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Introduction I

La musique est le salaire que l’homme doit au temps.
Plus précisément : à l’intervalle mort qui fait les rythmes.

— Pascal Quignard, La haine de la musique

Music is what man owes to time.
More precisely: to the dead interval that produces rhythms.

— Pascal Quignard, The Hatred of Music

I.1 Biological substrate for neural computations

Humans perceive objects, feel emotions, generate complex thoughts, coordinate movements,
store and recall past memories, make decisions and plan strategies. Such sensory, cognitive
and motor processes that produce adaptive behavior with the environment are embodied
in the neural tissue of the brain.

Pioneering studies starting at the end of the 19th century discovered that the neural
tissue is formed, among other cells, by separate individual cells called neurons, which show
electrical excitability and are connected to each other (Ramón y Cajal, 1909). Since then,
the physiology of neurons and their connections –synapses– has been extensively studied.
All across the outer layer of the brain, the cerebral cortex, neurons are similarly organized.
Cortical neurons are organized into horizontal layers and grouped vertically in columns that
are recurrently connected with their surrounding columns (Fig. I.1A). However, different
areas of cortex receive inputs from different cortical and subcortical structures, and are
responsible for different functions. Broadly speaking, cortex can be functionally categorized
into sensory, motor and association areas. This flexible functionality on an extended neural
tissue with common anatomical features have led to hypothesize that the network structure
of cortical neurons is the biological substrate of the computations that the brain performs.
An essential question in neuroscience consists in describing the map between a specific
behavior or neural computation and the activity of interconnected cortical neurons.

Neurons interact with each other by firing stereotyped fast electrical discharges, referred
to as spikes or action potentials, that are then felt by their connecting neurons. Influenced
by the view that neurons are the basic structural and functional units in the brain, the first
recordings of in vivo activity in cortical areas studied the link between the environment
(i.e., external stimuli) and the activity of single neurons (measured as the number of spikes
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I. Introduction

elicited in a certain temporal window). Starting in the 1950s, David Hubel developed a
microelectrode able to record the action potentials of single neurons in vivo (Hubel, 1957).
Together with Torsten Wiesel, this technique allowed them to identify the features in the
visual field that elicited a response in cortical neurons (Hubel and Wiesel, 1959, 1962), such
as the location or shape of the visual stimulus. This mapping was formalized by the concept
of receptive fields or tuning curves: a mathematical function that maps certain parameters
of the inputs to the firing rate of single neurons (Fig. I.1B). Similar receptive fields have
been characterized in other sensory cortices such as the spectrotemporal receptive fields
of neurons in primary auditory cortex (Aertsen and Johannesma, 1981), and the receptive
fields of somatosensory cortex, that links the touch in different body locations to the neural
responses (Gardner, 1988).

Receptive fields in upstream cortical areas are sensitive to more abstract features of the
environment. For instance, in inferior temporal cortex, which receives input from higher
visual areas such as V4, and in the temporo-occipital cortex, neurons are rather insensitive
to simple features such as location in the visual field and stimulus size but respond instead
to complex properties such as particular combinations of shape and color (Gross et al., 1972;
Gross, 1992). In higher cortical areas, the tuning of single neurons has been found to depend
not only on sensory parameters but also on cognitive variables, such as memory demands. In
non-human primates’ prefrontal cortex (PFC), the cortical area responsible for many forms
of executive control, some neurons show increased firing activity when a stimulus with a
given orientation is held in memory (Funahashi, 1989). In sensory discrimination tasks
where monkeys compared the frequencies of two vibratory stimuli temporally separated by
a time delay, the firing rate of PFC neurons was monotonically tuned during the delay
(Fig. I.1C, Romo et al. (1999)). However, a detailed classification of the tuning properties
of neurons in PFC in more naturalistic behavior is challenged by the fact that responses are
correlated with sensory stimuli, task rules, motor responses and any possible combination
of these (Rigotti et al., 2013).

Advances in neural recording techniques have also allowed researchers to record action
potentials from multiple cortical neurons simultaneously, starting in the 1990s with the
introduction of tetrodes (Gray et al., 1995) that could record from tens of neighboring neu-
rons simultaneously, to the more recent Neuropixel electrodes that can record thousands
of neurons in multiple brain areas (Steinmetz et al., 2018), together with the development
of imaging techniques that can track other proxies of single cell neural activity (Dombeck
et al., 2007; Chen et al., 2013). Multi-unit recordings, together with algorithmic progress
in spike sorting, were able to reduce the selection bias of single-neuron physiological stud-
ies, where neurons that are more responsive to the task are more likely to be identified.
This new picture has broadened the view on the huge variability in neural responses that
is observed in cortical areas in vivo. These results, enabled by the constant progress in
recording techniques, together with theoretical studies focusing on the emergent properties
of neuronal networks at the collective level, questions the notion that individual neurons are
the functional units for computation in the brain and propounds that computations emerge
in cortical areas at the level of local neural networks (Yuste, 2015).

One aspect that is often overlooked when correlating environmental features to the re-
sponse of individual neurons is their complex dynamics. Often, tuning curves map the
time-averaged response of neurons to a given set of stimuli, i.e., the mean firing rate during
the stimulus presentation. Such simplifications leave aside the temporal heterogeneity in
neural responses. This heterogeneity can be partly explained by the intricate recurrent con-
nections present in cortical networks (Sompolinsky et al., 1988; Brunel, 2000). Moreover,
neural responses show a large variability to the same stimulus in repeated trials (Mainen
and Seinowski, 1995), which is also averaged out in traditional tuning curve analyses. In
recordings of multiple neurons, the noise-correlations, i.e., the trial-to-trial variability inde-
pendent of the stimulus, are affected by learning experience and attention, giving support to
their role in brain computations (Cohen and Maunsell, 2009; Ni et al., 2018). Furthermore,
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Figure I.1: Cortical neurons and tuning curves in cortical networks. A Cortical
neurons in deep layers of human visual cortex. Drawing from Ramón y Cajal (1909), based
on Golgi’s staining method. B Tuning curve of one cell in cat’s visual cortex mapping the
orientation of a flashing bar to the firing rate of the neuron. Each bar corresponds to the
firing rate averaged over 13 different trials, each trial being 500ms long. Adapted from Henry
et al. (1974) C Top. Tuning curve of the averaged firing rate of one neuron in prefrontal
cortex, in a two-interval forced choice task using vibratory stimuli, during the three-second
delay. The tuning curve measures the average firing rate during the delay for seven different
frequencies of the first stimulus. Bottom. Temporal profile of the instantaneous firing rate
of the neuron at different time points of the trial. Adapted from Romo et al. (1999). The
tuning curve does not take into consideration the ramping profile of the firing activity of
this neuron.

when task parameters are decoded from the joint activity of multiple neurons, stimulus fea-
tures can be better assessed than considering separate single neurons (Rigotti et al., 2013;
Fusi et al., 2016). Such recents findings point towards an integrative view of cortical com-
putations, where local networks must be taken into account to understand computations
(Saxena and Cunningham, 2019).

The work presented in this thesis is grounded on a theoretical framework by which neural
computations -representations from the outer world, cognitive variables, motor commands-
are based on the temporal dynamics of the joint activity of ensembles of neurons. In this
Chapter, we first briefly introduce the basic concepts the mathematical framework, coined
as computation-through-dynamics (Vyas et al., 2020; Remington et al., 2018b; Horio and
Aihara, 2008). Secondly, we define the computations that are object of this study: temporal
computations, with special emphasis on recent work focusing on neural mechanism for
flexible timing tasks. In particular, we summarize recent experimental findings in timing
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I. Introduction

tasks that motivate part of this work. In the last section, based on the described theoretical
and experimental findings, we outline the structure of this thesis.

I.2 Neural computations through dynamics

Cortical networks can be described mathematically as dynamical systems. This approach
takes into account the interactions between neurons, the cellular biophysics of single neurons,
and their responses to external inputs from other brain areas.

A dynamical system is defined by a set of state variables, that can be jointly represented
as a multidimensional vector at any point in time x (t). These variables account for the
time-dependent features that model the neural network. The temporal derivatives of the
state variables are defined by a function f , often non-linear, that receives as arguments the
state variables themselves, and possibly, some external inputs I (t):

dx (t)
dt

= f (x (t) , I (t)) . (I.1)

To build an intuition of a dynamical, we can think of the dynamics of an ideal pendulum,
as illustrated in Vyas et al. (2020). The state of a pendulum is defined by its angular speed
v and its angular position p, so that the state variables are defined by vector x = (p, v).
In the absence of any external perturbations, when the input I (t) is zero at all times, the
dynamics are called autonomous, and given by the motion equation

dx
dt

=

{
dp
dt = v
dv
dt = − sin p.

(I.2)

The state-space of the pendulum is therefore a two-dimensional system, given by axes p
and v. If the initial conditions at a given time point are given, it is possible to solve the dy-
namical equation integrating over time, to fully determine the trajectory of the pendulum,
i.e., the series of states (positions and speeds) that the pendulum will go through. This
trajectory represents a curve in the two-dimensional state-space, that is parameterized by
time. Different initial conditions generally generate different trajectories. One common way
to visualize the possible trajectories of a two-dimensional dynamical system consists of plot-
ting the phase portrait or flow field in state-space: a dense representation of the trajectories
that can be generated in neural space. The flow field of the pendulum displays two special
points in state space where the dynamics of the state vector are zero: at (p = 0, v = 0) and
(p = ±π, v = 0), which correspond to the pendulum located with zero velocity in the vertical
direction, either in the bottom or the top. These special points are called fixed points, x0.
Fixed points can be either stable or unstable, depending on whether small perturbations
at the fixed point decay back to its initial state or are amplified towards a different state.
Generally, the stability of the fixed points can be analyzed by approximating the dynamical
system (Eq. I.1) close to the fixed point x0 up to the linear order:

dx (t)
dt

= Ax +BI (I.3)

where A and B are matrices that depend on the particular fixed point and the motion
equation (Eq. I.2). Matrix A is denoted the Jacobian, and its eigenvalues carry information
about the stability of the fixed point. If the real parts of all eigenvalues are negative, the
fixed point is stable. If the Jacobian has at least one eigenvalue with positive real part,
the fixed point is not stable, since small perturbations in the direction of the associate
eigenvectors will be amplified as time evolves. Eigenvalues with value zero or imaginary
eigenvalues lead to marginally stable dynamics close to the fixed point, so that the stability
of the fixed point must be established based on additional analysis tools. In the pendulum,
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I.2. Neural computations through dynamics

the fixed point corresponding to the top position happens to be unstable, whereas the fixed
point corresponding to the bottom position is marginally stable, because small perturbations
around it will not move away from the fixed point nor decay back to it.

The study of a dynamical system is not restricted to the analysis of the existence and
stability of fixed points. The pendulum for example can produce oscillations: closed trajec-
tories in state space where the dynamics f (x) are never zero. Such curves in state space are
called limit cycles. Other types of trajectories can also occur. For instance, if the pendulum
is initiated very close to the top position, with a finely tuned velocity, it is possible to make
the pendulum rotate fully just one time around the clock and stop at the top position. This
behavior corresponds to an orbit, a non-trivial trajectory in state-space that starts and ends
at a fixed point.

External inputs can interfere in different ways with the autonomous behavior of a dy-
namical system. In particular, the trajectories produced by a specific input depend on the
state of the dynamical system when the input is received. For example, if a pendulum
receives a kick when it lies still in the bottom position, it will produce a trajectory that is
different to the trajectory when the pendulum receives the exact same kick when it lies still
in the top position. Therefore, we can conclude that the response of dynamical systems
to inputs is state-dependent. In the case of inputs that are constant in time, it is possible
to consider them as part of the function f that determines the dynamics, altering the flow
field in state-space.

The pendulum is a two-dimensional dynamical system. Dynamical systems with more
than two dimensions can generate, apart from fixed points and cycles and orbits, chaotic
behavior. Chaotic dynamics is a property of dynamical systems in which two trajectories
with nearby initial conditions diverge from each other in state-space exponentially fast as
time evolves. Chaos is an ubiquitous feature of high-dimensional non-linear dynamical
systems. For instance, a double pendulum (one pendulum hanging below a first pendulum)
is a dynamical system with four state variables, that produces chaotic behavior.

So far, we have described dynamics that are deterministic; dynamical systems initiated
at a fixed given state will always give rise to the same trajectory in state-space. Nevertheless,
when dynamical systems are used to model biological processes, it is common to add noise:

dx (t)
dt

= f (x (t) , I (t)) + ξ (t) , (I.4)

where ξ is defined as a multi-dimensional random process, that can be defined at the level
of its spatial correlations and temporal statistics. Noise is usually considered to be random
perturbations that are not explicitly modeled in the system, and accounts for the large
variability present at other levels of descriptions of the biological process. Dynamical sys-
tems subject to noise are stochastic dynamical systems. Such stochastic dynamical system
will generate different trajectories even when initiated at the same initial condition. How-
ever, stochastic dynamics are not necessarily chaotic: two trajectories with similar initial
conditions can produce different trajectories, but they do not necessarily diverge from each
other.
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Figure I.2: Dynamical system: the pendulum. A The state of a pendulum is defined
by two variables, the angle θ, that determines its position in space, and its angular velocity v.
Therefore, the state-space of the pendulum has dimension two. The corresponding dynamics
is given by Eq. (I.2). B In 2D dynamical systems, we can plot the flow field, indicating
the possible trajectories in state-space. The marginally stable fixed point is filled in black,
the unstable fixed point in white (note the periodic boundaries for the angle, constrained
between −π and π). The colored curves correspond to three different trajectories with initial
conditions given by the crosses. The red trajectory corresponds to a limit cycle, where the
pendulum always oscillates in the same direction. The blue curve is a limit cycle, where
the pendulum oscillates around the marginal stable fixed point, alternating positive and
negative velocities. The purple curve corresponds to a cycle: a trajectory that starts and
ends at (the vicinity) of fixed points. C Neural trajectories are parameterized by time. We
show the projections of the trajectories in state-space from B onto two different directions:
the axis given by the angle θ (top) and the axis given by the velocity v. We can observe that
the oscillations of the red trajectory are faster than the oscillations of the blue trajectory.
When we plot the flow field by showing only the possible trajectories, there is no information
about the speed of the trajectories. D We show two different pendula, the red one initially
fixed in the top position (θ = π) and the blue one, initially fixed in the bottom position
(θ = 0). Both systems receive the same input pulse (a kick) at time point t = 2, that
instantenously increases the angular velocity. E Given that the pendula are at different
states, they generate different trajectories to the same input. The red pendulum oscillates
always in the same direction after the input, while the blue pendulum oscillates back and
forth around the bottom position. Dynamical systems are state-dependent, because they
process inputs differently depending on their initial state. F Dynamics of the angle and
velocity, receiving a pulse in the velocity at time t = 2.
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I.3. State-space: cortical networks as dynamical systems

I.3 State-space: cortical networks as dynamical systems

Neural recordings of cortical networks can be studied as a dynamical system, using the
mathematical tools that we applied for the ideal pendulum. The recorded activity of N
neurons can be thought of as a trajectory in a state space of N dimensions, where each
axis corresponds to a single neuron. For instance, if no neurons fire and suddenly two
neurons emit simultaneously an action potential, the neural trajectory will move from the
origin along the plane spanned by the two firing neurons. Often, for the analysis of neural
trajectories, instead of considering the spike trains of recorded neurons, the trajectories are
calculated based on a temporally-filtered sequence of the spiking patterns, the firing rate,
so that the state variables are continuous (Fig. I.3A). In actual in vivo network recordings,
the firing rate activity of single neurons is highly heterogeneous, generating complex pat-
terns in neural state-space. In this framework, computations, thought of as representation
of environmental variables or cognitive processes, are a result of the voyage of neural tra-
jectories in state-space (Buonomano and Maass, 2009). This framework, also referred to
as computation-through-dynamics, extends the classical view of neuronal coding, based on
time-averaged responses of neurons to a stimulus, by taking into account the large and often
complex dynamics of neuronal responses.

The dimensionality of neural trajectories is given by the number of recorded neurons,
which define the state variables. Using recent recording techniques, this number is usually
high, ranging from tens to thousands of neurons. Nevertheless, neural trajectories often
span linear subspaces whith much lower dimensionality. For instance, if all recorded neurons
fired at the same time, the neural trajectory would be constrained to the straight line in
neural space, given by the direction (1, 1, . . . , 1). The dimensionality of the linear subspace
is the embedding dimensionality, and is defined as the number of cartesian coordinates
(collective variables) that describe a given neural trajectory in state space. The embedding
dimensionality can be estimated by applying dimensionality reduction techniques, such as
principal component analysis to the neural data. Often, neural trajectories recorded under
experimentally controlled conditions display an embedding dimensionality that is much
lower than the number of recorded neurons.

Instead of studying single trajectories that correspond to single trials, we can consider
a group of trials that share some experimental condition. This corresponds in neural space
to an ensemble of trajectories. The region in neural space explored by the ensemble of
neural trajectories is called a neural manifold (Fig. I.3B). Neural manifolds can sometimes
be described by less variables than the dimensionality of the linear subspace in which they
are contained. For example, if a set of neural trajectories is constrained to the surface of a
3D sphere in neural space, the embedding dimensionality of the corresponding manifold is
three. However, it is possible to describe any state on the manifold with only two variables,
the altitude and the azimuth on the sphere (Fig. I.3D). These variables are often called
latent variables of the dynamics, and the number of latent variables defines the intrinsic
dimensionality of a neural manifold. The intrinsic dimensionality is often hard to assess
in neural recordings, and usually requires additional theoretical assumptions about the
geometry of neural trajectories (Yu et al., 2009).

The quantitative analysis of neural recordings in the framework of dynamical systems
can be extended beyond the assessment of the dimensionality of the neural trajectories
(Vyas et al., 2020). Recently, it has been assessed whether different tasks correspond share
the same embedding dimensions or not. For instance, motor activity and premotor activity
concur into largely non-overlapping subspaces in motor cortices (Kaufman et al., 2014;
Elsayed et al., 2016; Gallego et al., 2018). In neural recordings of neurons in visual areas
V1 and V2, a similar analysis tool showed that some activity is shared across the two areas
in a given subspace, whereas another fraction of the recorded activity evolved in dimensions
belonging to only one of the two populations (Semedo et al., 2019). Motor and premotor
cortical responses have been recently compared based on the notion of ”tangling”, how
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Figure I.3: Neural trajectories, manifolds and dimensionality. A Illustration of
the firing rates of three units in a (biological or artificial) recurrent network. The firing rate
for spiking neuron recordings can be estimated by averaging the number of spikes over a
short time window. Two time points, blue and purple, are highlighted. B The neural state-
space of such network has the dimensionality of the number of units considered. We show
here the neural trajectory along three recorded neurons. Each point in time (such as the
blue and purple dots) corresponds to a point in neural space, whose coordinates are given
by the activity of each neuron. The collection of all time points is the neural trajectory
(grey curve). C Illustration of eight different trajectories, grouped by two different trial
conditions (blue and red). The set of trajectories for each trial condition spans a neural
manifold. In this illustration, there are two neural manifolds that correspond to a linear
plane, therefore, the embedding and latent dimensionality of both manifolds is two. Often,
in high-dimensional neural networks, the axis correspond to linear combinations of the
activity of different neurons, instead to single neuron activity. D Set of neural trajectories
that evolve along a sphere in neural state-space. The embedding dimensionality of the
manifold is three, because the sphere is a 3D object, whereas the intrinsic dimensionality
is two, because any point on the sphere can be mapped by using two angles (altitude and
azimuth).

much trajectories that are close to each other in state-space at an initial time point evolve
through similar trajectories (Russo et al., 2018). Furthermore, it has been observed that the
neural manifolds used for motor actions can be systematically accessed over several days,
even if the set of recorded neurons changes (Gallego et al., 2020). Other approaches have
assessed how much the embedding subspaces hosts trajectories that are invariant to time,
determining the ”temporal scaling” index of the subspace Remington et al. (2018a).
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I.4 Recurrent neural networks

The computation-through-dynamics approach is not limited to the analysis of neural record-
ings. On the contrary, it offers a direct link to artificial recurrent networks, where all the
state variables that define the network are known and accessible. One common way to
describe recurrent neural networks is to use the following dynamics:

dxi
dt

= −xi +
N∑
j=1

Jijϕ (xj) + Ii (t) (I.5)

for i = 1, . . . , N , where xi (t) is a continuous variable that correspond to the input received
by the i-th neuron at time t. The firing rate of the neuron is then a non-linear transformation
of the input ϕ (xi), often a sigmoidal or threshold-linear function. The matrix element Jij
measures the synaptic strength of the connection from neuron j to neuron i. The function
Ii represents the possibly time-dependent input that the i-th neuron is received from other
brain regions. Under mild mathematical assumptions, a recurrent neural network model
as in Eq. (I.5) can theoretically approximate with arbitrary precision any given function
(Doya, 1993), so that it can also be used to replicate recorded activity or solve any cognitive
task (Sussillo and Barak, 2013; Laje and Buonomano, 2013; Chaisangmongkon et al., 2017;
Wang et al., 2018; Pinto et al., 2019; Yang et al., 2019). The unknown parameters of
the network can be found in practice by applying different learning/training algorithms
such as backpropagation through time (Werbos, 1990), FORCE learning (Sussillo, 2014), or
more biologically-inspired algorithms such as Hebbian learning (Hebb, 1949; Gerstner and
Kistler, 2002). In its final goal, this approach provides an in silico model of a biological
neural network, allowing for inexpensive explorations of the dynamics (parameter space,
response to perturbations, etc) to guide new experimental paradigms.

Nevertheless, the theoretical study of recurrent neural networks has long preceded the
development of multi-unit recordings and training of large recurrent networks. The first neu-
ral network models focused on feedforward architectures, emulating the structure of early
sensory systems, such as the perceptron and the multi-layer perceptron (Rosenblatt, 1962).
These networks are able to perform many cognitive function, such as pattern classification
and image recognition and are the basis of the state-of-the-art algorithms such as convolu-
tional neural networks (Bengio et al., 2017). However, feed-forward architectures only deal
with external information sequentially, in a way that ignores the temporal fluctuations of
both the external inputs and the processing units.

In order to account for the complex dynamics of both the external stimuli and neuron
activity, it is necessary to build networks with recurrent connections. Recurrent architec-
tures consists of processing nodes that are not hierarchically organized into different layers
of processing, but interact with each other, together with the inputs, at the same processing
level. In Eq. (I.5), the connectivity between different neurons is described by the matrix Jij
and determines the interactions between neurons. In the past decades, recurrent network
models have been proposed in theoretical neuroscience, to explain the dynamics observed
in neural recordings (Sompolinsky et al., 1988) or to describe computations that could be
implemented at the level of the whole network, such as associative memory (Hopfield, 1982).

By analogy to how a downstream area could receive inputs from a local network, a
common practice is to define the output of a recurrent network as a linear combination
of the activity of the individual nodes, in other words, a linear projection of (a function
of) the state variables. In the recurrent network model presented in Eq. (I.5), downstream
areas would likely have access only to the firing rate of neurons, ϕ (xi (t)), instead of the
inputs that the neurons are receiving, xi (t). Furthermore, the dynamics of a neural network
can also be described by additional state variables that take into account the subcellular
processes of individual neurons, such as the opening and closing of ionic channels and
synapses. These state variables are defined as hidden state variables, in opposition to the
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active state variables that can be accessed by subsequent local networks, or the experimental
recordings. The interaction of these hidden neural states can have a major impact on the
full network dynamics, and the processing of spatiotemporal inputs (Buonomano and Maass,
2009).

Recurrent networks can model the dynamics of the brain with different levels of bio-
physical detail. In a way, the interconnected neurons in the network (indicated by the
subindex i in Eq. (I.5)) do not necessarily need to correspond to a single neuron in a bi-
ological network. This same equation can be applied to describe the dynamics of cortical
microcolumns (ensemble of cortical neurons with shared input and output projections). For
that reason, we often refer to the individual network components as network units or nodes,
instead of neurons. In this work, we focus on rate units, where the input and output of
single units are defined by a continuous function. This level of abstraction at the single
unit level allows for more mathematical tractability in the analysis of the network dynamics.
Theoretical research has also studied the dynamics of recurrent networks where neuron’s
explicitly fire action potentials, using inhomogeneous Poisson processes, integrate-and-fire-
neurons or conductance-based neuron models. Recently, spiking networks have also been
used as a trainable dynamical system to produce a given target dynamics (Bellec et al., 2018).
The equivalence between dynamical regimes in spiking vs rate-based recurrent networks is
however still a matter of debate in the field.

In this thesis, we focus on the network mechanisms that allow for solving cognitive tasks.
In particular, it is still to be elucidated which are the properties of recurrent neural network,
in terms of connectivity structure and biophysical processes, that allow to implement ob-
served neural dynamics and solve tasks. We focus on the study of recurrent neural networks
that are able to perform computations that require processing temporal information.

I.5 Temporal computations

Temporal computations refer to any sensory, cognitive or motor subtask that requires an
explicit processing of time, either at the level of the temporal information of the inputs
that cortical networks receive, or at the level of the output that these networks are required
to produce. These computations are necessary for a wide variety of tasks with different
levels of complexity, from estimating the duration, order or structure of stimuli, recognizing
temporal patterns, to producing a motor response, engaging in a conversation or playing
an instrument in an orchestra. Temporal computations require processing time over a
broad range of timescales (Paton and Buonomano, 2018), ranging from milliseconds (i.e.,
in sound localization, speech production, motion detection), to seconds (conscious time
estimation, syntax in language) and hours (appetite, sleep). In natural tasks, temporal
processing of multiple timescales must be integrated simultaneously. Different biological
mechanisms are used by the brain to account for such wide range. Microsecond processing
for instance is largely limited by the conduction delays in sensory neurons conveying the
stimulus information (Thorpe et al., 1996; Grothe et al., 2010). At the level of hours
and days, circadian rhythms are controlled by molecular oscillators coupled to different
physiological rhythms (Dunlap, 1999). In this thesis, we focus on timescales ranging from
tens to hundreds of milliseconds. Temporal processing at such timescales is fundamental in
most animal’s natural behavior, and its neural basis is still an open scientific question.

Early models of temporal computations proposed the idea of a timing area in the brain,
an internal clock, able to feed other brain areas with the task-specific temporal information.
However, several studies, using multidisciplinary approaches (psychophysics, imagining tech-
niques, electrophysiology) have shown that the ability of performing at least some temporal
computations is present in multiple cortical and subcortical brain areas and is a prevalent
intrinsic feature of neural circuits (Mauk and Buonomano, 2004). For instance, the cerebel-
lum, a subcortical brain area traditionally described as a motor region, is involved in motor
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learning, controls the fine details of motor actions and acts as a feed-forward predictor of
motor outputs and sensory inputs. It is involved in learning and performing timing tasks,
such as eyelid conditioning experiments or interval timing tasks (Mauk and Donegan, 1997;
Heiney et al., 2014). The basal ganglia, a group of subcortical structure, are involved in
motor action timing, often considered in the range of a few seconds (Mello et al., 2015).
However, the relying mechanism of timing in the basal ganglia remain largely unknown,
and they likely involve interactions with other brain areas (Yin, 2014). Many cortical areas
are involved in temporal computations: auditory, visual, associative and motor cortices, in-
cluding areas such as dorsolateral and parietal prefrontal cortex. To date, no strong tuning
of single neurons to temporal features of stimuli has been found in cortical neurons, such as
order or duration, which contrasts with the large sensitivity to spatial features in sensory
areas, such as tuning to orientation in V1 neurons or to spectral content in auditory cortex.
Nevertheless, it is often possible to decode timing information from the population activity
of cortical cells (see Cueva et al. (2020)). Based on the fact that many different cortical
areas are necessary to perform a wide range of timing tasks, timing is considered a general
computation of cortical circuits (Paton and Buonomano, 2018).

Classical models of timing can be organized broadly into two different categories: internal
clock models and spectral models using commonly oscillatory units. Internal clock models
are based on two modules: (i) an internal mechanism that, similar to the tick of a clock,
generates well timed responses; for example, constant ramps that are reset after reaching a
threshold, and (ii) a neural integrator that counts the number of ticks (Douglas Creelman,
1962; Killeen and Fetterman, 1988). Such models however do not explain how the timing
responses arise from the network connectivity. Spectral models are based on having a
heterogeneous population of units where one intrinsic single unit parameter (response delays,
timescales, periods of oscillation, etc) ranges over a spectrum of values (Moore et al., 1989;
Grossberg and Schmajuk, 1989). Often, oscillatory units are used, that are either coupled
to each other or span a wide range of different frequencies (Miall, 1989; Ahissar et al., 1997;
Todd et al., 2002). Such oscillatory activity has however not been found at the level of single
unit activity in many cortical areas involved in timing. Furthermore, it remains unclear how
this hard-wired selectivity to different timescales can be generalized to complex temporal
tasks.

In the last two decades, novel timing models have been developed based on the computation-
through-dynamics framework, also called state-dependent timing models, where the collec-
tive activity of a network at different time points is mapped to different states of neural
trajectories (Karmarkar and Buonomano, 2007; Buonomano and Maass, 2009). These net-
work models posit that the voyage over different neural states contains the implicit temporal
information used for solving temporal tasks, instead of having a dedicated built-in timing
module. However, it remains unclear how such models can solve flexible timing tasks, where
the timescales can quickly vary over different ranges.

In the last part of this thesis, we focus on flexible sensorimotor timing tasks to investigate
how the computation-through-dynamics framework can solve such tasks, and what are the
network mechanisms employed. This work builds on recent experimental and theoretical
studies on flexible timing that we review below.

Flexible motor timing tasks
Task paradigms Recent studies have focused on studying motor timing performing flex-
ible tasks. Classical experimental paradigms in motor timing are based on reflexive actions,
such as the eye-blinking conditioning paradigms, or weakly demanding paradigms, for ex-
ample, executing a motor action after a fixed delay. In commonly used sensory timing
tasks, such as time interval discrimination, simple strategies like comparing the sensory in-
formation to a fixed threshold value can be used to correctly perform the task, which does
not require flexibly integrating temporal information over a range of timescales (Reming-
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ton et al., 2018b). New efforts have been devoted to studying the neural basis of flexible
time control, where animals need to integrate contextual cues and sensory feedback on a
trial-by-trial basis in order to correctly perform the task.

We present here a series of experimental paradigms that have been used to underpin
the neural basis of flexible timing in non-human primate electrophysiological recordings
(Fig. I.4). The logic behind this set of tasks is to start from more basic cognitive operations,
and increase the level of complexity by adding additional constraints to the task. These
cognitive operations can be separated into several modules: motor production, interval
estimation, and combination of sensory estimates under uncertainty.

The first task here presented, the Cue-Set-Go task, focuses on understanding this control
of time in movement initiation, i.e., the production epoch Wang et al. (2018). The Cue-Set-
Go task requires to produce a time interval tp after a signal is presented (’Set’, Fig. I.4A).
This interval production is flexible: different intervals must be produced depending on the
contextual cue. In particular, the produced time interval tp depends on a cue input, that
is shown at the beginning of the trial.

A following task, the Ready-Set-Go task, added an interval estimation epoch before the
production of the time interval. The expected produced interval tp depends on the time
interval ts elapsed between two previously presented stimuli (”Ready” and ’Set’) (Jazayeri
and Shadlen, 2015; Remington et al., 2018a; Sohn et al., 2019). In one variant of the
task (Remington et al., 2018a), the produced interval is defined as a linear function of the
sampled interval, tp = gts where the parameter g, defined as the gain, takes different values
(1 or 1.5 in the experiments) based on contextual information given at the moment of Ready
(Fig. I.4B). An alternative Ready-Set-Go paradigm establishes a fixed gain g = 1, so that
the produced interval tp should match the sampled interval ts of the estimation epoch but
they combine two different prior distributions of the sampled intervals (Fig. I.4C, Sohn
et al. (2019)). Effectively, this task is equivalent to producing the third beat of a rhythm,
where the two first beats are given. Sampled intervals can be drawn from a distribution of
short intervals (from 480 to 800 ms) or from a distribution of long intervals (from 800 to
1200 ms). These experiments provide information about how multiple stored priors can be
flexibly combined at a trial-by-trial timescale.

Finally, an ulterior task added one more repetition of the sampled interval, the 1-2-3 Go
task (Egger et al. (2019), Fig. I.4C). Here the animal has to produce the fourth beat of a
rhythm, after being exposed to the first three beats, indicated by stimuli ’1’, ’2’ and ’3’. In
this task, the animal can improve the performance by combining the estimations from the
two sample intervals. This extension of the task allows for a new cognitive computation:
combining sensory information under uncertainty at the scale of a single-trial.

Behavior Monkeys were able to learn all this series of tasks after training, with slightly
above-average-human performance. They could produce flexible time intervals tp, based
on cue associations or linear functions of previously estimated intervals, combining prior
information about the sampling distribution, and refining their estimation when exposed to
a repeated sampled interval. One remarkable feature, common to all tasks, is that longer
intervals lead to a wider variability in the responses; a well studied property of timing tasks
called ”scalar variability” (Fig. I.5A, Malapani and Fairhurst (2002)). A second property
appears consistently in all tasks that require estimating a sampled interval: the produced
intervals showed a systematic deviation towards the mean of the sampling distribution
(Fig. I.5Aii). This is referred to as ”regression-to-the-mean”, and can be explained by a
normative Bayesian model, that combines the knowledge of the stimulus distribution (which
is uniform and bounded between two extrema) with the noisy sensory information (Jazayeri
and Shadlen, 2010).

During the production epoch, multiple brain areas evolve towards a fixed movement
initiation state at the required time to produce the motor action, that is then reset (Wang
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et al., 2018). One normative way to model this dynamic evolution of the neural state to-
wards a final movement-initiation state is to used a ramp-to-threshold mechanism (Jazayeri
and Shadlen, 2015). At every trial, a build-up signal evolves as a linear ramp towards a
threshold, corresponding to the motor initiation (Jazayeri and Shadlen, 2015). Given that
the movement-initiation state, and therefore the threshold, is fixed, it is possible to flexibly
produce a time interval by modifying the average speed of this build-up signal (Fig. I.5A).
Scalar variability is inherent to this behavioral model, assuming that the build-up ramp
is subject to suitable noise. Flexibly controlling the timing computation consists on being
able to control the speed of the ramping signal.

Single-neuron responses The firing activity of individual neurons in medial frontal
cortex does not however generate ramping signals at different speeds during the production
epoch (Fig. I.5B). Instead, the dynamics of single neurons are highly heterogeneous during
the whole trial, in general showing a broad variety of non-monotonic responses, a ubiquitous
feature of in vivo activity in cortical areas. Nevertheless, there is a remarkable property
found in all tasks in the production epoch (the time between ’Set’ and ’Go’ in the CSG and
RSG task, or between ”3” and ’Go’ in the 1-2-3 Go task): neural responses are considerably
compressed or expanded in time at a single trial level to adjust to the produced interval.
This is consistent with the ramp-to-threshold model, in the sense that the average speed of
the dynamics controls the timing of motor initiation, although is at odds with the idea that
neuronal activity, at the single neural level, provides the ramping signal. Interestingly, this
speed-control of the dynamic evolution was present in downstream areas (basal ganglia),
providing evidence that the mechanism is further passed on to produce a motor action,
but is not present at the level of the inputs (thalamus), so that the mechanism must be
supported internally by the cortical network.
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Figure I.4: Flexible timing tasks. A Cue-Set-Go task. At the beginning of every
trial, one of two cues are presented, indicating the animal to produce either a short or
a long interval, tp,1, tp,2. A second flash, ’Set’, appears, corresponding to the beginning
of production. The animal must execute a motor action at either time tp,1 after ’Set’ or
tp,2 to maximize the reward. This self-initiated action is denominated ’Go’. Adapted from
(Wang et al., 2018). B-C Ready-Set-Go task. Two flashes, ’Ready’ and ’Set’ are presented
separated by a time ts. The animal must perform a motor action a time gts after the
’Set’ stimulus. Parameter g represents the gain. In B, the ’Ready-Set-Go’ task where two
different gains, g = 1 and g = 1.5 are randomly alternated. The information about the gain
is given at the beginning of the trial. Adapted from (Remington et al., 2018a). In C, two
different prior distributions for the sampled interval ts are used (both priors are uniformly
distributed, with different mean values. Illustrated as bar plots at the bottom). The animal
explicitly receives the information about the prior at the beginning of the trial. D 1-2-3
Go task. Three different flashes (’1’, ’2’ and ’3’) are presented at every trial, separated by
a time interval ts. The animal correctly performs the task by producing a motor action at
a time tp = ts after ’3’. Adapted from (Egger et al., 2019).
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Figure I.5: Behavior and single neuron responses in flexible timing tasks. A
Timing performance in the ’Cue-Set-Go’ (CSG) task (i, left) using two different cues, cor-
responding to 800 ms and 1500 ms, adapted from Wang et al. (2018). A ramp-to-threshold
model (right), where the speed of the ramp (the slope) is flexibly controlled can describe
the observed behavior. (ii) Performance in the ’Ready-Set-Go’ (RSG) task alternating two
different priors. Adapted from Sohn et al. (2019). Animals show more timing variability for
long intervals (target: 1500 ms in CSG) than short intervals (target: 800 ms in CSG). In
the RSG, produced intervals are systematically shifted towards the mean of the prior. For
instance, if the samples interval is 800 ms, the responses are biased towards longer times
for the prior with mean 1000 ms, whereas the produced interval for the same ts for the red
prior is systematically lower (mean of prior: 660 ms). (ii). B Single neuron activity in the
CSG (i) and RSG task with two different priors (ii). In the CSG task, trials are sorted
and clustered by colors based on tp (left). Two single neuron trial-averaged responses are
shown. In the RSG with two different priors, each line corresponds to a different example
neuron. Left: Estimation epoch, from Ready to Set. Right: Production epoch, from Set to
Go. Responses are non-monotonic in time, showing complex profiles. However, part of the
variability from trial to trial can be explained by temporal scaling.

15



I. Introduction

State-space trajectories The temporal scaling of single neuron activity suggests that a
build-up signal evolving towards movement initiation might be present at the level of the
population response, as a trajectory in neural state-space. The first remarkable feature of
neural trajectories is that they are restricted to a relatively low-dimensional subspace in
neural space at every epoch of the tasks. Such low-dimensional trajectories can be visual-
ized by projecting them onto two or three directions of neural space. For example, during
production, trajectories for different intervals can be projected onto the three orthogonal
dimensions that explain most of the variance, i.e., the principal components (Fig. I.6A,
left). Trajectories for different produced intervals (red vs blue trajectories) strongly overlap
along the first two principal components, whereas they evolve along different states of the
third principal component. Further analysis allows to project the activity on the dimensions
where the activity shows the highest temporal scaling, the so-called scaling components. On
this subspace, that significantly overlaps with the subspace of the principal components, tra-
jectories of different intervals completely overlap (Fig. I.6A, right). This provides evidence
that trajectories for different intervals evolve in neural state-space in parallel at different
speeds along some subspace where the activity is temporally scaled, while, different intervals
evolve along an orthogonal subspace determined by the external cues -the input subspace-
that controls the speed.

We illustrate this geometrical arrangement into input and recurrent subspace in Fig. I.6B,
where we assume for simplicity that both subspaces are one dimensional. Along the scaling
line, trajectories for all time intervals evolve from the same initial state towards a common
final state, but they do so at different speeds. Along the non-scaling dimension, the input
subspace, the trajectories corresponding to each produced interval remain mostly constant
at a different level. This generates parallel trajectories, where the speed in the scaling
direction is determined by the activity on the non-scaling subspace. This mechanism, initial
conditions on an input subspace of neural space that control the speed of trajectories on an
orthogonal subspace, has been found in neural trajectories during production in all tasks
(Fig. I.6 C, Ready-Set-Go task).

During the estimation epoch, neural trajectories evolve along a low-dimensional subspace
that is mostly orthogonal to the production subspace. At the beginning of the estimation
epoch, when the first stimulus arrives, neural trajectories produce transient response along
a curved manifold (Fig. I.6 D, from the initial state -square- towards the final states -dots-).
The second stimulus is perceived at different stages on this manifold, so that these different
states can be mapped onto the different initial conditions required for the flexible production
(Remington et al., 2018a; Sohn et al., 2019). In the Ready-Set-Go task with different
gains, trajectories with different gains evolve in parallel curved manifolds, implying that the
information about the gain is already used during the estimation Remington et al. (2018a).
When the Ready-Set-Go task is learned with two different prior distributions of sampled
intervals, the different priors analogously elicit different trajectories during measurement,
so that the prior information is used from the beginning of the trial.

In the 1-2-3-Go task, where there are two consecutive sampled intervals per trial, neural
trajectories during the first estimation display the same properties than in the estimation
epoch of the Ready-Set-Go task. During the second estimation, however, neural trajectories
show features consistent with both the measurement epoch and the production epoch. While
trajectories evolve along transient trajectories from an initial state towards a different final
state, there is also a significant temporal scaling subspace along which trajectories evolve.
This gives support to the idea that some of the neural computations implemented during
the second estimation are predicting the production interval, in order to provide an error
signal that updates the first estimate (Egger et al., 2019).

