
HAL Id: tel-03664752
https://theses.hal.science/tel-03664752

Submitted on 11 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for enriched abstract argumentation
frameworks for large-scale cases

Mickaël Lafages

To cite this version:
Mickaël Lafages. Algorithms for enriched abstract argumentation frameworks for large-scale cases.
Artificial Intelligence [cs.AI]. Université Paul Sabatier - Toulouse III, 2021. English. �NNT :
2021TOU30194�. �tel-03664752�

https://theses.hal.science/tel-03664752
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le (15/12/2021) par :
MICKAËL LAFAGES

Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases

Jury
MASSIMILIANO GIACOMIN Full professor - Università degli

Studi di Brescia
Rapporteur

DANIEL LE BERRE Professeur des universités -
Université d’Artois, CNRS, CRIL

Rapporteur

LEILA AMGOUD Directrice de recherche - CNRS,
IRIT

Présidente du Jury

JEAN-GUY MAILLY Maı̂tre de conférences - Université
de Paris, LIPADE

Membre du Jury

SYLVIE DOUTRE Maı̂tre de conférences - Université
Toulouse 1, IRIT

Co-directrice de Thèse

MARIE-CHRISTINE LAGASQUIE Professeur des universités -
Université Toulouse 3, IRIT

Directrice de Thèse

École doctorale et spécialité :
MITT : Domaine STIC : Intelligence Artificielle

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse (UMR 5505)

i

Remerciements

Si on devait la comparer à une activité sportive, je décrirais la thèse comme étant à la fois
une course de fond et une course d’orientation aux multiples arrivées ! C’est seulement après
en avoir pris le départ qu’on en découvre le tracé, qu’on en réalise pleinement la dureté. Au-
jourd’hui, je tiens à remercier celles et ceux qui ont participé à faire de cette aventure une grande
réussite !

Tout d’abord, je souhaiterais remercier mes encadrantes, Marie-Christine LAGASQUIE et Sylvie
DOUTRE. En me faisant part de leur expertise, elles ont su me donner les conseils adéquats pour
retrouver mon chemin quand je m’égarais, pour rebooster ma course quand je m’essoufflais à
la tâche. Au delà de l’aspect technique de l’exercice, je tiens à vous remercier tout partic-
ulièrement pour votre approche humaine. J’ai traversé plusieurs moments éprouvants au cours
de ces années et vous avez été très compréhensives ! J’en suis persuadé: avec d’autres encad-
rants, cela aurait été une toute autre histoire. Un grand merci à vous !

Je remercie mes deux rapporteurs, Daniel LEBERRE et Massimiliano GIACOMIN, dont les
rapports ont été très profitables, pleins de remarques et pistes d’amélioration pertinentes !

Je remercie Leila AMGOUD, directrice du Jury, ainsi que l’ensemble des membres du Jury,
Daniel LEBERRE, Massimiliano GIACOMIN, Jean-Guy MAILLY, Marie-Christine LAGAS-
QUIE et Sylvie DOUTRE d’avoir récompensé le fruit de mon travail de recherche en m’accordant
le titre de Docteur.

Je remercie ma mère qui, depuis mon plus jeune âge, m’a donné le goût de l’apprentissage et la
confiance en mes capacités intellectuelles. Merci pour tout ...

Je remercie Bettina, Roddy et Kevin, mes frères et soeur pour tout leur soutien ! Vous avez été
pour moi des piliers.

Je remercie mon oncle Martin qui n’a jamais été trop loin, qui m’a toujours soutenu et en-
couragé ! Merci encore pour la visioconférence de ma soutenance, pour ce setup digne d’un
youtuber !

Je remercie toute ma famille ainsi que mes amis, pour leur engagement envers moi ! Je ne
pourrai citer tout le monde alors je ferai simplement cette liste réduite: Mélanie, Stéphie, Wendy,
Samantha, Nicolas, Élodie, Yehouda, Kalidou, Mickaël, Dina, Jean-Michel, Sébastien, Kamila,
Anaı̈s, Priscille, Audren.

Je remercie mes collègues de bureau pour leurs conseils et les bons moments passés ensemble:
Pierre-François, Julien, Victor, Audren.

Enfin, je veux dire un grand merci à celui qui a toute mon admiration, sans la sollicitude duquel
rien aurait été possible ! Il se reconnaitra ...

ii

Summary

Abstract argumentation theory proposes methods to represent and deal with contentious infor-
mation, and to draw conclusions or take decision from it. Such an abstract approach focuses
on how arguments affect each other. Arguments are seen as generic entities which interact
positively (support relation) or negatively (attack relation) with each other.

This abstraction level allows to propose generic reasoning processes that can be applied to any
concrete definition or formalism for arguments. Argumentation-based reasoning model has
been of application in multi-agent systems for years now. The development of argumentation
techniques and of their computation drives such applications. This is the very motivation of this
thesis: enhancing the use of abstract argumentation by developing better tools for its application.

A lot of frameworks and semantics have been proposed to enhance expressivity in abstract ar-
gumentation. While a given framework specifies the way of representing and expressing an
argumentation problem (types of relations between arguments, weight on attacks or arguments,
higher-order relation, etc.), a semantics, defined for a specific argumentation framework, cap-
tures what is a solution of an argumentation problem, in the sense of what is acceptable.

In this thesis, I first focus on solving more efficiently argumentation problems which are ex-
pressed in the basic, seminal argumentation framework and semantics defined by Dung. Dung’s
semantics produce sets of jointly acceptable arguments, called extensions. A new distributed
and clustering based algorithm to compute Dung’s semantics is my first contribution. This
algorithm has been designed for certain types of large-scale argumentation frameworks, that
produce a large number of extensions. It has been implemented and tested. The results of these
tests show its efficiency in the context of the large scale argumentation frameworks which are
targeted.

Second, I focus on argumentation frameworks with higher order attacks, and especially Recur-
sive Argumentation Frameworks (RAF). In this context, an attack may have as target an attack:
an argument may thus be acceptable while one of its attack (receiving itself an attack) may
be invalid, and so non pertinent against its target. Similarly to Dung’s semantics which pro-
duce extensions, the RAF semantics produce “structures”, pairs whose first element is a set of
arguments and the second a set of attacks.

If algorithms already existed for Dung’s framework, it was not the case for RAF. In order to
address this issue, I start with studying the complexity of RAF semantics. I then extend the no-
tion of labelling to RAF, another kind of characterization of acceptability which already existed
for Dung’s framework. The notion of “strongly connected component” is extended to RAF and
decomposability properties of RAF semantics are studied. All these contributions pave the way
for future algorithms to compute acceptability under RAF semantics.

Résumé

La théorie de l’argumentation abstraite propose des méthodes pour représenter et traiter les
informations potentiellement incohérentes, et pour en tirer des conclusions ou prendre des
décisions. Une telle approche est dite abstraite car elle se concentre uniquement sur la manière
dont les arguments s’influencent mutuellement et pas sur la constitution des arguments. Les
arguments sont donc considérés comme des entités génériques qui interagissent positivement
(relation de support) ou négativement (relation d’attaque) les unes avec les autres.

Ce niveau d’abstraction permet de proposer des processus de raisonnement génériques qui
peuvent être appliqués à toute définition ou formalisme concret des arguments. Le modèle
de raisonnement basé sur l’argumentation est appliqué dans les systèmes multi-agents depuis
des années. Le développement des techniques d’argumentation et de leur calcul est un point
clé de ces applications. C’est la motivation même de mon travail : améliorer l’utilisation de
l’argumentation abstraite en développant de meilleurs outils pour sa mise en oeuvre.

De nombreux cadres d’argumentation et sémantiques associées ont été proposés dans la littératu-
re pour améliorer l’expressivité de l’argumentation abstraite. Alors qu’un cadre donné spécifie
la manière de représenter et d’exprimer un problème d’argumentation (types de relations en-
tre les arguments, poids des attaques ou des arguments, relation d’ordre supérieur, etc.), une
sémantique, pour un cadre d’argumentation spécifique, capture ce qui est une solution d’un
problème d’argumentation, dans le sens de ce qui est acceptable.

Dans mon travail, je me suis d’abord concentré sur la résolution efficace de certains problèmes
d’argumentation qui sont exprimés dans le cadre d’argumentation classique et les sémantiques
définis par Dung. Les sémantiques de Dung produisent des ensembles d’arguments conjointe-
ment acceptables, appelés extensions. Mon travail a conduit à la proposition d’un nouvel al-
gorithme distribué et basé sur une technique de clustering pour calculer les extensions sous les
sémantiques de Dung. Il a été conçu pour certains types de cadres d’argumentation de ”grande
échelle”, produisant un grand nombre d’extensions. Il a été implémenté et testé. Les résultats
des tests montrent toute son efficacité pour les cadres d’argumentation à grande échelle ciblés.

Je me suis ensuite intéressé aux cadres d’argumentation d’ordre supérieur, et en particulier au
cadre d’argumentation récursif (RAF). Dans ce contexte, une attaque peut avoir comme cible
une autre attaque : un argument peut ainsi être acceptable alors même qu’il est attaqué parce que
cette attaque (recevant elle-même une attaque) peut être invalide, et donc non pertinente contre
sa cible. Là où le cadre de Dung produit des extensions, les sémantiques des RAF produisent
des “structures”, des paires dont le premier élément est un ensemble d’arguments et le second
un ensemble d’attaques.

Si des algorithmes existaient déjà pour le cadre de Dung, il n’en était pas de même pour les
RAF. J’ai donc commencé par étudier la complexité des sémantiques des RAF. J’ai ensuite
étendu la notion de labelling aux RAF, une autre caractérisation de l’acceptabilité déjà existante
dans le cadre de Dung. La notion de “composante fortement connexe” a été élargie aux RAF,
et les propriétés de décomposabilité des sémantiques des RAF ont été étudiées. Toutes ces
contributions ouvrent la voie à de futurs algorithmes pour calculer l’acceptabilité sous plusieurs
sémantiques des RAF.

iv

Contents

I Introduction 1

II Dung Argumentation Framework: Background 6

1 Semantics : extensions and labellings 8
1.1 Extension-based semantics . 8
1.2 Labelling-based semantics . 10
1.3 Extension-based and labelling-based semantics relations . 12

2 Semantics decomposability 16

3 AF decision problems and complexities 23
3.1 Definitions . 23
3.2 Complexities . 24

III Dung Argumentation Framework: Contribution 26

4 AFDivider : presentation and formal analysis 28
4.1 Motivation . 28
4.2 AFDivider : A Generic algorithm . 29

4.2.1 Pretreatement: removing AF trivial parts . 30
4.2.2 Identifying Clusters . 32
4.2.3 Computing the labellings . 34
4.2.4 Reunifying the results . 42

4.3 AFDivider properties: soundness and completeness . 47
4.3.1 Relation between AFs with input and cluster structures . 48
4.3.2 Soundness and completeness . 50

5 AFDivider : Experimental analysis 51
5.1 Introduction . 51
5.2 Clustering methods . 52

5.2.1 Spectral clustering . 52
5.2.2 USCC based clusterings . 54

5.3 Result presentation . 55
5.3.1 Success Count Comparison . 55
5.3.2 Resolution Time Comparison . 56
5.3.3 Clustering Impact Comparison . 57

i

ii CONTENTS

5.3.4 Maximality Check Impact Comparison . 58
5.3.5 Memory Overflow Analysis . 59

5.4 Synthesis . 60

6 AFDivider : Compact representation 64
6.1 Motivation and Definition . 64
6.2 Decision Problems with Compact Enumeration . 65
6.3 Implementation ideas . 66
6.4 Compact Enumeration Representation: Experimental Analysis . 68
6.5 Synthesis . 68

