
HAL Id: tel-03663099
https://theses.hal.science/tel-03663099v1

Submitted on 9 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Emulation and prediction of cosmic web simulations
through deep learning

Marion Ullmo

To cite this version:
Marion Ullmo. Emulation and prediction of cosmic web simulations through deep learning. Cosmol-
ogy and Extra-Galactic Astrophysics [astro-ph.CO]. Université Paris-Saclay, 2022. English. �NNT :
2022UPASP012�. �tel-03663099�

https://theses.hal.science/tel-03663099v1
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N
N
T:
2
0
2
2
U
PA

S
P
0
1
2

Emulation and prediction of cosmic web
simulations through deep learning

Émulation et prédiction de simulations de la
toile cosmique par apprentissage profond

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 127, Astronomie et Astrophysique d’Île-de-France
(AAIF)

Spécialité de doctorat: Astronomie et Astrophysique
Graduate School: Physique. Référent: Faculté des Sciences d’Orsay

Thèse préparée dans l’unité de recherche
Institut d’Astrophysique Spatiale (Université Paris-Saclay, CNRS),

sous la direction de Nabila AGHANIM, Directrice de recherche,
et le co-encadrement d’Aurélien DECELLE, Maître de conférences

Thèse soutenue à Paris-Saclay, le 1er Février 2022, par

Marion ULLMO

Composition du jury:

Laurent VERSTRAETE Président
Professeur, IAS, Université Paris-Saclay
Miguel ARAGON-CALVO Rapporteur & Examinateur
Professeur, Astronomy Institute, Ensenada, Universidad
Nacional Autonoma de Mexico
Dominique AUBERT Rapporteur & Examinateur
Professeur, Observatoire astronomique de Strasbourg,
Université de Strasbourg
Alexandre BEELEN Examinateur
Astronome adjoint, Institut Pythéas, Aix Marseille Univer-
sité
Nabila AGHANIM Directrice de thèse
Directrice de recherche, IAS, Université Paris-Saclay

Titre: Emulation et Prédiction de Simulations de la toile cosmique par apprentissage
profond

Mots clés: Cosmologie, Simulations, Apprentissage Automatique, Méthodes Statistiques, GANs,
Autoencodeurs

Résumé: Le modèle cosmologique standard
fournit une description de l’Univers dans son
ensemble : son contenu, son évolution et sa
dynamique. Une façon classique de déter-
miner l’évolution de la matière dans l’univers re-
pose sur l’utilisation de simulations numériques
qui sont très coûteuses en termes de temps
d’exécution, de stockage et de puissance de cal-
cul. Nous explorons l’utilisation de réseaux de
neurones profonds (DNN) comme une alterna-
tive à ces simulations coûteuses. Dans une pre-
mière partie, nous avons construit et entraîné
un réseau antagoniste génératif (GAN) pour ex-
traire la distribution sous-jacente d’un ensem-
ble de données construit à partir d’un champ de
densité de matière noire simulé, et ainsi générer
rapidement de nouvelles données de type simula-
tion avec des statistiques identiques. Nous avons
déterminé, en détail, les forces et les limites de
l’utilisation des GAN à cette fin, et constaté
que le GAN génère avec succès de nouvelles im-
ages et de nouveaux cubes de données qui sont
statistiquement cohérents avec les données sur
lesquelles il a été entraîné. Dans une deuxième
partie, nous avons montré comment utiliser le
GAN entraîné pour construire un autoencodeur
(AE) réplicatif simple qui peut conserver les pro-

priétés statistiques des données, et nous avons
développé un AE prédictif pour inférer des don-
nées à z = 0 (présent) à partir d’époques précé-
dentes (z = 1, 2, 3). Nous avons constaté que
l’AE réplicatif peut extraire efficacement des in-
formations des données de simulation pour les
encoder dans un nombre réduit de paramètres.
Par ce biais, l’AE peut récupérer les images
et les cubes de manière satisfaisante, en con-
servant notamment leurs propriétés statistiques
en termes de distribution de densité, de spec-
tre de puissance et de nombre de pics. En-
fin, nous montrons que l’AE prédictif, bien que
montrant une faible capacité prédictive dans sa
forme la plus simple, réussit très bien à inférer
l’évolution des données dès lors que nous lui
fournissons suffisamment d’informations en en-
trée, notamment en utilisant le champ de vitesse
associé. Avec ces preuves de concept, nous con-
cluons que les DNNs sont des outils prometteurs
pour générer rapidement de grands ensembles
de données réalistes. De plus, lorsqu’ils sont en-
traînés et qu’ils reçoivent les bonnes informa-
tions (par exemple, la dynamique du champ de
densité), les DNN contiennent les informations
nécessaires pour décrire l’évolution de la struc-
ture.

3

Title: Emulation and Prediction of Cosmic Web Simulations through Deep Learning

Keywords: Cosmology, Simulations, Deep Learning, Statistical Methods, GANs, Autoencoders

Abstract: The standard cosmological model
provides a description of the Universe as a
whole: its content, its evolution and its dynam-
ics. A standard way of determining the evolu-
tion of matter in the Universe rests on the use
of numerical simulations that are very expensive
in terms of running time, storage and computing
power. We explore the use of deep neural net-
works (DNN) as an alternative to these costly
simulations. In a first part, we built and trained
a Generative Adversarial Network (GAN) to ex-
tract the underlying distribution of a dataset,
built from a simulated dark matter density field,
and to quickly generate new simulation-like data
with identical statistics. We have determined,
in details, the strengths and limitations of use
of GANs for this purpose, and found that the
GAN successfully generates new images and
data cubes that are statistically consistent with
the data on which it was trained. In a second
part, we have shown how to make use of the
trained GAN to construct a simple replicative

autoencoder (AE) that can conserve the statis-
tical properties of the data, and further devel-
oped a predictive AE to infer data at z = 0 (to-
day) from earlier epochs (z = 1, 2, 3). We found
that the replicative AE can efficiently extract
information from simulation data to encode it
into a reduced number of parameters. By this
means, the AE can recover the images and cubes
satisfactorily, notably conserving their statisti-
cal properties in terms of density distribution,
power spectrum and peak counts. Finally, we
show that the predictive AE, while showing poor
predictive capacity in its simplest form, succeeds
very well to infer data evolution once we supply
it with sufficient information in input, notably
when using the associated velocity field. With
these proofs of concept, we conclude that DNNs
are promising tools to quickly generate realistic
large datasets. Moreover, when trained and sup-
plied with the right information (e.g. dynamics
of the density field) DNNs contain the necessary
information to describe the structure evolution.

Synthèse en français

Le modèle cosmologique standard fournit une description de l’Univers dans son
ensemble : son contenu, son évolution et sa dynamique. Une façon classique
de déterminer l’évolution de la matière dans l’univers repose sur l’utilisation de
simulations numériques qui sont très coûteuses en termes de temps d’exécution,
de stockage et de puissance de calcul. Nous explorons l’utilisation de réseaux de
neurones profonds (DNN) comme une alternative à ces simulations coûteuses.

Dans une première partie, nous développons un réseau antagoniste génératif
(GAN) pour extraire la distribution sous-jacente d’un ensemble de données con-
struit à partir d’un champ de densité de matière noire simulé, et ainsi générer
rapidement de nouvelles données de type simulation avec des statistiques iden-
tiques. Nous détaillons le concept de GAN, puis expliquons la construction, à
partir de simulations N-corps, des données que nous utilisons pour entraîner nos
réseaux neuronaux ; trois types de données, représentant des champs de densité,
sont créées: des cubes 3D et des images 2D à partir de simulations 3D, ainsi que
des images 2D à partir de simulations 2D. Ensuite, nous montrons le processus
par lequel nous construisons et entraînons nos GANs, détaillant l’architecture de
ces derniers et les méthodes d’optimisation de l’entraînement. Puis nous présen-
tons les estimateurs statistiques avec lesquels déterminons la qualité des données
générées par nos réseaux. Enfin, nous présentons les résultats des GAN pour les
trois types de données susmentionnées. Nous avons déterminé, en détail, les forces
et les limites de l’utilisation des GAN, et constaté que le GAN génère avec suc-
cès de nouvelles données qui sont statistiquement cohérents avec les données sur
lesquelles il a été entraîné.

Dans une seconde partie, nous montrons comment utiliser le GAN entraîné
pour construire un autoencodeur (AE) réplicatif simple qui peut conserver les
propriétés statistiques des données, et nous avons développons un AE prédictif
pour inférer des données à z = 0 (présent) à partir d’époques précédentes (z =
1, 2, 3). Une fois de plus nous détaillons le concept d’AE, présentons l’architecture
et l’entraînement de nos AE, ainsi qu’un nouvel estimateur statistique, le coefficient
de Dice, quantifiant la précision avec laquelle l’AE inferre une image individuelle.
Nous développons plusieurs types d’AE reproductifs et prédictifs dans un souci de

5

6

tester différentes approches pour optimiser nos résultats. Pour l’AE réplicatif, nous
partons d’un modèle de base (baseline) composé d’un encodeur traditionnel et d’un
décodeur construit à partir d’un générateur de GAN, et entraîné avec une fonction
de perte utilisant le discriminateur d’un GAN. Nous testons également un AE
traditionnel (traditional), ainsi que deux variations sur l’AE de base, l’un (`2-loss)
avec une fonction de perte `2 entre donnée inférée et donnée réelle, et l’autre (latent
layer) avec une fonction de perte `2 entre code latent inféré et code latent réel
d’une donnée. Nous avons constaté que l’AE réplicatif peut extraire efficacement
des informations des données de simulation pour les encoder dans un nombre
réduit de paramètres. Par ce biais, l’AE peut récupérer les images et les cubes
de manière satisfaisante, en conservant notamment leurs propriétés statistiques en
termes de distribution de densité, de spectre de puissance et de nombre de pics.
Pour l’AE prédictif (timewarper), nous testons à nouveau différents types d’AE,
partant d’un modèle de base (baseline) que nous entraînons en ne lui fournissant
qu’une donnée à une époque z = 1, 2 ou 3 et comparant sa prédiction à la même
donnée à époque z = 0. Ensuite nous testons un AE (curriculum learning) entraîné
progressivement à prédire une donnée à z = 0 depuis z = 0 pendant cinquante
époques en incrémentant le redshift d’entrée de 1 toutes les 50 époques. Nous
testons aussi un AE (multiple redshift input) entraîné à prédire une donnée à
z = 0 en lui fournissant la même donnée à deux redshifts différents (ex: 1 et 2).
Enfin, nous testons un AE (velocities) entraîné à prédire une donnée (champ de
densité) à z = 0 en lui fournissant la donnée, mais aussi le champ de vitesse associé,
à z = 1, 2 ou 3. Nous montrons que l’AE prédictif, bien que montrant une faible
capacité prédictive dans sa forme de base, réussit très bien à inférer l’évolution des
données dès lors que nous lui fournissons suffisamment d’informations en entrée,
notamment en utilisant le champ de vitesse associé. Avec ces preuves de concept,
nous concluons que les DNNs sont des outils prometteurs pour générer rapidement
de grands ensembles de données réalistes. De plus, lorsqu’ils sont entraînés et
qu’ils reçoivent les bonnes informations (par exemple, la dynamique du champ de
densité), les DNN contiennent les informations nécessaires pour décrire l’évolution
de la structure.

Remerciements

C’est emplie d’une gratitude sans borne et d’une certaine dose de mauvaise con-
science pour ce que j’ai fait subir à tous ceux que je m’apprête à remercier, que je
repense à ces trois (et demie..?) dernières années. Ces dernières ont été tellement
denses et riches en rencontres, en expériences, et en émotion qu’il est difficile de
pleinement leur faire justice dans les lignes qui vont suivre.

Je tiens tout d’abord à remercier mes merveilleux maîtres de thèse, Nabila et
Aurélien, victimes principales de mon stress et de ma mauvaise organisation, mais
qui ont su malgré tout et avec beaucoup de patience me fouetter pousser jusqu’à la
finish line. Un parfait tandem, avec Aurélien en force calme avec lequel développer
des nouvelles voies d’exploration, et Nabila en moteur mille watt, fournissant force
motivation et recadrage pour les tâches auxquelles je rechignais (rédaction, présen-
tations... socialisation. . .). Je vous en ai fait voir de toutes les couleurs, mais j’ai
une reconnaissance sans limite pour le soutien bienveillant que vous avez su fournir
tout au long de ma thèse, et j’espère pouvoir transmettre un jour l’impact positif
que vous avez eu sur moi.

Ensuite mes remerciements vont, concentriquement, aux personnes qui con-
stituent et ont constitué l’IAS, laboratoire chaleureux et composé semble-t-il unique-
ment de gens aimables.

Un merci tout d’abord à la direction ainsi qu’aux équipes administrative et
informatique, et tout particulièrement à Stéphane et Clément du service info qui
ont passé un temps non-négligeable à gérer mes problèmes récurrents d’ordinateur,
et Patricia qui était là dès mon inscription retardataire en stage et toujours dispo
pour aider avec n’importe quel problème administratif.

Merci à toute l’équipe de Cosmo, constituée de gens à la fois brillants, humbles
et généreux, véritable deuxième famille pendant ces dernières années, et qui a forgé
la personne que je suis aujourd’hui. C’est forte de leur conseils, de leur motivation
et de leur bienveillance que j’ai pu présenter avec fierté les résultats de mon travail
lors de ma soutenance.

A commencer par les permanents, Marian, fournisseur principal de listes de
lecture, de gadgets informatiques et de sucreries, Mathieu, prof de Swedish Fit à
ses heures perdues et mine d’or de connaissances et d’avis francs, Julien, grand

7

8

sorcier des équations à la moustache parfaitement entretenue, et plus fraîchement
adoubée, Laura, reine du style et du café. Merci énormément à Laurent et Emilie
pour leur écoute et leur soutien dans ma phase la plus misérable de la rédaction.

Merci aux post-docs, frères et soeurs ainés de coeur, sources primaires de savoirs
et de conseils avisés lors des réunions et des repas (pré-covid...snif). Nicola, com-
pagnon de boxe et conversationniste hors pair, Hideki, qui a toujours le mot pour
rire ou conforter, Joseph qui, malgré sa fâcheuse tendance à poser des questions
pertinentes quand on cherche à finir discrètement sa présentation, arrive toujours
à se faire pardonner grâce à sa jovialité contagieuse, Alex qui m’a intimé de croire
en ma recherche indépendemment des coups à l’égo, Fabien parti trop tôt et Giulio
et Jenny qui ont su me donner des supers conseils dans le court laps de temps où
je les ai vus.

Merci aux thésards, compagnons d’infortune et de rigolade dans cette grande
aventure qu’est la thèse, pour les innombrables souvenirs et délires partagés pen-
dant les ByoPiC weeks, les sorties, et les pauses midi/café. Merci Louis dit “le
chaud”, Edouard le bon gars, Victor d’Hossegor, et aussi Nadège, Adélie, Danilo,
Thomas, Hubert, et Valentin. Merci tout particulièrement à la cuvée 2019 qui
a évolué à mes côtés lors des trois années, Dany, son énergie débordante et son
sourire de supernova, toujours à motiver les troupes pour sortir s’amuser après le
travail, Thibaut partenaire n°2 de boxe et camarade de discussion privilégié pour
mes obsessions weebesques, mais aussi pour parler de tout et n’importe quoi, mais
toujours intensément.

Enfin il faut mentionner la cour des miracles qu’est le bureau 216 dit bureau
des princesses, PMU local et lieu privilégié d’échange de potin, de commiséra-
tion, de trafic de tisanes et de plantes grasses (RIP Augustine I et II), de plaintes
chantées sur des airs de Claude François, et éventuellement (surtout!) de tra-
vail. Merci à ses principaux habitants, plus récemment Stefano à la voix douce
et Raphaël “the broken”, qui semble marcher au karma inversé tant ses multiples
actes généreux dont organisation de super vacances et pots/cadeaux de thèse se
sont suivis d’autant de blessures rugbystiques. Vous avez adouci ces derniers mois
difficiles et je regrette seulement que notre temps ensemble ait été si court. Merci
enfin à mes deux fabuleux co-bureau du premier jour, Tony et Céline, pour avoir
su créer le meilleur environnement de travail possible, avec votre humour déjanté,
votre gentillesse à tout rompre et cette once d’asocialité qui m’a tout de suite mise
à l’aise parmis vous. Merci Tony d’avoir été mon canard de débuggage et pour
ton beatboxing de qualité. Merci Céline d’avoir été ma senpai, m’apprenant les
arcanes de la recherche, de la "relaxation" et de la cassosserie. Il y a mille autres
trucs que je pourrais citer, mais ce serait plus long que la thèse qui suit...

Nabila, encore merci d’avoir constitué une équipe aussi chouette et pour l’effort
que tu as mis et mets encore à créer du lien, et sortir les introvertis les plus

9

récalcitrants (je ne vois pas de qui vous parlez) de leur coquille.
Merci aux amis de l’école d’été Euclide, particulièrement le groupe des Euclidi-

ens Heureux pour des chouettes moments de balades, cartes et pétanque à Banyuls
et Hyères.

Merci à ma famille et mes amis pour votre soutien pendant cette thèse. Merci
Carole de m’avoir sortie pour les balades, la piscine et les matchs de tennis,
m’évitant ainsi de fusionner avec mon canapé et me permettant de sortir toute ma
frustration de façon saine. Merci Flore, Stéphane, Simon, Olivia et Sylvain pour
les soirées et vacances reposantes, et pour votre amitié par-dessus tout. Merci
Maman de m’avoir ramassée à la petite cuillère et de t’être occupée de moi pen-
dant les périodes les plus sombres. Merci Pops d’avoir aidé pendant mes pics de
stress sans me transmettre le tiens. Merci Maud et Nathou de votre patience et
de vos paroles d’affirmation pendant mes moments les plus vulnérables. Merci à
mes grands-parents, oncles, tantes, cousins et cousines pour leur soutien confiant.

Merci Flavien de m’avoir accompagnée et soutenue pendant cette aventure, et
de nous avoir trouvé un nid rien qu’à nous. Je t’aime.

Enfin, merci à mon jury de thèse pour l’intérêt qu’ils ont porté à mon travail
et les précieux retours et conseils qu’ils m’ont apportés lors de la lecture et de la
soutenance.

Contents

1 Introduction 13
1.1 Context . 13
1.2 Deep Neural Networks: an overview 16

1.2.1 DNN Context . 16
1.2.2 From Machine Learning to Deep Neural Networks 18
1.2.3 Deep Neural Network components 23

2 Emulating Cosmological Simulations with GANs 29
2.1 Introduction . 29
2.2 GANs - Generalities . 30
2.3 Data . 32

2.3.1 Simulations . 32
2.3.2 Construction of the sample 34

2.4 Constructing the GAN . 40
2.4.1 Architecture . 40
2.4.2 Training process and Optimization 43

2.5 Statistical estimators . 46
2.5.1 Pixel PDF and Distribution of the mean density 46
2.5.2 Peak counts . 47
2.5.3 Power Spectrum . 48

2.6 Results . 48
2.6.1 2D images . 48
2.6.2 3D projected images . 49
2.6.3 3D cubes . 53

2.7 Conclusion . 55

3 Predicting Structure formation in Simulations with GAN-based
Autoencoders 59
3.1 Introduction . 59
3.2 Autoencoders - Generalities and Specifics 60
3.3 Training process . 63

11

12 CONTENTS

3.4 Sørensen–Dice coefficient . 64
3.5 Replicative Autoencoder . 66

3.5.1 Baseline AE Results . 66
3.5.2 Variations on the baseline AE 76
3.5.3 Conclusion on the Replicative Autoencoder 84

3.6 Predictive Autoencoder . 89
3.6.1 Baseline Timewarper results 90
3.6.2 Variations on the baseline Timewarper 96
3.6.3 Conclusion on the Predictive Autoencoder 105

4 Conclusion 109

Chapter 1

Introduction

1.1 Context

The standard model of cosmology, also referred to as the ΛCDM or concordance
model, provides a description of the Universe as a whole: its content, its evolution
and its dynamics.

Combining information gathered through the observation of multiple sources,
such as the large-scale structure in the distribution of galaxies, the abundance of
various gases in the Universe, and the temperature map of the cosmic microwave
background, it proposes a parametrization that comprehensively accounts for each
of these observations.

This model is based on several assumptions; namely it posits the validity of
Einstein’s theory of General Relativity, the fact that the universe is isotropic and
homogeneous, and the existence of dark energy (associated with the cosmological
constant Λ) responsible for the accelerating expansion of the universe, and dark
matter, whose only interaction with any type of matter including itself is grav-
itational. As their "dark" names suggest, they cannot be directly observed but
rather deducted from their effect on observations.

In this model the early universe took form starting from an originating event,
the Big Bang, following which the universe went through a first exponential ex-
pansion from an initial high-density and high-temperature state, increasing in size
by a factor 1030 in the span of 10−32 seconds. During this rapid inflation quan-
tum fluctuations were stretched to macroscopic proportions and thus etched into
the ensuing matter density field in the form of gaussian-distributed density fluc-
tuations (ie primordial fluctuations) within an otherwise homogeneous field, that
can be observed today via the CMB (Fixsen et al., 1996; Aghanim et al., 2018;
Tegmark et al., 2003; Bond et al., 1996; Coles and Chiang, 2000; Forero-Romero
et al., 2009).

13

14 CHAPTER 1. INTRODUCTION

Furthermore according to this model, the structures observed today (galaxies
and clusters of galaxies) have evolved from these small fluctuations through the
progressive gravitational collapse of matter towards overdense regions to form what
is today a complex network of structures known as the cosmic web (Bond et al.,
1996).

The hierarchical assembly of matter is governed by the combined effects of
gravity and expansion, which lead to highly nonlinear equations of motion when
studying the evolution of the matter density field in the universe; thus when ap-
plying our model to predict structure evolution from an initial density field (that is
set so as to be coherent with the CMB), we cannot provide an analytical equation
that comprehensively describes an evolution of the field according to time.

Consequently we rely on numerical simulations that can compute the evolution
of a density field by iteratively computing the equations of motion over time lapses
short enough that a linear equation of trajectory sufficiently approximates the true
trajectory of massive matter particles.

Such simulations allow us to confront the model to observations, with increas-
ingly large numerical simulations such as Millennium (Springel et al., 2005) and
Illustris (Vogelsberger et al., 2014) providing a finer prediction of cosmological
structure formation which have subsequently been confirmed with actual observa-
tions of large-scale matter distribution in galaxy surveys such as the Sloan Digital
Sky Survey (SDSS) (York et al., 2000).

However, the large and detailed simulations that included detailed baryonic
physics, such as Horizon-AGN(Dubois et al., 2016), BAHAMAS (McCarthy et al.,
2016), or IllustrisTNG (Pillepich et al., 2018), which are needed to compare the-
ory with observations, are computationally expensive. Faster fully analytical ap-
proaches (Shandarin and Zeldovich, 1989; Kitaura and Heß, 2013) and semian-
alytical simulations that combine traditional simulation methods and analytical
approximations (Monaco et al., 2002; Tassev et al., 2013) both relying on first-
or second-order perturbation theory, exist, but they cannot address the highly
nonlinear stages of the structure formation.