Recurrent network modeling Population responses in neural state-space can be further
studied in silico by training recurrent neural networks trained to perform flexible timing
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A BCSG task: production

RSG task: estimationRSG task: productionC D

slow

fast

Figure I.6: Population activity in flexible timing tasks. A Cue-Set-Go task, between
’Set’ and ’Go’. Colors as in Fig. I.5Ai. Left: Projection of neural trajectories on to the first
principal components (orthogonal directions in neural state-space with the highest explained
variance). The projection over the two first principal components strongly overlap for both
short and long produced interval. The activity on the third principal component do not
coincide for short and long trials. Right: Projection of neural trajectories on the three
orthogonal directions of neural space with the highest temporal scaling. Trajectories overlap,
indicating that there is a temporal scaling subspace. B Illustration of two different 2D-
trajectories going through a temporal scaling subspace. Trajectories evolve in parallel along
the recurrent subspace (the horizontal direction in this picture). However, they go through
this subspace at different speeds, as indicated by the flow field. The initial conditions in the
orthogonal input subspace (vertical direction) controls the speed of the trajectories. In the
neural recordings, the input and temporal scaling subspace are low-dimensional, but span
more than one dimension. C 2D-projections of neural trajectories in the production epoch
of the ’RSG’ task, with two different gains (red: g = 1, grey: g = 1.5.). In some projections
(the recurrent subspace, left), the trajectories evolve along the same path, whether in some
other dimensions (right: input subspace in the vertical direction), the trajectories of different
gains are separated. D 2D-projections of neural trajectories in the estimation epoch of the
’RSG’ task, with two different gains. The trajectories evolve along a curved manifold. For
different gains, the different gain manifolds evolve in parallel. Panel A adapted from Wang
et al. (2018), panels C and D from Remington et al. (2018a).

tasks. Given that the full neural state is known at every time point, it is possible to perturb
recurrent networks to reject different hypotheses. One key aspect of neural network training
concerns the modeling of the inputs and readout output of the network. For these series of
tasks, the assumptions are that the inputs network received are simple (either short pulses
or tonic inputs) and low dimensional. Therefore, during the time points between inputs, the
autonomous dynamics of the network are responsible for generating the suitable temporal
patterns that produce a given computation. Regarding the output, based on the ramping-
to-threshold model, a linear readout of the firing activity is required to grow towards a fixed
threshold. The ’Go’ time point, which corresponds to the motor action of the animal in the
experiment, is mapped in the recurrent network to the crossing of the threshold.
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Networks were successfully trained in all tasks described above. For the Cue-Set-Go
task, Wang et al. (2018) found that the trained networks that show similar neural activity
to those recorded require a constant external input to account for the ’Cue’ information.
Different cue values are represented by different amplitudes of this constant external input.
When producing a time interval, the neural trajectories start at an initial stable fixed
point, and when the ’Set’ pulse is received, trajectories evolve towards a different final fixed.
These trajectories are low-dimensional and show perfect temporal scaling along a given
linear subspace, while the constant ’Cue’ input sets the level of the trajectories in the input
subspace (Fig. I.7A). The speed of trajectories during the delay, which evolve along the
scaling recurrent subspace determines the production interval. Modifying the amplitude
of the ’Cue’ causally produces correspondingly different temporal intervals. They further
studied the linearized dynamics in the vicinity of the final fixed point, and how they are
affected by the ’Cue’ input. Stronger cue amplitudes corresponded to slower timescales of
the linearized dynamics, which at the level of single neurons correlated with neurons closer
to their saturating firing rate.

In the Ready-Set-Go tasks, networks trained with constant background input for the
context information produced responses similar to the neural recordings (Fig. I.7 B and
C, Remington et al. (2018a); Sohn et al. (2019)). The information about gain or the
information about the used prior distribution was provided to the network at all times
in the amplitude of a constant input. Furthermore, they perturbed the recurrent neural
networks right before the end of the sampling epoch, and found that: (i) changing the
curvature of the manifold of neural states produced temporal responses with a stronger bias
towards the mean of the prior and (ii) shifting all neural states in one direction along the
manifold systematically produced either longer or shorter time intervals. This establishes
in silico a causal link between the neural state before the end of the measurement epoch
and the timing production, supporting Bayesian computations in the curvature of neural
state-space.

Once the recurrent dynamics in trained networks are identified, the authors built simple
neural circuits, with only a few units, using the same mechanisms. For the production of
a time interval, they developed a toy model of two mutually inhibiting neurons receiving
shared input. This simple model is dynamically bistable, with two basins of attraction
delimited by a separatrix in neural space. These dynamics can produce a ramping signal
as trajectories evolve from one fixed point towards the other when the ’Set’ pulse sends
the neural trajectories above the separatrix. Increasing the shared input moves the two
stable fixed points closer to each other, and also slows downs the local dynamics around the
stable states. Such mechanism can be used to flexibly control the speed of neural trajectories.
This two-neuron network can be combined to other modules with similar intrinsic dynamics,
forming a control system that can solve more complex tasks, such as the ”1-2-3 Go” task,
with a performance similar to those obtained in behavioral experiments Egger et al. (2020).
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Figure I.7: Recurrent network modeling in flexible timing tasks. A Projection of
neural trajectories between ’Set’ and ’Go’ in the CSG task. The activity of the recurrent
networks evolve in parallel along the recurrent subspace, separated by speed along the input
subspace. Color lines as in Fig. I.5B. B Two different projections of neural trajectories in the
RSG task with two different priors. Colors as in Fig. I.6C. The trajectories are arranged into
recurrent and input subspaces, similar to the ’CSG’ task. C Projection of neural trajectories
during the estimation epoch (between Ready-Set, top), and the production epoch (between
Set-Go, bottom). Colors as in Fig. I.5Aii. During production, the activity for different
produced interval evolves in parallel, as in other tasks. In the estimation epoch, the activity
evolves along a curved manifold. Estimation manifolds for different priors are parallel to
each other. These trained recurrent networks show qualitatively similar trajectories in
neural space than those found in the neural recordings. In order to achieve such results,
the context information given at the beginning of each trial (cue, gain or prior) must be
provided to the network as a tonic input, present during the whole trial duration. Adapted
from Wang et al. (2018) (panel A), Remington et al. (2018a) (panel B), and Sohn et al.
(2019) (panel C).

I.6 Outline of the work

In this thesis, we investigate how large networks of recurrent units perform flexible temporal
computations, by studying the network dynamics, their link to single neuron properties and
their connectivity structure. The dissertation is organized into three chapters, that gather
the work carried out these last three years, and can be read independently.

A pre-requirement for networks to solve any temporal task in the second and sub-second
range is to be able to produce slow timescales, much slower than the membrane time constant
of single neurons, which is in the order of a few tens of milliseconds. Theoretical studies
have contemplated two different hypotheses for such coordinated slow activity: either (i)
cellular and subcellular slow processes, intrinsic to single neurons, that are then transferred
to the network dynamics, generating a rich variety of activity timescales (Buonomano and
Maass, 2009), or (ii) structure in the network connectivity, that generates the required slow
timescales, using the non-linearities of single neurons or by moving the dynamical system
in parameter space close to a bifurcation (Huang and Doiron, 2017). For instance, network
dynamics that are bistable can virtually generate any slow timescale in the vicinity of the
separatrix. Alternatively, the global connectivity structure can push the network dynamics
close to a bifurcation, by increasing the synaptic strengths in a network with random all-
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to-all connectivity, which slows down the dynamics.

1. In the first chapter, we explore whether slow timescales in recurrent neural networks
can be a by-product of slow biophysical processes at the single neuron level, that are often
not considered at the network level. In particular, we contrast the effects at the level of
network dynamics of two different processes: adaptation and synaptic filtering. Adaptation
refers to the slow decrease over time of neural responses to a repeated input, which is a
ubiquitous property of excitable biological systems. Synaptic filtering refers to the low-pass
filtering of time-varying inputs by the synapses, since neurotransmitters at the synapses
regulate at their own speed. We studied the dynamics of a randomly connected recurrent
network of rate units displaying either adaptation or synaptic filtering, and applied mean-
field theory tools to investigate the dynamical landscapes generated by these networks.
We found that the timescale of adaptation has a weak effect at slowing down the network
dynamics. In contrast, synaptic filtering does increase the timescale of single neuron activity
in the network. This Chapter finally shows that intrinsic slow processes at the cellular level
are generally not easily accessible at the network level, challenging the view that they might
support the required slow timescales to solve timing tasks.

2. In the second chapter, the starting point is the idea that slow timescales in network
activity arise from some structural features of the connectivity that can generate slow dy-
namics. Based on (Mastrogiuseppe and Ostojic, 2018), we develop a theoretical framework
that links how structured network connectivities generate different types of low-dimensional
dynamics. We describe large structured networks where the connectivity strengths are
drawn randomly from a fixed probability distribution and show that such networks can uni-
versally approximate any given dynamical system. Furthermore, we find that there are two
key parameters, independent of each other, that constrain the recurrent dynamics: (i) the
rank of the connectivity matrix, that introduces the structure in the connectivity, and (ii)
the number of neural populations (groups of neurons with different connectivity statistics).
The rank of the connectivity matrix sets the dimensionality of the network dynamics. The
number of populations determines how flexible the network is to approximate any given
low-dimensional dynamics. For low-rank networks with a single statistical population of
neurons, in general, only one pair of stable fixed points can be generated. Then, we de-
scribe different mechanisms that can be used to generate dynamics with more than two
stable fixed points by considering several neural populations. Finally, we propose an al-
gorithm for approximating any dynamical system with a low-rank network, given a large
number of populations.

The results of this chapter provide powerful analytical tools that relate network con-
nectivity features to specific implemented network dynamics and indicate that low-rank
recurrent neural networks might be useful to study how cortical networks solve cognitive
tasks, in particular timing tasks.

3. In the last chapter, we exploited the framework of low-rank networks to study the
network mechanisms that implement temporal computations in flexible timing tasks. First,
we train recurrent neural networks constrained to have minimal rank to solve the different
tasks. We reverse-engineer the trained networks to identify the basic dynamical components
that carry out the temporal computations. In a second step, we tested such dynamical
components in simplified network models, and used them to implement the different timing
tasks. We found that neural trajectories rely on low-dimensional slow manifolds to carry
out different temporal computations. Such slow manifolds arise from networks with quasi-
isotropic connectivity structure. Small deviations from the isotropic structure shape the
dynamics within the manifold, as well as the on=manifold speed can be modulated by tonic
external inputs. Overall, we uncovered novel dynamical mechanisms in large recurrent
networks that support flexible temporal computations.
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Summary of Chapter 1

Neural activity in awake behaving animals exhibits a vast range of timescales that can be several
fold larger than the membrane time constant of individual neurons. Two types of mechanisms have
been proposed to explain this conundrum. One possibility is that large timescales are generated by
a network mechanism based on positive feedback, but this hypothesis requires fine-tuning of the
strength or structure of the synaptic connections. A second possibility is that large timescales in
the neural dynamics are inherited from large timescales of underlying biophysical processes, two
prominent candidates being intrinsic adaptive ionic currents and synaptic transmission. How the
timescales of adaptation or synaptic transmission influence the timescale of the network dynamics
has however not been fully explored.

To address this question, here we analyze large networks of randomly connected excitatory
and inhibitory units with additional degrees of freedom that correspond to adaptation or synaptic
filtering. We determine the fixed points of the systems, their stability to perturbations and the
corresponding dynamical timescales. Furthermore, we apply dynamical mean field theory to study
the temporal statistics of the activity in the fluctuating regime, and examine how the adaptation
and synaptic timescales transfer from individual units to the whole population. Our overarching
finding is that synaptic filtering and adaptation in single neurons have very different effects at the
network level. Unexpectedly, the macroscopic network dynamics do not inherit the large timescale
present in adaptive currents. In contrast, the timescales of network activity increase proportionally
to the time constant of the synaptic filter. Altogether, our study demonstrates that the timescales of
different bio- physical processes have different effects on the network level, so that the slow processes
within individual neurons do not necessarily induce slow activity in large recurrent neural networks.

This chapter is based on the article Contrasting the effects of adaptation and synaptic filtering
on the timescales of dynamics in recurrent networks, by M. Beiran and S. Ostojic (2019), PLoS
Comput Biol 15(3): e1006893.
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Effects of adaptation and synaptic filtering on the
timescales of network dynamics 1

1.1 Introduction

Adaptive behavior requires processing information over a vast span of timescales (Fairhall
et al., 2001), ranging from micro-seconds for acoustic localisation (Grothe et al., 2010), mil-
liseconds for detecting changes in the visual field (Tchumatchenko et al., 2011), seconds
for evidence integration (Smith and Ratcliff, 2004) and working memory (Miyashita and
Chang, 1988), to hours, days or years in the case of long-term memory. Neural activity
in the brain is matched to the computational requirements imposed by behavior, and con-
sequently displays dynamics over a similarly vast range of timescales (Bair and Movshon,
2004; Bernacchia et al., 2011; Murray et al., 2014). Since the membrane time constant of
an isolated neuron is of the order of tens of milliseconds, the origin of the long timescales
observed in the neural activity has been an outstanding puzzle.

Two broad classes of mechanisms have been proposed to account for the existence of
long timescales in the neural activity. The first class relies on non-linear collective dynam-
ics that emerge from synaptic interactions between neurons in the local network. Such
mechanisms have been proposed to model a variety of phenomena that include working
memory (Wang, 2001), decision-making (Wang, 2008) and slow variability in the cortex
(Litwin-Kumar and Doiron, 2012). In those models, long timescales emerge close to bifur-
cations between different types of dynamical states, and therefore typically rely on the fine
tuning of some parameter (Huang and Doiron, 2017). An alternative class of mechanisms
posits that long timescales are directly inherited from long time constants that exist within
individual neurons, at the level of hidden internal states (Buonomano and Maass, 2009).
Indeed biophysical processes at the cellular and synaptic level display a rich repertoire of
timescales. These include short-term plasticity that functions at the range of hundreds of
milliseconds (Zucker and Regehr, 2002; Markram et al., 1998), a variety of synaptic channels
with timescales from tens to hundreds of milliseconds (Newberry and Nicoll, 1984; Batch-
elor et al., 1994; Garthwaite, 1991; Lester et al., 1990), ion channel kinetics implementing
adaptive phenomena (Johnston and Wu, 1995), calcium dynamics (Berridge et al., 2003) or
shifts in ionic reversal potentials (Gal et al., 2010). How the timescales of these internal
processes affect the timescales of activity at the network level has however not been fully
explored.

In this study, we focus on adaptative ion-channel currents, which are known to exhibit
timescales over several orders of magnitude (La Camera et al., 2006; Benda and Herz, 2003;
Ermentrout et al., 2001). We contrast their effects on recurrent network dynamics with
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the effect of the temporal filtering of inputs through synaptic currents, which also expands
over a large range of timescales (Hennig, 2013). To this end, we extend classical rate
models (Wilson and Cowan, 1972, 1973; Sompolinsky et al., 1988; Abbott, 1994) of randomly
connected recurrent networks by including for each individual unit a hidden variable that
corresponds to either the adapting of the synaptic current. We systematically determine the
types of collective activity that emerge in such networks. We then compare the timescales
on the level of individual units with the activity within the network.

1.2 Results

We consider N coupled inhibitory and excitatory units whose dynamics are given by two
variables: the input current xi and a slow variable si or wi that accounts for the synaptic
filtering or adaptation current respectively. The instantaneous firing rate of each neuron is
obtained by applying a static non-linearity ϕ (x) to the input current at every point in time.
For simplicity, we use a positive and bounded threshold-linear transfer function

ϕ (x) =

{
[x− γ]+ if x− γ < ϕmax

ϕmax otherwise,
(1.1)

where [·]+ indicates the positive part, γ is the activation threshold and ϕmax the maximum
firing rate.

Single neuron adaptation is described by the variable w (t) that low-pass filters the
linearized firing rate with a timescale τw, slower than the membrane time constant τm,
and feeds it back with opposite sign into the input current dynamics (see Methods). The
dynamics of the i-th adaptive neuron are given by{

τm ẋi (t) = −xi (t) +
∑N
j=1 Jijϕ (xj (t)) − gwwi (t) + Ii (t)

τwẇi (t) = −wi (t) + xi (t) − γ,
(1.2)

where Ii (t) is the external input current to neuron i.
Synaptic filtering consists in low-pass filtering the synaptic input received by a cell with

time constant τs, before it contributes to the input current. The dynamics of the i-th neuron
in a network with synaptic filtering are{

τm ẋi (t) = −xi (t) + si (t)
τsṡi (t) = −si (t) +

∑N
j=1 Jijϕ (xj (t)) + Ii (t) .

(1.3)

The matrix element Jij corresponds to the synaptic coupling strength from neuron j
onto neuron i. In this study we focus on neuronal populations of inhibitory and excitatory
units, whose connectivity is sparse, random, with constant in-degree: all neurons receive
exactly the same number of excitatory and inhibitory connections, CE and CI , as in (Amit
and Brunel, 1997; Brunel, 2000; Mastrogiuseppe and Ostojic, 2017). All excitatory synapses
have equal strength J and all inhibitory neurons −gJ . Furthermore, we consider the large
network limit where the number of synaptic neurons N is large while keeping the excitatory
and inhibitory inputs CE and CI fixed.

1.2.1 Single unit: timescales of dynamics
In the models studied here the input current of individual neurons is described by a linear
system. Thus, their activity is fully characterized by the response h (t) to a brief impulse
signal, i.e. the linear filter. When such neurons are stimulated with a time-varying input
I (t), the response is the convolution of the filter with the input, x (t) = (h ∗ I) (t). These
filters can be determined analytically for both neurons with adaptation or synaptic filtering
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1.2. Results

and directly depend on the parameters of these processes. Analyzing the differences that
these two slow processes produce in the linear filters is useful for studying the differences
in the response of adaptive and synaptic filtering neurons to temporal stimuli (Fig. 1.1 A),
and will serve as a reference for comparison to the effects that emerge at the network level.

A B C D

Figure 1.1: Activity of individual neurons with adaptation or synaptic filtering.
A: Firing rate response of two different neurons with adaptation (red curves) and two
different neurons with synaptic filtering (grey curves) to the same time-varying input (black
curve). B: Normalized linear filters for the neurons shown in A. C: Timescales of the linear
filter for neurons with adaptation (red lines) and for neurons with synaptic filtering (grey
lines) as a function of the timescale τw or τs, respectively. The dashed lines indicate the
effective timescale of the evoked activity obtained by weighing each individual timescale
with its amplitude in the linear filter. The effective timescale for neurons with adaptation
saturates for large adaptation time constants, while it grows proportionally to the synaptic
time constant for neurons with synaptic filtering. Note that for the adaptive neuron, if the
two eigenvalues are complex conjugate, there is only one decay timescale. The triangles on
the temporal axis indicate the time constants used in A and B. Adaptation coupling gw = 5.
D: Variance of the input current as a function of the slow time constant when the adaptive
and synaptic neurons are stimulated with Gaussian white noise of unit variance. In the case
of neurons with adaptation, two different values of the adaptation coupling gw are shown.
Time in units of the membrane time constant τm.

In particular, the filter of a neuron with synaptic filtering, hs (t), is the sum of two
exponentially decaying filters of opposite signs and equal amplitude, with time constants τs
and τm:

hs (t) = 1
τs − τm

(
e− t

τs − e− t
τm

)
Θ (t) , (1.4)

where Θ (t) is the Heaviside function (see Methods). Thus, the current response of a neuron
to an input pulse received from an excitatory presynaptic neuron is positive and determined
by two different timescales. The response first grows with timescale τm, so that the neuron
cannot respond to any abrupt changes in the synaptic input faster than this timescale, and
then decreases back to zero with timescale τs (grey curves, Fig. 1.1 B).

The adaptation filter is given as well by the linear combination of two exponential
functions. In contrast to the synaptic filter, since the input in the adaptive neuron model
affects directly the current variable xi (t), there is an instantaneous change in the firing rate
to an input delta-function (red curves, Fig. 1.1 B). The timescales of the two exponentials
can be calculated as

τ± = 2τmτw
τw + τm

(
1 ±

√
1 − 4τmτw (1 + gw)

(τm + τw)2

)−1

. (1.5)
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When the argument of the square root in Eq. (1.5) is negative, the two timescales correspond
to a pair of complex conjugate numbers, so that the filter is an oscillatory function whose
amplitude decreases monotonically to zero at a single timescale. If the argument of the
square root is positive, for slow enough adaptation, the two timescales are real numbers
and correspond to exponential functions of opposing signs of decaying amplitude. However,
the amplitudes of these two exponentials are different (see Methods). To illustrate this, we
focus on the limit of large adaptation time constants with respect to the membrane time
constant, where the two exponential functions evolve with timescales that decouple the
contribution of the membrane time constant and the adaptation current. In that limit, the
adaptive filter reads

hw (t) =
(

−gw
τw
e−(1+gw) t

τw + 1
τm

e− t
τm

)
Θ (t) . (1.6)

The amplitude of the slow exponential is inversely related to its timescale so that the integral
of this mode is fixed, and independent of the adaptation time constant. This implies that a
severalfold increase of the adaptation time constant does not lead to strong changes in the
single neuron activity for time-varying signals (Fig. 1.1A).

Furthermore, we can characterize the timescale of the single neuron response as the sum
of the exponential decay timescales weighed by their relative amplitude, and study how this
characteristic timescale evolves as a function of the time constants of either the synaptic or
the adaptive current (Fig. 1.1C). For adaptive neurons, the activity timescale is bounded as
a consequence of the decreasing amplitude of the slow mode, i.e. increasing the adaptation
time constant beyond a certain value will not lead to a slower response. In contrast, the
activity of an individual neuron with synaptic filtering scales proportionally to the synaptic
filter time, since the relative amplitudes of the two decaying exponentials are independent
of the time constants.

When any of the two neuron types are stimulated with white Gaussian noise, the variance
in the response is always smaller than the input variance, due to the low pass filtering
properties of the neurons. However, this gain in the variance of the input currents is
modulated by the different neuron parameters (Fig. 1.1D). For a neuron with synaptic
filtering, the gain is inversely proportional to the time constant τs. In contrast, for a
neuron with adaptation, increasing the adaptation time constant has the opposite effect
of increasing the variance of the current response. This is because when the adaptation
time constant increases, the amplitude of the slow exponential decreases accordingly, and
the low-pass filtering produced by this slow component is weaker. Following the same
reasoning, increasing the adaptation coupling corresponds to strengthening the low-pass
filtering performed by adaptation, so that the variance decreases (Fig. 1.1D, dashed vs full
red curves).

1.2.2 Population-averaged dynamics
In the absence of any external input, a non-trivial equilibrium for the population averaged
activity emerges due to the recurrent connectivity of the network. The equilibrium firing
rate is identical across network units, since all units are statistically equivalent. We can
write the input current x0 at the fixed point as the solution to the transcendental equation

(1 + gw)x0 = J (CE − gCI)ϕ (x0) + gwγ, (1.7)

for the network with adaptation, and to

x0 = J (CE − gCI)ϕ (x0) , (1.8)

for synaptic filtering (see Methods). Based on Eq. (1.7), we find that the adaptation coupling
gw reduces the mean firing rate of the network, independently of whether the network is
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dominated by inhibition or excitation (Fig. 1.2A). Synaptic filtering instead does not play
any role in determining the equilibrium activity of the neurons, since Eq. (1.8) is independent
of the synaptic filtering parameter τs.

 A  B  C

Figure 1.2: Equilibrium firing rate and phase diagrams of the population-
averaged dynamics. A: Firing rate of the network with adaptation at the equilibrium
ϕ (x0) for increasing adaptive couplings and three different values of the effective recurrent
coupling Jeff = J (CE − gCI). Stronger adaptation leads to lower firing rates at equilibrium.
B: Phase diagram of the population-averaged activity for the network with adaptation. C:
Phase diagram for the network with synaptic filtering.

We next study the stability and dynamics of the equilibrium firing rate in response to
a small perturbation uniform across the network, xi (t) = x0 + δx (t). Because of the fixed
in-degree of the connectivity matrix, the linearized dynamics of each neuron are identical,
so that the analysis of the homogeneous perturbation on the network reduces to the study
of a two-dimensional deterministic system of differential equations which corresponds to the
dynamics of the population-averaged response (see Methods). The stability and timescales
around equilibrium depend on the two eigenvalues of this linear 2D-system. More specifi-
cally, the fixed point is stable to a homogeneous perturbation if the two eigenvalues of the
dynamic system have negative real part, in which case the inverse of the unsigned real part
of the eigenvalues determines the timescales of the response. For both the network with
synaptic filtering and the network with adaptive neurons, the order parameter of the con-
nectivity that determines the stability of the fixed point is the effective recurrent coupling
J (CE − gCI) each neuron receives, resulting from the sum of all input synaptic connections.
A positive (negative) effective coupling corresponds to a network where recurrent excita-
tion (inhibition) dominates and the recurrent input provides positive (negative) feedback
(Brunel, 2000; Mastrogiuseppe and Ostojic, 2017).

For networks with synaptic filtering, we find that the synaptic time constant does not
alter the stability of the equilibrium state, so that the effective coupling alone determines
the stability of the population-averaged activity. As the effective input coupling strength
is increased, the system undergoes a saddle-node bifurcation when the effective input is
J (CE − gCI) = 1 (Fig. 1.2C). In other words, the strong positive feedback loop generated
by the excitatory recurrent connections destabilizes the system.

To analyze the timescales elicited by homogeneous perturbations, we calculate the eigen-
values and eigenvectors of the linearized dynamic system (see Methods). We find that for
inhibition-dominated networks (J (CE − gCI) < 0), the network shows population-averaged
activity at timescales that interpolate between the membrane time constant and the synap-
tic time constant. As the effective coupling is increased, the slow timescale at the network
level can be made arbitrarily slow by tuning the effective synaptic coupling close to the
bifurcation value, a well-known network mechanism to achieve slow neural activity (Huang
and Doiron, 2017).
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In the limit of very slow synaptic timescale, the two timescales of the population-
averaged activity are

τ+ = τs
1 − J (CE − gCI)

, (1.9)

τ− = τm

(
1 − J (CE − gCI)

τs
τm

)
, (1.10)

so that the timescale τ− is proportional to the membrane time constant and τ+ is propor-
tional to the slow synaptic time constant, effectively decoupling the two timescales. The
relative contribution of these two timescales is the same, independently of the time constant
τs, as we found in the single neuron analysis.

The network with adaptation shows different effects on the population-averaged activ-
ity. First, the presence of adaptation modifies the region of stability: the system is stable
when the effective recurrent input J (CE − gCI) is less than the minimum of 1 + gw and
1 + τm

τw
(see Methods). Therefore, the stability region is larger than for the network with

synaptic filtering (Fig. 1.2B vs Fig. 1.2C). In other words, the effective excitatory feed-
back required to destabilize the network is larger due to the counterbalance provided by
adaptation. Moreover, adaptation allows the network to undergo two different types of
bifurcations as the effective input strength increases, depending on the adaptation parame-
ters. One possibility is a saddle-node bifurcation, as in the synaptic case, which takes place
when J (CE − gCI) = 1 + gw. Beyond the instability all neurons in the network saturate.
The other possible bifurcation, which happens if τm

τw
< gw, at an effective coupling strength

J (CE − gCI) = 1 + τm

τw
, is a Hopf bifurcation: the fixed point of network becomes unsta-

ble, leading in general to oscillating dynamics of the population-averaged response. Note
that in the limit of very slow adaptation, the system can only undergo a Hopf bifurcation
(Fig. 1.2B).

The two timescales of the population-averaged activity in the stable regime for the
adaptive network decouple the two single neuron time constants when adaptation is much
slower than the membrane time constant. In this limit, up to first order of the adaptive
time ratio τm

τw
, the two activity timescales are

τ+ = τm
1 − J (CE − gCI)

, (1.11)

τ− = τw (1 − J (CE + gCI))
1 + gw − J (CE − gCI)

. (1.12)

Similar to the single neuron dynamics, the amplitude of the slow mode, corresponding to
τ−, decreases as τw is increased, so that the contribution of the slow timescale is effectively
reduced when τw is very large. On the contrary, the mode corresponding to τ+, proportional
to the membrane time constant can be tuned to reach arbitrarily large values. This network
mechanism to obtain slow dynamics does not depend on the adaptation properties.

1.2.3 Heterogeneous activity
1.2.3.1 Linear stability analysis

Previous studies have shown that random connectivity can lead to heterogeneous dynamics
where the activity of each unit fluctuates strongly in time (Sompolinsky et al., 1988; Rajan
et al., 2010; Kadmon and Sompolinsky, 2015; Mastrogiuseppe and Ostojic, 2017). To assess
the effects of additional hidden degrees of freedom on the emergence and timescales of such
fluctuating activity, we examine the dynamics when each unit is perturbed independently
away from the equilibrium, xi (t) = x0 + δxi (t). By linearizing the full 2N -dimensional
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dynamics around the fixed point, we can study the stability and timescales of the activity
characterized by the set of eigenvalues of the linearized system, λs and λw for the network
with synaptic filtering neurons and adaptation, respectively. These sets of eigenvalues are
determined by a direct mapping to the eigenvalues of the connectivity matrix, λJ (see
Methods). The eigenvalues λJ of the connectivity matrices considered are known in the
limit of large networks (Rajan and Abbott, 2006; Mastrogiuseppe and Ostojic, 2017): they
are enclosed in a circle of radius J

√
CE + g2CI , except for an outlier that corresponds

to the population-averaged dynamics, studied in the previous section. Therefore, we can
map the circle that encloses the eigenspectrum λJ into a different shape in the space of
eigenvalues λs/w (insets Fig. 1.3). In order to determine the stability of the response to
the perturbation, we assess whether the real part of the eigenspectrum λs/w is negative
at all possible points. Furthermore, the type of bifurcation is determined by whether the
curve enclosing the eigenvalues λs,w crosses the imaginary axis at zero frequency or at a
finite frequency when the synaptic coupling strength is increased, leading respectively to a
zero-frequency or to a Hopf bifurcation (Bimbard et al., 2016).

The order parameter of the connectivity that affects the stability and dynamics of the
network is now the radius of the circle of eigenvalues λJ , i.e. J

√
(CE + g2CI). This

parameter is the standard deviation of the synaptic input weights of a neuron (see Methods),
which contrasts with the order parameter of the population-averaged response, that depends
on the mean of the synaptic input weights. The mean and standard deviation of the synaptic
connectivity can be chosen independently, so that while the population-averaged activity
remains stable, the individual neurons might not display stable dynamics. To analyze solely
the heterogeneous response of the network to the perturbation, we focus in the following
on network connectivities whose population-averaged activity is stable, i.e. the effective
synaptic coupling is inhibitory or weakly excitatory.

We find that in the network with synaptic filtering, the eigenspectrum λs always crosses
the stability bound through the real axis, which takes place when the spectral radius of the
connectivity is one, J

√
CE + g2CI = 1. Thus the system undergoes a zero-frequency bifur-

cation similar to randomly connected networks without hidden variables (Sompolinsky et al.,
1988; Kadmon and Sompolinsky, 2015; Schuecker et al., 2018; Mastrogiuseppe and Ostojic,
2017), leading to strong fluctuations at the single neuron level that are self-sustained by
the network connectivity (Fig. 1.3 Bii-Biv). The critical coupling at which the equilibrium
firing rate loses stability is independent of the synaptic time constant, i.e. synaptic filtering
does not affect the stability of heterogeneous responses (Fig. 1.4 A). However, the synaptic
time constant τs affects the timescales at which the system returns to equilibrium after a
perturbation, because the eigenvalues λs (see Eq. (1.69) in Methods) depend explicitly on
τs.

For a network with adaptive neurons, we calculate the eigenspectrum λw and find that
the transition to instability Re (λw) = 0 can happen either at zero frequency or at a fi-
nite frequency (see Methods), leading to a Hopf bifurcation (as in inset Fig. 1.3 Aiii). In
particular, the network dynamics undergo a Hopf bifurcation when

τw >
τm

gw +
√

2gw (gw + 1)
, (1.13)

so that strong adaptation coupling and slow adaptation time constants lead to a finite
frequency bifurcation. In particular, if the coupling gw is larger than

√
5 − 2 ≈ 0.236, only

the Hopf bifurcation is possible, since by construction τm

τw
< 1. We can also calculate the

frequency of oscillations at the Hopf bifurcation. We find that, for slow adaptive currents,
the Hopf frequency is inversely related to the adaptation time constant (Fig. 1.4B), so that
slower adaptation currents produce slower oscillations at the bifurcation.

Adaptation also increases the stability of the equilibrium firing rate to a heterogeneous
perturbation, in comparison to a network with synaptic filtering (Fig. 1.4 C). This can be
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A

B

i. ii. iv. iii. 

Figure 1.3: Dynamical regimes as the coupling strength is increased. Numerical
integration of the dynamics for the network with adaptive neurons (row A) and the network
with synaptic filtering (row B), as the coupling standard deviation Jcs = J

√
CE + g2CI

is increased. Colored lines correspond to the firing rates of individual neurons, the black
line indicates the population average activity. Insets: complex eigenspectrum λw/s of the
linearized dynamical matrix around the fixed point. Dots: eigenvalues of the connectivity
matrix used in the network simulation. Solid line: theoretical prediction for the envelope
of the eigenspectrum. The imaginary axis, Re (λ) = 0, is the stability boundary. i. Both
the network with adaptation and synaptic transmission are stable. ii. The network with
synaptic filtering crosses the stability boundary and shows fluctuations in time and across
neurons, while the network with adaptation remains stable. iii. The network with synap-
tic filtering displays stronger fluctuations. The network with adaptive neuron undergoes
a Hopf bifurcation leading to strong oscillations at a single frequency with uncorrelated
phases across units. Note in the inset that for this connectivity matrix there is only one
pair of complex conjugate unstable eigenvalues in the finite network. iv. The network with
synaptic filtering shows strong fluctuations. The network with adaptation displays fluctu-
ating activity with an oscillatory component. Parameters: in A, gw = 0.5, and τw = 5, in
B, τs = 5.

intuitively explained in geometrical terms by analyzing how adaptation modifies the shape
of the eigenspectrum λw with respect to the circular eigenspectrum of the connectivity
matrix λJ .

The Hopf bifurcation leads to the emergence of a new dynamical regime in the network
(Fig. 1.3 Aiv), which is studied in the following section. Right at the Hopf bifurcation, the
system shows marginal oscillations at a single frequency that can be reproduced in finite-size
simulations whenever only one pair of complex conjugate eigenvalues is unstable (Fig. 1.3
Aiii).
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 A  B  Ci Cii

Figure 1.4: Phase diagram and frequency of the bifurcation for the heteroge-
neous activity. A: Phase diagram for the network with synaptic transmission. The only
relevant parameter to assess the dynamical regime is the connectivity strength. The circles
indicate the parameters used in Figs 1.3 and 1.6. Triangles correspond to the parameter
combinations used in Fig. 1.5. B: Frequency at which the eigenspectrum loses stability
for the network with adaptive neurons as a function of the ratio between membrane and
adaptation time constant, τm/τw, for three different adaptive couplings. The dots indi-
cate the fastest adaptive time constant for which the system undergoes a Hopf bifurcation
(Eq. 1.84). C: Phase diagrams for the two adaptation parameters, (i) the coupling gw and
(ii) the adaptive time constant τw vs the coupling standard deviation.

1.2.3.2 Fluctuating activity: dynamical mean field theory

The classical tools of linear stability theory applied so far can only describe the dynamics
of the system up to the bifurcation. To study the fluctuating regime, we take a differ-
ent approach and focus on the temporal statistics of the activity, averaged over different
connectivity matrices: we determine the mean and autocorrelation function of the single
neuron firing rate, and characterize the timescale of the fluctuating dynamics (Sompolinsky
et al., 1988; Rajan et al., 2010; Aljadeff et al., 2015a; Harish and Hansel, 2015; Kadmon and
Sompolinsky, 2015; Schuecker et al., 2018; Mastrogiuseppe and Ostojic, 2017). For large
networks, the dynamics can be statistically described by applying dynamical mean field the-
ory (DMFT), which approximates the deterministic input to each unit by an independent
Gaussian noise process. The full network is then reduced to a two-dimensional stochastic
differential equation, where the first and second moments of the noise must be calculated
self-consistently. We solve the self-consistent equations using a numerical iterative proce-
dure, similar to the schemes followed in (Stern et al., 2014; Lerchner et al., 2006; Dummer
et al., 2014; Wieland et al., 2015; Rajan et al., 2010) (see Methods for an explanation of the
iterative algorithm and its practical limitations).

For the network with synaptic filtering, we find that the autocorrelation function of the
firing rates in the fluctuating regime corresponds to a monotonically decreasing function
(Fig. 1.5 A), qualitatively similar to the correlation obtained in absence of synaptic filtering
(Mastrogiuseppe and Ostojic, 2017). This fluctuating state has often been referred to as rate
chaos and shows non-periodical heterogeneous activity which is intrinsically generated by
the network connectivity. The main effect of synaptic filtering is on the timescale of these
fluctuations. When the synaptic time constant is much larger than the membrane time
constant, the timescale of the network activity is proportional to the synaptic time constant
τs, as indicated by the linear dependence between the half-width of the autocorrelation
function and the synaptic timescale τs, when all other network parameters are fixed (Fig. 1.5
B).

For the network with adaptation, we focus on large adaptation time constant τw, where
the network dynamics always undergo a Hopf bifurcation. The autocorrelation function
in such a case displays damped oscillations (Fig. 1.5 C). The decay in the envelope of the
autocorrelation function is due to the chaotic-like fluctuations of the firing rate activity.

We define the time lag at which the envelope of the autocorrelation function decreases as
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 A  B  C  D B  C  D

Figure 1.5: Autocorrelation function and timescale of the network activity in
the fluctuating regime. A: Autocorrelation function of the firing rates in the network
with synaptic filtering; dynamical mean field results (solid lines) with their corresponding
envelopes (dashed lines), and results from simulations (empty dots). Connectivity strength
Jcs = J

√
CE + g2CI = 1.2. B: Effective timescale of the network activity as a function of

the synaptic time constant for the network with synaptic filtering. The network coupling
does not have a strong effect on the effective timescale. C: Autocorrelation function of the
firing rates, as in A, for the system with adaptive neurons. Jcs = 1.3. D: Effective timescale
of the firing rates, as in B, for the system with adaptive currents.

the timescale of the network dynamics (see Methods). The timescale of the activity increases
as the adaptation timescale is increased, when all the other parameters are fixed (Fig. 1.5
D). However, this activity timescale saturates for large values of the adaptation timescale:
the presence of very slow adaptive currents, beyond a certain value, will not slow down
strongly the network activity. This saturation value depends on the connectivity strength.

Effects of noise The networks studied so far, for a fixed connectivity matrix, are com-
pletely deterministic. We next study the effects of additional white noise inputs to each
neuron, as a proxy towards understanding recurrent networks of spiking neurons with adap-
tation and synaptic filtering. On the mean-field level, such noise is equivalent to studying
a recurrent network whose neurons fire action potentials as a Poisson process with instan-
taneous firing rate ϕ (xi (t)) (Ostojic and Brunel, 2011; Kadmon and Sompolinsky, 2015).

Numerical simulations show that in the stable regime the additive external noise gener-
ates weak, fast stationary dynamics around the fixed point (Fig. 1.6 Ai, Bi). The timescale
of these fluctuations and their amplitude depend on the distance of the eigenspectrum to
the stability line, so that the stable fluctuations for weak synaptic coupling standard devia-
tion (Fig. 1.6Ai) are smaller in amplitude than those for larger coupling standard deviation
(Fig. 1.6Aii), whose eigenspectrum is closer to the stability boundary. For adaptation, in
the fluctuating regime beyond the Hopf bifurcation, the network activity shows again a
combination of fluctuating activity and oscillations.

We further extend the DMFT analysis to account for the additional variance of the ex-
ternal white noise sources (see Methods). The autocorrelation function of the firing rates, as
predicted by DMFT, does not vary drastically when weak noise is added to the network, ex-
cept for very short time lags, at which white noise introduces fast fluctuations (see Fig. 1.7).
For the network with adaptation, the autocorrelation function of the firing rates still shows
damped oscillations (Fig. 1.7 A), while for the network with synaptic filtering, similarly,
weak noise does not affect much the decay of the autocorrelation function (Fig. 1.7 D). Very
strong external noise on the other hand will reduce the effect of the underlying recurrent
dynamics of the rate network, since the signal to noise ratio in the synaptic input of all
neurons is low.

For a fixed external noise intensity, reducing the adaptation coupling or increasing the
adaptation time constant increases the variance of the firing rate (Fig. 1.7B), which resem-
bles the dependence of the variance gain for individual neurons (Fig. 1.1D). Conversely,
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Figure 1.6: Dynamical regimes for the network with adaptation or synaptic
filtering with additive external noise. Numerical integration of the dynamics for the
network with adaptive neurons (row A) and the network with synaptic filtering (row B)
with units receiving additive external white noise, as a proxy for spiking noise. Colored
lines correspond to the firing rate of individual neurons, the black line indicates the popu-
lation average activity. Insets: complex eigenspectrum λw/s of the dynamic matrix at the
fixed point. Dots: eigenvalues of the connectivity matrix used in the network simulation.
Solid line: theoretical prediction for the envelope of the eigenspectrum. i. Both the network
with adaptation and synaptic transmission are stable, the external noise generates station-
ary fluctuations around the fixed point. ii. The network with synaptic filtering undergoes
a zero-frequency bifurcation. Noise adds fast temporal variability in the firing rates. The
network with adaptation remains stable, and the fluctuations are larger in amplitude. iii.
The network with adaptation undergoes a Hopf bifurcation. The firing rate activity com-
bines both the fast fluctuations produced by white noise and the chaotic activity with an
oscillatory component. iv. The network with adaptation shows highly irregular activity,
and strong effects due to the activation and saturation bounds of the transfer function.
Parameters as in Fig. 1.4, external noise ση = 0.06.

slower synaptic filtering reduces the variance of the neuron’s firing rates. This is because in
the network with synaptic filtering the noise is also filtered at the synapses –in the limit of
very large τs, the whole white noise is filtered out– whereas in the network with adaptation
the noise affects directly the input current, without being first processed by the adaptation
variable.