7 Related Work: Algorithms for AF 70
7.1 Indirect approach based algorithms . 70

7.1.1 SAT based algorithms . 70
7.1.2 Other indirect approach based algorithms . 72

7.2 Direct or semi-direct approach based algorithms . 73
7.2.1 Dynamic programming algorithm . 73
7.2.2 SCC decomposition based algorithms . 78
7.2.3 Parallel algorithms . 79

IV Higher-Order Attack Argumentation Frameworks: Background 82

8 Argumentation Framework with Recursive Attacks (AFRA) 85
8.1 Extension-based Semantics . 85

8.1.1 Definitions . 85
8.1.2 Properties . 87

8.2 Relation between AFRA and AF . 90

9 Recursive Argumentation Framework (RAF) 91
9.1 Structure Semantics . 91

9.1.1 Definitions . 91
9.1.2 Properties . 94

9.2 Relation between RAF and AF . 94
9.2.1 Semantics correspondence . 96
9.2.2 RAF flattening . 98

9.3 Relation between RAF and AFRA . 99

V Higher-Order Attack Argumentation Frameworks: Contribution 100

10 New semantics for RAF 102
10.1 The Semi-stable semantics . 102

10.1.1 Definition and some properties . 103
10.1.2 The case of RAF with no recursive attacks . 103

10.2 Reinstatement RAF labellings . 104

CONTENTS iii

11 Structure labellings and semantics 107
11.1 Complete semantics . 107
11.2 Preferred semantics . 108

11.2.1 Reinstatement RAF labellings with maximal in . 108
11.2.2 Reinstatement RAF labellings with maximal out . 108

11.3 Stable semantics: reinstatement RAF labellings with empty und . 108
11.4 Grounded semantics . 109

11.4.1 Reinstatement RAF labellings with maximal und . 109
11.4.2 Reinstatement RAF labellings with minimal in . 109
11.4.3 Reinstatement RAF labellings with minimal out . 110

11.5 Semi-stable semantics . 110
11.6 A one-to-one mapping . 110

11.6.1 Structures and labellings in RAF . 110
11.6.2 AF labellings and RAF labellings when no recursive attack exists 111

12 RAF flattening 114
12.1 Motivation . 114
12.2 A new flattening process . 115
12.3 Properties . 116

13 RAF Decision Problems and semantics complexities 119
13.1 RAF Decision problems . 119
13.2 RAF Semantics Complexities . 120

14 Hierarchical view of RAF and semantics decomposability 123
14.1 RAF Strongly Connected Component . 123
14.2 SCC partial order and hierarchy . 131
14.3 Decomposability of semantics . 133

14.3.1 Definitions . 134
14.3.2 Illustration . 142
14.3.3 Properties . 153

15 Related Work 163

VI Conclusion and Perspectives 164

Appendix 1: Mathematical Background 170

16 Mathematical Theories 170
16.1 Set theory . 170
16.2 Graph theory . 170

16.2.1 Graph types . 170
16.2.2 Node and edge relations . 171
16.2.3 Connectivity . 173
16.2.4 Topology . 174

16.3 Matrices . 175
16.4 Computational complexity theory . 178

16.4.1 Principles . 178
16.4.2 Decision problem theory . 179

iv CONTENTS

16.4.3 Decision time complexity classes . 180
16.4.4 Problem reduction, completeness and hardness . 182
16.4.5 Function problems . 183

16.5 Analysis of Algorithms . 184
16.5.1 Presentation . 184
16.5.2 Asymptotic analysis . 184

17 Mathematical Problems 186
17.1 Constraint Satisfaction problem . 186
17.2 Spectral Clustering . 188

Appendix 2: Tables 194

Tables of symbols 194

Table of figures 205

Table of tables 209

Glossary 211

Appendix 3: Proofs 219

Proofs of Part III: Contributions about AF 219
Proofs of Section 4.3: AFDivider soundness and completeness . 219

Proofs of Section 4.3.1: Relation between AFs with input and cluster structures 219
Proofs of Section 4.3.2: Soundness and completeness . 221

Proofs of Chapter 6: Compact representation . 226

Proofs of Part V: Contributions about RAF 230
Proofs of Chapter 10: New RAF semantics . 230
Proofs of Chapter 11: Semantics and Labellings . 232

Proofs of Section 11.1: Complete semantics . 232
Proofs of Section 11.2: Preferred semantics . 234
Proofs of Section 11.3: Stable semantics . 236
Proofs of Section 11.4: Grounded semantics . 237
Proofs of Section 11.5: Semi-stable semantics . 238

Proofs of Chapter 12: Flattening . 238
Proofs of Chapter 13: Complexity . 251
Proofs of Chapter 14: Decomposability and Hierarchy . 253

Proofs of Section 14.1: SCCra f . 253
Proofs of Section 14.2: RAF hierarchy . 266
Proofs of Section 14.3: RAF semantics decomposability . 267

Bibliography 291

Part I

Introduction

1

2

What is this thesis about?

Argumentation is a research field of Artificial Intelligence interested in managing contentious information.
Two major sub-domains can be considered in Argumentation. The first one, called “Argument Mining”,
is interested in extracting arguments and their relations with each others, from natural language speeches
(oral or written), in order to create a formal model to reason with (See [62] for more information). The
second one, that we will call “Argumentation Reasoning”, is the one that is interested in reasoning over
some argumentation model. It is useful to conclude, decide, convince, persuade or explain some issue. This
way of reasoning, by considering arguments and their interactions, has proven successful in many contexts,
multi-agent applications for instance (e.g. [15]).

I focus my PhD studies on Argumentation Reasoning, and more precisely, on “Abstract Argumentation”,
field so called because it does not focus neither on how to construct arguments nor on what the arguments
are made of (their content), but rather on how arguments affect each other. Arguments are seen as generic
entities that interact positively (e.g. support relation) or negatively (e.g. attack relation) with each other.
This abstraction level allows to propose generic reasoning processes that could be applied to any precise
definition or formalism for arguments.

There exist several approaches and formalisms to express argumentation problems. They differ on which
“Argumentation Frameworks” and which “semantics” to use, to determine the argumentation solutions.
These are two key notions in this research area:

• Considering the first key notion, here are some questions that have to be answered in order to “choose
an Argumentation Framework” that fits with our need. Do we allow positive relations? If so, of
which kind? Do we allow negative relations? If so, of which kind? Is there any notion of strength in
arguments or in relations? The aim of making more complex Argumentation Frameworks is to be able
to better capture human argumentation subtleties.

• Given an Argumentation Framework, the second key notion, semantics, corresponds to a formal way
to say how the solution of the argumentation should be decided. It is really related with the notion of
“acceptability”. How to define an acceptable argumentation problem solution?

The basic, seminal Argumentation Framework and semantics have been defined by Dung in [39], known
as Dung’s Argumentation Framework (AF). Since then, a lot of propositions have been made to enhance the
expressivity in Abstract Argumentation (e.g. [16, 18, 6, 4, 29]).

Future innovations in the area of Argument Mining may revolutionize the field of Artificial Intelligence,
leading to the establishment of large-scale Argumentation Frameworks, built from arguments and relations
collected for instance over the entire World Wide Web. Such frameworks may be large in their number of
arguments, in their number of relations, in their variety of relation types, in their structure. This perspective
made me choose as subject for my PhD studies the enhancement of tools for Abstract Argumentation. Carried
out in the Institut de Recherche en Informatique de Toulouse (IRIT) and supervised by Marie-Christine
LAGASQUIE and Sylvie DOUTRE, my thesis has thus been entitled: “Algorithms for enriched abstract
argumentation frameworks for large-scale cases”.

A first milestone
In the first part of my PhD, I center my research on solving more efficiently argumentation problems that
are expressed in Dung’s AF and semantics. This is a necessary first step before considering studying an
extension of this work to other enriched Argumentation Frameworks and semantics.

3

In Dung’s setting, solutions of an argumentation problem are sets of arguments (defined under the notion
of extension) which, when considered together, win the argumentation. Finding all the possible solutions
of an argumentation problem, i.e. all its winning sets of arguments, can be very time consuming. Many
argumentation problem instances, particularly large1, are too hard to be solved in an acceptable time, as
shown by the results of the ICCMA argumentation solver competition2. This hardness is not relative to the
current state of the art but rather to the intrinsic theoretical complexity of the argumentation semantics that
are tackled [41].

Considering the foreseen scaling-up challenge mentioned above in addition to the complexity, there is
a need for heuristics, methods and algorithms efficient enough to tackle such issues and make possible
the use of automated argumentation models, even in such settings. Enhancing the computational time of
enumerating the solutions of an argumentation framework has been the object of study of many works,
resulting in the elaboration of several recent algorithms such as [1, 25, 52, 3] (see [26] for an overview).

To address this issue, we propose the AFDivider algorithm, a distributed and clustering-based algorithm
that has for main purpose to find all the possible solutions of an argumentation problem. Those solutions
are defined in terms of semantics labellings [14, 10], a three status based function mapping that assigns to
each argument of an AF an acceptance status: accepted, rejected or undecided. An empirical analysis of the
AFDivider algorithm shows that the new approach of computing Dung-like semantics is relevant and very
appropriate for some types of argumentation problems. This work led to several publications: [49, 31, 27, 32]
(See Part III on page 27 for more information).

The next milestone
In the second part of my thesis, I focused on “Argumentation Frameworks with Higher-Order Attacks” (e.g.
[12, 57, 58, 5, 6]). This type of Argumentation Framework is a rich extension of the classical Dung’s
AF: not only they consider arguments and attacks between arguments, but also attacks on attacks (see for
instance [5, 6]).

Among these frameworks, the “Recursive Argumentation Framework” (RAF) by [18] proposes a direct
approach regarding acceptability, which outputs sets of arguments and/or attacks (defined under the notion
of structure), keeping the full expressiveness of higher-order attacks. A correspondence between Dung’s
extension-based semantics of AF and structure-based semantics of RAF without any attack on attacks has
been shown in [18], proving that RAF are a conservative generalisation of AF. This characteristic makes
RAF particularly interesting to consider.

Given that the computation of RAF semantics has not been addressed so far, I dedicate the second
part of my thesis to the developments of tools (new notions) for RAFs and the study of RAF properties,
preparing thus the way for algorithm proposals. I first adapted the notion of AF labelling for RAF, so-
called, “structure labellings”. Secondly, I introduce a flattening process that transforms RAFs into AFs,
ensuring interesting properties. Thirdly, relying on that flattening, I study the complexities of RAF semantics.
Finally, I adapt the notion of Strongly Connected Component to RAFs and from this key notion, I study the
semantics decomposability of RAF semantics (notion introduced for AFs in [8]). These works led to several
publications: [34, 33, 36, 35] (See Part V on page 101 for more information).

1This notion of largeness of an argumentation framework is not so simple to define. It is related to the fact that the computation of
the solutions is complex either because of the number of arguments, or of the number of interactions, or because of the structure of the
argumentation framework.

2http://argumentationcompetition.org

http://argumentationcompetition.org

4

How this thesis is organized? How to read it?
The main body of this thesis contains four parts (introduction and conclusion set apart):

• Part II on page 7: Dung Argumentation Framework: Background.

• Part III on page 27: Dung Argumentation Framework: Contribution.

• Part IV on page 83: Higher-Order Attack Argumentation Frameworks: Background.

• Part V on page 101: Higher-Order Attack Argumentation Frameworks: Contribution.

Parts II and III concern the first milestone of my studies, as mentioned above, while Parts IV and V
concern the second one. In each background (Parts II and IV) the notions related to argumentation required
to understand the contribution parts that follow (Parts III and V) are given. Notice that, each contribution
part is quite independent from the other.3 However, for some of them, mathematical notions are required
to fully understand the contributions, especially Part III. Those notions are given in appendix as explained
below.

The last part of the main body, Part VI on page 165, concludes this thesis and opens perspectives for
future works.

This thesis has three appendices:

• Appendix 1: Mathematical Background (on page 170)

In this part are given all the mathematical background required to understand the ins and outs of this
thesis. By sake of clarity, it has been separated from the main body.

