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Résumé 

Dans le contexte des chirurgies mini-invasives, les endoscopes flexibles et les instruments 
chirurgicaux à câble sont des outils essentiels. Dans les systèmes robotiques, la transmission par 
câble permet de contrôler les effecteurs distaux à l’intérieur du patient à partir de moteurs situés du 
côté proximal. Cependant, des non-linéarités sont introduites en raison de l'interaction entre les 
câbles et les gaines à l'intérieur des outils endoscopiques. Dans cette thèse, un nouveau modèle 
cinématique inverse (MCI) qui peut prendre en compte des non-linéarités complexes est proposé 
pour les systèmes flexibles, ainsi qu'une extension pour tout type de système robotique. Le concept 
des techniques développées consiste à combiner la modélisation géométrique avec des techniques 
d'apprentissage automatique. Cela permet d'obtenir un MCI précis, efficace et capable de gérer les 
effets d'hystérésis. La précision est améliorée par rapport à d'autres approches basées sur 
l'apprentissage, avec une phase d'entraînement plus rapide, comme l'ont montré les expériences 
menées sur la plateforme STRAS. 

Mots-clés : robots continus, modélisation, apprentissage automatique, modèles hybrides, robotique 
médicale 

 

 

Abstract 

In the context of minimally invasive surgeries, flexible endoscopes and cable-driven flexible 
instruments are essential tools. In robotic systems, cable transmission allows to control distal 
effectors inside the patient from external motors located at the proximal side. However, non-
linearities are introduced due to the interaction between the cables and the sheaths inside the 
endoscopic tool’s shafts. In this thesis, a novel position inverse kinematic model (PIKM) that can 
consider complex non-linearities is proposed for both coupled and uncoupled flexible systems, as 
well as an extension for any kind of robotic system. The core concept of the developed techniques is 
to combine classic kinematics with machine learning techniques. This allows for a precise, yet 
efficient, PIKM that can handle hysteresis effects. The positioning accuracy is improved compared to 
other learning-based approaches with a faster training phase as has been shown on experiments on 
the STRAS platform. 

Keywords: continuum robots, modeling, machine learning, hybrid models, medical robotics 
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Motivation and problem statement

In the past twenty years, the use of flexible endoscopes has developed tremen-
dously. Indeed, the search for less invasive procedures has led to the de-
velopment of endoluminal and transluminal approaches, also called natural
orifice or no-scar surgery. For navigating in the digestive tract, flexible in-
struments are required in order to limit trauma to the tissues and associated
pain. While flexible endoscopes are standard instrumentation for gastroen-
terology for decades, their use for surgical procedures remain highly prob-
lematic. Flexible endoscopes lack the features usually praised by surgeons,
such as triangulation (the configuration where the surgical view and two in-
struments form an inverted pyramid), independent motions and stability of
instruments and camera.

This observation has led medical material companies to develop platforms
where several flexible instruments, endoscopes or guides are combined to pro-
vide independent motions and sometimes added degrees of freedom. Despite
numerous attempts, these medical systems have however remained mostly
unused and almost none of them are used in clinical routine. The main rea-
son is the difficulty to control such instruments, due to non-intuitive control
systems (wheels, handles, levers, locks), the necessity for several physicians to
handle different parts of the system combined with a very limited workspace
for collaboration near the entry point in the patient. Three paths have been
followed since then to continue developing these minimally invasive proce-
dures: specialized training in the use of conventional endoscopes, develop-
ment of particular skills for a particular platform and robotization of flexible
endoscopes. Several teams have initially followed this last path, like the Im-
perial College (Hamlyn Centre for Robotic Surgery) and the Korea Advanced
Institute of Science and Technology (Telerobotics and Control Laboratory).

The interest for robotics was guided by the example of the da Vinci sur-
gical system largely used in laparoscopic surgery. It showed that teleopera-
tion of a medical robot handling articulated instruments can allow a single
surgeon to handle camera and up to three surgical instruments to obtain im-
proved dexterity and comfort. Several teleoperated systems based on flexi-
ble systems have been developed and brought to clinical or pre-clinical trials
(MASTER from Nanyang university of Singapore, ViaCath from Endovia and
University of Purdue), demonstrating very encouraging results. As of today,
no such system has reached the market yet. This should become reality very
shortly, with leaders in medical material, robotics and even web giants work-
ing together in this direction.

The ICube laboratory in Strasbourg has participated from early on to this
research as a member of a consortium with Karl Storz (German company
leader in endoscopy), IRCAD (Institut de Recherche sur les Cancers de l’Appareil
Digestif, research and training center in Strasbourg). The efforts have led to
the development of a platform called STRAS (acronym for Single port and
Transluminal Robotic Assistant for Surgeons), which has been brought to pre-
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clinical trials for colorectal cancers treatments. The medical and technical re-
sults are very encouraging, with decreased operating times and the possibility
for novice surgeons to easily perform complex operations normally reserved
to experts when using conventional flexible endoscopes. Nevertheless, it was
also noted that robotic flexible instruments and flexible endoscopes exhibit
unwanted behaviors, which can disturb medical users. Cable-driven flexible
systems, which constitute the core of the flexible endoscopes and instruments,
are subject to strong non-linear behaviors, such as dead-zones and backlash.
At some moments during teleoperation, the user may therefore experience
what is felt as delays or lack of responsiveness.

The non-linearities still act as disturbances for the user. They prevent
the accomplishment of any precise open-loop automatic motion, because the
forward kinematic model of the robotic system is practically erroneous. It
must be noted that these problems are not specific to the STRAS robotic sys-
tem, but general to tendon driven systems, especially flexible ones, for which
the cable path is not constant. The problem also exists on manual instru-
ments, however, due to the difficult and non-intuitive control modes, these
non-linearities only account for a limited part of the control issues.

Objectives

Improving the experience of medical users is an important goal for facilitat-
ing difficult procedures. Developing automatic or semi-automatic modes in
teleoperated medical systems is also a valuable aim. These modes can re-
lieve the user from difficult tasks and decrease the cognitive load during long
procedures. Both objectives require to solve the aforementioned problems of
non-linearities in cable-driven flexible systems. This is the main goal of this
PhD thesis. From a robotic point of view, three main approaches can be envi-
sioned:

1. Removing or limiting non-linearities by modifying the mechanical de-
sign of the instruments;

2. Modeling the non-linearities in order to take them into account into
open-loop control;

3. Using closed-loop control by relying on distal information to remove the
effects of the non-linearities.

The three approaches are complementary and can also be advantageously
combined. Mechanical modification was not our goal, as we only have limited
access to the instruments used in our robotic platform, instruments and en-
doscopes being produced by Karl Storz. Closing the loop requires embedded
sensors, which are not readily available in clinical practice, at the exception
of the endoscopic camera. Endoscopic cameras on the other hand have low
framerates, which make them little adapted to obtain sufficient bandwidth
to remove visible effects. Typically, compensating an unknown pure back-
lash from distal feedback would require a control loop running at a minimum
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frequency of 500Hz [Bardou, 2011]. Moreover, providing consistent and ro-
bust information from endoscopic images remains a challenge [Cabras et al.,
2014]. In this thesis work, we therefore focus on the second approach, with
the aim to improve modeling so as to ideally allow pure open-loop control, or
alternatively improve feedback control.

Physical modeling of non-linearities of tendon-driven flexible endoscopes
is a very difficult task. It has been shown in several works that even for quasi-
static modeling, many physical parameters intervene, some of them are very
difficult to know beforehand or even to measure in situ, such as the config-
uration of the sheaths in which cables run. On the other hand, black box
approaches are not well suited either because the behavior is dependent on
many state parameters. For the specific instruments of the STRAS robot, it
was shown that the behavior is different between supposedly identical in-
struments. Moreover, the behavior changes over time and use, due to wears,
change of tension and change of internal configurations of the system.

Following these observations, in this work we try to tackle the problem of
the quasi-static identification of the behavior of robotic endoscopic systems
from data acquired on the system. Using data for modeling is nowadays re-
ferred to as data-driven approaches or machine learning techniques. At the
same time, we aim at reducing the time needed for building datasets, with
the idea that such identifications, or at least updates, will be needed before
each use of the instrument. In the medical context, identification operations
should be kept as quick as possible. We therefore propose to combine geo-
metrical modeling based on standard simple models with data-driven models
obtained from limited sets of data acquisition. This initial idea has led us
to develop a more general framework with guidelines on how basic geomet-
rical knowledge can advantageously be combined with machine learning to
develop more accurate models at reduced cost of data acquisition.

Thesis overview

This manuscript presents the work done during my PhD work. The first
chapter presents the medical context, with a focus on medical devices devel-
opments for endoluminal and transluminal surgery. Chapter 2 presents the
basis of this work, in particular the STRAS robotic platform used as the exper-
imental platform and the state-of-the-art on the modeling and compensation
of non-linearities in robotic flexible instruments. Chapter 3 develops the pro-
posed approach of combining models and data-driven approaches to model
flexible instruments with a single bending direction and flexible endoscopes
with two bending directions. Prediction capabilities and open-loop control
possibilities are demonstrated on both systems. Chapter 4 proposes a gener-
alization of the developed techniques with different conditions of application
on the same material platform.

This work was funded in part by the CAMI labex and in part by the ICube
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laboratory. The CAMI labex is a laboratory of Excellence supported by the
French "Investissements d’Avenir" funds and managed by the national re-
search funding agency ANR under number ANR-11-LABX-0004-01. CAMI
Labex, where CAMI stands for Computer-Assisted Medical Interventions, groups
6 research teams in France, working in the field of the assistance to medical
procedures by mainly using technologies from the information. One of the
aims is to augment the actions of medical users by improving the design or
control of their tools. This PhD thesis inscribes in this general goal.

List of publications

Peer Reviewed International Conferences

Porto, R. A., Nageotte, F., Zanne, P., and de Mathelin, M. (2019d). Position
control of medical cable-driven flexible instruments by combining machine
learning and kinematic analysis. In 2019 International Conference on Robotics
and Automation (ICRA), pages 7913–7919. IEEE

Porto, R. A., Nageotte, F., Zanne, P., and de Mathelin, M. (2019a). Backlash
compensation in cable-driven flexible endoscopes using machine learning and
kinematic analysis. In IEEE International Conference on Robotics and Automa-
tion (ICRA) Workshop–Open Challenges and State-of-the-Art in Control System
Design and Technology Development for Surgical Robotic Systems

Porto, R. A., Nageotte, F., Zanne, P., and de Mathelin, M. (2019b). Combining
machine learning and kinematic analysis to control medical cable-driven flex-
ible instruments. In Joint Workshop on Computer/Robot Assisted Surgery (CRAS)

Peer Reviewed National Conferences

Porto, R. A., Nageotte, F., Zanne, P., and de Mathelin, M. (2019c). Modeling the
non-linearities of flexible endoscopes using machine learning. In Proceedings
of Surgetica’2019





Chapter 1

Medical context

Contents

1.1 Evolution of surgery techniques of the digestive tract . . . . . . 24

1.2 Flexible endoscopy . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3 Flexible systems for mini-invasive surgery . . . . . . . . . . . . 34

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

23
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1.1 Evolution of surgery techniques of the digestive tract

The surgical field is relatively new when we take into account the whole his-
tory of medicine. Due to the pain and the great risk of post-surgical infection,
any incisions in the abdomen were malvised because the risk of fatality was
very high until the middle of the 19th century. Thus, the work of a surgeon
was quite limited until the popularization of the use of anesthetic agents -
mainly attributed to William Thomas Green Morton in 1845 when he used
ether to make a tooth extraction - and the introduction of antiseptic methods
popularized by Joseph Lister in 1867 when he used carbolic acid to disinfect
lesions and surgical tools.

Despite the many existing specialties, we will focus on advances in the area
of gastrointestinal tract surgery. This type of surgery concerns organs that are
mainly related to digestive processes, such as the esophagus, stomach, large
intestine, small intestine and rectum. Therapeutic procedures performed on
the gallbladder, liver, appendix or for treatment of hernias or even obesity
are also part of this specialty. Nowadays, stomach cancer is the fifth most
common type of cancer and the third most lethal according to GLOBOCAN
statistics [Bray et al., 2018] with colorectum cancer being even worse (second
most lethal and third most common), but in the 19th century stomach cancer
was the leader of this statistic.

One of the first great specialists in gastrointestinal surgery was Theodor
Billroth. He was the first to demonstrate experimentally, in an animal labora-
tory, that it is possible to perform gastrectomy - partial or complete removal
of the stomach - without fatalities after the failed experiments of Jules Péan
in 1879 and Ludwig Rydigier in 1880. In 1881, he performed the first suc-
cessful gastrectomy to remove a carcinoma that occupied about 1/3 of the
distal stomach volume [Ellis and Abdalla, 2018]. This surgery was performed
through a large incision in the patient’s abdomen. This type of technique, now
considered invasive, is also called laparotomy.

For a long time, laparotomy was the norm for performing surgeries due
mainly to the difficulties related to the exploration and visualization of the
internal organs. Even though some advances were already beginning to ap-
pear in the area of endoscopy during the 19th century, the tools were still too
primitive and unsafe to be used. These limitations, however, did not prevent
the parallel advancement of endoscopy.

The first reports of a functional device allowing internal visualization from
a natural orifice is attributed to Philip Bozzini in 1806 [Reuter et al., 1999].
His invention, called the "Lichtleiter" - light conductor when translated - al-
lowed the illumination of internal tissues by reflecting the light of a candle
through a system of mirrors. Although functional for inspection and diagno-
sis, it was not possible to perform any type of therapy with this device.

The term "endoscopy" was only used many years later with the modifica-
tion of the original "Lichtleiter" design by the french physician Antonin Jean
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Desormeaux in 1853 [Desormeaux, 1855]. His device, Desormeaux’s endo-
scope, was still completely rigid such as the endoscopes used in laparoscopy
today. In practical terms, this caused an impossibility of inspecting the up-
per gastrointestinal tract - great risk of hurting the esophagus and practically
impossible to access the stomach through natural cavities except in very par-
ticular cases (for example, a reported case was done on a professional sword-
swallower [Saxena and Höllwarth, 2008]).

The first reported case of a laparoscopy was performed on a dog by the ger-
man physician Georg Kelling in 1901. He was also the first one to introduce
a flexible esophagoscope/gastroscope in 1932. Inspired by a human finger,
it consisted of tubes playing the role of phalanges and was completely cov-
ered with Indian rubber [Vecchio et al., 2000]. However, his instrument was
not very successful when inspecting rather obscure areas mainly because of
difficulties regarding illumination.

In parallel and without being aware of Kelling’s advances, Hans Christian
Jacobaeus was the first to perform a laparoscopy on a human in 1910. He
was also responsible for creating the term laparoscopy. His results were pub-
lished soon after in 1912, after carrying out 109 laparoscopies in 69 patients
[Jacobaeus, 1912].

Figure 1.1: Illustration of typical laparoscopic cholecystectomy [U.S. National
Library of Medicine - National Institutes of Health, 2020]. The abdomen is
inflated by using CO2 to create space for the surgical gesture. The rigid en-
doscope is inserted through a trochar to allow visualization of the internal
organs.

In 1932, the german physician Rudolf Schindler, in conjunction with the
manufacturer Wolf, invented the first semi-flexible gastroscope [Benedict, 1934].
Although the first half was still rigid, the second half of this instrument al-
lowed a maximum bending of about 30o [Gross and Kollenbrandt, 2009] by
using cables to change its form. Its use was adopted globally thanks to the
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great increase in terms of safety for patients, especially at the time of inser-
tion [Marks and Dunkin, 2013].

Other major advances that increased flexible endoscopy applications were
developed in the 1960s. Harold Hopkins’ partnership with Karl Storz was
responsible for the foundation of modern endoscopy with the junction of
an optical system of rod-lens with a bundle of fiber optics. This combina-
tion led to a considerable improvement in image quality that could not have
been achieved before. Thanks to this technology, it was also possible to create
the first fully functional flexible commercial endoscopy device known as the
Hirschowitz fiberscope [Hirschowitz, 1979]. The device was still actuated by
long cables used to bend its distal part.

Finally, possibly the biggest breakthrough in allowing flexible endoscopy
to spread was the integration of CCD cameras into endoscopes in the late
1960s. Despite the low resolution of the images (100x100 pixels), the first flex-
ible endoscope with a embedded digital camera was made in 1983 by Welch
Allyn Inc [Wheeler, 1986]. This made possible to acquire the images thanks to
this camera at the tip of the endoscope, convert them into an electrical signal
- easily transmitted inside the flexible endoscope - and finally be processed
by an external device. This allowed a huge gain in space inside the endo-
scopes, which transformed them into the polyvalent surgical instruments we
see today. Many major advances have still been made over the years, such as
improved sensors, miniaturization of the size of endoscopes and introduction
of robotic devices, but only the latter will be discussed in section 1.3.

Discussion

An important point to consider is why surgical techniques have evolved from
laparotomy to laparoscopy and today converge more and more to flexible
endoscopy. Laparotomy is considered invasive because a large incision at
the level of the abdomen is necessary to perform the surgery. These proce-
dures have several risks for the patient, mainly related to blood loss and post-
operative infections. Recovery times and, consequently, hospitalization time
are also generally longer when compared with minimally invasive surgeries
with equally satisfactory results [Bateman et al., 1994]. In aesthetic terms, la-
paroscopy and endoscopy are also much superior, offering the option of small
scars or even none at all in some cases (discussed in the chapter 1.2.3).

On the other hand, there are certain difficulties that arise for the sur-
geon when the size of the incisions in the patient is reduced. Indirect vision,
whether by digital cameras on current devices or by mirror systems on the
first devices, causes a loss of depth perception. This can be solved by using
stereo vision systems, which are not yet standard in flexible endoscopy due
to the large exploration movements and these systems not always accepted by
medical users - issues with motion sickness are still very prominent. There is a
loss of mobility and dexterity of surgeons, as the surgical tools move through
a trocar in the case of laparoscopic surgery or through small channels in en-



1.1. EVOLUTION OF SURGERY TECHNIQUES OF THE DIGESTIVE
TRACT 27

Figure 1.2: Timeline of major breakthroughs. Lichtleiter - [Rathert et al.,
1974], Desormeaux - [Zada et al., 2012], Kelling - [Litynski and Paolucci,
1998], Schindler - [Benedict, 1934], Hirschowitz fiberscope - [Wilcox, 2009]
and video endoscope - [Wheeler, 1986].
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doscopic surgery. Finally, there is also the loss of tactile sensation because
the whole operation is performed "at a distance", without direct contact by
the physician [Veldkramp et al., 2005]. These barriers, however, are gradually
being broken down thanks mainly to the development of robotic systems.

1.2 Flexible endoscopy

In this chapter, we will analyze different types of existing flexible endoscopes,
the surgical tools that can be used with these systems and their main applica-
tions. An analysis of the advantages and disadvantages of using these systems
in the context of digestive system surgeries will also be done.

1.2.1 Types of flexible endoscopes

Despite the more usual use of flexible endoscopes for diagnostic purposes,
there are already several techniques that can be used for therapy purposes.
Various types of endoscopes exist and are designed for optimal use in certain
areas of the body. The main types and techniques associated with their uses
are :

• Oesogastroduodenoscopy (EGD): diagnostic endoscopic procedure that
visualizes the upper part of the gastrointestinal tract down to the duo-
denum by using a gastroscope. The organs usually observed are the
oesophagus, stomach and duodenum.

• Duodenoscopy: special type of upper endoscopy that targets the papilla,
biliary tract and pancreatic ducts. It is performed by a duodenoscope,
which allows a lateral view instead of a frontal one. It also presents
an elevator, device that allows an upward/downward movement on the
distal part of the working channel, to better control endoscopic tools.

• Colonoscopy: endoscopic examination of the large bowel, including the
rectum, colon and terminal ileum by the use of a colonoscope. The inser-
tion point is usually the anus, which allows for a larger diameter (con-
sequently, more tools can be used) compared to gastroscopes.

• Enteroscopy : procedure of using an endoscope for the direct visualiza-
tion of the small bowel. It is usually a demanding technique given the
length of the small bowel (4-6m on an adult) and the difficulty of access.
They can be performed by using enteroscopes, which are much longer
gastroscopes that allows reaching these more distant areas, or using a
system with surgical balloons pull the intestine towards the user.

An illustration of this list can be seen in 1.4.
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Figure 1.3: Types of endoscopes used on different parts of the GI tract

1.2.2 Diagnostic

One of the most common uses of flexible endoscopes is to diagnose "simple"
diseases such as chronic gastro-esophageal reflux disease (GERD) - which can
develop in more serious problems such as Barretts esophagus and esophageal
adenocarcinoma [Pohl and Welch, 2005] - or even stomach ulcers. The great
potential of these tools is the presence of functionalities such as high reso-
lution cameras, the possibility to enlarge images with optical zoom during
inspection or the use of chromoendoscopy techniques - addition of dyes into
the GI tract in order to enhance some features.

The use of the endoscopic camera, however, is not the only way to diag-
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Figure 1.4: A: Seemingly normal endoscopic image of Barrett’s esophagus. B:
Endoscopic image of the same patient after the staining with methylene blue.
The bottom arrow indicates the presence of an intramucosal adenocarcinoma,
whereas the arrow on the top indicate a normal stained mucosa [Song et al.,
2007].

nose diseases with flexible endoscopes. The use of ultrasound probes (En-
doscopic Ultrasound or EUS) to diagnose pancreatitis Hocke et al. [2011] or
even pancreatic cancer [Agarwal et al., 2004] is already proving to be a viable
strategy for this type of disease. Other visualization methods also used are
laser-based techniques, such as endomicroscopy [Goetz and Kiesslich, 2010]
to perform biopsies of the GI mucosa or even Optical Coherence Tomography
(OCT) [Sivak Jr et al., 2000].

1.2.3 Therapy

On the other hand, a strong trend in the use of these instruments for ther-
apy has been emerging since the last decade. For treatment of diseases such
as Barretts esophagus, there are possibilities with the use of radiofrequency
ablation [Ackroyd et al., 1999] both in focal and circonferential form [Sharma
et al., 2009]. These techniques allow the removal or destruction of the affected
tissue by applying heat in the region of interest. The depth and extent of these
burns can be modulated with the electrical power and time of exposure.

With the use of endoscopic ultrasound, it is also possible to guide proce-
dures for biliary drainage [Kawakubo et al., 2014] - insertion of a small plastic
tube that allows the drainage of an obstructed bile duct - or for fine-needle
aspiration [Bang et al., 2016] - insertion of a thin needle in a tissue with ab-
normal appearance. With the guide of an EUS, the risk associated with these
procedures is greatly reduced.