However, the timescale of the activity is nonetheless drastically affected by strong noise.
External noise adds fast fluctuations on top of the intrinsically generated dynamics of the
heterogeneous network with adaptation or synaptic filtering. If the noise is too strong, the
effective timescale of the activity takes into account mostly this fast component. In that
limit, the timescale of the activity is almost independent of the synaptic or adaptive time
constants (Fig. 1.7 C and F, largest noise intensity).
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A B C

D E F

Figure 1.7: Autocorrelation function, variance of the firing rates and timescale
of the network activity with external noise predicted by dynamical mean field
theory. A: Autocorrelation function of the firing rates for the network with adaptive neu-
rons for three different noise intensities. Adaptation time constant τw = 1.25. B: Variance
of the firing rate as a function of the adaptation time constant for two different adaption
couplings gw. Increasing the adaptation time constant or decreasing the adaptation cou-
pling increases the variance. ση = 0.15. C: Timescale of the firing rate as a function of
the adaptation time constant, and three different noise levels. Parameters: gw = 0.5, and
J
√
CE + g2CI = 1.2. D: Autocorrelation function of the firing rate for the network with

synaptic transmission for three different noise levels. Synaptic time constant τs = 1.25. E:
Variance of the firing rate as a function of the synaptic time constant, for three different
external noise levels. Synaptic filtering reduces the variance. F: Timescale of the activity
for the network with synaptic filtering and external noise.

1.3 Discussion

We examined dynamics of excitatory-inhibitory networks in which each unit had a hidden
degree of freedom that represented either firing-rate adaptation or synaptic filtering. The
core difference between adaptation and synaptic filtering was how external inputs reached
the single-unit activation variable that represents the membrane potential. In the case
of adaptation, the inputs directly entered the activation variable, which was then filtered
by the hidden, adaptive variable through a negative feedback loop. In the case of synap-
tic filtering, the external inputs instead reached first the hidden, synaptic variable and
were therefore low-pass filtered before being propagated in a feed-forward fashion to the
activation variable. While both mechanisms introduce a second timescale in addition to
the membrane time constant, our main finding is that the interplay between those two
timescales is very different in the two situations. Surprisingly, in presence of adaptation,
the membrane timescale remains the dominant one in the dynamics, while the contribution
of the adaptation timescale appears to be weak. In contrast, in a network with synaptic
filtering, the dominant timescale of the dynamics is directly set by the synaptic variable,
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and the overall dynamics are essentially equivalent to a network in which the membrane
time-constant is replaced with the synaptic one.

We used a highly abstracted model, in which each neuron is represented by membrane
current that is directly transformed into a firing-rate through a non-linear transfer function.
This class of models has been popular for dissecting dynamics in excitatory-inhibitory (Wil-
son and Cowan, 1972, 1973; Troyer and Miller, 1997; Murphy and Miller, 2009; Ahmadian
et al., 2013) or randomly-connected networks (Sompolinsky et al., 1988; Abbott, 1994; Mas-
trogiuseppe and Ostojic, 2017), and for implementing computations (Jaeger, 2001; Sussillo
and Abbott, 2009). Effects of adaptation in this framework have to our knowledge not been
examined so far, but see Muscinelli et al. (2019) for a recent study of adaptation in networks
of rate units with random Gaussian connectivity. We therefore extended the standard rate
networks by introducing adaptation in an equally abstract fashion (Benda and Herz, 2003),
as a hidden variable specified solely by a time constant and a coupling strength. Different
values of those parameters can be interpreted as corresponding to different specific mem-
brane conductances that implement adaptation, e.g. the calcium dependent potassium Iahp
current or the slow voltage-dependent potassium current Im, which are known to exhibit
timescales over several orders of magnitude (Brown, 2000; Stanley et al., 2011). To cover
the large range of adaptation timescales observed in experiments (La Camera et al., 2006),
it would be straightforward to superpose several hidden variables with different time con-
stants. Our approach could also be easily extended to include simultaneously adaptation
and synaptic filtering.

A number of previous works have studied the effects of adaptation within more biologi-
cally constrained, integrate-and-fire models. These works have in particular examined the
effects of adaptation on the spiking statistics (Naud et al., 2008; Schwalger et al., 2010;
Ladenbauer et al., 2013), firing-rate response (Richardson et al., 2003; Brunel et al., 2003),
synchronisation (Ermentrout et al., 2001; Ladenbauer et al., 2012; Augustin et al., 2013;
Ladenbauer et al., 2013; Schwalger and Lindner, 2013), perceptual bistability (Laing and
Chow, 2002) or single-neuron coding (Naud and Gerstner, 2012; Pozzorini et al., 2013). In
contrast, we have focused here on the relation between the timescales of adaptation and
those of network dynamics. While our results rely on a simplified firing-rate model, we
expect that they can be directly related to networks of spiking neurons by exploiting quan-
titative techniques for mapping adaptive integrate-and-fire models to effective firing rate
descriptions (Augustin et al., 2017).

A side result of our analysis is the finding that strong coupling in random recurrent
networks with adaptation generically leads to a novel dynamical state, in which individual
units exhibit a mixture of oscillatory and strong temporal fluctuations. The characteristic
signature of this dynamical state is a damped oscillation found in the auto-correlation func-
tion of single-unit activity. In contrast, classical randomly connected networks lead to a
fluctuating, chaotic state in which the auto-correlation function decays monotonically (Som-
polinsky et al., 1988; Rajan et al., 2010; Kadmon and Sompolinsky, 2015; Mastrogiuseppe
and Ostojic, 2017). Note that the oscillatory activity of different units is totally out of phase,
so that no oscillation is seen at the level of population activity. This dynamical phenomenon
is analogous to heterogeneous oscillations in anti-symmetrically connected networks with
delays (Bimbard et al., 2016). In both cases, the oscillatory dynamics emerge through a bi-
furcation in which a continuum of eigenvalues crosses the instability line at a finite-frequency.
Similar dynamics can be also found in networks in which the connectivity is a superposition
of a random and a rank two structured part (Mastrogiuseppe and Ostojic, 2017). In that
situation, the heterogeneous oscillations however originate from a Hopf bifurcation due to
an isolated pair of eigenvalues that correspond to the structured part of the connectivity.

Our main aim here was to determine how hidden variables could induce long timescales
in randomly-connected networks. Long timescales could alternatively emerge from non-
random connectivity structure. As extensively investigated in earlier works, one general
class of mechanism relies on setting the connectivity parameters close to a bifurcation
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that induces arbitrarily long timescales (Sompolinsky et al., 1988; Huang and Doiron,
2017). Another possibility is that non-random features of the connectivity, such as the
over-representation of reciprocal connections (Sjöström et al., 2001; Ko et al., 2011) slow
down the dynamics away from any bifurcation. A recent study (Martí et al., 2018) has
indeed found such a slowing-down. Weak connectivity structure of low-rank type provides
yet another mechanism for the emergence of long timescales. Indeed, rank-two networks
can generate slow manifolds corresponding to ring attractors provided a weak amount of
symmetry is present (Mastrogiuseppe and Ostojic, 2018).

Ultimately, the main reason for looking for long timescales in the dynamics is their
potential role in computations performed by recurrent networks (Sussillo, 2014; Barak, 2017).
Recent works have proposed that adaptive currents may help implement computations in
spiking networks by either introducing slow timescales or reducing the amount of noise due
to spiking (Nicola and Clopath, 2017; Bellec et al., 2018). Our results suggest that synaptic
filtering is a much more efficient mechanism to this end than adaptation. Identifying a
clear computational role for adaptation in recurrent networks therefore remains an open
and puzzling question.
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1.4 Methods

1.4.1 Network model
We compare the dynamics of two different models: a recurrent network with adaptive
neurons, and a recurrent network with synaptic filtering. Each model is defined as a set
of 2N coupled differential equations. The state of the i-th neuron is determined by two
different variables, the input current xi (t) and the adaptation (synaptic) variable wi (t)
(si (t)).

Adaptation The dynamics of the recurrent network with adaptive neurons are given by{
τm ẋi (t) = −xi (t) − gwwi (t) + Ii (t)
τwẇi (t) = −wi (t) + ϕ (xi (t)) ,

(1.14)

where ϕ (x) is a monotonically increasing non-linear function that transforms the input
current into firing rate. In this study, we use a threshold-linear transfer function with
saturation:

ϕ (x) =

{
[x− γ]+ if x− γ < ϕmax

ϕmax otherwise.
(1.15)

In Eq. (1.14) adaptation in single neuron rate models is defined as a low-pass filtered
version with timescale τw of the neuron’s firing rate ϕ (xi (t)), and is fed back negatively
into the input current, with a strength that we call the adaptation coupling gw. For the
sake of mathematical tractability, we linearize the dynamics of the adaptation variable by
linearizing the transfer function (Eq. 1.15), ϕ (xi (t)) ≈ xi (t) − γ. Therefore, the dynamics
of the network model with adaptation studied here read{

τm ẋi (t) = −xi (t) − gwwi (t) + Ii (t)
τwẇi (t) = −wi (t) + xi (t) − γ,

(1.16)

Note that this approximation allows for adaptation to increase the input current of a
neuron, when the neuron’s current is below the activation threshold γ.

Synaptic filtering For the recurrent network with synaptic filtering, the dynamics are{
τm ẋi (t) = −xi (t) + si (t) + Ii (t)
τsṡi (t) = −si (t) + Ii (t) .

(1.17)

In Eqs (1.14), (1.16), and (1.17), I (t) represents the total external input received by the
neuron. In general, we are interested in the internally generated dynamical regimes of the
network, so that the input is given by the synaptic inputs

Ii (t) = Isyn,i =
∑
j

Jijϕ (xj (t)) . (1.18)

The matrix element Jij indicates the coupling strength of the j-th neuron onto the i-th
neuron. The connectivity matrix is sparse and random, with constant in-degree (Brunel,
2000; Ostojic, 2014; Mastrogiuseppe and Ostojic, 2017): all neurons receive the same number
of input connections C, from which CE are excitatory and CI inhibitory. All excitatory
synapses have coupling strength J while the strength of all inhibitory synapses is −gJ .
Moreover, each neuron can only either excite or inhibit the rest of the units in the network,
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following Dale’s principle. Therefore, the total effective input coupling strength, which is
the same for all neurons, is

Jeff :=
∑
j

Jij = J (CE − gCI) . (1.19)

Table 1.1: Parameter values used in the simulations.
Parameter Value
Number of units N 3000
In-degree C 100
Excitatory inputs CE 80
Inhibitory inputs CI 20
Ratio I-E coupling strength g 4.1
Threshold γ -0.5
Maximum firing rate ϕmax 2

1.4.2 Single neuron dynamics
The dynamics of each individual neuron are described by a two-dimensional linear system,
which implies that the input current response x (t) to a time-dependent input I (t) is the
convolution of the input with a linear filter h (τ) that depends on the parameters of the
linear system:

x (t) = (h ∗ I) (t) =
∫ +∞

−∞
dt′h (t′) I (t− t′) . (1.20)

In general, for any linear dynamic system ż (t) = Az + b (t), where A is a square matrix
in RN×N and b (t) is a N -dimensional vector, the dynamics are given by

z (t) =
∫ ∞

−∞
dt′eAt

′
Θ (t′) b (t− t′) , (1.21)

where Θ (t) is the Heaviside function. Thus, comparing Eqs (1.21) and (1.20), the linear
filter is determined by the elements of the so-called propagator matrix P (t) = eAtΘ (t).

Synaptic filtering For a single neuron wit synaptic filtering, the dynamics are given
by Equation (1.17), where the input Ii (t) represents the external current. We write the
response in its vector form (x (t) , s (t))T and the input as (0, I (t))T . The dynamic matrix
is

As =
(

−τ−1
m τ−1

m

0 −τ−1
s

)
. (1.22)

The linear filter, hs (t′), is given by the entries of the propagator matrix that links the
input I (t) to the output element x (t), which are in this case only the entry in row one
and column two: hs (t′) = [P (t′)]12. To compute the required entry of the propagator, we
diagonalize the dynamic matrix A = V DV −1. The matrix D is a diagonal matrix with the
eigenvalues of matrix A in the diagonal entries, and V is a matrix whose columns are the
corresponding eigenvectors. Applying the identity etV DV −1 = V etDV −1 and the definition
of propagator we obtain that

hs (t) = Θ (t) 1
τm − τs

(
e− t

τm − e− t
τs

)
. (1.23)
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The two timescales of the activity are defined by the inverse of the eigenvalues of the system,
which coincide with τm and τs. Every time a pulse is given to the neuron, both modes get
activated with equal amplitude and opposing signs, as indicated by Eq. 1.23. This means
that there is a fast ascending phase after a pulse, at a temporal scale τm, and a decay
towards zero with timescale τs.

Adaptation The dynamics of a single adaptive neuron are determined by Equation (1.16),
where Ii (t) is the external input to the neuron. We apply the same procedure to determine
the timescales of the response of an adaptive neuron to time-dependent perturbations. The
dynamic matrix for an adaptive neuron reads

Aw =
(

−τ−1
m −gwτ−1

m

τ−1
w −τ−1

w

)
. (1.24)

Its eigenvalues are

λ±
w = 1

2

(
−τ−1

m − τ−1
w ±

√(
τ−1
m + τ−1

w

)2 − 4 (1 + gw) τ−1
m τ−1

w

)
. (1.25)

and the eigenvectors

ξ± =

 gw
τm

,
1
2

− 1
τm

+ 1
τw

∓

√(
1
τm

− 1
τw

)2

− 4 gw
τmτw

T

. (1.26)

The eigenvalues are complex if and only if gw > (4τmτw)−1 (τw − τm)2, and in that case their
real part is 1

2τmτw
(τm + τw). As the adaptive time constant becomes slower, at a certain

critical adaptation time constant both eigenvalues become real. We are interested in the
behavior when the adaptation time constant is large. The absolute value of the inverse of
the eigenvalues determines the time constants of the dynamics. Therefore, for large τw we
can calculate the two real eigenvalues to first order of τ−1

w

λ+
w = − 1+gw

τw
+O

(
τ−2
w

)
(1.27)

λ−
w = −τ−1

m + gwτ
−1
w +O

(
τ−2
w

)
. (1.28)

In this limit of slow adaptation, the time constant of one eigenmode is proportional to
τw, whereas the second mode scales with τm. We are interested in the amplitude of each
mode with respect to the other.
By explicitly calculating the first entry of the propagator matrix we obtain the adaptive
filter in terms of the eigenvectors and eigenvalues,

hw (t) = 1
ξ+

1 ξ
−
2 − ξ−

1 ξ
+
2

(
ξ+

1 ξ
−
2 e

λ+t − ξ−
1 ξ

+
2 e

λ−t
)
, (1.29)

where we use the notation ξ+
1 to indicate the first component of the eigenvector associated

to the eigenvalue λ+. Approximating to leading order of τ−1
w the eigenvectors in Eq. (1.26),

we obtain the eigenvectors

ξ− = 1
τm

(gw, 0)T − 1
τw

(0, gw)T = gw

(
1
τm

,− 1
τw

)T
(1.30)

ξ+ = 1
τm

(gw,−1)T + 1
τw

(0, 1 + gw)T =
(
gw
τm

,− 1
τm

+ 1 + gw
τw

)T
. (1.31)
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Then, using Eqs (1.29), (1.30) and (1.31), we determine the linear filter:

hw (t) = gw
τm (2gw + 1) − τw

e− 1+gw
τw

t + 1
τm

1 − (1 + gw) τm

τw

1 − (1 + 2gw) τm

τw

e−( 1
τm

− gw
τw

)t. (1.32)

Interestingly, in contrast with synaptic filtering, the amplitude of the two modes are
not equal. The amplitude of the slow mode (first term in Eq. 1.32), whose timescale is
proportional to τw, decays proportionally to τ−1

w with respect to the fast mode, when
τw ≪ τm (2gw + 1). Therefore, the area under the linear filter corresponding to this mode
is independent of τw for very large adaptation time constants:

lim
τw→∞

∫ ∞

0
h+
w (t) dt = lim

τw→∞

gwτw
τm (gw + 1) (2gw + 1) − (gw + 1) τw

= − gw
gw + 1

. (1.33)

It follows that, if the adaptation timescale is increased, its relative contribution to the
activity will decrease by the same factor, so that very slow adaptive currents will effectively
be masked by the fast mode.

1.4.3 Equilibrium activity
The two systems possess a non-trivial equilibrium state at which the input current of all
units stays constant. Since all units are statistically equivalent, the equilibrium activity is
the same for all units. For synaptic filtering, the input current at equilibrium is given by a
transcendental equation, that is obtained by setting to zero the left hand side of Eq. (1.17):

x0 = J (CE − gCI)ϕ (x0) . (1.34)

This equilibrium coincides with the fixed point of the system without synaptic filtering.
For adaption, instead, from Eq. (1.16) we obtain that the equilibrium is determined by

x0 = 1
1 + gw

(J (CE − gCI)ϕ (x0) + gwγ) . (1.35)

We further assume unless otherwise specified that the fixed point of the system is in
the linear regime of the transfer function, so that ϕ (x) = x − γ. In that case x0 =
(J (CE − gCI) − gw) (x0 − γ), so that larger adaptation coupling corresponds to weaker in-
put currents, i.e. decreasing stationary firing rate. The adaptation time constant does not
affect the fixed point.

1.4.4 Dynamics of homogeneous perturbations
We study the neuronal dynamics in response to a small perturbation uniform across the
network

xi (t) = x0 + δx (t) . (1.36)

Synaptic filtering Linearizing Eq. 1.17 we obtain{
τm δẋi (t) = −δx (t) + δsi (t)
τsδṡi (t) = −δsi (t) + ϕ′

0
∑
j Jijδx (t) ,

(1.37)
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where we use the notation ϕ′
0 := dϕ(x)

dx

∣∣∣
x0

. Because the perturbation δx in Eq. (1.37) is
independent of j, using Eq. (1.19) the dynamics for all units are equivalent to the population-
averaged dynamics and are given by{

τm δẋ (t) = −δx (t) + δs (t)
τsδṡ (t) = −δs (t) + ϕ′

0J (CE − gCI) δx.
(1.38)

From Eq. (1.38) we can define the dynamic matrix

As = 1
τm

(
−1 1

ϕ′
0J (CE − gCI) τm

τs
− τm

τs

)
. (1.39)

The only difference in the linearized dynamics of the population-averaged current with
respect to the single neuron dynamics (Eq. 1.22) is the non-diagonal entry ϕ′

0J (CE − gCI).
When either the derivative at the fixed point cancels, or when the total effective input is
zero, the population dynamics equals the dynamics of a single neuron. The eigenvalues of
the population-averaged dynamics are

λ±
s = −τm + τs

2τsτm
±

√(
τm − τs
2τsτm

)2

+ J (CE − gCI)
τmτs

. (1.40)

and the eigenvectors

ξ±
s =

−1, τm − τs
2τsτm

∓

√(
τm − τs
2τsτm

)2

+ J (CE − gCI)
τmτs

T

. (1.41)

For very large synaptic time constants, the eigenvalues are approximated to leading order
as

λ+
s = J (CE − gCI) − 1

τs
+O

(
τ−2
s

)
(1.42)

λ−
s = − 1

τm
− J (CE − gCI)

τs
(1.43)

Approximating as well the eigenvectors to leading order, we obtain

ξ+ =
(

1
τm

,
1
τm

− 1 − J (CE − gCI)
τs

)T
(1.44)

ξ− =
(

1
τm

,−J (CE − gCI)
τs

)T
(1.45)

the filter of the linear response to weak homogeneous perturbations reads:

hs (t) = 1
τs

ξ−
1 ξ

+
1

ξ+
1 ξ

−
2 − ξ−

1 ξ
+
2

(
eλ

−t − eλ
+t
)

(1.46)

= 1
τs

τs − τm (1 − J (CE − gCI))
τs − τm (1 − 2J (CE − gCI))

(
eλ

−t − eλ
+t
)

(1.47)

Note that the amplitude of the two exponential terms is the same, independently of the
effective coupling and time constants.
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Adaptation For the system with adaptive neurons, the linearized system reads{
τm δẋi (t) = −δxi (t) − gwδwi (t) (t) + ϕ′

0
∑
j Jijδx (t)

τwδẇi (t) = −δwi (t) + δx (t) .
(1.48)

As for the network with synaptic filtering, the dynamics of the perturbation are equivalent
for each unit, so that we can write down the dynamic matrix for the population-averaged
response to homogeneous perturbations

Aw = 1
τm

(
−1 + ϕ′

0J (CE − gCI) −gw
τm

τw
− τm

τw

)
. (1.49)

The difference with respect to the linear single neuron dynamics (Eq. 1.48) is that the
effective recurrent coupling appears now in the first diagonal entry of the dynamic matrix.

When the fixed point is located within the linear range of the transfer function, the
derivative is one, so that we do not further specify the factor ϕ′

0 in the following equations.
Consequently, the dynamics of the system to small perturbations do not depend on the
exact value of the fixed point, which does not hold for more general transfer functions.

The eigenvalues of the system read

λ±
w =

(
−1 − Jeff

2τm
− 1

2τw

)1 ±
√√√√1 + 4τm (Jeff − 1 − gw)

τw

(
Jeff − 1 − τm

τw

)2

 , (1.50)

with eigenvectors

ξ±
w =

2gw,
τm
τw

+ Jeff − 1 ∓

√(
τm
τw

− Jeff + 1
)2

− 4τm
τw

(gw − Jeff + 1)

T

(1.51)

In the limit of very slow adaptation, given that the two eigenvalues are real, they can
be approximated to leading order as

λ+
w = 1 + τm

τw (J (CE − gCI) − 1)
+O

(
τ−2
w

)
(1.52)

λ−
w = − 1

τw

(
1 − gw

J (CE − gCI) − 1

)
+O

(
τ−2
w

)
(1.53)

and the corresponding eigenvectors read

ξ+
w =

(
1, 1
Jeff − 1

τm
τw

)T
(1.54)

ξ−
w =

(
gw, Jeff − 1 + τm

τw

(
1 − gw

Jeff − 1

))T
. (1.55)

Therefore, if the perturbation is stable (see next section) we can write down the correspond-
ing linear filter as

hw (t) = 1
τm

Jeff − 1 + τm

τw

(
1 − gw

Jeff

)
Jeff − 1 + τm

τw

(
1 − 2gw

Jeff

)eλ+
wt− gw

τw (Jeff − 1)2 + τm (Jeff − 1 − 2gw)
eλ

−
wt. (1.56)
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The area under the slow mode is again independent of the adaptation time constant in
this limit,

lim
τw→∞

∫ ∞

0
h−
w (t) dt = − gw

(Jeff − 1) (Jeff − 1 − gw)
. (1.57)

1.4.5 Stability of homogeneous perturbations
The equilibrium point is stable when the real part of all eigenvalues is negative. Equivalently,
in a two dimensional system –as it is the case for the population-averaged dynamics–, the
dynamics are stable when the trace of the dynamic matrix is negative and the determinant
positive.

Synaptic filtering In the system with synaptic filtering, the trace and determinant are

Trs = − 1
τm

− 1
τs

(1.58)

Dets = 1 − J (CE − gCI)
τmτs

. (1.59)

The trace is therefore always negative. The determinant is positive, and therefore the
population-averaged dynamics are stable, when the effective coupling J (CE − gCI) is smaller
than unity. In contrast, if the effective coupling is larger than unity, i.e. if positive feed-
back is too strong, the equilibrium firing rate is unstable, so that any small perturbation
to the equilibrium firing rate will lead the system to a different state. Right at the critical
effective coupling, one eigenvalues is zero and the other one equals Trs, implying that the
population-averaged dynamics undergo a saddle-node bifurcation. Beyond the bifurcation,
the network reaches a state where the firing rates of all neurons saturate.

Adaptation In the adaptive population dynamics, the recurrent connectivity has a differ-
ent effect on the stability of the adaptive population dynamics. The trace and determinant
of the dynamic matrix are

Tr w = − 1
τm

− 1
τw

+ τ−1
m J (CE − gCI) , (1.60)

Det w = (τmτw)−1 (1 − J (CE − gCI) + gw) . (1.61)

Both the timescale τw and the strength gw of adaptation affect the trace and determinant of
the dynamic matrix, and therefore the stability. The system is unstable if the determinant
is negative (one positive and one negative real eigenvalue) or if the determinant is positive
and the trace is positive. The determinant is negative, and therefore the system becomes
unstable through a saddle-node bifurcation, when J (CE − gCI) > 1 + gw. Note that the
adaptation strength increases the stability of the system: a stronger positive feedback loop is
required to destabilize the fixed point, in comparison to the network with synaptic filtering.
The determinant and trace are positive if J (CE − gCI) < 1 + gw but J (CE − gCI) >
1 + τm

τw
, respectively, leading to a Hopf bifurcation: the system produces sustained marginal

oscillations at the bifurcation in response to small perturbations around the fixed point.
Beyond the Hopf bifurcation, the oscillations are maintained in time, unless the system
shows a fixed point when all neurons saturate (x0 = 1

1−gw
(J (CE − gCI)ϕmax + gwγ)).

This fixed point exists if x0 > ϕmax + γ.
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1.4.6 Heterogeneous activity
We next study the network dynamics beyond the population-averaged activity, along modes
where different units have different amplitudes. We study perturbations of the type

xi (t) = x0 + δxi (t) . (1.62)

We define the 2N -dimensional vector x =
(
δx1, ..., δx

1
N , δw

1
1, ..., δw

1
N

)T . Since the dynamics
of each unit is now different, the dynamic matrix of the linearized system, A, is described
by a squared matrix of dimensionality 2N . Therefore, the perturbations generate dynamics
along 2N different modes whose timescales are determined by the eigenvalues of the matrix
A. The eigenvalues are determined by the characteristic equation |A− λI| = 0. In order to
calculate these eigenvalues, we make use of the following identity which holds for any block
matrix Z = A− λI, that is composed by the four square matrices P,Q, R, and S and the
block S is invertible:

|Z| :=
∣∣∣∣( P Q

R S

)∣∣∣∣ = |S|
∣∣P − QS−1R

∣∣ . (1.63)

Consequently, if we set Eq. (1.63) to zero, since we assumed that |S| ̸= 0, we obtain

|Z| = 0 =⇒
∣∣P − QS−1R

∣∣ = 0. (1.64)

The identity in Eq. (1.63) can be shown by using the decomposition

Z =
(

I 0
0 S

)(
I Q
0 I

)(
P − QS−1R 0

S−1R I

)
, (1.65)

together with the fact that when a non-diagonal block is zero. The determinant of such a
matrix is the product of determinants of the diagonal blocks.

Synaptic filtering The dynamical matrix for the network with synaptic filtering, ob-
tained by linearizing Eqs (1.17), is

As = 1
τm

(
−I I

ϕ′
0J τm

τs
− τm

τs
I

)
, (1.66)

The matrix J is the connectivity matrix. Again, we assume in the following that the fixed
point is located in the linear range of the transfer function, so that ϕ′

0 = 1.
The characteristic equation, obtained by combining Eqs (1.64) and (1.66), reads

∣∣∣∣∣− (1 + τmλs) I +
(
τm
τs

+ τmλs

)−1
τm
τs

J
∣∣∣∣∣ = − (1 + τmλs) + λJ

1 + τsλs
= 0, (1.67)

where λJ are the eigenvalues of the connectivity matrix. Solving for λJ we obtain the
equation which maps the eigenvalues of the synaptic filtering network dynamics λs onto the
eigenvalues of the connectivity matrix λJ ,

λJ = (1 + τmλs) (1 + τsλs) . (1.68)

In contrast, solving for the eigenvalues of the dynamic matrix λs we obtain the inverse
mapping

λ2
s + τs + τm

τsτm
λs + 1 − λJ

τsτm
= 0. (1.69)
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In other words, Eqs 1.69 and 1.68 constitute two different approaches to assessing the sta-
bility of the system (Bimbard et al., 2016). One approach is to examine whether the domain
of eigenvalues λs resulting from Eq. (1.69) intersect the line Re (λs) = 0 (Fig. 1.3, insets
in B). The eigenvalues λJ of the connectivity matrix are distributed within a circle in the
complex plane, whose radius is proportional to the synaptic strength, λJ < J

√
CE + g2CI

plus an outlier real eigenvalue at J (CE − gCI) that corresponds to the homogeneous pertur-
bations studied above (see (Rajan and Abbott, 2006)). We focus in this section on the bulk
of eigenvalues that corresponds to modes of activity with different amplitudes for different
units. We can therefore parametrize the eigenvalues λJ as

λJ (θ) = J
√
CE + g2CIe

iθ (1.70)

and introduce the parametrization into Eq. (1.69) to obtain an explicit expression for
the curve that encloses the eigenspectrum λs. Note that in an abuse of notation, we denote
the limits of the eigenspectrum as λ and not the eigenvalues themselves that constitute the
eigenspectrum.

The alternative approach is to use the inverse mapping from the eigenvalues λs to the
eigenvalues of the connectivity λJ , by mapping the line Re (λs) = 0 into the space of
eigenvalues λJ (see Fig. 1.4.6). More specifically, the line Re (λs) = 0 can be parametrized
as

λs = ±iω, (1.71)

and introduced into Eq. (1.68). In this case, the stability is assessed by whether the eigen-
spectrum of the connectivity matrix J crosses the stability boundary or not (insets in
Fig. 1.4.6). This alternative approach is useful for some calculations due to the simple
geometry of the connectivity eigenspectrum λJ .

Taking the alternative approach, introducing Eq. (1.71) into Eq. (1.68), we obtain the
stability bound in the complex plane of eigenvalues λJ :

λsbJ = (1 + iτmω) (1 + iτsω) . (1.72)

The first point of the stability curve λsbJ (ω) intersecting with a circle of increasing radius
centered at the origin is the closest point of the curve to the origin, i.e. the minimum of∣∣λsbJ ∣∣2 with respect to ω. The squared distance to the origin is∣∣λsbJ ∣∣2 =

(
1 + τ2

mω
2) (1 + τ2

wω
2) , (1.73)

whose minimum happens trivially at ω = 0, λJ = 1 (see Fig. 1.4.6). In conclusion, the
system is unstable if

J
(
CE + g2CI

)
> 1. (1.74)

Note that this is the same condition as in the case without synaptic filtering, The synaptic
filtering system approaches the no-filtering system when τs → 0. Although we are consid-
ering in this work synaptic timescales that are larger than the membrane time constant,
the analysis is valid for arbitrarily fast synaptic time constants. In that limit, the stability
curve in Eq. (1.72) approaches the curve λsbJ = 1, retrieving the stability boundary found
in (Sompolinsky et al., 1988).

To study the limit of slow synaptic time constant, τs ≫ τm, we analyze the direct
approach, i.e. study how the parameters of adaptation modify the eigenspectrum of the
dynamic matrix As in the complex plane of eigenvalues λs. To this end, we introduce the
parametrized connectivity eigenspectrum (Eq. 1.70) into Eq. (1.69), and approximate it to
leading order of τm

τs
. We obtain that the eigenspectrum of eigenvalues λs are enclosed by

the curves
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i
ii

iii

A Bi iiiii C

Figure 1.8: Geometrical description of the bifurcation of the heterogeneous ac-
tivity. A: Instability bound for the system with synaptic filtering (grey line, Eq.1.72) and
eigenspectrum for the weakest unstable synaptic coupling J . For any parameter combina-
tion, the instability bound, a parabola, is first touched by the growing circle of eigenvalues
at ω = 1 and value J

√
CE + g2CI = 1. B: Three different configurations of the instability

bound for the system with adaptation in the complex plane of eigenvalues of the connectiv-
ity matrix, λJ . The black dots indicate the intersection between the instability boundary
(full red line) and the eigenspectrum of λJ (dashed black line) with weakest coupling that
is unstable. (i) The instability boundary intersects the real axis twice, leading to a Hopf
bifurcation. (ii) It intersects the real axis just once and still leads to a Hopf bifurcation,
because the intersection with the real axis is not the closest point of the curve to the origin.
(iii) It intersects the real axis once and leads to a zero-frequency bifurcation, because the
crossing of the real axis is the closest point to the origin. In (ii) and (iii) we draw the
parabolic approximation of the instability bound (red dashed line, Eq. 1.82). If the curva-
ture of this parabola is exterior to the λJ eigenspectrum, as in (iii), the system undergoes a
zero-frequency bifurcation. C: Oscillatory frequency at which the network with adaptation
undergoes a bifurcation. To the right of the white line (Eq. 1.84), the network displays
a Hopf bifurcation, whereas to the left, the bifurcation happens at zero-frequency. The
triangles indicate the parameter combinations used in B.

λ+
s ≈ 1

τs

(
J
√
CE + g2CIe

iθ − 1
)

(1.75)

λ−
s ≈ − 1

τm
− 1
τs

(
J
√
CE + g2CIe

iθ − 1
)
. (1.76)

The equations above approximate the full eigenspectrum by two disjoint circles of radius
τ−1
s J

√
CE + g2CI , the one corresponding to the λ+

s eigenvalues centered at − 1
τs

, and the
other circle λ− centered at − 1

τm
+ 1

τs
. The circle centered closer to the instability bound,

λ+
s sets the slow timescales of the network, and its associated timescale is proportional to
τs. This gives an intuitive explanation to why the network timescale scales linearly with
the synaptic time constant (Fig 1.5).

Adaptation For adaptation, we repeat the same procedure as for the synaptic filtering
to determine the stability to heterogeneous perturbations. The dynamical matrix reads

Aw = 1
τm

(
ϕ′

0J − I −gwI
ϕ′

0
τm

τw
I − τm

τw
I

)
, (1.77)

Using Eqs (1.64) and (1.77) we can obtain the characteristic equation. Solving for λJ
we obtain the mapping between the λw eigenvalues and the connectivity eigenvalues

λJ = 1 + τmλw + gw
τm
τw

(
τmλw + τm

τw

)−1

, (1.78)

46



1.4. Methods

while solving for λw we obtain the expression for the inverse mapping:

(τmλw)2 +
(

1 + τm
τw

− λJ

)
τmλw + τm

τw
(1 + gw − λJ) = 0. (1.79)

We first explore the inverse mapping. Inserting the parametrization in Eq. (1.71) into
Eq. (1.78), the stability curve in the complex plane of connectivity eigenvalues reads

λsbJ (ω) = 1 + gw
1 − τ2

wω
2 + iω

(
τm − τw

gw
1 − τ2

wω
2

)
. (1.80)

The bifurcation parameters can then be found by determining the closest point of the
stability boundary to the origin. The corresponding value of ω determines the oscillatory
frequency of the first unstable mode. This value can be zero, corresponding to a zero-
frequency bifurcation, which generally leads to slowly fluctuating activity referred to as
rate chaos ((Sompolinsky et al., 1988), (Kadmon and Sompolinsky, 2015), (Harish and
Hansel, 2015), (Mastrogiuseppe and Ostojic, 2017)). Alternatively, when the parameter ω
that minimizes the norm of λsbJ is non-zero, the system undergoes a Hopf bifurcation.

It is useful to consider the different geometries of the stability curve in Eq. (1.80) in
order to identify the closest point of the curve to the origin. Note that the curve shows
symmetry with respect to the real axis, λsbJ (−ω) = λsb∗J (ω).

The curve might cross the real axis Im (λJ) = 0 either in one or two different values
of |ω|. Solving Re

(
λsbJ
)

= 0, we find that the curve crosses twice the real axis, when
τm < τwgw (Fig. 1.8 Bi). In that case, one crossing is the point τmλJ = 1 + τm

τw
and the

other τmλJ = 1 + gw. This second intersection corresponds to ω = 0. Therefore, it is clear
that, since the first crossing of the real axis is closer to the origin than the point at ω = 0,
the bifurcation necessarily occurs at non-zero frequency for τm < τwgw.

When the curve crosses only once the zero axis, the point λJ = 1+gw, corresponding to a
zero-frequency, is not necessarily the closest one to the origin (Fig. 1.8 Bii). One approach to
determine analytically whether the system undergoes a Hopf or a zero-frequency bifurcation
is to look at the curvature at the point ω = 0 and compare it to the curvature of a circle
with radius 1 + gw. To do so, we approximate both the stability line and the circle by a
parabola, and compare their curvatures (dashed curve, Fig1.8 Bii and Biii). First, we write
the stability boundary in its implicit form, λsbJ := xsbJ + iysbJ , as

(
ysb
)2 −

(
xsb − 1 − gw

)(
xsb − 1 − τm

τw

)2 1
xsb − 1

= 0. (1.81)

Then, we consider small deviations of the coordinates xsb = 1 + gw + ϵx and ysb = ϵy. If we
approximate up to first order of ϵx and second order of ϵy we obtain the parabola

ϵ2y =

(
gw − τm

τw

)2

gw
ϵx +O

(
ϵ2x
)
. (1.82)

Repeating the same procedure for the circle of eigenvalues, with radius r = 1 + gw we
obtain ϵ2y = 2 (1 + gw) ϵx + O

(
ϵ2x
)
. By requiring the circle of eigenvalues to be interior

to the boundary curve (for the same ϵx, ϵ2y,circle < ϵ2y,sb), we obtain that the instability
parabola is exterior to the circle, therefore the system undergoes a zero-frequency bifurcation
(Fig. 1.8C), when (

gw − τm

τw

)2

gw
ϵx < 2 (1 + gw) ϵx (1.83)

which simplifies to
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τm
τw

> gw +
√

2gw (gw + 1). (1.84)

In the limit of the adaptation timescale approaching the membrane time constant, the
left side of the inequality above approaches one. Introducing this value in Eq. 1.84, we find
that for adaptive couplings stronger than gw >

√
5 − 2 only a Hopf bifurcation is possible.

1.4.7 Dynamical Mean Field Theory
The linearization of the dynamical system from the previous section is only valid up to the
instability boundary. A commonly used method to study the dynamics that arise beyond
the bifurcation is dynamical mean field theory (DMFT) (Sompolinsky et al., 1988; Rajan
et al., 2010; Stern et al., 2014; Harish and Hansel, 2015; Aljadeff et al., 2015a; Kadmon and
Sompolinsky, 2015; Mastrogiuseppe and Ostojic, 2017). DMFT approximates the determin-
istic input to each element of the system by a Gaussian stochastic process, whose first and
second moment are determined self-consistently.

The dynamics of the i-th neuron in the synaptic and adaptive network are approximated
as {

τm ẋi (t) = −xi (t) + si (t)
τsṡi (t) = −si (t) + ξi (t) ,

(1.85)

{
τm ẋi (t) = −xi (t) − gwwi (t) + ξi (t)
τwẇi (t) = −wi (t) + xi (t) − γ,

(1.86)

where ξi (t) is a Gaussian variable. In the thermodynamic limit, the noise sources are
independent between neurons, so that for i ̸= j [ξi (t) ξj (t′)] = 0.

The next step is to determine the self-consistent equations, that links the distribution
of ξi to the statistics of the original system in Eqs (1.16) and (1.17). First, we relate the
statistics of the noise, currents xi and rates ϕ (xi) based on the dynamics. Then, we close
the equations by explicitly assuring that the transfer function relates the currents and the
rates.

To determine the first moment of the noise, we apply that ξi (t) =
∑
j Jijϕ (xj (t)) and

average over the population, as in (Mastrogiuseppe and Ostojic, 2017). The first moment
of the noise then obeys

[ξi] =

〈
N∑
j=1

Jijϕj (t)

〉
= J (CE − gCI) ⟨ϕ⟩ . (1.87)

We calculate next the relation for the second moment of the noise, which again is the
same as in (Mastrogiuseppe and Ostojic, 2017):

[ξi (t) ξj (t+ τ)] =

〈
N∑
k=1

Jikϕk (t)
N∑
l=1

Jjlϕl (t)

〉
= δijJ

2 (CE + g2CI
) (
C (τ) − ⟨ϕ⟩2

)
,(1.88)

where C (τ) = ⟨ϕi (t)ϕi (t+ τ)⟩ .
These equations show that the first and second moment of the Gaussian sources do not

depend on the identity of neuron i, so that all neurons are statistically equivalent. Thus, we
can reduce the full 2N -deterministic system to a two-variable stochastic system, describing
a prototypical neuron in the network.
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The equations (1.87) and (1.88) describe how the noise is related to the properties of
the connectivity and the statistics of the rates ϕ (x). The next step is to calculate how the
first and second moment of the noise are related to the statistics of the input current, which
we write as µ := [xi] for the first moment and ∆ (τ) := [xi (t)xi (t+ τ)] −µ2 for the second
moment.

For the mean of the input current, averaging over units Eqs (1.85) and (1.86) and
introducing the result in (1.87) for the synaptic and adaptive system respectively, we obtain

µs = [ξ] = J (CE − gCI) ⟨ϕ⟩ , (1.89)

µw = 1
1 + gw

(gwγ + [ξ]) = 1
1 + gw

(gwγ + J (CE − gCI) ⟨ϕ⟩) . (1.90)

By differentiating twice ∆ (τ) with respect to the lag τ and using Eqs (1.85) and (1.88),
as in (Sompolinsky et al., 1988; Mastrogiuseppe and Ostojic, 2017) we obtain:

∆̈s (τ) = ∆s (τ) + (Qs ∗ ∆s) (τ) − J2 (CE + g2CI
) (
C (τ) − ⟨ϕ⟩2

)
, (1.91)

where Qs (τ) :=
∫ +∞

−∞ dths (t)hs (t+ τ) is the autocorrelation function of the single neuron
filter hs (Eq.1.23). Equivalently, for the adaptive system, using Eq. (1.86) and (1.88) we
obtain

∆̈w (τ) = ∆w (τ)+
(
gw
(
gwQw + hsymw + ḣsymw

)
∗ ∆w

)
(τ)−J2 (CE + g2CI

) (
C (τ) − ⟨ϕ⟩2

)
.

