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Abstract 

CO2 storage in deep saline aquifers has been recognised as one of the most promising 

ways to mitigate atmospheric CO2 emissions and thus respond to the challenges of climate 

change. However, the injection of CO2 into the porous medium considerabely disturbs its 

thermodynamic equilibrium. The near-well injection zone is particularly impacted with a 

strong geochemical reactivity associated with intense heat exchanges. This has a major 

impact on injectivity of the reservoir and the integrity of the storage. In addition to these 

effects, there is the added complexity of the presence of two immiscible phases: brine 

(wetting fluid) and CO2 (non-wetting fluid). These effects lead to highly coupled Thermo-

Hydro-Mechanical-Chemical (THMC) processes, whose interpretations have not yet been 

completed nor formally implemented into the numerical models. 

This thesis work, combining experimental measurements and numerical modelling, 

focuses on the study of the coupling between the thermal gradients and the diffusive 

reactive transport processes taking place in the deep saline aquifers, particularly in the 

near-well injection zone. We studied the exchanges between a cold anhydrous CO2 phase 

flowing in high permeability zones, and a hot salty aqueous phase trapped in the porosity 

of the rock. The strategy of the study starts with a simple approach in a free medium 

without CO2 flow, in order to study the reactivity of saline solutions of different chemical 

compositions, and to evaluate the impact of a thermal gradient on this reaction network. 

We have developed an experimental cell that allow to superimpose 2 to 3 layers of 

solution of different concentration and chemical composition. The analysis of the light 

scattered by the non-equilibrium fluctuations of concentration and temperature allows to 

obtain the diffusion coefficients of salts in water. Our results are in good agreement with 

literature values. Regarding the study of diffusive reactive transport, the analysis of the 

contrast of the images allowed us to highlight the fact that the precipitation of minerals, 

obtained by superimposing two aqueous layers of reactive, is accompanied by a 

convective instability that fades with time. Numerical modelling of the experimental 

results with PHREEQC using a heterogeneous multicomponent diffusion approach has 

allowed us to account for these convective instabilities. Different temperature gradients 

were applied to the reactive system, while keeping a mean temperature of 25 °C. The 
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experimental observations and numerical interpretations swhow that the temperature 

gradient has no significant influence on the behaviour of the system. 

Subsequently, we numerically studied the desiccation process (evaporation of water) at 

the interface between a brine trapped in the rock porosity and the CO2 flowing in a 

draining pore structure, simulating the conditions of the Dogger aquifer of the Paris basin. 

A model coupling the evaporation of water in the CO2 stream and the heterogeneous 

multicomponent diffusion of salts predicts the appearance of a mineral assemblage at the 

evaporation front, mainly composed by halite and anhydrite. Modelling this phenomenon 

at the reservoir scale would requires taking into account the evaporation rate as a 

function of the CO2 injection rate and the change in porosity at the interface. 

This thesis work has made it possible to highlight several physicochemical, 

thermophysical and diffusive transport phenomena at phase interfaces. This opens up 

new perspectives for improving numerical approaches and large-scale modelling, in 

particular of near-well injection of CO2 and geological storage reservoirs, and supports 

future industrial developments and technologies for the ecological transition. 
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Résumé 

Le stockage du CO2 dans les aquifères salins profonds a été reconnu comme l'une des voies 

les plus prometteuses pour atténuer les émissions atmosphériques de CO2 et répondre 

ainsi aux enjeux du changement climatique. Cependant, l’injection du CO2 dans le milieu 

poreux perturbe considérablement son équilibre thermodynamique. La zone proche du 

puits d’injection est particulièrement impactée avec une forte réactivité géochimique 

associée à d’intenses échanges thermiques. Cela a un impact majeur sur l’injectivité du 

réservoir et l’intégrité du stockage. A ces effets s’ajoute une complexité supplémentaire 

liée à la présence de deux phases non miscibles : la saumure (fluide mouillant) et le CO2 

(fluide non-mouillant). Ces effets conduisent à des processus Thermo-Hydro-

Mécaniques-Chimiques (THMC) fortement couplés, dont les interprétations ne sont pas 

encore abouties ni formellement implémentées dans les modèles numériques.  

Ce travail de thèse, associant des mesures expérimentales et des modélisations 

numériques, porte sur l’étude du couplage entre les gradients thermiques et les processus 

diffusifs de transport réactif se déroulant dans les aquifères salins, notamment dans la 

zone proche du puits d’injection. Nous avons étudié les échanges entre une phase froide 

CO2 anhydre qui s’écoule dans des zones de forte perméabilité, et une phase aqueuse salée 

chaude piégée dans la porosité de la roche. La stratégie de l'étude commence par une 

approche simple en milieu libre sans flux de CO2 afin d'étudier la réactivité des solutions 

salines de différentes compositions chimiques et d’évaluer l'impact d'un gradient 

thermique sur ce réseau réactionnel. 

Nous avons développé une cellule expérimentale permettant de superposer 2 à 3 couches 

de solution de concentration et composition chimique différentes. L’analyse de la lumière 

diffusée par les fluctuations de non-équilibre de la concentration et de la température 

permet de remonter aux coefficients de diffusion des sels dans l’eau. Nos résultats sont en 

bon accord avec les valeurs de la littérature. Pour ce qui est de l’étude du transport réactif 

diffusif, l’analyse du contraste des images a permis de mettre en évidence le fait que la 

précipitation de minéral, par mise en contact de deux couches aqueuses de sels réactifs, 

s’accompagne d’une instabilité convective qui s’estompe dans le temps. La modélisation 

numérique des résultats expérimentaux avec PHREEQC par une approche de diffusion 

multi-espèce hétérogène permet de rendre compte des instabilités convectives. Différents 
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gradients de température ont été appliqués au système réactif, tout en conservant une 

température moyenne de 25 °C. Les observations expérimentales et les interprétations 

numériques montrent que le gradient de température n'a pas d’influence significative sur 

le comportement du système. 

Ensuite, nous avons étudié numériquement le processus de dessiccation (évaporation de 

l’eau) à l’interface entre une saumure piégée dans la porosité de la roche et du CO2 

circulant dans une structure porale drainante, simulant les conditions de l’aquifère du 

Dogger du bassin parisien. Un modèle couplant l’évaporation de l’eau dans le flux de CO2 

et la diffusion multi-espèces hétérogène des sels prévoit l’apparition d’un assemblage 

minéral au niveau du front d’évaporation, principalement composé d’halite et 

d’anhydrite. La modélisation de ce phénomène à l’échelle du réservoir nécessite la prise 

en compte de la vitesse d’évaporation en fonction du taux d’injection du CO2 et de 

l’évolution de la porosité au niveau de l’interface. 

Ce travail de thèse a permis de mettre en évidence plusieurs phénomènes physico-

chimiques, thermo-physiques et de transport diffusif aux interfaces de phase. Ce qui ouvre 

de nouvelles perspectives d’amélioration des approches numériques et de modélisation à 

grande échelle notamment du proche puits d’injection du CO2 et des réservoirs de 

stockage géologique et soutenir les futurs développements industriels et technologiques 

pour la transition écologique. 
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General introduction 

Since the advent of the industrial age, humanity has faced the problem of climate change, 

resulting from a deterioration of the atmospheric layer. This modification can come from 

processes specific to the Earth or from its interaction with the outside, but mainly from 

industrial activities. Indeed, the ever-increasing energy demand over the last decades has 

caused the increase of the greenhouse gases concentration in the atmosphere, resulting 

in an increase of the average temperature of our planet, as recorded by global 

temperature monitoring. Carbon dioxide (CO2) has been recognised as the main 

greenhouse gas responsible of global warming and reducing its concentration is one of 

the main tasks of humankind. A portfolio of solutions has been proposed to mitigate CO2 

emissions in the atmosphere. Among them, the technology of Carbon Capture and Storage 

(CCS) seems to be a promising pathway. It consists in capturing all the CO2 from large 

power plants before it is released to the atmosphere, transport the captured CO2 to the 

storage sites, and store it underground in geological reservoirs. Several geological 

reservoirs are the targets for CO2 storage such as deep saline aquifers, depleted oil and/or 

gas fields, or unmineable coal seams. Deep saline aquifers are made of porous rocks 

saturated with highly saline water unusable for agriculture and unfit for consumption. In 

addition, they have a huge storage capacity that can raise to several gigatons of CO2 stored 

per year, making them the most suitable reservoir for CO2 storage. The captured carbon 

dioxide is injected at liquid or supercritical state within the porosity of the porous 

medium. Once injected, the supercritical CO2 (sCO2) will react with the components of the 

reservoir and will be trapped through a combination of physical mechanisms (structural 

and residual trapping) and of geochemical mechanisms (solubility and mineral trapping). 

These trapping mechanisms take place following a chronological order and ensure long-

term storage. However, numerous studies have shown that the injection of sCO2 

considerably disturbs the equilibrium state of the medium, and the near-well injection 

area is identified to be particularly impacted by CO2 injection, leading to highly coupled 

THMC (Thermal-Hydrodynamical-Mechanical-Chemical) processes, which are simulated 

on a macroscopic scale but actually take place at the pore scale. Thus, it is required to 

improve the understanding and the description of those coupled processes for a full 

assessment of CCS technology.  
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One of the key parameters for this assessment is the injectivity, whose control is 

important to maintain a high storage capacity and avoid strong mechanical response, such 

as fault reactivation or seismic, of the considered aquifer. The injection of sCO2 in saline 

aquifers is known to trigger several phenomena in the near well zone, in particular a 

strong chemical reactivity and intense heat exchange, salt precipitation and mineral 

dissolution, which could influence the evolution of the porosity and permeability, and 

therefore injectivity of the reservoir and the safety of the storage. In fact, the acidification 

of the brine due to CO2 dissolution disturbs the chemical equilibria of the medium, leading 

to the dissolution and re-precipitation of minerals like carbonates. Moreover, due to the 

presence of two distinct immiscible phases (CO2 and brine) in the porous medium during 

drainage, the evaporation of the initial brine into the flow of sCO2 may provide more space 

for CO2, but simultaneously, the solution in the porosity becomes highly saline leading to 

salt precipitation. The addition of those precipitates inside the porosity could create 

strong stresses on the rocks or completely clog the percolation paths of sCO2, reducing the 

injectivity. Salt precipitation in deep saline aquifers has been experimented from the field 

and from the laboratory. It has been shown that salt precipitation is governed by a 

combination of physical processes, which depends mostly on salt transport processes on 

a macroscopic scale and chemical processes, which mostly occur at the pore scale. 

Although the development of microfluidic tools for drainage experiments in porous media 

have significantly improved our knowledge, all the mechanisms involved during 

evaporation and salt precipitation at the pore scale are not yet well understood and 

formally implemented into the numerical models. They require deeper understanding as 

they may present non-intuitive behaviour. Restricting our interest to diffusive effects, 

larger localized temperature gradients that appear during CO2 injection can have a strong 

influence on the dissolution of CO2 in water, mass transfer in rocks, and precipitation 

process in the reservoir. Moreover, the evaporation of brine in the CO2 flow results in a 

large concentration gradient between the evaporation front and the rest of the reservoir 

leading to a local salt precipitation at the interface and a retrodiffusion mechanism of ionic 

species in the reservoir. This induces a segregation of the dissolved chemical species in 

the pore solutions. Moreover, the porous medium being extremely complex, taking 

multicomponent diffusion into account in the models can provide real information 

because the reaction path can be disturbed. A consequence would be for example a shift 

in the level/localisation of precipitation in the reservoir, knowing that the precise location 
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where the salt precipitates or how the salt precipitation spatially spreads in a given 

porous medium remains unclear despite it may affect the variability of the permeability. 

This PhD project is funded by E2S-UPPA, Institut Carnot ISIFoR and BRGM and is related 

to the chair CO2ES (CO2 Enhanced Storage), a partnership among E2S-UPPA, 

TotalEnergies, BRGM and the CNES. The goal of the Chair project is to improve our 

understanding of the various trapping and transport processes involved in CO2 geological 

storage, and especially those processes that contribute to storage efficiency and safety. 

This manuscript is organised in 4 chapters. The first chapter presents a literature review 

on the technology of carbon capture and storage in geological reservoirs and the 

mechanisms of CO2 sequestration in saline aquifers. This chapter also describes the 

multiphase reactive transport and the near well behaviour of the CO2 at macroscopic and 

pore scales. The geological reservoir being a complex medium, we propose to study by an 

experimental approach, the reactivity of a multi-component electrolytic system in a free 

medium, i.e. without a porous medium. The second chapter presents a background on 

mass transport phenomena in binary systems and the various experimental methods 

used for the measurement of mass diffusion coefficients of salts in water. This chapter 

also presents a description of the behaviour of electrolytes and of fluid-rock interactions 

by simulation models, which revolve around the fundamentals of thermodynamics of 

solutions. Chapter 3 focuses on the experimental methodology developed during this 

thesis for the measurement of transport properties and the study of a multicomponent 

reactive system with and without thermal gradient. This chapter also presents the 

interpretation of the experimental results based on geochemical modelling. Finally, 

chapter 4 focuses on the reactive transport modelling, at a cm scale, of a saline solution 

representative of real reservoirs and deals with the study of the process of desiccation 

(due to evaporation of water) at the interface between an aqueous phase trapped in the 

porosity of the rock and the supercritical CO2 flowing in a draining pore structure. 

 



 

4 
 

  



 

5 
 

Chapter 1 : Bibliographic review of Supercritical CO2 injection 
in deep saline aquifers 

 

1.1 Contribution of carbon dioxide to the global warming 

The greenhouse effect is a natural warming process of the Earth, which results from the 

absorption of a significant part of the thermal radiations released from the Earth’s surface 

by greenhouse gases (GHGs) present in the atmosphere. This effect is therefore an 

essential phenomenon that makes our planet suitable for life. However, an increase of 

GHGs concentration in the atmosphere promotes an increase of the global mean 

temperature, thus contributes to what is called global warming. Fig. 1.1 shows the land-

ocean temperature index from 1880 to 2019 with base period from 1951 to 1980 and 

represents the global temperature monitoring. It reveals an augmentation of the average 

temperature of our planet. According to this figure, the warming over land and ocean in 

2019 was about 0.95 °C above the 20th century average, and no drop is expected.  

 

Figure 1.1: Evolution of the Earth surface temperature difference compared to the period from 
1951 to 1980 ( from NASA/GISS/GISTEMP v3): the solid black line is the global annual mean, the 
red one is the five-year lowess smooth and in blue are the uncertainty bars with 95% confidence 

limit [1]. 

It is now largely accepted that this increase of the average mean temperature since the 

beginning of the industrial revolution is directly related to the increase of the 

concentration of GHGs in the atmosphere, mostly due to industrial activities. According to 
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the census of the Intergovernmental Panel on Climate Change (IPCC), there are more than 

forty GHGs [2], but carbon dioxide (CO2) remains by far the most abundant greenhouse 

gas in the atmosphere and the main responsible of global warming [3]. Most of the CO2 

emissions come from the world energy consumption (42%) [4]. In fact, in order to 

respond to the ever-increasing energy needs, the burning of fossil fuels like petroleum 

and coal has mainly led to a drastic increase of the atmospheric CO2 concentration, 

crossing the threshold of 407 ppm in 2018 according to the World Meteorological 

Organization (WMO) [5].  

 

Figure 1.2: Evolution of the average global temperature and atmospheric CO2 concentration since 
1800 (Source: Leland McInnes at the English-language Wikipedia, 

CCBY SA 3.0 <http://creativecommons.org/licenses/by sa/3.0/>, via Wikimedia Commons). 

The scientific evidence that the overwhelming increase of CO2 concentration in the 

atmosphere has mainly contributed to the increase of the global average temperature, 

thus leading to global warming [3] can be seen in Fig. 1.2. The consequences of the latter 

are numerous and significant: extreme weather events, augmentation of tornados and 

hurricanes, droughts, floods, melting of the poles and glaciers, rising sea levels, loss of 

biodiversity, etc. Global warming is thus one of the major concerns of humankind and 

many researchers are alerting for the need to take immediate measures in order to limit 

emissions of GHGs, and particularly CO2. 
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1.2 Carbon Capture and Storage technology for atmospheric 
CO2 mitigation 

Though the lockdown due to Covid-19 pandemic in 2020 has caused a drop in CO2 

emissions because of the shutdown of many industries, the Covid-19 pandemic may not 

be a short-term solution to climate change [5], [6]. Faced with the emergency, a portfolio 

of solutions has been proposed to reduce greenhouse gas emissions in the future and to 

respond to the current challenges of global warming.  As proposed by Caldeira et al., [7] 

these possibilities are organized in different categories:  

 Reduce our dependence on fossil fuels by using alternative energies: photovoltaic, 

wind power, hydraulic, biofuels, nuclear, geothermal, etc. 

 Energy conservation and efficiency through the development of hybrid vehicles 

and energy-efficient buildings. 

 CO2 utilization, aiming to consume it as a reagent in various industrial processes. 

 The capture of CO2 from big power plants or natural gas processing plants and its 

oceanic and geological sequestration. 

 Increase natural carbon sinks through better forest management and protection of 

agricultural land. 

 CO2 storage by mineral carbonation: chemical transformation of CO2 into stable 

inorganic carbonate minerals using oxides of alkali or alkaline metals, naturally 

present in silicate rocks [8]. 

Among all these solutions, the technology of CO2 Capture, transport and geological Storage 

(CCS) is recognised as a key and represents one of the most efficient and immediate mid-

term solution to reduce CO2 emissions and its global warming consequences. The CCS 

consists in capturing the CO2 from large power plants before it is released to the 

atmosphere, transport the captured CO2 to the storage sites, and store it underground in 

deep geological reservoirs (Fig. 1.3). According to the BLUE Map scenario of the 

International Energy Agency (IEA), this technology would now seem essential and is 

expected to contribute with at least 20% of the reduction of CO2 release to the atmosphere 

by 2050 [9]. 
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Figure 1.3: Schematic diagram of CCS technology showing different targets for CO2 geological 
storage. 

  

1.2.1 CO2 capture 

This first step consists in capturing waste CO2 directly from large industrial sites such as 

power plants, natural gas production sites or cement factories, and is usually the most 

expensive step in the CCS process [10]. CO2 capture can be performed through three main 

processes represented in Fig. 1.4:  
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Figure 1.4: Carbon capture technologies: a) Post-combustion, b) Pre-combustion and c) Oxyfuel 
combustion (©CO2CRC). 

 Post-combustion carbon capture: After the combustion of fuel and air, CO2 is separated 

from the other exhaust gases which contain a mixture of nitrogen (N2), water and 

some oxygenated compounds such as SO2, NO2 and O2. The separation can be 

preformed by different techniques such as absorption by physical or chemical 

solvents, adsorption on solids, membrane separation technique or even cryogenics. 

The most widely used is the chemical absorption with organic amines like mono- 

ethanolamine (MEA). 

 

 Pre-combustion carbon capture: It consists in capturing CO2 before combustion takes 

place. The principle is first to transform the fuel into syngas by gasification with 

oxygen or air. Then, the mixture of carbon monoxide and water coming from 

gasification is chemically transformed into a mixture of CO2 and H2. Finally the CO2 is 

separated from H2 using a solvent like methanol. At the end, the combustion of 

hydrogen produces energy. 
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 Oxyfuel combustion: unlike the post-combustion process, the combustion involves 

fuel and oxygen using recycled flue gas, leading to an exhaust gas that mainly contains 

CO2 and water vapour. The separation of the exhaust gas becomes easy and allows 

producing a high purity CO2 stream. 

1.2.2 CO2 transport 

CO2 transport is the second step in the CCS technology. The captured CO2 from the 

punctual (spot) sources is compressed and safely transported, usually through pipelines, 

up to storage sites. Pipelines allow the transport of large quantities of liquefied CO2 

involved in CCS and have proven to be a safe method. 

1.2.3 CO2 storage  

CO2 sequestration is the last step of the CCS technology. Based on economic factors, 

accessibility of storage sites, and long-term storage objectives, CO2 sequestration in 

geological formations appears to be a most promising solution. Several industrial pilots 

have already been implemented around the world to demonstrate the technical feasibility 

and reliability of CCS technology. They are summarized in a study report of the French 

National Institute for Industrial Environment and Risks (INERIS) [11]: 

 Sleipner and Snøhvit: One of the first application was carried out in 1996 at the 

Sleipner offshore site in Norway (in the North Sea). The CO2 injection rate was about 

2700 t/day, with more than 16 Mt successfully stored by 2016 [12]. The CO2 comes 

from the Sleipner natural gas field and is injected nearly 1000 meters deep into the 

Utsira Sand aquifer, a geological formation located under the ocean floor representing 

the largest local saline aquifer [13]. For the monitoring of CO2 injected at the Sleipner 

site, a parallel project called SACS (Saline Aquifer CO2 Storage) was set up in 1998 [14]. 

In 2008, a new Norwegian injection site has been operational at Snøhvit in the Barents 

Sea, also for offshore storage of CO2 coming from natural gas processing. The CO2 

injection rate was about 2000 t/day, with approximately 1.1 Mt of CO2 successfully 

stored by April 2011 [15]. 

 

 Weyburn in Canada: It was an international research program launched in 2000 and 

completed in September 2012. It studied CO2 injection and geological storage in depleted 
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oil fields. This project aimed to develop and demonstrate technology solutions required for 

the design, implementation, monitoring and verification of CO2 geological storage projects. 

95% pure CO2 coming from a gasification plant in the United States was injected at 

1500 meters deep for EOR (Enhanced Oil Recovery) purposes. The injection rate was 

3 Mt of CO2 per year. 

 

 The pilot of Lacq-Rousse: conducted by Total, this pilot was the first French CO2 

Capture Storage pilot and was operational from 2010 to 2013. The CO2 was injected 

in this storage site made of a depleted natural gas reservoir located 4500 meters deep. 

Although the CO2 injected was not a huge quantity (90 kt), this pilot was an actor of 

CCS at the international level, because it included all the steps of CCS. 

 

 In Salah: Another operation was carried out in 2004 on the In Salah site in Algeria, 

which is a natural gas field. It is an onshore CCS project whose outcomes have been of 

great benefit to other CCS projects around the world as it has for example shown the 

need for detailed characterisation of the reservoir geology and geomechanics and the 

importance to perform regular risk assessment [16]. The CO2 was injected at a rate of 

3500 t/day in a Sandstone aquifer located at a depth of about 1900 meters, whose 

storage capacity would be 17 Mt. 

 

 Ketzin: As part of the European project CO2SINK (CO2 Storage by Injection into a 

Natural saline aquifer at Ketzin, Germany) started in 2004, a pilot for CO2 capture and 

storage has been developed. The main objectives of this project were to study the 

behaviour of CO2 underground in real conditions and ultimately to provide 

operational results for numerical models. Approximately 67 kt of CO2 (purity> 99.9%) 

were injected into the saline aquifer of the Ketzin site located at approximately 800 

meters deep. 

As highlighted by the IPCC, CCS is a proven and a crucial transition technology allowing 

us to achieve climate targets by reducing GHG emissions while meeting our energy needs. 

Much work is underway to develop and improve the technology. However, a full 

deployment of CCS on a large scale lies on three main issues, namely economic, social, and 

technical; the main obstacle being undoubtedly the economic aspect related to CO2 

capture which turns out to be the most expensive [17]. Restricting our interest to the 
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technical issue, the mechanisms related to CCS involve various scientific fields such as 

fluid mechanics, physics, chemistry, geochemistry, geosciences and microbiology. 

Therefore, a multidisciplinary great deal is always underway to develop and improve the 

technology. The main challenges for the deployment of CCS from a technical point of view 

imply:  

 The determination of the storage capacities of reservoirs candidate for CO2 storage: 

The estimation of storage capacity should include an important parameter:  injectivity. 

Injectivity represents the amount of CO2 that can actually be injected as a function of 

time into an injection well at given wellhead pressure. The injectivity depends 

primarily on the permeability of the reservoir. Indeed, a low permeability imposes a 

high injection overpressure. However, this injection pressure must take into account 

the physical limits of the reservoir rock as well as of the cover rock (caprock). This is 

to avoid a rapid pressure increase in the reservoir due to a reduced injectivity, which 

can lead to rock fracturing as was observed at the Snøhvit site. In fact, it was reported 

that the site was very close to a caprock fracturing after one or two years of injection. 

Therefore, injection was temporarily stopped and the injection pressure was lowered 

[18]. The injectivity also depends on the number of injection wells and their 

inclination (vertical or horizontal well). 

 Technical control of risk assessment of CO2 leakage, including long-term monitoring 

and its impact on the environment directly close to the reservoir (ecosystems, 

atmosphere…). Based on experience feedback from incidents that occurred on CO2 

storage sites and on other underground storage sites, INERIS has devoted several 

reports and publications to identify and analyse the risks associated to CCS [19], [20]. 

 Ensure the efficiency of the injection of CO2 and the safety of the wells during the entire 

period of injection of the fluids. Moreover, ensure the integrity of the reservoir during 

and after the injection of CO2 

 A deep comprehension of non-isothermal processes that play a major role in all stages 

of CCS. For example, thermal stresses induced by temperature difference between the 

wellbore and the surrounding rock may lead to casing failure. Moreover, CO2 injection 

inside the storage formation induces temperature changes leading to coupled 

processes with non-trivial interpretations. These coupled processes also play a 

relevant role in “Utilization” options that may provide an added value to the injected 
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CO2, such as Enhanced Oil Recovery (EOR), Enhanced Coal Bed Methane (ECBM) and 

geothermal energy extraction combined with CO2 storage. [21] 

 Assessment of the distance between the storage site and the sources of CO2 capture. 

The French agency for Ecological Transition (ADEME) suggests that access to the CO2 

sites storage is an important obstacle and that priority areas of research could be: i) 

new techniques for characterizing sites and their storage capacity; ii) techniques 

intended to ensure safety (including long-term monitoring, prevention of leaks, 

remediation) [11]. 

To achieve the levels of CCS deployment, it is essential that the challenges and enabling 

factors of deployment, as well as the vast opportunities offered by technology, are well 

understood and urgently taken into account. 

1.3 Geological formations for CO2 storage 

1.3.1 Criteria for geological sites selection 

Geological reservoir intended for the geological sequestration of CO2 consists of porous 

rocks, i.e. a solid matrix and empty spaces called pores. These pores can be filled with 

miscible or immiscible fluids through which a solute moves. The interconnections 

between these pores form networks of pores constituting the flow pathways, which 

control / ensure the displacement of the solute within the formation. The pore networks 

thus define the capacity of the porous medium to be passed through by a fluid under the 

effect of gravity or any pressure: this is the permeability k. In addition to permeability, 

another essential characteristic of a porous medium is the porosity ∅. In a general way, 

porosity is defined as the ratio of the pore volume VP to the total volume of the sample VT 

(∅=VP/VT). To ensure safe storage, candidate geological reservoirs for CO2 sequestration 

must comply with some requirements. The criteria for identifying a geological CO2 storage 

site should be based on geoscience analysis that includes [22]–[24]:  

 Sufficient storage capacity to store large amounts of CO2. 

 Sufficient injectivity: Geological storage sites must have sufficiently high porosity and 

permeability to facilitate injection and hold large amounts of CO2. 

 A CO2 storage reservoir must be in a tectonically stable zone in order to avoid leakage 

of the stored CO2 due to the formation or the activation of fractures. 
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 The presence of an impermeable caprock (most often it is a clayey rock characterized 

by a very low permeability), with a good seal that ensures efficient fluid confinement 

and prevents the leakage of CO2. 

 The storage site must be at a minimum depth of 800 m where the temperature and 

pressure conditions are favourable to maintain CO2 in a supercritical state. According 

to the phase diagram of CO2, it exists as a supercritical state at temperature higher 

than 31 °C and a pressure greater than 7.38 MPa [25]. At these conditions, CO2 has the 

density of a liquid that increases depending on the temperature and pressure, but 

behaves like a gas, which optimizes the number of CO2 molecules that can occupy the 

total available pore space (volume) in geological reservoir, thus ensuring the storage 

of a large quantity of CO2. The ability to store CO2 increases with depth. The storage 

sites located between 800 m and 2000 m depths have temperature ranges from 30 °C 

to 60 °C and pressure from 7.8 MPa to 19.6 MPa considering a geothermal gradient of 

25 °C/km and a hydrostatic pressure [4], [26]. 

1.3.2 Geological reservoirs 

Based on the criteria mentioned above, there are several types of geological units 

candidates for CO2 storage as shown in Fig 1.3. They consist of: 

 Depleted oil or gas field reservoirs: They are candidates because of their good seal and 

stability on the geological time scale and have good storage capacities of the order of 

several Gt. Without the injection of CO2, these reservoirs are difficult to exploit because 

they are already depleted. Therefore, the injection of supercritical CO2 (sCO2) into 

these geological formations helps recovering more oil while allowing CO2 storage. The 

sCO2 injected acts as an acidifier and a powerful solvent, reducing the viscosity of the 

hydrocarbons and thus facilitating their recovery. 

 Unmineable coal seam: They also have a good storage capacity of several Gt. In these 

formations, methane is present at approximately 95% [27], but CO2 has a better 

affinity for coal compared to methane [28]. Thus, the CO2 injected into these geological 

formations helps the ECBM (Enhanced Coal Bed Methane) purpose. 

 Deep saline aquifers: Saline aquifers are located at very great depths generally 

between 800 and 3000 m deep, with thickness up to 200 m and spreading laterally 

over several km [29], [30]. They are made of porous and permeable reservoir rocks 
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saturated with highly saline brine in the spaces between the rock grains. The salinity 

is much higher than that of the sea [31]. As a result, the water of such aquifers is 

unusable for agriculture and unfit for consumption. The confinement of reservoir rock 

of the deep saline aquifers is ensured by an impermeable caprock. They are considered 

as having, by far, the largest potential CO2 storage capacity, being estimated of the 

order  between 1000 and 104 Gt of CO2 [31], [32]. Deep saline aquifers are also widely 

spread around the world, so that they can be close to CO2 capture sites [27] and the 

need for CO2 transport would be reduced. 

 

The main factors that require major assessment to decide the feasibility of CO2 storage in 

a candidate geological formation are the storage capacity, containment efficiency and 

injectivity. Of all the possible geological sites for the geological storage of CO2, the deep 

saline aquifers are recognised as the most promising candidates. In the next paragraphs, 

we describe the trapping mechanisms of CO2 in deep saline aquifers 

1.4 Trapping mechanisms of CO2 in deep saline aquifers 

Geological sequestration of CO2 into deep saline aquifers is a promising solution to 

mitigate CO2 emissions in the atmosphere and thus responds to the challenges of climate 

change [33]. The injection of sCO2 (preferably injected dry to avoid corrosion problems) 

into saline aquifer reservoirs considerably perturbs their (physical and 

chemical/thermodynamic) initial equilibrium state. In fact, the sCO2 injected moves 

within the geological formation and reacts with the components of the porous medium, 

depending on pressure, temperature, mineralogical composition of the rock and the brine. 

Thereafter, CO2 will be sequestered through a combination of physical trapping 

mechanisms (structural and residual/capillary trapping) and geochemical trapping 

mechanisms (solubility and mineral trapping) [34]. These four main mechanisms (shown 

in Fig. 1.5) play a prominent role in the effectiveness of CO2 sequestration.  
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Figure 1.5: Geosequestration of CO2 in saline aquifers associated with Trapping mechanisms [29]. 

1.4.1 Structural trapping mechanism 

It occurs immediately after injection and is chronologically the first mechanism for CO2 

trapping. It plays the main role in retaining CO2 in the geological formation. In fact, in an 

aquifer located between 800 m and 3000 m deep, the brine has a density and a viscosity 

that vary respectively in the range of 945-1230 kg.m-3 and 0.19-1.58 mPa·s, while those 

for sCO2 vary respectively in the range of 266-766 kg.m- 3 and 0.02-0.06 mPa·s. [31]. Due 

to this large density difference, the sCO2 migrates toward the upper limit of the reservoir 

until it reaches an impermeable rock cover (caprock) that stop its ascent and forms a 

structural closure preventing CO2 leakage towards shallower aquifers. Subsequently, the 

CO2 propagates below the caprock around the injection point, as a gravitational flow in 

response to the injection pressure, its own buoyancy and the slope of the caprock even if 

the injection is stopped [29]. 

1.4.2 Capillary trapping mechanism 

Also called residual trapping, this mechanism occurs almost immediately after the 

percolation of CO2. During its ascent through the rock formation to the upper limits of the 

aquifer, sCO2 displaces the interstitial fluid initially present in the formation. It is 
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subsequently trapped in the narrow pore spaces of the rock by capillary forces. CO2 

remains in its supercritical state, but is immobilized in the structure of the rock. This 

mechanism increases the security of the storage [35]. 

1.4.3 Solubility trapping mechanism  

It is recognized as one of the most important and most effective mechanisms that ensure 

long-term CO2 storage [36], [37]. The CO2 droplets immobilized within the pores by the 

residual trapping as well as the CO2 plume retained below the caprock by structural 

trapping, will dissolve in the brine. The solubility of CO2 in the brine depends on many 

parameters such as pressure, temperature and salinity [38]–[43]. This dissolution will 

generate the formation of a diffuse layer (a plume of CO2-rich brine), which is denser than 

the initial brine, inducing gravity-driven flows and convective fluid circulations. 

Consequently, the CO2-rich brine  will migrate downward the reservoir. The dissolution 

of CO2 in water produces a weak acid, namely carbonic acid [36]. The main advantage of 

solubility trapping is that once the CO2 dissolves, it no longer exists as a separate phase, 

thus eliminating the buoyancy forces that push it to rise to the surface [2]. 

1.4.4 Mineral trapping mechanism 

It is the safest and most permanent form of CO2 storage over the long term. It consists of 

mineralizing the dissolved CO2 into stable solid carbonates.  

The injected sCO2 inside aquifers interacts with the various components of the porous 

medium and is sequestered through a combination of physical and geochemical trapping 

mechanisms mentioned above that ensure the effectiveness of Geological CO2 Storage 

(GCS). Mineralogical trapping is relatively slow and can span hundreds or even thousands 

of years [44], [45], [46], and its dynamics strongly depends on the mineralogical 

compositions, on the structure of the rocks and on the temperature and pressure 

conditions existing in the aquifer, but also on the properties of the CO2 injected.  

Finally, Fig. 1.6 summarizes chronologically the different trapping mechanisms that take 

place on the geological scale during the CO2 sequestration in deep saline aquifers. It 

should be noted that the relative magnitudes of these trapping  mechanisms and their 

evolution with time  will depend on the physical state and mineralogy of the reservoir, 

and the complex coupling of fluid-flow and fluid–rock interactions.[47] 
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Figure 1.6: Storage security over time depending on a combination of physical and geochemical 
trapping [33]. 

 

1.5 Multiphase reactive transport and near-well behaviour 

1.5.1 Physical and chemical behaviour  

A massive injection of CO2 into the subsurface considerably perturbs the equilibrium 

conditions (temperature, pressure, pH…) of the host reservoir, and the re-equilibration of 

the medium is nonlinear in space and time, with various processes taking place on very 

different timescales [48]. Recent numerical simulations indicate that the near-well 

injection zone is an underground hydrogeological system identified to be the most 

sensitive area and particularly disturbed by sCO2 injection [49], [50]. In this zone, physical 

phenomena (e.g. variations in temperature, pressure and gas saturation) and geochemical 

reactions (e.g. pH variation of the initial brine, CO2 dissolution, mineral 

dissolution/precipitation) occur massively and are combined to enhance or alter the 

initial porosity and permeability of the medium and thus the well injectivity. The 

injectivity parameter expresses the behaviour of the porous medium under imposed 

conditions such as the injection pressure, temperature, flow and their time evolution[51]. 

As can be seen on Fig. 1.7, injectivity depends on the evolution of the relationship between 

petrophysical properties of the medium (e.g. porosity and relative permeability), 

properties of the injected fluid and characteristics of the reservoir rock (hydrodynamic 
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properties, geochemical reactivity, transport…). Therefore, a control of all parameters 

directly linked to the injectivity is of great interest for the success of GCS. 

 

Figure 1.7: Coupled key processes involved by CO2 injection: interactions between them and 
qualitative influence on the well injectivity [51], [52]. 

 

1.5.2 Thermal behaviour  

In addition to the hydrodynamic disturbances and the high chemical reactivity present in 

near-well injection zone, another major perturbation during the injection of sCO2 into 

saline aquifer is the introduction of a thermal gradient [53]. The naturally occurring 

geothermal gradient itself generates instabilities in the reservoir. In fact, the common 

geothermal gradients for saline aquifers is on average between 25 and 45 °C/km [22]. 

This natural vertical geothermal gradient causes density variations in the aquifer 

reservoir. The temperature difference as well as the concentration difference can cause 

instabilities of the CO2-rich brine layer and initiate the so-called double-diffusive natural 

convection [29]. In addition to this geothermal gradient, larger localized temperature 

gradients that appear during CO2 injection can have a strong influence on the dissolution 

of CO2 in water, mass transfer in rocks, and precipitation process in the reservoir [54].  

CO2 injection also induces temperature changes that have various origins such as the 

advection of the CO2 injected at a given temperature, the Joule Thomson effect, 

endothermic evaporation of water and exothermic dissolution of CO2 [49], [55], [56]. 

index 
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These temperature gradients generated during the injection are due to the fact that CO2 

most likely reaches the target reservoir at colder temperature than that corresponding to 

the geothermal gradient [57]. Therefore, non-isothermal or thermal effects may significantly 

influence the CO2 sequestration particularly in the near-well injection zone. In fact, 

temperature is a major parameter that affects CO2 properties (density, viscosity, solubility in 

brine [58], [59]…), surface tension, wettability [60]. However, in the early studies, the impact 

of thermal effects on the overall behaviour of the system has been most often neglected in order 

to facilitate the understanding of the first order processes involved during CO2 storage. As a 

result, most of the knowledge gained on the processes involved in CCS neglects the 

coupling with thermal effects. Nevertheless, the awareness that the comprehension of 

non-isothermal processes is crucial for a successful deployment of CCS projects has 

recently motivated an increasing interest to understand thermal effects.[21] 

1.5.3 Multiphase fluid flow behaviour  

In addition to these thermal effects, the presence of two distinct immiscible phases (sCO2 

and brine) brings additional complexity, as the flows are two-phase and the drainage 

process in the porous medium can be influenced by many factors. These factors include 

the viscosity and density of the fluids, the surface tension between them, the wetting 

properties, their respective flow rates, the topology of the pore network, and the 

considered length scales [61]. Drainage refers to a two-phase flow where the non-wetting 

fluid (CO2) displaces the wetting fluid (brine). In the case of drainage, the wettability 

properties ( which define the ability of a fluid to spread on mineral with respect to another 

fluid [62] ), associated to the surface tension (γ) between the two fluids are the key factors 

which allow us to predict the mobility of fluids inside the porous medium and the capillary 

forces. Capillary pressure is the pressure difference between the non-wetting and the 

wetting fluid across a curved interface. The capillary forces prevent the non-wetting fluid 

from spontaneously entering in a pore throat of radius r as long as the pressure is smaller 

than a threshold capillary pressure Pc given by the Young–Laplace law [63]: 

 

 
𝑃𝐶 =

2𝛾 𝑐𝑜𝑠𝜃

𝑟
 

(1.1) 
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where γ is the interfacial tension, θ the contact angle. The presence of viscous forces can 

modify the capillary pressure and promote the entrance of invading fluid (CO2) through 

smaller pore throats. That is why the multiphase fluids flow in porous media can be 

characterised by two dimensionless numbers namely the capillary number Ca and the 

viscosity ratio M [63], [64] given by: 

 𝐶𝑎 =
𝜇𝑛𝑤 𝑢

𝛾 cos 𝜃
 (1.2) 

 

 𝑀 =
𝜇𝑛𝑤

𝜇𝑤
 (1.3) 

 

where nw and w, are respectively the viscosities of the non-wetting and of the wetting 

fluids, and u is the mean velocity of the non-wetting fluid. The capillary number represents 

the ratio of viscous forces over capillary forces while the viscosity ratio is useful to 

determine whether a displacement is stable or not. In the case of drainage, Lenormand 

identified three main regimes for  immiscible displacements of fluids during the transport 

of two-phase flow [63]–[65]. These three regimes are governed by the two dimensionless 

numbers mentioned above and correspond to the limits when the viscous or capillary 

forces involved during displacement are dominant or negligible. In each case, the 

displacement takes one of the basic forms: viscous fingering, capillary fingering, or stable 

displacement (Fig. 1.8). 

- Viscous fingering appears for low M (injected non-wetting fluid less viscous 

than wetting fluid) and rather large Ca (fast non-wetting fluid, and/or weak 

capillary forces); the principal displacement is due to viscous forces. Capillary 

effect and pressure drop in the injected fluid are negligible. Due to viscosity, 

small pores are invaded (Fig. 1.8-a). 

- Capillary fingering appears at low capillary number (slow injection rate and/or 

large capillary forces) and rather large viscosity ratio (injected non-wetting 

fluid generally more viscous than wetting fluid). The principal displacement is 

due to capillary forces and viscous forces are negligible in both fluids. Larger 

pores are invaded first (Fig. 1.8-b). 
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- Stable displacement takes place at large Ca and M values, meaning that the 

invading fluid presents a stable front. (Fig. 1.8-c) and all pores are invaded by 

the non-wetting fluid. 

 

Figure 1.8: Lenormand phase diagram for immiscible displacement during drainage [63], [64], [66] 

 

At the reservoir scale, the displacement of brine by supercritical CO2 is characterised by a 

viscosity ratio of less than 1 (log M between -1.6 and -0.7) [67]. Depending on the velocity 

of the sCO2, the principal mechanism of the displacement flow can be capillary-dominated 

or viscous-dominated flow. Another source of perturbation taking place in the subsurface 

may be due to microbial metabolisms. Microbial reactions can impact the integrity, 

capacity, and safety of CO2 storage sites [48]. Research activities have been carried out 

about the effects of CO2 injection on autochthonous microbial communities and how they 

can affect the storage integrity by enhancing or inhibiting mineral dissolution. [68]–[70]. 

 

All these effects and disturbances that are mentioned above lead to highly coupled 

thermo-hydro-mechanical-chemical-biological (THMCB) processes with non-intuitive 

consequences on the porous medium. A summary of all these coupled processes taking 

place during sCO2 injection is given in Fig. 1.9. 
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Figure 1.9: Coupled processes during GCS [48]. 

The sCO2 injected into aquifers induces interactions with itself, in situ brine and reservoir 

rock, leading to a variety of highly coupled processes. Therefore, it is required to take into 

account all these coupled processes, which occur at different spatial and temporal scales 

for a full assessment of CCS technology. This thesis focuses on the study of the THC 

coupling, which will be described in the next paragraphs. 

1.6 Summary of THC behavior in the near well injection zone 

Recent laboratory experiments and numerical modelling focused on the study of the 

behaviour of the near-well area during scCO2 injection in saline aquifers. The results gave 

rise to a conceptual zonation scheme with radial geometry of processes occurring in the 

near-well region (Fig. 1.10) and demonstrated that chemical processes vary, with time, 

according to the distance from the injection well [52]. First, the massive and continuous 

injection of dry CO2 acts as a piston and displaces away the brine initially present close to 

the well bore. A dessicated non-reactive zone is created around the injection well (zone 
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5). Only dehydration of some primary hydrated minerals (like gypsum or clay minerals) 

can occur there. 

 Then, immobile residual water entrapped in pores or distributed on grain surface as thin 

wetting film, is in contact with the constant flow of dry scCO2 (with very low vapour 

pressure) initiating an evaporation regime (zone 4). As vaporization progresses, the the 

relative permeability  of the prous medium with respect to CO2 increases allowing further 

evaporation. Consequently, the molar fraction of the water in the CO2 stream increases 

with distance from the well because a significant portion of brine evaporates into the CO2 

stream, leading both to the extension of the drying front and the increase of the 

concentration of salt dissolved in the brine. When the salt concentration exceeds its 

solubility limit, precipitation occurs. Possibly, other secondary minerals can also 

precipitate from residual brines because of the salting-out effect. This can alter the 

injectivity of the reservoir because of the resulting reduction of the permeability and 

porosity of the porous medium [71]–[73]. In fact, to understand how salt precipitation 

affects the injectivity, a number of laboratory experiments have been performed in 

sandstone and carbonate rocks. As an example, Muller et al. [74] conducted a test on a dry 

Berea sandstone core sample with 100 mD permeability and around 20 % porosity, 

saturated with a 25 wt% NaCl solution. After the experiment, they reported 60% reduction in 

the absolute permeability allocated to salt precipitation, based on Scanning Electron 

Microscopy (SEM) micrographs. Using Magnetic Resonance Imaging (MRI), Wang et al. [75] 

carried out a similar test on the Berea sandstone core sample with 143 mD permeability and 

around 17 % porosity saturated with a 25 wt% NaCl solution. After the experiment, they 

reported 50 % reduction in the absolute permeability allocated to salt precipitation near the core 

inlet. On the micro scale, Kim et al. [76] have coupled a microfluidic technique with a 

porous medium by developing a lab-on-a-chip approach to study pore-scale salt 

precipitation dynamics during CO2 sequestration in saline aquifers. They found a porosity 

reduction between 15–25 % and large bulk NaCl crystals that grow in the brine phase, away 

from the CO2 interfaces. Most of the reactive water mass exchange is triggered and takes 

place in the drying out zone [51], [77].  