• Appendix 2: Tables (on page 194)

In this part are given tables of symbols to help the reading of this thesis.

• Appendix 3: Proofs (on page 219)

In this part are given all the proofs of the propositions and theorems proposed in the different contri-
bution chapters.4 In order to facilitate the reading of this thesis, a bi-direction linking has been made,
allowing thus to go to and from some property and its proof.

Although the different parts, chapters and sections listed below are not fully independent, here is a guide
for the reading of this thesis by topic. For the reader interested in:

• Complexity, read:

– Section 16.4 on page 178 (in the appendix): Computational complexity theory

– Chapter 3 on page 23: AF decision problems and complexities

– Section 9.1 on page 91: Structure semantics

– Chapter 12 on page 114: RAF flattening5

3Although there are some definitions of Parts II and III that are used in Part V, this does not require to read these parts first. Those
definitions can be read when needed.

4Some additional lemmas with their proof are also given in this appendix.
5This part is necessary to understand how the complexity of RAF decision problems has been proven.

5

– Chapter 13 on page 119: RAF decision problems and semantics complexities

• algorithms, read:

– Section 16.2 on page 170 (in the appendix): Graph theory

– Section 16.3 on page 175 (in the appendix): Matrices

– Chapter 17 on page 186 (in the appendix): Mathematical problems

– Chapter 1 on page 8: Semantics : extensions and labellings

– Part III on page 27: Dung Argumentation Framework: Contribution

• Semantics Decomposability:

– Section 16.1 on page 170 (in the appendix): Set theory

– Chapter 2 on page 16: AF semantics decomposability

– Section 9.1 on page 91: Structure semantics

– Chapter 11 on page 107: Structure labellings and semantics

– Chapter 12 on page 114: RAF flattening6

– Chapter 14 on page 123: Hierarchical view of RAF and semantics decomposability

6This part is necessary to understand how the decomposability of RAF semantics has been proven.

Part II

Dung Argumentation Framework:
Background

6

7

Part presentation:
In [39], Dung introduced the seminal abstract argumentation framework. It consists of a set of arguments and
of a binary attack relation between them. An “Argumentation Framework” (denoted AF) can be represented
as a directed graph in which nodes are arguments and directed edges are attack relations between arguments.
Formally, it is defined as follows:

Definition 1 (Argumentation framework). An argumentation framework (AF) is a pair AF = ⟨A,K⟩ where
A is a finite set of abstract arguments and K ⊆ A×A is a binary relation on A, called the attack relation:
(a,b) ∈ K means that a attacks b. The set of all possible argumentation frameworks is denoted as Φa f .

Example 1. Figure 1 shows an illustration of an AF. In all this document, arguments (in Latin letter) will
be represented by a round box and attacks are represented by directed edges.

a

b c

d

e

f

g

h i

j k

l

mn

Figure 1: Example of an AF

This formalism provides a strong base to compute the “solutions” of the argumentation so represented.
In Chapter 1 on the next page are presented different types of argumentation solutions, so called semantics.
Chapter 2 on page 16 presents the notion of semantics semantics decomposability and gives some properties
over the semantics we are interested in. Finally, in Chapter 3 on page 23 are defined AF decision problems
and their complexities are given.

Chapter 1

Semantics : extensions and labellings

Basically, a semantics defines what is a “solution” of an argumentation. In this chapter we present two kinds
of semantics types: extension-based ones (Section 1.1) and labelling-based ones (Section 1.2 on page 10).
Then in Section 1.3 on page 12 are given the relations between these two kinds of semantics.

1.1 Extension-based semantics
In Dung-like semantics [39], so-called extension-based semantics, a solution of an argumentation is a group
of arguments that, together, win the argumentation. The semantics thus define how to select those groups.
Formally, a generic AF extension-based semantics is defined as follows:

Definition 2 (Extension-based Semantics). Let σ be a function over Φa f . σ is said to be an AF extension-
based semantics iff the following property holds:

∀AF ∈Φa f , σ(AF)⊆ 2A, with AF = ⟨A,K⟩

A σ -extension is defined as follows:

Definition 3 (Extension). Let σ be an AF semantics and let AF = ⟨A,K⟩ be an AF. Let S ⊆ A be a set of
arguments. We say that S is a σ -extension of AF iff S ∈ σ(AF).

Dung’s semantics rely on the notion of defeat and acceptability.

Definition 4 (Defeat and acceptability in Dung’s framework). Let AF = ⟨A,K⟩ be an AF and S⊆ A be a set
of arguments. An argument a ∈ A is said to be:

• defeated w.r.t. S iff ∃b ∈ S s.t. (b,a) ∈ K.

• accepted w.r.t. S iff ∀(b,a) ∈ K,∃c ∈ S s.t. (c,b) ∈ K.

We define the sets of defeated and accepted arguments w.r.t. S as follows:

De f (S) = {a ∈ A|∃b ∈ S s.t. (b,a) ∈ K}
Acc(S) = {a ∈ A|∀(b,a) ∈ K,∃c ∈ S s.t. (c,b) ∈ K}

8

1.1. EXTENSION-BASED SEMANTICS 9

Let now give the formal definition of some AF semantics :

Definition 5 (Some extension-based semantics of AF). Let AF = ⟨A,K⟩ be an AF and S ⊆ A be a set of
arguments. S is said to be an extension:

1. Conflict-free iff S∩De f (S) =∅.

2. Naive iff it is a ⊆-maximal conflict-free extension.

3. Admissible iff it is conflict-free and S⊆ Acc(S).

4. Complete iff it is conflict-free and S = Acc(S).

5. Preferred iff it is a ⊆-maximal admissible extension.

6. Grounded iff it is the ⊆-minimal complete extension.

7. Semi-stable iff it is a complete extension such that S∪De f (S) is maximal w.r.t. ⊆.

8. Stable iff it is conflict-free and S∪De f (S) = A.

In the following we will mainly focus on the complete, preferred, grounded, semi-stable and stable
semantics as they are the most commonly used in the literature and so, given an AF AF , σ(AF) is the set of
extensions of AF under semantics σ , with σ being as an example the complete (co), grounded (gr), stable
(st), semi-stable (sst) or preferred (pr) semantics.

Example 2. Table 1.1 on page 13 shows which extensions those semantics produce for the AF in Figure 1
on page 7. It can be noticed that on this particular AF, the stable semantics does not produce any extension.

There exists a partial order over the semantics defined in Definition 5 (see [14] for proofs).

Proposition 1 (Extension-based semantics partial ordering). The following properties hold:

• Stable extensions are also semi-stable extensions

• Stable extensions are also naive extensions

• Semi-stable extensions are also preferred extensions

• Preferred extensions are also complete extensions

• The Grounded extension is also a complete extension

• Complete extensions are also admissible extensions

• Admissible extensions are also conflict-free extensions

• Naive extensions are also conflict-free extensions

Proposition 2 (Extension-based semantics cardinality). The following properties hold:

• There is always at least one conflict-free extension.

• There is always at least one naive extension.

10 CHAPTER 1. SEMANTICS : EXTENSIONS AND LABELLINGS

Conflict-free (+)

Admissible (+) Naive (+)

Complete (+)

Preferred (+)

Semi-stable (+)

Stable (*)

Grounded (1)

Figure 1.1: AF semantics partial ordering

The cardinality of each semantics, that is, the number of extensions which can be produced by each
semantics, is represented between parentheses.

“∗” means zero or more, “+” means one or more.

• There is always at least one admissible extension.

• There is always at least one complete extension.

• There is always a unique grounded extension.

• There is always at least one preferred extension.

• There is always at least one semi-stable extension.

• It may be the case that there is no stable extension.

Figure 1.1 illustrates Propositions 1 and 2.

1.2 Labelling-based semantics
Dung-like semantics can also be defined in terms of labellings as introduced in [14]. A labelling maps to
each argument of an AF a value representing its acceptability status. This status may be accepted (in),
rejected (out) or in an undecided state (und). Formally:

Definition 6 (Labelling). Let AF = ⟨A,K⟩ be an AF, and S ⊆ A. A labelling of S is a total function ℓ : S→
{in,out,und}. A labelling of AF is a labelling of A. The set of all labellings of AF is denoted as L (AF).
The set of all labellings of a set of arguments S is denoted as L (S).

We write in(ℓ) for
{

a|ℓ(a) = in
}

, out(ℓ) for
{

a|ℓ(a) = out
}

and und(ℓ) for
{

a|ℓ(a) = und
}

.

1.2. LABELLING-BASED SEMANTICS 11

Definition 7 (legally labelled argument). Let AF = ⟨A,K⟩ be an AF, and ℓ ∈L (AF) be a labelling.

• An in-labelled argument is said to be legally in iff all its attackers are labelled out.

• An out-labelled argument is said to be legally out iff at least one of its attackers is labelled in.

• An und-labelled argument is said to be legally und iff it does not have an attacker that is labelled in

and one of its attackers is not labelled out.

Definition 8 (Conflict-free labelling). Let AF = ⟨A,K⟩ be an AF, and ℓ ∈L (AF) be a labelling. ℓ is an
conflict-free labelling of AF iff for each a ∈ in(ℓ), a is legally in.

Definition 9 (Naive labelling). Let AF = ⟨A,K⟩ be an AF, and ℓ ∈ L (AF) be a labelling. ℓ is a naive
labelling of AF iff it is a conflict-free labelling of AF which maximizes (w.r.t ⊆) the set of in-labelled
arguments.

Definition 10 (Admissible labelling). Let AF = ⟨A,K⟩ be an AF, and ℓ ∈L (AF) be a labelling. ℓ is an
admissible labelling of AF iff it satisfies the following conditions for any a ∈ A:

• For each a ∈ in(ℓ), a is legally in.

• For each a ∈ out(ℓ), a is legally out.

Definition 11 (Complete labelling). Let AF = ⟨A,K⟩ be an AF, and ℓ ∈ L (AF) be a labelling. ℓ is a
complete labelling of AF iff it satisfies the following conditions for any a ∈ A:

• For each a ∈ in(ℓ), a is legally in.

• For each a ∈ out(ℓ), a is legally out.

• For each a ∈ und(ℓ), a is legally und.

Definition 12 (Grounded, preferred, semi-stable and stable labelling).
Let AF = ⟨A,K⟩ be an AF, and ℓ ∈L (AF) be a labelling.

• ℓ is the grounded labelling of AF iff it is the complete labelling of AF which minimizes (w.r.t ⊆) the
set of in-labelled arguments.

• ℓ is a preferred labelling of AF iff it is a complete labelling of AF which maximizes (w.r.t ⊆) the set
of in-labelled arguments.

• ℓ is a stable labelling of AF iff it is a complete labelling of AF which has no und-labelled argument.

• ℓ is a semi-stable labelling of AF iff it is a complete labelling of AF which minimizes (w.r.t. ⊆) the
set of und-labelled arguments.

It can be noticed that all complete labellings include the grounded labelling, and, as stable and preferred
labellings are complete labellings, they also include the grounded labelling.

Definition 13 (Labelling-based Semantic). A labelling-based semantic σ is a total function σ : Φa f →
2L (AF) which associates to an AF AF = ⟨A,K⟩ a subset of L (AF).

Given an AF AF = ⟨A,K⟩, the set of labellings under semantics σ is denoted Lσ (AF).

12 CHAPTER 1. SEMANTICS : EXTENSIONS AND LABELLINGS

Example 3. Let us consider the AF of Figure 1 on page 7. Table 1.2 on page 14 shows the labellings
corresponding to the different semantics (the other possible labellings are not given). As you can see this
AF has no stable labellings.

The partial ordering and cardinalities of extension-based semantics stated in Propositions 1 and 2 on
page 9 and on page 10 also hold for labelling-based semantics. See Figure 1.1 on page 10.

