
HAL Id: tel-03663335
https://theses.hal.science/tel-03663335v1

Submitted on 10 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimisation discrète robuste en présence d’incertitude
ellipsoïdale
Chifaa Dahik

To cite this version:
Chifaa Dahik. Optimisation discrète robuste en présence d’incertitude ellipsoïdale. Performance
[cs.PF]. Université Bourgogne Franche-Comté, 2021. English. �NNT : 2021UBFCD066�. �tel-03663335�

https://theses.hal.science/tel-03663335v1
https://hal.archives-ouvertes.fr

Thèse de doctorat de l’établissement
Université Bourgogne Franche-Comté

preparée à l’Université de Franche-Comté

École doctorale n°37
Sciences Pour l’Ingénieur et Microtechniques

Doctorat d’Informatique

Par

Chifaa DAHIK

Optimisation Discrète Robuste En
Présence D’incertitude Ellipsoïdale

Thèse présentée et soutenue à Besançon, le 29 Novembre 2021

Composition du Jury :

Zeina AL MASRY Maître de conférence à l’ENSMM à Besançon Encadrante de thèse
Stéphane CHRETIEN Professeur à l’Université de Lyon 2 Examinateur
Clément DOMBRY Professeur à l’Université de Franche-Comté Président
Imed KACEM Professeur à l’Université de Lorraine Rapporteur
Kim Thang NGUYEN Maître de conférence à l’Université de Paris Saclay Examinateur
Jean-marc NICOD Professeur à l’ENSMM à Besançon Directeur de thèse
Landy RABEHASAINA Maître de conférence à l’Université de Franche-Comté Co-directeur de thèse
Andréa Cynthia SANTOS Professeur à l’Université Le Havre Rapportrice

Ph.D. thesis of the University Bourgogne
Franche-Comté prepared at the

University of Franche-Comté

Doctoral school n° 37
Engineering Sciences and Microtechnologies

Ph.D in Computer Science

by

Chifaa DAHIK

Robust Discrete Optimization Under
Ellipsoidal Uncertainty

Thesis defended publicly on November 29, 2021, in Besançon

Composition of jury :

Zeina AL MASRY Associate professor at ENSMM Besançon Supervisor
Stéphane CHRETIEN Professor at Université de Lyon 2 Examiner
Clément DOMBRY Professor at Université de Franche-Comté President
Imed KACEM Professor at Université de Lorraine Reviewer
Kim Thang NGUYEN Associate professor at Université de Paris Saclay Examiner
Jean-marc NICOD Professor at ENSMM Besançon Thesis Supervisor
Landy RABEHASAINA Associate professor at Université de Franche-Comté Co-Director
Andréa Cynthia SANTOS Professor at Université Le Havre Reviewer

Acknowledgements

Acknowledgements

My sincere thanks go to all my colleagues and friends for the great time and for
encouraging me throughout this experience, especially the dearest Aicha, Bilal,
Zeina, Chaker, Wissam, Vincent, and Jesus. I am very thankful to my supervisors
and project members Jean-Marc Nicod, Landy Rabehasaina, Zeina Al Masry and
Stéphane Chrétien who provided me an opportunity to join their teams and guided
me in all the time of research. Finally, I would like to thank my family for always
being there for me, especially my mother who always stood by my side.

iii

Acknowledgements

Ce n’est pas la force, mais la persévérance, qui fait les grandes
œuvres.

Samuel Johnson

iv

Contents

Contents

Acknowledgements . iii

Contents . v

List of Figures . ix

List of Tables. xi

Introduction . 1

I State-of-the-art of robust optimization 5

I.1 General overview . 6

I.2 Approaches to tackle uncertainty in optimization prob-
lems . 8
I.2.1 Min-max robust optimization . 8
I.2.2 Robust two-stage optimization. 16
I.2.3 Distributionally robust optimization. 16
I.2.4 Online optimization . 17
I.2.5 Approach under the framework of uncertainty theory 18

I.3 Synthesis . 18

II A heuristic approach for robust discrete optimiza-
tion: first example on the robust shortest path
problem . 21

II.1 Motivation and context. 22

II.2 Problem formulation . 23

II.3 Method for computing an optimal solution 25

II.4 Scalable suggested heuristic algorithm 26
II.4.1 Assumptions . 26

v

Contents

II.4.2 The classical Frank-Wolfe algorithm 26
II.4.3 A Frank-Wolfe based algorithm . 28

II.5 Numerical results. 30
II.5.1 Experimental setup . 30
II.5.2 Behavior of DFW algorithm . 31
II.5.3 Performance of the DFW algorithm as a function of

L . 33
II.5.4 Synthesis . 33

III Validation method for the heuristic solution ap-
plied on the robust shortest path problem 35

III.1 Evaluation of the quality of the approximate solution. 37
III.1.1 Bidualization of a quadratic problem 37
III.1.2 Using the bidualization to compute a lower bound . . . 39
III.1.3 Solving the SDP problem . 45

III.2 Experimental results . 55
III.2.1 Experimental setup . 55
III.2.2 Numerical evaluation of the heuristic approach DFW 56
III.2.3 Numerical results of Pierra’s algorithm 57
III.2.4 Discussion . 58
III.2.5 Difficulties in the experiments . 61
III.2.6 Synthesis . 63

IV A second heuristic approach based on Frank-Wolfe
for the k-median clustering problem. 65

IV.1 Motivation and context. 66

IV.2 Problem formulation . 67

IV.3 Problem illustration . 70

IV.4 A Frank-Wolfe based approach MFW for the k-median
clustering . 72
IV.4.1 Assumptions for DFW Algorithm not satisfied 72
IV.4.2 The proposed approach . 74

IV.5 Numerical results. 78
IV.5.1 Experimental setup . 78
IV.5.2 Adequate µ and Σ generation. 79

vi

Contents

IV.5.3 Results of MFW for different problem sizes 79
IV.5.4 Discussion . 80

Conclusions and perspectives . 81

Bibliography . 85

vii

Contents

viii

List of Figures

List of Figures

1 An uncertainty situation: Decide how to go from a to e with a
minimal cost when two scenarios are possible. 2

I.1 Pedagogical example: a graph with three possible paths from node
a to node e.. 10

I.2 A two-dimensional representation of the discrete (a), interval (b)
and ellipsoidal sets (c).. 13

II.1 Illustration of Frank-Wolfe: the red plan is the linear approximation
of the function in blue at f(x). s is the point that minimizes the
red plan while satisfying the constraints represented by the space in
turquoise. Figure taken from [Jaggi 13]. 28

II.2 Grid graph model. 31

II.3 The evolution of g(s(k)) and g(s(k)
opt) for L = 34 in the 200 first

iterations. 32

II.4 The evolution of g(s(k)) and g(s(k)
opt) for L = 40 in the 200 first

iterations. 34

III.1 Evolution of the objective function along 15 000 iterations in Pierra’s
Algorithm for L = 10 compared to CVXPY’s implementation. 59

III.2 Evolution of the objective function along 5 000 iterations in Pierra’s
Algorithm for L = 3 compared to CVXPY’s implementation. 60

IV.1 Simple example of a two cluster solution of a k-median problem for
10 points.. 72

ix

List of Figures

x

List of Tables

List of Tables

1 The costs of the possible paths in both Scenarios 1 and 2 presented
in Figure 1. 2

I.1 The values of the uncertain costs in the different scenarios. 12

I.2 Solutions: the optimal solution in every scenario, the absolute robust
decision zA , and the robust deviation decision zD in the case of a
discrete uncertainty set. 12

I.3 Comparison table between robust min-max optimization and other
approaches. 20

II.1 The iteration k1 of obtaining the optimal solution for different prob-
lem sizes. 32

III.1 Comparison of the solution proposed by DFW with the optimal
solution using CPLEX, and the lower bound given by CVXPY. 57

III.2 Information about the coding language and parameters. 58

III.3 Comparison between a direct method using CVXPY versus the sparse
version of Pierra’s Algorithm.. 59

IV.1 Comparison of the proposed solution by MFW with the optimal
solution by CPLEX. 80

xi

List of Tables

xii

Introduction

Introduction

In all sectors, whether industrial or not, decisions must be made in relation to an
objective that needs to be optimized. For example, in logistics, deliveries have to
be made with the least amount of vehicles and the least kilometers possible; in
the industry, tasks have to be processed by machines as quickly as possible in an
appropriate order.
A challenge for decision making is its sustainability. What happens if the route
taken by a tour carries more traffic than expected? If we had known this before,
this road would have been avoided. Similarly, what if a machine is delayed in
completing a task? The delay cannot be made up. Thus, it would be better to
propose a good solution close to the optimal one, which remains good even if the
context of the problem changes: a road has a denser traffic, the duration of a task
is longer than expected. Today, given the omnipresence of optimization problems,
it becomes essential to take into account the uncertain nature of the data that
describes the studied problem.
Consider the example illustrated in Figure 1. A person wants to go from his house
represented in node a to the train station represented in node e. He has a train
to catch, and he needs to be there as fast as possible. Based on the graphs in
Figure 1, this person has three possible paths: a → b → e, a → c → e, or
a→ d→ e. Unfortunately, in his situation, uncertainty occurs in the duration of
the roads. There are two possible scenarios in the street traffic state, but he needs
to make a decision about what road to take. Based on Table 1, the fastest solution
in the first scenario is a → d → e with a cost of 5 + 7 = 12. For Scenario 2, it is
a → b → e, with a duration of 9 minutes. This decision is hard to take, since if
the person chooses the optimal solution of one scenario but the other one occurs,
then he may miss his train. Path a→ b→ e takes 9 minutes in Scenario 2, but it
is a very bad choice in Scenario 1: it takes 50 minutes! Contrarily, a good solution
that is neither optimal is Scenario 1 nor Scenario 2 is a→ c→ e.
This example tells us that:

• Usually, the decision maker is put in situations where the decision has to be
made before knowing the actual situation.

• If uncertainty exists, neglecting it and considering optimal solutions can have
bad consequences.

1

Introduction

a

b

d

c e

40 10

5 7

10 11

(a) Scenario 1

a

b

d

c e
8 1

30 18

11 12

(b) Scenario 2

Figure 1: An uncertainty situation: Decide how to go from a to e with a minimal
cost when two scenarios are possible.

Possible paths Cost in Scenario 1 Cost in Scenario 2
a→ b→ e 50 min 9 min
a→ c→ e 21 min 23 min
a→ c→ e 12 min 48 min

Table 1: The costs of the possible paths in both Scenarios 1 and 2 presented in
Figure 1.

• A non optimal solution that behaves well in global could be better than a
solution that is good in some cases, and bad in others.

In opposite to the example just given, real life problems are bigger and more
complex. It is hard to compute the optimal solutions of all the possible scenarios,
and considering the uncertainty becomes very challenging. Some of the challenges
are given below:

1. How to exploit the uncertainty with the information at hand?
2. How to model the uncertainty in a way that is both tractable and close to

reality?
3. What definition of a "good" solution that considers the uncertainty is the

most reliable for the considered problem?
4. How to solve efficiently the problem that risks to be more complex when

considering the uncertainty?
5. How to evaluate this solution with good metrics and in an efficient way?

The goal of this PhD thesis is first to discover and understand the different ap-
proaches to deal with the uncertainty, since it is less interesting to suppose that all
the information that describes real life problems are constant and precise. The sec-
ond goal is to put the approaches available in the service of discrete optimization
problems, that form the majority of real life decision problems. More concretely,
the thesis work was about answering the five challenges listed above.

2

Introduction

Contributions

The contributions of this thesis start by proposing a heuristic approach for the
robust counterpart of binary linear optimization problems with some assump-
tions linked with the exact binarity relaxation. The robust model concerned is
the absolute robust definition under the ellipsoidal uncertainty set [Al Dahik 20].
The second part of contributions is the lower bound proposition for validation of
heuristic approaches that solve the robust problem. This second part is composed
of multiple contributions, that start with the formulation of the robust problem as
a quadratic problem in order to obtain its bidual problem, and that also include
the tackling of the numerical challenges of the bidual problem that turns out to
be memory consuming. This has been done by a proposition of a sparse version
of Pierra’s algorithm. This work can be found in [Al Dahik 21]. The third contri-
bution is the proposition of another Frank-Wolfe based algorithm for the robust
k-median clustering problem. Finally, the thesis also contains a contribution in k-
median clustering, by proposing a heuristic approach to solve the robust k-median
clustering problem under ellipsoidal uncertainty, that is also based on Frank-Wolfe
Algorithm.

Outline

This thesis is organized as follows. Chapter I presents the state-of-the-art of
the ways to tackle uncertainty in discrete problems, namely robust optimization.
Chapter II presents the chosen model in the thesis to consider uncertainty, which is
the absolute robust definition under ellipsoidal uncertainty. Next, it describes the
methods to solve, which are the exact method, and the heuristic approach DFW
proposed to solve the robust problem, along with the corresponding numerical re-
sults. Chapter III starts with the bidualization procedure to get the problem to
solve for obtaining the lower bound, then presents the methods to solve it, namely
the exact method, and then the proposed method based on Pierra’s algorithm.
It ends with the numerical results and then some difficulties in the experiments
with their interpretations. Chapter IV starts with the formulation of the k-median
clustering, and then details the reformulation step to fall in the same form as in
Chapter II. Then, it shows that the assumptions are not satisfied. Next, Chap-
ter IV proposes a new approach to solve it heuristically and then presents the
numerical results. The thesis ends with conclusions and perspectives.

3

Introduction

4

Chapter I
State-of-the-art of robust optimization

I.1 General overview . 6

I.2 Approaches to tackle uncertainty in optimization prob-
lems. 8

I.2.1 Min-max robust optimization. 8

I.2.2 Robust two-stage optimization. 16

I.2.3 Distributionally robust optimization 16

I.2.4 Online optimization. 17

I.2.5 Approach under the framework of uncertainty theory. . . . 18

I.3 Synthesis . 18

5

Chapter I. State-of-the-art of robust optimization

This chapter introduces some of the most known approaches that exist in the
state-of-the-art of robust optimization. Section I.1 gives a general overview about
considering uncertainty in optimization problems. Next, Section I.2 lists some
of the classical approaches that deal with uncertainty, with a focus on min-max
optimization. Finally, a synthesis with a comparative table of different approaches
can be found in Section I.3. In this chapter and in the whole PhD thesis, complexity
theory is a prerequisite. We refer the readers to [Ausiello 12,Garey] for a global
knowledge about the complexity of optimization problems.

I.1 General overview

In etymology, uncertainty refers to epistemic situations involving imperfect or un-
known information. It applies to predictions of future events, to physical mea-
surements that are already made, or to the unknown. Usually, some information
about the uncertain variables are available. The variables could be random with a
known distribution, or if the distribution of the variables is unknown, sometimes
they belongs to a set. In other environments, the information is updated with
time, and it is possible to make use of the experiences of the past to make the
present decision.
Different approaches exist to tackle the uncertainty in optimization problems. The
main difference between these approaches is the list of assumptions made about the
knowledge of the uncertain variables. Generally, optimization problems become
harder to solve when considering the uncertainty. This motivates some research
directions that consider some assumptions that do not represent very well the
reality, but have the advantage of making the problem relatively easy to solve.
Another research direction aims to study the complexity of categories of problems,
and to find if they are easy or hard.
First, let us clear up the distinction between sensitivity analysis and robust op-
timization. Sensitivity analysis is a post-optimization approach to deal with un-
certainty [Saltelli 02]. For fixed parameters of the optimization problem, sensi-
tivity analysis consists in solving the corresponding optimization problem, and
then determining the range of variation of parameters for which the solution is
still optimal. Contrarily, in the robust optimization approaches, the uncertainty
is considered directly in the optimization stage.
Second, let us do a brief overview of different approaches in robust optimization.
Many definitions of robustness have been proposed in the literature in the context
of optimization. In a landmark paper [Ben-Tal 09], Ben-Tal et al. studied robust
optimization in general, in the sense that the decision variables take continuous
values. On the other hand, the considered case in the industrial and transporta-

6

I.1. General overview

tion problems is the one of discrete variables, most often so, integer or binary. The
three most common definitions in the context of combinatorial optimization have
been formalized in 2004 by Kouvelis and Yu in [Kouvelis]. These are absolute
robust solution, robust deviation and relative robust solution. In all these cases,
worst case behavior is considered. Another family of definitions are scenario depen-
dent. In these methods, a decision is taken conditional on the current scenario and
the overall optimization problem boils down to a robust two-stage problem [Ben-
Tal 04]. This approach splits into the notions of K-adaptability [Hanasusanto 16],
adjustable robustness [Ben-Tal 04], bulk robustness [Adjiashvili 15] and recover-
able robustness [Liebchen 09]. In the case where the data can be considered as
governed by a certain probability distribution with unknown parameters, distri-
butionally robust optimization [Rahimian 19] is also an interesting approach. It
consists in choosing the distribution that is most suitable given a robustness cri-
terion. Yet another approach is the notion of almost robust solution [Baron 19]
that is feasible under most of the realizations and that can use full, partial or no
probabilistic information about the uncertain data. Let us also mention that other
alternative generic approaches have also been proposed in the literature: Buhmann
et al. consider in [Buhmann 18] a near-optimum solution for several scenarios.
Another way to tackle uncertainty that is different from robust optimization is the
online optimization [Hazan 16], where decisions are made iteratively, and at each
iteration, the problem inputs are unknown, but the decision maker learns from the
previous configuration before making his decision. After a decision is made, it is
then assessed against the optimal one. Finally, let us add that uncertainty theory
was used in another line of work as in Liu et al. in [Liu 09], for instance. This
theory has also been implemented by Gao et al. in [Gao 11] in order to give what
they call an uncertainty distribution in the case of the shortest path problem.
Finally, it is important to know that some problems are too complex to fit in
any theory, especially in real life problems, for example for the problem of power
provisioning in data centers, that depends on the weather condition and many
other factors [Pierson 19]. This challenge has opened to a big project on hold,
in order to manage the uncertainty in such a complex system 1 [Haddad 21].
Another example that needs particular tools is the one of scheduling, which led
to an information-based decision tree model in [Portoleau 20]. A third example is
a real life challenge of metal coils assignment studied in [Omri 20], where metal
properties are collected with uncertainty. This uncertainty affects the detection
of metal coils suitability to the production process. A last example is a challenge
in the traveling salesman problem that has been tackled in [Toklu 17], where the

1https://anr.fr/Project-ANR-19-CE25-0016

7

https://anr.fr/Project-ANR-19-CE25-0016

Chapter I. State-of-the-art of robust optimization

classical robust optimization does not represent well the real uncertainty, and thus
it has been considered that it is more accurate to create uncertainty profiles to a
activated at a certain period of time, dynamically.
The next section gives formal definitions of most of the approaches listed above,
that are: min-max robust optimization, robust two-stage optimization, distri-
butionally robust optimization, online optimization, and an approach under the
framework of uncertainty theory.

I.2 Approaches to tackle uncertainty in opti-
mization problems

This section maps some of the approaches to deal with the uncertainty: min-max
robust optimization, robust two-stage optimization, distributionally robust opti-
mization, sensitivity analysis, online optimization, the approach under the frame-
work of uncertainty theory, and some problem specific approaches. It is important
to point out the confusion for the keyword robust optimization: in general reviews,
robust optimization can refer to any approach that deals with uncertainty. On the
other side, and in particular, robust optimization sometimes refers to the min-max
approaches, that are the min-max robust optimization described in Section I.2.1
and the robust two-stage optimization described in Section I.2.2.

I.2.1 Min-max robust optimization

The approach described in this section supposes that some information about the
uncertainty is at hand, which can be represented in an uncertainty set, and hedges
against the worst behavior in this uncertainty set. This section is extensively
developed, since it is studied in this PhD thesis. The motivation of this choice is
explained in Chapter II.
Consider a general optimization problem

min
x∈X

f(x), (I.1)

where f is the objective function to be minimized, and X is the feasible set.
Suppose that d is the data describing the problem definition. Then, f and X

depend on d, and the problem is equally written as

min
x∈Xd

f(x, d), (I.2)

where Xd is the feasible set under the realization d. When we suppose that the
data is certain and constant, we call the problem "deterministic".

8

I.2. Approaches to tackle uncertainty in optimization problems

If d is uncertain, and if the information at hand about d allows to define an
uncertainty set U such as d ∈ U , then three common definitions of robust solutions
were studied in [Soyster 73], then in [Kouvelis], which are the absolute robust
decision, the robust deviation decision, and the relative robust decision. Here,
the worst case behavior is considered .This family of definitions are called min-
max optimization problems, and they are stated in Section I.2.1.b. The forms of
the uncertainty set U are described in Section I.2.1.c. In order to illustrate the
definitions of min-max decisions, as well as the uncertainty sets, a pedagogical
example is considered, and it is described in Section I.2.1.a.

I.2.1.a Description of the pedagogical example

Section I.2.1 is supported with a simple example that follows the different sections,
in order to accompany the reader for easier understanding of the different defini-
tions. Figure I.1 represents the considered example. The goal is to go from point
a to point b, with the least cost possible, and the possible paths are : abe, ace
and ade. The edges ab, ac, ad, be, ce and de are weighted with the costs of these
edges. The cost of path abe is the sum of the weights of the edges ab and be. The
considered minimization problem can be written as the following problem

min
x∈X

cTx,

where X = {[1, 0, 0, 1, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 1, 0, 0, 1]} is a binary representation
of the paths abe, ace and ade. If we note the edges as the following

e1 = ab,

e2 = ac,

e3 = ad,

e4 = be,

e5 = ce,

e6 = de,

then a path x ∈ X is a vector with 6 elements, with xi equals 1 if the path
x contains the edge ei, and 0 otherwise. For example, abe is represented by
[1, 0, 0, 1, 0, 0], since it contains e1 = ab and e4 = be. The cost of a path x equals
cTx, where c = [c1, . . . , c6] represents the costs of the edges {e1, . . . , e6}.

I.2.1.b Absolute robuste decision, robust deviation decision and relative robust
decision

The following states the formal definitions of the absolute robust decision, the
robust deviation decision, and the relative robust decision.

9

Chapter I. State-of-the-art of robust optimization

a

b

d

c e

Figure I.1: Pedagogical example: a graph with three possible paths from node a
to node e.