Within zone 3, a two-phase flow zone where both brine and CO2 are present as flowing 

phases within the system. A chemical equilibrium is established between the two phases, 

leading to pH variations. Because of aqueous phase-mineral interactions, dissolution of 
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carbonate minerals present in the reservoir [52] occurs in this zone and buffers water 

acidification. Dissolution of minerals constitutes the most important process but, 

depending on reservoir conditions (T, P), precipitation of secondary minerals are not 

excluded.  

The zone 2 is a monophasic zone saturated with the brine initially present within the 

medium. In this zone, the CO2 dissolved into the brine is mainly carbonic acid. As a result, 

the pH of the brine decreases and reaches 3.5-5.0, buffered by the alkalinity of native 

brines and the interactions with rock minerals minerals.  

 

Figure 1.10: Schematic zonation of processes occurring in the near-well region after sCO2 injection 
in a saline aquifer. The different radii (r1, r2, r3, r4) depend on CO2 injection flow rate and reservoir 

properties [50], [78]. 

According to this zonation scheme, the region of interest for our study is located in the 

zone 4. In this zone, both two-phase flow reactive transport and salt precipitation occur, 

possibly leading to local heterogeneous porosity and permeability. However, simulations 

that made it possible to define the different zones described in Fig. 1.10 were performed 

with the numerical simulation program TOUGHREACT. The latter considers that the 

porous medium is homogeneous in each cell of the mesh and is based on a description of 

the flows according to Darcy's law. Consequently, the flow typology as described 

according to the Lenormand diagram (see Fig. 1.8) is not reproduced in detail. With 

TOUGHREACT, the two-phase flow is expressed at macroscopic scale with parameters 
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such as the relative permeability of one fluid with respect to another. Therefore, the 

notion of digitation at the poral scale is not included in the program.  

1.7 Phenomena at pore scale 

Understanding the mechanisms involved in CO2 trapping at the pore scale remains very 

crucial because, at this scale, many sensitive processes such as chemical reactions, 

precipitation of minerals and the diffusion of ionic species in fluids can express in a 

meaningful way. From a numerical point of view, the typical length scale used to describe 

processes involved in the context of CO2 storage is the reservoir scale, where it is often 

assumed that the porous medium has a homogeneous structure, with the consequence 

that the distribution of fluids and their movement inside the pore network remains 

conceptual. A complete simulation requires experimental data both for validation and 

insight into the full, complex interplay of phenomena occurring at the pore-scale [76]. The 

study of the trapping mechanisms involved during CO2 injection at pore scale was possible 

thanks to microfluidic approaches by using Geological Labs on Chip micromodels. 

Actually, the micromodels are not truly representative of geological reservoir as a whole, 

but they are representative of the hydrodynamic mechanisms encountered in a real 

porous medium. They aim at investigating the flow paths of fluids in a small portion of the 

formation.  

Morais et al. [79] identified three key flowing and storage mechanisms during drainage 

experiments at the pore scale, namely: (i) the invasion where the CO2 phase invades the 

porous medium and displaces water to occupy the pore space; (ii) the percolation which 

corresponds to the breakthrough time (tp) when the CO2 reaches the outlet of the 

micromodel, leaving behind some water due to capillary forces; and (iii) the drying. which 

corresponds to a slower elimination process in which the dry injected CO2 vaporizes the 

water remaining in the pore network [79]. All these steps are summarized in Fig. 1.11 

below. 
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Figure 1.11: Pressure drop and CO2 saturation as functions of time during a typical drainage 
process inside a micromodel. t0 = 0 is the starting point for the injection time [79]. 

 

Restricting our interest to the transport and movement of fluids in porous media, 

hydrodynamic studies using microfluidic approaches have made it possible to determine 

the parameters that can influence the efficiency of storage, particularly pore network 

characteristics (permeability) and the injection flow rate. Permeability generally depends 

on the configuration of the pore network, the porosity and the depth of the channels of 

the porous microsystem. In fact, Joseph et al. [80]  conducted experiments to calculate the 

effective porosity and permeability of on-chip porous media containing different pore-

networks. As represented on Fig. 1.12, they found that as the number of pores and throats 

in on-chip porous media increases, the porosity increases. 
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Figure 1.12: Porosity and permeability values for different characteristics of pore-networks [80]. 

Zhao et al. [81] conducted a study for the visualisation of CO2 flooding in immiscible and 

miscible displacements in a high-pressure condition using a 400 MHz Magnetic 

Resonance Imaging (MRI) system. For CO2 miscible displacement, they observed a piston-

like displacement and the phenomenon of the miscible regions and CO2 front was obvious. 

For immiscible displacement, they observed a phenomenon of CO2 fingering due to the 

difference in fluid viscosities and densities. Thus, the displacement process of CO2 in 

porous media can be affected by the hydrodynamic forces such as capillary pressure 

endured during process, the physical and chemical properties of the fluids (viscosity, 

density, solubility) and of the porous  matrix (pore size, permeability). 

Zhang et al. [82], [83]  evaluated the impacts of porous media heterogeneity and capillary 

forces on a liquid CO2–water displacement in a pore network micromodel with two 

distinct permeability zones (dual permeability), at a pressure greater than the 

supercritical CO2 phase-transition pressure of 7.3 MPa. Their results demonstrated a 



 

29 
 

preferential displacement of CO2 through the high permeability zone. In their results, they 

also characterised the displacement mechanism of capillary and viscous fingering. The 

injection rates were expressed as the log of the capillary number (logCa). They found that 

at slow injection rates, the displacement of the non-wetting fluid occurs only through the 

high permeability zone with large entrapped zones of water, indicating capillary 

fingering. This is because the higher capillary force in the low permeability zone resists 

penetration by the non-wetting fluid. The mechanism shifts from capillary fingering to 

viscous fingering with the increase of the injection flow rate. The liquid CO2 started 

invading the low permeability zone only when the capillary number reached a certain 

threshold value of logCa=-3.36 as can be seen in Fig. 1.13. 

 

 

Figure 1.13: Images of liquid CO2 (white) distribution in the dual-permeability pore network at 
different capillary number. The flow direction is from left to right [82]. 

The roughness of the channel walls is also a parameter that could influence the 

displacement of CO2 in the porous media, because an important roughness of the channel 

walls can reduce the velocity of the flow. The mechanisms governing transport also 

depends on the flow of fluids in the porous medium. At pore scale, three main mechanisms 

govern the transport of elements in the porous medium: advection, dispersion and 

molecular diffusion. 

1.7.1 Advection 

Advection or convection is a process of moving elements in solution by displacement of 

fluid. This is one of the predominant mechanisms behind displacement flows of matter 

where solutes are transported at the same speed as the fluid within the medium without 
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varying their concentration. In a one-dimensional environment, the advection transport 

equation is given by: 

 𝛿𝐶

𝛿𝑡
= −𝑈𝑥

𝛿𝐶

𝛿𝑥
 

(1.4) 

 

C is the concentration of the migrant species and Ux the linear mean velocity of the fluid. 

1.7.2 Dispersion 

Dispersion takes place when the solute moves through a porous medium. According to 

Ozgur and Gümrah [84], the dispersion can be influenced by different parameters such as 

the flow velocity, the complex tortuosity of the pore network, the interactions of solutes 

with rocks, etc. In a saturated heterogeneous porous media like saline aquifers, the 

dispersion of a fluid can be described as a function of the dimensionless Peclet number, 

Pe [85], which characterizes the relative importance of dispersion compared to advection 

and is given by:  

 
𝑃𝑒 =

𝑢 ∙ 𝐿

𝐷ℎ
 

(1.5) 

 

where L (m) is a characteristic length of transport and u (m.s-1) is the Darcy velocity, that 

is the linear flow velocity averaged over the cross-section of the capillary. Dh (m².s-1) is 

the hydrodynamic dispersion coefficient.  In 1972, Bear [86] made a distinction between 

two types of dispersion : kinematic dispersion and hydrodynamic dispersion. The 

kinematic dispersion defines the variation of velocity of the fluid according to the 

transversal or longitudinal directions within the porous medium due to the 

microstructure of the medium. While the hydrodynamic dispersion is the sum of the 

molecular diffusion and the kinematic dispersion because in practical case, the effect due 

to molecular diffusion cannot be dissociated from that due to kinematic dispersion [87]. 

The spatio-temporal variation of the concentration due to the dispersion in porous 

medium is an unidirectional flow defined by : 

 𝛿𝐶

𝛿𝑡
= 𝐷ℎ ∙

𝛿2𝐶

𝛿𝑥2
 

(1.6) 
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where C is the concentration, t the time and x the position. The hydrodynamic dispersion 

coefficient Dh is defined as: 

 𝐷ℎ =  𝛼 ∙ 𝑢 + 𝐷𝑒𝑓𝑓 (1.7) 

 

where  is the dispersivity (m) and Deff is the effective diffusion coefficient (m².s-1). When 

u  0, Dh  Deff and u·L << Deff. Thus Pe << 1. Hence, for low Peclet numbers (Pe<<1), the 

transport mechanism is governed by diffusion while for Pe>>1, advection dominates. 

1.7.3 Molecular diffusion  

Molecular diffusion is a physical phenomenon related to the random molecular motion 

due to the collision between particles. It refers to the microscopic process by which matter 

or heat is transported within a system without collective movement. Unlike kinematic 

dispersion, molecular diffusion can take place independently of convection (or 

advection). In geological reservoirs, molecular diffusion is generally a non-

stationary/transient process whose duration is highly dependent on the pressure and 

temperature of the system. Its driving force is exclusively due to concentration gradients. 

Indeed, if the concentration is not homogeneous between distinct zones, and without 

external force fields, a flow of particles from the regions of higher concentrations to the 

regions of lower concentrations is established according to the Fick's first law. In porous 

media, the diffusion process due to the concentration difference is mitigated due the 

presence of the solid matrix (Fig. 1.14b). In fact, here the solute species travel longer paths 

than in in a free fluid due to the complexity of the pore structure (Fig. 1.14a) [88].  
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Figure 1.14: Illustration of diffusion due to the concentration difference  a) in  free medium and b) 
in the pore space [88]. 

To account for slower diffusion in porous media, an effective diffusion coefficient Deff is 

defined and can be related to the molecular diffusion coefficient D by [89]: 

 
𝐷𝑒𝑓𝑓 = ∅ ∙ 𝐷𝑝 = ∅ ∙  

𝐷

𝜏
 (1.8) 

where ∅ is the porosity, Dp the pore-water diffusion coefficient, and the tortuosity τ is a 

term used to describe the structural complexity of the medium. Geometrically, it can be 

approximated by the ratio between the real distance traveled by following a tortuous 

path, and the effective distance crossing this same medium in a straight line. Deff depends 

on the pressure and the temperature according to Arrhenius law. 

During the transport of fluids, all the transport mechanisms mentioned above may 

operate simultaneously or individually with a preferential predominance of a given 

mechanism. The process of transport of a solute in a porous medium can be governed by 

an overall transport equation defined as the contribution of all transport processes 

according to the equation: 

 
∅ ∙

𝛿𝐶

𝛿𝑡
= −𝑈𝑥

𝛿𝐶

𝛿𝑥
+ 𝐷ℎ ∙

𝛿2𝐶

𝛿𝑥2
 

(1.9) 

 

 ∅ ∙
𝛿𝐶

𝛿𝑡
 is the global flow, −𝑈𝑥

𝛿𝐶

𝛿𝑥
 the contribution of the advection mechanism and 𝐷ℎ ∙

𝛿²𝐶

𝛿𝑥²
 

the contribution of diffusion/dispersion mechanisms. These two contributions are 
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additive, which means that one can take place independently of the other. Therefore, in 

the absence of advection within the fluid, the mass and heat transport are only due to 

diffusion, with 𝐷ℎ = 𝐷𝑒𝑓𝑓. In this thesis we only focused on the diffusive transport 

mechanism. 

1.8 Conclusion and problem at stake 

Up to now, the main mechanisms involved in the injection of CO2 into saline aquifers are 

known. Because these reservoirs are located in the deep underground, the existing work 

is mostly theoretical and considers some laboratory experiments and monitoring results 

from some pilot scale tests. It allowed highlighting the preponderant coupled processes 

involved with the reactive transport phenomena that occur in the near-well injection 

zone. According to Fig. 1.10, the region of interest for our study is the zone 4. In this zone, 

both two-phase flow reactive transport and salt precipitation occur, possibly leading to 

local heterogeneous porosity and permeability.  However, in line with a more detailed 

description of the processes that are taking place at the pore scale, such a configuration 

may favour, in the context of CO2 injection, localized temperature gradients larger than 

the natural geothermal gradient related to local heterogeneities like fluid distribution. 

This could generate diffusive transport phenomena that could induce segregation of 

chemical species in the medium, and, in turn, accelerate/delay salt precipitation in some 

place of the porous/fractured medium.  

Precipitation adds solid matter in the reservoir with a potential consequence of clogging 

CO2 percolation paths, which can reduce the injectivity. The precipitation process and the 

amount of salt formed depend on the salinity of the initial brine, the residual water 

entrapped in pores, the gas injection flow rate and the capillary forces within the system 

[90]. Salt precipitation in deep saline aquifers are governed by a combination of physical 

and chemical processes [77]. However, up to now, there is no consensus on the precise 

location where the salt precipitates or how the salt precipitation spatially spreads in a 

given porous medium [91]. However, some authors have claimed in their studies that salt 

precipitates locally near the inlet of the medium, which is often attributed to capillary‐

driven backflow of brine into the dried zone. [91], [92]. 

As for the thermal gradient, the mass transport of chemical species in response to a 

temperature gradient is called thermodiffusion or Soret effect. Under certain conditions, 
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it can lead to an efficient separation of chemical species chemical species [93], [94]. Since 

the discovery of the Ludwig-Soret or (Soret) effect in the 19th century [95], [96], the 

existence of thermal gradients in geological reservoirs or in hydrothermal solutions, and 

their impact on the selective distribution of the concentration of chemical species by the 

thermodiffusion phenomenon, have been a topic of active research [97], [98]. This effect 

is evidenced by the establishment of a concentration gradient due to the diffusive 

migration of chemical species into a medium induced by a temperature gradient. For 

example, authors like Dandurand et al. [99], have shown that in a porous medium filled 

with fluids containing dissolved ions, the Soret effect can give rise to supersaturations, 

even from dilute solutions, resulting in crystallization or mineral deposits. Taking into 

account the thermal gradients in the models arouses more and more interest, but a 

possible coupling with concentration gradients through Soret effect is not yet mentioned 

in the literature to the best of our knowledge. As part of this thesis, our interest is to 

deepen the thinking on the influence of thermal gradients on diffusive reactive transport 

in the storage conditions of CO2 in saline aquifers, and to assess their importance. 

Within the aquifer, the reactive transport zones can be located at different places where 

the flow regime for the displacement in a drainage configuration corresponds to viscous 

fingering of the CO2-rich phase into the brine, according to the classification by 

Lenormand. The case of drainage mainly governed by capillary forces can also be 

considered when the pressure heterogeneities in each of the phases are negligible 

compared to the capillary pressure Pc. The largest pores where capillary pressure is the 

lowest are first invaded by the injected fluid. This therefore leads us to the conceptual 

diagram of the locks to focus on in this thesis (Fig. 1.15c). We are interested by the 

precipitation of salts associated with the diffusion process. In fact, we consider in the 

porous medium a preferential flow of CO2 injected into the pores which have a high 

permeability and which are in contact with pores of lower permeability containing brine 

trapped in the pore space. With a continuous evaporation of brine in the CO2 stream, the 

salt concentration will increase at the evaporation front. This will generate a 

concentration gradient in the weakly permeable porosity and will lead to a ‘’retro 

diffusion’’ process. Over time, when the salt concentration reaches the solubility limit of 

the corresponding mineral, the mineral will precipitate at the evaporation front. It is also 

envisaged that the existence of large temperature gradients can have an impact on the 

chemical differentiation of the system. 
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Figure 1.15: Conceptual diagram of thesis work. b) Image taken from [100]. 

The main objective of the thesis is to study the coupling between the thermal gradients 

and the reactive transport processes taking place in the deep saline aquifers. The PhD 

project is twofold: i) evaluate to which extent transport phenomena contribute to 

differentiating brines within a reservoir and thus affect salt precipitation phenomena,  ii) 

understand the physico-chemical processes at the interface between brine and sCO2 in 

systems stressed by large thermal gradients. Our conceptual diagram being quite complex 

(Fig. 1.15-c), the study is divided into several stages, in order to gradually increase the 

complexity of the system and tackle the coupled processes. To achieve our main objective, 

this study will be based on experimental and numerical approaches:  

On the experimental level: we start from a simple approach in free medium without CO2. 

Because the brine is a multicomponent system, the idea is to generate and study the 

reactivity between saline solutions of different ionic compositions in isothermal 

conditions and to study the impact of a thermal gradient on this reaction network. 

Depending on the composition of the water formation and the physical conditions 

(temperature and pressure), several minerals such as halite (NaCl), anhydrite (CaSO4), 

gypsum (CaSO4:2H2O) and calcite (CaCO3) can precipitate. Within the framework of this 

thesis, we propose to study the chemical reaction of precipitation of gypsum in isothermal 

and non-isothermal conditions. The reaction is given by the following equation: 

 𝐶𝑎𝐶𝑙2(𝑎𝑞)
+ 𝑁𝑎2𝑆𝑂4(𝑎𝑞)

+ 2 𝐻2𝑂 → 2 𝑁𝑎𝐶𝑙(𝑎𝑞) + 𝐶𝑎𝑆𝑂4: 2𝐻2𝑂 (1.10) 
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To study this chemical reaction, one possibility would be to use microfluidic devices. The 

idea would be to use a micromodel with a "T" channel geometry, which would consist of 

two different fluid inlet channels that meet each other at a T-junction zone feeding a large 

mixing zone. As can be seen on Fig.1.16, this type of device has been used by Morais [67] 

and Beuvier et al. [101] to monitor the precipitation of carbonates and could well be 

adapted to monitor the precipitation of gypsum from the reaction of Ca2+ and SO42- ions. 

 

Figure 1.16: a) Geological Lab on Chip used to monitor carbonate precipitation. b) Typical sizes of 
the channel cross-section of the microreactor. c) Schematic illustration of the Tjunction part (red 

insert in a)) showing the counter flow injection of the two solutions in the horizontal inlet 
channels and their mixing flow in the vertical main channel where the calcium carbonate 

precipitates in the interdiffusion zone [67], [101]. 

To this system, we can add heating wires along the side walls of the central channel. Thus, 

by Differential Dynamic Microscopy (DDM), the impact of the thermal gradient on the 

precipitation reactions could be studied in a quantitative and qualitative way. Another 

possibility would be to use diffusion cells where it is possible to bring two distinct layers 

of solutions into contact so that they are stable in the gravity field. An example of a device 

based on this type of configuration was used by Torres et al. [102] and is represented 

below: 
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Figure 1.17: Injection setup. The solution injection device controls the injection flow of three 
syringes in the precision of ml/s. A close-up of the side view within the cell is shown in the inset 

[102]. 

 

This type of configuration allows the location of the precipitate to be visualised in the 

vertical plane, which is a major contribution to answering questions about the location of 

precipitates that form in geological reservoirs. Furthermore, this configuration offers the 

possibility of imposing thermal gradients parallel to the gravity field, which is 

representative of geological reservoirs. The use of diffusion cells in experimental devices 

is an expertise of the Laboratory of Complex Fluids and their Reservoir of the University 

of Pau and the Adour countries (LFCR UPPA-Anglet). Therefore, we propose to put into 

contact a solution of calcium chloride (CaCl2) and a solution of sodium sulfate (Na2SO4) 

inside a diffusion cell. However, gypsum crystals form more or less rapidly and present a 

solubility limit, of about 0.0151 mol.kg-1 at 25 °C and atmospheric pressure [103], [104]. 

In order the delay the reaction and monitor the precipitation process over time, we add a 

solution of sodium chloride (NaCl) between the two previous saline solutions, which acts 

as a buffer solution. The 1D conceptual configuration of our system is represented as 

follow:  
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Figure 1.18: 1D conception configuration for the study of the salts multicomponent diffusion. 

From Fig. 1.18 above, it can be noted that the gypsum precipitation time given by this 

configuration is purely dependent on the thickness a of the buffer solution. The thickness 

of the layer on the top and the bottom are defined by l1 and l2 respectiveley. Depending on 

the dimensions of the diffusion cell, this configuration can give rise to hydrodynamic 

instability. This experimental configuration will be studied with and without temperature 

gradient by using an optical technique that will be described later.  It is important to 

mention that this type of well-stratified configuration can never be observed in geological 

reservoirs. Our main objective is to have a complex multicomponent system that exhibits 

salt concentration gradients and salt precipitation and to understand the impact of the 

thermal gradient on the reaction. 

On the numerical level: The first aim is to reproduce and interpret the experimental 

results. Then, applying our results to saline solutions representative of real reservoirs 

and, finally, introducing a condition of constant composition of CO2 gas phase in contact 

with the water formation.  
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Chapter 2 : Multicomponent salts diffusion in water  

 

2.1 Introduction 

In the previous chapter, we presented our multicomponent system, which consists of 

bringing three layers of saline solution of different chemical composition and 

concentration into contact with each other in order to monitor the gypsum formation 

process. However, in order to predict the behaviour of this multicomponent system, it is 

important to be able to predict accurately the behaviour of each individual saline solution 

at a given pressure and temperature condition and the behaviour of each pair of solutions. 

Regarding the behaviour of each aqueous saline solution, namely CaCl2, NaCl and Na2SO4 

aqueous solutions, its diffusion in water is assumed to behave as a binary diffusion. The 

physical explanation lies in the electrostatic interactions between the cations and the 

anions forming the electrolyte. In fact, in a given electrolyte dissolved in an aqueous 

solution, the total charge of the anions is equal to the total charge of the cations. In 

addition, in order to respect the principle of electroneutrality, the ions involved in an 

electrolyte have the same net motion. In an electrolyte, the ion that tends to move more 

slowly has its diffusion accelerated while its associated ion that tends to move faster has 

its diffusion slowed down [105]. As for the behaviour of multicomponent mixtures, the 

diffusion of ions can be influenced by the composition of the solution, the activity 

coefficients, the pH, the ionic strength, the interaction between aqueous species, and 

charge numbers of solutes. To maintain local electroneutrality, solute-solute coulombic 

effects can considerably modify the diffusive flow of charge species [106]. The presence 

of ionic species leads to electrostatic interactions resulting in phenomena of attraction 

and/or repulsion, possibly including neutral polarizable aqueous species. Because of 

these interactions, the nature of the various dissolved minerals therefore confers 

particular properties to the brines, which are far from those of ideal solutions. This 

chapter presents a background on mass transport phenomena in binary systems and the 

various experimental methods used for the measurement of mass diffusion coefficients of 

salts in water. This chapter also presents a description of the behaviour of electrolytes 

and of fluid-rock interactions by simulation models, which revolve around the 

fundamentals of thermodynamics of solutions.  
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2.2 Brief background on transport phenomena 

2.2.1 Phenomenological equation 

Transport phenomena occurs in almost any multicomponent mixture present in nature 

and industry and its understanding is of great interest for many applications such as 

chemistry, nuclear energy, plasma physics, geochemistry, petroleum engineering, CO2 

storage, etc...[107]. In fact, the understanding of transport processes can be of help in 

studying the transient processes, thermal processes, diffusion in porous media, flow 

patterns in reacting systems, characterization of physiological and cellular processes. A 

suitable characterization of transport processes in complex mixtures requires a thorough 

understanding of simpler fluids like in binary mixtures. 

In a convectionless not chemically reactive binary system, with non-uniform 

concentration and temperature, the heat and mass transfers are described by 

phenomenological equations: 

 �⃗� = −𝜌𝛤∇⃗⃗⃗𝐶 − 𝜆𝑇 ∇⃗⃗⃗𝑇 (2.1) 

 

 𝑗 = −𝜌𝐷∇⃗⃗⃗𝐶 − 𝜌𝐶 (1 − 𝐶)𝐷𝑇 ∇⃗⃗⃗𝑇 (2.2) 

 

where �⃗� and 𝑗 are respectively the heat and mass flow, ρ is the fluid density, Γ is the Dufour 

coefficient, �⃗⃗�𝐶 and �⃗⃗�𝑇 are the concentration and temperature gradients respectively. λT 

is the thermal conductivity of the material, D and DT are, respectively, the mass diffusion 

and the thermodiffusion coefficients, C is the mass fraction of the mixture, expressed as a 

percentage on a weight-per-weight basis (w/w). The first term on the right-hand side of 

Eq. 2.1 refers to a heat flux induced by a concentration gradient and is called the Dufour 

effect. Its contribution in liquid mixtures is very small compared to the Fourier 

contribution, represented by the second term on the right-hand side of Eq. 2.1. 

The mass flow 𝑗 contains the contributions of the mass transfer flux governed by the 

concentration gradient and the temperature gradient. The first term on the right-hand 

side of Eq. 2.2 expresses the Fickian diffusion, as postulated in the Fick’s first law of 

diffusion. It describes a mass flux from regions of high concentration to regions of low 

concentration due the inhomogeneity of the concentration in the system. The second term 
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on the right-hand side of Eq. 2.2 is the components separation induced by the 

thermodiffusion or Ludwig-Soret effect. It describes the molecular movement produced 

by the inhomogeneity of the temperature. At stationary state, the total mass flow vanishes 

(𝑗 =0). Hence, Eq. 2.2 becomes: 

 ∇⃗⃗⃗𝐶 = −𝐶 (1 − 𝐶) 𝑆𝑇 ∇⃗⃗⃗𝑇 (2.3) 

 

where ST = DT/D is the Soret coefficient. It can be positive or negative [108], [109], which 

indicates the direction of migration of the solutes (to the cold or to the hot region). Eq. 2.3 

represents the magnitude of the concentration gradient directly coupled to the external 

temperature gradient. Since we have concentration gradients during free-diffusion and 

thermodiffusion processes, then there is a contribution of Fickian diffusion in both cases. 

However, in the case of free-diffusion (ΔT = 0 K), only the contribution of the Fickian 

diffusion is present. 

The rate of diffusive heat transfer compared to the Fickian diffusion is described by the 

Lewis number, Le. It is a dimensionless number defined as the ratio of thermal diffusivity 

to mass diffusivity given by:  

 𝐿𝑒 =
𝜅

𝐷
 (2.4) 

 

where κ is the thermal diffusivity. In liquid mixtures, thermal diffusivity is much greater 

than mass diffusion (Le>>1), leading to the fact that the tendency to reach a homogeneous 

state is faster for temperature than for concentration [110]. A general description of 

isothermal diffusion and thermodiffusion experiments is provided in the following part. 

2.2.2 Free diffusion or isothermal diffusion 

In a constant gravitational field, a typical free-diffusion experiment consists in carefully 

layering two miscible fluids with the denser on the bottom and the lighter on the top, 

creating an initial step concentration gradient at uniform temperature (ΔT = 0) as shown 

in Fig. 2.1. The figure more exactly represents two solutions containing the same 

components with an initial concentration gradient and mixing by diffusion. The two 
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solutions are initially separated by a sharp horizontal interface, which is stabilized by the 

gravitational field. 

 

Figure 2.1: Sketch for the mixing of two solutions by free diffusion in laboratory conditions. 

The typical initial condition is the step function concentration profile, which can thus be 

written for the concentration C(z,t) of the denser component as [111]: 

 
𝐶(𝑧, 0) = {

𝐶1, 0 < 𝑧 < 𝑎
𝐶2, 𝑎 < 𝑧 < ℎ

 
(2.5) 

 

where h is the height of the diffusion cell, corresponding to the total thickness of the two 

superimposed solution layers and z is the vertical position within the diffusion cell. C1 and 

C2 are the uniform initial concentrations of the denser solution and of the lower one 

respectively, with the condition 𝐶1 > 𝐶2. In the model, the two horizontal layers are 

separated by a horizontal interface supposed to be at mid-height of the cell a=h/2. Once 

the two fluids are left into contact, a diffusive Fickian flow starts to transport mass across 

the interface and as time goes by, the diffusive process evolves. The initial sharp 

concentration gradient is smoothed by diffusion and decreases with time. The time-

dependent theory assumes that the macroscopic concentration evolves in time according 

to the usual diffusion equation given by Eq. 2.6. It describes the time evolution of the 

macroscopic concentration, once the dependence of the mass flux from hydrodynamic 

variables is prescribed [111]: 

 𝜕𝐶

𝜕𝑡
+

1

𝜌
 𝛁 ∙ 𝐣 = 0. (2.6) 

 

The evolution of the concentration profile during the free diffusion process, obtained by 

solving the diffusion equation with the initial condition of Eq. 2.5 and is given by [112]: 
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𝐶(�̃� , 𝑡) = (

𝐶1 + 𝐶2

2
) +

2

𝜋
∆𝐶 ∑

1

𝑗
sin (

𝑗𝜋

2
) 𝑒𝑥𝑝 (−

𝐷𝐽²𝜋²

ℎ²
𝑡) cos  ( 𝑗𝜋�̃�)

∞

𝑗=1

 
(2.7) 

 

where �̃� is the normalized height (�̃�=z/h) and (C1+C2)/2 is the homogeneous 

concentration at the end of the diffusion process. During a free-diffusion process, the 

concentration difference between the top and bottom in the cell is assumed to remain 

constant. This assumption is true in the case of unbounded diffusion, where two infinitely 

thick layers of fluid are allowed to diffuse one into each other. In practice the assumption 

is valid only during a given time interval after the beginning of the diffusion process, 

which depends on the vertical size of the vessel and on the diffusion coefficient. As soon 

as the concentration near the boundaries begins to change, the features of the 

macroscopic diffusion process cease to depend on the diffusion coefficient only, and they 

are influenced by the height of the vessel also [111]. The characteristic diffusive time τd 

in a free-diffusion process is given by [112]: 

 
𝜏𝑑 =

(ℎ/2)2

(𝜋𝐷)
 

(2.8) 

 

A plot of the evolution of the concentration profile given by the Eq. 2.7 is illustrated in 

Fig. 2.2. It is the time evolution of the concentration profile plotted vs the normalized 

height z̃ during a free-diffusion. The thickness of the sample is h=1 cm. As an example, 

initially two horizontal layers of the binary mixture of NaCl-H2O at the uniform 

concentrations C1=19 w/w and C2=0.09 w/w are separated by a horizontal interface at 

the mid-height a= h/2. The homogeneous concentration at the end of the diffusion process 

is C =0.14 w/w and the diffusion coefficient taken from litterature is D = 

1.55 ×  10−5 cm²/s [113].  
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Figure 2.2: Time evolution of the concentration profile plotted vs the normalized height �̃� during a 
free-diffusion for different times. The horizontal and vertical axes are exchanged for convenience. 

The thickness of the cell is h=1 cm. Initially two horizontal layers of the binary mixture of NaCl-H2O 
at the uniform concentrations C1 = 0.19 w/w and C2 = 0.09 w/w are separated by a horizontal 

interface at the mid-height a= h/2 (i.e. �̃� = 0.5). The homogeneous concentration at the end of the 
diffusion process is C=0.14 w/w and the diffusion coefficient is D = 𝟏. 𝟓𝟓 ×  𝟏𝟎−𝟓 cm²/s [113]. 

In the early stages of the diffusion process, the concentration at the boundaries does not 

change in time, as the diffusive remixing occurs only around the midheight. From Fig. 2.2 

we can clearly see that the initial net concentration gradient in the diffusion cell is 

smoothed by diffusion and decreases with the time. In theory, the concentration gradient 

disappears completely at infinite times. In practice, the concentration gradient is 

considered to be 99% smoothed after a time t corresponding to 5 times the diffusion time 

(𝑡 = 5 × 𝜏𝑑 ), when the latter is defined as in Eq. 2.8. 

2.2.3 Thermodiffusion or Soret effect 

Thermodiffusion, also called the Soret effect, describes the coupling between temperature 

gradients and the resulting mass fluxes. Unlike free diffusion, the mixture is initially at a 

uniform concentration in the case of thermodiffusion. When applying a positive thermal 

gradient (i.e heating from above and cooling from the bottom) to a convectionless system, 

there is a heat flow governed by the Fourrier’s law and a mass flow, which tends to 

gradually separate the molecules along the gradient by the Soret effect effect until a 

stationary state related to the appearance of a concentration gradient. This process is 

illustrated in Fig. 2.3 below. 
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Figure 2.3: General principle of a Soret cell experiment 

In Fig. 2.3, a solution contained in a diffusion cell is subjected to a linear temperature 

gradient, with the initial condition that the distance h in the cell varies from -h/2 to h/2. 

The system will respond with mass fluxes (Eq. 2.2) leading to a time-dependent 

concentration gradient along the direction of the temperature gradient inside the bulk. To 

determine the time-dependence of Eq. 2.2, the appropriate governing equation is the 

continuity equation defined by Eq. 2.6. By applying principles of mass and component  

conservation, and after transformation we obtain the dimensionless form of the diffusion 

equation: [114] 

 𝜕�̃�

𝜕�̃�
=

𝜕2�̃�

𝜕�̃�2
 (2.9) 

 

where �̃� =
𝐶

∆𝐶∞
 (2.10) 

 

 �̃� =
𝑧

ℎ
 (2.11) 

 

 �̃� =
𝑡𝐷

ℎ2
 (2.12) 
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∆𝐶∞ is the magnitude of the mass separation. The solution to Eq. 2.9 in the case of a 

parallelepipedic Soret cell is [114]: 

�̃� − �̃�0= �̃� + 
1

2
∑ (�̃� − 𝑛) (−1)𝑛 [e𝑟𝑓 (

2�̃� − 2𝑛 − 1

4√�̃�
)] − [𝑒𝑟𝑓 (

2�̃� − 2𝑛 + 1

4√�̃�
)]

𝑁

𝑛=−𝑁

 

+ ∑ (−1)𝑛

𝑁

𝑛=−𝑁

√
�̃�

𝜋
 [e𝑥𝑝 (−

(2�̃� − 2𝑛 − 1)2

16�̃�
) −  e𝑥𝑝 (−

(2�̃� − 2𝑛 + 1)2

16�̃�
)] 

(2.13) 

 

The time evolution of the concentration profile plotted vs the normalized height z̃ during 

thermodiffusion for a binary mixture is represented in Fig. 2.4. The diffusion coefficient 

of a binary mixture of NaCl-H2O at a homogeneous concentration of C=0.14 w/w is 𝐷 =

 1.55 ×  10−5 cm²/s [113]. The thickness of the sample is h=1 cm and the number of terms 

in the summations in Eq. 2.13 is N=10. At steady state a linear concentration profile is 

formed inside the sample. 

 

Figure 2.4: Time evolution of the normalized  concentration profile plotted as a function of the 
normalized height �̃� during a thermodiffusion process. The horizontal and vertical axes are 

exchanged for convenience. Plot of Eq. 2.13 for N = 10, 𝑫 = 𝟏. 𝟓𝟓 ×  𝟏𝟎−𝟓 cm²/s [113]. The 
thickness of the sample is h=1 cm. 

From Fig. 2.4 it can be seen that the separation of the sample over time induces a 

concentration gradient. At steady state, a linear concentration profile is formed inside the 

sample. In this case, the characteristic diffusive time is given by 𝜏𝑑 =
ℎ2

𝜋 𝐷
. A complete 

separation by Soret effect is obtained after a time t corresponding to 1 time the diffusion 

time (𝑡 = 1 × 𝜏𝑑  ). 
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Caldwell and Eide [115] have measured the Soret coefficients and isothermal diffusivity 

of aqueous solutions of five principal salt constituents of seawater as a function of mean 

concentration, temperature and pressure, namely NaCl, CaCl2 and Na2SO4 solutions. They 

reported a magnitude of the Soret coefficient in absolute value for those aqueous 

solutions in the order of |𝑆𝑇|~10−3 °C-1. Hence, according to Eq. 2.3, for a binary mixture 

at a mean concentration of C = 0.5 w/w and for a temperature difference ΔT = 20 °C 

between the hot and the cold parts of the system, the separation by Soret effect between 

the top and the bottom of the diffusion cell is 0.005 w/w or 0.5 %. The magnitude of Soret 

effect appears to be very small. At high pressures and temperatures, separations of the 

order of 4% can be achieved, which still remains small. Therefore, the soret effect has very 

small impact on concentration gradients. Alone it cannot be expressed in a significant way 

to compete with other transport phenomena, especially in the context of geological 

storage of CO2 in deep saline aquifers. However, there are configurations where the 

separation via Soret effect can be important. For example in a double diffusive step, i.e. in 

a vertical interface stabilised by a salt gradient [116], [117]. Consequently, in the present 

work, we will not consider the Soret effect. We will only focus on the measurement of the 

diffusion coefficient of salts in water. 

2.3 Optical methods to study the isothermal diffusion of 
salts in water  

The measurement of the mass diffusion coefficient of salts in water can be predicted 

theoretically or calculated from empirical correlations, which involve several properties 

such as activity coefficient, conductance, concentration, temperature, dielectric constant, 

viscosity of the solvent. [118]–[121]. In the literature, several experimental techniques 

have also been used for the measurement of the diffusion coefficient of the binaries NaCl-

H2O, CaCl2-H2O and Na2SO4-H2O from dilute concentration to high concentration at 25 °C 

and atmospheric pressure. These experimental methods include the decaying pulse 

technique [122], the diaphragm cell method [123]–[125] and some optical techniques. 

The latter are generally recognized as powerful tools for investigating fluid flow 

phenomena in transparent media [126] and the most accurate methods to measure mass 

diffusion coefficients. They can provide both a qualitative and quantitative analysis. 

Among these optical techniques, the most widely used for the measurement of the mass 

diffusion coefficients of salts in water are interferometric techniques [127], owing to their 
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non-destructive nature and the possibility to visualise directly and instantaneously the 

evolution of the diffusion field as the free diffusion process takes place in the test cell. In 

order to avoid any convection phenomenon, the denser solution is injected in the bottom 

part of the diffusion cell in the presence of a gravitation field. They are based on the 

analysis of the variation of the refractive index in a transparent media: a test beam 

perpendicular to the concentration gradient passes through the diffusion cell. Interfering 

this beam with a reference beam results in time-dependent interferograms that are 

recorded and analysed in real time or after the experiment. The following part presents 

the conventional interferometric techniques commonly used. 

2.3.1 Electronic speckle pattern interferometry (ESPI) 

Riquelme et al. [128] used electronic speckle pattern interferometry (ESPI) shown in 

Fig. 2.5 for the measurement of the diffusion coefficient of a 1.75 mol.L-1 solution of NaCl 

diffusing into distilled water at a mean temperature of 23.5 °C. It consists of a Mach-

Zehnder type interferometer that is illuminated by a laser beam. The latter could first 

passe through a neutral density filter to avoid saturating a camera and is then divided by 

a beam splitter. One beam, the so-called test beam passes through the cell, while the other, 

called reference, propagates in the air. A second beam splitter then recombines them. The 

recombined beam passes through an opal screen before entering the camera in order to 

generate speckles. The diffusion cell consists of two sheets of glass. The cell is first half-

filled with distilled water. After allowing the movements resulting from the injection to 

dissipate, the salt solution is slowly injected from below using a powered syringe. It 

follows an acquisition of images. 



 

49 
 

 

Figure 2.5: ESPI interferometer. BS: beam splitters; CL: collimating lenses; DC: diffusion cell; FG&C: 
frame grabber and computer; L: laser; M: mirrors; NDF: neutral density filter; OL: object lens; OS: 

opal screen; SF: spatial filters [128]. 

2.3.2 Phase-shifting interferometry (PSI) 

A phase shifting interferometer (PSI) was developed in the 1970s by Bruning et al. [129]. 

PSI was used to measure the diffusion coefficients of salts in water as a function of the 

concentration of salts at room temperature and atmospheric pressure. The experimental 

system is illustrated in Fig. 2.6. In this technique, the optical system is a Mach-Zehnder 

interferometer where one plays on the polarization of the beams in order to produce an 

additional phase shift suitably calculated between the recorded images. This allows going 

back to the phase shift between the test beam and the reference beam. The diffusion cell 

is composed of a square quartz cell like those used in spectroscopy. In order to avoid mass 

transport due to convection, the density gradient and gravity must be in the same 

direction. Thus, the cell is first half-filled with the denser solution. The lighter solution is 

then injected through the top of the cell. The system is kept at constant temperature. The 

diffusion coefficient is then determined from measurements of transient concentration 

profiles obtained by analyzing the interferograms. 
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Figure 2.6: a) Schematic sketch of the Phase-shifting interferometer b) Design of the test cell [130]. 

Using this method, Torres et al. [102] measured the diffusion coefficient of NaCl in water 

at 25 °C in the concentration range between 0.5 mg.mL-1 and 10 mg.mL-1 of NaCl with a 

concentration difference set for all the runs at 2 mg.mL-1 , except for the average 

concentration of 0.5 mg.mL-1 where the concentration difference in concentration was set 

to 1 mg.mL-1. The measured values are illustrated below in Fig. 2.7. 

  

Figure 2.7: Diffusion coefficient of NaCl in water as a function of average concentration, at 25 °C. 
Standard deviations are also plotted for each measurement [102].  

According to this figure, the diffusion coefficient of NaCl in water depends on the average 

concentration. We observe a decrease of D between 0.5 and 4 mg.mL-1 and then, it remains 

relatively constant from 4 to 10 mg.mL-1. 

Another interferometric technique similar to the previous one, using the same optical 

system, was used by Nimdeo et al. [131] with some small differences in cell design and 
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analysis. Indeed, in this new configuration, the diffusion cell is rather octagonal and is 

made of two square optical windows. The volume cavity created is larger. Unlike the 

previous technique, here the cell is first completly filled with the lighter solution. Then 

the denser solution is injected from the bottom of the cell. The concentration front 

interferograms are recorded over time and are analyzed using two approaches for the 

determination of the mass diffusion coefficient. The first technique involves the entire 

analysis of the interferogram. It is the most detailed and is recommended for good quality 

interferences. While the second technique consists of the analysis of a single fringe of the 

image of the phase shift. The latter is preferable when one does not have a control on the 

position of the diffusion front in the diffusion cell.  In their study, Nimdeo et al. [131] 

focused on the concentration range between 5 and 26 wt% NaCl. 

 

Figure 2.8: Plot of mass diffusion coefficient obtained at various concentrations of sodium chloride 
in water. The square symbols  are the measurements carried out with full interferogram analysis 

while circle symbols  are for single fringe analysis [131]. 

For both analysis methods, it is observed that the mass diffusion coefficient in this range 

of concentration increases with the average concentration.  

2.3.3 Gouy interferometry 

The diffusion coefficients of salts in aqueous solution at atmospheric pressure and 

ambient temperature have also been measured by the Gouy interferometry technique. 

The detailed description of the theory of this method is given by Longsworth [132] and 

Kegeles et Gosting [133]. The principle of this technique is illustrated in Fig. 2.9. It is an 

optical system consisting of a monochromatic light source, which delivers a light beam 

collimated by a lens. The entire light beam passes through the diffusion cell in which two 
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solutions of different concentrations are brought into contact in the direction of gravity. 

Because the cell contains refractive index (refractive index profil as illustrated by the red 

line in Fig. 2.9), the light passing through the center of the diffusion cell is deflected while 

the light passing through the extremes/boundaries is undisturbed. The difference in the 

deflecting angle produce interferograms that are viewed and recorded. The diffusion 

coefficients are obtained by analysis of the interference fringes. 

 

Figure 2.9: Principle of Gouy interferometry. A sketch of the light source (LS), the lenses (L), and 
the cell (C) is shown together with the derived interference pattern [134]. 

Gouy interferometry has been used by Hall et al. [135] for the measurement of the 

diffusion coefficient of CaCl2 aqueous solution at 25 °C for concentrations from 0.0152 to 

3.530 mol.L- 1. It has also been used by Vitagliano et Lyons [136] and Chang et Myerson 

[137] for the measurement of the diffusion coefficient of salts including NaCl in aqueous 

solution at 25 °C for concentrations up to 5.0 mol.L-1. Because these two studies agree 

well, table 2.1 only summarizes the values taken from Vitagliano et Lyons [136]. 

