradigm shift is by now overwhelming, both under the physical measure
where time series analysis suggests that log realized volatility has Hölder regularity in the
order of º 0.1 [BLP17, GJR18] and also under the pricing measure where the empirically
observed power-law behaviour of the volatility skew near zero may be reproduced in the model
[ALV07, BFG16, BFG+19, Fuk11]. Serious computational and mathematical challenges arise
from the non-Markovianity of fractional Brownian motion, e�ectively forcing researchers to re-
sort to asymptotic expansions [BFG+19, FZ17] in limiting regimes or (variance-reduced) Monte
Carlo schemes [BFG+20, BFG16, HJM17, MP18] to compute fair option prices. This poses
considerable bottlenecks for calibration of rough volatility models for practical purposes. One
contribution of this work is to provide and explore di�erent neural network based solutions to
the task of fast calibration of rough volatility models.

Remark 1. State of the art models usually super-impose a local volatility over a stochastic volatility

backbone model, in order to combine realistic dynamics – as achieved with stochastic volatility –

with exact Æt of traded vanilla options. In this framework, calibration of a rough volatility backbone

model can be seen as the Ærst step of the total calibration procedure, which is then complemented by

a particle method, see [Mug19] or [GHL12].

The solution we provide here is demonstrated on the rough Bergomi model but due to the
nature of neural network approximations (as opposed to static polynomial approximations)
it is fundamentally model agnostic and it consistently1 carries over to other rough volatility
models (of the same complexity) and to classical stochastic volatility models, which are by
nature simpler to approximate.

The “need for speed" is by no means limited to rough volatility models, although our initial
motivation was indeed the rough Bergomi model. Parallel to this work, Ferguson and Green
address in [FG18, Section 1.1] the ongoing struggle for faster pricing algorithms for more and
more complex products and propose a deep learning approach to pricing basket options
in a lognormal setting to achieve considerable speed-ups over Monte Carlo pricers. High
dimensional problems as in [FG18] are one useful applications of the speedup resulting from
this methodology. But it can also enable us to speed up more involved numerical methods for
benchmark stochastic volatility models: multiple integrals [AKS19], Monte Carlo-type methods

1By consistency we mean here that the proposed network (with the same architecture) can be trained on
di�erent models consistently without further modiÆcations and yield satisfactory results irrespective of the chosen
model for training. Our numerical experiments show that for the calibration of classical stochastic volatility models
(SABR, Heston) a simpler network architecture is su�cient, while rough volatility models require a more nuanced
network design.
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[LGO17a] or Finite Element Methods [HR18] for the SABR model can thus compete in speed
with the original SABR expansion formula [HKLW02], by pre-learning them through the DNN.

In related contexts deep BSDE solvers have been used to replace Monte Carlo methods for
solving Backward Stochastic Di�erential Equations in high dimension [HJW18, HL17, VSS18]
which can arise from pricing problem. Other authors used computational speedups pro-
vided by neural networks in the context of computationally expensive valuation adjustments
[Gre15, HL17].

The work we present here is very much in the spirit of the pioneering work of Avellaneda,
Carelli and Stella [MA99]. Our focus in this work is on model calibration of stochastic volatiliy
models and we propose computationally e�cient and ready-to-use algorithms that can be
applied to a variety of settings. Bearing in mind that deep neural network solutions are
often challenged by concerns of generalisation and “black-box-solutions", our goal is to limit
the application of neural networks to parts of the calibration process that we can control
and validate. As a Ærst step, we identify the parts of the calibration process that are mainly
responsible for the prevailing calibration bottlenecks, which we will replace by a deep neural
network.

In this context, we distinguish two kinds of approaches. The Ærst, pioneered by Hernan-
dez [Her16], seeks to learn the mapping from implied volatility surfaces to model parameters
(inverse problem) directly. In [Her16], Hernandez proposes to use a neural network to learn
the complete calibration routine taking market data as inputs and returning calibrated model
parameters, and calibrates the popular short rate model of Hull and White [HW90] to market
data in numerical experiments. In Section 2.1 we describe this approach in more detail and
perform a similar calibration experiment with the Heston Model.

In the rest of this chapter, we will refer to it as the one-step approach. In a second strand of
research neural networks have been applied not directly to calibration problems, but simply to
obtain an approximated representation of derivative valuations, i.e. of option pricing maps:
For example Hutchinson, Lo and Poggio [HLP94] such as Culkin and Das [CD17] applied
neural networks to learn the Black-Scholes formula and McGhee demonstrates in [McG18] a
neural networks representation of the lognormal SABR model. In this chapter we explore the
advantages of shaping this second strand of research into a building block of a single two-step
approach2.

The two-step approach, which we highlight in this chapter, Ærst approximates the pricing
map, (denoted, by ' from model parameters to option prices) by a neural network (Step (i))
before calibrating the model, (via traditional calibration algorithms applied to the approximate
pricing map 'NN) to market data (Step (ii)). Thereby we optimally leverage the capability
of neural networks to approximate functions which are only implicitly available through

2Later works of Liu et al [LBGO19] further develop this line of research by developing sophisticated methods
to speed up the training process for Markovian stochastic volatility models.
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input-output pairs {(xi ,¡(xi ))}N
i=1

, by training a fully-connected neural network on speciÆcally
tailored, synthetically generated training data to learn an approximative representation 'NN

of the pricing functional '. Details of this approach and its beneÆts are further explained in
Section 2.

In particular, in Section 2.2 we compare two network architectures and sampling meth-
ods according to di�erent modelling objectives. Among these, the grid-based approach is
particularly designed for applicability and e�ciency in every day calibration practice. The
novelty of our grid-based approach will allow us to tackle the calibration problem with a
remarkably small neural network (3 layers and 30 neurons each), which to the best of our
knowledge is the smallest network in the literature to successfully solve the calibration/pricing
task. Moreover, the architecture of the problem easily permits that the proposed method
can run on a standard PC (with or without GPU) and it is not necessary to use server side
resources for computations. This in turn, opens the door to its practical implementation in the
Ænancial industry without the need to update current hardware systems.

The overall beneÆts of the two-step approach are plentiful:

• First, evaluations of 'NN amount to cheap and almost instantaneous forward runs of a
pre-trained network. Second, automatic di�erentiation of 'NN with respect to the model
parameters returns fast and accurate approximations of the Jacobians needed for the
LM calibration routine. Used together, they allow for the e�cient calibration of any
(rough) stochastic volatility model including rough Bergomi.

• The two-step approach also has overwhelming risk management beneÆts. Firstly, we can
understand and interpret the output of our neural network and therefore test the output
as a function of model parameters against traditional numerical methods. (Indeed, the
output values correspond to option prices in the model under consideration.) The second
overwhelming advantage is that existing risk management libraries of models remain
valid with minimal modiÆcation. The neural network is only used as a computational
enhancement of models, and therefore, the knowledge and intuition gathered in many
years of experience with traditional models remains useful.

• The training becomes more robust (with respect to generalisation errors on unseen data).
Additionally, the trained network is independent from market data, and, in particular,
from changing market environments.

• We can train the network to synthetic data – model prices or implied volatilities
computed by any adequate numerical method. In particular, we can easily provide as
large training sets as desired.

Both generating the synthetic data set as well as the actual neural network training are
expensive in time and computing resource requirements, yet they only have to be performed a
single time. Trained networks may then be quickly and e�ciently saved, moved and deployed.
We demonstrate this Ærst advantage in a further application: a Bayesian calibration experiment,
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which is facilitated by our ability to nearly instantaneously call functional evaluations of option
prices in a given model. To quantify the uncertainty about model parameter estimates obtained
by calibrating with 'NN, we infer model parameters in a Bayesian spirit from (i) a synthetically
generated IV surface and (ii) SPX market IV data. In both experiments, a simple (weighted)
Bayesian nonlinear regression returns a (joint) posterior distribution over model parameters
that (1) correctly identiÆes sensible model parameter regions and (2) places its peak at or close
to the true (in the case of the synthetic IV) or previously reported [BFG16] (in the case of the
SPX surface) model parameter values. Both experiments thus conÆrm the idea that 'NN is
su�ciently accurate for calibration.