(1.92)
where we define in relation to Eq. (1.6) hsymw (τ) = hw (|τ |), and the autocorrelation function
of the adaptive filter Qw :=

∫ +∞
−∞ dthw (t)hw (t+ τ).

Secondly, in order to close the self-consistent description, we can link the statistics of the
rates ϕi (t) with the statistics of the currents xi (t) by writing the input currents explicitly
as Gaussian variables. We can write down the input current at time t and t + τ explicitly
as (see (Rajan et al., 2010)):

x (t) = µ+
√

∆ (0) − |∆ (τ)|z1 + sgn (∆ (τ))
√

|∆ (τ)|z3 (1.93)
x (t+ τ) = µ+

√
∆ (0) − |∆ (τ)|z2 +

√
|∆ (τ)|z3. (1.94)

This explicit construction in terms of Gaussian variables z1, z2 and z3 realizes the constraints[
x2 (t)

]
− µ2 = ∆ (0),

[
x2 (t+ τ)

]
− µ2 = ∆ (0) and [x (t)x (t+ τ)] − µ2 = ∆ (τ). Now,

explicitly calculating the first moment of the rates by replacing the average for a Gaussian
integral and using Eq. (1.93) we obtain

⟨ϕ⟩ =
∫
Dzϕ

(
µ+

√
∆ (0)z

)
(1.95)

where we use the short-hand notation
∫
Dz =

∫ +∞
−∞

e− z2
2

2 dz.
For the second moment, introducing Eqs (1.93) and (1.94) into the definition of auto-

correlation function of the rate, we get

C (τ) =
∫
Dz3

∫
Dz1ϕ

(√
∆ (0) − |∆ (τ)|z1 + sgn (∆ (τ))

√
|∆ (τ)|z3

)
∫
Dz2ϕ

(√
∆ (0) − |∆ (τ)|z2 +

√
|∆ (τ)|z3

)
. (1.96)
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Therefore, in order to determine the self-consistent solution, we need to find a mean
and autocorrelation function for the currents that satisfy both Eqs (1.95) and (1.96) and
Eqs (1.89) and (1.91) (for the synaptic system) and Eqs (1.90) and (1.92) (for the adaptive
system). Once the statistics of the currents and rates are known, it is straight-forward to
obtain the statistics of the noise, using Eqs (1.87) and (1.88).

In previous works (Sompolinsky et al., 1988; Kadmon and Sompolinsky, 2015; Harish
and Hansel, 2015; Schuecker et al., 2018; Mastrogiuseppe and Ostojic, 2017) it was possible
to further simplify the self-consistent equations because the resulting analogous equation to
Eqs (1.91) and Eq. (1.92) was a conservative system. However, in the networks studied here,
synaptic filtering and adaptation add the convolutional terms in Eqs (1.91) and Eq. (1.92)
that make the system non-conservative. Therefore, we followed an alternative approach
and found the solutions to the self-consistent equations using an iterative scheme, that
circumvents solving directly the integral equations.

Iterative scheme We solve the self-consistent equations numerically following a single-
unit iterative scheme, as in (Lerchner et al., 2006; Dummer et al., 2014; Wieland et al., 2015;
Stern et al., 2014):

• First, we simulate the dynamics in Eqs (1.85) and (1.86) assuming white Gaus-
sian noise with a certain mean [ξ](0) and autocorrelation function [ξ (t) ξ (t+ τ)] =(
σ

(0)
ξ

)2
δ (τ).

• We calculate the autocorrelation functions of the firing rate and input currents empir-
ically, µ(0), ∆(0), ⟨ϕ⟩(0) and C(0) (τ).

• We simulate in the new iteration k+ 1 the noise following the self-consistent statistics
obtained in the previous iteration, as indicated by Eqs (1.87) and (1.88)

[ξ](k+1) = J (CE − gCI) ⟨ϕ⟩(k) (1.97)

[ξ (t) ξ (t+ τ)]k+1 = J2 (CE + g2CI
) (
C(k) (τ) − ⟨ϕ⟩(k)

)
. (1.98)

In order to numerically generate a Gaussian variable with autocorrelation function
G (τ), we first generate the noise in the Fourier domain, where each frequency com-
ponent of the noise is given by

ξ̃ (ω) =
√
G̃ (ω)eiψ, (1.99)

where G̃ (ω) denotes the Fourier transform of the target autocorrelation function, and
ψ is a random variable with uniform probability density in the range [−π, π].

• We repeat the previous step until the values µ(k), ∆(k), ⟨ϕ⟩(k) and C(k) (τ) do not
vary beyond a certain tolerance for new iterations.

We find that such an iterative method applied to the systems studied here converges to
a solution for the parameters of the noise after a few iterations, independently of the noise
properties used in the initial step.

The drawbacks of this iterative scheme are that the two-dimensional system needs to be
simulated several times at each iteration in order to determine the first and second order
statistics of the input current and the firing rate, which is in general a computationally
costly operation. We also find that the method converges more robustly to the solution
(given the fact that both the trial length in the simulation and the number of trials are
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finite), at the expense of initial speed convergence, when the first and second moments of
the noise are only partially updated at each iteration, so that

[ξ](k+1) = (1 − α) [ξ](k) + αJ (CE − gCI) ⟨ϕ⟩(k)
, (1.100)

and similarly for the second-moment equation, where α is a parameter between zero and
one. In this work, we used α = 0.6.

This method is inefficient for very large adaptation and synaptic time constants, since
it requires simulating with both a fine temporal resolution (faster than the membrane time
constant) over very large intervals (much larger than the slow adaptive/synaptic timescale).
Another drawback of the iterative method is that its convergence is based on the assumption
that smooth changes in the noise statistics lead to smooth changes in the statistics of the
firing rates. In general, close to a bifurcation, this requirement may not hold.

Dynamics with intrinsic noise We next study how white Gaussian noise, indepen-
dent between neurons and intrinsic to each unit in the network, affects the dynamics of the
system. On the mean-field level, this is equivalent to studying a network where each neuron
spikes at a Poisson process whose rate varies in time as ϕ (xi (t)) (Kadmon and Sompolinsky,
2015). The additional input to each neuron, whose dynamics are given in Eqs (1.2) and
(1.3), is now

Iexti (t) = ηi (t) , (1.101)

where [ηi] = 0, and [ηi (t) ηj (t+ τ)] = δij
σ2

η

2 δ (τ), and Gaussian distributed. The DMF
equations are derived following the same steps as in the absence of intrinsic noise. The
stochastic variable ξ (t) is the sum of the recurrent input and the intrinsic noise. Its first
moment remains unchanged:

[ξ (t)] =

〈
N∑
j=1

Jijϕ (xj (t)) + ηi (t)

〉
(1.102)

= J (CE − gCI) ⟨ϕ⟩ , (1.103)

which is the same result as Eq. (1.87). The second moment of the stochastic process is the
sum of the variance generated by the recurrent connections and the variance of the intrinsic
noise

[ξ (t) ξ (t+ τ)] =

〈
N∑
k=1

Jikϕk (t)
N∑
l=1

Jilϕl (t) + ηi (t) ηi (t+ τ)

〉
(1.104)

= J2 (CE + g2CI
) (
C (τ) − ⟨ϕ⟩2

)
+ 1

2
σ2
ηδ (τ) . (1.105)

Accordingly, the iterative scheme now takes into account the equation above, so that
the equation for the second moment of the self-consistent relation (Eq. 1.98) reads when
there is intrinsic noise

[ξ (t) ξ (t+ τ)](k+1) = J2 (CE + g2CI
) (
C(k) (τ) − ⟨ϕ⟩(k)

)
+ 1

2
σ2
ηδ (τ) . (1.106)

Adding white noise produces a discontinuity in the derivative of the autocorrelation
function of the firing rates at zero lag (Fig. 1.7 A and D). This can be shown by integrating
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explicitly both sides of the Eqs (1.91) and (1.92) around zero when the external noise is
added. It results in the condition

∆̇
(
0+)− ∆̇

(
0−) = 1

2
σ2
η. (1.107)

Since the autocorrelation function is a symmetric function, ∆̇ (0+) = −∆̇ (0+), leading
to

∆̇0 = σ2
η. (1.108)

Thus, the autocorrelation function of the input current decays linearly at zero time lag with
a slope proportional to the external noise intensity, which also extends to the autocorrelation
function of the firing rate.

1.4.8 Definition of the timescale of the activity
The activity of multivariable dynamical systems ranges over several timescales. In particular,
for stable linear systems, the timescales of the activity are given by the inverse of the absolute
values of the real part of the eigenvalues. As we showed before, for single adaptive or
synaptic neurons, the activity consists of two modes that evolve at two different timescales.
However, the relative contribution of each of the excited modes can make one timescale
more predominant than the other, as it happens for slow adaptation time constant, which
becomes effectively undetectable in the single neuron dynamics.

In this work, we calculate the timescale of the activity for linear systems as the average of
the timescales of the activated input current modes, weighed by their contribution (Fig. 1.1).
For a linear system with filter h (t) =

∑
k ake

− t
τk , the correlation time is

τcorr =
∑
k |ak| τk∑
k |ak|

. (1.109)

For large networks, which are high-dimensional non-linear systems, we define the main
timescale of the activity as the time lag at which the autocorrelation function has decayed
to a fraction e− 1

2 of its maximum (Figs 1.5 and 1.7):

τcorr = 2 · argmin
τ

∣∣∣∣E [C (τ)] − E [C (τ)]√
e

∣∣∣∣ , (1.110)

where E[C (τ)] is the envelope of the autocorrelation function, calculated as the norm of
its analytic signal, computed using the Hilbert transform. This corresponds to the width of
the envelope at which the autocorrelation decays to e−0.5 of its value. For an exponentially
decaying correlation function, this measure corresponds to the decay time constant. For a
Gaussian envelope, this measure would correspond to two times its standard deviation, 2σ.

52



Summary of Chapter 2

An emerging paradigm proposes that neural computations can be understood at the level of
dynamical systems that govern low-dimensional trajectories of collective neural activity. How the
connectivity structure of a network determines the emergent dynamical system however remains
to be clarified.

Here we consider a novel class of models, Gaussian-mixture low-rank recurrent networks, in
which the rank of the connectivity matrix and the number of statistically-defined populations are
independent hyper-parameters. We show that the resulting collective dynamics form a dynamical
system, where the rank sets the dimensionality and the population structure shapes the dynamics.
In particular, the collective dynamics can be described in terms of a simplified effective circuit of
interacting latent variables. While having a single, global population strongly restricts the possible
dynamics, we demonstrate that if the number of populations is large enough, a rank R network
can approximate any R-dimensional dynamical system.

This chapter is based on the manuscript Shaping dynamics with multiple populations in low-
rank recurrent networks, by M. Beiran, A. Dubreuil, A. Valente, F. Mastrogiuseppe and S. Ostojic,
submitted.
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Shaping dynamics with multiple populations in low-rank
recurrent networks 2

2.1 Introduction

A newly emerging paradigm posits that neural computations rely on collective dynamics
in the state-space corresponding to the joint activity of all neurons in a network (Church-
land and Shenoy, 2007; Rabinovich et al., 2008; Buonomano and Maass, 2009; Saxena and
Cunningham, 2019; Vyas et al., 2020). Experiments in behaving animals have found that
trajectories of neural activity are typically restricted to low-dimensional manifolds in that
space (Machens et al., 2010; Mante et al., 2013; Rigotti et al., 2013; Gao et al., 2015; Gallego
et al., 2018; Chaisangmongkon et al., 2017; Wang et al., 2018; Sohn et al., 2019), and can
therefore be described by a small number of collective, latent variables. It has been pro-
posed that these collective variables form dynamical systems that implement computations
through their responses to inputs (Paulin, 2004; Hennequin et al., 2014; Rajan et al., 2016;
Remington et al., 2018a,b). How synaptic connectivity shapes the effective dynamics of
collective variables, and therefore computations, however remains to be clarified.

Recurrent neural networks (RNNs) trained to perform neuroscience tasks are an ideal
model system to address this question and further develop the theory of computations
through dynamics (Sussillo et al., 2015; Rajan et al., 2016; Barak, 2017; Wang et al., 2018;
Yang et al., 2019). A recently introduced class of models, low-rank RNNs, directly embodies
the idea of low-dimensional collective dynamics, opens the door to relating connectivity
and dynamics, and provides a framework that unifies a number of specific RNN classes
(Mastrogiuseppe and Ostojic, 2018). Low-rank RNNs rely on connectivity matrices that
are restricted to be low rank, which directly generate low-dimensional dynamics. The
rank of the network determines the number of collective variables needed to provide a full
description of the collective dynamics. While previous works have shown that other specific
classes of RNNs can approximate arbitrary dynamical systems (Doya, 1993; Maass et al.,
2007), the range of collective dynamics that can be implemented by low-rank RNNs however
remains to be clarified.

In this work, we focus on low-rank RNNs in which neurons are organized in distinct pop-
ulations that correspond to clusters in the space of low-rank connectivity patterns. Each
population is defined by its statistics of connectivity, described by a multi-variate Gaussian
distribution, so that the full network is specified by a mixture of Gaussians. The total
number of populations in the network is a hyper-parameter distinct from the rank of con-
nectivity. Previous works have considered low-rank networks consisting of a single, global
Gaussian population (Mastrogiuseppe and Ostojic, 2018, 2019; Schuessler et al., 2020a). In
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the opposite limit, by increasing the number of populations, a Gaussian mixture model
can approximate any arbitrary low-rank connectivity distribution. Here we examine how
the number of populations and their structure determine and limit the resulting collective
dynamics in the network.

We first derive three general properties of Gaussian-mixture low-rank networks: (i) in
an autonomous network of rank R, dynamics are characterized by R collective variables
that form a dynamical system; (ii) the dynamics are determined by an effective circuit
description, where collective variables interact through gain-modulated effective couplings;
(iii) the resulting low-dimensional dynamics can approximate any arbitrary R-dimensional
dynamical system if the number of populations is large enough. We then proceed to illustrate
how increasing the number of populations in a network extends its dynamical range. For
that, we specifically focus on fixed points of the dynamics. While a network consisting
of a single population can generate at most a pair of stable fixed points, independently
of its rank, we show that adding populations allow the network to implement arbitrary
numbers of stable fixed points embedded in a subspace determined by the rank of the
connectivity matrix. Finally, we propose a general algorithm to approximate a given R-
dimensional dynamical system with a multi-population network of rank R, and show one
example network that is designed to implement complex temporal dynamics.
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2.2. Model class: Gaussian mixture low-rank networks

2.2 Model class: Gaussian mixture low-rank networks

In this section, we introduce the class of models we study, and define the key underlying
quantities.

We consider a recurrent neural network of N rate units. The dynamics of the input xi
to the i-th unit are given by

τ
dxi
dt

= −xi +
N∑
j=1

Jijϕ (xi) + Iexti (t) (2.1)

where τ corresponds to the membrane time constant, the matrix element Jij is the synap-
tic strength from unit j to unit i and Iexti (t) is the external input received by the i-th
unit. The non-linear function ϕ (x) maps the input of a neuron to its firing rate activity.
Throughout this study, we use the non-linear activation function ϕ (x) = tanh (x), although
the theoretical results in Section 2.3 hold for any non-polynomial activation function.

We restrict the connectivity matrix to be of low rank, i.e. the number of non-zero singular
values of the matrix J is R ≪ N . Using singular value decomposition, any connectivity
matrix of this type can be expressed as the sum of R unit rank terms,

Jij = 1
N

R∑
r=1

m
(r)
i n

(r)
j . (2.2)

The connectivity is therefore characterized by a set of R N-dimensional vectors, or con-
nectivity patterns, m(r) =

{
m

(r)
i

}
i=1...N

and n(r) =
{
n

(r)
i

}
i=1...N

for r = 1, . . . , R where
m(r) are the left singular vectors of the connectivity matrix, and n(r) correspond to the
right singular vectors multiplied by the corresponding singular values (see Fig. 2.1A for an
example of a rank-two connectivity matrix). The vectors m(r) (resp. n(r)) for r = 1, . . . , R
are mutually orthogonal. Without loss of generality, we fix the norm of the left singular
vectors m(r) to be equal to N . This decomposition is unique, up to a change in sign of the
set of vectors m(r) and n(r).

The external input can be expressed as the sum of Nin time-varying terms

Iexti (t) =
Nin∑
s=1

I
(s)
i us (t) , (2.3)

which are fed into the network through a set of orthonormal input patterns I(s) =
{
I

(s)
i

}
i=1...N

for s = 1, . . . , Nin. In this study, we focus on the dynamics of autonomous networks or net-
works with a constant external input.

Each neuron in the network is therefore characterized by its 2R + Nin components on
the connectivity patterns m(r) and n(r) and input patterns I(s). By analogy with factor
analysis, we refer to these components as pattern loadings, and denote the set of loadings
for neuron i as({

m
(r)
i

}
r=1...R

,
{
n

(r)
i

}
r=1...R

,
{
I

(s)
i

}
s=1...Nin

)
:= (mi, ni, Ii) . (2.4)

Each neuron can thus be represented as a point in the loading space of dimension 2R+Nin,
and the connectivity of the full network can therefore be described as a set of N points in
this pattern loading space (see Fig. 2.1B).

We assume that for each neuron, the set of pattern loadings is generated independently
from a multi-variate probability distribution P (m,n, I). We moreover restrict ourselves to
a specific class of loading distributions, mixtures of multi-variate Gaussians. This choice
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2. Shaping dynamics with multiple populations in low-rank recurrent networks

is motivated by the fact that Gaussian mixtures can approximate any arbitrary multi-
variate distribution, afford a natural interpretation in terms of populations, and allow for a
mathematically tractable and transparent analysis of the dynamics as shown below.

In this Gaussian mixture model, each neuron is assigned to a population p with proba-
bility αp, p = 1 . . . P , so that the connectivity matrix J is a block matrix (Aljadeff et al.,
2015a,b). Within population p, the joint distribution P (p) (m,n, I) is a multivariate Gaus-
sian defined by (i) its mean a(p), a vector of dimension 2R+Nin, given by the set of means
of each pattern loading within population p

a(p) =
(
a(p)
m1
, . . . , a(p)

mR
, a(p)
n1
, . . . , a(p)

nR
, a

(p)
I1
, . . . , a

(p)
INin

)
, (2.5)

and (ii) its covariance Σ(p), a matrix of dimension (2R+Nin)× (2R+Nin), whose elements
are the pairwise covariances

Σ(p)
xy = E

[(
x(p) − a(p)

x

)(
y(p) − a(p)

y

)]
(2.6)

where E [ · ] indicates the expected value, and x and y represent any pair of connectivity
or input components. Within the loading space, each population therefore corresponds
to a cluster centered at a(p), and of shape specified by the connectivity matrix Σ(p)

xy (see
Fig. 2.1B).

The geometrical arrangement between patterns is a key feature to understand the behav-
ior of low-rank networks (Mastrogiuseppe and Ostojic, 2018). The connectivity and input
patterns are N -dimensional vectors. To quantify the geometrical configuration between two
patterns, we define the overlap, or normalized scalar product:

O (x,y) = 1
N

N∑
i=1

xiyi (2.7)

where x and y are any two patterns in the set given by m(r),n(r) and I(s). The overlap is
the projection of pattern x onto y, so that two patterns are orthogonal if and only if their
overlap is zero.

An important property of rank-R matrices, such as the connectivity matrix J , is that
their non-zero eigenvalues coincide with the eigenvalues of the overlap matrix Jov (Nakat-
sukasa, 2019) that is defined by the overlaps between pairs of connectivity patterns:

Jovrs = O
(

m(s),n(r)
)
, (2.8)

for r, s = 1, . . . , R. The eigenvalues of the connectivity matrix, and therefore of the overlap
matrix, are an essential property to understand the dynamics of low-rank networks, as we
show in Section 4. It is often more convenient to calculate the eigenspectrum of the overlap
matrix Jov, of size R×R, than of the connectivity matrix J , of size N ×N .

In a network with P populations, any pattern x of length N can be represented as a
set of P sub-patterns x(p), for p = 1, . . . , P , where each sub-pattern has length αpN and
includes the components of neurons belonging to population p. Fig. 2.1 shows an example
of a rank-two network with two populations, where the connectivity patterns can be split
into two different sub-patterns of equal size (green and purple). The overlap between two
patterns can then be expressed as a weighted average of the overlaps between sub-patterns:

O (x,y) =
P∑
p=1

αpO
(

x(p),y(p)
)
. (2.9)

Even if the sub-patterns are not orthogonal to each other, i.e. the overlap between two
sub-patterns is not zero, the patterns can be orthogonal to each other when the sub-pattern
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2.2. Model class: Gaussian mixture low-rank networks

overlaps cancel out. In the limit of large networks, the overlap between two sub-patterns
x(p) and y(p) is given by the expected value over the distribution of the loadings in the
population:

O
(

x(p),y(p)
)

= E
[
x(p)y(p)

]
= a(p)

x a(p)
y + Σ(p)

xy . (2.10)

In order to define the overlap matrix in terms of the statistics of the different Gaussian
populations, we define the matrix

σ(p)
nrms

= Σ(p)
msnr

. (2.11)

The matrix σmn
(p) is a R × R whose entries contain the covariance between the connec-

tivity patterns m(r) and the n(r) in population p. We call this matrix σmn
(p) a (reduced)

covariance matrix, in an abuse of notation, because it is a subset of the covariance matrix
Σ(p), and therefore it is not symmetric nor positive definite. For example, for a rank-one
network, σmn

(p) is just a scalar, that can take any real value. For a rank-two network,
σmn

(p) is a 2 × 2 matrix, whose entries are given by the four covariances σ(p)
m1n1 , σ(p)

m1n2 ,
σ

(p)
m2n1 , and σ

(p)
m2n2 .

Using Eqs. (2.9) and (2.10), we can characterize the overlap matrix Jov as a function of
the statistics of the connectivity sub-patterns:

Jov =
P∑
p=1

αp

(
a(p)

n a(p)
m

T
+ σ(p)

mn

)
, (2.12)

where a(p)
n and a(p)

m are R dimensional vectors whose entries correspond to the correspond-
ing subset of elements in a(p) (Fig. 2.1C).

Similarly to the covariance matrix σmn that measures the correlations between connec-
tivity patterns m(r) and n(r), we define the covariance σnI between the connectivity patterns
n(r) and the constant external input I, as a vector of length R, where each component is
defined as

σ
(p)
nrI

= Σ(p)
nrI

(2.13)

for r = 1, . . . , R. We assume that the input loadings and loadings of the left connectivity
patterns are uncorrelated, σ(p)

mrI
= 0.
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A B

C

connectivity matrix connectivity patterns

overlap matrix

Figure 2.1: Low-rank connectivity with Gaussian populations. A The connectivity
matrix J , rank-two in this illustration, is decomposed into the sum of two rank-one terms
given by the outer product of the connectivity patterns m(r) and n(r), r = 1, 2. The
components of the connectivity patterns – the pattern loadings – are grouped into two
different sub-patterns (green and purple) with different population statistics. For visual
purposes, the connectivity is shown only for 12 neurons in each population, the first 12
neurons belong to population 1 and the last 12 neurons belong to population 2. B Scatter
plot of the distribution of pattern components in the four-dimensional loading space. Each
dot corresponds to one neuron, and each neuron is characterized by its four values on the
patterns m(r) and n(r), r = 1, 2. The color indicates whether the neuron belongs to the
first population (green) or the second population (purple). The different populations are
defined by different multivariate Gaussian statistics, means (white dots) and covariances
(dashed lines), and define separate clusters. Population size N = 200, αp = 0.5. C Overlap
matrix given by the inner product between connectivity patterns. The overlap matrix is a
square matrix of size given by the rank of the connectivity, in this case 2×2. Its eigenvalues
coincide with the non-zero eigenvalues of the N × N connectivity matrix. The overlap
matrix can be expressed as a weighted sum over the overlaps of the different populations,
as shown in Eq. (2.12).

2.3 Dynamics in Gaussian mixture low-rank networks

In this section, we summarize the three main properties of dynamics in mixture of Gaussian
low-rank networks: (i) in a network of rank R, dynamics can be characterized by R collective
variables that form a dynamical system; (ii) for loadings drawn from Gaussian mixture
distributions, the dynamics can be further described as an effective circuit in which collective
variables interact through gain-modulated effective couplings; (iii) with a sufficient number
of populations, the resulting low-dimensional dynamics can approximate an arbitrary R-
dimensional dynamical system.

Details of the derivations are provided in appendices 2.7.1 and 2.7.2.

2.3.1 Low-dimensional dynamics

In recurrent networks with low-rank connectivity, the dynamics of the trajectories x (t) are
embedded in a linear subspace of dimension R + Nin spanned by the left singular vectors
m(r) and the external input patterns I(s), and can therefore be expressed as

60



2.3. Dynamics in Gaussian mixture low-rank networks

xi (t) =
R∑
r=1

κrm
(r)
i +

Nin∑
s=1

κIsI
(s)
i . (2.14)

Here κr and κIs
are collective variables that are obtained by projecting the activity x (t)

on the patterns m(r) and I(s), that we assume orthogonal to each other. Introducing the
trajectory x (t) expressed in this new basis into Eq. (2.1), the dynamics of the collective
variables are then given by the following dynamical system:

τ
dκr
dt

= −κr + κrecr (2.15)

τ
dκIs

dt
= −κIs + us (t)

κrecr = 1
N

N∑
i=1

n
(r)
i ϕ

(
Nin∑
s=1

I
(s)
i κIs

+
R∑
l=1

m
(l)
i κl

)
. (2.16)

We focus in the following on networks receiving a constant input, so that there is only
one collective variable κI along the input dimension, the value of which is constant. The
recurrent connectivity contributes to the dynamics of κr through the term κrecr .

The dynamics of collective variables in Eq. (2.15) are valid for any finite-size low-rank
network, without any assumption on the values of pattern loadings. We next turn to
networks where the pattern loadings are generated from specific distributions.

2.3.2 Dynamics in multi-population networks
For low-rank networks in which pattern loadings are generated for each neuron from a
Gaussian mixture distribution, in the limit of large N the dynamics in Eq. (2.15) can be
expressed in terms of the statistics of pattern loadings over the populations, and become
(see appendix 2.7.1):

τ
dκr
dt

= − κr + κrecr (2.17)

κrecr =
P∑
p=1

αp

[
a(p)
nr

〈
ϕ
(
µ(p),∆(p)

)〉
+

(
σ

(p)
nrI

κI +
R∑
s=1

σ(p)
nrms

κs

)〈
ϕ′
(
µ(p),∆(p)

)〉]
.

(2.18)

Here µ(p) and ∆(p) are the mean and variance of input to population p, given by

µ(p) = a
(p)
I κI +

R∑
s=1

a(p)
ms
κs (2.19)

∆(p) = σ
(p)
I2 κ

2
I +

R∑
r=1

σ
(p)
m2

r
κ2
r. (2.20)

In Eq. 2.18, we used the Gaussian integral notation:

⟨f (µ,∆)⟩ =
∫
dx (2π)− 1

2 e−x2/2f
(
µ+

√
∆x
)
. (2.21)

The factor
〈
ϕ′ (µ(p),∆(p))〉 in Eq. (2.18) corresponds to the average gain of neurons in

population p in a given state, specified by the mean µ(p) and variance ∆(p) of the inputs to
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2. Shaping dynamics with multiple populations in low-rank recurrent networks

the population p. For each population, this average gain multiplies the covariances σ(p)
mlnr

and σ
(p)
nrI

, and the corresponding average over populations defines an effective connectivity

σ̃xy =
P∑
p=1

αpσ
(p)
xy

〈
ϕ′
(
µ(p),∆(p)

)〉
. (2.22)

The contributions of the first-order statistics a(p)
nr to the recurrent dynamics are modulated

by the average firing rate in population p, and define an effective input

ãnr
=

P∑
p=1

αpa
(p)
n

〈
ϕ
(
µ(p),∆(p)

)〉
. (2.23)

Introducing the effective connectivity and inputs into Eq. (2.17), the dynamics of a low-
rank network with uncorrelated constant input take the simple form of an effective circuit
of interacting collective variables:

τ
dκr
dt

= −κr + ãnr
+

R∑
l=1

σ̃nrml
κl. (2.24)

Note that Eq. (2.24) describes the full non-linear dynamics in the limit N → ∞. Although
the collective variables interact linearly through the effective connectivity and inputs, those
depend implicitly on κr. The overall dynamics are therefore non-linear, the non-linearity
being fully encapsulated in the effective inputs and couplings.

2.3.3 Universal approximation of low-dimensional dynamical systems
By mapping the dynamics in Eqs. (2.17) and (2.24) to a feed-forward network with a single
hidden layer, and exploiting the universal approximation theorem (Cybenko, 1989; Leshno
et al., 1993), we can show that a Gaussian mixture network of rank R receiving a constant
input is a universal approximator of R-dimensional dynamical systems (Appendix 2.7.2).
More precisely, for a sufficient number of populations, the low-rank dynamics in Eq. (2.18)
and (2.24) can approximate with arbitrary precision any R-dimensional dynamical system

dκ

dt
= G (κ) , (2.25)

defined by a vector field

G ({κr}r=1...R) := (G1 ({κr}r=1...R) , . . . , GR ({κr}r=1...R)) (2.26)
over an arbitrary finite domain {κr}r=1...R ∈

[
κminr , κmax

r

]
. More specifically, this result

requires that the vector field G is bounded and piecewise continuous, and the transfer
function is not a polynomial (Appendix 2.7.2).

Alternatively, if the transfer function is bounded and monotonic, a rank-R network with
multiple populations can approximate any vector field G ({κr}r=1...R) over the full domain
of the collective variables, {κr}r=1...R ∈ [−∞,+∞], with the restriction that the vector field
follows asymptotic leaky dynamics for large input values:

lim
κs→±∞

∂Gr
∂κr′

(κ1, ..., κr) = −δrr′ (2.27)

for any values s, r, r′ = 1, . . . , R, where Gr represents the r-th component of the vector field
as in Eq. (2.26), and δij is the Kronecker delta. This stems from the fact that for large
values of κr, the recurrent dynamics (Eq. 2.18) saturate to a constant value.

Note that the universal approximation theorem does not state how many populations
P are required to implement a given dynamical system, and does not provide an algorithm
for finding the statistics of the different populations.
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2.4 Dynamics in networks with a single population

Having shown that a rank R network with an arbitrary number of populations can approx-
imate any R-dimensional dynamical system, we now illustrate how having a small number
of populations in contrast limits the possible dynamics.

We focus first on the case of networks consisting of a single Gaussian population. This
case was previously studied for connectivities of rank one and two (Mastrogiuseppe and
Ostojic, 2018; Schuessler et al., 2020a). Here we provide an overview of these results,
and extend them to single-population networks of arbitrary rank. Specifically, we show
that, independently of their rank, the range of dynamics such networks can implement is
restricted. For simplicity, we focus on autonomous networks, with zero-mean connectivity
patterns.

In vectorial form, assuming zero-mean connectivity patterns, the collective dynamics in
Eq. (2.17) for one population read

τ
dκ

dt
= −κ +

〈
ϕ′ (0,κTκ

)〉
σmnκ, (2.28)

where we used the vector of collective variables κ ∈ RR, and the R × R covariance matrix
σmn as defined in Eq. (2.11), which is equal to the overlap matrix (Eq. 2.12) in the case of
zero-mean connectivity patterns. Therefore, the eigenvalues of the covariance matrix σmn,
which for N → ∞ are equivalent to the eigenvalues of the connectivity matrix, determine
the dynamics in collective space (Schuessler et al., 2020a), as we review in the following
analysis.

Fixed points The fixed points of Eq. 2.28 are given by

κ0 =
〈
ϕ′ (0,κT0 κ0

)〉
σmnκ0. (2.29)

For ϕ(x) = tanh (x), the trivial point κ0 = 0 is always a solution. There might however
be non-trivial fixed points depending on the eigenvalues of the covariance matrix σmn.
The covariance matrix can have up to R eigenvalues, that we denote λr, with associated
eigenvector ur. Each real and non-degenerate eigenvalue λr of the covariance σmn generates
a fixed point κ

(r)
0 = ρrur, where ρr is the radial location of the fixed point along the

direction set by the eigenvector ur. Introducing this parametrization of the fixed in Eq. 2.29,
we obtain the following implicit equation for the value ρr:

1 = λr
〈
ϕ′ (0, ρ2

r

)〉
. (2.30)

The gain factor
〈
ϕ′ (0, ρ2

r

)〉
is bounded between 0 and 1 for the transfer function ϕ (x) =

tanh x. Therefore, eigenvalues λr > 1 generate two non-trivial fixed points, symmetrically
located around the origin (see Fig. 2.2 A-D, bottom row, for a rank-one example). Smaller
eigenvalues do not generate any non-trivial fixed point (Fig. 2.2 A-D, first row).

In order to determine the stability of the fixed points, we linearize the dynamics and
obtain the Jacobian Sr at the fixed point corresponding to the eigenvalue λr of σmn (see
appendix 2.7.3)

Sr = −I + 1
λr

σmn +
〈
ϕ′′′ (0, ρ2

r

)〉
λrρ

2
rurur

T , (2.31)

where I denotes the R × R identity matrix. The eigenvalues of Sr determine the stability
of the fixed points: if any positive eigenvalue exists, the dynamics will diverge away from
the fixed point in the direction of the corresponding eigenvector. Negative eigenvalues
correspond to attractive modes of the dynamics around the fixed point. If all eigenvalues
of the stability matrix are negative, the fixed point is stable.
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2. Shaping dynamics with multiple populations in low-rank recurrent networks

When the eigenvectors of the matrix σmn are orthogonal to each other (Fig. 2.3 A-
D), the R eigenvalues of the matrix Sr, denoted as γr′ for r′ = 1 . . . R, can be calculated
analytically as shown in (Schuessler et al., 2020a). The eigenvalues γr′ have associated
eigenvectors equal to the eigenvectors ur′ of the covariance matrix σmn, and read

γr′ = −1 + λr′

λr
+
〈
ϕ′′′ (0, ρ2

r

)〉
λrρ

2
rδrr′ . (2.32)

Remarkably, the eigenvalues of the Jacobian around any non-trivial fixed point are therefore
directly determined by the eigenvalues of connectivity and covariance matrices (Schuessler
et al., 2020a). If r′ = r, the two first terms cancel out, and the third term is always
negative (see appendix 2.7.3). This implies that all non-trivial fixed points are stable in the
direction ur that points towards the origin. However, if there are other non-trivial fixed
points corresponding to eigenvalues λr′ > λr of σmn, the fixed point κ

(r)
0 is destabilized

in the directions of the eigenvectors with larger eigenvalue. When the eigenvectors are not
orthogonal (Fig. 2.3 E-H), the eigenvectors of σmn are not necessarily eigenvectors of the
linear stability matrix Sr. However, the same stability properties appear to hold: every
fixed point is stable in the direction towards the origin, and the fixed point in the direction
given by the largest eigenvalue is stable, while the other ones become unstable.

In summary, if all eigenvalues of the covariance matrix are real and non-degenerate, only
the pair of non-trivial fixed points corresponding to the largest eigenvalue is stable. All the
other non-trivial fixed points of the dynamics are saddle points. This implies that low-rank
networks consisting of a single Gaussian population can have at most two stable fixed points
independently of their rank.

Limit cycles Complex eigenvalues of the covariance matrix σmn, if they exist, always
appear in conjugate pairs. They lead to spiral dynamics around the origin, in the plane
spanned by the real and imaginary part of the corresponding eigenvectors. If the real part
of the complex eigenvalues is smaller than unity, Re (λr) < 1, the spiral dynamics decay
back to the origin. Otherwise, if Re (λr) > 1, there is a limit cycle on the plane, around
the origin. Similarly to the case with only real eigenvalues of the covariance matrix, if the
real part of the complex eigenvalue is larger than the real part of any other eigenvalue of
σmn, any trajectory will converge to the plane defined by the real and imaginary parts of
the corresponding eigenvectors. On this plane, we then find that the limit cycle is stable.

To illustrate this case, we consider a rank two network with a covariance matrix of the
form

σmn =
(
σ −σω
σω σ

)
, (2.33)

which has eigenvalues σ ± iσω. Fig. 2.4 A-B shows an example of a network with such
connectivity.

We can then write the equations for a rank-two network in polar form. Using the
mapping to polar coordinates κ1 := ρ cos θ and κ2 := ρ sin θ, the dynamics in Eq. (2.28)
become

τ
dρ

dt
= −ρ+ ρσ

〈
ϕ′ (0, ρ2)〉 (2.34)

τ
dθ

dt
= σω

〈
ϕ′ (0, ρ2)〉 . (2.35)

When the real part σ of the eigenvalues is larger than one, the flow in the radial direction
cancels at a value ρ0 given by Eq. (2.30), which yields

σ−1 =
〈
ϕ′ (0, ρ2

0
)〉
. (2.36)
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A B C D

Figure 2.2: Dynamics in rank-one networks with a single Gaussian population.
A Scatter plot of the loadings of left singular vectors m(r)

i and right singular vectors n(r)
i .

Top: Covariance σmn, indicated by the slope of the dashed line, below the critical value
for non-trivial fixed points (solid line). Bottom: Covariance σmn beyond the critical value.
B Dynamics of the activation variable xi (t) of ten units in the network for the two differ-
ent networks initialized at random values. The network with σmn larger than 1 (bottom)
converges to a heterogeneous fixed point, while the other one decays to zero. C One dimen-
sional dynamics corresponding to the right hand side of Eq. (2.28). Filled dots correspond
to stable fixed points. For a weak covariance between connectivity patterns (top), the trivial
fixed point is the only fixed point. For a strong covariance (bottom), the recurrent connec-
tivity generates two non-trivial stable fixed points. D Evolution of the collective variable κ
as a function of time in a finite-size network, defined as the projection of the activity x (t)
onto the connectivity pattern m. Each curve corresponds to a different realization of the
random connectivity matrix. N = 1000, top row: σn2 = 0.34, bottom row σn2 = 1.52.

Based on Eq. (2.34), we observe that any perturbation in the plane away from the limit
cycle makes the radial component ρ go back to ρ0. The limit cycle is therefore stable, as
shown in Fig. 2.4 C.

Introducing this result into Eq. (2.35), we obtain that the oscillations of the limit cycle
are generated at a frequency

ωLC = σω
σ
. (2.37)

In this analysis, Eq. (2.37) is derived for the particular covariance matrix σmn in
Eq. (2.33), which is antisymmetric. However, numerical explorations suggest that this
equation is valid more generally, for any connectivity matrix with a pair of complex eigen-
values. When the covariance matrix is not antisymmetric but still has complex eigenvalue,
the limit cycle is no longer a circle but resembles an ellipse (see Fig. 2.4 G, grey trajectory,
or Mastrogiuseppe and Ostojic (2018), Fig S8).

Figure 2.4 E-H shows an example of a rank-three network, whose connectivity matrix
has a real eigenvalue λ1 and a pair of complex conjugate eigenvalues λ2 and λ3. The real
part of all eigenvalues is larger than one, so that the real eigenvalue leads to a pair of fixed
points, and the complex eigenvalues generate a limit cycle. Given that in this example the
real eigenvalue λ1 is larger than the real part of the other eigenvalues, the fixed points are
stable. The limit cycle is marginally stable in the plane spanned by the real and imaginary
parts of the complex eigenvector of λ2, but unstable in any other direction. Therefore,

65



2. Shaping dynamics with multiple populations in low-rank recurrent networks

trajectories starting in the plane converge to the limit cycle in the mean-field equation (see
grey trajectory in Fig. 2.4 G). Small perturbations, such as those introduced by finite-size
effects, make these trajectories deviate from the limit cycle and converge to one of the two
stable fixed points (grey trajectory, Fig. 2.4 H).

Slow manifolds When the covariance matrix σmn has degenerate eigenvalues, low-rank
RNNs can lead to other phenomena than discrete fixed points or limit cycles. As an example
of degenerate eigenvalues, we study the network dynamics when the covariance matrix σmn

is diagonal:
σmn = σmnI. (2.38)

This covariance matrix has one single real eigenvalue σmn, which is degenerate, since it has
R linearly independent eigenvectors. Introducing the covariance matrix in Eq. (2.38) into
the dynamics in Eq. (2.28) we obtain the fixed point equation

κ0 =
〈
ϕ′ (0,κT0 κ0

)〉
σmnκ0. (2.39)

To solve the fixed point equation, as in the previous section, we use the ansatz κ0 = ρ0uκ0 ,
where uκ0 is an arbitrary unitary vector in collective space. Introducing the ansatz in the
fixed point equation (Eq. 2.39), we find that there is a non-trivial solution given implicitly
by the scalar equation

〈
ϕ′ (0, ρ2

0
)〉

= σ−1
mn, which is independent of the particular direction

uκ0 . Furthermore, we find that the fixed point is stable in the direction uκ0 . Therefore, in
the mean-field limit given by Eq. (2.28), this degenerate connectivity leads to a continuous
manifold of attractive states that are at an equal distant ρ0 away from the origin. In the case
of rank-two connectivity, this degenerate covariance matrix leads to a stable ring attractor
(Fig 2.3I-K), and in rank-R, to a stable R-spherical attractor.

In finite-size simulations, the sampling of random loadings introduces spurious correla-
tions in the matrix σmn, breaking the degeneracy of the eigenvalues. As a consequence,
only a small number of points on the continuous attractor predicted by the mean-field
theory give rise to actual fixed points. While the rest of the points on the predicted con-
tinuous attractor are not fixed points of the finite-size network, the dynamics around them
are typically slow. More specifically, any trajectory of activity quickly converges towards
the predicted continuous attractor, and then slowly evolves along it until it reaches a fixed
point (Fig 2.3L) (Mastrogiuseppe and Ostojic, 2018). In finite-size networks, the continu-
ous attractor predicted by the mean-field analysis therefore gives rise to a low-dimensional
manifold in state space, along which the dynamics are slow.