Proposition 3 (Labelling-based semantics partial ordering). The following properties hold:

• Stable labellings are also semi-stable labellings

• Stable labellings are also naive labellings

• Semi-stable labellings are also preferred labellings

• Preferred labellings are also complete labellings

• The grounded labelling is also a complete labelling

• Complete labellings are also admissible labellings

• Admissible labellings are also conflict-free labellings

• Naive labellings are also conflict-free labellings

Proposition 4 (Labelling-based semantics cardinality). The following properties hold:

• There is always at least one conflict-free labelling.

• There is always at least one naive labelling.

• There is always at least one admissible labelling.

• There is always at least one complete labelling.

• There is always a unique grounded labelling.

• There is always at least one preferred labelling.

• There is always at least one semi-stable labelling.

• It may be the case that there is no stable labelling.

1.3 Extension-based and labelling-based semantics relations
Now let consider the relation between extension-based semantics and labelling-based semantics. As proven
in [14], Proposition 5 holds.

Proposition 5 (Semantics bijection). Let σ ∈ {complete, stable, grounded, preferred, semi-stable} be a
semantics. There exists a bijection between σ -extensions and σ -labellings. The correspondences stated in
Table 1.3 on page 15 hold.

Given that there is a bijection between extension-based and labelling-based semantics, in the rest of this
document, we will not specify extension-based or labelling-based unless it is necessary.

1.3. EXTENSION-BASED AND LABELLING-BASED SEMANTICS RELATIONS 13

S1 S2 S3 S4 S5 S6

a

b

c

d

e

f

g

h

i

j

k

l

m

n

grounded •

complete • • • • • •

preferred • •

stable

Table 1.1: Semantic extensions of the AF in Figure 1 on page 7

“ ” means that the argument on the row belongs to the extension on the column.
“•” means that the semantics on the row produces the extension on the column.

14 CHAPTER 1. SEMANTICS : EXTENSIONS AND LABELLINGS

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6

a in in in in in in

b out out out out out out

c out out out out out out

d out out in in und und

e in in out out und und

f out out in in und und

g in in out out und und

h out out in in und und

i in in out out und und

j und und und und und und

k und und und und und und

l und und und und und und

m und out und out und out

n und in und in und in

grounded •

complete • • • • • •

preferred • •

stable

Table 1.2: Semantic labellings

“•” means that the semantics on the row produces the labelling on the column.

1.3. EXTENSION-BASED AND LABELLING-BASED SEMANTICS RELATIONS 15

Restriction on AF reinstatement labelling Semantics

no restrictions complete semantics

empty und stable semantics

maximal in preferred semantics

maximal out preferred semantics

maximal und grounded semantics

minimal in grounded semantics

minimal out grounded semantics

minimal und semi-stable semantics

Table 1.3: Reinstatement labelling and extension based semantics correspondence

Chapter 2

Semantics decomposability

In addition to semantics properties found for extension-based semantics, such as SCC-recursiveness (see
[11] for more information), the labelling approach allowed the discovery of new ones. In this chapter we
present the notion of semantics decomposability defined in [8] along with the different properties that are
related to it.

Several notions are required to define the semantics decomposability properties of a semantics.

Definition 14 (Labelling restriction ↓). Let ℓ be a labelling. Let S be a set of arguments. The restriction of
ℓ to S denoted as ℓ ↓S is defined as ℓ∩ (S×{in,out,und}).

Definition 15 (Input arguments and conditioning relation). Let AF = ⟨A,K⟩ be an AF and S ⊆ A be a set.
The input of S, denoted as Sinp, is the set {b ∈ A\S|∃a ∈ S,(b,a) ∈ K}. The conditioning relation of S,
denoted as SK , is defined as K∩ (Sinp×S).

Example 4. Let consider Figure 2.1 and let consider the set S = { f ,g,h, i}. We have: Sinp = {d,e} and
SK = {(e, f),(d,g)}.

d

e

f

g

h i

Figure 2.1: An AF

16

17

Definition 16 (AF with input). An argumentation framework with input is a tuple
〈

AF ,J ,ℓJ ,KJ

〉
, including

an argumentation framework AF = ⟨A,K⟩, a set of arguments J such that J ∩A = ∅, a labelling ℓJ of the
elements of J and a relation KJ ⊆ J ×A.

Example 5. Let consider the following AF with input, illustrated in Figure 2.2:〈
AF ,J = {e,d} ,ℓJ

= {(e,out),(d,und)} ,KJ = {(e, f),(d,g)}
〉

d

e

f

g

h i

Figure 2.2: An illustration of the AF with input (Example 5)

Let
〈

AF ,J ,ℓJ ,KJ

〉
be an AF with input. Its standard AF is an AF that simulates the conditioning

labelling of its input arguments J . To do so, some fictive arguments and interactions are added. Formally:

Definition 17 (standard AF). Given
〈

AF ,J ,ℓJ ,KJ

〉
, an argumentation framework with input, the standard

AF w.r.t.
〈

AF ,J ,ℓJ ,KJ

〉
is defined as:

std-AF =
〈
A∪ J ′,K∪K′J

〉
Where:

• J ′ = J ∪
{

a′|a ∈ J ∩out(ℓJ)
}

• K′J = KJ ∪
{
(a′,a)|a ∈ J ∩out(ℓJ)

}
∪
{
(a,a)|a ∈ J ∩und(ℓJ)

}
.1

Note: By definition, if the standard AF std-AF admits some labellings then, restricted to the input J , those
labellings are exactly the labelling ℓJ . Notice that for the stable semantics it may be the case that std-AF
admits no labelling.

1The fictive arguments are denoted by a′ in the definition of J ′ and the fictive interactions are the pairs (a′,a) or (a,a) appearing in
the definition of K′J .

18 CHAPTER 2. SEMANTICS DECOMPOSABILITY

Example 6. Let consider the AF with input
〈

AF ,J ,ℓJ ,KJ

〉
in Example 5 on the previous page. Given that

the labelling of its input arguments is ℓJ = {(e,out),(d,und)}, we obtain as its corresponding standard AF
the one illustrated in Figure 2.3.

d

e e′

f

g

h i

Figure 2.3: The standard AF corresponding to Example 5 on the previous page

Given an AF with input
〈

AF ,J ,ℓJ ,KJ

〉
(with AF = ⟨A,K⟩) and its corresponding standard AF std-AF ,

the canonical local function is simply a function that gives the set of labellings under a certain semantics of
the sub-AF we are interested in: std-AF ↓A= AF (i.e. the input arguments and the other fictive arguments
created are not in these labellings).

Definition 18 (Canonical local function). Let σ be a semantics,
〈

AF ,J ,ℓJ ,KJ

〉
be an AF with input (with

AF = ⟨A,K⟩) and std-AF be its standard AF. The canonical local function F a f
σ is the local function such

that:
F a f

σ (AF ,J ,ℓJ
,KJ) =

{
ℓ ↓A |ℓ ∈Lσ (std-AF)

}

Example 7. Considering Example 6, we have for σ ∈ {stable, preferred, semi-stable}:

F a f
σ (AF ,J ,ℓJ

,KJ) = {{(f ,in),(g,out),(h,in),(i,out)}}

For the grounded semantics we have:

F a f
gr (AF ,J ,ℓJ

,KJ) = {{(f ,und),(g,und),(h,und),(i,und)}}

And for the complete :

F a f
co (AF ,J ,ℓJ

,KJ) =

 {(f ,und),(g,und),(h,und),(i,und)} ,

{(f ,in),(g,out),(h,in),(i,out)}


Definition 19 (Semantics fully decomposability). A semantics σ is fully decomposable (or decomposable)
if and only if there is a local function F a f such that for every AF AF = ⟨A,K⟩ and every partition Ω =

19

{ω1, ...,ωn} of A, we have:

Lσ (AF)

={
ℓ1∪ ...∪ℓn

∣∣∣∀i,ℓi ∈F a f (AF ↓ωi ,ω
inp
i ,(

⋃
j∈{1,...,n} s.t. j ̸=i ℓ j) ↓ω

inp
i
,ωK

i)
}

Definition 20 (Initial argument). Let AF = ⟨A,K⟩ be an AF, and b ∈ A be an argument. b is an initial
argument of AF if there is no argument in AF attacking b.

Note: In graph theory, nodes corresponding to “initial arguments” are called source nodes.

Definition 21 (Complete-compatibility). A semantics σ is complete-compatible if and only if the following
conditions hold:

1. For any AF AF = ⟨A,K⟩, every labelling ℓ ∈Lσ (AF) satisfies the following conditions:

• if a ∈ A is initial, then ℓ(a) = in

• if b ∈ A and there is an initial argument in A which attacks b, then ℓ(b) = out

• if c ∈ A is self-attacking, and there is no attacker of c besides c itself, then ℓ(c) = und

2. For any set of arguments J and any labelling ℓJ of J , the AF AF ′ = ⟨J ′,K′⟩, where J ′ = J ∪{a′|a∈ J ∩
out(ℓJ)} and K′ =

{
(a′,a)|a ∈ J ∩out(ℓJ)

}
∪
{
(a,a)|a ∈ J ∩und(ℓJ)

}
, admits a unique labelling,

i.e. |Lσ (AF ′)|= 1.

Proposition 6. The complete, stable, semi-stable, preferred and the grounded semantics are complete-
compatible.

Proposition 7. Given a complete-compatible semantics σ , if σ is fully decomposable then there is a unique
local function satisfying the conditions of Definition 19, coinciding with the canonical local function F a f

σ .

Definition 22 (Top-down and bottom-up decomposability). Let σ be a complete-compatible semantics and
F a f

σ be the canonical local function corresponding to σ .
σ is said to be top-down decomposable iff for any AF AF = ⟨A,K⟩ and any partition Ω = {ω1, ...,ωn}

of A, it holds that:

Lσ (AF)⊆

ℓ1∪ ...∪ℓn

∣∣∣∣∣∣ℓi ∈F a f
σ

AF ↓ωi ,ω
inp
i ,(

⋃
j∈{1,...,n} s.t. j ̸=i

ℓ j) ↓ω
inp
i
,ωK

i


σ is said to be bottom-up decomposable iff for any AF AF = ⟨A,K⟩ and any partition Ω = {ω1, ...,ωn}

of A, it holds that:

Lσ (AF)⊇

ℓ1∪ ...∪ℓn

∣∣∣∣∣∣ℓi ∈F a f
σ

AF ↓ωi ,ω
inp
i ,(

⋃
j∈{1,...,n} s.t. j ̸=i

ℓ j) ↓ω
inp
i
,ωK

i



20 CHAPTER 2. SEMANTICS DECOMPOSABILITY

Definition 23 (Partition selector). A partition selector S is a function receiving as input an AF AF = ⟨A,K⟩
and returning a set of partitions of A.

Definition 24 (Decomposability w.r.t. a partition selector S). Let S be a partition selector. A complete-
compatible semantics σ is top-down decomposable w.r.t. S iff for any AF AF and any partition Ω =
{ω1, ...,ωn} ∈S (AF), it holds that:

Lσ (AF)⊆

ℓ1∪ ...∪ℓn

∣∣∣∣∣∣ℓi ∈F a f
σ

AF ↓ωi ,ω
inp
i ,(

⋃
j∈{1,...,n} s.t. j ̸=i

ℓ j) ↓ω
inp
i
,ωK

i


A complete-compatible semantics σ is bottom-up decomposable w.r.t. S iff for any argumentation

framework AF and any partition Ω = {ω1, ...,ωn} ∈S (AF), it holds that:

Lσ (AF)⊇

ℓ1∪ ...∪ℓn

∣∣∣∣∣∣ℓi ∈F a f
σ

AF ↓ωi ,ω
inp
i ,(

⋃
j∈{1,...,n} s.t. j ̸=i

ℓ j) ↓ω
inp
i
,ωK

i


A complete-compatible semantics is fully decomposable w.r.t. a partition selector S iff it is both top-

down and bottom-up decomposable w.r.t. S .