From another point of view, flexible endoscopes have also been used in
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DISSECTION HOOK BALL ELECTRODE SCISSORS

Figure 1.5: Several surgical tools used in endoscopy. Source : [Storz, 2016]

conjunction with simple surgical accessories such as knives, snares, forceps
and needles to perform procedures previously performed either by laparoscopy
or laparotomy. Techniques such as polypectomy [Ferlitsch et al., 2017], Endo-
scopic Mucosal Resection (EMR) [Rösch et al., 2004] and Endoscopic Submu-
cosal Dissection (ESD) [Gotoda et al., 2006] allow the removal of small or long
pieces of tissue, including tumors, in a minimally invasive way and without
external scars. Peroral Endoscopic Myotomy (POEM) is being performed for
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treating achalasia - disease that prevents relaxation of the sphincter and an
absence of contractions - and other motility disorders of the oesophagus [Teit-
elbaum et al., 2018]. Obesity has been treated by the placement of intragastric
balloons [Tate and Geliebter, 2017] or even by performing Endoscopic Sleeve
Gastroplasty (ESG) [Sharaiha et al., 2017]. All the above-mentioned surgeries
can be performed within the concerned lumen, meaning that no incision is
required, and everything is done within the organ itself.

1 2

3 4

Figure 1.6: Illustration of endoscopic submmucosal dissection. 1 - marking
the zone of interest with an electric knife. 2 - injection of a saline solution with
a needle under the tissue, in the submucosa, to elevate the area of dissection
and reduce the risk of perforation. 3 - Dissection of the tissue by following
the marks done at step 1. 4 - Removing of the dissected tissue using a grasper.

Another philosophy that is also applied with endoscopic procedures is the
use of a natural orifice as an entry point, but then making an incision inside
the patient in order to access other parts of the body. A notable technique
that has been developed is called Natural Orifice Transluminal Endoscopic
Surgery (NOTES) [Bardaro and Swanström, 2006]. One of the most known
applications of said technique is in cholecystectomy – removal of the gall-
bladder usually performed due to the presence of gallstones (see image 1.7)
– either by going through the colon [Pai et al., 2006], the stomach [Auyang
et al., 2009] or even the vagina [Zorrón et al., 2007].
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Figure 1.7: Illustration of NOTES cholecystectomy with different entry points.

1.2.4 Benefits and drawbacks

As noted, different procedures can be completely replaced by options per-
formed by a flexible endoscope and small surgical tools. In general, these
options have several advantages, especially for the patient. However, in most
cases, these benefits are converted into difficulties for surgeons.

The aesthetic benefits of endoluminal or even transluminal surgeries made
with flexible endoscopes are evident. The non-presence of external scars, or
even small scars in the case of SPA surgeries, is a great benefit for patient
recovery [Ikeda et al., 2004].
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Another considerable advantage in surgeries performed by endoscopes is
related to the reduction of post-operative recovery time [Fuchs, 2002]. Several
studies indicate that there is a great reduction in pain, a faster normality of
peristaltic movements and, consequently, an enhancement in the overall re-
covery time [Freeman et al., 2010] [Pang et al., 2019] [Joo et al., 2016]. On the
other hand, an increase in the overall surgery time was also observed depend-
ing on the procedure, increasing the strain on surgeons.

On the other hand, flexible endoscopes are not intuitive to use. The control
of the bending of the tip, in manual use, is done by turning wheels present on
the side of the endoscope handle. The rotation of the handles are transformed
into a bending of the distal part of the endoscope, either on the up/down or
the left/right direction. Specialized and long-term training is necessary to
master the use of this equipment [Crespin et al., 2018] [Ward et al., 2017],
which are not an obligation on several medical diplomas across the world.
This means that a huge part of recent-graduated surgeons are not trained to
perform surgery with flexible endoscopes.

One problem that is emerging is the risk of transmission of Carbapenem-
Resistant Enterobacteriaceae (CRE), also known as "superbugs". There are
reports of outbreaks dating back 30 years [Muscarella, 2014] and mainly re-
lated to the use of duodenoscopes in the gastrointestinal tract [Humphries
and McDonnell, 2015]. Given the reusable nature of these surgical instru-
ments, a great deal of attention is needed in the cleaning, disinfection and, in
some cases, sterilization procedures. However, the complex structure coupled
with the presence of several long tubes, makes cleaning procedures extremely
difficult (see figure 1.8). Currently, the recommendations are for high-level
disinfection, even for procedures of high complexity [Petersen et al., 2011]
[Spaun et al., 2010]. To strongly reduce the risk, one option being studied is
the utilization of single-use endoscopes [Farr and Kenney, 2016] [Couvillon Jr,
2016].

Another great difficulty when doing procedures like NOTES is the cooper-
ation between the surgeons involved. Each instrument used, counting the en-
doscope itself, should be controlled by a different surgeon. In the case of more
complex operations, where the use of two-channel endoscopes is required and
the tools have several degrees-of-freedom, at least 3 surgeons must cooperate
at the same time, controlling different instruments in a non-intuitive manner.
An illustration of the setup of an operating room during a manual NOTES
operation can be seen in the figure 1.9.

1.3 Flexible systems for mini-invasive surgery

Given the difficulties mentioned in chapter 1.2.4, the use of endoscopy tech-
niques in gastrointestinal surgery is still limited. The learning curve for man-
ual use of these instruments is relatively steep, which discourages their use
by surgeons with extensive experience in other techniques or by newly trained
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Air channel Water channel

Suction channel Water-jet channel

Figure 1.8: Schematic view of a flexible endoscope and a depiction of the
different channels (adapted from [AORN. et al., 2016]).

surgeons. One way to level the skill of these professionals is to make the use of
these instruments more accessible - more intuitive to control, more accurate,
and less dependent on external factors. One possible approach to accomplish
this is the development of mechanical or robotic interfaces to optimize their
use in certain surgical procedures.

1.3.1 Mechanical endoscopic systems

These systems have no electromechanical actuators in their structure. They
are often designed with innovative mechanics, usually driven by cables, to
simplify the use of the endoscope together with other surgical instruments or
to give more dexterity and mobility to the surgeon.

R-Scope

This endoscope, developed by Olympus (Japan), was one of the first systems
to be used for NOTES and ESD. This system has two channels for the use of
surgical instruments - in the case of ESD, it is very common to use a grasper to
hold the tissue and a knife to perform the dissection - with the particularity
that each instrument can be moved independently of the endoscope along
one direction. One allows a vertical movement of the surgical tool, while the
other allows only a horizontal movement. It also has two bending sections.
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Figure 1.9: Experimentation in NOTES at IRCAD France.

The proximal section can only bend in one plane (up/down), while the distal
section can bend in two orthogonal planes (up/down and left/right). Once
the configuration of the levers and handles has been tuned by the operator, it
is possible to lock them in position to perform the procedures (see figs. 1.10
and 1.11).

Although it allows for greater dexterity than conventional dual-channel
endoscopes, this system is still relatively limited. Instrument DOFs are not
sufficient for the complete performance of surgical procedures, especially if
there are complications. Given the positioning of the instrument channels,
parallel to each other, triangulation of these tools is almost impossible to
achieve. Besides the limitations from a surgical point of view, these changes
in the design of the endoscope make it more complex to control. Therefore,
the improvements brought by the device is usually overshadowed by its com-
plexity of use [Spaun et al., 2009a].

EndoSAMURAI

Also developed by Olympus (Japan), EndoSAMURAI was thought to try to
solve several limitations of R-Scope. The EndoSAMURAI has 2 independent
arms (check figure 1.12), each with 5 degrees of freedom, and an interface
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Figure 1.10: Schematic view of the R-scope [Yonezawa et al., 2006].

Figure 1.11: Real R-scope system [Astudillo et al., 2009].

completely different from those normally used in conventional flexible endo-
scopes. This system is very effective for performing sutures and pin transfer
especially compared to dual-channel endoscopes [Spaun et al., 2009b]. An-
other interesting feature is the presence of a third channel, which is shown
to be multi-purpose - it can be used either for a third auxiliary instrument or
for irrigation/suction during operation. Its interface, illustrated in the figure
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1.13 is only used after a previous positioning of the endoscope. Once properly
positioned, it is possible to lock its configuration with the use of an over-tube
and manipulate the arms without interference from the endoscope configura-
tion. One of the major advantages over the R-Scope is the guaranteed trian-
gulation of the instruments and their wide range of movements thanks to the
additional degrees of freedom.

Figure 1.12: View of the distal part of the endoSAMURAI and its flexible arms
[Hussain, 2015].

Anubiscope

Another mechanical platform initially developed for application in NOTES
is the Anubiscope, developed at the Institute for Research against Digestive
Cancer (IRCAD-IHU, France) and produced by Karl Storz (Germany). This
flexible endoscope is a little wider than conventional endoscopes, having 16mm
of external diameter, but it has features that make it very versatile. Its distal
part is composed of a shell-shaped structure, which is completely closed at the
moment of body insertion. Once positioned, the "shell" opens and releases
the access of 2 working channels for surgical instruments of up to 4.3 mm
positioned on the left and right of the endoscopic camera. The outlet of the
channels is slightly inclined in relation to the plane of the camera (about 10º
outward), which guarantees the triangulation of the instruments. The instru-
ments used with this platform have 3 degrees of freedom, being them transla-
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Figure 1.13: View of the operator interface of the EndoSAMURAI. The move-
ment is transmitted mechanically from the interface to the distal part. [Spaun
et al., 2009b].

tion (allowing the change of depth of the instrument), rotation (allowing the
change of angle of the instrument) and bending of the distal part (causing a
change in the orientation of the tip of the instrument as well as a change of
depth).

Figure 1.14: View of the distal part of the Anubiscope [De Donno et al., 2012].

Thanks to all these features, a great improvement in safety and efficiency
of procedures such as ESD has been shown experimentally even by less ex-
perienced surgeons [Diana et al., 2013]. On the other hand, the use of this
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Figure 1.15: Overall view from the Anubiscope system. It presents 110cm of
passive flexible body and a 18.5 cm bendable tip. The wheels on the handle
allow for controlling the bending of the distal part, with the possibility of
locking them in place. Image from https://www.karlstorz.com/.

platform requires the cooperation of at least 2 surgeons at the same time due
to the large amount of degrees of freedom present (especially when adding
the surgical instruments). This can increase the complexity of the operation,
the mental load of surgeons, as well as the total cost of the operation.

1.3.2 Robotic platforms

Even though the purely mechanical solutions can solve several issues of flex-
ible endoscopic surgery, they also introduce problems of manipulation be-
cause of their complexity. A possible solution to enhance the dexterity of
surgeons without increasing the complexity of the manipulation is by using
robotics. Several research groups have developed different robotized flexible
endoscopic platforms.

Instead of creating a fully dedicated platform, some research groups de-
veloped robotic endoscopy systems which can be mounted on conventional
endoscopes with motorized actuation. A known example of this kind of sys-
tem is the Master and Slave Transluminal Endoscopic Robot (MASTER) from
EndoMASTER Pte (Singapore). This system can be mounted on top of any
conventional double-channel endoscope and enhances it by deploying two

https://www.karlstorz.com/


1.3. FLEXIBLE SYSTEMS FOR MINI-INVASIVE SURGERY 41

motorized instruments that can be remotely controlled. Up to 9 degrees of
freedom can be controlled at the end effector [Lomanto et al., 2015].

Figure 1.16: View of the MASTER mounted on top of a conventional dual-
channel endoscope [Phee et al., 2012].

Figure 1.17: Clinical use of the MASTER. An endoscopist holds and controls
the endoscope while a surgeon controls the robotized instruments [Phee et al.,
2012].

Another example is the easyEndo [Lee et al., 2019]. It presents 4 degrees
of freedom for the endoscope (2 deflections and rotation are motorized while
the translation is manual) and 3 for the instruments (deflection, rotation and
translation). The endoscope and the robotic arm are controlled by the means
of two small four-way joysticks, one for each part of the system. One of the



42 CHAPTER 1. MEDICAL CONTEXT

joysticks is supposed to be held together with the endoscope, to control the
insertion manually and the other degrees of freedom with the controller.

Figure 1.18: Robotic arm mounted on a conventional endoscope [Lee et al.,
2019].

Figure 1.19: Controller of the easyEndo being held together with a conven-
tional endoscope [Lee et al., 2019].

Some groups have also developed robotized versions of the mechanical
solutions presented at section 1.3.1. An example is the STRAS platform, de-
veloped at Strasbourg, France, a robotized version of the ANUBISCOPE. This
platform has been constructed with a modular approach - the system has been
decomposed in several elemental subsets that perform complementary tasks :

• The cart allows for an easy displacement of the platform with passive
wheels as well as an adjustment in the height and orientation of the
endoscope (motorized) to allow its use in different contexts.

• The cradle is a metallic structure that holds the handle of the endoscope
and the T/R modules. It allows for a rotation and translation of the
whole system with respect to the main axis of the endoscope.
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• The endoscope module allows the motorized control of the endoscope’s
deflection. This is achieved by replacing the traditional wheels with an
electromechanical one.

• The instrument module also replaces the traditional handle of the surgi-
cal tools in order to remotely control the bending and the opening/closing
of the grasper (when existent on the tool). Two of these modules can be
used simultaneously, one for each channel of the ANUBISCOPE.

• The T/R modules add two motorized degrees of freedom to each surgical
tool. Usually achieved manually, these modules allow a rotation and
translation along the the main axis of the instruments.

The details concerning the dedicated controlling interface and telemanipu-
lated robot will be presented at section 2.1.

Cart

Cradle

T/R modules

Instrument modules

Endoscope module

Figure 1.20: View of the telemanipulated portion of the STRAS plat-
form[Nageotte et al., 2020].

Other systems have been developed as robotic systems from the beginning.
This was for instance the case of the ViaCath syste developed by Endovia,
which provided a two arms system with an endoscopic guide equipped with
the endoscopic camera. This early system was probably the first robotic device
aimed at NOTES surgery, and was supported by a major company in medical
robotics (Endovia was bought by Hansen medical, owner of the Sensei and
Magellan robotic catheters).

For now, there are no commercially available robotic flexible endoscopic
systems aimed at surgical applications. The FlexMed system developed by
Medrobotics on the basis of. HARP developed at Carnegie Mellon has been
CE approved, but as a hyperarticulated endoscope with follow the leader ca-
pability, it is mainly aimed at navigation in the digestive tract. However, there
are several products or soon to be products in the related field of single port
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access surgery, also called single port laparoscopic surgery.

A robotic system from Intuitive Surgical (EUA) for performing Single-Port
Access is the da Vinci SP. Its latest version is capable of passing a fully ar-
ticulated camera along with 3 surgical instruments, each one of them with
7 degrees of freedom, through a 2.5cm cannula. These instruments are con-
trolled through a dedicated console allowing the control of the instruments
by the movements of the wrists and the fingers of the surgeon. Its first clini-
cal use was in reported in 2014 in the context of single-port urulogic surgery
[Kaouk et al., 2014].

Figure 1.21: View of the distal part of the da Vinci SP Gen 4 [Intuitive Surgi-
cal, 2020a].

A

B

Figure 1.22: A: da Vinci SP Gen 4. B: surgeon console. [Intuitive Surgical,
2020a]

A relatively similar system to the da Vinci SP, also used for Single-Port
Access, is the SPORT ™Surgical System [Seeliger et al., 2019] manufactured
by Titan Medical Inc (Canada). The access to the patient’s body is done via
an insertion tube with a diameter of 25mm, which is endowed with 3 chan-
nels. One is used to insert a flexible endoscope for 3D visualization and the
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other 2 for passing multi articulated instruments. Each instrument moves
with 7 degrees of freedom and its tips are replaceable and meant to be used
a single time. The SPORT system, which was initially developed under the
name IREP at Columbia University and Vanderbilt university by the team of
N. Simaan, relies on continuous flexible instruments driven by superelastic
tubes, whereas the DaVinci SP uses discrete rigid joints.

Figure 1.23: Multi articulated instruments of the SPORT surgical system [In-
tuitive Surgical, 2020b].

A B

Figure 1.24: A: SPORT patient cart. B: SPORT surgeon workstation. [Intuitive
Surgical, 2020b]

The main difference between SPA and endoluminal or NOTES surgery is
that the insertion tube can be (and usually is) rigid and much shorter. This
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allows to use rigid transmissions such as rods, and guarantees that the path
of the transmission is constant on the main part of their length. This limits
non-linear behaviors and allows a more accurate control of the distal degrees
of freedom. The fact that the ViaCath system development was discontinued
because the control of the instruments by the user was assessed as too com-
plex, mainly because of backlash and non-linearities in the transmissions, is
a very representative example of the difficulty to handle the control of flexi-
ble bending instruments. In robotic systems such as the Sensei or Magellan
from Hansen medical , the control issues are less critical because thee is a sin-
gle instrument to control and its motions are much more restricted and much
slower than for surgical tasks in the gastrointestinal tract.

1.4 Conclusion

The evolution in the quality of patient care has evolved drastically since min-
imally invasive surgery became a feasible option. Huge improvements have
been achieved on the techniques employed, resulting in better post-operative
outcomes. As seen in this chapter, the latest developments tend to still de-
crease invasiveness by relying as much as possible on natural orifices and by
navigating in the natural lumen of the patient for reaching distant operating
sites.

The possible visible advantages for the patients in terms of recovery time,
infection rates or aesthetic results, unfortunately come with important draw-
backs, which usually mainly concern the physicians : a greater workload, in-
creased surgery time, reduced vision and dexterity, among other issues evoked
in this chapter. This has justified the need of not only improving the tech-
niques, but also improving the tools used to perform these surgical gestures.

The use of robotics in the context of flexible endoscopic surgeries has the
potential of eliminating most of the drawbacks introduced by minimizing the
incisions, while maintaining its advantages. The robotization of flexible en-
doscopes and instruments is not an easy task, with challenges on the design,
actuation and control levels. If not intuitive, these robotic systems may cause
more harm than good. The example of the Spider system, developed for single
port laparoscopic surgery, and abandoned at the stage of certification obten-
tion because of difficulties of control by surgical users, reminds the very high
difficulty to provide useful tools for medical applications.

Even though some great results have been achieved on the use of the STRAS
platform in the context of telemanipulated surgeries such as ESD [Zorn et al.,
2017], there is still improvements to be made. Some automated gestures, like
tissue tracking or compensation for physiological movements, are still very
challenging to be performed and can improve even more the quality of the
surgical gesture. The reasons why this is still challenging will be discussed in
details in chapter 2.
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2.1 Description of the STRAS platform

All the techniques proposed and developed in this document were tested on
the STRAS robotic system initially developed for NOTES surgery and then
adapted for endoluminal procedures. This section is focused on detailing the
functioning of this platform, as well as providing details on its dimensions,
degrees of freedom, workspace and operation modes.

2.1.1 Telemanipulated system

As explained earlier in the section 1.3.2, STRAS is composed of a main endo-
scope, a short version of the Anubiscope, and surgical instruments that pass
through the internal channels of the endoscope. It is possible to control two
instruments simultaneously thanks to the master interface designed in order
to mimic the degrees of freedom of these tools. More details will be given in
section 2.1.2. The bending degrees of freedom of the endoscope and the flex-
ible instruments are actuated by means of antagonist cables running through
sheaths inside the flexible body of the endoscope of instruments. Only the
distal ends are controllable, with the tendons applying moments to the dis-
crete vertebrae present in the tip of these systems and thus modifying their
configurations.

The main endoscope is 55cm long and is wider than conventional endo-
scopes, with a diameter of 16mm. STRAS is mainly aimed at procedures in
the lower digestive tract, for rectal, sigmoid and descending colon exploration
and treatment (see figure 1.4). The distal controllable part has a length of
185mm, in addition to a rigid part of 48 mm where the endoscopic camera
is located. It can be deflected in two orthogonal bending planes, both driven
by pairs of cables arranged orthogonally. The platform itself also allows for a
rotation and translation of the system as a whole, thus providing a total of 4
degrees of freedom to the endoscope.

The distal part is equipped with a mobile shell-shaped structure that al-
lows for easier insertion in the patient’s lumen as well as protection of the
instruments and the camera, while leaving partial visibility for the surgeon.
When opened, it provides access to 3 working channels for surgical instru-
ments - two lateral channels located one in each "shell" (4.3mm of diameter)
and a third one located in the center of the rigid part just below the camera
(3.2mm of diameter). When the shell opens, it creates a deviation from the
central channel. This offset ensures triangulation of the side instruments and
prevents tissues and organs from falling into the camera’s field of view.

The instruments used in the lateral channels are long and thin. The length
of these instruments is usually 900mm, with a distal bending part of 18 mm
(only this length can be bent) and a diameter of 3.5 mm. They are also driven
by antagonist cables, but only one pair of cables is used, thus providing only
one bending plane. They can also be rotated and translated in the channel,
but these movements are provided by external actuation directly on the shaft



2.1. DESCRIPTION OF THE STRAS PLATFORM 51

of the instruments. Therefore, each instrument has 3 degrees of freedom
(graspers additionally have an opening and closing movement).

The kinematic diagram of the STRAS platform is illustrated in figure 2.1.
The degrees of freedom of the cart are generally not used except during the
insertion and removal phases of the endoscope. The other 10 degrees of free-
dom, however, can be used freely according to needs in terms of visualization
and overall positioning (2 degrees of the endoscope + 2 degrees of the whole
system) or in terms of tissues manipulation (3 degrees of each instrument, 2
instruments).

Figure 2.1: Kinematic diagram of the telemanipulated robot [Nageotte et al.,
2020].

The actuation has been dimensioned in order to provide the same capa-
bilities as with the manual Anubiscope, Experiments have been performed
in different configurations (straight, slightly bended and strongly bended en-
doscope) to ensure that the overall performance of the robot would not be
affected by the shape of the passive body of the endoscope [Nageotte et al.,
2019].

2.1.2 Controlling interface

The STRAS platform presents a custom-made controlling interface allowing
a single physician to control the flexible endoscope and both surgical tools.
The interface has been made to be simple and intuitive to use, mimicking as
closely as possible the movement of the surgical tools.

Two identical handles compose the controlling console, one for each sur-
gical tool of the telemanipulated robot. The shaft (8) is attached to a bracket
(10) by the means of a pivot joint (12). This bracket is then connected to a
structure by the means of another pivot joint (13) and a translating joint (14),
composing the 3 degrees of freedom of the interface. A four-way stick (23)
and a trigger (22) are also present to control the endoscope and the cradle.
See figure 2.2 for the illustration of each element of the interface.
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Figure 2.2: 3D schematic view of the controlling interface and its kinematic
diagram [de Mathelin et al., 2014].

The link between the controlling interface and the telemanipulated robot
are as follows :

1. The translation along the axis T E controls the translation of the tool;
2. The rotation with respect to the axis P E controls the rotation of the tool

with respect to the channel axis;
3. The rotation with respect to the axis PM controls the bending of the

tool;
4. The trigger (22) controls the opening and closing of the grasper of the

tool when existent;
5. A four-way stick (23) that can be moved four discreet directions, indi-

cated as North(N)-South(S) or East(E)-West(W), controls the bending of
the endoscope along its orthogonal bending planes (N-S for one direc-
tion and E-W for the other) or the translation and rotation of the cradle.
The stick on one of the handles controls the endoscope while the other
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controls the cradle.