When degenerate and non-degenerate real and complex eigenvalues are combined, the
global stability appears to be given by the criterion in Eq. (2.32): each eigenvalue generates
its corresponding non-trivial dynamics (fixed points, continuous attractors or limit cycle)
independently. The stability of these dynamical phenomena depends on the global eigen-
spectrum: the eigenvalues with the largest real part generate stable attractors, while the
other eigenvalues lead to repellers.

In summary, in a low-rank network consisting of a single Gaussian population, the
possible non-trivial steady states are a pair of fixed points, a limit cycle, or a continuous
attractor that gives rise to a small number of fixed points in finite networks. On top of
these limited range of stable solutions, increasing the rank leads to additional unstable fixed
points and limit cycles, that can potentially be used to control the dynamics, a point we
do not further explore here. We instead proceed to show that increasing the number of
Gaussian populations allows networks to implement a larger range of stable dynamics.
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A B C D

E F G H

I J LK

Figure 2.3: Dynamics in rank-two networks with a single Gaussian population
- Connectivity matrix with real eigenvalues. A Scatter plot of the loadings of left
singular vectors m(r)

i and right singular vectors n(r)
i . B Covariance matrix σmn of the pop-

ulation (top), and its eigenvectors (bottom). C Vector field corresponding to the mean-field
dynamics in the plane κ1 −κ2 of collective variables (Eq. 2.28). The colormap represents the
speed of the dynamics, defined as the norm of vector dκ

dt , in different points of the collective
space. Two non-trivial fixed points are generated in the direction of each eigenvector. Black
dots correspond to stable fixed points, while white dots are unstable or saddle points. The
pair of fixed points corresponding to the largest eigenvalue is stable. D Finite-size simula-
tions of the dynamics. Three different connectivity realizations are shown from each initial
condition. N = 1000. E-H Similar to A-D for a network where the eigenvectors of the
covariance matrix are not orthogonal (overlap between the connectivity patterns of different
rank-one structures σm2n1 ̸= 0). The eigenvector with largest eigenvalue generates a pair
of stable fixed points. I-L Similar to A-D for a network with degenerate eigenvalues: any
vector in the plane spanned by vectors m(1) and m(2) is an eigenvector of the connectivity.
This symmetry leads to a continuous attractor in the mean-field dynamics. In finite size
simulations (one matrix realization shown in L) the continuous attractor corresponds to a
slow manifold on which usually two stable fixed points lie.
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A B C D

E F HG

Figure 2.4: Dynamics in rank-two networks with a single Gaussian population
- connectivity matrix with complex eigenvalues. A Scatter plot between the com-
ponents of connectivity patterns m(r)

i and n
(r)
i , following the statistics given in Eq. (2.33),

σ = 1.6 and σω = 0.8. B Covariance matrix of the singular vectors (top) and its eigenvalues
in the complex plane, given by σ±iσω. C Vector field of the mean-field dynamics (Eq. 2.28).
The colormap represents the speed of the dynamics, defined as the norm of vector dκ

dt . Given
that the real part of the eigenvalue is larger than one, a limit cycle (indicated by the dashed
line) emerges in collective space. The grey lines correspond to finite-size simulations of
the network, starting at different initial conditions with the same connectivity matrix. D
Frequency of the limit cycle for different values of the symmetric part of the connectivity σ
and fixed imaginary part σω = 0.8. The dots show the numerically estimated frequency of
oscillations in finite-size simulations for five different network realizations. The line corre-
sponds to Eq. (2.37). The triangle indicates the parameter σ used in A-C. E-F Analogous
to A-B, for a rank-three network with one pair of complex eigenvalues and one real eigen-
value. The real eigenvalue (λ1 = 1.6) is larger than the real part of the complex eigenvalues
(Re(λ2) = 1.2). The real eigenvector u1 and the real and imaginary parts of the complex
eigenvector u2 are plotted in F, bottom. The imaginary and real parts of the eigenvector
u2 span the horizontal plane (shaded in grey). G Mean-field dynamics (Eq. 2.28) for three
trajectories starting at different initial conditions. Each color indicates a different trajec-
tory. When the network is initialized in the horizontal plane (grey trajectory), the activity
ends at a limit cycle. Otherwise it converges to one of the two stable fixed points, located in
the direction of the eigenvector u1. H Same trajectories as in G, in finite-size simulations,
for three different connectivity matrices. The trajectories always end up in one of the two
stable fixed points, even if initialized in the horizontal plane (grey trajectories). N = 1000.
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2.5 Dynamics in networks with multiple populations

As described in the previous section, a major limitation of rank-R networks consisting of a
single Gaussian population is that they cannot give rise to more than two stable fixed points,
symmetrically arranged around the origin. We next show that networks consisting of several
Gaussian populations can exhibit a larger number of stable fixed points. We specifically
describe two different mechanisms by which multiple fixed points can be generated and
controlled.

Non-linear gain control We first consider an autonomous rank-one network with zero-
mean connectivity patterns consisting of two populations. We examine how this setup can
lead to three stable fixed points, one at the origin, and two symmetrically arranged at
non-zero values of the collective variable κ.

Every neuron in the network belongs to one of two populations, each population being
defined by different statistics of pattern loadings. Within population p, for p = 1, 2, the joint
distribution of n and m values over neurons is specified by a 2 × 2 covariance matrix Σ(p),
while for simplicity we take the mean of the distribution to be zero. In the two-dimensional
loading space defined by m and n, the two populations correspond to different Gaussian
clusters, both centered at zero but with different shape and orientations (green and purple
dots in Fig. 2.5 A).

Neurons belonging to each population are defined by different statistics of the loadings
n(p) and m(p), for populations p = 1, 2 which have zero mean. The recurrent dynamics
are determined by the overlaps σ(1)

mn and σ
(2)
mn between the loadings n and m, and by the

variance of the m loadings in each population σ
(1)
m2 and σ

(2)
m2 . Indeed, the dynamics of the

collective variable κ in Eq. (2.24) read:

τ
dκ

dt
= −κ+ σ̃mnκ, (2.40)

with the effective feedback σ̃mn defined as

σ̃mn = 1
2
σ(1)
mn

〈
ϕ′
(

0, κ2σ
(1)
m2

)〉
+ 1

2
σ(2)
mn

〈
ϕ′
(

0, κ2σ
(2)
m2

)〉
. (2.41)

This effective feedback σ̃mn is set by the average of covariances σ(p)
mn for each population

p, weighted by the gain of the population. If the two populations have different variances
σ

(p)
m2 , their gains will vary differently with κ. If moreover the different populations have

covariances σ(p)
mn of different signs, the total effective feedback will vary strongly with κ,

while this is not the case in networks with uniform populations or a single one.
This network can have three stable fixed points (the origin and a pair of symmetrical non-

trivial fixed points) if the effective feedback σ̃mn has a different sign in different regions of
the collective space. First, the origin κ = 0 is always a fixed point of dynamics in Eq. (2.40).
The origin is moreover a stable fixed point if the effective feedback at zero, which is given by
1
2

(
σ

(1)
mn + σ

(2)
mn

)
, is smaller than 1. Therefore, one of the populations, which we define to be

the first one (p = 1), must have a strong negative overlap, σ(1)
mn < 2 − σ

(2)
mn < 0. Second, at

large values of κ the effective feedback σ̃mn should be positive to cancel the contribution of
the leaky term −κ and generate a non-trivial fixed point. Given Eq. 2.41, this implies that
the gain of the positively correlated population two should be large, whereas the gain of the
negatively correlated population one should be close to zero. A small gain is achieved in the
first population by having a large value σ(1)

m2 , so that the second condition reads σ(1)
m2 ≫ σ

(2)
m2 .

Fig. 2.5B-C shows the dynamics of such a network given by the mean-field equation and in
finite-size networks.
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2. Shaping dynamics with multiple populations in low-rank recurrent networks

More generally, with more than two populations this mechanism can be extended to
produce a larger number of stable fixed points in rank-one networks. The key principle of
this mechanism is to control independently the gain of the different populations, so that the
contribution of each population to the effective feedback takes place at different ranges of
the collective variable κ, and to have covariances σ(p)

mn of different signs, so that the effective
feedback can flexibly take both positive and negative values in different ranges of κ. These
mechanisms can also be applied to networks with rank higher than one. In that case, the
overlap between loadings is given by a matrix σ(p)

mn instead of a scalar, while the gain of each
population is a scalar value. Populations with different covariance matrices and gains that
vary at different ranges of the collective variables are able to generate multiple fixed points
in different regions of the collective space, or combinations between stable limit cycles and
stable fixed points (Dubreuil et al., 2020).
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A B C

D E F

Figure 2.5: Dynamics in low-rank networks with multiple populations. A Scat-
ter plot between the components of the connectivity patterns mi and ni in a rank-one
network with two Gaussian populations, shown in green (negatively correlated population)
and purple (positively correlated population). B Mean-field dynamics generated by the
two-population statistics. Three stable fixed points (filled grey dots) emerge in the 1D
recurrent dynamics. C Dynamics of the collective variable κ in a network with N = 1000
units, initiated at different initial values. The dynamics converge to one of the three stable
fixed points. D Similar to A, for a rank-two network consisting of six statistical popula-
tions, with centers located on the vertices of a regular hexagon. E Mean-field dynamics of
the network, the colormap represents the speed of the dynamics, defined as the norm of
vector dκ

dt (blue: slow dynamics, yellow: fast dynamics). The hexagonal symmetry in the
loadings produces a solution with hexagonal symmetry, with six stable fixed points (black
dots) symmetrically arranged along a ring. Saddle points (white dots) appear between the
stable fixed points. F Trajectories of the collective variables in finite-size simulations, ini-
tiated at different initial conditions. All trajectories converge to one of the six stable fixed
points. Two different network realizations are shown for each initial condition. Parameters
in A-C: σ(1)

mn = −10, σ(2)
mn = 4.5, σ(1)

m2 = 1.98, σ(2)
m2 = 0.02, and α1 = α2 = 0.5. Parameters in

D-F: centers arranged as in Eqs. (2.42) and (2.43) where p = 6 and Rn = 1.5. Variance
σm2 = 0.3. Network size N = 1000.

Symmetries in loading space In low-rank networks, a second mechanism for generating
multiple fixed points is to exploit symmetries in the distribution of loadings P (m,n). Indeed
a symmetry in the distribution of loadings P (m,n) implies a symmetry in the dynamics of
the collective variables. In consequence, if a network with symmetry generates a non-trivial
stable fixed point, symmetric points in the collective space will also correspond to stable
fixed points. Classical Hopfield networks (Hopfield, 1982) are a prominent instance of this
mechanism, where multiple stable fixed points are generated based on symmetries in the
connectivity.
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2. Shaping dynamics with multiple populations in low-rank recurrent networks

In this section, we first illustrate how symmetries in connectivity lead to multiple sym-
metric fixed points. We then explicitly show that Hopfield networks in the limit of a small
number of stored patterns correspond to a special case of Gaussian mixture low-rank net-
works with symmetric connectivity. Throughout this section, we focus on networks where
the overlap between the connectivity patterns is given by the non-zero means of the loadings,
which is complementary to the previous section where the connectivity patterns had zero
mean and the recurrent dynamics is determined by the covariances between the loadings.

As an illustration, we consider first a rank-two network, with units evenly split into P
populations. In each population, the loadings m(p)

1 ,m
(p)
2 , n

(p)
1 , n

(p)
2 have a different set of

means a(p)
m1 , a(p)

m2 , a(p)
n1 , a(p)

n2 and the covariances σ(p)
mrns are zero. The variance of the loadings,

σm2 and σn2 , are identical in all populations. As a consequence, different populations
correspond to clusters of identical spherical shape, but centered at different points in the
four-dimensional loading space.

We specifically arrange the means of the different populations (centers of the different
clusters) symmetrically at the vertices of a regular polygon in the planes of loadings m1−m2
and n1 − n2:

a(p)
m1

= Rm cos
(

2πp
P

)
, a(p)

m2
= Rm sin

(
2πp
P

)
; (2.42)

a(p)
n1

= Rn cos
(

2πp
P

)
, a(p)

n2
= Rn sin

(
2πp
P

)
; (2.43)

where p is the population index, p = 1 . . . P . The radial distance Rm is fixed so that the
patterns m(1) and m(2) have unit variance, while the free parameter Rn controls the overlap
between the connectivity patterns. Figure 2.5D shows an example with six populations,
P = 6. This distribution has a discrete rotational symmetry of order P , since rotations of
angle 2π/P in the planes m1 − n2 and m2 − n1 leave the distribution unchanged.

Using the mean-field description in Eq. (2.17), the dynamics of the two collective vari-
ables now read

τ
dκ1

dt
= −κ1 + 1

P

P∑
p=1

a(p)
n1

〈
ϕ
(
a(p)
m1
κ1 + a(p)

m2
κ2, σ

2
m

(
κ2

1 + κ2
2
))〉

(2.44)

τ
dκ2

dt
= −κ2 + 1

P

P∑
p=1

a(p)
n2

〈
ϕ
(
a(p)
m1
κ1 + a(p)

m2
κ2, σ

2
m

(
κ2

1 + κ2
2
))〉

. (2.45)

Given the symmetry in the distribution, if we identify one non-trivial stable fixed point,
there will be at least P − 1 other fixed points with the same stability. Focusing on the
direction given by κ2 = 0, the velocity in the κ2 direction, given by Eq. (2.45), is always
zero due to the symmetry in the distribution. Therefore, we obtain a fixed point equation
for κ1 on the κ2 = 0 direction using Eq. (2.44):

κ1 = 1
P

P∑
p=1

Rn cos
(

2πp
P

)〈
ϕ

(
Rm cos

(
2πp
P

)
κ1, σ

2
mκ

2
1

)〉
. (2.46)

The r.h.s. is a sum of P monotonically increasing bounded functions of κ1. If the slope
at the origin is larger than one, then, the r.h.s. will intersect with the function κ1 at a
non-trivial point. The slope of the r.h.s at the origin, obtained by differentiating the r.h.s.
with respect to κ1 and evaluating at κ1 = 0, is 1

2RnRm, so that a condition for a non-trivial
fixed point is

RnRm > 2. (2.47)
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2.5. Dynamics in networks with multiple populations

Because of the symmetry, if RmRn > 2, there are at least P stable fixed points arranged
symmetrically on a circle (Fig 2.5 E-F). If the number of population pairs is odd, there are
2P stable fixed points symmetrically arranged on a circle, because there is also a symmetry
with respect to the origin, imposed by the symmetry in the transfer function. Otherwise, if
P is even, P stable fixed points are generated by the network.

Symmetrical arrangements of multiple populations can also be used in higher R-rank
networks to obtain multiple stable fixed points located on a R-dimensional sphere. For
example, in rank-three networks, we consider eight populations whose centers are arranged
at the vertices of a cube. The centers of the eight populations in the three-dimensional
space of loadings m(r), for r = 1, 2, 3, correspond to the vertices of a cube with side 2Rm,
so that (

a(p)
m1
, a(p)
m2
, a(p)
m3

)
= (±Rm,±Rm,±Rm) . (2.48)

Populations p = 1, . . . , 8 correspond to one of the eight different possible combinations of
the sign. The variances of the loadings, σm2 is identical in all populations. The value of
Rm is fixed so that the norm of each connectivity pattern m(r) is N .

The centers of the n(r) loadings follow the same configuration, at the vertices of a cube
of side 2Rn: (

a(p)
n1
, a(p)
n2
, a(p)
n3

)
= (±Rn,±Rn,±Rn) , (2.49)

where each population p correspond to the same combination of signs as for the m loadings,
so that

sgn
(
a(p)
mr

)
= sgn

(
a(p)
nr

)
, (2.50)

with the collective index r = 1, 2, 3 and the population index p = 1 . . . 8. The value Rn
is, as in the previous case, a free parameter that controls the overlap between connectivity
patterns. This configuration is shown in Fig. 2.6 D-E and G-H, for two different values
of Rn. This distribution exhibits a cubic symmetry in the loading space m1 − m2 − m3
and in space n1 − n2 − n3. Thus, if we identify a non-trivial fixed point, these symmetries
require the existence of symmetric solutions in the collective space. Inspecting the direction
κ2 = κ3 = 0 in the dynamics, we obtain a criterion for having a non-trivial stable fixed
point:

κ1 = 1
8

8∑
p=1

a(p)
n1

〈
ϕ
(
a(p)
m1
κ1, σ

2
mκ

2
1

)〉
(2.51)

Eq. 2.51 has a non-trivial solution, which is always stable, if RnRm > 1. When this solution
exists, applying a rotation of π/2 in the m1 −m2 plane and in the m1 −m3, it is possible to
determine the other five stable fixed points that are generated by the symmetry (Fig. 2.6F).
These stable fixed points are arranged in the collective space at the vertices of an octahedron,
the dual polyhedron of the cube (the dual of a polyhedron A is the polyhedron B where
the vertices of A correspond to the edges of B). Applying symmetry principles, the middle
point of each triangular face of the octahedron is also a fixed point. However, the stability
of this fixed point depends on the overlap RnRm. If RnRm is larger than one but low, these
fixed points are saddle points (Fig. 2.6F). Beyond a critical value of RnRm, these fixed
points become also stable. This second set of fixed points consists of eight points arranged
on a cube (Fig. 2.6I, blue dots).

In general, any K-dimensional discrete symmetry in the loadings (centers arranged
within a regular polytope -generalization of a polyhedron in more than three dimensions-,
symmetric with respect to the origin), will generate a dynamical system with stable fixed
points on a K-dimensional sphere, arranged with the symmetry of the dual polytope.

Hopfield networks storing R ≪ N patterns can be seen as a particular limit of symmetric
Gaussian-mixture low-rank networks. A Hopfield network is designed to store R binary
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2. Shaping dynamics with multiple populations in low-rank recurrent networks

patterns m(r)
i = ±m, where for every neuron the sign of the entry in each pattern generated

randomly, and m is a scalar parameter. A Hopfield network storing these R patterns is
defined as a recurrent network with connectivity matrix

JHopfieldij =
R∑
r=1

m
(r)
i m

(r)
j (2.52)

Such a configuration creates two symmetric fixed points around the origin in the direction
of each pattern m(r), for large enough m.

Hopfield networks (Hopfield, 1982) correspond to a specific type of low-rank matrix, and
can be mapped onto Gaussian-mixture low-rank networks. One of the specific properties
of Hopfield networks (Eq. 2.52) is that the connectivity is symmetric, so that the left and
right connectivity patterns are proportional to each other

m(r) = cn(r) (2.53)

where c is a positive constant. Secondly, the loadings of the patterns m(r) and n(r), for
r = 1, . . . , R, are binary and of equal sign, so that each neuron is characterized by 2R
loadings that can only differ from each other in their signs. Therefore, each neuron in a
Hopfield network belongs to one of the 2R sign combinations allowed. In terms of the low-
rank framework, Hopfield networks can therefore be described as low-rank networks with
2R deterministic populations, which have means

(
a(p)
m1
, · · · , a(p)

mR

)
= Rm (±1, . . . ,±1) , (2.54)(

a(p)
n1
, · · · , a(p)

nR

)
= Rn (±1, . . . ,±1) , (2.55)

sgn
(
a(p)
mr

)
= sgn

(
a(p)
nr

)
, (2.56)

and where there is no dispersion around the mean of each population, so that σ(p)
m = σ

(p)
n =

0.
A rank-two network with four populations P = 4 – characterized by Eq. (2.42), see

Fig. 2.6 A-C,– is therefore equivalent to a two-pattern Hopfield network in the limit of no
dispersion around the mean of each cluster, σ(p)

m2 = 0. In this limit, saddle points are located
at the midpoints between neighbouring stable fixed points. In the more general rank-two
networks in Eq. (2.42) where σ(p)

m2 > 0, the saddle points between stable fixed points move
further away from the origin (such as in Fig. 2.6 B, where σ(p)

m2 = 0.3), but the four stable
fixed points remain on the vertices of a square along the axes κ1 = 0 and κ2 = 0. In the
limit of very large σ(p)

m2 the saddle points between stable fixed points approach the circle
that circumscribes the stable fixed points.

The rank-three network presented in Eqs. (2.49) and (2.50) also becomes a classical
Hopfield network in the limit of σ(p)

m2 → 0. Allowing for values σ(p)
m2 > 0, as illustrated in

Fig. 2.6 D and G, does not change the number of fixed points generated by the Hopfield
network nor their direction in collective space. These networks generate pairs of stable
fixed points along the directions m(1), m(2), and m(3). The additional fixed points along
directions ±m(1) ± m(2) ± m(3), that become stable when RmRn is large, correspond to
well known spurious mixture states in Hopfield networks (Amit et al., 1987).

74



2.5. Dynamics in networks with multiple populations

A B C

D E F

G H I

Figure 2.6: Multiple populations in rank-R networks. A Scatter plot between
the entries of left singular vectors mi and right singular vectors ni in a rank-two network
with four populations following Eqs. (2.42) and (2.43), with P = 2. Standard deviation
of 0.3 around the mean of each population. B Corresponding mean-field dynamics. The
colormap represents the speed of the dynamics, defined as the norm of vector dκ

dt (blue: slow
dynamics, yellow: fast dynamics). Four stable fixed points emerge, arranged in a square.
C Trajectories starting at different initial conditions in a finite-size network. Each initial
condition shows trajectories for two network realizations. D Analogous to A in a rank-three
network with loadings arranged as in Eqs. 2.48 and 2.49. E The populations are arranged
at the vertices of a cube. Rn = 2.1. F Dynamics of the collective variables. Six stable fixed
points (grey dots) emerge, arranged at the vertices of a dodecahedron (dual polygon of the
cube, highlighted in red for visual purposes). Grey lines correspond to the trajectories of
finite-size networks, initialized at different points in state-space. G-I Same as in D-F, but
for a network whose populations have larger mean values, Rn = 7. For such large values,
spurious fixed points that are proportional to the combinations of the three stored patterns
(±m1 ± m2 ± m3, ) also become stable. Therefore, apart from the six fixed points in a
octahedron (red polygon), eight other spurious fixed points appear arranged in a cube (blue
polygon). Network size N = 1000.
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2. Shaping dynamics with multiple populations in low-rank recurrent networks

2.6 Approximating dynamical systems with Gaussian-mixture
low-rank networks

In the previous section, we focused on generating multiple fixed points in an autonomous
network by means of a few Gaussian populations in the connectivity. More generally, as
shown in Section 2.3, multi-population rank-R networks can approximate anyR-dimensional
dynamical system. In this section, we propose an algorithm to do so.

Previous works have developed algorithms for training recurrent networks to implement
given dynamics that effectively used low-rank connectivity (Paulin, 2004; Pollock and Jaza-
yeri, 2020; Rivkind and Barak, 2017). These methods rely on tuning the loadings n(r)

i of
individual neurons, given fixed external inputs I(s)

i and connectivity loadings m(r)
i . Here

we focus instead on mixtures of Gaussian populations rather than individual units, and
extend previous methods to find the first and second order moments of multiple Gaussian
populations that approximate a given dynamical system.

Our goal is to approximate the R-dimensional dynamics specified by a vector field G (κ):
dκ

dt
= G (κ) . (2.57)

Our algorithm proceeds as follows. We first fix the number of Gaussian populations in
the network and the fraction of neurons included in each population, αp. Depending on
the complexity of the approximated dynamics, a smaller or larger number of populations
is required. Second, we set the mean and variance of the m(r) vectors in each population,
a

(p)
mr and σ

(p)
m2

r
, together with the mean and variance of the external input, a(p)

I and σ
(p)
I2 .

Finally, we determine the statistics of the n(r) vectors, the only unknown in the network,
using linear regression.
We define a number of set points {κk}k=1...K on which we impose that the effective flow in
the low-rank network given by Eq. (2.17) be equal to the target vector field

G (κk) = −κk+
P∑
p=1

αp

(
a(p)

n

〈
ϕ
(
µ(p) (κk) ,∆(p) (κk)

)〉
+ σ(p)

nmκk

〈
ϕ′
(
µ(p) (κk) ,∆(p) (κk)

)〉)
.

(2.58)
These k = 1 . . .K set points should be relevant points of the vector field G (κ); they can be
fixed points, but can also be chosen within a grid in collective space or based on sampled
trajectories of the target system (Eq. 2.57). For simplicity, in Eq. (2.58) we are considering
that the input pattern I is orthogonal to the connectivity patterns n(r). It is possible to
extend the algorithm to account for non-zero values of the parameters σnrI .

Note that µ(p) and ∆(p) depend on the statistics of patterns I and m(r) that are fixed
(see Eq. (2.19)), but not on a

(p)
nr and σ

(p)
mrnr which we aim to determine. Eq. (2.58) can

therefore be written as a linear system of the form

G = W TX (2.59)

where, for one single set point, G is a vector of length R, G = G (κk) + κk, the vector

X :=
[
a(1)
n1
, . . . a(1)

nR
, σ(1)
m1n1

, . . . σ(1)
m1nR

, . . . σ(1)
mRn1

, . . . σ(1)
mRnR

, . . . a(P )
n1

. . . σ(P )
mRnR

]
(2.60)

has length R (R+ 1)P and the corresponding matrix W of size R (R+ 1)P × R. For the
K set points κk on which we want to approximate the dynamics, we concatenate the vector
G and matrix W of each point, so that they will be of size R ·K and R ·K × (R (R+ 1)P )
respectively.

The unknown values of vector X can now be obtained by standard linear regression as

X =
(

W W T
)−1

W G. (2.61)
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2.6. Approximating dynamical systems with Gaussian-mixture low-rank networks

Often, it is convenient to regularize the regression algorithm to avoid the entries of X being
exceedingly large, at the cost of increasing the error in the approximation of the dynamics.
Solutions with very large values of X are less robust, because they produce stronger finite-
size effects when sampling from the found mixture of Gaussians, potentially affecting the
stability of the solution. One standard possibility amongst many is to use ridge regression
to find the unknown values

X =
(

W W T + β2I
)−1

W G (2.62)

where β is the ridge parameter that controls the amount of regularization.
The number of populations, together with the distributions chosen to fix the mean and

covariance values a(p)
mr , σ(p)

m2
r
, a(p)

I and σ
(p)
I2 are hyperparameters of the algorithm. These

hyperparameters can be tuned progressively by running several iterations of the algorithm.
For example, a possible goal is to search for the the minimal number of populations required
for approximating a given dynamical system within some accuracy limits.

To illustrate the algorithm, we use a rank-two network to approximate a Van der Pol
oscillator. The Van der Pol oscillator is a two-dimensional non-linear dynamical system
that generates non-harmonic oscillations. It is defined as

dx

dt
= y (2.63)

dy

dt
= µ

(
1 − x2) y − x (2.64)

where µ is a scalar parameter that controls the strength of the non-linearity. For this
example, we set µ = 1 (Fig. 2.7 A). We set the number of populations in the network to
50. Secondly, we determine the statistics for the left connectivity patterns and the external
input, by drawing random values for the mean values in each population a

(p)
I and a

(p)
mr

from a zero-mean uniform distribution, and the variances σ(p)
m2

r
and σ(p)

I2 from an exponential
distribution, all values of order one. As set points, we use a K = 30 × 30 grid for values x
and y ranging between -3 and 3.

Applying linear regression, we find that such a network can flawlessly approximate the
Van der Pol oscillator in collective space using the mean-field equations (Fig. 2.7 B-D).
However, it comes with the cost that the found parameters in Σ are orders of magnitude
larger than the parameter values for σ(p)

m2
r

(Fig. 2.7 E). To reduce the norm of the solutions,
we added ridge regression to the least square algorithm. Regularized solutions are able to
decrease strongly the order of magnitude of the found parameters σ(p)

n2
r

, while still producing
limit cycles, although the approximation error is increased (Fig. 2.7 F-H).

This algorithm can be applied to generate any given dynamics in collective space within
a finite domain. Beyond this finite domain sampled through the chosen set points, if the
target vector field does not follow the required asymptotic behavior (Eq. 2.27), as it is the
case for the Van der Pol oscillator, the network will not extrapolate to the target dynamics
(region outside square of set points in Fig. 2.7 D and F). However, in practice, it may
produce qualitatively similar dynamics: in the example of the Van der Pol oscillator, if
the network is initialized at a point outside the limit cycle, the resulting trajectories still
converge to the limit cycle.
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2. Shaping dynamics with multiple populations in low-rank recurrent networks

A B C D

E F G H

log
10  error

log
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Figure 2.7: Approximation of a Van der Pol oscillation with low-rank networks.
A Dynamics of a Van der Pol oscillator (µ = 1). B Approximated dynamics by a low-rank
network of 50 populations, calculated with no regularization. The trajectory of a Van der
Pol oscillator initialized at (1, 1) is shown in the black line. The corresponding trajectory
in the low-rank network is shown in red. C Trajectories for the Van der Pol oscillator
(black dashed line) and the low-rank network (mean-field, red line) as a function of time. D
Heatmap of the logarithm of the error of approximation by the low-rank network (mean-field
equations). The low-rank network is approximated on a grid spanned by the white square.
E Approximation error (black) and standard deviation of the found parameters Σ as a
function of the ridge parameter β. The shaded region corresponds to the standard deviation
estimated from 10 different simulations. The triangle shows the regularization parameter
chosen for F-H. F-H Same as B-D for a network with regularization parameter of β = 0.5.
The network is able to produce stable limit cycles, with similar shape and frequency to
those of the Van der Pol oscillator, although there is a larger approximation error. Note
that the dynamics shown in B-C and F-G correspond to a mixture of Gaussians low-rank
network, described by the statistics of the fifty populations, and are not the dynamics of a
particular realization of a finite-size N ×N connectivity matrix.

2.7 Discussion

In this manuscript, we have examined the dynamics in Gaussian-mixture low-rank recurrent
neural networks, a class of models in which the connectivity is defined by a low-rank matrix,
with connectivity patterns consisting of several populations with distinct Gaussian statistics.
In these networks, the collective dynamics can be described by R+Nin collective variables,
where R is the rank of the connectivity matrix and Nin the dimensionality of the input
patterns. These collective variables form a dynamical system, the evolution of which is
determined by the connectivity statistics of the populations forming the network. The rank
of the network, and the population structure therefore play complementary roles: the rank of
the network sets the internal dimensionality of the dynamics and defines the corresponding
collective variables, while individual populations shape the dynamics of these collective
variables, but do not contribute new ones. We specifically showed that, in the limit of a large
number of populations, this class of network displays a universal approximation property,
and can therefore implement a large range of dynamical systems. Having a small number
of populations instead imposes constraints and limits the achievable range of dynamics.

We have focused here on a specific family of distributions for the connectivity patterns,
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mixtures of multi-variate Gaussians. This choice was motivated by several considerations.
First, this family of distributions can be used to approximate any multi-variate distribu-
tion for the pattern loadings. Second, this family of distributions leads to a particularly
simple form of dynamics for the collective variables, where the time-evolution is formulated
in terms of a simple effective circuit (Eq. 2.24). Remarkably, in this description of the
dynamics, which is exact and non-linear, the collective variables appear to interact linearly
through effective couplings and effective inputs, that fully encapsulate the non-linearities.
This allows for a particularly transparent interpretation of dynamics in terms of gain mod-
ulation. Several of our results are however independent of the specific assumption for the
type of distribution; this is in particular the case for the influence of symmetry in the con-
nectivity on the dynamics. When a large number of populations is needed to approximate
the connectivity structure, other parametric distributions may be more suitable, and the
interpretation in terms of discrete populations may not be appropriate.

Low-rank networks with arbitrary pattern distributions form a rich and versatile frame-
work that encompasses a number of previously studied types of recurrent neural networks.
As shown in the last part of the results, Hopfield networks storing R ≪ N patterns can be
seen as a particular limit of Gaussian-mixture low-rank networks, in which pattern loadings
are binary and exhibit a specific type of symmetry. The Neural Engineering Framework
(Paulin, 2004) and the Manifold Embedding approach (Pollock and Jazayeri, 2020) provide
algorithms that implement specific low-dimensional dynamics by controlling the structure of
fixed points and Jacobians using linear-regression methods. These approaches generate re-
current networks with low-rank connectivity, in which the pattern loadings are however not
a priori restricted to belong to a specific type of distribution. Approximating the obtained
distributions by Gaussian mixtures might provide additionnal control of the generated dy-
namics.

Our framework is also closely related to Echo-state (Jaeger, 2001) and FORCE net-
works (Sussillo and Abbott, 2009), which rely on randomly connected recurrent networks
controlled by feedback loops. Each feedback loop is mathematically equivalent to adding a
unit-rank component to the connectivity matrix. Echo-state and FORCE networks there-
fore correspond to low-rank networks with an additionnal full-rank, random term in the
connectivity (Mastrogiuseppe and Ostojic, 2018, 2019). Because the feedback loops are
trained to produce specific outputs, the low-rank part of the connectivity is typically corre-
lated to the random connectivity term (but see Mastrogiuseppe and Ostojic (2019)). Such
correlations increase the dimensionality and the range of the dynamics (Schuessler et al.,
2020a; Logiaco et al., 2019), although the low-rank connectivity structure and the number
of populations still generate strong constraints. For instance, for rank-one networks with a
random term in the connectivity, but consisting of a single population, the fixed points are
restricted to lie on a one-dimensional, but non-linear manifold, and typically at most two
non-trivial stable fixed points can be generated (Schuessler et al., 2020a). More generally,
random components in the connectivity can strongly influence learning dynamics during
training (Schuessler et al., 2020b).

Gaussian-mixture low-rank networks, the Neural Engineering Framework, and Echo-
state networks all exhibit universal approximation properties (Eliasmith, 2005; Maass et al.,
2002). It is however important to distinguish between several variants of this property. In
our case, in analogy with the NEF, we started from an R-dimensional dynamical system
fully specified by its flow function, and showed that Gaussian-mixture low-rank networks can
approximate this flow function, provided a large number of populations is available and the
flow function satisfied specific constraints. Echo-state and FORCE networks instead start
by specifying a target readout, and universal approximation means that any such readout
can be generated by training the feedback (Maass et al., 2007). This readout corresponds
to a low-dimensional projection of a large dynamical system, and Echo-state networks are
free to implement any dynamical system consistent with the specified output projection.
This is a major distinction with our, and the NEF approach, where the overall dynamical
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2. Shaping dynamics with multiple populations in low-rank recurrent networks

system is more tightly constrained.
In this work, we have examined only networks with fixed inputs. Varying the inputs

instead modifies the low-dimensional dynamics, an effect that can be understood through
modulations of effective couplings that govern the interactions between collective variables.
In a companion paper (Dubreuil et al., 2020), we have used Gaussian-mixture low-rank
RNNs to reverse-engineer networks trained on a range of neuroscience tasks, and found
that gain modulation through input control underlies complex computations, such as flex-
ible input-output mappings (Fusi et al., 2016). Varying inputs while keeping connectivity
fixed therefore has the potential of implementing a large range of dynamical systems and
computations (Pollock and Jazayeri, 2020), but the full capacity of this mechanism still
remains to be understood.
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2.7. Discussion

2.7.1 Appendix A: Dynamics in multi-population networks
In this appendix, we derive the equation for the dynamics of a multi-population low-rank
network, Eq. (2.17). We consider a low-rank network that consists of P populations, where
each population is defined by different statistics of the probability distribution P(p) (m,n, I).
We assume that the external input is constant in time and uncorrelated with the left con-
nectivity patterns. Each neuron in the network is assigned to a population according to
the probability αp. In the following, we set the statistics of each population to be drawn
from a multivariate Gaussian with mean vector a(p), as defined in Eq. (2.5), and covariance
matrix Σ(p) (Eq. 2.6).

The recurrent dynamics in a low-rank network are determined by Eq. (2.16): it consists of
a sum over the N units in the network. In the limit of large networks with defined statistics,
by means of the law of large numbers, this sum over N i.i.d. elements corresponds to the
empirical average over the distribution of its elements. Therefore, we can replace the sum
over network units for i = 1, . . . , N of loadings

{
n

(r)
i

}
,
{
m

(r)
i

}
and Ii, by an integral over

their probability distribution P (m,n, I). Using this probability distribution, the recurrent
dynamics in Eq. (2.16) can be expressed as

κrecr =
P∑
p=1

αp

∫
dmdndIP(p) (m,n, I)n(p)

r ϕ

(
I(p)κI +

R∑
l=1

m
(p)
l κl

)
. (2.65)

Note that we refer to the input loadings I as a single Gaussian variable, instead of a set of
Gaussian variables I, because, since the input is constant in time, there is only one input
pattern. We then separate the contribution of the mean anr and the fluctuations of nr
around its mean into two different terms:

κrecr =
P∑
p=1

αp

∫
dI dmP(p) (m, I) a(p)

nr
ϕ

(
I(p) κI +

R∑
l=1

m
(p)
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)
(2.66)

+
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I(p) κI +

R∑
l=1

m
(p)
l κl

)
. (2.67)

Using Stein’s lemma in the second term, and making use of the fact that the sum of
Gaussian variables is itself a Gaussian variable, we can express the dynamics as

κrecr =
P∑
p=1

αpa
(p)
nr

∫
Dxϕ
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(2.69)

where Dx = dx (2π)− 1
2 e− x2

2 . Finally, using the Gaussian integral notation in Eq. (2.21),
we retrieve Eq. (2.18).

2.7.2 Appendix B: Universal approximation of low-dimensional
dynamics

The universal approximation theorem for artificial neural networks (Hornik et al., 1989;
Funahashi, 1989; Cybenko, 1989) states that any piecewise-continuous bounded function
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2. Shaping dynamics with multiple populations in low-rank recurrent networks

G (x), where x is a d-dimensional vector, can be approximated to arbitrary precision by a
finite linear combination of non-linear units having the same transfer function but different
gain and thresholds. More precisely, it is possible to build an approximation Ĝ (x) of G (x)

Ĝ (x) =
N∑
i=1

viϕ
(
wT
i x + bi

)
, (2.70)

with finite integer N , and real values for vi ∈ Rd′ , wi ∈ Rd and bi ∈ R, so that∣∣∣G (x) − Ĝ (x)
∣∣∣ < ϵ, for any ϵ > 0, given that the activation function ϕ (x) is a piecewise-

continuous non-constant bounded function (Leshno et al., 1993).
There is a direct mapping between the second term of Eq. (2.70) and the recurrent

dynamics of a low-rank RNNs. The recurrent dynamics in Eq. (2.16) can be directly mapped
to Eq. (2.70): the variables 1

Nni correspond to vi, mi to wi, and κIIi to bi. This implies
that the recurrent dynamics can approximate any flow function within a finite domain.

The dynamics of low-rank networks with multiple Gaussian populations can also be
mapped to the universal approximation theorem. The mean term contribution to the dy-
namics in Eq. (2.17) reads

P∑
p=1

αpan
(p)
〈
ϕ
(

am
Tκ + a

(p)
I , σ

(p)
I2 + κTσ

(p)
m2κ

)〉
, (2.71)

so that αpan
(p) maps to vi, am

(p) maps to wi and a
(p)
I is mapped to the bias term bi.

The transfer function is however different. In Eq. (2.70), the non-linear function used is
ϕ (x), while in Eq. (2.71), the non-linear function used is ⟨ϕ (x,∆ (x))⟩. Both functions
are non-linear and non-polynomial, so that the theorem applies. The contribution given
by the disorder in the population loadings, σ

(p)
m2 and σ

(p)
I2 are not required for the univer-

sal approximation. However, quadratic terms like the one introduced by the variance of
loadings improve the approximation in terms of expressibility and efficiency (Fan et al.,
2020). Overall, this means that a low-rank network with a finite number of populations can
approximate any dynamical system within a bounded domain.

2.7.3 Appendix C: Linear stability matrix at fixed points in networks
with single population

The linear dynamics of small perturbations around the fixed point κ0 (defined in Eqs. 2.29)
read

τ
dκ

dt
= −κ +

[
∇
(〈
ϕ′ (0,κTκ

)〉
σmnκ

)]
κ=κ0

κ, (2.72)

where ∇ is the vector differential operator. We apply the property ∇ (f (κ)Aκ)) = f (κ)A+
Aκ (∇f (κ))T , based on the chain rule, to obtain:

τ
dκ

dt
= −κ +

[〈
ϕ′ (0,κTκ

)〉
σmn + σmnκ

〈
∇ϕ′ (0,κTκ

)〉T ]
κ=κ0

κ. (2.73)

We then calculate the gradient of the gain factor. To do so, we first write explicitly the
Gaussian integral 〈

∇ϕ′ (0,κTκ
)〉

=
∫

Dx∇ϕ′
(√

κTκx
)
, (2.74)

where Dx is the differential element of a normally distributed variable. Applying the chain
rule〈

∇ϕ′ (0,κTκ
)〉

=
∫

Dxϕ′′
(√

κTκx
)

∇
(
x

√
κTκ

)
=
∫

Dxϕ′′
(√

κTκx
)
x

κ√
κTκ

. (2.75)
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2.7. Discussion

Using Stein’s lemma, the gradient of the gain factor reads:〈
∇ϕ′ (0,κTκ

)〉
=
∫

Dxϕ′′′
(√

κTκx
)

κ =
〈
ϕ′′′ (0,κTκ

)〉
κ. (2.76)

Finally, introducing Eq. (2.76) into Eq. (2.73), and using the fact that σmnκ0 = λrκ0, the
dynamics of small perturbation around the fixed point read

τ
dκ

dt
=
[
−I +

〈
ϕ′ (0,κ0

Tκ0
)〉

σmn +
〈
ϕ′′′ (0,κ0

Tκ0
)〉

σmnκ0κ0
T
]

κ, (2.77)

which leads to the linear stability matrix given by Eq. (2.31).
It is important to analyze the behavior of the function ⟨ϕ′′′ (0,∆)⟩ to assess the stability.

