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General introduction

Elastomers are the materials that are capable of undergoing large deformations
reversibly. Compared to bri�le solids, high speed crack propagation (high speed
when compared to the corresponding wave speeds) in these materials happen
at large strain levels. When a membrane made of elastomer is stretched and a
crack is introduced, the crack propagates with a speed that depends on the stretch
level. �ese types of experiments were widely performed in the literature on
the specimen in pure shear geometry. �e output of these experiments are the
crack speeds. �e crack speeds are usually correlated with the energy release rate,
which is measured using the specimen geometry and the applied stretch, using a
constitutive model. In some experiments performed like above, it was observed that
the crack speeds exceeded the shear wave speed (computed from the hyperelastic
material parameters) of the material. Such cracks are called Transonic cracks.

Linear Elastic Fracture Mechanics (LEFM) bounds the speed of the cracks from
the above by the corresponding wave speeds depending on the mode of propagation.
For the cracks that propagate in opening mode, the limiting speed is the Rayleigh
wave speed. However, for the propagation under in-plane shear loading, the cracks
were observed to propagate at speeds that exceed the shear wave speed. �e theory
of LEFM was later extended to include the description of such cracks. Also, during
the cracks propagation in this regime, shock fronts that travel along with the crack
tip were observed in the experiments. In the case of aforementioned transonic
crack propagation in elastomers, no reports of such shock-fronts in the material
exist. Instead, it is remarked in the literature that for the cracks that propagate in
this regime, the crack faces (crack opening) are wedge-shaped as opposed to being
parabolic-shaped in the subsonic regime. No speci�c mention about the shock
front in the material was made.

Some studies a�ribute the existence of Transonic cracks in elastomers to the
hyperelastic sti�ening of the material. �ey hypothesize that the hyperelastic
sti�ening increases the wave speed locally near the tip allowing the cracks to
propagate at Transonic speeds. Other studies a�ribute the observation of Transonic
cracks to the viscoelastic sti�ening of the material. To the author’s knowledge, no
study exists that evaluates the two hypotheses to conclusively determine if either
of these phenomena are responsible for the crack propagation in transonic regime.

In the experiments performed in literature on natural rubber, it was observed
that the crack speeds became independent of the specimen geometry in the tran-
sonic regime. More precisely, it was observed that when the specimen of di�erent
geometries are subjected to the same stretch level, the crack speeds do not change
from one specimen to the other when propagating in the transonic regime. When
the crack speeds are smaller, the crack speed dependence on the specimen size was
reported to be seen. Whether this observation holds for all the materials is not
clear. Also, to the author’s knowledge, no studies exist that examine the necessary
ingredients to investigate this phenomenon using the Finite element method.

�e energy partition during the fracture of elastomers is also of interest. Some
part of the energy stored in the body is dissipated by the viscoelastic e�ects of
the material and some at the tip, in the fracture process zone. However, to the
author’s knowledge, how these energies compare with each other is not known.
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Also, the viscoelastic dissipation in the bulk leads to a raise in the temperature of
the material, which in turn a�ects the viscoelastic properties of the material. �is
leads to a fully coupled thermomechanical problem.

�is thesis is divided into three parts. �e �rst part begins by introducing the
basic notions of Linear Elastic Fracture Mechanics, followed by a brief description
of the experimental and theoretical studies on elastomer fracture. �e next part
of this thesis describes the experiments performed on the pure shear samples of
polyurethane. Chapter 4 describes the experiments performed in literature on
polyurethane samples one one geometry. Chapter 5 describes the additional experi-
ments performed by the current author on samples of di�erent geometries. Chapter
6 presents additional results and observations from the experiments performed in
the literature. �e other part involves performing FE simulations to understand
and predict the results obtained from the experiments. Chapter 7 examines the
hypotheses of hyperelastic and viscoelastic sti�ening using the data obtained from
experiments. Chapter 8 describes a rate dependent cohesive zone to predict the
crack speeds. Chapter 9 describes the plane stress version of the Finite viscoelastic
model and the analysis of the energy expenditure during the dynamic fracture.



part i
LITERATURE REVIEW



1introduction to fracture
mechanics

�is chapter introduces the notion of Linear Elastic Fracture Mechanics and the
asymptotic crack tip �elds in the case of a stationary and a moving crack. Di�erent
loading modes and the notion of limiting speeds in di�erent modes will be discussed.
Di�erent criterion to predict crack propagation will be described. �e extension of
LEFM to moderate to large deformations will be described as well. It ends with a
brief discussion on the notion of Transonic cracks.
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1.5 Transonic cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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1.1 introduction

Early analysis of cracks can be a�ributed to the studies of Inglis (Inglis, 1913),
Gri�th (Gri�th, 1921) and Irwin (Irwin, 1957). Inglis studied the problem of an
elliptic hole in a plate and determined the stress concentration factor arising from
the elliptical corners of the plate. �e stress concentration factor was seen to
depend inversely on the radius of curvature of the elliptical edge. As the aspect
ratio of the ellipse is increased, the ellipse tends to a crack with the radius of the
corners tending to zero. �e stresses hence tend to become singular as the limit of
a crack is reached. Westergaard used complex analysis to develop the variation of
stresses in a plate under plane stress and plane strain assumptions. Irwin later used

Figure 1.1: A body with a crack.

this method to develop the expression of stresses in the vicinity of the crack tip.
�is lead to the de�nition of Stress Intensity Factor as the quantity the describes
the amplitude of the stress singularity at the crack tip. Gri�th arrived at a criterion
for the propagation of crack in a medium. He stated that the crack will propagate
in a medium when the rate of increase in the surface energy because of crack
propagation is o�set by the rate of decrease in the potential energy of the body
under the external loading as a consequence of crack growth. Irwin developed
a relation between the Stress Intensity Factor (SIF) and the energy criterion of
Gri�th.

�e study of propagation of cracks under small strains in a linear elastic material
comes under the umbrella of Linear Elastic Fracture Mechanics (LEFM). In this
section, a brief review will be made about the theory and some results of LEFM.

linear elastic fracture mechanics (lefm)

�e study of simple crack in a linear elastic material has been performed by a
number of researchers. An exhaustive discussion on the theory can be found in
(Anderson, 2017) and when the dynamic e�ects are included in (Freund, 1990;
Broberg, 1999). �e theory of LEFM states that the state of stresses at the crack tip
are singular and the near tip variation of displacement, stress and strain �elds are
universal. �e e�ect of external loading and geometry are introduced through a
quantity called Stress Intensity Factor (SIF), K = limr→0 σ

√
2πr .

�e hypothesis of LEFM are as follows.

• �e material behaves linearly and is elastic. Homogeneity and isotropy are
also assumed.

• �e failure and inelastic processes occur in a very small zone near the tip.
�is is called �e hypothesis of Small Scale Yielding.

• �e analysis is restricted to simple cracks. Events such as branching are
discounted.

For a simple crack in a material, three modes of crack propagation can be de�ned
based on the external loading. �ey can be seen in the �gure 1.3. In mode-I, also
called the opening mode, the crack faces open perpendicular to the crack path. �e
shear stresses are zero along the line of symmetry. Mode-II is characterized by
the in-plane shear loading along the crack propagation direction. In mode-III, also
called the tearing mode, the crack faces open perpendicular to the plane of crack
propagation.

Figure 1.2: Polar coordinates centered
at the crack tip.

Using the notion of SIF developed by Irwin, and the small scale yielding hy-
pothesis, the stress state in the vicinity of crack tip can be expressed in terms of
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the SIFs in three modes as (Anderson, 2017)

σi j =
KI√
2πr

ΣI
i j (θ ) +

KI I√
2πr

ΣI I
i j (θ ) +

KI I I√
2πr

ΣI I I
i j (θ )δ j3 (no sum on j) (1.1)

where K denotes the SIF in the corresponding mode as indicated by the subscript.
Σis determine the angular dependence of the stress distribution. Owing to the
linearity of the material and small strains, principle of superposition has been used.
δ denotes the Kronecker delta and equals to 1 when j = 3 or to 0 otherwise.

mode I

mode II

mode III

Figure 1.3: Opening mode (I), Shear
mode (II) and Anti-plane shear mode
(III).

�e hypothesis of small scale yielding implies that the fracture processes occur
at regions that are very close to the tip. �e region where the stress distribution
is dominated by the singularity lies outside the the region where the fracture
processes occur.

Dynamic case

When inertial e�ects are included, the asymptotic crack tip �elds have the same
singularity as in the static case, but the angular dependence is now a function of
crack speed as well. Hence, the equation 1.1 now becomes (Freund, 1990)

Figure 1.4: Polar coordinates centered
at the crack tip.

σi j =
KI√
2πr

ΣI
i j (θ ,v) +

KI I√
2πr

ΣI I
i j (θ ,v) +

KI I I√
2πr

ΣI I I
i j (θ ,v)δ j3 (no sum on j) (1.2)

At a distance r from the tip, the displacement �eld varies as
√
r and hence, the

particle velocity is proportional to vKI /E
√
r . So, the kinetic energy density varies

as

K ∼ ρv2

2

K2
I

rE2
, (1.3)

where ρ and E are the density and the Young’s modulus, respectively. �e strain
energy density can be seen to vary with r as

U ∼ 1

2

K2
I

rE
. (1.4)

�e ratio of these two energy densities can be seen to be

K

U
∼ v2

E/ρ . (1.5)

�e ratio is independent of r and so, it can be seen that the inertial e�ects may not
be important in studying the problem as long as the crack speeds remain less than
about 1

3
rd of the elastic wave speed

(√
E/ρ

)
.

�e introduction of inertial e�ects results in the notion of the limiting speed
for the crack. It will be shown in the following section that the Energy release rate,
G changes its sign as the crack speed passes the Rayleigh wave speed (cR ). Since a
positive value of G is necessary for the crack to propagate, cR is the upper bound
on the crack speed (Freund, 1990).

1.2 crack propagation condition

To predict the propagation of a crack in a body, an additional relation is needed
along with the constitutive model that describes the behavior of the bulk material.
�e additional relation is in terms of a propagation criterion. As mentioned earlier,
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(Gri�th, 1921) established a crack propagation criterion based on the energy
balance of the system. Formally, the Gri�th’s criterion can be stated as follows.
Denoting the total mechanical energy of the structure as Π , the Energy Release
Rate, G can be de�ned to be

G = −∂Π
∂A

(1.6)

where A denotes the area of the crack surface. De�ning the fracture energy γ to be
the energy required to create a unit surface area of the crack, Gri�th’s criterion
can be expressed as

G <γ , Crack does not propagate.
G =γ , Crack may propagate.

In other words, the crack propagates in the body if the loss of potential energy
of the bulk material equals to the increase in surface energy resulting from the
crack growth. Gri�th’s criterion can also be seen to imply that the equilibrium
crack length is the one that minimizes the total energy of the system, E B Π + γA.

In quasi static case, the relation between the Energy release rate and the SIF
has been obtained in Irwin (1957) to be

G =
K2
I

E
(1.7)

where E is the Young’s modulus of the material.
�e energy release rate, G, can also be related to the J-integral proposed by

(J R Rice, 1968) using the Eshelby stress tensor (Eshelby, 1956) as

Figure 1.5: Contour Γ surrounding the
tip.

J = e1.

∫
Γ
(ρ0ψ I − σ .∇u) .n0 dS, (1.8)

whereψ is the energy density, σ is the stress tensor and ∇u denotes the displace-
ment gradient. For a crack in linear elastic material and under quasi-static loading
conditions, it has been proved that J = G. �e path independence of the contour
integral can be used to obtain the G from far �eld quantities. �e relation in the
equation 1.7 can then be used to obtain the SIF from far �eld measurements.

�e crack propagation condition expressed above in terms of the energy release
rate can also be expressed in terms of the SIF. Using the relation between the G
and SIF, the propagation condition can be expressed to be (in the case of a pure
mode-I loading)

KI = Kcrit, (1.9)
where Kcrit can be expressed in terms of γ .

1.2.1 Energy �ux integral

�e expression for the net energy �ux through a contour Γ moving at a speed v
along with the tip has been arrived at by (Freund, 1990). By taking a dot product of
the momentum equation with velocity and using the divergence theorem in space
and time, the expression for the energy �ux through Γ has been obtained as

F (Γ ) =
∫
Γ
[(U + K)vn1 +v .σn]dS, (1.10)

whereU =
∫ t
−∞ σi j

∂2ui
∂t∂x j

dt is the stress work density. In the case of elastic material,

stress work density can be seen to be equal to the strain energy density, since
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σi j =
∂W

∂ϵi j
. It can be seen (in the later sections) that the �ux integral in the

above equation is contour independent as long as steady state conditions prevail
regardless of the material behavior.

�e dynamic energy release rate can be de�ned using the de�nition of �ux
integral to be

G = lim
Γ→0

{
F (Γ )
v

}
(1.11)

�e value of the energy �ux integral is independent of the shape of the contour
as the contour is shrunk to the tip. Hence, a contour that looks like in �gure 1.6
has been used where to shrink to the tip by �rst le�ing δ2 → 0 and then δ1 → 0.
Using the asymptotic crack tip �elds, the energy release rate has been obtained to
be (Freund, 1990)

G =
1 − ν2

E

(
AI (v)K2

I +AI I (v)K2
I I

)
+

1

2µ
AI I I (v)K2

I I I (1.12)

where

AI =
v2αd

(1 − ν )c2
sD
, AI I =

v2αs

(1 − ν )c2
sD
, AI I I =

1

αs
. (1.13)

D = 4αdαs − (1 + αs )2. (1.14)

where αd =
√

1 − v2

c2d
, αs =

√
1 − v2

c2s
and D is the Rayleigh function the root of

which is the Rayleigh wave speed.

In�nite medium

For the case of crack propagation in an in�nite medium, the SIF for a dynamic
crack can be expressed in terms of a static crack under the same loading conditions
and a factor that depends on crack speed and material parameters. In an in�nite
medium or in a �nite medium before the waves re�ected o� the boundaries reach
the crack tip, the SIF can be expressed to be (page 389 of (Freund, 1990))

KI (t , l ,v) = k(v)KI (t , l , 0) (1.15)

where k(v) is a function of crack speed and material properties. �e energy release
rate can be expressed similarly in terms of its value at equilibrium as

G(t , l ,v) = AI (v)k(v)2G(t , l , 0) (1.16)

where AI (v) is another function of crack speed. �e function AI (v)k(v)2 can be
approximated by 1 − v

cR
, where cR is the Rayleigh wave speed.

Figure 1.6: Rectangular contour Γ sur-
rounding the tip. It is shrunk to the
tip �rst by le�ing δ2 → 0 and then
δ1 → 0.
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Hence, for the case of a mode-I crack moving in an in�nite medium, a crack
tip equation of motion can be wri�en based on the expression developed for the
energy release rate.

1 − ν2

E
AI (v)KI (t , l ,v)2 = γ . (1.17)

Since, in an in�nite medium, the SIF can be expressed in terms of its value for a
stationary crack under the same loading, the above expression can be simpli�ed
further to

Eγ

(1 − ν2)KI (t , l , 0)2
= AI (v)k(v)2 ≈ 1 −v/cR . (1.18)

For the case whereγ is a constant, it can be seen that sinceKI (t , l , 0) is an increasing
function of crack length, the le� side of the above equation tends to zero as the
crack becomes longer. Hence, the right side tends to zero as well in the limit
v → cR . Hence, the theoretical upper bound on the crack speed in mode-I is the
Rayleigh wave speed (cR ).

1.2.2 Propagation direction

By expressing the external loading in terms of modes I, II and III, the condition
for determining the crack path can be uncoupled from the condition for crack
propagation in terms of surface energy. �en, the criteria for the selection of
propagation direction can then be expressed in terms of the SIF in the corresponding
modes (Co�erell & Rice, 1980). One of the �rst conditions to determine the direction
of crack propagation was established by (Goldstein & Salganik, 1974) as ’Principle
of local symmetry’. It suggests that the path taken by a crack in bri�le homogeneous
isotropic material is the one where the local stress �eld is of a mode-I type. In other
words, the crack chooses the direction along which the SIF in mode-II (KI I ) is zero.

Other criteria such as the maximum hoop stress criterion (Erdogan & Sih,
1963), maximum energy release rate criterion (Hussain, Pu, & Underwood, 1974),
stationary Sih energy density factor (Sih, 1973) also exist. �ese criteria are known
to be consistent with each other (Co�erell & Rice, 1980) in that all these criteria
state that if KI I , 0, the crack extends with an abrupt, non-zero, change in the
tangent direction to the path.

In static conditions, these criteria are applied for the case of an inclined crack
subjected to a mixed-mode loading. Experiments were performed accordingly and
the results of the experiments were compared with the theoretical predictions in
(Sih, 1973). As a special case, when the crack is subjected to a pure mode-II loading,
the branch angle was found to be 70deg, which is consistent with the experimental
�ndings.

Some other criteria were established to predict the crack turning in numerical
simulations. For instance, (Belytschko, Chen, Xu, & Zi, 2003) uses the loss of
ellipticity criterion to determine the direction of propagation of a crack. �is crite-
rion has been mentioned to be similar to the loss of material stability (Belytschko,
Liu, & Moran, 2000). Other criteria based on con�gurational forces have been
used in Finite Element simulations (Özenç, Kaliske, Lin, & Bhashyam, 2014). �e
con�gurational force vector is used to determine the propagation direction of the
crack. �e crack propagation takes place between the elements where a double
node is introduced when the magnitude of the con�gurational forces satis�es some
criterion (like that of the energy release rate criterion). �e mesh is then adjusted
so that the element edge lies along the direction of the con�gurational force.
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Crack propagation can also be modeled by techniques such as as the phase-�eld
method (Bourdin, Francfort, & Marigo, 2000; C. Miehe, Welschinger, & Hofacker,
2010). In this method, the propagation of crack and the direction of propagation are
taken care of by the evolution of the phase-�eld itself. Similarly, in other methods
such as the gradient damage models (Marigo, Maurini, & Pham, 2016), integral
type non-local damage models (Peerlings, De Borst, Brekelmans, & Geers, 2002),
�ick Level Set method (Moës, Stolz, Bernard, & Chevaugeon, 2011), a separate
criterion for crack propagation direction is not required.

1.3 weakly nonlinear theory of fracture

�e asymptotic crack-tip �elds and the other quantities like SIF reported in the
previous sections are based on the linearity of the material and small deformations.
To understand the fracture of polymer gels where the strains are no longer small
and the material is no longer linear at those strain levels, Weakly Nonlinear �eory
of fracture (WNLT) has been introduced in (Bouchbinder, Livne, & Fineberg, 2008).

Fracture experiments were performed on bri�le polyacrylamide gels in (Livne,
Bouchbinder, & Fineberg, 2008). LEFM was used to predict the crack opening
pro�le and strains ahead of the tip. It was, however, observed that the results from
the experiments did not match the predictions by LEFM in regions close to the tip.
�e discrepancy was a�ributed to the non-linear behavior of the material at the
tip since the material undergoes large deformations in that region. To address this
discrepancy, higher-order displacement gradient contributions were included to
develop the asymptotic crack tip �elds while also considering the material non-
linearity at the observed strain levels. A neo-Hookean model was used for this
purpose. It was observed that the inclusion of the higher-order terms resulted
in more singular strain terms (r−1) than the traditional square root singularity
observed in LEFM. �e inclusion of nonlinear corrections was seen to result in

Figure 1.7: Comparison of experimen-
tal results with that of LEFM and
WNLT at di�erent crack speeds. �e
red circles indicate the experimentally
measured values, black do�ed line the
predictions of LEFM, blue line the pre-
dictions of WNLT. �e crack speeds
are 0.20cs in (a), 0.53cs in (b), and
0.78cs in (c). (Bouchbinder, Livne, &
Fineberg, 2008)

strain �elds that match the observations from the experiments (see �gure 1.7).
Figure 6 of (Bouchbinder, Goldman, & Fineberg, 2014), a comparison has been
made between the LEFM, WNLT and fully non-linear theory (Tarantino, 1999) has
been made. It was observed that the fully nonlinear asymptotic �elds match the
crack pro�le closely even near the tip.
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1.4 crack tip fields in elastomers

Elastomers can undergo large deformations before a crack can propagate through.
Also, the behavior of elastomers at such large strains cannot be described by the
linear elastic material model and through small strain measures. Hence, the singu-
larity at the crack tip may be di�erent from what has been described in the earlier
sections. Some studies establish the form of stresses at the crack tip under large
strains using non-linear strain measures. Under quasi-static conditions, assuming
the strain energy density to depend just on the �rst invariant of Green strain and
the material to be incompressible, (Knowles, 1977) establishes the asymptotic crack
tip �elds under mode-III loading conditions. (Geubelle & Knauss, 1994; Krishnan,
Hui, & Long, 2008) obtained the asymptotic crack tip stress for a crack in a General-
ized Neo-Hookean model for a crack in mixed mode loading. �e model condenses
to a Neo-Hookean model for n = 1. For that case, the singular crack tip Piola
stresses are seen to vary as

Figure 1.8: Polar coordinates centered
at the crack tip in undeformed and de-
formed con�gurations.

P21 ∼ R−
1
2 sin(Θ/2) (1.19)

P22 ∼ R−
1
2 cos(Θ/2) (1.20)

where R andΘ are measured from the crack tip to the particle in the undeformed
con�guration. Similarly, singular Cauchy stresses are seen to vary as

σ21 ∼ r−
1
2
−sign(θ )(2−3/2)√
2r sin2 θ + cosθ

(
1 − cosθ

2r sin2 θ + cosθ

)1/2
(1.21)

σ22 ∼ r−1 1

2r sin2 θ + cosθ
(1.22)

where r and θ are measured from the crack tip to the particle in the deformed
con�guration (see �gure 1.8). �e di�erence in the singularity of the stresses can
be noticed. Also, the singularity of the Cauchy stresses varies with the angle. For
instance, σ22 is singular as 1/r along θ = 0 while it is singular as 1/r2 among
θ = π/2.

�is is di�erent from LEFM where there is no di�erence between the deformed
and the undeformed con�gurations and as a result all the stress measures coincide.
�e singularity is hence same in both the con�gurations.

�e asymptotic crack tip �elds in dynamic case was obtained by (Tarantino,
1999). Using a similar variable separable representation to that in (Geubelle &
Knauss, 1994; Knowles, 1977), the leading singular terms were obtained. �e
deformation maps were observed to vary as

φ1 ∼B1(t ; ṽ)w(Θ)R + o(R) (1.23)
φ2 ∼A2(t ; ṽ)v̂(Θ; ṽ)R1/2 + o(R) (1.24)

where ṽ is a function of crack speed v and material parameters (µ). w determines
the angular variation of φ1. �e function v̂ can be seen below.

v̂(Θ; ṽ) = sgn(Θ)
[ (1 − ṽ2 sin2

Θ)1/2 − cosΘ

2

]1/2
.

�e PK1 stress components were seen to vary as

P21 =2µR−1/2A2

(
1

2
v̂ cosΘ − v̂,Θ sinΘ

)
+ o(1) (1.25)

P22 =2µR−1/2A2

(
1

2
v̂ sinΘ + v̂,Θ cosΘ

)
+ o(1) (1.26)
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It shall be noted that the order of singularity is similar to that of statics (R1/2). �e
stress components that are singular are same as that in the static case.

1.5 transonic cracks

As mentioned earlier, in LEFM, the crack speeds are restricted to cR from below in
mode-I and cS in mode-III. �e Energy release rate can be observed to change its
sign to negative once the crack speed exceeds cR and cS in mode-I and mode-III,
respectively. Since a positive energy supply is needed for the crack to propagate,
the crack speeds are restricted to below the corresponding limiting speeds.

�e sign of energy release rate is positive even in mode-II when the crack
speeds are smaller than cR . �is translates to the condition that the stresses near
the tip are singular as 1/√r . For crack speeds between cR and cS , the sign of
G becomes negative as earlier, and hence speeds in this regime are forbidden.
However, for crack speeds that exceed cS , it was observed that stresses at the tip
are singular as 1/rm , where m ≤ 0.5 with the equality holding at a crack speed of√

2cS . �e shear stress and horizontal velocity component for such a case can be
seen to be (Freund, 1979)

σxy =
K∗2(t)
(2π )1/2

[
cos(mθl )

rml
+
H (−ξ − βs |η |) sin(πm)
(−ξ − βs |η |)m tanm

]
, (1.27)

Ûux =
vK∗2(t)

2µαl (2π )1/2
[
sin(mθl )

rml
− 2αlβs

H (−ξ − βs |η |) sin(πm)
(−ξ − βs |η |)m tanm

]
, (1.28)

where H denotes the Heaviside function, ξ ,η, β,m are functions of crack speed
and material parameters. πm = arctan[4αlβs/(1 + α2

s )2]. As mentioned earlier,

Figure 1.9: Comparison of experimen-
tal results (A) with the theory from
(Freund, 1979) with a sharp crack as-
sumption (B) and the theory with a �-
nite failure zone (C). Reproduced from
(Rosakis et al., 2000).

m = 1/2 whenv =
√

2cs . It can be seen that the stresses and particle speeds exhibit
jumps along the surfaces −ξ − βs |η | = 0 and are singular along the surface as well.
Since the singularity of the stress ism(≤ 1/2), the energy release rate is 0 for all
crack speeds above cS except at

√
2cS . �is was seen to be the consequence of

the sharp crack assumption and assuming that the failure happens over a �nite
region instead of just at the tip was seen to overcome this limitation. Overall,
mode-II cracks are permi�ed to travel at speeds that exceed cS . Such cracks have
been observed experimentally, for instance, in (Rosakis et al., 2000; Gori, Rubino,
Rosakis, & Lapusta, 2018).

In such experiments, shock waves that travel along with the crack were ob-
served (see �gure 1.9) in the photoelastic fringes. A sharp rise in particle velocities
a�er the shock passes through were observed (Mello, Bhat, Rosakis, & Kanamori,
2010). �ese cracks were modeled using Finite Elements in (Miller, Freund, &
Needleman, 1999). Simulations performed using molecular dynamics such as in
(Abraham et al., 2002) also con�rm the existence of such cracks.

Transonic cracks have been observed in opening mode in fracture experiments
on rubber. Such cracks have been �rst reported to be observed by (Petersan,
Deegan, Marder, & Swinney, 2004). More experiments performed by (Chen, Zhang,
Niemczura, Ravi-Chandar, & Marder, 2011; Mai, Okuno, Tsunoda, & Urayama,
2020; Corre, Coret, Verron, Leblé, & Le Lay, 2020) con�rm this. More details on
this will be discussed later in this thesis.
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summary

In this chapter, the theory of LEFM was brie�y described. �e asymptotic crack
tip �elds were presented for static and dynamic cases. Di�erent propagation
conditions for crack were brie�y presented. �e crack tip �elds for the case of
large deformations and Neo-Hookean model have been presented in static and
dynamic cases. A brief discussion about Transonic cracks has been given.



2experimental and
theoretical studies

�is chapter introduces the available studies on the dynamic fracture. Di�erent
experimental specimen geometries used for elastomer fracture will be presented.
Some available experimental and theoretical studies regarding the quasi-static and
high speed fracture of elastomers will be presented. A brief summary of the notion
of energy release rate and the energy �ux integral will be presented.
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2.1 early studies

�e early investigations into the dynamic fracture can be traced back to the works
of Dally, 1979; Ravi-Chandar and Knauss, 1984a and the references cited therein.
�e fracture of Homalite-100 was studied in Ravi-Chandar and Knauss, 1984a. �e
propagation of crack was studied under applied loading and the dimensions of
the specimen were chosen so that considerable crack propagation occurred before
the stress waves re�ected from the boundaries interacted with the crack. �e
loading was applied on the crack faces through an electromagnetic device. �e
crack propagation was studied under di�erent applied loads and loading rates.

One of the observations of that study is the change in the appearance of the
fracture surfaces at di�erent SIFs. It was observed that the crack speed remained
almost the same during propagation but the size of the damage zone varied as
the SIF varied. A change in the appearance of the fracture surfaces was noted in
accordance with the change in the SIF (from photo-elastic measurements). �e
surface pa�ern was reported to change from ‘mirror’ to ‘mist’ to ‘hackle’, where
the roughness progressively increased. Crack branching was observed to occur at
crack speeds of about 50% of cR . It was observed that the interaction with re�ected
waves is not necessary for the crack to undergo branching. A mechanism for
branching has been proposed in Ravi-Chandar and Knauss, 1984a by taking into
account the interaction of micro branches and voids in the crack path. Branching
was thought to occur when the small cracks deviate from the main crack plane.

Figure 2.1: SIF vs crack speed.
Comparison of results from Dally,
1979 and Ravi-Chandar and Knauss,
1984b. Adapted from Ravi-Chandar
and Knauss, 1984b.

�e results of the study were compared with that of Dally, 1979 (see �gure 2.1).
It can be seen that while Dally, 1979 reported a unique relationship between the
SIF and crack speed, in the studies of Ravi-Chandar and Knauss, 1984b, the crack
speed remained constant in the experiment while the SIF was seen to vary (with a
corresponding change in crack surface appearance).

Further experiments were performed on PMMA by Fineberg, Gross, Marder,
and Swinney, 1992. Some di�erences can be noted between the experimental setups
in Fineberg et al., 1992 and Ravi-Chandar and Knauss, 1984a. In Ravi-Chandar and
Knauss, 1984a, a gap was machined into the material and the loading was directly
applied onto the crack faces using an electromagnetic device. In Fineberg et al.,
1992, the specimen was �rst stretched quasi-statically to a certain strain level and a
crack is then introduced in the specimen. Also, in Ravi-Chandar and Knauss, 1984a,
the crack tip SIF is measured by using the method of caustics and the crack speed
by a high speed camera. In Fineberg et al., 1992, the crack speed is measured by a
change in the electrical resistance of the thin layer of Aluminum deposited onto
the specimen faces. Starting from about 0.34cR , the crack speeds were observed to
oscillate and this was seen to coincide with the development of roughness on the
crack surfaces. �e authors term this as ‘microbranching instability’.

Many other fracture experiments were performed in the context of dynamic
fracture, for instance, to investigate the e�ect of the fracture process zone on the
terminal crack speed. In the references mentioned above, the crack was observed
to undergo branching at a speed of about 40% to 60% of cR . �is was a�ributed
to the development and propagation of micro branches from the main crack tip.
To investigate if the cracks can propagate at higher speeds if the micro branches
are suppressed, experiments were conducted in Washabaugh and Knauss, 1994.
Micro branching is suppressed using two methods. In the �rst, the specimen is

Figure 2.2: Crack speeds obtained
when using a weak interface and holes
(Washabaugh & Knauss, 1994).

cut in half and the cut halves are machined to make the surfaces smooth. �ey are
then molded in a vacuum at high temperature till the interface is strong enough,
but not as strong as the base material. In the other method, an array of holes were
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drilled into the material along the prospective crack path at various spacing. It was
reported that using the above techniques, the crack speed was able to approach cR
in the cases when the interface is ‘weak enough’ (see �gure 2.2). A detailed review
of the dynamic fracture of nominally bri�le materials can be found in Ravi-Chandar
and Yang, 1997. �e results of various models to describe the evolution of defects
and propagation of crack have been discussed.

2.2 ‘instabilities’ in dynamic fracture

Even though the upper bound on the crack speed is cR , in reality, cracks hardly
reach that speed unless special measures are taken as discussed earlier. At crack
speeds of about 40% to 60% of cR (Ravi-Chandar & Knauss, 1984b), the tip is known
to undergo branching where the main crack branches into multiple branches which
later propagate. It was reported that the crack speeds remained at about 45% of cR
even when the loads applied were higher and the crack did not branch as well. �e
authors a�ribute the lower terminal speed observed and the events of branching
to the growth and interaction of microcracks along with the main crack.

Microbranching instability

In the experiments performed on PMMA by Sharon, Gross, and Fineberg, 1996;
Sharon and Fineberg, 1996, it was observed that starting from a certain crack speed
(called vc ), the crack surfaces became rougher. Oscillations were also observed in
the crack speed once it exceededvc (≈ 0.4cR). �e authors termed the phenomenon
as ‘Microbranching instability’ (Fineberg & Marder, 1991; Fineberg et al., 1992).
It was shown in those works that there was a corresponding increase in the area

Figure 2.3: Microbranching instability
in PMMA (Sharon et al., 1996). Oscil-
lations in crack speed a�er a certain
limit can be seen.

of the fracture surface created once the crack speed exceeded vc . �e increase in
fracture energy during fracture was regarded as a consequence of an increase in
the mean surface area of the crack. �e same behavior was reported for glass and
polyacrylamide gels as well in (Bouchbinder et al., 2014). It shall be noted that
the cited references do not make any special comments about ‘macro-branching’
observed during the experiments as opposed to Ravi-Chandar and Knauss, 1984b.

Oscillatory instability

It was also reported that the vc mentioned earlier depended on the crack accelera-
tion as well (page 17 of Bouchbinder et al., 2014). vc was seen to be an increasing
function of crack acceleration, increasing from its value (≈ 0.4cR ) at lowest accel-
erations. It was also seen that vc can be increased by suppressing the ‘instabilities’,
for instance, by decreasing the specimen thickness. To this e�ect, fracture tests
were performed on polyacrylamide gels in Livne, Ben-David, and Fineberg, 2006.
Specimen were stretched to ‘very large strains’ and a crack was introduced. Also, a
thin specimen was used to suppress any instabilities. Using both these techniques,
it was reported that the cracks traveling as fast as 0.9cs were achieved. It was ob-
served, however, that instead of the ‘micro-branching’ instability mentioned above,
an oscillatory the crack path was observed. Similar oscillatory cracks were also
observed in the works of Deegan, Petersan, Marder, and Swinney, 2002, although
in a di�erent context.
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Figure 2.4: Oscillatory instability
observed in Livne, Ben-David, and
Fineberg, 2006. A sequence of pho-
tographs, shown at 0.69 ms intervals,
of a propagating crack undergoing a
transition from linear (top 2 pictures)
to oscillatory motion. Photographs of
XY pro�le (top) and (XZ) fracture sur-
face (bo�om) of (b) a 0.2 mm thick gel
sample where oscillations developed
and (c) a 2.0 mm thick gel where the
crack retained its straight line trajec-
tory.

2.3 fracture of elastomers

�e investigation of fracture of elastomers can be traced back to Greensmith and
�omas, 1956. In that study, the fracture behavior and properties of elastomers
were studied by using rubber specimen in ‘tearing’ and ‘pure shear’ con�gurations.
A brief description of the specimen con�gurations and the fracture energy in those
con�gurations can be seen below.

2.3.1 Tearing

A ‘trouser’ specimen is used for testing in this con�guration. �e specimen contains
two ‘legs’ which are held on to a tensile machine that are pulled apart. �e fracture
energy in this con�guration is computed using the stretch level in each arm and the
expression 2.1. �e force measurement can be obtained from the tensile machine
and the stretch level can be obtained by measuring the �nal lengths of arms. �e

Figure 2.5: Tearing con�guration.

strain energy density can then be calculated.

G = wh0 − 2

e0
λF . (2.1)

�e values of h0 and e0 can be obtained from the geometry as shown in the �gure
2.5. w is the strain energy density corresponding to the strain state at the loading
condition.

2.3.2 SENT

Other specimen con�guration that can be used is the ‘Single Edge Notched Tension’.
�e geometry can be seen in the �gure 2.6. In this case, the energy release rate

Figure 2.6: Single Edge Notched Ten-
sion specimen con�guration.

can be computed as
G = 2βwl , (2.2)

where l denotes the crack length and β depends on the stretch level and can be
approximated as 3λ−1/2.

2.3.3 Pure Shear

In this case, a specimen that is wide enough (about 5 times as tall as the specimen
height) is clamped along its longer edges onto a tensile machine. �e specimen is
stretched to the target level and a crack is introduced. Once the crack reaches the
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center of the specimen, the energy release rate can be calculated by

G = wh0, (2.3)

where h0 is the initial specimen height (see �gure 2.14).

2.4 experimental and theoretical studies on polymer

fracture

Early experimental studies on the fracture of elastomers can be traced back to the
works of R. S. Rivlin and �omas, 1953. In that study, specimens of natural rubber
were torn in the con�gurations described earlier to obtain a relation between the
fracture energy vs speed. Further experiments were carried out by Greensmith
and �omas, 1956; Greensmith, 1957 and the references cited therein. Most of the
works were carried out in the tearing con�guration. Based on the nature of the
traction separation curves observed and the fracture surfaces, the overall fracture
behavior was classi�ed into ‘slip-stick’ and ‘steady’ tearing. In ‘slip-stick’ tearing,
large oscillations were observed in the crack speeds as well as the traction curves.
It shall be observed that in all the studies mentioned above, a Gri�th-like criterion
has been used to interpret the experimental data in terms of fracture energy vs the
crack speed.

On the other hand, the fracture of polymers was studied by Knauss and co-
workers in W. Knauss and Mueller, 1971. In those studies, the pure shear con�gura-
tion was used. �e material tested is Solithane 113. �e results of the experiments
were presented in terms of the macroscopic strain imposed vs the crack speed
observed (see �gure 2.7).

Figure 2.7: Crack propagation data for multiple production runs, prior to applying
the time-temperature superposition process (W. Knauss, 2015).

To interpret the data, an analytical investigation was carried out. Using a
cohesive zone type model to describe the behavior of the material failing at the tip,
a relation between the crack speed, the applied load, and the viscoelastic properties
of the bulk material was obtained in W. Knauss, 1970; W. Knauss and Mueller,
1971; W. Knauss, 2015. Two failure criteria were considered for crack propagation -
failure strain criterion and an energy criterion.
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In failure strain criterion, the cohesive zone was assumed to fail completely
when the strain value reaches a certain limit. �e tractions in the cohesive zone
were taken to completely drop to zero at this value. �is criterion can be wri�en as

uy (0, 0, Ûa) = u0. (2.4)

In the above equation, the coordinates (0, 0) denote the physical crack tip, and Ûa
denotes the crack speed. u0 is the strain value at which the failure occurs.

Figure 2.8: Description of cohesive
zone from W. Knauss, 2015.

In the energy criterion, a cohesive element was assumed to fail when the energy
expended on the element by the surrounding material reached a certain value. �is
can be wri�en as

−
∫
Ac

Tn(X ).
∂uy

∂X
(X , 0, Ûa)dX = γ , (2.5)

where Ac denotes the area spanned by the failing material, Tn are the tractions, uy
is the y-component of the displacement of the crack surface. γ denotes the fracture
energy.

�e opening displacement of the crack faces under external loading for vis-
coelastic material was obtained by using the elastic solution under the same loading
and correspondence principal. �e constitutive behavior of the failing material is
speci�ed as a relation between the traction and separation. In W. Knauss, 2015, a
constant traction value has been assumed over a span of α . Using both the traction
and separation, equations 2.4 and 2.5 can be evaluated. �e displacement criterion
hence becomes

3K
√
α√

2πE∞
ϑ

(α
Ûa
)
= u0, (2.6)

where K is the SIF corresponding to the applied load, E∞ is the long term elastic
modulus and ϑ is a parameter that depends on the viscoelastic properties of the
material. �e energy criterion becomes

3

4
K2
ΘR

(α
Ûa
)
= E∞γ , (2.7)

where ΘR is a function that depends on the viscoelastic properties of the mate-
rial. �e predictions of the above criterion were compared with the experiments
whereby the values of parameters like γ and α were obtained. It shall be noted
that a similar development was carried out by Schapery, 1975b, 1975a, 1975c.

�e above-mentioned studies use a failure zone at the tip to describe the fracture
processes. Some other studies exist that follow Gri�th’s failure criterion that the
energy to failure comes from the reduction of the energy in the bulk Christensen,
1979. In such a case, the global conservation of energy gives

Ûaγ +
∫
V
Λ dv + ÛU = 0. (2.8)

In the above equation, V is the volume of the material, Λ is the energy dissipation
rate in the material, and ÛU is the rate of change in strain energy. Inertial e�ects have
been neglected. An earlier study in this direction was done by Kostrov and Nikitin,
1970. However, that study leads to a conclusion that the sharp crack modeling
approach or Gri�th’s failure criterion leads to a conclusion that the viscoelastic
properties do not a�ect the crack propagation (James R. Rice, 1979). �is can be
seen by examining equations 2.6 or 2.7 in the limit of α → 0. In that case, the
equation 2.7, for instance, reduces to

3

4
K2
ΘR (0) = E∞γ . (2.9)
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It can be seen that only the initial (glassy) viscoelastic properties enter the equation
as opposed to the case when α is not zero. However, Christensen, 1979 a�ributes
this conclusion to the omission of heat source term which indirectly leads to elimina-
tion of dissipation in the formulation of Kostrov and Nikitin, 1970. �e comparison
between the theory and experiments has only been done for a limited range in
Christensen, 1979.

Other studies where the sharp crack modeling technique has been used are
that of B. N. Persson and Brener, 2005; B. N. J. Persson, Albohr, Heinrich, and Ueba,
2005. In this approach, the point of departure is the conservation of energy as
earlier. In this case, however, the singularity at the crack tip has been considered
explicitly as opposed to Christensen, 1979, where multiple terms of a power series
were considered to approximate the crack tip singularity. �e point of departure
of B. N. Persson and Brener, 2005 is

G Ûa = G0 Ûa + P , (2.10)

where the �rst term on the le� indicates the global energy expenditure, the �rst
term on the right indicates the energy consumed by the crack tip during the fracture
process and P denotes the energy dissipation in the bulk material. �e dissipation
in the bulk material was calculated explicitly by using a power-law model for the
relaxation function. �e formulation was compared with the experimental results
from Gent, 1996b. �e slope of the energy release rate vs the crack speed curve
was found to be 0.27, which was found to be in good agreement with the theory.

