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Résumé
La détection et l’identification d’objets à partir de leurs champs diffractés ultra-
large bande est l’une des applications du radar. En effet, des travaux de ce type
ont été initiés par C.E. Baum qui a proposé d’appliquer des méthodes d’expan-
sions en singularités (SEM) au champ diffracté d’un objet éclairé par une onde
incidente large bande. L’extraction et l’étude des pôles de résonance de ces si-
gnaux mesurés permet de distinguer les différents objets par l’identification
des pôles naturels qui leur sont propres. Dans cette thèse, la SEM est explo-
rée afin d’établir un modèle compact qui représente, avec précision, le champ
diffracté ultra-large bande d’un objet indépendamment de l’angle d’observa-
tion et de son orientation. Dans cette optique, plusieurs techniques SEM ont
été comparées : TLS Matrix Pencil pour des signaux dans le domaine temporel,
TLS Cauchy et Vector Fitting pour des signaux dans le domaine fréquentiel.

Suite à la discrimination fréquentielle des objets issue des pôles obtenus par la
SEM, des techniques de classification supervisées de type Machine Learning et
Deep Learning sont appliquées pour classer les différents objets en fonction de
leurs paramètres caractéristiques. Ainsi, différents algorithmes de classification
ont été étudiés : Support Vector Machine (SVM), Decision Tree (DT), réseaux
de neurones multicouches (MLP) et réseaux de neurones convolutifs (CNN).
Cette étude montre que l’association d’une technique SEM la plus robuste au
bruit avec des classifieurs à base de réseaux de neurones permet de classifier
la forme ou la matière d’un objet à partir d’une seule mesure et avec un faible
cout de calcul. De plus, on propose une procédure qui permet de déterminer
la direction de l’antenne de réception et l’orientation d’un objet à partir des
résidus qui sont associés à chaque pôle de résonnance. Cette procédure de clas-
sification avec des données issues de la SEM est très prometteuse en particulier
lorsqu’il s’agit de généraliser à des données non incluses dans l’ensemble d’ap-
prentissage.

Mots clés— Champs diffractés ULB, Décomposition en singularités, Vector Fitting,

Classification d’objets, Machine Learning, Deep Learning
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Abstract
One of the applications of radar is the detection and identification of objects
from their ultra-wideband scattered field response. Indeed, work of this type
was initiated by C.E. Baum who proposed to apply the singularity expansion
methods (SEM) to the scattered field of an object illuminated by a broadband
incident wave. The extraction and study of the resonant poles of these mea-
sured signals allows to distinguish different objects by identifying their natural
poles. In this thesis, the SEM is explored in order to establish a compact model
that accurately represents the ultra-wideband scattered field of an object in-
dependently of the observation angle and its orientation. In this perspective,
several SEM techniques were compared: TLS Matrix Pencil for time domain
signals, TLS Cauchy, and Vector Fitting for frequency domain signals.

Following the frequency discrimination of objects obtained by the SEM tech-
nique, supervised classification algorithms of the Machine Learning and Deep
Learning type are applied to classify different objects from their characteristic
parameters. Hence, several classification algorithms have been studied: Sup-
port Vector Machine (SVM), Decision Tree (DT), Multi-Layer Perceptron (MLP)
and Convolutional Neural Network (CNN). This study shows that the combi-
nation of a noise-robust SEM technique with neural network-based classifiers
allows to classify the shape or the material of an object from a single measure-
ment and with a low computational cost. Moreover, we propose a procedure
that allows to determine the direction of the receiving antenna and the orienta-
tion of an object from the residues that are associated with each resonant pole.
This classification procedure using data from the SEM is very promising espe-
cially when generalizing to data not included in the training set.

Keywords— Scattered field, Singularity expansion method, Vector Fitting, Object clas-

sification, Machine Learning, Deep Learning
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Chapter 1

General introduction

Radar (Radio Detection and Ranging) is universally known for radio detection
and was introduced around the year 1935. As the name indicates, a radar sys-
tem uses radio signals to detect targets. Its first developments took place during
the Second World War and since then, it has continued to develop technolog-
ically and in terms of applications. For many years, the applications of radar
were only in the military domain. However, the radars have found several
applications in the civilian field, such as navigation aids, anti-collision, speed
control, vision in robotics, surveillance, imaging and finally meteorology.

The primary reason for developing a radar was to detect the presence of pas-
sive objects by using their radio echoes to determine their positions. The pro-
cess involved in a radar is to emit an electromagnetic wave; a part of which is
reflected by obstacles and creates a back-scatter wave which is detected with a
receiving module. By calculating the round-trip time of the wave, we can de-
duce the distance to the detected obstacle. Other radars can also perform target
recognition or tracking. The most traditional radar technologies are correlation
radars, pulse radars and frequency modulated continuous wave radars.

The classification and recognition of targets using a radar has become very pop-
ular in the past years (Jouny, Garber, and Ahalt, 1993). The purpose of classifi-
cation is to divide a set of elements into several categories, called classes. The
motivation behind integrating a classification module in a radar is due to: first,
the desire to know more about a detected target than just its presence, both in
military and in a variety of civilian radars; and second, the potential for the ap-
plication of target classification techniques to many research areas, including
geophysical and meteorological applications. The developments made in this
area has led to the emergence of several new techniques capable of meeting this
need. Thus, artificial intelligence (AI) and the study of its various techniques
has become a popular trend among researchers in different fields. One of the
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most developed AI forms that has led to its rapid development is artificial neu-
ral network (ANN) that mimics the human brain mechanism. Although neural
models have been attracting a lot of interest in recent years, they date back to
the 1940s with the advent of the first computer.

As for ensuring the proper operation of the radar, it must be able to provide
both appropriate spatial resolution and sufficient penetration depth for the in-
tended application. Most of the traditional radar systems employ narrow-band
signals, which means that the resolution is poor as the bandwidth is relatively
small. Those signals are mostly used for the detection of objects as they can
be easily generated. However, with recent electronic developments, the need
for more advanced applications, like target recognition, have increased. In fact,
the ability of a radar to recognize objects depends on several parameters : the
bandwidth, the central frequency associated with this bandwidth (the wave-
length), and spatial diversity, a combination of which can enhance the recog-
nition resolution. Thus, narrow-band signals have insufficient information on
target characteristics due to the small bandwidth, leading to reduced efficiency
in target classification and recognition, and, in that case, it is beneficial to have
spatial diversity of the measurements for a better target recognition. Hence,
to circumvent the need for spatial diversity, development of a technology that
uses wider bandwidth to gather more data about the target, and benefit from
spectral diversity, is needed.

Unlike conventional radar systems that use narrow-band signals, Ultra-Wide
Band (UWB) radars transmit short electromagnetic (EM) signals across a band-
width greater than 25 percent of the center frequency. They appeared in the
1960’s where the use of EM waves in time domain was undertaken experi-
mentally when microwave circuit operation in the time regime was mastered
(Bennett and Ross, 1978). With UWB pulses, the spatial resolution is high, and
they can penetrate dielectric materials. Moreover, by using very short pulses,
it is easier to separate the responses of different objects. The uses for radars
in the UWB domain range from applications in the military fields, such as
the detection of buried landmines, to civilian fields, such as medical imaging,
ground penetrating radars, and materials characterization. With technological
advancements, it has become possible to use UWB radar for target recognition
and classification as the radar’s large bandwidth enables more information and
a higher probability of target detection by analyzing the signal spectrum.

Classification using Machine Learning (ML) and Deep Learning (DL) algo-
rithms, that are both sub-branches of AI, have been receiving much attention
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in recent years. In fact, multiple data types have been exploited for target
classification, which can be broken into two categories: raw data and pre-
processed data. In the first category, we find Radar Cross Section (RCS) re-
sponses that can be directly used to classify different objects or human targets
(Bufler, Narayanan, and Dogaru, 2015). In addition, Micro-Doppler measure-
ments are used for the detection of humans and the classification of moving
targets or human activities (Yinan Yang et al., 2006; Hadhrami et al., 2018).
However, those measurements usually depend upon the angle of observation
making the classifiers sensible to a change in the object orientation or in the
position of the antenna. Additionally, as the frequency band is very wide, there
is a huge amount of data contained in those measurements.

Pre-processing has many interests, one of which is to perform identification and
classification in a different space from that of the measurement. Thus, radar
imaging techniques can be applied to generate pre-processed data. The Syn-
thetic Aperture Radar (SAR) or inverse SAR (ISAR) images are deployed for
classification (Chapelle, Haffner, and Vapnik, 1999; Schwegmann et al., 2017;
Ning, Chen, and Zhang, 2003). This requires the acquisition of many measure-
ments to construct an image, which generates large databases and constitutes
huge computational time in terms of measurements. Furthermore, while the
previous techniques can deliver high accuracy results in target classification,
they still require the use of large classifiers as they contain significant amount
of data. Therefore, it is beneficial to implement a method that permits to recog-
nize and classify objects from few parameters and from a single measurement.
To compact these information, solutions are being explored, in particular the
use of natural resonance frequencies of objects.

1.1 Objectives

The objective of this thesis is to apply a pre-processing method allowing the
extraction of characteristic parameters of the UWB scattered field for object
recognition and classification. This will be done by studying several feature ex-
traction methods and selecting the most suitable one for our application. Then,
the selected technique will be used to compress the UWB scattered field from
different objects into characteristics parameters that will be combined with var-
ious classification algorithms (ML and DL) to classify those objects.

Several feature extraction techniques are available but the extracted parameters
are often dependent on the observation angle and the orientation of the object.
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The natural resonances are parameters that allow to model the UWB scattered
field of a target using the Singularity Expansion Method (SEM) (Baum, 1976).
These resonances are intrinsic to the object and are independent of the incident
and observation angles, making the SEM a very interesting method in an op-
erational context when the target position is not completely controlled. Those
parameters are largely explored for characterization of objects, but rarely for
classification.

Indeed, the SEM allows to compress the scattered field data by decomposing
it into natural resonant frequencies and residues. Part of the work in this the-
sis is based on LEAT experience in scattered field measurements and is in the
continuation of the thesis of Abdellah Roussafi (Roussafi, 2016), where a com-
pact model representing accurately the antenna radiation characteristics was
established, allowing to find the field at various distances with a minimum
amount of data. This was achieved by using a double compression technique:
the SEM method for frequency/temporal modeling, and the vector spherical
wave expansion for spatial modeling. We aim at using only the SEM modeling
to characterize and classify different objects.

Therefore, based on the UWB scattered EM field, the objective is to identify
and classify objects from their resonances using ML and DL algorithms. In fact,
ML techniques, and especially deep learning, have been widely used in image
classification (LeCun, Bengio, and Hinton, 2015) and now AI algorithms are
showing better performance than human doctors in identifying cancer in X-ray
images, not only in speed but also in accuracy. While they have undergone an
exciting evolution in recent years, their full potential for radar applications has
yet to be explored. That is why, instead of working directly with the raw UWB
scattered field, we aim to test several ML and DL algorithms by combining
them with pre-processed data from SEM to be able to classify different objects
from few parameters and with no angle dependency.

1.2 Contributions

One of the principal limitations of the SEM technique is its sensitivity to noise.
Thus, the first contribution in this thesis consists in evaluating different meth-
ods which can be used to extract the resonances of an object, in a noisy and
noiseless environments, in order to conclude on their robustness. This study
will allow to define a protocol for poles extraction and to select the most robust
SEM technique.
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Indeed, the pole analysis using the SEM is currently used as a compact model-
ing method to reduce the data required for the characterization of objects. Each
extracted pole is associated with its corresponding residue that depends upon
observation angle and incident wave. Since the residues are aspect dependent,
they are not considered to be characteristic of the object, and to our knowledge
they have not been exploited. Thus, the second contribution consists in utiliz-
ing these SEM data for classification of several objects by associating them with
various classifiers of ML and DL type.

Despite the advantages of SEM, it has hardly been employed for classification,
mainly because of its sensitivity to noise, which would lead to decision errors.
This thesis will therefore focus on providing solutions, in both the constitution
of the datasets, and in the choice of classification algorithms, in order to over-
come this drawback and retain only the powerful advantages of the SEM. Par-
ticularly, we investigate the use of four algorithms for solving the classification
problem, two of which are ML: Support Vector Machine (SVM) and Decision
Tree (DT), and the other two are DL: Multi-Layer Perceptron (MLP) and Con-
volutional Neural Network (CNN). During this phase, we will be able to select
the important parameters for classification and highlight their advantages.

Additionally, not only the natural resonances of an object are considered but
also the residues associated to each pole. Our last contribution consists in using
those residues to determine the orientation of an object and the position of the
receiving antenna relative to an object. This will be achieved by, first, studying
the residues of several objects and their relationship with the scattered field
response. Then, we will proceed by determining the orientation of an object
from its residues using the classification algorithms.

1.3 Thesis outline

The remaining part of this thesis manuscript is composed of 5 chapters. First,
chapter 2 sets the context of this study. We give a brief description of techniques
used to characterize the UWB response of an object. Then, we describe the
background of the SEM technique along with its application in radar domain.
We also present different algorithms based on SEM technique and used within
this work to extract the resonances of objects from their UWB response and
validate them on analytical data.

Then, in chapter 3, we present results from the application of those algorithms
on the EM field scattered by PEC objects of simple forms. For that, we define
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the steps needed to be done in time and frequency domains to accurately ex-
tract the complex natural resonances (CNRs) of those objects. Then, we discuss
the robustness to noise of those methods. We also study the residues associated
to each resonant pole and their spatial distribution.

Following, in chapter 4, we describe a procedure allowing to classify multiple
objects using pre-processed data from SEM and to determine their size from
their resonant frequency. Different classification algorithms of ML and DL type
are presented and used to determine the most robust one. To do so, a study
on the structuring of datasets will be carried out using SEM data extracted in
chapter 3. In this context, a comparative study on the accuracy and computa-
tion time of classification between raw data, in time and frequency domains,
and SEM data is conducted. We also evaluate the generalization ability of the
algorithms to object sizes and to noisy data not included in the constructed
training datasets.

Last but not least, in chapter 5, the residues are explored for the detection and
classification of the observation angle and to determine the orientation of each
object in relation with the receiving antenna used to collect the scattered field.
The classification algorithms will be applied on SEM and raw data to test their
generalization capability and their robustness to noisy data.

Finally, we outline the thesis conclusions in chapter 6 and discuss potential
future directions.
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Chapter 2

Theoretical background

2.1 Introduction

One of the objectives of this thesis is to study feature extraction methods that
allow the characterization of an object from its scattered field, and that can be
used as a pre-processing step in the classification process. For that, the Ultra-
Wide Band (UWB) scattered field of this object can be decomposed into several
parameters related to its geometry and material. Indeed, it is possible to derive
a unique set of features for each object and create a library of these features. The
whole processing system would then be to extract the characteristic parameters
from the target response and compare them to the existing library. This com-
parison will be done by the way of Machine Learning (ML) and Deep Learning
(DL) algorithms.

So, in this chapter, we present the context of this work by describing theoretical
methods that are used for characterizing the scattered field of an object illumi-
nated by an UWB electromagnetic (EM) wave. First, we give a brief review of
techniques commonly used for target identification from their UWB responses.
The features extracted using these techniques are known to depend highly on
the propagation direction and polarization of the illuminating wave. Second,
we present an alternative technique, the Singularity Expansion Method (SEM),
that is characterized by its ability to extract specific parameters which are inde-
pendent of the properties of the incident wave. Then, we describe the methods
implemented in this work that can be applied either in time domain or in fre-
quency domain.

Following, we aim to have a first general idea about the performances of each
SEM technique using a simple synthetic signal and comparing the extracted
poles with analytic ones. To test the robustness of each method, we add noise
to the signals and extract the resonances from those noisy signals.
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2.2 Feature extraction techniques from UWB signals

The recognition and classification of objects using a radar can be separated into
two principal stages: feature extraction and classification. In this section, we
focus on the feature extraction stage by introducing some of the most used
concepts to recognize an object from its UWB response.

Indeed, illuminating an object by a broadband EM wave results in scattered
waves. Multiple ways exist to characterize an object from its UWB scattered
wave. Raw radar data, like the Radar Cross Section (RCS) (Taylor, 1995), can
be used to quantify the intensity of the scattered wave in a specific direction. In
fact, raw data depend on multiple parameters such as: travelling direction and
polarization of incident wave, observation angle, frequency, object material,
shape, and size. Thus, a change in those parameters generates a change in the
measured scattered field (i.e. raw data).

To reduce the dependency on those parameters, it is possible to characterize
the scattered field using a variety of feature extraction algorithms. In addition,
those algorithms allow reducing and compressing the resulted raw data. Some
of these feature extraction techniques are briefly described below.

Polarization techniques

Polarization techniques (Copeland, 1960) allow to model the response of an
object through its polarization properties at a fixed observation angle and at a
specific frequency. Polarization extraction methods require the radar to have
dual polarization (vertical and horizontal) for both transmitter and receiver.
Polarization properties can be monitored by rotating a linearly polarized radar
antenna around the line of sight, and measuring the complex voltage presented
across the receiving antenna. This polarimetric information can be utilized
in object detection and classification. In (Kennaugh, 1952), it was shown that
the radar target scattering matrix models the scattering process characterizing
the target polarization transformation properties. Broadband polarimetric data
were treated in Wanielik, 1995 by using several frequency sub-bands to detect
and classify the object.

An object’s scattering matrix under certain angle and frequency can be ex-
pressed as follows:

S =

[
S11 S12

S21 S22

]
(2.1)
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where, the subscripts “1” and “2” denote a set of orthogonal polarization com-
ponents. Hence, polarization features (scattering matrix determinant, the trace
of power matrix, eigen polarization direction angle, and ellipticity angle) fully
determine the backscattering characteristics of the target at a given orienta-
tion and maximize the target information provided by the viewing angle of the
radar in the line-of-sight direction.

Wavelet Transform

The wavelet transform (WT) is largely used to transform non-stationary signals
into the “wavelet domain” which is more representative of the signal, in the
same way as the Fourier transform (FT) (Rioul and Vetterli, 1991). It employs
short windows at high frequencies and long windows at low frequencies, thus,
the notion of time-scale representation appears.

The WT is seen as the decomposition of the signal onto a set of basis functions
called the "wavelets". It consists of the convolution of the wavelet function with
the signal. The Discrete WT has been developed to compress the large amount
of information contained in the classical WT (Rothwell et al., 1994). Hence, it
produces wavelet coefficients that are the features representing the objects. In
this context, multiple types of wavelets exist (Haar, Coiflet, Daubechies, etc.).
It is important to choose a wavelet that best matches the shape of the signal
under test and the intended application.

High Resolution Range Profile

A high-resolution range profile (HRRP) is a one-dimensional signature of an
object obtained by a wideband radar. It is the magnitude of the coherent sum-
mations of the time domain complex echoes of the object scatterers in each
range cell. This represents the projection of the complex echoes returned from
the target’s scattering centers onto the radar line of sight (Du et al., 2006; Penghui
WANG, 2011). It contains several information about the object such as object
size and the RCS distribution in a specific direction.

HRRP has been sought for classification (Penghui WANG, 2011; Liu et al., 2012)
and it can provide high target recognition rates. However, it requires high stor-
age space and high computing time.
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Scattering centers

The scattering characteristics of an object structure is one of its inherent prop-
erties. A target in the high-frequency region can be coarsely modelled by a
discrete set of points called scattering centers. They correspond to the spatial
distribution of the reflection of the EM wave at a given incident and obser-
vation angle. Thus, the capacity for scattering is concentrated in a few small
areas of an object, such as edges and tips, called scattering points or scattering
centers (Kim and Kim, 1999). ESPRIT (Estimation of Signal Parameters us-
ing Rotational In-variance Technique) is a spectral-analysis method that allows
to extract scattering centers that characterize an object either from its impulse
response (Roy and Kailath, 1989) or from its X-band image (Burrows, 2004).
ESPRIT : The motivation behind ESPRIT is derived from the geometric the-
ory of diffraction where the scattering field is of the form (Carriere and Moses,
1991):

S(ω) =
N

∑
n=1

An(jω)αn ejωtn (2.2)

where N is the model order representing the number of scattering centers,
{An, αn, tn} are the model parameters. ESPRIT is originally designed to deal
with stationary signals by exploiting the eigen-structure of the data covariance
matrix. It requires the received harmonic signals to not be fully correlated to en-
sure that the covariance matrix is full rank. The approach relies on a naturally
occurring shift invariance between discrete time series resulting in a rotation
invariance between the signal subspaces.

Resonant frequency characteristics

This method is based on illuminating the object with a sufficiently wideband
signal that allow to excite the resonant frequencies of that object. These reso-
nances constitute the set of characteristics used to distinguish one object from
another and only depend upon the physical attributes of an object. This means
that those features are independent of the incidence angle, observation angle
and polarization of incident wave.

The singularity expansion method (SEM) allows to describe the scattering be-
haviour of an object through those resonances (Baum, 1976). The information
contained in them can provide details about the shape, size and composition of
the target.
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Choice of feature extraction technique

The polarization parameters, wavelet coefficients, HRRP, and scattering centers
are features that have been explored for object characterization from its UWB
response, and they contain important information about the objects. However,
the extracted parameters depend on the polarization, the direction of propaga-
tion of the incident wave, and the orientation of the object. This makes them
less general and therefore less suitable to our context of object identification
and classification from a fast and simple mono- or bistatic acquisition system,
with no prior knowledge of the position and orientation of the object.

Indeed, in this thesis, we seek to characterize an object by extracting character-
istic parameters or features independently from the incidence angle, observa-
tion angle and polarization of incident wave. One method that overcomes this
angle dependency limitation is based on the natural resonant frequencies of an
object using SEM technique.

The resonance extraction process is very delicate in a noisy environment. We
will therefore explore the SEM approach in a more thorough manner in the
remainder of the manuscript.

2.3 Singularity Expansion Method

In scattering theory, an object illuminated by an EM plane wave has three
scattering regions with respect to the wavelength (λ) of the incident wave:
Rayleigh, resonance and optical (Mautz and Harrington, 1978). The object is
considered in resonance region when its size is comparable to λ (object size ∼
0.1-10λ). Creeping waves and internal reflections are very strong in this region
and produce resonances in the scattered responses (Heyman and Felsen, 1983).

In the 1970s, Baum introduced the SEM which is based on the analysis of the
scattered transient responses of various structures. This method describes the
overall behaviour of a target illuminated by an EM wave (Baum, 1976). In
this work, Baum noticed that the transient responses of an object behave as
a combination of exponentially damped sinusoids. Since the response is real,
each damped sinusoid corresponds to a pair of complex conjugated poles in the
frequency domain. Identification by SEM is therefore a feature extraction of the
singularities of the target’s transient response. The benefit of those poles is their
independency from the observation angle as they are unique to each object. In
contrast, the residues associated to these poles are dependent on the position
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of the observation angle. Such singularities are also known as resonance poles
or Complex Natural Resonances (CNRs).

In fact, the impulse response from an object illuminated using an EM wave can
be decomposed into two parts: the early time response and the late time re-
sponse. When an incident EM wave illuminates an object, currents are induced
on its surface. It then goes into an excited state and current distributions flow
along its surface. A part of this wave is reflected directly by the object which
constitutes the early time response. This part of wave is called "specular re-
flection" that mostly depends on the distance between the incident wave and
the object, and the object orientation. The late time response begins when the
resonance phenomenon is fully established, and the target begins to resonate
freely. It depends on the physical characteristic of the object, like its size and
material. Fig. 2.1 describes this phenomenon with an object of arbitrary shape.
The natural resonances of an object are therefore included in the second portion
of the time response, i.e. the late time response.

Figure 2.1 – Early and late time responses of an arbitrary object.

The identification of the poles and their associated residues can be performed
in the time domain from the late time impulse response or in frequency domain
from the complex frequency response. In time domain, the most known meth-
ods are Prony’s method, State-Space methods, and TLS MP method (Chuang
and Moffatt, 1976; Rao, 1990; Hua and Sarkar, 1989). In Grant and Crow, 2011
and Sarrazin et al., 2011, it was shown that TLS MP is more robust to noise
than Prony where it can extract more accurate poles from noisy signals. Ad-
ditionally, in Jang et al., 2005, a quantitative comparison between State-Space
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methods and TLS MP have been carried and it was shown that TLS MP allows
to accurately determine the resonances, for noisy and noiseless signals, in the
least time. Esprit and Root-MUSIC techniques have also been investigated and
compared with TLS MP in Khodjet-Kesba, 2014 where it was shown that TLS
MP is the least sensitive to noise. Both of those techniques are, in fact, mostly
used for computation of the direction of arrival and estimation of the scattering
centers parameters.

Finally, in frequency domain, two methods have been chosen to extract the sig-
nal’s CNRs, which are the Cauchy method and Vector Fitting (VF) (Kumaresan,
1990; Gustavsen and Semlyen, 1999). We will later present the details of each
technique implemented in this work.