Table 2.1: Gouy data for NaCl solutions at 25 °C. [136] (see text for details) 

𝐶̅(mol.L-1) ΔC (mol.L-1) Jm 105 × Δn/ΔC  

(L.mol-1) 

105 × 𝐷 

(cm²/sec) 

0.02715 0.0656 42.44 1029 1.526 

0.02757 0.0475 44.65 1024 1.512 

0.08059 0.1039 48.39 1016 1.490 

0.09644 0.1085 50.64 1019 1.483 

0.1267 0.1345 62.54 1015 1.479 

0.1419 0.1427 66.26 1013 1.481 

0.2082 0.1508 69.43 1005 1.472 

0.2082 0.1508 69.43 1005 1.474 

0.2130 0.1529 70.39 1005 1.473 

0.3000 0.200 91.36 9970 1.473 

0.3416 0.1927 87.70       993.5 1.477 

0.5004 0.2076 92.06       967.7 1.473 

0.6987 0.2073 91.41       964.0 1.477 
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1.0000 0.2000 86.73       946.3 1.485 

2.0028 0.2244 91.41       889.2 1.519 

2.0305 0.3674 149.21       886.6 1.517 

            3.000 0.2400 94.17       856.4 1.565 

            4.000 0.200 74.60       814.1 1.594 

4.5261 0.2604 96.58       809.5 1.592 

            5.000 0.300 108.63       790.3 1.590 

 

In Table 2.1, 𝐶̅ is the average concentration in mol.L-1, ∆𝑐 the concentration difference 

across the boundary, Jm the total number of fringes in the Gouy pattern. (∆𝑛 ∆𝑐⁄ ) =

(𝐽𝑚 ∆𝑐⁄ )(𝜆 𝑎⁄ ) Where a is the length along the optic axis of the diffusion cell and λ= 

5460.7 Å. D is the diffusion coefficient at 𝐶̅ in cm².s-1. DNaCl in water were measured at 

25 °C from dilute solutions to high concentrations. It can be seen that, from the 

concentration of 0.02715 mol.L-1 up to 0.2 mol.L-1, D decreases with increasing 

concentration. Between 0.2 mol.L-1 and 0.5 mol.L-1, the D remains almost constant. This 

trend is consistent with the work of Torres et al. [102]. Thereafter, D increases linearly 

with the concentration until it reaches a maximum around 4.0 mol.L-1 as observed by 

Nimdeo et al. [131]. From this maximum, D begins to decrease again. 

2.3.4 Rayleigh interferometry 

The Rayleigh interferometer is a two-beam interferometer, which makes use of the 

interference patterns between the reference beam and the test beam to analyse the 

refractive index variations within a cell. The Rayleigh interferometry is a technique very 

similar to the Gouy interferometry and the principle is the same. Rayleigh interferometry 

differs from the Gouy one in the way that instead of passing the entire light beam through 

the diffusion cell, two sections of the collimated beam are isolated by a pair of apertures 

as illustrated in Fig. 2.10. One of these beams is the reference beam, which remains 

undisturbed and is used to provide a comparison wavefront while the other beam, the so-

called the test beam passes through the diffusion cell to be tested. At the end, the two 

beams are combined together to make an interferogram. The latter contains information 

about the variations of refractive index within the cell. 
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Figure 2.10: Principle of Rayleigh interferometry. A sketch of the light source (LS), the lenses (L), 
and the cell (C). [134]. 

Rard and Miller [113], [138] have measured the diffusion coefficient of several 

electrolytes at 25 °C including NaCl-H2O, CaCl2-H2O and Na2SO4-H2O from dilute solutions 

to near saturation by free diffusion Rayleigh interferometry. For each salt, they worked 

over a full concentration range and the reported diffusion coefficients are with an 

accuracy of 0.1 - 0.2%. The concentration range is from 0.018 to 5.32 mol.L-1 for NaCl-H2O 

(see Fig. 2.11), from 0.0064 to 5.57 mol.L-1 for CaCl2-H2O (see Fig. 2.12), and from 0.005 

to 1.53 mol.L-1 for Na2SO4-H2O (see Fig. 2.13). 

 

Figure 2.11: The diffusion coefficients of NaCl solutions at 25 °C as a function of the molar 
concentration  �̅� [113]. 
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Fig. 2.11 represents a combination of all the measurements of the diffusion coefficients of 

NaCl-H2O carried out by Rard and Miller [113] at 25 °C. It can be seen that the dependence 

of the diffusion coefficient of NaCl-H2O on its concentration exhibits a non-ideal 

behaviour. This behaviour was also observed for the diffusion of CaCl2 in water as shown 

in Fig. 2.12. 

 

Figure 2.12: The diffusion coefficients of CaCl2 solutions at 25 °C as a function of the molar 
concentration  �̅� [113]. 

For these two electrolytes (NaCl and CaCl2), one would expect to observe a regular 

decrease of the diffusion coefficient with increasing concentration. Indeed, as presented 

in the work of Gonçalves and Kestin [139], [140] , both the density and the the viscosity 

of NaCl [139] and CaCl2 [140] solutions increase with concentration for a given 

temperature. A more concentrated solution being denser, it would therefore diffuse less 

quickly. However, their diffusion coeffcient presents three distinct areas. For very dilute 

concentrations, the diffusion coefficient decreases with increasing concentration until it 

reaches a minimum. This behavior was predicted by the theory of Debye and Hückel [141] 

and confirmed by that of Fuoss and Onsager [142] for the domain of low electrolyte 

concentrations. In concentrated zones, there is a regular increase of the diffusion 

coefficient with increasing concentration up to a certain maximum. According to 

Vitagliano and Lyons [136], this maximum has been observed for all electrolytes of 

sufficient solubility so that the decrease in mobility, which accompanies increasing 

viscosity, may overwhelm the thermodynamic factor (1 + c (d lnγ/dc)) which tends to 

increase the value of D at high electrolyte concentration [136]. Finally, as we get closer to 

saturation, D begins to decrease again with increasing concentration. This could result 
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from competition between the effect of activity coefficients, friction coefficients or 

hydrodynamic interactions. 

 

While NaCl-H2O and CaCl2-H2O and many other salts exhibit both a minimum and a 

maximum as a function of concentration, D of Na2SO4-H2O decreases regularly with 

increasing concentration. 

 

Figure 2.13: The diffusion coefficients of Na2SO4 solutions at 25 °C as a function of the square root 
of the molar concentration  �̅� [138]. 

2.4 Numerical modelling procedure 

The purpose of a model is to predict the evolution of physicochemical parameters of a 

system within the limits of validity of the model used, from measurable data. The results 

obtained from a model can be verified by experiments. Brines are very complex and 

contain highly saline solutions whose evaporation leads to the formation of mineral salts 

in the form of crystals (solids) from the dissolved ionic species they contain. The 

description of the behaviour of electrolytes and of fluid-rock interactions by simulation 

models revolve around the fundamentals of thermodynamics of solutions. 
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2.4.1 Thermodynamic properties of electrolytic solutions 

2.4.1.1 Chemical potential 

The chemical potential μ of a species in a phase is the energy that can be used (absorbed or 

released) during a transformation, for one mole of species and at a given state of the 

system, neglecting the thermal and mechanical energies. The chemical potential μ 

(J.mol- 1) of a compound i in an aqueous solution is related to the activity of this element 

ai by: 

 𝜇𝑎𝑞,𝑖(𝑇,𝑃,𝑚𝑖) = 𝜇𝑎𝑞,𝑖(𝑇,𝑃)
0 + 𝑅𝑇 ln 𝑎𝑖(𝑇,𝑃,𝑚𝑖) (2.14) 

 

where 𝜇𝑎𝑞,𝑖(𝑇,𝑃)
0  (in J.mol-1) is the chemical potential of the species i at the standard state 

at temperature T and pressure P. R is the ideal gas constant (8.314 J.K-1.mol-1). The activity 

ai of an aqueous species depends on the pressure, the temperature, and the solution 

composition and is related to the molality (see appendix A for a reminder of definitions) 

of the element i by: 

 𝑎𝑖,𝑎𝑞 = 𝛾𝑖,𝑎𝑞(𝑃,𝑇,𝑚𝑗≠𝑖,𝑎𝑞)

𝑚𝑖,𝑎𝑞

𝑚0
 (2.15) 

 

where 𝛾𝑖,𝑎𝑞 is the activity coefficient (dimensionless), 𝑚𝑖,𝑎𝑞 is the molality of the aqueous 

species i, 𝑚𝑗≠𝑖,𝑎𝑞 is the molality of each of the other aqueous species j and m0 is a reference 

molality chosen to be equal to 1 mol.kg-1 [143]. The estimation of the activity of aqueous 

species requires the calculation of their activity coefficient taking into account the effect 

of salinity, temperature, and pressure. For ideal solutions, the activity coefficient 𝛾𝑖,𝑎𝑞 is 

equal to 1. However, due to interactions between particles, even at low concentrations, 

electrolytic solutions do not behave like ideal solutions. The choice of the model for 

calculating the activity coefficient is important in order to properly describe the chemical 

behavior and properties of electrolytic solutions. Indeed, the chemical potential and the 

activity coefficient are directly involved in the calculation of many properties [144]. 

2.4.2.2 Thermodynamic models 

The model used to calculate the activity coefficents for solutes mainly depends on the 

ionic strength I which describes the number of electrical charges in the solution and 
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represents the overall activity of ions in an aqueous solution. The ionic strength I is related 

to the molality of aqueous species by: 

 
𝐼 =

1

2
 ∑ 𝑚𝑖𝑧𝑖

2 
(2.16) 

 

where zi is the charge number of ion i. I is in mol.kg-1. 

 Debye-Hückel theory 

Hence, for I < 0.1 mol.kg-1, the activity coefficient can be calculated using the extended 

Debye-Hückel theorie given by: 

 
log 𝛾𝑖 = −

𝐴𝑧𝑖
2√𝐼

1 + 𝐵 å𝑖 √𝐼
 

(2.17) 

 

where A and B are temperature dependent constants; at 25 °C A = 0.5085 and 

B = 0.3285×1010/m [145], [146]. The empirical ion-size parameter å𝑖 is a measure of the 

effective diameter of the hydrated ion. In 1925, Hückel improved the extended Debye-

Hückel law given in Eq. 2.17, by adding an adjustable parameter H. For  

0.1 < I < 0.2 mol.kg- 1, the activity coefficient can be calculated using this improved 

equation of the extended Debye-Hückel equation given by: 

 
log 𝛾𝑖 = −

𝐴𝑧𝑖
2√𝐼

1 + 𝐵 å𝑖  √𝐼
+ 𝐻𝐼 

(2.18) 

 

where A and B represent the Debye-Hückel constants characteristic of the solvent and the 

temperature, H is a constant which corrects the deviation from Debye Hückel's law.  

 Davies equation 

The Davies equation is another relation often used to calculate activity coefficients and is 

applicable up to an ionic strength of about 0.5 mol.kg-1 and is given by:  

 
log 𝛾𝑖 = −𝐴𝑧𝑖

2 (
√𝐼

1 + √𝐼
− 0.3 𝐼) 

(2.19) 
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The activity coefficients of low salinity solutions can be easily calculated by ion 

association approaches such as Debye-Hückel, extended Debye-Hückel or Davies. These 

approaches are implemented in most of the geochemical codes such as PHREEQC [147]. 

However, for higher salinities ( I > 0.7 mol.kg-1 ) the calculated results diverge from 

observations, even in the case of NaCl solutions. In these cases, the use of a more specific 

interaction approach is necessary. Numerous models have been developped, and one of 

the most powerful able to describe aqueous systems up to very high salinities (above 

several moles per kg of water) is the Pitzer’s model [148].  

 Pitzer’s model 

The model of Pitzer for calculating the activity coefficient of solutes [148], [149] is one of 

the most widely used models for describing the chemical properties of electrolyte 

solutions at high concentrations. It represents a significant advance in physical chemistry 

that has facilitated the construction of accurate thermodynamic models [150]. It has been 

shown that the Pitzer approach could be expanded to accurately calculate ion activity 

products, and thus solubilities, in complex brines and to predict the behavior of natural 

fluids from subzero temperatures to very high temperatures, up to 573.15 K [151]. The 

governing equations and the underlying physics have been discussed in detail elsewhere 

[148], [149], [152]–[155]. They have been used, modified and extended in various ways 

depending on the chemical sytem or the range of salinity studied. The Pitzer’s model is a 

semi-empirical model whose equations are based on the Debye-Huckel theory that 

describes the long-range interactions. Pitzer  improved on the latter theory by developing 

a virial term to take specific  short-range interactions into account, allowing the model to 

be used with much more concentrated solutions. Here we give only the general equations 

for calculating the logarithm of the activity coefficients for a cation M (γM), an anion X (𝛾𝑋), 

and a neutral species N (𝛾N) in a complex aqueous mixture [156]: 

 

 

(2.20) 
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(2.21) 

 

 

 

(2.22) 

 

where mi is the molality of the species i (i = a, c, n). The subscripts a, c and n refer to anions, 

cations and neutral species, respectively. The summations are over the total number of 

cations or anions present in the complex aqueous mixture. The double summation 

denotes the sum over all distinguishable pairs of dissimilar anions, cations or neutral 

species. B and Φ are mesurable combinations of the second virial coefficients. C and ψ are 

measurable combinations of the third virial coefficients. B and C are parameterized from 

single electrolyte data, while Φ and ψ are parameterized from mixed (ternary) system 

data. The function F in Eq. 2.20 and Eq. 2.21 is the sum of the Debye-Hückel term given by 

[157]: 

 

𝐹 =
𝑓′(𝐼)

2
+ ∑ ∑ 𝑚𝑐𝑚𝑎𝐵𝑐

′

𝑁𝑎

𝑎=1

𝑁𝑐

𝐶=1

 

(2.23) 

 

with 𝑓′(𝐼) = (
𝜕𝑓

𝑑𝐼
)

𝜌,𝑇
= −2𝐴𝜑 [

√𝐼

1 + 𝑏√𝐼
+

2

𝑏
ln(1 + 𝑏√𝐼)] 

(2.24) 

 

where 𝐴𝜑 is the Debye-Hückel limiting law slope for osmotic coefficients. It is a function 

of the temperature, density and dielectric constant of water. b is a universal empirical 

constant equal to 1.2 kg 0.5.mol- 0.5. 
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For any anion-cation interaction, Pitzer assumes that the term B in Eq. 2.20 has an ionic 

strength dependent form as: 

 𝐵𝑀𝑎 = 𝛽𝑀𝑎
(0)

+ 𝛽𝑀𝑎
(1)

 𝑔(𝛼1√𝐼) + 𝛽𝑀𝑎
(2)

𝑔(𝛼2√𝐼) (2.25) 

 

with 𝑔(𝑥) = 2[1 − (1 + 𝑥)𝑒−𝑥] (2.26) 

 

 
𝐶𝑐𝑎 =

𝐶𝑐𝑎
𝛷

(2√|𝑧𝑐𝑧𝑎|)
  

(2.27) 

 

Φ terms account for interactions between two ions i and j of like charges and is given by: 

 𝛷𝑖𝑗 =  𝜃𝑖𝑗 +  𝐸𝜃𝑖𝑗(𝐼) (2.28) 

 

where 𝜃𝑖𝑗  is the only adjustable parameter. The term  𝐸𝜃𝑖𝑗(𝐼)  accounts for electrostatic 

unsymmetric mixing effects that depend only on the charges of ions i and j and the total 

ionic strength. 

In Eq. 2.20 and Eq. 2.21, CMa and CcX are the third virial coefficients and are assumed to be 

ionic strength independent. However, some terms containing CMa parameters have a 

concentration dependence given by Z as: 

 𝑍 = ∑ 𝑚𝑖|𝑧𝑖|
𝑖

 (2.29) 

 

 Activity of water 

Water is the solvent of the aqueous solution and its activity aw can be defined by applying 

Eq. 2.14 as: 

 𝜇𝑤(𝑇,𝑃,𝑚𝑖) = 𝜇𝑤(𝑇,𝑃)
0 + 𝑅𝑇 ln 𝑎𝑤(𝑇,𝑃,𝑚𝑖) (2.30) 

 

According to Hamer [158], the activity of water can be related to the osmotic coefficient 

by: 
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𝛷 = −

1000 ln 𝑎𝑤

𝑀𝑤 ∑ 𝑣𝑖𝑚𝑖𝑖
 

(2.31) 

 

where Mw is the molar mass of water (in g.mol-1), 𝑣𝑖is the number of ions formed by the 

complete dissociation of a molecule of solute i and et corresponds to 𝑣𝑖 = 𝑣𝑐 + 𝑣𝑎  for a 

compound whose formula is 𝑀𝑣𝑐
𝑋𝑣𝑎

. M and X stand for cation and anion respectively.  

 Thermodynamic equilibrium and saturation index 

There are several types of reactions and they concern the equilibrium between aqueous 

species and minerals as well as the equilibrium between the aqueous species themselves. 

Fundamental to any description of equilibria in water is the law of mass action. It states 

that for a reaction of the generalized type: 

 𝑎𝐴 + 𝑏𝐵 ↔ 𝑐𝐶 + 𝑑𝐷 (2.32) 

 

the distribution at equilibrium of the species at the left and right side of the reaction, is 

given by [145]: 

 
𝐾 (𝑇, 𝑃) =

{𝐶}𝑐{𝐷}𝑑

{𝐴}𝑎{𝐵}𝑏
 

(2.33) 

 

where K is the equilibrium constant for the temperature T and the pressure P. a, b, c and 

d are the stoichiometric coefficients of the reaction. { } denote the activities of gaseous, 

solid, or aqueous species in solution, also known as the “effective concentration”. The 

activity of pure liquid or of solid phases is equal to 1. For a mixture of ideal gases, the 

activity correspond to the partial pressure Pi of a species i while in the case of real gases, 

the fugacity has to be considered instead of Pi [159]. The activity of ions or aqueous species 

is given in Eq. 2.15. 

The equilibrium constant can be calculated through the Gibbs free energy following the 

equation: 

 
∆𝐺𝑟 = ∆𝐺𝑟

0 + 𝑅𝑇 ln
(𝑎𝐶)𝑐(𝑎𝐷)𝑑

(𝑎𝐴)𝑎(𝑎𝐵)𝑏
 

(2.34) 
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where ΔGr is the change in Gibbs free energy (in kJ.mol-1) of the reaction, ∆𝐺𝑟
0 is the 

standard Gibbs free energy of the reaction. ΔGr indicates the direction in which the 

reaction will proceed. In fact, if ΔGr > 0, the reaction proceeds to the left while the reaction 

proceeds to the right if ΔGr < 0. At equilibrium, ΔGr = 0. 

 ∆𝐺𝑟
0(𝑇, 𝑃) = 𝑐𝜇𝐶

0(𝑇, 𝑃) + 𝑑𝜇𝐷
0 (𝑇, 𝑃) − 𝑎𝜇𝐴

0(𝑇, 𝑃) − 𝑏𝜇𝐵
0 (𝑇, 𝑃) (2.35) 

 

And the equilibrium constant K (T,P) of the reaction is defined by: 

  ∆𝐺𝑟
0 = −𝑅𝑇 ln 𝐾 (2.36) 

 

Back substitution of Eq. 2.36 in Eq. 2.34 results in: 

 
∆𝐺𝑟 = −𝑅𝑇 ln 𝐾 + 𝑅𝑇 ln

(𝑎𝐶)𝑐(𝑎𝐷)𝑑

(𝑎𝐴)𝑎(𝑎𝐵)𝑏
 

(2.37) 

We can define the ionic activity product (IAP) or Q as:  

 
𝐼𝐴𝑃 = 𝑄 =

(𝑎𝐶)𝑐(𝑎𝐷)𝑑

(𝑎𝐴)𝑎(𝑎𝐵)𝑏
 

(2.38) 

 

 ∆𝐺𝑟 = −𝑅𝑇 ln 𝐾 + 𝑅𝑇 ln 𝑄 

 

=>  ∆𝐺𝑟 = 𝑅𝑇 ln
𝑄

𝐾
 

(2.39) 

The equilibrium of the reaction results in: 

 
 
𝑄

𝐾
= 1 (2.40) 

For homogeneous reactions (i.e. aqueous complexation reactions), thermodynamic 

equilibrium is assumed to be achieved instantaneously. But it is not always ther case for 

mineral dissolution/precipitation reactions. Therefore, the ratio Q/K is used to define the 

saturation index (SI) or the degree of saturation of the solution with respect to a mineral. 

Let’s consider that, in reaction (2.32), A is a mineral and B, C and D are aqueous species. 

 
𝑆𝐼 = 𝑙𝑜𝑔 (

𝑄

𝐾
) (2.41) 
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The degree of saturation, sub-saturation or equilibrium state of a solution with respect to 

a mineral is only defined by comparing Q to K of the reference solution. It represents the 

energy difference between the current state and the thermodynamic equilibrium. 

Depending on its sign, it indicates the amount of energy to release or to capture for 

reaching thermodynamic equilibrium. Thus, SI makes it possible to define wether the 

thermodynamic conditions are favourable or not for mineral precipitation. Three 

scenarios are possible:  

 Q = K: an equilibrium state is reached and the solution is saturated with respect to 

the mineral. SI=0. 

 Q < K: the solution is under saturated with respect to the mineral concerned: SI < 

0. The reaction tries to achieve equilibrium by dissolving all or part of A and 

consuming B to form species C and D. 

 Q > K: the solution is super-saturated with respect to A. SI > 0.  the assemblage aA 

+ bB is more stable than the solution cC + dD. The system tends to return to 

equilibrium by precipitating mineral A and producing species B. 

In nature, groundwater is generally not found at the reference conditions of 25 °C and 

1 atm pressure. While moderate variations in pressure have little effect on the values of 

the equilibrium constants of chemical reactions (except when gases are involved), the 

temperature variations have  important effects [145]. For temperatures below about 

100 °C, variations of equilibrium constants with temperature are usually calculated with 

the Van’t Hoff equation: 

 
log 𝐾𝑇 = log 𝐾298 +

∆𝐻𝑟
0

2.303 𝑅
(

1

298
−

1

𝑇
) (2.42) 

 

where ∆𝐻𝑟
0 is the standard enthalpy of the reaction. 

 

We have presented the basic equations for calculating the thermodynamic properties of 

electrolytic solutions. For numerical modelling, we have chosen to use the geochemistry 

software PHREEQC, which is an open source code and is widely used by the geoscience 

community. It has the advantage of having accessible and modifiable sources. 
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2.4.2 PHREEQC description and working principle 

PHREEQC (pH-Redox-Equilibrium in C language) is a general geochemical solver 

applicable to many hydrogeochemical environments. It is now in its third version. Like 

the previous versions, PHREEQC V3 is a computer program written in the C and C++ 

programming languages. It is designed for simulating a wide variety of aqueous 

geochemical reactions and is able to simulate transport processes in simple 1D 

hydrodynamic systems. A complete description of PHREEQC V3 can be found in reference 

[147]. It is based on the equilibrium chemistry of aqueous solutions. PHREEQC 

implements several types of aqueous models including ion association approaches like 

the Debye-Hückel model and the Pitzer specific-ion-interaction model. The Peng-

Robinson equation of state has been implemented for calculating the fugacity and, 

therefore, the solubility of gases at high pressure. PHREEQC has many capabilities, such 

as:  

 Perform aqueous speciation calculations based on the conservation equations of 

matter, the laws of mass action and the principle of electroneutrality. Perform 

batch-reaction calculations including mixing of solutions at controlled 

temperature and pressure. 

 Calculate the volume and the density of solutions, and saturation indices. 

 Calculate 1D (one-dimensional) transport with reversible and irreversible 

reactions, which include equilibrium between aqueous, mineral or gas phases.  

For its calculations, PHREEQC uses concentrations given in molality (mol.kg-1). 

Calculations with PHREEQC require an input file (see Fig. B.1 of Appendix B for an 

example) in where two main informations must be entered, namely: the choice of the 

database used and the instructions that allow the desired reactions to be carried out. The 

PHREEQC program can use several databases. The latter each contain information on the 

thermodynamic properties of chemical species (such as equilibrium constants of chemical 

reactions, reaction enthalpies, molar volumes, etc.) and their dependence on temperature 

and pressure. Thus, in relation with its domain of validity (temperature, pressure, salinity, 

chemical system), the choice of the database depends on the complexity and on the 

objectives of the simulation. The instructions are represented by ‘’key words’’ which make 

it possible to diversify the geochemical study. Within these keywords can be entered 

information such as the concentrations of the various elements of the chemical system 
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considered, the temperature, the pressure, the pH, the equilibria between the mineral 

phases when they are expected, etc. The output file contains several informations: the 

solution composition, the description of the solution (pH, ionic strength, density of a 

solution, electrical balance, pressure temperature, osmotic coefficient, etc.), the 

distribution of species (molality, activity, activity coefficients, etc.) and the saturation 

indices for the phase. 

2.4.3 Diffusive transport modelling in PHREEQC 

PHREEQC provides a numerically efficient method for simulating the movement of 

solutions through a column or 1D flow path with or without the effects of dispersion. The 

initial composition of the aqueous, gas, and solid phases within the column are specified 

and the changes in composition due to advection and dispersion and (or) diffusion [145] 

coupled with reversible and irreversible chemical reactions within the column can be 

modeled. For modeling a dual porosity medium, stagnant zones can be incorporated in 

the column. Multicomponent diffusion can be included in advective transport simulations 

or as a stand-alone diffusion process. In the multicomponent diffusion process, the 

diffusion coefficients can be coupled to porosity changes that may result from mineral 

dissolution and precipitation [147]. 

For the transport processes, the numerical scheme in PHREEQC is for cell-centered 

concentrations, which means that the composition at a half-cell distance represent the 

composition of the entire cell. As a result, if 1 is a first cell and 2 the cell that directly 

follows 1, h12 is the distance between the midpoints of cells 1 and 2. 

 

Figure 2.14: Column divided into cells showing a composition is taken at a half-cell distance. 

When there is no advection, the transport algorithm can simulate a column or a 1D flow 

path diffusion. The diffusive reactive transport modelling here requires some important 



 

67 
 

input. After defining the mesh size and the time step associated with diffusion period, it is 

required to define the boundary conditions. They are defined for the first and last cell and 

three types of boundary conditions are allowed at either end of the column (indicated by 

xend): [147] 

 Constant: concentration is constant at one or both boundaries: C (xend,t)=C0 , also 

known as first type or Dirichlet boundary condition. C0 is the concentration outside 

the column (mol.kg-1).  

 Closed: Also known as second type or Neumann boundary condition, it means that 

there is no flux at one or both boundaries. The flow velocity ν (m.s-1) is equal to 

zero (ν =0) and  
𝜕𝐶(𝑥𝑒𝑛𝑑 ,𝑡)

𝜕𝑥
 = 0. 

 Flux: flux boundary condition at one or both boundaries defined by                           

𝐶(𝑥𝑒𝑛𝑑, 𝑡) =  𝐶0 +
𝐷𝐿

𝜈

𝜕𝐶(𝑥𝑒𝑛𝑑,𝑡)

𝜕𝑥
  , where DL is the dispersion coefficient (m².s-1). It is 

also known as third type or Cauchy boundary condition. 

In this study, the simulations are performed with closed boundary conditions. Regarding 

the diffusion process, the diffusive flux is calculated according to whether homogeneous 

multicomponent diffusion or heterogeneous multicomponent diffusion is considered: 

 Homogeneous multicomponent diffusion 

Homogeneous multicomponent diffusion is characterised by the fact that all the species 

involved in the mixture diffuse with a same diffusion coefficient. In this case, the diffusive 

flux Ji (mol.m-2.s-1) for a species i is given by: 

 𝐽𝑖 = −𝐷𝑃 × �⃗⃗�𝐶𝑖 (2.43) 

 

where, Dp is the pore-water diffusion coefficient (m².s-1) and grad (Ci) is the concentration 

gradient of the species i (mol.m-4). Dp is the same for all species and is not corrected for 

changes of temperature. Dp is related to the diffusion coefficient of a salt in water by 𝐷𝑝 =

𝐷
𝜏⁄ . The diffusion coefficient of a salt in water is given by the harmonic mean of the 

diffusion coefficient of the components of the salt, weighted by their molal concentration 

as follow:  
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𝐷 =

∑ 𝑚𝑖

∑
𝑚𝑖

𝐷𝑖

 (2.44) 

 

where Di are the diffusion coefficients of dissolved species i. It results, for a binary salt, 

the Nernst equation: 

 
𝐷 =

(𝑍𝑖,+ − 𝑍𝑖,−)𝐷𝑖,+𝐷𝑖,−

𝑍𝑖,+𝐷𝑖,+−𝑍−𝐷𝑖,−
 (2.45) 

 

For example, with 𝐷𝐶𝑎2+ = 0.79 × 10−9 m².s-1 and 𝐷𝐶𝑙− = 2.03 × 10−9 m².s-1, the diffusion 

coefficient for CaCl2 is 𝐷𝐶𝑎𝐶𝑙2
= 1.34 × 10−9 m².s-1 at 25°C. Thus, to maintain overall 

charge balance, diffusion of Ca2+ is accelerated, while Cl- is impeded somewhat. For the 

other ionic species of interest, their diffusion coefficients at 25 °C are 𝐷𝑁𝑎+ = 1.33 × 10−9 

m².s-1 and 𝐷𝑆𝑂42− = 1.07 × 10−9 m².s-1 [147]. 

 Heterogeneous multicomponent diffusion 

Unlike the previous case, heterogeneous multicomponent diffusion is characterised by 

the fact that each solute can be given its own  diffusion coefficient, allowing it to diffuse at 

its own rate, but with the constraint that overall charge balance is maintained [89], [106], 

[160]. A rigorous description of the diffusive motion of charged species requires the 

inclusion of electrochemical migration as a transport mechanism. In such electrolytic 

systems, charge-induced ion-ion interactions lead to electrostatic coupling of ionic flows, 

resulting in coordinated movement of positively and negatively charged species to 

maintain local charge balance [161]. The relevance of these Coulombic effects has been 

studied under conservative and reactive transport conditions dominated by macroscopic 

diffusion and advection, leading to the development of multicomponent diffusion theories 

[106]. The details of the multicomponent diffusion theories can be found elsewhere [89], 

[106], [160], [162], [163] so that here we just recall the essential equations. A general 

equation of ionic diffusion is generally based on the thermodynamic electrochemical 

potential gradients rather than the concentration gradients. The electrochemical 

potential of species i is presented in Eq. 2.14, but a general description includes the charge 

number zi, the Faraday constant F (96485 J/V/eq) and the electrical potential 𝜑 (V) as: 
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 𝜇𝑖 = 𝜇𝑖
0 + 𝑅𝑇 ln 𝑎𝑖 + 𝑧𝑖𝐹𝜑 (2.46) 

 

The diffusive flow Ji of a species i in solution as a result of chemical and electrical potential 

gradients is: 

 
𝐽𝑖 = −

𝑢𝑖𝑅𝑇

|𝑧𝑖|𝐹
𝐶𝑖∇(ln 𝑎𝑖) −

𝑢𝑖

|𝑧𝑖|
𝐶𝑖𝑧𝑖∇𝜑 (2.47) 

 

Where ui (m².s-1.V-1) is the mobility which is related to the diffusion coefficient Di (m².s-1) 

of species i by 𝐷𝑖 =  
𝑢𝑖𝑅𝑇

|𝑧𝑖|𝐹
 . The gradient of the electrical potential originates from different 

transport velocities of ions, which creates charge and an associated potential. Eq. 2.47 

represents the Nernst-Plank equation for the flow of a charged species and after 

considering the activity gradient, this equation can also be expressed as:  

 
𝐽𝑖 = −𝐷𝑖 (1 +

𝜕 ln 𝛾𝑖

𝜕 ln 𝐶𝑖
) ∇𝐶𝑖 −

𝐷𝑖 𝑧𝑖 𝐶𝑖𝐹

𝑅𝑇
∇𝜑 (2.48) 

 

If there is no electrical current, then ∑ 𝑧𝑖𝐽𝑖 = 0⃗⃗𝑁
𝑖=1 . Thus ∇𝜑 can be eliminated as an 

unknown by expressing this gradient term as: 

 

∇𝜑 = −
∑ [ 𝑧𝑖 𝐷𝑖 (1 +

𝜕 ln 𝛾𝑖

𝜕 ln 𝐶𝑖
) ∇𝐶𝑖] 𝑁

𝑖=1

𝐹
𝑅𝑇

∑ (𝑧𝑖
2𝐷𝑖𝐶𝑖 )

𝑁
𝑖=1

 (2.49) 

 

By substituting Eq. 2.49 to Eq. 2.48, the diffusive flow becomes: 

𝐽𝑖 = −𝐷𝑖 (1 +
𝜕 ln 𝛾𝑖

𝜕 ln 𝐶𝑖
) ∇𝐶𝑖 +

𝐷𝑖  𝑧𝑖 𝐶𝑖

∑ (𝑧𝑗
2𝐷𝑗𝐶𝑗  )𝑁

𝑗=1

 ∑ [ 𝑧𝑗 𝐷𝑗 (1 +
𝜕 ln 𝛾𝑗

𝜕 ln 𝐶𝑗
) ∇𝐶𝑗] 

𝑁

𝑗=1

 (2.50) 

 

where the subscript j is introduced for species to show that they stem from the potential 

term. Eq. 2.50 clearly demonstrates that the movement of a particular charged species is 

a function of concentration gradients, diffusion coefficients, activity coefficients, and 

charge numbers not only of that ion but also of all other charged species in solution [106].  
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In PHREEQC program, the diffusive flux Ji for a species i for multicomponent diffusion is 

calculated by: [147] 

 
𝐽𝑖 = −𝐷𝑖 (

𝜕 ln 𝛾𝑖

𝜕 ln 𝐶𝑖
+ 1) grad(𝐶𝑖) + 𝐶𝐵𝑡𝑖  (2.51) 

 

where CBti is the charge balance term [89]. This term is given in detail in the second term 

on the right-hand side of Eq. 2.50. 𝐷𝑖  is corrected to temperature T(K) of the solutions by: 

 
𝐷𝑖 = (𝐷𝑖)298 ×

𝑇

298
×

𝜂298

𝜂𝑇
 (2.52) 

 

Where η is the viscosity of water.  

2.5 Conclusion 

In this chapter, we have presented the various experimental methods used for the 

measurement of mass diffusion coefficients of salts in water. Interferometric methods are 

considered the most precise for measuring diffusion coefficients in liquids. All the 

previous techniques mentioned above have led to reliable results with uncertainties and 

accuracies that vary depending on the method used. Each of these techniques has both 

advantages and disadvantages. However, from a general point of view, precautions should 

be taken to avoid or minimize the impact of test-beam deflection that could disturb the 

measurement. One way to overcome test beam deflection is to illuminate the whole 

system parallel to the concentration gradient as shown in Fig. 2.15. 

 

Figure 2.15: Diffusion cell illuminated by a light beam parallel to the concentration gradient. 
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In this configuration, density fluctuations in the horizontal plane at the interface between 

the solutions of contrasted concentrations cause light scattering and one can record the 

intensity fluctuations generated by the interference between the light transmitted 

through the transparent sample and the scattered light by the tiny fluctuations. This is the 

physical principle underlying the shadowgraph technique. The fluctuations that are 

recorded in this way are mostly due to non-equilibrium concentration fluctuations as they 

are much more (orders of magnitude) intense than equilibrium concentration or 

temperature fluctuations, present at the same time during a diffusion experiment. In the 

near field, i.e. not so far from the experimental cell, the superimposition (interference) 

between the light transmitted (nor deflected neither absorbed) by the system and the 

light scattered by the non-equilibrium density fluctuations gives rise to a dynamic 

intensity pattern on a detector plane. In this condition, one can visualise the density 

fluctuations within the sample and the optical method is called shadowgraphy. The 

statistical analysis of the latter can provide both the static power spectrum and the time 

correlation function of the fluctuations. The shadowgraph technique has also been 

successfully used to visualize from above convection structures parallel to an external 

vertical temperature gradient [164], but also to study the thermodiffusion phenomenon 

in binary and ternary mixtures [165]–[170]. Within the framework of this thesis, we 

propose to measure non-equilibrium fluctuations by shadowgraphy in order to study free 

diffusion and diffusive reactive transport in saline aqueous solutions. To the best of our 

knowledge, this has never been done before for measuring mass diffusion coefficients, 

while free diffusion was previously studied on molecular and colloïdal solutions by 

shadowgraphy to highlight the effect of gravity on concentration non-equilibrium 

fluctuations (c-NEFs) [171]–[173].  

For the interpretation of the experimental results, we propose to use the PHREEQC 

modelling tool, which is based on the fundamentals of thermodynamics of solutions and 

provides a numerically efficient method for simulating the movement of solutions 

through a column or 1D flow path with or without advective flow. When there is no 

advective flow, only diffusion occurs. Within PHREEQC program, the diffusive flux can be 

calculated in two different approaches: i) the homogeneous multicomponent diffusion 

that is characterised by the fact that all the species involved in the mixture diffuse with 

the same diffusion coefficient. The latter is given by the harmonic mean of the diffusion 

coefficients of the salt components, weighted by their molar concentration. However, the 



 

72 
 

diffusion coefficient in this case is not corrected for temperature changes. Thus, when 

having a temperature gradient, the diffusive behaviour of the system would be very little 

impacted. Furthermore, the calculation of the diffusive flux of a given specie is only 

function of the concentration gradient of the species and does not take into account the 

electrostatic coupling of ionic fluxes. In the case of a single salt in solution or a complex 

multicomponent system at infinite dilution, the interactions between the charged species 

may be negligible and this type of modeling can give satisfactory results. However, in the 

case of a highly concentrated complex multicomponent system, the calculated flux as it 

stands has limitations. ii) The second approach of calculating the diffusion flux is 

heterogeneous multicomponent diffusion where the species have individual, 

temperature-dependent diffusion coefficients, but the ionic fluxes are modified to 

maintain charge balance during transport. It rigously describes the diffusive motion of 

charged species including the electrochemical migration as a transport mechanism. 

Usually, multicomponent heterogeneous diffusion is considered mainly in porous media 

than in free media. However, in a complex multicomponent system where we have 

different layers of electrolytes, it cannot be excluded that heteregeneous multicomponent 

diffusion can have a significant impact. In this study, we propose to compare these two 

descriptions of multicomponent diffusion. 

The next chapter describes the Shadowgraphy technique and the diffusion cell we have 

developed to perform the measurement of the diffusion coefficients of salts in water and 

to study the reactive diffusive transport, as well as the interpretation of the experimental 

results with the PHREEQC program. 
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Chapter 3 : Contribution to the study of the multicomponent 
salts diffusion in water 

3.1 Introduction 

This chapter describes the Shadowgraphy technique and the diffusion cell we developed 

to carry out isothermal and non-isothermal diffusion coefficients of salts measurements. 

Our technique is applied to study: first, the behaviour of each saline solution in water by 

measuring their Fickian diffusion coefficients. Secondly, the superimposition of two non-

reactive salts and finally the superimposition of two reactive salts with and without 

temperature gradient. The numerical interpretation of the experimental results is 

perfomed with PHREEQC program. Complex fluids subjected to non-equilibrium 

conditions exhibit non-equilibrium fluctuations (NEFs) of the thermodynamic variables 

[174]–[176]. These conditions can be induced, for example, by applying a concentration 

or a temperature gradient to a multicomponent fluid mixture [177]. Superimposing two 

layers at different concentrations of a solution generates an initial gradient of 

concentration which evolves towards an equilibrium state by mass diffusion, in the 

absence of convective motions [171]. Free-diffusion transport processes can be 

investigated by optical techniques and particularly by light scattering thanks to its ability 

to visualize NEFs without altering the intrinsic properties of the fluid. The transport 

properties of the fluid can be determined both at atmospheric [165] and at high pressure 

[169]. In this work, dynamic shadowgraphy has been adopted [171], [178], [179] to study 

the refractive index fluctuations as generated by the NEFs of the concentration in the case 

of free-diffusion experiments. It is important to highlight the novelty of using this 

methodology to determine the transport properties of fluid mixtures in free-diffusion 

experiments. By shadowgraphy, a large range of fluctuation sizes 𝜆 or, conversely, of wave 

numbers 𝑞 = 2𝜋/𝜆, can be investigated at the same time, providing simultaneous reliable 

measurements of different transport properties, like mass diffusion coefficient. 

3.2 Experimental procedure 

In this section, we have used two experimental setups that operate on exactly the same 

principle but differ in the use of the camera sensor. In the shadowgraph setup#1 we use 

a scientific-CMOS camera (Hamamatsu Digital Camera C13440, ORCA - Flash 4.0) as a 
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camera sensor. In the shadowgraph setup #2, the camera sensor is the CCD progressive 

PIKE camera (Allied Vision Technologies, PIKE-F421B). All the experiments with the 

shadowgraph setup#2 were carried out by Rizwan Minhas during his Master's internship 

[180]. A more in-depth analysis of its results is presented in this manuscript. 

3.2.1 Solutions preparation and characterisation 

Mass diffusion coefficients of the molecular binary mixture of triethylene glycol (TEG) and 

water, at different concentrations and temperature, are already known in the literature 

[109], [181]. We used this mixture in order to calibrate the experimental setup and the 

data analysis. Moreover, we collaborated in a study on the TEG/water/ethanol mixture 

by different experimental techniques [109], our contribution being the determination of 

the transport properties of the TEG/water at binary boundary limit of the concentration 

Gibbs ternary triangle by quantitative dynamic shadowgraphy [182]. The published and 

the submitted articles, respectively named as Paper #1 and Paper #2 can be found in 

appendix E. 

TEG (Sigma-Aldrich, T59455-1L, ReagentPlus®, purity 99%) used without further 

purification, and degassed de-ionized water (resistivity 18.5 M·cm), retrieved from a 

Millipore Milli-Q filtration station, were used to prepare around 30 g of every calibrating 

sample to the required TEG concentration 𝐶 in mass fraction, using an analytical balance 

(Sartorius TE313S, resolution 10-2 g/200 g). 

Mass diffusion of the electrolytic binary mixtures of sodium chloride (NaCl) and water, 

calcium chloride (CaCl2) and sodium sulfate and water (Na2SO4) are well documented in 

the literature [113], [138]. NaCl (Sigma-Aldrich, 746398-500G, anhydrous, ACS reagent, 

purity 99%), CaCl2.2H2O (PROLABO, 22 313.294, purity 99%), Na2SO4 (Sigma-Aldrich, 

239313-500G, anhydrous, ACS reagent, purity 99%) were used without further 

purification. Degassed de-ionized water was used to prepare a volume of 100 ml of every 

saline solution to the required concentration C in mol.L-1. Using the same balance, the 

mass of salts required to prepare the solutions in a 100 ml volumetric flask was weighed. 

3.2.2 Free-diffusion cell 

For the free-diffusion experiments, we used a diffusion cell specifically designed to put 

into contact two layers of two different liquid mixtures, or two solutions of the same 
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components at different concentrations. Such a configuration allows creating an initial 

step concentration gradient at uniform temperature while providing vertical optical 

access to a central area of the cell, similar to the flowing-junction cell already reported in 

literature [183]. The diffusion cell consists of a stainless steel annulus (see Fig. 3.1) with 

internal and external diameters of 30 mm and 80 mm, respectively, and a vertical 

thickness of h = 10 mm. The metallic annulus hosts four holes: two for fluids outlets at 

180° in the horizontal plane and at mid-height of the cell in the vertical direction, and two 

for fluid inlet at 50° in the horizontal plane and at the same height in the vertical direction. 

In order to avoid the thermal contact between the liquid sample and the interior of the 

conductive metallic annulus, a polytetrafluoroethylene (Teflon®) ring with an internal 

and external diameter of 20 mm and 30 mm, respectively, is placed inside the stainless 

steel annulus (see Fig. 3.1-a) . This ring has also four thin holes in correspondence to those 

present in the metallic annulus to allow the circulation of the fluids. Moreover, the two 

holes for the fluid inlets are inclined in the vertical direction so that one incoming fluid is 

steered to the top of the cell, while the other one is steered to the bottom of the cell. 

 

Figure 3.1: a) 3D-drawing of the stainless steel annulus with the Teflon ring in the inner part. b) 

2D-drawing of the same, as observed from the top. 

The stainless steel annulus is designed to accommodate two square sapphire windows 

(84040 mm3), one on each vertical side with a groove for a Viton® O-ring for sealing. 

The internal faces of the two sapphire windows are then separated by the metal annulus 

and kept apart by h = 10 mm, thus defining the vertical thickness of the fluid sample. The 

external surfaces of the two sapphire windows are in contact with two square aluminium 

plates with a central circular aperture with a diameter d = 13 mm. These plates are meant 

for hosting two temperature sensors so to measure the temperature as close as possible 
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to the sapphires. The aluminium plates are also in contact with two square Peltier 

elements (Kryotherm, TB-109-1.4-1.5 CH) which can transport heat by means of a current 

flow and have the same central circular aperture. The Peltier elements provide/remove 

the heat necessary to maintain the set-point temperature as driven by two temperature 

controllers (Wavelength Electronics, LFI-3751) which use a proportional-integrating-

derivative feedback system and maintain the temperature of the internal side of each 

Peltier device constant, with stability better than 1 mK RMS over 1 day. As shown in Fig. 

3.2, all these elements are clamped by means of two aluminium blocks (with the same 

central circular aperture) in which water coming from a thermostatic controlled bath 

(Huber, ministat 125), circulates in order to remove the Peltier elements excess heat. 

 

Figure 3.2: 3D drawing of the diffusion cell 

External to the stainless steel ring, metallic capillary tubes with external diameter of 

1/8 inch and about 50 mm of length (the red stems visible in Fig. 3.2) are connected to 

each inlet/outlet. These capillary tubes end with a manual valve each (Swagelok, SS-

41GS2), as shown in Fig. 3.3. The sample reservoirs are connected to the valves via flexible 

capillary tube (same external diameter as the metallic capillary tubes). 