These relations are also illustrated at figure 2.3. The scaling factor for each
joint is determined based on the mechanical end stops of each joint and and
the range of motion of the controlling interface.
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Figure 2.3: Mapping between the controlling interface and the telemanipu-
lated robot [de Mathelin et al., 2014].

These controlling interfaces have been designed after observing that stan-
dard commercial interfaces did not allow to provide a good control of the
flexible instruments. In particular, two problems were identified. First, im-
perfections in the displacement of the instruments caused large discrepancies
between the controlling interface and robot, causing difficulties for fine con-
trol. Second, kinematic singularities of the instruments (straight configura-
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tion in particular) could not be handled easily with interfaces without equiv-
alent singularities, even when trying to block motions actively, because the
position of the singularities could not be mapped precisely and constantly on
the master side. These problems are both linked to the actuation imperfec-
tions that will be discussed in the section 2.5.

The next sections will be focused on the modeling of the components of
the telemanipulated robot, meaning the flexible endoscope and the flexible
surgical tools.

2.2 Kinematic modeling of continuum systems

A flexible endoscope and the flexible surgical tools can be classified as being
continuum systems. Contrary to most of robots used in the industry which are
composed of a finite number of discrete joints that define their movement, a
continuous robot is classified as an under-actuated system - it has theoretically
an infinite number of local joints and can take virtually an infinity of shapes
when actuated from an external source, but has a limited amount of actuators.

To model such systems, the usual approach consists in defining 3 spaces,
each one of them containing different information about its shape [Webster III
and Jones, 2010]. The task space represents the space where the task of the
robot is defined and usually depicts the position and orientation of its termi-
nal effector. The configuration space describes the shape of the robot’s body,
usually described by its central line. Finally, the actuator space illustrates the
required actuation to be performed in order to change the shape and perform
the task. On the physical system, it is normally found on the proximal side of
the system. An illustration of these spaces as well as the mappings are shown
in figure 2.4.

Figure 2.4: Depiction of the 3 spaces used for modeling the geometry of
constant-curvature robots. The robot-specific relations transform the robot’s
actuation into the variables describing its configuration in space. The robot
independent mappings, on the other hand, depicts the shape of the robot in
terms of the task space variables [Webster III and Jones, 2010].

Therefore, determining the direct geometric model is equivalent to de-
termining the relations fspecif ic and findependent , whereas the transformations
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f −1
independent and f −1

specif ic constitute the inverse geometric model.

A classic hypothesis usually used for this class of systems is the piecewise
constant curvature - each link of the robot can be modeled as an arc of a circle
defined by 3 arc parameters during bending. The parameters are :

• The curvature κ : defined as the inverse of the bending radius r, it de-
notes how far from a straight line the current configuration of the curved
link is.

• The angle of the bending plane φ : angle which defines the plane all the
points of the arc belong to.

• The arc length ` : denotes the mean length (central line) of the system.

It is also common to use the bending angle β as a parameter by replacing
either the length ` or the curvature κ since the relation between these 3 pa-
rameters is linear :

β = lκ. (2.1)

These parameters are illustrated in figure 2.5.

β

Figure 2.5: a: projection of the constant-curvature robot onto the bending
plane. On this case, for a null rotation angle φ, the bending plane coincides
with the x−z plane. b: Depiction of the arc parameters, namely and arc length
`, angle of the bending plane φ and curvature κ [Webster III and Jones, 2010].

2.3 Flexible endoscope with 2 bending planes

The actuation on flexible endoscopes can be done with several configurations.
As examples, there are simple endoscopes with only a pair of cables (which
means only one bending plane), three independently actuated cables (non
intuitive for manual use, normally only existent on robotic applications) or 2
pairs of cables. The structures using pairs of cables can be either antagonistic
or independent, with antagonistic being the configuration found on most of
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the commercial endoscopes. In this section, we will focus on endoscopes with
2 orthogonal pairs of antagonistic cables, since it is the one used on the context
of this thesis.

With respect to the general modeling of arcs given in figure 2.4, endo-
scopes are inextensible. This means that the length ` is constant and equal to

the relation
β

κ
.

To adapt for this type of system, instead of using the curvature κ, we use
the bending angle β to constitute the configuration space. The main advan-
tage of using the bending angle instead of the curvature is its linear depen-
dency with respect to the actuation.

2.3.1 Direct geometric modeling

The distal end of a flexible endoscope, as shown previously in section 2.1, is
composed of a flexible section and a rigid section. The flexible section has
a length Lf and will be considered inextensible longitudinally, meaning that
length of the central line remains constant during bending. The rigid section
has a length Ld and is the part of the endoscope that embeds the endoscopic
camera.

A frame denoted F0 is attached at the proximal end of the flexible section
at its central point O. This frame will be the base frame used as reference for
defining the task. The

#»

i0 and
#»

j0 axis point to the directions where each pair
of antagonistic cables are attached, while the

#»

k0 is aligned with the tangent to
the central line of the endoscope at point O (see figure 2.6). At the end of the
rigid section, also at its central point, the frame Fend is attached.

Our objective here lies in expressing the origin of the frame Fend attached
to the central point of the distal end Oend in function of the arc parameters κ,
φ and β in the base frame F0. To do so, let us consider the shape of the endo-
scope in the bending plane Π depicted in picture 2.6. By using a cylindrical
parameterization of the task space, we can express the cartesian position of
the end effector in terms of the distance to the z-axis ρ, the rotation θ around
the z-axis of the frame F0 and the depth d with :

ρ =
√
x2

0 + y2
0 ; (2.2)

θ =arctan2(y0,x0); (2.3)

d =z0 (2.4)

where the function arctan2() is defined as :

arctan2(y0,x0) =


arctan

(
y0
x0

)
if x0 > 0 and y0 , 0

arctan
(
y0
x0

)
+π if x0 < 0 and y0 , 0

π
2 sign(y0) if x0 = 0 and y0 , 0
0 if x0 = 0 and y0 = 0

(2.5)
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Figure 2.6: 3D view of the distal part of the flexible endoscope.

where 0P = (x0, y0, z0)ᵀ is the position of the end effector expressed in the
frame F0. The cylindrical parameterization helps in finding the inverse kine-
matic model in the next section.

In the plane Π, showcased in figure 2.8, one can see that the distance to
the z-axis ρ is a function of the bending angle β as :

ρ =
Lf
β

(1− cosβ) +Ld sinβ (2.6)

and the depth d :

d =
Lf
β

+Ld cosβ. (2.7)

The relation between the rotation θ with respect to F0 and the angle of the
bending plane φ is trivial, since both angles coincide. Thus :

θ = φ. (2.8)

The equations (2.6), (2.7) and (2.8) represent the robot-independent map-
ping, because regardless of the actuation methods, the shape of the flexible
endoscope will be the same provided the hypothesis of constant curvature is
respected.
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The robot-dependent mapping is determined by taking into account the
position of the pair of cables with respect to the endoscope. The attachment
points on the proximal and distal end of the flexible section are shown in the
figure 2.6 as black dots.

When the endoscope is not bent, meaning it is in an upright position, the
length of the cables of each side is the same as the length of the flexible section
Lf . This way, we can define the actuation as being the change in length with
respect to its reference straight length as :

∆Li = Lf −Li (2.9)

with i = {x,y} indicating which pair is actuated based on its position with
respect to the base frame F0. When one of the cables is pulled and its length
is reduced, the corresponding antagonistic cable is released and its length
is increased. Note that each cable has a different curvature κi and, thus, a
different radius of curvature Ri . The radius of curvature for the cable i is :

Ri =
Li
β

(2.10)

as can be seen in figure 2.8.

Cable attaching 
points

Φ

ΔR2

ΔR1

Figure 2.7: View from the top (projection onto the x-y plane) of the flexible
endoscope.

Since the radius of curvature is different for each cable, one can define a
radius variation in the same sense as the length variation during bending as :

∆Ri = Rf −Ri (2.11)

with Rf the radius of curvature of the flexible section. It should be noted,
however, that while the length of the central line is always constant, the cur-
vature depends on the configuration of the tool.
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Figure 2.8: Orthogonal projection of the flexible endoscope onto the bending
plane Π.

By using equations (2.9), (2.10) and (2.11), one can determine :

∆Li = Lf −Li
= βRf − βRi
= β∆Ri

(2.12)

By projecting the attaching points of the cables onto the bending plane Π,
we can obtain (see figure 2.8) :

∆Rx =
D
2

cosφ (2.13)

and

∆Ry =
D
2

sinφ (2.14)

with D being the distance between the attaching points of the pair of cables.
This value coincides with the diameter of the flexible section in our system.
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By combining equations (2.12), (2.13) and (2.14), we can obtain :

∆Lx = β
D
2

cosφ

∆Ly = β
D
2

sinφ

β2
(D

2

)2
= ∆L2

x +∆L2
y

β2 =

∆LxD
2

2

+

∆LyD
2

2

.

(2.15)

This way, we can define bending angles along each of the main planes.
The bending angle along the x-z plane will be called βx and the bending angle
along the y-z plane will be called βy . Their relation is then :

β2 = β2
x + β2

y (2.16)

with

βx =
∆Lx
D
2

and βy =
∆Ly
D
2

. (2.17)

The only missing link is the relation between the angle of the bending
plane φ and the actuation. By dividing equation (2.14) by equation (2.13) and
using equation (2.12) one obtains :

tan(φ) =
∆Ly
∆Lx

. (2.18)

Then, the relation between the angle of the bending plane φ and the actu-
ation is :

φ = arctan2(∆Ly ,∆Lx). (2.19)

By using equation (2.17), one can also show that :

φ = arctan2(βy ,βx). (2.20)

2.3.2 Inverse geometric modeling

In this section we focus on the obtention of the inverse robot-specific mapping
and inverse robot-independent mappings. These mappings are necessary for
obtaining the necessary actuation to achieve a desired pose when controlling
the endoscope.

For the inverse robot-independent mapping, let us consider a desired point
defined in the task space using a cylindrical parameterization P ∗ = (ρ∗,θ∗).
Given the structure of the flexible endoscope and the availability of only 2
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DOFs, it is not possible to enforce a desired depth d∗ given a desired distance
to the z-axis ρ∗.

The inverse relation between the desired rotation θ∗ with respect to F0 and
the desired angle of the bending plane φ∗ is still trivial :

φ∗ = θ∗. (2.21)

In order to find the desired bending angle β∗ to achieve the desired dis-
tance to the z-axis ρ∗, it is necessary to numerically invert the equation (2.6)
: {

ρ∗ =
Lf
β∗

(1− cosβ∗) +Ld sinβ∗
}
inv−→ β∗(ρ∗). (2.22)

So, the inverse robot-independent mapping is determined by equations
(2.21) and (2.22).

From the configuration space to the actuator space, one needs to deter-
mine the inverse robot-independent functions. Let’s first determine the de-
sired bending angles along each of the main planes β∗x and β∗y in function of
the desired configuration space. By replacing (2.20) in (2.16), one obtains :

β∗2 = β∗x
2 + β∗y

2

β∗2 = β∗x
2 + (tanφ∗β∗x)2

β∗2 = β∗x
2(1 + tanφ∗2).

(2.23)

So, the desired bending angle along the x-z plane is :

β∗x
2 =

β∗2

1 + tanφ∗2
. (2.24)

By using equation (2.16), it is then possible to determine the desired bending
angle along the y-z plane as :

β∗y
2 = β∗2 − β∗x

2. (2.25)

Then, to determine the desired cable displacement on each axis, one just
needs to invert equation (2.17), to obtain :

∆L∗x = β∗x
D
2

and ∆L∗y = β∗y
D
2
. (2.26)

This way, the inverse robot-specific mapping is a combination of equations
(2.24), (2.25) and (2.26).
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Figure 2.9: The experimental setup is composed of the STRAS platform
equipped with Chilitag markers [Bonnard et al., 2013] on the tip and the ex-
ternal 3D position measuring system.

2.3.3 Discussion

In order to validate this model, some 3D trajectories have been performed
with the STRAS platform to compare the measure data with the prediction.
The experimental setup is shown in image 2.9.

The distal positions are provided by an external measurement system com-
posed of two AVT Prosilica GC660 cameras mounted with F1.8/6.5-52 mm
objectives. The fiducial markers are being used to increase the accuracy and
simplify tracking tasks, which are necessary in order to make the 3D recon-
struction of the tip of the tool. The accuracy of this system used with marker
tracking has been assessed to [0.1,0.1,0.2] mm.

The RMS error obtained when validating this model was 18.3 mm, with a
variance of 8.4 mm2 and a maximum of 28.8 mm. These errors are unaccept-
able for automatic positioning of the endoscope. The source of these errors
are varied and will mostly be discussed in section 2.5.

2.4 Flexible surgical tools

The flexible surgical tools, in terms of modeling, are very similar to flexible
endoscopes. The schematic 3D view of these tools is basically the same as the
one illustrated in figure 2.6, except for the cable attachment points - the sur-
gical tools only have one bending degree-of-freedom, which means they only
possess one pair of antagonistic cables. Another difference, which is crucial
for its proper functioning, is the addition of other 2 joints - a prismatic and a
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revolute joint allow this tool to translate in the direction of the z-axis of the
channel frame and rotate around the same axis.

2.4.1 Direct geometric modeling

Considering the similarities between both systems, the robot-independent
functions are almost identical for the flexible surgical tools and the flexible
endoscopes. Equations (2.6) and (2.8) are still valid. There would be a differ-
ence if the orientation was taken into account, since another rotation would
be added around

#»

k0 in the base frame. However, the depth d can now be
controlled given the additional degree-of-freedom of the surgical tools.

d

ρ

Δd

Figure 2.10: Orthogonal projection of the flexible endoscope onto the bending
plane Π.

By looking the projection of the tool at the bending plane (figure 2.10), one
has :

d = t +Lf +Ld −∆d (2.27)

with t the translation applied by the prismatic joint and ∆d being the depth
difference caused by bending. This variable can be calculated as :

∆d = Lf

(
1−

sinβ
β

)
+Ld(1− cosβ). (2.28)

The robot-specific functions, however, require more attention given the
way that the degrees-of-freedom work in the surgical tool. For the rotation
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and the translation, the relations are trivial since the joints directly operate
these variables. This means that :

t = qtrans (2.29)

and
φ = qrot (2.30)

with qtrans and qrot the joint coordinates for the translation and rotation joints
respectively.

For the bending joint, taking into account that only one pair of antagonistic
cables is present, it is equivalent as using the equations of the flexible endo-
scope considering that one of the orthogonal cable pairs is blocked and cannot
change its length. For this document, we will consider that ∆Ly is always null.
This way, by adapting the development made in (2.15), one obtains:

β =
∆L
D
2

(2.31)

with ∆L the actuation for the bending joint - there is no need for an index x or
y considering there is only one bending direction.

2.4.2 Inverse geometric modeling

The inverse robot-independent functions shown for the flexible endoscope,
concerning the task space variables ρ, with equation (2.22), and θ, with equa-
tion (2.21), are still the same. The the modification of the joints arrangement
have no impact on these two variables.

The desired depth d∗ can be converted into a desired translation t∗ by in-
verting equation (2.27) provided that the desired bending angle β∗ has already
been obtained by the means of equation (2.22). The reason why we fix the dis-
tance bending angle first is because it is the only parameter that can influence
the distance to the z-axis ρ. On this case :

t∗ = Lf +Ld −∆d(β∗)− d∗. (2.32)

The inverse robot-dependent functions is quite simple to obtain. Since the
prismatic joint and revolute joint directly control respectively the translation
and the rotation of the tool with respect to the channel frame, one has :

q∗trans = t∗ (2.33)

and
q∗rot = φ∗. (2.34)

For the bending joint, the same simplification used for the direct geomet-
ric model can be used here. By considering the equations of the flexible endo-
scope with ∆Ly = 0 (consequently βy = 0), one obtains :

∆L∗ = β∗
D
2
. (2.35)
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2.4.3 Discussion

To validate the proposed model, some trajectories were performed with each
degree of freedom separately to evaluate the overall 3D positioning error
based on the prediction of the model. The experimental setup is shown on
figure 2.11. It is the same external 3D position measuring system as used
with the flexible endoscope, but with markers placed both on the tip of the
flexible tool and on its base. This is done in order to reconstruct the channel
frame Fch and to express the coordinates in this frame.

Figure 2.11: The experimental setup for measuring the 3D position of the
flexible tools is similar to the one used for flexible endoscopes (view figure
2.9). The main difference is the position of the markers.

The comparison was performed on 250 points distributed onto the workspace.
The assessment provided an RMS error of 8.9 mm with variance 22.1 mm2,
and maximum error 17.2 mm. Similarly to the flexible endoscope, these large
errors do not allow to perform automatic tasks. The main source of errors will
be discussed on section 2.5.

2.5 Cable actuation

Cables are largely used as actuation on mechanical systems when the power
source has to be placed remotely from the actual terminal organ. The main
advantages of using cables are their low density, high resistance and high ca-
pacity to transmit forces over long distances [Ou and Tsai, 1993]. Many appli-
cations use cables as a means of motion transmission: parallel robotics - with
applications for transporting loads on large workspaces [Dallej et al., 2012]
-, medical robotics - endoscopic systems as studied, laparoscopic instruments
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[Broeders and Ruurda, 2001], but also systems requiring MRI compatibility
[Pfeil et al., 2018] -, rehabilitation robotics - with the use of exoskeletons [Sch-
abowsky et al., 2010] - among several others.

These cables can be antagonistic (complementary extension/retraction ac-
tions) or independent (extension and retraction of each cable is done through
separate mechanisms). The antagonist configuration is simple to implement,
intuitive to use manually and can be actuated with only one motor per pair
of cables when robotized. The independent configuration offers more options
for applying cable tension and control strategies. Both are valid depending
on context and application. In this manuscript, we will focus on discussing
the issues on the antagonistic configuration, since this is the one used on both
systems we are interested in.

As discussed previously, the geometric model of both the flexible endo-
scope and flexible surgical tools do not present the required accuracy for pre-
cise medical applications. There are many reasons for this kind of behavior:

• The model relies on the hypothesis of constant curvature during bend-
ing, which is usually not true. To achieve this shape, a constant ten-
sion distribution throughout the bending section is required [Camarillo
et al., 2008]. Due to friction, the tension on the base of the bending
section is usually higher than at the tip;

• Ageing of the vertebrae that compose the bending section can also have
a great influence on how the tension is being distributed. Some ver-
tebrae can deteriorate faster than others, changing the maximum angle
between two successive vertebrae. The increasing appearance of friction
on the axis between vertebrae is also a factor that influences the tension
distribution over the tendons.

• The cable transmission itself is subjected to several non-linearities [Agrawal
et al., 2010]. The interaction between the long cables and the sheaths on
the interior of the flexible bodies create internal friction that is really
challenging to model and very difficult to predict given the large num-
ber of variables that have an impact on its behavior.

From the experience acquired on manipulating these systems, even though
all the previous exposed reasons are valid and introduce non-linearities to the
system, we will be focusing on the issues brought by the use of cable trans-
missions. Even though the hypothesis for constant curvature is usually not
respected, its influences are minor compared to the non-linearities created
by using cables. This may not necessarily be the case for applications with
external loads, but these will not be discussed on this thesis.

Figure 2.12 shows how usually the motion is transmitted from the prox-
imal to the distal end of a flexible instrument. The motor is attached to a
pulley that is rotated to change the length of the cables on each side of the
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2

Figure 2.12: View of the inside of a flexible section actuated by antagonistic
cables [Bardou, 2011].

controllable distal section. The cables are attached to the last vertebra and on
the pulley, while the sheaths are generally attached in a fixed position at both
ends of the flexible body. On the passive body of the flexible tool, the sheaths
are usually free so as to avoid interfering with the instrument’s flexibility.

As can be seen, the diagram of figure 2.12 and principles of the transmis-
sion are quite simple. However, two main non-linearities are usually intro-
duced when using this kind of transmission :

• Backlash : the motion is not transmitted directly from the proximal side
to the distal side at a change of direction. The consequence is the in-
troduction of hysteresis between the movement of the motors and the
configuration of the tool.

• Dead-zones : the motion between the proximal and distal part is not
locally transmitted but without a change in direction. This non-linearity
can for instance occur due to slack in the cables, which usually happens
near the central configuration of the tool or endoscope.

These effects can greatly reduce the user experience with the tools. A time
delay is perceived on every change of direction giving the impression of a
slow and non-responsive system. They can also reduce the precision during
manipulation, because the user has to compensate for these non-linearities
on the fly. These characteristics are also tool-dependent, meaning that two
tools, even though very similar in terms of construction, can behave differ-
ently. Some examples can be seen on figure 2.13, showing the behavior of the
bending joint of several tools.

The static characteristics of the cable transmission greatly deviate from the
linear behavior that is expected. Moreover, there is a high variability between
the curves, even for the same instrument, supporting the hypothesis that it is
far from trivial to model such systems. This issue has already been studied
for several years and is usually referred to as "backlash compensation" - even
though other non-linearities are often also taken into account. The next sec-
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Figure 2.13: Static characteristic between the cable displacement and the
bending angle on both axis of the same flexible endoscope.

tion is dedicated on the approaches developed over the years to try to solve
this issue.

2.6 Control strategies for tendon-actuated systems

As seen in sections 2.3, 2.4 and 2.5, only describing the geometry is not enough
neither to accurately predict the position of such systems nor to control them
given the presence of non-linearities. For mitigating this issue, several ap-
proaches have been developed over the years based on different principles. A
non-exhaustive list of backlash compensation methods applied to cable trans-
mission is presented in this section.

2.6.1 Physical modeling

The first idea that comes to mind is to model the physical behavior of the
tendon-driven transmission. This involves investigating the main causes, such
as cable elongation, internal friction between the cables and the sheaths, the
elastic effects of each vertebrae, etc.

An example is the work from [Sun et al., 2013], in which the authors study
the tendon elongation and tension transmission in a tendon-sheath system.
The experiment consisted in fixing the proximal end of the tendon on a DC
servo motor, the distal end on a spring system and applying different input
tensions to observe the behavior of the tendon. Two load cells are also used,
one near the DC motor and another near the spring system, in order to mea-
sure the input and output tensions. With these measures in addition to the
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position measurement provided by an encoder, the authors aimed to validate
an elongation model which is a function of a friction coefficient (estimated
beforehand), a tendon property (also estimated beforehand) on a tendon with
reduced length. An overview of these parameters can be seen on figure 2.14.