More experiments were conducted by Lake, �omas, and Lawrence, 1992; Lake,
Lawrence, and �omas, 2000; Tsunoda, Bus�eld, Davies, and �omas, 2000 on the
fracture of elastomers. In Lake et al., 1992, the phenomenon of cavitation of elas-
tomers has been investigated. More discussions on this will follow in later chapters.
Other works such as that of Lake et al., 2000; Tsunoda et al., 2000 investigate the ef-
fect of various parameters such as the specimen geometry (thickness in particular),
the chemical composition, the e�ect of �llers, etc. on the fracture properties of the
specimen. �e crack speeds in Tsunoda et al., 2000 are considerably smaller than
that in Lake et al., 2000. Hence, inertial e�ects were not considered in that study.

High speed fracture of elastomers

Studies in which the crack speeds are much smaller than the wave speed in the
material do not need the consideration of inertial e�ects. When the crack speed
is higher, typically more than about 30% of the shear wave speed, inertial e�ects
become important. Such studies were performed by Stevenson and �omas, 1979;

Figure 2.9: Undulations on fracture
surfaces reported in Stevenson and
�omas, 1979. λ = 2.3, 3.7, 5.0 in top,
middle and bo�om �gures.

Kadir and �omas, 1981; Gent and Marteny, 1982a. Since the crack speeds in the
studies are higher, a comparison to wave speeds was made. In Stevenson and
�omas, 1979, fracture tests were performed by using balloons made of natural
rubber. A needle was used to initiate the crack once a target strain level was
reached. �e wave speeds were also measured by performing retraction exper-
iments on rubber sheets. However, the crack speeds and wave speeds reported
in that study are on the deformed con�guration. It was observed and remarked
that the crack speeds obtained in that study are considerably higher than the wave
speeds measured and even the ‘strain dependence of the wave speed’ does not
account for the observed higher crack speeds. �e high rate of extensions at the
crack tip was thought to modify the material sti�ness and hence the wave speeds.
�is was regarded as a cause of the observed higher crack speeds. No speci�c
mention of ‘Transonic cracks’ was made. �e crack surface was found to have
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wavelike series of undulations, 5-8 µm apart and 3-5 µm deep over most of the
fracture surface. Bi-axial strain state was stated to be the probable reason for the
undulations. Livne et al., 2006 report such oscillatory crack path, but does not
mention the study of Stevenson and �omas, 1979.

In Gent and Marteny, 1982a, more experiments were made on un�lled and
carbon-black-�lled natural rubber specimens in pure shear geometry. Wave speeds
were measured by performing retraction tests in a di�erent study (Gent & Marteny,
1982b). �e crack speeds are compared to 0.3vs (Mo�, 1948), where vs is the
velocity of stress pulse in the material. �e crack speeds and stress pulse speeds
were reported in the deformed con�guration as well. Also, specimens of di�erent
geometry (speci�cally heights) were subjected to the same stretch level and the
crack speeds were measured. It was observed that the crack speeds become inde-
pendent of the specimen height starting from a certain height. No mention was
made about Transonic cracks as well.

Figure 2.10: Crack propagation studied
in pure shear con�guration in Gent
and Marteny, 1982a. Also can be seen
is the result of the crack speed vs the
specimen height for the same stretch
level.

More experiments on dynamic fracture of elastomers were made by Petersan
et al., 2004; Chen et al., 2011. �ese experiments were perhaps the �rst to report
the existence of ‘Transonic cracks’ in the opening mode in elastomers. It was
reported that in natural rubbers, starting from a certain stretch level, the crack
speeds exceeded the Shear wave speed. It was also observed that the crack speeds
became independent of the specimen height in this regime. More on this will be
discussed later in this thesis.

2.5 energy release rate through integrals

�e Energy release rate is related to the crack speeds observed in the experiments
throughout the literature. It is measured by using the strain energy density in
the material far ahead of the tip and far behind it - that the energy lost by the
body as the crack propagates through it is consumed by the fracture processes.
�e expression for the energy release rate can also be obtained though contour
integrals established in the literature. �is section brie�y reviews two of such
integrals to bring out their similarities and di�erences.

2.5.1 Energy �ux integral

In Freund, 1990, an expression was obtained to compute the instantaneous energy
�ux through a contour that moves along with the crack with a speedv along x-axis.
�e expression can be seen to be

F (Γ ) =
∫
Γ

[
σjinj

∂ui
∂t
+ (U +T )vn1

]
dS, (2.11)
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where U is the stress work density and T is the kinetic energy density. σi j denotes
the ij-th component of Cauchy stress in the Cartesian basis and nj is the j-th
component of the outward normal to the contour Γ . �e expressions for U and T
are given by

U =

∫ t

−∞
σji
∂2ui
∂t ′∂x j

dt ′ and T =
1

2
ρ
∂ui
∂t

∂ui
∂t
, (2.12)

where the summation on repeated indices is implied.

Path (in)dependence

�e path dependence of the above contour integral was examined by considering
the di�erence in the value of �ux integral evaluated along two di�erent contours
Γ1 and Γ2. the di�erence can be seen to be

F (Γ2) − F (Γ1) =
∫
A12

[(
∂U

∂t
+v
∂U

∂x1

)
+ ρ
∂ui
∂t

(
∂2ui
∂t2
+v
∂2ui
∂t∂x1

)]
dA, (2.13)

where Γ2 is outside Γ1 and A12 is the area enclosed between the two contours.
In the special case of a steady crack growth, the �elds remain invariant in a

frame traveling with the crack tip. In such a case, the �elds depends on x1 and t
only through the combination, ζ = x1 −vt . �us, the terms in the parenthesis of
the equation 2.13 go to zero and the contour integral is hence independent of Γ
chosen. Also, in that case, using ∂

∂t
= −v ∂

∂x1
, the contour integral reduces to

F (Γ ) = v
∫
Γ

[
(U +T )n1 − σjinj ∂ui

∂x1

]
dS . (2.14)

U and T reduce to

U =

∫ ∞

x1−vt
σji
∂2ui
∂x j∂ζ

dξ and T =
1

2
ρv2 ∂ui
∂x1

∂ui
∂x1
. (2.15)

It shall be noted that the path independence for a steady state crack propagation
has been established without using a constitutive model and hence is valid even
for plastic, viscoplastic and viscoelastic materials.

Energy release rate

�e energy release rate has been de�ned using the expression in equation 2.11 as
(Freund, 1990)

G = lim
Γ→tip

{
F (Γ )
v

}
(2.16)

= lim
Γ→tip

{
1

v

∫
Γ

[
σjinj

∂ui
∂t
+ (U +T )vn1

]
dS

}
(2.17)

Under steady state, the above equation reduces to

G =

∮
tip

[
(U +T )n1 − σjinj ∂ui

∂x1

]
dS . (2.18)
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2.5.2 Eshelby’s integral

In addition to the energy �ux integral described above, other contour integrals
exist in fracture mechanics that have been developed from the perspective of the
mechanics in material manifold (Gurtin, 2000; Steinmann, 2000). �e development
in this direction relies on the change in the energy of the system as a result of
the change in the material con�guration (denoted BX (t)) of the system (Runesson,
Larsson, & Steinmann, 2009). �e notions of a time invariant reference con�gura-
tion (denoted Bξ ) and a time varying spatial con�guration (denoted Bx (t)) have
been de�ned for this purpose. �e three con�gurations are related by maps as
de�ned.

�e maps φ̃ : (Bξ ,R+) → BX (t) such that (ξ , t) φ̃−→ X B φ̃(ξ , t) between the
reference con�guration and the material con�guration, φ̂ : (Bξ ,R+) → Bx (t) such

that (ξ , t) φ̂−→ x B φ̂(ξ , t) between the reference con�guration and the spatial
con�guration and φ : (BX (t),R+) → Bx (t) such that (X , t) φ−→ x B φ(X , t)
between the material con�guration and the spatial con�guration are de�ned. �e
three maps can be seen to be related by the composition φ̂(ξ , t) = (φ ◦ φ̃)(ξ , t).

Figure 2.11: Reference con�guration,
Bξ (�xed), Material con�guration,
BX (t) and Spatial con�guration, Bx (t)

As mentioned earlier, the intention is to study the dissipation in the system as
a consequence of the change in material con�guration, that is a variation of the
map φ̃. Assuming the material to be homogeneous, free of body forces and elastic,
the dissipation can be seen, under isothermal conditions to be

D(w0) =
∫
∂ΩX

Ckn0.w0 dS, (2.19)

where w0 B
∂X tip

∂t
is, in this case, the crack speed in the material con�guration,

n0 is the outward normal to the contour ∂ΩX and Ck is the Eshelby stress tensor
in dynamics, de�ned as

Ck B (ψ + k)I − FTP . (2.20)

Here,ψ is the strain energy density per unit volume in material con�guration, k
is the kinetic energy density per unit volume in material con�guration, F B ∂x

∂X
is the deformation gradient and P is the �rst Poila Kirchho� stress tensor. �e
contour ∂ΩX is taken as shown in the �gure 2.12. From the �gure, it can be seen
that ∂ΩX = ∂ΩX ,ext ∪ Γ±c ∪ Γtip. Γ±c are the top and bo�om of the portion of crack
face that are not enclosed within Γtip. Γtip is a contour that goes around the tip
from the bo�om face of the crack to the top face. Realizing that w0 = o on ∂ΩX ,ext
and Γ±c , the expression for dissipation reduces to just over the contour enclosing
the tip, shrunk to the tip.

D(w0) =
∮

tip
Ckn0.w0 dS . (2.21)

�is allows to de�ne the ‘con�gurational forces’ acting at the tip that is conjugate

Figure 2.12: Contour on which the in-
tegration is performed in the material
con�guration.

to the crack speed. �e dissipation in the above equation can hence be expressed
as

D(w0) = w0.f tip, (2.22)

where
f tip B

∮
tip

Ckn0 dS, (2.23)

is the con�gurational force acting at the tip.
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If the material is inelastic, the dissipation in the bulk also contributes along
with the dissipation at the tip. In that case, the dissipation expression becomes

D(w0) =
∮

tip
Ckn0.w0 dS +Dbulk = w0.f tip +Dbulk, (2.24)

where Dbulk =
∫
ΩX \Ωtip

∂ψ

∂k
? Ûk dV . k indicates the array of internal variables and

?, a suitable contraction operation. Ωtip is the volume of material enclosed within
Γtip.

Steady state

For the case of a straight crack propagating in the X1-direction under steady
state conditions, as stated previously, the �elds depend on X1 and t through the
combination ζ = X1 −w0t . Hence, the spatial and temporal derivatives are related
as ∂
∂t
= −w0

∂

∂X1
. Hence, the bulk dissipation in the equation 2.24 can be wri�en

as
Dbulk = −w0

∫
ΩX \Ωtip

∂ψ

∂k
?
∂k

∂X1
dV (2.25)

�e total dissipation becomes

D(w0) = w0

[
e1.

∮
tip

Ckn0 dS −
∫
ΩX \Ωtip

∂ψ

∂k
?
∂k

∂X1
dV

]
= w0

[
e1.

∫
∂ΩX

Ckn0S dS

]
(2.26)

A similar expression can be found in Simha, Fischer, Kolednik, and Chen, 2003;
Simha, Fischer, Shan, Chen, and Kolednik, 2008 in the context of plasticity.

Path (in)dependence

Considering another contour Γ2 that encloses Γtip, a relation can be found between
the integrals on the two contours during the steady state.

w0e1.

[∫
Γ2
Ckn0 dS −

∮
tip

Ckn0 dS

]
= w0e1.

∫
Γtip∪Γ2∪Γ±c

Ckn0 dS

= w0e1.

∫
Ω2\Ωtip

div0Ck dV , (2.27)

Figure 2.13: Contour enclosing the
contour at the tip.

since on crack faces e1.n0 = 0. �e divergence can be evaluated as below.

(Ck )i j, j =
((ψ + k)δi j − FkiPk j ), j = ∂ψ∂k ? ∂k∂Xi

. (2.28)

Steady state has been assumed. Hence, e1. div0Ck =
∂ψ

∂k
?
∂k

∂X1
.

Hence, the di�erence in contour integrals can be seen to be

w0e1.

[∮
tip

Ckn0 dS −
∫
Γ2
Ckn0 dS

]
= −w0e1.

∫
Ω2\Ωtip

∂ψ

∂k
?
∂k

∂X1
dV . (2.29)

�e RHS term can be identi�ed as the dissipation in the volume between the two
contours (see equation 2.25). Hence

w0e1.

[∮
tip

Ckn0 dS −
∫
Γ2
Ckn0 dS

]
= DΩ2\Ωtip

bulk . (2.30)

Hence, unless the material is elastic, which would mean zero bulk dissipation, the
contour integral is not path independent.
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2.5.3 Small strains

Under small strain conditions, the integral in 2.23 can be simpli�ed. Under small
strain conditions, F ≈ I + ∇u, P ≈ σ .∮

tip
Ckn0 dS ≈

∮
tip

(
(ψ + k)I − (∇u)Tσ

)
n0 dS −

∮
tip
σn0 dS . (2.31)

If, at the tip, the stress components are singular as rp where p < 1, the second
term on the right side goes to o (Gurtin, 2000). Hence, the contour integral can be
expressed as ∮

tip
Ckn0 dS =

∮
tip

(
(ψ + k)I − (∇u)Tσ

)
n0 dS, (2.32)

and the component along e1 can be found to be

e1.

∮
tip

Ckn0 dS =

∮
tip

(
(ψ + k)n1 − σi jnj ∂ui

∂X1

)
dS . (2.33)

2.5.4 Comparison between the two integrals

At this point, a comparison can be made between the two integrals in equations

2.18 and 2.33. �e former integral contains U =
∫ t
−∞ σji

∂2ui
∂t ′∂x j

dt ′, which is the

stress work density, while the le�er integral containsψ , which is the strain energy
density. In the elastic case, the two integrals, hence, coincide. Hence, the integral
in 2.33 can be seen as the energy �ux to the tip and the con�gurational force at the
tip as well.

Also, the integral in 2.33 can be seen to be path dependent except in the case of
an elastic material in steady state. �e integral in 2.18, however, can be seen to be
path independent in the steady state scenario regardless of the constitutive behavior
of the material. �e la�er also has the signi�cance of representing the energy �ux
through the contour Γ , while the former doesn’t, even in the steady state (except if
the material is elastic). For instance, in the case of crack propagation under steady
state conditions in a strip (see �gure 2.14), the �rst integral (in equation 2.33) when
evaluated on a contour far from the tip results in

e1.

∫
Γ∞

Ckn0 dS = [ψ (+) −ψ (−)]h, (2.34)

which is o�en stated as the energy release rate in literature (Greensmith & �omas,
1956). �e integral in 2.18 on the same contour gives a di�erent value since it
involves evaluation of U along the part of the curve labeled (−). Along this curve,
U (−) , ψ (−), since the evaluation ofU requires integration over the entire history

Figure 2.14: Crack propagation in an
in�nite strip.
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of the strain states. But along the part of the curve (+), U (+) = ψ (+). Hence, as
stated earlier, unless the material is elastic,∫

Γ∞
(Ck )1j (n0)j dS ,

∫
Γ∞

[
(U +T )n1 − σjinj ∂ui

∂x1

]
dS (2.35)

An illustration of the scenario where the inelastic e�ects can a�ect the eval-
uation of the contour integral can be seen in Freund and Hutchinson, 1985. In
that study, the propagation of a crack in rate-dependent plastic solid was studied.
�e plastic deformation was assumed to remain within the region dominated by
the SIF. Assuming a steady state, the relation between the near �eld and far �eld
Energy release rates de�ned according to the equation 2.18 was obtained to be

Gtip = G −
∫ h

−h
U ∗ dx2, (2.36)

where h is the height of the plastic wake le� behind by the propagating crack. In
the above equation, Gtip has been de�ned as

Gtip = f (m)1 − ν
2

E
K2

tip. (2.37)

Ktip denotes the amplitude of the near-tip stress singularities. Because of the
constitutive assumption of the material behavior, the elastic strain rates dominate
the plastic strain rates and hence, the solution near the tip is similar to that in
an elastic material. G is de�ned as the far �eld energy release rate de�ned as
f (m)1−ν2E K2. Note the di�erence in the SIF used (K for far �eld vs Ktip for near
�eld). U ∗(x2) = limx1→−∞U (x1,x2) is the stress work density locked in the wake
behind the tip.

summary

�is chapter presents an overview of the experiments of dynamic fracture per-
formed on materials like Homalite-100, PMMA, and glass. �is is followed by
a description of the experimental setups used to study polymer fracture. Some
theories on polymer fracture in the literature were presented. It was followed
by an overview of the experimental studies available on high speed fracture of
elastomers. It ends with a discussion about the integral formulations of energy
release rate in the context of viscoelastic fracture.



3polymers

�is chapter provides a brief introduction to the polymer materials, dependence
of their behavior on the strain rate. A brief description of the hyperelastic and
viscoelastic models has been given as well.
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3.1 elastomers

Elastomers are polymers that are generally amorphous comprised of long chains
of macro-molecules (A. G. Holzapfel, 2000; Verron, 2018). �e chains are linked to
each other through cross-linking. Elastomers are o�en reinforced by �llers such as
Carbon black or Silica. �is increases the sti�ness of elastomers. Elastomers are
characterized by their ability to undergo large deformations elastically.

When an elastomer is subjected to uniaxial tension the response typically looks
like in the �gure 3.1. �e slope of the strtess strain response can be seen to initially
decrease from its value at zero strain level. A�er a certain strain level, however,
the slope of the curve starts to raise again to higher values. As a result of sliding

Figure 3.1: Typical stress-strain re-
sponse of an elastomer, Polyurethane
in particular. Extracted from Corre,
2018.

between the molecular chains, the behavior of the elastomers are a function of
temperature and the loading rate. Based on the temperature and loading rate, the
behavior of the elastomers can be classi�ed into three categories.

• Bri�le and rigid, which is called a glassy state.

• So� and highly deformable, which is called the rubbery state.

• Transition behavior, where the polymer chains are highly mobile which
makes the behavior rate dependent.

When subjected to high loading rates and/or smaller temperatures, the material
has a modulus E0, which is called glassy modulus. �e modulus at small loading
rates and higher temperatures is called rubbery modulus, E∞.

3.2 nonlinear elasticity

A nondefective material body is a simply connected regionB of a three-dimensional
Euclidean manifold M, called the material manifold. �e elements of this manifold
are so-called material points X (Marsden & Hughes, 1994; Gérard A Maugin, 2016).
A con�guration of B is a mapping ϕ : B → S ⊂ R3. �e set of all con�gurations of
B is denoted C . A motion of a body is a curve in C , that is, a mapping t → ϕt ∈ C .

Le�ing ϕ : B → S to be smooth, the deformation gradient is de�ned as the
tangent map of ϕ and is denoted F = Tϕ (Yavari, 2010). At each point X ∈ B, it is
a linear map, F (X ) : TXB → Tϕ(X )S , where TXB and Tϕ(X )S denote the tangent
spaces to B and S at X and ϕ(X ), respectively.
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Assuming {XA} and {xa} to be the local charts on B and S , respectively, the
components of F are

FaA(X ) =
∂ϕa(X )
∂XA . (3.1)

�e transpose of F is de�ned by

FT : TxS → TXB, 〈Fv0,v〉д = 〈v0, F
Tv〉G ∀v0 ∈ TXB,v ∈ TxS, (3.2)

for X ∈ B, x ∈ S . It has been assumed that B and S are Riemannian manifolds
with inner products 〈 , 〉G and 〈 , 〉д , respectively.

�e right Cauchy-Green deformation tensor is de�ned by

C(X ) : TXB → TXB, C(X ) = F (X )T F . (3.3)

In component form, CA
B = (FT )Aa FaB .

Isotropic hyperelasticity

�e theory of hyperelasticity assumes the existence of a strain energy density
functional,ψ , that depends on the deformation gradientψ (F ). �e nominal stress,

P : T ∗XB → TxS,
N 7→ T = PN .

(3.4)

is related to the strain energy density function as

P =
∂ψ (F )
∂F
. (3.5)

Requirements of objectivity require the strain energy density to depend on F
through the combination FT F = C . �e Piola-Kirchho� 2 stress tensor (S) is
de�ned as

S : T ∗XB → TXB,
N 7→ T̃ = SN .

(3.6)

such that P = FS . It is related to the strain energy density function as

S = 2
∂ψ (C)
∂C
. (3.7)

Requirements of isotropy further dictate the strain energy functional to depend on
C through its invariants. �e three invariants of C are de�ned as

I1 = tr(C), (3.8)

I2 =
1

2

(
(tr(C))2 − tr(C2)

)
, (3.9)

I3 = detC . (3.10)

Hence

S = 2
3∑
i=1

∂ψ

∂Ii

∂Ii
∂C
. (3.11)
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Elastomers are treated to be incompressible materials and hence, det F = 1. As a
consequence of incompressibility constraint, the PK2 stress can now be expressed
as

S = 2
∂ψ (C)
∂C

+ γ JC−1, (3.12)

where γ is a Lagrange multiplier that enforces incompressibility. It coincides
with the pressure, p, if the strain energy functional is homogeneous of order 0,
∂ψ

∂C
: C = 0 (Bonet, 2001). �is can be achieved by making it a function of the

deviatoric part of C , C̄ B J−
2
3C . De�ning ψ̄ (C) = ψ (C̄),

S = 2
∂ψ̄ (C)
∂C

+ p JC−1. (3.13)

�is can be further simpli�ed as

S = 2J−
2
3 DEV

{
∂ψ (C̄)
∂C̄

}
+ p JC−1, (3.14)

where DEV
{
•
}
= • −

(
•:C
3

)
C−1. For isotropic materials,ψ is now a function of

the �rst two invariants of C̄ .

Hyperelastic models

An overview on the available hyperleastic models and the physics behind them
can be found in the review articles of Marckmann and Verron, 2006; Verron, 2018.
A brief summary will be presented below.

In the Neo-Hookean hyperelastic model, the strain energy is a function of the
�rst invariant, I1, only (Treloar, 1943). �is can be seen as an extension of Hooke’s
law to large deformations.

ψNH = µ(I1 − 3). (3.15)
�is model has been developed by using statistical mechanics for polymer networks.

A model that involves both the invariants has been developed by Mooney
(Mooney, 1940). For this model, the strain energy functional is wri�en as

ψMR = C10(I1 − 3) +C01(I2 − 3) (3.16)

where C10 > 0 and C01 ≥ 0.
�e polynomial model has been developed by Rivlin (R S Rivlin, 1948), where

the strain energy functional is expressed as a polynomial function of the invariants.

ψ Poly =

∞,∞∑
i=0, j=0

Ci j (I1 − 3)i (I2 − 3)j , (3.17)

where C00 = 0.
In Ogden model (Ogden, 1972), the strain energy density is expressed directly

in terms of the eigen values of C instead of its invariants.

ψOд =

n∑
i=1

µi
αi

(
λαi1 + λ

αi
2 + λ

αi
3 − 3

)
(3.18)

where µiαi > 0 for all i .
More recent models include the 8-chain model by Arruda and Boyce, 1993,

limiting chain extensibility model by Gent, 1996a, the extended tube-model (Kaliske
& Heinrich, 1999) and many others.
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3.3 viscoelasticity

�e theory of viscoelasticity can be easily described under small strain se�ing.
Under small strains, all the stress measures described in the previous section
coincide. �e strain measures are replaced by the small strain tensor, ϵ , which is
de�ned as the symmetric part of the gradient of the displacement.

ϵ =
∇u + (∇u)T

2
. (3.19)

In the case of a linearly elastic material under small strains, the stress becomes a
unique function of the strain. Roughly, in a viscoelastic material, the stress is seen
to depend on the stain as well the strain rate, σ (ϵ , Ûϵ).

A viscoelastic material is typically represented by a spring-dash pot mechanical
system in various con�gurations such as by Kelvin or a Maxwell branch or a
combination of both. �eir behavior is characterized by time dependent material
functions. More generally, the stress is made to depend on the current strain and its
history. In di�erential representation of linear viscoelasticity, the general equation
relating the stress and strain can be wri�en as

∞∑
n=0

un
∂nσ (t)
∂tn

=

∞∑
m=0

qm
∂mϵ(t)
∂tm

, (3.20)

where un and qm are constant coe�cients. �e above equation, wri�en in an
operator form, can be seen to be

U[σ (t)] = Q[ϵ(t)], (3.21)

where U and Q are di�erential operators.
�e di�erence between the elastic and viscoelastic behaviors of the materials

can be seen through Dynamic Mechanical Analysis (DMA) tests, where the stresses
(reaction forces) are monitored on a test sample on which a cyclic strain is imposed.
In the case of the elastic material, the stress is seen to vary in phase with the
strain cycles. In a viscoelastic material, however, as a consequence of the time
dependence of the material, the stress cycles are seen to lag the strain cycles, the
lag depending on the frequency. �is can be seen by taking the Laplace transform
of equation 3.21. �e transformed equation can be seen to be

ū(s)σ̄ (s) = q̄(s)ϵ̄(s). (3.22)

For suddenly imposed strain, ϵ(t) = ϵ0H (t), where H denotes the Heaviside func-
tion, the relation between the transformed stress and strain can be seen to be

σ̄ (s) = Q̄(s)
s

ϵ0, (3.23)

where Q̄(s) = q̄(s)
ū(s) . �e quantity Q̄ (s)

s can be de�ned to be Ḡ(s), the Laplace
transformed relaxation function. �is function can be de�ned in the time domain
to be

G(t) = L−1 Q̄(s)
s
. (3.24)

Now, for a harmonic excitation, ϵ(t) = ϵ0 exp(iωt), the transformed stress can be
seen to be

σ̄ =
ϵ0Q̄(s)
s − iω . (3.25)



Chapter 3. Polymers 33

Steady state response can be obtained by se�ing s = iω and inverting the transform.

σss (ω) = Q̄(iω)ϵ(ω). (3.26)

�e complex modulus can be de�ned as G∗(ω) = Q̄(iω). �e real part of the
complex modulus is termed as the storage modulus and the imaginary part as loss
modulus.

For a standard linear solid, a�er some algebraic manipulations, the storage and
loss modulus can be seen to be

Gs (ω) = G0

[
1 −

N∑
i=1

γi

]
+G0

N∑
i=1

γiτ
2
i ω

2

1 + τ 2
i ω

2
, (3.27)

Gl (ω) = G0

N∑
i=1

γiτiω

1 + τ 2
i ω

2
. (3.28)

An elastic material is characterized by τi → ∞ in which case, the storage and
loss modulus can be seen to be G0 and 0 respectively. �ey can be observed to be
frequency independent.

�e dynamic modulus is then de�ned as Gd (ω) B
√
G2
s +G

2
l . �e loss tangent,

δ , is de�ned as δ B arctan(Gl/Gs ). �e typical variation of dynamic modulus and
loss tangent for an elastomer can be seen in the �gure 3.2.

Figure 3.2: Evolution of dynamic modulus and loss tangent with frequency for polyurethane elastomer. Extracted from Corre, 2018.

�e DMA experiments are thus used to characterize the viscoelastic behavior
of the elastomer and calibrate the relaxation times and sti�ness ratios. �e dynamic
modulus at small frequencies is called rubbery modulus to indicate the material
behaves in a rubbery fashion at these frequencies. At larger frequencies, the
modulus is called glassy modulus to indicate that the material behaves in a glassy
fashion. �e loss tangent can be seen to increase from a small value at small
frequencies to a maximum at the intermediate frequencies and decrease to a smaller
value again at large frequencies. In the �gure 3.2, it can be seen that the loss tangent
a�ains a maximum at about ω = 109Hz.

When in large strains, the e�ects of viscoelasticity can be considered by either
introducing an internal variable (Coleman & Gurtin, 1967) or by considering
the current state of stress to be a function of current deformation state and the
deformation history (Green & Rivlin, 1997; Coleman & Noll, 1961). A detailed
discussion on the di�erent approaches can be found in Gerard A Maugin and
Muschik, 1994; Germain, Nguyen, and Suquet, 1983 and the references therein. In
the framework of Standard Generalized Materials, the internal variables are evolved
using a convex dissipation functional and its (Legendre-Fenchel) dual (Halphen &
Nguyen, 1975).
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Convolution integral formulation

A multiple integral constitutive equation has been proposed in Green and Rivlin,
1997 to consider the e�ect of deformation history on the current state of stress.
�e state of stress at any time has been expressed as

σ (t) = F (t)G [
E(t − s)|∞s=0

]
F (t)T (3.29)

Assuming that the functional G is continuous in the sense of Drapaca, Sivalo-
ganathan, and Tenti, 2007, a form of stress has been obtained in the form of
multiple integral series (Wineman, 2009).

G
[
E(t − s)|∞s=0

]
=

∫ t

−∞
K1(t − s1)dE(s1)

+

∫ t

−∞

∫ t

−∞
K2(t − s1, t − s2)dE(s1)dE(s2)

+

∫ t

−∞

∫ t

−∞

∫ t

−∞
K3(t − s1, t − s2, t − s3)dE(s1)dE(s2)dE(s3) + . . . (3.30)

Finite Linear Viscoelasticity

Using the hypothesis of fading memory in Coleman and Noll, 1961, the stress was
made to depend on recent deformations. To account for history e�ects, the relative
deformation gradient, F t (τ ), has been introduced. F t (τ ) can be seen to describe the
con�guration of system at a time τ < t with respect to the current con�guration
at time t (Coleman & Noll, 1961). �e stress at the current time is then expressed
as a functional of the current strain and of the history.

σ (t) = F (t)
{
k2[C(t)]+

∫ t

−∞
K2[C(t), t − s]

[
F (t)T (Ct (s) − I )F (t)

]
ds

}
F (t)T (3.31)

�e �rst term in the above expression can be taken to represent the ‘long term’
behaviour of the material. �e second term characterizes the history dependence.
It shall be noted that the use of the above from of stress is restricted to in�nitesimal
deformations if applied for a ‘fast’ process. Using it for large deformations restricts
its application to ‘slow’ process. �e notions of ‘fast’ and ‘slow’ can be found
in (Coleman & Noll, 1961). Many other formulations of linear and non-linear
viscoelastic models exist. A review together with the notions of ‘weak’ and ‘strong’
fading memory can be found in Wineman, 2009 and Drapaca et al., 2007.

Internal variable formulation

In the internal variable formulation of viscoelasticity, the history dependence
accounted for by an internal variable. �e usual approach in these models is
to decompose the deformation gradient into an elastic and a viscoelastic part
(F = F eFv ). �e internal variable is taken as the strain in the dash pot (Fv ) in
a Maxwell element. �e evolution of the internal variable is represented by a
di�erential equation (Halphen & Nguyen, 1975). Many viscoelastic models have
been formulated using this approach as in (Reese & Govindjee, 1998; Bergström &
Boyce, 1998).
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summary

In this chapter, a brief introduction to the polymer materials was provided. Some
hyperelastic and viscoelastic models have been presented brie�y. Di�erent ap-
proaches to model the inelastic behavior of polymers have been presented brie�y
as well.

the current thesis

In the current thesis, the fracture experiments performed in Polyurethane elas-
tomers in Corre, 2018 will be analyzed �rst. It will be determined if any shock-front-
like features are present in the material. �e velocity and strain �elds obtained
from the experiments will be examined.

More experiments performed on the elastomer samples of di�erent geometries
will be presented next. �ese experiments have been conducted to con�rm the
observations of Chen et al., 2011 for polyurethane elastomers. �e importance
of including viscous e�ects while performing the analysis of dynamic fracture of
elastomers will be discussed next. In that part of the thesis, the crack speeds will be
imposed implicitly imposed on the model using the displacement �elds extracted
from the experiments.

A rate dependent cohesive zone will be presented next and will be used to
predict the crack speeds. �e crack speeds will be obtained and compared for
various stretch levels and geometries.

�e non linear viscoelastic model by Reese and Govindjee, 1998 will be imple-
mented next under plane stress conditions and used to compute the viscoelastic
dissipation during the crack growth. �e strain energy loss in the body will be
compared with the viscous dissipation and the energy expended in the cohesive
zone.



part ii
EXPERIMENTS



4fracture of polyurethane

Since the majority of the work in this thesis is the continuation of the works of
Corre, 2018; Corre et al., 2020, this chapter reviews the experimental setup, the
experiments performed and some results from that study. Additional observations
from that study will be presented in a later chapter.
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�e fracture experiments have been conducted on Polyurethane elastomer in
pure shear con�guration in Corre, 2018. �is chapter presents an overview of the
experimental protocol followed and the results obtained in that thesis. �e same
setup will be used later on to conduct more tests on di�erent geometries.

4.1 experimental setup

�e setup can be found in Corre, 2018, but is repeated here for convenience. �e
specimen has dimensions such that its length (l0) is greater than its height (h0)
which, in turn, is greater than the thickness (e0). It is held on its longest side in
the jaws of a tensile machine and stretched to the target level using the supports
molded onto it. See �gures 4.1 and 4.2. �e strain state is homogeneous at the center,
but the homogeneity is lost towards the right and le� edges. �e deformation
gradient at the center of the specimen a�er being stretched (with respect to the
coordinate system in �gure 4.1) is

F =
©«
1 0 0
0 λy 0
0 0 1

λy

ª®®¬ex ,ey,ez (4.1)

where λy =
hf
h0

, hf is the �nal height of the specimen a�er being stretched. �e
specimens tested in Corre, 2018 were 200 mm long, 40 mm tall and 3 mm thick.

A razor blade is used to initiate a seed crack once the specimen is stretched.
A stand is used to mount the razor blade, the height of which is adjusted to the
required level depending on the specimen stretch.

4.2 procedure

�e specimen is initially painted in speckles that allow tracking the displacement
�elds of speckle particles using a DIC so�ware. Once painted, the specimen is
mounted on the tensile machine using the supports on its ends. Once secured, the
top end is pulled at a speed of 20 mm/min. Once, the target stretch level is reached,
a seed crack is initiated using a razor blade. It shall be noted that the tensile
machine continues to pull the specimen when the crack is propagating through it.
However, as will be seen later, as the crack propagation process typically lasts for
about 10 ms, the displacement of the top end during this time is negligible.

�e entire process is monitored by using two cameras - a High Resolution (HR)
and a High Speed (HS) camera. �e HR camera monitors the initial stretching part
of the process, while the HS camera monitors the fracture part. �e HR camera

Figure 4.1: Specimen geometry used in
the experiments. Adopted from Corre,
2018.
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Figure 4.2: Specimen held in tensile
machine and razor blade mounted.

Test sample
Razor 
blade

captures the images at about 2 frames/s and the HS camera at 10000 to 30000
frames/s. A trigger device is used to stop the HS camera once the crack completely
passes through the specimen. �e images from the two cameras are then used
to obtain the displacement �elds all through the crack propagation phase using
the Digital Image Correlation (DIC) technique using VIC-2D so�ware (“VIC-2D,
Correlated Solutions”, 2019). �is procedure can be found in Corre, 2018.

4.3 results

�e primary outputs of the experiments are the crack speeds. �e use of the DIC
technique enables to access the displacement �elds all through the duration of the
experiment. Other quantities such as velocities and strains can be derived from
the displacement �elds through their di�erentiation in space and time.

�e crack speeds obtained from the experiments in Corre, 2018 can be found
below. Distinguishing the cracks into either subsonic or transonic requires the
de�nition of the shear wave speed. For linear elastic material subjected to small
strains, this can be computed trivially as

√
G
ρ , G and ρ are the shear modulus and

density, respectively. However, elastomers are so� materials that can be subjected
to large deformations and a non-linear model is necessary to describe their behavior
at these strain levels. Hence, the expression for shear wave speed in a linear elastic
material cannot be used for the current scenario.

Mooney-Rivlin model (Ronald S Rivlin & Saunders, 1951) can be used to describe
the behavior of elastomers until a strain level of about 250%. �e expression for
shear wave speed for this material model has been obtained by Boulanger and
Hayes, 2001. �e cited reference obtains the speed of a �nite perturbation that
travels in a material described by the Mooney-Rivlin model. No assumption has
been made in regards to the amplitude of perturbation. Hence, it can be used to
obtain the speed of even large perturbations that are superposed on a base strain
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state. �e strain energy density of the material in Mooney-Rivlin model is

ψ = C10(I1 − 3) +C01(I2 − 3), (4.2)

where I1 and I2 are the invariants of the right Cauchy green tensor, C = FT F . C10

and C01 are the material parameters. �e shear wave speed in this case can be
obtained to be

c2
s =

1

2ρ0

(
C10n.bn +C01a.b

−1a
)
, (4.3)

where b = FFT is the le� Cauchy green tensor corresponding to the background
deformation on which the perturbation is superposed, ρ0 is the density of the
material. n and a are the propagation and polarization directions respectively. For
a shear wave, hence, n.a = 0. It shall be noted that the wave speed in the above
expression is on the deformed state. �e speed in the undeformed state can be
obtained by using the expression w −v = Fw0, where w and w0 are the speeds in
the deformed and undeformed con�guration respectively. v is the particle velocity.

A�ention should be drawn towards a couple of assumptions made during the
development of the expression for shear wave speed in equation 4.3. First, the
background deformation state on which the perturbation has been imposed is
assumed to be homogeneous. �e spatial derivatives of quantities like b have
hence been ignored (see equations 49-51 of Boulanger and Hayes, 2001). Another
assumption is that of the existence of a perturbation of the form f = h(x .n−cst)+
k(x .n + cst). Physically, this means that the form of perturbation should remain
unchanged with respect to an observer traveling with the wave. It has not been
discussed whether such a waveform can indeed exist. Saccomandi, 2007 mentions
that in non-linear materials, solutions that retain their form may not exist. Perhaps
a perturbation of the form f = h(x .n − cst) + k(x .n + cst) can exist as long as it is
in�nitesimal.

�e shear wave speed can be computed using the equation 4.3. It can then
be used to distinguish the crack speeds to belong to either subsonic or transonic
regime. Transonic cracks have been observed in elastomers, �rst reported in
Petersan et al., 2004 and later in Chen et al., 2011; Mai et al., 2020; Corre et al., 2020.
�e results of crack speeds from Corre et al., 2020 together with the shear wave
speed can be seen in �gure 4.3. As will be discussed later, the shear wave speed
seen in the �gure 4.3 is slightly di�erent from what has been obtained in Corre
et al., 2020. As can be seen, the general trend is for the crack speed to increase
with the applied strain. At larger strains, the increase in crack speed is not as big
as that at smaller strains for the same strain increment. �e crack speeds remain
smaller than cs for stretches smaller than 2.5. Starting from a stretch value of about
2.5, the crack speeds exceeded the shear wave speed. �e former cracks are said
to be Subsonic, while the la�er is Transonic. �e crack opening pro�les for crack
propagating in di�erent regimes can be found in �gures 4.13 and 4.14 of Corre,
2018. It is generally known (Chen et al., 2011; Petersan et al., 2004) that the crack
opening changes from parabolic to a wedge shape once the crack speed exceeds cs .

Some more data that can be obtained from that study is the variation of crack
speed along the length of the specimen during the fracture process. �e speeds in
the deformed and undeformed con�gurations can be seen in the �gure 4.4. �e
speeds in the two con�gurations are related by wex = w0FeX . It can be seen that
the speeds in both the con�gurations are almost the same at the center of the

specimen where F takes the form
©«
λx 0 0
0 λy 0
0 0 1

λx λy

ª®®¬, where λx ≈ 1. At the edges,
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Figure 4.3: Crack speed vs stretch re-
sults obtained in Corre, 2018. Shear
wave speed can also be seen as a blue
line.
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λx < 1 and so, c0 can be seen to be greater than c .

Figure 4.4: Crack speeds in deformed
(c) and undeformed con�gurations
(c0). Figure adopted from Corre, 2018
with axes relabeled.

4.4 complex geometry and crack path

Some more experiments were performed where the specimen was made non-
homogeneous by introducing a pro�le into the specimen (see �gure 4.5). �e crack,
initiated at the le� end of the specimen, propagates at a higher speed till it reaches
the geometric non-homogeneity. It slows down, propagates at a smaller speed in
the region where the stretch level is smaller because of the inserted pro�le and
accelerates back to a di�erent speed towards the right end.

In another case, the crack was initiated closer to the top of the specimen instead
of at the middle between the two supports to study the path it takes (see �gure 4.7).
�e crack, a�er a brief instance of traveling straight, turned towards the center
of the specimen. �e vertical speed of the crack gradually goes to zero once the
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Figure 4.5: Specimen with a pro�le
drilled-in. Figure adopted from Corre,
2018 with labels in English.

Figure 4.6: Results of the experiment
with non-homogeneous geometry. (a)
Evolution of distance travelled by the
crack with time elapsed. (b) Crack
speed vs the distance travelled by the
crack. Figure adapted from Corre, 2018
with axes relabeled in English.

crack reaches the center of the specimen. Some snapshots from the experiment
can be found in �gure 4.7 and the variation of horizontal and vertical components
of crack speed with time can be seen in �gure 4.8.

Figure 4.7: Propagation of an oblique
crack. Figure adopted from Corre,
2018. a© crack initiated at the le�
near the top end. b© crack propagates
straight before turning. c© crack turns
and d© propagates straight.

