N

N

Inverse problems in haemodynamics. Fast estimation of
blood flows from medical data
Felipe Galarce Marin

» To cite this version:

Felipe Galarce Marin. Inverse problems in haemodynamics. Fast estimation of blood flows from
medical data. Bioengineering. Sorbonne Université, 2021. English. NNT: 2021SORUS392 . tel-
03663790

HAL Id: tel-03663790
https://theses.hal.science/tel-03663790

Submitted on 10 May 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-03663790
https://hal.archives-ouvertes.fr

CREATEURS DE FUTURS
DEPUIS 1257

"\ SORBONNE -
< informatics 47 mathematics
S DNVERSILE rsia—

INVERSE PROBLEMS IN HEMODYNAMICS. FAST
ESTIMATION OF BLOOD FLOWS FROM MEDICAL DATA.

THESE DE DOCTORAT
Présentée par

Felipe GALARCE

pour obtenir le grade de

DOCTEUR DE
SORBONNE UNIVERSITE

Spécialité : MATHEMATIQUES APPLIQUEES

Soutenue publiquement le 09/04/2021 devant le jury composé de :

Jean-Frédéric GERBEAU Directeur de thése

Damiano LOMBARDI Directeur de thése
Olga MuLA Directrice de thése
Yvon MADAY Président du jury
Christian VERGARA Rapporteur
Marcela SZOPOS Rapporteur
Alfonso CAIAZZO Examinateur

Stéphanie SALMON Examinateur



These préparée au sein de ’équipe-projet COMMEDIA
Laboratoire Jacques-Louis Lions

Sorbonne Université

et Centre de Recherche Inria de Paris

2 rue Simone Iff

75589 Paris Cedex 12



Acknowledgments

I would like to express the deepest and most sincere gratitude to Damiano Lombardi. Such a scientific
mind and devotion to knowledge are enough reasons to justify my migration to Paris. The exact same

gratitude I show to Olga Mula and Jean-Frédéric Gerbeau.

Additionally, I convey my gratitude to the members of the jury. To Yvon Maday, the president of the
jury. To both Christian Vergara and Marcela Szopos for their time reading my thesis draft and for their
pertinent and useful remarks. To Alfonso Caiazzo and Stéphanie Salmon as well for assisting to the

defense and triggering interesting discussions.

It has been a pleasure to write my thesis inside the environment generated by the COMMEDIA team at
INRIA Paris. The relation with each team member has been special, either in the coffee break dynamics

or with those I can call friends.

I allow myself as well to thank my family and friends for their emotional support.






Abstract: This thesis presents a work at the interface between applied mathematics and
biomedical engineering. The work’s main subject is the estimation of blood flows and quantities
of medical interest in diagnosing certain diseases concerning the cardiovascular system. We
propose a complete pipeline, providing the theoretical foundations for state estimation from
medical data using reduced-order models, and addressing inter-patient variability. Extensive
numerical tests are shown in realistic 3D scenarios that verify the potential impact of the work

in the medical comunnity.

Keywords: Inverse problems, State estimation, Quantities of Interest, Non-parametric

domains, Inter-patient variability, Model reduction.







Résumé:

Cette thése présente un travail a 'interface entre les mathématiques appliquées et I'ingénierie
biomedicale. Le sujet principal en est l'estimation des écoulements sanguins et de quantités
d’intérét pour le diagnostic de certaines maladies cardiovasculaires. Nous proposons une
procédure compléte, dont nous détaillons les fondements théoriques, permettant ’estimation
d’état & partir de données médicales en utilisant des techniques de réduction de modéle, et
en prenant en compte la problématique de la variabilité inter-patients. De nombreux test
numériques en 3D sont exposés afin de vérifier le potentiel de cette étude dans le domaine

médical.

Mots-clés : Problémes inverses, Estimation d’état, Quantités d’intérét, Domaines non

paramétriques, Variabilité inter-patient, Réduction de modéle.
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CHAPTER 1

Introduction

This thesis is about inverse problems in bio-medical engineering. We aim to design tools for the
enrichment of medical data using PDE models from classical mechanics and model reduction
techniques. We mainly address the problem of, given ultrasound 2D Doppler data, to reconstruct
three dimensional velocity fields and quantities of interest (Qol), such as pressure drops and
wall shear stress, all of them states of uttermost importance for the diagnosis of a number
of pathologies. Although it is not the unique technique implemented, we work in this thesis
mainly with the parameterized background data weak approach (PBDW) [Maday et al., 2015b].
Last but not least, a problem about non linear model reduction on non-parametric domains is
addressed with promising numerical results towards the deploy of reconstruction techniquess in
the clinical practice.

Chapters 2 and 3 share a common goal: the reconstruction of blood flows and Qol in the
common carotid arteries from Doppler synthetic data. In chapter 2 we explore PBDW variations
using a battery of approaches to build up reduced models at offline phase. Data-driven non linear
methods, partitioned POD, and classical greedy approaches are some of those variations. An
extensive benchmark is presented. Chapter 3 takes the best among the reconstruction methods
presented in chapter 2 in order to give a step towards the application, where Qol such as the
velocity vorticity and pressure fields are estimated for synthetically generated noisy velocity
data. Those Qols are typically related to several diseases in the medical community. We claim
that this chapters are in a sense complete because, on the one hand, numerical experiments
are provided over a three dimensional geometry segmentated from magnetic resonance images,
and on the other hand, theoretical results are shown, that coherently background the numerical
outcomes.

Chapter 4 is devoted solely to the topic of state estimation in non parametric domains. The
challenging problematic of estimating a state into an a priori unknown working domain via
offline pre-built reduced models is addressed. This leads to the presentation of a systematic
methodology that involves the consistent mapping between divergence free spaces, the introduc-

tion of model-based metrics, and the use of machine learning techniques to map geometries in



low dimensional representations, or embeddings, that in some manner reproduces a parameter
space (thought the geometry does not need to be parameterized).

In chapter 5 we show a detailed description of the software MAD, developed specially for this
thesis, which is competitive in terms of performance and scope, providing tools for, among other
matters, the approximation of forward fluid dynamics problems solutions with finite elements in
parallel, linear and non linear model order reduction techniques, such as greedy methods, princi-
pal component analysis and non Euclidean multi-dimensional scaling, and geometry registrations
via model induced metrics, LDDMM and Piola transforms.

This introduction gives a general framework of the work, starting in next section by intro-
ducing the medical context that encompasses the applications which are shown in all the thesis
chapters. A short overview of inverse problems is shown and a discussion on state estimation is
added in order to locate PBDW between other typical methodologies. This leads naturally to
a discussion about the nature of the data we want to use for our inverse problem. To this end,
a brief section on ultrasound echography is added in order to justify the models which are used

for the measures.

1.1 Medical framework

The initiative of using tools from scientific computing in the medical practice has been in the
air since decades. There are two main ingredients that have converged during the second half of
the XX century to make this possible. First, the accelerated capabilities of computers, typically
measured in the ability to manufacture computing central processing units (CPU) that are
smaller as time goes by, and second, the development of a strong mathematical background
coming from, among other fields: numerical analysis, approximation theory, numerical linear
algebra, partial differential equations, statistics and model reduction. Both ingredients combined
allow us to simulate complex systems, implement artificial intelligence tools and assimilate data
in order to deliver predictions on states or quantities of interest that are useful in the diagnosis,
treatment and follow-up of several diseases of importance for the medical doctor’s community.
The cardiovascular tree is a representative example of a complex system by excellence. The
interaction of several phenomena, the intrinsic morphological difficulties, and the numerous
restrictions for data acquisition make the study of the circulation a quite challenging task. The
field dedicated to the mathematical modeling and numerical simulation of blood flows is called
haemodynamics. The word in silico' is adopted wherever computational experiments takes place
in the medical practice, in contrast with the much older Latin expressions in vitro and in vivo.

The ambition of the community, materialized for instance in big projects such as the Virtual

Nikely coming from in silicium, referring to the main element used to manufacture transistors.
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Physiological Human institute (VPHi) based at Belgium, aims to bring terms like digital twins

close to the daily basis medical practice.

First and foremost, the reason behind the attention that the research in this field drags, is
based on its direct impact on the society welfare. According to the Global Health Estimates
2016: Deaths by cause, Age, Sex, by Country and by Region, 2000-2016, published in 2018 by the
World Health Organisation, a report with desegregated data about cause of death in humans
in the developed world, cardiovascular malfunction is the first death cause in the planet, as
shown in Figure 1.1. It is thus visible that any advance towards the understanding of the
cardiovascular function could heavily impact those statistics. The proposal from the scientific
computing community is driven by the heuristic that, given the current state of the art in
medical diagnosis, the incorporation of mechanistic principles can contribute to enhance the
understanding of the underlying physiology. This heuristic, proven astonishingly successful in
fields like physics, has a delimited perimeter in other disciplines, such as economy and other
social sciences, in which a blinded mechanistic approach could lead to miserable failures, so
that we can not be dogmatic, we have to be modest, and we have thus to apply this principle
carefully. In addition, statistical tools such as artificial intelligence and machine learning are

required to process and assimilate data.

Chronic obstructive pulmonary diseas

Lower respiratory infections 47.9 MiLLion
=J PEOPLE
die every year from

CARDIOVASCULAR
DISEASES

Alzheimer disease and other dementias
Trachea, bronchus, lung cancers

Diabetes mellitys .

global deaths

Road injury

Diarrhoeal diseases

Tuberculosis

0 25 5 75 10

Death (millions)

Figure 1.1: Death cause of humans in millions. Cardiovascular malfunctions leads the list

averaging 17.9 millions deaths per year, around 31% of all global deaths.
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1.1.1 The cardiovascular tree

Let us see a scheme of the human cardiovascular tree” in Figure 1.2. The blood circulation is
typically categorized as either systemic or pulmonary. The former concerns the blood delivery
and recovery to all the body tissues, whereas the latter concerns the interaction with the lungs

in order to re-oxygenate the blood.

In the pulmonary circulation, the heart pumps blood to the lungs. There, the blood has to be
first detached from the carbon dioxide and hydrogen protons that it carries, and second, the blood
is oxygenated interacting with the pulmonary system. At the meso-scale, small cells of biconcave
shape, so called red blood cells (RBCs), are in charge of the transport of chemicals. RBCs can
carry carbon dioxide, hydrogen protons and oxygen, thanks to a protein called hemoglobin that
is capable of bind them to itself. This chemical mechanism is at the core of the system capability
to keep the overall homeostasis. The hemoglobin affinity with hydrogen protons is fundamental
for the oxygen diffusion, since the blood pH plays a role in the saturation threshold for the
oxygen in the protein. Finally, the blood, which is saturated with oxygen, is transported back

to the heart so that it can be delivered to all the body tissues.

2 A rigorous medical discussion about the cardiovascular system can be found in [Guyton and Tall, 2011]
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Systemic circulation starts as the heart pumps blood from the left ventricle to the aorta,
bifurcating to the lower and upper parts of the body. The blood pass through by the arterial
system going from arteries, to arterioles, and then to capillaries, where the diffusion of oxygen,
hormones, electrolytes and other substances is done. The pressure potential imposed by the
heart pumping is almost decreased to zero close to the diffusion zone. In fact, for a person in
resting conditions (lying in a bed) the velocity averages about 33 cm/s in the aorta, and about
0.3 mm/s in the capillaries. In the diffusion zone, the hemoglobin takes the residuals to be
transported back to the heart via the venous system, so that another cycle of the pulmonary
circulation can re-start.

The whole cycle comprehending pulmonary and systemic circulation occurs around 72 times
per minute for a person in resting conditions. About 5 L/min is the average flow that the
circulatory system holds in such conditions, but it can adapt largely for stressing scenarios that
require quicker muscle oxygenation by augmenting the overall flow up to 30 times the resting

value.

1.1.2 The carotid arteries

The heart pumps blood to the aorta. The aortic arc bifurcates to, among others, two carotid
arteries, which are shown schematically and from medical data in Figure 1.3. In chapter 2 and
chapter 3 the carotid artery will be our working domain to solve inverse problems. For a person
in resting conditions without morphological nor physiological pathologies, the average velocity in
these vessels is about 30 cm/s. Every human has two carotids, and each one of them bifurcates
to irrigate the neck and to irrigate zones close to the brain, via the internal carotids or carotid
siphons.

A number of pathologies can be understood by studying the flow mechanics in the afore-
mentioned vessels. Instead of following a typical clinical exposition in which the tendency is to
show a battery of diseases correlating in numerous ways with certain clinical indexes in ways
that are usually independent among them, we prefer to dedicate a section to some malfunctions
of the carotid and the cardiovascular system in general in the next section, keeping in mind
the already brought up heuristic that classical mechanics could provide up to some extent a

theoretical unifying framework.

1.1.3 Velocity and quantities of interest in diagnosis

Vessel coarctation is among the more studied pathologies in haomedynamics. Let us depict in

Figure 1.4 the angiography of a case in which the carotid coarctation (or stenosis), is critical®.

3 Angiograms in this Figure are courtesy of Dr. Bruno Di Muzio, Radiopaedia.org, rID: 31740
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(a) The carotids (b) Angiograms of the carotid arteries

Figure 1.3: The common carotid arteries branches and their bifurcations to the brain.

This problem is not exclusive of the carotid arteries, as it is often present in the aorta and
other vessels as well. Among the reasons behind this issue there is, for example, a disease
called atherosclerosis, in which an accumulation of lipids and other materials in the vessel walls
changes the effective radius of the vessels preventing the normal transit of oxygenated blood
to the tissues. A critical example scenario in which this pathology becomes a matter of life
and death is the sickle cell disease in kids. As it was stated in previous section, the circulation
relies at the cellular level on the affinity that hemoglobin has with oxygen and other chemicals.
The perfect storm could come here in a patient with sickle cell disease, i.e., a patient with
dysfunctional and deformed red blood cells, which has also an arterial coarctation, and that is

also a kid, i.e., a patient whose vessels are of small diameter.

(a) Scheme of vessel coarctation (b) Angiograms of coarcted carotids

Figure 1.4: Pathological carotid arteries.

Either if it is the unlucky case from above or it is one of the desegregated possibilities,
the thing is that from the practical point of view it is necessary to assess the patient risk of
tissue de-oxygenation, over-fatigue of the vessel walls, risk of cardiovascular accident, need of

blood transfusions, etc. On aorta coarctations, for instance, the stenosis severity is assessed by
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measuring pressure jumps between certain regions of interest, by means of inserting a catheter
inside the vessel that both perturbs the natural flow and second, is incredibly invasive.

It is easy to see as well that all of the narrated phenomena will manifest not only in pressure
jumps, but also in the blood velocity and its spatial derivatives. A huge amount of literature
correlating cardiovascular diseases with the wall shear stress, vorticity, peak velocities and other
derived quantities, supports this statement, e.g., [Konstantinos et al., 2009, Heo et al., 2014,
Zarins et al., 1983, Bluestein et al., 2010, Gibson et al., 1993]. As a consequence, another huge
amount of literature is devoted to estimate those quantities of interest from several types of
medical data, e.g., [Garcia et al., 2013, Hatle et al., 1978, Hatle et al., 1980]. It is important
then to provide tools to understand the natural interrelationships that are well known to exists
among all the enlisted quantities.

For this thesis, part of the goal is to build up methods to solve inverse problems in haemo-
dynamics, so that state estimations of velocity field and other derived quantities can be assessed
fast from medical data, and of uttermost importance, in a non-invasive way. The development
of a fast CFD solver that exploits high performance computing capabilities is thus a fundamen-
tal middle step to be done. Last but not least, the goal of this thesis is to tackle the crucial
hot problem of domain variability, which is of importance in many fields but in particular in
bio-medical engineering, as patients, even though sharing a lot in common, have unique vessel
structures. As we will see in chapter 4, this problem is what prevents fast reconstruction meth-

ods to be clinically useful. A technique to tackle this in a systematic way is explored and tested

with admittedly simple in silico experiments, but with successful results.

1.2 Overview of inverse problems and data assimilation

Inverse problems are about inferring a disease by looking at medical data, or (just to make justice
to the typical way to introduce this topics in books) about being able to hear the shape of a drum
membrane, or about solving the riddle of a crime scene, etc. The term is developed in contrast to
forward problem, which can be defined as a way to approximate a quantitative output of a system
given the value of the parameters and the data, and exploiting a relationship that quantitatively
describe the causality which is supposed to take place. In inverse problems we infer the data and
parameters that likely produced a measured output. We refer to [Kaipio and Somersalo, 2005,
Stuart, 2010, Law et al., 2015, Dashti and Stuart, 2017] for surveys and detailed texts on inverse
problems.

The impact of bringing tools from the inverse problems theory to the clinical applications
is remarkably big, even compared to other fields in which many contributions are done, such

as mechanical engineering and soil mechanics. The reason behind this arises easily: observing



a state or some Qol in a human being is hugely restricted. Medical imaging brings a solution
that allows physicians to diagnose. Nevertheless, although powerful, the medical data is often
incomplete, noisy, and hard to interpret. Inverse problems comes here naturally to the table in
order to enrich the data and strengthen the medical decision making.

The idea of non invasive diagnosis is here at the center of the discussion. A very simple
example can shed light on this. Let us thing about the measurement of pressure drops in human
aortas, necessary in the clinical practice to assess the severity of vessel coarctations (or stenosis)
in patients that suffers, for instance, atherosclerosis. The tradition proposes to compute this Qol
by introducing a catheter in the vessel, that first and foremost, requires an incredibly invasive
procedure, and second, the mere act of observing perturbs the acquired data. Thus, a non-
invasive solution to this would be looked with good eyes in the medical community, and by
non-invasive here we are immediately driven to inverse problems, with which we claim we can,
among other things, to estimate Qols by only looking at medical data, that is to say, without

the need of even to touch the patient.

1.2.1 State estimation

Let us illustrate some fundamentals about inverse problems with a typical introduction in finite
dimension for the estimation of a state (a function in this case) u € V, with V' a N-dimensional
Hilbert space, with inner product (-,-) and norm | - ||. We aim to find an algorithm (a function)

A : W — V that maps observations w € W, an m—dimensional space, to a function in V.

Definition 1. Let X be an N-dimensional Hilbert space, with inner product (-,-) and norm
II-1l, Let p1,..., par be an orthonormal basis of X. We denote the orthogonal projection of some
y € Y, such that X C Y, into X, by:

N

Npi = inf ||z — y]. 1.1
;@mz)m zngIIx yll (1.1)

Px (y) =

We can interpret u as the state describing a complex system, such as deformation fields in
structural engineering, a velocity field, etc. W, typically refereed to as space of observations,
can be interpreted as a space generated with m sensors of the state.

Let us denote @ = (i1, ...,4y) the vector of coefficients of u in the basis p1,...,pn, ie.,
following the definition 1.1 we have u = ), @;p;. So, say that we are given m observations (or
measures) in a vector [ € R™, which is, analogously to 4, a vector of coefficients in a not yet
defined orthonormal basis for W. Assume that we can model the action of observing the state
u with a linear operator O : V' — W, which admits a matrix representation A™*N. The key of

inverse problems is to study the equation

Au=1. (1.2)
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We can immediately discard the utopia in which m = N and A admits an inverse (otherwise
the field of inverse problems would end here). We have typically m much smaller than N. Having
said so, we can pose the problem in terms of a least-squares fitting, so we look for

1
u* = arg min —||Av — [||?
veRN 2

whose Euler-Lagrange optimality conditions leads to the normal equations
AT Au* = ATI. (1.3)

Naturally, ATA does not admit an inverse. The problem is not well-posed by construction
(we assume N > m). We are therefore in the need for a method able to enforce some regularity
in the equations so that we get a solution out of this. There are certainly many other ways of
addressing the regularization of least-squares problems. Among them we can count regularization
via truncated conjugate gradients (or in general by truncated Krylov methods) and Tikhonov
regularization [Tikhonov, 1943]. Those are not exposed here for the sake of brevity and because
they are not used during the thesis, with the exception of Krylov sub-space methods, but as
iterative solvers (which is what they were conceived for) for discretized PDESs, not as regularizers.
The discussion is finished in section 1.2.4.2 after introducing the singular value decomposition.

The least-squares (LSQ) approach (1.3) is a fitting that takes only into account the mea-
sures information, is a linear regression. Thought very illustrative, this approach is usually not
effective. In the next section we introduce how to account for the knowledge that comes from
governing laws (arising, for instance, from classical mechanics) in the pipeline. Before doing so,
we have to remark that there are indeed methods that are capable to perform state estimation
solely relying on data, so called purely data-driven approaches. We can mention two: one is of
course machine-learning/deep learning/auto-encoder approaches, which are non-linear layered
regressions of the data. Another possibility is to perform for instance a Kriging approach, in
which the problem is written as min, ¢ g+ ||v|\%(ring, i.e.,, we do an energy minimization that
enforces the estimated state to satisfy the measures. One could argue that there are some sort of
physics behind this method in the sense that big part of the effectiveness of this approach relies
on a good choice for the metric || - ||Kring, nevertheless, we will try to set a (illusory) line between
physical and non physical state estimations. The former will be characterized by the use of
mechanistic equations to describe phenomena. The line is illusory in the sense that, regardless
that laws of physics are perceived sometimes as a religion, they were comprehended by their
authors either by experimentation, or by a huge philosophical perspective, or by using logical
relationships starting from a base ground of axioms that comes from intuition and community
agreement as well. As a critic, the term data-driven physics should induce a huge shared public

opinion on the scientific community about the fact that what they are reading when looking at
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this phrase is nothing but a pleonasm, a redundancy. Physical models, sciences and laws are

about data, not about anything else.

1.2.2 Governing laws and PBDW

This section introduces the main state estimator used in this thesis document: the Parameterized
Background Data Weak (PBDW) approach [Maday et al., 2015b]. The method mix up models
and measures and it can be seen as a least squares approach fitting between data and model,
plus a corrector capable to account the model bias up to some extent. We briefly describe the
methodology here, but the method is formally discussed in chapter 2.

In the context of PBDW, we have two building blocks:

1. We are required to model the m sensor devices by linear functionals ¢;(u) : V' — R. The
space of observations is built up as follows: W = span{wy,...,wn}, where w; denotes the
unique Riesz representers of the i—th sensor, i.e., {;(u) = (w;,u). We write £;(u) just to
denote an scaling of ¢;(u) such that the representers satisfies (w;,w;) = d;;, where d;; is a

Kronecker delta.

2. The physical laws to which the state is subjected to can be written via a parameterized
PDE P(u;y), for y € Y, a space of parameters, typically a box in R?, for p the number of
parameters of the system. We can define the set of solutions M = {u € V; P(u,y) = 0}.

PBDW does a fitting between w and a compressed version of M, a n—dimensional space
V. C V with an approximation bound dist (u, V},) < e. The fitting is done by means of solving

the following optimization problem: find u* such that:
. 1 9
inf —||lu — Py, ul?,
ue(Vad (Viknw)) 2 (1.4)
st Py (u) = w.
Definition 2. Let X and Y be two closed sub-spaces of V. We define:
B(X,Y) = it 1PV @ (1.5)

The following estimation bound holds when estimating u using (1.4):

Ju — u*|| < BW, V,,) ™! dist (u Vo ® (W N V;)) .

1.2.3 Kolmogorov n-widths

We dedicate a section to this core subject of approximation theory in order to establish a

vocabulary to asses the ability of compressing data-bases via model order reduction techniques.
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The scope of this theoretical framework is vastly broader as it also touch subjects such as
function approximation in Galerkin projections via finite element methods for partial differential
equations (PDE).

Let V be a Hilbert space with norm || - ||, and let V;, be an n—dimensional subspace of V.
We can define a distance of some point € V' to the space V,, as

E(x,Vp; V)= inf |jo — 2,
€V,

Having the point to space distance, we can now introduce the error of approximating a
compact set M C V with an n—dimensional space V,,
E(M,Vy; V)= sup inf ||z, — .
YEM Tn€Va
which gives some sort of a measure of how good the space V,, approximates the worst element
of M. Proposed by Andrei Kolmogorov in [Kolmogorov, 1936], the n-width, seen by us in many
cases as a measure of how compressible an space is, is defined as:

def

dp(M; V) = inf{E(M,V,, V) : V,, a n-dimensional sub-space of V}.

This formal way of measuring how well we can approximate an space with sub-spaces of a
certain dimension is of uttermost importance to endow model order reduction techniques with
mathematical rigor.

Whenever a space M is said to have a fast decaying Kolmogorov n-width, we mean that
dn(Y;X) — 0 fast (exponentially, for instance) as n grows. In chapters 2 and 3, moderately

slow decaying n-width Kolmogorov function spaces’

are explored in a bio-medical numerical
experiment. In chapter 4, very fast decaying n-width Kolmogorov function spaces are explored
in non parametric domains. We see in those chapters numerical outcomes that verifies what it
has been exposed in this section. In fact, for the function spaces of chapters 2 and 3, set of
solutions of the Navier-Stokes equations on a carotid domain, we see that in order to guarantee
a good error approximation via model reduction using singular value decompositions we need
around ~35 basis functions for the reduced models, where as ~6 basis functions are required in
the examples of chapter 4, where non convective flows on simple Venturi domains are the sets

of solutions to be compressed.

1.2.4 The singular value decomposition

The matrix A admits the following (unique) decomposition A = USVT, called full singular value

decomposition (SVD), where UeR™m §ecR™N and V e RNV gatisfies the orthogonality

4by convention of the model order reduction community, in chapters 2, 3 and 4, the function spaces, typically
sets of solutions of some PDE, are refereed to as solution manifolds, in spite of the sometimes impossibility to

show for instance, the Hausdorff axiom for neighborhoods for those sets
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properties UTU = Inx N, and VTV = Lnxm. S is filled with zeros excepting its diagonal, with
entries o1 > 09 > ...0.,, singular values of A.

Let us denote by A = USV7 the truncated decomposition (see [Trefethen and Bau, 1997]
for details). We can geometrically interpret the SVD applying A to a unitary ball in R™ (recall
we have assumed at previous section that N > m): an ellipsoid with axis defined by vectors
pointing towards the columns of U = {uy, ..., un}, whose semi-axis sizes are the entries in the

diagonal of S: o1,...,0m.

1.2.4.1 SVD for manifold compression

For any matrix X, let us denote X, the sub-matrix of X containing the first r columns of
X. In the context of linear model reduction, SVD is the gold standard, as it gives an optimal

approximation of the space spanned by the columns of A in the sense that

U.= argmin ||[A—- XXTAlp,
X s.t. Ran(X)=r

where we denote by || - ||p the Frobenius norm. Otherwise stated, we get the best r-dimensional
basis for the space spanned by the columns of A. We have stated the SVD for the matrix A, so
the streamline of ideas with the least-squares introduction to this overview is not interrupted.
In practice, the matrix to be decomposed will have (see chapter 2) finite element solutions of

the system governing dynamics.

1.2.4.2 SVD as a regularization technique

We can come back to equation (1.2) by using the SVD as a regularization technique. Since A is
not invertible, it has zero singular values. Let r < m be the number of non-zero singular values.

We can approximate A ~ A = U,S.V.I', so the solution to (1.3) reads
apa\ L.
u ~ (ATA) ATI
~1 T
= (U vHrus. v, (U.S V) 1
= V8,070, 8,V v, 8,UT1
= V.8 2vIv, s, ULl
=V,.8 Ut

. PN T R
We adopt the notation A = (ATA) AT for the Moore-Penrose pseudo-inverse of A.

1.2.5 Forecasting and parameter estimation

State estimation is one among some of the branches of inverse problems. We extend briefly the

discussion with two bullets:
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1. So far we have not even mention the word time, regardless that P in the previous section
could describe a non-stationary problem. When addressing time in a particular way,
and not seeing it as a parameter, we can talk about data assimilation instead of state
estimation. The example by excellence of methods dealing with time for data assimilation
of model and measures is Kalman filtering [[Kalman, 1960], in any of its dynamic variants:
linear filtering, unscented filtering or extended filtering. What this assimilation provides
is a forecasting, and daily basis examples of the use of this technique in technology are

abundant.

2. In some inverse problems engineers might decide that it would be better to mimic the
forward problem from the measures by first estimating the system parameters and then
running a simulation. Or, furthermore, maybe the application of interest does not need the
state as the parameter space contains by itself relevant information. That is the case of the
field in bio-medical engineering called elastography, dedicated to assess elastic parameters

of body tissues from medical data, typically from magnetic resonance imaging (MRI).

1.3 Ultrasound echography

This section is devoted to discuss some fundamentals about medical imaging. In particular,
we will extend the discussion about ultrasound (US) imaging since is the one we are going to
synthetically generate for the numerical experiments of chapters 3, 4 and 5. We include this
section to understand the data we want to assimilate, but also and since this section does not
have encyclopedic purposes, we give enough notions about image acquisition in order to justify
the physical models that we are going to use to reconstruct velocity fields, the linear functionals
4;(u) defined in the section dedicated to PBDW 1.2.2.