The cell filling is performed in two main steps. In the first step, the diffusion cell is 

completely filled with the less dense fluid. In order to do that, the fluid is slowly injected 

by gravity through the lower part, while air is let out of the outlet pointing to the top. By 

slightly tilting the cell, the residual air can be completely removed. Attention is paid to 

avoid any further air inlet while filling the other three capillary tubes. The second step 

consists in filling the bottom half of the cell with the denser fluid and create a sharp 

interface between the two fluids. This is achieved by filling the cell simultaneously with 

the two fluids from the bottom and the top inlets, while the remixed fluid is let out through 

the two outlets. The two connectors for fluids outlet are connected to two syringes (100 
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mL), each well attached to a syringe pumps. We use the Fusion 4000 independent dual-

channel infusion and withdrawl syringe pump from Chemyx. It can holds syringes from 

0.5 mL to 100 mL and can deliver a flow rate from 1 × 10−7 to 170.5 mL.min-1 in either 

infuse or withdraw mode. Once half of the cell is filled with the denser fluid (the volume 

of fluid to be injected into the cell to fill it by half, taking into account the length and the 

internal diameter of capillary tubes and the dead volumes is calculated beforehand), a 

relatively flat horizontal interface between the two fluids is formed. The four valves are 

simultaneously closed and the free-diffusion process starts. 

3.2.3 Shadowgraph setups 

The shadowgraph optical setups (Fig. 3.3) involves a super luminescent diode (Super 

Lumen, SLD MS-261-MP2-SM,  = 67513 nm), connected to a single-mode optical fiber. 

The divergent beam at the output of the fiber is collimated by an achromatic doublet lens 

(focal length f = 150 mm, and diameter  = 50.8 mm). The collimated beam passes through 

the free-diffusion cell, via two linear polarizers that allow adjusting the average 

transmitted light intensity, and is supposed to be perpendicular to the interface between 

the two solutions, or parallel to the temperature gradient when applying a thermal 

gradient. A camera collects the sum of the light scattered by the NEFs plus the transmitted 

one.  

For the shadowgraph setup#1, the detection plane is positioned at a distance of 

z = (12.0 ± 0.5) cm from the sample central plane. As a camera sensor, we use a scientific-

CMOS camera (see section 3.2) whose detector size is s = 13.3 mm. This camera sensor 

allows a fast image acquisition frequency, up to 100 Hz at full frame resolution of 

20482048 square pixels with a pixel side of lpix = 6.5 m. Images are acquired in real time 

by the HCImageLive (x64) software program installed in a dedicated PC. In order to have 

both a good stability of acquisition frequency and a quick backup of the images, we use 4 

Solid-State Drive (SSD) hard disks in RAID0 configuration. 

For the shadowgraph setup#2, the detection plane is positioned at a distance of 

z = (10.0 ± 0.5) cm from the sample central plane. As a camera sensor, we use a CCD PIKE 

camera (see section 3.2). The camera attributes were adjusted with ‘National Instruments 

and Measurements’ software. This camera allows acquiring a series of raw images spaced 

at a constant time step by means of in-house   
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‘Lab View’ software. This camera is capable of speeds of up to 15 frames per second at full 

frame resolution of 2048×2048 square pixels with a pixel side of lpix = 7.4 m.  

 

 

Figure 3.3: Shadowgraph optical setup summarized in six distinct blocks: 1) optical components; 
2) Camera; 3) free-diffusion cell; 4) specific filling procedure; 5) temperature controllers; 6) 

computer equipment. 

The analysis of images are described in the forthcoming section, where the analysis of 

wave vectors are performed in a Fourier space and the range of these accessible wave 

vectors depends on the number and size of the pixels. The optical path is isolated from air 

currents by means of rigid tubing. The various optical elements and the diffusion cell are 

mounted on an optical rail. The entire setup is fixed on an optical table with vibration 

isolation through air cushion. Both cameras collect the interference between the scattered 

light and the transmitted one (much more intense) [168], [169]. The image acquisition 

starts immediately at the end of the cell filling, a few seconds/minutes after closing the 

valves.  

3.2.4 Dynamic near field imaging 

The images acquired in the near field consist of an intensity map I(�⃗�, 𝑡), generated by the 

interference on the camera plane between the portion of the incident beam that has 

passed undisturbed through the sample and the beams scattered by the refractive index 
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fluctuations occurring within the sample. Here, �⃗� and t stand for the position in the image 

plane and the time lapsed during the acquisition, respectively. Thanks to the interference 

of different beams, the fluctuations in the fluid density, that are proportional to the 

fluctuations of the fluid refractive index, are transformed into fluctuations of the light 

intensity at the detector plane. Therefore, in order to study the dynamics of the density 

fluctuations in our samples, we calculate the Structure Function (SF) of the light intensity, 

i.e. of the acquired images, by means of an already proven Differential Dynamic Algorithm 

(DDA) [184]. 

The DDA algorithm consists of the following main steps: first, each recorded image 𝐼(�⃗�, 𝑡) 

is normalised by its intensity average 〈𝐼(�⃗�, 𝑡)〉�⃗� , in order to remove the source intensity 

fluctuations and get the normalized image i(�⃗�, 𝑡) = 𝐼(�⃗�, 𝑡)/〈𝐼(�⃗�, 𝑡)〉�⃗� (Fig. 3.4-a). Then, the 

differences between normalized images at a given time difference t (called correlation 

time) ∆𝑖(�⃗�, 𝑡, ∆𝑡) =   𝑖(�⃗�, 𝑡) −  𝑖(�⃗�, 𝑡 + ∆𝑡) are calculated (Fig. 3.4-b). These t’s are, of 

course, multiples of the time delay dtmin of the recording process, and cannot be larger 

than the acquisition duration. Next, 2D-Fast Fourier Transforms (FFTs) of the image 

differences are calculated ∆𝑖(�⃗�, 𝑡, ∆𝑡) = Ӻ(∆𝑖(�⃗�, 𝑡, ∆𝑡)) and their square moduli 

|∆𝑖(�⃗�, 𝑡, ∆𝑡)|2 = |𝑖(�⃗�, 𝑡) − 𝑖(�⃗�, 𝑡 + ∆𝑡)|² are determined (Fig. 3.4-c). Finally, the individual 

spatial Fourier transforms of the image differences are averaged, first over all times t and 

second over the modulus of the wave vector �⃗� over the azimuthal angle. The result 

〈|∆𝑖(𝑞, ∆𝑡)|2〉 is the structure function (SF) of the recorded intensity fluctuations. In order 

to reduce the computational time to calculate the SF out of the image series, we make use 

of a graphic card with the advantage of the massive parallelization on the Graphic 

Processing Unit (GPU) and an in-house developed software [184], [185]. This 

experimental quantity requires a physical model for its interpretation. The details of the 

theoretical model can be found elsewhere [174], [175]. In the present manuscript, we just 

recall the essential equations used to fit the SF.  
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Figure 3.4: Main steps in the evaluation of the SF of the NEFs in a free diffusion experiment of NaCl 
into water (mean concentration Cmean=2.7 mol.L-1 and concentration difference between the two 

superimposed solutions of ΔC=2 mol.L-1).  
a) Near field 1024x1024 pix² recorded image I(�⃗⃗⃗�, 𝒕).  

b) Difference between two images ∆𝒊(�⃗⃗⃗�, 𝒕, ∆𝒕) =   𝒊(�⃗⃗⃗�, 𝒕) −  𝒊(�⃗⃗⃗�, 𝒕 + ∆𝒕) separated by a correlation 
time of t = 2 s. 

c) 2D Fast Fourier transform of image differences  |∆𝒊(�⃗⃗⃗�, 𝒕, ∆𝒕)|𝟐 = |𝒊(�⃗⃗⃗�, 𝒕) − 𝒊(�⃗⃗⃗�, 𝒕 + ∆𝒕)|² averaged 

over 200 pairs of images each separated by t = 2 s. 

The circular stains visible on Fig. 3.4-a are due to dust particles located on the optical 

components within the beam path, or on the protective glass of the camera sensor. 

Because these external disturbances do not move in time, the differential analysis method 

is not disturbed. The circular symmetry of the SF on Fig. 3.4-c is due to the isotropic 

character of the fluctuations. 

3.2.5 Structure function analysis 

The SF can be related to the power spectrum density fluctuation and the characteristics 

of the optical system as follows : 

 〈|∆𝑖(𝑞, ∆𝑡)|²〉 = 2{𝑇(𝑞)𝑆(𝑞)[1 − 𝐼𝑆𝐹(𝑞, ∆𝑡)] + 𝐵(𝑞, ∆𝑡)} (3.1) 

 

where 𝑇(𝑞) is the optical transfer function of the shadowgraph, 𝑆(𝑞) the static power 

spectrum of the fluctuations, the product 𝐴(𝑞) = 𝑇(𝑞)𝑆(𝑞) is called the static structure 

factor (independent of the correlation time) and 𝐵(𝑞, ∆𝑡) is the signal background. It 

includes different contributions like electronic noise due to the camera and all the 

acquisition chain, and can be modelled by 𝐵(𝑞, ∆𝑡) = 𝐶(𝑞) + 𝐸(𝑞) ∙ ∆𝑡 + 𝐹(𝑞) ∙ ∆𝑡2. The 

parabolic term 𝐹(𝑞) ∙ ∆𝑡2 becomes particularly important for the experiments performed 

in the free-diffusion configuration, where the system is never at the steady state, so that 
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the background noise becomes time-dependent. The Intermediate Scattering Function 

𝐼𝑆𝐹(𝑞, ∆𝑡) corresponds to the dynamic part of the SF, that can be described in many cases 

as the sum of exponential decays [186]–[188]: 𝐼𝑆𝐹(𝑞, ∆𝑡) =  ∑ 𝑎𝑖𝑒𝑥𝑝(−∆𝑡/𝜏𝑖(𝑞)),𝑖  where 

𝑎𝑖 are the amplitudes of the different modes with ∑ 𝑎𝑖 = 1𝑖  and 𝜏𝑖(𝑞) the wave-number-

dependent relaxation times. 

During a free-diffusion experiment, the density fluctuations recorded through the 

shadowgraph are mostly due to concentration-NEFs (c-NEFs) that are much more intense 

(orders of magnitude) than equilibrium temperature and/or concentration fluctuations 

present at the same time for the wave number range of our interest. Thus, the ISF is 

expected to be well described by a single exponential decay for all wave numbers. Thus, 

the SF is supposed to take the following form: 

〈|∆𝑖(𝑞, ∆𝑡)|²〉 = 2 {𝐴(𝑞) [1 − exp (−
∆𝑡

𝜏𝑐(𝑞)
)] + 𝐶(𝑞) + 𝐸(𝑞) ∙ ∆𝑡 + 𝐹(𝑞) ∙ ∆𝑡2} (3.2) 

 

where 𝜏𝑐(𝑞) is the decay time of the c-NEFs at wave number q. 𝐴(𝑞), 𝜏𝑐(𝑞), 𝐶(𝑞), 𝐸(𝑞) and 

𝐹(𝑞) are the fitting parameters at each wave number. We use MatLab and an implemented 

Levenberg-Marquad non-linear least-square fitting routine [189]. At the end of the fitting, 

we proceed to the analysis of the statics of the fluctuations through the static structure 

factor 𝐴(𝑞), as well as to the analysis of the dynamics of the fluctuations through the decay 

times 𝜏𝑐(𝑞). Below, we will focus on the dynamics of the fluctuations. 

3.2.6 Dynamics of the non-equilibrium fluctuations 

The details of the theoretical description of the hydrodynamic behaviour of density 

fluctuations out-of-equilibrium can be found elsewhere [174], [175], so that here we just 

recall the main expressions useful for the experimental data analysis. 

At intermediate and large wave numbers, in the absence of any convective motion, in the 

presence of the gravity force and in the bulk fluid, the decay time of the c-NEFs is given 

by: 

 
𝜏𝑐(𝑞) =

1

𝐷𝑞² [1 + (
𝑞𝑐

𝑞 )
4

]
 

(3.3) 
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where D is the mass diffusion coefficient and 𝑞𝑐 the cut-off wave number which defines 

the length scale below which the dynamics of the c-NEFs are no longer dominated by 

diffusion, but rather by buoyancy. The curve of the decay times as a function of wave 

numbers looks like a bell-shape (in log-log scale) and mirrors the presence of two distinct 

regimes as already reported in a number of previous publications [165], [171], [172]. The 

asymptotic behaviour of Eq. 3.3 for wave numbers larger than 𝑞𝑐 is 𝜏𝑐(𝑞) = 1/𝐷𝑞² so that 

the diffusion coefficient D can be obtained from the fitting of the experimental data points 

in this region.  

During a free-diffusion experiment, the concentration difference between the bottom and 

the top of the cell is assumed to remain constant until the diffusive process reaches the 

cell boundaries at the diffusive time 𝜏𝑑 = (ℎ/2)2/𝜋𝐷. For times smaller than 𝜏𝑑  the cut-

off wave number is given by the expression [171]–[173]: 

 
𝑞𝑐 = (

𝛽𝑔(𝐶1 − 𝐶2)

𝜈𝐷√4𝜋𝐷𝑡
)

1/4

 
(3.4) 

 

where 𝛽 is the mass expansion coefficient of the binary mixture, 𝑔 the gravitational 

acceleration, and 𝜈 the kinematic viscosity of the binary mixture at the mean temperature 

of the experiment. 𝐶1 and 𝐶2 are the concentrations of the denser and lower component, 

at the bottom and top layers in the diffusion cell, respectively. The cut-off wave number is 

time-dependent, following a power law with a (−1/8 = – 0.125) exponent. 

3.2.7 Images contrast calculation 

 The appearance of diffraction spots on the shadowgraph images, related to the presence 

of dust, or convective patterns in particular experimental conditions produces significant 

variations in the contrasts of the images. This leads to significant variations and strongly 

quadratic dependencies with respect to time in the calculation of the SF and which 

prevents an analysis of it. Calculating the contrast of the difference in images is an 

effective way to remove the contribution of the transmitted beam and reveal the intensity 

fluctuations. It also deletes the dust contribution and in many cases it has allowed the 

study the convection [164]. The image contrast is defined as 𝐶(𝑡) = 〈|𝑖(𝑡) − 𝑖(𝑡0)|〉�⃗� 

where〈… 〉�⃗� represents the average over the pixels of an image, 𝑖(𝑡) = 𝐼(𝑡) 〈𝐼(𝑡)〉�⃗�⁄  is an 
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image normalized by its spatial average, and 𝑖(𝑡0) is a normalized background image, 

chosen in this work as the first image for each image sequence. 

3.3 Free diffusion experiments 

3.3.1 Calibration 

For the concentration 𝐶= 50% in mass fraction (0.5 w/w ) and 𝐶= 0.7 w/w of TEG in water, 

free diffusion experiments were performed at the temperatures of 20, 25 and 30 °C. The 

diffusion cell is first filled with the less dense solution and subsequently, the less dense 

and the denser solution fills about half of the cell. The valves are closed and the free-

diffusion process starts. Series of N = 2500 images of 1024x1024 pix2 were recorded at 

frequency rate of f = 10 Hz, every 5 minutes over the first 20 minutes of each experiment, 

and then every 10 minutes. Shadowgraph setup #1, with the s-CMOS camera, was used 

for this series of measurements (see section 3.2.3). The minimum accessible wave number 

is given by 𝑞𝑚𝑖𝑛 = 2𝜋/𝐿, 𝐿 being the side of the image in the real space defined as 𝐿 =

𝑁𝑝𝑖𝑥𝑙𝑝𝑖𝑥. The pixel side of this camera is 𝑙𝑝𝑖𝑥 =  6.5 m. For the acquired images, 𝐿 = 0.67 

cm, so that 𝑞𝑚𝑖𝑛 = 9.44 𝑐𝑚−1. The theoretical maximum frequency is 𝑞𝑚𝑎𝑥 = (𝑁𝑝𝑖𝑥 2⁄ ) ∙

𝑞𝑚𝑖𝑛 = 4833 𝑐𝑚−1, 𝑁𝑝𝑖𝑥 being the number of the pixels along one side of the images. In 

the case of the isothermal diffusion experiment, only one mode is expected to be 

measured corresponding to the relaxation of c-NEFs in the fluid mixture. The SFs were 

calculated by the DDA algorithm, as shown in Fig. 3.5 for the average concentration of 𝐶 = 

0.5 w/w, a difference of concentration of ∆𝐶 = 0.2 w/w between the two superimposed 

fluid layers, a homogeneous temperature of 25 °C, and 80 minutes after closing the valves. 
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Figure 3.5: Structure function for different wave numbers of the free-diffusion experiment carried 
out with the binary mixture of TEG/water at the mean concentration of C = 0.5 w/w, difference of 
concentration ∆𝑪 = 𝟎. 𝟐 w/w between the bottom and top layer solutions, mean temperature of 

25°C and 80 minutes after closing the valves. 

The SFs show a single exponential decay, as expected, so that data points can be fitted 

through Eq. 3.2 for the entire range of wave numbers. The resulting values for the 

parameter 𝐹(𝑞) turned out to be negligible and for 𝐸(𝑞) one order of magnitude smaller 

than 𝐶(𝑞). In this case, the quantity 𝐴(𝑞)/𝐶(𝑞) can be calculated and provides a useful 

indication of the signal-to-noise ratio of the measurement. In Fig. 3.6 the signal-to-noise 

ratio is shown for the sample with 𝐶 = 0.5 w/w and the homogeneous temperature 

T=25 °C for images taken 80 minutes after closing the inlet/outlet valves. The data are 

plotted for three different values of the concentration difference ∆𝐶 =  0.1, 0.2 and 

0.4 w/w. 

 

Figure 3.6: Ratio between the static structure factor and the signal background as a function of the 
wave number for the free-diffusion experiments, carried out with the binary mixture of TEG/water 
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at mean concentration of C = 0.5 w/w, and for different differences of concentration between the 
bottom and the top layers, at 25 °C and 80 minutes after closing the valves. 

The oscillations visible in the graph are related to the shadowgraph transfer function 𝑇(𝑞) 

that vanishes at specific wave number. As visible from Fig. 3.6 the signal also increases 

with increasing concentration difference and distance for ∆𝐶 between 0.1 and 0.2 w/w. 

However, it is approximatively the same in a log-log graph whatever the distance for ∆𝐶 

between 0.2 and 0.4 w/w, which is coherent with a quadratic dependence of the signal to 

the concentration difference. The horizontal line visible in Fig. 3.6 stands for the threshold 

value of 0.05 below which we consider that a shadowgraph measurement cannot provide 

reliable results [190], [191] . We decided to perform the fitting in the wave number range 

from 30 to 600 cm-1, thus spanning more than one decade in wave numbers. In Fig. 3.7 we 

report the decay times obtained from fitting the SFs as a function of the wave number q 

and for different times after closing the inlet/outlet valves. The graph corresponds to the 

sample with C = 0.5 w/w, ∆𝐶 = 0.2 w/w and 𝑇 =25 °C. As stated before, only one mode 

can be detected corresponding to the decay of c-NEFs. By fitting the decay times through 

Eq. 3.3 we can obtain a measurement of the roll off wave number qc and the mass diffusion 

coefficient D. 

 

Figure 3.7: Decay times of the c-NEFs as a function of the wave numbers and time after closing the 
inlet/outlet valves for the free-diffusion experiment carried out with the binary mixture of 

TEG/water at C = 0.5 w/w, difference of concentration ∆C = 0.2 w/w and T = 25 °C. The continuous 
black line corresponds to the curve obtained fitting Eq. 3.3 to data points obtained 80 minutes 

after starting the free-diffusion experiment. 

For all the times, the relaxation time curve has a bell-shape in the log-log plot of c vs q. As 

already reported in a number of publications, the right part of such curves for large wave 
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numbers corresponds to the diffusive regime of c-NEFs. All curves collapse onto a single 

one for large wave numbers, because the mass diffusion coefficient remains constant 

during the free-diffusion process. This can be clearly observed also in Fig. 3.8-a, where the 

mass diffusion coefficients obtained after fitting time decays through Eq. 3.3 are shown as 

a function of normalized time by the diffusive time. Moreover, the diffusion coefficient 

does not change with respect to the applied concentration difference ∆𝐶. All data shown 

in Fig. 3.8 are relative to the average concentration C = 0.5 w/w and T = 25 °C. On the 

contrary, the position of the maximum of the time constant qc decreases with time as 

visible in Fig. 3.8-b. 

  

a) b) 

Figure 3.8: a) Mass diffusion coefficient D and b) cut-off wave number qc as a function of the 
normalized time for different concentration differences for the free-diffusion experiments carried 

out with the binary mixture of TEG/water at C = 0.5 w/w and T = 25 °C. 

The values obtained for the mass diffusion coefficient D are nicely centred around the 

literature value obtained by Optical Beam Deflection (OBD) [109], that is represented by 

a horizontal dashed line in Fig. 3.8-a. The values obtained for C = 0.1 w/w are somewhat 

more scattered, which mirrors the smaller signal-to-noise ratio, also visible in Fig. 3.6.  

Moreover, the measurement error is increased for times close to the diffusive time of the 

cell, because, again, the signal-to-noise ratio decreases due to the decrease of the 

concentration gradient. The values obtained for the mass diffusion coefficient remain 

almost constant as a function of time and do not depend on the concentration difference 

imposed at the beginning of the experiment. Conversely, the cut-off wave number 

decreases with time and with the concentration difference according to Eq. 3.4.  Fitting 

data point with a power law and free exponent provides a value of -0.11, rather close to 

the theoretical value of -0.125. 
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In Fig. 3.9-a, we report the values of the mass diffusion coefficient and the cut-off wave 

number as a function of the normalised time and for different values of the homogeneous 

temperature. In Fig. 3.9-b we report the values of the cut-off wave number as a function 

of the normalized time in the same conditions. The experiments reported in Fig. 3.9 have 

been performed with average concentration C = 0.5 w/w and concentration difference ∆C 

= 0.2 w/w. 

  

a) b) 

Figure 3.9: a) Mass diffusion coefficient and b) cut-off wave number as a function of the normalized 
time for different temperatures for the free-diffusion experiments carried out with the binary 

mixture of TEG/water at C = 0.5 w/w and a difference of concentration ∆C = 0.2 w/w. 

In Fig. 3.9-a, the horizontal dashed lines provide a visual reference of the values of the 

mass diffusion coefficient obtained by OBD and reported in the literature [109]. The data 

points for T = 20 and 25 °C are in very good agreement with the literature values, however 

those obtained at 30 °C show a 10% difference with respect to the literature one. In 

Fig. 3.9-b we can see that the wave numbers follow a power law dependence upon 

reduced time with an exponent close to the theoretical value of -0.125 for all the three 

investigated temperatures. 

In Table 3.1 we provide the obtained values of the mass diffusion coefficients as obtained 

by the free-diffusion experiments carried out with the TEG/water binary mixture at the 

two average concentrations of C = 0.5 and 0.7 w/w, at the three different homogeneous 

temperatures of T = 20, 25 and 30 °C. For the average concentration of C = 0.7 w/w, the 

concentration difference between bottom and top solutions was C = 0.2 w/w. 
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Table 3.1: Mass diffusion coefficients D obtained by free-diffusion experiments carried out with the 
TEG/water binary mixture at mean concentration C in mass fraction of TEG and homogeneous 

temperature T. 

D (×10-6 cm2/s) 

T (°C) C = 0.5 w/w C = 0.7 w/w 

20 3.27  0.10 2.15  0.16 

25 3.86  0.14 2.32  0.06 

30 5.4  0.3 3.00  0.13 

 

The uncertainties reported in Table 3.1 correspond to the standard deviation with respect 

to the average value including the measurements obtained at different normalised times. 

In the case of the measurements performed at C = 0.5 w/w, we averaged data obtained 

for ∆C = 0.2 and 0.4 w/w. The values reported in Table 3.1 show that the diffusion 

coefficient increases with the temperature for the two TEG concentrations, which is a 

reasonable behaviour as fluid viscosity typically decreases with increasing temperature 

and the mass diffusion coefficient is inversely proportional to the fluid viscosity (see Table 

1 of the Paper #2 done in appendix E), following the Stokes-Einstein relation. 

3.3.2 Electrolyte diffusion coefficient measurements 

Also as part of the experimental calibration step, free diffusion experiments have been 

performed at NaCl concentration C = 2.7 mol.L-1 in water and 25°C, with the shadowgraph 

#1. The diffusion cell is first filled with the less dense solution and subsequently, the less 

dense and the denser solution fills about half of the cell. The valves are closed and the 

free-diffusion process starts. Series of N = 2500 images of 1024x1024 pix2 were recorded 

at a frequency rate of f = 10 Hz, every 5 minutes over the first 20 minutes of each 

experiment, and then every 10 minutes. The SFs were directly calculated by the DDA 

algorithm, as shown in Fig. 3.10 for different differences of concentration ∆𝐶 between the 

two superimposed fluid layers and 40 minutes after closing the valves. 
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a) ∆𝐶 = 1 mol.L-1 b) ∆𝐶 = 2 mol.L-1 

  

c) ∆𝐶 = 3 mol.L-1 d) ∆𝐶 = 5.4 mol.L-1 

Figure 3.10: Structure function for different wave numbers of the free-diffusion experiment 
carried out with the binary mixture of NaCl/water at the mean concentration of C = 2.7 mol.L-1, 

mean temperature of 25°C, 40 minutes after closing the valves, and different differences  of 
concentration ∆𝑪 between the bottom and top layer solutions, that are indicated under the figures. 

Until ∆𝐶 = 3 mol.L-1, the mono-exponential behavior of the SFs can be assumed for most 

of the wave numbers, except for the larger wave vector where the final plateau does not 

seem to be reached. However, the latter SF remains consistent with calculations of SFs 

made on experiments carried out in a transient state. In Fig. 3.10-d it is clearly visible that 

the mono-exponential behavior of the SF is no longer valid for most of the wave numbers, 

even showing pronounced oscillations at large wave numbers. This experiment, made at 

C = 2.7 mol.L-1 and ∆𝐶 = 5.4 mol.L-1, corresponds to a solution of NaCl at the limit of 

solubility, diffusing in pure water. This proximity to the solubility limit can explain the 

behavior of the SFs for these experimental conditions. Data points until ∆𝐶 = 3 mol.L-1 

were fitted through Eq. 3.2 for the entire range of wave numbers. The resulting values for 

the parameter 𝐹(𝑞) turned out to be four orders of magnitude smaller than 𝐶(𝑞), and 



 

90 
 

parameter 𝐸(𝑞) two orders of magnitude smaller. The quantity 𝐴(𝑞)/𝐶(𝑞) can provide 

here also a useful indication of the signal-to-noise ratio of the measurement. In Fig. 3.11 

the signal-to-noise ratio is shown for a difference of concentration of ∆𝐶 = 2 mol.L-1 

between the two superimposed fluid layers, and 40 minutes after closing the valves 

(orange squares in the figure). 

 

Figure 3.11: Ratio between the static structure factor and the signal background as a function of 
the wave number for the free-diffusion experiments carried out: 

 orange squares for the binary mixture of NaCl/water and the shadowgraph set-up #1 
(C = 2.7 mol.L-1, ∆𝑪 = 𝟐 mol.L-1, T = 25°C and 40 minutes after closing the valves); 

 open circles for the binary mixture of CaCl2/water and the shadowgraph set-up #2 
(C = 0.46 mol.L-1, ∆𝑪 = 𝟎. 𝟖 mol.L-1, T = 25°C and 40 minutes after closing the valves); 

 open triangles for the binary of Na2SO4/water and the shadowgraph set-up #2 
(C = 0.5 mol.L-1, ∆𝑪 = 𝟎. 𝟕 mol.L-1, T = 25°C and 90 minutes after closing the valves) 

The positions of the maximums and minimums correspond to those of Fig. 3.6, which 

makes sense given that the shadowgraph setup is the same. Compared to Fig. 3.6, the value 

of the signal-to-noise ratio is lower here. The horizontal line visible in Fig. 3.11 stands for 

the threshold value of 0.05. Fitting the SFs in the wave number range from 30 to 500 cm-

1 was performed. In Fig. 3.12 we report the decay times obtained from fitting the SFs as a 

function of the wave number q and for different times after closing the inlet/outlet valves. 

The graph corresponds to a sample with C = 2.7 mol.L-1, ∆𝐶 = 2 mol.L-1 and 𝑇 = 25 °C. 
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Figure 3.12: Decay times of the c-NEFs as a function of the wave numbers and time after closing the 
inlet/outlet valves for the free-diffusion experiment carried out with the binary mixture of 
NaCl/water at C = 2.7 mol.L-1, difference of concentration ∆C = 2 mol.L-1 and T = 25 °C. The 

continuous black line corresponds to the curve obtained fitting Eq. 3.3 to data points obtained 40 
minutes after starting the free-diffusion experiment. 

For all the times, the relaxation time curve has here also a bell-shape in the log-log plot of 

c vs. q. All curves collapse onto a single one for large wave numbers, meaning that the 

mass diffusion coefficient remains constant during the free-diffusion process. However, a 

downfall of the relaxation times at the last instants and largest wave numbers is 

observable, probably due to the low value of the signal-to-noise ratio in this region, and 

which decreases due to the decrease of the concentration gradient in the cell. In Fig. 3.13-

a, we ploted the mass diffusion coefficients and in Fig. 3.13-b the qc as a function of 

reduced time and for different differences of concentration ∆𝐶 between the two 

superimposed fluid layers, obtained after fitting time decays through Eq. 3.3. 
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a) b) 

Figure 3.13: a) Mass diffusion coefficient D of NaCl in water and b) cut-off wave number qc as a 
function of the normalized time for different concentration differences for the free-diffusion 

experiments carried out with the binary mixture of NaCl/water at C = 2.7 mol.L-1 and T = 25 °C. 

The values obtained for the mass diffusion coefficient D are centred around the literature 

value obtained by Rayleigh interferometry [113], represented by a horizontal dashed line 

in Fig. 3.13-a. They are, as for the TEG/water mixture (Fig. 3.8-a), not dependent on the 

investigated concentration differences imposed at the beginning of the experiment, with 

an error increased for times close to the diffusive time of the cell, because, again, the 

signal-to-noise ratio decreases due to the decrease of the concentration gradient in the 

cell. Conversely, the cut-off wave number qc decreases with time according to Eq. 3.4 as 

can be seen in Fig. 3.13-b. Fitting data points with a power law and free exponent gives a 

lower regression coefficient R2 compared to the TEG/water mixture (Fig. 3.8-b), but 

provides a value of -0.116 rather close to the theoretical value of -0.125. 

Before performing the free diffusion experiments on the complex configuration of the 

three superimposed aqueous solutions, preliminary free diffusion experiments were 

performed on binary CaCl2/water and Na2SO4/water systems. 

With the same filling procedure as before, free diffusion experiments with CaCl2 and 

Na2SO4 have been performed with the shadowgraph setup #2 (see section 3.2.3), the main 

difference being the use of the PIKE camera. Series of N = 2500 images of 1024x1024 pix2 

were recorded at frequency rate of f = 10 Hz, every 5 minutes over the first 20 minutes of 

each experiment, and then every 10 minutes. As previously stated, the minimum 

accessible wave number is given by 𝑞𝑚𝑖𝑛 = 2𝜋/𝐿, 𝐿 being the side of the image in the real 

space. For the acquired images, 𝐿 = 0.75 cm, so that 𝑞𝑚𝑖𝑛 = 8.38 𝑐𝑚−1. The theoretical 

maximum frequency with the second shadowgraph is 𝑞𝑚𝑎𝑥 = (𝑁𝑝𝑖𝑥 2⁄ ) ∙ 𝑞𝑚𝑖𝑛 =
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4291 𝑐𝑚−1, 𝑁𝑝𝑖𝑥 being the number of the pixels along one side of the images. The SFs were 

calculated by the DDA algorithm, as shown in Fig. 3.14-a for a mean CaCl2 concentration 

of C = 0.46 mol.L-1, a difference of concentration ∆𝐶 = 0.8 mol.L-1 between the two 

superimposed fluid layers, and 40 minutes after closing the valves. In Fig. 3.14.b we report 

resulting calculations for a mean Na2SO4 concentration of C = 1.484 mol.L-1, a difference 

of concentration ∆𝐶 = 0.7 mol.L-1 between the two superimposed fluid layers, and 50 

minutes after closing the valves. 

  

a) b) 

Figure 3.14: Structure function for different wave numbers of the free-diffusion experiment carried 
out at mean temperature of 25°C with: 

 a) the binary mixture of CaCl2/water 
(C = 0.46 mol.L-1, ∆𝑪 = 𝟎. 𝟖 mol.L-1 and 40 minutes after closing the valves); 

 b) the binary mixture of Na2SO4/water  
(C = 1.484 mol.L-1, ∆𝑪 = 𝟎. 𝟕 mol.L-1 and 50 minutes after closing the valves) 

In the case of the experiment performed with CaCl2 the calculated SFs show a mono-

exponential behaviour with a well characterised plateau, even for large wave numbers. 

Conversely, the SFs obtained with the experiment with Na2SO4 show clearly visible 

quadratic dependence with time for all wave numbers (see Fig. 3.14-b). The proximity to 

the solubility limit of mirabilite (Na2SO4:10H2O) for the experiment with Na2SO4 can 

explain the behavior of the SFs. Indeed, for the experiment with CaCl2 the chosen 

concentration is far from the solubility limit. To check this hypothesis, we carried out 

experiments with Na2SO4 at mean concentrations of 1 and 0.5 mol.L-1 with a difference of 

concentration ∆𝐶 = 0.7 mol.L-1 between the two superimposed fluid layers. In Fig. 3.15, 

we report the SFs calculated 50 minutes after closing the valves. 
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a) b) 

Figure 3.15: Structure function for different wave numbers of the free-diffusion experiment 
carried out with the binary mixture Na2SO4/water at mean temperature of 25 °C, difference of 

concentration ∆C = 0.7 mol.L-1 and 50 minutes after closing the valves with: a) C = 1 mol.L-1; b) C = 
0.5 mol.L-1. 

Although it is attenuated as the average concentration of the experiment decreases, the 

quadratic dependence of the SFs on time is still visible. Moreover, we noticed that it 

decreases with time. In Fig. 3.16-a we plot the SFs calculated for the wavenumber 

q = 209.5 cm-1 and the fits obtained with Eq. 3.2, 10 min and 90 min after closing the valves 

for the experiment with CaCl2. In Fig. 3.16-b we plotted the corresponding residuals. In 

Fig. 3.16-c and Fig. 3.16-d we reported the analogous results for the experiment with 

Na2SO4 at C = 0.5 mol.L-1. 

 

  

a) b) 
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c) d) 

Figure 3.16: Structure function for wave number q = 209.5 cm-1 and for different moments after 
closing the valves, carried out with: a) the binary mixture CaCl2/water (C = 0.46 mol.L-1, ∆𝑪 = 𝟎. 𝟖 
mol.L-1, T = 25°C); c) the binary mixture Na2SO4/water (C = 0.5 mol.L-1, ∆𝑪 = 𝟎. 𝟕 mol.L-1, T = 25°C). 
The continuous red line corresponds to the curve obtained fitting Eq. 3.2 to data points. In b) and 

d) we report the corresponding residuals between data points and the theoretical model. 

From Fig. 3.16-b we can see that the theoretical model of the SF given by Eq. 3.2 allows us 

to correctly describe the experimental points, especially at the first moments of the image 

recording, which is the part of the curve during which the SF evolves the most. Although 

Eq. 3.2 contains a quadratic time dependence term, we can see in Fig. 3.16-d that the 

experimental points are not correctly described at the beginning of the experiment with 

Na2SO4, especially at the first moments after closing the valves. Towards the end of the 

experiment, when the quadratic dependence term on the SF is less pronounced, the fit of 

the experimental points becomes acceptable for 90 min after closing the valves, as can be 

seen in Fig. 3.16-d. 

The resulting values for the parameter 𝐹(𝑞) turned out to be four orders of magnitude 

smaller than 𝐶(𝑞), and parameter 𝐸(𝑞) two orders of magnitude smaller. The quantity 

𝐴(𝑞)/𝐶(𝑞) can provide here also a useful indication of the signal-to-noise ratio of the 

measurement. In Fig. 3.11, the signal-to-noise ratio is shown for the experiment with CaCl2 

(C = 0.46 mol.L-1, ∆C = 0.8 mol.L-1, T = 25°C) 40 minutes after closing the valves (open 

circles in the figure) and for the experiment with Na2SO4 (C = 0.5 mol.L-1, ∆C = 0.7 mol.L-1, 

T = 25°C) 90 minutes after closing the valves (open triangles in the figure). The positions 

of the maximums and minimums nicely correspond for these two experiments, which 

makes sense given that the shadowgraph setup is the same. Here also the fitting of the SF 

was performed in the wave number range from 30 to 500 cm-1. In Fig. 3.17, we plot the 
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mass diffusion coefficients as a function of reduced time and for the two last experiments, 

obtained after fitting time decays through Eq. 3.3. 

 

Figure 3.17: Mass diffusion coefficient D as a function of the normalized time for the free-diffusion 
experiments carried out, circles are for the binary mixture of CaCl2/water (C = 0.46 mol.L-1, ∆C = 

0.8 mol.L-1, T = 25°C) and rectangles are for the binary mixture Na2SO4/water (C = 0.5 mol.L-1, ∆C = 
0.7 mol.L-1, T = 25°C). 

The literature values obtained by Rayleigh interferometry [113], [138]  are represented 

by horizontal dashed lines. The agreement is pretty good in both cases.  

3.3.3 Non-isothermal conditions 

One free-diffusion experiment at NaCl mean concentrations of 2.637 mol.L-1, difference of 

concentration ∆𝐶 = 2 mol.L-1 between the two superimposed fluid layers, mean 

temperature T = 25 °C and imposing a vertical difference of temperature across the cell 

∆𝑇 = +20 𝐾 (heating by the top) was performed with the shadowgraph #2. In Fig. 3.18-a 

we report the mass diffusion coefficients and in Fig. 3.18-b the qc as a function of reduced 

time. We superimposed the results obtained in an equivalent configuration but in 

isothermal conditions. 
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a) b) 

Figure 3.18: a) Mass diffusion coefficient D and b) cut-off wave number qc as a function of the 
normalized time for the free-diffusion experiments carried out with the binary mixture of 

NaCl/water (C  2.7 mol.L-1, ∆C = 2 mol.L-1, Tmean = 25 °C). Circles are for the experiment without a 
difference of temperature and triangles are with a vertical difference of temperature ∆T = +20 K 

across the cell. 

The literature value of the diffusion coefficient for isothermal conditions [113], is 

represented by a horizontal dashed line in Fig. 3.18-a. Already presented fitting of the qc 

in Fig 3.13-b is represented by a solid line in Fig. 3.20-b. The thermal gradient did not have 

a significant effect on the relaxation mode of the system. 

In order to achieve the superimposition of two or three aqueous electrolyte layers and to 

be mechanically stable in the gravity field, the choice of the concentrations of the solutions 

must be adjusted. In Fig. 3.19, we plotted the density of NaCl, CaCl2 and Na2SO4 aqueous 

solutions as a function of the salt concentration at T = 20°C. 

 

Figure 3.19: Density as a function of the salt concentration in water at T = 20 °C, diamonds are for 
NaCl, circles for CaCl2 and rectangles for Na2SO4. Open symbols are for literature data [192] and 

filled symbols are points measured in this work. 
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Open symbols are for literature data [192]. Additional measurements were performed in 

the laboratory using a density meter (Anton Paar DMA 5000, see appendix C for more 

details), and are represented for the temperature of 20 °C by the filled symbols in Fig. 

3.19. We therefore chose to superimpose CaCl2 on Na2SO4 with an intermediate layer of 

NaCl, at respective concentrations of 0.46, 1.484 and 2.637 mol.L-1, and which are 

indicated by arrows in Fig. 3.19, corresponding to a density distribution of 1.039 < 1.099 

< 1.169 g.cm-3 respectively. 

3.4 Superimposition of two aqueous layers of non-reactive 
salts 

3.4.1 Experimental observations parallel to the gravity 

The superimposition of a layer of aqueous CaCl2 at the concentration of 0.46 mol.L-1 on a 

layer of aqueous NaCl at the concentration of 2.637 mol.L-1 resulted in the appearance of 

some diffraction spots on the image differences themselves, as shown in Fig. 3.20-a. 

  
a) b) 

Figure 3.20: Normalized image differences : 

 a) 20 minutes after closing the valves when a layer of a CaCl2 solution (0.46 mol.L-1) is 

brought in contact with a NaCl solution (2.637 mol.L-1) at the homogenous temperature of 

25 °C; 

 b) 5 minutes after closing the valves when a layer of a NaCl solution (2.637 mol.L-1) is 

brought in contact with a Na2SO4 solution (1.484 mol.L-1) at the homogenous temperature 

of 25 °C. 

These diffraction spots were less frequent as time goes by, leading towards the end of the 

experiment to an evolution of the image contrast compatible with that produced by 

fluctuations in a free diffusion process, as shown in Fig. 3.21-a. As an example in Fig. 3.21 

we give a difference of images and the evolution of the contrast of the images 40 minutes 
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after closing the valves in a free-diffusion experiment with the binary mixture 

CaCl2/water (C = 0.46 mol.L-1, ∆C = 0.8 mol.L-1, T = 25 °C). In Fig. 3.21-a only the 

fluctuations are visible and in Fig. 3.21-b we note a slight increase in contrast as a function 

of time. 

 
 

a) b) 
Figure 3.21: a) Normalized image differences and b) contrast of shadowgraph image sequence 40 

minutes after closing the valves in a free-diffusion experiment with the binary mixture 
CaCl2/water (C = 0.46 mol.L-1, ∆C = 0.8 mol.L-1, T = 25°C). 

The results obtained when a layer of aqueous Na2SO4 at the concentration of 1.484 mol.L-

1 was brought into contact with a layer of aqueous NaCl at the concentration of 2.637 

mol.L-1 proved to be very different from previous cases. At the very first moments, 

convection patterns are clearly visible as shown in Fig. 3.20-b. As shown in Fig. 3.22-b, the 

contrast of the images shows a strong variation at the first instants (an order of magnitude 

higher compared to the case of the CaCl2/NaCl salt pair Fig. 3.22-a.), and then shows a 

smooth variation of the contrast characteristic of the fluctuations once the convection has 

dissipated. 

 

  
a) b) 
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Figure 3.22: Contrast of shadowgraph image sequences 𝑪(𝒕) as a function of time and for different 
moments after closing the valves: 

 a) when a layer of a CaCl2 solution (0.46 mol.l-1) is brought in contact with a NaCl solution 

(2.637 mol.l-1) at the homogenous temperature of 25°C; 

 b) when a layer of a NaCl solution (2.637 mol.l-1) is brought in contact with a Na2SO4 

solution (1.484 mol.l-1) at the homogenous temperature of 25°C. 

According to these results, the relative mixing of CaCl2 in NaCl cannot be fully 

characterised as diffusive. For the moment, we do not have an explanation of the origin of 

these diffraction spots. In contrast, the relative dissolution of NaCl in Na2SO4 can be 

unambiguously characterised as convective. In the following paragraph, we propose to 

give a numerical interpretation of the results obtained. 

3.4.2 Numerical modelling 

The objective, here, is to reproduce numerically in a 1D column the diffusion experiments 

that involved two superimposed layers of different aqueous electrolytes. For its 

calculations, PHREEQC uses concentrations given in molality (mol.kg-1) summarised in 

Table 3.2. The correspondences between molarity and molality are presented in 

appendix A. 

Table 3.2: Concentration of saline solutions in molality at T = 25 °C and P = 1 atm 

 
C                       

(mol.L-1) 
ρ 

(g.cm-3) 
Molar mass 

(g.mol-1) 
m 

(mol.kg-1) 

CaCl2 0.469 1.038962 110.98 0.475 
NaCl 2.637 1.098622 58.44 2.792 

Na2SO4 1.484 1.168653 142.04 1.548 
 

For the mesh (see Fig. 3.23) , the column has a height of h = 0.01 m as our experimental 

diffusion cell, which is subdivided into 20 cells ( 5×10-4 m) of equal length in order to have 

detailed information on the phenomena that may occur in the column.  The saline 

solutions at the top and bottom of the column are exactly at the midheight of the column, 

so that each saline solution is distributed over 10 cells whose total height is 5×10-3 m.  
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a) b) 

Figure 3.23: Mesh of the column for the numerical modelling of the superimposition of two 
aqueous layers of non-reactive salts. a) Superimposition of a layer of a CaCl2 solution (0.46 mol.L-1) 

with a layer of NaCl solution (2.637 mol.L-1). b) Superimposition of layer of NaCl solution (2.637 
mol.L-1) with a layer of a Na2SO4 solution (1.484 mol.L-1). 