4.5 comparison with literature

It shall be noted that Trasonic cracks were �rst reported in literature in the works
of Petersan et al., 2004. In that article, the shear modulus was measured through
the experiments and was then used to compute the shear wave speed. It was
reported that the cracks traveled about 10-20% faster than the shear wave speeds



Chapter 4. Fracture of polyurethane 43

Figure 4.8: Horizontal and vertical
crack speeds for the turning crack. Fig-
ure adapted from Corre, 2018 with la-
bels renamed in English.

thus computed. However, no shock was reported to have been observed. Usually,
in the case of a mode-II crack propagating in a bri�le solid along a weak plane,
mach cones were observed along which the particle speeds exhibit jumps (Rosakis
et al., 2000; Rosakis, 2002). Petersan et al., 2004 does not report such jumps in their

Figure 4.9: Crack speeds vs specimen
height in Gent and Marteny, 1982b.
Material is subjected to λx = 2 and
λy = 4.

study. Instead, the crack opening was reported to be wedge-like and is strikingly
similar to the Mach cone. �e problem was studied analytically and numerically
in Marder, 2006 by treating the material as a triangular la�ice. It was mentioned
in that work that the inclusion of Kelvin dissipation in the model increases the
imaginary modulus of the rubber and also the high frequency sound speed (page
26 of the article). �e next instance where Transonic cracks were reported is in
Chen et al., 2011 (see �gure 4.10). �e experiments were performed on natural
rubber specimen. �e specimens were stretched to the target level and the crack
propagation was studied. An additional observation was reported in that study
that the crack speeds become independent of the specimen height in the Transonic
regime. Meaning, the crack speeds were seen to be a function of specimen height
for a given stretch level when the crack speeds are smaller than the shear wave
speed. Once the crack enters the Transonic regime, its speed was seen to not depend
on the specimen height. Meaning, in this regime, crack speeds in specimens of
di�erent geometry subjected to the same stretch level will remain same. Some
similarity can be noted between this observation and that in Gent and Marteny,
1982b (see �gure 4.9). In Gent and Marteny, 1982b, specimens of di�erent heights
are all subjected to the same stretch level and crack speeds were measured. It was
observed that a�er a certain specimen height, the crack speeds did not increase.

Figure 4.10: Results from Chen,
Zhang, Niemczura, Ravi-Chandar, and
Marder, 2011. In the �gure a©, crack
speeds were plo�ed against applied
stretch while in the �gure b©, crack
speeds were plo�ed against the Energy
density, measured as wh0.
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Whether the two observations are similar is unclear and will be discussed in the
later chapters.

Further experiments in this direction were also carried out by Corre et al., 2020;
Mai et al., 2020. Transonic cracks were reported in these studies as well. However,
experiments on di�erent geometries have only been conducted in Chen et al., 2011.
Hence, more experiments have been performed on the specimens of Polyurethane
elastomer to see if the phenomenon of height independence is observed here as
well. �ese will be reported in the next chapter.

summary

In this chapter, the experiments performed in Corre et al., 2020 have been presented.
Samples that are 40 mm tall were tested and Transonic cracks were observed
starting from a stretch level of about 2.5. More experiments were performed where
the sample geometry was made non-homogeneous and where the crack initiation
was made nearer to top edge of the sample. �e height independence of crack
speed in Transonic regime wasn’t investigated and it will be the point of departure
of the next chapter.



5additional experiments

To test the e�ect of specimen geometry on the crack speeds, we tested Polyurethane
samples of di�erent geometries to obtain the crack speeds at di�erent loads. �is
chapter will present the additional experiments performed on di�erent geometries
of the polyurethane elastomers. It also describes the tests performed using di�erent
test protocols. Temperature measurements performed on some test specimens will
be presented as well.

contents

5.1 Results of 20 mm and 60 mm samples . . . . . . . . . . . . . . . . 46
5.2 Other experiments on the 40 mm specimen . . . . . . . . . . . . . 48
5.3 Samples of another batch (Batch 2) . . . . . . . . . . . . . . . . . 49
5.4 Temperature measurements . . . . . . . . . . . . . . . . . . . . . 50
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



Chapter 5. Additional experiments 46

As already mentioned, in Chen et al., 2011, it was reported that the crack speeds
remained independent of the specimen height in the Transonic regime. No other
studies exist that report a similar observation. Hence, experiments have been
conducted on the Polyurethane elastomers of di�erent geometries in addition to
what has been done in Corre, 2018. �ose will be reported below.

5.1 results of 20 mm and 60 mm samples

Batch 1

�e other specimens tested were 20 mm and 60 mm tall and belonged to a di�erent
batch (to be called batch 1). �e length (200 mm) and the thickness (3 mm) were
the same as that of the 40 mm samples. �e test protocol followed was the same
as that followed for the 40 mm samples. �e specimens had bulges molded into
them which have been used to hold them in a tensile machine. �ey were then
stretched to di�erent stretch levels and a crack is introduced. �e initial stretching
and the crack propagation phases were monitored with an HR and an HS camera
as was done for the 40 mm specimen tests. �e specimens were pulled with the
same speed while testing the 20 and 60 mm tall samples as the 40 mm tall sample,
that is 20 mm/min.

As opposed to the tests in Corre, 2018, in the tests performed on the new test
samples, the test setup has been changed to include strain gauges at the le� and
the right ends of the support. See �gure 5.1. �is enables to obtain the evolution of
reaction forces (from the strains from the strain gauges) at the le� and right ends
separately as the crack propagates through the specimen.

�e crack speeds obtained for these two specimen sizes can be seen in �gure
5.2 along with the 40 mm tall specimen results from Corre, 2018. It can be seen
that the overall trend is an increase in crack speed with an increase in the stretch
level.

However, the trend is not monotonic. In some experiments, it was observed
that the crack did not accelerate to a higher speed a�er initiation. Instead, it
continued to propagate at a speed that is smaller than that at smaller stretches. In
some experiments, the crack speed varied drastically as it progressed along the
specimen. It was also observed that the crack surfaces were considerably rougher
in the places where the crack slowed down. �e variation of crack speed along
the length of the specimen in such cases can be seen in the �gure 5.3. �e cases
where the crack speed varied all through the propagation phase are indicated by
black dots and circles in �gure 5.2. �e crack speeds reported for such cases are
for when the crack is at the center of the specimen, ie at about 100 mm from the
le� end. It shall be noted that these experiments were performed only on the 20
and 60 mm specimens and the �uctuations in the crack speeds were observed in
both the geometries.

�e variation of reaction forces measured from the strains in the strain gauges
as the crack propagated through can be seen in the �gure 5.4. �e results reported
correspond that presented in �gure 5.3 (60 mm tall specimen and λy = 3.0). As
the crack begins to propagate and breaks a part of the specimen, the reaction
force computed from the le� strain gauge begins to drop. A�er a li�le delay, the
force from the right strain gauge begins to drop as well. Corresponding to the
large variations observed in the crack speed, oscillations can be seen in the force
evolution as well.

�e intent in performing the above experiments is to obtain the crack speeds in
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Figure 5.1: Experimental setup includ-
ing strain gauges.

Left strain gauge Right  strain gauge
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Figure 5.2: Results of the experiments
performed on the 20 mm and 60 mm
samples. �e 40 mm specimen results
from Corre, 2018 can also be seen.
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Figure 5.3: Crack speed (in the de-
formed con�guration) vs distance trav-
eled for 60 mm tall specimen under
λy = 3.0. A signi�cant variation of
the crack speed can be seen.
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di�erent geometries and compare them to verify the �ndings of Chen et al., 2011.
However, it can be seen that because of the signi�cant variations of crack speeds
observed in 20 and 60 mm geometries, the speeds in those geometries could not
be compared with the 40 mm geometry as well as with each other. Hence, it was
decided to procure another batch of samples, this time to test all the sizes.

5.2 other experiments on the 40 mm specimen

Since the 40 mm tall specimens were already tested in Corre, 2018, other kinds of
experiments were performed on that geometry (still belonging to batch 1). �e
test protocol is di�erent from the previous section and is as follows. An initial
seed crack of about 5 mm is introduced in the specimen before it is stretched. �e
specimen is then held in the jaws of the tensile machine and is pulled at di�erent
speeds from the previous section. Tests were conducted at cross-head speeds of 10
mm s−1, 30 mm s−1, 60 mm s−1, 120 mm s−1 and 240 mm s−1. It was intended to
see if the crack initiation and speeds obtained depend on the initial stretching rate
of the specimen.

It was observed that the crack did not propagate in a straight line like the other
tests and instead, branching occurred at di�erent locations. In some cases, one of
the branches stopped propagating and the other propagated alone while in the
other cases, both the branches propagated. Result for one such instance where the
specimen is pulled at 30 mm s−1 and the crack is near the right end of the specimen
can be seen in �gure 5.5. Similar observations have been made in the other tests
as well, when the crack was at di�erent locations. �e locations where the crack
a�empted to branch in di�erent experiments can be seen in �gure 5.6. However,
the results could not be reproduced when the experiments were repeated multiple
times. �e experiments which resulted in crack branching earlier did not do so the
second time under similar loading conditions.

Some 40 mm geometry samples were then tested under the same protocol as
the rest of the other geometries (20 and 60 mm) to check if the properties of the
specimen in batch-1 are same as that in Corre, 2018. �e specimen was stretched
to a stretch level of 3.0 and a seed crack was introduced. An a�empted branching
was observed when the crack was at the center of the specimen! See �gure 5.7.
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Figure 5.4: Evolution of reaction forces
vs time in the le� and the right LVDT.
�is corresponds to the 60 mm tall
specimen and λy = 3.0.
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Figure 5.5: Crack branching event in
40 mm specimen (batch-1) with an
initial seed crack when pulled at 30
mms−1. Both the branches propagate
further and the specimen is �nally bro-
ken into three pieces.

It shall be noted that no such observations were made prior to this except for
the studies of Moulinet and Adda-Bedia, 2015. However, in Moulinet and Adda-
Bedia, 2015, experiments were conducted on balloons where the stress state is
bi-axial and hence, there is a considerable stress along the crack path in addition
to perpendicular to it.

5.3 samples of another batch (batch 2)

Since the results from batch-1 were not as expected, experiments were conducted
on specimen of a di�erent batch (to be noted as batch-2). �e test protocol followed
is exactly the same as that in section the previous sections (as in Corre, 2018), where
the specimens were stretched and a crack is introduced. �e crack propagation
was again monitored by an HR and an HS camera. �e crack speeds obtained from
this batch of specimen can be seen in �gure 5.8.

It can be seen that the crack speeds in this new batch are entirely di�erent
from those obtained from the batch-1 as well as in Corre, 2018. For instance, at
a stretch level of 3.5, the crack surface was considerably rougher and the crack
speeds were considerably lower for all the geometries than in the previous batch.
It might be possible that the specimen properties varied considerably between
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(a) Cross-head speed of 30 mm min−1.

(b) Cross-head speed of 60 mm min−1.

(c) Cross-head speed of 120 mm min−1.

(d) Cross-head speed of 240 mm min−1.

Figure 5.6: Branching a�empts made
by crack in the 40 mm specimens
(indicated on the broken samples).
�e arrow points to the location
where the branching was a�empted.
Some branching events were success-
ful while the others were not. An ini-
tial seed crack was present in all the
cases. �e cross-head of the tensile ma-
chine was pulled at di�erent rates as
indicated in the captions.

di�erent batches. No visible defects were present in the specimen.
�e uniaxial response of the material from the new batch is determined by

extracting the test sample from the 60mm tall specimen. �e response can be seen
in the �gure 5.9. �e response of the sample in pure shear con�guration can also be
seen. It can be observed that starting from a strech level of about 3.0, the behavior
of the material from the new batch considerably di�ers from that of the previous
batch in the uniaxial case. Similarly, in pure shear case, the behaviors of the two
batches can be seen to be similar until about a stretch of 3.0, beyond which they
were observed to diverge. �is observed di�erence in the material behavior may
be one of the reasons for the observed di�erences in the crack speeds between the
two batches.

5.4 temperature measurements

In addition to obtaining the displacement �elds in the specimen all throughout the
experiment, a�empts were made to measure the temperature change in the speci-
men (of batch 2) as the crack propagated. Some other instances of measurements
of temperature raise during the crack propagation can be seen in Fuller, Fox, and
Field, 1975; D’Amico, Carbone, Foglia, and Galie�i, 2013. Two techniques were
used in Fuller et al., 1975 for this. �e �rst method is called Liquid crystal �lm
technique, where a thin, even �lm of the liquid crystal is spread on the surface of
the specimen. �e color of the liquid crystal is sensitive to temperature and hence,
a change in the color of the layer was used to determine the temperature raise.
�is technique was used to measure the temperature raise of the PMMA specimen
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Figure 5.7: Crack branching a�empt in
40 mm specimen (batch-1) following
the normal test protocol. �e two side
branches were arrested and the center
branch propagated further.

Figure 5.8: Results of the experiments
from batches 1 and 2. Results from
Corre, 2018 can also be seen.
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as a crack passed through it. �e second method is using thermocouple junctions,
where one junction was placed about 0.5 mm above the crack path while the other
junction is placed remotely. �is setup is used to measure the temperature raise
during crack propagation. An Infrared detector was used in the same study as well.
In D’Amico et al., 2013, the temperature raise due to the crack propagation in a
viscoelastic solid has been measured. �e material used is SBR. An IR camera was
used. A temperature raise of about 1◦C was reported. However, the crack speeds
in that study are of the order of 50 mm s−1.

�e temperature measurements were made on the samples in batch-2. It
was not possible to measure the temperature for many experiments because of
limited number of samples. �e measurement was done for the 40 mm sample
for an applied stretch level of 3. For this batch, the crack speed for this stretch is
about 5 m s−1, which is much smaller than observed in Corre, 2018. Hence, these
temperature measurements should only be considered qualitatively. Due to the
low acquisition rate of the IR camera, only one frame was obtained when the crack
was propagating through the specimen. �e results for that case can be in �gures
5.10 and 5.11.

It can be seen from the �gures that there is a large increase in temperature in
the material at the vicinity of the crack tip. �e temperature of the specimen during
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Figure 5.9: Uniaxial and pure shear re-
sponse of the material from batch-2.
Corresponding results from the mate-
rial from Corre, Coret, Verron, Leblé,
and Le Lay, 2020 can also be seen.
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Figure 5.10: Temperature distribution
(in ◦C) when the crack is about at the
center of the specimen. �e upper
value of the scale is truncated to bring
out the temperature far ahead of the
tip and far behind the tip.

the stretching process changed from about 25 to 27 ◦C. �is can be observed from
the temperature di�erence in the material far away from the tip in front of and
behind it. �e temperature of the material in the vicinity of the tip (and hence the
crack faces) can be seen to rise to about 70 ◦C. �is can perhaps be a�ributed to
the viscoelastic dissipation in the vicinity of the tip as a consequence of high strain
rates in that region. In the later chapters, an a�empt will be made to identify and
compare the region in which the material dissipates to the results just presented.

5.5 discussion

�e reason for performing additional experiments on samples of di�erent sizes is
to verify the phenomenon of the crack speed (in-)dependence on the specimen size
in Transonic regime as reported in Chen et al., 2011. However, as was presented,
the crack speeds for the 20 mm and 60 mm (batch-1) samples did not follow a
monotonic trend as observed in Corre, 2018. A large variation of crack speed
was observed in some experiments and there was a corresponding change in the
appearance of the crack surface. �e crack surface was observed to become rougher
with a decrease in the crack speed. However, a quantitative relation between the
two has not been obtained. Upon visual inspection, later on, it was observed that
some specimens contained air bubbles throughout the specimen (and so, probably
along the prospective crack path). Some specimens contained air bubbles that were
initially invisible but became visible once they were stretched. �is might be one
of the reasons for the observed variation in the crack speeds.
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Figure 5.11: Temperature distribution
in the vicinity of the tip (in ◦C). Tem-
peratures as high as 70◦C can be seen
(ambient at about 25◦C).
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Di�erent type of experiments were conducted on the 40 mm specimen from
batch-1 as data was already available for this geometry from Corre, 2018. A seed
crack was introduced into the specimen and the specimen was then pulled at
di�erent speeds. It was observed that the crack underwent branching in multiple
cases. Since this was unexpected, the 40 mm specimen was then subjected to the
same protocol to check if similar results as that of Corre, 2018 can be obtained.
However, a di�erent behavior was observed. In Corre, 2018, the crack, once
initiated travels straight through the specimen. �e crack speed remained constant
in the middle of the specimen in most cases. In the current study, an a�empted
branching was observed when the crack is at the center. �ree branches can be
seen to originate in �gure 5.7. �e top and bo�om branches stopped propagating
while the center crack moved on. As already mentioned, this is in contrast to the
observations from Corre, 2018. More tests, however, could not be conducted as
there were no more samples available from batch-1.

Another batch (batch-2) of samples of all the geometries, 20, 40, and 60 mm
were procured to repeat the experiments, this time on the samples from the same
batch. Experiments conducted on this new batch, however, resulted in crack speeds
that are entirely di�erent from the previous batches. At the same stretch levels,
the crack speeds were considerably smaller than in the previous batches. �e crack
surface was considerably rougher as well. However, it can be seen from �gure 5.8
that, in the experiments conducted on the new batch, the crack speeds in the three
geometries se�led down at a certain speed a�er certain stretch level. Beyond a
stretch of 500 %, the crack speeds se�led down at about 50 m s−1 in all the three
geometries. Perhaps, this can be compared with the results obtained by Chen et al.,
2011. �e uniaxial and pure shear responses of the samples from batch 2 di�ered
from that in Corre, 2018 (see �gure 5.9). �is may explain the observed di�erences
in the crack speeds.

�e images taken from the HR and the HS camera during the initial stretching
and the crack propagation for samples from batch-1 and batch-2 can be found at
Kamasamudram and Coret, 2019a, 2019b.

Temperature measurements have been taken on some of the samples from
batch-2. It has been observed that the temperature of the material in the vicinity of
the crack tip rises to about 70◦C. �e rest of the sample remains at about 26◦C. A
change in temperature of the sample has been observed during the initial stretching
process as well, which corresponds to the entropic elasticity of polymers. �is
e�ect can also be observed when the crack is at the center of the specimen. In
regions far from the tip, a change in temperature can be observed in front of and
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behind the crack tip. �is temperature di�erence is about 2◦C.
As a consequence of di�erent results from di�erent batches, the results from

these two batches will not be considered for the analyses that will be performed in
this thesis.

summary

�e additional experiments performed on di�erent geometries and batches of
polyurethane specimens have been described in this chapter. As a consequence
of the variation of material properties between di�erent batches and presence of
defects in specimens, the results from the experiments could not be compared with
those from Corre, 2018. Additionally, temperature measurements have been taken
on the specimens from batch-2. A considerable increase in the temperature near
and behind the crack top along the crack faces has been observed.



6
revisiting the fracture
experiments

�e experiments performed in Corre et al., 2020 will be revisited in this chapter.
�e intent is to examine the velocity and the strain �elds to look for any shock
waves in the transonic regime. �e variation of surface roughness with the crack
speed in di�erent experiments will be presented as well.
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Crack propagation in Polyurethane sheets has been studied in corre2018. �e
specimens that are 40 mm tall were stretched and a crack was introduced in the
specimen. Transonic cracks were observed in that study starting at a stretch value
of 2.5. Transonic cracks were �rst reported in the studies of Petersan et al., 2004.
In that study, natural latex rubber sheets were stretched and a crack is introduced.
It was observed that at a stretch level of about 3.2, the crack speed was able to
exceed the shear wave speed. �e authors of Petersan et al., 2004 remark

Last, we note that when a moving object travels in an elastic medium faster than
the wave speed, it creates a shock wave in the form of a Mach cone. �e wedgelike
crack opening typical of cracks in rubber (shown in Fig. 2) is strikingly similar to
the Mach cone, suggesting that rubber cracks are shocklike, exceeding some response
speed of the medium.

�is has been further studied in Marder, 2006, where la�ice models were used
to simulate the crack propagation. A Neo-Hookean model was used to describe the
hyperelastic part of the material behavior. Kelvin dissipation is added to describe
the viscoelastic dissipation of the material. �e author comments

Buehler et al. (2003) have proposed that hyperelasticity plays a critical role in
dynamic fracture, and that in particular an increase of sound speed near a crack tip
can allow cracks to travel faster than the distant shear wave speed. In the analysis of
this paper, there is an increase of elastic modulus near the tip of the rupture, but it is
not in the form that Buehler et al. proposed. �e theory here involves an increase in
the imaginary modulus of rubber with frequency, rather than an increase in the real
modulus of rubber with extension.

�is is somewhat similar to what will be discussed in this thesis. However, a
FE analysis will be used along with a continuum based viscoelastic material model.

Other studies of this nature were made in Chen et al., 2011. Rubber sheets
were used to perform fracture experiments in that study. However, as natural
rubber tends to strain-crystallize at high strains, the crack could not propagate
at those strains (Zhang, Niemczura, Dennis, Ravi-Chandar, & Marder, 2009). To
circumvent this, the experiments in Chen et al., 2011 were conducted at 85◦C. High
temperatures prevent the crystals from forming at higher strains. Numerical studies
were also performed in that study using la�ice models. Kelvin dissipation was
introduced as in Marder, 2006, but the model was calibrated based on retraction
tests performed on rubber in Niemczura and Ravi-Chandar, 2011. However, it
shall be noted that the experiments in Niemczura and Ravi-Chandar, 2011 were
carried out at 24◦C. It is not clear whether any adjustments were made to take the
temperature di�erence into account.

Other notable studies are that of Corre et al., 2020; Mai et al., 2020. In both
the studies, Transonic cracks were observed. Mai et al., 2020 considers the crack
opening to be of a wedge shape and to resemble a shock front as in Petersan et al.,
2004. �e experiments of Corre et al., 2020 will be analyzed in this thesis to look
for shock fronts in the Transonic regime.

It shall be noted that in mode-II cracks propagating along weak planes in
the Transonic regime, a shock front was observed that travels along with the
crack (Rosakis et al., 2000). �e shock waves were clearly visible in the density of
the photoelastic fringes observed. �e crack speed was seen to exceed cs , reach
cl and se�le down at about

√
2cs . Particle velocities were seen to rise sharply

when the Mach front passes through in the material (see �gure 23 of Mello et al.,
2010). Photoelastic fringes con�rm the passage of Mach front corresponding to
the velocity jump observed.

In the studies performed on the fracture of elastomers, such shock fronts have
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not been reported. Instead, as already mentioned, the crack faces behind the tip
were noted to be of wedge shape and resemble a shock front. Since no reports
of a Mach front were found in the literature and since the displacement, strain
and velocity pro�les are available for the experiments in Corre, 2018 from DIC
technique, they can be used to determine the presence or absence of the Mach
fronts. It shall be noted that a jump in particle speeds should be observed across
any such mach fronts. Hence, examining the velocity pro�les for the presence of
such jumps will help determine the presence of mach fronts.

6.1 displacement, velocity and strain fields

�e experiments in Corre, 2018 reveal that the crack speed at a stretch level of 1.7
is about 17m s−1 which is subsonic, while the crack speed at a stretch level of 3.5
is about 56m s−1, which is transonic. Hence, examining the velocity pro�les from
these two experiments will help determine the presence, or absence thereof, shock
fronts (Kamasamudram, Coret, & Moës, 2021).

6.1.1 Horizontal displacement

Presence of a Mach front in experiments will result in discontinuity of velocity
and strain �elds. �e displacement �elds however, do not exhibit any jumps.
However, for the sake of comparison later on with the simulations, the horizontal
displacement �elds for the two experimental cases of λy = 1.7, 3.5 will be presented.
Only top half of the specimen is included.

�e horizontal displacement �elds can be seen for both the cases in �gures 6.1
and 6.2 when the crack is about the center of the specimen. In both the cases, a
distinct kidney-bean-shaped pro�le can be observed in the material just behind
the tip. A similarity in both the distributions can be seen even though the former
crack is subsonic and the la�er is transonic.

6.1.2 Velocity �elds

�e velocity �elds for stretches 1.7 and 3.5 when the crack is at about the center of
the specimen can be seen in the �gures 6.3a and 6.3b. It can be seen that the velocity
�elds do not show a signi�cant di�erence in form between the two experiments.
�e peak value, however, is higher in the case of 3.5 as a consequence of a higher
crack speed. However, the velocity is continuous.

To obtain a be�er comparison, the velocity magnitudes are extracted at about
5 mm above the crack path and plo�ed in �gure 6.4.

�e velocity �elds are continuous. A jump was not observed as was the case
in the experiments in mode-II (Mello et al., 2010). And as mentioned earlier, the
maximum value of particle velocity is di�erent between the two cases because of
di�erent stretch levels and crack speeds.

Figure 6.1: Horizontal displacement
(in m) for λ = 1.7 plo�ed on unde-
formed con�guration.

−6.69 −5.38 −4.07 −2.76 −1.45 −0.14 1.17

·10−3



Chapter 6. Revisiting the fracture experiments 58

Figure 6.2: Horizontal displacement
(in m) for λ = 3.5 plo�ed on unde-
formed con�guration.
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(a) Particle velocity magnitude in m s−1 for a stretch of 1.7 and crack speed of 17 m s−1.
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(b) Particle velocity magnitude in m s−1 for a stretch of 3.5 and crack speed of 56 m s−1.

Figure 6.3: Particle velocity magni-
tudes in sub- and tran- sonic cases.

6.1.3 Strain �elds

Since the deformations in the current study are large, non-linear strain measures
are required for comparison. �e vertical component of deformation gradient, Fyy
has been chosen for this. �e distribution of Fyy for stretches of 1.7 and 3.5 can be
seen in the �gures 6.5a and 6.5b, analogous to the velocity �elds in 6.3a and 6.3b.

Like in the case of velocity, a sharp jump could not be seen even for the
deformation gradient. Similar to what has been done for velocities, the variation
of yy-component of deformation gradient at about 5 mm above the crack path in
the undeformed con�guration has been extracted and plo�ed in �gure 6.6. It can
be seen that Fyy varies continuously along the specimen length for both λy = 1.7
and λy = 3.5.

An additional observation has been made from the fracture tests on the 40
mm tall specimen. As mentioned earlier, a Pure Shear specimen is stretched to a
required value and a seed crack is initiated using a razor blade on the le� edge.
�e crack then runs from the le� to the right edge. When the crack is just near the
right edge (for example at about 20 mm from the right edge), it has been observed
that the specimen at the le� does not go back to zero strain level - some residual
strain is le� behind (Figure 6.6), which eventually goes to zero a�er about a few
minutes to few days a�er the experiment. �e strain level at the le� end at the
instant described depends on the initial stretch and hence the crack speed. �is
indicates the presence of relaxation times that are larger than the duration of the
experiment, which is typically about 10 ms. �e yy-component of the deformation
gradient near the le� edge are seen to vary between 1.1 and 1.9 for prestretch levels
between 1.7 and 3.5.

6.2 observations on the variation of surface roughness

In the studies on the fracture of elastomers, another aspect of interest is the
appearance of the fracture surface once the specimen is broken. �roughout the
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Figure 6.4: Comparison of particle ve-
locity magnitude at about 5 mm above
the crack path for stretches 1.7 and 3.5.
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(b) Fyy for a stretch of 3.5 and crack speed of 56 m s−1.

Figure 6.5: Particle velocity magni-
tudes in sub- and tran- sonic cases.

literature, there are reports of changes in the appearance of the crack surfaces with
crack speed and in some cases, the thickness of the specimen used for the study.
One of the earlier studies that discuss this aspect is Greensmith and �omas, 1956.
In that study, the propagation of a crack in an elastomer in ‘tearing’ con�guration
was studied and the process of crack propagation was classi�ed into steady and
stick-slip modes based on the reaction vs time behavior observed. A smooth
surface was observed in the steady tearing mode, while a rougher surface was
observed in the stick-slip mode. �e stick-slip mode is a�ributed to the presence of
a toughening structure as a result of high strains at the tip, typically crystallization.

Another such observation can be found in Stevenson and �omas, 1979, where
fracture of elastomers in balloon geometry was studied. �e surfaces were reported
to contain ‘undulations’ that are about 5-8 µm apart and 3-5 µm deep, but nothing
more was discussed about them. Another such discussion can be found in Kadir
and �omas, 1981, 1984 where again the fracture surfaces of specimen tested
in the pure-shear con�guration were reported to appear smooth but with small
‘paraboloidal’ marks pointing in the direction of propagation at higher crack speeds
and a rougher surface at smaller crack speeds. However, Gent and Marteny, 1982a
reports smooth crack faces despite the smaller crack speeds observed in some load
cases.

Cavitation was regarded as the reason for the change of surface roughness
with the crack speed in Kadir and �omas, 1981. �e smoother surface observed
at higher crack speeds was a�ributed to the absence of cavitation because of the
‘viscoelastic sti�ening’ of the region in the vicinity of the tip as a consequence
of high strain rates as the crack moves. �is theory was further investigated
in Lake et al., 1992, where an SBR sample was placed in a chamber �lled with
Ethylene Glycol which was used to apply external pressure to the sample. �e crack
propagation was studied under di�erent applied pressures to study its in�uence
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Figure 6.6: Comparison of Fyy at
about 5 mm above the crack path for
stretches 1.7 and 3.5.
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on the occurrence or the suppression of cavitation. �e results, however, were
reported to be unclear in that study for the lack of extensive data.

In Lake et al., 2000, the phenomenon of cavitation was examined by studying
the e�ects of specimen thickness on the surface roughness. It was found that
the specimen thickness a�ected the crack speeds and the surface roughness at
smaller crack speeds and that they remain independent of the thickness in the high-
speed regime. �e observed behavior in the low-speed regime was a�ributed to the
‘transverse stresses’ that develop at the tip as a result of an increase in the specimen
thickness which in turn promotes cavitation. Further studies in this direction were
performed by Tsunoda et al., 2000, where the e�ects of specimen thickness and
viscoelastic properties of SBR on the crack speed and surface roughness were
examined. �e SBR samples were swollen to various levels by Dibutyl Adipate
to modify the viscoelastic properties of the material. In other cases, unswollen
specimens with various thicknesses were used. In the case where the specimen is
swollen, the surface was observed to become rougher at smaller crack speeds. In
the case where specimens of di�erent thicknesses were used, the crack speed was
observed to change with thickness in the low-speed regime. High-speed regime
was seen to be una�ected by thickness. Both these results were a�ributed to the
presence (or absence) of cavitation.

When the fracture surfaces of the specimens broken in Corre, 2018 were
examined using Scanning Electron Microscope, some variations in the surface
roughness with crack speed were observed. �e variations in the surface roughness
observed can be seen in �gures 6.7 and 6.8.

Before presenting the observations from these �gures, it shall be noted that
the thickness of the specimen that is used in this study is 3 mm. �is value is
higher than what has been used in the literature, like in Chen et al., 2011; Gent
and Marteny, 1982a; Mai et al., 2020; Greensmith and �omas, 1956. Also to be
noted is the fact that the surface pa�erns presented in each �gure are from the
di�erent regions of the same experiment as opposed to the cited literature where
the roughness transition is observed between di�erent experiments as the crack
speed is varied. Other experiments that study the crack propagation in high speed
regime do not report such an observation.

Now, regarding the surface pa�erns in the �gures, the arrow in the �gures 6.7g
and 6.8g gives the direction in which the crack runs. Each sub�gure is associated
with a region in the specimen through an alphabet. In each of the sub�gures, the
direction of crack propagation is from right to le�. �e results presented here
are for the stretches of 2 and 3 where the crack speeds are about 33 m s−1and 52
m s−1respectively. In each case, the crack starts from the right end of the specimen,
accelerates to some speed, which it maintains for most of the experiment. For the
case of stretch level of 2, it was observed that the crack slightly decelerates as it
approaches the other end, while for the case of stretch level of 3, it was seen to
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almost remain at the same speed (see �gure 4.4 and Corre, 2018).

(a) Crack initiation at the right end. (b) Just a�er initiation. (c) About 50 mm from the right.

(d) In the middle of the specimen. (e) About 30 mm from the le� end. (f) �e le� end.

abcdef

(g) Locations where the roughness were measured.
Figure 6.7: Variation in surface roughness for the case λy = 2.0.

�e corresponding variation in the surface roughness can also be seen. In
�gure 6.7, at the right end near the initiation, a very rough surface can be seen,
probably from the razor blade used for the initiation. Once initiated, it can be
seen from �gures 6.7b, 6.7c and 6.7d that the surface becomes smoother. During
this phase, the crack speed can be seen to increase as well. However, as the crack
approaches the le� end, the surface can be seen to becomes rougher again (�gures
6.7e and 6.7f). �e crack speed towards the le� end can be seen to decrease for this
stretch level.

For the case of λy = 3.0, a similar trend in the surface roughness can be
observed in the initiation and acceleration phases (�gures 6.8a, 6.8b and 6.8c).
When the crack is at the center of the specimen, the surface is smooth at the
magni�cation level used. However, at the le� end of the specimen, it can be seen
that the surface remains almost smooth as opposed to the case when λy = 2.0.
Correspondingly, the crack speed at the le� edge for λy = 3.0 can be seen to remain
at the same value as it was at the center. Between the two cases, it can be seen that
the surface is considerably smoother for the case of λy = 3.0 than for λy = 2.0.
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(a) Crack initiation at the right end. (b) About 15 mm from the right end. (c) About 30 mm from the right end.

(d) About 50 mm from the right end. (e) In the middle of the specimen. (f) �e le� end.

abcdef

(g) Locations where the roughness were measured.
Figure 6.8: Variation in surface roughness for the case λy = 3.0.

A quantitative analysis has not been performed to link the roughness of the
surface at a location (in terms of RMS roughness) with the crack speed at that
location. One of the reasons for not having such observations from literature could
be because of the smaller specimen thicknesses used in those studies. As stated
at the beginning of this section, the specimen thickness is seen to in�uence the
crack speeds and the surface pa�ern in the low-speed regime which would be the
case when the crack starts from the rest at the right end of the specimen. �us, an
interesting question would be if the same pa�ern will be obtained if a specimen of
di�erent (smaller) thickness is used for the current study or if the surface would
be completely smooth in such a case.

6.3 discussion

It can be seen from �gures 6.4 and 6.6 that the velocity and strain vary continuously
across the specimen even in the Transonic regime. A jump cannot be seen in either
of these quantities. A di�erence in the crack opening has been noted between the
two regimes. In Petersan et al., 2004; Corre et al., 2020, it has been noted that the
crack opening changed from a parabolic to a wedge shape as the crack propagation
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regime changes from subsonic to transonic. It has been remarked in Petersan et al.,
2004 that the crack opening resembles a shock wave that propagates with the
crack tip. �is is, however, di�erent from the shock front in the traditional sense
where jumps in particle velocities and strains can be observed along a moving
front within the material.

�is is di�erent from the Transonic cracks propagating in mode-II along weak
planes. In studies where this crack propagation is studied (Rosakis et al., 2000;
Rosakis, 2002), a mach cone can be clearly observed from the photoelastic fringes.
In Mello et al., 2010, the particle velocities are monitored just above the crack
path, and a sharp rise in particle speeds was observed in the Transonic regime.
�e experiments on elastomers do not report any such observations. Hence, the
following questions might be asked (Kamasamudram et al., 2021) - Why don’t we
observe shocks in the bulk material even when a crack propagating in an elastomer
travels faster than the shear wave (in the transonic regime)? Which material model
more appropriately captures the behavior of the bulk material?

summary

�is chapter presents additional observations made regarding the velocity and
strain �elds together with the variation of crack surface roughness in the studies
of Corre, 2018. A variation of surface roughness has been observed with the crack
speed. Jumps have not been observed in either the velocities or strains. �is will
be explored further in the following chapter.
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7the role of viscoelsaticity
in the bulk

�is chapter examines the phenomena of hyperelastic and viscoelastic sti�en-
ing to determine the phenomenon responsible for observing transonic cracks in
polyurethane elastomers. Crack speeds are implicitly imposed on the model using
the data from the experiments as described in this chapter. �e predictions of the
hyperelastic and the viscoelastic model will be compared with the experimental
observations. �e methodology presented in this chapter can also be viewed as a
method of calibrating the viscoelastic model.
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In the previous chapter, it has been observed that the particle velocity and
strain �elds did not exhibit jumps in the Transonic regime. Traditionally, two main
hypotheses are proposed for crack speeds in elastomers to enter the Transonic
regime. �e �rst of these rely on the dependence of the wave speed on the strain
state because of the material non-linearity (Gent & Marteny, 1982a; Stevenson
& �omas, 1979). �e stress-strain response of elastomers �rst exhibits a drop
in the slope at moderate strains followed by an increase at larger strains. �e
upturn in the stress-strain response then increases wave speed. Presence of a
crack in the material results in a strain concentration near the tip. �is implies
that the material near the tip is subject to larger strains than the bulk material.
Since the stress-strain response of the material exhibits an upturn at higher strains,
this would in turn mean that the wave speeds in the vicinity of the crack tip are
higher than that in the bulk material far from the tip. �is hypothesis has been
investigated in M. Buehler, Abraham, and Gao, 2003, where the propagation of a
crack in a material whose modulus increases beyond a certain strain level (called
the o�set strain) is studied. Crack speeds that exceeded the Rayleigh wave speed
(and also the shear wave speed) of the bulk material were observed depending on
the values of the onset strain used. However, it was reported in that study that the
crack tip is followed by mach cones corresponding to the shear waves.

In M. J. Buehler, 2008, the problem of crack propagation along the interface
of two solids with a large di�erence (a factor of 10) in sti�ness was studied. It
was observed that the crack propagated at speeds greater than the shear wave
speed of the so�er material. It was observed that the crack was able to propagate
in the supersonic regime (with respect to the so�er material) while remaining
sub-Rayleigh with respect to the harder material. A mother-daughter propagation
mechanism was observed similar to in mode-II. Shock fronts can be observed in
the so�er material (�gures 6.80, 6.81, and 6.82 of the reference). However, it was
remarked that this hasn’t been observed in the experiments conducted on the crack
propagation through the interface in a bi-material system.

In Guo, Yang, and Huang, 2003, the propagation of a mode-III crack in a solid
that exhibits an upturn in the stress-strain response was investigated. In the
vicinity of the crack tip, the material is sti�er than the bulk. �e distribution of
shear stress in the bulk was presented in that study. �e equations of motion lose
their ellipticity in the region where the crack speed is higher than the shear wave
speed. As a result, discontinuities in the stresses can be observed along with the
characteristics.

�e other hypothesis proposed for observing transonic cracks comes from
Stevenson and �omas, 1979. In that reference, the author suggests that the higher
crack speeds observed in that study are a consequence of the viscoelastic sti�ening
of the material as a result of the high strain rates present in the vicinity of the
crack tip. A suggestion of this kind was also made in Marder, 2005, where a la�ice
based method is used to simulate the propagation of crack in rubber. However,
to the knowledge of the author, no continuum based numerical studies exist that
examine this hypothesis.

�e velocity and strain �elds analyzed in the previous chapter did not show
the presence of any jumps. �e maximum value of velocity varied between the
experiments but it varied continuously along the length of the specimen. Hence, in
this section, an analysis will be performed to determine the appropriate material
behavior responsible for transonic cracks. A part of this chapter is an extract from
the article Kamasamudram et al., 2021.
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7.1 using momentum balance

In this section, the hypothesis of hyperelastic sti�ening leading to transonic cracks
will be examined. Since the displacement and velocity �elds in the bulk material
are obtained from the experiments, a hyperelastic model that exhibits an upturn
in stress-strain response can be used to compute stresses and in turn momentum
balance. A weak form of the momentum balance equation will be used for this
purpose. It is intended to see if a hyperelastic model with an upturn in stress
strain response, when applied for the crack propagation in transonic regime, will
result in zero residual forces. �e region where a non-zero residual is observed
can be regarded as where the constitutive assumption is inappropriate. �us,
the hypothesis of hyperelastic sti�ening can be examined. A weak form of the
equilibrium will be developed below (Belytschko et al., 2000).

Beginning with the strong form of the momentum balance equation

div0 P = ρ0a, (7.1)

where P is the �rst Piola Kirchho� stress, ρ0 is the density in the undeformed
con�guration and a is the acceleration. De�ning the space of admissible functions
that are su�ciently smooth to be V ,

V =
{
w that is su�ciently smooth|w = o on ∂ΩD

0

}
, (7.2)

ΩD
0 is the part of the boundary on which the Dirichlet boundary conditions are

described. �e weak form of momentum balance equation can be wri�en as∫
Ω0

v (div0 P − ρ0a)dV = 0 ∀ v ∈ V . (7.3)

Using the divergence theorem and that on ΩN
0 , Pn0 = t , the above equation can

be wri�en as ∫
∂ΩN

0

v .t dS −
∫
Ω0

P : ∇0v dV = ρ0

∫
Ω0

v .a dV . (7.4)

To discretize the above equation using �nite elements,v is expressed in terms of
its nodal values and shape functions. Hence

vi = vi INI (X ), (7.5)

where i = 1, 2, 3 indicates the spatial direction and I indicates the node number.
Summation over repeated index is implied. Using this and also expressing the
displacement �eld in a similar way, the internal, external and inertial nodal forces
can be wri�en as

f int
i I =

∫
Ω0

∂NI

∂X j
Pji dΩ0, (7.6)

f ext
i I =

∫
ΩN

0

NI ti dS, (7.7)

f kin
i I =

∫
Ω0

ρ0NIai dΩ0, (7.8)

and the momentum equation becomes

f ext
i I − f int

i I = f kin
i I . (7.9)
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For the sake of discussion that follows, the residual is de�ned as follows:

ri I = f ext
i I − f int

i I − f kin
i I . (7.10)

�e computation of f ext
i I and f kin

i I require the external force applied and the time
derivatives of displacement respectively which are readily available from the experi-
ments and so, no constitutive assumption is needed regarding the material behavior.
�e computation of f int

i I , however, requires the computation of P which depends
on the constitutive behavior of the material. Hence, if an incorrect constitutive
behavior of the material is assumed, non-zero residual forces will be observed.

