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General introduction

The early actinides utilize their valence electrons more readily than the lanthanides be-

cause of the small energy gaps between the 5 f , 6d and 7s subshells, so the outer electrons

are easily excited, resulting in a greater multiplicity of oxidation states. In Table 1, the

known oxidation states of the actinides are shown. The data are taken from the Book

“Lanthanide and actinide chemistry” by S. Cotton [1]. However, beyond Pu, there is a

break of periodicity and the later actinides are more stable in the +3 oxidation state like

the lanthanides due to more stabilization of the 5 f subshells. The heaviest naturally oc-

curring element is uranium. Rest of the trans-uranium actinides are man-made, they are

unstable and decay radioactively. Several studies have pointed out that in the actinide

complexes, the metal ligand interactions resemble to those of d-orbitals’ interactions in

the transition metal complexes and the metal ligand bonding occurs through the afore-

mentioned energetically close valence orbitals [2, 3, 4, 5]. So when it comes to chemistry,

actinides can offer as rich chemistry as the transition metals and also exhibit the same

potentiality as the lanthanides in terms of the promising magnetic properties [6, 7]. But

for practical reasons, much of the studies of actinide chemistry is restricted to the early

actinides and also little explored. While handling of radioactivity is a serious concern for

many experimental techniques, the commonly used NMR methodology has been succes-

sively emerging as a probe to study their electronic and magnetic properties [8, 9, 10, 11].

Table 1: Known oxidation states of the actinides. The most stable states are shown in red.

Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4

5 5 5 5 5
6 6 6

7 7

Since the very first use of lanthanide complexes as NMR shift reagents [12], several inter-

ests were put forward in the potential use of lanthanide induced shifts (LIS) in the struc-
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ture determinations, especially for biomolecules such as proteins and steroids [13, 14].

The very useful information that the study of the metal induced chemical shifts can offer,

relies on the separation of the contact and pseudocontact contributions. The contact con-

tributions to the paramagnetic chemical (pNMR) shifts originate from the delocalization

of the spin density from the paramagnetic center to the observed nuclei and the pseu-

docontact (or dipolar) shifts are essentially through-space magnetic dipolar interactions.

The contact shifts are more prominent in the close vicinity of the paramagnetic center

whereas the magnetic dipolar interactions effectively induce additional shifts for the nu-

clei farther from the metal. Theoretical methods had been proposed to separate these two

contributions. The two contributions were early modeled in the 1950s by McConnel and

Robertson in terms of the spin Hamiltonian parameters; those models are best realized

to study the pNMR shifts in the transition metal complexes [15]. However, in the 1970s,

many theoretical methods had been systematically developed those are relevant for the

lanthanide and actinide complexes also. The pioneering work of Kurland and McGar-

vey provided a general formula for the evaluation of the pNMR shifts, the pseudocontact

shifts are calculated from the anisotropic magnetic susceptibility and the contact shifts are

in terms of the isotropic spin-only susceptibility and Fermi contact coupling constant [16].

Soon after, Bleaney described the origin of magnetic anisotropy responsible for the LIS

based on crystal field theory (CFT) and deduced a dominant T−2 temperature dependence

for the pNMR (pseudocontact) shifts [17, 18]. At the same time, the theoretical study of

the 14N and 17O NMR shifts in lanthanide complexes by Golding et al. resulted in a T−1

dependence for the contact shifts [19]. These temperature dependent models became pop-

ular and widely explored by chemists for the separation of the contact and pseudocontact

terms [20, 21, 22, 23]. Reilley had proposed a structure independent method that helps to

separate the two contributions without the knowledge of the geometrical parameters of the

observed nuclei and spin densities at their positions [24]. This facilitates the separation

of the terms at a given temperature for a lanthanide series using the metal dependent con-

stants provided by Bleaney or can be evaluated ab initio [25, 26]. Throughout the decades,

numerous formulations of the pNMR shifts were proposed based on different approaches

that bear the same conclusions as drawn by Kurland, Bleaney, Golding, et al. at the earlier

stage of the pNMR shifts technique [27, 28, 29, 30]. Simultaneously, in the experimental

field, the LIS method became increasingly popular for structure determination in solution

and to probe the lanthanide ligand bonding [31, 32, 33, 34].

However, the actinide induced shifts (AIS) are not as studied as for the lanthanides proba-

bly due to the small community of actinide chemists around the world. Also, the potential

applications of actinides in various fields are disputable because of the issues associ-

ated with radioactivity and safety measurements. Yet for purely academic purposes, the

physicochemical properties of the actinides are as interesting as those of transition met-

als and lanthanides. The main goal of this thesis is not to present the actinides as the
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alternative to lanthanides as NMR shift reagents, but using the pNMR shifts technique to

probe the magnetic properties of the actinides and their interactions with the ligand field.

In this thesis, the AIS in several actinide complexes are presented and the interpretations

of the AIS are carried out with the help of ab initio calculations. Theoretical modeling

of the actinide paramagnetism has been conducted to estimate the magnetic properties

from the temperature dependent curves. Due to the lack of experimental data for the late

actinides, throughout this thesis, we will deal with the complexes of lighter actinides in

different oxidation states. Paramagnetic chemical shifts are collected from various chelat-

ing ligands such as dipicolinate DPA2 – (pyridine-2,6-dicarboxylate), DOTA4 – (dodecane

tetraacetate), TEDGA (tetraethyldiglycolamide) etc. The diamagnetic counterpart is the

corresponding isostructural complex with a diamagnetic actinide ion. We will discuss

their ab initio electronic structures, magnetic properties keeping in mind that most of the

discussions will circulate unraveling the nature of the pNMR shifts in these complexes. In

due course, we have also pointed out the differences in electronic structures between the

lanthanides and actinides. Bleaney’s theory has been surveyed for the considered actinide

complexes and further considerations beyond the Bleaney’s assumptions are highlighted.

Additionally, the ab initio computed electronic structures of the isostructural LnIII (Ln =

Ce- Yb) and AnIV (An = U- Pu) complexes with the DPA ligands are discussed based on

CFT and the associated parameters are compared along and in between the series to find

out the trends of electron-electron repulsion, spin-orbit coupling (SOC), J− J coupling,

covalency etc.

The first two chapters in this thesis are dedicated to being familiar with the molecular

magnetic properties and their modeling for a system, and the quantum chemical method-

ology to compute them ab initio. Then in the next two chapters, the analyses of the AIS

collected for the different complexes are discussed and the chapters are divided accord-

ing to the oxidation state of the actinide center. In the last chapter, we have discussed

the trends of crystal field parameters (CFPs) extracted using the ITO (Irreducible Tensor

Operators) and AILFT (Ab Initio Ligand Field Theory) methods for the two mentioned

series.
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Chapter 1

Introduction to the paramagnetic
chemical shifts

1.1 The chemical shifts and the shielding constants

In the nuclear magnetic resonance (NMR) technique, a sample is placed in an external

magnetic field and electromagnetic frequencies are provided to resonate the NMR active

nuclei (with nuclear spin I > 0) and a detector collects the signal. The characteristic

resonance frequency νK for the nuclear spin transition of a nucleus K is given by

νK =
γKB0

2π
(1−σK) (1.1.1)

where B0 is the applied magnetic field and σK is a proportionality constant. γK is the gy-

romagnetic constant of the nucleus. In a molecule, the nuclei are surrounded by electrons.

The local electronic environment (in chemistry, often it is regarded as the chemical envi-

ronment) effectively shields the nucleus from B0 . The negative sign in Eq. 1.1.1 indicates

an opposing magnetic field produced by the chemical environment which is proportional

to the constant σK . That is why σK is called the shielding constant. Note that γKB0
2π

is

the transition frequency of the bare nucleus and proportional to the strength of the mag-

netic field generated by the spectrometer. So the so-called “spectrometer frequency” of

the nucleus K is νspec =
γKB0
2π

. The chemical shift δK is defined as the observed transition

frequency relative to the signal of a reference compound νre f as

δK =
νK−νre f

νre f
(1.1.2)

δK is usually expressed in ppm and marks the chemically different nucleus. To standardize

the measured resonance frequency from different spectrometers, νre f in the denominator

is replaced by the spectrometer frequency. In the case of a diamagnetic system, circulation

4



1.2. Hamiltonian in a magnetic field

of the paired electron around the nucleus generates a local opposing magnetic field which

is very small in terms of strength. In case of a paramagnetic system, the unpaired electrons

provide additional shielding by generating a strong magnetic field and this extra induced

shielding is called the pNMR shielding σ
p
K and the additional shift is the pNMR shift δ

p
K

of the nucleus. δ
p
K is given by

δ
p
K = δK−δ

dia
K =

νK−νdia
K

νspec
(1.1.3)

= σ
dia
K −σK (1.1.4)

where δK and δ dia
K are the observed chemical shifts of nucleus K in the isostructural

paramagnetic and diamagnetic complexes, respectively.

The pNMR shifts are the consequences of the presence of paramagnetic center(s) in the

close vicinity and related to its (their) magnetic properties. So the study of the pNMR

shifts can be useful to probe the magnetic properties and their anisotropies for a system.

The magnetic resonance parameters, for example, the shielding constant σK obtained from

the NMR or the electron paramagnetic resonance (EPR) parameters (g-values, hyperfine

coupling constants) are related to spectra obtained in a magnetic field. So in the next few

sections, we will introduce the effects of magnetic field on an unpaired-electrons’ system

and the magnetic properties which are defined from the response.

1.2 Hamiltonian in a magnetic field

The most renowned non-relativistic Hamiltonian of an electron in a magnetic field with

an external potential energy V is the Schrödinger-Pauli Hamiltonian written as

H =
(σσσ ·πππ)(σσσ ·πππ)

2m
+V (1.2.1)

where σσσ comprises the three Pauli spin matrices σσσ x,σσσ y,σσσ z; πππ = ppp+ eAAA is the kinematic

momentum in a vector potential AAA. ppp is the momentum without the presence of magnetic

field, and e and m are the charge and mass of an electron, respectively. Putting the form

of πππ in Eq. 1.2.1 becomes

H =
p2

2m
+V +

e
2m

(ppp ·AAA+AAA ·ppp)+ eh̄
2m

σσσ ·BBB+
e2

2m
A2 (1.2.2)

where BBB = ∇∇∇×AAA. According to the Coulomb gauge theory, ∇∇∇ ·AAA = 0 and it can be shown

that ppp ·AAA+AAA ·ppp = 2AAA ·ppp. So the Hamiltonian in Eq. 1.2.2 can be separated into three terms

as follows

5



Chapter 1. Introduction to the paramagnetic chemical shifts

H = H(0)+H(1)+H(2)


H(0) = p2

2m +V

H(1) = e
m (AAA ·ppp)+ eh̄

2mσσσ ·BBB

H(2) = e2

2mA2

(1.2.3)

where H(0) is the Hamiltonian of an electron with a potential energy V . H(1) and H(2) are

the first and second order responses to the magnetic field, respectively. Vector potential of

a uniform magnetic field is given by AAA = 1
2BBB×rrr and putting this from into H(1) reduces

to

H(1) =
e

2m
BBB×rrr ·ppp+ eh̄

2m
2sss ·BBB

=
e

2m
BBB ·rrr×ppp+

eh̄
2m

2sss ·BBB

=
eh̄
2m

(BBB · lll+2sss ·BBB)

= µB (lll+2sss) ·BBB (1.2.4)

where lll = rrr×ppp is the angular momentum of an electron and sss is its spin angular momen-

tum. H(1) is called the Zeeman Hamiltonian
(
HZ), describes the splitting of the energy

levels in a magnetic field. For a paramagnetic ion with N unpaired electrons, the Zeeman

interaction is given by

HZ =
N

∑
i=1

µB (llli +gesssi) ·BBB

= µB (LLL+geSSS) ·BBB (1.2.5)

where LLL and SSS are the total orbital angular momentum and total spin angular momentum

of the ion, respectively. ge is the Landé g-factor of an electron and equals to 2.002319.

From the Dirac equation of quantum mechanics, ge = 2, but according to quantum elec-

trodynamics ge is slightly bigger than 2. The second order response Hamiltonian H(2) is

the diamagnetic interaction term and always raises the energies of the electronic states.

1.3 Magnetic moments

The quantity −µB (LLL+geSSS) in Eq. 1.2.5 is the total electronic magnetic moment mmm of the

system,

mmm = −µB (LLL+geSSS) (1.3.1)

= mmmL +mmmS (1.3.2)
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1.4. Magnetization and magnetic susceptibility

where mmmL =−µBLLL is the total orbital magnetic moment and mmmS =−geµBSSS is the total spin

magnetic moment. In case of SOC1, L and S are not good quantum numbers but J = L+S

is and according to Landé’s theorem,

µB (LLL+geSSS) = µBgJJJJ (1.3.3)

where gJ = 1+ J(J+1)+S(S+1)−L(L+1)
2J(J+1) is the Landé g-factor of a paramagnetic ion.

If a strong external magnetic field BBB = B0zzz is given, the magnetic moments of all the

paramagnetic centers will be along z direction and in that case mmm=−µBgJJJJz. The induced

magnetic moment 〈m〉 per particle is given by the expectation value,

〈m〉 = −µBgJ 〈Jz〉 (1.3.4)

where

〈Jz〉=
∑J,MJ

〈
J,MJ

∣∣Ĵz
∣∣J,MJ

〉
exp(−EJ,MJ/kBT )

∑J,MJ exp(−EJ,MJ/kBT )
(1.3.5)

|J,MJ〉 are the eigenstates of Ĵz with the corresponding energies EJ,MJ . If the energy split-

ting of all the MJ states is less than the thermal energy kBT (kB, the Boltzmann constant)

i.e. µBgJMJB0� kBT , then one can consider exp(−EJ,MJ/kBT )≈ (1−µBgJMJB0/kBT )

and Eq. 1.3.5 becomes

〈Jz〉 = −µBgJB0

3kBT
J(J+1) (1.3.6)

The induced magnetic moment per mol mind is given by

mind = NA 〈m〉=
NAµ2

Bg2
JB0

3kBT
J(J+1) (1.3.7)

1.4 Magnetization and magnetic susceptibility

The molar magnetization M is the induced magnetic moment per mole. The molar mag-

netic susceptibility χm
(
in m3mol−1) is defined as

χm =
µ0M
B0

=
µ0mind

B0
=

µ0NA 〈m〉
B0

(1.4.1)

Substituting Eq. 1.3.7 in Eq. 1.4.1 reduces to the Curie’s law of magnetic susceptibility

χm =
NAµ0µ2

Bg2
J

3kBT
J(J+1) (1.4.2)

1List of abbreviations is given at the beginning of the thesis.

7



Chapter 1. Introduction to the paramagnetic chemical shifts

Note that according to Curie’s law, magnetic susceptibility behaves with temperature as a

function of 1/T.

1.5 Origin of magnetic anisotropy

In the lanthanide complexes, the anisotropic magnetic susceptibility originates from the

crystal field splitting of the ground J manifold. The model Hamiltonian which describes

the crystal field and Zeeman splittings of a J manifold is written as

Ĥmod = ∑
k=2,4,6

α
k
J

k

∑
q=−k

Bk
qÔk

q (J)+µBgJĴJJ ·BBB0 (1.5.1)

where Ôk
q are the Stevens operators acting on the J manifold of the ion, Bk

q the CFPs (in

Wybourne convention [35]), αk
J =

〈
J
∥∥αk

∥∥J
〉

the reduced matrix elements of the second

(k = 2), fourth (k = 4), and sixth (k = 6) orders and are determined by number of the

f electrons N, L and J. αk
J are tabulated in the book of Abragam and Bleaney [36]. In

Stevens notation, each Ôk
q is expressed by the Cartesian components Ĵx, Ĵy, Ĵz and their

linearly independent multiplicative terms or in terms of the ladder operators Ĵ± and their

higher order forms. For example, Ô2
0 = 3Ĵ2

z − J (J+1) , Ô2
2 =

1
2

(
Ĵ2
++ Ĵ2

−
)
=
(
Ĵ2

x − Ĵ2
y
)
.

According to Eq. 1.5.1, in principle, there are 27 CFPs for open shell f complexes.

However, the number of parameters highly decreases with increasing the symmetry of the

crystal environment. For example, in the cubic environment such as in Oh symmetry, only

two independent parameters are required, in an axial symmetry only three parameters

are left: B2
0, B4

0 and B6
0. In the 1970s, Bleaney had derived the anisotropic magnetic

susceptibility for the axial Ln complexes with considering the term of second order only,

with the evaluation of the matrix element as〈
J,MJ

∣∣∣Ĥmod
∣∣∣J,MJ

〉
=

〈
J,MJ

∣∣∣∣∣∑k=2
α

2
J

2

∑
q=−2

B2
qÔ2

q +µBgJB0ĴJJ

∣∣∣∣∣J,MJ

〉
(1.5.2)

When the crystal field splitting is less than room temperature energy, the expressions of

the magnetic susceptibilities obtained by Bleaney [17] are summarized as follows

χm,zz = NAµ0µ
2
Bg2

J

[
J(J+1)

3kBT
−

B2
0 〈J ‖α‖J〉
30k2

BT 2 J (J+1)(2J−1)(2J+3)
]

(1.5.3)

χm =
NAµ0µ2

Bg2
J

3kBT
J(J+1) (1.5.4)

B2
0 is the 2nd order axial CPF. The anisotropic magnetic susceptibility defined as ∆ χB

ax =

χm,zz−χm is given by

∆ χ
B
ax =−

NAµ0µ2
BB2

0

30k2
BT 2 〈J ‖α‖J〉g2

JJ (J+1)(2J−1)(2J+3) (1.5.5)

Note that according to Bleaney’s theory within a given J manifold, χm is still a function of
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1.6. The hyperfine interaction

1/T i.e. reduces to Curie’s law, but the crystal field splitting results in an anisotropic mag-

netic moments and in the case of axial symmetry, the anisotropic magnetic susceptibility

follows 1/T 2 dependency. Moreover, interaction with the excited manifolds might intro-

duce additional terms (quite important for SmIII complexes) as shown also by Bleaney

and the CFPs of 4th and 6th order might be needed for a better description [37, 38, 39].

Additionally, Bleaney’s theory is based on the cancellation of magnetic anisotropy of an

individual state by the others due to the substantial population in all the states of a J man-

ifold (quite true for Ln), but if the splitting is larger (such as for An) and high anisotropy

in the effective g-factors will result in anisotropic magnetization.

1.6 The hyperfine interaction

The hyperfine interaction is the response of the unpaired electrons to the tiny magnetic

field produced by nucleus K with the nuclear spin IK 6= 0. The nuclear magnetic dipole

moment of the nucleus, µµµK = µNgKIIIK (gK is the g-factor of the nucleus, µN the nuclear

magneton) produces a magnetic field at position rrr,

BBBK = − µ0

4πr3

(
µµµK−3

rrr (µµµK ·rrr)
r2

)
+

2
3

µ0µµµKδ (rrr) (1.6.1)

where δ (rrr) is the Kronecker symbol i.e. vanishes everywhere except r = 0, at the position

of the nucleus. The electronic magnetic moment of the paramagnetic center mmm interacts

with the above magnetic field and this tiny interaction is solely responsible for the addi-

tional chemical shift in the NMR spectrum.

1.6.1 The dipolar interaction

We can place the paramagnetic center at the origin such that we can write Eq. 1.6.1 in

terms of rrrK . In the point dipole approximation, the first term of BBBK is responsible for the

through-space classical magnetic dipole-dipole interaction,

Edip
K = mmm · µ0

4πr3
K

(
µµµK−3

rrrK (µµµK ·rrrK)

r2

)
(1.6.2)

= − µ0

4π
mmm ·TK ·µµµK (1.6.3)

where TK = r−5
K
(
3rK⊗ rK−Ur2

K
)

(⊗ denotes Kronecker product) is the geometric tensor

of nucleus K and U is the unit tensor. If the position vector of the nucleus rrrK is expressed

with the three Cartesian coordinates (xK,yK,zK), then the geometric tensor TK is the 3×3

9



Chapter 1. Introduction to the paramagnetic chemical shifts

matrix expressed as

TK = r−5
K

 3x2
K− r2

K 3xKyK 3xKzK

3yKxK 3y2
K− r2

K 3yKzK

3zKxK 3zKyK 3z2
K− r2

K

 (1.6.4)

where rK =
√

x2
K + y2

K + z2
K is the distance of the nucleus K to the paramagnetic center.

1.6.2 The contact interaction

The last term of BBBK in Eq. 1.6.1 is giving rise to the contact interaction as this interaction is

only possible when the unpaired electrons are in contact with the nucleus i.e. in quantum

chemistry language if the spin population resides at the position of the nucleus. In a

paramagnetic complex, spin population on the ligand atom K arises due to the through

bond spin delocalization and for atoms farther from paramagnetic center, spin polarization

plays the dominant role for introducing spin. If the spin population is in the s orbitals of

the atom K, it has a finite probability to come in contact with the nucleus. One can then

only focus on the spin magnetic moment mmmS as the orbital angular momentum of an s

orbital is zero. The contact interaction is given by,

Ec
K = −mmmS · 2

3
µ0µµµKδ (rrrK) (1.6.5)

=
2
3

µ0µBµNgegKIIIK ·SSSδ (rrrK) (1.6.6)

Eq. 1.6.6 gives a non-zero interaction only at the position of the nucleus.

It is important to note that the hyperfine interaction discussed here is from a classical non-

relativistic perspective. There is no term with a delta function in the minimally coupled

four-component relativistic Dirac theory or non-relativsitic Lévy-Leblond theory [40] for

an electron, hence there is no contact interaction. In fact, the first order interaction terms in

the two-component theory derived from the four-component Dirac equation or the Lévy-

Leblond equation naturally lead to the contact interaction [41]. Also, depending on how

the four-component Dirac theory is reduced to the two-component method, the mathe-

matical forms of hyperfine operators in the two-component methods vary from one to the

other. The so called “picture change effects” of the hyperfine interaction can be found in

Refs. [42, 43, 44]. Relativistic effects are minimal in the case of light atoms (AIS are

discussed for light atoms throughout this thesis), so we can reasonably emphasis on the

non-relativistic level of theory.
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1.7. Tensor representation

1.7 Tensor representation

In molecular physics, tensors are used to describe the anisotropic magnetic properties

(i.e. the value changes with direction). A second rank tensor P can be a matrix whose

elements are the products of the Cartesian components of two vectors aaa and bbb i.e. P =

aaa⊗bbb = ∑i j pi jiii⊗ jjj and pi j = aib j; i, j ∈ x,y,z

P =

 pxx pxy pxz

pyx pyy pyz

pzx pzy pzz

 (1.7.1)

Any rotation in the spatial coordinates affects the matrix P. So if R is the rotation matrix

which transforms the spatial coordinates of the system, then in the new coordinates new

matrix PR is given by

PR = RT PR (1.7.2)

where the superscript ’T’ indicates a transpose operation. For any symmetric tensor,

pi j = p ji and it is possible to find a reference frame where P is diagonal i.e. it takes the

form,

 p̃11 0 0

0 p̃22 0

0 0 p̃33

 (1.7.3)

This frame is called the principal axes frame (PAF), the main axes (which are the eigen-

vectors of P) are the principal directions of the tensor and the diagonal values (which are

the eigenvalues of P) are the principal components of the tensor. In an anisotropic case,

the properties are characterized by axiality and rhombicity. If one of the principal com-

ponents are significantly larger/smaller than the other two, let’s assume p̃11 ≤ p̃22� p̃33,

then the axiality is defined by ∆ pax = p̃33− p̃11+p̃22
2 , in this case the anisotropy is prolate,

∆ pax > 0. In the case, when p̃33 is very small compared to others two, ∆ pax < 0, the

anisotropy is oblate. The rhombicity is taken as δ prh = p̃22− p̃11. In case of axial sym-

metry (with a rotational symmetry axis of order n > 2 such that x, y belong to the same

irrep), axiality is assigned w.r.t. the symmetry axis (z axis). So for example, if the princi-

pal axis of p̃33 is along the symmetry axis, p̃33 is designated as p̃‖ and p̃⊥ = p̃11+p̃22
2 and

the anisotropic property of the tensor is given by ∆ pax = p̃‖− p̃⊥; if p̃‖ > p̃⊥ , ∆ pax > 0,

the anisotropy is axial and if p̃‖ < p̃⊥, ∆ pax < 0, it is planar.
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Chapter 1. Introduction to the paramagnetic chemical shifts

1.8 Spin Hamiltonian formalism

In the domain of molecular magnetic properties, spin Hamiltonian (which is a model

Hamiltonian) is routinely used to interpret the magnetic information of a molecule (or

solid) that can be obtained from the paramagnetic resonance spectra or performing ab

initio calculations. A typical EPR spectra of a molecule is rather complex and a model

Hamiltonian is used to fit it. Since the model Hamiltonian uses spin operators only and

hence the name, the matrix elements of the spin operators can be computed easily from a

suitable spin manifold using the spin algebra. In quantum chemistry, the general purpose

of introducing spin Hamiltonian or any model Hamiltonian is to project all the compli-

cated details associated with the solutions of an “exact” Hamiltonian that are difficult to

digest (to understand), into the few terms of the model Hamiltonian. The advantages of

using such a model Hamiltonian are: 1) It can be system-specific and the same symmetry

selection rules as for the crystal field applies and can be readily adopted. 2) A complete

description (of course depends on up to which extent one desires) of the system is possi-

ble by means of few terms. 3) More specifically the parameters associated with the terms

that effectively includes the underlying physics are easily comparable from one system

to another. Crystal field Hamiltonian introduced previously (also in chapter 5, Eq. 5.1.1)

is such a model Hamiltonian that effectively includes all the information associated to a

ground J manifold into the CFPs.

Inspired by the terms of an actual Hamiltonian, the terms in the spin Hamiltonian are

considered and there is always space to add necessary terms in a spin Hamiltonian for a

meaningful projection of the information. Apart from those before-mentioned, perhaps

the great advantage of using spin Hamiltonian to model the molecular magnetic properties

is that the parameters associated are usually rank-2 tensors those best suit for the descrip-

tion of both the isotropic and anisotropic properties. The spin Hamiltonian parameters

obtained from the experiment are used to compare with the values obtained from ab initio

calculations. The parameters need to be comparable first and serve as a common ground

for both the experimentalists and theoreticians to build up the critical discussions from

each side. That is why, in the last two decades, with the advent of quantum chemistry

methods, much interest in the molecular magnetic properties were put forward in the first

principle computations of the spin Hamiltonian parameters [45].

It is to be noted here that the model space of a spin Hamiltonian has nothing to do with the

real spin of a system. Usually to avoid confusion, the desired ab initio states are modeled

by a pseudospin S̃. Thus, a set of 2S̃+1 ab initio states {|ΨI〉} of an actual Hamiltonian

has the corresponding model space
{∣∣S̃,MS̃

〉}
,MS̃ =−S̃,−S̃+1, ..,+S̃ in the spin Hamil-

tonian formalism. For example, a Kramers doublet (KD) of an odd number of unpaired-

electrons’ system is modeled by a pseudospin S̃ = 1/2 and the model space of the KD is

spanned by the pseudospin vectors {|1/2,+1/2〉 , |1/2,−1/2〉}.
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1.8. Spin Hamiltonian formalism

Figure 1.8.1: A graphical scheme is provided
to show the one-to-one correspondences be-
tween the ab initio states and model states.

A set of triplet states is described by pseu-

dospin S̃ = 1 and quartet states by S̃ =

3/2. When the zero-field splitting is too

large, a quartet manifold breaks down into

a problem with two KDs where each of the

KD is described with pseudospin S̃ = 1/2.

The most crucial step associated with spin

Hamiltonian theory is to find out the one-

to-one correspondence between the model

states
∣∣S̃,MS̃

〉
with the ab initio eigenstates |ΨI〉.

This is usually achieved by performing some transformations. As an example, it can be

done by transforming the ab initio magnetic moment matrices Mz, My and Mx in the

set of the {|ΨI〉} and correlating them with the magnetic moment matrices computed in

the model space. In the model space
{∣∣S̃,MS̃

〉}
, Mz is diagonal, so after diagonalizing

the ab initio Mz, a one-to-one correspondence can be performed with the model Mz; and

the eigenvectors of the ab initio Mz are the ab initio counterparts
{
|ΨI〉AI

}
of the model

states
{∣∣S̃,MS̃

〉}
. A phase factor must be assigned to

{
|ΨI〉AI

}
such that the off-diagonal

elements of Mx and My become real and imaginary, respectively [39], as it is the case in

the model space.

Now we want to be familiar with some of the terms considered in the spin Hamiltonian

those are used to return all the interactions of the actual Hamiltonian. For example, a

convenient way to handle the molecular Zeeman interaction in Eq. 1.2.5 is that of defining

a tensor g which effectively includes the coupling of the electronic magnetic moment mmm

with the external magnetic field BBB0. The corresponding Zeeman interaction term of Eq.

1.2.5 in the spin Hamiltonian formalism is given by

ĤZ
s = µBŜSS ·g ·BBB0 (1.8.1)

In case of a KD, the ab initio molecular wave functions
{

Φ,Φ̄
}

are modeled by pseu-

dospin vectors {|1/2,+1/2〉 , |1/2,−1/2〉} and so the representation matrices of ŜSS in Eq.

1.8.1 are the three Pauli spin matrices σσσ l , l = x,y,z. The g tensor of a KD can be obtained

as
δ

δB0,k

( 〈
Φ
∣∣ĤZ

∣∣Φ〉 〈
Φ
∣∣ĤZ

∣∣Φ̄〉〈
Φ̄
∣∣ĤZ

∣∣Φ〉 〈
Φ̄
∣∣ĤZ

∣∣Φ̄〉
)

=
1
2

µB ∑
l

glkσσσ l (1.8.2)

Likewise, the hyperfine interaction term is modeled by

ĤHyp
s = ŜSS ·AK ·IIIK (1.8.3)
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Chapter 1. Introduction to the paramagnetic chemical shifts

and similarly for a KD, the hyperfine coupling tensor AK can be obtained as

δ

δ IK,k

 〈
Φ

∣∣∣ĤHyp
K

∣∣∣Φ〉 〈
Φ

∣∣∣ĤHyp
K

∣∣∣Φ̄〉〈
Φ̄

∣∣∣ĤHyp
K

∣∣∣Φ〉 〈
Φ̄

∣∣∣ĤHyp
K

∣∣∣Φ̄〉
=

1
2 ∑

l
AK,lkσσσ l (1.8.4)

where ĤHyp
K comprises both the dipolar and contact interaction terms (Eqs. 1.6.3, 1.6.6),

ĤHyp
K = Ĥdip

K + Ĥc
K . AK can be further divided into the dipolar Adip

K and the Fermi contact

Ac
K contributions. Comparing with Eqs. 1.6.3, the dipolar hyperfine coupling tensor can

be calculated as

δ

δ IK,k

 〈
Φ

∣∣∣Ĥdip
K

∣∣∣Φ〉 〈
Φ

∣∣∣Ĥdip
K

∣∣∣Φ̄〉〈
Φ̄

∣∣∣Ĥdip
K

∣∣∣Φ〉 〈
Φ̄

∣∣∣Ĥdip
K

∣∣∣Φ̄〉
=

1
2 ∑

l
Adip

K,lkσσσ l (1.8.5)

−µ0gKµN

4π

( 〈
Φ
∣∣∑l m̂lTK,lk

∣∣Φ〉 〈
Φ
∣∣∑l m̂lTK,lk

∣∣Φ̄〉〈
Φ̄
∣∣∑l m̂lTK,lk

∣∣Φ〉 〈
Φ̄
∣∣∑l m̂lTK,lk

∣∣Φ̄〉
)

=
1
2 ∑

l
Adip

K,lkσσσ l (1.8.6)

and comparing with 1.6.6, the contact coupling parameters are calculated as

δ

δ IK,k

( 〈
Φ
∣∣Ĥc

K

∣∣Φ〉 〈
Φ
∣∣Ĥc

K

∣∣Φ̄〉〈
Φ̄
∣∣Ĥc

K

∣∣Φ〉 〈
Φ̄
∣∣Ĥc

K

∣∣Φ̄〉
)

=
1
2 ∑

l
Ac

K,lkσσσ l

(1.8.7)

2
3

µ0µBµNgegK

(
∑

occ
i 〈φi |σσσ kδ (rrrK)|φi〉 ∑

occ
i
〈
φi |σσσ kδ (rrrK)| φ̄i

〉
∑

occ
i
〈
φ̄i |σσσ kδ (rrrK)|φ

〉
∑

occ
i
〈
φ̄i |σσσ kδ (rrrK)| φ̄i

〉 )= ∑
l

Ac
K,lkσσσ l

(1.8.8)

In Eq. 1.8.7, Φ and Φ̄ are considered as single-determinants, φi the occupied two-

component molecular spinors, φi =

(
φi,a

φi,b

)
. For σσσ z,

occ

∑
i
〈φi |σσσ zδ (rrrK)|φi〉=

occ

∑
i

(
φ
∗
i,aφi,aδ (rrrK)−φ

∗
i,bφi,bδ (rrrK)

)
(1.8.9)

In the non-relativistic theory, φi,a and φi,b can be replaced by the spin orbitals φ α
i and φ

β

i

(α and β are the spin functions),
occ

∑
i

(
φ

α∗
i φ

α
i δ (rrrK)−φ

β∗
i φ

β

i δ (rrrK)
)
=

occ

∑
i

(
ρ

α
i (rrrK)−ρ

β

i (rrrK)
)
= ρ

s (rrrK) (1.8.10)

where ρs (rrrK) is the total spin density at the position of nucleus K. Pell et al. discussed

that for a paramagnetic complex with multiple delocalized electrons, the Fermi hyperfine

coupling constant should be divided with the number of unpaired electrons, N = 2S, in or-

der to compare between different paramagnetic complexes i.e. the isotropic Fermi contact

coupling constant per unpaired electron is given by

Ac
K =

2
3N

µ0µBµNgegKρ
s (rrrK) (1.8.11)

Eq. 1.8.11 can be better used in a sense of comparing spin densities at nucleus K per
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1.8. Spin Hamiltonian formalism

unpaired electron, ρs(rrrK)
N . The trend of spin delocalization in an isostructural series can be

discussed in terms of the spin densities and can be used as a probe of covalency.
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Chapter 2

Theoretical aspects and quantum
chemical methodology

In the previous chapter, we have introduced the basic concepts of the magnetic properties

and became familiar with the hyperfine interactions responsible for the pNMR shifts. In

this chapter, we will deal with the theoretical aspects of pNMR shifts such as: a) first

principle descriptions of the origin of the magnetic susceptibility and pNMR shifts, b)

modeling of them in terms of spin Hamiltonian parameters, and c) the quantum chemical

methods to calculate them ab initio. At this point, it is worthy to mention that the first

principle description of the NMR shielding tensor was first developed by Ramsey in the

1950s for a system with a non-degenerate ground state [47]. His development can be fully

realized for diamagnetic systems like the organic molecules or closed-shell main-group

inorganic systems.

When an external magnetic field is applied, the electronic energy states undergo Zeeman

splitting as developed in section 1.2, similarly nucleus K with nuclear spin IIIK > 0 shows

nuclear Zeeman splitting. In the NMR technique, external electromagnetic frequencies

are provided to resonate the nuclei and a detector collects the signal. From a theoretical

point of view, interaction with a magnetic field adds additional energies (energy contribu-

tions from H(1) and H(2) in Eq. 1.2.3) to the non-perturbed electronic states of a system

i.e. with the eigenvalues of H(0). It was Ramsey’s genius idea to take the nuclear magnetic

moment µµµK and the external magnetic field BBB0 as perturbations, and ultimately expressing

the additional energy terms with the help of perturbation theory. According to his theory,

the electronic ground state energy of a non-degenerate system can be expanded as

E (µµµK,BBB0) = E0 +∑
i j

∂ 2E
∂B0,i∂ µK, j

∣∣∣∣
0

B0,iµK, j + ... (2.0.1)

provided that both the perturbations BBB0 and µµµK are quite small and i, j ∈ x,y,z. E0 is

the non-perturbed electronic ground state energy i.e. in the absence of any magnetic
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2.1. Magnetic properties from the response terms

field (BBB0,µµµK). The coefficients of the above expansion are the components of the (3×3)

shielding tensor σσσK ,

σK,i j =
∂ 2E

∂B0,i∂ µK, j

∣∣∣∣
0

(2.0.2)

Thus the shielding tensor can be calculated as a second derivative of the energy. If there

are more than one nucleus, the associated Taylor expansion terms can be added to the

above ones and the shielding tensors are calculated in the same fashion.

2.1 Magnetic properties from the response terms

To include the effect of temperature on the pNMR shifts, Soncini and Van den Heuvel

considered the Helmholtz free energy (F) of the system, F =U−T S, (U , internal energy

and S, entropy of a system) instead of the electronic energy E as considered by Ramsey

in Eq. 2.0.1 and the corresponding Taylor expansion becomes [29]

F (µµµK,BBB0) = F0 +∑
i j

∂ 2F
∂B0,i∂ µK, j

∣∣∣∣
0

B0,iµK, j + .. (2.1.1)

The shielding tensor of a paramagnetic system is calculated as a second partial derivative

of the Helmholtz free energy,

σK,i j =
∂ 2F

∂B0,i∂ µK, j

∣∣∣∣
0

(2.1.2)

Soncini and Van den Heuvel concluded that the expansion terms w.r.t. the free energy

have more promises, such as they can handle a paramagnetic system with degenerate

energy states. The above kind of expansion w.r.t. F is more general in a sense that one

can follow the line to define other magnetic properties such as magnetic susceptibility χ

where the Taylor expansion is expressed with the components of the external magnetic

field BBB0,i=x,y,z

F = F0 +∑
i j

∂ 2F
∂B0,i∂B0, j

∣∣∣∣
0

B0,iB0, j + .. (2.1.3)

and the expansion coefficients are the components of the susceptibility tensor, χi j =
∂ 2F

∂B0,i∂B0, j

∣∣∣
0
. Similarly one can also define the nuclear magnetic resonance parameter JKK′

(nuclear spin-spin coupling parameter) where one expands the additional energy terms as

F = F0 +∑
i j

∂ 2F
∂ µK,i∂ µK′, j

∣∣∣∣
0

µK,iµK′, j + .. (2.1.4)
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where JKK′,i j =
∂ 2F

∂ µK,i∂ µK′, j

∣∣∣
0

are the components of the coupling tensor JKK′ . Reminded

that all the parameters mentioned above are essentially tensors and the isotropic value is

one-third of the trace.

2.2 Sum-over-states formulations of the magnetic prop-
erties

Already we have seen that the magnetic properties are essentially the coefficients of the

energy correction terms. One of the prescribed ways to calculate these second partial

derivatives from the first principles is to express them as sum-over-states formulations.

Soncini and Van den Heuvel brilliantly expressed the shielding tensors in a paramagnetic

complex, and the final expression of their derivation is given below [29]

σK,i j =
1

Q0
∑
n

e−βEn

∑
ν

〈
nν
∣∣Di j

∣∣nν
〉
+β ∑

ν ,ν
′

〈
nν |m̂i|nν

′
〉〈

nν
′
|F̂K, j|nν

〉

+2 ∑
m 6=n

∑
ν ,µ

∑
ν ,ν
′ 〈nν |m̂i|mµ〉

〈
mµ|F̂K, j|nν

〉
Em−En

]
(2.2.1)

= σ
dia
K,i j +

1
Q0

∑
n

e−βEn

β ∑
ν ,ν
′

〈
nν |m̂i|nν

′
〉〈

nν
′
|F̂K, j|nν

〉

+2 ∑
m 6=n

∑
ν ,µ

∑
ν ,ν
′ 〈nν |m̂i|mµ〉

〈
mµ|F̂K, j|nν

〉
Em−En

]
(2.2.2)

where Q0 is the partition function in absence of the perturbations (BBB0,µµµK), m̂mm the elec-

tronic magnetic moment operator, F̂KFKFK related to the hyperfine coupling operator of nu-

cleus K, D̂i j gives the diamagnetic shielding contribution and β = 1
kBT . |nν〉, |mµ〉 are

the eigenstates of the non-perturbative Hamiltonian with eigenvalues En, Em, respectively

and ν ,µ indicate their degenerate components. The diamagnetic shielding tensor in Eq.

2.2.2 is defined as σdia
K,i j =

1
Q0

∑n e−βEn ∑ν

〈
nν
∣∣Di j

∣∣nν
〉
. The paramagnetic shielding as

defined previously excludes the diamagnetic part from the total shielding, σ
p
K = σK−σdia

K

and each component of the paramagnetic shielding tensor is,

σ
p
K,i j =

1
Q0

∑
n

e−βEn

β ∑
ν ,ν
′

〈
nν |m̂i|nν

′
〉〈

nν
′
|F̂K, j|nν

〉

+2 ∑
m 6=n

∑
ν ,µ

∑
ν ,ν
′ 〈nν |m̂i|mµ〉

〈
mµ|F̂K, j|nν

〉
Em−En

(2.2.3)
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Similarly the paramagnetic susceptibility tensor χχχ can be calculated on the same line as

χi j =
1

Q0
∑
n

e−βEn

β ∑
ν ,ν
′

〈
nν |m̂i|nν

′
〉〈

nν
′
|m̂ j|nν

〉

+2 ∑
m 6=n

∑
ν ,µ

∑
ν ,ν
′ 〈nν |m̂i|mµ〉

〈
mµ|m̂ j|nν

〉
Em−En

(2.2.4)

Note that in the case of paramagnetic susceptibility, we drop the superscript ’p’ from the

notation since the diamagnetic susceptibility is very very small compared to the param-

agnetic one, one can roughly say that the total magnetic susceptibility arises due to the

paramagnetism. If not mentioned elsewhere, the magnetic susceptibility always refers to

the paramagnetic one.

The above sum-over-states formulations of the pNMR shifts and susceptibility in Eq.

2.2.3 and Eq. 2.2.4, respectively, only require the matrix elements of the electronic mag-

netic moment and hyperfine operators, and knowledge of the energy levels. The matrix

elements are calculated from the wave functions of a non-perturbative Hamiltonian for a

system and the energy levels are the non-perturbed energy states. In the field of compu-

tational chemistry, one uses software packages to calculate the wave function(s) and the

energy level(s) using the ab initio methods and the methods are broadly divided into two

categories: the wave function based (WFT) methods and electron density based (DFT)

methods. We need a brief discussion about these methods so that one can feel the flavor

of the physics behind the computations and also be aware of the associated difficulties.

Quite specially, for the first principle descriptions of the actinide complexes where all the

complexities bundle together [48].

2.3 Wave function based methods

According to one of the postulates of quantum mechanics, for a system in a state described

by a wave function |Ψ〉, then the expectation value of an observable is given by

A =
〈
Ψ
∣∣Â∣∣Ψ〉 (2.3.1)

where Â is the quantum operator of that observable and A is its expectation value, provided

that |Ψ〉 is normalized i.e. 〈Ψ |Ψ〉= 1. In the case of a stationary state (i.e. all observables

in that state are independent of time) the corresponding wave function |Ψ〉 is the solution

of the time independent Schrödinger equation.
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2.3.1 Time independent Schrödinger equation

The time independent Schrödinger equation is popularly written in the shorthand notation

as

Ĥ |Ψ〉 = EΨ |Ψ〉 (2.3.2)

where Ĥ is the Hamiltonian operator corresponding to the total energy of the system

including both the kinetic and potential energies. Eq. 2.3.2 is an eigenvalue problem

where the operator Ĥ operates on an eigenvector |Ψ〉 providing the energy EΨ as the

eigenvalue. In the case of a molecule, Ĥ considers the position vectors of the nuclei RRRK

and electrons rrri and gives the total energy of the molecule in a quantum sate |Ψ〉. |Ψ〉 is

a stationary state solution of Ĥ and any molecular property in that quantum state can be

calculated using |Ψ〉 according to Eq. 2.3.1.

2.3.2 Born-Oppenheimer approximation

Born-Oppenheimer approximation becomes an essential part of solving the molecular

Schrödinger equation where the coupling between the nuclear and electronic motion is

neglected. Electrons are very light particles compared to a nucleus and move nearly at

the speed of light close to the nucleus. Hence, with a bold approximation, one assumes

whenever the nucleus moves, the electrons follow immediately. This allows solving Eq.

2.3.2 in fixed nuclear coordinates (i.e. known {RRRK}); the kinetic energy terms of the nuclei

are neglected and the nuclear-nuclear repulsion energy terms are taken as parameters in

the molecular Hamiltonian. Under these assumptions, the molecular Hamiltonian only

contains the electronic coordinates and solving Eq. 2.3.2 using this Hamiltonian provides

the molecular electronic energy states. The N-electron molecular electronic Hamiltonian

Ĥe (in a.u.) is given by

Ĥe = T̂e +V̂eK +V̂ee


T̂e =−∑

N
i=1

1
2∇̂2

i

V̂eM =−∑
N
i=1 ∑

M
K=1

ZK
riK

V̂ee = ∑
N
i=1 ∑

N
j>i

1
ri j

(2.3.3)

where T̂e, V̂eM and V̂ee give the kinetic energy of the electrons, electron-nucleus attraction

energy and electron-electron interaction energy, respectively. ZK is the atomic number

of nucleus K, ∇̂ the Laplacian operator. The nuclear-nuclear repulsion energy VMM =

∑
M
K=1 ∑

M
K′>K

ZKZK,

R
KK′

is added to the total electronic energy to obtain the total energy in

fixed nuclear coordinates; RKK′ is the distance between two nuclei. The solutions of the

N-electron Schrödinger equation are the electronic energy levels of the system EΦ and the

multielectronic wave functions |Φ〉,
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Ĥe |Φ〉 = EΦ |Φ〉 (2.3.4)

But, the two-electron interaction term of the multielectronic Hamiltonian (Eq. 2.3.3) is

the problem and makes it difficult to solve Eq. 2.3.4 exactly. If the two-electron term is

not there, the multielectronic Hamiltonian is a sum of a one-electron Hamiltonian and Eq.

2.3.4 would be easily solvable. However, the electron-electron interaction energy is non-

ignorable and in practical purposes, a many-electron Hamiltonian is written in terms of

effective one-electron Hamiltonian and a multielectronic state |Φ〉 is expressed in terms of

Slater determinant, either by a single Slater determinant (in HF or DFT method) or a linear

combination of multiple Slater determinants (in CASSCF method). A Slater determinant

|Φ〉SD is written in terms of molecular orbitals as

|Φ〉SD =
1√
N!

∣∣∣∣∣∣∣∣∣∣
φ1 (rrr1) φ2 (rrr1) · · · φN (rrr1)

φ1 (rrr2) φ2 (rrr2) · · · φN (rrr2)
...

... . . . ...

φ1 (rrrN) φ2 (rrrN) · · · φN (rrrN)

∣∣∣∣∣∣∣∣∣∣
(2.3.5)

where 1√
N!

is the normalization factor, φi (rrr) is the ith molecular orbital that describes the

probability density of finding an electron as ρi (rrr) = φ∗i (rrr)φi (rrr). The molecular orbitals

form an orthonormal set i.e.
〈
φi (rrr)

∣∣φ j (rrr)
〉
= δi j. The advantages of using the Slater

determinants for a multielectronic wave function are many. To mention, it follows the

anti-symmetry principle and also in accordance with the probabilistic determination of

finding an electron as per quantum mechanics. The total electronic energy associated to a

Slater determinant is then,

ESD =
〈
ΦSD

∣∣Ĥe
∣∣ΦSD

〉
(2.3.6)

=
occ

∑
i

〈
φi (rrr)

∣∣∣∣∣−1
2

∇̂
2−

M

∑
K=1

ZK

rK

∣∣∣∣∣φi (rrr)

〉
+

occ

∑
i=1

occ

∑
j>i

〈
φi (rrr)φ j

(
rrr′
)∣∣∣∣ 1
|rrr−rrr′|

∣∣∣∣φi (rrr)φ j
(
rrr′
)〉
−

occ

∑
i=1

occ

∑
j>i

〈
φi (rrr)φ j

(
rrr′
)∣∣∣∣ 1
|rrr−rrr′|

∣∣∣∣φi
(
rrr′
)

φ j (rrr)
〉

(2.3.7)

=
occ

∑
i=1

〈
φi (rrr)

∣∣ĥ∣∣φi (rrr)
〉
+

1
2

occ

∑
i=1

occ

∑
j=1

〈
φi (rrr)φ j

(
rrr′
)∥∥φi (rrr)φ j

(
rrr′
)〉

(2.3.8)

=
occ

∑
i=1

hi +
1
2

occ

∑
i j

(
Ji j−Ki j

)
(2.3.9)

where the one electron term hi comprises the kinetic and nuclear attraction energies. Ji j

and Ki j are the two-electron interaction terms, the Coulomb and exchange energies, re-
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spectively. Eq. 2.3.9 is solved by iterative procedure to obtain the best set of molecular

orbitals which will minimize the total electronic energy, and the iterative process is com-

monly termed as self-consistent field (SCF) procedure. The Hartree-Fock method is the

most renowned SCF procedure in the field of quantum chemistry and often considered as

a starting point to solve the multielectronic Schrödinger equation.

2.3.3 Hartree-Fock method (HF-SCF)

In the Hartree-Fock theory, the energy in Eq. 2.3.6 gets minimized by variation of the

orbitals, subject to the normalization constraints,〈
φi
∣∣φ j
〉
−δi j = 0 (2.3.10)

therefore using the method of Lagrange multipliers, a Lagrangian functional L [{φi}] can

be constructed as

L [{φi}] = ESD [{φi}]−
occ

∑
i j

εi j
〈
φi
∣∣φ j
〉
−δi j (2.3.11)

where ESD [{φi}] is the expectation value of |ΦSD〉 given by Eq. 2.3.9. εi j constitute a set

of Lagrange multipliers. Minimization of ESD subject to the constraints is thus obtained

by minimizing the Lagrangian functional δL = 0 which ultimately provides the best

set of orbitals. This minimization finally results a set of N equations for the N-electron

system and the equations are known as the Hartree-Fock eigenvalue equations,

f̂ (rrr)φi (rrr) = εiφi (rrr) (2.3.12)

Eqs. 2.3.12 represent one particular set of orbitals, called ‘canonical’. The orbital energies

are Lagrange multipliers needed to satisfy the constraints. Other Lagrange multipliers,

corresponding to non-canonical coupled HF equations and alternative sets of orbitals that

also minimize the energy, are available. The one electron Fock operator f̂ (rrr) in Eq. 2.3.12

is given by,

f̂ (rrr) = ĥ(rrr)+
occ

∑
j=1

(
J j (rrr)−K j (rrr)

)
(2.3.13)

and the eigenvalue εi is the orbital energy of the ith occupied molecular orbital φi (rrr),

εi =
〈
φi (rrr)

∣∣ĥ∣∣φi (rrr)
〉
+

occ

∑
j

〈
φi (rrr)φ j

(
rrr′
)∥∥φi (rrr)φ j

(
rrr′
)〉

(2.3.14)

= hi +
occ

∑
j

(
Ji j−Ki j

)
(2.3.15)

The Hartree-Fock eigenvalue problem for a multielectronic system then becomes

ĤHF |Ψ0〉HF =

(
occ

∑
i=1

εi

)
|Ψ0〉HF (2.3.16)
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where ĤHF = ∑
N
i=1 f̂ (rrri) and |Ψ0〉HF is the approximate solution to the ground electronic

state where the N lowest orbitals are occupied. |Ψ0〉HF is written as a single Slater deter-

minant in terms of the N occupied molecular orbitals obtained by solving Eq. 2.3.12. The

eigenvalue of Eq. 2.3.16 is the sum of the orbital energies, ∑
occ
i εi. However, comparing

with Eq. 2.3.9, one can notice that when the ground state is approximated by a single

determinant |Ψ0〉HF , the corresponding total electronic energy EHF
0 6= ∑

occ
i εi i.e. the total

electronic ground state energy is not the sum of the orbital energies due to double count-

ing of two-electron terms. According to Eq. 2.3.9, the ground state electronic energy in

Hartree-Fock theory can be obtained as

EHF
0 =

occ

∑
i

εi−
1
2

occ

∑
i j

(
Ji j−Ki j

)
(2.3.17)

For details, we recommend to read chapter 3 of the book written by Szabo and Ostlund

[49]. In daily computational practices, we use atomic basis {|µ〉 , |ν〉 , ..} to express the

molecular orbitals φi (rrr) which are written as linear combinations of the atomic orbitals

as φi = ∑ν cν i |ν〉. So Eq. 2.3.12 can be written as

f̂ ∑
ν

cν i |ν〉= εi ∑
ν

cν i |ν〉 (2.3.18)

multiplying right hand side of Eq. 2.3.18 by 〈µ| and introducing the overlap matrix

Sµν = 〈µ |ν 〉

∑
ν

〈
µ
∣∣ f̂ ∣∣ν〉cν i = εi ∑

ν

cν i 〈µ|ν〉 (2.3.19)

∑
ν

Fµνcν i = εi ∑
ν

cν iSµν (2.3.20)

where Fµν are the elements of the Fock matrix F, represented in the atomic basis {|µ〉 , |ν〉 ....}
and cν i are expansion coefficient of the ith molecular orbital in terms of the atomic basis

|ν〉. Eqs. 2.3.20 are called the Roothaan equations and can be written in a matrix form as

FC = εSC (2.3.21)

C is the coefficient matrix where the ith column corresponds to the molecular orbital

in terms of the expansion coefficients cν i. Up to this point, the determination of the

molecular orbitals and their energies involve solving the matrix equation of Eq. 2.3.21.

In most computational softwares, it is solved using iterative process to get the best set

of coefficients for the molecular orbitals by minimizing the total electronic energy of the

system. The energy minimization is performed based on variational approach.