1.3.1 Image acquisition

Ultrasound imaging (or echography) has several advantages with respect to other image modal-
ities: it is cheap, fast, it has a good time sampling and it is portable. Instead of digging down in
more aspects about US and other generalities, we describe here only the necessary fundamentals.
The reader is refereed to the book [Barrie and Webb, 2011], which has inspired the following
paragraphs and it is the source of all the figures and tables of this section.

US imaging is about sending mechanical pulses to human tissue with frequencies ranging from
10% Hz and 1.5 x 107 Hz. In order to generate those pulses, an electrical potential is induced to an
array of piezo-electric sheets that allows the conversion of electromagnetic waves to mechanical
ones. The array, normally called transducer, vibrates and induces the longitudinal movement of

the particles of the tissues, a movement that ranges around orders of magnitude of 10~ m. For
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the scales we are interested in, the tissue movement is negligible, and we can therefore assume
that the action of sending US waves to the media does not perturb the outcome, an assumption
of importance in general, and of importance in particular from a data assimilation point of view,
since it permits to state that the measurement process is decoupled from the system evolution.

The key of ultrasound imaging relies on the velocity of the particles in the tissue. Let us
denote by u, the longitudinal velocity of the tissue at a certain tissue depth, and let p denotes
the pressure wave intensity. We have this sort of Ohm’s law

z="L
Ug

a basic elastic property, here refereed to as acoustic impedance. In fact, it is easy to see that Z =
\/p/7, where p is the organ density and & is the organ compressibility (a rephrase of the stiffness,
standing for how much the particles resist to the movement parallel to the longitudinal waves sent
by the US machine). Different tissues has different acoustic impedance, so we have, explained
in a nutshell, a method for tissue characterization from mechanical waves. The transducer can,
due to the piezo-electric effect, receive the pressure waves that are scattered back by the region
of interest and transform it back to an electric signal. The complete underlying mechanism is
much deeper but we are omitting that discussion here. See table 1.1 for averages values of the

acoustic impedance Z in some tissues.

Table 1.1: Acoustic impedance as a way to characterize tissues.

Air Blood Bone Fat Brain Muscle Liver Kidney

Z x10° gr cm™2s™1  0.00043  1.59 7.8 138 1.58 1.7 1.65 1.62

So, as already brought up, the tissue back-scatterer the pressure signals so that we can
post-process them. After dealing with the raw data, it is possible to distinguish three image

modalities:

e (Amplitude) A-mode imaging: this mode acquires a one-dimensional line-image which
plots the amplitude of the back-scattered echo time evolution. A tipycal application of

A-mode imaging is to measure the eye corneal thickness.

e (Motion) M-mode imaging: a continuous series of A-mode lines are obtained and they
are displayed as a function of time (see Figure 1.5(a)). The brightness of the displayed

M-mode signal represents the amplitude of the back-scattered echo.

e (Brightness) B-mode imaging: the output for this mode is a two-dimensional image (see
e.g. Figure 1.5(b)). Each line in the image is an A-mode line, with the intensity of each

echo being represented by the brightness on the two dimensional scan.
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(a) US M-mode of a heart wall (b) US B-mode of a carotid

Figure 1.5: Ultrasound image modalities.

1.3.2 Doppler ultrasound data

An application of US is the velocity estimation in blood vessels. Red blood cells are moving
scatterers and they change the frequency of the pulses that comes to them. We can use that
frequency shift to calculate the velocity in the direction parallel to the longitudinal waves (the
beam), defined by an unitary vector b € R3.

From the Doppler effect we know that the effective frequency perceived by the transducer

from a moving scatterer in the blood (see Figure 1.6) can be written as follows:

o c+vcos (0
o= petvest) (1.6

where f; is the frequency of the longitudinal wave emitted by the transducer, 6 is the angle

/\jduj_/

Figure 1.6: Conventional velocity estimation scheme.

between the beam direction and the flow direction, ¢ is the speed of sound, assumed constant
and equal to 1540 m/s, and v is the blood velocity. The same process occurs during the reception

of the signal back in the transducer, so the received frequency fiec is given by

(1.7)

)

2fvcos(d)  fiv? cos?(6)
+ 2
c c

frec = fz +
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where we can discard the quadratic term so that the overall frequency shift is given by

g, = 2@ f, (1.9

An accurate measurement of blood velocity can only be achieved if the angle 6 is known and

is kept under certain threshold value, typically recommended under 60 degrees. That is why

usually B-mode scans are acquired at the same time. Newer techniques that combine data from
different beams also allow the obtention of two components of the velocity.

In summary, Doppler ultrasound provides two-dimensional mappings of one or two compo-

nents of the velocity field. Those mappings are called color flow image (CFI) and vector flow

image (VFI), respectively. An example of both is seen in Figure 1.7.

o
[ms]

(a) Color flow image (b) Vector flow image

Figure 1.7: Doppler flow imaging in the common carotid branches.

Back to the language of section 1.2.2, a CFI provides a set of linear functionals {/;(u)}",

defined over m disjoint voxels {€;}7,, with ; CR3, fori=1,...,m

Ei(u)z/ u-bds.
Q;

1.4 Summary of contributions

Publications

e F. Galarce, J.-F. Gerbeau, D. Lombardi, O. Mula. 2020. Fast Reconstruction of 3D Blood
Flows from Doppler Ultrasound Images and Reduced Models. Computer Methods in
Applied Mechanics and Engineering. Elsevier.

e F. Galarce, D. Lombardi, O. Mula. 2020. Reconstructing Haemodynamics Quantities
of Interest from Doppler Ultrasound Imaging. International Journal for Numerical

Methods in Bio-medical Engineering. John Wiley & Sons.
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e F. Galarce, D. Lombardi, O. Mula. Inverse Problems on Non-Parametric Domains.Flow
Reconstruction from Medical Data Using Non Linear Dimensionality Reduction. Ongoing

work with expected preprint for early 2021.

MAD

The comprehensive software MAD, developed in C++ during the current Ph.D. thesis, and
further described in chapter 5, is a contribution for the automatization of model order reduction
techniques, 3D parallel solvers for the Navier-Stokes equations, geometry registration routines

and machine learning tools.

Presentation of thesis work in conferences

e CSE2021: accepted to participate in contributed talk at SIAM Conference on Compu-
tational Science and Engineering. Title: Inverse Problems on Non-Parametric Domains.
Flow Reconstruction from Medical Data Using Non Linear Dimensionality Reduction.
March 2021, Fort Worth, Texas, U.S. To be held online due to covid.

e VPH2020: Contributed talk at Virtual Physiological Human conference. Title: Fast as-
similation of Doppler measures for state estimation of blood flows and quantities of medical

interest. August, 2020, Paris, France. Held online due to covid.

e Enumath 2019: Contributed talk at Furopean Numerical Mathematics and Advanced
Applications Conference. Title: 3D flow reconstruction from Doppler ultrasound data.
October 2019, Egmond aan Zee, The Netherlands.

e CSMA 2019: Contributed talk at 14éme Colloque National en Calcul des Structures. Title:

Reconstruction of blood flows from Doppler images. May 2019, Presqu’ile de Giens, France.

e Eccomas 2018: Contributed talk at 6th European Conference on Computational Mechanics
(ECCM 6) & 7th European Conference on Computational Fluid Dynamics (ECFD 7).
Title: Optimal reconstruction of flows from Doppler measurements. June 2018, Glasgow,
UK.

e MoRePas 2018. Poster presentation at conference for Model Reduction for Parameterized
Systems. Title: Enhancing Hemodynamics Measurements with Mathematical Modelling.
April 2018, Nantes, France.
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CHAPTER 2
Fast reconstruction of 3D blood flows from
Doppler ultrasound images and reduced

models

The content shown in this chapter inspired the following scientific publication: F. Galarce, J.F.
Gerbeau, D. Lombardi and O. Mula. (2020). Fast reconstruction of 3D blood flows from Doppler
ultrasound images and reduced models. Computer Methods in Applied Mechanics and

Engineering. Elsevier.

This chapter is focused on presenting techniques for the state estimation of an element that belongs
to a certain Hilbert space V from partial observations. One simple and efficient strategy is the so-
called Parameterized Background Data-Weak approach (PBDW, see [Maday et al., 2015b]). It is a linear
mapping that consists in a least squares fit between the measurement data and a linear reduced model to
which a certain correction term is added. However, in the original approach, the reduced model is built
from forward reduced modeling and independently of the reconstruction task (typically with a proper
orthogonal decomposition or a greedy algorithm). The methodologies will thus differ on the reduced basis
construction, where we introduce a data-driven technique more adapted to the reconstruction task. We
will compare the performance of the proposed approaches on a realistic 3D scenario of velocity recovery
in a human artery. Nevertheless, the interest will remain close to the theory in this chapter, reason why
we have allowed ourselves to choose V = [L2(Q)]3 for our tests. Additionally, only noiseless measures
are tested in this chapter. Those two hypothesis will be reconsidered in chapter 3, in which the medical

usability of our results will be the main focus.
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2.1 Introduction

Developing artificial intelligence-driven tools to assist doctors in medical decisions and diagnosis
requires to solve efficiently and in a reliable manner data assimilation and inverse problems from
biomedical applications. These problems share the following general common features, which

will guide our subsequent developments:

e The available data are often corrupted by noise and obtained with medical imaging tech-

niques, which have the advantage of being non-invasive.
e There may be morphological constraints that prevent from measuring at specific locations.

e In some cases, the device may not be able to measure directly the desired quantity of

interest (Qol), and a complex post-processing may be required to obtain an estimate of it.

e Sometimes, the desired Qol is a prediction or a forecast ahead in time, which requires a

specific treatment to be inferred.

In this chapter, we develop state estimation techniques which aim at taking the above features
into account, and which involve reduced modeling of parameterized Partial Differential Equations
(PDEs). As an illustrative example of how the reconstruction techniques that we deploy address
some of the above points, in this chapter, we consider a haemodynamics inverse problem: the
real-time reconstruction of the full 3D blood velocity field in an artery from Doppler ultrasound
images taken on a restricted portion of the artery. This application is of interest in its own
right since a real-time reconstruction of the full flow would enrich the available information for
medical diagnosis.

Haemodynamics forward and inverse problems is a wide multidisciplinary topic with a
long history, and a complete overview of the numerous existing contributions would go be-
yond the scope of the present chapter. However, as a brief summary of the state of the art
for our application on haemodynamics reconstructions using medical images, we could start
by citing [Aderson, 1998], where a method based on quadratures is used to estimate the ve-
locity from Doppler ultrasound. In [Moireau et al., 2013, Hu et al., 2007, Caiazzo et al., 2017,
Miiller et al., 2018, Adib et al., 2016] sequential data estimation methods are used to provide a
description of the haemodynamics in different portions of the vascular tree. A patient specific
fluid-structure interaction simulation of the left ventricle is proposed in [Lassila et al., 2012]
based on Magnetic Resonance Imaging data. The calibration of computational fluid me-
chanics simulations was also investigated in [Koltukluoglu, 2019]. A multi-fidelity approach
and a Bayesian framework are detailed in [Perdikaris and Karniadakis, 2016]. Recently, some
works have explored kernel and deep learning based approaches to perform data assimilation

[Koeppl et al., 2018, Huttunen et al., 2020, Kissas et al., 2020].
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In this work, we use methods based on reduced-order modelling to obtain reconstructions
in close to real-time. This approach has attracted considerable attention and numerous
mathematical developments and applications have been developed, see [[Khalil et al., 2007,
Astrid et al., 2008, Buffoni et al., 2008, Leroux et al., 2013, Maday and Mula, 2013,
Maday et al., 2015a, Raiola et al., 2015, Argaud et al., 2017, Karcher et al., 2018,
Cohen et al.; 2019].  These methods share connections with other well-known approaches
such as 3D and 4D-Var (see [Lorenc, 1981, Le Dimet and Talagrand, 1986]) or the Partial
Spline Model ([Wahba, 1990, Chapter 9]). We refer to [Taddei, 2017, Kéarcher et al., 2018] for
further details on this point. Regarding inverse haemodynamics problems, prior contributions

7

involving reduced-order modeling are, e.g., [Lassila et al., 2011, Pant et al., 2017].

Our starting point is the Parameterized Background Data-Weak originally introduced in
[Maday et al., 2015b]. The method consists in a linear mapping which is built from a least
squares fit between the measurements and a given reduced space and an additional term that
is capable of correcting model bias to some extent. In the original approach of PBDW, the
reduced model is built using forward reduced modeling and independently of the reconstruction
task (typically with a Proper Orthogonal Decomposition or a greedy algorithm). In this chapter,
we investigate the construction of other reduced spaces which are built to be better adapted
to the reconstruction task and which result in mappings that are sometimes nonlinear. We
compare the performance of the different algorithms in the context of the fast reconstruction of
the velocity field in an artery. The results illustrate the superiority of the proposed alternatives

to the classical approach involving linear reduced bases.

The chapter is organized as follows, in section 2.2 we describe mathematically what we un-
derstand by state estimation problems and reconstruction algorithms (section 2.2.1). We next
introduce several ways of building a reduced order space, some of which take the measure-
ments into account, henceforth leading to non-linear reconstruction methods (section 2.2.2).
We give details on the practical implementation and computational costs in section 2.3. We
next apply the methodology to the reconstruction of 3D blood flows from Doppler images
(section 2.4). The example is semi-realistic, meant to be a first (still idealized) step to-
wards realistic applications. The main assumptions are the following. First, the Doppler
images are noiseless and synthetically computed but they have been generated with a realis-
tic model with respect to the real involved physics and measurement devices. This assump-
tion is mainly due to our lack of real Doppler measurements and also because of the very
involved space-time structure of the noise in Doppler images (which is a research topic in itself
[Ledoux et al., 1997, Bjaerum et al., 2002, Demené et al., 2015]). Second, we assume that there
is no model misfit even if the method can correct it to some extent. However, we use a rather

realistic model for flows in large arteries based on incompressible Navier-Stokes equations, with
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boundary conditions used in haemodynamics simulations (see [Formaggia et al., 2009]). The
precise parametric PDE model upon which we build our reduced models is explained in section
2.4.1. Section 2.4.2 gives some details on Doppler ultrasound imaging and the way in which we
have incorporated it to our methodology. Finally, sections 2.4.3 and 2.4.4 present numerical re-
sults in two test cases. They illustrate the superiority of the proposed reconstruction algorithms
with respect to the classical linear PBDW. In addition to this, our second example also shows
that the method can be used to estimate quantities of interest which could be helpful in the

detection of an arterial blockage.

We conclude this introduction by emphasizing that the assumptions in our computations with
no model misfit and synthetic, noiseless measurements are not inherent limitations of the present
approach. The focus lies rather on the reduced space construction and the haemodynamics
application. The model misfit is automatically corrected and measurement noise can be added to
the recostruction pipeline (see [Taddei, 2017, Argaud et al., 2017, Gong et al., 2019] for works on
measurement noise). We also emphasize the novelty that the current approach represents for the
field of blood flow reconstruction. Indeed, estimations performed routinely by medical doctors
usually do not involve full reconstructions (perhaps due to the lack of efficient techniques). They
often reduce to simple pointwise estimations of the peak and average velocities of the imaged
anatomical part. The development of more refined estimations of the velocity field are actually
an active research topic, especially for flows in the heart cavities. The only fast technique
that we are aware of is based solely on the divergence equation (V - u = 0) on the imaging
plane [Ohtsuki and Tanaka, 2006, Uejima et al., 2010]. Despite its rapidity and simplicity, the
contribution of the out-of-plane velocity and the momentum conservation are neglected, leading
to very non-physical approximations. Another existing alternative are classical inverse problems
in which a joint state-parameter estimation is performed. Their main drawback is the large

computational times, which is incompatible to the clinical practice.

2.2 Reconstruction methods

We start by introducing the state reconstruction methods that we use in the present work. We
focus on explaining alternative ways of building reduced basis that are better tailored for the
task of state estimation than the usual reduced bases of forward problems. Our presentation is
done for noiseless measurements and assumes that there is no model error. As already brought

up, this is due to the fact that we lack from real measurements for our targeted application.
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2.2.1 State estimation and recovery algorithms

Let © be a domain of R? for a given dimension d > 1 and let V' be a Hilbert space defined over
Q, with inner product (-,-) and norm || - ||. Our goal is to recover an unknown function v € V'

from m measurement observations
bi(u), 1=1,...,m, (2.1)

where the ¢; are linearly independent linear forms over V. In many applications, each ¢; models
a sensor device which is used to collect the measurement data ¢;(u). If the observations come
in the form of an image as in the application of this thesis, each ¢; may represent the response
of the system in a given pixel. The Riesz representers of the ¢; are denoted by w; and span an
m-~dimensional space

Wi, = span{wy, ... ,wn} C V.

The observations ¢ (u), ..., ¢y (u) are thus equivalent to knowing the orthogonal projection
w = Py, u. (2.2)

In this setting, the task of recovering u from the measurement observation w can be viewed
as building a recovery algorithm
A:W,—V

such that A(Py, u) is a good approximation of u in the sense that ||u — A(Pw,, u)|| is small.
Recovering u from the measurements Py, u is a very ill-posed problem since there are in-
finitely many v € V such that Py, v = w. It is thus necessary to add some a priori information
on u in order to recover the state up to a guaranteed accuracy.
We are motivated by the setting where u is a solution to some parameter-dependent PDE of
the general form

P(u,y) =0,

where P is a differential operator and y is a vector of parameters that describes some physical

property and lives in a given set Y C RP. Therefore, our prior on u is that it belongs to the set
ME {uy) eV : yeY}, (2.3)

which is sometimes referred to as the solution manifold. The performance of a recovery mapping

A is usually quantified in two ways:

e If the sole prior information is that u belongs to the manifold M, the performance is

usually measured by the worst case reconstruction error

EWC(A7M) = sup ||u - A(PWmu)H .
ueEM
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e In some cases u is described by a probability distribution p on V supported on M. This
distribution is itself induced by a probability distribution on Y that is assumed to be
known. In this Bayesian-type setting, the performance is usually measured in an average

sense through the mean-square error
Epo(A, M) =E (Jlu — A(Pw,,u)|*) = /V lu— APy, u)|*dp(u),
and it naturally follows that Fns(A, M) < Eyc(A, M).

Let us take a look to figure 2.1. The problem to address is about receiving an element
from W,,, and complement it with the compressed model data in V,,. Notice how the angle
between both spaces has intuitively an impact in the reconstruction quality, confirmed with the

theoretical bound shown in the next section.

X
w= Py, u

Figure 2.1: Geometrical interpretation for the reconstruction problem of finding A : W,, — V.

2.2.2 Linear and nonlinear algorithms using reduced modeling

Reduced models are a family of methods that produce each a hierarchy of spaces (V,)n>1 that

approximate the solution manifold well in the sense that

en < sup dist(u, V;,), or 572Ld:EfIE(dist(u,Vn)2)
ueM

decays rapidly as n grows for certain classes of PDEs. Several methods ex-
ist to build these spaces among which stand the reduced basis method (see
[Rozza et al., 2007]), the  (Generalized)  Empirical  Interpolation = Method  (see
[Barrault et al., 2004, Maday and Mula, 2013, Maday et al., 2016]), Proper Orthogonal
Decomposition (POD, [Sirovich, 1987, Berkooz et al., 1993]) and low-rank methods (see
[Cohen et al., 2011, Cohen and DeVore, 2015]).
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Linear reconstruction algorithms that make use of reduced spaces V,, are the General-
ized Empirical Interpolation Method (GEIM) introduced in [Maday and Mula, 2013] and fur-
ther analyzed in [Maday et al., 2015a, Maday et al., 2016] and the Parameterized Background
Data-Weak Approach (PBDW) introduced in [Maday et al., 2015b] and further analyzed in
[Binev et al., 2017a]. Note that some modified versions have been proposed to address mea-
surement noise (see, e.g., [Argaud et al., 2017, Taddei, 2017]) and other recovery algorithms

involving reduced modelling have also been recently proposed (see [[{ircher et al., 2018]).

2.2.2.1 PBDW, a linear recovery algorithm
Given a measurement space W, and a reduced model V,, with 1 < n < m, the PBDW algorithm
bd
AP W,V
gives for any w € W,, a solution of

min  dist(u, V3,).
uEw+W+

Denoting

e! . 5 . P
BX, Y)Y inf sup ¥ _ e 1221
zeX yey [zl lyll  zex [z

€10,1] (2.4)
for any pair of closed subspaces (X,Y) of V, the above optimization problem has a unique
minimizer
Ag,f}j}dw) (W) = Uy, () & arg min dist(u, V,). (2.5)
u=w+W-=L
as soon as n < m and B(Vy, Wy,) > 0. We adhere to these two assumptions in the following.

As proven in section 2.3.1, an explicit expression of u, , (w) is

* *

um,n(w) = Um,n(w) +w— PWmU;L,TL(w) (26)

with

*

—1
O (@) = (Pvjwo Pwvi) Priwi (W), (2.7)

where, for any pair of closed subspaces (X,Y) of V, Pxy : Y — X is the orthogonal projection
into X restricted to Y. The invertibility of the operator Py, w,, Py, |v, is guaranteed under the
above conditions.

Formula (2.6) shows that AS;};?W) is a bounded linear map from W,, to V,, & (W,,N V). De-
pending on whether V,, is built to address the worst case or mean square error, the reconstruction

performance is bounded by

elve,pbdw) — g (A@bdw) Afy < 8LV W) max dist(u, Vo, ® (V;E N W) < B 1 Vi, Win) €0,
’ ’ ue
(2.8)
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or
bd bd def bd 2 1/2
el PP — g (AP, M) 2 E (|lu— AP (P, ) 2)

1/2
< 87 Vi, Win)E (dist (s, Vi @ (Vi 0 W;0)?) /

< B_I(Vnan) 5na (29)

Note that 5(V,, W,,) can be understood as a stability constant. It can also be interpreted as
the cosine of the angle between V,, and W,,. The error bounds involve the distance of u to the
space V,, @ (an_ N W,,,) which provides slightly more accuracy than the reduced model V;, alone.
In the following, to ease the reading we will write errors only with the second type of bounds
that do not involve this correction part on V- N W,,.

An important observation is that for a fixed measurement space W, (which is the setting

. . ¢, pbd s, pbd . ¢, pbd
in our numerical tests), the errors ebne P*™) and efns P*™ reach a minimal value (VPP
1" Pwe
, pbd . . . . . .
and e;;n Z*p ) as the dimension n varies from 1 to m. This behavior is due to the trade-off
»'ms

between the increase of the approximation properties of V,, as n grows and the degradation of
the stability of the algorithm, given here by the decrease of B(V,,, W,,) to 0 as n — m. As a

result, the best reconstruction performance with PBDW is given by

(ms, pbdw)

, pbd .
(we, pbdw) — min e(wc, pbdw) or {ms )

(ms, pbedw) _
mng. 1<n<m m,n ’ m,n. -

" min e
ms 1<n<m

We finish this section with two remarks:

1. We do not consider measurement noise and model error. However, the PBDW algorithm
can correct to some extent the model misfit (through the term n*, see 2.3.1). Also, some
extensions of the current setting have been proposed to address measurement noise (see
[Taddei, 2017, Argaud et al., 2017, Gong et al., 2019]).

2. Note that in the present setting the measurement space W, is fixed and we will adhere to
this assumption in the rest of the thesis. This is reasonable since usually the nature and
location of the sensors is fixed in our application following the experience of the medical
doctors. A different, yet related problem, would be to optimize the choice of the measure-
ment space W,,, and we refer to [Maday et al., 2016, Binev et al., 2018, Bensoussan, 1972,
Aldarous et al., 1975, Cannon and Klein, 1971, Yu and Seinfeld, 1973] for works on this

topic.

2.2.2.2 Alternative reconstruction algorithms

Taking PBDW as a starting point, we next describe two different strategies to build recovery

algorithms. They all incorporate an affine extension of PBDW that we explain next. One
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motivation to introduce it is because it can give more accuracy when the solution manifold M
is not localized near the origin. This typically happens when the state u is a perturbation of a
nominal state @ € V.

Affine PBDW: Given an average or nominal state & € V', we can formulate the equivalent
affine version of PBDW, which reads

ABD () = argmin dist(u, @ + Vi), (2.10)
7 uewt Wt

As shown in 2.3.1, this algorithm can also be written as

AR () = @+ AP (w — ),

(pde)

where w = Py, 4 and Ay, is the linear PBDW algorithm of the previous section. We can

easily see through the last expression that A( n) is an affine mapping from W, to u + V,, &
(W, N V;H). An interesting feature of this affine extension is that if w = 0, the algorithm yields
a nonzero reconstruction in W, based on the nominal state i, A&ff?( 0) = A(pbdw)( ). This
is in contrast to the linear version where A(pbdw)( 0) = 0. We also have Afnn) (W) = .
Proceedmg similarly as before, for a given v € M, the error is bounded by (see

[Cohen et al., 2019)])

lu — ACD ()| < B7H(Ve, W) dlist(u, @+ Vi, @ (Wi N Vb))

< B (Vy, W) dist(u, @ + V) (2.11)
and
el 0 L Eyo(ARD), M) < B7H Vi, Win) el (2.12)
or
o 2 B (G M) 2 E (Ju - AGTD(P,)?) < 57V W) 65T, (213)
where

e = sup dist(u, @+ V), or (880)2 = E (dist(u, @+ V;)?)
ueM

In the following, to simplify notation, we will use &, and ¢, to denote either the error in
the linear PBDW or its affine version since the reasoning and the estimates that will be derived
next have the same form.

Partition of M: Our first strategy stems from the fact that we may have very few ob-
servations (m small) and since we must have n < m for reconstruction, we may not have
enough approximation power in the interval where n can range. Also, the approximation er-
rors €, or &, provided by reduced basis may not always decrease rapidly to zero (the Kol-
mogorov n-width of M may decrease slowly). However, the physical structure of the prob-

lem could give a natural decomposition of the manifold M into different subdomains M *)
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(k)

that are better adapted for model reduction in the sense that the errors &, or 5(k) m

ay
decrease faster. Works based on that partition principle have been developed in the con-
text of model reduction of forward problems [Carlberg, 2015, Amsallem and Haasdonk, 2016,
Amsallem et al., 2012, Peherstorfer et al., 2014, Cohen et al., 2020]) and we propose to adapt it
for data assimilation. A simple setting where we can decompose the manifold in our context is
when we work in an application for which it is possible to know exactly a subset of entries in y
for any target u(y) during the online phase, say ¥ € RP (with p < p). Given 7 and a data-base
generated from the governing PDE we may produce a disjoint union of K subsets Y*) which
yields a decomposition of M into subsets M®*) = 4(Y*)). We can thus build reduced models

Vrgk) for each subset M¥) and then reconstruct with the linear or affine PBDW.

, Vind
| —1 n

(%))

Time

Heart rate

Figure 2.2: Manifold splitting and reduced models Vf on each partition. In our application is
possible to access to entries of the parameter space during the online phase: Heart rate and

time.

Proceeding similarly as in the previous section, the reconstruction performance on subset

MWE) g

(Wcaffk)_ ((aff)M/f))<5 ((k)W)()

or
e 1) = B (AGT), MO) 2 E (Ju — AGT (P, )2) " < 57 V0, Wi o0

The best reconstruction performance for M®*) is thus

ff, k . ff, k .
(WC’*a " ) — min e(wig aff, k) - op (ms’*a " ) — min e(mfl aff, k)
m,ne (k) 1<n<m m,nfys (k) 1<n<m

It follows that the performance in M = Ule./\/l(k) is

(we, aff, k) (ms, aff, k) Zw e(ms aff k)

(wc aff) _
max e or € (i —— ,

1<n<m  Moins(K)
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where wy, = p(u € M%),

Data-based reduced models: The second strategy is motivated by the observation that
the reduced models V;, or Vn(k) of the previous approaches are built independently of the given
measurement space W,,, and also of the given measurement observation w. For a given w € W,,,
we can build a data-driven V,,(w) with an orthogonal matching pursuit greedy algorithm (OMP)
that we explain next. Once this reduced model has been computed, we reconstruct with the
data-driven affine version of PBDW,

ALD () < arg min dist(u, @ + Vp(w)), (2.14)
, uEw+Wt

where the difference with respect to (2.10) is that now V;,, depends on w. The reconstruction
performance of this algorithm is bounded by
eSXcA dd) _ EWC(A%{%B,M) < Su/a ﬁfl(Vn(PWmu), W) dist(u, @ + V,,(Pw,, u)),
ue

(we, dd)
m,nz‘dd)

from 1 to m. Since V,, is now adapted to the measurement observations, we expect that the

(we, dd)
,n

in the worst case setting. Similarly as before, ey, reaches a minimum e when n varies

current algorithm performs better than its classical linear counterpart.
We now present the OMP greedy algorithm that we propose. Let

DY {v=u/l|ul| : ueM}

be the set of normalized functions from M.