Computation of stresses

�e material is assumed to be perfectly incompressible. Hence, the strain energy
depends only on the �rst two invariants of the deviatoric part of the Cauchy-Green
tensor. De�ning C̄ = J−2/3C , strain energy can be expressed as ψ̂ = ψ (Ī1, Ī2). �e
PK2 stresses can be computed as (G. A. Holzapfel, 2000; Bonet & Wood, 2008)

S = −JpC−1 + 2J−2/3DEV
{
∂ψ

∂C̄

}
, (7.11)

DEV
{
•
}
B • − 1

3
[• : C]C−1, (7.12)

where p is the lagrange multiplier that enforces incompressibility condition. In
plane stress conditions, p can be found by enforcing S33 = 0. As a consequence
of incompressibility and plane stress conditions, the third component of C can be
de�ned to be C33 = 1/det(C2d ), where C2d is the in-plane part of C .

C =

[
C2d o
oT C33

]
(7.13)

Instead of this, the strain energy function can be made to depend on the three
invariants of C2d where in the incompressibility condition is stricly imposed by
taking C33 = 1/det(C2d ) (Bonet & Wood, 2008). �is can be done by realiz-
ing that Ī1 = tr(C̄) = tr(C2d ) + 1/det(C2d ). Likewise, Ī2 = 1

2

(
Ī21 − C̄ : C̄

)
=

1
2

(
tr(C2d )2 + 2 tr(C2d )C33 −C2d : C2d

)
. In such a case, PK2 stress can be simply

wri�en as
S2d = 2

∂ψ

∂C2d
. (7.14)

It shall be noted that �nding p by enforcing S33 = 0 and substituting back into the
equation 7.11 will lead to the same result as in the equation 7.14.

7.1.1 Calibration of hyperelastic model

A hyperelastic model that exhibits the upturn in stress-strain response is �rst
calibrated using the data from uniaxial tensile and pure shear tests. A polynomial
model of third degree has been picked for this. �e resulting model prediction vs
the experimental data can be seen in the �gure 7.1. It can be seen that there is a
slight deviation between the model prediction and the experimental data.

In the studies performed in Corre, 2018, the hyperelastic model, Ogden model
for instance, has been calibrated to match the uniaxial test data without any
deviations (�gure 4.8 of Corre, 2018). Simulations have been performed using
that model and parameters where a rectangular specimen of dimensions 40 mm
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Figure 7.1: Experimental results vs
Model prediction, Uniaxial and Pure
Shear case.
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times 200 mm is stretched to a level of 3.5. �e deformed shape of the specimen
along with the deformed shape from the experiments can be seen in �gure 7.3a.
A signi�cant di�erence can be seen. It was found to be necessary that the model
coe�cients be modi�ed to bring the deformed shape closer to the experiments. �e
deformed shape predicted by the polynomial model with current coe�cients can
be seen in �gure 7.3b. �ey can be seen to be quite close. Hence, these coe�cients
(in table 7.1) will be used in the current study.

Table 7.1: Model Co-e�cients

Parameter C10 C20 C30 C21

Value (Pa) 1.044E6 -0.02273E6 336.0 124.0

7.1.2 Checking momentum balance

Using the hyperelastic model, the residuals in equation 7.10 can be computed for
di�erent experiments. As a recollection, if the hyperelastic model is correct and
appropriate, the momentum balance equation should be satis�ed exactly. �is is
�rst carried out for the case of λ = 3.5. �e residual forces are �rst computed just
before the crack is introduced into the specimen. Since the strain rates during
this time are quite small, it is expected that the residual computed will be small
throughout the sample. �e residual forces thus computed can be seen in �gure 7.4a.
Non zero and large forces can be seen on the boundaries of the specimen. �e forces
on the top and the bo�om are the consequence of the applied loading and hence
can be considered the reaction forces, acting along these boundaries, f ext

i I = f int
i I .

Some forces can also be observed on the le� and right edges of the specimen.
�is is because of the lack of data along the boundary from DIC technique. �ese

Figure 7.2: Deformed shape compari-
son, λ = 3.5. �e black lines indicate
the deformed shape from experiment.

(a) Model ��ed to Uniaxial test only. (b) Current model parameters.
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forces can be seen to be the reaction forces applied by the missing material on the
analyzed part of the material. Inside the material, small residual forces of about
0.02N (compared to that of about 17N along the top and bo�om boundaries) can
be observed. �ese can be considered to be the consequence of the errors induced
by the DIC technique and the constitutive model.

(a) Residual force (in N) a�er initial stretching (λy = 3.5).
(b) Residual force (in N) with changed scale a�er initial stretch-
ing (λy = 3.5).

Figure 7.4: Residual nodal forces plo�ed on deformed con�guration a�er initial stretching for λy = 3.5.

�e residual forces when the crack is at the center of the specimen can be seen
in �gure 7.5. �e scale has been truncated in �gure 7.5b. It can be seen that towards
the right of the crack where the material is relatively stationary, the residual forces
are comparatively smaller than in the material to the le� of the crack. Similar
observations can be seen in �gure 7.6, where the residual forces are computed
similarly for the case of λy = 2.5. It shall be noted that higher residuals may also
be observed in the material behind the tip even in the case of λy = 1.7, where
the crack speed is subsonic. �is is a consequence of the residual strains in the
material a�er the crack passed through (see �gure 6.6).

It can be seen from �gure 6.6, where the vertical component of deformation
gradient is presented for two experiments, that the material behind the crack tip
does not completely relax to zero strain level even a�er the crack tip has passed
and the material is broken. �is, along with a hyperelastic model, will result in
non-zero stresses in this region since in a hyperelastic model, a nonzero strain will
imply a non zero stress. �is contributes to the observed residual forces in the
region behind the tip. Also, the presence of crack tip in the material will result in
strain concentration in the vicinity of the tip. Hence, the material sti�ness and
hence the wave speeds are higher in this region when compared to the bulk. �is
implies that the equations of motion remain their ellipticity in the region near
the tip, but the ellipticity is lost in the far �eld region (Guo et al., 2003). Hence,
a shock-front-like feature along which the �eld variables like velocity and strain
exhibit discontinuities is expected. But since the �elds observed in the experiments
are continuous, this contributes to the residual forces as well. In short, the residual
forces presented are a combination of contributions from non-zero residual strains
in the region behind the tip and loss of ellipticity in the bulk away from the tip.
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(a) Residual force (in N) a�er initial stretching (λy = 3.5). (b) Residual force (in N) with changed scale a�er initial stretch-
ing (λy = 3.5).

Figure 7.5: Residual nodal forces plo�ed on deformed con�guration a�er initial stretching for λy = 3.5.

(a) Residual force (in N) a�er initial stretching (λy = 2.5).
(b) Residual force (in N) with changed scale a�er initial stretch-
ing (λy = 2.5).

Figure 7.6: Residual nodal forces plo�ed on deformed con�guration a�er initial stretching for λy = 2.5.

7.2 using the cracks speed as an input

In the analysis performed so far, the bulk material is assumed to be hyperelastic
with an upturn in the stress strain response. �e residual forces computed in this
case contains a combined contribution of the residuals due to the strains behind
the tip and due to the loss of ellipticity. To gain a be�er understanding on the
two hypotheses, another approach will be presented in this section. �e e�ect of
including viscoelastic e�ects in the bulk will be examined as well (Kamasamudram
et al., 2021).

7.2.1 Methodology

�e analysis methodology is as follows. Displacement �elds are available from the
experiments throughout the duration of the experiment. �e intent is to use these
�elds to implicitly impose the crack speeds on the geometry and study the response
of the bulk material by assuming di�erent constitutive behaviors. �e geometry of
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the specimen and the FE model used for this purpose can be seen in the �gure 7.7.
�e crack propagation path in the experiments is indicated by a dashed red line in
the �gure (in the undeformed con�guration). Extracting the displacement �elds
from the experiments along this line and using them as (time varying) displacement
boundary conditions in the FE model is equivalent to imposing the crack speed in
the FE model. However, the DIC technique does not provide the displacement �elds
along the boundary. Hence, the extraction line is moved to just (about 1.5 mm)
above the crack path. �e new data extraction region can be seen as a green line in
�gure 7.7. �e top part of the specimen is constrained from moving horizontally
but pulled vertically till the target stretch level is reached. Once the target stretch
level is reached, the displacement is held constant on the top face.

At this point of time, it shall be noted that the crack propagation has not been
explicitly modeled. �e boundary conditions imposed on the model are similar to
when the crack passes through the material (Kamasamudram et al., 2021). �e same
analysis can be made by using a cohesive zone model where the damage pro�le
is moved through the material. �is approach, however, requires an additional
assumption to be made regarding the behavior of the failing material. �e approach
discussed above bypasses the need to make a constitutive assumption regarding
the behavior of the failing material.

�e integration of the momentum equation in time has been performed using
HHT-α time integration scheme (Hilber, Hughes, & Taylor, 1977). �e simulations
performed using value of 0 for α did not result in convergence. Hence, a value of
−0.33 has been used. �is value of α results in maximum numerical dissipation.

7.2.2 Simulations

Simulations have been performed using Finite Elements by the methodology pre-
scribed above. Two cases have been examined. One for λy = 1.7, where the crack
speed is about 17m s−1 and other for λy = 3.5 where the crack speed is about
56m s−1. In the former case, the crack speed lies in subsonic regime while in the
la�er case, it is Transonic.

With hyperelastic bulk

�e polynomial hyperelastic model described and calibrated earlier has been used.
As already mentioned, hyperelastic sti�ening was deemed to be one of the reasons
for observing Transonic cracks (M. Buehler et al., 2003). �e velocity pro�le
obtained from the simulation for the case of λy = 1.7 can be seen in �gure 7.8 (to
be compared with �gure 6.3a). A good agreement can be seen between both the
cases.

�e velocity pro�le obtained from the simulation for the case of λy = 3.5 can
be seen in �gure 7.9 (to be compared with �gure 6.3b). A sharp rise in the particle
speeds can be seen along a front, which corresponds to the existence of a Mach
front.

To obtain a be�er comparison with the experiments for the case of λy = 3.5,

Figure 7.7: Data extraction from exper-
iments as input to FE model.

Experimental
FE Model
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Figure 7.8: Particle velocity magnitude
in ms−1 for λ = 1.7 plo�ed on unde-
formed con�guration.

0 2.23 4.46 6.72 8.94 11.15 13.4

Figure 7.9: Particle velocity magnitude
in ms−1 for λ = 3.5 plo�ed on unde-
formed con�guration.
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the variation of velocity magnitude along a line about 5 mm above the crack path
has been plo�ed in �gure 7.10. Corresponding to what has been observed in �gure
7.9, a sharp rise in particle speeds can be seen just behind the tip corresponding
to the Mach front. �e variation of particle speeds from the experiment can also
be seen. �ere is a signi�cant di�erence between both the observations. Also,
oscillations in particle speeds can be seen behind the mach front which is typical
of the FE simulations containing a jump.

Figure 7.10: particle velocity magni-
tude in ms−1 for λ = 3.5 plo�ed on
undeformed con�guration.
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�e horizontal displacements in both the cases can be seen in �gures 7.11 and
7.12 (to be compared with �gures 6.1 and 6.2 respectively). Similar to what has been
seen for velocity pro�les, a di�erence can be seen in the horizontal displacements
between simulation and experiment for the case of λy = 3.5.

�e results obtained are coherent with what has already been observed in the
literature (Guo et al., 2003; M. Buehler et al., 2003). In both the cited studies, where
the propagation of a transonic crack in a material with an upturn in stress strain
response is studied, the crack was observed to be accompanied by Mach fronts along
which the velocity and strain �elds exhibit jumps. However, as already shown
earlier, the �elds obtained from the experiments do not exhibit such jumps. Hence,
it can be concluded that at least for the current material, hyperelastic sti�ening is
not su�cient for the cracks to enter the transonic regime.

With viscoelastic bulk

Since it has been shown that the upturn in the stress strain response is insu�cient to
reproduce the displacement and velocity �elds in the bulk material, the simulations
above will be rerun with viscoelastic bulk. A Finite Linear Viscoelastic (FLV)
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Figure 7.11: Horizontal displacement
(in m) for λ = 1.7 plo�ed on un-
deformed con�guration (hyperelastic
bulk).*

−6.68 −5.37 −4.06 −2.75 −1.44 −0.14 1.17

·10−3

Figure 7.12: Horizontal displacement
(in m) for λ = 3.5 plo�ed on un-
deformed con�guration (hyperelastic
bulk).

−1.33 −1.03 −0.73 −0.43 −0.14 0.16 0.46

·10−2

model (Simo, 1987) will be used for this purpose. Later on, the simulations will
be performed again by using a Finite Viscoelastic (FV) model (Reese & Govindjee,
1998; Bergström & Boyce, 1998; Dal & Kaliske, 2009) in the bulk.

In FLV model, the stresses can be expressed as a sum of a long term hyperelastic
part and a viscous over-stress. �e total stress in this case is

S = −JpC−1 + J−2/3DEVt

{
H

}
, (7.15)
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α , (7.17)

д(s) = д∞ +
N∑
i=1

дi exp(−s/τi ). (7.18)

It shall be noted that the DEVt in equation 7.15 shall be evaluated using the
quantities at the current time, while the DEVs in equation 7.16 shall be evaluated
using the quantities at time s . In the equation 7.18, д∞ and дis are the ratio of the
modulus of the hyperelastic and viscous arms to the glassy modulus respectively.
ψ 0 is the strain energy corresponding to the instantaneous behavior of the material.
Under small strain loading, the above constitutive model reduces to the linear
viscoelastic model. In such a scenario, the model can be seen to represent the
material by a spring that is in parallel to the Maxwell elements. An extension
of such an interpretation of this model to �nite strains is not possible. p in the
equation is Lagrange multiplier that enforces incompressibility. In plane stress
scenario, p can be found by enforcing that the third component of stress, S33 is
zero. See Appendix A.

�e model is initially calibrated by using the DMA tests performed on the
material in Corre, 2018. When the simulations in the previous section are performed
with that model parameters, the Mach fronts appearing in �gure 7.9 disappear.
However, the displacement and velocity �elds were observed to be over-predicted.
Hence, the model parameters were further adjusted to bring the results closer to
the experiments. �e adjusted model parameters can be seen in table 7.2.

�e velocity �eld predicted by the FLV model for the case of λy = 3.5, where
the crack speed is transonic can be seen in �gure 7.13 (to be compared with �gures
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Table 7.2: Viscoelastic model parameters

Branch(i) 1 2 3 4 5 6 7 8 9 10
дi 0.7312 0.02 0.02 0.2 0.01 0.005 0.0014 0.0011 0.0012 0.0005
τi (s) 1E-10 1E-9 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1

7.9 and 6.3b).

Figure 7.13: Particle velocity magni-
tude in ms−1 for λ = 3.5 plo�ed on
undeformed con�guration (viscoelas-
tic bulk).

0 20.5 41 61.5 82 102.5 123

�e variation of particle speeds at about 5 mm above the crack path can be
seen in �gure 7.14. It can be seen that the velocity distribution obtained with
a viscoelastic bulk more closely matches the experimental results than with a
hyperelastic bulk. �e displacement �elds obtained from the FE simulations can be

Figure 7.14: Velocity magnitude in
ms−1 for λ = 3.5 plo�ed on unde-
formed con�guration.
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seen in �gure 7.15 (to be compared with �gures 7.12 and 6.2). �e results from FE
simulations with a viscoelastic bulk can be seen to be similar to the experiments.
�e particle velocity pro�les plo�ed on the deformed con�guration can be seen

Figure 7.15: Horizontal displacement
(in m) for λ = 3.5 plo�ed on un-
deformed con�guration (viscoelastic
bulk).*

−1.33 −1.03 −0.73 −0.44 −0.14 0.16 0.46

·10−2

in the �gure 7.16. �e closeness between the experiments and the FE simulations
with viscoelastic model can be noticed.

Once the crack passes through the material, the faces behind the crack tip are
(ideally) traction free. Since the displacements from the experiments are used as
an input in the FE analysis, it is expected that the tractions predicted by the model
along the crack faces will remain close to zero as well. �e tractions resulting from
hyperelastic and viscoelastic bulk can be seen in the �gure 7.17.

It can be seen that in the hyperelastic case, the stresses remain far from zero
for a signi�cant region behind the tip whereas in the viscoelastic case, the stresses
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a: Experimental result.

0 20.5 41 61.5 82 102.5 123

b: Simulation with hyperelastic model.

0 20.5 41 61.5 82 102.5 123

c: Simulation with viscoelastic model.

0 20.5 41 61.5 82 102.5 123

Figure 7.16: Particle velocity magnitude (m s−1) for λy = 3.5 plo�ed on deformed
con�guration.

Figure 7.17: Cauchy stress (σyy ) in Pa
for λ = 3.5 plo�ed on undeformed
con�guration.
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drop to values close to zero and remain so all along behind the crack face.
Since the viscoelastic model is ‘calibrated’ using the experimental data for the

case of λy = 3.5, it has been applied to the other experimental case (λy = 2.5) to
verify its validity. �e variation of particle speeds about 5 mm above the crack
path can be seen in �gure 7.18. When compared with �gure 7.14, a sharp rise in
the particle speeds cannot be seen for the hyperelastic case. A smooth variation to
the maximum value can be seen. However, the velocity variation observed in the
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Figure 7.18: Velocity magnitude in
ms−1 for λ = 2.5 plo�ed on unde-
formed con�guration.
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experiments is closer to the viscoelastic case than the hyperelastic case. Similarly,
the variation of stress behind the tip can be seen �gure 7.19.

Figure 7.19: Cauchy stress (σyy ) in Pa
for λ = 2.5 plo�ed on undeformed
con�guration.
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It can be clearly seen that as in the case of λy = 3.5, the viscoelastic model
predicts smaller stresses than the hyperelasic case. Hence, it can be concluded that
the viscoelastic model ‘calibrated’ using the experiments of λy = 3.5 is able to
predict the results of the λy = 2.5 with a good accuracy.

Sensitivity of results with respect to the data extraction line

In the analyses performed thus far, data are extracted from the experiments at
about 1.5 mm above the crack path. Here, it will be determined if the results of the
FE analysis obtained is sensitive to the position of the location along which the
data are extracted from the experiments. For this purpose, another set of analyses
have been performed where the data extraction from the experiments is done at
about the midway (about 10 mm above the crack path) of the half of the specimen.
�is has been done for λy = 3.5. �e results can be seen in �gures 7.20 and 7.21.

In the results for horizontal displacements, a distinct kidney bean shaped pro�le
can be observed in the experimental results which can also be seen in the results
from simulation with a viscoelastic bulk. Simulation with hyperelastic bulk does
not exhibit this feature. Similarly, the velocity pro�le obtained with a viscoelastic
bulk can be seen to be closer to the experiments than with a hyperelastic bulk. �is
demonstrates the robustness of the viscoelastic model as well as the simulation
methodology presented.
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−11.7 −9.05 −6.35 −3.65 −0.95 1.75 4.45

(a) Horizontal displacement (in mm) from experiment.

−11.7 −9.05 −6.35 −3.65 −0.95 1.75 4.45

(b) Horizontal displacement (in mm) from hyperelastic simulation.

−11.7 −9.05 −6.35 −3.65 −0.95 1.75 4.45

(c) Horizontal displacement (in mm) from viscoelastic simulation.
Figure 7.20: Horizontal displacement �elds for a di�erent data extraction location,
λy = 3.5.

0 8.42 16.84 25.26 33.68 42.1 50.52

(a) Velocity (in m s−1) from experiment.

0 8.42 16.84 25.26 33.68 42.1 50.52

(b) Velocity (in m s−1) from hyperelastic simulation.

0 8.42 16.84 25.26 33.68 42.1 50.52

(c) Velocity (in m s−1) from viscoelastic simulation.
Figure 7.21: Velocity magnitude �elds for a di�erent data extraction location,
λy = 3.5.

7.3 discussions

�e previous sections contain the results from the experiments together with the
results from FE simulations with hyperelastic and viscoelastic models. Experiments
indicate that a ‘shock front’ was not observed even a�er the crack speeds exceed
the elastic shear wave speed - a jump has not been observed either in velocity or
strain �elds which would have been the case if a shock front was present.

�e crack speeds have been observed to exceed the shear wave speed in other
studies in the literature like Petersan et al., 2004; Chen et al., 2011 and Mai et al.,
2020. �e material tested in Chen et al., 2011 is Latex rubber and the tests were
performed at 85 ◦C to prevent strain crystallization. SBR was tested in Mai et al.,
2020. �e current study is performed on Polyurethane. �e strain �elds reported in
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Mai et al., 2020 do not exhibit any jumps as is the case in the current study even for
crack speeds in Transonic regime. Chen et al., 2011 does not report any such shock
fronts as well, but instead report that the crack faces in this regime are wedge
shaped (which were noted to resemble a shock front in Petersan et al., 2004).

An interesting comparison can be made regarding the ratios of crack speed to
the shear wave speed at a prestretch level of 3.5 in di�erent studies. In Mai et al.,
2020, the speed ratio can be seen to be 1.84, while in Chen et al., 2011, the ratio
is smaller than 1.25. In the current study, the ratio is about 1.38. �is indicates
perhaps an obvious conclusion that the material properties (mainly viscoelasticity)
determine the extent to which the crack speed can exceed the shear wave speed.

�e hyperelastic model calibrated using the uniaxial and pure shear cases
is used to perform FE simulations with the displacements extracted from the
experiments in Corre et al., 2020. It shall be noted that the hyperelastic model does
not exactly follow the Uniaxial stress-strain curve. �e calibrated model, however,
is seen to exhibit an upturn in the stress-strain curve which is usually deemed to be
one of the reasons for crack speeds to go into Transonic regime (Gent & Marteny,
1982a; Stevenson & �omas, 1979; M. Buehler et al., 2003). �e FE result using
this model, however, is seen to produce ‘jumps’ in both the velocity and strain
�elds for the cases when the crack speeds are Transonic - a result not seen in the
experiments.

Including viscoelasticity is seen to bring the results closer to the experiments.
�e strain and velocity �elds no longer exhibit the discontinuities that were ob-
served in the hyperelastic case. �e maximum horizontal displacements and the
velocity magnitudes have been observed to be within 10 % of the experiment
results.

�e crack faces behind the tip, being a free edge, are ideally traction-free.
As presented in �gure 6.6, the residual strains behind the tip are non-zero. �e
computation of tractions from strains involves making a constitutive assumption
about the material. Using a hyperelastic model in the simulations results in non-
zero stresses along the edge as a consequence of the non-zero strain (despite it
being a free edge in the experiments). See �gure 7.17, where the yy component
of Cauchy stress is plo�ed along the data extraction location (1.5 mm above the
crack path). However, using a viscoelastic model with relaxation times that are
comparable to the duration of the experiment, the stresses along the edge behind
the tip quickly drop to small values within 15 % of the far-�eld stresses (and smaller
than in the hyperelastic case). Re�ning the model further can perhaps bring even
those stresses to zero.

Hence, at least for the material in the current study, the cracks can go Transonic
as a result of the viscoelastic ‘sti�ening’ of the material. A suggestion of this
kind can be found in Stevenson and �omas, 1979. However, no evidence has
been presented in that study as to whether the Transonic cracks are a result of
Viscoelastic sti�ening or hyperelastic sti�ening. A similar comment has been made
in Marder, 2006. However, in that work, a Kelvin type model has been assumed for
the elastomer where the wave speeds increase unboundedly with the frequency.
Hyperelastic sti�ening has been deemed to be not necessary, but its su�ciency has
not been discussed. In studies where this su�ciency has been studied M. Buehler
et al., 2003, ‘Mach cones’ corresponding to shear waves were reported that tail the
crack tip (Figure 4 of the reference).

�e notion of limiting speed for a crack comes from the inclusion of inertial
e�ects in the study of the problem (Freund, 1990). �e LEFM establishes the limiting
speed as the Rayleigh wave speed in mode-I, while in mode-III, it is the Shear
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Figure 7.22: Rubbery and glassy wave speeds in linear viscoelasticity. R stands for
Rayleigh, s for shear, d for dilataional. A and B indicate the possible range of the
wave speeds that depend on the glassy to rubbery modulus ratio.

wave speed based on the elastic properties of the material. In studies where the
inertial e�ects are included together with Viscous e�ects (Graham & Walton, 1995;
Atkinson & Popelar, 1979; Willis, 1967), the limiting speed is seen to depend on
the glassy modulus of the material rather than on the rubbery modulus (Figure
7.22). Hence, the crack is allowed to exceed the rubbery shear wave speed. Such a
result can also be observed in Geubelle, Danyluk, and Hilton, 1998, where spectral
methods are used to investigate the problem of viscoelastodynamic mode-III crack.
Using a rate independent cohesive zone type model, an analysis has been made on
the e�ect of relaxation times on crack speeds. From the Figure 11 of the reference, it
can clearly be seen that the crack speed exceeds the rubbery shear wave speed (cs ),
but remains smaller than the glassy shear wave speed (c∗s ). However, no speci�c
comments have been made in regards to the presence or absence of shock fronts
in those references.

In Fisher and Gurtin, 1965, the propagation of waves of order N in viscoelastic
media has been studied. Waves of order N have the solution, u, which is N − 1
times continuously di�erentiable and exhibit discontinuities in the N th derivative
along a hypersurface. It has been determined in that study that such waves, should
they exist, travel with a speed that is derived based on the glassy modulus of the
material rather than the rubbery modulus. Shock fronts, by de�nition, are waves
of order 1 and hence travel with that speed as well. Hence, it might be possible
that shock fronts can be observed in viscoelastic material only when the crack
speed exceeds even the glassy shear wave speed of the material. In short, a weak
discontinuity, should it exist, would be made of high frequency waves at the sharp
front. As a consequence of viscoelasticity, this region behaves with a high modulus
which in turn roughly raises the shear wave speeds to a value that is (equal to or)
greater than the crack speed. �is, in turn, prevents a shock wave from developing.

Perhaps, the cracks whose speeds exceed cs while still remaining below c∗s
should be called r− Transonic (r stands for rubbery) to distinguish them from
cracks that travel faster than c∗s . One such instance may be found in Gori et al.,
2018, where a mode-II crack propagating in a PMMA specimen along a weak plane
has been studied experimentally. It was observed that because of the viscoelastic
behavior of the material, the crack speed exceeds c∗s (hence cs ) and cd as well.
Based on the inclination of the ‘mach fronts’ observed, the shear wave speed
was computed and was seen to be in good agreement with the shear wave speed
computed based on the modulus corresponding to the strain rates in that region.

As already mentioned, in the current chapter, the crack speeds are implicitly
imposed on the material by using the displacement evolution from the experiments.
In the next chapter, a cohesive zone model will be used to predict the crack speeds
using the viscoelastic model calibrated in this chapter to represent the bulk material.
�e crack speeds thus obtained will be compared with those from the experiments.
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summary

In this chapter, the hypotheses of hyperelastic vs viscoelastic sti�ening for the
crack speeds to enter the transonic regime were tested. �e momentum balance
check performed by using a hyperelastic sti�ening showed the presence of large
residual forces in the region behind the tip. �is is expected since the material
behind the tip was observed to not completely relax. �e residual strains together
with a hyperelastic model results in residual stresses as can be observed. However,
the residual obtained from the analysis can be regarded as the combined e�ect
of the residual strains behind the tip and the ‘loss of ellipticity’ in the regions far
from the tip. Hence, some more analysis were performed where the crack speed is
used as an input in the model. �e displacement �eld data from the experiments
obtained using DIC technique were used as boundary conditions in the FE model.
�is way, the crack speed and hence the crack propagation are implicitly modeled.
Results from the FE analysis indicate that the hyperelastic model with an upturn in
the stress-strain response resulted in a Mach front across which the particle speeds
and strains exhibited ‘jumps’. Results with a viscoelastic bulk closely match the
experimental observations. �e viscoelastic model was re�ned further to match
the results for one experimental case. �e same model parameters when used
to simulate another load case predicted displacement and velocity �elds close to
the experiment demonstrating the robustness of the model and the ‘calibration
technique’.
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cohesive zone model

In this chapter, a rate dependent cohesive zone model will be used to predict the
crack speeds at di�erent applied stretches. �e Finite Linear Viscoelastic model
will be used for the bulk material. �e simulations will be performed at di�erent
geometries and di�erent stretches to determine their e�ect on the crack speed.
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In Finite Element simulations, Cohesive Zone Models (CZM) are used exten-
sively to predict the crack growth in scenarios where the crack path is known
in advance. �is might be in the case of a crack growth in mode-II along a weak
interface Needleman, 1999 or delamination Corigliano and Ricci, 2001 or for peel
testing Rahulkumar, Jagota, Bennison, and Saigal, 2000; Geißler, Kaliske, Nase, and
Grellmann, 2007. In other scenarios, the cohesive elements are inserted between
all the elements of the FE model Miller et al., 1999; X. P. Xu and Needleman, 1994
to predict the crack path as well. In the la�er scenario, some mesh dependency of
the crack path was observed. �e CZM technique involves specifying the behavior
of the material undergoing failure. �e output of the simulation is the crack speed
or in some cases, the time to failure Schapery, 1975c. CZM have been successfully
used in the simulation of bri�le fracture in the references cited earlier, in the case of
plastic materials in Hutchinson and Tvergaard, 1992 and in the case of viscoelastic
fracture in W. Knauss and Mueller, 1971; Schapery, 1975b; Elmukash� and Kroon,
2014.

Failure process in bri�le elastic solids are usually rate independent - the fracture
energy per unit area created remains constant. �e fracture energy increases with
crack speed as a consequence of an increase in the area of crack surface created
due to micro branches (Sharon et al., 1996). A correlation was found between the
area of the crack surface and the crack speed once the crack speed exceeds about
30 % of cR . It was a�ributed to the development of micro branches that a�empt to
propagate along with the main branch, but are arrested. When the fracture surfaces
of elastomers are examined, the opposite pa�ern is observed. �e crack surfaces
tend to be rougher at smaller crack speeds and get smoother with an increase in
crack speed. Crack surfaces of Polyurethane elastomer analyzed using SEM can be
found in the earlier chapter con�rm this observation. �e variation in the surface
roughness is usually a�ributed to cavitation. At higher cracks speeds, the material
in the vicinity of the crack tip sti�ens as a consequence of viscoelastic e�ects and
hence the cavitation is suppressed. To the author’s knowledge, no conclusive study
however exists that con�rms this e�ect.

During the fracture of an elastomer, the total amount of energy dissipated is
usually divided into dissipation in bulk (as a consequence of viscoelastic e�ects) and
in the fracture processes (in the creation of new surfaces). �e fracture processes
involve formation and coalescence of micro voids and chain scission. It is possible
that the fracture processes themselves are rate dependent as a consequence of
rate dependent e�ects during fracture. Analyzing the peel tests of polymers, it
was determined in Rahulkumar et al., 2000; Jagota, Bennison, and Smith, 2000
that the fracture processes are indeed rate dependent. A rate dependent cohesive
model based on that of W. G. Knauss and Losi, 1993 has been used in those studies.
Hereditary integral type model together with damage parameter has been used.
Other studies that perform this type of analysis are Elmukash� and Kroon, 2012,
2014. In those studies, it was found that the cohesive zone parameters are to be
modi�ed between di�erent experiments to match the observed crack speeds with
the experiment. �e rate dependent traction separation relation used in those
works are based on a dash pot in parallel with a spring as opposed to the earlier
mentioned hereditary integral type.

�eoretical and experimental analysis of crack growth in viscoelastic materials
have been performed by several researchers. A exhaustive review of such studies
can be found in W. Knauss, 2015. Knauss broadly classi�es the studies into the ones
that involve global energy balance in the srtructure (R. S. Rivlin & �omas, 1997)
and the ones that involve examining the crack tip �elds and establishing criterion
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based on a cohesive zone like model (W. Knauss & Mueller, 1971; W. Knauss, 1970;
Schapery, 1975b, 1975a, 1975c) at the tip. In fact, there have been some discussions,
such as in Kostrov and Nikitin, 1970; James R. Rice, 1979, regarding the need to
eliminate the singularity at the crack tip in viscoelastic fracture. �e discussion
goes as follows - a sharp crack model predicts singular stresses, strains and strain
rates at the crack tip regardless of the speed of the crack. �is would imply that the
material near the tip behaves in a glassy fashion (as a result of the singular strain
rates at the tip) even at low crack speeds. Also, using the failure criterion of Knauss
and Schapery (Equation 48 of W. Knauss, 2015), if the length of failure zone is taken
to tend to zero, it can be shown that only the glassy modulus of the material enters
the equation (page 445 of Freund, 1990) and the overall viscoelastic properties do
not seem to in�uence the crack speed. �ere have, of course, been some works that
disagree with this analysis, for example Christensen, 1979, that suggests that the
discrepancy that arose is a consequence of the assumption that material behaves
in a glassy fashion even far away from the tip. With a sharp crack model, even
though the material near the tip behaves in a glassy fashion, a viscoelastic zone
surrounds and follows the crack tip which controls the energy input and hence the
speed of the crack. Other such instances of sharp crack model are B. N. Persson
and Brener, 2005; B. N. J. Persson et al., 2005, where the dissipation of the material
has been explicitly taken into account. Hence, the whole spectrum of viscoelastic
properties are seen to a�ect the crack propagation behaviour. A point to be noted
is that the cited references so far do not take the inertial e�ects into consideration.

In dynamic fracture, LEFM bounds the speeds of the crack from below by
Rayleigh Wave speed (cR ) for modes I and II, shear wave speed cS for mode-III
(Freund, 1990). �e theory is then extended to include the Transonic cracks ob-
served during the laboratory experiments of mode-II cracks and during earthquakes
(Rosakis, 2002). Some experiments performed on literature (Petersan et al., 2004;
Chen et al., 2011; Corre et al., 2020) revealed the presence of Transonic cracks
in mode-I as well in elastomers. By revisiting the experiments performed on
Polyurethane elastomer in Corre et al., 2020, the current authors show that the
Transonic cracks are a consequence of the viscoelastic sti�ening of the material in
Kamasamudram et al., 2021.

Presently, using Finite Element Method together with the Cohesive Zone type
model (Barenbla�, Salganik, & Cherepanov, 1962) to model the propagation of crack,
an a�empt will be made to reproduce the experimental results and understand the
nature of fracture processes and dissipation mechanisms that accompany a moving
crack. Similar studies have been performed by Kroon, 2014; Elmukash� and Kroon,
2012, 2014; Yin and Kaliske, 2019; Loew, Peters, and Beex, 2019 on fracture of
elastomers using a Cohesive Zone or a Phase �eld method. However, the emphasis
of those studies are not to examine the transonic cracks or to investigate the e�ect
of geometry on crack dynamics in that regime. Infact, except for the analysis
in Elmukash� and Kroon, 2012, 2014, the crack speeds in the other studies are
signi�cantly smaller when compared to the elastic shear wave speed and hence, the
inertial e�ects do not play a signi�cant role. �e studies of Elmukash� and Kroon,
2012, 2014 use a rate dependent cohesive model to analyze the dynamic fracture
of elastomers. But the parameters in the traction separation relations used in
those studies are modi�ed as the crack speed changes to match the experimentally
observed crack speeds. In this work, an a�empt will be made to reproduce the
experimentally observed crack speeds using traction separation relation that relies
on a set of parameters that do not change with crack speed. �is will be done using
the cohesive zone model proposed in W. G. Knauss and Losi, 1993.
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8.1 bulk material

�e Finite Linear Viscoelastic model that was used in Kamasamudram et al., 2021
and in the earlier chapters has been used in this analysis as well. �e hyperelastic
part of the material is represented by a Polynomial model with N = 3 as

W =
N∑

i+j=1

Ci j (Ī1 − 3)i (Ī2 − 3)j , (8.1)

where Ī1 and Ī2 are the �rst and second invariants of the deviatoric part of Green
strain tensor, C̄ = J− 2

3C and J is the determinant of the deformation gradient. Ci js
are the model parameters. �e model calibration has been done in Kamasamudram
et al., 2021 and the parameters can be found in the previous chapters. Plane stress
conditions are assumed to prevail. As a consequence, the stresses can be completely
wri�en in terms of the in-plane components of C . More details on this can be
found in the next chapter (see equation 9.31).

�e �nite linear viscoelastic model of Simo, 1987 has been used for the bulk.
�e expression for the stress can be wri�en as

S = −JpC−1 + J−2/3DEVt

{
H

}
, (7.15)

H B

∫ t

0
д(t − s) ∂

∂s

[
DEVs

{
2
∂ψ 0

∂C̄
(s)

}]
ds, (7.16)

DEVα

{
•
}
B • − 1

3
[• : Cα ]C−1

α , (7.17)

д(s) = д∞ +
N∑
i=1

дi exp(−s/τi ). (7.18)

�e plane stress version of the above model can be obtained by obtaining the
expression of p using the condition S33 = 0. �e expression of p when put back in
the above equations gives the plane stress version of the constitutive model. �is
algebra has been performed in the appendix A. �e �nal expression for the stress
can be seen to be

S2d =

∫ t

−∞
д(t−s) ∂

∂s

[
DEV2D

s

{
Ŝ
s
}]
+
Ct

33

3
(Ct

2d )−1

∫ t

−∞
д(t−s) ∂

∂s

[
tr(ŜsCs

2d )(Cs
33)−1

]
.

(A.27)
In the above, S2d represents the restriction of the stresses to the in-plane compo-
nents. �e above equation can be integrated using the algorithm in Taylor, Pister,
and Goudreau, 1970.

8.2 rate independent cohesive zone model

�e experiments performed by Corre et al., 2020 have been analyzed in the previous
chapter and in Kamasamudram et al., 2021 to study the importance of viscoelastic
e�ects in the bulk material in transonic regime. �e crack speed has been used
as an input in the analysis. �is chapter aims at predicting the crack speeds by
using a viscoelastic model in the bulk and a Cohesive Zone Model to predict the
crack growth. Similar a�empts were made earlier in Elmukash� and Kroon, 2012,
2014 where the simulations were performed to match the experiments performed
in Gent and Marteny, 1982a. A rate dependent cohesive zone model based on a
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Maxwell element was found to be necessary in those studies to be able to match
the crack speeds in the experiment. �e rate dependent Cohesive Zone was seen
to be a consequence of the rate dependence of the failing material. However, in
those studies, no particular emphasis was made on Transonic cracks or on their
behavior in specimens of di�erent geometries.

A rate independent cohesive model will be initially used here to con�rm the
observations from the earlier studies. It will be determined if the experimental
results can be reproduced with this simple model using the same parameters for
all the experiments. A model with initial sti�ness and a linear unloading response
will be used. �e traction can be expressed in this model as

t = (1 − d)K∆, (8.2)

where d is the damage variable, K is the sti�ness and ∆ is the separation vector. d
is taken to depend on the current separation in the cohesive zone, ∆ B [u], and is
represented in the case of a linear cohesive law as

d =


0, if ∆max < ∆o
∆f (∆max−∆o )
∆max(∆f −∆o ) , if ∆max ∈ [∆o ,∆f ]
1, if ∆max > ∆f

(8.3)

where ∆max(t) = maxτ ∈[o,t ] ∆(τ ) is taken as the maximum value of separation
over the entire time history to enforce the irreversibility constraint on the damage
variable. ∆o and∆f denote the value of separations at which the damage begins and
the material completely fails, respectively. �e energy dissipated in the cohesive
zone can be found to be G = 1

2K∆o∆f . �is cohesive zone model can be seen as
a special case of a rate-dependent model, the implementation of which has been
described later. Hence, only the results of this model will be presented in this
section.

8.2.1 Specimen geometry and loading

�e specimen that is 40 mm tall and 200 mm long has been analyzed. Plane stress
conditions have been assumed to prevail. Cohesive elements have been inserted in
the middle all along the length of the specimen. An element size of 50 µm has been
used in the cohesive zone. Linear plane stress elements (CPS4) have been used to
mesh the bulk region. �e degrees of freedom of Cohesive elements are tied to be
bulk elements.

�e bo�om part of the specimen is held �xed while the top if stretched at
a speed of 0.3 mm s−1 till the target stretch level is reached. A�er reaching the
stretch level, a seed crack that is about 3 mm long is imposed at the le� end of
the specimen (by reducing the ∆0 for those elements) which then propagates and
breaks it into two pieces. �e position of the crack tip is then extracted which is
then used to compute the crack speed.

8.2.2 Observed crack speeds with di�erent cohesive zone parameters

�e parameters of the Cohesive model (∆o and∆f ) are calibrated to match the crack
speed at a stretch level of 3.5. �e initial sti�ness of cohesive elements, K is taken
to be 1 × 107 MPa m−1. It shall be noted that the crack speed in visoelastic fracture
is a�ected by not just the cohesive energy but also either the strain at failure or the
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fracture initiation stress (specifying one of them together with the fracture energy
determines the other). For a given cohesive energy, di�erent initiation stresses
will result in di�erent crack speeds. �e e�ect of cohesive parameters such as the
strength, cohesive energy and length on steady-state viscoelastic crack growth has
been studied in T. D. Nguyen and Govindjee, 2006. A similar study, in the context
of peeling has been studied by Rahulkumar et al., 2000. In both these studies the
e�ect of non-dimensional parameters based on the cohesive zone and bulk model
has been studied. An analytical investigation has been made by D. B. Xu, Hui, and
Kramer, 1992.