The Hartree-Fock method has some limitations. The Hartree-Fock energy is always upper

bound to the exact ground state solution of Ĥe, E0 and when the basis set approaches to

the completeness, this extra missing energy is known as the correlation energy Ecorr,
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Ecorr = E0−EHF
0 (2.3.22)

which can be roughly divided into two parts: the static correlation energy and the dynamic

correlation energy. Usually the electronic states of the open shell metal complexes are

multiconfiguration (written with multiple Slater determinants) in nature. But, the Hartree-

Fock method is a single determinant method that lacks the proper descriptions for the open

shell metal complexes and this leads to the so-called static correlation energy. This can

be recovered using the multiconfiguration SCF method such as CASSCF.

2.3.4 Complete active space SCF method (CASSCF)

In CASSCF method [50], one expands the multielectronic wave functions as spin adapted

linear combinations of configuration wave functions generated by partitioning the orbitals

into three subspaces. In the first subspace, called as inactive space, all orbitals are doubly

occupied. In the second subspace, termed as active space, the orbitals are called active

orbitals and a full CI (Configuration Interaction) expansion is performed within these

active orbitals. For example, for a d2 metal complex, we can choose the five d orbitals

as active and a multiconfiguration wave function is built as a linear combination of all

the possible configurations that are generated by arranging two electrons in the five d

orbitals. That is why this second subspace is usually called as the complete active space

(CAS) since we consider all the possible configurations |ΦI〉 ,{I = 1,2,3, ...,CI}. The

third subspace is known as the virtual space and all the orbitals are kept unoccupied.

A configuration can be expressed with a Slater determinant like the HF wave function.

The multiconfiguration CAS wave functions |Ψ〉CAS
J are written as spin adapted linear

combinations of the determinants |ΦI〉 in the form of CI as,

|Ψ〉CAS
J =

CI

∑
I

CIJ |ΦI〉 (2.3.23)

where CIJ are the coefficients of expansions. In practice, a CASSCF calculation is per-

formed after an initial HF or DFT calculation which helps to choose the active orbitals

from where all the determinants are constructed. The energy of the state corresponds to a

CASSCF wave function |Ψ〉CAS
J is calculated as

ECAS
J =

〈
Ψ

CAS
J
∣∣Ĥe
∣∣ΨCAS

J

〉
=

CI

∑
IK

C∗IJCKJHIK (2.3.24)

where Ĥe is the many electron Hamiltonian. Note that, HIK is not a matrix element

between two orbitals but two determinants. Now again, we are not going into the details

of the CASSCF procedure but take a quick look at how HIK looks like and finally how

24



2.3. Wave function based methods

we can obtain the ECAS
J from there. In the second quantization notations of creation

(
â†)

and annihilation (â) operators, HIK can be written in terms of the shift operator Êpq as

follows

HIK =
〈
ΦI
∣∣Ĥe
∣∣ΦK

〉
= ∑

pq

(
p
∣∣ĥ∣∣q)〈ΦI

∣∣Êpq
∣∣ΦK

〉
+

1
2 ∑

pqrs
(pq |rs)

〈
ΦI
∣∣(ÊpqÊrs−δqrÊps

)∣∣ΦK
〉

(2.3.25)

where in Eq. 2.3.25, Êpq =
(

â†
pα âqα + â†

pβ
âqβ

)
and p,q,r,s are the molecular orbitals.(

p
∣∣ĥ∣∣q) is the one-electron energy term and (pq |rs) is the two-electron interaction term.

The final expression of energy ECAS
J now becomes,

ECAS
J = ∑

pq

(
p
∣∣ĥ∣∣q) CI

∑
IK

C∗IJCKJ
〈
ΦI
∣∣Êpq

∣∣ΦK
〉

+
1
2 ∑

pqrs
(pq |rs)

CI

∑
IK

C∗IJCKJ
〈
ΦI
∣∣(ÊpqÊrs−δqrÊps

)∣∣ΦK
〉

(2.3.26)

Figure 2.3.1: Partitioning of the orbitals into
different subspaces in RASSCF scheme. The
active orbitals in the active space are divided
into three sets of orbitals: RAS1, RAS2 and
RAS3 and all configurations generated by
2h−2p excitations are considered in the CI.

The final energies of a CAS based SCF

calculation are minimized w.r.t. or-

bital rotations while also maintaining

their orthogonality. As a byproduct,

some other valuable information can be

obtained from a CASSCF calculation

along with the energies such as: γ pq =

∑
CI
IK C∗IJCKJ

〈
ΦI
∣∣Êpq

∣∣ΦK
〉

in Eq. 2.3.26 is

called the one-particle density matrix, di-

agonalization of the matrix gives the Nat-

ural Orbitals (NOs) and their occupation

numbers. The active space NOs can be

plotted for the visualization. In the follow-

ing chapters, we will see the active NOs of

some actinide complexes.

The restricted active space self-consistent

field (RASSCF) procedure is also a mul-

ticonfiguration SCF treatment, but in this

case, the active orbitals are divided into

different sets of orbitals (RAS1, RAS2,

RAS3) and restricted excitations of the ac-

tive electrons are performed in between
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them [51]. In Fig. 2.3.1, a graphical scheme is provided which shows the different sets

of orbitals in the active space. A RASSCF treatment is preferentially prescribed for an

actinyl ([AnO2]2+) complex where the actinide in +5 or +6 oxidation state forms two

strong triple bonds with the oxo (O2 – ) groups. Hence, a large active space is consid-

ered which covers the bonding and anti-bonding orbitals of the actinyl moiety to properly

address the electron correlation.

Here, we mention about the notations of CASSCF and RASSCF calculations which are

used later: CAS/CASSCF(n,m)- a CASSCF calculation is performed with n electrons in

m active orbitals, RAS/RASSCF(a,x;b,y;c,z : u,v)- a RASSCF calculation is performed

with a electrons in x RAS1 orbitals, b electrons in y RAS2 orbitals and with z RAS3 or-

bitals, and maximum allowed number of holes and particles in RAS1 and RAS3 orbitals

are u and v, respectively. Theoretically, when the basis sets used for the calculations ap-

proach to the completeness, a full CI calculation i.e. all the possible arrangements of all

the electrons in all the orbitals gives the exact energy (of course, in the SF limit) of the

system. But due to the computational limit, a full CI calculation is performed within the

truncated active space in the CASSCF method. Due to the truncation of the active space,

a CASSCF calculation fails to address the dynamic correlation energy. Unlike CASSCF,

Complete Active Space Configuration Interaction (CASCI) methods are less costlier (in

terms of computational time). Since in CASSCF, both the CI and orbital coefficients are

optimized variationally whereas in CASCI, the CI coefficients are optimized in a pre-

determined set of orbitals and hence, the number of active orbitals can be increased to

recover the correlation energy. Perturbation theory based treatment can also be employed

to recover the electron correlation energy considering CAS based wave functions as the

reference states [52, 53]. One of the method is the Complete Active Space Perturbation

Theory at Second Order (CASPT2) [54].

2.3.5 Treatment of electron dynamic correlation (CASPT2)

The idea behind the perturbative treatment of electron dynamic correlation lies on slicing

an Hamiltonian Ĥ as

Ĥ = Ĥ(0)+λ Ĥ(1) (2.3.27)

where Ĥ(0) is the non-perturbative or the Zeroth order Hamiltonian and Ĥ(1) is the first or-

der perturbative Hamiltonian and λ is a small parameter. The solutions of the Schrödinger

equation using Hamiltonian of Eq. 2.3.27 can also be expanded as a Taylor series in λ ,
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|Ψn〉=
∣∣∣Ψ(0)

n

〉
+λ

∣∣∣Ψ(1)
n

〉
+λ

2
∣∣∣Ψ(2)

n

〉
+ .. (2.3.28)

En = E(0)
n +λE(1)

n +λ
2E(2)

n + .. (2.3.29)∣∣∣Ψ(0)
n
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Considering the terms up to second order in energy, the first order E(1)
n and second order

E(2)
n energy corrections to E(0)

n can be obtained as

E(1)
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〈
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n

〉
(2.3.32)
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and in first order one obtains,
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On a soft ground, CASPT2 method can be viewed as the second order correction to the

CASSCF energies ECAS
J using the CASSCF wave functions |Ψ〉CAS

J as the unperturbed

states or reference states. CASPT2 calculation becomes highly computationally expen-

sive as the number of orbitals which in practice are correlated, gets larger. Also CASPT2

method comes with certain problems associated with it such as the “intruder state prob-

lem” where a state from the interacting space gives large contribution to the total energy

due to small energy difference w.r.t. the reference CASSCF state. So a small denominator

(according to Eq. 2.3.33) is giving rise to a large contribution to the final CASPT2 energy

over the reference CASSCF energy. This problem is usually solved by shifting the energy

levels using level-shift technique.

2.4 Density functional theory based methods

Density functional methods are highly popular in the field of computational chemistry.

We will use DFT methods to calculate the spin densities needed for the description of

the contact shifts as developed in section 1.8. Here, a brief theoretical overview is pro-
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vided just to be familiar with the DFT methods. The foundation of the DFT lies on the

Hohenberg-Kohn theorem which states that the ground state electronic energy E0 can be

completely determined by the ground state electron density ρ0; in other words in DFT, the

energy is a functional of the electron density E [ρ] and when ρ = ρ0 , E0 = E [ρ0]. The

energy functional in DFT is written as

E [ρ] = F [ρ]+EeM [ρ] (2.4.1)

where the functional F [ρ] consists of the kinetic energy term T [ρ] and the interelectronic

interaction term Eee [ρ], those only change with the number of electrons. The term EeM [ρ]

is the electron-nuclear attraction energy term and system specific.

2.4.1 Kohn-Sham theory

In the Kohn-Sham theory, the functional form of F [ρ] is given as

F [ρ] = Ts [ρ]+ J [ρ]+Exc [ρ] (2.4.2)

where the electron density ρ of N-non-interacting-electron system is given by ρ (rrr) =

∑
occ
i |φi (rrr)|2, φi (rrr) the Kohn-Sham orbitals. Ts [ρ] is the Kohn-Sham kinetic energy func-

tional, J [ρ] the classical Coulomb repulsion energy functional and Exc [ρ] the so-called

exchange-correlation energy functional. Like the Hartree-Fock equation (Eq. 2.3.12),

minimization of E [ρ] subject to the orthonormality constraints of the Kohn-Sham or-

bitals leads to the effective one-electron Fock-type equations known as the Kohn-Sham

equations [55, 56],

[
−∇2

2
+ ve f f (rrr)

]
φi (rrr) = εiφi (rrr) (2.4.3)

Eqs. 2.4.3 correspond to the canonical Kohn-Sham orbitals. The non-canonical form may

also be conceivable. ve f f (rrr) is the effective potential in which the electrons move and the

form is given by

ve f f (rrr) = veM (rrr)+
∫

ρ (rrr′)
|rrr−rrr′|

d3rrr′+
δExc [ρ]

δρ (rrr)
(2.4.4)

Like the Roothaan equations, the KS equations can be solve numerically in terms of

atomic basis leading to matrix form

hKSC = εεεSC (2.4.5)

where hKS is analogues to Fock matrix represented in the atomic basis. Eq. 2.4.5 is

solved self consistently to get the best set of Kohn-Sham orbitals and their energies that

corresponds to the ground electronic state energy at the Kohn-Sham level of theory.
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2.5. Relativistic effects

2.4.2 Exchange-correlation functionals

The exchange-correlation energy functional Exc [ρ] in the expression of the effective po-

tential ve f f (rrr) (Eq. 2.4.4) is divided into the exchange Ex [ρ] and correlation Ec [ρ] parts

and individually they can be separated into the contributions from the α and β spin densi-

ties ρα and ρβ , respectively. This allows expressing their functional forms as functions of

total electron density ρ = ρα +ρβ and spin polarization ρs = ρα−ρβ . In the unrestricted

scheme, the spin polarization plays the dominant role to introduce spin on the atoms fur-

ther from the paramagnetic center and that is why unrestricted DFT is ideal to describe

the spin polarization mechanism with an affordable computational cost. But the exact

functional forms of the exchange and the correlation energies are unknown and usually,

they are approximated [57, 58]. The approximated expressions contain different variables

and based on that, they are classified according to LDA (Local Density Approximation)-

when the variable is ρ and such functionals are SVWN, Xα etc; GGA (Generalized Gra-

dient Approximation)- the variables are ρ , ∇ρ and functionals are BLYP, BP86, PBE etc;

meta-GGA- the variables are ρ , ∇ρ , ∇2ρ and functionals are B95, TPSS etc; hybrid- the

variables are ρ , ∇ρ , HF-exchange and functionals are B3LYP, PBE0 etc; meta-hybrid-

the variables are ρ , ∇ρ , ∇2ρ , HF-exchange and functionals are M06, M062X, TPSSH

etc.

2.5 Relativistic effects

Relativistic effects are very essential in quantum chemistry, especially for actinides, and

they can be classified into two categories: Scalar Relativistic (SR) effects and spin-orbit

coupling. SR effects comprise all the terms those do not depend on the spin of an electron

such as the relativistic kinetic energy, mass velocity and Darwin terms. Relativistic mass

of an electron (or any matter) is governed by the well known equation,

mrel = m0

(
1− v2

c2

)−1/2

(2.5.1)

where m0 is the rest mass of the electron, v its velocity and c the speed of light. For an

hydrogen like atom, estimation of v comes from the non-relativistic ground state energy

Enrel . According to virial theorem, for a spherically symmetric potential which behaves

with 1/r, 2Tnrel =−Vnrel , so Tnrel =−Enrel . Using Tnrel = 1/2m0v2, one can find that for

a hydrogen-like atom, the velocity of the electron in 1s state is equals to Z (in a.u.), the

atomic number. The speed of light c in a.u. is 137.036. So from Eq. 2.5.1, it is evident

that the relativistic mass of an 1s electron increases from the rest mass for the heavier

nuclei like Ln or An. The effects of this “relativistic mass increase” are: First, from an

energetic point of view, as the mass (appears to) increases, the relativistic kinetic energy
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increases than the non-relativistic kinetic energy 1/2m0v2. Second, the 1s orbital and

subsequently also the other s orbitals shrink more due to this mass increment and provide

more screening to the nuclear charge. As a result, the effective nuclear charge on the d or

f electrons decreases and the orbitals become more diffuse.

Spin-orbit (SO) interaction is a result of magnetic induction that occurs due relative move-

ment of an electron in the potential field generated by other charge particle(s). Due to the

relative movement of an electron w.r.t the nucleus, in its rest frame the electron feels a

magnetic field in addition to the electric field. Mathematically, this SO interaction energy

is given by

ESO = ξ (r)lll ·sss (2.5.2)

where ξ (r) is the SOC parameter. From the expression of Eq. 2.5.2, it appears that

SO interaction is a coupling of the electron’s spin with its orbital motion. In fact, in

a multielectronic atom, an electron undergoes SO interaction with other electrons due

to the relative motion of the electron in the field of a second electron. Two-electron SO

interaction terms in the Hamiltonian can be divided into two categories: i) spin-same-orbit

coupling, and ii) spin-other-orbit coupling. The above form of SO interaction in Eq. 2.5.2

is a one-electron term and is of type spin-own-orbit coupling in the Born-Oppenheimer

approximation. Spin is an intrinsic property of an electron and it is introduced to the

Schrödinger-Pauli Hamiltonian in Eq. 1.2.1 to describe the behavior of an electron in a

magnetic field, so-called the Zeeman splitting. But in Eq. 1.2.1, we still miss the above

term of spin-orbit interaction which needs to be included ad hoc. The complete relativistic

description of an electron is provided by the Dirac equation.

2.5.1 The four-component Dirac equation

The time independent form of the Dirac equation for an electron with a potential energy

V (excluding the electron rest mass energy mc2) is

[
c(ααα ·ppp)+βββ

′mc2 +V I4
]

ψ = εψ (2.5.3)

where ααα i =

[
0 σσσ i

σσσ i 0

]
i = x,y,z and βββ

′ =

[
0 0
0 −2I2

]
are (4×4) matrices written in

terms of the (2×2) block matrices; the Pauli σσσ i and the identity I2 matrices and ε =

E−mc2. The Dirac equation is a (4×4) matrix eigenvalue equation and the relativistic

wave function of the electron ψ has four components. The above equation (Eq. 2.5.3)

is also written in terms of (2×2) block matrix form by partitioning the four-component

wave function ψ into two two-component parts usually denoted by ψL and ψS (L= Large,

S= Small),
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[
V I2 c(σσσ ·ppp)

c(σσσ ·ppp)
(
V −2mc2)I2

][
ψL

ψS

]
= ε

[
ψL

ψS

]
(2.5.4)

ppp is the momentum. From Eq. 2.5.4, one can write two equations as

V I2ψ
L + c(σσσ ·ppp)ψ

S = εψ
L (2.5.5)

c(σσσ ·ppp)ψ
L +
(
V −2mc2)I2ψ

S = εψ
S (2.5.6)

ψS can be written in terms of ψL using Eq. 2.5.6, ψS = c(σσσ ·ppp)
2mc2−(V−ε)

ψL and putting it into

Eq. 2.5.5 results in

[(σσσ ·ppp)K (σσσ ·ppp)+V I2]ψ
L = εψ

L (2.5.7)

where K = c2

2mc2−(V−ε)
. Note that in a magnetic field, ppp is replaced by the kinematic mo-

mentum πππ and in the non-relativistic limit c→∞; K→ 1
2m , one reaches to the Schrödinger-

Pauli equation where the Hamiltonian is given by Eq. 1.2.1. In the non-relativistic limit,

the equation for the large component ψL reduces to the Schrödinger equation for an elec-

tron and the small component ψS vanishes. Relativistic four-component calculations for

the moderate size of molecules with heavy atoms are still very expensive and that is why

much of the effort has been put forward to get rid of this small component from an elec-

tronic solution.

2.5.2 Two-component approaches

2.5.2.1 ZORA approach

Zeroth Order Regular Approximation (ZORA) is based on an approximate decoupling of

the large and small components. In the ZORA Hamiltonian, the denominator in the factor

K is expanded (with ε

2mc2−V since ε � 2mc2−V ) as follows(
2mc2− (V − ε)

)−1
=
(
2mc2−V

)−1
(

1+ ε

2mc2−V

)
=
(
2mc2−V

)−1
(2.5.8)

the expansion is limited to the zeroth order and putting the form of Eq. 2.5.8 in Eq. 2.5.7

results (with further derivation) in the final form of the one-electron ZORA Hamiltonian

written as

HZORA =
c2 p2

2mc2−V
+

2c2

(2mc2−V )
2 +

Zlll ·sss
r3 +V (2.5.9)

Note that, the ZORA approach successfully takes into account the relativistic correction

of kinetic energy of an electron and SOC term. In the next chapters, we will see the

keywords ’SR-ZORA’ and ’SO-ZORA’ which stands for the ZORA Hamiltonian without

and with the SOC term, respectively.
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2.5.2.2 DKH approach

In the Douglas-Kroll-Hess (DKH) approach, direct block diagonalization of the one-

electron Dirac Hamiltonian HDirac according to Eq. 2.5.4 is carried out by a suitable

unitary transformation,

UHDiracU† =

[
HDKH

+ 0
0 HDKH

−

]
(2.5.10)

where U is the unitary matrix. Successful unitary transformation decouples the small

component and the final two component equation can be written as

HDKH
+ Ψ

L = εΨ
L (2.5.11)

Like the ZORA approach, DKH Hamiltonian can be separated according to the SR and

SO terms .

2.5.3 SO-RASSI method

In case of a multielectronic system, the SOC Hamiltonian includes both the one-electron

(spin-own-orbit type) and two-electron SO (spin-same-orbit and spin-other-orbit type)

terms. Since the evaluation of the two-electron SO integrals are computationally very

expensive, an effective Fock-type one-electron SO Hamiltonian in the mean field of other

atomic electrons was proposed by Hess et al. [59] and further implemented by Schim-

melpfennig [60] known as the Atomic Mean Field Integral (AMFI) scheme.

In the MOLCAS suite of software, SOC is calculated as an interaction between different

electronic states in the RASSI (Restricted Active Space State Interaction) module and the

SO integrals are calculated using AMFI scheme. Since spin is the integral part of the

SOC Hamiltonian, essentially excited electronic states of different spin multiplicities are

also mixed with the ground SF manifold in SO-RASSI calculation. The electronic states

are usually obtained from the CASSCF or RASSCF calculations. In the actinide com-

plexes, CASPT2 correction is important for a better description of the energy levels using

the CASSCF or RASSCF wave functions as reference states (termed as state-specific

calculation (SS)). Sometimes in the multi-state (MS) calculation in which the effective

coupling between the reference states are considered, the compositions of the CASSCF

or RASSCF reference states can be changed. Unless specifically mentioned, the SOC

matrices are computed in the RASSI module of MOLCAS using the MSCASPT2 wave

functions and the corresponding energy levels. The eigenfunctions of the SOC matrices

are used to calculate the magnetic moment matrices and the magnetic properties.
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2.6 Calculation of Magnetic properties

2.6.1 Magnetic moment matrices

Magnetic moment mmm is a vector quantity i.e. can be defined by the three perpendicular

components i = x,y,z. Each of the components of electronic magnetic moment of a para-

magnetic center is calculated using the quantum description of the magnetic moment in

terms of operators,

m̂i = −µB
(
L̂i +geŜi

)
(2.6.1)

Within n no of SO states, the representation matrix of m̂i is given by

Mi =


Mi,11 · · · Mi,1n

... . . . ...

Mi,n1 · · · Mi,nn


n×n

(2.6.2)

The magnetic g-factors: According to Kramers theorem of quantum mechanics, the

energy eigenstates of an odd number of electrons’ system are always at least doubly de-

generate, meaning that one will always find at least two states
{

Φ,Φ̄
}

with the same

energy and they are related by time reversal symmetry i.e. Φ̄ = τ̂Φ where τ̂ is the time

reversal operator. Accordingly, the SO eigenstates of an odd number of unpaired electron

system from the SO-RASSI calculation are always coming as a pair with the same energy

i.e. the KDs. One can use the two states of a KD to calculate the magnetic moment matri-

ces. In the spin Hamiltonian formalism, a KD is described by pseudospin S̃ = 1/2 and the

model space is the vector space of a pure spin 1/2 system {|1/2,+1/2〉 , |1/2,−1/2〉}. As

the magnetic moment operators are time odd, the 2×2 magnetic moment matrices calcu-

lated within the KD are essentially traceless Hermitian in nature and can be decomposed

in terms of the Pauli matrices σσσ i as

−2Mx = µB ∑
i=x,y,z

gixσσσ i (2.6.3)

−2My = µB ∑
i=x,y,z

giyσσσ i (2.6.4)

−2Mz = µB ∑
i=x,y,z

gizσσσ i (2.6.5)

where gix are the coefficients of the expansion w.r.t. σσσ i in the x direction and so on. One

can construct a 3×3 matrix, usually known as the g-matrix g with the coefficients as

33



Chapter 2. Theoretical aspects and quantum chemical methodology

g =

 gxx gxy gxz

gyx gyy gyz

gzx gzy gzz

 (2.6.6)

The eigenvalues of matrix g are rotation dependent and can be complex numbers. For

the eigenvalues to be rotational invariant and to get rid of the complex numbers, first a

symmetrization is performed where the symmetric matrix G is given by

G = ggT (2.6.7)

and the three principal g-factors of a KD, gk=1,2,3 are calculated in the PAF of G as

gk =±
√

G̃kk (2.6.8)

where G̃kk are the eigenvalues of G. For the sake of brevity, the positive values are usually

reported in the literature.

2.6.2 Magnetization and magnetic susceptibility

In section 1.3, using statistical mechanical formulations, we have already developed the

expressions of the magnetization and magnetic susceptibility for a ground J manifold un-

dergoing Zeeman splitting in an external magnetic field B0. Curie’s Law of magnetic

susceptibility describes a 1/T behavior and all the contributions from the excited states

are taken as a temperature independent contributions (TIP) to the susceptibility. Curie’s

Law had been extensively used to study the magnetic properties of many Ln/An based

complexes in terms of the Curie constant and the TIP. As already mentioned before, one

should use Van Vleck equation (Eq. 2.2.4) to completely describe the magnetic suscepti-

bility from a quantum mechanical point of view, as it ideally evaluates the property from

the knowledge of the electronic energy states [61]. In a moment, we are going to see few

expressions of magnetic susceptibility for different manifolds built on the backbone of

Van Vleck equation. These expressions will be used in the following chapters to study

the paramagnetic properties of the actinide complexes. Each component of the molar

magnetic susceptibility tensor χm,ii can be calculated according to Eq. 2.2.4 as

χm,ii = NAµ0µ
2
B

1
Q0

∑
n

e−βEn

βTr
(

Mi,nn ·M†
i,nn

)
+2 ∑

m 6=n

Tr
(

Mi,nm ·M†
i,mn

)
Em−En

 (2.6.9)

= NAµ0µ
2
B

1
Q0

∑
n

e−βEn

[
β ‖Mi,nn‖2 +2 ∑

m 6=n

‖Mi,nm‖2

Em−En

]
(2.6.10)

where ‖‖ is the norm of a matrix and Mi,nm is the block matrix calculated with the mag-
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netic moment operator m̂i between the n and m manifolds, in µB unit. The isotropic molar

magnetic susceptibility is calculated as one-third of the trace of χχχm as χm =
(

χm,xx+χm,yy+χm,zz
3

)
,

χm = NAµ0µ
2
B

1
Q0

∑
n

e−βEn

[
βM2

nn +2 ∑
m 6=n

M2
nm

Em−En

]
(2.6.11)

where M2
nm = 1

3

(
‖Mx,nm‖2 +

∥∥My,nm
∥∥2

+‖Mz,nm‖2
)

• Model for the ground J manifold of a Ln/An free ion

M2
JJ =

1
3g2

JJ (J+1)(2J+1) and Q0 = (2J+1). The molar magnetic susceptibility

is reduced to Curie’s law as developed in section 1.4,

χm =
NAµ0µ2

Bg2
J

3kBT
J(J+1) (2.6.12)

• Model for an isolated KD

For a well isolated KD, in the PAF of its g tensor, ‖Mi,nn‖2 = 1
2g2

i,n where gi,nn are

the three principal g-factors of a KD in the directions i = x,y,z and Q0 = 2. So Eq.

2.6.10 becomes

χm,ii =
NAµ0µ2

B
4kBT

g2
i,n (2.6.13)

Modeling the KD with a S̃ = 1/2, the isotropic molar magnetic susceptibility can

be written as

χm = NAµ0µ
2
Bg2

n
S̃
(
S̃+1

)
3kBT

(2.6.14)

where g2
n =

1
3

(
g2

x,n +g2
y,n +g2

z,n
)

• Model for two isolated KDs

We will see later that for 5 f 1 [AnVIO2]2+ complexes, there are two energetically

lowest KDs which are populated at room temperature and mostly determine the

magnetic properties. To model these two doublets, we assume that the PAFs of g1

and g2 of the two KDs are identical and one denotes the energy gap between the

two KDs as ∆. Limiting the sum to these two states, Eq. 2.6.10 leads to

χm,ii = NAµ0µ
2
B

β

(
eβ∆/2g2

i,1 + e−β∆/2g2
i,2

)
4
(
eβ∆/2 + e−β∆/2

) +

(
eβ∆/2− e−β∆/2

)
M2

i,12

∆
(
eβ∆/2 + e−β∆/2

)


(2.6.15)
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The isotropic molar magnetic susceptibility is

χm = NAµ0µ
2
B

β

(
eβ∆/2g2

1 + e−β∆/2g2
2

)
4
(
eβ∆/2 + e−β∆/2

) +

(
eβ∆/2− e−β∆/2

)
M2

12

∆
(
eβ∆/2 + e−β∆/2

)
 (2.6.16)

• Model for an isolated NKD

5 f 2 [AnVIO2]2+ complexes are modeled as a non-Kramers doublet (NKD). A NKD

is defined by two non-degenerate states |1〉 and |2〉 with an energy gap ∆ and a

Zeeman interaction in only one direction M2
z,12 = 1

2g2
z , M2

x,12 = M2
y,12 = 0 and in

that case Eq. 2.6.11 becomes

χm =
NAµ0µ2

B
6

[
eβ∆/2− e−β∆/2

∆
(
eβ∆/2 + e−β∆/2

)g2
z

]
(2.6.17)

2.6.3 pNMR shifts

First principles calculation of pNMR shifts are focused on the evaluation of the resonance

parameter σ
p
K,i j (shielding tensor) from the wave functions according to Eq. 2.2.3. Thanks

to the very effective efforts put forward by Soncini and Van den Heuvel [29] and later

by Martin and Autschbach [30] to express Eq. 2.2.3 in terms of the spin Hamiltonian

parameters which ultimately settled down as a work to compute the parameters from ab

initio. Here, we give the expression given by Autschbach et al. for the pNMR shielding

tensor σσσ
p
K written in the

(
2S̃+1

)
model space of a pseudospin equals to S̃,

σσσ
p
K = − µB

gKµNkBT
gZAK (2.6.18)

where g and AK are the spin Hamiltonian parameters as introduced in section 1.8, g-tensor

and hyperfine tensor, respectively. Z takes into account the zero-field splitting (ZFS) and

for an axial system in the PAF of the ZFS tensor D, the non-zero diagonal elements of Z
can be written with the axial zero-field splitting parameter D [30]. Pennanen and Vaara

earlier used a different approach to formulate the shielding tensor and their expression of

σσσ
p
K in terms of the spin Hamiltonian parameters follows [28]

σ
p
K,i j = − µB

gKµNkBT ∑
kl

gikAK,l j
〈
ŜkŜl

〉
0 (2.6.19)

where the quantity 〈SkSl〉0 includes the ZFS in the pNMR shielding tensor and is evaluated

as an statistical average in the model space of
∣∣S̃,MS̃

〉
representing the actual Hilbert space

|nν〉,
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〈SkSl〉0 =
∑n e−βEn

Q0
∑

S̃,MS̃

〈
S̃,MS̃

∣∣ŜkŜl
∣∣ S̃,MS̃

〉
(2.6.20)

=
∑n e−βEn

Q0
∑

S̃,MS̃,M
′
S̃

〈
S̃,MS̃

∣∣Ŝk
∣∣S̃,M′S̃〉〈S̃,M′S̃∣∣ Ŝl

∣∣ S̃,MS̃
〉

(2.6.21)

In the absence of ZFS, such as a KD modeled by S̃ = 1/2 or systems with S̃ > 1/2 with

D = 0, both Eqs. 2.6.18 and 2.6.19 give the similar expression as first obtained by Moon

and Patchkovskii [62],

σσσ
p
K = − µB

gKµNkBT
S̃
(
S̃+1

)
3

gAK (2.6.22)

Note that in Eq. 2.6.22, evaluation of the pNMR shifts for a KD ends up as the negative

one-third of the trace of the matrix product of the g and AK tensors. We will use Eq.

2.6.22 to compute the pNMR shifts in the 5 f 1 [AnVIO2]2+ complexes where g and AK

are calculated using DFT methods. However when D 6= 0, Eq. 2.6.19 deviates from Eq.

2.6.18 and Sonicini et al. have argued that the correct expression is governed by Eq. 2.2.3

[63].

Up to this moment, we have seen the expressions of the shielding tensor based on the eval-

uation of the spin Hamiltonian parameters in a model space which actually represents the

evaluation of the matrix elements of the parameters from the real ab initio Hilbert space.

But to be very honest, these model equations are mostly realized for transition metal

systems or some Ln/An based molecules where the ground state dictates their physics.

But some questions remain such as are these models applicable for the Ln/An complexes

where all the interacting states cannot be truly modeled by a pseudospin and the meaning

of the ZFS parameter D is quite vague? The Soncini and Van den Heuvel expression (Eq.

2.2.3) are more general and can be applied for any system as one uses the Van Vleck

equation for the evaluation of magnetic susceptibility. We are going to model Eq. 2.2.3

for the systems considered in previous section.

The operator F̂FFK, j in Eq. 2.2.3 is proportional to hyperfine coupling operator responsible

for the extra shift of the observed nucleus and as we have already seen in section 1.6, the

operator F̂FFK, j can be written into its dipolar and Fermi contact terms as

F̂FFK = − µ0

4π
m̂mm ·TK +

ÂAA
c
K

gKµN
(2.6.23)

where ÂAA
c
K is the contact hyperfine operator. The contact operator depends on the spin

density operator ρ̂ρρ
s that only encounters the spin density (normalized to the number of

unpaired electron) at the nucleus according to Eq. 1.8.11.
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Chapter 2. Theoretical aspects and quantum chemical methodology

2.6.3.1 Pseudocontact shifts

In the point dipole approximation, the operator F̂FFK, j is reduced to the magnetic dipole term

and is responsible for the pseudocontact or dipolar shifts. In this case, the components of

the shielding tensor in Eq. 2.2.3 can be expressed in terms of the block matrices of the

magnetic moment operators

σ
pc
K,i j = −µ0µ2

B
4π

1
Q0

∑
n

e−βEn ∑
l

TK,l j

[
βTr

(
Mi,nn ·M†

l,nn

)

+ 2 ∑
m 6=n

Tr
(

Mi,nm ·M†
l,mn

)
Em−En

 (2.6.24)

Eq. 2.6.24 of the pseudocontact shielding tensor can be completely expressed in terms of

the magnetic susceptibility tensor χχχm (in Eq. 2.6.10) and the geometric tensor of nucleus

K, TK (in Eq. 1.6.4) as

σσσ
pc
K = − 1

4πNA
χχχm ·TK =− 1

4πNAr5 χχχm ·
(
3rK⊗ rK−Ur2

K
)

(2.6.25)

The principal components of the shielding tensor are expressed in the PAF of the χχχm

tensor and the shielding tensor σσσ
pc
K in the new frame is given by

R ·σσσ pc
K ·R

T = − 1
4πNA

RT ·χχχm ·R ·RT ·TK ·R (2.6.26)

σσσ
pc,R
K = − 1

4πNA
χχχm,D ·TR

K (2.6.27)

R is an orthogonal matrix which rotates the spatial coordinate in such a way that the

magnetic susceptibility tensor becomes diagonal (denoted by subscript D) and σσσ
pc,R
K is

the shielding tensor in the PAF of the susceptibility tensor. TR
K is the geometric tensor in

the rotated frame. Finally,

δ
pc
K = −1

3
Tr
(
σσσ

pc
K
)
=

1
12πNA

Tr
(
χχχm,D ·TR

K
)

(2.6.28)

δ
pc
K is usually expressed in ppm.

In a molecule without symmetry, the PAF of the σσσ
pc
K tensor is in general difficult to antici-

pate since it depends on the number of states included in the sum and also on temperature.

The case of a high symmetrical system where x,y and z belong to different irreps, the off-

diagonal terms are zero. In the case of KD n, and in the PAF of the g tensor M̂i,n = gi,nŜi

(in µB unit, explicitly written outside in Eq. 2.6.24) where Ŝi are the spin operators operat-

ing on the pseudospin vectors of S̃ = 1/2: the off-diagonal term in Eq. 2.6.24 disappears

since Tr
(

Mi,nn ·M†
l,nn

)
∝

ˆ̃Si
ˆ̃S j = 0, i 6= j and the diagonal components are related to the

g-factors, M2
i,nn = ‖Mi,nn‖2 =1

2g2
i,n
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2.6. Calculation of Magnetic properties

σ
pc
K,ii = −µ0µ2

B
4π

TK,ii

Q0
∑
n

e−βEn

[
β ‖Mi,nn‖2 +2 ∑

m6=n

‖Mi,nm‖2

Em−En

]
(2.6.29)

= −µ0µ2
B

4π

TK,ii

Q0
∑
n

e−βEn

[
β

2
g2

i,nn +2 ∑
m6=n

‖Mi,nm‖2

Em−En

]
(2.6.30)

Remember that TK is traceless i.e. TK,zz = −(TK,xx +TK,yy) and in polar coordinate no-

tation TK,zz =
3cos2 θK−1

r3
K

= GK and TK,xx−TK,yy =
3sin2

θK cos2φK
r3

K
= GK,⊥, Eq 2.6.29 leads

to

δ
pc
K =

µ0µ2
B

12π

1
Q0

{
GK ∑

n
e−βEn

[
β∆Mnn +2 ∑

m6=n

∆M2
nm

Em−En

]

+GK,⊥∑
n

e−βEn

[
βδMnn +2 ∑

m6=n

δM2
nm

Em−En

]}
(2.6.31)

where ∆Mnm = ‖Mz,nm‖2− 1
2

(
‖Mx,nm‖2 +

∥∥My,nm
∥∥2
)

and δM2
nm = 1

2

(
‖Mx,nm‖2−

∥∥My,nm
∥∥2
)

.

In the case of axial symmetry, ‖Mx,nm‖2 =
∥∥My,nm

∥∥2, δM2
nm = 0, Eq. 2.6.31 reduces to

the axial component only,

δ
pc
K =

µ0µ2
B

12π

1
Q0

GK ∑
n

e−βEn

[
β∆Mnn +2 ∑

m 6=n

∆M2
nm

Em−En

]
(2.6.32)

Eq. 2.6.32 indicates that the anisotropy of the magnetic moment of a paramagnetic com-

plex induces an extra chemical (pseudocontact) shift compared to the diamagnetic refer-

ence complex as first pointed out by McConnell and Robertson [15]. If the summation

in Eq. 2.6.32 runs over all the states, one can calculate the pseudocontact shifts from the

axial molar magnetic susceptibility ∆ χax as first obtained by Kurland and McGarvey [16]

and later discussed in details by Bertini et al. [27],

δ
pc
K =

∆ χaxGK

12πNA
(2.6.33)

where ∆ χax = χm,zz− 1
2 (χm,xx +χm,yy) = NAµ0µ2

B
1

Q0
∑n e−βEn

[
β∆Mnn +2∑m 6=n

∆M2
nm

Em−En

]
.

If a system is axial, we will use Eq. 2.6.33 to evaluate the pseudocontact shifts otherwise

Eq. 2.6.28 is used.

• Model for the ground J manifold of a Ln complex

In the lanthanide complexes, the crystal field splitting of the 2J + 1 levels are in

order of room temperature energy
(
200 cm−1) and all the levels are substantially

populated. So in Eq. 2.6.29, the sum runs over the whole J manifold. Due to the

homogeneous population in all the levels, to the first approximation, one assumes
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Chapter 2. Theoretical aspects and quantum chemical methodology

that the magnetic moment is isotropic ‖Mi,JJ‖2
∝ g2

JJ (J+1) i.e. recovering the

spherical symmetry of the free ion. The chemical shift sums over the three com-

ponents of the pNMR shielding tensor and vanishes due the geometrical factors,

σ
p
xx +σ

p
yy +σ

p
zz = ∑i TK,iiχii = 0. So the T−1 term (Curie term) vanishes. Although

the Curie term does not contribute to the observed pNMR shifts, as already dis-

cussed in section 1.5, based on the crystal field model, Bleaney had pointed out that

the axial zero-field splitting of the J manifold makes the magnetic susceptibility

anisotropic ,

χm,zz−χm = ∆ χB
ax = −

NAµ0µ2
Bg2

JB2
0 〈J ||α ||J〉

30k2
BT 2 J (J+1)(2J−1)(2J+3)[

1+
akBT

∆
+

bk2
BT 2

∆2 +
ck2

BT 2

∆∆
′

]
(2.6.34)

where a,b and c are the LnIII ion dependent magnetic constants tabulated in Bleaney’s

original formulation in Ref. [17], ∆ the energy gap between J and J+1 manifolds,

∆
′

the energy gap between J and J +2 manifolds. And as deduced by Bleaney, the

pseudocontact shifts ∆νK
ν0

(in ppm) in the axial lanthanide complex is given by

∆νK

ν0
=

(χm,zz−χm)

8πNA

(
3cos2 θK−1

r3
K

)
(2.6.35)

=− 1
8π��NA

��NAµ0µ2
B

15k2
BT 2 CB

LnA0
2
〈
r2〉GK

=− µ2
Bµ0

120πk2
BT 2CB

LnA0
2
〈
r2〉GK (2.6.36)

=− µ2
B

30k2
BT 2CB

LnA0
2
〈
r2〉GK (2.6.37)

where CB
Ln =CB

Ln = g2
J 〈J ||α ||J〉J (J+1)(2J−1)(2J+3) is the Bleaney’s constant

[17], A0
2
〈
r2〉 is the second order axial CFP (in Stevens notation, A0

2
〈
r2〉= 1

2B2
0).

Despite being based on a simple model, Bleaney’s formula was widely explored

(accepted by many at the same time also criticized) especially for the LIS in the

isostructural lanthanide complexes [64]. Because, a further extension of the Bleaney’s

model predicts 1/T and 1/T 2 dependency for the contact and dipolar shifts, respec-

tively, for the Lanthanide complexes and helped to separate the contributions based

on the T dependency [19, 20, 26]. In chapter 5, we are going to explore the CFPs

in the isostructural [LnIII(DPA)3]3 – complexes and will try to validate Bleaney’s

model based on the CFP B2
0 obtained from ab initio with those from the pNMR

shifts. Further applications of Bleaney’s model for the AIS have mostly failed due

to the major breakdown of the Bleaney’s assumptions for the actinides because of

40



2.6. Calculation of Magnetic properties

the larger splitting of an An J manifold by the ligand field compared to room tem-

perature energy.

• Model for an isolated KD

For a well isolated ground KD and in the PAF of the g tensor,
∥∥Mi,11

∥∥2
= 1

2g2
i,1, and

in case of an axial system, Eq. 2.6.32 is reduced to

δ
pc
K =

µ0µ2
B

12π
GK

(
g2
‖,1−g2

⊥,1

)
4kBT

(2.6.38)

where g‖= gz and g⊥= gx = gy. Eq. 2.6.38 is equivalent to Eq. 2.6.33 with S̃ = 1/2

where

χm,ii = NAµ0µ
2
Bg2

i,1
S̃
(
S̃+1

)
3kBT

(2.6.39)

• Model for two isolated KDs

For two energetically lowest KDs, Eq. 2.6.29 becomes

σ
pc
K,ii = −µ0µ2

B
4π

TK,ii (2.6.40)β

(
eβ∆/2g2

i,1 + e−β∆/2g2
i,2

)
4
(
eβ∆/2 + e−β∆/2

) +

(
eβ∆/2− e−β∆/2

)
M2

i,12

∆
(
eβ∆/2 + e−β∆/2

)


and in the axial symmetry gx,n = gy,n = g⊥,n(n = 1,2) and M2
x,12 = M2

y,12 = M2
⊥,12.

The axial components are defined according to ∆g2
n = g2

‖,n − g2
⊥,n and ∆M2

12 =

M2
‖,12−M2

⊥,12 and Eq. 2.6.40 takes the form

δ
pc
K =

µ0µ2
B

12π
GK (2.6.41)β

(
eβ∆/2∆g2

1 + e−β∆/2∆g2
2

)
4
(
eβ∆/2 + e−β∆/2

) +

(
eβ∆/2− e−β∆/2

)
∆M2

12

∆
(
eβ∆/2 + e−β∆/2

)


• Model for an isolated NKD

In case of a well isolated NKD, Eq. 2.6.29 becomes
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σ
pc
K,ii = −µ0µ2

B
4π

TK,ii

2

(
eβ∆/2− e−β∆/2

)
M2

i,12

∆
(
eβ∆/2 + e−β∆/2

)
 (2.6.42)

= −δiz
µ0µ2

B
4π

TK,ii


(

eβ∆/2− e−β∆/2
)

2∆
(
eβ∆/2 + e−β∆/2

)g2
z

 (2.6.43)

where δiz denotes the Kronecker symbol. The isotropic pNMR shift in Eq. 2.6.32

becomes

δ
pc
K =

µ0µ2
B

12π
GK

(
eβ∆/2− e−β∆/2

)
2∆
(
eβ∆/2 + e−β∆/2

)g2
z (2.6.44)

2.6.3.2 Contact shift

The contact operator of the hyperfine interaction F̂FF
c
K = ÂAA

c
K

gK µN
is responsible for the contact

hyperfine shift and Eq. 2.2.3 for the diagonal component can be written as

σ
c
K,ii =

1
gKµNQ0

∑
n

e−βEn

β ∑
ν ,ν
′

〈
nν |m̂i|nν

′〉〈nν
′|Âc

K,i|nν
〉

+2 ∑
m6=n

∑
ν ,µ

∑
ν ,ν
′ 〈nν |m̂i|mµ〉

〈
mµ|Âc

K,i|nν

〉
Em−En

(2.6.45)

As we can see from Eq. 1.8.11, the contact shifts originate from the presence of spin

density at the nucleus and are related to the spin delocalization of paramagnetic center

towards the nucleus K through the chemical bonds. To the first approximation, one only

considers the spin-only magnetic moment in Eq. 2.6.45 i.e.

σ
c
K,ii =

1
gKµNQ0

∑
n

e−βEn

β ∑
ν ,ν
′

〈
nν |m̂S

i |nν
′
〉〈

nν
′|Âc

K,i|nν
〉

+2 ∑
m 6=n

∑
ν ,µ

∑
ν ,ν
′
〈
nν |m̂S

i |mµ
〉〈

mµ|Âc
K,i|nν

〉
Em−En

(2.6.46)

If one further assumes that the hyperfine interaction in between the states are the same

and related to the proportionality constant Ac
K,i i.e.

〈
nν |ÂK,i|mµ

〉
= AK,i

〈
nν |ŜK,i|mµ

〉
,

then Eq. 2.6.46 can be written in terms of the spin-only magnetic susceptibility χχχS as
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σ
c
K,ii = − 1

µBµNgegKQ0
∑
n

e−βEn

β ∑
ν ,ν
′

〈
nν |m̂S

i |nν
′
〉〈

nν
′|Ac

K,im̂
S
i |nν

〉

+2 ∑
m6=n

∑
ν ,µ

∑
ν ,ν
′
〈
nν |m̂S

i |mµ
〉〈

mµ|Ac
K,im̂

S
i |nν

〉
Em−En

(2.6.47)

= − 1
µ0µBµNgegK

Ac
K,iχ

S
ii (2.6.48)

The constant Ac
K,i is related to the spin density at the nucleus. In the non-relativistic

regime, spin is a good quantum number and one considers a quantization axis (let’s say

z axis) to define the spin density and further for i = x,y,z, one assumes Ac
K,z = Ac

K,x =

Ac
K,y = Ac

K . Then, the isotropic contact chemical shift is given by

δ
c
K =

1
NAµ0µBgeγK

Ac
K

h̄
χ

S
m (2.6.49)

=
1

NAµ0µBgeγK

Ac
K

h̄

〈
MS〉
B0

(2.6.50)

where γK = gK µN
h̄ is the gyromagnetic factor of nucleus K, 〈Ms〉 the thermal average of

electron spin magnetization.

• Model for an isolated KD

In the Hilbert space of a KD, the temperature dependent Curie term in Eq. 2.6.46 becomes

σ
p
K,ii =

β

2gKµN
∑
ν

∑
ν
′

〈
nν |m̂i|nν

′〉〈nν
′ ∣∣Âc

K,i
∣∣nν
〉

(2.6.51)

= − µB

4gKµNkBT
gi,1Ac

K (2.6.52)

The isotropic shift δ c
K =−1

3

(
σ c

K,xx +σ c
K,yy +σ c

K,zz

)
∝

1
3

(
gx,1 +gy,1 +gz,1

)
∝ g1

δ
c
K =

µB

4γKkBT
Ac

K
h̄

g1 (2.6.53)

The contact shift originates from the isotropic g-factor whereas the anisotropy of it is giv-

ing rise to the pseudocontact shift as described by Eq. 2.6.38 [65]. In the spin Hamiltonian

formalism, a KD is modeled by a pseudospin S̃ = 1/2 and Eq. 2.6.53 can be written as

δ
c
K =

µB

γK

Ac
K

h̄
g1

S̃
(
S̃+1

)
3kBT

(2.6.54)
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Chapter 3

pNMR shifts in [AnVIO2]2+ complexes

3.1 Introduction

In this chapter, we will study the nature of pNMR shifts in the axially symmetric [AnVIO2]2+

complexes. In nature, the heaviest naturally occurring element, U and its man-made heav-

ier neighbors readily form the divalent dioxo actinyl cations [AnVIO2]2+ which show large

degree of complex formations with various ligands making them important moieties in the

nuclear fuel cycle research. Bonding in the central [AnVIO2]2+ moiety is rather complex

and occurs through the participation of the An valence 5 f , 6d, 7s subshells and also from

the semi-core 6p subshells which are quite important to maintain the linear geometry [66].

The An−O bonds are robust with two triply bonded oxygen atoms by σ and π interactions

with the metal center. Rich bonding of the actinyl moiety, the strong relativistic effects

of the actinide and also the immediate surroundings overly govern the physicochemi-

cal properties of the actinyl complexes and add the complication to properly determine

their electronic structure, spectral and magnetic properties [67, 68]. The paramagnetic

NMR shifts have been successfully used to study their electronic and magnetic proper-

ties [8, 69, 11]. Also ab initio calculations are becoming effective to properly describe

their electronic structures, bonding and calculating their spectral and magnetic properties

[70, 71, 72, 73, 74]. The choice of the first principles method needs to be subtle such

that it provides a balanced description of all the underlying phenomenon. This creates the

hard work which needs to be done to come up with a good method of calculations, but

not necessarily the unique method.

So first, we will understand the electronic structures of the paramagnetic 5 f 1 and 5 f 2

actinyl cations and their magnetic properties. We will also present the different methods

of ab initio calculations which were undertaken to compute their electronic structures,

magnetic properties. Then we will present the pNMR shifts in the two sets of actinyl

complexes, [AnVIO2(DPA)2]2 – and [AnVIO2(TEDGA)2]2+ where AnVI = NpVI and PuVI

and analyze them with the help of ab initio calculations. In due course, we will highlight
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3.2. Free [AnVIO2]2+ cations

the differences of their electronic structures from the LnIII or AnIII/AnIV complexes (see

chapter 4) and how the electronic structures govern the nature of pNMR shifts and their

temperature dependencies. We will build up the discussions for the pNMR shifts in these

complexes following the general theoretical framework for the derivation of pNMR chem-

ical shifts as proposed by Soncini and Van den Heuvel [29] (discussed in chapter 2). We

will also present how the temperature dependent isotropic magnetic susceptibilities and

pNMR shifts can be used as a probe to estimate the isotropic and anisotropic magnetic

properties, respectively, in these actinyl complexes.

3.2 Free [AnVIO2]2+ cations

The actinyl complexes are highly axial, a major part of the isotropic pNMR shifts orig-

inates from their anisotropic magnetic behavior. To understand the origin of magnetic

anisotropy in these complexes from first principles, one needs to first focus on the central

[AnVIO2]2+ moiety and its bonding structure. Although, the An 5 f orbitals interact more

with the ligand’s orbitals than the Ln 4 f , the 5 f orbitals in the actinyls are even more

perturbed due to the presence of the two oxo (O2 – ) groups. This makes the actinyls far

from the free ion and the ab initio results on actinyl complexes are analyzed from the per-

spective of the ligand field effects on the central [AnVIO2]2+ core and not on the free AnVI

ion. The central [AnVIO2]2+ core has two triply bonded oxo O2 – groups with the hexava-

lent actinide ion. The molecular orbital diagram of the actinyl cation was first proposed

by Einstein and Pryce [75] using the symmetry adapted linear combinations (SALCs) of

the atomic orbitals under the D∞h point group and is shown in Fig. 3.2.1. The σ bonds

(σu,σg) arise due to the head-on overlap of the 5 fσu and 6dσg atomic orbitals with the

hybridized spz orbitals of the two oxo groups along the bonding axis. The remaining π

bonds are formed due to the side-wise overlap of the 5 fπu and 6dπgorbitals with the 2px,

2py atomic orbitals of the oxygens. The 5 fφu and 5 fδu atomic orbitals remain non-bonding

and host the magnetic electrons in the paramagnetic cations. Due to the loss of spheri-

cal symmetry from the free actinide ion, J, L are not good quantum numbers but their

projection along the z axis (taken as the quantization axis) i.e. the MJ and ML are still

good quantum numbers and are used to characterize the 5 f orbitals. Before proceeding

with the ab initio results, it is possible to describe the electronic structures of the 5 f 1 or

5 f 2 [AnVIO2]2+ cations “by hand” with the help of LFT and analytically express their

energy levels, eigenstates and magnetic g-factors. The semi-empirical parameters used in

the modelization can be taken from the ab initio results and used to evaluate their ligand

field model values. Usually this kind of good attitude of semi-empirical modeling was

more commonly practiced by the chemists/physicists before the advancement of ab initio

computations and that is why, without being disrespectful, most of the best models in
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Figure 3.2.1: Molecular orbital diagram of the free neptunyl cation. The active space
orbitals of the cation and the associated spinors are shown inside the boxes.

the literature are from the later half of the last century. In this case also, the ligand field

modelization of 5 f 1 and 5 f 2 actinyl cations can be found in the book of Abragam and

Bleaney ([36], in chapter 6). Ligand field modelization was later discussed elaborately

in Ref. [73, 74] in the support of the ab initio results. So in the following section we

will discuss the ligand field models those describe the energy levels and their probable

compositions in the 5 f 1 [NpO2]2+ and 5 f 2 [PuO2]2+ cations and derive the analytical ex-

pressions of the magnetic g-factors. We will also present the ab initio results to find out

the effectiveness of these models and further considerations.