The chapter is organised as follows: In Section 1 we present an abstract point of view
on model calibration in Ænance. In Section 2 we give an overview of applications of techniques
from deep learning to model calibration. We also introduce our own framework and discuss
possible advantages and disadvantages as compared to other approaches. In Section 3 we
focus on the concrete implementation of our methods, both for the learning and for the actual
calibration stage. Numerical experiments are then presented in Section 4. In addition, we
also apply the network in a Bayesian approach. The Appendix VIB.A contains a numerical
comparison with an alternative deep learning approach to calibration.

1 Model calibration revisited

Calibration describes the procedure of tuning model parameters to Æt a model surface to an
empirical implied volatility surface obtained by transforming liquid European option market
prices to Black-Scholes implied volatilities. A mathematically convenient approach consists of
minimizing the weighted squared di�erences between market and model implied volatlities of
N 2N plain vanilla European options.

Suppose that a model is parametrized by a set of parameters £, i.e., by µ 2 £. We refer
to Example VIB.1 for a concrete example. Furthermore, we consider options parametrized
by a parameter ≥ 2 Z . E.g., for put and call options we generally have ≥= (T,k), the option’s
maturity and log-moneyness. There might be further parameters which are needed to compute
prices but can be observed on the market and, hence, do not need to be calibrated. For
instance, the spot price of the underlying, the interest rate, or the forward variance curve in
Bergomi-type models (see [Ber15]) falls under this type. For this quick overview, we ignore this
category. We introduce the pricing map

(µ,≥) 7! P (µ,≥), (2)

the price of an option with parameters ≥ in the model with parameters µ. It is this map (2)
that we will learn by a neural network in the following sections either directly, for some (simple
or exotic) payo� functions ≥, or indirectly, by learning the implied volatility map

µ 7!æ(µ,K ,T ), (3)
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of vanilla payo�s ≥(·,K ,T ) ¥ ( · |T °K )+ for some T,K > 0. Financial practice often prefers to
work with implied volatilities rather than option prices, and we will also do so in the numerical
parts of this chapter containing vanilla contracts. For the purpose of this introduction, any
mentioning of a price may be, mutatis mutandis, replaced by the corresponding implied
volatility.

Observations of market prices P (≥) for options are parametrized by ≥ for a (Ænite) sub-
set ≥ 2 Z 0 Ω Z of all possible option parameters.
When the model is calibrated, a model parameter µ is identiÆed which minimizes a distance ±

between model prices (P (µ,≥))≥2Z 0 and observed market prices (P (≥))≥2Z 0 , i.e.,

bµ = argmin
µ2£

±
°
(P (µ,≥))≥2Z 0 , (P (≥))≥2Z 0

¢
. (4)

Hence, the faster each model price (P (µ,≥)) can be computed, the faster the calibration routine.

The most common choice of a distance function ± is a suitably weighted least squares
function, i.e.,

bµ = argmin
µ2£

X

≥2Z 0
w≥ (P (µ,≥)°P (≥))2 .

Here, the weights w≥ can be chosen in order to reØect importance of an option at ≥ and the
reliability of the market observation P (≥). For instance, a reasonable choice might be the
inverse of the bid-ask spread (see [Con10] for a motivation), which puts low weight on prices of
illiquid options.

As long as the number of model parameters is smaller than the number |Z 0| of calibra-
tion instruments, the calibration problem is an example of an overdetermined non-linear least
squares problem, usually solved numerically using iterative solvers such as the de-facto stan-
dard Levenberg-Marquardt (LM) algorithm [Lev44, Mar63]. Let J = J (µ) denote the Jacobian
of the map µ 7! (P (µ,≥)≥2Z 0 and let

R(µ) := (P (µ,≥)°P (≥))≥2Z 0

denote the residual, then the Levenberg-Marquart algorithm iteratively computes increments
¢µk := µk+1 °µk by solving £

J T W J +∏I
§
¢µk = J T W R (5)

where I denotes the identity matrix, W = diag
°
w≥

¢
, and ∏ 2R.

It is hence necessary that the normal equations (5) be quickly and accurately solved for the
iterative step ¢µk . In a general (rough) stochastic volatility setting this is problematic: The
true implied volatility map as well as its Jacobian J are unknown in analytical form. In the
absence of an analytical expression for ¢µk , an immediate remedy is:

(I) Replace the (theoretical) true pricing (or implied volatility) map P by an e�cient
numerical approximation P̃ such as Monte Carlo, Fourier pricing.

(II) Apply Ænite-di�erences to P̃ to compute an approximate Jacobian J̃ .
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VIB. On deep calibration of rough volatility models

Algorithm 1: Levenberg-Marquart calibration

Input: Implied vol map eP and its Jacobian eJ , market quotes P

Parameters : Initialise Lagrange multiplier ∏> 0, maximum number of iterations nmax,
minimum tolerance of step norm "min, bounds 0 <Ø0 <Ø1 < 1

Result: Calibrated model parameters µ?

1 initialize model parameters µ = µ0 and step counter n = 0;
2 compute eR(µ) = eP (µ)°P and eJ (µ) and solve normal equations (5) for ¢µ;
3 while n < nmax and

R1
0 ¢µ2 > " do

4 compute relative improvement cµ =

R1
0

eR(µ)2°
R1

0
eR(µ+¢µ)2R1

0
eR(µ)2°

R1
0

eR(µ)+eJ (µ)¢µ2

with respect to predicted

improvement under linear model;
5 if cµ ∑Ø0 then reject ¢µ, set ∏= 2∏;
6 if cµ ∏Ø1 then accept ¢µ, set µ = µ+¢µ and ∏=

1
2
∏;

7 compute eR(µ) and eJ (µ) and solve normal equations (5) for ¢µ;
8 set n = n +1;
9 end

In particular, in many (rough) stochastic volatility models such as the rough Bergomi model
(see Example VIB.1), expensive Monte Carlo simulations have to be used to approximate the
pricing map (see [HJM17] or [BLP17] for details). In a common calibration scenario where the
normal equations (5) have to be solved frequently, the approach outlined above thus renders
calibration prohibitively expensive.

Remark 2. We note that many modern tensor-based machine learning frameworks are ideally

suited for calibration tasks because they directly provide gradients of the output variable by use of

automatic di�erentiation.

We would like to emphasize that our methodology can in principle be applied to any model
with Ænitely many parameters, from the classical Black Scholes or Heston models to the rough
Bergomi model of [BFG16], also to large class of rough volatility models (see Horvath, Jacquier
and Muguruza [HJM17] for a general setup). In fact the methodology is not limited to stochastic
models, also parametric models of implied volatility could be used for generating training
samples of abstract models, but we have not pursued this direction further. For the sake of
concreteness, we give an example of one rough volatility model, since computational costs of
available numerical methods are especially limiting for this model class.

Example VIB.1. In the abstract model framework, the rough Bergomi model [BFG16] is represented

by M
rBergomi(£rBergomi), with parameters µ = (ª0,¥,Ω, H) 2£

rBergomi. For instance, we may choose

£
rBergomi

=R> 0£R> 0£ [°1,1]£]0,1/2[,

to stay in a truly rough setting. The model corresponds to the following system for the log price X

214



2. Deep calibration

and the instantaneous variance V :

d X t =°
1

2
Vt d t +

p
Vt dWt , for t > 0, X0 = 0, (6a)

Vt = ª0(t )E

µp
2H¥

Zt

0
(t ° s)H°1/2d Zs

∂
, for t > 0, V0 = v0 > 0, (6b)

where H denotes the Hurst parameter, ¥ > 0 , E (·) the Wick exponential, and ª0(·) > 0 denotes

the initial forward variance curve (see [Ber15, Section 6]), and W and Z are correlated standard

Brownian motions with correlation parameter Ω 2 [°1,1]. In this work, we shall consider the

constant forward variance case ª0(t ) := ª0 ∏ 0 and address more general forward variance setups in

a separate work.