SEM application in the radar field

Owing to its interesting properties, the SEM has been extensively researched
for application to the characterization and identification of radar targets. The
SEM has been studied since the 1970s to characterize simple perfect electric
conductor (PEC) objects in free space (Moffatt and Mains, 1975; Baum et al.,
1991). One particular object studied over the years is the PEC sphere (Chen
and Westmoreland, 1981). Indeed, the scattered response of a PEC sphere has
been analytically established by Mie in 1908 (Mie, 1908). Another object studied
is the thin wire that can be regarded as a short-circuited dipole with a very
small ratio of diameter over length (Tesche, 1973). Additional analytical poles
solution of other PEC objects has been studied (Chaudhuri, 1980; Kristensson,
1984; Long, 1994).

Following, a more realistic approach, instead of the analytic one, has been real-
ized by computing the natural resonances of the simulated scattered response
of those PEC objects (Chauveau, de Beaucoudrey, and Saillard, 2007b; Lee et
al., 2012; Bhattacharyya, Siddiqui, and Antar, 2019). Additionally, the SEM
has been extended to more complex targets like the characterization of an air-
craft modelled by means of several thin wires (Chantasan, Boonpoonga, and
Burintramart, 2014) or modelled in a more realistic approach (Sathyamurthy,
Varalakshmi, and Balakrishnan, 2019).

If the PEC target is not in free space and is buried in a loss or lossless ground,
Baum has developed a representation to compute the resonance of this object
in such scenario from its poles in free space (Baum, 1993). Then, Lee et al. also
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proposed a methodology to identify the resonances of a PEC object located in
the ground (Lee et al., 2013).

Similarly, identification of dielectric targets using SEM has been investigated.
In fact, when an object has a dielectric material, two resonance phenomena
occur which are: Internal resonances due to the reflections inside the object
and External resonances due to creeping waves propagating on the surface of
the object. Multiple studies have been conducted to compute the natural reso-
nances of either a dielectric sphere or a PEC sphere coated with a dielectric ma-
terial (Chi-Chih Chen, 1998; Chauveau, de Beaucoudrey, and Saillard, 2007a;
Mei et al., 2014). It is shown that having a dielectric material or a dielectric
coating increases the resonating behaviour of an object.

In addition, the identification of an unripe fruit using a non-destructive method
is also an interesting challenge. In Leekul, Krairiksh, and Sarkar, 2014 and
Leekul and Krairiksh, 2018, the SEM technique has been applied to determine
the maturity of a mangosteen fruit. It is shown that it is possible to identify a
normal fruit from a translucent one from its resonant frequencies. The same
study has been done using a different fruit, the Durian fruit, and it shows
the identification of the stage of maturity using its natural frequencies (Tan-
tisopharak et al., 2016).

Now that we have seen the main applications and possibilities offered by SEM
for our work, we will describe the methods which will be implemented in this
thesis, starting with a temporal method: MP.

2.4 SEM in Time domain

2.4.1 Matrix Pencil

In general, the late time portion of an impulse response can be formulated as a
sum of complex exponentials as follows:

y(t) =
M

∑
m=1

Rmesmt + b(t) (2.3)

with sm the complex poles, Rm their respected complex residues, M is the model
order which represent the number of poles and b(t) is the noise observed in the
signal.
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After the signal’s sampling, y(t) can be subsequently rewritten from the K sam-
ples y(0), .... , y(K − 1) in the form of:

y(k) =
M

∑
m=1

RmesmkTs + b(k) (2.4)

where k is the number of samples in a signal and Ts is the sampling period.

In 1990, Matrix Pencil (MP) was proposed by Hua and Sarkar as an alternative
to Prony’s method for modelling the scattered response of an illuminated object
in time domain (Hua and Sarkar, 1990). A singular value decomposition (SVD)
is performed on a matrix constituted by the sampled signal y(t). It enables
the identification of the physical poles of the signal by direct computation of
the eigenvalues of a matrix of a reduced order. This procedure involves the
analysis of singular values in order to estimate the order of the data matrix. In
fact, M in equation 2.4, which is also the number of singular values computed,
is an important parameter which must be determined adequately to separate
the noise from the signal.

We start to consider the following matrix:

Y1 − λ ∗ Y2 (2.5)

with λ being a scalar parameter. The Hankel matrices Y1 and Y2 constructed
from the K samples of yk presented in (Hua and Sarkar, 1989) are as follows:

Y1 =


y(1) y(2) · · · y(L)

y(2) y(3) · · · y(L + 1)
...

... . . . ...

y(K − L) y(K − L + 1) · · · y(K − 1)


(K−L)∗L

(2.6)

Y2 =


y(0) y(1) · · · y(L − 1)

y(1) y(2) · · · y(L)
...

... . . . ...

y(K − L − 1) y(K − L + 2) · · · y(K − 2)


(K−L)∗L

(2.7)

where L is the pencil parameter and K is the samples number. The L parameter
is important to eliminate some effects of the noise in the signal. Both matrices
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Y1 and Y2 can be decomposed as follows:

Y1 = Z1RZ2 (2.8)

Y2 = Z1RZ0Z2 (2.9)

where Z1 and Z2 are two Vandermonde matrices defined as:

Z1 =


1 1 · · · 1

z1
1 z1

2 · · · z1
M

...
... . . . ...

zK−L−1
1 zK−L−1

2 · · · zK−L−1
M


(K−L)∗M

(2.10)

Z2 =


1 z1

1 · · · zL−1
1

1 z1
2 · · · zL−1

2
...

... . . . ...

1 z1
M · · · zL−1

M


M∗L

(2.11)

R and Z0 are both diagonal matrices of length M ∗ M.

Using equation 2.8 and 2.9 we can rewrite the expression in 2.5 as:

Y1 − λ ∗ Y2 = Z1R(Z0 − λI)Z2 (2.12)

where I is the identity matrix of length M ∗ M. In general, the rank of the matrix
{Y1 − λ ∗ Y2} can be shown to be equal to M assuming that M ≤ L ≤ K − M.
However, in the case where λ = zi, i ∈ {1, M}, the rank of this matrix becomes
M − 1. Therefore, zi can be found as the generalized eigenvalues of the pair of
matrices (Y1, Y2) or equivalently from the eigenvalues of the following matrix:

Y+
1 sY2 − λI (2.13)

where the exponent + designates the Moore-Penrose pseudo-inverse. Hence,
the poles can be identified as the eigenvalues of Y+

1 Y2 matrix.

Modified Matrix pencil

The previous technique does not take into account the noise present in the sig-
nal, hence, the TLS MP is proposed (Hua and Sarkar, 1991). A matrix Y is
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constructed from the noise contaminated signal y(t) by combining Y1 and Y2:

Y =


y(0) y(1) · · · y(L)

y(1) y(2) · · · y(L + 1)
...

... . . . ...

y(K − L − 1) y(K − L) · · · y(K − 1)


(K−L)∗(L+1)

(2.14)

The choice of the parameter L plays a key role in noise filtering, and it is pro-
posed to choose it as (Hua and Sarkar, 1990)

K
3
< L <

K
2

(2.15)

Following, a singular value decomposition (SVD) is carried out

Y = USVH (2.16)

where U and V are both orthogonal matrices of length (K − L) ∗ (K − L) and
(L + 1) ∗ (L + 1) respectively, S is a diagonal matrix containing the singular
values of (K − L) ∗ (L + 1) dimension. When the data is noiseless, the matrix
Y has exactly M non-zero singular values. Nevertheless, because of the noise,
the singular values are perturbed and are non-zero. However, the singular val-
ues related to noise remain small and can be identified by fixing a threshold
ϵ. Hence, only the highest singular values are retained. This threshold is ex-
pressed as follows:

σM

σmax
≥ ϵ (2.17)

where σM is the singular value related to the model order M and σmax is the
highest singular value. This allows the selection of only the dominant singular
values, thus, the number of the most significant singular values will define the
order M of the system.

Next, we consider the S
′

and the filtered V
′

matrix containing the M dominant
values, S

′
is, thus, equal to the matrix extracted from S corresponding to the

first M columns. V
′

is as follows:

V
′
=

[
v1 v2 · · · vM

]
. (2.18)

Once an estimate of the order has been determined, the singular value decom-
position of the matrix Y given by equation 2.14 will allow to rewrite Y1 and Y2
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as
Y1 = US

′
V

′H
1 (2.19)

Y2 = US
′
V

′H
2 (2.20)

V
′
1 is obtained by removing the last row of V

′
and V

′
2 by removing the first

row of V
′
. Therefore, the poles are computed from the non-null eigenvalues of

{V
′H
1 }+ V

′H
2 . The residues Rm can then be computed once the poles have been

determined by solving a linear system:


R1

R1
...

RM

 =


1 1 · · · 1

z1
1 z1

2 · · · z1
M

...
... . . . ...

zK−1
1 zK−1

2 · · · zK−1
M


−1

.


y(1)

y(2)
...

y(K)

 (2.21)

2.4.2 Late time / Early time separation

In the scientific literature, one of the quantitative definitions of the beginning
of the late time of a signal propagating in free space is given by (Kennaugh and
Moffatt, 1965) (assuming a mono-static configuration)

TLate =
2Lc

c
+ 2Tv + Tp (2.22)

where Lc is the characteristic length of the target, c is the light’s celerity, Tv is
the travel time from the transmitting antenna to the target and Tp is the pulse
width. However, the application of this formula requires a priori knowledge
about the object’s geometry and orientation, and the distance between the an-
tenna and the object which is not always possible. Thus, the late-time response
must be identified from the impulse response.

The Short Time Matrix Pencil (STMP) was proposed by Rezaiesarlak and Man-
teghi to estimate the start of the late time response. It is a modification of the
MP where a sliding window is applied on the impulse response (Rezaiesarlak
and Manteghi, 2013). In STMP, a window having a pre-determined constant
width moves along the entire time response and TLS MP is applied to each
window to extract the resonances. Then, the start of the late time is identified
when natural poles start to converge to stable values. However, it is difficult
to observe the poles convergence point for weak resonating objects as their im-
pulse is very short in time. Another approach was proposed by Boonpoonga et
al. that is based on investigating how similar the received scattering response
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was to the transmitted signal (Boonpoonga et al., 2017). This was done by
performing a cross-correlation between these signals where the output peak
presented the late time commencement. Nevertheless, they showed that this
procedure can only be applied on the received back-scattering signal, thus it is
not suitable when there is a bi-static configuration. Thus, as the early time an
late time separation is a key point in CNRs estimation, we will search and try
to propose an alternative approach that will allow to identify the start of the
late time for any observation angle and for weak resonating objects.

Equation 2.22 and the previous techniques assume that the object under test is a
perfect electric conductor (PEC), thus, the wave propagates only on the surface,
and we only have external resonances. However, if the object has a dielectric
material, we will have internal and external resonances as a part of the wave
will propagate inside the object causing internal reflections. Thus, equation 2.22
will no longer be applicable on a dielectric object and applying the proposed
methods do not achieve accurate separation. Hence, it may be preferable to
extract the resonances from the scattered field of a dielectric object in frequency
domain as there are more efficient methods allowing to automatically separate
CNRs related to early time response.

2.5 SEM in frequency domain

2.5.1 TLS Cauchy

This method originates from the classical Cauchy method and is based on the
approximation of the transfer function H( f ) by a ratio of two polynomial func-
tions A(k) and B(k) by considering a Linear Time Invariant (LTI) system (Ku-
maresan, 1990). An SVD approach has been proposed to make the Cauchy
method more robust to noise. The first step consists on computing the coeffi-
cients of those two polynomial functions:

H( f ) =
A(k)
B(k)

≈ ∑P
k=0 ak f k

∑Q
k=0 bk f k

(2.23)

with ak and bk the coefficients of the polynomials A(k) and B(k) respectively. P
and Q orders and both coefficients must be estimated from the transfer function
H( f ) (Kottapalli et al., 1991).
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Equation 2.23 can be rewritten as:

P

∑
k=0

ak f k −
Q

∑
k=0

bk f kH( f ) = 0 (2.24)

Previous equation is given in a simpler matrix form as follows:

[
C
] [a

b

]
=

[
A | B

] [a

b

]
= 0, (2.25)

where the coefficients of the numerator and denominator to be computed are
a = [a0, a1, ..., aP] and b = [b0, b1, ..., bQ]. The matix C is of order N x P + Q + 2.
The two sub-matrices A and B are built as (Adve and Sarkar, 1994):

A =


1 f1 · · · f P

1

1 f2 · · · f P
2

...
... . . . ...

1 fN · · · f P
N

 (2.26)

B =


−H( f1) −H( f1) f1 · · · −H( f1) f Q

1

−H( f2) −H( f2) f2 · · · −H( f2) f Q
2

...
... . . . ...

−H( fN) −H( fN) fN · · · −H( fN) f Q
N

 (2.27)

A SVD applied on the C matrix results in:[
C
]
=

[
U1

] [
Σ1

] [
VH

1

]
(2.28)

The rank R of the matrix Σ1 is the number of nun null dominant singular values
that satisfy this condition:

σR

σmax
= 10−p (2.29)

Once R is defined, P and Q have to satisfy the following relation:

R + 1 = P + Q + 2 (2.30)

In practice, P and Q are fixed, at the beginning, higher than the number of
estimated poles. Then, R is estimated from the number of non-zero singular
values of [C]. Finally, from equation 2.30 we get new estimates for P and Q.
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The sub-matrix A depends only on the frequency and is not affected by noise.
However, the sub-matrix B is affected by noise as it includes measured param-
eters H( f ). To take into account this difference between the two sub-matrices,
a QR decomposition is applied on the C matrix:[

R11 R12

0 R22

] [
a

b

]
= 0 (2.31)

This gives us the following systems:

R22b = 0 (2.32)

R11a = −R12b (2.33)

A second SVD is applied on R22 giving the following relation:[
U2

] [
Σ2

] [
VH

2

]
b = 0 (2.34)

Yet, according to the TLS approach, the b vector is proportional to the last col-
umn of the matrix [V2]:

b =
[
V2

]
Q+1

(2.35)

In this manner, the poles are determined by calculating the zeros of the de-
nominator in equation 2.23. Once a and b have been determined, H( f ) can be
rewritten as:

H( f ) =
∑P

k=0 ak f k

∑Q
k=0 bk f k

≈
Q

∑
k=1

(
Rk

f − ( αk
j2π + fk)

+
R∗

k
f − ( αk

j2π − fk)
(2.36)

where Rk is the residue, R∗
k is its conjugate, αk is the damping factor and fk is

the resonant frequency of the kth pole.

The residues Rk can then be computed from Sarrazin et al., 2014

Rk =
∑P

k=0 ak f k
n

bQ ∏Q
k=1,k ̸=n( fn − fk)

(2.37)
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2.5.2 Vector Fitting

Gustavsen and Semlyen have proposed VF to be used for fitting a frequency
domain response by a rational function approximation (Gustavsen and Sem-
lyen, 1999):

H(s) =
N

∑
n=1

Rn

s − an
+ d + se (2.38)

where s = jω, Rn are the residues and an are the poles. d and e are optional real
numbers.

The first step is to identify the poles in equation 2.38 by solving a linear ap-
proximation of the problem using the least square (LS) method in an iterative
manner:

σ(s)H(s) = p(s) (2.39)

where σ(s) and p(s) are rational approximations given by:

σ(s) =
N

∑
n=1

r̃m

s − qm
+ 1 (2.40)

p(s) =
N

∑
n=1

rm

s − qm
+ d + se (2.41)

qm is a set of initial complex poles fixed at the beginning of the iteration process
as shown in section 2.5.2. Then, 2.39 can be solved as an over-determined linear
system of the form:

Akx = Bk, (2.42)

where x is the vector holding the unknowns. They are expressed as follows:

Ak =


1

s1−a1
· · · 1

s1−aN
1 s1 −H(s1)

s1−a1
· · · − H(s1)

s1−aN
... . . . ...

...
...

... . . . ...
1

sk−a1
· · · 1

sk−aN
1 sk −H(sk)

sk−a1
· · · − H(sk)

sk−aN

 (2.43)

x =
[
c1 · · · cN d e c̃1 · · · ˜cN

]T
, bk = H(sk) (2.44)

The uncertainty of the solution for σ(s) is eliminated by forcing it to be close
to unity at very high frequencies. In Gustavsen and Semlyen, 1999, it is shown
that the poles of H(s) are equal to the zeros of σ(s). They are calculated as the
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eigenvalues of the matrix in Gustavsen and Semlyen, 1999:

am = eig(A − bcT) (2.45)

where A is a diagonal matrix encompassing the initial poles qm, b is a unit
vector and cT is a row vector comprising the residues r̃m.

This process can be carried out in an iterative pattern in which 2.39 and 2.45 are
repeatedly solved by replacing the previous poles qm with new ones.

In order to satisfy equation 2.39, the number of initial poles qm needs to be
equal to or higher than the number of natural poles am of H(s). Additionally, if
the data are noisy, there will be a high error in the LS solution which affects the
convergence of poles. Hence, a modification of the VF algorithm is proposed
in Gustavsen, 2006 by replacing 2.40 with:

σ(s) =
N

∑
m=1

r̃m

s − qm
+ d̃ (2.46)

where d̃ is a real number. Hence, we remove the necessity of forcing σ(s) to
be equal to 1 at high frequencies, as seen in equation 2.40. Equation 2.45 must
now be replaced by:

am = eig(A − bd̃−1cT) (2.47)

Once the poles have been determined, the residues can be computed through
another LS problem similar to 2.42.

The formulation of VF presented above is presented for scalar mathematical
functions (i.e. for a single observation angle). Nevertheless, VF may be applied
directly to vector functions as well by supposing that all elements of the vec-
tor have identical poles. This is beneficial when doing several measurements
of the same object at different observation or incident angles as the CNRs are
independent of those parameters. Thus, VF can compute a single vector con-
taining the resonant poles of the object and produces different residues for each
measurement.

Choice of starting poles

As mentioned before, VF starts by assuming a set of starting poles that are
uniformly distributed over the frequency band of interest. Those initial poles
must be complex conjugate and the model order must be overestimated to get



24 Chapter 2. Theoretical background

accurate solution. They are of the form:

qn = −σ + jω, qn+1 = −σ − jω, (2.48)

where ω is the pulsation evenly distributed over the frequency range and σ is
the damping factor. We start with a weak attenuation, where σ = ω/100, thus,
we guarantee that the LS problem under consideration has a well-conditioned
system matrix. If the data are noise free, the convergence to the final poles dis-
tribution from the starting ones happens fast, with only two iterations. How-
ever, if there is noise, further iterations are needed until convergence.

In Gustavsen and Semlyen, 1999, it was stated that a poor choice of starting
poles might still lead to accurate results by increasing the number of iterations.
However, the convergence speed will be reduced. It has also been demon-
strated that the accuracy will not decrease if an excessive number of poles are
utilized in a noiseless case. In a noisy environment, an excessive number of
poles might affect the convergence of poles, especially when there are many
resonances in the frequency range.

In this thesis, ω is defined linearly spaced over the frequency range of interest.
As we do not have a priori knowledge about the object, the model order needed
to compute the CNRs will be investigated and a minimum of two iterations will
be applied.

2.5.3 Selection of physical poles

The CNRs extracted using VF or TLS Cauchy allow to characterize an object
from its frequency response. Given that in frequency domain there is no sepa-
ration between early and late time responses, since they are intertwined, phys-
ical or natural poles as well as mathematical poles (or spurious poles) appear
after applying TLS Cauchy or VF. Physical poles are characteristic of the object,
however, mathematical poles have no physical meaning and do not correspond
to singularities of the function H( f ) to be approximated (Stahl, 1998). They
arise as we overestimate the model order to get accurate physical poles. Some
of the mathematical poles correspond to the early time response of an object.
It is essential to be able to dissociate the physical and mathematical poles to
accurately characterize the objects.

Indeed, when computing the poles with a fixed model order N we get physical
poles that come in complex conjugate pairs and have a negative damping factor
σm. As for the mathematical poles, they might have a positive damping factor
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and depend upon the model order. To be able to identify them, we can vary
the model order and consequently, if the model order is sufficient, only the
physical poles will be stable for various N while the mathematical poles will
vary. Additionally, Lee et al. propose some criteria to automatically remove
those mathematical poles by eliminating the following (Lee et al., 2012):

— poles having very high damping factor αm > 8 since they are quickly
damped;

— poles with positive damping factor αm because they are unstable due to
the increasing oscillations;

— poles outside the frequency range;

— poles having weak residues (|Rm
αm

| < 10−p) as they have a negligible con-
tribution in the scattered field.

2.6 Representation using the Q-factor and resonant

frequencies

It is possible to represent the resonance phenomena of an object using the qual-
ity factor (Q-factor) by relating it to an RLC resonant circuit (Chauveau, Beau-
coudrey, and Saillard, 2007). The Q-factor is also useful for estimating the inten-
sity of resonance of an antenna (Li and Liang, 2004). Janic Chauveau proposed
to represent the CNR using the Q-factor and the natural pulsation rather than
the classical representation using the damping factor.

The transfer function A(ω) of a parallel RLC circuit is written as (Chauveau,
de Beaucoudrey, and Saillard, 2006):

A(ω) = Z(ω) =
V0

I
=

R
1 + jRCω + R

jωL
(2.49)

where Z is the impedance of the circuit. It is possible to replace the parame-
ters of the circuit components by the Q-factor and the pulsation resonance as
follows:

A(ω) =
R

1 + jQ( ω
ω0

− ω0
ω )

(2.50)

where Q = RCω0 = R
Lω0

and ω0 = 1√
LC

is the natural pulsation. Here, the
bandwidth of this circuit is defined as ∆ω = ω0

Q . In order to define the poles of
this system, 2.50 can be redefined in terms of the Laplace variable s = jω. This
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resonant circuit approximation is now applied to the scattering transfer func-
tion of an object that can be formulated as a sum of transfer functions Am(s)
of basic resonators {ω0,m; Qm}. ω0,m and Qm are the natural pulsation of reso-
nance and quality factor of the mth singularity (sm ) respectively:

ω0,m = |sm|, Qm = −ω0,m

2αm
(2.51)

Applying this descriptive to an object allows to describe its resonance behaviour
through the Q-factor. Strong resonating objects have high Q-factor, whereas
weak resonating objects have low Q-factor.

At this point, we have introduced the main SEM methods that will be used in
this thesis and the efficient ways to parameterize them. We are now going to
work towards validating our choices on synthetic signals, and exploring one
of the key points of this thesis, namely the behaviour of these SEM methods in
presence of noise.

2.7 Validation of SEM using a synthetic signal

The objective here is to investigate the efficiency of the following methods pre-
sented above: TLS MP in time domain, TLS Cauchy and VF in frequency do-
main. Our aim is to have a first general idea about the performances of theses
SEM techniques using a simple synthetic signal by comparing the extracted
poles with analytic ones.

First, we start by defining a set of complex poles and their corresponding resid-
ues that come in complex pair as seen in table 2.1. αm is the damping factor and
fm is the resonant frequency. Following, we construct the time and frequency
responses from the fixed set of parameters using equations 2.3 and 2.36 respec-
tively. In fact, the values of the residues should not be real numbers as it will
cause the signal to have a fast discontinuity at t = 0 in time domain (cosine
form) which causes a problem when applying Fast Fourier Transform (FFT)
or Inverse Fast Fourier Transform (IFFT). This way, we use a set of imaginary
residues to have a signal that has a null amplitude at t = 0 (sine form).

The constructed signals are presented in fig. 2.2. The time interval is set be-
tween 0 and 126 ns with a 1 ns step (127 samples). The frequency band is from
-0.5 to 0.5 GHz with 0.08 GHz frequency step. The negative frequencies repre-
sent the complex conjugate part of the frequency spectrum as the time response
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Table 2.1 – CNRs and residues used to construct the synthetic sig-
nal

Polem αm fm(GHz) Rm

1 -0.05 ± 0.08 ± j0.4
2 -0.1 ± 0.15 ± j0.8
3 -0.18 ± 0.2 ± j1.2

is real. From the amplitude of the frequency response, we can notice a peak at
0.08 GHz which corresponds to the first pole (pole1). Additionally, the impulse
response has several oscillations and is damped starting from 60 ns. To evalu-
ate the error between the initial response Eorg constructed using the fixed CNRs
and the reconstructed one Erec using the estimated physical CNRs, we will use
the mean relative error expressed as follows:

Err( f ) =
∑θ ∑ϕ |Eorg( f , θ, ϕ)− Erec( f , θ, ϕ)|2

∑θ ∑ϕ |Eorg( f , θ, ϕ)|2 (2.52)

2.7.1 Extraction in a noiseless environment

All three SEM extraction algorithms are now applied directly to the time and
frequency responses of figure 2.2. We first evaluate the behaviour of those
methods when the model order M is under or over-estimated. The CNRs for
multiple M are shown in fig. 2.3 with damping factors plotted as a function
of the resonant frequencies. The resulting poles and residues are identical for
M ≥ 6 and correspond perfectly with the original values. As expected, by
overestimating M, there are additional poles that appear on the positive side
of the axis, that have very weak damping factors or with out of band frequen-
cies so they are not presented on those figures for visibility. Those poles can be
eliminated by the criteria mentioned before.

However, if M is under-estimated, it is not possible to extract accurately the
CNRs. Therefore, it is possible to overestimate the number of poles without
perturbing the extraction of the CNRs from the response. If the number of
poles is unknown, it is preferable to choose a higher order to avoid the risk of
underestimating the number of poles.