The recent advances in computer technology and in machine learning (ML)
(LeCun et al., 2015; Goodfellow et al., 2016) have led to an unprecedented boom
in the development and use of ML methods, notably in the form of neural networks,
used for supervised and unsupervised learning. This has prompted an increasing
interest from the astronomical community in proposing ML as an interesting al-
ternative for the fast generation of mock simulations and mock data. The ever
larger quantities and quality of astronomical data call for systematic approaches
to properly interpret and extract the information that can be based on machine-
learning techniques such as in Villaescusa-Navarro et al. (2020), Schawinski et al.
(2018), or Bonjean (2020). Machine learning can also be used to produce density

1.1. CONTEXT 15

maps from large N-body simulations of dark matter (DM) (Rodríguez et al., 2018;
Feder et al., 2020) in a computationally cheaper manner, to predict the effects of
DM annihilation feedback on gas densities (List et al., 2019), or to infer a mapping
between the N-body and the hydrodynamical simulations without resorting to full
simulations (Tröster et al., 2019; Zamudio-Fernandez et al., 2019).

In this context, certain types of neural networks, called convolutional neural
networks (CNN) (LeCun et al., 1990), excel in the general field of image processing
through their automatic pattern detection property (for a comprehensive review,
see Ntampaka et al. (2019)). Generative models among CNN, such as generative
adversarial networks (or GANs) (Goodfellow et al., 2014), have shown promising
results in computer science and physics (Casert et al., 2020; de Oliveira et al.,
2017; Ahdida et al., 2019). These networks aim to learn a probability distribution
as close as possible to that of a considered dataset in order to later generate new
instances that follow the same statistics. GANs have proven to be very promising
tools in terms of media generation (Donahue et al., 2018; Clark et al., 2019),
and notably in the generation of high-resolution images (Karras et al., 2020). In
astronomy, they have recently been used in several cases, and more specifically,
by Rodríguez et al. (2018) and Feder et al. (2020), to provide a fast and easy
alternative to simulations and images. Wasserstein GANs (or WGANs) have also
been used to detect anomalies in astronomical images (Margalef-Bentabol et al.,
2020; Storey-Fisher et al., 2020).

In chapter 2 of this thesis, we first explore the use of GANs in generating
simulation-like data in an attempt to test the limits of the model and see how
well it can extract and replicate statistical properties from the data and generalize
from these to generate new data. We will first present the general concept of the
GAN, and then we will describe how from input simulations we build the data on
which we train the GAN. Thirdly, we will describe the process by which we build
our GAN, and fourthly we present the statistical estimators we choose to test the
quality of our generated images. Finally, we show our trained GAN’s results and
conclude.

Additionally to GANs, a certain type of neural network known as Autoencoder
(AE) (Hinton and Salakhutdinov, 2006) has garnered our interest, given its ver-
satility. This network, made up of an encoder and a decoder, takes in data of a
certain dimension (typically an image), learns a representation of reduced size of
the data (typically a vector) in a latent space, and provides the means, through the
encoder and decoder, to translate data from one space into the other. Developing
a meaningful latent encoding space for data can have several applications, such as
semisupervised classification, disentangling style and content of images, unsuper-
vised clustering, and dimensionality reduction (Hinton and Salakhutdinov, 2006),
as can be seen, for example, in the case of variational autoencoders (Makhzani

16 CHAPTER 1. INTRODUCTION

et al., 2015) and adversarial autoencoders (Kingma and Welling, 2013). In the
case of astrophysics or cosmology, AEs could be used to help remove instrumental
or astrophysical signal contamination (e.g., point sources, beam, and instrumental
noise) (Vojtekova et al., 2021) or for inpainting masked areas while preserving the
statistics of the data (Sadr and Farsian, 2020; Puglisi and Bai, 2020).

In chapter 3, we present how we can build on the trained GAN constructed in
chapter 2 to construct an AE that is able to preserve the statistics of a dataset.
In a first step, we present the general concept of the AE, our own process to build
and train an AE, and results for a simple replicative AE, that is simply tasked with
recovering its input data after having encoded in a vector of small dimension. In
a second step, we experiment to see if we can make use of this network structure
to predict structure evolution in time within simulations with an aptly-named
predictive AE.

Finally, we will conclude and present some perspectives in chapter 4.
But first, let us start by an overview of Deep Learning in the following section.

1.2 Deep Neural Networks: an overview

1.2.1 DNN Context

In the past years the field of machine learning (ML) has made increasingly fast
progress thanks to the rapidly developing technology to process large amounts
of information. Such advancements, made widely accessible due to their now
relatively low price in terms both of energy and components, have made possible
the widespread emergence of deep learning (DL), which rests on the training of
neural networks with the help of large (>10GB) datasets.

Thus the uses and experiments based on neural networks have exploded in
the past few years, with a wide array of applications anywhere from self-driving
cars (Ettinger et al., 2021; Zhao et al., 2020; Rhinehart et al., 2019) to singing
portraits (Zakharov et al., 2019; Vougioukas et al., 2019), in fields as various as art
(Yalçın et al., 2020; Mordvintsev et al., 2015; Bethge et al., 2016; Foster, 2019),
media and entertainment (Skinner and Walmsley, 2019; Covington et al., 2016;
Amato et al., 2019), and of course science at large (Baldi et al., 2015; Wang et al.,
2019; Carleo et al., 2019; Salman et al., 2015).Neural networks can be applied to
a large variety of data types, most popularly to still images, but also to sounds
(Deng et al., 2013; Li et al., 2017), videos (Zhang et al., 2016; Lotter et al., 2016;
Mathieu et al., 2015), text (Iqbal and Qureshi, 2020; Yousefi-Azar and Hamey,
2017; Kowsari et al., 2017), and even symbolic equations (Cranmer et al., 2020;
Lample and Charton, 2019)

They excel in the fast performance of automated tasks, which can take many

1.2. DEEP NEURAL NETWORKS: AN OVERVIEW 17

forms, such as prediction (Lv et al., 2014; Poplin et al., 2018; Chong et al., 2017;
Qiu et al., 2018), detection (Zhao et al., 2019; Chalapathy and Chawla, 2019; Liu
et al., 2020; Badjatiya et al., 2017), clustering and data visualisation (Aljalbout
et al., 2018; Min et al., 2018; Tian et al., 2014), reconstruction (Rivenson et al.,
2018; Hyun et al., 2018), generation (Goodfellow et al., 2014; Briot and Pachet,
2017; He and Deng, 2017), translation (Singh et al., 2017; Popel et al., 2020;
Varela-Salinas et al., 2018) and much more.

The field of astronomy is a good candidate for the application of deep learning.
For one, much of current research in this field relies heavily on observation that
is conducted with the help of telescopes generating very large amounts of data
through surveys that map the sky in increasingly finer detail both in terms of
angular and spectral resolution. Examples include the Sloan Digital Sky Survey
(SDSS)(York et al. (2000), > 100 TB available), the James Webb Space Tele-
scope(JWST) (Beichman et al. (2014), >50 GB per day), the Vera Rubin Obser-
vatory Legacy Survey of Space and Time (LSST)(Ivezić et al. (2019), 15 TB per
night), Euclid (Laureijs et al. (2010), > 1 PB a year, and the Square Kilometer
Array (SKA)(Dewdney et al. (2009), 600 PB a year).

This rich supply of available data is suited to the training of deep neural net-
works, as they necessitate large datasets for optimal training. Moreover, when
trying to make sense of these observations, many challenges, that we will detail
below, appear. While there exist standard analytical methods to counter them,
they can often only be approximate, or slow to develop and apply. Deep learning
can be considered as a valuable alternative to quickly obtain similar or even better
results through the use of more unorthodox means, occasionally bringing to light
the unsuspected relevance of certain parameters in a datum to obtain some given
information.

Here we will list a few of common challenges faced in observations and cite
examples of uses of ML/DL to tackle them. For example, when studying the data
recovered by a given telescope or detector, one has to account for instrumental
limitations (noise, point spread function, limited amount of detectors, etc), or
signal contamination caused by the local environment such as atmospheric effects,
bending, absorbing or blurring light signal). While several analytical approaches,
usually centered on deconvolution, have been used to tackle these issues (e.g. Starck
et al., 2002), ML has provided fast alternatives to efficiently reduce these various
unwanted effects (Paschalis et al., 2013; Baso et al., 2019; Long et al., 2021; Jia
et al., 2020b).

Even after correction for all of these issues, many more arise from physical lim-
itations, first and foremost the fact that observations are a 2D projection of a 4D
(3D space + time) universe. Problems include contamination of the line of sight
when trying to observe distant objects, such as the superposition of emission of

18 CHAPTER 1. INTRODUCTION

foreground and background objects (ie milky way for CMB, etc), and light contam-
ination by bright sources; tackling these issues entails reconstructing incomplete
observations (Flamary, 2017) and disentangling different light sources (also called
component separation) (Nuzillard and Bijaoui, 2000; Picquenot et al., 2019; Vos
et al., 2019; Bonjean, 2020; Tanimura et al., 2021).

Moreover, some components such as dark matter cannot be directly observed
as it does not emit light, but rather modifies background emissions in such a way
that they can be detected, with strong and weak lensing for example (Davies et al.,
2019).

Finally, another challenge when dealing with large scale observations comes
with selecting objects of interest within sizeable datasets. Once more neural net-
works prove tailor-made for such tasks of detection and selection, surpassing an-
alytical methods that often rely on too few parameters to determine the nature
of an image; they prove efficient both in finding known types of sources (Lukic
et al., 2020; Hassan et al., 2019), and novel types that have not been studied
before (Shamir and Wallin, 2014; Margapuri et al., 2021). Within a selection of
sources of interest (galaxies, clusters, supernovae, etc), there is often a need for
classification, either according to predefined categories (such as elliptical or spher-
ical galaxies for example), or conversely as a way to construct new categories (Ball
et al., 2006; Jia et al., 2020a).

1.2.2 From Machine Learning to Deep Neural Networks

To better understand the CNNs which we use in our work, it is worth presenting
them in their global context. Indeed, CNNs are a type of application of deep learn-
ing, itself a sub-category of machine learning which in turn falls into the broader
category of artificial intelligence. We will progressively define these categories
while specifying the characteristics of each subcategory, all the while providing
examples both inside and outside of the astrophysics domain.

While several examples within the categories that we will cover may contain
purely mechanical aspects, such as the interaction of a machine with physical ob-
jects or a physical response of the machine, we will focus on the strictly algorithmic
aspect of each example, which we will refer to as model.

In the same vein, we clearly define the terms of input and output to avoid
any confusion at their mention. Any input, be it sound, video, coins, etc, can
be represented as an array of values that the model will interpret, process and
respond to with an output, which itself will be produced as an array that can then
be transformed into a list of tasks to be executed (e.g. "stop", "return x amount
of cash", "turn left", etc) or a datum that can be easily interpreted by a human
(e.g. sound, image, label(s), etc).

1.2. DEEP NEURAL NETWORKS: AN OVERVIEW 19

Artificial intelligence (AI) combines all forms of models built to use a "human-
like" reasoning method to perform complex tasks (e.g. chess, automatic vacuum
cleaning, etc), and specifically to make decisions when responding to novel, pre-
viously unencountered problems, usually within a defined frame. This can be
through explicitly defined "if/then" responses for a set of possible scenarios; alter-
natively, the model can be trained to learn the best response on its own.

This is the case for the subcategory of AI referred to as Machine Learning (ML)
which focuses on making systems automatically learn and improve from experience
without being explicitly programmed. This experience comes in the form of large
quantities of data that the system is made to interact with and learn from (i.e.
"train on"), usually referred to as a training set. Rather than an explicit chain
of commands to complete a specific task, the system is given a relatively simple
objective, usually in the form of reducing a loss function, that is contingent on the
task in question being optimally performed.

Loss Functions A loss function will map a model’s output and target onto a real
number representing some "cost" associated with the output/target discrepancy.
The loss ideally has to be a continuous and continuously derivable function of
the model’s parameters, as the model’s parameters will be gradually modified
according to the loss’s gradient over the parameters. The choice of loss will depend
on the task at hand, with the loss falling into two main categories: regression losses
and classification losses. Regression losses concern cases where the target output
contains values that are continuous (e.g. trying to generate a specific image or
determine the ellipticity of a galaxy) whereas classification losses are for cases
where the output is one of a set of finite categorical values representing labels (e.g.
determining if an image is of a cat or dog, or categorizing a written number into
one of 0-9 digits). Below we list a few examples of commonly used losses.

• `2 loss: also known as mean square error or quadratic loss, it is simply
defined as L = ‖o − t‖2, where o is the output and t is the target; this is
typically used for regression.

• `1 loss: or mean absolute error, this regression loss is defined as L = |o− t|;
also used for regression. Although it is not continuously derivable, it is more
robust to outliers.

• Cross-entropy loss: typically used for classification, this loss is defined as
L =

∑
i oi log(ti)+(1−oi) log(1−ti) where the i represent the different labels

a datum can have, ti is either 0 or 1 depending on whether it has the given
label or not, and oi is a float between 0 and 1.

Examples of ML include support vector machines, random forests, and most
notably artificial neural networks.

20 CHAPTER 1. INTRODUCTION

A large branch of ML is dedicated to artificial neural networks (ANNs); orig-
inally made following a schematic model attempting to mimic biological neurons
(see fig.1.1), this type of algorithm quickly proved effective in many domains.

The Neuron In the biological context, a neuron is part of a larger network and
serves as a type of messenger; receiving a set of "messages", or impulses of various
upstream neurons, it compounds the information thus received and passes it on (or
"fires") provided that it is deemed significant enough by the neuron. In the case of
an artificial neuron, the "messages" come in the form of numbers xi representing
the significance of each incoming information. The neuron then outputs a new
message x′ by attributing weights wi to each incoming input and returning the
sum with an additional bias b. The significance of the outcome is determined by a
final activation f , which prevents the message from being passed on if it is below a
certain threshold. We hence obtain the following equation for the output message:

x′ = f(
∑
i

wixi + b) (1.1)

y Where the xi are yielded by upstream neurons (or input parameters), and wi, b
and f are properties specific to an individual neuron.

If the activation function is a simple step function (f(x) = 0 if x < 0 and
f(x) = 1 if x > 0), we can think of a neuron as a binary classifier that divides
the input parameter space in two with a linear hyperplane and assigns one of two
classes (0 or 1) to every input datum depending on which side of the dividing hy-
perplane they fall on. This is also known as a simple perceptron, and the most early
use of ANNs. The composition of several neurons can be regarded as finer divi-
sions in parameter space, allowing the network to produce increasingly meaningful
partition. Thus, mimicking a biological brain by connecting neurons together to
form a network that spans from input to output, we can model complex classifiers
or functions depending on the choice of activation functions. Typically, neurons
are organized in layers, wherein each neuron receives information from neurons of
the previous layer and passes on a signal to neurons of the next layer. In this case,
the input is considered as the first layer and the output as the last. Layers that
lie in between are referred to as hidden layers, as their content and effect are not
immediately visible to users of the network. Multi-layered networks are referred
to as Deep Neural Networks (DNN) and, given their versatility, they represent the
vast majority of ANNs used today.

We are now equipped with the basic concepts of neuron and DNN; however,
this can be assimilated to presenting the general concepts of "brick" and "build-
ing". How best to combine these simple building blocks to obtain a solid archi-
tecture? Which combination for what purpose? In other words, which neurons do

1.2. DEEP NEURAL NETWORKS: AN OVERVIEW 21

Figure 1.1: Diagram of a biological neuron (top) and of an artificial neuron (bot-
tom).

22 CHAPTER 1. INTRODUCTION

Figure 1.2: Diagram of a simple artificial neural network. Pictured in yellow is the
input, and in red is the output. In blue and green we can see hidden layers. Each
neuron from a layer n receives a signal from neurons of the layer n− 1 and passes
on its signal to neurons of the layer n+ 1. The network is considered deep (DNN)
if there are three or more hidden layers.

credit: Gavril Ognjanovski (shorturl. at/ iFIT1)

shorturl.at/iFIT1

1.2. DEEP NEURAL NETWORKS: AN OVERVIEW 23

we choose to connect to one another? How many layers? How many neurons for
which layer?Can we organize the neurons in such a way that information is more
efficiently transferred or extracted? Which activation function(s) to use? While
there is no definitive answer to these questions, some techniques propose efficient
manners to connect neurons from one layer to the next for optimal transfer of
information. We present some of these the following section.

1.2.3 Deep Neural Network components

Having described the basic concept of the neuron and DNNs, we will now present
in more detail the different components that typically make up the architecture of
a standard DNN. We will refer to these components in chapters 2 and 3.

We begin by looking into neural organization and choices of connection from
one neural layer to the next.

Dense Layer The most neutral (in the sense that it does not favor any specific
link from neural layer to the next), but most costly manner in which to link neurons
from one layer to the next is to use a dense layer. Dense layers, or fully connected
layers, connect all input parameters, or neurons of a previous layer, to each of the
neurons in the layer, as exemplified in Fig. 1.2.

Calling xi all the input parameters and xj the outputs of a given layer’s neurons,
we have:

xj = f(
∑
i

wijxi + bj) (1.2)

Supposing that we have n input parameters from the previous layer and m
neurons in the current layer, this yields n(wij)+1(bj) parameters to train for every
single neuron, or m(n+ 1) parameters for a given layer.

This manner affords plenty of options, notably for the ANN to "break" a link on
its own by setting the weight of an incoming parameter to 0, but it results in more
costly training than any other linking choice; hence this makes sense when dealing
with a relatively small set of input or output parameters, but can quickly lead
to pointlessly time-consuming training when too many parameters are involved
(typically when dealing with high-dimension objects like images or videos). Here
the neurons of the layer do not have any a priori specific organization, as they
take in all input parameters indiscriminately and without any form of hierarchy.
As a result, a dense layer is a type of linking which is preferable when dealing with
data consisting of independent parameters (such as lists of properties, e.g. (size,
luminosity, ellipticity, etc)).

However, the input data can often have an underlying spatial organization
(such as sound, images, videos or frequency spectra), wherein each constituting

24 CHAPTER 1. INTRODUCTION

parameter is highly correlated to those in its spatial vicinity, but where combining
two far-apart parameters makes little sense when looking for informative patterns.
To account for this correlation, we can make localized links from one layer to the
next making use of convolutions.

Convolutions When dealing with spatially organized data, whether for gener-
ating purposes or extracting information, generating or looking for patterns in
smaller subspaces within a datum tends to prove quite efficient and much less
costly than looking at all the parameters of the datum at once.

This can be done in an ANN with the help of convolutional layers, wherein
each neuron of a layer is linked to a small area of the input data (e.g. a set of
neighboring pixels in an image). The set of weights of the neuron are organized
spatially to detect a given oriented pattern (e.g. vertical lines, corners, circles,
etc.); this set of weights, organized in the dimension of the input data, is referred
to as kernel. It is slid across the input data as pictured in fig 1.3, multiplying its
weights with those of the area it covers, passing on a strong signal if the kernel’s
pattern coincides with a region’s signal.

This process, as its name would imply, can be likened to a mathematical con-
volution, the standard operation described by the following equation (here an
example for 2D):

(f ∗ g)(x, y) =

∫∫ ∞
−∞

f(k, l)g(x− k, y − l) dkdl (1.3)

With f corresponding to the input data with indices k and l, g representing
the convolution kernel and f ∗ g corresponding to the resulting output data with
indices x and y.

However in the case of ANNs, given that we are convolving data made up of a
discrete and finite number of elements, the convolution can thus be expressed as
(for a 2D example):

(f ∗ g)(x, y) =
k=∞∑
k=−∞

l=∞∑
l=−∞

f(k, l)g(x− k, y − l) (1.4)

The resulting output is a new array of same dimension as the input but with a
variable size, which is determined by padding and stride (see fig 1.3 for a graphic
representation).

• Padding allows the kernel to fully reach the input datum’s borders during
convolution, such that the output is of the same shape as the input. It can
be made of zeros, a reflection of the datum’s border, a constant, etc.

1.2. DEEP NEURAL NETWORKS: AN OVERVIEW 25

Figure 1.3: A schematic representation of a convolution. The blue array repre-
sents the input, whose parameters are multiplied with those of the gray array
representing the convolution kernel, the sum of which make up the parameters
of the green array, representing the output. In this case the convolution has a
padding of one(represented by the white squares surrounding the input), and a
stride of two (the kernel is shifted by two squares at every step).

26 CHAPTER 1. INTRODUCTION

• Strides are the method with which we can directly up-sample or down-sample
within the convolution; an integer stride of n corresponds to sliding the kernel
by n pixels at each step (or increment l and k by n in Eq.1.4). This, if
used along with padding, outputs an array n times smaller than the input.
Conversely, to up-sample data one can use dilation (sometimes referred to
as fractional strides), wherein the input data is "dilated" by a factor n (i.e.
input pixel values are placed in a larger null matrix and spaced (n−1) pixels
apart. A standard, stride-less convolution is then applied to the ensuing
array, resulting in an array n times larger than the input.

Up-/Down-Sampling The up- and down-sampling operations are a means to
respectively produce higher-dimensional data from a smaller amount of parame-
ters or conversely extract the substantial elements of high-dimensional data, while
keeping a sense of spatial coherence. The most simple examples of such operations
are up-sampling and pooling. Up-sampling consists simply of turning an nd ma-
trix into a (c× n)d matrix by up-sampling each of a datum’s pixels into cd pixels.
Pooling consists of turning a (c×n)d matrix into a nd matrix by dividing the orig-
inal datum into blocks of cd pixels and returning one pixel for each block whose
value can be defined in several ways, such as the average of the block’s elements
(p′ = p̄i where p′ is the value of resulting pooled pixel and the pi are the values of
the pixels making up the pooled block), or the maximum of the block’s elements
(p′ = max(pi)). All of these operations are simple, however it is generally con-
sidered more efficient to up-sample and down-sample directly during convolutions
with the help of strides, which we described above.

Activation Name Associated equation
Sigmoid f(x) = 1

1+exp−x
tanh f(x) = tanh x
ReLU f(x) = max(0, x)

LeakyReLU f(x) = εx+ (1− ε) max(0, x)
SoftReLU f(x) = log(1 + exp x)

Table 1.1: Examples of activation functions

Activation function As mentioned earlier, activation functions help to filter
out signal that is beneath a certain threshold of relevance, and depending on the
choice of function, can allow for the neuron to pass on a nonlinear transformation
of the incoming parameters. Since network weights are updated through gradient
descent, it is important to avoid situations where the activation functions regularly
saturates, as this leads to a zero gradient and implies that weights are not updated.

1.2. DEEP NEURAL NETWORKS: AN OVERVIEW 27

Thus we tend to avoid putting sigmoid functions in intermediate layers as they
tend to saturate quickly and ReLU in classification networks, as classification tends
to favor the complete disappearance of irrelevant signals, pushing the network to
vanishing gradient regions. Finally, final activation functions can help to map final
output values to a target domain, such as pixel values within a certain range, or
0 and 1 values for classification. In table 1.1 we list a few examples of activation
functions.

Chapter 2

Emulating Cosmological Simulations
with GANs

2.1 Introduction

We have seen in the Introduction(1) the importance of cosmological simulations to
predict the non-linear formation of large scale structures of matter in our universe
according to various cosmological parameters. Given the high cost of simulations
in terms of time, computing power and storage, and given the ability of DNNs
to extract properties from datasets to perform complex tasks or create new data
sharing the same properties, we inquire into the possibility of constructing a DNN
that would allow us to bypass the use of these costly simulations when looking to
create new simulation data.