The closed boundary conditions is applied. The initial conditions of the simulation are 

represented in Fig. 3.24. The activity model used is the interaction model based on the 

Pitzer formalism, which is suitable for our complex chemical system with high salinity. An 

example of input file for the numerical modelling of the superimposition of a layer of a 

CaCl2 solution (0.46 mol.L-1) with a layer of NaCl solution (2.637 mol.L-1) is shown in Fig. 

B.2 of appendix B. 

  
a) b) 

Figure 3.24: Concentration profiles representing the initial conditions of simulation of the 
diffusion column at the homogenous temperature of 25 °C and 1 atm: a) when a layer of a CaCl2 

solution (0.46 mol.L-1) is brought in contact with a NaCl solution (2.637 mol.L-1). b) when a layer of 
a NaCl solution (2.637 mol.L-1) is brought in contact with a Na2SO4 solution (1.484 mol.L-1). 

Fig. 3.24-a shows the initial condition when a layer of CaCl2 solution (top of the column) 

is brought in contact with a NaCl solution (bottom of the column). Each ionic species is 

represented individually, knowing that in the case of CaCl2, there are twice as many Cl- 

ions in solution and therefore the Cl- concentration is twice that of Ca2+ in the top part of 
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the column. Along the same lines, Fig. 3.24-b shows the initial condition when a layer of 

NaCl solution (top of the column) is brought in contact with a Na2SO4 solution (bottom of 

the column). In the case of Na2SO4, there are twice as many Na+ ions in solution and 

therefore the Na+ concentration is twice that of SO42-. Each couple of electrolytes is 

allowed to diffuse over time and the diffusive flux is calculated with both homogeneous 

and heterogeneous multicomponent diffusion for comparison. As explained in section 

2.4.3, the diffusion coefficient defined for calculations in the case of the homogeneous 

multicomponent diffusion is given by the harmonic mean of the diffusion coefficient of the 

components of the salt, weighted by their molal concentration. Using Eq. 2.44, the 

harmonic mean of the diffusion coefficient when a layer of CaCl2 solution is brought in 

contact with a layer of NaCl solution is 𝐷 = 1.543 × 10−9 m².s-1 while is 𝐷 = 1.411 × 10−9 

m².s-1 when a layer of NaCl solution is brought in contact with a layer of Na2SO4 solution.   
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a) b) 

 
 

c) d) 

Figure 3.25: Evolution of the molality of ions when a layer of a CaCl2 solution (0.46 mol.L-1) is 
brought in contact with a NaCl solution (2.637 mol.L-1) at the homogenous temperature of 25 °C in 

the case of a) Homogeneous multicomponent diffusion after 10 minutes of diffusion, b) 
Homogeneous multicomponent diffusion after 1 hour of diffusion, c) Heterogeneous 

multicomponent diffusion after 10 minutes of diffusion and d) Heterogeneous multicomponent 
diffusion after 1 hour of diffusion 

Fig. 3.25 is a comparison between homogeneous and heterogeneous multicomponent 

diffusion of the superimposition of a layer of CaCl2 at the concentration of 0.46 mol.L-1 on 

a layer of NaCl at the concentration of 2.637 mol.L-1 along the column after 10 and 60 

minutes. The results show an intuitively expected behaviour of the concentration of ions 

in both cases, i.e. as time goes by, the diffusion goes from the most concentrated area to 

the least concentrated area over the diffusion process comparing with the initial state in 

Fig. 3.24-a. However, for a same diffusion time, 1 hour for example (Fig. 3.25-b and Fig. 

3.25-d), the distribution of ionic species seems to reach the equilibrium state faster in the 

case of homogeneous diffusion than in the case of heterogeneous diffusion. This is clearly 

visible on Fig. 3.26 that illustrates the evolution of the ionic strength over the column for 
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differtent moments after the beginning of the diffusion. In Fig. 3.26-a, we are close to the 

equilibrium state after 10 hours (600 minutes) whereas for the same instant in the case 

of heterogeneous diffusion the diffusion process still evolves as shown in Fig. 3.26-b. 

  

a) b) 

Figure 3.26: Evolution of the ionic strength over the column as a funtion of time when a layer of a 
CaCl2 solution (0.46 mol.L-1) is brought in contact with a NaCl solution (2.637 mol.L-1) at the 

homogenous temperature of 25 °C in the case of a) Homogeneous multicomponent diffusion and  
b) Heterogeneous multicomponent diffusion. 

Fig. 3.27 illustrates the evolution of the density of the solution along the column as the 

diffusion process evolves. Whether in the case of homogeneous multicomponent diffusion 

(Fig. 3.27-a) or heterogeneous multicomponent diffusion (Fig. 3.27-b), the evolution of 

the solution density along the column over time does not reveal any instability that could 

justify the presence of diffraction spots observed experimentally during the mixing 

process.  

  

a) b) 

Figure 3.27: Evolution of the density of the solution over the column as a funtion of time when a 
layer of a CaCl2 solution (0.46 mol.L-1) is brought in contact with a NaCl solution (2.637 mol.L-1) at 



 

105 
 

the homogenous temperature of 25 °C in the case of a) Homogeneous multicomponent diffusion  
and b) Heterogeneous multicomponent diffusion. 

Homogeneous and heterogeneous multicomponent diffusion obtained when a layer of 

NaCl at the concentration of 2.637 mol.L-1 is brought into contact with a layer of Na2SO4 

at the concentration of 1.484 mol.L-1 represented on Fig. 3.28 proved to be very different.  

  

a) b) 

   

c) d) 

Figure 3.28: Evolution of the molality of ions when a layer of a NaCl solution (2.637 mol.L-1) is 
brought in contact with a Na2SO4 solution (1.484 mol.L-1) at the homogenous temperature of 25 °C 

in the case of a) Homogeneous multicomponent diffusion after 10 minutes of diffusion, b) 
Homogeneous multicomponent diffusion after 1 hour of diffusion, c) Heterogeneous 

multicomponent diffusion after 10 minutes of diffusion and d) Heterogeneous multicomponent 
diffusion after 1 hour of diffusion 

In the case of homogeneous multicomponent diffusion, the evolution of the concentration 

inside the column after 10 minutes (Fig. 3.28-a) and 1 hour (Fig. 3.28-b) shows an 

intuitively expected behaviour: for each species, ions move from the more concentrated 

region towards the less concentrated one. This is also clearly visible on the evolution of 

the ionic strength over the column for different instants in Fig. 3.29-a. The results 

obtained for heterogeneous multicomponent diffusion inside the column after 10 minutes 
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(Fig. 3.28-c) and 1 hour (Fig. 3.28-d) present a non-intuitive behaviour, especially for the 

evolution of the concentration of the Na+ ions. We observe that the Cl- and SO42- ions 

diffuse from the more concentrated area to the less concentrated area. However, for Na+ 

ion, it is observed that in the first 10 minutes, before following the expected evolution, its 

concentration decreases in the upper part of the column instead of increasing, to become 

overconcentrated in the bottom part of the column, where it is initially most concentrated. 

This can be explained by the fact that Cl- ions, which have a high diffusion velocity, carry 

with them, the Na+ ions when diffusing downward, in order to respect the 

electroneutrality principle.  It is also possible that there is a play of charges during the 

diffusion, due to the valence of the ions that could affect the behaviour of the system. This 

overconcentration of Na+ ions towards the bottom of the column would have an impact 

on the evolution of the ionic strength as visible on Fig. 3.29-b.  

 

  

a) b) 

 

Figure 3.29: Evolution of the ionic strength profile as a funtion of time when a layer of a NaCl 

solution (2.637 mol.L-1) is brought in contact with a Na2SO4 solution (1.484 mol.L-1) at the 
homogenous temperature of 25 °C in the case of a) Homogeneous multicomponent diffusion  and 

b) Heterogeneous multicomponent diffusion. 

Fig. 3.30 illustrates the evolution of the density of the solution along the column as the 

diffusion process evolves. In the case of homogeneous multicomponent diffusion (Fig. 

3.30-a), the evolution of the solution density along the column over time does not reveal 

any instability. However, in the case of multicomponent diffusion (Fig. 3.30-b), the 

evolution of the density of the solution along the column over time reveals an inversion 

of the density of the solution in the lower half of the column during a certain time before 
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the onset of the expected evolution. This unexpected result is in very consistent with the 

convection patterns observed experimentally for this system (Fig. 3.20-b) since the 

invertion densities should initiate downward advective flows of the denser fluid and the 

corresponding upward adwective flows of the lighter fluid. These flows were not included 

in the numerical simulations performed in this study because of the no-flow option 

classically imposed in a priori diffusive-only closed systems. 

  

a) b) 

Figure 3.30: Evolution of the density of the solution over the column as a funtion of time when a 
layer of a NaCl solution (2.637 mol.L-1) is brought in contact with a Na2SO4 solution (1.484 mol.L-1) 
at the homogenous temperature of 25 °C in the case of a) Homogeneous multicomponent diffusion  

and b) Heterogeneous multicomponent diffusion. 

3.5 Superimposition of two aqueous layers of reactive salts 

When a CaCl2 aqueous solution is brought into contact with a Na2SO4 aqueous solution, 

the diffusive mixing is expected to provoke the precipitation of gypsum, whose chemical 

composition is CaSO4:2H2O. In the following sections, it is proposed to monitor the 

dynamics of such a process using the shadowgraph technique and to simulate it 

numerically for interpretating the observations. 

3.5.1 Experimental observations parallel to the gravity 

Using the same shadowgraph technique (shadowgraph setup#2), the reactive transport 

is investigated by superimposing three saline solutions in the same free-diffusion cell as 

shown previously on Fig. 1.18. The intermediate solution is meant to act as a buffer 

solution between the two reactive aqueous salt solutions. In this context, the cell is first 

filled with a solution of NaCl ( = 1.099 g.cm-3) with a concentration of 2.637 mol.L-1. Once 

the filling of NaCl is completed, the solution of Na2SO4 ( = 1.169 g.cm-3) at a concentration 
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of 1.484 mol.L-1 is injected from the bottom, while the solution of CaCl2 ( = 1.039 g.cm-3) 

at a concentration of 0.46 mol.L-1 is injected from the top by means of two outlets 

connected with the syringe pumps at a flow rate of 2×1 mL/min. The two inlet reservoirs 

are kept at a same level in order to equalize the flow of the two saline solutions. Once the 

required amounts (3/8 of the cell) of Na2SO4 and CaCl2 have been injected from the 

bottom and the top, respectively, all the inlets and outlets are closed immediately.The 

diffusion then starts, while an isothermal or non-isothermal state is maintained between 

the cell by means of temperature controllers. 

The thickness a of the intermediate layer (Fig. 1.18) is therefore 1/4 of the cell. The 

thicknesses of the top and bottom layers are 𝑙1 = 𝑙2 = 3/8 𝑐𝑚, with a precision given by: 

 
∆𝑙𝑖 =

4

𝜋𝑑2
∆𝑉𝑎𝑠𝑝 

(3.5) 

where 𝑑 = 20 𝑚𝑚 is the internal diameter of the cell and Vasp are the volumes aspirated 

by the syringes of the syringe pump. The precision on the aspirated volumes, ∆𝑉𝑎𝑠𝑝, is 

estimated to be 0.5 mL, which gives ∆𝑙1 ≈ 0.2 𝑚𝑚 and ∆𝑎 ≈ 0.4 𝑚𝑚. The relative 

uncertainty on the thickness of the intermediate layer is therefore estimated to be 16%. 

The onset time of the precipitation is estimated with the formula: 

 
𝑡𝑝 =

𝑎2

𝜋𝐷
≈ 34 𝑚𝑖𝑛 

(3.6) 

where D = 9.73×10-6 cm2/s. We have estimated the D value assuming a homogeneous 

diffusion and calculating it with an harmonic mean of the diffusion coefficients of the salts, 

weighted by their molal concentrations. The accuracy of the precipitation time is 

estimated by: 

 
∆𝑡𝑝 = 2𝑡𝑝

∆𝑎

𝑎
≈ 10 𝑚𝑖𝑛. 

(3.7) 

Taking into account the experimental set-up used and the filling method practiced, we 

estimate the time of appearance of gypsum in the cell to range between 20 and 40 

minutes.  
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In Fig. 3.31-a, we report the contrast of the images as a function of time and for different 

moments after closing the valves for the isothermal case at 25 °C. 

  

a) b) 
Figure 3.31: a) Contrast of shadowgraph image sequences 𝑪(𝒕) as a function of time and for 

different moments after closing the valves in the case of the superimposition of the three layers at 
homogenous temperature of 25°C; b) normalized image differences 50 minutes after closing the 

valves. 

In the early stages, a strong variation in the contrast of the images is associated to 

convection patterns (dashed ligne in Fig. 3.31-a), a result that is consistent with the 

observations made on the relative dissolution of NaCl in Na2SO4. Then the contrast 

decreases very quickly. It increases sharply again after 40 minutes. This rapid variation 

in contrast is associated with the appearance of diffraction spots as shown in Fig. 3.31-b 

that we associate with the onset of precipitation. 

As shown in Fig. 3.32, direct observation of the shadowgraph images reveals that a solid 

phase appears from the cell periphery after 1h, and which grows inwards the cell. 

 

Figure 3.32: Full resolution shadowgraph images 1 hour to 2h20 after closing the valves in the case 
of the superimposition of the three layers at homogenous temperature of 25 °C. 
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When a vertical and positive thermal gradient is applied, convection patterns appear at 

the first moments with a variable intensity (dashed lines in Fig. 3.33-a, b and c). The onset 

time of precipitation tp, which corresponds to an increase in the contrast of the images 

associated to the sudden appearance of diffraction spots, is indicated on Figs. 3.33-a, b, c 

and d. 

  

a) T = 5°C b) T = 20°C 

  

c) T = 30°C d) T = 35°C 

Figure 3.33: a) Contrast of shadowgraph image sequences 𝑪(𝒕) as a function of time and for 
different moments after closing the valves in the case of the superimposition of the three layers 

with a vertical difference of temperature ∆T across the cell. 

For ΔT = 20°C, the experiments were repeated twice. The results are shown in Fig. 3.34. 

  



 

111 
 

Figure 3.34: Repetition of the superimposition of the three layers with a vertical difference of 
temperature ∆T = 20°C  across the cell (contrast of shadowgraph image sequences 𝑪(𝒕) as a 

function of time and for different moments after closing the valves). 

Regardless of the thermal gradient applied, the onset time of precipitation all ranged 

between 40 and 80 min. On the basis of the observations made, by analysing the evolution 

of the image contrast as a function of time, we can conclude that the applied thermal 

gradient did not have a noticeable influence on the onset time of precipitation. Moreover, 

it can be noted that the precipitation times measured experimentally are systematically 

higher than the precipitation times predicted on the basis of a calculation assuming 

homogeneous diffusion (see Eq. 3.6). 

3.5.2 Numerical modelling 

To remain roughly in the same proportions as the experimental configuration, we defined 

the mesh as represented in Fig. 3.35. The column has a height of h = 0.01 m as our 

experimental diffusion cell, which is subdivided into 20 cells ( 5×10-4 m) of equal length 

in order to have detailed information on the phenomena that may occur in the column.  

Inside the column, the superimposition of the 3 layers is organised as follows: the top of 

the column is filled with the aqueous solution of CaCl2 ( = 1.039 g.cm-3) at a concentration 

of 0.475 mol.kg-1 and the bottom of the column is filled with the solution Na2SO4 ( = 1.169 

g.cm-3) at a concentration of 1.548 mol.kg-1. Each layer of solution is distributed over 7 

cells whose total height is 3.5×10-3 m. The buffer solution (NaCl,  = 1.099 g.cm-3 with a 

concentration of 2.792 mol.kg-1) is set between the two reactive aqueous salts solutions 

and is distributed over 6 cells whose total height is 3×10-3 m. 

 

Figure 3.35: Mesh of the numerical modelling of the superimposition of a layer of a CaCl2 solution 
(0.46 mol.L-1) with a layer of a Na2SO4 solution (1.484 mol.L-1) separated by a layer of NaCl solution 

(2.637 mol.L-1). 
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The closed boundary conditions is applied. The activity model used is the interaction 

model based on the Pitzer formalism, which is suitable for our complex chemical system 

with high salinity. The diffusive flux is calculated with both homogeneous and 

heterogeneous multicomponent diffusion for comparison. The diffusion coefficient 

defined for calculations in the case of the homogeneous multicomponent diffusion is 𝐷 =

1.40 × 10−9 m².s-1.  The appropriate parameters to account for gypsum precipitation from 

a numerical point of view are the saturation index and the amount the mineral (gypsum) 

formed over time. 

For the isothermal case at homogenous temperature of 25 °C, the results are shown in Fig. 

3.36. 

  

a) b) 

  

c) d) 

Figure 3.36: Evolution of the profile of the saturation index of gypsum as a funtion of time at 25 °C 
and isothermal case ΔT = 0 °C a) homogeneous multicomponent diffusion, c) heterogeneous 

multicomponent diffusion. Evolution of the total amount of precipitated Gypsum along the column 
as a funtion of time: b) homogeneous multicomponent diffusion, d) heterogeneous 

multicomponent diffusion. 
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The dashed lines represent the interface where the buffer solution (NaCl) was initially 

present. Of course, this interface evolves with time. The saturation index in the case of 

homogeneous and heterogeneous multicomponent diffusion presents an asymmetric 

behaviour with respect to the interface as can be seen on Fig. 3.36-a and c. According to 

these curves, one can note that gypsum precipitates much more quickly in the case of 

homogeneous multicomponent diffusion than in the case of heterogeneous 

multicomponent diffusion. This is clearly visible in Fig. 3.36-b and d, which represent the 

quantity of gypsum formed along the column when the solution becomes supersaturated 

with the mineral phase. We can see that gypsum starts to precipitate after 10 minutes in 

the case of homogeneous multicompoent diffusion, whereas the preicipitation appears 

after 40 minutes in the case of heterogeneous multicompoent diffusion. The latter is 

rather in agreement with the experimental observations.  

When a positive thermal gradient is applied, the diffusive flux calculated via the 

homogeneous multicomponent diffusion presents some limits because, in PhreeqC, the 

diffusion coefficient is not corrected for changes of temperature. Therefore, an impact of 

the thermal gradient is not expected in the case of homogeneous multicompenent 

diffusion. In the case of heterogeneous multicomponent diffusion, the diffusion coefficient 

is temperature corrected according to Eq. 2.52.  

Before applying any temperature gradient to the column, it is important to know the 

transition temperature between gypsum (CaSO4:2H2O) and anhydrite (CaSO4) for the 

studied system. Indeed, in contact with an aqueous solution, gypsum can dehydrate and 

turn into anhydrite above a transition temperature whose value depends not only on the 

type of electrolyte involved, but also on the salinity. This has been shown experimentally 

in the context of CO2 storage by Pironon et al. [193]: the evaporation of water into the rich 

sCO2 phase increases the salinity of the solution and provokes gypsum dehydration at 

temperatures lower than in pure water. Therefore, in order to know this transition 

temperature, we studied the curve of the saturation indices of these two minerals as a 

function of the temperature for each saline solution used in the diffusion column.  
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Figure 3.37: Saturation indices of gypsum and anhydrite in binary aqueous Na2SO4, NaCl and CaCl2 
solutions at equilibrium with the most stable of the two phases over the temperature range 20 to 
70 °C. The size of the boxes on the right side of the chart is indicative of the salinity of the aqueous 

solutions. 

According to Fig. 3.37, the transition temperature between gypsum and anhydrite 

decreases with the increase of the concentration. In fact, for the solution of CaCl2 at a 

concentration of 0.475 mol.kg-1, the transition temperature, represented by intersection 

of the magenta and black lines, is around 54 °C. For the solution of Na2SO4 at a 

concentration of 1.548 mol.kg-1, the transition temperature, represented by the 

intersection of the red and green lines, is around 52 °C. For the solution NaCl at a 

concentration of 2.792 mol.kg-1, the transition temperature, represented by the 

intersection of the blue and yellow lines, is around 48 °C. The chemical system of interest 

is at an average temperature of 25 °C. Applying temperature gradients of ΔT = 5, 20, 30 or 

35 °C does not shift the system outside the stability domain of gypsum.  

To observe whether there are relevant effects of the temperature gradient in the case of 

heterogeneous multicomponent diffusion, one representative parameter is the quantity 

of gypsum formed along the column represented in Fig. 3.38. 



 

115 
 

  

a) T = 5°C b) T = 20°C 

  

c) T = 30°C d) T = 35°C 

Figure 3.38: Evolution of the total amount of Gypsum precipitated along the column as a funtion of 
time in the case of heterogeneous multicomponent diffusion for different temperature gradients. 

From Fig. 3.38, we observe that whatever the temperature gradient applied, the 

precipitation of gypsum appears after about 40 minutes as we observed in the case of 

isothermal diffusion. Furthermore, the amount of gypsum that forms at any given time is 

almost the same, regardless of the temperature gradient. Based on these results, we can 

conclude that the applied thermal gradient did not have a noticeable influence on the 

precipitation of gypsum. This result is in good agreement with the experimental 

observations. 
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3.5.3 Experimental observations perpendicular to the gravity 

The experimental setup works like interferometric techniques but is still based on the 

shadowgraphy technique like in the previous configuration.  The difference lies in the path 

of the light beam that passes through the diffusion cell in a lateral way, perpendicular to 

the gravity, in order to have a lateral visualization of what is happening in the diffusion 

cell. The principle scheme is illustrated in Fig. 3.39. 

 

Figure 3.39: working principle of the transversal configuration of the shadowgraphic device. 

In this configuration, the entire light beam passes horizontally through the diffusion cell, 

and, unlike interferometric methods, there is neither a beam spliter nor a reference beam. 

A super-luminescent diode (Super Lumen, SLD- MS-261-MP2-SM,  = 67513nm) is 

connected to a single-mode optical fiber. The divergent beam at the output of the fiber is 

collimated by an achromatic doublet lens (focal length f = 150 mm, and diameter 

 = 50.8mm). After passing through the diffusion cell the light beam is reflected on a 

mirror and is re-collimated by a second converging lens to form a shadowgram captured 

by a CCD PIKE camera. 

A new diffusion cell (Fig. 3.40) was specifically designed to fit with this configuration. Like 

the previous diffusion cell sketched in Fig. 3.2, this cell allows putting into contact two 

layers of two different liquid mixtures or two solutions made of the same compounds at 

different concentrations, thus creating an initial step concentration gradient at uniform 

temperature while providing horizontal optical access to a central area. The diffusion cell 

in Fig. 3.40 consists of a metal cylinder with internal and external diameters of 15 mm and 

25 mm, respectively, and a vertical thickness of h = 10 mm. This metal cylinder hosts four 
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holes: two for fluid inlets at 180° in the vertical plane and at mid-height of the cell in the 

vertical direction and two for fluids outlets at 180° in the horizontal plane and at mid-

height of the cell in the vertical direction. This cell does not allow temperature gradients 

to be imposed. The metal cylinder is designed to accommodate two sapphire windows, 

one on each horizontal side with a groove for a Viton® O-ring to prevent leakage. All the 

elements are clamped with two aluminium blocks (with the same central circular 

aperture).  The two connectors for fluids outlet are connected to 2 syringes, each well 

attached to a syringe pumps. 

 
Figure 3.40: 3D drawing of the diffusion cell for the transversal configuration of the 

shadowgraphic device. 

The filling of this diffusion cell is performed at a controlled rate using syringe pumps that 

act as outlet reservoirs, and contain NaCl solution. First, the syringe pumps infuse the 

buffer solution of NaCl ( = 1.099 g.cm-3) with a concentration of 2.637 mol.L-1 until the 

cell is completely filled (Fig. 3.41-a).  The two inlet reservoirs (containing CaCl2 and 

Na2SO4) are kept at a same level with the syringe pumps in order to equalize the flow of 

the two saline solutions (Fig. 3.41-b). Then, the syringe pumps withdraw the NaCl solution 

initially present in the cell at a flow rate of 2×1 mL.min-1, allowing the simultaneous 

injection of CaCl2 ( = 1.039 g.cm-3) at a concentration of 0.46 mol.L-1 from the top and the 

solution of Na2SO4 ( = 1.169 g.cm-3) at a concentration of 1.484 mol.L-1 from the bottom 

(Fig. 3.41-d). Because, the length of the capillary tubes of the inlet reservoir is not the 

same, CaCl2 solutions arrives first in the cell (Fig. 3.41-c). After each syringe has aspirated 

2 mL more of NaCl solution, the valves are closed (Fig. 3.41-e) and we obtain a well 

stratified superimposition of the 3 layers, clearly visible in Fig. 3.41-f. The layer of the 

buffer solution being thick, we reduce it by further aspiration of 3 ml of NaCl solution by 

each syringe pump. (Fig. 3.41-g). It is important to note that the total volume aspirated 
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from the syringe pumps does not correspond to the total volume directly aspirated from 

the diffusion cell. The volume of capillary tubes and dead volumes must be taken into 

account to have the real volume of each layer of solution in the diffusion cell. Few minutes 

later after closing the valves, we observe some dark spots (kind of crystals) in the view 

field, only located in the upper part of the cell (Fig. 3.41-h). If we refer to the solutions 

involved and to the temperature and pressure conditions (25 °C and 1 atm), we can 

assume that these crystals correspond to Gypsum precipates. Few minutes later, the 

precipitate of Gypsum is more and more visible and appears preferentially in the upper 

part of the cell (Fig. 3.41-i). The day after the mixture has reached its equilibrium state, a 

part of the Gypsum formed falls into the bottom of the cell (Fig. 3.41-j).  

 

 

 

 a) Cell completly filled with 
NaCl solution 

 

   

b) the four valves are 
open to allow the 
circulation of fluids 
 

c) Arrival of CaCl2 solution 
from the top: 1ml were 
aspirated 
 

d) Arrival of Na2SO4 solution 
from the bottom: 1ml were 
aspirated 
 

 

 

  

e) 22ml aspirated; All the 
valves are closed  
 

f) Fiew minutes later:  
3 layers of salutions 

g) The valves are opened, 
then aspiration of  23ml   
 



 

119 
 

   

h) The valves are closed, 
few minutes later: 
Appearance of a 
precipitate 
 

i) Few minutes later: the 
precipitate is more and more 
visible 
 

j) The day after 

 

Figure 3.41: Full resolution shadowgraph images after closing the valves in the case of the 
superimposition of the three layers at homogenous temperature of 25 °C. 

In the following paragraph, we propose to give a numerical interpretation of the results 

obtained experimentally. 

3.5.4 Numerical modelling 

The conditions of the simulation are the same as in the previous case. The main difference 

lies in the description of the mesh. In the present case, the thickness of the buffer solution 

is thinner while the thickness of the layers of CaCl2 and Na2SO4 solution are greater than 

in the previous case. Here, the top of the column is filled with the aqueous solution of CaCl2 

and the bottom of the column is filled with the solution of Na2SO4. Each solution is 

distributed over 9 cells whose total height is 4.5×10-3 m. The buffer solution is set between 

two reactive aqueous salts solutions and is distributed over 2 cells whose total height is 

1×10-3 m. Fig. 3.42 shows the initial concentration profile, where three layers of aqueous 

CaCl2, NaCl and Na2SO4 solutions are superimposed in a 1D column at homogenous 

temperature and pressure of 25 °C and 1 atm, respectively. The dashed lines delimitate 

the buffer solution interface located between the two reactive aqueous saline solutions. 
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Figure 3.42: Initial concentration profile within the simulated column, at the homogenous 
temperature of 25 °C and 1 atm. 

The system is allowed to diffuse over time and the diffusive flux is calculated with both 

homogeneous and heterogeneous multicomponent diffusion for comparison. 

  

a) b) 

  

c) d) 

Figure 3.43: Evolution of the molality of ions when layers of binary aqueous CaCl2, NaCl and Na2SO4 

solutions are superimposed at the homogenous temperature of 25 °C in the case of a) 
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Homogeneous multicomponent diffusion after 10 minutes of diffusion, b) Homogeneous 
multicomponent diffusion after 1 hour of diffusion, c) Heterogeneous multicomponent diffusion 

after 10 minutes of diffusion and d) Heterogeneous multicomponent diffusion after 1 hour of 
diffusion 

Fig. 3.43 is a comparison between homogeneous and heterogeneous multicomponent 

diffusion of the superimposition of the three layers of binary aqueous CaCl2, NaCl and 

Na2SO4 solutions along the column after 10 and 60 minutes of diffusion. The evolution of 

the concentrations follows an intuitively expected behaviour in the case of homogenous 

diffusion while it follows a non-intuitive behaviour in the case of heterogeneous 

multicomponent diffusion in comparison with the initial state in Fig. 3.42. This is directly 

related to the superimposition of two non-reactive salts described in section 3.4.2. One 

can note that in all the cases, the concentration of Ca2+ ions decreases well in the upper 

part of the column where it was initially present, but tends to vanish close to and below 

the initial location of the upper interface as the diffusion process evolves. This means that 

the Ca2+ reacts with SO42-, which, in comparison, is in excess in the medium. This is the 

reason why the concentration of SO42-increases in the upper part of the cell while that of 

Ca2+ tends to vanish. Moreover, we can see that, after 10 minutes of diffusion, the point of 

equal concentration between Ca2+ and SO42- is at the upper limit of the interface but closer 

to the interface in the case of heterogeneous multicomponent diffusion (Fig. 3.43-c) than 

in the case of homogeneous multicomponent diffusion (Fig. 3.43-a). This point of equal 

concentration further moves upwards after 1 hour, and remains closer to the interface in 

the case of heterogeneous multicomponent diffusion (Fig. 3.43-d) than in the case of 

homogeneous multicomponent diffusion (Fig. 3.43-b). This is already indicative of the 

location where we expect to have the formation of the gypsum in both cases. 

For a same diffusion time, 1 hour for example (Fig. 3.43-b and Fig. 3.43-d), the diffusion 

of ionic species reaches the equilibrium state faster in the case of homogeneous diffusion 

than in the case of heterogeneous diffusion. This is clearly visible in Fig. 3.44 that 

illustrates the evolution of the ionic strength along the column for differtent moments 

after the beginning of the diffusion. Fig. 3.44-a, shows that the system is close to the 

equilibrium state after 10 hours (600 minutes) in the case of homogeneous diffusion. In 

contrast, Fig. 3.44-b shows that the diffusion process still evolves for the same instant in 

the case of heterogeneous diffusion. Therefore, according to the behaviour of the ionic 

strength, heterogeneous multicomponent diffusion slows down the simulated diffusion 

process compared to homogeneous diffusion. 
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a) b) 

Figure 3.44: Evolution of the ionic strength profile as a funtion of time when layers of binary 
aqueous CaCl2, NaCl and Na2SO4 solution are superimposed at the homogenous temperature of 

25 °C in the case of a) homogeneous multicomponent diffusion and b) heterogeneous 
multicomponent diffusion. 

It is interesting to note that the ionic strength presents an asymmetric behaviour with 

respect to the initial ionic strength both in homogeneous and heterogeneous 

multicompent diffusion conditions. The presence of those 3 saline solutions offers a lot of 

degrees of freedom to each ionic species. The evolution of the ionic strength therefore 

depends on the way in which the ions move. It is important to remember that the ionic 

strength depends on the molality but also on the square of the charge of each species.  

To have a precise location where the gypsum precipitates, the appropriate parameters 

are the saturation index and the amount the mineral (gypsum) formed over time. 

  
a) b) 
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c) d) 
Figure 3.45: Evolution of the profile of the saturation index of gypsum as a funtion of time a) 

homogeneous multicomponent diffusion, c) heterogeneous multicomponent diffusion. Evolution of 
the total amount of pure Gypsum in the pure phase assemblage along the column as a funtion of 
time: b) homogeneous multicomponent diffusion, d) heterogeneous multicomponent diffusion. 

The saturation index in the case of homogeneous and heterogeneous multicomponent 

diffusion presents an asymmetric behaviour with respect to the interface as can be seen 

on Fig. 3.45-a and c. According to these curves, one can note that the precipitation of 

gypsum is preferentially located in the upper part of the column as we observed 

experimentally in Fig. 3.41. However, from Fig. 3.45-a and c, gypsum seems to precipitate 

also in the lower part of the column after 600 minutes (SI  0 along the whole column). It 

is actually not the case, and it is simply due to an effect of scale. This is clearly visible in 

Fig. 3.45-b and d, which represents the quantity of gypsum formed along the column when 

the solution becomes supersaturated with the mineral phase. It is easily visible that 

gypsum preferentially precipitates in the upper part of the column wether in 

homogeneous (Fig. 3.45-b) or heterogeneous (Fig. 3.45-d) multicompent diffusion 

conditions. However, as observed with the evolution of the molalities, the precipitation of 

gypsum is closer to the interface in the case of heterogeneous multicompent diffusion 

than in the other case. Moreover, the quantity of the mineral formed is greater in 

homogeneous diffusion than in heterogeneous diffusion over a period of one hour. 

Nevertheless, the amount of mineral formed in the case of homogeneous diffusion slows 

down towards the end as equilibrium is approached. 

Whether in homogeneous or heterogenous multicomponent diffusion, the gypsum 

precipitates preferentially in the upper part of the column. This result is in very good 

agreement with the experimental observations. It is therefore difficult to decide which of 

these conditions is preferable. However, we have previously shown that the results 
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obtained with heterogeneous multicomponent diffusion were consistent with the 

instabilities found in the diffusion cell since the constitutive equations (Eq. 2.48 to 2.52) 

better describe the interactions between all ionic species involved. Heterogeneous 

multicomponent diffusion has a significant effect on the simulated behaviour of the 

system despite being in a free (but static) aqueous system. In a real complex 

multicomponent system with other minerals, the consequences can be a shift of the level 

of the precipitation of a given mineral, leading to a possible modification of a reaction 

path. The results show that it would be necessary to be very precise on the sensitive areas 

where the system is very reactive because there can be non-intuitive behaviour. 

Heterogeneous multicomponent diffusion therefore has a significant particular interest. 

For this configuration, the temperature gradient was not imposed and the reactions 

occurred under isothermal conditions at homogeneous temperature of 25 °C. However, it 

would be interesting to know if with a thinner layer of buffer solution, the temperature 

gradient could have a significant impact on the system. As already explained, applying 

temperature gradients of ΔT = 5, 20 or 30 °C does not shift the system outside the stability 

domain of gypsum. To observe whether or not there are relevant effects of the 

temperature gradient, one representative parameter is the quantity of gypsum formed 

along the column. 

 

  

a) T = 0 °C b) T = 5 °C 
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c) T = 20 °C d) T = 30 °C 

Figure 3.46: Evolution of the total amount of pure Gypsum in the pure phase assemblage over the 
column as a funtion of time in the case of heterogeneous multicomponent diffusion for different 

temperature gradient. 

Fig. 3.46 shows that whatever the temperature gradient that is applied to the column, this 

does not seem to have a significant influence on the precipitation of the gypsum, and this 

over a period of up to one hour of diffusion. Over time, a slight effect on gypsum 

precipitation can be noticed: the greater the temperature gradient, the greater the 

quantity of mineral formed at greater times. But, this strongly depends on the thickness 

of the the buffer solution. 

 

3.6 Conclusion 

We have developed a diffusion cell that allows superimposing vertically 2 to 3 layers of 

salt solutions of different concentrations and different chemical composition, and 

studying the mass transport phenomena that take place in the cell. The characterization 

technique lies on the analysis of the light scattered by the NEFs that establish during the 

diffusion process of the solutes. The cell was installed in an optical shadowgraphy device. 

Two Peltier elements placed at each vertical end of the cell allow regulating the 

temperature and applying a vertical thermal gradient parallel to the gravity field. Series 

of shadowgraphy images are recorded as a function of time for a fixed acquisition 

frequency. The SF of the images is then calculated at different times during the diffusion 

process. The analysis setup and methodology was calibrated using the molecular solution 

of TEG and water, and aqueous solutions of NaCl, CaCl2 and Na2SO4. In order to obtain a 

mono-exponential behaviour and a constant background level of the SFs, it was found 

preferable to consider solutes concentrations away from the saturation with respect to 
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the solid salts. A subsequent fitting of the decay times of the c-NEFs allowed us to calculate 

the diffusion coefficients of the dissolved salts in water, which are in good agreement with 

the literature data. The effect of external temperature gradient is also considered in case 

of free-diffusion experiments of NaCl/water and approximately same results were 

obtained as compared to the isothermal free-diffusion experiments for the same 

NaCl/water mixture, suggesting that the thermal gradient does not have a significant 

effect on the relaxation mode of the system. 

A superimposition of two aqueous layers of non-reactive and reactive salts was possible 

in the diffusion cell and the dynamics of the relaxation was studied by the shadowgraphy 

technique. The numerical interpretation of the results was performed using the PHREEQC 

modelling tool. The diffusive flux is calculated by two methods: First, a homogeneous 

multicomponent diffusion that is characterised by the fact that all the species involved in 

the mixture diffuse with a same diffusion coefficient (not corrected for changes of 

temperature). Second, a heterogeneous multicomponent diffusion was considered, where 

the species have individual temperature-dependent diffusion coefficients and coupled 

interactions with the others dissolved salts. 

The dynamics of relaxation of the system formed by the diffusion of an aqueous solution 

of CaCl2 into an aqueous solution of NaCl resulted in the appearance of some diffraction 

spots on the image differences. The numerical modelling with PHREEQC software, either 

considering homogeneous or heterogeneous multicomponent diffusion, does not reveal 

any instability (due to vertical inversion of density) that could justify the presence of 

diffraction spots observed experimentally during the mixing process. As for the diffusion 

of an aqueous solution of NaCl into an aqueous solution of Na2SO4, the dynamics of 

relaxation of the system observed experimentally clearly present the formation of 

convection patterns at the very early moments, and that fade with time. Numerical 

simulations assuming heterogeneous multicomponent diffusion allowed explaining the 

observed convective instability by revealing a density inversion near the interface in the 

early instants, before following the expected evolution. 

For the superimposition of two reactive salts, a layer of an aqueous solution of CaCl2 was 

brought into contact with a layer of an aqueous solution of sodium sulfate, separated by 

an intermediate layer of an aqueous solution of NaCl in order to delay the appearance of 

gypsum. For the experimental observations parallel to the gravity, we observed that the 

precipitation time strongly depends on the thickness of the the buffer solution which 
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controls the diffusion distance that ions have to cross. For a buffer thickness of 1/4 cm, 

we estimated with a homogenous diffusion hypothesis the time of appearance of gypsum 

in the cell to be between 20 and 40 minutes. This range of the estimated precipitation time 

seems to be large. This is due to the fact that our cell is relatively small. Therefore, from 

one experiment to another, if the volume drawn in varies slightly, there will be a large 

uncertainty because the precipitation time varies with the square of the thickness of the 

buffer solution. We observed a strong variation in the contrast of the images in the early 

stages, which is associated to convection patterns. This result was consistent with the 

observations made when superimposing two non-reactive salts of NaCl and Na2SO4. When 

applying thermal gradients of ΔT= 5, 20, 30 and 35 °C perpendicularly to the interface, the 

onset time of precipitation all ranged between 40 and 80 min. The analysis of the 

evolution of the contrast of the image as a function of time revealed that the thermal 

gradient did not have a noticeable influence on the onset time of precipitation. For this 

experiment, the numerical interpretation shows that the precitation of gypsum appears 

after about 10 minutes in the case of homogeneous multicomponent diffusion whereas it 

appears after about 40 minutes in the case of heterogeneous multicomponent diffusion. 

Results obtained with the latter approach are consistent with the convection patterns that 

have been observed experimentally. Morever, as we observed experimentally, the 

numerical interpretation reveals that the temperature gradient did not have a noticeable 

influence on the precipitation of gypsum.  

As for the location where the gypsum is formed in this system of three electrolyte layers, 

experimental observations perpendicular to the gravity (lateral observations), by the 

shadowgraphy technique, showed that the precipitation takes place in the initial layer of 

CaCl2 solution, close to the interface with the NaCl solution. The numerical modelling of 

this configuration has made it possible to account for the experimental observations both 

in the case of homogeneous and heterogeneous multicomponent diffusion of this 

configuration. However, from a general point of view, heterogeneous multicompent 

diffusion well account the behaviour of electrolytes in solution in a multicomponent 

system. Indeed, it integrates all the interactions between the species, unlike homogeneous 

multicomponent diffusion that only depends on the concentration gradient and on the 

diffusion coefficient. In a complex multicomponent system, with large concentrations, 

either in free or in porous medium, we recommend to consider the heterogeneous 
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multicompent diffusion. Thus, for the next chapter, only the heterogeneous multicompent 

diffusion is considerered. 
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Chapter 4 : Numerical modelling of the reactive transport 
process induced by the CO2 storage in a deep saline aquifer 

4.1 Conceptual scheme 

This chapter aims to apply the results obtained in the previous chapter to a more realistic 

and more complex context that is sketched in the conceptual diagram presented in 

Fig. 1.15 of chapter 1. As a reminder, our conceptual scheme is based on the principle that 

we consider in the porous medium a preferential flow of the injected CO2 in the pores 

characterized by a high permeability, and which are in contact with pores of lower 

permeability that contain brine trapped in the pore space. With a continuous evaporation 

of brine in the injected CO2 stream, the salt concentration is expected to increase at the 

evaporation front inducing backflows (capillary effects) of the brine with salt diffusion 

and geochemical reactions. Indeed, this will generate a high concentration gradient in the 

weakly permeable porous media and will lead to a ‘’retro diffusion’’ process. Over time, 

when the salt concentration eventually reaches the solubility threshold of a given mineral, 

the latter may precipitate at the evaporation front [194]. The results we obtained in the 

previous chapters, namely the significance of the heterogeneous multicomponent 

diffusion at cm scale, is applied to a formation water representative of the saline solutions 

found in real deep reservoirs intended for CO2 storage. In this context, stronger 

constraints are brought by the local mineralogy. Our study more specifically focuses on 

the deep carbonate reservoir of the Dogger aquifer (Paris Basin, France). 

The geology of the Dogger aquifer is well established and its petrophysical characteristics 

have been taken from the literature [195]. This aquifer has already been the subject of 

several studies. Particularly, André et al. [50] studied the physical and chemical impact of 

CO2 injection on the properties of the carbonate Dogger aquifer through numerical 

simulations using the reactive transport code TOUGHREACT [196], [197]. Their work 

focused on the evaluation of the evolution of the geochemical reactivity induced by 

injection of CO2 both in time and space, at the interface between the supercritical CO2-rich 

phase and the brine phase. However, in their study, the geometry of the Dogger aquifer 

was modelled on a very large scale with a mesh made with a thickness of 20 m and a 
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maximum radial extent of 100 km. In this thesis, our interest is rather on the transport 

phenomena at the pore scale. Therefore, this chapter focuses on reactive transport 

phenomena at the interface between the supercritical CO2 and the brine of the Dogger 

aquifer. The simulations of the transport at the pore scale presented in this part is 

performed using the PHREEQC program already described in Chapter 2. In the previous 

chapter, we demonstrated that the heterogeneous multicomponent diffusion approach is 

well suited to describe the behaviour of the complex multicomponent the system of 

interest. Therefore, only heterogeneous multicomponent diffusion is taken into account 

in order to simulate the 1D-flow path diffusion.  

Moreover, we have studied the effect of a strong temperature gradient on the diffusion 

phenomena via laboratory experiments and numerical simulations. By imposing different 

temperature gradients of ΔT = 5, 20, 30 and 35 °C on a cell/column of 1 cm, the 

temperature gradient did not seem to have a significant effect on the behaviour of the 

system. This was observed both experimentally with shadowgraphy and numerically with 

PHREEQC. Futhermore, in an aquifer like the Dogger, we would not expect to have a strong 

temperature gradient during CO2 injection at the pore scale. Nevertheless, even if there is 

a strong thermal gradient at the pore scale under reservoir conditions, this cannot be 

maintained over time. To demonstrate this assertion, we determined the evolution of the 

temperature profile in the Dogger aquifer whose initial reservoir temperature is 75 °C 

and which would be in contact with a flow of CO2 whose temperature is set to 40 °C. To 

solve this problem, we consider a heat transfer by conduction in a simple mono-

dimensional system when the temperature at one side of a system (here, the reservoir) is 

suddenly changed (arrival of the cold supercritical CO2) from its initial value and kept 

constant at this side. 

This is a configuration of a transient nature where there will be a heat transfer between 

the boundary and the initial system to gradually achieve an equilibrium temperature in 

the system over time as a function of distance. The solution to this problem of conduction 

from a limit at constant temperature is defined by the following equation: [198], [199] 

 𝑇 − 𝑇𝑖

𝑇0 − 𝑇𝑖
= 𝑒𝑟𝑓𝑐 (

𝑥

2 ∙ √𝛼 ∙ 𝑡
) (4.1) 
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where T0 (°C) is the temperature imposed at the limit (40 °C), Ti (°C) is the initial 

temperature of the system (75 °C), T (°C) is the temperature at a distance x (m) from the 

system limit at a time t (s) after the temperature change at the limit, and α is the thermal 

diffusivity of the system (m²/s). The thermal diffusivity is the ratio between the volume 

heat capacity ρ∙c (ρ and c stand for density and specific heat of the rock, respectively) and 

the overall thermal conductivity λ, and is defined by [200] : 

 
𝛼 =

𝜆

𝜌 𝑐
 (4.2) 

 

This solution (Eq. 4.1) makes it possible to represent the temperature distribution as a 

function of distance for different instants or as a function of time for different distances. 