At this stage, all the methods perform equally well as the synthetic signal is
noiseless and there is no early time response that perturbs the CNRs extraction
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(a) Impulse response (b) Amplitude of the frequency response

(c) Phase of the frequency response

Figure 2.2 – Reconstructed impulse and frequency responses us-
ing the set of fixed poles and residues.

in frequency domain because the synthetic signal was constructed using only
physical poles.

2.7.2 Extraction in a noisy environment

We now propose to test these algorithms in the presence of noise. For this
purpose, additive white Gaussian noise (AWGN) is added to the time and fre-
quency responses before applying the extraction algorithms. Furthermore, the
mean error rate is computed over 30 trials to reduce the noise variations which
are randomly distributed. In this context, the SEM methods provide in addition
to the physical poles, mathematical poles due to the presence of noise. Never-
theless, in a characterization and identification process, only the physical poles
need to be retained. In this case, the physical poles are the ones given in table
2.1 and the additional ones are eliminated using the criteria mentioned before.
We will then evaluate the reconstruction from those physical poles and their
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(a) M=4 (b) M=6

(c) M=12 (d) M=24

Figure 2.3 – Poles extraction using VF, TLS Cauchy and TLS MP
for multiple model orders

associated residues derived from the three algorithms using equation 2.52.

(a) (b)

Figure 2.4 – (a) Reconstruction error as a function of SNR; (b)
CNRs extracted at 10 dB SNR

Fig. 2.4a shows the mean relative error of the reconstructed signals as a function
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of Signal to Noise Ratio (SNR). We can see that at low SNR, Cauchy has the
highest reconstruction error. In addition, we observe in fig. 2.4b that, at 10 dB
SNR, Cauchy is unable to extract all resonances correctly in contrast to MP and
VF that have higher accuracy especially on the first two resonances.

By comparing the results obtained with the different methods presented and
illustrated above, TLS MP and VF appears to be the most efficient with, in par-
ticular, a better accuracy of the CNRs estimation in the presence of noise when
applied to a simple synthetic signal constructed using three pairs of complex
CNRs and their residues.

2.8 Conclusion

In this chapter, we have described the basic theoretical notions that are neces-
sary for target recognition in an UWB radar context. When working in a broad
band, the amount of data to be stored in order to fully characterize an object
is becoming increasingly important. Thus, in addition to selecting an effective
characterization technique regardless of the viewing angle, we explored differ-
ent techniques allowing to compress the UWB scattered field from objects.

First, we gave a summary about the techniques that exist for UWB target recog-
nition. We selected the SEM technique that corresponds to the specific require-
ments and specifications of this thesis. Indeed, the CNRs are intrinsic to the
object and can therefore be used in an identification process. Second, we pre-
sented in detail the SEM allowing to extract CNRs and residues that are fea-
tures proposed to reduce the amount of data of the UWB scattered field. It can
be applied either in time domain by the use of TLS MP, or in frequency domain
using VF or TLS Cauchy. The mathematical background of those methods was
presented as well as the treatments required for their proper application. This
theoretical study allowed us to comprehend the principle of SEM and to iden-
tify the most suitable SEM methods in both time and frequency domains. Fi-
nally, we have presented the validation results of those methods when applied
to a synthetic signal.

For that, we have constructed synthetic time and frequency responses using a
set of fixed poles and residues on which the SEM methods have been applied.
Through this example, we were able to assess the model order M that allows to
properly extract the resonance poles. Indeed, it is better to over-estimate M to
be able to extract all CNRs correctly as it was seen that by underestimating M,
not all poles have been well extracted and computed. Then, we evaluated the
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behaviour of those techniques in presence of noise. It was noticed that MP and
VF are less sensitive to noise than Cauchy. By adding noise to this synthetic
signal, the notion of mathematical poles began to emerge and by means of the
criteria for eliminating mathematical poles, they were successfully removed.

After the validation step of SEM techniques, we will begin to apply them on
scattered field from simulated objects where we will evaluate their robustness
to noise, and the notion of mathematical poles will be present due to the pres-
ence of early time component and noise.
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Chapter 3

Characterization of objects from
their natural resonances

3.1 Introduction

In the previous chapter, three SEM techniques have been introduced, selected,
and evaluated using a synthetic signal. Indeed, it is interesting to be able to
characterize an object with just a set of few parameters extracted from its scat-
tered field whatever the observation angle. The objective of this chapter is to
apply those techniques on the simulated scattered fields of simple PEC objects
and to investigate their robustness.

Two objects are considered for this study: a PEC sphere and a thin metal wire.
These objects are both simple, well described analytically (for the sphere) and
have very different properties: the PEC sphere is a low resonating object, while
the thin wire is a strong resonating object. The sphere is simultaneously a chal-
lenging object because of its numerous resonances and a well analytically de-
scribed structure thanks to the Mie theory. A set of analytical poles of both ob-
jects is calculated and will then be used as a reference to compare these methods
at different noise levels or with channel compensation errors.

First, we explain the steps required to be done in frequency and time domain
before the pole’s extraction procedure. The extracted CNRs from noiseless scat-
tered fields are, hence, compared with the theoretical ones of each object. Then,
the robustness to noise for each technique is studied and presented. In addi-
tion, we will study the residues associated to each CNR and particularly their
spatial distribution. This study will be conducted on both the PEC sphere and
the thin wire.
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3.2 Scattered field simulation setup

We start by generating the scattered field from a PEC sphere and a thin wire in
free space. An analytic solution for spheres exists using Mie series (Mie, 1908)
and we also use numerical full wave simulation tools: HFSS (High Frequency
Structure Simulator) and CST Microwave Studio. We validated our simulation
protocol by comparing the simulated results with those obtained by Mie series
for the sphere. Thus, we can accurately simulate other objects that do not have
an analytical solution (i.e. the thin wire in this chapter).

The frequency band is maintained from 10 MHz to 5 GHz with a 10 MHz step
(500 samples). This very low frequency will allow to compute resonances of
large objects and to cover their fundamental frequency. Indeed, this bandwidth
enables the characterization of objects that range in size from a centimeter to
several decimeters. However, in an operational context, building an antenna
with such a low frequency can be delicate, but it might be possible to have a
frequency range starting at 100 MHz instead of 10 MHz which will also permit
to extract the resonances and to include the fundamental one for small objects.

In this chapter, the dimension of each object is chosen such that their resonances
are present in this frequency range and their size is of the same order as the
electromagnetic wavelength. The PEC sphere has a diameter (D) of 0.15m and
the wire has a length of 0.15m with a ratio of diameter over length (D/L) = 0.01.
They are illuminated using a plane EM wave as shown in fig. 3.1. The incident
wave vector k⃗inc is defined as follows:

k⃗inc =


cos(ϕinc)sin(θinc)

sin(ϕinc)sin(θinc)

cos(θinc)

 (3.1)

The scattered field is recovered in the far field for multiple views (i.e. angles
of observation) in a bi-static way; θ varying from 0◦ to 180◦ with 5◦ step and
ϕ from -180◦ to 180◦ with 10◦ step. θ and ϕ are defined from the standard
3D cartesian coordinate system. Thus, we obtain 37 angles in both θ and ϕ

directions. In the far field, the scattered field can be expressed as follows:

E⃗(⃗r, θ, ϕ) =
e− j⃗k⃗r

r
.E⃗0(θ, ϕ) (3.2)

The distance r between the probe, where the scattered field is collected, and the
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Figure 3.1 – Thin wire along z axis illuminated using a plane EM
wave with incident wave vector k⃗inc

object’s center will be considered to estimate and compensate the propagation
channel. With CST and HFSS a probe is placed at a finite distance (1m) from the
object to recover the scattered far field within the calculation volume (radiation
box). The scattered field is retrieved for both Eθ and Eϕ components to take into
account the field polarization.

Note that the back-scattered field will be defined as the field scattered in the
opposite direction of the incident wave (equivalent to mono-static mode).

3.2.1 Analytical solution

First, we compute the scattered field of the PEC sphere analytically using Mie
series (Mie, 1908). The plane wave is traveling along z axis and polarized along
x axis (θ is 180◦ and ϕ is 0◦ in equation 3.1 as in fig. 3.2). Assuming that the
incident field has a unit amplitude, the scattered field can be computed in the
far-field region for both θ and ϕ components as follows:

Eθ =
e−ikr

−ikr
cosϕ.S2(cosθ) (3.3)

Eϕ =
e−ikr

ikr
sinϕ.S1(cosθ) (3.4)

where k is the wave number, ϕ is the angle between the incidence plane (de-
fined by the incident electric field and k⃗inc) and the plane where the scattered
field is recorded, and r is the distance from the sphere’s center to the point of
observation which is fixed at 1m. This value of 1 m is taken as reference by CST
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and HFSS for the determination of the phase of the scattered far-field, so we
apply the same value in relations 3.3 and 3.4 to ensure a relevant comparison.
S1 and S2 are the scattering amplitudes expressed as:

S1(cosθ) =
nmax

∑
n=1

2n + 1
n(n + 1)

(anπn + bnτn) (3.5)

S2(cosθ) =
nmax

∑
n=1

2n + 1
n(n + 1)

(anτn + bnπn) (3.6)

where an and bn are the Mie coefficients. n is the index that is truncated to nmax

where nmax is fixed according to the size parameter x = ka (a is the sphere’s
radius and k the wave number) as given by Bohren and Huffman, 1983. τn and
πn are the functions describing the angular scattering patterns.

Figure 3.2 – Sphere illuminated using a plane EM wave travelling
along z > 0

3.2.2 Numerical full wave simulation

Using HFSS, we get scattered field in frequency domain that we compare with
the one obtained using CST with the time domain solver when illuminating the
objects using a Gaussian pulse. The CST time solver is used because the far-
field probes in time domain are more efficient and less time consuming than
frequency domain probes.

The PEC sphere is illuminated by a plane EM wave whose propagation and
polarization are identical to those of the analytical solution. Fig. 3.3, shows an
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excellent agreement between the scattered field obtained using Mie series and
both simulation software. We present only the results for a sphere’s radius of
15 cm for concision, but we obtain the same results for any radius value. Thus,
for the rest, we use Mie series to get the scattered field of a sphere because it is
less time consuming.

(a) Amplitude (b) Phase

Figure 3.3 – (a) Amplitude and (b) unwrapped phase of the back-
scattering response of a PEC sphere of 15 cm diameter using CST

and HFSS simulation tools and analytical solutions (Mie)

The metal wire (fig. 3.1) is illuminated using a plane wave where we simulate
two cases of k⃗inc (two directions of incidence) : first, θ = 90◦ and ϕ = 0◦ to
provide a normal incidence regarding the axis of the wire, and second, θ =

45◦ and ϕ = 0◦. In fact, the polarization of the incident wave is important
when dealing with a thin structure as the thin metal wire. If the plane wave is
polarized horizontally (i.e. y axis), then the structure will not be excited as the
wave does not interact with the object.

From the scattered field of both objects in fig. 3.4, we can see that for the thin
wire, which is a strong resonating object, resonance peaks appear clearly in
its amplitude response. On the contrary, the PEC sphere is a weak resonating
object, so it is more difficult to observe the resonances from its response.

Following, we will apply the three SEM techniques on the field scattered by
the PEC sphere and the thin wire and compare the extracted poles with the-
oretical ones in both noiseless and noisy environments. The scattered fields
are simulated as shown before. The SEM methods will be applied on the Eθ

component of the scattered field of both objects for results presented in this
chapter. They are also applied not only on the positive frequency data, but we
also complement it with the negative frequency response (complex conjugate)
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Figure 3.4 – Amplitude of the scattered field (Eθ) of the PEC
sphere and thin wire in the back-scattering direction when illu-

minated with a normal incident.

to get complex CNRs. Thus, we get the same scattered field as the one obtained
from FFT of the real impulse response. The SEM techniques can equally be ap-
plied on the other component of the scattered field (Eϕ ) as seen in appendix A.
During the classification stage that will be presented in chapter 4, we will make
use of both field components.

3.3 SEM applied to the scattered field of a PEC sphere

First, we study the SEM techniques on the scattered field in the back-scattered
observation angle for Eθ (ϕ =0◦, θ =180◦) of a PEC sphere of 15 cm diameter.

Mie theory is used to directly compute the theoretical SEM poles that charac-
terize the scattered field by a spherical conducting object that will be used as
reference. These resonating frequencies are related to the zeros of spherical
Hankel functions H2

n and other derivatives. As these admit a rational form,
their zeros can be computed almost analytically by using root finding proce-
dures for polynomials (Harrington, 2001, p. 265, p. 464). Truncated endless
series of these theoretical poles, that will be used as reference, are presented in
fig. 3.5. The computation of the CNRs of a PEC sphere was done in collabora-
tion with INRIA Factas Team.
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Figure 3.5 – Theoretical poles of a PEC sphere of 15cm diameter
computed from Mie theory. The damping factors α are presented
on the ordinate as a function of resonant frequencies on the ab-

scissa.

3.3.1 Phase compensation in frequency domain

In the far field, when an incident EM wave is considered as plane, channel
compensation has minor impact on the amplitude response. However, the dis-
tance between the receiving antenna and the scattering object cannot be ac-
curately determined and the problem of phase origin arises. In addition, in
frequency domain, SEM techniques cannot be directly applied on the complex
SF response as the phase varies rapidly in the far-field region and they become
unable to approximate the solution. This problem does not arise in the time
domain because this phase shift corresponds only to a delay. The processing is
then done directly on the delayed pulse.

One way to circumvent this issue is to compute the power spectrum of the
scattered field H( f ) (Yang and Sarkar, 2016) as follows:

|H( f )|2 = H( f )× H∗( f ) (3.7)

Hence, we remove the phase dependency. This is similar to not take into ac-
count the phase of the scattered field which amounts to considering it to be
zero. Fig. 3.6 shows the amplitude and the CNRs extracted from the power
spectrum using VF. We can see that they can be accurately extracted from the
power spectrum by comparing them to the analytical ones.
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However, by removing the phase we lose important information contained in
the residues. To overcome this issue, we have to include the phase in our calcu-
lations as it brings information as well as the magnitude. That is why, we need
to compensate the length of the channel of propagation to apply properly the
SEM techniques in frequency domain.

(a) (b)

Figure 3.6 – (a) Amplitude of the power spectrum in the back-
scattering direction; (b) Poles extracted using VF with M = 40 (M

is the model order).

In the present case, the distance d between the object and the receiver is already
known (1m). Hence, we can compute the compensation distance r accordingly.
The phase compensation (ϕic) is computed as follows:

ϕi =
2π

λi
× r (3.8)

ϕic = ϕioriginal − ϕi (3.9)

where i is the frequency index.

For a PEC sphere of 0.15 m diameter , rtheoretical is 0.85 m (d - 2× a, with a
being the radius) for the back-scattering direction. However, as we don’t know
the distance at which the object is placed in real-life measurements, we need
to compensate this phase variation that characterizes the channel but not the
object.

There are several possibilities for compensating the far-field channel:

— The use of the time response to calculate and then compensate the time
delay using equation 3.8.
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— Accurate estimation of an average group delay and compensation of this
delay.

— This group delay can be estimated quickly by considering that the phase
shift due to the object’s response is negligible compared to that induced
by the channel.

The latter solution will be chosen for its simplicity since the estimated group
delay is therefore computed at the maximum frequency (r = ϕ fmax × λ fmax/2π =
0.88 m), making an estimation error of 0.03 m relatively to rtheoretical for this PEC
sphere. The theoretical compensated phase computed from rtheoretical and the
over-compensated one can be seen in fig. 3.7. This compensation (equations 3.8
and 3.9) where we determine r will also be applied to all observation angles.

Figure 3.7 – Theoretical and over-compensated phase of a PEC
sphere of 15 cm diameter.

The phase compensation of the scattered field is therefore a necessary pre-
processing step for the proper estimation of the CNRs using SEM techniques
in frequency domain. The sensitivity of each method to phase compensation
errors will be evaluated later in this chapter.

3.3.2 Early and late time separation

As discussed in chapter 2, obtaining the characteristic poles of an object from
time-domain SEM methods requires the isolation of the "late-time" part of the
scattered field containing the natural resonances of the object.
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To separate the early time component from the late time, we first compute ana-
lytically the start of the late time using equation 2.22 as the object’s size and ge-
ometry are known. In this case, the late time depends on the distance travelled
by the creeping waves that circulate along the circumference of the sphere. This
distance depends on the sphere’s radius and, hence, the late time should start
at: {2r + π × r} /c = 1.28 ns after the early time; c is the celerity of light. How-
ever, in practice we do not have apriori knowledge about the target’s shape and
size, hence, it is desirable to estimate the start of the late time from the impulse
response directly. The calculation of the theoretical late time will therefore only
be used here to validate our method of estimating the late time.

Figure 3.8 – Impulse response of the back-scattered field for a PEC
sphere with a diameter of 0.15 m.

For that, we apply a sliding time window of width Tw, as presented in chapter
2, that is shifted by T step and at each step we apply TLS MP as seen in fig.3.8.
In (Rezaiesarlak and Manteghi, 2013), it was indicated that the window’s width
can be fixed according to the frequency of the fundamental pole or the object’s
size. However, both information are unavailable to us in real measurement
conditions, thus, Tw is chosen wide enough to include as much information as
possible. In fact, in the case of the PEC sphere, which is a weak resonating
object, the start of the late time should be carefully selected as the impulse
response has a very short duration (fig. 3.8). If the window is fixed too late
beyond the late time, we risk to not be able to extract all the natural poles as
their energy will be too low and thus, harder to extract.

Now, we start by evaluating the stability of poles to determine the beginning of
late time response in the back-scattering direction as described in (Rezaiesarlak
and Manteghi, 2013). We show the poles extracted for each window in fig. 3.9
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and we see that it is hard to determine the delay where the poles become stable
as the late time has a very short duration.

Hence, to overcome this ambiguity, we propose to focus on the singular val-
ues. Fig. 3.10 shows the distribution of the normalized singular values for
each window. From 3.10c, we can see that at 0.9 ns the distribution of the first
10 singular values starts to become stable which indicates the start of the late
time. The difference between this value and the analytic one ( 1.28 ns) is due
to the very low resonating behaviour of the PEC sphere which has a very typ-
ical backscattering field with strong discontinuities and a very short response.
In this case, the boundary between late time and early time is tenuous, and it
is preferable to ensure that the signature of the PEC sphere in the late time is
complete, even if it means not removing the early time part entirely. It is then
possible to calculate the CNRs of the PEC sphere efficiently.

(a) (b)

(c)

Figure 3.9 – CNRs extracted from the back-scattered field for win-
dows with different time width.
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(a) (b)

(c)

Figure 3.10 – Normalized singular values of the PEC sphere ex-
tracted from the back-scattered field for windows with different

time widths.

3.3.3 Comparison between VF, TLS Cauchy and TLS MP meth-

ods regarding poles extraction

3.3.3.1 Poles extraction from backscattered field

After the phase compensation in frequency domain, we begin by estimating
the model order M of VF and TLS Cauchy. Indeed, this is a recurrent problem
of the SEM methods. By varying the model order, we notice that starting from
M = 24 the extracted poles start to converge towards the theoretical poles as
seen in fig. 3.11. This confirms that M needs to be overestimated to be able to
extract the physical poles accurately. We recall that the frequency response in-
cludes not only the late time response but also the early time. Thus, the model
order of VF and TLS Cauchy is overestimated to 26. It includes complex pairs
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of SEM poles characterizing physical resonances of the PEC sphere and “math-
ematical” poles due to early time. In fig. 3.11e and 3.11f there are additional

(a) M=16 (b) M=18

(c) M=20 (d) M=22

(e) M=24 (f) M=26

Figure 3.11 – Poles extraction using VF and TLS Cauchy for mul-
tiple model orders varying from 16 to 26.

mathematical poles that appear for both VF and Cauchy that are not presented
on both figures for visibility. They are as follows: poles outside of the frequency
range, poles with damping factor higher than 10 and others that exist on the
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positive side of the ordinate axis. We apply the criteria mentioned in chapter 2
to eliminate mathematical poles resulting from the application of SEM methods
in frequency domain. Only physical CNRs of the first branch will be retained
to characterize the object.

For VF, only two iterations are enough for the convergence of the CNRs in
noiseless case. For TLS Cauchy, the order p in equation 2.29 is fixed at 19
(10−19). This value is chosen after multiple trials of several values ranging
from 10−2 to 10−20. This very low value might be due to the weak resonating
behaviour of the PEC sphere. This will be verified for the thin wire in section
3.4, where we expect that p will be lower as it is a strong resonant object.

In time domain, after identifying the late time, as proposed in the previous
section, TLS MP is applied on the late time response where the threshold ϵ in
equation 2.17 is fixed to 10−9. Thus, the very weak singular values are removed.
The model order is fixed to 20.

Fig. 3.12 shows the physical poles estimated by TLS MP, VF and TLS Cauchy.
The three methods match well with the 16 theoretical CNRs of the first branch.
Interestingly, none of these methods succeed in estimating the natural resonant
frequencies from the other branches (with damping factors higher than 6), nei-
ther when they are directly applied to the analytic scattered response. This
is due to the fact that those CNRs have high damping factors and very weak
residues rendering their precise estimation nearly impossible.

Figure 3.12 – Estimated Physical CNRs of a 0.15 m diameter PEC
sphere compared with the theoretical ones.
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3.3.3.2 Sensitivity of SEM to phase variations in frequency domain

As seen in section 3.3.1, there is an error between the theoretical compensation’s
distance and the computed one which leads to an error on the compensated
phase. In fact, this error will only affect VF and TLS Cauchy as they are applied
on frequency responses, while TLS MP is applied on time responses where a
phase error implies only a time shift. Thus, we explore the robustness of both
TLS Cauchy and VF regarding phase compensations errors.

This way, we test the sensitivity of both methods to small error variations that
vary from -2λ fmax to 2λ fmax (i.e. λ@5GHz = 0.06 m) representing a maximum of
12% error on the compensation distance. Then, we compute the relative error
of each estimated complex pole (s) compared to the theoretical one as follows:

ϵ =
| ssem − sth |

| sth | (3.10)

Results presented in fig. 3.13, show the mean relative error computed over
the first eight physical CNRs. They indicate that TLS Cauchy is sensitive to
phase reference errors, while VF is much less affected (an error less than 1%).
Furthermore, by increasing the phase compensation error, we have to increase
the model order as the pole extraction becomes more difficult for both methods.

Thus, VF is the most accurate SEM method in frequency domain when con-
fronted to imprecise channel compensation. Whereas, in time domain, TLS MP
involves the precise evaluation of the early-time part of the temporal response.
This shows that VF is more robust as its results will be less dependent on poor
estimations of the channel compensation or early time, which is an advantage
in the development of an automatic recognition tool.

3.3.3.3 Extraction of poles from multiple observation angles

As discussed in the previous chapter, CNRs are independent with regard to
the direction of observation. This means that for any observation angle, the
CNRs are expected to be the same. Thus, we study the effect of varying the
observation (bi-static mode) on the extraction of CNRs to check if the method
will be robust, regardless of the position of the transmitter and receiver with
respect to the sphere.

Indeed, in some directions, the scattered field could be weaker or the signature
of the sphere less present. To verify this, we extract the CNRs from different
directions of observation in the plane having ϕ = 0◦ and θ varies. In this plane,



48 Chapter 3. Characterization of objects from their natural resonances

Figure 3.13 – Mean relative error versus channel compensation
distance.

the dominant component of the field is the Eθ component and the other one is
negligible.

From fig. 3.14 we see that the CNRs are the same when using VF on each
observation angle. Those results are the same for TLS MP and TLS Cauchy.
In the region behind the sphere (θ = 0◦ to 60◦), the last CNR has the highest
error (≈ 1.6%) as the scattered field is weak in this space. Those results confirm
the theory that CNRs are independent of the direction of observation (i.e. we
obtain the same CNRs from monostatic and bistatic response of an object).

(a) (b)

Figure 3.14 – CNRs extracted from a 15 cm diameter PEC sphere
by using VF on different directions of observation.
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3.3.3.4 Poles extraction results for different sphere sizes

In this part, we study the effect of varying the sphere’s diameter on the CNRs
values. We simulate 2 PEC spheres of 18 cm and 10 cm diameter respectively.

Fig. 3.15a shows the distribution of the complex CNRs for 3 PEC spheres with
different diameters. Even though the CNRs are characteristic for each object,
we can see that the CNRs distribution is a function of the size of the sphere.
Taking the 15 cm diameter PEC sphere as a reference, a ratio between those
sphere sizes (

lre f
lobject

) and the CNRs (
fre f

fobject
and

αre f
αobject

) can be computed. As ex-
pected, we find that the ratio between the sphere sizes is the same as the one
between the CNRs for both the resonant frequencies and the damping factors.
Meaning that there is a homothety between poles of objects having the same
shape, but of different sizes.

The representation of poles using the Q-factor presented in chapter 2 allows a
better description of the object as it is independent of its size. Fig 3.15b shows
the Q-factor distribution as a function of resonant frequency for 3 PEC spheres
of different diameter. We can see, that for resonances 1, 2 ...., n, the Q-factor is
the same for any diameter of the sphere. Hence, the Q-factor can describe the
resonant behaviour of the sphere while the resonant frequency allows to com-
pute its diameter. Of course, these conclusions are always correct regardless of
the form of the object.