Among the DNNs, generative models such as the Generative Adversarial Net-
works (or GANs) (Goodfellow et al., 2014) have shown promising results both in
computer science and physics (Casert et al., 2020; de Oliveira et al., 2017; Ahdida
et al., 2019). These networks aim to learn a probability distribution as close as
possible to a considered dataset’s in order to then generate new instances that
follow the same statistics. GANs have proven to be very promising tools in terms
of media generation (Donahue et al., 2018; Clark et al., 2019). In Astronomy, they
have recently been used in several cases (Rodríguez et al., 2018; Feder et al., 2020;
Ullmo et al., 2021) to provide a fast and light alternative to simulations.

In this chapter, we further explore the use of GANs to generate simulation-like
data.

Developing a GAN that can effectively emulate data requires work on three
fronts, namely building a good model and training method, pre-processing the
data such that it is compatible with the model with as little loss of information as
possible, and selecting a set of criteria that can determine as objectively as possible

29

30CHAPTER 2. EMULATING COSMOLOGICAL SIMULATIONSWITHGANS

Figure 2.1: Simple diagram of a Generative Adversarial Network.

credit: Thalles Silva (shorturl. at/ zGH12)

the efficiency with which our model is able to emulate the data. This process is
far from linear, with problems arising in one domain entailing modifications in
another.

In Sec. 2.2, we describe the general concept of the GAN. We will then describe
the data on which we train the GAN in Sec. 2.3, from the simulations from which
they are constructed, to the criteria needed for them to suit our models and the
process with which we construct them from the original simulations. Next we
detail the method with which we develop our GAN in Sec.2.4, from finding a
functional architecture to the methods to optimize our structure and detect and
avoid common GAN pitfalls. In Sec. 2.5 we describe the estimators we use to
determine the statistical quality of our generated images. Finally we will present
and discuss our results in Sec.2.6 and conclude in Sec.2.7.

2.2 GANs - Generalities

Given a dataset to train on, GANs extract the underlying modes of its distribution
and can then generate new data sharing the same distribution and thereby similar
properties to the training dataset. Trained correctly, GANs can hence be used to
produce an infinite amount of new images given a large but finite number of input
images (i.e. training dataset).

The GAN consists of two competing neural networks. The first, a Generator,
takes a random vector as input from which it produces data (an image or cube in
our cases). The second network, a Discriminator, tells apart these generated data
from true ones from the training set. As both networks begin with no information
about the data, the tasks of both Generator and Discriminator start out as simple:

shorturl.at/zGH12

2.2. GANS - GENERALITIES 31

the Generator easily "fooling" the Discriminator and the Discriminator having to
tell apart very dissimilar images. However as each of the two networks becomes
more efficient, one at generating convincing images and the other at differentiating
them from the true set, the task is made harder for the other network. Through this
competition both networks train each other by gradually increasing the difficulty
of the other’s task while simultaneously improving themselves.

In practice, the networks work in the following way. The Generator takes a
random (Gaussian-distributed in our case) vector (z) as input and from it builds a
datum (G(z)) through a series of deconvolutions and activations further described
in section 2.4.1. The Generator’s goal is to intake random variables that are easy to
generate (typically following a Gaussian or uniform distribution) to then transform
them towards a complex distribution of correlated variables. The probability learnt
by the Generator can be expressed in the following way:

pgen(x) =

∫
dzδ (x−G(z)) p(z) (2.1)

where p(z) corresponds to the chosen distribution for the input variables.
The Discriminator takes in a datum, either from the training set (x), or from

the set produced by the Generator (G(z)), and through a series of convolutions
and activations further described in section 2.4.1 yields a single number D(x) or
D(G(z)) ∈ [0; 1] which can be interpreted as the probability that the input datum
is drawn from the training set.

The training procedure can therefore be described as follows. First, the Gener-
ator will generate a batch of images/cubes (in our case 50 for 2D and 100 for 3D)
and the same amount of images/cubes will be drawn from the training set (which
we will describe in section 2.3). Then, the parameters θD of the Discriminator
will be adjusted such that the probability given by the Discriminator that the
generated data are true decreases, while at the same time the same probability
computed on the training set increases. Denoting m = 0, . . . , N the indices of
the generated images/cubes z(m) and the training set of images/cubes x(m) in the
batch of size N , we want to maximize the following loss:

lG =
∏
m

D(x(m))
∏
m

(1−D(z(m))) (2.2)

which is equivalent to minimizing the following log-loss

LD = −1

2
Ex logD(x)− 1

2
Ez log(1−D(G(z))) (2.3)

where Ex represents the average over the dataset and Ez the average over the
random vector z. To minimize this expression, the Discriminator should yield
a prediction near to one for the data of the training dataset and near to zero

32CHAPTER 2. EMULATING COSMOLOGICAL SIMULATIONSWITHGANS

for the data produced by the Generator. Conversely, the Generator should aim
at producing images/cubes that look like "true" images/cubes, and so for the
Discriminator to yield predictions close to one when assessing its generated data.
Therefore the Generator’s loss is simply defined as:

LG = −LD. (2.4)

At the end of the training stage, the two networks should converge to an equi-
librium wherein the Discriminator is unable to distinguish between the two sets
of data and the Generator is outputting data sampled from the training set’s true
underlying distribution.

In practice, most GANs, including ours, never perfectly reach this equilibrium
and instead reach a point where the quality and diversity of the generated images
fluctuates with training(Mescheder et al., 2018). Therefore instead of stopping
training and collecting the resulting networks at a specific point we elect to save
the weights of our networks regularly during training and choose the best set of
weights by comparing the quality of images they generated and their statistical
properties.

This done, we are equipped with a functioning Generator and Discriminator
which we will further use in the construction and training of an Autoencoder.

2.3 Data

We build networks and conduct statistical tests for three types of data: 2D images
built from 2D simulations and projected 2D images and 3D cubes, these last two
both built from 3D simulations (we will refer to the images from projected 3D sim-
ulations as projected images). The 2D simulations provide a simplified best-case
scenario, and the 3D projected images have potential applications on observa-
tional projected probes such as lensing (Kaiser et al., 1994) and Sunyaev-Zeldovich
(SZ) effects (Birkinshaw, 1999). Finally the 3D simulations are used for direct
application in studying simulations of the density field.

2.3.1 Simulations

The 2D images are produced from a publicly available 2D particle-mesh N-body
simulation code1 to simulate 1000 2D snapshots of size (100Mpc/h)2 with 5122

particles using the standard ΛCDM cosmology.
In detail, the evolution of matter distribution along the cosmic time is described

by a Hamiltonian system of equations that are solved using the Leap-frog method.
1credit: Johannes Hidding https://zenodo.org/record/4158731#.X5_ITJwo-Ch

https://zenodo.org/record/4158731#.X5_ITJwo-Ch

2.3. DATA 33

Figure 2.2: Example of a simulation image (upper left) or cube (lower left), his-
togram of the pixel values before and after log-like transformation (middle), and
pixel value transformation function (right) for the images (top) and cubes (bottom).
In the middle column, grey represents the pixel values histogram in linear scale
and blue the pixel value histogram after log-like transformation (top: eq. 2.5 and
bottom: eq.2.6) of the images. For both cases the GAN has been trained using
the log-transformed sets of images.

34CHAPTER 2. EMULATING COSMOLOGICAL SIMULATIONSWITHGANS

Moreover, the gravitational potential is computed by solving the Poisson equation
in Fourier space from the 2D grid density field.

The 3D data used for this analysis are snapshots from numerical simulations
of large scale structures produced with the publicly available code GADGET2
(Springel et al., 2001; Springel, 2005). These are dark matter (DM) only simu-
lations, referred to as N-body simulations. GADGET2 follows the evolution of a
self-gravitating collisionless particles. This is a good description of DM dynamics
in accordance with the cosmological model, since DM only interacts gravitation-
ally with itself as well as with baryons. In practice, the GADGET2 code computes
gravitational forces with a hierarchical tree algorithm to reduce computing time
and to avoid having to compute the gravitational effect of N particles on each
particle (which would mean N2 computations at each time step). The algorithm
divides space using a grid. Then to compute the gravitational forces exerted on an
individual particle, GADGET2 groups particles more and more coarsely according
to their distance and computes the gravitational pull of the groups rather than
that of the individual particles.

The simulation starts at redshift z = 99 with a 3D box of 100 Mpc3 size
(chosen to contain representative large-scale structures) with a quasi homogeneous
distribution in space of 5123 DM particles, with Gaussian distributed very low-
amplitude inhomogeneities, and an initial velocity associated with each particle.
The inhomogeneities stand for the initial density perturbations produced in the
early Universe that will eventually evolve into galaxies, clusters and filaments. The
system is then evolved with the particles only being subject to gravity. Cosmic
expansion is also taken into account and we use the cosmological parameters Ωm:
0.31, ΩΛ: 0.69, and H0: 0.68 from Planck 2018 (Aghanim et al., 2018). The
simulation is run up to the present epoch (z = 0). At any time step, we can retrieve
the individual particles’ positions and velocities in the 3D box; we additionally
retrieve them at z = 3, 2.5, 2, 1.5, 1, and 0.5. These data, describing dynamical
state of the system at a particular time, are referred to as a snapshots. To build
our dataset, we only retain the positions. They will be used as inputs for the
network.

2.3.2 Construction of the sample

To be able to apply our networks to our simulations we must turn our snapshots
that contain particle positions into discrete arrays representing the particle density
fields. This phase in which we pre-process the data is a key step of the overall
training process, as ill-constructed data (in the sense that it does not have certain
necessary properties that we will detail below) can make the difference between a
failing model and a successful one.

We describe below the construction of our samples, and note that the data

2.3. DATA 35

construction process is described schematically in Fig.2.4 for 2D images and Fig.2.3
for 3D projected images.

Pre-augmentation data

First for the 2D images, we use a set of 1000 2D simulations. From these, 1000
independent discrete 256 × 256 density maps are obtained by estimating local
densities from 2D snapshots with the help of a Delaunay tessellation field estimator
(Aragon-Calvo, 2020). We use this as a basis to construct the images.

For the 3D cubes and projected 3D images, we build a 3D discrete density
field from one 3D (z = 0) snapshot by computing the histogram of particles over
a 768 × 768 × 768 grid. After applying a log-like transformation (see Eq. 2.6),
the grid is smoothed with a Gaussian filter of standard deviation the size of three
pixels with a stride of three pixels. This choice yields cubes in which structures
are smooth while preserving the fine low-density structures and hence results in
significantly better results than standard stride-less Gaussian smoothing when used
with the different networks in our study. This leaves us with a cube of side 256
pixels and 100Mpc.

Data augmentation

From the initial 1000 2D images, and the 3D cube (all of side 256 pixels corre-
sponding to 100Mpc), we extract and augment the final smaller training images
and cubes (128 pixels and 50Mpc side for 2D/projected and 64 pixels and 25Mpc
side for 3D cube). This is often done by dividing up the larger arrays into smaller
non-overlapping arrays (eg one 256×256 array yields four 128×128 arrays). How-
ever, we consider that for the sake of variety and continuity within our training
sets, we can instead extract all possible sub-arrays (given the periodic boundary
conditions of our larger arrays, this corresponds to one n× n array yielding n× n
possible sub-arrays, regardless of their size). This quickly leads to a dataset that
is too sizeable to load or store (1000 × 2562 2D images, 3 × 2563 3D images, and
2563 cubes before rotations); thus we elect to load the larger arrays and randomly
extract the smaller arrays on a need-basis, to create training batches or a subset.

We thus generate batches by choosing a set of random positions within the
images/cube. Then we extract respectively a set of squares of side 128 pixels or
cubes of side 64 pixels for the 2D or 3D case, centered on the random positions.
In addition, we rotate/flip these images or cubes by randomly inverting and per-
muting the axes (d! × 2d possibilities for an array of dimension d, i.e. 8 for the
images and 48 for the cubes)

These transformations augment the dataset to yield a total of 5.108 different
possible training images for the 2D images case, 4.108 for the projected images

36CHAPTER 2. EMULATING COSMOLOGICAL SIMULATIONSWITHGANS

F
igure

2.3:
A

schem
atic

representation
ofthe

process
ofbuilding

the
3D

cubes
and

3D
projected

im
ages

datasets.

2.3. DATA 37

F
ig
ur
e
2.
4:

A
sc
he
m
at
ic

re
pr
es
en
ta
ti
on

of
th
e
pr
oc
es
s
of

bu
ild

in
g
th
e
2D

im
ag
es

da
ta
se
ts
.

38CHAPTER 2. EMULATING COSMOLOGICAL SIMULATIONSWITHGANS

case, and 8.108 training cubes for the 3D cubes case. However, we expect the
networks to capture the original datasets’ key features long before having encoun-
tered all of the possible images/cubes. Hence, we will not define an epoch as the
network having encountered all aforementioned possibilities, but will instead arbi-
trarily define an epoch as the network having encountered 40, 000 images/cubes.
This corresponds approximately to the size of the 2D dataset if we used non-
overlapping sub-arrays (32000), half that of the projected set, and ten times that
of the 3D dataset (≈ 3000); thus we can expect the network to have on average
encountered all possible structures at every angle by the time it has encountered
this amount of data.

Data transformation

The GANs operate by using a set of filters to recognize and learn patterns at
different size scales in an image. Therefore, we need to work with images with
clearly apparent patterns such that the GAN can easily detect the set of salient
features. However, linear density maps of the cosmic web show a poor array of
shapes, with images appearing mostly uniformly dark with occasional bright pixels
corresponding to dense halo centers; on the other hand a log representation of the
same density maps make the cosmic web’s filaments apparent, providing shapes
and texture that the GAN can more readily detect and reproduce. Finally, our
GAN is built to intake and output images with pixel values ∈ [−1, 1]; we thus need
to map the original pixel’s distribution into this interval.

We hence apply a log-like transformation to the images’ pixel values (2.2). For
the 2D images, the pixel value v′ in the "transformed" images writes:

v′ =
2 log(v)− (b+ a)

b− a
(2.5)

v is the original pixel value, a and b are chosen such that a . min(log(v)) and
b & max(log(v)) so as to have v′ ∈] − 1, 1[compatible with the network outputs.
We use these strict inequalities to give the network freedom to exceed its training
set’s boundaries when generating images with pixel values ∈ [−1, 1]. We thus set
a = log(0.01) and b = log(600).

The cubes and projected images from the 3D simulation have a significantly
larger range of values than the 2D ones with values up to 2000 particles per pixel as
well as zero values. For these data, we adapt the above-described transformation
to better suit their pixel range and 0 values. We recall that this transformation is
applied before the smoothing with a Gaussian filter. The obtained pixel value v′
writes:

v′ =
2 log(v + c)− (b2 + a2)

b2 − a2

(2.6)

2.3. DATA 39

where b2 is chosen such that b & max(log(v)), c is chosen such that c > 0 but
c << v̄ to increase the contrast, while allowing for a log transform, and a2 = log(c).
We set b2 = log(2632), and c = 0.001 and a2 = log(0.001).

It worth noting that while adding the constant c allows for a log-like transfor-
mation, it makes the linear values smaller than c difficult to distinguish from one
another after transformation. This can be observed in the lower right panel of Fig.
2.2 which represents the transformation function given by Eq. 2.6. We clearly
see a saturation effect for values below c = 10−3. We therefore do not expect our
networks to recover the pixel pdf correctly for values below c.

Lessons learned when experimenting with data construction

While our 2D images were obtained fully constructed with the help of a collab-
orator, it bears mentioning that our data created from the 3D simulations went
through multiple modifications before converging to the two forms presented here.
Indeed, working originally on the 3D projected images, we initially built them with
a different transformation function and smoothing based on the method found in
Rodríguez et al. (2018). The original transformation function was the following:

x′ = (x+ a)/(x− a) (2.7)

with a being first set at 2. This transformation has the advantage of allowing 0
values and making the cosmic web structure stand out, but causes a saturation
effect at high density values, which means that dense regions are not well repre-
sented by the GAN. We attempted to limit this effect by raising the value of a
but lost the filamentary structure. Additionally this less simple transformation
(compared to log) led to difficulties in the second stage of our work when trying
to use our models for further predictive work. The original smoothing also proved
too coarse; rather than smooth from a higher resolution, we used a gaussian kernel
directly on 256×256 images, which led to more blurry structures that were harder
for the models to detect and emulate. Incidentally it did not combine well with a
log transformation, as the filamentary structure melded into the low-density back-
ground. We also attempted to use linear density images to see if the GAN was
able to reproduce them directly but this proved too difficult a task for it, with the
generator never managing to converge. Also we used a more standard augmen-
tation, wherein we did not use random positions but instead divided the original
3000 256 × 256 images into four 128 × 128 images before applying rotations and
flips. This meant a much smaller training set with much less continuity within
it, leading to more likely overfitting of the models. Experiencing how much more
effectively the different models worked with first the 2D images and eventually
the 3D projected images put into light the strong importance of a well-selected
pre-processing method for the images.

40CHAPTER 2. EMULATING COSMOLOGICAL SIMULATIONSWITHGANS

2.4 Constructing the GAN

Developing a GAN rests on two major aspects: finding a good network architecture
and developing an efficient training process. In a first section we detail the compo-
nents of a GAN’s architecture and briefly present a few of the available options for
each. We show our experimentation and explain our final choice of architecture.
In a second section, we will present our training procedure, the various pitfalls
that one can encounter during training and how to detect and avoid them.

2.4.1 Architecture

A GAN is made up of two competing convolutional networks, the generator and
discriminator, that are somewhat symmetric in their makeup and tasks, with the
generator building up a datum from a small amount of random parameters through
a set of upscaling convolutional layers, and the discriminator breaking down a
datum into a small amount of meaningful numbers, from which it can identify the
datum’s nature, through a set of downscaling convolutional layers.

Using the description of the typical CNN components as seen in section 1.2.3,
we can detail the architecture of our models.

The generator is typically made up of a first (dense + activation) layer. Its
following layers are a set of (upscaling + convolution + normalization + activation)
convolutional layers, with the final layer ending with a tanh activation.

The discriminator on the other hand is made up of a set of (downscaling +
convolution + normalization + activation) convolutional layers, and a final dense
layer ending with a sigmoid activation, to allow it to classify data into the "real"
or "fake" category.

In a first part of our work we spent a significant time attempting to construct
both models by developing them from a very simple architecture (see table 2.5)
optimized to emulate an MNIST dataset. We were aiming to make use of our
model to emulate the 3D projected data described in section 2.3.2.

MNIST (Deng, 2012) is a large set of 28× 28 pixel greyscale hand-drawn pic-
tures of numbers (see fig.2.6, upper left). These small, simple and contrasted data
differ greatly from our own target data, which is of size 128×128 pixels and presents
more complex structures with smooth pixel value gradients. Thus, to make the
task easier while we gradually modified the models, we constructed "intermediate"
datasets that were more similar to MNIST. A first "smooth" dataset (see fig. 2.6
upper left) was built by building our data with less resolution so as to have smaller
64 × 64 pixel data that the GAN could more readily process. Additionally, from
these we also built a "contrasted" dataset by setting all pixel values above a certain
threshold to 1 and those below to -1, so as to emulate MNIST’s contrasted nature.
With these datasets we aimed to set intermediate goals for the modified GAN to

2.4. CONSTRUCTING THE GAN 41

Filter sizes {5, 5}
nfilter(G) {64, 1}
nfilter(D) {64, 128}

Pooling Size: {2, 2}
Layer Act. Tanh (G), Tanh (D)
Final Act. Tanh (G), Sigmoid (D)

Latent dimension 100

Figure 2.5: Architecture specifications for each layer of our original GAN’s gen-
erator network (G) and discriminator network (D). This base structure follows
a publicly available GAN structure2. The networks are trained using Stochastic
Gradient Descent (SGD) as an optimizer and minimize a binary crossentropy loss
(see eq. 2.3).

reach. We planned to transition from the contrasted images to the smooth images,
eventually reaching the high-definition target images. In parallel we experimented
with every possible component (n° of layers, activations, optimizers, convolution
specifics etc) as can be seen in fig 2.6, further building upon models that showed
progress. While progress could occasionally happen, many attempts led to dead
ends, and even the best results were clearly distinguishable from true data, often
because of lack of diversity in the generated data. Additionally the models proved
quite unstable, with two distinct modifications oftentimes making the models dys-
functional while independently giving better results. Too much change inevitably
led to the models’ complete dysfunction.

Although this first phase proved useful to gain a good understanding of the
different components used and the way they interacted to form our models, we
came to the conclusion that our original model structure was too simple and far-
removed from current models built to emulate natural images and could not be
brought to emulate our data through gradual change. All in all, attempting to
build a GAN from the ground up proved to be a Sisyphean task that was best
avoided altogether.

Consequently, in a second phase we chose to develop our GANs based on a pre-
existing one3 built to emulate natural images and requiring minimal modification
to make it compatible with our data. Although our data remains quite different to
that which this second GAN is intended for (RGB bird pictures), we can expect
it to translate well as our data is overall simpler (greyscale, self-similar, isotropic
and homogeneous). Luckily, transition to 3D does not cause any issues.

We thus build our GANs following the architectures detailed in 2.7. This done,

2credit: Jacob Gildenblat, https://github.com/jacobgil/keras-dcgan
3Tiago Freitas, https://github.com/tensorfreitas/DCGAN-for-Bird-Generation

https://github.com/jacobgil/keras-dcgan
https://github.com/tensorfreitas/DCGAN-for-Bird-Generation

42CHAPTER 2. EMULATING COSMOLOGICAL SIMULATIONSWITHGANS

Figure 2.6: A non-comprehensive diagram representing the attempt to develop a
GAN from a simple architecture made to emulate 28 × 28 pixel MNIST data.In
the upper left box the "true" data the models are tasked with emulating are
pictured. The central tree structure represents the best batches generated by
a given architecture, and the modifications leading from one architecture to the
other.

2.4. CONSTRUCTING THE GAN 43

we can start training our model.

2D GAN 3D GAN
Filter sizes {5, 5, 5, 5, 5} {4, 4, 4, 4}
nfilter(G) {256, 128, 64, 32, 1} {128, 64, 32, 1}
nfilter(D) {32, 64, 128, 256, 512} {32, 64, 128, 256}
Strides: {2, 2, 2, 2, 2} {2, 2, 2, 2}

Layer Act. ReLU (G), Leaky ReLU (D) ReLU (G), Leaky ReLU (D)
Final Act. Tanh (G), Sigmoid (D) Tanh (G), Sigmoid (D)

Latent dimension 100 200

Figure 2.7: Architecture specifications for each layer of the 2D (left) and 3D (right)
GANs’ generator networks (G) and discriminator networks (D). They are all based
on a publicly available GAN structure4and are trained using the Adam optimizer
with parameters (lr = 0.0002, β1 = 0.5) and minimize the loss given in eq. 2.3.

2.4.2 Training process and Optimization

We recall that CNNs including our GAN are trained in the following way: at every
time step of training they perform their given task on a set number of data called a
batch, from which can then be computed a loss. At each time step the weights are
updated to reduce the loss by computing its gradient and updating the weights
to reduce it. Training is led and supervised in the following way: the model is
run over several epochs, and we regularly save data generated by the GAN, GAN
losses, and GAN weights. In our case we find that a batch size of 100 gives good
results. We set the number of epochs high enough for the models to have well
converged, at 100 epochs.

