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Introduction & motivations

"Essentially, all models are wrong, but some are still useful" (G.E. Box)

In the context of structural mechanics and computational engineering, physical systems are nowadays commonly analyzed by means of modeling and simulation tools. These constitute a fundamental pillar in science and engineering activities, reducing design time and cost. They are usually based on physics-based models, described by PDEs, that provide an idealized mathematical abstraction of the underlying physical system. They permit to virtually represent the mechanical behavior and make predictions for understanding and decision-making. Nevertheless, and out of the validation of numerically predicted outputs (by comparison with experimental data), a recurring issue is related to the computational effort generated by numerical simulations. One the one hand, the fine analysis of localized complex (multiscale, multiphysics) phenomena has always been of major interest in simulation-based structural mechanics engineering. A typical case is aerospace engineering, in which local phenomena associated with nonlinearities, heterogeneities, or geometric details are frequently studied over structures exhibiting various scales (from micrometer-sized composite fibers up to meter-sized aircraft components, see Figure 1). This requires the use of high-fidelity and computationally intensive physics-based models, which are now available and mature.

On the other hand, despite considerable advances in computing capabilities, such models often remain intractable or hardly manageable in practical applications, in particular those associated with multi-query procedures. In order to circumvent this difficulty, model reduction techniques have been the object of many research works and developments during the last two decades. They aim at reducing the numerical complexity, and therefore the computational cost, in order to make simulations affordable in the industrial context.

A first and natural approach for model reduction consists in using multi-fidelity models, in which the initial highfidelity model is replaced (totally or partially) by computationally cheaper surrogate models. These latter models may be obtained from homogenization or considering the linear range of the material behavior, for instance. In this context, a wide variety of numerical methods, dedicated to multiscale and/or multi-model computations, have emerged. In the present work, we deal with model coupling in which a high-fidelity model is kept in local spatial zones (e.g. in the vicinity of regions of interest) alone, while it is replaced with a surrogate model in the remainder of the mechanical structure (i.e. at a more global scale). This leads to a local analysis method in which data transfer between models is performed across a coupling interface (Figure 1). The PhD work focuses on a specific and advanced model coupling method referred to as non-intrusive local-global coupling. Initially developed in [START_REF] Gendre | Non-intrusive and exact global/local techniques for structural problems with local plasticity[END_REF],Gendre et al., 2011], it performs a strong coupling between models compared to traditional sub-modeling (with one-way weak coupling) which is still a standard in industry [Jara-Almonte and Knight, 1988, Voleti et al., 1996,Cormier et al., 1999]. An attractive aspect is its non-intrusive feature that facilitates the management of several models coming from different software and used within parallel computations. For that, a substitution approach with iterative solver is implemented, which enables local modifications of an existing finite element model (in terms of mesh refinement, introduction of local features related to the geometry or material behavior, . . . ) while keeping the corresponding initial numerical operators unchanged at the global level. A coarse global numerical model is thus defined over the whole physical domain, in which geometry, connectivity and operators are fixed (the initial factorized global matrix is thus conserved along the iterative coupling procedure), while local modeling evolutions are performed through a separate numerical model defined over local zones denoted patches. Besides the increased flexibility with no global remeshing, this non-intrusive technique involving independent local-global solvers permits an easy merging of commercial software with any other specific simulation code dedicated to the modeling of complex phenomena of interest. The non-intrusive local-global coupling method has been the topic of several research advances during the last decade, and has been applied in many engineering situations exhibiting complex local phenomena e.g. [START_REF] Chevreuil | A multiscale method with patch for the solution of stochastic partial differential equations with localized uncertainties[END_REF], Bettinotti et al., 2014, Guguin et al., 2014, Guguin et al., 2016, Bouclier and Passieux, 2018, Blanchard et al., 2019], and in association with commercial codes such as Abaqus or Code-Aster.

An overview on the capabilities of the non-intrusive local-global coupling method is given in [START_REF] Duval | Non-intrusive coupling: recent advances and scalable nonlinear domain decomposition[END_REF]. Another strategy for model reduction has been a hot research topic from the late 2000's, with the objective to reach simulation times which are compatible with engineering requirements for multi-query analyses with parametrized problems (e.g. uncertainty quantification, inverse analysis, or parametric optimization). Instead of decreasing the complexity of the initial high-fidelity physics-based model, it rather aims at decreasing the complexity of the solution scheme by exhibiting features of the parametric solution to enhance the computational efficiency.

The general idea is to construct, in an offline phase and with a computationally intensive procedure, a convenient reduced basis for the effective approximation of the parametrized solution. In the online phase, this parameterized solution is then recovered in a fast and cheap manner. Here, we deal with the Proper Generalized Decomposition (PGD) technique [Chinesta et al., 2014] with modal decomposition (see Figure 2), and we use it in association with model coupling for two objectives: (i) to accelerate the coupling algorithm by parametrizing boundary conditions of the local model; (ii) to facilitate local parametric design and structural shape optimization [Samareh, 2001,Haslinger andMakinen, 2003] from a parametrized description of the geometry, inside regions of interest, involving design variables. In this framework, the local-global analysis is performed with a global solution raised from FEM and a local solution evaluated online from a virtual chart constructed offline, from PGD reduced order modeling. Such a virtual chart integrates as variables (i.e. extra-parameters) some features of the local model such as boundary conditions, geometry, or material behavior. Complementing the non-intrusive global-local coupling with local ROM leads to a more flexible exchange between interface quantities, and higher performance in terms of computational efficiency, particularly in the multi-query context. This is one contribution of the PhD. In the previously mentioned multi-fidelity framework with model coupling, the mathematical representation of a given system may be picked in a hierarchical list of possible models, with increasing complexity. The chosen mathematical model is then further numerically processed by means of discretization schemes (such as the finite element method (FEM)) and specific algorithms, leading to a numerical model used as a virtual twin and delivering an approximate solution. Insights of computational approaches depend on the numerical model at hand being a faithful abstraction of the real world, but all models are wrong to some extent. In the framework of computational mechanics based on FE analyses, there are various error sources along the modeling and simulation chain. In the present context, taking the high-fidelity model as the reference, errors may come from (i) bias in the reduced model, related to the size of the local zone chosen to represent fine-scale effects in the model coupling (and potentially to the PGD representation when it is employed); (ii) numerical approximation in terms of discretization (mesh size) or algebraic errors associated with iterative computational solution schemes. The selection of model and numerical parameters is traditionally performed from a priori knowledge on the system (e.g. a priori placement of the coupling interface and definition of local/global meshes, crude criterion for stopping iterations. . . ). However, for the sake of quantitative numerical information, reliable prediction, and safe decision-making, there is a practical need for certification of the computed outputs. This is the matter of model verification, which is part of the larger Verification and Validation (V&V) concept (Figure 3). V&V has been an active research topic for more than 30 years [Roache, 1998, Oberkampf et al., 2003]; it has been listed as one of the most important challenges in simulation-based engineering sciences (SBES) [Oden et al., 2006a]. Out of certifying the outputs of the numerical model, an objective of model verification is also to provide computational efficiency, with fast simulation and predictions. This is in perfect line with industrial constraints to accommodate engineering times and accurate simulations, and it is becoming a major requirement for online real-time control of systems from simulation tools and assimilation of in-situ measurements, in the framework of Dynamic Data-Driven Application Systems [Darema, 2004, Darema, 2015]. In modern computational engineering, the goal is thus to compute right at the right cost, with appropriate physics and smart management of computing resources (trade-off between reliability and computational cost) depending on the objective. This resorts to model adaptivity in terms of an appropriate selection of a computational model and associated numerical parameters, in order to address complex problems with both fast and credible numerical strategies.

The PhD work falls into this verification framework. Its objective is to master calculations, in terms of modeling and numerical simulation, in the context of structural computations performed by means of non-intrusive localglobal coupling (with possible additional PGD reduction applied on the local fine-scale model). We wish to control, in a robust manner, the accuracy of the approximate solution by developing reliable and efficient numerical techniques. There is currently no equivalent tool, and more generally the issue of certification and optimal driving of non-intrusive local-global coupling methods has been addressed in very few works until now. A recent work on the topic is [Tirvaudey et al., 2020a] where only linear models where considered and error estimation was performed using a residual-based approach. Here, we rather rely on the Constitutive Relation Error (CRE) concept which is a general verification tool for FEM computations [START_REF] Ladevèze | Mastering Calculations in Linear and Nonlinear Mechanics[END_REF], Ladevèze and Chamoin, 2015, Chamoin and Díez, 2016]. Based on dual analysis with strong enforcement of mechanical equilibrium, it was first developed in [START_REF] Ladevèze | Error estimate procedure in the finite element method and application[END_REF] then successfully used as a robust a posteriori error estimate to drive adaptive algorithms in many applications involving a large scope of structural mechanics problems (elasto-plasticity, damage, dynamics. . . ). In the context of non-intrusive local-global couplings, we show that the CRE concept also constitutes an effective tool that permits to optimally control the accuracy of the computed solution, both globally and on specific quantities of interest. It defines fully computable and guaranteed error bounds, and provides indicators on the three error sources: modeling error coming from the use of a coarse global model, error of the local model in terms of FE discretization or PGD reduction, error in the iterative coupling algorithm. The last indicators are obtained by weakening the concept of admissibility associated with CRE. A dedicated adaptive algorithm, based on these error indicators, is then derived to compute right at right cost depending on the objective, with an automatic adaptive procedure to select optimal computation parameters (e.g. optimal size of the local zone in the coupling, or number of iterations), and thus avoiding unnecessary computing efforts while satisfying accuracy up to a preset tolerance.

The obtained computation is thus both reliable and manageable, permitting certification for action.

We also show that the adaptive strategy can be implemented within a reduction strategy that couples nonintrusive local-global coupling and PGD model reduction, in order to effectively conduct sensitivity analysis and optimization associated with localized phenomena (structural details, defects). In this context, parameterizations of geometry of the local domain (external and internal) and boundary conditions on the local model are here investigated. Eventually, the verification strategy is used in the context of tolerance analysis, taking into account local design uncertainties (which are unavoidable when manufacturing mechanical products) while guaranteeing that quality requirements are met. We thus illustrate the interest of the approach, in terms of numerical speed-up and guaranteed margins, for optimal or robust design in which many similar simulations need to be performed over the design parametric space to propagate uncertainties [START_REF] Zang | A review of robust optimal design and its application in dynamics[END_REF], Guedri et al., 2012].

Throughout the work, we assume that the continuous fine-scale model is free of error, that boundary conditions on the model problem are perfectly known (no variability or uncertainty in their definition), and that error sources coming from round-off of loading/geometry representation are negligible.

The manuscript is organized as follows:

• In Chapter 1, we perform a bibliographic study on two main points of the PhD work: (i) model couplings, with a focus on non-intrusive coupling; (ii) modeling error estimation, with specific application to such a coupling strategy;

• In Chapter 2, we develop the new strategy based on CRE to control the accuracy of non-intrusive couplings involving linear or nonlinear models in statics. We thus derive error estimator and indicators, as well as an associated adaptive algorithm that optimally drives the coupling algorithm in order to optimally meet a preset tolerance;

• In Chapter 3, the proposed strategy is tailored to goal-oriented control that is control on specific quantities of interest. A main ingredient for this purpose is the introduction and approximate solution of an adjoint problem associated with the chosen quantity of interest;

• In Chapter 4, we extend the approach to non-intrusive local-global couplings in which local PGD model reduction is additionally used. The framework merging model coupling and PGD is developed, before addressing again error control and adaptivity issues;

• in Chapter 5, the overall strategy is applied for tolerance analysis, in which illustrations of optimal or robust designs are shown;

• eventually, conclusions of the work are drawn and some research prospects are indicated, with first ideas and preliminary results for the extension of the proposed tools to advection-diffusion problems resulting for instance from applications with moving sources.

Chapter 1

Bibliographic review

In this first chapter, we start with a state-of-the-art on the methodology implemented for non-intrusive model couplings, focusing on specific features as well as on recent developments. We then address modeling error estimation when employing surrogate models, first presenting the general strategy then applying it to non-intrusive coupling. In the whole chapter, and for the sake of simplicity and clarity, the theoretical and subsequent numerical developments are conducted for static linear models and local material heterogeneities.

Non-intrusive coupling between concurrent models 1.Context and placement with respect to alternative approaches

A wide variety of numerical methods, dedicated to multiscale and/or multi-model computing, have emerged along the three last decades for a high-fidelity analysis of local phenomena. They can roughly be categorized in two main classes. The first class, particularly devoted to multiscale analysis, consists in local model enrichment by means of augmented approximation spaces (using finer meshes or specific enrichment functions) and superposition of micro/macro solutions. We may cite in this class:

• methods with enrichment based on a partition of unity (PUM) [START_REF] Melenk | The partition of unity finite element method: basic theory and applications[END_REF] such as the Generalized Finite Element Method (GFEM) [Strouboulis et al., 2000a, Babuska et al., 2003, Duarte and Kim, 2008] or the eXtended Finite Element Method (XFEM) [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF];

• other methods, such as adaptive localized Multiscale FEM (MsFEM) [START_REF] Hou | A multiscale finite element method for elliptic problems in composite materials and porous media[END_REF], Efendiev and Hou, 2009, Chamoin and Legoll, 2018], in which specific basis functions encode fine-scale details of the solution;

• methods with local correction, as performed in the Variational MultiScale method (VMS) [START_REF] Hughes | The variational multiscale method -a paradigm for computational mechanics[END_REF]], the hierarchical modeling method [START_REF] Oden | Hierarchical modeling of heterogeneous solids[END_REF], multigrid methods involving prolongation and restriction operators [Parsons andHall, 1990,Rannou et al., 2009], the bridging scale method [START_REF] Wagner | Coupling of atomistic and continuum simulations using a bridging scale decomposition[END_REF], the Chimera method [START_REF] Brezzi | Analysis of a chimera method[END_REF], numerical homogenization [W.E et al., 2003[W.E et al., , Feyel, 2003]], or structural zooming with FE patches [START_REF] Glowinski | Finite element approximation of multi-scale elliptic problems using patches of elements[END_REF], Picasso et al., 2008, Lozinski and Pironneau, 2011].

Nevertheless, a major drawback of these model enrichment methods is that they may hardly be used in practical multiscale engineering activities due to their level of intrusiveness in existing commercial software. The implementation of such methods in a legacy code is not straightforward mainly because the creation of the coupling operators requires complex integration operations.

A second class of numerical methods, on which we particularly focus in this work, refers to model coupling methods with interface data transfers. These have received much interest with the emergence of new simulation trends in which several models, potentially coming from different software or physics, are used into parallel computations that are run on modern computing facilities (clusters). Among the wide list of coupling methods, and out of traditional sub-modeling (with one-way weak coupling) which is still a standard in industry [Jara-Almonte and Knight, 1988, Voleti et al., 1996, Cormier et al., 1999], we may refer to several advanced methods with strong coupling:

• improved iterative sub-modeling methods with global correction (taking into account the influence of local phenomena) or static condensation [START_REF] Hirai | An efficient zooming method for finite element analysis[END_REF], Mao and Sun, 1991, Cresta et al., 2007];

• the mortar method [Belgacem, 1999, Bernardi et al., 2005, Brivadis et al., 2015] enforcing weak equalities at the coupling interface by means of Lagrange multipliers;

• the Nitsche method [Hansbo andHansbo, 2002, Ruess et al., 2014];

• energy averaging methods with volume interface such as the Arlequin method [Ben Dhia, 1998, Ben Dhia and Rateau, 2005, Prudhomme et al., 2012], the bridging domain method [START_REF] Xiao | A bridging domain method for coupling continua with molecular dynamics[END_REF], or the MAAD method for atomic-to-continuum couplings [START_REF] Broughton | Concurrent coupling of length scales: methodology and application[END_REF]. Domain decomposition methods, such as well-known FETI [START_REF] Farhat | A method of finite element tearing and interconnecting and its parallel solution algorithm[END_REF], BDD [Mandel, 1993], FETI-DP [START_REF] Farhat | Feti-dp: a dual-primal unified feti method -part i: A faster alternative to the two-level feti method[END_REF], or mixed LATIN [Ladevèze, 1999, Ladevèze et al., 2001, Daghia and Ladevèze, 2012], are also coupling methods based on Schwarz algorithms [Lions, 1987] and are widely used in structural engineering [Le Tallec, 1994,Gosselet andRey, 2006]. Furthermore, nonlinear localization algorithms are available to effectively apply such domain decomposition methods to nonlinear problems [START_REF] Cai | Nonlinearly preconditioned inexact newton algorithms[END_REF], Cresta et al., 2007, Klawonn et al., 2014]. Here again, all these model coupling approaches are intrusive as such, in the sense that they require quite deep modifications of FE solvers and software, and sometimes time-consuming meshing procedures at the global scale, which is not always feasible in an industrial context. Nevertheless, it is fruitful to indicate the attempts made to decrease the intrusiveness level in some of the former methods, as in [Ruyssen, 2021] for the Arlequin method.

About ten years ago, a new and attractive class of model coupling methods referred to as non-intrusive localglobal coupling has emerged [START_REF] Gendre | Non-intrusive and exact global/local techniques for structural problems with local plasticity[END_REF], Gendre et al., 2011], following pioneering ideas developed in [Whitcomb, 1991]. It consists in a substitution approach, with iterative solver, that enables local modifications of an existing finite element model (in terms of mesh refinement, introduction of local features related to the geometry or material behavior, . . . ) while keeping the corresponding initial numerical operators unchanged at the global level. It defines a coarse global numerical model over the whole physical domain, in which geometry, connectivity, operator and solver are fixed (the initial factorized global matrix is thus conserved along the iterative coupling procedure), while local modeling evolutions are performed through a separate numerical model defined over local zones or patches (see Figure 1.1). Interface data are then iteratively exchanged between these two models, with lower convergence performance compared to intrusive coupling; this is the price to pay for non-intrusiveness. Besides the increased flexibility with no global remeshing, the non-intrusive coupling technique involving independent localglobal solvers permits an easy merging of commercial software with any other specific simulation code dedicated to the modeling of complex phenomena of interest. Indeed, no modification of the commercial software is required and standard input/output specifications of such software can be fulfilled.

Over the last decade, the non-intrusive local-global coupling method has been extensively applied and analyzed in many engineering situations exhibiting complex local phenomena (buckling, plasticity, cracking, contact. . . ). It was in particular implemented for problems with local plasticity [START_REF] Gendre | Non-intrusive and exact global/local techniques for structural problems with local plasticity[END_REF] or visco-plasticity [START_REF] Blanchard | Space/time global/local noninvasive coupling strategy: application to viscoplastic structures[END_REF], for crack propagation problems [START_REF] Gupta | Analysis of three-dimensional fracture mechanics problems: A non-intrusive approach using a generalized finite element method[END_REF], Passieux et al., 2013, Gerasimov et al., 2018],

for the analysis of local uncertainties from a global deterministic operator [START_REF] Chevreuil | A multiscale method with patch for the solution of stochastic partial differential equations with localized uncertainties[END_REF]Pled, 2018], for 2D/3D couplings in thin composite panels with local stress concentration and debonding [START_REF] Guguin | Non-intrusive coupling of 3d and 2d laminated composite models based on finite element 3d recovery[END_REF], Guguin et al., 2016, Guinard et al., 2018], for problems involving a NURBS definition of the domain shape and including local geometric details, fracture, or mesh refinement [START_REF] Bouclier | Local enrichment of nurbs patches using a non-intrusive coupling strategy: geometric details, local refinement, inclusion, fracture[END_REF]Passieux, 2018],

or for transient dynamics problems [START_REF] Bettinotti | A fast weakly intrusive multiscale method in explicit dynamics[END_REF], Chantrait et al., 2014, Bettinotti et al., 2017]. It was also used in conjunction with domain decomposition techniques [START_REF] Duval | Non-intrusive coupling: recent advances and scalable nonlinear domain decomposition[END_REF], Oumaziz et al., 2017, Gosselet et al., 2018]. A global overview of the current capabilities of the non-intrusive local-global coupling method is available in [START_REF] Duval | Non-intrusive coupling: recent advances and scalable nonlinear domain decomposition[END_REF]. Alternative proposals exist, based on volume coupling, using for instance a non-intrusive version of the Partition of Unity method [START_REF] Plews | An improved nonintrusive global-local approach for sharp thermal gradients in a standard fea platform[END_REF]. Here, we restrict to surface coupling.

Basic implementation

Reference high-fidelity model

We consider a structural mechanics problem defined over a body occupying the closure of an open bounded domain Ω ⊂ R d (d = 1, 2 or 3 being the space dimension), with regular Lipschitz boundary ∂Ω (Figure 1.2). We assume that a given displacement field u d is prescribed on a non-zero measured part ∂ u Ω ⊂ ∂Ω, while given traction forces 

F d are prescribed on the complementary part ∂ F Ω ⊂ ∂Ω, such that ∂ u Ω ∩ ∂ F Ω = ∅ and ∂ u Ω ∪ ∂ F Ω = ∂Ω. A given
body force field f d may also be active in Ω. In the following, and without loss of generality, we choose u d = 0 (homogeneous Dirichlet boundary conditions). Furthermore, we consider a quasi-static isothermal evolution with small perturbations regime. The material behavior is supposed to be described by a heterogeneous linear elasticity model, with possible fast variations of the material parameters.

The mechanical problem then consists in finding the displacement-stress pair (u, σ) verifying:

u = 0 on ∂ u Ω (kinematic constraints)      div σ + f d = 0 in Ω σn = F d on ∂ F Ω or equivalently Ω σ : ε(v) = Ω f d • v + ∂ F Ω F d • v ∀v ∈ V (balance equations) σ = Kε(u) in Ω (constitutive relation) (1.1)
where n is the outward unit normal vector, ε(u) = 1 2 Grad(u) + Grad T (u) is the linearized strain tensor, and K is the heterogeneous linear Hooke operator. The weak form of this problem reads: We assume that in the previously considered model problem (1.2), phenomena of interest are localized in space.

Find u ∈ V such that Ω Kε(u) : ε(v) = Ω f d • v + ∂ F Ω F d • v ∀v ∈ V (1.2) where V = {v ∈ [H 1 (Ω)] d ; v = 0 on ∂ u Ω} is the appropriate functional space.

Surrogate model and intrusive iterative coupling strategy

Consequently, a natural approach to reduce computational efforts consists in performing sub-structuring and restrict the use of a high-fidelity model to localized zones inside Ω, switching to a simpler model (in terms of material behavior, but also later in terms of mesh size) in the complementary part. We thus partition the physical domain Ω in two non-overlapping zones (see Figure 1.3):

• a local zone Ω L ⊂ Ω, also denoted patch, that should encompass the support of the phenomena of interest to be analyzed. For the sake of simplicity, the zone Ω L is assumed here to be located strictly inside Ω. In this zone, the initial high-fidelity model (based on the heterogeneous constitutive operator K) is preserved;

• the complementary zone Ω 0 = Ω\Ω L in which a coarser concurrent model is implemented. It is defined by substituting the initial material behavior with an homogenized linear elastic behavior with Hooke's operator K 0 .

Remark . In the remainder of the section, we assume that the initial position of the patch Ω L is a priori set from the support of phenomena of interest. An alternative, in the case where these phenomena are not identified, would consist in using a coarse model over the whole domain Ω and determine critical zones (by means of standard error estimates) from which the initial location of Ω L should be defined [START_REF] Picasso | Multiscale algorithm with patches of finite elements[END_REF].

The coupling problem is here formulated in a weak form using the Lagrange multipliers method. Introducing the interface Γ between zones Ω L and Ω 0 , the continuous coupling problem then consists in finding a global displacement field u G defined in Ω 0 , a local displacement field u L defined in Ω L , and a Lagrange multiplier field λ ∈ M (representing reaction forces on Γ), verifying:

• a global problem over Ω 0 :

Find u G ∈ V 0 such that Ω0 K 0 ε(u G ) : ε(v G ) = Ω0 f d • v G + ∂ F Ω F d • v G - Γ λ • v G ∀v G ∈ V 0 (1.3) with V 0 = {v ∈ [H 1 (Ω 0 )] d ; v = 0 on ∂ u Ω}. The associated stress field is σ G = K 0 ε(u G );
• a local problem over Ω L :

Find u L ∈ V L such that Ω L Kε(u L ) : ε(v L ) = Ω L f d • v L + Γ λ • v L ∀v L ∈ V L (1.4) with V L = {v ∈ [H 1 (Ω L )] d }.
The associated stress field is σ L = Kε(u L );

• a continuity condition on Γ:

Γ (u L -u G ) • µ = 0 ∀µ ∈ M (1.5)
This formulation naturally ensures the kinematic compatibility between global and local displacements and the balance of tractions on the interface Γ [START_REF] Hansbo | A lagrangian multiplier method for the fe solution of elliptic interface problems using non-matching grids[END_REF].

Using a discretization method with FE spaces

V H 0 ⊂ V 0 (defined from a coarse partition τ H of Ω 0 ), V h L ⊂ V L
(defined from an independent and usually finer partition τ h of Ω L ), and M h ⊂ M (i.e. the trace space defined from τ h ), the algebraic formulation of the above problem reads:

      K 0 0 C T G 0 K L -C T L C G -C L 0             U G U L Λ       =       F 0 F L 0       (1.6)
where U G , U L , and Λ are nodal value vectors of FE fields u H G , u h L , and λ h , respectively, K 0 and K L are stiffness matrices in Ω 0 and Ω L , respectively, and C G and C L are coupling mortar operators.

In practice, and in order to conform with domain decomposition techniques and parallel computing, the previous coupling problem is not solved in a monolithic way but rather by means of an iterative Dirichlet-Neumann solver.

To do so, an asymmetric local-global algorithm with alternated interface data transfer is introduced. After initializing λ (0) = 0 (zero interface reaction), the continuous problem at iteration n consists in finding (u

(n) G , u (n) L , λ (n) ) ∈ V 0 × V L × M verifying • a global problem over Ω 0 , with given Neumann boundary conditions λ (n-1) on Γ, providing u (n) G : Ω0 K 0 ε(u (n) G ) : ε(v G ) = Ω0 f d • v G + ∂ F Ω F d • v G - Γ λ (n-1) • v G ∀v G ∈ V 0 (1.7)
and associated stress field σ

(n) G = K 0 ε(u (n) G );
• a local problem over Ω L with given Dirichlet boundary conditions derived from u

(n) G on Γ, providing (u (n) L , λ (n) ): u (n) L|Γ = u (n) G|Γ Ω L Kε(u (n) L ) : ε(v L ) - Γ λ (n) • v L = Ω L f d • v L ∀v L ∈ V L (1.8)
and associated stress field σ

(n) L = Kε(u (n) L ).
The corresponding algebraic formulation reads:

K 0 U (n) G = F 0 -C T G Λ (n-1) ;    K L -C T L -C L 0       U (n) L Λ (n)    =    F L -C G U (n) G    (1.9)
Remark . We assume here that meshes τ H and τ h are geometrically compatible even though they do not match on Γ, i.e. the interface is aligned with the edges of the local and global elements. As a result, interface data are fully transmitted from one model to the other: the continuity of displacements can be enforced exactly (while traction equilibrium is enforced weakly on the interface approximation space) and a general mortar method [START_REF] Bernardi | Basics and some applications of the mortar element method[END_REF] is used to transfer interface data between local and global problems. The numerical experiments reported in the manuscript are mostly performed in this context. In the more general case of a non-conforming interface, the transfer would require special attention in the implementation process, evaluating reaction forces with suitable quadrature rules, as performed in [START_REF] Bouclier | Local enrichment of nurbs patches using a non-intrusive coupling strategy: geometric details, local refinement, inclusion, fracture[END_REF] for NURBS geometry representations. Alternative matching conditions have also been introduced in the literature for non-intrusive couplings, such as these based on a more regular mortar method [START_REF] Bouclier | Development of a new, more regular, mortar method for the coupling of nurbs subdomains within a nurbs patch: Application to a non-intrusive local enrichment of nurbs patches[END_REF], on a Nitsche method [START_REF] Bouclier | A nitsche-based non-intrusive coupling strategy for global/local isogeometric structural analysis[END_REF], or on the use of a transition mesh to address topology changes between models [START_REF] Guguin | Non-intrusive coupling of 3d and 2d laminated composite models based on finite element 3d recovery[END_REF], Guguin et al., 2016, Guinard et al., 2018].

Non-intrusive coupling strategy

A drawback of the previous intrusive coupling technique is that the stiffness matrix K 0 , that depends on the geometrical definition of Ω 0 (and thus Ω L ), should be computed for each particular configuration of the local zone Ω L .

Indeed, it requires the construction of a global mesh which is conforming with the potentially complex geometry of Ω 0 . Consequently, remeshing and new factorization of K 0 are necessary each time the location or shape of Ω L is changed (e.g. in case of crack propagation). This appears to be much time consuming, in particular for large domains with many dofs involved, and in a multi-query context. To circumvent this issue and enhance the numerical efficiency, the key idea of the non-intrusive local-global coupling strategy is to modify the global problem (1.3), defining the support of its solution u G over the whole domain Ω.

In order to derive the new global problem, the homogenized linear elasticity behavior is fictively prolongated to Ω L .