If w = 0, the first element ¢ is chosen as

1
/1 =25 > (2.15)
u€D
For n > 1, given V,, = span{¢1,...,¢n}, we select
P
©nt1 € argmax <w — Pp,, v,w, Wi 0 >‘ (2.16)
veD | P vl

where Pyw,, Vi, = span{Pw,, 1, . - -, Pw,,on}. We set V41 = span{V},, on+1}-

Note that all operations in this algorithm are done in the space W,,. Hence we can do all cal-
culations in R, which makes this algorithm be very fast since it does not involve computations
with functions from the whole space V' (see 2.3.2 for further details on its implementation).

In the case u # 0, we introduce w = Pyy,,u and the shifted set

U—1u

&ﬂ)—{v :ue./\/l,u7éu}.

l[u — all
Now it suffices to apply the previous greedy algorithm to the target function w — @ instead

of w and do the search over 63D instead of D.
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Remark 2.2.1. Note that both nonlinear approaches are very different in nature: the first is
based on localization and the second is purely data-driven. Their performance will thus be very
dependent on the physical problem under consideration and the measurement setting: the nature
of Wi, the nature of the actual measurements w = Py, u, the nature of the manifold and
its alignment with W, locally at w. Note also that both approaches can be combined and we
can consider a piece-wise data-driven algorithm (its performance has actually been tested in the

numerical tests below).

2.3 Computational details of the methods

In the previous section and for the sake of clarity, we have given an idealized description of
PBDW and the other reconstruction methods where we do not mention certain discretization
aspects that inevitably come into play. To start with, the snapshot functions © € M cannot
be computed exactly but only up to some tolerance. One typical instance (which is used in our
work) is the finite element method which gives an approximation uy € Vj, of u € V' where V}, is
a finite element space with N degrees of freedom. Therefore the computable states are elements
of the perturbed manifold
My E {up(y) € Vi : ye Y}

The computation of reduced models V,, involves a finite training subset //\/lvtrain C My, of snap-
shots, and we denote by #Mvtrain its cardinality. As a consequence, all the reduced models are
low dimensional subspaces of V},. Note that the fact that the true states do not belong to My,
can be interpreted as a model bias.

The methodology also requires the computation of the Riesz lifts w; in order to define the
measurement space W,,. Since we work in the space V},, these can be defined as elements of this
space satisfying

(wi,v) = 4;(v), v €V,

thus resulting in a measurement space W C V.
In what follows, we keep our idealized discussion and do not systematically recall that all

computations take place in a background discretization space V},.

2.3.1 Algebraic formulation of PBDW

Here we derive the algebraic formulation of uy, ,(w), the function given by the linear PBDW

algorithm. Let X and Y be two finite dimensional subspaces of V' and let
PX‘Y Y - X

y — Pxy(y)
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be the orthogonal projection into X restricted to Y. That is, for any y € Y, PX‘y(y) is the

unique element x € X such that
(y—z,2) =0, VielX.

Lemma 2.3.1. Let Wy, and V,, be an observation space and a reduced basis of dimensionn < m
such that 8(Vy,, Wy,) > 0. Then the linear PBDW algorithm is given by

ur (W) =w+ v, — Pyoy, (2.17)
with
* -1
v = (Prawo Pwnivia)— Praiws, (). (2.18)

*
n

Proof. By formula (2.5), u} (w) is a minimizer of

min  dist(u,V,)? = min  min ||ju — v|?
wEw+W* UEWH WL VEVR

= min min |jw+ 7 — v
vEV, UGWmL

= 11}161%}711 lw—v— Py 1(w-— v)]?

— : 2
— min | = v+ Py, + )]

= mj - P 2,
g}gg}LIIw Wi (V)|

The last minimization problem is a classical least squares optimization. Any minimizer

vy, € V,, satisfies the normal equations

* * *
PWm|vnPWm|VnUn = PWm\Vnw7

where P;Vm\vn : Vo, = Wiy, is the adjoint operator of Py, |y, . Note that P;Vm\vn is well defined
since 3(Vy, Win) = minyev, || Pw,,, v, v[l/[[v]] > 0, which implies that Py, |y, is injective and thus
admits an adjoint. Furthermore, since for any w € Wy, and v € V,,, (v,w) = (P, v, v, w) =
(v, Py, jw,,,w), it follows that P;Vm\vn = Py, |w,,, which finally yields that the unique solution of

the least squares problem is
# -1
Un = (Pvnlwmpwm‘v;z) PVn‘me'
Therefore u), = w + 0} = w+ v} — Pw, v. O

As a direct consequence of this Lemma, we derive the following formulation for the affine
PBDW algorithm.
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Corollary 2.3.2. Let W,, and V,, be an observation space and a reduced basis of dimension
n < m such that S(Vy, W) > 0. Then the affine PBDW algorithm with respect to a nominal
state u is given by

Al (W) = @+ ufy (w0 — @) (2.19)

m,n

where w = Py, and uy, ,, is the reconstruction with the linear PBDW method.

Proof. The result follows by following the same lines as in the linear case for the shifted mini-

mization problem

min  dist(u, @+ V;,)? = min  min ||ju —a — v||?
uEw+Wpt uCw+Wp, Lt vEVR

O

We next derive the symmetric linear system of equations to be solved in order to compute
v¥ in expression (2.18). Let F and H be two finite-dimensional spaces of V' of dimensions n and
m respectively in the Hilbert space V' and let F = {f;}7 ; and H = {h;}]"; be a basis for each

subspace respectively. The Gram matrix associated to F and H is

G(F,H) = ((fi, hy)) 1<i<n -

1<j<m

These matrices are useful to express the orthogonal projection Ppjy : H — F in the bases

F and H in terms of the matrix
Prig = G(F, F)"'G(F, H).

As a consequence, if V,, = {v;}I is a basis of the space V;, and W, = {w;}I"; is the basis
of W,,, formed by the Riesz representers of the linear functionals {¢;}!", the coefficients v, of

the function v}, in the basis V), are the solution to the normal equations
Py, 1w P v Vi = Py i GWin, Win) ™' w, (2.20)

where
_ T
IPVTLlw'm - ]P‘/n‘WnL

since P = Py, |v,, and w is the vector of measurement observations
Wm‘Vn m|Vn

w = ((,wi))i.

Usually v} is computed with a QR decomposition or any other suitable method. Once v}, is

found, the vector of coefficients u}, of u;, easily follows.
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In our application, the manifold M will be a family of incompressible fluid flow solutions of a
parametric incompressible Navier-Stokes equation. In this case, V), is usually built such that all
functions v € V, satisfy the divergence-free condition V-v = 0 As a result, a reconstruction with
only vy, , from the normal equations 2.20 will yield a divergence-free approximation of the flux.
Note however that the full PBDW reconstruction uy, ,, does not guarantee this property since
the model bias corrector w — Py, vy, ,, may not be divergence free. The mass conservation of the
reconstruction could be enforced, for instance, by considering its projection on divergence-free
fields. That is to say, let us take a reconstructed vector field uy, ,. A Helmholtz decomposition
leads to the vector field vHelmnoltz and an scalar field ¢gHelmnoltz such that uy, , = V X UHelmholtz —
V ¢Helmholtz- Omne might solve therefore the following Laplacian problem: Find ¢pelmholtz €
H'() such that:
~A@Helmholtz = V * Uy, ,, in €,

®Helmholtz = 0 on I'in,

V@Helmholtz - 7 =0 on Iy, (2.21)

v¢Helmholtz ‘n=0 on Foutza

VdHelmholtz - 7 =0 on I'y.

The solenoidal field is thus ufnm + VHelmholtz- Notice that the inlet boundary condition is
arbitrary but nonetheless it does not influence the results since we are interested on the gradient
of the field.

2.3.2 Practical implementation of OMP

Introducing the set W = {Pw,v : v € D}, the recursive step of the OMP algorithm
(2.16) can equivalently written in terms of functions of Wy, as follows. For m > 1, given

V,, = span{p1, ..., on}, we select (see equation (2.16))

Zn41 € arg max
zEW

<w — Pry. (v ”§I>‘ . (2.22)

For the chosen z,41, we take one of the corresponding functions ¢,4+; from D that satisfy
Pw,,¢on+1 = zny1. We then set V11 = span{V,, ony1}. The computation of Pp,, v,w is a
straightforward solving of a linear problem. We look for the coefficients ¢ = (¢;)?; such that

PPWm(Vn)w =", ¢Pw, . Since
(Pry, (vi)ws Pw0i) = (w, Pw, 1), Yi=1,...,n (2.23)

it follows that

n
ch <PWm<Pi7PWm§0j> = <w7PWmQ0i>7 1 SZ Snv
j=1
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which is a linear system of the form
AOMP — OMP (2.24)
Denoting {w1,...,wn} an orthonormal basis of W,,, we have

m
AOMP = (a5 hr<ijen,  @ig = (Pwpis Pwnps) = D (Wi, 05) (Wie, 1)

k=1

and

m
g = (91, 9i = (W, Pwnaspi) = Y (s wie) (i, W) -
k=1

2.3.3 Summary of the methods investigated and their computational cost.

Methods: The methods that we have implemented in our numerical tests and their computa-

tional cost are:

1. Linear PBDW (labelled POD-lin): We build the linear spaces V;, from a classical Proper
Orthogonal Decomposition of the whole training set .//\/lvtrain. This is the classical PBDW
approach explained in section 2.2.2.1 and we consider it as the reference that our proposed

methods should outperform.

2. Nonlinear algorithm with manifold partitioning: We partition the training set Mtrain in
a number of non-intersecting subsets (see section 2.2.2.2). For each subset M®) of the
partition, we build in an offline phase a reduced model. Two constructions have been

tested:

e P-POD-aff: A Proper Orthogonal Decomposition on each partition M®),

o P-Greedy-aff: A greedy algorithm: for n =1, we set Vl(k) = span{ugk)} with

(k) 1
U = —= E
k
#M( ) ueM®)
For n > 1, we select

ulf) € argmax ||u — Py, _,ul, (2.25)
ue MK

and set Vn(k) = span{Vn(ﬁ)l, uy(mk)}.
3. P-DB-aff, Data-driven nonlinear algorithm with manifold partitioning: Since each ultra-

sound image can be seen as an observation w € W,,, we run the OMP algorithm of section

2.2.2.2 to build V,(w) and do the reconstruction. Note that the greedy search has to be
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Table 2.1:

during offline phase, where as the reconstruction row refers to the computational costs during

online phase.

Computational cost of each method. First two rows corresponds to computations

Cost - Method ‘ POD-lin ‘ P-POD-aff ‘ P-Greedy-aff ‘ P-DB-aff
Database const. O(Na#ﬂtl-ain) O(Na#ﬂtraill) ON™ #Mtrain) O(N“#ﬁtmm)
MOR OW# M) | ON#M)?) | ON#M) | OW#DL, +m?)
Reconstruction O(n? +nN) O(n? +nN) Om?+nN) | O(n?+ nm#ﬁégin +nN)

done online since we need the knowledge of the measurement. To speed-up computations,

instead of searching in the whole training set

~ uU—1u —
0aD = {U =5——7 I uc Mtrain} ,
[l — |
we restrict the search to the partition
%ﬁW—{U—l“*L;ueﬁw}.
[l —

Computational costs: We outline the computational cost of the methods in Table 2.1. Note
that all of them can be decomposed into an online and an offline phase. The cost of generating
the snapshots database is of the same order in all methods, namely O(N a#ﬂtrain) where «
is the scaling behavior of the linear solver (usually o = 2 for iterative methods). The cost of
building the reduced model in POD-lin and P-POD-aff is the one to compute the SVD of the
correlation matrix of the snapshots. For POD-lin, the matrix is of size #varaill. For P-POD-aff,
we have to compute the SVD of K matrices of size (75#/,\/7(’“))2 for k =1...,K. If these SVD
computations are done in parallel, we can obtain important time reductions compared to POD-
lin since in general #/W(k) < #Mtraill. Regarding the cost of the online phase, if we store the
QR decomposition of normal equations (2.20) (at a cost of O(n?) operations, not reported on
the table), the first three methods only need to solve the associated linear system, which costs
O(n?) operations. In the case of P-DB-aff, we additionally have to run a greedy algorithm in
R"™ as explained in section 2.3.2, hence the additional cost reported in the table. Note however
that the time required for this extra step is not significantly slowing down computations thanks
to the fact that we work in R™ and m is usually moderate. This is in contrast to the greedy

algorithm of the offline phase of P-Greedy-aff, which takes place in RV.

2.4 Reconstruction of 3D blood flows from Doppler data

We apply the above described methodology to reconstruct a 3D blood velocity field in L?(£2) on

a human carotid artery from Doppler ultrasound images. The images are synthetically generated
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and the use of data from real patients is deferred to a future work. The main goal of the tests

is twofold:

1. The first goal is to compare the different strategies to construct the space V,, and the
recovery algorithms. The method that can be considered a sort of a baseline to be compared
to is the POD.

2. Second, we aim at assessing the ability of these recovery strategies to estimate the velocity
in a semi-realistic idealised setting. Methods failing in achieving a 10% accuracy on the

peak velocity in this setting should not be used in more realistic scenarios.

The section is organized as follows. First, we present the parameter-dependent model that will
define the manifold M on which we will rely to compute different reduced models. Second,
we explain how to define a measurement space Wy, from a Doppler velocity image. Finally,
we present results on the comparison of the different methods based on their reconstruction

performance.

2.4.1 Incompressible Navier-Stokes equations

Let Q be a spatial bounded domain of R3 with the shape of a human carotid artery as given in
figure 2.3. The boundary I" £ 90 is the union of the inlet part I';, where the blood is entering
the domain, the outlets I', 1 and I', 2 where the blood is exiting the domain after a bifurcation,
and the walls T'y,.

1
Fw Fout

out

~8cm

Figure 2.3: Domain 2 used in the simulations. Note the small stenosis in the upper part of the

bifurcation.

We recall the Navier-Stokes equations already introduced in section 5.3 on €2 and over the

time interval [0, 7] for T' > 0. For a fluid with density p € R* and dynamic viscosity u € RY,
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Figure 2.4: Geometry and inlet boundary function of the test case.

we search for the velocity u € [H'(Q)]® and pressure p € L?(Q) that:

Ou
p— +puVu—pAu+Vp=0, in
ot (2.26)
V-u=0, inQ.
These equations are closed by adding a zero initial condition and the following boundary
conditions:

1. No-slip condition for the vessel wall, that is, u = (0,0,0)” on T,.

2. The inlet boundary T'; lies in the xz plane and we apply a Dirichlet condition u =

[0, win, 0]7. The component b is a function u, (¢, z, 2) = ug g(t) f(x, 2), where:

e up € R is an scaling factor. The function g(t) is built by using flow data in the common

carotid area taken from [Blanco et al., 2015]. Its behavior is given in figure 2.4.1.

e The function f is a 2D logit-normal distribution

J@) = = x)lz(l — e {—0.5 <log (&) - 5)2 —05 (log (1:))2} ,

(2.27)

where the parameter, s € RT, controls the axial symmetry of the inlet flow.

3. For the outlet boundaries I't , and T'2;, we use the 0D model introduced in section 5.4.2.

The average pressure over each F’gut is computed as follows,

;ﬁo,kz=pf§+R§/ u-nds, k=1,2
Fk

out
where p’;l € R are the solutions to the ordinary differential equation:
dpl;
ch—=d L Zd — [ y.nds

ddt Ry Jrs,, (2.28)

pg(t =0) = Da given.
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where C¥ € R, RE € R and Rk € R.

Spatial discretization of the carotid geometry leads to a tetrahedron mesh of 42659 vertices
and 225196 tetrahedra. The meshing process is in charge of MMG [Dapogny et al., 2014]. Time
is discretized with a semi-implicit backward Euler scheme with time-step 6t = 2 - 10735, which
means that the convective term in the Navier-Stokes equations is written with the velocity
explicitly and the velocity gradient implicitly in order to circumvent the non-linearity of the
system. An explicit scheme is used to numerically solve the ODE on the distal pressure in the
Windkessel model. In addition, a backflow stabilization is added in order to address potential
instabilities in the outlet boundaries (see, e.g., [Bertoglio et al., 2017a]). Data visualization is
done by using ParaView [Ayachit, 2015] and Vizir [Loseille and Feuillet, 2018]. Standard SUPG
stabilization for convection dominated flows is used [Brooks and Hughes, 1982].

The coupled problem for velocity and pressure is discretized using P; —P; Lagrange elements,
with a monolithic approach. In order to avoid the inf-sup constraint imposed by the saddle point
nature of the problem we use the Brezzi-Pitkaranta stabilization approach (for further details, we
refer to [Ern and Guermond, 2013] and [Brezzi and Pitkaranta, 1984]), that basically perturbs
the weak form of the mass conservation equation with a stiffness-like term that scales with the
square of the elements size. Each forward simulation has N = 127977 degrees of freedom at
each time step. The linear systems are solved by means of a GMRES [Saad and Schultz, 1980]
method with additive Schwarz preconditioning.

Note that one could use more sophisticated models involving, for instance, fluid-structure
interactions or more refined Winkessel models for the pressure. Our model is a trade-off between
its degree of realism and the difficulty and time to solve it. We refer to [Formaggia et al., 2009
for a detailed overview of cardiovascular modeling.

Let us define the manifold of solutions that we consider in our numerical experiments. We

set the following coefficients to a fixed value

p =1lg/em’®
¢ = 0.03 Poise
Ck =1.6x107° for k=1,2
(2.29)
Rt =17501.5 for k =1,2

pk =1.06 x 10° for k = 1,2

RY  =60012

The ratio of the distal resistances for the Windkessel model at the outlets is introduced:

def

n'= Rh/R2 = 60012/R3.
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This parameter plays an important role since it impacts on how the blood flow splits between
the two branches. When 17 — 0 or oo, one branch is obstructed and the blood tends to flow
through the other branch. In the following, we call this situation an arterial blockage. When
n ~ 1, the flow splits more or less equally and there is no blockage.

We define the heart rate as the number of cardiac cycles per minute, that is,

HR ¥ 60/T,,
where T, > 0 is the cardiac cycle duration expressed in seconds. We have T. = Tyys + Tiq,
where Ty and Ty, are the duration of the systole and diastole respectively.

The manifold M is generated by the variations of the following six parameters

t € 10,7
HR € [48,120]
s € [0,0.2]

(2.30)
Toys € [0.2863,0.3182] s.

up € [17,20] cm/s

] € [0.05,0.2] U [0.5,1.5] U [5, 20]
Note that the time ¢ is also seen as a parameter. The parameter set is thus
Y = {(t,HR, s, Tsys, u0,n) € R® : t € [0,T], HR € [48,120], s € [0,0.2], ...} C RS
and the manifold of solutions is
ME {uly) € [H' Q) : y € Y}
At this point, several comments are in order:

e Note that we only consider velocity fields since in the present work we are only concerned
by the reconstruction of the blood flow velocity. The reconstruction of other quantities of

interest, such as the pressure, will be addressed in a forthcoming work.

e For each y € Y, the velocity u(y) is a function of [H!(€2)]3. In the following, we will view

it as a function from

VEL=[L2QP,

which, endowed with the inner product,

3

<(U1’U2’U3)7 (w17 w2’w3)> = Z<Uiv wi>L2(Q)7 V(v,w) S [LQ(Q)Pv
i=1

defines a Hilbert space.
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e Since the time variable has been included as a parameter, a simple way to build nonlinear

reduced models is to set a window parameter 7 > 0 and consider the subset M®*) =
M —rtp4r) C M, where t is restricted to the interval [ty — 7,3 + 7] of size 27 centered
around a given time t;. We can then build reduced models to reconstruct this specific
time interval. As we will see in the numerical experiments, this strategy is very effective
in our problem because the velocity presents two regimes given by the systole and diastole

periods.

e The computation of reduced models involves a discrete training subset Mtram c My,
which, in the experiments below, involves #Mvtrain = 78528 snapshots u(y). The parame-
ters are chosen from a uniform random distribution and we only save the solutions during
the second cardiac cycle of each simulation in order to capture a flow behavior that is close

to a realistic periodic regime.

e For the purposes of illustrating the potential of the method for diagnoses, we introduce a

notion of sickness in terms of the arterial blockage in the following way.

Definition 3 (Sick patient). We say that the output of the simulation corresponds to a
healthy patient when n € [0.5,1.5]. Outside of this range, simulations correspond to sick

patients.

We thus have the partition
M= Mhealthy U Msick7 Mhealthy n Msick = [Z)

. def
with Mhpeatthy = Myepo.5,1.5) and Mick = Mye(o.05,0.21U[5,20]-

2.4.2 Doppler data in the context of reconstruction algorithms

We have assumed a strong hypothesis up to here, which is that we account with m linear
functionals to model the image. Every scenario in which the aforementioned methodology is
proposed to be used should be examined carefully in order to understand this point of uttermost
importance. The question that follows is, is this a valid assumption in our application? The
fundamental aspects of the ultrasound image acquisition must be reviewed in order to provide
a solid argument behind this hypothesis, and validate the proximity of this reconstruction tool
to the medical practice. We refer to section 1.3 to support the working assumptions. To
summarize, in a regular partition of [0, T], we are given Doppler ultrasound images that contain
information on the blood velocity on a subdomain of the carotid. For typical ultrasound machines
with acquisition time of 0.1 milliseconds, a CFI is built with, for instance, 32 consecutive B-

mode frames, which leads to a measurement sampling of 32 milliseconds. From the image, the
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observations ¢;(u) are extracted and used to build a complete time-dependent 3D reconstruction

of the blood velocity in the whole carotid €.

Figure 2.5: Schematic way of looking at the CFI measures as a set of elements in V*.

In the following, we work with a model of CFI images based on the ultrasound physics shown
in section 1.3. For each time ¢, a given image is a local average in space of the velocity projected
into the direction in which the ultrasound probe is steered. More specifically, we consider a
partition of Q = U™ ,€); into m disjoint subdomains (voxels) €2;. Then, from each color flow

image (CFI) image we collect

&(u):/ u-bdz, 1<i<m, (2.31)
Q;

where b € R? is a unitary vector giving the direction of the ultrasound beam. From (2.31), it

follows that the Riesz representers of the ¢; in V are simply
wi = Xib,
where x; denotes the characteristic function of the set €2;. Thus the measurement space is
W = Wi CFD & span{w; } ;.
Since the voxels €; are disjoint from each other, the functions {w;}7, are orthogonal and
therefore having a CFI image is equivalent to having

m

w="Py, u= Z(wi, Uyw; = Z&(u)wl (2.32)
i=1

i=1
Remark 2.4.1. The case of vector flow images (VFI, see figure 1.7(b)) can be treated similarly.

This imaging mode gives 2m measurements

Ki(u):/ u-bdr, 1<i<m,
Q;
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and
€m+i(u):/ w-b dr, 1<i<m,
Q

where b is the unitary vector giving the direction of the ultrasound beam and b, is the uni-
tary vector perpendicular to it and contained in the image plane. Therefore, W, VED =
W, (CFD g span{xq,b1 }/*, which is a space of dimension 2m. This clearly shows that the
additional direction b| enriches the quality of the measurements in the sense that for any u € V,
the approzimation error |[u — Py, u|| will be smaller with the VFI mode than with the CFI one.
As a result, the CFI mode which we consider in our examples is a more challenging case since

the measurements contain less information.

2.4.3 Reconstruction on a first example with healthy patients

To validate our method, we first consider a simple example where we only work with healthy
patients, so the manifold is Mpealthy. One color flow image contains information of the velocity
averaged over 552 voxels. As explained in section 2.4.2; this sets the dimension of the observations
space to m = 552 (whereas for VFI, m = 1104). As a result, each image can be seen as an
observation w € W, . The dimension m = 552 may seem quite large but it is representative
of the one provided by modern pulsated ultrasound devices. 297 healthy patients are simulated
in order to build the training set. For each one of them a number of snapshots containing the
second cardiac cycle is stored so there are multiple snapshots per patient due to time marching.

In figure 2.6, the synthetic image is depicted. The ultrasound device is placed in such a
way we measure a mid plane of the working domain. The ultrasound wave forms an angle of
/4 respect to the dominant fluid direction in the main carotid branch, that is to say, b =
Va/2,3/2,0).

This leads to a training set composed of #Mtrain = 56383 snapshots. The performance of
the algorithms is tested on a test set Mtest of 32 healthy patients each one with a parameter
configuration in range but different from those inside Mvtrain.

For the comparison, we implement the algorithms outlined in section 2.3.3. We recall them

below and give specific details related to the current test case:
1. Linear PBDW: The space V,, is built from a classical POD of the whole training set Mtrain.

2. Nonlinear algorithm with manifold partitioning: In real medical examinations, the heart
rate HR of the patient and the time ¢ in which the ultrasound image is taken are known.

We exploit this fact to decompose //\/lvtrain into K = IJ subsets

Mvtrain = U M(k), (233)
(@5)e{l,...I}x{1,....J}
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Velocity (cm/s)
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Figure 2.6: Example of synthetic CFI measures used in first example. The image leads to an

space W,, of dimension m = 552

where, for each k = (i,7) in {1,...,1} x {1,...,J},

M(k) = {u € Mvtrain S [ti -7t + 7—]7 HR € [HR] - 5HR’ HRJ + 5HR]}' (234)

Among the possibilities to build the manifold partitioning, our approach is driven by the
reconstruction error of the elements inside Mtest. That is to say, we have computed the
reconstruction uf of u; for ¢ = 1,.. .,#Mtest for a set of couples (dyr,7) with a fixed
dimension for the reduced model (n = 30). Hence, we can pick the optimal values in this

sense: B
#Mtest ||

k(6
(0fir, 7*) = arg min Sl u; — u} (OHR, 7) ||
0HR,T FH Myest 1 ||s ]

Recalling that the cardiac cycle duration is denoted by 7T, we conclude in this experiment
to the sizes 7 = T, /10 and dpr = 5 beats per minute.
For each subset ﬂ(k), a reduced space is built. Two constructions have been tested:
e POD of M®. We call this approach P-POD-aff, Partitioned-POD-affine, in the
plots.
o A greedy algorithm. We call this approach P-Greedy-aff, Partition-Greedy-affine, in

the plots

During the online reconstruction, given ¢ and HR, we select the appropriate subset M®
that includes ¢ and HR and reconstruct with a linear PBDW with the reduced model
corresponding to M®),
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Figure 2.7: Benchmark for first numerical example. The accuracy is evaluated using the error

(2.35)

3. Data-driven nonlinear algorithm with manifold partitioning: This approach is labeled in
the plots as P-DB-aff, Partitioned-Data-Based-affine. Since each CFI image can be seen
as an observation w € Wp,, we run the Orthogonal Matching Pursuit algorithm of section
2.2.2.2 to build V,(w) and do the reconstruction. Note that the greedy search has to be

done online since we need the knowledge of the measurement.

For each state u € /Wtesm we compute the relative error:

[|u — Am,n(PWmu)
[Jull

e(u, Apm) = | (2.35)
where Ay, (P, u) denotes any of the above four reconstruction algorithms. A patient in the
training set is represented by a sequence of simulated states during the second cardiac cycle. This

raises the interest in evaluating the reconstruction quality by looking at the following relative

error in time:

(S llu)2at)

1/2
where we normalize by the total energy in the cardiac cycle ( fTiTC ||u(t)\|2dt) .

Figures 2.7(a) and 2.7(b) give the average and worst case performance of the four methods,
1
eav(Anm) = ——— e(u, Anm),  ewe(Anm) = max e(u, Apm).
#Mtest — UE Miest
uEMtest

Note that as n increases, the error decreases for all methods, except perhaps for the P-DB-
aff approach where the error tends to stagnate for large values of n. This could be due to
the fact that P-DB-aff heavily relies on the measurement information, which, in the present

application, might not deliver enough information to learn reduced models V;,(w) that improve
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the accuracy as n grows. For instance, the Doppler measurements are close to zero in the diastole
of the cardiac cycle so the information that they provide may be insufficient to build a good
Vi(w). We also see from the figure that the nonlinear method P-POD-aff outperforms the rest
in the sense that it delivers a given target accuracy with a smaller dimension n of the reduced
model. For instance, if we fix a target accuracy on the average performance to 1072, we see
that the POD-lin requires 40 modes to achieve it, P-Greedy-aff requires 20, P-DB-aff requires
17 and P-POD-aff requires only 10 (see figure 2.7(a)). Figure 2.8 shows also the error as n
changes, but with standard box-plots that give a glance of the low standard deviation in the
reconstruction that we register for all the techniques, ensuring there is no outliers patients where

the reconstruction is not doable.