3.3.4 Study of the robustness to noise

Here, we compare the behaviour of VF, TLS Cauchy, and TLS MP in presence of
noise. To do so, we start to numerically add an Additive White Gaussian Noise
(AWGN) to the back-scattered signal. We choose different values of SNRs vary-
ing from 65 dB that corresponds to favorable measurements conditions, to 30
dB which conforms with less favorable conditions. This is done over 30 trials
to get the mean error rate.

For a 65 dB SNR, TLS MP, and VF (3 iterations) have similar behaviours. The
first three natural poles are accurately extracted, whilst TLS Cauchy has the
highest error percentage. The results of each CNR estimation can be seen in
fig. 3.16a and their relative error in fig. 3.16b. It should be noted that the three
methods did not extract the eighth pair of complex poles and diverge from the
theoretical poles in the same manner. If a simple comparison between the poles
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(a) Damping Factor vs Resonant frequency

(b) Q- Factor vs Resonant frequency

Figure 3.15 – Poles distribution for EC spheres of different sizes.

obtained from these methods is done, one could think that they provide accu-
rate results. However, thanks to the theoretical poles that are set as a reference,
we are able to make an objective comparison about their accuracy.

With 30 dB SNR, the results indicate that TLS Cauchy still has the highest rel-
ative error, as seen in figure 3.16c and 3.16d. TLS MP and VF extract only the
first pair of poles with a small error and present similar results. In this case, we
apply between 12 and 15 iterations for VF where we get the minimum mean
relative errors of the first 7 extracted CNRs as seen in fig. 3.17. Again, a mutual
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(a) (b)

(c) (d)

Figure 3.16 – (a) Poles estimated for a 65 dB SNR; (b) Relative error
for 65 dB SNR; (c) Poles estimated for 30 dB SNR; (d) Relative

error for 30 dB SNR.

validation or even the reconstruction of the scattered field, in time or frequency
domain, would lead us to assume that the physical poles have been correctly
extracted (Fig. 3.18). Nevertheless, from what we have seen till now, the higher
order poles get affected by the noise levels and diverge from the theoretical
ones, even though they can be used to properly reconstruct the scattered field.
Indeed, for very noisy signals with SNR lower than 30 dB, the signal will not
be reconstructed properly. This is due to the fact that only the first CNR can
be accurately extracted at low SNRs, as will be seen in chapter 4, which is not
sufficient for the accurate reconstruction of the scattered field.

Hence, we can conclude that it remains complicated to extract a significant part
of the numerous natural poles from a noisy scattered field from a such challeng-
ing object as the sphere. Moreover, we note that MP and VF represent more
promising results when exposed to noise than Cauchy. This test will also be
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conducted later using the thin wire to compare the performance of the meth-
ods when applied on strong and weak resonating objects. For the remainder of
this section, we have selected the use of VF in frequency domain as it is more
robust than TLS Cauchy and the use of TLS MP in time domain.

Figure 3.17 – Mean relative error of poles for different iterations
using VF when applying 30 dB SNR.

(a) (b)

Figure 3.18 – (a) Frequency domain reconstruction using esti-
mated poles from Cauchy and VF for 30 dB SNR; (b) Late Time

response reconstruction using MP for 30 dB SNR.

VF with Multi Observation Angles

Theoretically, SEM poles extracted from the scattered field by an object are the
same regardless of the direction as seen in 3.3.3.3. To take advantage of this
fact and reduce the effects of noise on the accuracy of poles estimation, we
use the functionality of VF that allows to estimate same poles from multiple
transfer functions. VF is, hence, applied on an increasing number of scattered
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Figure 3.19 – Poles extracted using VF for 65 & 30 dB SNR when
taking into account all observation angles of the scattered field.

Figure 3.20 – Mean relative error versus the number of input data
(observation angles) using VF.

field responses from one to 37 observation angles as we have 37 angles in θ

direction as simulated in section 3.2. Fig. 3.19 illustrates the estimated poles
extracted with VF when including the 37 observation angles at once with both
values of SNRs. The average error in pole estimation was computed for the
seven pair of natural poles of the first branch. This shows better convergence
of poles compared to earlier when the extraction was done uniquely on the
back-scattering direction. We can see in fig. 3.20 that the multi-input does
not affect the accuracy of VF in the noiseless scenario. Nonetheless, the effect
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of increasing the number of observation angles is evident with noisy signals,
where VF estimates the SEM poles with a significantly higher precision once it
works with more than 5 inputs.

3.3.5 Discussion and interpretation of the physical poles and

their residues

3.3.5.1 Physical and mathematical poles

In paragraph 3.3.3, the model order M of TLS Cauchy and VF was fixed to
26. To validate this choice, we compute the error, using equation 2.52, between
the back-scattered simulated field and the reconstructed one using equation
2.36 for M varying from 16 to 26. It should be noted that the scattered field
reconstruction in frequency domain is done using the whole set of extracted
poles and their associated residues, i.e. mathematical and physical poles.

Fig. 3.21 shows the mean relative error between the simulated and recon-
structed scattered field for different values of M. This shows that by over-
estimating the model order we get lower error levels but at the same time the
error at M=16 is not high. Indeed, even with low values of M we can recon-
struct the response because, for a given value of M, the methods estimate the
pair of poles and residues which allow to reconstruct the scattered field the
most accurate as possible. Hence, the evaluation of the reconstruction error
cannot be an efficient criterion to evaluate the accuracy of the extracted CNRs.

Figure 3.21 – Scattered field reconstruction error versus the model
order values for VF and TLS Cauchy.
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Indeed, the frequency response includes both early and late time responses,
thus, if we reconstruct the scattered field using only physical poles that are
related to the late time, we do not get the same response as we can see in fig
3.22. However, the IFFT of the reconstructed response from physical poles can
be correlated with the late time response derived earlier. This can be considered
as another way to validate the choice of the start of the late time response.
We also used the eliminated mathematical poles in the reconstruction process,
and we noticed that those poles can reconstruct the early time response. In
fig. 3.23, we show the reconstructed early and late time responses. Thus, the
mathematical poles can be considered related to the early time response. Those
results confirm that the pole selection criteria proposed for SEM in frequency
domain (section 2.5.3) are intrinsically linked to the temporal treatment of early
time suppression. In addition, they have the advantage of being configurable
and therefore automated in the context of an operational use.

Figure 3.22 – Comparison between the amplitude of the back-
scattered field response and the reconstruction using only physi-

cal poles.

3.3.5.2 Comparison between residues and scattered field

In Roussafi, 2016, it was shown that the residues can be correlated with the
radiated field of an antenna at its resonant frequencies. As an antenna is a radi-
ating element, the early time/ late time problem does not arise as the antenna
does not need to be illuminated by an incident wave to radiate. Instead, we
will try to pursue this analysis with objects illuminated by an incident plane
wave. Hence, we study the distribution of residues associated to each CNR.
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Figure 3.23 – Early and late time reconstruction (Rec) using math-
ematical and physical poles respectively.

The comparison is done with the residues extracted using VF as they are the
same as MP as shown in appendix B. The normalized amplitude of residues
at the first three resonant frequencies and the scattered field are shown in fig.
3.24 to 3.26 for all observation angles. We also compare the residues with the
late time response that is translated to the frequency domain using a FFT. We
see that the residues and the scattered fields are not correlated at any resonant
frequencies. In fact, those results are expected as the frequency response in-
cludes both early and late time responses and the residues are only related to
the physical poles.

For this reason, we compare residues with the late time response and we ob-
serve a better correlation where their spatial distribution is similar. For the
back-scattering direction (θ = 180◦), we can see that the energy is mostly con-
centrated in this direction. This means that in the direction opposite to the
incident wave (back-scattering) the amplitude of the late time is more impor-
tant than the early time. However, in the other direction (θ = 0), the late time
energy is weak compared to the early time response.

Indeed, the correlation between residues and the radiated field of the antenna
in Roussafi, 2016 was possible as there is no phenomenon of late time/early
time separation which does not apply here as we work with a scattered field
and not a radiated one. That is why, the residues are compared with the late
time response and it is seen that they both have almost the same spatial distri-
bution.
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(a) Scattered field response

(b) Scattered field from Late Time response

(c) Residues

Figure 3.24 – Normalized amplitude of scattered field, scattered
field from late time response only and residues related to the first

resonant frequency ( f1 = 0.55 GHz).
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(a) Scattered field response

(b) Scattered field from Late Time response

(c) Residues

Figure 3.25 – Normalized amplitude of scattered field, scattered
field from late time response only and residues related to the sec-

ond resonant frequency ( f2 = 1.15 GHz).
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(a) Scattered field response

(b) Scattered field from Late Time response

(c) Residues

Figure 3.26 – Normalized amplitude of scattered field, scattered
field from late time response only and residues related to the third

resonant frequency ( f3 = 1.75 GHz).
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3.4 SEM applied on the scattered field of a thin wire

In this section, the same processing and analysis conducted on the PEC sphere
are being applied to a very different object, the thin wire, which resonates
strongly. The analytical poles that are used as reference for the 15 cm length
wire are obtained from (Tesche, 1973), and are presented on fig. 3.27. It can be
seen that the CNRs are distributed over branches similarly to the PEC sphere.
Indeed, the damping factors of the second branch are very low compared to
the first one, so their extraction is expected to be difficult.

Figure 3.27 – Theoretical CNRs of a thin wire of 15 cm length.

Before applying the SEM techniques in frequency domain, we need to compen-
sate the phase as earlier. Thus, we apply equation 3.8 and 3.9 to compute the
compensation distance r and then the phase is compensated.

Prior to the application of TLS MP, we need to separate the early and late time
components. From equation 2.22, the start of late time is computed analyti-
cally from the knowledge of the size of the object. In case of normal incidence,
the creeping waves circulate along the thin wire’s length, hence, the late time
should begin at: L/2c = 0.25 ns after the early time. We validate this value
by using the window moving technique to evaluate the stability of the singu-
lar values with the use of TLS MP on the impulse presented in fig 3.28a. Tw is
chosen wide enough to include the entire impulse response. From the singular
value analysis in fig. 3.28b, we observe that starting from t = 0.3 ns, they be-
come more stable. This indicates the start of late time which removes the first
peak presented in the impulse response. This value is in good concordance
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with the analytic one as the thin wire is very resonating. This shows that the
early time part is very short compared to the late time response. Thus, we can
expect that, as the duration of the late time is important, we can afford to re-
move a bit beyond the early time without any consequence on the calculation
of the physical poles.

(a)

(b)

Figure 3.28 – (a) Back-scattered impulse response at normal inci-
dence and (b) singular values distribution extracted for windows

at multiple time steps.
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3.4.1 Comparison between VF, TLS Cauchy and TLS MP meth-

ods regarding poles extraction

The model order M of both VF and TLS Cauchy is overestimated to 16 as the
thin wire presents less resonances than the PEC sphere. The additional CNRs
are eliminated using criteria introduced in chapter 2 and we preserve only
CNRs of the first branch. Moreover, for TLS Cauchy, the order p in equation
2.29 is fixed to 6 so we have a threshold of 10−6 to eliminate the singular values.
This value is higher than the one set for the PEC sphere, which might be due to
the strong resonating aspect of the thin wire which facilitates the extraction of
CNRs.

As for TLS MP, to eliminate the weakest singular values, ϵ in equation 2.17 is
fixed to 10−3. The model order is fixed to 14. We proceed to the comparison of
the extracted CNRs from VF, TLS Cauchy and TLS MP, with the analytical ones
of fig. 3.27. Fig. 3.29 shows the extracted CNRs at both incident angles when
the plane wave has: i) a normal incidence and ii) an incidence of 45° regarding
the axis of the wire. As expected, it is impossible to extract CNRs from the
second branch using the three techniques.

Indeed, the CNRs are characteristic for each object and independent of the in-
cident angles. However, the wire is a particular object. If illuminated using a
normal incidence, not all CNRs can be excited since the resonance phenomena
of the wire are not significant when the incidence is normal. Fig. 3.30 shows
the amplitude response of the back-scattered wave for both incident waves and
we can see that at 45◦ additional peaks appear.

(a) Normal incidence (b) Incidence = 45◦

Figure 3.29 – CNRs extracted using VF, TLS Cauchy and TLS MP
for two incident angles
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Figure 3.30 – Back-scattered field of a thin wire for both incident
directions.

Sensitivity of VF and TLS Cauchy to phase variations

Now, we test the robustness of both VF and TLS Cauchy to phase compensation
errors. Using equation 3.8, r is computed at λ f max and ϕmax. In this case, we get
r = 0.996 m to which we we introduce an error of ±2λ fmax .

In fig. 3.31, we can see that Cauchy is still sensitive to phase variations whereas
VF is barely affected. This confirms that, with two different objects, VF is more
precise than Cauchy when phase errors occur.

Figure 3.31 – Mean relative error for different phase errors of a
thin wire.
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3.4.2 Study of the robustness to noise

Now, we test the robustness of each method when applied on a noisy back-
scattered field at 65 dB and 30 dB SNRs. We will show results for an incident
wave impinging at 45◦ to excite the maximum number of CNRs within the
frequency range. The mean error rate is obtained over 30 runs.

(a) (b)

(c) (d)

Figure 3.32 – Plan wave impinging at 45° on the thin wire: (a)
Poles estimated for a 65 dB SNR; (b) Relative error for 65dB SNR;
(c) Poles estimated for 30 dB SNR; (d) Relative error for 30dB SNR.

Fig. 3.32 shows results for CNRs estimation along with their respective relative
error when compared to theoretical ones. With 65 dB SNR, TLS MP and VF
have similar results with an estimated error less than 2% for all CNRs while
with TLS Cauchy the last CNR diverge and has the highest error (4.8%).

When SNR starts to decrease, TLS Cauchy still exhibits the highest error for
poles extraction where it can extract only the first CNR with small error. VF
and TLS MP can extract the first four CNRs accurately while the last one di-
verges and has a relative error of almost 5%. It should be noted that Cauchy
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can estimate the resonant frequencies with good accuracy but does not estimate
well the damping factors in presence of noise which is why it has high relative
error for poles estimation.

Similarly, as with the PEC sphere, we test the signal reconstruction in time and
frequency domains. Fig. 3.33 depicts the reconstructed signals for a SNR of 30
dB which correlates with the scattered field. As the SNR is not too low, we are
able to reconstruct the scattered field response even when some of the CNRs
of higher order diverge. Moreover, we note that TLS MP and VF provide more
promising results when exposed to noise than Cauchy.

(a) (b)

Figure 3.33 – Thin wire’s (a) frequency domain reconstruction us-
ing estimated poles from Cauchy and VF at 30 dB SNR, and (b)

late Time reconstruction using MP at 30 dB SNR.

VF with Multi Observation Angles

The same analysis of testing the extraction of poles on a vector containing sev-
eral observation angles is done using the thin wire.

Fig. 3.34 shows that multi-input data has a minor effect on the accuracy of
VF. In fact, VF is still relatively accurate when working with one observation
angle (back-scattered direction) for the noisy signals. We can note that multi-
observation improves the estimation error of CNRs starting from 3 input.
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Figure 3.34 – Poles extracted for 65 & 30 dB SNR for all 37 direc-
tions of the thin wire.

3.4.3 Discussion and interpretation of the physical poles and

their residues

3.4.3.1 Physical and mathematical poles

In this section, we test the reconstruction of the scattered field using the ex-
tracted CNRs and their associated residues. Indeed, as the early time is in-
tegrated in the frequency response, we cannot reconstruct the field from only
physical poles as seen with the PEC sphere.

In fig. 3.35, we present the comparison between the back-scattered field, the
reconstruction using physical poles and the reconstruction using mathematical
poles for both incident waves. We can see that, as with the PEC sphere, the late
time portion can be reconstructed accurately using the physical poles, whilst
the early time is reconstructed using mathematical poles.

3.4.3.2 Comparison between residues and scattered field

In this section, a comparison is performed between the amplitude of the residu-
es computed using VF, the scattered field and late time response that is trans-
lated into the frequency domain using FFT. The results are presented for the
three odd resonant frequencies ( f1, f3, f5) and for both incident wave direc-
tions in fig 3.36 to 3.41.
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(a) Normal incidence

(b) Incidence=45◦

Figure 3.35 – Early and late time reconstruction (Rec) using math-
ematical and physical poles respectively.

Again, the results show that the residues are correlated with the late time re-
sponse at those resonant frequencies. We can also observe from the diagrams
that the maxima and minima are almost located at the same places for the
residues and late time response. Furthermore, the differences between the scat-
tered field and the late time are relatively small, which can be explained by the
fact that the specular reflection (early time) is not as important in backscatter-
ing for the thin wire as for the PEC sphere. As illustrated in fig. 3.35, since the
thin wire is highly resonant, the energy contained in the oscillations specific to
its geometry is greater than that contained in the early-time response.
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(a) Scattered field

(b) Scattered field from Late Time response

(c) Residues

Figure 3.36 – Normalized amplitude of scattered field, late Time
and residues related to the first resonant frequency ( f1 = 0.9 GHz)

of the thin wire for an incidence of 45◦.
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(a) Scattered field

(b) Scattered field from Late Time response

(c) Residues

Figure 3.37 – Normalized amplitude of scattered field, late Time
and residues related to the third resonant frequency ( f3 =

2.9 GHz) of the thin wire for an incidence of 45◦.
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(a) Scattered field

(b) Scattered field from Late Time response

(c) Residues

Figure 3.38 – Normalized amplitude of scattered field, late Time
and residues related to the fifth resonant frequency ( f5 = 4.9 GHz)

of the thin wire for an incidence of 45◦.
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(a) Scattered field

(b) Scattered field from Late Time response

(c) Residues

Figure 3.39 – Normalized amplitude of scattered field, late Time
and residues related to the first resonant frequency ( f1 = 0.9 GHz)

of the thin wire for normal incidence.
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(a) Scattered field

(b) Scattered field from Late Time response

(c) Residues

Figure 3.40 – Normalized amplitude of scattered field, late Time
and residues related to the third resonant frequency ( f3 =

2.9 GHz) of the thin wire for normal incidence.
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(a) Scattered field

(b) Scattered field from Late Time response

(c) Residues

Figure 3.41 – Normalized amplitude of scattered field, late Time
and residues related to the fifth resonant frequency ( f5 = 4.9 GHz)

of the thin wire for normal incidence.
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3.5 Conclusion

In this chapter, we have used the SEM to represent the scattered field of an
object accurately and compactly with just few parameters. Three extraction
techniques of CNRs were compared: TLS MP in time domain, and VF and TLS
Cauchy in frequency domain. They were applied on simulated scattered fields
from two objects: a PEC sphere and a thin wire.

First, we have shown that in a noiseless case, all methods extract the CNRs with
almost the same excellent precision. It has been shown that the SEM frequency
techniques can be sensitive to poor compensation of the propagation channel.
It was also demonstrated that in combination with the VF method, the CNRs of
these objects could be calculated accurately when phase compensation errors
exist. We have also confirmed that the criteria mentioned in chapter 2 allow
to effectively eliminate the mathematical poles. As for TLS MP, the complexity
lies in the separation between the late time and the early time, a method based
on the stability of the singular values extracted using the TLS MP algorithm
allowed a good estimation of the beginning of the late time.

Subsequently, we have performed a protocol to test the robustness to noise of
these three methods by considering only the physical CNRs. It was shown that
TLS MP and VF are more robust than TLS Cauchy when applied on the scat-
tered field response from both objects. In case of a low resonating object such
as the PEC sphere, the extraction of CNRs becomes difficult when noise levels
are high with TLS Cauchy having the highest noise sensitivity. In addition, it
remains complicated to extract a significant part of the numerous CNRs from
a noisy scattered field from such a challenging object. However, in case of thin
wire, VF and TLS MP can extract almost all CNRs with very low error, whilst
Cauchy still had the highest errors. We also explored the functionality of VF
allowing to compute the CNRs for multiple observation angles at once. It was
shown that the multi-input data can indeed increase the accuracy of poles esti-
mation from noisy signals, especially when dealing with low resonating objects
like the PEC sphere.

Then, we evaluated the reconstruction of the scattered field using physical
poles. Indeed, as the frequency response includes both early and late time com-
ponents, it is not possible to reconstruct the frequency response through only
the physical poles. However, this reconstruction can be correlated with the late
time response as those physical poles are related to that part of the response of
the object. The residues associated to each CNR were also compared with the
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scattered field and the late time response. The correlation of residues with late
time response was visible for both objects.

Although TLS MP and VF perform similarly in the presence of noise, in the
remainder of this thesis we will use the VF method. This selection is driven
by the fact that TLS MP necessitates the separation between late time and early
time components which does not exist in frequency domain. Furthermore, that
criteria for removing mathematical poles in frequency domain is efficient and
easily automated.
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Chapter 4

Classification of objects using their
EM signatures

4.1 Introduction

Recognition and classification of targets is a challenging task in the radar sig-
nal processing area. In recent years, Artificial Intelligence (AI) has been largely
explored for this purpose. Machine Learning (ML) and Deep Learning (DL)
algorithms, two most commonly known AI families, have become increasingly
popular where extensive studies have been conducted by researchers for clas-
sification purposes. Several algorithms are found in literature, that vary from
simple models, like Support Vector Machines (SVMs), Decision Trees (DTs),
K-Nearest Neighbour (KNN) or Naive bayes, to more complex models like Ar-
tificial Neural Networks (ANNs) (Narayanan et al., 2017).

Indeed, combining the SEM with a classification algorithm is an interesting
research topic that has been seldom exploited and has not been applied to scat-
tered fields emanating from all spatial directions. The work found in literature
deals with simple classification cases: bi-class (Joon-Ho Lee, In-Sik Choi, and
Hyo-Tae Kim, 2003) or multiclass (Garzon-Guerrero, Ruiz, and Carrion, 2013)
but for the purpose of classifying four sizes of homothetic objects applied to
limited directions of scattered fields. These studies have highlighted not only
the evident qualities of the SEM (excellent classification from few data and no
matter the aspect angle of the target) but also its limitations to noise that affect
the higher order poles. They have therefore limited their approach to the first
one or two complex poles to build the dataset. Moreover, they have trained
their classifiers at different SNR levels or have applied Principal Component
Analysis (PCA) before the extraction of resonances to reduce the effects of noise
which is not very compatible with an operational context.
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In this chapter, we aim to classify targets by using pre-processed data from the
SEM technique presented in the previous chapters. To this end, supervised
learning techniques have been explored for classification where each data is
labelled. We chose to study the multi-class SVM, DT and ANNs classifiers as
SVM and DT are two of the most basic and robust ML algorithms, while ANNs
are more advanced and known for their reliability. To validate the interest of
using SEM data, we compare classification performances when using raw data
(frequency and time domain responses) and SEM data. First, we propose a
fast and simple way to construct the dataset based on scattered field simulated
using Mie series. Then, a novel solution is proposed to construct a dataset that
is more robust and that is applicable to a wide variety of objects of a more
complex shape.

4.2 Supervised Learning Techniques

In this section, we explain each of the classifiers used within this work. The
SVM and DT algorithms are implemented with built-in functions in Python
using scikit-learn library (Pedregosa et al., 2012). The ANNs are implemented
using the Keras-Tensorflow (Chollet et al., 2015) library tool in Python.

4.2.1 Multi-class SVM

The SVM is originally a binary classifier introduced by Boser, Guyon, and Vap-
nik in 1992 (Boser, Guyon, and Vapnik, 1992). It consists in finding the optimal
hyperplane to separate different data classes. By maximizing the margin, the
SVM generates the largest separation distance possible between the separating
hyperplane and the training examples on either side of it (fig. 4.1). We start by
explaining the procedure of a Binary SVM.

Under the assumption that the data are linearly separable, the separating hy-
perplane is found by solving a decision function F(x) for a feature vector x of N
dimension that belongs to either of two classes:

F(xi) = wTxi + b (4.1)

w is the weight vector that is normal to the hyperplane and b is a scalar bias.
The distance between the defined hyperplane and the system’s origin is given
by b

||w|| . In fact, the choice for this hyperplane is sensitive, thus, it is necessary
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Figure 4.1 – Optimal hyperplane separation for a linearly separa-
ble bi-class classification

to maximize the "margin" between the two classes given by 2
||w|| such that:

wTxi + b ≥ 1, i f yi = 1 (4.2)

wTxi + b ≤ −1, i f yi = −1 (4.3)

yi is the class label ∈ {1,−1}. The optimal hyperplane is found by minimizing
the following equation:

1
2
||w2||+ C

N

∑
i=1

ξi (4.4)

with constraints, if the data are non-linear, that are:

F(xi) ≥ 1 − ξi, i = 1, · · · , N (4.5)

where C is a regulation parameter, which adjusts the width of the margin to
minimize the training error. ξi are non-negative slack variables.