Consequently, using additivity of the integral over Ω 0 ∪ Ω L , the initial global problem (1.3) is recast as:

Find u G ∈ V such that Ω K 0 ε(u G ) : ε(v G ) = Ω0 f d • v G + ∂ F Ω F d • v G - Γ λ • v G + Ω L K 0 ε(u G ) : ε(v G ) ∀v G ∈ V = Ω f d • v G + ∂ F Ω F d • v G + Γ [σ G|Ω L n Ω L -λ] • v G ∀v G ∈ V using equilibrium in Ω L (1.10) with σ G = K 0 ε(u G ),
and n Ω L being the outward unit normal vector of Ω L . We emphasize that the corresponding solution u G , even though defined over the whole domain Ω, is usually non-physical in Ω L and irrelevant to analyze local phenomena of interest correctly (all the more so when u G is approximated using a coarse mesh). Furthermore, it is not unique in Ω L and a specific solution is in practice selected from the choice of the initialization in the coupling algorithm. Nevertheless, these do not represent any issue as u G is eventually replaced by the local fine-scale solution u L in Ω L for analysis, so that there is no impact on the local-global solution.

Using the new discretization space V H , obtained from a coarse mesh τ H defined over the whole domain Ω, the non-intrusive procedure leads to the following change regarding the algebraic formulation of the global problem:

K 0 U G = F 0 -C T G Λ =⇒ K 0Ω U G = F 0 -C T G Λ + K 0L U G = F 0Ω -C T G Λ + R LG (1.11)
where K 0Ω (resp. K 0L ) is the stiffness matrix computed over the whole domain Ω (resp. over the subdomain Ω L ) using the smooth linear operator K 0 , while R LG = K 0L U G -F 0L corresponds to the discretized interface reaction forces coming from the fictitious part of the global model (referred as the auxiliary model), computed in practice from volume integrals.

Introducing again an iterative Dirichlet-Neumann solution scheme (fixed point algorithm), the non-intrusive localglobal coupling method consists in finding, at each iteration n of the process and after initializing u

(0) G = 0 and λ (0) = 0, the set (u (n) G , u (n) L , λ (n) ) ∈ V × V L × M verifying
• a global problem over Ω, with given internal reaction forces on Γ, providing u

(n) G : Ω K 0 ε(u (n) G ) : ε(v G ) = Ω0 f d • v G + ∂ F Ω F d • v G - Γ λ (n-1) • v G + Ω L K 0 ε(u (n-1) G ) : ε(v G ) ∀v G ∈ V = Ω f d • v G + ∂ F Ω F d • v G + Γ [σ (n-1) G|Ω L n Ω L -λ (n-1) ] • v G ∀v G ∈ V (1.12)
and associated stress field σ

(n) G = K 0 ε(u (n) G );
• a local problem over Ω L with given Dirichlet boundary conditions on Γ, providing (u

(n) L , λ (n) ): u (n) L|Γ = u (n) G|Γ Ω L Kε(u (n) L ) : ε(v L ) - Γ λ (n) • v L = Ω L f d • v L ∀v L ∈ V L (1.13)
and associated stress field σ

(n) L = Kε(u (n) L ).
Remark . Writing the global problem in an incremental way reads:

Ω (σ (n) G -σ (n-1) G ) : ε(v G ) = Ω0 f d • v G + ∂ F Ω F d • v G - Γ λ (n-1) • v G - Ω0 σ (n-1) G : ε(v G ) ∀v G ∈ V (1.14)
The corresponding algebraic formulation reads:

K 0Ω U (n) G = F 0 -C T G Λ (n-1) + K 0L U (n-1) G ;    K L -C T L -C L 0       U (n) L Λ (n)    =    F L -C G U (n) G    = F 0Ω -C T G Λ (n-1) + R (n-1)
LG

(1.15)

We point out that the global stiffness matrix K 0Ω , as well as the global force vector F 0Ω , are fixed independently of the local model parameters (position and shape of Ω L , mesh size used in τ h ). They correspond to quantities that would be initially computed considering a smooth behavior over the whole structure, i.e. without any analysis of local complex phenomena, and using a global coarse mesh. The global stiffness operator is therefore assembled and factorized only once, which refers to the non-intrusive feature of the coupling method.

Essentially, the non-intrusive coupling technique thus consists in alternating between local calculations over Ω L with prescribed displacements on the coupling interface, and global correction calculations over the whole domain Ω which include inner corrective loads (in terms of equilibrium residual, i.e. reaction forces mismatch) in order to reduce the imbalance between concurrent models. Two independent numerical softwares may be used to perform the local and global calculations. A sketch of the associated local-global algorithm is given in Figure 1.4. The overall principle of this algorithm is to find (by means of an iterative procedure with corrections) an extra-load to be applied to the global model on the interface Γ, such that local and complementary models are in balance at the interface.

It can be shown that, under some conditions (e.g. multiscale elliptic problem, or high-fidelity model operator not stiffer than the coarse global (auxiliary) model one in the local zone of interest, which is the usual case in practical applications), the solution to the fixed point (1.12)-(1.13) converges to the solution to the initial coupling problem (1.3)-(1.5). We refer to [START_REF] Gendre | Non-intrusive and exact global/local techniques for structural problems with local plasticity[END_REF], Chevreuil et al., 2013, Duval et al., 2016, Nouy and Pled, 2018] Figure 1.4: Illustration of the non-intrusive local-global coupling strategy.

for a review on these aspects, based on a global reformulation of the iterative non-intrusive local-global coupling strategy that can be interpreted as a quasi-Newton algorithm on reaction force equilibrium. The approach can also be registered among Schwarz alternating methods for which many convergence results exist [START_REF] Gosselet | Non-invasive global-local coupling as a schwarz domain decomposition method: acceleration and generalization[END_REF].

The number of solver iterations is the price to pay in the non-intrusive coupling method compared with the intrusive version. Classically, a relative norm on the interface residual is used as a convergence indicator and stopping criterion in order to monitor the iterative procedure. Nevertheless, we mention that convergence acceleration techniques [Brezinski, 2000] can be used in this framework, such as the dynamic Aitken relaxation [Aitken, 1926, Irons and Tuck, 1969, Duval et al., 2016], or the update of the global operator (without factorizing it again) using the symmetric rank one (SR1) update [START_REF] Conn | Convergence of quasi-newton matrices generated by the symmetric rank one update[END_REF] and/or the Shermann-Morison and Woodbury formulas [START_REF] Gendre | Non-intrusive and exact global/local techniques for structural problems with local plasticity[END_REF]. Relaxation may also be used to ensure convergence when auxiliary model is more compliant than the local model. Moreover, mixed interface conditions may be considered between local and global models [START_REF] Gendre | Non-intrusive and exact global/local techniques for structural problems with local plasticity[END_REF], Oumaziz et al., 2017, Oumaziz et al., 2018]. All these techniques will not be implemented in the present work.

Remark . Basically, the local-global coupling framework is merely seen as a behavior substitution in Ω L (numerical zoom), starting from an initial smooth behavior (with homogeneous operator K 0 ) defined over the whole domain Ω.

We adopt here another vision, deriving the coupling problem from an initial reference model in which the complex material behavior (with heterogeneous operator K) is introduced everywhere in Ω. This reference model is next coarsened by replacing K with the homogeneous operator K 0 in Ω 0 . This enables to have a consistent definition of the reference solution, from which error measures will be later defined (see next chapter).

Remark . In case of non-conforming meshes at the coupling interface, a transfer matrix should be used to connect local and global displacement fields. This matrix can be derived for instance from the mortar method [START_REF] Liu | A non-intrusive global/local algorithm with non-matching interface: derivation and numerical validation[END_REF], Duval et al., 2016]. We will not consider this case in the following, even though it does not bring major technical issues for the overall strategy developed in the PhD.

Remark . Even though it is out of the scope of the PhD work, the non-intrusive global-local coupling technique may require additional technicalities when considering nonlinear time-dependent problems, with different time grids at the global and local levels. In particular, it is important in this case to provide sufficient synchronization of the time grids in order to preserve the consistency of the coupling. An illustrative study is performed in [START_REF] Blanchard | Space/time global/local noninvasive coupling strategy: application to viscoplastic structures[END_REF] in the context of viscoplastic models.

Illustrative example

As a simple illustration of the non-intrusive local-global coupling strategy, we consider an elastic bar of length L, clamped on its left end (x = 0) and subjected to a given displacement u d on its right end (x = L). It is made of a material with constant Young's modulus E, except in a local zone ω =]0, ℓ[ where the Young modulus is E < E, which corresponds to a local weakening (Figure 1.5). The interface Γ corresponds here to point x = ℓ. We denote by N the exact (constant) force in the beam and u |Γ the exact longitudinal displacement on the interface.

It is straightforward, using the relations

N = E u |Γ ℓ = E u d -u |Γ L -ℓ
, to obtain the exact analytical primal solution of the problem: • Initial global solution at iteration 1:

u |Γ = Eℓu d Eℓ + E(L -ℓ) = u d ℓ L 1 1 -E-E E . L-ℓ L = u d ℓ L   1 + E -E E . L -ℓ L + E -E E . L -ℓ L 2 + . . .   ( 
u (1) |Γ = u d ℓ L ; N (1) G = E u d L (1.17)
• Local solution at iteration 1, with interface displacement u

(1)

|Γ = u d ℓ L : N (1) L = E u (1) |Γ ℓ = E u d L (1.18)
• Global solution at iteration 2, with incremental interface force δF

(1)

|Γ = N (1) G -N (1) L = (E -E) u d L : δu (2) |Γ = δF (1) |Γ ℓ(L -ℓ) EL = u d ℓ L E -E E L -ℓ L ; δN (2) G,x>ℓ = -δF (1) |Γ ℓ L = -(E -E) u d L ℓ L (1.19)
• Local solution at iteration 2, with interface displacement u

(2)

|Γ = u (1) |Γ + δu (2) |Γ = u d ℓ L (1 + E -E E L -ℓ L ): N (2) L = E u (2) |Γ ℓ = E u d L (1 + E -E E L -ℓ L ) (1.20)
• Global solution at iteration 3, with incremental interface force δF

(2)

|Γ = N (1) G + δN (2) G,x>ℓ -N (2) L = (E -E) 2 E u d L L -ℓ L : δu (3) |Γ = δF (2) |Γ ℓ(L -ℓ) EL = u d ℓ L (E -E) E 2 L -ℓ L 2 ; δN (3) G,x>ℓ = -δF (2) |Γ ℓ L = - (E -E) 2 E u d L L -ℓ L ℓ L (1.21)
At convergence, we get:

u |Γ = u (1) |Γ + δu (2) |Γ + δu (3) |Γ + • • • = u d ℓ L   1 + E -E E . L -ℓ L + E -E E . L -ℓ L 2 + . . .   N G,x>ℓ = N (1) G + δN (2) G,x>ℓ + δN (3) G,x>ℓ + • • • = E u d -u |Γ L -ℓ N L = E u |Γ ℓ (1.22)
which corresponds to the exact solution.

Global and local solutions along the iterations are plot in Figures 1.6 and 1.7, respectively. They are computed for the following values of parameters: L=1; ℓ=0.3, E=10, E=3, and u d =1.

1.2 Control of modelling errors when using surrogate models in computational mechanics

Context and motivations

The always growing computing resources, associated with more and more precise and validated mathematical models, enable to simulate very complex physical phenomena nowadays. However, there are some families of physical problems for which the initial simulation model is still intractable by current numerical capabilities. A coarser model (usually associated with some homogenization procedure or asymptotic limit, and sometimes involving the coupling of different types of equations) is thus mandatory and leads to a multiscale approach of the problem. On the other hand, the simulation of a physical phenomenon is usually performed in order to get information on a set of specific quantities of interest. From the analyst point of view, a critical issue is therefore to know whether or not the simulation model is sufficiently relevant for the assessment of such quantities of interest. In other words, goal-oriented information on modeling error is required.

During the last decade, and especially in the Computational Mechanics community, tools have been introduced in order to assess and control the quality of computerized models [Oden andVemaganti, 2000,Oden andPrudhomme, 2002]. They were constructed from verification approaches which had been originally developed and implemented for a posteriori error estimation and mesh adaptation in the context of the finite element method [Verfürth, 1996, Ainsworth and Oden, 2000, Ladevèze and Pelle, 2005, Chamoin and Díez, 2016]; more specifically, they referred to the residual functional. Moreover, dedicated algorithms have also been introduced in order to adapt the surrogate model up to an acceptable error level. These tools dedicated to modelling error estimation were initially implemented in the context of hierarchical modeling with heterogeneous materials [START_REF] Oden | Analysis and adaptive modeling of highly heterogeneous elastic structures[END_REF], Oden and Vemaganti, 2000,Vemaganti and Oden, 2001], before being applied in many applications with various multiscale contexts [START_REF] Oden | Theory and methodology for estimation and control of error due to modeling, approximation, and uncertainty[END_REF][START_REF] Oden | Multi-scale modeling of physical phenomena: Adaptive control of models[END_REF], Romkes et al., 2006, Bauman et al., 2009, Prudhomme et al., 2009, Chamoin and Desvillettes, 2013, Zaccardi et al., 2013, Prudhomme and Bryant, 2015, Maier and Rannacher, 2018, Scarabosio et al., 2019[START_REF] Tirvaudey | A posteriori error estimation and adaptivity in non-intrusive couplings between concurrent models[END_REF].

General methodology

In this section, we briefly present the general background for goal-oriented assessment of modeling errors initially developed in [Oden andVemaganti, 2000, Oden andPrudhomme, 2002].

Definition of modeling error

We suppose that u ∈ U is the solution to a general reference problem of the following weak form:

a(u; z) = l(z) ∀z ∈ V (1.23)
a being potentially nonlinear with respect to u. In practical cases, this reference problem may be intractable and we are led to consider a surrogate problem (e.g. with model coupling) of the form: find u 0 ∈ U 0 such that

a 0 (u 0 ; z 0 ) = l 0 (z 0 ) ∀z 0 ∈ V 0 (1.24)
The solution u 0 is an affordable approximation of u. The case {a 0 , l 0 } = {a, l} but {U 0 , V 0 } ̸ = {U, V } corresponds to simple discretization with FEM for instance, while the reverse case corresponds to pure model coarsening; we consider this last case in the following.

We suppose that we are interested in a quantity of interest Q(u) that is a localized specific feature (scalar output) derived from the solution u to the reference model. It usually characterizes the local response at small scales, and is critical for design purposes. The modeling error in the quantity of interest Q that we aim to assess thus reads

E Q = Q(u) -Q(u 0 ).
Remark . In practice, the numerical simulations enable to compute an approximate solution u h 0 of u 0 only, after FE discretization; we can thus define the total error on Q:

Q(u) -Q(u h 0 ) = [Q(u) -Q(u 0 )] + [Q(u 0 ) -Q(u h 0 )] = E mod Q + E dis Q (1.25)
where

E mod Q (resp. E dis Q )
is the error on Q due to modeling (resp. due to discretization). Part of the error due to discretization can be assessed and controlled using well-known a posteriori error estimation techniques [Verfürth, 1996, Ainsworth and Oden, 2000, Chamoin and Díez, 2016].

Adjoint problem and goal-oriented error estimation

For the purpose of estimating E mod Q = Q(u) -Q(u 0 ), the classical goal-oriented error estimation approach with the introduction of an adjoint problem is followed [START_REF] Paraschivoiu | A posteriori finite element bounds for linear functional outputs of elliptic partial differential equations[END_REF],Rannacher and Suttmeier, 1997,Prudhomme and Oden, 1999,Oden and Prudhomme, 2001,Giles and Suli, 2002]. This auxiliary problem can be naturally derived from an optimal control point-of-view, considering Q(u) as the solution to a constrained minimization problem [START_REF] Becker | An optimal control approach to a posteriori error estimation in finite element methods[END_REF]. The adjoint problem reads: find p ∈ V such that:

a ′ (u; v, p) = Q ′ (u; v) ∀v ∈ V (1.26)
where a ′ and Q ′ are Gâteaux-derivatives of a and Q, respectively:

a ′ (u; v, p) = lim θ→0 1 θ [a(u + θv; p) -a(u; p)] ; Q ′ (u; v) = lim θ→0 1 θ [Q(u + θv) -Q(u)] (1.27)
The solution p can be seen as an influence function that acts as a filter to capture only part of the error that impacts the quantity of interest; it thus fully depends on the choice of the quantity of interest.

Remark . When a and Q are respectively bilinear and linear functionals, the adjoint problem reduces to:

Find p ∈ V such that a(v, p) = a * (p, v) = Q(v) ∀v ∈ V (1.28)
where a * is defined from the adjoint operator.

The previous adjoint problem (1.26) is linear but unsolvable as the solution u is not available. We shall thus consider the following approximate adjoint problem: find p 0 ∈ V such that:

a ′ (u 0 ; v, p 0 ) = Q ′ (u 0 ; v) ∀v ∈ V (1.29)
Then, the error Q(u) -Q(u 0 ) can be represented as (see [START_REF] Oden | Estimation of modeling error in computational mechanics[END_REF] for all details):

Q(u) -Q(u 0 ) = R(u 0 ; p) + ∆ = R(u 0 ; p 0 ) + R(u 0 ; p -p 0 ) + ∆ (1.30)
where R denotes the residual functional, that is R(u 0 ; v) = l(v) -a(u 0 ; v) (which represents the degree to which u 0 fails to satisfy the reference problem), and ∆ is a remainder term of higher order in the errors e 0 = u -u 0 and ϵ 0 = p -p 0 . If a and Q are thrice differentiable, it can be explicitly written as:

∆ = 1 2 1 0
{a ′′ (u 0 + se 0 ; e 0 , e 0 , p 0 + sϵ 0 ) -Q ′′ (u 0 + se 0 ; e 0 , e 0 ) + [Q ′′′ (u 0 + se 0 ; e 0 , e 0 , e 0 ) -3a ′′ (u 0 + se 0 ; e 0 , e 0 , ϵ 0 ) -a ′′′ (u 0 + se 0 ; e 0 , e 0 , e 0 , p 0 + sϵ 0 )](s -1)s}ds

(1.31) However, the adjoint problem is still defined with respect to the full fine scale model and once again may be intractable for error estimation. Introducing a surrogate model for the adjoint problem (e.g. with model coupling), with solution p0 , and assuming the error p -p0 is small (saturation assumption), we thus define the error estimate as:

η mod Q = R(u 0 ; p0 ) ≈ Q(u) -Q(u 0 ) (1.32)
which refers to the dual-weighted residual (DWR) method [START_REF] Becker | A feed-back approach to error control in finite element methods: Basic analysis and examples[END_REF] for a posteriori error estimation. In this framework, the approximate solution p0 should be chosen in a space richer than u 0 in order to get a relevant error estimate.

Remark . When solving problems with FEM and taking discretization error into account, other estimates can be derived:

• First, an estimate of the total error on the quantity of interest reads:

E Q ≈ R(u h 0 , ph 0 ) = η tot Q , (1.33)
where u h 0 and ph 0 are computed solutions obtained after discretizations of coupled reference and adjoint problems.

• Second, if one wants to assess the discretization error only, a dedicated estimate is:

E dis Q ≈ R 0 (u h 0 ; ph 0 ) := l 0 (p h 0 ) -a 0 (u h 0 , ph 0 ) == η dis Q (1.34)
i.e. an estimate defined taking the surrogate problem as the reference, and therefore based on the associated residual functional R 0 . The accuracy of such an estimate requires a discretization which is finer for computing ph 0 than for computing u h 0 (due to the Galerkin orthogonality property).

Let us notice that only estimates (1.33) and (1.34) are actually computable, as FE approximations of u 0 and p0 are the only solutions at hand. Therefore, a relevant modeling error estimation process may consist in first assessing the discretization error E dis Q and checking that it is small in order to use the estimate

E mod Q ≈ E Q ≈ R(u h 0 ; ph 0 ).

Adaptive strategy

When using a surrogate model, it is fundamental to be able to adapt it if need be, in order to reach a target accuracy.

From the previous error estimation strategy, an adaptive scheme (referred to as Goal algorithm in the literature) can be derived for this purpose. The general objective of goal-oriented adaptivity is to construct a procedure that drives the definition of the surrogate model so as to control the error Q(u) -Q(u 0 ) within some preset error tolerance γ tol . This is generally achieved by generating a sequence of surrogate problems with solutions u (k) 0 so that for some integer k, the modeling error satisfies |Q(u) -Q(u

(k) 0 )| ≤ γ tol .
At each iteration, the goal is to reduce the global quantity R(u

(k) 0 ;
p(k) 0 ) by locally enriching the surrogate model, i.e. by locally switching to the high-fidelity model in those subregions where the coarser model is not accurate enough. This is possible by observing that the residual term η mod Q is defined globally over the whole domain and can be decomposed into local contributions η c defined over predefined subdomains of Ω. It seems natural to choose as subdomains the elements of the finite element mesh used to discretize the continuum model. Finally, prescribing a user-defined parameter γ a such that 0 < γ a < 1, the subdomains with contributions η c can be switched from the coarse model to the high-fidelity model whenever η c > γ a max c η c . The proposed greedy algorithm for adaptation of the surrogate model reads as follows:

1. Specify the error tolerance for the quantity of interest γ tol and the refinement parameter γ a 2. Solve the primal surrogate problem and compute u (k) 0 for current model configuration k 3. Solve the approximate adjoint problem and compute p(k) 0 for current model configuration k 

1. Compute η mod Q = R(u (k) 0 ; p(k) 0 ). If |η mod Q /Q(u ( 

Application to non-intrusive local-global couplings

As any numerical method, the non-intrusive local-global coupling method described in Section 1.1 is impacted by errors coming from various sources. These need to be controlled in order to certify the numerical accuracy of the method and permit its transfer and robust use in industrial activities, but also to compute right at the right cost with smart use of computing resources. In the non-intrusive coupling framework, and using notations of Section 1.1.2, error sources are of three types:

• modeling error due to the use of a surrogate model in Ω 0 , associated with a smooth material operator K 0 and a fixed (i.e., not adaptive) coarse mesh τ H . It may generate pollution effects when dealing with the accuracy of quantities of interest defined inside Ω L . The amplitude of this error source can be reduced by increasing the size of the critical zone Ω L , and it vanishes when Ω L = Ω;

• discretization error due to the use of a mesh τ h in order to approximate the solution of the local problem (1.13).

The amplitude of this error source can be reduced by decreasing the mesh size h in τ h , and it vanishes when h goes to zero;

• convergence (or algebraic) error due to the use of an iterative local-global algorithm. The amplitude of this error source can be reduced by increasing the number of local-global iterations, and it vanishes when n tends to +∞.

Numerical parameters associated to these error sources need to be carefully selected in order to get relevant simulation results in terms of output values used for decision-making. In practical applications of the non-intrusive coupling method, Ω L and τ h are usually defined empirically, from the a priori user experience, without any quantitative assessment of associated modeling and discretization errors. In addition, the convergence of the local-global iterative algorithm is classically controlled using stopping criteria (convergence indicators) based on the magnitude of a norm on the interface residual. This procedure may be very pessimistic and may use unnecessary computing resource, as: (i) the error tolerance on outputs of interest may be fulfilled even though the full local-global solution has not converged, so that the iterative algorithm could be stopped earlier without sacrificing the accuracy on these outputs; (ii) the convergence error, even large, may rapidly become negligible compared to other error sources, so that further iterations become useless to decrease the overall error.

Consequently, it is of interest to design tools that provide for a quantitative assessment of error measures as well as individual error contributions coming from various sources. Such tools could then be effectively used to drive an automated adaptive algorithm that optimally defines Ω L , τ h , and the required number of iterations (for a prescribed error tolerance), so that numerical performance in terms of computational cost is substantially enhanced. This is the topic of the remainder of this chapter, and of the next chapters, in which fully computable error estimators and indicators are developed.

In the current literature, and contrary to other multiscale or multi-model methods [Wohlmuth, 1999, Strouboulis et al., 2006,Larson and Malqvist, 2007,Abdulle and Nonnenmacher, 2009,Larsson and Runesson, 2011,Jhurani and Demkowicz, 2012,Henning et al., 2014,Chung et al., 2016,Paladim et al., 2017,Chamoin and Legoll, 2018,Chamoin and Legoll, 2021], there are very few works dealing with error estimation and adaptivity for non-intrusive local-global couplings. The work detailed in [START_REF] Duval | Residual error based adaptive mesh refinement with the non-intrusive patch algorithm[END_REF] is pioneering in this context; it constructs a cheap and global (i.e. in the energy norm) a posteriori error estimator based on an explicit residual technique. This estimator enables to control discretization and convergence (or algebraic) errors, and it may be used in practice to drive both mesh adaptation in the local model zone (supposed to have a fixed definition in [START_REF] Duval | Residual error based adaptive mesh refinement with the non-intrusive patch algorithm[END_REF]) and iteration stopping. Nevertheless, such a verification tool for non-intrusive local-global couplings does not provide a quantitative error assessment with computable bounds. Moreover, it does not consider modeling and pollution errors which are major concerns in model coupling; this is a drawback for robust design. Eventually, it may be too pessimistic when considering accuracy on outputs of interest, leading to unnecessary computing efforts.

In a very recent work [START_REF] Tirvaudey | A posteriori error estimation and adaptivity in non-intrusive couplings between concurrent models[END_REF], there was a step forward in the certification of the non-intrusive local-global coupling method, so that the quality of simulation results can be better controlled for industrial purposes [START_REF] Guinard | Multiscale analysis of complex aeronautical structures using robust non-intrusive coupling[END_REF]. Advanced tools were developed, in terms of fully computable a posteriori error estimator and indicators, in order to assess all error sources and drive effective adaptive procedures with low implementation effort. Error indicators were derived to separate contributions of each individual error source, including modeling error with pollution effects. They were computed at each step of the iterative and adaptive local-global coupling process. They also fed a greedy adaptive algorithm that aims at automatically and iteratively meeting a given error tolerance with minimal computing effort, tuning at best the coupled numerical model (in terms of local zone Ω L and local mesh τ h ) as well as parameters of the coupling algorithm (number of local-global iterations). In particular, it was shown that the local-global iterations can be stopped when the convergence error (associated with goal-oriented unbalance at the coupling interface) becomes insignificant compared to other error contributions; this is an alternative to classical stopping criteria based on the decrease of a norm of the interface residual, and it avoids useless and costly iterations which would not improve the quality of the solution outputs. Eventually, the verification procedure proposed in [START_REF] Tirvaudey | A posteriori error estimation and adaptivity in non-intrusive couplings between concurrent models[END_REF] indicates where to put the final coupling interface (according to the level of modeling error), and which discretization should be used in the local model zone (according to the level of discretization error), so that a trade-off is obtained between solution accuracy and numerical cost.

We emphasize that the non-intrusive feature of the local-global coupling substantially facilitates the implementation of the error estimation and adaptive procedures developed in [START_REF] Tirvaudey | A posteriori error estimation and adaptivity in non-intrusive couplings between concurrent models[END_REF], as mesh refinement in the local model zone Ω L and modifications in the geometry of this zone can be performed independently of the global model. Moreover, it brings flexibility in the analysis of various scenarios for optimal and certified modeling.

In the following, we detail the work performed in [START_REF] Tirvaudey | A posteriori error estimation and adaptivity in non-intrusive couplings between concurrent models[END_REF], which can be seen as a specific extension of the DWR approach developed in [Oden andVemaganti, 2000, Oden andPrudhomme, 2002] and presented previously.

Error definition

From the non-intrusive local-global coupling methodology previously described (see Section 1.1.2), and using discretization with meshes τ H and τ h for global and local models, respectively, an approximate continuous local-global displacement field u hH(n) LG ∈ V can be recovered at each iteration n of the process. It is constructed as:

u hH(n) LG =      u h(n) L in Ω L u H(n) G in Ω 0 (1.35)
However, it should be noticed that the corresponding local-global stress field σ hH(n) LG , defined as:

σ hH(n) LG =      σ h(n) L = Kε(u h(n) L ) in Ω L σ H(n) G = K 0 ε(u H(n) G ) in Ω 0 (1.36)
does not respect equilibrium in any weak sense (before convergence) across the interface Γ.

Alternatively, a local-global stress field σ hH(n)

LG,N being weakly equilibrated across the interface Γ can be recovered (the subscript N refers to "Neumann" and is consistent with the phrasing used to indicate sub-iterations in domain decomposition methods). Indeed, we notice that the continuous weak forms of the equilibrium equation for the global problem (1.12) at iteration n and local problem (1.13) at iteration n -1 can be respectively recast as:

Ω σ (n) G : ε(v G ) - Ω L σ (n-1) G : ε(v G ) = Ω0 f d • v G + ∂ F Ω F d • v G - Γ λ (n-1) • v G ∀v G ∈ V Ω L σ (n-1) L : ε(v L ) = Ω L f d • v L + Γ λ (n-1) • v L ∀v L ∈ V L (1.37)
Therefore, by summing the two balance equations, the stress field σ hH(n)

LG,N is defined as:

σ hH(n) LG,N =      σ h(n-1) L + [σ H(n) G -σ H(n-1) G ] in Ω L σ H(n) G in Ω 0 (1.38) It is equilibrated with the external loading (f d , F d ).
Nevertheless, the corresponding local-global displacement field denoted by u hH(n)

LG,N and defined as:

u hH(n) LG,N =      u h(n-1) L + [u H(n) G -u H(n-1) G ] in Ω L u H(n) G in Ω 0 (1.39)
is not continuous across Γ (before convergence), that is, it does not belong to V.