A cohesive strength of 27 MPa (or ∆o = 2.7 · 10−6m) and the separation at
failure of 2 mm was used for the analysis initially. �is corresponds to an energy
of 27 kJ/m2. �is yielded a crack speed of about 58 m s−1 at a stretch level of 3.5,
which is approximately the experimental value (56 m s−1). However, the same
cohesive parameters gives a crack speed of about 5 × 10−3 m s−1 at a stretch level
of 1.7 while a crack speed of about 17 m s−1 was observed in the experiments.

Further a�empts were made to decrease the cohesive strength and increase
the separation at a stretch level of 3.5 to maintain the crack speeds close to the
experiment. It was observed that the increase in the cohesive strength had a larger
e�ect on reducing the crack speeds than increasing the failure separation for the
same cohesive energy. Hence, when the cohesive strength was reduced to 20 MPa
(or ∆o = 2 ·10−6m), it was found that the separation needed to obtain a crack speed
comparable to the experiments was 3 mm. �e crack speed was about 59 m s−1.
�is, however, did not result in an increase in crack speed at a stretch of 1.7,
which was still observed to be about 6 × 10−3 m s−1. Hence, the cohesive zone
parameters were further modi�ed, this time the cohesive strength to 15 MPa (or
∆o = 1.5 · 10−6m) and critical separation to 5 mm resulting in crack speed at a
stretch of 3.5 to be 59.5 m s−1. No improvement was observed at a stretch level
of 1.7 even at this point. It shall be noted that the cohesive energies varied for
di�erent cases as 27 kJ/m2, 30 kJ/m2 and 37.5 kJ/m2 while the crack speed was
maintained in the range 58 ± 2 m s−1. �e parameter combinations tried can be
seen in the table 8.1.

Table 8.1: Crack speeds obtained for various cohesive zone parameter combinations.

∆0 (m) ∆f (m) Gcoh (kJ/m2) λ w0 (m s−1)

2.7 × 10−7 2 × 10−3 27
3.5

1.7

58

5 × 10−3

2 × 10−7 3 × 10−3 30
3.5

1.7

59

6 × 10−3

1.5 × 10−7 5 × 10−3 37.5
3.5

1.7

59.5

6 × 10−3

It can be observed that using the same cohesive parameters across di�erent
loading does not result in the desired crack speed variation as observed in the
experiments. Hence, rate dependence will be introduced in the subsequent sections
to see if the same cohesive zone parameters can be used across di�erent loading
to obtain crack speeds closer to the experiments. �e need for rate dependence
in cohesive model has been arrived at by a similar analysis in Rahulkumar et al.,
2000; Elmukash� and Kroon, 2014 as mentioned earlier.
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8.3 viscous cohesive zone model

�e rate dependence of the energy dissipated in polymer fracture is a�ributed to
the dissipation in bulk or the failure zone or both. �e form of energy dissipated
is usually taken as a product of an intrinsic energy (G0) and a term that depends
on crack speed, G = G0(1 + f (v,T )) (Gent, 1996b; B. N. Persson & Brener, 2005).
Other forms for this dependence are available like in Schapery, 1975b; W. Knauss,
2015 where the rate dependence factor is obtained from the rheological properties
of the material. �e total energy in these studies is wri�en as a product of intrinsic
energy and a term that depends on the crack speed (instead of the sum mentioned
earlier). However, the intrinsic fracture energy or the energy that is dissipated at
the tip during the fracture process is taken as a constant.

In the case of failure of adhesively bonded joints, the rate dependence is solely
a�ributed to the rate dependence arising due to the viscoelastic nature of the failing
material alone. In such instances, the failure processes are taken into account by
rate dependent cohesive zones (Musto & Alfano, 2011; Rahulkumar et al., 2000;
Geißler & Kaliske, 2010). In some studies as in T. D. Nguyen and Govindjee, 2006;
Rahulkumar et al., 2000, the rate dependence is included in both the bulk as well
as in the failure zone. �e studies are however, restricted to the crack propagation
in thin strips where the interaction of the bulk dissipation with the boundaries
of the specimen is studied. In the context of dynamic fracture of elastomers, rate
dependence in the cohesive zone is deemed to be necessary in the studies made
by Elmukash� and Kroon, 2012, 2014. In a similar manner presented above, the
authors of the cited reference note that using a rate independent cohesive zone
is insu�cient to predict the crack speeds under all the loading conditions. Rate
dependence in the cohesive zone was introduced through a Kelvin-Voigt element.
No speci�c link has been made between the rate dependence property of the
cohesive zone and the bulk material. Also, no speci�c a�ention was paid to the
transonic regime. In the context of phase �eld modeling of polymer fracture, rate
dependence of fracture energy was included in Loew et al., 2019 by the inclusion of
damage rate in the damage evolution equation. More studies on polymer fracture
using phase �eld method have been made by Christian Miehe and Schänzel, 2014;
Christian Miehe, Schänzel, and Ulmer, 2015. However, the crack speeds in these
studies are not high enough for dynamic e�ects to become important.

�e rate dependence in the cohesive zone can be introduced in a number
of ways. �e cohesive strength can be made rate dependent while keeping the
separation constant or the la�er can be made rate dependent while keeping the
former the same or both of them can be varied with the crack speed. Di�erent
criteria are known to result in di�erent crack speeds as a consequence of viscoelastc
bulk (W. Knauss, 2015). Some models used to prevent localization problems like
delay-damage model (Su�s, Lubrecht, & Combescure, 2003) can also be used to
obtain rate dependent cohesive laws. In this study, a strain (crack opening in this
case) based criterion will be used to predict damage initiation in the cohesive zone
while keeping the failure to separation to be constant. �is results in the maximum
traction in the cohesive zone to change with the crack speed. As mentioned
earlier, increasing the cohesive strength has been observed to result in a larger
decrease in the crack speed while a larger variation in separation was found to
be needed. �e traction can be made a function of separations as well as their
rates which is equivalent to introducing a dashpot in parallel with the spring
that indicates a Kelvin type model (Geißler & Kaliske, 2010; Elmukash� & Kroon,
2014). Or a convolution integral type law can be chosen where the traction can be
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made to depend on the (entire) separation history like in materials with memory
(Rahulkumar et al., 2000; Zreid, Fleischhauer, & Kaliske, 2013). In W. G. Knauss
and Losi, 1993, the failure material is modeled by multiplying the stress strain law
that is used in the bulk with a degradation function that depends on strain that
results in the so�ening of the material. In the current study, the la�er model has
been chosen and the kernels in the integrals (resembling W. G. Knauss and Losi,
1993; Rahulkumar et al., 2000) have been chosen to be same as that for the bulk
material thereby establishing a link between the cohesive and the bulk properties.
As will be seen later, this type of cohesive model is able to predict the crack speeds
for the entire range of applied stretches and also di�erent geometries.

�e traction separation relation for the cohesive law has been chosen to be

t = (1 − d)
∫ t

−∞
д(t − s)K ∂∆

∂s
ds (8.4)

Here, the memory kernel д(t) = д∞ +
∑N

i=1 дie
− t
τi . дis are the sti�ness ratios while

τis are the relaxation times. It is intended to see if the same sti�ness ratios as that
of the bulk material can be used in the cohesive zone as well. �is way, cohesive
zone can be regarded as the bulk material that is undergoing failure.

�e evolution equation for damage is same as earlier as in equation 8.3. But
it can be seen that the traction in equation 8.4 depends not just on the current
separation but its entire history. Since, storing all the separation data until the
current time step demands large storage space, the integration is performed by
taking advantage of the exponential dependence of the memory kernel using the
technique presented in Taylor et al., 1970 or Simo and Hughes, 1998. �e integration
technique is as follows.

From the equation 8.4, the traction can be wri�en as

t = (1 − d)
{
K∆ +K

N∑
i=1

(∫ t

−∞
дie
− t−sτi ∂∆
∂s

ds

)}
(8.5)

It shall be noted that the дis in the above equation are to be scaled with respect to
the rubbery modulus instead of the glassy modulus in the previous section. Each of
the integrals in the parenthesis can be evaluated by using the Exponential mapping
technique presented in Simo and Hughes, 1998. Denoting the ith term to be hi (t),

hi (t) =
∫ t

−∞
дie
− t−sτi ∂∆
∂s

ds (8.6a)

=

∫ t−∆t

−∞
дie
− t−sτi ∂∆
∂s

ds +

∫ t

t−∆t
дie
− t−sτi ∂∆
∂s

ds (8.6b)

= e
−∆tτi hi (t − ∆t) +

∫ t

t−∆t
дie
− t−sτi ∂∆
∂s

ds (8.6c)

Computation of the second term

�e second term in the above expression can be computed in a number of ways.
Simo and Hughes (Simo & Hughes, 1998) propose integrating the term using a
midpoint rule.∫ t

t−∆t
e
− t−sτi ∂∆
∂s

ds ≈
(
e
− t−sτi ∂∆
∂s

) ����
s=t−∆t2

∆t = e
− t

2τi [∆(t) − ∆(t − ∆t)] (8.7)
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Hence ∫ t

t−∆t
e
− t−sτi ∂∆
∂s

ds ≈ e− ∆t2τi [∆(t) − ∆(t − ∆t)] (8.8)

In Taylor et al., 1970, the second term is integrated assuming that strain rate, ∂∆
∂s

,
is constant during ∆t .∫ t

t−∆t
e
− t−sτi ∂∆
∂s

ds ≈ ∆(t) − ∆(t − ∆t)
∆t

e
−t
τi

∫ t

t−∆t
e

s
τi ds (8.9)

Evaluating the integral in the above equation,∫ t

t−∆t
e
− t−sτi ∂∆
∂s

ds ≈ 1 − e−∆t/τi
∆t/τi [∆(t) − ∆(t − ∆t)] (8.10)

In the case when the ratio∆t/τi in the equation 8.10 falls below 10−7, the expression
1−e−∆t/τi
∆t/τi is approximated by 1 − ∆t

2τi
.

�e coe�cients of the displacement increment in the equations 8.8 and 8.10
can be noted. �e coe�cients will be generally denoted asmi (t) for convenience
from hereon. Hence∫ t

t−∆t
e
− t−sτi ∂∆
∂s

ds ≈mi (t) [∆(t) − ∆(t − ∆t)] (8.11)

Using the above integration techniques in 8.6c, the expression for hi (t) can be
expressed as (no sum on i)

hi (t) ≈ e−
∆t
τi hi (t − ∆t) + дimi (t) [∆(t) − ∆(t − ∆t)] (8.12)

�e expression for traction can hence be found to be

t = (1 − d)
{
K∆ +K

N∑
i=1

hi (t)
}

(8.13)

8.4 finite element implementation

In this section, the Finite Element implementation of Cohesive model will be
discussed. Beginning with the strong form of momentum balance equation

div0 P = ρ0a (8.14)

De�ning the space of admissible functions that are su�ciently smooth to be V ,

V =
{
w that is su�ciently smooth|w = o on ∂ΩD

0

}
, (8.15)

Converting the momentum equation into weak form∫
Ω0

(div0 P − ρ0a)δv dΩ0 = 0 ∀ δv ∈ V (8.16)

which a�er simpli�cations gives∫
∂Ω0

t .δv ds −
∫
Ω0

(P : ∇0δv + ρ0a.δv)dΩ0 = 0 (8.17)
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�e boundary of the body can be divided into external boundary and the crack
surfaces, ∂Ω0 = ∂Ωext ∪ Γ±0 . Using this in the above equation∫

∂Ωext

t .δv dS +

∫
Γ±0

t .δv dS −
∫
Ω0

(P : ∇0δv + ρ0a.δv)dΩ0 = 0 (8.18)

Since they are initially coincident, the integral on both the crack faces can be

Figure 8.1: Body with a crack.

replaced by an integral on one crack face as∫
Γ±0

t .δv dS =

∫
Γ0
[δv].t dS (8.19)

where [•] denotes the jump of •.
Using their values at nodes and the shape functions, δv can be expressed to be

δv = Niδvi (8.20)

In one element, the jump in displacement can be expressed similarly as

∆ = [u] = [B]{u} (8.21)

{u} is a vector containing the nodal values of quantities, expressed as

{u} = [ux1 uy1 ux2 uy2 ux3 uy3 ux4 uy4]T (8.22)

and
[B] =

[
N1 0 N2 0 −N2 0 −N1 0
0 N1 0 N2 0 −N2 0 −N1

]
. (8.23)

See �gure 8.2. Nis are the shape functions and N1 =
1−ξ

2 , N2 =
1+ξ

2 . It has been

1 2

4 3

1

2

3

4

Figure 8.2: Cohesive element.

taken into consideration that the nodes 1 and 4, and the nodes 2 and 3 coincide
with each other in the undeformed con�guration. �e term

∫
Γ0
[δv].t dS can be

expressed using the nodal values of actual and virtual displacements as∫
Γ0
[δv].t dS = {δv}T

∫
Γ0
[B]T t dS = {δv}T { f coh} (8.24)

�e integration in 8.24 is performed numerically as

{ f coh} =
np∑
i=1

wi

(
[B]T t

)
|i (8.25)

where wis are weights and
([B]T t ) |i indicates that the quantity [B]T t is computed

at the corresponding integration point.
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Using 8.21, the jump in displacement can be expressed in terms of nodal
displacements. �e above equations can hence be expressed as

t = (1 − d)
{
[K][B]{u} + [K]

N∑
i=1

hi (t)
}

(8.26)

hi (t) is computed recursively from the value at the previous time step as

hi (t) = e
−∆tτi hi (t − ∆t) + дimi (t)[B]d{u} (8.27)

where d{u} = {u(t)} − {u(t − ∆t)}. �e expression for traction can be further
simpli�ed as

t = (1 − d)[K]
{
[B]

(
{u} +

N∑
i=1

дimi (t)d{u}
)
+

N∑
i=1

e
−∆tτi hi (t − ∆t)

}
(8.28)

Hence, tractions at the integration point can be evaluated by computing [B]
and hi at those points. �emi (t) obtained from Simo and Hughes, 1998 is known
to be sensitive to the time step size and hence the mi (t) from Taylor et al., 1970
will be used for this study. �e tangent computation will be presented next.

8.4.1 Computation of residual

�e weak form of momentum equation is integrated in time using the HHT-α
(Hilber et al., 1977) time integration technique. Since a zero thickness cohesive
zone has been considered for the analysis, there is no contribution to the mass
matrix from the cohesive zone. �e only computation from the cohesive comes
from the term f coh . �e residual on the weak form of momentum equation can
hence be wri�en as

rn+1 = −(1 + α)f n+1
coh + α f

n
coh . (8.29)

�e above equation together with the contribution from the bulk is solved using
Newton’s method in Abaqus. �e above equation is hence linearized about the
current displacement.

rn+1
k+1 = r

n+1
k +

∂rk+1

∂u
∆u = 0. (8.30)

�e tangent matrix can hence be seen to be (1 + α)∂ f coh
∂u

.

8.4.2 Computation of tangent

Tangent computation involves di�erentiating 8.25 with respect to displacement.

∂ f coh
∂u

=

∫
Γ0
[B]T ∂t
∂u

dS =

∫
Γ0
[B]T ∂t
∂∆

∂∆

∂u
dS =

∫
Γ0
[B]T ∂t
∂∆
[B]dS (8.31)

�e traction derivative with respect to separation is computed as

∂t

∂∆
= (1 − d)

{
[K] + [K]

N∑
i=1

∂hi
∂∆

}
− t

[
∂d

∂∆

]T
(8.32a)
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= (1 − d)
{
(1 +

N∑
i=1

дimi (t))[K]
}
− t

[
∂d

∂∆

]T
(8.32b)

From 8.3, the derivative of damage with respect to separation can be seen to be

∂d

∂∆
=

∆0

∆f − ∆0

∆f

∆3
∆ (8.33)

�e �nal expression for the tangent can be seen to be

(1+α)
∫
Γ0
[B]T

[
(1 − d)

{
(1 +

N∑
i=1

дimi (t))[K]
}
− ∆0

∆f − ∆0

∆f

∆3
t∆T

]
[B]dS (8.34)

Since only mode-I fracture is considered in this study, ∆ can be approximated
by ∆y , the vertical component of the displacement jump.

8.4.3 Implementation into user subroutine

�e above formulation of the cohesive zone has been implemented in to the user
subroutine UELMAT of Abaqus (Dassault, 2014). �e implementation details can be
seen below.

It can be seen from the equation 8.13 that the computation of traction vector
requires the computation of the jump vector, ∆ and the history variables, hi .
�e computation of hi at the current time step requires its value at the previous
time step as well as the displacement increment between the two time steps.
Hence, the history variables hi (of size 2 × 1) are stored in the state variable array
(SVARS) that is supplied by Abaqus. �e displacement increment between the two
steps is supplied by Abaqus as the variable DU. In addition to this, the half step
residual check from Abaqus at the end of each time step and the computation of
residual for time integration require the force vector (of size 8 × 1) computed at
the previous iteration. �is is hence stored in the SVARS array as well. �e damage
variable is also stored to take the irreversibility constraint into consideration.
�is computation is done at each integration point to get the right hand side
of the force vector in the equation 8.26. Since the current formulation uses 10
viscous arms, the total size of the state variable array at each integration point is
29 (= 1 (damage) + 8 (force) + 10 × 2 (internal variables)). Since two integration
points are used for each element, the size of the state variable array is 58. �e
structure of the SVARS array can be seen in the �gure 8.3.

Figure 8.3: Structure of SVARS array of
the UELMAT subroutine.

�e quantities to be returned to Abaqus is determined from the LFLAGS array
of the subroutine. Per the documentation, the internal variables are updated when
LFLAGS(3) = 1. In that case, the sti�ness matrix and the force vector are computed
at each integration point and are combined with the weights from the integration
rule to get the overall sti�ness matrix and the force vector, which is then supplied
to Abaqus through the arrays AMATRX and RHS, respectively. �e internal variables
are updated using the equation 8.27.
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8.5 crack speeds prediction and traction - separation

relations

�e implementation of the CZM has been �rst checked by making it rate inde-
pendent and comparing the results against the results from the COH2D4 element of
Abaqus. In the rate independent case, the results from the two simulations are ex-
pected to match. �is was tested for the case of λ = 2.5 and with ∆0 = 1 × 10−6 m
and ∆f = 1.5 × 10−3 m. Both the analyses resulted in the crack speed of about
59 m s−1 and similar displacement and velocity pro�les.

40 mm specimen

�e cohesive model presented has been implemented into the UELMAT subroutine
of ABAQUS. �e model parameters that are to be calibrated are the separation at
initiation (∆0) and the separation at failure (∆f ). �e material in the bulk has been
taken to be the same as that in the previous section. As mentioned earlier, the дis
and τis of the cohesive zone are taken to be the same as that of the bulk material.

�e values of 1 × 10−6 m and 1.5 × 10−3 m for ∆0 and ∆f , respectively, were
seen to give a crack speed of 56 m s−1 at a stretch level of 3.5 and a crack speed
of about 6 m s−1 at a stretch level of 1.7, which is much larger than what was
observed with a rate independent cohesive zone. �e crack speed observed in the
experiments varied between 9 and 16 m s−1. Hence, the rate dependent model with
the aforementioned choice of parameters was used to obtain crack speeds for the
whole range of loading conditions to compare them with the experiments. �e
results can be seen in the �gure 8.4.
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Figure 8.4: Crack speeds vs Stretch. �e symbols indicate the experimental results
obtained in Corre, Coret, Verron, Leblé, and Le Lay, 2020. �e solid line indicates
the crack speeds from the simulation obtained using a rate dependent CZM.

It can be seen that the crack speeds from the simulation follows the experimen-
tal trend at least up to a stretch level of 3.5. A slight upturn in the trend has been
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observed in the simulations a�er the stretch level of 3.5. �e data point available
from the experiments does not seem to follow this trend a�er the stretch of 3.5.

Specimen of other geometry

In crack propagation experiments performed by Chen et al., 2011, it was observed
that the crack speed becomes independent of the specimen height in the transonic
regime. La�ice model was used as well in that study to simulate the propagation
of crack. In this section, it will be tested if the rate dependent cohesive model
presented earlier will be able to predict the same result for polyurethane as well.
For this purpose, the crack propagation in specimen of other heights such as 10
mm, 20 mm, 60 mm, 100 mm and 150 mm will be studied. �e lengths of the 100
mm and 150 mm specimen have been increased to 500 mm to make sure that the
steady state can be achieved when the crack is at the center. �e results of the
simulations can be seen in the �gure 8.5.
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Figure 8.5: Crack speeds vs Stretch, all heights

It can be seen that at a given stretch level, the rate of increase in crack speed
decreases as the specimen height is increased. In fact, it can be seen that the crack
speeds saturate at some height and does not increase further with an increase in
height. �is can be observed if the crack speeds are plo�ed against the specimen
height instead of the stretch level (see �gure 8.6).

As mentioned earlier, the crack speeds seem to saturate at a particular height
and does not increase any further. Figure 8.6 can be compared with Figure 3 of Gent
and Marteny, 1982a. In that study experiments were conducted on specimen of
di�erent heights all stretched to the same level. �e crack speeds were observed to
not increase once a speci�c height level is reached as is the case in the simulations
performed in the current study.
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Figure 8.6: Crack speeds vs Stretch, all heights

Traction separation curves

Since the traction separation law was made rate dependent, a variation in crack
speed results in a variation in the traction separation law. It is expected that the
maximum stress in the cohesive zone is larger than the cohesive strength in the
rate independent case.

�e traction separation behavior of the cohesive zone is extracted from the
simulations and plo�ed vs the crack speed in �gure 8.7.

It can be seen that the maximum traction value increases rapidly to a value of
about 21 MPa for a crack speed of 5.6 m s−1. In the other cases where the crack
speeds are about 41 m s−1 and 56 m s−1, the critical stress can be similarly seen to
increase to about 40 MPa and 46 MPa respectively. �is, of course, leads to an
increase in fracture energy as well. �e fracture energies can be computed as the
area under the traction separation curves. For the results presented in �gure 8.7,
they can be seen to be 12.89 kJ/m2, 18.5 kJ/m2, and 21 kJ/m2, for λ = 1.7, 2.5,
and 3.5, respectively.

Traction inside the cohesive zone

�e variation of cohesive traction and the damage variable inside the cohesive
zone for the three cases presented in the �gure 8.7 can be seen in �gures 8.8 and
8.9.

As can be seen from the �gure 8.8, the stress at the entry of the cohesive zone
increases slightly with the crack speed. From its value at the entry, the cohesive
traction increases to a maximum value and starts to decrease again. As the material
in the cohesive zone starts to damage, the crack faces start to separate faster
resulting in an increase in traction as a consequence of viscous e�ects. However,
as the crack faces separate, the damage variable increases and reaches 1 at the end
of cohesive zone. Hence, it can be seen that the traction increases at the beginning
of the cohesive zone as a consequence of viscous e�ects and decreases once the
damage variable increases. A similar trend can be observed for all the crack speeds
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Figure 8.7: Traction separation curve for various crack speeds
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Figure 8.8: Traction separation curve for various crack speeds

presented.
In the �gure 8.9, the cohesive tractions are presented with the distance along

the zone normalized with the length of cohesive zone. �e length of the cohesive
zone is measured in the undeformed con�guration from the location where the
separation reaches ∆0 till the location where it reaches ∆f . �e length of the
cohesive zone can be seen to be 4.5 × 10−4 m, 7 × 10−4 m, and 7.5 × 10−4 m for
λ = 1.7, 2.5 and, 3.5, respectively. From the �gure 8.9, it can be observed that the
normalized distance at which the cohesive traction a�ains the maximum moves to
the right with an increase in the crack speed. �e damage pro�le can also be seen
to move towards the right with an increase in the crack speed.

Comparison of pro�le of crack faces, displacement and velocity �elds

�e pro�le of crack faces behind the tip obtained from the experiments and the
simulations for the 40 mm sample for the case of λ = 3.5 can be seen in the �gure
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Figure 8.9: Traction separation curve for various crack speeds

8.10. �e crack speed observed in the experiment is about 56 m s−1 and the speed
obtained from the simulation is about 57 m s−1. �e pro�le obtained from the
simulation is steeper than what was observed in the experiments. �is could be a
consequence of the viscoelastic model being ‘less sti�’ than expected at the strain
rates experienced. However, as can be seen, the crack speed obtained from the
simulation is about the same as in the experiments.

Figure 8.10: Comparison of the crack opening pro�le between the experiment and simulation for the case of λ = 3.5 when the crack is at about
the center of the specimen.

�e displacement and velocity �elds when the crack is at about the center of
the specimen can be seen in the �gures 8.11 and 8.12 (to be compared with �gures
7.16a and 6.2), respectively. It can be seen that in the displacement and velocity
�elds over predicted in the simulations when compared with the experiments.

8.6 discussions

In this chapter, the crack propagation through the elastomer has been simulated
using a cohesive zone model. Finite Linear Viscoelastic model has been assumed for
the bulk material. Initial a�empts were made to model the crack propagation using
a rate independent cohesive zone. It was found that the cohesive zone parameters
which result in crack speeds that match the experiment at λ = 3.5 either does
not result in the crack propagation at λ = 1.7 or result in a very low crack speed
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Figure 8.11: Particle velocity magni-
tude in ms−1 for λ = 3.5 plo�ed on
deformed con�guration.
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Figure 8.12: Horizontal displacement
magnitude in mm for λ = 3.5 plo�ed
on undeformed con�guration.
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(orders of magnitude smaller than the experiments) at that stretch level. Hence,
the entire range of crack speeds could not be predicted using the same cohesive
zone parameters with a rate independent cohesive zone.

Studies performed in the literature using a cohesive zone model to predict the
crack growth in polymers or adhesives (Rahulkumar et al., 2000; Geißler and Kaliske,
2010; Elmukash� and Kroon, 2014 and the references cited therein) underline the
need for a rate-dependent cohesive zone. �e rate dependence in the cohesive zone
can be a�ributed to the rate dependence in the fracture processes as a consequence
of viscoelastic e�ects. A rate dependent cohesive zone has hence been employed
in the current study as well. �e rate dependence has been introduced by using
convolution integrals as in the bulk. �e relaxation times and the sti�ness ratios
of the viscous arms have been picked to be the same as that of the bulk. �is
just leaves two parameters in the cohesive zone to be calibrated, ∆0 and ∆f . �e
parameters were chosen to reproduce the experimental crack speed at a stretch
level of 3.5. �en, using the same parameters, the cohesive zone model was able
the entire range of the crack speeds observed in the experiments. See �gure 8.4.
When used to predict the crack speeds for di�erent geometries, it was observed
that the crack speeds became independent of the specimen height at a given stretch
level as was reported in Chen et al., 2011. �e height independence was, however,
observed for specimen heights starting from about 60 mm. For specimens of smaller
heights, the crack speeds still changed with a change in the specimen height for
the same stretch. See �gure 8.6. �e specimen heights tested in Chen et al., 2011
were 2 inch (50.8 mm), 4 inch (101.6 mm), and 7 inch (177.8 mm). Hence, it is
possible that the phenomenon of height independence observed in that study was
the consequence of the geometries used for the experiments. For instance, in
this thesis, the geometries that are 20 mm, 40 mm, and 60 mm were tested by the
authors. From the �gure 8.6, it can be seen that for this height range, the crack
speeds have yet not become independent of the specimen height in the transonic
regime.

�e traction-separation curves in the rate dependent cohesive zone for di�erent
crack speeds can be seen in the �gure 8.7 along with the rate independent case.
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It can be seen that the maximum traction in the cohesive zone is a function of
crack speed and it increases to about 47 MPa for the case of λ = 3.5, where the
crack speed is about 57 m s−1. �e variation of traction in the cohesive zone for
di�erent crack speeds can be seen in the �gures 8.8 and 8.9. In all the cases, the
traction at the entry into cohesive zone can be seen to slightly increase with the
crack speed. It reaches a value of 16 MPa for a crack speed of about 57 m s−1.
�e location of maximum traction can be seen to be behind the mathematical
crack tip (where ∆ = ∆0). It can also be observed that the location moves away
from the mathematical tip with an increase in the crack speed. �e maximum
occurs at about x/lc < 0.2, ≈ 0.2, and 0.37 for three crack speeds presented. �e
results from the current study in �gure 8.8 can be compared with the results from
W. G. Knauss and Losi, 1993 in �gure 8.13. Only one case from W. G. Knauss and
Losi, 1993 is presented here. All the cases can be found in the �gure 8 of that
publication. In that study, the stresses at the entry of cohesive zone was found
to vary non-monotonically with the crack speed. However, for range of crack
speeds in the �gure 8.13, it can be seen that the stress at the entry of the cohesive
zone is a weakly increasing function of crack speed as is the case in the current
study. �e maximum traction can also seen to increase with the crack speed till a
certain crack speed. In the current study, the maximum traction increases with
crack speed as well, and may also probably se�le down for higher crack speeds (at
higher stretches).

�e cohesive model chosen in this study is intrinsic (Kubair & Geubelle, 2003)
since it has a �nite initial sti�ness. �e damage initiation criterion in this case
has been described in terms of a critical opening displacement (d = 0 and Ûd >
0 when ∆ = ∆0 and Û∆ > 0). As the crack approaches a material point, the strain
levels (and hence the separation) increases as a result of the strain concentration
near the tip. �is results in the stress at the entry of the cohesive zone being a
function of crack speed as a consequence of the rate dependence. �e cohesive
element is taken to fail completely whend = 1, which happens at∆ = ∆f . However,
if an extrinsic cohesive zone is used for the analysis, the separation remains at 0
till a certain critical stress is reached. In such a case, the damage initiation criterion
used in this study may not be applicable. One alternative is to make the initiation
stress as a (unknown) function of crack speed. However, as can be seen from the
results of this study, even with a critical opening criterion, the stresses at the entry
of the cohesive zone do not vary drastically with the crack speed (as compared
to the maximum traction). Hence, the damage initiation stress in the case of an

Figure 8.13: Evolution of traction
within the cohesive zone. Extracted
from W. G. Knauss and Losi, 1993. h
denotes the thickness of the layer used
in that study. α denotes the position
of the mathematical tip .
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extrinsic cohesive model can be taken to be a constant while still retaining the rate
dependent behavior from this study.

Another feature of interest is the length of the cohesive zone. �e lengths are
4.5 × 10−4 m, 7 × 10−4 m, and 7.5 × 10−4 m for λ = 1.7, 2.5 and, 3.5, respectively.
In W. G. Knauss and Losi, 1993, the cohesive zone length was reported to be a
non-monotonic function of crack speed. However, at large crack speeds, the length
was observed to increase with the crack speed (see �gure 8.13). As mentioned
already, in the current study, for the crack speeds considered, the cohesive zone
length increases with the crack speed. If the failure of the material is taken to
occur within the process zone, the roughness of the crack surface presented in the
earlier chapter in the �gures 6.7 and 6.8 can be taken to represent the variation of
cohesive zone with the crack speed. Hence, this observation is in contrast with the
result from the simulations.

�e opening pro�le of the cracked surface behind the tip from the experiments
and simulation can be seen in the �gure 8.10. It can be seen that the pro�le
obtained numerically is steeper than the experimentally observed pro�le. Also,
the magnitude of velocity and the horizontal displacement can be seen in the
�gures 8.11 and 8.12, respectively. �e FE simulations can be seen to over predict
these quantities when compared with the experiments. �e reason for this can be
described as follows. From the �gures 7.17 and 7.19, the reaction forces behind
the tip do not go to 0 directly behind the tip. Instead, they go to 0 gradually over
some length behind the tip. �e magnitude of these stresses are positive as well,
indicating that they are ‘holding back’ the crack faces from moving upward. In the
simulations, however, since these faces are traction free, they are free to move until
the material in front resists their motion. �is can be seen to be the reason behind
obtaining a steeper pro�le in the simulations. As mentioned in the earlier chapter,
if the viscoelastic model is further re�ned to make the reaction in the �gures 7.17
and 7.19 go to 0 over a smaller span, the pro�le from the simulations may match
closely with the ones from the experiments.

�e total energy expenditure in the bulk and the cohesive zone during the
dynamic fracture, however, cannot be computed with the Finite Linear Viscoelastic
model. Hence, the Finite Viscoelastic model has been implemented and this will
be the focus of the next chapter. �e energy expenditure during the viscoelasto-
dynamic fracture will be examined. �e portion of energy lost due to viscoelastic
e�ects of the bulk and the fracture processes will be examined.

summary

A rate dependent cohesive model has been used to predict the crack speeds in
Polyurethane elastomer. A convolution integral type model has been used for the
cohesive zone, the coe�cients of which are taken to be the same as that of the
bulk material. �e results from the simulations match the experimental results
from Corre et al., 2020 for the 40 mm geometry. When applied for the case of other
geometries, it was observed that for a given stretch level, the crack speeds did
not depend on the specimen geometry starting from the specimen size of 60 mm.
�is coincides with the observations from Chen et al., 2011 where the specimens
of the natural rubber were tested. �e evolution of traction within the cohesive
zone, the maximum traction, the traction at the entry of the cohesive zone are
similar to the observations from W. G. Knauss and Losi, 1993. �e area under the
traction separation curves was observed to increase with the crack speed which
is analogous to an increase in fracture energy with crack speed. To conclude, the
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hyperelastic model along with viscous contributions modeled in terms of Finite
Linear Viscoelasticity and a convolution type cohesive zone was observed to predict
crack speeds similar to the experimentally observed speeds.



9finite viscoelastic model

In this chapter, the Finite Viscoelastic model (Reese & Govindjee, 1998; Bergström
& Boyce, 1998) will be presented and its implementation will be described in a
plane stress se�ing. At �rst, the model will be presented in a 3D se�ing and the
di�erences arising in the implementation in plane stress will be discussed. A�er
this, some comparisons will be made between the current model and the Finite
Linear Viscoelastic model. Finally, energetic analysis will be performed on the
experiments and the simulations using the current model.
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�e Finite Linear Viscoelastic (FLV) model has been used in the previous
chapters to describe the viscoelastic behavior of the bulk material. However, the
energy dissipated in the bulk material during the propagation of a crack cannot
be computed with that model as it does not involve an explicit expression for
energy or dissipation. To the author’s knowledge, a plane stress implementation
of the model by Reese and Govindjee, 1998 does not exist. Hence, the current
chapter discusses its plane stress implementation and its use to compute the energy
dissipated in the material during the propagation of a dynamic crack.

9.1 thermodynamics

In order to describe the processes that are far from equilibrium, a viscoelastic model
has been proposed in Bergström and Boyce, 1998; Reese and Govindjee, 1998 in
a thermodynamically consistent way. In this model, the strain energy density is
taken to be a function of the deformation as well as some internal variables that
characterize the rate dependence of the material. �e strain energy density can be
wri�en as

ψ = ψ̂ (C,Q1,Q2, ...,Qn), (9.1)
where C is the right Cauchy Green deformation tensor and Q i are the internal
variables. �e evolution of internal variables are described by n equations of the
form

ÛQk = f̂ k (C,Q1,Q2, ...,Qn). (9.2)
�e evolution equations and the expression for the internal energy shall satisfy
the dissipation inequality

D B 1

2
S : ÛC − Ûψ ≥ 0. (9.3)

Using a Maxwell type spring-dash pot model to represent the material, the strain
energy function can be split into equilibrium and non-equilibrium parts as

ψ B ψEQ (C̄) +ψNEQ (Ce ) = ψEQ (C̄) +ψNEQ (F−Ti C̄F−1
i ), (9.4)

where Ce is the elastic part of the deviatoric Cauchy Green tensor, C̄ B F̄
T
F̄ . It

has been assumed that F̄ = J−
1
3 F admits a decomposition into an elastic and an

inelastic part, F̄ = F eF i (Dal & Kaliske, 2009). Using the above expressions in the
internal dissipation inequality gives the expressions for stress as

S = −p JC−1 + J−2/3DEV
{
SEQ + SNEQ

}
. (9.5)

SEQ and SNEQ denote the elastic and viscous contributions to the total stress.

DEV
{
•
}

represents the deviatoric projection and the �rst term is a consequence

of the incompressibility constraint. �ese stresses are given by

SEQ B 2
∂ψEQ

∂C̄
, (9.6)

SNEQ B 2F−1
i
∂ψNEQ

∂Ce
F−Ti , (9.7)

and the deviatoric projector by

DEV
{
•
}
B • − • : C

3
C−1. (9.8)
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�e Kirchho� stress is then obtained as

τ = FSFT = −p JI + τ iso = −p JI + P : τ̄ , (9.9)

where τ̄ = τ̄ EQ + τ̄NEQ are de�ned as

τ̄ EQ B 2
∂ψEQ (b̄)
∂b̄

b̄, (9.10)

τNEQ B 2
∂ψNEQ (be )
∂be

be . (9.11)

P is the deviatoric projector in the deformed con�guration de�ned as

P B I − I ⊗ I
3
. (9.12)

�e dissipation inequality becomes

D = −τNEQ :
1

2
Lvbe .b−1

e ≥ 0, (9.13)

where Lvbe denotes the Lie derivative of be de�ned as

Lvbe = F̄
Û

C−1
i F̄

T
. (9.14)

�e expression 9.13 can be satis�ed by specifying the evolution equation as

− 1

2
Lvbe .b−1

e = γ0V
−1 : τNEQ . (9.15)

where V is a fourth order isotropic positive de�nite tensor possibly a function of
be and γ0 > 0. A slightly di�erent equation has been proposed by Bergström and
Boyce, 1998. In fact, the model of Reese and Govindjee, 1998 can be seen to be a
special case of the model of Bergström and Boyce, 1998.

9.2 integration of the evolution eqation

�e integration of equation 9.13 is carried out by a predictor-corrector type algo-
rithm. In the elastic predictor step, the inelastic strains are taken to be �xed and
so,

(C−1
i )tr = (C−1

i )tn−1 =⇒ btre = F̄ (C−1
i )tn−1 F̄T . (9.16)

In the inelastic corrector step, the total deformation is assumed to be held �xed
and so, Lvbe = Ûbe . Using this in equation 9.15 gives

Ûbeb−1
e = −2γ0

[
V−1 : τNEQ

]
. (9.17)

�e above equation can be integrated using the exponential mapping technique
(Weber & Anand, 1990). �e resulting expression is

be = exp

[
−2γ0

∫ tn

tn−1
V−1 : τNEQ dt

]
btre , (9.18)

(be )tn ≈ exp
[−2γ0∆t(V−1 : τNEQ )t=tn

]
btre . (9.19)

�e above equation is �rst order accurate.
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Since the material is assumed to be isotropic, be , btre and hence τNEQ share the
Eigen space. Since V−1 B 1

2ηD

[
I − I ⊗I

3

]
is isotropic, equation 9.19 can be wri�en

in Eigen basis as

λ2
Ae = exp

[
−γ0∆t

ηD
dev(τA)

]
(λ2

Ae )tr . (9.20)

Taking logarithm of both sides,

ϵAe = −
γ0∆t

2ηD
dev(τA) + (ϵAe )tr , (9.21)

where ϵAe = ln λAe , (ϵAe )tr = ln(λAe )tr . �e above equation is non-linear if τA is
a non-linear function of ϵe . Hence, Newton iterations are used to solve it as below.

De�ning
rA B ϵAe +

γ0∆t

2ηD
dev(τA) − (ϵAe )tr = 0, (9.22)

it can be solved by linearizing around ϵAe = (ϵAe )k as

rA +
∂rA
∂ϵBe

∆ϵBe = 0 =⇒ KAB∆ϵBe = −rA. (9.23)

where KAB =
∂rA
∂ϵBe

. �e above equation is solved to obtain ∆ϵe , which is then used
to update the elastic strain as (ϵe )k+1 = (ϵe )k + ∆ϵe .

9.3 plane stress formulation

As already mentioned, to the author’s knowledge, a plane stress implementation
of the FV model does not exist. �is and the further sections discuss this imple-
mentation. It shall be noted that no changes to the model will be made. Rather, all
the expressions for the stresses and the tangents will be rewritten so that they can be
computed only using the in-plane components of the deformation gradient (F ) and its
elastic part (F e ).