Note: For a semantics σ , to be top-down (resp. bottom-up, fully) decomposable is equivalent to be top-
down (resp. bottom-up, fully) decomposable w.r.t. the partition selector that produces all possible partitions
of an AF.

Let formally defined this partition selector:

Definition 25. SD-a f is the AF partition selector defined as follows:

∀AF ∈Φa f ,SD-a f (AF) is the set of all possible partitions of AF

Let introduce some useful notations.2 Let AF be an AF. We denote by:

• Pathsa f (AF) the set of all paths of AF

• Cyclesa f (AF) the set of all cycles of AF

• PEa f the path-equivalence relation over an AF (see Definition 128 on page 174), PEa f (AF) being the
path-equivalence relation over AF

• SCCa f the abbreviation for an SCC of AF (that is, an equivalence class of arguments under PEa f . See
Definition 129 on page 174)

• SCCSa f (AF) the set of all SCCs of AF .

Example 8. Let consider the AF in Figure 2.3 on page 18. We have:

• (e′,e, f) ∈ Pathsa f (AF)

• (f ,g, f) ∈Cyclesa f (AF)

2See also Section 16.2 on page 170 in the appendix

21

• SCCSa f (AF) = {{e′} ,{e} ,{d} ,{ f ,g} ,{h} ,{i}}

Definition 26 (SCCa f relation: ≼). Let AF = ⟨A,K⟩ be a AF, S ∈ SCCSa f (AF) and S′ ∈ SCCSa f (AF). We
define the relation ≼ as a binary relation between elements of SCCSa f (AF) as follows:

S ≼ S′ if and only if

(∃(e1, ...,en) ∈ Pathsa f (AF) s.t. e1 ∈ S and en ∈ S′)

or

S = S′

Example 9. Following Example 8, we have:

• {h}≼ {h}

• { f ,g}≼ {i}

• {i} ̸≼ {h}

Definition 27 (USCC partition selector). The USCC partition selector (denoted SUSCC) is the partition
selector such as for any AF AF = ⟨A,K⟩:

SUSCC(AF)

={
Ω| Ω is a partition of A and ∀S ∈ SCCSa f (AF),∃ωi ∈Ω s.t. ωi∩S ̸=∅ =⇒ S⊆ ωi

}
Given an AF AF = ⟨A,K⟩, we call “USCCa f ” a subset S⊆ A such that S is a union of SCCa f of AF .

Note: This partition selector has an interesting property: it does not break the SCCa f .

Example 10. Following Example 8, as an illustration, we have:

• {{e′,e, f ,g} ,{d} ,{h, i}} ∈SUSCC(AF)

• {{e′,e, f} ,{d,g} ,{h, i}} /∈SUSCC(AF)

Proposition 8. The semantics properties in Table 2.1 on the next page hold.

22 CHAPTER 2. SEMANTICS DECOMPOSABILITY

Complete Grounded Preferred Semi-stable Stable

Full decomposability ××× ××× ×××

Top-down decomposability ×××

Bottom-up decomposability ××× ××× ×××

Full decomposability w.r.t. SUSCC ×××

Top-down decomposability w.r.t. SUSCC ×××

Bottom-up decomposability w.r.t. SUSCC ×××

Table 2.1: AF Semantics decomposability properties

“ ” means that the semantics on the column has the property on the row.
“××× ” means that the semantics on the column does not have the property on the row.

Chapter 3

AF decision problems and complexities

Dung’s Argumentation Framework can be used in processes such as decision making, explanations and
auctions. To do so, several decision problems can be useful. In this chapter, classical AF decision problems
are defined (Section 3.1), then their complexities are given (Section 3.2 on the next page).

3.1 Definitions

Given the bijection between extension-based semantics and labelling-based semantics, and given that exten-
sions can be transformed into labellings (and vice versa) in polynomial time, AF decision problems can be
equivalently defined for the one or the other kind of semantics. We chose to define them using labelling-
based semantics. Here are the classical ones:

Definition 28 (Decision Problems in Abstract Argumentation).

• Credulous Acceptance Credσ : Given an AF AF = ⟨A,K⟩ and an argument a ∈ A. Is a labelled in in
some ℓ ∈ σ(AF)?

• Skeptical Acceptance Skepσ : Given an AF AF = ⟨A,K⟩ and an argument a ∈ A. Is a labelled in in
each ℓ ∈ σ(AF)?

• Verification of a labelling Verσ : Given an AF AF = ⟨A,K⟩ and a labelling ℓ. Is ℓ ∈ σ(AF)?

• Existence of a labelling Existsσ : Given an AF AF = ⟨A,K⟩. Is σ(AF) ̸=∅?

• Existence of a “non-empty” labelling Exists¬∅σ : Given an AF AF = ⟨A,K⟩. Does there exist a la-
belling ℓ ∈ σ(AF) s.t. in(ℓ) ̸=∅?

• Uniqueness of a solution Uniqueσ : Given an AF AF = ⟨A,K⟩. Is there a unique labelling ℓ∈ σ(AF),
i.e. σ(AF) = {ℓ}?

Example 11. Let σ be the preferred semantics. Let AF = ⟨A,K⟩ be the AF represented in Figure 3.1 on
the next page and ℓ ∈L (AF) be a labelling of it. Following Table 1.2 on page 14, we have two preferred

23

24 CHAPTER 3. AF DECISION PROBLEMS AND COMPLEXITIES

labellings (ℓ2 and ℓ4):

σ(AF) =



ℓ4 =


(a,in),(b,out),(c,out),(d,in),(e,out),

(f ,in),(g,out),(h,in),(i,out),(j,und),

(k,und),(l,und),(m,out),(n,in)

 ,

ℓ2 =


(a,in),(b,out),(c,out),(d,out),(e,in),

(f ,out),(g,in),(h,out),(i,in),(j,und),

(k,und),(l,und),(m,out),(n,in)




As a consequence, we have:

• Credσ (AF , l) = false

• Credσ (AF ,d) = true

• Skepσ (AF ,d) = false

• Skepσ (AF ,n) = true

• Verσ (AF ,ℓ) = true iff ℓ ∈
{
ℓ2,ℓ4

}
• Existsσ (AF) = true

• Exists¬∅σ (AF) = true

• Uniqueσ (AF) = false

a

b c

d

e

f

g

h i

j k

l

mn

Figure 3.1: The AF of Example 1 on page 7

3.2 Complexities
Table 3.1 on the following page gives the complexity class of the mentioned decision problems for the
grounded, complete, preferred, stable and semi-stable semantics. This table is the result of numerous works
(see [41, 40] for a synthesis of these works).1

1See Section 16.4 on page 178, in the appendix, for the mathematical notions related to the complexity classes.

3.2. COMPLEXITIES 25

Credσ Skepσ Verσ Existsσ Exists¬∅σ Uniqueσ

Grounded P-c P-c P-c trivial in L trivial

Complete NP-c P-c in L trivial NP-c coNP-c

Preferred NP-c ΠP
2-c coNP-c trivial NP-c coNP-c

Stable NP-c coNP-c in L NP-c NP-c DP-c

Semi-stable ΣP
2-c ΠP

2-c coNP-c trivial NP-c in ΘP
2

Table 3.1: Complexities of Dung’s Abstract Framework

Part III

Dung Argumentation Framework:
Contribution

26

27

Part presentation:
This part presents my contributions in the context of Dung’s Argumentation Framework. The main con-
tribution is a Distributed and Clustering-Based algorithm for the enumeration problem. This led to several
publications:

• An IRIT report [49], which served as a support for subsequent works: it details the concepts used and
provides the proofs that are not in some articles.

• An article in PRIMA 2019, the 22nd edition of the international conference of Principles and Practice
of Multi-Agent Systems [31], and for which I received a student grant.

• An article in OHAAI 2019, the first edition of the Online Handbook of Argumentation for Artificial
Intelligence [27]. OHAAI is a platform created in order that PhD students share with others their study
subject and the aim of their thesis.

• An article in JIAF 2020, the 4th edition of a French national conference so-called Journées d’Intelligen-
ce Artificielle Fondamentale [32], which is a second publication of my PRIMA 2019 article for the
French community.

The presentation of these contributions is organised as follows. Firstly, the AFDivider algorithm is pre-
sented and formally studied (Chapter 4 on the next page). Secondly, experiments with the AFDivider algo-
rithm are presented (Chapter 5 on page 51). These results led to the idea of a so-called Compact Enumeration
Representation, which is presented in a third step (Chapter 6 on page 64). To finish, related works are pre-
sented (Chapter 7 on page 70).

Chapter 4

AFDivider : presentation and formal
analysis

4.1 Motivation

Finding all the possible solutions of a semantics (extension-based or equivalently labelling-based) for a
given AF can be very time consuming. Many AF instances, particularly large,1 are too hard to be solved in
an acceptable amount of time, as shown by the results of the ICCMA argumentation solver competition.2

Formally, the so-called enumeration problem is a function problem defined as follows:

Definition 29 (Enumeration Problem). Given an AF AF = ⟨A,K⟩ and a semantics σ , compute the set σ(AF)
corresponding to the AF solutions.

The hardness of this problem is not relative to the current state of the art but rather to the intrinsic
theoretical complexity of the semantics that are tackled.3 Moreover, there exists a recent research field in
Artificial Intelligence called “Argument Mining” whose object of study is how to extract arguments from
natural language speeches, oral or written (see [62] for more information). When major advances in this
area will make available a lot of data for argumentation, this issue of solving time may become increasingly
critical. There is a need for heuristics, methods and algorithms efficient enough to tackle such issues and
make possible the use of automated argumentation models in the large-scale.

Enhancing the computational time of enumerating the solutions of an AF has been the object of study of
many works, resulting in the elaboration of several recent algorithms such as [1, 25, 52, 3] (see [26] for an
overview). During this thesis, I add my contribution to address this issue with the proposal of an algorithm,
the so-called: AFDivider.

The idea that led to this algorithm is that argumentation frameworks constructed from real data should
have a particular structure. Indeed, people have themes and goals while arguing. It is thus a reasonable

1This notion of largeness of an AF is not so simple to define. It is related to the fact that the computation of the solutions is complex
either because of the number of arguments, or of the number of interactions, or because of the structure of the AF.

2http://argumentationcompetition.org
3Notice that in the literature it is the decision problem versions of function problems that are studied rather than the actual function

problems. This is due to the convenience of Decision Problem Theory. The complexity of their decision versions is sufficient to give a
good idea of their hardness. See [41] for an overview.

28

http://argumentationcompetition.org

4.2. AFDIVIDER : A GENERIC ALGORITHM 29

conjecture to say that the AFs obtained from real argumentation are not random and that they have a rel-
atively low density of relations between arguments. As a matter of fact, it is very unlikely that, in some
argumentation, each presented argument attacks a large part of the other ones.

The AFDivider algorithm takes advantage of this sparsity4 of AF graphs. To do so, it uses methods
that have not yet been considered for this purpose (namely clustering methods used in an original way),
combined with techniques that have already been applied in other existing algorithms.

The next section presents formally the AFDivider algorithm and summarizes its main steps. Sections 4.2.1
to 4.2.4 on pages 30–42 detail each of these steps and illustrate them.

4.2 AFDivider : A Generic algorithm
First of all, let specify the kind of problems addressed. The AFDivider algorithm enumerates labelling-based
semantics. It has been designed for Dung original semantics: the complete, the stable and the preferred
semantics. Given that the grounded semantics can be computed in linear time and that it gives only one
labelling, computing it with the AFDivider is unappropriated.