Remark . In the intrusive coupling procedure described in Section 1.1.2, the previously introduced local-global solution fields would merely become:

u hH(n) LG =      u h(n) L in Ω L u H(n) G in Ω 0 ; σ hH(n) LG =      σ h(n) L in Ω L σ H(n) G in Ω 0 u hH(n) LG,N =      u h(n-1) L in Ω L u H(n) G in Ω 0 ; σ hH(n) LG,N =      σ h(n-1) L in Ω L σ H(n) G in Ω 0 (1.40) From the local-global displacement field u hH(n) LG ∈ V (resp. u hH(n) LG,N / ∈ V), error fields e hH(n) LG = u -u hH(n) LG ∈ V and e hH(n) LG,N = u -u hH(n)
LG,N / ∈ V can be defined. Such error fields describe the discrepancy between the exact solution to the reference problem (1.2) and the approximate local-global solution at hand. Error fields e hH(n)

LG and e hH(n)

LG,N are linked together by the relation:

e hH(n) LG,N = e hH(n) LG + [u hH(n) LG,D -u hH(n) LG,N ] (1.41) with term u hH(n) LG -u hH(n) LG,N =      u h(n) L -u H(n) G -u h(n-1) L -u H(n-1) G in Ω L 0 in Ω 0 (1.42)
highlighting the contribution to the error, inside Ω L , coming from iteration stopping.

Several scalar measures of the error field may then be used. Here, we consider a measure defined from a given linear quantity of interest Q. Nevertheless, global measures could also be used, such as the measure in the energy norm:

∥ • ∥ K = Ω Kε(•) : ε(•) or ∥ • ∥ brok = Ω L Kε(•) : ε(•) + Ω0 Kε(•) : ε(•) for e hH(n)
LG,N / ∈ V (1.43)

In the following, we thus focus on the local error measure Q(e

hH(n) LG ) = Q(u) -Q(u hH(n) LG
) defined according to a given scalar quantity of interest Q(u) that is a specific (and usually fine-scale) feature of the solution u. We assume here that Q : V → R is linear, even though nonlinear quantities of interest could also be considered with minor changes (see [START_REF] Oden | Estimation of modeling error in computational mechanics[END_REF]). We also naturally assume that the quantity Q refers to features of u located in the initial configuration of Ω L , and critical for design or relevant to the understanding of physical phenomena when resorting to non-intrusive local-global couplings.

Weak forms and residual functional

In [START_REF] Tirvaudey | A posteriori error estimation and adaptivity in non-intrusive couplings between concurrent models[END_REF], goal-oriented error estimation is developed in a similar way as in [Oden andVemaganti, 2000, Oden andPrudhomme, 2002], based on the definition of an adjoint problem. The reference problem (1.2) can be recast as: find u ∈ V such that

a(u, v) = l(v) ∀v ∈ V (1.44) with a(u, v) = Ω Kε(u) : ε(v) ; l(v) = Ω f d • v + ∂ F Ω F d • v (1.45)
Based on this weak form, the residual functional R :

V × V → R is introduced: R(w, v) = l(v) -a(w, v) (1.46)
The property (1.44) directly yields R(u, v) = 0 for any v ∈ V.

Further introducing the following notations:

a L (u, v) = Ω L Kε(u) : ε(v) ; a 0Ω (u, v) = Ω K 0 ε(u) : ε(v) ; a 0L (u, v) = Ω L K 0 ε(u) : ε(v) b Γ (λ, u) = Γ λ • u ; l L (v) = Ω L f d • v ; l 0 (v) = Ω0 f d • v + ∂ F Ω F d • v (1.47)
Additional weak forms are also defined for problems introduced in Section 1.1.2:

• the continuous weak form of the local-global non-intrusive coupling (without iterative fixed-point solution scheme at this stage), coming from (1.4), (1.5), and (1.10), reads: find

(u G , u L , λ) ∈ V × V L × M such that a 0Ω (u G , v G ) -a 0L (u G , v G ) + a L (u L , v L ) -b Γ (λ, v L -v G ) + b Γ (µ, u L -u G ) = l 0 (v G ) + l L (v L ) ∀(v G , v L , µ) ∈ V × V L × M (1.48)
or in a more condensed writing:

a LG ((u G , u L , λ), (v G , v L , µ)) = l LG (v G , v L , µ) ∀(v G , v L , µ) ∈ V × V L × M (1.49)
This provides the approximate solution u LG ∈ V defined as

u LG =      u L in Ω L u G in Ω 0 ;
• introducing the FE space V H , associated with coarse mesh τ H over Ω, the partially discretized version of (1.49) reads: find

(u H G , u L , λ) ∈ V H × V L × M such that a LG (u H G , u L , λ), (v H G , v L , µ) = l LG (v H G , v L , µ) ∀(v H G , v L , µ) ∈ V H × V L × M (1.50) This provides the approximate solution u H LG ∈ V defined as u H LG =      u L in Ω L u H G in Ω 0 ;
• introducing the FE spaces V h L , and M h , associated with the mesh τ h used in Ω L , the fully discretized version of (1.49) reads: find

(u H G , u h L , λ h ) ∈ V H × V h L × M h such that a LG (u H G , u h L , λ h ), (v H G , v h L , µ h ) = l LG (v H G , v h L , µ h ) ∀(v H G , v h L , µ h ) ∈ V H × V h L × M h (1.51)
This provides the approximate solution u hH LG ∈ V defined as

u hH LG =      u h L in Ω L u H G in Ω 0 ;
• eventually, introducing the fixed-point scheme, the weak form at iteration n stemming from (1.12)-(1.13) reads:

find (u

H(n) G , u h(n) L , λ h(n) ) ∈ V H × V h L × M h such that a 0Ω (u H(n) G , v H G ) + a L (u h(n) L , v h L ) -b Γ (λ h(n) , v h L ) + b Γ (µ h , u h(n) L -u H(n) G ) = l 0 (v H G ) + l L (v h L ) + a 0L (u H(n-1) G , v H G ) -b Γ (λ h(n-1) , v H G ) ∀(v H G , v h L , µ h ) ∈ V H × V h L × M h (1.52)
or in a more condensed writing:

a (n)
LG (u

H(n) G , u h(n) L , λ h(n) ), (v H G , v h L , µ h ) = l (n) LG (v H G , v h L , µ h ) ∀(v H G , v h L , µ h ) ∈ V H × V h L × M h (1.53)
This provides the approximate solution u 

hH(n) LG ∈ V defined in (1.35),

Adjoint problem and error representation

The adjoint problem of (1.44), associated with Q, is then introduced. It consists in finding u ∈ V such that

a(v, u) = a * ( u, v) = Q(v) ∀v ∈ V (1.54)
a * being constructed from the adjoint model operator. In the present case, the model operator is self-adjoint so that a * = a.

From the adjoint solution u, it is straightforward that for any approximation

u app ∈ V of u, the error Q(u)-Q(u app )
can be represented as:

Q(u) -Q(u app ) = Q(u -u app ) = a(u -u app , u) = R(u app , u) (1.55)
where u app is any approximation of the reference problem. Then introducing any approximation u app ∈ V of the adjoint solution u, the error representation also reads:

Q(u) -Q(u app ) = R(u app , u app ) + R(u app , u -u app ) (1.56)
Remark . As it will be seen later, the quantity of interest is usually defined in a global way by means of extraction functions. It is written under the form:

Q(u) = Ω σ Σ : ε(u) + Ω f Σ • u + ∂ F Ω F Σ • u + Ω Kε(u Σ ) : ε(u) (1.57)
where σ Σ , f Σ , F Σ , and u Σ are extractors. These are defined explicitly or implicitly (depending on the quantity Q), and they can be mechanically interpreted as pre-stress, body force, traction force, and pre-displacement, respectively, in the loading of the adjoint problem. The field u Σ , vanishing on ∂ F Ω, enables to extract components of the stress vector σ(u)n on ∂ u Ω (reaction forces).

Residual-based error estimator

Using the previous error representation, a computable error estimate on Q(u) is now developed when using the non-intrusive local-global coupling strategy. From (1.55), and noticing that u

hH(n) LG ∈ V, it first reads: Q(u) -Q(u hH(n) LG ) = R(u hH(n) LG , u) (1.58)
For the term in the right-hand side to be computable, the adjoint solution u should be replaced by an approximate solution u app as described in (1.56). Nevertheless, a relevant approximation should be computed so that

R(u hH(n) LG , u) ≈ R(u hH(n) LG , u app ) (i.e. R(u hH(n) LG
, uu app ) ≈ 0 can then be neglected in this case). This is the saturation assumption. In practice, this means that in order to catch the various error sources accurately, the approximation space used to compute u app should be richer than that used for u hH(n)

LG

. Considering u app in the same approximation space as u hH(n)

LG would lead to a poor error estimate of the error on Q.

Remark . Again, a typical and well-known case illustrating the previous statement is the mere finite element approx-

imation u f em of the solution u of (1.44) in a subspace V f em ⊂ V. The Galerkin orthogonality R(u f em , v) = 0 for all v ∈ V f em indicates that the discretization error estimate R(u f em , u app ) is meaningless when u app is searched in V f em . Considering a richer space V + f em ⊂ V (with finer mesh size) to compute u app , the result R(u f em , u app ) = Q(u + f em ) -Q(u f em ) with u + f em ∈ V +
f em also shows that the estimate catches all the error on Q(u) except the part

Q(u) -Q(u + f em ).
For the considered non-intrusive local-global coupling method, enriching the approximation space for the solution of the adjoint problem means: (i) sufficiently enlarging the zone Ω L in which the original high-fidelity model is preserved (this enrichment is referred to with subscript "L + " in the following); (ii) sufficiently refining the mesh τ h used in this zone (this enrichment is referred to with superscript "h + " in the following); (iii) being sufficiently close to convergence in the iterative algorithm (referred to with superscript "∞" in the following). Consequently, after computing u

h + H(∞) L + G ∈ V using an enriched non-intrusive local-global coupling method, with local part u h + (∞) L + ∈ V h + L +
, an overall and fully computable error estimate of the error on Q reads:

η tot Q = R(u hH(n) LG , u h + H(∞) L + G ) (1.59)
Remark . Due to the specific loading of the adjoint problem, which is concentrated inside Ω L , it is expected that the iterative local-global algorithm converges very fast when computing u

h + H(∞) L + G .
Remark . In order to further reduce the computational cost without sacrificing too much the quality of the error estimate, it would be possible to approximate the residual functional R (initially defined from the reference model) considering the enriched approximation space used to solve the adjoint problem. Nevertheless, such an approximation does not prevent from projections between meshes for the computation of R(u

hH(n) LG , u h + H(∞) L + G
). This alternative is not investigated here.

Residual-based error indicators

The estimate (1.59) comprises all error sources. As described in Section 1.2.3, these are threefold: modeling, discretization, convergence. Introducing solution fields defined in Section 1.2.3, the error on Q can be split as:

Q(u) -Q(u hH(n) LG ) = Q(u) -Q(u H LG ) E mod Q + Q(u H LG ) -Q(u hH
LG )

E dis Q + Q(u hH LG ) -Q(u hH(n) LG ) E conv Q (1.60)
where E mod Q , E dis Q , and E conv Q correspond to modeling, discretization, and convergence parts of the error, respectively.

We develop below some error indicators on each of these parts.

They are defined as follows:

• the indicator on convergence error, denoted by

η conv Q , is constructed from a converged approximate adjoint solution u hH(∞)
LG ∈ V with no enrichment in terms of mesh τ h and local zone Ω L used. It reads:

η conv Q = R LG (u hH(n) LG , u hH(∞) LG ) (1.61)
where the residual R LG is defined from operators a LG and l LG associated with the local-global coupling problem (i.e., reference problem providing for u H

LG and u hH LG ):

R LG (u hH(n) LG , u hH(∞) LG ) =l 0 ( u H(∞) G ) + l L ( u h(∞) L ) -a 0Ω (u H(n) G , u H(∞) G ) + a 0L (u H(n) G , u H(∞) G ) -a L (u h(n) L , u h(∞) L ) (1.62)
The indicator is such that

η conv Q -→ n→+∞ 0.
It should provide a quantitative indication on the convergence error

E conv Q
, enabling to define a relevant stopping criterion for the local-global iterative solver.

• the indicator on discretization error, denoted by η dis Q , is constructed from a converged approximate solution

u h + H(∞)
LG ∈ V computed with a finer local mesh τ h + alone, while the shape of Ω L remains unchanged compared to that used for the computation of u hH(n)

LG

. It reads:

η dis Q = R LG (u hH(n) LG , u h + H(∞) LG ) -η conv Q (1.63)
and is such that

η dis Q -→ h→h + ≈ 0. It should provide a relevant quantitative indication on the discretization error E dis Q provided h + is small enough.
• eventually, the indicator on modeling error, denoted by η mod Q , is constructed from an approximate solution

u hH(∞) L + G
∈ V computed with a larger zone Ω L + alone, while the mesh τ h is unchanged compared to that used for the computation of u hH(n)

LG

. It reads:

η mod Q = R(u hH(n) LG , u hH(∞) L + G ) -η conv Q (1.64)
and is such that

η mod Q -→ Ω L →Ω L + ≈ 0.
It should provide a relevant quantitative indication on the modeling error

E mod Q
provided Ω L + is large enough. An alternative construction of the indicator η mod Q , giving in practice slightly different values but decreasing the number of adjoint solutions, stems from the following (and still empirical) definition:

η mod Q = η tot Q -η conv Q -η dis Q (1.65)
Remark . It is worth noticing that numerical strategies which have to be implemented for the computation of the estimator η tot Q , as well as indicators η conv Q , η dis Q , and η mod Q , are in accordance with the non-intrusive framework. Indeed, the definitions of the enriched spaces which are used to compute the approximate adjoint solutions u

h + H(∞) L + G , u h + H(∞) LG , and u hH(∞) L + G require modifications of V h
L alone, while V H is kept unchanged. This can be easily performed using the non-intrusive coupling methodology.

In addition, the non-intrusive framework applied to the solution of the adjoint problem enables to select specific error sources and analyze various modeling configurations in a suitable manner. By a flexible introduction of additional patches to Ω L + , located on some preselected zones (e.g. in the vicinity of geometrical details such as holes), the corresponding adjoint solution automatically filters targeted error sources due to orthogonality properties described in Section 1.2.3. Therefore, the critical phenomena that affect the accuracy on the quantity of interest, even though located far from the region over which the quantity of interest is defined (pollution effects), are easily detected.

These phenomena would then need to be further modeled accurately, i.e. at the fine-scale level.

Adaptive strategy

From the previously defined error estimator η tot Q and indicators η conv Q , η dis Q , and η mod Q , it is possible to set up a relevant adaptive algorithm in order to drive the non-intrusive coupling algorithm. The one developed in [START_REF] Tirvaudey | A posteriori error estimation and adaptivity in non-intrusive couplings between concurrent models[END_REF] is based on a greedy algorithm and closely related to those proposed in [START_REF] Oden | Estimation of local modeling error and goaloriented modeling of heterogeneous materials. part i: Error estimates and adaptive algorithms[END_REF], Vemaganti and Oden, 2001[START_REF] Oden | Multi-scale modeling of physical phenomena: Adaptive control of models[END_REF], Romkes et al., 2006, Bauman et al., 2009, Prudhomme et al., 2009, Zaccardi et al., 2013] (so-called Goals algorithms). The approach, which refers to goal-oriented adaptivity, aims at automatically tuning the parameters of the local-global coupling method (shape of Ω L , mesh size in τ h , number of local-global iterations) in order to predict the quantity of interest Q within a preset error tolerance γ tol while optimizing the computational cost. This is achieved by generating a sequence of approximate solutions u (k) app so that for some integer k 0 , the overall error on Q satisfies:

|Q(u) -Q(u (k0) app )| ≤ γ tol |Q(u (k0) app )| (1.66)
At each iteration of the adaptive process, and before stopping the full adaptive algorithm when the error tolerance is met (quantitative information given by η tot Q ≤ γ tol |Q(u app )|), the goal is to reduce the major error source which is identified comparing indicators η conv Q , η dis Q , and η mod Q . Adaptations in discretization and modeling are conducted locally after decomposing the indicators over predefined subdomains in Ω L and Ω 0 , respectively. In practice, subdomains in Ω L are chosen as elements of τ h , while subdomains in Ω 0 are defined from elements of the coarse mesh τ H (even though larger subdomains could be used). This decomposition is possible by observing that indicators η dis Q and η mod Q correspond to residual terms defined from space integrals.

After initializing Ω L (as a neighborhood of the region over which the quantity of interest is defined) and τ h (with similar mesh size as for τ H ), and after specifying the error tolerance γ tol for the quantity of interest, the proposed adaptive algorithm reads as follows:

0. Compute the adjoint solution u h + H(∞) L + G
(using an appropriate enriched space);

1. Set n = 1; 2. Solve the primal surrogate problem for u hH(n) LG ; 3. Compute the estimate η tot Q ; 4. If |η tot Q /Q(u hH(n) LG )| ≤ γ tol then STOP. Otherwise proceed to Step 5; 5. Compute solutions u hH(∞) L + G , u h + H(∞)
LG

, and indicators η conv Q , η dis Q , and η mod Q :

• if max(|η conv Q |, |η dis Q |, |η mod Q |) = |η conv Q |, increment n + 1 → n and go to Step 2; • if max(|η conv Q |, |η dis Q |, |η mod Q |) = |η dis Q |, decompose η dis Q and locally refine τ h up to reaching |η dis Q /Q(u hH(n) LG )| ≤ γ tol /3, then go to Step 0; • if max(|η conv Q |, |η dis Q |, |η mod Q |) = |η mod Q |, decompose η mod Q and locally enlarge Ω L up to reaching |η mod Q /Q(u hH(n) LG )| ≤ γ tol /3, then go to Step 0.
This adaptive algorithm prevents from useless local-global iterations for the primal problem (when discretization or modeling error is larger than convergence error). It also indicates, at the end of the adaptive process, a suitable definition of Ω L and τ h for reaching the error tolerance.

Illustrative application

The present illustration is taken from [START_REF] Tirvaudey | A posteriori error estimation and adaptivity in non-intrusive couplings between concurrent models[END_REF]. A square plate (size L × L with L = 1) is considered, in which localized weakenings of the material stiffness are located. The structure, represented in Figure 1.9, is clamped on its left side and subjected to a uniform traction on its right side; other boundaries are free. The global mesh τ H is made of 100 (10×10) first-order quadrangular elements. Local variations of the Young modulus E(x, y) take the form of five zones, which act as inclusions inside the material, where the Young modulus is lower than its nominal value E 0 = 1. A specific case is considered where a zone on which the Young modulus is decreased has a large area and impacts more than one macro element of the global mesh τ H . The contrast is such that E min = 0.45.

The impacted macro elements are shown in Figure 1.9(b). The Poisson ratio is fixed and set to ν = 0.3.

The quantity of interest is the average longitudinal displacement on the right edge x = L where the traction loading is applied. The goal of the adaptation procedure is to find the optimal configuration for the coupled problem regarding this quantity of interest, and with respect to a given error tolerance. This tolerance is set to γ tol = 0.5% (this value enables to detect the small impact of the modified Young modulus on the predicted value of the quantity of interest).

Starting from the initial solution given in Figure 1.10(a), where we observe effects of the clamping on left corners when using a coarse mesh, the adaptive procedure is performed. The values of the different relative estimator and indicators (i.e. normalized by the approximate value of the quantity of interest) are given at each adaptation step.

These are

|η tot Q /Q(u hH(n) LG )|, |η conv Q /Q(u hH(n) LG )|, |η dis Q /Q(u hH(n) LG )|, and |η mod Q /Q(u hH(n) LG )|.
For this example and as shown in Figure 1.10(b), eleven adaptive steps are required to reach a tolerance γ tol = 1% on the quantity of interest; these are mostly related to model adaptation. In order to detail the adaptive Applying the adaptive process for this quantity indicates that the main error sources are initially due to coupling iterations and local discretization so that the mesh τ h in the local zone Ω L needs to be refined in order to reach the tolerance γ tol = 2%. This tolerance obtained after 4 iterations of the adaptive algorithm, also requires n = 3 localglobal iterations but no extension of Ω L . We show in Figure1.12 several features of the goal-oriented adaptation strategy: the adjoint solution (that exhibits large localized gradients in the vicinity of the region of interest) is shown in Figure 1.12: Results when considering as a quantity of interest the average of the strain component ϵ xx in the vicinity of the large weakened zone: influence on the adjoint solution (a), and final stress field in the structure after applying the adaptive algorithm (from [START_REF] Tirvaudey | A posteriori error estimation and adaptivity in non-intrusive couplings between concurrent models[END_REF]).

Partial conclusions

We presented in this bibliography chapter the non-intrusive local-global coupling method which is at the heart of the PhD work. We focused on its implementation and on its attractive features, compared to alternative approaches, for addressing industrial applications with sufficient flexibility. We also presented, in this context, the currently available strategy for error control with respect to some quantities of interest. This strategy, based on residual functionals and adjoint-based techniques, defines a fully computable error estimate (quantitatively certifying the quality of the approximation) as well as error indicators which are used in an adaptation process. These goal-oriented indicators enable to split error between iteration (i.e. lack of convergence at the coupling interface), modeling, and discretization sources so that useless over-computations are avoided (e.g. the iterative solver is usually stopped before reaching convergence in terms of the usual interface equilibrium). It is important to notice that the strategy is made consistent with the non-intrusive framework of the coupling; it can thus be performed when coupling two different codes, and local analyses for error sources (by adding local patches when solving the adjoint problem) can advantageously benefit from this non-intrusive framework. Consequently, the adjoint solution does not require prohibitive computing resources but is rather conducted by defining individual and manageable problems (that differ by the position of local patches) which can be solved in parallel.

Nevertheless, the previous strategy for modeling error estimation and management has some limitations. In particular, error bounds are not mathematically guaranteed. Moreover, extension to nonlinear problems is only possible by using linearized operators, so that the error estimator and indicators may not be fully robust in some cases. Further developments should thus address: (i) the computation of robust (e.g. mathematically guaranteed) error bounds on quantities of interest, which was so far a scientific challenge for non-intrusive local-global coupling strategies; (ii) the application to structures with complex nonlinear material behaviors (such as damage or plasticity). These points are the main topics of the PhD work, addressed by a new strategy which is developed in the following chapters.

Basics on CRE

The energy-based CRE concept has been used for the robust verification of FEM models, that is the a posteriori estimation of discretization error, for more than thirty years. Pioneering ideas can be found in [Ladevèze, 1975, Ladevèze and Leguillon, 1983,Ladevèze and Rougeot, 1997,Destuynder and Métivet, 1999], and a general overview is given in [Ladevèze andPelle, 2005, Ladevèze and[START_REF] Ladevèze | [END_REF]. The CRE concept, based on dual analysis, has similitudes with other methods in the literature such as equilibrated residuals [START_REF] Ainsworth | A Posteriori Error Estimation in Finite Element Analysis[END_REF] or flux-free [START_REF] Pares | Subdomain-based flux-free a posteriori error estimators[END_REF][START_REF] Gallimard | A constitutive relation error estimator based on traction-free recovery of the equilibrated stress[END_REF] approaches. They all share the idea of constructing a fully equilibrated (i.e. statically admissible) dual field, which is actually the only way to recover guaranteed and fully computable error estimates for linear or nonlinear models of computational mechanics. It thus appears as the most powerful and robust tool in the huge literature on FEM verification. For the sake of clarity, we first introduce below the CRE concept in the context of linear elasticity models.

The CRE functional for linear elasticity

Reference model

We again consider an open bounded domain Ω ⊂ R d , with boundary ∂Ω, occupied by a linear elastic material (Figure 2.1). We assume that a displacement field u d is prescribed on part ∂ u Ω of the boundary, and that tractions

F d are prescribed on the complementary part ∂ F Ω such that ∂ u Ω ∩ ∂ F Ω = ∅ and ∂ u Ω ∪ ∂ F Ω = ∂Ω.
A body force field f d may also be given in Ω. Sufficient regularity is assumed for the prescribed data, that is

u d ∈ [H 1/2 (∂ u Ω)] d , F d ∈ [H -1/2 (∂ F Ω)] d , and f d ∈ [H -1 (Ω)] d .
The associated (well-posed) problem is then classically written by splitting in 3 groups of equations:

• kinematic admissibility (defining the space U ad of compatible displacement fields verifying Dirichlet boundary conditions):

u ∈ [H 1 (Ω)] d ; u |∂uΩ = u d (2.1)
• static admissibility (defining the space S ad of H(div, Ω) stress fields satisfying equilibrium equations written here in the weak form referring to the principle of virtual works):

σ ∈ [L 2 (Ω)] d(d+1)/2 s ; ∇ • σ ∈ [L 2 (Ω)] d ; Ω σ : ε(v) = Ω f d • v + ∂ F Ω F d • v ∀v ∈ U 0 ad (2.2)
• constitutive relation (Hooke's law):

σ = Kε(u) (2.3)
with K the symmetric positive definite Hooke tensor, and U 0 ad the vectorial space associated with U ad . A classical primal FE approximation of the problem yields u h ∈ U h ad ⊂ U ad (with associated stress field σ h = Kε(u h ) / ∈ S ad ) and leads to a discretization error field

e h = u -u h . A measure ∥e h ∥ 2 K = Ω ε(e h ) :
Kε(e h ) of this error in the energy norm can be defined, and the objective of FE model verification is to compute an a posteriori error estimate on ∥e h ∥ K . This may be addressed in two ways:

• a primal variational approach, involving the potential energy

J 1 (v) = 1 2 Ω Kε(v) : ε(v) -Ω f d • v -∂ F Ω F d • v
and the search space U ad of compatible displacement fields, leads to:

J 1 (u) = inf v∈U ad J 1 (v) ; ∥e h ∥ 2 K = 2 (J 1 (u h ) -J 1 (u)) ≥ 2 (J 1 (u h ) -J 1 (v)) ∀v ∈ U ad (2.4)
so that a computable lower error bound on ∥e h ∥ K can be obtained from a field u * ∈ U ad at disposal (which should live in a larger space than U h ad in order to get a meaningful bound);

• a dual variational approach, involving the complementary energy

J 2 (τ τ ) = 1 2 Ω K -1 τ τ : τ τ -∂uΩ τ τ n • u d and the
search space S ad of equilibrated stress fields, leads to:

J 2 (σ) = inf τ ∈S ad J 2 (τ τ ) ; ∥e h ∥ 2 K = 2 (J 1 (u h ) + J 2 (σ)) ≤ 2 (J 1 (u h ) + J 2 (τ τ )) ∀τ τ ∈ S ad (2.5)
so that a fully computable (i.e. without any unknown multiplicative constant) upper error bound on ∥e h ∥ K is obtained from a field σ ∈ S ad at disposal. This bound may be used as a guaranteed error estimate for the assessment of accuracy and as a criterion for mesh adaptivity.

CRE functional and properties

Introducing the energy norm ∥ • ∥ K -1 on stress fields, the previous upper bound on ∥e h ∥ 2 K /2 is written as:

J 1 (u h ) + J 2 (σ) = 1 2 Ω (σ -Kε(u h )) : K -1 (σ -Kε(u h )) = 1 2 ∥σ -Kε(u h )∥ 2 K -1 = E 2 CRE (u h , σ) ≥ 0 (2.6)
It is interpreted as a measure of the residual on the constitutive relation for the admissible pair (u h , σ) ∈ U ad × S ad ;

this is the definition of the CRE functional E CRE . The CRE concept thus applies to a so-called admissible pair (û, σ) ∈ V × S satisfying boundary conditions and balance equations of the model problem. Only the constitutive law (2.3) is relaxed for such an admissible couple (û, σ).

The bounding property given by E 2 CRE (u h , σ) is also explained from the Prager-Synge theorem [START_REF] Prager | Approximation in elasticity based on the concept of functions spaces[END_REF], that relates the computable CRE term with distances, in energy norms, to the unknown exact solution

(u, σ) of (2.1)-(2.3): ∥u -u h ∥ 2 K + ∥σ -σ∥ 2 K -1 = 2.E 2 CRE (u h , σ) (2.7)
The potential of this theorem in the field of error evaluation, even if not originally applied in the FE context, has been known for a long time [Tottenham, 1970, Aubin andBouchard, 1970].

Remark . For any admissible pair (v, τ τ ) ∈ U ad × S ad , the property E CRE (v, τ τ ) = 0 means that (v, τ τ ) corresponds to the exact solution (u, σ) of the problem. Using the CRE concept, the reference problem can thus be formulated as:

(u, σ) = argmin (v,τ )∈U ad ×S ad E CRE (v, τ τ ) (2.8)
Remark . We also have the following property, known as the hypercircle property (see [START_REF] Ladevèze | Mastering Calculations in Linear and Nonlinear Mechanics[END_REF]):

E 2 CRE (u h , σ) = 2∥σ -σm ∥ 2 K -1 where σm = 1 2 (σ + Kε(u h )) (2.9)
It is a consequence of the Prager-Synge equality, and is in practice used for goal-oriented error estimation (see next chapter).

Consequently, the quantity √ 2 E CRE (u h , σ) is an upper bound on the error ∥u -u h ∥. It is fully computable as soon as σ is available. As shown below, it is possible to efficiently build some statically admissible stress field σ such that this upper bound is accurate in the sense that

√ 2 E CRE (u h , σ)/∥u -u h ∥ is close to 1.
Remark . Depending on the precise way the flux σ is constructed, a lower bound on ∥u -u h ∥ can also be obtained (see e.g. [Ladevèze andLeguillon, 1983, Ladevèze andPelle, 2005]). This lower bound is usually of the form

E CRE (u h , σ) ≤ C∥u -u h ∥,
where C is a constant independent of the mesh size h, showing that the estimate and exact error have the same asymptotic convergence rate.