As a first check, observing the losses and the generated data allows us to ensure
that training is proceeding properly. When so, we can expect the data created by
the generator to progressively transition from completely random pixel distribu-
tions to simulation-like data, with structures within the images/cubes gradually
gaining more detail with training (see Fig.2.8). Additionally we expect the data
to be diverse, with no two data in a generated batch looking alike. The losses of
the generator and discriminator are expected to be very noisy as an indication of
the two models competing for their respective goals, and successively "taking the
upper hand" in the competition (see Fig.2.9, above).

Training can fail in several ways. A first scenario is when neither Generator
nor Discriminator manage to progress in their respective tasks from initial random

4Tiago Freitas, https://github.com/tensorfreitas/DCGAN-for-Bird-Generation
5https://machinelearningmastery.com/practical-guide-to-gan-failure-modes/

https://github.com/tensorfreitas/DCGAN-for-Bird-Generation
https://machinelearningmastery.com/practical-guide-to-gan-failure-modes/

44CHAPTER 2. EMULATING COSMOLOGICAL SIMULATIONSWITHGANS

Figure 2.8: An example of a "healthy" GAN training progression. Pictured above
are batches of data generated at different epochs by the GAN. Below is an example
of true simulation-issued data.

2.4. CONSTRUCTING THE GAN 45

Figure 2.9: Examples showing three scenarios for the GAN training process. For all
scenarios, the upper plot shows the generator’s loss in green, the discriminator’s
loss on real data in blue and the discriminator’s loss on fake data in orange.
The lower plot shows the discriminator’s accuracy in determining real data in
blue and fake data in orange. The first scenario (above) shows an ideal training
progress. All losses vary noisily over training time, along with the discriminator’s
accuracy for both data types. The second scenario (lower left) shows a case of
aggressive optimization, where one network (here the discriminator) surpasses the
other completely, preventing it from progressing altogether. The losses are thus
constant (maximal for the generator and minimal for the discriminator), and the
discriminator has 100% accuracy. The third scenario (lower right) shows a case
of mode collapse, where the generator fools the discriminator with fake data that
is similar to the true data, but has little diversity (ie it only displays one mode
of the true data distribution). Once the discriminator has learned to spot them,
the generator switches to another mode and the process is repeated indefinitely.
This is exhibited in the losses’ sinusoidal evolution, where downward peaks in the
generator’s loss correspond to a change of loss and the following upward slopes
correspond to the discriminator’s progress in discovering the new emulated mode.

credit: Jason Brownlee5

46CHAPTER 2. EMULATING COSMOLOGICAL SIMULATIONSWITHGANS

conditions. This is easy to diagnose when looking at the generated data as it never
visually approaches the true data, often remaining as a random distribution of pix-
els or displaying simple patterns.This is generally due to bad model architecture
or bad data (in the sense that it is incompatible with the model) and is solved by
reverting to previous working conditions (earlier model structures or data type).
A second common scenario happens when one model, usually the discriminator
because of the relative ease of its task, takes too much lead in the competition.
This can lead to the other model not being able to progress, because its loss’s lo-
cal gradient is zero (small weight modifications are insufficient to impact the loss).
Looking at the loss evolution makes this very clear as the losses remain constant
or near-constant with very little noise as soon as this happens (see Fig.2.9, lower
left). This can be solved by improving the under-performing model or updating
its weights more frequently, but we find that simply adding noise to the labels (1
for true data and 0 for fake data become 1-n and n respectively, n being randomly
generated noise), suffices to completely avoid this problem, at the cost of slowing
down the training. A final common problem is mode collapse, wherein the gener-
ator creates data that can successfully fool the discriminator but that have very
little diversity among them. This can be detected quite easily when looking at
the generated images, with specific patterns appearing repeatedly in a generated
batch, and with the losses as well (see Fig.2.9, lower right). Although this was
an occasional problem during our different tests, it was random and uncommon
enough that we did not find the need to resolve it so much as cast out the models in
the instances where mode collapse had occurred and resumed training from earlier
saved models.

2.5 Statistical estimators

In cases where all such pitfalls are avoided, and the generated data seem visually
diverse and indistinguishable from the true data, we must use finer statistical
estimators to ensure that our generated data is consistent with our true simulation
data.

2.5.1 Pixel PDF and Distribution of the mean density

A first basic test is to compare the distributions of pixel values, which correspond
to a density measure in particles per pixel (ppp) in both sets of data. We also
compute the mean particle density, µ, of each image/cube and compare their PDF
over the simulated (truth) sets and generated and inferred sets from the GAN and
AE.

Whereas the pixel PDF is informative of the density distribution of a datum

2.5. STATISTICAL ESTIMATORS 47

Figure 2.10: An example of the peaks recovered in a simulation image.

on average, and therefore ensures that two sets of images/cubes are similar on
average, the mean density serves as a simple one-dimensional visualisation of the
distribution of images/cubes over a set. This type of information is important to
ensure that we recover both datasets’ underlying distribution, and recover different
cosmic regions and different halo densities in the right proportions.

Furthermore GANs can often suffer from "mode collapse" (Thanh-Tung and
Tran, 2018), a situation where the images/cubes generated are indistinguishable
from the original set but show little to no diversity. Although visual inspection
of the images can help to exhibit mode collapse, a visualisation of the overall
distribution through the mean density provides additional information to confirm
its absence.

2.5.2 Peak counts

We compute the average peak counts over the generated or simulated dataset. A
peak is a local maximum (ρmax) defined as a pixel whose contiguous neighbors
(8 for images and 26 for cubes) are of smaller values. For each image/cube, we
compute the number of peaks for a given value of ρmax, and average this number
over the whole dataset (see Fig.2.10.

In the simulated data, the higher peaks, being dense local maxima, are expected
to correspond to halo centers, whereas smaller near-zero peaks are more likely to
be the result of noise from the simulation or the image-making process. Therefore,
we are more interested in the former, which give us an indication as to our recovery
of halo distribution.

48CHAPTER 2. EMULATING COSMOLOGICAL SIMULATIONSWITHGANS

2.5.3 Power Spectrum

We compute the 2D/3D power spectrum of each image/cube from the different
sets (input, generated and inferred). For a frequency ν it is given by:

P (ν) = 〈‖Akl‖2〉(k,l)|k2+l2=ν2 (2.8)

where Ak,l are the image’s discrete Fourier transform elements.

2.6 Results

2.6.1 2D images

We first present the results of the GAN trained on images from 2D simulations.
The network consistently outputs sets of verisimilar images as early as 30 epochs
but in our study the GAN is trained for 85 epochs for best results. It is worth
noting that we can expect the relative simplicity of the images of our training set to
result in a faster convergence than a GAN trained on natural images. We also note
that our chosen number of epochs, consisting of 40,000 images each, corresponds
to longer training than that of (Rodríguez et al., 2018) (20 epochs for a dataset
of 15,000 projected cubes).In addition, training the GAN for too long (e.g. > 100
epochs) eventually results in mode collapse whereas the quality of the generated
data stops improving long before that point is reached.

Two sets of 50 images taken at random from the simulations and from the
GAN’s generated images show, in Fig. 2.11, the GAN’s ability to generate images
of convincing similarity. Visually, we observe that the large scale structure is well
recovered; this is most perceptibly the case for the filaments, reproduced in all
their diversity of length, thickness and frequency. It is also the case for high-
density regions, or halos, in terms of their occurrence, brightness (or density) and
positions within the structures.

This observation is further corroborated by the statistical estimators as seen
in Fig. 2.12. The pixel PDFs (lower left panel of Fig. 2.11) show a near-perfect
overlap for the majority of the pixel density values, with a very slight under-
representation in the generated images of the densest values. This agreement
shows that the density distribution of the images is very well recovered by the
GAN.

The mean particle density distribution of the generated set (displayed in the
upper right panel of Fig. 2.12) shows a near-perfect agreement with the simulation
set. The overall agreement indicates that the diversity of the original set is globally
well represented in the generated set. The median power spectra and their mad
layer (Fig. 2.12 upper left panel), for both simulated and generated sets, show

2.6. RESULTS 49

Figure 2.11: Two subsets of 50 images taken at random from a set of 2D sim-
ulation images (left) and a set of images generated by the GAN (right). Every
image represents a 128 × 128 log density map of side 50Mpc. They are virtually
indistinguishable by eye.

a satisfactory overlap, indicating a good recovery of the correlations at various
distances and thus a good representation of the different scales in the images.
Finally, in the lower right panel of Fig. 2.12, we show the peak counts. The
very good agreement between the true simulated images and the generated ones
confirms that the dense regions are well represented. Indeed, the matching curves
show us that both the average number of peaks in a datum and the distribution
of values among these peaks are conserved in the generated set, with a slight
under-representation of the densest peaks and a more notable over-representation
of low-density peaks. However, the peaks at low density are due to simulation
noise and not physical, so this is not an issue.

2.6.2 3D projected images

Next we look at the results obtained by the GAN trained on the 3D projected
images. Once more the GAN progresses in a stable manner, consistently producing
verisimilar images after around 20 epochs of training. For best results we train it
for 70 epochs.

First we focus on two subsets taken at random from both the original set of
simulated images and the set of generated images (Fig. 2.13). Once again our
visual inspection shows that the diversity of the simulated images is well recovered

50CHAPTER 2. EMULATING COSMOLOGICAL SIMULATIONSWITHGANS

Figure 2.12: Statistics of the 2D simulation images compared to their GAN-
generated counterparts. Upper left shows the pixel PDF, upper right shows mean
density distribution, lower left shows median power spectrum as well as the me-
dian absolute deviation (mad) layer, and lower right shows average peak count per
image. The curves overlap near-perfectly.

2.6. RESULTS 51

Figure 2.13: Two subsets of 50 images taken at random from a set of 3D projected
images (left) and a set of images generated by the GAN (right). Every image
represents a 128× 128 log density map of side 50Mpc.

by the GAN in terms of distribution in size and frequency of filaments and number
and brightness of high-density regions. A closer look at the statistical properties
of the images as seen in Fig. 2.14 further confirms this.

Notably, the pixel PDFs (Fig. 2.16 upper left panel) show a near-perfect over-
lap, confirming the good recovery of the density distribution on the average images.
However, the lower tail of the distribution is poorly represented for pixel values
< 10−3ppp. The generated images show a deficit, while the simulations show a
plateau. This can be explained by the saturation effect related to the constant c in
Eq. 2.6; indeed, adding the constant c before log-transforming the linear densities
renders linear values << c difficult to distinguish from one another.

Meanwhile, the mean density PDF (Fig. 2.16 upper right panel) seems to be
very well recovered, confirming the good recovery of the image diversity. The
median power spectra and their mad regions (Fig. 2.16 lower left panel) yield a
near-perfect overlap, with a slight under-representation of higher frequencies in the
generated images. In the lower right panel of Fig. 2.16, we plot the peak counts.
True simulated images and generated ones show once more near-perfect agreement,
confirming that high-density region centers are well represented in terms of their
numbers as well as their distribution. However, we observe a misrepresentation of
the distribution lower tail similarly to the pixel PDF, for similar reasons.

For all of the estimators presented here and that are common with Rodríguez
et al. (2018) and Feder et al. (2020), our findings agree with theirs. The mean

52CHAPTER 2. EMULATING COSMOLOGICAL SIMULATIONSWITHGANS

Figure 2.14: Statistics of the 3D projected images (red) compared to their GAN-
generated counterparts (blue).Upper left shows the pixel PDF, upper right shows
mean density distribution, lower left shows median power spectrum as well as mad
(median absolute deviation) layer, and lower right shows average peak count per
image.

2.6. RESULTS 53

Figure 2.15: Two subsets of cube slices (of thickness ∆z ≈ 0.4Mpc) taken at
random from a set of 3D simulation cubes (left) and a set of cubes generated by
the GAN (right). Every cube represents a 64 × 64 × 64 log density map of side
25Mpc.They are virtually indistinguishable by eye.

density distributions of both simulated and generated sets are somewhat distin-
guishable but show a very good overlap, and the power spectra show a very sat-
isfactory overlap between both their medians and their mad regions. We note
that our results seem coherent with those of Feder et al. (2020) who encountered
similar saturation issues to ours at low densities for similar reasons. We also note
that Rodríguez et al. (2018) do not refer to a poor representation of tails in the
pixel PDF and peak counts for their GAN-generated images, despite using a pixel
transformation with a saturation effect.

2.6.3 3D cubes

We now turn to the results obtained by the GAN trained on the 3D cubes. Once
more, the GAN progresses in a stable manner, consistently producing verisimilar
cubes after around 30 epochs of training. For best results we train it for 50 epochs;
we find this coherent with the training time of Feder et al. (2020) (150 epochs for
a dataset of 16,000 cubes). As for the 2D GAN, training for too long results in
mode collapse, but not before the quality of the generated cubes stabilizes.

First, we focus on two subsets taken at random from both the original set of
simulated cubes and the set of generated cubes (Fig. 2.15). Once again our visual

54CHAPTER 2. EMULATING COSMOLOGICAL SIMULATIONSWITHGANS

Figure 2.16: Statistics of the 3D simulation cubes (red) compared to their GAN-
generated counterparts (blue).Upper left shows the voxel PDF, upper right shows
mean density distribution, lower left shows median 3D power spectrum as well as
mad (median absolute deviation) layer, and lower right shows average peak count
per cube.The curves overlap near-perfectly.

inspection shows that the diversity of the simulated cubes is well recovered by the
GAN in terms of distribution in size and frequency of filaments and number and
brightness of high-density regions. A closer look at the statistical properties of the
images as seen in Fig. 2.16 further confirms this.

Notably, the voxel PDFs (Fig. 2.16 upper left panel) show a near-perfect
overlap, confirming the good recovery of the density distribution on the average
cubes. However, the lower tail of the distribution is poorly represented for voxel
values < 10−4ppp. The generated cubes show a deficit compared to the simulations.
This can be explained by the saturation effect related to the constant c in Eq. 2.6.

Meanwhile, the mean density PDF (Fig. 2.16 upper right panel) seems to
be well recovered, confirming the good recovery of the cube diversity. The me-
dian 3D power spectra and their mad regions (Fig. 2.16 lower left panel) yield a
near-perfect overlap, with a slight over-representation of higher frequencies in the
generated cubes. In the lower right panel of Fig. 2.16, we plot the peak counts.

2.7. CONCLUSION 55

True simulated cubes and generated ones show once more near-perfect agreement,
confirming that high-density region centers are well represented in terms of their
numbers as well as their distribution. However, we observe a slight misrepresenta-
tion of the distribution lower tail similarly to the voxel PDF, for similar reasons.

For all of the estimators presented here and that are common with Feder et al.
(2020) namely the mean density distributions and the power spectrum, our findings
agree with theirs. We find that the mean density distributions of both simulated
and generated sets are somewhat distinguishable but show a very good overlap,
and that the power spectra show a very satisfactory overlap between both their
medians and their mad regions. We note that our results seem coherent with
those of Feder et al. (2020) who encountered similar saturation issues to ours at
low densities for similar reasons. Given the fact that Rodríguez et al. (2018) dealt
with projected 3D simulations whereas we present results for actual 3D cubes it is
not possible to properly compare with them.

2.7 Conclusion

We explained the process with which we developed and trained GANs on several
types of data built from simulations to produce new data that is statistically
consistent with the old as a way to bypass costly simulations and as a first step
towards further work that we will detail in the next chapter.

In a first part we explained the general concept behind a GAN.
In a second part we detailed the data we used and the different choices we

made when constructing it. The data was constructed from both 2D and 3D
DM-only N-body simulations and was pre-processed to be compatible with the
GANs. Concretely, this amounted to turning a set of particle positions into 2D
and 3D discrete density fields and applying a log-like transformation to them. We
concluded the following: given that GANs are CNNs and are therefore made up
of filters that detect or create reoccurring salient (i.e. smooth and contrasted)
patterns, we must make sure that our input data contains such patterns. The
log-like transformations allow for the cosmic web structure to emerge clearly, in
significant contrast with the low density background. Smoothing the density field
ensures that the structures themselves are smooth and continuous. Finally to
ensure that GAN-generated densities were consistent when linear, we had to make
sure that our log-like transformation gave sufficient contrast in the density ranges
we considered. In the end we came up with three types of data: 2D density maps
built from the 2D simulations at z=0, 2D projected density maps built from the 3D
simulations at z=0, and finally 3D density field cubes built from the 3D simulations
at various z (3 to 0).

In a third part we explained our process when developing and training our

56CHAPTER 2. EMULATING COSMOLOGICAL SIMULATIONSWITHGANS

GAN, from architecture choices and presentation of different components to train-
ing choices and checks to detect and avoid common issues during training. Exper-
imentation with various architectures led us to conclude that while certain general
rules could be followed with regards to component choice for a better chance of
stability, there were no universal truths that completely ensured it, and too much
modification of a functioning model inevitably led to dysfunctional models. Thus
we find that the best course of action is to find a working model that requires
relatively minimal modification to be compatible with one’s data rather than to
build one from the ground up.

In a fourth part we put forward the importance of using statistical estimators
to ensure that the data generated by the GAN is consistent with the original
data. We came up with a set of estimators that comprehensively verified that
the data simultaneously conserved the correct mass distribution (average pixel
PDF), represented all the scales within the cosmic web (power spectrum), kept
the diversity of data (mean density PDF) and kept the same distribution of local
maxima (peak counts).

Thus equipped we were able to train a GAN, and using the previously men-
tioned estimators, we confirmed the ability of the GAN to extract the underlying
statistical distribution of data built from the simulations and generate new data
hailing from this distribution. We showed that this was the case for all data types.
They were indeed emulated with striking similarity to the true original data, as
we showed visually and with the almost perfect overlap of the different statistical
estimators. Additionally, the training proved stable. The networks consistently
generated images of increasing quality with training up to a stable point after
which the generated images were visually indistinguishable from the true ones.

We note that despite the success of GANs to reproduce a desired input with
high fidelity, it is important to be careful when these black-box models are used.

However we find our results quite encouraging, and with this first step suc-
cessfully taken we can look into different paths for optimizing results, from simple
modifications to training, such as using larger batches, longer training, and up-
scaling our models with more intermediate layers or more convolutional filters to
add variety to the generated patterns, to complete change to stronger available
architectures.

In terms of quality assessment of the generated data, inquiring into more GAN-
focused estimators such as Inception Score (Salimans et al., 2016) and Fréchet
Inception Distance (Heusel et al., 2017) could help us to best gauge the progress
of our GAN during training and make modifications accordingly.

A next logical step would also be to work with higher resolution data. In a
similar vein, it could be worth experimenting with more complex hydrodynami-
cal simulations, seeing if we can generate multiple-input maps that contain not

2.7. CONCLUSION 57

only DM density but also velocity distribution, gas density, galaxy population or
temperature maps.

Additionally we can expect more complex applications of GANs to apply well
to our data. Namely, cGANs(Mirza and Osindero, 2014) are types of GANs that
can be conditioned to generate data that is conditioned on class labels. In our
case, this could be interesting in terms of generating simulation data either at
various redshifts, or with certain conditions on the type of cosmic region that
is generated (dense, cluster-filled regions vs empty regions for example). Many
examples of modified GANs have shown stunning results in terms of filling in
incomplete information, or imputation (Lee et al., 2019; Yoon et al., 2018; Bora
et al., 2018), which would have multiple applications on observational data, as
a way to fill masked areas, complete flawed observations or reconstruct partially
detected structures. Others yet have proved effective in detection of objects within
images (Isola et al., 2017), which could be useful when attempting to classify/find
structures in observed data, especially in upcoming large surveys.

Additionally, rather than constructing more complex GAN structures, one can
exploit a trained GAN’s properties to build models with more pointed tasks. We
will show in the following chapter how we can make use of both a trained generator
and discriminator to first build an autoencoder that is able to first reconstruct
data from a small number of parameters and in a second phase predict structure
evolution in time.

Chapter 3

Predicting Structure formation in
Simulations with GAN-based
Autoencoders

3.1 Introduction

Having described in Chapter 2 our work to develop the GAN we now take advan-
tage of its components’ properties for a more concrete application; indeed both
the generator and discriminator can prove quite useful in independent manners,
with both having semantically meaningful spaces to which they can translate our
cosmological data. First the generator, which is built to map a space of n indepen-
dent Gaussian-distributed parameters to a space of statistically consistent cosmic
web data, presents the key characteristics one would expect of a decoder, as we
will describe below. Second the discriminator, which is optimized to pick up subtle
features to determine whether a given datum is issued from true LSS simulations
or generated by a model, can be envisioned to hold within its network nodes a
meaningful representation of data which we could use to our advantage.

This being posited, we describe how we make use of our GAN to create a series
of autoencoders, first simply tasked with reconstructing input data after having
encoded it in a low-dimensional vector, then, more interestingly, with the task of
predicting structure formation from past snapshots of the same Lagrangian space.
Indeed, our single simulation yields snapshots of the same density field at different
stages of evolution in time (in our case we focus on redshifts z = 0, 1, 2 and 3).
We task our autoencoder with recovering density fields at z = 0 while providing it
with the equivalent field at z = 1, 2 and 3.

In a first part, we will introduce the general concept of the autoencoder and
describe the method with which we build our own from the trained GAN structure;

59

60CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

hence there will be no section detailing the architecture of the AEs, as they follow
the GAN’s with little to no modification. From there, we will go over the process
of developing and training the autoencoder, and the additional estimators we used
to quantify the precision with which each datum’s structures are recovered.

Next we will show the results of the simple autoencoder for all three data
types (2D simulation images, 3D simulation projected images and 3D simulation
cubes). Following this we will present several variations on our baseline AE that we
developed to experiment on different aspects that we will detail. These experiments
were carried out at different stages of development and thus do not have results
for all three data types, and with the training sometimes happening for smaller
datasets (standard cutting). We will show summary results for each of these
variations and compare them to those of the baseline AE. We will give a brief
mention of inconclusive experiments as well as potential future experiments we
feel would be worth looking into. We will end this section with a preliminary
conclusion.

In a second part, we will detail our work on the prediction of structure formation
using the same model. We will first lay out the general concept of such a model and
our method to train and acquire information during training. With this baseline
set, we will detail the numerous methods and model modifications we came up
with to simplify the autoencoder’s task and obtain better results. We will then
give a comparative presentation of our resulting predictions, keeping in mind that
our first simple autoencoder’ results will serve as a "gold standard" of sorts, or
benchmark of best available results, as it represents the best predicted outcome
one can expect when feeding the model all the information we expect it to output.

In a third part, we will discuss the difficulties encountered along the way and
the solutions found.

Finally, we will conclude.

3.2 Autoencoders - Generalities and Specifics

An autoencoder (AE) is a neural network that learns in an unsupervised manner a
representation (encoding) for a set of data. It is built and trained in the following
way. A first network e, called Encoder takes as input a datum x and outputs a
vector of reduced size z = e(x). A second network d, the Decoder, takes as input z
and outputs a recovered datum x̃ = d(e(x)). The AE is trained by imposing that
the resulting x̃ is as close as possible to the initial x. This is typically (but not
systematically) done by using a cross-entropy loss in the case of discrete binary
variable, or using the `2 loss ‖x − d(e(x))‖2 that can be used if the inputs are
continuous.