2 Deep calibration

In the following sections we elaborate on the objectives and advantages of this two step
calibration approach and present examples of neural network architectures, precise numerical
recipes and training procedures to apply the two step calibration approach to a family of
stochastic volatility models. We also present some numerical experiments and report the
learning errors compared to chosen parameters of the synthetic data.
There are several advantages of separating the tasks of pricing and calibration. Above all,
the most appealing reason is that it allows us to build upon the knowledge we have gained
about the models in the past decades, which is of crucial importance from a risk management
perspective. By its very design, (i) deep learning the price approximation combined with (ii)

deterministic calibration does not cause more headache to risk managers and regulators
than the corresponding stochastic models do. Designing the training as described above
demonstrates how deep learning techniques can successfully extend the toolbox of Ænancial
engineering, without imposing the need for substantial changes in our risk management
libraries.

2.1 One-step approach: Deep calibration by the inverse map

An increasingly popular approach in quantitative Ænance (and many other Æelds of engineering)
is to develop purely data-driven frameworks, without relying on formal models. While this
approach bears many advantages, this kind of modelling is still relatively new and several
risk-management considerations are not yet addressed. In its current state this approach leaves
for example the meaning of calibrated network parameters unexplained, not to mention the
ambiguity about the choice of the number of network parameters and network design. This
can cause major challenges towards today’s regulatory requirements. In addition, issues of
generalisation – how can one price exotic options in a network trained with vanilla option
data, to give a simple example – are di�cult to analyse, and traditional paradigms of Ænance –
such as no arbitrage – are hard to guarantee in the absence of a model. We refer to the works
[BHL+20, JL19] for examples of data driven modelling frameworks.
A second, more model based approach was proposed in the pioneering work of Hernan-
dez [Her16], followed by several other authors such as Stone [Sto20], Dimitro�, Röder and
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Fries [DRF18] and many others. A main characteristic of the neural network proposed by
[Her16] is that option price approximation and parameter calibration are done in one step
within the same network. Indeed, the idea is to directly learn the whole calibration problem,
i.e., to learn the model parameters as a function of the market prices (typically parametrized
as implied volatilities). In the formulation of Section 1, this means that we learn the mapping

¶
°1 : (P (≥))≥2Z 0 7! bµ.

More precisely, [Her16] trains a deep neural network based on labelled data (xi , yi ), i = 1, . . . , N ,
with

xi = (P (≥))≥2Z 0
i

for day ti (in the past) and the corresponding labels

yi = bµi ,

obtained from calibrating the model to the market data yi using traditional calibration routines.
The number of labelled data points N is, of course, limited to the amount of (reliable) historical
market price data available.
In spite of the promising results by Hernandez [Her16] the main drawback of this approach,
as Hernandez observes, is the lack of control on the function ¶

°1. Furthermore, from a risk
management perspective one has no guarantee how well the learned mapping of ¶°1 will solve
the calibration problem when exposed to unseen data. In fact, this is the behaviour observed
in Hernandez [Her16], since the out of sample performance tends to di�er from the in sample
one, suggesting a not fully satisfactory generalisation of the learned map. We recover the same
behaviour of the inverse map in our own experiments, which we included in Appendix VIB.A.

2.2 Two-step approach:

Learning the pricing map (or implied volatility map) of models

The two step approach is somewhere mid-way between a sole reliance on traditional pricing
methods (Monte Carlo, Ænite elements, Ænite di�erences, Fourier methods, asymptotic methods
etc.) and the direct approach described above that calibrate directly to the price data. Here,
one separates the calibration procedure as described in Section 1 (i) We Ærst learn (approximate)
the pricing map by a neural network that maps parameters of a stochastic model to prices or
implied volatilities. In other words, we set up and train (o�-line) a neural network to learn the
pricing map P . In a second step (ii) we calibrate (on-line) the model – as approximated by
the neural network trained in step (i) – to market data using a standard calibration routine.
To formalise the two step approach, for an option parametrized by ≥ and a model M with
parameters µ 2£ we write eP (µ,≥) º P (µ,≥) for the approximation eP of the true pricing map P

based on a neural network. Then, in the second step, for a properly chosen distance function
± (and a properly chosen optimization algorithm) we calibrate the model by computing

bµ = argmin
µ2£

±
≥° eP (µ,≥)

¢
≥2Z 0 , (P (≥))≥2Z 0

¥
. (7)
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In principle, this method is not unlike traditional calibration routines, as the true option
price has to be numerically approximated for all but the most simple models. This particular
approximation method tends to be orders of magnitudes faster compared to other numerical
approximation methods for all tested models. In particular, note that the (slow) training stage
of the neural network itself only has to be done once. We will come back to comparisons of
actual computational times in the numerical section of this chapter.
At this stage, we note that the deep calibration routine is not yet speciÆed in any details: apart
from purely numerical details such as the choice of the architecture of the neural networks, the
loss functions and optimization algorithms of both the training of the neural networks in stage
(i) and the actual calibration in stage (ii), one particularly important choice is whether the
neural network learns implied volatilities of individual options or rather a full implied volatility
surface. Before discussing these details, let us already highlight some of the di�erences to
the one-step approach of [Her16]. In principle, the one-step approach is orders of magnitude
faster by construction, however we will demonstrate in Section 4 that the two-step approach
calibrates within milliseconds making the speed di�erence irrelevant in practice. Moreover, we
see the main beneÆt of the two-step approach in the increased stability, which is inØuenced by
two key di�erences:

• As the neural network is only responsible for option pricing in the model, synthetic data
is used for training. Hence, we can easily increase the number of training data, and the
training data are completely unpolluted from market imperfections.

• The two-step approach induces a natural decomposition of the overall calibration error
into a pricing error (from the neural network) and a model misÆt to the market data.
Hence, the performance of the neural network itself is generally independent of changing
market regimes – which might, of course, change the suitability of the model under
consideration.

These points, in particular, imply that frequent re-training of the neural network is not needed
in the two-step approach.

2.2.1 The two step approach: Pointwise training and implicit and grid-based training

The underlying principle of the two-step approach appears in one way or another in a num-
ber of related contributions De Spiegeleer, Madan, Reyners and Schoutens [DSMRS18] and
McGhee [McG18]. In fact, the early works of Hutchinson, Lo and Poggio [HLP94] and the
more recent work of Culkin and Das [CD17]–where Deep Neural Networks are applied to
learn the Black-Scholes formula–can be recognised as Step (i) of the two-step approach in
a Black-Scholes context. Also Ferguson and Green [FG18] examine Step (i) of the two-step
approach in [FG18] for basket options in a lognormal context and observe that the network
even has a smoothing e�ect and increased accuracy in comparison to the underlying Monte
Carlo prices. In this section, we examine its advantages and present an analysis of the objective
function with the goal to enhance learning performance. Within this framework, the pointwise
approach has the ability to asses the quality of eP using Monte Carlo or PDE methods, and
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indeed it is superior in terms of robustness.

Pointwise learning

Step (i): Learn the map eP (µ,T,k) = eæM (µ)(T,k) – that is in equation (7) above we have ≥= (T,k).
In the case of vanilla options (≥ = (T,k)) one can rephrase this learning objective as
an implied volatility problem: In the implied volatility problem the more informative
implied volatility map eæM (µ)(T,k) is learned, rather than call- or put option prices
eP (µ,T,k). We denote the artiÆcial neural network by eF (w ;µ,≥) as a function of the
weights w of the neural network, the model parameters µ and the option parameters ≥.
The optimisation problem to solve is the following:

b! := argmin
w2Rn

NTrainX

i=1

¥i ( eF (w ;µi ,Ti ,ki )° eæM (µi ,Ti ,ki ))2. (8)

where ¥i 2R>0 is a weight vector.