In order to draw the temperature profile, it is therefore necessary to calculate the thermal 

diffusivity α. The physical rock properties of the Dogger are well known, with a formation 

heat conductivity of 2.51 W(m °C) -1, a rock grain specific heat of 920 J (kg °C )-1 and a rock 

grain density of 2600 kg.m-3 [50]. This leads to a thermal diffusivity of 0.758 × 10−6 m².s- 1 

according to Eq. 4.2. The thermal properties in a two-phase (solid and pore fluid) system 

can also be calculated using different models:  

 The geometric-mean model originally introduced in 1924 by Lichtenecker [201], 

is used for the calculation of the matrix thermal conductivity λma from the thermal 

conductivity of the mineral constituents and the calculation of the water-saturated 

bulk thermal conductivity λb using the matrix thermal conductivity λma and the 

porosity  ∅ of the medium according to the equations :[200] 

 
𝜆𝑚𝑎 = ∏ 𝜆𝑖

𝑉𝑖

𝑛

1

 (4.3) 

 

where λi and Vi are the thermal conductivity and the volume fraction of a mineral i 

respectively. The thermal conductivity is a function of temperature and varies inversely 

with temperature [202], [203]. 

 𝜆𝑏 = 𝜆𝑚𝑎
1−𝛷𝜆𝑝

𝛷 (4.4) 

 

where λp is the thermal conductivity of the pore-filling fluid. 
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 The arithmetic-mean model, originally introduced by Voigt in 1928 [204] and 

Reuss in 1929 [205], is used to calculate the matrix  specific heat capacity ρmacma 

from the mineral constituents, as well as to calculate the saturated bulk specific 

heat capacity ρbcb using the matrix specific heat capacity and the porosity ∅ of the 

medium according to the equations :[200] 

 𝜌𝑏𝑐𝑏 = 𝑉𝑚𝑎𝜌𝑚𝑎𝑐𝑚𝑎 + 𝑉𝑝𝜌𝑝𝑐𝑝 (4.5) 

 

where V is the volume fraction, ρ is the density and c is the specific heat capacity for 

the rock matrix ‘ma’, for the pore-filling fluid ‘p’, and for each mineral component 

‘i’, respectively. 

By adding this value to Eq. 4.1, we can therefore plot the evolution of the temperature T 

as a function of the distance over time represented by Fig. 4.1 below 

  

a) b) 

Figure 4.1: Evolution of the temperature profile of the Dogger aquifer as a function of distance for 
different times with Eq. 4.1 whith a thermal diffusivity of 𝟎. 𝟕𝟓𝟖 × 𝟏𝟎−𝟔 m².s- 1. 

Fig. 4.1 represents the evolution of the temperature as a function of distance for different 

times. At t = 0, the initial temperature of the reservoir is 75 °C. Because the temperature 

of the flowing CO2 at the left limit of the system is 40°C, a very strong temperature gradient 

is set up from the first few centimeters (Fig. 4.1-a). This gradient evolves and fades over 

time. However, if we perform a zoom to size at the pore scale over a distance of 1 cm (Fig. 

4.1b), we observe that the thermal diffusion is quite fast. Indeed, after 10 hours, the 

temperature evolves linearly with distance, according to a low gradient, barely 1 °C·m- 1. 

Compared to mass diffusion, the thermal diffusion sets up very quickly and the 

temperature gradient is negligible at the pore scale. Consequently, one cannot envisage a 
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strong gradient that would be maintained at the pore scale and which would generate the 

coupling of the thermal gradient with the diffusive transport phenomena. In this chapter, 

we will only focus on reactive pore-scale mass transport at constant temperature. 

4.2 Dogger Aquifer properties 

4.2.1 Mineralogy of the basin 

The Paris basin is made up of sedimentary layers with large aquifers present at different 

depths, especially the Dogger aquifer which dates from the Jurassic. The Dogger aquifer 

extends over more than 15.000 km² and at approximately 1700 m deep, with a 

temperature ranging from 55 to 85 °C. The physical and geochemical properties of the 

Dogger aquifer zone on which our study relates has been already described in the 

literature [50], [195], so that here we just recall the main parameters used in the model.  

It has a mean porosity of 0.12 and the permeability is assumed to be spatially 

homogeneous at 10-13 m². The initial temperature and pressure for water formation are 

75 °C and 180 bars respectively. The mineralogy of the basin consists mainly of 

carbonates (85% in volume fraction of calcite, disordered dolomite and siderite) with 

alumino-silicates (Albite and K-Feldspar) and Illite. This initial mineral composition is 

given in volume fraction. However, the PHREEQC program uses the amount of substance 

(in mol). To convert the volume fraction %Vi to the amount ni of a mineral phase i, the 

following equation applies: 

 
𝑛𝑖 =

%𝑉𝑖 ∙ 𝑉𝑇

𝑉𝑚,𝑖
 (4.6) 

 

Where VT is the total volume of minerals, and Vm,i is the molar volume of each mineral 

phase. The porosity of the basin being 0.12, it means that for a rock volume of 1 L, we have 

0.12 L volume of empty pores and 0.88 L volume of minerals. The aqueous speciation with 

PHREEQC program gives a volume of empty pores (or volume of water formation) of 

Vpore= 1.0194 L in each cell of the simulation column. It means that the corresponding total 

volume of mineral phases is 7.4754 L in each cell. Therefore, the mineral composition is 

given in Table 4.1 below:  
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Table 4.1: Dogger aquifer mineralogy, amount of each mineral per 1.0194 L of saline water and list 
of minerals not initially present in the reservoir (amount = 0 mole) but likely to precipitate. 

Mineral composition (chemical formula) Volume fraction 
Amount of 

substance (mol) 

Calcite ( CaCO3 ) 0.70 141.81 

Disordered dolomite ( CaMg(CO3)2 ) 0.10 11.59 

Siderite ( FeCO3 ) 0.05 12.80 

Illite 
( (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10 [(OH)2,(H2O)] ) 

0.05 2.69 

Albite ( NaAlSi3O8 ) 0.05 3.37 

K-Feldspar or Microcline ( K(AlSi3)O8 ) 0.05 3.43 

Kaolinite ( Al2Si2O5(OH)4 ) 0.00 0.00 

Chalcedony ( SiO2 ) 0.00 0.00 

Magnesite ( MgCO3 ) 0.00 0.00 

Dawsonite ( NaAlCO3(OH)2 ) 0.00 0.00 

Anhydrite ( CaSO4 ) 0.00 0.00 

Halite ( NaCl ) 0.00 0.00 

 

Given the mineralogy and the chemical composition of the formation water, some 

minerals are likely to precipitate as secondary phases during CO2 injection, namely Halite, 

Anhydrite, Kaolinite, Magnesite, Dawsonite and Chalcedony. 

4.2.2 Composition of the water formation 

The Dogger aquifer contains water with salinity ranging from 5 to 35 g.kg-1. For our 

simulations, the chemical composition of the water formation from the Dogger aquifer in 

the region of Fontainbleau has a salinity of 5 g.kg-1. It was determined by Michard and 

Bastide [206] and is given in Table 4.2. In our simulation, this water formation is initially 

at equilibrium with the primary minerals given in Table 4.1. 

Table 4.2: Chemical composition of water from the Dogger aquifer in the region of Fontainebleau 
(concentration are in ppm  [50]. 

Temperature 75 
pH 6.70 

Alkalinity 427.0 
Na 1794.0 
K 35.2 
Ca 148.0 
Mg 55.9 
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Al 0.002 
Fe 1.0 
Cl 2485.0 

SO4 633.6 
SiO2 41.4 
HS 11.9 

4.3 Simulation conditions and some limitations of the 
PHREEQC and associated thermodynamic databases 

Our simulation strategy considers a 1 cm 1D-column closed at boundaries, meaning that 

there is no flux at boundaries (see section 2.4.3). As a reminder, the numerical scheme in 

PHREEQC is for cell-centered concentrations, which means that the composition at a half-

cell distance represent the composition of the entire cell. The system is made of a column 

with a length of 0.01 m that contains the water formation given in Table 4.2 together with 

the mineralogy of the reservoir (Table 4.1). The mesh for the numerical modelling is 

shown in Fig. 4.2. The column is divided into 10 cells of equal length and identical 

geochemical composition. The first cell of 0.001 m is directly in contact with the constant 

composition of CO2-rich gas phase that we impose.  

 

Figure 4.2: Mesh for the numerical modelling for evaporation,diffusion and precipitation of salt 
within the Dogger aquifer. 

The salinity of the water is moderate (5 g.kg-1) leading to an ionic strength of about 0.10 

mol.kg-1. For this latter value, the activity model based on the Debye-Hückel formalism as 

well as the one based on the Pitzer formalism can be used for reactive transport modeling. 

However, with the continuous evaporation, the formation water becomes highly saline, 

with an ionic strength that reaches up to 7 mol.kg-1! Therefore, the Debye-Hückel 

coefficient activity model is not valid anymore and the Pitzer formalism is the one we will 
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use to cover all the salinity conditions. In the PHREEQC program, the Pitzer formalism is 

used in combination with the database “pitzer.dat”. However, the latter presents some 

serious limitations. 

First, the siderite mineral, which is part of the mineralogy of the Dogger aquifer reservoir, 

was initially absent from this database, which we modified accordingly. We took the 

thermodynamic properties of this mineral from the Thermoddem thermodynamic 

database, devoted to geochemical modelling for environmental studies in natural and 

industrial contexts [207]. This database is suitable for dilute solutions and can be used 

with PHREEQC. The thermodynamic properties of siderite selected in the Thermoddem 

database include the verification that its solubility, which is a function of the physical 

parameters such as the temperature, is well described in accordance with experimental 

data that were acquired in dilute solutions. However, by including siderite in the Pitzer 

database, it is possible that its solubility is not very well described for concentrated 

solutions. Given that Siderite is present at 5% in the mineralogical assemblage of the 

Dogger reservoir, and also for kinetic reasons (see next section), we assume that even if 

the solubility of siderite turns out to be poorly described at high concentration, it will not 

have a significant impact on the behaviour of the system and on the interpretation of the 

results. 

The chemical composition of the water formation contains the aluminium element. 

However, Al is not included in Pitzer's parametrization because there is no data allowing 

to obtain a reliable parametrization close to neutrality (pH ~ 7). In fact, it is possible to 

reach high concentrations of aluminium ions Al3+ in an acidic medium, and of aluminium 

hydroxides (Al(OH)4-) in a basic medium. This allows having enough information to 

determine the Pitzer parametrization for these extreme pH conditions. However, the 

solubility of Gibbsite becomes very low in the area close to the neutrality where the 

concentrations of aluminium are limited to a fraction of micromoles per litre of 

solution[208], [209]. Since alumino-silicate and clay minerals have slow reaction kinetics, 

their impact will be limited in the context of our study and therefore that of Al element on 

the overall behavior of the system. 

The sulphur element S can exist in different degrees of oxidation that are linked together 

by electron transfers. In sulphate ions SO42-, sulphur has an oxidation degree of +VI: the 

sulphur atom lost 6 electrons. In hydrogen sulphide ions HS-, sulphur has an oxidation 
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degree of –II: the sulphur atom gained 2 electrons. Both redox states were identified in 

the Dogger water formation. Yet, the only sulphur redox state implemented in the Pitzer 

database associated with in the PHREEQC progam is the sulphate, with the redox state of 

+VI. Sulphides are implemented as a distinct element, Sg, in order to describe the 

solubility of hydrogen sulphide (H2Sg).  It turns out that the redox couple between 

sulphides and sulphates (HS-/ SO42-) cannot be described when using the Pitzer.dat 

database. As a result, HSg- species cannot interact with sulphate ions and therefore the 

chemistry of the system cannot be modified by any electron exchange between HSg- and 

SO42-. 

4.4 Description of the simulation model 

The water formation at 75 °C and 180 bars is initially at equilibrium with calcite, dolomite, 

and siderite. As we mentioned above, the Aluminium element is not included in the Pitzer 

database. Therefore, all the alumino-silicates (Albite, K-Feldspar, and Kaolinite), clay 

(Illite) and Dawsonite mineral phases (hydroxy-carbonate of sodium and aluminium) 

have been removed from the model mineral assemblage. Calcite is assumed to react at 

equilibrium, meaning that it can precipitate as soon as conditions are favourable. Halite, 

anhydrite, chalcedony and magnesite are not initially present in the system but are 

allowed to precipitate as secondary mineral phases. Besides, with these conditions of 

temperature and pressure and the duration of the injection of CO2, Magnesite is not 

allowed to precipitate. Indeed, Magnesite is thermodynamically the stable Mg-carbonate 

mineral in a wide range of temperatures [210], but some recent studies on magnesite 

growth kinetics have confirmed that the precipitation rate of this anhydrous magnesium 

carbonate is very sluggish, and that it has only been synthesized at temperatures above 

80 °C [211], [212]. In fact, for temperatures below 80 °C, a variety of hydrated magnesium 

carbonates phases tend to form, mainly hydromagnesite, and nesquehonite [210], [213]. 

An explanation is widely ascribed to the highly hydrated character of the Mg2+ cation and 

the resulting slow rate of exchange of water molecules between the Mg2+ hydration shell 

and the bulk solution [214], [215].  

In our simulation, dolomite and siderite are considered as primary mineral phases that 

can only dissolve. Dolomite is also a Mg-carbonate mineral and like Magnesite, the strong 

hydration of Mg2+ ion and its slow dehydration rate is also used as an explanation for the 

failure to grow anhydrous dolomite [215] .In addition, dolomite is a double carbonate 
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with the Ca2+ cation, which ordered incorporation into an anhydrous crystal structure 

also has to be accomplished. As a result, anhydrous dolomite precipitate at rather elevated 

temperatures, which even exceed the temperatures necessary to form magnesite.[215], 

[216]. As for siderite, it is a Fe-carbonate mineral which is very poorly soluble and which 

precipitates at low temperature [214]. However, in inhibitor-free aqueous conditions at 

surface temperature and pressure, the growth rate of siderite is nearly 7-orders of 

magnitude slower than that of calcite at their respective supersaturation. [217]. This is 

due to the fact that Fe2+ ion has a larger ionic radius than that of Ca2+, resulting in a lower 

dehydration frequency of Fe2+ ion. Siderite is therefore characterized by a rather slow 

precipitation kinetics compared to calcite.  

After being equilibrated with the minerals, the initial formation water was first pre-

equilibrated with the pure dry CO2 phase at temperature and pressure of 75 °C and 200 

bars respectively, resulting in a CO2-saturated solution with a concentration of 1.1981 

mol.kg-1 CO2. At the interface between the supercritical CO2 and the aqueous solution (i.e. 

the first cell of the column), the CO2 dissolves in the water formation. At this interface, the 

pH of the water decreases from 6.7 to a value of 3.99. After being in contact with the dry 

CO2 gas phase, the water is slowly vaporized and this evaporation process eventually 

leads to salt precipitation. Many parameters, such as the salinity, injection flow rate, 

capillary pressure, aqueous phase mobility and temperature have been identified as the 

main sensitive parameters governing salt precipitation process, the most controversial 

results being reported for the effect of the CO2 injection rate. [77] It has been clearly 

shown that all these parameters affect the evaporation rate. However, in the literature 

there is a lack of information on the rate of evaporation of brine in the CO2 stream under 

reservoir conditions. 

In our simulations, we estimated an evaporation rate taken from the work of Veran-

Tissoires et Prat [218]. In their study, they focus on an evaporation–wicking situation, 

where the porous medium remains fully saturated all along the evaporation process. A 

porous medium is exposed to evaporation at its top surface and is in contact with a sodium 

chloride saturated aqueous solution at its bottom, which has an initial salt mass fraction 

of 25 %, taking into account that the saturation mass fraction is about 26 % at 25 °C. One 

of their objectives was to highlight the dynamic aspect of efflorescence structure growth.  

In their work, the authors experimentally measured the evaporation rate of pure water. 

For a distance δ of 15 mm between the packing surface and the rim of the hollow cylinder, 
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and a vertical distance Ls of 22 mm between the free surface in the reservoir and the 

surface of the porous medium, they found that water evaporates at a rate of  𝐽𝑒𝑥𝑝 = 1.80 ×

10−8 kg.s-1. The porous medium is formed by a pack of glass beads of mean size db in a 

50 mm long hollow cylinder of inner radius rw=19 mm. The porosity of the medium 

was 0.36.  This leads to a radius of free pores of rp=11.4 mm. This results in a flow per free 

water surface of 8.82 mol.h-1.m-2. In our simulation, we have a surface of free water of 

1 m². Therefore, we can use an evaporation rate close to the one found by Veran-Tissoires 

and Prat. In our simulation, the evaporation rate is set constant to 10 mol.h-1.m-2.  

4.5 Modelling procedure with the PHREEQC program 

A simulation cycle has a duration of one hour and must include, from a phenomenological 

point of view, the process of evaporation of the formation water in the CO2 stream and at 

the same time the process of diffusion that comes from the concentration gradient within 

the brine as a result of evaporation. In fact, the evaporation strongly concentrates the 

solution at the CO2-brine interface. This leads to a retrodiffusion process, i.e. diffusion 

towards the bottom of the reservoir. However, there is no command in the PHREEQC 

program making it possible to carry out this cycle directly in a single step. We therefore 

decomposed the simulation cycle into two stages as represented in Fig. 4.3. The first step 

is represented in Fig. 4.3-a. It consists in a simulation of evaporation of water together 

with a physical transport of water from the bottom to the top of the column in order to 

compensate the evaporation. Indeed, we have a pore volume of 1.0194 L that is the same 

over the entire column and is supposed to remain constant and constantly saturated with 

water over time. Evaporation of water at the first cell reduces its water mass and 

therefore modifies the pore water volume. The compensation of the water loss in this cell 

is carried out by taking a fraction of solution from the cell below. In practice, this physical 

transport represents the capillary backflow, which corresponds to a displacement of 

water that tends to regain the porosity occupied by the gas phase. As evaporation gives 

rise to an overconcentration in the first cell of the column, one is obliged to stop the 

process of evaporation and displacement of the solution to leave place for the second step. 

The latter corresponds to the diffusion of ions for the same equivalent time associated 

with evaporation and displacement of water, in accordance with the evaporation rate 

determined in the previous section.  
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a) b) 

Figure 4.3: Concentration profile of Na in the column for one cycle of evaporation whose modelling 
procedure is exemplified by a) the first step corresponding to the evaporation together with the 
physical transport of aqueous solution. b) the second step corresponding to the diffusion process. 

The Fig. 4.3 represents one cycle of simulation. The brine contains different ionic species 

but here we only represent the behaviour of Na+ as an example. In Fig. 4.3-a above, one 

can see that the evaporation takes place in the cell directly in contact with the CO2 flow. In 

Fig. 4.3-b, one can clearly see the retrodiffusion effect. Over time, the concentration of Na+ 

decreases at the top of the column while slowly increases in the cells below due to 

diffusion. The cycle thus continues over time, knowing that the initial state of new cycle 

corresponds to the final state of the previous cycle and starts with a new evaporation step, 

followed by a diffusion step. The result for two successive cycles is represented in Fig. 4.4 

below: 

 

Figure 4.4: Concentration profiles of Na in the column during two successive cycles of simulation 
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The figure above is a detailed description of the simulation results, but we are interested 

in the final states of each simulation cycle. Therefore, in the following parts, we will only 

represent the final states of successive 1 hour-long cycles. 

In Fig. 4.5 below are represented the evolution of the concentration profiles of Sodium, 

Chloride, Calcium and sulfate ionic as a function of the depth up to 20 hours after imposing 

a constant partial pressure of CO2 gas phase in contact with the pore solution. 

  

a) b) 

  

c) d) 

Figure 4.5: Evolution of the concentration profiles of a) Na, b) Cl, c) Ca and d) SO4 ions  over 20 
hours. In legend is the time given in hour. 

Based on the final states, we can observe that the concentration profiles of all the ionic 

species in the solution increases over time at the brine-CO2 interface while retrodiffusion 

takes place in the porous matrix. The same behaviour is observed for the other chemical 

species that are not represented here but are present in the formation water. 

The increase of the concentration of ionic species in the medium leads to the increase of 

the ionic strength as represented on Fig. 4.6 below: 
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Figure 4.6: Evolution of ionic strength I over 20 hours. In legend is the time given in hour. 

From Fig. 4.6, we can see that the ionic strength increases at the bottom part of the column 

over time. This is directly related to the increase of the concentration of chemical species 

in the solution as shown on Fig. 4.5. However, the latter phenomenon is only visible on a 

small scale, i.e. from the pore scale up to some centimeters. In fact, if we extend the column 

length to 3 cm (0.03 m), the concentration in the rest of the reservoir remains constant, 

and therefore so does the ionic strength, as shown below: 

 

Figure 4.7: Evolution of the of ionic strength I over 100 hours in a 3 cm-long column. In legend, the 
time is in hour. 

On Fig. 4.7, we observe that, the ionic strength of the water formation increases at the 

brine-CO2 interface, related to the increase of the concentration of ionic species due to 

evaporation. The retrodiffusion occurs significantly over about 1 cm and beyond this 

distance; the concentration remains constant in the rest of the host reservoir even over a 
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period of 100 hours. This result shows that the mass diffusion is a phenomenon, which 

can have a significant impact at the pore scale. However, it is possible to envisage that for 

very long times the concentration increases at the bottom of the column but this will not 

be significant. 

Like the ionic strength, the increase of the concentration in the formation water increases 

the saturation indices of minerals over time as represented below: 

  

a) b) 

  

c) d) 

Figure 4.8: Evolution of saturation indices of a) anhydrite, b) halite, c) calcite and d) chalcedony 
over 20 hours. In legend is the time given in hour. 

As concentrations increase, saturation index values may become positive or zero as soon 

as the precipitation conditions of a mineral are favourable. 
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4.6 Results and discussion 

4.6.1 Evolution of the net volume of minerals 

The medium contains an initial pore volume of 1.0194 L. As mentioned above, this volume 

is the same over the entire column and is supposed to remain constant. However, as the 

minerals precipitate, the volume of solution in the pore formation will decrease, as it will 

be progressively occupied by the minerals that precipitate into the solution. As a result, 

when the volume of mineral formed due to precipitation will be equal to the initial volume 

of the solution, then the porosity will be completely clogged. Therefore, we are interested 

by comparing the net volume of minerals formed to the initial volume of the pore solution. 

The total net volume of minerals formed corresponds to the total volume of minerals at 

the final state minus the total volume of minerals at the initial state 

(VT = Vf,minerals - Vi,minerals). The total volume of minerals at the initial state is 7.4754 L in 

each cell. However, due to the code limitations, some minerals are not taken into account 

by the Pitzer formalism as explained in section 4.3 and 4.4. Therefore, the initial volume 

of the reactive minerals is Vi,minerals = 6.358 L. With the PHREEQC software, there is a 

command that directly gives the volume of each mineral in the final state as well as the 

total volume of the minerals in the final state. 

 

Figure 4.9: Log-linear evolution of the total net volume of minerals as a function of time for 
different depths in the column in. The black dashed-line represents the initial volume of pore 

solution. In the legend, the distance are in meter. 
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Fig. 4.9 represents the spatio-temporal evolution of the total net volume of minerals. The 

dashed black line represents the initial volume of the poral solution Vpore = 1.0194 L. The 

simulation is performed over a period of 500 hours. We observe that over time, we 

increase minerals volume meaning that precipitation occurs. One can also note that the 

net volume of minerals is more important in the first cell that has a height of 1 mm. This 

means that the precipitation occurs massively in this first cell. As mentioned earlier, 

minerals can only grow in a free volume and when the volume of the minerals is equal to 

the initial volume of the pore solution, the porosity has been completely clogged because 

the minerals have no place to grow more (as observed experimentally in Peysson et al. 

[194] ). Thus, if the evolution of the porosity was formally correlated with the evolution 

of the net volume of mineral precipitation, an evaporation rate of 10 mol/hour would 

result in the clogging of the porosity after about 360 hours (15 days). Consequently, the 

simulations can be stopped at this time, and any further evolution of the system may 

result in erroneous interpretation because it may not take place. If we consider a slower 

evaporation rate, for example of the order of 1 mol/hour, we can push the simulations up 

to about 150 days before the clogging of the porosity. However, in the practical case, it is 

possible that, during their growth, the minerals leave a “mini” porosity between grains 

where water can still percolate and reach the larger pore where the CO2-rich phase flows. 

Eventually, this could give rise to the  efflorescence phenomenon (at the pore scale) [219], 

or the subflorescence phenomenon at a larger scale. We will therefore perform our 

simulation up to 400 hours and study the behaviour of the ionic species up to 400 hours 

and look at the mineral that contributes to the clogging of the porosity. 

4.6.2 Evolution of the ionic strength and the molality of ionic species 

With the continuous evaporation, the ionic strength increases over time as the solution 

becomes more saline (see Fig. 4.10) and the highest concentrations are in the first cell, 

which corresponds to the place where the precipitation occurs massively (see Fig. 4.11). 
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.  

Figure 4.10: Evolution of ionic strength I over 400 hours. In legend is the time given in hour. 
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Figure 4.11: Evolution of the concentration profiles of ionic species over 400 hours. From the top 
to bottom at the left side: Na, Ca, and CO3. From top to bottom at the right side: Cl, SO4 and Mg. In 

legend is the time given in hour. 

We observe a regular increase of the concentration of sulfate, carbonate and Magnesium 

species. Regarding the behaviour of Na and Cl, we observe that after about 350 hours, 

their concentration no longer increases significantly, related to the precipitation of halite 

whose solubility limit is around 6.4 mol.kg-1 at a mean temperature of 75 °C. As for the 

behaviour of calcium, we observe a decrease in its concentration in the first cell from 250 

hours. This is due to the fact that there is the precipitation of two minerals, namely calcite 

(CaCO3) and anhydrite (CaSO4), that consume calcium during their precipitation while the 

concentration of carbonate and sulfate continues to increase with evaporation. The ionic 

strength represents the contribution of all the ionic species in solution and it can be seen 

that Na and Cl are the main contributors to the increase of this parameter. This already 

tells us that there is a significant amount of potentially halite being formed as a result of 

precipitation.  

4.6.3 Evolution of the amount of minerals 

The amount of mineral is directly related to the saturation index of each mineral. In fact, 

if there is an amount of a mineral that forms at a given place, it means that the saturation 

index of the mineral has become positive or zero at this place. Among the minerals likely 

to precipitate, saturation with respect to halite, anhydrite and chalcedony is achieved, 

while being saturated with respect to calcite.  
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a) b) 

  

c) d) 

Figure 4.12: Evolution of the amount of minerals likely to precipitate over 400 hours: a)anhydrite, 
b) halite, c) calcite and d) chalcedony. 

From Fig. 4.12, one can note the effect of diffusive transport on precipitation. For a given 

diffusion time, calcite and chalcedony precipitate first (after 50 hours) while anhydrite 

and halite appear much later (after 300 hours). However, we observe that calcite and 

chalcedony have a less important contribution on the behaviour of the system. Moreover, 

we observe that all the reactivity is mainly concentrated at the level of the first cell as also 

observed by Peysson et al. [194]. This means that the transport of ions by diffusion (retro 

diffusion) does not compensate the concentration increase due to evaporation, probably 

due to the fact that the evaporation rate is high. For the adopted conditions in our tests 

and explorations, the amount of halite becoming more and more important with 

evaporation and is only formed in the first cell. The anhydrite is formed over 3 mm with 

a preferential location at the level of the second cell, i.e. 2 mm from the CO2-brine 

interface. All this indicates that halite is the mineral that contributes most to clogging. To 

confirm this, we examine the formed volume of each mineral. 
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4.6.4 Evolution of the total net volume of each mineral 

With the PHREEQC software, there is a command that directly gives the volume of each 

mineral in the final state. The latter can also be calculated knowing the initial amount and 

the molar volume of each mineral. 

  

a)  b)  

  

c) d) 

Figure 4.13: Evolution of volume of a) anhydrite b) halite c) calcite and d) chalcedony as a function 
of time. The black dashed-line represents the initial volume of pore solution 

Halite only precipitates at the first cell (over 1 mm). Calcite and chalcedony also 

precipitate in the first cell and contribute to the clogging of the porosity but only 

minimally. The contribution of anhydrite at the level of the first cell remains negligible 

and appears rather significantly at the level of the second cell, over 2 mm from the CO2-

brine interface. A small amount of precipitate is observed to form in the rest of the 

reservoir due to the diffusion but it remains undersaturated in mineral. Beyond 3 mm, no 

precipitate is formed. A summarise of the results is given in Fig. 4.14: 
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a) b) 

  

c) d) 

Figure 4.14: Log-linear evolution of volume of each mineral allowed to precipitate as a function of 
time for different distance: a) 1 mm b) 2 mm c) 3 mm and d) 4 mm. The black dashed-line represents 
the initial volume of pore solution. 

Halite is only formed at the evaporation front over 1 mm and is the main responsible of 

clogging of the porosity (Fig. 4.14-a). Anhydrite and calicite precipitate over 3 mm (Fig. 

4.14-a,b, and c) with a preferential location at 2 mm from the CO2-brine interface for 

anhydrite (Fig. 4.14-b) and at 1 mm from the CO2-brine interface for calcite. Above 3 mm, 

no mineral precipitates (Fig. 4.14-d). 

4.7 Conclusion  

In this chapter, we have studied, at pore scale, 3 main phenomena that are encountered 

in CO2 storage conditions in deep saline aquifers: i) evaporation of brine into the CO2 

stream. We have shown it is a phenomenon that affects all ionic species in solution and 

has a significant effect within 3 mm of the evaporation front. An extrapolation of these 

results to the reservoir scale suggests that this phenomenon would have a significant 

effect over a distance of 3 m from the CO2 near-well injection. For this purpose, Peysson 
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et al. [194] experimentally investigate the drying effects, salt precipitation and capillary 

forces at core scale and a numerical interpretation was investigated by André et al.[73]. 

At core scale, they highlighted the phenomena of precipitation and evaporation in the 

near-well injection zone. Numerical interpretation showed that evaporation is a 

phenomenon that affects the first 5 m of the CO2 near-well injection and consequently 

precipitation as well. This is in good agreement with our observations. ii) Diffusive ractive 

transport which is the major force in the evolution of the thermodynamic properties we 

have studied. We have shown that diffusion (retrodiffusion) does not compensate the 

concentration increase due to evaporation. However, in reservoir conditions, this 

depends strongly on the CO2 injection flow and the evaporation rate of the brine in the 

CO2 injection flow. Peysson et al. [194] and André et al.[73] highlighted the influence of 

the CO2 injection flow, and the impact of capillary backflow which, depending on whether 

they are more or less important, will have a different clogging effect. iii) The precipitation 

of salts is given by "universal" thermodynamic constraints that organise the 

appearance/disappearance of mineral phases. In this study we have considered that all 

reactions are at equilibrium, assuming that we have an infinite velocity. Indeed, in this 

context, the minerals react instantaneously i.e. as soon as the saturation index is slightly 

higher than zero (IS > 0) the minerals precipitate and otherwise the minerals dissolve (IS 

< 0). However, for a better analysis of the results, it is important to introduce a kinetic 

limitation of precipitation and/or dissolution whose rate parameters of water-mineral 

interaction kinetics have been provided by Palandri et Kharaka [220].  The precipitation 

kinetics is defined as the speed at which the minerals will precipitate. Thus, by 

introducing a kinetic limitation, one could have a complete reorganisation of the 

appearance/disappearance of minerals, knowing that temperature is a parameter that 

also affects the kinetic laws. It is therefore possible to achieve a supersaturation state of 

minerals (IS > 0), depending on whether the rate of evaporation is high or the solution is 

highly concentrated, while having small amounts of minerals being formed. This could 

contribute to reorganise the order of appearance of minerals and their contribution to the 

clogging of the porosity. 

In this chapter, we have also shown that higher salinity gives rise to higher amounts of 

salt precipitation and therefore leads to higher porosity reduction. Our simulation shows 

that even a moderately salted brine can precipitate minerals during its evaporation 

having a major impact on the reservoir hydraulic properties, particularly the porosity. As 
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the pore space is invaded by precipitating minerals, the reaction paths for evaporation 

and diffusion become increasingly reduced. As a result, the morphology of the crystals 

that form may be altered and therefore a change of the geometric properties of the pore 

network and petrophysical properties. In our study, salt precipitation occurs in a local 

form and is related to the capillary drying regime. Since the porosity is clogged at the first 

cell, there is no more evaporation. However, in the practical case, it is possible that, during 

their growth, the minerals leave a “mini” porosity between grains where water can still 

percolate and reach the larger pore where the CO2-rich phase flows. Some studies 

performed at the pore by Kim et al. [76], and Miri et al.[92] on the salt crystallization have 

revealed that although salt crystals precipitate at different rates, they can grow in both 

the liquid and gas phases. The precipitates occupy the space initially available to the flow 

leading to the reduce of the porosity of the medium. Even a moderate change in porosity 

due to salt precipitation can have a significant effect on permeability. If salinity and 

temperature are considered as sentitive parameters that can influence the salt 

precipitation, the CO2 injection flow rate is a key parameter. Therefore, modelling the 

mechanism of salt precipitation at the reservoir scale would require taking into account 

the evaporation rate as a function of the CO2 injection rate, the change in porosity at the 

interface, and the kinetics of precipitation of mineral including a possible efflorescence in 

the draining pore. 
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General conclusion 

The injection of supercritical CO2 into deep saline aquifers has been recognized as one of 

the most promising ways to mitigate atmospheric CO2 emissions and thus respond to the 

growing challenges of climate change. Deep saline aquifers are made of porous rocks 

saturated with highly saline water unusable for domestic needs and unfit for 

consumption. In addition, they have a huge storage capacity that can raise to several 

gigatons, making them the most suitable reservoir for CO2 storage. However, the injection 

of sCO2 in these porous medium considerably disturbs the equilibrium state of the 

medium. Indeed, it is known to trigger several phenomena in the near well zone, in 

particular a salt precipitation associated to heat and mass exchanges. This influence the 

evolution of the porosity and permeability, and therefore injectivity of the reservoir and 

the safety of the storage. This thesis project aimed at studying the transport phenomena 

inducing salt precipitation associated with a thermal gradient, and at understanding the 

physico-chemical processes at the interface between brine and sCO2 in a case of a real 

reservoir.  

In order to achieve the objectives, the study was based on experimental and numerical 

approaches in isothermal and non-isothermal conditions. From an experimental point of 

view, the target was to study in free medium, the chemical reactivity between an aqueaous 

solution of CaCl2 and an aqueous solution of Na2SO4 to obtain the precipitation of gypsum 

(CaSO4:2H2O). We have developed a diffusion cell that allow to superimpose vertically 2 

to 3 layers of salt solutions of different concentrations and different chemical 

composition, and to study the mass transport phenomena that take place in the cell. The 

characterization technique is based on the analysis of the light scattered by the NEFs that 

establish during the diffusion process of the solutes. The cell was installed in an optical 

shadowgraphy device. The analysis setup and methodology was calibrated using first a 

molecular binary mixture of TEG/water and then the aqueous solutions of NaCl, CaCl2 and 

Na2SO4. A subsequent fitting of the decay times of the c-NEFs allowed us to calculate the 

diffusion coefficients of TEG/water as well as the dissolved salts in water. Our results are 

in good agreement with the literature data. This is very innovative because the 

measurement of the diffusion coefficients in a free-diffusion process by the shadowgraphy 

technique had never been done before to the best of our knowledge. However, we found 
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that for electrolyte solutions, it was better to consider solutes concentrations far from the 

saturation with respect to the solid salts in order to obtain a mono-exponential behaviour 

and a constant background level of the SFs. The free-diffusion of NaCl in water, with and 

without the thermal gradient at a mean temperature of 25 °C, suggested that the thermal 

gradient does not have a significant effect on the relaxation mode of the system. 

A superimposition of two aqueous layers of non-reactive and reactive salts was possible 

in the diffusion cell and the dynamics of the relaxation was studied by the shadowgraphy 

technique. The dynamics of relaxation of the system formed by the diffusion of an aqueous 

solution of CaCl2 into an aqueous solution of NaCl resulted in the appearance of some 

diffraction spots on the contrats of the images, whereas the appearance of convection 

patterns was obvious for the diffusion of an aqueous solution of NaCl into an aqueous 

solution of Na2SO4. The numerical interpretation of the results was provided using the 

PHREEQC modelling tool. Considering heterogeneous multicomponent diffusion allowed 

explaining the observed convective instability by revealing a density inversion near the 

interface. 

As for the superimposition of two reactive salts, a layer of an aqueous solution of CaCl2 

was brought into contact with a layer of an aqueous solution of Na2SO4, separated by an 

intermediate layer of an aqueous solution of NaCl in order to delay the appearance of 

gypsum. With the experimental observations parallel to the gravity, we observed that the 

precipitation time strongly depends on the thickness of the the buffer solution which 

controls the diffusion distance that ions have to cross. A strong variation in the contrast 

of the images in the early stages was obvious, which was associated to convection 

patterns. When applying a thermal gradient perpendicular to the interface, the analysis of 

the evolution of the contrast of the image as a function of time revealed that, the thermal 

gradient did not have a noticeable influence on the onset time of precipitation. These same 

results were obtained by numerical simulation considering heterogeneous 

multicomponent diffusion calculation. In summary of this study, we were able to carry out 

laboratory experiments and interpret the different phenomena by numerical modelling. 

This integrated approach higlights the mutual benefits gained both at the experiemental 

and theoretical levels. From a numerical point of view, heterogeneous multicompent 

diffusion is well suited to describe the behaviour of electrolytes in solution in a 

multicomponent system without advective fluid flow. Indeed, it integrates all the 

interactions between the aqueous species and helped explaining non-intutive phenomena 
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such as the local inversion of density, which can be a source of physical instability 

responsible for the onset of digitation within the liquid aqueous phase. In a complex 

multicomponent system either in free or in porous medium, we recommend to consider 

the heterogeneous multicompent diffusion. 

This major result (even if obtained at ambient temperature and atmospheric pressure) 

was applied to saline solutions representative of real reservoirs (Dogger aquifer), where 

stronger constraints were brought by the mineralogy and a condition of constant 

composition of CO2 gas phase in contact with the water formation was introduced.  Three 

main phenomena that are encountered in CO2 storage conditions in deep saline aquifers 

were studied at cm scale, namely: i) the evaporation of brine into the CO2 stream that was 

shown to affect all ionic species in solution, ii) the diffusive reactive transport which is the 

major driving force in the evolution of the thermodynamic properties, and iii) the 

precipitation of salts is given by "universal" thermodynamic constraints that organise the 

appearance/disappearance of mineral phases. We have shown that higher salinity gives 

rise to higher amounts of salt precipitation and therefore leads to higher porosity 

reduction. Even a moderately salted brine can precipitate minerals during its evaporation 

having a major impact on the reservoir hydraulic properties, particularly the porosity. An 

introduction of a kinetic constraint is necessary and can contribute to reorganise the 

order of appearance of minerals and the magnitude of their contribution to the clogging 

of the porosity. 

In this thesis, all experimental measurements were carried out in a free medium, at a 

mean temperature of 25 °C and at atmospheric pressure. However, the diffusion cell 

developed during this thesis allows reaching average temperatures up to 60 °C and 

pressures up to 200 bar. Since we are now able to generate and study salt precipitation 

phenomena, a perspective would be to use the diffusion cell developed during the thesis 

to work under reservoir conditions and study the precipitation of other minerals like 

carbonates. Another perspective would also be to develop techniques for analysing the 

precipitates that form, for example by X-ray diffraction (XRD). We used a cell with a 

thickness of 1 cm. A small variation in the volume of solution injected into the cell gives 

very large uncertainties. To reduce these uncertainties, one can move to a larger cell. In 

this cell, one could even add a porous medium. Numerically, PHREEQC is a powerful 

geochemical modelling tool.  It would be very important to add kinetic aspects in our 
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simulation scripts. Moreover, PHREEQC offers the possibility to do either advective or 

diffusive transport mechanisms. We could consider coupling of PHREEQC with other 

software in order to have a good description of the permeability-porosity heterogeneities. 
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Appendices 

Appendix A: Macroscopic properties of electrolytes 

 Molar volume 

The molar volume Vm of a substance is the occupied volume V (in liter) divided by the 

amount of the substance n (in mol) at a given temperature and pressure as: 

 
𝑉𝑚 =

𝑉

𝑛
=  

𝑀

𝜌
 

(B.1) 

 

Where M is the molar mass in g.mol-1 and ρ the mass density of the substance.  

 Mol fraction or molar fraction 

The molar fraction xi of a component i is a dimensionless quantity defined as the ratio 

between the amount of matter of i, ni, divided by the total amount of all the components 

in a mixture ntot, as: 

 𝑥𝑖 =
𝑛𝑖

𝑛𝑡𝑜𝑡
 (B.2) 

 

In a mixture which contains N component, the sum of all the mol fractions is equal to 1 as: 

 
𝑛𝑡𝑜𝑡 = ∑ 𝑛𝑖

𝑁

𝑖=1

 𝑎𝑛𝑑 ∑ 𝑥𝑖

𝑁

𝑖=1

= 1 
(B.3) 

 

 Mass fraction 

The mass fraction of wi of a component i is a dimensionless quantity defined as the ratio 

of the mass of the component i, ms,i , to the total mass of the mixture ms,tot as: 

 
𝑤𝑖 =

𝑚𝑠,𝑖

𝑚𝑠,𝑡𝑜𝑡
 𝑤𝑖𝑡ℎ ∑ 𝑤𝑖

𝑁

𝑖=1

= 1  
(B.4) 

 

 Molar concentration or molarity 
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The molarity of a solution C is the concentration of a solute in a solution and is defined as 

the ratio between the amount of a solute n divided by the volume of the solution 

(or mixture) V as: 

 𝐶 =
𝑛

𝑉
 (B.5) 

 

The unit of C is usually in mol.L-1. A solution with a concentration of 2 mol.L-1 is said to be 

2 molar, commonly designated as 2 M. The mass concentration Cm has the same definition 

like molarity with in the numerator the mass of the solute ms instead of the amount n. For 

a pure component, the mass concentration is equal to its density ρ. Cm (in g.L-1) is related 

to molarity by: 

 𝐶𝑚 = 𝐶 ∙ 𝑀 (B.6) 

 

 Molality 

The molality mi corresponds to the amount of solute (in mol) contained in 1 Kg of solvent, 

msolvent and is defined as: 

 𝑚𝑖 =
𝑛𝑠𝑜𝑙𝑢𝑡𝑒

𝑚𝑠𝑜𝑙𝑣𝑒𝑛𝑡
 (B.7) 

 

Where mi is expressed in mol.kg-1. The molality is widely used in models to describe the 

properties of electrolytic solutions. We work with aqueous solution, the solvent is usually 

water. The molarity C is related to the molality by: 

 𝐶 =
𝑚𝑖 × 𝜌𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

1 + (𝑚𝑖 × 𝑀𝑠𝑜𝑙𝑢𝑡𝑒)
 (B.8) 

 

Where C is the molarity in mol.L-1, ρsolution is the density of the solution in (kg.L-1), and 

Msolute is the molar mass of the solute (kg.mol-1). 
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Appendix B: Example of an input file in PHREEQC program 

 

 

Figure B.1: Graphical interface of PHREEQC for the description of an input file. 
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Figure B.2: Input file for the numerical modelling of the the superimposition of a layer of a CaCl2 

solution (0.475 mol.kg-1) with a layer of NaCl solution (2.792 mol.kg-1). 
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Appendix C: Measurement of the densities of saline solution with the 
density meter (Anton Paar DMA 5000) 

For each salt solution of given average concentration, the density is measured at an 

average temperature of T = 20, 25 and 30 °C. For each average temperature, the 

measurements are repeated three times for repeatability purpose. The density value 

obtained is therefore the average of the measurements. 

Table A.1: Values of density of solutions of CaCl2, NaCl and Na2SO4 as a function of concentration and 
temperature. 