3.2.1 Ligand field modelization

3.2.1.1 5 f 1 [NpVIO2]2+ cation

As already mentioned, in axial symmetry and in SF model, the |ML,MS〉 serve as the basis

to develop the model eigenstates. In the case of SO, the eigenstates can be developed

with |MJ〉 . The model Hamiltonian Ĥ is a one-electron operator combining ligand field

and SO effects i.e. Ĥ = ĤSO + ĤLF (LF stands with ligand field Hamiltonian only). The

form of the SO operator is given in Eq. 2.5.2 with the semi-empirical constant ξ (r), the
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SOC parameter. In the simplest case, one can guess the probable combinations of the

basis and calculate the matrix elements of Ĥ in that truncated model space. According to

Hund’s rules, the highest values of ML and Ms represent the ground SF term whereas for

the ground SO term, ML and MS are opposite in sign. So for a 5 f 1 ion, at SF level, the

single unpaired electron resides in the 5 fφu (ML =±3) orbitals and the representation of

the basis |ML,MS〉 would be |±3,∓1/2〉 which with SOC generates the ground Kramers

eigenspinors φ5/2. The energetically closer 5 fδu orbitals (ML =±2) also generates δ5/2

spinors with the combination of ML and MS as |±2,±1/2〉 which also interact with the

ground spinors. Ligand field splitting in between 5 fφu and 5 fδu orbitals is taken as the

semi-empirical parameter ∆ (taken as a parameter). So in the truncated model space

considering only the lowest 5 fφu and 5 fδu orbitals, the matrix elements of Ĥ/ξ is then

calculated as below

Ĥ/ξ |±3,∓1/2〉 |±3,±1/2〉 |±2,±1/2〉 |±2,∓1/2〉
〈±3,∓1/2| -3/2 0

√
3/2 0

〈±3,±1/2| 0 3/2 0 0
〈±2,±1/2|

√
3/2 0 1+∆∆∆

′ 0
〈±2,∓1/2| 0 0 0 −1+∆∆∆

′

where ∆′ = ∆/ξ . Note that, each of the matrix element actually corresponds to a 2× 2

representation matrix (so in bold) of Ĥ/ξ which is diagonal in the corresponding doubly

degenerate basis states. The four doubly degenerate eigenvalues and the corresponding

eigenvectors of the above matrix are the energy levels and the eigenspinors of the single

unpaired electron, and are given below with X =
√

49+20∆′+4∆′,2,

E1/1̄ =
1
4
(
−1+2∆

′−X
)
−→ φ1/φ̄1 =

1√
N

(
−5+2∆′+X

2
√

6
|±3,∓1/2〉+ |±2,±1/2〉

)
(3.2.1)

E2/2̄ =−1+∆
′ −→ φ2/φ̄2 = |±2,∓1/2〉 (3.2.2)

E3/3̄ = 3/2−→ φ3/φ̄3 = |±3,±1/2〉 (3.2.3)

E4/4̄ =
1
4
(
−1+2∆

′+X
)
−→ φ4/φ̄4 =

1√
N

(
−5+2∆′−X

2
√

6
|±3,+1/2〉+ |±2,∓1/2〉

)
(3.2.4)

where 1√
N

are the normalization constants. The energy level E1/1̄ has two degenerate

states
{

φ1, φ̄1
}

, E2/2̄ has
{

φ2, φ̄2
}

and so on. These degenerate states are the KDs of the

unpaired electron.

According to Eq. 3.2.1, the two states of the KD1
{

φ1, φ̄1
}

are explicitly written by taking

the coefficients as the semi-empirical constants p,q as below
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φ1 = p |−3,+1/2〉+q |−2,−1/2〉 (3.2.5)

φ̄1 = p |+3,−1/2〉+q |+2,+1/2〉 (3.2.6)

where |p|2 + |q|2 = 1 i.e. the wave function must be normalized. The constants p,q are

taken from the ab initio calculations. In the spin Hamiltonian formalism as discussed in

section 1.8, a KD is modeled with a pseudospin S̃= 1/2 and the magnetic properties in the

PAF of g tensor can be modeled by the three principal g-factors gx, gy and gz calculated

as

gx = 2Re
〈
ψ
∣∣l̂x +2ŝx

∣∣ ψ̄〉 (3.2.7)

gy = −2Im
〈
ψ
∣∣l̂y +2ŝy

∣∣ ψ̄〉 (3.2.8)

gz = 2
〈
ψ
∣∣l̂z +2ŝz

∣∣ψ〉 (3.2.9)

In case of axial symmetry, gx = gy = g⊥ and gz = g‖. So the magnetic g-factors of KD1(
g‖,1,g⊥,1

)
is calculated within the Hilbert space of the KD1 as

∣∣g‖,1∣∣= ∣∣2〈φ1
∣∣l̂z +2ŝz

∣∣φ1
〉∣∣

=
∣∣2〈φ1

∣∣l̂z∣∣φ1
〉
+4〈φ1 |ŝz|φ1〉

∣∣
=
∣∣−2

(
3p2−2q2)+4

(
p2/2−2q2/2

)∣∣
= 4

∣∣p2∣∣+6
∣∣q2∣∣ (3.2.10)

∣∣g⊥,1∣∣= ∣∣2〈φ1
∣∣l̂x +2ŝx

∣∣ φ̄1
〉∣∣

= 0 (3.2.11)

The individual sign of the three g-factors is not known only the sign of their product is.

Any linear combination of φ1 and φ̄1 also serves as basis for KD1 with the constrain that

they need to be related with the time reversal symmetry. As an example, a new basis of

KD1 {ψ1, ψ̄1} can be generated from
{

φ1, φ̄1
}

as,

ψ1 =
1√
2

(
φ1 + φ̄1

)
(3.2.12)

ψ̄1 = τ̂ψ1 =
1√
2

(
φ̄1−φ1

)
(3.2.13)

where τ̂ is the time reversal operator.

Similarly for KD2,
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φ2 = r |+2,−1/2〉 (3.2.14)

φ̄2 = r |−2,+1/2〉 (3.2.15)

∣∣g‖,2∣∣= ∣∣2〈φ2
∣∣l̂z +2ŝz

∣∣φ2
〉∣∣

= 2
∣∣r2∣∣ (3.2.16)

∣∣g⊥,2∣∣= ∣∣2〈φ2
∣∣l̂x +2ŝx

∣∣ φ̄2
〉∣∣

= 0 (3.2.17)

3.2.1.2 5 f 2 [PuVIO2]2+ cation

In the case of 5 f 2 [PuO2]2+ cation, one unpaired electron is in the 5 fφu orbitals and the

other unpaired electron resides in the energetically closer 5 fδu orbitals. This is because

both the 5 fφu orbitals are in the plane, the electron-electron repulsion energy becomes

larger than the ligand field splitting ∆. So to minimize the repulsion from the electron in

the in-plane 5 fφu orbitals, the second unpaired electron shifts to the out-of-plane excited

5 fδu orbitals. According to Hund’s rules, ML and MS should be maximized i.e. ML =±3±
2, MS =±1 and MS should be opposite i.e. the ground SF basis are |±5,∓1〉. Remember

that the model Hamiltonian Ĥ = ĤSO + ĤLF is now a two-electron Hamiltonian, but can

be written as a sum of a one-electron operator. The SO operator ĤSO = ∑
2
i=1 ξ (i) l̂i · ŝi =

ξL̂LL · ŜSS with ξ as the SOC parameter taken from ab initio calculations. The SO term of the

Ĥ mixes the excited singlet states |±4,0〉, with energy gap λ (taken as parameter), with

the ground SF basis. The matrix elements of Ĥ/ξ in the model space can be calculated

as below

Ĥ/ξ |±5,∓1〉 |±4,0〉
|±5,∓1〉 -5

√
11

|±4,0〉
√

11 λλλ
′

where λ ′ = λ/ξ . Again, each of the matrix element corresponds to a 2× 2 diagonal

matrix of Ĥ/ξ in the corresponding doubly degenerate basis states. The energy levels

and the wave functions are calculated as following with X =
√

69+10λ ′+λ ′,2,
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E1/2 =
1
2
(
−5+λ

′−X
)
−→Ω1/Ω2 =

1√
N

(
−5+λ +X

2
√

11
|±5,∓1〉+ |±4,0〉

)
(3.2.18)

E3/4 =
1
2
(
−5+λ

′+X
)
−→Ω3/Ω4 =

1√
N

(
−5+λ −X

2
√

11
|±5,∓1〉+ |±4,0〉

)
(3.2.19)

where 1√
N

are the normalization constants. The two states {Ω1,Ω2} are not related by

time reversal symmetry as one expects in the case for even number of unpaired electrons’

system, but they are degenerate.

Ω1 = s |−5,+1〉+ t |−4,0〉 (3.2.20)

Ω2 = s |+5,−1〉+ t |4,0〉 (3.2.21)

s and t are coefficients, can be taken from ab initio calculations. These two states are

called a non-Kramers doublet (NKD) and can be modeled as a pseudospin S̃= 1/2 system,

just like a KD. There is only one non-zero g-factor associated with a NKD and calculated

as follows

∣∣g‖,NKD
∣∣= ∣∣2〈Ω1

∣∣l̂z +2ŝz
∣∣Ω1

〉∣∣
=
∣∣2(−5s2−4t2)+4s2∣∣

= 6
∣∣s2∣∣+8

∣∣t2∣∣ (3.2.22)

3.2.2 Ab initio electronic structures

SO-CAS based methods have already been established as ’the methods’ to compute the

energy levels and the magnetic properties of the open shell Ln or An complexes [48]. In

the case of free actinyl cations and also for the complexes, SO-CAS based methods have

been successfully applied by Gendron et al. to describe their energy states and magnetic

properties [73, 74]. However the data presented here are not taken from the literature since

our goal is not to re-describe them, but as they are the “hot-spots” in the complexes where

all the ’funs’ are going on, they serve as the best testing ground so that we can apply

all the methods of calculations which we are going to use later for the complexes and

keep tracking of all the changes. So, according to Fig. 3.2.1, in the CAS based methods,

six metallic valence orbitals are chosen as the active orbitals i.e. 5 fφu , 5 fδu and 5 fπ∗u (*

denotes the anti-bonding character). Charge transfer from (LMCT) or to (MLCT) the O2 –

groups can affect the SF energy levels or in quantum chemistry language, configuration

interactions of the metal based active space determinants with the charge transfer states

helps to describe better the dynamic correlation. To recover the correlation energy, we
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3.2. Free [AnVIO2]2+ cations

extended the active space to the bonding and anti-bonding orbitals of actinyl moiety in

the RAS based methods. The variational SCF calculations are not sufficient to recover the

dynamic correlation energy as there are two triple bonds and a lot of electron density is

compacted along the bonds. It is worthy to mention here that RAS based calculations on

the actinyl complexes were performed by Gendron et al. for the ab initio evaluation of the
13C pNMR shifts in the actinyl-carbonate complexes in Ref. [9] and also by Koprowiak

for the electronic structure calculations of the paramagnetic uranyl complexes during his

thesis [76]. So for a better understanding, it is important to take a détour and see the

results from the different methods of ab initio calculations on the free actinyl moieties.

Computational details are provided in Appendix A.

The ab initio computed energy levels of the 5 f 1 [NpVIO2]2+ cation are reported in Table

3.1, both from the SF and SO calculations. The SF wave functions of the 5 f 1 cations

are symbolized with the irreps of D∞h group, Φ, ∆ and Π according to the symmetry of

the magnetic orbitals. The composition of the first two SO KDs (KD1 & KD2) in terms

of the SF wave functions are reported using their characteristic symbols in Table 3.2. In

the SF ground state of the free [NpVIO2]2+ cation, the singly unpaired electron occupies

the degenerate 5 fφu orbitals making the degenerate SF ground states 2Φ which with SOC

generates a 2Φ5/2 ground KD. Second order SOC interaction with the energetically closer
2∆5/2 KD generated from excited SF 2∆ states, is definitely noticed by the one-tenth pres-

ence of 2∆ states in the KD1, as also predicted in the ligand field modelization according

to Eq. 3.2.6. The % of (Φ,∆) characters of KD1 and KD2 are almost the same in all

the methods; they are (89,11) and (2,98), respectively. The energy gap ∆ (taken as a

parameter in the ligand field model) between the SF ground degenerate states 2Φ and

the excited states 2∆ gets reduced considering the PT2 based energy corrections on top

of the corresponding variational CAS/RAS based SCF values. In both the CASPT2 and

RASPT2 calculations, a reduction of ∆ is by around 150-170 cm−1 from the correspond-

ing SCF values. Notably, as observed from Table 3.1, extending the active space has the

large impact of increasing ∆ by 18% already at the variational level of calculations, after

that it is reduced by the same amount in the PT2 methods. So an overall large value of

∆ in the RAS based calculations than the CAS and also a better treatment of the electron

dynamic correlation in the PT2 methods decreases the energy gap in between the Φ and

∆ states.

For the 5 f 2 [PuVIO2]2+ cation, the ab initio energy levels are also tabulated in Table

3.1. At the SF levels, first two ground triplet states are degenerate and both belong to

the SF term symbol 3H. These two states are developed as linear combinations of the

configuration states, 5 f ↑
φu

5 f ↑
δu

∏
core
b b↑↓ where the two unpaired electrons are mostly in the

energetically lower 5 fφu and 5 fδu orbitals. The second unpaired electron mainly remains

in the out-of-plane 5 fδu orbitals to minimize the electron repulsion from the other one in
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Table 3.1: Energy levels (in cm−1) from SF and SO calculations. The SF wave functions
correspond to the energy levels are given inside the parenthesis. In case of SO, the energy
levels for the 5 f 1 [NpVIO2]2+ cation are always doubly degenerate i.e. the KDs and the
corresponding SO term symbols are inside the parenthesis. For the PT2 energy levels, the
notations are the same as the SCF ones.

CASSCF CASPT2 RASSCF RASPT2
SF SO SF SO SF SO SF SO

[NpVIO2]2+

0
(

2Φ
)

0
(

2Φ5/2
)

0 0 0
(

2Φ
)

0
(

2Φ5/2
)

0 0
0
(

2Φ
)

3067
(

2∆3/2
)

0 2963 0
(

2Φ
)

3316
(

2∆3/2
)

0 3122
1325

(
2∆
)

8151
(

2Φ7/2
)

1175 8167 1560
(

2∆
)

8060
(

2Φ7/2
)

1388 8079
1325

(
2∆
)

9290
(

2∆5/2
)

1175 9175 1560
(

2∆
)

9471
(

2∆5/2
)

1388 9337
23895

(
2Π
)

26949
(

2Π1/2
)

25025 28500 25050
(

2Π
)

28275
(

2Π1/2
)

22075 25763
23895

(
2Π
)

30480
(

2Π3/2
)

25025 32121 25050
(

2Π
)

31373
(

2Π3/2
)

22075 29020
[PuVIO2]2+

triplet triplet triplet triplet
0
(

3H
)

0
(

3H4
)

0 0 0
(

3H
)

0
(

3H4
)

0 0
0
(

3H
)

0
(

3H4
)

0 0 0
(

3H
)

0
(

3H4
)

0 0
3635 4489 3053 3138 3745 4512 2842 3165
6651 6977 4592 4857 6655 6984 4982 5263
6651 6978 4653 4899 6655 6984 5016 5292
20080 7542 15395 7585 19778 7415 15339 7467
23250 7542 26649 7585 24833 7415 23521 7467
singlet 13183 singlet 11173 singlet 13047 singlet 11455
10169 13271 6671 11709 10578 13271 7839 11778

12137
(

1Γ
)

13271 7312 11716 12413
(

1Γ
)

13271 8891 11785
12137

(
1Γ
)

13780 7344 11773 12413
(

1Γ
)

13479 8927 12420

Table 3.2: Compositions (in %) of the first two KDs of [NpVIO2]2+ cation in terms of the
SF wave functions 2Φ, 2∆ and 2Π. In case of SO-ZORA/PBE0, composition of the singly
occupied Kramers spinors φ5/2 in terms of 5 fφu and 5 fδu orbitals.

Method KD 2Φ 2∆ 2Π

SO-CASSCF 2Φ5/2 89 11 -
2∆3/2 2 98 -

SO-CASPT2 2Φ5/2 89 11 -
2∆3/2 2 98 -

SO-RASSCF 2Φ5/2 89 11 -
2∆3/2 2 98 -

SO-RASPT2 2Φ5/2 89 11 -
2∆3/2 2 98 -

SO-ZORA/PBE0 φ5/2 84 16 -
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3.2. Free [AnVIO2]2+ cations

the in-plane 5 fφu orbitals. In the SO, as modeled in subsection 3.2.1.2, the first two SO

states {Ω1,Ω2}, both designated by the SO term symbol 3H4 are degenerate and are well

isolated from the excited states. These two degenerate states are the ab initio basis of

the ground NKD which can be used to calculate the magnetic g-factor of the [PuVIO2]2+

cation. The compositions of the SF(SO)-RASSCF wave functions are given in Table 3.3.

For the SF wave functions 2S+1Λ, compositions are given in terms of the most dominant

configurations and for the NKD basis of 3H4 in terms of the SF wave functions. The NKD

basis are majorly weighted (> 95%) by the first two 3H states, but due to SOC, there is

a little mixing (around 4%) of the low lying singlet states 1Γ as already discussed in the

ligand field modelization. The singlet states 1Γ are around 12000 cm−1 at the variational

SCF calculations, but the energy gaps are highly reduced with the PT2 calculations.

Table 3.3: Percentage contributions of the SF states 2S+1Λ to the ground NKD basis
{Ω1,Ω2} of 3H4. For the SF wave functions 2S+1Λ, compositions are given in terms of
the most dominant configurations.

SF states Configurations 3H4(Ω1)
3H4 (Ω2)

3H 86% 5 f ↑
φ±5 f ↑

δ± 47.6 47.6
3H 86% 5 f ↑

φ±5 f ↑
δ± 47.6 47.6

1Γ 39% f ↑↓
δ+; 38% f ↑↓

δ− 0.0 3.7
5% f ↑

φ− f ↓π− ; 5% f ↑
φ+ f ↓π+

1Γ 76% f ↑
δ+ f ↓

δ−; 5% f ↑
φ+ f ↓π− 3.7 0.0

5% f ↑
φ− f ↓π+

3.2.3 Magnetic g-factors

The magnetic g-factors of the [NpVIO2]2+ cation are given in Table 3.4 both from the ab

initio calculations and the ligand field model. The parameters in the model equations are

taken from the ab initio calculations. There is no coupling in the xy plane as one expects,

so g⊥ = 0. g‖,n,(n = 1,2) according to the ligand field model are calculated using Eq.

3.2.10 and Eq. 3.2.16 for the KDs 2Φ5/2 and 2∆3/2, respectively. g‖,1 from the ab initio

calculations and the ligand field model are exactly the same indicating ground Kramers

spinors φ5/2 for the unpaired electron. g‖,2 from the model slightly differs from the ab ini-

tio values since we excluded the energetically higher 5 fπ∗u orbitals from the model space

and hence missing the interactions with the π spinors. g‖,2 is close to value that is ob-

tained from the δ3/2 Kramers spinors. So the first f − f transition state in the neptunyl

cation corresponds to a excitation of the unpaired electron from the φ5/2 spinors to the

δ3/2 spinors. The composition of the KDs and hence the associated g-factors are not at
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all affected by the different levels of theoretical calculations, although there are small dif-

ferences in the energy spectrum but result in negligible effects on the magnetic properties

in the case of free [NpVIO2]2+ cation. Benchmark calculations with the relativistic DFT

methods also result similar g‖,1 for the ground KD.

Table 3.4: The magnetic g-factors of the [NpVIO2]2+ cation in the ‖ (along the actinyl
bonding axis) and ⊥ directions from ab initio calculations and ligand field model (LFM).

Method KD g⊥ (LFM) g‖ (LFM) g⊥ (ab initio) g‖ (ab initio)
SO-CASSCF 2Φ5/2 0.00 4.22 0.00 4.22

2∆3/2 0.00 1.96 0.00 2.03
SO-CASPT2 2Φ5/2 0.00 4.22 0.00 4.22

2∆3/2 0.00 1.96 0.00 2.03
SO-RASSCF 2Φ5/2 0.00 4.22 0.00 4.22

2∆3/2 0.00 1.96 0.00 2.03
SO-RASPT2 2Φ5/2 0.00 4.22 0.00 4.22

2∆3/2 0.00 1.96 0.00 2.04
SO-ZORA/PBE0a φ5/2 0.00 4.32

mDKS/PBE0b 0.00 4.21

a: in ADF, b: in ReSpect

The only non-zero g-factor g‖ of the NKD from different methods is reported in Table 3.5.

The value of g‖,NKD according to ligand field model is calculated using Eq. 3.2.22 where

parameters s2 and t2 are taken from the RASSCF calculations as the combined weight

of the first two SF states 3H and the weight of interacting singlet states 1Γ, respectively

(see Table 3.3). g-factors are roughly the same in all the ab initio methods indicating

insignificant changes in the compositions of NKD wave functions from one method to

another.

Table 3.5: The only non-zero g-factor of the NKD of PuVIO 2+
2 cation from ab initio

calculations and ligand field model.

Method g‖ (LFM) g‖ (ab initio)
SO-CASSCF 6.10
SO-CASPT2 6.11
SO-RASSCF 6.008 6.09
SO-RASPT2 6.11
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Figure 3.3.1: Li2AnVIO2(DPA)2 ·H2O compound.

3.3 [AnO2]2+ cations chelated with the DPA ligand

3.3.1 Crystal structures

2,6-dipicolinic acid (H2DPA) based [AnVIO2]2+ complexes were first synthesized by A.

B. Yusov et al. [77] and their solid state structures Li2AnVIO2(DPA)2 ·H2O were re-

ported as represented in Fig. 3.3.1. The [AnVIO2(DPA)2]2 – complex is linked to four Li+

cations: two of them are bridging the two DPA ligands and are bonded to two oxygen

atoms of the coordination sphere. The two other ones are bonded to the outermost oxygen

atoms. In our work, the Li2AnVIO2(DPA)2 ·2H2O compounds where AnVI = UVI, NpVI

and PuVI were isolated from aqueous solution and their XRD structures were determined

at CEA Marcoule by M. Autillo et al. [11]. Furthermore, another variant of the DPA,

4-ethyl-2,6-dipicolinic acid H2Et−DPA based [AnVIO2]2+ complexes were also synthe-

sized for the study of the 1H pNMR shifts. Due to practical reasons, the crystals of the

H2Et−DPA based compounds were not possible to isolate and so the structures were built

from the XRD structures by placing the ethyl chain perpendicular to the pyridine ring.

The bond distances of the first coordination sphere and the geometric parameters GK of

Eq. 2.6.33 are calculated from the XRD structures in the axial symmetry and are tabulated

in Table 3.6. The 1H nuclei of the DPA and Et-DPA ligands are numbered as presented

in Fig. 3.3.2 and are averaged on chemically equivalent positions. To estimate the sen-

sitivity of the ethyl chain position due to the rotation along C4−C5 bond, the geometric

parameters GK were calculated with every 10° angle. A deviation of only 1% was found

for the most distant protons of the CH3 groups (H6). So for the interpretations of the

pNMR shifts in the [AnVIO2(Et−DPA)2]2 – complexes, the ethyl chain perpendicular to

the pyridine ring is taken to avoid any bias in the interpretation due to its position.
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Figure 3.3.2: DPA and Et-DPA ligands with the numbering of the hydrogen atoms. Color
code: blue- N, red- O, gray- C, white- H.

Table 3.6: Bond distances (Å), angles (°) and protons geometric parameters GK (in
1027m−3) in the X-rays structures of Li2AnVIO2(DPA/Et−DPA)2 ·2H2O compounds.
Protons are labeled according to Fig. 3.3.2 and are averaged on chemically equivalent
positions.

An−−O An−O An−N ∠O−−An−N GH3 GH4 GH5 GH6

[UVIO2(Et−DPA)2]2 1.81 2.46 2.72 92 -5.29 -3.41 -2.39 -1.60
Li2UVIO2(DPA/Et−DPA)2 ·2H2O 1.777(2) 2.453(2) 2.654(2) 90.1(1) -5.77 -3.61 -2.41 -1.68
Li2NpVIO2(DPA/Et−DPA)2 ·2H2O 1.759(1) 2.45(1) 2.648(1) 90.8(1) -5.79 -3.61 -2.44 -1.69
Li2PuVIO2(DPA/Et−DPA)2 ·2H2O 1.747(3) 2.47 (2) 2.642(3) 93.0(1) -5.82 -3.63 -2.45 -1.70
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Figure 3.3.3: [NpVIO2(DPA)2]2 – (left) and [NpVIO2(DPA)2]Li2 (right). In the left figure,
z axis is shown with the green arrow passing through the actinyl bonds. Color code:
purple- Np, violet- Li, blue- N, red- O, saddle-brown- C, white- H.

3.3.2 Ab initio electronic structures

For the interpretation of the pNMR shifts, ab initio calculations were performed on the

XRD structures of the paramagnetic [AnVIO2(DPA)2]2 – complexes. We showed as well

that the ethyl groups do not affect the electronic structure of the actinide and in the fol-

lowing, only the results for the [AnVIO2(DPA)2]2 – are discussed. Magnetic susceptibility

measured in the solid state does not fit with that in the liquid state (discussed later) in

the case of 5 f 1 complexes indicating non-negligible effects due to the presence of the

Li+ counterions in the first coordination sphere as shown in Fig. 3.3.1. Two of the Li+

cations are directly linked to the coordinating oxygen atoms of the DPA ligands which

affects the electronic structure and magnetic properties . To figure out their role, ab initio

calculations were also performed on the model complex [NpVIO2(DPA)2]Li2 (built from

the XRD structure) as shown in Fig. 3.3.3. It has been observed (by a prior ab initio

calculation) that the Li+ cations linked to the non-coordinating oxygen atoms of the DPA

ligands do not impact the electronic structure of the actinide center and are not considered

in the model complex.

The electronic structures of these complexes have been computed with the SO-CAS based

methods. Computational details are provided in Appendix A. As already noticed (in sub-

section 3.2.2) the effect of the extended CAS (RAS) based calculations on the energy lev-

els of [AnO2]2+, we extended the active orbitals to the bonding and anti-bonding orbital of

the actinyl cation as shown in Fig. 3.2.1. The six active orbitals of the [NpVIO2(DPA)2]2 –

complex from the CAS(1,6) are shown in Fig. 3.3.4. It should be noted that in the coordi-

nated actinyl complexes, due to the lowering of symmetry, one can not assign the orbitals

by the ML values as one can in the case of the free actinyl ion. This is because ML is no

longer a good quantum number, but still, for their characteristic assignments and to get
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the flavor, the irreps of the central actinyl moiety are used. The orbitals are anti-bonding

with the ligands’ orbitals, the strongest the interaction is, the most destabilized the orbital

is. The 5 fσ orbital is the most destabilized and does not need to be considered as active.

The 5 fπ orbitals interact with the oxo π and are strongly destabilized at more than 17000

cm−1, with a small splitting due to a small interaction with the DPA ligands. Due to the

lack of proper symmetry, 5 fφ and 5 fδ do not interact with the oxo groups’ orbitals and

remain non-bonding in the free actinyl, hosting the magnetic electrons. Spin density is

mostly localized on the metal. In the case of free actinyl cation, 5 fφ and 5 fδ orbitals

are doubly degenerate, but due to the presence of the ligands in the equatorial plane their

degeneracies are lifted. Due to the trigonal symmetry of the equatorial ligands, the two

5 fφ orbitals split by 3000 cm−1; the destabilized one overlaps with the σ donating or-

bitals of the 6 coordinating nitrogen and oxygen atoms of the DPA, while the other one

denotes a π overlap. The two 5 fδ orbitals do not have any σ bonding with the orbitals

of the equatorial ligands due to their equatorial nodal plane; one of them denotes a small

π overlap and is destabilized by 400 cm−1. As shown in Ref. [73] and also in the ligand

field model in subsection 3.2.1.1, the splitting between the 5 fφ and 5 fδ orbitals determine

the nature of the ground KD and the magnetic properties. In the free actinyl ion, the 5 fφ

orbitals span e5/2 and e7/2 spinors and the 5 fδ orbitals span e3/2 and e5/2 spinors. In the

DPA complex, the spinors e5/2 which arises from the mixing of 5 fδ and 5 fφ orbitals is

the ground one. Consequently, the 5 fδ − 5 fφ energy gap determines the composition of

the state and plays a key role. The active space for RASSCF calculations is augmented by

the σ and π orbitals of the oxo groups. This allows a better description of the electron dy-

namic correlation in the [AnO2]2+ cation and also introduces charge fluctuations as well

as the spin polarization. This is evidenced by the Mulliken spin densities of +1.05 on Np

and -0.03 on each O in the NpVI complex and +2.1 on Pu and -0.06 on each O in the PuVI

complex.

In Table 3.9, compositions of the two KDs of the [NpVIO2(DPA)2]2 – and [NpVIO2(DPA)2]Li2
complexes are given, obtained with the different methods of calculation. Two levels of

frozen orbitals have been compared, freezing or not the 5p and 5d orbitals of the Np

atom, the former scheme being the default option in MOLCAS. The effect of the 5p and

5d is in this case essential and emphasizes the effect of the correlation (denoted by *

when they are correlated). And the composition can be explained from the SF energy

levels in Table 3.7. Since SOC is introduced as a state interaction, the closer the states

are in energy, the more they interact. The dynamic correlation correction on the SF-

C(R)ASSCF energies reduces the energy gap between the ∆ and Φ states as noticed in

the case of free neptunyl cation also and results in a larger mixing at the SO level. In

SO-CASSCF, % of (∆ ,Φ) characters of KD1 and KD2 are (95,2) and (30,70), respec-

tively, in the [NpVIO2(DPA)2]2 – complex and (94,4) and (29,71), respectively, in the

[NpVIO2(DPA)2]Li2 complex. The composition of the SO eigenvectors of KD1 shows an
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Figure 3.3.4: 5 f active orbitals of [NpVIO2(DPA)2]2 – . Numbers on the right side are the
energies in cm−1. The isovalue is 0.08 e−/bohr3.

Table 3.7: Energy levels (in cm−1) of the NpVI complexes from SF and SO calculations.

CASSCF CASPT2 CASPT2* RASSCF RASPT2 RASPT2*
SF SO SF SO SF SO SF SO SF SO SF SO

[NpVIO2(DPA)2]2 –

0 0 0 0 0 0 0 0 0 0 0 0
403 820 463 625 505 455 368 455 386 418 407 333
2218 7196 1724 7007 1420 6973 1782 7052 1357 7001 1013 6696
5118 10520 5548 10638 5183 10334 4631 10004 4943 10182 4615 9944
17689 19352 20775 22310 19572 21140 18353 20062 17444 19245 17269 19158
17790 22486 20789 25367 19578 24225 18382 22967 17535 22164 17371 22082

[NpVIO2(DPA)2]Li2
0 0 0 0 0 0 0 0 0 0 0 0

292 522 371 396 353 282 269 250 373 298 363 440
1755 7045 1338 6921 954 6898 1341 6952 952 6950 564 7068
4683 10114 5079 10260 4779 10039 4221 9658 4577 9892 4215 9765
18163 19868 19824 21467 19795 21534 18826 20630 17960 19833 17772 19872
18315 23012 19951 24570 19945 24639 18926 23534 18071 22754 17887 22798

∗: 5p and 5d orbitals are correlated
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increased mixing of Φ states due to successive decrease of the energy gap ∆ (E1&E2) and

Φ(E3&E4) states going from CASSCF to RASPT2 level (from 2218 cm−1 to 1013 cm−1

(see Table 3.7). In SO-RASPT2*, % of (∆,Φ) characters of KD1 and KD2 are (62,37)

and (58,40), respectively, in the [NpVIO2(DPA)2]2 – complex and (33,67) and (85,12),

respectively, in the [NpVIO2(DPA)2]Li2 complex. For the [NpVIO2(DPA)2]2 – complex,

restricted 2-component DFT using the PBE0 functional was performed. The composition

of the single occupied spinor in terms of 5 fδ and 5 fφ is similar to the SO-CASSCF func-

tion (see Table 3.9). The Mulliken charges of the [NpVIO2(DPA)2]2 – complex with and

without the two Li+ cations are given in Table 3.8: it appears that the effect is a polariza-

tion of electron density of the DPA ligand in the presence of the positive charge which

attracts the electron density towards the oxygen atoms (0.07 electron). Then, an important

charge transfer from the DPA to the Li+ cation reduces its charge to 0.48. This finally de-

creases the Mulliken charge by 0.12 electron on the oxygen atoms directly bonded to the

Np ion, and this affects the electronic properties by lowering the ligand field effect, promi-

nently the stabilization of the two Φ(E3&E4) states by 500 cm−1. KD1 has therefore a

larger weight on this component. With SF-RASPT2*, E3 is divided by two (1013 vs. 564

cm−1) by the presence of the Li+ cations and Φ states becomes dominant in KD1, and

this impacts dramatically the axiality of the g tensor (see next subsection). It shows that

in this case, the counterions, since lying in the close vicinity of the coordination sphere,

are by far not anecdotal.

Table 3.8: Mulliken charges of the oxygen atoms of the DPA ligand coordi-
nated to NpVI and of the lithium cation from SF-CASSCF calculations. In
[NpVIO2(DPA)2]2 – +2Li+(ECP), the Li+ cations are replaced by an ECP without any
charge (from L. Seijo, unpublished, Molcas basis set).

qO qLi

[NpVIO2(DPA)2]2 – -0.68 -
[NpVIO2(DPA)2]2 – +2Li+(ECP) -0.88 -

[NpVIO2(DPA)2]Li2 -0.80 0.32

In the case of [PuVIO2(DPA)2]2 – , the SF triplet ground state corresponds to the configu-

rations 5 f ↑
φ

5 f ↑
δ

∏
core
b b↑↓, same as the free plutonyl cation. The two lowest SO states show

almost similar composition and are almost degenerate without correlation. When the 5p

and 5d orbitals are correlated, a gap of 84 cm−1 is obtained (see Table 3.10). These two

states are the basis of the NKD and modeled with a pseudospin S̃= 1/2. The ground NKD

is energetically well separated from the first excited states by about 3000 cm−1 such that

interaction with those states plays a negligible role in its magnetic properties.
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Table 3.9: Compositions (in %) of the first two KDs in terms of the SF wave functions
denoted by their spatial symmetry ∆ , Φ and Π.

Method KD ∆ Φ Π ∆ Φ Π

[NpVIO2(DPA)2]2 – [NpVIO2(DPA)2]Li2
SO-CASSCF KD1 95 2 3 94 4 3

KD2 30 70 0.2 29 71 0.2
SO-CASPT2 KD1 93 5 2 88 10 2

KD2 31 68 0.3 34 66 0.4
SO-CASPT2* KD1 86 12 2 65 34 1

KD2 36 64 0.5 55 44 1
SO-RASSCF KD1 92 6 2 75 24 2

KD2 31 68 0.3 47 52 1
SO-RASPT2 KD1 85 13 2 56 42 0.2

KD2 37 62 0.5 64 35 2
SO-RASPT2* KD1 62 37 1.4 33 67 0.3

KD2 58 40 1.7 85 12 2
SO-ZORA/PBE0 94 1.3 4.3

∗: 5p and 5d orbitals are correlated

Table 3.10: Energy levels (in cm−1) of the [PuVIO2(DPA)2]2 – complex from SF and SO
calculations.

CASSCF CASPT2 CASPT2* RASSCF RASPT2 RASPT2*
SF SO SF SO SF SO SF SO SF SO SF SO

triplet triplet triplet triplet triplet triplet
0 0 0 0 0 0 0 0 0 0 0 0

51 1 230 62 200 98 52 0 112 8 81 85
1506 3221 1749 2866 1886 2846 1875 3463 1673 3433 1711 3342
6413 5377 6246 4045 5260 3525 6524 5511 6211 5458 5464 5036
6491 5453 6613 4100 5628 3552 6594 5605 6308 5461 5513 5050
18277 8100 17884 8345 15077 8238 19439 8014 19274 7977 18934 7979
18370 8112 21300 8363 20560 8259 19470 8016 19343 8015 19148 8004
singlet 12310 singlet 10701 singlet 10156 singlet 12265 singlet 11988 singlet 11546
8828 12603 6912 10734 6881 10168 9457 12781 7472 12495 7228 12060
8898 12643 7151 11496 6945 11102 9954 12812 8556 12585 8608 12092
9000 13195 7704 11624 7040 11185 9961 13143 8635 13026 8643 12788
11894 14883 8124 13821 7740 13112 12241 14911 9574 14740 8761 14369
11961 14900 8368 13991 8025 13207 12307 14920 9713 14759 8860 14382

∗: 5p and 5d orbitals are correlated
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3.3.3 Magnetic g-factors

Magnetic g-factors of the two KDs of the NpVI complexes obtained with different methods

of calculation are given in Table 3.11. For [NpVIO2(DPA)2]2 – , ground state anisotropies

calculated with SO-CASSCF and SO-RASSCF methods are notably axial
(
g‖,1 > g⊥,1

)
whereas including successive dynamic correlation with SO-CASPT2* to SO-RASPT2*

methods, the anisotropy almost becomes spherical
(
g‖,1 ≈ g⊥,1

)
to planar

(
g‖,1 < g⊥,1

)
.

In the variational SCF calculations, KD1 has more ∆ character than Φ, that is quite oppo-

site in the case of KD2, and hence
(
g‖,g⊥

)
of KD1 and KD2 are (1.8,0.3) and (4.0,0.4),

respectively, in SO-CASSCF and (1.5,0.6) and (3.7,0.7), respectively, in SO-RASSCF

methods. While with dynamic correlation in the PT2 calculations, they are (1.0,0.8)

and (3.0,0.9), respectively, in SO-CASPT2* and (0.9,1.4) and (1.0,1.5), respectively,

in SO-RASPT2*. In the ground state of [NpVIO2(DPA)2]Li2 complex, the contribution

from the SF Φ states are larger than ∆ and hence, the magnetic anisotropy of the KD1 be-

comes highly axial,
(
g‖,g⊥

)
of KD1 and KD2 are (3.3,0.9) and (1.6,1.0) , respectively,

in SO-RASPT2*.

Table 3.11: Magnetic g-factors of the NpVI complexes in the ‖ (along the actinyl bonding
axis) and ⊥ directions from the different methods of ab initio calculations. In the case of
SO-ZORA/PBE0 in ADF, g-factors are calculated with the Kramers spinors with singly
occupied electron.

Method KD g⊥ g‖ g⊥ g‖
[NpVIO2(DPA)2]2 – [NpVIO2(DPA)2]Li2

SO-CASSCF KD1 0.3 1.8 0.3 1.9
KD2 0.4 4.0 0.4 3.6

SO-CASPT2 KD1 0.5 1.6 0.5 1.8
KD2 0.6 3.6 0.7 3.3

SO-CASPT2* KD1 0.8 1.0 0.7 2.4
KD2 0.9 3.0 0.7 2.4

SO-RASSCF KD1 0.6 1.5 0.5 2.4
KD2 0.7 3.7 0.8 3.0

SO-RASPT2 KD1 1.0 0.9 1.1 2.1
KD2 1.1 2.9 1.6 0.3

SO-RASPT2* KD1 1.4 0.9 1.0 3.3
KD2 1.5 1.0 1.0 1.6

SO-ZORA/PBE0 0.4 1.9

The ground NKD (E1&E2) of the [PuVIO2(DPA)2]2 – complex is modeled with a pseu-

dospin S̃ = 1/2, and the only non-zero g-factor of the NKD is tabulated in Table 3.12

with the energy splitting between the states. The g-factor deduced from the ground NKD

is insensitive to the method of calculation since the composition does not vary (see Table
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3.3. [AnO2]2+ cations chelated with the DPA ligand

Figure 3.3.5: Principle axis of the g tensor of KD1 (light coral) and KD2 (light yellow)
that corresponds to the g-factor g‖,n of [NpVIO2(DPA)2]2 – complex. Color code: dark
gray-Np, blue- N, red- O, saddle-brown- C, white- H.

3.10) and are very close to the values of the free ion as shown Table 3.5. The g tensor is

axial along the “yl” bond, and the equatorial values are zero, as it has to be in a NKD.

Table 3.12: The g-factor of the ground NKD (E1&E2) of the [PuVIO2(DPA)2]2 – complex
and the splitting ∆ (in cm−1) of the NKD states by the ligand field.

Method g‖ ∆

SO-CASSCF 5.89 1
SO-CASPT2 5.70 61
SO-CASPT2* 5.73 98
SO-RASSCF 5.89 0.2
SO-RASPT2 5.85 8
SO-RASPT2* 5.84 84

3.3.4 Isotropic magnetic susceptibilities from SQUID and Evans method

For the solid Li2NpVIO2(DPA)2 ·2H2O compound, temperature dependence of the molar

magnetic susceptibility χ
SQUID
m between 2 and 300 K is depicted in Fig. 3.3.6. The value

of 0.50 cm3Kmol−1 at 300 K is below the value of an isolated ion within the LS coupling

scheme (0.80 cm3Kmol−1 for NpVI with a 2F5/2, g5/2 = 6/7 ground state). When the tem-

perature decreases, χ
SQUID
m T continuously diminishes reaching 0.19 cm3Kmol−1 at 3 K.

The molar magnetic susceptibility in solution, χEvans
m

(
m3.mol−1) was determined from

the chemical shift difference ∆δ between the 1H NMR signals of working (t-BuOHin)

and reference (t-BuOHout) solutions using the Evans method [78],

χ
Evans
m =

3∆δ

103 [M]
(3.3.1)
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Figure 3.3.6: Molar magnetic susceptibility as a function of temperature with a field of 1
T for the Li2AnVIO2(DPA)2 ·2H2O compound. The red and blue lines show the fits using
Eq. 3.3.4 without and with TIP, respectively.

where ∆δ is dimensionless, [M] is the molar concentration
(
mol.L−1) of the param-

agnetic complex and χEvans
m in m3mol−1. The SQUID value χ

SQUID
m = (2.1±0.2)×

10−8 m3mol−1at 298 K, can be compared to the value obtained from Evans method

χEvans
m = (1.8±0.2)× 10−8 m3mol−1 at 298 K. Those values are comparable, but the

latter is slightly lower than the former. The techniques are different, but on the other

hand, there are structural differences. The Li+ cations are linked to one or two adjacent

Li2[NpVIO2(DPA)2] entities forming an infinite chain. As already mentioned, the cations

in the 2nd position do not impact the electronic properties of the paramagnetic center,

to the contrary to the Li+ bonded to the coordinated oxygen atoms. Parker et al. have

evidenced the sensitivity of the magnetic susceptibility anisotropy to the solvent in lan-

thanide complexes [79, 80]. The solvent molecules induce geometrical variations and

transform ∆ χax from prolate to oblate, while in the present case, counterions impact the

magnetic properties through an electronic interaction with the paramagnetic center.

3.3.5 Analysis of 1H pNMR shifts

1H NMR spectra of [AnVIO2(DPA)2]2 – and [AnVIO2(Et−DPA)2]2 – complexes were

recorded in [D7]DMF at 298 K at 9.4 T. The 1H spectra of [AnVIO2(Et−DPA)2]2 – com-

plexes are shown in Fig. 3.3.7 as example. The paramagnetic induced shifts δ
p
K were

deduced by using the uranium complexes, [UVIO2(DPA)2]2 – and [UVIO2(Et−DPA)2]2 –

as diamagnetic references. The chemical shifts and pNMR chemical shifts obtained at
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3.3. [AnO2]2+ cations chelated with the DPA ligand

Figure 3.3.7: 1H NMR spectra in [AnVIO2(Et−DPA)2]2 – complexes at 298 K in
[D7]DMF at 9.4 T.

room temperature ) are reported in Table 3.13.

Table 3.13: 1H paramagnetic chemical shifts (ppm) in [D7]DMF at 9.4 T and 298 K in
[AnVIO2(DPA)2]2 – and [AnVIO2(Et−DPA)2]2 – complexes

δ
p
H3 δ

p
H4 δ

p
H5 δ

p
H6

[AnVIO2(DPA)2]2 –

NpVI -5.94 -2.91
PuVI -26.31 -14.26

[AnVIO2(Et−DPA)2]2 –

NpVI -5.51 -2.78 -1.69
PuVI -26.02 -11.27 -7.61

• Nature of the pNMR shifts.

In the case of no Fermi contact contribution, the ratio RK,K′ between the AIS of two nuclei

K and K′ as expressed by Eq. 2.6.33 simplifies to the ratio of their geometrical parameters

GK and GK′

RK,K′ =
δ

p
K

δ
p
K′

=
δ

pc
K

δ
pc
K′

=
GK

GK′
(3.3.2)
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Table 3.14: RK,K′ of Eq. 3.3.2 determined from geometrical parameters deduced from
X-rays structures and from 1H pNMR chemical shifts in [D7]DMF at 9.4 T and 298 K in
[AnVIO2(DPA)2]2 – and [AnVIO2(Et−DPA)2]2 – complexes.

GH3
GH4

δ
p
H3

δ
p
H4

GH3
GH5

δ
p
H3

δ
p
H5

GH5
GH6

δ
p
H5

δ
p
H6

NpVI 1.6 2.0 3.4 3.2 1.4 1.7
PuVI 1.6 1.9 3.4 3.4 1.4 1.5

In Table 3.14, the RK,K′ determined from the X-rays structures are compared to those

deduced from the 1H AIS at 298 K in the NpVI and PuVI complexes. The good agreement

between the geometrical and AIS ratios indicates that 1H AIS in those complexes are

dominated by pseudocontact interactions. The spin densities determined from unrestricted

DFT calculations (see Table 3.15) confirm this. The spin density tends to decrease with the

distance from the paramagnetic center, except for C4 (para position), the largest lies on the

“yl” oxygen atoms, due to the strong bonding scheme. It is negative on the coordinating

atoms, and then the sign alternates, due to spin polarization, and vanishes on the protons

and aliphatic carbons atoms, in accordance with the observed negligible Fermi contact

AIS for the protons. In the non-coordinating carbon atoms, the spin density resides mostly

in the π system of the aromatic ring and consequently does not spread to the protons.

Table 3.15: Mulliken spin populations deduced from unrestricted PBE0 calculations with
a partial occupation of the 5 f orbitals.

[AnVIO2(Et−DPA)2]2 – [AnVIO2(Et−DPA)2]2 –

Total s sp2 π Total s sp2 π

Np/Pu 1.1978 0.0027 2.5001 0.0053
O (yl) -0.0623 -0.0006 -0.1414 -0.0009
O (M-O) -0.0156 -0.0005 -0.0132 -0.0035 -0.0426 -0.0009 -0.0318 -0.0117
O (C=O) -0.0025 -0.0002 -0.0022 -0.0004 -0.0108 -0.0003 -0.0067 -0.0045
N -0.0070 -0.0019 -0.0063 -0.0013 -0.0123 -0.0031 -0.0114 -0.0017
C (C=O) 0.0016 0.0000 -0.0002 0.0012 0.0047 0.0002 0.002 0.0038
C ortho 0.0013 0.0001 0.0003 0.0011 0.0004 0.0000 -0.0002 0.0006
C meta -0.0004 -0.0001 -0.0003 -0.0002 0.0000 0.0000 -0.0002 0.0002
C para 0.0014 0.0001 0.0001 0.0013 0.0004 0.0000 -0.0002 0.0006
C (CH2) -0.0001 0.0000 0.0000 0.0000
C (CH3) 0.0000 0.0000 0.0000 0.0000
H (meta) 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000
H (CH2) 0.0000 0.0000 0.0000 0.0000
H (CH3) 0.0000 0.0000 0.0000 0.0000

• Anisotropic magnetic susceptibilities from the pNMR shifts.
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In the axially symmetric complexes, in the case of a pure dipolar interaction, Eq. 2.6.33

holds and the axial anisotropy ∆ χax can be obtained from 1H AIS analysis. Thereby,

∆ χ
exp
ax is determined from the slope of the δ

pc
K = f (GK) curves which results ∆ χ

exp
ax =

(2.2±0.1)× 10−8 and (10.1±0.2)× 10−8 m3mol−1 at 298 K for the NpVI and PuVI

complexes, respectively.

The studied complexes are not strictly axial, but the presence of the two DPA ligands in

the equatorial plane creates a structure sensibly equivalent to a C6 axis. The ab initio

calculations confirm that the χχχ tensor is axial along the “yl” bond and the equatorial

values almost degenerate, χxx = χyy. Consequently, we assume in the following that

the magnetic susceptibility tensor χχχ reduces to the axial and equatorial values, χ‖ and

χ⊥. The isotropic average and the anisotropy are then χm = 1
3

(
χ‖+2χ⊥

)
and ∆ χax =(

χ‖−χ⊥
)
, respectively. Accordingly, the knowledge of χm and ∆ χax allows to estimate

χ‖ and χ⊥ . For the [AnVIO2(DPA)2]2 – complexes in solution, the two components of

the magnetic susceptibility tensor χ‖ and χ⊥, are deduced from the isotropic average and

anisotropic values, χEvans
m and ∆ χexp, respectively, and are given in Table 3.16.

• pNMR shifts from ab initio calculations.

For the CAS based methods, the 1H AIS were deduced from Bertini’s equation (Eq.

2.6.33), using the values of ∆ χax from the ab initio calculations. Soncini (Eq. 2.2.3)

and Van Vleck equations (Eq. 2.2.4) split into the contributions of degenerate and non-

degenerate states. In the case of a non-Kramers ion without any symmetry, the states

are all non-degenerate, leading to only the 2nd term. But when the energy gaps are very

small, one retrieves the Curie term. For thermal energies much larger than the energy

gaps, their impact is not noticeable. The Curie values i.e. those obtained from the ther-

mally populated energy levels, can be labeled to the values obtained from the KD1 of

the NpVI and from the NKD of the PuVI complexes. In this case, each component of the

molar magnetic susceptibility is calculated from the magnetic g-factors as

χkk = NAµ0µ
2
B

g2
kk

4kT
(3.3.3)

As the PuVI complex has only one non-zero magnetic g-factor, when the ligand field

splitting of the two NKD states is very small compared to thermal energy (200 cm−1

at 298K), both isotopic and anisotropic Curie magnetic susceptibilities arise due to the

non-zero g-factor. For the NpVI complex, the magnetic interaction with KD2 can drasti-

cally increase the magnetic susceptibilities from the respective Curie values. The split-

ting of the SF energy levels highly influences the composition of the SO wave func-

tions and their splitting. Those in turn affect the magnetic properties. AIS are cal-

culated from 2-components DFT calculations according to Eq. 2.6.22. The isotropic
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term of the HFC tensor are given in Table 3.17. The ab initio molar magnetic suscep-

tibility components are given in Table 3.16 and compared to experimental values. For

the [NpVIO2(DPA)2]2 – and [NpVIO2(DPA)2]Li2 complexes, χ is much larger than its

Curie contribution, showing the importance of the Van Vleck contribution. Excited states

other than KD2 do not provide any leading contribution. KD2 is slightly populated at

298 K and the large contribution of KD2 is due to its strong magnetic interaction with

KD1. Due to the reduced energy gap in SO-RASPT2*, this interaction becomes larger.

∆ χCurie
ax decreases when more correlation is included, to become negative in the case of

[NpVIO2(DPA)2]2 – , while ∆ χax increases. The importance of the Van Vleck contribution

was already pointed out in the [NpO2(CO3)]4 – complex by Gendron et al. [9, 10]. The

SO-RASPT2* results with the 5p and 5d orbitals correlated provide values of both χm

and ∆ χax close to the experimental ones. χm is found to be smaller in [NpVIO2(DPA)2]2 –

than in [NpVIO2(DPA)2]Li2, 1.70 vs 2.18×10−8 m3mol−1. This follows the trend of the

experimental values (1.8±0.2)×10−8 m3mol−1 for [NpVIO2(DPA)2]2 – complex in so-

lution from Evans method vs (2.1±0.24)×10−8 m3mol−1 for Li2NpVIO2(DPA)2 ·2H2O

measured with the SQUID. χm was evaluated with SO-ZORA using Eq. 3.3.3. The results

are similar to the Curie term of the SO-CASSCF level, since only KD1 is included in the

calculation.

For the [PuVIO2(DPA)2]2 – complex, the results depend very little on the method. The val-

ues of χm and ∆ χax 4.49 and 13.17×10−8 m3mol−1, respectively, with SO-RASPT2* are

found to be slightly larger than the experimental values (4.06±0.1) and (10.1±0.2)×
10−8 m3mol−1, respectively. For all the studied complexes, ∆ χax is positive and larger

than χm, denoting a prolate shape of the magnetic moment of the paramagnetic center.

Results for the AIS are summarized in Table 3.18. Those results follow the conclusions

for the magnetic susceptibility. The Van Vleck contribution plays a key role for the NpVI

complexes, for H3, H5 and H6, the SO-RASPT2* results are in very good agreement

with the experimental values. For H4, they overestimate the experimental value. The

HFC tensor calculated with SO-ZORA is a pure dipolar one since the calculations are

performed within a restricted scheme, avoiding the spin polarization to be correctly de-

scribed. As for the magnetic susceptibility, the results for the AIS are the same as the

Curie contribution with SO-CASSCF.

3.3.6 Temperature dependence of the pNMR shifts and the isotropic
magnetic susceptibility

1H paramagnetic chemical shifts in the [AnVIO2(DPA)2]2 – complexes are mostly dipolar,

contact shifts are negligible, so according to Eq. 2.6.33, temperature dependency of the 1H

pNMR shifts depends on how the magnetic anisotropy changes with temperature. In the
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Table 3.16: Principal components of the magnetic susceptibility tensor χχχ (in 10−8

m3mol−1) at 298 K from experiment and ab initio calculations. The Curie contributions
are evaluated from the ground doublet. χm and ∆ χax are the isotropic average and axial
anisotropic susceptibilities, respectively.