Step (ii): Solve the classical model calibration problem for the market quotes {æMKT
BS

(k j ,T j )}m
j=1

bµ := argmin
µ2£

mX

j=1

Ø j ( eF ( bw ;µi ,Ti ,ki )°æMKT
BS (k j ,T j ))2.

for some user speciÆed weights Ø j 2R>0, where now the (numerical approximation of the) op-
tion price eP (µ,T,k) resp. implied volatility eæM (µ)(T,k) is replaced by the DNN approximation
eF (b!;µ,T,k) obtained in Step (i). We note here that eF ( bw ;µi ,Ti ,ki ) being a Neural Network, all
gradients with respect to (µ,T,k) are available in closed-form and are fast to evaluate.

The critical part is, of course, the Ærst step, as the second one merely corresponds to
classical calibration against liquid options. For the Ærst step, key issues are the choice of
training data and the architecture of the neural network. Regarding the training data, the
general idea is as follows:

1. Choose realistic “prior” distributions for both model parameters µ and option param-
eters ≥ (= (T,k) in the above notation). The point is that many theoretically possible
parameters are very unlikely to ever occur in real markets, for both model and option
parameters. Hence, it is wasteful to spend resources to learn the pricing map for, say,
maturities in the range of hundreds of years. The simplest choice is to simply impose uni-
form distributions on truncated parameter ranges, but nothing prevents more “informed”
possibilities, for instance taking into account historical distributions of estimated model
parameter values or observed option parameter values.

2. Simulate model and option parameters according to the distribution chosen before
and compute the corresponding option price or implied volatility, which serves as label
for the respective parameter vector. The computation can be done for any available
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numerical method, for instance Monte Carlo simulation. As an aside, this mechanism
can, of course, be used to produce training, testing and validation data in the sense of
the machine learning literature.

Remark 3. Note that the above mentioned “informed” parameter distributions could also be encoded

as weights into the loss function for the training of the neural network.

Remark 4. Instead of simulation of parameter values, we could also consider deterministic grids in

the parameter space. In very high dimensional parameter spaces this probably becomes unfeasible

due to the curse of dimensionality, but in the current context this approach may very well improve

training of the neural network. We leave a comparison to future work.

Implicit & grid-based learning

We take this idea further and design an implicit form of the pricing map that is based on
storing the implied volatility surface as an image given by a grid of “pixels”. This image-based
representation has a formative contribution in the performance of the network we present in
Section 4. Let us denote by ¢ := {ki ,T j }n, m

i=1, j=1
a Æxed grid of strikes and maturities, then we

propose the following two step approach:

Step (i): Learn the map eF (w,µ) = {æM (µ)(Ti ,k j )}n, m
i=1, j=1

via neural network where the input is a
parameter combination µ 2£ of the stochastic model M (µ) and the output is a n £m

grid on the implied volatility surface {æM (µ)(Ti ,k j )}n, m
i=1, j=1

where n,m 2N are chosen

appropriately (see Section 3.1) on a predeÆned Æxed grid of maturities and strikes. eF
takes values in RL where L = strikes£maturities= nm. The optimisation problem in the
image-based implicit learning approach is:

b! := argmin
w2Rn

N reduced
TrainX

i=1

LX

j=1

¥ j ( eF (w,µi ) j ° eæM (µi ,T j ,k j ))2, (9)

where NTrain = N reduced
Train

£L and ¥i 2R>0 is a weight vector.

Step (ii): Solve the minimisation problem

bµ := argmin
µ2£

LX

i=1

Ø j ( eF (b!,µ)i °æMKT
BS (Ti ,ki ))2,

for some user speciÆed weights Ø j 2 R>0. We note here that eF (b!,µ) being a Neural
Network, all gradients with respect to µ are available in closed-form and are fast to
evaluate.

The data generation stage for the image-based approach works as in the pointwise approach,
except that the option parameters ≥= (T,k) are, Æxed and are no longer part of the learning
algorithms – except implicitly in the output/labels of the neural network. This is why they
appear in the general objective function of pointwise learning (8) but no longer appear in the
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objective function (9) of the grid-based learning above. In practice, we choose a grid ¢ of size
8£11.

Clearly, the neural network does depend on the grid ¢ of option parameters ≥. Hence, we need
to interpolate between gridpoints in order to be able to calibrate (in the calibration Step (ii))
also to such options, whose maturity and strike do not exactly lie on the grid ¢. This indirect
dependence of the trained network on ¢ is alluded to by the name “implicit learning”.

Implicit smile-based learning:

–And outlook towards an implicit learning with more elaborate grids and tessalations

of the IV surface–

We note that McGhee [McG18] follows an implicit approach for the lognormal SABR model,
which lies somewhere between the pointwise and the image-based approaches of Step (i):
There, the inputs are (µSABR,T,k1, . . . ,k10), and there are ten volatility outputs æ1, . . . ,æ10 per
maturity T . Since between the reference points of the smile McGhee [McG18] also interpolates
(by splines) based on a smoothness assumption of implied volatilities, we also refer to this
approach as implicit training. The reference points k1, . . . ,k10 on the volatility surface are
determined as a direct functional of the model parameters µSABR and of the maturity T , that
is the learning is done slice-by slice. This sampling technique showcases an excellent working
example of a representative functional sampling on the surface, where more samples are taken
in certain regions of the surface, to ensure a good accuracy of the training in those regions (e.g.
regions with higher liquidity). Though the sampling of the strikes in [McG18] is bespoke to
the SABR model, it motivates the idea of representative sampling grid (or tessalation net), which
would be desirable to achieve also in a model agnostic context. We note that the introduction
of the weight vectors ¥i 2 R>0 in the objective function (9) of the grid-wise approach has a
similar e�ect as a higher sampling frequency of a neighbourhood/point.

2.2.2 The role of the objective function: Pointwise training versus implicit and

grid-based training

Comparing the pointwise approach (characterised by the general objective function (8)) and
the image-based approach (characterised by the objective function (9)), we Ænd that both of
them can be advantageous in certain situations. We highlight the connection between the two
below, and elaborate on some of the respective advantages of each approach.

Equation (9) can be brought to the form of (8) equation by inserting (into (8)) the speciÆcation
values µ = µ0, with

µ01 = µ1, . . . ,µ0L = µ1,µ0L+1 = µ2, . . . ,

and recalling that L = strikes£maturities and NTrain = N reduced
Train

£L. Hence, the pointwise
approach is more general than the image-based one.

With this in mind we make the general note, many of the various advantages and disadvantages
of both approaches can, in principle, be mitigated by careful choice of the data generation
mechanism (of the training and validation datasets) and the loss function in the training.
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• The biggest di�erence, between pointwise and image based implicit learning procedures
is that image based implicit learning requires an outside (implicit) interpolation between
the learned implied volatilities in order to compute the implied volatility of an option
with an arbitrary strike or maturity, not aligned with the grid. At face value, this is
of course an advantage of the pointwise (explicit) approach, where the interpolation
is rather performed by the deep neural network. On the other hand, we note that
the function (T,k) 7!æM (µ;T,k) (for Æxed model parameters µ) is usually a very well
understood smooth function.

• Indeed, this very same structure induces a reduction of variance in the training data
for the grid-based approach as compared to the pointwise approach. Overall, in the
grid-wise approach, the network can be trained on a (remarkably) small number of Mote
Carlo paths, as the same generated paths can be re-used and evaluated at di�erent
maturities (corresponding to the points on the grid). This e�cient use of MC paths
would a priori would not be possible without a Æxed grid, i.e. in the pointwise method.
Formally speaking, in the image based approach only the model parameters are sampled,
while the strike and maturities of the underlying instruments are deterministic. As a side
note, keep in mind that we should always compare the two approaches based on a Æxed
number NTrain of total training data.