9.3.1 Stress and tangent computation

Stress computation

In plane stress scenario and for an incompressible material, the computation of
stress can be simpli�ed. �e value of p in the equation 9.9 can be found by using
the condition that τ33 = 0. �is condition can be imposed separately for the elastic
and the viscous branches and the results can be combined. Beginning with the
elastic branch, the term ∂ψ

∂b̄
b̄ can be computed as

∂ψ

∂b̄
b̄ =

[
∂ψ

∂I1
I +
∂ψ

∂I2
(I1I − b)

]
b, (9.24)

where the incompressibility of the material has been taken into account. �e
deviatoric projection of the above term is

P :

(
∂ψ

∂b̄
b̄

)
=

[
∂ψ

∂I1
I +
∂ψ

∂I2
(I1I − b)

]
b − 1

3

[
∂ψ

∂I1
I1 + 2

∂ψ

∂I2
I2

]
I . (9.25)
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�e contribution of the elastic branch to p, denoted pe , can be wri�en as (using
τ33 = 0)

pe = 2

[
∂ψ

∂I1
b33 +

∂ψ

∂I2
(I1b33 − b2

33)
]
− 2

3

[
∂ψ

∂I1
I1 + 2

∂ψ

∂I2
I2

]
. (9.26)

�e total elastic part of the stress can then be found as

−peI + 2P :

(
∂ψ

∂b̄
b̄

)
= 2
∂ψ

∂I1
(b −b33I )+ 2

∂ψ

∂I2

(
I1(b − b33I ) − (b2 − b2

33I )
)
. (9.27)

�e above equation, wri�en with its components restricted to within the plane,
can be seen to be

τ e = 2
∂ψ

∂I1
(b2d − b33I

2d ) + 2
∂ψ

∂I2

(
I1(b2d − b33I

2d ) − ((b2d )2 − b2
33I

2d )
)
. (9.28)

b2d is the restriction of b to within the plane. As a consequence of plane stress

assumption, b has been assumed to be of the form b =

[
b2d o
oT b33

]
. Expressing the

�rst and the second invariants in terms of in-plane components as (realizing that
b33 = 1/detb2d )

I1 = tr(b2d ) + 1/det(b2d ), (9.29)

I2 =
1

2

[
(I1(b2d ))2 − (b2d : b2d

+ 1/det(b2d )2)
]
, (9.30)

the term b2d − b33I
2d in the equation 9.28 can now be simply wri�en as ∂I1

∂b2d
b2d

and the term I1(b2d − b33I
2d ) − ((b2d )2 − b2

33I
2d ) as ∂I2

∂b2d
b2d . �e total stress in

the equation 9.28 then simply becomes

τ e = 2

[
∂ψ

∂I1

∂I1

∂b2d
+
∂ψ

∂I2

∂I2

∂b2d

]
b2d
= 2
∂ψ

∂b2d
b2d . (9.31)

By a similar exercise for the viscous branches, the viscous contribution to the total
stress becomes

τv = 2
∂ψ

∂b2d
e

b2d
e . (9.32)

Hence the equations 9.5 and 9.9 become

τ = τ e + τv , and (9.33)
S = F−1τF−T . (9.34)

�e above equations are restricted to in-plane components and the superscript
2d has been eliminated for convenience. �e total stress in the equation 9.33
can be wri�en for the case of multiple (say, N ) viscous branches simply as τ =
τ e +

∑N
i=1(τv )(i), where each of the (τv )(i) s now denote the viscous stress in the

corresponding viscous arm, de�ned as (τv )(i) B 2
∂ψ (i)

∂(b2d
e )(i)

(b2d
e )(i). (b2d

e )(i) is the

le� cauchy green tensor in the ith viscous arm.
�e two invariants wri�en in terms of principal stretches become

I1 = λ
2
A + λ

2
B + λ

2
C = λ

2
A + λ

2
B + 1/λ2

Aλ
2
B , (9.35)

I2 = λ
2
Aλ

2
B + λ

2
Bλ

2
C + λ

2
Cλ

2
A = λ

2
Aλ

2
B + 1/λ2

A + 1/λ2
B , (9.36)
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where λ2
C = 1/λ2

Aλ
2
B has been used.

Using the above, the Kirchho� stress can be wri�en in principal basis to be

τA = 2λ2
A
∂ψ

∂λ2
A

= 2λ2
A

[
∂ψ

∂I1

∂I1

∂λ2
A

+
∂ψ

∂I2

∂I2

∂λ2
A

]
, (9.37)

τB = 2λ2
B
∂ψ

∂λ2
B

= 2λ2
B

[
∂ψ

∂I1

∂I1

∂λ2
B

+
∂ψ

∂I2

∂I2

∂λ2
B

]
, (9.38)

and τC = 0 as a consequence of the plane stress assumption. �e partial derivatives
of the invariants can be evaluated as

∂I1

∂λ2
A

= 1 − 1/λ4
Aλ

2
B ,

∂I1

∂λ2
B

= 1 − 1/λ2
Aλ

4
B , (9.39)

∂I2

∂λ2
A

= λ2
B − 1/λ4

A,
∂I2

∂λ2
B

= λ2
A − 1/λ4

B . (9.40)

�e stresses can be expressed in global Cartesian basis by using

τ = τ1n1 ⊗ n1 + τ2n2 ⊗ n2, (9.41)

where n1 and n2 are the eigen vectors of b = FFT . As a recollection, the stresses
obtained this way are the total stresses, τ = −p JI + τ iso = −p JI + P : τ̄ .

Stresses can be similarly computed in viscous branches where λ is replaced
by λe , which are the eigen values of be = F eF

T
e and theψ replaced by the strain

energy of the corresponding viscous arm.

Integration of evolution equation

For viscous branches, the evolution equation remains same even in the plane stress
scenario. �e residual can be wri�en, similar to the equation 9.22 as

rA = ϵAe +
γ0∆t

2ηD
dev(τA) − (ϵAe )tr = 0, (9.42)

Since plane stress condition is assumed to prevail, only the in-plane components
of the above equation are considered. Also, the deviatoric part of the Kirchho�
stress can be expressed as dev(τ ) = τ + pI , where p is the Lagrange multiplier that
enforces incompressibility, which is found by using the condition that τ3 = 0. τ
can be evaluated by using the procedure in the previous section. �e expression
for p can be seen to be

p = −τ1 + τ2

3
. (9.43)

�e above equation can be obtained by taking the trace of the equation 9.9 and
realizing that τ3 = 0 as a consequence of plane stress assumption and that trace of
the deviatoric projector is 0. �e in-plane evolution equations then become

r1 = ϵ1e +
γ0∆t

2ηD
(τ1 + p) − (ϵ1e )tr = 0, (9.44)

r2 = ϵ2e +
γ0∆t

2ηD
(τ2 + p) − (ϵ2e )tr = 0. (9.45)

In the third direction, the evolution equation becomes ϵ3e +
γ0∆t
2ηD

p − (ϵ3e )tr = 0. It
can be shown that solving the �rst two equations exactly will result in the third
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equation being satis�ed automatically. Adding the equations 9.44 and 9.45 will
result in ϵ1e +ϵ2e +

γ0∆t
2ηD
(τ1 + τ2 + 2p)−[(ϵ1e )tr + (ϵ2e )tr ] = 0. �is, in conjunction

with the assumption of incompressibility and plane stress condition, results in
ϵ3e +

γ0∆t
2ηD

p − (ϵ3e )tr = 0, which is the third equation.
�e equations 9.44 and 9.45 are solved iteratively using Newton method.

r (k+1)
A = r (k )A +

∂rA
∂ϵBe

∆ϵBe = 0. (9.46)

�is in turn requires the evaluation of KAB =
∂rA
∂ϵBe

. �is can be evaluated as

KAB =
∂rA
∂ϵBe

= δAB +
γ0∆t

2ηD

(
∂τA
∂ϵBe

+
∂p

∂ϵBe

)
. (9.47)

�e pressure derivative can be computed from equation 9.43 as

∂p

∂ϵAe
= −1

3

(
∂τ1

∂ϵAe
+
∂τ2

∂ϵAe

)
. (9.48)

�e computation of derivative ∂τA
∂ϵBe

can be carried out as shown in the follow-
ing sections.

9.3.2 Tangent computation

For elastic branch

�e computation of tangent �rst involves the computation of C = 2
∂S

∂C
. �e

derivative can be computed by noting that (Bonet, 2001)

ÛS = ∂S
∂C

: ÛC . (9.49)

Since C =
∑2

i=1 λ
2
iN i ⊗ N i , ÛC =

∑2
i=1

[
∂λ2

i

∂t
N i ⊗ N i + λ

2
i
ÛN i ⊗ N i + λ

2
iN i ⊗ ÛN i

]
.

ÛN i =
∑2

j=1Wi jN j , where Wi j = −Wji are the components of a skew symmetric
tensor. Hence

ÛC =
2∑
i=1

∂λ2
i

∂t
N i ⊗ N i +

2∑
i, j=1,i,j

Wi j (λ2
i − λ2

j )N i ⊗ N j . (9.50)

As a consequence of isotropy, S and C share the eigen vectors. Hence, following
the same procedure,

ÛS =
2∑

i, j=1

2
∂2ψ

∂λ2
i ∂λ

2
j

∂λ2
j

∂t
N i ⊗ N i +

2∑
i, j=1,i,j

Wi j (Si − S j )N i ⊗ N j . (9.51)

�e tangent can hence be wri�en as

C =

2∑
i, j=1

4
∂2ψ

∂λ2
i ∂λ

2
j
N i⊗N i⊗N j⊗N j+

2∑
i, j=1,i,j

Si − S j
λ2
i − λ2

j
(N i⊗N j⊗N i⊗N j+N i⊗N j⊗N j⊗N i ).

(9.52)
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Its push forward to the spatial con�guration can be seen to be

c =

2∑
i, j=1

(Ci j − 2σiδi j )ni ⊗ ni ⊗ nj ⊗ nj

+

2∑
i, j=1,i,j

σiλ
2
j − σjλ2

i

λ2
i − λ2

j
(ni ⊗ nj ⊗ ni ⊗ nj + ni ⊗ nj ⊗ nj ⊗ ni ), (9.53)

where Ci j =
∂2ψ

∂ ln λi∂ ln λj
=
∂τi
∂ϵj

and σi = τi , since the material is incompressible.

�e components of the above fourth order tensor can be stored in a matrix as

[c] =

1111 1122 1112
2211 2222 2212
1211 1222 1212

n1,n2

. (9.54)

�e components of the tangent can be converted to Cartesian basis by using the
transformation (Reese & Wriggers, 1995)

[c](e1,e2) = [P][c](n1,n2)[P]T , (9.55)

where

[P] =


Q2
11 Q2

12 2Q11Q12

Q2
21 Q2

22 2Q21Q22

Q11Q21 Q12Q22 Q11Q22 +Q12Q21

 . (9.56)

Here,Qi js are the elements of [Q]matrix which is the transpose of [Q̃], [Q] = [Q̃]T .
�e columns of [Q̃] matrix are the components of eigen vectors of b in cartesian
basis.

�e tangent to be supplied to abaqus (C(JK )) corresponds to the Jaumann rate
of the Kirchho� stress (N. Nguyen & Waas, 2016) wri�en as

∇
τ
(JK )
= Ûτ + τW −Wτ = C(JK ) : d . (9.57)

C(JK ) is related to c as

C(JK )i jkl = ci jkl +
1

2
(σi jδkl + σklδi j + σilδ jk + σjkδil ). (9.58)

�e computation of c requires the computation of ∂τi
∂ϵj

, which can be carried out as

follows
∂τi
∂ϵj
= 2λ2

j
∂τi

∂λ2
j
, i,j=1,2. (9.59)

∂τi

∂λ2
j
= 2

[
∂2ψ

∂λ2
j ∂I1

λ2
i
∂I1

∂λ2
i
+
∂ψ

∂I1

∂

∂λ2
j

(
λ2
i
∂I1

∂λ2
i

)
+
∂2ψ

∂λ2
j ∂I2

λ2
i
∂I2

∂λ2
i
+
∂ψ

∂I2

∂

∂λ2
j

(
λ2
i
∂I2

∂λ2
i

)]
.

(9.60)
�e partial derivatives can be further evaluated as

∂2ψ

∂λ2
i ∂Ij

=
∂2ψ

∂I1∂Ij

∂I1

∂λ2
i
+
∂2ψ

∂I2∂Ij

∂I2

∂λ2
i

(9.61)

∂

∂λ2
A

(
λ2
A
∂I1

∂λ2
A

)
= 1 + 1/λ4

Aλ
2
B ,

∂

∂λ2
B

(
λ2
A
∂I1

∂λ2
A

)
= 1/λ2

Aλ
4
B , (9.62)

∂

∂λ2
A

(
λ2
A
∂I2

∂λ2
A

)
= λ2

B + 1/λ4
A,

∂

∂λ2
B

(
λ2
A
∂I2

∂λ2
A

)
= λ2

A. (9.63)
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Remark. �e total stress and tangent computation in the case of plane stress condition
for incompressible materials involves the computation of derivatives a�er enforcing
all the material (incompressibility) and geometric (plane stress) constraints.

In case of equal eigen values λ1 = λ2, the second term of equation 9.53 takes a
0
0 form and so, L’Hospital’s rule is used to compute it.

lim
λ2→λ1

σ1λ
2
2 − σ2λ

2
1

λ2
1 − λ2

2

=
1

2

[
∂2ψ

∂ϵ2∂ϵ2
− ∂2ψ

∂ϵ1∂ϵ2

]
− σ2 =

1

2

[
∂τ2

∂ϵ2
− ∂τ2

∂ϵ1

]
− σ2. (9.64)

For viscous branches

For the viscous branches, the following procedure will be used to compute the
tangent similar to as in Reese and Govindjee, 1998. All the stress and strain
components are now restricted to within the plane.

In the elastic trial state, since the inelastic strain is held �xed, Fn = F tre Fn−1
i =⇒

Cn = (Fn−1
i )TCtr

e Fn−1
i . Hence,

∂SI J

∂CKL
=
∂SI J

∂(Ctr
e )α β

∂(Ctr
e )α β
∂CKL

=
(
(Fn−1

i )−1
)
Kα

(
(Fn−1

i )−1
)
Lβ

∂SI J

∂(Ctr
e )α β

. (9.65)

where the symmetry of Ctr
e has been used. Since in viscous branches,

S = F−1τF−T = (Fn−1
i )−1. (F tre )−1τ (F tre )−T︸              ︷︷              ︸

˜S

.(Fn−1
i )−T , (9.66)

the stress derivative can be further re�ned as

∂SI J

∂(Ctr
e )α β

=
(
(Fn−1

i )−1
)
Iγ

(
(Fn−1

i )−1
)
J δ

∂S̃γ δ

∂(Ctr
e )α β

. (9.67)

Hence,

2
∂SI J

∂CKL
= 2

(
(Fn−1

i )−1
)
Iγ

(
(Fn−1

i )−1
)
J δ

(
(Fn−1

i )−1
)
Kα

(
(Fn−1

i )−1
)
Lβ

∂S̃γ δ

∂(Ctr
e )α β

.

(9.68)
�e push-forward of above by F results in

ci jkl = 2Fi I Fj J FkKFlL
∂SI J

∂CKL

= 2(F tre )iγ (F tre )jδ (F tre )kα (F tre )lβ
∂S̃γ δ

∂(Ctr
e )α β

. (9.69)

S̃ , wri�en in Eigen basis is

S̃ =
2∑

A=1

τA

(λAe )2tr
ÑA ⊗ ÑA. (9.70)

It is to be noted that the τA in the above equation is a function of ϵe . �e develop-
ment from here is similar to that used to arrive at the equation 9.53 except that Ci j
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in that equation will be replaced by C
alд
i j , which will be de�ned below. A crucial

factor is that be and (be )tr share the same eigen space as a consequence of isotropy.

c =

2∑
i, j=1

(Calд
i j − 2σiδi j )ni ⊗ ni ⊗ nj ⊗ nj

+

2∑
i, j=1,i,j

σi (λj )2tr − σj (λi )2tr
(λi )2tr − (λj )2tr

(ni ⊗ nj ⊗ ni ⊗ nj + ni ⊗ nj ⊗ nj ⊗ ni ). (9.71)

In the above, Calд
AC =

∂τA
∂(ϵCe )tr . Since τAs are a function of ϵes, the derivative is

computed using chain rule.
∂τA
∂(ϵCe )tr =

∂τA
∂ϵBe

∂ϵBe
∂(ϵCe )tr . (9.72)

�e derivative ∂ϵBe
∂(ϵCe )tr can be computed by realizing that the equations rB = 0 are

satis�ed at the end of local Newton iterations and hence are valid at all the times
during the global Newton iterations. Hence, during the global Newton iterations,
∂rB
∂(ϵCe )tr = 0 as well. Hence,

∂ϵBe
∂(ϵCe )tr = K−1

BC , (9.73)

where KBC is de�ned in equation 9.47.
�e expression for dissipation becomes

D = 1

ηD
dev{τNEQ} : dev{τNEQ} = (τ + pI ) : (τ + pI ) + p2, (9.74)

which can be seen to be positive since ηD > 0. In the above equation, τ is as
evaluated in the equation 9.41.

9.3.3 Implementation details

�e above has been implemented into a UMAT subroutine of Abaqus. �e subroutine
computes the updated stress and tangent for a given time step and also updates
the internal variables. �e implementation details will be discussed in this section.

�e deformation gradient is obtained as an input to the subroutine from Abaqus.
�e internal variables (Ci ) at the beginning of the step are stored in an array. �e
working of the subroutine can be seen below.

As can be seen, the internal variables are updated and the strain energy density
and dissipation are computed with the updated values of be and τ . �e value of
TOL has been chosen to be 10−5.

�e C++ implementation of the model can be found at Kamasamudram, 2021
and in the appendix C.

9.4 model checks

9.4.1 Hyperelastic case

�e correctness of the implementation of the material model in the UMAT subroutine
will be checked �rst. �e polynomial strain energy functional calibrated in the
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Data: Fn , Cn−1
i , ∆t

Result: τn , Cn
i , C(JK),ψn , Dn

(be )tr = Fn(Cn−1
i )−1(Fn)T ;

Compute (λe )tr s and nAs so that (be )tr =
∑2

A=1(λAe )2trnA ⊗ nA;
De�ne (ϵAe )tr = ln((λAe )tr );
k = 0, ϵAe ← (ϵAe )tr ;
do

Compute τ and p from ϵAe ;
rA B ϵAe +

∆t
2η (τA + p) − (ϵAe )tr = 0;

Compute ∂τA
∂ϵBe

, ∂p
∂ϵBe

;

KAB = δAB +
∆t
2η

(
∂τA
∂ϵBe

+
∂p

∂ϵBe

)
;

∆ϵkAe = −K−1
ABrA;

ϵk+1
Ae ← ϵkAe + ∆ϵ

k
Ae ;

k ← k + 1
while | |rA | | > TOL;
Update τn , p, λAe = exp(ϵAe ), and KAB ;
be =

∑2
A=1 λ

2
AenA ⊗ nA, b−1

e =
∑2

A=1 λ
−2
AenA ⊗ nA;

Cn
i = (Fn)Tb−1

e Fn ;
Compute C(JK)using Calд , τA, and λAe ;
Computeψnand Dn ;
Algorithm 1: Steps followed in UMAT for Finite Viscoelastic model

chapter 7 will be used. �e results of the predictions from UMAT will be compared
with that from Abaqus to check the sanity of the implementation.

�e geometry along with the mesh can be seen in the �gure 9.1. �e top end
of the sample is subjected to displacement ux = 40 mm, and uy = 50 mm, while
the bo�om end is held �xed. �e 22 component of Cauchy stress, σ predicted by
the UMAT and the internal Abaqus implementation can be seen in �gure 9.2. It
can be seen that they are identical. �e other components of the Cauchy stress
have been found identical as well and will be presented in the appendix B.

Figure 9.1: Geometry and mesh to test
the implementation of UMAT.

9.4.2 Viscoelastic case - small strains and small perturbations

Under small strain conditions, the deformation gradient can be approximated by
F ≈ I+ϵ andC ≈ I+2ϵ . �e principal stretches can be approximated as λ2

1 ≈ 1+2ϵ1

and λ2
2 ≈ 1 + 2ϵ2, where the ϵis are the eigen values of ϵ , the small strain tensor.

�e small perturbation assumption allows similar approximations for the viscous
branches as well. F e ≈ I + ϵe and Ce ≈ I + 2ϵe . Similarly, λ2

1e ≈ 1 + 2ϵ1e and
λ2

2e ≈ 1 + 2ϵ2e . Plane stress conditions are assumed to prevail. Material is taken
to be incompressible. In that case, the stresses in the principal directions in the
equations 9.37 and 9.38 become

τA ≈ 2C10 (4ϵA + 2ϵB) , (9.75)
τB ≈ 2C10 (2ϵA + 4ϵB) . (9.76)

∂ψ

∂I1
has been approximated by C10 for polynomial model. �e equation 9.43

becomes
p ≈ −4C10 (ϵA + ϵB) . (9.77)
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Factor: +1.000e+00

qus/Standard 6.14−2 Fri Sep 10 23:39:39 CEST 2021

7.64 7.9 8.17 8.44 8.71 8.97 9.24

·106
Figure 9.2: σ22 (in Pa) predicted by UMAT and the polynomial model from Abaqus.

�en τA + p = 4C10ϵA and τB + p = 4C10ϵB . �e evolution equations 9.44 and 9.45
become, with γ0 = 1,

r1 = ϵ1e +
∆t

2ηD
4C10ϵ1e − (ϵ1e )tr = 0 =⇒ ϵ1e =

(ϵ1e )tr
1 + ∆t

τ

, (9.78)

r2 = ϵ2e +
∆t

2ηD
4C10ϵ2e − (ϵ2e )tr = 0 =⇒ ϵ2e =

(ϵ2e )tr
1 + ∆t

τ

, (9.79)

where ηD B 2C10τ has been used. �e above equations can be seen to be the
backward Euler discretization in time of the PDE

ÛϵAe + ϵAe
τ
= ÛϵA. (9.80)

�is can be proved by using ÛϵAe = ϵnAe−ϵn−1Ae
∆t and ÛϵA = ϵnA−ϵn−1A

∆t . �e equation 9.80
then becomes

ϵnAe − ϵn−1
Ae

∆t
+
ϵnAe
τ
=
ϵnA − ϵn−1

A

∆t
=⇒ ϵnAe =

(ϵAe )tr
1 + ∆t

τ

, (9.81)

which is the equation 9.79. In the above equation, (ϵAe )tr = ϵnA − ϵn−1
Av = ϵnA −(

ϵn−1
A − ϵn−1

Ae

)
.

�e FLV model in equation A.27 can be wri�en in the case of small strains and
small perturbations by realizing that

Cs
33 =

1

detCs
2d
≈ 1, ∀ 0 ≤ s ≤ t , (9.82)

(Cs
2d )−1 ≈ I − 2ϵs , ∀ 0 ≤ s ≤ t , (9.83)

tr(ŜsCs
2d ) = tr(τ s ), ∀ 0 ≤ s ≤ t , (9.84)
Ŝ
s ≈ τ s ∀ 0 ≤ s ≤ t . (9.85)
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Using all the above, equation A.27 can be wri�en as

τA =

∫ t

−∞
д(t − s)∂τ

s
A

∂s
ds = τ∞A + τAe , (9.86)

where τ∞A is the stress in the elastic branch and τAe = 2C10(4ϵAe + 2ϵBe ) is the

stress in the viscous branch, ϵAe =
∫ t
−∞ exp(− t−sτ )

∂ϵA
∂s

ds . �is, in turn, can be seen
to be the analytical solution of equation 9.80. Hence, both FLV and FV models can
be seen to give the exactly same result in the limit ∆t

τ → 0. However, when ∆t
τ

does not tend to 0, the two models can result in slightly di�erent result as the FLV
model uses the semi-group property of the exponent to integrate the equations
while FV model uses backward Euler.

�e predictions of FLV and FV models are examined for the geometry in �gure
9.1. �e top portion of the model is �xed in the x-direction, ux = 0 and is displaced
in y-direction as follows. It is subjected to a displacement of 5 mm in 5 × 106 sec
to make sure that the viscoelastic e�ects do not come into the picture. It is then
subjected to a cyclic displacement A + B sin(2πωt), where A = 5 mm, B = 2 mm,
and ω = 1000 s−1. �e constants д1 and д2 for FLV have been taken to be 0.3 and
0.4, respectively, while τ1 and τ2 to be 1 × 103 s and 1 × 104 s, respectively. �e
sti�ness ratios of FV model are adjusted accordingly using the equation 9.88 and
the ηDs are computed as 2C10τ . Time step size has been set to 1 × 10−4 s. Hence,
∆t
τ is about 10−7. �e evolution of σ22 and ϵ22 with time for the two models along

with the di�erence between them at the centroid of the element shaded in brown
in the �gure 9.1 can be seen in the �gure 9.3.
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Figure 9.3: σ22 and ϵ22 vs time for FLV and FV models. �e FLV model has already been implemented within Abaqus while the FV model in the
UMAT.

As can be seen, the two models predict the same result within plo�ing accu-
racy. �e di�erence between the stresses predicted by them lies within 3% of the
maximum value and the di�erence between the strains lies within 0.2% of the
maximum value. �is demonstrates the accuracy of implementation of the FV
model into the UMAT subroutine.

9.4.3 Viscoelastic case - large strains and small perturbations

In this case, the approximations of F e and Ce in the previous section still hold.
However, the background strains are taken to be �nite and so, they cannot be



Chapter 9. Finite Viscoelastic model 116

approximated using small strain measures. In this case, the evolution equations
for FV model for viscous branches remain similar to the equation 9.79, except that
the total strains, ϵA, are now logarithmic, ϵ = 1

2 lnC . �e evolution equations in
this case can be shown to be exactly that of Lubliner, 1985.

�e model in the �gure 9.1 is again used to test this scenario. �e top edge of the
model is �xed in the x-direction,ux = 0 and is displaced �rst vertically by 40 mm in
a span of 5 × 107 sec. It is then subjected to a cyclic displacement A + B sin(2πωt),
where A = 40 mm, B = 2 mm, and ω = 1000 s−1. �e model coe�cients are as in
the previous section and the time step has been set to 1 × 10−4 s as well.
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Figure 9.4: σ22 and ϵ22 vs time for FLV and FV models. Small perturbations are imposed on large background strains. ϵ22 is the 22 component of
the logarithmic strain.

It can be seen from the �gure 9.4 that the two models predict slightly di�erent
values of stresses at the same strain level. �e FV model predicts a slightly smaller
stress level than the FLV model.

�e di�erence between the FLV and the FV models in this case can be seen
by writing the FLV model for the case of small perturbations superposed on large
background deformations. For this case, FLV model becomes

S2d ≈ Ŝ
∞
2d + Ŝ

v
2d . (9.87)

In the above, Ŝv2d ≈
∫ t
−∞ д(t − s)

∂Ŝ
s

∂s
ds . It has been assumed for times t > t1, where

t1 is the time when the specimen is stretched to the target pre-stretch level (in this
case 5 × 107 s), F (t) can be wri�en as F (t) = F (t1)F r el , where F r el is the relative
deformation gradient. Since the perturbations imposed are in�nitesimal, F r el has
been assumed to be of the form I + ϵ , where the magnitude of ϵ is much smaller
than 1. Hence, the higher order terms in ϵ have been neglected. Ŝs is computed
according to the equation A.14 at time s . �e evolution equations for the FV model
remains same as that in the equation 9.80. Hence, it can be seen that the evolution
equations di�er for the FV and the FLV models in this case.

9.5 application of fv model to the experiments

To compare the predictions of FLV and FV models when applied to large strains
and large perturbations, the methodology employed in the chapter 7 will be used,
where the crack speed is imposed on the model using the boundary conditions from
the experiment. �e FLV model has been used in that chapter and was ‘calibrated’



Chapter 9. Finite Viscoelastic model 117

to match the observations from the experiments. Here, the same sti�ness ratios
and the relaxation times will be used for the FV model and the results will be
compared to the predictions from FLV model.

�e sti�ness ratios in the chapter 7 are with respect to the glassy modulus
of the material, while the sti�ness ratios in the FV model are with respect to the
rubbery modulus. Hence, they are scaled using the expression

(дi )rubbery =
(дi )glassy

1 −∑N
i=1(дi )glassy

. (9.88)

�e parameter γ0 in the equation 9.15 has been taken to be 1. �e above model
parameters were then used to perform some simulations to understand and compare
the behaviors of FLV and FV models.

Table 9.1: FV model parameters with γ0 = 1.

Branch(i) 1 2 3 4 5 6 7 8
Sti�ness ratio, (дi )rubbery 2.11 21.178 1.0589 0.5298 0.157 0.121 0.128 0.05294
Relaxation time, τi (s) 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1

�e scaled parameters and the relaxation times can be seen in the table 9.1. �e
FV model with these parameters are then used to determine the displacement and
velocity �elds for the case of λy = 3.5, where the crack speed is about 56 m s−1. �e
predictions from the model can be seen in the �gures 9.5 and 9.6 (to be compared
with �gures 7.16 and 7.20a, respectively). �e velocity pro�le can be seen to
be sharper than that from the FLV model but blunter than in the hyperelastic
case. Also, the horizontal displacements can be seen to be under predicted when
compared to the experiments and the FLV model. However, the pro�le can be seen
to have some resemblance with the hyperelastic case (see �gure 7.12).

Figure 9.5: Particle velocity magnitude
in ms−1 for λ = 3.5 plo�ed on de-
formed con�guration, FV model, γ0 =
1.

0 21.26 42.52 63.77 85.02 106.3 127.5

Figure 9.6: Horizontal displacement
magnitude in mm for λ = 3.5 plot-
ted on undeformed con�guration, FV
model, γ0 = 1.

−14.6 −11.71 −8.83 −5.95 −3.07 −0.18 2.7

As in the previous chapters, the variation of particle speeds at about 5 mm
above the crack path has been extracted from the FE simulations and the result can
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be seen together with the results from experiments, hyperelastic FE simulations,
and FLV simulations in the �gure 9.7.

Figure 9.7: Velocity distribution along
about 5mm above the crack path for
λ = 3.5, γ0 = 1.
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It can be observed from the �gures that the predictions from the FV model do
not match the experiments or the results from the simulations with FLV model.
In fact, the velocity magnitude can be seen to closely follow the hyperelastic case
without any jumps. �e �elds can be seen to be continuous as opposed to the
hyperelastic case.

Further discussions

It can be seen from the above that the results from the FV model with γ0 = 1 are
closer to the hyperelastic case, but without a shock front. In order to determine if
the viscous e�ects are active in these simulations and the extent to which they are
active, a viscous indicator parameter β is de�ned as follows.

β B
ψ∞(b) +

∑N
i=1ψi (b(i)e )

ψ∞(b) . (9.89)

N denotes the number of viscous arms. �eψi s in the above equation indicate the
strain energy densities in each of the viscous arms. It has been indicated that the
ψi s depend on the corresponding b(i)e s, the le� Cauchy-Green tensor based on

the corresponding elastic parts of the deformation gradient, F (i)e
(
= F

(
F (i)v

)−1
)

s.

Hence, the further the value of β from 1, the further is the material behavior from
the hyperelastic case. A value of 1 for β indicates a purely hyperelastic behavior.
For the result presented above for the case of λy = 3.5, the value of β in various
regions of the body can be seen in the �gure 9.8.

�e scale has been truncated at 1.3 to bring out the features of the distribution.
It can be seen that the value of β remains very close to 1 (about 1.0008) in front
of the front-like region to the right of the crack. Its value then increases to about
1.2 and then behind another front-like feature, it again increases beyond 1.3. It
shall be noted that the two front-like features in the �gure 9.8 coincide with the
shock front-like features observed for the particle velocities in the �gure 7.21b.
Hence, in the case of the simulations with FV model with the current parameters,
it can be said that the viscous e�ects di�use or blunten the shock front-like feature
observed in the hyperelastic simulations (the velocity variations in �gure 9.7 are
closer to the hyperelastic simulations, but without the jumps) by increasing the
sti�ness of the material as a consequence of higher strain rates (like discussed in
the chapter 7 and in Kamasamudram et al., 2021). �e FV model is expected to
displace the relaxation times to smaller values at higher strains. Hence, it can be
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Figure 9.8: �e viscous indicator pa-
rameter β for λ = 3.5 plo�ed on de-
formed con�guration, FV model, γ0 =
1.

1 1.05 1.1 1.15 1.2 1.25 1.3

said that the viscous e�ects in the FV model with the current model parameters
are ‘not high enough’ to bring the results closer to the experiments at λ = 3.5.

�is is consistent with the predictions from Govindjee and Reese, 1997, where
the relaxation functions of FLV and FV models are compared for di�erent strain
levels by subjecting a square object with a side of 1 mm to a certain displacement
under plane strain conditions and observing the evolution of stress with time.
�e same numerical experiments will be performed for the models in plane stress
conditions and the results will be presented in the appendix B. For the case of FLV
model, the authors of Govindjee and Reese, 1997 comment

As the strain of the loading is increased the curve shi�s upward as an indication
of the nonlinear sti�ening of the material in the current (spatial) con�guration. Note
that the curves merely shi� upwards and do not translate simultaneously along the
time axis.

While for the case of FV model,
�e curves simultaneously map le� and upwards as the amount of strain increases.

�is mapping to the le� is a result of the nonlinear structure of the viscoelasticity
model itself and not due to the explicit incorporation of any shi�-factors.

�e shi� towards le� of the relaxation curves at higher strain levels indicate the
shi� of relaxation times to smaller values with an increase in strain. �is implies
that the FLV model behaves in a sti�er (or more viscous) way when compared to
the FV model at larger strains for a given strain rate.

In addition to the above, the activity of ith viscous arm in di�erent regions of
the body can be examined using the ratio ψi

ψ∞ , the ratio of strain energy density
in the viscous arm to that of the energy in the hyperelastic arm. �e ratios for
the case of λ = 3.5 can be seen in the �gure9.9. Activity can be seen along the
shock-front-like features in multiple branches.

9.5.1 Model with adjusted parameters

As was observed in the simulations with the imposed crack speed, the predictions
of the FLV and the FV model di�er when applied for the stretch ratio of 3.5. �is is
the consequence of the shi� in the relaxation times with the applied strain in the
la�er model. To counter this, the parameter γ0 in the equation 9.15 can be made
less than 1. It shall be noted that the reducing γ0 from 1 has the same e�ect of
increasing the relaxation times (moving the relaxation curves to the right in the
sense of Govindjee and Reese, 1997). Hence, the model becomes sti�er than when
γ0 = 1 at a given strain rate. A�er performing some simulations with various
values of γ0 < 1, it was found that choosing γ0 as 1

60 , while modifying one of the
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a: ψ1

ψ∞

0 1.5 2.9 4.39 5.89 7.38 8.88

·10−8

b: ψ2

ψ∞

0 1.45 2.9 4.39 5.88 7.37 8.86

·10−5

c: ψ3

ψ∞

0 0.7 1.38 2.09 2.8 3.51 4.22

·10−4

d: ψ4

ψ∞

0 0.22 0.45 0.68 0.91 1.15 1.38

·10−2

e: ψ5

ψ∞

0 1.66 · 10−2 3.3 · 10−2 5 · 10−2 6.67 · 10−2 8.33 · 10−2 0.1

f: ψ6

ψ∞

0 8.11 · 10−2 0.16 0.24 0.32 0.41 0.49

g: ψ7

ψ∞

0 0.15 0.31 0.46 0.61 0.76 0.92

h: ψ8

ψ∞

0 6.71 · 10−2 0.13 0.2 0.27 0.34 0.4

Figure 9.9: ψi
ψ∞ for all the viscous branches (i = 1 to 8) for λ = 3.5 plo�ed on

deformed con�guration, γ0 = 1. �e position of crack tip is indicated by a circle.
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sti�ness ratios (corresponding to the relaxation time of 1 × 10−7 s) results in the
predictions of the FV model matching the results from the experiment. �e new
model parameters can be found in the table 9.2. Only 7 viscous arms were found

Table 9.2: FV model parameters with γ0 =
1
60 .

Branch(i) 1 2 3 4 5 6 7
Sti�ness ratio, (дi )rubbery 1.9 1.1589 0.5298 0.157 0.121 0.128 0.05294
Relaxation time, τi (s) 1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1

necessary (by examining the ratio ψi
ψ∞ , any branches with values smaller than 10−5

have been discarded) for the simulations with the new model parameters.
�e simulations from the previous section are repeated with the new parameters

and the predictions of the model can be seen in the �gures 9.10 and 9.11.

Figure 9.10: Particle velocity magni-
tude in ms−1 for λ = 3.5 plo�ed
on deformed con�guration, FV model,
γ0 = 1/60.

0 21.04 42.03 63.02 84.01 105 126

Figure 9.11: Horizontal displacement
magnitude in mm for λ = 3.5 plot-
ted on undeformed con�guration, FV
model, γ0 = 1/60.

−14.62 −11.48 −8.34 −5.2 −2.07 1.07 4.21

�e velocity pro�le in the �gure 9.11 can be found to be blunter than in the
case of γ0 = 1 (�gure 9.6) and closer to the FLV result (�gure 7.16). �e horizontal
displacement can also be seen to be closer to the experimental and the FLV results.
However, FV model with γ0 = 1/60 slightly under predicts the displacements.

�e variation of particle velocity magnitude at about 5 mm above the crack
path can be seen in the �gure 9.12 together with the results from the experiments,
FLV model, and FV model with γ0 = 1. It can be seen that the predictions of FV
model with the new model parameters are close to that of the FLV model and the
experiments.

�e variation of parameter β that determines how much the viscoelastic e�ects
are active can be seen in the �gure 9.13. �e scale has been truncated so that it
can be compared to the results from the old model parameters (�gure 9.8). �e
variation of β at about 5 mm above the crack path for both the cases can be seen
in the �gure 9.14. It can be seen that the viscous e�ects start to act further ahead
in the material with γ0 = 1/60 than with γ0 = 1. �is is expected, since a value of
less than 1 for γ0 moves the relaxation times to larger values which would result
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Figure 9.12: Velocity distribution along
about 5mm above the crack path for
λ = 3.5, various cases.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

50

100

Horizontal distance from le� end (m)

‖v
‖(
m

s−
1
)

Experimental
FLV

FV, γ0 = 1
FV, γ0 = 1/60

in the viscous e�ects starting to act at smaller strain rates. �e increase in β in the
�gure 9.13 is also more gradual. Also, the value of β exceeds 1.3 in the region just
behind the tip than when compared to the previous case indicating more prevalent
viscous e�ects in that region.

Figure 9.13: �e viscous indicator pa-
rameter, β for λ = 3.5, plo�ed on de-
formed con�guration, FV model, γ0 =
1/60.
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Figure 9.14: Variation of β about 5mm

above the crack path for γ0 = 1 and
1
60 when the crack is at the center of
the specimen. Regions far ahead and
behind the tip has been removed.

0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.11 0.115 0.12

1

1.5

2

Horizontal distance from le� end (m)

β

FV,γ0 = 1
FV, γ = 1/60

�e same model parameters have then been used to simulate the case of λ =
2.5 with imposed crack speed from the experiments. �e resulting horizontal
displacements can be seen in the �gure 9.15. �e displacements from the experiment
for λ = 2.5 can be seen in �gure 9.16. Likewise, the velocity evolution at about
5 mm above the crack path, together with the results from the experiments and
the FLV, can be seen in the �gure 9.17.
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Figure 9.15: Horizontal displacement
magnitude in mm for λ = 2.5 plo�ed
on undeformed con�guration, γ0 =
1/60.

−10.56 −8.28 −6 −3.71 −1.42 0.86 3.14

Figure 9.16: Horizontal displacement
magnitude in mm for λ = 2.5 obtained
in the experiments.

−10.56 −8.28 −6 −3.71 −1.42 0.86 3.14

Further discussions

�e FV model with the parameter γ0 = 1/60 and one adjusted sti�ness ratio (to
be called shi�ed FV model from hereon) can be seen to predict the velocity and
displacement �elds close to the experiments when compared to γ0 = 1. Choosing
the parameter γ0 less than 1 has the same e�ect of moving the relaxation times to
higher values. In short, choosing γ0 = 1/60 has the same e�ect as retaining γ0 = 1
and multiplying each of the relaxation times by 60. One of the consequences of
γ0 , 1 is that the FV model does not coincide with that of (�nite) linear viscoelastic
model at small strains and small perturbations. �e relaxation times of the la�er
model are to be modi�ed to make their predictions match at these conditions.

�e shi�ed FV model can be seen to slightly under predict the displacements
at λ = 3.5 and slightly over predict them at λ = 2.5. �is indicates that the
viscoelastic model tends to get sti�er as the strains are reduced, as expected.
However, the shi�ed FV model can be seen to predict the experimental results with
a ‘good enough’ accuracy. Hence, energetic analysis of those experiments will be
performed using this model in the next section.

9.6 energy budget in viscoelastodynamic fracture

Since the shi�ed FV model was able to predict the displacements and velocities
from the experiments of λ = 2.5 and 3.5 with a good enough accuracy, it will be
used to perform an energetic analysis of those experiments. �e FLV model from
the previous chapter could not be used to do so as a consequence of lack of an
expression for the strain energy function and the energy dissipation in that model.

9.6.1 From the experiments

First, the energy balance will be performed for the case where the crack speed is
imposed onto the FE model using the displacements from the experiments. It shall
be noted that the analysis can also be performed directly on the displacements and
velocities as done in Corre, 2018. �e methodology is exactly the same as in the
section 7.2, but with the FLV model in the bulk replaced by the shi�ed FV model.

For the cases of λ = 2.5 and 3.5, the evolution of strain energy, kinetic energy,
and the dissipation in the material with time have been extracted for the simulations
presented in the previous section with the shi�ed FV model. �eir evolution with
time can be seen in the �gures 9.18 and 9.19 once the initial transients have passed.
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Figure 9.17: Velocity magnitude in
ms−1 for λ = 2.5 plo�ed on unde-
formed con�guration.
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Figure 9.18: Energy evolution for the
case of λ = 2.5 with the shi�ed FV
model. �e crack is at about the center
of the specimen at about 4.5ms.
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Figure 9.19: Energy evolution for the
case of λ = 3.5 with the shi�ed FV
model. �e crack is at about the center
of the specimen at about 3.5ms.
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It shall be noted that only half of the specimen was used to obtain these results
taking symmetry into account. Using this data, energy balance can be wri�en as

Pext =
dSE

dt
+

dD

dt
+

dKE

dt
, (9.90)

where Pext is the power of the external forces, SE, D, and KE denote the strain
energy, visoelastic energy dissipation, and kinetic energy, respectively. In the
current case, since only the part of material that is about 1 mm away from the
crack path has been modeled, Pext includes the power of external forces, the
viscoelastic energy dissipation in the material that is not included, and the power
dissipated during the fracture process.

�e time derivative of the quantities for the case of λ = 2.5 and 3.5 can be
seen in the table 9.3. It shall be noted that the sign of Pext is negative in both the
cases. �is indicates that the work has been extracted from the system or work
has been done by the system during the crack propagation. As already mentioned,
this work includes the work in the fracture process zone and the dissipation in the
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Table 9.3: Energy rates with the shi�ed FV model in MJ m−1 s−1.