χCurie
⊥ χCurie

‖ ∆ χCurie
ax χCurie

m χ⊥ χ‖ ∆ χax χm

[NpVIO2(DPA)2]2 –

Exp. / / / 1.1 ± 0.2 3.3 ± 0.2 2.2 ±0.1a 1.8 ± 0.2 b

SO-CASSCF 0.04 1.33 1.29 0.47 0.47 1.67 1.20 0.87
SO-CASPT2 0.11 0.96 0.86 0.39 0.55 1.77 1.22 0.96
SO-CASPT2* 0.27 0.41 0.14 0.32 0.67 2.14 1.47 1.16
SO-RASSCF 0.16 0.91 0.75 0.41 0.72 2.18 1.46 1.21
SO-RASPT2 0.39 0.35 -0.04 0.38 0.81 2.36 1.55 1.33
SO-RASPT2* 0.84 0.32 -0.47 0.63 0.91 3.29 2.38 1.70

SO-ZORA/PBE0 0.06 1.44 1.39 0.51
[NpVIO2(DPA)2]Li2

Exp. 2.1 ± 0.2 c

SO-CASSCF 0.08 1.39 1.29 0.54 0.62 2.13 1.51 1.13
SO-CASPT2 0.21 1.07 0.83 0.52 0.69 2.53 1.84 1.31
SO-CASPT2* 0.44 1.68 1.14 0.91 0.77 3.65 2.88 1.74
SO-RASSCF 0.38 1.56 1.05 0.86 0.87 3.61 2.74 1.79
SO-RASPT2 0.66 1.23 0.51 0.90 0.89 3.77 2.88 1.86
SO-RASPT2* 0.30 4.18 3.80 1.66 0.80 4.89 4.09 2.18

[PuVIO2(DPA)2]2 –

Exp. 0.7 ± 0.1 10.8 ± 0.2 10.1 ± 0.2a 4.1 ± 0.1b

SO-CASSCF 0.00 13.70 13.70 4.60 0.00 13.70 13.70 4.72
SO-CASPT2 0.00 12.76 12.76 4.29 0.17 12.80 12.63 4.42
SO-CASPT2* 0.00 12.73 12.73 4.28 0.14 12.80 12.66 4.40
SO-RASSCF 0.00 13.70 13.70 4.61 0.14 13.80 13.66 4.73
SO-RASPT2 0.00 13.52 13.52 4.54 0.17 13.50 13.33 4.66
SO-RASPT2* 0.00 13.32 13.32 4.48 0.13 13.30 13.17 4.59

∗ : 5p and 5d orbitals are correlated, a: deduced from the δ
p
K = f (GK) plots, b: deduced

from chemical shifts according to Evans method, c: from SQUID

Table 3.17: Isotropic HFC constants (in MHz) of the 1H nuclei in the [NpVIO2(DPA)2]2 –

complex calculated with SO-ZORA/PBE0 and deduced from g tensor. AK,iso =
1
3Tr(AK).

H3 H4 H5 H6
AK,iso -0.23 -0.20 -0.11 -0.09
Adip,∗

K,iso -0.21 -0.20 -0.10 -0.07

∗ : Adip
K = Tr

[
µ0gK µBµN

8π
g ·TK

]
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Table 3.18: 1H pNMR chemical shifts (in ppm) at 298 K deduced from Eq. 2.6.33. δ
p,Curie

K
is the Curie contribution arising from the ground doublet.

Method δ
p,Curie

H3 δ
p
H3 δ

p,Curie

H4 δ
p
H4 δ

p,Curie

H5 δ
p
H5 δ

p,Curie

H6 δ
p
H6

[NpVIO2(DPA)2]2 – /[NpVIO2(Et−DPA)2]2 –

Exp. / -5.9 / -5.5 / -2.9 / -2.8 / -1.7
SO-CASSCF -3.3 -3.0 -2.1 -1.9 -1.4 -1.3 -1.0 -0.9
SO-CASPT2 -2.2 -3.1 -1.4 -1.9 -0.9 -1.3 -0.6 -0.9

SO-CASPT2* -0.3 -3.8 -0.2 -2.4 -0.1 -1.6 -0.1 -1.1
SO-RASSCF -1.9 -3.7 -1.2 -2.3 -0.8 -1.6 -0.5 -1.1
SO-RASPT2 0.1 -4.0 0.1 -2.5 0.0 -1.7 0.0 -1.2

SO- RASPT2* 1.2 -6.1 0.8 -3.8 0.5 -2.5 0.4 -1.8
SO-ZORA/PBE0 -3.5 / -2.7 / -1.7 / -1.0 /

[PuVIO2(DPA)2]2 – /[PuVIO2(Et−DPA)2]2 –

Exp. / -26.3 / -26.0 / -14.3 / -11.3 / -7.6
SO-CASSCF -35.2 -35.2 -21.9 -21.9 -14.8 -14.8 -10.3 -10.3
SO-CASPT2 -33.3 -32.4 -20.7 -20.3 -13.9 -13.6 -9.6 -9.4

SO-CASPT2* -33.3 -32.5 -20.7 -21.6 -14.0 -13.7 -9.7 -9.6
SO-RASSCF -35.2 -35.0 -21.9 -21.8 -14.8 -14.7 -10.3 -10.2
SO-RASPT2 -34.7 -34.2 -21.6 -21.3 -14.6 -14.4 -10.2 -10.0

SO- RASPT2* -34.6 -33.7 -21.6 -21.0 -14.6 -14.2 -10.2 -9.9

∗ : 5p and 5d orbitals are correlated

axially symmetric LnIII complexes, according to Bleaney’s formula (see Eq. 2.6.34) ∆ χ ∝

1/T 2 , whereas according to Golding et al. [19] the spin-only magnetic susceptibility (Eq.

2.6.49) χs ∝ 1/T . This translates a T−2 and T−1 dependency of the pseudocontact and

contact shifts, respectively, in the LnIII complexes. Bleaney’s model is based on the CFT

and assumes that the splitting of a J manifold is in the order of room temperature energy,

so that all the states get populated resulting in a vanishing Curie term
(
T−1) term for the

anisotropic part of the magnetic susceptibility. Bleaney’s method has been widely used to

separate the pseudocontact and the contact shifts in the LnIII complexes [20, 18]. Recently,

a thorough studies of the pNMR shifts in the [Ln(DPA)3]3 – series shows that Bleaney’s

formula comes in handy to explain the pNMR shifts in these complexes with a less error

limit in the room temperature domain. But when it comes for [An(DPA)3]3 – complexes,

especially for the early actinides, the experimental results significantly deviates from the

formulation [26]. Indeed, in the ligands’ environment, the actinides are further from the

free ion limit than the lanthanides as the 5 f orbitals are more open to the ligand field and

the splitting of a given J manifold in the An complex is 3-4 (around ∼ 1200 cm−1) times

larger than in the Ln complexes (∼ 300 cm−1). So all the states of a J manifold in the An

complex are not statistically populated, translating the presence of Curie behavior in the

temperature dependence of the anisotropic magnetic susceptibility and furthermore T−n
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(a) (b)

Figure 3.3.8: 1H pNMR chemical shifts in [D7]DMF at 9.4 T as a function of temperature
in the [NpVIO2(DPA)2]2 – complex (a) and in the [PuVIO2(DPA)2]2 – (b).

with n> 2 might be needed to fully fit the experimental pNMR shifts as it was the case for

[An(DPA)3]3 – complexes [26]. The actinyls are even far from the free ion and as already

pointed out that the pNMR shifts in [AnVIO2(DPA)2]2 – complexes are mostly dipolar, the

temperature dependence of the pNMR shifts might show significant deviations from the

LnIII complexes, or even from the AnIII/AnIV complexes. The temperature dependence

of the AIS in the [AnVIO2(DPA)2]2 – complexes were investigated for H3 and H4 protons

as depicted in Fig. 3.3.8. The regression analysis of the δ
p
K = f (1⁄T ) with T−1 and T−2

terms (see Table 3.19) evidences very large T−1 terms, even largely prevailing for the

PuVI complex, whereas no contact contribution is expected. This confirms that Bleaney’s

method for the separation between contact and dipolar contributions is not valid for the

considered complexes. In order to analyze why, the temperature dependence was analyzed

according to Eq. 2.6.32. For the NpVI complexes, this is completed by the magnetic

susceptibility T dependence. The sum-over-states in Eq. 2.6.32 is reduced to the states

playing the primordial role, two KDs for the NpVI complexes and a NKD for the PuVI

one.

• Fitting of the χ
SQUID
m (T ) and δ

p
K (T ) in the NpVI complexes with a two KDs model

The two lowest KDs are responsible for the paramagnetic behavior of the 5 f 1 actinyl

complexes. In Fig. 3.3.9, a graphical scheme is provided to quickly visualize the various

magnetic interactions associated with them as developed in their ligand field modelization

in subsection 3.2.1.1. The isotropic and anisotropic magnetic susceptibilities from the two

KDs are modeled with the parameters shown in Fig. 3.3.9 as

71



Chapter 3. pNMR shifts in [AnVIO2]2+ complexes

Figure 3.3.9: Scheme showing the various interactions in between two lowest KDs. The
ligand field splitting is ∆, the magnetic interactions of each KD are modeled by their
corresponding g-tensors (g⊥,n,g‖,n) , n = 1,2. The magnetic interactions in between the
KDs are characterized by the axial M‖,12 and planar M⊥,12 components. The orange balls
are the representation of the thermal population in the states.

χm = NAµ0µ
2
B

β

(
eβ∆/2g2

1 + e−β∆/2g2
2

)
4
(
eβ∆/2 + e−β∆/2

) +

(
eβ∆/2− e−β∆/2

)
M2

12

∆
(
eβ∆/2 + e−β∆/2

)
 (3.3.4)

∆ χax = NAµ0µ
2
B

β
∆g2

1eβ∆/2 +∆g2
2e−β∆/2

4
(
e∆/2kT + e−∆/2kT

) +

(
eβ∆/2− e−β∆/2

)
∆M2

12

∆
(
eβ∆/2 + e−β∆/2

)
(3.3.5)

the pNMR shifts can be deduced from the ∆ χax using the geometric information of the

atoms according to Eq. 2.6.33. Details about the development of the model equations are

provided in subsections 2.6.2 and 2.6.3. Here they are again shown to have a quick look.

The χ
SQUID
m T = f (T ) curve for the solid Li2AnVIO2(DPA)2 ·2H2O as shown in Fig.

3.3.6 was fitted using Eq. 3.3.4 in the temperature range 3− 300 K according to four

parameters: ∆ the energy gap between the two KDs, g2
1 and g2

2 the isotropic magnetic

moments of KD1 and KD2, respectively, and M2
12 the isotropic coupling moment between

KD1 and KD2.

The optimized parameters are given in Table 3.20. A TIP term was added to Eq. 3.3.4

which improved the quality of the fitting procedure by taking into account the effect of the

other excited states. This fitting procedure was benchmarked on the SO-RASPT2* curve

of the [NpVIO2(DPA)2]Li2 complex. In this way, one can compare the fitted parameters to

those directly calculated as ab initio energy levels and matrix elements. It appears that the

energy gap ∆ is underestimated by 15% and 23% without and with the TIP, respectively.

All fitted parameters match the ab initio ones within 20 %, ∆ and g2
2 being the less accu-

rate. This confirms that the two-KDs model gathers correctly the physical effects in the
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investigated temperature range. The discrepancies could arise from both the hypothesis

of an axial symmetry, and mostly to the neglect of the interaction with the states out of the

model space. The fitted parameters should be considered as effective ones. Surprisingly,

the fit without TIP provides parameters closer to the ab initio ones. We will therefore

consider that the fits without the TIP contribution provides an energy gap closer to the

“real” one. The fitting of the experimental SQUID χ
SQUID
m T = f (T ) curve without any

TIP contribution leads to a value of ∆ = 206 cm−1 which is smaller than the ab initio

ones. According to this fit, KD2 is more magnetic than KD1 g2
2 > g2

1 (5.4 vs 10.1) which

is in good accordance with the SO-RASSCF values.

Table 3.19: Regression coefficients from δ
p
K = f (1/T ) plots for [NpVIO2(DPA)2]2 – and

[PuVIO2(DPA)2]2 – complexes. The standard errors and the coefficient of determination R2

are determined using Mathematica default options.

equation proton A (ppm.K) B (ppm.K2) C (ppm.K3) E (ppm.K5) 1−R2

[NpVIO2(DPA)2]2 –

δ
p
K = AT−1 +BT−2 H3 -2327±22 (1.65±0.05).105 - - 2.10−5

H4 -1213±10 (1.03±0.03).105 - - 3.10−5

δ
p
K = AT−1 +CT−3 +ET−5 H3 -2221±29 - (5.09±0.4).107 (-9.88±1.3).1011 5.10−6

H4 -1138±14 - (3.09±0.2).107 (-6.00±0.7).1011 1.10−5

[PuVIO2(DPA)2]2 –

δ
p
K = AT−1 +BT−2 H3 -7962±65 (3.7 ±1.7)·104 - - 1.10−5

H4 -4306±38 (1.7±1)·104 - - 2.10−5

δ
p
K = AT−1 +CT−3 H3 -7887±35 - (4.65±2.4).106 - 1.10−5

H4 -4272±20 - (2.0±1.4).106 - 2.10−5

The fit of the AIS curves by Eq. 2.6.41 was not successful as data are only available

on a short temperature window (130 K) and it needs four independent parameters: the

anisotropic magnetic parameters ∆g1
1, ∆g2

2, ∆M2
12 and the energy gap ∆. This leads to

an over-parametrization, taking into account all the details of experimental uncertainties.

The results are unstable according to the considered protons and to the number of con-

sidered points. We tried a polynomial fit, since it allows a smoothing of the curve. Since

the second KD is at the order of room temperature energy, it gets populated at the room

temperature domain, so the T−1 term corresponds to the Curie contribution arising from

the total magnetic moment of the two occupied KDs as shown in the scheme. Since ∆ cor-

responds to the thermal energy at room temperature, many T−n terms of the polynomial

expansion are needed as developed in Eq. 3.3.6. ∆g1
1 and ∆g1

2 are found to be similar in

the SO-RASPT2* calculation, we therefore supposed that ∆g1
1−∆g1

2 was negligible, and

consequently, neglected the T−n terms of even orders. The δ
p
K = f (1/T ) curve was fitted

by a AT−1 +CT−3 +ET−5 function. This allows to determine the values of ∆, ∆M2
12

and ∆g2
1 +∆g2

2. They are given in Table 3.20. As a benchmark, the ∆ χax curve calcu-
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lated with SO-RASPT2* for the [NpVIO2(DPA)2]2 – complex was fitted in the 250–350 K

range, both using Eq. 3.3.5 and its polynomial expansion. These parameters can be com-

pared to those directly from the ab initio calculations. The fitting with the full function

overestimates the value of ∆ by 10% while using the polynomial expansion, it underesti-

mates it by 20%. The magnetic parameters are well estimated by the former and slightly

too large with the latter, the signs being correct in the two cases. The sign of ∆g2
1 +∆g2

2

gives information about the anisotropy of the magnetization: the more positive, the more

axial, the more negative, the more planar. We conclude from this benchmark that the

fitting by a AT−1 +CT−3 +ET−5 function provides parameters in reasonable agreement

with the ab initio ones.

Table 3.20: Model parameters evaluated from ab initio calculations for the
[NpVIO2(DPA)2]Li2 and the [NpVIO2(DPA)2]2 – or deduced by fitting the χm, ∆ χax and
δ

p
K curves. ∆ in cm−1.

∆ g2
1 ∆g2

1 g2
2 ∆g2

2 ∆g2
1−∆g2

2 ∆g2
1 +∆g2

2 M2
12 ∆M2

12
[NpVIO2(DPA)2]Li2

SO-CASSCF ab initio 522 4.0 3.6 15.5 14.9 -11.2 18.5 2.0 0.1
SO-CASPT2 ab initio 396 3.9 3.1 12.1 10.6 -7.5 13.8 2.6 1.2

SO-CASPT2* ab initio 282 6.8 5.1 6.6 5.2 0.0 10.3 3.2 2.7
SO-RASSCF ab initio 250 6.2 5.4 10.3 8.6 -3.1 14.0 3. 0 2.1
SO-RASPT2 ab initio 298 6.7 3.0 5.2 -2.4 5.4 0.6 4. 0 3.8

SO-RASPT2* ab initio 440 12.5 9.8 4.2 1.5 8.3 11.4 2.9 1.1
fit χm

‡ 372 10.0 7.7 2.2
fit χm with TIP‡ 338 10.0 10.0 2.2

[NpVIO2(DPA)2]2 –

SO-CASSCF ab initio 820 3.5 3.2 16.3 15.8 -12.6 19.1 0.6 0.0
SO-CASPT2 ab initio 624 3.0 2.2 13.5 12. 4 -10.3 14.6 0.8

SO-CASPT2* ab initio 454 2.4 0.4 10.6 8.0 -7.7 8.4 1.1 2.1
SO-RASSCF ab initio 455 3.1 1.9 14.4 12.9 -11.0 14.8 0.9 0.8
SO-RASPT2 ab initio 418 2.8 -0.1 10.8 7.6 -7.7 7.5 1.2

SO-RASPT2* ab initio 333 4.9 -1.1 5.2 -1.2 0.1 -2.3 1.5 4.5
fit ∆ χax

# 360 -1.0 -3.0 2.0 -4.0 4.6
fit ∆ χax polynom % 260 -4.7 6.1

Fit of the experimental curves
SQUID fit χmT 206 5.4 10.1 3.1

fit χmT with TIP 113 5.0 7.0 1.8
pNMR shift H3 fit polynom % 306 -6.7 5.7
pNMR shift H4 fit polynom % 306 -8.7 5.4

∗: 5p and 5d orbitals are correlated, ‡: Eq. 3.3.4, T range: 3-300 K, #: Eq. 2.6.41, T range: 220-350 K, %:
Eq. 3.3.6, T range: 220-350 K

The δ
p
K = f (1/T ) curves were fitted according to this procedure for protons H3 and H4

in the [NpVIO2(DPA)2]2 – complex (see Table 3.19). One gets similar parameters for

the two protons with a gap ∆ of 305 cm−1. ∆g2
1 +∆g2

2 is found to be negative and the
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Figure 3.3.10: Percentage of the absolute contribution of the individual term of Eq. δ
p
K =

AT−1+BT−2+ET−5 in the temperature range of 250-350 K. For example, in the legend
CT−3 =

∣∣∣C/T 3 (|A/T |+
∣∣C/T 3

∣∣+ ∣∣E/T 5
∣∣)−1

∣∣∣×100 .

coupling ∆M2
12 important. The SO-RASPT2* with correlated 5d and 5p orbitals is the

only calculation in Table 3.20 that provides a negative value of ∆g2
1 +∆g2

2. This explains

the good agreement between experiment and theory with SO-RASPT2*, temperature limit

of Eq. 2.6.41. The Taylor expansion in terms of x = β∆ = ∆′/T (∆′ = ∆/kB) gives:

δ
p
K =

µ0µ2
B

12πkBT
GK

[
∆g2

1 +∆g2
2 +4∆M2

12
8T

+

(
∆g2

1−∆g2
2
)

∆
′

16T 2 −
∆M2

12∆
′2

24T 3

−
(
∆g2

1−∆g2
2
)

∆
′3

190T 4 +
∆M2

12∆
′4

240T 5 + ...

]
(3.3.6)

for the pNMR shift calculation. δ
p
K is decomposed in T−n contributions where dif-

ferent contributions alternate in sign. Percentage of the absolute contributions are de-

duced. For example, absolute contributions from T−3 term is deduced as
∣∣%T−3

∣∣ =∣∣∣C/T 3 (|A/T |+
∣∣C/T 3

∣∣+ ∣∣E/T 5
∣∣)−1

∣∣∣×100 and are plotted w.r.t. T (K) in Fig. 3.3.10 in

the studied temperature range. The T−1 one is the dominant one, the weight of the other

ones strongly diminishes at 350 K, but plays a key role at 220 K. For example due to

alteration of the sign of the individual terms, actually the T−3 term contributes for 80%

of the total delta value for H4.

• Fitting of the δ
p
K (T ) in the PuVI complex with a ground NKD model

The temperature dependence of the pNMR chemical shifts for protons H3 and H4 in the

[PuVIO2(DPA)2]2 – complex is represented in Fig. 3.3.8. It can be fitted using Eq. 2.6.44,

with two parameters, ∆ the energy splitting and g2
‖ the magnetic moment of the NKD.

The fitting of the SO-RASPT2* curve according to this equation in the room temperature

window leads to values of ∆ and g2
‖ in very good agreement with the ab initio ones (see

Table 3.21). As previously for the NpVI complex, the experimental incertitude renders
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the fitting of the curves by Eq. 2.6.44 unfeasible and we considered the high temperature

Taylor expansion of this equation terms of x = β∆ = ∆′/T , (∆′ = ∆/kB)

δ
p
K =

µ0µ2
B

12πkB
GKg2

‖

(
1

4T
− ∆′

2

48T 3 +
∆′

4

480T 5 + ...

)
(3.3.7)

The T−1 term is the Curie contribution for a doublet and higher order terms are due to the

splitting of the doublet ∆. The fit of the ∆ χax = f (1/T ) SO-RASPT2* curve by a AT−1+

CT−3 function leads to an underestimated value of ∆. The fitting of the experimental

curves by Eq. 3.3.7 up to T−3 leads to comparable value of ∆. This is in favor of a

splitting of the ground doublet in agreement with the SO-RASPT2* results. However, the

T−1 term is by far dominant and the T−3 contributes for only 1% (see Fig. 3.3.11) while

it is this latter term that provides the information about the energy gap; the determination

of ∆ from the δ
p
K = f (1/T ) curve should be taken with care.

Table 3.21: Model parameters for the [PuVIO2(DPA)2]2 – complex evaluated from ab
initio calculations or deduced by fitting the ∆ χax and δ

p
K curves. ∆ in cm−1.

∆ g‖
[PuVIO2(DPA)2]2 –

SO-CASSCF ab initio 1 5.89
SO-CASPT2 ab initio 61 5.70

SO-CASPT2* ab initio 98 5.73
SO-RASSCF ab initio 0.2 5.89
SO-RASPT2 ab initio 8 5.85

SO-RASPT2* ab initio 84 5.84
fit ∆ χax

# 86 5.84
fit polynom % 66 5.79

Fit of the experimental curves
pNMR shift H3 fit polynom % 58 5.3
pNMR shift H4 fit polynom % 52 4.9

∗: 5p and 5d orbitals are correlated, #: Eq. 2.6.44, T range: 220-350 K, %: Eq. 3.3.7, T
range: 220-350 K

3.4 [AnO2]2+ cations chelated with the TEDGA ligand

3.4.1 Crystal structures

In solid state, the [AnVIO2(TEDGA)2](Otf)2 compounds with AnVI = UVI (A), NpVI (B)

and PuVI (C) crystallize in the triclinic space group
(
P1̄
)
. The composition of the cationic

complexes consists in a strictly linear [AnVIO2]2+ moiety with two tridentate TEDGA

76
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Figure 3.3.11: Percentage of the absolute contribution of the individual term of Eq. δ
p
K =

AT−1 +CT−3 in the temperature range of 250-350 K for PuVI complex.

ligands in the equatorial plane. The charge compensation is provided by two OTf– anions

included in the structure. The [UVIO2(TEDGA)2](NO3)2 (D) compound also crystallizes

in the triclinic space group
(
P1̄
)

while the charge compensation is provided by two NO –
3

anions1.

From uranium to plutonium, the An−−O bond distances decrease from 1.771(3) Å to

1.747(2) Å in agreement with the ionic radii contraction along the actinide series, while

the equatorial plane An−O/O′ (O-carbonyl oxygen, O′- etheral oxygen) bond distances

are less actinide dependent (see Table 3.22). For the two [UVIO2(TEDGA)2]2+ com-

plexes, the U−−O and U−O bond distances are similar but a lengthening of 0.023 Å is

observed for the U−O′ bond.

The TEDGA ligands in the equatorial plane are perpendicular to the [AnVIO2]2+ moi-

ety and keep their planar conformation. The ethyl chains of the two ligands in front of

each other point in the opposite direction and minimize the ligand tilt as revealed by

∠O−−An−O and ∠O−−An−O′ angles close to 90°. By replacing OTf– counterions by

NO –
3 , we can note a lengthening of the U−O′ bond distance in uranyl first coordination

sphere characterizing the flexibility of the TEDGA ligand.

Table 3.22: Selected bond distances
(
Å
)

and bond angles (°) of the
[AnVIO2(TEDGA)2](Otf)2 and [UVIO2(TEDGA)2](NO3)2 structures.

Compound An−−O An−O An−O′ ∠O−−An−O ∠O−−An−O′

A 1.771(3) 2.44(1) 2.625(3) 91.2(1) 89.2(1)
B 1.753(1) 2.44(1) 2.619(1) 91.6(1) 89.1(1)
C 1.747(2) 2.43(1) 2.614(2) 91.9(1) 89.0(1)
D 1.769(2) 2.43(1) 2.648(2) 93.4(1) 89.3(1)

1Experimental studies are performed at CEA Marcoule by Claude Berton et al.
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Figure 3.4.1: [NpVIO2(TEDGA)2]2+ complex (left) and TEDGA ligand (right) with the number-
ing of carbon atoms (The numbering of the chemically equivalent hydrogen atoms follows
the carbon atom bonded directly). z axis is shown with the green arrow passing through
the actinyl bonds. Color code: purple- Np, blue- N, red- O, saddle-brown- C, white- H.

3.4.2 Ab initio electronic structures

Like for the DPA complexes, SO-CAS/RAS based calculations are performed on the crys-

tal structures of the paramagnetic [AnVIO2(TEDGA)2]2+ complexes where AnVI = NpVI

and PuVI. Computational details are provided in Appendix A. A balanced description

of electron dynamic correlation is the key step to properly unravel their electronic struc-

tures, especially the lowest energy levels which play the pivotal role in determining the

magnetic properties and are responsible for the observed pNMR shifts. The semi-core 5p

and 5d orbitals in the central [NpVIO2]2+ moiety are needed to be correlated during the

treatment of dynamic correlation as already a significant stabilization of the Φ states are

observed in the case of the DPA complex (see Table 3.7 and Fig. 3.4.2). So from now on

we drop the ’*’ (as we used for the DPA complexes) from the label of the computational

methods such that in the PT2 calculations the 5p and 5d orbitals are correlated. Also we

have seen the effect of ligand field in finely tuning the nature of the SF ground state in the

neptunyl DPA complex.

The ab initio computed energy levels of the [NpVIO2(TEDGA)2]2+ chelates are reported

in Table 3.23 from both the SF and SO calculations. For a quick grasp of the details

and comparison with the [NpVIO2(DPA)2]2 – complex, we plotted the SF energy levels

of the two neptunyl complexes in the same figure (see Fig. 3.4.2 ), along with the free

cation. The presence of the two charge-neutral TEDGA ligands in the equatorial plane

energetically favors the 5 fδ orbitals over the 5 fφ in the SF ground state. Due to the strong

SOC in the actinyl complexes, the nature of the ground SO KD can be completely different

from the SF ground state. The compositions of the two energetically lowest KDs are given
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Figure 3.4.2: Splitting of the lowest SF energy levels from different methods of cal-
culations in the [NpVIO2]2+ cation and in the [NpVIO2(DPA)2]2 – (denoted by DPA) ,
[NpVIO2(TEDGA)2]2+ (denoted by TEDGA) chelates. Φ, ∆ represent the SF states when
the unpaired electron is in the 5 fφ and 5 fδ orbitals, respectively. 5p and 5d orbitals are
correlated in the PT2 calculations.
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in Table 3.24. In SO-CASSCF, % of (Φ,∆) characters of KD1 and KD2 are (15,83) and

(60,39), respectively, while they are completely altered when the energy corrections due

to the dynamic electron correlation are considered both from the variational RAS based

(RASSCF) and the perturbation theory based (CASPT2, RASPT2) calculations. In the

variational SO-RASSCF (Φ,∆) characters of KD1 and KD2 are (60,40) and (18,80),

respectively, while with the perturbation theory based methods, the compositions of the

two KDs are quite the same as the RASSCF ones. The alteration of the two KDs from

CASSCF to the higher methods is a result of the reduced energy gap between the ∆

and Φ states with the dynamic correlation. From Fig. 3.4.2, it can be noticed that the

splitting of the two ∆ states in the TEDGA complex remains quite the same with all the

methods while the splitting of the Φ states is 30− 35% larger with the PT2 calculation

than the corresponding SCF values. The energy gap in between the ∆ and the Φ1 states

also decreases by half. This shows a parallel spectrum as already observed for the DPA

complex with the overall ligand field splitting of the states are lesser than the DPA. It is

not surprising to see in Fig. 3.4.2 that the splitting of equatorial 5 fφ orbitals is larger than

the axial 5 fδ , but interestingly one of the 5 fφ orbital is getting more stabilization when

described at the PT2 level. Bacause the interactions of the two equatorial 5 fφ orbitals with

the ligands are different in a trigonal ligand field environment. Like in the DPA complex,

one of the 5 fφ orbitals undergoes anti-bonding interaction with the ligand-orbitals.

Table 3.23: Energy levels (in cm−1) from the SF and SO calculations for the
[NpVIO2(TEDGA)2]2+ complex.

CASSCF CASPT2 RASSCF RASPT2
SF SO SF SO SF SO SF SO
0 0 0 0 0 0 0 0

368 349 382 418 320 297 344 601
1681 7021 891 7015 1264 7038 589 7168
4006 9589 4024 9579 3575 9267 3687 9465
18826 20468 22267 24648 19448 21371 19828 22420
18900 23613 23830 28074 19602 24273 20921 25484

For the 5 f 2 [PuVIO2(TEDGA)2]2+ chelate, the energy levels are tabulated in Table 3.25.

The compositions of the SF(SO)-RASSCF wave functions are given in Table 3.26 and

the active NOs of the [PuVIO2(TEDGA)2]2+ complex are shown in Fig. 3.4.3. For the

SF wave functions 2S+1Ψ, compositions are given in terms of the most dominant con-

figurations and for the SO {|1〉 , |2〉} in terms of the SF wave functions. The electronic

configurations of the two lowest SF states
{3Ψ1,

3 Ψ2
}

are majorly 5 f ↑
φ

5 f ↑
δ

∏
core
b b↑↓ i.e.

the two unpaired electrons remain in the different sets of orbitals to minimize the elec-

tron repulsion from the other one. In the free plutonyl, both the ground triplet states
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Table 3.24: Compositions of the first two KDs are provided in terms of the SF wave
functions for the [NpVIO2(TEDGA)2]2+ complex. The g-factors are provided both in
the ‖ and ⊥ directions. The energy gaps between the KDs, ∆ (in cm−1) obtained from
different methods are also provided (’-ve’ sign before the SO-CASSCF value indicates an
alteration of the KDs).

Method KD Φ ∆ Π g⊥ g‖ ∆

SO-CASSCF
KD1 15 83 2 1.09 0.55

-359
KD2 60 39 1 1.02 2.92

SO-CASPT2
KD1 64 36 - 0.95 3.18

418
KD2 14 84 2 0.92 1.40

SO-RASSCF
KD1 60 40 - 1.14 2.95

297
KD2 18 80 2 1.33 0.60

SO-RASPT2
KD1 70 30 - 0.81 3.57

601
KD2 9 89 2 0.90 1.61

SO-ZORA/PBE0a 1.22 0.81
mDKS/PBE0b 1.17 1.86

a: in ADF, b: in ReSpect

are degenerate, but in the trigonal ligand environment, it splits due to different π inter-

actions of the two 5 fδ orbitals with the ligand orbitals. The splitting is larger in the

PT2 calculations. The SF-RASSCF state 3Ψ1 has the % contributions of (57,30) from(
5 f ↑(0.66)

δ+ 5 f ↑ (0.66)
φ− ,5 f ↑(0.34)

δ− 5 f ↑(0.34)
φ+

)
configurations and the first excited triplet state 3Ψ2

has (56,31) from
(

5 f ↑(0.64)
δ− 5 f ↑(0.64)

φ− ,5 f ↑(0.36)
δ+ 5 f ↑(0.36)

φ+

)
configurations. In the superscript

and inside (), natural occupation of the orbitals are given. As already mentioned, due to

anti-bonding σ type interaction of the 5 fφ+ orbital with the ligands, the probability of

finding an electron in the more stable 5 fφ− increases for the lowest SF states as noticed

from the large occupation numbers. With the SOC, the two NKD states {|1〉 , |2〉} are al-

most degenerate and show similar compositions in terms of the SF states. Some of the low

lying singlet states around 10000 cm−1 (see Table 3.25) are contributing to the NKD and

they are more stable when described by PT2 based methods. Ab initio calculation shows

that these singlet states have occupations in the energetically higher 5 fπ∗ anti-bonding

orbitals. Contributions to the ground NKD states from the SF triplet states are quite the

same while the contributions differ from the singlet states.

3.4.3 Magnetic g-factors

For the 5 f 1 [NpVIO2(TEDGA)2]2+ complex, the magnetic g-factors
(
g‖,g⊥

)
of the two

lowest KDs are tabulated in Table 3.24 along with their compositions. With SO-CASSCF

as the KD1 has more ∆ character than Φ,
(
g‖,g⊥

)
of KD1 and KD2 are (0.55,1.09) and
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Table 3.25: Energy levels (in cm−1) from the SF and SO calculations for the
[PuVIO2(TEDGA)2]2+ complex.

CASSCF CASPT2 RASSCF RASPT2
SF SO SF SO SF SO SF SO

triplet triplet triplet triplet
0 0 0 0 0 0 0 0
18 1 342 7 19 1 30 8

1963 3551 2413 2935 2296 3756 2403 3627
6307 5681 5489 3775 6423 5794 5275 5359
6544 5811 5571 4173 6629 5924 5410 5475
18959 7998 16506 8130 20030 7906 17739 7780
19120 8031 24913 8153 20346 7931 18142 7808
singlet 12499 singlet 10432 singlet 12423 singlet 11451
9225 12749 6286 10441 9741 12908 7911 12392
9564 12818 7235 11439 10635 12965 9116 12447
9573 13431 7293 11524 10644 13333 9237 12958
11882 14862 7698 13383 12225 14692 9936 14139
12057 14923 7826 13423 12386 14804 9941 14155

Figure 3.4.3: RAS(12,6;2,6;6:2,2), computed active NOs and their occupation numbers
for the ground SF state 3Ψ1 of the [PuVIO2(TEDGA)2]2+ complex. The isovalue is 0.14
e−/bohr3.
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Table 3.26: Percentage contributions of the SF states to the ground NKD {|1〉 , |2〉} of the
[PuVIO2(TEDGA)2]2+ complex from SO-RASSCF calculation. SF states in terms of the
dominant configurations.

SF states Configurations |1〉 |2〉
3Ψ1 30% 5 f ↑

δ−5 f ↑
φ+ ; 57% 5 f ↑

δ+5 f ↑
φ− 46.3% 46.2%

3Ψ2 56% 5 f ↑
δ−5 f ↑

φ−; 31% 5 f ↑
δ+5 f ↑

φ+ 46.2% 46.3%

1Ψ1
35% f ↑↓

δ−; 40% f ↑↓
δ+ 4.9% 0.3%

5% f ↑
φ− f ↓π− ; 4% f ↑

φ+ f ↓π+
1Ψ2

75% f ↑
δ− f ↓

δ+; 6% f ↑
φ− f ↓π+ 0.3% 5.0%

4% f ↑
φ+ f ↓π−

(2.92,1.02), respectively. With better addressing the electron dynamic correlation in the

RAS or PT2 based methods, KD1 is dominant from the SF Φ states which have higher

orbital angular momentum than the ∆ states those are now dominant in the KD2. As a

result, the g‖ value of KD1, g‖,1 highly increases and likely φ5/2 Kramers spinors for the

unpaired electron while g‖,2 is close to 2 from plausible δ3/2 Kramers spinors. In the SO-

RASSCF
(
g‖,g⊥

)
of KD1 and KD2 are (2.95,1.14) and (0.60,1.33), respectively. With

the increment of the Φ behavior in KD1 in the PT2 calculations, g‖,1 increases and is ap-

proaching to the free ion value (4.22 from Table 3.4). For the sake of comparison, with the

DPA/Et−DPA ligands (see Tables 3.9, 3.11 ), the best description with the SO-RASPT2*

calculation yielded (40,60) of (Φ,∆) characters with
(
g‖,g⊥

)
close to (1.4,1.0) for both

KDs. So, the nature of the two lowest KDs is significantly different in the TEDGA com-

plex than in the DPA complex. Consequently, there is a subtle difference in the origins

of magnetic anisotropies in the two neptunyl complexes and it can be confirmed from the

pNMR shifts study.

In the 5 f 2 [PuVIO2(TEDGA)2]2+ chelate, the only non-zero g-factor of the NKD g‖,

obtained from different methods are given in Table 3.27. The values of g‖ obtained from

different methods in the free plutonyl cation and also in the [PuVIO2(DPA)2]2 – complex

are also listed for an overall comparison. In both the plutonyl chelates, the values are close

to the free ion value 6.1, revealing that the central plutonyl moieties are less perturbed by

the ligand fields unlike their 5 f 1 counterparts. The variational SO-CAS(RAS)SCF values

are the same 5.93 slightly higher than the DPA, 5.89. The PT2 methods tend to decrease

the value than the variational methods. For TEDGA complex, the SO-CASPT2 and SO-

RASPT2 NKD g-factors are 5.79 and 5.88, respectively, which again slightly higher than

the DPA complex with the values 5.73 and 5.84, respectively. The equatorial ligand field

tends to slightly decrease the magnitude of g‖ in the complexes from the free plutonyl.
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Table 3.27: The only non-zero g-factor, g‖ of the ground NKD in the [PuVIO2]2+ chelates.

SO-CASSCF SO-CASPT2 SO-RASSCF SO-RASPT2
[PuVIO2]2+ 6.10 6.11 6.09 6.11

[PuVIO2(DPA)2]2 – 5.89 5.73 5.89 5.84
[PuVIO2(TEDGA)2]2+ 5.93 5.79 5.92 5.88

3.4.4 Analysis of 1H and 13C pNMR shifts

1H and 13C NMR chemical shifts of the ligand atoms in the [AnVIO2(TEDGA)2]2+ com-

plexes were recorded. To obtain the pNMR shifts, the [UVIO2(TEDGA)2]2+ complex is

used as a diamagnetic reference. On one hand, the NMR shifts technique is already estab-

lished as a reliable method to obtain the isotropic magnetic susceptibility χm in solution

by Evans method [78]. On the other hand, in most of the paramagnetic metal complexes,

a significant part of the isotopic pNMR shifts originates from the magnetic anisotropy

of the system. So the NMR technique can be used to probe both the isotropic and the

anisotropic magnetic properties [11]. We have already deduced the magnetic susceptibil-

ity tensor in the [AnVIO2(DPA)2]2 – complexes using the data obtained from the NMR

technique only. But this kind of evaluation cannot be performed for every paramagnetic

system as there might be some associated experimental limitations. Specially, the χm ob-

tained using Evans method depends on the concentration of paramagnetic system in the

solution. Because of the stable +3 oxidation state of the Ln cations and the fact that they

are non-radioactive, the task is quite easy for the Ln complexes. But, the actinides are far

more prone to reduction, especially at high oxidation states, and they are also radioactive,

making it difficult to accurately determine their concentrations in the solution.

The experimental pNMR shifts at 263 K are reported in Table 3.29 with the geometric

factors GK of the hydrogen and carbon atoms in the crystal structures. In the case of PuVI

complex, 13C NMR signals are very broad and weak, making it difficult to properly evalu-

ate the pNMR shifts with less magnitude uncertainty and therefore they are discarded. The

ratio of the pNMR shifts between any two nuclei is in close agreement to their geometric

ratio implying a dominant dipolar mechanism for the observed pNMR shifts. When the

contact terms are negligible, the isotropic pNMR shifts originate from the anisotropy of

the electronic magnetic moments. In this case, according to Eq. 2.6.33, the slope of the

δ
p
K = f (GK) plot is the anisotropic magnetic susceptibility ∆ χax. The isotropic molar

magnetic susceptibility χm is deduced for the NpVI complex from the 1H NMR shifts

of t-BuOH following the Evans methods. The isotropic and anisotropic molar magnetic

susceptibilities of the [AnVIO2(TEDGA)2]2+ complexes are reported in Table 3.28 with

the ab initio values. ∆ χax obtained from the pNMR shifts is highly positive indicating a
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prolate magnetization of the paramagnetic center.

For the NpVI, the susceptibility components calculated from the ground KD (denoted

by KD1) and from the two lowest KDs (denoted by KD1&2) are given in Table 3.28.

For the PuVI, the values obtained from the ground NKD (denoted by NKD) states are

also provided. The so-called Curie values i.e. those are obtained from the thermally

populated energy levels, can be labeled to the values obtained from the KD1 of the NpVI

and from the NKD of the PuVI complexes. In this case, each component of the molar

magnetic susceptibility is calculated from the magnetic g-factors according to Eq. 3.3.3.

Note that, the ab initio calculation suggests that KD2 is at the order of room temperature

energy which means it is slightly populated and will contribute to the 1/T behavior of

the pNMR shifts as deduce in Eq. 3.3.6. In the PuVI complex, the ground NKD has

only one non-zero magnetic g-factor and the ligand field splitting of the two NKD states

is very small compared to thermal energy, so both the isotopic and anisotropic Curie

magnetic susceptibilities are only linked to the non-zero g-factor. From Table 3.28, it can

be noticed that the magnetic susceptibilities calculated from all the states are roughly the

same as those obtained from the two KDs and from the ground NKD for the NpVI and

PuVI complexes, respectively. The actinyls chelated with the DPA ligands showed similar

behavior. So it can be said that the two lowest KDs and the ground NKD dictate all

the physics of the 5 f 1 and 5 f 2 actinyl complexes, respectively. The spin-only magnetic

susceptibilities (see Table 3.28, denoted by superscript ’S’) are negative while the orbital

contributions are largely positive as per Hund’s rules. As the orbital contributions of the

magnetic electrons are largely accountable for their paramagnetic behavior, it is necessary

to correctly address their electronic structure from the ab initio calculations to reproduce

the experimental data.

From Table 3.28, it is noticed that both the SO-CASPT2 and the SO-RASSCF ∆ χax are in

close agreement to the values obtained from the pNMR shifts for the [NpVIO2(TEDGA)2]2+

complex. The perturbative SO-RASPT2 calculation quite overestimates the experimental

value. For the isotropic part, the discrepancy in between the values of χm obtained from

the NMR shifts using Evans method and the ab initio calculations are much larger. In

the case of [PuVIO2(TEDGA)2]2+ complex, all the ab initio ∆ χax values are very close

in magnitude and overestimate by 50% from the experimental value. The effects of the

electron dynamic correlation on the magnetic properties of the 5 f 2 complexes are not as

far as important as the 5 f 1 counterpart.

The restricted SO-DFT calculation in ADF on the 5 f 1 [NpVIO2(TEDGA)2]2+ complex

shows an oblate like ground-state-magnetization (g⊥,1/χ⊥,1 > g‖,1/χ⊥,1), same as the

SO-CASSCF result for the KD1 and completely fails to recover the nature of the ground

KD. When dynamic correlation is introduced to the CAS based results, it completely

changes the nature of the KD1 and so its magnetization i.e. going from an oblate to a
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Table 3.28: Magnetic susceptibilities χm and axial anisotropies ∆ χax (in 10−8 m3mol−1)
of the [AnVIO2(TEDGA)2]2+ complexes at 263 K.

States χ⊥ χ‖ χm ∆χax χS
⊥ χS

‖ χS
m ∆χS

ax

[NpVIO2(TEDGA)2]2+

Exp 4.02a 4.1±0.1b

SO-CASSCF KD1 0.54 0.13 0.27 -0.41 -0.09 -0.31 -0.16 -0.23
KD1&2 0.67 2.97 1.44 2.30 -0.26 -0.76 -0.42 -0.50

All 0.81 2.99 1.54 2.18 -0.22 -0.75 -0.40 -0.53
SO-CASPT2 KD1 0.41 4.53 1.78 4.12 -0.09 -0.54 -0.24 -0.45

KD1&2 0.70 5.52 2.30 4.82 -0.22 -0.86 -0.43 -0.64
All 0.75 5.59 2.36 4.84 -0.20 -0.84 -0.41 -0.65

SO-RASSCF KD1 0.59 3.91 1.70 3.32 -0.10 -0.43 -0.21 -0.33
KD1&2 0.87 5.51 2.41 4.63 -0.28 -0.87 -0.47 -0.60

All 0.94 5.54 2.48 4.60 -0.26 -0.85 -0.45 -0.60
SO-RASPT2 KD1 0.31 5.72 2.01 5.41 -0.07 -0.76 -0.30 -0.69

KD1&2 0.70 6.14 2.52 5.44 -0.19 -0.91 -0.43 -0.72
All 0.74 6.22 2.57 5.48 -0.12 -0.89 -0.37 -0.78

[PuVIO2(TEDGA)2]2+

Exp 10.4b

SO-CASSCF NKD - 15.71 5.24 15.71
All 0.11 15.73 5.32 15.62

SO-CASPT2 NKD - 15.02 5.01 15.02 - -4.77 -1.59 -4.77
All 0.17 15.00 5.12 14.83 - -4.76 -1.59 -4.76

SO-RASSCF NKD - 15.72 5.24 15.72
All 0.17 15.70 5.35 15.53 - -4.92 -1.64 -4.92

SO-RASPT2 NKD - 15.51 5.17 15.51 - -4.93 -1.64 -4.93
All 0.18 15.45 5.27 15.30 - -4.92 -1.64 -4.92

a: deduced from chemical shifts according to Evans method, b: deduced from the
δ

p
K = f (GK) plots
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Table 3.29: Experimental and calculated pNMR shifts (in ppm) in the
[NpVIO2(TEDGA)2]2+ complexes at 263 K and 9.4 T. Geometric parameters GK
(in 1027m−3) are also provided for the atoms.

Method C1 C2 C3 C4 C5 C6 H2 H3 H4 H5 H6
[NpVIO2(TEDGA)2]2+

GK -25.67 -20.86 -7.64 -5.12 -4.76 -3.08 –11.39 -6.95 -4.17 -4.10 -2.53
Exp δ p -46.8 -37.5 -15.5 -8.4 -7.0 -4.9 -20.3 -12.8 -6.5 -8.2 -4.7

SO-CASSCF -24.6 -20.0 -7.3 -4.9 -4.6 -3.0 -10.9 -6.7 -4.0 -3.9 -2.4
SO-CASPT2 -54.7 -44.5 -16.3 -11.0 -10.2 -6.6 -24.2 -14.8 -8.9 -8.7 -5.4
SO-RASSCF -52.0 -42.3 -15.5 -10.4 -9.7 -6.2 -23.1 -14.1 -8.4 -8.3 -5.1
SO-RASPT2 -62.0 -50.3 -18.4 -12.3 -11.5 -7.4 -27.5 -16.8 -10.1 -9.9 -6.1

[PuVIO2(TEDGA)2]2+

GK -25.70 -20.89 -7.64 -5.22 -4.71 -3.07 -11.41 -6.95 -4.13 -4.07 -2.51
Exp δ p - - - - - - -53.1 -39.5 -19.7 -23.0 -13.1

SO-CASSCF -176.8 -143.7 -52.6 -35.9 -32.4 -21.1 -78.4 -47.8 -28.4 -27.9 -17.3
SO-CASPT2 -169.9 -138.1 -50.5 -34.5 -31.1 -20.3 -74.5 -45.6 -27.1 -26.7 -16.5
SO-RASSCF -175.8 -142.8 -52.3 -35.7 -32.2 -21.0 -78.3 -47.7 -28.3 -27.9 -17.3
SO-RASPT2 -173.2 -140.7 -51.5 -35.2 -31.7 -20.7 -76.9 -46.9 -27.9 -27.4 -16.6

prolate environment χ⊥,1 < χ‖,1. So it is not only that the interaction with the excited

states changes the nature of magnetization, but the nature of the ground KD itself and

its magnetization completely alters when they are better described including dynamic

correlation indicating the importance of its description in the first principles calculaton.

The four-component mDKS calculation in ReSpect package was also benchmarked on

this system but the magnetic g-values (see Table 3.24) are underestimated largely from the

SO-RASSCF or the SO-CAS(RAS)PT2 results indicating a significantly deviated solution

for the ground state.

3.4.5 Temperature dependence of the pNMR shifts

In the [AnVIO2(DPA)2]2 – complexes, the 1H pNMR shifts are mostly due to the dipo-

lar mechanism and from their temperature dependencies, we had been able to extract

the magnetic informations about the lowest energy states those play the most influential

role in determining their paramagnetic behavior. To obtain similar information about the

[AnVIO2(TEDGA)2]2+ complexes, temperature dependent 1H and 13C pNMR shifts are

recorded in a temperature window of 220− 350 K. As already mentioned, the experi-

mental error in properly assigning the 13C pNMR shifts in the PuVI complex are rather

large due to the broad and weak signals, this will increase the uncertainties in the es-

timated parameters and therefore we did not consider the temperature dependent 13C

NMR spectra of the PuVI complex. Temperature dependent 1H and 13C pNMR shifts
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(a) (b)

Figure 3.4.4: Temperature dependent 1H (a) and 13C (b) pNMR shifts in the
[NpVIO2(TEDGA)2]2+ complex.

Figure 3.4.5: Temperature dependent 1H pNMR shifts in the [PuVIO2(TEDGA)2]2+ com-
plex.

in the [NpVIO2(TEDGA)2]2+ are shown in Fig. 3.4.4 and the 1H pNMR shifts in the

[PuVIO2(TEDGA)2]2+ complex are shown in Fig. 3.4.5

In the case of NpVI complex, temperature dependent χEvans
m are deduced from the 1H

NMR shifts of the t-BuOH in CD3CN solution according to Evans formula (Eq. 3.3.1)

and the anisotropic magnetic susceptibilities ∆ χax are from the pNMR shifts according to

Eq. 2.6.33. Two techniques are used to evaluate the concentration of the neptunyl com-

plex in the solution; alpha-counting analysis and UV-visible spectroscopy. Both methods

provide roughly the same values. ∆ χax (T ) obtained from the plots of δ
p
K = f (GK) for the

temperature dependent 1H pNMR shifts are slightly lower than those deduced from the
13C pNMR shifts, 4.04 vs 4.20×10−8 m3mol−1 at 263 K (see Fig. 3.4.6). This small dis-

crepancy arises due to the large range of GK for the C atoms, whereas it is small in the case

of H atoms (see Table 3.29). ∆ χax (T ) obtained from the plots of the 1H and 13C pNMR

shifts jointly with their geometric factors are in between those arising from the plots of 1H

and 13C pNMR shifts, separately; at 263 K, it is 4.16×10−8 m3mol−1. ∆ χax (T ) obtained

from the different plots (see Fig. 3.4.6) are slightly different, but these differences affect

the parameters of the two KDs model equation (Eq. 3.3.5). In the case of the PuVI com-
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(a) 1H pNMR shifts. (b) 13C pNMR shifts.

(c) 1H and 13C pNMR shifts.

Figure 3.4.6: Plots of δ
p
K (in ppm) at 263 K vs 106

12πNA
GK (in m−3mol). The slope provides

∆ χax (in m3mol−1) at 263 K.

plex, ∆ χax (T ) are deduced from the temperature dependent 1H pNMR shifts. Due to the

large uncertainty in the measured concentration, the isotropic χEvans
m (T ) are not reported

for the PuVI complex. ∆ χax (T ) obtained from the experimental pNMR shifts and the ab

initio SO-CASPT2 calculations are plotted in Fig. 3.4.7 for the actinyl chelates. In the

insets of Fig. 3.4.7, isotropic χm (T ) obtained from the Evans method and SO-CASPT2

calculations are plotted. The anisotropic ∆ χax obtained from the pNMR shifts is larger

for the PuVI complex than the NpVI complex and in both complexes ∆ χax (T ) through the

studied temperature window are positive indicates a prolate like magnetization around the

actinyl centers.

• Fitting of the χEvans
m (T ) and ∆ χax (T ) from the pNMR shifts in the NpVI complex

with a two KDs model

In the NpVI complex, the two low lying KDs are largely responsible for the anisotropic

behavior, the axial anisotropy of the g tensors of the two KDs are along the actinyl bonds.

With the increase of T , KD2 is getting populated resulting in a decrease of thermal pop-

ulation of the more magnetic KD1 and as a result, a decrease of both the isotropic and
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(a) [NpVIO2(TEDGA)2]2+ (b) [PuVIO2(TEDGA)2]2+

Figure 3.4.7: Temperature dependent isotropic and anisotropic molar magnetic suscepti-
bilities of the [AnVIO2(TEDGA)2]2+ complexes. Experimental isotropic χm (T ) (in 10−8

m3mol−1) are those deduced using Evans method and the anisotropic ∆ χax (T ) (in 10−8

m3mol−1) are from the 1H and 13C pNMR shifts.

the anisotropic magnetic susceptibilities can be observed in Fig. 3.4.7. Ab initio calcu-

lations overestimate the anisotropic behavior whereas largely underestimate the isotropic

part deduced from the Evans method. To obtain the information about the two KDs, we

fit the temperature dependent χm and ∆ χax according to Eq. 3.3.4 and Eq. 3.3.5, respec-

tively. From the χm (T ), one estimates the isotropic magnetic interactions of the two KDs

in terms of g2
1, g2

2 and M2
12; and from the ∆χax (T ) the anisotropic behavior in terms of

∆g2
1, ∆g2

2 and ∆M2
12. We performed a least mean-square-deviation (MSD) fitting of the

∆ χax (T ) obtained from the pNMR shifts with Eq. 3.3.5 and the quality of fitting can be

discussed in term of the MSD value (Σ) defined as

Σ =
1
n ∑

n

[
∆ χ

2KD
ax (T )−∆ χ

pNMR
ax (T )

]2
(3.4.1)

where ∆ χ2KD
ax (T ) are the anisotropic magnetic susceptibilities obtained from the two KDs

according to Eq. 3.3.5. n is the number of studied points. In a similar way, the isotropic

χm (T ) obtained from Evans method is fitted with Eq. 3.3.4. Like for the DPA complexes,

to be sure about the reliability of the magnitude of the parameters obtained from the fit-

tings, benchmark studies are performed on the χm (T ) and ∆ χax (T ) obtained from the ab

initio SO-CASSCF and SO-CASPT2 calculations with the model equations. The differ-

ence between the ab initio SO-CASSCF and SO-CASPT2 results is the alteration of the

KD1 and KD2 as can be noticed from their compositions (see Table 3.24) and also from

the magnetic properties (see Table 3.30).