• It is easier to take into account the structure of real Ænancial data into the data generation
for the pointwise approach by adjusting the (random) sampling distribution on the
surface accordingly. Clearly, not all options are equally important for the purpose of
calibration, but we would like to concentrate on liquid options. The pointwise approach
is ideally suited to take into account historical numbers of liquidity: it is easy to adjust
the sampling distribution for strikes and maturities,which is the method of choice if
such considerations should be taken into account. In the grid-based approach, speciÆc
sampling distributions as above could be mimicked (to some extent) by the choice of a
weight vector ¥i 2R>0 in (9). Alternatively it could be taken into account by some hibrid
method using non-uniform, non-tensorized (or even bespoke quasirandom sampling
grids), with higher density of points in regions with higher liquidity, which however, is
beyond the scope of the current discussions.

• The image-based approach may be seen as an e�cient dimension-reduction technique
as compared to the pointwise one. Of course, the price we pay is that we only learn the
values of the implied volatilities on a Æx grid ¢ of option parameters. In this example,
this price is, however, worth paying since the regularity of the volatility surface is well
understood. This implies that we know very well the number and location of grid points
required to get good Æts globally in terms of the chosen interpolation.

In the particular calibration example presented in Section 4 below, the image-based approach
performed somewhat better than the pointwise approach, which indicates that the variance
and dimension reduction features may be more important than the other aspects in the above
comparison.
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Remark 5. In principle, the two-step approach is also amenable to other numerical interpolation

methods. For instance, we could also use Chebyshev interpolation to approximate model implied

volatilities such as [GKS20, GHMP19].

Remark 6. In line with Remark 5, we note that the image-based approach (in conjunction with the

outside interpolation) is a hybrid between a pure DNN approximation such as the pointwise approach

and a standard polynomial interpolation method, such as Chebyshev approximation, see [GKS20] for

example. Of course, other, more specialized interpolation methods on the implied volatility surface

are also possible, for instance using the SVI volatility parameterization [Itk15] or using no-arbitrage

constraints [CRW20].

Remark 7. We remark that inversion of a trained DNN in the grid-base two-step approach might
help training the neural network underlying the one-step approach, for instance by providing a good

initial guess for the parameters of the neural network. Continued training with market data will,

however, certainly be necessary to take into account the model error as well as the special structure of

market data.

3 Practical implementation

We start by describing the approximation network (Step (i) of Section 2 with objective functions
(8) and (9)) and leave the discussion of calibration (Step (ii)) for Section 3.2 below. While
several related works [HLP94, CD17, McG18] have demonstrated that learning the pricing map
(Step (i)) in the Black-Scholes model and in certain classical stochastic volatility models (such
as the lognormal SABR model in [McG18]) can be done to a satisfactory accuracy with a single
hidden layer, the situation is–as often–more delicate in the case of rough volatility models.
Since these models are highly nonlinear nature, they also require deeper networks for an
accurate approximation of their pricing functional.

3.1 Network architecture and training

We present the architecture used for the grid-based approach in some detail, as this approach
was used for most of the numerical examples below.

1. A fully connected feed forward neural network with 3 hidden layers and 30 nodes on
each layers;

2. Input dimension = n, number of model parameters

3. Output dimension = 11 strikes£ 8 maturities for this experiment, but this choice of grid
can be enriched or modiÆed.

4. The three inner layers have 30 nodes each, which adding the corresponding biases
results on a number

(n +1)£30+2£ (1+30)£30+ (30+1)£88 = 30n +4618

of network parameters to calibrate.
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3. Practical implementation

5. We choose the Elu æElu = Æ(ex °1) activation function for the network and a linear
activation æl i near (x) = x in the output layer

The use of Elu and linear activations is motivated by the fact that we want the neural network
to be continuously di�erentiable in order to use gradient methods in the calibration. We train
the neural network using gradient descent, the so-called ‘Adam’ minibatch training scheme due
to Kingman and Ba [KB15], which is a version of the Stochastic Gradient Descent algorithm.
In the following, w denotes the set of parameters – weights and biases – of a neural network
F = F (w, x). Given parameters 0 ∑ Ø1,Ø2 < 1,≤, Æ, initial iterates u0 := 0, v0 := 0, w0 2≠, the
Adam scheme has the following iterates:

gn :=rw
mX

i=1

L

≥
F (wn°1, X batch

n,m ),F§(X batch
n,m )

¥

un+1 :=Ø1un + (1°Ø1)gn

vn+1 :=Ø2vn + (1°Ø2)g 2
n

wn+1 := wn °Æ
un+1

1°Øn+1
1

1
q

vn/(1°Øn+1
2 )+≤

.

We used the default parameters recommended in [KB15] and we chose a batch size of 32 and
iterated through 200 epochs with random shu�ing in place to perform the o�-line training
procedure (we refer the reader to GitHub: NN-StochVol-Calibrations for further details).

3.2 The calibration step

Once the pricing map approximator eF for the implied volatility is found, only the calibration
step is left to solve. We use the Levenberg-Marquart algorithm as presented in Section 1.

3.2.1 Bayesian Analysis of the Calibration

Intuitively, we are interested in quantifying the uncertainty about model parameter estimates
obtained by calibrating with the approximative implied volatility map map eF . To this end,
we switch to a Bayesian viewpoint and treat model parameters µ as random variables. The
fundamental idea behind Bayesian parameter inference is to update prior beliefs p(µ) with the
likelihood p(y | µ) of observing a given point cloud y 2RN of implied volatility data to deduce
a posterior (joint) distribution p(µ | y) over model parameters µ.
Formally, for pairs (Ti ,ki ) of time to maturity and log-moneyness, let an implied volatility
point cloud to calibrate against be given by

y =
£

y1 (T1,k1) , . . . , yN (TN ,kN )
§T 2RN

and analogously, collect model implied volatilities for model parameters µ

eF (µ) =
£ eF (µ,T1,k1) , . . . , eF (µ,TN ,kN )

§T 2RN .
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We perform a liquidity-weighted nonlinear Bayes regression. Mathematically, for heteroskedastic
sample errors æi > 0, i = 1, . . . , N , we postulate

y = eF (µ)+", "ªN
°
0,diag(æ2

1, . . . ,æ2
N )

¢
,

so that for some diagonal weight matrix W = diag(w1, . . . , wN ) 2RN£N , the liquidity-weighted
residuals are distributed as follows

W
1
2

£
y ° eF (µ)

§
ªN

°
0,diag(w1æ

2
1, . . . , wNæ2

N )
¢

.

In other words, we assume that the joint likelihood p
°
y | µ

¢
of observing data y is given by a

multivariate normal. In absence of an analytical expression for the posterior (joint) probability
p(µ|y) / p(y |µ)p(µ), we approximate it numerically using MCMC techniques [FMHLG13] and
plot the one- and two-dimensional projections of the four-dimensional posterior by means of
an MCMC plotting library [FM16].

Remark 8. Of course, from a statistical point of view, loss functions of sum of squares form

corresponds to a normality assumption on the error distribution when interpreted as an MLE, for

instance. The normality assumption above, hence, merely mirrors the common choice of sum-of-squares

as loss function for calibration in Ænance.

4 Numerical experiments

4.1 Speed and accuracy of the price approximation networks

As mentioned in Section 2.2 one crucial improvement in comparison with direct neural network
approaches, as pioneered by Hernandez [Her16], is the separation of (i) the implied volatility
approximation function, mapping from parameters of the stochastic volatility model to the
implied volatility surface–thereby bypassing the need for expensive Monte-Carlo simulations
in the on-line phase—and (ii) the calibration procedure, which (after this separation) becomes
a simple deterministic optimisation problem.

Table VIB.1 shows the CPU computation time for functional evaluation of a full surface
under the rough Bergomi model of Example VIB.1. Here, we take the forward variance ª0

as constant. In a future work we take a similar approach to constract a network that can
consistently approximate a variaty of models including the rough Bergomi model with a
forward variance curve that is approximated (more generally) by piecewise constant function.