Figure 2.14: Illustration of the physical parameters either estimated or mea-
sured for compensating the elongation in the works from Sun et al. [Sun et al.,
2013].

In the works from Jung et al. [Jung et al., 2014], the authors model a
robotic catheter using a nonlinear lumped-parameter approach accounting
for the internal friction of the cables. The idea of a lumped-parameter model
is to model the bending section as a series of linear springs and dampers. An
illustration of this approach can be seen on figure 2.15.

In order to incorporate the effects of internal friction on this lumped-
parameter model, a Dahl friction model [Dahl, 1968] is incorporated on each
lumped-mass element. To identify this model, a total of 11 parameters must
be either measured or estimated through a series of experiments or measure-
ments. Some of these parameters are simple to obtain (length, inner and outer
diameter, number of discreet elements), but others require some engineer-
ing design data (mass, stiffness and damp for the lumped-elements combined
with the initial slope, exponent, constant steady-state friction and friction co-
efficient used on the Dahl friction model).

Another work based on compensating the elongation of the cables during
manipulation comes from Xu et al.[Xu et al., 2017b]. Their work uses a feed-
forward compensation controller with an internal tension-transmission and
elongation model. In order to predict the nonlinearities of the transmission,
9 parameters must be estimated or measured.

Even though their results are very interesting, their application on a flex-
ible endoscope seems very difficult if not impossible. The Bowden cables are
normally very long, these systems do not usually include force sensors on nei-
ther end and the knowledge about the cable disposition inside the passive
body of the endoscope is generally required. These drawbacks make their use



70 CHAPTER 2. MODELING OF THE STRAS PLATFORM

Figure 2.15: Illustration of the lumped-parameter modeling approach applied
to a catheter [Jung et al., 2014].

very challenging on a real scenario.

2.6.2 External sensors

Another philosophy is to add sensors to the flexible system in order to mea-
sure its distal position (or depending on the sensor, even the shape of the
flexible sections) in real time during use. This way, it becomes possible to
use closed loop control strategies to compensate the non-linearities. The in-
troduction of sensors can also be complementary to the use of a previously
formulated model.

One of the first works seen in the literature showing interesting results is
the work from [Penning et al., 2011]. Their work consisted on using a trak-
STAR system (Ascension Technology, EUA), which is a electromagnetic local-
ization system, in order to track the position of a catheter and implement a
position control loop. The authors were focused on evaluating the improve-
ment on accuracy and repeatability of the closed-loop system. Even though
the results are not groundbreaking, it opened the way for several other works
to be inspired and improve upon it. The illustration of how the sensor was
integrated on their system is shown on figure 2.16.
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Figure 2.16: Image of the robotic catheter with the position sensor embedded
on its tip (left) and the actuation unit (right) [Penning et al., 2011].

The work from Roesthuis et al. consisted of using Fiber Bragg Grating
sensors in order to estimate the shape of flexible minimally invasive surgical
instruments and implement a position control loop [Roesthuis et al., 2013].
These sensors allow for the measuring of axial strain on the area they are lo-
cated, giving a local estimation of the curvature of the tool. By placing several
arrays along the flexible instrument, it is possible to interpolate the points in
between to reconstruct the 3D shape of the tool. Their results are impres-
sive, achieving a reduction of the mean error by over 10 times depending on
the trajectory being performed. Figure 2.17 shows the disposition of a set of
arrays of fiber Bragg Gratting sensors on a flexible instrument.

Figure 2.17: Image of the robotic catheter with the position sensor embedded
on its tip (left) and the actuation unit (right) [Penning et al., 2011].
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The main issue of these strategies are mainly linked to the technological
challenges that are imposed when integrating external sensors on miniature
devices [Liu et al., 2015]. All of these systems were custom made for tests in
laboratory, but putting them in use for clinical applications is a much more
complicated task. Not only there are issues with the miniaturization of these
devices, but also all the aspects regarding safety and sterilization must be
taken into account.

2.6.3 Endoscopic camera

Considering the challenges posed by integrating new external sensors to flexi-
ble surgical tools, a way to circumvent this issue is by using the sensors readily
available on any flexible endoscopic device: the endoscopic camera. Mostly
used for giving the physician an internal view of the interior of the patient,
these cameras can be used as sensors for estimating the pose not only of the
endoscope itself, but also from adjacent surgical tools.

In the works from Reilink et al., the author proposes an online hysteresis
estimation by using only the endoscopic camera as measuring device [Reilink
et al., 2013]. The approach proposed requires the estimation of the current
configuration of the endoscopic tools by identifying fiducial markers on the
endoscopic image and performing a reconstruction based on their location. A
simple hysteresis model is then updated based on the difference between the
estimated configuration of the tool and the prediction provided by the hys-
teresis model. Figure 2.18 shows the endoscope tip, the flexible tool and the
location of the markers.

Figure 2.18: Depiction of the endoscope tip, surgical instrument and markers
used for the shape reconstruction [Reilink et al., 2013].

Another similar approach, but with the addition of data-based learning
methods, is presented in the works of Cabras et al. [Cabras et al., 2014]. The
approach is divided in two main steps : the first one is the detection of the
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instrument on the endoscopic image by the means of marker segmentation;
the second is the 3D position estimation of the tip of the endoscope. The
learning data is obtained by using two electromagnetic trackers (Aurora from
NDI Medical), one used as a reference frame positioned at the endoscope and
another used to measure the tip position. The setup is detailed on figure 2.19.

Figure 2.19: Depiction of the endoscope tip, surgical instrument and markers
used for the shape reconstruction [Cabras et al., 2014].

Even though this is a great approach for dealing with hysteresis problems,
it is still not enough if the clinical applications rely on compensating really
fast movements - for example, the compensation of the peristaltic movements
would still be a really challenging task to perform using only the information
from the camera. This is mainly due to the quality of the images and frame
rates that can be obtained with such devices (usually around 25 FPS or less).
To implement efficient feedback control strategies, this sampling rate is too
slow.

2.7 Conclusion

Performing automated tasks with a flexible endoscopic robot is still a real
challenge. The actuation, typically through long cables, which allows the de-
sired flexibility of the endoscopes and instruments, introduces a variety of
non-linearities. These non-linearities have a large impact on the precision,
speed and overall performance of the robot.

The use of sensors to compensate these issues is still a complex problem.
Integration of sensors in a miniaturized form is always a technological chal-
lenge, especially when taking into account the constraints of the surgical con-
text - the possibility of being disinfected or sterilized while maintaining its
functionality, as well as the compatibility with other devices in the operating
room is not an easy task to achieve.
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Modeling these non-linearities has also been proven to be a complex feat.
To obtain models, it is necessary, in most cases, to incorporate sensors (such as
force sensors for measuring the tendons tension) that are usually not readily
available on these platforms. Considering that these models can vary greatly
on a single system, as shown experimentally for the flexible endoscope, and
that they can vary over time, some other modeling strategies should be envis-
aged.

With all of this under consideration, machine learning might be an inter-
esting candidate for identifying models. These approaches could rely on the
use of external sensors, not embedded on the flexible endoscope nor the sur-
gical tools, and could also be used to learn specific behaviors just before the
medical procedure. The obtained models are also usually flexible, possibly
allowing to take into account the variability observed between each surgical
instrument.

In chapter 3, learning-based approaches will be studied. An overview of
machine learning techniques applied into robotics will be presented in or-
der to understand their capabilities and potential limitations. Then a novel
technique combining the advantages of data-driven methods and classic kine-
matic modeling is proposed both for the flexible endoscopes as well as the sur-
gical tools. Experimental results will also be shown to validate the proposed
approach, but also to understand its shortcomings. Our aim is to achieve
a precision of 1 mm in the positioning of the tool, accuracy typically ex-
pected by surgeons. The training phase (data acquisition and learning phase)
should also be performed under reasonable time, so not to disturb the sur-
gical flow. Considering the mean time for manual ESD procedures is of 66
minutes [Arezzo et al., 2016], we are aiming to keep training time around 6 to
7 minutes, 10% of the overall average procedure time.
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LEARNING AND KINEMATIC ANALYSIS

3.1 Using machine learning for robot control

In this section, we will focus on different control techniques that have been
used for the control of flexible robots by relying on machine learning tech-
niques.

3.1.1 Classification of machine-learning techniques

Machine learning algorithms can be classified based on several principles.
The structure and type of data, the task to be performed and the complexity
of the model to be learned are some of the criteria used for this categorization.

Supervised vs Unsupervised learning methods

The type of data available for training is extremely relevant when determining
the type of task that can be performed and which algorithm to choose. These
algorithms fall under the following categories :

Supervised learning: The objective is to predict the outputs from a list of
independent inputs. Note that the basic characteristic of supervised learning
systems is that the training data contains the desired response. In this case,
we say that the data are labeled with the answers or classes to be predicted.

Unsupervised learning: The task of the algorithm is to group unlabeled
examples, i.e. examples that do not have the class attribute specified. In this
case, it is possible to use learning algorithms to discover patterns in the data.

In between these two categories, there is also semi-supervised learning.
The great motivation for this type of learning is the fact that unlabeled exam-
ples exist in abundance and labeled examples are generally scarce. The idea
of semi-supervised learning is then to use the labeled examples to obtain in-
formation about the problem and use them to guide the process of learning
from unlabeled examples.

We are mainly interested in supervised learning approaches, since the
training data can be easily annotated. Indeed, the searched models are re-
lations between variables which can be measured (for example, the cable dis-
placement and the distal position of the tools).

Classification vs Regression tasks

Another observation related to supervised learning concerns the type of class
attribute. If it is continuous, the learning problem is known as regression and
if the class is discrete, the problem is known as classification.

Our problems fall under the category of regression tasks. The relations to
be learned involve continuous input and output spaces.
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Parametric vs Non-parametric methods

Parametric models: The complexity of the model is unchanged based on the
amount of training data. The training process usually revolves around finding
the values of a finite number of parameters that optimizes a cost function,
usually based on (but not limited to) the fitting of the data.

Non-parametric models: The complexity of the model evolves with the
amount of data available for training. These algorithms do not rely on as-
sumptions about the shape of the underlying data.

In this work, both approaches will be studied.

3.1.2 State-of-the-art on robot control using data-driven
approaches

In order to deal with most of the issues commented earlier in chapter 2.6,
data-driven approaches based on machine learning start to appear. These ap-
proaches can be used to learn various types of non-linearities in a really pow-
erful and versatile way. The models can be learned just before use, avoiding
the need to integrate sensors to the system. They can also be used together
with the endoscopic camera in order to predict the behavior of the tool in
between the captured frames.

A recent work was done by Xu et al. on the control of an endoscopic de-
vice based solely on a data-driven approach [Xu et al., 2017a]. On their paper,
they present a comparison between different supervised learning algorithms
to learn a direct mapping from the task space (defined as the 3D position of
the tip of the endoscope) to the actuator space (cable displacement control-
ling the bending on two orthogonal planes and a prismatic joint allowing the
translation of the instrument). A visualization of both spaces is provided on
figure 3.1.

Figure 3.1: Task space showing the measured 3D positions of the tip of the
endoscope (left) and actuator space [Xu et al., 2017a].

The measurements of the cartesian position of the tip of the endoscope are
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provided by an electromagnetic tracker (trakSTAR 2, Ascension Technology
Corp) while the motor positions were provided by integrated encoders.

Their approach shows promising results on learning the non-linearities of
flexible systems without any prior knowledge of the kinematics or construc-
tion of the robot. There are two main issues with the way it is implemented:

• The amount of data required for learning is relatively elevated. This
can be translated in learning sessions that are incompatible with clin-
ical workflow, because these models are time varying and need to be
retrained before each use.

• It is not possible to model the backlash introduced by the cable trans-
mission. When a system is subjected to hysteresis, the mapping between
its 3D position and the actuation is non-unique. Depending on the pre-
vious positions of the tool, multiple actuation can achieve the exact same
configuration. By searching a direct mapping between these two spaces
without adding other variables, it is only possible to learn an average
model of the hysteresis.

In order to reduce the length of the training procedure, it is possible to
incorporate à priori knowledge concerning the kinematics of the robot. This
idea has a similar philosophy from the works of Nguyen-Tuong and Peters,
in which the authors use previous knowledge from the robot dynamics and
learn the non-linearities with data-driven methods [Nguyen-Tuong and Pe-
ters, 2010]. This results in a semi-parametric model that incorporates the ad-
vantages of using classic dynamic modeling techniques with the ability of
learning the non-linearities from the machine learning techniques.

In this chapter, we will show how the combination of prior kinematic
knowledge and machine learning has been done to improve the positioning
accuracy of flexible surgical tools and flexible endoscopes. From our knowl-
edge, no prior work has been done in this scope at the beginning of the thesis.
Some parallel works have appeared and will be discussed later on.

3.2 Flexible surgical tools

Results of the presented work in this section have been published in [Porto
et al., 2019d].

Our work focuses on the control of robotic flexible instruments, such as
those described on section 2.4. The 3 degrees-of-freedom - bending of the
tip, rotation of the instrument and translation in the channel - are motorized.
Following the same notation presented at 2.4, the motor position for each joint
will be denoted qbend , qrot and qtrans for the bending, rotation and translation
joint respectively.

The objective considered here is to control the cartesian position of the tip
of the instruments in the frame of the channel Fch, which describes the task
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space of the instrument. The reference position for the instrument in this
frame will be noted chP ∗ = (x∗, y∗, z∗)T .

y
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z

y ρ∗

y∗

φ = θ∗

chP ∗

β

Lf

Ld

Fch

Fch

t

D

∆y
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Figure 3.2: The considered cable-driven instrument passing through the left
channel of the STRAS system. Top: top view, bottom: face view. Figure shows
left channel frame, the degrees-of-freedom of the instrument, configuration
variables and important construction parameters [Porto et al., 2019d].

3.2.1 Rationale of the method

Since the inverse position kinematic of bending instruments is difficult to
model precisely, it could advantageously be learned from the system itself.
However, instead of using a black box technique, we propose to incorporate
the coarse knowledge of the working of the instruments. The rationale of our
proposed method rely on the following observations:

• Some of the non-linearities of the transmission, such as the internal fric-
tion, create hysteresis effects which must be taken into account.

• Learning the complete relation between motor positions and cartesian
positions of the tip of the instrument over the whole workspace becomes
time prohibitive when hysteresis effects (i.e. dependency from the pre-
vious motions) are considered, even for instruments with only 3 DOF.
Indeed, each point of the workspace should be reached from at least 8
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different directions (combination of positive and negative speeds of each
joint).

• Despite complex behaviors presented previously, one can assume that
the transmissions from the proximal motors to the distal configuration
are only weakly coupled, as confirmed by experimental measurements
(see figure 3.3). Then it is possible to partly decouple the IKM, and to
use a similar 3-steps procedure as in the conventional IKM, despite the
non-linearities. This avoids learning the proximal to distal relations on
the whole workspace.
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Figure 3.3: Typical static characteristics between the motor controlling bend-
ing and the Cartesian positions of the flexible instrument, for different values
of translation and rotation.

In figure 3.3, the static characteristic between qbend and ρ is shown for dif-
ferent configurations of the instrument as well as the theoretic model assum-
ing constant curvature. The same forward-and-backward motion has been
performed on the bending axis under different values of translation and rota-
tion to validate the hypothesis that the DOFs are uncoupled. As can be seen,
the curves change only very slightly. Even in the worst case, for which both
rotation and translation have been changed, the RMS error, taking the initial
setting as the reference, is only 0.68 mm. This shows that, even though there
could be some coupling between the DOFs, this effect can be neglected.

For the considered instruments we use θ, ρ, d and ∆d as distal parameters.
As shown before in section 2.4, they can be numerically obtained from chP ∗

with minimal models. Moreover, they can be linked to motors positions in a
decoupled manner by using the 3-steps IKM presented earlier.

The global method can be briefly described as follows (see also figure 3.4):

Before use:
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• Learn the relations between motor positions and distal parameters by
using an external sensor. Namely :

1. The inverse relation f −1 : θ→ qrot from θ to qrot
2. The inverse relation g−1 : ρ→ qbend from ρ to qbend
3. The direct relation h : qbend → ∆d from qbend to ∆d

4. The inverse relation k−1 : t→ qtrans from t to qtrans.

Because of the hysteresis, these relations are generally not functions.
Therefore, other variables must be taken into account in order to de-
scribe the hysteresis branches.

At use time:

• From a desired position chP ∗ express the desired orientation θ∗, the de-
sired radius ρ∗ and desired depth d∗.

• Use the learned models to compute the joint positions :

1. q∗rot = f −1(θ∗)

2. q∗bend = g−1(ρ∗)

3. qtrans = k−1(d∗ + h(q∗bend)).

• Apply the desired joint positions to the robotic system.

Note that no sensor has to be used during this stage.

3.2.2 Learning the inverse kinematics

In order to obtain the needed relations described previously, we propose to
use an Extreme Learning Machine. Several other methods have been tested on
our system before, but this particular method had a great trade-off between
training time, generalization and amount of hyperparameters to tune.

Extreme Learning Machine (ELM)

ELM is a supervised learning method based on a Neural Network with a single
hidden layer. Let us consider N observations of input-output pairs (ξi ,ξo) =
(x[k], y[k])|k=1,...,N . A standard Neural Network with M hidden nodes and an
activation function h(x) can be written as:

ŷ[k] =
M∑
i=1

γih(ωi · x[k] + bi) (3.1)

where ŷ[k] is the estimated output for input observation x[k], Γ = (γ1,γ2, · · · ,γM )
is the output weight vector, ωi are the input weights and bi are the hidden
layer biases. See figure 3.5 to see a graphical representation of each term.
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Express data using
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Generate desired
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Figure 3.4: Flowchart of the proposed approach [Porto et al., 2019d].

In a standard Neural Network, the aforementioned parameters are usually
computed using backpropagation and gradient-descent methods. In ELM, the
input weights ωi and hidden layer biases bi are randomly chosen using a uni-
form distribution [Huang et al., 2004]. The problem of minimizing the norm
of the error vector Y − Ŷ can therefore be rewritten in matrix form as :

HΓ = Y (3.2)

where H is known as the hidden layer output matrix. This problem can be
solved as a linear least square minimization:

Γ̂ =H†Y (3.3)

where H† is the pseudo-inverse of H . This algorithm provides good general-
ization at fast learning speed provided an adequate amount of hidden nodes
[Huang et al., 2004].

3.2.3 Learning the hysteresis effects with ELM

For our method, the key element of the training is to model the hysteresis
effects for each of the relations. For this purpose, for direct relations (from
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Figure 3.5: Graphical representation of an Extreme Learning Machine.

actuator space to distal parameters space), the data for training are built as

ξi[k] = (qj [k],dj [k]) and ξo[k] = α[k] (3.4)

where qj is the considered actuator position, α is the considered distal param-
eter (θ, ρ, ∆d or d) and dj [k] is an additional input data giving the displace-
ment direction (coded as +1/ − 1) of the considered joint j = {bend,rot, trans}.

Similarly, for inverse relations (from distal parameters space to actuator
space) the data for training are built as

ξi[k] = (α[k],dj [k]) and ξo[k] = qj [k]. (3.5)

During the training stage, dj can be estimated using the joint positions as
dj [k] = sign(qj [k] − qj [k − 1]). When using the trained model to generate the
actuator trajectory, the desired trajectory of the distal space parameter α∗ is
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used instead: dj [k] = sign(α∗[k] − α∗[k − 1]) because the actuator position is
not yet known. Both forms are equivalent and yield the same information,
however, during the training phase, it is preferable to rely on the more accu-
rate actuator measurement rather than the measured task space variable to
eliminate the effect of measurement noise.

Experimental setup

The experimental setup can be seen in figure 2.11. It is the same setup used
to validate the theoretical inverse kinematic model.

3.2.4 Training the models

A total of 700 points is used to train all the models (see figure 3.6). The re-
quired amount of data was determined by analyzing the learning curves of
each model once the number of hidden nodes M was defined. M was deter-
mined for each model, by analyzing the prediction error for different numbers
of nodes given a large dataset (N = 2000 points per model). This procedure
allows to properly chooseM for avoiding overfitting, and allows to reduce the
amount of points used for training.
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Figure 3.6: Training set shown in the channel frame.

For learning, the data have been divided in two subsets: a training set con-
taining 90% of the data, and a testing set containing the remaining 10%. Be-
fore training, the dataset was centered and normalized. The prediction perfor-
mance was evaluated on the validation set using the Normalized Root Mean
Square Error (NRMSE) between the predicted data and the ground-truth.
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Inverse rotation model (function f −1)

The desired rotation θ∗ is transformed to the joint space through the use of
this model, which was obtained from:

ξi[k] = (θ[k],drot[k]) and ξo[k] = qrot[k]. (3.6)

To generate the training set, only the rotation is moved from -45o to 45o

with steps of 1.8o for fixed large bending and translation. The trained model
(M = 50 nodes, validation fitting indicator 0.9331) and the training data (N =
300 points) can be seen in figure 3.7. Note that even if this motion is not
cable-driven, a large hysteresis is observed with non-linear behaviors at the
change of direction, due to friction of the instrument shaft in the endoscope
channel.
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Figure 3.7: Inverse rotation model.

Inverse radius model (function g−1)

This model is necessary in order to find the bending joint position for a de-
sired radius ρ∗ and was obtained from:

ξi[k] = (ρ[k],dbend[k]) and ξo[k] = qbend[k] (3.7)

where dbend is the displacement direction of the bending motor.

The training set is generated by fixing the translation and rotation and
performing 3 forward-and-backwards motions of the bending joint: qbend ∈
[−3;3]mm with steps of 0.12 mm. The trained model (M = 50 nodes, vali-
dation fitting indicator of 0.9832) and the training data (N = 300 points) can
be seen in figure 3.9. As expected, one observes a complex static curve with
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(a) Learning curve for the function f −1. (b) Validation curve for the function f −1.

Figure 3.8: Curves used to tune the hyperparameter of the ELM and set the
amount of training data required for generalizing well outside of the training
data.

strong hysteresis effect, which is very precisely reproduced by the learned
model.
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Figure 3.9: Inverse radius model g−1.
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(a) Learning curve for the function g−1. (b) Validation curve for the function g−1.

Figure 3.10: Curves used to tune the hyperparameter of the ELM and set the
amount of training data required for generalizing well outside of the training
data.

Direct bending to ∆d model (function h)

The computation of the bending to ∆d is necessary to properly calculate the
translation to be applied to the instrument. It is obtained with:

ξi[k] = (qbend[k],dbend[k]) and ξo[k] = ∆d[k]. (3.8)

The training set is the same as the one used for learning the inverse radius
model. The trained model (M = 50, validation fitting indicator 0.9727) and
the original training data can be seen in figure 3.11.