Salts C (mol.L-1) T1 ( °C) ρ1 ( g.cm-3) T2 ( °C) ρ2 ( g.cm-3) T3 ( °C) ρ3 ( g. cm-3) ρmean (g. cm-3) St. dev. ρ Tmean (°C) 

NaCl 2.637 

20.001 1.100931 20.001 1.100931 20.003 1.100933 1.100932 0.000001 20.002 

24.999 1.098618 24.996 1.098624 24.997 1.098624 1.098622 0.000003 24.997 

29.995 1.096600 29.996 1.096594 29.996 1.096591 1.096595 0.000003 29.996 

Na2SO4 

1.000 

20.001 1.117065 20.000 1.117067 19.999 1.117066 1.117066 0.000001 20.000 

24.999 1.115184 25.001 1.115181 25.000 1.115181 1.115182 0.000001 25.000 

30.002 1.113010 30.002 1.113009 30.002 1.113007 1.113009 0.000001 30.002 

1.484 

20.003 1.171019 20.001 1.171022 20.001 1.171023 1.171021 0.000002 20.002 

24.996 1.168657 24.999 1.168655 25.001 1.168646 1.168653 0.000004 24.999 

29.997 1.166546 29.998 1.166541 30.000 1.166538 1.166542 0.000003 29.998 

CaCl2 

1.000 

20.000 1.086021 20.001 1.086020 20.001 1.086019 1.086020 0.000001 20.001 

24.996 1.084527 25.000 1.084525 25.001 1.084526 1.084526 0.000001 24.999 

30.000 1.082683 30.000 1.082681 30.001 1.082680 1.082681 0.000001 30.000 

0.469 

20.001 1.039984 20.001 1.039981 20.001 1.039983 1.039983 0.000001 20.001 

24.999 1.038962 24.996 1.038963 24.998 1.038961 1.038962 0.000001 24.998 

30.001 1.036913 30.002 1.036917 30.002 1.036921 1.036917 0.000003 30.002 
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Appendix D: Spreading of Scientific Knowledge  

 A.T. Ndjaka, M. Burtin, P. Fruton, L. García‐Fernández, F. Croccolo, H. Bataller, 

“Diffusion and Soret coefficients measurement of the triethylene glycol and water binary 

mixture by dynamic Shadowgraphy”, oral presentation @ 26th ELGRA Biennial 

symposium, 24‐27 septembre 2019, Granada (Spain). 

 

 P. Fruton, A.T. Ndjaka, L. García‐Fernández, H. Bataller, F. Croccolo, “Shadowgraph 

investigation of free diffusion of glycerol and water under micro gravity conditions using 

a cylindrical Flowing Junction cell”, poster presentation @ 26th ELGRA Biennial 

symposium, 24‐27 septembre 2019, Granada (spain). 

 

 A.T. Ndjaka, A. Lassin, M. Azaroual, F. Croccolo, H. Bataller, “Experimental development 

to observe the impact of thermal gradients and chemical reactions on the diffusion of 

salts in water”, oral presentation @ winter seminar HUB Newpores, Kick‐Off Meeting 

and scientific presentations, 20 fevrier 2020, Bidart (France) 

 

 A.T. Ndjaka, P. Fruton, A. Lassin, M. Azaroual, W. Köhler, F. Croccolo, and H. Bataller 

“Dynamic Shadowgraphy measurements of the diffusion and Soret coefficients in 

triethylene glycol - water binary mixtures”, oral presentation @14th International 

Meeting on Thermodiffusion (IMT14) , 25-27 May 2021 - Trondheim, Norway. 

(Remotely) 

 

 A.T. Ndjaka, D.E. Bouyou Bouyou, R. Minhas,A. Lassin, M. Azaroual, F. Croccolo, H. 

Bataller, “Experimental development to observe the impact of thermal gradients and 
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Northwestern University, Evanston, IL, USA. (Remotely) 

 

 A.T. Ndjaka, P. Fruton, A. Lassin, M. Azaroual, W. Köhler, F. Croccolo, and H. Bataller 

“Dynamic Shadowgraphy measurements of the diffusion and Soret coefficients in 
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Abstract Thermodiffusion in ternary mixtures is considered prototypic for the Soret effect of truly mul-
ticomponent systems. We discuss ground-based measurements of the Soret coefficient along the binary
borders of the Gibbs triangle of the highly polar and hydrogen bonding ternary DCMIX3-system
water/ethanol/triethylene glycol. All three Soret coefficients decay with increasing concentration, irrespec-
tive of the choice of the independent component, and show a characteristic sign change as a function of
temperature and/or composition. With the exception of triethylene glycol/ethanol at high temperatures,
the minority component always migrates toward the cold side. All three binaries exhibit temperature-
independent fixed points of the Soret coefficient. The decay of the Soret coefficient with concentration can
be related to negative excess volumes of mixing. The sign changes of the Soret coefficients of the binaries
allow to draw far-reaching conclusions about the signs of the Soret coefficients of the corresponding ternary
mixtures. In particular, we show that at least one ternary composition must exist, where all three Soret
coefficients vanish simultaneously and no steady-state separation is observable.

1 Introduction

The Soret effect describes a thermodiffusive flow and
the subsequent establishment of a composition gradi-
ent in a multicomponent fluid mixture subjected to a
temperature gradient. Although most liquid mixtures
of practical relevance, be it biological systems or crude
oil reservoirs [1], can contain a large number of con-
stituents, research has mainly dealt with binary mix-
tures. It is only recently that the focus has begun to
shift to ternaries as prototypes of truly multicomponent
mixtures. In the following, we will discuss ground-based
measurements on the binaries of the ternary system
that has been investigated during the third mission of
the DCMIX microgravity project. The DCMIX project
of the European Space Agency (ESA) and the Rus-
sian Space Agency (Roscosmos) has established a basis
of microgravity experiments on ternary liquid mixtures
subjected to a temperature gradient that can serve as
convection-free references for ground experiments [2].

a e-mail: werner.koehler@uni-bayreuth.de (corresponding
author)

DCMIX consists of four individual campaigns, named
DCMIX1 to DCMIX4, onboard the International Space
Station (ISS). The five ternary samples of DCMIX1
were mixtures of dodecane, isobutyl benzene, and tetra-
lin of different compositions. No undue complications
were expected for this system, whose corresponding
binaries were already very well characterized [3]. The
focus of DCMIX2 was on mixtures of toluene, methanol,
and cyclohexane, which exhibit a miscibility gap and a
critical point [4]. DCMIX4 had exploratory character
and contained, among additional DCMIX2-mixtures,
polymer solutions, and a nanofluid [5].

The here presented work deals with the DCMIX3-
system water (H2O), ethanol (ETH), and triethylene
glycol (TEG) [6]. These molecules are highly polar, and
the prevailing hydrogen bonding leads to much more
complex interactions than the dominating dispersion
interactions of the DCMIX1- and DCMIX2-mixtures.
A consequence of these strong interactions is large neg-
ative excess volumes of mixing.

The aim of the following work is the investigation
of diffusion and thermodiffusion along the three binary
borders of the ternary Gibbs triangle of the DCMIX3
system. One of these binaries, ETH/H2O, has already
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been characterized in the literature [7,8]. It shows a
remarkable sign change of the Soret coefficient and is
known for instabilities and oscillatory convection in
double-diffusive convection experiments [9,10]. A thor-
ough characterization of the binaries is of great impor-
tance, as they define the values to which the transport
coefficients of the ternary mixtures extrapolate in the
limit of vanishing concentration of either one of the
components. Since their measurement does not require
complicated two-color experiments with the inversion
of a potentially ill-conditioned contrast factor matrix,
they can be obtained with a very good accuracy by
means of, e.g., single color optical techniques. Other
than for ternaries, convection can usually be avoided
for binary mixtures in a Soret cell. The proper strategy
is to select the direction of the temperature gradient
such that the solutal separation leads to a stable strat-
ification with the higher density at the bottom of the
cell. If this requires heating from below, the stability
requirement is that the thermal Rayleigh number must
not exceed its critical value.

In the last part of our work, we show how the infor-
mation gathered for the binaries around the perimeter
of the ternary Gibbs triangle can be used to infer prop-
erties of the ternary Soret coefficients. In particular, we
show that the sign changes of the Soret coefficients of
the binaries lead to the existence of a singular point
inside the Gibbs triangle where all three ternary Soret
coefficients vanish simultaneously.

2 Experimental

2.1 Optical beam deflection

The majority of the measurements were performed by
means of the well-established optical beam deflection
(OBD) technique [7,8,11,12]. The design of the instru-
ment is similar to the one described in Ref. [13] with
only slight modifications. The sample is inside a Soret
cell with a vertical temperature gradient defined by two
horizontal copper plates that are kept at a tempera-
ture difference of typically 1K with a stability of better
than 10mK. The lateral confinement consists of an opti-
cal glass frame and thin Teflon gaskets that together
define the height of the fluid slab of h = 1.43mm. The
path length inside the liquid is 10.00mm. The refractive
index gradient in the cell contains contributions from
both the temperature and the concentration gradient,
which can be separated on the basis of their very differ-
ent characteristic time constants. The total refractive
index gradient is read by deflection of a laser beam of
λ = 637 nm at a distance of 1.325m behind the Soret
cell, whose position is detected by a line camera.

High quality ethanol (VWR LOT 19B064011, 99.96%),
triethylene glycol (Acros 99%, LOT A0389346) and
de-ionized and filtrated water (resistivity 18.5MΩcm,
PAK-filter 0.22µm) retrieved from a Millipore Milli-Q
filtration station were used to prepare typically 3–4g of
every sample to the required composition in mass frac-

tions using an analytical balance (Sartorius BP 211 D,
±0.5mg).

Refractive indices were measured over the entire com-
position range for typically ten intermediate concentra-
tions by means of an Abbe refractometer (Anton Paar,
Abbemat WR-MW). The temperature dependence of
the refractive index was determined interferometrically
as described in Ref. [14] with the proper correction for
the temperature dependence of the refractive index of
the glass windows of the cell given in Ref. [8]. Based on
these measurements, the refractive indices are param-
eterized by polynomials in the concentration c of the
first component and the temperature ϑ = T − 273.15K
in Centigrade:

n(c, T ) = (1 ϑ)

(

a00 a01 a02 a03

a10 a11 a12 a13

)

⎛

⎜

⎝

1
c
c2

c3

⎞

⎟

⎠
. (1)

The matrix coefficients aij are tabulated in Table 1.
Excess volumes were computed from density measure-
ments with an Anton Paar DSA 5000 density meter.

2.2 Optical digital interferometry and counter-flow
cell

Diffusion and Soret coefficients of selected tempera-
tures and compositions were also measured by means
of optical digital interferometry (ODI) and the diffu-
sion coefficients at the two dilute limits of TEG/ETH
with a counter-flow cell (CFC). Similar to OBD, the
ODI instrument uses the Soret cell and optical diag-
nostics. It differs by the cell size and by the approach
to the interpretation of the optical signal. The Soret
cell used in the ODI setup has a square glass frame
with an inner size of 18.00 × 18.00mm2. The frame
is clamped between two metal plates with intermedi-
ate seals made of a special thermally conductive rub-
ber. The total diffusion path (plate-to-plate distance) is
equal to h = 6.26 mm. This relatively large cell height
limits the measurements to mixtures with a positive
Soret coefficient and a corresponding stable separation.
The temperature difference applied to the cell depended
on the mixture under investigation. The separation in
TEG/H2O-mixture was studied at ∆T = 4.00 K, while
the applied temperature difference was 6.00 K for the
TEG/ETH-mixture with its smaller optical signal. The
stability of the temperature regulation, estimated as the
standard deviation of ∆T records, is around 1 mK. The
refractive index gradients appearing in the liquid inside
the cell due to thermal or solutal inhomogeneities are
sensed by an expanded and collimated laser beam of
λ = 532 nm, directed into a Mach–Zehnder interferom-
eter, with the cell being placed in one arm of the inter-
ferometer. The optical phase variation is then extracted
from the raw interference fringe patterns using a 2-D
Fourier transform technique. The temporal and spatial
variation of the refractive index along the diffusion path
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Table 1 Parameterization of the refractive indices of TEG/ETH and TEG/H2O for λ = 633 nm and for λ = 532 nm
according to Eq. (1)

aij Units 633 nm 532 nm

TEG/ETH TEG/H2O TEG/ETH TEG/H2O

a00 1.36974 1.3337 1.37223 1.33714
a10 10−4 K−1

−4.4696 −0.7593 −4.1728 −0.9207
a01 0.06618 0.11976 0.07283 0.11942
a11 10−4 K−1 3.2519 −3.1494 1.3316 −2.1410
a02 0.02639 0.04861 0.02124 0.05002
a12 10−4 K−1

−2.1476 −1.5595 −0.5566 −2.8940
a03 – −0.04041 – −0.04054
a13 10−4 K−1 – 2.2465 – 2.6673

is fitted to different analytical solutions describing the
Soret separation in this geometry, allowing to simul-
taneously extract both diffusion and Soret coefficients.
More information on the instrument and the image pro-
cessing can be found in Refs. [15,16].

The isothermal diffusion at dilute limits was mea-
sured by a similar interferometer using the same data
extraction approach. The counter-flow cell for the diffu-
sion study is a metal frame with rectangular opening of
20.0 × 5.0mm2 clamped between two optical windows
using PTFE gaskets. The liquid filled space between the
inner surfaces of the windows is 5.00mm. Two inlets
located at the top and the bottom of the cell allow
injection of two solutions of slightly different concen-
trations; the heavier one is injected from the bottom to
avoid instability. Two outlets located symmetrically on
lateral walls at the mid-height of the cell, at 10.0mm
ensure the formation of a sharp interface between both
solutions during injection. After the injection stop and
sealing of the ports, the interface elution due to dif-
fusion is monitored in time along the diffusion path.
More details of the instrument and the data extraction
are available in Refs. [17,18].

Some chemicals (TEG and ETH) used for the experi-
ments conducted with ODI and CFC setups were equiv-
alent by grade and manufacturer to ones used in the
OBD experiments, while extra pure deionized water was
purchased from Acros Organics (LOT A0396624).

2.3 Nonequilibrium fluctuations and shadowgraphy

Additional measurements for TEG/H2O-mixtures at
selected compositions and temperatures were performed
by means of the dynamic shadowgraphy technique
(SG), which is based on optical detection of nonequi-
librium fluctuations (NEFs). These measurements are
described in full detail in Ref. [19] and will only briefly
be summarized. The results are included here, since
they are based on somewhat different principles and
very nicely align with the OBD and ODI experiments.

A fluid submitted to a gradient of temperature or
concentration shows thermal and/or solutal nonequilib-
rium fluctuations that happen at all wavelengths, whose
amplitude can be orders of magnitude larger than that

of the equilibrium ones and whose size can grow up
to macroscopic scales [20,21], so that they are usually
referred to as ‘giant’ fluctuations [21–23]. The asso-
ciated refractive index fluctuations generate scattered
beams that interfere with the transmitted one. The
light intensity modulations can be collected by a pixe-
lated sensor and analyzed in order to extract thermo-
physical properties of the fluid [24].

The employed shadowgraph setup is similar to the
one described in Ref. [25]. A Soret cell of 25mm diam-
eter contains the liquid sample that is vertically con-
fined by two horizontal square sapphire windows at a
distance of h = 2mm. Their temperatures are regulated
by two Peltier elements with a central circular aperture
of 13mm in diameter. Contrary to OBD and ODI, the
observation is not perpendicular to but rather along the
direction of the temperature gradient.

Thermodiffusion experiments were performed at mean
temperatures of 20, 25, and 30 ◦C with a temperature
difference of 20K between the two sapphire windows.
The temperature gradient was anti-parallel to gravity
for c = 0.3 (heating from above) and parallel for c = 0.5
and 0.7 (heating from below). Once the steady state is
achieved, a typical experiment consists of recording a
series of images for a given acquisition frame rate. The
analysis of each image series is performed by means of
the Differential Dynamic Algorithm through a custom
program taking advantage of GPU parallel execution
[26,27] in order to extract the structure function of the
images [25]. The fit of a model temporal correlation
function to the structure function allows to extract the
decay times of the nonequilibrium fluctuations of the
concentration and eventually obtain an indirect mea-
surement of the mass diffusion and the Soret coefficients
of the mixture [19,25].

We also carried out free isothermal diffusion experi-
ments for c = 0.5 and 0.7 using a stainless steel annu-
lus with thickness of h = 10.0mm. Two inlets and two
outlets allow the superimposition of two fluid layers of
equal thickness and different concentration. Once the
two layers are in place, the diffusion process is followed
by recording series of images in time. Details of this cell
and of the filling procedure are also given in Ref. [19].
The reported diffusion coefficients measured by SG are
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mean values from the isothermal measurements and the
experiments with a temperature gradient.

3 Results and discussion

3.1 The binary borders

We report and discuss results for all three binary bor-
ders of the ternary DCMIX3 system consisting of H2O,
ETH, and TEG. The results for the binaries TEG/H2O
and TEG/ETH are new, the system ETH/H2O has
previously been studied by Kolodner et al. [7] and in
our laboratory [8]. The numerical values of the trans-
port coefficients of ETH/H2O can be found in these
two original publications and will not be repeated here.
The discussion and the numerical fits will focus on the
OBD-measurements, which represent a complete and
internally consistent data set. The results obtained by
the other experimental techniques, which are generally
in good agreement but over a more limited parameter
range, will be compared and discussed where appropri-
ate.

All OBD-measurements have been evaluated follow-
ing the protocol described in, e.g., Refs. [8,28]. The
experiment starts with an isothermal, homogeneous
sample to which a constant temperature gradient is
applied at t = 0 by ramping the temperature of one
plate up and the temperature of the opposite plate
down by the same amount of typically δT/2 = 0.5K,
thereby keeping the mean sample temperature con-
stant. Assuming sufficient time scale separation, the rise
time of the temperature gradient can be neglected. The
formation of the concentration gradient is described on
the basis of the extended diffusion equation for the mass
fraction c(x, t) of the first component:

∂c

∂t
= D∇

2c + DT c(1 − c)∇2T. (2)

Both the diffusion coefficient D and the thermodiffu-
sion coefficient DT are assumed constant within the
1-Kelvin-temperature variation in the cell. The Soret
coefficient ST = DT /D determines the concentration
gradient in the nonequilibrium steady state. For suffi-
ciently small Soret coefficients ST ≪ 1/δT , as prevalent
in our experiments, the product c(1−c) can be assumed
constant. The transient beam deflection signal is fitted
by an analytic solution of Eq. (2) to obtain D from the
characteristic time constant τ = h2/D. For DT and ST ,
the beam deflections need additionally be transformed
from the refractive index to the concentration space by
means of the optical contrast factors (∂n/∂T )p,c and
(∂n/∂c)p,T .

The focus of our discussion is on the Soret coeffi-
cients, but we also document the diffusion coefficients
for reference. Our measured diffusion coefficients for
TEG/H2O and TEG/ETH are tabulated as functions
of concentration and temperature in Tables 2 and 3,
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Fig. 1 OBD-measurement (filled circles) of the Soret coef-
ficient of TEG/H2O for different temperatures as a function
of TEG-concentration c. The filled diamonds at c = 0.3
were obtained by SG and the open squares by ODI. The
data at the lowest concentration of c = 0.01 are calculated
according to Maeda et al. [31] as ST = 9.4 × 10−3 K−1

−

3.0×10−5 K−2T (open diamonds). The solid lines represent
a simultaneous fit of Eq. (4) to all OBD-data
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Fig. 2 Soret coefficient of TEG/ETH for different temper-
atures as a function of TEG-concentration c

respectively. The corresponding Soret coefficients can
be found in Tables 4 and 5.

The Soret coefficients of the three binaries are plotted
in Figs. 1, 2, and 3. For ETH/H2O (Fig. 3), we have
used only data that were measured in our own labo-
ratory. As shown in Ref. [8], they perfectly agree with
older results of Kolodner et al. [7] and also with data
over a smaller parameter range by Wiegand et al. [29]
and Zhang et al. [30]. Our OBD-, SG- and ODI-data for
the Soret coefficient of TEG/H2O are compared with
results from Ref. [31] at the lowest concentration. In
the following, the prominent features that are common
to all three mixtures shall be discussed.

The first obvious observation is the sign change of
the Soret coefficients of all three systems as a func-
tion of concentration and/or temperature. Such sign
changes, where the components invert their thermodif-
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Table 2 Diffusion coefficients of TEG/H2O as a function of TEG-concentration c and temperature as obtained by OBD,
SG, and ODI. SG-data from Ref. [19]

c D [10−10 m2/s]

10 ◦C 15 ◦C 20 ◦C 25 ◦C 30 ◦C 35 ◦C 40 ◦C

OBD 0.05 4.6(.2) 5.9(.2) 5.9(.2) 7.2(.2) 7.6(.3) 8.9(.3)
0.3 3.4(.2) 4.1(.2) 4.7(.2) 5.2(.3) 6.2(.3) 7.0(.3) 7.8(.4)
0.5 2.3(.1) 2.7(.1) 3.3(.2) 3.8(.2) 4.5(.2) 5.2(.3) 6.0(.3)
0.7 1.4(.1) 1.9(.1) 2.4(.1) 2.9(.1) 3.4(.2) 4.1(.2)
0.9 0.9(.1) 1.2(.1) 1.6(.1) 1.9(.1) 2.4(.1)

SG 0.3 4.79(.12) 5.46(.15) 6.4(.3)
0.5 3.3(.1) 3.86(.14) 5.4(.3)
0.7 2.09(.12) 2.33(.06) 2.86(.13)

ODI 0.05 6.2(.3) 8.0(.2)
0.1 6.0(.3) 7.6(.2)
0.15 4.1(.2) 5.6(.3) 7.2(.2)
0.18 4.0(.2) 5.4(.3) 6.9(.2)
0.2 5.3(.3) 6.0(.2)
0.25 3.6(.2) 4.9(.2) 6.4(.2) 8.2(.2)
0.3 4.5(.2) 5.9(.1)
0.4 3.6(.2) 4.9(.1)

Table 3 Diffusion coefficients of TEG/ETH as a function of TEG-concentration c and temperature as obtained by OBD,
ODI, and CFC

c D [10−10 m2/s]

10 ◦C 15 ◦C 20 ◦C 25 ◦C 30 ◦C

OBD 0.2 4.7(.2) 4.9(.2) 5.4(.3)
0.3 2.6(.1) 3.2(.2) 3.7(.2) 4.1(.2) 4.6(.2)
0.5 1.6(.1) 2.0(.1) 2.5(.1) 3.1(.2) 3.4(.2)
0.7 1.3(.1) 1.5(.1) 1.8(.1) 2.0(.1) 2.5(.1)
0.9 0.81(.05) 0.99(.05) 1.2(.1) 1.3(.1)

ODI 0.1 3.39(.09) 4.3(.3)
0.15 3.1(.2) 3.9(.4)
0.2 3.05(.06)
0.3 3.0(.2)
0.4 2.5(.1)

CFC 0.0015 4.9(.1) 5.54(.09) 5.88(.09) 6.5(.2) 7.0(.2)
0.998 0.62(.03) 0.74(.04) 1.03(.09)

fusive migration direction, have been reported in the
literature also for colloids [32] but they are rare for
molecular systems.

The second observation is the direction of the sign
change. All Soret coefficients decrease with concentra-
tion. They are positive for small and become negative
for large c. Only for TEG/ETH at the two highest tem-
peratures, ST (c) is always negative, but the decreas-
ing nature of ST (c) is still preserved (Fig. 2). Keep-
ing in mind that the given Soret coefficient is the one
of the first component and that ST changes its sign
when the numbering of the components is reversed, this
means that the minority component always migrates to
the cold side in the two dilute limits. Accordingly, the
majority component goes to the hot side. It is impor-
tant to understand that swapping of the components
changes the sign of ST and, thus, does not change the

decaying nature of the curves with positive Soret coef-
ficients for small and negative ones for large concentra-
tions.

The third observation relates to the temperature
dependence of the Soret coefficient. For every mixture,
there exists a temperature-independent fixed point of
ST at a certain concentration cf . In TEG/H2O, it is at
cf ≈ 0.31 with a positive value of ST , in TEG/ETH it is
at cf ≈ 0.89 with a negative ST and in ETH/H2O it is
at cf ≈ 0.29 with a vanishing Soret coefficient ST (cf ) ≈

0. The fixed points are marked in the figures by arrows.
In any case, the curves ST (c) for different temperatures
pivot around the fixed point in a way such that ST

decreases with increasing temperature for c < cf and
increases for c > cf . Together with the general decrease
in ST with increasing c, this implies that ST approaches
ST (cf ) with increasing temperature. There are also sign
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Table 4 Soret coefficient of TEG/H2O as a function of TEG-concentration c and temperature as obtained by OBD, SG,
and ODI. SG-data from Ref. [19]

c ST [10−3 1/K]

10 ◦C 15 ◦C 20 ◦C 25 ◦C 30 ◦C 35 ◦C 40 ◦C

OBD 0.05 9.0(.5) 8.1(.4) 7.6(.4) 7.3(.3) 7.6(.3) 7.0(.3)
0.3 2.0(.1) 2.2(.1) 2.4(.1) 2.5(.1) 2.6(.2) 2.6(.2) 2.7(.2)
0.5 −1.34(.05) −1.16(.07) −1.00(.06) −0.85(.05) −0.74(.04) −0.65(.04) −0.56(.03)
0.7 −5.0(.3) −4.5(.3) −4.3(.2) −4.1(.2) −3.9(.2)
0.9 −7.8(.5) −7.4(.4) −7.0(.4) −6.7(.4) −6.4(.4)

SG 0.3 2.3(.3) 2.3(.3) 2.0(.4)
ODI 0.05 6.9(0.3) 6.7(.3)

0.1 6.0(.4) 6.0(.2)
0.15 5.0(.3) 5.0(.3) 5.1(.3)
0.18 4.2(.2) 4.5(.2) 4.6(.2)
0.2 4.1(.2) 4.3(.3)

0.25 2.9(.1) 3.2(.1) 3.4(.2) 3.4(.2)
0.3 2.2(.1) 2.5(.1)
0.4 0.63(.06) 0.89(.04)

Table 5 Soret coefficient of TEG/ETH as a function of TEG-concentration c and temperature as obtained by OBD and
ODI

c ST [10−3 1/K]

10 ◦C 15 ◦C 20 ◦C 25 ◦C 30 ◦C

OBD 0.1 0.47(.02)
0.2 0.36(.01) 0 −0.27(.01) −0.56(.02)
0.3 0.47(.02) 0.16(.01) −0.14(.01) −0.39(.02) −0.59(.03)
0.5 0.09(.01) −0.20(.01) −0.39(.02) −0.57(.03) −0.74(.04)
0.7 −0.52(.03) −0.60(.07) −0.7(.1) −0.8(.2) −0.8(.2)
0.9 −0.88(.04) −0.87(.04) −0.79(.03) −0.87(.04)

ODI 0.1 0.92(.03) 0.55(.06)
0.15 0.78(.07) 0.31(.05)
0.2 0.61(.04) 0.26(.03)
0.3 0.44(.02) 0.14(.01)
0.4 0.191(.005)
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Fig. 3 Soret coefficient of ETH/H2O for different temper-
atures as a function of ETH-concentration c. Data from Ref.
[8]

changes of ST as a function of temperature at certain
concentrations, e.g., for TEG/ETH around c = 0.3
(Fig. 2). No such temperature-induced sign changes
are observed for ETH/H2O, where the temperature-
independent fixed point coincides with ST (cf ) = 0.

A temperature-independent fixed point of the Soret
coefficient has also been observed for other systems. In
Ref. [33] it has been suggested to write the Soret coeffi-
cient as a composition-dependent function α(c) multi-
plied by a temperature-dependent amplitude β(T ) plus

a constant offset Sf
T that is identified with the Soret

coefficient at the fixed point:

ST (c, T ) = α(c)β(T ) + Sf
T . (3)

This equation with polynomials for α(c) and β(T ) has
already been used for the ETH/H2O-system, both with
the concentration measured in mole [33] and in mass
fractions [8]. Following the same idea, the Soret coeffi-
cients are fitted by
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ST (c, T ) =

4
∑

i=0

aic
i (1 + b1ϑ) + Sf

T . (4)

As in Eq. (1), ϑ = T − 273.15K is the temperature in
Centigrade. The fits have been performed to the OBD-
measurements, which represent a complete and experi-
mentally consistent data set. The SG- and ODI-results
are additionally plotted in Figs. 1 and 2 and are in very
good agreement with the OBD-data. The fit parame-
ters for all three systems are summarized in Table 6.
As already mentioned, b1 is always negative and β(T )
decreases with increasing temperature. For mixtures of
benzene and cyclohexane, the Soret coefficient at the
fixed point could be identified with the isotopic con-
tribution, which is related to differences of molar mass
and moment of inertia, and the term α(c)β(T ) with the
so-called chemical contribution [33]. Despite the similar
structure of ST (c, T ), such an assignment is not possible
for the here considered hydrogen bonding mixtures.

Although we cannot provide a fully quantitative
description of our results, it is worth pointing out
another relationship for the composition dependence of
ST . In Ref. [34], it is shown that the Soret coefficient
can be split into contributions from the pure compo-
nents, Spur

T , and a mixing term Smix
T . Only the latter is

responsible for the concentration dependence. Accord-
ing to Morozov’s theory [35], it is related to the excess
volume of mixing V E by

Smix
T ≈ C

∂V E

∂x1

, (5)

with x1 being the mole fraction of the first component
and C < 0 a constant that depends on the solvent com-
pressibility.

Since V E vanishes at the two ends of the concen-
tration axis and typically goes through an extremum in
between, a positive excess volume corresponds to a situ-
ation with a negative second derivative, ∂2V E/∂x2

1 < 0.
Because of the negative constant C < 0, this relates to
the situation of a Soret coefficient that increases with
c, and vice versa for a negative excess volumes [34].
All three mixtures show a decreasing Soret coefficient,
albeit the situation is not fully clear for ETH/H2O
at high ETH concentrations. A few data points above
c ∼ 0.9 might hint at an increase in ST at higher
concentrations, but they show a large scatter and are
very unreliable because of the vanishing solutal con-
trast factor (∂n/∂c)p,T , which changes sign around
c = 0.8. They were already excluded from the fit
in Ref. [8]. With their inclusion, the Soret coefficient
would no longer decrease monotonously, but the over-
all picture remained unchanged: there would still be the
temperature-invariant fixed point with the sign change
and an overall decrease in ST from the left to the right.

Figure 4 shows the excess volumes for all three mix-
tures at 25 ◦C as obtained from density measurements
of the pure substances and the mixtures performed with
an Anton Paar DSA 5000 M densitometer. All three
are negative, which is, indeed, in agreement with the
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Fig. 4 Excess volumes of mixing V E for the three mixtures
TEG/H2O, TEG/ETH, and ETH/H2O at 25 ◦C

observation of decreasing Soret coefficients. We want to
repeat here, that a decreasing ST (c) remains decreasing
under reversal of the components.

3.2 The ternary Gibbs triangle

The knowledge of the signs of the Soret coefficients
along all three binary borders allows, within certain
assumptions, predictions about the signs of the Soret
coefficients inside the ternary Gibbs triangle. In the fol-
lowing, we will use the primed Soret coefficients S′

T,i,
which are the established notation for ternaries. They
are defined by the concentration gradients in the Soret
equilibrium, ∇ci = −S′

T,i∇T , and are related to their
unprimed counterparts in the case of binary mixtures
by S′

T,i = ci(1 − ci)ST,i [36]. An in-depth discussion
of frame-invariant Soret coefficients has been given by
Ortiz de Zárate [37].

Figure 5 shows the Gibbs triangle with colors assigned
to the three compounds: magenta for H2O, orange for
ETH, and green for TEG. The color code along the
binary borders marks the concentration range, where
the respective component is thermophilic, i.e., has a
negative Soret coefficient and enriches at the hot side
for a mean temperature of 25 ◦C. These regions are
directly taken from Figs. 1, 2, and 3. The coinci-
dence of the color code of the axes with the color
of the respective component near the corners reflects
our finding that, as a rule, the majority component
migrates to the hot and the minority component to the
cold side. The concentration of the sign change along
the H2O/ETH-axis, i.e., where the color changes from
magenta to orange, is temperature independent (Fig. 3)
and the sign change along the TEG/H2O-axis depends
only weakly on temperature (Fig. 1). The sign change
concentration for TEG/ETH, on the other hand, shows
a pronounced temperature dependence and shifts from
cTEG ≈ 0.5 at 10 ◦C to cTEG ≈ 0 at 25 ◦C, for which
Fig. 5 is drawn. Very close to the selected temperature
of 25 ◦C, the Soret coefficient of TEG in TEG/ETH-
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Table 6 Fit parameters for the Soret coefficients according to Eq. (4). The values for ETH/H2O are from Ref. [8]

TEG/H2O TEG/ETH ETH/H2O

a0 0.00777 0.00292 0.0115
a1 −0.0268 −0.00370 −0.0154
a2 0.00604 0.000471 −0.1453
a3 – – 0.2378
a4 – – −0.0652
b1 [K−1] −0.00719 −0.02921 −0.00931

Sf
T [K−1] 0.00231 −0.00087 0.0

Fig. 5 Signs of the Soret coefficients within the ternary
Gibbs triangle at 25 ◦C. The colored regions denote ther-
mophilic behavior with negative Soret coefficients of the
respective components. The dots 1–6 indicate the composi-
tions of the DCMIX3 samples. Point Z marks the intersec-
tion of the boundaries of the three colored regions, where all
three Soret coefficients vanish simultaneously. The steady-
state optical signal vanishes along the dashed line (see Fig.
6). The regions I to VI are explained in the text. The tri-
angle near the H2O corner indicates the zoom-region shown
in Fig. 6

mixtures remains negative over the entire composition
range and just vanishes in the limit cTEG ≈ 0, corre-
sponding to cETH ≈ 1. Thus, the green color along this
axis extends just up to the ETH-corner. Already at a
slightly lower temperature, the green color would stop
short of the ETH-corner. The following discussion does,
however, not depend on these peculiar details.

Since Soret coefficients are smooth and continuous
functions of the composition, and since the ternaries
extrapolate to the corresponding binaries near the axes,
we can draw some conclusions about the signs of the
Soret coefficients of the ternaries inside the Gibbs tri-
angle.

Let us begin with TEG. Its Soret coefficient van-
ishes at the ETH-corner and at the concentration of

the sign change along the TEG/H2O-axis. These two
points must be connected by a continuous line through
the Gibbs triangle, defined as the locus where the Soret
coefficient of TEG, the third component, changes sign,
hence S′

T,3 = 0. Together with the green sections of the
axes, this line encompasses the green composition range
where TEG is thermophilic. Outside, it is thermopho-
bic. Of course, the shape of the green region inside the
Gibbs triangle is only a sketch and could be more to the
left or more to the right. The orange and the magenta
regions can be constructed along the same rules.

From Ref. [38], it is known that both ETH (compo-
nent 2) and TEG (component 3) have negative Soret
coefficients at point 2, whereas the one of H2O (com-
ponent 1) is positive. Hence, composition 2 must be
inside both the green and the orange but outside the
magenta region.

Only one negative Soret coefficient exists within
regions I, II, and III. Compositions with two negative
Soret coefficients define the intersection regions IV, V,
and VI. Additional rules follow from mass conservation,
which requires

S′

T,1 + S′

T,2 + S′

T,3 = 0 . (6)

An immediate consequence is that the intersection of all
three colors must be of size zero, since all three Soret
coefficients cannot be negative at the same time. For
the same reason also three positive Soret coefficients
are not possible and every composition must belong to
either one or two colors.

Because composition 2 is both green and orange, the
boundaries of these two regions must intersect in point
Z in a similar way as drawn in Fig. 5. Since this intersec-
tion is defined by S′

T,2 = S′

T,3 = 0, Eq. (6) immediately

requires S′

T,1 = 0, and the boundary of the magenta
region must also pass through the intersection point Z.

Thus, the sign changes of the Soret coefficients of
the binaries and the knowledge of their signs at one
composition (point 2) inside the ternary diagram allows
us to draw far-reaching conclusions about the signs of
the Soret coefficients of the ternaries and to prove that
at least one composition Z must exist, where all three
Soret coefficients vanish simultaneously and no steady-
state separation will be observed in a temperature gra-
dient.

Zones V and VI in Fig. 5 are very narrow, mean-
ing that the Soret coefficients that correspond to the
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Fig. 6 Construction of the dotted line in Fig. 5 with van-
ishing steady-state amplitude of the solutal OBD-signal at
25 ◦C. The numbers reflect the chronological order of the
measurements
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Fig. 7 Solutal OBD-signals for measurements 30, 22, 13,
21, and 10 from Fig. 6 as indicated by red arrow. The steady-
state amplitude vanishes between points 22 and 13, close to
the latter

two respective overlapping colors (TEG/H2O in zone
V and ETH/H2O in zone VI) are very close to their
sign change compositions. Since two small Soret coef-
ficients automatically imply, according to Eq. (6), also
a small Soret coefficient of the third component, the
OBD-signals in zones V and VI should be very small.
Since H2O has the smallest refractive index, the OBD-
signal is even expected to change its sign along paths
through zones I–V–III or II–VI–III.

Indeed, such a sign change within zones V and VI is
observed experimentally at the dashed line in Fig. 5.
This line has been constructed by measuring the OBD-
signal with a single color at a large number of compo-

sitions around the expected sign change compositions.
Then, pairs of compositions with different signs of their
solutal OBD-amplitudes are identified. The sign change
compositions are determined by linear interpolation of
the two amplitudes along the connecting line in the
Gibbs triangle.

Figure 6 illustrates this procedure. The composition
pairs with different signs of the OBD-amplitudes are
connected with thin red lines along which the compo-
sitions of asymptotically vanishing solutal OBD-signals
are determined. Together with the sign changes of the
Soret coefficients of the adjacent binaries, they define
the dashed lines in Figs. 5 and 6.

The normalized solutal signals along the line through
compositions 30-22-13-21-10 are shown in Fig. 7. The
sign change occurs between compositions 22 and 13,
very close to the latter. We attribute the positive ampli-
tudes below the dashed line mainly to the negative
Soret coefficient of H2O in zones III, V, and VI. The
composition with vanishing signal close to composition
13 is, however, not identical to point Z, where all three
Soret coefficients vanish. A close inspection of the solu-
tal signal of composition 13 in Fig. 7 reveals a superpo-
sition of a fast contribution with a small positive and a
slow one with a small negative amplitude.

Thus, although the solutal steady-state optical sig-
nal asymptotically vanishes along the dashed line, it
is still a superposition of two, albeit small, contribu-
tions with different signs that correspond to the two
eigenmodes with different eigenvalues of the diffusion
matrix. As a consequence, the vanishing asymptotic sig-
nals can still show transient amplitudes for finite times.
The strict requirement for an asymptotically vanishing
solutal amplitude of the optical signal reads

(

∂n

∂c1

)

p,T

S′

T,1 +

(

∂n

∂c2

)

p,T

S′

T,2 = 0 . (7)

Because of the dispersion of the optical contrast factors,
the precise position of the dashed line through regions V
VI, with the exception of point Z, is expected to depend
slightly on the employed detection wavelength. In prin-
ciple, Eq. (7) could also be satisfied by a very peculiar
combination of large Soret coefficients and matching
optical contrast factors. Since this can be excluded at
the two binary limits, and since the component separa-
tion necessarily needs to be small with changing signs
within the narrow overlap regions V and VI, we con-
sider it safe to exclude such unlikely coincidences.

Because of the vanishing solutal steady-state signal
on the dashed line, it is very difficult to pin down the
precise locus of point Z. Its position can be shifted along
the dashed line and even the extreme positions at the
two binary axes cannot be ruled out completely. They
would still be compatible with our arguments. On the
other hand, there are neither experimental observations
nor theoretical arguments that would support such a
very special assumption.

The sample from DCMIX3 cell number 3 with a com-
position of 0.25/0.6/0.15 (H2O/ETH/TEG) provides
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Table 7 Ternary thermodiffusion and Soret coefficients of DCMIX3 sample 3 at 25 ◦C. Thermodiffusion coefficients D′

T,i

measured by TGC. Soret coefficients S′

T,i calculated from D′

T,i and diffusion matrix from Ref. [39]

D′

T,i [10−13 m2/(sK)] S′

T,i [10−3 1/K]

H2O i = 1 4.36(.13) 1.33(.08)
ETH i = 2 −3.30(.15) −1.03(.09)
TEG i = 3 −1.06(.13) −0.30(.07)

the opportunity for an additional test of the picture
developed so far. It is, besides sample 2, the only other
DCMIX3 sample that has a positive separation ratio
and can be measured by the thermogravitational col-
umn (TGC) technique with its superior contrast factor
matrix. As shown in Fig. 5, sample 3 should be in the
same zone IV as sample 2 with a positive Soret coef-
ficient for H2O and negative Soret coefficients of ETH
and TEG. In order to test this prediction, TGC mea-
surements were performed following the identical pro-
tocol as employed for sample 2 in Ref. [38]. The results
are listed in Table 7. The experiments yield directly the
thermodiffusion coefficients D′

T,i. The Soret coefficients

S′

T,i are calculated as described in Ref. [38] using the

diffusion matrix from Ref. [39]. As can be seen from
Table 7, the signs of the three ternary Soret coefficients
are in agreement with our model.

4 Summary and conclusion

We have presented Soret- and diffusion coefficients of
the three binary subsystems of the ternary DCMIX3
system consisting of H2O, ETH, and TEG. All three
binaries are strongly interacting hydrogen bonding mix-
tures with pronounced excess volumes of mixing [40].
We are not able to provide a fully quantitative model.
There are, however, several remarkable properties that
are common to all three mixtures but not necessarily
found to the same extent in nonpolar organic liquids.

The most remarkable observation is a sign change
of ST as a function of concentration—in the case of
TEG/ETH only below room temperature. In all bina-
ries, the Soret coefficient is a decreasing function, which
leads, together with the sign change, to a migration of
the minority components to the cold side in the dilute
limits. Correspondingly, the majority component has
a negative Soret coefficient and goes to the hot side.
As already observed for organic liquids, all three mix-
tures show a temperature invariant fixed point of ST

at a certain concentration, and ST can be factorized
into a concentration-dependent function α(c) with a
temperature-dependent amplitude β(T ) plus the con-
stant offset of the fixed point (Eq. (3)).

Although these observations can qualitatively be
interpreted in terms of concepts discussed in the litera-
ture for organic mixtures, a fully quantitative descrip-
tion is still lacking for these hydrogen bonding sys-
tems. An example is the decrease in ST with concentra-

tion, which is in agreement with predictions by Moro-
zov [34,35] for systems with negative excess volumes.
Despite the nice qualitative agreement, we are not able
to provide a quantitative model. Another example is
the mentioned fixed point of the Soret coefficient and
the parameterization of ST according to Eq. (3). While
these terms could be identified with the isotopic and
the chemical contribution to the Soret coefficient in the
case of organic mixtures, such an interpretation fails for
the here considered strongly interacting polar mixtures.

Based on the knowledge of the signs of the Soret coef-
ficients for the binaries and for the symmetric ternary
mixture (DCMIX3-composition 2), it is possible to
reconstruct the signs and sign changes also for the
ternaries within the Gibbs triangle. Since the three
Soret coefficients are not independent, two small Soret
coefficients automatically imply that also the third one
needs to be small. This, in combination with the low
refractive index of water, leads to vanishing optical sig-
nals along the dashed line through the narrow overlap
regions V and VI in Fig. 5, which are close to the loci
where the Soret coefficients of TEG and H2O or ETH
and H2O change their signs. Though its precise loca-
tion has not been nailed down, these considerations
necessarily imply the existence of a certain composi-
tion, point Z, where all three Soret coefficients vanish
simultaneously and where no separation will occur in a
temperature gradient.

On purpose, we have used as little experimental
input as possible for the ternary mixtures inside the
Gibbs triangle. The determination of the Soret coeffi-
cients for the ternaries requires two-color experiments,
as employed for the DCMIX project, and the inversion
of the optical contrast factor matrix. Due to the large
condition numbers of the latter, the errors introduced
by this procedure are unavoidably large. An exception
is composition 2, which has been investigated in Ref.
[38] both under microgravity and ground conditions.
In particular, the employed thermogravitational column
technique provides, for this particular system, superior
contrast factor matrices. But since this method only
works for positive separation ratios, it is limited to the
DCMIX3-mixtures 2 and 3. These problems do not exist
for the binaries and the reported data are generally of
a high quality. Thus, it was our goal to investigate, how
much information about the ternaries can be extracted
for this particular system from the knowledge of the
binaries alone. Even without DCMIX3 sample 2, the
conclusions would be very similar and only the orange
region with the negative Soret coefficient of ETH might
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be drawn somewhat less toward the TEG corner. It
should be remembered that the measurements shown
in Fig. 6 to determine the dashed line were only made
with a single color and did not involve the inversion of
a contrast factor matrix.
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Ryzhkov, V. Shevtsova, S.V. Vaerenbergh, W. Köhler,
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132, 174506 (2010). https://doi.org/10.1063/1.3421547
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Abstract 

The investigation of the transport properties of binary fluid mixtures remains a topic of interest 

in relation to the more challenging studies of ternary mixtures. In fact, the study of the phase 

boundary limits of the Gibbs composition triangle can be the initial step for a more complete 

analysis of ternary mixtures. In this paper, we apply the dynamic shadowgraphy optical 

technique to study non-equilibrium fluctuations induced by the presence of a gradient of 

temperature and/or of concentration in the triethylene glycol (TEG)/water system. These 

thermodiffusion and free-diffusion experiments aim at measuring the transport properties of 

samples of the studied system at different experimental conditions. We scan both the average 

temperature and the TEG concentration, which allows us investigating both positive and 

negative thermodiffusive behaviours. The obtained values of mass diffusion coefficient are 

consistent with data available in the literature in the range of temperature investigated in this 

study. The mass diffusion coefficient of the sample prepared at 0.7 w/w TEG concentration are 

characterised by shadowgraphy following the two proposed methods, exhibiting consistent 

results. An increase of the mass diffusion coefficient as a function of the average temperature 
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is highlighted. On the other hand, the thermodiffusion coefficient appears to be independent of 

the average temperature of the sample at 0.3 w/w TEG concentration. 