MC Pricing
Full Surface

NN Pricing
Full Surface

NN Gradient
Full Surface

Speed up
NN vs. MC

500.000µs 14,3µs 47µs 21.000°35.000

Table VIB.1: Computational time of pricing map (entire implied volatility surface) and gradients
via Neural Network approximation and Monte Carlo (MC) for the image-based approach

Table VIB.1 provides the speed of evaluating the trained neural network for the image-based
approach, the numbers for the pointwise approach are very similar. We used
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4. Numerical experiments

• Total number of parameteres: 5.668

• Training set of size 34.000 and testing set of size 6.000

• Rough Bergomi sample: (ª0,∫,Ω, H) 2U [0.01,0.16]£U [0.5,4.0]£U [°0.95,°0.1]£U [0.025,0.5]

• Strikes: {0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,1.5}

• Maturities: {0.1,0.3,0.6,0.9,1.2,1.5,1.8,2.0}

• Training data samples of Input-Output pairs are computed using Algorithm 3.5 in Hor-
vath, Jacquier and Muguruza [HJM17] with 60.000 sample paths and the spot martingale
condition i.e. E[St ] = S0, t ∏ 0 as control variate.

Figure VIB.2: Error metrics for prices in the rough Bergomi model computed using

Monte Carlo evaluations.

As benchmark we recall relative errors of Monte Carlo prices computed across 34,000 random
parameter combinations of the Rough Bergomi model. Relative errors are reported in terms of
Average-Standard Deviation-Maximum (Left-Middle-Right) on implied volatility surfaces in
the Rough Bergomi model, computed using 95% conÆdence intervals.

Figure VIB.2 reports the Monte Carlo errors of the training set as a reference. Figure VIB.3
show that the average (across all parameter combinations) relative error3 between neural
network and Monte Carlo approximations is far less than 0.5% consistently (left image in
Figure VIB.3) with a standard deviation of less than 1% (middle image in Figure VIB.3).
Nevertheless, the maximum relative error goes as far as 25%. As previously stated, the beauty
of this approach is the ability to asses whether the approximation is suitable and if not, where
exactly fails or is more delicate. In this case, we observe that the approximation is less precise
for short maturities and deep out-of-the-money/in-the-money options. Theses errors are
consistent with the errors of the Monte Carlo training set.

3Relative here is computed here as |æN N (T,k)°æMC (T,k)|/|æMC (T,k)|.
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VIB. On deep calibration of rough volatility models

Figure VIB.3: Error metrics for prices in the rough Bergomi model computed using the

neural network approximation.

We compare surface relative errors of the neural network approximator against the Monte Carlo
benchmark across all training data (34.000 random parameter combinations) in the rough
Bergomi model. Relative errors are given in terms of Average-Standard Deviation-Maximum
(Left-Middle-Right).

Figure VIB.4: Quality of Æt of the neural network approximation.

The Figure illustrates the distribution of the approximation error in space after the interpolation
to a full implied volatility surface in two examples of model parameter choice.
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4. Numerical experiments

4.2 Calibration speed and accuracy

To demonstrate the advantage of our two-step approach we obtain calibration times less than
40 milliseconds for the full implied volatility surface in the rough Bergomi model, which
was notoriously slow to calibrate (several seconds) by Monte Carlo methods due to its non-
Markovian nature. Note that these calibration times become much lower (usually under 10
milliseconds) for Markovian stochastic volaility models. This considerable speedup is due to
the 21000-35000 factor speedup (reported in Tabe 1) of the approximation network.

In order to asses calibration the accuracy compared to synthetic data in a controlled experiment,
the accuarcy of calibrated model parameters bµ compared to the synthetically generated data
with the set of parameters µ that was chosen for the generation of our synthetic data. We
measure the accuracy of the calibration via parameter relative error i.e.

ER (bµ) =
|bµ°µ|

|µ|

as well as the root mean square error (RMSE) with respect to the original surface i.e.

RMSE(bµ) =

vuut
nX

i=1

mX

j=1

( eF (bµ)i j °æMK T
BS

(Ti ,k j ))2.

Therefore, on one hand a measure of good calibration is a small RMSE. On the other hand,
a measure of parameter sensitivity on a given model is the combined result of RMSE and
parameter relative error. For this set of tests, we again restrict ourselves to the image-based
approach for learning the price (implied volatility) function in the model.
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VIB. On deep calibration of rough volatility models

Figure VIB.5: Calibration relative error per parameter in the test set in the rough Bergomi

model.

Figures VIB.5 shows relative errors after calibration via Levengerg-Marquardt in the rough
Bergomi model. We observe that largest errors are concentrated for small H or small vol of
vol ∫ situations. Naturally, the relative error is more sensitive around 0 as well. Once again, we
emphasise that by understanding the error zones of the pricing function P (see Figure VIB.3)
along with parameter relative errors in Figure VIB.5, we are able to asses its quality and detect
parameter conÆgurations that might yield a lower performance of the calibration process.
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4. Numerical experiments

Figure VIB.6: Parameter calibration error for the rough Bergomi model using the two-

step approach.

Cumulative Distribution Function (CDF) of rough Bergomi parameter relative errors (left)
and RMSE (right) after Levengerg-Marquardt calibration across test set random parameter
combinations.

To Ænalise our analysis, Figure VIB.6 shows that the 99% quantile of the RMSE is below 1%,
even though parameter relative errors might be higher (see VIB.5 as well), particularly when
the parameters are close to 0. Notably, the maximum RMSE across the full surface (i.e. the 88
grid points) is below 4%, which suggests a surprisingly good accuracy.

4.3 A Bayes calibration experiment

We next test the deep calibration procedure using the Bayesian point of view sketched in
Section 3.2.1. Here, we use the pointwise approach for learning the model implied volatility
map. We perform two experiments. First, Æxing µ = µ†, we generate a synthetic implied
volatility point cloud

ysynth =
h

P
≥
µ†,T1,k1

¥
, . . . ,P

≥
µ†,TN ,kN

¥i
2RN

using Monte Carlo simulation as in Section 4.2 above. Next, we perform a non-weighted
Bayesian calibration against the synthetic surface and collect the numerical results in Figure
VIB.7.

More precisely, the Ægure shows histograms from the posterior distribution of the one-
dimensional marginal distribution of the (four-dimensional) parameter µ in the rough Bergomi
model, together with contour plots of all pairs of two-dimensional marginal distributions
based on kernel density estimates of the joint densities. The titles of the histogram-windows
report the empirical medians together with the di�erences to the 2.5% and 97.5% quantiles,
respectively. The dashed lines in the histogram plots show those quantiles.

If the map eF is su�ciently accurate for calibration, the computed posterior should attribute
a large probability mass around µ†. The results in Figure VIB.7 are quite striking in several
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Figure VIB.7: Bayes calibration against synthetic implied volatility surface.

Solid vertical blue lines indicate true parameter values.

ways: (1) From the univariate histograms on the diagonal it is clear that the calibration routine
has identiÆed sensible model parameter regions covering the true values. (2) Histograms are
unimodal and its peaks close or identical to the true parameters. (3) The isocontours of the 2d
Gaussian KDE in the o�-diagonal pair plots for (¥, H) and (¥,Ω) show exactly the behaviour
expected from the reasoning in the last section: Since increases or decreases in one of ¥, H or
Ω can be o�set by adequate changes in the others with no impact on the calculated IV, the
Bayes posterior cannot discriminate between such parameter conÆgurations and places equal
probability on both combinations. This can be seen by the diagonal elliptic probability level
sets.

In a second experiment, we want to check whether the inaccuracy of eF allows for a suc-
cessful calibration against market data. To this end, we perform a liquidity-weighted Bayesian
regression against SPX implied volatilities from 19th May 2017. For bid and ask IVs ai > 0

230



4. Numerical experiments

Figure VIB.8: Liquidity-weighted Bayes calibration against SPX market implied volatility

surface from 19th May 2017.