.

T
T

2,

T =
ASLIEEBLT:

\Q/ 10 20 30 40 50 60 70 \\\/ 10 20 30 40 50 60
n n

e (1, A )

(a) POD-lin (b) P-Greedy-aff

//
.

o,

o1 ATEE AN
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Figure 2.8: Reconstruction error e(u, Ay, ) for patients u € .//\/lvtest in first example. In the box-
plots, data within the first and third quartiles lie in the boxes. The plot also shows the median
(in red), maximum and minimum values (outside the box). We observe a regular distribution of
the data for the four basis-construction methods. The total amount of snapshots in the test set
is 56383.

Let us take a look to the first 3 POD modes for our set of snapshots in figure 2.9. We observe
the difference between using a linear space and an affine one. The plot depicted in figure 2.10

shows that using an affine space effectively improves the approximations, but just a bit more
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than a marginal amount.

YYYYYY

(a) First Mode ) Second Mode ) Third Mode

Figure 2.9: First three POD modes. We might notice how they capture the information of the
manifold. On the left of each sub-figure we see the POD-lin approach, whereas the POD-aff one
is depicted at the right.

— linear
— affine -

" 1o 15 20 25 30 ; 40 45 50
Number of modes
Figure 2.10: Average error as n grows. We observe a small superiority of the affine approach, as

was to be expected.

We next fix n = 30 and study the error in time e(t, u, A, 30) on figure 2.11. We observe that
the reconstruction tends to be better during the late diastole phase of the cardiac cycle.

As discussed in section 2.2.2, the inf-sup constant 3(V,,, W,,,) might yield to stability issues
when n — m since its value tends to zero (see equations (2.8) and (2.9)). Figures 2.13(a) and
2.13(b) show its behavior for the four methods during the systole and diastole period. We observe
that the four methods perform similarly in terms of stability for the peak systole reconstruction.
For the diastole phase, we observe that the inf-sup constant in P-DB-aff performs slightly worse
than the rest. We think that this could be due to the fact that the measurement space W,, is

not rich enough to allow P-DB-aff to properly learn reduced models when n becomes large.
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Figure 2.11: Average error comparison for test case described in section 2.4.3. The benchmark

shows the temporal evolution of the quantity (2.36) during the cardiac cycle. The dimension of
Vi, is set to 30.
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Figure 2.12: Comparison of reconstruction error for peak systole. Max error in the left and

mean error in the right.

—— POD-lin
0.6
0.6 —— P-Greedy-aff
(U] (L)
—— P-POD-aff
k] ‘5 0.5
co0s S P-DB-aff
=2 2
S04 So4
k] 5
303 503
2 2
& &
g 0.2 g 0.2
£ 5
=01 201
0.0 0.0
0 10 20 30 40 50 60 70 0 1o 20 30 40 50 60 70
n n
(a) Peak systole (b) Late diastole

Figure 2.13: Behavior of 5(V,, W,,) as a function of n.
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Figure 2.14: Average and worst reconstruction errors as a function of n.
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Figure 2.15: Forward simulation and ground truth for one of our test-cases. This field belongs
to the data base of patients with blockage.



14 - 14 -
—r! —r!
N o P, o
12F /& 2 1 12F Y )
/ o / o
/ 1 / \ 1
10l x P-POD-aff T} | | e / x P-POD-aff T} | |
x P-POD-aff T2 x P-POD-aff T2
8r o P-DB-aff I |] 8r o P-DB-aff I |]
@ 2 @ 2
o 6l ~ o PDBaft It || o0 o ~ o P-DB-aff 12 ||
£ / e /
S S
=R ¥ \Q\ 1 = g \°\ 4
z 4 \ ~ z 4 \ N~
[ N [ N
2 2 1
\ /B \ .
/ IV \ N / s\ y N,
0 9 , 0 . N,
2 \/ 2 \/
4 . . . . . 4 . . . . .
0.8 1 1.2 1.4 1.6 1.8 2 0.8 1 1.2 1.4 1.6 1.8 2
Time [seg] Time [seg]
(a) CFI (b) VFI

Figure 2.16: Comparison of simulated and reconstructed flow at the outlets of the domain.
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Figure 2.17: Flow ratio reconstructed for blockage detection. In this test the number of modes

is fixed to 30.

2.4.4 Application to arterial blockage detection

In this example we illustrate that even when the Doppler images do not give information on
the whole carotid, we can nevertheless reconstruct the velocity field in the whole domain with
our methodology. This is important for actual practice since doctors do not have images in the
whole carotid due to morphological constraints. We also show in our example that the method
has potential to efficiently estimate in real time relevant quantities of interest.

We illustrate these ideas in the following example: we consider the same setting as before but
now the Doppler image does not provide information about the flow in the carotid bifurcations.
Therefore, the image does not see the flow split in the common carotid downstream (see figure
2.19(a)). In this example we have tested the impact of working with CFI (m = 233) or VFI
images (m = 466).
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We train our reconstruction methods on a set thin containing sick and healthy patients.

Here, we only work with two of our previous nonlinear algorithms:
1. P-POD-aff
2. P-DB-aff

Figure 2.14 shows the average and worst case errors

eav(An,m> = Z €(U,An’m), ewc(An,m) = max e(uaAn,m)a
WMot UWE Meest

as a function of the dimension n of V,,. Like in the previous example, both methods are delivering
a very satisfactory accuracy: the average error is below 5-1072 for both methods for all values of
n. The method P-POD-aff consisting in a partition of the manifold outperforms the data-based
one, P-DB-aff.

We next show that the method is efficient to assist in the detection of arterial blockages that
may cause severe health problems like a stroke. Since a blockage alters the distribution of the
velocity field after the bifurcation, a quantity of interest that could serve as a clinical index is

the ratio

_ Q2 (tpeak)

B Ql(tpeak) (2.37)

r

where

Qi) < /F u(t) -n ds

is the blood flow at the outlet T? i = 1, 2, and tpeak is the peak systole instant. Figure 2.16
shows the evolution of Q;(t) in time for a sick patient and its approximation with our two
reconstruction methods. We observe that, regardless of the image format (CFI or VFI), both
methods deliver very satisfactory predictions of the flow.

In figure 2.17, we compare the value of the exact ratio » with the reconstructed one for sick
and healthy patients u € Mvtest.

To define a threshold ratio r* to decide whether the patient has arterial blockage or not, we
can take the average of the flow ratios between the healthiest of the patients in the sick group

and the sickest of the patients in the healthy group, namely,

et T € Mo r(v) +;axueﬂhea“h>’ r(w (2.38)

where r(u) denotes the flow ratio associated to the velocity field u, as defined in (2.37). In
our data-base, we obtain, r* = 1.25, so any patient for which r > 1.25 will be considered as
presenting high blockage risk. Note that the approximation is very close to the real value for

moderate values of r regardless of the image modality. However, we tend to overestimate the
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Figure 2.18: Reconstruction example of a CFI partial observation at peak systole for blockage
case using 40 modes. No flow information in the carotid branches is observed. Nevertheless, the

algorithms are capable of reconstructing the velocity field in the whole computational domain.

value for r > 1.7. In presence of a blockage, r becomes significantly larger than one so the
overestimation is by far more preferable than an underestimation. Indeed, the overestimation
makes our method conservative and, in the worst case, we will conclude with a false positive.
However, the method will not lead to a false negative diagnosis, which would leave a sick patient
without treatment/surgery.

To illustrate the reconstruction for both CFI and VFI, let us consider the forward simulation
of a peak systole blood flow as depicted in figure 2.15. Assuming this field as a ground truth,
we can see the reconstruction with P-POD-aff and P-DB-affin figures 2.18 and 2.19.

2.5 Improving the piece-wise linear approximations

The reader might have noticed that our partitioned methods may bring higher errors at the
windows boundaries. This is intuitive since is easy to see that at the boundaries we are maybe
neglecting useful information for the reconstruction that can come from the surrounding neigh-
bourhoods.

The strategy to explore is to overlap windows, in such a way that we guarantee enough
information for any snapshot we want to reconstruct. We show a preliminary numerical example

of velocity reconstruction in a carotid siphon. As an exploratory work, this is part of the
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Figure 2.19: Reconstruction example of a VFI partial observation with same information of that
of figure 2.18. The method provides a slightly better reconstruction quality than that of the
CFI image.
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Figure 2.20: Time window overlapping example.



perspectives, and this results are not used in the following chapters.

In figure 2.20.b we see the proper orthogonal decomposition projection error in time for a
carotid siphon, as depicted in figure 2.20.a. We observe there two things: The time window-
ing improves the error, and we see how an overlapped basis in an intermediate time interval

compresses useful information for the reconstruction in the late systole phase.

2.6 Conclusions

We have investigated the construction of state estimation techniques with different reduced
models. We have compared their accuracy for the problem of reconstructing the blood flow
velocity field for which partial information is given by Doppler ultrasound images. The numerical
tests were synthetically generated and mimic a real context in medical applications. The results
show that the classical linear PBDW method with the classical POD reduced model can be
outperformed by other models that are built more specifically for the reconstruction task. In
particular, the nonlinear reconstruction method built by manifold partitioning and a local POD
basis on each partition outperforms all the other bases choices. It presents a good trade-off
between simplicity and efficiency and its accuracy is in some cases even ten times better than
the classical PBDW. The data-driven approach gave less performant results than the one with
local POD bases but superior to the classical approach. We think that the specific application
may have had an important impact on the observed performance. Since we build a space V,(w)
from the Doppler measurements w, they may not deliver enough information to learn a good
reduced model, especially in the diastole phase where w is close to zero. As a result, it seems
important to investigate further the performance of this method in other reconstruction problems
in order to gain better knowledge on its range of applicability.

In summary, we have set up a solid foundation for the chapters to come, in which the state
estimation will be the starting point of a pipeline that will allow us to exploit the observations

in order to compute medical quantities of interest.



CHAPTER 3
Estimation of Haemodynamics Quantities of

Interest from Doppler data

The content shown in this chapter inspired the following scientific publication: F. Galarce, D. Lombardi
and O. Mula. 2020. Reconstructing Haemodynamics Quantities of Interest from Doppler Ultrasound

Imaging. International Journal for Numerical Methods in Biomedical Engineering.

We present a continuation of chapter 2, exploiting the proposed partitioned POD technique further in
order to enlarge the possibilities of prediction based on Doppler data. Towards a realistic scenario, we
set our ambient space this time to V = [H1(£2)]3. Also, we perturb the synthetic data with white noise.

Beyond the blood flow velocity estimation, we extend the method to estimate quantities that are
currently used in the medical practice to perform diagnosis and treatment. Those quantities will be
introduced alternating between mathematical and medical frameworks.

The quantities of interest (Qol) are the wall shear stress (WSS), vorticity, flow rate, pressure fields
and pressure jumps. For the latter we provide a methodology based also on PBDW, with a theoretical
analysis that will come to justify the good numerical results we obtain compared to other state-of-the-art

methods.
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3.1 Introduction

In biomedical engineering, most realistic applications have to deal with data assimilation. The
problem to be solved consists in providing predictions on Quantities of Interest (Qol) given
observations of the system which are often partial and noisy. The present work is a contribution
to this topic and focuses on the reconstruction of haemodynamics Qol by exploiting Doppler
Ultrasound Imaging.

In several applications related to the cardiovascular system, the Qol to be predicted are:

1. The complete 3D wvelocity field and some quantities associated to it, say, for instance, the

maximal velocity or flow rate ([Hata et al., 1987], [Galarce et al., 2020]).

2. Pressure and pressure drop ([Hatle ct al., 1978], [Hatle et al., 1979], [Hatle et al., 1980],
[Mates et al., 1978], [Funamoto and Hayase, 2013]): this is particularly relevant, since it
is one of the main indicators of the severity of stenoses and eventual arterial blockages. The
direct measure of a pressure (or even a pressure drop) could be performed by implanting

a catheter, hence in a rather invasive way.

3. The worticity ([Mehregan et al., 2014], [Hirtler et al., 2016], [Charonko et al., 2013],
[Sotelo et al., 2018]): this quantity is monitored especially in the heart cavity and around

cardiac valves. A too large vorticity could induce, for instance, haemolysis.

4. The wall shear stress ([Gibson et al., 1993], [Reneman et al., 2006],
[Shojima et al., 2004]): this is related to the mechanical stress that the blood ex-
erts on the endothelial cells, of paramount importance in aneurysms and plaque

formation.

The Qol listed have to be reliably estimated in vivo, with the additional constraint of being
estimated fast, ideally in real time. For this, two main approaches are available. The first
one consists in a purely data-driven strategy where learning techniques are used to build an
approximation of the observable-to-Qol map given a sufficiently large dataset. The second one
consists in using an a priori description of the physics involved by means of a mathematical
model, often given in the form of a Partial Differential Equation (PDE), and then solve an
inverse problem. On the one hand, since we are dealing with space fields estimation, the pure
data-driven learning approach will in general need an exceedingly large data set to meet the
accuracy constraints of the application. On the other hand, discretising the system of Partial
Differential Equations and solving the inverse problem will in general result in a prohibitive
computational cost, thus leading to unacceptable computing times. These facts motivate the

use of mixed approaches combining an a priori knowledge coming from an available, potentially



inexact physical model of the system, and the a posteriori knowledge coming from the data.
One recent example in this direction is [Kissas et al., 2020], where a physics-informed machine
learning approach to estimate pressure in blood vessels from MRI was proposed. In this work,
we use a different methodology based on reduced-order modelling of parameterized PDEs.

Our contribution is to propose a systematic methodology to estimate the above five Qol on
quasi-real time involving reduced modelling techniques, and to assess its feasibility in non trivial
numerical examples involving the carotid artery. However, due to our lack of real ultrasound
images, our experiments present certain limitations: we have worked with synthetically generated
images and have used an admittedly simple Gaussian modelling of the ultrasound noise (Doppler
ultrasound images present a very involved space-time structure which is not the main topic of our
work and we refer to [Ledoux et al., 1997, Bjaerum et al., 2002, Demené et al., 2015] for further
details on this matter). The PDE model considered to describe the haemodynamics is the system
of incompressible Navier-Stokes equations, which is generally acknowledged to be accurate for
large vessels such as the carotid artery. We therefore assume that there is no model error and
that the true system is governed by these equations. Note in addition that this assumption also

comes from the fact that it is not possible to study the impact of the model error without real

measurements.
The structure of the chapter is as follows. In Section 2.2 we describe the
reconstruction method which we use. The method is very general and its

main mathematical foundations have been established in previous works (see
[Maday and Mula, 2013,  Maday et al., 2015a, Maday et al., 2015b,  Maday et al., 2016,
Binev et al., 2017a, Argaud et al., 2017, Taddei, 2017]).  We make a presentation that al-
ternates between a summary of the general mathematical theory, and its particular application
to the problem of interest. One relevant point to remark is that so far the methodology has
mainly focused on reconstructing spatial fields from observable quantities. In the present case,
this concerns the reconstruction of the 3D velocity field. One relevant novelty with to previous
contributions is that we show that it is possible to reconstruct unobserved quantities such as
the pressure field or the pressure drop in our problem. This is possible by making a joint
reconstruction of observable and unobservable fields, which are velocity and pressure in the
present. We explain this idea in section 3.2. The reconstruction of the wall shear stress and
the vorticity are discussed in Sections 3.4 and 3.5 respectively. The numerical experiments on
a carotid bifurcation are given in Section 3.6 for the case of noiseless images. We examine the
effect of noise in Section 3.7.

Thus, the task is to use Doppler velocity measurements taken from a fluid flow and to

reconstruct:

e Partially observable quantities: the full 3D velocity flow in Q and related quantities
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such as the wall shear stress and vorticity.
e Non-observable quantities: the full 3D pressure flow in €2 and the pressure drop.
The proposed strategy to address this task consists essentially in two steps:

e We apply the piecewise linear reconstruction algorithm of section 2.2.2 where the key is

to do a joint reconstruction of 3D velocity and pressure.

e We then derive the related quantities of interest as a simple by-product (wall shear stress

and vorticity).

3.2 Joint reconstruction of velocity and pressure

For the reasons explained in section 5.3, the couple (u, p) of velocity and pressure belongs to the
Cartesian product
V =UxP=[H(Q)x L*Q),

and is assumed to be the solution to the parameter-dependent Navier-Stokes equations (2.26) for

obs

some parameter y € Y. Some elements y°°® are observed but others are not so we cannot directly

solve (2.26) with the parameters set to y. We therefore use the piecewise linear reconstruction
of section 2.2.2. For this, it is necessary to endow V with the external direct sum and product
structure to build a Hilbert space. That is, for any two elements (u1, p1) and (ug, p2) of V.= Ux P

and any scalar o € R,

(w1,p1) + (u2,p2) = (w1 +u2,p1 +p2), a(ur,p1) = (our, apy)

The inner product is defined as the sum of component-wise inner products

((u1,p1), (u2, p2))y = (ur,u2)y + (p1,2) p s (3.1)

and it induces a norm on V/,

1w )| (), (u, p))y )2, Wu,p) € V-

When we are given partial information on (u,p) from Doppler velocity measures, we are
given the projection

w = PWm(u7p)

where W,, is the observation space

w,, & Wéf) x {0} = span{wy,...,wn} x {0} CV
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and the w; are the Riesz representers in U of each voxel ¢; € U’,
(wi, vy = 4i(v) = / v-bdx, YveU.
Q;
We are now in position to apply directly the reconstruction algorithms from section 2.2 to
do the joint reconstruction of (u,p) with the current particular choice of Hilbert space V' and
observation space W,,,. We briefly instantiate here the main steps. Let us assume that we have

a reduced model
Vn déf Span{(ulapl)a ey (unapn)}

of dimension n < m that approximates

M= {(uly),p(y) €V 1 y €Y}

with accuracy

en = sup dist((u,p), V), or 02EE (dist((u, p), Vp)?) (3.2)
(u,p)eM

and which is such that 8(V,,, W,,) > 0. Then, we can reconstruct with the linear PBDW method

(see equation (2.5)) which, in the present case, reads

ARSI (@) = (ug, (W), Py (@) £ argmin | (u,p) — Py, (u, p). (3-3)
(u,p)=w+ W+

The worst and average reconstruction errors are bounded like in estimates (2.8) and (2.9), that

is

e, P — a1, p) = (15 0 (62), P (@) < 87 (Vi Win) i (3.4)
’ (u,p)eM ’ ’
or
1/2
e, P24 = E (Jlu— A (P, w)?) < B (Vi Wan) 8 (3.5)

If we build a partition of the manifold M based on observed parameters, we can reconstruct

3.3 Pressure and pressure prop estimation

Decomposing the domain boundary 02 of a generic arterial bifurcation into the inlet, the wall
and the outlet parts

N =T, ul,url u...ur

out»

the quantities to retrieve are

1 1
op; = —/ pds— 7/ p ds, (3.6)
! |Fin| Tin |FZ)Ut| Féut
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for the outlet labels i =1,...,1.

The pressure drop is a quantity that has traditionally been of high interest to the medical
community since it serves to assess, for instance, the severity of stenosis in large vessels due to
the accumulation of fat in the walls, aortic regurgitation or arteriosclerosis. Figure 3.1 provides
well known pressure profiles for a number of cardiovascular diseases. The potential predictive
power of the results will depend whether we are capable to differentiate among the different

profiles for a given patient with only the Doppler data.

160
S 80~ Normal Arteriosclerosis Aortic stenosis
T
g 160
E
TN
3
3
E 80 Normal

40

Patent ductus Aortic
0- arteriosus regurgitation
Figure 3.1:  Aortic pressure pulse signals for several pathologies. Image source:

[Guyton and Hall, 2011].

3.3.1 Joint Reconstruction

If we reconstruct (u;,pk), we can easily approximate the pressure drop by

1 1
opl = / pr ds — — / Py, ds,
! |Fiﬂ | Tin " ‘ ]'—%Ut | Tt !

fore=1,...,1
As we will see in the numerical results, the pressure drop is approximated at very high
accuracy with dp; . We next provide a theoretical justification.

For this, we remark that we can view dp; as a bounded linear mapping from V =U x P to

R defined as

1 1
opi((u,p)) = — / pds— —; / pds, V(u,p)eV.
|F1n| Tin ‘F I

out| out

Thus the reconstruction error is given by

|0pi((u, p)) = dip((up, py,))-
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Exploiting the linearity of dp;, one can derive the simple bound

10pi((w, p)) = 0pi((un, Pp))| = 10pi ((w, p) = (un, Pp)) | (3.7)
< 18pillv [l (u, ) = (ur, i)l (3.8)
< lopillv: (Ve Win)|[(w, p) = Py, (u, p)| (3.9)
< |16pillve B(Va, Win)en, (3.10)

where we have used (2.8) between the second and the third line and where

o 5p; (u,
16pillyr 2 sup 102D
wpev (W p)]l

As we will see below, this estimate is too coarse to account for the high reconstruction accuracy
which is observed because the values 8(V,, W) are close to zero and the product 3(V,,, Wp,)en
is only moderately small. It is necessary to find a sharper estimate that involves finer constants
in front of &, to account for the good reconstruction results. For this, observing that, by
construction of (u},pr),

we have
(u,p) — (u}y,p}) € W™

so we can derive the new estimate

8p1((s ) = Opi( (5, D] < ol ) = () = Py (o) = i) | (311)
< 26m,nn, (3.12)
with
o 16pi((11. )|
fmn = D[ : 3.13
ey, 1dist ((u,p), Vo) | (3.13)

As we illustrate in our numerical tests, the value of k;, 5 is moderate and significantly smaller
than the factor ||0p;||v/B(Va, Win) of the previous estimate. As a result, the product Ky, ney, is

small, and we guarantee a reconstruction of the pressure with good accuracy.

3.3.2 Virtual work principle from the reconstruction of u;,

As an alternative to the joint reconstruction strategy, we can use a method introduced in
[Bertoglio et al., 2017b] called Integral Momentum Relative Pressure estimator. As a start-
ing point, it requires to work with a reconstruction w;, of the velocity which, in our work, will

be given by the PBDW method applied only to the reconstruction of the velocity field without
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pressure. We then estimate the pressure drop using the Navier-Stokes equations as follows. As-
suming that u} satisfies perfectly the momentum conservation (2.26), we test by a virtual and

divergence free velocity field v € U,

p/atufl-vdx+p/(u;kl-Vu:L)-vdz+/Vp-vdzfu/AuZ-vdx:(). (3.14)
Q Q Q Q

K(U;;U) Iconv(u;‘;7v) Ip’ress(pav) Ivisc(u;‘;7v)

Using Green’s identities, we can write

Loy (45, 0) = p / (uy - m)(usy - v) ds — p / (- Vo) -, da.
Q

o0
Lyisc(uy,v) = u/ Vuy, : Vo do — u/ (Vuy, -n)-vds. (3.15)
Q Z19)
Ipress(u:(“'u) = / p(’U . n) ds — / p(V . ’U) dz.
o0 Q

The current strategy requires to assume that the pressure field is constant over the inlet and

outlets. Notice that, since V - v = 0, the following identity holds,

=1 FZ)ut

l
Ipress(pvv) :p/ U‘ndszpm/ U'?’LdS"‘prmt/ v-nds, (316)
Q Fin

0
where p;, is the average pressure over I';, and pf)ut is the average pressure over the i-th outlet
I . For j =1,...,1, we consider a function v; € V satisfying V- v; = 0 and v; = 0 in T,

Mass conservation for incompressible regimes implies

I
/ Uj-nds—l—Z/' vj-nds=0, (3.17)
[in =1 Ff)ut
for j =1,---,1. As aresult, it is possible to recover the mean pressure drop z; = péut — pin for
each outlet 7 = 1,--- .l by solving an [ x [ system of equations
Fz=H(u}), (3.18)
where F' € R has entries
Fij = /Fj v; - ds, (3.19)
out
and,
Hz(u:) = - (Ivisc(uy*w Ui) + Iconv(u:u Ui) + Ikin(u;.;v vz)) . (320)

The inversion of the system (3.18) is made trivial when the v; are chosen so that F becomes
diagonal (with nonzero entries). We remark that this is achieved if we choose the v; to be

divergence-free and to have outgoing zero flux in all the outlets Fﬁut for j # i. For each
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i =1,...,1, v; can be characterized as the unique solution to the following Stokes problems:

Find v; € U and X € L?(2) auxiliary function such that:

—Av; + VA = (0,0,0) in Q,
V. UV = 0 in Q,
v; = (0,0,0) on 'y,
(3.21)
v; =1[(1,1,1) -njn  on Ty,
v; = (0,0,0) onT? . Vj#i,
1 ,
5 (Vv + Vi) n— =0 on T ..

In order to ensure good stability when doing the time integration of (3.14), we use the
Cranck-Nicholson scheme.

We may note that this method requires the knowledge of the flow viscosity and density, and it
assumes constant pressure over the inlets and outlets. This is contrast to the joint reconstruction

approach which does not need these assumptions.

3.4 Wall shear stress

The wall shear stress (WSS) has been proposed as an index of damage in vascular endothelial cells
and atherosclerosis, a disease in which the blood coagulates close to the vessel walls. The works
[Konstantinos et al., 2009], [Heo et al., 2014] or [Zarins et al.. 1983] can serve as a reference. In
figure 3.2 we see schematized the influence that plaque formation has in the blood flow and

therefore its correlation with WSS.

Low ESS High ESS Oscillatory ESS

Upstream shoulder Downstream shoulder
Vulnerable phenotype plaque growth

Figure 3.2: Wall shear stress alteration due to human carotid artery plaque, here refered as

endothelial shear stress (ESS). Image source: [Konstantinos et al., 2009].

The WSS is a mapping S : U — [H™/2(Ty)]%, S : Q — R? that returns the tangential

component of the force that the blood applies on the vessel wall

Vu + Vul >
———n |, on Iy.

S(u) =2u{l —n®n} ( 5 (3.22)

Note that S(u) € [H~/2(I'y)]? because a velocity solution u of the Navier-Stokes equations
satisfies (Vu)n € [L?(Q)]® and, by Green’s formula, we can prove that (Vu)n|r, € [H™/?(T'y)]%.
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Our goal is therefore to compute the reconstruction error [|S(u) — S(u”)|[g-1/2r, ). First, we

have that

[S(u) — S(U*)H[H—m(rw)}s S ||)‘1H[H—1/2(Fw)]3 +[S(u) = S(ur)]
where S(u) = [[. S(u)(x) dz and ) is a vector field defined as
A= S(u) = S(u) — (S(w) - SW) € [HAT,)P
is a function of zero mean. We next prove that there exists a constant C' > 0 such that

||)‘1||[H—1/2(Fw)]3 < C||¢>\1|Fw||[L2(rw)]3 (3.23)

where ¢, € [H'(2)]? is the unique solution to the following homogeneous Laplace equation

with Neumann boundary condition: Find ¢y, € [H*(Q)]® with ¢, = 0 such that
/ Vd),\l : Vo da = / A -vds= <)\1,Tr(v)>[H—I/Z(FW)]37[H1/2(Fw)]3 5 Yu € [Hl(Q)]S, (3.24)
Q I—‘VV

where Tr : [H'(Q)]? — [HY?(Q)]? is the trace operator. By applying the Cauchy-Schwarz
inequality in (3.24), we derive
(A1 Tr () =172y 2 < VO iz Vollize e < N1éx lim @pllvllm @

from which we deduce that

M llz-12g s < loa iz @

Finally, by continuity of the mapping A1 € [L?(T'y)] — ¢, € [H(Q)]3, there exists a constant
C > 0 such that ||y, |71 Q)3 < CllMlljz2r, 3. This yields our final, computable bound

18(u) = SWH)lizr-12(r, 32 < CUTr(PA) L2y + S (@) = S(u*))).

Thus, to evaluate the reconstruction quality of the WSS at a given time ¢ we compute:

() = [ Tr(Pa) iz, 2 + 1S (u(t) — S(u*(t))] (3.25)
I Tr (s liz2ry e + 1S (u(?))]

where Ay = S(u(t)) — S(u(t)).