It appears that the magnetic susceptibility obtained for the [NpVIO2(TEDGA)2]2+ com-

plex from Evans method is way beyond the free cation limit. At 298 K, ab initio magnetic

susceptibility for the free [NpVIO2]2+ cation is 2.47×10−8 m3mol−1; for the [NpVIO2(DPA)2]2 –

complex, both the values obtained from Evans vs SO-RASPT2 methods are slightly re-

duced from the free cation, 1.82 vs 1.70×10−8 m3mol−1(see Table 3.16); but they dis-

90



3.4. [AnO2]2+ cations chelated with the TEDGA ligand

agree for [NpVIO2(TEDGA)2]2+ complex and at 298K, Evans vs SO-CASPT2 meth-

ods results are 3.3 vs 2.10×10−8 m3mol−1. For the two neptunyl complexes, DPA and

TEDGA, the ab initio χm are similar and reduced from the free ion value, they slightly

differ in magnitude as likely the results of two different electronic structures. χm obtained

from Evans method for the [NpVIO2(TEDGA)2]2+ is too large to be obtained from the

two lowest KDs and indicating a huge TIP from excited states which is suspicious. Con-

sequently, the values of the parameters obtained from the fitting of the χEvans
m (T ) using

the two-KDs equation (Eq. 3.3.4) are largely deviating from the ab initio values and be-

come unacceptable in some cases (see Table 3.30). Another fitting where the magnetic

parameters g2
1, g2

2 and M2
12 are taken from SO-CASPT2 calculations, estimates ∆ com-

parable to the ab initio results, but the quality of this fitting is very poor (large value of

Σ ) indicating a huge amount of TIP from the excited states. Whereas benchmark studies

on SO-CASSCF and SO-CASPT2, χm (T ) data show that the reversal of the two KDs is

correctly found out using the two KDs model. As one can notice (see Table 3.30), g2
1 < g2

2

obtained from the fitting of CASSCF values and that changes for CASPT2 i.e. g2
1 > g2

2.

For the anisotropic magnetic properties of the two KDs, fitting of the anisotropic ∆ χax (T )

obtained from SO-CASSCF and SO-CASPT2 methods with Eq. 3.3.5 provides similar

values to those obtained from ab initio. Fitting of ∆ χax (T ) obtained from the pNMR

shifts with the polynomial form of the two KDs model equation (Eq. 3.3.5) was unsuc-

cessful due to the requirement of the proper sign of the individual terms and in this case

leads to imaginary values for the ligand field splitting ∆. Fitting of the ∆ χax (T ) obtained

from the pNMR shifts using Eq. 3.3.5 provides ∆g2
1 close to the SO-CASPT2 value. But

the anisotropic magnetic property of KD2, ∆g2
2 is highly overestimated. The values of the

other parameters i.e. the anisotropic Van Vleck coupling parameter ∆M2
12 and the ligand

field splitting of the two KDs ∆, are not stable, but in the order of the ab initio values.

Surprisingly, fitting of the ∆ χax (T ) obtained from 1H pNMR shifts only with Eq. 3.3.5

completely fails to provide a good estimation of the anisotropic anisotropic properties for

any KD, which might be due to over-parametrization. The stability of the magnitude of

∆g2
1 in all the fittings can be understood from the two-KDs model with replacing x = β∆

in Eq. 3.3.5 and writing in terms of the hyperbolic form as

∆ χax = NAµ0µ
2
B

β
∆g2

1eβ∆/2 +∆g2
2e−β∆/2

4
(
eβ∆/2 + e−β∆/2

) +

(
eβ∆/2− e−β∆/2

)
∆M2

12

∆
(
eβ∆/2 + e−β∆/2

)
(3.4.2)

= κ

[
x
∆

∆g2
1

cosh [x/2]+ sinh [x/2]
4cosh [x/2]

+
x
∆

∆g2
2

cosh [x/2]− sinh [x/2]
4cosh [x/2]

(3.4.3)

+
∆M2

12
∆

tanh [x/2]
]

In Eq. 3.4.3, κ = NAµ0µ2
B is a prefactor and the unit of the terms inside [ ] is in J−1. The
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first and second terms are the Boltzmann contributions (can be also referred as the Curie

contributions as used in Ref. [9]) from KD1 and KD2, respectively, the third term is the

Van Vleck contribution term. Considering the range of ∆ from 300-600 cm−1 and T from

220-350K, the range of x covers from 1.2−4. In Fig. 3.4.8, the plots ∆ χax
(
in κJ−1) vs

x are shown where ∆, ∆g2
1, ∆g2

2 and ∆M2
12 are taken from different ab initio calculations

since they represent wide range of considerations. For the sake of comparison, the plot

∆ χax
(
in κJ−1) vs x for the [NpVIO2(DPA)2]2 – complex is shown with the SO-RASPT2*

parameters as the method was successful to reproduce the ∆ χax (T ) obtained from pNMR

shifts. At low temperature regime (higher values of x), the contribution of KD1 is domi-

nant and controls the overall magnetic anisotropy, but at high temperature regime specially

when the KD2 is increasingly populated, peeling of the ∆ χax (T ) to obtain the individual

contributions is much more tedious. As this was the case for the [NpVIO2(DPA)2]2 – com-

plex where ∆M2
12 highly controls the magnetic anisotropy at the high temperature domain.

When the Boltzmann contribution from KD2 and the Van Vleck term become negligible,

very small changes in their slope may result non reliable parameters. But the impact of

the parameters on the overall slope is negligible and hence these last two terms can be

ignored. In this case, in the low temperature regime, KD1 mostly dictates the magnetic

anisotropy and the anisotropic magnetic susceptibility is reduced to Curie contribution

from KD1 and a very small contributions from the excited states is taken as parameter

T IP in Eq. 3.4.4,

∆ χax = NAµ0µ
2
B

∆g2
1

4kBT
+T IP (3.4.4)

∆g2
1 obtained using Eq. 3.4.4 is tabulated in Table 3.30. Interestingly, fitting of the

∆ χax (T ) obtained from the pNMR shifts confirms that the ground state magnetic anisotropy

is highly axial, ∆g2
1� 0 as obtained from the higher ab initio methods of calculations. Fit-

ting of ∆ χax (T ) obtained from 1H pNMR shifts with the one-KD model (Eq. 3.4.4) now

provides a good estimation of ∆g2
1 due to reduced number of parameters; it is now 9-10,

in quite good agreement with the SO-CASPT2 value indicating a SF Φ dominated ground

KD and likely φ5/2 Kramers spinors for the unpaired electron. It shows that the ground

KD is solely responsible for the magnetic anisotropy in the neptunyl TEDGA complex

whereas it is the anisotropic Van Vleck contribution for the DPA complex, although the

energy gap ∆ between the two KDs is of the same order magnitude. This is due to mag-

netic parameters KD1 is highly anisotropic with TEDGA and the coupling with KD2 is

rather small, while with DPA, ∆M2
12 is larger and KD1 not as anisotropic. Both complexes

are close to the trigonal symmetry, but the overall ligand field splittings of the ∆ and Φ

states are different, and it is the gap between the ∆ and Φ states which finely tunes the

nature of ground states and the magnetic anisotropies in the neptunyl complexes.
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3.4. [AnO2]2+ cations chelated with the TEDGA ligand

Figure 3.4.8: ∆ χax
(
in κJ−1) of Eq. 3.4.3 vs x (x = β∆) are plotted with the parameters

obtained from the ab initio calculations for the neptunyl TEDGA and DPA complexes.
Inside the legends, KD1 represents Curie contribution from the ground KD (first term
of Eq. 3.4.3), KD2, Curie contribution from the second KD (second term), Van Vleck,
contribution from the magnetic interaction of the two KDs (third term), two-KDs, overall
∆ χax

(
in κJ−1) of the two KDs as described in Eq. 3.4.3.

93



Chapter 3. pNMR shifts in [AnVIO2]2+ complexes

Table 3.30: Model parameters evaluated from ab initio calculations for the
[NpVIO2(TEDGA)2]2+ complex or deduced by fitting of the temperature dependent χm
and ∆ χax curves. ∆ and Σ are in cm−1 and 10−16 m6mol−2, respectively.

∆ g2
1 g2

2 M2
12 ∆g2

1 ∆g2
2 ∆M2

12 Σ

SO-CASSCF 349 0.9 3.5 1.1 -0.9 7.5 2.2
SO-CASPT2 418 4.0 1.2 0.9 9.2 1.1 1.4
SO-RASSCF 297 3.8 1.3 1.0 7.4 -1.4 2.0
SO-RASPT2 601 4.7 1.3 0.8 12.1 1.9 0.1

CASSCF χm (T )‡ 263 1.6 8.1 0.3 8.35×10−9

CASPT2 χm (T )‡ 396 4.0 2.2 1.0 6.59×10−8

Evans χm (T )‡ 41 52.3 -18.2 -6.04 3.34×10−3

Evans χm (T )‡ 359 4.0∗ 1.2∗ 0.9∗ 2.72
CASSCF ∆ χax (T )# 340 0.5 8.4 2.1 2.29×10−6

CASPT2 ∆ χax (T )# 429 9.2 -0.3 1.7 2.46×10−9

1H & 13C pNMR ∆ χax (T )# 585 8.8 9.3 0.4 2.43×10−5

1H & 13C pNMR ∆ χax (T )@ 8.9
only 1H pNMR ∆ χax (T )# 99 -36.4 -66.9 28.9 5.60×10−5

only1H pNMR ∆ χax (T )@ 10.1
only 13C pNMR ∆ χax (T )# 264 9.0 11.4 -0.04 2.3×10−5

only 13C pNMR ∆ χax (T )@ 8.8

‡: Eq. 3.3.4(2KD model), #: Eq. 3.3.5, T range: 220-350 K,
@: Eq. 3.4.4(1 KD model), T range: 220-280 K ,∗: SO-CASPT2 values
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• Fitting of the ∆ χax (T ) in the PuVI complex with a ground NKD model

Temperature dependent anisotropic magnetic susceptibility ∆ χax obtained from the 1H

pNMR shifts and SO-CASPT2 calculations are plotted in Fig. 3.4.7. In the case of 5 f 2

plutonyl complexes, the anisotropic magnetic susceptibility is modeled with the energet-

ically well isolated ground NKD and the excited state contributions are very small. For

a NKD, not necessarily the two states are degenerate, one only considers the Van Vleck

contribution in Eq. 2.2.3 where the magnetic interaction of a NKD (M2
12) is modeled with

a non-zero g-factor g‖ and the anisotropic molar magnetic susceptibility can be calculated

in terms of g‖ as

∆ χax = NAµ0µ
2
B

eβ∆/2− e−β∆/2

2∆
(
eβ∆/2− e−β∆/2

)g2
‖ (3.4.5)

in Eq. 3.4.5, ∆ is a small splitting between the two states. Fitting of the ∆ χax (T ) obtained

from the pNMR shifts with Eq. 3.4.5 and its polynomial form
(
AT−1 +CT−3 +ET−5)

helps to estimate both the g‖ and ∆ of the NKD and are tabulated in Table 3.31. Bench-

mark studies on the SO-CASPT2 ∆ χax (T ) successfully reproduce the ab initio results.

g‖ of the NKD obtained from the pNMR shifts are smaller than the ab initio results and

hence points out the reason of the large disagreement between the experimental and ab

initio calculated pNMR shifts in Table 3.29. Overestimation of the NKD g-factors from

the ab initio calculations are also observed in the case of [PuVIO2(DPA)2]2 – complex.

From Table 3.28, it can be noticed that the interaction with the excited states introduces

a small magnetization in the plane, which is coming from the orbital contributions of the

excited states as the spin-only component χS
⊥ is not observed. Hence the interaction with

the excited states does not affect the magnetization along the axial direction, but leads to

a planar component. Two reasons can be argued for the large disagreement of ab initio vs

experimental pNMR shifts: on one hand, this is due to the overestimation of the orbital

contribution of the NKD states and hence leads to a large g‖ and on the other hand, wrong

estimation of χ⊥ which only comes from the interaction with the excited state. Fitting

of the ∆ χax (T ) from the pNMR shifts and also the ab initio calculations suggests that

the two NKD states are almost degenerate, and when ∆→ 0, ∆ χax of Eq. 3.4.5 reduced

to its Curie term i.e. ∆ χax = NAµ0µ2
B

g2
‖

4kBT . Interaction with the excited states introduce

a temperature independent planar component χ⊥ which effectively includes the orbital

contribution from the excited states and reduces the Curie ∆ χax,

∆ χax = NAµ0µ
2
B

g2
‖

4kBT
−χ⊥ (3.4.6)

According to Eq. 3.4.6, the plot of ∆ χax = f (1/T ) helps to estimate g‖ and χ⊥ (in

10−8 m3mol−1) and are given in Table 3.31. g‖ and χ⊥ obtained from the pNMR shifts

indicate that the orbital contributions in [PuVIO2]2+ complexes are overestimated from the

first principles calculations of the pNMR shifts. Hence the large disagreement with the
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experimental 1H pNMR shifts is not also due to the ignorance of the presence of contact

contributions.

Table 3.31: Model parameters evaluated from ab initio calculations for the
[PuVIO2(TEDGA)2]2+ complex or deduced by fitting the ∆ χax curve. ∆ and χ⊥ are in
cm−1 and 10−8 m3mol−1, respectively.

∆ g‖ χ⊥
SO-CASSCF 1 5.9 0.11
SO-CASPT2 7 5.8 0.17
SO-RASSCF 1 5.9 0.17
SO-RASPT2 8 5.9 0.17

CASPT2 ∆ χax (T )# 0 5.9
CASPT2 ∆ χax (T )% 0.01 5.9
CASPT2 ∆ χax (T )@ - 5.9 0.12
1H pNMR ∆ χax (T )# 0 4.8
1H pNMR ∆ χax (T )

% 0.01 4.7
1H pNMR ∆ χax (T )@ - 5.0 0.08

#: Eq. 3.4.5, T range: 220-350 K, %: Polynomial form, T range: 220-350 K, @: Using T−1 Curie term, T
range: 220-350 K

3.5 Conclusions

In this chapter, pNMR shifts in axially symmetric 5 f 1 neptunyl and 5 f 2 plutonyl com-

plexes are analyzed where the AIS are measured on the ligands of [AnVIO2(DPA/Et−DPA)2]2 –

and [AnVIO2(TEDGA)2]2+ complexes, AnVI = NpVI and PuVI. Magnetic susceptibil-

ity measured by NMR using the Evans method are also analyzed. In addition, solid

Li2NpVIO2(DPA)2 ·2H2O compound and its SQUID magnetic susceptibility curves are

also explored to find out the role of Li+ counterions on the electronic and magnetic prop-

erties.

From the structures determined by X-rays diffraction experiments, the analysis of the

pNMR chemical shifts at the different positions of the ligands showed that the Fermi

contact contribution to the chemical shifts is negligible. This is confirmed by the van-

ishing spin populations on all hydrogen atoms as determined by unrestricted DFT cal-

culations on [AnVIO2(Et−DPA)2]2 – complexes and also quite the similar observations

for the TEDGA complexes. Even the carbon or hydrogen atoms close from the param-

agnetic center showed a negligible contact terms. The isotropic pNMR shifts in these

complexes are arising from their high anisotropic magnetic moments. Accordingly, they

were discussed in term of a pure dipolar interaction and the experimental ∆ χax values

are determined using X-rays geometrical factors. Combined with Evans method which
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provides the isotropic average susceptibility χm, the two components of the susceptibility

tensor are calculated. Wave function based calculations are performed in order to compute

the electronic structure of the paramagnetic center. The NpVI complexes have two low ly-

ing KDs whose composition depend subtly on the level of calculation and the correlation

of the 5d and 5p orbitals plays an important role. This dramatically impacts the magnetic

properties, between other the axiality of the magnetization for the neptunyl DPA com-

plex. In the solid Li2NpVIO2(DPA)2 ·2H2O compound, the Li+ counterions are directly

coordinated to the oxygen atoms of the coordination sphere and influence the magnetic

properties of the paramagnetic center. In the presence of the Li+ counterions, the ligand

field is lower and the magnetic susceptibility larger, in agreement with the increase of the

magnetic susceptibility between the SQUID and the NMR measurements in solution with

Evans method. The PuVI complexes have a well isolated ground NKD, with one electron

in a 5 fδ and the other in a 5 fφ orbital. Magnetic properties depend barely on the level of

calculation and on the nature of the equatorial ligand except that a small splitting of the

doublet may appear.

The AIS in the [AnVIO2(DPA/Et−DPA)2]2 – and [AnVIO2(TEDGA)2]2+ complexes are

evaluated using the ∆ χax values obtained from ab initio calculations. For the NpVI com-

plexes, the proper description of their electronic structures is of great importance as it

not only changes the amplitude but also the sign of the calculated pNMR shifts. The

two low lying KDs play a key role. In the case of [NpVIO2(DPA/Et−DPA)2]2 – , mag-

netic interaction in between two KDs leads to a predominant Van Vleck contribution and

mostly responsible for the pNMR shifts and SO-RASPT2* calculation are in good agree-

ment with the experimental ones, whereas in the case of [NpVIO2(TEDGA)2]2+, it is the

ground KD which is mostly responsibly for the anisotropic magnetic properties and SO-

CASPT2/SO-RASSCF values are reasonably good. On the contrary, the 2-component

SO-ZORA method lacks both the spin polarization and the Van Vleck contribution and

completely fails to describe the nature of the ground KD. For the PuVI complexes, the

calculations overestimate the ∆ χax values due to the overestimation of the orbital contri-

butions and consequently the pseudocontact chemical shifts.

The temperature dependences of the isotropic susceptibility and the pNMR shifts are an-

alyzed in terms of the general Van Vleck and Soncini equations, respectively. Those

equations are very similar in their forms, the former probing the isotropic magnetic pa-

rameters while the later probes the anisotropic ones. Those two equations are expressed

in terms of the block matrices of the magnetic moment operator. This avoids the use of

spin Hamiltonians and allows for the modeling of molecular systems where the definition

of a spin Hamiltonian is not straightforward, in particular for actinide complexes. The

reduction of Soncini equation to a restricted model space allows the fitting of the temper-

ature dependence by few parameters. The regression analysis of the δ
p
K = f (1/T ) curves
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evidences the predominance of the T−1 term in both the complexes, in contradiction with

Bleaney’s model which assigns this term to the Fermi contact contribution. Bleaney’s

model applies in lanthanide complexes because all the components of the ground J man-

ifold of the free ion are statistically populated, giving rise to an isotropic magnetization.

In actinyl cations, only some of those components are populated, the room temperature

magnetization is anisotropic and the dipolar contribution to T−1 term is proportional to

the anisotropic magnetic moment of the paramagnetic center at room temperature. Further

T−n terms depend on the energy gap in the case of a two level system.

The experimental δ
p
K = f (1/T ) and χm = f (1/T ) are fitted according to the general Van

Vleck and Soncini equations, respectively, within an axial symmetry and a reduced model

space, either in its full form for the susceptibility or in its polynomial expansion for the

chemical shifts. And this allows the determination of the energy gap and the magnetic

moment, either isotropic from the susceptibility, or anisotropic from the chemical shifts.

The fitted parameters are in good agreement with the ab initio results. In the NpVI com-

plexes, the energy gap between the two KDs is about 300 cm−1 for the DPA complex

and around 300-500 cm−1 for the TEDGA complex. The Curie magnetization of the two

KDs space is oblate in the [NpVIO2(DPA)2]2 complex, whereas the ground state magne-

tization in the [NpVIO2(TEDGA)2]2+ complex is prolate. For the PuVI complexes, the

δ
p
K = f (1/T ) is an almost pure T−1 term. The T−3 participates negligibly but its anal-

ysis is in favor of a splitting of the ground doublet. In the [PuVIO2(DPA)2]2 complex,

temperature dependent analysis shows a small splitting (50 cm−1) of the NKD states, but

in the [PuVIO2(TEDGA)2]2+ complex they are almost degenerate, both the results are in

agreement with the ab initio calculations. The non-zero g-factors of the ground NKDs are

overestimated in the ab initio calculations, but close to the value of a free cation and in-

dependent on the nature of the ligand. So a pure dipolar interaction with the 1H nuclei for

the AIS as well as the insensitivity of the [PuVIO2]2+ cation to the equatorial ligands are

very promising in the goal to use [PuVIO2]2+ cations as paramagnetic probe to get struc-

tural information. However, the predominance of the T−1 term in the dipolar contribution

renders the unraveling of Fermi contact and dipolar contributions through a temperature

analysis more difficult.
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Chapter 4

pNMR shifts in AnIII and AnIV

complexes

4.1 Introduction

In this chapter, pNMR shifts are studied in AnIII and AnIV complexes. While the lig-

and field splitting of the 5 f orbitals, the electronic states and the origin of the magnetic

anisotropy in the [AnVIO2]2+ complexes are quite different than in lanthanide complexes,

AnIII and AnIV ions show the possibility to form isostructural complexes with their lan-

thanide counterparts. So the ground SF and SO manifolds are the same for the isoelec-

tronic 4 f N and 5 f N ions, the ligand field splitting of the manifolds are analogous and crys-

tal field modelization can be used to compare the nature of magnetic anisotropy, electron-

electron interaction, J− J coupling and trends of covalency in between the isostructural

series. SO-CAS based methods are used for both to describe their energy levels, wave

functions and magnetic properties. Also, while Bleaney’s theory models the LIS based

on CFT, the AIS in the AnIII and AnIV complexes can be explored to understand further

considerations beyond the model.

AIS are studied in two sets of axially symmetric AnIV chelates, [AnIV(DPA)3]2 – and

[AnIV(DOTA)H2O] where (AnIV = UIV, NpIV and PuIV). The corresponding ThIV com-

plex is used as a diamagnetic reference. Temperature dependent pNMR shifts in the

[AnIV(DPA)3]2 – are measured and modeled with Bleaney’s theory. The pseudocontact

and contact shifts are separated based on the fitting of the temperature dependent curves.

The analysis of the contact shifts are performed with DFT based spin population analy-

sis. In [AnIV(DOTA)H2O] complexes, 17O and 1H pNMR shifts are analyzed and the two

terms are separated based on ab initio calculations of the pseudocontact shifts. The two set

of complexes are described with SO-CASPT2 method. The energy levels, CFPs and both

isotropic and anisotropic magnetic susceptibilities are provided to compare the ligand en-

vironment and the nature of magnetization. Additionally, paramagnetic ion induced 31P
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Chapter 4. pNMR shifts in AnIII and AnIV complexes

MAS-NMR shifts are studied in solid La1-xMxPO4 compounds where the paramagnetic

ions M = SmIII, PuIII, AmIII are embedded in the solid LaPO4 matrices. Local structure

is probed with the X-ray and 31P MAS-NMR spectra, and the electronic structure and

magnetic properties of the paramagnetic center are analyzed by performing ab initio cal-

culations on the model complex [MLa9(PO4)7]9+ with reference to experimental SQUID

magnetic susceptibility and pNMR shifts.

4.2 pNMR shifts in axially symmetric [AnIV(DPA)3]2 – com-
plexes

Actinide +IV complexes (AnIV = ThIV, UIV, NpIV and PuIV) with dipicolinic acid deriva-

tives (DPA and Et-DPA) have been studied by 1H and 13C NMR spectroscopy to under-

stand the paramagnetic properties of this cation series. These complexes were synthesized

at CEA Marcoule by M. Autillo et al. and their NMR spectra were recorded with every

5 K steps on temperature range 263–333 K. The isotropic molar magnetic susceptibility

in solution, χEvans
m

(
in m3mol−1) was determined from the chemical shift difference be-

tween the 1H NMR signals of working (t-BuOHin) and reference (t-BuOHout) solutions

using Evans method.

For the interpretation of the pNMR shifts in these complexes, ab initio calculations are

performed to obtain their electronic structure and magnetic properties. Two structures

were considered: i) the [AnIV(DPA)3]2 – complexes (AnIV = UIV, NpIV and PuIV) us-

ing the crystallographic AnIV(DPA)3(C3H5N2) ·3H2O structures (denoted by XR and the

electronic structures are discussed in section 5.7) ii) the symmetrized structure of the

[AnIV(DPA)3]2 – complexes where the XR structures were symmetrized according to the

D3 point group with Chemcraft software (denoted by D3). The ethyl groups are added

according to Ref. [26], with three different angles with the aromatic ring, 0°, 45° and 90°

(see Fig. 4.2.1) in order to represent the free rotation of the ethyl groups.

4.2.1 Ab initio electronic structures

In the solid state AnIV(DPA)3(C3H5N2) ·3H2O compounds (AnIV = UIV, NpIV and PuIV),

the energy levels, their natures and also the trends of the CFPs are broadly discussed in

section 5.7. As in the solution, these complexes are axially symmetric, the pseudocontact

shifts can be easily calculated using Eq. 2.6.33 and further the magnetic susceptibility

tensor can be easily deduced as we have done for the [AnVIO2(DPA)2]2 – complexes in

previous chapter. But, due to the deviation from the trigonal symmetry in the crystal

structures, the degeneracies of the 5 f orbitals are lifted which causes the shifting of the

axial magnetic anisotropy axis from the pseudo C3 axis. To recover the axiality, ab initio
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4.2. pNMR shifts in axially symmetric [AnIV(DPA)3]2 – complexes

Figure 4.2.1: [NpIV(Et−DPA)3]2 – complex. Color code: purple-Np, blue- N, red- O,
saddle-brown- C, white- H.

calculations are performed on the D3 structures. Computational details are provided in

Appendix A. SF and SO energy levels of the symmetric [AnIV(DPA)3]2 – complexes are

tabulated in Table 4.1.

The active 5 f orbitals of the [NpIV(DPA)3]2 – complex in D3 symmetry are shown in

Fig. 4.2.2. The lowest one, of symmetry a2, is non bonding, then there is a group of

three orbitals (e⊕a2) denoting a π anti-bonding character with O atoms, and finally the

three last ones (a1⊕ e) with a σ anti-bonding character with the ligands. The ground

LS terms for UIV, NpIV and PuIV ions are 3H, 4I and 5I, respectively, which are split

due to the presence of the ligands from 2500 cm−1 for UIV to 4000 cm−1 for PuIV in

the SSCASPT2 calculations. The SO states arising from the respective ground J terms

are split around 1100-1500 cm−1, quite larger than in the [Ln(DPA)3]3 – complexes (see

section 5.6) where the splitting is around 300 cm−1, since the 5 f orbitals interact more

with the ligands than the 4 f ones.

In the UIV complex, the ground state is non-degenerate and therefore, non-magnetic. In

this case, the excited states play a key role to the susceptibility, on one hand by coupling

with the excited states and on the other hand, when low lying, being populated at room

temperature. In the UIV complex, a triplet (163, 169 and 171 cm−1) and a doublet (246

and 269 cm−1) are low lying and populated at room temperature. In the PuIV complex,

the ground state is a NKD (0, 4 cm−1) and there is a partially populated triplet (399, 407,

450 cm−1).

The lowest SO states for the Kramers NpIV complex are a magnetically symmetrical KD1

with the three g-factors: 2.57, 2.69, 2.19 and a thermally populated low lying excited KD2

at 68 cm−1 with the g-factors: 0.04, 0.002, 3.90. Contributions from the ground LS mani-

fold to these SO states are around 85-88 % and notably, the most important J−J mixings

are observed from the excited 1G (10-11 %) for UIV, 2H (12-13 %) for NpIV and (3D
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Chapter 4. pNMR shifts in AnIII and AnIV complexes

Figure 4.2.2: Canonical 5 f active orbitals of the [NpIV(DPA)3]2 – complex in D3 sym-
metry. The canonical energies are given in parenthesis. The isosurface value is 0.14
e−bohr−3.
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4.2. pNMR shifts in axially symmetric [AnIV(DPA)3]2 – complexes

Table 4.1: SF and SO Energy levels (in cm−1) of the symmetric [AnIV(DPA)3]2 – com-
plexes from SF and SO-SSCASPT2 methods. Ground J manifolds are separated by hori-
zontal lines.

UIV NpIV PuIV

SF SO SF SO SF SO
triplet quartet quintet

0 0 0 0 0 0
30 163 60 0 661 4
307 169 79 68 708 399
365 171 918 68 905 407
513 246 991 488 1 427 450
620 269 1 004 488 1 452 669

1 138 827 1 448 921 1 609 1 069
1 192 832 2 018 921 2 407 1 070
2 143 1 327 2 023 1152 2 502 1 499
2 159 4 722 2 431 1152 2 533 4 589
2 560 4 730 2 783 6187 3 375 4 720
3 777 5 185 2 795 6187 3 405 4 724
3 788 5 188 3 204 6219 3 981 5 214
4 336 5 340 8 889 6219 9 972 5 219
4 436 6 311 9 004 6393 10 361 5 243
5 522 6 374 9 021 6393 10 707 5 249
5 525 6 476 9 953 6649 triplet 5 438
5 837 6 482 9 999 6649 13 900 5 455
singlet 6 773 doublet 6664 13 914 5 461
4 076 6 788 9 385 6664 13 935 5 516
4 117 6 968 9 578 6784 14 100 8 994
4 484 6 973 9 578 6784 14 110 9 216
4 690 7 335 9 598 11185 14 143 9 219
4 798 7 339 9 606 11185 14 226 9 468
4 871 7 480 9 848 11201 14 237 9 540
6 470 9 383 10 144 11201 14 434 9 540
6 548 9 400 10 146 11301 14 436 9 597
6 573 9 473 10 320 11301 14 437 9 658

11 182 9 539 10 417 11653 14 576 9 663
11 334 9 664 10 418 11653 singlet 9 673
12 877 9 846 12 805 21 313

21 326
21 360
21 681
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(9-10 %) for PuIV manifolds. As the splittings of the ground J manifolds of these AnIV

complexes are larger than the room temperature energy, the thermal population in the low

lying SO states will change with temperature giving rise to a complex T dependency of

the magnetic properties.

The CFPs in the symmetric [AnIV(DPA)3]2 – complexes are deduced using ITO method

and compared to the XRD results (see Table 4.2). According to the trigonal symmetry, six

CFPs, B2
0,B

4
0,B

6
0, B̄

4
3, B̄

6
3, B̄

6
6 dominate and they are in the same range in both D3 and XR

structures of the UIV and NpIV complexes, but larger in the D3 structure of PuIV complex.

The total strength parameter S (Eq. 5.3.7) effectively includes all the CFPs and com-

pares the strength of the metal-ligand interactions in the isostructural series. It is slightly

reduced in the D3 structure than the XR of the UIV and NpIV complexes, but increases

in the D3 PuIV complex. The overall ligand field strength is highly reduced in the PuIV

complex as observed from a sharp decrease in the magnitude of S. The second order axial

CFP B2
0 (or A0

2
〈
r2〉 in Stevens notation) as used in Bleaney’s theory for axially symmetric

LnIII complexes (see Eq. 2.6.34) is dominant in the PuIV complex, but the fourth and sixth

orders are larger in the UIV and NpIV complexes limiting the interpretations of the pNMR

shifts according to Bleaney’s model. The dominance of the 4th and 6th orders CFPs are an

indication of the larger covalency in the former two complexes, whereas J−J mixing and

a decrease of covalency in the PuIV complex result in the overall decrease of the ligand

field strength, and hence the decrease of the 4th and 6th orders CFPs.

Table 4.2: CFPs (in cm−1) in the D3 and XR structures of the [AnIV(DPA)3]2 – complexes.
The z axis is the pseudo C3 axis.

UIV NpIV PuIV

D3 XR D3 XR D3 XR
B2

0 607 552 783 253 2174 654
B4

0 -1021 -1353 -1548 -1787 -328 -359
B̄4

3 2980 3192 2066 2052 371 194
B6

0 -836 -886 -1066 -1121 -161 -167
B̄6

3 1116 1126 1857 2004 134 94
B̄6

6 1307 1446 2268 2316 174 99
S 944 1026 957 983 576 311
S2 271 271 350 158 972 490
S4 1445 1563 1102 1148 206 206
S6 714 763 1187 1248 97 92
S0 493 570 690 682 979 319
S3 1471 512 1216 889 182 68
S6 512 568 889 908 68 39
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4.2.2 Evans and ab initio magnetic susceptibilities

For the [AnIV(DPA)3]2 – complexes, the isotropic magnetic susceptibilities χEvans
m as de-

duced by Evans method in [D7]DMF solution are given in Table 4.3. According to Eq.

2.6.28, the dipolar contribution to the AIS arises from the anisotropy of the magnetic

susceptibility tensor. The determination of the experimental χχχ tensor is possible within

an axial symmetry by combining the χm determined by the Evans method with the ∆ χax

deduced from pNMR chemical shifts [11].

Table 4.3: Principal components of the magnetic susceptibility tensor (in 10−8 m3mol−1)
at 298 K from SO-SSCASPT2 calculations for the [AnIV(DPA)3]2 – complexes and from
SO-CASSCF for the [LnIII(DPA)3]2 – complexes (all complexes are in D3 structures).
Spin-only magnetic susceptibilities are denoted by superscript S. Experimental molar
magnetic susceptibilities χEvans

m (in 10−8 m3mol−1) are given for comparison.

χEvans
m χCal

⊥ χCal
‖ ∆ χCal

ax χCal
m χ

S,Cal
⊥ χ

S,Cal
‖ ∆ χ

S,Cal
ax χ

S,Cal
m

UIV 5.1 (±0.1) 5.15 6.03 0.88 5.44 -1.19 -1.33 -0.15 -1.24
NpIV 5.0 (±0.3) 4.48 5.70 1.22 4.88 -1.60 -2.03 -0.43 -1.75
PuIV 1.8 (±0.2) 2.30 2.09 -0.21 2.23 -1.36 -1.73 -0.37 -1.48
NdIII 6.33 6.85 0.52 6.50 -2.13 -2.34 -0.21 -2.20
HoIII 56.49 60.47 3.98 57.82 11.15 11.92 0.76 11.41
YbIII 11.57 8.78 -2.79 10.64 1.46 1.11 -0.34 1.34

The magnetic susceptibility tensors χχχ calculated for the D3 [AnIV(DPA)3]2 – complexes

with SO-SSCASPT2 method are given in Table 4.3 and compared to the experimental

χEvans
m values. Due the axial symmetry, χχχ reduces to its χ⊥ and χ‖ components. Results

for the structure AnIV(DPA)3(C3H5N2) ·3H2O issued from the crystallographic data are

given in Table 4.4 for the sake of comparison. The χCal
m values differ slightly between

the two structures while in the XR structures, the magnetic anisotropy axes are highly

deviated from the pseudo C3 axis, as already mentioned due to breaking of degenerate 5 f

orbitals. The χχχ tensors deduced from the XR structures are not axial, as one can notice

from the angles θ (in Table 4.4) standing for the deviations of the main principal axes

w.r.t. the z axis. The main principal axes of the magnetic susceptibility tensors of the

UIV complexes are shown in Fig. 4.2.3; shifting of the anisotropy axis form the pseudo

C3 axis (z axis) results chemically equivalent nuclei as magnetically non-equivalent and

giving rise to different pseudocontact shifts.

The isotropic magnetic susceptibilities χCal
m calculated with SO-SSCASPT2 at 298 K are

in rather good agreement with the experimental values, χEvans
m . The small anisotropies of

the χχχ tensors are due to the spherical coordination sphere.
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Table 4.4: Principal components (χ1,χ2,χ3) of the magnetic susceptibility tensors χχχ

(10−8 m3mol−1) at 298 K from SO-SSCASPT2 calculations for the [AnIV(DPA)3]2 –

complexes in the XR structures.

χCal
1 χCal

2 χcal
3 χCal

m angle θ°
(−→

χ3∨
−→
C3

)
UIV 4.73 4.86 6.52 5.37 43

NpIV 4.39 4.62 5.32 4.78 18
PuIV 2.40 2.00 1.92 2.11 47

Figure 4.2.3: Main principal axes of χχχ tensors of the [UIV(DPA)3]2 – complexes. The
light-blue arrow represents the anisotropic susceptibility axis for the complex in XR struc-
ture and the green arrow in D3. The pseudo C3 axis is shown in purple color.
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Figure 4.2.4: DPA2 – (left) and Et−DPA2 – (right) ligands with the numbering of the 1H
and 13C nuclei.

4.2.3 Analysis of 1H and 13C pNMR shifts

Both [AnIV(DPA)3]2 – and [AnIV(Et−DPA)3]2 – complexes were studied by NMR spec-

troscopy as the later provides supplementary 1H and 13C nuclei further from the paramag-

netic center. 1H NMR spectra in the AnIV complexes were recorded in [D7]DMF at 298 K.

Fig. 4.2.5 shows the 1H spectra in [AnIV(Et−DPA)3]2 – complexes as example. The para-

magnetic contributions to the chemical shifts were deduced by using [ThIV(DPA)3]2 – and

[ThIV(Et−DPA)3]2 – as diamagnetic references. Chemical shifts obtained at room tem-

perature are reported in Table 4.5. The labeling of the atoms on the DPA and Et-DPA

ligands are shown in Fig. 4.2.4.

In the case of an axial symmetry, Eq. 2.6.28 simplifies to Eq. 2.6.33 with the vanishing

of the rhombic component of the magnetic susceptibility tensor. In the solid compounds,

the complex is not strictly axial, due the presence of the counterions. This leads to a re-

orientation of the χχχ tensor determined from SO-CASPT2 calculation (as shown in Fig.

4.2.3), and to an important splitting of the 1H and 13C signals corresponding to the dif-

ferent non-equivalent positions in the crystal structures. One expects the complex to be

symmetrical in solution. The symmetric structure leads to an axial χχχ tensor and a unique
1H and 13C geometrical factor for each chemically equivalent atom, as reported in Table

4.6. Averaged values of GK parameters were considered for the CH2 (H5) and CH3 (H6)

groups of the ethyl chains within [AnIV(Et−DPA)3]2 – complexes. Furthermore, differ-

ent positions of the ethyl groups were considered in order to represent the free rotation

of an ethyl group. The ethyl groups do not affect the electronic structure and magnetic

properties of the central actinide center.

In the case of no Fermi contact contributions, the ratio between the paramagnetic chemi-

cal shifts of two nuclei K and K′ simplifies to the ratio of the geometrical factors as shown
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Chapter 4. pNMR shifts in AnIII and AnIV complexes

Figure 4.2.5: 1H NMR spectra of [AnIV(Et−DPA)3]2 – complexes in [D7]DMF solution
at 9.4 T and 298 K.

Table 4.5: Chemical shifts δK (in ppm) and paramagnetic chemical shifts δ
p
K (in ppm) of

1H and 13C nuclei in [AnIV(Et−DPA)3]2 – complexes in [D7]DMF solution at 9.4 T and
298 K.

C1 C2 C3 C4 C5 C6 H3 H4 H5 H6
ThIV δK 171.5 151.6 125.0 159.2 28.4 28.4 8.29/7.95a 8.11 2.89 1.31
UIV δK 113.3 147.3 153.5 155.6 35.3 35.3 8.66/8.72 12.94 1.90 2.04

δ
p
K -58.2 -4.3 28.6 -3.6 7.0 -5.0 0.37/0.77 4.83 -0.99 0.73

NpIV δK 97.5 156.9 160.9 152.0 34.5 8.7 9.11/8.94 11.97 1.61 1.83
δ

p
K -74.1 5.3 35.9 -7.2 6.2 -5.1 0.82/0.99 3.86 -1.28 0.52

PuIV δK 144.6 150.1 139.4 151.1 34.3 10.4 6.28/6.11 8.11 1.01 0.59
δ

p
K -27.0 -1.5 14.4 -8.1 5.9 -3.4 -2.01/-1.84 0.00 -1.88 -0.72

a:[AnIV(DPA)3]2 – /[AnIV(Et−DPA)3]2 –
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Table 4.6: Geometric factors GK (in 10−3 Å
−3

) and pseudocontact contributions δ
pc
K (in

ppm) to the 1H and 13C AIS in the [AnIV(DPA)3]2 – and [AnIV(Et−DPA)3]2 – complexes
deduced with D3 structures using SO-SSCASPT2 magnetic susceptibility tensors.

C1 C2 C3 C4 C5 C6 H3 H4 H5 H6
UIV GK -1.7 -19.8 -8.2 -6.7 -3.1 -2.2 -4.6 -5.6(1) -2.4(3) -2.2(9)

δ
pc
K 0.7 7.7 3.2 2.6 1.2 0.8 1.8 2.2 0.9 0.9

NpIV GK -1.4 -20.2 -8.4 -6.9 -3.2 -2.3 -4.6 -5.6(2) -2.5(4) -2.3(8)
δ

pc
K 0.7 10.9 4.5 3.7 1.7 1.2 2.5 3.0 1.3 1.3

PuIV GK -1.3 -20.4 -8.4 -6.9 -3.2 -2.2 -4.6 -5.4(1) -2.5(3) -2.2(7)
δ

pc
K -0.1 -1.9 -0.8 -0.6 -0.3 -0.2 -0.4 -0.5 -0.2 -0.2

in Eq. 3.3.2. RK,K′ calculated from the geometric factors (in the XR structures) and from

the AIS of the 1H nuclei in the [AnIV(Et−DPA)3]2 – complexes are tabulated in Table

4.7. The strong deviations between RK,K′ values calculated from XR structures and ex-

perimental 1H pNMR chemical shifts can not be explained by some structural variations

between solid-state (XR) and solution (D3), but only by the presence of a non-negligible

Fermi contact term. The results clearly show that such a simplification can not be done

in the case of the AnIV complexes as previously highlighted for some LnIII cations in

[LnIII(Et−DPA)3]3 – complexes or for [AnIII(Et−DPA)3]3 – complexes (see Table 4.7,

data are taken from Ref. [26]). This behavior has been already observed for the light

LnIII cations particularly with NdIII and EuIII cations while a very good agreement was

observed for the second part of the LnIII series (LnIII = TbIII - YbIII) (see Ref. [26]).

This can be attributed to the weakness of the magnetic anisotropy ∆ χax associated to the

compactness of the coordination sphere of the complexes, close to a spherical structure.

This leads to small dipolar contributions to the pNMR chemical shifts, according to Eq.

2.6.33.

The 13C NMR and pNMR shifts in the [AnIV(Et−DPA)3]2 – complexes were recorded

in [D7]DMF at 298 K and are also reported in Table 4.5. As for 1H nuclei, δ
pc
K are

estimated from Eq. 2.6.33 using the χχχ tensor deduced from SO-SSCASPT2 results and

the Fermi contact shifts are calculated as δ c
K = δ

p
K−δ

pc
K . A systematic derivation of axial

pseudocontact shift formula (Eq. 2.6.33) from the general Soncini and van den Heuvel

equation (Eq. 2.2.3 and as derived in subsection 2.6.3) shows a positive sign before the

equation. So if the geometric factors GK are negative, a positive ∆ χax will lead to negative

pseudocontact shifts and vice versa. But it has been observed that using Eq. 2.6.33 leads

to systematic opposite signs of the dipolar contribution as compared to the sign of the

AIS, specially on the distant H atoms and consequently leading to systematic large contact

contributions.
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Table 4.7: RK,K′ (according to Eq. 3.3.2) from the geometrical factors and the AIS for the
1H nuclei in the [AnIV(DPA)3]2 – and [LnIII(DPA)3]3 – complexes at 9.4 T and 298 K. D3
structures are considered for the geometric parameters.

GH3
GH4

δ
p
H3

δ
p
H4

GH3
GH6

δ
p
H3

δ
p
H6

GH5
GH6

δ
p
H5

δ
p
H6

UIV 0.82 ± 0.01 0.08 2.25 ± 0.9 1.05 1.20 ± 0.6 -1.36
NpIV 0.82 ± 0.01 0.21 2.17 ±0.6 1.90 1.18 ± 0.6 -2.46
PuIV 0.86 ± 0.01 ∞ 2.29 ±0.8 2.56 1.25 ± 0.7 2.61

NdIIIa / / 2.28 ± 0.01 3.8 1.28 ± 0.01 -0.1
EuIIIa / / = 4.1 = 0.1

TbIII-YbIIIa / / = 2.2 ± 0.2 = 1.4 ± 0.2
AmIIIa / / = -5.2 = -13.3

a: Ref. [26]

The possibility that the ab initio ∆ χax are themselves wrong is not ignored and only can

be justified if we have experimental evaluation of the ∆ χax. However to be confident

with the SO-SSCASPT2 results and to check the sign before Eq. 2.6.33, we considered

the two late LnIII complexes [HoIII(Et−DPA)3]2 – and [YbIII(Et−DPA)3]2 – . The LIS are

expected to be essentially dipolar in nature [22] and opposite in sign as one can expect

from the magnetization trend in the lanthanide +3 series which alters almost in every

quarter following the alteration of sign of 〈J ‖α‖J〉 in Bleaney’s Equation (Eq. 2.6.34).

〈J ‖α‖J〉 ’-ve’ for HoIII and ’+ve’ for YbIII. ∆ χax are calculated for these complexes and

the dipolar shifts are collected in Table 4.8 along with the geometric factors and the total

LIS of the ligands’ nuclei. From Table 4.8, we can notice that indeed, the LIS of the

distant protons alternate in sign from HoIII to YbIII as expected from the alteration of the

nature of magnetization. Ab initio ∆ χax also changes sign going from prolate to oblate

(see Table 4.3) from HoIII to YbIII. Calculated 1H dipolar shifts according to Eq. 2.6.33

with the ab initio ∆ χax are not close to the experimental pNMR shifts which introduce

large contact contributions (see δ c
K from Table 4.8). But the ratios of the geometric factors

and the experimental pNMR shifts do not show a large disagreement [26] and also do not

validate the presence of large contact contributions as also shown by Desreux and Reilley

in the [YbIII(DPA)3]2 – complex [22]. These benchmark studies show that ∆ χax evaluated

using CAS based methods for the lanthanide and actinide complexes with dipicolinic acid

derivatives have systematically opposite sign compared to the experimental ones obtained

from the pNMR shifts study [26]. In the case of lanthanides, as one expects the LIS

to be dominated by dipolar mechanism and also confirmed by previous studies [22], a

systematic opposite ∆ χax from ab initio calculations leads to large contact shifts for the

distant protons. In the actinide complexes, the geometric ratios in Table 4.7 indicate the

presence of significant amount of contact contribution to the 1H AIS, and although the
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ab initio ∆ χax are suspicious, but their magnitudes are very small. So one can conclude

that the AIS are clearly dominated by contact contributions, especially the 13C AIS. So

we did not rely on the ab initio ∆ χax to separate the contact and pseudocontact shifts

in the actinide dipicolinic acid complexes, rather from the temperature dependent AIS,

we are able to separate the two contributions and presented in Table 4.9 (the temperature

dependent fittings are discussed in next section).

Table 4.8: LIS (in ppm) of the ligands’ nuclei and their geometric factors (in 10−3 Å
−3

) in
the [HoIII(Et−DPA)3]2 – and [YbIII(Et−DPA)3]2 – complexes. Pseudocontact shifts δ

pc
K

(in ppm) are calculated from the ab initio ∆ χax using Eq. 2.6.33 and the contact shifts
are, δ c

K = δ
p
K −δ

pc
K .

C1 C2 C3 C4 C5 C6 H3 H5 H6
HoIII δ

p
K -16.8 46.6 -42.0 45.8 2.8 9.7 11.18 8.22 5.36

GK -0.3 -20.3 -8.4 -6.9 -3.2 -2.3 -4.6 -2.6(4) -2.3(9)
δ

pc
K -0.5 -35.6 -14.7 -12.1 -5.6 -4.0 -7.99 -4.5(6) -4.06

δ c
K -16.3 82.2 -27.4 58.0 8.4 13.6 19.2 12.7(5) 9.4(9)

YbIII δ
p
K -16.0 -28.7 -15.1 -5.0 7.0 -5.0 -4.27 -0.99 -0.73

GK -0.1 -20.8 -8.5 -7.0 -3.1 -2.1 -4.6 -2.5(6) -2.3(8)
δ

pc
K 0.1 25.5 10.5 8.6 3.8 2.7 5.67 3.0(5) 2.8(9)

δ
c+
K -16.1 -54.2 -25.6 -13.6 3.2 -7.7 -10.39 -4.0(4) -3.5(9)

In these AnIV complexes, low magnetic anisotropy due to the spherical coordination

sphere leads to Fermi contact shifts as main contribution for most of the 13C nuclei as

presented Table 4.9. As an exception, the Fermi contact contribution obtained for C2 nu-

clei being strong in UIV complex drastically decrease across the series to be negligible for

PuIV. The pseudocontact contribution appears not to be the dominant one, except for C2

and the protons, where the contact contribution is rather small.

The Fermi HFC constant Ac
K depends on the spin density ρs (rrrK) at nucleus K accord-

ing to Eq. 1.8.11 and in the non-relativistic theory taking z as the quantization axis, spin

density at K can be calculated as the difference between the alpha and beta spin densities

ρs (rrrK) = ρα (rrrK)−ρβ (rrrK). ρs (rrrK) results from the combination of two mechanisms,

the spin delocalization and spin polarization. The first mechanism leads to positive spin

density throughout the molecule; it is more important for the nuclei directly bonded to

the paramagnetic cation and is expected to drop quickly when the number of bonds be-

tween the paramagnetic center and the observed nuclei increases. Conversely, the second

mechanism propagates the spin density away from the paramagnetic center by alternat-

ing sign. Eq. 2.6.49 allows an evaluation of the HFC constants Ac
K , using the values of

the spin-only magnetic susceptibility χ
S,Cal
m calculated using SO-SSCASPT2 method (see
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Table 4.9: Pseudocontact and contact contributions to the 13C and 1H AIS (in ppm) in
[AnIV(DPA)3]2 – and [AnIV(Et−DPA)3]2 – complexes in [D7]DMF solution at 9.4 T and
298 K. From the temperature dependence study of AIS according to Eq. 4.2.4, δ

pc,Exp
K is

estimated and the contact shifts δ
c,Exp
K = δ

p
K −δ

pc,Exp
K .

C1 C2 C3 C4 C5 C6 H3 H4 H5 H6
UIV δ

p
K -58.2 -4.3 28.6 -3.6 7.0 -5.0 0.4/0.8a 4.83 -0.99 0.73

δ
pc,Exp
K 0.45 5.18 2.18 1.76 0.82 0.58 1.19 0.66 0.52

δ
c,Exp
K -58.59 -9.5 26.42 -5.39 6.17 -5.61 -0.42 -1.65 0.2

NpIV δ
p
K -74.1 5.3 35.9 -7.2 6.2 -5.1 0.82/0.99 3.86 -1.28 0.52

δ
pc,Exp
K 0.48 7.07 2.93 2.45 1.14 0.8 1.65 0.91 0.71

δ
c,Exp
K -74.7 -1.75 32.97 -9.74 5.11 -5.92 -0.64 -2.19 -0.19

PuIV δ
p
K -26.96 -1.50 14.10 -8.06 5.94 -3.36 -2.01/-1.84 0.0 -1.88 -0.72

δ
pc,Exp
K -0.27 -4.02 -1.67 -1.4 -0.65 -0.46 -0.94 -0.52 -0.41

δ
c,Exp
K -26.67 2.53 15.87 -6.71 6.59 -2.93 -0.9 -1.36 -0.31

a:[AnIV(DPA)3]2 – /[AnIV(Et−DPA)3]2 –

Table 4.3) and are presented in Table 4.10. For 13C nuclei located on the pyridine unit

in [AnIV(DPA)3]2 – complexes, the alternation of positive and negative Ac
K values indi-

cates that spin polarization mechanism dominates. The same observation can be made

for [LnIII(Et−DPA)3]3 – and [AmIII(Et−DPA)3]3 – complexes. For the 13C nuclei of the

COO– units (C1), the Ac
K values are the largest and positive which is the sign of a spin

delocalization for these nuclei close from the paramagnetic center.

Table 4.10: Fermi HFC constants Ac
K (in MHz) deduced from the contact shifts in Table

4.9 according to Eq. 2.6.49.