Incidentally, we can also consider and use our previously built GANs’ Gen-

3.2. AUTOENCODERS - GENERALITIES AND SPECIFICS 61

Figure 3.1: A basic autoencoder structure. The data is encrypted in a space of
smaller dimension by the encoder before being decrypted by the decoder; in this
state it is referred to as latent code.

erators as readily trained decoders from a reduced space (R100 for 2D and R200

for 3D) to our target space (typically z = 0 simulation images/cubes). Indeed,
the Generator has learned a representation of the simulated data. Taking in an
input z of reduced size, the Generator is to output any image x̃ = g(x) from the
simulations. Furthermore, given the Generator’s ability to generate images/cubes
that are statistically consistent with those of the simulations, using it in the AE
would constrain the outputs to share the same statistical properties. Thus, we
would avoid the AEs’ common pitfall to output blurry images (Dosovitskiy and
Brox, 2016).

To create a functioning AE, we therefore need only build and train a functioning
Encoder that will work as an inverse function of the Generator, such that x̃ =
g(e(x)) = g(g−1(x)) = x.

It is worth mentioning that in a classical autoencoder, the encoder and decoder
are trained alongside each other. In our approach the decoder is trained first sep-
arately in an effort to constrain it to output data that are statistically sound (i.e.
that hail from the simulations’ underlying distribution). These constraints might
imply a loss of accuracy in our recovery of structures in individual images. It is
therefore important to look at both global statistics (in terms of mean density,
pixel pdf, power spectrum and peak counts, as we did for the GAN) and pair-

62CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

wise statistics, where we compare individual output/target pairs, to see how the
autoencoder fares in both regards, as is done in Sec. 3.5.1.

The different layers of the Encoder are based on the Discriminator’s architec-
ture, since the latter is especially developed to extract essential information from
simulated data. However since the goal of the network differs from the Discrim-
inator’s, we will only retain the architecture and not the weights. We have not
tested other architectures barring slight modifications of the one mentioned; we
leave this for further studies. Further details on the architectures of the networks
can be found in table 3.2.

2D AE 3D AE
Filter sizes {5, 5, 5, 5, 5} {4, 4, 4, 4}
nfilter(G) {256, 128, 64, 32, 1} {128, 64, 32, 1}
nfilter(D) {32, 64, 128, 256, 512} {32, 64, 128, 256}
Strides: {2, 2, 2, 2, 2} {2, 2, 2, 2}

Layer Act. Leaky ReLU (E), ReLU (De) Leaky ReLU (E), ReLU (De)
Final Act. None (E), Tanh (De) None (E), Tanh (De)

Latent dimension 100 200

Figure 3.2: Architecture specifications for each layer of the 2D (left) and 3D (right)
AEs’ encoder (E) and decoder (De) networks. They are all based on our previously
built GANs. They are trained using the Adam optimizer with parameters (lr =
0.0002, β1 = 0.5) and minimize the loss given in eq. 3.2

We can now build the AE by putting the two networks (Encoder and Decoder)
end to end. This can be described as the following function: a(x) = d(e(x)). We fix
the weights of the Decoder and update the weights of the Encoder to decrease the `2

loss function previously described: ‖x−a(x)‖2. However instead of using the `2 loss
in the image/cube’s space, comparing pixels at the same location on both "true"
and inferred images/cubes, which accounts poorly for well-recovered but slightly
shifted structures, we instead make use of the Discriminator1. It is expected that
the Discriminator manages to learn a latent representation of our datasets during
the GAN’s training. This representation is given by the penultimate layer, where
its elements are used to estimate the probability to be or not a true image/cube.
This representation in the Discriminator’s latent space is semantically meaningful
(Bang et al., 2020), accounting for the presence of specific structures or shapes, and
tends to put visually similar images/cubes at a small distance in this space, where
they would otherwise be more distant in the images/cubes’ space. Additionally,

1As an independent test, we build a separate "traditional" autoencoder with the same struc-
ture but in which the decoder’s weights are initially randomized and are updated during training
with an `2-norm loss function. As expected, we obtain the blurry results.

3.3. TRAINING PROCESS 63

given the discriminator’s ability to detect "fake" data, we can expect it to ensure
statistical similarity between two data as well.

Therefore we define the autoencoder’s loss as:

LAE = ∆(x, x̃) (3.1)

where ∆ is the `2 difference in the discriminator’s latent space. Or, calling TD
the truncated discriminator with its final layer removed:

LAE = ‖TD(x)− TD(x̃))‖2 (3.2)

We can then train the AE by updating its weights to minimize this loss. Train-
ing is stopped when the loss measured on a separate validation set reaches a min-
imum.

From now, on we will refer to the images/cubes x̃ reconstructed by the autoen-
coder as inferred images/cubes. We will assess their quality in Sec. 3.5.1.

3.3 Training process

Using the structure described above, we can now exhibit our method to train and
further develop our autoencoder.

The autoencoder is trained similarly to the GAN; it is run over several epochs
and we regularly save data inferred by the AE such as shown in 3.3, both from
training set data and from a separate set the model has not encountered during
training called validation set. Also saved are model weights, and model losses such
as computed on three separate sets: the current training batch, a subset of the
training set, and the validation set. We use batch sizes of 200 for both 2D and 3D,
though for further experiments, one might try to use gradually increasing batch
sizes as this has proved effective in other work (Smith et al., 2017).

During training we observe the losses and inferred data to assess the model’s
progress. In a successful scenario, we can expect the inferred data to become
progressively more similar to data from the training set, and by extension to the
validation set.

Meanwhile we expect all losses to gradually decrease (as a tendency; local noise
is not uncommon or symptomatic of an issue), with the batch loss inferior to the
training set loss, itself inferior the validation set loss. At some point the model
might start to overfit the training set, which would lead to the validation set loss
starting to rise. This is not too important an issue, as one need only retrieve model
weights saved before overfitting: a method called early stopping. One should note
that given the way our dataset is built, the model can take a very long time before
encountering a given datum twice (i.e 20000 epochs, amounting to > 100 days to

64CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

encounter every datum in the dataset once), which greatly postpones the moment
at which overfitting starts to occur, if it does at all. As it happens we do not
encounter it within our training time, which never exceeds a week, and usually
lasts two days at most. By this time however the losses usually seem to approach
their limit, requiring exponentially increasing time to decrease by a small fraction.

Once more there are several ways in which the training can go awry. If the
task is too complex (e.g. the loss marginalized over the training set is a highly
nonlinear function of the network parameters), the model can end up "stuck",
never converging to a global minimum of the loss, but instead shifting from one
local minimum to another. This is easy to detect, as visual inspection will show
that both the data inferred from the training set and validation set never approach
the likeness of the true data. Furthermore, the losses on all sets will look erratic
rather than presenting the characteristic downward slope one expects.

Another common issue when using smaller training sets occurs when the model,
while performing correctly on the training set, is not able to generalize to new
data, essentially overfitting too soon for the model to be of any use. This is easy
to detect when looking both at the inferred data and losses, as the data inferred
from the training set will look progressively similar to the true data, while the
data inferred from the validation set will look randomly generated. Looking at
the losses, this would translate to a downward slope on the training set and batch
losses and erratic behavior on the validation loss. This issue can only be noticed
if the training set is encountered entirely multiple times by the model. Given the
way we have built our training set, the above situation cannot be observed in our
training time scales, and the losses on both training and validation set prove to be
quite similar, with the training loss slightly inferior to the validation loss. Since
no true overfitting can occur, both losses tend to slightly decrease up to an early
point, after which they randomly vary around a constant.

The harder the task the more one can expect one of the above behaviors to
occur, and our work focuses on diagnosing such situations and finding methods to
render the task more feasible for our model.

3.4 Sørensen–Dice coefficient

Here we detail these different new estimators.
In addition to the statistical measures previously introduced in our work on

GANs 2, we need a test to quantify how well the autoencoder infers individual im-
ages/cubes. Therefore, we need a pairwise comparison between input images/cubes
from the simulations and their inferred counterparts from the autoencoder.

Taking a simulation/inferred pair, we test how well the structures overlap by
thresholding the images/cubes at different values and counting the fraction of

3.4. SØRENSEN–DICE COEFFICIENT 65

pixels/voxels, above the threshold, that overlap.
For a pair of images/cubes a and b, the overlap is expressed in the following

way:

Oab(t) =
Nab(t)

Na(t) +Nb(t)
(3.3)

Where Na/b(t) is the number of pixels/voxels whose value is above the threshold
t in a or b and Nab(t) is the number of pixels/voxels whose value is above t for
both a and b in a given position in an image/cube.

To get a sense of the overall quality of the encoded images/cubes, we plot the
dice coefficient averaged over a set of simulated-inferred pairs: Ō(t) = 〈Oab(t)〉(a,b).
where the notation <> indicates an average. For clarity the overlap Oab(t) is
plotted against the top percentage, associated to a given threshold, rather than
the threshold itself (Fig. 3.9 and Fig. 3.16). The thresholds are defined for the
simulated and the inferred sets independently.

It must be noted that a random pair of "true" and inferred images/cubes
will on average provide a non-zero overlap. Indeed, two images/cubes with n%
thresholded pixels/voxels are expected to have an average overlap of n%. To get a
better sense of the entire inferred set’s performance/recovery, we thus compute a
random overlap, as defined by an overlap measured over a random set of simulation
pairs, and plot it along with our overlap averaged on simulation/inferred pairs.

From this random overlap measure, we can proceed to build a normalized
estimator of feature recovery by subtracting it from the overlap measured for
simulated/inferred pairs. By itself, this difference is not informative, therefore
we must look at it relative to relevant values.

First we observe it relative to its maximum possible score 1−r(t), r(t) being the
average random overlap for a given threshold t; this provides a completion score
between 0 and 1, with 1 corresponding to a perfect overlap and 0 corresponding
to a completely random overlap:

Ō(t)1 =
Ō(t)− r(t)

1− r(t)
(3.4)

We will refer to it as the normalized sd coefficient.
Next we observe it relative to the standard deviation of the random overlap, to

ensure that the inferred images/cubes, if imperfect, are well without the random
range. This corresponds to a signal to noise ratio.

Ō(t)2 =
Ō(t)− r(t)
σ(r(t))

(3.5)

We will refer to it as the sd coefficient significance.

66CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

Figure 3.3: 10 images taken at random from the 2D simulations (top row) and
their autoencoder-inferred counterparts (bottom row). Every image represents a
128 × 128 log density map of side 50Mpc. The larger dense structures are better
recovered than the finer diffuse ones.

These measures will allow us to determine whether the structures are well
recovered, and at which scale they are best recovered.

3.5 Replicative Autoencoder

Here, we show and discuss the results of the replicative autoencoder, wherein we
only try to replicate the input data after having reduced it to a vector of size 100
for 2D and 200 for 3D. We show the results for data generated for z=0 simulations.

3.5.1 Baseline AE Results

2D images We now focus on the outcome of the baseline AE for the set of 2D
simulation images. For this dataset, the autoencoder is trained over 195 epochs.
To determine the best point at which to stop training, we look at the evolution of
our model’s loss function when tested on a validation set (Fig.3.4, red); we expect
it to decrease up to a point at which our model should start overfitting, that is to
say becomes too fine-tuned to its training set and starts to perform poorly on new
sets, after which the validation loss should start increasing. In practice, during
our training of the AE on the images, we never observed an overfitting, the loss on
the validation set instead closely following the loss computed on a subset of the
training set, and near-monotonously converging towards a constant.

We are interested in seeing how the AE fares with images it has never encoun-
tered during its training, as our goal is to be able to apply it on new datasets.
Therefore all the images shown and used to measure the different statistical prop-
erties in the results are part of, or inferred from, a separate set than the ones
used for training, called a test set. This will be the case for both 2D images, 3D
projected images and 3D cubes.

We first illustrate the results in terms of the AE’s performance and recovery
of features with a set of ten simulated images taken at random from the test set

3.5. REPLICATIVE AUTOENCODER 67

Figure 3.4: Loss evolution for the baseline 2D autoencoder. We can see that while
all three losses are somewhat noisy, they all globally decrease throughout training.
The test set loss is nearly identical to the training set loss but slightly greater.

(Fig. 3.3, first column from left to right) and their inferred counterparts (Fig. 3.3,
second column from left to right). We note that the inferred images visually look
similar to the simulated images but the larger and denser structures tend to be
recovered better than the smaller diffuse structures.

We recall that while the decoder, having the exact same structure and weights
as the GAN’s generator, is expected to infer images that are statistically similar to
the GAN’s, it nevertheless infers images from a different prior. Indeed, while the
GAN’s inputs are selected randomly from a Gaussian distribution, the decoder’s
inputs are all constructed in a deliberate fashion by the AE’s encoder and are not
expected to follow quite the same distribution. Thus a change in statistics is not
unexpected (see Fig. 3.7).

A closer inspection of the statistical properties of the images (Fig. 3.5) shows a
very satisfactory agreement between the sets of inferred and simulated images. The
pixel PDFs (Fig. 3.5 upper left panel) show satisfactory overlap for the two sets,
presenting a very slight under-representation of high-density pixels in the inferred
images. The mean particle density distributions (Fig. 3.5 upper right panel)
show satisfactory agreement, with the inferred images exhibiting a slight skewness
towards higher mean densities. On the lower left panel of Fig. 3.5, the power
spectra overlap satisfactorily. Finally, the peak counts (Fig. 3.5 lower right panel)
show a near-perfect overlap, with a slight over-representation of lower peak values

68CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

Figure 3.5: Statistics of the 2D simulation images compared to their encoded
counterparts. Upper left shows the pixel PDF, upper right shows mean density
distribution, lower left shows median power spectrum as well as mad (median
absolute deviation) layer, and lower right shows average peak count per image. As
for the GAN the curves overlap quite satisfactorily, with only the MPDD showing
a slight flattening.

3.5. REPLICATIVE AUTOENCODER 69

Figure 3.6: Examples of 2D simulation/inferred image pairs (columns 1-2) and
their thresholded equivalents as used in the computation of the overlap function.
The first column in each pair represents images from the simulations and the second
their inferred counterparts. Here they are thresholded for top 20% (c. 3-4), 40%
(c. 5-6), 60% (c. 7-8), and 80% (c. 9-10).

70CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

Figure 3.7: Example of latent code value distribution. Each point on the x-axis
represents one of the latent code’s parameters. black corresponds to a gaussian
distribution, whereas blue, purple and red represent parameter distribution when
training an AE to recover z = 0 from inputs z = 0, 1 and 3 respectively. The
solid lines represent the mean of each parameter, and the transparent layers show
standard deviation. We can see that data encoded by an AE does not follow a
Gaussian distribution, explaining a difference in statistics to the GAN-generated
data (which receives a Gaussian-distributed input) after being decoded.

3.5. REPLICATIVE AUTOENCODER 71

Figure 3.8: Examples of the overlap of thresholded structures for 2D simula-
tion/inferred image pairs. Yellow pixels indicate where the structures overlap
and green where they do not. The dark background represents pixels below the
threshold. The dice coefficient is simply measured as nyellow

nyellow+ngreen
Here they are

thresholded for top 20% (c. 1), 40% (c. 2), 60% (c. 3), and 80% (c. 4).

in the inferred images. Overall, while slightly less so than the GAN-generated
images, the images are recovered with almost perfect statistical quality.

We now focus on the Sørensen-Dice coefficient which computes the overlap
fraction of two thresholded images. Visual inspection (Fig. 3.6 and Fig. 3.8)
of the thresholded simulated/inferred image pairs and how they overlap suggests
that dense structures are strikingly well recovered, with the autoencoder favoring
the retrieval of thick, contrasted features rather than finer diffuse ones. Once
again, this is expected given the CNN’s predisposition to detect and construct
well-defined shapes.

An inspection of the dice coefficient (Fig. 3.9, left) corroborates this finding.
Indeed, despite some slight shifts of structures and aforementioned loss of finer
structures, we note that the high density regions overlap satisfactorily and seem-
ingly well without the random region for up to the top 60% pixels. The normalized
dice coefficient (Fig. 3.9, right, blue) lets us assess the density threshold at which
the autoencoder best captures structures. Here, it peaks for the top 20% pixels.

72CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

Figure 3.9: Left: dice coefficient (as defined by Eq. 3.3) of top n% pixels between
2D simulation images and their inferred counterparts, by increments of 5% (yel-
low). The inner dark yellow layer represents measure uncertainty and the outer
yellow layer represents standard deviation over the set. Random overlap is rep-
resented in black. Right, red: dice coefficient significance (see Eq. 3.5), blue:
normalized dice coefficient (see Eq. 3.4); both are represented with their standard
deviation layers.

Figure 3.10: 10 images from the 3D simulations (top row) and their 10
autoencoder-inferred counterparts (bottom row). Every image represents a
128× 128 log density map of side 50Mpc.

3.5. REPLICATIVE AUTOENCODER 73

Figure 3.11: Statistics for the 3D simulation images (red) and their AE-inferred
counterparts (blue). Upper left shows the pixel PDF, upper right shows mean den-
sity distribution, lower left shows median power spectrum as well as mad (median
absolute deviation) layer, and lower right shows average peak count per image.

74CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

Figure 3.12: Left: dice coefficient (as defined by Eq. 3.3) of top n% pixels between
2D simulation images and their inferred counterparts, by increments of 5% (yel-
low). The inner dark yellow layer represents measure uncertainty and the outer
yellow layer represents standard deviation over the set. Random overlap is rep-
resented in black. Right, red: dice coefficient significance (see Eq. 3.5), blue:
normalized dice coefficient (see Eq. 3.4); both are represented with their standard
deviation layers.

3D projected images We now turn to the AE’s performance when trained on
images from the 3D simulations. For these images, the autoencoder is trained
over 50 epochs but the validation loss shows that overfitting starts slowly at epoch
25. Therefore, we keep the network’s weights saved at that time and analyse the
results for this set of weights.

We first select at random ten images from the 3D simulations test-set and their
inferred counterparts (two left-most columns of Fig. 3.10). Once again, we can
observe that the densest structures seem to be better recovered than the more
diffuse ones. We concentrate on the images’ statistical properties (Fig. 3.11) to
better assess the AE’s performance.

First, we see that the pixel PDFs (Fig. 3.15 upper left panel), as for the
GAN case, overlap well up to the lower tail of the distribution, with an under-
representation of lower densities. However in this case, the higher densities are
slightly over-represented in the inferred images. The mean density distribution,
as can be seen in the upper right panel of Fig. 3.11, is well recovered. The
over-representation in higher densities causes a slight upward shift of the inferred
images’ power spectra (Fig. 3.11 lower left). As for the peak counts (Fig. 3.11
lower right panel), they show similarly to the pixel PDF a slight over-representation
in the high-density regime.

An inspection of the dice coefficient (Fig. 3.12, left) shows an overall satis-

3.5. REPLICATIVE AUTOENCODER 75

Figure 3.13: 10 cube slices from the 3D simulations (top row) and their 10
autoencoder-inferred counterparts (bottom row). Every image represents a slice
from a 64× 64× 64 log density map of side 25Mpc.As for the 2D case the larger
dense structures are better recovered than the finer diffuse ones.

factory recovery of the images which significantly differ from random images. We
further note that the retrieval of high-density structures is good for the top 60%
pixels in a majority of images as exhibited by the dice coefficient significance (Fig.
3.12, right, red). The normalized dice coefficient (Fig. 3.12, right, blue) sug-
gests that structures associated with the top 10% pixels are the ones that are best
captured by the autoencoder.

3D cubes We now turn to the AE’s performance when trained on cubes from the
3D simulation. For these cubes, the autoencoder is trained for 75 epochs, during
which all losses (Fig. 3.14) follow a noisy, but globally decreasing trend. Com-
paring these noisy losses to the relatively smooth loss evolution of the 2D AE, we
can conclude that the task is comparatively more difficult for the model, and that
adjustments of the weights for a given batch do not systematically generalize well
to the entire dataset. Our validation loss (red) suggests that our model performs
best at epoch 55, so we recover the weights from this epoch for the assessment
described below.

To illustrate our results, we first show a random set of ten cubes from the 3D
simulations test-set and their inferred counterparts (Fig. 3.13). Once again, we
can observe that the densest structures seem to be better recovered than the more
diffuse ones. We concentrate on the cubes’ statistical properties (Fig. 3.15) to
better assess the AE’s performance.

First, we see that the voxel PDFs (Fig. 3.15 upper left panel), as for the
GAN case, overlap well up to the lower tail of the distribution, with an over-
representation of lower densities in the inferred cubes. The mean density distribu-
tion, as can be seen in the upper right panel of Fig. 3.15, is well recovered, as is
the 3D power spectrum (Fig. 3.15 lower left), though once more showing a slight
under-representation of higher frequencies in the inferred cubes. As for the peak
counts (Fig. 3.15 lower right panel), they show similarly to the voxel PDF a slight
over-representation in the high-density regime.

76CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

Figure 3.14: Loss evolution for the baseline 3D autoencoder. We can see that
while all three losses are somewhat noisy, they all globally decrease throughout
training. The test set loss is nearly identical to the training set loss but slightly
greater.

An inspection of the dice coefficient (Fig. 3.16, left) shows an overall satisfac-
tory recovery of the cubes which significantly differ from random cubes. We further
note that the retrieval of high-density structures is good for the top 60% voxels
in a majority of cubes as exhibited by the dice coefficient significance (Fig. 3.16,
right, red). The normalized dice coefficient (Fig. 3.16, right, blue) suggests that
structures associated with the top 10% voxels are the ones that are best captured
by the autoencoder.

3.5.2 Variations on the baseline AE

As a way to ascertain the judiciousness of our choices in building and training our
baseline AE, and also as a means to look for potential areas of improvement, we
explored other training approaches that vary in terms of losses, initial weights and
fixed weights. We summarize each method here and present results when relevant.
Since model modifications lead to similar changes in the results regardless of the
data (2D, projected 3D or 3D), we choose to only show results for the 2D data for
clarity.

3.5. REPLICATIVE AUTOENCODER 77

Figure 3.15: Statistics for the 3D simulation cubes (red) and their AE-inferred
counterparts (blue). Upper left shows the voxel PDF, upper right shows mean
density distribution, lower left shows median 3D power spectrum as well as mad
(median absolute deviation) layer, and lower right shows average peak count per
cube. As for the GAN, the curves overlap quite satisfactorily.

78CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

Figure 3.16: Left: dice coefficient (as defined by Eq. 3.3) of top n% voxels between
3D simulation cubes and their inferred counterparts, by increments of 5% (yellow).
The inner dark yellow layer represents measure uncertainty and the outer yellow
layer represents standard deviation over the set. Random overlap is represented
in black. Right, red: dice coefficient significance (see Eq. 3.5), blue: normalized
dice coefficient (see Eq. 3.4); both are represented with their standard deviation
layers.

Traditional Autoencoder

Our baseline AE model rests upon the use of a previously trained GAN. Given that
developing and training a GAN requires consequent work, it is worth exploring how
a traditional AE training process fares in comparison. A traditional AE does not
require any prior training, trains both encoder and decoder simultaneously, and
generally uses an `2 loss to update its weights. To build our own traditional AE we
maintain the same architecture as for the baseline AE’s, but randomize all initial
weights for both encoder and decoder, and leave them all free for the model to
update during training. The loss used here is `2 in data space, as we do not rely
on any part of the GAN, truncated discriminator included.

We find that in terms of dice coefficient (Fig.3.19), the traditional AE actually
obtains a better score than the baseline AE, outputting data wherein the thickest
structures are well conserved. This is not entirely surprising as it has more leeway
to accomplish this task compared to our baseline structure which is also optimized
to output statistically consistent data. As expected, here the output data as seen
in Fig.3.17 is blurry, with finer detail completely smoothed out. It is nothing
like the original data in terms of our four considered statistics (Fig.3.18), with an
expected drop in higher frequencies in the power spectrum because of the lack of
fine structure, and a poor overall reconstruction of density statistics.