Geometrical interpretation

Two geometrical representations of the CRE philosophy are now given for the sake of better understanding (see Figure 2.2). The first one, classical, is in the space of stress fields with inner product ⟨σ 1 , σ 2 ⟩ = Ω σ 1 K -1 σ 2 and associated energy norm. It illustrates the orthogonality property involved in the Prager-Synge theorem. The distance between σ and σ h , that is √ 2E CRE (u h , σ), is an upper error bound on the discretization error ∥u -u h ∥ K .

The second representation, less classical but that is more convenient to interpret the CRE functional in terms of modelling error, is in the space of strain-stress couples s = (ε, σ). This space is equipped with the energy inner product ⟨s 1 , s 2 ⟩ = Ω (ε 1 Kε 2 + σ 1 K -1 σ 2 ) and associated energy norm. We denote (A d ) the space of (kinematically and statically) admissible couples, and Γ the space (linear here) associated with the constitutive law. The exact solution of the well-posed problem (2.1)-(2.3) is then defined by the intersection between (Γ) and (A d ). It is easy to show that the value E CRE exactly corresponds to the distance from the solution ŝ = (ε(u h ), σ) ∈ (A d ) at hand to (Γ), with orthogonal projection. The stress field σ m obtained after projection is the average field σ m = 1 2 (σ + σ h ). The Prager-Synge theorem reads in this framework: 

⟨s -ŝ, s -ŝ⟩ = 2.E 2 CRE (ŝ)

Construction of an equilibrated stress field

The quality of the upper error bound √ 2E CRE (u h , σ) depends on that of the statically admissible field σ. The suitable construction of such a fully equilibrated stress field is the key and technical point of the CRE concept.

For this purpose, a first approach may consist in using equilibrated elements in a dual version of FEM • a hybrid flux (or Element Equilibration Technique -EET) technique [START_REF] Ladevèze | Error estimate procedure in the finite element method and application[END_REF], Coorevits et al., 1992, Ladevèze and Maunder, 1996, Florentin et al., 2002, Ladevèze et al., 2010a, Pled et al., 2011, Rey et al., 2014a];

• a flux-free technique [START_REF] Pares | Subdomain-based flux-free a posteriori error estimators[END_REF], Cottereau et al., 2009[START_REF] Gallimard | A constitutive relation error estimator based on traction-free recovery of the equilibrated stress[END_REF], Pares et al., 2009];

• Raviart-Thomas-Nédélec elements over a dual mesh [START_REF] Ern | An accurate h(div) flux reconstruction for discontinuous galerkin approximations of elliptic problems[END_REF], Vohralik, 2007, Vohralik, 2008, Ern and Vohralik, 2010, Vohralik, 2011].

We briefly describe here the hybrid flux (EET) technique that will be reused and adapted later. It is made of two steps (see Figure 2.3):

1. polynomial tractions FK|Γ , equilibrated with the external loading (f d , F d ), are built over edges Γ on the boundary ∂K of each element K. They should satisfy FK|Γ = F d if Γ ⊂ ∂ F Ω, as well as equilibrium at the element level:

K f d • u * R + ∂K FK • u * R = 0 ∀u * R ∈ U R (K) (2.10)
where U R (K) denotes the space of rigid body motions on K. In practice, tractions are defined as FK|Γ = η Γ K FΓ , with η Γ K = ±1 a signed scalar value that ensures continuity of the stress vector across element boundaries, and they are searched as a linear combination of FE shape functions: FK|Γ (x) = j∈JΓ Fj K|Γ ϕ j (x); J Γ denotes the set of nodes connected to the edge Γ.

2. in each element K, a stress field σh|K is constructed that satisfies equilibrium:

∇ • σh + f d = 0 in K ; σh n = FK on ∂K (2.11)
and that minimizes local complementary energy. The associated local problems are in practice solved with a quasi-explicit technique and polynomial basis [START_REF] Ladevèze | New advances on a posteriori error on constitutive relation in finite element analysis[END_REF], or with a dual approach with degree enrichment (i.e. using higher-order elements generating space U h p+k (K)). The basis functions are then polynomial functions over the whole element K, up to a degree p + k (p being the order of the polynomial functions used to discretize u h ). Orthogonal hierarchical subspaces U h q (K) (for q = p + 1, p + 2, . . . , p + k)

can also be introduced to solve the dual version of (2.11) effectively [START_REF] Ainsworth | A Posteriori Error Estimation in Finite Element Analysis[END_REF]. Numerical comparisons performed in [START_REF] Babuska | Validation of a posteriori error estimators by numerical approach[END_REF] showed that the approach based on exactly solving the dual local problem and the numerical approach we have just described (approximating it in U h p+k (K)) provide similar CRE values (i.e. error bounds) when choosing k ≥ 3, even though the stress fields σh|K obtained with the latter approach do not exactly satisfy equilibrium equations (2.11) (and therefore do not provide for a mathematically guaranteed upper error bound). We also refer to [START_REF] Strouboulis | Recent experiences with error estimation and adaptivity, part i: review of error estimators for scalar elliptic problems[END_REF] for similar investigations.

The construction of FK in the first step leans on the following prolongation (energy) condition:

K (σ h -σ h )∇ϕ i = 0 =⇒ ∂K FK ϕ i = K (σ h ∇ϕ i -f d ϕ i ) (2.12)
which is enforced for all elements K and all nodes i connected to K; ϕ i is the FE shape function associated with node i. This condition, which automatically ensures the equilibration of FK over K (using the property i ϕ i|K = 1), leads to the solution to a system of the form:

Rn r=1 b r Kn (i) = Q Kn (i) with Q Kn (i) = Kn (σ h ∇ϕ i -f d ϕ i ) br Kn (i) = Γr η Γr K FΓr ϕ i (2.13)
over the set of elements K n connected to each node i (so-called patch, see Figure 2.3). R n is the number of edges of the element K n connected to node i. The existence of a solution for the unknowns br Kn (i) of the system (that are projections of tractions FΓ on FE shape functions) is ensured by the equilibrium property (in the FE sense) verified by σ h , and uniqueness may be obtained minimizing a least-squares cost function [START_REF] Ladevèze | Mastering Calculations in Linear and Nonlinear Mechanics[END_REF].

Remark . Several variants of the above hybrid-flux method, which is based on the prolongation condition, have been proposed in the literature [START_REF] Florentin | Evaluation of the local quality of stresses in 3d finite element analysis[END_REF], Pled et al., 2012]. For instance, a "weak" prolongation condition may be applied to shape functions associated with non-vertex nodes alone. Tractions are then constructed as FK = L + H where H (high-degree component) is fully computed from the weak prolongation condition whereas L (low-degree component) is obtained by minimizing a global complementary energy. This procedure is in practice applied in zones with high gradients or high element aspect ratio in order to optimize the estimate. In the other zones, the above method, based on the prolongation condition, is used.

Another variant is to construct equilibrated tractions using the Partition of Unity Method (PUM) [Ladevèze et al., 2010a, Pled et al., 2011]. This variant provides results similar to those obtained with the method based on the prolongation condition, but is easier to implement in simulation softwares. 

Extensions of CRE to complex models

When addressing model verification for nonlinear problems, there are much fewer contributions than for linear problems. It is important to distinguish between nonlinear time-dependent and nonlinear time-independent problems. For the latter case, we mention [START_REF] Larsson | Strategies for computing goal-oriented a posteriori error measures in nonlinear elasticity[END_REF] for the design of estimates for nonlinear elasticity problems, [START_REF] Johnson | Adaptative finite element methods in computational mechanics[END_REF] for Hencky-type plasticity problems, or [Gallimard et al., 1996, Rannacher andSuttmeier, 1999] for elastoplasticity. For the former case, viscoplasticity problems have been treated in [START_REF] Fourment | Error estimators for viscoplastic materials: application to forming processes[END_REF], Larsson et al., 2003, Pelle and Ryckelynck, 2000], nonlinear dynamics has been considered in [START_REF] Radovitzky | Error estimation and adaptive meshing in strongly nonlinear dynamics problems[END_REF], and other nonlinear contexts have been investigated in [START_REF] Huerta | Error estimation including pollution assessment for nonlinear finite element analysis[END_REF]. In most cases, techniques devised for linear problems or time-independent nonlinear problems are used at each time step, so that the estimation is limited to spatial error.

The CRE concept, originally used for linear thermal and elasticity problems [START_REF] Ladevèze | Error estimate procedure in the finite element method and application[END_REF], can be naturally extended to more complex problems embracing a larger class of nonlinear time-dependent constitutive models of the general functional form σ |t = A(ε |τ , τ ≤ t) (such as elasto-plasticity with or without softening). It thus provides robust error estimators for such models. This extension makes benefit of the duality and convex analysis tools developed in [Moreau, 1966, Nayroles, 1973]. It then enables all numerical error sources of FEM simulations to be controlled, which are space or time discretizations, as well as algebraic errors generated by iterative algorithms. This is a major step forward compared to classical residual-based error estimation techniques that consider a linearized (tangent) operator when dealing with nonlinear constitutive models.

For nonlinear material behaviors, such as hyper-elasticity, the key concept is the use of the convex dual potentials ψ and ψ * that derive from continuum thermodynamics, and that define the material law as σ = ∂ψ ∂ε or ε = ∂ψ * ∂σ [Repin, 1999]. Potentials ψ and ψ * are dual in the Legendre-Fenchel sense, i.e.:

ψ * (σ) = sup ε {σ : ε -ψ(ε)} Linear elasticity corresponds to quadratic potentials ψ(ε) = 1 2 ε : Kε and ψ * (σ) = 1 2 σ : K -1 σ.
The definition of the CRE measure then refers to the previous Legendre-Fenchel duality (related to the symmetrized Bergman divergence used in statistics) and reads for an admissible pair (ε, σ) ∈ (A d ):

E 2 CRE (ε, σ) = Ω (ψ(ε) + ψ * (σ) -σ : ε) ≥ 0 (2.14)
A geometrical interpretation of this error measure is given in Figure 2.4: for a given point (ε, σ), ψ(ε) is the area in blue, ψ * (σ) is the area in red, and σ : ε is the area in grey. The CRE residual quantity ψ(ε) + ψ * (σ) -σ : ε is then the remaining blank area. For dissipative material behaviors with standard formulation, the clue is the use of internal variables associated with the continuum thermodynamics framework [Halphen andNguyen, 1975, Germain et al., 1983], and describing past history. This framework leads to the introduction of two pairs of Legendre-conjugate convex potentials that describe the two complementary parts of the overall material behavior: (i) state equations e e = Λ(s) = ∂ψ * ∂s ; (ii) evolution laws ėp = B(s) = ∂φ * ∂s . Generalized quantities e e , e p and s include observable and internal variables.

The CRE measure is then constructed from residuals η ψ (ê e , ŝ) = ψ(ê e ) + ψ * (ŝ) -ŝ • êe and η φ ( ėp , ŝ) = φ( ėp ) + φ * (ŝ)-ŝ• ėp on these two parts, with admissible solution (ê e , êp , ŝ) such that êe +ê p = ê. Terms y•x correspond to the duality product between variables x and y. Residuals η ψ and η φ are local in space and time quantities, so that the global CRE functional over the whole space-time domain reads [Ladevèze, 1998, Ladevèze et al., 1999, Ladevèze, 2001, Ladevèze and Pelle, 2005]:

E 2 CRE|t = Ω η ψ (ê e , ŝ) + t 0 Ω η φ ( ėp , ŝ) (2.15)
More details on the extended CRE functional, with specific application to the elasto-plastic case, will be given in the following sections.

Remark . A variant of the literature is to define the CRE measure from the residual on evolution laws alone, enforcing state equations in the definition of admissibility [START_REF] Ladevèze | A new a posteriori error estimation for nonlinear time-dependent finite element analysis[END_REF], Ladevèze, 1998, Ladevèze and Moës, 1999]. This is the concept of dissipation error which has a clear mechanical meaning and emphasizes the dissipation properties of the model. n this context, state equations are inserted in admissibility conditions. This framework was widely used for model verification purposes [START_REF] Pelle | An efficient adaptive strategy to master the global quality of viscoplastic analysis[END_REF], Chamoin and Ladevèze, 2007, Chamoin and Ladevèze, 2008, Ladevèze, 2008, Ladevèze et al., 2012]. It will not be considered here.

On the other hand, a more general framework for the definition of the CRE error was proposed [Ladevèze, 2008] when constitutive laws are not given by potentials (but provided the constitutive operator still remains monotonic).

Eventually, an alternative CRE measure denoted Drucker's error can be defined for dynamics problems [START_REF] Gallimard | Error estimation and adaptivity in elastoplasticity[END_REF], Ladevèze, 1999]; it is based on the Drucker material stability principle [Drucker, 1964].

Development of a CRE-based error estimator for non-intrusive couplings

In this section, we define some a posteriori error estimation tools, based on the Constitutive Relation Error (CRE) concept, for the non-intrusive local-global coupling method. Contrary to the residual-based approach shown in Chapter 1, this new approach provides for guaranteed (and still fully computable with no unknown constant) error bounds for both linear and nonlinear models. It is a suitable framework to certify the quality of the approximation solution stemming from the local-global non-intrusive coupling. We concentrate here on the recovery of admissible fields which is the main technical point of the approach.

Construction of admissible fields and CRE estimate

In order to implement the CRE approach at iteration n of the local-global iterative procedure, an admissible pair should be recovered from the solution at hand. On the one hand, the displacement field u hH(n)

LG ∈ V can be used as an admissible displacement field in a straightfoward manner. On the other hand, it is possible to recover an admissible stress field σhH(n)

LG,N ∈ S, using the hybrid-flux technique, from a specific post-processing of the approximate field σ hH(n)

LG,N / ∈ S at hand (which verifies balance equations in a FE weak sense). Indeed:

• the discretized global problem at iteration n provides for the global stress field σ

H(n) G
verifying the following equilibrium in the FE weak sense:

Ω σ H(n) G : ε(v H G ) = Ω0 f d • v H G + ∂ F Ω F d • v H G - Γ λ h(n-1) • v H G + Ω L σ H(n-1) G : ε(v H G ) ∀v H G ∈ V H (2.16)
Introducing the field δσ

H(n) G = σ H(n) G -σ H(n-1) G
.I Ω L , with I Ω L the indicatrix function of subdomain Ω L , the previous FE equilibrium property reads:

Ω δσ H(n) G : ε(v H G ) = Ω0 f d • v H G + ∂ F Ω F d • v H G - Γ λ h(n-1) • v H G ∀v H G ∈ V H (2.17)
Using this property together with the hybrid-flux equilibration procedure, a stress field δσ

H(n) G
verifying the following full equilibrium:

Ω δσ H(n) G : ε(v G ) = Ω0 f d • v G + ∂ F Ω F d • v G - Γ λ h(n-1) • v G ∀v G ∈ V (2.18)
can be recovered in Ω;

• the discretized local problem at iteration n -1 provides for the local stress field σ h(n-1) L

verifying the following equilibrium in the FE weak sense:

Ω L σ h(n-1) L : ε(v h L ) = Ω L f d • v h L + Γ λ h(n-1) • v h L ∀v h L ∈ V h L (2.19)
Using this property together with the hybrid-flux equilibration procedure, a stress field σh(n-1)

L verifying the following full equilibrium:

Ω L σh(n-1) L : ε(v L ) = Ω L f d • v L + Γ λ h(n-1) • v L ∀v L ∈ V L (2.20) can be recovered in Ω L .
Then, the field σhH(n)

LG,N defined as δσ

H(n) G + σh(n-1) L .I Ω L is statically admissible, that is: Ω σhH(n) LG,N : ε(v) = Ω f d • v + ∂ F Ω F d • v ∀v ∈ V (2.21)
Remark . It should be noticed that here again, the construction of the admissible stress field follows the non-intrusive framework and can be performed independently inside softwares addressing global and local problems. Nevertheless, it is required that each associated software be equipped with an equilibration procedure (e.g. based on the hybrid-flux technique).

Consequently, using (2.7), we obtain the upper bound on the error ∥u -u

hH(n) LG
∥ in the energy norm:

∥u -u hH(n) LG ∥ K ≤ √ 2.E CRE (u hH(n) LG , σhH(n) LG,N ) = η tot CRE (2.22)
The estimate η tot CRE is guaranteed whether the local-global iterative solver has converged or not. It comprises all error sources; nevertheless, as such, the different error sources are not separated.

Remark . The proposed approach for the implementation of CRE-based error estimation shares similarities with the work performed in [START_REF] Parret-Fréaud | Fast estimation of discretization error for fe problems solved by domain decomposition[END_REF], Rey et al., 2014b, Rey et al., 2015] in the context of sub-structured problems and domain decomposition solvers. They both rely on the construction of an admissible pair from two consecutive Dirichlet-Neumann steps of the iterative solver. Nevertheless, the technicality is different between the two approaches, as the global and local models co-exist in subzone Ω L for the non-intrusive local-global coupling method.

Technical implementation of the hybrid-flux technique

A technical and unconventional difficulty when implementing the hybrid-flux technique in the context of a nonintrusive local-global coupling is in the fact that this coupling generates internal element edge loadings for the global problem. These correspond to forces coming from the local problem at the previous iteration step and applied on the coupling interface Γ (see (2.17)). We detail here the specific procedure that thus needs to be implemented to address this case, and which represents a variant of the classical hybrid-flux technique. As an example, we consider the configuration shown in Figure 2.5 with internal surface loading λ h on the interface Γ 12 between elements K 1 and K 2 . The FE equilibrium (with shape function ϕ i ) on patch Ω i reads:

Ωi σ H : ε(ϕ i ) = Ωi f d ϕ i + Γ12 λ h ϕ i (2.23)
From the prolongation condition K (σ -σ H ) : ε(ϕ i ) = 0 for any element K in Ω i , it yields:

∂K σnϕ i = K σ H : ε(ϕ i ) - K f d ϕ i = Q K (i) (2.24)
This leads to the following system over Ω i :

Γ12 σ1 n 12 ϕ i - Γ14 σ1 n 41 ϕ i = Q K1 (i) Γ23 σ2 n 23 ϕ i - Γ12 σ2 n 12 ϕ i = Q K2 (i) Γ34 σ3 n 34 ϕ i - Γ23 σ3 n 23 ϕ i = Q K3 (i) Γ14 σ4 n 41 ϕ i - Γ34 σ4 n 34 ϕ i = Q K4 (i) (2.25)
Noticing that Γ12 σ2 n 12 ϕ i = Γ12 σ1 n 12 ϕ i -Γ12 λ h ϕ i (equilibrium of the interface Γ 12 ), the second equation of the system can be recast as:

Γ23 σ2 n 23 ϕ i - Γ12 σ1 n 12 ϕ i = Q K2 (i) - Γ12 λ h ϕ i (2.26)
so that we come down to a classical system (of the form (2.13)), replacing Remark . In the local minimization associated with the solution of the local system (to get a unique solution), σ1 n 12 should thus be compared with (σ

Q K2 (i) with Q K2 (i) -Γ12 λ h ϕ i .
H 1 n 12 + (σ H 2 n 12 + λ h ))/2.

Construction of error indicators and adaptive algorithm

Error indicators on individual sources

Following previous notations, the global error estimate η tot CRE defined in Section 2.2 can be recast as:

2.E 2 CRE (u hH(n) LG , σhH(n) LG,N ) = ∥σ hH(n)
LG,N -Kε(u

hH(n) LG )∥ 2 K -1 = ∥σ hH(n)
LG,N -Kε(u

hH(n) LG )∥ 2 K -1 |Ω0 + ∥σ hH(n)
LG,N -Kε(u

hH(n) LG )∥ 2 K -1 |Ω L (2.27)
The first term:

∥σ hH(n)
LG,N -Kε(u

hH(n) LG )∥ 2 K -1 |Ω0 = ∥ δσ H(n) G -Kε(u H(n) G )∥ 2 K -1 |Ω0
(2.28) corresponds to modeling error. It is 0 when there is no discretization or modeling error in Ω 0 , and no pollution error coming from the use of a coarse mesh in Ω L when solving the global problem.

The second term reads:

∥σ hH(n)
LG,N -Kε(u

hH(n) LG )∥ 2 K -1 |Ω L = ∥ δσ H(n) G + σh(n-1) L -Kε(u h(n) L )∥ 2 K -1 |Ω L = ∥ δσ H(n) G -(σ h(n) L - σh(n-1) L ) + σh(n) L -Kε(u h(n) L )∥ 2 K -1 |Ω L (2.29)
It is made of a first term ∥ δσ

H(n) G -(σ h(n) L - σh(n-1) L )∥ 2 K -1 |Ω L ,
corresponding to iteration error, that vanishes when n → +∞, and a second term ∥σ

h(n) L -Kε(u h(n) L )∥ 2
K -1 |Ω L , corresponding to discretization error, that vanishes when h → 0. Consequently, we get:

η tot CRE ≤ η conv CRE + η dis CRE + η mod CRE (2.30)
with error indicators defined as:

η conv CRE = ∥ δσ H(n) G -(σ h(n) L - σh(n-1) L )∥ K -1 |Ω L η dis CRE = ∥σ h(n) L -Kε(u h(n) L )∥ K -1 |Ω L η mod CRE = ∥ δσ H(n) G -Kε(u H(n) G )∥ K -1 |Ω0
(2.31)

The error indicators defined in (2.31) can also interpreted as follows:

• the indicator on convergence error η conv CRE quantifies the change between two successive iterations in the finescale part of the stress field in Ω L ;

• the indicator on discretization error η dis CRE comes down to define admissibility and CRE functional from an intermediate reference model with coarse discretized model in Ω, unbalance on Γ, but continuous solution in

Ω L ;
• the indicator on modeling error η mod CRE comes down to define admissibility and CRE functional from an intermediate reference model with high-fidelity model over the whole domain Ω, unbalance on Γ, but already discretized with τ h in Ω L .

Remark . Indicators η dis

CRE and η mod CRE can be computed independently inside softwares dealing with local and global problems, respectively. We will check in the numerical results that they are mostly driven by the discretization and surrogate model, respectively, so that they slightly vary during iterations with fixed mesh τ h and local zone Ω L .

Remark . The indicator η conv CRE requires to combine in the local zone Ω L some admissible stress fields coming from global and local models, and defined at integration points of corresponding FE meshes. For that purpose, a technical step with field transfer is implemented in the numerical experiments. It is based on the procedure described in [START_REF] Dureisseix | Information transfer between incompatible finite element meshes: application to coupled thermo-viscoelasticity[END_REF], that permits information transfer between non-matching finite element meshes by means of a geometric approach (seen as an extension of the mortar technique).

Remark . For error splitting and definition of error indicators using CRE, we here again follow a different approach from that presented in [Rey et al., 2014b, Rey et al., 2015, Rey et al., 2016] in the context of domain decomposition, and inspired from [Vohralik, 2007]. In those works, the algebraic error source is separated from other sources by introducing a discontinuous displacement field u (n) N associated with a FE equilibrated stress field σ N . This leads to a bound under the form ∥u -u

(n) N ∥ brok ≤ C + E CRE (u (n) N , σ(n) N )
where the term C corresponds to algebraic error and is defined from the preconditioner norm of the residual.

Greedy adaptive algorithm

A greedy adaptive algorithm can be set up from the computation (at each iteration of the local-global coupling algorithm) of error estimator and indicators. Considering here the control of the error in the energy norm (with specified error tolerance γ tol ), and after initializing Ω L and τ h , the algorithm reads as follows: )∥ K ≤ γ tol /3, then go to Step 1.

0. Set n = 1; 1.

Numerical results

Elasticity problem on a plate with a hole

In a first application, we use the non-intrusive local-global coupling technique to perform local analysis in the vicinity of a hole. In the global model, the hole is not represented. This hole is represented in the local model which is centered on it. The initial geometry and configuration of the global and local domains are given in Figure 2.6. The global domain is meshed using a structured mesh made of T3 triangular elements, while the local domain is meshed using smaller T3 triangular elements.

We consider two loading cases (Figure 2.7): on both we apply a uniform traction force along the direction x on the right side of the plate. As Dirichlet boundary conditions, for the first loading case we restrain the translation along the y axis on the bottom edge and the translation along the x axis on the left edge. For the second loading case, we restrain the translation along x and y axes on the left edge.

The material properties for the whole domain are set as homogeneous, isotropic and linear elastic with a Young modulus E = 1M P a and a Poisson ratio ν = 0.3. We have the same material for both global model and local model. The solution is obtained using the non-intrusive coupling, at convergence we obtain the solution shown in Figure 2.8. Note that we use a very fine mesh for the local model.

The classical methodology for non-intrusive coupling consists in adding an iteration for the algorithm until the convergence is reached (i.e. the interface residual is smaller than a tolerance). In this context, we evaluate the error indicators, based on the CRE, at each iteration (cf Figure 2.9(a)). We observe that the modeling error contribution penalizes the overall error and the classical methodology is not optimal to decrease the global error, as enlarging the local domain would lead to better results after 3 iterations of the non-intrusive coupling algorithm.

To show the capability of the adaptive algorithm, we consider the same initial problem, with the exception that the initial local model mesh is initially coarser, cf Figure 2.10). The CRE-based greedy adaptive strategy is used to drive the solution of the local-global problem (cf Chapter 2.3.2).

The evolution of the relative error indicators are given in Figure 2.9(b) and the evolution of the local domain size is given in Figure 2.11. As we can see at steps 6 and 8 the local domain is enlarged, and the local mesh is refined at steps 2, 4, 5, 7 and 9.

The final configuration obtained after 10 adaptive steps is given in Figure 2.12 and a global relative error of 2% is reached which is better than the classical strategy which reached an error of 3.5 %, while starting with a coarser local domain. The adaptive strategy thus shows better performance to reduce the global error than the classical strategy.

Remark . For the practical computation of the convergence error

η conv CRE = ∥ δσ H(n) G -(σ h(n) L - σh(n-1) L )∥ K -1 |Ω L we
here separate it into two contributions: From these admissible stress fields, the error indicators can be computed. For the discretization and modeling errors, local error contributions can be evaluated. These allow to choose the optimal enrichment. For the discretization error we could create a map defining the element size such that the local error contribution is homogeneous for discretization error, but for our study we refined homogeneously the local mesh. For the modeling error, in order to reduce it we chose either to add a new patch or to enlarge an already existing patch where the modeling error is the most important. The first case study shows that our methodology is efficient to tackle the problem where we a priori know where the error source is located.

η conv CRE ≤ ∥ δσ H(n) G ∥ K -1 |Ω L + ∥(σ h(n) L - σh(n-1) L )∥ K -1 |Ω L in
In the second case study (with different boundary conditions), we focus on the flexibility of our methodology.

We consider the same initial configuration for the adaptive strategy. The evolution of error indicators is given in Figure 2.17 and the evolution of the configuration is given in Figure 2.18. The final solution is given in Figure 2.19. We observe in Figure 2.20 that the local contribution for the modeling error is maximal in these corners.

In order to reduce the modeling error, our adaptive strategy starts by adding a patch where the global model is too coarse to describe the problem. Indeed, the singularity could not be captured by the global coarse mesh.

Modeling error contribution can be associated with a discretization error with the global mesh. After those patches are added, they can be enlarged in order to reduce the overall modeling error.

Furthermore, we can see in Figure 2.17 that enlarging the local domain could reduce the convergence error.

Indeed, the convergence rate of the algorithm which is tied to the convergence error is linked to the complexity of the correction term computed from the flux unbalanced at the coupling interface. If the singularity is close to the coupling interface (Saint-Venant's Principle) or the shape of the coupling interface is too complex, then the correction This study thus shows the flexibility of the proposed method as we were able to select the optimal definition of the local domain where the global description was not satisfying. 

Elasticity problem on a L-shaped structure

We now show performance of the approach on a L-shape domain. Linear/linear coupling is performed in which the local model, defined in the vicinity of the singularity, has a refined mesh. The initial configuration and mesh are shown in Figure 2.21. As in the previous example the global domain is meshed using a structured mesh made of T3 triangular elements. The local domain is meshed using T3 triangular elements. We can see that the solution presents one major singularity in the central corner and two smaller singularities in the bottom corners connected to the Dirichlet boundary condition.

Let us study the performance of our adaptive strategy on this case study. Figure 2.23 shows the evolution of the error indicators at each adaptive step. As we can see the major source of error is the modeling error from the second adaptive step until the last step. It is the predominant error after the initial convergence error is reduced drastically by adding one iteration. Figure 2.24

shows the evolution of the local domain at different adaptive steps. The initial local patch is placed near the central singularity and is later growing in order to reduce the modeling error. Our strategy is then able to create multiple local patches and to merge them when they are colliding. Figure 2.25 shows the modeling error distribution along the iterations. 

Coupling with a nonlinear local model

We reuse the L-shaped geometry, but we now consider that the high-fidelity model is a nonlinear elasto-plasticity model. It is conserved in the local region of interest where high gradients are located, while it is replaced with a linear elasticity model in the remainder of the structure.