I.2.1.b.1 Absolute robust decision: The first called absolute robust deci-
sion is defined as the solution of the problem

zA = min
x∈∩d∈UXd

max
d∈U

f(x, d). (I.3)

The absolute robust decision is the result of a comparison between the worst cases
of all the solutions: it is the best solution in its worst case in the uncertainty set
U . This solution must be feasible in all the scenarios of d ∈ U . If the user chooses
the absolute robust solution, despite whatever scenario he falls in, his solution is
better than the worst cases of the other solutions. This definition is criticized for
being pessimistic, since it protects against the worst case, no matter how likely
or unlikely it is to occur. Nevertheless, in some applications, it is important to
anticipate the worst case, such as nuclear accidents or public health [Aissi 09].
In the case of the example in I.2.1.a, if the uncertainty occurs only in the costs of
the edges, such that the cost vector c belongs to an uncertainty set U , then

zA = min
x∈X

max
c∈U

cTx. (I.4)

I.2.1.b.2 Robust deviation decision: Next, the robust deviation decision is
defined as

zD = min
x∈∩d∈UXd

max
d∈U

(
f(x, d)− f(x∗d, d)

)
, (I.5)

where x∗d is the optimal solution in the scenario of d. This definition is less con-
servative, since it protects against the worst deviation from optimality: the robust
deviation decision is the closest to the optimal in its worst case. For a decision x,
in a certain scenario d, the difference

R = f(x, d)− f(x∗d, d)

is also called regret, and thus this robust decision is also called min-max regret,
and it minimizes the worst regret [Kacem 19,Aissi 05,Aissi 07].
In the case of the example in I.2.1.a, we have

zD = min
x∈X

max
c∈U

(
cTx− cTx∗c

)
. (I.6)

10

I.2. Approaches to tackle uncertainty in optimization problems

I.2.1.b.3 Relative robust decision: Another version of the previous robust
decision is with a relative deviation [Coco 14]. This yields to the third definition
of a robust decision, the one called relative robust decision. It is defined as

zR = min
x∈∩d∈UXd

max
d∈U

f(x, d)− f(x∗d, d)
f(x∗d, d) . (I.7)

In the case of the example in I.2.1.a, we have

zR = min
x∈X

max
c∈U

cTx− cTx∗c
cTx∗c

. (I.8)

The robust deviation decision and the relative robust decisions are adapted to the
applications in highly competitive market environments, where the performance
needs to be satisfactory in any realization of the uncertain variable, for example
in the investment management.

The remainder of Section I.2.1 discusses in greater detail the absolute robust op-
timization (Definition (I.3)), and considers a particular class of problems in the
general form (Problem (I.1)), where f(x, c) = cTx, and X ⊆ {0, 1}m. We also
suppose that the uncertainty occurs only in the cost vector c ∈ Rm. Thus, we
consider the robust counterpart of problems following the form:

min
x∈X

cTx, (I.9)

where X ⊆ {0, 1}m is the set of the feasible solutions, and where the cost vector
c ∈ Rm is subject to uncertainty, i.e., it has more than one possible realization.
Let U be an uncertainty set included in Rm (U ⊆ Rm).
The absolute robust counterpart of Problem (I.9) (Problem (I.3)) is then defined
as:

min
x∈X

max
c∈U

cTx. (I.10)

There are multiple types of the uncertainty set U , that will be described in the
following.

I.2.1.c Uncertainty sets

The choice of the uncertainty set is critical for the complexity of the robust prob-
lem. It is chosen depending on many reasons, especially the information available
about the uncertain variables, and the level of difficulty of solving the robust prob-
lem. The three most common uncertainty sets are the discrete set, the interval

11

Chapter I. State-of-the-art of robust optimization

ei c
(1)
i c

(2)
i c

(3)
i

e1 = ab 2 4 1
e2 = ac 7 2 8
e3 = ad 3 4 2
e4 = be 4 4 3
e5 = ce 2 1 4
e6 = de 2 3 4

Table I.1: The values of the uncertain costs in the different scenarios.

x c(1) Tx c(2) Tx c(3) Tx maxc∈U cTx maxc∈U
cTx− cTx∗c

abe 6 8 4 8 5
ace 9 3 12 12 8
ade 5 7 6 7 4
min minx∈X c(1) Tx

= 5
minx∈X c(2) Tx

= 3
minx∈X c(3) Tx

= 4
zA = 7 zD = 4

Table I.2: Solutions: the optimal solution in every scenario, the absolute robust
decision zA , and the robust deviation decision zD in the case of a discrete

uncertainty set.

set, and the ellipsoidal uncertainty set. They are illustrated in Figure I.2, that is
a two-dimensional illustration of the discrete set in I.2a, the interval set in I.2b,
and the ellipsoidal set in I.2b. In this figure, the discrete set is represented by a
set of finite points, the interval set is represented by a rectangle that delimits the
two intervals on the two axes that represent the uncertain elements. The ellip-
soid is represented by an ellipsoid with inside some points that are modelled by a
bi-normal distribution: the points are grouped around the mean value, and they
spread more and more when they get far from the mean.

• Discrete set
This uncertainty set is considered in the cases where the scenarios are explicitly
given, i.e., the possible cases that form the uncertainty set. Usually, it is obtained
out of data from the past. U has the form U = {c1, . . . , cn}, n being the number of
scenarios. This set is not considered much in practice because it leads to difficult
problems due to the discrete aspect of this set.
In the case of the example in I.2.1.a, suppose that the cost c is uncertain, and
it belongs to a discrete set of 3 scenarios c ∈ U = {c(1), c(2), c(3)}. The values
are given in Table I.1. Next, Table I.2 aims to show how the definitions of the
absolute decision zA and the deviation decision zD are applied on an example for

12

I.2. Approaches to tackle uncertainty in optimization problems

(a) Discrete set (b) Interval set

(c) Ellipsoidal set

Figure I.2: A two-dimensional representation of the discrete (a), interval (b) and
ellipsoidal sets (c).

discrete sets. This helps to understand the min-max optimization in general. For
a scenario s, s ∈ {1, 2, 3}, the optimal solution is minx∈X c(s) Tx. For example, in
scenario 1, the costs are 6, 9 and 5. The lowest is 5: this is the optimal solution
in scenario 1. Next, to find the absolute robust decision zA, two steps are needed.
The first step is to find the worst cost among the 3 scenarios for every solution x:
it is represented in the column maxc∈U cTx of Table I.2. The second step is to find
the best of these worst cases to get zA. On the other side, to compute the robust
deviation decision zD, we make use of the optimal solutions in each scenario to
compute the deviations from optimality, and we proceed in the same way as for zA:
we first compute the worst deviation among the scenarios for the paths abe, ace,
and ade. Finally, we choose the least value among the worst deviations to get the
solution zD. As one can realize, the deviation decision requires the computation of
the optimal solutions of all the scenarios, whereas it is not the case for the absolute
decision.

• Interval set
This uncertainty set is considered when every entry of the uncertain cost vector c
varies within an interval, i.e., between a lower bound and an upper bound. U can
be written as U = Πm

i=1[ci; ci], where m is the dimension of the uncertain variables,
ci (resp. ci) is the proposed lower (resp. upper) bound of ci, i ∈ {1, . . . ,m}.
Moreover, in this development, it is assumed that U ⊆ R+. The worst case for
this uncertainty set is when all the cost elements are on their upper bound. This
uncertainty set can make the robust counterpart tractable, and for many problems,
the complexity of the robust version is the same as the deterministic problem. In
our case Problem (I.10) becomes

min
x∈X

max
c∈U

cTx = min
x∈X

max
ci≤ci≤ci
i∈{1,...,m}

cTx = min
x∈X

cTx. (I.11)

13

Chapter I. State-of-the-art of robust optimization

Thus, the robust counterpart of Problem (I.9) in case of the interval uncertainty
set has the same complexity of the deterministic problem (I.9) (i.e. without un-
certainty). Nevertheless, this uncertainty definition is too conservative and pes-
simistic, since the considered case is when all the elements are in their worst case,
which is not likely to occur.
A way to avoid the over pessimism of interval uncertainty is to believe that in
real life, not all coefficients are uncertain at the same time. This motivates the
budgeted uncertainty, also called Γ-uncertainty : a particular case of min-max op-
timization with interval uncertainty sets. Budgeted uncertainty has been proposed
by Bertsimas and Sim in [Bertsimas 03], and it consists in supposing that a fixed
number Γ of elements of the uncertain vector are uncertain, and the others are
constant.
If we recall the interval uncertainty set

U = Πm
i=1[ci; ci],

then, the uncertainty set proposed here is

U =
{
c = {c1, . . . , cm} ∈ Rm;

ci ≤ ci ≤ ci ∀i ∈ I,

ci = ci + ci
2 ∀i /∈ I,

I ⊆ {1, · · · ,m}, |I| ≤ Γ
}
.

Or, in another writing
⋃
|I|≤Γ

I⊆{1,··· ,m}

{
Πi∈I [ci; ci]× Πi∈I{

ci + ci
2 }

}
.

This uncertainty set contains vectors c, such that not all of their elements are
uncertain: at most Γ elements are uncertain in an interval [ci; ci], and the others
have a certain value that equals ci+ci

2 . For Γ = m, the budgeted uncertainty
set becomes the interval set, and for Γ = 0, the values of c are certain, and
thus we find the deterministic problem. Bertsimas and Sim in [Bertsimas 03]
show that the robust counterpart (I.10) with the budgeted uncertainty set can be
solved by solving at most m + 1 instances of the deterministic problem (I.9). To
conclude, the budgeted uncertainty is a way to undirectly reduce the pessimism
of the interval uncertainty set, while keeping the complexity of the deterministic
problem [Poss 13,Bougeret 19].

• Ellipsoidal set

14

I.2. Approaches to tackle uncertainty in optimization problems

A third uncertainty set that takes into account the correlation between the ele-
ments of the vector c is the ellipsoidal uncertainty set. Imagining that we have a
discrete set of observations for the vector c (like for the discrete uncertainty set),
one way to reduce the combinatorial aspect of the discrete set is to consider the
following ellipsoid as the uncertainty set

U = {c ∈ Rm; (c− µ)TΣ−1(c− µ) ≤ Ω2},

where µ ∈ Rm is the sample mean, Σ ∈ Rm×m is the sample covariance matrix
and Ω > 0. This proposition comes from the assumption that c has a multinormal
distribution with expectation µ and covariance matrix Σ. U is then a confidence set
for c, which means that c belongs to U with a certain probability that is controlled
by the scalar Ω. As already mentioned, the advantage of this uncertainty set is
that it takes into consideration the correlation between the elements of the vector
c, which is close to reality, since for example, a road with a traffic jam probably
causes congestion in other roads. The second advantage is that it allows the user
to control the level of risk that he is ready to take in order to have a good cost.
This is possible by the choice of Ω, since with a small Ω, the user can eliminate less
likely cases when finding the best solution in its worst case. The third advantage
is that it leads to a smooth form for the min-max formulation. Indeed, with the
ellipsoidal uncertainty set, Problem (I.10) becomes:

min
x∈X

µTx+ Ω
√
xTΣx. (I.12)

The proof is developed in Section II.2. In another interpretation, Problem (I.12)
is a minimization of a weighted sum of the mean µTx and the risk

√
xTΣx of x.

It is very known in portfolio optimization, and it is called mean-risk optimization
[Markowitz 52].
Unfortunately, min-max optimization problems under general ellipsoidal uncer-
tainty are NP-hard. For exact and heuristic methods to solve Problem (I.12),
see [Buchheim 18a] and [Al Dahik 20].
On the other hand, in the special case of the uncorrelated uncertainty set, i.e., when
Σ is a diagonal matrix Σ = diag(d1, . . . , dm), with d = {d1, . . . , dm} representing
the variance of c, Problem (I.12) becomes

min
x∈X

µTx+ Ω
√
dTx. (I.13)

It is not known yet if this problem has the same complexity of the deterministic
problem. Nevertheless, Bertsimas and Sim in [Bertsimas 04b] show that if d1 =
d2 = . . . = dm, the robust problem has the same complexity as the deterministic
problem. Moreover, they propose in the same reference a heuristic algorithm to
solve the problem with uncorrelated but not identically distributed data.

15

Chapter I. State-of-the-art of robust optimization

Other uncertainty sets were also defined and studied, for example polytopic uncer-
tainty sets, uncertainty sets under general norms [Bertsimas 04a], uncertainty sets
modeled by multiple knapsack constraints ([Poss 18]), etc. For a more advanced
study about the different uncertainty definitions, see [Li 11] and [Buchheim 18b].

I.2.2 Robust two-stage optimization

Since the robust optimization approaches proposed in the previous section are
considered as too conservative, and the min-max optimization implies that the
decision is made before the uncertain variables are revealed, an other approach
named min-max-min optimization or robust two-stage optimization has been pro-
posed by Buchheim and Kurtz in [Buchheim 17]. This approach splits into the
notions of K-adaptability [Hanasusanto 16], adjustable robustness [Ben-Tal 04],
bulk robustness [Adjiashvili 15] and recoverable robustness [Liebchen 09]. The
robust two-stage problem is the one where some decisions can be made after the
scenario is known. The robust two-stage problem is defined as

min
x∈X

max
ξ∈U

min
y∈Y

(x,y)∈Zξ

fξ(x, y),

where x ∈ X are the first-stage decisions, y ∈ Y are the second-stage decisions. fξ
is the objective function that depends on the uncertain variable ξ that belongs to
an uncertainty set U , and Zξ is the feasibility set of (x, y) under the scenario ξ.
This approach is adapted for problems that have a possibility of recourse, such
as for parcel delivery companies, who do not reschedule their delivery tours from
scratch every time. Instead, drivers are trained for a small part of route plans
that are executed in case of road closures and congestion. This example is taken
from [Arslan 20].
In general, these problems are extremely hard to solve. An example of a method
to solve such problems can be found in [Hanasusanto 15].

I.2.3 Distributionally robust optimization

This section presents the distributionally robust optimization, a middle ground
between stochastic optimization and absolute robust optimization [Rahimian 19,
Goh 10]. Let us first introduce the stochastic optimization.
Consider again a general problem in the form (I.1), that is we recall

min
x∈X

f(x). (I.14)

If the objective function f depends on a variable d that represents a random vari-
able with a joint cumulative distribution Fd, the stochastic optimization problem
is the problem of minimizing the expected value of this function. It consists in

16

I.2. Approaches to tackle uncertainty in optimization problems

solving the following problem

min
x∈X

EFd [f(x, d)].

In the cases where it is not crucial to consider the worst case behavior, stochastic
optimization seems to be a good choice for considering the uncertainty. Never-
theless, it considers that a full knowledge is available about this uncertainty, by
the existence of a known distribution of the uncertain variable d. In the absolute
robust optimization defined by Problem I.3, we suppose that the distribution of
the uncertain variable d is unknown, and we minimize the worst case in an un-
certainty set, no matter how likely or unlikely it is to occur. A middle ground
solution is to consider having a limited information about the distribution, and to
have a robustness in the proposed solution. This introduces to the distributionally
robust optimization that is described in the following. In the case where the data
can be considered as governed by a certain probability distribution with unknown
parameters, distributionally robust optimization consists in choosing the distribu-
tion that is most suitable given a robustness criterion. It corresponds to solving
the following problem

min
x∈X

max
Fd∈D

EFd [f(x, d)],

where D is a set of distributions that supposedly includes the true distribution of
d. In this definition, we choose the solution that is the best for the worst possible
expected value among the ones corresponding to the distributions of the set D.
To know more about the choice of the set of distributions and an application to
portfolio optimization, see [Delage 10].

I.2.4 Online optimization

Another way to tackle uncertainty that is different from robust optimization is
the online optimization introduced in [Zinkevich 03], also considered as an online
learning, since the learner makes the decisions iteratively, and at each new itera-
tion, the problem inputs are unknown, but the learner has access to the previous
inputs, and thus learns from these inputs to decide [Shalev-Shwartz 07]. After
every decision is made, a metric to evaluate the performance of the online player is
called regret, which is the gain of the best decision minus the gain of the learner.
Different categories in online optimization exist, depending on the information
available for the learner. An online optimization problem can be seen as a game
between the learner and the environment, that are named in the context of a game
as the player and the adversary, respectively. It is described as the following: at
every time step t, the player chooses a decision xt in the set of decisions X, the

17

Chapter I. State-of-the-art of robust optimization

adversary chooses ft, the objective function at time step t. The player suffers his
loss and observes a feedback, the feedback being, whether a partial information
ft(xt) or a full information ft. The goal of the player at the last iteration T is to
minimize the regret RT , which is defined as follows

RT = ΣT
t=1ft(xt)−min

x∈X
ΣT
t=1ft(x).

More details about this problem with an application on the online shortest path
problem can be found in [Abernethy 09].

I.2.5 Approach under the framework of uncertainty theory

Another line of work has been discovered under the framework of uncertainty
theory. This theory has been founded in 2007 by Liu et al. in [Liu 09], and it leads
to define an uncertain variable, in analogy to the definition of a random variable
with probability theory. Uncertainty theory states that a random variable is an
uncertain variable, but the opposite is not true. Thus, under the framework of
this theory, and if we suppose that we have an uncertain variable, it is possible to
compute an uncertainty distribution, that allows to compute an optimal solution
under a confidence level, that is a way to tackle the uncertainty differently than
the other approaches we have seen so far. This theory has been implemented by
Gao et al. in [Gao 11] in order to give what they call an uncertainty distribution
in the case of the shortest path problem.

I.3 Synthesis

After discovering different approaches for dealing with uncertainty, one can de-
duce that some approaches and elements are comparable. Indeed, Robust min-
max optimization described in Section I.2.1 can be compared to other approaches,
following defined criteria. More precisely, five comparisons have been deduced in
Table I.3: the ones where we compare robust min-max optimization with (1) sen-
sitivity analysis, (2) stochastic optimization, (3) robust two-stage optimization,
(4) online optimization, and (5) the approach based on uncertainty theory. For
example, comparing robust min-max optimization with sensitivity analysis can be
done following two criteria: the first criteria is the type of action: robust min-max
optimization considers the uncertainty, whereas sensitivity analysis analyzes the
uncertainty, etc. It is noted that not all the approaches are comparable, and for
the ones that are comparable, the comparison is not done on the same level and
the same criteria of comparison for all of them.

18

I.3. Synthesis

The next chapters are the contributions of this PhD thesis in the robust optimiza-
tion domain. All the study is based on the absolute min-max optimization under
ellipsoidal uncertainty sets, that has been detailed previously in Section I.2.1. The
motivation of this choice is detailed below in Chapter II.

19

Chapter I. State-of-the-art of robust optimization

Comparison cri-
teria

Approach 1 Approach 2

Robust min-max opti-
mization

Sensitivity analysis

Type of action Consider uncertainty Analyze uncertainty
Step of action In optimization Post-optimization

Robust min-max opti-
mization

Stochastic optimization

Considered case Worst case Mean value
Model assump-
tion

No distribution Probability distribution

Type of applica-
tion

For extreme events For regular events

Complexity Hard Easy
Robust min-max opti-
mization

Robust two-stage opti-
mization

Type of action Without recourse With recourse
Complexity Hard Harder

Robust min-max opti-
mization

Online optimization

Type of action Considers uncertainty Considers progressively
once and for all the uncertainty
Robust min-max opti-
mization

Uncertainty theory

Model assump-
tion

No distribution Uncertainty distribution

Table I.3: Comparison table between robust min-max optimization and other
approaches.

20

Chapter II
A heuristic approach for robust discrete

optimization: first example on the robust
shortest path problem

II.1 Motivation and context . 22

II.2 Problem formulation . 23

II.3 Method for computing an optimal solution 25

II.4 Scalable suggested heuristic algorithm 26

II.4.1 Assumptions. 26

II.4.2 The classical Frank-Wolfe algorithm 26

II.4.3 A Frank-Wolfe based algorithm . 28

II.5 Numerical results . 30

II.5.1 Experimental setup . 30

II.5.2 Behavior of DFW algorithm. 31

II.5.3 Performance of the DFW algorithm as a function of L . . . 33

II.5.4 Synthesis. 33

21

Chapter II. Heuristic approach

This chapter deals with the robust counterpart of binary linear programming prob-
lems in the case of correlated ellipsoidal uncertainty set. We show that this prob-
lem is hard, and despite the existence of exact methods, they become costly when
the problem is big. Thus, the first contribution of this thesis is to propose a
heuristic algorithm based on Frank-Wolfe’s algorithm for the robust counterpart
of problems with exact relaxation such as the shortest path problem. For this, an
explanation of how the classical Frank-Wolfe Algorithm works is first provided,
and the mechanism of the proposed Algorithm is then revealed. The approach is
validated on the example of the robust shortest path problem for problems from
small to medium size in comparison with an exact solver based on branch-and-
bound methods. Finally, the performance of the proposed algorithm is shown by
numerical comparisons.

II.1 Motivation and context

A complete formal definition of the chosen model and the considered problem, as
well as the motivations of every choice can be found fully in Section II.2. Never-
theless, this section aims to group all the elements of the model and motivations
in one paragraph, for the sake of easier accessibility for the reader.
As already motivated in the introduction of this PhD thesis, it is important to
consider the uncertainty in optimization problems, since neglecting it could have
bad consequences in the output of the problem: an optimal solution could be far
from optimal if the input of the problem changes. Since considering the uncer-
tainty makes the problems harder to solve in general, we consider to deal with the
uncertainty that is encountered in binary linear problems. We also suppose that
the uncertainty occurs only in the objective function.
A second choice to make is the model of uncertainty. We choose the absolute robust
decision, because we have strong guarantees about the robust solution: with this
definition, the proposed decision is always the best in its worst behavior.
Next, since this robust decision is criticized for being too pessimistic, we choose
to accompany it with the model of ellipsoidal set as the uncertainty set, since it
allows to control the pessimism. This uncertainty set has other advantages, such
as considering the correlations of the inputs of the problem, and the fact that it
gives a smooth form of the min-max problem as a minimization problem.
For the exact method in Section II.3, no additional assumptions are considered,
whereas, for the proposed heuristic approach in Section II.4, three assumptions
are needed, which are linked with the exact integrality relaxation.
All the details can be found in the following.