Given an argumentation framework AF = ⟨A,K⟩ and a semantics σ ∈ {complete, stable, preferred},
the AFDivider algorithm, rather than building labellings that cover the whole AF (which could be time
consuming), computes the semantics labellings using a distributed and clustering-based method. Here are
its four major steps graphically represented in Figure 4.1:

1. A pretreatment on AF removes “trivial” parts of it.

2. Clusters in AF are identified.

3. The labellings under semantics σ in each of these clusters are computed in parallel.

4. The results of each cluster are reunified to get the labellings of AF .

a

b c

d

e

f

g

h i

j k

l

mn

Initial AF

d

e

f

g

h i

j k

l

mn

Hard AF

Step 2

d

e

f

g

h i

j k

l

mn

Components
d

e

f

g

h i

j k

l

mn

pClustersp

Step 3

Cluster
labellings

Step 4

Component
labellings

Hard AF
labellings

Initial AF
labellings

Step 1

Figure 4.1: AFDivider operating diagram

Algorithms 1 and 2 on the next page and on page 31 give the formal definition of the AFDivider algo-
rithm. They are said to be generic algorithms in the sense that:

4A graph is said to be sparse when its density is low.

30 CHAPTER 4. AFDIVIDER : PRESENTATION AND FORMAL ANALYSIS

• Any clustering method can be used to split the AF.

• Any sound and complete procedure that computes the semantics σ , can be used to compute the la-
bellings of the different clusters.

Algorithm 1: AFDivider algorithm.
Input: Let AF = ⟨A,K⟩ be an AF and σ be a semantics
Result: Lσ ∈ 2L (AF): the set of the σ -labellings of AF
Local variables:

• ℓ′gr: the grounded labelling restricted to the arguments labelled in and out

• CCSet: the set of connected components of AF hard
• ClustSet: the set of cluster structures of af i
• Lσ (af i): the set of all σ -labellings of af i

1 ℓ′gr← ComputeGroundedLabelling(AF)

2 CCSet← SplitConnectedComponents(AF ,ℓ′gr)

3 for all af i ∈CCSet do in parallel
4 ClustSet← ComputeClusters(af i)
5 Lσ (af i)← ComputeCompLabs(σ ,ClustSet)
6 Lσ ←∅
7 if ∄af i ∈CCSet s.t. Lσ (af i) =∅ then Lσ ←{ℓ

′
gr}×∏af i∈CCSet Lσ (af i)

8 return Lσ

Let now explain each step of the algorithm. As a running example, we will consider AF = ⟨A,K⟩, the
AF represented in Figure 4.2 on page 32, that has been used in Part II, and we will illustrate the algorithm
with the complete semantics.

4.2.1 Pretreatement: removing AF trivial parts
What we call the “trivial part” (or “fixed part”) of an AF is simply a part of it that has a unique and fixed
labelling that can be computed in linear time. As it will be seen in Section 4.2.3 on page 34, for each attack
between clusters, several cases have to be considered and this can be very time consuming. In order to avoid
this cost for attacks that are in the “trivial part”, we simply cut that part from the AF and, only after that,
look for clusters.

Given that we are interested in the complete, stable and preferred semantics, a good way to remove
that “trivial part” is to compute the grounded labelling of the AF. Indeed, all complete, stable and preferred
labellings include the grounded one, that is, the arguments labelled in or out in the grounded labelling are
labelled in the same way in all σ -labellings. Furthermore, the grounded labelling is computable in linear
time. This idea of preprocessing has been exploited in [24].

So, given an argumentation framework AF = ⟨A,K⟩, the AFDivider algorithm starts with computing the
grounded labelling of AF (Algorithm 1, line 1).

Note: The function ComputeGroundedLabelling(AF) returns a partial labelling of AF in which the
arguments are labelled in or out. In the following we are going to use ℓgr for the grounded labelling
and ℓ′gr for the labelling returned by ComputeGroundedLabelling(AF). That is, und-labelled arguments
according to the grounded semantics do not belong to ℓ′gr. We have: ℓ′gr = ℓgr ↓(in(ℓgr)∪out(ℓgr))

.

4.2. AFDIVIDER : A GENERIC ALGORITHM 31

Algorithm 2: ComputeCompLabs algorithm.
Input: Let ClustSet be a set of cluster structures for a component af , σ be a semantics
Result: Lσ ∈ 2L (af): the set of the σ -labellings of af
Local variables:

• κ j: a cluster structure
• L

κ j
σ : the set of all σ -labellings of κ j

• Pκ j : the set of configurations corresponding to the σ -labellings of κ j
• P: the set of all reunified labelling profiles

1 for all κ j ∈ClustSet do in parallel
2 L

κ j
σ ← ComputeClustLabs(σ ,κ j)

3 Pκ j ← IdentifyConfigs(L
κ j

σ ,κ j)

4 Lσ =∅
5 P = ReunifyCompConfigs(

⋃
κ j∈ClustSet P

κ j ,ClustSet)
6 for all p ∈P do

7 Lσ ←Lσ ∪

∏
ξ∈p
{ℓ|ℓ ∈ ProfileLabellings(ξ ,

⋃
κ j∈ClustSet

L
κ j

σ)}


8 if σ = pr then Lσ ←{ℓ|ℓ ∈Lσ s.t. ∄ℓ′ ∈Lσ s.t. in (ℓ)⊂ in (ℓ′)}
9 return Lσ

Once the grounded labelling is computed, we consider a restriction AF hard of AF to those arguments
that are labelled und in the grounded labelling:

AF hard = AF ↓
und (ℓgr)

AF hard may possibly be a disconnected graph. We take advantage of that potential property in or-
der to enhance the parallel computing as it will be explained in the following subsections. The function
SplitConnectedComponents(AF ,ℓ′gr) thus split AF into disjoint sub-AFs obtained after removing the
arguments labelled in or out in the grounded labelling (Algorithm 1, line 2). The CCSet variable is the set
of the computed connected components.

Given that there are no relations between them, the identification of clusters inside them and the la-
belling computation of those connected components (Steps 2 and 3) can be made in a simultaneous way
(Algorithm 1, line 3) according to the chosen semantics.

Note: We refer to AF hard in order to facilitate the algorithm explanation however AF hard does not appear
as a concrete data structure entity in the algorithm. When removing the trivial part, the rest of the AF is
directly split following the connected components.

Example 12. Let consider AF = ⟨A,K⟩, the AF represented in Figure 4.2 on the next page. Its grounded
labelling is as follows: ℓgr(a) = in, ℓgr(b) = ℓgr(c) = out and ∀x ∈ A\{a,b,c}, ℓgr(x) = und. Figure 4.3
on page 33 shows an illustration of it: the background color is white for the arguments labelled in, black
for the labelled out and grey for the labelled und. We thus have: ℓ′gr = {(a,in),(b,out),(c,out)}.

Given this trivial part, AF hard = AF ↓{a|a∈A,ℓgr(a)=und} is represented in Figure 4.4 on page 34.
There are two connected components in AF hard . The algorithm then splits AF hard into two distinct AFs

that we will call af 1 and af 2, as represented in Figure 4.5 on page 35.

32 CHAPTER 4. AFDIVIDER : PRESENTATION AND FORMAL ANALYSIS

a

b c

d

e

f

g

h i

j k

l

mn

Figure 4.2: AF for the running example

4.2.2 Identifying Clusters
For each of these connected components, a clustering is made (Algorithm 1, line 4) using any clustering
method partitioning the AF (even a random partition method). In our experiments, we analyse three cluster-
ing methods (see Section 5.2).

We define a data structure, so called “cluster structure”, to represent each cluster corresponding to the
computed partition. These cluster structures will be particularly useful for proving the soundness and com-
pleteness of our algorithm (See Section 4.3 on page 47).

Definition 30. (Cluster structure). Let AF = ⟨A,K⟩ be an AF, Ω be the partition of A, ω be an element of
Ω (i.e. a set of arguments). κ =

〈
af , I,O,B

〉
is a cluster structure defined as follows:

af = AF ↓ω

I = {(a,b)|(a,b) ∈ K,b ∈ ω and a /∈ ω}
O = {(a,b)|(a,b) ∈ K,b /∈ ω and a ∈ ω}
B = {a ∈ A|(a,b) ∈ O or (b,a) ∈ I}

Note: “I” means “inward attacks”, “O” means “outward attacks” and “B” means “border arguments”.

Example 13. Let suppose that the partition computed by the chosen clustering method produces the follow-
ing partions:

• For af 1: {{d,e, f ,g} ,{h, i}}.

• For af 2: {{ j,k, l} ,{m,n}}.

These partitions are illustrated in Figure 4.6 on page 36. Then a cluster structure is created in order to
manipulate each cluster. Formally they are defined as follows:

• κ1 =
〈

af 1.1, I1,O1,B1.1
〉

with:

4.2. AFDIVIDER : A GENERIC ALGORITHM 33

a

b c

d

e

f

g

h i

j k

l

mn

Figure 4.3: Grounded labelling

– af 1.1 = ⟨A1,K1⟩, with A1 = {d,e, f ,g} and K1 = {(d,e),(e,d),(f ,g),(g, f),(e, f),(d,g)}
– I1 =∅
– O1 = {(g,h)}
– B1 = {g}

• κ2 =
〈

af 1.2, I2,O2,B2
〉

with:

– af 1.2 = ⟨A2,K2⟩, with A2 = {h, i} and K2 = {(h, i)}
– I2 = {(g,h)}
– O2 =∅
– B2 = {h}

• κ3 =
〈

af 1.3, I3,O3,B3
〉

with:

– af 1.3 = ⟨A3,K3⟩, with A3 = { j,k, l} and K3 = {(j,k),(k, l),(l, j)}
– I3 =∅
– O3 = {(l,m)}
– B3 = {l}

• κ3 =
〈

af 1.3, I3,O3,B3
〉

with:

– af 1.4 = ⟨A4,K4⟩, with A4 = {m,n} and K4 = {(m,n),(n,m)}
– I4 = {(l,m)}
– O4 =∅
– B4 = {m}

Figure 4.7 on page 37 illustrates them.

34 CHAPTER 4. AFDIVIDER : PRESENTATION AND FORMAL ANALYSIS

d

e

f

g

h i

j k

l

mn

Figure 4.4: AF hard

4.2.3 Computing the labellings
Consider now ComputeCompLabs algorithm (Algorithm 2) that computes the component labellings in a
distributed way (Algorithm 1, line 5), relying on the clustering made. The σ -labellings of each cluster
are computed simultaneously (Algorithm 2, line 1). Unlike the case of connected components used in
Algorithm 1, there exist attacks between clusters. In order to compute all the possible σ -labellings of a
given cluster, every case concerning its inward attacks (attacks whose target is in the current cluster but the
source is from another cluster) has to be considered. Given that the sources of an inward attack could be
labelled in , out or und in their own cluster, the σ -labellings of the current cluster have to be computed for
all the labelling combinations of inward attack sources.

Note: The number of cases to consider is 3n, with n being the number of inter cluster attack sources. When
choosing a clustering, there is thus a threshold between the size of the clusters and the number of edges cut
to consider as it effects the overall solving time.

We call “context” a labelling of the cluster inward attack sources. It is formally defined as follows:

Definition 31. (Context). Let κ =
〈

af , I,O,B
〉

be a cluster structure. A context µ of κ is a labelling of the
inward attack sources of κ , i.e. {a|(a,b) ∈ I}.

Note: In the worst case there will be 3|I| contexts. The exact number of contexts is 3|{a|(a,b)∈I}|.

Each context induces an AF. Let κ =
〈

af , I,O,B
〉

be a cluster structure and µ be a context of κ . We can
define af ′, the induced AF of κ for a particular context µ , using the following ideas:

1. af ′ receives a copy of af

2. ∀s ∈ {s|(s, t) ∈ I and µ(s) = in } ,∀t ∈ {t|(s, t) ∈ I}, t is removed from af ′ with all the attacks that
have t as endpoint.

3. ∀s ∈ {s|(s, t) ∈ I and µ(s) = und } ,∀t ∈ {t|(s, t) ∈ I and ∄(s′, t) ∈ I s.t. µ(s′) = in }, the attack (t, t)
is added to af ′.