Thermodynamical framework

In the context of a high-fidelity nonlinear elasto-plastic model, and using the thermodynamical framework with standard formulation, we introduce the Helmholtz free energy potential ψ:

ψ := ψ(T, ε, ε p , X) = ψ(T, ε e , X) (2.32)
that depends on state variables, i.e. observable variables (temperature T and strain tensor ε) and internal variables:

(i) the inelastic part ε p of the strain tensor, such that ε = ε e + ε p (ε e being the elastic strain); (ii) additional internal variables X i (gathered in a vector X) describing additional phenomena such as hardening. The potential ψ is assumed to be convex (and concave with respect to T in a more general case) in order to get a sufficient condition to satisfy stability conditions. Introducing thermodynamical forces Y i (gathered in a vector Y) associated with internal variables X i in a duality pairing, the state equations of the material behavior read:

σ = ∂ εe ρψ ; Y i = ∂ Vi ψ (2.33)
Defining the dual free energy potential, denoted ψ ⋆ , as the Legendre-Fenchel transform of ψ:

ψ ⋆ (T, σ, Y) = sup εe,X (σ : ε e + Y • X -ψ(T, ε e , X)) (2.34) we naturally get ψ (T, ε e , X) + ψ ⋆ (T, σ, Y) -σ : ε e -Y • X ≥ 0.
It can also be shown, using convex analysis [Moreau, 1966], that state equations can be equivalently recast as:

ψ (T, ε e , X) + ψ ⋆ (T, σ, Y) -σ : ε e -Y • X = 0 (2.35)
Remark . The free energy ψ is usually written as the sum of an elastic contribution ψ e and a plastic contribution ψ p :

ψ(ε e , X) = ψ e (ε e ) + ψ p (X) (2.36)
Also, it is shown in [Ladevèze, 1999] that for a large class of material behaviors, sets X and Y can be defined (using a change of variables if required) such that state equations are linear i.e. the free energy is quadratic (normal formulation).

The intrinsic dissipation involved in the Clausius-Duhem inequality (merging first and second principles) can thus be recast in the following condensed format:

σ : εp -Y • Ẋ ≥ 0 (2.37)
This inequality imposes a consistency condition on the pair of variables ((ε p , X), (σ, Y)) in order to ensure that intrinsic dissipation (reflecting dissipative evolution phenomena associated with the nonlinear material behavior) remains positive. To satisfy the previous condition, it is usual and convenient to introduce a dissipation pseudopotential, denoted φ(ε p , -Ẋ), as well as its dual potential (defined using the Legendre-Fenchel transform):

φ ⋆ (σ, Y) = sup εp, Ẋ σ : εp -Y • Ẋ -φ(ε p , -Ẋ) (2.38)
Then, evolution laws are defined from the gradients of potential φ (or φ ⋆ ), involving a nonlinear operator B:

   - Ẋ εp    = B       Y σ       = ∂ (σ,Y) φ ⋆ (σ, Y) (2.39)
so that the inequality (2.37), which reads:

   Y σ    • B       Y σ       ≥ 0 (2.40)
comes down to positive (but possibly multivalued) properties of the operator B and is naturally satisfied when dissipation pseudo-potentials are chosen convex, with φ(0, 0) = φ * (0, 0) = 0.

Remark . As φ * may be not differentiable at some points (usual case in elasto-plasticity), evolution laws should more generally be written ėp ∈ ∂ s φ * where ∂ s φ * denotes the sub-differential of φ * , defined as:

∂ s φ * = { ėp such that φ * (s) -φ * (s) ≥ ėp • (s -s) ∀s} (2.41)
Introducing the convex yield function f (s) ≤ 0 associated with the indicatrix function φ * (that is φ * = 0 if f < 0 and

φ * = +∞ if f = 0), one gets: ėp = λ ∂f ∂s with λ ≥ 0 and λf = 0 (consistency condition) (2.42)
This defines associated models as surface f (defining the elasticity domain) also corresponds to the flow potential.

It is equivalent to the Hill principle of maximal work indicating that the rate ėp maximizes the intrinsic dissipation Φ 1 = s • ėp ; in this case, λ corresponds to a multiplier in Kuhn-Tucker conditions with constraint f ≤ 0.

Definition of the CRE functional

Then, as mentioned in Section 2.1.3, a general CRE measure can be derived from the previous thermodynamical formulation of nonlinear behaviors, based on Legendre-Fenchel residuals η ψ and η φ on state equations and evolution laws, respectively [Ladevèze, 1998, Ladevèze et al., 1999, Ladevèze, 2001, Ladevèze and Pelle, 2005]. These read:

η ψ (ε e , V, σ, Y) = ψ(ε e , V) + ψ ⋆ (σ, Y) -⟨(σ, Y) , (ε e , V)⟩ ≥ 0 η φ (ε p , -V, σ, Y) = φ(ε p , -V) + φ ⋆ (σ, Y) -(σ, Y) , (ε p , -V) ≥ 0 (2.43)
and vanish when corresponding constitutive equations are satisfied. Denoting Σ = (ε e , εp , X, σ, Ŷ) the whole set of (admissible) variables, the local in space and time CRE measure e CRE is eventually defined as:

e 2 CRE ( Σ) = η ψ Σ + t 0 η φ Σ dt ∀x ∈ Ω, ∀t ∈ I t (2.44) A global measure E 2 CRE = Ω It e 2
CRE is then obtained by integration over the space-time domain.

Considered material behavior

For the numerical application of this section, we consider a Prandtl-Reuss plastic model with linear isotropic hardening, for which e e = [ε e , p] T , e p = [ε p , -p] T , and s = [σ, R] T , with p = t 0 ∥ε p ∥dt the cumulative inelastic strain (∥ • ∥ = (• : •) 1/2 ) and R the associated thermodynamic force (isotropic hardening variable on additional yield stress). The associated free energy potential reads:

ψ(ε e , p) = 1 2 Kε e : ε e + g(p)
(2.45) with g(p) = 1 2 kp 2 a function that characterizes the linear hardening law (k is a strictly positive material parameter). We thus obtain the following state laws:

σ = ∂ψ ∂ε e = Kε e ; R = ∂ψ ∂p = g ′ (p) (2.46)
and the dual potential reads:

ψ * (σ, R) = 1 2 K -1 σ : σ + g * (R) (2.47)
with g * the Legendre-Fenchel transform of function g.

The dissipation potential φ * (σ, R) is the indicator function of the elasticity domain 

C f = {(σ, R), z(σ, R) ≤ 0, R ≥ 0}, that is: φ * (σ, R) = χ C f (σ, R) =        0 if (σ, R) ∈ C +∞ if (σ, R) / ∈ C ( 
φ(ε p , -ṗ) = R 0 ∥ε p ∥ + χ Ce (ε p , -ṗ) (2.49)

Numerical analysis

When solving the local problem (with given external loads and under prescribed interface displacements) at a given iteration n of the coupling algorithm, a classical nonlinear iterative solver is used. Reaction forces λ (n) are then deduced and used to solve the global problem at the next iteration n + 1.

We recover an admissible solution Σ by using the hybrid-flux technique at each time increment, before interpolating linearly between increments.

The error estimator is then defined as

E CRE ( Σ) = Ω It e 2 CRE ( Σ)
, where e 2 CRE is given in (2.44).

In a similar way as in the linear case, using a consistent splitting, error indicators are next defined as:

η conv CRE = Ω L It ( δσ H(n) G -(σ h(n) L - σh(n-1) L )) : K -1 ( δσ H(n) G -(σ h(n) L - σh(n-1) L )) + 1 k (( Rh(n) L - Rh(n-1) L )) 2 η dis CRE = Ω L It e 2 CRE ( Σh(n) L ) η mod CRE = Ω0 It e 2 CRE ( ΣH(n) G ) (2.50)
Remark . The control of the sub-iterations for solving the nonlinear local problem could also be performed by defining a specific indicator based on a suitable definition of admissible fields. For instance, only one sub-iteration is performed in [START_REF] Blanchard | Space/time global/local noninvasive coupling strategy: application to viscoplastic structures[END_REF] between two consecutive global iterations of the coupling algorithm. Here, this is not investigated, and we assume that convergence is reached when solving the local problem.

Results

We now show performance of the approach on the previous L-shape domain. Linear/nonlinear coupling is performed in which the local model, defined in the vicinity of the singularity, has a refined mesh. The initial configuration and mesh are shown in Figure 2.26. As in the previous example the global domain is meshed using a structured mesh made of T3 triangular elements. The local domain is meshed using smaller T3 triangular elements. The loading case is the same as defined in Figure 2.22 with a uniform traction force along the y direction on the far right side with a constant value of f = 1.1E 6 N/m.

We have computed a reference solution considering a nonlinear model on the whole domain and with a very fine mesh. In further results, the accumulated plasticity will be the focus. The reference solution with the stress field is given in Figure 2.27. Notice that the last step was not driven by the adaptive algorithm but instead we added more iterations for the non-intrusive coupling method in order to check the decrease of the indicator on iterations. does not contain all the area with plastic deformation computed in the reference. Indeed the contribution to the modeling error when not considering the plasticity in those remaining area is lower than the discretization error in other regions, the accumulated plasticity would have been small and had a low impact on the overall solution.

Partial conclusions

In 

Adjoint problem

Following the general definition given in (1.54), we introduce the adjoint problem of the elasticity problem (self-adjoint operator), associated with quantity Q. It consists in finding the pair (ũ, σ) satisfying the following equations:

• kinematic admissibility:

ũ ∈ [H 1 (Ω)] d ; u |∂uΩ = 0 (3.1)
• static admissibility (with external loading defined from Q):

σ ∈ [L 2 (Ω)] d(d+1)/2 s ; ∇ • σ ∈ [L 2 (Ω)] d ; Ω σ : ε(v) = Q(v) ∀v ∈ U 0 ad (3.2)
• constitutive relation (Hooke's law):

σ = Kε(ũ) (3.3)
The quantity of interest is usually defined in a global way by means of extraction functions, under the form:

Q(u) = Ω σ Σ : ε(u) + Ω f Σ • u + ∂ F Ω F Σ • u + Ω Kε(u Σ ) : ε(u) (3.4)
Quantities σ Σ , f Σ , F Σ and u Σ constitute the mechanical loading of the adjoint problem. They correspond to prestress, body force, traction force, and pre-displacement, respectively, and are specific to the quantity Q.

The solution (ũ, σ) indicates the sensitivity of Q to the overall numerical error; it thus acts as a filter and conveys the locality of the targeted information.

Error bound on the overall error

After computing an approximate solution u 0 ∈ V of u, then after recovering an admissible stress field ˆ σ ∈ S verifying the adjoint balance equations (3.2), it is possible to define bounds on the error on the quantity of interest Q [Chamoin andLadevèze, 2008, Ladevèze, 2008]. Indeed, it is straightforward to show that:

Q(u) -Q(u 0 ) = Ω ε(u -u 0 ) : σ = Ω ε(u -u 0 ) : ˆ σ ( ˆ σ ∈ S) = Ω ε(u -u 0 ) : ( ˆ σ -Kε( u 0 )) + Ω ε(u -u 0 ) : Kε( u 0 ) = Ω ε(u -u 0 ) : ( ˆ σ -Kε( u 0 )) + Ω (σ -Kε(u 0 )) : ε( u 0 ) (σ ∈ S) = Ω (σ -Kε(u 0 )) : K -1 ( ˆ σ -Kε( u 0 )) + Q corr,1 (3.5)
where Q corr,1 = Ω (σ -Kε(u 0 )) : ε( u 0 ) is a fully computable correction term on Q(u 0 ).

Using the Cauchy-Schwarz inequality together with the Prager-Synge equality (2.7) yields the following guaranteed bound:

|Q(u) -Q(u 0 ) -Q corr,1 | ≤ ||σ -Kε(u 0 )|| K -1 .|| ˆ σ -Kε( u 0 )|| K -1 ≤ 2.E CRE (u 0 , σ).E CRE ( u 0 , ˆ σ) (3.6)
A more accurate (i.e. twice sharper) bounding can be obtained introducing average stress fields

σ * = 1 2 [σ + Kε(u 0 )] and ˆ σ * = 1 2 [ ˆ σ + Kε( u 0 )]
. Indeed, rewriting (3.5) as:

Q(u) -Q(u 0 ) -Q corr,1 = Ω (σ -σ * ) : K -1 ( ˆ σ -Kε( u 0 )) + Ω (σ * -Kε(u 0 )) : K -1 ( ˆ σ -Kε( u 0 )) (3.7)
and using the Cauchy-Schwarz inequality together with (2.9), the following enhanced bound holds:

|Q(u) -Q(u 0 ) -Q corr,2 | ≤ ∥σ -σ * ∥ K -1 .∥ ˆ σ -Kε( u 0 )∥ K -1 = E CRE (u 0 , σ).E CRE ( u 0 , ˆ σ) (3.8) with Q corr,2 = Q corr,1 + Ω (σ * -Kε(u 0 )) : K -1 ( ˆ σ -Kε( u 0 )) = Ω (σ -Kε(u 0 )) : K -1 ˆ σ *
. This enables to define a computable bounding on the exact value Q(u) of the quantity of interest, under the form:

Q -≤ Q(u) ≤ Q + (3.9) with Q -= Q(u 0 ) + Q corr,2 -E CRE (u 0 , σ).E CRE ( u 0 , ˆ σ) Q + = Q(u 0 ) + Q corr,2 + E CRE (u 0 , σ).E CRE ( u 0 , ˆ σ) (3.10)
This bounding partially takes error cancellations into account (through the computable term Q corr,2 ). The quantity Q(u 0 ) + Q corr,2 can be interpreted as a corrected approximate value of the quantity of interest.

The previously introduced local error bounds take all error sources (modeling, discretization, algebraic error) into account. They do not use orthogonality properties, and therefore enable to decouple discretizations of direct and adjoint problems. In practice, accurate bounds Q -and Q + are obtained by an enrichment of the adjoint solution [START_REF] Chamoin | A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems[END_REF], so that E CRE ( u 0 , ˆ σ) tends to 0 and Q corr,2 tends to Q(u) -Q(u 0 ). Noticing that the adjoint loading (σ Σ , f Σ , F Σ , u Σ ) usually applies on a local subdomain of Ω, and therefore leads to an adjoint solution with localized high gradients (Saint-Venant principle), the idea is to use local enrichment (with analytical or pre-computed numerical functions) in the vicinity of the space region of interest where the quantity Q is defined. In the context of local-global couplings, this enrichment can be easily done using the non-intrusive framework, keeping the same global mesh for direct and adjoint problems but adding additional local patches to solve the adjoint problem efficiently if need be.

Remark . The bounding result on Q can be recast such that the estimate is spatially split in local contributions (i.e.

for mesh adaptivity purposes). We indeed get from (3.10):

|Q(u) -Q(u 0 )| ≤ |Q corr,2 + θ max E CRE . ẼCRE | = η tot Q,CRE = | K η Q,K | (3.11)
where θ max ∈ {-1, +1} is the maximizer, and η Q,K is a local contribution over each element K defined as:

η Q,K = K (σ -Kε(u 0 )) : K -1 ˆ σ * + 1 2 θ max ẼCRE E CRE .E 2 CRE|K + E CRE ẼCRE . Ẽ2 CRE|K (3.12)

Application to non-intrusive coupling

Computation of a goal-oriented error estimator

In the present context, the adjoint solution is approximated as the primal solution, using the non-intrusive localglobal coupling technique (potentially with the same coupling configuration). This technique yields the approximate solution (ũ

hH(n) LG , σhH (n) 
LG,N ) at iteration n. Then, in a similar way as for error estimation in the energy norm performed in Chapter 2, an admissible adjoint stress field ˆ σ hH(n)

LG,N ∈ S is recovered from a specific post-processing of the field

σ hH(n)
LG,N / ∈ S at hand. We thus obtain from (3.8):

|Q(u) -Q(u hH(n) LG ) -Q corr,2 | ≤ E CRE (u hH(n) LG , σhH(n) LG,N ).E CRE ( u hH(n) LG , ˆ σ hH(n) LG,N ) (3.13) with Q corr,2 = 1 2 Ω (σ hH(n)
LG,N -Kε(u

hH(n) LG )) : K -1 ( ˆ σ hH(n)
LG,N + Kε( u

hH(n) LG
)) a computable quantity, so that guaranteed bounds on Q(u) (or on the error

Q(u) -Q(u hH(n) LG
)) are obtained. We indicate again that the quantity Q(u

hH(n) LG ) + Q corr,2 represents an enhancement of the approximate value Q(u hH(n) LG
) of the quantity of interest, by means of the correction term Q corr,2 .

Definition of error indicators

As described in Chapter 1, error sources in non-intrusive local-global coupling are threefold: modeling, discretization, convergence. In the goal-oriented context, and using solution fields defined in Section 1.2.3, the error on Q at a given iteration n can be split as:

Q(u) -Q(u hH(n) LG ) = Q(u) -Q(u H
LG )

E mod Q + Q(u H LG ) -Q(u hH
LG )

E dis Q + Q(u hH LG ) -Q(u hH(n) LG ) E conv Q (3.14)
where E mod Q , E dis Q , and E conv Q correspond to modeling, discretization, and convergence parts of the error, respectively.

Reusing the study performed in Chapter 2 for error splitting, the following error indicators on each of these error parts are defined:

η conv Q,CRE = 1 2 Ω L ( δσ H(n) G -(σ h(n) L - σh(n-1) L )) : K -1 ( ˆ σ hH(n)
LG,N + Kε( u

hH(n) LG )) + 1 2 ∥ δσ H(n) G -(σ h(n) L - σh(n-1) L )∥ K -1 |Ω L .∥ δσ H(n) G -( σh(n) L - σh(n-1) L )∥ K -1 |Ω L η dis Q,CRE = 1 2 Ω L (σ h(n) L -Kε(u h(n) L )) : K -1 ( ˆ σ hH(n)
LG,N + Kε( u

hH(n) LG )) + 1 2 ∥σ h(n) L -Kε(u h(n) L )∥ K -1 |Ω L .∥ σh(n) L -Kε(ũ h(n) L )∥ K -1 |Ω L η mod Q,CRE = 1 2 Ω0 ( δσ 
H(n) G -Kε(u H(n) G )) : K -1 ( ˆ σ hH(n)
LG,N + Kε( u

hH(n) LG )) + 1 2 ∥ δσ H(n) G -Kε(u H(n) G )∥ K -1 |Ω0 .∥ δσ H(n) G -Kε(ũ H(n) G )∥ K -1 |Ω0
(3.15)

Adaptive algorithm

A greedy adaptive algorithm can be set up, from the computation (at each iteration of the local-global solver) of the previously defined goal-oriented error estimator and indicators, for the control of the accuracy on the quantity of interest. The objective is to optimally drive the non-intrusive local-global coupling method, tuning parameters so that useless computations are avoided when targeting a selected quantity of interest of the problem.

Specifying the error tolerance γ tol , and after initializing Ω L and τ h , the algorithm reads as follows:

0. Set n = 1;

1. Solve the primal and adjoint surrogate problems for u hH(n)

LG and ũhH(n)

LG ;

2. Recover the admissible stress fields σhH(n)

LG,N and σhH(n)

LG,N , and compute the estimate

η tot Q,CRE ; 3. If η tot Q,CRE /|Q(u hH(n) LG )| ≤ γ tol then STOP. Otherwise proceed to Step 4; 4. Compute indicators η conv Q,CRE , η dis Q,CRE
, and η mod Q,CRE :

• if max(η conv Q,CRE , η dis Q,CRE , η mod Q,CRE ) = η conv Q,CRE , increment n + 1 → n and go to Step 1; • if max(η conv Q,CRE , η dis Q,CRE , η mod Q,CRE ) = η dis Q,CRE , decompose η dis Q,CRE
and locally refine τ h up to reaching

η dis Q,CRE /|Q(u hH(n) LG
)| ≤ γ tol /3, then go to Step 1;

• if max(η conv Q,CRE , η dis Q,CRE , η mod Q,CRE ) = η mod Q,CRE , decompose η mod Q,CRE
and locally enlarge Ω L up to reaching

η mod Q,CRE /|Q(u hH(n) LG
)| ≤ γ tol /3, then go to Step 1.

Numerical results

Plate with a hole

We consider the same problem as in Chapter 2, but we now focus on the control of the error on a local quantity of interest (max of stress component or VM stress).

Figure 3.1: Case study.

When considering the Von Mises equivalent stress as the (nonlinear) quantity of interest, a linearization procedure is here performed. In order words, proving the error is sufficiently small, we write the error as:

Q(u) -Q(u 0 ) = Q ′ (u 0 ; δu) + O(∥δu∥ 2 loc ) (3.16) with Q ′ (u 0 ; v) = lim θ→0 θ -1 (Q(u 0 + θv) -Q(u 0 )
) the Gâteaux derivative, δu = uu 0 , and ∥ • ∥ loc a L 2 -norm defined in the local region where the quantity of interest is located. The linear part Q ′ is then kept alone for the loading of the adjoint problem.

In the specific case of the Von Mises equivalent stress, denoting S = σ -1 3 Tr[σ]I the deviatoric part of the stress tensor σ and k V M the normalizing constant (k

V M = 3/2 in 3D, k V M = 2 in 2D), we get Q(u) = k V M S(u) : S(u)
and the linearization reads:

Q(u) = Q(u 0 + δu) = k V M S(u 0 + δu) : S(u 0 + δu) = k V M (S(u 0 ) : S(u 0 ) + 2S(u 0 ) : S(δu) + S(δu) : S(δu)) = Q(u 0 ) 1 + k V M 2S(u 0 ) : S(δu) Q 2 (u 0 ) + O(∥δu∥ 2 loc ) = Q(u 0 ) 1 + k V M S(u 0 ) : S(δu) Q 2 (u 0 ) + O(∥δu∥ 2 loc ) (3.17)
Therefore, the loading employed in the weak form of the adjoint problem reads:

Q ′ (u 0 ; v) = k V M S(u 0 ) : S(v) Q(u 0 ) (3.18)
It is associated with the tangent pre-strain extraction operator (evaluated at u 0 )

ε Σ = K -1 σ Σ such that ε Σ : σ(v) = k V M

S(u0):S(v)

Q(u0) . It leads to accurate error bounds on Q, provided the error is small, event though bounds are not guaranteed any more.

For this study the quantity of interest is the maximal Von Mises Stress nearby of the hole top region. It is a local quantity of interest so we can assess that only the region in the vicinity of the hole might affect the accuracy of the quantity of interest computation.

The loading case and boundary conditions are the same as described in Chapter 2 for the first case study (cf. A reference solution is at hand from Chapter 2, and is shown in Figure 3.2. From this reference solution, the adjoint solution can be computed (both are coupled through the adjoint loading). We are only enriching the number of iterations for the local global non-intrusive couplings algorithm between primal and adjoint solutions.

The adjoint solution is shown in Figure 3.3. As we can see it is localized in the region of the quantity of interest. 

L-shaped domain

We consider the same problem as in Chapter 2, but we now focus on the control of the error on two types of quantities of interest : the mean of a stress component and the mean of displacement component in a local region.

We have computed a reference solution in Chapter 2 (cf. Figure 3.6 ) for the primal solution. This reference solution is obtained after the global error is lower than a threshold. We are considering two quantities of interest in this study :

• The mean of the component σ 12 of the stress field in the vicinity of the singularity;

• The mean of the horizontal U X displacement on the far-right side of the L-shape structure.

We can forecast that in the case of the first quantity of interest the adaptive strategy should only require local enrichment near the area of interest whereas the second quantity of interest may require enrichment in some regions far from the one where the quantity of interest is defined.

Local stress field component σ 12 as a quantity of interest

In this case, the loading of the adjoint problem is a pre-strain applied in the area of interest. The initial local patch is located near the singularity where the quantity of interest is embedded. Figure 3.7 show this initial patch. 

Displacement component U X as a quantity of interest

In this case, the loading of the adjoint problem is a traction force on the far-right side of the structure along the direction x. There are two local patches initially, the first patch is located near the right side of the structure where the quantity of interest is defined and a second patch in the corner of the L-shape structure. The initial configuration is shown in Figure 3.11. The approximate adjoint solution associated with this quantity of interest is shown in Figure 3.12. 

Plate with regular distribution of holes

In this final application, we consider a plate with a regular (periodic) distribution of 160 holes with constant radius r = 0.15, and submitted to a bending loading. The dimensions of the plate and boundary conditions are detailed in Fig. 3.16. The Young modulus is E = 1 and the Poisson ratio is ν = 0.3. The reference solution, in terms of ϵ yy component of the strain field, is given in Fig. 3.17(a); all the 160 holes are considered in this case, and an overkill computation is performed. A main objective is to define which holes have to be eventually represented in order to ensure the accuracy on a given quantity of interest.

(a) Configuration of the studied problem. Using the local-global coupling framework, the solution is approximated considering:

• a global model made of the plate without any hole and with an homogenized Young modulus E 0 = (1 -πr 2 )E (effective modulus obtained from a weighted average). The global mesh τ H used for this model is composed of 8×20 first-order quadrangle elements;

• a local model in a zone Ω L ⊂ Ω made of a set of patches, each patch representing a squared domain including a hole (Fig. 3.16(b)). The size of one local patch is 1×1 (that is, the size of a macro element), the Young modulus is E = 1, and the unstructured mesh is composed of first-order triangular elements.

In the adaptive process, we consider that the local mesh τ h is fine enough so that discretization error in Ω L is neglected. Consequently, the adaptive procedure aims at setting the optimal number n of iterations in the coupling procedure as well as the holes which need to be represented using a patch (definition of the size of Ω L ). The quantity of interest is the average vertical displacement on the right side (x = 20) of the structure. Naturally, the initial local zone Ω L is then placed in the vicinity of this edge (see Fig. 3.19(a)). It is made of the layer of 8 macro elements of τ H which are connected to the right edge of Ω; out of the 8 associated holes, the other holes are not represented. We show in Fig. 3.17(b) the approximate coupled solution obtained when considering this coupling Figure 3.18: Evolution of error quantities and final coupling configuration for the control on the plate with holes.

• at Step 36, the algorithm was stopped, as the generation of the local mesh crashed.

We emphasize that we chose here to add only one patch to Ω L at each iteration of the adaptive process, so that the required number of iterations to reach the error tolerance is quite large. An alternative to decrease the number of iterations would be to add several patches in the same time (selecting macro elements of τ H in which modeling error is larger than a threshold). Nevertheless, optimality of the final coupling configuration would be lost with this procedure, and this is why we chose not to apply it in this work. Furthermore our results present some strange behavior. Indeed, the symmetric distribution of the local domain is not respected. This can be explained by the non-symmetry of the global mesh which can affect the computation of the global stress field and therefore the admissible stress field (which is no more symmetric).

To address this issue, model reduction tools are suited as they permit to capture the manifold of solutions over the whole parameter domain with dramatically reduced CPU cost and memory resources without sacrificing too much of the solution accuracy. Model reduction is an attractive and advanced numerical approach which has been widely developed during the last decade [START_REF] Chinesta | Model order reduction[END_REF]. ROM techniques, unlike meta-modeling techniques, do not simplify physics models but rather decrease their computational complexity by using specific numerical tools that generate an adequate approximate solution from a low-dimensional basis (manifold), facilitating the map from the input space to the set of outputs. They lean on the fact that the (full-order) solution of a complex high-dimensional model can often be accurately approximated by the (reduced-order) solution of a surrogate model. This latter is obtained through the projection of the initial model onto a low-dimensional (reduced) subspace spanned by global basis functions, so that dimensionality can be drastically reduced. Consequently, such tools have the potential to circumvent the curse of dimensionality and make the approximation of high-dimensional solutions computationally tractable. They have been in rapid expansion over the last decade and their performance, in terms of savings in computational time and memory storage, are impressive (several orders of magnitude).

Most ROM procedures consist of the generation, in an intensive offline (learning) stage, of a relevant reducedorder basis that captures the dominant dynamics of the physical model. This basis can then be operated in an online phase to obtain approximate solutions at low cost. We may list here:

• the POD method [Chatterjee, 2000, Kunisch and Volkwein, 2001, Gunzburger et al., 2007], which is similar to the Singular Value Decomposition (SVD), the Principal Component analysis (PCA), or the Karhunen-Loeve Decomposition (KLD);

• the Reduced Basis (RB) method [START_REF] Maday | A reduced-basis element method[END_REF],Barrault et al., 2004,Rozza et al., 2008,Drohmann et al., 2012];

• the PGD method [START_REF] Chinesta | A short review on model reduction based on proper generalized decomposition[END_REF], Chinesta et al., 2014], which will be specifically detailed below.

In the case of nonlinear problems, a second reduction procedure aiming at reducing the evaluation step over a lower dimensional space is needed; this may be performed with several methods such as the Empirical Interpolation Method (EIM) [START_REF] Barrault | An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations[END_REF], Maday and Mula, 2013, Radermacher and Reese, 2016] or the hyper-reduction method [Ryckelynck, 2009], to name a few.

ROM is effective to address multi-query procedures and parametrized problems encountered in many computational engineering activities such as optimization (sensitivity analysis), inverse analysis, uncertainty propagation, or optimal control [START_REF] Grepl | Certified rapid solution of partial differential equations for real-time parameter estimation and optimization[END_REF], Nguyen et al., 2010, Ghnatios et al., 2012, Maday et al., 2015, Cui et al., 2015, Nadal et al., 2015, Yu and Chakravorty, 2015, Manzoni et al., 2016, Chen et al., 2017, Karcher et al., 2018].