Inverse depth to translation model (function k−1)

The inverse depth to translation model is used to reach the desired translation
d∗. The input-output pairs are:

ξi[k] = (d[k],dtrans[k]) and ξo[k] = qtrans[k]. (3.9)

The set of points used to train this model is composed by 5 forward-and-
backwards motions with qtrans ∈ [5;20]mm for fixed bending and rotation
(N = 100 points). M = 10 nodes were used and the obtained validation fit-
ting indicator was 0.9744 (see figure 3.13).

3.2.5 Experimental results

For assessing the proposed approach, we tested the behavior of one instru-
ment of the STRAS robot for 2D and 3D trajectories and compared with dif-
ferent control techniques.
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Figure 3.11: Direct depth variation during bending model h.

(a) Learning curve for the function h. (b) Validation curve for the function h.

Figure 3.12: Curves used to tune the hyperparameter of the ELM and set the
amount of training data required for generalizing well outside of the training
data.

Given a desired position in the task space, the trained models are used as
described in section 3.2.1 to compute the actuators positions references. The
chosen trajectories are ellipses, which mimic the typical contours of lesions to
be dissected during endoscopic submucosal dissections (ESD) procedures in
the digestive tract [Zorn et al., 2017]. They are executed on a point by point
manner for assessing the static accuracy.
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Figure 3.13: Inverse translation model k−1.

(a) Learning curve for the function k−1. (b) Validation curve for the function k−1.

Figure 3.14: Curves used to tune the hyperparameter of the ELM and set the
amount of training data required for generalizing well outside of the training
data.

2D trajectory in the XY-plane

First we carried out trajectories involving only two DOF, bending and transla-
tion (ellipse in the XY-plane with 44mm and 6mm axes) in order to more eas-
ily understand the behavior of the proposed technique and compare it with
other methods. The statistics on the measured errors are reported in table 3.1
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(first column).

For the proposed method (table 3.1, first column) the 2D RMS error is
only 0.55 mm, which is really promising. One can also notice the very good
repeatability of the motion as it is run several times. This result shows that
our proposed method is able to compensate the non-linearities of the system
and that it generalizes well outside of the trajectories used during training.
Figures 3.15 and 3.16 show the spatial and time trajectories of the proposed
approach.
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Figure 3.15: 2D trajectory on the XY-plane.

To show the importance of the backlash compensation, we trained the
models defined in section 3.2.4 without taking into consideration the dis-
placement direction, i.e. without using motion direction as inputs. The re-
sults are shown on figures 3.17 and 3.18 on the spatial and time domain re-
spectively.

It can be observed that the backlash effect is very significant on the x-
direction, which is controlled by the bending joint. Moreover, for the depth,
the compensation of the bending by the translation cannot be properly exe-
cuted because it relies on the prediction of ∆d from the bending joint. This
finally results in large errors on both directions. The statistics are in table 3.1
(second column).

We also compared our method with the state-of-the-art method proposed
in [Xu et al., 2017a]. The training dataset was composed of 1920 points, dis-
tributed on a [32 × 30] grid in the actuator space [qbend × qtrans] covering the
same ranges as in our method. Forward and backward motions for the bend-
ing were performed for fixed values of the translation. The obtained model
presented a validation fitting indicator of 0.6794 for the bending joint and of
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Figure 3.16: 2D trajectory shown in the time domain.
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Figure 3.17: 2D trajectory without compensation on the XY-plane.

0.7104 for the translation joint. This poor generalization can be explained by
the lack of any information regarding the hysteresis shape. The statistics are
given in table 3.1, third column, and the trajectories are shown on figures 3.19
and 3.20.
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Figure 3.18: 2D trajectory without compensation shown in the time domain.
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Figure 3.19: 2D trajectory using the approach from [Xu et al., 2017a] on the
XY-plane.

3D trajectory

In figure 3.21, the desired trajectory is an ellipse with a major axis of 18 mm,
a minor axis of 17.2 mm, tilted 24o around the X-axis, therefore requiring the
use of 3DOF.

Table 3.2 gives the statistics of the error. By adding the rotation, the task
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Figure 3.20: 2D trajectory using the approach of [Xu et al., 2017a] shown in
the time domain.

Table 3.1: Statistics of the errors for the 2D trajectories for different position
control methods

Statistics our method w/o direction input [Xu et al., 2017a]

X Y 2D X Y 2D X Y 2D

RMS (mm) 0.5 0.2 0.6 6.5 2.4 6.9 7.4 2.7 7.9
Var. (mm2) 0.2 0.1 0.1 39.9 4.2 8.4 49.1 6.7 11.6
Max (mm) 1.6 0.8 1.7 12.9 4.3 12.9 14.0 6.3 14.1

becomes much more complex and the models do not generalize as well as in
the 2D experiments.

Table 3.2: Statics of the error signal regarding the 3D trajectory

Statistics Direction

X Y Z 3D

RMS (mm) 1.0339 1.0370 1.5793 2.1537
Variance (mm2) 0.8276 0.4907 2.4225 1.1023
Max (mm) 2.4274 2.0245 4.4336 6.0239
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Figure 3.21: 3D trajectory performed in the task space.
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Figure 3.22: 3D trajectory using the proposed approach in the time domain.

3.2.6 Discussion

Experiments in the 2D case show that our proposed approach outperforms
the approach from [Xu et al., 2017a] for positioning accuracy, while using
a smaller training dataset. The obtained accuracy would allow the correct
execution of automatic dissection in the bending plane of the instrument.

The errors without backlash compensation are comparable with the ones
obtained from the method in [Xu et al., 2017a]. They are also comparable to
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the ones assessed when using the conventional inverse kinematic model (see
section 2.4.3), only a bit lower. This can be explained by the fact that learning-
based methods learn the actual shape of the relation between bending and
cartesian positions, which differs from the theoretical one as seen on figure
3.3. Nevertheless, the main source of errors lies in the hysteresis effect, which
is not learned.

The errors obtained with the method of [Xu et al., 2017a] are larger than
the ones reported in the original article, where the trajectories used for train-
ing and experiments were similar (circles) and all the movements where made
in one direction. On the contrary, in our experiments, as in practical use, the
motion used during training is very different from the one executed during
the testing task.

The experiment in the 3D case exhibits larger errors than in the 2D case.
Nevertheless, the RMS error and the maximum errors have been reduced re-
spectively 4-fold and 3-fold with respect to the conventional IKM as reported
in section 2.4.3. Moreover, the obtained accuracy is similar to the accuracy
of measurement reported in [Cabras et al., 2017] using the same instrument
and the feedback from the endoscopic camera. This shows the interest of our
approach for open-loop position control of the considered instruments.

3.2.7 Summary

The main contributions of the proposed approach are :

• The combination of kinematic knowledge with learning to simplify the
structure of the trained models with respect to a black box approach [Xu
et al., 2017a].

• This creates a great reduction in the amount of data required. In to-
tal, 700 points were necessary to train all of the models, whereas 20000
points were used in [Xu et al., 2017a]. This reduction makes the ap-
proach more suitable for medical applications, especially for single-use
instruments, since the training is significantly faster.

• It allows taking hysteresis effects into account at a very low cost. Even
though it would be possible to add the displacement direction to the
input space on the approach proposed in [Xu et al., 2017a], it would
also significantly increase the complexity of the model and the amount
of data needed to generalize well. Each points of the workspace should
be reached from 8 different directions in the training set, corresponding
to all the combinations of directions for each axis.

3.3 Flexible endoscope

Results of the presented work in this section have been published in [Porto
et al., 2019a] and [Porto et al., 2019c].
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In this chapter, we show an extension of the method presented on sec-
tion 3.2. The previous approach was adapted for cable-driven surgical instru-
ments having 3 uncoupled degrees-of-freedom. However, as we have seen on
section 2.3, the cable-driven flexible endoscopes we are dealing with have 4
cables, which are endowed with 2 coupled degrees-of-freedom.

Following the same notation presented at 2.3, the joint positions will be
denoted ∆Lx and ∆Ly .

The objective considered here is to control the cartesian position of the tip
of the flexible endoscope in the base frame F0, which describes the task space
of the endoscope. The reference position for the instrument in this frame will
be noted 0P ∗ = (x∗, y∗)T . Only two coordinates are considered because there
are only two degrees-of-freedom that can be controlled.

Figure 3.23: Depiction of a flexible endoscope and its important modeling
parameters [Porto et al., 2019a].

3.3.1 Rationale of the method - adaptation to flexible endoscopes

For this extension, we keep the hypothesis that the distal part of the endo-
scope has a constant curvature during bending - therefore describing an arc
of a circle - but we now consider the non-linearities of the motion transmis-
sion. This implies that equations (2.2), (2.20) and (2.16) are still valid, but
(2.17) is not.
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By using βx and βy as our distal parameters, a decoupled link can be found
between the configuration space and the actuation space, as shown before in
section 2.3. The interest of using machine learning is to replace equation
(2.17) by a relation obtained from the observation of the actual behavior of
the cable transmission. The global method can be briefly described as follows
(see also figure 3.24):

Before use:

• Learn the relations between motor positions and distal parameters by
using an external sensor. Namely :

1. The inverse relation p−1 : βx→ ∆Lx from βx to ∆Lx

2. The inverse relation r−1 : βy → ∆Ly from βy to ∆Ly

In the same way as before, these relations are generally not functions.
The displacement direction will also be taken into account to accurately
describe the hysteresis behavior.

At use time:

• From a desired position 0P ∗ express the desired bending angles β∗x and
β∗y .

• Use the learned models to compute the joint positions :

1. ∆L∗x = p−1(β∗x)

2. ∆L∗y = r−1(β∗y).

• Apply the desired joint positions to the robotic system.

3.3.2 Learning the inverse kinematics

A different learning algorithm has been used for the flexible endoscopes. The
functions r−1 and p−1 were trained using a Gaussian Process Regression (GPR)
algorithm [Rasmussen, 2003]. This algorithm falls into the classification of
non-parametric, supervised algorithms.

Gaussian Process Regression (GPR)

Gaussian processes (GP) are defined as following [Rasmussen, 2003] :

"A Gaussian Process is a collection of random variables, any finite
number of which have (consistent) joint Gaussian distributions."
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Figure 3.24: Flowchart of the proposed approach applied to flexible endo-
scopes.

A simple interpretation of the definition used is that a gaussian process
is an extension of normal distributions. Instead of having a fixed mean value
and fixed variance, a GP is specified by a mean functionm(x) and a covariation
function k(x,x′) where x is the input vector. A GP can then be written as :

y ∼ GP (m,k) (3.10)

which means that the function y is a Gaussian Process distributed with a mean
function m and a covariance function k.

In order to clarify the distinction between the Gaussian Process and the
Gaussian Distribution, we will be using µ to indicate the mean value of the
distribution and Σ to indicate the covariance matrix. This means that, if we
evaluate the GP in the finite set of input points xi , the output will be a finite
set of Gaussian Distributions with the following attributes :

µ =m(xi), i = 1,2, · · · ,n and (3.11)

Σ = k(xi ,xj ), i = j = 1,2, · · · ,n · . (3.12)

When working with Gaussian Process Regression, a prior GP is going to be
updated by using training data in order to obtain a posterior GP. The proper-



3.3. FLEXIBLE ENDOSCOPE 101

Figure 3.25: Illustration of a Gaussian Process.

ties of the posterior GP are shaped in the light of the data used for training
[Rasmussen, 2003].

By using the posterior process, it is possible to make predictions about data
with the same properties as those used for training. For that, we will consider
a training set composed of n input-output pairs. The input vector will be
noted X, with its individual values being xi , and the output vector will be
noted Y . Let us also consider a set of input points X∗ in which we want to
predict the outputs Y ∗. The joint distribution of the training set and the pre-
diction set are : [

Y
Y∗

]
∼ N

([
µ
µ∗

]
,

[
Σ Σ∗
Σ>∗ Σ∗∗

])
(3.13)

with µ the mean value of the training set (µ = m(X)), Σ the training set covari-
ance (Σ = k(X,X ′)), Σ∗ the training-prediction set covariance (Σ∗ = k(X,X∗’))
and Σ∗∗ the prediction set covariance (Σ∗∗ = k(X∗,X∗’)). Considering that the
training set is known, our objective is to determine the conditional distribu-
tion of Y∗ given Y . This distribution is determined as :

Y∗|Y ∼ N (µ∗ +Σ>∗ Σ
−1(Y −µ) , Σ∗∗ −Σ>∗ Σ−1Σ∗). (3.14)

By inspection, one can determine the posterior GP is :

Y∗ ∼ GP (mP , kmP ),

mP (x) =m(x) +Σ(X,x)>Σ−1(Y −m(X))

kP (x,x′) = k(x,x′)−Σ(X,x)>Σ−1Σ(X,x).

(3.15)

with mP (x) and mP (x) the mean and covariance functions of the posterior pro-
cess and Σ(X,x) is a vector of covariances between every training case and the
prediction inputs.

The final aspect to address is the training of the GP, meaning the determi-
nation of the hyperparameters present in the mean and covariance functions.
For so, the method that presents an optimal trade-off between the fitting of
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the data and complexity of the model is optimizing the log marginal likelihood
Rasmussen [2003]. This quantity is calculated as :

L = logp(y|x,λ) = −1
2
log |Σ| − 1

2
(Y −µ(X))>Σ−1(Y −µ(X))− n

2
log(2π) (3.16)

where p(y|x,λ) is the probability of the data given the hyperparameters (ex-
pressed as the vector λ).

3.3.3 Learning the hysteresis effects with GPR

The learning procedure is very similar to the one presented previously on
chapter 3.2.3. The input-output pairs for inverse relations are built as

ξi[k] = (βi[k],di[k]) and ξo[k] = ∆Li[k] (3.17)

where i is the index of the considered joint (i = {x,y}).
The mean and covariance functions, m(ξi) and K(ξi ;ξ ′i ) respectively, used

in the Gaussian Process Regression were chosen as :

m(ξi) = βi
D
2

(3.18)

which corresponds to the geometric model provided by (2.26) and

K(ξi ,ξ
′
i ) = σ2

o exp

(
−

(ξi − ξ ′i )
2

2l2

)
+ σ2

nδqq′ (3.19)

where σ2
o is the output variance, l is the length parameter of the kernel, σ2

n is
the noise variance and δqq′ is the Kronecker’s delta.

The main interest of using GPR is that we can adapt the theoretical geo-
metric model to the experimental data. While using ELM, a non-linear be-
havior is learned based solely on the data used for training and its domain of
validity is restricted to a neighborhood of the observations. With GPR, pre-
dictions can be provided for points far from the observations based on the
actual geometric model. This algorithm has not been applied to the surgical
flexible tools (only applied to flexible endoscopes) mainly because it is not
possible to obtain the analytical inverse kinematic model (equation (2.6) is
non-invertible) to be used as the mean function.

Experimental setup

The experimental setup can be seen in figure 2.9. It is the same setup used to
validate the theoretical inverse kinematic model.
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3.3.4 Training the models

A total of 500 points is used to train all the models, 250 for each joint (see fig-
ure 3.6). The required amount of data was determined by analyzing the learn-
ing curves of each model once the other hyperparameters have been tuned,
similarly to what have been done with the surgical tools.

To generate the training set, we create a trajectory for ∆Lx as a triangular
wave, varying from -5mm to 5mm with 50 samples for slope (0.2mm step of
cable displacement) with ∆Ly set to zero. The same trajectory is then applied
to ∆Ly , with ∆Lx set to zero.
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m
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0-50 -50-100 -100
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Figure 3.26: Training set shown in the base frame.

From the 500 points, 80% were used for the training of the models, while
the remaining 20% were used for validation purposes. Before training, the
dataset was centered and normalized.

Inverse bending on X model (function p−1)

We can obtain the cable displacement ∆L∗x necessary to achieve the desired
bending on X β∗x by using this model. The input-output pair is chosen as :

ξi[k] = (βx[k],dx[k]) and ξo[k] = ∆Lx[k]. (3.20)

The trained model (validation fitting indicator 0.995) and the training data
can be seen in figure 3.27. It is possible to note that the hysteresis is very small
and the static characteristic is almost linear.
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Figure 3.27: Learned model p−1 linking the bending angle on X βx and the
cable displacement ∆Lx.

Figure 3.28: Learning curve of the function p−1.

Inverse bending on Y model (function r−1)

Similar to the model p−1, this model is required to convert the desired bending
on Y β∗y into the cable displacement ∆Ly . It was obtained from:

ξi[k] = (βy[k],dy[k]) and ξo[k] = ∆Ly[k]. (3.21)

The trained model (validation fitting indicator of 0.976) and the training
data can be seen in figure 3.29. Contrary to the behavior seen on the other
joint, there is a strong hysteresis effect with the presence of dead-zones. This
showcases the interest of using data-driven approaches, since both joints are
identical construction-wise and are present on the same tool.
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Figure 3.29: Learned model r−1 linking the bending angle on Y βy and the
cable displacement ∆Ly .

Figure 3.30: Learning curve of the function r−1.

3.3.5 Experimental results

Analogously to the surgical tools, 2D trajectories have been performed with
the approach proposed on this chapter and the approach from [Xu et al.,
2017a] to evaluate the accuracy of the positioning. The trained models for
our approach are used as described on the flowchart of figure 3.24.

The trajectory resembles an inf symbol on the XY plane. The displacement
on the X direction varies from -68mm to 92mm, while the displacement on Y
varies from -58mm to 58mm. Table 3.3 presents a summary of the results
obtained while performing the described trajectory.

The RMS error obtained by using our proposed approach was 4.4 mm,
which is a great improvement compared with 18.3 mm attained by the IKM.
As can be seen on Figs. 3.27 and 3.29, the hysteresis effect is not the same on
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both axis - the Y axis has a much larger hysteresis width and the presence of
dead-zones. Consequently, without any compensation, the amplitude of the
movement is much more constrained in comparison with the compensated
one. The executed trajectory can be seen in figure 3.31.
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Figure 3.31: 2D trajectory performed by the flexible endoscope using the pro-
posed approach.

The same trajectory has been executed after training a 2D model of the
endoscope using the approach from [Xu et al., 2017a]. The model has been
trained by applying circular trajectories in the joint space - which should
result in circles in the task space if there were no influence from the non-
linearities - with the same center and different radius. A total of 4,000 points
divided in 13 circles traversed 4 times compose the training dataset. The ra-
dius of these circles are linearly distributed from -9mm to 9mm. The training
dataset has been created in order to closely resemble the one used in [Xu et al.,
2017a].

The trajectory performed using the approach from [Xu et al., 2017a] can
be seen in figure 3.32. The precision obtained with this model is poorer than
the one attained with our proposed approach. The RMS error obtained in our
system was 11.8 mm, almost 3 times higher than the proposed method. This
difference in performance was expected, considering that the model from [Xu
et al., 2017a], in the way it is defined, cannot learn the hysteretic behavior ob-
served in our system. It should also be observed that this poorer accuracy has
been achieved with a much larger training dataset (4,000 points compared to
only 500). With a 87.5% reduction of the training dataset, a superior precision
was achieved by taking into account some knowledge about the geometry of
the system.
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Figure 3.32: 2D trajectory performed by the flexible endoscope using the ap-
proach from [Xu et al., 2017a].

Table 3.3: Statistics of the errors for the 2D trajectories for different position
control methods

Statistics our method IKM [Xu et al., 2017a]

X Y 2D X Y 2D X Y 2D

RMS (mm) 2.9 3.3 4.4 4.0 17.8 18.3 5.3 10.5 11.8
Var. (mm2) 15.0 184.5 58.7 20.1 105.6 8.4 23.6 6.7 11.6
Max (mm) 5.7 8.6 8.9 7.8 28.3 28.8 14.5 19.8 20.2

3.3.6 Discussion

The proposed approach is capable of largely compensating the non-linearities
introduced by the cable transmission in flexible endoscopes, as shown by ex-
periments. A gain in precision of over 4 times has been achieved in compari-
son with classic kinematic modeling by incorporating a simple learning pro-
cedure. A reduction of the duration of the training phase was also achieved in
comparison with other state-of-the-art approaches.

This work can still be improved. Other inputs could be added to our mod-
els in order to better handle the change in direction regardless of the current
configuration of the endoscope. Updating the models online during use could
also be of interest, because the hysteresis shapes can be subject to changes as-
sociated to the shape of the passive body of the endoscope. The use of the en-
doscopic camera as a sensor for the training phase instead of external cameras
is also a possibility we are investigating. Finally, using this method to handle
the non-linearities in a teleoperated context, in addition to its use for auto-
matic movements, is an application that we are currently aiming to achieve.
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3.4 Conclusion

In this chapter, two novel ways of incorporating machine learning in the mod-
eling of tendon-driven flexible systems have been presented. These methods
rely on the mixing of classic kinematic modeling with learning-based algo-
rithms to accentuate their advantages and decrease their inconveniences.

However, some limitations exist when using the proposed approach with
the presented experimental setup. Considering that we are using a stereo-
scopic camera setup to estimate the 3D position of the end effector and that
fiducial markers are used to increase the precision of the estimation and sim-
plify the tracking task, these fiducial markers must be seen by the cameras
during the complete training steps. This limits the rotation angles that can be
learned, because the markers can become invisible and the 3D position cannot
be estimated anymore. This limitation can be overcame by using 3D markers
instead of the current ones at the cost of increased post-processing time.

For the flexible surgical tools, the bending is also limited by kinematic
singularities. If the bending of the end effector goes beyond around 100o, the
value of the radius in the bending plane starts to decrease. This means that the
function mapping the joint position and the radius becomes non-invertible.
This way, the inverse static characteristic cannot be computed directly. A pos-
sible solution would be to define two functions for the radius that are valid
under different ranges of motor positions.

Another limitation comes from the input space used to model the hys-
teresis branches. The hysteresis compensation only works in a small neigh-
borhood of the point in which the direction changes during training. If the
change in direction occurs far from the one used in the training data, an over-
compensation of the dead-zone can appear. This results in an overshoot on
the concerned coordinate. This could potentially be solved by adding other
relevant parameters to the input space, however it still remains an open ques-
tion. The drawback of doing so is that the model will require much more
points to generalize well, slowing down the learning phase.

Nevertheless, these limitations do not challenge the interest of the pro-
posed methods. The gain in terms of precision using such approaches is
significant. A reduction on the RMS error of at least 4 times and up to 16
times (compared to the IKM) has been achieved. Furthermore, a decrease on
the amount of training examples of at least 87.5% and up to 96.5% has been
obtained when compared to other state-of-the-art approaches like [Xu et al.,
2017a]. This is promising for potential clinical applications with single-use
instruments, since their model cannot be learned until moments before a sur-
gical procedure.

The way machine learning has been incorporated for both the flexible sur-
gical tools and flexible endoscopes is very similar. Albeit some hypotheses are
different, the principle used was the same - isolate the influences of each joint
and learn their behavior separately to generalize over the whole workspace.
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From our knowledge, this has never been done before in the context of robot
control and identification.