If the data are not linearly separable, SVMs employ the kernel method to map
the data onto a higher dimensional space where they become linearly separable
by using the appropriate mapping ϕ : x → ϕ(x) (Schölkopf and Smola, MIT
press, 2001). Hence, the scalar product of samples <xi,xj> becomes:

K(x, z) =< ϕ(xi), ϕ(xj) > (4.6)
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where K is the kernel function. There are multiple types of K functions that
exist:

— Polynomial kernels:

K(x, z) = (xT
i xj + 1)q, q > 0 (4.7)

— Radial Basis Functions (RBF):

K(x, z) = e−γ||<xi,xj>|| (4.8)

— Hyperbolic Tangent:

K(x, z) = tanh(βxT
i xj + γ) (4.9)

γ is the data variance that depends on the number of variables. After choosing
the appropriate kernel function, the hyperplane can be found by maximizing
the following Lagrangian function:

maxλ(
N

∑
i=1

λi −
1
2 ∑

i,j
λiλjyiyjK(xi, xj)) (4.10)

constrained by

0 ≤ λi ≤ C,
N

∑
i=1

λiyi = 0 (4.11)

Once choosing the kernel function, the parameters C and γ must be carefully
chosen. if C is too high, the margin that separates the classes decreases and the
classification error on the training data also decreases. But this might increase
the error on the test data. As a consequence, a low C value leads to a low miss-
classification rate, whereas a higher C value raises the miss-classification rate
and is more susceptible to over-fitting. Over-fitting is when the training model
fits very well its training data that it cannot perform well against unseen data.

In order to apply the SVM in a multi-class configuration, different possibilities
exist that are based on solving multiple binary SVM classifiers (Chih-Wei Hsu
and Chih-Jen Lin, 2002). In this thesis, we use the one vs one (ovo) approach
that is based on constructing k(k − 1)/2 classifiers (given k classes) and then
treating the problem as a binary one. The idea is to map data points to high
dimensional space to gain mutual linear separation between every two classes.
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4.2.2 Decision Tree

DT methods build a decision model based on the actual values of attributes
in the data. The dataset is recursively divided into smaller homogeneous sub-
sets, resulting in a flowchart-like tree structure as seen in fig 4.2 (Safavian and
Landgrebe, 1991). The DT is comprised of:

— Nodes: check the value of a certain parameter. A node that does not have
a descendant of its own is called a leaf. Thus, a leaf contains the value of
a class label. Any further nodes are called "internal nodes".

— Branch: correlates with the output of a test and connects to the next node
or leaf.

They use various techniques to split the data like Gini index or entropy (Loh,
2011). The minimum amount of samples required to split a decision node is
two. In this work, we use the Gini criterion to split the data in the nodes as it
gives similar results while being less computationally intensive than entropy
(Raileanu and Stoffel, 2004) .

Figure 4.2 – Decision Tree classifier diagram

4.2.3 Artificial Neural Network

There are many types of neural network topology, the simplest being the feed-
forward networks. They consist of neurons interconnected by synapses that are
responsible for neuronal activities. From these neurons, networks can be estab-
lished by organizing them into interconnected layers (Bebis and Georgiopou-
los, 1994). An ANN consists of an input layer and an output layer and at least
one hidden layer. The input layer is composed of input neurons that simply
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transmit information to the remainder of the network. The output layer con-
tains neurons representing the different classes of the data that the network is
classifying (Sze et al., 2017). The hidden layers are connected to the input and
output layers and can be of various types and sizes (number of neurons). In
this work, we have considered the most used ANNs: Multi-Layer Perceptron
(MLP) and Convolutional Neural Network (CNN).

Multi-Layer Perceptron

One of the well-known ANN models is the MLP. It comprises: an input layer
with a number of neurons equals to the number of input data which simply
pass information to the next layer; one or several hidden layers composed of
various amount of neurons; and an output layer with a number of neurons
equal to the number of classes. The neurons of the hidden layers and the output
layer are called perceptrons. A perceptron is a neuron that is connected to the
output of the previous layer and whose output is connected to the neurons of
the next layer. It uses a non-linear activation function that is applied to a sum
of products of the inputs related to their weights (Sze et al., 2017). The neuron
j in layer m carries out the calculations indicated in equation 4.12.

ym
j = f (

Nm−1−1

∑
i=0

wij ∗ ym−1
i ) (4.12)

Where ym
j is the output of the neuron j in the layer m, Nm is the number of

neurons in the layer m, wij are the weights between the neurons of layer m + 1
and layer m, and f (.) is the non-linear activation function. Various activation
functions exist that can be used such as: Sigmoid (Narayan, 1997), hyperbolic
tangent (Lecun et al., 1998a) and Rectified Linear Unit (ReLU) (Agarap, 2018).
In this work, we use the ReLU function because of its computational efficiency,
enabling the system to converge quickly and to prevent over-fitting.

Convolutional Neural Network

CNNs are composed of multiple layers of different types. Usually, the most
common layers are convolution, pooling, and fully-connected layers. The Con-
volution layer is a filter layer, of specific length and width, that moves along
the input data. It is composed of kernels or filters that are applied to extract
specific features from the input vector (Sze et al., 2017).
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The pooling layer is a sub-sampling layer used to reduce the size of the fea-
tures computed using the convolution layer. They are, basically, composed of
average or maximum pooling (maxpool) filters applied to incoming features
through a sliding technique similar to the one used with Convolutional layers.
Here, we use the maxpool layer that outputs the maximum input value.

Fully-connected (FC) layers are used to process the output features of the last
convolution or pooling layer. They are composed of neurons connected to all
previous layer’s neurons.

4.3 Classification of the sphere’s material

To validate and investigate the interests of using SEM data for classification,
we opted to start by assessing this approach on spheres of different materials
that vary from PEC spheres to dielectric ones. This is due to the fact that the
UWB SF response of a sphere can be computed analytically using Mie series as
seen in chapter 3. Thus, we do not need to use simulation software that take a
considerable amount of time to compute the SF responses.

Therefore, we compute the UWB SF from 5 different classes of spheres that
are: PEC sphere, sphere with a dielectric constant ϵr= 4 and conductivity σ=
0.5 S.m−1, three lossless spheres with dielectric constant ϵr equal to 2, 4 and 9
respectively. They are enumerated from 0 to 4 respectively. The SF responses
are recovered in the far-field region, in a bi-static configuration with a fixed
emitter because varying the position of a mono-static Radar is of no interest
for the sphere. The frequency band is fixed from 0.01 GHz to 5 GHz as in the
previous chapter. All spheres are illuminated using an x-polarized incident
plane wave propagating along z axis (as in fig 3.2). The SF is recovered for
multiple observation angles where θ varies from 0◦ to 180◦ with 5◦ step and
ϕ from -180◦ to 180◦ with 10◦ step. Fig. 4.3 shows the amplitude of the SF
in the back-scattering direction (θ= 180◦) for the 5 simulated spheres of 10 cm
diameter.

In order to extract the SEM data, the pre-treatment shown in chapter 3 is ap-
plied on each simulated object. The SEM data are extracted by applying VF in
frequency domain. Indeed, it was shown in chapter 3 that VF is more robust
to noise and more accurate than TLS Cauchy. In addition, by working in fre-
quency domain we avoid the necessity of having to determine the beginning of
late time which is rather a hard task for dielectric objects.
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We also compute the quality factor (Q-factor) of each pole, as in chapter 2, to re-
place the damping factor. This parameter is an important representation of the
object as it is independent of its size which will help in generalizing the classifi-
cation of spheres of different sizes. To confirm this hypothesis, we will compare
the classification performances when using damping factors and Q-factors in
the following sections. To validate the scattered field simulation and the CNRs
values of the dielectric spheres, they were compared with those obtained using
Mie series in (Mei et al., 2014).

From Fig. 4.4a and 4.4b we see that all classes of 10 cm diameter spheres exhibit
5 poles in the frequency range of interest. When the relative permittivity of
the dielectric material increases, the sphere becomes a very strong resonating
object, hence, it has a very low damping factor and a very high Q-factor. In
Fig 4.4b, we do not show the rest of the Q-factors for both classes 3 and 4 for
visibility as they are higher than 15.

Figure 4.3 – Amplitude of the frequency response in the back-
scattering direction for the 5 classes of spheres. The diameter of

the spheres is 10 cm

4.3.1 Dataset construction

We start by creating datasets including the 5 sphere classes. In fact, having mul-
tiple sphere sizes represents an advantage for SF data as the object’s response
gets affected by a change in the size. For SEM data, the resonant frequencies
and damping factor also change, however, by the use of Q-factor we expect
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(a)

(b)

Figure 4.4 – (a) The first five natural poles and (b) Q-factors as a
function of natural frequency of the 5 spheres of 10 cm diameter.

that this change will not present a problem. Hence, to have a balanced com-
parison between SEM and SF data, 13 sphere sizes are simulated for each of the
5 classes. Those dimensions are selected to ensure that each sphere exhibits at
least one natural frequency within the frequency range ([0.01 − 5] GHz).

Table 4.1 shows the diameters of the spheres where N represents the number
of resonances in the frequency range. For spheres having N ≥ 5 resonances
in the frequency band, we chose the diameters varying from 10 cm to 18 cm
with a 1 cm step, resulting in 9 objects for each class. For spheres having less
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Table 4.1 – Diameters (cm) of spheres versus the number of reso-
nances (N) for each sphere class

Class N
1 2 3 4 N ≥ 5

0) PEC 3 5 7 8.5

[10:1:18]
1) ϵr=4, σ=0.5 3 4.5 6 8
2) ϵr=2 4.5 6 8 9
3) ϵr=4 3.5 5 6 7
4) ϵr=9 2.5 3.5 4.3 5

than 5 resonances (N < 5 resonances), we chose diameters which provide N
resonances, with N varying from 1 to 4.

To reduce the size of the datasets, we include data from the three following
planes which are representative of the scattering properties of the sphere: ϕ =

0◦ and θ varies (XoZ plane), ϕ = 90◦ and θ varies (YoZ plane), θ = 90◦ and ϕ

varies (XoY plane). Thus, for each sphere size we have 111 observation angles
(3 planes with 37 angles in θ or ϕ), making a total of 7215 samples for each of
the three datasets as we have 13 spheres for each of the 5 classes.

4.3.1.1 Scattered Field dataset

The first dataset is constructed using the amplitude of the SF response in fre-
quency domain. The classifiers employed do not support complex numbers,
thus, we need to include only real numbers in the input vector. For that, to
construct the most efficient dataset, we tested different possibilities based on
the amplitude and phase of the SF responses as following:

— Amplitude and Phase responses

— Amplitude response only

— Phase response only

This preliminary study showed that using the phase alone had the same per-
formances as using the amplitude, while adding the phase along with the am-
plitude was not relevant as it doubled the vector’s size while maintaining the
same performances. The results showing this comparison are presented in ap-
pendix D. The input vector is, hence, a 1-D signal of 500 frequency points and
composed of 2 channels. The first channel represents the Eθ component and the
second one is the Eϕ component of the SF’s amplitude.
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The second dataset represents the SF in time domain. The transient impulse
response is obtained by computing the IFFT of the complex SF response in fre-
quency domain. Here, we include the first 10 ns of each signal, which consti-
tutes 100 time points, as it starts to decay after (refer to fig. 4.5). The input
vector is also a 1-D signal of 100 points and composed of 2 channels, one for
each polarization.

(a) (b)

Figure 4.5 – Impulse response of 10 cm diameter sphere (a) PEC
and (b) dielectric with permittivity 4

4.3.1.2 SEM dataset

For the third dataset that is based on SEM data, we use the pre-processed data
from VF. Then, we have to pay attention to two factors: the number of the CNRs
and the data to include in this dataset. Concerning the number of resonances,
several points are considered:

— we saw in chapter 3 that, when SNR decreases, the higher order poles are
the most affected,

— in addition, most objects have in average 5 to 6 poles in the frequency
range [0.1 − 5] GHz.

To this end, we chose to retain the first five natural frequencies of each object.
In addition, for the smaller spheres having less than 5 resonances (see table
4.1), we will need to complement the missing data with some other value to
preserve the same input vector’s length that is 5. This ensures that information
from other columns is not lost, and predictions can be made despite the missing
values in the row. The most straight forward approach is to fill in the missing
values with zero, hence, we will have sparse SEM data in this dataset. This
original configuration is chosen to improve the generalization performance of
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the classifiers when limiting factors (limited bandwidth, noise, etc.) impact the
higher order poles. Indeed, it is not possible to extract more than one or two
CNRs for very noisy signals, thus, this configuration allows to take this into
account.

Regarding the second factor concerning what data to include in this dataset,
we test several approaches to find the optimal dataset configuration. The first
approach is based on adding the quality factor to be able to generalize to any
object’s size. The input vector is, thus, of length 5 and composed of 4 channels:
natural frequencies, Q-factors and the residues amplitude of θ and ϕ compo-
nents respectively. The residues are included because they contain additional
information about the objects which can be significant when the natural fre-
quencies and Q-factors are almost similar for some objects. We also test more
conventional approaches by using the damping factor. Thus, we will have the
following three cases:

— case 1: An original dataset as described above (four channels: natural
frequencies, Q-factors and their respective residues);

— case 2: Q-factor is replaced by the damping factor (four channels: natural
frequencies, damping factors, and their respective residues);

— case 3: we eliminate the residues from case 1, hence, the input vector has
only the first two channels (natural frequencies and Q-factors).

In the rest of the thesis, we will use the following abbreviations to refer to the
datasets: FD data, TD data and SEM data which are related to frequency do-
main, time domain and SEM data respectively. Note that case 1, 2 and 3 only
refer to SEM data.

4.3.2 Training Phase

During this phase, the parameters of each classifier are tuned to achieve highest
accuracy results for training data. Each dataset is split into 80% for the train-
ing and 20% for the testing. The 20% test samples are composed of random
observation angles where each class has an equal number of samples. This is
achieved over 10 trials to obtain the mean accuracy results of test data. Hence,
the datasets are re-split to 80% and 20% and the algorithms are re-trained over
every run.
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4.3.2.1 Multi-class SVM

First, the SVM parameters are fixed according to the results using ’gridsearch’
function. For that we defined, for each dataset, a matrix of C and γ values,
the rbf kernel function and ran the 5-fold cross-validation. Results are given in
fig. 4.6 for the 3 datasets when using rbf kernel function. We can see that the
training parameters are much smaller for SEM data and offer a large choice of
training parameters achieving 100% accuracy on the training data because they
are easily separable compared to the other datasets based on raw data. The
choice of optimum values, as given by the ’gridsearch’ function, are reported
in table 4.2. It is worth noting that for SEM data, if we choose another set of C
and γ, we get same classification results.

Table 4.2 – Selected parameters of SVM classifier according with
the datasets

Data Parameters
Function C γ

FD rbf 2000 10
TD rbf 1000 50

SEM rbf 5 0.05

4.3.2.2 Decision Tree

Second, for the DT algorithm, the Gini criterion is used to measure the qual-
ity of the split in the tree and decision nodes are randomly chosen to be fur-
ther split. The trees produced from the learning phase using the 3 datasets are
shown in fig. 4.7. We can see that the learning using SEM data produces the
smallest tree (fastest learning) as the data are easily separable into 5 distinct
classes. However, the DT algorithm produces a much larger tree after using
FD and TD data in the learning process as the amount of data contained in the
input vector is larger and more difficult to process than SEM data.

4.3.2.3 Artificial Neural Networks

The optimal training parameters when using both NN classifiers are obtained
through a series of trial and error. When using the MLP classifier, we apply one
hidden layer while varying the number of neurons. Note that we have done
tests with other topologies by increasing the number of hidden layers and have
found that the performances are almost similar. We use the ReLU activation
function with SEM data and SF data.
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(a)

(b)

(c)

Figure 4.6 – SVM learning parameters when using rbf kernel func-
tion with: (a) FD data, (b) TD data and (c) SEM data. ∗ indicates

the optimum values chosen.
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(a)

(b)

(c)

Figure 4.7 – Decision tree flowchart when DT algorithm is learn-
ing with: (a) FD data, (b) TD data and (c) SEM data
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(a)

(b)

(c)

Figure 4.8 – Train and validation accuracy vs number of epochs
when CNN classifier is learning with: (a) FD data, (b) TD data
and (c) SEM data. 400 epochs are used with FD and TD data,

while 100 epochs are used with SEM data.
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For the CNN, we are adopting the LeNet-5 architecture to train with both SF
data (Lecun et al., 1998b). The filter size is changed in order to be applied on
1-D input signals. For SEM data, we apply one convolutional (conv) layer with
6 filters, followed by one hidden layer with 32 neurons and ReLU function
applied in all layers.

This is run over 100 epochs for SEM data and 400 epochs for SF data with a
batch size of 100 for both MLP and CNN classifiers. The number of epochs is
a hyperparameter describing the number of times that the algorithm will run
through the entire training dataset while the batch size refers to the number of
samples to process before updating a model. Both algorithms have an output
layer composed of 5 neurons using the softmax activation function to compute
the output probabilities. The learning rate is updated using the Adam opti-
mizer (Kingma and Ba, 2014).

From fig. 4.8, we see the evolution of the accuracy curve with the number
of epochs when using CNN with the different datasets. The validation curve
represents the accuracy obtained on the validation set that is used to tune the
hyper-parameters and to evaluate the model during the training process. We
observe that the learning curve of SEM data is much smoother than those of
SF data which present higher fluctuations. This shows that with few epochs
(starting from 50) we get 100 % accuracy on the SEM training data. Conversely,
both SF training data’ accuracy do not exceed 98.5% at 400 epochs. This proves
that SEM data are easier and faster to train than SF data.

Finally, table 4.3 shows the execution time values recorded during training
phase of the 4 classifiers for each dataset. The values shown for SVM take into
account only the training using the optimum parameters chosen earlier. The
MLP and CNN classifiers consume much more time than SVM and DT as their
calculations are more complex. In addition, the training runtime of classifiers
using SEM data is much faster than those using raw data. The IFFT used to ob-
tain time responses takes 0.05 sec when applied on a single observation angle.
Additionally, the SEM pre-treatment using VF along with the phase compensa-
tion step shown in chapt. 3, accounts for 0.08 sec for a single observation angle.

4.3.3 Test Phase

First, we present the mean accuracy results (% of data points classified cor-
rectly) when testing the 20% remaining samples of each dataset for various



94 Chapter 4. Classification of objects using their EM signatures

Table 4.3 – Time consumption (sec.) of the four classifiers trained
using the different datasets

Classifier Time consumption (sec)
FD TD SEM

SVM 8.7 6.3 0.5
DT 5.3 4 0.2

MLP 180 150 12.3
CNN 352 212 17.6

amount of neurons using MLP classifier.

In fig. 4.9a, we can see that, for SEM data (case 1), starting from 32 neurons we
obtain excellent accuracy (> 98%) while for SF datasets 256 neurons yields the
highest accuracy of 97%. The number of parameters (weights) computed in the
hidden layer increases with the number of neurons, as shown in fig. 4.9b where
the FD data has the highest parameters as it has the longest input vector. Thus,
we can see that the SEM dataset has both the highest accuracy and the lowest
parameters computed using the MLP.

(a) (b)

Figure 4.9 – (a) Mean accuracy of the 5 spheres; (b) number of
parameters vs. number of neurons in one hidden layer for the 3

datasets.

In addition, we test the 3 cases of SEM dataset construction. Fig. 4.10 shows
that the MLP classifier trained using SEM data of both cases 1 and 2 has a
higher accuracy (100%) for a number of neurons > 32 and is more stable (low
variance) than the classifier trained without the residues. In fact, from fig. 4.4b,
we see that some classes have very close natural frequencies and Q-factor, that
is why, when trained with case 3 without residues, it becomes more difficult
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to separate those classes. This also shows that residues are indeed parameters
that contain information about the object. The other classifiers, DT, SVM and
CNN, have similar results but with a higher variance when trained without
residues as seen in table 4.4. The standard deviation σd is 0 for case 1 as the
Q-factor is always constant which does not create any error with this test set.
Thus, for the rest we will only work with SEM datasets of cases 1 and 2 (i.e.
with residues). Those results are interesting because the residues have never
been used for identification or classification as they depend on the angle of ob-
servation. Therefore, this study shows that their variation with the frequency is
also characteristic of the object since it improves the classification performance.

Figure 4.10 – Test results for the 3 cases of SEM datasets construc-
tion using MLP classifier while varying # neurons.

Table 4.4 – Accuracy (%) and standard deviation σd of each classi-
fier when using the 3 cases of SEM data

Classifier
SEM data

case 1 case 2 case 3
Accuracy σd Accuracy σd Accuracy σd

SVM 100 0 99.7 0.2 92 4.6
DT 100 0 99.7 0.2 91 5

MLP - 64 neurons 100 0 99.7 0.22 92 4
CNN 100 0 99.8 0.1 95 3

The performances of the classifiers are also evaluated with the following met-
rics: the Sensitivity (Sens) and the Specificity (Spec) of each class. Sens is the
probability of classifying a sample as True Positive (TP) and Spec is the proba-
bility of classifying as True Negative (TN) and they vary from 0 to 1. They are
computed as follows:

Sens =
TP

TP + FN
; Spec =

TN
TN + FP

(4.13)
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FN is False Negative, and FP is False Positive.

Table 4.5 shows the accuracy performances of the classifiers when applied to
the different test datasets. We can see that the SEM data (case 1 or 2) yields
the highest recognition rate for all classifiers where the Sens and Spec are of
1. Additionally, the CNN model has better performances than SVM and DT
when trained using FD or TD data. In this case, the Sens and Spec are higher
than 0.97 for all classes. Thus, we see that the classifiers trained using SEM
data holding the residues are more capable in distinguishing spheres having
close characteristic poles and provide higher accuracy results while consuming
much less computational cost than classifiers trained using raw data.

Table 4.5 – Accuracy (%) of the 20% test sets when using the four
classifiers with the four datasets

Data SVM DT MLP CNN
FD 95 94.5 97 98.3
TD 97.5 96.5 97.5 98.5

SEM case 1 100 100 100 100
SEM case 2 99.7 99.7 99.7 99.8

4.3.4 Noisy test data

Now, we test the classifiers’ ability to handle noisy data. Given that generat-
ing a dataset with different SNR levels is challenging and cannot be used to
evaluate the noise sensitivity of the proposed method, we opted to assess the
robustness of the classifiers to noise by evaluating them on noisy data that were
not seen in the training phase. We chose the 15 cm diameter sphere as its noise-
less response is already included in the training dataset. Several AWGN levels
are added to the SF response of the 5 spheres of 15 cm diameter. This is applied
to multiple observation angles included in the three main planes presented be-
fore. The SNR values are chosen such that 65 dB is one of the highest values
that can be obtained, whilst 10 dB corresponds to an unfavorable condition.

As in the case without noise, VF is applied to extract the poles and residues
from the noisy signals. In chapter 3, we showed that the noise highly affects the
damping factor values more than the natural frequencies. Consequently, the Q-
factor will also be affected by noise as it is computed using the damping factor.
Note that when using VF with very noisy signals, a minimum of 10 iterations
are needed for good convergence of poles and the model order M should be
carefully selected where it should not be set too high to avoid numerous poles
related to noise that affect the convergence of actual resonance poles.
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Accuracy results of the classifiers are shown in fig. 4.11. For all SNR values,
both ANN classifiers trained using SEM data (case 1 or 2) achieve high accu-
racy results that are better than SF data. For 10 dB SNR, results start to decrease
but are still high and similar to those obtained in (Garzon-Guerrero, Ruiz, and
Carrion, 2013) for the PEC sphere while, as opposed to our work, they trained
their algorithms using noisy data with AWGN at various SNR levels. Indeed,
we noticed from the flowchart of DT, that it is basing its decisions mainly on
the Q-factor as it is constant for all sphere dimensions and in the presence of
noise it is perturbed which in turn perturbs the classification. SVM is more
like a black-box but its performances might be due to the same reasons as DT.
However, ANNs are able to classify the noisy SEM data as they are capable of
taking advantage of the extra information provided by the original structure
of the SEM dataset proposed in this work (sparse data, Q-factor and residues)
as they can identify the first resonant frequencies and their associated Q-factor
and residues barely affected by noise. In addition, we can see in table 4.6 that
the three dielectric spheres have the highest Sens values as they are strong res-
onating objects making the extraction of CNRs easier in presence of noise, con-
firming what we have seen before in chapter 3 with the thin wire.

For FD and TD data, the CNN classifier performs better than the other classi-
fiers and has good performances for high SNR values. However, results start to
degrade for SNRs lower than 20 dB as seen in fig. 4.11. From table 4.6, we see
that for 10 dB SNR the Sens and Spec deteriorate for some classes. Hence, we
can conclude that the proposed association of VF with an original input vec-
tor structure and ANN classifiers compensates for the noise sensitivity of SEM
methods which then outperforms the results obtained using raw data, even at
low SNR levels.

Table 4.6 – Sens and Spec (%) for SNR = 10 dB using CNN with
the different datasets

Class Sens Spec
FD TD SEM FD TD SEM

0 32 68 85 97 96 96
1 77 72 84 95 93 97
2 41 76 93 97 95 99
3 90 82 98 72 88 97
4 95 77 99 84 90 99
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(a) SVM (b) DT

(c) MLP (d) CNN

Figure 4.11 – Accuracy (%) of noisy data when testing several clas-
sifiers using the different datasets

4.3.5 Generalization using different sphere sizes

We test the generalization ability of all classifiers on larger and smaller spheres.
First, we test this on noiseless SF responses and SEM data. The diameters are
selected so that they are different than those included in the training sets where
we have either the same number of resonances (N=5) or out of band CNRs.
Increasing the object’s diameter means, physically, that the first 5 natural fre-
quencies are shifted down into the frequency band while decreasing it makes
the first 5 natural frequencies shift upwards in the frequency band. Indeed,
by increasing or decreasing the object’s size, the SF response will be either di-
lated or compressed in the fixed frequency band of interest. Second, we test the
generalization on noisy responses for the smaller and larger spheres.