3.5 Vorticity

The vorticity is defined as © = V x u. The relative L? error in time for the vorticity reconstruc-

tion ©* =V x u* =V x A(Pw,, u) is given by
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10() —©* ()|l
(flew]? d)**
Since u € U = [H*(Q)]? with V -« = 0 (incompressible flow) and since we have the identity

Evorticity (t) = (326)

(see, e.g., [Guermond et al., 2005])

IV x ullf2qy = [Vl o) + IV - ulf2i0) = [Vl 2, (3.27)
it follows by (2.8) that

1© = Ol r2(0) < llu—u*lv < B~ (Ve Win)llu — Py, ullr (3.28)

What motivates the computation of this Qol is that it provides information about the
shear layer thickness, which has been correlated with thrombus formation and hemolysis
[Bluestein et al., 2010]. In general, vorticity is connected to the assessment of the cardiovas-
cular function. There have been also efforts to reconstruct it from magnetic resonance images

(see, for instance: [Garcia et al., 2013]).

3.6 Noise-free numerical test in a carotid geometry

This section will present extensive test on Qol computations up to what extent we can get
accuracy under noiseless conditions. Our experiment will be exactly the same as that of section

2.4.3 for the common carotid artery branches.

3.6.1 Optimal partitioning and optimal dimension of V,,

As was already brought up in the numerical example of chapter 2, we can use our piece-wise
linear approach due to the fact that during ultrasound examination, we have access to the
patient’s heart rate HR and the time ¢ of the cardiac cycle. We can therefore decompose the

vector y of parameters as
y = ("% y"), ¥ = (t,HR), y"" = (s, Tyys, u0, 7).

and use the piecewise reconstruction algorithm introduced in section 2.2.2.

Let us recall that the strategy that we have followed consists in computing first a training
subset M of snapshots. We next consider a splitting of the time interval into K € N* uniform
subintervals

0,7] = UKy, with 7 = [kT/K, (k + 1)T/K]

We proceed similarly for the heart rate’s interval and split it into K’ € N* uniform subintervals,

48,120 = UK 'hy,  with by = [48 + 72K/ /K, 48 + 72(K + 1)/K[.
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For fixed (K, K'), we have the partition in the parameter domain (see figure 2.2)

YObS = U T X hk/, Y = U Tk X hk/ X Yunobs
(k,k")ed0,...,K—1}x{0,...,.K'—1} (k,k")€e{o0,...,K—1}x{0,...,K'—1}

and the induced partition in the manifold

M= U MEF)
(k,k")e{0,...,K—1}x{0,...,.K’'—1}

We have performed test changing the dimension of the reduced model. Nevertheless, we need
a systematic way to choose a unique n to do the computations to optimize on the reconstruction
quality. We next proceed to introduce an optimality criteria to choose this number.

For each M(k’k/), we can compute reduced models Vn(k’k/). If we measure the reconstruction
error in the worst case sense, we can estimate the reconstruction performance with this splitting
by computing

. (k,k")
e(K,K') = min  max dist(u, V™" )

= max m: — (3.29)
(koK )E{0, K= 11X {0, K/ =1} LSnSm e g, oo B( 75 ) )7Wm)

We then look for the optimal partition when K and K’ range between 1 and 7, that is, we select

(Kopta K(l)pt) € arg min e (K’ K') i
(KK {1, T} x{1,...T}

When we consider only the velocity u as a target quantity, we obtain a 5 x 5 partitioning

of Y°Ps. In figure 3.3, we show the behavior with n of the stability constant B(V,gk’k/), W) and

(kK"

the error max ek dist(u, Vi ) for each element of this optimal partition.

u
We proceedesﬁ/lmilarly to derive the optimal partition for the couple velocity-pressure (u, p) in
V =U x P. We also obtain a 5 x 5 partition and figure 3.4 shows the behavior of B(Vrgk’k/), W)
and the error MAX () Tk dist((u, p), V,ﬁ’“”“/)) for this case. Note that the value of the stability
constant is very low, and this is due to the fact that our measurement space allows only to sense
in the velocity.
Once the optimal partition has been found, for each subset MEE) we select the optimal

dimension n* as

: (kK
dist
nzhk’) c 3ng min M (3.30)

1,...,m (VTSk’k,),Wm)
This procedure for the selection of nz‘k W) is referred to as the multi-space approach in

[Binev et al., 2017b].

3.6.1.1 Impact of ambient space choice in the reconstruction quality

It might be natural to think that the inner product introduced with (3.1) could not be the

optimal choice, since it is well known that the orders of magnitude of both pressure and velocity
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for reconstruction of velocity only. Optimal partitioning is K = K’ = 5.
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joint reconstruction of section 3.2. Optimal partitioning is (K = K’ = 5).
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are very different. Thus, one could try to compensate this difference by adopting the following

inner product for elements (u,p) € U x P:

((w,p), (u,p)) = (u, w)v + e{p, p) p (3.31)

a > 0 is introduced in order to account for this aforementioned difference in the orders of
magnitude of the pressure field in the mixed space. One would expect that, the lower the value
of a, the closer we get to the reconstruction stability and result of (2.6). Different options for
this parameter are going to be tested. Among them, one that properly weights pressure and

velocity importance would be:

argmax, 7 |luflu
a= roin 3.32)
T (

where in this context ./,\/lvtrajn corresponds to the training set made up by a finite number of

samples of FEM solutions of the governing laws.

—  (u,p) weighted e weighted
e — (u,p) non weighted - Nl —— non weighted -
(u,p) semi weighted N semi weighted

U x P error
Y 0,
max P error

n n

(a) Error in (u,p) (b) Worst case scenario L? error in pressure

Figure 3.5: Impact of the weighting parameter in the inner product that defines the search space.
In the legend, non weighted stands for o = 1, weighted stands for « as expressed in (3.32) and

semi-weighted stands for a as the square root of (3.32)

Nevertheless, we can verify in figure 3.5 that, against the intuition we have just brought to
the table, the results suggest using a« = 1. The absolute lack of information about the pressure

in Wy, could explain this, we speculate.

3.6.2 Reconstruction results for velocity field and derived quantities

In the rest of the chapter, we use the piecewise linear approach with the optimal splitting and the
optimal dimension n?k k) for the reduced models V,Ek’k'). To simplify notation, we will write V,,

/
instead of Vn(k’k) when no confusion arises and (u*, p*) instead of (u; . o Ppe ). In addition,
(k,k") (k,k")
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depending on the context, V,, denotes either the reduced model for the velocity reconstruction
or the reduced model for the joint reconstruction described in section 3.2.

Similarly to the numerical examples of chapter 3, the ultrasound device will be placed in
such a way we measure the half of a mid plane of the working domain. The ultrasound wave will
form an angle of 7/4 to the dominant fluid direction in the main carotid branch, that is to say,
b= [\/5/27 V2/2, 0]. An example of a noiseless CFI during the systole phase can be depicted in
figure 3.6

-

Lo+eg'e 0z  00+20°0
(s/W2) 140

[

Figure 3.6: Synthetic CFI of the common carotid branch with 233 voxels. We simulate a device
incapable of recovering velocity data after the artery bifurcation downstream, which includes an

interesting extra challenge to the numerical example.

Figure 3.7 shows the relative error in time in the velocity reconstruction

lu(t) — w* ()17
e(u(t))? = ————2"L. (3.33)
J @)z dt
in norm U = [H'(Q)]>. We observe that there is no field over 10% error. One can further

examine the error by studying separately the L?(Q2) reconstruction error of the velocity and
its gradient, as shown in figure 3.8. The reconstruction plots show that there are small error
peaks around the region where one time window ends and the next one begins. Section 2.5 show
preliminary results of a technique to overcome this issue.
Figure 3.9 shows the approximation error due to the projection in V,,,
2 |lu(®) — Py, u(®)]?
Jllu(®)|>dt

We see that this error does not interfere with the reconstruction quality in the sense that it stays

ev, (u(t))

much lower than (3.33).

An example of the velocity reconstruction for one patient during the early systole period is
shown in figure 3.10, where we observe that the larger errors occur in the stenosis zone. This
behavior is observed during the whole cardiac cycle.

Concerning the WSS and vorticity, we can see the time evolution of the errors (3.25) and

(3.26) in figure 3.11. As an illustration, figure 3.12 and figure 3.13 shows a three-dimensional
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(a) e(u(t)) for each patient
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(b) e (u(t)) averaged and max

Figure 3.7: Reconstruction error in U = [H(Q)]* of the velocity field for 16 patients. Notice

the small jumps at each time window interface. The vertical axis shows the error as expressed

in (3.33). The horizontal axis shows the normalized time for one cardiac cycle.
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Figure 3.8: L? error in velocity reconstruction. We observe that the accuracy for both «* and

Vu* stays in the same orders of magnitude. The vertical axis shows the error as expressed in

(3.33). The horizontal axis shows the normalized time for one cardiac cycle.
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reconstructed vorticity and wall shear stress fields, ively. The error in the stenosis area tends to

be propagated from the velocity reconstruction, as can be expected.

<
q)
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N — Average
\\q/
\ — Max
\/\J
N
S
N
Q7 0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.9: Model error ey, (u(t)). The horizontal axis shows the normalized time for one cardiac

cycle.
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Figure 3.10: Example of reconstruction of the velocity during the early systole period. We

observe a zone of high error close to the stenosis.

3.6.3 Pressure Drop Estimation Results

This section is devoted to comparing the two reconstruction methods for the pressure drop

introduced in section 3.3.
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Figure 3.11: Relative errors (3.26) and (3.25) in time. The horizontal axis shows the normalized

time for one cardiac cycle.
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Figure 3.12: Example of reconstruction of the vorticity during the early systole period. We

observe how the error from the velocity reconstruction is reproduced close to the stenosis.
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Figure 3.13: Example of reconstruction of the wall shear stress during the early systole period.

We observe how the error from the velocity reconstruction is reproduced close to the stenosis.

In the first method, we first compute the joint reconstruction of velocity-pressure with the
piecewise linear algorithm, and then compute the pressure drop with formula (3.6). Figure 3.14
shows the evolution of the estimated pressure drop in 4 simulations and compares it with the
evolution of the exact pressure drop. The figure shows that the methods delivers a very high
accuracy.

We can justify the obtained high accuracy by estimating the value of the stability parameter

Km.n defined in (3.13). For this, we approximate the space W+ with
wt = span{¥y,..., Uy} Cc W,

where {Uy,..., ¥y} is an orthonormal set of functions of WW+. These functions are obtained, for
example, by first computing a singular value decomposition with N > n functions ¢; = (u;, p;)
from the manifold M. In our case we set N = 250. We can then orthonormalize them with to

Wy, = span{wi, . ..,wn }, which yields the desired
V; = ¢; — Pw,, ¢i- (3.34)

We can next expand any function 7 € Wt as

N
n= Z niVi,  with g, = (n, ¥;) (3.35)
=1



3.6. NOISE-FREE NUMERICAL TEST IN A CAROTID GEOMETRY 75

q/ J

\/ i
ERN e
g g
E . E
g7 « g
8 op; S
% s 0p2 ;
7]  opF 7]
£ P £

opr
0.0 0.1 0.2 03 04 05 06 07 08 0.0 0.1 0.2 0.3 0.4 0.5
Time [sec] Time [sec]

R : B
= o0
== s
g g
g E
5 R B
a P2 a
o

op1
<D - 0 0 0 0 0 - Va a 0 0 0 0 -
7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5
Time [sec] Time [sec]

Figure 3.14: Pressure drops dp] and dp3 in four simulations using the joint reconstruction method
of section 3.2 with the piecewise linear algorithm. Dashed lines shows the ground truth dp; and
0p2. The vertical axis shows the pressure drop in [mmHg| and the horizontal axis the time in

seconds.
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(a) Km,n as a function of n. (b) Upper bound of pressure drop reconstruction error
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Figure 3.15: Behavior of &,y 5, with to dimension of V;, for each manifold partition in the method
for joint reconstruction of section 3.2. In the right side we see the plot of max;{2k, ne,} for
1 =1,...,25 denoting the worst among the 25 windows in the piecewise linear approach. this

quantity is an upper bound of the pressure drop reconstruction error (see inequality (3.12)).

The discrete version of equation (3.13) leads to the optimization problem

max 7" Qn
neRN
st. nTMn=1,
where
Mij = (¥; — Py, W, ¥ — Py, V),
and

Qij = Q(W:)Q(Y;).

This problem is equivalent to the generalized eigenvalue problem of finding n € RY and the

largest A € Ry such that
Qn = AMn (3.36)

As a result, we can estimate the value of Ky, , with the largest eigenvalue A of problem
(3.36). Figure 3.15(a) shows the estimated value of k,, as a function of the dimension n of
the reduced model V,,. Since we use a 5 x 5 partition of the manifold, we plot the 25 associated
curves. From the figure, we deduce that x,, < 160 for all partitions. As we see from figure
3.15(bh), the product 2,k n stays lower than 1073 for any dimension n. As proven in (3.12),
this quantity is an upper bound of the reconstruction error and rigorously confirms the quality

of the approach.
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We can next examine in figure 3.16 the performance of the second method involving virtual
works discussed in section 3.3. Although we observe good results like for the previous method,
a mismatch is observed for one of the common carotid branches in the systolic phase. This error
is not observed with the joint reconstruction, and it is probably due to the fact that the method

involves less assumptions on the nature of the flow and pressure.
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Figure 3.16: Pressure drops dp] and dp5 with virtual work principle for noise-free measures. We
observe the time evolution for 4 test cases in the two carotid branches, and a comparison with
the ground truths dp; and dps. Vertical axis shows the drop in [mmHg], whereas the horizontal

axis shows the time evolution in seconds.

3.7 Noisy measurements

There are multiple sources of noise in CFI images, e.g., fake echo, reverberation, speckle,
side lobes, ghosting, which result in a complicated space-time structure of the noise (see
[Ledoux et al., 1997, Bjacrum et al., 2002, Demené et al., 2015]). Here we study the effect of
noise in the admittedly simple case where we assume a gaussian perturbation of our observa-

tions of the form

2i = &(u) + (3.37)
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where 7; ~ N(0,02). The noise is then independent at each voxel, averaged on the perfect

measures. The standard deviation is chosen relative to the synthetic measures as

max; max;—1,..m % (u(t))
0' fr—

~ )
«

where & € R is a parameter that steers the noise level.
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Figure 3.17: Reconstruction error (2.8) in one of the manifold partitions. Dots: unconstrained
approach (3.40). Full line: constrained approach (3.42). Curves for the constrained and uncon-
strained approach overlap for the joint reconstruction in V= U x P, showing that the constraints

do not bring any improvement.

As already observed in previous works, a naive reconstruction with the PBDW method with
the noisy measurements (z;)7”; is not asymptotically robust in the sense that when number
m of observations increases, the error bounds degrade essentially like \/mo. This has moti-
vated the search for more stable formulations, and several approaches based on different types
of regularization and thresholding have been proposed (see [Taddei, 2017, Argaud et al., 2017,
Gong et al., 2019]). Here we consider a simple variant based on a thresholding technique for
U (s6€ equation (2.7)) in the spirit of [Argaud et al., 2017]. To explain it, we first need to

recall that in the noiseless case, v}, ,, is the unique minimizer of:
.

1
vy, = argmin = || P, u — Py, v|*. (3.38)
' veVL 2

A slightly different approach is to find oy, ,, € V;, as

L R
T = arg min o > 1l (w) = () [Fgmy- (3.39)
i=1

vEVR
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We may note that, in general, o, ,, # vy, ,, except if {w;}2 is an orthonormal family in V. In

presence of noise, we measure z; and not ¢;(u) so the minimization becomes

qfrenn - Z |z; — |Z(Rm) (3.40)

To make this reconstruction more robust againt noise, instead of minimizing over the whole space
V,, we can use the structure of the PDE solution manifold M and minimize over its “footprint”

on V,,, that is,

def

Ky = PVn = {PVn RS M}

The resulting minimization reads

, = argmin - Z|zﬁ v)[3@m)- (3.41)
’Ue]Cn

In practice, if {v;}]"; is an orthonormal basis of the space V;,, we can compute the coefficients

c* € R" of 0y, ,, in this basis by solving the constrained least-squares problem

min — E z Ec (v
ceR™ 2 17 = i)

def .
s.t. || < 1%%{|<u,vj>| =d;, j=1,...n

(3.42)

This optimization problem is quadratic, with linear constraints and with a convex feasible
region, a box. The optimality conditions for this kind of problems were first introduced by
William Karush in his master’s thesis in 1939 [Karush, 1939]. The steps to get the minimizer

¢y, € R™ starts with testing the trivial case, i.e., the case in which:

GTGer, = GTl. (3.43)
where we have introduced the matrix of dimensions m X n, a cross-Gramian between the spaces
Wy and V,. I € R™ is a vector containing the Doppler data. We then should verify if Vi,

fou

15l < 0i. If so, there are non active restriction, which leads to state that the following bullets

are equivalent:
e ¢}, is an interior point of [—01,d1] X ... X [=dy, ).
e y;=0fori=1,....n

e The solution of the constrained problem is that of the pure least-squares (3.39). Thus, the

model bias correction would be missing for this strategy.
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Figure 3.18: Relative errors in joint reconstruction for two time dependent solutions. Figure

3.17(b) suggests us to use 30 modes in the reconstruction.
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Notice that there are 2n restrictions, but at most n of them can be active simultaneously.
If any of the constraints are violated, then we start by assuming that n of them, the conditions
¢ < 6, for i =1,...,n, bind. In general, assuming that there are k binding constraints, we can

introduce a vector of KKT multipliers 4 € R¥ and write the Lagrangian,
T =l Gulj + u" (c — )

Optimality conditions leads to the following saddle point problem:

lelie! Inxk] lc
Ikxn 0 H

GTl
]

(3.44)

We next study the reconstruction error with the unconstrained and constrained approaches
(3.40) and (3.42). Figures 3.17(a) and 3.17(b) show ively the error against the dimension n of
V,, for the velocity reconstruction and velocity-pressure reconstruction. For each value of n, we
compute the average error over 100 realizations of the noisy measurements for different levels
& of the noise. The noiseless case is labeled @ = oo in the plots. The test case is focused on
the first time partition, during the systolic phase of the cardiac cycle, and for patients in the
lower heart rate partition. As expected, the quality of the reconstruction degrades when the
level of the noise increases (& decreases). We observe that both constrained and unconstrained
methods behave very similarly for a low number of modes. For the ambient space V = U, the
constrained approach is able to grant a better reconstruction as we increase the dimension of
the space V,,. However, for the ambient space V' = U x P, the constrained approach does not
bring any improvement with respect to the unconstrained one.

Figures 3.18 and 3.19 show the reconstruction error for velocity and pressure fields, and the
pressure drop computed from the joint reconstruction in V"= U x P. As in the noise-free nu-
merical experiment, the reconstruction output is very satisfactory for all quantities. We observe
that the pressure drop reconstruction is more robust to noise than the reconstruction of the full
3D pressure field although the reconstructed pressure drop is derived from the reconstructed 3D

field. For all the cases, the reconstruction was done with a dimension n = 30 for V.

3.8 Conclusions and perspectives

We conclude this chapter by summarizing the main topic and contributions. We have proposed
a systematic methodology involving reduced modelling to give quick and reliable estimations
of Qol in biological fluid flows. We have assessed the feasibility of the approach in non trivial

numerical examples involving the carotid artery. The numerical examples include:

e The reconstruction of velocity related quantities such as vorticity and wall shear stress

from Doppler data, both holding average errors below the 5% in an H' sense. At worst,
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Figure 3.19: Reconstruction of pressure drop for 3 noise levels in two patients. The results are

presented for the early systole phase. Vertical axis shows the presure drop in [mmHg] and the

horizontal axis the time in seconds.
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we have observed a maximal error during the cardiac cycle for one of the test cases below
the 10%.

e The reconstruction of wunobserved Qol from Doppler data such as pressure
fields and pressure drops, with comparisons with other state-of-the-art techniques

[Bertoglio et al., 2017b].
e The simulation of semi-realistic measures by considering white noise in the input signals.

e A theoretical study of the reconstruction error in all Qol. In particular, the numerical

results confirm that the bound for the pressure drop estimation is rather sharp.

Although the present results are promising, they remain a proof-of-concept since the Doppler
images and the flows serving as the ground truth are synthetically generated. To go further, we
need to validate the methodology with real flows and real ultrasound images. This step poses
however a certain number of challenges that we will eventually addressed in a collaboration
involving medical doctors and experts in 3D printing. The main roadmap is: (i) to manufacture
arteries with similar mechanical properties as biological ones, and favorable optical properties to
collect ultrasound and PIV measurements. (ii) Once this is done, we will collect the ultrasound
images and feed our reconstruction algorithms. We will compare our reconstruction with PIV

images, which will serve as the ground truth.
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CHAPTER 4
Inverse problems on non-parametric domains.
Application to fluid mechanics using non

linear dimensionality reduction

Solving in real time inverse problems for biomedical applications might require learning techniques that
takes simulations and databases from different patients which inevitably involve anatomical variations.
We present a state estimation method which allows to take this variability into account without needing
any a priori knowledge on a parametrization of the anatomical differences. We rely on morphometric
techniques involving Multidimensional Scaling and couple them with reconstruction techniques that make
use of reduced modeling. We prove the potential of the method on a simple application inspired from

the reconstruction of blood flows and quantities of medical interest with Doppler ultrasound imaging.
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4.1 Introduction

In both, forward and inverse problems, MOR techniques relies on pre-built (offline) data bases
that encodes the governing dynamics of the states. In Chapters 3 and 4 we have saw the efficiency
of MOR techniques to address problems for a fixed working domain. We explore here how to deal
with the scenario in which the targeted application does not allow us to know working domains
a-priori. That is certainly the case of most of the bio-medical applications. For example, in
[Manzoni et al., 2018], we see efficient model order reduction techniques for the mono-domain
equations in the heart, but which are blocked by the challenge that is called there as inter-patient
variability.

Inter-patient variability (or domain variability in general) is an urgent subject to address in
order to make methodologies such as those of Chapter 3 and Chapter 4 to go from academic
proof of concepts to medical or other applications in the industry. Furthermore, there is spe-
cial attention on this matter in the scientific community, as its scope goes much beyond the

applications listed in this thesis.

There is a number of works dedicated to non-paremetric domains. Nonetheless not much of
the available literature concerns inverse problems. In spite that they address forward modeling,
the problem of registration between geometries is fundamentally the same. In [Taddei, 2020],
a registration method between parameterized working domains is proposed, which provides a
systematic tool to compute mappings so that MOR techniques can be used in a domain known
a-priori. Among its features, the registration method is said to be general in the sense that
works independently of the governing dynamics. In contrast, we propose a methodology that
gives prominent importance to the PDE that is used to generate the data base. We claim
that is possible to build up metrics with this in mind in order to address inverse problems in

non-parametric domains.

In [Akkari et al., 2019], we see an application in fluid dynamics in which the domain vari-
ations can be localized with an indicatrix function, so that high fidelity simulations are run
inside certain zones of the domain, and reduced models are used wherever no domain variations
are expected. This approach, proved up to a certain accuracy successful, is not well-adapted
for bio-medical applications in which the geometrical variabilities are not that predictable. In
[Guibert et al., 2013] we see forward modeling with reduced basis that, in spite of providing
predictive power on quantities of interest such as flow rate or pressure jumps, the methodology

lacks enough accuracy to recover the whole state.
The novelty of this Chapter can be summarized then to a method that propose to address the
points of the previous paragraphs in order to solve inverse problems in non-parametric domains

providing and sometimes theoretically guarantying state estimations up to accuracies that, as
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far the author knows, has not been reported yet.
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Figure 4.1: The problem of state estimation from pre-computed models in templates.

We introduce a pipeline to systematically solve inverse problems over non-parametric do-
mains for blood flows. In a nutshell, we propose to circumvent the aforementioned problematic
by building data-bases over a set of working domains, so called templates, that represent a broad
spectra of configurations. The underlying idea is that given a new geometry, there will be at
least one among those templates that will provide good reconstructions. Each building block
of the methodology has to carefully address the following three points (see an scheme in figure
4.2):

1. First, a mechanism to map fields between geometries in such a way that certain physical

properties are preserved has to be discussed.

2. Second, we need a proper way to identify a correct template given a new working domain.
This requires to question the notion of distance between spatial domains by enforcing a
metric space that somehow encodes geometrical information about euclidean proximity
between cloud of points but also information about the underlying governing dynamics

that are used to produce the data base on each template.

3. Third, a methodology about how to represent geometries in low-dimensional spaces that
hopefully resembles a parameter space is introduced. We borrow here techniques from
machine learning in order to find those representations. We can then build linear mappings

to find out a template given a new working domain.

A final step in the pipeline is thus to connect the previous blocks with the reconstruction
algorithms of previous chapters. Having all of that we present a 3D numerical example of low

Reynolds non-convective flows reconstruction from synthetic Doppler data.
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Pool of templates {
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Figure 4.2: Multi-domain problem pipeline scheme.

4.1.1 DMotivation and metrics induced by governing dynamics

Suppose we are given on the one hand partial observations about a state in a certain spatial
domain Q* € R? (d = 2,3), illustrated in figure 4.1. We have, on the other hand, model
information on a pool of Ngeo € N domains {Q4,...,n,,} called templates. The challenge
is to identify which, among the templates, the duck, the horse, or the rabbit could somehow
provide accurate information about the state on the given chicken. What is the state we are
interested in? Say for instance that the word bird is what we would like to recover. Having said
so is clear that duck is going to be the perfect match. Deep down, what we want to introduce
here is the idea that every template contains some abstract information, sometimes provided
with a model, that we would like to use to build up those matches.

Let us put ideas down with a fluid mechanics thought experiment designed to naturally
dissociate the notions of geometrical distances from a model distance. In figure 4.3 we observe
three domains in which we can imagine a flow is entering from the bottom boundary. It is easy to
see that there is a certain geometrical symmetry of ; and 3 with respect to €23. Nevertheless,
if the state to be recovered in a new geometry was the fluid flow, a purely geometrical criteria
would lead us potentially to the wrong template. This small example should facilitate the
discussion that we will bring up in this chapter in which we set up metrics based on distances

between sets of solutions of fluid governing dynamics in the templates.

4.2 An operator between divergence free spaces

Let us recall the space of divergence free fields in Q C R?: H(div; Q) = {u € [H'(Q)]?; V-u = 0}.

Incompressibility in fluid flows is a fundamental hypothesis we have taken and is present inside



90

1L

t1t Pt Pt

Figure 4.3: In a fluid mechanics problem is easy to see the discrepancy between flows in €2y, 2o

and €23 in spite of the geometrical symmetry.

all the simulations of this document. It is then mandatory to have a reliable way to build an

operator T  : H(div; ;) — H(div;€;), u — (Tisj(u)), so that mass conservation is ensured

when moving a field from one geometry to another. We can divide the process of building 7j,;

in four sub-steps, a methodology lended from [Guibert et al., 2013]:

e An optimization problem to find an invertible function f;,; : 9€; — 9 that maps 0Q;

to a auxiliary surface 0§, hopefully similar in a sense to 0€2;. This mapping should
be designed in order to satisfy some suitable properties, such a certain smoothness and
enough flexibility (non linearity) for large deformations. We have chosen to realize this
step via the large deformation diffeomorphic metric matching (LDDMM) approach (see,
for instance [Vaillant et al., 2004]).

The extension of f;—; to the full domain €; via the harmonic extension of f;;, say a
map Aj; : & — . This allows to define an operator d, : H(div; ;) — [Hl(Q’)]g,
u i = dy(u), such that d, (u(x)) = u(A;L; (z)), for any z € Q.

Build an interpolator Z;,,; : [Hl(Q’ﬂ3 — [H1 (Qj)}g, @ — Zjy; (). The operator Z;,jod,

is typically referred in computational anatomy as 3D shape registration [Pears et al., 2012].

The computation of a Piola transform P : [H*(€2;)] S [H(Q)] ? to enforce incompress-
ibility [Rognes et al., 2009].

This steps will be discussed in sections 4.2.1, 4.2.2 and 4.2.3. Thus the desired operator is

the composition T = P o Zjs; o dy.



4.2. AN OPERATOR BETWEEN DIVERGENCE FREE SPACES 91

4.2.1 Large Deformation Diffeomorphic Metric Matching Approach

Let us consider the tetrahedron tessellations Q? and Q;-L, meshes for €); and 2;, respectively. For
any tessellation Q" we denote 90" the triangulation of the mesh surface. Let us characterize
the triangulation 9QF with its vertices {a:,(:)}kN;'l, the centers of each triangle {c,(:)}kle, and its
orientations (unitary normal vectors pointing outwards the working domain) {sg)}i\zl. N; e Nt
and Nf € N are the number of vertices and triangles on the surface mesh Q?, respectively. The
notation for vertices, centers and orientations for Q;L is analogous.