We focus here on the Proper Generalized Decomposition (PGD) technique, which is an appealing model reduction technique based on low-rank modal approximation (canonical tensor format) [START_REF] Chinesta | Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models[END_REF], Leygue and Verron, 2010, Nouy, 2010a, Chinesta et al., 2011, Chinesta et al., 2013, Chinesta et al., 2014, Chinesta and Cueto, 2014]. In contrast to the POD or RB methods in which the reduced-order basis is extracted from pre-computed solutions of the system (learning phase), PGD is part of a priori methods that follow a different path by progressively building an approximate representation of the solution, without assuming any prior basis or knowledge on the problem dynamics (i.e. snapshots). PGD is equivalent to POD (it thus provides optimal modes with respect to the chosen norm) when solving elliptic pdes up to dimension 2 [START_REF] Falco | Numerical strategies for the galerkinproper generalized decomposition method[END_REF]; in other cases, there is no evidence that the solution is optimal.

PGD operates in an iterative strategy in which a representation of the multidimensional solution is defined as a linear combination of separated variables functions (called modes), after defining all model parameters as extracoordinates of the problem. With such a modal representation, the complexity scales linearly with the number of dimensions. Modes are computed on the fly in an offline step, by means of a progressive construction of successive best rank-one approximations that leads to the solution of eigenvalue problems. The obtained PGD approximation explicitly depends on all model parameters and constitutes a handbook of solutions. It can further be particularized for any value of the parameters in an online phase, with cheap and fast computations on light computing platforms, in order to perform real-time parametric or sensitivity analysis for optimization, inverse identification, or optimal control purposes. In this framework, parameter sensitivities can be performed in a straightforward manner, without resorting to classical adjoint state methods.

During the last decade, the PGD was successfully implemented and extensively used to solve multidimensional problems and perform efficient simulations. We may cite:

• stochastic problems [Nouy, 2008[START_REF] Nouy ; Nouy | Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems[END_REF];

• multiphysics problems [Néron andLadevèze, 2010, Dumon et al., 2011];

• plates and shells [START_REF] Bognet | Advanced simulation of models defined in plate geometries: 3d solutions with 2d computational complexity[END_REF];

• highly transient evolutions [START_REF] Favoretto | Reduced order modeling via pgd for highly transient thermal evolutions in additive manufacturing[END_REF];

• data assimilation and inverse analysis [START_REF] Ghnatios | Proper generalized decomposition based dynamic data-driven control of thermal processes[END_REF], Gonzalez et al., 2012, Louf and Champaney, 2013,Beringhier and Gigliotti, 2015,Nadal et al., 2015,Berger et al., 2016,Chamoin and Díez, 2016,Marchand et al., 2016, Berger et al., 2017, Signorini et al., 2017, Badias et al., 2018, Rubio et al., 2018, Rubio et al., 2019a[START_REF] Rubio | Transport map sampling with pgd model reduction for fast dynamical bayesian data assimilation[END_REF]];

• problems with parametrized geometry [START_REF] Chevreuil | A multiscale method with patch for the solution of stochastic partial differential equations with localized uncertainties[END_REF], Ammar et al., 2014, Modesto et al., 2015, Zlotnik et al., 2015, Courard et al., 2016, Signorini et al., 2017, Chamoin and Thai, 2019, Sevilla et al., 2020].

A review on PGD applications can be found in [Chinesta et al., 2014]. Some approaches have also been proposed to apply the PGD to nonlinear models, using Newton-type algorithms [START_REF] Chinesta | A short review on model reduction based on proper generalized decomposition[END_REF], the LATIN-PGD method [Ladevèze, 1989, Ladevèze, 1999[START_REF] Ladevèze | The latin multiscale computational method and the proper generalized decomposition[END_REF], Vitse et al., 2014, Neron et al., 2015, Ladevèze, 2016, Vitse et al., 2019], or alternative methods [Ryckelynck, 2009]. In addition, the coupling between PGD models was investigated in [START_REF] Néron | A decoupled strategy to solve reduced-order multimodel problems in the pgd and arlequin frameworks[END_REF]. Eventually, the certification of PGD has been investigated in several recent works [START_REF] Ammar | An error estimator for separated representations of highly multidimensional models[END_REF], Ladevèze and Chamoin, 2011[START_REF] Moitinho De Almeida | A basis for bounding the errors of proper generalised decomposition solutions in solid mechanics[END_REF], Alfaro et al., 2015, Chamoin et al., 2017, Chamoin and Thai, 2019, Reis et al., 2020].

PGD algorithm

Several approaches based on Galerkin, Petrov-Galerkin or minimal residual formulations may be implemented to compute PGD modes [Nouy, 2010a]. The standard approach is the so-called progressive Galerkin approach, which starts from a global weak formulation of the multi-dimensional problem and introduces successive order 1 corrections. Consider a general linear D-dimensional problem of the form:

Au = g , u ∈ X = X 1 ⊗ X 2 ⊗ • • • ⊗ X D (4.1)
where A is an operator defined on the tensor space X . PGD consists in searching an approximation u m of u in a low-dimensional tensor subspace of X made of canonical format tensors of rank m:

u m = m i=1 w 1 i ⊗ w 2 i • • • ⊗ w D i , w µ i ∈ X µ (4.2)
We introduce the global weak formulation of the problem:

Find u ∈ X such that B(u, v) = F (v) ∀v ∈ X (4.3) with A(u, v) = Ω1 Ω2 • • • Ω D a(u, v) ; L(v) = Ω1 Ω2 • • • Ω D l(v) (4.4)
and (a, l) the forms associated with the formulation in space. Assuming the rank m -

1 decomposition u m-1 is known, the rank m decomposition u m = u m-1 + w 1 ⊗ w 2 • • • ⊗ w D is searched such that: A(u m , δv) = L(δv) ∀δv = δw 1 ⊗ w 2 • • • ⊗ w D + w 1 ⊗ δw 2 • • • ⊗ w D + • • • + w 1 ⊗ w 2 • • • ⊗ δw D (4.5)
The test function δv lives in the tangent space with δw µ ∈ X µ . This formulation naturally leads to a nonlinear system where a set of coupled low-dimensional problems have to be solved:

A(w 1 ⊗ w 2 • • • ⊗ w D , δw 1 ⊗ w 2 • • • ⊗ w D ) = R m-1 (δw 1 ⊗ w 2 • • • ⊗ w D ) ∀δw 1 ∈ X 1 A(w 1 ⊗ w 2 • • • ⊗ w D , w 1 ⊗ δw 2 • • • ⊗ w D ) = R m-1 (w 1 ⊗ δw 2 • • • ⊗ w D ) ∀δw 2 ∈ X 2 . . . = . . . A(w 1 ⊗ w 2 • • • ⊗ w D , w 1 ⊗ w 2 • • • ⊗ δw D ) = R m-1 (w 1 ⊗ w 2 • • • ⊗ δw D ) ∀δw D ∈ X D (4.6) with R m-1 (v) = L(v)-A(u m-1 , v).
As it can be interpreted as an eigenvalue problem, this system may be solved using specific iterative algorithms inspired from classical power iterations algorithms dedicated to eigenvalue problems or dominant subspace methods [Nouy, 2010a]. It is in practice addressed with an iterative fixed-point (or alternating directions) strategy, by solving individual problems sequentially until convergence is reached (residual below a prescribed tolerance, stagnation of modal functions) or up to a given number of iterations. All modal functions are normalized so that the magnitude of a PGD mode is supported by space function alone. Additional ingredients may be added in the modal construction in order to optimize numerical performance, such as the orthogonalization of space modal functions (with Gram-Schmidt procedure), or the update of previous extra-parameter modal functions before starting again the power iterations algorithm in order to satisfy a stronger Galerkin orthogonality condition (this preliminary stage actually corresponds to a low-cost POD step).

Case of geometry parametrization

We follow here the approach defined in [START_REF] Ammar | Parametric solutions involving geometry: a step towards efficient shape optimization[END_REF],Zlotnik et al., 2015,Chamoin and Thai, 2019] and based on a geometric transformation to a reference configuration by means of a parametrized mapping. The mapping is defined as a function of a finite number of parameters, and is similar to isoparametric analysis in the FEA context.

Alternative techniques have been investigated in order to address evolving geometries; let us cite fictitious domain or immersed boundary methods where the computational domain is extended from the actual shape to a fixed exterior domain [START_REF] Haslinger | Introduction to shape optimization: theory, approximation, and computation[END_REF], Canuto and Kozubek, 2007, Nouy et al., 2011, Nouy and Pled, 2018], and boundary tracking methods with explicit description of the boundary [START_REF] Courard | Integration of pgd-virtual charts into an engineering design process[END_REF]. with Jacobian matrix J = ∂x/∂x ref and Jacobian J = det(J). Components of the weak form are then pulled back to the reference configuration using the following properties:

Ω f (x) = Ω ref f (Tx ref )J ; ∂f ∂x = J -T ∂f ∂x ref (4.7)
Such a geometrical transformation then allows the problem to be recast in a tensor product space and PGD to be applied in a direct manner.

PGD in local-global couplings

Parametrization of the local model

The interest in using PGD model reduction in the non-intrusive local-global coupling is to make the solution of local problems (1.13) more effective in a multi-query context. We remind that they read:

   K L -C T L -C L 0       U L Λ    =    F L -C G U G    or    K L C T L C L 0       U L Λ    =    F L C G U G    (4.8)
with K L the local stiffness matrix, and (C L , C G ) some coupling (mortar) matrices.

For these problems, we define parameters related to Dirichlet boundary conditions U G (i.e. data exchanged with the global modal at the interface, using coupling operators that may deal with incompatible interfaces), as well as geometry parameters impacting matrices (K L , C L , C G ) and related to both local structural configuration inside the local zone (e.g. size and position of a hole) and geometry of the coupling patch. Denoting by p geo the set of geometry parameters, the constrained problem to be solved after parametric mapping (to come back to a fixed geometry) is of the form:

   K L (p geo ) C L (p geo ) T C L (p geo ) 0       U L Λ    =    F L (p geo ) C G (p geo )U G    (4.9)
The associated construction of local virtual charts U L (U G , p geo ) is made difficult as the number of parameters increases quickly, and therefore the use of reduced order modeling is natural. 

PGD solution with specific algorithm

Addressing the previous constrained local problem, involving Lagrange multipliers and associated with an indefinite saddle point problem, with PGD is not a trivial task. A difficulty is in the application of PGD for constrained problems written with a Lagrangian (mixed) formulation. The main challenge in applying a constraint functional within the PGD framework arises from the fact that the coupled problem is decoupled into subproblems with respect to each variable, while the constraint should be applied to the solution globally. Another difficulty is in the combination of parameters on geometry and boundary conditions, with boundary conditions explicitly depending on the geometry of the local domain. Here we resort to the work in [Ainsworth, 2001] that specifically provides the following assumptions under which the constrained problem is well-posed:

1. C G U G ∈ Range(C L ); this condition simply ensures that constraints are not so restrictive as to rule out any possibility of a solution. That is, at least one function from the FE space satisfies the constraints

C L U L = C G U G ; 2. Ker(K L ) ∩ Ker(C L ) = {0}
; this condition ensures that if a solution exists, then it is unique (if the condition is false, then there is a non-zero vector W L such that

K L W L = C L W L = 0, so that if (U L , Λ) is solution then (U L + αW L , Λ
) is also solution for any choice of α;

3. C L is of full rank; this condition simply means that the constraints are linearly independent. In particular, it implies that the following matrices are well defined:

P L = C T L (C L C T L ) -1 C L ; Q L = I -C T L (C L C T L ) -1 C L ; R L = C T L (C L C T L ) -1 (4.10)
The matrix Q L (and in fact

P L too) is idempotent that is Q 2 L = Q L , and satisfies C L Q L = 0.
It is then shown that, under the previous conditions, a direct characterization of the unique solution U L is provided by KL U L = FL with

KL = C T L C L + Q T L K L Q L ; FL = C T L C G U G + Q T L (F L -K L R L C G U G ) (4.11)
and the corresponding Lagrange multiplier vector is

Λ = R T L (F L -K L U L ).
The proof is given in Appendix A. Note that if the original matrix K L is symmetric, then so is the reduced matrix KL , meaning that the possibility of using a conjugate gradient solver is not sacrificed through the imposition of constraints.

Consequently, the parametrized local problem is recast as:

Z(p geo )U L (p geo , U G ) = C(p geo )U G + F(p geo ) (4.12) with Z = C T L C L + Q T L K L Q L ; C = (C T L -Q T K L R L )C G ; F = Q T L F L (4.13)
The solution U L (p geo , U G ) is searched using PGD, with separated-variable form:

U L (p geo , U G ) = N pgd i=1 f i .g i (p geo ). n U G j=1 γ i,j (U j G ) (4.14)
where

U j G are nodal components of U G i.e. U G = n U G j=1 U j G e j .
The PGD formulation is implemented after decomposing operators as Z(p geo ) = 

n Z i=1 φ i (p geo )Z i , C(p geo ) = n C i=1 χ i (p geo )C i ,
Pgeo I G δU T (Z(p geo )U L (p geo , U G ) -C(p geo )U G -F(p geo )) = 0 ∀δU (4.15)
a progressive approach is followed to compute the last mode of the decomposition at order N pgd . Using the following test function in the tangent space:

δU = δf .g(p geo ). n U G j=1 γ j (U j G ) + f .δg(p geo ). n U G j=1 γ j (U j G ) + . . . (4.16)
it yields the following elementary problems:

• problem in space

( n S i=1 )S i Pgeo g(p geo )ϕ i (p geo )g(p geo )) n U G k=1 I k G (γ k (U k G )) 2 f = ( n F i=1 F i Pgeo g(p geo )ψ i (p geo )) n U G k=1 I k G 1.γ k (U k G ) - N pgd -1 j=1 ( n S i=1
)S i Pgeo g(p geo )ϕ i (p geo )g j (p geo ))

n U G k=1 I k G γ k (U k G ).γ j,k (U k G ) f j + n C i=1 C i Pgeo g(p geo )χ i (p geo ) ( n U G j=1 ( k̸ =j I k G γ k (U k G )).( I j G U j G γ j (U j G ))e j )
(4.17)

• problem in the geometry parameters (with discretization g(p geo ) = N(p geo )ĝ):

n U G k=1 I k G (γ k ) 2 . n S i=1 (f T S i f )M p ( φi ⊗ ĝ = n U G k=1 I k G 1.γ k (U k G ). n F i=1 (f T • F i ).M p φi ) - N pgd -1 j=1 n U G k=1 I k G γ k (U k G ).γ j,k (U k G ).( n S i=1 (f T S i f )M p ( φi ⊗ ĝj )) + n C i=1 (f T .C i )   n U G j=1 ( k̸ =j I k G γ k (U k G )).( I j G U j G γ j (U j G ))e j   M p χi (4.18)
• problem in the boundary conditions

  ( n S i=1 (f T S i f ) Pgeo g(p geo )ϕ i (p geo )g(p geo )) k̸ =K I k G (γ k (U k G )) 2   γ K (U K G ) = ( n F i=1 (f T F i ) Pgeo g(p geo )ψ i (p geo )) k̸ =K I k G 1.γ k (U k G ) - N pgd -1 j=1   ( n S i=1 (f T S i f j ) Pgeo g(p geo )ϕ i (p geo )g j (p geo )) k̸ =K I k G γ k (U k G ).γ j,k (U k G )   γ j,K (U K G ) + n C i=1 (f T .C i ) Pgeo g(p geo )χ i (p geo )   j̸ =K ( k̸ =j I k G γ k (U k G )).( I j G U j G γ j (U j G ))e j + ( k̸ =K I k G γ k (U k G ).U K G .e K   (4.19)
Remark . We decide here to apply local PGD after implementing the local-global coupling strategy. An alternative option would be to first implement PGD for the monolithic problem before using model coupling to compute PGD modes. The first option appears more effective as PGD modes contain more local information.

Remark . Several strategies were developed and analyzed in [START_REF] Kergrene | Approximation of constrained problems using the pgd method with application to pure neumann problems[END_REF] to use PGD on problems with affine constraints, by means of penalization, (augmented-) Lagrangian, or double Lagrangian, and with various implementations such as direct or iterative Uzawa method [Uzawa, 1958]. For local problems (4.8), the direct Uzawa method manipulates the first equation to get

U L = K -1 L (F L -C T L Λ) and yields C L (K -1 L (F L -C T L Λ)) = C L K -1 L F L -C L K -1 L C T L Λ = C G U G after incorporating in the second equation. We thus get S L Λ = C L K -1 L F L -C G U G , with S L = C L K -1
L C T L the Schur complement, and the initial local problem is recast as (upper triangular matrix):

   K L (p geo ) C T L 0 S L       U L Λ    =    F L C L K -1 L F L -C G U G    (4.20)
As direct Uzawa performs a triangularization by blocks, the constraint is decoupled from the rest of the problem and the problem can be solved by a backward substitution by blocks. However, it still requires to explicitly invert the stiffness matrix K L . Iterative Uzawa provides a way to avoid explicitly calculating the inverse K -1 L , solving the constraint equation in an iterative manner (e.g. with a descent algorithm).

The considered strategies were applied to two classes of problems with a 2D Poisson equation: the pure Neumann case (with constraint to recover uniqueness of the solution), and the Robin case (where the constraint forces the solution to move way from the already existing unique global minimizer of the energy functional). It was shown that the Uzawa method provides good performance when the Schur complement is small, while Lagrangian/augmented Lagrangian methods offer satisfactory results otherwise.

These do not apply to the current Lagrangian formulation, and an alternative strategy is thus introduced. Another alternative would be to prescribe Dirichlet boundary conditions by enforcing them in a first PGD mode.

Remark . The method in [START_REF] Yu | Efficient randomized algorithms for the fixed-precision low-rank matrix approximation[END_REF] is used to compute the SVD form (with separation of variables) for stiffness operator, right-hand side, and stress matrix which are large sparse matrices at the global level, in order to circumvent having to set the number of SVD modes a priori, and to be able to work with fixed accuracy without knowing the snapshot matrix rank. As the same connectivity table is used for all geometrical configurations, position of nul terms is the same and can be extracted to build snapshot matrices that only contain useful terms.

Remark . The number of prescribed values U j G usually grows very quickly with the size of the domain boundary, which may make the PGD convergence difficult. However, in our application, the prescribed displacements come from the solution of a coarse global solution, so that the number of independent parameters can be drastically reduced.

Remark . Even though a discretization over the parameter space is introduced to numerically compute and store modal functions, it is not associated with a given numerical approximation method that we would have to design. Indeed, the associated mesh size can be taken a small as needed with low CPU cost (no ODE or PDE is solved).

Online use of the local PGD solution

The previously constructed local PGD solution is used online as a virtual chart for the local solution in the nonintrusive coupling. For any new value of the parameter set, coming from new boundary conditions (along iterations for the coupling algorithm), new geometrical configuration of the local zone Ω L (along iterations in the adaptive procedure), or new structural configuration inside the local zone (in design optimization or uncertainty quantification for instance), the local solution is computed in a straightforward manner by a direct evaluation of the local PGD solution.

Error control with local PGD models

As any numerical method, the use of PGD in the non-intrusive coupling is associated with an additional error source which needs to be effectively assessed and controlled to ensure the quality of the results for robust optimization and design. For this purpose, we still resort to the CRE concept, using a strategy similar to that developed in [START_REF] Ladevèze | On the verification of model reduction methods based on the proper generalized decomposition[END_REF], Chamoin and Ladevèze, 2012, Ladevèze and Chamoin, 2012, Chamoin et al., 2017, Chamoin and Thai, 2019] for addressing a posteriori error estimation when constructing the PGD model. This strategy is based on the specific processing of the approximate PGD solution at hand to recover admissible fields. It enables to evaluate the error level over the whole parametric space and to split error sources between PGD truncation and discretization errors, by introducing specific error indicators. This helps driving a greedy adaptive algorithm to save CPU time and memory space for a prescribed error tolerance (i.e. optimizing the computational effort by defining a suitable PGD approximation in terms of required number of terms in the modal representation of the solution, but also in terms of the discretization meshes used to compute modes). In the following the CRE-based error estimation tools and adaptive algorithm are used to control the error due to PGD truncation, ensuring that it remains much lower than discretization error in the local zone Ω L .

Numerical results

In this part we focus on the numerical results for the construction of the approximate local PGD solution when we consider geometric parameters describing some details inside the local domain (for example the radius of a hole in the local domain or the position of this hole). The coupling interface between the local domain and the global domain is unchanged with those parameters.

The result of this method for geometric parameters describing the local domain (position, dimension or shape) is very similar to the previous one but the coupling interface between the local domain and the global domain is As we can see the transformation we used consists in moving the nodes of the mesh such that we respect the configuration described by the parameter (position and radius of the hole). Therefore the connectivity table of the element is unchanged and the stiffness operator has the same support for each value of the parameter.

Nevertheless, if the current geometrically parametrized domain is not similar enough to the fixed reference physical domain, the aspect ratio of the mesh element can impact numerical results.

Then we evaluate for a set of parameters the stiffness operator and right-hand side of the discretized problem. A 115 separated form of the stiffness operator and right-hand side are computed using the singular value decomposition.

A PGD solution is then computed for each boundary condition. We have a linear problem, so we can simplify the local solution such as :

U L (p geo , U G ) = n U G j=1   N pgd i=1 f i j .g i j (p geo )   .U j G (4.21)
For each boundary condition, 5 to 6 PGD modes are needed to approximate the solution with sufficient accuracy. The strength of using a virtual chart for the local solution is to be able to compute quickly and efficiently the solution for a vast query of geometric parameters. We are then able to perform a parametric optimization. For example, the maximum von Mises Stress with respect to the radius of the hole or its position can be obtained (cf. We can notice that the PGD solution is less accurate on the border of the parametric domain. Multiple reasons Chapter 5

Application to robust design

In this last chapter, we implement the previously developed tools in order to conduct, in an effective manner, optimal or robust design (in a certain sense) which is a main concern in industry. We show the potential of certified and parametrized non-intrusive local-global coupling for this purpose by considering an academic example (plate with a hole).

Introduction to robust design

Context

We place in the framework of tolerant and reactive structural design. In many situations, available information during the design is not precise as it corresponds to an early step of the life cycle of the structure, and as it is necessary to let sufficient flexibility for manufacturing (e.g. in terms of local geometrical details). A set of possible design configurations thus needs to be considered. Uncertainties in structural mechanics, and in particular during the early phases of analysis and design, can play an extremely important role, affecting not only the safety and reliability of structures and their mechanical components, but also the level of their performance. Taking into account uncertainties in the early stages of the design, by means of numerical simulations (e.g. to detect failure), aims at modernizing industrial approaches by enabling the justification of larger tolerance intervals, and thus reducing costs.

A typical case is aerospace industry that needs, in a competitive context, to adapt by reducing the duration of development cycles for products such as space launchers (Figure 5.1), implementing effective development processes that lead to innovative and optimized products. This decrease leads to parallelism and use of an iterative process in structural design activities. During such iterations, the parameters of the product are adjusted to satisfy specifications. It is then mandatory to have fast and reactive strategies in order to ensure at any time that the initially defined product is tolerant to variations of design parameters which are encountered during the development. Con-123 sequently, aerospace industrialists currently face the challenge to perform accurate simulations for modern designs, in order to quantify sensitivity of design modifications (in material properties, manufacturing conditions, external loading. . . ) on the response of a structural system, and avoid overly conservative assumptions afterwards, such as large factors of safety. The goal is to better master margins related to an imprecise initial definition of the structure, defining then progressively refining them during the product definition. A difficulty in this challenge is that structural components within the design are based on varied length scales. Design features such as fillets, laminate layers, or small holes for instrumentation would typically require the use of hyper-refined models that are infeasible in practice. An associated requirement is thus to optimize computation times to conduct the simulation-based analysis. During the last two decades, several non-deterministic methods have been developed to address design uncertainties on mechanical structures. They can be classified in two families:

1. methods based on reliability, that enable to assess the probability distribution of the response with respect to distributions of random parameters; they are mainly used for risk analysis by computing the probability of failure P f (or its complement to 1, the reliability). Variation is not minimized in such approaches, which rather concentrate on rare events at the tail of the probability distribution (see Figure 5.2), making the probability of failure not go higher than a threshold. Such methods, gathered in the family of Reliability-Based Design Optimization (RBDO) methods, usually consider the notion of reliability index for measuring the safety of structures in presence of uncertainties [START_REF] Kang | Reliability-based structural optimization with probability and convex set hybrid models[END_REF]. They lead to optimal design that gives solutions which are much above the average solution and are more sensitive to parameter uncertainty. Structural responses will thus much deviate from the predicted optimal state, and will be more easily close to failure;

2. robust methods that minimize effects of variabilities in system performance, the objective being to optimize the mean performance with low variation, while maintaining feasibility with probabilistic constraints (e.g. threshold on probability failure). This is realized by optimizing the design in order to make the performance little sensitive Eventually, the use of certified simulations enables to get confidence in the analysis.

Illustrative case

We apply the methodology and analyze it on a 2D case which is simplified but still representative of scientific and conceptual difficulties. It is a plate with a hole, submitted to known traction loading. We want to maximize the hole radius (that increases local stress), or reversely for a given nominal radius we define the margin on the loading.

We consider design uncertainties related to the exact position and radius (manufacturing precision) of the hole.

With given uncertainty levels, we wish to propagate uncertainty and compute solutions associated with reliable or robust design. The quantity of interest if the maximal Von Mises stress in the vicinity of the hole, where singularities occur. The first analysis considered is the reliability. The reliability is defined such that from a nominal design, we define a safety coefficient on the loading to have less than 1% failure rate with prescribed parameter uncertainties on hole radius or position.

The second analysis considered is the robustness. The robustness consists in modifying the design so that variance of the response is lower than a threshold.

The chosen objective function is the signal to noise ratio (SNR) [START_REF] Zang | A review of robust optimal design and its application in dynamics[END_REF], defined as SN R = -10 log(M SD) 126 with MSD the mean squared deviation on maximal stress.

Results

We give the loading (or safety margin) to respect reliability or robustness criteria with a given tolerance. In each case, we compute the SNR. In robust analysis, we expect to have a reduced radius (or lower loading) that is lower performance. The Signal to Noise Ratio is defined as follow :

SN R = -10 log(M SD) = -10log 10 1 n n i=1 (y i -t) 2 (5.1)
The control parameter t can be chosen such as that t = y, ie. the target value t is the mean of the population

{y i }.
This study aims to define the admissibility domain for the conception parameter in regards to the reliability and robustness of the design.

In this part we are exploiting the result of Chapter 4. For a reminder we have obtained the evolution of the maximum Von Mises Stress with respect to geometric parameters (radius and position of a hole inside the local domain). The case study is the same as described in Chapter 4, the result can be seen in Figure 5.4. In order to compute the reliability of our system to the regards with failure (the maximum Von Mises stress is above a certain threshold) we use a Monte Carlo method. For this method we suppose that the parameters follow a normal distribution centered on a known mean value with a standard variation set as 1/25 of the parameter range considered. The failure occurs if the maximum Von Mises stress is larger than 2675 MPa. We can see that the optimal radius and position of the hole to guaranty a failure rate less than 1% are respectively R opti = 0.068 and y c opti = 0.018. Now we will study the robustness of our design.

In our application a design is considered robust if its SNR is greater than -30dB. Figure 5.7 shows the result for both hole radius and position as a geometric parameter. We can see that for respecting the robustness condition the hole radius needs to be smaller than 0.055 which is lower than the radius computed for the reliability condition.

The SNR is always larger than -30dB for the hole position as a geometric parameter. Indeed maximum Von Mises stress is lightly impacted by the hole position in the range studied. 

Partial conclusions

In this chapter, we illustrated a potential application of the numerical methodology developed in these PhD work.

It dealt with local optimization and robust design, considering variability in the manufacturing. We showed that the non-intrusive coupling technique as well as the PGD model reduction offer large flexibility to address this problem.

In a last part of the PhD work, we applied the developed verification and model reduction tools in the context of robust design, targeting and controlling values of outputs of interest for design purposes as well as their fluctuations with design uncertainties. This part of the work, dealing with tolerance analysis, was a first illustration of the potential of the proposed approach for industrial applications.

Several prospects to this work may be envisioned:

• A short term prospect is the implementation of the proposed numerical framework on 3D industrial applications (e.g. for the local analysis of plasticity or damage), with model couplings resorting to commercial software.

Out of requiring the availability of an equilibration technique (in order to assess the discretization error source), all other aspects should be transferable in a straightforward manner;

• Similar developments could be performed when considering volume coupling interfaces between models, which are better suited when very different physics or scales are coupled. As an example, the non-intrusive Arlequin-type coupling designed in the PhD of R. Ruyssen [Ruyssen, 2021], or the non-intrusive version of the Partition of Unity method [START_REF] Plews | An improved nonintrusive global-local approach for sharp thermal gradients in a standard fea platform[END_REF], could advantageously benefit from the proposed CRE-based verification procedure. Here again, it seems there is no specific technical difficulty when addressing this new context;

• The algebraic error generated by solvers of local problems (when considering nonlinear models) was here neglected, by reaching local convergence, but it could be additionally added in the overall adaptive process;

• In the same spirit, another interesting extension of the work could deal with the consideration and control of error in the data transfer at the coupling interface, when applying the non-intrusive local-global model coupling with geometrically incompatible meshes;

• In terms of considered physics, time-dependent models could be considered. It seems a relatively simple extension could be made to dynamics models, considering available CRE tools in this case. More elaborated developments would be needed when considering models with concentrated moving sources [START_REF] Cosimo | Global-local rom for the solution of parabolic problems with highly concentrated moving sources[END_REF], exhibiting advection phenomena when placed in the the frame linked to the source. A non-intrusive coupling technique with moving local zone may be a good option in this case to avoid costly remeshing techniques. Indeed, it would separate local and global scales for meshes and operators, and there is good hope that local model reduction performs well as the local solution is quasi-stationary (in the frame linked to the source). However, technical difficulties arise for managing the coupling with the global scale in such cases with moving sources (and incompatible meshes). Some first ideas on this topic are given in Appendix, and a typical application of interest could be manufacturing processes such as welding or additive manufacturing, with the aim of monitoring the process and control the quality of the obtained product;

• Eventually, it would be fruitful to investigate local model enrichment from assimilated data (hybrid approach), in order to learn model ignorance or account for variabilities, and therefore increase the reliability of model-based simulations. Observations on complex physical system would then feed their local virtual representation as well as their uncertain environment.