C1 C2 C3 C4 C5 C6 H3 H4 H5 H6
UIV 0.72 0.15 -0.31 0.08 -0.07 0.07 0.07/0.05a -0.13 0.09 0.01

NpIV 0.65 0.05 -0.27 0.09 -0.04 0.05 0.06/0.05 -0.03 0.09 0.03
PuIV 0.27 0.00 -0.15 0.08 -0.06 0.03 0.06/0.06 -0.02 0.07 0.02
NdIII 0.01 0.00 -0.13 0.04 -0.04 0.03 -0.01 / 0.02 0.004
EuIII -0.01 -0.02 -0.12 0.04 0.02 -0.01 -0.02 / 0.01 -0.002
AmIII 0.079 0.031 -0.056 0.048 -0.010 0.012 0.011 / 0.016 0.002
YbIII -0.18 -0.04 -0.05 0.04 0.12 -0.03 0.04 / 0.09 0.09

a:[AnIV(DPA)3]2 – /[AnIV(Et−DPA)3]2 –

• Spin density calculations.
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13C pNMR shifts are mostly dominated by the contact contributions and are direct con-

sequences of the presence of spin densities at the nuclei, so we try to rationalize the

spin population in the ligands. Unrestricted SR-DFT was successful to interpret HFC

constants in the isotropic 4 f 7 GdIII−H2O complexes [81] as well as 1H pNMR shifts

in isostructural series [82]. Following this line, we performed Mulliken spin population

analysis using unrestricted SR-DFT with a fractional occupation of the seven 5 f orbitals

of the [AnIV(DPA/Et−DPA)3]2 – complexes. Spin polarization is well described by an

unrestricted calculation by allowing the spatial parts of the alpha and beta orbitals to be

different. For the sake of comparison, evaluation of the spin population from a CASSCF

calculation only accounts the spin delocalization. The fractional occupancy in the 5 f or-

bitals in DFT resembles the average of configurations (see Table 4.11) like the CASSCF

wave functions and allows for an equivalent population of all the magnetic orbitals. The

Mulliken atomic spin populations calculated with the CASSCF and unrestricted DFT

methods are presented in Fig. 4.2.6 and broken down in the atomic σ and π orbitals

for PBE0 calculations (Table 4.13).

Table 4.11: Mulliken spin populations in the 5 f orbitals of the [NpIV(DPA)3]2 – complex
from SO-CASSCF. This population is estimated as an average over the SF components
issued from the ground 4I manifold according to their weight in the SO wave function.

KD1 KD2
5 f±3 0.76 0.75
5 f±2 0.70 0.68
5 f±1 0.63 0.66
5 f0 0.39 0.40

In Fig. 4.2.6 and Fig. 4.2.7, the atomic and s orbitals’ spin populations per unpaired elec-

tron of the [AnIV(Et−DPA)3]2 – complexes from different methods are presented, respec-

tively and to see the pattern in the series, the same is also done keeping the method fixed

(furthermore in Fig. 4.2.8). The CASSCF spin populations are the highest for the bonding

oxygen (O1) and nitrogen atoms and become rapidly negligible after few bonds from the

paramagnetic center as expected from a spin delocalization mechanism. Calculated spin

populations using unrestricted DFT are much higher which shows that spin polarization

mechanism dominates the spin distribution onto the ligands even for the closest nuclei as

previously reported for GdIII−H2O complexes.

The experimental 13C HFC constants Ac
K from Table 4.10 are used to calculate the spin

densities at the nucleus ρs (rrrK) according to Eq. 1.8.11 and are compared with those ob-

tained from different functionals in Table 4.12. The M062X functional correctly predicts

the alternation of spin in the C framework when compared with the experiment.
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Figure 4.2.6: Mulliken atomic spin populations per unpaired electron of the
[AnIV(Et−DPA)3]2 – complexes calculated with CASSCF and unrestricted DFT methods.

Table 4.12: ρs (rrrK)/N evaluated according Eq. 1.8.11 from the Ac
K of Table 4.10 and

Mulliken spin populations in the s orbitals’ ρs
s/N of the [AnIV(Et−DPA)3]2 – complexes

from different functional.

C1 C2 C3 C4 C5 C6
UIV ρs (rrrK)/N exp 4.3 0.88 -1.86 0.45 -0.42 0.43

ρs
s/N M06 -0.26 -0.29 -1.14 -0.25 -0.66 -3.4

M062X 0.18 1.8 -2.57 6.33 -1.74 -3.48
PBE0 -0.35 0.4 -0.65 1.2 -0.6 -0.35

NpIV ρs (rrrK)/N exp 3.87 0.29 -1.62 0.56 -0.23 0.33
ρs

s/N M06 -0.04 -0.4 0.26 -0.11 -0.01 0
M062X 0.29 0.44 -0.52 0.76 -0.08 0.01
PBE0 -0.13 0.17 -0.1 0.2 -0.1 -0.13

PuIV ρs (rrrK)/N exp 2.18 -0.03 -1.23 0.61 -0.5 0.26
ρs

s/N M06 0.22 -0.18 0.1 -0.04 0 0
M062X 0.43 0.14 -0.19 0.29 -0.03 0
PBE0 -0.03 0.08 -0.05 0.05 -0.05 -0.03
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Figure 4.2.7: Mulliken atomic s orbitals’ spin populations per unpaired electron of the
[AnIV(Et−DPA)3]2 – complexes calculated with CASSCF and unrestricted DFT methods.

Table 4.13: Mulliken atomic spin populations partitioned within σ and π components of
the ligand deduced from UPBE0 for the [AnIV(DPA/Et−DPA)3]2 – complexes.

O1 C1 O2 N C2 C3 C4 C5
UIV σ -0.02 -0.0007 -0.0012 -0.0082 0.001 -0.0027 0.0045 -0.0032

π -0.0101 0.0071 0.0101 0.0265 0.0191 -0.0061 0.0351 -0.0005
NpIV σ -0.0241 0.0004 -0.003 -0.0166 0.001 -0.0012 0.0011 -0.0007

π -0.0106 0.0049 0.0031 -0.0013 0.0073 -0.0031 0.0082 -0.0002
PuIV σ -0.037 0.0015 -0.0056 -0.0056 0.0005 -0.001 0.0004 -0.0004

π -0.0138 0.0053 -0.0025 -0.0039 0.0041 -0.0017 0.0039 -0.0002
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Figure 4.2.8: Mulliken atomic spin populations per unpaired electron of the
[AnIV(Et−DPA)3]2 – complexes calculated with unrestricted DFT methods.

The PBE0 functional manages to reproduce the spin alteration in the pyridine unit, but

assigns an opposite spin for the carboxylate carbon (C1), whereas the M06 functional

mostly gives the opposite to that obtained from M062X and also the experiment. When

compared with the atomic spin populations, the spin populations in the s orbitals of the

carbon atoms have the same sign as the atomic one for M062X, whereas the spin alters

for C1 in the case of PBE0 and completely for all the C atoms in M06. About the relative

magnitude, ρs (rrrK)/N-exp decreases along within the series going from UIV to PuIV (see

Table 4.12), as usually following the same trend of experimental hyperfine coupling con-

stants Ac
K (see Table 4.10). The spin populations in the s-orbitals ρs

s/N deduced from the

DFT calculations are in the order of ρs (rrrK)/N-exp, better matching with M062X with

the correct evaluation of the sign. The very trend is also observed for the calculated ρs
s/N

(see Fig. 4.2.8), they decrease along with the series following the same declines of atomic

spin populations. The total atomic spin on the NpIV and PuIV center from the DFT calcu-

lations are found to be greater than 3 and 4, respectively indicating a ligand to metal spin

polarization. But, surprisingly, a spin deficient UIV center (i.e. ρs < 2) is obtained from

all the DFT calculations indicating more spin delocalization from metal to the ligand.

So it appears from the DFT calculations that the spin populations in the s orbitals of the

carbon atoms roughly proportional to the total atomic spin, i.e. the largest the spin on
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the atom, the largest on the nucleus, but that simple one-to-one correspondence cannot be

drawn as far as the sign is considered. As described by Adamo et al. [83] for aromatic free

radicals, large positive spin are obtained on the ortho (C2) and para (C4) carbons of the

pyridine unit whereas the meta (C3) and ethyl (C5) have the opposite signs and reduced

magnitudes. Surprisingly all the DFT calculations assign a very small amount of spin

on the closest carboxylate carbon (C1), by far showing the most disagreement with the

values obtained from the contact shifts. It is worth to mention here that atomic charges and

spin of a molecule are not directly spectroscopic and depend on the methods of ab initio

calculations. Often for the quantitative estimations, special basis sets are recommended

[84, 85] which have larger exponents in the primitive s-type functions, but that kind of

integration will lose the flavor of the atomic orbitals of the considered ANO basis sets. As

already pointed out, the spin alteration indicates a dominant spin polarization mechanism

over the spin delocalization further from the paramagnetic center.

4.2.4 Temperature dependence of the pNMR shifts

Like the AnVI complexes, 1H and 13C NMR spectra of [AnIV(DPA)3]2 – and [AnIV(Et−DPA)3]2 –

complexes were recorded on the temperature range 263 – 333 K and corrected from the

diamagnetic ThIV reference. For LnIII complexes, the separation of contact and pseudo-

contact contributions can be performed by using their respective temperature variation.

According to Bleaney’s theory, the pseudocontact and contact shifts behave as functions

of T−2 and T−1, respectively [17, 19] which formally indicates that the contact shifts in

Eq. 2.6.49 and the anisotropic magnetic susceptibility ∆ χax of the lanthanide center in

Eq. 2.6.33 can be written as

δ
p
K =

1
µ0µBgeγK

Ac
K

h̄
s
T
+

1
12πNA

GK
c

T 2 (4.2.1)

=
αc

K
T

+
α

pc
K

T 2 (4.2.2)

where ∆ χax =
c

T 2 and χs = s
T and c, s are metal dependent constants. Consequently,

the linear regression of δ
p
KT = f (1/T ) curves allows to evaluate the two contributions,

the slope and the intercept leading to the pseudocontact and contact terms, respectively

[20]. Though it has been pointed out that additional terms might be required to improve

the quality of the fittings in the actinide complexes as they bear additional physics of

the actinide chemistry such as larger ligand field splitting [26, 11]. But in any case,

Bleaney’s theory has been applied in this case also and the linear regression of the δ
p
KT =

f (1/T ) curves puts forward some anomaly such as one would expect that α
pc
K should

be proportional to GK as according to Eq. 4.2.2, α
pc
K = GKβ pc where β pc = c

12πNA
is

independent of the NMR active nucleus. However, from Tables 4.14 and 4.15, one can

notice the ratio of two α
pc
K is not in agreement with the geometric ratio.
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Table 4.14: Ratio of the geometrical parameters RK,K′ and ratio of slopes of δ
p
KT =

f (1/T ) (according to Eq. 4.2.2) for 13C AIS in [AnIV(Et−DPA)3]2 – complexes.

GC1
GC6

α
pc
C1

α
pc
C6

GC2
GC6

α
pc
C2

α
pc
C6

GC3
GC6

α
pc
C3

α
pc
C6

GC4
GC6

α
pc
C4

α
pc
C6

GC5
GC6

α
pc
C5

α
pc
C6

UIV 0.77 -97.76 8.95 8.28 3.71 2.04 3.04 21.29 1.41 0.88
NpIV 0.6 -23.48 9 26.76 3.72 4.91 3.06 -6.55 1.42 12.14
PuIV 0.58 27.2 9.07 6.07 3.74 -68.62 3.06 -34.06 1.42 /

Table 4.15: Ratio of the geometrical parameters RK,K′ and ratio of slopes of δ
p
KT =

f (1/T ) (according to Eq. 4.2.2) for 1H AIS in [AnIV(DPA/Et−DPA)3]2 – complexes.

GH3
GH4

α
pc
H3

α
pc
H4

GH3
GH5

α
pc
H3

α
pc
H5

GH5
GH6

α
pc
H5

α
pc
H6

UIV 0.82 -6.7 2.25 2.8 1.20 3.3
NpIV 0.82 2.3 2.17 2.9 1.18 1.6
PuIV 0.86 0.5 2.29 1.6 1.25 0.4

In Ref. [26], the fit of the temperature dependent AIS was largely improved by consider-

ing higher orders in the temperature expansion of δ c
K and δ

pc
K . In order to determine which

terms to consider, we analyzed the temperature dependence of the theoretical χ
S,Cal
m and

∆ χCal
ax values. As shown in Tables 4.16 and 4.17, while the T−1 variation is dominant

(more than 80%) for χ
S,Cal
m , a T−3 term should be added to T−2 for ∆ χCal

ax to have a

quantitative description.

Table 4.16: Linear regression of χ
S,Cal
m T = f (1/T ) from SO-SSCASPT2 for

[AnIV(DPA)3]2 – complexes. R2 is the coefficient of determination. χS
m = s

T + s′
T 2 . s

and s′ are in K ·m2 ·mol−1 and K2 ·m2 ·mol−1, respectively.

s
(
10−6

)
s′
(
10−4

)
% s % s′ R2

UIV -4.03 1.07 91 9 0.999
NpIV -6.13 2.76 87 13 0.999
PuIV -5.68 3.78 82 18 0.999

However we have already seen in the previous chapter that the large ligand field splitting

in the actinide complexes and the thermal inaccessibility of all the ground J states can

lead to T−1 contribution in the ∆ χax. Hill et al. [20] argued that large discrepancies in

between the ratios of the slopes and the ratios of the intercepts of different nuclei cannot

be explained with a T−1 dipolar term, but rather is the evidence of the presence of contact
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Table 4.17: Linear regression of ∆ χCal
ax T 2 = f (1/T ) from SO-SSCASPT2 for

[AnIV(DPA)3]2 – complexes. R2 is the coefficient of determination. ∆ χax = c
T 2 +

c′
T 3 ,

c and c′ are in K2 ·m2 ·mol−1 and K3 ·m2 ·mol−1, respectively.

c
(
10−6

)
c′
(
10−4

)
% c % c′ R2

UIV 0.25 -0.0017 65 35 0.996
NpIV 0.4 -0.0024 65 35 0.999
PuIV -0.33 0.0013 54 46 0.995

interaction. This is the case observed during the fitting of the temperature dependent AIS

in the [AnIV(DPA/Et−DPA)3]2 – complexes. This suggests to add a T−3 term in Eq. 4.2.2

δ
p
K =

1
µ0µBgeγK

Ac
K

h̄
s
T
+

1
12πNA

GK
c

T 2

(
1+

τ

T

)
(4.2.3)

=
αc

K
T

+
β pc

T 2

(
1+

τ

T

)
GK (4.2.4)

where ∆ χax =
c

T 2

(
1+ τ

T

)
. All the AIS temperature variations were fitted simultaneously

according to Eq. 4.2.4 (for example, fitting of the AIS in the [NpIV(Et−DPA)3]2 – com-

plex is shown in Fig. 4.2.9 ), as a polynomial regression at third order of the δ
p
K = f (1/T )

curves. The values of α pc, αc
K and τ are optimized to fit NMR experimental data while

the geometrical factors GK are constrained to the values reported Table 4.6. The quality

of the fit given by the agreement factor AF and the metal dependent constants β pc and τ

are tabulated in Table 4.18

Table 4.18: Fitting parameters β pc (10−23 m3.K2) and τ (K) of Eq. 4.2.4 for 1H and
13C paramagnetic shifts in [AnIV(Et−DPA)3]2 – complexes. Experimental (∆ χ

Exp
ax ) and

SO-CASPT2 (∆ χCal
ax ) axial anisotropy (in 10−8 m3.mol−1) are given at 298K.

β pc τ AFa ∆ χCal
ax ∆ χ

Exp
ax χ

exp
⊥ χ

exp
‖

UIV -3.39 (± 0.05) -93 (± 1) 1.4 % 0.9 -0.59 (± 0.08) 5.30 4.71
NpIV -2.23 (± 0.02) 126 (± 1) 1.1 % 1.23 -0.80 (± 0.09) 5.27 4.47
PuIV 1.07 (± 0.02) 203 (± 3) 1.4 % -0.21 0.45 (± 0.06) 1.65 2.10

a: AF =
[
∑K
(
δ

p
K −δ

p
K (Eq. 4.2.4)

)2
/
(
δ

p
K
)2
]

Under the conditions mentioned above, we reached an excellent fit of experimental data

by using Eq. 4.2.4, the T−3 term contributing from 24% for UIV to 40 % for PuIV in the

paramagnetic chemical shits at 300 K. More than to demonstrate the necessity to include

this term in the temperature variation of AnIV paramagnetic chemical shifts, we were able
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Figure 4.2.9: 1H and 13C paramagnetic chemical shifts (ppm) of [NpIV(Et−DPA)3]2 –

complexes versus the reverse of temperature (K−1).

to obtain the anisotropy of the molar magnetic susceptibility ∆ χ
Exp
ax (see Table 4.18) from

experimental data. As already It can be noticed that ab initio calculations determine the

wrong nature of the magnetic isotropy. This information exposes the difficulties to prop-

erly compute the AnIV magnetic properties in order to predict their magnetic anisotropy.

This is particularly true in the case of low anisotropy complexes where a quantitative anal-

ysis requires a very accurate description. The temperature dependence fitting of the AIS

according to Eq. 4.2.4 helps to separate the pseudocontact and contact shifts, at 298 K

the pseudocontact shifts δ
pc,Exp
K obtained from the temperature dependence study are tab-

ulated in Table 4.9 and the Fermi contact shifts are be evaluated as δ
c,Exp
K = δ

p
K −δ

pc,Exp
K

(see Table 4.9).

4.3 pNMR shifts in axially symmetric [AnIV(DOTA)H2O]
complexes

Lanthanide(III)-DOTA complexes have long been studied [31] owing to their remark-

able thermodynamic stability [86] and as MRI (Magnetic Resonance Imaging ) probes

[81, 34, 87]. In solution, they are easily characterized by 1H NMR spectroscopy because

their rigid structures lead to six non-equivalent protons more or less shifted according to

the nature of the paramagnetic center. Crystal structure determinations reveal that the first

coordination sphere of the metallic cation is made of four cyclene nitrogens, four carboxyl

oxygen atoms and completed with one water molecule in capping position [88]. Due to

120



4.3. pNMR shifts in axially symmetric [AnIV(DOTA)H2O] complexes

Figure 4.3.1: 1H labels of [AnIV(DOTA)H2O] complex.

the fast exchange in solution, the bound water signal has never been observed by NMR.

Although DOTA complex structures are rigid, a slow interconversion process takes place

at NMR time scale between two enantiomeric pairs of Ln(III)-DOTA complexes (Square

Antiprismatic and Twisted Antiprismatic geometries written as SAP and TSAP, respec-

tively) [89, 34]. Despite it comes as no surprise, the induced chemical shift of the bound

oxygen was found mainly contact in origin [81], the 1H LIS also show the dominance of

the contact terms [34]. It turns out that metallic complexes of DOTA represent conve-

nient systems to study the paramagnetic effect of less studied cations such as the AnIV.

Indeed, conversely to the LnIII series few data have been reported about the AnIV induced

paramagnetic shift.

[AnIV(DOTA)H2O] complexes where AnIV = ThIV, UIV, NpIV and PuIV have been char-

acterized in solid state by X-ray diffraction and in solution by NMR spectroscopy 1. The

dynamics of the complexes are analyzed and the contact contributions arising from the ac-

tinide paramagnetism are probed owing to 17O spectra. Finally these experimental results

are rationalized with theoretical calculations.

All NMR spectra of [AnIV(DOTA)H2O] complexes from UIV to PuIV recorded in water at

room temperature present non-equivalent CH2 protons confirming a rigid structure of the

DOTA ligands where the coordination sphere consists of four nitrogen and four oxygen

atoms. XRD results show that a water molecule completes the first coordination sphere to

a coordination number of nine in capping position of a bis square-antiprism (SAP). Proba-

bly because of the +4 charge of the An cation, no other isomer is observed as noticed with

1Experimental studies are performed by Claude Berthon et al. at CEA Marcoule, France
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Chapter 4. pNMR shifts in AnIII and AnIV complexes

Figure 4.3.2: H and C labeling of DOTA complex isomers. Carbons are up of the cyclen
ring in one DOTA isomer and move down in the other one.

LnIII complexes of DOTA (isomer noted TSAP). However further experimental analysis

indicates the presence of the TSAP isomer for the UIV complex. To analyze the AIS in

these complexes, we performed ab initio calculations on the symmetrized structures of

the [AnIV(DOTA)H2O] complexes. For UIV complex, two isomers are considered and for

the rest, their SAP isomeric forms are considered.

4.3.1 Ab initio electronic structures

The energy levels and wave functions of the [AnIV(DOTA)H2O] complexes have been

calculated with CASPT2 methods. Computational details are provided in Appendix A.

SF and SO energy levels are given in Table 4.19. While in the [AnIV(DPA)3]2 – com-

plexes, the crystal field environment is trigonal, in the [AnIV(DOTA)H2O] complexes,

it corresponds to a tetragonal symmetry and accordingly five CFPs, B2
0, B4

0, B6
0, B̄4

4, B̄6
4

are dominant (see Table 4.20). The ground SF manifold of the AnIV ions splits by lig-

and field around 3100-4800 cm−1. In the SO level, the ground J manifolds of the UIV(3H4
)

are split by 2500 (in SAP isomer) / 1800 (in TSAP isomer) cm−1, for NpIV (4I9/2
)

1800 cm−1and for PuIV (5I4
)

2240 cm−1. One notices that in the UIV complexes, ligand

field splitting is reduced in the TSAP isomeric structure compared to the SAP form. For

the non-Kramers ions UIV and PuIV, at room temperature domain (220-350 K) four and

five energetically lowest states (see Table 4.19), respectively, are populated. The states

largely contribute to the magnetic properties due to significant thermal populations which

ensure large Van Vleck contributions (according to second terms of Eqs. 2.2.4, 2.2.3) to

the magnetic properties, the contribution is reduced as the energy of the state increases.
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In the [NpIV(DOTA)H2O] complex, since the SO levels are always doubly degenerate, at

room temperature domain, two energetically lowest KDs (Table 4.19) are populated and

can contribute to the magnetic properties both from the first and second terms of Eqs.

2.2.4, 2.2.3. Magnetic g-factors (gi,n; i = 1,2,3, n = 1,2) of the two KDs are: 1.39, 3.98,

0.11 for KD1 and 1.22, 3.67, 1.73 for KD2.

CFPs are calculated from the energy levels and wave functions of the ground L and J

manifolds using ITO method (discussed in section 5.3) and are tabulated in Table 4.20.

The difference between the CFPs extracted from a given L and J manifolds is that in the

case of later, one effectively includes the J− J mixing which is quite important in the

case of An complexes. As mentioned previously, according to the tetragonal symmetry of

the ligand environment five CFPs are dominant. However, some CFPs, which are related

to rhombic environment (B̄2
2, B̄4

2, B̄6
2) are found non-negligible, especially they are large

in the [PuIV(DOTA)H2O] complex. The total strength parameter S (Eq. 5.3.7) helps to

compare the ligand field strength along a periodic series. The strength parameters corre-

sponding to the splittings of the J manifolds decrease from UIV to NpIV and then highly

increase from NpIV to PuIV (see Fig. 4.3.3). The S parameters of the L manifolds also

show the same trend, quite largely increases for PuIV than the other two. S is slightly re-

duced in the TSAP isomeric form as compared to the SAP from of the [UIV(DOTA)H2O]

complex, as the overall energy splitting is reduced in the TSAP isomer. Strength pa-

rameters in the [AnIV(DOTA)H2O] series are larger than the [AnVI(DPA)3]2 – complexes

following the larger ligand splittings in the DOTA complexes. Strength parameter along

the series sharply increases in the PuIV DOTA complex but decreases in the PuIV DPA

indicating the strong impact of J− J coupling for PuIV. Strength parameters of L and

J manifolds are close for the UIV complexes, whereas they deviate for NpIV and PuIV

complexes, again indicating the importance of J− J mixing along the series.

4.3.2 Analysis of 17O and 1H pNMR shifts

1H and 17O NMR spectra of [AnIV(D17OTA)H2O] complexes in D2O were recorded from

278 K to 358 K . NMR signals of the coordinated water molecule are not observed due to

the fast exchange with the bulk at room temperature. The pNMR shifts are deduced using

the signals of [ThIV(D17OTA)H2O] as diamagnetic reference. For 17O NMR spectra,

chemical shifts are referenced to the 17O signal of the water. 17O signals of the oxygen

atoms O2 (chelating), bound to the metallic center U, Np and Pu are easily assigned owing

to their larger paramagnetic shifts compared to the O1 (non chelating) free oxygen atoms.

The NMR shifts and the paramagnetic chemical shifts of the nuclei are reported in Table

4.23. With the paramagnetic AnIV cation, the 1H NMR spectra exhibits six signals at

room temperature as there are six chemically and magnetically non-equivalent protons

(see Fig. 4.3.1).
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Chapter 4. pNMR shifts in AnIII and AnIV complexes

Table 4.19: SF/SO-CASPT2 energy levels (in cm−1) of the [AnIV(DOTA)H2O] com-
plexes. Ground L and J manifolds are separated by horizontal lines.

UIV UIV NpIV PuIV

SAP TSAP SAP SAP
SF SO SF SO SF SO SF SO

triplet triplet quartet quintet
0 0 0 0 0 0 0 0
91 275 365 82 846 0 1003 130

365 305 557 95 942 46 1149 147
1180 562 636 191 2052 46 1718 200
1442 1612 1596 1357 2228 997 1819 330
1579 1780 1848 1374 2361 997 2188 1588
2291 1861 2574 1504 2657 1114 2321 1623
2911 1920 2667 1545 2663 1114 2437 1670
3257 2492 2735 1803 2843 1299 3159 2240
3568 5065 2966 4484 3532 1299 3317 4927
3672 5143 3102 4822 3942 6074 4333 5045
5008 5335 4718 4946 4021 6074 4363 5075
5086 5701 4803 5074 4286 6387 4736 5222
5336 5798 4805 5221 8958 6387 10177 5628
5819 6455 5688 6368 8995 6602 10314 5734
6209 6755 5837 6532 10031 6602 triplet 5785
6525 6928 5941 6570 10336 6748 13423 6045
6588 6995 6155 6608 10814 6748 13459 6162

singlet 7571 singlet 7334 doublet 6990 13517 6211
4230 7584 4264 7430 9537 6990 14010 6236
4362 7626 4425 7589 9560 7084 14021 9489
4639 8440 4689 7923 9696 7084 14057 9507
4680 8655 4707 8046 10397 10310 14460 9570
6184 8678 5573 8056 10449 10310 14615 9580
6434 8713 5841 8119 10508 10947 14659 9837
6682 9458 6120 8963 10585 10947 14748 10022
7280 9471 7084 9210 10842 11268 14759 10094
7595 9590 7337 9338 10913 14932 10154
10393 9990 9928 9445 11074 15045 10193
11953 10283 11587 11130 singlet 10398
12041 10288 11767 12885 20584 10401
12841 10296 12137 13100 20773 10425
12868 10359 12591 13362 20809 10498
15112 10772 15047 13396 20843 13152
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Table 4.20: CFPs (in cm−1) in the [AnIV(DOTA)H2O] series calculated with ITO method
from SF and SO-CASPT2.

UIV(SAP) UIV(TSAP) NpIV PuIV

J = 4 L = 5 J = 4 L = 5 J = 9/2 L = 6 J = 4 L = 6
B2

0 -3034 -2461 -1659 -1490 -3671 -3962 -6012 -4760
B4

0 1582 -792 478 -585 2420 2594 2377 1202
B6

0 292 -949 293 -859 415 893 1365 522
B̄2

2 110 99 78 87 144 138 675 442
B̄4

2 220 264 380 324 178 392 827 589
B̄4

4 5029 4473 5295 4655 2331 2084 7929 6953
B̄6

2 119 35 126 375 141 257 195 195
B̄6

4 2299 5008 1471 3717 3139 4664 4676 4491
B̄6

6 182 127 329 125 51 44. 116 106

UIV-TSAP UIV NpIV PuIV500

1000

1500

2000

2500

3000

S 
(c

m
1 )

L (DOTA)
J (DOTA)
L (DPA)
J (DPA)

Figure 4.3.3: Strength parameters (in cm−1) in the [AnIV(DOTA)H2O] complexes from
the SF L and SO J manifolds from SO-CASPT2. The strength parameters in the D3
[AnVI(DPA)3]2 – complexes from SO-SSCASPT2 are plotted for comparison.
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Chapter 4. pNMR shifts in AnIII and AnIV complexes

To analyze the nature of the pNMR shifts, the magnetic susceptibility components are

calculated with SO-CASPT2 method (see Table 4.21). The sign of the ∆ χax is negative for

UIV and NpIV complexes (whereas the sign is positive for the DPA complexes) indicating

a large magnetization in the perpendicular direction of the An−OH2 bond. It must be

noted that the An ions are sightly below the plane formed by the coordinating O atoms and

they are considered inside the cage formed by the DOTA ligand. It has been showed in the

[Yb(DOTAM)Xy]3 – y complexes that the anisotropy of the magnetization highly depends

on the axially coordinated ligand X [90] which affects the LIS. For the PuIV complex,

three principal components of the magnetic susceptibility tensor are shown in Fig. 4.3.4.

Clearly, assigning the type of the axiality is not well justifiable as the two components

of the perpendicular directions show large rhombicity
(
χ22,⊥−χ11,⊥

)
. However, on an

average in the perpendicular directions of the Pu−OH2 bond there is less magnetization

than along the bond and hence a positive ∆ χax and a large rhombic term δ χrh contribute

to the dipolar pNMR shifts according to Eq. 2.6.31.

Table 4.21: Molar magnetic susceptibilities χm and axial anisotropies ∆ χax (in 10−8

m3mol−1) of the [AnIV(DOTA)H2O] complexes from SO-CASPT2 method. For UIV

complex, susceptibilities for the two isomers (SAP and TSAP) are provided.

χ⊥ χ‖ ∆ χax χm χS
⊥ χS

‖ ∆ χS
ax χS

m

UIV SAP 5.85 0.74 -5.10 4.14 -1.48 0.00 1.48 -1.0
TSAP 6.29 1.16 -5.13 4.58 -1.55 -0.18 1.37 -1.09

NpIV SAP 5.73 1.79 -3.94 4.42 -2.23 -0.58 1.66 -1.68
PuIV SAP 2.33a 2.86 0.53 2.50 -1.51a -1.66 -0.15 -1.56

a: Averaged over the two unequal perpendicular components
(
χ11,⊥ < χ22,⊥

)
as shown

in Fig. 4.3.4.

Geometric factors of the nuclei are provided in Table 4.22. A noticeable difference in the

geometric factors can be observed between the SAP and TSAP isomers. Geometric ratio

RK,K′ (Eq. 3.3.2) of two nuclei is not always in agreement with the corresponding pNMR

shifts ratio δ
p
K/δ

p
K′ and this indicates the presence of contact terms. Since in the solution

the complexes are axially symmetric, pseudocontact shifts δ
pc
K are calculated according

to Eq. 2.6.33 and are provided in Table 4.23. Due to the presence of large rhombicity

of the magnetic susceptibility tensor χχχ , for the PuIV complex, pseudocontact shifts are

calculated according to Eq. 2.6.28 and are compared to the results from the axial for-

mula (Eq. 2.6.33) in Table 4.23. Contact shifts δ c
K are evaluated from the experimental

pNMR shifts δ
p
K after subtracting the calculated δ

pc
K . Large contact shifts are observed

for the chelating oxygen atoms O2 as expected due to having large spin population. But

interestingly, the sign of the contact shifts changes for the O2 in the PuIV complex. γ17O

is negative and the isotropic spin-only magnetic susceptibilities χS
m are also negative for
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4.3. pNMR shifts in axially symmetric [AnIV(DOTA)H2O] complexes

Figure 4.3.4: Principal axes of χχχ tensor of the [PuIV(DOTA)H2O] complex. The symme-
try axis z is shown in purple color.

these complexes, so according to Eq. 2.6.49, large beta spin is present on the O2 nuclei

in the UIV and NpIV complexes, whereas the opposite sign of the contact shift indicates

large alpha spin in the case of PuIV complex. Unrestricted DFT calculations will be em-

ployed for the quantitative analysis of the spin population [81] and to get the details of

the underlying mechanism of spin delocalization vs spin polarization. As χS
m is negative

for all the complexes, the changes in the sign of contact shifts clearly indicates spin delo-

calization plays the dominant role to introduce large beta spin on the adjacent 17O nuclei

in the UIV and NpIV complexes. Whereas in the PuIV complex spin polarization takes

over the spin delocalization probably due to the increased number of unpaired electrons,

and hence large beta spin population on the PuIV center effectively induces greater spin

polarization than the other two metal centers.

Table 4.22: Mean geometrical factor GK (in 10−28 m−3) of the proton and oxygen nuclei
calculated from XRD data.

O1 O2 H ′ac Hac Hax Heq H ′ax H ′eq
UIV SAP -0.9931 -5.8974 -2.0144 -0.8806 2.7322 0.6283 -0.8424 0.4982

TSAP -1.0432 -6.3924 -1.8382 -0.8493 2.8731 0.6683 -0.8303 0.4971
NpIV SAP -1.0432 -6.3040 -1.8933 -0.8859 2.9014 0.6559 -0.8742 0.4867
PuIV SAP -1.0525 -6.4493 -1.8979 -0.8729 2.8876 0.6440 -0.8838 0.4864
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Table 4.23: Pseudocontact δ
pc
K and contact δ c

K contributions to the AIS (in ppm) in
[AnIV(DOTA)H2O] complexes in D2O solution at 9.4 T and 298 K. δ

pc
K is calculated

from Eq. 2.6.33 using the ∆ χax values from Table 4.21 and δ c
K is deduced as δ

p
K −δ

pc
K .

O1 O2 H ′ac Hac Hax Heq H ′ax H ′eq
ThIV δK 323.9 323.9 3.7 3.7 3.5 2.7 2.9 2.9
UIV SAP δK 365.4 1154.3 38.3 19.1 -56.6 -5.9 21.5 0.6

δ
p
K 41.5 830.4 34.6 15.5 -60.2 -8.6 18.6 -2.3

δ
pc
K 22.3 132.5 45.2 19.8 -61.4 -14.1 18.9 -11.2

δ c
K 19.2 697.9 -10.7 -4.3 1.2 5.5 -0.3 8.9

NpIV SAP δK 357.6 724.8 27.2 20.3 -40.0 2.6 17.0 6.9
δ

p
K 33.7 400.9 23.5 16.6 -43.6 -0.1 14.1 4.0

δ
pc
K 18.1 109.4 32.9 15.4 -50.3 -11.4 15.2 -8.4

δ c
K 15.6 291.5 -9.3 1.3 6.8 11.3 -1.1 12.4

PuIV SAP δK 383.6 -57.2 9.2 2.8 0.9 5.4 2.9 10.2
δ

p
K 59.7 -381.1 5.5 -0.9 -2.6 2.7 0.0 7.3

δ
pc
K

:a -2.5 -15.1 -4.4 -2.0 6.7 1.5 -2.1 1.1
δ

pc
K

:b -4.5 -2.1 -2.1 1.2 1.5 6.8
δ c

K
a 62.2 -366 9.9 1.1 -9.3 1.2 2.1 6.2

δ c
K

b 10 1.2 -0.5 1.5 -1.5 0.5

:a: Calculated according to Eq. 2.6.33 with the geometric factors from Table 4.22 :b:
Calculated according to Eq. 2.6.28, δ c

K
a = δ

p
K −δ

pc
K

:a, δ c
K

b = δ
p
K−δ

pc
K

:b

128
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4.4 31P pNMR shifts in La1-xMxPO4 compounds; M =
SmIII, PuIII, AmIII

Crystalline monazites are promising for the encapsulation of nuclear wastes due to their

high chemical and self-irradiation stability. Local structure and magnetism of the M

cations, where M = SmIII, PuIII and AmIII embedded in LaPO4 matrices are studied by

X-ray diffraction and solid-state 31P MAS-NMR 2. The synthesized La1-xMxPO4 matri-

ces contains an amount of paramagnetic metal less than 10 percent i.e. 0 ≤ x ≤ 0.10.

The rare-earth containing La1-xSmIII
xPO4 system is the electronic counterpart of the ac-

tinide containing La1-xPuIII
xPO4 with the 4 f 5 vs 5 f 5 configurations. The 5 f 6 actinide

ion AmIII containing La1-xAmIII
xPO4 matrice is also mixed with a small amount (less

than 3%) of pure AmPO4 as confirmed by the presence of their characteristic 31P NMR

signal and also from the XRD; the lanthanide based analogue is the compound with EuIII

ion as published in Ref [91, 92]. They crystallize in the monazite (P21/n) space group;

each paramagnetic M site has a coordination number of nine and each P site is linked as a

tetrahedron with four non-equivalent O sites. Around coordination sphere of the param-

agnetic metal center, seven phosphate groups are present, four of them are directly linked

to the monodentate O atoms, and the remaining three are attached to the bidentate oxygen

atoms as shown in Fig. 4.4.1. The 31P pNMR shifts in the paramagnetic La1-xMxPO4

are deduced using NMR shifts in LaPO4. In LaPO4, only one NMR signal is observed

whereas in the paramagnetic systems several peaks are observed implying magnetically

different P atoms. But the assignments of the pNMR shifts to the associated P atoms

were a non-trivial task, except one can only count number of extra induced peaks from

the diamagnetic signal.

4.4.1 Ab initio electronic structures

SO-CAS based electronic structure calculations were performed using MOLCAS 7.8 suite

of software on the model clusters [MLa9(PO4)7]9+ based on the XRD structure of LaPO4

[93]. Computational details are provided in Appendix A. The substitution of the central

LnIII cation by either SmIII or PuIII without deforming the coordination sphere was justi-

fied by the close ionic radii for the La, Sm and Pu trivalent ions (1.17, 1.10 and 1.14 Å

, respectively). Since the substituted cations are more contracted than the cations of the

host crystal, one can expect the deformation to be negligible. This cluster consists of the

central M cation and the 9 next nearest neighbors LaIII cations completed with the neigh-

boring PO4 polyhedra. This cluster was further embedded in a sphere of point charges

2Experimental studies were performed in European Commission, Joint Research Centre (JRC), Karl-
sruhe, Germany by Laura Martel et al.
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Chapter 4. pNMR shifts in AnIII and AnIV complexes

Figure 4.4.1: Numbering of the different phosphate groups. Monodentate: P1 (red), P3
(yellow), P4 (green), P7 (brown). Bidentate: P2 (blue), P5 (orange), P6 (purple). Two
orientations are proposed.

of radius 20 Å. The charges were deduced using LoProp charge analysis [94] after a re-

stricted Hartree-Fock (RHF) calculation on [La10(PO4)7]9+ with ANO-RCC-DZP basis:

+2.4, +2.0, -1.1 on La, P, O, respectively.

In Table 4.24, we present the energy of the levels calculated by the SF-CASSCF method.

The ground J manifold of both the SmIII and PuIII is 6H5/2. In the [MLa9(PO4)7]9+, the

ground LS terms 6H split by 500 and 1200 cm−1 at the SF-CASSCF level for SmIII and

PuIII, respectively. The ground J term of the AmIII free ion is a non-degenerate 7F0 term.

The LS 7F term of the [AmIIILa9(PO4)7]9+ complex splits by 1200 cm−1. The larger

splitting in the actinide complex denotes the larger interaction between the cation and the

ligand in actinide complexes [95, 26].

In Table 4.25, we report the energy of the levels including SOC. The 6H5/2 term in

[SmIIILa9(PO4)7]9+ splits by 250 cm−1 and the introduction of spin quartets in the state

interaction does not influence the results. On the contrary, for the PuIII complex, the

splitting of the ground term depends on the number of spin quartets included in the cal-

culation, due to a large J− J mixing. For actinide complexes, the inclusion of dynamical

correlation as for example CASPT2, is necessary to approach quantitative results.

In order to quantify the effect of the number of quartets and the dynamical correlation, the

[PuCl6]3 – complex was used as a benchmark (see Table 4.26). It shows that the splitting

of the ground 6H5/2 term is very sensitive to the quartets and to dynamical correlation and

a large number of quartet states is necessary. While the SO-CASSCF calculation with the

sextet states only gives a splitting of 223 cm−1, it is reduced to 39 cm−1 with quartets and

doublets and dynamical correlation. It should be noted that the energy gap between the
6H5/2 and 6H7/2 manifolds is affected by the doublets. Since this level of description is

not possible for a cluster as large as [PuIIILa9(PO4)7]9+, the energies were fitted on the

experimental curves, but the nature of the states, as characterized by the g-factors (see
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Table 4.24: SF-CASSCF energies (in cm−1) of the [MLa9(PO4)7]9+ complexes.

SmIII PuIII AmIII

sextets quartets sextets quartets septets quintets triplets
0 22342 0 16252 0 18608 33462
6 22345 71 16278 328 18689 33527

275 22441 621 16390 439 18713 33558
284 22448 695 16449 578 18781 33662
327 22486 842 16483 1087 18826 33674
363 22489 975 16497 1200 20536 33711
390 22500 1050 16537 1270 20557 33751
418 22513 1150 16619 20606 33773
450 22539 1169 16690 20643 33805
498 22554 1212 16720 20737 33912
512 22566 1238 16752 20785

6928 22594 5289 16796 20855
6943 22649 5418 16823 20925
6971 22670 5509 16831 20940
7029 22700 5562 16951 21038
7048 22709 5589 16963 21072
7088 22732 5690 17025 21121
7124 22742 5810 17039 21130

Table 4.27) are taken from the SO-CASSCF calculation.

4.4.2 SQUID vs ab initio magnetic susceptibilities

Temperature dependent magnetic susceptibilities of the La1-xSmIII
xPO4 , La1-xPuIII

xPO4

where x = 0.1,1 for both and AmPO4 compounds are recorded and are shown in Fig.

4.4.2. We did not analyze La0.96Am0.04
x PO4 because its contribution will overlap with

that of AmPO4. For La0.90PuIII
0.10PO4, while both XRD and NMR confirm a solid-

solution, an unexpected ferromagnetic impurity was detected and in the case of PuPO4

anti-ferromagnetic transition is observed at 4 K. The deduced experimental effective mo-

ment values are: 1.36 µB for AmPO4 (T = 300K), 1.40 µB for La0.90PuIII
0.10PO4 (T =

300K) and 0.88 µB for PuPO4. They agree with the free ion values of 1.55 µB for SmIII (T

= 300K) and 0.85 µB for PuIII [97]. This reflects the localized nature of the f electrons.

Ab initio calculated magnetic susceptibilities of the model cluster [MLa9(PO4)7]9+ are

also shown in Fig. 4.4.2 for comparison. For the SmIII and AmIII complexes, the magnetic

susceptibility curves deduced from the ab initio calculations reproduce well the experi-

mental data (Fig. 4.4.2 a, Fig. 4.4.2 c). But for the PuIII complex, the ab initio curves

do not fit the experimental ones (Fig. 4.4.2 b). Using [PuCl6]3 – complex (Table 4.26 ),

we observed that the J− J mixing with excited J manifolds by SOC plays a key role and
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Table 4.25: SO-CASSCF energies (in cm−1) of the [MLa9(PO4)7]9+ complexes. The
number of SF states included in the state interaction is specified. Ground J manifolds are
separated by horizontal lines.

SmIII PuIII AmIII

21sext 21sext- 21sext 21sext- 21sext- 21sext- 7sept- 7sept-25quin
100quar 75quar 100quar 150quar 25quin -10trip

0 0 0 0 0 0 0 0
0 0 0 0 0 0 988 1627

186 179 383 453 271 363 1321 1965
186 179 383 453 271 363 1357 1988
254 239 504 649 439 500 3205 4378
254 239 504 649 439 500 3327 4489
910 1068 1760 2622 2500 2667 3383 4551
910 1068 1760 2622 2500 2667 3447 4631
988 1140 1922 2812 2645 2824 3646 4825
988 1140 1922 2812 2645 2824 5981 7333

1103 1263 2207 3143 3037 3116 6001 7344
1103 1263 2207 3143 3037 3116 6014 7401
1135 1296 2302 3270 3151 3225 6075 7466
1135 1296 2302 3270 3151 3225 6105 7509
2034 2324 3955 5590 5396 5602 6135 7531
2034 2324 3955 5590 5396 5602 6141 7598
2090 2376 4077 5716 5507 5721 8171 9854
2090 2376 4077 5716 5507 5721 8381 10075
2186 2470 4261 5944 5700 5914 8435 10189
2186 2470 4261 5944 5700 5914 8599 10258
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Chapter 4. pNMR shifts in AnIII and AnIV complexes

Table 4.27: g-factors of the three first Kramers doublets in the [MLa9(PO4)7]9+ complexes
determined from SO-CASSCF calculations

SmIII PuIII

21sext-100quar 21sext 21sext-75quar 21sext-100quar 21sext-100quar
g1 g2 g3 g1 g2 g3 g1 g2 g3 g1 g2 g3 g1 g2 g3

KD1 0.99 0.16 0.06 0.62 0.12 0.22 1.05 0.17 0.01 1.16 0.12 0.21 1.13 0.20 0.03
KD2 0.66 0.40 0.10 0.52 0.18 0.82 0.66 0.29 0.41 0.74 0.14 0.39 0.73 0.48 0.22
KD3 1.19 0.67 0.04 1.28 0.45 0.19 1.28 0.64 0.00 1.11 0.81 0.09 1.28 0.65 0.04

Figure 4.4.2: Experimental and computed magnetic susceptibilities (in emu.K.mol−1) vs
T (in K) of a). La1-xSmIII

xPO4 (x = 0.01 and 1), b) PuPO4 and c) AmPO4.
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4.4. 31P pNMR shifts in La1-xMxPO4 compounds; M = SmIII, PuIII, AmIII

drastically reduces the energy gaps within the ground J manifold. A correct description

needs many excited states and dynamical correlation, which is not feasible in the present

case. Therefore, the energy gaps were determined by fitting the experimental χT curve,

as described below. As the magnetic properties of the three KDs of the ground J = 5/2

manifold are not affected by the number of quartet states (see Table 4.27), one can write

a model Van Vleck (VV) equation of Eq. 2.6.11 for the three lowest KDs as

χT =
NAµ0µ2

B
3

1
Q0

[
M2

11 +M2
22e−

∆2
kBT +M2

33e−
∆3

kBT +2kBT∗ (4.4.1)M2
12

1− e−
∆2

kBT

∆2
+M2

13
1− e−

∆3
kBT

∆3
+M2

23
e−

∆2
kBT − e−

∆3
kBT

∆3−∆2


+χT IPT

where NA is the Avogadro number, Q0 the partition function, ∆2 and ∆3 the energy gaps

for KD2 and KD3 with the ground state, respectively. M2
II characterizes the magnetic

moment of KDI, with M2
II =

1
2

(
g2

1,I +g2
2,I +g2

3,I

)
, gi,I , i = 1,2,3 the three g-factors of the

Ith KD and M2
IJ = ‖Mx,IJ‖2+

∥∥My,IJ
∥∥2

+‖Mz,IJ‖2 and M2
i,IJ , i = x,y,z the block magnetic

moment matrix within the I and J manifolds, in terms of µB. The direction of the principal

axis of the g tensor for the ground KD with the largest g-factor is represented in Fig. 4.4.3

and the g-factors are given in Table 4.27. While the energy gaps vary with the numbers of

SF states included in the state interaction, the compositions of the three KDs are roughly

unaffected (see Table 4.28). According to the SO-CASSCF results, expressed in the PAF

of the g-tensor of KD1, KD1 is by 91% MJ=±5/2, KD2 by 82% MJ=±3/2 and KD3 by

78% MJ=±1/2. In other terms, with a quantization axis taken as the magnetic axis of KD1,

the three KDs can be approximated by pure MJ states. This is confirmed by Table 4.28,

where the magnetic factors appearing in Eq. 4.4.1 are similar. The fit of χT vs T was

performed considering pure MJ: this allows the determination of three parameters, ∆2, ∆3

and χT IP. Only the points above 3 K were considered. We obtained two solutions with

different orderings of the states. For the 1st solution, the MJ=±1/2 doublet is the ground

state, and the MJ=±5/2 and MJ=±3/2 doublets lie 21 and 92 cm−1 above, respectively. For

the 2nd solution, the MJ=±3/2 doublet is the ground state, and the MJ=±5/2 and MJ=±1/2

lie 15 and 83 cm−1 above, respectively. The two fits obtained are called VV1 and VV2,

respectively, are remarkably similar. The fit with the magnetic moments issued from the

ab initio calculations leads to roughly the same energies and in better agreement with

those published for PuPd2Sn [97] and PuCl3 [98] (as shown in Fig. 4.4.4). It shows that

there is a low-lying doublet at around 20 cm−1, a much lower value than the SO-CASSCF

one. It confirms that, as in the [PuCl6]3 – complex, the J− J mixing plays a key role to

determine the low-lying states.

Finally, the CFPs were determined from CASSCF calculations according to the ITO pro-

cedure. They depend on the Cartesian frame in which the molecule is described. The
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Chapter 4. pNMR shifts in AnIII and AnIV complexes

Figure 4.4.3: Direction of the main principal axis of the ground KD of the
[PuIIILa9(PO4)7]9+ complex, from SO-CASSCF (21sext-150quar).

Figure 4.4.4: Energy levels determined in the present study (Table 4.25) using SO-
CASSCF for SmIII, AmIII, PuIII and a Van Vleck fit (VV). The energy levels were com-
pared with the literature: PuTp3 from Magnani et al. [7] and Gaggioli and Gagliardi [99],
PuPd2Sn [97] and PuCl3 [98]

Table 4.28: Magnetic parameters (in µ2
B) for the three lowest KDs in the

[PuIIILa9(PO4)7]9+ complex calculated with SO-CASSCF (21sext-150quar). They are
compared to pure MJ KD1=±1/2; KD2=±3/2; KD3=±5/2.

M2
11 M2

22 M2
33 M2

12 M2
13 M2

23
pure MJ 0.77 0.36 1.02 0.65 0 0.40

SO-CASSCF 0.71 0.35 0.95 0.56 0.12 0.62
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complexes are rather spherical and there is no obvious choice for the z axis. According

to the SO-CASSCF calculation, the g tensor of the ground KD is axial, but with small

values of g. The crystal field strength parameter S defined according to Eq. 5.3.7 allows

to evaluate the strength of ligand field with only one parameter. It is furthermore rota-

tion invariant. In the following, we will restrict the discussion of the ligand field to this

parameter, and to its derivatives of kth order. The CFPs originate from the position and

nature of the ligands and are deduced as effective parameters that incorporate other phys-

ical effects, as electron-electron interaction and J− J mixing. The CFPs are represented

in Fig. 4.4.5. The comparison between the SF-CASSCF and SO-CASSCF parameters

allows to gauge the effect of J− J mixing. S is worth 230 cm−1 for the SmIII complex

and is more than twice larger for its actinide counterpart, due to larger covalent effects. It

is slightly smaller for the AmIII complex, following the usual trend within a series. The

strength parameters of different orders Sk follow the same trends. With SOC, CFPs can

not be calculated from the ground state of the SmIII complex since it has a non-degenerate

ground state with J = 0. From the J = 5/2 manifold, they can be calculated up to the 4th

order. While S is about the same from SO-CASSCF as from SF-CASSCF, the strength

parameter deduced from the fitted values for PuIII is lower since the splitting of the states

is largely reduced. And finally, the strength parameter of the actinide complex is smaller

than its lanthanide counterpart.

4.4.3 Analysis of 31P pNMR shifts

• Experimental 31P MAS NMR spectra

31P MAS NMR of La1-xMxPO4 are recorded to probe the local structure and magnetism

and also to analyze the metal content in an atomic scale. To deduce the paramagnetic

chemical shifts, the 31P NMR peak that corresponds to the signal of the diamagnetic

P(OLa)7 unit (see peak 1 of Fig. 4.4.6 and Fig. 4.4.7) is used as a reference. To be

noted that the 31P NMR peaks which do not vary with composition (peak 2-5 of Fig.

4.4.6) correspond to the unit P(OLa)6(OM)1 and these extra induced shifts are dictated by

the M cation paramagnetism. As the signal of the P(OLa)5(OM)2 units are overlapping

(La1-xMxPO4 with x 6= 0.01 ), we did not attribute them. They are in the range of 3 to

10 ppm for the SmIII complex, -24 to -92 ppm for the PuIII complex and 27 to 106 ppm

for the AmIII complex (see Table 4.29). These paramagnetic shifts are further separated

in contact and pseudocontact shifts. The former arises from the delocalization of the spin

density of the paramagnetic cation towards the P nucleus through the bonds (Eq. 2.6.49)

and the later from the through space dipolar interaction between the electronic magnetic

moment of the magnetic center and the nuclear magnetic moment of the nucleus (Eq.

2.6.28).
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Chapter 4. pNMR shifts in AnIII and AnIV complexes

Figure 4.4.5: Strength parameters (total and of 2nd, 4th and 6th orders, in cm−1) in the
[MLa9(PO4)7]9+ complexes. They are deduced using the ITO procedure from the ground
L manifold at SF-CASSCF level, from the ground J manifold at SO-CASSCF level, or
from the fit of the experimental curve according to Eq. 4.4.1.

Table 4.29: Experimental 31P NMR shifts in the La1-xMxPO4 complexes. The uncertain-
ties are of ±0.2 ppm.

Peak n° La1-xSmIII
xPO4 La1-xPuIII

xPO4 La1-xAmIII
xPO4

0.01 0.05 0.1 0.01 0.05 0.1 0.04
1 -4.3 -4.5 -4.5 1 -4.5 -4.7 -4.6 1 -4.5
2 -0.6 -0.8 -0.8 2 -27.9 -28.5 -28.9 2 22.8
3 1.7 1.7 1.7 3 -31.8 -31.9 -32.2 3 20.1
4 5.5 5.5 4 -48.7 -48.8 -48.6 4 50.4

5 -69.8 -69.9 -69.9 5 78.6
6 -57.0 -57.4 6 43.4
7 -75.9 -76.2 7 106.9
8 -97.1 -96.6 8 280.9∗

9 -126.3

∗: 31P NMR signal in AmPO4
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4.4. 31P pNMR shifts in La1-xMxPO4 compounds; M = SmIII, PuIII, AmIII

(a) 31P MAS NMR spec-
tra of a) La0.99SmIII

0.01PO4,
b) La0.95SmIII

0.05PO4, c)
La0.90SmIII

0.10PO4,

(b) 31P MAS NMR spectra of a) La0.99PuIII
0.01PO4, b)

La0.95PuIII
0.05PO4, c) La0.90PuIII

0.10PO4,

Figure 4.4.6: 31P MAS NMR spectra in the La1-xMxPO4 compounds where M = SmIII,
PuIII are present in variable concentrations. Peak 1 corresponds to the signal where a P
atom is surrounded by the diamagnetic LaIII cations and no paramagnetic ions in close
vicinity. With the increase of metal content, 31P MAS NMR spectra changes due to the
change of local structure which can be explained as follows: with the increase of metal
concentration three P sites can be linked with the NMR peaks, diamagnetic P(OLa)7 unit
(peak 1), P(OLa)6(OM)1 (peak 2-5), P(OLa)5(OM)2 unit.
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Chapter 4. pNMR shifts in AnIII and AnIV complexes

Figure 4.4.7: 31P MAS NMR spectra in the La0.96AmIII
0.04PO4. Peak 8 corresponds to

the NMR signal in the AmPO4 which is also mixed (less than 4 %) with the compund.