In addition, let us consider finite dimensional approximations of [H*(9¢Y;)] % and [H'(0%;)] 3,
V; and V;, respectively. Although is not necessary, we will keep the discussion simple and close to
what the computational implementation of MAD permits by choosing piece-wise linear Lagrange

elements, so V; = ]Pl(aQ?) and V; =Py (89?) We can project f;; on V;, so we approximate

(szj)l ~ (fzheg) {PVZ fz'—>J b= Z{f }lﬁ

where V; = span{L8, ... ,El]’vi}, with {Ek}kN;1 a P1(QF) basis. We will write down LDDMM as

a method for finding the vectors of coefficients

(fh)l - {(f;’l_’*lj)z V ( i) ) o

for I = 1,2,3. In fact, LDDMM search for the pair position ¢ : Q? — R3 and momentum

p: Qf — R3 that minimizes:

Ni N; 4 NN o
ZZG (4) )) (4) S;S)‘FZZG(Cg 701(5)) ;(f)-sl(j)
k=1 1=1 k=1 I=1 (4.1)
Ng Ny N; Nj .
i i 7 j vy
=23 326G sy s+ 5 30 3wl Glan gy,
k=11=1 k=1 =1

lz—yll
where, for any z and y in R?: G(z,y) = e =1

and -y = 2Ty. There are two free parameters,
v > 0, and o > 0 can be seen as a way to control how rigid we allow the transformation to be.

The underlying mechanics are the equations:

dp _ 0H(q,p)

dt dq

4.2
dg _ 9H(q,p) (42)
dt op

which are used in practice to update the position and momentum of the deformed mesh at each

iteration, so t here is to be understood as an artificial time. The Hamiltonian H is defined as:

1
H(q,p) = §pT6”qo q\l/o
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Here gy denotes the first iteration of the displacement field, typically chosen to be the position
vector of the vertices of the starting mesh 0QF, ie., (qo), = @k, k = 1,...,N;. Once the
minimizer, say ¢* is found, our displacement field is thus fh = ¢° 4 ¢*. This problem is also
referred to in the literature as landmark matching. A less general version of the presented

method can be found in [Joshi and Miller, 2000].

4.2.2 Volumetric extension of LDDMM and mesh interpolation

In order to have a volumetric mapping, we consider an harmonic extension of the surface mapping
firs; provided by LDDMM. This reads as follows: find d € [H!(£2;)]* such that:

Ad=0 in Qi,

(4.3)
d= fi»—>j (x) on 8QZ

As in Chapter 2, here we sometimes do not distinguish the notation when changing from con-

tinuum to discrete when there is no place for confusion. Thus,
Aisj(x) =z +d(x), for x € Q. (4.4)
The interpolation of a generic vector field u : ©; — R? reads as follows:

1. We impose @ & d,, (u) = u(A; L (x)), Vo € €. Up to here we have a field expressed in the

=]
auxiliary mesh Q. ,
2. We interpolate the field to Q;: for any z;, € Q? we can locate the tetrahedron in €’ that
contains it, with vertices {v’f , 1172“ , v’:,f , fujf }. Using standard Lagrange P; interpolation func-
tions {S;}1; for those vertices, we get the new approximation Z; ; (@) (zy) = >, Sia(vf).

This idea is schematically depicted in figure 4.4.

4.2.3 Transport of mass conservative fields

It is easy to see that in general Z;,; o d, (u) is not divergence free even if u is. The pipeline
needs a final step to assemble 7;; in which we take this matter into account. Having said so,
we introduce the Piola trasform P : [Hl(Qj)]S - [Hl(Qj)]S:

P(u) _ {13><3 +V [Ii'—>j ° dv(d)]}IiHj o dy(u)
~ det(Isxs + V[ Lisj0dy(d)])

(4.5)

for u € [H' (Qj)]g. This transformation ensures that (see, for instance [Ciarlet, 1988]),
det (ngg +V [Ii,_)j o dv(d)]) V-u=V- (Ii._>j o dv(u)) .

The operator can be finally written: T;j(u) = P o Zj,; o dy(u).



4.2. AN OPERATOR BETWEEN DIVERGENCE FREE SPACES 93

h
/ Q

Figure 4.4: Scheme for P; interpolation of fields from ' to Q;l We can locate the blue star (and

all the other vertices) inside some element in )’ and use the field information in it to interpolate.

4.2.4 Numerical example

Let us build a pool of geometries to test the methodology exposed in this section but that will
serve as well for the numerical experiments of the whole Chapter. Consider a 3D Venturi tube
as that of figure 4.5. The geometry is L = 5 cm long and it has a diameter D = 0.4 cm. We can
parameterize the Venturi stenosis radius S, € R, its length S; € RT and its position S, € RT.
A grid of Nge, = 60 working domains is generated by moving those 3 parameters in the following
ranges: S, € [1.4,2.6] mm, S; € [0.8%5,1.2%] and S, € [5,11] mm.

Figure 4.5: Working domain of the numerical experiment of this section and all the sections to
come in this chapter. We see the domain labels and the domain parameters used to generate

the templates. Mesh size is set to h = 0.08 cm.

We select two working domains to compute 7, those depicted in figure 4.6. The first
step is to compute the coefficients of the projection of the surface registration f;; in Py (0€;).
To do so, the functional (4.1) is minimized using one among the many extensions of Newton’s
algorithm: the Broyden—Fletcher—Goldfarb—Shanno (BFGS) method. The decay of the loss for

fours cases is shown in figure 4.7. The case of interest for our numerical experiment is remarked



94

in the plot with blue.

(a) Q; (b)

Figure 4.6: We have chosen two geometries from the pool of templates to test the numerical

construction of T;,;.

0 5 10 15
Iteration
Figure 4.7: Loss (4.1) decay when computing f;; for four pair of geometries. In particular, we
see in the blue curve the decay for the domains we have chosen for this experiment, €2; and €;

from figure 4.6.

In addition, we can observe the displacement field obtained from the minimization in figure
4.8. The displacement field has some wished features: for instance, it is able to move the domain
whereby the coarctation changes, whereas the rest of the domain remains untouched. This is
not trivial to achieve from a numerical point of view. LDDMM has, as a drawback, the fact that
it has free parameters. For instance, a bad choice for the stiffness o in equation (4.1) could lead
to rigid transformations that would not capture the geometrical variations. For our numerical
experiment we have found that a good choice is ¢ = 0.05 and v = 0.0. In addition, the input

mesh Qi’ is scaled by a factor 0.1 in order to get the results shown in the figures.

—

(a) fis; magnitude (b) displacement field

_ ' | | _
0.0e+00 0.04 0.06 0.08 1.1e-01

Figure 4.8: f;; projected on Py (3(2?)
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In order to test the pipeline, let us compute a solution of the following Stokes problem: find
v e [HYQ))? and A € L() such that:

O — Av+ VA =01in €,

V-v=0in Qi,
v = (0, 0, 0) on FW) (46)
v =(0,1,0) on Ty,
Vo + VT
(% - >\ng3> 1= (0,0,0) on Doy

We can test the full pipeline by computing the operator T;; (vs) for v, a solution of the
problem stated above once steady regime is reached. In short, in figure 4.9 we see three things:
The steady field vy € H(div;$;), its interpolation in Z;; o dy(vst) € [Hl (Qj)]3 and its Piola
transform T (vst) = P oZjsjody(vst) € H(div; Q). To find the time marching solution of the
problems we use MAD with the incremental fractional step method exposed in section 5.4.1.3

and a BDF2 time scheme.

(c) det (Isxs + Vdu(d)) (d) Vd;(d)
—dh . L I GGl . .
(e) Vd¥(d) (f) vdi(d)

82002
— = el .
(8) PoZinjody(vst)

Figure 4.9: Full pipeline of field transport v from £2; to €2;.

In figure 4.9 we see the full pipeline. First, the steady field, solution of (4.6) is depicted
in 4.9(a). Next, the interpolation via LDDMM plus harmonic extension is seen in 4.9(b). We
see with figures 4.9(c), 4.9(d), 4.9(e), 4.9(f) the mechanism of the Piola transform with the
components of Vd,(d) and the scaling factor det(I3x3 + Vd,(d)). By looking at the components
of Vd,(d) it is possible to see that VdZ(d) and VdZ(d) stands for the radius r. variation from
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one geometry to the other, where as Vdy(d) reveals a change in the position S, of the section

alteration.

In short, we see how the transformation manages to capture and counter the zones in which
the geometry variations would induce a loss of mass conservation. As a consequence, we get
a divergence free field as depicted in figure 4.9(g). This is very easy to see when thinking the
conservation laws with more rudimentary but useful equations. Let us call ©;, and A;, the
average velocity and section at the inlet boundary, and let us call Tyq and Apyiq the average
velocity and section at a cut orthogonal to the fluid direction at the tubes coarctation/dilatation.
If we keep in mind that what we expect iS UmiqAmid ~ UinAin, then it is easy to see the quality

of the transported field in terms of its consistency with the governing dynamics of the flow.

This numerical experiment has been carried out with MAD interfacing with PyKeops/Torch

for the computation of the LDDMM map.

4.3 Discussion about distance between working domains

This section is devoted to provide tools to evaluate distances between geometries by means of
Hilbert spaces defined on them. Different alternatives to evaluate the proximity between sets
of solutions in different working domains are explored. The discussion is kept abstract until
the next section, where the models are going to be explicitly introduced via singular value

decompositions of low Reynolds number flows.

Let us recall that the core idea of this Chapter is to introduce a metric based on some
underlying governing dynamic of the state we are aiming to recover. Consider, again, two
working domains €; C R3 and Q; C R3. Let us consider n-dimensional (n < 0o) sub-sets E
and F' of a metric space (V,d). We might think of E and F' as sets of solutions in ©; and €,

respectively, or reduced models of those sets of solutions as well.

In section 4.2.3 we have already developed a method to manipulate F' as a subset of the
ambient space V' (or vice-versa). If it turns out that we want to write down F, a finite dimensional
space, as a subset of V, the task would be as straightforward as using operators 7;—; and T,

for some basis of F. Otherwise stated, given a basis { fi}}}_; of F, we denote:

EHZ(F) = Span{,];'—?i(fl)a EER] 7;'—>Z(fn)}

which is assumed to be re-orthonormalized at the numerical level via modified Gram-Schmidt

(mGS) algorithm.
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4.3.1 Finite dimensional Grassmannian distances

A number of choices are possible when it comes to evaluate the proximity between two finite-
dimensional sub-spaces E and Tj;(F') of an ambient space V. A Grassmannian Gr(n,N),
refers to hyperplanes of dimension n in larger sub-spaces embedded in RV, with n < . We can
view our linear reduced models, the spaces generated by the reduced basis on each templates,
as some of those hyperplanes. A complete discussion about Grassmannians and generalizations
to infinite-dimensional cases can be found in [Ye and Lim, 2016].

Let us consider matrices A € RV*" and B € RV X7 whose columns are N -dimensional basis
vectors of E and Tj;(F), respectively. We are interested in the singular value decomposition

of the cross-Gramian
G(A,B) = ATMB, (4.7)

where M € RV*N denotes a discretization matrix encoding the inner product of the ambient
space V. For instance, in 2 we have Mj; = 0y or in [Hl(Q)]3 we have My = [LipL; dz +
[ VL -VL; dz, for {Ek}{c\/: | basis functions of some N-dimensional approximation of V.

Let us consider the full singular value decomposition:
G(A,B)=USVT,

with UTU = I,x,, and VTV = I,,«,,, and assume that S;; > 0 for i = 1,...,n. We can encode

the proximity between the spaces by looking at the principal angles:
92' = COSi1 Sii~
fore=1,...,n.

Table 4.1: Distance between sub-spaces expressed in terms of principal angles.

Asimov d*(E, Tj—i(F)) = 6,

Binet-Cauchy  d?(E, T;i(F)) £ (1 — 11, cos?(6; ))1/2
Chordal &1, Timi(F)) & (zi  sin2(0;)) "/
Fubini-Study ~ d*(E, Tji(F)) = cos™* (I, cos(6;))
Martin & (B, Timi(F)) = (logH 11/ cos?(@i))l/2
Procrustes d(E, Tjmi(F)) < 2 (>Xr, 51n2(9i/2))1/2
Projection dN(E, Tjsi(F)) = siné,

Spectral d'(E, Tjsi(F)) & 925in (6,/2)

All distances enlisted in Table 4.1 provide some sort of intuition concerning the orientation

of one space with respect to the other. Nonetheless, these distances are not equivalent and there



98

are some subtle differences between all of them. For instance, there are some Hausdorff-like
distances such as d* and d", in which the distance criteria relies solely on how close G(A, B) is
to the space of singular matrices. On the contrary, d” and d¢ give some global information, more
closer to the trace of the matrix S, in which even spaces that are very far at high frequencies

can be close in the kind of big picture this distances gives.

4.3.2 Hausdorff distance in the context of recovery algorithms

The Hausdorff distance between E and Tj;(F), sub-spaces of the metric space (V, d) is defined

as:
dg(E, Tii(F < max sup inf d(z,y), sup inf d(z,y)}. 4.8
W TonF) 2 maxlonp _nt dr), sw - nf diz.) (1)
T jui F) / ‘
E

Figure 4.10: Hausdorff distance scheme.

In figure 4.10 we can grasp the idea behind this definition. It is about looking at the shortest
distance between each point of one space to the other space as a whole and taking the larger
among those shortest distances. Then repeat the process in the inverse sense and pick the larger
value. Let us think about the Hausdorff distance between a straight line and a curve. In figure
1.10, the light blue arrow shows the larger shortest path from E to Tj;(E), whose length is:

sup inf  d(z,y).
2€E YE€Tjmi(F)
where as the maroon arrow has a length
sup  inf d(z,y)
weTimi(F) VEE
Let us recall the following definition from section 2.2.1: given two closed normed sub-spaces

X and Y of (V,d), we define:

o 1Py
B(X,Y) = inf .
vex ||

Proposition 4.3.1. The Hausdorff distance (1.8) between unitary spheres Sx = {x €
X; lzl|lx =1} and Sy = {y € Y; |lylly = 1} can be written as:

du(Sx,Sy) = max{/1 — B2(Sx, Sy), /1 — 32(Sy, Sx)}. (4.9)
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Proof. We can work out the proof with one of the terms inside the max brackets and then
proceed analogously for the other. We can see that

sup inf d*(z,y) = sup |z — Ps,z||

z€Sx YESY z€Sx

=1— inf |Ps,z|?
of | Psy el
=1- /82(SX7SY)a

from which (4.9) follows. First row is just to rephrase the distance from a point to a space in
terms of orthogonal projections. Second row comes naturally since ||z|, ||z — Ps, y| and || Ps, z||
is a Pythagorean triplet by construction. Next we use typical properties of sup in set theory

and the fact that the elements belongs to unitary spheres. O

It is easy to see why we would like to work with distances between spheres when putting
ideas down with a POD. In such case, what we would be doing is to compare how different
are the ellipsoids mapped from the unity sphere in different working domains. This measure of
distance is very consistent with our final target which is the construction of recovery algorithms
using linear reduced models of non linear PDEs.

We next provide a theoretical foundation to link the distance between templates and the
reconstruction quality of inverse problems using PBDW [Maday et al., 2015b]. The interest
relies in finding a map A : W,,, — V, with W,,, a space of observations. Let us assume A is the
algorithm introduced in section 2.2.2.1. The natural question that arises at this point is: Given
an upper bound for the distance between two models (E, Tj;(F')) < §, can we ensure some sort

of reconstruction quality when doing the model reduction with 7;;(F)?

Proposition 4.3.2. Let us consider two PBDW reconstruction algorithms Ag : Wy, — V', and
ATjHi(F) Wi — V, and let u € V be the state we would like to recover when we are given
w = P, u, so that Ag : w— Ap(w) and A, (r) 1w — Ar_ (r)(w).

Provided dist(u, E) < € and dg(E, Tji(F)) < 9§, with § > 0 and € > 0, it holds that, for
p€[0,1]:

lu— Az, ey @) [ < (1= {0+ )8+ (1 +p7") (1= BB W)} (1+20)  (4.10)

J
Proof. From (2.8) we know that:
lu— Ag (Pw,,u) || < B~ (B, W,,) dist(u, E), and
= Ar,_, iy (P ) || < 87 (T (F), W) dlist(u, Ty (F)),

The problem is thus reduced to find an upper bound for dist(u, 7;;(#))) and a lower bound for
B (Tjsi(F'), Wy,), both in function of the known quantities § and . The former is straightfor-
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ward. Using triangular inequality we get,

dist(u, Tjmi(F)) < |lu = Pr; (myul + [[Peu — Pr;, (ryull
< lu— Pr,,(ryull + 26| PraT, ., (7)ull
< e(1+ 20).

For the latter, it follows from definition that:

lv — Py, v]?

B2 (Tjsi(F), Win) =1 = sup (4.11)

veTms(F) VI

The convexity of the supremum argument allows to use Jensen’s inequality [Jensen, 1906].

Then, for p € [0,1] it is true that,

[v = Py, v|? [v = 2 = Pw, (v = 2)|]? 112 = Pw,2|?
m < 1 m 1 m , v EE.
e =) EE )T :
Since we can do the following trick:
o= Bzl _ 2= PualP P
[[v]|? T 2B B2l [v]|?’ ’
a2 [ES
= (1-pB*(E, Wm))—”UHQ, Vz € E,
and in addition:
— - P _ 2 _ .12
o=z Rualo =2 =2
B (B

we have therefore an inequality to bound the supremum argument in (4.11) valid Vz € E. If we

particularize z = Prv we finally get:

1P (v)[I?

lv — Pw,, vl|?
loll*

[l

lv = Pe(v)|?

S0 R

+(1+p7") (1= B*E, W)

v — Pg(v)]|? _ Pr(v)|?
<(tp) s POy (1 prmw) IZet)lE
VETj i (F) o] veTima(F) IVl

<1 +p) (1= B (Tji(F), B)) + (14 p7") (1= B2(E, W) -

Thus, plugging the last inequality in (4.11) we have found the lower bound we have searched
for. O

4.3.3 Fluid dynamics experiment using singular value decompositions

We set up a numerical experiment to compute reduced models and the distances exposed in this

sections. Their efficiency in the reconstruction task will be evaluated in the next section.
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The training data base is built using governing PDEs for non-convective 3D blood flows,

realizations of the following Stokes problem: find v € [H(Q)]? and p € L?(Q) such that:

Oyu — pAu + Vp =0 in §;,

V-u=0in Qi,
u = (0,0,0) on Iy,
oy (4.12)
u = uip {0, (1 - 2) ,0} sin(2nt) on Ty,
(D/2)
T
<@ —pI3><3) n = (0,0,0) on Toy.

for t € [0,0.5] [sec], and for all the pool of geometries constructed in section 4.2.4, ie., i =
1,..., Ngeo. In addition, the parameter space includes the dynamic viscosity in the range u €
[0.01,0.1] [Poise|] and the maximal value of the inlet paraboloid for the Dirichlet boundary
condition: wuip € [0.01,0.1] [cm/s].

FEM solutions of (4.12) are obtained with MAD using a time step of 0.02 [sec|. Each
simulation will therefore provide 25 snapshots. For every template €; we run 512 simulations,
so we have a training set M,E?ain of N, é@ =f #./\/lggin = 12800 snapshots, which are used to build

reduced model spaces {V1,...,Vn,,}. In particular, constraining the set of solutions to belong

to L2(£2), we build Nygeo singular value decompositions, one per working domain.

(d) Q60

Figure 4.11: POD modes using V = L?(£;) in four working domains. First modes at the left

side and second modes at the right side.

Before computing distances between reduced models we need to fix a dimension for them,

which we choose to adapt according to the forward modeling approximation error. This has to
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be carefully done since we are not considering 5(V;, W,,,) in the criteria. We have chosen not to
use 5(V;, Wp,) because that would require to fix the space of observations W, at offline phase,
which is too restrictive in view of the medical applications we would like to tackle. Having said
so, let A; € RV WxN: be the snapshot matrix of the working domain €2;, whose tessellation has
NGO = A0 /3 vertices. Each column of the matrix correspond to one realization of the data set
fuf )

Consider the SVD of A; = USVT, which is computed in parallel by MAD doing the eigen-
value decomposition of the covariance AiAiT, with singular values 01 > 09 > ... >0, > ... >0

(with r < Ns(i)). Let us build an n-dimensional base for V;, so we can generate the space doing

V= span{qﬁgi), e ngSP}. It is well known that (see, for instance, [Trefethen and Bau, 1997]):
. 1/2
|4 — @] MAlp < | Y o7 | (4.13)
j=n+1

where we stack the basis in the columns of the matrix ®; € RV X" and M encodes the dis-
cretization of the ambient space, as in equation (4.7). This systematic although risky approach
can be seen as a low-pass filter, or a gate function in the domain of the POD coefficients.

We see the first two modes of four geometries in figure 4.11. The goal is now to compute all

the distances exposed in this section. The decay of the eigen-values is shown in figure 4.12.

.,

o

D
%

Figure 4.12: Decay of eigen-values for SVD in four geometries.

In addition, we can introduce another distance based on the models. We can compute the

distance between two geometries §; and €2; as follows:

0 i i ) j j
L NPy () = Py ) I N Py, (u) - P ) |
dgr}aps _ 7{2 } (414)
i T3 o () o ()
pr) 1Py, (u;,” ) |l =1 1 Pv; {(uy” ) |

discarding the snapshots such that || Py, (u,(cj)) | =0 and [Py, (u,(;)) Il =0.
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We conclude this part of the numerical experiment by visualizing all the distances exposed
section 4.3.1 and 4.3.2 in figure 4.13. The dimensions of the spaces V; are chosen fixing a
tolerance 1072 to the error (4.13).

Bl

(a) snaps

(d) Dy (e) Ds
(h) D
I ]

0.0 0.2 0.4 0.6 0.8

Figure 4.13: Visual representation of distance matrices between 30 working domains. We see
computations for (4.9), (4.14) and all the distances from Table 4.1.
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4.4 In silico flow reconstruction in non parametric-domains

In previous sections we have prepared the ground to solve the inverse problem of estimating
blood flows from synthetic Doppler data. As we have pointed out, a critical point is about
identifying a correct template given an incoming patient geometry. For doing so, we will explore
two paths: First, we will use the distances discussed in the previous sections to build a low
dimensional representation for the geometries. Second, we could try a straightforward method
to learn directly how to distinguish between templates by introducing an error measure based
on forward modeling. Both approaches will require two additional elements: on the one hand, a
fast and systematic way to compare geometries, for which a voxelization method is introduced.
On the other hand, we build a linear mapping to, given a new geometry and its voxelization,
compute either its error with respect to each template or its representation in a low dimensional
parameter space in such a way we can select the template with a nearest neighbors approach

using an ¢2 metric.

4.4.1 Multidimensional scaling

We can try to find a low dimensional representation of the geometries from pair-wise distances, as
those of figure 4.13. A multi-dimensional scaling (MDS) is the natural procedure for addressing
this problem (see [Saced et al., 2018] for a detailed survey). Let us assume that there exists
vectors (M| .., #(MNeeo) in an M -dimensional space, representing each one of the templates. We
do not know those vectors, but we know the distances between them, encoded in a component-
wise squared distance matrix D). The core idea is to try to enforce z7z; = d2. Notice
that we say enforce due to the fact that this is assuming an ¢? structure of the space that
the high dimensional vectors z(® belongs to. In addition, notice that there are infinitely many
combinations of elements such that we get the pair-wise distances. A projector is introduced to
add a zero-mean condition.

Formally, let X € RN*Neeo he a matrix with the geometries @ in its columns. So, we

enforce the pair-wise distances for every pair of geometries by doing:
1
XTX = fiHD(z)H,

where H = IN, . x Nyeo — %e Ngcoeg is a double centering matrix that makes the low dimen-
geo geo

sional representation unique. Mathematically, we say that we are looking to embed the data into

some space RP, with p hopefully small, reason why this is typically called Euclidean embedding.

€Ngeo 18 @ vector with Ngeo entries filled with ones.

Let us consider the eigen-value decomposition,

%HD@)H =VAVT,
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The Euclidean hypothesis is then verified if the eigen-values are positive. Otherwise, some
modifications to the method can be introduced, such as isomaps [Franz et al., 2014]. As we will
see in our numerical examples, this extra step won’t be required, as the geometry of the space
we are trying to represent is intrinsically flat, but nonetheless the isomap can be introduced to
the pipeline as the problem complexity increases.

Thus, for a fixed positive integer p we retrieve a parametric representation ¥ € RNecoXP,

with p < N, by truncating the eigen value decomposition as follows:
_ AL/2yT
Y = AV

where A, is the truncation of A up to the first p eigen-values and V,, is a matrix containing the
first p columns of V. Let y; be te columns of Y. The embedding is constructed to provide a
good pair wise approximation in the sense that D & lyi — yjl| ~ Dyj. In fact, it can be proven
that the embedding solves the optimization problem

1 N
min  =|[HD®PH - HD® (Y)H|%,
YGRNgeOXP 2

where we denote D®)(Y) the distance matrix generated by a p-dimensional embedding Y. In
many cases, such as the toy example of section 5.5,this problem has a zero minimizer providing

an exact representation.

4.4.2 Numerical experiment

Before moving forward, let us check MDS with 16 geometries and p = 2. This way we can get
a nice visualization of the geometries in a plane, as depicted in figure 4.14. We can see four
clouds of points corresponding to clusters of geometries that share the same stenosis radius 7.
For 60 geometries we can depict the representation with p = 3 in figure 4.15 using the Hausdorff
metric.

In terms of reproducing the distances, the three best choices to do the embedding are D3"2P3
Dy and Dgs. We can see the error measure,

ID = Dile (4.15)
D[l
in figure 4.16 for p = 1,2, 3.

Concerning the distances d®, d7, d°, d°, d", d*, we get spectral decompositions with negative
eigen-values. This suggest an underlying non-Euclidean geometry. It could be the case that this
distances are able to identify the right template but an additional Isomap step should be added
to the pipeline in order to test them, which is put as a perspective for the moment.

Concerning the reconstruction step of the pipeline, all the distances have to be tested, since

a better accuracy in the low representation space does not translate necessarily in a better
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Figure 4.14: MDS representation of 16 geometries using p = 2. We show here three successful
embeddings that capture the variations in the parameter space, Dy, D%"*% and D.. Every
island corresponds to a fixed value of the coarctation radius 7. in the parameter space. Dg, on

the other hand, does not manages to separate the data.

Figure 4.15: 3D representation of the full pool of geometries. In spite that the plot does not
provide the same facility to interpret the data as it does for the two dimensional case, MDS

indeed captures the intrinsic dimension of the parameter space in the sense that Dy ~ D.
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Figure 4.16: Capacity of MDS to reproduce the pair-wise distances as p grows. We see the
quantity (4.15). Q* stands in the legend for the optimal template among those in the pool,

computed a-posteriori.

recovery, as it has to be taken in to account that every distance encodes a different notion of

proximity between models in the working domains.

4.4.3 Linear mappings for template finding

The next goal in the pipeline is, provided a new geometry Q*, to find the template from which
we should transport the ROM in order to perform a fast blood flow reconstruction in *. As
already brought up, we have two alternatives to follow. One is to build a map such that when
given a new geometry, we can compute its representation on the parameter space. Another
possibility is to circumvent the middle-step of computing a low-dimensional representation of

the data and introduce the following measure of error between geometries:

N

E(inﬁj) = Z

= |

lul? = Pr_yul |

(4.16)

discarding the snapshots with zero norm.
9k = eTM(Qg>e,

where M (QF) is a mass matrix for the tessellation of  intersected with the interior of the voxel

Qﬁ, that is to say,
M(Q’:j)w = / ﬁiﬁj dLL’,
Qk

for {£;}Y | piece-wise linear P; Lagrange functions on a mesh of Q with NN vertices.
We are in order to construct maps gmas : RV — RP and gp : R — RNeeo (if we choose

to circumvent the MDS and use (4.16)). Let us start by addressing the latter. A set of linear
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Figure 4.17: Voxelization of working domain 214 from the pool of geometries. Each voxel

captures the volume portion of the mesh that there is inside.

mappings can be found in order to learn every row of E(£;,€;). Basically, what we would

like to find is some sort of test voxelizations, or weights, w; € RY such that w! g; = E(Q;, ;).

Otherwise stated, we can see this as solving Ngeo optimization problems: find wy, ..., wny,,, such
that:
Ngco
Join, o Z |wi gi = B(, )], (4.17)

To enrich the input data we add K;; = 100 iterations of noise to each voxelized geometry, using
white noise with deviation equal to 30% of the maximal volume captured by the grid. If we place
the pool of voxelized geometries g1,. .., gn,,, in the columns of a matrix G € RN X Negeo (Kit +1)
we can write down the optimization problems as follows:

min fHG wy — BB, k=1,..., Ngeo (4.18)

wkENv

We denote E(€) the k row of E(Q, ;). Trivial optimality conditions of this problems leads

to the usually not well posed equations:
GGTwy, = GE(Q), k=1,..., Ngeo.