In the next chapter, the similarities between both approaches will be ana-
lyzed. A general framework is then proposed to mix classic kinematic model-
ing with machine learning.
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4.1 Introduction

In chapter 3, it was shown how to incorporate machine learning techniques
together with classical geometric modeling in order to obtain hybrid, accurate
and fast-training models. As seen, the application of these techniques for
surgical tools and flexible endoscopes is quite similar, but with some crucial
differences.

The first difference is in the control objective - for the tools, we were inter-
ested in a 3D position control, while for the endoscope only the 2D position
was relevant. There are also differences in terms of hypothesis. We assume
that the distal part of the endoscope bends with constant curvature, but this
hypothesis is not necessary for the surgical tools. For this reason, it was re-
quired to describe the system configuration (equations (2.8) and (2.16)) to
decouple the endoscope joints.

Despite all these differences, there are several points in common. The pa-
rameterization of the task space, the analysis of the robot’s workspace and the
use of machine learning are very close points - even identical in some ways -
between these two systems. Then a question arises: is it possible to find a suf-
ficient generic line of reasoning that encompasses both solutions presented,
and possibly other completely different robotic systems?

The objective of this chapter is to explain the generalization of the tech-
niques presented in the chapter 3, and show how it can be applied in other
robotic systems even outside the scope of this thesis. We called this frame-
work "Multilayered approach for kinematic modeling". Several examples of
systems will be analyzed, and experimental results will be presented. Finally,
an analysis will be made about the effects of using this approach in function
of the number of layers used for each system.

4.2 Rationale of the method

The main idea of this method is based on the use of modeling layers. The
use of few layers indicates an opaque modeling approach, while the use of
several layers details the particularities of the studied system and configures
a transparent approach. An illustration of the method is shown in figure 4.1.

4.2.1 Modeling layers

A total of 6 layers were identified in order to generalize the combination of
machine learning techniques together with classic modeling. Not all of them
are mandatory. They will be explained in the following.

Layer 1: Hypothesis formulation

In this layer, all the assumptions are formulated: the way the robot moves,
what non-linearities it is subjected to, the conditions in which the modeling is
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*

*Although presented as a single layer 
before the task space, the hypothesis
layer may influence every other layer
described in the diagram.

Figure 4.1: General scheme of the approach highlighting the different model-
ing layers and spaces involved during the kinematic modeling.
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valid. These hypotheses have an influence on every other following layer and
also on the number of layers that need to be used in order to properly model
the system.

For example, in the modeling presented in chapter 3.3, we assume that the
endoscope is subjected to hysteresis effects (meaning that a given 3D position
can be obtained by multiple joint coordinates) and that the robot describes an
arc of a circle with constant curvature during bending.

These hypotheses have an important impact on the modeling, both on the
searched model and on the errors that can be introduced by making wrong
assumptions. It is not advisable to search a direct mapping between the 3D
position and the joint positions since it has not a unique solution and can re-
sults in requiring a large amount of data to accurately learn the behavior of
the system. On the other hand, the actual shape of the endoscope might dif-
fer from the assumed constant curvature model, which introduces modeling
errors.

This layer is mandatory and is probably the most important one given
the impact it has on the precision and complexity of the models. It is not
constrained to any particular space because it can influence every step of the
modeling.

Layer 2: Task definition

This layer is located in the task space and is directly related to the task itself.
It defines exactly the task to be performed by the robot. Is it a 2D or 3D
positioning task? Should the orientation of the robot be taken into account?
It is a mandatory layer that is usually easily determined.

As an example, the surgical tools task required a 3D positioning, whereas
the flexible endoscope was defined by a 2D positioning. In both cases, the
orientation of the robot was not taken into account. This may differ for differ-
ent applications and is not an intrinsic characteristic of the system, but of the
task.

Layer 3: Parameterized space

This is an optional layer also located in the task space. On this layer, a pa-
rameterization is sought to better describe the task taking into account the
architecture of the robot. The choice can be related to the robot’s workspace
and the positioning of its actuators.

For example, the surgical tools have a cylindrical workspace. This makes
the use of a cylindrical coordinate system a great candidate to describe the
task. What makes this layer optional is the fact that not every architecture
has an optimal parameterization and sometimes the cartesian description of
the task is the optimal one. If we take a X-Y table as an example, there is no
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reason to search for a different parameterization other than the cartesian one
to describe the task.

Layer 4: Kinematic analysis

This is an optional layer located between the configuration space and the task
space. In this layer, we are interested in determining the existence and direc-
tions of impact of the joints on the task space without taking into account the
actual geometry of the robot.

Let us use the surgical tool as an example to illustrate how the kinematic
analysis layer works. As seen in chapter 3.2, each joint impacts the distal
movement in a unique way. The bending joint, noted qbend , only impacts the
distance to the origin ρ and the depth d. The rotation joint qrot only impacts
the angle of the bending plane θ and the translation joint qtrans only impacts
the depth. Then, the kinematic analysis layer will be the set of relations be-
tween the task space and the joint space :

1. The inverse relation f −1 : θ→ qrot from θ to qrot ;
2. The inverse relation g−1 : ρ→ qbend from ρ to qbend ;
3. The direct relation h : qbend → ∆d from qbend to ∆d;
4. The inverse relation k−1 : y→ qtrans from d to qtrans;

as has been seen in chapter 3.2.

In this layer, we search for the relations between the task space and the
configuration space (or actuation space depending on the model) without ex-
pressing them mathematically. To illustrate this, let us consider an alternative
surgical tool with a rigid pivot joint instead of a flexible bending joint (see
figure 4.2).

In this alternative architecture, even though the way the instrument moves
is different when the bending joint is actuated, we can still describe the exact
same impacts as for the flexible tool. This means that, even though these tools
are different and have different geometrical models, their kinematic analysis
is identical.

This layer is considered optional because on opaque models (such as black
box), it is possible to completely skip it and link the task space straight to the
actuation space.

Layer 5: Kinematic modeling

This optional layer is used when the geometry of the robot is taken into ac-
count. Instead of only putting in evidence the relations between the task space
and the configuration space, the equations linking both spaces are here con-
sidered.

In the case of the approach presented for the surgical tool in chapter 3.2,
this layer is completely skipped. The way the robot bends, whether it is by
the use of a flexible body or a rigid pivot joint does not have an influence in
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Figure 4.2: Surgical tool with a pivot joint (right) instead of a flexible bend-
ing joint (left). The effects on the task space can be expressed with the same
parameters, however the shape of the robot is different.

the learning phase. However, for the approach used for the flexible endoscope
(chapter 3.3), this layer is essential for decoupling the overall bending angle
into two orthogonal bending angles.

By also taking the example shown in figure 4.2, if we wished to increase the
amount of modeling layers and take into account the geometry of the robot,
this layer would be different given the different nature of the joints.

This is also an optional layer because it is possible to not take into account
the geometry given the hypothesis made and the overall structure of the robot.
However, this layer is linked with the kinematic analysis layer. If the kine-
matic modeling layer is chosen to be used, the kinematic analysis also is used,
since the modeling corresponds to the mathematical or numerical expression
of the relations contained in the kinematic analysis.

Layer 6: Machine learning

This last layer is located between the actuation space and a higher level space.
This one can be the task space or the configuration space, depending on the
number of layers used. It represents the mapping, obtained using machine
learning algorithms, between the actuators and the variables of interest.

This layer is mandatory for incorporating machine learning with kine-
matic modeling. If it were removed, the combination of the other layers
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would be equivalent to a conventional kinematic modeling (either analytic
or numeric). The amount of layers between the task definition and this layer
determines how transparent the modeling is and also how complex the final
model is to use.

Black box techniques, also referred as opaque techniques, linking the task
space straight to the machine learning layer, is very simple to implement. The
hypothesis will shape the machine learning algorithm (which features should
be taken into account for obtaining the model) and the task will determine
which variables are being modeled. Only a single model needs to be trained,
but it might be over-complex.

On the other hand, transparent approaches or glass box [Holzinger et al.,
2017] techniques, linking the joints (present at the kinematic modeling layer)
to the actuator space, might require the learning of several models as shown
in chapter 3. The main advantage of doing so is that these models are usually
simple, do not require much data to generalize well and are independent from
one another.

Models in the middle ground will be referred as translucent. These models
are not direct links from the task space to the actuation space, but they are
not much detailed. Usually the actual geometry of the robot is not taken into
account, but an analysis on the impacts of each joint on the pose of the end
effector is required.

Summary

A general overview of all the layers is presented below :

1. Hypothesis: This layer determines the overall validity of the model and
the assumptions made;

2. Task definition: This layer is the one in which the task to be performed
by the robot is determined;

3. Parameterized space: Depending on the architecture of the robot, it may
be possible to find a parameterization better suited for specifying the
task. However, this parameterization may not be simply specified or the
cartesian parameterization may already be optimal one;

4. Kinematic analysis: The impacts between the configuration and task
space are put in evidence without taking into account the actual geome-
try of the robot;

5. Kinematic modeling: The geometric relationship between the configu-
ration and task space is determined;

6. Machine learning: This step is used to determine the mapping between
the concerned space - whether it is the task or the configuration space -
with the actuation space.

To illustrate the layers presented beforehand and how these layers can be
used in a practical way, we have applied the multilayered approach on several
systems. Experimental results are mentioned for the systems available at our
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facilities, but other systems are also discussed to illustrate the applicability
of the technique. Before these examples, it is important to showcase how the
relations that need to be learned are determined.

4.3 Determining the functions to be learned

A question may arise when defining the machine learning layer - which func-
tions need to be learned and what are their dependency with respect to the
actuation space ?

A useful tool that allows for determining these relations is the Jacobian
matrix between the space being analyzed (task space or configuration space)
and the actuation space. By definition, the Jacobian matrix expresses the sen-
sitivity of each coordinate of the concerned space with respect to each actuator
present in the robot as :

J =
∂P
∂q

=



∂P1

∂q1
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∂q2
. . .
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∂qn
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(4.1)

with P denoting the coordinates of the concerned space of dimension m and q
denoting the actuation space of dimension n. Each non-null term represents
how an actuator influences the displacement of the robot in that particular
direction.

Let us take an example of a 3D positioning task of a robot possessing 3
actuators that are completely independent from one another. An example
of such a robot could be a XYZ table. By analyzing its Jacobian matrix, one
would obtain :

J =



∂x
∂q1

∂x
∂q2

∂x
∂q3

∂y

∂q1

∂y

∂q2

∂y

∂q3
∂z
∂q1

∂z
∂q2

∂z
∂q3


=



∂x
∂q1

0 0

0
∂y

∂q2
0

0 0
∂z
∂q3


. (4.2)

which implies the existence of 3 individual relations that can link the task
space P to the actuator space q, each represented by a line of the Jacobian
matrix. These relations would be :

1. x = f (q1);
2. y = g(q2);
3. z = h(q3).
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Other systems may present coupled joints - these will appear as Jacobian
matrices that are not diagonal matrices. Let us take an example of system that
requires a 3D positioning and roll orientation task with 4 actuators. After
performing the kinematic analysis, the first two actuators have an influence
on both x and y coordinates, while the third and fourth have independent
actions respectively on the z coordinate and on the roll of the end effector.
The Jacobian matrix for this system is :

J =



∂x
∂q1

∂x
∂q2

∂x
∂q3

∂x
∂q4

∂y

∂q1

∂y

∂q2

∂y

∂q3

∂y

∂q4

∂z
∂q1

∂z
∂q2

∂z
∂q3

∂z
∂q4

∂r
∂q1

∂r
∂q2

∂r
∂q3

∂r
∂q4


=



∂x
∂q1

∂x
∂q2

0 0

∂y

∂q1

∂y

∂q2
0 0

0 0
∂z
∂q3

0

0 0 0
∂r
∂q4


. (4.3)

The terms surrounded by the light blue box indicate that these two task co-
ordinates are coupled and affected by the same actuators. Instead of learning
two independent functions, one for x and another for y, this group indicates
the presence of a function with two inputs and two outputs. The functions
linking these spaces are :

1. (x,y) = f (q1,q2);
2. z = g(q3);
3. r = h(q4).

In order to increase the efficiency of the training phase - equivalent to re-
ducing the amount of data required for proper generalization - it is interesting
to parameterize the task space or the configuration space to obtain a Jacobian
matrix as close as possible to a diagonal form. It is also possible to achieve
this diagonalization of the Jacobian matrix by the use of the hypothesis layer.
An example will be shown later on with the flexible endoscope on how to do
so.

4.4 Application to flexible endoscopes with two bending
planes

In this section, we will rewrite the approach used by [Xu et al., 2017a], the
approach presented at the section 3.3 and a new modeling approach using
the formalism described previously.
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4.4.1 Approach I - Direct link between the task space and actuator
space

As previously discussed, this approach has been suggested in [Xu et al., 2017a].
An adaptation will be made in order to present it with the multilayered for-
malism.

Hypothesis:

The way machine learning was applied in [Xu et al., 2017a] assumes that each
point of the task space can be reached by a unique actuation.

Task definition:

Instead of 3D positioning task of the endoscope, we will only perform a 2D
positioning. For our particular system, those are the only degrees-of-freedom
heavily affected by non-linearities. The pose of the end effector is then :

P = (x,y).

Parameterized space:

There is no need to parameterize the task space in this particular approach.
This layer can be completely skipped.

Kinematic analysis:

No analysis is required because a direct link to the machine learning layer is
searched. The Jacobian between the task space and the actuator space is :

J =


∂x
∂∆Lx

∂x
∂∆Ly

∂y

∂∆Lx

∂y

∂∆Ly

 . (4.4)

By looking at the Jacobian matrix, two functions could be defined for this
particular approach :

1. x = f (∆Lx,∆Ly);
2. y = g(∆Lx,∆Ly).

However, considering that the influences on both functions are identical, a
sole relation can be used. In this case :

(x,y) = f (qbend ,qtrans).

Kinematic modeling:

The geometry of the instrument is not important for this approach. This layer
can be completely skipped.
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Machine learning:

Only one function needs to be learned, being :

• The inverse relation f −1 : (x,y)→ (qbend ,qtrans) from (x,y) to (qbend ,qtrans).

The results of using said model have been shown in 3.3.5.

Discussion

As shown before, this model does not generalize well mainly because of the
hypothesis made. Instead of modeling the hysteresis branches, this approach
ends with a "mean" model that is not accurate and requires a relatively high
amount of data to train.

The accuracy can be improved by a change in the hypothesis. Taking into
account the hysteretic loop can be done in a straightforward way, but it will
wield in more data being required to have good generalization. Even though
it is the simplest one to implement, the trade-off between its accuracy and
efficiency is unbalanced.

Layer Content of the modeling layer

1 - Hypothesis
Each cartesian point is achieved by a single joint
coordinate;

2 - Cartesian space P = (x,y)

6 - Machine learning
The inverse relation
f −1 : (x,y)→ (∆Lx,∆Ly) from (x,y) to (∆Lx,∆Ly);

Table 4.1: Summary of modeling layers used for approach I on the flexible
endoscope.

4.4.2 Approach II - Using the hypothesis of constant curvature
while bending

This is the same approach presented in chapter 3.3.

Hypothesis:

The main assumptions regarding this particular method if that the flexible
controllable part of the endoscope describes an arc of constant curvature dur-
ing bending.

It is also assumed that the joints are not coupled and independent from
one another.
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Task definition:

Similarly to the previous approach, the goal is to perform a 2D positioning
task. The pose of the end effector is then :

P = (x,y).

Parameterized space:

A suitable parameterization for this system, assuming constant curvature, is
the polar parameterization. Its use greatly simplifies the mapping between
the task space and the configuration space. The task space is then defined as :

Pcyl = (ρ,θ) = (
√
x2 + y2,arctan2(y,x)).

Kinematic analysis:

Both joints have an impact on the radius of the tool ρ and on the rotation of
the tool θ. This means that the Jacobian matrix from the task space to the
actuation space is:

J =


∂ρ

∂∆Lx

∂ρ

∂∆Ly
∂θ
∂∆Lx

∂θ
∂∆Ly

 (4.5)

implying that the searched relation is of the form :

(ρ,θ) = f (∆Lx,∆Ly). (4.6)

In order to be able to define independent relations for each actuation, it is
necessary to go further into the next layer.

No analysis is required because a direct link to the machine learning layer
is searched. The Jacobian between the task space and the actuator space is :

Kinematic modeling:

To describe the configuration of the tool, we will be using equations (2.6),
(2.8), (2.17) and (2.20). These equations allow to describe the task in terms
of the orthogonal bending angles of the endoscope. Each orthogonal bending
angle is only affected by its corresponding pair of cables. This means that the
Jacobian from the configuration space to the actuation space is :

J =


∂βx
∂∆Lx

∂βx
∂∆Ly

∂βy
∂∆Lx

∂βy
∂∆Ly

 =


∂βx
∂∆Lx

0

0
∂βy
∂∆Ly

 (4.7)

which implies the existence of two relations linking these two spaces :
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• βx = h(∆Lx);
• βy = k(∆Ly).

Machine learning:

The searched functions are :

• The inverse relation f −1 : βx −→ qx from βx to qx;
• The inverse relation g−1 : βy −→ qy from βy to qy .

The results of using said model have been shown in 3.3.5.

Layer Content of the modeling layer

1 - Hypothesis
Constant curvature during bending;
No coupling between the joints;
Cable transmission subjected to non-linearities.

2 - Cartesian space P = (x,y)

3 - Parameterization
ρ =

√
x2 + y2

θ = atan2(y,x)

4 - Kinematic analysis
ρ = f (∆Lx,∆Ly);
θ = g(∆Lx,∆Ly).

5 - Kinematic modeling
Equations (2.6), (2.17) and (2.20);
βx = h(∆Lx);
βy = k(∆Ly).

6 - Machine learning
The inverse relation h−1 : βx→ ∆Lx from βx to ∆Lx;
The inverse relation k−1 : βy → ∆Ly from βy to ∆Ly .

Table 4.2: Summary of modeling layers used for approach II on the flexible
endoscope.

4.4.3 Approach III - Using the hypothesis of small bending angles

Machine learning can be incorporated a different way in the global model-
ing of the same system when its motions are limited by constrained spaces .
This is actually the case on many applications in lower-endoscopy when us-
ing colonoscopes with a large diameter, since the tissues of the colon limit the
movement amplitude during manipulation.

Hypothesis:

For this analysis, we will focus only on applications within constrained spaced,
which means that the overall bending angle of the endoscope will remain
small. This means that the displacement of the tool from its upright position
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will also be small. In other words:

β� 1; βx� 1; βy � 1.

Akin to the previous approach, we assume is that the joints are not coupled
and are completely independent from one another.

Finally, the cable transmission is subjected to several non-linearities. These
effects create a hysteresis shape that shall be taken into account during mod-
eling.

Task definition:

The pose of the endoscope will be defined only by its x and y coordinates, as
was the case from the previous approaches. This means:

P = (x,y).

Parameterized space:

For this approach, we will skip the parameterization of the cartesian space.
The reason will become clear when the other layers will be analyzed.

Kinematic analysis:

When only small bending angles are considered, some approximations can
be done in order to simplify the modeling of the endoscope. Let us, for now,
assume that the endoscope bends with a constant curvature. This means that
the distance from the origin ρ will follow the equation (2.6) :

ρ =
Lf
β

(1− cosβ) +Ld sinβ

and the angle of the bending plane φ will follow equation (2.20) :

φ = arctan2(βy ,βx).

with the bending angle β being a combination of its orthogonal components
βx and βy (see equation (2.16). The other parameters are detailed in image
3.23.

This means that the cartesian position of the tip of the endoscope will be :

x = ρcosφ and y = ρ sinφ. (4.8)

By using the quadratic relation between βx, βy and β, it is possible to show
that :

cosφ =
βx
β

and sinφ =
βy
β

. (4.9)
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By replacing equations (2.6) and (4.9) in (4.8), one obtains the relations be-
tween the cartesian positions x and y and the orthogonal components of the
bending angle βx and βy :

x =
(
Ld sinβ −

Lf (cosβ − 1)

β

)
βx
β

(4.10)

and

y =
(
Ld sinβ −

Lf (cosβ − 1)

β

)
βy
β

. (4.11)

Now, let us do a sensitivity analysis on the cartesian position based on the
changes of the bending angles βx and βy . We are mainly interested in the effect
of βy on the displacement along x and the effect of βx on the displacement
along y. These partial derivatives are:

∂x
∂βy

=
∂y

∂βy
=
βxβy

β4

(
β2d cosβ + β sinβ(L− d) + 2L(cosβ − 1)

)
. (4.12)

Let us analyze equation (4.12). Figure 4.3 shows the function evalua-
tions on a 50x50 grid with the values of βx and βy linearly spaced in the
interval [−0.6,0.6] rad. As can be seen, in the neighborhood of the point
(βx,βy) = (0,0), the sensitivity tends to 0. This means is that the influence
of βx on the displacement along the y direction and the influence of βy on the
displacement along the x direction are negligible. By moving the endoscope
in this neighborhood - which implies only applying small bending angles to
the system - we can consider that the system is decoupled.

Figure 4.4 also illustrates the same phenomenon obtained from simula-
tions assuming constant curvature. By applying the configuration path shown
on the right, if the tool bends with a constant curvature, the tip of the endo-
scope will perform the trajectories shown on the left (solid line). The trajec-
tories shown on the left with a dashed line would be performed by the endo-
scope in the case of no coupling. As can be seen, the difference between the
curves is very small near the straight configuration, with a larger difference
when the endoscope goes away from this central configuration.

Although this analysis has been done by assuming a constant curvature
during bending, the same behavior has been observed on our system - which
does not bend in such a way as has been discussed in chapter 2.3. From this
point on, we will consider that the coupling is negligible.

In this case, one can learn the inverse relations that link the actuator space
to the Cartesian space without doing any parameterization nor using kine-
matic modeling. This can be seen by the Jacobian between the Cartesian space
and the actuator space :
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Figure 4.3: Sensitivity analysis - Impact of βy on the x coordinate and βx on the
y coordinate. The parameters used to generate this image were Lf = 160mm
and Ld = 50mm, parameters of the ANUBISCOPE.
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Figure 4.4: Comparison between the configuration space and cartesian space.

J =


∂x
∂∆Lx

∂x
∂∆Ly

∂y

∂∆Lx

∂y

∂∆Ly

 ≈

∂x
∂∆Lx

0

0
∂y

∂∆Ly

 (4.13)
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since it implies that :

x = f (∆Lx); (4.14)

y = g(∆Ly). (4.15)

Kinematic modeling:

No further kinematic modeling is required. As previously shown, the knowl-
edge about the shape of the endoscope during bending is not necessary to
decouple each main displacement direction.

Machine learning:

For finding the inverse kinematic model, two functions need to be learned.
The searched functions are :

• The inverse relation f −1 : x −→ ∆Lx from x to ∆Lx;
• The inverse relation g−1 : y −→ ∆Ly from y to ∆Ly .