In the limit ∆ = 0, the Gaussian integral reduces to the evaluation of the function at zero.
For a transfer function ϕ (x) = tanh (x) we obtain:

lim
∆→0

⟨ϕ′′′ (0,∆)⟩ = ϕ′′′ (0) = −2. (2.78)

In the limit of infinite ∆, the Gaussian integral can be expressed as :

lim
∆→∞

⟨ϕ′′′ (0,∆)⟩ =
∫ +∞

−∞
dxϕ′′′ (x) = 0. (2.79)

Furthermore, it can be shown that it is a monotonically increasing function of ∆, so that
its value for any ∆ is negative and bounded between −2 and 0.
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Summary of Chapter 3

Animals can flexibly control the timing and speed of a given action. Neural recordings in
behaving monkeys have shown that flexible timing relies on neural activity that is temporally
stretched when the same action is executed at different time intervals (Wang et al., 2018),
so that at the level of the neural population, neural activity evolves at different speeds
along an identical low-dimensional invariant manifold. In this work, we used networks of
recurrently connected units to investigate the mechanisms of neural dynamics that underlie
such flexible temporal computations.

We started by training low-rank recurrent neural networks to solve timing tasks, and
reverse-engineered them to identify candidate dynamical mechanisms underlying the gen-
erated neural trajectories. In a second step, we reproduced these isolated dynamical mech-
anism in reduced low-rank network models. Finally, we tested the computational role of
those mechanisms by implementing the same tasks using the reduced models. This approach
allows us to discover, characterize and test novel network mechanisms for performing tem-
poral computations.

We found that recurrent networks perform temporal computations by generating slow
manifolds that correspond to continuous attractive regions of neural states with low-speed
dynamics. Such manifolds generate slow transient trajectories, store continuous estimates
of temporal intervals in working memory and produce temporally scaled output signals.
We show that low-rank network connectivities with a simple, quasi-isotropic connectivity
structure are sufficient to generate such slow manifolds. Deviations from a perfect isotropic
connectivity structure robustly shape the dynamics along the slow manifold, while tonic
inputs can modulate the speed along the manifolds. Altogether, we identified a set of novel
dynamical mechanisms for temporal flexibility that rely on minimal connectivity structure
and can implement a vast range of computations.

The work included in this Chapter was collaboratively supervised by S. Ostojic and M. Jazayeri.
Corresponding manuscript in preparation.
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Temporal computations through dynamics on neural
manifolds 3

3.1 Introduction

Temporal flexibility is a fundamental aspect of animal behavior. A given motor action can
be executed at widely varying speeds based on the internal state of the animal and the
environmental demands (Safaie et al., 2020), such as urgency (Drugowitsch et al., 2012;
Thura and Cisek, 2016), attention (Nobre and Van Ede, 2018) internal motivation and
vigor (Manohar et al., 2015) or timescale of relevant information and rewards (Kacelnik
and Brunner, 2002). To this effect, it is necessary for the brain to process the temporal
structure of external stimuli by estimating the duration of presented stimuli, keep track of
time, and understand the structure of sequences and the periodicity of rhythmic events.

Among the cognitive computations performed by the brain, those involving time process-
ing are idiosyncratic in several ways (Buonomano and Maass, 2009). The nervous system
generates itself time-dependent activity that is constrained by numerous biophysical con-
straints; from the time resolution of action potentials, to the diffusion of neuromodulators
or the time delays between connected regions. In spite of this, the brain can still produce
behavior adapted to a very wide range of timescales (Mauk and Buonomano, 2004). An-
other specific property of temporal computations is that time is an analog variable. Unlike
decision making where discrete actions must be taken or cognitive tasks involving catego-
rizing stimuli into discrete categories, the nature of time is continuous. It remains an open
question whether continuous quantities are represented and transformed in the brain as
discrete or continuous processes, or a combination of both (Goldman et al., 2003; Ma et al.,
2014; Panichello et al., 2019; Tee and Taylor, 2018). For such reasons, sensory-motor compu-
tations explicitly involving time have remained relatively understudied by the neuroscience
community.

Recent studies have investigated the neural substrate of speed control for motor re-
sponses. A key finding is that the profile of neural activity is temporally adjusted, stretched
or expanded, to flexibly generate adaptive behavioral responses. This property is present in
different experimental paradigms such as in speed-accuracy trade-off studies (Hanks et al.,
2014), sensory anticipation tasks (Kilavik et al., 2014) or flexible interval timing tasks
(Wang et al., 2018; Remington et al., 2018a; Sohn et al., 2019). The possible mechanisms
at the level of neuronal networks that control the speed of such neural responses remain to
be fully elucidated.

An emerging approach has proposed to focus on the general motifs in the collective
activity of neuronal activity that drive goal-directed behavior. The computation-through-

87



3. Temporal computations through dynamics on neural manifolds

dynamics framework studies such joint activity of an ensemble of neurons by analyzing the
trajectories drawn through time in neural space, a high-dimensional space where each dimen-
sion corresponds to the firing rate of one neuron (Buonomano and Maass, 2009; Remington
et al., 2018b; Vyas et al., 2020). At each moment, the activity of the neural population
corresponds to one point in this high-dimensional space. As time evolves, the neural state
moves in high-dimensional space delineating a curve or trajectory. Interestingly, trajecto-
ries of cortical activity while performing cognitive tasks have been found to span a low
number of dimensions and are constrained to smooth regions of neural space, called neural
manifolds (Yu et al., 2009; Kaufman et al., 2014; Elsayed et al., 2016; Gallego et al., 2017;
Wang et al., 2018). Applying this framework to a task that requires to flexibly produce a
timed motor response, Wang et al. (2018) found that the dimensions of neural manifolds
can be classified into two different categories based on their timing properties. Along some
dimensions, the manifolds show temporal scaling: trajectories evolve along the same path,
but they do so at different speed. These dimensions define the temporal scaling subspace of
the neural manifold. Simultaneously, neural activity along a different set of dimensions con-
trols the speed at which trajectories evolve. Subsequent studies (Remington et al., 2018a;
Sohn et al., 2019) extended this finding to flexible timing tasks with additional cognitive
requirements.

In this Chapter, we explore the theoretical basis of speed-control on neural manifolds
generated by the recurrent connectivity of neural networks. We first address the question
of how neural manifolds can be generated by the recurrent connectivity of cortical networks
and what structures allow to control their speed. Secondly, we describe how such manifolds
are used to implement specific temporal computations, and finally we discuss the broader
functional role of task-related manifolds for generalization to unseen stimuli and learning
novel but related timing tasks.

To this end, we use recurrent neural networks as an in silico model of local cortical
networks (Fig. 3.1 A). We first trained recurrent neural networks to solve flexible timing
tasks. Once the trained networks have learned how to solve the tasks, we reverse-engineer
them (Sussillo and Barak, 2013; Wang et al., 2018): we identify candidate core mechanisms
used by the networks to solve the tasks. We then examine those mechanisms by reproduc-
ing them in isolation in simplified network models. Finally, we test these computational
mechanisms by implementing the tasks using the reduced network models. It is then possi-
ble to close the loop based on the findings and design new experimental tasks to test new
hypothesis.

We focus all along the study on networks with random low-rank connectivity (Mas-
trogiuseppe and Ostojic, 2018; Schuessler et al., 2020b; Beiran et al., 2020; Dubreuil et al.,
2020). This specific connectivity structure (Fig. 3.1 B) constrains the network to gener-
ate low-dimensional dynamics, which facilitates the identification of dynamical mechanisms
in trained network and link them in reduced network models to the relationship between
connectivity patterns.
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Train low-rank
recurrent network

Identify candidate 
 dynamical mechanisms

Reproduce mechanisms
 in reduced models

Implement timing 
task in network model

A

B

post-synaptic
neuron i

= +...+
pre-synaptic 

neuron j

Connectivity

Figure 3.1: Research strategy and recurrent connectivity. A Approach for study-
ing temporal computations in recurrent neural networks. First, recurrent networks with
low-rank connectivity are trained to solve timing tasks. Secondly, trained networks are
reverse-engineered to identify the candidate dynamical mechanisms set up to solve the tasks.
Then, the identified mechanisms are reproduced in isolation by means of reduced network
models. Finally, the considered tasks are implemented by means of the reduced network
models. We can then close the loop by designing novel timing tasks based on the dynamical
mechanisms. B Trained networks and reduced network models are constrained to have low-
rank connectivity. A rank-R connectivity matrix (left) is decomposed using Singular Value
Decomposition (SVD) into the sum of R rank-one terms (right), where each term is defined
by the outer product of two connectivity patterns m(r) and n(r), for r = 1, . . . , R. Low-rank
connectivities constrain the dimensionality of the activity of large neural networks to be
low, which facilitates the study of the emergent dynamical landscape and its link with the
connectivity patterns.

3.2 Flexible timing tasks

3.2.1 Task epochs
We focus on a set of three tasks involving flexible computations with time, that we present
here grouped by their cognitive components. These tasks are designed following the princi-
ple of compositionality: each task partly builds on previous tasks, and adds a new module
that require complementary computations. This approach allows us to understand the mech-
anisms required to solve each aspect of the task, and how these mechanisms are combined
with each other.

Production All tasks require the animal to execute a motor action after some precise time
interval following a short input, the ’Set’ stimulus. The required time interval that must
be produced changes on a trial-by-trial basis and is indicated in various ways in different
tasks. We refer to the part of the trial between the input pulse ’Set’ and the motor action
as the production epoch, and to the self-initiated motor action as the ’Go’ event. The
first presented task, Cue-Set-Go, focuses on understanding only the flexible production of
intervals (Fig. 3.2 A, based on Wang et al. (2018)). The duration of the produced interval
tp is determined by a cue presented at the beginning of the trial. The agent must have
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3. Temporal computations through dynamics on neural manifolds

learned over training the association between different cues and different produced intervals
to solve this task.

B

C

time

Cue Set Go1
tp,1

Go2

tp,2

Cue 2

Cue 1

A

time

Ready Set Go

ts tp

time

Measure Go

tpts

Wait

td

Figure 3.2: Flexible timing tasks. A Cue-Set-Go. A contextual input at the begin-
ning of the trial, the Cue, determines the length of the interval to be produced, tp (e.g., blue
and red cues, associated with a long and a short interval, respectively). A second input, Set,
indicates the beginning of timing. A motor action is required at time tp after Set, the ’Go’
action. This task focuses on the flexible production of a time interval B Ready-Set-Go.
Two input pulses, Ready and Set, define a time interval ts. The motor action is expected
at time tp = ts after Set. This task requires estimating a time interval in addition to motor
timing. C Measure-Wait-Go. Two input pulses at the beginning of the trial determine
the interval to be reproduced, ts. After the estimation epoch, there is a delay of random
duration td. A third pulse indicates the beginning of the production epoch. This task builds
on Ready-Set-Go and adds a working memory component: the sensory estimate must be
stored during the random delay.

Estimation of a temporal interval A second task, the Ready-Set-Go task, demands
to estimate the time interval elapsed between two brief stimuli immediately before the
production epoch (Fig. 3.2 B, first used in Jazayeri and Shadlen (2010)). The trials start
with two input pulses, Ready and Set, separated by a time interval ts, denoted as the
sample interval. The animal is asked to generate a motor response a time tp = ts after
the second pulse, ’Set’. Therefore, the production epoch of this task demands to produce a
rightly timed motor action, as in the Cue-Set-Go. However, the produced interval is here
indicated by a previous time interval that needs to be estimated based on the timing of
sensory inputs. We refer to the part of the trial where the animal is exposed to the sampled
interval as the estimation epoch. The ’Set’ pulse in this task indicates both the end of
the estimation epoch and the beginning of production. The sample interval ts is drawn
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3.2. Flexible timing tasks

randomly at every trial from a given distribution, that we call prior distribution. Several
variants of this task have been considered in experimental studies. The animal can combine
this prior information with the noisy estimation of the sample interval, to optimize the
performance. In one experimental study, Sohn et al. (2019) studied the Ready-Set-Go task
alternating between two different prior distributions. Remington et al. (2018a) extended
the task so that the produced interval tp is a linear function of the estimated interval,
tp = gts, with different gain parameters g. In these two studies, the information about the
gain or the prior distribution was cued at the beginning of the trial. Finally, Egger et al.
(2019) modified the Ready-Set-Go paradigm by including more than one repetition of the
sampled interval within each trial. All these tasks require to time a motor action based on
an uncertain sensory estimation, due to the noise inherent to the any perceptual task.

Working memory for the estimated interval The set of timing tasks is extended by
a novel task, Measure-Wait-Go, which adds a random delay between the estimation epoch
and the production epoch (Fig. 3.2 C). This random delay between the estimation and
production epochs, not present in the Ready-Set-Go tasks, obliges the animal to hold in
memory the estimate of the sampled interval. While the Ready-Set-Go task can be thought
of as the production of a third beat after the two first beats of a rhythm, the delay in this
task breaks up the rhythm. This task is composed of three different short stimuli (pulses),
instead of two. The first two stimuli indicate the beginning and end of the estimation epoch,
while the third stimulus marks the beginning of the produced interval.

3.2.2 Task implementation in recurrent networks
We study the neural mechanisms on which recurrent neural networks rely to solve this set
of temporal tasks. For that purpose, it is necessary to model specifically the output that
we require from the network to correctly solve the task and the inputs that these local
networks receive. The mechanisms that recurrent networks use to solve the task will most
likely depend on the particular design of inputs and outputs of the local network.

We restrict the output of the network to the time points around the production epoch,
since we assume that downstream areas use this time window for the initiation of a motor
action. We require a linear combination of the network activity –the readout activity– to
ramp linearly from an initial state to a fixed final value, the threshold (Fig. 3.3 A). Our
choice is motivated by behavioral models that use accumulator variables that integrate some
external variable (e.g., time) until reaching a threshold. A ramping variable towards a fixed
threshold can describe the distribution of reaction times in voluntary movement initiation
(Carpenter and Williams, 1995; Hanes and Schall, 1996). Additionally, the activity of a
subset of cortical neurons has been found to evolve to a well-defined motor initiation state
right before executing the motor action (Romo and Schultz, 1987; Roitman and Shadlen,
2002; Maimon and Assad, 2006). More recent studies have found that a wider group of
cortical neurons, although showing more complex temporal profiles, also reach a fixed action-
triggering state before movement initiation (Churchland et al., 2006; Wang et al., 2018).

In order to flexibly produce different time intervals, a ramping signal could either adjust
the bias (the distance to threshold at the beginning of the trial) or the slope of the ramp, in
other words, the speed at which the signal evolves. In the last years, a series of studies have
found that the speed at which neural activity evolves in flexible timing tasks is modulated
based on the length of the produced interval (Wang et al., 2018; Remington et al., 2018a;
Sohn et al., 2019). Based on this evidence, we use an output signal that grows towards
threshold at different speeds, adjusting the slope of the ramp for different intervals.

An important assumption about the inputs in these tasks is that we only consider low di-
mensional external inputs with simple dynamics, namely, tonic inputs or brief pulses. More
complex inputs could simplify the task without requiring any explicit temporal computation
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3. Temporal computations through dynamics on neural manifolds

by the recurrent network. In the Cue-Set-Go task, we assume that the contextual informa-
tion given by the cue is fed to the network as a tonic input, present during the whole trial.
The amplitude of this input, that changes from trial to trial, is associated with different
produced intervals (Fig. 3.3 B, left). This choice is consistent with the finding that thalamic
inputs to medial frontal cortex show low temporal complexity along the total duration of
the trial and its strength is modulated monotonically by the contextual information (Wang
et al., 2018).

For all the other external stimuli, indicating the beginning of the estimation/production
epoch, or the end of the estimation epoch, we assume that the inputs are short pulses
that can immediately change the network state. Mathematically, we describe these brief
stimuli in time as proportional to a Dirac delta function (Fig. 3.3 B). They do not modify
the dynamical landscape generated by the network, but trigger instantaneous changes in
the neural trajectories. It remains an open question whether the inputs to the cortical
network responsible for the timing computations are received along distinct or the same
spatial patterns. On one hand, stimuli corresponding to different events are generally shown
in different locations of the visual field, and have different shapes and colors. On the
other hand, some upstream area between the sensory cortices and the cortical network
performing the temporal computations might already integrate the different visual stimuli
and generate a stimulus-invariant response. From a computational perspective, restricting
all short external inputs to the same spatial pattern imposes a more restrictive constraint,
since the network can only tell stimuli apart based on the temporal order of presentation.
In this study, we consider both possibilities for the input patterns of different pulses.

Measure-Wait-GoA B Cue-Set-Go Ready-Set-Go

Figure 3.3: Output and inputs to the recurrent network in flexible timing tasks.
A Output. Example of two different readout activity, producing a short interval (red)
and a long interval (blue). The readout activity ramps from an initial state, -0.5, towards
a threshold value, 0.5. The motor action is performed when the readout signal reaches
threshold. Thus, the speed/slope of the ramp controls the timing. B Inputs. Inputs
fed to the recurrent network in the three flexible tasks presented in Fig. 3.2. Every line
corresponds to the temporal profile of an input along a different spatial pattern, and different
colors correspond to trials with different produced interval tp. In the Cue-Set-Go task (left),
the amplitude of the tonic input provides the information about the interval to be produced
after Set. In the Ready-Set-Go task, the produced interval must equal the sampled time
between Ready and Set. In the Measure-Wait-Go task, each trial is composed of three
pulses: the first two pulses bound the sampled interval ts, while the third pulse, Set, which
appears after a random delay, initializes production.

3.3 Analyses of trained recurrent networks

3.3.1 Strategy
We trained different recurrent neural networks to perform each of the flexible timing tasks
described in Section 3.2.2, with the particularity that we constrained the rank of the network
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connectivity matrix a priori. Once a network is trained successfully, we reverse-engineered
it, that is, we studied the network and its dynamics to understand how they solve the task
(see Dubreuil et al. (2020) for a similar approach on other cognitive tasks). The goal of
training recurrent networks with minimal rank is two-fold: it allows to identify the minimal
number of collective variables required to perform the task, and it also simplifies the analysis
of the network dynamics, since we can apply the theory of low-rank networks to study the
network dynamics.

The dynamics of rank-R recurrent networks read

τ
dx
dt

= −x +
R∑
r=1

m(r)n(r)Tϕ (x) +
s∑
s=1

us (t) I(s) (3.1)

where x (t) is an N -dimensional vector representing the input received by each of the N
network units, τ is the membrane time constant, and m(r) and n(r) are the left and right
connectivity patterns that determine the rank-R connectivity matrix. In analogy to factor
analysis, we refer to the entries of the connectivity patterns, m(r)

i and n
(r)
i , as pattern

loadings. The vectors I(s) correspond to the different spatial patterns of the external inputs,
and us (t) to their temporal profile. The firing rate of each neuron is obtained by applying
a non-linear function ϕ to the input. In this study, we use a sigmoidal transfer function
ϕ (x) = tanh x. The readout or output signal of the recurrent network is a linear combination
of the firing rate of single units, defined as

z (t) =
N∑
i=1

wiϕ (xi (t)) . (3.2)

The readout can be interpreted as a one-dimensional projection of the firing rates of all
network units along vector w.

For each task, we used the temporal profile of inputs us (t) shown in Fig. 3.3 B. The
goal of training was to generate the readout z (t) shown in Fig. 3.2 A: a ramp with the
required slope during the production epoch (see Methods, Section 3.7.2). We first fixed the
rank and trained the following parameters using backpropagation through time: the left
and right connectivity patterns m(r) and n(r), and the initial conditions x (t = 0). Unless
stated otherwise, the input and readout patterns are fixed at the beginning of training, and
only the overall scale of the patterns is trained (see Methods, Section 3.7.1, for details about
the training procedure)

The intrinsic dimensions of recurrent network dynamics is determined by the rank of
the connectivity matrix plus the dimensionality of the external input. The state vector x (t)
can be expressed in the basis spanned by the input and (right) connectivity patterns m(r),

x =
R∑
r=1

κrm(r) +
S∑
s=1

κIs
I(s)

⊥ , (3.3)

so that the whole dynamics can be described by a few collective variables κr (for r = 1, . . . R)
and κs, for s = 1, . . . S. We assumed for simplicity that the input patterns I(s)

⊥ are orthogonal
to the left connectivity patterns m(r). The R collective variables span the so-called recurrent
space: the dimensions of the dynamics spanned by the connectivity, while the variables κIs

correspond to the collective variables in the input subspace (Wang et al., 2018).
The dynamics of the low-rank network shown in Eq. (3.1), which correspond to an N -

dimensional system of equations, can be rewritten in terms of the collective variables as the
R+ S-dimensional dynamical system:
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τ
dκr
dt

= −κr + κrecr (3.4)

τ
dκIs

dt
= −κIs

+ us (t) , (3.5)

where

κrecr = 1
N

n(r)Tϕ

(
R∑
r=1

κrm(r) +
S∑
s=1

κIs
I(s)

)
. (3.6)

External inputs in the studied tasks have very simple dynamics, they are either delta
pulses or constant in time. Therefore, the dynamics in the input subspace determined by
the variables κIs

are also simple. For transient pulses, neural trajectories converge quickly
(at the timescale of the membrane time constant) to the recurrent subspace. For that
reason, we restrict the analysis of trained networks to the recurrent subspace, determined
by collective variables κr, for r = 1, . . . , R (Eq 3.4). In the following, we refer to the value
of all collective variables κr using the vector notation κ.

The low-dimensional recurrent dynamics are visualized by means of two different tools:
the speed at every point in the recurrent subspace and the streamlines. Similar to Sussillo
and Barak (2013), we define speed as the scalar function

Q (κ) =

√√√√ R∑
r=1

(
dκr
dt

)2

. (3.7)

States κ∗ in the recurrent subspace where the speed is zero, Q (κ∗) = 0, correspond to fixed
points of the dynamics, so that if a trajectory reaches that point, it remains at that state
in the absence of inputs. In rank-one networks, speed is represented as a one-dimensional
function of the collective variable κ. In rank-two networks, the speed is a function of two
variables, κ1 and κ2, so that it can be displayed as a colormap, where the color at every
point indicates the speed value Q.

The streamlines are a set of curves distributed across the recurrent subspace which corre-
spond to trajectories with different initial conditions. They can be graphically represented
in networks up to rank-three. Streamlines provide complementary information to the speed
function. For instance, they indicate the stability of fixed points. If a fixed point is stable,
all streamlines in its vicinity lead towards the fixed point, while if streamlines point away
from it in one or more directions, the fixed point is unstable. Streamlines can also inform
about other phenomena such as limit cycles (closed curves in which the speed is always
different from zero) or orbits (trajectories starting and finishing in fixed points).

We refer to the collection of dynamical phenomena that can be produced by a given
recurrent neural network as its dynamical landscape. This includes the fixed points of the
network (location and stability), cycles, orbits and the way they are positioned with respect
to each other in collective space. The dynamical landscape in networks with rank higher
than two might also include other dynamical phenomena such as chaotic attractors. As the
rank of a neural network increases, and therefore the dimensionality of the dynamics, it
becomes more challenging to identify the full dynamical landscape of networks.

The first step in our approach to reverse-engineer trained networks is to inspect the
dynamical landscape of the recurrent subspace, or the recurrent subspaces, if several tonic
inputs are considered. Tonic inputs shift the recurrent subspace along a given direction in
neural space, so that the dynamical landscape also changes. As a second step, we look at
the regions of the dynamical landscape explored by the neural trajectories that solve the
task, in order to understand the dynamical components used for temporal computations.

One observation common to the analysis of all trained networks, as we show in the
next section, is that they generate low-dimensional and compact sets of states {κ∗} in the

94



3.3. Analyses of trained recurrent networks

recurrent subspace where the speed is very slow:

Q ({κ∗}) < ϵ, (3.8)

where ϵ > 0 is a threshold value, much smaller than the speed given by the membrane time
constant τ−1. We refer to these elements of the dynamical landscape as slow manifolds (see
Methods, 3.7.3). The slow manifolds we found are smooth, often ring-shaped or spherically-
shaped. One property of these slow manifolds is that they are attractive, in the sense that
when the neural activity is initiated at a random state, the trajectories quickly reach the
slow manifold and then evolve slowly on the manifold, until they reach a fixed point, if there
is one within the manifold. Furthermore, we found that neural trajectories in all studied
flexible timing tasks go along these internally-generated manifolds, to produce different
computations such as interval estimation, storage and production. In the following section,
we detail how trajectories evolve along these slow neural manifolds at different epochs of
the tasks.

3.3.2 Trained networks on timing tasks
We found that the minimum rank necessary for flexibly generating a time interval (Cue-
Set-Go task) or estimating an interval and reproducing it immediately after (Ready-Set-Go
task) is two. Therefore, the recurrent dynamics during any given trial evolve on a plane in
neural space, determined by the collective variables κ1 and κ2. For the Measure-Wait-Go
task, where the neural dynamics must also store in working memory the temporal estimate,
we found that the recurrent dynamics require the use of a third dimension, so that the
minimal rank is three and there are three collective variables κ1, κ2 and κ3.

Production We analyze the production epochby focusing on trained networks solving
the Cue-Set-Go task (inputs and readout of trained network in Fig. 3.4 A-B). Inspecting
the dynamical landscape generated by the network, we find that there are four non-trivial
fixed points: two stable ones and two saddle points. These points are connected by a
closed trajectory where dynamics are slow, the slow manifold (blue region, Fig. 3.4 E). The
ramping output of the network is generated while the neural trajectories evolve along this
slow manifold. The path of neural trajectories is described as follows: first, trajectories are
initialized at a stable fixed point (left point on the manifold, Fig. 3.4 C). Once the ’Set’
input is presented, the trajectories quickly move above a saddle point and unfold along the
slow manifold towards a final fixed point. For different intervals, the neural trajectories
overlap in the two-dimensional space of collective variables.

It is also possible to visualize the neural trajectories in the three-dimensional space (given
by the two recurrent dimensions and the direction of the external cue input, Fig. 3.4 D).
In that 3D space, the slow manifold corresponds to the surface of a cylinder, along which
trajectories evolve in parallel. Different heights on this cylinder correspond to different
speeds of the manifold, because the network is able to temporally adapt its readout. Indeed,
the tonic cue modulates the speed along the manifold, without affecting its shape, as shown
in Fig. 3.4 E. For different values of the cue, the shape of the slow manifold remains largely
unchanged, while its speed is decreased.

Experimental recordings in the Cue-Set-Go task showed that neural trajectories corre-
sponding to different produced intervals evolve along some scaling dimensions (Wang et al.,
2018). In this subspace, trajectories overlap, but they evolve at different speeds. At the
same time, there is an orthogonal subspace, where the initial conditions at the beginning
of production set the speed along the scaling subspace. These results are consistent with
the neural trajectories of trained rank-two networks (Fig. 3.4 D). From trial to trial, the
initial conditions along the input dimension Icue change, depending on the amplitude of
the tonic input. Simultaneously, the amplitude of the tonic input controls the speed along
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Figure 3.4: Interval production in rank-two network trained on Cue-Set-Go
task. A Inputs received by the network to perform the task. We consider six different cue
values, corresponding to six different time intervals to be produced, so that on each trial,
the tonic input (Cue, top) takes one of the six shown values. B Network readout of the
trained rank-two network for different cues. The dotted lines are the corresponding target
function. C Neural trajectories for different Cues, in the two-dimensional recurrent space
given by collective variables κ1 and κ2. The two collective variables are the projection of
the state vector x onto the connectivity patterns m(1) and m(2). Colored dots: stable
fixed points, white dots: saddle points. The trajectories start on the fixed point on the
left. The Set input quickly moves the neural state beyond the saddle bottom in the bottom.
Trajectories then evolve along the same neural manifold towards the stable fixed point on the
right. D Neural trajectories in the three dimensional space given by the collective variables
and the tonic input (vertical axis). The trajectories evolve in parallel at different levels of
the speed. E Dynamics in collective space for three different amplitudes of the cue input
(amplitude values indicated with triangles in panel A, top). The dynamics are shown by
plotting the flow field (grey lines, indicating in which direction in neural space trajectories
evolve if initiated at different states) and the speed at which they evolve, represented by
the colormap (the log-speed of the dynamics is defined as log10 Q). As the cue is increased,
the speed along the bottom part of the manifold becomes slower (darker in the colorscale),
while not changing its shape. This mechanism produces different time intervals. Parameters:
N = 150, membrane time constant τ = 30ms. Cue values shown in E: 0.2, 0.38, 0.5 (triangles
in panel A, top).

the manifold, which lies on an orthogonal plane spanned by patterns m(1) and m(2). This
plane, which corresponds to the recurrent subspace, coincides in this task with the tempo-
ral scaling subspace. Trajectories projected on the temporal scaling subspace overlap with
each other, but they unroll at different speeds. Overall, the trained network constitutes an
in-silico model that reproduces the salient features of the data while giving access to the
broader dynamical landscape, such as the generation of a slow manifold.

The mechanism we described for production in the Cue-Set-Go task is based on the tonic
external input: the different states on the cue axis determine the speed. However, in the
other two tasks (Ready-Set-Go and Measure-Wait-Go), there is no external input that can
set the different initial states when the Set signal arrives. Therefore, the different initial
conditions at the beginning of production must be internally generated by the network,
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based on the history of the neural trajectories. We study this more in detail, by analyzing
how networks estimate and store a temporal interval.

A B

Ready

κinp

Set

Ready-Set Set-Go

Ready

Set

κinp

C

D E

log(speed)

Figure 3.5: Production and estimation in Ready-Set-Go task. A Inputs received
by the network to perform the task (shaded pulses), aligned to the ’Set’ pulse. Each color
corresponds to a different sampled interval. The curves are the readout signal of a trained
rank-two network (dashed lines are the target signal). This rank-two network is able to
produce a ramping signal with the duration of a previously estimated interval. B Neural
trajectory during the estimation epoch, in the 3D space spanned by the recurrent dynamics
(collective variables κ1 and κ2) and by the input vector, κinp. The first pulse elicits a
slow trajectory, so that at the end of the estimation epoch, the neural state is different for
different sampled intervals. C Neural trajectory during the production epoch. The different
initial states when the Set is perceived produce trajectories that reach the slow manifold
for production at different stages, so that they reach the final state at different time points.
D Dynamics in the recurrent subspace. There are two stable fixed points (dots filled in
white), two saddle points and one unstable fixed point at the origin (empty dots). E Neural
trajectories projected onto the recurrent subspace. Parameters: N = 1000, membrane time
constant τ = 200ms. The two input pulses, Ready and Set, are received along the same
spatial pattern.

Estimation A trained rank-two network is able to solve the Ready-Set-Go task as well.
In this case, the only inputs to the recurrent network are two time pulses, e.g., two rapid
changes in the neural state, so that the dynamics generated by the recurrent connectivity
must account for estimating and then producing the interval (Fig. 3.5 A). The trial starts
with a first pulse that generates a slow transient trajectory. In the example we are showing,
this trajectory would decay slowly back to the initial fixed point if there were no second
pulse (Fig. 3.5 B). The essential feature is that this transient trajectory is slow enough so
that the neural state when the ’Set’ pulse arrives is still not at a fixed point, even for the
longest trained interval. Under this condition, when the second pulse is received, different
intervals correspond to different points in the trajectory and are then mapped onto different
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neural states. This serves as the basis for the different initial conditions required to produce
the corresponding time intervals (Fig. 3.5 C).

We found that the 2D dynamics generated by the network are similar to those in the
Cue-Set-Go task: a slow ring-like manifold, that connects two stable fixed points separated
by two saddle points (Fig. 3.5 D). The network is initialized at one of the stable fixed points,
when the first pulse elicits a transient response that decays back to the initial fixed point,
following the slow manifold. The second pulse then sends the trajectories beyond the saddle
point, so that they evolve towards the right stable fixed (Fig. 3.5 E). The readout signal
ramps up at distinct speeds due to the fact that neural trajectories after the Set is received
are at different positions on the ring manifold. Neural trajectories then evolve behind each
other along the slow manifold towards the final state.

This mechanism, found in trained rank-two networks solving Ready-Set-Go, is not ex-
tendable to tasks where the time interval estimate must be stored in memory. The infor-
mation about the estimated interval is mapped onto different neural states when the ’Set’
pulse arrives, and it is immediately used to produce trajectories that take different times to
reach a final state. The information of the estimate (the neural states on the first transient
trajectory) is only used at the specific time that separates the estimation and production
epoch.

This result is partly at odds with the analysis of neural recordings: in the data, the
activity after the first pulse moves towards a neural state different from the initial one.
However, this is not an essential feature used by trained networks for solving the task. The
second point of disagreement is that trajectories do not seem to follow one behind each
other along the same path towards a final state; but they evolve in parallel trajectories at
different speeds towards a final fixed point. This main point of disagreement suggests to
look for alternative classes of solutions. We found that when the temporal estimate has to
be kept in working memory, trained low-rank recurrent neural networks show a geometry
in state-space similar to the one found in the neural data.

Storage Recurrent neural networks must be at least rank three to solve the Measure-
Wait-Go task, that requires estimating an interval, holding it in memory for a random
delay, and then producing it (Fig. 3.6 A-B). First, we explored the dynamical landscape
of the trained rank-three networks, by initializing the dynamics at a random state, and
letting the trajectories evolve autonomously. We observe that the trajectories move quickly
towards a sphere, and then evolve slowly on its surface (Fig. 3.6 C). Given that there are
no tonic inputs in this network, the spherical manifold must be generated by the trained
recurrent connectivity.

Then, we analyzed the dynamics on the surface of this 3D manifold by using two param-
eters: the altitude (an angle bounded between 0 and π) and the azimuth or latitude (an
angle bounded between 0 and 2π). On the spherical manifold there are two regions, opposed
to each other, where the speed Q is almost zero (Fig. 3.6 D, blue areas), so that trajectories
at that state will barely move. These regions extend along a short segment of the manifold,
and can function locally like a line attractor, because they can store a continuum of neural
states over a time period much longer than the trial duration.

As a second step, we look at the path that neural trajectories take in collective space to
solve the task. We found that the trajectories are constrained most of the trial duration to
the surface of the spherical manifold. For that reason, we project the neural trajectories on
the spherical manifold to describe how they solve the task (Fig. 3.6 E). At the beginning
of the estimation epoch, the response is similar to the Ready-Set-Go task: the first pulse
generates a slow transient trajectory (Fig. 3.6 E, left). The second pulse, indicating the end
of the period to be estimated, is received when the network is at different states on this
transient trajectory. The key point is that after the second pulse, the different trajectories
decay to the one-dimensional region of the manifold where the speed is almost zero. This
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region in neural space functions as a line attractor (Fig. 3.6 E, middle panels). Different
intervals are mapped to different states in this region of state-space with extremely slow
dynamics, and remain there during the variable delay period. This line attractor implements
the memory requirement of the task, since it can hold a continuum of network states over
a random period of time, as a function of the previously shown sample interval.

The production epoch shows strong similarities with the production in the Cue-Set-Go
task. When the third pulse is perceived, indicating the start of the production epoch, the
different trajectories evolve in parallel curves but at different speeds towards a final state
(Fig. 3.6 F, right). The common subspace in which trajectories are parallel to each other,
which is a two-dimensional subspace, constitutes the temporal scaling subspace. The or-
thogonal dimension within the recurrent subspace corresponds to the input subspace. The
main difference with respect to the Cue-Set-Go task is that different initial conditions cor-
respond to different states on some region of neural space that functions as a line attractor,
whereas in the Cue-Set-Go task, the initial conditions are determined by the external input.

We can conclude that this spherical manifold underlies three computational components:
(i) generating a transient slow trajectory after the first pulse pulse, (ii) storing the neural
state over a random delay and (iii) producing almost parallel trajectories that go from one
side of the sphere towards the opposite side at different speeds.
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Figure 3.6: Production, storage and estimation in Measure-Wait-Go task. A
Inputs received by the network to perform the Measure-Wait-Go task, temporally aligned
at the end of the estimation epoch. The first two pulses are fed through the same spatial
pattern, Isample. The third pulse, indicating the beginning of production, is fed through
an orthogonal pattern Iset. We show the results for four different sampled intervals, corre-
sponding to different colors. The delay period, between the sampled intervals and the ’Set’
input varies randomly from trial to trial. B Network readout of the trained rank-three net-
work for different intervals. The shaded area indicates the target region used for training in
trials with the longest interval. C Neural trajectories on the 3D recurrent subspace, when
the trained network is initialized at random initial conditions. Initial states correspond to
white dots, which are located around the origin of the state-space. The trajectories quickly
move towards the surface of a sphere (see light grey dots, for state after two membrane time
constants), and evolve slowly on the sphere towards one of two stable regions (see dark grey
and black dots for states after 4 and 100 membrane time constants). D Dynamics projected
on the surface of the sphere, parameterized by the altitude and azimuth of the sphere. The
dynamics have been rotated, so that the equator (altitude = π/2) coincides with the plane
of the two attractive regions. Instead of fixed points, this network created segments in neu-
ral space where the activity is very slow. E Neural trajectories projected on the spherical
manifold during the three epochs of the task: estimation, delay period (divided into two
halves) and production. The color map indicates the speed of the dynamics (scale as in
D). During estimation, the first pulse produces a slow transient trajectory on the sphere.
The dots correspond to the state at the beginning of the epoch, diamonds to the end of
the epoch. At the beginning of the delay, when the second pulse is perceived, the activity
decays quickly towards one of the slow attractive regions on the sphere. During the rest
of the delay, the different sampled intervals stay almost constant at different positions on
this region. For production, trajectories evolve in parallel trajectories from one side of the
sphere towards the opposite state on the sphere. Parameters: N = 1000, membrane time
constant τ = 100ms. The delay is fixed to 2 s in A and E and to 1.2s in B.100
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3.4 Dynamical components

The inspection of the dynamics in trained recurrent neural networks revealed the following
candidate dynamical components used to solve temporal tasks:

1. The recurrent connectivity generates ring- or spherically-shaped slow manifolds.

2. Fixed points and saddle points are located on these slow manifolds.

3. Ramping signals are generated by neural trajectories evolving from one side of the
manifold to the other.

4. The speed of dynamics along these manifolds can be modulated by tonic inputs.

5. Higher-dimensional manifolds can consist of a hierarchy of lower-dimensional mani-
folds.

We tested the mechanistic role of these dynamical computations by building simplified
networks that solve the temporal tasks based on them. In this section, we describe how
these dynamical components can be generated in simplified network models. In the next
section, we use these simplified models to construct networks that perform the temporal
task.

Simplified network models In order to generate the dynamical components described
above, we look for the minimal structure in the connectivity using the low-rank neural
network models presented in Section 3.3.1. The networks are composed of a large number
N of units that are recurrently connected through a connectivity matrix that has low rank R.
The dynamics of the N units in the network follow Eq. (3.1). Due to the low-rank structure
of the connectivity, the neural state of all units in the network is fully determined by the state
of R collective variables, that we denote as κr for r = 1, . . . , R. Furthermore, the dynamics
of these collective variables can be expressed through a low-dimensional dynamical system
of the form

τ
dκ

dt
= F (κ) , (3.9)

which is detailed in Eqs (3.4) and (3.6). The vector field F represents a function that maps
an R-dimensional vector to an R-dimensional output vector.

Although large low-rank recurrent networks are reduced in this way to a low-dimensional
dynamical system, the parameter space remains high dimensional. The generated dynamical
landscape depends on the loadings of the connectivity patterns m(r)

i and n
(r)
i , for i =

1, . . . , N and r = 1, . . . R; that is, N ×R parameters.
We therefore further simplify the low-rank network by assuming that the loadings of

individual units are sampled from the same fixed probability distribution, in particular, a
zero-mean multivariate Gaussian distribution (see Methods, Section 3.7.3). This assumption
implies that all neurons in the network are statistically equivalent, as they are samples of the
same population. The theoretical framework of low-rank networks with multiple population
was developed in Beiran et al. (2020). We focus in this study on the case of one single neural
population. As a consequence of this assumption, the only parameters that are relevant for
shaping the neural dynamics are the parameters of the generative Gaussian distribution:
the correlations between connectivity pattern loading.

We denote the correlation between two connectivity pattern loadings, m(s) and n(r),
by the symbol σmsnr

. We can consider the correlations between all pattern loadings as a
matrix σmn, where each element is defined as σmsnr

, for s, r = 1, . . . , R. We refer to this
matrix as the covariance matrix or correlation matrix of the network connectivity, because
it is composed of pairwise covariances of Gaussian variables, although it is not necessarily a

101



3. Temporal computations through dynamics on neural manifolds

symmetric or positive definite matrix. The dynamics of collective variables simplify in the
mean-field limit of large networks to (see Methods, Schuessler et al. (2020b)):

τ
dκ

dt
= −κ +

〈
ϕ′ (0,κTκ

)〉
σmnκ, (3.10)

where ⟨ϕ′ (0,∆)⟩ is the activity-dependent gain, defined by the Gaussian integral∫
dx (2π)− 1

2 e
−x2

2 ϕ
(√

∆x
)

.
The only parameters that determine the dynamics in Eq. (3.10) are the entries of the

R × R correlation matrix σmn. Based on this, we design the correlation matrices of low-
rank networks with Gaussian connectivity that implement the dynamic features observed
in trained networks:

#1. Generating slow manifolds The first common feature found in trained networks
is the generation by the recurrent connectivity of smooth manifolds in neural space, where
the dynamics are much slower than the membrane time constant of single neurons. Tra-
jectories on the recurrent space initiated at a random state quickly converge to this region.
Furthermore, we found that manifolds correspond to regions with a fixed radius in recurrent
space, or regions whose radial distances are constrained around a fixed radius. In rank-two
networks, slow manifolds display a ring shape (Fig 3.4 E), whereas in rank-three networks,
manifolds are topological spheres (Fig 3.6 C).