 

1. Introduction  

The transport properties of complex fluids under non-equilibrium conditions are of interest from 

both scientific and technological points of view. Transport phenomena occurs in almost any 

multicomponent mixture present in nature and in industry and its comprehension is of great 

interest for many applications, such as the exploitation of crude oil wells and the storage of CO2 

in deep brine aquifers. [1], [2]. A suitable characterization of transport processes in complex 

mixtures requires a thorough understanding of simpler fluids. So far, binary mixtures have been 

extensively characterized [3], [4]. The extension of theories and experiments from binary to 

ternary mixtures requires further development due to the intrinsic and significant increase of 

difficulty with the number of components of the mixture and their mutual interactions. 

Currently, a great effort is devoted to investigate the transport phenomena in ternary mixtures. 

Thermodiffusion experiments in ternary mixtures are performed on ground, by using different 

optical techniques [3], [5]–[7], or in microgravity conditions in order to avoid both convection 

and sedimentation. The thermodynamic characterization of ternary mixtures is one of the 

objectives of different ESA projects, like: Diffusion Coefficient Measurements in ternary 

mIXtures (DCMIX) [7]–[11], Soret Coefficients in Crude Oil (SCCO) [12]–[15] and Giant 

Fluctuations [16], [17]. The knowledge of the behavior of the binaries associated to the ternaries 

remains an important step because they correspond to the binary phase boundary limits in the 

ternary Gibbs composition triangle, and interpolated values of the Soret coefficient can be 

obtained in some conditions [18]. 

Complex fluids subjected to non-equilibrium conditions exhibit non-equilibrium fluctuations 

(NEFs) of the thermodynamic variables [19]–[21]. These conditions can be induced, for 
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example, by applying a temperature gradient to a multicomponent fluid mixture, thus inducing 

a temperature gradient within the fluid as well as a composition gradient by means of 

thermodiffusion, also called the Soret effect [3], [22]. Superimposing two layers at different 

concentrations of a solution generates an initial gradient of concentration which evolves 

towards an equilibrium state by mass diffusion, in the absence of convective motions [23]. Both 

free-diffusion and thermodiffusion transport processes can be investigated by optical 

techniques and particularly by light scattering thanks to its ability to visualize NEFs without 

altering the intrinsic properties of the fluid. The transport properties of the fluid can be 

determined both at atmospheric [24] and at high pressure [25]. In this work, dynamic 

shadowgraphy has been adopted [23], [26], [27] to study the refractive index fluctuations as 

generated by the NEFs of the temperature and concentration in the case of thermodiffusion 

experiments, and of the concentration in the case of free-diffusion experiments. It is important 

to highlight the novelty of using this methodology to determine the transport properties of fluid 

mixtures in free-diffusion experiments. By shadowgraphy, a large range of fluctuation sizes 𝜆 

or, conversely, of wave numbers 𝑞 = 2𝜋/𝜆, can be investigated at the same time, providing 

simultaneous reliable measurements of different transport properties, like mass diffusion 

coefficient or thermal diffusivity as well as Soret coefficient [5], [24], [28]. 

The aim of the present work is to investigate the diffusion and the thermodiffusion coefficients 

of the binary mixture of triethylene glycol (TEG) and water (H2O), as one of the binary limits 

of the DCMIX3 ternary system, made of H2O, ethanol and TEG [11]. These molecules are 

highly polar, and the prevailing hydrogen bonding leads to much more complex interactions 

than the dominating dispersion interactions in alkane mixtures for example. A consequence of 

these strong interactions are large negative excess volumes of mixing, leading to negative 

values of the Soret coefficient and to convective instabilities under terrestrial gravity conditions. 

In this study, it is worth noting the possibility of characterising mixtures with negative Soret 
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coefficients through the analysis of NEFs by using shadowgraph technique in both 

thermodiffusion and free-diffusion experiments.  

The remainder of this paper is organized as follows: in section 2, the experimental procedure is 

described. In section 3, the theory of non-equilibrium fluctuations is summarized to provide the 

relevant working equations. The obtained results are presented in section 4, finally, conclusions 

are provided in section 5. 

2. Experimental procedure 

2.1. Solutions preparation and characterisation 

Triethylene glycol (Sigma-Aldrich, T59455-1L, ReagentPlus®, purity 99%), used without 

further purification, and degassed de-ionized water (resistivity 18.5 Mcm), retrieved from a 

Millipore Milli-Q filtration station, were used to prepare the studied samples at the required 

mixture compositions using an analytical balance (Sartorius TE313S, resolution 10-2 g/200 g). 

The thermophysical properties of the mixture, such as density, viscosity and both thermal and 

mass expansion coefficients are measured as follows. 

The kinematic viscosity  is measured at 20, 25 and 30 °C by capillary viscometer (Ubbelohde 

SCHOTT). The thermal and solutal expansion coefficients 𝛼 and 𝛽, respectively, are defined 

as follows: 

 
𝛼 = −

1

𝜌
(

𝜕𝜌

𝜕𝑇
)

𝐶,𝑝
 (1) 

 
𝛽 =

1

𝜌
(

𝜕𝜌

𝜕𝐶
)

𝑇,𝑝
 

(2) 

where 𝜌 is the mixture density, T is the temperature and 𝐶 is the TEG concentration in mass 

fraction. 
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The coefficients 𝛼 and 𝛽 are indirectly determined from measurements of the mixture density 

performed at different conditions through a Density Meter (ANTON PAAR, DMA 5000). First, 

in order to determine the thermal expansion coefficient, the density is measured at different 

temperatures (starting from 2 °C below the nominal temperature up to 2 °C above), while 

keeping the concentration constant. A linear relationship between the density and the 

temperature is observed in all cases. The parameter 𝛼 is determined through Eq. (1), i.e. dividing 

the slope of the density vs. temperature by the density of the sample at the nominal temperature. 

Second, the mass expansion coefficient is obtained after measuring the density at different 

concentrations (starting from 2% w/w below the nominal concentration up to 2% w/w above), 

while keeping the temperature constant. A linear relationship between the density and the 

concentration is observed in all cases. The parameter 𝛽 is determined through Eq. (2), i.e. 

dividing the slope of the density vs. concentration by the density of the sample at the nominal 

concentration. Measured values of ν, 𝛼 and 𝛽 are summarized in Table 1. 

Table 1. Kinematic viscosity ν, thermal expansion coefficient 𝜶 and solutal expansion coefficient 𝜷 at 

different both mass fraction concentrations C of TEG and temperatures T. 

T (°C) ν (mm2/s) 𝛼 (10-4 K-1) 𝛽 (10-1) 

C = 0.3 w/w 

20 2.72  0.03 4.22  0.02 1.59  0.08 

25 2.32  0.02 4.49  0.02 1.55  0.07 

30 2.01  0.02 4.77  0.02 1.51  0.07 

C = 0.5 w/w 

20 6.25  0.06 5.77  0.01 0.145  0.009 

25 5.20  0.05 5.87  0.01 0.138  0.005 

30 4.34  0.04 6.02  0.01 0.134  0.003 

C = 0.7 w/w 
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20 14.8  0.1 6.633  0.007 0.96  0.02 

25 11.9  0.1 6.712  0.004 0.949  0.006 

30 9.7  0.1 6.799  0.005 0.938  0.008 

 

The measurements of viscosity and density are repeated at least three times for each sample. 

The viscosities reported in Table 1 are calculated as the average of the three measurements and 

the corresponding uncertainties are the standard deviations. Considering the density 

uncertainties and the sensitivity of the method of least-square adjustment, the uncertainties on 

𝛼 and 𝛽 are calculated by error propagation. 

2.2. Free-diffusion and thermodiffusion cells 

For the free-diffusion experiments, we used a diffusion cell specifically designed to put into 

contact two layers of two different liquid mixtures or two solutions of the same components at 

different concentrations, thus creating an initial step concentration gradient at uniform 

temperature while providing vertical optical access to a central area of the cell, similar to the 

flowing-junction cell already reported in literature [29]. The diffusion cell consists of a stainless 

steel annulus (see Fig. 1) with internal and external diameters of 30 mm and 80 mm, 

respectively, and a vertical thickness of h = 10 mm. The metallic annulus hosts four holes: two 

for fluids outlets at 180° in the horizontal plane and at mid-height of the cell in the vertical 

direction, and two for fluid inlet at 50° in the horizontal plane and at the same height in the 

vertical direction. In order to avoid the thermal contact between the liquid sample and the 

interior of the conductive metallic annulus, a polytetrafluoroethylene (Teflon®) ring with an 

internal and external diameter of 20 mm and 30 mm, respectively, is placed inside the stainless 

steel annulus (see Fig. 1a) . This ring has also four thin holes in correspondence to those present 

in the metallic annulus to allow the circulation of the fluids. Moreover, the two holes for the 
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fluid inlets are inclined in the vertical direction so that one incoming fluid is steered to the top 

of the cell, while the other one is steered to the bottom of the cell. 

 

Figure 1: a) 3D-drawing of the stainless steel annulus with the Teflon ring in the inner part. b) 2D-

drawing of the same, as observed from the top. 

 

The stainless steel annulus is designed to accommodate two square sapphire windows (84040 

mm3), one on each vertical side with a groove for a Viton® O-ring for sealing. The two internal 

faces of the two sapphire windows are then separated by the metal annulus and kept apart by h 

= 10 mm, thus defining the vertical thickness of the fluid sample. The external surfaces of the 

two sapphire windows are in contact with two square aluminium plates with a central circular 

aperture with a diameter d = 13 mm. These plates are meant for hosting two temperature sensors 

so to measure the temperature as close as possible to the sapphires. The aluminium plates are 

also in contact with two square Peltier elements (Kryotherm, TB-109-1.4-1.5 CH) which can 

transport heat by means of a current flow and have the same central circular aperture. The Peltier 

elements provide/remove the heat necessary to maintain the set-point temperature as driven by 

two temperature controllers (Wavelength Electronics, LFI-3751) which use a proportional-

integrating-derivative feedback system and maintain the temperature of the internal side of each 

Peltier device constant, with stability better than 1 mK RMS over 1 day. As shown in Fig. 2, all 

these elements are clamped by means of two aluminium blocks (with the same central circular 
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aperture) in which water coming from a thermostatic controlled bath (Huber, ministat 125), 

circulates in order to remove the Peltier elements excess heat. 

 

Figure 2: 3D drawing of the diffusion cell. 

External to the stainless steel ring, metallic capillary tubes with external diameter of 1/8 inch 

and about 50 mm of length (the red stems visible in Fig. 2) are connected to each inlet/outlet. 

These capillary tubes end with a manual valve each (Swagelok, SS-41GS2), as shown in Fig. 

3. The sample reservoirs are connected to the valves via flexible capillary tube (same external 

diameter as the metallic capillary tubes). 

The cell filling is performed in two main steps. In the first step, the diffusion cell is completely 

filled with the less dense fluid. In order to do that, the fluid is slowly injected by gravity through 

the lower part, while air is let out of the outlet pointing to the top. By slightly tilting the cell, 

the residual air can be completely removed. Attention is paid to avoid any further air inlet while 

filling the other three capillary tubes. The second step consists of filling the bottom half of the 

cell with the denser fluid and create a sharp interface between the two fluids. This is achieved 

by filling the cell simultaneously with the two fluids from the bottom and the top inlets, while 

the remixed fluid is let out through the two outlets. Once half of the cell is filled with the denser 

fluid (the volume of fluid to be injected into the cell to fill it by half, taking into account the 

length and the internal diameter of capillary tubes and the dead volumes is calculated 
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beforehand), a relatively flat horizontal interface between the two fluids is formed. The four 

valves are simultaneously closed and the free-diffusion process starts. 

 

For the thermodiffusion experiments the stainless steel annulus is replaced by a Viton O-ring 

with an internal diameter of d = 25 mm and thickness of e = 3 mm, the other components remain 

unchanged and capillaries are not necessary. The two sapphire windows are kept apart by four 

plastic spacers of h = 2 mm, thus defining the liquid layer thickness. The cell is filled by means 

of two syringe needles punctured through the Viton O-ring. During the filling procedure, the 

cell is inclined and the fluid is pushed through the bottom syringe while air is removed through 

the top one. After filling, the two needles are carefully removed and the holes in the O-ring 

close due to the pressure exercised on it by the sapphire windows. The cell is inserted into the 

shadowgraph setup once the filling is finished. For any given mean temperature, a temperature 

difference between the top and the bottom is applied by setting the corresponding temperatures 

to the Peltier elements. Once the stationary state is reached, i.e. after one diffusive time for the 

cell, the image recording is started. 

2.3. Shadowgraph setup 

The shadowgraph optical setup (Fig. 3) involves a super luminescent diode (Super Lumen, SLD 

MS-261-MP2-SM,  = 67513 nm), connected to a single-mode optical fiber. The divergent 

beam at the output of the fiber is collimated by an achromatic doublet lens (focal length f = 150 

mm, and diameter  = 50.8 mm). The collimated beam passes through the free-diffusion cell, 

or the thermodiffusion cell, via two linear polarizers that allow adjusting the average transmitted 

light intensity, and is supposed to be perpendicular to the interface between the two solutions, 

in the case of free diffusion experiments, or parallel to the temperature gradient in the case of 

thermodiffusion experiments. A camera, whose detection plane is positioned at a distance of z 

= (12.0 ± 0.5) cm from the sample central plane, collects the sum of the light scattered by the 
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NEFs plus the transmitted one. As a camera sensor, we use a scientific-CMOS camera 

(Hamamatsu Digital Camera C13440, ORCA - Flash 4.0 V3) whose detector size is s = 13.3 

mm. This camera sensor allows a fast image acquisition frequency, up to 100 Hz at full frame 

resolution of 20482048 square pixels with a pixel side of lpix=6.5 m. Images are acquired in 

real time by the HCImageLive (x64) software program installed in a dedicated PC. In order to 

have both a good stability of acquisition frequency and a quick backup of the images, we use 4 

Solid-State Drive (SSD) hard disks in RAID0 configuration. 

  

Figure 3: Shadowgraph optical set up summarized in six distinct blocks: 1) optical components; 2) s-

CMOS Camera; 3) free-diffusion/thermodiffusion cell; 4) specific filling procedure; 5) temperature 

controllers; 6) computer equipment. 

 

2.4. Dynamic Near field imaging 

The images acquired in the near field consist of an intensity map I(�⃗�, 𝑡), generated by the 

interference on the s-CMOS plane between the portion of the incident beam that has passed 

undisturbed through the sample and the beams scattered by the refractive index fluctuations 

occurring within the sample. Here, �⃗� and t stand for the position in the image plane and the time 
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lapsed during the acquisition, respectively. Thanks to the interference of different beams, the 

fluctuations in the fluid density, that are proportional to the fluctuations of the fluid refractive 

index, are transformed into fluctuations of the light intensity at the detector plane. Therefore, 

in order to study the dynamics of the density fluctuations in our samples, we calculate the 

Structure Function (SF) of the light intensity, i.e. of the acquired images, by means of an already 

proven Differential Dynamic Algorithm (DDA) [30]. The DDA algorithm consists of the 

following main steps: first, each recorded image 𝐼(�⃗�, 𝑡) is Fourier transformed in the 2D spatial 

space of the detector plane to obtain 𝐼(�⃗�, 𝑡) = Ӻ(𝐼(�⃗�, 𝑡)), then the Fourier transform (FT) is 

normalised by dividing it by the zero spatial frequency i(�⃗�, 𝑡) = 𝐼(�⃗�, 𝑡)/𝐼(0⃗⃗, 𝑡) in order to 

remove the source intensity fluctuations. Then, the differences between normalized FTs at a 

given time difference t (called correlation time) ∆𝑖(�⃗�, 𝑡, ∆𝑡) =   𝑖(�⃗�, 𝑡) −  𝑖(�⃗�, 𝑡 + ∆𝑡) are 

calculated. These t’s are, of course, multiples of the time delay dtmin of the recording process, 

and cannot be larger than the acquisition duration. Finally, the 2D correlation functions are 

calculated by determining the - square moduli |∆𝑖(�⃗�, 𝑡, ∆𝑡)|2 of the FT differences, and the 

individual spatial Fourier transforms of the image differences are averaged, first over all times 

t and second over the modulus of the wave number �⃗� over the azimuthal angle. The result 

〈|∆𝑖(𝑞, ∆𝑡)|2〉𝑞,𝑡 is the SF of the recorded intensity fluctuations. In order to reduce the 

computational time to calculate the structure function out of the image series, we make use of 

a graphic card with the advantage of the massive parallelization on the Graphic Processing Unit 

(GPU) and an in-house developed software [30], [31]. This experimental quantity requires a 

physical model for its interpretation. The details of the theoretical model can be found 

elsewhere [19], [20]. In the present paper, we just recall the essential equations used to fit the 

SF.  

2.5. Structure function analysis 
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The SF can be related to the power spectrum density fluctuation and the characteristics of the 

optical system as follows: 

 〈|∆𝑖(𝑞, ∆𝑡)|²〉 = 2{𝑇(𝑞)𝑆(𝑞)[1 − 𝐼𝑆𝐹(𝑞, ∆𝑡)] + 𝐵(𝑞, ∆𝑡)} (3) 

where 𝑇(𝑞) is the optical transfer function of the shadowgraph, 𝑆(𝑞) the static power spectrum 

of the fluctuations, the product 𝐴(𝑞) = 𝑇(𝑞)𝑆(𝑞) is called the static structure factor 

(independent of the correlation time) and 𝐵(𝑞, ∆𝑡) is the signal background. It includes different 

contributions like electronic noise due to the camera and all the acquisition chain and can be 

modelled by 𝐵(𝑞, ∆𝑡) = 𝐶(𝑞) + 𝐸(𝑞) ∙ ∆𝑡 + 𝐹(𝑞) ∙ ∆𝑡2. The parabolic term 𝐹(𝑞) ∙ ∆𝑡2 

becomes particularly important for the experiments performed in the free-diffusion 

configuration, where the system is never at the steady state, so that the background noise 

becomes time-dependent. The Intermediate Scattering Function 𝐼𝑆𝐹(𝑞, ∆𝑡) corresponds to the 

dynamic part of the SF, that can be described in many cases as the sum of exponential decays 

[32]–[34]: 𝐼𝑆𝐹(𝑞, ∆𝑡) =  ∑ 𝑎𝑖𝑒𝑥𝑝(−∆𝑡/𝜏𝑖(𝑞)),𝑖  where 𝑎𝑖 are the amplitudes of the different 

modes with ∑ 𝑎𝑖 = 1𝑖  and 𝜏𝑖(𝑞) the wave-number-dependent relaxation times. 

During a free-diffusion experiment, the density fluctuations recorded through the shadowgraph 

are mostly due to concentration-NEFs (c-NEFs) that are much more intense (orders of 

magnitude) than equilibrium temperature and/or concentration fluctuations present at the same 

time for the wave number range of our interest. Thus, the ISF is expected to be well described 

by a single exponential decay for all wave numbers. Thus, the SF is supposed to take the 

following form: 

 
〈|∆𝑖(𝑞, ∆𝑡)|²〉 = 2 {𝐴(𝑞) [1 − exp (−

∆𝑡

𝜏𝑐(𝑞)
)] + 𝐶(𝑞) + 𝐸(𝑞) ∙ ∆𝑡

+ 𝐹(𝑞) ∙ ∆𝑡2} 

(4) 

where 𝜏𝑐(𝑞) is the decay time of the c-NEFs at wave number q. 
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When a stable temperature gradient parallel to the gravity field is applied to a homogenous 

binary fluid mixture, a concentration gradient is formed due to the Soret effect [3]. Hence, at 

the steady state of a thermodiffusion experiment a suitable expression for the ISF can be 

provided by the sum of two exponential decays given by the fluctuations of the concentration 

plus the fluctuations of the temperature (t-NEFs). The SF is supposed to take the following 

form: 

 〈|∆𝑖(𝑞, ∆𝑡)|²〉 = 2 {𝐴(𝑞) [1

− {𝑎 × exp (−
∆𝑡

𝜏𝑇(𝑞)
) + (1 − 𝑎) × exp (−

∆𝑡

𝜏𝑐(𝑞)
)}]

+ 𝐶(𝑞) + 𝐸(𝑞) ∙ ∆𝑡 + 𝐹(𝑞) ∙ ∆𝑡2} 

(5) 

where 𝜏𝑇(𝑞) is the decay time of the t-NEFs at wave number q. 

𝐴(𝑞), 𝜏𝑖(𝑞), 𝐶(𝑞), 𝐸(𝑞) and 𝐹(𝑞) are the fitting parameters at each wave number. In the case 

of a thermodiffusion experiment, if the steady state is fully reached, the term 𝐹(𝑞) is supposed 

to be negligible. However, we keep it in the fit in order to check the validity of our hypothesis 

and to be sure that the steady state has been reached. We use MatLab and an implemented 

Levenberg-Marquad non-linear least-square fitting routine [35]. At the end of the fitting, we 

proceed to the analysis of the statics of the fluctuations through the static structure factor 𝐴(𝑞), 

as well as to the analysis of the dynamics of the fluctuations through the decay times 𝜏𝑖(𝑞). In 

the present paper, we will focus on the dynamics of the fluctuations. 

3. Dynamics of the non-equilibrium fluctuations 

The details of the theoretical description of the hydrodynamic behaviour of density fluctuations 

out-of-equilibrium can be found elsewhere [19], [20], so that here we just recall the main 

expressions useful for the experimental data analysis. 
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At intermediate and large wave numbers, in the absence of any convective mouvement, in the 

presence of the gravity force and in the bulk fluid, the decay time of the c-NEFs is given by: 

 
𝜏𝑐(𝑞) =

1

𝐷𝑞² [1 + (
𝑞𝑐

𝑞 )
4

]
 

(6) 

where D is the mass diffusion coefficient and 𝑞𝑐 the cut-off wave number which defines the 

length scale below which the dynamics of the c-NEFs are no longer dominated by diffusion, 

but rather by buoyancy. The curve of the decay times as a function of wave numbers looks like 

a bell-shape (in log-log scale) and mirrors the presence of two distinct regimes as already 

reported in a number of previous publications [23], [24], [36]. The asymptotic behaviour of Eq. 

6 for wave numbers larger than 𝑞𝑐 is 𝜏𝑐(𝑞) = 1/𝐷𝑞² so that the diffusion coefficient D can be 

obtained from the fitting of the experimental data points in this region. In the case of a 

thermodiffusion experiment, the cut-off wave number is given by the expression [24], [25], 

[28], [37]: 

 
𝑞𝑐 = (

𝛽𝑔𝑆𝑇𝐶0(1 − 𝐶0)∆𝑇

ℎ𝜈𝐷
)

1/4

 (7) 

where 𝛽 is the mass expansion coefficient of the binary mixture, 𝑔 the gravitational 

acceleration, h is the vertical thickness of the sample, 𝐶0 the equilibrium mass fraction of the 

denser component, 𝑆𝑇 the Soret coefficient of the denser component, ∆𝑇 the difference of 

temperature between the top and the bottom of the thermodiffusion cell, and 𝜈 the kinematic 

viscosity of the binary mixture at the mean temperature of the experiment. 

During a free-diffusion experiment, the concentration difference between the bottom and the 

top of the cell is assumed to remain constant until the diffusive process reaches the cell 

boundaries at the diffusive time 𝜏𝑑 = (ℎ/2)2/𝜋𝐷. For times smaller than 𝜏𝑑 the cut-off wave 

number is given by the expression [23], [36], [38]: 
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𝑞𝑐 = (

𝛽𝑔(𝐶1 − 𝐶2)

𝜈𝐷√4𝜋𝐷𝑡
)

1/4

 (8) 

where 𝐶1 and 𝐶2 are the concentrations of the denser component, TEG, at the bottom and top 

layers in the diffusion cell, respectively. Unlike the thermodiffusion experiment, the cut-off 

wave number is time-dependent, following a power law with a (−1/8 = - 0.125) exponent. 

Again, here we recall only the essential equations that are used to model the t-NEFs in the case 

of thermodiffusion experiments. 

At intermediate and large wave numbers, in the absence of convection, in the presence of the 

gravity force and in the bulk fluid, the decay time of the t-NEFs is given by: 

 
𝜏𝑇(𝑞) =

1

𝑎𝑇𝑞² [1 + (
𝑞𝑇

𝑞 )
4

]
 

(9) 

where 𝑎𝑇 is the thermal diffusivity and 𝑞𝑇 the thermal cut-off wave number which defines the 

length scale below which the dynamics of the t-NEFs is no longer dominated by thermal 

diffusion, but rather by buoyancy. The curve of the decay times as a function of wave numbers 

looks similar to the one described for c-NEFS, but, in general, decay times are shorter, due to 

the larger value of thermal diffusivity with respect to mass diffusion coefficient. The asymptotic 

behaviour of Eq. 9 for wave numbers larger than 𝑞𝑇 is 𝜏𝑇(𝑞) = 1/(𝑎𝑇𝑞2) so that the thermal 

diffusivity 𝑎𝑇 can be obtained from the fitting of the experimental data points in this region. 

4. Results and discussion 

Mass diffusion and Soret coefficients for the mixture TEG/water at different concentrations are 

already known in the literature [39]. The present paper is intended to bring new measurements 

of the fluid transport properties at different temperatures. Some of the values reported here are 

anticipated in a joint paper about the system TEG/water/ethanol and the associated binary 

mixtures characterised by different measurement techniques [18]. Here we provide a full 
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detailed description of the experiments performed in our laboratory by means of dynamic 

shadowgraphy and the analysis of NEFs. 

4.1. Thermodiffusion experiments 

One remarkable property of the TEG/water mixture is that the sign of the Soret coefficient 

changes with respect to concentration. This implies that under thermal stress the denser 

component (TEG) migrates towards either the hot plate or the cold one. For C=0.3 w/w, the 

Soret coefficient is positive, so that the TEG migrates towards the cold plate, while for 

concentrations higher than C=0.5 w/w the Soret coefficient is negative in the temperature range 

between 15 °C and 40 °C, so that the TEG accumulates at the hot plate. The presence of a 

negative Soret coefficient makes it difficult to perform thermodiffusion experiments in the 

presence of the gravitational field because, while heating the mixture from above, the density 

gradient generated by the concentration one (at the steady state of Soret separation) is unstable 

and can induce convection transport process in the system. 

A first series of qualitative observations at the average temperature of 25 °C have been 

performed for three different concentrations by applying to the samples either a stabilizing or a 

destabilizing temperature gradient. A stabilizing temperature gradient generates a density 

gradient parallel to the gravity acceleration. It is thus obtained by heating from above ∆𝑇 =

+20 𝐾 and with a positive thermal expansion coefficient 𝛼. A destabilizing temperature 

gradient generates a density gradient anti-parallel to the gravity acceleration. It is thus obtained 

by heating from below ∆𝑇 = −20 𝐾. 

C ∆𝑻 = +𝟐𝟎 °𝑪 ∆𝑻 = −𝟐𝟎 °𝑪 
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0.3 w/w 

 

 

not performed 

0.5 w/w 

  

0.7 w/w 

  

Figure 4: Shadowgraph patterns obtained at a mean temperature of 25 °C after applying different 

temperature gradients to samples of TEG concentration C (from top to bottom) 0.3, 0.5 and 0.7 w/w. The 

temperature difference over the cell thickness is of ∆𝑻 = +𝟐𝟎 °𝑪 for the left column, and ∆𝑻 = −𝟐𝟎 °𝑪 for 

the right one. 

 

As visible in Fig. 4, samples for C=0.3, 0.5 and 0.7 w/w have been stressed by positive and 

negative temperature differences while shadowgraph images were recorded in order to evaluate 

the presence of convective patterns after reaching the steady state of the Soret separation. The 

patterns obtained by heating the samples for C=0.3 w/w from above (thermally stable), are 

featureless at the steady state, thus suggesting a stable configuration. In the patterns visible at 

C=0.5 w/w slight features appear, thus suggesting a moderate convective instability taking 

place within the fluid. This means that the density gradient originated by the concentration 

gradient is slightly larger in modulus than the density gradient generated by the temperature 

gradient. Finally, strong convective patterns appear in the case for C=0.7 w/w thus confirming 
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the negative sign of the Soret coefficient for the mixture TEG/water for concentration of TEG 

larger than 0.5 w/w. 

For the cases when a stable configuration was reached at the steady state, series of images were 

recorded in order to analyse the NEFs and extract the transport properties of the mixture as 

described above. Series of 2500 images of 2048x2048 pix2 were recorded at 100 Hz, 10 Hz and 

1 Hz at different mean temperatures of 20, 25 and 30 ° C. 

The SFs were calculated and concatenated according to a procedure already presented in our 

previous work [33], [34]. The resulting SFs obtained for the concentration of 0.3 w/w of TEG 

and the average temperature of 25 ° C is shown in Fig. 5. 

 

Figure 5: Concatenated structure functions for different wave numbers of the thermodiffusion experiment 

carried out at temperature difference of +20 °C, mean temperature of 25 °C and C=0.3 w/w. 

 

The minimum accessible wave number is given by 𝑞𝑚𝑖𝑛 = 2𝜋/𝐿, 𝐿 being the side of the image 

in the real space. For the acquired images, 𝐿 = 1.33 cm, so that 𝑞𝑚𝑖𝑛 = 4.72 𝑐𝑚−1. The 

theoretical maximum frequency is 𝑞𝑚𝑎𝑥 = (𝑁𝑝𝑖𝑥 2⁄ ) ∙ 𝑞𝑚𝑖𝑛 = 4833 𝑐𝑚−1, 𝑁𝑝𝑖𝑥 being the 

number of the pixels along one side of the images.  
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By the analysis of the concatenated SFs, like those shown in Fig. 5, we could determine that a 

double exponential decay is present for wave numbers 𝑞 < 200 𝑐𝑚−1, while a simple 

exponential decay is present for wave numbers 𝑞 > 200 𝑐𝑚−1. Following this observation, the 

SFs have been fitted by Eq. 5 for wave numbers smaller than 200 cm-1 and Eq. 4 for larger ones. 

As anticipated, the resulting values for the parameters 𝐸(𝑞) and 𝐹(𝑞) turned out to be 

negligible, as an indirect confirmation that the images have been acquired at the steady state of 

the thermodiffusion experiment. In this case, the quantity 𝐴(𝑞)/𝐵(𝑞) can be calculated and 

provides a useful indication of the signal-to-noise ratio of the measurement. In Fig. 6, the values 

of such ratio are reported for measurements performed at C=0.3 and 0.7 w/w and for different 

average temperatures. 

  

a) b) 

Figure 6: Ratio between the static structure factor and the signal background as a function of the wave 

number and the mean temperature for the thermodiffusion experiments carried out at temperature 

difference of a) +20 °C for C=0.3 w/w and b) -20 °C for C=0.7 w/w. 

 

The oscillations visible in the graphs are related to the shadowgraph transfer function 𝑇(𝑞) that 

vanishes at specific wave number. The horizontal line visible in Fig. 6 stands for the threshold 

value of 0.05 above which we consider that a shadowgraph measurement cannot provide 

reliable results [40], [41]. After such analysis, we decided to perform the fitting in the common 
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wave number range from 30 to 450 cm-1 for both mixtures, thus spanning more than one decade 

in wave numbers. 

The decay times obtained by fitting data points with the model functions described above are 

reported in Fig. 7. In the latter, results are shown for the two concentrations of C=0.3 and 0.7 

w/w at the three different temperatures. 

  

a) b) 

Figure 7: Decay times of the t-NEFs (T) and the c-NEFs (C) as a function of the wave number and for 

three different values of the mean temperature for the thermodiffusion experiments carried out at 

temperature difference of a) +20 °C for C=0.3 w/w and b) -20 °C for C=0.7 w/w. The continuous lines 

represent the fitting of the c-NEFs at 25°C with Eq. 6. The dashed lines represents the fitting of the t-

NEFs at 25°C with the asymptotic behavior of Eq. 9. 

 

In both cases, two time decays can be identified for most of the wave numbers. The fastest 

modes, corresponding to the smaller value of the time decay, are related to the decay of thermal 

fluctuations. Data points obtained for C = 0.7 w/w are more scattered than those obtained for C 

= 0.3 w/w. A possible explanation can be related to the negative Soret coefficient and the 

consequent coexistence of a stable density gradient stemming from concentration profile and 

an unstable one stemming from the temperature profile. Nevertheless, two diffusive regimes 

are clearly visible in both graphs, as indicated by the decay time behavior proportional to q-2. 

On the contrary, the gravitational effect is almost not observable and no clear maximum can be 
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detected for the thermal modes. Nevertheless, fitting the thermal time decays with the 

asymptotic behaviour of Eq. 9 can provide a reliable estimation of the thermal diffusivity aT. 

The slowest modes are then related to the decay of concentration fluctuations. For the two 

concentrations, a mass diffusive mode can be detected as well as the effect of gravity reducing 

the time decay of NEFs for wave numbers smaller than a characteristic value (𝑞𝑐). Fitting the 

concentration time decays with Eq. 6, provides the mass diffusion coefficients D and the cut-

off wave numbers 𝑞𝑐 at different mean temperatures. At the smallest wavenumbers for C = 0.3 

w/w, a deviation between the experimental points and the gravity behaviour predicted by Eq. 6 

is noticeable. Such behaviour has already been observed on polymer-based systems (slowing-

down of the larger fluctuations) [33], [34], and can be attributed to the coupling between 

different modes, and can also explain why the gravitational behaviour of the thermal 

fluctuations is not detectable. With the values of D, 𝑞𝑐, 𝛽 and 𝜈 the Soret diffusion coefficients 

ST are calculated through Eq. 7. The resulting values of the transport coefficients obtained by 

thermodiffusion experiments are reported in Table 2. 

Table 2. Diffusion coefficients D, cut-off wave number 𝒒𝒄, thermal diffusivity aT and Soret coefficient ST 

obtained by thermodiffusion experiments of TEG/water mixtures at different mean temperatures T and 

TEG mass fraction concentration C. 

T (°C) D (×10-6 cm2/s) 𝑞𝑐 (cm-1) aT (×10-4 cm2/s) ST (×10-3 K-1) 

C = 0.3 w/w 

20 4.79  0.12 86.7  1.1 13.1  0.4 2.3  0.3 

25 5.46  0.15 86.8  1.3 13.1  0.2 2.3  0.3 

30 6.4  0.3 84  2 13.29  0.13 2.0  0.4 

C = 0.7 w/w 

20 2.02  0.08 70.7  1.5 9.4  0.2 - 3.8  0.6 

25 2.6  0.1 70.3  1.4 9.4  0.4 - 3.9  0.6 

30 2.73  0.06 70.5  0.8 9.4  0.4 - 3.4  0.3 
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Uncertainties for the mass diffusion coefficients, cut-off wave numbers and thermal 

diffusivities are those given by the fitting routine. Uncertainties for the Soret coefficients are 

calculated by error propagation. The values reported in Table 2 show that the diffusion 

coefficient increases with the temperature for the two TEG concentrations, which is a 

reasonable behaviour as fluid viscosity typically decreases with increasing temperature and the 

mass diffusion coefficient is inversely proportional to the fluid viscosity, following the Stokes-

Einstein relation. Taking into account the uncertainties, the values of the Soret coefficient do 

not change over the investigated temperature range for C=0.3 w/w, and a clear trend is not 

observed for C = 0.7 w/w. 

4.2. Free-diffusion experiments 

For the concentration C=0.5 w/w it was not possible to obtain a reliable measurement of the 

mass diffusion coefficient from the thermodiffusion experiments, therefore free-diffusion 

experiments were performed at the different temperatures of 20, 25 and 30 °C. Further 

experiments were performed in free-diffusion for the concentration C=0.7 w/w in order to 

confirm the results obtained by thermodiffusion, given the fact that this is the first time that a 

shadowgraph investigation of NEFs is performed on a sample with negative Soret coefficients 

to extract its transport coefficients. In the case of a free-diffusion experiment, the diffusion cell 

is filled as described in section 2.2. Briefly, the diffusion cell is first filled with the less dense 

solution and subsequently, the less dense and the denser solution fills about half of the cell, the 

valves are closed and the free-diffusion process starts. In the case of the isothermal diffusion 

experiment, only one mode is expected to be measured corresponding to the relaxation of c-

NEFs in the fluid mixture. The time decays are therefore expected to span a narrower range of 

time, so that only one series of images of 1024x1024 pix2 is acquired at a frequency of 10 Hz. 

In this simpler case, the SFs are directly calculated by the DDA algorithm without further 

processing, as shown in Fig. 8 for the average concentration of C=0.5 w/w, a difference of 
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concentration of ∆𝐶 = 𝐶1 − 𝐶2 = 0.2 w/w between the two superposed fluid layers, a 

homogeneous temperature of 25 °C, and 80 minutes after closing the valves. 

 

Figure 8: Structure function for different wave numbers of the free-diffusion experiment carried out at 

the mean concentration of C=0.5 w/w, difference of concentration ∆𝑪 = 𝟎. 𝟐 w/w between the bottom and 

top layer solutions, mean temperature of 25°C and 80 minutes after closing the valves. 

 

In the case of free-diffusion experiments, the SFs show a single exponential decay, as expected, 

so that data points can be fitted through Eq. 4 for the entire range of wave numbers. In Fig. 9 

the signal-to-noise ratio is shown for the sample with C=0.5 w/w and the homogeneous 

temperature T=25 °C for images taken 80 minutes after closing the inlet/outlet valves. The 

values are reported for three different values of the concentration difference ∆𝐶 =0.1, 0.2 and 

0.4 w/w. By comparing Fig. 6 and 9, it is evident that the signal obtained in the case of free-

diffusion experiments is much larger than the one obtained in the thermodiffusion experiments. 

That is due to the fact that the overall signal intensity is proportional to the square of the density 

gradient, that is much larger in the free-diffusion case due to the different shape of the 

concentration profile. The optical signal, however, is integrated over the entire fluid vertical 

thickness, which reduces the overall difference in signal intensity. As visible from Fig. 9, the 

signal also increases with increasing concentration difference and distance for ∆𝐶 between 0.1 

and 0.2 w/w. However, it is approximatively the same in a log-log graph whatever the distance 
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for ∆𝐶 between 0.2 and 0.4 w/w, which is coherent with a quadratic dependence of the signal 

to the concentration difference. 

 

Figure 9: Ratio between the static structure factor and the signal background as a function of the wave 

number for the free-diffusion experiments carried out at mean concentration of C=0.5 w/w, and for 

different concentration differences between the bottom and the top layers, at 25°C and 80 minutes after 

closing the valves. 

 

In the case of free-diffusion experiments, we decided to further analyse data points in the wave 

number range from 30 to 600 cm-1, within which the signal-to-noise ratio indicator keeps above 

the threshold. In Fig. 10 we report the decay times obtained from fitting the SFs as a function 

of the wave number q and for different times after closing the inlet/outlet valves. The graph 

corresponds to a sample with C=0.5 w/w, ∆𝐶 =0.2 w/w and 𝑇 =25 °C. As stated before, only 

one mode can be detected corresponding to the decay of c-NEFs. By fitting the decay times 

through Eq. 6 we can obtain a measurement of the roll off wave number qc and the mass 

diffusion coefficient D.   
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Figure 10 : Decay times of the c-NEFs as a function of the wave numbers for different times after closing 

the inlet/outlet valves for the free-diffusion experiment carried out at C=0.5 w/w, difference of 

concentration ∆C=0.2 w/w and T=25 °C. The continuous black line corresponds to the curve got by fitting 

Eq. 6 to data points obtained 80 minutes after starting the free-diffusion experiment.  

 

For all the times, the relaxation time curve has a bell-shape in the log-log plot of  vs. q. As 

already reported in a number of publications, the right part of such curves for large wave 

numbers corresponds to the diffusive regime of c-NEFs. All curves collapse onto a single one 

for large wave numbers, because the mass diffusion coefficient remains constant during the 

free-diffusion process. This can be clearly observed also in Fig. 11-a, where the mass diffusion 

coefficients obtained after fitting time decays through Eq. 6 are shown as a function of the 

normalised time (i.e. t/d, d calculated using reference values of D). Moreover, the diffusion 

coefficient does not change with respect to the applied concentration difference ∆𝐶. All data 

shown in Fig. 11 are relative to the average concentration C=0.5 w/w at T=25 °C. On the 

contrary, the position of the maximum of the decay time bell-shape, qc, decreases with time, as 

shown Fig. 11-b. 
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a) b) 

Figure 11: a) Mass diffusion coefficient D and b) cut-off wave number qc as a function of the normalized 

time for different concentration differences for the free-diffusion experiments carried out at C=0.5 w/w 

and T=25 °C. 

 

The values obtained for the mass diffusion coefficient D are nicely centred around the literature 

value obtained by Optical Beam Deflection (OBD) [18], that is represented by a horizontal 

dashed line in Fig. 11-a. The values obtained for C=0.1 w/w are somewhat more scattered, 

which mirrors the smaller signal-to-noise ratio, also visible in Fig.9. Moreover, the 

measurement error is increased for times close to the diffusive time of the cell, because, again, 

the signal-to-noise ratio decreases due to the decrease of the concentration gradient. The values 

obtained for the mass diffusion coefficient remain almost constant as a function of time and do 

not depend on the concentration difference imposed at the beginning of the experiment. 

Conversely, the cut-off wave number decreases with time and with the concentration difference 

according to Eq. 8. Fitting data point with a power law and free exponent provides a value of -

0.11, rather close to the theoretical value of -0.125. 

The experiments reported in Fig. 12 have been performed with average concentration C=0.5 

w/w and concentration difference ∆C=0.2 w/w. In Fig. 12-a we report the values of the mass 

diffusion coefficient and the cut-off wave number as a function of the normalised time and for 
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different values of the homogeneous temperature. In Fig. 12-b we report the values of the cut-

off wave number as a function of the normalized time in the same conditions.  

  

a) b) 

Figure 12 a) Mass diffusion coefficient and b) cut-off wave number as a function of the normalized time 

for different temperatures for the free-diffusion experiments with C=0.5 w/w and ∆C=0.2 w/w. 

 

In Fig. 12-a, the horizontal dashed lines provide a visual reference of the values of the mass 

diffusion coefficient obtained by OBD and reported in the literature [18]. The data points for 

T=20 and 25 °C are in very good agreement with the literature values, however those obtained 

at 30 °C show a 10% difference with respect to the literature one. In Fig. 12-b we can see that 

the wave numbers follow a power law dependence upon reduced time with an exponent close 

to the theoretical value of -0.125 for all the three investigated temperatures. 

In Table 3 we provide the obtained values of the mass diffusion coefficients as obtained by the 

free-diffusion experiments performed at the two average concentrations of C=0.5 and 0.7 w/w, 

at the three different homogeneous temperatures of T=20, 25 and 30 °C. For the average 

concentration of C=0.7 w/w, the studied concentration difference between bottom and top 

solutions was C=0.2 w/w. The corresponding mass diffusion coefficients obtained at different 

temperatures are consistent or even compatible to those summarized in Table 2 for the same 

TEG concentration of 0.7 w/w.  
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Table 3. Mass diffusion coefficients D obtained by free-diffusion experiments at mean concentration C in 

mass fraction of TEG and homogeneous temperature T. 

D (×10-6 cm2/s) 

T (°C) C = 0.5 w/w C = 0.7 w/w 

20 3.27  0.10 2.15  0.16 

25 3.86  0.14 2.32  0.06 

30 5.4  0.3 3.00  0.13 

 

The uncertainties reported in Table 3 correspond to the standard deviation with respect to the 

average value including the measurements obtained at different normalised times. In the case 

of the measurements performed at C=0.5 w/w, we averaged data obtained for ∆C=0.2 and 0.4 

w/w. 

5. Conclusion 

In this paper, we have measured the mass diffusion and the thermodiffusion coefficients of 

triethylene glycol and water binary mixtures at different concentrations and average 

temperatures. Up to our best knowledge, this is the first time that the method combining 

dynamic shadowgraphy and the analysis of non-equilibrium fluctuations is used to measure the 

transport properties of a fluid mixture in a free-diffusion experiment. It is also the first time that 

the method is applied to measure the mass diffusion and the Soret coefficients in a 

thermodiffusion experiment for a sample of negative Soret coefficient as it is the case for the 

triethylene glycol/water mixture at C= 0.7 w/w.  

The obtained values of mass diffusion coefficient are consistent with data available in the 

literature for the range of temperature investigated in this study from 20 to 30°C. The mass 

diffusion coefficients of 0.7 w/w triethylene glycol/water mixture measured at different 
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temperatures through free-diffusion experiments are consistent with those determined by 

thermodiffusion experiments. An increase of the mass diffusion coefficient as a function of the 

average temperature is detected. On the other hand, the thermodiffusion coefficient appears to 

be independent of the average temperature of the sample at 0.3 w/w triethylene glycol 

concentration. Soret coefficients have been determined with a relative uncertainty of 10% 

without prior knowledge of optical contrast factors. 
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