22

II.2. Problem formulation

II.2 Problem formulation

We consider binary linear optimization problems of the form:

min
x∈X

cTx, (II.1)

where X = {x ∈ {0, 1}m;Ax = b} is the set of the feasible solutions, and where
the cost vector c ∈ Rm is subject to uncertainty, i.e., it has more than one possible
realization. Let U be an uncertainty set included in Rm (U ⊆ Rm). The absolute
robust counterpart of Problem (II.1) is then defined as:

min
x∈X

max
c∈U

cTx. (II.2)

Problem (II.2) is motivated as follows. If we suppose that c takes its values in
U , then solving Problem (II.2) amounts to finding the optimal solution in X cor-
responding to the worst possible cost. The advantage of this solution is that it
guarantees that no matter what scenario occurs in U , the decision maker is sure
that his decision costs him less than the worst cases of every other decision.
If we consider that the cost coefficient vector c has a multinormal distribution with
expectation µ ∈ Rm and covariance matrix Σ ∈ Rm×m (see e.g. [Gut , Chapter 5])
, an interesting uncertainty set to consider is the following ellipsoid:

U = {c ∈ Rm; (c− µ)TΣ−1(c− µ) ≤ Ω2}. (II.3)

Indeed, U is a confidence set for c, i.e., c belongs to U with probability 1−α ∈ [0, 1],
where Ω > 0 is written as Ωα = χ2

m(1 − α) and χ2
m(1 − α) refers to the quantile

function for probability 1 − α of the chi-squared distribution with m degrees of
freedom . The covariance matrix Σ is positive semi-definite, but it is both useful
and reasonable to suppose that Σ is symmetric positive definite and not only
symmetric positive semi-definite. In general, the covariance matrix is positive
definite unless one variable is an exact linear function of the others. Thus, it
is sometimes common to take this assumption about the covariance matrix like
in [Ilyina 17], since it is useful for its properties that we see in this manuscript in
many places.
In that case, the parameter Ω describes the level of confidence in solving the
corresponding problem (II.2), i.e., the risk the user is willing to take. If Ω = Ωα is
small, i.e., α is close to 1, the user is willing to accept the risk to obtain a better
solution , while a user who chooses a bigger value for Ω prefers to be secured in

23

Chapter II. Heuristic approach

more cases, even if these cases are less likely to occur. This implies a big advantage
of the ellipsoidal uncertainty set, especially in opposite of the interval uncertainty
set, since it reduces the pessimism of the absolute robust definition, due to the
possibility to eliminate the cases that are less likely to occur, by the choice of Ω.
A second advantage is the consideration of the correlation between the elements of
the vector c, whereas, it is not the case for the interval uncertainty set, defined in
Section I.2.1.c. A third advantage of the ellipsoidal uncertainty set is expressed in
the following. If U is defined by the set (II.3), then Problem (II.2) can be rewritten
as a non-linear optimization problem:

min
x∈X

µTx+ Ω
√
xTΣx. (II.4)

Proof. The reformulation (II.4) is obtained the following way. First, for a fixed
x ∈ X, the solution of the problem

max
c∈U

cTx = max
c∈Rm;(c−µ)TΣ−1(c−µ)≤Ω2

cTx (II.5)

can be given explicitly, by defining z = (Σ−1) 1
2 (c − µ) ⇐⇒ c = Σ 1

2 z + µ. Here,
we need to mention that Σ is symmetric and positive definite, then it is invertible
and its inverse matrix Σ−1 is symmetric and positive definite. Then it is possible
to write Σ−1 = (Σ−1) 1

2 (Σ−1) 1
2 , with (Σ−1) 1

2 symmetric.Thus, Problem (II.5) is
written in the following way

max
z∈Rm;zT z≤Ω2

(Σ 1
2 z + µ)Tx

= max
z∈Rm;zT z≤Ω2

µTx+ (Σ 1
2 z)Tx

= µTx+ max
‖z‖≤Ω

(Σ 1
2x)T z

= µTx+ (Σ 1
2x)T Σ 1

2x

‖Σ 1
2x‖

Ω = µTx+ Ω
√
xTΣx.

Thus, we see that in the special case of the ellipsoidal uncertainty set, finding
a robust solution is reduced to solving a deterministic optimization problem. In
addition, one could interpret (II.6) as a weighted sum of the mean µTx and the
risk
√
xTΣx, which is called a mean-risk optimization problem [Markowitz 52].

Note that we are able to write the objective function as µTx+
√
xTΣx, by replacing

Σ by Ω2Σ, in order to simplify its expression. Then along this work, we would
rather use the following form

min
x∈X

µTx+
√
xTΣx. (II.6)

24

II.3. Method for computing an optimal solution

This problem is a non-linear non-convex problem which makes it challenging to
find an appropriate method to solve it. In the next section, we show an exact
method to compute an optimal solution.

II.3 Method for computing an optimal solu-
tion

There exists another formulation of problem (II.6) that permits to solve it using
existing algorithms which can be found in [Ilyina 17]. Problem (II.6) can be
written as a Binary Second Order Cone Programming problem (BSOCP). Since Σ
is positive symmetric definite, then we can write Σ = Σ 1

2 Σ 1
2 , with Σ 1

2 symmetric.
Then we obtain:

minµTx+
√
xTΣx (II.7)

s.t. x ∈ X

⇐⇒ minµTx+
√
xTΣ 1

2 (Σ 1
2)Tx

s.t. x ∈ X.

With a change of variable and after adding a variable that transforms the objective
function to a linear one, Problem (II.7) becomes:

minµTx+ z

s.t. ‖y‖2 ≤ z

y = (Σ 1
2)Tx

x ∈ X, y ∈ Rm, z ∈ R+.

Finally, noticing that a cone constraint is revealed, we conclude that (II.7) is
equivalent to:

minµTx+ z (II.8)
s.t. (y, z)T ∈ Km+1

y = (Σ 1
2)Tx

x ∈ X, y ∈ Rm, z ∈ R+,

with Km+1 =
{
x ∈ Rm+1; ‖(x1, . . . , xm)T‖2 ≤ xm+1

}
being a second order cone.

The same problem without the integrality condition corresponds to a Second Order
Cone Programming problem (SOCP) and can be solved in a polynomial time [Al-
izadeh 03, Section 8]. Thus, we easily obtain a lower bound for a branch-and-bound

25

Chapter II. Heuristic approach

method to get an optimal solution. There exists a BSOCP solver in CPLEX [Man-
ual 87] that gives an optimal solution of the addressed problem using the formu-
lation (II.8). But we mention that for problems of large size, the processing time
of branch-and-bound methods may become considerable, since the size of the tree
may grow exponentially. Thus proposing a heuristic algorithm seems mandatory.
Such algorithm is presented in the following section.

II.4 Scalable suggested heuristic algorithm

The proposed heuristic algorithm is a variant of the Frank-Wolfe algorithm [Frank 56].
It requires some specific assumptions which are listed first. Then we recall the clas-
sical Frank-Wolfe algorithm. Finally, we describe the algorithm in detail.

II.4.1 Assumptions

From now on, we consider the robust counterparts (II.6) of problems in the form (II.1)
that verify the following assumptions:

(A1) For any real-valued vector a (not necessarily with positive entries),
there exists an efficient algorithm to solve minx∈X aTx,
(A2) For any real-valued vector a, there exists a solution for minx∈Conv(X) a

Tx

that belongs to X, where Conv(X) ⊂ Rm is the convex hull of X,
(A3) The vector with zeros in all entries 0Rm does not belong to X.

The robust shortest path problem is an example for which these assumptions are
verified: polynomial time algorithms exist to optimally solve the deterministic
shortest path problem with real valued costs, hence (A1) is satisfied. (A2) is
verified since the incidence matrix of the graph in that problem is totally unimod-
ular. The vector 0Rm is never a path, hence (A3) is satisfied. Another example is
the workforce planning problem(see [Lee 04, Section 0.8]). For more details about
totally unimodular matrices, see [Lee 04].

II.4.2 The classical Frank-Wolfe algorithm

This section aims to describe the Frank-Wolfe algorithm to minimize convex func-
tions with convex constraints. This algorithm is adapted in the following section
(Section II.4.3) to solve heuristically our robust problem.

26

II.4. Scalable suggested heuristic algorithm

Let f be a real valued, convex and continuously differentiable function defined
on a compact convex D. We consider in this section general constrained convex
optimization problems of the form

min
x∈D

f(x). (II.9)

For such optimization problems, one of the simplest and earliest known iterative
optimizers is given by the Frank-Wolfe method [Frank 56], also known as condi-
tional gradient method

This algorithm is described in Algorithm 1.

Algorithm 1 Frank-Wolfe 1956 [Frank 56]
Let x(0) ∈ D
for k = 0 to K do

compute s(k) ← argmin
s∈D

∇f(x(k))T s

update x(k+1) ← (1− γ(k))x(k) + γ(k)s(k)

end for

This algorithm proceeds as follows. Starting with a feasible point x(0) ∈ D, then
in each step k, the algorithm computes the linear approximation of the objective
function f evaluated in any point s that belongs the neighborhood of x(k). This
approximation function is f(x(k)) +∇f(x(k))T (s−x(k)). Then, the algorithm finds
the minimium of this function, which consists in solving the problem

s(k) = argmin
s∈D

[f(x(k)) +∇f(x(k))T (s− x(k))] = argmin
s∈D

∇f(x(k))T s.

This problem is an easier problem than the original one ((II.9)), because its objec-
tive function is linear. Then, the algorithm moves in the direction of this minimizer
as illustrated in Figure II.1([Jaggi 13]). Nevertheless, the algorithm does not takes
directly the minimizer s(k) , but also considers a part of the previous solution x(k),
and this is to go slowly to convergence, and avoid big oscillations. More precisely,
it takes a convex combination of the actual direction s(k) and the previous solution
x(k). Due to the convexity of the space D, this convex combination belongs to D,
since both s(k) and x(k) belong to D.
About the step size of the algorithm γ(k), it admits several variants. The simplest
one is γ(k) = 2

k+2 . It permits to take a fewer and fewer part of the minimizer as
the algorithm proceeds. A more advanced one is the step size by line search:

γ(k) = argmin
α∈[0,1]

f((1− α)x(k) + αs).

This variant chooses at each iteration the best step size, in the sense that it the
objective function at the iteration.

27

Chapter II. Heuristic approach

Figure II.1: Illustration of Frank-Wolfe: the red plan is the linear approximation
of the function in blue at f(x). s is the point that minimizes the red plan while
satisfying the constraints represented by the space in turquoise. Figure taken

from [Jaggi 13].

As it is shown in the previous description of the algorithm, the main advantage
of the Frank-Wolfe Algorithm, as opposed to the projected gradient descent al-
gorithm, is that there are no projections for the updated position on the convex
set D at each step k, since the step is directly a minimum over the constraint set.
Another interesting point on the computational side is that at each step, we only
need to solve an optimization problem with a linear objective function.
In terms of convergence of Algorithm 1, it has been proved that for all k, we have

f(x(k))− f(x∗) ≤ O(1
k

).

II.4.3 A Frank-Wolfe based algorithm

Recall that our objective is to solve:

min
x∈X

g(x), (II.10)

where
g(x) = µTx+

√
xTΣx.

Note that Problem (II.10) is a constrained binary non-linear problem. In order
to define the gradient needed in Algorithm 2, we use the fact that Σ symmetric
positive definite.This means that xTΣx is null only if x equals 0Rm that does not
belong to X thanks to Assumption (A3). So for all x in X, the gradient of g at
x is computed as follows:

∇g(x) = µ+ Σx√
xTΣx

.

One should notice that we are not able to directly use the Frank-Wolfe algorithm
directly to solve Problem II.10, since the constraint set X is discrete and so the
problem is not convex. Instead, we propose a heuristic algorithm based on Frank-
Wolfe. The choice to work on Frank-Wolfe Algorithm is not random, but it is natu-
ral to think of this algorithm, since the objective function g is convex, which fulfills

28

II.4. Scalable suggested heuristic algorithm

one assumption for using this algorithm. Next, this algorithm is usually used for
optimization problems with the same form, but with continuous constraints. The
closest example to our work in the state-of-the-art is the one in [Buchheim 18a],
where they use Frank-Wolfe Algorithm for solving the relaxed robust knapsack
problem under ellipsoidal uncertainty. The proposed heuristic approach we pro-
pose is denoted as DFW Algorithm referring to Discrete Frank-Wolfe, and it is
described in Algorithm 2.

Algorithm 2 DFW: a Frank-Wolfe based algorithm to solve Problem (II.10)
1: x(0) a random feasible solution, ε > 0 close to zero, K a maximum number of

iterations.
2: k ← 1
3: stop ← false
4: while k ≤ K and ¬stop do
5: if g(x(k−1))− g(x(k)) < ε: then
6: stop ← true
7: else
8: s(k) ∈ argmin

y∈Conv(X)
∇g(x(k))Ty, with s(k) ∈ X

9: γ(k) ← argmin
α∈[0,1]

g(x(k) + α(s(k) − x(k)))

10: x(k+1) ← x(k) + γ(k)(s(k) − x(k))
11: end if
12: k + +
13: end while
14: return argmin

s∈{s(1),...,s(k−1)}
g(s)

Note k equals kend at the last iteration of DFW algorithm.
The main idea of our approach is that we use the classic Frank-Wolfe algorithm
on the convex hull Conv(X), and we exploit the fact that s(k) belongs to X thanks
to (A2), which means that it is a feasible solution. When Algorithm 2 stops,
x(k) is close to the optimal solution x∗ of the relaxed problem in the sense that
g(x(k))− g(x∗) ≤ O(1

k
).

Adding to this that s(k) (Algorithm 2, Line 8) is a minimizer of the linear ap-
proximation of g in the neighbourhood of x(k), and x(k) tends to minimize g in
Conv(X). This leads us to think that argmins∈{s(1),...,s(kend)} g(s) is the best choice
to minimize g in X. In other words, DFW Algorithm is a smart generator of good
candidates for the optimization problem. We choose the line search step γ(k) (Al-
gorithm 2, Line 9) because it guarantees that g(x(k)) decreases at each iteration.
The stopping criteria has been chosen as the convergence of the relaxed problem.

29

Chapter II. Heuristic approach

The following section shows numerical results that validate the heuristic proposed
approach DFW.

II.5 Numerical results

This section is dedicated to illustrate the results of Algorithm 2. First, we describe
the experimental setup. Then we discover the evolution of some interesting metrics
along the iterations of the algorithm, and we finally compare the solutions and the
performance between DFW and the CPLEX solver as a function of the size of the
problem.

II.5.1 Experimental setup

To test the algorithm, we take the example of the shortest path problem that can
be written in the form (II.1) and verifies the assumptions (A1), (A2) and (A3).
We consider an undirected graph G with n nodes and m edges, and we would like
to find a path between a source node s and a destination node d (s— d-path) with
minimal cost, where the costs associated to the edges can be, e.g., the duration or
the distance between the nodes. In this type of problems, we have:

X = {x ∈ {0, 1}m;Ax = b},

where
• A is the incidence matrix (of size n×m),
• b ∈ Rm is given by bi = 1{i=s} − 1{i=d}, i = 1, . . . ,m, which means that it is

a vector with the value 1 in the index of the source node s, −1 in the index
of the destination node d, and 0 elsewhere.

We choose to take grid graphs (illustrated in Figure II.2) with L rows and L

columns so that n = L2 and m = 4L(L− 1). Note that the number of edges m is
2L(L − 1), but it is doubled since it is an undirected graph, and thus every edge
counts two edges, since there are two ways from each node to the other. We choose
that the source and destination node be s = (1, 1) and d = (L,L) respectively, as
represented in Figure II.2 .
In the following numerical illustrations, we take µ = (µ1, . . . , µm) where µi is chosen
randomly in [0, 100], i = 1, . . . ,m. The random covariance matrix Σ is defined as
the following: writing Σ = PTDP where P is an orthogonal eigenvector matrix
and D is the corresponding diagonal eigenvalue matrix, each of the eigenvalues
λi, i = 1, . . . ,m, is chosen as the square of a random number in [0, µi] and P is
a random orthogonal matrix. This covariance matrix definition has been taken
from [Ilyina 17].

30

II.5. Numerical results

s = (1, 1)

L

L

d = (L,L)

Figure II.2: Grid graph model.

For the implementation, we use the Python language, with the Networkx package
for creating and manipulating graphs. To compute the solution s(k) (Line 8 of
Algorithm 2), we used a Linear Programming (LP) minimizer with the LP modeler
PuLP. Computations have been performed on an Intel® Core™ i5-8350U CPU @
1.70GHz × 8.
In all the results of this paper, we set ε = 10−6, K = 1000 and Ω = 1. The random
feasible solution x(0) in the case of the shortest path problem is a random path. To
generate one, we generate a random cost vector c, and then we solve the shortest
path problem (Problem (II.1)) using Dijkstra’s Algorithm [Dijkstra 59] or the LP
minimizer with the LP modeler PuLP to find a feasible solution x(0). The choice of
Ω has been made for analogy with [Ilyina 17], and, with the range of the generated
values of µ and Σ, it makes the problem hard enough to make the validation of
DFW Algorithm possible.

II.5.2 Behavior of DFW algorithm

This section aims to observe the behavior of DFW Algorithm.

II.5.2.a Behavior for a grid graph size L = 34

To observe the behavior of DFW algorithm, we take the grid graph with L = 34.
We denote, at each iteration k, the best solution so far as:

s
(k)
opt = argmin

s(l)∈{s(1),...,s(k)}
g(s(l)).

Note then that s(kend)
opt is the heuristic solution proposed by DFW. We show in

Figure II.3 the evolution of g(s(k)) and g(s(k)
opt) in the 200 first iterations.

31

Chapter II. Heuristic approach

0 50 100 150 200

2,050

2,100

2,150

k

g
(s

(k
))

(a). Evolution of g(s(k))

0 50 100 150 200

2,020

2,022

2,024

k

g
(s

(k
)

o
p
t)

(b). Evolution of g(s(k)
opt)

Figure II.3: The evolution of g(s(k)) and g(s(k)
opt) for L = 34 in the 200 first

iterations.

L k1

5 16
6 43
7 2 & 41 & 111
8 267
9 229
10 7
11 38

Table II.1: The iteration k1 of obtaining the optimal solution for different
problem sizes.

In this example, the algorithm gives the same solution as CPLEX at iteration
k = 90 (Figure II.3.b.). We see that, although s(k) alternates all along the iterations
(Figure II.3.a.), it discovers new best obtained values as g(x(k)) decreases and gets
closer to the optimal solution g(x∗).

II.5.2.b Number of iterations to get to convergence

Here, we show for different problem sizes L (L ∈ {5, 6, . . . , 11}), the iteration k1

at which DFW Algorithm gives the optimal solution. It is detailed in Table II.1.
These results vary depending on the initial random path x(0). Even for a fixed
problem size (e.g., L = 7), changing the initial solution three times gives respec-
tively three different values of the iteration of obtaining the optimal solution, which
are respectively k1: 2, 41 and 111.

32

II.5. Numerical results

II.5.3 Performance of the DFW algorithm as a function of
L

In order to evaluate the DFW Algorithm performance, we change the size of the
graph, and we compare with the solutions provided by CPLEX. Experiments show
that for small to medium graphs, DFW gives the same solution as CPLEX. Ar-
guably, when L is large, methods based on branch-and-bound are no more efficient.
In fact, in graphs corresponding to values of L larger than 40, due to the increase
of memory consumption, the console only displays at the end the cost of the best
integer solution found so far, rounded off to 4 decimal digits, without the corre-
sponding integer vector. Hence we could only compare with this value and thus
we could not use CPLEX to obtain a robust solution. For instance, in the case of
L = 40, for CPLEX, the process stopped after two hours, without concluding if
the best integer rounded to 2412.2594 corresponds to the optimal solution or not.
Whereas, DFW Algorithm gives the solution 2412.2594001669304 at iteration 16
only, as shown in Figure II.4 (200 iterations takes half an hour). The comparison
with the rounded digit of CPLEX makes us think that this is the optimal solution.
We tested graphs with L up to 46, (n = 2116 andm = 4140), and we have observed
that the cost of the solution proposed by DFW is the same obtained by CPLEX.
This result demonstrates that, even if we are not able to prove formally that DFW
gives the optimal solution, it is a heuristic approach that is indeed efficient in cases
of big graphs, where branch-and-bound methods are no more efficient.
Another interesting fact to mention is that, in more than 97% of the cases, ε = 10−3

is more than enough to obtain the same solution given by CPLEX, and in all our
experiments, we obtained it with less than 300 iterations.

II.5.4 Synthesis

To sum up the numerical results, the behavior of DFW algorithm is controlled,
and it surpassed the BSOCP solver of CPLEX. These numerical findings show that
the approach is promising. To understand the importance of the size of graphs
taken in the study, one may consider the example of the city of Barcelona. It can
be represented with a graph of 1020 nodes and 2522 edges. Another example is
Berlin-Mitte-Center which can be represented with 398 nodes and 871 edges. This
is to be compared with a grid graph with 40× 40 = 1600 nodes and 3120 edges.

In this chapter, the heuristic approach DFW has been presented and a first val-
idation has been led by comparison with the exact method. But as we saw in
the numerical part, the exact method has the limitation of not being applicable in
problems with large size, such as for the case of the robust shortest path problem

33

Chapter II. Heuristic approach

0 50 100 150 200
2,400

2,500

2,600

k

g
(s

(k
))

(a). Evolution of g(s(k))

0 50 100 150 200

2,412.26

2,412.28

2,412.3

2,412.32

2,412.34

k

g
(s

(k
)

o
p
t)

(b). Evolution of g(s(k)
opt)

Figure II.4: The evolution of g(s(k)) and g(s(k)
opt) for L = 40 in the 200 first

iterations.

with the grid graph of 40× 40 nodes. This motivates the following chapter, where
we are interested in finding another validation method than the comparison with
exact methods.

34

Chapter III
Validation method for the heuristic

solution applied on the robust shortest
path problem

III.1 Evaluation of the quality of the approximate solution 37

III.1.1 Bidualization of a quadratic problem 37

III.1.2 Using the bidualization to compute a lower bound 39

III.1.3 Solving the SDP problem . 45

III.2 Experimental results . 55

III.2.1 Experimental setup . 55

III.2.2 Numerical evaluation of the heuristic approach DFW. . . . 56

III.2.3 Numerical results of Pierra’s algorithm. 57

III.2.4 Discussion. 58

III.2.5 Difficulties in the experiments . 61

III.2.6 Synthesis. 63

35

Chapter III. Validation method

Recall from Chapter II that the first way to evaluate the quality of the solution
given by the DFW Algorithm or any other approach that solves Problem (II.6)
is to compare it with the solution given by the optimal solution of the BSOCP
using an exact solver like CPLEX. Since this approach is no longer usable when
considering large size problem and in order to be independent of exact solvers,
the second contribution of this thesis is described in this chapter, which aims to
develop a method to evaluate the quality of the heuristic approach. This method
consists in computing a lower bound by a semi-definite relaxation of the robust
problem. The gap between the solution proposed by the heuristic approach and
the lower bound is a metric to evaluate the quality of the heuristic approach, since
this gap contains the gap between the heuristic solution and the optimal one. The
relaxed problem results from a bidualization that is done by a reformulation of
the robust problem into a quadratic problem. In order to find this lower bound, a
Semi-Definite Programming problem (SDP) needs to be solved. Unfortunately, the
bidual problem is a big problem with much more constraints and more variables
than the original problem. Thus, despite its polynomial nature, the resolution
of this bidual problem is very time consuming and needs a huge memory space.
Therefore, the sparsity of the matrices that define the problem is exploited to
replace the classical solver by a sparse version of Pierra’s decomposition through
formalization in a product space algorithm. All this is numerically tested on the
robust shortest path problem, showing that, with these results, a polynomial time
evaluation of the quality of the solution of DFW heuristic is possible without
having the memory storage issue of the bidual problem.

Notation

Throughout this chapter, we use the following matrix notation. Unless stated
otherwise, all vectors belonging to Rl for some l ∈ N∗ are column vectors. Fur-
thermore, for some matrix M , M [a : b, c : d] denotes, for all integers a ≤ b and
c ≤ d, the sub-block containing the entries in the rows a to b and columns c to
d. M [a, c : d] (resp. M [a : b, c]) is short for M [a : a, c : d] (resp. M [a : b, c : c]).
MT is the transpose of M . Finally, 0(l,l) is the block of dimension l× l with zeros
everywhere and Il is the identity block of dimension l × l.