Consider the singular value decomposition G = USV7T, so we compute the solution to the
problem by means of a regularized pseudo-inverse (which is, at best, nothing but a change of
basis), i.e., wy = UST'VTE(Q;). We have then the weights for Nigeo linear mappings gg) :
RN — R¥Vaeo,

On the other hand, if what we want to do is to build a mapping to the parameter space, we
proceed analogously learning each parameter at a time. Otherwise stated, we solve p minimiza-

tion problems:

geo

- 2
Jnin 3 Z lwitgi — vl
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for k=1,...,p, so that whenever we are given a new voxelization g* we can guess its represen-
tation in a p-dimensional space. From there, the template is chosen via nearest neighbors in a

02 sense.

4.4.4 Blood flows reconstruction

— o
— MDS- Dy
MDS - Dy

L? error

00 0.1 0.2 0.3 0.4 05
Time [sec]
Figure 4.18: Average of averages in blood flows reconstruction. We see all 4 methods are capable
of choosing templates that deliver errors below 5%. E stands for the reconstructions choosing

the template with (4.17).

We can finalize the numerical experiments of this Chapter by coming back to our main goal:
blood flows reconstruction from Doppler data. For doing so, we prepare a set of 16 target working
domains by choosing randomly the geometrical parameters r., S; and S, in range with those of
the pool of 60 geometries, assuming an uniform distribution. Let us denote those geometries by

T, ..., Q5 (we present some of them in figure 4.19). In addition, at each of those 16 geometries

we run 16 new simulations to test the reconstructions.

Figure 4.19: 3 of the 16 target working domains produced with a uniform distribution for S,

Sy and S, (in-range) to test the reconstruction algorithms.

Let us take a look to four isolated reconstructions corresponding to 6 different target ge-
ometries in figure 4.20, where each curve is the average of 16 reconstruction errors computed

as: "
. u—wu HL?(Q)

et) = 7
J 7z g)dt
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In addition, in figure 4.18 we see the average behavior among all the target geometries. We
denote by u* the reconstruction of the velocity field from w = Py, (u) using PBDW, i.e.,
u* = Afﬁ}%dw) (w). The space of observations is built simulating an ultrasound transducer in the
plane x = 0, with an inclination of /4 with respect to the y axis. We see the reconstructed and

error fields for Qj¢ in figure 4.21

- 5.06-01

& 0.0e+00

- 5.0e-01

K4 0.0e+00

- 1.06-02
-~ 0.005
K 0.0e+00

(¢) u—u*

Figure 4.21: Example of reconstruction from optimal template POD using as a criteria the
mapping learned from (4.18). The parameter space is built using the Hausdorff metric. The

snapshot is taken at time ¢ = 0.25 [sec].

In addition, we can verify a scaled WSS S(u*)/u reconstruction for one snapshot in figure
1.22. Extensive tests on Qol reconstruction has to be made in order to drive conclusion about
the quality of the results. Nonetheless, recovering a WSS with high accuracy in spite of selecting
V = L%(Q) as ambient space is very encouraging. Another pre-liminary test we can do concerning
the post-processing of the results, is to check out the energies Fyin = [u-u dz and Eyise =
J Vu : Vu dz, for the same target, depicted in figure 4.23. As it was verified for the pressure
drop reconstruction in Chapter 4, the accuracy to capture this kind of aggregated quantities is

higher than capturing the state.

4.4.5 Pressure and pressure drop estimation via STE

We are going to briefly explore a pressure estimation method to apply in our reconstructions.
It relies on using the Navier-Stokes equations to solve a deterministic inverse problem for the
pressure field over the whole geometry, so that the pressure drop can be directly computed
afterwards. The methodology is called Stokes pressure estimator (STE) and it is introduced in
[Svihlova et al., 2016], where further theoretical considerations can be found. Let us write down

the method for a generic domain Q C R3.
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Figure 4.22: Scaled WSS reconstruction. The snapshot is taken at time ¢ = 0.25 [sec].
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Figure 4.23: Reconstruction of quadratic forms Fy;, and Eyisc in a time window close to the

velocity peak.
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Let us assume that momentum conservation holds for the PBDW reconstruction field upbgw =
A(Pw,,u) = Aw)

4 (atupbdw + (vupbdw) upbdw) - ,UAupbdw + vpppe = 0.

A natural approach that we could follow is to take the divergence, so we get the Poisson
problem: Find pype € HY(Q):

_Apppe =V- (P (atupbdw + (vupbdw) upbdw) - ,UfAupbdw) in Q.

plus boundary conditions that can be seen at [Svihlova et al., 2016]. As was already brought
up, PBDW does not necessarily provides solenoidal fields, therefore we can not vanish the time
derivative in the equation, as we would usually do for an incompressible flow. This methodology
to compute pressure fields from velocity data is introduced and further examined in the context of
magnetic resonance data [Krittian et al., 2012], and is called Poisson pressure estimator (PPE).
To assume that pppe is the pressure field of the system is risky mostly due to the exaggerated
regularity that is imposed when solving the Poisson problem. This is the reason behind that
the method typically underestimate pressure jumps, as has been explored for MRI data in
[Bertoglio et al., 2017b]. This should be enough argument to justify a technique that relax this
regularity condition, searching for a field in L?(Q) instead of a field in H'(f2), so that the
functional setting is consistent with the Navier-Stokes equations.
In short, STE can be formulated as: find w € [H*(Q2)]? and pste € L?(£2):

Aw + Vpste = — (P (atupbdw + (Vupbdw) upbdw) - ﬂAupbdw) in Q.
V-w=0 inQ
w = (0,0,0) on 09,

where w can be seen as some sort of auxiliary field, typically close to zero, which has nothing to
do with the velocity field nor the reconstructed “;bdw' The computation of the pressure drop
then is straightforward. For two disjoint sets I'y, C 92 and I'yyy C OS2 we simply compute the
drop

1 1
) = — / ds — —— ds
Pste |Fin| - Dste |Fout| - Dste

We test STE in the context of reconstruction of non-parametric domains, following the
numerical example of the previous section in blood flows.

In figure 4.24 the reconstruction over 6 target working domains is depicted, from what the
following observations arises: there are cases in which the pressure drop works up to good
precisions, and others in which it does not (regardless that the method manages to capture

the pressure drop shape). A theoretical background to understand the perimeter of application
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Figure 4.24: Pressure drop reconstruction in non-parametric domains using STE.

of STE in the reconstruction in non-parametric domains is required in order to discriminate
when the reconstruction is doable. Empirically, it is clear that the most influential geometrical
parameter in the pressure drop reconstruction quality is not surprisingly the coarctation radius
Sr-. Despite that a deep sensitivity analysis might be performed in order to understand the
impact of each parameter on the reconstruction, the numerical experiments suggests that the
pressure drop reconstruction results are much better as S, — D/2 (i.e., tubes with almost no
coarctation. The challenge here is admittedly simple.), they are moderately good when S, — 2.6
mm (i.e., tubes with dilatation) and they become unfortunately wrong as S, — 1.4 (i.e., tubes
with high coarctation). Another thing to be notices is that, as might be expected, the pressure
drop reconstruction via STE is much less sensitive to the parameter space in the training set at
each geometry. Otherwise stated, if we pick a geometry with suitable geometrical parameters for
the reconstruction in the sense of the previous lines, then no matter the choice of the simulation
parameters (viscosity, boundary condition intensity and time), the reconstruction stays good as
well. We can take the average of each simulation in the target set fixing the target working
domain in order to see this more clearly (see figure 4.25).

The results are not encouraging in the sense that they require the geometrical variabilities to
be too reduced in order to guarantee good reconstructions. We see that the worst mesh in terms

of relative errors goes up to 40 percent, a useless result from any point of view. The absolute
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Figure 4.25: Average errors in pressure drop per target geometry.

error in the figure 4.25 is measured as
1)
Eazb)s<t) = [0p(t) — Opste(t)], (4.19)

and the relative one is measures as

_|0p(t) — Opste(t)] (4.20)

EP(t) = .
ra(l) max,e|o,0.5] |0p(t)]

To conclude we can also average the relative error among the 16 target geometries, as shown in

figure 4.20.

0.0 0.1 0.2 0.3 0.4
Time [sec]

Figure 4.26: Average for the 16 target domains of relative errors (4.20) in pressure drop.

4.5 Conclusion and perspectives

We have developed a full pipeline for state estimation in non-parametric domains. We success-
fully introduce a methodology based on metrics induced by governing dynamics. We consider

this a step towards the clinical implementation of the tools presented in this thesis.
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Nevertheless, there is a few points that have to be addressed and are seen as future work,
all of them related to increase the challenge of the problem: First, given the promising results
of this Chapter, a next test case in patient-specific geometries can be performed. Second, non
linear PDEs can be used to generate the training sets, such as the Navier-Stokes equations or
even fluid structure interaction coupled equations.

In addition, we have appended a Qol estimation to the chain using a pressure estimator called
STE. Nonetheless, the results are ambiguous, and they suggest that other approaches should be
tried. The natural perspective this results gives is to use for instance the joint reconstruction
introduced in chapter 3. The joint reconstruction will require first the generation of pressure basis
in each template, and also a correct mechanism to translate it. In [Guibert et al., 2013], pressure
basis are transported by using Z;; o d,,, but maybe some structure preserving transformation
can be explored for this matter.

Another work to be addressed in more realistic scenarios is to try a more sophisticated way
of building the mappings of section 4.4.3. Non linear regressions such as deep neural networks

are a first strategy to be explored.



CHAPTER 5
Software implementation: Multi-physics for

biomedicAl engineering and Data assimilation

MAD, which stands for Multi-physics for biomedicAl engineering and Data assimilation, is a software
created by Felipe Galarce at INRIA Paris. MAD is developed with a hope to be useful in addressing state-
of-the-art problems of the field, but more importantly, it is a way to ensure reproducibility in science for
any work based on this code. Among MAD’s high-level characteristics, we can distinguish between, say,
a project level and a library level. The project level is where full pipe-lines for research projects related
to this Ph.D. thesis can be found. The library level refers to three main sets of objects. First, a complete
CFD library containing solvers for the Navier-Stokes equations using both monolithic and fractional step
approaches, interpolation routines, post-processing tools, and pressure estimators from data. Second, a
set of tools for State Estimation, Data assimilation, and Model reduction, covering a broad range of tools
such as Kalman filters, variational approaches, and proper orthogonal decomposition. Third, a library
oriented to model reduction in non-parametric domains is implemented. For instance, we can find tools
to compute feature maps, such as multi-dimensional scaling and isomaps. MAD is paradigm-free in the
sense that object-oriented or function-oriented code is used whenever it seems pertinent. The code is
developed under LGPL license, and its source code, mostly written in C++ and Python can be accessed

by request to the author. Linux and MAC OS are supported.
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5.1 Introduction

This chapter describes some aspects of MAD (Multi-physics for biomedicAl engineering and
Data assimilation), its scope, limitations and design choices. MAD is developed with a hope
to be useful in addressing state-of-the art problems of the field and to provide a guarantee
that ensures reproducibility for the numerical experiments that this thesis contains. The text
will deliberately alternate between scientific computing aspects, some mathematical foundations
and discussions about the cardiovascular tree. This intends to remark how those three axes are
intrinsically related behind the choices made to code MAD, so that an eventual user can easily

see what MAD is designed for and what MAD is not designed for.

There has been an effort in making a modular code structure that, as a whole, attempts to
be as self-contained as possible. That is to say, the software offers tools for state estimation such
as the Parametrized Background Data-weak method or machine learning tools such as multi-
dimensional scaling, but also contains a PDE solver to generate realistic 3D simulations that
could serve for instance, to feed learning algorithms. In addition, model reduction techniques

are part of the code, such as PCA and data-driven greedy methods.

Code modularity allows one to use all the aforementioned features independently, but they
can also be seen as parts of larger pipe-lines or projects, where typically a very particular
application is tackled. This ideas are much more clearly seen in figure 5.1. The user is therefore
free to choose at what level of abstraction to work. Lower-level routines such as linear algebra
manipulations or finite elements provides flexibility and they can be accessed if the user see a

new possible application of them, so a new project can be created.

Concerning forward modeling, MAD is focused on simulating blood inside large vessels. That
said, we remark that there is no intention to make of this program a multi-purpose solver for finite
elements, as there are many others that are by far much more complete, such as FreeFem++
[Hecht, 2012] or FEniCS [Logg and Wells, 2010], or other softwares that propose an interface in
which the main feature is dealing directly with weak formulations. In this sense, MAD resembles
another software developed at INRIA: FeLiScE, in which the purpose is to, fixed a model, to set
a user interface in which the interaction is done only at the parameter level, without requiring

further mathematical knowledge.

The multiple paralellization possibilities that this program provides relies on the use of the
standard MPI and the linear algebra library PETSc [Balay et al., 1997] extended for eigen-
value problems with SLEPc [Hernandez et al., 2005]. In addition, the software interfaces with
PyKeops [Charlier et al.; 2020] to address the computation of mappings between geometries.
PyKeops relies on PyTorch, which is used deal with kernels. This is the reason behind including
CUDA at the bottom of figure 5.1. Besides the interfaces with PyTorch, MAD does not exploit
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---------------------------------------------------------------------------------------- Low level objects —T
MAD interaction with the outside
PETSc and Slepc Wrapper Standard C++ 2017 library Wrapper
---------------------------------------------------------------------------------------- MAD starts here —T
PETSc Python Tools
Krylov Direct Parallell | Parallell PyTorch Multi- Numpy
Solvers = Solvers | Vectors | Matrices processing

MPI CUDA

Figure 5.1: Map of MAD features.
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graphics processing units.

Despite of the fact that low-level manipulation of MAD allows the user to extend the code
beyond the application scope for which MAD is designed for, all the development decisions were
made with biomedical applications in mind. The higher the level of abstraction, the closer to
the application we stand, and therefore the larger the amount of hypothesis that are made. We

include the motivation behind those hypothesis in this chapter. Sections 5.2, 5.3 serves to this

purpose. In addition, a typical problem in haemodynamics is discussed in section 5.4.

5.2 Generalities about haemodynamics

One of the main goals of the software is to simulate blood flows. In order to do so, we assume
typical governing dynamics coming from Newton’s ideas and continuum mechanics. A number
of parameters need to be understood from a phenomenological point of view in order to use
them properly and carefully in our hypotheses and results. Also, some orders of magnitude of

relevant quantities will be exposed in this section in order to ease the result interpretations.

5.2.1 Basic rheology of human blood
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Figure 5.2 Normal values of blood pressure in rest state. Image source:

[Guyton and Hall, 2011], chapter 14.

As we will see, the main words concerning the mathematical modeling will be velocity,
pressure, density and viscosity. Let us do a survey of normal ranges for those numbers in resting
conditions. The velocity average in the thoracic aorta is known to ranges from 100 [cm/s| to 150
|cm/s|, whereas is around 0.3 [mm/s| in the capillaries. Concerning the pressure, we can see a
detailed curve depending on the system region in figure 5.2. Pressure will be the only exception
to magnitudes expressed in CGS in this document.

Although the blood viscosity is far from being constant in space, we will always denote it by
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109 Viscosity of whole blood
9_
= 87
N7
3
g0
~ 54
2
.ﬁ 4_
§ 3 Normal blood
> 2 Viscosity of plasma
1
Viscosity of water
0 T 1 1 T T 1 T
0O 10 20 30 40 50 60 70

Hematocrit

Figure 5.3: Blood viscosity ranges in humans compared to water viscosity. Average hematocrit
on men is 42, and 38 in woman. Sources of variations of this parameter are abnormal conditions

such as anemia or polycythemia. Image source: [Guyton and Hall, 2011], chapter 14.

i € RY, which is a good assumption for the scales we work with. In fact, we can understand
the underlying phenomena by examining its two main components: red blood cells (RBC) and
plasma. Figure 5.3 shows the influence of the proportion of RBC over the total blood, so called
hematocrit, in the viscosity, viewed as a continuum in the plot. RBCs are not distributed
homogeneously in the blood vessel, there will be typically a major concentration close to the
vessel center line, mainly in laminar flows, as can be expected.

Constant viscosity is the first hypothesis we introduce. Density is assumed to be close to
that of water at ambient temperature.

As we will see in section 5.3, the mathematical modeling at the 3D level will require the
aspects narrated in this section. On the other hand, next section provides a discussion where
3D simulations are not doable typically due to computational costs. So called 0D models are
introduced and macroscopic variables, resembling Ohm’s law’s ideas about resistance and ca-

pacitance, are used.

5.2.2 Ohm’s law for blood flows

To understand phenomena we don’t always need sophisticated partial differential equations
(PDE). We arrive to them for, among other reasons, the need for accuracy, to understand
underlying patterns that are not captured by macroscopic relationships, or for the mere beauty
of contemplate that a certain portion of the sensitive world can be almost perfectly described by
very fundamental intellectual notions. Cases in which we don’t require nor can afford complex
models are just too many in engineering. Rarely an hydraulic expert will come up with mass
conservation equations written on their differential form to design a few cylindrical pipes.

Thus, before introducing the deep understanding that fluid mechanics can bring to the study
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Figure 5.4: Illustration of rudimentary ideas of flow mechanics in blood vessels. Image source:

[Guyton and Hall, 2011], chapter 14.

of blood, we will discuss some intuitive and rudimentary ideas of relations between velocity and
pressure. Those ideas will be indeed used in our models when necessary, and will be typically

referred to as 0D models.

The easier way to grasp the following lines is to think about electrons flowing (we abuse of
the language when it does not touch the main thesis subject!) on a conductor as an analogy to
flow and pressure. So, as an electric potential will produce the possibility of electricity to pass,
a pressure gradient will do the same for blood flow. On the other hand, the vessel walls oppose
to the movement due to the presence of vascular endothelium cells (figure 5.4). This resistance

R allow us to link flow F' and pressure gradient AP as simply as,

F = =
which is the reason why this is typically referred as Ohm’s law.

Another concept of importance is to understand the ratio of volume and pressure inside
vessels. This ratio is called vascular compliance, and is also part of this electrical analogy,
burrowing the concept of capacitance. Let T be a section of interest where we cant to compute
the tension p. Let Q(¢) be the flow across T for a given time instant ¢. A 3 elements Windkessel

reads:

P=pq+ RpQ(t)a

where R, plays the role of a proximal resistance in the circuit and where p, is a distal pressure

and is the solution to the ordinary differential equation (ODE):

4at Ry B (5.1)

where Cy > 0 is called distal capacitance, Ry > 0 is called distal resistance, and pg is an initial

datum.
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5.3 Conservation laws and Hilbertian framework

In a modern context, we will always think about velocity and pressure as elements of a metric

space in which all Cauchy sequences converge in a norm || - || that is induced by its inner product
() doing [| - | = /().

In particular, three Hilbert spaces will drag our attention during this chapter. Namely,

Q) = {f Q>R /|f|2 dz < oo},
Q

W[N] = {f € @) s 57 € L@), =103, j = L.,3), and
J

L2 (09) = {f : 0Q — R; / |f)? ds < oo},
o0

where 2 C R?® (MAD only support 3D geometries) and x = [x1, z2, 73] € Q. Thus, from now
on, velocity will almost always refer to an element u € H and pressure to p € L?(12).

In the following, we mix up the previous lines with some fundamentals of continuum mechan-
ics. Let us consider a function h(x) : @ — R? (d = 1 or d = 3 typically) which describe some
property (such as density), in Eulerian (or spatial) coordinates. Let X(t) denote Lagrangian
(or particle) coordinates. Consider the transformation between both coordinates descriptions
x(t) = £(X,t). Fluid mechanics almost compels the use of Eulerian Frameworks. Whenever we

want to evaluate a material (or Lagrangian) derivative D%(h) we can use the chain rule

D, . D _ Oh(z) |~ Oh O&;
Eh(fﬂ) = Eh(f (X)) = a5 2 96 ot
and get
D oh
=chl@) = 6(f> +u- Vh(z). (5.2)

where u = 9;£. This crucial relation can be seen as a link between Lagrangian and Eulerian
points of view as well. ¢t > 0 is time. Now we can briefly sketch how to derive the conservation
laws that will be used in this document. First one is mass conservation, which translates to a
material derivative of the domain mass vanishing. If p : Q@ — RT is a function denoting the

domain density then:

D
— [ pdz=0.
Dt Jo, 7"

From 5.2 and taking into account that the domain is arbitrary one can see that this law

implies that:
op B



5.3. CONSERVATION LAWS AND HILBERTIAN FRAMEWORK 125

There is no need to use this equation for our models since we will always consider a constant
density in time and space, which is a reasonable assumption for the phenomena we are simulating

with MAD. Thus, for an incompressible flow:
V-u=0. (5.4)

It is hard to grasp the scope of ideas that big characters of science have had. A glance is

shown here, where Isaac Newton inspires the following momentum conservation law:

D

E qu dx:ZFECIita

denoting here > F,s the external forces acting in the domain. Let us assume that the external
forces are only produced by surface stresses on the boundary I' = 0, i.e., body forces are

neglected. We can write such surface forces as follows:

ZFeth/U'NdﬂU,
r

where o is the stress tensor of the material and n is a normal unitary and exterior vector to the

domain. Using the divergence theorem we arrive to:

D
E/qudx—/ﬂv-ad:c—&

By means of the same arguments used to write down mass conservation (5.4) on differential

form we get:
Ou

pa—i—p(u-Vu)—Vwr:O. (5.5)

We must assume a constitutive law for the blood. In principle, non-linearities are impossible
to neglect in small vessels, typically arterioles and capillaries. This type of domains are out of
the scope of MAD. On the contrary, for large vessels, to assume a Newtonian flow provides a

good model, that is to say, the stress tensor is written as:
o =2pue(u) — pl3xs. (5.6)

The strain rate tensor € is usually taken as the symmetric part of the velocity field: e(u) =

VU%VT". This leads us to the momentum conservation equation that will be heavily exploited

in the following chapters:
ou

Por

The coupled system of equations composed by 5.4 and 5.7 was introduced by Claude-Louis

+p(u-Vu) —pAu+Vp=0 (5.7)

Navier and George Gabriel Stokes during the XIX century.
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5.4 Standard problem in haemodynamics

This thesis will require to numerically solve some PDEs such as Laplace and Poisson problems,
Stokes or Navier—Stokes systems. We are dedicating here a few lines about how we solve a
Navier—Stokes problem with MAD. Let us decompose the domain boundary as follows: 9Q) =
Iy UTin UTout. Those boundary sub-domains are disjoint. The real interval [0, 7] will be our
time domain.

The problem reads as follows: for any t € [0,T], given Fou € [L2 (Fout)}g, find v € H and
p € L*(Q) such that:

0
pa—?—l—p(u-Vu)—uAu—i—Vp:OinQ,
V-u=0in Q,
Vu+ V7Tu (5.8)

5 -n —plaxz - n = Fou on Toyg,

u=(0,0,0) on Ty,

u=uy € R? on [y,

5.4.1 Time discretization

This section discusses the choices that MAD offers in terms of time discretization, not only
concerning the time derivative in the momentum equation, but also dealing with approaches
that split the solution adding an intermediate step that hopefully increases the performance of
the overall simulation, the so called fractional step methods. For a detailed survey on the several
available choices that can be followed the reader is referred to [Guermond et al., 2005].

The time domain [0, 7] is uniformly partitioned with a size At > 0. The time discretized

problem is then to find functions {ul,... u"}.

5.4.1.1 Backward difference formulas

Concerning the only time derivative in the equations, we are either going to use an implicit Euler
approach, also called first order Backward Difference Formula (BDF1), that is to say:

+ p (un . vunJrl) _ MAun+1 + Vpn+1 _ 0’

or a second order approximation (BDF2):

%& (3un+1 s _’_unfl) tp (un ) Vun+1) ~ pAut vt

To ease the reading, all the equations in the following sections of this chapter will be shown

using BDF1. In practice we will do different choices for space and time discretization according
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to the needs of the moment. Those things will be clarified pertinently for every numerical
experiment. Notice the semi-implicit choice for the convective term, a good trade off between a
realistic model and difficulty of solving. This decision, used in every simulation of this thesis,

will allow us to use linear solvers at the discrete level.

5.4.1.2 Monolithic approach

If we couple both mass conservation and the aforementioned BDF1 formula for the momentum

conservation we get a Monolithic time discretized system:

n+1 n
+p (u” : Vu”“) — pAuT 4+ Vptt =0 in Q,

V- o =0in Q.

We can anticipate that the reason to introduce the alternative methods of the following
paragraphs is going to be the intrinsic saddle point nature of this problem, which leads to a
standard inf-sup constraint. We will discuss about how to deal with this without using high

order finite elements in section 5.4.3.2.

5.4.1.3 Fractional step methods

Up to the author’s knowledge, the first attempt to speed up and simplify the numerical solution
of the Navier—Stokes equations was brought to the community during 1968 [Chorin, 1968]. The
underlying idea is to somehow decouple pressure and velocity by neglecting the pressure force
in the momentum conservation equation. After, a correction step, equivalent to a projection in
a function space of divergence free functions, would guarantee us physically reliable solutions.

The method reads as follows:

1. Viscous step: find 4 € H such that:
,l’l _ n

At

enforcing the boundary conditions over the velocity.

+p (u" Vu”"’l) — pAu™tt =0,

p

2. Projection step: find p"*! € H(Q) such that:
1
Ap"tt = —V.q
p Al )
enforcing the boundary conditions over the pressure.
3. Correction step: compute u"t! € #H such that:

u" =4+ AtVpt T

enforcing the boundary conditions over the velocity.
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Another possibility doable with MAD, is to use an incremental pressure correction scheme,

which reads as follows:

1. Viscous step: find @ € H such that:
u—u"

P7At

+p (un . Vun+1) _ ’U,A'U/n+1 4 Vpn =0,
enforcing the boundary conditions over the velocity.
2. Projection step: find p"*! € H'(Q) such that:

1
Ap™th= Vi A

enforcing the boundary conditions over the pressure.
3. Correction step: Compute u"+! € H:
u" =G+ At (Vp"'H - Vp").
enforcing the boundary conditions over the velocity.

If we neglect the convective term from the equations (so we have an Stokes problem), it is pos-
sible to show [Guermond et al., 2005] that this incremental method improves the approximation

accuracy with respect to classical Chorin—Teman.

5.4.2 RCR 0D model for Neumann boundaries

In order to deliver a realistic Neumann boundary condition for the problem, we can parametrize
MAD to compute an average pressure p on oyt by means of a 0D model inspired in some of the
phenomenological ideas exposed in section 5.2.2. A deep survey on this type of models can be
found in [Formaggia et al., 2009].

Basically, we will simulate the flow behavior beyond the domain boundaries with an RCR
circuit:

D=pq+ Rp/ u" - n dx, (5.9)

1_‘out

where R, plays the role of a proximal resistance in the circuit and where pg : [0,7] — R is a

distal pressure and is the solution to the ordinary differential equation (ODE):

dpa | Ppd
o, Ld Pl ".nd
d dt + Rd frout u n 1’, (510)
pa(0) =Y.

where pg € R is a given initial condition. Naturally, Cy and R; are named distal capacitance

and distal resistance, respectively. This model is typically referred as Windkessel model.
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MAD includes a minimal ODE solver that allows us to choose either an explicit approach,
or a semi-implicit one. The later translates in nothing but in to compute the distal pressure

evolution as:

fFout u"-n dr + %pg

C 1 ’

&t w
The coupling of this 0D model with the Navier-Stokes equations will be described in section
5.4.3.1.

+1 _
py =

5.4.3 Space discretization with finite elements

A long path has been traveled since M.J. Turner et al. published their stiffness method in the
Journal for Aeronautical Sciences [Turner et al., 1956] during 1956. The intuitive point of view
of this epoch has remained untouched in the introductory undergraduate courses for structural
analysis. The mathematical foundations that lead the way of thinking the problems nowadays are
going to be briefly discussed in what follows, in order to understand the underlying mechanism
of MAD.

For the sake of compactness we are just drawing a sketch on the discretization of the Mono-
lithic approach.

The weak formulation with BDF1 of (5.8) after integration by parts may be written as:

un+1_un
p/7-0d:v—i—p/(u"~Vu”+1)-vdm—i—u/Vu”"'l:Vvdx—/(V-v)p”+1 dz
o At 0 Q Q

n+1 T n+1
+/ (V-un+l)q daj—l—/ <[_MVU +V (U ) +pn+113x3] n) vds =0,
Q Fout

2
(5.11)
Y (v,q) € Ho x L?(£2), where Hq denotes test functions in H with zero trace on the Dirichlet

boundaries.