4.3.5.1 Noiseless responses

For larger spheres, the accuracy results shown in fig. 4.12 indicate that all clas-
sifiers trained using SEM data of case 1 perform an accuracy of 100% for all
classes and for both 19 cm and 30 cm diameters. The Sens and Spec are of
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1. These results are due to the Q-factor, associated to each natural frequency
which is constant whatever the size of the sphere. On the contrary, the SEM
data of case 2 did not achieve accuracy results as high as case 1 which shows
that, as expected, replacing the damping factor by the Q-factor is important to
be able to properly generalize the classification of sphere with sizes larger than
those included in the training dataset.

Figure 4.12 – Accuracy (%) of 19 and 30 cm diameter spheres us-
ing all classifiers with all datasets

Comparing SEM data (case 1) with TD and FD data, we find an overall gain of
nearly 4% and 6% for SEM data respectively with CNN classifier when testing
the 19 cm sphere diameter. Moreover, for larger spheres (30 cm diameter), re-
sults deteriorate for classifiers trained using raw data, as seen in table 4.7. This
shows that classifiers trained using SEM data can be, efficiently, generalized
to larger spheres having at least 5 resonances in the frequency range, whereas
classifiers trained using SF datasets are progressively unable to classify larger
spheres as their size becomes larger than thoseincluded in the training dataset.

Table 4.7 – Sens and Spec (%) of 30 cm diameter sphere using
CNN with the different datasets

Class Sens Spec
FD TD SEM FD TD SEM

0 38 60 100 88 87 100
1 32 67 100 77 85 100
2 46 35 100 58 55 100
3 43 72 100 58 62 100
4 80 79 100 75 78 100

Then, we test smaller sphere dimensions not included in the training dataset.
Their sizes are listed in table 4.8. Table 4.9 shows the accuracy results, using
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all classifiers, for data with only N < 5 resonances in the frequency range. The
CNN classifier has the highest accuracies for FD and TD data while the other
classifiers have almost 20% less accuracy for SF data. By using the sparse SEM
data, we have 0% error except for N=1 where the algorithms miss-classify some
samples from class 0 as seen in table 4.10.

However, for SF datasets, when the dimension decreases (i.e. smaller N), the
accuracy decreases drastically where the Sens of some classes are lower than 0.5
for N=1. This shows that the pre-processing of the SF using the SEM method
and the computation of the Q-factor to replace the damping factor, is an im-
portant step in a classification process in order to distinguish spheres that have
different diameters than those included in the training dataset.

Table 4.8 – Smaller sphere diameters (cm) used for testing the gen-
eralization ability of the classifiers

Class N
1 2 3 4

0) PEC 2.5 4 6 8
1) ϵr=4, σ=0.5 2.5 4 5 7
2) ϵr=2 4 5 7 8.5
3) ϵr=4 3 4 5.5 6.5
4) ϵr=9 2.2 3 3.8 4.5

Table 4.9 – Accuracy (%) for different number of resonances (N)
using all classifiers with the different datasets

Data N Classifier
SVM DT MLP CNN

FD

1 20 19 24 53
2 30 30 32 56
3 50 47 62 86
4 70 65 73 92

TD

1 30 27 40 60
2 48 42 50 78
3 60 55 70 91
4 76 70 83 95

SEM

1 98.5 98 98.5 98.5
2 100 100 100 100
3 100 100 100 100
4 100 100 100 100
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Table 4.10 – Sens and Spec (%) for N=1 resonance using CNN with
noiseless responses

Class Sens Spec
FD TD SEM FD TD SEM

0 42 48 93 90 95 100
1 68 77 100 77 90 98
2 59 68 100 78 84 100
3 44 90 100 82 74 100
4 51 32 100 90 95 100

4.3.5.2 Noisy responses

Following, we test the generalization to spheres of different dimension having
noisy responses. This test is done using noisy data for the 30 cm diameter
spheres and the smaller spheres having 1 resonance in the frequency band. We
used the CNN classifier as it had the highest performances for SF data and
same performances as MLP for SEM data in the noiseless case.

Fig. 4.13 and 4.14 show a decrease in the performances for all datasets when
SNR level decreases. On one hand, the results obtained using noisy FD and TD
data are as expected, since the classifier is already unable to accurately classify
the spheres of 30 cm diameter from their noiseless responses. On the other
hand, the loss in the performances when using SEM data can be explained by
the fact that the Q-factors are affected by noise and that the natural frequencies
of both sphere sizes are not included in the training dataset make it difficult
to classify the spheres correctly. Additionally, when there is only one resonant
frequency in the band, the low SNR might make this frequency similar to the
one of another class creating the confusion and increasing that classification
errors. Hence, the classifier detects less efficiently the spheres of smaller or
larger diameters having very noisy responses. Nevertheless, the classification
accuracy is still acceptable and far superior to the one obtained using raw data.

4.3.6 Discussion

Our approach in the previous section is intended to be global, with the ob-
jective of classifying the material of spherical objects of all sizes, and without
a priori knowledge about the nature of the noise. In this context, the struc-
ture of the proposed SEM input vector satisfies this objective. First, including
the Q-factors and the residues associated to each natural pole improves the ro-
bustness and allows the generalization to different object sizes. Second, the
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Figure 4.13 – Accuracy (%) for the 30 cm diameter spheres’ noisy
responses at various SNRs when using CNN classifier with the

different datasets

Figure 4.14 – Accuracy (%) of noisy responses for smaller spheres
having 1 resonance in the frequency band at various SNRs when

using CNN classifier with the different datasets

sparsity in the SEM dataset (replacing higher order poles with zeros) is bene-
ficial to overcome the bandwidth limitations for small objects and to improve
the robustness to noise by decreasing the weight of higher order poles during
the classification process. These performances were also achieved with the use
of more advanced classification algorithms. Indeed, our study has shown that
at SNR levels ≤ 20dB, the more basic algorithms (DT and SVM) do not take
advantage of the additional information provided by the original format of the
proposed SEM input vector. Conversely, ANNs are successful in taking ad-
vantage of the indirect but informative data (residues) and in handling sparse
input data.

However, some limitations can be noted in this study: when testing noisy data
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from a sphere size not included in the training set, the algorithms trained us-
ing SEM data did not achieve high accuracy results. Thus, to enhance the ro-
bustness of the classification, we propose to normalize the resonant frequen-
cies which may improve the performances when classifying noisy responses of
spheres of sizes outside the training set.

4.4 Normalization of the resonant frequencies

Indeed, results presented earlier have shown very promising performances
when using SEM data in the training process. The Q-factor is very impor-
tant to characterize the resonance behaviour of an object (a sphere of differ-
ent composition in this section) while being independent of its size. However,
the resonant frequencies vary with the object’s size while respecting a certain
homothety. To overcome the size dependency of the resonant frequencies, we
normalize them with respect to the first resonant frequency, i.e. the fundamen-
tal frequency. Meaning that the initial value of the first channel of the input
vector will always be 1. By normalizing, we will always have the same values
for the first channel comprising the resonant frequencies no matter the size.
This way the SEM dataset can be easily constructed from a single object size.

This approach is tested using a single dimension for the 5 classes of spheres.
The dimension selected to be normalized is the 15 cm diameter for each sphere.
In this case, we no longer include only the 3 main planes in the datasets as
presented earlier, but we add data from all observation angles ( 37 angles in
θ and ϕ). This is done to have enough data for the training process. Thus,
in total we will have 37 × 37 = 1369 observation angles. We also take into
account the sparsity of the SEM data, so we include normalized SEM data from
smaller spheres. Thus, the dataset construction is done as in section 4.3.1 where
the input vector includes: Normalized Resonant Frequencies (NRFs), Q-factor,
residues amplitude for θ and ϕ polarizations.

The CNNs are deployed to classify using the normalized SEM dataset. The
same topologies and parameters are used for the training of the CNN clas-
sifier. The datasets are also split into 80% for training and 20% for testing.
Then, we test the same noisy data and the generalization using different sphere
sizes. This is also done by normalizing the resonant frequencies of those data.
The normalized confusion matrices showing the classification results using non
normalized and normalized resonant frequencies in the SEM dataset are shown
in fig. 4.15, 4.16 and 4.17. By comparing the confusion matrices, we see that it
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is actually possible to classify the sphere’s material using a single sphere size
by normalizing the resonant frequencies. In addition, there is an increase of al-
most 20% for noisy data of unseen sphere dimensions when we normalize the
resonant frequencies. This new SEM data structure is more robust as it allows
to include only a single object’s size in the dataset while producing the same
classification results of noiseless data as the SEM dataset created using multi-
ple sizes. In addition, the classification accuracy of noisy data from different
sphere sizes are higher with this new dataset configuration.

(a) (b)

Figure 4.15 – Normalized confusion matrix using CNN classifier
when testing 20% remaining samples of : (a) non normalized fre-

quencies and (b) normalized frequencies

4.5 Classification of spherical and non-spherical ob-

jects

The study of SEM data for classification has been validated on spheres having
different materials. In this section, we follow the same procedure not only for
classifying the spheres but also to classify PEC objects of different shapes. This
is done by expanding the original dataset containing the 5 classes of spheres
with additional simulated objects. To avoid having to simulate several dimen-
sions for each object, we fix their largest dimension to 15 cm. Then, the natural
frequencies will be normalized as seen in the previous section. Table 4.11 shows
the dimension of the simulated objects.
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(a) (b)

Figure 4.16 – Normalized confusion matrix using CNN classifier
when testing generalization at 10 dB SNR for spheres of 30 cm
diameter of : (a) non normalized frequencies and (b) normalized

frequencies

(a) (b)

Figure 4.17 – Normalized confusion matrix using CNN classifier
when testing generalization at 10 dB SNR for spheres having 1
resonance in frequency band of : (a) non normalized frequencies

and (b) normalized frequencies

The classes are enumerated as follows:

— Class 5: Metal ring
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Table 4.11 – Dimension properties and the propagating directions
of the incident wave of each simulated object

Object Dimension (m) Incident angles

Metal ring D = 0.15
Thickness = 0.001

θ=90◦

ϕ = 0◦: 2◦: 90◦

Thin wire L/D = 100, L=0.15 θ = 0◦: 2◦: 90◦

ϕ=0◦

Thick cylinder L/D = 1.5, L=0.15 θ = 0◦: 2◦: 90◦

ϕ=0◦

Ovoid AR = 1.5, D=0.15 θ = 0◦: 2◦: 90◦

ϕ=0◦

Cube width (w) = length (l) =
height (h) = 0.15

θ = 0◦: 3◦: 45◦

ϕ=0◦: 3◦: 45◦

Rectangular solid w= 0.15
l = h = w/2

θ = 0◦: 3◦: 90◦

ϕ= 0◦: 3◦: 45◦

Pyramid
square base = 0.15

h = 0.15
slope = 60◦

θ = 0◦: 5◦: 180◦

ϕ= 0◦: 3◦: 45◦

— Class 6: Thin wire

— Class 7: Thick cylinder

— Class 8: Ovoid

— Class 9: Cube

— Class 10: Rectangular solid

— Class 11: Equilateral Pyramid

The simulations of those objects are carried out using CST’s time solver. Unlike
the sphere where the SF was recovered in a bi-static fashion where the emitter
had a fixed position, here the SF is recovered in the back-scattering direction
for both polarization states, θ and ϕ, where we work in a mono-static configu-
ration. Indeed, we have adopted the monostatic setting, where the transmitter
and receiver are collocated, since the selected objects are of complex shape as
opposed to the sphere. Hence, the objects are illuminated using a plane EM
wave with multiple incident directions chosen according to each object’s sym-
metry planes as shown in table 4.11.

After that, VF is applied on the SF of each object to extract the CNRs (appendix
C) and the residues. The datasets are constructed as before for the 3 data types.
To form the sparse SEM data, instead of simulating smaller object sizes, we
make use of the homothety of the poles and put artificial zeros in the dataset as
we always have the same NRFs no matter the size.
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As for SF responses from smaller object sizes, the response from the simulated
object size is dilated in the frequency band and then the data are interpolated to
have 500 frequency points. Fig. 4.18 shows that the interpolated amplitude re-
sponse of a thin wire and a cube are in good agreement with the ones obtained
using CST time solver.

(a) Thin wire (b) Cube

Figure 4.18 – Amplitude response of a thin wire and a cube of size
= 10 cm when simulated using CST and interpolated

4.5.1 NN training results

The CNN is used as a classification algorithm as it achieved highest perfor-
mances for SF and SEM data when dealing with the spheres. The topologies
used are the same as in section 4.3.2.3. Only the number of epochs has been
doubled because there is a greater amount of data as we have 12 classes in-
stead of 5.

The datasets are divided into 80% for training and 20% for testing. Fig. 4.19
shows the training and validation accuracy as a function of the number of
epochs for the 3 datasets. We can see that training curve converges quickly
to 100% accuracy for SEM data at 125 epochs while presenting much less fluc-
tuations than both SF data curves as the SEM data are easier to learn.

4.5.2 Classification results

As before, accuracy results are averaged over 10 runs. Similarly to the material
classification of the sphere, we start by testing the CNN with the 20% remaining
samples. Fig. 4.20 shows the normalized confusion matrices for the 3 datasets.
In this case, we note that CNN trained using FD and TD data do not classify
all classes accurately where the mean accuracy does not exceed 94%. On the
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(a)

(b)

(c)

Figure 4.19 – Train and validation’s accuracy for CNN classifiers
vs number of epochs when learning with: (a) FD data, (b) TD
data and (c) SEM data. 800 epochs are used with FD and TD data,

while 200 epochs are used with SEM data
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contrary, when trained with SEM data, the accuracy reaches 99.8% where it
miss-classifies only some samples from class 1 (mixed sphere) with class 11
(pyramid).

Then, we test the generalization of the CNN on different object sizes and noisy
data not included in the training set. First, we test noisy data from a size that
has already been seen during training (15 cm) where the 5 first resonant fre-
quencies are present. Results in fig. 4.21 indicate that the performances of
CNN trained using normalized SEM data are better than that of SF data, with
a gain of almost 20% for SEM at high noise levels (10 dB SNR).

Following, we show the results of noiseless and noisy responses from objects
of larger and smaller dimension. The larger dimension is chosen to be 30 cm
while the smaller one is chosen where there is only one CNR in the frequency
band for each object. Table 4.12 shows those accuracy results, and they confirm
that the SEM data can distinguish the object classes correctly no matter the size
from their noisy and noiseless responses as opposed to SF data. These results
are very interesting, especially when there is only a single noisy natural fre-
quency, in the sense that, this frequency does not provide information ( f0 =1)
and the classification is therefore done on the first Q-factor and residues. All
those results prove that a NN classifier trained using SEM data can efficiently
distinguish the classes of different objects at low SNR levels and for any obser-
vation angle.

Table 4.12 – Accuracy results of the generalization of noiseless
and noisy responses from larger object sizes (30 cm) and smaller

objects having 1 resonance in the frequency band

Test
generalization

Data
FD TD SEM

Noiseless larger objects 54 62 99.8
Noisy larger objects 51 56 88

Noiseless smaller objects 52 55 99.7
Noisy smaller objects 49 53 80
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(a)

(b)
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(c)

Figure 4.20 – Normalized confusion matrix using CNN classifier
when testing 20% remaining samples of: (a) FD data, (b) TD data

and (c) SEM data.

Figure 4.21 – Accuracy (%) of noisy responses of objects’ dimen-
sion included in the training phase at various SNRs when using

CNN classifier with the different datasets
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4.6 Calculation of object dimensions

In chapter 3, we have seen that from the homothety we can deduce the CNR
of an object of any size. Indeed, we need to fix a reference frequency ( f0 in
GHz), which will be the fundamental resonant frequency of each object, and
then from the knowledge of the object’s reference size (lre f ) we can determine
a coefficient k that will serve in computing the size of an unknown object as
follows:

k =
lobject

λ0
=

lre f

λ0re f
(4.14)

lobject = k × λ0 = k × c
f0object

(4.15)

fobject and lobject are the first natural frequency and dimension of the object un-
der test respectively. This step is done after the classification of objects.

To verify this, we simulate a PEC cube of an unknown size. Indeed, this ap-
proach can be applied to all objects, but we will verify it through this example.
First, the SF response is recovered in the back-scattering direction for both field
components when the cube is illuminated using a EM plane wave polarized
along z axis and propagates in the x axis, as in fig. 4.22. Then, we apply VF to
extract the resonances from the noiseless response, shown in fig. 4.23, with a
model order that is fixed to 26 (chapt. 3).

The input vector is constructed as before, by taking: the first 5 natural frequen-
cies and normalizing them, their respective Q-factors and residues. We use the
previously trained CNN to identify the object. Among the 12 classes, this test
predicts that this data belongs to class 9 which is the PEC cube.

The second step will be to determine its size. We fixed as reference the first
natural frequency of the 15 cm cube length which is equal to 0.4GHz. From
equation 4.14, we get k = 0.15 ×0.4

c = 0.2. By replacing k in equation 4.15, we
obtain lobject = 0.2 × c / 0.245 = 24.49 cm. Indeed, the cube simulated has a size
of 25 cm. This error of 0.5 cm is due to the extraction of poles using VF where
the model order should be refined.

4.7 Conclusion

In this chapter, four supervised learning techniques are studied, two of which
are machine learning algorithms: SVM and DT and the other two are of deep
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Figure 4.22 – Simulation of a PEC cube of unknown size

Figure 4.23 – Amplitude response of the PEC cube

learning: MLP and CNN. The classification of objects is first validated using
spheres of different materials, then it is applied to the classification of multiple
objects of complex shape. Three datasets are constructed based on the raw
scattered field, in time and frequency domains, and the proposed pre-processed
SEM data. They are constructed from multiple noiseless responses where the
SEM data has a specific sparse input vector including the natural frequencies
and their associated Q-factors and residues.

The comparison between classification based on SEM and raw datasets con-
firms that the proposed method allows to classify from a single observation
angle while being efficient, aspect independent, and with low computational
cost. We have shown the interest in exploiting the residues, which are usually
excluded because they depend on the observation angle, but their frequency
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dependence is useful for the classification. Moreover, the use of Q-factor in-
stead of damping factor allows to accurately distinguish objects of different
sizes not included in the training dataset. Additionally, the sparsity of the SEM
input vector associated with ANN classifiers allows to maintain high classifica-
tion rates even at low SNRs without including noisy data in the training phase.

However, the validation with the spheres showed some difficulty in the clas-
sification of noisy data from spheres of unseen sizes. Hence, by normalizing
the natural frequencies in the SEM input vector, the classification of noisy data
of objects of any size became more accurate compared to raw data as the nor-
malized frequencies remain the same for an object regardless of its size. This
also makes the construction of a dataset easier and faster as we no longer have
to include multiple sizes of an object. Thus, we can note that combining ANN
algorithms with VF can compensate for the noise sensitivity of SEM methods
by surpassing the results obtained from FD or TD data even at low SNRs and
without prior training with noisy data. In addition, the reduced SEM input
vector size enables rapid convergence of the neural networks.

In addition, classification results using SF data could have been enhanced by
applying deeper neural network topologies. However, this would have in-
creased considerably the amount of time necessary to train the network which
is already much higher than the one used for training with SEM data.

Finally, we have seen that, after the classification process, we can determine
the size of the object under test from the knowledge of its first non-normalized
resonant frequency. This study shows that there is no need to create a classifier
to determine the size of each object as this can be done mathematically by fixing
a reference.

Following the classification of objects, we will proceed to the classification of
the orientation of those objects by the use of residues in the next chapter.
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Chapter 5

Identification of the object’s
orientation

5.1 Introduction

After classifying the objects in chapter 4 by the use of SEM data, the second
stage is to determine the orientation of each object according to the antennas
system. The geometry of the problem defined for this objective will be ex-
plained in the following section. Indeed, as seen in chapter 3, the residues are
related to the scattered field response and vary with the observation and in-
cident directions, hence, they can be considered to detect the location of the
observer and the orientation of the object.

We start to validate this approach using the spheres simulated in chapter 4. A
comparison of the classification efficiency using residues and raw data is car-
ried out using the four classification algorithms defined earlier: SVM, DT, MLP
and CNN, in order to determine the most robust classifier for this application.
For this purpose, the space surrounding the sphere is split into multiple an-
gular sectors to locate the receiving antenna. Then, we test the robustness to
noise and the generalization ability to unseen data of each classifier, all while
comparing performances when using raw data and residues.

Following, we proceed to the partitioning of the rest of the objects into angu-
lar sectors and test the robustness when using the three datasets (FD, TD and
residues) of the selected most robust classifier. Once the receiving antenna has
been localized (i.e. the angular sector is identified), the next piece of infor-
mation sought is the polarization of the incident wave, which will indicate the
rotation of the antenna with respect to the object (this is equivalent to determin-
ing the object orientation relatively to the antenna’s coordinate system). Finally,
the same procedure will be applied on a more complex object.
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5.2 Geometrical definition of the problem

We make use of the coordinate system defined in Balanis, 2005 (fig.5.1) to rep-
resent the scattered field of an object. Thus, the spatial variation of the scattered
field is along the azimuth (ϕ) and elevation (θ) planes with respect to the direc-
tion of the incident plane wave.

Figure 5.1 – Coordinate system for an antenna radiation pattern
(Balanis, 2005).

In this work, determining the direction and orientation of the antenna in the
object’s coordinate system consists of identifying, first, the angular sector con-
taining the direction of the wave vector of the scattered field, and second, the
rotation of the antenna around the scattered wave direction.

5.2.1 Detection of the angular sector

As explained below, the space surrounding each object will be split into mul-
tiple angular sectors in the azimuth and elevation planes. The objective will
be to determine the angular sector containing the scattered wave vector (which
is equivalent to determining the direction of the receiving antenna) using the
classification algorithms. Two categories of objects are distinguished:

• Spherical objects: Due to the shape of the sphere, determining its orientation
makes no sense. However, we can determine the position of the receiving
antenna in a bi-static configuration because a mono-static one will always
provide the same scattered field regarding the position of the antenna.
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• Non-spherical objects: In case of a non spherical object, measurements are
performed in a mono-static scenario where the scattered field varies with
the incidence direction of the illuminating wave (i.e. position of the Rx/Tx
antenna). As seen above, each object is split into angular sectors accord-
ing to the symmetries of its geometry. For example, a thin wire oriented
along z axis has a symmetry plane in the azimuth plane, so we deal with
only the upper half. Additionally, it has a rotational symmetry along z
axis, so the mono-static scattered field does not vary in the azimuth plane.

5.2.2 Rotation of the antenna around the scattered wave direc-

tion

Once the angular sector is identified, we define a plane perpendicular to the
incident wave vector to represent the rotation of the polarization of the incident
field in this plane. This is the same as having the rotation of the object with
respect to the direction of the incident wave. Having a rotated incident wave
or a rotated object means that the scattered wave will be expanded in both θ

and ϕ field components.

Figure 5.2 – Rotation of the incident field by an angle α around
the travelling direction of the wave.

The angle α will be used to define the orientation of the linear polarization of
the incident wave. This is represented in fig. 5.2 for an incident plane wave
travelling with an incident wave vector K⃗i. Retrieving α is the same as retriev-
ing the rotation of the object around the incidence direction.

Therefore, by identifying the angular sector and the α angle, we will be able to
determine the unique orientation of the antenna in the coordinate system of the
object.
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5.3 Identification of angular sector for spherical ob-

jects

First, we validate this approach with the sphere as it is a simple object with an
analytical solution representing its scattered field response. We have seen in
chapter 3 that the radiation pattern of the scattered field by the sphere has two
symmetry planes, thus, we only work with one quarter of the sphere.

For this purpose, we split the sphere into 8 angular sectors, where each sector
contains various observation angles in θ and ϕ planes as seen in fig. 5.3. This
number of sectors was chosen to limit the number of classes used to validate
this approach. Those sectors will serve as our 8 classes that we aim to classify
to determine the position of the antenna in one of those sectors.

Each angular sector includes the following observation angles according to fig.
5.1:

— sector 0: 0 ≤ ϕ ≤ 90 ; 0 ≤ θ ≤ 30;

— sector 1: 0 ≤ ϕ ≤ 40 ; 35 ≤ θ ≤ 65;

— sector 2: 0 ≤ ϕ ≤ 40 ; 70 ≤ θ ≤ 110;

— sector 3: 0 ≤ ϕ ≤ 40 ; 115≤ θ ≤ 150;

— sector 4: 50≤ ϕ ≤ 90 ; 35 ≤ θ ≤ 65;

— sector 5: 50≤ ϕ ≤ 90 ; 70 ≤ θ ≤ 110;

— sector 6: 50≤ ϕ ≤ 90 ; 115≤ θ ≤ 150;

— sector 7: 0 ≤ ϕ ≤ 90 ; 155≤ θ ≤ 180.