To see how such manifolds occur in our simplified networks, it is useful to write the
dynamics in Eq. (3.10) in polar coordinates. In networks of any rank R, we define the
radial coordinate r of the recurrent space as

r =
√

κTκ. (3.11)

The dynamics in the radial component, calculated as rṙ = κT κ̇, read

τ
dr

dt
= −r + 1

r

〈
ϕ′ (0, r2)〉κTσmnκ. (3.12)

Slow manifolds can be simply generated using an isotropic correlation matrix, i.e., the
matrix is proportional to the identity matrix:

σmn = σmnI, (3.13)

where σmn is a scalar parameter, and I is the identity matrix. Such a correlation matrix
of the connectivity patterns implies that the generative Gaussian distribution from which
loadings are sampled is isotropic with respect to all connectivity patterns. Left and right
connectivity patterns corresponding to the same rank term r have equal correlations,

σmrnr = σmn for r = 1, . . . , R, (3.14)

while patterns of different rank terms are uncorrelated

σmrns
= 0 for any r ̸= s. (3.15)

The correlations in Eq. (3.14) correspond to the diagonal entries of the correlation matrix
σmn, and the off-diagonal entries (Eq. 3.15) represent the correlations between connectivity
patterns of different rank-one terms.

Using the correlation matrix in Eq. (3.13), the dynamics in the radial direction (Eq. 3.12)
simplify to

τ
dr

dt
= −r +

〈
ϕ′ (0, r2)〉σmnr. (3.16)
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Consequently, the radial component of the dynamics cancels out if σmn > 1 at a radius r0
determined by

σ−1
mn =

〈
ϕ′ (0, r2

0
)〉
. (3.17)

We can show that if the correlation matrix is isotropic there is no other flow in non-radial
directions (see Methods 3.7.3), so that all states at a distance r0 with respect to the origin
are fixed points. Since a fixed point is generated at the same distance in every direction of
the recurrent subspace, the dynamics produce a continuum of fixed points. Furthermore,
this continuum of fixed points is stable (see Methods 3.7.3). Therefore, we conclude that
rank-R networks with a strong isotropic correlation between connectivity patterns lead to
R-dimensional spherical attractors. In rank-two, a ring attractor is generated (see Fig. 3.7
A, left and center), and in rank-three, a spherical attractor.

The above analysis is valid only in the mean-field limit of very large networks. In
finite-size networks, where the loadings are randomly sampled from a multivariate Gaussian
distribution, there is always some variability due to the finite number of samples. In practice,
these finite-size effects introduce spurious correlations between connectivity patterns, so
that, even if the spurious correlations are weak and decrease with the network size, the
correlation matrix σmn is not exactly isotropic. As a consequence, not all points on the
attractive spherical manifolds are fixed points (Fig. 3.7 A, right). The general properties
of the dynamics however stay unaffected: trajectories are quickly attracted to the manifold
in the radial direction, because the speed function Q is high away from the manifold. In
the mean-field limit, the speed Q on the manifold is zero. However, in finite networks, the
manifold speed is low, but different from zero. Thus, once trajectories reach the spherical
manifold, trajectories evolve slowly along its surface. Usually, the spurious correlations
generate one pair of stable fixed points somewhere on the spherical manifold, symmetrically
positioned at opposite sides of the origin. Additionally, two unstable fixed points (saddle
points) appear on the manifold, separating the stable fixed points. The orientation of these
fixed points on the manifold is however random, it changes unpredictably at every new
sampling of the connectivity patterns. Therefore, when the correlation matrix is close in
parameter space to the correlation matrix producing a spherical attractor in the mean-field
limit, a slow spherical manifold is generated.

We conclude that when the covariance matrix σmn is close to isotropic, as in Eq. (3.13),
slow spherical manifolds are generated in the vicinity of the corresponding mean-field at-
tractor.

#2. Controlling fixed points on ring manifold We explain here how the location
of stable fixed points and saddle points on the slow manifold can be controlled. We focus
on rank-two networks that generate slow ring manifolds. Their correlation matrix σmn, of
size 2 × 2, must be close to isotropic. We further constrain the network by adding weak
perturbations to this correlation matrix to fix the location of fixed points on the manifold.
Such perturbations shape the dynamics so that the number, stability, and average location
of fixed points is constant for different samplings of networks with common statistics.

One simple possibility is to use correlation matrices of the form

σmn =
(
σmn + ∆ 0

0 σmn − ∆

)
, (3.18)

where the perturbations ∆ > 0 are much smaller than σmn, to preserve the slow ring
manifold, but strong enough so that |∆| is larger than spurious correlations in finite networks
(see Fig. 3.7 B left for an example).

The fixed points of the network are located on the axes κ1 and κ2 (Fig. 3.7 B, center).
The ones on the κ1 direction are stable, while the fixed points on the κ2 direction are saddle
points; they are stable in all directions except for the direction along the manifold, which is
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unstable (Methods, section 3.7.3). The proximity to the ring attractor in parameter space
guarantees the generation of a slow manifold that connects these four fixed points.

We can express the mean-field dynamics in polar coordinates, using the radial distance r
(defined in Eq. 3.12) and the angle with respect to the κ1-axis, θ, so that any state (κ1, κ2) is
parameterized as (r cos θ, r sin θ). The dynamics in polar coordinates, using the correlation
matrix in Eq. (3.18) read

τ
dr

dt
= −r +

〈
ϕ′ (0, r2)〉σmnr +

〈
ϕ′ (0, r2)〉∆r cos 2θ (3.19)

τr
dθ

dt
= −

〈
ϕ′ (0, r2)〉∆r sin 2θ (3.20)

The direction of the dynamics along the slow manifold is given by the angular speed
(Eq. 3.20). In the first and fourth quadrant of collective space (|θ| < π/2), the angular
speed is negative, i.e., pointing clockwise, so that the trajectories initiated in this region
will evolve slowly along the manifold towards the fixed point in the positive κ1 direction. In
the second quadrant, the angular speed changes sign, so that trajectories initiated in this
region will move towards the fixed point at negative κ1 (see Fig. 3.7 B center). Therefore,
the trajectories on the slow manifold always move from a saddle point (attractive in all
directions except along the manifold) towards a stable fixed point.

From a dynamical systems perspective, the slow manifold described here corresponds to
a heteroclinic cycle (a series of trajectories that start and end at different fixed points, and
define a closed curve). Furthermore, this heteroclinic cycle is stable, because all the fixed
points are stable in directions orthogonal to the manifold. The saddle points are unstable
only in the direction tangential to the slow manifold. Such a combination of a saddle point
that attracts trajectories in all but one directions and then redirects them towards a stable
fixed point is a novel instance of a stable heteroclinic channel. Stable heteroclinic channels
have been hypothesized as a general dynamical principle for robust transient behavior in
the brain (Rabinovich et al., 2006, 2008, 2015).

By adding specific small perturbations to the correlation matrix σmn, we are therefore
able to generate slow manifolds where we control the location of the fixed points. Finite-size
simulations of these networks qualitatively reproduce the dynamical landscape predicted by
mean-field theory (Fig. 3.7 B right). As a result, the generated slow manifolds consist
of a sequence of heteroclinic orbits that are robust to different samplings of the random
connectivity.

#3. Controlling trajectories along ring manifolds We explain in this section how
to adjust the dynamics of trajectories along the slow manifold. We have studied above how
to fix stable fixed points separated by saddle points on the slow manifold. However, the
saddle points appear consistently in the middle points on the manifold between the two
stable fixed points. We describe here how to adjust the position of saddle points on the
manifold.

So far, we have not included any correlations between connectivity patterns correspond-
ing to different rank components, σmrns

for r ̸= s. (Eq. 3.15). Including such non-zero
correlations allows us to control the location of the saddle points.

We consider the correlation matrix

σmn =
(
σmn + ∆ ϵ

0 σmn − ∆

)
, (3.21)

where we assume again that the value of ϵ, the novel parameter, is small compared to σmn,
so that the dynamics generate a ring manifold.

In this case, the stable fixed points are still at the intersection between the κ1 axis and
the ring manifold. The saddle points however are located in the direction that forms an
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angle θ = arctan (−2∆/ϵ) with respect to the κ1 axis (see Methods, section 3.7.3). When
ϵ = 0, the saddle points are in the κ2 direction, orthogonal to the stable equilibria. As ϵ
increases, the saddle points are rotated along the slow manifold towards the κ1 direction.

In the limit case ∆ = 0, the saddle points coincide with the stable fixed points in the κ1
axis. In that case, shown in Fig. 3.7 C, the saddle points and stable fixed points merge into
one pair of fixed points. These fixed points are half-stable: they are stable if perturbed in
one direction along the manifold, and unstable to perturbations in the opposite direction.
Trajectories generated by unstable perturbations evolve along the ring, towards the opposite
fixed point. In finite size-networks, instead of producing half-stable fixed point, the network
generates a saddle point and a stable fixed point close to each other, around the κ1 axis
(Fig. 3.7 C, right).

In sum, we described a robust mechanism for producing long, stable trajectories in
response to a small input in a specific direction.
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Figure 3.7: Shaping dynamics on ring manifolds. Left column: correlation matrix
σmn of the considered rank-two network. Middle column: Mean-field dynamics generated
by the network. The colormap indicates the logarithm of the speed Q at every state of the
recurrent space. Streamlines are plotted as grey oriented curves. The dashed line corre-
sponds to the slow manifold. In red, mean-field trajectories initiated at the red dots, that
evolve towards the diamond symbols (fixed points). White dots correspond to repellers or
saddle points. Right column: Dynamics generated by one random sampling of a network
with N = 1000 units. The colormap, streamlines and unstable fixed points (white dots)
illustrate the dynamics of the finite-size network. The dashed line represents the slow mani-
fold from the mean-field description (the same shown in the middle column, for comparison).
Red lines, starting at the red circles and finishing at the diamonds correspond to trajectories
of the finite size network with different initial states. A: Rank-two network generating a
slow manifold (correlation matrix given by Eq. 2.33). In the mean-field description, the net-
work produces a continuous ring attractor. In finite networks, the ring attractor turns into
a slow manifold, with two fixed points and two saddle points on it. B: Rank-two network
generating a slow manifold, with two stable fixed points in the κ1 direction and two saddle
points in the κ2 direction (Eq. (3.18)). The slow manifold and location of the fixed point
remains approximately unaltered in finite-size networks. C Rank-two network generating
a slow manifold with half-stable fixed points (correlation matrix given by Eq. (3.21), with
∆ = 0) The mean-field dynamics generate a slow manifold, which is a cycle with two half-
stable fixed points along the κ1 direction (red diamonds). Clockwise perturbations around
the fixed point will make the trajectory move along the slow manifold towards the other
fixed point. Counterclockwise perturbations decay back to the initial fixed point. In finite
networks, similar dynamics are obtained. Instead of obtaining half-stable fixed point, the
network generates either a stable fixed point close to a saddle point as shown in the right
panel, or a clockwise limit cycle, with very slow dynamics close to κ2 = 0.
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3.4. Dynamical components

#4. Controlling the speed along the manifold with a tonic input We address
now the question of how the amplitude of a tonic input can control the speed along neural
manifold, without modifying considerably the shape and position of the manifold. We
extend the dynamics in Eq. (3.10) to account for a tonic input of amplitude uI along the
input pattern I:

τ
dκ

dt
= −κ +

〈
ϕ′ (0, u2

I + κTκ
)〉

(σmnκ + uIσnI) , (3.22)

We assume that the input pattern I is a vector whose loadings are drawn from a normal
distribution, which can be correlated with the n(r) connectivity patterns, but not m(r). The
R-dimensional vector σnI measures the covariances between connectivity patterns n(r) and
vector I. Therefore, within this framework, modeling the input pattern reduces to modeling
the correlations between the right connectivity patterns and the external input, σnI .

We show how the input affects the two-dimensional network with correlation matrix
σmn in Eq. (3.18) (Fig. 3.8 A-B). In the limit case of zero amplitude, uI = 0, we retrieve
the slow ring manifold already studied (see Fig. 3.7 B). In the opposite limit case, for very
large input amplitude uI , the network generates one single fixed point in the direction given
by σnI and there is no ring manifold (Methods, section 3.7.3). Between these two limit
cases, when the amplitude uI is weak, the unstable node at the origin (r = 0) moves in the
direction given by −σnI . At the same time, the ring manifold remains almost unchanged
except for the region closest to the unstable node, which bends in towards this central
unstable node (Fig. 3.8 C). Crucially, the speed of the dynamics along the manifold is also
affected by the input. We observe that on some regions of the manifold the amplitude
increases the speed on the manifold, while on the opposite regions it decreases the speed of
the flow along the manifold (Fig. 3.8 D, modulation by more than a factor two).

The speed modulation by the amplitude of an external input is shown here for a par-
ticular choice of the correlation matrix σmn. However, we found that the mechanism also
applies to other spherical manifolds (not shown). An external input correlated with the con-
nectivity patterns modulates the speed of dynamics on the surface of a spherical manifold,
without strongly affecting the location of most regions of the manifold.

#5. Combining ring manifolds in higher rank networks Different slow ring mani-
folds can be generated simultaneously by recurrent networks with rank higher than two. We
describe here an example rank-three network that combines a ring manifold with two stable
fixed points and two saddle points (Fig. 3.7 B) with a ring manifold with two half-stable
fixed points, as in Fig. 3.7 C.

The network dynamics are now embedded in three dimensions, given by collective vari-
ables κ1, κ2 and κ3 and determined by the 3 × 3 correlation matrix σmn. Nevertheless, the
dynamics restricted to each of the planes κ1—κ3, κ2—κ3 and κ1—κ3 are only determined
by the corresponding 2×2 block matrices of σmn, so that it is possible to combine different
ring manifolds within a sphere. The general rule is that the dynamics within the plane
containing the low dimensional manifold remain unperturbed when new rank-one terms are
added to the connectivity matrix. However, there are specific constraints: it is possible
that stable fixed points in the low-dimensional manifold are unstable in the novel directions
introduced by the new rank-one terms.

We focus on a rank-three network with correlation matrix

σmn =

σmn + ∆ 0 ϵ
0 σmn − ∆ 0
0 0 σmn + ∆

 . (3.23)

We assume that |∆| ≪ 1 < σmn so that the network generates a spherical manifold, since
its correlation matrix is close to being isotropic (see Fig. 3.8 E). Within the plane κ1—κ2,
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3. Temporal computations through dynamics on neural manifolds

the dynamics are determined by the corrsponding 2 × 2 matrix given by the correlations
between connectivity patterns m(1),m(2),n(1), and n(2). This matrix corresponds to the
upper left block matrix of σmn. Since this block matrix is equal to Eq. (3.18), the dynamics
on this plane include to saddle points along the κ2 direction, and two fixed points along the
κ1 direction that are stable to perturbations within the considered plane (Fig. 3.8 F).

In the orthogonal plane κ1—κ3, the corresponding 2 × 2 matrix that determines the
dynamics is given by the elements at the corners of σmn:(

σmn + ∆ ϵ
0 σmn + ∆

)
. (3.24)

Hence, there are two fixed points along the direction κ1 which are half-stable in the κ1—κ3
plane. Small perturbations along the κ3 direction will either decay back to the fixed point
or evolve along the spherical manifold towards the opposite fixed point, depending on the
direction of the perturbations (clockwise or counterclockwise, Fig. 3.8 G).

Finally, in the remaining plane κ2—κ3, the correlation structure is given by the bottom
left block matrix (

σmn − ∆ 0
0 σmn + ∆

)
. (3.25)

Therefore, there are two saddle points in the κ2 direction, and two stable fixed points in the
κ3 direction within the plane. However, we have seen that in the plane κ1—κ3, there are
no fixed points along the κ3 direction, so that these points that are stable to perturbations
along the κ2—κ3 plane are not fixed points of the dynamics.

Putting all these results together, we found that this network generates a spherical
manifold with the following properties: there are two fixed points in the κ1 direction, that
are stable within the κ1—κ2 plane, and produce a slow and long trajectory between fixed
points within the κ1—κ3 plane. In the κ2 direction, there are two saddle points (Fig. 3.8 H).
This network combines two previously studied ring manifolds inlaid in orthogonal planes
on the surface of the spherical manifold.

In general, it is possible to combine in such a way ring manifolds within a higher di-
mensional spherical manifold. It is necessary however to check that the stability properties
along the desired planes prevail when the remaining dimensions of the recurrent space are
considered.
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Figure 3.8: Speed control along the manifold with tonic input and combination
of ring manifolds on a sphere. A Correlation matrix σmn, leading to a slow ring
manifold, and correlation between the tonic input and connectivity patterns. B Amplitudes
of the tonic inputs. C Slow manifold generated by the network at different amplitudes of
the input. Filled dots are stable fixed points, empty dots are saddle points or unstable
saddles. As the input’s amplitude is increased, the unstable node at the origin moves in
the direction −σnI , and the manifold bends in that direction. The location of the manifold
far from the unstable node remain mostly unchanged. To study the speed of the dynamics
along the manifold, we define the intrinsic variable θ. D Speed of the dynamics along the
manifold as a function of the angle θ. The speed is defined as

(
κ̇2

1 + κ̇2
2
)− 1

2 . The speed on
the manifold is scaled by the input amplitude. When the input is zero (red curve), the four
quadrants produce the same speed profile. As the input is increased, the third and fourth
quadrants (lower half of the manifold) increase the speed along the manifold, while the first
and second quadrant (upper half of the manifold) reduces the speed. E Correlation matrix
of a rank-three matrix (following Eq. 3.23) that generates a slow spherical manifold because
the matrix is close to isotropic. The dynamics of different planes can be studied by analyzing
the 2 × 2 block matrices of σmn. The red block matrix determines the dynamics in the
plane κ1–κ2, while the blue highlighted entries determine the dynamics on the plane κ1–κ3.
F Mean-field dynamics on the κ1–κ2 plane. Similar to Fig. 3.7 B, there is a ring manifold in
this plane, with two saddle points in the κ2 direction, and two stable fixed points in the κ1
direction. Black curves represent trajectories with initial state indicated by small dots, and
final states with large dots. The red curve approximates the ring manifold. G Mean-field
dynamics on the κ1–κ3 plane, which are similar to Fig. 3.7 C. There is a ring manifold with
two half-stable fixed points along the κ1 direction. H Three-dimensional representation of
the spherical manifold generated by the correlation matrix in E, containing the two studied
ring manifolds (blue and red curves) on orthogonal planes.
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3. Temporal computations through dynamics on neural manifolds

3.5 Implementing temporal computations with reduced network
models

In this section, we present solutions to the flexible timing tasks using simplified network
models with the dynamical components identified from the analysis of trained recurrent
networks.

The dynamical components constrain the relations between connectivity patterns of the
simplified low rank-network models that solve the task. For implementing a task, it is
additionally required to determine the relations between input patterns and connectivity
patterns. There are many possible ways of implementing the correlations of the inputs
with the connectivity in these tasks, leading to a degenerate set of possible solutions. For
instance, we show in Appendix A that input pulses correlated only with left connectivity
patterns m(r) and input pulses correlated only with right patterns n(r) generate very similar
trajectories in the recurrent subspace. We chose therefore to use transient inputs that are
correlated with the m(r) connectivity patterns, so that neural trajectories remain on the
recurrent subspace during the whole trial.

Overall, the goal is to determine the general constraints on recurrent neural networks
required to solve the timing tasks, in terms of the input and connectivity patterns. We then
provide one minimal implementation of each of the timing tasks.

Cue-Set-Go task The minimal rank of a recurrent neural network required to implement
this task is two. The network connectivity must generate dynamical components #1 (create
a slow ring manifold), #2 (two stable fixed points and two saddle points lie on the manifold)
and #4 (the speed along the manifold is adjusted with a tonic input). The two stable fixed
points serve as the initial network state at the beginning of the trial, and the final state to
which trajectories evolve during production. The cue input controls then the speed along
the slow manifold. The additional constraint is that the ’Set’ pulse sends the neural state
from the initial stable fixed point passed one of the saddle points, so that trajectories then
evolve at controlled slow speed along the manifold towards the final stable fixed point.

In all task implementations, as a proxy for the readout activity, which is a linear combi-
nation of the firing rates of individual neurons, we project the neural trajectory x (t) along
a readout direction in collective space. For the Cue-Set-Go task, the only condition is that
the readout be not orthogonal to the region of the slow manifold along which trajectories
evolves towards the final state.

Fig. 3.10 shows one minimal implementation of the task following these constraints.
Trajectories evolve from the initial stable fixed point (circles, Fig. 3.10 A), towards the
opposite side of the slow manifold thanks to the action of the Set input that moves the
network states beyond the separatrix of the two stable points. Projecting the activity onto
the read-out direction (black dashed line, Fig. 3.10 A), the output of the network ramps at
different speeds towards the final state (Fig. 3.10 B). We then defined the produced interval
as the time elapsed between the Set pulse and the crossing of a given threshold (black line,
Fig. 3.10 B). Effectively, the recurrent network flexibly maps the amplitude of the input
cue to the produced interval tp. This mapping is a monotonically increasing function of the
amplitude (Fig. 3.10 C).

The core mechanism that controls the produced interval is the speed along the manifold.
The speed modulation affects every state on the slow manifold; it is not restricted to the
neighboring regions of the final state (see Fig. 3.10 D). The linearized dynamics around the
final state alone are not able to explain the temporal stretching shown here. It is necessary
to take into account the whole extent of the slow manifold explored by neural trajectories
to generate this mechanism.

Finally, we can consider the geometrical structure of trajectories in neural space. Taking
all trials into account, neural trajectories are constrained to the surface of a cylinder during
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3.5. Implementing temporal computations with reduced network models

most of the trial duration (see Fig. 3.10 E for two different 3D views of the trajectories in
the production epoch). The longitudinal axis of this cylinder corresponds to the input cue
direction. The location of the trajectories along this axis therefore changes on a trial-by-trial
basis. On the other hand, within a given trial, trajectories evolve in planes orthogonal to the
cylinder axis. This is the recurrent subspace, which coincides here with the temporal scaling
subspace. This configuration is consistent with the geometry found in neural recordings of
non-human primates performing the task (Wang et al., 2018).
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Figure 3.9: Reduced model of rank-two network performing the Cue-Set-Go
task. A Bottom: Trajectories in the recurrent subspace solving the task (circles: initial
state, diamonds: final state). Top: Inputs fed to the network. Different colors correspond
to trials with different input cue amplitude uI . Black dots indicate the neural state 750ms
after the Set pulse is received. The black dashed line corresponds to the readout direction.
The trajectories start on a stable fixed point. The Set pulse shift the trajectories to the first
quadrant of recurrent space. From there, trajectories reach the slow manifold and move
towards the final stable fixed point. B Projection of neural trajectories along the readout
direction. The projected activity ramps up towards a final state after the ’Set’ pulse is
received. We define the produced interval as the time it takes to reach the threshold (black
line). C Relation between the input cue amplitude uI and the produced interval tp. The
produced interval is longer as the cue increases. D Speed profile of different trajectories
during the production epoch. Right after Set, the speed is fast, until reaching the slow
manifold where the speed goes through a local minimum. Then, on the slow manifold, the
speed is scaled according to the background cue. Blue trajectories (larger cues) evolve at
a smaller speed than red trajectories (weaker cues). E Three-dimensional projections of
the neural trajectories during production. The neural space consists of the two-dimensional
recurrent subspace, which shows temporal scaling -trajectories overlap-, and the orthogonal
input cue direction. The level on this cylinder sets the speed along the recurrent subspace.
Parameters: τ = 50 ms, σm1n1 = 1.8, σm2,n2 = 1.4, Set pulse: σmI = (1, 1). Input cue
σn2I = uI , σI2 = u2

I , σn1I = 0, orientation of projection vector θ = 0.65π, threshold value
0.12.
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Ready-Set-Go task The Ready-Set-Go can be solved in a rank-two network, generating
a slow manifold (component #1), with two stable fixed points (component #2) separated
by saddle points. The constraint on the first input pulse, ’Ready’, is that the network
generates a robust transient trajectory, slow enough such that it does not reach a fixed
point before the end of the sampled interval. The second pulse must then move the neural
trajectories towards the basin of attraction of a stable fixed point, in a way such that the
shortest sampled interval is closer to the final state following the ring manifold, and the
longest sampled intervals is further away. The read-out direction must be not orthogonal
to the trajectories evolving on the slow manifold towards the final state.

In the minimal implementation shown in Fig. 3.10, the ’Ready’ pulse generates a tran-
sient trajectory on the slow manifold that would decay back to the initial stable fixed if no
other inputs were fed to the network. Before decaying back to the initial state, the second
pulse, ’Set’, sends the network to the opposite side of collective space. Trajectories quickly
reach the slow manifold and then evolve at slow speed towards the final fixed point. The Set
pulse sends the trajectories after a short sampled interval to a point on the slow manifold
closer to the final state (red curve Fig. 3.10 A) than for a long sampled interval (blue curve).
Therefore, the projected activity on the readout reaches the threshold at different intervals
tp based on the sampled interval ts (Fig. 3.10 A-B).

Although not strictly necessary, it is be possible to rotate the saddle points along the
slow manifold closer to the stable fixed points (dynamical component #3), so that the
transient trajectory during estimation and during production explores a longer path of the
collective state.

Measure-Wait-Go task A network of rank at least three is required to solve this task,
that involves estimating a sample interval, holding the estimate in working memory during
a random delay and then reproducing the interval. We use a spherical manifold (dynamical
component #1), that contains two orthogonal ring attractors (dynamical component #5),
one with very slow speed close to the stable fixed points used for storing the sample interval
(dynamical component #2) and the other one used to produce slow parallel trajectories
from one side to the other of the sphere (dynamical component #3). The only constraint
on the first pulse, that indicates the beginning of the sampled interval, is that it create a
slow transient trajectory that does not reach a fixed point before the second pulse is received.
The second pulse must elicit a response that sets the neural trajectories at different states
close to the stable fixed point of the storage attractor. Neural trajectories then stay during
the remaining delay period at different states on this local line attractor. The third pulse,
indicating the end of the delay, perturbs the trajectories in the unstable direction of the half-
stable fixed point, so that trajectories evolve slowly during production from one side of the
sphere to the other. The read-out direction must be co-linear with the parallel trajectories
generated during the production epoch.

We use the network presented in Fig.3.8 E-H, that generates a spherical manifold. On
the surface of the sphere there is one ring manifold with very low speed that can be used
as a line attractor close to its stable fixed points. There is also a second ring manifold,
orthogonal to this storage attractor, that produces rotational dynamics from one side to
the other of the sphere.

In the minimal implementation we show in Fig. 3.11, we decided for simplicity that the
network only explores the plane κ1–κ2 during the estimation epoch and the delay. The first
pulse elicits a slow transient response using the slow manifold on this plane (Fig. 3.11 A
left). The second pulse positions the neural trajectories at a new state, so that, after a
fast transient response to reach the slow manifold, trajectories reach different states around
a stable fixed point on the manifold. The speed of the dynamics around this fixed point
is very low, so that the state barely changes all along the duration of the random delay
(Fig. 3.11 A center). The third pulse, which represents the beginning of production, moves
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Figure 3.10: Reduced model of rank-two network solving the Ready-Set-Go
task. A Top: Schematic of the task during the estimation (left) and production epoch
(right). Bottom: Trajectories in the recurrent subspace during the two epochs. The start of
the epoch is indicated by a circle and the end of the epoch by a diamond. Curves of different
colors correspond to the different sample intervals. The colormap indicates the logarithmic
speed Q, and the white lines are the streamlines. Left. Trajectories start at an initial
fixed point, and generate a slow transient trajectory in response to ’Ready’. Importantly,
the trajectories do not reach a fixed point at the end of the estimation epoch. Right.
The Set pulse locates the trajectories at different distances with respect to the final state.
Trajectories then evolve along the ring manifold towards this final state. The black dashed
line represents the readout direction. Black dots 600ms after Set onset. B Projection of the
neural trajectory along the readout. The black line indicates the threshold. The projected
activity ramps up at different speeds towards a final state after the Set. C Mapping between
sampled and produced time intervals. Parameters: τ = 60 ms, σm1n1 = 2.1, σm2,n2 = 1.9,
Ready pulse: σmI = (1, 1), Set pulse: σmI = (1.6,−1.6). Readout vector (1, 0). Threshold
value 0.58.

the dynamics away from this plane (Fig. 3.11 A right). The trajectories then evolve along
the sphere towards the opposite side following close parallel trajectories at the beginning of
production, that end up converging to the same final state. The angle between the plane
spanned by the trajectories during production and the plane of the line attractor determines
the speed of the trajectories (see Appendix B for a detailed study of the production epoch
on the spherical manifold). Therefore, when the trajectories are projected on the readout
direction (Fig. 3.11 B), they evolve after the Set pulse towards the final state at different
speeds. By setting a threshold, we quantify the relationship between sampled interval and
produced interval (Fig. 3.11 C).

Neural trajectories are constrained to the surface of a sphere, instead of a cylinder as
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in the Cue-Set-Go task. Focusing just on the trajectories during the production epoch
(Fig. 3.11 A right, Appendix D for other 3D perspectives), we identify an input subspace,
parallel to the storage attractor, which is given by the initial conditions at the beginning
of production. Different levels on this input subspace, which is parallel to the κ2 axis,
correspond to different speeds during the rest of the production epoch. The recurrent
subspace, largely orthogonal to the input subspace, is defined by the trajectories that rotate
from one side to the other of the sphere during production. Importantly, the most relevant
difference between production in the Cue-Set-Go task and in the Measure-Wait Go task is
that the input subspace is generated in the latter task by the recurrent connectivity of the
network instead of the result of an external input. Trajectories evolve on a sphere and not
the surface of a cylinder is due to the fact autonomous networks cannot generate cylindrical
manifolds.
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Figure 3.11: Reduced model of rank-three network solving the Measure-Wait-
Go task. A Top: Scheme of the inputs during the three different task epochs: estimation
(left), delay period (center), and production (right). Bottom: Trajectories in the recurrent
subspace during the three epochs. The start of each epoch is indicated by circles and the
end by diamonds. Different colors correspond to the different sample intervals rs. The
colormap indicates the log-speed Q and the white lines are the streamlines. Left. The
network is initialized at a stable fixed point (red dot). The first pulse sends the network
trajectories away from this stable fixed point, producing a slow transient response. At the
end of the estimation epoch, the neural state is different for different sampled intervals
ts. Center. The second pulse maps the different sample intervals to different states next
to the stable fixed point of the storage attractor. In this case, the second pulse does
not move trajectories directly to the slow manifold, but they evolve quickly towards the
manifold and stay there during the rest of the delay (in this trial, the delay lasts 600ms).
Right: The Set pulse perturbs neural trajectories along the orthogonal κ3 direction, so
that they evolve in parallel towards the opposite stable fixed point along the spherical
manifold. B Projection of the neural trajectory on the readout. The black lines indicates
the threshold. The projected activity evolves at different speeds towards a final state. C
Mapping between sampled and produced time intervals for two different delays, 600 ms (as
shown in panels A and B), and 4500 ms. Different delay periods lead to differently biased
produced intervals, due to the very slow dynamics that affect neural trajectories along the
local line attractor. Results shown for a fixed delay of 600ms. Parameters: τ = 30 ms.
Correlation matrix σmn as in Eq. (3.23), where σmn = 2, ∆ = 0.005, ϵ = 0.1. First input
pulse σmI = (−0.3, 0.5, 0), second input pulse σmI = (−0.45,−0.5, 0), Set (third input
pulse) σmI = (−0.62,−0.26,−0.19). Readout (−0.9, 0,−0.9). Threshold value 0.85.
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3.6 Discussion

In this Chapter, we explored the dynamical mechanisms that recurrent neural networks set
up to solve flexible timing tasks. We first identified candidate dynamical components used
by trained recurrent networks to solve three temporal tasks. The network connectivity gen-
erates slow attractive dynamics along a low-dimensional continuum of activity states, that
we refer to as slow manifolds. Neural trajectories evolve along these slow manifolds to solve
the temporal tasks. Secondly, we examined the candidate mechanisms by reproducing them
in reduced network models. We assumed that the connectivity statistics of all neurons are
generated from the same neural population, so that all neurons are statistically equivalent.
Hence, the network dynamics depend only on a few parameters that define the statistics of
the neural population. We were then able to describe how such simplified network models
generate slow manifolds and control the dynamics along them. Finally, we tested these com-
ponents by implementing the considered temporal timing tasks using the reduced models.
We determined the general constraints on the inputs and connectivity patterns for each of
the tasks, and provided one minimal implementation of the tasks using reduced models.

All the recurrent neural networks presented in this study were restricted to have low-
rank connectivity matrices. The main advantage of low-rank networks is that they generate
low-dimensional network activity, consistent with neural trajectories found in cortical areas.
Namely, the network dynamics are determined by a low-dimensional dynamical system of
collective variables. This low-dimensional mapping simplifies the analysis of the dynamics
implemented by the network and their link to the connectivity structure.

Temporal scaling in recurrent networks. We assumed that cognitive computations
are encoded in the dynamic changes of the collective state of recurrent neural networks. An
application of this general framework to temporal computations, the population clock model,
postulates that the often highly complex evolution of neural population activity can be read
out as a code that represents time (Laje and Buonomano, 2013; Hardy and Buonomano,
2016; Cueva et al., 2020). At the same time, such time-varying changes of neural activity
can simultaneously represent other sensory, cognitive or motor variables. In particular,
motor actions can be executed at different speeds, so that neural activity generating those
motor commands is temporally scaled accordingly.

Recently, Hardy et al. (2018) investigated how recurrent neural networks can account for
temporal scaling. They trained recurrent networks to produce a complex output at different
speeds, determined by the amplitude of a background input. Consistent with our analysis of
the Ready-Set-Go task, neural trajectories in their setup evolved along neural manifolds with
two orthogonal subspaces: a temporal scaling subspace, common to all speed commands,
where trajectories overlap, and an orthogonal input subspace that determines the speed
of trajectories. Similarly, Bi and Zhou (2020) trained recurrent networks to perform a
temporal task resembling the Measure-Wait-Go task, with the difference that instead of
generating a linear output ramps, the network’s readout is forced to stay at baseline during
production and produce a short burst of activity at the end of the production epoch. Neural
trajectories in this case also showed strong temporal scaling along a given subspace of neural
space, and activity along a non-scaling subspace that correlated with the speed command.
This feature was also present in all temporal tasks studied in this Chapter. Such theoretical
works suggest that existence of a temporal scaling and a time-invariant speed-controlling
subspace is the basis of temporal flexibility, independently of the training algorithm, the
dimensionality of neural trajectories or the target output pattern. Consistently, both trained
networks and neural recordings in non-human primates performing flexible interval timing
tasks found that cortical activity evolves along scaling subspaces along a given trial while
the speed is controlled along orthogonal dimensions (Wang et al., 2018; Remington et al.,
2018b; Sohn et al., 2019).

116



3.6. Discussion

Reverse-engineering recurrent neural networks The aforementioned analyses of
temporal scaling in recurrent networks limited themselves to a kinematic study of neu-
ral trajectories, and a study of the network dynamics close to stable fixed points explored
by neural trajectories (Sussillo and Barak, 2013). In this work, we applied the novel theoret-
ical framework of low-rank networks (Mastrogiuseppe and Ostojic, 2018; Schuessler et al.,
2020a; Beiran et al., 2020) which allowed us to analyze the dynamics beyond the vicinity
of fixed points, in order to extract and interpret the dynamical mechanisms learned by
trained recurrent networks solving flecible timing tasks. A parallel study (Dubreuil et al.,
2020) followed a similar approach to understand neural computations in decision making
tasks that did not required explicit processing of temporal information.

Network vs animal behavior In this study, successfully trained recurrent networks
were able to produce precisely timed outputs, although they did not show the variability
features and biases observed in the behavior of human and non-human primates performing
timing tasks, such as scaling variability or regression towards the average temporal interval.
Unlike previous trained networks (Wang et al., 2018; Remington et al., 2018b; Sohn et al.,
2019) that showed similar biases to those in observed behavior, networks were not trained
in this study using noise in the sensory inputs to study the statistical inference process. The
goal here was to identify and propose novel dynamical mechanisms for temporal computa-
tions. Our study could be further extended to use trained low-rank networks as behavioral
models, by modifying the learning strategy, including adding suitable input noise to the
sensory input. Likewise, it is possible to further constrain the reduced network models that
implement the tasks, at the level of both input and connectivity patterns, to produce be-
havioral biases consistent with experimental results. It remains ti be determined whether a
network where the connectivity statistics of all neurons belong to one single homogeneous is
able to generate the suitable dynamics, or whether additional statistical populations should
be considered, which increases the flexibility of the possible generated dynamical landscapes
(Dubreuil et al., 2020; Beiran et al., 2020).

In particular, Sohn et al. (2019) showed that animals take into account the statistics
of the sampled intervals to improve their performance, and they can flexibly adapt the
behavior when the input statistics are modified. This statistical inference process results in
produced intervals and neural trajectories that are systematically faster or slower than the
sampled interval ts, depending on the relation between ts and the known prior statistics
of the sensory stimuli. Tonic inputs from other brain areas implementing the required
inference could provide constant input to the network, which would globally increase or
decrease the speed of the dynamics along the manifold. This mechanism is similar to the
effect of the Cue input in the Cue-Set-Go task, which modulates the speed along a ring
manifold, but could be generally applied to more complex manifolds, and combined with
other computations.

Complementary to the approach here presented, Egger et al. (2020) studied how neural
circuit models solve flexible timing tasks, whose outputs match human behavior. The dif-
ference with our reduced models is that the neural network solving the tasks has a modular
structure. Each module is formed by a group of two or three neurons, that are recurrently
connected such that they produce bistable dynamics. By hierarchically combining such
modules, it is possible to match the human behavioral outcomes in a wide range of sen-
sorimotor timing tasks. We followed here an integrative approach, where we study the
collective dynamics of a homogeneous recurrently connected network, to discover emergent
mechanisms that can lead to the same behavior.

Functional role of manifolds To process time, an analog physical quantity, recurrent
neural networks generate continuous slow manifolds that are employed to measure time
intervals, store estimates and produce time-varying output signals. The continuous nature
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of low-dimensional manifolds allows to generalize the temporal computations to unseen tem-
poral intervals, at least within the range of learned intervals. However, discrete fixed points
along these manifolds are also required to implement temporal computations. Networks ex-
plore different regions of neural space at different task epochs, that are separated by saddle
points. During the delay period, the relation between the neighboring fixed points and the
neural states corresponding to different stored intervals generate different behavioral biases.
Stable fixed points appear also as initial network states or final states to which trajectories
evolve to produce a given output pattern.

Slow manifolds might also serve as a useful dynamical structure to quickly learn novel
tasks. Presumably, different learning processes are involved in modifying the input pro-
jections to local cortical networks than in altering the recurrent connections of a network.
Slow manifolds can be reused in different timing tasks, by modulating the mapping of the
input patterns, without necessarily changing the recurrent dynamical landscape. Further
work is required to test whether networks can be retrained faster if they already generate
slow manifolds. From a theoretical point of view, the same slow manifold can be used to
solve different tasks. For instance, we used the same network structure (rank-two network
generating a ring manifold) to implement the Cue-Set-Go task and the Ready-Set-Go task,
with different input patterns. Alternatively, it would have also been possible to use the
rank-three network with a spherical manifold, which can solve the Measure-Wait-Go task,
also to solve the other flexible timing tasks.

Overall, we presented in this Chapter a set of novel dynamical mechanisms based on
low-dimensional slow manifolds, that can be generated by networks with minimal structure
in their synaptic connectivity that implement a wide variety of temporal computations.
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3.7 Methods

3.7.1 Training of low-rank recurrent networks
Dynamics of trained networks We trained recurrent neural networks with N units
and fixed rank R. The dynamics of the total input current received by the i-th unit reads

τ
dxi
dt

= −xi + 1
N

N∑
j=1

Jijϕ (xj) +
S∑
s=1

us (t) I(s)
i + ηi (t) . (3.26)

The parameter τ is the single unit time constant. The matrix element Jij represents the
synaptic strength of the connection from unit j to unit i. The S external inputs, described
in the previous section, are separated into their temporal profile us (t) and the strength
at which this input is fed to neuron i, I(s)

i . The firing rate of neuron i is calculated as
ϕ (xi) = tanh (xi). Each neuron receives independent white-noise ηi (t).

The rank of the connectivity is fixed, so that the connectivity matrix is described as a
sum of R rank-one matrices:

Jij =
R∑
r=1

m
(r)
i n

(r)
j . (3.27)

We refer to vectors m(r) and n(r) as the left and right connectivity patterns, that constitute
the r-th rank-one term of the connectivity. The elements of these connectivity patterns m(r)

i

and n(r)
i , corresponding to the contribution of the i-th neuron in the connectivity patterns,

are called the pattern loadings.
The read-out of the network is defined as

z (t) =
N∑
i=1

wiϕ (xi (t)) , (3.28)

a linear combination of the firing rates of all network units, along the readout pattern w.
The single unit time constant ranges in different trained networks between 30 and 200

ms. The network size N ranges between 300 and 1000 units. We simulated the network
dynamics by applying Euler’s method with a discrete time step ∆t = 10 ms. The white
noise process ηi is generated by drawing values from a zero-mean Gaussian distribution at
each time step, with standard deviation 0.08.