All these prospects will be topics of future research works.

Appendix B

Analytical solution for a plate with a hole Section 1

We consider a plate with horizontal traction loading T x . Considering one quarter of the plate (due to symmetry), with radius R and length L, the exact solution reads:

σ rr (r, θ) = T x 2 (1 - R 2 r 2 ) + T x 2 (1 + 3 R 4 r 4 -4 R 2 r 2 ) cos(2θ) σ θθ (r, θ) = T x 2 (1 + R 2 r 2 ) - T x 2 (1 + 3 R 4 r 4 ) cos(2θ) σ rθ (r, θ) = - T x 2 (1 + 2 R 2 r 2 -3 R 4 r 4 ) sin(2θ) (B.1)
Holes conduct to a weakening of the structure due to local overstress. Here we compute stress intensity factors for each geometry, starting with a circular hole in a plate in traction before addressing elliptic holes. The study is for small perturbations, isotropic material, with linearized elasticity, and 2D problem.

The tool of choice to address the problem is Airy functions. For 2D problems (coordinates (x 1 ,x 2 )) with linearized isotropic elasticity and no body force, the solution comes down to search a stress function χ(x 1 , x 2 ) such that:

σ 11 = ∂ 2 χ ∂x 2 2 ; σ 22 = ∂ 2 χ ∂x 2 1 ; σ 12 = - ∂ 2 χ ∂x 1 ∂x 2 (B.2)
and compatibility equations indicate that χ is biharmonic:

∆ 2 χ = χ 1111 + χ 2222 + 2χ 1122 = 0.
In a polar system, the stress function χ(r, θ) is such that:

σ rr = 1 r ∂χ ∂r + 1 r 2 ∂ 2 χ ∂θ 2 ; σ θθ = ∂ 2 χ ∂r 2 ; σ rθ = - ∂ ∂r ( 1 r ∂χ ∂θ ) (B.3)
with, again:

∆ 2 χ = ( ∂ 2 ∂r 2 + 1 r ∂ ∂r + 1 r 2 ∂ 2 ∂θ 2 )( ∂ 2 χ ∂r 2 + 1 r ∂χ ∂r + 1 r 2 ∂ 2 χ ∂θ 2 ) = 0 (B.4)
A quite large family of biharmonic functions is:

χ(r, θ) = A 0 log r + B 0 r 2 log r + C 0 r 2 + D 0 + (A 1 r log r + B 1 r 3 + C 1 r + D 1 r ) cos θ + (A * 1 r log r + B * 1 r 3 + C * 1 r + D * 1 r ) sin θ + ∞ k=2 (A k r k + B k r -k + C k r k+2 + D k r -k+2 ) cos(kθ) + ∞ k=2 (A * k r k + B * k r -k + C * k r k+2 + D * k r -k+2 ) sin(kθ) (B.5)
It enables to solve many 2D linear elasticity problems with loading conditions which are periodic in θ. Constants have to be determined from boundary conditions.

We first consider plate of width 2h with a circular hole of radius a, with plane stress assumption, submitted to Substituting e 1 = cos θe r -sin θe θ , we get far from the hole:

σ ∞ rr = σ ∞ 2 (1 + cos 2θ) ; σ ∞ θθ = σ ∞ 2 (1 -cos 2θ) ; σ ∞ rθ = - σ ∞ 2 sin 2θ (B.6)
By integration, we get that an associated stress function is

χ = σ ∞ 2 (1 -cos 2θ) r 2 2 .
This invites to search, among the previous family, a stress function at each point of the plate under the form:

χ(r, θ) = A log r + Br 2 log r + Cr 2 + (A 2 r 2 + B 2 r 4 + C 2 r 2 + D 2 ) cos 2θ (B.7)
This results in the following form for stress components:

σ rr = A r 2 + 2B log r + B + 2C + (-2A 2 - 6C 2 r 4 - 4D 2 r 2 ) cos 2θ σ θθ = - A r 2 + 2B log r + 3B + 2C + (2A 2 + 12B 2 r 2 + 6C 2 r 4 ) cos 2θ σ rθ = 2 sin 2θ(A 2 + 3B 2 r 2 - 3C 2 r 4 - D 2 r 2 ) (B.8)
From the stress field far from the hole, we get B = 0, C = σ ∞ /4, A 2 = -σ ∞ /4, and B 2 = 0. Boundary conditions at the hole yield a linear system for unknowns A, C 2 and D 2 , with solution A = -a 2 σ ∞ /2, C 2 = -a 4 σ ∞ /4, and

D 2 = a 2 σ ∞ /2.
We thus get:

σ rr = σ ∞ 2 (1 - a 2 r 2 ) + σ ∞ 2 (1 + 3a 4 r 4 - 4a 2 r 2 ) cos 2θ σ θθ = σ ∞ 2 (1 + a 2 r 2 ) - σ ∞ 2 (1 + 3a 4 r 4 ) cos 2θ σ rθ = - σ ∞ 2 (1 - 3a 4 r 4 + 2a 2 r 2 ) sin 2θ χ = - σ ∞ 2 a 2 log r + σ ∞ 4 r 2 + σ ∞ 4 (-r 2 + 2a 2 - a 4 r 2 ) cos 2θ (B.9)
Decrease in 1/r 2 ensures that heterogeneities develop in the vicinity of the hole alone, and that the field can be considered as homogeneous far from the hole. There are overstresses close to the hole (see figures), with factor 3 on the orthoradial component, that can lead to cracking. By integration, we obtain the displacement field (up to rigid body motions): is ρ = 1 and specific heat capacity c p = 1. The source term (heat added per unite volume) is here described as:

u r = σ ∞ 2E (1 -ν)r + (1 + ν)( a 2 r + (r - a 4 r 3 ) cos 2θ) + 4a 2 r cos 2θ u θ = - σ ∞ 2E (1 + ν)(1 + a 4 r 4 )r + (1 -ν)
f (x, t) = 0 t < t i or t > t f f (x, t) = A cos( π L (x -x 0 (t))) t i < t < t f and - L 2 < x -x 0 (t) < L 2 (C.2) where x 0 (t) = x i + x f -xi t f -ti (t -t i ), A = 100, L = 0.15, t i = 0.2, t f = 0.7, x i = 2π/7 and x f = 5π/7. V = x f -xi
t f -ti is the source velocity. It can also be described as f (x, t) = f m e -(x-x0(t)) 2 /σ 2 , where σ is a parameter that controls the heat concentration. When placing in the reference frame moving with the local source, the problem introduces an advection term.

We investigate below a non-intrusive global-local coupling approach when coupling a global diffusion-reaction model with a local advection-diffusion-reaction model. A difficulty is in the incompatibility between meshes and the moving feature of the interface between models.

Non-intrusive local-global coupling

The local-global approach consists here in separating physical phenomena on two independent models: a global model, with coarse mesh on which the behavior of the global structure is described; a local model with fine mesh on which the neighborhood of the heat source is described. We assume that all nonlinear phenomena are restricted to the support of the local model. The difficulty is in the coupling of the two models.

In an intrusive coupling version, with non-overlapping decomposition between global domain Ω c and fixed local domain Ω f and heat source moving within its support), the variational formulation of the coupling reads: find

u c ∈ H 1 c , u f ∈ H 1 f and λ ∈ H -1/2 Γ such that: m c (δu c , u c ) + k c (δu c , u c ) + c(δu c , λ) = q c ∀δu c ∈ H 1 c m f (δu f , u f ) + k f (δu f , u f ) + c(δu f , λ) = (δu f , Q) ∀δu f ∈ H 1 f c(δλ, u c -u f ) = 0 ∀δλ ∈ H -1/2 Γ (C.3) with m i (v, u) = Ωi v ∂u ∂t , k i (v, u) = Ωi ∇v.k∇u, c(v, λ) = Γ vλ, and (v, Q) = Ω f vQ. q c denotes
the contribution from boundary conditions in the global problem, and Q is the moving heat source.

After discretization in space and time (with a θ-method), we get the linear system:

      M c + θ∆tK c 0 B c,T 0 M f + θ∆tK f B f,T B c B f 0             u c n u f n λ       =       θ∆tq c n + (1 -θ)∆tq c n-1 + (M c -(1 -θ)∆tK c )u c n-1 θ∆tq f n + (1 -θ)∆tq f n-1 + (M f -(1 -θ)∆tK f )u f n-1 0       (C.4)
To address the displacement of the source term with a moving local domain (with fixed mesh topology that moves following the heat source), different variants can be considered. A straightforward solution is to use the previous discrete formulation, but this requires to project the solution at the previous time step to the configuration adopted by the local domain. Two projections are needed, one for building u c n-1 and one for building u f n-1 . A (diffusive) collocation methodology or mortar-like projections (conserving energy) can be used for this. The fact that the local domain moves attached to the heat source can be exploited to avoid one of the projections. The movement of this domain can be described by adopting an Arbitrary Lagrangian Eulerian (ALE) description [START_REF] Donea | Arbitrary lagrangianeulerian methods[END_REF], for which the fundamental relation material time derivatives, referential time derivatives, and spatial gradient reads:

∂f ∂t |X = ∂f ∂t |x + c • ∇f (C.5)
with c the relative velocity between the material domain and the reference domain (∇c = 0 in the local domain, so that well-posedness is ensured [Quarteroni andValli, 1994, Morton, 1996]). It shows that the time derivative of the physical quantity f for a given particle X, that is, its material derivative, is its local derivative (with the reference coordinate χ held fixed) plus a convective term taking into account the relative velocity c between the material and the reference system. It thus involves a convection term to model the displacement of the source in local coordinates (reference frame linked to the source). This procedure was for instance used in [START_REF] Ruyssen | Contribution à la modélisation du procédé de fabrication additive: fusion laser sur lit de poudre[END_REF], Ruyssen, 2021] to simulate additive manufacturing phenomena A fundamental advantage is that the need of projection information in order to express u f n-1 in the configuration adopted by the local domain at time t n is not needed anymore. Then, the discrete formulation of the problem is given as:

      M c + θ∆tK c 0 B c,T 0 M f + θ∆t(K f -A f ) B f,T B c B f 0             u c n u f n λ       =       ∆t(θq c n + (1 -θ)q c n-1 ) + (M c -(1 -θ)∆tK c )u c n-1 ∆t(θq f n + (1 -θ)q f n-1 ) + (M f + (1 -θ)∆t[A f -K f ])u f n-1 0       (C.6)
where A f is the advection matrix. The problem in the local domain being given by a time-dependent advectiondiffusion equation, a stabilization term has to be used for Péclet numbers larger than 1. However, the stabilization of the formulation is considered out of the scope as it is assumed that the local domain can be refined as much as needed in order to avoid large Péclet numbers.

The previous (direct) approach has limitations: (i) it is not possible to split the solution scheme on each of the two models; (ii) remeshing at each time step (for moving local domain) is necessary at interface. To circumvent this issue, we proceed as follows:

• The global field is then updated as u c + ∆u c .

In [START_REF] Gupta | Analysis of three-dimensional fracture mechanics problems: A non-intrusive approach using a generalized finite element method[END_REF], a buffer zone is introduced, which enlarges the local domain using layers of coarse elements in order to introduce smoother boundary conditions to the local problem.

In [Le Tallec and Tidriri, 1999], there is the study of convergence properties of a time marching algorithm solving advection-diffusion problems on two domains using incompatible discretizations (in the context of DD). The analysis Here the approach is shown in 1D, but practical applications of the method can be found in [Tidriri, 1995]. In this framework, the unconditional stability and linear convergence of the fully implicit algorithm are theoretically proved. When using the uncoupled semiexplicit algorithm, the algorithm is unstable for large values of ∆t and small overlapping, and it becomes linearly convergent when ∆t is small (conditional stability).

Fractional-step methods can also be used for time integration of advection-diffusion (reaction) problems. The idea is to fraction a complex problem into several simpler problems. In our case, the technique leads to a pure convection problem, and a diffusion-reaction problem. An interest is that independent and suited numerical techniques can be then used to solve each of the problems separately.

Assuming the semi-discretized problem reads u + Lu = F, with L = L 1 + L 2 (algebraic fractioning), we may use:

u n+1/2 -u n ∆t + L 1 u n+1/2 = 0 u n+1 -u n+1/2 ∆t + L 2 u n+1 = n (C.9)
The fractioning can also be conducted on the convection-diffusion-reaction differential operator L, under the form:

L = L 1 + L 2 ; L 1 = c • ∇ ; L 2 = -∇ • (K∇) + r (C.10)
We then use the sequential algorithm: The first step corresponds to a pure convection problem, and we can use methods for hyperbolic equations, such as the 3rd order Taylor-Galerkin explicit scheme:

v ,t + L 1 v = 0 ∀(x,
(1 - ∆t 2 6 L 2 1 ) v n+1 -v n ∆t = -(L 1 - ∆t 2 L 2 1 )v n (C.12)
The second step corresponds to a diffusion-reaction problem, and we can use the Crank-Nicolson scheme:

(1 + ∆t 2 L 2 ) w n+1 -w n ∆t = -L 2 w n + 1 2 (f n + f n+1 ) (C.13)
When fractioning operators, boundary conditions should also be fractioned. For instance, for the convection phase, boundary conditions may be applied on the ingoing flux part.

Treatment of non-geometrically conforming meshes

To address non-conforming solutions, we can introduce an auxiliary mesh as performed in [START_REF] Gosselet | Non-invasive global-local coupling as a schwarz domain decomposition method: acceleration and generalization[END_REF] for non-intrusive global-local coupling algorithms between two non-overlapping subdomains: the zone of interest where a fine model is required for a reliable simulation (superscript F) and a complement zone (superscript C) where a simpler model is sufficient, with interface Γ = ∂Ω C ∩ ∂Ω F . In practice, the complement model is not created. Out of the fine model, the zone of interest is equipped with an auxiliary representation (which shares the same features as the complement zone and which is thus coarser than the fine representation). The global problem is the assembly of the complement zone the auxiliary (coarse) representation of the zone of interest (cf. Figure C.4). We assume that the interface is on the boundary of the auxiliary domain Γ ⊂ ∂Ω A .

The reference problem reads:

a R (u, v) = a C (u, v) + a F (u, v) = l C (v) + l F (v) = l R (v) ∀v (C.14)
Using the auxiliary model, the global problem (solved by commercial software) ignores the fine model and reads:

a G (u, v) = l G (v) + (a A (u, v) -l A (v)) -(a F (u, v) -l F (v)) ∀v (C.15)
not mandatory, it is just a workaround in case of software unable to compute the reaction in an immersed surface. The auxiliary problem can be solved in parallel with the fine problem.

• We can also define the reaction from the complement zone for a given u G n :

< λ C n , v > Γ = a C (u G n , v) -l C (v) ∀v (C.20)
Then we see that λ C n + λ A n = p n . The surface traction p n generates a discontinuity in the normal stress of the global problem.

• If we replace the auxiliary reaction by the complement one, we have p n+1 = p n + r n with r n = -(λ F n + λ C n ).

In other words, the correction brought to p n+1 corresponds to the lack of balance between the complement zone and the fine representation of the zone of interest. It is the residual r of the algorithm. The algorithm converges when the two representations are in equilibrium (r = 0) in which case the extra load p shall not evolve anymore.

• The algorithm makes use of domain integrals to communicate between subdomains; only interface data (on Γ) are exchanged, namely the displacement u G and the reactions λ F and λ A (or λ C ). As long as the interface Γ is well represented in all models, it is not necessary to use the exact fine domain Ω F in the auxiliary problem, any coarser representation is possible (Ω A ). Typically micro-perforations or micro cracks need not be represented in the auxiliary problem. Of course modifying the representation of the zone of interest may have consequences on the convergence of the algorithm (but not on its limit which is the reference solution).

We now investigate a way to circumvent the constraint of coincidence between auxiliary and fine domains. This is important for our case where interface Γ F is moving while interface Γ A is fixed; only the separation between complementary and auxiliary models will evolve. We first focus on the overlap issue between fine and complementary models (similar to Schwarz decomposition with overlap).

Up to now, it was assumed that the interface was described as the boundary of elements for all models (so that a simple transfer matrix T (an easy choice is the interpolation matrix of the coarse kinematics in the fine kinematics, or Mortar) is then sufficient to communicate between models on the interface). An alternative strategy is proposed which makes use of the possibility to have model overlap. In this case, there is no restriction of the definition of the meshes.

The starting point is the observation that the method can be formulated as the search for p which is the stress discontinuity of the global mesh between the complement zone and the auxiliary description of the zone of interest. This discontinuity must be such that the complement zone is in equilibrium with the fine description of zone of interest loaded with Dirichlet conditions. Since p is a discontinuity, for it to be well described in the coarse FE model, it must be supported by the boundary of coarse elements. But there is no need for the support of p to match the boundary of the zone of interest. The idea described in Figure C.6 can thus be followed. The fine subdomain Ω F is positioned where needed in the zone of interest, its mesh is independent from the coarse mesh; we note The basic stationary iteration in the presence of overlap is:

Γ F = ∂Ω
• arbitrary initialization p 0

• compute u G j from p j on Γ A

• compute λ A j from u G j on Γ A

• get u F Γ F ,i = u G (x i ) for i a fine dof of Γ F

• compute u F j and σ F h,j from u F Γ F ,i

• for i spanning all global dofs on Γ A , compute λ F j,i = Ω A (σ F h,j : ϵ(ϕ G i ) -f.ϕ G i ) -∂nΩ A g.ϕ G i

• compute residual r j = -(λ F j + p j -λ A j )

• update: p j+1 = p j + r j

The main practical difficulty is the computation of the fine reaction on Γ A with Ω F not exactly represented on the coarse grid. This computation mixes the fine stress σ F h and the coarse shape functions ϕ G i . For each global dof i over Γ A , we consider iteration j of the local-global algorithm:

λF j,i = A A (ϕ G i , u F j ) -l A (ϕ G i ) (C.21)
with ϕ G i the shape fonctions of the global model. The computation of this quantity can lead to numerical issues as the dual quantity to the unknown field is known only at Gauss points. Furthermore, micro quantities u F and macro quantities ϕ G i have to be mixed. The algorithm is similar to the previous one except that the updating phase now reads p n+1,i = λ A n,i -λF n,i . A technique which can be used to ciompute this quantity is using a Mortar coupling as The fine model moves inside the global domain, and we distinguish two cases:

• when ∂Ω G ∩ ∂Ω F = 0, the geometry of the fine model corresponds to the nominal geometry. In the following, we suppose we are always in this case;

• when ∂Ω G ∩ ∂Ω F = Γ GF , the geometry of the fine model evolves so that the velocity field of the mesh is not uniform. In the algorithm, we should split the boundaries of the fine and auxiliary domains in two entities: the one linked to the coupling and the one that copies boundary conditions of the global model.

Here, we assume that the time discretizations for each model are different. However, the time discretization of the fine local model can be seen as a subdivision of the global time discretization. We thus compute loading corrections to be applied to the global model at coexisting time points. Boundary conditions to be applied to the fine model are obtained by interpolation of the global solution between global time points. 

Local reduced order modeling

A ROM technique of interest for problems characterized by steep moving gradients has been introduced in [START_REF] Cosimo | Improving the k-compressibility of hyper reduced order models with moving sources: applications to welding and phase change problems[END_REF], Cosimo et al., 2017]. In this work, considering parabolic problems with highly concentrated moving sources, a non-iterative global-local ROM is formulated, in which the local nature of the steep moving gradients is exploited by modeling the neighborhood of the heat source with a moving local domain (with fine mesh), which is coupled to the global domain (described by a coarse mesh). This way, there is no local mesh refinement, i.e. no change in the mesh topology, and the local solution is quasi-stationary. A POD-based ROM is then developed for the moving local domain (but a PGD-based ROM could also be applied). The proposed technique establishes a valid approach to tackle non-separability of space and time dimensions of these problems.

In order to address compatibility conditions between local and global domains, the mortar element approach on overlapping non-nested grids developed in [START_REF] Christophe | A mortar element approach on overlapping non-nested grids: Application to eddy current non-destructive testing[END_REF] was implemented. Also, several other aspects specific to transient problems with moving local domains were carefully studied, such as the projection of the information from the previous time step to the current time step.

Exploiting the local nature of the steep moving gradients was also performed in [START_REF] Canales | Vademecum-based gfem (v-gfem): optimal enrichment for transient problems[END_REF] within the vademecum-GFEM (V-GFEM) method. In this method, the FE space was locally enriched using GFEM [START_REF] Melenk | The partition of unity finite element method: basic theory and applications[END_REF] to capture sharp local features, with local parametric solution taking the solution field of the surrounding as boundary conditions. This local solution is precomputed offline using PGD and stored in the form of a computational vademecum so that it can be used online with negligible cost. It is then particularized to fit the approximation space in the enrichment region attached to a moving source at each time step, with no need of conformal meshes and within the GFEM framework applied to the global problem. This may be performed with an explicit scheme (using solution at the enrichment domain boundary at the previous time step) or with an implicit scheme using a fixed-point strategy to update the enrichment solution.

Extra-coordinates are not limited to technological parameters of the process, but also include essential boundary conditions at the border Γ e of the enriched region (after projection on a polynomial global basis).

However, the enrichment function was the solution of a steady-state problem (neglecting transient effects locally), solved in a fixed geometry after introducing a convective operator, which does not permit to describe correctly the non-stationary regime of the problem. An alternative would be the global-local GFEM [START_REF] O'hara | Generalized finite element analysis of three-dimensional heat transfer problems exhibiting sharp thermal gradients[END_REF] where a time-dependent enrichment function is used.

In [START_REF] Gonzalez | Streamline upwind/petrov-galerkin-based stabilization of proper generalized decompositions for high-dimensional advectiondiffusion equations[END_REF], efficient stabilizations are proposed when performing PGD on high dimensional advection-diffusion models which naturally lead to unstable oscillating solutions [START_REF] Donea | Finite Element Methods for Flow Problems[END_REF]. They resort to classical stabilization methods in FEM including upwinding of convective terms [START_REF] Heinrich | An 'upwind' finite element scheme for two-dimensional convective transport equation[END_REF], such that the streamline upwind/Petrov-Galerkin (SUPG) method [START_REF] Hughes | A multidimensional upwind scheme with no crosswind diffusion[END_REF]]. The focus is on the extension of standard SUPG or subgrid scale stabilizations to solutions expressed in a separated approximation format.

The following steady-state convection-diffusion reaction equation is considered: Two alternative approaches are developed to get a stabilized technique based on the use of PGD: the first one does the separation in infinite dimensional spaces, then when the FE discretization is needed the optimal stabilization parameter is chosen; the second one proceeds conversely, first the high-dimensional convection-diffusion equation is discretized taking into account that stabilization is needed, then separation following the PGD rationale is imposed.

The PGD is applied to the weak form, the reaction term being neglected r = 0 for the sake of simplicity. The weak problem becomes to find R and S such that: a(RS, w) + c(c; RS, w) = (s, w) + (t, w) Γ N -a(u n , w) -c(c; u n , w) ∀w (C.28)

The PGD proceeds by a sort of alternating direction strategy, assuming iteratively that either R or S is known. In this context, we propose a specific verification technique, constructed from the Constitutive Relation Error concept, that enables to certify the quality of approximate solutions obtained from such a nonintrusive model coupling. It consists in computable and reliable a posteriori error estimator and indicators in order to quantitatively assess the overall error level and its various sources. It particularly permits the practical control of the error on outputs of interest which are used for design purposes. An adaptive algorithm is then defined in order to effectively and automatically drive the coupling process, and optimally adjust the coupling parameters (location of the coupling interface, local mesh size, number of iterations) so that a given error tolerance is reached with minimal computing resources. The approach is analyzed for various coupling scenarios, including nonlinear local models or local use of PGD reduced order modeling. Its performance is shown on several numerical experiments involving various quantities of interest. It is also applied in the context of tolerance analysis in order to conduct fast and certified computations for optimal or robust design.
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 1 Figure 1: Typical multiscale application in the aeronautics industry (left), and local-global coupling philosophy on large and complex parts (right). [Courtesy of Airbus Group]
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 2 Figure 2: Example of a PGD decomposition for a space-time problem.
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 3 Figure 3: General overview of V&V activities.
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 11 Figure 1.1: Schematic representation of non-intrusive local-global coupling (from[START_REF] Blanchard | Space/time global/local noninvasive coupling strategy: application to viscoplastic structures[END_REF]).

Figure 1 . 2 :

 12 Figure 1.2: The reference problem and its environment.

Figure 1

 1 Figure 1.3: Sub-structuring of the physical domain.

  1.16) We now implement the non-intrusive local-global algorithm on this problem, considering the local model in ω and defining a global model with Young modulus E over the whole domain. As detailed in Figure 1.5, global and local models can be introduced and processed in a direct manner: (i) a given displacement u |Γ on the interface Γ yields a force N L = E u |Γ ℓ for the local model; (ii) a given (incremental) force δF |Γ on the interface Γ yields a corresponding displacement δu |Γ = δF |Γ ℓ(L -ℓ) EL on the interface, and force δN G = -δF |Γ ℓ L for x > ℓ for the incremental version of the global problem. Consequently, the various iterations of the local-global algorithm read as follows:

Figure 1

 1 Figure 1.5: Non-intrusive local-global coupling performed on the considered bar.

Figure 1 . 6 :

 16 Figure 1.6: Global solution along the algorithm iterations: displacement (left) and force (right).

Figure 1

 1 Figure 1.7: Local solution along the algorithm iterations: displacement (left) and force (right).

  Figure 1.8: Greedy algorithm for goal-oriented error estimation and control of modeling error.

  and which is the available computed field when resorting to the non-intrusive local-global coupling framework. We emphasize again that global solutions u G (in (1.48)-(1.49)) and u H G (in (1.50)-(1.51)) are not unique in Ω L , even though u H(n) G (in (1.52)-(1.53)) is. However, non-uniqueness is not an issue as: (i) global solutions are eventually replaced by fine-scale local solutions Ω L in the definition of the overall local-global solutions; (ii) contributions of global solutions in Ω L vanish in the term a 0Ω (•, •) -a 0L (•, •) of the residual.

  Position of the zones with degenerated Young modulus.The impacted macro elements are numbered {25, 44, 58, 83, 89}, and the local decrease of the Young modulus also impacts the neighbordhood of element 58.

Figure 1

 1 Figure1.9: Considered problem with local variations of the Young modulus (from[START_REF] Tirvaudey | A posteriori error estimation and adaptivity in non-intrusive couplings between concurrent models[END_REF]).

  (a) Primal coupled solution at initial step. (b) Evolution of error indicators along the adaptive process.
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 1 Figure1.10: Initial coupling configuration and obtained results for adaptation (from[START_REF] Tirvaudey | A posteriori error estimation and adaptivity in non-intrusive couplings between concurrent models[END_REF]).

Figure 1 .

 1 Figure 1.11: Distribution of the indicator on modeling error at different steps of the adaptation procedure. In the top figures of each step, the local zone Ω L is in grey and the newly added elements in the local zone are in black (from[START_REF] Tirvaudey | A posteriori error estimation and adaptivity in non-intrusive couplings between concurrent models[END_REF]).
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 1 Figure 1.12(a), the evolution of error estimator and indicators along the adaptive process are given in Figure 1.12(b), while the final local mesh τ h and the final approximate local-global solution (requiring n = 3 local-global iterations) are shown in Figure 1.12(c) and Figure 1.12(d), respectively.

  (a) Stress component σxx of the adjoint problem. (b) Evolution of error indicators along the adaptive process. (c) Final mesh used to approximate the solution in the local-global coupling process. (d) Primal coupled solution after adaptation.

  Figure 2.1: Configuration of the reference problem.
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 2 Figure 2.2: Geometrical representations of the CRE concept.
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 2 Figure 2.3: Illustration of the two steps of the hybrid-flux equilibration technique.
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 2 Figure 2.4: Geometrical representation of the CRE measure for nonlinear material behaviors.
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 25 Figure 2.5: Illustration of an internal interface loading.

  The usual hybrid-flux technique can then be employed based on this system. Then, after solving individual local systems and recovering the equilibrated traction F12 = σ1 n 12 on Γ 12 , we take σ2 n 12 = F12 -λ h (or σ2 n 21 = -F12 +λ h ) to solve the local Neumann problem and reconstruct an equilibrated stress field inside element K 2 . A classical procedure is used for equilibrated stress reconstruction within other elements.