36

III.1. Evaluation of the quality of the approximate solution

III.1 Evaluation of the quality of the approx-
imate solution

This section starts with the general method of bidualization of any quadratic
problem. Then, it describes the transformation of Problem (II.6) into a quadratic
problem to bidualize. This gives the bidual problem that is an SDP problem.
Then, in the next part, we show how to solve this SDP problem, first with an
exact method, then with an adapted method to encounter the challenges of the
SDP problem in hand.

III.1.1 Bidualization of a quadratic problem

Before giving a lower bound for Problem (II.6), we state a lower bound by bidu-
alization for any quadratic problem. Then, we find a way to write Problem (II.6)
as a quadratic problem following the general form.
A lower bound for quadratic programming problems is proposed in [Lemaréchal 99].
The lower bound proposed in this reference is the result of a bidualization. A
first dualization of the quadratic problem is done applying the Lagrangian dual-
ity([Reeves 93]). This gives a dual problem that is a first SDP problem that gives
a first lower bound. Moreover, Lemaréchal and Oustry studied the dualization of
the dual problem using SDP duality, that is an extension of Lagrangian duality
over SDP problems. They proved that doing this gives a bidual problem (also an
SDP problem) that gives a second lower bound for the quadratic problem. This
second lower bound is even better than the first one, in the sense that the second
one is closer to the optimal solution of the quadratic problem than the first one.
The authors also show that this bidualization procedure is nothing but the very
known SDP relaxation, as we see in the following.
Consider the quadratic problem with N constraints:

inf q0(x), x ∈ Rd (III.1)
qj(x) = 0, j = 1, . . . , N,

where
qj(x) = xTQjx+ bTj x+ cj, j = 0, . . . N

are N + 1 quadratic functions defined on Rd, d ∈ N∗ being the dimension of the
problem, with the matrices Qj lying in the set Sd of symmetric matrices of size
d× d, the values bj in Rd, and the values cj in R ∀j ∈ {1, 2, . . . , N}; it is assumed
that c0 = 0.
Applying the Lagrangian duality on Problem (III.1) gives the dual problem:

37

Chapter III. Validation method

sup r, (III.2)
u ∈ RN , r ∈ R,[
c(u)− r 1

2b(u)T
1
2b(u) Q(u)

]
� 0,

whereQ(u) = Q0+ΣN
j=1ujQj, b(u) = b0+ΣN

j=1ujbj, and c(u) = ΣN
j=1ujcj, and where

the notation M � 0 means that M is positive semi-definite, for any symmetric
matrix M .
Then, applying SDP duality for the dual problem (III.2) reproduces the bidual
problem of Problem (III.1) that is given by

inf Q0 •X + bT0 x, X ∈ Sd, x ∈ Rd, (III.3)
Qj •X + bTj x+ cj = 0, j = 1, . . . , N,[

1 xT

x X

]
� 0,

where the inner product between the matrices A and B of size d× d is defined by

A •B = tr(ATB). (III.4)

This bidualization has another interpretation: it is also a direct convexification or
SDP relaxation of Problem (III.1). Indeed, noticing that Problem (III.1) can also
be written as

inf Q0 •X + bT0 x, X ∈ Sd, x ∈ Rd, (III.5)
Qj •X + bTj x+ cj = 0, j = 1, . . . , N,

X = xxT ,

by setting X = xxT , and writing a quadratic form xTQx as Q • xxT , and then
relaxing the nonconvex constraint X = xxT to X � xxT , that is convex with
respect to (x,X). Then, we can see the previous bidualization as a convexification.
Here we also use the equivalence(III.6) that can also be found in [Lemaréchal 99,
lemma 3.9].
For any (X, x) ∈ (Sd × Rd)

X � xxT ⇐⇒
[

1 xT

x X

]
� 0. (III.6)

The inequality deduced from this bidualization is the following. If p∗ is the
optimal solution of the quadratic problem (III.1), and d∗∗ is the optimal solution of
its bidual problem (III.3), then the following inequality holds(see [Lemaréchal 99,

38

III.1. Evaluation of the quality of the approximate solution

Proposition 4.5]:
d∗∗ ≤ p∗. (III.7)

This inequality holds simply because, as already mentioned, Problem (III.3) is a
relaxation for Problem (III.1). Note that d∗∗ is a better bound than the solution d∗
of the first dual problem (III.2) because d∗ ≤ d∗∗ ≤ p∗. The first inequality holds
because of the weak quality property of the Lagrangian duality, with a change of
signs. This is the main interest of bidualizing: we get a better lower bound than
if we simply dualize our problem. An important note is that for combinatorial
problems like the problems we consider, the problems are discrete, and thus non
convex. Thus, the zero gap has no theoretical guaranties. It could happen by
chance, but it is not a sure fact.
Hence, solving the SDP problem (III.3) enables to obtain a good lower bound for
p∗. In general, this technique is used when we do not have an optimal solution
for Problem (III.1), but instead we have a heuristic method for solving it and we
want to validate this method. In this case, we solve Problem (III.3), that is easier,
since it is a convex problem. Solving Problem (III.3) gives the lower bound d∗∗.
The distance between the lower bound and the heuristic solution indicates how far
this heuristic solution is from the optimal solution.

III.1.2 Using the bidualization to compute a lower bound

This section shows how to use the bidualization of general quadratic problems to
compute a lower bound for our problem.

III.1.2.a Bidualization of the addressed problem

We now come to show how to use the bidualization, explained in Section III.1.1, to
compute a lower bound for Problem (II.6). Recall that Problem (II.6) has another
formulation, that is a BSOCP (Problem (II.8)). Rewriting Problem (II.8) more
explicitly gives

min µTx+ z (III.8)

s.t.
√
yTy ≤ z

y = (Σ 1
2)Tx

x ∈ X, y ∈ Rm, z ∈ R+.

First, the BSOCP formulation (III.8) of Problem (II.6) can be written as a Binary
Quadratic Problem (BQP) since the variables y and z in Problem (III.8) are such
that

√
yTy ≥ 0 and z ≥ 0 for any y ∈ Rm and z ∈ R+. Thus, Problem (III.8) is

39

Chapter III. Validation method

equivalent to

min µTx+ z (III.9)
s.t. yTy ≤ z2

y = (Σ 1
2)Tx

x ∈ X, y ∈ Rm, z ∈ R+.

Before proceeding, it is important to mention that it has been proved here that
the BSOCP problem can been written as a BQP problem. Nevertheless, it does
not mean that the problem could have been easier to solve with this formulation
than with the formulation in Section II.3. Indeed, in combinatorial optimization,
it is known that a problem could be written in many forms. But this does not
necessarily mean that it is easier to solve in a form than another.
Let us proceed with the formulation of Problem (III.9) as a problem in the form (III.1).
This is done by writing all the constraints in the form of equalities. For this, we
first can write

x ∈ X ⇐⇒ Ax = b and x ∈ {0, 1}m ⇐⇒ Ax = b and xi(xi−1) = 0 i = 1, . . . ,m.

Second, the inequality yTy ≤ z can be transformed into an equality by considering
additional variables c1 and c2 as follows:

yTy ≤ z2 ⇐⇒ ∃c1 ∈ R ; yTy − z2 = −c2
1 ⇐⇒ ∃c1 ∈ R ; yTy − z2 + c2

1 = 0

z ≥ 0 ⇐⇒ ∃c2 ∈ R ; z = c2
2 ⇐⇒ ∃c2 ∈ R ; z − c2

2 = 0.

Problem (III.9) is then equivalent to the following problem

min µTx+ z (III.10)
s.t. yTy − z2 + c2

1 = 0
y = (Σ 1

2)Tx
Ax = b

xi(xi − 1) = 0 i = 1, . . . ,m
z − c2

2 = 0
x ∈ Rm, y ∈ Rm, z ∈ R, c1 ∈ R, c2 ∈ R.

We now need to write Problem (III.10) in a more compact way , i.e., in function
of one variable, vector u = [x, y, z, c1, c2] ∈ R2m+3, and write each constraint
individually. This makes Problem (III.10) equivalent to

40

III.1. Evaluation of the quality of the approximate solution

min (µ̃+ δ2m+1)Tu (III.11)
s.t. uT (1Ty 1y − δ2m+1 2m+1 + δ2m+2 2m+2)u = 0

(1y − (Σ̃ 1
2T))Ti u = 0 i = 1, . . . ,m

ÃTj u = bj j = 1, . . . , n
uT δiiu− δTi u = 0 i = 1, . . . ,m
− uT δ2m+3 2m+3u+ δT2m+1u = 0
u ∈ R2m+3,

where the vectors and matrices that appear in Problem (III.11) are defined as
follows

• the vector µ̃ of size 2m+ 3 is defined block-wise as µ̃ = [µ, 0, . . . , 0]T , so that
µ̃Tu = µTx if u = [x, y, z, c1, c2],

• for any k = 1, . . . , 2m+ 3 , δk ∈ R2m+3 is such that δk(l) = 1 if k = l, and 0
if else, so that δT2m+1u = u2m+1 = z, and δTi u = xi for i = 1, . . .m,

• 1y is an m× (2m+ 3) matrix such that 1y[m+ 1 : 2m;m+ 1 : 2m] = Im and
0 elsewhere, so that 1yu = y and uT1Ty 1yu = yTy,

• for any i, j = 1, . . . , 2m + 3, δi,j is a (2m + 3)× (2m + 3) matrix, such that
δi,j(k, l) = 1 if i = k and j = l, and 0 if else. So that uT δ2m+1,2m+1u = z2,
uT δ2m+2,2m+2u = c2

1, uT δ2m+3,2m+3u = c2
2 and uT δiiu = u2

i for i = 1, . . . ,m,

• Σ̃ 1
2T is an m × (2m + 3) matrix such that Σ̃ 1

2T [1 : m; 1 : m] = Σ 1
2T and the

other entries are zeros, so that Σ̃ 1
2Tu = Σ 1

2Tx,
• Ã is an n × (2m + 3) matrix such that Ã[1 : n; 1 : m] = A and the other

entries are zeros, so that Ãu = Ax.
Then, the bidual problem of Problem (III.11) is the following

min (µ̃+ δ2m+1)Tu (III.12)
s.t. (1Ty 1y − δ2m+1 2m+1 + δ2m+2 2m+2) • U = 0

(1y − (Σ̃ 1
2T))Ti u = 0 i = 1, . . . ,m

ÃTj u = bj j = 1, . . . , n
δii • U − δTi u = 0 i = 1, . . . ,m
− δ2m+3 2m+3 • U + δT2m+1u = 0[

1 uT

u U

]
� 0, U ∈ S2m+3, u ∈ R2m+3.

41

Chapter III. Validation method

The last step consists in writing Problem (III.12) in a compact way by the change
of variable

Z =
[

1 uT

u U

]
∈ S2m+4.

This can be done using the following changes:
1. For any v ∈ R2m+3, we write vTu = V • U , where V ∈ S2m+4 is defined by

V = 1
2

[
0 vT

v 0

]
∈ S2m+4.

2. For any W ∈ S2m+3, we write W •U = W •Z, where W ∈ S2m+4 is defined
by

W =
[

0 . . . 0
0 W

]
.

Due to this change of variable, the bidual problem of Problem (III.9) can be written
as an SDP problem in the more compact way:

min M • Z (III.13)
s.t. Z ∈ S2m+4

Oj • Z = bj, j = 1, . . . , n,
Ci • Z = 0, i = 1, . . . ,m,
Q • Z = 0,
Di • Z = 0, i = 2, . . . ,m+ 1
R • Z = 0,
Z � 0,

where M ∈ S2m+4 is defined as follows

M = 1
2

0 µT0 . . . 0 1 0 0
µ

0
...
0 0
1
0
0

,

42

III.1. Evaluation of the quality of the approximate solution

that is M [1, 2 : m + 1] = 1
2µ

T , M [1, 2m + 2] = 1
2 , M [2 : m + 1, 1] = 1

2µ, M [2m +
2, 1] = 1

2 , and zero elsewhere. The matrix Oj ∈ S2m+4 is defined for all j = 1, . . . , n
by

Oj = 1
2

0 ATj 0 . . . 0 0 0 0
Aj
0
...
0 0
0
0
0

,

that is Oj[1, 2 : m + 1] = 1
2A

T
j , Oj[2 : m + 1, 1] = 1

2Aj, and zero elsewhere. The
matrix Ci ∈ S2m+4 is defined for all i = 1, . . . ,m by

Ci = 1
2

0 −(Σ 1
2T)Ti 0 . . . 0 1 0 . . . 0

−(Σ 1
2T)i

0
...
0
1 0
0
...
0

,

that is Ci[1, 2 : m+1] = −1
2(Σ 1

2T)Ti , Ci[1,m+1+i] = 1
2 , Ci[2 : m+1, 1] = −1

2(Σ 1
2T)i,

Ci[m+ 1 + i, 1] = 1
2 , and zero elsewhere. We also define the matrix Q by

Q =

0 0 . . . 0 0 . . . 0 0 0 0
0(m,m)

Im
... −1

1
0 0

,

that is Q[m + 2 : 2m + 1,m + 2 : 2m + 1] is the identity matrix of dimension m,
Q[2m + 2, 2m + 2] = −1, Q[2m + 3, 2m + 3] = 1 and zero elsewhere. Next, for
the definition of the matrices Di, for every i = 2,m+ 1, Di is a 2m+ 4× 2m+ 4
matrix such that Di[i, i] = 1, Di[i, 1] = −1

2 and Di[1, i] = −1
2 . Finally, R is

a 2m + 4 × 2m + 4 matrix such that R[1, 2m + 2] = 1
2 , R[2m + 2, 1] = 1

2 and
R[2m+ 4, 2m+ 4] = −1.

43

Chapter III. Validation method

III.1.2.b The biduality gap

Now that we have stated the bidual problem (III.13) of Problem (III.9), the lower
bound inequality (III.7) reads here

val((III.13)) ≤ val((III.9)),

where val((P)) denotes the optimal value for a given problem (P). Due to the
equivalence between Problem (II.6) and Problem (III.9), we know that val((III.9))
equals g(x∗). This gives us an additional inequality:

val((III.13)) ≤ val((III.9)) = g(x∗) ≤ g(x̂).

Or, written differently,
d∗∗ ≤ p∗ = g(x∗) ≤ g(x̂). (III.14)

Thus, d∗∗ is a lower bound that allows to evaluate the quality of any heuristic
solution, and thus the one obtained by DFW Algorithm. Hence, the biduality gap
BG is defined as

BG = g(x̂)− d∗∗. (III.15)
A corresponding relative gap RBG is defined as

RBG = g(x̂)− d∗∗
d∗∗

. (III.16)

Concerning this relative gap, the division could also have been possible by g(x̂),
since it also gives a relative gap, but we chose to divide by d∗∗, since usually, this is
the adopted division for the relative gap in prediction algorithms: prediction - real value

real value .
Furthermore, and in order to analyze more precisely the obtained gap and to
compare with other work, we are interested in another metric named performance
ratio used by Karloff in [Karloff 99] for the Max-Cut problem. The performance
ratio ρ is defined as follows:

ρ = d∗∗

g(x̂) . (III.17)

We know that d∗∗ ≤ g(x̂). Thus, d∗∗

g(x̂) ≤ 1. So, the bigger ρ is, the closest it is to
1, and the better it is.
More explicitly, the validation process is the following: first solve the robust short-
est path problem using the heuristic approach DFW and find a heuristic solution x̂.
Then evaluate the quality of this solution using Inequality (III.14) by proceeding
as follows. We compute d∗∗, and if the gap between d∗∗ and g(x̂) is small, the gap
between g(x∗) and g(x̂) is small too, since g(x̂)− d∗∗ ≥ g(x̂)− g(x∗) ≥ 0. Then, a
comparison between the performance ratio with the ones obtained in other work
is done to go further in the evaluation process.

44

III.1. Evaluation of the quality of the approximate solution

The only missing step now is to compute d∗∗. In the next section, we show how to
solve Problem (III.13) to compute d∗∗.

III.1.3 Solving the SDP problem

The above sections aim at showing that a lower bound for the robust shortest
path problem is the solution of an SDP problem that has to be solved. SDP
is a particular class of convex optimization problems which appears in various
engineering motivated problems, including the most efficient relaxations of some
NP-hard problems such as often encountered in combinatorial optimization or
mixed integer programming [Anjos 11]. SDP can be written as minimization over
symmetric (resp. Hermitian) positive semi-definite matrix variables, with linear
cost function and affine constraints, i.e., problems of the form:

min
Z�0

(〈A,Z〉 : 〈Bj, Z〉 = bj for j = 1, . . . ,m) , (III.18)

where A,B1, . . . , Bm are given matrices. Compact SDPs can be solved in polyno-
mial time. SDP was extensively studied over the last three decades since its early
use which can be traced back to [Scobey 78] and [Fletcher 81]. In particular, Lin-
ear Matrix Inequalities (LMI) and their numerous applications in control theory,
system identification and signal processing have been a central drive for the use
of SDP in the 90’s as reflected in the book [Boyd 94]. One of the most influen-
tial paper for that era, is the one of Goemans and Williamson [Goemans 95] in
which SDP was shown to provide a 0.87 approximation to the Max-Cut problem,
a famous clustering problem on graphs. Other SDP schemes for approximating
hard combinatorial problems have subsequently been devised for the graph coloring
problem [Karger 98], for satisfiability problem [Goemans 95,Goemans 94]. These
results were later surveyed in [Lemaréchal 99, Goemans 97] and [Wolkowicz 99].
Numerical methods for solving SDP’s are manifold and various schemes have been
devised for specific structures of the constraints. One of these families of methods
is the class of interior point methods [Nesterov 94]. Such methods are known to be
of the most accurate type, but suffer from being not scalable in practice. Another
family of methods is based around the alternating direction method of multipliers
(ADMM) technique [Boyd 11]. ADMM approaches are usually faster as they can
be implemented in a distributed architecture. As such, they often appear to be
faster and more scalable than interior point methods at the price of a worse accu-
racy. Other methods can also be put to work as the method of Pierra [Pierra 84]
upon which we further elaborate in the present chapter.
As mentioned just above, interior point methods can be used to solve SDP prob-
lems, which gives a first way to solve the SDP problem (III.13): an option is
to implement this resolution using the CVXPY Python package [Diamond 16]

45

Chapter III. Validation method

which is a Python-embedded modeling language for convex optimization prob-
lems. CVXPY converts the convex problems into a standard form known as conic
form, a generalization of a linear program. The conversion is done using graph
implementations of convex functions. The resulting cone program is equivalent to
the original problem, so by solving it we obtain a solution of the original problem.
In particular, it solves the semi-definite programs using interior point methods. It
is rather simple to use CVXPY to solve our SDP problem (III.13): define the func-
tion to be minimized, the constraints of the problem, and then launch the solver.
However this simplicity has a price: the problem definition requires the storage of
the matrices that describe the problem. More precisely, we need to store n+2m+4
matrices of dimension 2m+4×2m+4: one matrix to define the objective function,
and n+ 2m+ 3 matrices for the constraints. This is a significant issue because of
the storage necessity, especially in large size problems. To illustrate how big the
storage grows with respect to the problem size, take a medium grid graph with
10× 10 nodes (n = 100, m = 360). This problem size requires the storage of 824
matrices of dimension 724 × 724 (this takes 3.45 Gigabytes in double precision).
A relatively big grid graph with 40 × 40 nodes (n = 1600, m = 6240) needs the
storage of 14084 matrices of dimension 12484 × 12484 (this takes 17.5 terabytes
in double precision). But since most of the matrices we have are sparse, we adopt
another efficient approach where we are able to make sparse computations that
allow us to avoid this main drawback considering the storage of the matrices. Be-
fore tackling this memory storage issue, we first describe the practical algorithm
that we have implemented in order to find this d∗∗.

III.1.3.a Pierra’s Decomposition through formalization in a product space

The goal of this section is to describe the algorithm of Pierra [Pierra 84] for opti-
mization problems over an intersection of convex sets. But it is worth mentioning
that the work of Pierra aimed first to find a point in an intersection of convex sets.
This is stated and described in the following paragraph.
Find a point in an intersection of convex sets. Consider the following
problem

Find x ∈ H (III.19)
s.t. x ∈ ∩Jj=1Sj.

The main idea of the work of Pierra is the formalization of the constraint set
∩Jj=1Sj introducing the set H = HJ . Let us first define the sets H, S and D.
First, the product set H = HJ is such that

x ∈ H ⇐⇒ x = (x1, . . . , xJ) with x1, . . . and xJ ∈ H.

46

III.1. Evaluation of the quality of the approximate solution

Next, the subset S = S1 × · · · × SJ ⊂ H is such that

x ∈ S ⇐⇒ x = (x1, . . . , xJ) with x1 ∈ S1, . . . and xJ ∈ SJ .

Now denote the diagonal convex D ⊂ H such that

x ∈ D ⇐⇒ x = (x, . . . , x) with x ∈ H.

Then, we have
Proposition 1.

x ∈ ∩Jj=1Sj =⇒ x = (x, . . . , x) ∈ S ∩D. (III.20)

Proof. First, it is obvious that for any x ∈ H, x = (x, . . . , x) ∈ D, by definition.
Next, if x ∈ ∩Jj=1Sj, then x ∈ S1, . . ., and x ∈ SJ . Then (x, . . . , x) ∈ S. Thus,
x = (x, . . . , x) ∈ S ∩D.

Property (III.20) enables us to formalize Problem (III.19) in another space, which
is the product space. Indeed, we have the equivalence between the two following
problems:

In H :
Find x ∈ H (III.21)

s.t. x ∈ ∩Jj=1Sj.
In H :

Find x ∈ H (III.22)
s.t. x ∈ S ∩D.

To find a solution of Problem (III.21) from a solution of Problem (III.22), we use
the fact that a solution of Problem (III.22) belongs to D, then it has the form
x = (x, . . . , x). Therefore, it is obvious that x is a solution of Problem (III.21).
This formalization reduces the problem, since in the product space H, there are
only two sets, instead of J sets in H. In addition, the orthogonal projections over
these two sets S and D is interesting, because of the following projection formulas

(i)ProjS(x, . . . , x) = (ProjS1(x), . . . , P rojSJ (x)). (III.23)
(ii)ProjD(x1, . . . , xJ) = (1/JΣJ

j=1xj, . . . , 1/JΣJ
j=1xj). (III.24)

(iii)ProjD(ProjS(x, . . . , x)) = (1/JΣJ
j=1ProjSj(x), . . . , 1/JΣJ

j=1ProjSj(x)).
(III.25)

The algorithm of Pierra described in Algorithm 3 is based on these successive
projections: Lines 5 and 6 of Algorithm 3 are the successive projections over S
and D stated in Formula (III.23) and then Formula (III.24). Most importantly,

47

Chapter III. Validation method

it has been proved in [Pierra 84, Theorem 1.1] that the successive projections for
Problem (III.21) give the method of successive projections for Problem (III.22) as
it is described in Algorithm 3. To solve Problem (III.19), Pierra’s Algorithm can
be described in three steps:
(i) The first step (Line 5 of Algorithm 3) comes from the projection on S.
(ii) the second step comes from the projection over the diagonal convex D, repre-
sented in Line 6 of Algorithm 3.
(iii) Finally, the third step (Line 10 of Algorithm 3) is the extrapolation step. This
gives the nomination of the method of Pierra, which is the Extrapolated Parallel
Projection Method (EPPM). This step is a geometric way to make the successive
projections faster, by taking a point bp+1 that belongs to {xp+θ(b′p+1−xp), θ ≥ 0}
and that has another property issued from the space H of which the explanation
is not given here. Next, in simple words, the operation in Line 11 is used to
center the iterate xp from time to time, every k iterations: in [Pierra 84, Section
4], it is explained that without the centring technique, the convergence seems to
become ineffective, and on the other side, centring at each iteration can lead to an
ineffective extrapolation.
This algorithm converges, and the proof can be found in [Pierra 84, Theorem 1.2].