• Pseudocontact shifts

In order to analyze the pseudocontact contribution according to Eq. 2.6.28, we computed

the magnetic susceptibility component using the model systems [MLa9(PO4)7]9+ from

SO-CASSCF methods. The magnetic susceptibility tensors deduced from SO-CASSCF

results as summarized in Table 4.30. In order to evaluate the interaction with the excited

J manifolds, different SO spaces were considered: all states, the ground and first J man-

ifolds (J;J+1), and only the ground J manifold (GS J), except for the AmIII complex

where J = 0 leads to a non-magnetic state. For the three complexes, the J;J + 1 space

provides results similar to all space, but different from the GS J space. It shows that

the states higher that the J + 1 manifold do not contribute quantitatively to the magnetic

susceptibility, while the J + 1 manifold contributes qualitatively. This later manifold is

not statistically populated and contributes by 2nd order Zeeman interaction with the GS

J manifold. The orbit and spin contributions, χL and χS, are evaluated by replacing the

total magnetic moment by its orbit or spin counterpart contribution. In the SmIII and PuIII

complexes, in the GS J = 5/2 space, the spin and orbit contributions, χS and χL, are

opposite in sign, in accordance with Hund’s rules, and this leads to quite small values of

χiso. The orbit contribution is the largest, consequently positive, and the spin contribu-

tion negative. As pointed out by Bleaney [17], the effect of the J + 1 manifold is large

for SmIII complex and reverses the sign of the spin contribution. This is confirmed by the

present study. The coupling with the 7/2 manifold reduces the orbit contribution, reverses

the sign of the spin contribution, and since now the two contributions are additive, χiso is

larger. χL and χS from the GS J space are similar for the SmIII and the PuIII complexes.

The splitting of the ground 5/2 manifold is smaller in the later than in the former (90

against 240 cm−1, fitted energies are considered here for the PuIII complex); those small

splittings allow the three KDs to be populated at room temperature, and the smaller split-
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ting in the PuIII complex leads to slightly larger values for the magnetic susceptibility. For

this complex, the effect of the 7/2 manifold is reduced compared to the SmIII one, since

it lies higher in energy (2500 vs 1000 cm−1) due the larger SOC in the actinide. The orbit

contribution decreases, as the spin one does, without any reversal of sign. It means, that

for the PuIII complex, spin and orbit are opposite in sign, leading to a smaller χiso than for

the SmIII complex. In the AmIII complex, χL and χS are similar and opposite. But since

χiso = χL +2χS, χS is positive and χL negative. To conclude, χS is positive in the SmIII

and AmIII complexes, and negative in the PuIII one.

Table 4.30: Components of the magnetic susceptibility tensor (in 10−3 cm3mol−1) from
SO-CASSCF for the [MLa9(PO4)7]9+ complexes at 309 K. L and S denote the orbit and
spin contributions. Different spaces for SO interaction were considered. For the PuIII

complex, fitted energy levels are used.

M states χL
1 χS

1 χ1 χL
2 χS

2 χ2 χL
3 χS

3 χ3 χiso

SmIII all 0.77 0.19 1.15 0.80 0.16 1.12 1.41 -0.32 0.78 1.01
J;J+1 0.77 0.19 1.14 0.81 0.15 1.11 1.43 -0.33 0.77
GS J 1.44 -0.55 0.33 1.45 -0.58 0.30 1.86 -0.82 0.23

PuIII all 1.37 -0.36 0.64 1.33 -0.35 0.62 1.21 -0.37 0.47 0.58
J;J+1 1.38 -0.37 0.64 1.33 -0.36 0.61 1.22 0.37 1.97
GS J 1.61 -0.62 0.36 1.56 -0.61 0.34 1.43 -0.59 0.24

AmIII all -1.23 1.17 1.12 -0.72 0.79 0.87 -0.81 0.83 0.85 0.95
J;J+1 -1.15 1.17 1.19 -0.77 0.79 0.81 -0.80 0.83 0.85

Table 4.31: Pseudocontact contributions (in ppm) to the paramagnetic shifts at 309 K
in the [MLa9(PO4)7]9+ complexes evaluated using Eq. 2.6.28. The P atoms are labeled
according to Fig. 4.4.1.

P site SmIII PuIII AmIII

P1 2.82 1.24 -2.61
P2 6.65 2.99 11.79
P3 3.01 1.05 -1.77
P4 -1.99 -0.97 -1.80
P5 -5.87 -2.44 -3.10
P6 6.04 2.73 10.87
P7 -5.85 -2.50 -3.91

The three principal components of the susceptibility tensor are rather similar, in accor-

dance with the compactness of the ligands around the paramagnetic center, forming a
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roughly spherical coordination sphere. That is why the dipolar contributions to the pseu-

docontact shifts (see Table 4.31) were evaluated according to Eq. 2.6.28, and not from the

anisotropic axial component, ∆ χax according to Eq. 2.6.33, as it is often the case. Those

values are positive or negative depending on the position of the considered P atom, and

less than 10 ppm, in absolute value. The values are slightly larger for the SmIII and AmIII

complexes, following the slightly larger values for χiso. The calculated pseudocontact

shifts of the P atoms are in the range of the experimental 31P pNMR shifts for the SmIII

complex, but much smaller for the PuIII and AmIII complexes. This shows that the contact

contribution is dominant in the two actinide complexes.

• Contact shifts

The contact shifts depend on χS and on the contact HFC parameter Ac
K , as expressed by

Eq. 2.6.49. The most shifted peaks are expected to correspond to P atoms possessing the

largest spin density at the nucleus. The delocalization of the spin density from the para-

magnetic center to the phosphate depends on the bonding scheme. There are two types

of binding schemes of the phosphate ligands with a given Pu center: four of them bind

through one oxygen atom and are monodentate, while the three other ones bind through

two oxygen atoms and are bidentate (as shown in Fig. 4.4.1). The Pu−O distances vary

from 2.48 to 2.78 Å and the ∠Pu−O−P from 94.6 to 144°. The Mulliken spin densities in

the s orbitals of the phosphorus atoms deduced from CASSCF calculations are different

for the seven P atoms (see Table 4.32). While insignificant in the SmIII complex, it lies

in the 0.0004-0.0020 range for the PuIII and AmIII complexes. Fig. 4.4.8 represents the

dependence of qs(P) in the [PuIIILa9(PO4)7]9+ complex. One should underline that only

the spin delocalization is described by our CASSCF calculations. A larger active space

should be considered for the description of the spin polarization. On the 1st scheme,

qs(P) is compared to the whole Mulliken spin density on the same P atom q(P) (see Ta-

ble 4.32). As expected, they are proportional, but with different proportionality rates for

monodentate and bidentate phosphates. q(P) is in general larger for the bidentate, but

qs(P) is in general not. The Pu−O distance is larger for the bidentate, and consequently,

the Mulliken charge q(O) of the O bridging atom is smaller. There is a main trend that

qs(P) increases with q(O), but not linearly. Inversely, there is a main trend of decrease

of qs(P) in terms of the Pu−O distance (see Fig. 4.4.8 d). Fig. 4.4.8 c shows how qs(P)

depends on the ∠Pu−O−P angles. For the monodentate phosphates, the largest the angle,

the largest the spin density in the s orbitals of the P atom. For the bidentate, qs(P) is the

largest when the two angles are the same, corresponding to a symmetrical bonding by the

two oxygen atoms. This supports the impact of the Fermi contact interaction on the differ-

ent paramagnetic shifts, especially for the actinides, despite the unique crystallographic P

site.
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Table 4.32: Mulliken charges (×103) on the P atoms, total and in the s orbitals, from
CASSCF calculations in the complexes [MLa9(PO4)7]9+. The P atoms are labeled ac-
cording to Fig. 4.4.1

P site SmIII PuIII AmIII

tot s tot s tot s
P1 0.09 0.00 0.38 0.01 0.35 0.02
P2 0.23 0.03 0.96 0.14 0.89 0.12
P3 0.12 0.02 0.81 0.15 0.70 0.13
P4 0.12 0.02 0.54 0.13 0.52 0.13
P5 0.14 0.01 0.84 0.09 0.71 0.07
P6 0.18 0.02 0.87 0.13 0.82 0.12
P7 0.14 0.03 0.64 0.15 0.61 0.15

Figure 4.4.8: Mulliken spin density in the s orbitals of the P atoms against the Mulliken
spin density on P and bridging O atoms, ∠Pu−O−P angles and Pu−O distance in the
[PuIIILa9(PO4)7]9+ complex, from CASSCF. Black: monodentate phosphates, red and
blue: bidentate phosphates, with smaller and larger angles, respectively. Dashed lines
represent linear regressions.
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4.5 Conclusions

The paramagnetic properties of AnIV cations in solution were investigated by actinide

induced NMR chemical shifts in the complexes formed with dipicolinic acid derivatives

(DPA and Et−DPA) and DOTA ligands. Interpretation of experimental data was carried

out by performing ab initio evaluation of the magnetic properties. In the solutions these

complexes are strictly axial, SO-CASPT2 based calculations of the anisotropic suscep-

tibility ∆ χax are used to separate the pseudocontact and contact terms and the spin-only

molar magnetic susceptibility χS
m are also evaluated to interpret the contact terms. There

is significant contact contribution to the paramagnetic chemical shifts even for protons

further from the actinide center which happens to be quite small in the lanthanide coun-

terpart.

In the [AnIV(DPA)3]2 – complexes, it is revealed that the deviations from a mainly pseu-

docontact shift on 1H paramagnetic shift are not principally induced by a greater delocal-

ization of the spin density on the ligand when going from LnIII to AnIV, as it is expected

from more covalent metal-ligand interaction. But, the dominance of the Fermi contact

shift in the 1H paramagnetic chemical shifts was related to weak ∆ χax values. In the same

way, it has been demonstrated that 13C paramagnetic chemical shifts were dominated by

the Fermi contact contribution. The subsequent calculation of the HFC constants Ac
K ,

were compared to spin density calculations using unrestricted SR-DFT based methods. It

is shown that spin polarization mechanism dominates in the 13C Fermi contact shifts of

complexes.

The possibility to separate pseudocontact and contact shifts considering Bleaney’s hy-

potheses of their temperature dependencies for LnIII was investigated. From the con-

sistency between experimental data and SO-CASPT2 calculations, we conclude that the

contact contribution could be approximated as a δ c
K = f (1/T ) law. The theoretical de-

scription of the pseudocontact term revealed the limits to reduce the variation of the para-

magnetic susceptibility to its 1/T 2 component only. For AnIV cations, SO-CASPT2 cal-

culations showed that the temperature variation of ∆ χax could be reduced to I/T 2 and

1/T 3 terms. Experimental data were successfully fitted by ab initio calculations, leading

to a good agreement with experimental ∆ χ
exp
ax values and the individual components χ

exp
‖ ,

χ
exp
⊥ .

In the [AnIV(DOTA)H2O] complexes, like the DPA complexes, large contact shifts are

estimated in 1H paramagnetic chemical shifts based on the first principles description of

the pseudocontact shifts. The magnetization of the actinide center mostly lies perpendic-

ular to An−OH2 bond resulting a negative ∆ χax, except for PuIV with a positive ∆ χax

with a large rhombicity of the susceptibility tensor as also noticed from the presence of

the CFPs related to rhombic environment. The chelating oxygen atoms show large AIS
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mostly originated from a dominant contact mechanism. However, the opposite sign of

the contact shifts for the coordinating O atoms is pointing out a subtle difference in the

underlying mechanism of their origin: dominant spin delocalization in the UIV and NpIV

complexes vs dominant spin polarization in the PuIV complex.

In the La1-xMxPO4 compounds, the pNMR shifts are used to probe the local structure and

magnetism around the paramagnetic metal centers. While all the 31P nuclei around the

diamagnetic ions are chemically equivalent, they are magnetically non-equivalent close to

paramagnetic ions and that results in additional MAS-NMR signals. The analysis of the

magnetic susceptibility data indicates a small splitting of the ground J = 5/2 manifold

of PuIII, even smaller than the lanthanide counterpart SmIII. Ab initio calculations quite

overestimate the splitting for PuIII where J− J coupling plays a major role in dictating

the splitting which needs to be described correctly. All the ions maintain their free ion

character as the magnetic moments are close to the free ion limit. The analysis of the

pNMR shifts suggests that the contact contributions are dominant in the 31P AIS whereas

in the LIS, they are quite small and both the contact and pseudocontact terms are on

the same order. This is as expected due to large overlap of the actinide 5 f shells with

the ligands’ orbitals whereas the lanthanide 4 f shells are quite “buried” inside the atom

and participate less in the bonding. The analysis of the Mulliken spin densities clearly

differentiates the monodentate phosphates from the bidentate ones and underlines the

reason for the large range of the AIS observed in the 31P MAS-NMR spectra.
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Chapter 5

Crystal field parameters in LnIII and
AnIV complexes with the DPA ligand

5.1 Introduction

In this chapter, we will introduce the crystal field theory which describes the interaction

of the f N electrons of a paramagnetic Ln/An ion with the ligand environment. In due

course, we will be also familiar with how to model the interaction by means of few pa-

rameters such that they can be evaluated either by fitting the experimental data or from

ab initio methods. The advantage of using such a parametric evaluation is that it projects

all the information and complexity into the parameters, that are easy to handle and can

be used to compare from one system to another. Since the introduction of the CFT in

the 1930s by Hans Bethe and John H. van Vleck, it has been widely used to interpret the

spectral and magnetic properties of the open shell metal complexes [100, 101, 102]. The

theory is based on a empirical model that best describes the interaction of the unpaired

electrons with the ligand environment by means of few parameters. The number of the

parameters decreases with the symmetry. Early, the parameters were extracted by fitting

the experimental data. But in last few decades, successful descriptions of the open shell

metal complexes with the first principles methods help to evaluate these parameters ab

initio. Here we will mostly deal with the ab initio evaluation of the crystal field param-

eters. A DFT based evaluation of the parameters was first proposed earlier in the 2000s

by Atanosov et al. [103, 104] and then it was extended to wave function based derivation

[105]. In the equivalent operator formalism where the matrix elements are computed in

the equivalent representation of the ab initio space (ΨI, I = 1, ..,2X +1;X = L or J) by

the angular momentum space of the free-ion |L,ML,S,Ms〉 (SF) or |L,S,J,MJ〉 (SO), the

CFPs are extracted as effective parameters with the appropriate spin Hamiltonian written

as
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5.1. Introduction

ĤCF (X) = ∑
k=2,4,6

α
k
X

k

∑
q=−k

Bk
qÔk

q (X) (5.1.1)

where Ôk
q are the ’spin operators’ acting on the model space of X manifold, Bk

q the CFPs,

αk
X the reduced matrix elements. We will discuss in details about Eq. 5.1.1 in section

5.3. Eq. 5.1.1 provides a theoretical framework for modeling the ion environment by

means of corresponding spin Hamiltonian parameters. They can be deduced from the first

principles calculations.

So now the questions arise, what is the significance of these parameters and how are they

useful? In the context of pNMR shifts, the remarkable work of Bleaney in the 1970s

[17] connects the CFT with the descriptions of the pNMR shifts in the Ln complexes as

discussed in section 1.5. Bleaney’s formula as given by Eq. 2.6.34 helps to model the

pNMR shifts (more precisely the pseudocontact shifts) with only one CFP. In his theory,

the magnetic anisotropy in an axially symmetric lanthanide complex was successfully

modeled with the single CFP B2
0. In recent studies, modeling of the experimental pNMR

shifts in the [LnIII(DPA)3]3 – series with Bleaney’s formula showed that the only CFP is

constant along the series [26]. In the domain of molecular magnetism, the CFPs are used

to model the zero-field splitting tensor and reproduce the transition spectra in the EPR

spectroscopy [106]. Ln based single molecular magnets have become a craze in last two

decades [107, 108] and the CFPs have been used to rationalize the ligand environment

which finely tunes their magnetic anisotropy and the relaxation process [109].

In this chapter, we will focus on the ab initio evaluation of the CFPs in the isostructural

[LnIII(DPA)3]3 – complexes where Ln−−Ce−Yb and in the [AnIV(DPA)3]2 – complexes

where An = Th, U, Np and Pu complexes. Their electronic structures are computed ab

initio using CAS based methods which are highly successful to provide a good estimate

of the magnetic properties for Ln/An complexes, permitting a balanced description of the

relativistic and correlation effects, both playing key roles in those complexes [48]. The

wave functions and the corresponding energy levels of a manifold (either a L manifold

or a J manifold of the free-ion) are used to extract the CFPs using two formalisms: (i)

AILFT method which evaluates the CFPs from the splitting of the seven f orbitals due to

the ligands and hence captures the one-electron pictures (ii) ITO method which extracts

the CFPs from the many-electron energy levels and effectively includes the many electron

effects in the CFPs. We will discuss the trends of the CFPs along with the two series and

also compare them in between the LnIII and AnIV. We will also compare the parameters

from AILFT and ITO to understand whether the CFPs are transferable from the orbital to

the many-electron picture or not. We will also see the effect of SOC on the CFPs in the

two series. Another important aspect of comparing the CFPs along a series, namely ’the

trend of covalency’ is also pointed out [110, 111].
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Chapter 5. Crystal field parameters in LnIII and AnIV complexes with the DPA ligand

5.2 Model Hamiltonian in the CFT

The model Hamiltonian in the CFT that describes the f N electrons in the crystal environ-

ment is as follows1

ĤCF = Ĥ0 +V̂res +V̂CF +ĤSO (5.2.1)

where Ĥ0 is the free-ion electronic Hamiltonian (in a.u.) in the central-field approxima-

tion and written as a sum over the one-electron Hamiltonian ĥi as

Ĥ0 =
N

∑
i=1

ĥi =
N

∑
i=1

(
T̂i−

Z∗

ri
+ v̂ee (i)

)
(5.2.2)

where the summation runs over all the N number of f electrons, T̂i the kinetic energy of

the ith electron, next the attraction of the electrons by the screened charge of the metal

nucleus Z∗, v̂ee is the potential energy of an electron in the mean field of other electrons.

The missing electron-electron repulsion energy is included in Vres which is called the

residual Coulomb potential energy term given by

Vres =
N

∑
i> j

1
ri j
−

N

∑
i=1

v̂ee (i) (5.2.3)

ĤSO only considers the one-electron term (spin-own-orbit type) of the SO interactions

derived from the Dirac-Coulomb-Breit Hamiltonian and expressed as

ĤSO =
N

∑
i=1

ξ (ri) l̂i · ŝi = λL̂LL · ŜSS (5.2.4)

where ξ (r) = −1
r

dU(r)
dr with a spherically symmetric potential U (r) for the electrons. In

the Russell-Saunders coupling scheme ∑
N
i=1 ξ (ri) = λ = ±ξnl

2S (2S is the number of the

unpaired f electrons) is the SOC parameter. L̂LL is the total orbital angular momentum of

the f electrons and ŜSS is the total spin angular momentum. The matrix elements of the

spin-orbit Hamiltonian in Eq. 5.2.4 can be easily calculated by expressing L̂LL · ŜSS in terms

of Ladder operators as

L̂LL · ŜSS = L̂zŜz +
L̂+Ŝ−+ L̂−Ŝ+

2
(5.2.5)

where L̂± = L̂x± iL̂y and Ŝ± = Ŝx± iŜy

The many electron operator V̂CF is also written as a sum of the one-electron Hamiltonian

v̂CF (i) as

1List of abbreviations is given at the beginning of the thesis.
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5.2. Model Hamiltonian in the CFT

V̂CF =
N

∑
i=1

v̂CF (i) (5.2.6)

v̂CF is potential energy that an electron have due to surroundings and is expressed as

v̂CF (1) =
Ns

∑
I

Z
|RRRI−rrr|

=
Ns

∑
I

Z√
r2 +a2−2ar cosωI

(5.2.7)

where r and a are the lengths of the position vectors of the electron (rrr) and the Ith point

charge (RRRI), respectively. ωI is the angle between the two vectors. The summation runs

over all the Ns number of point charges (for Oh symmetry, Ns = 6 , for Td , Ns = 4) with

charge −Z (in a.u.) (for simplicity, we are considering similar amount of charge on each

point).

Figure 5.2.1: The point charges around a
metal ion in an octahedral symmetry. ©
the metal ion, • the point charges. The
distance between the metal and the point
charges are a units.

Now Eq. 5.2.7 can be expanded in terms of the

Legendre polynomials Pk (x) with x = cosωI as

v̂CF (1) = Z
Ns

∑
I=1

∞

∑
k=0

rk

ak+1
I

Pk(cosωI) (5.2.8)

and if the length a > r the series converges

which means the electrons are highly localized

on the metal center.

Pk(cosωI) can be expanded with the additional

theorem of spherical harmonics,

Pk(cosωI) =
4π

2k+1

k

∑
q=−k

Y q
k (θ ,φ)Y

q∗
k (θI,φI)

(5.2.9)

where Y q∗
k (θI,φI) = (−1)qY−q

k (θI,φI); θ and φ

are the angular coordinates of the electron and θI and φI are the angular coordinates of

the point charges. So from Eqs. 5.2.8 and5.2.9 we can write,

v̂CF (1) =
4π

2k+1
Z

Ns

∑
I=1

∞

∑
k=0

k

∑
q=−k

rk

ak+1
I

Y q
k (θ ,φ)Y

q∗
k (θI,φI) (5.2.10)

=
∞

∑
k=0

k

∑
q=−k

Bq
krkY q

k (θ ,φ) (5.2.11)

=
∞

∑
k=0

k

∑
q=−k

v̂q
k (5.2.12)

In Eq. 5.2.11, the CFPs, Bq
k = (−1)q 4π

2k+1Z ∑
Ns
I=1

1
ak+1Y−q

k (θI,φI) = (−1)qB−q∗
k are depen-
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Chapter 5. Crystal field parameters in LnIII and AnIV complexes with the DPA ligand

dent on the positions and charges of the ligands and the symmetry of the surroundings.

The matrix elements in between two configurations Ψ and Ψ′ in which an electron occu-

pation differs from one to another in the f orbitals can be calculated as

〈
Ψ|v̂CF |Ψ′

〉
=

∞

∑
k=0

k

∑
q=−k

〈
φa|v̂q

k |φb
〉

(5.2.13)

=
∞

∑
k=0

k

∑
q=−k

Bq
k

∫
Ra(l1;r)Rb(l2;r)rkr2dr∫

Y m1∗
l1

(θ ,φ)Y q
k (θ ,φ)Y

m2
l2

(θ ,φ)sinθdθdφδ (ms,ms′) (5.2.14)

=
∞

∑
k=0

〈
rk
〉 k

∑
q=−k

Bq
k

〈
Y m1

l1
|Y q

k |Y
m2
l2

〉
(5.2.15)

δ (ms,ms′) is the Kronecker symbol and equal to 1 for similar spin orbitals ms = m′s,

otherwise 0. According to the triangle rule of Clebsch-Gordan, these following conditions

must be fulfilled in order the integrals in Eq. 5.2.15 not to vanish,

q = m1 +m2 (5.2.16)

and

|l1− l2| ≤ k ≤ |l1 + l2| (5.2.17)

In the case of transition metals (d orbitals with l = 2) terms with k > 4 will not contribute

and for Ln/An ( f orbitals with l = 3) k > 6 will not contribute in the crystal field splitting.

The first term, with k = 0, does not contribute to crystal field splitting of a given manifold.

Also the crystal field operator is a time-even operator, so essentially, there will be no

harmonics of odd k in the expression of Eq. 5.2.12. Hence in principle, there are 27 CFPs

required to model the crystal field splitting of the f orbitals. But this number is reduced

with the symmetry of the ligand environment. For example, in the case of Oh symmetry,

only two CFPs are left and they are easily deduced by fitting the experimental data or

from the first principles calculations.

5.3 Crystal field Hamiltonian in terms of tensor opera-
tors

CFT models the splitting of the f orbitals by the field created by the ligands surrounding

the metal center. The theory is based on the empirical parameters, known as the CFPs,

that effectively includes all the interactions of the f N electrons of the metal ion with the
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5.3. Crystal field Hamiltonian in terms of tensor operators

ligands. The evaluation of the matrix elements of the crystal field operator in Eq. 5.2.12

depends on the radial part of the f orbitals. If one assumes that all the f orbitals have

the same radial expansion, then v̂q
k operators (or their many-electron counterparts) acting

in the Hilbert space of the Slater determinants may be replaced by the tensor operators

Ôk
q acting in either the l (one electron), L (SF), or J (SO) manifolds. Eq. 5.2.6 is then

equivalent to

V̂CF (X) = ∑
k=2,4,6

α
k
X

k

∑
q=−k

Bk
qÔk

q (X) (5.3.1)

where αk
X =

〈
X
∥∥αk

∥∥X
〉

represents the reduced matrix elements of second, fourth, and

sixth orders, respectively, X = l,L,J according to the considered manifold. The αk
l ele-

ments are determined by the number of f electrons N, the αk
L elements by N and L, and

the αk
J elements by N, L, and J. These reduced matrix elements have been tabulated for

the ground state of each lanthanides ion [36]. Two different paths were followed for cal-

culating the matrix elements of the tensor operators Ôk
q , let us say from the Hilbert space

of a J manifold i.e. Ôk
q (J). In Stevens pathway, as already mentioned in section 1.5,

each Ôk
q is expressed by the Cartesian components Ĵx, Ĵy, Ĵz and their linearly independent

multiplicative terms or in terms of the ladder operators Ĵ± and their higher order terms.

In Stevens notation, the crystal field Hamiltonian is commonly written as

V̂CF (J) = ∑
k=2,4,6

α
k
X

k

∑
q=−k

Aq
k

〈
rk
〉

Ôk
q (J) (5.3.2)

where Aq
k

〈
rk〉 are the CFPs in Stevens notations. Note that, the CFPs explicitly contain

the radial dependencies and separation of Aq
k

〈
rk〉 to obtain the actual parameters Aq

k is not

straight forward in the case of molecules.

In the second approach, the Ôk
q operators with k ≥ 2 are derived successively from order

1 operators
(
Ô1

0, Ô
1
±1
)

using the recursive formula,

Ôk
q = Nk (−1)q

∑
q1,q2

(
k−1 1 k

q1 q2 −q

)
Ôk−1

q1
Ô1

q2
(5.3.3)

where the 2×3 array denotes the 3 j symbol and Nk is the constant ensuring the normal-

ization of the square sum of the 3 j symbols and depends only on order k. The matrix

elements of Ôk
q are then calculated from the J manifold using Wigner-Eckart theorem as

〈
J,MJ

∣∣∣Ôk
q

∣∣∣J,M′J〉 = (−1)J−MJ
〈

J
∥∥∥Ôk

∥∥∥J
〉( J k J

−MJ q M′J

)
(5.3.4)

where
〈
J
∥∥Ôk

∥∥J
〉

are the reduced matrix elements αk
J written explicitly in Eq. 5.3.1. The
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Chapter 5. Crystal field parameters in LnIII and AnIV complexes with the DPA ligand

CFPs in Eq. 5.3.1 are written in Wybourne convention [35]
(
Bk

q
)

and throughout this

chapter this convention is used. One needs a prefactor going from Stevens notation to

Wybourne.

The CFPs depend on the orientation of the molecule in the {x,y,z} frame. They are in

general imaginary and any rotation around the z axis affects the phase factor mixing of Bk
q

and Bk
−q . For the Ln or An DPA chelates, z is chosen as the pseudo C3 axis as shown in

Fig. 5.3.1 and the choice of the x and y axes is arbitrary. Hence, only the norm of these

parameters is considered.

B̄k
q =

√∣∣Bk
q
∣∣2 + ∣∣Bk

−q
∣∣2 (5.3.5)

For the sake of comparison, rotational invariants are defined in order to reduce the large

number of CFPs to fewer parameters. We considered the strength parameter of kth order,

Sk =

[
1

2k+1

k

∑
q=−k

∣∣∣Bk
q

∣∣∣2]1/2

(5.3.6)

and the strength parameter as defined by Chang et al. [112]

S =

[
1
3 ∑

k

1
2k+1

k

∑
q=−k

∣∣∣Bk
q

∣∣∣2]1/2

(5.3.7)

These two strength parameters are rotational invariant. To quantify the symmetry about

the z axis, the strength parameter of qth index is considered,

Sq =

[
∑
k

1
2k+1

∣∣∣Bk
q

∣∣∣2]1/2

(5.3.8)

This parameter is not rotational invariant, but it is invariant to rotations about the z axis.

The parameter S allows the strength of the ligand field to be evaluated with only one

parameter and gives an idea of the overall splitting of the ground J manifold. In this

chapter, CFPs are deduced using two methods: the ITO method in which the CFPs are

deduced from the many-electron energies and wave functions of the considered J mani-

fold following a matrix decomposition technique; the AILFT method which is essentially

a least-square fitting procedure and the CFPs are extracted from the one electron picture.

5.4 Crystal field parameters by ITO method

This method has been proposed by Ungur and Chibotaru [113]. The CFPs are deduced

from the 2J + 1 wave functions |ΨI〉 and the corresponding energies EI of a J manifold
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5.4. Crystal field parameters by ITO method

(a)

(b)

Figure 5.3.1: [LnIII(DPA)3]3 – complexes, (a) top view (b) side view. Color code: orange-
Nd, blue- N, red- O, saddle-brown- C, white- H. z axis is shown in light red color.

calculated with a CAS based methods. This supposes that this manifold is well separated

from the other ones and easily identifiable. In a first step, the ab initio 2J+1 states must be

assigned to the |J,MJ〉 (MJ =−J,J) of the model space. This is the key step. Noting that

the |J,MJ〉 are innately eigenvectors of the Z component of the total angular momentum

operator Ĵz, and according to Wigner-Eckart theorem, of the Z component of the magnetic

moment M̂z. Consequently, diagonalizing the matrix representation of M̂z in the set of the

{|ΨI〉} provides the eigenvectors
{∣∣Ψ̃M

〉}
which are the ab initio counterparts of the

model |J,MJ〉. A phase factor must be assigned for the one to one correspondence. This

can be achieved in a way such that the super-diagonals of M̂x and M̂y become real and

imaginary, respectively. Finally, the Hamiltonian matrix HAI (AI stands for ab initio),

which is diagonal in the original set |ΨI〉, is expressed in the
{∣∣Ψ̃M

〉}
basis. HAI is the

matrix to be decomposed in terms of “spin matrices” ΩΩΩ
(k)
q of Ôk

q generated in the Hilbert

space of the J according to Eq. 5.3.4 in order to obtain the CFPs.

HAI =
2J

∑
k=0

k

∑
q=−k

(−1)q Q(k)
q ΩΩΩ

(k)
q (5.4.1)

The expansion coefficients are obtained by orthogonal projection

Q(k)
q =

2k+1∣∣〈J∥∥O(k)
∥∥J
〉∣∣2 (−1)q Tr

(
ΩΩΩ

(k)†
−q HAI

)
(5.4.2)

Tr denotes the trace and † the conjugate transpose. Since the size HAI is 2J+1, Eq. 5.4.2

leads to (2J+1)2 coefficients Q(k)
q . Because the CFPs are obtained by a decomposition

technique, there is no loss of information. Q(0)
0 is zero, and as the Hamiltonian is a time-

even operator, the terms with odd values of k vanish. Parameters with k > 6 appear to be

negligible in the case of wave functions built from pure f orbitals. The correspondence
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Chapter 5. Crystal field parameters in LnIII and AnIV complexes with the DPA ligand

between the model space |J,MJ〉 and the many-electron ab initio wave functions is based

on the similarity between the ab initio MAI
u (u = x,y,z) and the model MJ

u matrices of the

magnetic moment components operators

δmu =

√
Tr (MJ

u−MAI
u )

†
(MJ

u−MAI
u ) (5.4.3)

An another index δh is introduced for quantifying the similarity between the ab initio

representation matrix HAI and the model matrix up to 6th order H̃

δh =

√
Tr
(
H̃−HAI

)† (H̃−HAI
)

(5.4.4)

5.5 Crystal field parameters by AILFT method

This method was developed by Atanasov, in a first time with Daul using DFT calculations

[103, 104] then with Neese for WFT [105]. The SO-CASSCF calculations provide the

energies EI and wave functions ΨAI
I of all M states arising from the 4 f N configuration.

They are developed as

|Ψ〉AI
I =

CI

∑
J=1

CIJ |Φ〉J (5.5.1)

with ΦJ a Slater determinant with N occupied f orbitals. The Hamiltonian matrix HAI is

built in the basis of the |Φ〉J expressed in terms of the real f orbitals. Since the ab initio f

orbitals are close to pure metallic f orbitals, the correspondence with their model counter-

part is easily performed. The model Hamiltonian of Eq. 5.2.1 depends on the parameters

pi , (i) the Slater-Condon parameters for electron-electron repulsion F2 , F4 and F6, (ii)

the 27 CFPs associated to f orbitals, i.e. one parameter for each independent ligand field

matrix elements 〈 fm |v̂CF | fm′〉, (iii) the effective one-electron SOC parameter ξ (r) . Its

matrix HLFT (pi) is expressed in the same basis of Slater determinants as the electronic

structure calculations. The correspondence element-by-element of the two matrices leads

to the equations to be solved. The problem is by far over-determined, but all equations

are linear in the unknowns.

Those M (M−1)/2 equations arise from HLFT (pi) = HAI (AI stand for ab initio) and

may be written in the form

AP = Y (5.5.2)

where P = {pi}. The parameter vector PPP is then determined by a least-square procedure

according to
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5.6. Crystal field parameters in the [LnIII(DPA)3]3 – chelates

P =
(

A†A
)−1

A†Y (5.5.3)

5.6 Crystal field parameters in the [LnIII(DPA)3]3 – chelates

• XRD structures and ab initio energy levels.

The LnIII(DPA)3(C3H5N2) ·3H2O; Ln−−Ce−Yb series of compounds is isostructural.2

The complexes have been structurally characterized by X-ray diffraction, except for PrIII,

and crystallize in the triclinic space group P1 [26]. The coordination sphere contains three

DPA2 – ligands that form a distorted tricapped trigonal prism (see Fig. 5.3.1). Each of the

DPA2 – is tri-coordinated with the metal center using the two carboylate-O atoms and the

pyridine-N atom. The distances between the metal center and coordinated O atoms range

from 2.51 (Ce−O) to 2.37 Å (Yb−O) and the distance of the coordinated N atoms changes

from 2.63 (Ce−N) to 2.45 Å (Yb−N). The systematic decrease in the bond lengths along

the series follows the trend of lanthanide contraction. Due to the presence of counter ions,

the ternary symmetry is slightly distorted, and for a given complex, the distances between

the metal ion and the three ligands differ by about 0.1 Å. The oxygen atoms are closer

than the nitrogen ones, and are more electronegative, as confirmed by the LoProp charges

[94] of around -0.77 on O and -0.32 on N respectively. The LoProp charges on central

LnIII ion is close to +2.50 for all along the series. The angle between the oxygen atoms

and the pseudo C3 axis is rather constant along the series at around 46°. This denotes that

the coordinated ligand environment is prolate. The z axis is perpendicular to the plane

formed by the three nitrogen atoms as shown in Fig. 5.3.1.

The energy levels from SO-CASSCF calculations in MOLCAS (denoted by M) and ORCA3

(denoted by O) are tabulated in Table 5.1. Computational details are provided in Ap-

pendix A. In both softwares, the energy levels are almost similar in magnitude although

they are calculated with different basis sets and with slightly different approximations.

This shows a parallelism between the two codes at the CASSCF level. The ligand field

splittings of the ground J manifolds of the LnIII ions are plotted in Fig. 5.6.1 and the

CFPs are extracted from the energy levels and the wave functions of the corresponding

J manifold. The ab initio SF ground LS and the SO ground J manifolds are easily iden-

tifiable using three Hund’s rules and usually they are well separated. In the lanthanide

complexes, the energy splitting of the free-ion Hamiltonian (see Eq. 5.2.1 ) states follow

2All the LnIII(DPA)3(C3H5N2) ·3H2O compounds were synthesized by Claude Berthon et al. at CEA
Marcoule, France.

3SO-CASSCF/AILFT calculations on [Ln(DPA)3]3 – complexes were performed by Dr. Julie Jung at
Los Alamos National Laboratory (LANL), New Mexico, USA using ORCA. The results are discussed here
for the sake of comparison with SO-CASSCF/ITO results in MOLCAS.
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Table
5.1:

E
nergy

(in
cm
−

1
)

of
the

[L
n

III(D
PA

)3 ] 3
–

series
calculated

w
ith

SO
-C

A
SSC

F.G
round

J
values

are
also

given.
T

he
energies

of
the

ground
J

m
anifolds

are
separated

by
horizontallines.

C
e

Pr
N

d
Sm

E
u

T
b

D
y

H
o

E
r

T
m

Y
b

J
5/2

4
9/2

5
/2

0
6

15/2
8

15/2
6

7/2
M

O
M

O
M

O
M

O
M

O
M

O
M

O
M

O
M

O
M

O
M

O
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

18
20

0
0

0
0

340
334

1
0

0
0

6
6

0
0

18
18

0
0

349
349

43
47

48
46

75
74

367
360

56
65

19
20

7
8

20
22

53
55

42
41

349
349

68
74

48
46

75
74

416
412

61
70

19
20

53
53

20
22

104
108

42
41

390
391

144
145

155
157

120
125

1015
976

72
82

40
39

66
64

99
99

126
127

118
117

390
391

152
156

155
157

120
125

1034
994

93
108

40
39

92
89

99
99

171
172

118
117

2328
2311

255
261

300
298

1035
1029

1079
1037

97
183

61
55

114
112

130
131

194
200

229
232

2328
2311

315
320

300
298

1035
1029

1106
1063

173
187

61
55

118
116

130
131

201
205

229
232

2639
2615

471
476

374
369

1081
1070

1131
1084

177
202

99
94

128
127

181
182

231
241

10355
2639

2615
2286

374
369

1081
1070

1959
1856

191
205

99
94

180
176

181
182

239
249

10355
2805

2787
2294

2076
1176

1161
1994

1888
191

218
158

161
184

180
241

242
259

262
10403

2805
2787

2301
2076

1176
1161

2003
1896

209
220

158
161

212
210

241
242

268
275

10403
2914

2894
2317

2091
1255

1239
2005

1901
211

211
215

270
265

268
268

287
292

10516
2914

2894
2352

2091
1255

1239
2025

1918
2250

211
215

272
266

268
268

6825
10516

2363
2137

2325
2047

1939
2284

261
265

285
280

324
324

6839
2417

2137
2325

2052
1944

2295
261

265
296

292
324

324
6915

2430
2179

2349
2947

2329
3485

297
293

6675
6925

2555
2179

2349
2965

2339
3485

5185
6703

6930

M
:in

M
O

L
C

A
S,O

:in
O

R
C

A

156



5.6. Crystal field parameters in the [LnIII(DPA)3]3 – chelates

Ce Pr Nd Sm Tb Dy Ho Er Tm Yb
0

100

200

300

400
E 

(c
m

1 )

Figure 5.6.1: Ligand field splittings (in cm−1) of the ground J manifolds in the
[LnIII(DPA)3]3 – series calculated with the SO-CASSCF method. Room temperature en-
ergy is shown by the horizontal line.

the order V̂res � ĤSO > V̂CF . The ligand field splittings of the ground LS terms ranges

from 500−1000 cm−1 in SF-CASSCF calculations; they are larger in the first half of the

series. The splitting of the ground J manifold by the ligand field is around 300 cm−1 quite

less than the energy separation between the J and J + 1 manifolds (see Table 5.1). The

weight of the ground LS manifold to the ground J wave functions is around 98% quite

larger that the AnIV series where it is 86-88%. This shows that the J− J coupling is not

as important in the Ln as it is in the An complexes. At room temperature (200 cm−1),

as a first approximation, all the states of a J manifold are significantly populated and

the magnetic anisotropies of the states are canceling each other resulting in an isotropic

Curie behavior of the magnetic properties. The anisotropy originates from the ligand field

splitting of the J manifold and hence CFPs are useful to model it.

The anisotropic magnetic information of the ground state can be obtained by running ex-

periments (such as EPR) at very low temperature. The nature of the ground state magnetic

anisotropies of the LnIII ions in a highly axial environment are nicely discussed in details

in the article published by Rinehart and Long [114]. The energy levels of the Kramers

ions (CeIII, NdIII, SmIII, DyIII, ErIII, YbIII) with odd number of unpaired electrons are

doubly degenerate i.e. the KDs. The magnetic properties of a KD are modeled with the

g tensor. The principal g-factors of the ground KDs are listed in Table 5.2. The ground

state magnetic anisotropies are axial for CeIII, NdIII, DyIII ions, whereas they are planar

for SmIII, ErIII, YbIII. The g tensor anisotropy axes are significantly deviated from the

pseudo C3 axis as shown by the value of α (the angle between the principal axis of g‖
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Chapter 5. Crystal field parameters in LnIII and AnIV complexes with the DPA ligand

and z axis) in Table 5.2. This shows that the Hilbert space of the ground KD cannot be

modeled with pure MJ states, rather they are highly mixed.

Table 5.2: g-factors of the ground KD for the [LnIII(DPA)3]3 – series with odd number of
electrons. g‖ is the g-value whose principal axis is making the smallest angle α (in °)with
the pseudo C3 axis.

Ln g⊥ g⊥ g‖ α(°)
Ce 0.9 0.4 2.2 7
Nd 3.0 1.9 2.6 42
Sm 0.1 0.8 0.2 35
Dy 4.3 1.0 14.6 42
Er 3.7 12.5 1.6 6
Yb 2.4 6.1 1.2 31

• Crystal field and strength parameters.

CFPs were calculated with both AILFT and ITO methods. For ITO, the manifolds with

J < 3 do not provide CFPs of 6th order since the expansion of Eq. 5.4.1 is limited to

2J. This artificially leads to smaller strength parameters S and Sq, due to the restricted

sum of terms. To overcome this limitation, the CFPs of 6th order (and all orders for

EuIII) are deduced from the 1st excited J manifolds. The CFPs calculated by ITO and

AILFT methods are tabulated in Tables 5.4 and 5.5. The one-to-one mapping of the ab

initio states and the model states |J,MJ〉 of the free-ion are performed by minimizing

the distances δmu, defined in Eq. 5.4.3 with u = x,y,z and they are tabulated in Table

5.3. The model and ab initio magnetization matrices differ more in the first half of the

series, especially for NdIII and SmIII. In the second half of the series, the values of δmu

are smaller than the first half and they almost vanish for YbIII. The same tendency is

observed for δh (defined in Eq. 5.4.4 ) in Table 5.3 which quantifies the similarity of the

ab initio and model matrices expanded up to the sixth order. This manifests that LnIII ions

in the second half of the series are more close to the free-ion than the first half ions which

are more perturbed by the ligand field of the three DPA2 – ions. This is in agreement with

the large ligand field splittings of the 2S+1L or J terms of the free-ion (as shown in Fig.

5.6.1) obtained from CASSCF calculations in the first half of the series.

The two methods give similar CFPs. This confirms that CFPs extracted from orbital and

many-electron levels are very close due to the small ZFS of the 4 f orbitals. While B2
0, B4

0,

B6
0, B̄4

3, B̄6
3, and B̄6

6 are worth several hundred wave numbers, all the other parameters are

smaller than 100 cm−1. This is in agreement with the approximate threefold symmetry

of the complexes. These six dominant CFPs are plotted for the series in Fig. 5.6.2.
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5.6. Crystal field parameters in the [LnIII(DPA)3]3 – chelates

Table 5.3: δmu (u = x,y,z) (in µB) and δh (in cm−1) distances between ab initio and
model matrices for the [LnIII(DPA)3]3 – complexes.

Ln gJ δmx δmy δmz δh
Ce 6/7 0.30 0.30 0.23 0
Pr 4/5 0.30 0.28 0.17 18
Nd 8/11 0.51 0.48 0.18 36
Sm 2/7 0.55 0.60 0.28 0
Tb 3/2 0.23 0.25 0.17 3
Dy 4/3 0.24 0.22 0.19 6
Ho 5/4 0.22 0.21 0.18 3
Er 6/5 0.13 0.13 0.09 2
Tm 7/6 0.06 0.06 0.04 3
Yb 8/7 0.03 0.03 0.02 0

Table 5.4: CFPs (in cm−1) in the [LnIII(DPA)3]3 – series calculated with ITO.

Ln B2
0 B̄2

1 B̄2
2 B4

0 B̄4
1 B̄4

2 B̄4
3 B̄4

4 B6
0 B̄6

1 B̄6
2 B̄6

3 B̄6
4 B̄6

5 B̄6
6

Ce 276 66 61 -720 26 75 985 71 -687 30 94 897 10 107 838
Pr 206 67 58 -648 41 69 749 31 -523 29 88 662 43 88 774
Nd 123 90 59 -540 22 39 524 17 -423 32 75 602 48 98 733
Sm 217 58 79 -260 45 60 477 99 -362 22 76 412 31 64 636
Eu 240 71 36 -206 10 86 457 38 -491 35 60 335 42 86 490
Tb 223 77 54 -445 16 50 456 13 -471 45 33 397 27 47 628
Dy 207 83 55 -414 8 47 362 31 -340 25 49 337 31 50 546
Ho 211 82 51 -317 7 29 287 20 -327 21 43 317 28 44 500
Er 265 76 41 -319 12 43 317 44 -331 10 43 290 13 36 461
Tm 223 90 57 -258 3 31 249 24 -278 21 38 264 28 41 437
Yb 210 90 52 -251 3 27 222 17 -274 19 36 238 29 35 394
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Chapter 5. Crystal field parameters in LnIII and AnIV complexes with the DPA ligand

Table 5.5: CFPs (in cm−1) in the [LnIII(DPA)3]3 – series calculated with AILFT.

Ln B2
0 B̄2

1 B̄2
2 B4

0 B̄4
1 B̄4

2 B̄4
3 B̄4

4 B6
0 B̄6

1 B̄6
2 B̄6

3 B̄6
4 B̄6

5 B̄6
6

Ce 282 78 62 -740 35 52 941 48 -510 15 113 789 40 120 889
Pr 278 70 69 -672 31 55 823 37 -513 13 98 710 33 95 856
Nd 265 79 60 -589 23 48 699 34 -478 13 85 627 19 89 779
Sm 240 83 56 -471 17 43 525 31 -403 14 67 487 18 71 649
Eu 239 85 54 -427 18 38 466 29 -380 15 60 442 17 65 599
Tb 223 76 50 -351 11 41 363 21 -335 12 49 358 20 49 522
Dy 234 81 54 -325 13 38 328 22 -327 12 47 333 20 47 496
Ho 236 79 49 -294 10 31 289 19 -310 11 40 301 19 39 460
Er 238 75 44 -272 10 31 260 17 -296 12 38 276 17 36 435
Tm 236 85 54 -251 11 31 233 18 -278 12 36 253 20 36 409
Yb 230 87 50 -239 9 27 213 18 -266 12 32 232 19 30 392

Indeed, within the trigonal C3 point group, only those six CFPs would be non-zero. B2
0 is

positive while B4
0 and B6

0 are negative, and the remaining three CFPs are of the same order

of magnitude. The positive sign of B2
0 is in agreement with prolate environment of the

ligands field around the metal center. All the CFPs are transferable along the series with

an overall decrease in magnitude. This confirms that the effects of ligands and central ion

are decorrelated and independently described by the parameters Bk
q and αk

J of Eq. 5.3.1,

respectively. In the case of high axial symmetry as the assumptions taken in Ref. [114],

the energy splitting of the |MJ| states can be modeled with only one CFP B2
0 as

E|MJ | = α
2
J B2

0
〈
J,MJ

∣∣Ô2
0
∣∣J,MJ

〉
(5.6.1)

= α
2
J B2

0
(
3M2

J − J (J+1)
)

(5.6.2)

The sign of α2
J alternates in every quarter of the Ln series. If the sign of B2

0 is posi-

tive; when α2
J > 0, the lower energy states are dominated by the lower MJ values and

vice versa. So according to it, the nature of the ground state magnetization alternates

between planar and axial following the sign of α2
J . In the case of CeIII, NdIII and DyIII

α2
J is negative where as for SmIII, ErIII and YbIII, it is positive. So one would expect

that the ground state magnetization should be axial for the former while it is planar for

the later trio. These trends are hardly reproduced in the ab initio g tensor of the ground

KD i.e. one can still be able to assign the axiality or planarity. However since the 4th

and 6th orders CFPs, as well as the ternary non-diagonal parameters are non-negligible,

the ground states are by far from modeling them with the pure MJ eigenstates. Another

domain in which CFPs are successfully applied is the modeling of paramagnetic NMR

shifts of lanthanide complexes. According to Bleaney’s formula in Eq. 2.6.34, the pseu-
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Figure 5.6.2: Dominant CFPs in the [LnIII(DPA)3]3 – series. Full line: AILFT; dashed
line: ITO

docontact shifts in the axially symmetric LnIII complexes depend on the 2nd order CFP

B2
0 (in Stevens notation, B2

0 = 2A0
2
〈
r2〉). B2

0 can be evaluated from pNMR shifts within

the lanthanide series, assuming it is constant throughout the series. In Ref. [26], pNMR

shifts in the [LnIII(DPA)3]3 – series were measured and modeled according to Bleaney’s

theory, and B2
0 was determined to be 51 with an arbitrary unit applying. This corresponds

to 62 cm−1 after unit conversion. This value is four times smaller than the value of 250

cm−1 obtained from ab initio calculations. However, it should be noted from Fig. 5.6.2

that B2
0 is almost constant across the series and is the only CFP showing this trend, which

supports Bleaney’s theory. It shows that Bleaney’s B2
0 which parametrizes the entire mag-

netic anisotropy according to Eq. 2.6.34 in a single parameter, is not clearly related to the

“true” B2
0.

The strength parameters are tabulated in Tables 5.6 and 5.7 and the dominated parameters

are represented in Fig. 5.6.3. As discussed in Section 5.3, the strength parameter S

defined by Eq. 5.3.7 gathers in only one parameter the 27 CFPs and allows an easy

evaluation of the strength of the metal-ligand interaction. This facilitates the comparison

between two complexes. The CFPs decrease in magnitude along the series. In the pure

electrostatic picture, according to Eq. 5.2.11, the CFPs are determined by the position

and charge of the ligands, as well as by the radial expansion of the 4 f orbitals. Due to

the lanthanide contraction along the series, the ionic radius decreases and concomitantly

the 4 f orbitals are becoming more inner shell. As a consequence, the coordination sphere

shrinks along the series. In an isostructural series, the structural changes are smooth

and, as a first approximation, because they are determined only by the ligands, the CFPs

may be considered as transferable from one lanthanide ion to another inside a series, as

observed by Abragam and Bleaney [36]. Figure 5.6.3 denotes a smooth variation of the

CFPs; one may say, as a first approximation, that they are transferable from one ion to

the next one with a small variation. But one may not say that they are constant across the

whole series. As was shown in Ref. [115], the trends in the many-electron spectra are
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Chapter 5. Crystal field parameters in LnIII and AnIV complexes with the DPA ligand

much more tricky to analyze, because of the large variation of the αk
J , especially of α2

J

which changes three times of sign along the series.

Table 5.6: Strength parameters (in cm−1) in the [LnIII(DPA)3]3 – series calculated with
ITO.

Ln S S2 S4 S6 S0 S1 S2 S3 S4 S5 S6

Ce 434 136 525 521 330 45 64 583 34 42 329
Pr 350 108 416 428 276 48 60 438 22 35 304
Nd 292 88 306 394 222 59 51 342 20 38 288
Sm 241 115 248 316 164 43 65 277 48 25 249
Eu 218 119 230 274 186 47 52 252 24 34 192
Tb 249 116 262 321 221 52 43 265 12 18 246
Dy 212 112 221 271 191 54 46 216 19 20 214
Ho 187 112 173 251 168 53 39 184 14 17 196
Er 188 130 186 234 184 49 37 188 21 14 181
Tm 166 120 147 216 153 58 42 157 16 16 171
Yb 153 115 135 197 147 57 38 140 14 14 155

Table 5.7: Strength parameters (in cm−1 ) in the [LnIII(DPA)3]3 – series calculated with
AILFT.

Ln S S2 S4 S6 S0 S1 S2 S3 S4 S5 S6

Ce 417 141 509 492 311 52 64 541 27 47 349
Pr 381 139 449 462 293 47 63 478 22 37 336
Nd 337 134 385 417 265 51 55 411 18 35 306
Sm 269 124 294 340 221 53 49 313 16 28 255
Eu 247 124 263 312 207 55 45 280 15 25 235
Tb 206 115 209 267 180 48 42 221 13 19 205
Dy 195 121 190 253 176 52 43 202 13 18 194
Ho 180 121 169 233 168 50 38 180 11 15 180
Er 169 120 154 219 162 48 35 164 11 14 171
Tm 160 123 139 205 155 54 40 148 11 14 160
Yb 152 121 129 194 150 55 36 135 11 12 154

The variation of the CFPs along the series is smoother with AILFT than with ITO (see Fig.