5.3.1 Dataset Construction

For each of the 5 spheres of different materials simulated in chapter 4, we cre-
ate datasets that contain 8 classes corresponding to the angular sectors of each
sphere created above. In every dataset we include the 13 sphere sizes simulated
earlier. It can be noted that the multiple dimensions are mostly beneficial to the
raw data since, as we will see later, the residuals are independent of the object
size. Thus, each dataset holds 4810 samples (37 (θ)×10 (ϕ)×13 sizes of spheres
as seen in chapter 4).

5.3.1.1 Scattered Field dataset

For the FD and TD datasets, they are constructed as in chapter 4 with the same
input vector’s length. Thus, for frequency responses, we include the amplitude
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Figure 5.3 – Sphere’s angular sectors.

of both Eθ and Eϕ field components, while for time response, we include the
first 10 ns of the signal for both field components.

5.3.1.2 Residues dataset

For the residue’s dataset, the input vector is also of length 5 and comprised
of 2 channels representing the amplitude of residues related to both field com-
ponents Eθ and Eϕ respectively. The natural frequencies and the Q-factor are
eliminated as they do not vary with the observation and incident angles. Ad-
ditionally, the dataset contains sparse data due to the reasons mentioned in
chapter 4.

In fact, using residues over raw SF data will present some merits which are:

— first, we have much less data in the input vector. The residues dataset is
100 times and 20 times smaller than the SF datasets in frequency and time
domains respectively.

— second, the amplitude of the residues is independent of the object’s size.

Indeed, the natural frequencies at which the residues are derived are inversely
proportional to the size of the object, i.e. for each object, the residues are inde-
pendent of its size since they are computed at the same electrical length. Fig.
5.4 shows the amplitude diagram of residues associated to the first resonant
frequency of a PEC sphere of 15, 10 and 5 cm diameters. Consequently, they
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are unique to each object but informative about the orientation of that object.
Thus, we can expect that determining the position of the receiving antenna us-
ing the residues will be faster than raw data, and suitable for generalization
however, as there is less data, the residues might be more sensitive to noise. In
addition, we will later investigate the performances when the dataset contain-
ing residues is constructed using a single sphere size instead of 13.

(a) 15 cm (b) 10 cm

(c) 5 cm

Figure 5.4 – Residues amplitude associated to the first resonant
frequency for PEC spheres of 3 different diameters.

5.3.2 Training Phase

During this phase, the parameters of each classifier are tuned to achieve highest
accuracy results for training data. Each dataset is split into 80% for the training
and 20% for the testing. The remaining 20% are composed of various observa-
tion angles that are not present in the training set where each class has an equal
number of samples. The mean accuracy results of test data are averaged over
10 runs as in chapter 4.
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5.3.2.1 Multi-class SVM

Similarly to what was done in chapter 4, the SVM parameters are found by
using ’gridsearch’ function. The training results are given in fig. 5.5 when
using rbf kernel function for the three datasets. We can see that, inversely to the
classification of objects, the accuracy does not reach 100% for residues data and
the values that achieve highest accuracy for training are limited. Additionally,
we can observe that the training with raw data requires a fine tuning of C and
γ as a slight change in those values impacts the training performances.

Table 5.1 shows the optimum training parameters. Due to the complexity of
the problem, the training parameters are higher than those used for SEM data
in chapter 4 because the separation between classes is more difficult.

Table 5.1 – Parameters of SVM classifier for angular sector classi-
fication

Data Parameters
Function C γ

FD rbf 2500 5
TD rbf 2500 50

Residues rbf 50 50

5.3.2.2 Decision Tree

The DT classifier’s parameters are also left random where the Gini criterion is
used to split the data in the decision nodes. Fig. 5.6 shows the trees produced
during the learning phase using the different datasets. The threes are larger
than those in chapter 4, but the one using residues is still smaller than the other
two. Indeed, the problem at hand, to separate the data into 8 distinct classes,
is more difficult than the previous classification problem. Thus, we expect that
the DT classifier will have the most difficulty in classifying the test data.

5.3.2.3 Artificial Neural Networks

As earlier, we try to find the optimal training parameters through trial and
error. For the MLP classifier, we apply three hidden layers each with 64 and
256 neurons for residues and both SF data respectively. We apply the ReLU
activation function in both layers and for all datasets (SF and residues).

For the CNN classifier, the LeNet-5 architecture is also adopted for SF datasets,
while for residues dataset we use one convolutional layer with 12 filters fol-
lowed by two hidden layers with 32 neurons each. The number of epochs is
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(a)

(b)

(c)

Figure 5.5 – SVM learning parameters when using rbf kernel func-
tion with: (a) FD data, (b) TD data and (c) residues data. ∗ illus-

trates the selected optimum values.
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(a) FD data

(b) TD data

(c) Residues

Figure 5.6 – Decision tree flowchart-like tree structure when learn-
ing with the three datasets.
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(a) FD data

(b) TD data

(c) Residues

Figure 5.7 – Train and validation accuracy for CNN classifiers
when learning with the three datasets.
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256 for residues and 512 for SF data with a batch size of 100 for both MLP and
CNN. The output layer is composed of 8 neurons representing the number of
sectors and using the softmax activation function.

Fig. 5.7 shows the evolution of the accuracy curve as a function of the number
of epochs when using CNN with the 3 datasets. We can observe the fluctuations
that exist in the three curves due to the complexity of the problem making
the convergence harder than the earlier classification task. However, we can
notice that training with residues makes the convergence faster, starting from
150 epochs approximately, as opposed to SF data that starts to converge at 300
epochs with much more fluctuations in the training curves.

5.3.3 Test Phase

We start by testing the 20% remaining samples for the 5 spheres. In fact, the
performances are almost similar for all spheres, hence, we present the results
of the PEC sphere and compare the results of the residues, FD and TD datasets.
The results of the four other spheres can be found in appendix E.

Table 5.2 shows that residues data has highest performances using ANN clas-
sifiers (MLP & CNN) with 1% error rate. For SF data, DT has the lowest perfor-
mances where Sens and Spec values do not exceed 70% for all classes. Hence,
DT is not a classifier that is suited for this problem as it is prone to over-fitting.
This first test shows that, in a noiseless case, identifying the angular sector
containing the direction of the observer is possible when using the residues as-
sociated to each pole and gives improved results compared to raw data and at
a lower computational cost during training.

Table 5.2 – Accuracy (%) of angular sectors classification for the
20% test sets

Data SVM DT MLP CNN
FD 96 52 96 97
TD 96 78 96 97

Residues 98 94 99 99

5.3.4 Noisy data

The next step is to test the same noisy data simulated in chapter 4 for a sphere of
15 cm diameter. It is observed that, as earlier, the CNN classifier has the highest
performances for SF data, while for residues data the CNN and MLP classifiers
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have similar performances. Indeed, DT still does not perform well when testing
with noisy data which shows that it is very sensitive to data variation.

Under high SNR values, SVM, MLP and CNN trained using the residues have
almost the same levels of accuracy as classifiers trained using both TD and FD
data. Nevertheless, when SNR decreases, as expected, there is a loss of almost
12% for residues compared to SF data ( refer to fig. 5.8) as there are only 5 data
points for residues while for FD data there are 500 frequency points. In fact, as
the SNR starts to decrease, the residues become highly perturbed since they are
computed through the resonance poles which are also affected by noise. Only
the residues associated to the first pole have the less distortions but as we will
see in the following section, having one residue is not enough to determine the
angular sector accurately for a sphere. Furthermore, it is observed that most
of the miss-classified samples actually exist at the border of the sectors, for
example, the border region between sector 1 and 4 (fig. 5.3), thus, it remains
acceptable. For the rest of the section, we will no longer use DT as it has the
lowest performances for the three datasets.

(a) SVM (b) DT

(c) MLP (d) CNN

Figure 5.8 – Accuracy (%) of noisy data when identifying the an-
gular sectors of a PEC sphere.
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5.3.5 Generalization using different sphere sizes

Finally, we test the noiseless and noisy responses from larger and smaller sphere
sizes simulated in chapter 4.

5.3.5.1 Noiseless responses

As seen earlier, the residues’ amplitude remains constant for different sizes as
they are computed for the natural frequency of the SF response. On the other
hand, the FD and TD responses depend upon the object’s size.

Fig. 5.9 shows that classifiers trained using both raw SF data are unable to
determine the angular sectors of all larger PEC sphere sizes where the accuracy
does not exceed 30% for the 30 cm diameter sphere. In addition, the Sens and
Spec values of most classes do not exceed 40%. On the contrary, classifiers
trained using residues achieve high performances where the ANN classifiers
have 0.9% and 3% error for 19 and 30 cm diameters respectively. This confirms
the benefit of using residues to generalize the classification ofthe observation
angle for larger spheres.

Figure 5.9 – Accuracy (%) of angular sectors classification of larger
PEC spheres.

For smaller spheres, we test the classification capability on different sizes where
the residues test sets include N < 5 natural frequencies (and thus, less than 5
associated residues). The accuracy results are listed in table 5.3. When the
sphere’s size decreases, classifiers trained using raw SF data become unable to
detect the observation angle where for the smallest spheres it is impossible to
classify some classes. We can note that the CNN classifier performs better than
the rest, but it still has low accuracy when the sphere’s size is different than
those included in the training set. For classifiers trained using residues, MLP
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and CNN classifiers perform best where it is observed that spheres with more
than 1 resonance in the frequency band are easily classified with only 6% error
for N=2 with both MLP and CNN. However, when there is one resonance it
is more difficult to determine accurately some of the sphere’s sectors through
the residues associated to the first pole. This is because the amplitude value of
residues associated to the first CNR are almost similar for some sectors. Never-
theless, the accuracy obtained using residues is 57% higher than those obtained
with SF data which presents very promising results.

Table 5.3 – Accuracy (%) of angular sectors classification for dif-
ferent number of resonances N of the PEC sphere

Classifier N Data
FD TD SEM

SVM

4 93.5 94 96
3 79 80 94
2 29.5 45 92
1 17.8 18 72

MLP

4 94 94 99.4
3 79 80 99.5
2 30 40 94
1 18 18 75

CNN

4 95 95 99.5
3 80 82 99.5
2 33 48 94
1 20 20 77

5.3.5.2 Noisy responses

Afterwards, we test the generalization to noisy responses issued from spheres
of larger or smaller sizes. Similarly to what was conducted in chapter 4, this test
is done using noisy data from the 30 cm diameter PEC sphere and the smaller
one having 1 resonance in the frequency band. Moreover, we use the CNN to
classify the sectors as it had the highest performances.

Fig. 5.10 and 5.11 show the results when testing both spheres and with the
three datasets. As expected, CNN trained using FD or TD data has very low
accuracy for all SNR values as it was already unable to classify the sectors from
the noiseless responses of small and large spheres. We also notice that the per-
formances when using residues for classification of the 30 cm diameter sphere’
sectors is similar to the one seen in section 5.3.4. Indeed, as the residues remain
roughly constant when the object’s size is changed, it is normal to get the same
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results as before. However, the sectors of the smaller sphere having one reso-
nance are difficult to classify accurately at different SNRs as the classification
from its noiseless response was a rather difficult task.

Figure 5.10 – Angular classification accuracy (%) of a 30 cm di-
ameter PEC spheres at various SNRs when using CNN classifier

with the three datasets

Figure 5.11 – Angular classification accuracy (%) of noisy re-
sponses of a smaller PEC sphere having 1 resonance at various

SNRs when using CNN classifier with the three datasets

5.3.6 Optimization of dataset construction

From what we have seen so far, using the residues to determine the position
of the receiving antenna is possible even when there is much less information
concerning the frequency spectrum compared to raw data. The results are very
promising as the classifiers trained using residues can generalize to any sphere
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size. Furthermore, we have 100 times and 20 times fewer inputs in the residues
dataset than in the FD and TD datasets respectively. However, the dataset was
constructed using multiple sphere sizes whose responses contain 5 natural res-
onances in the frequency band. This constitutes a computational time that is
high especially when simulating other objects using simulation software. Thus,
as what was done in chapter 4, we will optimize the dataset construction by in-
cluding a single sphere size. This will be achieved by taking the sphere of 15 cm
diameter and extending the dataset with sparse data representing the smaller
spheres having less than 5 resonances.

The CNNs are deployed to classify using this optimized SEM dataset. The same
topologies and parameters are used for the training of the CNN. The dataset is
split into 80% for training and 20% for testing. Then, we test the same noisy
data and the generalization using different sphere sizes. Table 5.4 shows the
accuracy of test data and generalization when training CNN using the new
optimized dataset that included a single sphere size and the old one having 13
sphere sizes. This comparison shows that it is possible to classify the sphere’s
sectors accurately when the dataset includes a single dimension with only 3%
loss in the accuracy results compared to the old dataset. This new structure
for the dataset allows to include only a single object’s size in the dataset while
producing classification results, of noiseless and noisy data, comparable to the
residues dataset created with multiple sphere sizes.

Table 5.4 – Comparison of the accuracy obtained using residues
from the old dataset having 13 sphere sizes and the new dataset

with only one sphere size

Accuracy %
Old dataset Optimized dataset

Test phase 99 96.3
Noisy data at

10dB SNR
63 62

Generalization to
large sphere

97 94.2

Generalization to
small sphere

77 75
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5.4 Identification of angular sectors for non spheri-

cal objects

The study of SEM data for identification of the antenna position, through the
use of ML and DL algorithms, has been validated on spheres having different
materials. In this section, we apply the same concept to determine the position
of the angular sector of PEC objects (metal ring, thin wire, thick cylinder, ovoid,
cube, rectangular solid and pyramid), having a size of 15 cm and illuminated
in a mono-static mode. Every object is divided into angular sectors depending
on the symmetry of its geometry.

The CNN will be used as a classification algorithm because it achieved highest
performances for SF and residues data. The topologies and learning parame-
ters used are the same as in section 5.3.2.3. We will present the results obtained
using the thin wire which is a very resonating smooth object and the rectangu-
lar solid that is a sharp object with edges more difficult to treat. The results for
the rest of the objects can be seen in appendix E. The datasets are also created
as in section 5.3.1. For the smaller objects having less than 5 resonances in fre-
quency band, we use the interpolated SF responses as presented in chapter 4 to
complete the datasets.

To increase the amount of data in each sector and to take into account the ro-
tational angle α of the incident wave (refer to section 5.2.2), we include data
derived from various rotational angles where α varies from 0◦ to 90◦ with a 10◦

step. This will allow to diversify the polarization of the incident wave and con-
sequently the scattered field. Thus, we will be able to detect the angular sector
for various rotation of the object or the incident wave.

In fact, the amplitude response is a function of α, as in fig. 5.12 where we
present the simulated amplitude response of the scattered field by the thin
wire with various rotations of the incident wave using CST time solver. Con-
sequently, the residues amplitude is also a function of α. Mathematically, this
amplitude can be calculated by multiplying the amplitude of Eθ or Eϕ (when
the incident wave is normal to the object) by the cosine or sine of α respectively.
Thus, we follow this strategy to increase the quantity of data without simu-
lating all the possibilities of incident wave or object rotations. We have taken
into account all the rotation possibilities of the object by considering both field
components θ and ϕ, and by illuminating the objects at multiple directions.
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Figure 5.12 – Eθ Amplitude response of a thin wire orientated
along z axis, when illuminated with a normal incident wave hav-

ing different polarizations.

5.4.1 Thin wire

The thin wire is illuminated with various incident angles where θ varies from
0◦ to 90◦. As explained in section 5.2.2, we only deal with the upper half of
the thin wire as it is symmetrical along the azimuth plane. In addition, the SF
response is the same whatever the angle ϕ when thin wire is orientated along z
axis, thus, ϕ is chosen constant and equal to 0◦. At θ = 0◦ the scattered field is
non-existent when the thin wire is orientated along z axis, as it is very thin.

We chose to divide it into 9 sectors, distributed as follows:

— sector 0: 2 ≤ θ ≤ 10;

— sector 1: 12 ≤ θ ≤ 20;

— sector 2: 22 ≤ θ ≤ 30;

— sector 3: 32 ≤ θ ≤ 40;

— sector 4: 42 ≤ θ ≤ 50;

— sector 5: 52 ≤ θ ≤ 60;

— sector 6: 62 ≤ θ ≤ 70;

— sector 7: 72 ≤ θ ≤ 80;

— sector 8: 82 ≤ θ ≤ 90;

Thus, we have 9 classes representing the 9 sectors. After creating the 3 datasets
based on SF data and residues, we split the data into 80% for training and 20%
for testing. Then, we will test the generalization ability of CNN to noisy and
noiseless data of thin wire sizes unseen during training.

Test phase

The first test on the 20% remaining samples is carried. The accuracy obtained
using residues as input data is of 97.8% while for both SF data we get 96%. Fig
5.13 shows those accuracy results along with the standard deviation obtained



5.4. Identification of angular sectors for non spherical objects 133

over 10 runs. Those first results show that, as with the sphere, it is possible
to detect the illuminated angular sector in one of the 9 sectors of the thin wire
either with residues or raw data.

Figure 5.13 – Accuracy (%) on the 20% remaining samples of thin
wire when using CNN.

Noisy data

After the test phase, we proceed to the test of noisy data of 15 cm wire length
for which the noiseless response is already included in the training datasets.
This is tested at multiple SNRs as before.

Fig. 5.14 shows the accuracy results when using the three datasets. We see that
the accuracy when using residues or raw data are almost similar with only 2%
difference at 10 dB SNR. This is due to the fact that the thin wire is a strong
resonating object, so the extraction of CNRs in a noisy environment is not very
hard and, thereby, the calculation of residues is quite precise even at low SNRs.

Generalization ability

The generalization is then tested using a thin wire of size 30 cm that has more
than 5 resonances in the frequency band and a small one of size 5 cm having a
single resonance. First when classifying using their noiseless responses, results
using residues are more promising than when using TD or FD data as seen
in fig. 5.15. As expected, it is impossible to classify the sectors of both sizes
accurately using SF data. However, when using residues, we can classify the
30 cm length wire with only 5% error. As what was seen with the sphere, it is,
indeed, more difficult to classify the sectors of the 5 cm length wire due to the
presence of only one resonance where the accuracy is of 72%.
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Figure 5.14 – Accuracy (%) of noisy data of the thin wire at differ-
ent SNRs when using CNN.

Figure 5.15 – Accuracy (%) of generalization to noiseless data of
larger and smaller thin wires when using CNN.

Following, we test the noisy responses of both object sizes. Fig. 5.16 show the
results of larger and smaller thin wires respectively at 10 dB SNR when using
residues. The classification accuracy is high for the large object where it reaches
80% at 10 dB SNR. For the small thin wire, the accuracy is low (62%) which is
normal as there is only a single CNR in the frequency band. The results when
using raw data are low and do not exceed 30%.

5.4.2 Rectangular solid

This object is illuminated with various incident angles as was shown in table
4.11 in chapter 4. Unlike the previous objects, the rectangular solid ( along with
the cube and pyramid) is a polyhedron shape with edges. We initially divide
the object into 8 sectors as follows:
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(a) 30 cm (b) 5 cm

Figure 5.16 – Normalized confusion matrices of noisy data when
identifying the angular sectors of the thin wire using residues for

two different sizes.

— sector 0: 0≤ϕ≤21 ; 0≤θ≤21;

— sector 2: 0≤ϕ≤21 ; 24≤θ≤45;

— sector 4: 0≤ϕ≤21 ; 47≤θ≤69;

— sector 6: 0≤ϕ≤21 ; 72≤θ≤90;

— sector 1: 24≤ϕ≤45 ; 0≤θ≤21;

— sector 3: 24≤ϕ≤45 ; 24≤θ≤45;

— sector 5: 24≤ϕ≤45 ; 47≤θ≤69;

— sector 7: 24≤ϕ≤45 ; 72≤θ≤90.

Thus, we have 8 classes representing the 8 sectors. After creating the 3 datasets
based on SF data and residues, we split the data into 80% for training and 20%
for testing.

Test phase

The first test on the 20% remaining samples is carried. The accuracy obtained
using residues as input data is of 82% while for both SF data we get 90%. We
noticed that part of the miss-classified samples belong to data related to the
edges of this object (sector 2 to 5) where we have θ = 45◦ as seen in fig. 5.17a.

One solution proposed to tackle this issue is to re-create the sectors differently
by having a sector that includes the edge corner area. This way, the classifica-
tion error within this area might decrease. For this, we will now have 10 sectors
where sectors 4 and 5 cover the edge area (fig. 5.17b):
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— sector 0: 0≤ϕ≤21 ; 0≤θ≤21;

— sector 2: 0≤ϕ≤21 ; 24≤θ≤33;

— sector 4: 0≤ϕ≤21 ; 36≤θ≤51;

— sector 6: 0≤ϕ≤21 ; 54≤θ≤69;

— sector 8: 0≤ϕ≤21 ; 72≤θ≤90;

— sector 1: 24≤ϕ≤45 ; 0≤θ≤21;

— sector 3: 24≤ϕ≤45 ; 24≤θ≤33;

— sector 5: 24≤ϕ≤45 ; 36≤θ≤51;

— sector 7: 24≤ϕ≤45 ; 54≤θ≤69;

— sector 9: 24≤ϕ≤45 ; 72≤θ≤90.

(a) (b)

Figure 5.17 – Rectangular solid when partitioned into (a) 8 sectors
and then (b) 10 sectors.

With this new dataset we redo the train and test phases. The test results using
residues increases by 8% while for SF data it increases by 5% as seen in fig.
5.18. That is why, we will use this new dataset to evaluate the robustness to
noise and the generalization to different data in the following sections.

In this test phase, the results of the residues accuracy are lower than those of
raw data, which might be due to the discontinuities in the shape of this object,
making the residues computation more difficult than for the smooth objects.
Additionally, it was noticed that another important part of the miss-classified
samples belongs to data having two or one resonances in the frequency band.
This is also the case for the cube and the pyramid.

Noisy data

As before, we test the CNN robustness to noise at different SNRs. Fig. 5.19
shows the accuracy results when using the 3 datasets and we see that residues
still show higher sensitivity to noise than raw data. Most of the miss-classified
samples, when using residues, belong to data having a single or two resonances
in the frequency band and to data that exist in the borders of each sector.
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Figure 5.18 – Accuracy (%) on the 20% remaining samples of rect-
angular solid when using CNN.

Figure 5.19 – Accuracy (%) of noisy data of the rectangular solid
at different SNRs when using CNN.

Generalization ability

The large dimension chosen is 30 cm and the small dimension, where there is
only a single resonance, is of 3 cm. In case of noiseless responses, the behaviour
using raw data is still the same as that of the thin wire and the sphere where
we cannot classify the sectors for both sizes. Conversely, by using the residues
the accuracy is higher where it can reach 90% for the 30 cm length object and
65% for the small one as seen in fig.5.20.

Regarding performances in the presence of noise when using residues, the ac-
curacy obtained at 10 dB SNR for the 30 cm length object is similar to the one
obtained with the sphere as the 5 resonances are present in the frequency band
where we get 62% accuracy. However, for the 3 cm length object, the accuracy
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Figure 5.20 – Accuracy (%) of generalization to noiseless data of
larger and smaller rectangular solids when using CNN.

decreases to 52% as it is more difficult to classify from only residues associated
to the first resonances. In addition, with raw data (FD or TD data) we get very
low performances that do not exceed 30%. The normalized confusion matrices
showing classification of each class using residues at 10 dB SNR are present in
fig. 5.21. It can be noticed that the confusion mostly arises in the sectors that
are adjacent to each other.

(a) 30cm (b) 3cm

Figure 5.21 – Normalized confusion matrices of noisy data when
identifying the angular sectors of the rectangular solid using

residues for two different sizes not included in the datasets.

5.4.3 Discussion

The two objects evaluated in this section were chosen since they are representa-
tive of all the other simulated objects, which can be divided into two categories:
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objects that do not present sharp edges (thick cylinder, ovoid, etc.) that have
similar performances as the thin wire, and the remaining objects that perform
more like the rectangular solid. Therefore, we can try to draw an analysis that is
sufficiently representative of their behaviour. First of all, the proposed solution
has significant advantages. One is the compactness of the dataset, which makes
it easier to train the algorithms. Moreover, the construction of this dataset is fast
since the residues are independent of the object size, thus, its construction can
be made from the scattered field from a single object size. Lastly, the perfor-
mance obtained in terms of generalization to other object sizes is excellent and
largely surpasses the one obtained from the scattered field, even when training
with many object sizes. Indeed, it can be observed that once an object size is
not included in the training set, the performance of algorithms trained using
raw data drops.

However, there are some weaknesses in the proposed method. One of the in-
trinsic weaknesses of using compressed data, especially residues, is their sen-
sitivity to noise. Besides the estimation quality of the residues with noise sen-
sitive SEM method, the classification algorithms are basing their decisions on
only tens of parameters in the best case (5 resonances of the object), or two in
the worst case (one resonance of the object). This is to be compared with the
500 frequency points of the scattered field and it explains the low accuracy of
classification of small objects, especially when those objects have edges that
strongly scatter the field, which is detrimental in a monostatic configuration.
Nevertheless, it is worth noting that the performance remains acceptable, and
that in all cases, the capacity for generalization of the proposed method has
overcompensated the noise sensitivity of the residues.