Figure 2 . 6 :

 26 Figure 2.6: Initial coupling configuration and mesh.

Figure 2 . 7 :

 27 Figure 2.7: Case studies.

  Figure 2.8: Local-global solution -Stress field.

  order to avoid to project the stress field δσ H(n) G on the local domain Ω L . Since each contribution converges to 0 when sufficiently iterating, the property of this error indicator is preserved. Figure 2.13 shows the impact of projection of the global stress field on the local domain. The method without projection penalizes the convergence error when the number of iterations is small. The computation of the convergence error is faster without the projection step. To compute the error indicators based on the constitutive relation error, we need to recover an admissible stress field for the global domain and the local domain. As explained in Section 2.2, we use a post-processing of the FE solution obtained from the non-intrusive coupling, based on dedicated hybrid-flux technique. Figures 2.14 and 2
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 22 Figure 2.10: Initial coupling configuration and mesh for the adaptive strategy.

  Figure 2.16 shows local error contributions for the discretization and modeling errors at the 5th adaptive step. As we can see the maximal local contribution for the modeling error is located near the local patch, in the vicinity of the interface between the global model and the local model. The maximal local contribution for the discretization error is located near the hole where there is larger stress concentration.

  Global mesh (with the coupling interface). (b) Final local mesh.
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 2 Figure 2.12: Final coupling configuration and mesh for the adaptive strategy.
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 2 Figure 2.14: Global admissible stress field.
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 2 Figure 2.16: Local error contributions.
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 2 Figure 2.19: Local-global solution -Stress field (case study 2).

  mesh (with the coupling interface).
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 22 Figure 2.21: Initial coupling configuration and mesh.
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 2 Figure 2.23: Evolution of relative error indicators at each step.
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 2 Figure 2.24: Evolution of the coupling configuration for the adaptive strategy.

  Figure 2.25: Local error contributions at different steps.

  2.48) with z = ∥σ D ∥ -(R + R 0 ) for linear hardening, σ D the deviatoric part of the stress tensor, and R 0 ≥ 0 the yield stress. Introducing the convex set C e = {(ε p , -ṗ), ∥ε p ∥ -ṗ ≤ 0, Tr[ε p ] = 0} with associated indicator function χ Ce , the dual dissipation potential reads (for linear hardening):

  mesh (with the coupling interface).

Figure 2 .

 2 Figure 2.26: Initial coupling configuration and mesh.
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 2 Figure 2.27: Reference solution with Prandlt-Reuss elasto-plastic model.

Figure 2 Figure 2

 22 Figure 2.28: Initial solution with Prandlt-Reuss elasto-plastic model with non-intrusive local-global coupling method.

  Figure 2.32: Evolution of the modeling error spatial distribution for the adaptive strategy.

  this chapter, we designed a new verification tool, based on the CRE concept and providing robust and fully computable error estimator and indicators, in order to control the accuracy of local-global coupling strategies. The tool provides mathematically guaranteed error bounds, and is therefore conservative, compared to residual-based approaches. It also optimally defines the coupling parameters by means of an adaptive procedure, avoiding useless over-computations and thus meeting the objective to control right at the right cost. It applies to linear as well as nonlinear structural mechanics models. A main aspect was the construction of an admissible stress field, in the context of the non-intrusive coupling procedure in which internal loadings are involved. Another aspect was to derive relevant error indicators associated which each error source (i.e. coupling iterations, use of a surrogate model, and discretization). Up to now, the verification tool focuses on global error; however, such an energy-norm driven error estimation may fail to provide the required accuracy on some quantities of interest defined in the local zone where the high-fidelity model is preserved. On the other hand, complex features of the solution on some parts of the domain may not influence the local quantity of interest, and much computational resource could thus be gained. In other words, goal-oriented error estimation would make more sense in the context of local analysis with the non-intrusive local-global coupling method. Consequently, in the next chapter we extend the proposed CRE-based verification tool to the control of such quantities of interest.
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 3 Figure 3.2: Local-global primal solution -Stress field.
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 33435 Figure 3.3: Local-global adjoint solution -Stress field.
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 3 Figure 3.6: Local-global primal solution -Stress field.

  Global mesh (with the coupling interface).
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 333 Figure 3.7: Initial coupling configuration and mesh.
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 3 Figure 3.10: Evolution of the local mesh for the adaptive strategy.

  Global mesh (with the coupling interface).

Figure 3 .

 3 Figure 3.11: Initial coupling configuration and mesh.
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 33 Figure 3.12: Local-global adjoint solution -Stress field.

  Zoom on the local mesh used to represent each hole.

Figure 3 .

 3 Figure 3.16: Description of the bending plate problem. The reference geometry (a) is composed of 160 holes that may be each represented by a patch (b) in the numerical approximation.

  Approximate solution (initial coupling configuration).

Figure 3 .

 3 Figure 3.17: Map of the ε yy strain component for the considered plate problem: (a) when all the holes are considered (reference solution, no coupling); (b) when a local-global coupling strategy is used with a local zone made of one layer of macro elements (holes are represented in this zone alone).
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 3 Figure 3.19: Evolution of the local domain for the adaptive strategy.
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 41 Figure 4.1: Possible numerical methods to deal with evolving geometries: boundary tracking method (left), immersed boundary method (center), and mapping from a reference shape (right).
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 42 Figure 4.2: Geometric parameter and boundary condition parameter.

  changed. As there is not the same discretization of this interface for each size of the local domain, if we use our local PGD solution as a virtual chart in the local-global non intrusive framework, a projection is needed for the global solution inside the local domain to the support of the parametric description of the local domain. For this application, we use the non-intrusive local-global coupling technique to perform local analysis in the vicinity of a hole. In the global model, the hole is not represented. This hole is represented in the local model which is centered on it. The initial geometry and configuration of the global and local domains are given in Figure 4.3.The global domain is meshed using a structured mesh made of T3 triangular elements. The local domain is meshed using T3 triangular elements.

  mesh (with the coupling interface).
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 43 Figure 4.3: Initial coupling configuration and mesh.
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 4 Figure 4.4: Case study.

Figure 4 .

 4 Figure 4.5 shows the parameterization of the local domain and its Dirichlet boundary conditions. The red and blue arrows represent the parameters that come from the coarse description and define the Dirichlet boundary conditions, the number next to each arrow is the identification number of this particular boundary condition component.

  (a) Radius as a geometric parameter. (b) Position as a geometric parameter.
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 45 Figure 4.5: Dirichlet Boundary conditions and parameterization of the local domain.
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 46 Figure 4.6: Radius of the hole as a parameter.
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 47 Figure 4.7: Position of the hole as a parameter.
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 448 Figures 4.9 to 4.12 show some examples for these modes. The relative Frobenius norm of the modes is shown in Figure 4.8 for the radius as a parameter and for the first boundary condition. The other boundary conditions show similar evolutions.

  geometric parameter function (k) space function Ux (l) space function Uy
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 4 Figure 4.9: Parameter: radius -Boundary condition 1 -Mode 1 to 4.

  geometric parameter function (k) space function Ux (l) space function Uy
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 4 Figure 4.10: Parameter: radius -Boundary condition 10 -Mode 1 to 4.
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 4 Figure 4.11: Parameter: position -Boundary condition 1 -Mode 1 to 4.
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 4 Figure 4.12: Parameter: position -Boundary condition 10 -Mode 4.
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 4 Figure 4.13: Local solution -parameter: Radius = 0.008.
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  Figure 5.4 ).
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 4 Figure 4.14: Evolution of a quantity of interest (maximum Von Mises stress) with respect to geometric parameter.

Figure 5 . 1 :

 51 Figure 5.1: Structural components in the Ariane 6 programme, with focus on geometrical details on two of them (courtesy of Ariane Group).

  Monte-Carlo algorithm (repeated random sampling) on costly simulation models. Using the local-global coupling enables to address local variabilities and manage the model more easily. With an unchanged initial global model while making the design evolve on local zones of interest, it brings larger flexibility for local design modifications compared to classical FEA. Furthermore, the local use of PGD model reduction with parametrized configurations enables to perform sensitivity analysis and uncertainty quantification in a straightforward manner, with low computational effort.

  Figure 5.3 shows an example for the nominal geometry and the manufactured geometry, with variabilities.
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 53 Figure 5.3: Example of nominal geometry and real or manufactured geometry.

  position as a geometric parameter.
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 54 Figure 5.4: Evolution of a quantity of interest (maximum Von Mises stress) as a function of a geometric parameter.
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  Distribution of the quantity of interest for the Monte Carlo experiment.
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 5 Figure 5.5: Monte-Carlo experiment for the radius as a parameter (R nom = 0.067).
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 56 Figure 5.6: Evolution of failure rate for a design.

  Hole position as a geometric parameter.
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 57 Figure 5.7: Evolution of robustness for a design.

  simple traction loading(Figure B.1). The hole axis is e 3 and the traction axis is e 1 . Length and height L of the plate are assumed sufficiently large compared to a for the stress state far from the hole not be affected by the hole and is considered as the homogeneous state σ ∞ = σ ∞ e 1 ⊗ e 1 where σ ∞ is the imposed stress (data of the problem. In the problem, the hole boundary and surfaces z = ±h are free.

Figure B. 1 :

 1 Figure B.1: Plate with a hole with simple traction loading.

Figure B. 2 :

 2 Figure B.2: Profiles of radial and orthoradial components normalized by the applied stress, along the pole (θ = 0) and equator (θ = π/2), as a function of the relative distance r/a to the hole.

  Figure B.3: Representation of the stress field around the hole, with component σ θθ , largest principal stress at each point, and smallest principal stress at each point. All these stresses are normalized by the value of the axial stress far from the hole.

  Figure C.2: Projection between time steps using a collocation method.

  Figure C.3: Example of local model.

  is made at the continuous level (mesh independent). Here two subdomains are fully overlap and solutions are coupled through Neumann forces acting on the internal boundary of the domain. These forces are updated inside the time marching algorithm used for the solution of the initial advection-diffusion problem. The method is defined by imposing Neumann type boundary conditions on the internal boundary of the global domain and Dirichlet boundary conditions on the external boundary of the local domain; this enables to uncouple the global problem and the local one (they can thus be discretized by two independent approximation methods).

F

  its boundary. The auxiliary subdomain is the largest set of coarse elements fully contained in the zone of interest; we note Γ A = ∂Ω A its boundary. The two interfaces Γ F and Γ A thus do not coincide. Ω C is defined as the complement of Ω A in the global model (Ω C = Ω G \Ω A ). The fine and global model displacements are connected on Γ F ; p is applied to the global model on Γ A with the aim to reach balance between the nodal reaction from complement model and the normal from the fine model projected on Γ A . In the end, the coupled solution is u F in Ω A and u G in Ω G \Ω F . In the overlap, also called buffer zone Ω B = Ω F \Ω A , the complement and fine models coexist.
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 5 Figure C.5: Overlap case.
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 6 Figure C.6: Technique with overlap for non-conforming meshes (from [Gosselet et al., 2018].

  describe in Figure C.5. We develop the previous approach when coupling a diffusion-reaction problem (global model) with a convectiondiffusion-reaction problem (local model). Figure C.7 shows the evolution of the local, global and auxiliary domain along with the time discretization of each models.

Figure C. 8 :

 8 Figure C.8: Coupling algorithm.

c

  • ∇u -∇ • (k∇u) + ru = s in Ω ⊂ R n d u = u d on Γ D k∇u • n = t on Γ N (C.24)with c is the advective velocity, k > 0 the diffusivity, r a reaction term and s a volumetric source term. The weak form is to find u such that:a(u, w) + c(c; u, w) + (ru, w) = (s, w) + (t, w) Γ N ∀w(of a consistent stabilization technique is[START_REF] Donea | Finite Element Methods for Flow Problems[END_REF]:a(u, w) + c(c; u, w) + (ru, w) + e Ω e P(w)τ R(u) = (s, w) + (t, w) Γ N (C.27) where P(w) is some operator applied to test functions, R(u) = c • ∇u -∇ • (k∇u) + ru -s is the residual associated to the strong form, and τ is the stabilization parameter. In the SUPG method, P(w) = c • ∇w, whereas in SGS (subgrid scale) P(w) == -L * (w) (adjoint operator).
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  Adaptation et réduction de modèle dans les couplages local-global non-intrusifs: application à la conception robuste Mots clés: Couplage non-intrusif de modèles, Estimation d'erreur a posteriori, Erreur de modèle, Réduction de modèle, Techniques adaptatives, Conception robuste Résumé: Ce travail de recherche porte sur la méthode de couplage local-global non-intrusive qui a été développée et largement analysée et appliquée en mécanique des structures durant la derniére décennie. Cette méthode constitue un outil de simulation à la fois flexible et performant pour l'analyse de phénomènes localisés avec un effort de mise eu oeuvre réduit. Dans ce contexte, le travail propose une technique spécifique de vérification, construite à partir du concept d'erreur en relation de comportement, qui permet de certifier la qualité des solutions approchées obtenues par une telle méthode de couplage. Elle fournit des estimateurs et indicateurs d'erreur a posteriori fiables afin de rendre compte quantitativement du niveau global d'erreur et de ses diverses sources. Elle permet notamment le con-trôle d'erreur sur des quantités d'intérêt utiles pour le dimensionnement. Un algorithme adaptatif est alors construit afin de piloter efficacement et automatiquement la procédure de couplage, et ajuster de façon optimale les paramètres associés (position de l'interface de couplage, taille du maillage local, nombre d'itérations) pour atteindre une tolérance cible avec un coût numérique minimal. L'approche est analysée pour différents scénarios de couplage impliquant par exemple des modèles non-linéaires ou l'utilisation locale de modèle réduit par PGD. Ses performances sont illustrées via plusieurs exemples numériques, et son intérêt pour l'analyse de tolérance est aussi montrée avec le calcul rapide et certifié de quantités pour la conception optimale ou robuste. Title: Adaptive and reduced order modeling in non-intrusive local-global couplings: application to robust design Keywords: Non-intrusive model coupling, A posteriori error estimation, Modeling error, Model reduction, Adaptive techniques, Robust design Abstract: This research work focuses on the socalled non-intrusive local-global model coupling procedure which has been proposed and widely analyzed and applied in structural mechanics during the last decade, and which constitutes a flexible and effective engineering simulation tool for the analysis of localized phenomena with low implementation effort.

  

  

  [START_REF] Fraeijs De Veubeke | Displacement and equilibrium models in the finite element method[END_REF], Fraeijs de Veubeke and Hogge, 1972, Debongnie et al., 1995[START_REF] Fraeijs De Veubeke | Displacement and equilibrium models in the finite element method[END_REF][START_REF] De | Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems[END_REF], Kempeneers et al., 2009[START_REF] De | Moitinho de Almeida[END_REF]. It is the most effective approach in practice, but also the most technical (as relying on non-conventional FE spaces in the general case, which are not suited to commercial codes) and expensive (as another global problem needs to be solved). Other approaches in the literature are based on the post-processing of the approximate FE field σ h using:

  Solve the primal surrogate problem for u

			hH(n) LG	;
	2. Recover the admissible stress field	σhH(n) LG,N and compute the estimate η tot CRE ;
	3. If η tot CRE /∥u hH(n) LG	)∥ K ≤ γ tol then STOP. Otherwise proceed to Step 4;
	4. Compute indicators η conv CRE , η dis CRE , and η mod CRE :
	• if max(η conv CRE , η dis CRE , η mod CRE ) = η conv

CRE , increment n + 1 → n and go to Step 1;

• if max(η conv CRE , η dis CRE , η mod CRE ) = η dis CRE , decompose η dis CRE and locally refine τ h up to reaching η dis CRE /∥u hH(n) LG )∥ K ≤ γ tol /3, then go to Step 1; • if max(η conv CRE , η dis CRE , η mod CRE ) = η mod CRE ,

decompose η mod CRE and locally enlarge Ω L up to reaching η mod CRE /∥u hH(n) LG

  and F(p geo ) =

	associated with (4.12):
	n F i=1 ψ i (p geo )F i (truncated SVD decomposition). Introducing the global weak form

  t) ∈ Ω × [t n , t n+1 [ ; v(t n ) = u n (step 1) w ,t + L 2 w = f ∀(x, t) ∈ Ω × [t n , t n+1 [ ; w(t n ) = v n+1 (step 2)

	(C.11)
	u n+1 = w n+1 (updating)
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Chapter 2

New error estimation strategy based on CRE for non-intrusive local-global couplings

In this second chapter, we develop a new verification tool for non-intrusive local-global couplings. It is based on the constitutive relation error (CRE) concept, providing guaranteed and fully computable error bounds which are applicable to linear or nonlinear mechanical behaviors. The CRE concept has been the topic of many studies and applications for FE model verification. Out of early works, several developments have been proposed over the last two decades for various problems such as stochastics [Chamoin et al., 2012], transient dynamics [START_REF] Waeytens | Guaranteed error bounds on pointwise quantities of interest for transient viscodynamics problems[END_REF] and vibratory dynamics [START_REF] Wang | Computable upper and lower bounds on eigenfrequencies[END_REF], or plasticity [Ladevèze et al., 2012]. Applications to several variants of FEM have also been addressed such as XFEM [START_REF] Panetier | Strict and effective bounds in goaloriented error estimation applied to fracture mechanics problems solved with the xfem[END_REF], domain decomposition [START_REF] Parret-Fréaud | Fast estimation of discretization error for fe problems solved by domain decomposition[END_REF], Rey et al., 2014b], model reduction [Ladevèze andChamoin, 2011, Chamoin et al., 2017], non-conforming approximations (e.g. Discontinuous Galerkin) [START_REF] Ern | Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous galerkin, and mixed discretizations[END_REF], isogeometric analysis [START_REF] Thai | A posteriori error estimation for isogeometric analysis using the concept of constitutive relation error[END_REF], or multiscale analysis [START_REF] Chamoin | A posteriori error estimation and adaptive strategy for the control of msfem computations[END_REF]. Eventually, coupled with adjoint-based techniques, the CRE concept was effectively used for goal-oriented error estimation [START_REF] Chamoin | A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems[END_REF], Ladevèze, 2008, Ladevèze and Chamoin, 2010, Ladevèze et al., 2013, Wang et al., 2016, Chamoin and Legoll, 2021]. We extend here this list to non-intrusive local-global couplings. The resulting error estimation technique is a real asset to the coupling method, allowing to effectively control and adapt the choice of several numerical parameters (e.g. associated with the convergence criterion in the global/local iterations) for a given target accuracy.

Chapter 3

Goal-oriented strategy in the adaptive control of non-intrusive couplings

In this third chapter, we propose an extension of tools developed in Chapter 2 for the control of some local quantities which are of interest for engineering design purposes. This is performed by using the classical adjoint-based technique defined in [Becker andRannacher, 2001, Giles andSuli, 2002] and widely used in a posteriori error estimation [START_REF] Paraschivoiu | A posteriori finite element bounds for linear functional outputs of elliptic partial differential equations[END_REF], Rannacher and Suttmeier, 1997, Peraire and Patera, 1998, Cirak and Ramm, 1998, Prudhomme and Oden, 1999[START_REF] Strouboulis | A posteriori estimation and adaptive control of the error in the quantity of interest -part i: a posteriori estimation of the error in the von mises stress and the stress intensity factor[END_REF], Oden and Prudhomme, 2001, Ohnimus et al., 2001, Cao and Kelly, 2003]. This technique relies on the solution of an auxiliary problem associated with the studied quantity of interest. With a CRE-based approach, a guaranteed error bound on the quantity of interest is then obtained from a specific post-processing of admissible solutions for primal and adjoint problems. An adaptive strategy is again defined from the computed error estimator and indicators.

Goal-oriented CRE-based verification framework

Again, for the sake of simplicity, we consider a linear elasticity reference model similar to (2.1)-(2.3) to detail the computation of CRE-based guaranteed error bounds on quantities of interest. A more general procedure, valid in the nonlinear context, can be found in [Ladevèze, 2008, Ladevèze et al., 2012]. We deal with a quantity of interest Q(u), that is a linear functional of the solution u, and we focus on the error on this quantity when approximating u with u 0 (using FEM and/or a surrogate model), that is Q(u) -Q(u 0 ). For nonlinear quantities of interest, and out of classical linearization techniques, a dedicated approach can be found in [START_REF] Ladevèze | Calculation of strict error bounds for finite element approximations of nonlinear pointwise quantities of interest[END_REF].

Partial conclusions

In this chapter, we extended the CRE strategy for goal-oriented error estimation in the context of local-global nonintrusive couplings. It avoids useless over-computations, e.g. the iterative solver is usually stopped before reaching convergence in terms of the usual interface equilibrium). It is important to notice that the strategy is made consistent with the non-intrusive framework of the coupling; it can thus be performed when coupling two different codes, and local analyses for error sources (by adding local patches when solving the adjoint problem) can advantageously benefit from this non-intrusive framework. Consequently, the adjoint solution does not require prohibitive computing resources but is rather conducted by defining individual and manageable problems (that differ by the position of local patches) which can be all solved in parallel at a global cost similar to that of the primal coupling problem.

In the next chapter, the proposed error estimation procedure is integrated in a larger and more flexible framework in which reduced order modeling is used in the local model, in order to further reduce CPU costs in multi-query analyses.

Chapter 4

Local use of PGD reduced order modeling

The non-intrusive coupling is a convenient way to perform local analysis. Due to natural multi-query aspects of the iterative coupling algorithm, in addition to potential parametric studies (optimization, uncertainty quantification. . . ), reduced order modeling (ROM) appears as an attractive complementary approach. In this fourth chapter, we propose to introduce PGD model reduction in the framework of non-intrusive local-global couplings. We thus perform a coupling between a global solution raised from FEM and a local solution evaluated in the online phase (and in a cheap manner) from virtual charts constructed in a preliminary offline phase, and associated to a parametrized modeling (in terms of boundary conditions or geometry configuration) of the local region of interest. This strategy enables both to accelerate the iterative coupling procedure, as well as to effectively address local parametric analyses. Full error control is again performed in this context, adding to local discretization error the new error source coming from local PGD approximation.

Basics on PGD

Model reduction framework

Applied mathematics, computational mechanics, and computer sciences contributed in the last two decades to new modeling and simulation procedures in which reduced-order modeling (ROM) techniques are one of the major achievements. These advanced techniques address complex high-dimensional engineering problems, with a large set of parameters, which are out of reach or remain very costly despite the constant enhancements in computing resources. Indeed, solving the parametric problem for any configuration may require a huge and often unreasonable computational effort using brute force numerical methods, due to multi-query computations from a potentially highdimensional parameter space and with large linear systems to solve. The issue comes from the exponential growth of complexity when using grid-based discretization strategies (this is the so-called curse of dimensionality). can explain these results : firstly the PGD approximation is intrinsically less accurate on the parametric domain border, secondly the mesh could have been deformed too much and a locking element phenomenon can be observed, and finally the local detail may be too close to the coupling interface and the coarse discretization on the interface is then polluting the solution inside the local domain.

Partial conclusions

In this chapter, we developed a local model reduction technique in order to simplify computations associated with the local domain in the framework of the non-intrusive local-global couplings. It appears as a relevant tool when performing local design modifications, or in the adaptive procedure.

The overall coupling-PGD method with error control may also constitute a relevant tool for robust and multi-query analysis in structural engineering activities, with local analysis on large and complex parts.

In the next chapter, the interest of the method is shown for optimization and robust design. 

Robust design

Concepts and foundations of robust design have been developed in the 50s by Taguchi, and an overview can be found in [START_REF] Zang | A review of robust optimal design and its application in dynamics[END_REF], Guedri et al., 2012, Carneiro and Antonio, 2019]. As said before, the objective of robust design is to optimize the mean and to minimize the variability (i.e. decrease sensitivity) resulting from uncertainties (in material or geometrical properties), represented by noise factors (variabilities from nominal values) or signal factors (set of design configurations). Effects of this uncertainty on conception shall thus be minimized.

Design optimization is thus conducted by minimizing the determinant of the covariance matrix of the response functionals (performance P ) of the system. It is usually obtained through sensitivity analysis, as V ar(P ) = SVS T with S the sensitivity vector such that S i = ∂P/∂x i |x 0 , and V the covariance matrix of random variables.

Numerical implementation

Use of certified and parametrized non-intrusive local-global coupling

The tools developed in previous chapters are suited to parametric study and uncertainty propagation associated with optimal or robust design, and therefore for margin estimation. Usually, in order to conduct reliable or robust design, sensitivity analysis is performed with the adjoint state method, and uncertainty quantification is performed with the

Conclusions & prospects

In this PhD work, we investigated some advanced numerical approaches in the context of non-intrusive local-global model coupling procedures. These approaches aimed at bringing confidence and efficiency, out of flexibility naturally offered by non-intrusive local-global model couplings when analyzing localized phenomena. We first developed a robust verification technique, valid for linear or nonlinear material laws, constructed from the Constitutive Relation Error concept. This technique represents a scientific advance in the wide literature on multiscale methods, and appears as a relevant tool for certifying the quality of approximate solutions obtained from such model couplings; it is the main contribution of the PhD work. In this context, we defined a guaranteed and reliable CRE-based error estimator which was derived through a unified thermodynamics framework. This fully computable estimate is valid for both linear and nonlinear constitutive models given by a standard formulation, and takes into account all error sources encountered in non-intrusive local-global model couplings (coming from the use of surrogate models, discretization techniques, and iterative algorithms). We also designed specific error indicators on individual error sources, in order to quantify these and drive an adaptive algorithm that adjusts the coupling parameters and permits an optimized allocation of computing ressources in terms of trade-off between accuracy and numerical cost. The developments were implemented and analyzed on several numerical examples, effectively controlling global error or error on specific quantities of interest (goal-oriented vision) with prescribed tolerance. In particular, it was often shown that the iterative coupling algorithm can be stopped long before reaching interface equilibrium. The overall verification framework, which is in line with the non-intrusive feature of the model coupling method, thus participates in achieving right computation at right cost, which has become a fundamental requirement in practical engineering analyses.

In a second part of the PhD work, the verification procedure was complemented by a local use of PGD-based model reduction. The objective was to effectively address multi-query computations performed at the local scale, coming from the iterative coupling algorithm itself but also from the solution of parametrized local problems. Such a parametrization naturally appears when implementing the adaptive process, with varying size of the local domain, and when considering optimization problems with local topology changes. Performance but also limits of the association between PGD and non-intrusive local-global model coupling were assessed through several numerical experiments with various quantities of interest.

Appendices

Appendix A

Proof of the properties used in Chapter 5

Part 1: we show that KL U L = FL has a unique solution. This follows at once if we show that the only solution of KL W L = 0 is the trivial solution W L = 0. By the definition of KL , it follows that W L satisfies:

We conclude that W L ∈ Ker(K L ) ∩ Ker(C L ), and thanks to Assumption 2, it follows W L = 0.

Part 2: it suffices to show there exists a Lagrange multiplier Λ such that the pair (X L , Λ) satisfies the coupled system, where X L is the solution of the equation:

3) by Q T L and arguing as before reveals that

,where the final step is a standard result of linear algebra. Inserting this information in (A.3) reveals that

) and it follows that there exists a Λ satisfying the first condition of the coupled problem.

Part 3: The Lagrange multiplier satisfies the equation:

and multiplying by

and the result follows on noting

Appendix C

First insights for the extension to the case of moving sources

We focus here on challenging problems characterized by steep moving gradients (as produced by a highly concentrated moving source), and which usually require numerical issues with small time steps and fine mesh sizes, as well as remeshing procedures. Typical applications are complex (multiphysics) manufacturing processes involving moving localized nonlinear physical phenomena that depend on many parameters, such as welding [Gastebois, 2015]. A typical academic example is the Idelsohn benchmark which is a 1D transient diffusion problem with moving localized source. It reads:

with Ω = [0, π], T = 1, u(0, t) = u(π, t) = 0 and u(x, 0) = 0. The value of the thermal conductivity is k = 0.05, density et al., 2018]).

Using a fixed point approach (with initial loading p 0 = 0), the basic global/local iteration is thus recast as:

• Global problem (coarse problem with extra load p n ): find u G n such that:

• Auxiliary problem (with imposed Dirichlet conditions): find (u A n , λ A n ) such that:

We have the following properties:

• Assuming fine and auxiliary problems are solved exactly, we have p n+1 = λ A n -λ F n . The corrective load is then an immersed surface traction.

• Because the auxiliary problem corresponds to the restriction of the global problem on the zone of interest with global displacement imposed, we directly have u A n = u G n|Ω A . The introduction of the auxiliary problem is thus The problem reads: find ∆u such that

The problem involves Ω A (t N -1 ) and Ω A (t N ). As auxiliary and fine models do not coincide, we need to integrate the micro unknowns by macro shape functions. This implies Ω A (t) ⊂ Ω F (t). We denote Ω A N the largest subset that respects this condition. We then restrict the auxiliary problem over this global time step to Ω A N . The reference problem thus reads: find ∆u such that The other natural possibility is to perform a separated approximation of the already stabilized equation. The method proceeds in a very similar way but only one stabilization parameter is now needed.

Remark . In [START_REF] Badias | Local proper generalized decomposition[END_REF], the construction of local PGD reduced order models is addressed in order to circumvent the difficulty of poor separability of the solution. Several strategies are introduced to estimate the size of the different patches in the solution manifold where PGD is applied. No gluing or special technique is needed to deal with the resulting set of local reduced order models. We also mention the possible use of space-time (nonseparated) basis functions, as in [START_REF] Gerbeau | Reduced-order modeling based on approximated lax pairs[END_REF] where the concept of Lax pairs is employed to obtain a reduced model with a special application to wave and soliton problems, or in [START_REF] Allier | Proper generalized decomposition computational methods on a benchmark problem: introducing a new strategy based on constitutive relation error minimization[END_REF] where an analytic solution in an infinite medium is used as a lifting and complemented with a PGD solution.
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