3.5. REPLICATIVE AUTOENCODER 79

Figure 3.17: Ten images from the 2D simulations (top row) and their ten counter-
parts as inferred by the traditional AE (bottom row). The largest structures seem
to be very well recovered but finer details are completely smoothed out.

Figure 3.18: Statistics for the 2D simulation data (red) and their counterparts as
inferred by the traditional AE (blue). As the images would suggest, the inferred
data is not statistically consistent with the true data at all.

80CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

Figure 3.19: In red we represent the traditional AE’s dice coefficient and standard
deviation. In blue we show the baseline AE’s dice coefficient and standard devi-
ation. Random overlap is represented in black. We can note that the traditional
AE performs significantly better in recovering specific structures at all scales.

3.5. REPLICATIVE AUTOENCODER 81

Figure 3.20: Ten images from the 2D simulations (top row) and their ten counter-
parts as inferred by the `2-loss AE (bottom row). The largest structures seem to
be well recovered but the images look noisy.

`2-loss AE

In the same spirit as the traditional AE, we trained our baseline AE structure,
using a trained generator as a decoder and keeping its weights fixed, but using a
simple `2 loss instead of the the truncated discriminator; this helps us to determine
precisely the impact of our TD loss compared to the simpler `2 one.

We find that similarly to the traditional AE, the `2-loss AE’s inferred data are
statistically dissimilar to true data (Fig.3.20 and Fig.3.21), though not in the same
manner because of the decoder’s constrained weights. Given that on the other hand
our baseline AE maintains statistical similarity in its inferred data, this shows
that the truncated discriminator loss is actually instrumental in ensuring that
inferred data are statistically consistent with true data; using only the constrained
decoder is not enough. Indeed, the decoder is constrained to output statistically
consistent data when intaking a Gaussian-distributed input; we can expect the
latent distribution of the data encoded by the `2-loss AE to be far from a Gaussian,
as there is no constraint for the model to do so.

In terms of overlap, the `2-loss AE performs better than the baseline AE (be-
cause the loss is more geared towards optimizing this statistic). However, it per-
forms worse than the traditional AE. Thus we do not retain this option for further
work as it is neither optimal in terms of conserving statistics nor in terms of
recovering information with minimal loss.

This being said, it might be worth looking into alternating `2 and TD loss
during our training. We did not yet have the occasion to try this in our work.

Latent Layer Autoencoder

Assuming that our GAN’s generator g is a function that perfectly maps a 100-
or 200-dimensional Gaussian to the space of simulation-like data, we develop our
decoder d to make it as close as possible to g−1 so that our autoencoder outputs
data x′ that is as close as possible to their input x. In this manner we can train
the encoder independently without needing to append the decoder to it by using

82CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

Figure 3.21: Statistics for the 2D simulation data (red) and their counterparts as
inferred by the `2-loss AE (blue). As the images would suggest, the inferred data
is not statistically consistent with the true data at all.

3.5. REPLICATIVE AUTOENCODER 83

Figure 3.22: In red we represent the `2-loss AE’s dice coefficient and standard dev.
In blue we show the baseline AE’s dice coeff and standard dev. Random overlap
is represented in black. We can note that the `2-loss AE performs better than our
baseline model in recovering specific structures at most scales.

84CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

Figure 3.23: Ten images from the 2D simulations (top row) and their ten coun-
terparts as inferred by the latent layer AE (bottom row). The largest structures
seem to be well recovered and the data statistically consistent.

GAN-generated data. Indeed, using our generator, we can obtain precise x and
g−1(x) pairs. We simply choose random GAN inputs y to act as g−1(x) and, from
them, generate data that act as the associated x. The loss is then computed as:

LAE = ‖y − e(g(y))‖2 (3.6)

We train our encoder on GAN-generated data following this method, but we
are eventually interested in how it fares on true data. We thus reintegrate it within
the autoencoder structure (by appending the decoder at its end) and observe the
results on a test set as for the baseline AE.

We find that this method under-performs both in terms of general and one-to-
one statistics compared to our baseline model, but not significantly enough to be
discarded. We thus find it worth keeping it in our following predictive work.

We additionally test the latent layer AE on a GAN-generated set to see how
the results compare. We find that the AE trained in this manner performs near-
perfectly on GAN-generated data, suggesting that despite the near-perfect simi-
larity between GAN-generated data and true data on our considered stats (pixel
PDF, mean density distribution, peak counts and power spectrum), there remains
a fundamental difference that allows the AE thus trained to perform relatively
poorly on the simulated data and exceptionally on the generated data.

3.5.3 Conclusion on the Replicative Autoencoder

Building on the GAN’s properties, we utilised the trained network to devise an
AE that used the generator with fixed weights as a decoder and the truncated
discriminator as a way to compute the loss; this was referred to as the baseline
AE. It compressed images or cubes, and related information, to encoded vectors of
smaller size that were then decoded with as little loss of information as possible,
while satisfactorily conserving the statistical properties of the data.

A visual appraisal and dice coefficient measure of the data inferred by the AE
thus constructed, suggested that large dense structures were satisfactorily repro-

3.5. REPLICATIVE AUTOENCODER 85

Figure 3.24: Statistics for the 2D simulation data (red) and their counterparts as
inferred by the latent layer AE (blue). The slight under-representation of higher
densities in the pixel PDF seems to lead to a shift in both MPDD and PS.

86CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

Figure 3.25: In red we represent the latent layer AE’s dice coefficient and standard
dev. In blue we show the baseline AE’s dice coeff and standard dev. Random
overlap is represented in black.The latent layer AE seems to perform slightly worse,
but the difference is not significant enough to conclude; differences could be due
to training time.

Figure 3.26: Ten images generated by the GAN (top row) and their ten counter-
parts as inferred by the latent layer AE (bottom row). The structures seem to be
very well recovered at nearly all scales.

3.5. REPLICATIVE AUTOENCODER 87

Figure 3.27: Statistics for the 2D generated data (red) and their counterparts as
inferred by the latent layer AE (blue). All curves overlap perfectly.

Figure 3.28: In red we represent the latent layer AE’s dice coefficient and standard
deviation as computed on data generated by a GAN. In blue we show the baseline
AE’s dice coefficient and standard deviation. Random overlap is represented in
black. The latent layer AE performs exceptionally well on the generated data.

88CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

duced for all data types (images, projected images and cubes), while for the smaller
fine structures, the degree of reproduction was not satisfactory at all. Notably, this
recovery of structure within individual data was much less efficient than that of a
traditional AE built with an `2 loss and free decoder weights; it even fared slightly
worse than a baseline AE that was trained with an `2 loss (`2-loss AE).

However, the baseline AE’s inferred data appeared to be visually realistic,
unlike the inferred data of the traditional AE and the `2-loss AE. Statistical es-
timators showed a quite satisfactory overlap between the baseline AE’s inferred
data and true data’s stats, suggesting only a slight overall decrease in statistical
similarity with the original sets when compared with the results from the GAN. On
the contrary, the other two showed a considerable drop in statistical resemblance .
This was expected for the traditional AE, as it had no incentive to maintain orig-
inal statistics, besides a general task to infer data individually similar to original
data. This came more as a surprise for the `2-loss AE, as we originally assumed
that data output by a GAN’s decoder would naturally have the right statistics.
This assumption does not account for the prior distribution; indeed, the generator
is constrained to output statistically consistent data, but only when receiving a
Gaussian-distributed vector as input. The `2-loss AE puts no such constraint on
the encoded data, resulting in the poor statistics we can observe. This means that
in the case of our baseline AE, it is in fact the truncated discriminator loss that is
imposing statistical quality of the output data, and thus constraining the encoded
data to somewhat follow a Gaussian distribution.

This means that our TD loss is quite useful as it constrains both precise individ-
ual structure recovery and statistical recovery. However, this statistical constraint
is so harsh that it does not allow training from a random position to converge;
inferred data must be statistically similar to the target data from the beginning
of training.

Circling back to the latent encoding space, we attempted to train an encoder
on GAN-generated data, tasking it with yielding a given generated datum’s prior
input vector. Reattaching it to our baseline decoder, we found that it performed
exceptionally well on generated data, recovering precise structure and statistics,
but performed significantly more poorly on true simulation data. This suggests
that while all our statistics show striking similarity between GAN-generated data
and true simulation data, there are still core differences between the two that ac-
count for the vast differences in the results of the latent layer AE. However, we can
note that at least visually, the baseline AE and by extension the generator’s GAN
is able to generate a datum that strikingly approaches almost any new datum’s
likeness, and is not limited to reproducing data that it has already encountered.

For future perspectives, given that AEs trained with `2 losses yield better re-
sults in terms of dice coefficient, we can look forward to possibly better overall

3.6. PREDICTIVE AUTOENCODER 89

results if we were to try alternating TD and `2 losses. Additionally, `1 losses might
be worth looking into. Furthermore, we understand that the limitations of the
baseline AE are at least partially due to the fact that the decoder’s weights are
locked and constrained. Hence it might be worth unlocking them after a prelim-
inary training round to see if it can be made even more efficient while retaining
the advantages of the baseline AE.

3.6 Predictive Autoencoder

In a second part of our work, we aimed to make use of our AE’s ability to ex-
tract meaningful information to perform more complex tasks, and specifically see
whether we could predict, or conversely "rewind", the evolution of density distri-
butions over time in Lagrangian space using our AE structure. We refer to this
predictive AE as timewarper (TW). This could eventually prove useful in two main
ways, first as an alternative to other simple approximations such as first and second
order Lagrangian Perturbation Theory(Buchert, 1995; Zel’Dovich, 1970), or ML-
based approach for small simulations (He et al., 2019), to get a rough estimation
of density fields at a given time given initial conditions.

Second, rewinding would permit to recover initial conditions from a current
density distribution.

While we more recently began attempts to rewind from lower to higher redshifts
(such as recovering redshift z = 3 from input redshift z = 0), most of our current
results are for forward evolution to target redshift z=0 from input redshifts 3 to
0.5 by increments of 0.5. We can also expect prediction to be more difficult the
farther apart the redshifts are, and will thus compare our results for each z.

Similarly to the previous section, we will first present in detail our results on a
basic "baseline" structure, then detail a set of variations on our training method
that we put in place in order to obtain better results.

We conclude by reminding the reader that our approach consists of training
the neural networks for a duration that usually does not exceed two days, due
to time allocation constraints. We regularly save network weights and recover
those that yield the best validation loss. Given the limited training time, the best
weights often correspond to the latest ones saved, suggesting that convergence
has not quite been reached. Thus, we find that our networks could often benefit
from longer training, though we only expect slight improvement of results in terms
of structure recovery (statistical and one-to-one). Hence, though imperfect, the
results obtained on rather short training times give us a good indication of the
learning capacity of our various networks. We recap the full training time (in
terms of epochs) of our different networks in Table3.29, as well as the epochs at
which we recover the best weights for each network.

90CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

Name Training Time
Baseline 2D 50
Baseline 3D 150
Curriculum 50

Multiple Input 50
Velocities 70

Figure 3.29: Training times (in epochs) for each of the TW presented.

Figure 3.30: Batch and validation set losses for the baseline TW trained to predict
z = 0 from 2D input data at various redshifts.

3.6.1 Baseline Timewarper results

Our first timewarper is simply based on our baseline AE (3.2) in terms of structure,
loss, and training sequence. We input a datum at a given redshift z > 0 and
constrain the TW to output the equivalent z = 0 datum (with two "equivalent"
data referring to the same region within a snapshot at the two redshifts considered
for input and target).

2D images

We now focus on the outcome of the TW trained to recover data at redshift z = 0
for the set of 2D simulation images, from input redshifts varying from z = 0 to
z = 3 by steps of ∆z = 0.5.

One might note that "predictions" from z = 0 to z = 0 are simple replicative
autoencoding of the kind covered in the section above.

We compare our results on predictions from higher redshifts to this z = 0
reference. The task is expected to be harder the higher the input z; indeed, given

3.6. PREDICTIVE AUTOENCODER 91

Figure 3.31: Six images from the 2D simulations at various redshifts (left), and
their equivalent predictions of redshift z = 0(right) as inferred by the baseline TW.
The true z = 0 simulation images are shown above the predicted images (upper
right) for comparison.

Figure 3.32: Left: Median power spectra of the data predicted by the baseline
TW from various redshifts (blue). The median power spectrum of the true z = 0
simulation data is shown in black. Right: Average dice coefficient between target
z = 0 2D simulation data and data as predicted by the baseline TW from various
redshifts.

92CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

that the structuration of matter is a highly non-linear process, we can expect that
the farther away in time the target is from the output, the farther the density field
will steer from a linear evolution.

For all input z > 0, the baseline TW is run for 75 epochs, and the best weights
are recovered for each input z (0.5, 1, 1.5, 2, 2.5, 3), respectively at epochs 50, 75,
75, 50, 75 and 60. For both sets of losses, we can note that the higher the input z,
the higher the overall loss is during training. This is coherent with the expected
higher difficulty of the prediction task for higher z.

We illustrate the baseline TW’s performance in recovering z = 0 from different
redshifts with a set of six simulation images taken at random from the test set (Fig.
3.31). These data are taken at various redshifts (left block) and used as input for
the trained TWs to predict their z = 0 equivalent (upper right). Predicted data
are shown in the right block. We find that whatever the input z, the TWs are
very successful in recovering z = 0, with larger/denser structures being globally
well recovered and finer detail being more random, as was already the case for the
replicative AE. It is difficult to distinguish by eye whether performance changes
according to the input z, with structures being well predicted even when inferring
from high-z.

Inspecting the power spectrum of the predicted data (fig. 3.32, left), we find
that the TWs seem to recover similar statistics regardless of the input z; all pre-
dicted spectra show a satisfactory shape, but a similar upward shift at lower fre-
quencies compared to the true data. This suggests that denser regions are recov-
ered with slightly excessive density.

Finally, we observe the Dice coefficient(fig. 3.32, right); while predictions from
all redshifts show similar results to the baseline AE’s, we can see quite clearly
that for every increment of input z, the obtained dice coefficient is slightly lower
than the previous at all pixel thresholds, exhibiting the increased difficulty of the
predictive task with an increased input z.

From this first test of the TW on 2D data, we can conclude that our method
is sound and that, in this simple case at least, our networks can predict structure
evolution quite satisfactorily in the time spans considered. Unsurprisingly, predic-
tions are more precise the closer in time the input is to the target, and we obtain
best results for z = 0 to z = 0 encoding.

3D cubes

We now focus on the outcome of the TW trained to recover data at redshift z = 0
for the set of 3D simulation cubes, from input redshifts varying from z = 0 to
z = 3 by steps of δz = 1.

For predictions from redshift z = 0, we once more retain the results of the
baseline AE, and compare our results on predictions from higher redshifts to this

3.6. PREDICTIVE AUTOENCODER 93

Figure 3.33: Batch and validation set losses for the baseline TW trained to predict
z = 0 from 3D input data at various redshifts.

Figure 3.34: Five images from the 3D simulations at various redshifts (left), and
their equivalent predictions of redshift z = 0(right) as inferred by the baseline TW.
The true z = 0 simulation images are shown above the predicted images (upper
right) for comparison.

94CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

Figure 3.35: Left: Median power spectra of the data predicted by the baseline
TW from various redshifts (blue). The median power spectrum of the true z = 0
simulation data is shown in black. Right: Average dice coefficient between target
z = 0 3D simulation data and data as predicted by the baseline TW from various
redshifts.

reference.
For all input z > 0, the baseline TW is run for 150 epochs, and the best

weights are recovered for each input z (1,2,3), respectively at epochs 150, 100 and
150. Here both sets of losses (Fig. 3.33, batch (left) and validation (right) losses)
seem to have two distinct regimes in their evolution; a first, that happens within
the first epoch, where the loss decreases dramatically, and a second where it shows
a slow and noisy decrease.

Validation losses appear to follow the training losses, albeit with significantly
more noise, which seems to increase with the input z and decrease with train-
ing time, suggesting that the network is progressively converging towards stable
weights.

Here, similarly to the 2D case, lower input z leads to globally lower losses, once
more exhibiting the incremental difficulty of predicting z = 0 from progressively
greater z.

We now observe six simulation cubes taken at random from the test set (Fig.
3.34). These data are taken at various redshifts (left block) and used as input for
the trained TWs to predict their z = 0 equivalent (upper right). Predicted data are
shown in the right block. Here, we find that contrary to the 2D case, the predicted
data becomes notably more random with the increase of the input redshift, with
data predicted from z = 2 and z = 3 showing very little similarity to the target
z = 0 data. We can note that with minimal input information, the network tends
to default to outputting data that shows few to no dense structures, opting for
more diffuse structure that can blend in with any target data’s background, thus

3.6. PREDICTIVE AUTOENCODER 95

reducing on average the difference between prediction and any random target.
Thus it is no surprise to find that the power spectra (see Fig.3.35, left) of the

predicted data become lower for high z inputs, since the lack of dense structures
leads to overall lower density and a loss of signal at all frequencies. However in
terms of shape, the power spectrum seems to be well recovered.

Finally, we examine the Dice coefficient (Fig.3.35, rightt); once more the in-
creased disparity between prediction and target with higher input z is made clear,
with overall dice becoming significantly lower for input z = 1 compared to z = 0
and for inputs z = 2 and 3 compared to z = 1.

Overall we can observe that the networks perform much more poorly on our 3D
data compared to 2D. There could be several reasons for this; a first one being that
redshifts in 2D and 3D cannot be considered as strictly equivalent to each other,
as large scale structure can be expected to form at a different pace depending on
the dimension of the simulation.

Secondly, given that our 3D data and associated models are larger in terms
of number of parameters, this naturally leaves more place for failure, with more
information that needs to be recovered on one hand and possibly too large models
to train on the other. We can add that we may need many more neurons to encode
the richer information in 3D fields compared to 2D.

Finally, there is the matter of whether the information provided by the input
sufficiently constrains the output. Indeed, while simple z = 0 to z = 0 encoding
provides the network with all the information it needs to recreate its target output,
supplying the networks with higher z density-field-only inputs to predict the z = 0
density field brings forth an issue: two identical density fields at a given redshift
can morph into a variety of density fields at a later redshift, provided that their
associated velocity field or neighboring environment changes. Given that this
leads to not one but a manifold of possible futures, the best we can expect from
the network is to produce an average future density field, marginalized over the
unknown data. In this scenario, how "well" we will judge the network to perform
(via overlap of structures with the dice coefficient, in our case), will have to do
with the variance of the density field over the unknown information. Thus, the
more the input constrains the output, the smaller the variance, the higher the
agreement between prediction and true target. Comparing the 2D and 3D data,
we can determine why the former may be more constraining than the latter, given
that in 3D matter can move in an additional direction, and a given cube will
interact with environment from six directions instead of four. Additionally, our
cubes are twice as small in scale as our 2D images, and thus even more affected by
unseen neighboring environment. Therefore it is unsurprising that our networks
perform more poorly on 3D data.

Having determined these potential issues that can affect network performance,

96CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

we explore several variations on our baseline model that can mitigate their effect.

3.6.2 Variations on the baseline Timewarper

Although the 2D timewarper performed remarkably well in predicting density evo-
lution regardless of the input data’s redshift, we could note that on the other
hand, results were much more mitigated for the 3D data, with predictions for
z = 3 data being nearly random. To tackle this problem, we explored a set of
possible improvements.

Though we did attempt to apply our improved models on the 2D data, results
showed no significant improvement if any, and thus we choose to show our results
for the 3D data only, as they are the most compelling.

Because of time limitations, all following models were only trained for 50
epochs; thus results, though generally satisfactory, might not be entirely conclu-
sive, as they would likely benefit from longer training.

All results hereafter (except for predicted cubes visuals) will be shown in con-
junction with that of the baseline TW for easy comparison.

Curriculum learning To correctly train a network, one must provide it with
a task that it can progressively improve upon. However, oftentimes a given task
can present too steep a learning curve for the model to efficiently learn, even if it
technically has the capacity to complete the aforementioned task.

Knowing this, we can make the progress easier if we can gradually increment
the difficulty of the task instead of giving a difficult task to the model from the
start.

Curriculum learning (Bengio et al., 2009) is a training approach wherein a
network is trained following a curriculum: rather than being trained with a large
dataset made up of randomly ordered data, the dataset is instead split into subsets
following a meaningful order where progressively more complex concepts are pre-
sented. How to define this order and determine the time spent training on every
subset is a complex issue (Hacohen and Weinshall, 2019; Graves et al., 2017), but
when done aptly leads to much more efficient training.

It so happens, as we have seen in the previous results, that we have a set of
incrementally difficult tasks in the form of predicting data at z = 0 from progres-
sively higher redshifts.

Thus we attempted to train a model progressively, training it first on z = 0
input data for 50 epochs, then incrementing the input redshift by 1 every 50 epochs.

Examining both batch (left) and validation (right) losses in 3.36, we can first
see that those of the curriculum TW are globally lower than that of the baseline
TW for all input z. This suggests that the knowledge accumulated by a network

3.6. PREDICTIVE AUTOENCODER 97

Figure 3.36: Batch and validation set losses for the curriculum TW (red) shown
next to those of the baseline TW (blue) for training at various input redshifts. As
z = 0 is common to both it is shown in purple.

Figure 3.37: Five images from the 3D simulations at various redshifts (left), and
their equivalent predictions of redshift z = 0(right) as inferred by the curriculum
TW. The true z = 0 simulation images are shown above the predicted images
(upper right) for comparison.

98CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

Figure 3.38: Left: Median power spectra of the data predicted by both by the
curriculum TW (red) and the baseline TW (blue) from various input redshifts. As
z = 0 is common to both it is shown in purple. The median power spectrum of
the true z = 0 simulation data is shown in black. Right: Average dice coefficient
between target z = 0 3D simulation data and data as predicted both by the
curriculum TW (red) and the baseline TW (blue) from various input redshifts.
z = 0 is shown in purple.

when teaching it to predict z = 0 from a given z′ > 0 will translate well when
giving this network the new task of predicting z = 0 from a new z′′ > z′. This is an
interesting result in and of itself as it means that when training multiple networks
to predict z = 0 from various z′ > 0 inputs, we can initialize their weights to that
of previously trained networks to optimize training time, instead of initializing all
of their weights randomly.

A close examination of the predicted images in fig.3.37 suggests somewhat bet-
ter results than the baseline TW’s for z = 3, with predicted structures appearing
much less random, but no significant difference for other input z. This is confirmed
in both the power spectra (fig.3.38,left) and dice (fig.3.38,right), which show signif-
icantly better results for z = 3, with the power spectrum gaining nearly an order
of magnitude and the dice rising in all regions, suggesting that the network is both
displaying denser structures and placing them in the correct regions. However we
find that the curriculum TW obtains similar or even slightly worse results to the
baseline TW’s for z = 1 and 2.

To conclude, we find that this method shows all its efficiency when training a
network for a complex task (in our case predicting z = 0 from z = 3). We recall
that this method is a manner in which one softens a learning learning curve that
is too steep for a network to effectively improve in its task. Thus we can establish,
in concordance with our earlier hypothesis, that we are indeed faced with this

3.6. PREDICTIVE AUTOENCODER 99

Figure 3.39: Batch and validation set losses for the Multiple Input TW (red) shown
next to those of the baseline TW (blue) for training at various input redshifts. z = 0
is shown in purple.

issue of too steep a learning curve when using z = 3 as input. Conversely, this
does not seem to be the case for inputs z = 1 and 2, with the networks yielding
comparable (and thus largely inferior to z = 0 input) results with this curriculum
method, suggesting that here our limiting factor is possibly not a matter of task
complexity, but rather one of insufficient information in the input.