4.2. AFDIVIDER : A GENERIC ALGORITHM 35

d

e

f

g

h i

(a) Component 1: af 1

j k

l

mn

(b) Component 2: af 2

Figure 4.5: The connected components of AF hard

Note: If µ(s) = out there is nothing to do as the attack would have no effect.

Formally induced AF are defined as follows:

Definition 32. (Induced AF). Let κ =
〈

af , I,O,B
〉

be a cluster structure with af = ⟨A,K⟩ and let µ be a
context of κ . The induced AF af ′ of κ under the context µ is defined as following:

af ′ =
〈
A′,K′

〉
With:

• A′ = A\D

• D = {a|a ∈ A and (s,a) ∈ I and s ∈ in(µ)}

• K′ = (K \{(s, t)|s ∈ D or t ∈ D})∪{(a,a)|a ∈ A and (s,a) ∈ I and s ∈ und(µ)}

Example 14. Following Example 13 on page 33, κ2 has three possible contexts: µ1 = {(g,out)}, µ2 =
{(g,in)} and µ3 = {(g,und)}. Figure 4.8 on page 38 represents the three AFs induced from κ2 under those
contexts.

At this step, the computation of the labellings can be done in parallel for each induced AF, using any
complete and sound procedure for the semantics σ . This is done by the function ComputeClustLabs

(Algorithm 2, line 2). These labellings are so-called “Induced labellings”.

Definition 33. (Induced labellings). Let κ =
〈

af , I,O,B
〉

be a cluster structure, with af = ⟨A,K⟩, and let µ

be a context of κ . Let af ′ be the induced AF of κ under the context µ , D be the set of arguments such that
D = {a|a ∈ A and (s,a) ∈ I and s ∈ in(µ)} and ℓD be the labelling defined as: {(a,out)|a ∈D}. The set of
induced labellings L

µ(κ)
σ of κ under the context µ is defined as following:

L
µ(κ)

σ = {ℓ∪ℓD|ℓ ∈L (af ′)}

36 CHAPTER 4. AFDIVIDER : PRESENTATION AND FORMAL ANALYSIS

d

e

f

g

h i

(a) Clusters of af 1

j k

l

mn

(b) Clusters of af 2

Figure 4.6: Cluster partitions

Once that, for all clusters, the ComputeClustLabs function has computed the σ -labellings for all the
possible contexts, the σ -labellings are grouped according to their so-called “configurations” (Algorithm 2,
line 3) to prepare the reunification5 process. Each induced labelling ℓ is associated to a configuration ξ . This
configuration expresses under which conditions an induced labelling, from a given cluster, can be reunified
with another one from a neighbour cluster. This configuration is a 5-value labelling on the cluster border
arguments (i.e. ∀a ∈ B). Configuration are formally defined as follows:

Definition 34. (Configuration ξ). Let κ =
〈

af , I,O,B
〉

be a cluster structure, with af = ⟨A,K⟩, let µ be

a context of κ , and ℓ ∈L
µ(κ)

σ be a computed labelling of κ under µ . Given ℓ, a configuration is a total
function ξ : B→{in,out,iout,und,iund} such that:

ξ : a ∈ B 7→



in if ℓ(a) = in

out if ℓ(a) = out and ∃(b,a) ∈ K s.t. ℓ(b) = in

iout if ℓ(a) = out and ∄(b,a) ∈ K s.t. ℓ(b) = in

und if ℓ(a) = und and ∄(b,a) ∈ I s.t. µ(b) = und

iund if ℓ(a) = und and ∃(b,a) ∈ I s.t. µ(b) = und

In words, for an argument a:

• ξ (a) = in means that a is successfully attacked neither from outside nor from inside the cluster. So
it is legally in .

• ξ (a) = out means a is legally out from cluster point of view.

• ξ (a) = iout means that a is illegally out from the cluster point of view.

5This process is later described in details. For the moment, we will simply say that it produces valid labellings.

4.2. AFDIVIDER : A GENERIC ALGORITHM 37

d

e

f

g

(a) κ1: first cluster of af 1

j k

l

(b) κ3: first cluster of af 2

h i

(c) κ2: second cluster of
af 1

mn

(d) κ4: second cluster of
af 2

Figure 4.7: Cluster structures of the components

• ξ (a) = und means that a is is legally und from cluster point of view.

• ξ (a) = iund means that a is illegally und from cluster point of view.

Note: We do not need a value to represent the fact that an argument is illegaly in because if a border
argument is in then all its attackers must be out. As defined in Section 4.2.4 on page 42, a simple constraint
on endpoint attack labels is sufficient to ensure only such reunifications.

This is not the case for the values out and und. Let illustrate that fact. Consider the cluster structure
shown in Figure 4.9 on the next page. Let say that because of a certain context µ , a1 is labelled out. From
the cluster point of view a3 could be labelled in, out or und, and the same for a4. Indeed, all these endpoint
attack labels couples are valid. An extra constraint is needed to ensure that at least one between a3 and a4
is labelled in. That why we need to differentiate out and iout.

The same reasoning shows that we also need two undecided states (und and iund).

Note: When constructing a configuration ξ for a given labelling ℓ ∈L
µ(κ)

σ , the distinction between the
labels out and iout relies on ℓ itself. That is, for an argument a such that ℓ(a) = out, the value of ξ (a)
depends on the fact that there exists or not an attacker b ∈ A of a such that ℓ(b) = in.

The distinction between the labels und and iund rather relies on the labelling of external attackers in I.
That is, for an argument a such that ℓ(a) = und, the value of ξ (a) depends on the fact that there exists or
not an attack (b,a) ∈ I such that ℓ(b) = und.

38 CHAPTER 4. AFDIVIDER : PRESENTATION AND FORMAL ANALYSIS

h i

(a) µ1: g is labelled out

i

(b) µ2: g is labelled in

h i

(c) µ3: g is labelled und

Figure 4.8: AFs induced from κ2

a3a4

a1a2

Figure 4.9: Example of the interest of the 5-value labelling.

To explain why a different type of definition have been adopted to distinguish und from iund, let consider
the cluster structure κ =

〈
af , I,O,B

〉
illustrated Figure 4.10 on the following page and its two induced AFs.

We have: L
µ1(κ)
pr = {{(b,und),(c,und)}} and L

µ2(κ)
pr = {{(b,in),(c,out)} ,{(b,out),(c,in)}}. Let

consider the AF induced from κ under µ1 = {(a,und)} and the labelling ℓ = {(b,und),(c,und)}. While
establishing the configuration ξ associated to ℓ, we can observe that although b has an undecided internal
attacker, namely c, it is not sufficient to say that b is legally labelled und from the cluster point of view, and
so that ξ (b) = und. To prove this, let consider the AF induced from κ under µ2 = {(a,out)}. This latter AF
does not admit a preferred labelling such that b is labelled und. As a consequence, the fact that ℓ(b) = und

is due to the fact that µ1(a) = und.
Following this observation, the configuration of a labelling has been defined as stated in Definition 34

on page 36.

Example 15. Here is the result according to the complete semantics for our running example (See Figure 4.7
on the previous page):

• For κ1 we have only one context µ
κ1
1 = ∅ (since I = ∅) that gives the labellings and their induced

configurations shown in Table 4.1 on the following page.

4.2. AFDIVIDER : A GENERIC ALGORITHM 39

b c

a

(a) Cluster κ

b c

(b) AF induced from κ under µ1 =
{(a,und)}

b c

(c) AF induced from κ

under µ2 = {(a,out)}

Figure 4.10: Example for the distinction between und and iund

ℓκ1
1 ξ

κ1
1 ℓκ1

2 ξ
κ1
2 ℓκ1

3 ξ
κ1
3

d out in und

e in out und

f out in und

g in in out out und und

Table 4.1: κ1 labellings and configurations under µ
κ1
1 =∅.

• For κ2 we have three contexts: µ
κ2
1 = {(g,out)}, µ

κ2
2 = {(g,in)} and µ

κ2
3 = {(g,und)}. Table 4.2 on

the next page gives their corresponding labellings and induced configurations.

• For κ3 we have only one context µ
κ3
1 = ∅ (since I = ∅) that gives the labellings and their induced

configurations shown in Table 4.3 on the next page.

• For κ4 we have three contexts: µ
κ4
1 = {(l,in)}, µ

κ4
2 = {(l,out)} and µ

κ4
3 = {(l,und)}. Table 4.4 on

page 41 gives their corresponding labellings and induced configurations.

Note: ξ
κ4
1 (m) ̸= iout because ℓκ4

1 (n) = in and the attack (n,m) exists in κ4. ξ
κ4
4 (m) ̸= iund

because ℓκ4
4 (n) = und and the attack (n,m) exists in κ4.

After that we have computed the different labellings and their corresponding configuration, we keep only
the “distinct labellings” with their “merge configurations”.

Definition 35. (Distinct labelling set). Let κ =
〈

af , I,O,B
〉

be a cluster, let L κ = {ℓκ

1 , ...,ℓ
κ

n} be the set of
labellings computed from κ , and L κ

D be the distinct labelling set of κ .
L κ

D is defined as following:

L κ
D = {ℓκ

i |ℓ
κ

i ∈L κ and ∄ℓκ

j ∈L κ s.t. ℓκ

j = ℓκ

i and j < i}

40 CHAPTER 4. AFDIVIDER : PRESENTATION AND FORMAL ANALYSIS

(a) Under
µ

κ2
1 = {(g,out)}

ℓκ2
1 ξ

κ2
1

h in in

i out

(b) Under µ
κ2
2 = {(g,in)}

ℓκ2
2 ξ

κ2
2

h out iout

i in

(c) Under µ
κ2
3 =

{(g,und)}

ℓκ2
3 ξ

κ2
3

h und iund

i und

Table 4.2: Labellings and configurations of κ2 (three contexts).

ℓκ3
1 ξ

κ3
1

j und

k und

l und und

Table 4.3: κ3 labellings and configurations under µ
κ3
1 =∅.

Example 16. For κ4, we have: L κ4
D = {ℓκ4

1 ,ℓκ4
2 ,ℓκ4

4 }.

Note: It is possible for a labelling to have several and different configurations. These configurations can
only differ on und and iund labels. The following example illustrates that fact.

Example 17. Let consider Figure 4.11. There is no case in which the argument a can be labelled in.
Let thus consider only the contexts of the right cluster that can possibly lead to valid reunified labellings,
which are: {(a,out)} and {(a,und)}. In both cases, we have a unique labelling {(b,und)}. Nevertheless,
considering the configurations, we obtain two distinct ones. For the first context, we have: {(b,und)} using
the forth rule of the configuration definition (Definition 34 on page 36) and {(b,iund)} using the last rule.

d

c

a b

Figure 4.11: Illustration of merge configuration

Given that it is possible for a labelling to have several and different configurations, we introduce the
notion of “merge configuration”.

4.2. AFDIVIDER : A GENERIC ALGORITHM 41

(a) Under µ
κ4
1 = {(l,in)}

ℓκ4
1 ξ

κ4
1

m out out

n in

(b) Under µ
κ4
2 = {(l,out)}

ℓκ4
2 ξ

κ4
2 ℓκ4

3 ξ
κ4
3 ℓκ4

4 ξ
κ4
4

m in in out out und und

n out in und

(c) Under µ
κ4
3 = {(l,und)}

ℓκ4
5 ξ

κ4
5 ℓκ4

6 ξ
κ4
6

m out out und iund

n in und

Table 4.4: κ4 labellings and configurations (three contexts).

Definition 36. (Merge configuration). Let κ =
〈

af , I,O,B
〉

be a cluster, let L κ = {ℓκ

1 , ...,ℓ
κ

n} be the set
of labellings and C κ = {ξ κ

1 , ...,ξ
κ
n } the set of their corresponding configurations computed from κ , let

ℓκ

i ∈L κ be a labelling and Cℓκ
i
= {ξ κ

j |ξ κ
j ∈ C κ s.t. ℓκ

j = ℓκ

i } be the set of all its possible configurations.