Algorithm 3 Pierra’s algorithm to solve Problem (III.19)
1: x0 ∈ H random, k ∈ N, λ ∈]0, 1], P the maximum number of iterations.
2: p← 0
3: stop ← false
4: while p ≤ P and ¬stop do
5: vp+1

j ← ProjSj(xp), j = 1, . . . , J
6: b

′p+1 ← 1
J

ΣJ
j=1v

p+1
j

7: if b′p+1 = xp then
8: stop ← true
9: else
10: bp+1 ← xp + βp+1(b′p+1 − xp) with βp+1 ← ΣJj=1‖v

p+1
j −xp‖2

J‖b′p+1−xp‖2

11: xp+1 ←

x
p + λ(bp+1 − xp), if p+ 1 ≡ k(mod k).
bp+1 otherwise.

12: p+ +
13: end if
14: end while
15: return xp

48

III.1. Evaluation of the quality of the approximate solution

Minimize a function over an intersection of convex sets. Here we describe
the algorithm of Pierra [Pierra 84] for minimization problems over an intersection
of convex sets.
For this, we consider a general minimization problem in a finite dimensional Hilbert
space H equipped with a norm ‖.‖2. Suppose we want to solve

min
x∈H

f(x) (III.26)

s.t. x ∈ ∩Jj=1Sj,

where f is a differentiable function, and S1, . . . ,SJ are convex subsets of H. Thus
in this part, in addition to finding a point in the intersection of the convex sets,
there is an objective function f to minimize. Thus the main ideas of the algorithm
3 remain the same, with a difference in Line 5 that considers the minimization part.
Pierra’s Algorithm to solve Problem (III.26) is described in Algorithm 4. It is im-
portant to note that, unfortunately, in the reference that we followed([Pierra 84]),
Algorithm 4 is not written in a straightforward way, but its full form could be
deduced from [Pierra 84, Algorithm 3.2], with the explicit formula of vp+1

j that is
written at the end of [Pierra 84, Theorem 3.2].

Algorithm 4 Pierra’s algorithm to solve Problem (III.26)
1: x0 ∈ H random, k ∈ N, λ ∈]0, 1], ε small, P the maximum number of iterations.

2: p← 0
3: stop ← false
4: while p ≤ P and ¬stop do
5: vp+1

j ← ProxISj+ 1
2J εf

(xp), j = 1, . . . , J
6: b

′p+1 ← 1
J

ΣJ
j=1v

p+1
j

7: if b′p+1 = xp then
8: stop ← true
9: else
10: bp+1 ← xp + βp+1(b′p+1 − xp) with βp+1 ← ΣJj=1‖v

p+1
j −xp‖2

J‖b′p+1−xp‖2

11: xp+1 ←

x
p + λ(bp+1 − xp), if p+ 1 ≡ k(mod k).
bp+1 otherwise.

12: p+ +
13: end if
14: end while
15: return xp

In this algorithm, the proximal function associated to a function h : H −→ R is
given by

Proxh(y) = argmin
x∈H

[
h(x) + 1

2‖x− y‖
2
2

]
. (III.27)

49

Chapter III. Validation method

Next, ISj(x) is the indicator function for the set Sj, it equals 0 if x ∈ S and +∞
otherwise. Finally, ε > 0 is a tuning parameter for the minimization step which
value is small (e.g., ε = 10−4).
Just like the previous paragraph that concerns finding a point in a intersection
of convex sets, the main idea of the algorithm comes from the formalization of
the constraint set ∩Jj=1Sj introducing the set H = HJ , and then we reformulate
Problem (III.26) in H as a minimization problem over S ∩ D. The three steps
are the same as in the previous paragraph with a difference in the first one: here,
the first step described in Line 5 of Algorithm 4 comes from the projection on S,
with a part of minimization of the objective function. The role of the proximal
function can be explained intuitively as follows: for every constraint space Sj, it
both minimizes the function f and stays close to xp, and since xp partially results
from a point that belongs to all the constraint spaces, xp converges to the optimal
solution. The second and third step are the same as the ones described in the
previous paragraph. It has been proved in [Pierra 84, Theorem 3.3] that this
algorithm converges. All the theoretical background of Pierra’s algorithm can be
found in [Pierra 84].

III.1.3.b Pierra’s algorithm adapted to solve our SDP problem

We now come to apply Algorithm 4 to solve Problem (III.13). In this case, the
corresponding Hilbert space is set as H = S2m+4, with the norm ‖.‖F that is
associated to the inner product • defined in Section III.1.1 by Definition (III.4),
such that ‖A‖2

F = tr(ATA). The function to minimize in Problem (III.26) is given
by f : Z ∈ S2m+4 7→ f(Z) = M • Z, and the integer J equals n + 2m + 3. The
convex sets S1, . . . ,SJ are defined as follows:

Sj = {Z ∈ S2m+4; Aj • Z = bj}, j = 1, . . ., n+ 2m+ 2,
SJ = {Z ∈ S2m+4; Z � 0}, (III.28)

where Aj, bj, j = 1, . . ., n + 2m + 2 are respectively matrices and scalars defined
by

Aj =

Oj, j = 1, . . . , n,
Cj−n, j = n+ 1, . . . , n+m,

Q, j = n+m+ 1,
Dj−(n+m+1), j = n+m+ 2, . . . , n+ 2m+ 1,

R, j = n+ 2m+ 2,

bj =
{
bj, j = 1, . . . , n,
0, j = n, . . . , n+ 2m+ 2.

(III.29)

50

III.1. Evaluation of the quality of the approximate solution

In our case, the proximal function associated to ISj + 1
2J εf on Line 5 of Algorithm 4

is computed using Definition (III.27) in the following way:

ProxISj+ 1
2J εf

(xp) = argmin
Z∈Sj

[1
2J εM • Z + 1

2‖Z − x
p‖2
F

]

= argmin
Z∈Sj

[1
2J εM • Z + 1

2‖Z‖
2
F − Z • xp + 1

2‖x
p‖2
F

]

= argmin
Z∈Sj

[1
2‖Z‖

2
F − Z • (xp − 1

2J εM) + 1
2‖x

p‖2
F

]

= argmin
Z∈Sj

[1
2‖Z − (xp − 1

2J εM)‖2
F = ProjSj(xp −

1
2J εM)

]
,

(III.30)

where ProjSj is the projection on the set Sj. Thus, one sees from (III.30) that
there remains to compute the projections over the constraint spaces defined by
Definitions (III.28). Those spaces are of two kinds. First, for any constraint in
the form C = {Z ∈ S2m+4;A • Z = b}, we have the following explicit projection
formula:
Proposition 2.

ProjC(Z) = Z +
(

b−A • Z
‖A‖2

F

)
A.

Proof. This explicit projection formula is obtained using the following proof ele-
ments. First we have

ProjC(Z) = min
Y ∈C
‖Y − Z‖2

F = min
Y ∈S2m+4
A•Y−b=0

‖Y − Z‖2
F .

If we note f(Y) = ‖Y − Z‖2
F and g(Y) = A • Y − b, then the optimality con-

ditions imply that this minima is obtained if and only if there exists a Lagrange
multiplier [Nocedal 06] λ ∈ R such that ∇f − λ∇g = 0, then there exists λ ∈ R
such that Y − Z = λA, which means that Y = Z + λA. Next, to find λ, we use
the fact that Y ∈ C, then

=⇒ A • Y = b

=⇒ A • (Z + λA) = b

=⇒ A • Z + λA • A = b

=⇒ λ = b− A • Z
‖A‖2

F

.

Then
ProjC(Z) = Z +

(
b−A • Z
‖A‖2

F

)
A.

51

Chapter III. Validation method

Second, concerning the projection on the constraint space SJ = {Z ∈ S2m+4; Z �
0}, we have

ProjSJ (Z) = U max{Λ, 0}UT ,

where Z = UΛUT is the eigenvector decomposition of the matrix Z (see [Anjos 11,
section 20.1.1]).
In view of all these considerations, Pierra’s algorithm applied on Problem (III.13)
is described in Algorithm 5.

Algorithm 5 Pierra’s algorithm to solve the SDP problem (III.13)
1: Z1 ∈ S2m+4 random, k ∈ N, λ ∈]0, 1], ε small, α small, P the maximum

number of iterations.
2: p← 1
3: stop ← false
4: while p ≤ P and ¬stop do
5: Y p ← Zp − ε

2(n+2m+3)M

6: for j = 1 to n do
7: Zp+1

j ← Y p + (bj−Oj•Y
p

‖Oj‖2)Oj

8: end for
9: for i = 1 to m do
10: Zp+1

n+i ← Y p + (−Ci•Y p‖Ci‖2)Ci
11: end for
12: Zp+1

n+m+1 ← Y p + (0−Q•Y p
‖Q‖2)Q

13: for i = 2 to m+ 1 do
14: Zp+1

n+m+i ← Y p + (0−Di•Y p
‖Di‖2)Di

15: end for
16: Zp+1

n+2m+2 ← Y p + (0−R•Y p
‖R‖2)R

17: Zp+1
n+2m+3 ← Up max{Γ(p), 0}UpT , where UP (resp. Γp) are the eigenvectors

(resp. the eigenvalues) of Y p

18: B′p+1 ← 1
n+2m+3Σn+2m+3

i=1 Zp+1
i

19: if ‖B′p+1 − Zp‖2 < α then
20: stop ← true
21: else
22: Bp+1 ← βp+1B′p+1 + (1− βp+1)Zp with βp+1 ← Σn+2m+3

i=1 ‖Zp+1
i −Zp‖2

(n+2m+3)‖B′p+1−Zp‖2

23: Zp+1 ←

Z
p + λ(Bp+1 − Zp), if p+ 1 ≡ k(mod k).

Bp+1 otherwise.
24: p+ +
25: end if
26: end while
27: return Zp

52

III.1. Evaluation of the quality of the approximate solution

In order to solve Problem (III.13) using Algorithm 5, we need to store the matrices
M , Oj j = 1, . . . , n, Ci, i = 1, . . . ,m, Q, Di, i = 2, . . . ,m+1 and R, that is in total
n + 2m + 4 matrices of dimension 2m + 4× 2m + 4. Nevertheless, there is a way
to avoid storing these matrices, since in Algorithm 5, we do not need the whole
matrices, but rather the result of operations that mostly include dot products of
sparse matrices. So, if we compute the terms needed for Lines 5, 7, 10, 12, 14 and
16 of Algorithm 5 depending on A, b, µ, and Σ, then there is no need to store the
matrices M , Oj j = 1, . . . , n, Ci, i = 1, . . . ,m, Q, Di, i = 2, . . . ,m+ 1 and R. All
these calculations are detailed in the next section (III.1.3.c). This aspect is one of
the contributions of this chapter.

III.1.3.c Sparse computations

The aim of this section is to detail the computations needed in Algorithm 5, and
the replacements done to avoid the storage of the matrices M , Oj j = 1, . . . , n,
Ci, i = 1, . . . ,m, Q, Di, i = 2, . . . ,m+ 1 and R. Recall that doing this enables us
to express all the formulas depending only on A, b, µ, and Σ, and thus to avoid
the storage of n+ 2m+ 4 matrices of dimension 2m+ 4× 2m+ 4.

The operation in Line 5
1: Y p = Zp − ε

2(n+2m+3)M

can be replaced by
1: Y p = Zp

2: Y p
[1,2→m+1] = Y p

[1,2→m+1] − ε
4(n+2m+3)µ

T

3: Y p
[2→m+1,1] = Y p

[2→m+1,1] − ε
4(n+2m+3)µ

4: Y p
[1,2m+2] = Y p

[1,2m+2] − ε
4(n+2m+3)

5: Y p
[2m+2,1] = Y p

[2m+2,1] − ε
4(n+2m+3)

Here, recall the form of the matrix M : M [1, 2 : m + 1] = 1
2µ

T , M [1, 2m + 2] = 1
2 ,

M [2 : m+1, 1] = 1
2µ,M [2m+2, 1] = 1

2 , and zero elsewhere. Then, in the operation
Y p = Zp− ε

2(n+2m+3)M , we initialize Y p as Zp, and we change only the elements of
Y p where M does not equal zero. The most important aspect for us is that storing
the matrix M is useless, since we only need the vector µ. The same reasoning
follows in the other operations.

The operation in Line 7
1: Zp+1

j = Y p + (bj−Oj•Y
p

‖Oj‖2)Oj

can be replaced by
1: Zp+1

j = Y p

2: Zp+1
j [1, 2 : m+ 1] = Zp+1

j [1, 2 : m+ 1] + aj
2 Aj∗

53

Chapter III. Validation method

3: Zp+1
j [2 : m+ 1, 1] = Zp+1

j [2 : m+ 1, 1] + aj
2 Aj∗,

withAj∗ is the vector containing the j-th lign of A, aj = bj−Oj•Y p
‖Oj‖2 = 2bj−Σmi=1Aji(Y

p
i+1 1+Y p1 i+1)

Σmi=1A
2
ji

,

since ‖Oj‖2 = 1
2Σm

i=1A
2
ji, and Oj • Y p = Σm

i=1Aji
(Y pi+1 1+Y p1 i+1)

2 .

The operation in Line 10
1: Zp+1

n+1+i = Y p + (−Ci•Y p‖Ci‖2)Ci

can be replaced by
1: Zp+1

n+1+i = Y p

2: Zp+1
n+1+i[1, 2 : m+ 1] = Zp+1

n+1+i[1, 2 : m+ 1]− ci
2 (Σ 1

2T)i
3: Zp+1

n+1+i[1,m+ 1 + i] = Zp+1
n+1+i[1,m+ 1 + i] + ci

2
4: Zp+1

n+1+i[2 : m+ 1, 1] = Zp+1
n+1+i[2 : m+ 1, 1]− ci

2 (Σ 1
2T)i

5: Zp+1
n+1+i[m+ 1 + i, 1] = Zp+1

n+1+i[m+ 1 + i, 1] + ci
2 ,

with ci = −Ci•Y p
‖Ci‖2 = Σmk=1(Σ

1
2T)ik(Y p

k+1 1+Y p1 k+1)−Y pm+i+1 1−Y
p
1 m+i+1

1+Σm
k=1(Σ

1
2T)2

ik

, since ‖Ci‖2 = 1
2(1 +

Σm
k=1(Σ 1

2T)2
ik), and Ci • Y p = −Σm

k=1(Σ 1
2T)ik

Y p
k+1 1+Y p1 k+1

2 + Y pm+i+1 1+Y p1 m+i+1
2 .

The operation in Line 12
1: Zp+1

n+m+2 = Y p + (0−Q•Y p
‖Q‖2)Q

can be replaced by
1: Zp+1

n+m+2 = Y p

2: Zp+1
n+m+2[m+ 1 + i,m+ 1 + i] = Zp+1

n+m+2[m+ 1 + i,m+ 1 + i] + q for i between
1 and m.

3: Zp+1
n+m+2[2m+ 2, 2m+ 2] = Zp+1

n+m+2[2m+ 2, 2m+ 2]− q
4: Zp+1

n+m+2[2m+ 3, 2m+ 3] = Zp+1
n+m+2[2m+ 3, 2m+ 3] + q,

with q = 0−Q•Y p
‖Q‖2 = Σ2m+1

k=m+2Y
p
kk
−Y p2m+2 2m+2+Y p2m+3 2m+3

m+2 , since ‖Q‖2 = m + 2, and
Q • Y p = −Σ2m+1

k=m+2Y
p
kk + Y p

2m+2 2m+2 − Y
p

2m+3 2m+3.

The operation in Line 14
1: Zp+1

n+m+1+i = Y p + (0−Di•Y p
‖Di‖2)Di

can be replaced by
1: Zp+1

n+m+1+i = Y p

2: Zp+1
n+m+1+i[i, i] = Zp+1

n+m+1+i[i, i] + di
3: Zp+1

n+m+1+i[1, i] = Zp+1
n+m+1+i[1, i]− di

2
4: Zp+1

n+m+1+i[i, 1] = Zp+1
n+m+1+i[i, 1]− di

2 ,

with di = 0−Di•Y p
‖Di‖2 = −2

3(Y p[i, i] − Y p[i,1]+Y p[1,i]
2), since ‖Di‖2 = 3

2 , and Di • Y p =
Y p[i, i]− Y p[i,1]+Y p[1,i]

2 .

54

III.2. Experimental results

The operation in Line 16
1: Zp+1

n+2m+3 = Y p + (0−R•Y p
‖R‖2)R

can be replaced by
1: Zp+1

n+2m+3 = Y p

2: Zp+1
n+2m+3[2m+ 4, 2m+ 4] = Zp+1

n+2m+3[2m+ 4, 2m+ 4]− l
3: Zp+1

n+2m+3[1, 2m+ 2] = Zp+1
n+2m+3[1, 2m+ 2] + l

2
4: Zp+1

n+2m+3[2m+ 2, 1] = Zp+1
n+2m+3[2m+ 2, 1] + l

2 ,

with l = 0−R•Y p
‖R‖2 = 2

3(Y p
2m+4 2m+4 −

Y p2m+2 1+Y p1 2m+2
2) since ‖L‖2 = 3

2 and L • Y p =
−Y p

2m+4 2m+4 + Y p2m+2 1+Y p1 2m+2
2 .

These sparse computations are integrated in Algorithm 5 to solve the SDP prob-
lem (III.13) that gives a lower bound to validate the heuristic approach DFW. All
this will be numerically tested in the next section.

III.2 Experimental results

The following experimental results aim at evaluating the quality of the proposed
solution by DFW Algorithm by checking the gap obtained by the bidualization
of Problem (II.6). For this, an important observation is that the bidual prob-
lem (III.13) is an SDP problem. In order to compute this gap, we test both
CVXPY SDP solver and Pierra’s algorithm.
First, we evaluate the quality of the solution of DFW Algorithm and analyze
the obtained lower bound. Then, for the SDP relaxation, we compare solutions
obtained by CVXPY and Pierra’s algorithm, and we show the storage economy
resulting from using Pierra’s algorithm. This storage economy is especially due to
the fact that we are taking advantage of the matrices sparsity in Problem (III.13).

III.2.1 Experimental setup

As in Chapter II, we consider the robust counterpart of the shortest path problem
with an undirected grid graph for different sizes. Recall that for a grid graph
L×L, the number of nodes is n = L2, and the number of edges is m = 4L(L− 1).
For the definition of Problem (II.6), the random mean vector µ and the random
covariance matrix Σ are chosen randomly and Ω = 1, as in Section II.5.
The implementation of both the computation of DFW robust solutions and the
CVXPY based solver are written using Python 3.8.5. However, Pierra’s algo-
rithm is implemented using Matlab R2018b. Computations have been performed

55

Chapter III. Validation method

on the supercomputer facilities of Mésocenter de calcul de Franche-Comté in Be-
sançon, France 1. A global recap for the coding language information and the
experimental parameters of this section can be found in Table III.2.

III.2.2 Numerical evaluation of the heuristic approach DFW

Here, we first show the solutions of Problem (II.6) proposed by DFW algorithm and
CPLEX for problem sizes L ∈ {3, 4, . . . , 10}. No surprises here, we have already
seen in Chapter II that our proposed heuristic DFW gives the same solution as the
optimal one for these problem sizes. The goal in this chapter anyhow is to develop
a lower bound validation to avoid comparing with exact methods to evaluate the
quality of the obtained solution. For this purpose, we compute the lower bound
d∗∗ of Problem (II.6). In this part, this lower bound is computed using CVXPY.
Finally, we compute the relative biduality gap RBG (given in Definition (III.16))
which allows to evaluate the quality of the solution given by DFW algorithm, and
the performance ratio, which is useful for comparison with other work.
For experiments with DFW algorithm, constant parameters are ε = 10−6 and
K = 1000. Table III.1 shows results for problem sizes L ∈ {3, 4, . . . , 10}. First
of all, we note that in all the cases processed, DFW algorithm gives the same
solution as CPLEX. Second, concerning the relative gap, since we theoretically
only have the weak duality for the problem we are solving, the biduality gap is
not necessarily zero even if the solution is optimal. Thus, if the gap is small, it
means that the heuristic solution is close to the optimal solution, but the opposite
is false. Indeed a large gap does not mean that the heuristic solution is far from
the optimal solution in the worst case. In all the processed cases, the lower bound
d∗∗ is less than the optimal solution p∗, which validates the developments and the
computations. Next, the obtained relative gap RBG is between 0.1917 and 0.3178.
This gap is a metric that allows to measure how far the heuristic approach is from
the optimal solution. In other words, the heuristic solution is between 19.17% and
31.78% from optimality, in the worst case. In our case, the range of values for the
performance ratio is: 0.7588 ≤ ρ ≤ 0.8391. This is comparable to 0.87, the highest
performance ratio obtained for the Max-Cut problem([Karloff 99]).
It would be interesting to test other cases of larger problems where the comparison
with CPLEX is not possible, and check if the relative gap stays in the same interval
as the processed cases. Indeed, in the processed cases, DFW algorithm gives the
optimal solution, and thus the gap only comes from p∗−d∗∗ (see Equation (III.14)).

1http://meso.univ-fcomte.fr/

56

http://meso.univ-fcomte.fr/

III.2. Experimental results

L Solution of
DFW g(x̂)

Optimal
solution by
CPLEX p∗

Lower
bound by
CVXPY
d∗∗

Relative
gap RBG

Performance
ratio ρ

3 223.8807 223.8807 169.8902 0.3178 0.7588
4 302.9097 302.9097 230.64099 0.3133 0.7614
5 381.3647 381.3647 292.6109 0.3033 0.7673
6 498.444952 498.444952 401.92866 0.2401 0.8064
7 524.41995 524.41995 422.3119 0.2418 0.8053
8 625.46595 625.46595 524.83906 0.1917 0.8391
9 659.0601 659.0601 542.6984 0.2144 0.8234
10 604.0187 604.0187 492.4042 0.2267 0.8152

Table III.1: Comparison of the solution proposed by DFW with the optimal
solution using CPLEX, and the lower bound given by CVXPY.