Considering the hysteresis effects, we will take into account the displace-
ment direction to be able to model both branches of the hysteresis. This means
the input-output pair for the x direction is:

ξi[k] = (x[k],dx[k]) and ξo[k] = ∆Lx[k] (4.16)

and for the y direction is:

ξi[k] = (y[k],dy[k]) and ξo[k] = ∆Ly[k]. (4.17)

The data set used for training and validation was the same used on all
other approaches. The learned models can be seen on figures 4.5 and 4.6.

The models were obtained by using the Extreme Learning Machine algo-
rithm, since the relations between the X and Y positions of the endoscope and
their respective cable displacement are non-invertible.

In order to generate the joint trajectory, the following steps should be fol-
lowed :

• Generate the desired trajectory in the task space 0P ∗ = (x∗, y∗);

• Use the learned models to compute the joint positions :

1. ∆L∗x = f −1(x∗);

2. ∆L∗y = g−1(y∗).

By comparing the steps from this approach with the one illustrated at fig-
ure 3.24, it is possible to see reduction in the amount of steps for both the
training phase and the use phase. However, the effort required in the kine-
matic analysis layer in order to simplify the modeling the models is much
greater.
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Figure 4.5: Learned model f −1 linking the displacement on X and the cable
displacement ∆Lx.
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Figure 4.6: Learned model f −1 linking the displacement on Y and the cable
displacement ∆Ly .

Results

The proposed approach has been assessed by performing trajectories defined
on the XY-plane. The displacement on the X-direction was from −68mm to
72mm, while on the y-direction it was from −40mm to 50mm. The trajectory
has a complex shape with several changes in direction both on the X and Y
direction in order to evaluate the hysteresis compensation. A total of 268
points compose this trajectory.
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Figure 4.7: 2D trajectory performed by the flexible endoscope under the hy-
pothesis of small bending angles.

For this trajectory, the RMS error was 3.59mm, with a variance of 3.25mm2.
These errors are larger than the ones obtained with the approach presented at
section 4.4.2, but are still a huge improvement compared to both the Inverse
Kinematic Model and the approach from [Xu et al., 2017a]. On the other hand
these models are very simple to implement and train, since there is no need
to estimate the bending angle during training nor during use. It is also worth
noting that these results could be improved by constraining the amplitude of
the movement of the endoscope - this way, the coupling between the joints is
further reduced and the modeling errors can be further attenuated.

Layer Content of the modeling layer

1 - Hypothesis
Small bending angles;
No coupling between the joints;
Cable transmission subjected to non-linearities.

2 - Cartesian space P = (x,y)

4 - Kinematic analysis
x = f (∆Lx);
y = g(∆Ly).

6 - Machine learning
The inverse relation f −1 : x→ ∆Lx from x to ∆Lx;
The inverse relation g−1 : y→ ∆Ly from y to ∆Ly .

Table 4.3: Summary of modeling layers used for approach III on the flexible
endoscope.
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4.5 Application to flexible surgical tools

The approach presented at the section 3.2 and an adaptation of the approach
used by [Xu et al., 2017a] will be presented in this section.

4.5.1 Approach I - No hypothesis on curvature

This is carefully explained on chapter 3.2. By using the extension framework
presented on this chapter, it is possible to further show the similarities and
divergences with the approach applied to flexible endoscopes (see section 3.3).

Hypothesis:

The main assumption is that there is no coupling between the translation,
rotation and bending joint on the instrument. This is important in order to
perform a partial decoupling of the configuration space that will be done later
on.

Similarly to the other modeling approaches, non-linearities are introduced
by the antagonistic cable transmission. A hysteretic behavior is expected be-
tween the joint space and the configuration space.

Task definition:

We are interested in doing a 3D positioning of the tool with respect to the
channel frame. This means that the pose will be defined as :

P = (x,y,z).

Parameterized space:

The cylindrical parameterization will be used in order to partly decouple the
task space. Considering the workspace of this tool is a shaped as a cylinder,
this parameterization allows to better visualize the influence of each joint on
the task space. The task space is then defined as :

Pcyl = (ρ,θ,d) = (
√
x2 + y2,arctan2(y,x), z).

Kinematic analysis:

In order to analyze the effects of each joint on the task space, let us take a look
at figure 3.2. This figure best illustrates the movement of the tool with respect
to the channel frame.

By actuating the bending joint, two effects can be seen - a change in the
distance from the origin ρ and a change on the depth of the tool d. The ro-
tation and translation joints only have one effect each - on the angle θ and
on the depth d respectively. By taking these effects into account, the Jacobian
between the task space and the actuation space is :
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J =



∂ρ

∂qbend

∂ρ

∂qrot

∂ρ

∂qtrans
∂θ

∂qbend

∂θ
∂qrot

∂θ
∂qtrans

∂d
∂qbend

∂d
∂qrot

∂d
∂qtrans


=



∂ρ

∂qbend
0 0

0
∂θ
∂qrot

0

∂d
∂qbend

0
∂d

∂qtrans


(4.18)

which would normally imply that 3 functions are required to reconstruct the
3D position of the tool, them being :

1. θ = f (qrot);
2. ρ = g(qbend);
3. d = k(qrot ,qtrans).

Although correct in its format, the relation k may require far more re-
sources than the other relations given the dimension of its input space. To
solve this issue, a slightly different parameterization of the task space is then
proposed.

The distance to the origin ρ and the rotation angle θ are kept unchanged.
The depth, however, will be described as a combination of two different vari-
ables - the translation of the tool t and the difference in depth during bending
∆d, as shown in figure 3.2 and specified in section 2.4. The translation can
only be affected by the translation tool, while the difference in depth is only
modified during bending. This means that the Jacobian between the modified
task space and the actuation space is :

J =



∂ρ

∂qbend

∂ρ

∂qrot

∂ρ

∂qtrans
∂θ

∂qbend

∂θ
∂qrot

∂θ
∂qtrans

∂t
∂qbend

∂t
∂qrot

∂t
∂qtrans

∂∆d
∂qbend

∂∆d
∂qrot

∂∆d
∂qtrans


=



∂ρ

∂qbend
0 0

0
∂θ
∂qrot

0

0 0
∂t

∂qtrans
∂∆d
∂qbend

0 0


(4.19)

which implies the learning of 4 independent functions :

1. θ = f (qrot);
2. ρ = g(qbend);
3. ∆d = h(qbend);
4. t = k(qtrans).

Kinematic modeling:

The knowledge of the actual shape of the surgical tool is not necessary for this
approach. This layer can then be skipped.
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Machine learning:

The 4 functions specified on 3.2.1 need to be learned. The searched functions
are :

• The inverse relation f −1 : θ→ qrot from θ to qrot ;
• The inverse relation g−1 : ρ→ qbend from ρ to qbend ;
• The direct relation h : qbend → ∆d from qbend to ∆d;
• The inverse relation k−1 : y→ qtrans from d to qtrans.

The reason why the relation h is direct rather than inverse (in contrast to
the other three relations) comes from the objective of the model itself. Con-
sidering the bending joint is the only one capable of changing the distance to
the origin ρ, the change in depth during bending can be seen as a noise that
needs compensation. This compensation can only be performed by the trans-
lation joint because it is the only other one capable of changing the depth of
the tool.

The details on the training of these models and the results of their use are
specified in section 3.2.

Discussion

This modeling approach is a great example of a translucent box approach.
Even though some analysis had to be done in order to comprehend the ef-
fects of each joint on the task space, it is not necessary to go further into the
geometric modeling. This approach presents a good trade-off between the hy-
potheses in which it is subjected and the simplicity of the models that need to
be learned.

4.5.2 Approach II - Direct link between the task space and
actuator space

A much more opaque approach, leaning towards a black box approach, can be
applied to the surgical tools by adapting [Xu et al., 2017a]. Similarly to what
has been shown in section 4.4.1, a direct link will be done to the machine
learning layer without any consideration about the shape or the way the tool
moves.

Hypothesis:

The only hypothesis required to apply the method from [Xu et al., 2017a] is
that each point inside its workspace can be reached by a single actuation.

Task definition:

As an adaptation, we just applied this method to perform a 2D positioning
task using the bending and the translation joint. The rotation joint will not be
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Layer Content of the modeling layer

1 - Hypothesis
No coupling between the joints;
Cable transmission subjected to non-linearities.

2 - Cartesian space P = (x,y,z)

3 - Parameterization
Cylindrical parameterization:
ρ =

√
x2 + y2

θ = atan2(y,x)
d = z

4 - Kinematic analysis

θ = f (qrot);
ρ = g(qbend);
∆d = h(qbend);
t = k(qtrans).

6 - Machine learning
The inverse relation f −1 : θ→ qrot from θ to qrot
The inverse relation g−1 : ρ→ qbend from ρ to qbend
The direct relation h : qbend → ∆d from qbend to ∆d
The inverse relation k−1 : d→ qtrans from d to qtrans.

Table 4.4: Summary of modeling layers used for approach I on the surgical
tools.

taken into account in this modeling. The pose of the end effector is then :

P = (x,y).

Parameterized space:

There is no need to parameterize the task space in this particular approach.
This layer can be completely skipped.

Kinematic analysis:

Since a direct mapping from the task space and actuator space is sought, no
further analysis is required. The Jacobian between the task space and the
actuator space is :

J =


∂x

∂qbend

∂x
∂qtrans

∂y

∂qbend

∂y

∂qtrans

 . (4.20)

Similarly to the approach presented at section 4.4.1, two functions could
be defined :

1. x = f (qbend ,qtrans);
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2. y = g(qbend ,qtrans).

These functions can be assembled in a single one since the influences are the
same. Then :

(x,y) = f (qbend ,qtrans).

Kinematic modeling:

The geometry of the instrument is not important for this approach. This layer
can be completely skipped.

Machine learning:

Only one function needs to be learned, being :

• The inverse relation f −1 : (x,y)→ (qbend ,qtrans) from (x,y) to (qbend ,qtrans).

The results of using said model have been shown in 3.2.

Layer Content of the modeling layer

1 - Hypothesis
Each cartesian position can be reached by a single
actuation coordinate;

2 - Cartesian space P = (x,y)

6 - Machine learning
The inverse relation
f −1 : (x,y)→ (qbend ,qtrans) from (x,y) to (qbend ,qtrans)

Table 4.5: Summary of modeling layers used for approach II on the surgical
tools.

4.6 Conclusion

In this chapter, a framework for mixing machine learning with kinematic
modeling has been presented. This framework allows the incorporation of
learning-based algorithms in different stages of modeling to obtain hybrid
models. The complexity of the model, the amount of data required for train-
ing as well as the precision is highly dependent on the transparency of the
modeling approach.

This framework has been applied on the systems available in the context
of this thesis - flexible endoscopes and flexible surgical tools - with different
choices of layers to illustrate their effect on the final model. Even though it
has only been shown for these two systems that are relatively similar (tendon-
driven serial robots with continuous joints), it is not limited to this category
of system. This framework can be easily applied to serial robots with dis-
crete joints as well as parallel robots. For example, the SPIRITS robot [Pfeil
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et al., 2018] developed in ICube for needle insertions in interventional radi-
ology would be a good candidate for trying this approach, considering the
non-linearities introduced by its actuation.

From our experiments, some effects have been observed depending on the
amount of layers chosen for the modeling. Opaque approaches, notably the
one from sections 4.4.1 and 4.5.2, are prone to requiring a lot of data for train-
ing. This is expected, since no effort to decouple the effects of the joints on the
task space is made. In order to generalize well, the training data must cover
the whole workspace of the robot, multiple times depending on the inputs.
For example, if the displacement speed must be taken into account, every
point of the workspace should be reached with a different speed to properly
train the models. The amount of data required increases exponentially with
the amount of DoFs and additional features used for learning. It may also fall
short in terms of performance if the hypotheses are not well chosen. The main
advantage of this kind of approach is that it may take into account unspecified
non-linearities.

Translucent approaches show the best trade-off between precision of the
model and training effort. They usually require more assumptions than com-
pletely opaque approaches, but less than completely transparent ones. The
models are much simpler than direct links from the task space to the actu-
ation space and yet may take into account unspecified physical phenomena.
It is the case of approaches of sections 4.4.3 and 4.5.1. Unfortunately, some
systems may not be suitable for this kind of approach when there is strong
coupling between the effects of joints on the parameters of the task space. For
strongly coupled systems, to maintain efficiency on the training phase, it is
generally required to go one step further into transparent approaches.

The approach of section 4.4.2 falls under the clear box category. All the
modeling layers are used in order to decouple the influence of the actuation
space into the configuration space. This approach is the closest to classic kine-
matic modeling, with the machine learning layer being introduced as a last
step. The models to be learned are normally the simplest ones, but are subject
to several assumptions. The main risk of using transparent approaches is the
introduction of modeling errors that cannot be compensated by the learning
algorithms. However, it can always be applied to any system in which the
classic kinematic model is known - the mapping between the actuators and
the joints is done with data-driven techniques, represented by the machine-
learning layer.





Chapter 5

Conclusion

Flexible instruments and endoscopes are key tools for the surgery of the com-
ing years, both in digestive surgery and in endovascular and cardiac surgery.
Both domains share the same need for long slender instruments with the capa-
bility to navigate in a tortuous environment while limiting interactions. Both
of them also have the need for dexterity for performing fine and precise sur-
gical motions. In endoluminal surgery, the feedback provided to the surgeon
is generally an endoscopic camera mounted at the distal tip of the endoscope.
The large diameter of the lumen allows using several such instruments, with
the general goal to realize bimanual operations.

Distal degrees of freedom are usually provided by cable-driven bending
sections, with one or two bending planes, i.e. one or two degrees of freedom.
These distal actions are combined with global displacements, namely transla-
tion and rotation of the shaft of the instrument to provide multiple degrees of
freedom. However, the combination of flexibility and dexterity comes at the
price of complex motion transmission from the proximal side outside of the
patient to the distal side at the operation site. Cables are subject to friction,
loss of tension, change of shape and path. This, combined with imperfections
on the distal bending structure made of individual vertebrae or from a com-
pliant skeleton, make the behavior of these instruments very complex. This
is especially critical for robotized instruments because telemanipulation us-
ing intuitive interfaces make the impact of these non-linearities even more
prevalent [Allemann et al., 2009] [De Donno et al., 2013]. Moreover, robotic
instruments can be used to perform automatic motions and augment users
capabilities. For such tasks, either an automatic closed control-loop or good
models for open-loop control are required.

In this document, we have proposed an approach which consists in com-
bining models and machine learning techniques to develop quasi-static mod-
els of flexible instruments. The rationale of this technique is that physical
models cannot be easily identified in real practice given the large amount of
variables needed and sensors required. Moreover, it has been shown that the
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behavior of the flexible cable-driven instruments varies over time after use.
This justifies to rely on data acquired on the system itself before actual use,
which can be considered as more reliable than general models. However, for
taking into account hysteresis effects which are prevalent in cable driven de-
grees of freedom, pure data-driven approaches would require a very large
number of data and render them intractable for medical instruments. There-
fore, we suggest to combine models and machine learning.

The general idea is to use the parts of the model that can be considered as
reliable despite non-linear behaviors, in order to construct parts of the com-
plete model, typically between the configuration space and the task space.
Another feature is to rely on the knowledge of the system general working to
decouple as much as possible the relations between the task space and more
accessible spaces such as the actuation space or the configuration space. By
doing so, learning from data can be performed in low-dimensional spaces,
hence saving time and need of data. This approach was originally developed
for flexible instruments with a single bending plane and then extended to
two bending planes endoscopes. The capabilities of prediction of the obtained
models have been tested in laboratory experiments, and the models have been
used in open-loop control modes for both 2D tasks and 3D tasks. For 2D tasks,
the accuracy has been shown to be very good (0.6 mm RMS error with maxi-
mum error of 1.7mm). These values are in the range of expected accuracy of
surgeons, typically assessed at 1mm. They are largely improved with respect
to state-of-the-art methods.

For 3D tasks, which involve the combination of 3 DoFs for the single bend-
ing plane instruments, qualitative and quantitative improvements have been
observed, but the accuracy is less satisfactory than for 2D tasks. It can be
argued that it is insufficient for a surgical task. However, it is at the same
level of accuracy that was obtained for estimating the position of the same in-
strument using the feedback provided by the endoscopic camera. In the one
hand, this means that an approach with a 3D feedback would not improve
over this open-loop control. On the other hand the proposed approach also
allows to have a fast response, not limited by the framerate of the endoscopic
camera. Image-based control such as visual servoing could probably improve
the accuracy parallel to the imaging plane but probably not in the depth di-
rection. This speaks in favor of methods combining open-loop control and
visual feedback.

Inspired by the work on the one bending plane instruments and the two
bending planes endoscopes, a more general framework has been proposed
for combining models and data-driven methods for modeling robotic sys-
tems. The key point is that learning directly from the actuation space to the
task space is often intractable, while obtaining complete models is very chal-
lenging. This framework is especially interesting for systems with actuation
means running over long distances (cables, super elastic tubes), for which ac-
curate models are difficult to obtain. We have shown on the instruments and
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endoscopes available on the STRAS robot how the combination can be han-
dled differently depending on the available hypotheses on the system working
and on the workspace to cover.

Models obtained from learning methods based on acquired data can only
generalize well in conditions close to the ones of the training step. In labo-
ratory experiments, the testing conditions were similar to the training con-
ditions. In order to assess how the proposed approaches can be used prac-
tically, the proposed approach for modeling and open-loop control has also
been tested in an in vivo experiment. The model of one of the instruments
(the electrical hook in the right channel) has been obtained as developed in
section 3.2 and 4.5.1. The training dataset has been obtained using the exter-
nal stereoscopic system in the laboratory (see figure 2.11), prior to the pro-
cedure. In these in vivo experiments, the STRAS robotic system was mainly
used for testing a new instrument specially developed in the lab, a steerable
OCT catheter [Mora et al., 2019]. During the procedure, several elliptic trajec-
tories were performed, similar to the ones used for testing in the laboratory
experiments. In the in vivo environment, it was not possible to obtain the
ground truth using external cameras. Endoscopic images where therefore ac-
quired and processed off-line after the procedure. The trajectory was defined
as an ellipse requiring motions in bending, rotation and translation. The de-
sired trajectory was expressed in the endoscopic camera frame, by registering
the frame of the instrument with the frame of the endoscopic camera. Figure
5.1 shows the qualitative results of this experiment.

We do not provide quantitative results as the 3D position of the instru-
ment could not be measured. One can observe that the path performed with
the proposed approach is much closer to the desired path than the one ob-
tained with the standard geometrical model. Moreover, it seems qualitatively
good, and well repeatable, with a good superimposition of two ellipses. This
experiment confirms the laboratory results and in addition it allows to quali-
tatively validate that the model obtained beforehand and off-line can be used
for open-loop control even after a normal medical manipulation of the endo-
scope - insertion and navigation of the endoscope, insertion of the instrument
in the channel and its telemanipulation.

Despite these promising preliminary results in vivo, in case of strong de-
formations of the endoscopic guide, it might be necessary to realize the iden-
tification process in situ, after reaching the operating area. In this case, ex-
ternal cameras cannot be used anymore, and the endoscopic camera becomes
the only readily available sensor. The proposed approach requires 3D metric
measurements of the tip of the instrument in order to reconstruct the distal
parameters used for learning. This is of course more difficult to obtain with
the embedded camera only. However, a recent work carried out in the team
has shown that it is possible on a laboratory setup [Poignonec et al., 2020].

All the experiments have been realized in free space, without contact with
the tissues. The proposed approach mainly aims for non-contact tasks such
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Figure 5.1: Trajectories performed in vivo using the proposed approach and
the classic inverse kinematic model.

as optical scanning or laser treatments. In case of strong interactions with tis-
sues, it is known that the endoscopic instruments deform, which will impact
the accuracy of the models based on data acquired without contact. Modeling
the effect of interactions is a very complex problem, requiring the knowledge
of the physical characteristics of both the instrument and the tissues. Data-
driven approaches are not well-suited to handle these cases, as the deforma-
tion or displacement created by interactions are dependent on the type and di-
rection of contacts. Measurement of deformations usually rely on embedded
sensors [Ahn and Kim, 2010] possibly combined with proximal force mea-
surement [Ottensmeyer and Salisbury, 2001]. Even state-of-the-art methods
based on finite-elements models applied to catheters do not allow to predict
accurately [Kaladji et al., 2013]. In the case of contact, we envision the use of
our models in combination with in situ feedback (typically endoscopic cam-
era) to estimate the discrepancy between positions predicted by the models
and the measurements.

Since the beginning of this thesis, other works using machine learning and
kinematic knowledge for controlling surgical instruments have been devel-
oped. The works from [Baek et al., 2020] combine kinematic-based joint angle
estimation with image-based joint angle estimation by the means of a Kalman
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Filter. Both estimation methods rely on neural networks for predicting the
configuration of the instrument. The method was used for instruments with
distal discrete joints, whose configuration is probably better estimated from
proximal measurements that flexible bending instruments.

Another approach combining analytical and data-driven approaches for
modelling the kinematics of robots is the approach from [Cursi et al., 2020].
On this work, the authors use Gaussian Process Regression combined with
kinematics to obtain the forward kinematic model of the Micro-IGES robot.One
of the main differences of this approach compared to the one presented at sec-
tion 3.3 is the use of the predicted covariance provided by the GPR, which is
not used with our method.

The appearance of similar methods further validates the proposed ap-
proaches and the need to improve the efficiency of learning-based algorithms.
These hybrid techniques, although recent and few in sheer number, show a
new trend in the control of flexible medical devices.
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Objectifs

L’amélioration du ressenti des chirurgiens est un objectif important pour
faciliter les procédures chirurgicales difficiles. Le développement de modes
automatiques ou semi-automatiques dans les systèmes médicaux téléopérés
est également un objectif envisageable. Ces modes peuvent soulager l’utilisa-
teur de tâches difficiles et réduire la charge cognitive lors de longues procé-
dures. Ces deux objectifs exigent de résoudre les problèmes de non-linéarité
dans les systèmes flexibles à câble. C’est le but principal de cette thèse de doc-
torat. D’un point de vue robotique, trois approches principales peuvent être
envisagées :

1. Supprimer ou limiter les non-linéarités en modifiant la conception mé-
canique des instruments ;

2. Modéliser les non-linéarités afin de les prendre en compte dans la com-
mande en boucle ouverte ;

3. Utiliser la commande en boucle fermée en s’appuyant sur des informa-
tions distales pour éliminer les effets des non-linéarités.