Training procedure To train networks, we used backpropagation-through-time (Werbos,
1990). This algorithm minimizes the error between the readout of the network on trial q,
zq (t), and the target output function for that trial ẑq (t). The loss function can be written
as

L =
∑
q

∑
t

(q)
1 <t<t

(q)
2

(zq (t) − ẑq (t))2 (3.29)

where q runs over different trials, and t(q)
1 and t(q)

2 correspond to the minimal and maximal
time point taken into account for computing the loss function. We set these boundary
values to 50 ms before the beginning of the production epoch, and 50 ms after the end
of the production epoch. The target output ẑq (t) depends on the particular task, and is
detailed in the Section 3.7.2.

The network parameters trained are the connectivity pattern loadings m(r)
i and n(r)

i , for
i = 1, . . . , N and r = 1, . . . , R, and the initial network state at the beginning of each trial
xi (t = 0).
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We fixed the loadings of input and output patterns I(s) and w by sampling from a random
normal distribution at the beginning of training, and trained only the overall amplitudes of
these patterns.

We initialized all parameters using random Gaussian variables of unit variance and zero-
mean. The covariance between loadings of different connectivity patterns at the beginning
of training is defined as

σmrns
= σ0δrs (3.30)

where σ0 takes the value 0.7 and δrs is the Kronecker delta. These initial correlations
between connectivity patterns generate initial activity with time constant slower than the
membrane time constant, which is useful to propagate errors back in time during learning
(Schuessler et al., 2020a).

We used a set of 500 trials for the training set, and a set of 100 trials for the test set.
Following Dubreuil et al. (2020), we used the ADAM optimizer (Kingma and Ba, 2015) in
pytorch (Paszke et al., 2017) with decay rates of the first and second moments of 0.9 and
0.999, and learning rates varying between 10−4 and 10−2.

In order to successfully train networks, it was necessary to train first on the flexible
timing task using shorter time intervals. We start training networks with (sampled and
produced) time intervals at 30% of their duration. Once the network is trained, we increased
the duration of time intervals gradually, so that after four steps, the time intervals range
between 800 and 1550 ms.

Another hyperparameter important for learning is the number of sampled intervals used
during training, and therefore, the number of different time intervals to be produced. For
the Cue-Set-Go task, we used six different intervals, unless otherwise specified. In the
Ready-Set-Go task and Measure-Wait-Go task, we trained first on two intervals, and then
on four intervals. Training with a large number of different sampled intervals from the
start often lead to networks that produce one single time interval, the average over all the
sampled intervals.

The rank R of trained networks was preset at the beginning of training. For each task,
we trained a set of networks with different random initializations, starting with rank-one
connectivity matrices. When the readout vector of none of the networks converged to the
target output function, we increased the rank by one unit, until finding networks of minimal
rank R that solve the task.

The left and right connectivity patterns m(r) and n(r)of a connectivity matrix J are
found by applying singular value decomposition (SVD). Thus, the left (right) connectivity
patterns are orthogonal to each other. However, we do not impose any constraints on the
pattern loadings m(r)

i and n
(r)
i that are trained. Instead, we recalculate the left and right

connectivity patterns after training applying SVD to analyze the network dynamics. As
a convention, we set the norm of the left connectivity patterns m(r) to N without loss of
generality.

3.7.2 Design of timing tasks
We studied three different flexible timing tasks, Cue-Set-Go (Wang et al., 2018), Ready-Set-
Go (Jazayeri and Shadlen, 2010; Remington et al., 2018b; Sohn et al., 2019) and Measure-
Wait-Go. The tasks are illustrated in Fig. 3.2 and the design of inputs and outputs is shown
in Fig. 3.3.

Output function All tasks require to produce a time interval tp after a brief pulse which
we denote as ’Set’. The target output of the recurrent neural network is designed as a linear
ramp, that starts at value −0.5 when the Set pulse is received, and grows until the threshold
value +0.5. The produced interval tp is defined as the time elapsed from the initial value
until the threshold value. Thus, different produced intervals correspond to output ramps
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with different slopes. The produced time intervals range between 800 ms and 1550 ms, that
is, more than one order of magnitude longer than the membrane time constant of single
units in the network. In a small fraction of trials, we omit the ’Set’ pulse. In that case, the
output of the network stays at the initial value −0.5.

Input functions The first transient input in all tasks is fed at a random time point
between 200 ms and 800 ms after the beginning of the trial.

In the Cue-Set-Go task, two different inputs are received by the network: the ’Cue’
and the ’Set’ pulse. The Cue input is a tonic input, fed to the network during the whole
trial duration along a given pattern Icue. The amplitude of this input us informs about
the target time interval tp and ranges between values 0.5 and 1.0. The lowest amplitude
corresponds to the smallest produced interval (800 ms, in the network shown in Fig. 3.4),
and the largest amplitude (1550 ms, in Fig. 3.4).

In the Ready-Set-Go task, the first pulse, ’Ready’, indicates the beginning of the estima-
tion epoch. The second delta pulse, ’Set’, indicates the end of the estimation and beginning
of the production epoch. These two different input pulses can be fed to the network along
the same spatial pattern or along two different input patterns. In trained networks, we use
the same spatial pattern for both inputs. In designed networks based on simplified low-rank
networks, we choose two different spatial patterns, which allows for more flexibility.

In the Measure-Wait-Go the first and second pulses are identical to the inputs in the
Ready-Set-Go task, and are fed to the network along the same input pattern in trained
networks. They indicate the beginning and end of the measurement epoch. After the second
pulse, there is a random delay, sampled from a uniform distribution bounded between 200
ms and 2500 ms. A third pulse is given to the network after the random delay, indicating
the beginning of the production epoch. In designed networks (Section 3.5), each input pulse
is received along different spatial patterns.

3.7.3 Theory of low rank networks: simplified network models
The dynamics of any rank-R recurrent neural network receiving S external inputs can be
fully described by the dynamics of R collective variables, κr for r = 1, . . . , R, and S collective
variables κIs

related to the external inputs; as desceribed in Eqs. (3.4)-(3.6). The subspace
spanned by the κr collective variables is the recurrent subspace, and the subspace spanned
by the κIs corresponds to the input subspace (Wang et al., 2018).

The collective variables of the recurrent space are defined as the projections of the neural
activity x (t) onto the left connectivity patterns m(r):

κr (t) = 1
N

N∑
i=1

m
(r)
i xi (t) , (3.31)

and the input variables are defined as the projections of the neural activity onto the input
patterns

κIs
(t) = 1

N

N∑
i=1

I
(r)
i xi (t) , (3.32)

where we assume that the input patterns are orthogonal to the left connectivity patterns. In
this section, we focus on recurrent networks receiving a constant external input of amplitude
u along the normalized pattern I. In that case, there is only one input collective variable
which is also constant in time, κI = u. When the input patterns are not orthogonal to the
left connectivity patterns, the input collective variables are defined as the projection along
the component of the input pattern orthogonalized with respect to the left connectivity
pattern.
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We build simplified network models of low-rank networks by considering networks with
minimal structure, i.e., random connectivity patterns. For that purpose, we assume that the
loadings of connectivity patterns m(r)

i and n(r)
i together with the loadings of a possible tonic

input pattern Ii are sampled from a multivariate Gaussian distribution, P (m1, . . . ,mR, n1, . . . , nR, I),
which has mean zero and fixed covariance. This approach corresponds to the framework
presented in Beiran et al. (2020), corresponding to one single neural population, P = 1,
with zero-mean patterns. It is based on the more general case of random Gaussian con-
nectivity matrices with low-rank perturbations previously studied by Mastrogiuseppe and
Ostojic (2018) and Schuessler et al. (2020b).

We then study the dynamics of the collective variables in the limit of large networks
(N → ∞). In this limit, that we call the mean-field limit, the sum over multiple random
samples of correlated Gaussian samples in Eq. (3.6) can be approximated by an integral
over Gaussian variables, so that the recurrent dynamics read

κrecr =
∫
dnr dI

R∏
q=1

dmq P (nr, I,m1, . . . ,mR, )nrϕ

(
R∑
q=1

κqmq + κII

)
. (3.33)

Following the same steps as in Appendix 2.7.1, we apply Stein’s lemma to Eq. 3.33, which
simplifies to:

κrecr =
∫
dnrdI

R∏
q=1

dmqP (nr, I,m1, . . . ,mR, )
R∑
q=1

(
σmqnr

κq + κIσnrI

)
ϕ′

 R∑
q′=1

κq′mq′ + κII

 ,

(3.34)
where σmqnr

is a constant (the covariance between loadings mq and nr), and, analogously,
σnrI is the covariance between the loadings of the r-th right connectivity pattern and the
input pattern. Then, we use the fact that the sum of zero-mean independent Gaussian
variables (the input of function ϕ in Eq. (3.34)) is itself a Gaussian variable, with zero-
mean and variance equal to the sum of the Gaussian variables. The recurrent dynamics
then read

κrecr =
R∑
q=1

(
σmqnrκq + κIσnrI

) ∫
dxP (x)ϕ′

x
√√√√ R∑
q′=1

κ2
q′ + κ2

I

 (3.35)

where P (x) is the probability density function of a normal Gaussian variable

P (x) = (2π)− 1
2 exp

(
−x2

2

)
. (3.36)

Using the notation ⟨f (µ,∆)⟩ =
∫
dxP (x) f

(
µ+ x

√
∆
)

, the recurrent dynamics read

κrecr =
R∑
q=1

(
σmqnr

κq + κIσnrI

)
⟨ϕ′ (0,∆)⟩ (3.37)

where ∆ =
√∑R

q=1 κ
2
q + κ2

I .
Based on Eq. (3.37) we define the covariance matrix σmn as the R × R matrix with

pairwise covariance elements

[σmn]rs = σnrms (3.38)
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for r, s = 1, . . . , R. In this chapter, we refer to the matrix σmn indistinctly as the covariance
matrix or the correlation matrix, since the Gaussian variables have zero mean. We also
define the column vector of length R, σnI and the state vector κ = (κ1, . . . , κR)T .

We can then rewrite the dynamics in Eqs. (3.4) in the mean-field limit in vectorial form
as

τ
dκ

dt
= −κ +

〈
ϕ′ (0,κTκ + κ2

I

)〉
(σmnκ + σnI) . (3.39)

Dynamics in the radial direction The equation of the dynamics (Eq. 3.39) maps
every possible state κ in the recurrent subspace, to a velocity vector F (κ) that indicates
the direction along which trajectories starting at state κ evolve. The norm of the velocity
defines the speed at which trajectories evolve, that we denote with the scalar function Q
(Eq. 3.7). We study now the dynamics of autonomous networks, so that σnI = 0.

In order to analyze the dynamics of low-rank networks, we can project the velocity
vector at every state of the recurrent subspace onto the radial direction ur (the unitary
vector pointing from the origin towards the state κ). The radial component of the velocity
is a scalar variable, indicated as dr

dt or ṙ. We define the radial distance to the origin with
the variable r, defined in Eq. (3.11). It is useful to express the dynamics of autonomous
networks in such coordinates, because the non-linear factor of the dynamics

〈
ϕ′ (0,κTκ

)〉
depends only on the radial distance r.

The expression for the radial component of the dynamics can be calculated using the
identity rṙ = κT κ̇, as shown in Eq. (3.12).

Apart from the radial component, the remaining velocity can also point in any other
direction in the R − 1-dimensional space orthogonal to the radial direction. We can assess
the speed that flows in non-radial directions by computing the difference between the speed
at every state, and the speed in the radial component.

The squared speed at every state in the recurrent subspace reads:

Q2 = κ̇T κ̇ = r2 − ⟨ϕ′⟩ κT
(
σmn

T + σmn

)
κ + ⟨ϕ′⟩2

κTσT
mnσmnκ. (3.40)

The square of the speed in the radial direction is

ṙ2 = r2 − 2 ⟨ϕ′⟩ κTσmnκ + 1
r

⟨ϕ′⟩2 (
κTσmnκ

)2
. (3.41)

Therefore, the square of the remaining speed in non-radial directions reads

Q2 − ṙ2 = ⟨ϕ′⟩ κT
((

σmn
T − σmn

)
+ ⟨ϕ′⟩ σmn

T

(
I − κκT

κTκ

)
σmn

)
κ. (3.42)

Based on Eq. (3.42), we can show three important features of the dynamics:

• When the correlation matrix σmn is symmetric, the first term in Eq. (3.42) is zero,
because σmn

T = σmn. The symmetric component of correlation matrices generates
only radial dynamics.

• When κ∗ is an eigenvector of the correlation matrix σmn, so that σmnκ∗ = λκ∗ and
κ∗TσT

mn = κ∗Tλ, Eq. (3.42) simplifies to

κ̇T κ̇ − ṙ2 = ⟨ϕ′⟩

(
κT (λ− λ) κ + ⟨ϕ′⟩λ2

(
κTκ −

(
κTκ

)2

r2

))
κ = 0. (3.43)

This implies that in the directions given by the eigenvectors of σmn the flow can only
point in the radial direction.
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• If the correlation matrix σmn is isotropic, the first term is zero, because the matrix
is symmetric, and the second term is also zero (all directions are eigenvectors of the
correlation matrix), so that the dynamics of the recurrent subspace only evolve in the
radial direction.

Spherical attractors When the connectivity patterns of the r-th rank-one component
of the connectivity matrix, m(r) and n(r), are uncorrelated to the connectivity patterns of
any other rank-one component, the correlation matrix σmn is diagonal. Furthermore, if the
correlation between patterns m(r) and n(r) is the same for all r, as described in Eqs. (3.14)
and (3.15), the correlation matrix is isotropic, and has one single (degenerate) eigenvalue
σmn. As shown in the previous paragraph, in that case, the dynamics at every point in the
recurrent space are constrained to the radial direction.

Furthermore, if the correlation is strong enough (σmn > 1), the network generates a
continuum of fixed point at a distance r0 away from the origin, where r0 is defined by
Eq. (3.17). In rank-two, this continuum of fixed point corresponds to a circle, while in
rank-three, the continuum of fixed points are arranged on the surface of a sphere.

To assess the stability of this set of fixed points, we calculate the derivative of the radial
speed (Eq. 3.16) with respect to the radial distance:

τ
∂ṙ

∂r
= −1 +

〈
ϕ′ (0, r2)〉σmn +

〈
ϕ′′′ (0, r2)〉σmnr2. (3.44)

The spatial derivative of the dynamics (the Jacobian) evaluated at the fixed point r0 de-
termines the stability. Combining Eqs. (3.17) and (3.44), the radial derivative at the fixed
points read

τ
∂ṙ

∂r

∣∣∣∣
r=r0

=
〈
ϕ′′′ (0, r2

0
)〉
σmnr

2
0, (3.45)

which is a negative value, because ⟨ϕ′′′ (0,∆)⟩ is negative for any value of ∆ (see Appendix
2.7.3 in Chapter 2). Therefore, the continuum of fixed points are stable spherical attractors.
When the network is initialized at any state in the recurrent subspace away from the origin,
the trajectory evolves in the direction between the origin and the initial state, until reaching
the attractor at a radial distance r = r0.

Slow manifolds Slow manifolds are defined in dynamical systems theory as a particular
type of invariant invariant manifold (see Wiggins (2003) for an introduction to center mani-
fold theory). An invariant manifold of a dynamical system is a smooth region of state-space
where trajectories initiated within the manifold stay constrained to the manifold. For in-
stance, a smooth limit cycle is an invariant manifold. The slow manifolds of a fixed point
κ0 of a dynamical system, with Jacobian matrix A, are the invariant manifolds which corre-
spond to the directions spanned by the eigenvectors of the Jacobian A with zero eigenvalue
at the vicinity of the fixed point. In this work, we consider slow manifolds that are spanned
by eigenvectors of the Jacobian with eigenvalue very close to zero, not necessarily zero.
Hence, we do not take into account dynamics that evolve at much slower timescales than
the duration of a single trial. Strictly speaking, those manifolds are classified as unstable
or stable manifolds, depending on the sign of the eigenvalues.

For practical reasons, in the analysis of the dynamical landscape of trained networks,
we defined as slow manifolds the continuous regions in neural space where the speed is very
small (Eq. 3.8), similar to previous theoretical work in neuroscience defining slow points
(Sussillo and Barak, 2013). This is a necessary but not sufficient condition to show the
existence of a slow manifold in the classical sense of dynamical systems. Nevertheless,
we found that such candidate slow manifolds correspond to invariant manifolds that span
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trajectories in the vicinity of fixed points tangent to the zero or almost zero eigenvalues of
their Jacobian.

In simplified low-rank network models, one example of a slow manifold is the continuum
of fixed points generated in the mean-field description of rank-R networks with an isotropic
correlation matrix σmn. As shown above, they generate a continuum of fixed points ar-
ranged on an R-dimensional sphere, where the Jacobian at each fixed point has eigenvectors
with zero eigenvalue tangent to the surface of the manifold. This is an attractor, a particular
case of a slow manifold, since the dynamics are zero everywhere on the manifold.

In finite-size networks however, the noise from random sampling of the pattern loadings
perturbs the isotropic correlation matrix, modifying the dynamical landscape. The pertur-
bations in a finite-size networks introduce some non-zero dynamics that evolve along the
surface of the sphere with radius r0. However, the sphere remains a slow manifold (see
Fig. 3.7 A for an example). The network behaves as predicted by the mean-field descrip-
tion far away from the manifold, showing fast dynamics in the radial direction towards the
manifold. However, when trajectories converge to r0, they evolve slowly along the surface
of the manifold away from saddle points and towards a stable fixed point or limit cycle.
In other words, in finite networks, rank-R networks can generate slow spherical manifolds
corresponding to the spherical attractor of the mean-field description. We detail here how
to control the dynamics on slow manifolds, by perturbing the correlation matrix σmn in
Eqs. (3.14) and (3.15) so that they are robust to random sampling noise. We focus on
rank-two networks.

Slow manifolds in rank-two networks We observe that autonomous rank-two net-
works generate one closed invariant manifold surrounding the origin, if all eigenvalues of
the correlation matrix σmn have real part larger than unity. These closed trajectories are
attractive, in the sense that when the network is initialized at any state different from the
origin, trajectories evolve towards this curve, and then stay on it. This closed invariant
curve can have a finite number of fixed points, in which case, it is defined as a heteroclinic
cycle; it can have no fixed points at all, in which case it is a limit cycle (leading to oscillatory
solutions), or, it can be a continuum of fixed points, in which case the invariant manifold
is a ring attractor. If the correlation matrix is close to isotropic (Eqs. 3.14 and 3.15), as
we considered in out network models, the dynamics along this attractive trajectory are very
slow. For that reason, in the simplified network models we refer to this closed trajectories
as slow manifold.

We can describe the slow manifold in a rank-two network as a curve R (θ), or Rθ in
short notation, parameterized by one single intrinsic variable, for instance, the angle with
respect to the κ1 axis, θ. We define the slow manifold using the normal vector un (θ) which
is orthogonal to the curve at every point of the trajectory:

un (θ) = −Rθur +R′
θuθ (3.46)

where vectors ur and uθ correspond to unitary vectors in the radial and angular directions,
respectively, and R′

θ is the derivative with respect to θ of the curve R (θ).
We can then formally define the slow manifold in rank-two networks as the curve Rθ

whose normal vector is orthogonal to the velocity of the dynamics, κ̇ = ṙur + rθ̇uθ at every
point of the curve:

un (θ) ·
(
ṙ (Rθ, θ) ur +R′

θ θ̇ (Rθ, θ) uθ
)

= 0 (3.47)
for any angle −π < θ < π, given that Q (Rθ, θ) > 0.

Combining Eqs. (3.46) and (3.47), we obtain the defining condition

ṙ (Rθ, θ) = R′
θ θ̇ (Rθ, θ) . (3.48)

This condition provides no information at fixed points. However, we found that in
autonomous rank-two networks all non-trivial fixed points belong to the slow manifold.
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Finding a closed-form expression of the slow manifold generated by a correlation matrix
σmn is in general a challenging problem. It is often more practical to approximate the slow
manifold with an ellipse, using additional information we may have from the dynamical
landscape.

In non-autonomous rank-two networks receiving a constant input, there might not be a
closed invariant trajectory in the recurrent subspace. For instance, as we show in the next
paragraph, networks receiving a very strong tonic input generate a dynamical landscape
with one single fixed point, which is stable and located away from the origin. In that case,
there is no slow manifold in the recurrent space.

The definition of slow manifolds in these simplified network models can be generalized
to networks with rank higher than two, as the smooth R − 1-dimensional closed surface,
where the velocity κ̇ at each point of the surface is orthogonal to the corresponding normal
vector. In rank-three for instance, such closed manifold exists when the real part of all
eigenvalues is larger than one, and can be parameterized with two angular values (e.g., the
altitude and the latitude).

Controlling the dynamics along ring manifolds We detail here a step-by-step expla-
nation of the dynamical components #2, #3 and #4 described in Section 3.4, relative to
rank-two networks. The general approach is to study the dynamics of the simplified net-
work models, Eq. (3.10) in the case of autonomous networks, and Eq. (3.22) for networks
receiving a constant input, given different correlation matrices σmn. For a clear connection
with the main text, we announce at the beginning of each derivation to which dynamical
component in Section 3.4 we refer to.

We focus on analyzing fixed points. The fixed point equation is found by setting the
velocity κ̇ to zero in the equation of the dynamics, Eq. (3.10). Rearranging terms, the fixed
point equation reads:

κ0 =
〈
ϕ′ (0,κ0

Tκ0
)〉

σmnκ0. (3.49)

The fixed point equation is reminiscent of an eigenvalue problem: a vector is equal to
a matrix times the vector itself. The only vectors κ0 that solve the equation are the
eigenvectors of the correlation matrix σmn. Therefore, we conclude that the only fixed
points of the dynamical landscape are located in the directions of the real eigenvectors of
the correlation matrix.

#2. Generating fixed points on ring manifold. The first correlation matrix σmn we
consider to control the dynamics on the ring manifold is given by Eq. (3.18), and we focus
on the dynamics of the autonomous network. This correlation matrix is diagonal, and has
two real eigenvalues σmn ± ∆, with corresponding eigenvectors:

v+ = (1, 0)T (3.50)
v− = (0, 1)T . (3.51)

Consequently, the fixed points must lie along the κ1 and κ2 axes. Introducing the ansatz
κ±

0 = ρ±v± in Eq. (3.12), we obtain the following equation for the radial distance of fixed
points along both axes:

(σmn ± ∆)−1 =
〈
ϕ′ (0, ρ2

±
)〉
. (3.52)

We can study then the Jacobian around fixed points κ+
0 and κ−

0 to determine the stabil-
ity of the fixed points. The Jacobian matrix of the dynamics is obtained by differentiating
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Eq. (3.10) with respect to each collective variable, and reads (see Schuessler et al. (2020b),
Appendix 2.7.3 in Chapter 2):

∇F (κ) = −I +
〈
ϕ′ (0,κ0

Tκ0
)〉

σmn +
〈
ϕ′′′ (0,κ0

Tκ0
)〉

σmnκ0κ0
T . (3.53)

Evaluating the Jacobian at the fixed point κ0
+, and using Eq. (3.52), we obtain

∇F
(

κ+
0

)
= −I + σmn

σmn + ∆
+
〈
ϕ′′′ (0, ρ2

+
)〉

σmnκ+
0 κ+

0
T
. (3.54)

This Jacobian has one eigenvalue −2∆/(σmn+∆), which is negative, with associated eigen-
vector v−, and another eigenvalue

〈
ϕ′′′ (0, ρ2

+
)〉
ρ2

+ (σmn + ∆) which is also negative. There-
fore, since the eigenvalues of the Jacobian at this fixed point are negative, the fixed point
is stable.

Evaluating now the Jacobian at the fixed point κ0
− we obtain:

∇F
(

κ−
0

)
= −I + σmn

σmn − ∆
+
〈
ϕ′′′ (0, ρ2

−
)〉

σmnκ−
0 κ−

0
T
. (3.55)

which has one eigenvalue 2∆/(σmn − ∆), with eigenvector v+, that is positive. The other
eigenvalue reads

〈
ϕ′′′ (0, ρ2

−
)〉
ρ2

− (σmn − ∆), which is negative, and has eigenvector v−. The
fixed points in the κ2 direction are therefore saddle points: stable in the radial direction,
and unstable in the κ1 direction.

We can then infer the direction of the dynamics along the slow manifold by combining
the fact that there are only a pair of stable fixed points symmetrically arranged on the κ1
axis and a symmetric pair of saddle points on the κ2 axis with the fact that there must be
an attractive slow manifold containing them. Alternatively, as presented in the text, we can
analyze the sign of the angular speed θ̇ for different angular values θ given by Eq. (3.20).

#3. Position of fixed points on ring manifold. If the correlation matrix σmn is diagonal,
fixed points are generated along orthogonal directions, because the eigenvectors of a sym-
metric matrix are orthogonal to each other. We can modify the relative location between
stable fixed points and saddle points by including off-diagonal terms in the correlation ma-
trix σmn. In particular, we use the same correlation matrix as in the previous dynamical
component, but now including a small non-zero correlation ϵ between loading variables n1
and m2 (Eq. 3.23).

The eigenvalues remain σmn ± ∆, but the eigenvectors read

v+ = (1, 0)T (3.56)

v− = 1√
ϵ2 + 4∆2

(−ϵ, 2∆)T . (3.57)

The angle between eigenvectors is now given by arctan (−2∆/ϵ), which is zero in the limit
∆ → 0, and π/2 in the limit ϵ → 0, which is the case studied in the previous dynamical
component.
The radial distance of the fixed points along the direction of the eigenvectors is given by
Eq. (3.52), because the eigenvalues did not change. The Jacobian evaluated at the fixed
point κ+

0 is also given by Eq. (3.54), because the eigenvector v+ is the same. Therefore,
the fixed points in the κ1 direction are stable in all directions.

The Jacobian around the fixed points in direction v− reads

∇F
(

κ−
0

)
= −I + σmn

σmn − ∆
+
〈
ϕ′′′ (0, ρ2

−
)〉

σmnκ−
0 κ−

0
T
. (3.58)
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This matrix has one eigenvalue ρ2
−
〈
ϕ′′′ (0, ρ2

+
)〉

(σmn − ∆), which is negative, along
the radial direction v−. The second eigenvalue can be found by calculating the trace of
the Jacobian and subtracting the first eigenvalue. We find that this eigenvalue is always
positive, unless ∆ = 0, where this eigenvalue is zero. Therefore, the fixed points located on
the direction v− are saddle points.

We showed in Fig. 3.7 C the limit case where ∆ = 0. We detail here the derivations for
that particular case. The correlation matrix σmn has one single eigenvalue σmn and one
single eigenvector in the κ1 direction. Therefore, only two fixed points are generated along
the only eigenvector direction u1.

The Jacobian around these fixed points reads

∇F (κ0) = −I +
〈
ϕ′ (0, ρ2

0
)〉

σmn +
〈
ϕ′′′ (0, ρ2

0
)〉
ρ2

0σmnu1u1
T . (3.59)

The Jacobian has eigenvectors along the canonical directions u1 and u2 with correspond-
ing eigenvalues

〈
ϕ′′′ (0, ρ2

0
)〉
ρ2

0σmn and 0, respectively. To determine the stability of a fixed
point whose Jacobian has at least one zero eigenvalue, additional information must be taken
into account.

In this case, we can express the dynamics in polar coordinates, by using the identities
rṙ = κ1κ̇1 + κ2κ̇2 and r2θ̇ = κ1κ̇2 − κ2κ̇1:

τ
dr

dt
= −r +

〈
ϕ′ (0, r2)〉 (σmnr + ϵr cos θ sin θ) (3.60)

τr
dθ

dt
= −

〈
ϕ′ (0, r2)〉 ϵr sin2 θ. (3.61)

The dynamics along the angular component always point in the same direction (θ̇ has the
same sign for any value of θ). Therefore, there is a slow manifold where the dynamics rotate
in the same direction. The fixed points then are stable if perturbed against the direction of
rotation, and unstable if perturbed in the sense of rotation. Such fixed points are named
half-stable fixed points (Strogatz, 2000).

#4. Speed control of dynamics on manifold with a tonic input. We study now the effect
that a external tonic input, with amplitude uI and correlated with the connectivity patterns
n(1) and n(2), produces on the dynamics of a rank-two network. The dynamics are given by
Eq. (3.22). We focus on the case where the correlation matrix σmn is diagonal (Eq. 3.18).
When the input’s amplitude is zero, the recurrent subspace generates two saddle points and
two stable fixed points, as shown in Fig. 3.7 B. In this analysis, we focus on the limit case
where the external input dominates the dynamics, uI → ∞, to build some intuition about
how the dynamics evolve when the input is increased.

From the dynamics in Eq. (3.22), we can determine the fixed point equation:

κ0 =
〈
ϕ′ (0, u2

I + κ0
Tκ0

)〉
(σmnκ0 + uIσnI) (3.62)

In the case uI → ∞, the contribution of the external input to the dynamics is much
larger than the contribution of the recurrent connectivity uI |σnI | ≫ |σmnκ0|. Therefore,
we study that scenario assuming that there are no recurrent dynamics σmn = 0. The
possible fixed points must appear then along the direction spanned by σnI . Introducing
the ansatz κ0 = ρ0σnI , where we assume that the correlation vector σnI has unit norm,
we obtain

ρ0 =
〈
ϕ′ (0, u2

I + ρ2
0
)〉
uI . (3.63)
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This expression for the fixed point is not symmetric: if ρ0 is a solution of the fixed point
equation, it does not imply that −ρ0 is also a solution. In autonomous networks, the
dynamic landscape always shows such a symmetry, which is disrupted by the tonic input.
The left hand side of Eq. (3.63) is a straight line with unit slope. The right hand side
corresponds to a function with maximum at ρ0 = 0, that decays asymptotically to zero as
|ρ0| is increased. Both functions cross at one single point.

The Jacobian around this fixed point reads

∇F (κ0) = −I +
〈
ϕ′′′ (0, ρ2

0 + u2
I

)〉
u2
IσnIσnI

T (3.64)

which has eigenvalues −1 in all directions except for direction σnI , where the eigenvalue
is even more negative: −1 +

〈
ϕ′′′ (0, ρ2

0 + u2
I

)〉
u2
I . The fixed point is therefore stable in all

directions.
On the other hand, when uI = 0, the network generates two stable fixed points and

two saddle points. Therefore, there must be one or more critical values u∗
I at which the

dynamics undergo a bifurcation: from a heteroclinic cycle to a single fixed point in the
direction σnI . The input amplitudes studied in Fig. 3.8 A-D correspond to the subcritical
regime, where the input does not remove the existence of a heteroclinic cycle. However,
it perturbs the heteroclinic cycle even for weak inputs, by displacing the five autonomous
fixed points along the σnI direction.
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3.8 Supplementary information

3.8.1 Appendix A: Responses to transient pulses in simplified network
models

The dynamics of a rank-R network with one single Gaussian population receiving a delta
pulse along an input pattern I correlated only with the left connectivity patterns m(r) read

τ
dκ

dt
= −κ +

〈
ϕ′ (0,κTκ

)〉
σmnκ + σmIδ (t− t0) . (3.65)

The R-dimensional vector σmI measures the correlation between the input pattern and the
R left connectivity patterns. The network response to this input with an immediate change
of state in neural trajectory, from κ (t− t0) to κ (t− t0) + σmI .

The dynamics of the same network to a delta pulse along an input pattern correlated
only with the right connectivity patterns n(r) are determined by

τ
dκ

dt
= −κ +

〈
ϕ′ (0,κTκ + κ2

I

)〉
(σmnκ + σnIκI) (3.66)

τ
dκI
dt

= −κI + δ (t− t0) , (3.67)

where σnI is an R-dimensional vector that determines the correlations between input pat-
tern and right connectivity patterns. The response to the pulse in the recurrent subspace is
no longer immediate, because it is low-pass filtered by the membrane time constant τ and
is modulated by the average gain of neurons in the network,

〈
ϕ′ (0,κTκ + κ2

I

)〉
.

However, both of the input pulses above can elicit qualitatively similar responses when
the correlation vectors σmI are σnI parallel to each other (Fig. 3.12). When the input
pulse is correlated when the left connectivity patterns, a discontinuity appears in the time-
dependent trace of the collective variables (Fig. 3.12 A), while when the input pattern is
correlated with the right connectivity patterns, there is no discontinuity in the recurrent
collective variables (Fig. 3.12 B). Nevertheless, both input patterns are able to send the
neural trajectories from one stable state towards a different stable fixed point, generating
equivalent trajectories for implementing a given neural computation.
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Input pulse Input pulse A B

Figure 3.12: Transient responses to input pulses in the recurrent subspace.
A Neural responses in a rank-two network to an input pulse proportional to the m(r)

connectivity patterns. Showing responses to six different pulses received along the same
input pattern. Dots indicate network state right after the pulse is received. The pulse
produces an immediate change in the network state, trajectories then evolve towards the
slow manifold and evolve slowly towards a fixed point. Left: trajectories in the recurrent
neural space. Right: activity of collective variables as a function of time. B Neural responses
of a rank-two network to an input pulse received along an input pattern proportional to
the n(r) connectivity patterns. The input pulse shifts the neural trajectories to a third
dimension because the input pattern is orthogonal to the recurrent subspace. The pulse
does not generate an immediate change in state in the recurrent subspace. However, after a
fast transient, trajectories are constrained to the recurrent subspace and generate responses
which are qualitatively similar to those shown in A. Parameters: Rank-two network as in
Fig. 3.7. In A, σmI = (1, 0.8), input strengths ranging from 0.5 to 2. In B, σnI = (1, 0.8),
input strengths ranging from 0.5 to 3. Time in units of the membrane time constant τ .
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3.8.2 Appendix B: Producing different time intervals on a spherical
manifold

It is possible to implement temporal tasks using a spherical manifold, as shown in Fig. 3.10
for the Measure-Wait-Go task. A spherical manifold can be generated by a rank-three
network with quasi-isotropic correlation between connectivity patterns. In order to find the
input patterns that implement the required task, it is convenient to find first the neural
states at the beginning of the production epoch that generate trajectories that evolve at
different speeds, almost in parallel, towards a final state. Once such states are determined,
together with their corresponding produced time intervals tp, it is possible to find the right
inputs that leave the neural trajectories at that state right at the beginning of the production
epoch.

In the particular network we used to solve the Measure-Wait-Go task, there are two
orthogonal ring manifolds on the surface of the sphere. One ring is the storage attractor,
which is used as a line attractor to store estimated intervals. The orthogonal ring induces
rotational dynamics along the sphere. In total, there are only two stable fixed point in
the network. Therefore, during production, neural states must lie in the vicinity of one
of the stable fixed points, and then move along the sphere towards the opposite stable
state (Fig. 3.13 A). Trajectories that move from one side to the sphere to the other side
closer to the plane of the storage attractor (blue curve, Fig. 3.13 B) evolve slower than
trajectories that evolve further away from the storage attractor (red curve, Fig. 3.13 B).
This is explained by the fact that the storage ring has very low speed, since it is designed to
maintain a neural state over long periods of time. Neural states of the spherical manifold
close to this plane are slower than neural states on the spherical manifold that are far from
it (see color map in Fig. 3.13 B). This difference in speed along the sphere is the basis for
the temporal stretching of neural responses.

Once a set of neural states has been found that evolve from one side of the sphere to
the other at different speeds, it is possible to fix a readout direction and a threshold on the
projected readout activity (Fig. 3.13 C) to determine the produced time interval tp. That
way, there is mapping between some neural state at the beginning of production and the
timing response (Fig. 3.13 D). As a second step, in order to solve a given temporal task,
we use those produced intervals as the sample intervals during the estimation epoch, and
look for the right inputs that make the network reached those states at the beginning of
production. This is the procedure we followed to implement the Measure-Wait-Go task.
However, it would be possible to use the same trajectories during production to implement
other timing tasks requiring estimating an interval or working memory, like the Reasy-Set-
Go task or hte Cue-Set-Go task with a tonic input that does not remain present until the
end of the trial. It would only be necessary to find the suitable input patterns that elicit the
same neural trajectories during trajectories, without modifying the recurrent connectivity.

Finally, we can project the three-dimensional trajectories in the recurrent space to ana-
lyze their geometry (Fig. 3.13 E, left and right for two different projections). We find that
along some projections (right), trajectories evolve in parallel along the surface of a sphere
until reaching the final stable fixed point. The initial level on one given dimension of the
recurrent subspace determines the speed at which trajectories evolve. This is the input
subspace. In a projection orthogonal to this input subspace, the trajectories overlap almost
completely along the same path, but evolve at different speeds, which defines the temporal
scaling subspace.
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Figure 3.13: Simplified model for production on spherical attractor. A Sketch
of the spherical manifold, with two embedded ring manifolds, the storage ring (red) and
the production ring (blue). The trajectories during production are shown in thick color
lines. The initial states are indicated with dots and the final states with diamonds. Black
dots 500 ms after the Set input. Trajectories evolve along the bottom hemisphere, from
one side of the storage attractor to the other. B Projected dynamics on the surface of the
sphere, where each point on the sphere is parametrized by two angles, the altitude ϕ and
azimuth θ. The colormap represents the logarithmic speed of the dynamics. Trajectories
are also shown in this projection. C One-dimensional projection of the neural trajectories
during the production epoch. The black line represents the threshold. The time point at
which the projected activity crosses threshold corresponds to the produced interval tp D
Relation between initial state on the storage attractor, given by the azimuth θ and the
corresponding produced interval. E Two different projections of the neural trajectories
during the production epoch. Parameters: τ = 50 ms, σm1n1 = 1.8, σm2,n2 = 1.4, Set pulse:
σmI = (1, 1). Input cue σn2I = uI , σI2 = u2

I , σn1I = 0, orientation of projection vector
θ = 0.65π, threshold value 0.12.
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MOTS CLÉS

réseaux de neurones récurrents, dynamique de réseaux, variétés, codage temporel, neuroscience théorique

RÉSUMÉ

L’activité neuronale chez l’animal présente une vaste gamme d’échelles temporelles qui donne lieu à des comportements
pouvant s’adapter à un environnement en constante évolution. Comment cesmotifs temporels complexes sont-ils générés,
sachant que les neurones individuels fonctionnent avec une constante de temps de membrane de l’ordre de quelques
dizaines de millisecondes ? Comment les opérations neuronales s’appuient-elles sur ces motifs d’activité pour produire
des comportements temporels flexibles ?
Une des hypothèses possibles pour l'émergence de dynamiques lentes au niveau de l’activité neuronale est que celles-
ci soient héritées de processus biophysiques sous-jacents au niveau des neurones individuels, tels que les courants
ioniques d’adaptation et la transmission synaptique. Dans la première partie de cette thèse, nous analysons des réseaux
de neurones connectés de façon aléatoire qui prennent en compte ces processus cellulaires lents et nous caractérisons
les statistiques temporelles de l’activité neuronale émergente. Notre conclusion principale est que les échelles temporelles
des différents processus biophysiques n’entraînent pas nécessairement une grande variété d’échelles temporelles dans
l’activité collective des réseaux de neurones.
D’autre part, des motifs d’activité complexes peuvent être générés par des structures spécifiques de connectivité synap-
tique. Dans le deuxième chapitre de cette thèse, nous considérons une nouvelle classe de modèles, des réseaux récur-
rents de bas rang à mixture de gaussiennes. La structure de la connectivité y est caractérisée par deux propriétés
indépendantes : le rang de la matrice de connectivité, et le nombre de populations définies par les statistiques de la con-
nectivité. Nous montrons que ces réseaux agissent comme des approximateurs universels des systèmes dynamiques et
peuvent en conséquence générer des activités temporelles complexes.
Dans le dernier chapitre, nous étudions les mécanismes dynamiques au niveau de réseaux de neurones à la base de
tâches sensorielles et motrices qui exigent des calculs temporels flexibles. On montre d’abord que des réseaux de bas
rang entraînés sur ces tâches donnent lieu à des variétés invariantes de basse dimensionnalité, où la dynamique évolue
lentement et peut être modulée de manière flexible. Nous identifions ensuite les composantes dynamiques clés et les
validons dans des modèles de réseaux simplifiés qui effectuent les mêmes tâches temporelles. Globalement, nous avons
découvert de nouveaux mécanismes dynamiques générant des comportements temporels flexibles, qui sont fondés sur
une structure de connectivité minimale et peuvent implémenter une ample gamme de tâches.

ABSTRACT

Neural activity in awake animals exhibits a vast range of timescales giving rise to behavior that can adapt to a constantly
evolving environment. How are such complex temporal patterns generated in the brain, given that individual neurons
function with membrane time constants in the range of tens of milliseconds? How can neural computations rely on such
activity patterns to produce flexible temporal behavior?
One hypothesis posits that long timescales at the level of neural network dynamics can be inherited from long timescales of
underlying biophysical processes at the single neuron level, such as adaptive ionic currents and synaptic transmission. We
analyzed large networks of randomly connected neurons taking into account these slow cellular process, and characterized
the temporal statistics of the emerging neural activity. Our overarching result is that the timescales of different biophysical
processes do not necessarily induce a wide range of timescales in the collective activity of large recurrent networks.
Conversely, complex temporal patterns can be generated by structure in synaptic connectivity. In the second chapter of the
dissertation, we considered a novel class of models, Gaussian-mixture low-rank recurrent networks, in which connectivity
structure is characterized by two independent properties, the rank of the connectivity matrix and the number of statistically-
defined populations. We show that such networks act as universal approximators of arbitrary low-dimensional dynamical
systems, and therefore can generate temporally complex activity.
In the last chapter, we investigated how dynamical mechanisms at the network level implement flexible sensorimotor
timing tasks. We first show that low-rank networks trained on such tasks generate low-dimensional invariant manifolds,
where dynamics evolve slowly and can be flexibly modulated. We then identified the core dynamical components and
tested them in simplified network models that carry out the same flexible timing tasks. Overall, we uncovered novel
dynamical mechanisms for temporal flexibility that rely on minimal connectivity structure and can implement a vast range
of computations.
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