Thus it is worth exploring how our networks perform when providing them
with more information in the input, to give them more clues as to the dynamics
of the matter whose density field evolution they are trying to predict.

Multiple redshift input Another way to make the task of prediction easier is
to supply the TW with more information; indeed, in the same way that certain
CNN models can predict the following frames of a video given a set of previous
frames (Oprea et al., 2020), we attempted supplying the model with input data at
multiple redshifts rather than one datum at a single redshift. In our experiment,
we used two redshifts at a time as input but one could very well use three or more
for further attempts.

Because when running our simulations we saved our snapshots at equal redshift
spacings of 0.5, we make use of pairs taken from possible redshifts 0.5, 1, 1.5, 2, 2.5, 3;
but for further work, especially with three or more inputs, we should consider spac-
ings that are equal in time rather than redshift.

From the start, a simple observation of the batch (left) and validation (right)
losses in fig.3.39 suggests that training is proceeding much better than for the
baseline TW, for any input z > 0; all losses are low and close to that of z = 0, and
validation losses are much less noisy.

100CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

Figure 3.40: Five images from the 3D simulations at various redshifts (left), and
their equivalent predictions of redshift z = 0(right) as inferred by the Multiple
Input TW. The true z = 0 simulation images are shown above the predicted
images (upper right) for comparison. Though we input two sets of data, here, we
only show the input set with the lowest z for simplicity.

3.6. PREDICTIVE AUTOENCODER 101

Figure 3.41: Left: Median power spectra of the data predicted by both by the
Multiple Input TW (red) and the baseline TW (blue) from various input redshifts.
z = 0 is shown in purple. The median power spectrum of the true z = 0 simulation
data is shown in black. Right: Average dice coefficient between target z = 0 3D
simulation data and data as predicted both by the Multiple Input TW (red) and
the baseline TW (blue) from various input redshifts. z = 0 is shown in purple.

An inspection of the predicted data (fig.3.40) further confirms this, with models
yielding nearly identical results regardless of the input z. Unsurprisingly, they seem
to have the same limitations as the data inferred by the baseline AE (see predicted
data for z = 0), with more diffuse structure being recovered more randomly.

We find that the power spectra of the multiple input TW’s predicted data
(fig.3.41, left) tend to fall closer to that of the baseline TW’s data predicted from
z = 1. This is expected for predictions from inputs containing z = 1 as lowest z
input (as we expect such results to be equal or better to the baseline with z = 1
input, as the input provides additional information), but is a satisfactory result
for inputs z = (2, 2.5), which yield a much better power spectrum than baseline
with z = 2 input.

Finally, examining the dice coefficient (fig.3.41, right) of the predicted data,
we can observe that the multiple input TW significantly outperforms the baseline
TW, with all input types yielding a higher dice coefficient than the baseline at
input z = 1, at every pixel threshold. This is not too surprising in the cases
where the input contains additional information to the one given to the baseline
TW, (ie inputs z = (1, 1.5) and z = (1, 2) performing better than simple input
z = 1), but more compelling is the fact that this is also true for higher z inputs
(z = (2, 2.5) outperforming input z = 1). Additionally, although further testing
with additional combinations of input z would help to confirm this, it appears that
multiple inputs perform better when they are closer in time to each other (inputs
z = (1, 1.5) outperform inputs z = (1, 2), and even inputs z = (2, 2.5) seem to

102CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

slightly outperform inputs z = (1, 2)). If the models perform better with smaller
δt between their input data, we might expect that they would perform even better
if provided directly with velocity fields.

Velocities Another type of information that we can obtain from the snapshots
and that we have not used so far is the velocity distribution of the particles. Indeed,
in their raw form and for every saved snapshot, our N-body simulations provide
us with every particle’s position, but also every particle’s velocity, in the form of
a 3D vector for each particle. This additional information is bound to constrain
more thoroughly the future density fields, as initial velocities notably provide the
necessary information for a linear evolution of the density field. However, similar
to the particle positions, we must translate the velocities of individual particles
into an averaged field such that our networks can use them as inputs. So far we
have only attempted this approach for the 3D cubes; we recall that our density
cubes are smaller, randomly oriented sub-arrays of a large cube that is built by
computing a 768× 768× 768 3D histogram of particle positions, log-transforming
(see Eq.2.6) the values of the histogram to make cosmic structures salient, and
smoothing the result into a final 256× 256× 256 array.

We follow a similar logic to build the velocity field. Dividing the snapshot
space into 768×768×768 voxels, we compute three 3D averaged velocity fields for
each direction (x, y, z), by summing the velocities of the particles in each voxel and
dividing the sum by the number of particles. Inspecting the resulting cubes, we find
that cosmic structures are visually apparent without need for log-transformation.
Thus we simply apply a normalization of voxel values:

v′ = v/N (3.7)

Where v′ is the new velocity and N is fixed such that |v′|max . 1. This done,
we apply the same smoothing as for the 3D density to obtain our final three
256× 256× 256 velocity fields for each (x, y and z) direction.

Combining the density field with the velocity fields thus constructed, we are
equipped with an array of size 256× 256× 256× 4 from which we extract smaller
arrays of size 64× 64× 64× 4.

Equipped with these data, we train a TW to recover the density field at z = 0
with (ρ, vx, vy, vz) at various z > 0 inputs.

From the start, a simple inspection of the batch (left) and validation (right)
losses 3.43 suggests that training is proceeding much better than for the baseline
TW, for any input z > 0; all losses are low and close to that of z = 0, and validation
losses are much less noisy.

Observing the predicted data (3.44) further confirms this, with models yielding
nearly identical results regardless of the input z. Unsurprisingly, they seem to have

3.6. PREDICTIVE AUTOENCODER 103

Figure 3.42: Example slice of a 3D simulation, showing the density field (left) and
its associated velocity field (right), represented in (~vx,~vy,~vz) to (R,G,B)

Figure 3.43: Batch and validation set losses for the velocities TW (red) shown next
to those of the baseline TW (blue) for training at various input redshifts. As z = 0
is common to both it is shown in purple.

104CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

Figure 3.44: Five images from the 2D simulations at various redshifts (left), and
their equivalent predictions of redshift z = 0(right) as inferred by the velocities
TW. The true z = 0 simulation images are shown above the predicted images
(upper right) for comparison.

the same limitations as the data inferred by the baseline TW with input z = 0
(see fig.3.13), with more diffuse structure being recovered more randomly. Indeed,
a TW trained with additional information should not exceed the results of an AE
provided with all the needed information as input.

As can be expected given the similarity of the predicted data, the predicted
power spectra (Fig. 3.45, left) are close to the true simulation power spectrum,
especially when compared to those recovered by the baseline TW.

Finally, a study of the dice coefficient (Fig. 3.45, right) completes the picture
by showing that the velocities TW outperforms the baseline TW, to the point that
the recovered dice of the velocities TW for input z = 3 is better than that of the
baseline TW with input z = 1.

We can conclude that the model makes good use of the velocity field to effi-
ciently predict the z = 0 density field for all input z. This confirms the hypothesis
according to which the cause of the baseline TW’s poor prediction of z = 0 from
z = 2 and 3 is a problem of insufficient input information, leading to an ill-
constrained future density field, rather than a weak model. Indeed, knowing the
initial distribution and velocity of matter, the network has nearly (neighboring

3.6. PREDICTIVE AUTOENCODER 105

Figure 3.45: Left: Median power spectra of the data predicted by both by the
velocities TW (red) and the baseline TW (blue) from various input redshifts. As
z = 0 is common to both it is shown in purple. The median power spectrum of
the true z = 0 simulation data is shown in black. Right: Average dice coefficient
between target z = 0 3D simulation data and data as predicted both by the
velocities TW (red) and the baseline TW (blue) from various input redshifts. z = 0
is shown in purple.

environment aside) all the necessary keys to approximate the matter dynamics,
and thus predict its evolution.

3.6.3 Conclusion on the Predictive Autoencoder

Equipped with our Replicative AE, we aimed to go further than basic replication
and inquired into this model’s ability to predict density field evolution, tasking it
with predicting a density field at z = 0 from various higher z (1,2,3). We found
that in its baseline form it performed quite well in its prediction of 2D density
fields, yielding predictions that were nearly equal in precision (as measured by a
dice coefficient) to that of the replicative AE, showing a slight decrease in precision
the higher the input z. On the other hand, it performed quite poorly on our 3D
cubes, with an important decrease both in precision and statistics (pixel pdf, mean
density distribution, peak counts and power spectrum) the higher the input z, up
to a near-random prediction for input z = 3. We supposed that this could be
due to two main issues: the first being that the task of prediction from high
input z had too steep a learning curve, rendering the network unable to progress
effectively in learning its task. The second issue was that the input that we supplied
to the network provided insufficient information for a precise prediction; indeed
since the same density field at a given z > 0 can lead to vastly differing fields at
z = 0 depending on its velocity field and neighboring environment, the best we

106CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

can expect is for the network to yield an end result that is marginalized on the
unknown information, and will thus differ from the true field proportionally to
field variance over this unknown information.

To test both hypotheses, we came up with variations on our training method
that could mitigate both problems.

To ease the learning, we devised a progressive training method wherein we
trained the network first to predict z = 0 from z = 0 and incremented the input
z by ∆z = 0.5 every 50 epochs so that the network had time to progress with a
simpler task before training it to predict from high input z. We referred to this
model as the Curriculum Timewarper. Looking at the loss evolution, we found
that the network did indeed benefit from prior training with lower input z, with
losses starting much lower than that of networks with no prior training for all
input z. However in terms of final results this method only showed significant
improvement for input z = 3, with all results for predicting z = 0 from any input
z > 0 remaining quite poor. Thus we can conclude that the issue of a steep
learning curve is only marginal, as it only affects results for high input z.

To counter the second issue, we came up with two methods to supply the
network with more information on the density field’s dynamics. A first sim-
ple method consisted in providing the network with inputs at multiple redshifts
(namely z = (1, 1.5), (1, 2) and (2, 2.5)) so that the network better infers matter
dynamics from several steps of the density field’s evolution process. This indeed
proved quite effective, with networks trained with input pairs always outperform-
ing their one-input equivalent, and notably input z = (2, 2.5) even outperforming
the baseline TW with input z = 1. For further work it might be worth looking at
additional input redshift pairs, or try to input three or more redshifts as well.

Given these satisfactory results we can safely assume that lack of information in
the input constituted the main reason for our initial 3D model’s poor performance.

To go further in the line of providing the network with field dynamics we also
trained a network that we supplied not only with density fields at z > 0 but
with their associated velocity fields as well. Indeed, were the network able to
correctly recover the laws governing the motion of matter, it would need both
matter position and velocity at a given time to correctly predict the evolution of
its density field. We found that this method proved very promising indeed, with
predictions even from input z = 3 largely outperforming the baseline TW’s with
input z = 1 both in terms of precision and statistics, and with data predicted
from all input z looking visually very similar to the true target z = 0 fields. An
additional step might be to see if the network is able to predict the velocity fields
at z = 0 as well.

Thus we can positively conclude to the network’s ability to predict structure
evolution, provided that it is supplied with sufficient input information that can

3.6. PREDICTIVE AUTOENCODER 107

adequately constrain the ensuing z = 0 density field.
This said, we must address the fact that the results for the baseline TW and all

the variations that we explored this far have the same limits as that of our baseline
AE; indeed, while the combined effects of using a generator with locked weights
as a decoder and a truncated discriminator to compute the loss allow us to ensure
that predicted data retain good statistics (pixel pdf, mean density distribution,
peak counts and power spectrum), this also severely limits us in several ways.

First, as we already observed in the case of the Traditional AE, we cannot
reproduce a given datum as well (in terms of dice coefficient) as a method wherein
the decoder’s weights are free. Though we chose to conduct our experiments based
on the idea of maintaining satisfactory statistics, it would be worth looking into
aiming purely for an optimal dice coefficient.

Second, our setup requires us to train a GAN for every type of data we want
to target. For example, training a TW to predict z = 3 from z < 3 implies
training a new GAN that emulates data from z = 3 simulations. Alternatively
we could train a more complex GAN such as a cGAN (Mirza and Osindero, 2014)
to emulate simulation data at various z with z labels, but this remains quite an
expensive endeavor compared to a more direct approach.

Thus it might be worth exploring other options, starting with new variations
on the TW where the training is more traditional (all weights are free to vary
and the loss is more neutral, such as l1 or l2). We attempted this in the baseline
setup but results were inconclusive. Still, given the outstanding results of some of
our variations, it might be worth looking into combining traditional training with
some of these variations, such as adding velocities in the input, for example.

For this purpose, all combinations of the variations we exposed could be worth
looking into; for example, earlier work combining multiple input and curriculum
training seemed promising.

Alternatively, we could retain our current AE training structure but apply it
to tasks where recovering correct statistics is more relevant, such as denoising or
reconstructing masked areas. We have attempted denoising but results are as of
yet inconclusive.

On another note, it would be worth further testing our results to direct our
efforts of optimization. For example, we expect a datum’s neighboring environment
to affect our network’s capacity of prediction; thus it would be worth comparing
the dice coefficient computed on pixels in the center of a datum to that of pixels
on the borders to see if there is indeed a loss of precision in the prediction of the
latter. Additionally it would be interesting to see if our model is better suited to
certain types of input, for example by plotting model loss against input parameters
such as mean density of the input or input’s highest pixel value.

Finally, our future work will focus on evolving the density field backward in

108CHAPTER 3. PREDICTING STRUCTURE FORMATION IN SIMULATIONSWITHGAN-BASED AUTOENCODERS

time, starting by predicting z = 3 from various z < 3. our preliminary attempts
have so far been inconclusive, but we expect that combining the different methods
exposed above will eventually lead to better results, though we do expect the task
to be harder than forward prediction because of rising entropy.

Chapter 4

Conclusion

In this work, we have explored the uses of deep neural networks as a means to
extract information from N-body simulation snapshots in order to obtain general
properties stemming from these simulations and apply them in a quick and efficient
manner through the use of these CNNs.

We first devised a GAN, whose generator is able to closely determine a set of
simulation-issued data’s underlying distribution, describe it in a latent space of
small dimensionality, and yield new data extracted from this discovered distribu-
tion, and whose discriminator can efficiently determine whether a given datum is
likely to be issued from this distribution. While developing this GAN and the
modus operandi surrounding its use and evaluation we acquired many crucial take-
aways. First in terms of data preprocessing, where we had to convert N-body
simulations, that came in the form of a set of particle positions, into numerical
arrays representing density fields that our GAN (and following networks) could
process. We discovered the importance of building data wherein patterns were
salient, both in terms of having smooth continuous structures, but also in the
sense of structures standing out starkly against more diffuse background. Given
our data, this amounted to building a histogram of the particle positions and
finding an appropriate smoothing and log-transformation to apply on the result.
Secondly, while the manipulation and progressive modification of a rudimentary
GAN in an attempt to render it compatible with our data proved useful in terms of
acquainting oneself with the various components that make up a GAN, we found
that our models revealed to be quite unstable when modifying their hyperparam-
eters too significantly, leading to extreme difficulty when trying to build a GAN
from the ground up. Thus we concluded that the best approach was to rely on
pre-existing models that were optimized for data that is as close as possible in
nature to the data that we are working with.

In a second phase, we repurposed our trained GAN’s generator and discrim-
inator to build an AE, first with the goal to simply replicate data after having

109

110 CHAPTER 4. CONCLUSION

encoded it into a vector of smaller dimension, and in a second stage training one
to predict data at redshift z = 0 from higher redshifts z = (1, 2, 3). In both cases
we found that using a trained generator as a decoder and incorporating a trun-
cated version of a decoder to compute the AE’s loss allowed us to create an AE
that excels in returning data that maintains its statistical properties (eg density
distribution, power spectrum, etc.) after encoding. When tasking the AE with
predicting the evolution of density fields from redshifts z = 1, 2, 3 to z = 0, we
found that it performed very well once provided with sufficient input information.
While in the case of 2D data, simply supplying the density fields as input sufficed
to obtain satisfactory predictions, this was not the case for 3D data. However,
providing the additional information of the input density fields’ associated veloc-
ity fields proved quite efficient in the 3D case, with the predictive AE recovering
the large structures with decent precision (as measured by dice coefficient). From
this we can optimistically conclude as to our model’s ability to approximate the
effects of expansion and gravitation on a density field over a set amount of time.

This opens many perspectives, especially given the relative simplicity of our
models; indeed, our structure is that of a very simple (encoder+decoder) AE,
with half of its weights locked during training, and the data being reduced into
a relatively small number of parameters before decoding. While the point of this
maneuver is to efficiently extract a datum’s key components, one can expect there
to be a significant loss of information during encoding. Thus it would be worth
exploring several approaches that would allow more information to be extracted
and retained during the model’s analysis of a datum.

Many simple modifications of our structure could be inquired into, from adding
layers and experimenting with kernel sizes to modifying the size of our latent
encoding layer, but it would also be worth experimenting with more complex
network structures that are more fine-tuned to this type of data transformation.
For example U-nets (Ronneberger et al., 2015), while initially developed for image
segmentation, have the advantage of linking every stage of feature extraction to
an equivalent stage of feature reconstruction, providing much more passing of
information from encoder to decoder, and is thus likely to provide good results.
Additionally, there exist several variations on GANs that are able to transform a
datum in some manner; the most common being the cGAN (Mirza and Osindero,
2014), some of which have been used to simulate face aging (Antipov et al., 2017),
which is another sort of time evolution.

Additionally, we can comment upon the experimental method of developing a
machine learning algorithm from the ground up for a given scientific task. The
process itself is not unlike the training of a neural network, with multiple parame-
ters to account for, from the choice and construction of training data, to the many
choices surrounding the network type and architecture for a given task, to the

111

development of a trusty set of tests and measures to ascertain (or invalidate) the
quality of our results. In other words, finding a working network can be seen as
a high-dimensional problem with a much lower hyperplane of effective and useful
decisions to try. It is quite recursive work, with the updating of one aspect of-
ten implying modifications on every other front to account for the changes made.
Additionally, as when looking at a loss evolution, it is important to look at the
bigger picture and know when to stop pushing forward and change methods, or
one risks never converging, always expecting small local improvements to lead to
a satisfactory result.

Finally, we can conclude as to the stunning ability of DNNs to extract mean-
ingful information from simulated data to infer underlying mechanisms that are
applicable not only to data that they have encountered, but also and especially
to new instances. In our case this mechanism is an approximation of the (gravi-
tation + expansion) combination governing the large-scale formation of structure,
but we can similarly expect other models to emulate other physical processes or
to discover new unexpected relationships between physical variables. Given that
most DNNs are black boxes that do not provide a good analytical description of
their inner workings, creating even a highly-effective model in any task should only
remain a first step into developing a robust scientific method to perform this task.
A deeper examination of the network to understand how exactly it is operating
should follow, first to determine the limitations of the model, but more importantly
because the method is more informative than the result.

Bibliography

Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini,
M., Banday, A., Barreiro, R., Bartolo, N., Basak, S., et al. (2018). Planck 2018
results. vi. cosmological parameters. arXiv preprint arXiv:1807.06209.

Ahdida, C., Albanese, R., Alexandrov, A., Anokhina, A., Aoki, S., Arduini, G.,
Atkin, E., Azorskiy, N., Back, J., Bagulya, A., et al. (2019). Fast simulation of
muons produced at the ship experiment using generative adversarial networks.
Journal of Instrumentation, 14(11):P11028.

Aljalbout, E., Golkov, V., Siddiqui, Y., Strobel, M., and Cremers, D. (2018).
Clustering with deep learning: Taxonomy and new methods. arXiv preprint
arXiv:1801.07648.

Amato, G., Behrmann, M., Bimbot, F., Caramiaux, B., Falchi, F., Garcia, A.,
Geurts, J., Gibert, J., Gravier, G., Holken, H., et al. (2019). Ai in the media
and creative industries. arXiv preprint arXiv:1905.04175.

Antipov, G., Baccouche, M., and Dugelay, J.-L. (2017). Face aging with condi-
tional generative adversarial networks. In 2017 IEEE international conference
on image processing (ICIP), pages 2089–2093. IEEE.

Aragon-Calvo, M. A. (2020). Smooth stochastic density field reconstruction.

Badjatiya, P., Gupta, S., Gupta, M., and Varma, V. (2017). Deep learning for hate
speech detection in tweets. In Proceedings of the 26th international conference
on World Wide Web companion, pages 759–760.

Baldi, P., Sadowski, P., and Whiteson, D. (2015). Enhanced higgs boson to τ+ τ -
search with deep learning. Physical review letters, 114(11):111801.

Ball, N. M., Brunner, R. J., Myers, A. D., and Tcheng, D. (2006). Robust machine
learning applied to astronomical data sets. i. star-galaxy classification of the
sloan digital sky survey dr3 using decision trees. The Astrophysical Journal,
650(1):497.

113

114 BIBLIOGRAPHY

Bang, D., Kang, S., and Shim, H. (2020). Discriminator feature-based inference by
recycling the discriminator of gans. International Journal of Computer Vision,
pages 1–23.

Baso, C. D., de la Cruz Rodriguez, J., and Danilovic, S. (2019). Solar image denois-
ing with convolutional neural networks. Astronomy & Astrophysics, 629:A99.

Beichman, C., Benneke, B., Knutson, H., Smith, R., Lagage, P.-O., Dressing, C.,
Latham, D., Lunine, J., Birkmann, S., Ferruit, P., et al. (2014). Observations of
transiting exoplanets with the james webb space telescope (jwst). Publications
of the Astronomical Society of the Pacific, 126(946):1134.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum
learning. In Proceedings of the 26th annual international conference on machine
learning, pages 41–48.

Bethge, M., Ecker, A., and Gatys, L. (2016). Deepart. URL: https://deepart. io.

Birkinshaw, M. (1999). The sunyaev–zel’dovich effect. Physics Reports, 310(2-
3):97–195.

Bond, J. R., Kofman, L., and Pogosyan, D. (1996). How filaments of galaxies are
woven into the cosmic web. Nature, 380(6575):603–606.

Bonjean, V. (2020). Deep learning for sunyaev–zel’dovich detection in planck.
Astronomy & Astrophysics, 634:A81.

Bora, A., Price, E., and Dimakis, A. G. (2018). Ambientgan: Generative models
from lossy measurements. In International Conference on Learning Representa-
tions.

Briot, J.-P. and Pachet, F. (2017). Music generation by deep learning-challenges
and directions. arXiv preprint arXiv:1712.04371.

Buchert, T. (1995). Lagrangian perturbation approach to the formation of large-
scale structure. arXiv preprint astro-ph/9509005.

Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-
Maranto, L., and Zdeborová, L. (2019). Machine learning and the physical
sciences. Reviews of Modern Physics, 91(4):045002.

Casert, C., Mills, K., Vieijra, T., Ryckebusch, J., and Tamblyn, I. (2020). Opti-
cal lattice experiments at unobserved conditions and scales through generative
adversarial deep learning. arXiv preprint arXiv:2002.07055.