λ
dSE

dt

dD

dt

dKE

dt
Pext

2.5 −2.81 1.03 0.18 −1.6

3.5 −7.4 3.7 0.08 −3.62

material in the vicinity of the crack path that has been excluded.
Dividing −d(SE + KE)

dt
by the crack speed gives Energy release rate, which is

experimentally computed (usually) asψh0, whereψ is the strain energy density is
the material far ahead of the crack tip. h0 is the undeformed specimen height. In
the current case, the strain energy behind the tip may not be zero as a consequence
of viscous e�ects. Hence, the quantity nψoh0 = (ψ (∞) −ψ (−∞))h0 (see �gure
2.14) will have a di�erent value from ψh0. In the current case, ψ (∞) and ψ (−∞)
have been computed at about 50 mm in front of and behind the tip, respectively.
All the computed quantities can be seen in the table 9.4.

Table 9.4: Energy release rates for the experiments in kJ/m2.

λ − 2
w0

dSE

dt
2
w0

dD

dt
2
w0

dKE

dt
− 2
w0

Pext ψh0 nψoh0

2.5 130 49 8.5 76 166 120

3.5 260 129 2.0 127 348 268

�e factor 2 above has been used since only half of the specimen geometry has
been used in the analysis. From the tables 9.3 and 9.4, and the �gure 9.20, it can
be observed that the majority (about half) of the strain energy is taken up by the
dissipating material. �e kinetic energy takes up very li�le energy when compared
with the viscoelastic dissipation. �e rest (Pext ) is taken up by the material along
and a li�le away from the crack path in the form of viscoelastic dissipation and the
fracture processes at the crack tip. �e quantities − 2

w0

dSE

dt
and nψoh0 are quite

close to each other for both the cases presented. Again, it shall be noted that the
strain energy behind the tip used in the computation of nψo is the total strain
energy contained in the elastic as well as the viscous arms. When the above results
are compared with that of the analysis performed in Corre, 2018 (see �gures 6.7
and 6.8 of the cited reference), some di�erences can be noticed. �e analysis in the
cited reference uses a hyperelastic material to compute the evolution of the total
energy.

�e energy release rate (obtained by evaluating d(SE + KE)
dt

, where the strain
energy has only the elastic contribution) from that analysis can be seen to match
the quantityψh0 in the same analysis as well as from the table 9.4. However, when
viscous e�ects are included, some strain energy is locked in the viscous arms,
which a�ects the computation of d(SE + KE)

dt
. �is quantity is hence smaller in

the current study and it can be seen to match nψoh0, rather thanψh0.

9.6.2 From the simulations with cohesive model

�e previous sections analyze the experiments performed in Corre et al., 2020.
However, as can be noted, only the material starting from about 1.5 mm above the
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Figure 9.20: Strain (Str), Viscous (Vis),
External work (Ext), and Kinetic (Kin)
Energy release rates for the data from
the experiments.
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crack path has been modeled. Hence, the term Pext included the viscous dissipation
in the excluded material. In the simulations performed using the cohesive model
using the FLV model presented in the previous chapter, this problem does not exist.
Data can be extracted right along the crack path from those simulations which
then can be imposed onto the current model, where the bulk material has been
modeled by the FV model. Pext computed this way will solely comprise of the work
done in the cohesive zone and the dissipation, D, will include the total viscoelastic
dissipation in the material. It shall be noted that the crack propagation has not been
modeled explicitly in this section. Only half of the bulk material has been used with
the crack speeds imposed implicitly .

�is procedure has been followed for the case of λ = 2.5 and 3.5. �e results
of energy evolution for both the cases can be seen in the �gures 9.21 and 9.22.

Figure 9.21: Energy evolution for the
case of λ = 2.5 with the shi�ed FV
model. �e crack is near the center of
the specimen at about 2.2ms.
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Figure 9.22: Energy evolution for the
case of λ = 3.5 with the shi�ed FV
model. �e crack is at about the center
of the specimen at about 1.7ms.
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As earlier, the time derivatives of the quantities can be seen in the table 9.5. �e
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energy release rates can be computed and can be seen in the table 9.6, plo�ed in
the �gure 9.23.

Table 9.5: Energy rates with the shi�ed FV model for the FE simulations in
MJ m−1 s−1.

λ
dSE

dt

dD

dt

dKE

dt
Pext = Pcoh

2.5 −2.63 2.02 0.07 −0.54

3.5 −7.18 6.22 0.06 −0.9

Table 9.6: Energy release rates for the FE simulations in kJ/m2.

λ − 2
w0

dSE

dt
2
w0

dD

dt
2
w0

dKE

dt
Gcoh = − 2

w0
Pext ψh0 nψoh0

2.5 119 91 3.1 24 166 127

3.5 250 220 2 30 348 252

When comparing the results from the experiments, it can be seen that the strain
energy release rate is about the same in both the cases. Viscoelastic dissipation
is higher in the results from the simulations. �is is expected, as the data in
the case of FE simulations have been extracted right along the crack path and
hence includes the material where higher dissipation takes place. �e Pext simply
becomes Pcoh , the energy spent during the fracture processes. Even in this case,
the two parameters, − 2

w0

dSE

dt
and nψoh0 can be seen to be close. �e computed

value of Gcoh can be compared with the area under the traction separation curves
(�gure 8.7) in the previous chapter. �e areas under the traction separation curves
can be approximately seen to be 18.5 kJ/m2 and 21 kJ/m2, for λ = 2.5 and 3.5,
respectively. �e results from the shi�ed FV model can be seen to over predict these
quantities (as 24 kJ/m2 and 30 kJ/m2, respectively). Performing a FE simulation
with the FV model in bulk together with the CZM may result in a more accurate
estimate of this energy. However, that analysis has not been done as a result of
higher computational cost involved.

�e region of the body in which the viscoelastic dissipation takes place can
be seen in the �gure 9.24. Signi�cant dissipation can be seen in the material that
is within about 2 mm from the crack path. �is can explain the di�erences in

Figure 9.23: Strain (Str), Viscous (Vis),
External work (Ext), and Kinetic (Kin)
Energy release rates for the data from
FLV simulations with cohesive zone.
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Figure 9.24: Viscoelastic energy dissi-
pation density for λ = 3.5, crack speed
imposed from CZM simulations.
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·107

the viscoelastic dissipation observed from the results in tables 9.4 and 9.6. Also,
the temperature measurements made on the test samples from batch-2 revealed
a signi�cant increase in temperatures near the tip. �us, the viscous dissipation
region in the �gure 9.24 can be seen to be a qualitative match to the experiment.

9.7 discussions

FV vs FLV models

In this chapter, the plane stress version of the Finite Viscoelastic model of Reese
and Govindjee, 1998 has been used to understand the energy budget during the
viscoelastodynamic fracture. �e model has been implemented into UMAT subrou-
tine of Abaqus (Dassault, 2014). Initially, the analyses were performed using the
same sti�ness ratios and the relaxation times as that of the FLV model. It was
observed that the velocity and displacement predictions from FV model did not
match the experimental observations. �e velocity raise was seen to be sharper
than in the FLV case and the displacements were seen to be under predicted and
closer to the hyperelastic case. �ere was, however, no shock-front-like feature
in the results from FV model unlike for the hyperelastic case. Using the viscous
indicator, β , which is de�ned as the ratio of the total strain energy to that in the
hyperelastic branch, the regions in the body where the viscoelastic e�ects are
active have been identi�ed. It was observed that the value of β is very close to 1 in
front of a front-like region. It value increased to about 1.3 in the region behind
another front like region. �e two front-like features observed in the �gure 9.8
coincide with the shock-front-like features observed in the velocity pro�les in the
hyperelastic case. �is, when combined with the velocity pro�les, indicate that the
e�ect of viscoelasticity is to blunten the shock-front-like feature in the velocity
distributions observed in the hyperelastic case. �e di�erences from FLV case can
be a�ributed to the relaxation times shi�ing to the smaller values with an increase
in the strain in the FV model.

�e results from the FV model were then brought closer to the experiments by
decreasing the value of the coe�cient γ0 (= 1 initially) to 1

60 . �is can be viewed as
multiplying the relaxation times by 60 to compensate for their decrease at higher
strains. �is, whoever, will lead to a di�erence in the predictions between the FV
and the FLV models at small strains (FV model with γ0 = 1/60 will behave sti�er
than the FLV model at small strains with the same sti�ness ratios and relaxation
times). But decreasing γ0 was seen to bring the results from simulations closer to
the experiments. �e velocity and displacement �elds for λ = 3.5 and 2.5 were
seen to be closer to the experiments than when γ0 = 1. Even with the reduced γ0,
the FV model can be seen to slightly under predict the displacements at λ = 3.5
and over predict them at λ = 2.5. By making the model agree with the experiments
at λ = 3.5, it was made to slightly sti�er than needed at 2.5.

One way to compensate this would be to makeγ0 a decreasing function of either
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be = F eF
T
e , corresponding to the elastic part of F or C , the overall deformation

tensor, such that γ0(be or C = I ) = 1. �is is equivalent to slightly compensating
for the shi� in the relaxation times as a consequence of the non-linearity in the
FV model. �is will result in the model predicting the same results as that of FLV
model at small strains and agreeing with the experimental results at higher strains.
However, when γ0 is made a function of C (its invariants, more precisely, as a
consequence of isotropy), the viscous evolution equations then become

ϵ1e +
γ0(C)∆t

2ηD
(τ1 + p) − (ϵ1e )tr = 0, (9.91)

�is poses no problem when solving for the ϵAe s in the local Newton iterations as
C does not change during those iterations and hence γ0 can be treated as a constant.
However, when the global tangent is to be computed as a part of global Newton
iterations, γ0 cannot be treated as a constant. �e contribution of the viscous
evolution equations to the global tangent comes in the form of the derivative
∂ϵAe
∂(ϵBe )tr . Since the overall deformation changes during the global iterations,
γ0(C) contributes to the tangent as well. An a�empt can be made to evaluate the
derivative by observing that Cn = (Fn)T Fn = (Fn−1

v )T (Ce )trFn−1
v . Since Fn−1

v is
constant during the global iterations, γ0 can be viewed as a function of (Ce )tr to
evaluate the derivative ∂ϵAe

∂(ϵBe )tr . However, this requires the knowledge of Fn−1
v ,

which is not known. Only Cn−1
v is known and hence Fn−1

v can be evaluated up to
rigid body motions. One other alternate is to make γ0 a function of the invariants
of b. In this case, bn = Fn(Fn)T = (F e )tr (bn−1

v )T ((F e )tr )T . Again, this requires the
knowledge of (F e )tr , which can be determined only up to a rigid body motion.
Hence, this path was not explored further in this thesis. �e other alternate is
to make γ0 a function of be like in Bergström and Boyce, 1998. However, the
Bergstorm-Boyce model may lead to a faster decay of stresses in the relaxation
tests than that of the Reese and Govindjee, 1998 model, which is equivalent to shi�
in the relaxation times further to the le�.

�e cohesive zone model used in the previous chapter is based on the use
of convolution integrals, where the relaxation times and the sti�ness have been
chosen to be same as that of the bulk material. However, in the current chapter, it
can be seen that the inclusion of non-linearity in the viscoelastic model shi�s the
relaxation times of the material with the applied strain. How this shi� a�ects the
relaxation times in the cohesive zone is currently not known. However, this shi�
can be included in the cohesive zone by using ‘strain clock’ models (Wineman,
2009), where t −s in the equation 8.4 is replaced by ξ (t)−ξ (t), where ξ is a function
of strain and possibly its history.

Energy budget in viscoelastodynamic fracture

�e shi�ed FV model can be seen to predict the displacements and velocities close
to the experiments for λ = 2.5 and 3.5. Hence, it has been used to analyze the
energy evolution for those experiments. �e strain energy release rate was seen
to match the quantity nψoh0 and smaller than ψh0. When compared with the
computations from Corre, 2018, the value of − 2

w0

dSE

dt
in the current case can be

seen to be smaller than what can be seen in the �gure 6.8 of that study. �is can be
a�ributed to the viscoelastic e�ects included in the current study. Using a similar
method, the results from the cohesive zone simulations performed in the previous
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chapter have been analyzed as well. A signi�cant portion of the strain energy can
be seen to be dissipated by the viscoelastic e�ects in the material. �e rest of the
energy can be seen to be taken up by the fracture processes. �e shi�ed FV model
over predicts the energy dissipated by the fracture processes when compared with
the results from the cohesive zone simulations from the previous chapter. Perhaps
performing the simulations with the cohesive zone and the shi�ed FV model in
the bulk will make in both the results to agree.

�e region in the body where the viscoelastic dissipation takes place can be
seen in the �gure 9.24. �e region near the crack path can be seen to dissipate
the majority of the energy, while the dissipation in the material that is a bit far
can be seen to be smaller. An element along the crack path and in the vicinity of
the tip undergoes very high rates of deformation, which can be seen to result in
higher dissipation. �is can be seen as a reason for the di�erence in the viscoelastic
dissipation computed in tables 9.3 and 9.5. Also, the temperature measurements
from the experiments performed on the materials of di�erent batch reveal a large
increase in temperature along the crack faces (see �gure 5.10). �is is consistent
with the regions where the viscous dissipation is concentrated in �gure 9.24. A
quantitative comparison of the temperature raise has not been made as the samples
are from di�erent batches.

summary

�e plane stress version of the FV model has been presented and implemented
in Abaqus. Using the relaxation times that are di�erent from the FLV model, it
was observed that the FV model was able to predict the results from the experi-
ments reasonably well. �e energy evolution during the crack propagation in the
experiments from Corre, 2018 and the simulations with the cohesive zone from
the previous chapter has been computed. �e slope of the strain energy evolution
vs time curve has been observed to match nψoh0, which stresses the importance
of including the viscous e�ects in the analysis. Examining the parameter β , the
viscous e�ects were seen to be active starting from the region just in front of the
crack tip. �e region along the crack faces behind the tip can be seen to dissipate
considerable amount of total energy. �is region is comparable to the region where
there was a considerable temperature raise in the experiments.



Conclusions and perspectives

conclusions

�e analysis of dynamic fracture of elastomers has been made in the current thesis.
First, regarding the origin of transonic cracks in elastomers, examining the velocity
and strain �elds from the experiments revealed no presence of shock fronts in
the material. Simulations have been performed to explain this observation using
the experimental data and implicitly imposing the cracks speeds. In one case,
the bulk material has been assumed to be hyperelastic that exhibits an upturn
in its stress strain response. �e velocity �elds obtained from this case were
observed to contain jumps along a shock-front-like feature, which is absent in
the experiments. When the bulk has been made viscoelastic, the shock-front-like
features disappeared and the displacement, velocity and the strain �elds resembled
those from the experiments. �e hyperelastic branch of the material still included
the upturn in its stress-strain response. When it is replaced by an model that does
not exhibit the upturn, the �elds were still observed to be continuous, devoid of
any shock-front-like features. Hence, it has been concluded that the observation of
transonic cracks in polyurethane elastomers can be a�ributed to the viscoelastic
sti�ening of the material rather than the hyperelastic sti�ening.

Experiments performed on natural rubber specimens of di�erent geometries
in literature revealed that the crack speeds were independent of the specimen
geometry (speci�cally the height) beyond a certain threshold. Whether such
a conclusion is valid for all the materials is not known. To address this, the
current author performed more experiments on Polyurethane samples of di�erent
geometries. However, as a consequence of either defective material or the material
with di�erent properties from di�erent batches, no conclusions could be drawn
from the experiments performed along with the experiments from the literature.
But, the crack speeds from batch-2 for di�erent geometries seemed to se�le down
at a certain level starting from some stretch level, indicating that they became
height independent.

�e cohesive zone model has been used to predict the crack speeds observed
in the experiments since the crack path is already known in advance if initiated at
the middle of the specimen. Simulations have been performed with cohesive zone
inserted all along the prospective crack path and the bulk material modeled by
the Finite Linear Viscoelastic model. Rate dependence was found to be necessary
in the cohesive zone to match the crack speeds observed in the simulations with
that of the experiments. �e rate dependence has been introduced in terms of
convolution integrals with the relaxation times and sti�ness ratios chosen to be
same as that of the bulk material. Using this model, the crack speeds observed in
the experiments at di�erent stretches could be reproduced. �e tractions in the
cohesive zone and the energy expended in the cohesive zone have been found
to be an increasing function of crack speed for the cases studied. Also, when
the specimens of di�erent heights were simulated, it has been observed that the
crack speeds became independent of the height from a certain threshold like in the
experiments from the literature.

In the next part, a Finite Viscoelastic model has been implemented in the
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plane stress se�ing. Some di�erences have been observed in the predictions of
the FV and the FLV models as a consequence of the non-linearity of the evolution
equations in the former model. From the numerical relaxation tests performed,
it has been observed that the relaxation times in the FV model are a function of
strain as a consequence of the non-linearity of the model. For the FLV model,
the stress vs time curves during the numerical relaxation tests at di�erent strain
levels were observed to just translate (upward along the stress axis) without any
change in shape, indicating an independence of relaxation times on the strain
level. �e material parameters have been modi�ed in the FV model so that the
predictions of this model matches the observations from the experiments. Using
this FV model, the strain energy evolution and the dissipation in the material during
the propagation of crack has been studied. It has been found that the majority
of the energy is consumed as the viscoelastic dissipation of the bulk material. A
comparatively small portion is consumed in the cohesive zone. �is has been the
case for both the cases studied in this thesis. Whether the energy consumed in the
cohesive zone can be computed directly from the experiments in any other way is
not known at the moment.

future perspectives

From the temperature measurements made from the experiments, a large raise
in temperature has been observed in the material in the vicinity of the crack tip.
�is region also corresponds with the regions where the dissipation takes place,
as identi�ed by the FV model. �e viscoelastic properties of the material are
expected to be a function of temperature, which in turn a�ects the dissipation
and possibly the crack speeds as well. Solving a fully coupled thermoviscoelastic
problem will help gain insights into how these phenomena interact with each
other. Also, the FV model used in this thesis has been calibrated using the data
from the crack propagation experiments. As expected, some di�erence has been
noticed between the predictions of the FLV and the FV models. However, whether
the actual behavior of the material is closer to one model or the other is not
known. Perhaps, performing simple relaxation tests like in the appendix B can help
understand the behavior of the material. Once the model is calibrated to predict
these experiments accurately, it can perhaps be further re�ned using the data from
the crack propagation experiments.

�e other aspect would be to consider the shi� in relaxation times while
modeling the behavior of the failing material. In the convolution integral type
models used in this study, this can perhaps be achieved by using strain clock
models, where the times in the relaxation functions are replaced by shi�ed times
depending on the strain level. How this will a�ect the crack speeds and other
observations from the simulations is not known.

One other aspect of interest would be to relate the surface roughness variations
observed with the crack speed and the viscoelastic properties of the material. �e
role played by cavitation and the e�ects of viscoelasticity on cavitation has to be
investigated. �e e�ect of specimen thickness on the crack speeds and roughness
in the high speed regime needs to be investigated as well.
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�e PK2 stress in Simo, 1987’s model is given by

S = −p JC−1 + DEVt

{ ∫ t

−∞
д(t − s) ∂

∂s
DEVs

{
2
∂ψ

∂C
(s)

}
ds

}
, (A.1)

where the �rst DEVt

{
•
}

projector is evaluated at time t and the projector inside

the integral is evaluated at time s . In this appendix, the plane stress version of the
above model will be derived.

First, the above equation is simpli�ed to move the time derivative from the

DEV
{
•
}

to the �rst term by using integration by parts.

∫ t

−∞
д(t−s) ∂

∂s
DEVs

{
2
∂ψ

∂C

}
ds = д(t−s)DEV

{
2
∂ψ

∂C

}�����t
−∞
−
∫ t

−∞

∂

∂s
д(t−s)DEVs

{
2
∂ψ

∂C

}
=

д(0)DEV
{
2
∂ψ

∂C
(t)

}
−

∫ t

−∞

∂

∂s
д(t − s)DEV

{
2
∂ψ

∂C

}
, (A.2)

where, DEV
{
2
∂ψ

∂C
(−∞)

}
= O has been used. De�ning S̃ B 2

∂ψ

∂C
, the �rst equation

becomes

S = −pC−1 + д(0)DEVt

{
S̃(t)

}
− DEVt

{ ∫ t

−∞
h(t − s)DEVs

{
S̃
s
}}

ds, (A.3)

where h(t −s) B ∂
∂s
д(t −s) and DEVt

{
DEVt

{
•
}}
= DEVt

{
•
}

, since DEV
{}

is a

projector. A superscript has been added to indicate the time at which the quantity
is evaluated. �e deviatoric projector inside the integral can be evaluated as

DEVs

{
S̃
s
}
= S̃

s − 1

3
tr(S̃sCs )(Cs )−1. (A.4)

�e integral hence becomes∫ t

−∞
h(t − s)DEVs

{
S̃
s
}

ds =

∫ t

−∞
h(t − s)S̃s ds − 1

3

∫ t

−∞
h(t − s) tr(S̃sCs )(Cs )−1 ds .

(A.5)
It has been made clear that the quantities are to be evaluated at the time s . �e
deviator at time t can now be wri�en as

DEVt

{ ∫ t

−∞
h(t − s)DEVs

{
S̃
s
}

ds

}
=∫ t

−∞
h(t − s)S̃s ds − 1

3

∫ t

−∞
h(t − s) tr(S̃sCt )(Ct )−1 ds

−1

3

∫ t

−∞
h(t−s) tr(S̃sCs )(Cs )−1 ds+

1

9

∫ t

−∞
h(t−s) tr(S̃sCs ) tr((Cs )−1Ct )(Ct )−1 ds .

(A.6)
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�e 33 component of the above deviator is given by[
DEVt

{ ∫ t

−∞
h(t − s)DEVs

{
S̃
s
}

ds

}]
33

=∫ t

−∞
h(t − s)S̃s33 ds − 1

3

∫ t

−∞
h(t − s) tr(S̃sCt )(Ct

33)−1 ds

−1

3

∫ t

−∞
h(t−s) tr(S̃sCs )(Cs

33)−1 ds+
1

9

∫ t

−∞
h(t−s) tr(S̃sCs ) tr((Cs )−1Ct )(Ct

33)−1 ds .

(A.7)

It has been assumed that the strain tensors can be expressed in the form of A.10
to write the above equation. �e expression for p can now be developed by using
S33 = 0. �is implies

p(Ct
33)−1 = д(0)

(
S̃t33 −

1

3
tr(S̃tCt )(Ct

33)−1

)
−
[
DEVt

{ ∫ t

−∞
h(t − s)DEVs

{
S̃
s
}

ds

}]
33

.

(A.8)
Hence,

p = д(0)
(
S̃t33C

t
33 −

1

3
tr(S̃tCt )

)
−
∫ t

−∞
h(t−s)S̃s33C

t
33 ds+

1

3

∫ t

−∞
h(t−s) tr(S̃sCt )ds

+
1

3

∫ t

−∞
h(t −s) tr(S̃sCs )(Cs

33)−1Ct
33 ds− 1

9

∫ t

−∞
h(t −s) tr(S̃sCs ) tr((Cs )−1Ct )ds .

(A.9)

As a consequence of the plane stress assumption, the deformation gradient can be
wri�en in a block form to be

F =

[
F 2d o
oT F33

]
. (A.10)

�e above form is assumed to be valid at all times. Now, the expression for S̃ ,
wri�en in terms of 3D-strain invariants can be seen to be

S̃ = 2
∂ψ

∂I1
I + 2

∂ψ

∂I2
[I1I −C] , (A.11)

where I1 and I2 are the invariants of C , since the material is incompressible. �e
inplane stress components can now be expressed in terms of the invariants of the
in-plane strain tensor as

S̃2d = 2
∂ψ

∂I1
I2d + 2

∂ψ

∂I2

[
(I2d1 +C33)I2d −C2d

]
, (A.12)

where C2d = FT2dF 2d . I2d1 = tr(C2d ), C33 = 1/det(C2d ). Hence,

S̃33 = 2
∂ψ

∂I1
+ 2
∂ψ

∂I2
I2d1 (A.13)

De�ning
Ŝ = 2

∂ψ

∂C2d
, (A.14)

whereψ is the glassy strain energy density functional now expressed completely
in terms of the invariants of C2d . �e expression can be seen to be

Ŝ = 2
∂ψ

∂I1

(
I − 1

detC2d
C−1

2d

)
+ 2
∂ψ

∂I2

(
I2d1 I − I2d1

detC2d
C−1

2d +
1

detC2d
I −C2d

)
.

(A.15)
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�e relation between the two stresses can be seen to be

S̃
s
2d = Ŝ

s
+

S̃s33

detCs
2d
(Cs

2d )−1 ∀s ∈ [0, t]. (A.16)

�e term tr(S̃sCs ) can be computed as

tr(S̃sCs ) = tr(S̃s2dCs
2d ) + S̃s33C

s
33 = tr(ŜsCs

2d ) + 3S̃s33C
s
33 ∀s ∈ [0, t]. (A.17)

All the above can be combined to obtain the total stress. �e terms with д(0)
as coe�cient can be evaluated as

DEVt

{
S̃
t
}
−

(
S̃t33C

t
33 −

1

3
tr(S̃tCt )

)
(Ct )−1 = S̃

t − S̃t33C
t
33(Ct )−1. (A.18)

�e restriction of above equation to in-plane components will yield (from equation
A.16)[

DEVt

{
S̃
t
}
−

(
S̃t33C

t
33 −

1

3
tr(S̃tCt )

)
(Ct )−1

]
2d
= S̃

t
2d − S̃t33C

t
33(Ct

2d )−1 = Ŝ
t
.

(A.19)
�e le� over terms, a�er canceling the like terms, can be seen to be

(Ct )−1

∫ t

−∞
h(t − s)S̃s33C

t
33 ds − 1

3
(Ct )−1

∫ t

−∞
h(t − s) tr(S̃sCs )(Cs

33)−1Ct
33 ds

−
∫ t

−∞
h(t − s)S̃s ds +

1

3

∫ t

−∞
h(t − s) tr(S̃sCs )(Cs )−1 ds ds . (A.20)

Restricting to in-plane components,

(Ct
2d )−1

∫ t

−∞
h(t − s)S̃s33C

t
33 ds − 1

3
(Ct

2d )−1

∫ t

−∞
h(t − s) tr(S̃sCs )(Cs

33)−1Ct
33 ds

−
∫ t

−∞
h(t − s)S̃s2d ds +

1

3

∫ t

−∞
h(t − s) tr(S̃sCs )(Cs

2d )−1 ds (A.21)

�e term 2 of A.21 becomes

− 1

3
(Ct

2d )−1

∫ t

−∞
h(t − s) tr(S̃sCs )(Cs

33)−1Ct
33 ds =

− 1

3
(Ct

2d )−1

∫ t

−∞
h(t − s) tr(ŜsCs

2d )(Cs
33)−1Ct

33 ds − (Ct
2d )−1

∫ t

−∞
h(t − s)S̃s33C

t
33 ds

(A.22)

�e term 3 of A.21 becomes

−
∫ t

−∞
h(t − s)S̃s2d ds =

−
∫ t

−∞
h(t − s)Ŝs ds −

∫ t

−∞
h(t − s) S̃s33

detCs
2d
(Cs

2d )−1 ds . (A.23)

�e term 4 of A.21 becomes

1

3

∫ t

−∞
h(t − s) tr(S̃sCs )(Cs

2d )−1 ds =

1

3

∫ t

−∞
h(t − s) tr(ŜsCs

2d )(Cs
2d )−1 ds +

∫ t

−∞
h(t − s)S̃s33C

s
33(Cs

2d )−1 ds (A.24)



Appendix A. Plane stress version of Finite linear viscoelastic model 147

De�ning DEV2D
α

{
Ŝ
s
}
B Ŝ

s − 1
3 tr(ŜsCα

2d )(Cα
2d )−1 and combining the above equa-

tions, A.21 becomes

A.21 = −
∫ t

−∞
h(t−s)

[
DEV2D

s

{
Ŝ
s
}]

ds−1

3
(Ct

2d )−1

∫ t

−∞
h(t−s) tr(ŜsCs

2d )(Cs
33)−1Ct

33 ds .

(A.25)
Integrating the above by parts and realizing that h(t − s) = ∂

∂s
д(t − s), the above

equation becomes

− д(0)Ŝt +
∫ t

−∞
д(t − s) ∂

∂s

[
DEV2D

s

{
Ŝ
s
}]

+
Ct

33

3
(Ct

2d )−1

∫ t

−∞
д(t − s) ∂

∂s

[
tr(ŜsCs

2d )(Cs
33)−1

]
ds . (A.26)

Inserting all the above in equation A.3, the total stress can be obtained to be

S2d =

∫ t

−∞
д(t−s) ∂

∂s

[
DEV2D

s

{
Ŝ
s
}]
+
Ct

33

3
(Ct

2d )−1

∫ t

−∞
д(t−s) ∂

∂s

[
tr(ŜsCs

2d )(Cs
33)−1

]
(A.27)

Check

�e correctness of the above equation can be checked by se�ing д(t) = д∞, which
would be the case of a hyperelastic material.

S2d

���
д(t )=1

= д∞DEV2D
t

{
Ŝ
t
}
+
д∞
3

tr(ŜtCt
2d )(Ct

2d )−1 = д∞Ŝ
t
, (A.28)

which is the result expected for a hyperelastic material.

A.1 time integration

�e expression in equation A.27 can be integrated in time by using the semi-analytic
technique in Taylor et al., 1970. Denoting the term inside the time derivative as h
and denoting the integral as H , the time integral can be wri�en as

H (t) =
∫ t

−∞
д(t − s) ∂

∂s
h(s). (A.29)

�e integration technique as in Taylor et al., 1970 will be used to integrate the
above equation. Since д(t) = д∞ + д1 exp(− t

τ ), the integration technique will be

demonstrated on the exponential term. De�ning I (t) B
∫ t
−∞ e

− t−sτ ∂
∂s
h(s),

I (t) =
∫ t−∆t

t
e−

t−s
τ
∂

∂s
h(s) +

∫ t

t−∆t
e−

t−s
τ
∂

∂s
h(s) (A.30)

= e
−∆t
τ I (t − ∆t) +

∫ t

t−∆t
e−

t−s
τ
∂

∂s
h(s). (A.31)

�e second term in the above equation will be integrated approximately.∫ t

t−∆t
e−

t−s
τ
∂

∂s
h(s) ≈ h(t) − h(t − ∆t)

∆t
e−

t
τ

∫ t

t−∆t
e
s
τ (A.32)

≈ [h(t) − h(t − ∆t)]1 − e
−∆t/τ

∆t/τ . (A.33)
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Hence,

I (t) = e
−∆t
τ I (t − ∆t) + [h(t) − h(t − ∆t)]1 − e

−∆t/τ

∆t/τ . (A.34)

�e �rst term on the right hand side of A.27 is evaluated as (denoting it asT 1)

T 1(t) =
∫ t

−∞
e−

t−s
τ
∂

∂s

[
DEV2D

s

{
Ŝ
s
}]
≈

e
−∆t
τ T 1(t − ∆t) + 1 − e−∆t/τ

∆t/τ

[
DEV2D

t

{
Ŝ
t
}
− DEV2D

t−∆t

{
Ŝ
t−∆t

}]
(A.35)

�e second term on the right hand side of A.27 inside the integral is evaluated as
(denoting it asT 2)

T 2(t) =
∫ t

−∞
e−

t−s
τ
∂

∂s

[
tr(ŜsCs

2d )(Cs
33)−1

]
≈

e
−∆t
τ T 2(t − ∆t) + 1 − e−∆t/τ

∆t/τ
[
tr(ŜtCt

2d )(Ct
33)−1 − tr(Ŝt−∆tCt−∆t

2d )(Ct−∆t
33 )−1

]
(A.36)

�e entire integral can hence be evaluated as

S2d = e
−∆t
τ T 1(t − ∆t) + 1 − e−∆t/τ

∆t/τ

[
DEV2D

t

{
Ŝ
t
}
− DEV2D

t−∆t

{
Ŝ
t−∆t

}]
+

Ct
33

3
(Ct

2d )−1

(
e
−∆t
τ T 2(t − ∆t) + 1 − e−∆t/τ

∆t/τ
[
tr(ŜtCt

2d )(Ct
33)−1 − tr(Ŝt−∆tCt−∆t

2d )(Ct−∆t
33 )−1

] )
(A.37)

�e termsT 1 andT 2 are updated as per equations A.35 and A.36.

A.2 computation of tangent

�e tangent is computed as C = 2
∂S2d

∂C2d
. It involves the computation of the

derivative of the deviatoric projector.
∂

∂C2d
DEV2D

t

{
Ŝ
t
}
=
∂

∂C2d

[
Ŝ
t − 1

3
tr(ŜtCt

2d )(Ct
2d )−1

]
(A.38)

=
∂Ŝ

t

∂C2d
− 1

3

[
tr(ŜtCt

2d )i + (Ct
2d )−1 ⊗ ∂

∂C2d
tr(ŜtCt

2d )
]
.

(A.39)

In the above equation, i = ∂(C2d )−1

∂C2d
, where ii jkl = −

(C2d )−1ik (C2d )−1jl +(C2d )−1il (C2d )−1jk
2 .

∂

∂(C2d )i j
(Ŝtpq(C2d )qp ) =

∂Ŝ
t
pq

∂(C2d )i j
(C2d )qp + Ŝ

t
pq
∂(C2d )qp
∂(C2d )i j

. So, ∂

∂C2d
tr(ŜtCt

2d ) =

C2d :
∂Ŝ

t

∂C2d
+ Ŝ

t
: I. Here, I = ∂C2d

∂C2d
is the fourth order identity tensor. �e

derivative of the second term involves the computation of
∂ detC2d

∂C2d
= − 1

detC2d
(C2d )−1, (A.40)

and
∂(detC2d )−1

∂C2d
=

1

(detC2d )3
(C2d )−1. (A.41)
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Here, additional results for the plane stress version of the FV model in chapter
9 will be presented.

B.1 stress components for the hyperelastic case

In section 9.4.1, only the 22 component of stress has been compared between the
UMAT and Abaqus for the hyperelastic case. Here, the other stress components
will be presented. From the �gures B.1 and B.2, it can be seen that the stress
distributions are exactly the same between the UMAT and the Abaqus’s internal
implementation.

or: +1.000e+00

qus/Standard 6.14−2 Fri Sep 10 23:38:18 CEST 2021

1.07 1.54 2 2.47 2.94 3.41 3.87

·106
Figure B.1: σ11 (in Pa) predicted by UMAT and the polynomial model from Abaqus.

B.2 comparison of relaxation tests between flv and fv

Similar to what has been done in Govindjee and Reese, 1997, a comparison has
been made between the FLV and FV models using a relaxation type test. A similar
setup as in Govindjee and Reese, 1997 has been used, except that the plane stress
conditions are assumed to prevail as opposed to that study. A square sample of
dimensions 1 mm × 1 mm is held �xed at the bo�om and a displacement of δ has
been applied in the y−direction to the top face in a span of 0.01 s. It is then held

Figure B.3: Square of side 1mm with
mesh.

there for 30 s. �e evolution of yy−component of the cauchy stress tensor has been
monitored. �e relaxation function is de�ned as E(t) B σ (t)/ln(1 + δ/L), where
L = 1 mm. �e e�ect of applied stretch on the relaxation function has been studied.
�e relaxation test can be considered to come under the case of large strains and
large perturbations, since the strains in the viscous arms are equal to the applied
strain at the end of �rst step.

�e material has been taken to be incompressible. �e hyperelastic and the
viscoelastic branches have been assumed to be represented by a Neo-Hookean
model. �is is achieved by taking N = 1 and C01 = 0 in the polynomial model.
C01 has been taken to be 10 MPa. C01 for the viscous branch has been taken to be
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or: +1.000e+00

qus/Standard 6.14−2 Fri Sep 10 23:38:18 CEST 2021

2.79 3.13 3.47 3.81 4.16 4.5 4.84

·106
Figure B.2: σ12 (in Pa) predicted by UMAT and the polynomial model from Abaqus.

equal to that of the hyperelastic branch. �e relaxation time has been chosen to
be 1 s. γ0 = 1. �e results of the predictions for δ = [2 mm, 1 mm, 0.01 mm] from
FLV and FV models can be seen in the �gure B.4. It can be observed from �gure

10−1 100 101

107.8

108

108.2

108.4

108.6

time (s)

E
(P
a
)

λ = 3, FLV
λ = 3, FV
λ = 2; FLV
λ = 2, FV

λ = 1.01, FLV
λ = 1.01, FV

Figure B.4: E vs time for FLV and FV models for various stretches. Results for FLV
model are in red dashed lines and the results for FV model are in blue solid lines.

B.4 that the modulus, E, decays faster for larger strains in the case of FV model
when compared to the FLV model. As the strains are reduced, the gap between
the two models decreases as well. In the case of in�nitesimal strain, the models
can be seen to predict almost same results. �is is a consequence of the shi� in
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relaxation times to smaller values at larger strains in the case of FV model. Also,
the shapes of the curves at various stretch levels can be seen to be similar in the
case of FLV model. �e relaxation times can be seen to be not a�ected in this case.
�is observation is in coherence with what was presented in Govindjee and Reese,
1997 (see �gure 4.3 of the reference).

B.2.1 Analysis

�e results from the relaxation test above can be analyzed as follows. In the case
of FLV model, the stress can be wri�en as

S2d =

∫ t

−∞
д(t−s) ∂

∂s

[
DEV2D

s

{
Ŝ
s
}]
+
Ct

33

3
(Ct

2d )−1

∫ t

−∞
д(t−s) ∂

∂s

[
tr(ŜsCs

2d )(Cs
33)−1

]
.

(A.27)
where д(s) = д∞ +

∑N
i=1 дi exp(−s/τi ) and

Ŝ = 2
∂ψ

∂C2d
, (A.14)

д∞ +
∑N

i=1 дi = 1. ψ is the glassy strain energy density functional. De�ning
ψ∞ B д∞ψ to be the rubbery strain energy functional, the above expression for
stress can be simpli�ed as

S2d = Ŝ
∞
2d +

N∑
i=1

∫ t

−∞
дi exp(−(t − s)/τi ) ∂

∂s

[
DEV2D

s

{
Ŝ
s
}]

+
Ct

33

3
(Ct

2d )−1
N∑
i=1

∫ t

−∞
дi exp(−(t − s)/τi ) ∂

∂s

[
tr(ŜsCs

2d )(Cs
33)−1

]
. (B.1)

�e loading can be divided into two steps, where in the �rst step, the body is rapidly
loaded to the target strain level and in the second step, it is held at that strain level.
�e strain (C tensor) is assumed to be increased from I to Ct1 in a span t1 that is
much smaller than the corresponding relaxation time, τ , in the �rst step. Assuming
only one viscous branch for convenience, this step corresponds to the glassy
material behavior. �is can be seen from the fact that t−s

τ → 0 ∀ t , s ≤ t1 � τ
and so, the exponential term will almost be equal to 1. �e integrals can hence be
evaluated directly. �e total stress at the end of �rst step can be wri�en as

S2d = Ŝ
∞
2d |t=t1 + д1DEV2D

t1

{
Ŝ
t1
}
+
д1

3
tr(Ŝt1Ct1

2d )(C
t1
2d )−1 = Ŝ2d |t=t1 , (B.2)

since д∞ + д1 = 1. Hence, it can be wri�en that∫ t1

−∞
д1 exp(−(t − s)/τ ) ∂

∂s

[
DEV2D

s

{
Ŝ
s
}]
= д1DEV2D

t1

{
Ŝ
t1
}
, and (B.3)

Ct1
33

3
(Ct1

2d )−1

∫ t1

−∞
д1 exp(−(t − s)/τ ) ∂

∂s

[
tr(ŜsCs

2d )(Cs
33)−1

]
=
д1

3
tr(Ŝt1Ct1

2d )(C
t1
2d )−1.

(B.4)

In the second step, the strain is held constant and the evolution of total stress is
studied in the intervals of ∆t . For this step, the two integrals in the stress term
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(B.1) can be wri�en as∫ t1+∆t

−∞
exp(−(t1 + ∆t − s)/τ )∂•

∂s
ds =

exp(−∆t/τ )
∫ t1

−∞
exp(−(t1 − s)/τ )∂•

∂s
ds +

∫ t

t1
exp(−(t1 + ∆t − s)/τ )∂•

∂s
ds,

(B.5)

where • denotes the terms in the �rst and the second integral. It shall be noted
that for for all times bigger than t1, ∂•

∂s
= 0, since the total strain is held constant

and the terms inside the derivative are functions of the total strain only. �e �rst
integral on the RHS in the equation B.5 can be recognized as either of B.3 or B.4.
Hence, using the above recursively at time steps 2∆t , 3∆t ,· · · ,n∆t ,∫ t1+n∆t

−∞
exp(−(t1 + n∆t − s)/τ )∂•

∂s
ds = exp(−n∆t/τ )•|t=t1 . (B.6)

�e total stress for all times greater than t1 can then be wri�en as

S2d =

[
1 +

д1

1 − д1
exp(−n∆t/τ )

]
Ŝ
∞
2d |t=t1 . (B.7)

д∞ + д1 = 1 has been used. When n = 0, t = t1 and the above expression becomes
S2d =

1
1−д1 Ŝ

∞
2d |t=t1 = Ŝ2d |t=t1 , which is equation B.2. As n →∞, exp(−n∆t/τ ) →

0 and so, S2d → Ŝ
∞
2d |t=t1 , the fully relaxed state. Hence, for the FLV model, the

relaxation times can be seen to be ‘independent of the strain level’. �e curves in
the �gure B.4 for the FLV model hence merely translate upward for di�erent strain
levels.