Now that the evaluation of solutions given by DFW algorithm is done using both
CPLEX and the relative gap computed by CVXPY, an issue remains as discussed
in Section III.1.3: CVXPY needs a huge amount of memory to store matrices.
That has justified the use of an alternative approach with Pierra’s algorithm using
sparse computations detailed in Section III.1.3.c. In the next section, numerical
results obtained using Pierra’s algorithm are presented, as well as the resulting
gain in memory storage.

III.2.3 Numerical results of Pierra’s algorithm

In this part, we only consider the bidual problem (III.13). Despite that the goal
of this chapter is to evaluate the quality of the solution of the DFW approach by
computing a gap with the solution of a bidual problem, here, the focus is on the
numerical results of solving only the bidual problem (III.13).
We show the results when using Pierra’s algorithm for Problem (III.13) in com-
parison with the direct method implemented with CVXPY for problem sizes
L ∈ {3, 4, . . . , 10}. For these experiments, constant parameters are ε = 10−4,
λ = 0.5, k = 3 and α = 10−8. Z1 is chosen as 0(2m+4,2m+4). Table III.3 shows the
computation time and memory space needed for the computation using respec-
tively CVXPY and Pierra’s algorithm, as well as the percentage of optimality of
Pierra’s solution compared to CVXPY after about 10000 iterations. The memory
space saving is important. For L = 10, we have saved from 3.45 GigaBytes to
26 MegaBytes: we have won a factor of 100. In a reasonable computation time,
that is however longer than the computation time of CVXPY, we get great per-

57

Chapter III. Validation method

Coding language/Parameter Version/value
Python 3.8.5
Matlab R2018b
Ω 1
L {3, 4, . . . , 10}
ε 10−6

K 1 000
ε 10−4

λ 0.5
k 3
α 10−8

P 10 000

Table III.2: Information about the coding language and parameters.

centages from optimality. Figure III.1 shows an example of the evolution of the
objective function along the iterations of Pierra’s algorithm for the problem size
L = 10, compared to the optimal solution obtained by CVXPY. In this example
P = 15000, and ε = 10−4. A very good convergence can be observed at the last
iterations shown in Table III.3: we are at 99.93% from optimality.
However, it has been observed for L = 3 that after the convergence, the algorithm
diverges a bit from the optimal solution. This is shown in Figure III.2, it would
be interesting to understand this behavior.
The next section contains a global discussion about these numerical experiments.

III.2.4 Discussion

As a synthesis of these numerical experiments, it is possible to make the following
comments. The lower bounds using Pierra’s algorithm have been provided for small
problem sizes. Thus, the contribution of this chapter is to propose a method to
evaluate the solution of a heuristic algorithm for Problem (II.6) without comparing
it with CPLEX, but rather with a lower bound. For this, a challenge has been
encountered, since it is well known that using the duality makes the problems
easier but bigger, as the dual problem is usually polynomial, but has more variables
and more constraints. This challenge has been tackled using Pierra’s algorithm
with the sparse computations. Here, the goal is twofold: first, put the algorithm
proposed by Pierra in 1984 back in the spotlight for its efficiency even if it has not
been used much. Indeed this algorithm has the potential to compete with existing
methods such as interior-point methods [Nesterov 94] and ADMM [Boyd 11]. The

58

III.2. Experimental results

Time(s) Storage needed (mB)
L Direct

CVXPY
Sparse
Pierra

Direct
CVXPY

Sparse
Pierra

Optimality percentage
of Pierra (% CVXPY)

3 11 3.7 1.29792 0.13632 96.4%
4 49.6761 97.2 9.2 0.50496 77%
5 145.93 631 40.45 1.358848 86%
6 394.2456 1005.4 132.88 3.008448 92.2%
7 935.8 2275 358.82 5.841792 92.4%
8 2274.85 7826 841.73 10.32448 96%
9 4724.6 22338 1776.192 16.99968 97%
10 9244.87 63585 3451.17 26.488128 99.93%

Table III.3: Comparison between a direct method using CVXPY versus the
sparse version of Pierra’s Algorithm.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

−0.2

0

0.2

0.4

0.6

0.8

1
·104

Iterations

ob
je

ct
iv

e

Pierra
CVXPY

Figure III.1: Evolution of the objective function along 15 000 iterations in
Pierra’s Algorithm for L = 10 compared to CVXPY’s implementation.

59

Chapter III. Validation method

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500
−200

0

200

400

600

Iterations

o
b
je
ct
iv
e

Pierra

CVXPY

Figure III.2: Evolution of the objective function along 5 000 iterations in Pierra’s
Algorithm for L = 3 compared to CVXPY’s implementation.

second goal is to show the power of having an explicit algorithm instead of a black
box solver, since, due to that, the sparse computations were possible, reducing
drastically the memory space necessity.
Before stating the limitations and perspectives of these numerical experiments, it
is important to resume the different challenges of the validation part of the study.
First, the comparison with CPLEX is not possible for grid graph with size L larger
than 40. Thus, we proposed the validation with a lower bound, and our goal was
to go further than L = 40. But the lower bound implied a storage challenge: for
L = 40, the matrices storage necessitates 17.5 terabytes. We wanted to rise to this
challenge by proposing the sparse version of Pierra’s Algorithm, but this time, the
new challenge is the speed: the algorithm starts to take a long time to converge
for L greater than 10.
As a perspective, an acceleration for Pierra is needed. But in order to be able to
do so, some challenges concerning Pierra’s algorithm should be dealt with, such as
the stopping criteria in Algorithm 5 Line 19 and the performance of the algorithm
that has to be sped up. One should note that a convenient idea for acceleration
is the parallelization. Indeed, the architecture of the algorithm allows a very easy
parallelization, since the projections on each constraint space are independent
(Algorithm 5 Lines 6 to 17). Thus, a parallel implementation (Algorithm 5 Line
18) could speed up the algorithm.

60

III.2. Experimental results

III.2.5 Difficulties in the experiments

This section describes the numerical difficulties we went through before obtaining
good results. The first difficulty is due to the bidualization of Problem (II.6), since
we intended to use a simplified quadratic form of Problem (II.6). We used Pierra’s
Algorithm to solve it, but we struggled to obtain convergence for this form. This
part is explained below in Section III.2.5.a. The second difficulty was encountered
in the numerical validation of the sparse computations by comparing them with
the full ones. This is described later in Section III.2.5.b.

III.2.5.a About the convergence of a simplified quadratic form of Problem (II.6)

To get a lower bound for Problem (II.6), we intended to write Problem (II.6) in a
simplified quadratic form as the following:

min
x∈X,z∈R+

xTΣx≤z2

µTx+ z. (III.31)

In comparison with the quadratic form (III.9), we simplified yTy ≤ z2 and y =
(Σ 1

2)Tx into one constraint xTΣx ≤ z2. The idea was to bidualize this form
((III.31)), because its bidual can reduce from (2m+ 4)2 to (m+ 4)2 variables and
from n + 2m + 3 to n + m + 3 constraints in comparison with the bidual (III.13)
of Problem (III.9) Indeed, the bidual of Problem (III.31) has the following form:

minM • Z (III.32)
s.t. Z ∈ Sm+4

Oj • Z = bj, j = 1, . . . , n,
Q • Z = 0,
Di • Z = 0, i = 2, . . . ,m+ 1
R • Z = 0,
Z � 0.

The problem is when trying to solve Problem (III.32) using the algorithm of
Pierra with different parameters, it was hard to get the convergence. The best
parameters for L = 3 were α = 10−5, k = 3, λ = 0.5, and after 8 000 000 iterations,
the objective function evaluated at the last iteration ZFinal equaled M • ZFinal =
225.6. Whereas the solution of CVXPY ZCVXPY corresponded to M • ZCVXPY =
163.355. On the other side, when we used Pierra’s algorithm to solve (III.13), in
less than 2 000 000 iterations, it converged, givingM •ZFinal = 159.88. In order to
understand more what is happening, displaying the different projections shows if
the algorithm converges or not, because the solution should verify the constraints.
The final solution Z should satisfy |A •Z − b| close to zero for every constraint in

61

Chapter III. Validation method

the form A • Z = b, and the eigenvalues of Z should almost be positive, for the
constraint Z > 0. So when we displayed the projections, all of them were around
10−2 and 10−3, except for Q, Q•Z was around 200. The explanation that we found
is that it is an important constraint in the problem, and it is only represented by
one constraint. Whereas, in Problem (III.13), the same constraint is expressed
by m + 1 constraints, which means that its corresponding projection has more
representation in the mean of projections in Pierra’s Algorithm (Algorithm 5 Line
18). Another explanation is the poor conditioning of the Problem (III.32), which
means that in applied mathematics, it is known that some algorithms can work
well for a form of problem than another, even if these two forms correspond to the
same problem, and probably, this happened for Problems (III.13) and (III.32) .

III.2.5.b Sparse versus full computations

In Pierra’s algorithm 5 that we used to solve (III.13), recall that mathemati-
cal operations that include matrix multiplications, additions and subtractions are
needed, and they are detailed in Section III.1.3.c. Here, we show the difficulty we
had when validating the computation in Algorithm 5.
In the implementation stage, in order to validate the sparse version of Pierra’s
Algorithm, a comparison with the full version was made. Unfortunately, we did
not obtain the same results in the comparison step. After months of investigation,
and even also changing the coding language from Python to Matlab, we have not
found any explanation.
Finally, we discovered that the difference between the solutions of Algorithm 5
between the sparse and the full version was not due to any error in computations,
but it was due to the sensitivity of Algorithm 5 to numerical precision: even
implementing the dot product in two equivalent ways could change the final result
of Algorithm 5.
The analysis we have about this is that this sensitivity comes probably from Line
22 of Algorithm 5, since as we can see, βp+1 has Den = ‖B′p+1 − Zp‖2 in its
denominator. If the term Den equals 10−15 in one version, and 10−17 in another,
then, there is 10−2 of difference in the denominator, and thus, there is a difference of
100 in β. Not to forget that the denominator term is square, and that the difference
in precision builds up along the iterations, and thus the difference becomes bigger
and bigger along the iterations.

62

III.2. Experimental results

III.2.6 Synthesis

To sum up the numerical experiments, the difficulties in Section III.2.5 have been
solved, and the limitations in the discussion (Section III.2.4) open to perspectives
that are promising for the method proposed in this chapter. Despite the difficulties
and challenges, this chapter proposes a polynomial time evaluation of the quality
of the solution of DFW heuristic approach without having the memory storage
issue of the bidual problem.

In this chapter, and in the previous one (Chapter II), all the work has been applied
on the robust shortest path problem. The next chapter studies another problem
that is more difficult, but more interesting in its applications: the robust k-median
clustering problem.

63

Chapter III. Validation method

64

Chapter IV
A second heuristic approach based on

Frank-Wolfe for the k-median clustering
problem

IV.1 Motivation and context . 66

IV.2 Problem formulation . 67

IV.3 Problem illustration . 70

IV.4 A Frank-Wolfe based approach MFW for the k-median
clustering . 72

IV.4.1 Assumptions for DFW Algorithm not satisfied 72

IV.4.2 The proposed approach. 74

IV.5 Numerical results . 78

IV.5.1 Experimental setup . 78

IV.5.2 Adequate µ and Σ generation. 79

IV.5.3 Results of MFW for different problem sizes 79

IV.5.4 Discussion. 80

65

Chapter IV. Extension to clustering

This chapter proposes a Frank-Wolfe based approach for the k-median clustering.
First, the classical k-median problem is written as a binary linear programming
problem (BLP) by a matrix flattening step. Then, the robust k-median clustering
problem under ellipsoidal uncertainty is written as a binary non-linear Problem.
The Frank-Wolfe based approach to solve this binary non-linear problem consists
in relaxing the binarity constraints and using the Frank-Wolfe Algorithm with
a rounding technique for the mean of the intermediate steps of the algorithm.
Results show that this approach gives the optimal solution in most of the cases,
and that it gives close-to-optimal solutions when they are not optimal.

IV.1 Motivation and context

k-median clustering is a classical method of unsupervised learning that aims to
partition a number of measurements in k-clusters. Unsupervised learning gets in-
creasing attention with the raise of machine learning in all domains. Thus, studies
about this problem are applied in many domains. The issue we are interested in
is how to deal with the uncertainty in this problem. Indeed, due to measurements
errors, it is important to put the robust optimization expertise in the service of
this important clustering problem. If the input data of the clustering problem are
subject to uncertainties, which are the points that we want to group in clusters,
we want to determine a robust counterpart of the k-median problem in the case
of ellipsoidal uncertainty. The choice of the ellipsoidal uncertainty set is moti-
vated by the fact that it is important to take in account the correlations between
the distances between the different points of the data set. Up to our knowledge,
robust clustering is a relatively new topic. Related works have been done in [Bur-
gard 15, Li 16] for robust k-median and k-means clustering with ellipsoidal and
budgeted uncertainty. A very interesting paper by Bertsimas et al. about robust
classification that presents robust support vector machines (SVM), logistic regres-
sion, and decision trees can be found in [Bertsimas 19]. Next, works with a focus
on robust SVM can be found in [Singla 20,Pant 11,Trafalis 07]. Finally, a book
about robust data mining is the one of Xanthopoulos et al. [Xanthopoulos 12]. Up
to our knowledge, there does not exist any work on robust k-median clustering
with ellipsoidal uncertainty set.
The developments with all the details can be found in the following.

66

IV.2. Problem formulation

IV.2 Problem formulation

In this section, we consider a robustification of the k-median clustering problem.
Let P = {p1, . . . , pn} a set of n points. The k-median problem consists in choosing,
among the points in P , k clusters that minimize the sum of the distances between
the points p ∈ P and their cluster centers. It can be expressed in the form of a
binary programming problem, as formulated by Awasthi et al. in [Awasthi 15].
The formulation is the following:

min
(zij)ij∈{1,...,n}2∈R{1,...,n}

2
Σi,j∈{1,...,n}2d(pi, pj)zij (IV.1)

s.t. Σi∈{1,...,n}zij = 1 ∀j ∈ {1, . . . , n}
zij ≤ yj ∀i, j ∈ {1, . . . , n}2

Σi∈{1,...,n}yi = k

zij, yi ∈ {0, 1},

where d(pi, pj) is the real positive distance between the points pi and pj, yi indicates
whether the point pi is a cluster center or not, zij tells us whether pj is assigned
to pi as center or not. The constraints of Problem(IV.1) assure that each point
is assigned to one and only one cluster center, that we do not assign a point to
another one unless the second is a center and that there exist k centers. The real
positive distance between two points can represent any positive value in any metric
space. This problem can also be written using a matrix form:

min
Z∈{0,1}n×n

D • Z (IV.2)

s.t. Σn
i=1Zij = 1 ∀j ∈ {1, . . . , n}

Zij ≤ Zii ∀i, j ∈ {1, . . . , n}2

Σn
i=1Zii = k,

where • is the same inner product defined in the previous chapter, D is a symmetric
matrix with dimension n × n, with Dij being the distance between pi and pj for
i ∈ {1, . . . , n}, j ∈ {1, . . . , n}. The matrix D is symmetric and its diagonal has
zero entries, since d(pi, pj) = d(pj, pi), and d(pi, pi) = 0 for i and j belonging to
{1, . . . , n}. Z is the matrix of variables with dimension n× n, where the element
Zij is (zij)ij∈{1,...,n}2 for i 6= j, and with Zii is (yi)i∈{1,...,n}. The constraints in
this second form (Problem (IV.2)) are translated as the following: Z is a binary
matrix in which the sum over each column equals 1, the non-diagonal elements
of each row in Z are less or equal than the diagonal value of this row. Finally,
the sum over the diagonal of Z equals the number of cluster centers k. In real
life applications, the distances between the points defined above are subject to

67

Chapter IV. Extension to clustering

uncertainties. Thus a robust clustering solution seems mandatory. The aim of the
following is to determine a robust counterpart of the k-median problem in the case
of ellipsoidal uncertainty. To do so, we write Problem (IV.1) in the formulation
(II.1), which is, we recall,

min
x∈X

cTx.

The first step is to consider the flattened version z (respectively d) with length n2

of Z (respectively D) of Problem (IV.2), then the deterministic k-median problem
can be written as the following form

min dT z (IV.3)
s.t. Σn

i=1zn(i−1)+j = 1 ∀j ∈ {1, . . . , n}
zn(i−1)+j ≤ zn(i−1)+i ∀i, j ∈ {1, . . . , n}2

Σn
i=1zn(i−1)+i = k

z ∈ {0, 1}n2
.

The flattening is done observing that, in Problem (IV.2), an element Zij with
i ∈ {1, · · · , n} and j ∈ {1, · · · , n} is represented in Problem (IV.3) as zn(i−1)+j.
Then, this problem has the formulation (II.1) which can be written as

min
z∈X

dT z, (IV.4)

with X ⊆ {0, 1}n2 and where

X =
{
z ∈ {0, 1}n2 s.t.

Σn
i=1zn(i−1)+j = 1 ∀j ∈ {1, . . . , n},

zn(i−1)+j ≤ zn(i−1)+i∀i, j ∈ {1, . . . , n}2,

Σn
i=1zn(i−1)+i = k

}
.

If we suppose that the distances between the points are uncertain, and making the
assumption that these distances follow a multinormal distribution, then the vector
d also follows a multinormal distribution. If we note the expectation of d by µ ∈
Rn2 and the covariance matrix by Σ ∈ Rn2×n2 , then by following the development
done previously in Section II.2, the robust clustering problem is reduced to solving
the following non-deterministic problem:

min
z∈X

µT z + Ω
√
zTΣz.

By replacing Σ by Ω2Σ, we obtain

min
z∈X

µT z +
√
zTΣz, (IV.5)

68

IV.2. Problem formulation

with
X =

{
z ∈ {0, 1}n2 s.t.

Σn
i=1zn(i−1)+j = 1 ∀j ∈ {1, . . . , n},

zn(i−1)+j ≤ zn(i−1)+i∀i, j ∈ {1, . . . , n}2,

Σn
i=1zn(i−1)+i = k

}
.

The missing ingredient to tackle the problem is to describe the uncertainty mod-
elling of the vector d in Problem (IV.4) in function of the uncertainty modelling
of the distances between the points in Problem (IV.1). This is done due to Theo-
rem 1.
Theorem 1. Let v ∈ R

n(n−1)
2 a random variable that has a multinormal distribution

N (µv,Σv). If we define the vector d ∈ Rn2 as the flattened version of the matrix

0 v1 v2 . . . vn−1

v1 0 vn . . . v2n−3

v2
...

. . . vn(n−1)
2

vn−1 . . . vn(n−1)
2

0

,

which means that

d =
[

0 v1 v2 . . . vn−1 v1 0 vn . . . v2n−3 . . . vn−1 . . . vn(n−1)
2

0
]
,

then d has a multinormal distribution N (µ,Σ), with µ = Lµv, and Σ = LΣvL
T ,

where L is a matrix with dimension n2 × n(n−1)
2 such that d = Lv.

Proof. First, d = Lv has a multinormal distribution, since it is a linear transfor-
mation of v, which is a random variable that has a multinormal distribution [Gut ,
Definition 3.1]. Second, µ = Lµv. Indeed,

µ = E[d]
= E[Lv]
= LE[v]
= Lµv.

Finally, Σ = LΣvL
T . Indeed,

Σ = E[(d− µ)(d− µ)T]
= E[(Lv − Lµv)(Lv − Lµv)T].

69

Chapter IV. Extension to clustering

This holds since d = Lv and µ = Lµv. So,

Σ = E[(L(v − µv))(L(v − µv))T]
= E[L(v − µv)(v − µv)TLT]
= LE[(v − µv)(v − µv)T]LT

= LΣvL
T .

Theorem 1 implies that the uncertainty in the distances between the points in
the k-median problem (IV.1) can be modelled by an uncertainty in the vector d
in(IV.3). Indeed, the multinormality of the distances between the points that is
described by the vector v in Theorem 1 implies the multinormality of the vector
d, and after that, we can work on the ellipsoidal uncertainty over the vector d.
This theorem is used in the experimental setup, for the generation of adequate
mean vector µ and covariance matrix Σ. The goal of the following is to solve the
robust k-median problem under ellipsoidal uncertainty by solving Problem (IV.5).
In the rest of this chapter, it is common to do the confusion between the flattened
version and the matrix version of the solutions z, as they are simply two different
representations of z, and the transformation between them is easy.

IV.3 Problem illustration

In this section, we find it useful to consider a simple example to illustrate the costs,
the variables and the solutions in the different writings (IV.2) and (IV.4) of the
problem. Let P = {p1, . . . , p10} a set of 10 points such that the distances between
these points are represented in the matrix D with dimension 10× 10:

D =

0 2 11 4 5 10 3 5 13 11
2 0 10 2 3 9 2 4 12 9
11 10 0 9 7 2 8 6 2 3
4 2 9 0 2 8 3 4 11 8
5 3 7 2 0 7 3 3 9 6
10 9 2 8 7 0 7 4 5 5
3 2 8 3 3 7 0 2 10 8
5 4 6 4 3 4 2 0 9 6
13 12 2 11 9 5 10 9 0 3
11 9 3 8 6 5 8 6 3 0

,

whereD[i, j] is the distance between pi and pj. For exampleD[1, 2] = d(p1, p2) = 2.
The matrix D is indeed symmetric and its diagonal has zero entries. For this input
set of points, the 2-median problem consists in finding 2 clusters that minimize

70

IV.3. Problem illustration

the sum of the distances between the points in P = {p1, . . . , p10} and their cluster
centers. It is the problem (IV.2), with n = 10, k = 2, and the cost function
represented in the matrix D. An example of a feasible solution is illustrated in
Figure IV.1. It can be represented by the following binary matrix Z:

Z =

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

.

The diagonal of Z is enhanced in bold, since the information on the diagonal gives
us the cluster centers. The cluster centers are p3 and p7 since Z[3, 3] = y3 = 1 and
Z[7, 7] = y7 = 1. The non-diagonal entries of the row 3 (resp. 7) of the matrix
Z with values equal to 1 correspond to the points that are associated with the
cluster center p3 (resp. p7). For example, Z[3, 6] = z3 6 = 1 means that Point p6 is
associated with the cluster center p3 . In total, Points p6, p9 and p10 are associated
with the cluster center p3, and the points p1, p2, p4, p5 and p8 are associated
with the cluster center p7. The solution represented by the matrix Z satisfies the
constraints of Problem IV.1:

• Σ10
i=1Z[i, j] = 1 ∀j ∈ {1, . . . , 10} (the sum over each column equals 1) reads:

every point is associated with one and only cluster center,
• Z[i, j] ≤ Z[i, i] ∀i, j ∈ {1, . . . , 10}2 (the values of the non-diagonal entries

are less or equal than the diagonal entry of the same row) reads: it is not
possible to associate a point to a second one unless the second is a cluster
center,

• Σ10
i=1Z[i, i] = 2 (the sum over the diagonal equals the number of cluster

centers) reads: The solution has exactly 2 cluster centers.
In addition, this feasible solution is the optimal one with the cost equals D • Z =
(2+2+3)+(3+2+3+3+2) = 20, and it is illustrated in Figure IV.1. Concerning
the second representation (IV.4) of Problem (IV.1), it is obtained by a flattening
of the matrix D (resp. Z) into a vector d (resp. z) of length 10× 10 = 100, which
is given by

d =
[

0 2 11 4 5 10 3 5 13 11 2 0 . . . 9 11 . . . 0
]
,

71

Chapter IV. Extension to clustering

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

Figure IV.1: Simple example of a two cluster solution of a k-median problem for
10 points.