Dans ce travail, nous essayons d’aborder le problème de l’identification
quasi-statique du comportement des systèmes robotiques endoscopiques à
partir des données acquises sur le système. L’utilisation de données pour la
modélisation est aujourd’hui appelée "approches guidées par les données"
"techniques d’apprentissage automatique" ou même "machine learning". Si-
multanément, nous souhaitons réduire le temps nécessaire à la construction
des ensembles de données, avec l’idée que ces identifications, ou du moins
des mises à jour, seront nécessaires avant chaque utilisation de l’instrument.
Dans le contexte médical, les opérations d’identification doivent être aussi

4
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rapides que possible. Nous proposons donc de combiner une modélisation
géométrique basée sur des modèles simples avec des modèles basés sur des
données obtenues à partir d’ensembles de données d’acquisition limités. Cette
idée initiale nous a conduit à élaborer un cadre plus général avec des lignes di-
rectrices sur la manière dont les connaissances géométriques de base peuvent
être avantageusement combinées avec l’apprentissage automatique pour dé-
velopper des modèles plus précis à un coût d’acquisition de données réduit.
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tion (ICRA) Workshop–Open Challenges and State-of-the-Art in Control System
Design and Technology Development for Surgical Robotic Systems

Porto, R. A., Nageotte, F., Zanne, P., and de Mathelin, M. (2019b). Combi-
ning machine learning and kinematic analysis to control medical cable-driven
flexible instruments. In Joint Workshop on Computer/Robot Assisted Surgery
(CRAS)
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Porto, R. A., Nageotte, F., Zanne, P., and de Mathelin, M. (2019c). Mo-
deling the non-linearities of flexible endoscopes using machine learning. In
Proceedings of Surgetica’2019





Chapitre 1

Compensation des non-linéarités :
en combinant apprentissage
automatique et analyse
géométrique

Contents

1.1 Outils chirurgicaux flexibles . . . . . . . . . . . . . . . . . . . . 7

1.2 Endoscope flexible . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Outils chirurgicaux flexibles

L’objectif considéré ici est de contrôler la position cartésienne du bout des
instruments dans le repère du canal Fch. La position de référence de l’instru-
ment dans ce cadre sera notée chP ∗ = (x∗, y∗, z∗)T .

La méthode globale peut être brièvement décrite comme suit (voir égale-
ment la figure 1.2) :

Avant utilisation :

— Apprendre les relations entre les positions des moteurs et les paramètres
distaux en utilisant un capteur externe. À savoir :

1. La relation inverse f −1 : θ→ qrot de θ à qrot
2. La relation inverse g−1 : ρ→ qbend de ρ à qbend
3. La relation directe h : qbend → ∆d de qbend à ∆d

4. La relation inverse k−1 : t→ qtrans de t à qtrans.

7
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y
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y∗

φ = θ∗
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β

Lf

Ld

Fch

Fch

t

D
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Figure 1.1 – L’instrument chirurgical actionné par câble passant par le canal
gauche de l’endoscope. En haut : vue de dessus, en bas : vue de face. La figure
montre le repère du canal gauche, les degrés de liberté de l’instrument, les
variables de configuration et les paramètres de construction importants [Porto
et al., 2019d].

En raison de l’hystérésis, ces relations ne sont généralement pas des
fonctions. Par conséquent, d’autres variables doivent être prises en compte
afin de décrire les branches de l’hystérésis.

Au moment de l’utilisation :

— A partir d’une position souhaitée chP ∗ exprimer l’orientation souhaitée
θ∗, le rayon souhaité ρ∗ et la profondeur souhaitée d∗.

— Utiliser les modèles appris pour calculer les positions des articulations :

1. q∗rot = f −1(θ∗)

2. q∗bend = g−1(ρ∗)

3. q∗trans = k−1(d∗ + h(q∗bend)).

— Appliquer les positions articulaires souhaitées au système robotique.

On peut noter qu’aucun capteur ne doit être utilisé pendant cette étape.
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Train f −1(φ)

Train g−1(ρ)

Train h(qbend )

Train k−1(d)
Express the

trajectory using the
distal parameters

Compute q∗rot = f −1(θ∗)

Compute
q∗bend = g−1(ρ∗)

Compute q∗trans =
k−1(d∗ + h(q∗bend ))

Apply joint
trajectory to
the motors

Before use

At use time

Generate training dataset Express data on channel
frame

Express data using
the distal parameters

Generate desired
trajectory

Figure 1.2 – Organigramme de l’approche proposée [Porto et al., 2019d].

1.1.1 entraînement des modèles

Un total de 700 points est utilisé pour entrainer tous les modèles (voir fi-
gure 1.3). La quantité de données nécessaires a été déterminée en analysant les
courbes d’apprentissage de chaque modèle. Cette procédure permet de choi-
sir correctement M pour éviter le sur-apprentissage (overfitting), et permet de
limiter le nombre de points utilisés pour l’entraînement.

1.1.2 Résultats expérimentaux

Pour évaluer l’approche proposée, nous avons testé le comportement ob-
tenu pour un instrument du robot STRAS pour des trajectoires 2D et 3D et
nous l’avons comparé avec différentes techniques de commande.

Étant donnée une position souhaitée dans l’espace de travail, les modèles
formés sont utilisés comme décrit précédemment pour calculer les consignes
des positions des actionneurs. La précision est évaluée par un système de me-
sure externe le même que celui utilisé dans l’étape d’entraînement. Les tra-
jectoires choisies sont des ellipses, qui imitent les contours typiques des lé-
sions à disséquer lors des procédures de dissection endoscopique de la sous-
muqueuse (ESD pour endoscopic submucosal dissection) dans le tube digestif
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Figure 1.3 – Ensemble de données d’entraînement exprimé dans le repère
canal.

[Zorn et al., 2017]. Elles sont exécutées point par point pour évaluer la préci-
sion statique.

1.1.3 Trajectoire 3D

Dans la figure 1.4, la trajectoire souhaitée est une ellipse avec un grand
axe de 18 mm, un petit axe de 17,2 mm, incliné de 24 degrés autour de l’axe
X, ce qui nécessite l’utilisation des 3 degrés de liberté. Le tableau 1.1 donne
les statistiques de l’erreur.

Table 1.1 – Statique de l’erreur concernant la trajectoire 3D

Statistique Direction

X Y Z 3D

RMS (mm) 1.0339 1.0370 1.5793 2.1537
Variance (mm2) 0.8276 0.4907 2.4225 1.1023
Max (mm) 2.4274 2.0245 4.4336 6.0239

1.1.4 Discussion

Les expériences menées dans le cas 2D montrent que l’approche que nous
proposons est plus performante que celle de [Xu et al., 2017] pour la précision
du positionnement, tout en utilisant un ensemble de données d’entraînement
plus petit. La précision obtenue permettrait l’exécution correcte de la dissec-
tion automatique dans le plan de flexion de l’instrument.
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Figure 1.4 – Trajectoire 3D effectuée dans l’espace des tâches.

L’expérience dans le cas 3D présente des erreurs plus importantes que
dans le cas 2D. Néanmoins, l’erreur RMS et les erreurs maximales ont été
réduites respectivement de 4 et 3 fois par rapport au modèle géométrique in-
verse classique.

1.1.5 Résumé

Les principales contributions de l’approche proposée sont les suivantes :

— La combinaison de connaissances cinématiques avec l’apprentissage per-
met la simplification de la structure des modèles formés par rapport à
une approche boîte noire [Xu et al., 2017].

— Cela permet de réduire considérablement la quantité de données re-
quises. Au total, 700 points ont été nécessaires pour former tous les mo-
dèles, alors que 20 000 points ont été utilisés dans [Xu et al., 2017]. Cette
réduction rend l’approche plus adaptée aux applications médicales, en
particulier pour les instruments à usage unique, puisque l’acquisition
est nettement plus rapide.

— Elle permet de prendre en compte les effets de l’hystérésis à un coût
très faible. Même s’il serait possible d’ajouter la direction de déplace-
ment à l’espace d’entrée sur l’approche proposée dans [Xu et al., 2017],
cela augmenterait aussi considérablement la complexité du modèle et la
quantité de données nécessaires pour bien généraliser. Chaque point de
l’espace de travail devrait être atteint à partir de 8 directions différentes
dans l’ensemble d’entraînement, correspondant à toutes les combinai-
sons de directions pour chaque axe.
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L’objectif considéré ici est de contrôler la position cartésienne du bout de
l’endoscope flexible dans le repère de base F0, qui décrit l’espace de travail
de l’endoscope. La position de référence de l’instrument dans ce repère sera
notée 0P ∗ = (x∗, y∗)T . Seules deux coordonnées sont prises en compte car il n’y
a que deux degrés de liberté qui peuvent être contrôlés.

Figure 1.5 – Illustration d’un endoscope flexible et de ses paramètres de
construction [Porto et al., 2019a].

1.2.1 Justification de la méthode - adaptation aux endoscopes
flexibles

En utilisant βx et βy comme paramètres distaux, un lien découplé peut être
trouvé entre l’espace de configuration et l’espace d’actionnement. L’intérêt de
l’utilisation de l’apprentissage automatique est de remplacer la relation entre
les déplacements des câbles et les angles de flexion par une relation obtenue
à partir de l’observation du comportement réel de la transmission mécanique.
La méthode globale peut être brièvement décrite comme suit (voir également
la figure 1.6) :

Avant utilisation :
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— Apprendre les relations entre les positions des moteurs et les paramètres
distaux en utilisant un capteur externe. À savoir :

1. La relation inverse p−1 : βx→ ∆Lx de βx à ∆Lx
2. La relation inverse r−1 : βy → ∆Ly de βy à ∆Ly

De la même manière qu’auparavant, ces relations ne sont généralement
pas des fonctions. La direction du déplacement sera également prise en
compte pour décrire avec précision le comportement de l’hystérésis.

Au moment de l’utilisation :

— A partir d’une position souhaitée 0P ∗ exprimer les angles de flexion sou-
haités β∗x et β∗y .

— Utiliser les modèles appris pour calculer les positions articulaires :

1. ∆L∗x = p−1(β∗x)

2. ∆L∗y = r−1(β∗y).

— Appliquer les positions articulaires souhaitées au système robotique.

Before use

Generate training dataset

At use time

Express data on
base frame 

Express data
using the distal

parameters

Train p-1(βx)

Train r-1(βy)

Compute ΔLx = p-1(β*
x)

Generate desired
trajectory

Express the 
trajectory

using the distal
parameters

Compute ΔLy = r-1(β*
y)

Apply joint
trajectory

to the
motors

Figure 1.6 – Organigramme de l’approche proposée appliquée aux endo-
scopes flexibles.
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1.2.2 Entrainement des modèles

Un total de 500 points est utilisé pour entrainer l’ensemble des deux mo-
dèles, 250 pour chaque articulation (voir figure 1.3). La quantité de don-
nées nécessaires a été déterminée en analysant les courbes d’apprentissage
de chaque modèle une fois les autres hyperparamètres réglés, comme cela a
été fait avec les outils chirurgicaux.

Pour générer l’ensemble d’apprentissage, nous créons une trajectoire pour
∆Lx sous la forme d’une onde triangulaire, variant de -5mm à 5mm avec 50
échantillons pour la pente (pas de 0,2mm de déplacement du câble) avec ∆Ly
fixé à zéro. La même trajectoire est ensuite appliquée à ∆Ly , avec ∆Lx fixé à
zéro.
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0-50 -50-100 -100
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Figure 1.7 – Ensemble de données d’entrainement exprimé dans le repère de
base.

1.2.3 Résultats expérimentaux

La trajectoire à réaliser ressemble à un symbole infini dans le plan XY. Le
déplacement le long de la direction X varie de -68mm à 92mm, tandis que
le déplacement selon Y varie de -58mm à 58mm. Le tableau 1.2 présente un
résumé des résultats obtenus lors de l’exécution de la trajectoire décrite.

L’erreur RMS obtenue en utilisant notre approche proposée était de 4,4
mm, ce qui est une grande amélioration par rapport aux 18,3 mm atteints par
le modèle géométrique conventionnel. La trajectoire exécutée peut être vue
sur la figure 1.8.
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Figure 1.8 – Trajectoire 2D effectuée par l’endoscope flexible selon l’approche
proposée.

Table 1.2 – Statistiques des erreurs pour les trajectoires 2D pour différentes
méthodes de commande de position

Statistiques notre méthode IKM [Xu et al., 2017]

X Y 2D X Y 2D X Y 2D

RMS (mm) 2.9 3.3 4.4 4.0 17.8 18.3 5.3 10.5 11.8

Var. (mm2) 0.19 0.03 0.11 39.88 4.19 8.37 49.10 6.67 11.57

Max (mm) 5.7 8.6 8.9 7.8 28.3 28.8 14.5 19.8 20.2

1.2.4 Discussion

L’approche proposée est capable de compenser largement les non-linéarités
introduites par la transmission par câble dans les endoscopes flexibles, comme
le montrent les expériences. Un gain de précision de plus de 4 fois a été obtenu
par rapport à la modélisation cinématique classique en intégrant une procé-
dure d’apprentissage simple. Une réduction de la durée de la phase d’entrai-
nement a également été obtenue par rapport à d’autres approches de l’état de
l’art.





Chapitre 2

Approche multicouche pour la
modélisation cinématique des
systèmes complexes

Contents
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2.1 Principes de la méthode

L’idée principale de cette méthode est basée sur l’utilisation de couches
de modélisation. L’utilisation d’un nombre réduit de couches indique une ap-
proche de modélisation opaque, tandis que l’utilisation de nombreuses couches
permet de détailler les particularités du système étudié et permet de créer une
approche transparente. Une illustration de la méthode est présentée en figure
2.1.

2.1.1 Modélisation des couches

Au total, 6 couches ont été identifiées afin de généraliser la combinaison
des techniques d’apprentissage automatique avec la modélisation classique.
Toutes les couches ne sont pas obligatoires et elles seront expliquées dans la
suite.

1. Hypothèse : Cette couche détermine la validité globale du modèle et des
hypothèses formulées ;

17
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2. Définition de la tâche : Cette couche est celle dans laquelle la tâche à
effectuer par le robot est définie (positionnement 2D, 3D, orientation
...) ;

3. Espace paramétré : En fonction de l’architecture du robot, il est possible
de trouver un paramétrage plus adapté à la spécification de la tâche.
Cependant, ce paramétrage peut ne pas être apparent ou le paramétrage
cartésien peut déjà être optimal ;

4. Analyse cinématique : Les impacts entre la configuration et l’espace de
travail sont mis en évidence sans tenir compte de la géométrie réelle du
robot ;

5. Modélisation cinématique : Les relations géométriques entre les espaces
de configuration et de tâche sont déterminées ;

6. Apprentissage automatique : Cette étape permet de déterminer la cor-
respondance entre l’espace concerné - qu’il s’agisse de l’espace de tâche
ou de l’espace de configuration - et l’espace d’actionnement.

Pour illustrer les couches présentées précédemment et la manière dont ces
couches peuvent être utilisées de manière pratique, nous avons appliqué l’ap-
proche multicouche à plusieurs systèmes. Les résultats expérimentaux sont
mentionnés pour les systèmes endoscopiques disponibles au laboratoire, mais
d’autres systèmes sont également abordés pour illustrer l’applicabilité de la
technique.

2.2 Application aux endoscopes flexibles à deux plans de
flexion

Dans cette section, nous allons réécrire l’approche utilisée par [Xu et al.,
2017] et une nouvelle approche de modélisation en utilisant le formalisme
décrit précédemment.

2.2.1 Approche I - Lien direct entre l’espace de tâche et l’espace
d’actionnement

Comme indiqué précédemment, cette approche a été suggérée dans [Xu
et al., 2017]. Une adaptation a été faite afin de la présenter avec le formalisme
à plusieurs couches (voir tableau ??).

Comme indiqué précédemment, ce modèle ne se généralise pas bien, prin-
cipalement en raison de l’hypothèse formulée. Au lieu de modéliser les branches
d’hystérésis, cette approche se termine par un modèle "moyen" qui n’est pas
précis et qui nécessite une quantité relativement importante de données pour
s’entraîner.

La précision peut être améliorée par une modification de l’hypothèse. La
prise en compte de la boucle d’hystérésis peut être faite de manière simple,
mais elle nécessitera davantage de données pour avoir une bonne générali-
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Couche Contenu de la couche de modélisation

1 - Hypothèse
Chaque position cartésienne correspond à
un couple de coordonées articulaires unique

2 - Espace cartésien P = (x,y)

6 - Apprentissage automatique
La relation inverse
f −1 : (x,y)→ (∆Lx,∆Ly) de (x,y) à (∆Lx,∆Ly) ;

Table 2.1 – Résumé des couches de modélisation utilisées pour l’approche I
sur l’endoscope flexible.

sation. Même si elle est la plus simple à mettre en œuvre, cette approche ne
permet pas un bon compromis entre précision et efficacité.

2.2.2 Approche II - Utilisation de l’hypothèse des petits angles de
flexion

L’apprentissage automatique peut être intégré de manière différente dans
la modélisation globale du même système lorsque ses mouvements sont limi-
tés par des espaces contraints . C’est en fait le cas de nombreuses applications
en endoscopie basse lors de l’utilisation de coloscopes de grand diamètre, car
les tissus du côlon limitent l’amplitude des mouvements lors de la manipula-
tion (voir le tableau ??).

Couche Contenu de la couche de modélisation

1 - Hypothèse
Angles de flexion petits ;
Pas de couplage entre les articulations ;
Transmission par câble soumise à des non-linéarités.

2 - Espace cartésien P = (x,y)

4 - Analyse cinématique
x = f (∆Lx) ;
y = g(∆Ly).

6 - Apprentissage automatique
La relation inverse f −1 : x→ ∆Lx from x to ∆Lx ;
La relation inverse g−1 : y→ ∆Ly de y à ∆Ly .

Table 2.2 – Résumé des couches de modélisation utilisées pour l’approche II
sur l’endoscope flexible.

2.3 Application aux outils chirurgicaux flexibles

L’approche présentée à la section 1.1 et une adaptation de l’approche uti-
lisée par [Xu et al., 2017] seront présentées dans cette section.
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2.3.1 Approche I - Sans hypothèse sur la courbure

Cette approche a été expliquée en détails au chapitre 1.1. En utilisant le
cadre d’extension présenté dans ce chapitre, il est possible de faire apparaître
les similitudes et les divergences avec l’approche appliquée aux endoscopes
flexibles (voir la section 1.2).

Cette approche de modélisation est un excellent exemple d’approche par
boîte translucide (voir tableau ??). Même si une analyse a dû être effectuée
afin de comprendre les effets de chaque articulation sur l’espace de travail, il
n’est pas nécessaire d’aller plus loin dans la modélisation géométrique. Cette
approche présente un bon compromis entre la fiabilité des hypothèses aux-
quelles elle est soumise et la simplicité des modèles qu’il faut apprendre.

Couche Contenu de la couche de modélisation

1 - Hypothèse
Pas de couplage entre les articulations ;
Transmission par câble soumise à des non-linéarités.

2 - Espace cartésien P = (x,y,z)

3 - Paramétrisation
Paramétrisation cylindrique :
ρ =

√
x2 + y2

θ = atan2(y,x)
d = z

4 - Analyse cinématique

θ = f (qrot) ;
ρ = g(qbend) ;
∆d = h(qbend) ;
t = k(qtrans).

6 - Apprentissage automatique
La relation inverse f −1 : θ→ qrot from θ to qrot
La relation inverse g−1 : ρ→ qbend de ρ à qbend
La relation directe h : qbend → ∆d de qbend à ∆d
La relation inverse k−1 : d→ qtrans de d à qtrans.

Table 2.3 – Résumé des couches de modélisation utilisées pour l’approche I
sur les outils chirurgicaux.

2.3.2 Approche II - Lien direct entre l’espace de tâche et l’espace
d’actionnement

Une approche beaucoup plus opaque, s’apparentant vers une approche de
type boîte noire, peut être appliquée aux outils chirurgicaux en adaptant les
données de [Xu et al., 2017]. De même que ce qui a été montré dans la section
2.2.1, un lien direct sera fait avec la couche d’apprentissage automatique sans
aucune considération sur la forme ou la façon dont l’outil se déplace (voir
tableau ??).
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Couche Contenu de la couche de modélisation

1 - Hypothèse
Chaque position cartésienne peut être atteinte par une seule
coordonnée articulaire ;

2 - Espace cartésien P = (x,y)

6 - Apprentissage automatique
La relation inverse
f −1 : (x,y)→ (qbend ,qtrans) from (x,y) to (qbend ,qtrans)

Table 2.4 – Résumé des couches de modélisation utilisées pour l’approche II
sur les outils chirurgicaux.
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*

*Although presented as a single layer 
before the task space, the hypothesis
layer may influence every other layer
described in the diagram.

Figure 2.1 – Schéma général de l’approche mettant en évidence les différentes
couches de modélisation et les espaces impliqués lors de la modélisation ciné-
matique.





Chapitre 3

Conclusion

Les instruments flexibles et les endoscopes sont des outils essentiels pour
la chirurgie des années à venir, tant en chirurgie digestive qu’en chirurgie
endovasculaire et cardiaque. Les deux domaines partagent le même besoin
de disposer d’instruments longs et fins, capables de naviguer dans un envi-
ronnement tortueux tout en limitant les interactions avec les tissus. Tous les
deux types de chirurgie ont également besoin de dextérité pour effectuer des
mouvements chirurgicaux fins et précis. En chirurgie endoluminale, le retour
d’information au chirurgien est généralement fourni à partir d’une caméra
endoscopique montée à l’extrémité distale de l’endoscope.

Dans ce document, nous avons proposé une approche qui consiste à combi-
ner des modèles et des techniques d’apprentissage automatique pour dévelop-
per des modèles quasi-statiques d’instruments flexibles. Le principe de cette
technique est que les modèles physiques ne peuvent pas être facilement iden-
tifiés dans la pratique étant donné la grande quantité de variables nécessaires
et de capteurs requis. De plus, nous avons démontré que le comportement des
instruments flexibles à câble varie dans le temps après utilisation. Cela justifie
l’utilisation des données acquises sur le système lui-même avant l’utilisation
réelle, qui sont plus fiables que les modèles classiques génériques. Par contre,
pour tenir compte des effets d’hystérésis qui sont courants dans les degrés de
liberté des instruments à câble, les approches purement guidées par les don-
nées nécessitent un très grand nombre de données et les rendent impossibles
à utiliser dans un contexte médical. C’est pourquoi nous suggérons de combi-
ner les modèles géométriques classiques et l’apprentissage automatique.

Depuis le début de cette thèse, d’autres travaux combinant l’apprentissage
automatique et la connaissance cinématique pour la commande des instru-
ments chirurgicaux ont été développés. L’apparition de méthodes similaires
valide davantage les approches proposées et la nécessité d’améliorer l’effica-
cité des algorithmes basés sur l’apprentissage. Ces techniques hybrides, bien
que récentes et peu nombreuses, montrent une nouvelle tendance dans la
commande des dispositifs médicaux flexibles.
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