In the case of FV model, in the �rst step, when ∆t < t1 � τ , the term
γ0∆t
2ηD
(τ1 + p) in the equation 9.44 tends to 0. So, ϵAe = (ϵAe )tr = ϵA. Hence,

the strain in the viscous arms will be equal to the total strain, which implies the
glassy state. During the second step, the evolution of the strain in the viscous arms
is governed by the evolution equations 9.44 and 9.45. However, since the strains in
the viscous arms are no longer small, the evolution equations do not condense to
the ones in the equation 9.79 and hence are non-linear. Hence, it can be seen to be
di�erent from the equation B.7 and so the observed di�erences in the �gure B.4.
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the file usublib ps.cpp

# i n c l u d e < s t d i o . h>
# i n c l u d e < i o s t r eam >
# i n c l u d e < a b a f o r c . h>
# i n c l u d e <Eigen / Dense>

# i n c l u d e ” P a r s e r p s . h ”
# i n c l u d e ” M a t e r i a l p s . h ”
# i n c l u d e ” v i s c o u s b r a n c h p s . h ”

u s i n g namespace Eigen ;
u s i n g namespace s t d ;

/ / SDV format − 0 t o 4 − C i − I , 5− p s i / p s i h y p e r s i m i l a r l y f o r a l l
the b r a n c he s .

/ / The l a s t , o f SDV a r e f o l l o w s − S t r a i n energy o f h y p e r e l a s t i c
branch , r a t i o o f sum o f SE o f a l l v i s c o u s arm t o hyper branch ,

/ / xy component o f PK1 , yy component o f PK1 , t e m p e r a t u r e inc rement
( i n K )

e x t e r n ”C”
vo id FOR NAME ( umat ) ( doub le ∗ STRESS , doub le ∗ STATEV , doub le ∗ DDSDDE ,

doub le ∗ SSE , doub le ∗ SPD , doub le ∗ SCD , doub le ∗ RPL , doub le ∗ DDSDDT
, doub le ∗ DRPLDE , doub le ∗ DRPLDT , doub le ∗ STRAN , doub le ∗ DSTRAN ,
doub le ∗ TIME , doub le ∗ DTIME , doub le ∗ TEMP , doub le ∗ DTEMP, doub le ∗
PREDEF , doub le ∗ DPRED , char ∗ CMNAME, i n t& NDI , i n t& NSHR , i n t& NTENS
, i n t& NSTATV , doub le ∗ PROPS , i n t& NPROPS , doub le ∗ COORDS , doub le ∗
DROT , doub le ∗ PNEWDT, doub le ∗ CELENT , doub le ∗ DFGRD0 , doub le ∗
DFGRD1 , i n t& NOEL , i n t& NPT , i n t& LAYER , i n t& KSPT , i n t& JSTEP , i n t&
KINC )

{
i n t number branches = 2 ; / / User i n p u t f o r the no . o f v i s c .

b r a n ch e s
i n t l e f t = 0 ;
MatrixXd F = MatrixXd : : Zero ( 2 , 2 ) ;
MatrixXd F o l d = MatrixXd : : Zero ( 2 , 2 ) ;
p a r s e d e f o r m a t i o n v a r i a b l e s ( DFGRD0 , DFGRD1 , F , F o l d ) ;
MatrixXd C = F . t r a n s p o s e ( ) ∗ F ;
MatrixXd b = F ∗ F . t r a n s p o s e ( ) ;
MatrixXd C inv = C . i n v e r s e ( ) ;

doub le s t i f f r a t i o [ number branches ] ;
doub le r e l a x a t i o n t i m e [ number branches ] ;
p a r s e m a t e r i a l p r o p e r t i e s ( PROPS , s t i f f r a t i o , r e l a x a t i o n t i m e ,

number branches ) ;
Mat r ix2d i v a r [ number branches ] ;
p a r s e i n t e r n a l v a r i a b l e s ( STATEV , i v a r , number branches ) ;
v i s c o u s b r a n c h branch [ number branches + 1 ] ;
Mat r ix2d tau [ number branches + 1 ] ;
Mat r ix3d t a n g e n t [ number branches + 1 ] ;
doub le SSE [ number branches + 1 ] ;
doub le SCD [ number branches + 1 ] ;
Mat r ix2d t a u f i n a l = MatrixXd : : Zero ( 2 , 2 ) ;
Mat r ix3d t a n g e n t f i n a l = MatrixXd : : Zero ( 3 , 3 ) ;

# pragma omp p a r a l l e l num threads ( number branches +1 ) / /
P a r a l l e l i z a t i o n f o r v i s c o u s b r a n c h es

{
# pragma omp f o r
f o r ( i n t i = l e f t ; i <number branches +1 ;++ i )
{
i f ( i == number branches )



Appendix C. C++ implementation of the UMAT 156

{
( branch + i )−> d e l t a t = ∗DTIME ;
( branch + i )−>M a t e r i a l : : s e t m a t e r i a l ( 1 . 0 , 1 E16 ) ;
( branch + i )−> s e t i n e l a s t i c s t r a i n ( MatrixXd : : I d e n t i t y ( 2 , 2 ) ) ;
( branch + i )−> c o m p u t e b e t r ( F ) ;
( branch + i )−> u p d a t e i n t e r v a r n e w t o n p r i n c i p a l ( F ) ;
∗ ( t au + i ) = ( branch + i )−> c o m p u t e s t r e s s t a u ( ) ;
∗ ( t a n g e n t + i ) = ( branch + i )−> r o t a t e m a t t a n ( 1 ) ;
∗ ( STATEV+5 ∗ i ) = ∗ ( SSE + i ) = ( branch + i )−> c o m p u t e s t r a i n e n e r g y (

branch [ i ] . be ) ;
∗ ( SCD+ i ) = ( branch + i )−> c o m p u t e d i s s i p a t i o n ( ) ;
}
e l s e
{
( branch + i )−> d e l t a t = ∗DTIME ;
( branch + i )−>M a t e r i a l : : s e t m a t e r i a l ( s t i f f r a t i o [ i ] , r e l a x a t i o n t i m e [

i ] ) ;
( branch + i )−> s e t i n e l a s t i c s t r a i n ( ∗ ( i v a r + i ) ) ;
( branch + i )−> c o m p u t e b e t r ( F ) ;
∗ ( i v a r + i ) = ( branch + i )−> u p d a t e i n t e r v a r n e w t o n p r i n c i p a l ( F ) ;
∗ ( t au + i ) = ( branch + i )−> c o m p u t e s t r e s s t a u ( ) ;
∗ ( t a n g e n t + i ) = ( branch + i )−> r o t a t e m a t t a n ( 0 ) ;
∗ ( STATEV+5 ∗ i +4 ) = ∗ ( SSE + i ) = ( branch + i )−> c o m p u t e s t r a i n e n e r g y (

branch [ i ] . be ) ;
∗ ( SCD+ i ) = ( branch + i )−> c o m p u t e d i s s i p a t i o n ( ) ;
}
}
}
doub le SCD rate ;
a d d a l l (& t a u f i n a l ,& t a n g e n t f i n a l , SSE ,& SCD rate , tau , t angent , SSE ,

SCD , number branches +1 , l e f t ) ;
∗SCD += SCD rate ∗ ( ∗ DTIME ) ;
d e v i a t o r i c p r o j e c t o r t a n g e n t ( t a u f i n a l ,& t a n g e n t f i n a l ) ;
Mat r ix2d PK1 = t a u f i n a l ∗ ( ( F . t r a n s p o s e ( ) ) . i n v e r s e ( ) ) ;
∗ ( STATEV+5 ∗ number branches +2 ) =PK1 ( 0 , 1 ) ;
∗ ( STATEV+5 ∗ number branches +3 ) =PK1 ( 1 , 1 ) ;
∗ ( STATEV+5 ∗ number branches +4 ) += 0 . 9 ∗ SCD rate ∗ ( ∗ DTIME )

/ 1 1 0 0 . 0 / 1 7 6 0 . 0 ; / / 0 . 9 ∗D∗ d e l t a t / rho / C v
r e t u r n s t r e s s ( STRESS , t a u f i n a l ) ;
r e t u r n t a n g e n t (DDSDDE , t a n g e n t f i n a l ) ;
r e t u r n i n t e r n a l v a r ( STATEV , i v a r , number branches ) ;
r e t u r n ;
} ;

the file parser ps.h

vo id p a r s e d e f o r m a t i o n v a r i a b l e s ( doub le ∗ DFGRD0 , doub le ∗ DFGRD1 ,
MatrixXd& F , MatrixXd& F o l d ) {

F ( 0 , 0 ) = ∗DFGRD1 ;
F ( 1 , 0 ) = ∗ ( DFGRD1+1) ;
F ( 0 , 1 ) = ∗ ( DFGRD1+3) ;
F ( 1 , 1 ) = ∗ ( DFGRD1+4) ;
/ / F o l d not implemented as i t i s not needed
} ;

vo id p a r s e m a t e r i a l p r o p e r t i e s ( doub le ∗ props , doub le ∗ s t i f f r a t i o ,
doub le ∗ r e l a x , i n t number branches ) {

f o r ( i n t i = 0 ; i <number branches ;++ i ) {
s t i f f r a t i o [ i ]= props [ 2 ∗ i ] ;
r e l a x [ i ]= props [ 2 ∗ i + 1 ] ;
}} ;
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vo id p a r s e i n t e r n a l v a r i a b l e s ( doub le ∗ STATEV , Mat r ix2d ∗ i v a r , i n t
number branches ) {

f o r ( i n t i = 0 ; i <number branches ;++ i ) {
∗ ( i v a r + i ) << ∗ ( STATEV+5 ∗ i ) , ∗ ( STATEV+5 ∗ i +1 ) , ∗ ( STATEV+5 ∗ i +2 ) ,
∗ ( STATEV+5 ∗ i +3 ) ;
∗ ( i v a r + i ) += MatrixXd : : I d e n t i t y ( 2 , 2 ) ;
}} ;

vo id d e v i a t o r i c p r o j e c t o r t a n g e n t ( Mat r ix2d tau , Mat r ix3d ∗ t a n g e n t ) {
VectorXd tau row ( 3 ) ;
tau row<< t au ( 0 , 0 ) , t au ( 1 , 1 ) , t au ( 0 , 1 ) ;
( ∗ t a n g e n t ) ( 0 , 0 ) += 2 ∗ tau row ( 0 ) ;
( ∗ t a n g e n t ) ( 1 , 1 ) += 2 ∗ tau row ( 1 ) ;
( ∗ t a n g e n t ) ( 2 , 2 ) += 0 . 5 ∗ ( tau row ( 0 ) + tau row ( 1 ) ) ;
( ∗ t a n g e n t ) ( 2 , 0 ) += tau row ( 2 ) ;
( ∗ t a n g e n t ) ( 2 , 1 ) += tau row ( 2 ) ;
( ∗ t a n g e n t ) ( 0 , 2 ) += tau row ( 2 ) ;
( ∗ t a n g e n t ) ( 1 , 2 ) += tau row ( 2 ) ;
} ;

vo id r e t u r n s t r e s s ( doub le ∗ s t r e s s , MatrixXd tau ) {
∗ ( s t r e s s ) = tau ( 0 , 0 ) ;
∗ ( s t r e s s +1 ) = tau ( 1 , 1 ) ;
∗ ( s t r e s s +2 ) = tau ( 0 , 1 ) ;
} ;

vo id r e t u r n t a n g e n t ( doub le ∗ DDSDDE , MatrixXd t a n g e n t ) {
∗ ( DDSDDE+0) = t a n g e n t ( 0 , 0 ) ;
∗ ( DDSDDE+1) = t a n g e n t ( 1 , 0 ) ;
∗ ( DDSDDE+2) = t a n g e n t ( 2 , 0 ) ;
∗ ( DDSDDE+3) = t a n g e n t ( 0 , 1 ) ;
∗ ( DDSDDE+4) = t a n g e n t ( 1 , 1 ) ;
∗ ( DDSDDE+5) = t a n g e n t ( 2 , 1 ) ;
∗ ( DDSDDE+6) = t a n g e n t ( 0 , 2 ) ;
∗ ( DDSDDE+7) = t a n g e n t ( 1 , 2 ) ;
∗ ( DDSDDE+8) = t a n g e n t ( 2 , 2 ) ;
} ;

vo id r e t u r n i n t e r n a l v a r ( doub le ∗ STATEV , Mat r ix2d ∗ i v a r , i n t
number branches ) {

Matr ix2d temp ;
f o r ( i n t i = 0 ; i <number branches ;++ i ) {
temp = ∗ ( i v a r + i )−MatrixXd : : I d e n t i t y ( 2 , 2 ) ;
∗ ( STATEV+5 ∗ i ) = temp ( 0 , 0 ) ;
∗ ( STATEV+5 ∗ i +1 ) = temp ( 0 , 1 ) ;
∗ ( STATEV+5 ∗ i +2 ) = temp ( 1 , 0 ) ;
∗ ( STATEV+5 ∗ i +3 ) = temp ( 1 , 1 ) ;
}
doub le t o t a l S E = 0 . 0 ;
f o r ( i n t i = 0 ; i <number branches ;++ i ) {
t o t a l S E += ∗ ( STATEV+5 ∗ i +4 ) ;
}
t o t a l S E += ∗ ( STATEV+5 ∗ number branches ) ;
∗ ( STATEV+5 ∗ number branches +1 ) = t o t a l S E / ( ∗ ( STATEV+5 ∗

number branches ) ) ;
f o r ( i n t i = 0 ; i <number branches ;++ i ) {
∗ ( STATEV+5 ∗ i +4 ) /= ∗ ( STATEV+5 ∗ number branches ) ;
}} ;

vo id a d d a l l ( Mat r ix2d ∗ t a u f i n a l , Mat r ix3d ∗ t a n g e n t f i n a l , doub le ∗
SSE , doub le ∗ SCD rate , Mat r ix2d ∗ tau ,

Mat r ix3d ∗ t angent , doub le ∗ SSE , doub le ∗ SCD , i n t branches , i n t l e f t
) {
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∗ SSE = 0 . 0 ;
∗ SCD rate = 0 . 0 ;
f o r ( i n t i = l e f t ; i < b r a n c he s ; ++ i )
{
∗ t a u f i n a l = ∗ t a u f i n a l + ∗ ( t au + i ) ;
∗ t a n g e n t f i n a l = ∗ t a n g e n t f i n a l + ∗ ( t a n g e n t + i ) ;
∗ SSE += ∗ ( SSE + i ) ;
∗ SCD rate += ∗ ( SCD+ i ) ;
}} ;

the file material ps.h

# i f n d e f MATERIAL H
# d e f i n e MATERIAL H
# i n c l u d e < i o s t r eam >
c l a s s M a t e r i a l
{
p u b l i c :
doub le c [ 9 ] =

{ 1 0 4 4 0 0 0 . 0 , 0 . 0 , − 2 2 7 3 0 . 0 , 0 . 0 , 0 . 0 , 3 3 6 . 0 , 1 2 4 . 0 , 0 . 0 , 0 . 0 } ;
doub le r e l a x a t i o n t i m e ;
doub le s t i f f r a t i o ;
vo id s e t m a t e r i a l ( doub le s t i f f r a t i o , doub le r e l a x a t i o n t i m e ) ;
} ;
# e n d i f

the file material ps.cpp

# i n c l u d e < i o s t r eam >
# i n c l u d e <cmath>
# i n c l u d e <Eigen / Dense>
# i n c l u d e ” M a t e r i a l p s . h ”
u s i n g namespace Eigen ;
u s i n g namespace s t d ;
vo id M a t e r i a l : : s e t m a t e r i a l ( doub le s t i f f r a t i o , doub le

r e l a x a t i o n t i m e ) { / / C o n s t r u c t o r
s t i f f r a t i o = s t i f f r a t i o ;
r e l a x a t i o n t i m e = r e l a x a t i o n t i m e ;
f o r ( i n t i = 0 ; i <9;++ i ) {
c [ i ] ∗= s t i f f r a t i o ;
}} ;

the file viscous branch ps.h

# i f n d e f VISCOUS BRANCH H
# d e f i n e VISCOUS BRANCH H
# i n c l u d e < i o s t r eam >
# i n c l u d e <cmath>
# i n c l u d e <Eigen / Dense>
u s i n g namespace Eigen ;
u s i n g namespace s t d ;
# i n c l u d e ” M a t e r i a l p s . h ”

t y p e d e f Matr ix <double , 6 , 6> Matr ix6d ;

c l a s s v i s c o u s b r a n c h : p u b l i c M a t e r i a l
{
Matr ix2d C i , b e t r , be , b e i n v e r s e ;
Vec to r2d r e s p r i n c i p a l , e i g s , e i g s t r ;
Vec to r2d d e p s i l o n ;
Mat r ix2d S t i f f p r i n c i p a l , T a n g e n t p r i n c i p a l , C a lg , p r e s s u r e t a n g e n t ;
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Matr ix2d tau ;
Vec to r2d t a u p r i n c i p a l , e p s i l o n , e p s i l o n t r , t a u d e v ;
Mat r ix3d mat tan ;
Mat r ix3d m a t t a n v o l ;
Mat r ix3d R o t a t i o n m a t ;
Mat r ix3d R o t a t i o n m a t t r a n s p ;
doub le lambda A , lambda B , lambda C , e ta , p ;
Vec to r2d v0 , v1 , v2 , v0 , v1 , v2 ;
doub le i n v a r [ 2 ] ;
doub le d e r i v a t i v e [ 2 ] ;
doub le s e c o n d d e r i v a t i v e [ 2 ] [ 2 ] ;
doub le I1 , I2 , dW dI1 , dW dI2 , d2W dI1I1 , d2W dI1I2 , d2W dI2I1 ,

d2W dI2I2 , gamma 0 ;
doub le dI1 dA , dI2 dA , dI1 dB , dI2 dB , d2AI1 dAdA , d2AI1 dAdB ,

d2AI2 dAdA , d2AI2 dAdB , d2BI1 dBdA , d2BI1 dBdB , d2BI2 dBdA ,
d2BI2 dBdB ;

doub le d e l t a t ;

v i s c o u s b r a n c h ( ) ;
vo id s e t i n e l a s t i c s t r a i n ( MatrixXd ) ;
vo id c o m p u t e b e t r ( MatrixXd ) ;
vo id c o m p u t e i n v a r ( MatrixXd , b o o l ) ;
vo id c o m p u t e d e r i v a t i v e ( ) ;
vo id c o m p u t e s e c o n d d e r i v a t i v e ( ) ;
vo id c o m p u t e s t r e s s t a u p r i n c i p a l ( ) ;
MatrixXd c o m p u t e s t r e s s t a u ( ) ;
doub le c o m p u t e s t r a i n e n e r g y ( MatrixXd ) ;
doub le c o m p u t e d i s s i p a t i o n ( ) ;
vo id c o m p u t e t a n g e n t p r i n c i p a l ( ) ;
vo id c o m p u t e t a n g e n t p r e s s u r e ( ) ;
vo id c o m p u t e t a n g e n t n r p r i n c i p a l ( ) ;
vo id c o m p u t e r e s i d u a l p r i n c i p a l ( ) ;
vo id m a t t a n p r i n c i p a l ( b o o l ) ;
MatrixXd r o t a t e m a t t a n ( b o o l ) ;
MatrixXd m a t t a n v o l u ( ) ;
MatrixXd u p d a t e i n t e r v a r n e w t o n p r i n c i p a l ( MatrixXd ) ;

f r i e n d vo id c o n v e r t m a t r i x t o v e c t o r ( MatrixXd & , MatrixXd &) ;
f r i e n d vo id c o n v e r t v e c t o r t o m a t r i x ( MatrixXd & , MatrixXd &) ;
} ;

t e m p l a t e <typename number>
number sq ( number n ) {
r e t u r n ( n ∗n ) ;
}
t e m p l a t e <typename number>
number cu ( number n ) {
r e t u r n ( n ∗n ∗n ) ;
}
# e n d i f

the file viscous branch ps.cpp

# i n c l u d e < i o s t r eam >
# i n c l u d e <cmath>
# i n c l u d e <Eigen / Dense>
# i n c l u d e ” M a t e r i a l p s . h ”
# i n c l u d e ” v i s c o u s b r a n c h p s . h ”
u s i n g namespace Eigen ;
u s i n g namespace s t d ;

v i s c o u s b r a n c h : : v i s c o u s b r a n c h ( ) { / / C o n s t r u c t o r
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mat tan = MatrixXd : : Zero ( 3 , 3 ) ;
m a t t a n v o l = MatrixXd : : Zero ( 3 , 3 ) ;
R o t a t i o n m a t = MatrixXd : : Zero ( 3 , 3 ) ;
}

vo id v i s c o u s b r a n c h : : s e t i n e l a s t i c s t r a i n ( MatrixXd C i ) {
gamma 0 = 6 0 . 0 ; / / User i n p u t
C i = C i ;
e t a = 2 . 0 ∗ r e l a x a t i o n t i m e ∗ c [ 0 ] ∗ gamma 0 ;
} ;

vo id v i s c o u s b r a n c h : : c o m p u t e b e t r ( MatrixXd F ) {
b e t r = F ∗ ( C i . i n v e r s e ( ) ∗ F . t r a n s p o s e ( ) ) ;
E i g e n S o l v e r <Matr ix2d > es ( b e t r ) ;
v0 = es . e i g e n v e c t o r s ( ) . c o l ( 0 ) . r e a l ( ) ( seq ( 0 , 1 ) , 0 ) ;
v1 = es . e i g e n v e c t o r s ( ) . c o l ( 1 ) . r e a l ( ) ( seq ( 0 , 1 ) , 0 ) ;
v0 = es . e i g e n v e c t o r s ( ) . row ( 0 ) . r e a l ( ) ( 0 , seq ( 0 , 1 ) ) ;
v1 = es . e i g e n v e c t o r s ( ) . row ( 1 ) . r e a l ( ) ( 0 , seq ( 0 , 1 ) ) ;
e i g s t r ( 0 ) = es . e i g e n v a l u e s ( ) ( 0 , 0 ) . r e a l ( ) ;
e i g s t r ( 1 ) = es . e i g e n v a l u e s ( ) ( 1 , 0 ) . r e a l ( ) ;
R o t a t i o n m a t ( 0 , 0 ) = v0 ( 0 ) ∗ v0 ( 0 ) ;
R o t a t i o n m a t ( 1 , 0 ) = v1 ( 0 ) ∗ v1 ( 0 ) ;
R o t a t i o n m a t ( 2 , 0 ) = v0 ( 0 ) ∗ v1 ( 0 ) ;

R o t a t i o n m a t ( 0 , 1 ) = v0 ( 1 ) ∗ v0 ( 1 ) ;
R o t a t i o n m a t ( 1 , 1 ) = v1 ( 1 ) ∗ v1 ( 1 ) ;
R o t a t i o n m a t ( 2 , 1 ) = v0 ( 1 ) ∗ v1 ( 1 ) ;

R o t a t i o n m a t ( 0 , 2 ) = 2 . 0 ∗ v0 ( 0 ) ∗ v0 ( 1 ) ;
R o t a t i o n m a t ( 1 , 2 ) = 2 . 0 ∗ v1 ( 0 ) ∗ v1 ( 1 ) ;
R o t a t i o n m a t ( 2 , 2 ) = v0 ( 0 ) ∗ v1 ( 1 ) +v0 ( 1 ) ∗ v1 ( 0 ) ;

R o t a t i o n m a t t r a n s p = R o t a t i o n m a t . t r a n s p o s e ( ) ;
} ;

vo id v i s c o u s b r a n c h : : c o m p u t e i n v a r ( MatrixXd C , b o o l a ) {
i f ( a ) {
doub le c33 = 1 . 0 / C . d e t e r m i n a n t ( ) ;
I 1 = i n v a r [ 0 ] = C ( 0 , 0 ) + C ( 1 , 1 ) + c33 ;
Mat r ix2d CC = C ∗C ;
I 2 = i n v a r [ 1 ] = 0 . 5 ∗ ( i n v a r [ 0 ] ∗ i n v a r [ 0 ] − (CC ( 0 , 0 ) +CC ( 1 , 1 ) + c33 ∗ c33 ) ) ;
}
i f ( ! a ) {
doub le c33 = 1 . 0 / C ( 0 ) /C ( 1 ) ;
I 1 = i n v a r [ 0 ] = C ( 0 ) + C ( 1 ) + c33 ;
I 2 = i n v a r [ 1 ] = C ( 0 ) ∗C ( 1 ) +C ( 1 ) ∗ c33 + c33 ∗C ( 0 ) ;
lambda A = C ( 0 ) ;
lambda B = C ( 1 ) ;
lambda C = 1 . 0 / c33 ;
}} ;

vo id v i s c o u s b r a n c h : : c o m p u t e d e r i v a t i v e ( ) {
I 1 = i n v a r [ 0 ] ;
I 2 = i n v a r [ 1 ] ;
d e r i v a t i v e [ 0 ] = c [ 0 ] + 2 . 0 ∗ c [ 2 ] ∗ ( I1 −3) + 3 . 0 ∗ c [ 5 ] ∗ sq ( I1 −3) + 2 . 0 ∗ c [ 6 ] ∗ ( I1

−3) ∗ ( I2 −3) ;
d e r i v a t i v e [ 1 ] = c [ 6 ] ∗ sq ( I1 −3) ;
d I1 dA = 1 . 0 − 1 . 0 / sq ( lambda A ) / lambda B ;
d I 1 dB = 1 . 0 − 1 . 0 / sq ( lambda B ) / lambda A ;
dI2 dA = lambda B − 1 . 0 / sq ( lambda A ) ;
d I 2 dB = lambda A − 1 . 0 / sq ( lambda B ) ;
} ;
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vo id v i s c o u s b r a n c h : : c o m p u t e s e c o n d d e r i v a t i v e ( ) {
I 1 = i n v a r [ 0 ] ;
I 2 = i n v a r [ 1 ] ;
s e c o n d d e r i v a t i v e [ 0 ] [ 0 ] = 2 ∗ c [ 2 ] + 6 ∗ c [ 5 ] ∗ ( I1 −3) + 2 . 0 ∗ c [ 6 ] ∗ ( I2 −3) ;
s e c o n d d e r i v a t i v e [ 0 ] [ 1 ] = 2 . 0 ∗ c [ 6 ] ∗ ( I1 −3) ;
s e c o n d d e r i v a t i v e [ 1 ] [ 0 ] = 2 . 0 ∗ c [ 6 ] ∗ ( I1 −3) ;
s e c o n d d e r i v a t i v e [ 1 ] [ 1 ] = 0 . 0 ;

d2AI1 dAdA = 1 . 0 + 1 . 0 / sq ( lambda A ) / lambda B ;
d2AI1 dAdB = 1 . 0 / sq ( lambda B ) / lambda A ;

d2BI1 dBdB = 1 . 0 + 1 . 0 / sq ( lambda B ) / lambda A ;
d2BI1 dBdA = 1 . 0 / sq ( lambda A ) / lambda B ;

d2AI2 dAdA = lambda B + 1 . 0 / sq ( lambda A ) ;
d2AI2 dAdB = lambda A ;

d2BI2 dBdB = lambda A + 1 . 0 / sq ( lambda B ) ;
d2BI2 dBdA = lambda B ;
} ;

vo id v i s c o u s b r a n c h : : c o m p u t e s t r e s s t a u p r i n c i p a l ( ) {
dW dI1 = d e r i v a t i v e [ 0 ] ;
dW dI2 = d e r i v a t i v e [ 1 ] ;
t a u p r i n c i p a l ( 0 ) = 2 . 0 ∗ ( dW dI1 ∗ dI1 dA +dW dI2 ∗ dI2 dA ) ∗ lambda A ;
t a u p r i n c i p a l ( 1 ) = 2 . 0 ∗ ( dW dI1 ∗ d I 1 dB +dW dI2 ∗ d I 2 dB ) ∗ lambda B ;
p = −( t a u p r i n c i p a l ( 0 ) + t a u p r i n c i p a l ( 1 ) ) / 3 . 0 ;
} ;

MatrixXd v i s c o u s b r a n c h : : c o m p u t e s t r e s s t a u ( ) {
t au = t a u p r i n c i p a l ( 0 ) ∗ v0 ∗ v0 . t r a n s p o s e ( ) + t a u p r i n c i p a l ( 1 ) ∗ v1 ∗

v1 . t r a n s p o s e ( ) ;
r e t u r n tau ;
} ;

doub le v i s c o u s b r a n c h : : c o m p u t e s t r a i n e n e r g y ( MatrixXd be ) {
doub le p s i = 0 . 0 ;
c o m p u t e i n v a r ( be , 1 ) ;
I 1 = i n v a r [ 0 ] ;
I 2 = i n v a r [ 1 ] ;
p s i += c [ 0 ] ∗ ( I1 −3)+c [ 1 ] ∗ ( I2 −3) +c [ 2 ] ∗ sq ( I1 −3) +c [ 3 ] ∗ ( I1 −3) ∗ ( I2 −3) ;
p s i += c [ 4 ] ∗ sq ( I2 −3) +c [ 5 ] ∗ cu ( I1 −3)+c [ 6 ] ∗ sq ( I1 −3) ∗ ( I2 −3) ;
p s i += c [ 7 ] ∗ ( I1 −3) ∗ sq ( I2 −3) +c [ 8 ] ∗ cu ( I2 −3) ;
r e t u r n p s i ;
} ;

doub le v i s c o u s b r a n c h : : c o m p u t e d i s s i p a t i o n ( ) {
doub le p s i = 0 . 0 ;
p s i = t a u d e v . t r a n s p o s e ( ) ∗ t a u d e v +p ∗ p ;
p s i /= 2 . 0 ∗ e t a ;
r e t u r n p s i ;
} ;

vo id v i s c o u s b r a n c h : : c o m p u t e t a n g e n t p r i n c i p a l ( ) {
c o m p u t e s e c o n d d e r i v a t i v e ( ) ;
I 1 = i n v a r [ 0 ] ;
I 2 = i n v a r [ 1 ] ;
dW dI1 = d e r i v a t i v e [ 0 ] ;
dW dI2 = d e r i v a t i v e [ 1 ] ;

d2W dI1I1 = s e c o n d d e r i v a t i v e [ 0 ] [ 0 ] ;
d2W dI1I2 = s e c o n d d e r i v a t i v e [ 0 ] [ 1 ] ;
d2W dI2I2 = s e c o n d d e r i v a t i v e [ 1 ] [ 1 ] ;
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d2W dI2I1 = d2W dI1I2 ;

S t i f f p r i n c i p a l ( 0 , 0 ) = 2 . 0 ∗ dW dI1 ∗ d2AI1 dAdA + 2 . 0 ∗ lambda A ∗ dI1 dA ∗ (
d2W dI1I1 ∗ dI1 dA + d2W dI1I2 ∗ dI2 dA ) ;

S t i f f p r i n c i p a l ( 0 , 0 ) + = 2 . 0 ∗ dW dI2 ∗ d2AI2 dAdA + 2 . 0 ∗ lambda A ∗ dI2 dA ∗ (
d2W dI2I1 ∗ dI1 dA + d2W dI2I2 ∗ dI2 dA ) ;

S t i f f p r i n c i p a l ( 0 , 0 ) ∗= 2 ∗ lambda A ;
S t i f f p r i n c i p a l ( 0 , 1 ) = 2 . 0 ∗ dW dI1 ∗ d2AI1 dAdB + 2 . 0 ∗ lambda A ∗ dI1 dA ∗ (

d2W dI1I1 ∗ d I 1 dB + d2W dI1I2 ∗ d I 2 dB ) ;
S t i f f p r i n c i p a l ( 0 , 1 ) + = 2 . 0 ∗ dW dI2 ∗ d2AI2 dAdB + 2 . 0 ∗ lambda A ∗ dI2 dA ∗ (

d2W dI2I1 ∗ d I 1 dB + d2W dI2I2 ∗ d I 2 dB ) ;
S t i f f p r i n c i p a l ( 0 , 1 ) ∗= 2 ∗ lambda B ;

S t i f f p r i n c i p a l ( 1 , 1 ) = 2 . 0 ∗ dW dI1 ∗ d2BI1 dBdB + 2 . 0 ∗ lambda B ∗ d I 1 dB ∗ (
d2W dI1I1 ∗ d I 1 dB + d2W dI1I2 ∗ d I 2 dB ) ;

S t i f f p r i n c i p a l ( 1 , 1 ) + = 2 . 0 ∗ dW dI2 ∗ d2BI2 dBdB + 2 . 0 ∗ lambda B ∗ d I 2 dB ∗ (
d2W dI2I1 ∗ d I 1 dB + d2W dI2I2 ∗ d I 2 dB ) ;

S t i f f p r i n c i p a l ( 1 , 1 ) ∗= 2 ∗ lambda B ;
S t i f f p r i n c i p a l ( 1 , 0 ) = 2 . 0 ∗ dW dI1 ∗ d2BI1 dBdA + 2 . 0 ∗ lambda B ∗ d I 1 dB ∗ (

d2W dI1I1 ∗ dI1 dA + d2W dI1I2 ∗ dI2 dA ) ;
S t i f f p r i n c i p a l ( 1 , 0 ) + = 2 . 0 ∗ dW dI2 ∗ d2BI2 dBdA + 2 . 0 ∗ lambda B ∗ d I 2 dB ∗ (

d2W dI1I2 ∗ dI1 dA + d2W dI2I2 ∗ dI2 dA ) ;
S t i f f p r i n c i p a l ( 1 , 0 ) ∗= 2 ∗ lambda A ;
} ;

vo id v i s c o u s b r a n c h : : c o m p u t e t a n g e n t p r e s s u r e ( ) {
p r e s s u r e t a n g e n t ( 0 , 0 ) = − 1 . 0 / 3 . 0 ∗ ( S t i f f p r i n c i p a l ( 0 , 0 ) +

S t i f f p r i n c i p a l ( 1 , 0 ) ) ;
p r e s s u r e t a n g e n t ( 0 , 1 ) = − 1 . 0 / 3 . 0 ∗ ( S t i f f p r i n c i p a l ( 0 , 1 ) +

S t i f f p r i n c i p a l ( 1 , 1 ) ) ;

p r e s s u r e t a n g e n t ( 1 , 0 ) = p r e s s u r e t a n g e n t ( 0 , 0 ) ;
p r e s s u r e t a n g e n t ( 1 , 1 ) = p r e s s u r e t a n g e n t ( 0 , 1 ) ;
} ;

vo id v i s c o u s b r a n c h : : c o m p u t e t a n g e n t n r p r i n c i p a l ( ) {
c o m p u t e t a n g e n t p r e s s u r e ( ) ;
T a n g e n t p r i n c i p a l = d e l t a t / 2 . 0 / e t a ∗ ( S t i f f p r i n c i p a l +

p r e s s u r e t a n g e n t ) +MatrixXd : : I d e n t i t y ( 2 , 2 ) ;
} ;

vo id v i s c o u s b r a n c h : : c o m p u t e r e s i d u a l p r i n c i p a l ( ) {
c o m p u t e i n v a r ( e i g s , 0 ) ;
c o m p u t e d e r i v a t i v e ( ) ;
c o m p u t e s t r e s s t a u p r i n c i p a l ( ) ;
I 1 = i n v a r [ 0 ] ;
I 2 = i n v a r [ 1 ] ;
dW dI1 = d e r i v a t i v e [ 0 ] ;
dW dI2 = d e r i v a t i v e [ 1 ] ;
t a u d e v = t a u p r i n c i p a l . a r r a y ( ) +p ;
r e s p r i n c i p a l = e p s i l o n + d e l t a t / 2 . 0 / e t a ∗ t a u d e v − e p s i l o n t r ;
} ;

vo id v i s c o u s b r a n c h : : m a t t a n p r i n c i p a l ( b o o l e l a s t i c ) {
C a l g = S t i f f p r i n c i p a l ∗ ( T a n g e n t p r i n c i p a l . i n v e r s e ( ) ) ;
mat tan ( seq ( 0 , 1 ) , seq ( 0 , 1 ) ) . a r r a y ( ) = C a l g − 2 . 0 ∗ Matr ix2d (

t a u p r i n c i p a l . a s D i a g o n a l ( ) ) ;

i f ( e i g s t r ( 0 ) == e i g s t r ( 1 ) ) {
mat tan ( 2 , 2 ) = 0 . 5 ∗ ( C a l g ( 0 , 0 )−C a l g ( 1 , 0 ) )− t a u p r i n c i p a l ( 0 ) ;
}
e l s e {
mat tan ( 2 , 2 ) = ( t a u p r i n c i p a l ( 0 ) ∗ e i g s t r ( 1 ) − t a u p r i n c i p a l ( 1 ) ∗
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e i g s t r ( 0 ) ) / ( e i g s t r ( 0 ) − e i g s t r ( 1 ) ) ;
}} ;

MatrixXd v i s c o u s b r a n c h : : r o t a t e m a t t a n ( b o o l e l a s t i c ) {
m a t t a n p r i n c i p a l ( e l a s t i c ) ;
mat tan = R o t a t i o n m a t ∗ ( mat tan ∗ R o t a t i o n m a t t r a n s p ) ;
r e t u r n mat tan ;
} ;

MatrixXd v i s c o u s b r a n c h : : u p d a t e i n t e r v a r n e w t o n p r i n c i p a l ( MatrixXd
F ) {

e i g s = e i g s t r ;
e p s i l o n t r = 0 . 5 ∗ l o g ( e i g s t r . a r r a y ( ) ) ;
e p s i l o n = e p s i l o n t r ;
do {
c o m p u t e r e s i d u a l p r i n c i p a l ( ) ;
c o m p u t e t a n g e n t p r i n c i p a l ( ) ;
c o m p u t e t a n g e n t n r p r i n c i p a l ( ) ;
d e p s i l o n = T a n g e n t p r i n c i p a l . househo lderQr ( ) . s o l v e ( r e s p r i n c i p a l ) ;
e p s i l o n = e p s i l o n − d e p s i l o n ;
e i g s = exp ( 2 . 0 ∗ e p s i l o n . a r r a y ( ) ) ;
}
whi l e ( r e s p r i n c i p a l . norm ( ) > 1E−5) ;
c o m p u t e r e s i d u a l p r i n c i p a l ( ) ;
c o m p u t e t a n g e n t p r i n c i p a l ( ) ;
c o m p u t e t a n g e n t n r p r i n c i p a l ( ) ;
be = e i g s ( 0 ) ∗ v0 ∗ v0 . t r a n s p o s e ( ) + e i g s ( 1 ) ∗ v1 ∗ v1 . t r a n s p o s e ( ) ;
b e i n v e r s e = 1 . 0 / e i g s ( 0 ) ∗ v0 ∗ v0 . t r a n s p o s e ( ) + 1 . 0 / e i g s ( 1 ) ∗ v1 ∗ v1 .

t r a n s p o s e ( ) ;
C i = F . t r a n s p o s e ( ) ∗ ( b e i n v e r s e ∗ F ) ;
r e t u r n C i ;
} ;




	
	I Literature review
	Introduction to fracture mechanics
	Introduction
	Crack Propagation condition
	Energy flux integral
	Propagation direction

	Weakly Nonlinear Theory of fracture
	Crack tip fields in elastomers
	Transonic cracks

	Experimental and theoretical studies
	Early studies
	`Instabilities' in dynamic fracture
	Fracture of elastomers
	Tearing
	SENT
	Pure Shear

	Experimental and theoretical studies on polymer fracture
	Energy release rate through integrals
	Energy flux integral
	Eshelby's integral
	Small strains
	Comparison between the two integrals


	Polymers
	Elastomers
	Nonlinear elasticity
	viscoelasticity


	II Experiments
	Fracture of polyurethane
	Experimental setup
	Procedure
	Results
	Complex geometry and crack path
	Comparison with literature

	Additional experiments
	Results of 20 mm and 60 mm samples
	Other experiments on the 40 mm specimen
	Samples of another batch (Batch 2)
	Temperature measurements
	Discussion

	Revisiting the fracture experiments
	Displacement, Velocity and Strain fields
	Horizontal displacement
	Velocity fields
	Strain fields

	Observations on the variation of surface roughness
	Discussion


	III Simulations
	The role of viscoelsaticity in the bulk
	Using momentum balance
	Calibration of hyperelastic model
	Checking momentum balance

	Using the cracks speed as an input 
	Methodology
	Simulations

	Discussions

	Cohesive zone model
	Bulk material
	Rate independent cohesive zone model
	Specimen geometry and loading
	Observed crack speeds with different cohesive zone parameters

	Viscous Cohesive zone model
	Finite Element Implementation
	Computation of residual
	Computation of tangent
	Implementation into user subroutine

	Crack speeds prediction and traction - separation relations
	Discussions

	Finite Viscoelastic model
	Thermodynamics
	Integration of the evolution equation
	Plane stress formulation
	Stress and tangent computation
	Tangent computation
	Implementation details

	Model checks
	Hyperelastic case
	Viscoelastic case - small strains and small perturbations
	Viscoelastic case - large strains and small perturbations 

	Application of FV model to the experiments
	Model with adjusted parameters

	Energy budget in viscoelastodynamic fracture
	From the experiments
	From the simulations with cohesive model

	Discussions

	Plane stress version of Finite linear viscoelastic model 
	Time integration
	Computation of tangent

	Additional results for Finite viscoelastic model 
	Stress components for the hyperelastic case
	Comparison of relaxation tests between FLV and FV
	Analysis


	C++ implementation of the UMAT 