As mentioned in the previous section, the flattening is done the following way

D[i, j]→ d10(i−1)+j ∀i, j ∈ {1, . . . , 10}2

D[2, 1]→ d10(2−1)+1 = d11

D[2, 10]→ d10(2−1)+10 = d20.

The first row of D forms the 10 first elements of d. Then the values of the elements
d11, . . . , d20 come from the second row of D, and so on. The same for the flattening
of the matrix Z into the vector z. The next section comes back to our goal which
is to solve the robust k-median problem under ellipsoidal uncertainty.

IV.4 A Frank-Wolfe based approach MFW for
the k-median clustering

The goal now is to solve the robust k-median problem under ellipsoidal uncertainty.
First, we show that it is not possible to apply DFW Algorithm on the robust k-
median problem in hand, then we propose another algorithm based on the classical
FW Algorithm. In MFW Algorithm and references to DFW Algorithm, we use
in this chapter k̊ as an index for the algorithm’s iterations instead of k to avoid
confusion with the number of cluster centers k.

IV.4.1 Assumptions for DFW Algorithm not satisfied

Section IV.2 shows that this consists in solving a binary non-linear Problem (Prob-
lem (IV.5)), that is, we recall:

min
z∈X

µT z +
√
zTΣz, (IV.6)

72

IV.4. A Frank-Wolfe based approach MFW for the k-median clustering

with
X =

{
z ∈ {0, 1}n2 s.t.

Σn
i=1zn(i−1)+j = 1 ∀j ∈ {1, . . . , n},

zn(i−1)+j ≤ zn(i−1)+i∀i, j ∈ {1, . . . , n}2,

Σn
i=1zn(i−1)+i = k

}
.

Problem (IV.6) is an NP-hard problem [Bertsimas 04b], but exact methods exist
to solve the Binary Second Order Cone formulation (BSOCP) of the problem that
is, we recall:

minµT z + u (IV.7)
s.t. (y, u)T ∈ Kn2+1

y = (Σ 1
2)T z

z ∈ X, y ∈ Rn2
, u ∈ R+,

with Kn2+1 =
{
z ∈ Rn2+1; ‖(z1, . . . , zn2)T‖2 ≤ zn2+1

}
being a second order cone.

This can be solved using the BSOCP solver of CPLEX [Manual 87], that is based
on branch-and-bound methods. This follows the developpments done in Chapter II
for the robust counterpart of general BLP problems under ellipsoidal uncertainty
(see Section II.3 for more details). As also mentioned in Section II.3, the pro-
cessing time of branch-and-bound methods for problems of large size becomes
considerable. The goal of this part is to propose a heuristic algorithm for the
robust k-median problem (IV.6). An algorithm named DFW has been proposed
in Chapter II for the robust counterpart of a class of BLP problems. Recall that
this algorithm is based on the idea of exploiting the direction steps of the classical
FW Algorithm, that are binary solutions due to some assumptions that are linked
with the exact binarity relaxation. Despite that the k-median problem has a BLP
formulation (Problem (IV.4)), unfortunately, it is not possible to solve its robust
counterpart (IV.6) using DFW Algorithm, since the assumptions in Section II.4.1
are not satisfied. In fact, Assumption (A3) is satisfied, since 0{0,1}n2 is not a clus-
tering solution, but assumptions (A1) and (A2) are not satisfied. Indeed, let us
recall the two assumptions (A1) and (A2):

(A1) For any real-valued vector a (not necessarily with positive entries),
there exists an efficient algorithm to solve minz∈X aT z,
(A2) For any real-valued vector a, there exists a solution for minz∈Conv(X) a

T z

that belongs to X, where Conv(X) ⊂ Rm is the convex hull of X.
These assumptions are needed for the applicability of Algorithm DFW, and more
precisely for the feasibility of the intermediate steps s̊k in iteration k̊ in Line 8 of
Algorithm 2:

s(̊k) ∈ argmin
y∈Conv(X)

∇g(x(̊k))Ty, with s(̊k) ∈ X. (IV.8)

73

Chapter IV. Extension to clustering

For every iteration k̊, the condition s(̊k) ∈ X is necessary, for its feasibility in the
binary problem we are interested in solving (Problem (IV.6)). In addition, it is
necessary for s(̊k) to minimize ∇g(x(̊k))Ty over Conv(X), for the convergence of
x(̊k) in Conv(X). Noticing that the convex relaxation Conv(X) of X is

Conv(X) =
{
z ∈ [0, 1]n2 s.t.

Σn
i=1zn(i−1)+j = 1 ∀j ∈ {1, . . . , n},

zn(i−1)+j ≤ zn(i−1)+i∀i, j ∈ {1, . . . , n}2,

Σn
i=1zn(i−1)+i = k

}
, (IV.9)

which consists simply in replacing {0, 1}n2 by [0, 1]n2 , then in our case, these
assumptions require the exact binarity relaxation condition for Problem (IV.4) for
any real vector d. Unfortunately, this is not the case. Problem (IV.4) is a binary
programming problem for which the convex relaxation is not exact, but only gives
a lower bound for the problem.

IV.4.2 The proposed approach

Since we showed in the previous section that the assumptions needed to apply
DFW Algorithm are not satisfied, instead, we propose here another adaptation of
the classical FW algorithm to solve heuristically the robust k-median problem un-
der ellipsoidal uncertainty (IV.5). The algorithm is stated in Algorithm 6, named
MFW referring to Mean Frank-Wolfe. In Line 14 of Algorithm 6, the feasible round
is detailed in Algorithm 7. The idea of the approach is the following: As in DFW
Algorithm from Chapter II, the power of the algorithm is the exploration power
of the iterates: while x(̊k) converges to the optimal solution in Conv(X), s(̊k) is
the optimal solution of the linear approximation of the objective function g locally
around x(̊k) for each iteration k̊. The problem to solve to obtain s(̊k) in Line 8 of
Algorithm 6 has a polynomial complexity, since it is a linear continuous problem.
Unfortunately, unlike the shortest path problem, the k-median problem does not
give any guaranty that the solution s(̊k) is binary. The values of s(̊k) belong to
Conv(X) defined in (IV.9). In DFW Algorithm, we made use of the information
of all the s(̊k) for all the iterations k̊ by taking the best s(̊k) among the others. Here,
the best solution is not binary, but rather takes values between 0 and 1. Neverthe-
less, the values between 0 and 1 could be interpreted on one side as a percentage
of being a cluster center for the diagonal values (in the flattened version, these are
the values in the indices n(i− 1) + i). On the other side, they can be interpreted
as a percentage of belonging to a cluster center for the non-diagonal values (in
the flattened version, these are the values in the indices n(i− 1) + j, with i 6= j).
Thus, if we denote µk̊−1 the mean Σk̊−1

i=1 s
(i)

k̊−1 of the solutions s(i) until iteration k̊− 1,

74

IV.4. A Frank-Wolfe based approach MFW for the k-median clustering

Algorithm 6 MFW: a Frank-Wolfe based algorithm to solve Problem (IV.6)

1: x(0) ∈ Conv(X) a random solution, ε > 0 close to zero, K̊ a maximum number
of iterations.

2: k̊ ← 1
3: stop ← false
4: while k̊ ≤ K̊ and ¬stop do
5: if g(x(̊k−1))− g(x(̊k)) < ε: then
6: stop ← true
7: else
8: s(̊k) ∈ argmin

y∈Conv(X)
∇g(x(̊k))Ty

9: γ (̊k) ← argmin
α∈[0,1]

g(x(̊k) + α(s(̊k) − x(̊k)))

10: x(̊k+1) ← x(̊k) + γ (̊k)(s(̊k) − x(̊k))
11: end if
12: k̊ + +
13: end while

14: return a feasible round of µk̊−1 = Σk̊−1
i=1 s

(i)

k̊ − 1

Algorithm 7 An algorithm for a feasible rounding of a solution in Conv(X)
1: Input: s ∈ Conv(X), Output sf ∈ X
2: Reshape s that is a vector in [0, 1]n2 as a matrix with dimension n× n
3: Sort the diagonal elements of s, and choose the k biggest elements. If we note
i1, . . ., ik the indices of these k biggest elements (i1 < i2 < . . . < ik), then pi1 ,
. . . and pik are the chosen cluster centers → the diagonal elements of sf are
equal to 1 in the indices i1, . . ., ik, and 0 elsewhere

4: Keep the rows i1, . . ., ik of s in a reduced matrix of dimension k × n, sort
each column i of this reduced matrix, and associate the point pi to the cluster
center with the index l of the biggest value in the sorting of column i → in
every column i of sf , the value in row l equals 1, and the other values are 0

5: Reshape sf that is a matrix with dimension n× n in a vector in {0, 1}n2

75

Chapter IV. Extension to clustering

where k̊− 1 in Algorithm 6 is the last iteration at which the algorithm stops, this
mean vector µk̊−1 contains the information about the percentages for all the s(i).
Thus, if, for instance, a point has not been affected as a cluster center in any of the
s(i) with any positive percentage, then in the mean value µk̊−1, it interferes with
0 percentage. Contrarily, if a point has been affected as a cluster center with big
percentages in many iterations, it also corresponds to a big percentage in µk̊−1. In
addition to that, the advantage about the mean is that it also belongs to Conv(X)
(i.e. s(i) ∈ Conv(X) ∀i = 1, . . . , k̊ − 1 =⇒ µk̊−1 ∈ Conv(X)). The last step
consists in rounding µk̊−1 to become binary, without violating the constraints of
Conv(X). This is what we call in the following a feasible round. The Algorithm 7
takes a solution in Conv(X), and rounds it. This rounded solution then belongs
to X. The proposed approach uses Algorithm 7 to round µk̊−1. The idea of the
feasible rounding algorithm is the following. Let s be a vector in Conv(X), and let
sf be the rounding of s, that is the output of the rounding algorithm. We start by
reshaping s in a matrix with dimension n× n to facilitate the elements indexing,
and we construct sf in a matrix and then we flatten it. The feasible rounding is
composed of two steps:

• The first step in the rounding process is to choose the cluster centers. Since
it is required to have exactly k cluster centers, then the rounded solution has
exactly k values in the diagonal that are equal to 1 and n−k values that are
equal to 0. The algorithm rounds the k biggest values of the diagonal to 1,
and the others to 0. This composes the diagonal elements of sf .

• The next step is to fill the non-diagonal elements. We know that the only
non-zero rows in sf are the ones with the indices of the k biggest values, that
are noted as i1, . . ., ik in Algorithm 7, since the non-diagonal elements are
less or equal than the diagonal element of the same row. So, we only need to
fill the rows with the indices i1, . . ., ik. For every column i, there is only one
value that equals 1, and the others are equal to 0: we choose to assign the
point pi to the cluster center pl that corresponds to the biggest value in the
i-th column of s (s(l, i)): this is the value that equals 1 in the i-th column
of sf .

76

IV.4. A Frank-Wolfe based approach MFW for the k-median clustering

This completes the matrix that will be flattened to give sf . In order to illustrate
the feasible rounding algorithm (Algorithm 7), we take the example of an input
s ∈ Conv(X) shaped in a matrix with dimension 10× 10 defined as

s =

0.528 0 0.528 0 0 0 0 0.048 0 0.528
0 0.144 0.144 0.144 0.015 0 0.144 0.144 0 0
0 0 0 0 0 0 0 0 0 0
0 0.384 0 0.384 0.384 0.384 0 0 0.319 0.25
0 0 0 0.088 0.088 0.088 0.0882 0 0 0.088
0 0 0 0.043 0.043 0.043 0 0 0.043 0
0 0 0 0 0 0 0 0 0 0

0.467 0.467 0.004 0 0.465 0.144 0.427 0.467 0.297 0.129
0 0 0.320 0.336 0 0.336 0.336 0.336 0.336 0
0 0 0 0 0 0 0 0 0 0

.

If the number of cluster centers equals k = 2, then the first step of Algorithm 7
consists in choosing the 2 biggest values in the diagonal of s: the first element
0.528 and the 8-th element 0.467 of the diagonal. Then, we round these two values
to 1, and the others to 0 to constitute the diagonal of the rounded solution sf .

1
0

0
0

0
0

0
1

0
0

.

In the next step, we know that the only non zero rows are the first and the 8-th.
Thus, we sort every column of the reduced matrix formed with the rows 1 and 8,
except for the results based on the diagonal sort that is already done: the first and
8-th column (in blue).

s =
[

1 0 0.528 0 0 0 0 0 0 0.528
0 0.467 0.004 0 0.465 0.144 0.427 1 0.297 0.129

]
.

For the rest of the columns, we round to 1 the biggest value, and we round the
other to 0, as the following:[

1 0 1 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1 1 0

]
.

77

Chapter IV. Extension to clustering

Thus, the rounded solution in its matrix form is the following:

sf =

1 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

.

Note that in Line 3 (resp. Line 4) of Algorithm 7, we need to sort vectors to
find the k biggest values (resp. the biggest value) of the diagonal (resp. of each
column). If there are repetitive values in the sort, then the output sf is not
necessarily unique. In this case, the sorting function chooses randomly the order
of these repetitive value. As in DFW Algorithm, we choose the line search step
γ (̊k) (defined in Algorithm 6, Line 9) because it guarantees that g(x(̊k)) decreases
at each iteration. The stopping criteria has been chosen as the convergence of the
relaxed problem. The following section shows the numerical results that validate
the heuristic proposed approach MFW.

IV.5 Numerical results

This section is dedicated to the results of Algorithm 6. First, we describe the
experimental setup. Then we compare the obtained solutions and the performance
between MFW Algorithm and the exact method using CPLEX for different sizes
of the problem.

IV.5.1 Experimental setup

To test the heuristic approach MFW, we consider the robust k-median problem
with n points, for different values of n. In the numerical experiments, we generate
random mean vectors µ and random covariance matrices Σ following the procedure
detailed in IV.5.2, and we fix Ω = 1. For the implementation, we use the Python
language. To compute the solution s(̊k) (Line 8 of Algorithm 6), we used an LP
minimizer with the LP modeler PuLP. We compare with the BSOCP solver of
CPLEX. The random feasible solution x(0) is chosen by first generating a random

78

IV.5. Numerical results

cost vector c, and then by solving the k-median problem for this cost vector c
(Problem (IV.4)) using the LP minimizer with the LP modeler PuLP to find a
feasible solution x(0).

IV.5.2 Adequate µ and Σ generation

To generate adequate µ and Σ, we use Theorem (1): we first generate µv and
Σv randomly, then deduce µ and Σ using Theorem (1): µ = Lµv, and Σ =
LΣvL

T . The matrix L is deduced numerically by a construction of a key matrix
that contains the correspondence between the indices in v and d. For the generation
of µv and Σv, the elements of µv are chosen randomly in [0, 100]. The random
covariance matrix Σv is defined as in [Ilyina 17]: writing Σv = PTDP where P is
an orthogonal eigenvector matrix and D is the corresponding diagonal eigenvalue
matrix, each of the eigenvalues λi, i = 1, . . . , n(n−1)

2 , is chosen as the square of a
random number in [0, µvi] and P is a random orthogonal matrix.

IV.5.3 Results of MFW for different problem sizes

This part aims at testing the heuristic algorithm MFW by comparing its solutions
to the ones obtained by the exact solver of CPLEX for different problem sizes. For
this, we change the problem size n, which is the number of points for which a robust
k-median problem is to solve. For every problem size n, we choose to find k = 2
cluster centers. The number of iterations for MFW Algorithm is fixed to K̊ = 200.
For each problem size n, we change the problem 10 times, by changing the random
mean vector µ and the random covariance matrix Σ. For each problem, we change
x0 in the input of MFW Algorithm 8 times. Table IV.1 shows for n between 5 and
13 the comparison between MFW Algorithm and the solver of CPLEX. For each
problem size n, we compute the mean of the outputs of the different sets (µ,Σ, x0).
These outputs are

1. the processing time (in seconds),
2. the mean of the relative error Er for the different sets of the experimental

tests (µ,Σ, x0), where the relative error is defined as

Er = g(x̂)− p∗
p∗

,

3. and the occurrence of the value zero of the relative error for the different sets
of the experimental tests (µ,Σ, x0)

#{Er = 0}.

.

79

Chapter IV. Extension to clustering

n Time(s) of
CPLEX

Time(s)
MFW

#{Er = 0} Er

5 0.1644 5.0149 55 % 0.0555
6 0.5424 7.8 71.25 % 0.0513
7 0.8296 12.9796 48.75 % 0.0486
8 0.9948 6.9707 67.5 % 0.0186
9 1.9202 9.6168 63.75 % 0.0246
10 2.1028 16.6282 58.75 % 0.0432
11 2.1607 14.1045 70 % 0.0447
12 3.6378 19.778 23 % 0.0862
13 4.1873 17.8977 35 % 0.0694

Table IV.1: Comparison of the proposed solution by MFW with the optimal
solution by CPLEX.

The fifth column in Table IV.1 shows that the relative error is in average small
(0.0186 to 0.0862), and the fourth column shows that the relative error equals zero
in up to 70% of the cases. Finally, the two first columns show that CPLEX is
faster but the difference in time between MFW Algorithm and CPLEX is not very
big (around 1/5 in average).

IV.5.4 Discussion

To sum up the numerical results, MFW Algorithm gives a zero error in many cases,
and a small relative error in general. The advantage about this algorithm is that it
always gives a feasible solution, due to the feasible rounding algorithm. Many per-
spectives open up with these experimental results. Mainly, as already mentioned,
the sorting algorithm does not give preference to a solution more than another if
the rounding is not unique. Thus, an interesting way to easily get smaller relative
errors is possible by working on different methods of rounding that give solutions
with close-to-optimal objective functions (e.g. see [Charikar 12]). Another fact
is that Awasthi et al. [Awasthi 15] studied exact recovery conditions for convex
relaxations of the k-median problem. Thus, in some cases where the clusters are
at a great distance from each other, there is no need for a feasible rounding, since
the intermediate steps in MFW Algorithm are binary solutions under some mild
assumptions over the k-median clustering problem detailed in [Awasthi 15]. Af-
ter working on the perspectives just listed, MFW Algorithm is an algorithm that
solves heuristically robust k-median clustering problems under uncertainty. This
algorithm is adapted for problems with large sizes, where k-median clustering is
used. For instance, facility problems with large sizes, that are subject to uncer-
tainty with correlated variables (see [Arya 04]).

80

Conclusions and perspectives

Conclusions and perspectives

Conclusions

In this manuscript, robust combinatorial optimization has been studied, with a
special interest on the ellipsoidal uncertainty set for its multiple advantages.
Since the robust counterpart of optimization problems are harder to solve than
the original problems, we worked on the robust counterpart of binary linear prob-
lems. In this case, the robust problem is still NP-hard, and can be solved by
branch-and-bound methods, that are not adapted for problems with large size.
Thus, a Frank-Wolfe based heuristic algorithm named DFW has been proposed
in Chapter II for robust binary linear problems with some assumptions that are
mainly linked with the exact binarity relaxation. The proposed algorithm is a
relaxation-guided version of the Frank-Wolfe algorithm, where we are interested
in the optimum of the linear approximation that the algorithm computes at each
iteration when relaxing the constraint set in its convex hull. This is legitimate
under the assumptions that have been considered, and the shortest path problem
is one of the problems that satisfy them. Numerous numerical experiments have
been carried for the robust shortest path problem, and comparisons with the opti-
mal solution given by the second order cone programming solver of CPLEX have
been done. Results show that DFW approach always gives the same solution as
CPLEX in the instances where this solver is able to propose one. In addition, the
scalability of our algorithm has been approved in problems of large size, where
branch-and-bound methods are no longer efficient.
To avoid comparing the heuristic solution with the optimal one given by the ex-
act method, a validation by lower bound has been studied in Chapter III. This
lower bound results from a bidualization of the robust problem. To compute the
proposed lower bound, we need to solve an SDP problem that can be solved us-
ing interior-point methods. Unfortunately, the bidual problem is a big problem
with much more constraints and more variables than the original problem. Thus,
despite its polynomial nature, the resolution of this bidual problem is very time
consuming and needs a huge memory space. Therefore, the sparsity of the matri-
ces that define the problem has been exploited to replace the classical solver by a
sparse version of an algorithm based on the projection of the constraints that is

81

Conclusions and perspectives

done by a formalization in a product space. All this is numerically tested, showing
that a polynomial time evaluation of the quality of the solution of DFW heuristic
is possible without having the memory storage issue of the bidual problem.
Finally, an extension of the algorithm proposed in Chapter II has been studied for
the problems that do not satisfy the assumptions of Chapter II. In Chapter IV,
the classical k-median problem is written as a binary linear programming prob-
lem (BLP) by a matrix flattening step. The relaxation of this problem does not
necessarily give binary solutions, and thus a direct application of DFW Algorithm
is not possible. Next, the robust k-median clustering problem under ellipsoidal
uncertainty is written as a binary non-linear problem. For this, it has been proven
in Chapter IV that the matrix flattening step conserves the representation of un-
certainty as for the original formulation. For solving the robust k-median problem,
the Frank-Wolfe based approach to solve the binary non-linear problem is named
MFW Algorithm. It consists first in relaxing the binarity constraints and using
the Frank-Wolfe Algorithm for the convex problem. Then, it uses a rounding tech-
nique for the mean of the intermediate steps of the algorithm to give a heuristic
solution that is a feasible clustering solution. Results show that this approach
gives the optimal solution in most of the cases, and that it gives close-to-optimal
solutions when they are not optimal.

Perspectives

As perspectives, first, the DFW Algorithm proposed in Chapter II could be im-
proved, to obtain better results and obtain the optimal solution in less processing
time, for example using the away step FW [Guélat 86] in order to discover so-
lutions in other directions during the iterations. Next, more numerical results
could include a study of the algorithm’s parameters, and more tests with larger
instances.
Another question to investigate is the possibility to have a proof of sub-optimality.
As we know, the proposed approach is heuristic, and thus it has certainly some
limitations. Therefore, it would be useful to show that the proposed solution has
a certain distance from optimality, in its worst case. It could also be interesting to
find out what are the cases where the approach does not give an optimal solution,
and what are the cases where it behaves well.
Another direction is the application of DFW Algorithm on a real life application.
This has been initiated during several workshops with the society SCODER for a
the proposition of a robust metal coils assignment. Here, the possible direction for
future work is to measure the gap between the ellipsoidal model of the uncertainty
and the real knowledge of the uncertainty in the problem.