5.6.2). In the first half, the ITO values are smaller than the AILFT values, while the oppo-

site trend is found in the second half. Also, there are more irregularities in the ITO values,

especially in the first half of the series. In the first half, the value of J is small according to

3rd Hund’s rule, and the different J manifolds are closer to each other according to Landé

rule. One could suspect the SOC between the J manifolds to be at the origin of those

irregularities. The CFPs deduced before and after the inclusion of SOC, within the L and
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Figure 5.6.3: Strength parameters for the [LnIII(DPA)3]3 – series. Full line: AILFT;
dashed line: ITO.

Figure 5.6.4: Strength parameters (in cm−1) in the [LnIII(DPA)3]3 – series calculated from
the ground J (plain line) and the L (dashed line) manifolds.
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J ground manifolds, respectively, are shown on Fig. 5.6.4. They are found to be very simi-

lar.
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Figure 5.6.5: Slater-Condon parameters (in
cm−1) in the [LnIII(DPA)3]3 – series.

It shows that the J− J coupling, which is

more important in the beginning of the se-

ries, does not affect the CFPs. The Slater–

Condon parameters, which describe the

electron–electron interaction, increase (see

Fig. 5.6.5). These tendencies show that the

overlap of the metallic and ligand orbitals,

which is tiny, decreases in the series. Fi-

nally, the difference between AILFT and

ITO CFPs should be imputed to electron-

electron effects. The former method deter-

mines the CFPs at the one-electron level,

while the parameters for electron-electron

repulsion and SOC are determined independently with additional parameters. In the ITO

method, the CFPs are determined from the decomposition of the many-electron wave

functions, and describe the other interactions in an effective way. One may not conclude

that one approach is more reliable than the other one: AILFT provides one-electron CFPs

and, with the knowledge of Slater-Condon parameters and the SOC constant, the energy of

all the states arising from the 4 f N configuration might be calculated. The ITO technique

provides effective many electron CFPs, and is specific to each J manifold. For magnetic

properties which arise only from the ground J manifold, ITO are recommended since they

reproduce exactly the energies of this manifold, while for spectrocopies involving excited

J manifolds, AILFT are more suitable.

Point charge model

In order to analyze those variations, a point charge (PC) model has been considered, where

each atom of the ligands is represented by a PC deduced from its LoProp ab initio value.

The electrostatic potential created by the PC model and the ab initio ligands are similar

(see Table 5.8). The PC and ab initio strength parameters are compared in Figure 5.6.6.

The PC strength parameter is rather constant in the series. Since the dipole and quadrupole

moments determined from both models are almost identical, the difference between PC

and ab initio calculations represent covalent contributions, which include combined ef-

fects of bonding, charge donation and polarization. In the electrostatic model, the CF is

axial and dominated by 2nd order terms (S2 and S0 dominant), while the other terms are

almost negligible. This prevalence of the 2nd order for electrostatic models was already

observed in PrCl3 and sandwich complexes [115]. It confirms that 4th, 6th and non-axial
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Table 5.8: Dipole du (in D) and quadrupole Quv (in D ·Å) moments in the [LnIII(DPA)3]3 –

series, full ab initio (AI) and with the point charge model (PC).

Ln dx dy dz Qxx Qxy Qxz Qyz Qyz Qzz

Ce AI 1.55 1.22 1.01 17.11 -5.48 3.00 42.02 4.68 -59.13
PC 1.42 1.30 -1.10 19.05 -5.08 2.77 43.38 4.70 -62.43

Pr AI -1.02 1.10 0.88 19.37 7.81 4.25 41.21 -4.39 -60.58
PC -0.85 1.17 0.98 20.83 7.73 4.21 42.04 -4.43 -62.87

Nd AI -1.05 1.41 0.74 19.90 7.90 4.49 41.08 -3.80 -60.98
PC -0.90 1.48 0.81 21.50 7.65 4.24 42.00 -3.84 -63.51

Sm AI -0.92 1.46 0.63 20.94 7.75 4.26 41.07 -3.70 -62.02
PC -0.75 1.53 0.71 22.50 7.48 4.00 42.04 -3.85 -64.54

Eu AI -0.99 1.55 0.63 21.17 7.15 3.88 41.30 -3.45 -62.48
PC -0.85 1.60 0.70 23.16 6.97 3.77 41.93 -3.72 -65.08

Tb AI 0.96 1.28 -0.57 20.12 -3.82 2.66 42.77 4.08 -62.90
PC 0.79 1.38 -0.67 21.76 -3.74 2.36 43.76 4.23 -65.52

Dy AI -0.91 1.42 0.58 21.90 6.67 4.03 41.42 -3.83 -63.31
PC -0.75 1.50 0.66 23.39 6.45 3.81 42.38 -3.94 -65.77

Ho AI -0.76 1.40 0.52 22.32 6.38 3.84 41.30 -3.57 -63.62
PC -0.59 1.46 0.61 23.88 6.20 3.61 42.46 -3.67 -66.34

Er AI 0.94 1.31 -0.37 21.01 -3.08 2.85 41.99 3.90 -63.00
PC 0.77 1.40 -0.44 22.76 -3.04 2.52 43.02 4.08 -65.78

Tm AI -0.87 1.45 0.54 22.50 5.97 3.90 41.35 -3.31 -63.84
PC -0.69 1.51 0.63 24.11 5.83 3.65 42.57 -3.52 -66.68

Yb AI -0.80 1.42 0.51 22.97 5.79 3.77 40.87 -3.73 -63.84
PC -0.62 1.51 0.59 24.67 5.78 3.35 42.15 -3.85 -66.82
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Figure 5.6.6: Strength parameters for the [LnIII(DPA)3]3 – series determined by the ITO
method. Full line: ab initio; dashed line: PC model.

contributions arise mostly from non-electrostatic effects, as polarization of f orbitals, or-

thogonality issues, electron correlation and covalent effects. As already mentioned, the

PC model leads to a rather constant value of S. The difference between the ab initio and

the PC curves is rather constant for the 2nd order, and tends to decrease for the 4th and

6th orders.

In a pure electrostatic picture, the closer the charges, the larger the interaction and the

CFPs. But the trend along a series is not as simple since there are two opposite effects: i)

according to the contraction of the 4 f orbitals, the CFPs should decrease, but ii) following

the shrinking of the coordination sphere, the CFPs should increase. As mentioned before,

the contraction of the coordination sphere and the decrease in the spatial distribution of
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5.7. CFPs in the [AnIV(DPA)3]2 – chelates

the 4 f electrons lead to opposite trends along the series, and the interweaved effects lead

to a rather constant value of S. Consequently, the decrease of the strength parameters

which is observed in Figure 5.6.6 with the full ligands arises from the overlap between

the lanthanide and ligand orbitals, namely covalent effects. The 4 f being inner shell,

they participate little to the covalent bonding itself, which involves mostly 5s, 5p and 6d

orbitals. It was shown in Ref. [115], that both the direct overlap between the 4 f and the

orbitals of the ligands, and the indirect interaction through the more outer shell orbitals

affect the CFPs. As in this previous work, covalent effects reduce the CFPs of 2nd order

and increase the other CFPs, and more specifically the off-diagonal terms with q 6= 0.

5.7 CFPs in the [AnIV(DPA)3]2 – chelates

• XRD structures and ab initio energy levels.

The AnIV(DPA)3(C3H5N2) ·3H2O compounds where An = Th, U, Np and Pu are isostruc-

tural and crystallize in the monoclinic space group P21/c.4 The structures are quite ana-

logues to that of LnIII ions except with the longer metal-ligand coordinate bonds. From

ThIV to PuIV, the An−O and An−N distances decrease from 2.427 to 2.354 Å and 2.598

to 2.500 Å, respectively. The distances follow the trends of the contraction of ionic ra-

dius along the series. It is observed that the LnIII−O and AnIV−O distances are similar

for the same ionic radius whereas the AnIV−N distances are significantly longer (0.1

Å) than the LnIII−N distances [23]. The LoProp charges on the coordinating O and N

atoms are −0.81 and −0.35, respectively, and those on the metal center ranges from 3.17

(UIV) to 3.21 (PuIV). Their magnitudes suggest that quite larger charge transfer mecha-

nisms (LMCT, MLCT, LLCT) are interweaving in the [AnIV(DPA)3]2 – than those in the

[LnIII(DPA)3]3 – series.

First principles calculations were performed for the [AnIV(DPA)3]2 – series on the crys-

tallographic structures with SF-CASSCF, SO-CASSCF, SO-NEVPT25 and SO-CASPT2

methods. In the actinide complexes, the energy splitting of the free-ion Hamiltonian states

according to Eq. 5.2.1 follows the order V̂res� V̂CF ≈ ĤSO i.e. the ligand field splitting

is in the same order of the SO splitting. At the SF level, the states arising from the ground

LS free-ion term split due to the interaction with the ligands, but the splitting is smaller

than the energy difference with the next LS manifold, and the states of the complex may

be labeled after the free-ion LS term. At SO level, the free-ion J terms are rather close

4All the AnIV(DPA)3(C3H5N2) ·3H2O compounds were synthesized by Claude Berthon et al. at CEA
Marcoule, France.

5SO-NEVPT2/AILFT calculations on [AnIV(DPA)3]2 – complexes were performed by Dr. Julie Jung at
Los Alamos National Laboratory (LANL), New Mexico, USA using ORCA. The results are discussed here
for the sake of comparison with the SO-(SS/MS)CASPT2/ITO results in MOLCAS.
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in energy, the J− J mixing is important, and the different J manifolds overlap. The ab

initio SO energy levels are given in Table 5.9. The ground LS term spreads over about

2800 cm−1 for UIV, 3500 cm−1 for NpIV, and 4000 cm−1 for PuIV. It is much larger than

for the [LnIII(DPA)3]3 – complexes (500−1000 cm−1) because in the An, the 5 f orbitals

interact more with the ligand orbitals. The CASPT2 and NEVPT2 energies are different,

which is expected since the two methods are based on different formalisms. The energy

splittings of the ground LS terms are generally larger with NEVPT2 than with CASPT2.

SSCASPT2 and MSCASPT2 do not provide the same energies: with SSCASPT2, the

perturbation is calculated individually for each CASSCF state while with MSCASPT2,

an effective coupling between the CASSCF states is estimated, hence leading to different

wave functions and different energies. The energy of the second LS manifold is lowered,

due to a larger compactness of the electron density, and consequently a larger dynamical

correlation. The largest deviation between NEVPT2 and CASPT2 is reached for the UIV

complex, especially for SSCASPT2 with a deviation of 700 cm−1. The deviation between

the different methods is about 100 cm−1 for the ground LS manifold, and can reach 1000

cm−1 for the 2nd LS manifold. At SO level, the inclusion of dynamical correlation does

not impact strongly the overall splitting of the ground J term, but it impacts the energy of

the different states arising from this term. In SO calculations, the overall splitting of the

ground J term is 1500 cm−1, to be compared to 300 cm−1 in the analog LnIII series. This

splitting depends only slightly on the method: with SO-NEVPT2, it is always larger than

with SO-CASSCF, and more generally, all energies of the ground J manifold are larger.

Conversely, there is no systematic trend for CASPT2: it may decrease or increase the

energy of the second J manifold, depending on the method. The weight of the ground LS

manifold to the ground J wave functions is 86-88% for the three complexes at different

levels of calculations while close to 98% in the LnIII series, much higher than the AnIV.

This indicates a strong J− J mixing in the An due to the larger SOC in the An compared

to Ln. In all cases, the J− J mixing occurs mostly from the states arising from the terms
1G for UIV, 2H for NpIV and 3D for PuIV. The magnetic g-factors of the ground KD of

NpIV are: 2.82, 2.46, 1.92 with SO-CASSCF, 2.73, 2.61, 1.93 with SO-SSCASPT2, and

3.43, 1.28, 0.42 with SO-MSCASPT2: the SO-MSCASPT2 values are different since this

method affects the composition of the wave functions.

• Crystal field and strength parameters.

The CFPs have been deduced from the ab initio calculations using both the AILFT and

ITO methods and tabulated in Table 5.11. Six CFPs i.e. B2
0,B

4
0,B

6
0, B̄

4
3, B̄

6
3, B̄

6
6 are again

dominated in accordance with the trigonal symmetry. Like the [LnIII(DPA)3]3 – com-

plexes, B2
0 is positive while B̄4

0 and B̄6
0, are negative. However, since the ITO is essentially

a matrix decomposition technique, in the case of J = 4 (UIV, PuIV) or 9/2 (NpIV), the
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Chapter 5. Crystal field parameters in LnIII and AnIV complexes with the DPA ligand

expansion sums up to 8th order for the decomposition of the ab initio HAI . In the frame

of CFT with wave functions built with pure f orbitals, according to Eqs. 5.2.15 and

5.2.17 the terms of orders larger than 6 vanish due to the 3 j symbol selection rules. The

larger δh, the more important terms of 8th order are. In Table 5.10 , the values of δh

are larger than in the LnIII analog series, but are still reasonably small, which proves the

reminiscence of the free-ion electronic structure. The largest δh are found for the PuIV

derivative, when SOC is included, in accordance with the CFPs for the PuIV derivative

being more different between AILFT and ITO. While δh is worth at most 40 cm−1 in the

LnIII series, it is worth up to 100 cm−1 in the AnIV series. It shows that the 8th order

terms are not completely negligible in actinide complexes: the effect of the 8th order on

the matrix elements and eigenvalues is of several 10 of cm−1. This might have a quan-

titative effect but the fundamentals of CFT keeps qualitatively correct for those actinide

complexes. The one-to-one mapping of the ab initio states and the models states |J,MJ〉
are performed by minimizing the distances δmu, defined in Eq. 5.4.3 with u = x,y,z and

they are tabulated in Table 5.10. The model and ab initio magnetization matrices differ

more in the [AnIV(DPA)3]2 – complexes than the analog LnIII series. The central metal ion

in the [PuIV(DPA)3]2 – is by far the most deviated from the free-ion character as noticed

by the large values of δmu.

Table 5.10: δmu (in µB) and δh (in cm−1) distances between ab initio and model matrices
for the [AnIV(DPA)3]2 – complexes.

δmx δmy δmz δh
UIV

SF-CASSCF 0.90 0.92 0.89 761
SO-CASSCF 0.51 0.5 0.49 80

SO-SSCASPT2 0.49 0.48 0.42 124
SO-MSCASPT2 0.51 0.5 0.49 199

NpIV

SF-CASSCF 0.53 0.53 0.56 300
SO-CASSCF 0.7 0.73 0.39 171

SO-SSCASPT2 0.73 0.75 0.4 219
SO-MSCASPT2 0.69 0.77 0.35 142

PuIV

SF-CASSCF 0.45 0.45 0.48 214
SO-CASSCF 1.03 0.99 0.39 217

SO-SSCASPT2 1.94 2.12 0.51 488
SO-MSCASPT2 1.13 1.15 0.39 256

The Slater–Condon and SOC parameters are plotted in Fig. 5.7.1. The Slater-Condon pa-

rameters increase in the series in accordance with the contraction of 5 f orbitals and to the

increase of the number of electrons. F4 and F6 are similar to the experimental ones while
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Figure 5.7.1: Slater-Condon parameters (cm−1) in the [AnIV(DPA)3]2 – series.

F2 is larger, as it was the case for the [AnCl6]3 – [95]. As discussed in Ref. [95], it might

be due to the incomplete description of the dynamical correlation, and to the different def-

inition of the parameters, since the fitting of experimental data include more terms, as for

example three body terms. The SOC parameter ξ is slightly overestimated with respect

to experiment, but the trend is the same. It increases in the series following the increase

of the nuclear charge and follows the trends described in Ref. [95]. The nephelauxetic

reduction factors α =
(
1− p/pFI)×100 where p and pFI represent the value in the com-

plex and in the free-ion respectively for inter-electronic repulsion integrals and the SOC

parameter have been deduced, and compared to the LnIII analog series, using the free-ion

values of Ref. [95] in Fig. 5.7.2. This reduction arises from covalent effects, both due the

electron “cloud expansion” (delocalization) on the ligands and to a the better shielding the

nucleus [116]. At the CASSCF level, the reduction is about 5%, which is slightly smaller

than in the series, where it is about 6%, but much larger than in the LnIII analog series

where for the beginning of the series, it is only worth 2%. It is much smaller than in 3d

transition metal complexes [117].

The strength parameters are tabulated in Table 5.12 and the largest parameters are repre-

sented in Fig. 5.7.3. The total strength parameter S is reduced in the ITO method from

UIV to PuIV with a sharp decrease for PuIV in the SO calculation. The 2nd order strength

parameter S2 is around 300 cm−1, against 150 cm−1 in the LnIII series, while the 4th

and 6th orders S4 and S6 are around 1200 cm−1, against 300 cm−1 in the LnIII series.

While S2 , S4 and S6 are rotation invariants, the Sq strength parameters are not. The CFPs

may be deduced from the ground L manifold using SF-CASSCF energies and wave func-
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Figure 5.7.2: Nephelauxetic reduction factors α (in %) calculated with AILFT in the
[LnIII(DPA)3]3 – (dashed, Ref. [39]) and [AnIV(DPA)3]2 – (plain) series. Free-ion data
are taken from Ref. [95].

tions: at this level, the ITO CFPs contain many-electron effects, which are included in

the Slater–Condon parameters in the AILFT method. At the SO-CASSCF level, they are

deduced from the ground J manifold and then, the ITO CFPs additionally contain the

J− J mixing with excited LS terms. The SF-CASSCF/ITO CFPs are very close to the

CASSCF/AILFT ones; this shows that the building of the many-electron wave functions

from the 5 f orbitals is close to that of the free-ion as in lanthanide complexes. But the

SO-CASSCF/ITO differ slightly from the SF-CASSCF/ITO ones due to the larger J− J

mixing in the actinide complexes, which also tends to reduce the total strength parameter.

This effect is more pronounced for the PuIV derivative, most likely because PuIV holds

more f electrons, and hence, a richer electronic structure. PT2 does not impact strongly.

In the [LnIII(DPA)3]3 – series, comparing with the point change model, we have seen

that the decrease of the strength parameter in the series arises from covalent effects in

their general meaning, namely any orbital effect including bonding, charge donation and

polarization. Covalent effects are even more complex to analyze with actinides, and have

been the object of many studies [118, 2, 119]. The empty 6d metal orbitals play a key

role for bonding and charge donation [120], 5 f orbitals are more available to covalent

interaction with the ligands due to their larger spatial expansion as compared to the filled

6s, 6p shells. But the shielding becomes more and more efficient in the series, with the

contraction of the 5 f orbitals.

5.8 Conclusions

In this chapter, CFPs deduced from the ab initio energy levels and wave functions of the

LnIII and AnIV complexes with the DPA2 – ligands are presented. All the 27 CFPs are
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Figure 5.7.3: Strength parameters (in cm−1) in the [AnIV(DPA)3]2 – series calculated with
different methods.
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5.8. Conclusions

Table 5.12: Strength parameters (in cm−1) in the [AnIV(DPA)3]2 – series calculated with
AILFT and ITO.

S S2 S4 S6 S0 S1 S2 S3 S4 S5 S6

UIV

ITO SF-CASSCF 1005 430 1202 1183 718 168 73 1272 33 53 928
SO-CASSCF 856 312 1274 690 880 161 59 1071 31 37 494

SO-SSCASPT2 762 259 1164 567 570 139 72 1109 38 21 401
SO-MSCASPT2 836 217 1297 606 570 52 178 1250 134 27 394

AILFT SO-CASSCF 1036 316 1266 1232 916 229 86 1233 90 33 890
SO-NEVPT2 909 268 1025 1165 751 188 74 1063 84 27 858

NpIV

ITO SF-CASSCF 863 442 797 1184 792 133 25 1104 127 582 1223
SO-CASSCF 741 168 867 931 729 114 31 1171 108 383 1033

SO-SSCASPT2 749 138 914 909 682 134 53 1190 142 384 1122
SO-MSCASPT2 794 167 1073 842 668 199 120 1314 197 254 1295

AILFT SO-CASSCF 935 292 1067 1182 852 182 67 1056 64 32 860
SO-NEVPT2 707 234 812 885 642 140 49 801 46 24 648

PuIV

ITO SF-CASSCF 862 129 729 756 709 169 74 1261 218 539 1323
SO-CASSCF 283 470 144 123 460 85 90 133 31 46 141

SO-SSCASPT2 256 403 321 271 319 200 204 175 116 59 95
SO-MSCASPT2 439 746 192 187 730 59 162 146 31 46 150

AILFT SO-CASSCF 893 289 1027 1121 838 184 77 998 52 43 807
SO-NEVPT2 706 223 777 918 651 140 59 779 41 36 663
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Chapter 5. Crystal field parameters in LnIII and AnIV complexes with the DPA ligand

extracted using two methods- AILFT and ITO. AILFT is based on the fitting of the CF

matrix written at the orbital level, whereas the ITO method involves a decomposition of

the Hamiltonian matrix for a J manifold. The overall energy splitting of the ground J man-

ifold in the LnIII series is around room temperature energy, strongly supports Bleaney’s

modelization of the pNMR shifts in the axially symmetric lanthanide complexes with the

single CFP B2
0. In Russell-Saunders coupling scheme, the weight of the ab initio ground

2S+1L manifold to the ground J manifold is higher in the LnIII (98%) than the AnIV (86%)

manifests a strong J−J coupling in the An series. In the actinide complexes, the perturba-

tion energy corrections with SO-NEVPT2 in ORCA and with SO-CASPT2 in MOLCAS

provide similar energetic spectra.

In the LnIII series, the two methods lead to very similar CFPs, which confirms that the

ZFS occurs mostly at the orbital level, as has been shown previously for lanthanides [115].

However, small discrepancies between AILFT and ITO reveal many-electron effects on

the CFPs: This tends to decrease the CFPs in the first half of the series and to increase

them in the second half. The relative magnitudes decrease along the series but the de-

cease is rather smooth indicates isostructural ligand binding and no major conformational

change along with the series. So the CFPs are transferable as one expects for isostructural

series. It has been shown that within a PC model reproducing the electrostatic potential

of the ligands, the CFPs are rather constant across the series; as a result of counterbalance

between the shrinking of the coordination sphere and the greater compactness of the 4 f

orbitals. The decrease in the CFPs across the series is consequently attributed to covalent

effects, defined as all effects beyond electrostatic interactions. They comprise bonding,

charge transfer, and polarization effects. They are not restricted to the overlap of the 4 f

and ligand orbitals. Covalent bonding mostly occurs through the more outer-shell orbitals,

that is, the 6s and 5d orbitals; the change in the electron density of the lanthanide center

affects the splitting of the 4 f orbitals, and thus the CFPs.

In the AnIV complexes, the CFPs at the SF level seem to be transferable but the addition

of SOC makes it difficult to conclude. CFPs deduced from SO calculations are more

irregular, which is most likely a consequence of significant J− J mixing. Notably for the

PuIV complex that is most affected by the J−J mixing, although quantitatively similar as

for the two other complexes. All the CFPs are larger than the LnIII analog series and in

the case of AnIV, 4th and 6th orders are important.

B2
0 is positive in both the LnIII and AnIV complexes which is related to the prolate envi-

ronment of ligand environments. This shows a structural similarity in both series. But

for similar ionic radii, when the LnIII−O and AnIV−O bond distances are rather similar,

the AnIV−N distances are larger that the LnIII−N distances. This indicates minor struc-

tural changes in the coordination sphere in terms of biting angle and a readjustment of

the adjacent bond lengths. When B2
0 is dominant, one can predict with simple rules the
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5.8. Conclusions

anisotropy of the magnetic properties, like the single molecule magnets properties or the

pseudocontact term for paramagnetic chemical shifts using Bleaney’s theory. But it ap-

pears that the non-zero 4th and 6th order CFPs as per the trigonal environment are more

important than the 2nd order and this upraises doubts in confidently applying Bleaney’s

theory for the LnIII series [37]. But Bleaney’s B2
0 is meaningfully close to the B2

0 of the

point change model and assumed to be considerably larger than the higher orders. Indeed,

in the point charge model of the LnIII series, the 2nd order CFP is dominant than the 4th

and 6th order. The 4th and 6th order CFPs are related to the covalency in the molecules

which decreases along the [LnIII(DPA)3]3 – series. This reveals that the modelization of

the magnetic anisotropy in the LnIII chelates in terms of the single CFP B2
0 (which is dom-

inant in the point charge model) in Eq. 5.6.2 and in Bleaney’s theory (see Eq. 2.6.34)

effectively includes the effects from higher order terms and not related to the ’actual’ B2
0.

In the AnIV complexes, the higher order terms are even much larger, clearly showing an

overload on B2
0 for the same modelization.

177



Appendix A

Computational details

Chapter 3

[AnVIO2]2+ cations, An = Np, Pu

• Wave function based electronic structure calculations in MOLCAS 7.8 [121]

– Relativistic Hamiltonian: DKH2 [122]

– Variational SCF methods: CASSCF(n,6) [50] and RASSCF(12,6;n,6;6 : 2,2)

[123], n = no of 5 f electrons

– Perturbation Theory methods: CASPT2 [54] and RASPT2 [124]

– Spin-orbit coupling: As a state interaction in SO-RASSI module [125]

– Spin-orbit Integrals: Calculated using AMFI approximations [126]

– Basis sets: ANO-RCC, quality of polarization- TZP (for all atoms) [127, 128]

– No. of SF states: 6 doublets for NpVI complexes; 15 triplets and 21 singlets

for PuVI complex

– g-factors : Calculated according to Ref. [129]

• DFT based electronic structure calculations in ADF

– Relativistic Hamiltonian: SO-ZORA (2-component) [130]

– Functional: PBE0 [131] (with restricted open scheme)

– Basis sets: All-electron doubly polarizes triple-ζ 2 TZ2P (for Np) [132], jcpl

augmented version of TZ2P (O) [133]

– g-factors, hyperfine values: Calculated with the ESR module [134, 42]

• DFT based electronic structure calculations in ReSpect
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– Relativistic Hamiltonian: 4-component matrix Dirac-Kohn-Sham (mDKS)

– Nuclear model: Gaussian

– Basis sets: Dyall’s all-electron uncontracted basis sets of valence double-ζ

(26s23p17d12f2g) (for Np), uncontracted pc-1 (for O) [135].

[AnVIO2(DPA/Et−DPA)2]2 complexes, An = Np, Pu

• Wave function based electronic structure calculations in MOLCAS 7.8 [121]

– Relativistic Hamiltonian: DKH2 [122]

– Variational SCF methods: CASSCF(n,6) [50] and RASSCF(12,6;n,6;6 : 2,2)

[123]

– Perturbation Theory methods: CASPT2 [54] and RASPT2 [124]

– Spin-orbit coupling: As a state interaction in SO-RASSI module [125]

– Spin-orbit Integrals: Calculated using AMFI approximations [126]

– Basis sets: ANO-RCC, quality of polarization- TZP (for An, N, O), DZP (for

C, Li), DZ (for H) [127, 128]

– No. of SF states: 6 doublets for NpVI complexes; 15 triplets and 21 singlets in

SO-CASPT2 and 8 triplets and 14 singlets in SO-RASPT2 for PuVI complex

– g-factors : Calculated according to Ref. [129]

• DFT based electronic structure calculations in ADF

– Relativistic Hamiltonian: SO-ZORA (2-component) [130]

– Functional: PBE0 [131] (with restricted open scheme)

– Basis sets: All-electron doubly polarizes triple-ζ 2 TZ2P (for Np) [132], jcpl

augmented version of TZ2P (N, O, C, H) [133]

– g-factors, hyperfine values: Calculated with the ESR module [134, 42]

• DFT based spin densities calculations in MOLCAS 7.8

– Functional: PBE0 [131] (with Unrestricted scheme)

– Fractional occupations of the 5 f orbitals (1e/2e in 4 orbitals for NpVI/ PuVI

complex)

– Basis sets: ANO-RCC, quality of polarization- TZP (for all atoms)
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[AnVIO2(TEDGA)2]2+ complexes, An = Np, Pu

• Wave function based electronic structure calculations in MOLCAS 7.8 [121]

– Relativistic Hamiltonian: DKH2 [122]

– Variational SCF methods: CASSCF(n,6) [50] and RASSCF(12,6;n,6;6 : 2,2)

[123]

– Perturbation Theory methods: CASPT2 [54] and RASPT2 [124]

– Spin-orbit coupling: As a state interaction in SO-RASSI module [125]

– Spin-orbit Integrals: Calculated using AMFI approximations [126]

– Basis sets: ANO-RCC, quality of polarization- TZP (for An, N, O), DZP (for

C, Li), DZ (for H) [127, 128]

– No. of SF states: 6 doublets for NpVI complexes; 15 triplets and 21 singlets in

SO-CASPT2 and 8 triplets and 14 singlets in SO-RASPT2 for PuVI complex

– g-factors : Calculated according to Ref. [129]

• DFT based electronic structure calculations in ADF

– Relativistic Hamiltonian: SO-ZORA (2-component) [130]

– Functional: PBE0 [131] (with restricted open scheme)

– Basis sets: All-electron doubly polarizes triple-ζ 2 TZ2P (for Np) [132], jcpl

augmented version of TZ2P (N, O, C, H) [133]

– g-factors, hyperfine values: Calculated with the ESR module [134, 42]

• DFT based electronic structure calculations in ReSpect

– Relativistic Hamiltonian: 4-component matrix Dirac-Kohn-Sham (mDKS)

– Nuclear model: Gaussian

– Basis sets: Dyall’s all-electron uncontracted basis sets of valence double-ζ

(26s 23p 17d 12f 2g) (for Np), uncontracted pc-1 (for N, O) [135], uncon-

tracted pcJ-1 (for C, H) [136, 137]

– Paramagnetic NMR shifts: Calculated according to Ref. [138]

• DFT based spin densities calculations in MOLCAS 7.8

– Functional: PBE0 [131] (with Unrestricted scheme)

– Fractional occupations of the 5 f orbitals (1e/2e in 4 orbitals for NpVI/ PuVI

complex)

– Basis sets: ANO-RCC, quality of polarization- TZP (for all atoms) [127, 128]
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Chapter 4

[AnIV(DPA)3]3 – complexes, An= U, Np, Pu

• Wave function based electronic structure calculations in MOLCAS 7.8 [121]

– Symmetrization of the crystal structures: Using Chemcraft software [139]

– Relativistic Hamiltonian: DKH2 [122]

– Variational SCF methods: CASSCF(n, 7) [50]

– Perturbation Theory methods: CASPT2 [54] with level shift 0.3 a.u. either

state-specific (SS) or multi-state (MS) level

– Spin-orbit coupling: As a state interaction in SO-RASSI module [125]

– Spin-orbit Integrals: Calculated using AMFI approximations [126]

– Basis sets: ANO-RCC, quality of polarization- TZP (for An) [127], TZP (for

O, N), DZP (C), DZ (H) [128]

– No. of SF states: With the highest values of S and 27 singlets (for U), 43

doublets (for Np), 32 triplets and 17 singlets (for Pu)

– g-factors : Calculated according to Ref. [129]

– CFPs: Calculated with a local program written in Mathematica

• DFT based spin densities calculations in MOLCAS 7.8

– Functional: M06 [140], M062X [141], PBE0 [131] (with Unrestricted scheme)

– Fractional occupations of the 5 f orbitals

– Basis sets: ANO-RCC, quality of polarization- TZP (for all atoms) [127, 128]

[AnIV(DOTA)H2O] complexes, An= U, Np, Pu

• Wave function based electronic structure calculations in MOLCAS 7.8 [121]

– Symmetrization of the crystal structures: Using Chemcraft software [139]

– Relativistic Hamiltonian: DKH2 [122]

– Variational SCF methods: CASSCF(n, 7) [50]

– Perturbation Theory methods: CASPT2 [54] with level shift 0.3 a.u. either

state-specific (SS) or multi-state (MS) level

– Spin orbit coupling: As a state interaction in SO-RASSI module [125]

– Spin orbit Integrals: Calculated using AMFI approximations [126]
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– Basis sets: ANO-RCC, quality of polarization- TZP (for An) [127], TZP (for

O, N), DZP (C), DZ (H) [128]

– No. of SF states: With the highest values of S and 28 singlets (for U), 43

doublets (for Np), 35 triplets and 17 singlets (for Pu)

– g-factors : Calculated according to Ref. [129]

– CFPs: Calculated with a local program written in Mathematica

[MIIILa9(PO4)7]9+ complexes, M= Sm, Np, Pu

• Wave function based electronic structure calculations in MOLCAS 7.8 [121]

– Relativistic Hamiltonian: DKH2 [122]

– Variational SCF methods: CASSCF(n, 7) [50]

– Spin orbit coupling: As a state interaction in SO-RASSI module [125]

– Spin orbit Integrals: Calculated using AMFI approximations [126]

– Basis sets: ANO-RCC, quality of polarization- QZP (for M) [127], TZP (for

P, O) [128] and ECP-LanL2DZ (for La) [142]

– g-factors : Calculated according to Ref. [129]

– CFPs: Calculated with a local program written in Mathematica

• DFT based spin densities calculations in MOLCAS 7.8

– Functional: PBE0 [131] (with Unrestricted scheme)

– Fractional occupations of the 5 f orbitals

– Basis sets: ANO-RCC, quality of polarization- QZP (for Pu) [127], TZP (for

P, O) [128] and ECP-LanL2DZ (for Ln) [142]

Chapter 5

[LnIII(DPA)3]3 – complexes, Ln = Ce, Yb

• Wave function based electronic structure calculations in MOLCAS 7.8 [121]

– Relativistic Hamiltonian: DKH2 [122]

– Variational SCF methods: CASSCF(n, 7) [50]

– Spin orbit coupling: As a state interaction in SO-RASSI module [125]

– Spin orbit Integrals: Calculated using AMFI approximations [126]
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– Basis sets: ANO-RCC, quality of polarization- QZP (for Ln), TZP (for O, N,

C, H) [127, 128]

– No. of SF states: With the highest values of S and 27 singlets (for Pr, Tm),

43 doublets (for Nd, Er), 86 quartets ( for Sm), 42 quintets (for Eu, Tb), 108

quartets (for Dy), 99 triplets (for Ho), 35 quartets (for Er), or 2 triplets (for

Tm)

– g-factors : Calculated according to Ref. [129]

– CFPs: Calculated with a local program written in Mathematica

• Wave function based electronic structure calculations in ORCA 4.0 [143]

– Relativistic Hamiltonian: DKH2 [144, 53]

– Variational SCF methods: CASSCF(n, 7) [50]

– Spin orbit coupling: In a mean-field fashion (SOMF) by using quasi-degenerate
perturbation theory (QDPT) [145] and by allowing all SF-CASSCF states to mix

through SOMF operator.

– Basis sets: All electron SARC2-QZVP (for Ln) [146], def2-TZVPP (for O, N,

C, H) [147, 148]

– AUTOAUX feature [149] was used to automatically generate auxiliary basis

sets for the resolution of identity approximation (RI-JK) [150]

[AnIV(DPA)3]2 – complexes, An = U, Np, Pu

• Wave function based electronic structure calculations in MOLCAS 7.8 [121]

– Relativistic Hamiltonian: DKH2 [122]

– Variational SCF methods: CASSCF(n, 7) [50]

– Perturbation Theory methods: CASPT2 [54] with level shift 0.3 a.u. either

state-specific (SS) or multi-state (MS) level

– Spin orbit coupling: As a state interaction in SO-RASSI module [125],

– Spin orbit Integrals: Calculated using AMFI approximations [126]

– Basis sets: ANO-RCC, quality of polarization- QZP (for An) [127], TZP (for

O, N), DZP (C), DZ (H) [128]

– No. of SF states: With the highest values of S and 28 singlets (for U), 35

doublets (for Np), 60 triplets and 20 singlets (for Pu)

– g-factors : Calculated according to Ref. [129]

– CFPs: Calculated with a local program written in Mathematica
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• Wave function based electronic structure calculations in ORCA 4.0 [143]

– Relativistic Hamiltonian: DKH2 [144, 53]

– Variational SCF methods: CASSCF(n, 7) [50]

– Spin orbit coupling: In a mean-field fashion (SOMF) by using quasi-degenerate
perturbation theory (QDPT) [145] and by allowing all SF-CASSCF states to mix

through SOMF operator.

– Basis sets: All electron TZVPP (for An) [151], def2-TZVPP (for O, N, C, H)

[147, 148]

– AUTOAUX feature [149] was used to automatically generate auxiliary basis

sets for the resolution of identity approximation (RI-JK) [150]
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General conclusions and perspectives

The system and chapter-specific conclusions are stated at the end of their respective chap-

ters. Here, we devote some additional lines to draw some more general conclusions about

the thesis and future perspectives.

In this thesis, paramagnetic chemical shifts in several actinide complexes are analyzed

with the help of ab initio calculations and theoretical models have been developed to

estimate the paramagnetic properties of the actinide center from the temperature depen-

dent data. With close collaborations with the experimental groups, systematic studies of

the AIS are carried out in different systems where the actinides are present in various

oxidation states ranging from +6 (in the actinyls) to +3 and from highly axial to the spher-

ical ligand field environment. Bleaney’s theory for the LIS has been also investigated

and additional temperature dependent terms are figured out for the considered actinide

complexes. Ab initio computed electronic structures and magnetic anisotropies are ratio-

nalized with the help of crystal field theory and the periodic trends of electron-electron

repulsion, J− J coupling, covalency, etc. in the lanthanides and the early actinides are

achieved in terms of the crystal field parameters. Our work strongly supports the paramag-

netic chemical shifts technique as a potential alternative to probe the magnetic properties

and metal ligand bonding. When the pseudocontact terms are dominant, pNMR shifts

combined with measured isotropic susceptibility allow deducing the magnetic suscepti-

bility tensor for an axial system. On the other hand, in a spherical ligand environment

when they are mostly contact with origin, the pNMR shifts can be useful to analyze spin

delocalization on the ligands, and compare the trends in a series, and therefore the degree

of covalency.

However, accurate separation of the contact and pseudocontact contributions remains a

challenge. Both Bleaney’s temperature dependent and Reilley’s structure independent

methods depend on the metal dependent parameters which are unknown for the actinides

and might need a theoretician for help. And ironically also, the ab initio calculations

of electronic structures and magnetic properties are not straightforward as the strong in-

terweaving of many-electron effects, SOC, J− J coupling, intricate bonding interactions

with the ligands should be properly addressed. The orbital contribution of the unpaired

electrons and low lying excited states play a major role in determining the magnetic prop-
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erties in lanthanide and actinide complexes. Electron dynamic correlation and J− J mix-

ing strongly impact (especially in the actinides) the splitting and nature of the lowest en-

ergetic states, those, in turn, affect the magnetic response properties such as the magnetic

susceptibility and pNMR shifts. Also, when the symmetry of the ligand field environment

reduces, the determination of the anisotropic magnetic properties becomes more elusive.

The two contributions in the pNMR shifts are very distinct in their origin. The pseudocon-

tact shifts originate from the magnetic anisotropy of the paramagnetic center, and hence

demand the multireference ab initio methods to properly address the electronic structures

of an open shell system. On the other hand, the contact shifts are the result of metal-

ligand spin delocalization and single determinant unrestricted DFT based approaches are

reasonably good in addressing the metal-ligand spin polarization and delocalization, but

fail to properly describe the paramagnetic center. Modeling of pNMR shifts in terms of

spin Hamiltonian parameters was already developed a long time ago, but the evaluation of

the parameters from ab initio is not as easy as pie and follows different approaches, either

DFT based approach or a hybrid of DFT and multireference approach. In our work, DFT

based evaluation of the spin densities comes as a relief to interpret the contact shifts.

But, multireference wave functions based calculation of the pNMR shifts according to

the general Soncini and Van den Heuven formula is still a nontrivial task. There have

been reports in the literature of large active space based pNMR calculations based on

Soncini’s expression. These computations, however, are far from routine, and they are

currently suffered by a poor description of spin polarization (which is very sensitive to

the dynamic correlation). Range-separation approaches that combine the advantages of

DFT and WFT or DMRG methodologies for the handling of large active spaces are also

conceivable for a proper description of pNMR shifts or treatment of spin polarization

via perturbation theory. Despite the fact that the quantum mechanical description of the

pNMR shifts is known, significant research efforts must be dedicated to the development

of computational methods to compute them from first principles, as Paul Dirac once said,

“The fundamental laws necessary for the mathematical treatment of a large

part of physics and the whole of chemistry are thus completely known, and

the difficulty lies only in the fact that application of these laws leads to equa-

tions that are too complex to be solved.”
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Pedersen, T. B.; Pitoňák, M.; Reiher, M.; Roos, B. O., et al. MOLCAS 7: the next

generation. J. Comput. Chem. 2010, 31, 224–247.

[122] Hess, B. A. Relativistic electronic-structure calculations employing a two-

component no-pair formalism with external-field projection operators. Phys. Rev.

A 1986, 33, 3742.

[123] Sharkas, K.; Pritchard, B.; Autschbach, J. Effects from Spin-Orbit Coupling on

Electron-Nucleus Hyperfine Coupling Calculated at the Restricted Active Space

Level for Kramers Doublets. J. Chem. Theory Comput. 2015, 11, 538–549.

[124] Sauri, V.; Serrano-Andrés, L.; Shahi, A. R. M.; Gagliardi, L.; Vancoillie, S.;

Pierloot, K. Multiconfigurational second-order perturbation theory restricted ac-

tive space (RASPT2) method for electronic excited states: A benchmark study. J.

Chem. Theory Comput. 2011, 7, 153–168.

[125] Malmqvist, P. Å.; Roos, B. O.; Schimmelpfennig, B. The restricted active space

(RAS) state interaction approach with spin–orbit coupling. Chem. Phys. Lett. 2002,

357, 230–240.

[126] Heß, B. A.; Marian, C. M.; Wahlgren, U.; Gropen, O. A mean-field spin-orbit

method applicable to correlated wavefunctions. Chem. Phys. Lett. 1996, 251, 365–

371.

[127] Roos, B. O.; Lindh, R.; Malmqvist, P.-Å.; Veryazov, V.; Widmark, P.-O. New rela-

tivistic ANO basis sets for actinide atoms. Chem. Phys. Lett. 2005, 409, 295–299.

[128] Roos, B. O.; Lindh, R.; Malmqvist, P.-Å.; Veryazov, V.; Widmark, P.-O. Main

group atoms and dimers studied with a new relativistic ANO basis set. J. Phys.

Chem. A 2004, 108, 2851–2858.

[129] Bolvin, H. An Alternative Approach to the g-Matrix: Theory and Applications.

ChemPhysChem 2006, 7, 1575–1589.

[130] Lenthe, E. v.; Baerends, E.-J.; Snijders, J. G. Relativistic regular two-component

Hamiltonians. J. Chem. Phys. 1993, 99, 4597–4610.

[131] Ernzerhof, M.; Scuseria, G. E. Assessment of the Perdew-Burke-Ernzerhof

exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036.

198



Bibliography

[132] Van Lenthe, E.; Baerends, E. J. Optimized Slater-type basis sets for the elements

1-118. J. Comput. Chem. 2003, 24, 1142–1156.

[133] Moncho, S.; Autschbach, J. Relativistic Zeroth-Order Regular Approximation

Combined with Nonhybrid and Hybrid Density Functional Theory: Performance

for NMR Indirect Nuclear Spin-Spin Coupling in Heavy Metal Compounds. J.

Chem. Theory Comput. 2010, 6, 223–234.

[134] van Lenthe, E.; Wormer, P. E.; van der Avoird, A. Density functional calculations of

molecular g-tensors in the zero-order regular approximation for relativistic effects.

J. Chem. Phys. 1997, 107, 2488–2498.

[135] Jensen, F. Polarization consistent basis sets. II. Estimating the Kohn–Sham basis

set limit. J. Chem. Phys. 2002, 116, 7372–7379.

[136] Jensen, F. The basis set convergence of spin-spin coupling constants calculated by

density functional methods. J. Chem. Theory Comput. 2006, 2, 1360–1369.

[137] Jensen, F. The optimum contraction of basis sets for calculating spin–spin coupling

constants. Theor. Chem. Acc. 2010, 126, 371–382.

[138] Komorovsky, S.; Repisky, M.; Ruud, K.; Malkina, O. L.; Malkin, V. G. Four-

component relativistic density functional theory calculations of NMR shielding

tensors for paramagnetic systems. J. Phys. Chem. A 2013, 117, 14209–14219.

[139] Chemcraft - graphical software for visualization of quantum chemistry computa-

tions. https://www.chemcraftprog.com.

[140] Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group ther-

mochemistry, thermochemical kinetics, noncovalent interactions, excited states,

and transition elements: two new functionals and systematic testing of four M06-

class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241.

[141] Zhao, Y.; Truhlar, D. G. A new local density functional for main-group thermo-

chemistry, transition metal bonding, thermochemical kinetics, and noncovalent in-

teractions. J. Chem. Phys. 2006, 125, 194101.

[142] Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations.

Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985,

82, 299–310.

[143] Neese, F. Software update: the ORCA program system, version 4.0. Wiley Inter-

disciplinary Reviews: Computational Molecular Science 2018, 8, e1327.

199



Bibliography

[144] Reiher, M. Douglas-Kroll-Hess Theory: a relativistic electrons-only theory for

chemistry. Theor. Chem. Acc. 2006, 116, 241–252.

[145] Neese, F. Efficient and accurate approximations to the molecular spin-orbit cou-

pling operator and their use in molecular g-tensor calculations. J. Chem. Phys.

2005, 122, 034107.

[146] Aravena, D.; Neese, F.; Pantazis, D. A. Improved segmented all-electron relativis-

tically contracted basis sets for the lanthanides. J. Chem. Theory Comput. 2016, 12,

1148–1156.

[147] Weigend, F.; Furche, F.; Ahlrichs, R. Gaussian basis sets of quadruple zeta valence

quality for atoms H-Kr. J. Chem. Phys. 2003, 119, 12753–12762.

[148] Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence

and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy.

Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

[149] Stoychev, G. L.; Auer, A. A.; Neese, F. Automatic generation of auxiliary basis

sets. J. Chem. Theory Comput. 2017, 13, 554–562.

[150] Neese, F. An improvement of the resolution of the identity approximation for the

formation of the Coulomb matrix. J. Comput. Chem. 2003, 24, 1740–1747.

[151] Pantazis, D. A.; Neese, F. All-electron scalar relativistic basis sets for the actinides.

J. Chem. Theory Comput. 2011, 7, 677–684.

200



Abstract 

Paramagnetic NMR (pNMR) shifts are the extra induced chemical shifts in a paramagnetic complex 

compared to its diamagnetic counterpart. The pNMR shift of a nucleus can be divided into two 

terms: the pseudocontact shift which is a ‘through-space magnetic dipole-dipole interaction and 

originates from the anisotropic magnetic properties of the metal center, and the contact shift which 

arises from the presence of spin density at the nuclear position, a phenomenon due to the spin 

delocalization. In the 1970s, Bleaney had proposed a simple model based on crystal field theory (CFT) 

which permits the separation of the two terms based on their temperature dependency in the axially 

symmetric lanthanide complexes. According to his theory, the contact and the pseudocontact shifts 

behave as functions of 𝑇−1 and 𝑇−2 , respectively. Furthermore, his theory relates the magnetic 

anisotropy responsible for the pNMR shifts with only one crystal field parameter (CFP) 𝐵0
2: an 

effective parameter that can be extracted from the experimental pNMR shifts, helps to model the 

zero field splitting and molecular magnetism. 

 

In this thesis, we have shown that Bleaney’s model fails to describe pNMR shifts in axially symmetric 

actinide complexes, neither their magnetic anisotropy can be modeled with only one CFP nor the 

shifts follow the temperature dependency as proposed for lanthanides. This is shown by detailed 

studies performed in axially symmetric actinide complexes with DPA2- , DOTA4-, TEDGA ligands. 

Actinides show variable oxidation numbers (+III, +IV, +VI) compared to the Ln (mostly stable in +III) 

and the electronic structure is more complicated. In the +VI oxidation state, the earlier actinides (U, 

Np, Pu) form linear actinyl cations AnO2
2+, which cannot be described with the ligand field theory. We 

have shown that Bleaney’s theory completely fails to describe the temperature dependency of the 

pNMR shifts in these complexes. Ab initio calculations suggest that two low-lying Kramers doublets 

are responsible for the pNMR shifts in the 5f1 actinyl complexes, whereas a well-isolated ground non-

Kramers doublet dictates the magnetic properties in the 5f2 complexes. In the axially symmetric 

An(IV) DPA chelates, the pseudocontact shifts are small compared to the contact shifts, temperature 

dependency of the contact shifts mostly follow 𝑇−1 relationship whereas the pseudocontact shifts 

require 𝑇−3 term in addition to the 𝑇−2 to properly fit the experimental data. 

 

Spin density distributions on the ligands are estimated from the contact shifts; DFT-based evaluation 

plays an important role in support of the observed patterns. The survey is completed by analyzing 

the trends of the CFPs in the Ln(III) and An(IV) DPA complexes. CFT parametrically describe the 

interaction of the f electrons with the ligands and the CFPS effectively include various effects as the 

electron-electron repulsion, J-J coupling, covalency etc. Our analysis leads to the following 

conclusions- the overall magnitude of the CFPs decreases along both the Ln(III) and An(IV) DPA 

series, these declining trends are attributed to the decrease of covalency that includes all the effects 

beyond the electrostatic picture, the decrease was much larger in the An(IV) series due to large J-J 

coupling. The fourth and sixth orders axial CFPs (𝐵0
4, 𝐵0

6) are larger than the second-order order 

𝐵0
2which implies that the modeling of the pNMR shifts in the axially symmetric Ln or An complexes 

according to Bleaney’s theory effectively includes the higher-order effects in 𝐵0
2 and denotes a 

limitation to this theory. 

 

 



Résumé 

Les déplacements chimiques RMN paramagnétiques sont les déplacements induits par un centre 

paramagnétique par comparaison à un équivalent diamagnétique. Ils comprennent deux termes: i) le 

terme de pseudocontact correspond à l’interaction dipôle-dipôle et provient des propritétés 

magnétiques anisotropes du centre paramagnétique, ii) le terme de contact qui provient de la 

densité de spin au noyau actif en NMR, induite par la délocalisation de spin du centre 

paramagnétique. Pour exploiter les résultats de pNMR, il est nécessaire de séparer ces deux termes. 

Le modèle de Bleaney, élaboré dans les années 1970 pour les complexes de Ln(III) de symétrie axiale, 

est fondé sur la théorie du champ cristallin, et permet cette séparation à partir de la dépendance en 

température: les termes de contact et de pseudocontact ont des dépendances respectives en 𝑇−1 et 

en 𝑇−2. De plus, l’anisotropie magnétique s’exprime à l’aide d’un unique paramètre de champ 

cristallin 𝐵0
2 , paramètre effectif qui peut être déduit déduire des déplacements chimiques 

expérimentaux. 

 

Lors de cette thèse, nous avons montré que le modèle de Bleaney n’est pas valable dans les 

complexes d’actinide de symétrie axiale; en effet, l’anisotropie magnétique ne peut pas être décrite 

par un seul paramètre de champ cristallin, et la dépendance en température n’est pas celle des 

lanthanides. Ceci a été montré sur des complexes d’actinide de symétrie axiale formés avec les 

ligands DPA2- , DOTA4-, TEDGA. Leur synthèse et leur caractérisation spectroscopique a été effectuée 

au CEA Marcoule par l’équipe de Claude Berthon. Les complexes d’actinide montrent différents 

degrés d’oxydation (+III, +IV, +VI) par comparaison avec les lanthanides (généralement stables sous la 

forme +III) et leur structure électronique est plus complexe. Au dégré d’oxydation +VI, les actinides 

du début de la série (U, Np, Pu) forment des cations actinyles linéaires AnO2
2+,  qui ne peuvent pas 

être décrits par la théorie du champ des ligands. Nous avons montré que la théorie de Bleaney 

échoue totalement à décrire la dépendance en température des déplacements pNMR dans ces 

complexes. Les calculs ab initio suggèrent que ce sont les deux doublets de Kramers de basse énergie 

qui induisent la pNMR dans les complexes actinyles 5f1 . Par ailleurs, un doublet non Kramers bien 

séparé dicte les propriétés magnétiques dans les complexes 5f2 . Dans les chelates An(IV), les 

déplacements de pseudocontact sont faibles par rapport aux termes de contact. Le terme de 

pseudocontact est en 𝑇−1 et on doit ajouter un terme en 𝑇−3 au terme 𝑇−2 pour bien reproduire les 

données expérimentales. 

 

Les densités de spin sur les ligands peuvent être estimées des déplacements de contact; des calculs 

DFT permettent de rationaliser les schémas observés. Cette étude est complétée en analysant les 

tendances des paramètres de champs cristallins (CFP) dans les complexes Ln(III) et An(IV) DPA. Ces 

paramètres jouent un rôle essentiel pour la chimie des lanthanides et des actinides. Ils décrivent 

l’interaction des électrons de la couche f avec les ligands et peuvent inclure de façon effective la 

répulsion électron-électron, le couplage J-J, et la covalence. Notre analyse a mené aux conclusions 

suivantes: les CFPs décroissent globalement le long de la série des Ln(III) et An(IV) DPA, effet attribué 

à la diminution de la covalence qui inclue tous les effets au délà de la théorie électrostatique. L’effet 

est plus important dans la série des An(IV) due à un large couplage J-J. Les CFPs axiaux d’ordre 4 et 6 

(𝐵0
4, 𝐵0

6) sont plus importants que ceux d’ordre deux 𝐵0
4 dans les actinides. Ceci implique que la 

modélisation des déplacements pNMR dans les lanthanides et actinides de symétrie axiale par la 

théorie de Bleaney inclue defaçon effective les effets d’ordres supérieurs. Et montre la limitation de 

cette théorie. 