BIBLIOGRAPHY 115

Chalapathy, R. and Chawla, S. (2019). Deep learning for anomaly detection: A
survey. arXiv preprint arXiv:1901.03407.

Chong, E., Han, C., and Park, F. C. (2017). Deep learning networks for stock
market analysis and prediction: Methodology, data representations, and case
studies. Expert Systems with Applications, 83:187–205.

Clark, A., Donahue, J., and Simonyan, K. (2019). Efficient video generation on
complex datasets. arXiv preprint arXiv:1907.06571.

Coles, P. and Chiang, L.-Y. (2000). Characterizing the nonlinear growth of large-
scale structure in the universe. Nature, 406(6794):376–378.

Covington, P., Adams, J., and Sargin, E. (2016). Deep neural networks for youtube
recommendations. In Proceedings of the 10th ACM conference on recommender
systems, pages 191–198.

Cranmer, M., Sanchez-Gonzalez, A., Battaglia, P., Xu, R., Cranmer, K., Spergel,
D., and Ho, S. (2020). Discovering symbolic models from deep learning with
inductive biases. arXiv preprint arXiv:2006.11287.

Davies, A., Serjeant, S., and Bromley, J. M. (2019). Using convolutional neural
networks to identify gravitational lenses in astronomical images. Monthly Notices
of the Royal Astronomical Society, 487(4):5263–5271.

de Oliveira, L., Paganini, M., and Nachman, B. (2017). Learning particle physics
by example: location-aware generative adversarial networks for physics synthe-
sis. Computing and Software for Big Science, 1(1):4.

Deng, L. (2012). The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Processing Magazine, 29(6):141–
142.

Deng, L., Hinton, G., and Kingsbury, B. (2013). New types of deep neural network
learning for speech recognition and related applications: An overview. In 2013
IEEE international conference on acoustics, speech and signal processing, pages
8599–8603. IEEE.

Dewdney, P. E., Hall, P. J., Schilizzi, R. T., and Lazio, T. J. L. (2009). The square
kilometre array. Proceedings of the IEEE, 97(8):1482–1496.

Donahue, C., McAuley, J., and Puckette, M. (2018). Adversarial audio synthesis.

Dosovitskiy, A. and Brox, T. (2016). Generating images with perceptual similarity
metrics based on deep networks.

116 BIBLIOGRAPHY

Dubois, Y., Peirani, S., Pichon, C., Devriendt, J., Gavazzi, R., Welker, C., and
Volonteri, M. (2016). The horizon-agn simulation: morphological diversity of
galaxies promoted by agn feedback. Monthly Notices of the Royal Astronomical
Society, 463(4):3948–3964.

Ettinger, S., Cheng, S., Caine, B., Liu, C., Zhao, H., Pradhan, S., Chai, Y., Sapp,
B., Qi, C., Zhou, Y., et al. (2021). Large scale interactive motion forecast-
ing for autonomous driving: The waymo open motion dataset. arXiv preprint
arXiv:2104.10133.

Feder, R. M., Berger, P., and Stein, G. (2020). Nonlinear 3d cosmic web
simulation with heavy-tailed generative adversarial networks. arXiv preprint
arXiv:2005.03050.

Fixsen, D., Cheng, E., Gales, J., Mather, J. C., Shafer, R., and Wright, E. (1996).
The cosmic microwave background spectrum from the full cobe* firas data set.
The Astrophysical Journal, 473(2):576.

Flamary, R. (2017). Astronomical image reconstruction with convolutional neural
networks. In 2017 25th European Signal Processing Conference (EUSIPCO),
pages 2468–2472. IEEE.

Forero-Romero, J. E., Hoffman, Y., Gottlöber, S., Klypin, A., and Yepes, G.
(2009). A dynamical classification of the cosmic web. Monthly Notices of the
Royal Astronomical Society, 396(3):1815–1824.

Foster, D. (2019). Generative deep learning: teaching machines to paint, write,
compose, and play. O’Reilly Media.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680.

Graves, A., Bellemare, M. G., Menick, J., Munos, R., and Kavukcuoglu, K. (2017).
Automated curriculum learning for neural networks. In international conference
on machine learning, pages 1311–1320. PMLR.

Hacohen, G. and Weinshall, D. (2019). On the power of curriculum learning in
training deep networks. In International Conference on Machine Learning, pages
2535–2544. PMLR.

BIBLIOGRAPHY 117

Hassan, S., Liu, A., Kohn, S., and La Plante, P. (2019). Identifying reionization
sources from 21 cm maps using convolutional neural networks. Monthly Notices
of the Royal Astronomical Society, 483(2):2524–2537.

He, S., Li, Y., Feng, Y., Ho, S., Ravanbakhsh, S., Chen, W., and Póczos, B.
(2019). Learning to predict the cosmological structure formation. Proceedings
of the National Academy of Sciences, 116(28):13825–13832.

He, X. and Deng, L. (2017). Deep learning for image-to-text generation: A tech-
nical overview. IEEE Signal Processing Magazine, 34(6):109–116.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017).
Gans trained by a two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems, 30.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of
data with neural networks. science, 313(5786):504–507.

Hyun, C. M., Kim, H. P., Lee, S. M., Lee, S., and Seo, J. K. (2018). Deep
learning for undersampled mri reconstruction. Physics in Medicine & Biology,
63(13):135007.

Iqbal, T. and Qureshi, S. (2020). The survey: Text generation models in deep
learning. Journal of King Saud University-Computer and Information Sciences.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017). Image-to-image translation
with conditional adversarial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1125–1134.

Ivezić, Ž., Kahn, S. M., Tyson, J. A., Abel, B., Acosta, E., Allsman, R., Alonso,
D., AlSayyad, Y., Anderson, S. F., Andrew, J., et al. (2019). Lsst: from science
drivers to reference design and anticipated data products. The Astrophysical
Journal, 873(2):111.

Jia, P., Liu, Q., and Sun, Y. (2020a). Detection and classification of astronomical
targets with deep neural networks in wide-field small aperture telescopes. The
Astronomical Journal, 159(5):212.

Jia, P., Wu, X., Yang, X., Huang, Y., Cai, B., and Cai, D. (2020b). Astronom-
ical image restoration and point spread function estimation with deep neural
networks. In Advances in Optical Astronomical Instrumentation 2019, volume
11203, page 112030Q. International Society for Optics and Photonics.

Kaiser, N., Squires, G., and Broadhurst, T. (1994). A method for weak lensing
observations. arXiv preprint astro-ph/9411005.

118 BIBLIOGRAPHY

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. (2020).
Analyzing and improving the image quality of stylegan. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8110–8119.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114.

Kitaura, F.-S. and Heß, S. (2013). Cosmological structure formation with aug-
mented lagrangian perturbation theory. Monthly Notices of the Royal Astro-
nomical Society: Letters, 435(1):L78–L82.

Kowsari, K., Brown, D. E., Heidarysafa, M., Meimandi, K. J., Gerber, M. S., and
Barnes, L. E. (2017). Hdltex: Hierarchical deep learning for text classification. In
2017 16th IEEE international conference on machine learning and applications
(ICMLA), pages 364–371. IEEE.

Lample, G. and Charton, F. (2019). Deep learning for symbolic mathematics.
arXiv preprint arXiv:1912.01412.

Laureijs, R. J., Duvet, L., Sanz, I. E., Gondoin, P., Lumb, D. H., Oosterbroek,
T., and Criado, G. S. (2010). The euclid mission. In Space Telescopes and
Instrumentation 2010: Optical, Infrared, and Millimeter Wave, volume 7731,
page 77311H. International Society for Optics and Photonics.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature,
521(7553):436–444.

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W. E., and Jackel, L. D. (1990). Handwritten digit recognition with a back-
propagation network. In Advances in neural information processing systems,
pages 396–404.

Lee, D., Kim, J., Moon, W.-J., and Ye, J. C. (2019). Collagan: Collaborative gan
for missing image data imputation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2487–2496.

Li, J., Dai, W., Metze, F., Qu, S., and Das, S. (2017). A comparison of deep
learning methods for environmental sound detection. In 2017 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
126–130. IEEE.

List, F., Bhat, I., and Lewis, G. F. (2019). A black box for dark sector physics:
predicting dark matter annihilation feedback with conditional gans. Monthly
Notices of the Royal Astronomical Society, 490(3):3134–3143.

BIBLIOGRAPHY 119

Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., and Pietikäinen,
M. (2020). Deep learning for generic object detection: A survey. International
journal of computer vision, 128(2):261–318.

Long, M., Soubo, Y., Cong, S., Weiping, N., and Tong, L. (2021). Learning decon-
volutions for astronomical images. Monthly Notices of the Royal Astronomical
Society, 504(1):1077–1083.

Lotter, W., Kreiman, G., and Cox, D. (2016). Deep predictive coding networks for
video prediction and unsupervised learning. arXiv preprint arXiv:1605.08104.

Lukic, V., de Gasperin, F., and Brüggen, M. (2020). Convosource: radio-
astronomical source-finding with convolutional neural networks. Galaxies,
8(1):3.

Lv, Y., Duan, Y., Kang, W., Li, Z., and Wang, F.-Y. (2014). Traffic flow prediction
with big data: a deep learning approach. IEEE Transactions on Intelligent
Transportation Systems, 16(2):865–873.

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., and Frey, B. (2015). Adver-
sarial autoencoders. arXiv preprint arXiv:1511.05644.

Margalef-Bentabol, B., Huertas-Company, M., Charnock, T., Margalef-Bentabol,
C., Bernardi, M., Dubois, Y., Storey-Fisher, K., and Zanisi, L. (2020). Detecting
outliers in astronomical images with deep generative networks. Monthly Notices
of the Royal Astronomical Society, 496(2):2346–2361.

Margapuri, V., Thapa, B., and Shamir, L. (2021). Automatic detection of novelty
galaxies in digital sky survey data. International journal of computer application,
28(1).

Mathieu, M., Couprie, C., and LeCun, Y. (2015). Deep multi-scale video prediction
beyond mean square error. arXiv preprint arXiv:1511.05440.

McCarthy, I. G., Schaye, J., Bird, S., and Le Brun, A. M. C. (2016). The ba-
hamas project: calibrated hydrodynamical simulations for large-scale structure
cosmology. Monthly Notices of the Royal Astronomical Society, page stw2792.

Mescheder, L., Geiger, A., and Nowozin, S. (2018). Which training methods for
gans do actually converge? In International conference on machine learning,
pages 3481–3490. PMLR.

Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., and Long, J. (2018). A survey
of clustering with deep learning: From the perspective of network architecture.
IEEE Access, 6:39501–39514.

120 BIBLIOGRAPHY

Mirza, M. and Osindero, S. (2014). Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784.

Monaco, P., Theuns, T., and Taffoni, G. (2002). The pinocchio algorithm: pin-
pointing orbit-crossing collapsed hierarchical objects in a linear density field.
Monthly Notices of the Royal Astronomical Society, 331(3):587–608.

Mordvintsev, A., Olah, C., and Tyka, M. (2015). Deepdream-a code example for
visualizing neural networks. Google Research, 2(5).

Ntampaka, M., Avestruz, C., Boada, S., Caldeira, J., Cisewski-Kehe, J., Stefano,
R. D., Dvorkin, C., Evrard, A. E., Farahi, A., Finkbeiner, D., Genel, S., Good-
man, A., Goulding, A., Ho, S., Kosowsky, A., Plante, P. L., Lanusse, F., Lochner,
M., Mandelbaum, R., Nagai, D., Newman, J. A., Nord, B., Peek, J. E. G., Peel,
A., Poczos, B., Rau, M. M., Siemiginowska, A., Sutherland, D. J., Trac, H.,
and Wandelt, B. (2019). The role of machine learning in the next decade of
cosmology.

Nuzillard, D. and Bijaoui, A. (2000). Blind source separation and analysis of
multispectral astronomical images. Astronomy and Astrophysics Supplement
Series, 147(1):129–138.

Oprea, S., Martinez-Gonzalez, P., Garcia-Garcia, A., Castro-Vargas, J. A., Orts-
Escolano, S., Garcia-Rodriguez, J., and Argyros, A. (2020). A review on deep
learning techniques for video prediction. IEEE Transactions on Pattern Analysis
and Machine Intelligence.

Paschalis, P., Sarlanis, C., and Mavromichalaki, H. (2013). Artificial neural net-
work approach of cosmic ray primary data processing. Solar Physics, 282(1):303–
318.

Picquenot, A., Acero, F., Bobin, J., Maggi, P., Ballet, J., and Pratt, G. W. (2019).
Novel method for component separation of extended sources in x-ray astronomy.
Astronomy & Astrophysics, 627:A139.

Pillepich, A., Springel, V., Nelson, D., Genel, S., Naiman, J., Pakmor, R., Hern-
quist, L., Torrey, P., Vogelsberger, M., Weinberger, R., et al. (2018). Simulating
galaxy formation with the illustristng model. Monthly Notices of the Royal
Astronomical Society, 473(3):4077–4106.

Popel, M., Tomkova, M., Tomek, J., Kaiser, Ł., Uszkoreit, J., Bojar, O., and
Žabokrtskỳ, Z. (2020). Transforming machine translation: a deep learning sys-
tem reaches news translation quality comparable to human professionals. Nature
communications, 11(1):1–15.

BIBLIOGRAPHY 121

Poplin, R., Varadarajan, A. V., Blumer, K., Liu, Y., McConnell, M. V., Corrado,
G. S., Peng, L., and Webster, D. R. (2018). Prediction of cardiovascular risk
factors from retinal fundus photographs via deep learning. Nature Biomedical
Engineering, 2(3):158–164.

Puglisi, G. and Bai, X. (2020). Inpainting galactic foreground intensity
and polarization maps using convolutional neural network. arXiv preprint
arXiv:2003.13691.

Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., and Tang, J. (2018). Deepinf:
Social influence prediction with deep learning. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 2110–2119.

Rhinehart, N., McAllister, R., Kitani, K., and Levine, S. (2019). Precog: Predic-
tion conditioned on goals in visual multi-agent settings. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 2821–2830.

Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., and Ozcan, A. (2018). Phase
recovery and holographic image reconstruction using deep learning in neural
networks. Light: Science & Applications, 7(2):17141–17141.

Rodríguez, A. C., Kacprzak, T., Lucchi, A., Amara, A., Sgier, R., Fluri, J., Hof-
mann, T., and Réfrégier, A. (2018). Fast cosmic web simulations with generative
adversarial networks. Computational Astrophysics and Cosmology, 5(1):4.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical
image computing and computer-assisted intervention, pages 234–241. Springer.

Sadr, A. V. and Farsian, F. (2020). Inpainting via generative adversarial networks
for cmb data analysis. arXiv preprint arXiv:2004.04177.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X.
(2016). Improved techniques for training gans. Advances in neural information
processing systems, 29:2234–2242.

Salman, A. G., Kanigoro, B., and Heryadi, Y. (2015). Weather forecasting using
deep learning techniques. In 2015 international conference on advanced computer
science and information systems (ICACSIS), pages 281–285. Ieee.

Schawinski, K., Turp, M. D., and Zhang, C. (2018). Exploring galaxy evolution
with generative models. Astronomy & Astrophysics, 616:L16.

122 BIBLIOGRAPHY

Shamir, L. and Wallin, J. (2014). Automatic detection and quantitative assessment
of peculiar galaxy pairs in sloan digital sky survey. Monthly Notices of the Royal
Astronomical Society, 443(4):3528–3537.

Shandarin, S. F. and Zeldovich, Y. B. (1989). The large-scale structure of the
universe: Turbulence, intermittency, structures in a self-gravitating medium.
Reviews of Modern Physics, 61(2):185.

Singh, S. P., Kumar, A., Darbari, H., Singh, L., Rastogi, A., and Jain, S. (2017).
Machine translation using deep learning: An overview. In 2017 international
conference on computer, communications and electronics (comptelix), pages 162–
167. IEEE.

Skinner, G. and Walmsley, T. (2019). Artificial intelligence and deep learning
in video games a brief review. In 2019 IEEE 4th International Conference on
Computer and Communication Systems (ICCCS), pages 404–408. IEEE.

Smith, S. L., Kindermans, P.-J., Ying, C., and Le, Q. V. (2017). Don’t decay the
learning rate, increase the batch size. arXiv preprint arXiv:1711.00489.

Springel, V. (2005). The cosmological simulation code gadget-2. Monthly notices
of the royal astronomical society, 364(4):1105–1134.

Springel, V., White, S. D., Jenkins, A., Frenk, C. S., Yoshida, N., Gao, L., Navarro,
J., Thacker, R., Croton, D., Helly, J., et al. (2005). Simulations of the formation,
evolution and clustering of galaxies and quasars. nature, 435(7042):629–636.

Springel, V., Yoshida, N., and White, S. D. (2001). Gadget: a code for collisionless
and gasdynamical cosmological simulations. New Astronomy, 6(2):79–117.

Starck, J.-L., Pantin, E., and Murtagh, F. (2002). Deconvolution in astronomy: A
review. Publications of the Astronomical Society of the Pacific, 114(800):1051.

Storey-Fisher, K., Huertas-Company, M., Ramachandra, N., Lanusse, F., Leau-
thaud, A., Luo, Y., and Huang, S. (2020). Anomaly detection in astronomical
images with generative adversarial networks. arXiv preprint arXiv:2012.08082.

Tanimura, H., Zaroubi, S., and Aghanim, N. (2021). Direct detection of the ki-
netic sunyaev-zel’dovich effect in galaxy clusters. Astronomy & Astrophysics,
645:A112.

Tassev, S., Zaldarriaga, M., and Eisenstein, D. J. (2013). Solving large scale
structure in ten easy steps with cola. Journal of Cosmology and Astroparticle
Physics, 2013(06):036.

BIBLIOGRAPHY 123

Tegmark, M., de Oliveira-Costa, A., and Hamilton, A. J. (2003). High resolution
foreground cleaned cmb map from wmap. Physical Review D, 68(12):123523.

Thanh-Tung, H. and Tran, T. (2018). On catastrophic forgetting and mode col-
lapse in generative adversarial networks. arXiv, pages arXiv–1807.

Tian, F., Gao, B., Cui, Q., Chen, E., and Liu, T.-Y. (2014). Learning deep
representations for graph clustering. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 28.

Tröster, T., Ferguson, C., Harnois-Déraps, J., and McCarthy, I. G. (2019). Painting
with baryons: augmenting n-body simulations with gas using deep generative
models. Monthly Notices of the Royal Astronomical Society: Letters, 487(1):L24–
L29.

Ullmo, M., Decelle, A., and Aghanim, N. (2021). Encoding large-scale cosmologi-
cal structure with generative adversarial networks. Astronomy & Astrophysics,
651:A46.

Varela-Salinas, M. J., Burbat, R., et al. (2018). Google translate and deepl: break-
ing taboos in translator training.

Villaescusa-Navarro, F., Anglés-Alcázar, D., Genel, S., Spergel, D. N., Somerville,
R. S., Dave, R., Pillepich, A., Hernquist, L., Nelson, D., Torrey, P., et al. (2020).
The camels project: Cosmology and astrophysics with machine learning simu-
lations. arXiv preprint arXiv:2010.00619.

Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Sijacki, D., Xu, D., Snyder,
G., Nelson, D., and Hernquist, L. (2014). Introducing the illustris project:
simulating the coevolution of dark and visible matter in the universe. Monthly
Notices of the Royal Astronomical Society, 444(2):1518–1547.

Vojtekova, A., Lieu, M., Valtchanov, I., Altieri, B., Old, L., Chen, Q., and Hroch,
F. (2021). Learning to denoise astronomical images with u-nets. Monthly Notices
of the Royal Astronomical Society, 503(3):3204–3215.

Vos, E. E., Luus, P. F., Finlay, C. J., and Bassett, B. A. (2019). A genera-
tive machine learning approach to rfi mitigation for radio astronomy. In 2019
IEEE 29th International Workshop on Machine Learning for Signal Processing
(MLSP), pages 1–6. IEEE.

Vougioukas, K., Petridis, S., and Pantic, M. (2019). Realistic speech-driven facial
animation with gans. International Journal of Computer Vision, pages 1–16.

124 BIBLIOGRAPHY

Wang, F., Casalino, L. P., and Khullar, D. (2019). Deep learning in
medicine—promise, progress, and challenges. JAMA internal medicine,
179(3):293–294.

Yalçın, Ö. N., Abukhodair, N., and DiPaola, S. (2020). Empathic ai painter: A
computational creativity system with embodied conversational interaction. In
NeurIPS 2019 Competition and Demonstration Track, pages 131–141. PMLR.

Yoon, J., Jordon, J., and Schaar, M. (2018). Gain: Missing data imputation using
generative adversarial nets. In International Conference on Machine Learning,
pages 5689–5698. PMLR.

York, D. G., Adelman, J., Anderson Jr, J. E., Anderson, S. F., Annis, J., Bah-
call, N. A., Bakken, J., Barkhouser, R., Bastian, S., Berman, E., et al. (2000).
The sloan digital sky survey: Technical summary. The Astronomical Journal,
120(3):1579.

Yousefi-Azar, M. and Hamey, L. (2017). Text summarization using unsupervised
deep learning. Expert Systems with Applications, 68:93–105.

Zakharov, E., Shysheya, A., Burkov, E., and Lempitsky, V. (2019). Few-shot
adversarial learning of realistic neural talking head models. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 9459–9468.

Zamudio-Fernandez, J., Okan, A., Villaescusa-Navarro, F., Bilaloglu, S., Cengiz,
A. D., He, S., Levasseur, L. P., and Ho, S. (2019). Higan: Cosmic neutral hy-
drogen with generative adversarial networks. arXiv preprint arXiv:1904.12846.

Zel’Dovich, Y. B. (1970). Gravitational instability: An approximate theory for
large density perturbations. Astronomy and astrophysics, 5:84–89.

Zhang, W., Xu, L., Li, Z., Lu, Q., and Liu, Y. (2016). A deep-intelligence frame-
work for online video processing. IEEE Software, 33(2):44–51.

Zhao, H., Gao, J., Lan, T., Sun, C., Sapp, B., Varadarajan, B., Shen, Y., Shen,
Y., Chai, Y., Schmid, C., et al. (2020). Tnt: Target-driven trajectory prediction.
arXiv preprint arXiv:2008.08294.

Zhao, Z.-Q., Zheng, P., Xu, S.-t., and Wu, X. (2019). Object detection with deep
learning: A review. IEEE transactions on neural networks and learning systems,
30(11):3212–3232.

	Introduction
	Context
	Deep Neural Networks: an overview
	DNN Context
	From Machine Learning to Deep Neural Networks
	Deep Neural Network components

	Emulating Cosmological Simulations with GANs
	Introduction
	GANs - Generalities
	Data
	Simulations
	Construction of the sample

	Constructing the GAN
	Architecture
	Training process and Optimization

	Statistical estimators
	Pixel PDF and Distribution of the mean density
	Peak counts
	Power Spectrum

	Results
	2D images
	3D projected images
	3D cubes

	Conclusion

	Predicting Structure formation in Simulations with GAN-based Autoencoders
	Introduction
	Autoencoders - Generalities and Specifics
	Training process
	Sørensen–Dice coefficient
	Replicative Autoencoder
	Baseline AE Results
	Variations on the baseline AE
	Conclusion on the Replicative Autoencoder

	Predictive Autoencoder
	Baseline Timewarper results
	Variations on the baseline Timewarper
	Conclusion on the Predictive Autoencoder

	Conclusion