Liquidity proxies given by inverse bid-ask-spreads.

and bi > 0 respectively, we proxy the IV of the mid price by mi :=
ai+bi

2
. With spread deÆned

by si = ai °bi ∏ 0, all options with si /mi ∏ 5% are removed because of too little liquidity.
Weights are chosen to be wi =

mi

ai°mi
∏ 0, e�ectively taking inverse bid-ask spreads as a proxy

for liquidity. Finally, æi are proxied by a fractional of the spread si . The numerical results in
Figure VIB.8 further conÆrm the accuracy of eF : (1) As can be seen on the univariate histograms
on the diagonal, the Bayes calibration has again identiÆed sensible model parameter regions
in line with what is to expected. (2) Said histograms are again unimodal with peaks at or close
to values previously reported in the literature. (3) Quite strikingly, at a Ærst glance, the e�ect
of the diagonal probability level sets in the o�-diagonal plots as documented in Figure VIB.7
cannot be conÆrmed here. However, the scatter plots in the diagrams do reveal some remnants
of that phenomenon.
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VIB. On deep calibration of rough volatility models

VIB.A A numerical experiment with the inverse map

To motivate the main drawbacks of the inverse map approach of Section 2.1, we calibrate rough
Bergomi model with it, i.e., we consider the simple map

¶
°1(ß

rBergomi

BS
) ! (ª̂0, ∫̂, Ω̂, Ĥ)

where ß
rBergomi

BS
2 Rn£m is a rBergomi implied volatility surface and (ª̂0, ∫̂, Ω̂, Ĥ) the optimal

solution to the corresponding calibration problem.

Remark 9. For simplicity we consider the strikes and maturities to be Æxed for all implied volatility

surfaces.

Inverse Map Architecture

• 1 convolutional layer with 16 Ælters and 3£3 sliding window

• MaxPooling layer with 2£2 sliding window

• 50 Neuron Feedforward Layer with Elu activation function

• Output layer with linear activation function

• Total number of parameters: 10.014

• Train Set: 34.000 and Test Set: 6.000

• (ª0,∫,Ω, H) 2U [0.01,0.16]£U [0.3,4.0]£U [°0.95,°0.1]£U [0.025,0.5]

• strikes={0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,1.5}

• maturities={0.1,0.3,0.6,0.9,1.2,1.5,1.8,2.0}

• Implied volatilities computed using Algorithm 3.5 in Horvath, Jacquier and Muguruza
[HJM17] with 60.000 sample paths and the spot martingale condition i.e. E[St ] = S0, t ∏ 0

as control variate.
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VIB.A. A numerical experiment with the inverse map

Figure VIB.9: Out of sample relative errors per parameter calibration.

Figure VIB.9 shows that, indeed it is possible to approximate the inverse map and very sharply
calibrate model parameters with a relatively small network. Convolutional networks make
sense in this context, since a implied volatility surface has many features both in the strike
and maturity direction that can be extracted, similar to image recognition problems. Notice
also that the biggest error come from parameter conÆgurations where the Monte Carlo input
is more delicate i.e. very small H or very small volatility. Hence, the shape of the errors is
intuitively natural and expected beforehand.
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Out of sample performance of the approach

Let us now consider a more substantial variation of our out-of-sample data. We now do
not only present implied volatilities to the neural network which have been generated from
parameter conÆgurations that are “unseen” by the network, but instead, the presented implied
volatitlites are generated by a di�erent model than the one that has been used in the training
phase. By this variation we would like to illustrate the scenario of a more substantial regime
change in the market. To this end we do not use a rough Bergomi model for the out of sample
surfaces but instead generate implied volatility surfaces using the 2-factor Bergomi model,
which is described by the stochastic dynamics

d X t =°
1

2
Vt d t +

p
Vt dWt

Vt = ª0(t )E

µ
∫

µ
(1°µ)

Zt

0
exp(°∑X (t ° s))d Zs +µ

Zt

0
exp(°∑Y (t ° s))dYs

∂∂
,

(10)

where W , Y and Z are correlated standard Brownian motions. We run two experiments: one
with the one-step inverse map approach in Figure VIB.10 and one with the two-step approach
in Figure VIB.11. In the Ærst experiment we present smiles from the model (10) to our (one-step)
neural network as out-of-sample (input) data and seek to obtain the corresponding optimal
(rough Bergomi) parameters to the presented implied volatilities as an output. The benchmark
used in these experiments is a standard calibration routine where (rough Bergomi) prices are
obtained by Monte Carlo (MC) simulation, which is then combined with Levenberg-Marquardt
(LM) [Lev44, Mar63] algorithm to obtain the calibrated rough Bergomi paremeters. Clearly,
since we are calibrating a rough Bergomi model to a market that has already shifted and is
now described by a 2-factor Bergomi model, we expect some instances of larger calibration
errors, even for the benchmark MC-LM calibration case. Figure VIB.10 however shows that
the (ones-step) neural network performs overall visibly worse than the benchmark: While for
some samples (marked in blue) the root mean square error of the neural network calibration is
smaller than the benchmark, for the majority of the samples (orange) the neural network error
is signiÆcantly larger. However, we must emphasize that when the neural network is exposed
to familiar situations i.e. surfaces close to the ones generated by the rBergomi model it may
work just as well (or better) than the benchmark standart MC approach, see the points (in blue)
below the dashed black line in Figure VIB.10. The results by Hernandez [Her16] also support
this conclusion. There, some out of sample scenarios (based on di�erent historical period)
reasonably worse than the in-sample ones. Similar observations can be made here in Figure
VIB.10 This is likely due to delicate parameter conÆgurations i.e. very low variance, where MC
su�ers to obtain accurate estimates whereas the network beneÆts from the smoothing e�ect.
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VIB.A. A numerical experiment with the inverse map

Figure VIB.10: Calibration accuracy for the inverse map compared to Monte Carlo

calibration.

Stars represent the out of sample RMSE via neural network (NN) in the one-step approach
on the vertical axis and the standard benchmark calibration via Monte Carlo method (MC)
with Levenberg-Marquardt (LM) optimisation on the horizontal axis. The dashed black line
represents the identity function. Points below the identity are samples where the neural network
one-step approach has outperformed the Monte-Carlo benchmark. These are highlighted in
blue. The majority of the sample are above the identity line marked orange represent samples
where the neural network one-step approach generated a signiÆcantly larger error than the
benchmark.

The one-step approach does not generalise the problem to all possible settings, only the ones
already observed in the (non-stationary) data. By design it is not possible to train ¶

°1 on
all possible (arbitrage-free) market scenarios. Moreover, there is a lack of understanding in
the highly non-trivial function ¶

°1, hence from a risk-managing perspective is more di�cult
to justify the use of this inverse approach than of the direct approach. On the contrary,
Figure VIB.11 reproduces the same experiment with the two-step approach. As expected, by
construction the two-step approach solves the calibration problem for any market condition.
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Figure VIB.11: Calibration accuracy for the two-step approach compared to Monte Carlo

calibration.

Stars represent the out of sample RMSE via neural network (NN) using the two-step approach
and brute force Monte Carlo (MC) on di�erent samples. The dashed black line represents the
identity function. Points below the identity are samples where the neural network one-step
approach has outperformed the Monte-Carlo benchmark and represented in blue. Points above
the identity represent samples where the neural network one-step approach underperformed
and represented in orange.

We believe that these di�erences highlighted in the graphs above are not due to some inherent
Øaw of the one-step model architecture, but rather due to the structures of the data: due to
non-stationarity e�ects in markets, an unprecedented behaviour may be di�cult to reproduce
directly in the learned network, depending on the training data previously provided to the
network. Therefore, we would like to emphasize here that the above experiments should by no
means suggest that the one-step approach should be abandoned all together, but rather that
the merit of that approach lies in situations, where data should take a more central role rather
than–as we suggest here–using the DNN as a speedup for pricing.
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Figure VIB.12: InØuence of model parameters on the implied volatility surface in the

rough Bergomi model.