82

Conclusions and perspectives

Then, a possible future work could be the extension of the heuristic algorithm
DFW for more general problems. This has been initiated in Chapter IV and has
led to MFW Algorithm, but this perspective needs more investigation.
For the perspectives of Chapter III, several numerical challenges exist, and have
been discussed extensively in Section III.2.4 and Section III.2.5. The two most
relevant perspectives for this chapter are the following. The first is the acceleration
of Pierra’s Algorithm that has been proposed with the sparse computations to
replace the full version of exact methods. This can be done by parallelization, a
parameter’s optimization, or by adapting the algorithm’s iterations for a better
conditioning and a better performance. The second is a comparison with other
lower bounds, to compare the optimality gap between the proposed lower bound
and other lower bounds.
Finally, Chapter IV has been a first attempt to extend DFW Algorithm for general
binary linear problems. It opens to two main perspectives. The first is to work
on the proposed algorithm MFW that solves heuristically the robust k-median
problem, in order to obtain better relative errors. Two possible ways to do so
have been described in Section IV.5.4. The second perspective is to apply the
heuristic approach MFW on real life examples of k-median problems, and observe
the obtained relative errors for different uncertainty configurations of the clusters.

83

Conclusions and perspectives

84

Bibliography

Bibliography

[Abernethy 09] J. D. Abernethy, E. Hazan & A. Rakhlin. Competing in the
dark: An efficient algorithm for bandit linear optimization.
2009.

[Adjiashvili 15] D. Adjiashvili, S. Stiller & R. Zenklusen. Bulk-robust combi-
natorial optimization. Mathematical Programming, vol. 149,
no. 1, pages 361–390, 2015.

[Aissi 05] H. Aissi, C. Bazgan & D. Vanderpooten. Complexity of the
min–max and min–max regret assignment problems. Opera-
tions research letters, vol. 33, no. 6, pages 634–640, 2005.

[Aissi 07] H. Aissi, C. Bazgan & D. Vanderpooten. Approximation of
min–max and min–max regret versions of some combinato-
rial optimization problems. European Journal of Operational
Research, vol. 179, no. 2, pages 281–290, 2007.

[Aissi 09] H. Aissi, C. Bazgan & D. Vanderpooten. Min–max and min–
max regret versions of combinatorial optimization problems:
A survey. European journal of operational research, vol. 197,
no. 2, pages 427–438, 2009.

[Al Dahik 20] C. Al Dahik, Z. Al Masry, S. Chrétien, J.-M. Nicod &
L. Rabehasaina. A Frank-Wolfe Based Algorithm for Robust
Discrete Optimization under Uncertainty. In 2020 Prognos-
tics and Health Management Conference (PHM-Besançon),
pages 247–252. IEEE, 2020.

[Al Dahik 21] C. Al Dahik, Z. Al Masry, S. Chrétien, J.-M. Nicod &
L. Rabehasaina. An SDP dual relaxation for the Ro-
bust Shortest Path Problem with ellipsoidal uncertainty:
Pierra’s decomposition method and a new primal Frank-
Wolfe-type heuristics for duality gap evaluation. arXiv
preprint arXiv:2110.15653, 2021.

[Alizadeh 03] F. Alizadeh & D. Goldfarb. Second-order cone programming.
Mathematical programming, vol. 95, no. 1, pages 3–51, 2003.

85

Bibliography

[Anjos 11] M. F. Anjos & J. B. Lasserre. Handbook on semidefinite,
conic and polynomial optimization, volume 166. Springer Sci-
ence & Business Media, 2011.

[Arslan 20] A. Arslan, M. Poss & M. Silva. Min-max-min robust combi-
natorial optimization with few recourse solutions. 2020.

[Arya 04] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala
& V. Pandit. Local search heuristics for k-median and facility
location problems. SIAM Journal on computing, vol. 33, no. 3,
pages 544–562, 2004.

[Ausiello 12] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann,
A. Marchetti-Spaccamela & M. Protasi. Complexity and ap-
proximation: Combinatorial optimization problems and their
approximability properties. Springer Science & Business Me-
dia, 2012.

[Awasthi 15] P. Awasthi, A. S. Bandeira, M. Charikar, R. Krishnaswamy,
S. Villar & R. Ward. Relax, no need to round: Integrality of
clustering formulations. In Proceedings of the 2015 Confer-
ence on Innovations in Theoretical Computer Science, pages
191–200. ACM, 2015.

[Baron 19] O. Baron, O. Berman, M. M. Fazel-Zarandi & V. Roshanaei.
Almost Robust Discrete Optimization. European Journal of
Operational Research, vol. 276, no. 2, pages 451–465, 2019.

[Ben-Tal 04] A. Ben-Tal, A. Goryashko, E. Guslitzer & A. Nemirovski. Ad-
justable robust solutions of uncertain linear programs. Math-
ematical Programming, vol. 99, no. 2, pages 351–376, 2004.

[Ben-Tal 09] A. Ben-Tal, L. El Ghaoui & A. Nemirovski. Robust optimiza-
tion, volume 28. Princeton University Press, 2009.

[Bertsimas 03] D. Bertsimas & M. Sim. Robust discrete optimization and
network flows. Mathematical programming, vol. 98, no. 1-3,
pages 49–71, 2003.

[Bertsimas 04a] D. Bertsimas, D. Pachamanova & M. Sim. Robust linear opti-
mization under general norms. Operations Research Letters,
vol. 32, no. 6, pages 510–516, 2004.

[Bertsimas 04b] D. Bertsimas & M. Sim. Robust discrete optimization under
ellipsoidal uncertainty sets. 2004.

86

Bibliography

[Bertsimas 19] D. Bertsimas, J. Dunn, C. Pawlowski & Y. D. Zhuo. Robust
classification. INFORMS Journal on Optimization, vol. 1,
no. 1, pages 2–34, 2019.

[Bougeret 19] M. Bougeret, A. A. Pessoa & M. Poss. Robust scheduling with
budgeted uncertainty. Discrete applied mathematics, vol. 261,
pages 93–107, 2019.

[Boyd 94] S. Boyd, L. El Ghaoui, E. Feron & V. Balakrishnan. Linear
matrix inequalities in system and control theory, volume 15.
Siam, 1994.

[Boyd 11] S. Boyd, N. Parikh & E. Chu. Distributed optimization and
statistical learning via the alternating direction method of
multipliers. Now Publishers Inc, 2011.

[Buchheim 17] C. Buchheim & J. Kurtz. Min–max–min robust combinatorial
optimization. Mathematical Programming, vol. 163, no. 1-2,
pages 1–23, 2017.

[Buchheim 18a] C. Buchheim, M. De Santis, F. Rinaldi & L. Trieu. A Frank–
Wolfe based branch-and-bound algorithm for mean-risk opti-
mization. Journal of Global Optimization, vol. 70, no. 3,
pages 625–644, 2018.

[Buchheim 18b] C. Buchheim & J. Kurtz. Robust combinatorial optimization
under convex and discrete cost uncertainty. EURO Journal
on Computational Optimization, vol. 6, no. 3, pages 211–238,
2018.

[Buhmann 18] J. M. Buhmann, A. Y. Gronskiy, M. Mihalák, T. Pröger,
R. Šrámek & P. Widmayer. Robust optimization in the pres-
ence of uncertainty: A generic approach. Journal of Com-
puter and System Sciences, vol. 94, pages 135–166, 2018.

[Burgard 15] J. P. Burgard, C. M. Costa & M. Schmidt. Decomposi-
tion Methods for Robustified k-Means Clustering Problems: If
Less Conservative Does Not Mean Less Bad. Rapport tech-
nique, Tech. rep. 2020. url: http://www. optimization-online.
org/DB_HTML/2020/05 . . . , 2015.

[Charikar 12] M. Charikar & S. Li. A dependent LP-rounding approach
for the k-median problem. In International Colloquium on
Automata, Languages, and Programming, pages 194–205.
Springer, 2012.

87

Bibliography

[Coco 14] A. A. Coco, J. C. A. Júnior, T. F. Noronha & A. C. Santos. An
integer linear programming formulation and heuristics for the
minmax relative regret robust shortest path problem. Journal
of Global Optimization, vol. 60, no. 2, pages 265–287, 2014.

[Delage 10] E. Delage & Y. Ye. Distributionally robust optimization under
moment uncertainty with application to data-driven problems.
Operations research, vol. 58, no. 3, pages 595–612, 2010.

[Diamond 16] S. Diamond & S. Boyd. CVXPY: A Python-embedded model-
ing language for convex optimization. The Journal of Machine
Learning Research, vol. 17, no. 1, pages 2909–2913, 2016.

[Dijkstra 59] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische mathematik, vol. 1, no. 1, pages 269–271,
1959.

[Fletcher 81] R. Fletcher. A nonlinear programming problem in statistics
(educational testing). SIAM Journal on Scientific and Statis-
tical Computing, vol. 2, no. 3, pages 257–267, 1981.

[Frank 56] M. Frank & P. Wolfe. An algorithm for quadratic program-
ming. Naval research logistics quarterly, vol. 3, no. 1-2, pages
95–110, 1956.

[Gao 11] Y. Gao. Shortest path problem with uncertain arc lengths.
Computers & Mathematics with Applications, vol. 62, no. 6,
pages 2591–2600, 2011.

[Garey] M. R. Garey & D. S. Johnson. Computers and intractability,
volume 174.

[Goemans 94] M. X. Goemans & D. P. Williamson. New 34-approximation
algorithms for the maximum satisfiability problem. SIAM
Journal on Discrete Mathematics, vol. 7, no. 4, pages 656–
666, 1994.

[Goemans 95] M. X. Goemans & D. P. Williamson. Improved approximation
algorithms for maximum cut and satisfiability problems us-
ing semidefinite programming. Journal of the ACM (JACM),
vol. 42, no. 6, pages 1115–1145, 1995.

[Goemans 97] M. X. Goemans. Semidefinite programming in combinatorial
optimization. Mathematical Programming, vol. 79, no. 1-3,
pages 143–161, 1997.

88

Bibliography

[Goh 10] J. Goh & M. Sim. Distributionally robust optimization and
its tractable approximations. Operations research, vol. 58,
no. 4-part-1, pages 902–917, 2010.

[Guélat 86] J. Guélat & P. Marcotte. Some comments on Wolfe’s ‘away
step’. Mathematical Programming, vol. 35, no. 1, pages 110–
119, 1986.

[Gut] A. Gut. The Multivariate Normal Distribution. In An Inter-
mediate Course in Probability, pages 117–145. Springer New
York.

[Haddad 21] M. Haddad, G. Da Costa, J.-M. Nicod, M.-C. Péra, J.-M.
Pierson, V. Rehn-Sonigo, P. Stolf & C. Varnier. Combined
IT and power supply infrastructure sizing for standalone green
data centers. Sustainable Computing: Informatics and Sys-
tems, vol. 30, page 100505, 2021.

[Hanasusanto 15] G. A. Hanasusanto, D. Kuhn & W. Wiesemann. K-
adaptability in two-stage robust binary programming. Opera-
tions Research, vol. 63, no. 4, pages 877–891, 2015.

[Hanasusanto 16] G. A. Hanasusanto, D. Kuhn & W. Wiesemann. K-
adaptability in two-stage distributionally robust binary pro-
gramming. Operations Research Letters, vol. 44, no. 1, pages
6–11, 2016.

[Hazan 16] E. Hazanet al. Introduction to online convex optimization.
Foundations and Trends® in Optimization, vol. 2, no. 3-4,
pages 157–325, 2016.

[Ilyina 17] A. Ilyina. Combinatorial optimization under ellipsoidal un-
certainty. PhD thesis, Technische Universität Dortmund,
2017.

[Jaggi 13] M. Jaggi. Revisiting Frank-Wolfe: Projection-Free Sparse
Convex Optimization. In ICML (1), pages 427–435, 2013.

[Kacem 19] I. Kacem & H. Kellerer. Complexity results for common due
date scheduling problems with interval data and minmax regret
criterion. Discrete Applied Mathematics, vol. 264, pages 76–
89, 2019.

[Karger 98] D. Karger, R. Motwani & M. Sudan. Approximate graph
coloring by semidefinite programming. Journal of the ACM
(JACM), vol. 45, no. 2, pages 246–265, 1998.

89

Bibliography

[Karloff 99] H. Karloff. How Good is the Goemans–Williamson MAX
CUT Algorithm? SIAM Journal on Computing, vol. 29, no. 1,
pages 336–350, 1999.

[Kouvelis] P. Kouvelis & G. Yu. Robust discrete optimization and its
applications. OCLC: 854966265.

[Lee 04] J. Lee. A first course in combinatorial optimization, vol-
ume 36. Cambridge University Press, 2004.

[Lemaréchal 99] C. Lemaréchal & F. Oustry. Semidefinite relaxations and La-
grangian duality with application to combinatorial optimiza-
tion. 1999.

[Li 11] Z. Li, R. Ding & C. A. Floudas. A comparative theoretical
and computational study on robust counterpart optimization:
I. Robust linear optimization and robust mixed integer linear
optimization. Industrial & engineering chemistry research,
vol. 50, no. 18, pages 10567–10603, 2011.

[Li 16] J. Li, S. Song, Y. Zhang & Z. Zhou. Robust k-median and
k-means clustering algorithms for incomplete data. Mathe-
matical Problems in Engineering, vol. 2016, 2016.

[Liebchen 09] C. Liebchen, M. Lübbecke, R. Möhring & S. Stiller. The con-
cept of recoverable robustness, linear programming recovery,
and railway applications. In Robust and online large-scale
optimization, pages 1–27. Springer, 2009.

[Liu 09] B. Liu. Some research problems in uncertainty theory. Journal
of Uncertain systems, vol. 3, no. 1, pages 3–10, 2009.

[Manual 87] C. U. Manual. Ibm ilog cplex optimization studio. Version,
vol. 12, pages 1987–2018, 1987.

[Markowitz 52] H. Markowitz. Portfolio selection. The journal of finance,
vol. 7, no. 1, pages 77–91, 1952.

[Nesterov 94] Y. Nesterov & A. Nemirovski. Interior-Point Polynomial Al-
gorithms in Convex Programming (Studies in Applied and Nu-
merical Mathematics). Society for Industrial Mathematics,
1994.

[Nocedal 06] J. Nocedal & S. Wright. Numerical optimization. Springer
Science & Business Media, 2006.

90

Bibliography

[Omri 20] N. Omri, Z. Al Masry, N. Mairot, S. Giampiccolo & N. Zer-
houni. Industrial data management strategy towards an SME-
oriented PHM. Journal of Manufacturing Systems, vol. 56,
pages 23–36, 2020.

[Pant 11] R. Pant, T. B. Trafalis & K. Barker. Support vector ma-
chine classification of uncertain and imbalanced data using
robust optimization. In Proceedings of the 15th WSEAS in-
ternational conference on computers, pages 369–374. World
Scientific and Engineering Academy and Society (WSEAS)
Stevens Point . . . , 2011.

[Pierra 84] G. Pierra. Decomposition through formalization in a product
space. Mathematical Programming, vol. 28, no. 1, pages 96–
115, 1984.

[Pierson 19] J.-M. Pierson, G. Baudic, S. Caux, B. Celik, G. Da Costa,
L. Grange, M. Haddad, J. Lecuivre, J.-M. Nicod,
L. Philippeet al. Datazero: Datacenter with zero emission
and robust management using renewable energy. IEEE Ac-
cess, vol. 7, pages 103209–103230, 2019.

[Portoleau 20] T. Portoleau, C. Artigues & R. Guillaume. Robust Predictive-
Reactive Scheduling: an Information-Based Decision Tree
Model. In International Conference on Information Process-
ing and Management of Uncertainty in Knowledge-Based Sys-
tems, pages 479–492. Springer, 2020.

[Poss 13] M. Poss. Robust combinatorial optimization with variable bud-
geted uncertainty. 4OR, vol. 11, no. 1, pages 75–92, 2013.

[Poss 18] M. Poss. Robust combinatorial optimization with knapsack
uncertainty. Discrete Optimization, vol. 27, pages 88–102,
2018.

[Rahimian 19] H. Rahimian & S. Mehrotra. Distributionally robust optimiza-
tion: A review. arXiv preprint arXiv:1908.05659, 2019.

[Reeves 93] C. R. Reeves, editeur. Modern heuristic techniques for com-
binatorial problems. John Wiley & Sons, Inc., USA, 1993.

[Saltelli 02] A. Saltelli. Sensitivity analysis for importance assessment.
Risk analysis, vol. 22, no. 3, pages 579–590, 2002.

[Scobey 78] P. Scobey & D. Kabe. Vector quadratic programming problems
and inequality constrained least squares estimation. J. Indust.
Math. Soc., vol. 28, pages 37–49, 1978.

91

Bibliography

[Shalev-Shwartz 07] S. Shalev-Shwartz & Y. Singer. A primal-dual perspective of
online learning algorithms. Machine Learning, vol. 69, no. 2,
pages 115–142, 2007.

[Singla 20] M. Singla, D. Ghosh & K. Shukla. A survey of robust op-
timization based machine learning with special reference to
support vector machines. International Journal of Machine
Learning and Cybernetics, vol. 11, no. 7, pages 1359–1385,
2020.

[Soyster 73] A. L. Soyster. Convex programming with set-inclusive con-
straints and applications to inexact linear programming. Op-
erations research, vol. 21, no. 5, pages 1154–1157, 1973.

[Toklu 17] N. E. Toklu, S. Yanık & R. Montemanni. THE TRAVEL-
ING SALESMAN PROBLEM UNDER DYNAMIC UNCER-
TAINTY. 2017.

[Trafalis 07] T. B. Trafalis & R. C. Gilbert. Robust support vector ma-
chines for classification and computational issues. Optimi-
sation Methods and Software, vol. 22, no. 1, pages 187–198,
2007.

[Wolkowicz 99] H. Wolkowicz. Semidefinite and Lagrangian relaxations for
hard combinatorial problems. In IFIP Conference on System
Modeling and Optimization, pages 269–309. Springer, 1999.

[Xanthopoulos 12] P. Xanthopoulos, P. M. Pardalos & T. B. Trafalis. Robust
data mining. Springer Science & Business Media, 2012.

[Zinkevich 03] M. Zinkevich. Online convex programming and generalized
infinitesimal gradient ascent. In Proceedings of the 20th in-
ternational conference on machine learning (icml-03), pages
928–936, 2003.

92

Titre : Optimisation Discrète Robuste En Présence D’incertitude Ellipsoïdale
Mots clefs: Incertitude, Optimisation robuste discrète, Ensemble d’incertitude, Plus
court chemin robuste, Clustering robuste, relaxation SDP

Résumé : Cette thèse traite la version ro-
buste des problèmes linéaires à variables bi-
naires avec un ensemble d’incertitude cor-
rélé. Puisque ce problème est NP-difficile,
une approche heuristique intitulée DFW
et basée sur l’algorithme de Frank-Wolfe
est proposée. Dans cette approche, nous
examinons la puissance d’exploration des
itérations internes binaires de la méthode.
Pour les problèmes de petites tailles, la
méthode est capable de fournir la solu-
tion optimale fournie par CPLEX, après
quelques centaines d’itérations. De plus,
contrairement à la méthode exacte, notre
approche s’applique à des problèmes de
grandes tailles également. Les résultats
numériques ont été appliqués au plus court

chemin robuste. Un autre objectif de cette
thèse est de proposer une relaxation semi-
définie positive (SDP) pour le plus court
chemin robuste qui fournit une borne in-
férieure pour valider des approches telles
que l’algorithme DFW. Le problème relaxé
est le résultant d’une bidualisation du prob-
lème. Puis le problème relaxé est résolu
en utilisant une version creuse d’une méth-
ode de décomposition dans un espace pro-
duit. Cette méthode de validation est adap-
tée aux problèmes de grande taille. Finale-
ment, une autre adaptation de l’algorithme
de Frank-Wolfe a été réalisé pour le prob-
lème du k-médiane, accompagnée d’un al-
gorithme d’arrondissement qui satisfait les
contraintes.

Title : Robust Discrete Optimization Under Ellipsoidal Uncertainty
Keywords : Uncertainty, Robust discrete optimization, Ellipsoidal uncertainty set,
Robust shortest path Problem, Robust clustering, SDP relaxation

Abstract : This thesis addresses the Ro-
bust counterpart of binary linear problems
with ellipsoidal uncertainty sets. Since this
problem is hard, a heuristic approach, based
on Frank- Wolfe’s algorithm named Discrete
Frank-Wolf (DFW), has been proposed. In
this approach, we make use of the explo-
ration power of the integer inner iterates
of the method. For small dimensional in-
stances, our method is able to provide the
same optimal integer solution as an exact
method provided by CPLEX, after no more
than a few hundred iterations. Moreover,
as opposed to the exact method, DFW Al-
gorithm applies to large scale problems as
well. The numerical results are applied on
the robust shortest path problem (RSPP).

Another aim of this thesis is to propose
a Semi-Definite Programming (SDP) relax-
ation for the RSPP that provides a lower
bound to validate approaches such as DFW
Algorithm. The relaxed problem results
from a bidualization of the problem.Then
the relaxed problem is solved using a sparse
version of a decomposition in a product
space method. This validation method is
suitable for large size problems. The numer-
ical experiments show that the gap between
the solutions obtained with the relaxed and
the heuristic approaches is relatively small.
Finally, another adaptation of FW, named
MFW Algorithm, has been proposed and
tested numerically for the k-median prob-
lem with a feasible rounding procedure.

Université Bourgogne Franche-Comté
32, avenue de l’Observatoire
25000 Besançon

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	State-of-the-art of robust optimization
	General overview
	Approaches to tackle uncertainty in optimization problems
	Min-max robust optimization
	Robust two-stage optimization
	Distributionally robust optimization
	Online optimization
	Approach under the framework of uncertainty theory

	Synthesis

	A heuristic approach for robust discrete optimization: first example on the robust shortest path problem
	Motivation and context
	Problem formulation
	Method for computing an optimal solution
	Scalable suggested heuristic algorithm
	Assumptions
	The classical Frank-Wolfe algorithm
	A Frank-Wolfe based algorithm

	Numerical results
	Experimental setup
	Behavior of DFW algorithm
	Performance of the DFW algorithm as a function of L
	Synthesis

	Validation method for the heuristic solution applied on the robust shortest path problem
	Evaluation of the quality of the approximate solution
	Bidualization of a quadratic problem
	Using the bidualization to compute a lower bound
	Solving the SDP problem

	Experimental results
	Experimental setup
	Numerical evaluation of the heuristic approach DFW
	Numerical results of Pierra's algorithm
	Discussion
	Difficulties in the experiments
	Synthesis

	A second heuristic approach based on Frank-Wolfe for the k-median clustering problem
	Motivation and context
	Problem formulation
	Problem illustration
	A Frank-Wolfe based approach MFW for the k-median clustering
	Assumptions for DFW Algorithm not satisfied
	The proposed approach

	Numerical results
	Experimental setup
	Adequate and generation
	Results of MFW for different problem sizes
	Discussion

	Conclusions and perspectives
	Bibliography