5.5 Calculation of object orientation

In this section, we try to estimate the orientation of the object under test. So far,
we have seen that we can detect the angular sector using the residues, by split-
ting the scattered field of each simulated object into multiple angular sectors.
Indeed, determining the sector of the object gives an approximate estimation of
the position of the receiving antenna along the azimuth and elevation planes as
defined in section 5.2. Additionally, we have increased the data volume by in-
corporating residues amplitude of different polarizations of the incident wave.
This way, we anticipate being able to determine the sector and the orientation
of the object from the knowledge of both θ and ϕ field components.
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In fact, finding the rotational angle α of the incident wave with respect to the
object (shown in section 5.2.2) is equivalent to finding the α angle of the object
with respect to the incident wave, as in fig. 5.22. α can be determined as follows:

tan(α) =
|Resθmeas |
|Resϕmeas |

(5.1)

α = tan−1(
|Resθmeas |
|Resϕmeas |

) (5.2)

where Resθmeas and Resϕmeas are the measured residues of both field components.

Figure 5.22 – Rotation of the incident wave (left) and the object
(right) by an angle α with respect to the object and the antenna

axis respectively.

To validate this assumption, we will test it using both of the previously pre-
sented objects: thin wire and rectangular solid. We simulate both objects in a
mono-static configuration where the incident wave has multiple directions and
is rotated by an angle varying from 5◦ to 85◦ with 20◦ step about y axis. Those
rotations are not included in the training set. The size of both objects is fixed
such that their scattered field response encompasses five resonances.

The residues are extracted for various observation angles of the scattered field
of both objects. First, we need to determine the angular sector containing the
receiving antenna. With the use of the pre-trained CNN, we are able to classify
each sample accurately where the accuracy is 100% for all sectors of both ob-
jects. This way, we have a first idea about the location of the receiving antenna
about elevation or azimuth planes.
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Then, we will estimate the α angle using equation 5.2. This is due to the fact
that, in case of noisy signals, those residues are the least affected by noise, un-
like residues related to poles of higher order. From both field components, we
compute accurately the rotation angles for both objects with 0% error. Thus,
we can note that we can easily determine the incident wave orientation with
respect to the object or inversely. Hence, we have developed a simple and com-
plete scheme allowing to determine the object’s orientation.

In the following section, we will apply this procedure to determine the orien-
tation of a more complex shaped object where we will also study the effect of
noise when applying equation 5.2.

5.6 Case study: cylinder with one hemispherical end

In this section, we study a more complex object formed by the merge of two
PEC objects: a thick cylinder and a hemisphere. The cylinder has a length of 15
cm and the hemispherical has a radius of 7.5 cm (fig. 5.23). The object is simu-
lated using CST time solver and it is illuminated using a EM plane wave with
dual polarizations. When the rotational axis of the object is along z axis, the in-
cident angle of the plane wave varies along the elevation plane (θ angle) from
0◦ to 180◦ with 3◦ step while ϕ is constant and fixed to 0◦. VF is then applied on
the recovered scattered fields in the back-scattering direction to compute the
CNRs and their associated residues. Fig 5.24 shows the amplitude response in
three different directions and their first five CNRs. Once those data are well
extracted, we proceed to the construction of the dataset using the residues to
determine the orientation of this object.

We divide this new object into 9 sectors as follows:

— sector 0: 0 ≤ θ ≤ 18;

— sector 1: 21 ≤ θ ≤ 39;

— sector 2: 42 ≤ θ ≤ 60;

— sector 3: 63 ≤ θ ≤ 81;

— sector 4: 84 ≤ θ ≤ 102;

— sector 5: 105 ≤ θ ≤ 123;

— sector 6: 126 ≤ θ ≤ 144;

— sector 7: 147 ≤ θ ≤ 165;

— sector 8: 168 ≤ θ ≤ 180;

As previous, the input vector is comprised of two channels representing the
residues computed from Eθ and Eϕ components of the scattered field. We in-
crease the amount of data samples by adding multiple data from the rotation
of the incident wave. This way, we will be able to determine the orientation of
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Figure 5.23 – The simulated PEC cylinder with a hemispherical
end oriented along z axis

(a) Amplitude response (b) CNRs

Figure 5.24 – (a) Amplitude response of Eθ in the back-scattering
direction and (b) the first 5 CNRs of the cylinder with a hemi-

spherical end

the object along elevation and azimuth planes whatever the rotation of the ob-
ject or the incident wave. Additionally, sparse data are added to the dataset to
take into account noisy data and when there is less than 5 resonances in the fre-
quency band. This is done by replacing residues related to higher order poles
by artificial zeros.

We use the CNN topology defined in section 5.3.2.3 and the training is done
on 80% of the dataset. From fig. 5.25, we notice that the accuracy of training
data does not exceed 90%. We also obtain the same level of accuracy with the
test set (20% remaining samples). It is observed that an important part of the
miss-classified samples belong to data having a single residue in this frequency
range. The normalized confusion matrix of the test results is shown in fig. 5.26.
It can be seen that the confusion mostly exists between sectors that are sym-
metrical to the horizontal plane. This can be due to the fact that this object is
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nearly symmetrical despite its rounded end. So the amplitude of the scattered
field is similar at low frequencies for supplementary observation angles and
consequently, so does the residues related to the first order pole. This can be
observed in fig. 5.27 for two supplementary observation angles. For these rea-
sons, the residues associated with the first resonant frequency are somewhat
alike for supplementary angles, leading to a slight confusion between two sec-
tors associated to those angles.

Figure 5.25 – Train and validation accuracy for CNN classifier
when trained using residues of the new object

To verify if we can detect the sector accurately and determine the orientation
of this object, we rotate it by 45◦ around y axis and illuminate it using a EM
incident plane wave at multiple incident angles where θ varies from 0◦ to 180◦

with 5◦ step. Additionally, we test this approach with noiseless and noisy data
at 30 dB and 10 dB SNR. VF is then applied on those raw data to extract the
residues and then, the input vector is constructed using residues computed
from Eθ and Eϕ field components.

Using the previously trained CNN, we introduce those new data for classifi-
cation. Indeed, we are able to determine the sector where each data belong
to for noiseless data with 96% accuracy. When SNR = 30 dB we get 90% ac-
curacy as their responses contain 5 residues for each field component. For 10
dB SNR, the accuracy decreases and is equal to 52% as the noise highly affects
the residues related to poles of higher order. Thus, only residues associated to
the fundamental pole remain almost unaffected by noise but as we have seen
earlier, those residues are almost similar for sectors containing supplementary
angles.
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Figure 5.26 – Normalized confusion matrix of the 20% remaining
samples used during the test phase

(a) (b)

Figure 5.27 – Amplitude response at different supplementary ob-
servation angles of the cylinder with a hemispherical end

Now, we apply equation 5.2 to compute the orientation angle of this object.
We test this approach with the noiseless and noisy signals at 10 and 30 dB
SNRs. For the noiseless case, we get the exact value with α = 45◦ for all ob-
servation angles. When testing with noisy signals, we noticed that the noise
affects both field polarizations and there exists an error in the computation of α

that increases when SNR value is low. Fig.5.28 shows the estimated angle α for
various observation angles and at both noise levels.
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Thus, we can see that with a more complex object, it is possible to estimate
its orientation from the knowledge of its residues with high accuracy. How-
ever, the accurate identification of the angular sector and the orientation is more
complicated when there are two resonances or less in the frequency band (i.e.
for small objects) and when the data are very noisy.

Figure 5.28 – Estimated angle α computed for each observation
angle and at two SNR values.

5.7 Conclusion

The residues are parameters associated to each CNR and are dependent upon
observation angle and polarization of the incident wave. Based on these two
facts and after the classification of objects carried in the previous chapter, we
aim at identifying the position of the angular sector and the orientation of each
object using the residues in this chapter.

Firstly, this is achieved by dividing each object into multiple angular sectors
where each sector contains various observation angles. Thus, we can determine
the angular sector containing the incident vector of the plane wave. Indeed, this
allows to get an approximate position of the receiving antenna along azimuth
(ϕ variation) and/ or elevations (θ variation) planes. Datasets were created for
each object separately, since each object has its own geometric symmetries. The
comparative classification results indicate that, even though the residues are
affected by noise and are more sensitive than raw data, the proposed approach
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offers excellent classification rates whatever the size of the object. This gener-
alization capability to different object sizes when using residues, facilitates the
dataset constitution and offers interesting perspectives in radar applications.

Secondly, in order to determine the orientation of each object with respect to
the antenna system (α angle), we make use of residues related to both field
components to compute α. We also simulated a more complex object formed
from the merge of two PEC objects to apply this approach. The results using
residues proved that, using this procedure enable the accurate estimation of
the orientation of an object. However, the computation of α is affected by noise
and the error increases when SNR decreases. The limitation of this solution,
allowing to determine the object orientation, is that it requires that the antenna
system to be equipped with dual polarized transmission and reception.
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Chapter 6

General Conclusion

6.1 Thesis objectives review

In this thesis, we have studied the SEM technique to achieve our objective of
identification and classification of objects from their UWB response using ML
and DL. This was done by compressing the UWB scattered field data to be able
to classify objects from few parameters independently from the location of the
observer and the illuminator. Extraction of the resonant poles is, however, very
sensitive to noise and the first objective of this thesis was to study several SEM
extraction methods and to determine which is the most robust to noise. The
second objective was to apply the SEM formalism to classify several objects of
different forms and materials using ML and DL algorithms. In this context, not
only the CNRs are studied but also the residues that depend upon observation
angle, and hence, they can be used to determine the orientation of each object
with respect to the antenna system.

6.2 Thesis contributions summary

In chapter 2, we have reviewed the techniques used to characterize the UWB
scattered far field response of objects. We found that different models exist al-
lowing to describe the response of an object, either from their resonances or
scattering centers. The scattering centers and alternative techniques presented
require a spatial diversity and depend upon incident and observation angles.
This is why we chose to study the resonances of an object which are indepen-
dent of these aspect angles. In this context, we studied the resonances of an
object that can be modeled using the SEM technique. Several algorithms used
within this work were presented, which are: TLS MP in time domain, TLS
Cauchy and VF in frequency domain. Lastly, we presented the quality factor
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computation which can be used to characterize the resonance behaviour of an
object independently of its size. Using a synthetic signal, it was seen that the
number of CNRs calculated needs to be overestimated, thus, criteria allowing
to filter the CNRs according to their contribution were proposed in order to
keep only the physical dominant CNRs.

In chapter 3, we applied the SEM techniques, presented previously, to study
the resonances of two objects: a PEC sphere which resonates weakly and a thin
wire which resonates strongly. Selecting these simple and well-studied objects
enabled us to use their theoretical CNRs to validate the SEM methods. In this
research, the simulated targets have been treated in a free-space environment
using several simulation software. In time domain, we proposed to evaluate
the singular values distribution which allowed to accurately separate the late
time response from the early time. Then, in frequency domain, before apply-
ing TLS Cauchy or VF, we have studied the impact of channel mis-estimation
on phase compensation. We shown that VF is the most robust method to this
problem. Criteria mentioned in chapter 2 to eliminate CNRs related to early
time part and noise have also been validated. The performances of these three
methods were compared in the presence of noise where it was shown that TLS
Cauchy is the least robust whereas both VF and TLS MP have similar results
and are more robust. We also studied the residues associated to the CNR of
each object. We have shown that residues amplitude is correlated with the late
time response of the scattered field at each natural resonant frequency.

Then, in chapter 4, we have used the CNRs for the classification of several
objects with both ML and DL algorithms. We chose to apply VF method to
avoid the late time/ early time separation and apply automatic poles selec-
tion as described in chapter 2. Three datasets were constructed using noiseless
responses that are based on: raw data in TD and FD, and SEM data. An origi-
nal SEM dataset including sparse data has been proposed and validated. This
format improves the classification of small objects (i.e. having few resonances
in the frequency band) and decreases the effect of noise on high order CNRs.
Several classifiers were tested, and it was found that a NN classifier paired
with SEM data achieves better results when testing noisy data not seen dur-
ing training phase. We also confirmed that integrating the Q-factors in the in-
put vector along with the resonant frequencies allows to distinguish objects of
any size, and that incorporating the residues allows to separate objects having
very similar resonant frequencies and/or Q-factors. Additionally, we verified
that the datasets using SEM data can be constructed using a single object size
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while maintaining same performances as the one constructed using multiple
sizes, and we have shown that normalizing the resonant frequencies gives bet-
ter results when dealing with noisy responses from unseen object sizes. Finally,
we have seen that, after the classification process, we can determine not only
the shape but also the size of the object under test from the knowledge of its
first non normalized resonant frequency. All these contributions allowed us to
propose an object classification method that is more robust to noise, with an
excellent capacity for generalization, while considerably simplifying the con-
stitution of the dataset.

Finally, in chapter 5, we used the residues to identify the position of the receiv-
ing antenna and its orientation in relation to the object. This was achieved by
dividing each object into multiple angular sectors where each sector contains
various observation angles corresponding to the locations of the receiving an-
tenna. The classification step revealed that using residues with an NN classifier
is more prone to noise compared to raw data (almost 10% less accuracy) but, on
the other hand, it allowed better generalization to unseen object sizes. Then, we
showed that by using dual polarization we can compute analytically the orien-
tation of the receiving antenna related to the object or reciprocally. Thus, we
presented a procedure allowing to, efficiently, describe the object orientation in
free space from few parameters and regardless of their sizes. Hence, this study
brought very promising results for future object classification with UWB radar
signal while using simpler but reliable and faster techniques than those using
raw data.

6.3 Thesis limitations and perspectives

Object recognition and classification rely on accurate extraction of the target’s
CNRs. Regarding the extraction of natural resonances, we have established a
procedure for using the SEM methods in an optimal way. Extracting the reso-
nances from frequency domain responses presents an advantage by removing
the late time identification step. However, in case of very low SNRs, the ex-
traction procedure becomes perturbed with noise. Thus, an additional Newton
step can be incorporated in the VF algorithm, as shown in Lefteriu et al., 2013,
ensuring better convergence of CNRs with noisy signals.

One of the principal limitations in the classification stage is the necessity to in-
clude the fundamental frequency in the input vector which implies a very low
minimum frequency to illuminate the target (depending on its size) which is
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not always possible. Indeed, we assume that the bandwidth of the incident
pulse is wide enough such that it covers the first few dominant resonant fre-
quencies of the object. Thus, the classification of objects will not work properly
without the fundamental frequency. Furthermore, the time required to com-
pute the poles and residues by the VF algorithm may vary, mainly in low SNRs,
requiring more iterations and finer tuning of the initial parameters for a good
convergence, which is to be integrated into the total computation time.

The scope of this thesis was confined to PEC and dielectric objects in free space.
In this context, it can be applied mainly to the classification of flying objects
(drones, airplanes, etc) because the coupling with another object or a support
has not been considered in this thesis, even if promising studies on the sub-
ject have been conducted (Baum, 1993; Lee et al., 2013). Thus, this work can,
be extended to buried objects, as in (Baum, 1993), where Baum described a
procedure allowing to extract resonances of an object buried in a lossy media.
Other research activities have also addressed the detection of subsurface ob-
jects where they are situated under an interface at a particular depth (Vitebskiy
and Carin, 1995; Geng, Jackson, and Carin, 1999; Wang et al., 2001). In that
case, the scattered field is not solely dependent on the object alone as inter-
actions between the object and the interface arise. The previously mentioned
studies have shown that these interactions depend upon the dielectric contrast,
the depth and orientation of the object.

Currently, UWB radar target recognition and classification still have some chal-
lenges. One difficulty is that when extracting the scattered wave from the ob-
ject, a lot of electromagnetic and noise interference and complex background
clutter are present. Further developments of target recognition schemes that
use the resonance feature sets are believed to be of great potential benefit to
the radar community. Therefore, it will be of interest to validate our approach
(the use of resonances for object classification and for orientation detection)
using real measurements. In this context, the analysis and deconvolution of
the antenna response should be considered. Consequently, by embedding the
extraction of these features into the radar target recognition process, the proce-
dure for target identification and classification will become more reliable and
intelligent.
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Appendix A

Extraction of poles from the Eϕ

component

In this section, we show that the extraction of poles can be done using the Eϕ

component of the scattered field for the PEC sphere. Similar to the treatments
realized on the Eθ component, we need to compensate the phase and identify
the beginning of late time before applying the SEM techniques. In fig. A.1
we can see that the impulse and frequency responses, in the back-scattering
direction (ϕ = 90◦ plane), are the same as the ones seen for Eθ component in
chapter 3. Thus, the same late time value is applied to eliminate the early time
and the phase is compensated exactly as before.

From those responses we extract the resonances that are the same as the analytic
CNRs as in fig. A.2. Thus, we can see that the CNRs can be estimated accurately
by applying the SEM techniques on both the Eθ and Eϕ components, and we can
conclude that the CNRs are, indeed, independent from the polarization of the
wave. Following, we compare the residues associated to each CNR (extracted
using VF) with the scattered field and late time responses. From fig. A.3 to A.5,
we see that the residues’ amplitude are almost correlated with the late time
response. As expected, no correlation exists with the scattered field response
as it contains both early and late time responses.



162 Appendix A. Extraction of poles from the Eϕ component

(a) Impulse response (b) Amplitude of frequency response

Figure A.1 – Impulse response and amplitude response of Eϕ of
the PEC sphere in the back-scattering direction

Figure A.2 – Estimated Physical poles of 0.15 m diameter sphere
compared with the theoretical ones
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(a) Scattered field

(b) Late Time

(c) Residues

Figure A.3 – Normalized amplitude of scattered field, scattered
field from late time response only and residues related to the first

resonant frequency ( f1 = 0.55 GHz)
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(a) Scattered field

(b) Late Time

(c) Residues

Figure A.4 – Normalized amplitude of scattered field, scattered
field from late time response only and residues related to the sec-

ond resonant frequency ( f2 = 1.15 GHz).
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(a) Scattered field

(b) Late Time

(c) Residues

Figure A.5 – Normalized amplitude of scattered field, scattered
field from late time response only and residues related to the third

resonant frequency ( f3 = 1.75 GHz).





167

Appendix B

Comparisons between residues
extracted by TLS MP and VF

We compare the normalized amplitude of the residues extracted using VF and
MP on the Eθ component of the scattered field from a 15 cm diameter PEC
sphere. Indeed, the residues are associated to the physical poles characterizing
the late time response, hence they are expected to be the same when extracted
either in time domain or in frequency domain. In fig. B.1 to B.4, we show
the normalized residues of the PEC sphere for the first 4 resonant frequencies.
From this, we see that using both techniques leads to the same residues. We
also compute the mean relative error between both residues and find that it is
less than 0.1% for all directions and for all resonant frequencies.

(a) (b)

Figure B.1 – Residues’ amplitude related to the first resonant fre-
quency ( f1 = 0.55 GHz) extracted using (a) MP and (b) VF
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(a) (b)

Figure B.2 – Residues’ amplitude related to the second resonant
frequency ( f2 = 1.15 GHz) extracted using (a) MP and (b) VF

(a) (b)

Figure B.3 – Residues’ amplitude related to the third resonant fre-
quency ( f3 = 1.75 GHz) extracted using (a) MP and (b) VF

(a) (b)

Figure B.4 – Residues’ amplitude related to the fourth resonant
frequency ( f4 = 2.35 GHz) extracted using (a) MP and (b) VF
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Appendix C

Resonances of non spherical PEC
objects

The PEC objects are simulated using CST time solver. A probe is placed at 1
m from each object to recover the back-scattered response for multiple incident
angles (table 4.11). The objects are shown in fig. C.1.

The singularities are extracted using VF algorithm with a model order fixed at
26. The following results are presented for one of the two field components.

(a) Metal ring (b) Thick cylinder

(c) Ovoid (d) Cube

(e) Rectangular solid (f) Pyramid

Figure C.1 – Non spherical PEC objects.

• Metal ring: The amplitude response and the CNRs extracted at different in-
cident angles are shown in fig. C.2, for the Eϕ component. We can notice
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that resonance peaks appear clearly in the amplitude response, meaning
that the metal ring is a strong resonating object like the thin wire. This is
observed with the CNRs were the damping factors are low.

(a) Amplitude response (b) CNRs

Figure C.2 – Amplitude response and CNRs of Eϕ of the metal
ring in the back-scattering direction

• Thick cylinder: The thick cylinder, with a ratio of L/D = 1.5, is a weak res-
onating object as seen from its amplitude response and CNRs distribution
in fig. C.3, for the Eθ component.

(a) Amplitude response (b) CNRs

Figure C.3 – Amplitude response and CNRs of the thick cylinder
in the back-scattering direction

• Ovoid: Fig. C.4 shows the amplitude response and CNRs at different inci-
dence angles, for the Eθ component, when the incident wave is polarized
vertically. The PEC ovoid (axial ratio = 1.5) behaves like a PEC sphere
where there is multiple resonances in this frequency band.
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(a) Amplitude response (b) CNRs

Figure C.4 – Amplitude response and CNRs of an ovoid in the
back-scattering direction

• Cube: The amplitude response and the CNRs of the rectangular solid are
shown in fig.C.7 for multiple incident angles and for Eθ component.

(a) Amplitude response (b) CNRs

Figure C.5 – Amplitude response and CNRs of a cube in the back-
scattering direction

• Rectangular solid: The amplitude response and the CNRs of the rectangu-
lar solid, having a square face, are shown in fig.C.7 for multiple incident
angles and for Eθ component.
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(a) Amplitude response (b) CNRs

Figure C.6 – Amplitude response and CNRs of a rectangular solid
in the back-scattering direction

• Pyramid: The amplitude response and the CNRs of the PEC pyramid are
shown in fig.C.7 for multiple incident angles and for Eθ component.

(a) Amplitude response (b) CNRs

Figure C.7 – Amplitude response and CNRs of a pyramid in the
back-scattering direction
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Appendix D

Scattered field dataset construction

In order to find the optimal structure of the dataset using FD responses, we
assessed three different forms based on the amplitude and phase of the SF re-
sponses of the 5 spheres. Indeed, we can not use the complex frequency re-
sponse directly as the classifiers only support real numbers. The 3 datasets
used for evaluation are constructed from the following data:

— Amplitude + Phase responses

— Amplitude response

— Phase response

Table D.1 – Accuracy (%) and σd of CNN trained using each
dataset of FD data

Datasets
FD data

Amplitude + Phase Amplitude Phase
Accuracy σd Accuracy σd Accuracy σd

20% test data 97 2.3 98.3 1 98.2 0.9
Noisy data

10dB
65 4 68 3 67.5 2.6

Sphere diameter
= 30cm

45.2 5.5 60 4.5 43.4 5.3

Smaller sphere
= 1 resonance

55 6.2 53 4.8 52 4

Those 3 structures are evaluated using CNN with same training parameters
presented in 4.3.2. Table D.1 shows accuracy results and standard deviation σd

for multiple datasets when using CNN with the 3 cases of FD data. The results
show that all three dataset structures have similar performances and that by
using the amplitude response we get slightly better results when testing with
larger spheres. This decrease in the accuracy when using amplitude and phase
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can be due to either of two reasons: first, the CNN topology might have needed
some modifications in the training parameters as the data are larger for this
dataset or, second, as the phase alone has less accuracy than the amplitude, so,
the combination of both might be decreasing the accuracy. Hence, we choose
to construct the FD dataset using solely the amplitude response.
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Appendix E

Angular sector classification

Spherical objects

Table E.1 summarizes the results obtained when classifying angular sectors of
the 5 sphere types with CNN classifier trained using noiseless SEM data. The
classification results using CNN are presented as it was shown that it has the
best performances over the other classifiers.

Those results are presented for the following test data: larger sphere size of
30 cm diameter (� = 30 cm), smaller spheres having less than 5 resonances
in the frequency band (4 to 1 resonances in the frequency band). Finally, the
noisy data of 10 dB SNR of 15cm diameter sphere is presented. We notice that
the accuracy of noisy data of both dielectric spheres are the highest as they are
very resonating so the CNR extraction is easier at low SNR making the residues
computation quite accurate.

Table E.1 – Accuracy (%) of angular sectors classification of differ-
ent test data for the 5 spheres using CNN classifier trained using

SEM data

Test data Spheres
PEC ϵr=4, σ=0.5 ϵr=2 ϵr=4 ϵr=9

� = 30 cm 97 96 99 98 98
4 resonances 99.7 99.5 99.2 98 98
3 resonances 99.5 98.5 99.5 96 96
2 resonances 94 90.8 90 90 90
1 resonance 77 72 75 70 70
10 dB SNR 62 57 58 72 74
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Non spherical PEC objects

For the other objects, the results are summarized in table E.2. The metal ring,
the ovoid and the thick cylinder are cut into 10 sectors in the same manner as
the thin wire shown in section 5.4.1 in chapter 5. The cube and the pyramid
are cut into 6 and 8 sectors respectively. Both of those objects have the least
performances like the rectangular solid seen in chapter 5. This confirms that
objects with sharp edges are harder to treat.

Table E.2 – Accuracy (%) of angular sectors classification of dif-
ferent test data for the non spherical PEC objects using CNN clas-

sifier trained with SEM data

Test data PEC objects
Ring Thick cylinder Ovoid Cube Pyramid

20% remaining samples 98 96 96 85 83
Noiseless larger objects 95 94 94 90 88

Noisy larger object
10dB SNR

79 72 75 64 60

Noiseless smaller objects 76 72 75 64 60
Noisy smaller object

10dB SNR
65 60 60 56 52
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