VIB.B Illusration of model parameters & the pricing engine in

the rBergomi model

We showcase here the inØuence of the model parameters in the rough Bergomi model on the
shape of the implied volatility surface using the hands-on pricing engine we generated via the
DNN of step (i) for the rough Bergomi model. Our Ændings are in line with asymptotic results
presented in [BFG+19] and with [MP18] for the role of the model parameters.

The model parameters ∫,Ω and H correspond to the smile (∫), skew (Ω) and the explosion (H )
parameters of the surface, while ª0 is the one-point approximation of the forward variance.
The images illustrate that the parameters ∫ and H inØuence the slope of the smile, and an
explosive behaviour for short maturities can be achieved (without calibrating slice by slice)
with a single surface if the Hurst parameter is H <<

1
2
. And Ænally, as usual in stochastic

volatility models, the parameter Ω introduces skewness in the surface as illustrated below.
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Titre : Le processus de formation de prix multivarié et l’impact croisé

Mots clés : microstructure des marchés, cross-impact, couts de transaction

Résumé : Cette thèse comprend six parties. La première lie les flux
d’ordres anonymes et les variations de prix à l’aide de modèles d’impact
croisé statiques et linéaires. Nous énumérons les propriétés souhaitables de
ces modèles, caractérisons ceux qui les satisfont et les testons sur diffé-
rents marchés. La deuxième partie étend cette approche aux produits dé-
rivés afin d’obtenir une méthode d’estimation pour l’impact croisé que nous
appliquons aux options SP500 et aux contrats à terme VIX. Dans la troisième
partie, nous généralisons les modèles précédents pour prendre en compte
l’influence des ordres passés sur les prix. La quatrième partie utilise des don-
nées de méta-ordres sur les actions et les contrats à terme pour proposer
une formule d’impact croisé qui généralise la loi de la racine carrée de l’im-
pact. Dans la cinquième partie, nous présentons un modèle tick-par-tick pour
la dynamique des prix multivariés en utilisant les processus de Hawkes. La
dernière partie résout le problème de la calibration des modèles de volatilité
en utilisant des réseaux de neurones. La première partie étudie les modèles
statiques linéaires pour l’impact croisé. Ces modèles dépendent des cova-
riances des transactions et des prix. Nous introduisons des propriétés pour
qu’un modèle se comporte correctement dans différentes conditions de mar-
ché. Nous montrons qu’il existe un seul modèle qui satisfait toutes ces pro-
priétés. Nous appliquons différents modèles sur des actions et des contrats
à terme. Le modèle précédent est l’un des deux modèles robustes sur les
marchés étudiés. Il s’agit donc d’un bon candidat pour une vision unifiée du
processus de formation des prix. La deuxième partie généralise l’approche
précédente aux produits dérivés. Nous dérivons une méthode d’estimation
pour l’impact croisé à partir de covariances de faible dimension. Sur des
données de produits dérivés sur le SP500 et des contrats à terme VIX, le
modèle explique en partie les fluctuations du sous-jacent et de la surface

de volatilité implicite. Dans la deuxième partie, nous étudions des modèles
linéaires à noyaux pour l’impact croisé. Nous examinons deux classes de
modèles : ceux qui anticipent le flux d’ordres pour fixer des prix martingale et
ceux qui empêchent l’arbitrage statistique. Nous montrons qu’il existe au plus
un noyau appartenant aux deux classes mais qu’il n’empêche pas nécessai-
rement l’arbitrage. Pour résoudre ce problème, nous introduisons un second
noyau qui empêche l’arbitrage statistique et qui est le plus proche possible
à donner des prix martingale. Enfin, nous calibrons ces noyaux sur des don-
nées de contrats à terme. La troisième partie mesure l’impact croisé avec
deux bases de données d’ordres envoyés par des gestionnaires d’actifs sur
des actions et des contrats à terme. Nous proposons une formule pour l’im-
pact croisé qui généralise la loi de la racine carrée et donne des prédictions
plus précises sur nos données. Dans la quatrième partie, nous modélisons le
processus de prix tick-par-tick avec des processus de Hawkes. Pour capturer
l’endogénéité des marchés financiers, nous étudions la limite où la norme L
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du rayon spectral du noyau de Hawkes devient égale à un. Certains modèles
de volatilité rugueuse multivariée émergent alors comme la limite macrosco-
pique de la dynamique microscopique des prix. Le processus de volatilité de
ces modèles est une combinaison de facteurs de variance entraînés par un
mouvement brownien fractionnaire d’indice de Hurst commun. Enfin, la der-
nière partie de cette thèse examine la calibration des modèles de volatilité
à l’aide de réseaux de neurones. Nous approchons la fonction donnant les
prix des contrats à partir des paramètres du modèle en utilisant des réseaux
de neurones. Cette approximation est ensuite utilisée pour obtenir les para-
mètres du modèle à partir de prix de marché des contrats. Nous mettons en
évidence l’applicabilité de la méthode en utilisant des données de marché
synthétiques et réelles.

Title : The multivariate price formation process and cross-impact

Keywords : market microstructure, cross-impact, transaction costs

Abstract : This thesis comprises six parts. The first relates anonymous
order flow and price changes using static, linear cross-impact models. We list
desirable properties of such models, characterise those which satisfy them
and test their predictions on different markets. The second part extends this
approach to derivatives to obtain a tractable estimation method for cross-
impact which is applied to SP500 options and VIX futures. In the third part,
we generalise the previous setup to derive and estimate cross-impact mo-
dels which account for the influence of past trades on current prices. The
fourth part uses meta-order databases on stocks and futures to propose a
formula for cross-impact which generalises the square-root law of market im-
pact. In the fifth part, we propose a tick-by-tick model for price dynamics using
Hawkes processes. We investigate scaling limits of prices in the high endo-
geneity regime to derive multivariate macroscopic price dynamics of rough
Heston type. Finally, the last part solves the calibration problem of volatility
models using neural networks. In the first part, we study linear cross-impact
models which relate asset prices to anonymous order flow. These models
are functions of the covariances of these variables. We introduce properties
models should satisfy to behave well across market conditions and show that
there exists a unique model which satisfies all such properties. We apply mo-
dels on stocks and futures and find that the latter model is one of two robust
across markets. Thus, it is a good candidate model for a unifying view of the
price formation process on stocks and futures. The second part leverages the
candidate model identified in the first part to extend the previous setup to de-
rivatives. We derive an estimation method for the large cross-impact matrix
which depends on low-dimensional covariances. Using SP500 options and
VIX futures data, we show cross-impact captures salient features of the price
formation process on derivatives. The second part examines cross-impact

kernels, which account for the lasting influence of past trades on current
prices. We focus on two kernel classes : kernels that anticipate future order
flow to set martingale prices and those that prevent statistical arbitrage. We
show that there is at most one kernel belonging to both classes. This kernel
sets martingale prices but may not prevent arbitrage. To fix this, we introduce
a methodology to obtain a second kernel which prevents statistical arbitrage
and is the closest to setting martingale prices. Finally, we derive a calibra-
tion methodology for both kernels and apply it to futures data. The third part
measures cross-impact from using two databases of proprietary orders sent
by asset managers on U.S stocks and futures. These databases allow us to
study the cross-impact of individual investor orders. We propose a formula for
cross-impact which generalises the square-root law to account for price and
order correlations. On both stocks and futures, we find that this generalisation
gives more precise predictions than the square-root law. In the fourth part, we
model the tick-by-tick price process using Hawkes processes. To capture the
high endogeneity of financial markets, we investigate the limit where the L
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norm of the spectral radius of the Hawkes kernel goes to one. We show that
some multivariate rough volatility models emerge as the macroscopic limit of
the microscopic price dynamics. In these models, volatility is a combination
of underlying variance factors, each driven by a fractional Brownian motion of
common Hurst index. Finally, the last part examines the calibration of volatility
models by using neural networks. We first approximate the map from model
parameters to contract prices using neural networks. This approximation can
then be used to recover model parameters given market prices of contracts.
We highlight the applicability of the method using synthetic and real market
data.
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