The spatial domain 2, assumed to have at least a Lipschitz boundary, is discretized with a
mesh tessellation of tetrahedrons 7, = {71, T2, ... Tn,}, with vertices {x1,...,2zx}. The mesh
tessellation is assumed to be uniform, and the sub-script h € [0,1) denotes the tetrahedron
size. On this geometry we define finite-dimensional spaces in which MAD approximates the
unknowns u and p. Let £i(x),...Ly(x) be a basis of P1(7), the piece-wise linear Lagrange
elements, which by construction satisfies £;(z;) = d;5, Vi,j =1,...,N.

We next project u = [u1,ug,us] € H on [P1(73,)]* and p € L%(Q) on P1(Tp), so uy ~ @1 =
va ub Li(), ug = 1y = va ubLi(z), ug ~ i3 = Efv ubLi(z) and p ~ p = vaplﬁl(x) When
no confusion arises, we will make no notation difference between p and its FEM approximation p.
The problem has been reduced to finding the coefficients {p; }¥.;, {u }}¥, {ub}¥ | and {uf}Y,.
Details on the approximation errors from the projection and the discretization can be found in
books like [Ern and Guermond, 2013].
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In MAD, two steps of the FEM solver heavily exploit multi-threading: matrix assemblage
and solution of system of linear equations. The former is manually implemented with MPI using
the way that PETSc distributes the degrees of freedom A among the computer processor units
(in our delimited configuration we always have A’ = 4N for the monolithic approach), whereas
the later almost does not require any attention from the MAD development point of view since
it takes advantages of the multiple choices of already paralellized solvers inside PETSc.

Concerning the boundary conditions of the PDEs, MAD offers classical matrix blocking for
Dirichlet boundaries. No penalization method nor Nitsche approaches are yet implemented.
Concerning the non homogeneous Neumann boundary conditions, the implementation is a bit
more interesting when dealing with mixed system such as (5.8). We have omitted details on the
assembling of the discretization matrices, but we will in particular show in the next section the

local assemblage of the Neumann boundary term.

5.4.3.1 3D-0D coupling at the discrete level

To illustrate the local assemblage and some discretization choices made in MAD, we will describe
step by step the way in which non-homogeneous boundary conditions are applied. That is to

say, we will focus on the integral of the outlet forces,

/ ({ Vu+ V7T } >
Py T P3| v ds.
FO\lt

We impose in the software a constant diagonal stress tensor on I'yy. We do this by imposing
(VU"H + (VTU”“)) ‘n/2 = 0 and assuming a constant pressure p =P on Toy. At every time
step we will compute p from the Windkessel ODE (5.9).

We tessellate the domain outlet Ty, = {T1,...,Typ}, set of triangles, with N’ € N* the
number of boundary elements and we denote by IV, the number of vertices on it. Next, let us
consider the function g(x) = (pIzxsn) € [LQ(Fout)]S, with components g = [g1, g2, g3]. We can
proceed to project g and v on Py (I'oy) similarly to what we did in section 5.4.3, considering a
basis {£8, ... ,E?\,b}. It is easy to see that this translates into adding to the system right hand
side the term Mg, where

(Mb)ij = E? C? ds,
Fout
is a mass matrix on the boundary triangulation. To assemble it, MAD considers isoparametric
transformations A; : T; — Ty, for | = 1,..., N®, and where Ty, is a master triangle in which
quadrature rules are known, described with two coordinates [£1, &2]. Let us denote the Jacobians

of this transformations by the matrices J' € R3*2 with entries ij = a%l_)i. We can then
J
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integrate over every triangle as follows:

b
(My),; = Z L0 Lhdet ((Jk)TJk) ds.
k=1"Tn
The scaling factors det ((Jk)TJk) are typically refereed to as the first fundamental form of
differential geometry.

MAD is not different from other FEM softwares when it comes to the implementation of
this ideas. Triangles and tetrahedrons are implemented with objects that contain the relevant
information presented in this section, such as Jacobians, routines to compute elementary masses,
quadrature rules, etc. At a higher level, the CFD library allows us the direct assembly of M)

without digging down on the integration routines.

5.4.3.2 Inf-sup stabilization of Monolithic approach

The reader might have noticed that in our discretization choices for the monolithic approach in
MAD we are not ensuring the Ladyzhenskaya—Babuska—Brezzi conditions to address correctly
our saddle point problem (something that could be easier to grasp if we think the pressure
as a Lagrange multiplier). To avoid using high order elements, we use a traditional technique
proposed in [Brezzi and Pitkaranta, 1984]. In short, what we will do is to perturb the mass con-
servation of the system with a stiffness—like term that scales with the square of the tetrahedron

size. That is to say, the weak form of mass conservation (5.4) would look like this:

/(V~u)q dx+h2/Vp-Vq de =0, Vqe L*Q), (5.12)
Q Q

where the perturbation term is consistent in the sense that it returns an incompressible flow as
h — 0.

5.4.4 3D Numerical in silico experiments

Let us run a simulation on a realistic geometry, depicted in figure 5.5. Besides the geometry,
all the other simulation parameters are chosen to keep the in silico experiment simple, as a
toy example. Having said so, we set u = p = uj, = 1.0. Time discretization is done using a
backward Euler scheme with At = 0.004 [sec]. No-slip boundary conditions, i.e., u = 0 is set on
Tout and a tension free Neumann condition is set on oy = T UT2, UTS  UT2 ..

The discretization matrix without the convective term can be depicted in figure 5.4.4. In
the figure we also see the stabilized matrix using the technique of section 5.4.3.2. This matrix is
stored in memory by MAD in order to only compute the convective term at each time iteration.
Once the final matrix is assembled, by default MAD uses the ASM preconditioner. The solution

of the system of equations is done using the iterative solver GMRES.



132

r rs

out out

F(Q)ut \ \ I l

Figure 5.5: Working domain for in silico experiment.

(a) h=1.6 mm (b) h=0.8 mm

Figure 5.6: Two tetrahedron tessellations for the working domain. The coarse mesh (h = 1.6
[mm)]) is used to benchmark the parallel scaling of MAD, where as all the simulation results are
shown with the fine mesh. The fine mesh (h = 0.8 [mm]) has ~ 1.502 x 10° elements and it

translates into a problem of ~ 1.057 x 10° degrees of freedom.
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(a) Discretization matrix. (b) Perturbed matrix.

Figure 5.7: Matrix of system of equations to be solved for a standard Navier—Stokes problem.
We see a singular matrix and a stabilized one. For better visualization, we have chosen to show

here the matrices for the mesh of size h = 1.6 [mm].

0.0e+00 1 2.0e+00 0.0e+00 1.4e+02
| |

(a) Velocity (cm/s).  (b) Pressure (bar).

Figure 5.8: Approximated Navier-Stokes solutions using MAD with 20 processing units.
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The P;(£2) solutions are shown on the geometry in figure 5.4.4, where both the velocity and
the pressure fields are depicted once steady regime is attained, at t = 0.4 [sec]. In addition, MAD
includes routines to compute quantities of interest (Qol), which are sometimes fields or numbers
that encrypts meaningful information for the bio-medical engineering community. Among the
Qol we can compute with MAD we count pressure jumps (from velocity data), flows, wall shear

stress (WSS) and vorticity. For example, the field vorticity and wall shear stress are defined as:

T
Ow) =V xu,  S() =2ullna -~ nan) ()

2
and they are shown in figure 5.4.4. This result is achieved by doing a double interpolation given
the lack of regularity that P; elements provide. Otherwise stated, in order to obtain the results

shown, we first compute the solution gradient in Py(Q2) (per element), and then we re-interpolate
the field to P(2).

0.0e+00 4.9e+00 0.0e+00 3.0e+00
(a) Vorticity (b) Wall  shear
stress

Figure 5.9: Post-processing of velocity field from Navier-Stokes solutions.

0.0 0.1 0.2 0.3 0.4
Time [sec]

Figure 5.10: Flow on domain outlets



5.4. STANDARD PROBLEM IN HAEMODYNAMICS 135

In addition, we can depict the evolution of the flow at the working domain outlets in figure
5.10. The tensor free boundaries explains why the flow is that big on T4, at the beginning of
the simulation. In addition, another reason why this example can be called a toy or a semi-toy
in silico experiment is due to the non-convective nature of the flow. Let us take a look at the
energy of each term in the momentum conservation equation. We can define for this purpose

the time dependent quadratic forms:

Eus (ty) = u} Kug,
Biin (te) = uj Muy, (5.13)
Eecon (tk> = U;}FC (uk) Uk,

that stands for viscous, kinetic and convective energy, respectively. The matrices K € R3V*3N,
M € R33N and C(ug) € R33N are defined as K;; = [VL;-VL; dz, M;; = [ £;£; dx and
Cij = [ VL;-uy dz. Their time evolution can be depicted in figure 5.11, where we indeed verify

how negligible is the convective term respect to the others.
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(a) Viscous energy (b) Convective energy (¢) Kinetic energy

Figure 5.11: Time evolution of quadratic forms (5.13) of the velocity field.

Finally, let us perform a small high performance computing (HPC) benchmark to MAD
using the aorta mesh of size h = 1.6 [mm]. In figure 5.12 we see the CPU time scaling with
the number of processors. The benchmark comprehends the simulation from top to bottom,
that is to say, from deploying the MAD architecture, the assemblage of the static matrices, the
assemblage of the convection matrix, and the solution of one time iteration. We can remark an
almost linear scaling. In fact, the CPU time with 10 processors is ~ 106 [sec|, and ~ 42 [sec]
with 20 processors. Even more astonishing is the difference between serial computing, where

times goes up to 8486 [sec|, and two processors, where the performance immediately increase to
949 [sec].
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Figure 5.12: MAD and HPC. Parallel CPU time scaling for Navier-Stokes solver.
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Figure 5.13: Input data set for toy MDS example.

5.5 Multi-dimensional scaling with MAD

A number of model order reduction (MOR) techniques are part of MAD, such as POD, Isomaps,
data-driven algorithms and greedy methods. A benchmark between some of those techniques
when addressing the data compression of a set of Navier-Stokes solutions can be found in chapter
3. In this section we will show an small example of an Euclidean multi-dimensional scaling
(MDS), a non-linear MOR method that is going to be explored for a bio-medical application in
chapter 4.

In short, the methodology is conceived to find a representation of high-dimensional data by
embedding it in a space that is assumed to have an Euclidean structure. The data-set input is

RKXK

encoded in a dissimilarity matrix D € with pair-wise distances among K samples in its

entries. So, if we denote by X a matrix containing in each column one of those samples, we can

enforce the Euclidean structure by writing down the inner product:
T 1 2
X' X = —§HD H, (5.14)

where H = Iy — %eK ® ex, a centering matrix that ensures a unique low dimensional
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representation. Next, we can do the singular value decomposition:

1
—§HD2H =UsvT,

and retrieve a parametric representation Y € RE*P  with p < K, by truncating the above
equation as follows:
_ T
Y =5V,.
where S, is the truncation of S up to the first p singular values and V), is a matrix containing

the first p columns of V.

Figure 5.14: 2D representation of a tetrahedron using MDS.

The implementation of this method requires not much more than a correct interface with
PETSc and SLEPc.

5.5.1 Example

Multi-dimensional scaling (MDS) is a key feature to run the numerical experiments of chapter
4 on variable domains. We can test MAD for MDS with a toy example by using as data-set the
vertices of a tetrahedra, so the samples are the matrix X7 = [v1,...,v4], with the vertices in
its columns (see figure 5.13 with the input dissimilarity matrix). MDS can retrieve the intrinsic
degrees of freedom of the data: 3 of course. This example, in spite of its simplicity, provides a
very intuitive glance on the mechanism of the method. The inner product matrix (5.14) for this
example is:

0.375 —0.125 —0.125 —-0.125

—0.125 0.375 —0.125 —-0.125

—0.125 —0.125 0375 —0.125

—0.125 —0.125 -0.125 0.375

XTx =

For p = 3 we recover an exact representation of the tetrahedra, i.e, for Dij o llyi — vl
we verify D;; = Dij, where y; are the columns of Y. The Gram matrix is singular and with
MAD one retrieves the following eigen-values: (0.5,0.5,0.5,0.0). The MDS two dimensional

representation of the tetrahedron can be depicted in figure 5.14.
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5.6 Comments and acknowledgments

An overview of MAD have been given in this chapter, with a double goal: to show the software
structure and to ambitiously convince the reader about the comprehensive scope of MAD. Com-
plete understanding of the software can only be achieved by looking closer at MAD source code
and the documentation that can be accessed by direct request to the author.

We would like to acknowledge Hernan Mella, Sergio Carrasco and Fannie Gerosa for accepting

to test MAD on their personal computers.



CHAPTER 6

Future work and final conclusions

The big challenge to be addressed post-thesis is dealing with real measures. We have all the build-
ing blocks to perform reconstructions on patient-specific data. The collaboration with medical

doctors and electrical engineers is crucial at this point. The field is intrinsically interdisciplinary.

6.1 Ultrasound data

Even though we have explored the assimilation of Doppler data intensely, even including syn-
thetic noise, we have not yet used data acquired neither from plastic phantoms nor patients.
Researchers from the COMMEDIA team and other collaborators have submitted a project whose
goal is to validate the methodologies presented in this thesis with 3D-printed carotid arteries.
The experimental set-up contemplates a pump with a liquid that mimics the blood’s mechanical
properties, from which Doppler measurements are going to be taken. This thesis could serve as

the foundation for the project’s experiments.

6.2 MRI data

The scope of the pipeline might go beyond Doppler data. In fact, as defined in chapter 2, we need
not much more than data encoded in linear functionals of the space in which the state we want
to reconstruct lives in. Magnetic resonance imaging (MRI) is an example of this. There is an
ongoing collaboration with the Biomedical Imaging Center (CIB) at the Pontificia Universidad
Catolica de Chile. A complete set-up is already implemented, and it can be depicted in figure

6.1.

6.2.1 Experimental set-up

According to [J. et al., 2016] (where the experimental set-up is extensively described), the ma-
chine is a clinical 1.5T MR scanner (Philips Achieva, Best, the Netherlands) with a four-element
phased-array body coil. The phantom can be scanned and posterior segmentation is done to

obtain working domains to run simulations and assimilate data, as seen in figure 6.2.
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Flow Pump

Figure 6.1: Phantom of the aorta and MR scanner, located at the Biomedical Imaging Center,

Santiago de Chile. Picture taken from [Montalba et al., 2018]

(a) Healthy sample (b) Coarcted sample

Figure 6.2: Two tetrahedron meshes after segmentation of MRI data.
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Researchers at CIB have full access to the acquisition pipeline from the scanner, which
therefore allows flexibility in terms of defining the signal to be assimilated. Having said so, the

problem can be posed in three different variations:

1. Data assimilation of 4D-flow: though very costly, this could improve the quality of the
flow data by regularizing the noise, projecting the field in a divergence free space, and

increasing the spatial resolution.

2. Data assimilation from 4D-flow slices: velocity data can be accesses in slices, in a similar
manner that Doppler data is acquired, but with a lower time resolution, and instead
of providing projections of the velocity in the ultrasound probe steering direction, they

provide a 3D vector per image voxel.

3. Data assimilation from raw data: probably the more interesting alternative to be explored,
we can proceed to assimilate directly the raw data from the scanner before the post-

processing that produces the 4D-flow.

We can see an example of two 4D-flow snapshots interpolated over a tetrahedron mesh in
figure 6.3. In [Garay et al., 2020], we can see numerical simulations over a phantom with stenosis
(the level of stenosis can be parameterized, so that different configurations can be tested). In
the document we also see how to tune our models, i.e., the Navier-Stokes equations and the
ODE coupling so that we recover realistic simulations.

In adittion, the phantom set-up counts with a catheterization unit which allows us to compute
pressure jumps as medical doctors do in the regular medical practice. Thus, this is a perfect
scenario to test flows reconstruction, estimation of Qol, and our proposed machine-learning

techniques for model reduction in non-parametric domains.

6.3 Forecasting

A prediction and update (P&U) algorithm is proposed for data assimilation in systems described
with parameterized non-stationary PDEs. The methodology can be seen as a Kalman filter. The
forecasting is not done thought for the state itself but for its projection coordinates into a reduced
model of the governing laws. Therefore, the prediction and update algorithms require an offline
phase of data compression, where time is not taken yet into account. The section is shown as part

of the perspectives because we present a general idea without extensive numerical experiments.

6.3.1 Data assimilation for non-stationary PDEs

We introduce a method to assimilate data using reduced models of non stationary PDEs. So far,

in chapters 2, 3 and 4 we have run numerical experiments using complex non-stationary models.
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0.0e+00 9.Te-01

=

(a) velocity m/s

0.0e+00 3.3e-01

[

(b) velocity m/s

Figure 6.3: Two 4D-flow snapshots, courtesy of Hernan Mella from the Biomedical Imaging
Center, Santiago de Chile. Upper snapshot is taken at peak systole. Bottom snapshot is taken

at diastole.
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Nevertheless, time has been taken as part of the parameter space. There is therefore potential to
improve the results by using well-known forecasting techniques such as Kalman filters, originally
proposed in [Kalman, 1960]. Modern works on filtering strategies for bio-medical applications are
abundant. An example of data assimilation for blood flows can be found in [Caiazzo et al., 2017].

A complete study for cardiac mechanics can be found in [Moireau, 2008].

6.3.1.1 Model

We want to estimate u € [H! (Q)]3 x [0,T] (T > 0), when u is subjected to non-stationary
governing dynamics, a PDE P (u(t),y) = 0, where y € RP vector of p parameters in Y C RP.

We can define the parameterized set of solutions
M= {u(t) € [H'(@)]"; P (u(t);y) =0, y € Y, t € [0,T]}.

Remark that we have written u(t) to emphasize that time is not part of the parameter space,
as it is for chapters 2 and 3. Assume we have a sample of M, a training set of functions each
corresponding to a different parameter configuration u (y1,t),...,u (yn,,t). We call Ny number
of simulations.

Consider a mesh Q5 of Q@ with N vertices. Let [Py (Qh)]3 be the piece-wise linear space
of Lagrange functions in 2, a finite-dimensional approximation of [H I(Q)]?’. We work with
[Py (Qh)]5 just because in practice is the space we are going to use in our numerical experiments,
it is easy to see that this is not a necessary assumption and the reader might choose another
suitable finite-dimensional approximation for the ambient space. Let us project our training set
into [P1(2)]?

u(ys, t) m ul (6) E P, g0 (wlyi t) = > ul (1)2;(x). (6.1)

where A" = 3N is the number of degrees of freedom and the functions {£;}¥, are a basis for
[P1(Q1)]°. Let us consider the uniform time partition of [0,T]: [t,...,tx], with K < T/At
the number of time iterations, with At the partition size. We can define a discrete training set
with the expansion of the training functions in [P1(25)]%, u(® (t;) = (ugi)(tk), ce uj\i/)(tk))T, as
defined in (6.1). Those coefficients are computable via finite elements for instance. Thus we

introduce the set
Mipain = {u@(t) eRY; i=1,... ,Ng; k=1,...,K}. (6.2)

6.3.1.2 Measures

Let us denote by || - || and (-,-) the norm an inner product of the Hilbert space [H* (Q)]3 We

model the m sensor devices by a linear operator O : W,,, — [H 1 (Q)]3 Every sensor separately



144

is modelled by a linear functional ¢;(u) : [Hl (Q)] ® 4 R. Let us denote by A1, ..., Ay the unique

Riesz representers of those functionals, so
4i(u) :/u&\i d:EJr/ Vu:VAde, i=1,...,m,
Q Q

and let us denote by w1, ..., wy, the orthonormalized Riesz representers of the measures. Let us
project them in [P(€2;)]?, so we can see that the finite dimensional version of the operator O
admits a matrix representation W & R™N in which every column correspond to the coefficients

of the expansion P ()2 (w;). The matrix W is orthogonal by construction.

6.3.2 Time independent model compression

At the core of this methodology there are two things: a model reduction for the whole training
set (6.2), but that takes into account the time by means of a forecasting algorithm. For this
means, it is useful to rephrase the training set and separate it in different cloud of points per
time step as follows

Mirain(tr) = {uP () e RV; i =1,..., N} (6.3)

so that Mipain = U{ilMtrain(ti)- Next, we need to introduce a data compression technique for
(6.2) and an algorithm to account for time between two contiguous sets (6.3), a prediction and
update or forecasting that uses information Myain (tx) and Mypain(tg+1). We start by addressing
the former with a singular value decomposition. Consider the snapshot matrix A € RN % (NsK)
containing each realization of the training set Miy in its columns. The model reduction via
SVD reads A = USVT| so we have an n-dimensional basis in the columns of U, (a sub-matrix
of U with the first n columns of U) for the space spanned by the elements in the set Mirain,
which is optimal in the sense that miny, . Ran(x,)=n [|1A — X, XAl is solved by U,. Let us
denote that base by py, ..., pn and the space that it spans by V,,.

The novelty of this methodology is that we are going to address the time evolution of the
state u only looking at the expansion of the training functions in V,,. Remark that this is
advantageous due to two things: First, the estimation will require computations in R", which is
cheap if P(u;y) has a good decay in terms of its Kolmogorov n-width. Second, we will track the
evolution of the state without knowing its parameters. This leads to an online phase estimation
which is theoretically much faster than estimation of the state in RV and that does not require

a middle step for parameter estimation.

6.3.3 Forecasting algorithm

In this section we bring time to the picture. We would like to understand the time evolution of
the state from a certain time ¢; to another subsequent time ¢;;; by using the time independent

model V,, and the set of solutions samplings Mrain(t;) and Mirain (ti41)-
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Assume we have a reconstruction of the target field u € [H* ()] % at t1, say a field u*(¢1), and
let us denote by a(ty) = (ai(ty), . .., an(tr))’ € R™ the coordinates of the projection Py, u*(t4),
k=1,...,K . In order to compute u*(t1) we could follow several paths, such as projecting
every sample in Myin(t1) and computing a mean, or to use a static algorithm with the given
measures. We defer this choice to the numerical experiment of section 6.3.4.

The goal is now to design a prediction and update algorithm for the evolution of the coeffi-

cients a(tg). To this end, we will use a linear propagation model. We can remark that:

Remark 6.3.1. A linear propagation in the coefficients of the samples when projected into V,,
does not mean that the underlying model has to be linear. It is correct to say that the model,
encrypted in the parameterized PDE P(u(t),y) can be non linear, but we compress a sample
of this PDE in a linear space that allows us to do propagations that have information about
the non-linearities of the governing laws. One could argue about the quality of linear spaces to
reduce the PDE, so here is certainly when we can set an intuitive perimeter for this methods: a
prediction and update algorithm for non linear PDEs with moderately fast decaying Kolmogorov

n-widths.

In practice, at each time step ¢; we are given a vector of measures I(¢;) € R™, coordinates of
an element in w € W,,,. We assimilate the data at each time step in two sub-steps, described in

the following sections.

6.3.3.1 Prediction

Let us adopt a notation more familiar with Kalman filtering. We call ay;, = a(ty) the prior
estimation. Let us project every entry in Mipin(tx) in V;, and let us place the coordinates
of this projections, the vectors {a ()}, (a(t;) € R™), in the columns of the matrices
A(t) € R™Ns We propose to do a prediction step with a linear combination of the sampling
of M at tj41. Otherwise stated, let w € R¥ ve a vector of weights, our prediction is then
a1k = A(try1)w, and we choose to compute the weights by means of a least squares fitting at
tr:

w = arg inf ||y, — Altr)w|2, (6.4)
weRK

We assume a good sampling for the set of solutions, that is to say, we assume that K is
much bigger than n. Having said so, we can regularize (6.4) with an SVD, A(ty) = USVT,
so we compute a regularized pseudo-inverse up to the dimension of Vj;: AT(tk) = U(n)S’(nl) V(Z;)
(recall that for a matrix X we denote X,, the sub-matrix with the first n columns of X). The

predicted coefficients are thus:

apprfe = Alte+1) (AT(tk)aMk) :
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The prior state has an a-prior covariance Cy € R™*™ we have to propagate it as well, with
the same linear dynamics we have used for the state. We introduce the propagation matrix
F = A(tp1)AT (). Thus,

Crpjp = FCyF" + 0,

where O € R™ "™ is assumed to be symmetric and positive definite, to be defined in section

6.3.3.3.

6.3.3.2 Update

We are in order to compute the update ag 1. Let us introduce the discrepancy between

model and measures, the vector z € R™ defined as

2= Gagy1ppy1 — k1)

where G € R™*" is a cross-Gramian matrix between V,, and Wi, so its entries are G = (w;, p;)-
The observation process also is perturbed by noise, and it has therefore an associated covariance
matrix ¥ € R™*™,

Notice that both Cyyqx and X are symmetric and positive definite by construction. We can
define metrics with them. Having said so, the update might be computed by minimizing the
joint functional

1 2 Lo 2
J = §||ak+1\k+1 - ak+1|k||ck—+11|k + §HZH2—1- (6.5)

Let us optimize it,

0 B 0
aak+1\k+1 B 28ak+1\k+1
+ (Gagraprs —Utkrn)) T =71 (Gagyappss — Utesn)) }

= (Gl + G276 arapers — (O apgae + TS Mi(t))

T
{(agsrjks1 — angre) ijl‘k (@ht1kt1 — Qrr1ji)

Thus, the update step reads: find ayyqx4+1 € R" such that:

(Cilie + G727 ) axaprs = (Clypansun + G757 Mtn) ) - (6.6)

We can update the co-variance as well using its definition with the data from Myain (t5+1)
biased at ajy1jk11. The state is recovered then by doing u*(tgy1) = D7) (ak+1\k+1)i Di-
6.3.3.3 Quantification of covariances

We have to choose a method to compute the matrix O and the matrix ¥. This matrices are

typically referred as model and measures covariances of the noise. This could be misleading, as
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deep down what we are trying to account with those matrices is how much we trust model and
measures. This is very easy to see for ¥: imagine that we have an ideal device that provides
noise-free measures, but that only is capable of seeing a fraction of the domain, or an aggregated
quantity of the state. Will we trust absolutely the observations and do our reconstruction model-
blindly A(w) = w? Of course not. We introduce the following systematic manner to account for

this:

N,
]. 2 2
0= (NZ Ju =Py (u) | ) -

N,
1 S

o= (a?n + 5 2 e = P, () ||2) L
S =1

so that we account for the error in the orthogonal projection into VnJ-7 and we account for how

(6.7)

rich the space of observations is by doing the same with W;t. o, is the standard deviation of

the observation noise.

6.3.4 Toy Stokes numerical example

We generate the set M ain by sampling the Stokes equations over Q C R3, the dilated tube seen
at 6.4. So, the sampling problem reads: find u € [H(Q)]3 and p € L?(Q) such that:

Oru — pAu+ Vp =0 in €,

V-u=0in Q,
u=(0,0,0) on Iy,
224 2 (6.8)
u = uin{0, (1 - WQ)Q) ,0} sin(27t) on Ty,
Vu+ V7T
( 2 p13X3) n = (Oa 070) on Fout

Figure 6.4: Admittedly simple working domain to test out prediction and update algorithm.

The parameter space is set equally as it was done in section 4.3.3. In this context, Ny = 500
and K = 25. We propose to compute the first prior to start the prediction and update algorithm
by using the least squares term in PBDW, so we get ay); € Vj,. That is to say, the algorithm is
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Figure 6.5: [H(Q)]?® error (6.9) temporal evolution for 12 simulations and their average. The
space V,, is selected with a tolerance of 1072,

0.0e+00 9.4e-01

- o
(b) u*

0.0e+00 2.3e-03

|

(c) u—u"

Figure 6.6: Reconstruction of one field in range with the parameter space to generate the set of

solutions. The snapshots is taken at the peak velocity time.
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initialized as follows: find ay); such that:

. 1
min §||Ga1\1 —I(t1) |2

a1|1€R
In addition, we initialize the covariance matrix as follows

s

Cup = 5 3 (a0(0) —alt)) @ (a0 (12) — )
5 i=1

where a(t;) = Nis Zf\iﬁl a(t1). Figure 6.5 reveals the effectiveness of the algorithm when
evaluating the error with
lu — w1
Jo Mlull? d

A single snapshot with the ground truth, the forecasting reconstruction and the error field can

be seen in figure 6.6.

6.4 Inter-patient variability

Last but not least, it is part of the near future work to integrate the content of chapter 4 on inter-
patient variability with the state estimation methodologies of chapters 2 and 3, or even of the
forecasting methodology proposed in previous section. A scientific communication is expected

to be produced with this content.
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