Let ξ ∈ Cℓκ
i

be a possible configuration of ℓκ

i .

The merge configuration ξℓκ
i

of ℓκ

i is defined as follows:

∀a ∈ B,ξℓκ
i
(a) =



in if ℓκ

i (a) = in

out if ℓκ

i (a) = out and ∃(b,a) ∈ af s.t. ℓ(b) = in

iout if ℓκ

i (a) = out and ∄(b,a) ∈ af s.t. ℓ(b) = in

und if ℓκ

i (a) = und and ∃ξ ∈ Cℓκ
i

s.t. ξ (a) = und

iund otherwise

The merge configuration as defined is the most flexible configuration of a given labelling. It ensures all
the requirements for a good reunification without adding unwanted restrictions.

Example 18. This step will affect only the cluster κ4 as ℓκ4
1 = ℓκ4

3 = ℓκ4
5 and ℓκ4

4 = ℓκ4
6 . The new set of

labelling/configuration of κ4 is shown on Table 4.5 on the next page.

We can notice after this filtering and merging process that:

• One context can give several labellings.

• From a labelling is induced one and only one merge configuration.

• Several labellings can induce the same merge configuration (See Example 19 on the next page).

42 CHAPTER 4. AFDIVIDER : PRESENTATION AND FORMAL ANALYSIS

ℓ1
′κ4 ξ

′κ4
1 ℓ2

′κ4 ξ
′κ4
2 ℓ3

′κ4 ξ
′κ4
3

m out out in in und und

n in out und

Table 4.5: κ4 labellings and configurations.

d

c

a b

Figure 4.12: Same merge configuration for different labellings

At this step, everything is ready to start the reunification process.

Example 19. Let κ be the cluster structure of left illustrated in Figure 4.12. κ has only one context: µ =∅
since it does not have inward attacks. κ has thus three complete labellings: ℓ1 = {(d,in),(c,out),(a,out)},
ℓ2 = {(d,out),(c,in),(a,out)} and ℓ3 = {(d,und),(c,und),(a,und)}. You can notice that both ℓ1 and ℓ2
have the same merge configuration which is ξ = {(a,out)}.

4.2.4 Reunifying the results
The labelling reunifying process is made in two steps: firstly, the reunification of the component labellings
(i.e. the reunification of their cluster labellings together) and secondly, the reunification of the whole AF
labellings (i.e. the reunification of its component labellings together). The first step is done in Algorithm 2
on page 31, lines 5 to 8. The second one is in Algorithm 1 on page 30, line 7. Let detail them.

4.2.4.1 Component labelling reunification

In [49, 31], the first version of our algorithm, the reunification was directed made on the cluster labellings.
We, later, found out that this could be enhanced if we reunify the labelling configurations instead. Indeed,
this deals with much less elements as several cluster labellings could have the same configuration. We
introduced so the notion of “reunified labelling profiles”.

Definition 37. (Reunified labelling profiles). Let af = ⟨A,K⟩ be an AF and {κ1, ...,κn} be the set of cluster
structures corresponding to the clustering of af . Let {L κ1

σ , ...,L κn
σ } be the set of distinct labelling sets

of each cluster of af and {ξ κ1 , ...,ξ κn} be the set of their corresponding merge configuration sets. Let
{I1, ..., In} be the set of sets of inward attacks of the different clusters and I =

⋃n
i=1 Ii be the union of those

sets. Let {B1, ...,Bn} be the set of the sets of their border arguments and B =
⋃n

i=1 Bi be the union of those
sets. Let {ξ1, ...,ξn} be a set of configurations such that, for all i ∈ {1, ...,n}, ξi ∈ ξ κi . Let Ξ = (

⋃n
i=1 ξi)

4.2. AFDIVIDER : A GENERIC ALGORITHM 43

be the union of these configurations. p = {ξ1, ...,ξn} is a reunified labelling profile (or equivalently, the
configurations ξ1, ...,ξn are said to be compatible together) if and only if:

∀a ∈ B,



Ξ(a) = iout =⇒ ∃(b,a) ∈ I s.t. Ξ(b) = in

Ξ(a) = iund =⇒

 ∃(b,a) ∈ I s.t. Ξ(b) = und or Ξ(b) = iund

and
∄(b,a) ∈ I s.t. Ξ(b) = in


Ξ(a) = in =⇒ ∀(b,a) ∈ I,Ξ(b) = out or Ξ(b) = iout

Ξ(a) = und =⇒ ∀(b,a) ∈ I,Ξ(b) ̸= in

Note: Distinct reunified labellings can have the same profile, but a labelling only has one profile.

This notion defined, let continue the explanation of the AFDivider algorithm.

At this step, the ReunifyCompConfigs function is called (Algorithm 2, line 5) in order to reunify
the compatible configurations of the cluster labellings together. To do that, the ReunifyCompConfigs

transforms that reunifying problem into a constraint satisfaction problem (CSP).

Note: We chose to use this method because in CSP modeling each variable can have an arbitrary value
domain and constraints can have any arity and be of any nature. Those two properties make CSP modeling
very straightforward and easy to automatise. Furthermore, there are a lot of CSP solvers available.

This being said, here are the four steps of the transformation process:

1. For each cluster κi, a variable Vκi is created. For each of them, the domain is the set of their computed
labelling merge configurations ξ κi .

2. For each border argument a j, a variable Va j is created with a domain corresponding to their possible
labels, i.e. {in ,out ,und }.

3. For each inter-cluster attack (a,b), a constraint is added with the following set of valid tuples:
{(a = in ,b = out),(a = out ,b = in),(a = out ,b = out),
(a = out ,b = und),(a = und ,b = out),(a = und ,b = und)}

Let κi =
〈

af , I,O,B
〉

be a cluster structure and ℓ be one of its induced labellings. Let ξ
κi
ℓ

be a value
of the domain of Vκi corresponding to the merge configuration of ℓ.

4. For each ξ
κi
ℓ

in Vκi domain:

(a) Constraints are added to map the merge configuration with the argument labels. The constraints
are defined as following:

(Vκi = ξ
κi
ℓ
∧ξ

κi
ℓ
(a j) = in) =⇒ Va j = in

∀a j ∈ B, (Vκi = ξ
κi
ℓ
∧ (ξ κi

ℓ
(a j) = out ∨ξ

κi
ℓ
(a j) = iout)) =⇒ Va j = out

(Vκi = ξ
κi
ℓ
∧ (ξ κi

ℓ
(a j) = und ∨ξ

κi
ℓ
(a j) = iund)) =⇒ Va j = und

(b) Constraints are added for all arguments labelled iout in ξ
κi
ℓ

:

∀a j ∈ {a|ξ κi
ℓ
(a) = iout }, Vκi = ξ

κi
ℓ

=⇒ ∃(ak,a j) ∈ I s.t. Vak = in

44 CHAPTER 4. AFDIVIDER : PRESENTATION AND FORMAL ANALYSIS

(c) Constraint are added for all arguments labelled iund in ξ
κi
ℓ

:

∀a j ∈ {a|ξ κi
ℓ
(a) = iund }, Vκi = ξ

κi
ℓ

=⇒ ∃(ak,a j) ∈ I s.t. Vak = und

Note: The constraints have to be seen as declarative rules. For example the rule: Vκi = ξ
κi
ℓ

=⇒ ∃(ak,a j)∈
I s.t. Vak = und as to be understand as “If the variable Vκi has the value ξ

κi
ℓ

, there must be a variable
corresponding to one of the attackers of a j that takes the value und”.

The solutions of that CSP modelling are the reunified labelling profiles (corresponding to values of the
Vκi variables).

Example 20. Let illustrate this with the CSP modelisation for the reunification of af 1. Let Ψaf 1
= ⟨X ,D,C⟩

be that modelling. Ψaf 1
is defined as following:

• X = {Vκ1 ,Vκ2 ,Vg,Vh}

• D =



D(Vκ1) = {ξ
κ1
1 ,ξ κ1

2 ,ξ κ1
3 },

D(Vκ2) = {ξ
κ2
1 ,ξ κ2

2 ,ξ κ2
3 },

D(Vg) = {in,out,und},

D(Vh) = {in,out,und}


• C = {c1,c2,c3,c4,c5} is a set of constraints, with

– c1 being the constraint that expresses the attack relation from g to h, corresponding to Step 3,

– c2 being the constraint expressing the fact that the merge configurations of κ1 impose a label on
each of its border arguments (i.e. on g), corresponding to Step 4a,

– c3 being the constraint expressing the fact that the merge configurations of κ2 impose a label on
each of its border arguments (i.e. on h), corresponding to Step 4a,

– c4 being the constraint expressing the fact that ξ
κ2
2 can only be reunified with a merge configu-

ration of κ1 in which g is labelled in, corresponding to Step 4b (see Table 4.1 on page 39 and
Table 4.2 on page 40),

– c5 being the constraint expressing the fact that ξ
κ2
3 can only be reunified with a merge configu-

ration of κ1 in which g is labelled und, corresponding to Step 4c (see Table 4.1 on page 39 and
Table 4.2 on page 40).

Note: c4 and c5 are constraints only for precise merge configurations of κ2. c4 and c5 must allow g
being labelled with any label if the reunification is about another merge configuration of κ2.

c1 accepts only the following tuples:

– (Vg = in,Vh = out)

– (Vg = out,Vh = in)

– (Vg = out,Vh = out)

– (Vg = out,Vh = und)

4.2. AFDIVIDER : A GENERIC ALGORITHM 45

– (Vg = und,Vh = out)

– (Vg = und,Vh = und)

c2 accepts only the following tuples (see Table 4.1 on page 39):

– (Vκ1 = ξ
κ1
1 ,Vg = in)

– (Vκ1 = ξ
κ1
2 ,Vg = out)

– (Vκ1 = ξ
κ1
3 ,Vg = und)

c3 accepts only the following tuples (see Table 4.2 on page 40):6

– (Vκ2 = ξ
κ2
1 ,Vh = in)

– (Vκ2 = ξ
κ2
2 ,Vh = out)

– (Vκ2 = ξ
κ2
3 ,Vh = und)

c4 accepts only the following tuples:

– (Vκ2 = ξ
κ2
2 ,Vg = in)

– (Vκ2 = ξ
κ2
3 ,Vg = in)

– (Vκ2 = ξ
κ2
3 ,Vg = out)

– (Vκ2 = ξ
κ2
3 ,Vg = und)

– (Vκ2 = ξ
κ2
1 ,Vg = in)

– (Vκ2 = ξ
κ2
1 ,Vg = out)

– (Vκ2 = ξ
κ2
1 ,Vg = und)

c5 accepts only the following tuples:

– (Vκ2 = ξ
κ2
3 ,Vg = und)

– (Vκ2 = ξ
κ2
2 ,Vg = in)

– (Vκ2 = ξ
κ2
2 ,Vg = out)

– (Vκ2 = ξ
κ2
2 ,Vg = und)

– (Vκ2 = ξ
κ2
1 ,Vg = in)

– (Vκ2 = ξ
κ2
1 ,Vg = out)

– (Vκ2 = ξ
κ2
1 ,Vg = und)

Note: Both c4 and c5 have to be respected. As a consequence, the valid tuples concerning Vκ2 and Vg are
the ones which are both in c4’s valid tuples and c5’s valid tuples. So the second and third tuples accepted by
c4 and the third and fourth tuples accepted by c5 will be useless.

The solutions for af 1 are:

6Notice that in the CSP modeling the border arguments can only be labelled in , out or und . The potential illegal aspect of
labellings (that is, labels iout and iund , as it can be seen in Table 4.2 on page 40) is captured by the constraints added in Steps 4b
and 4c. In this example, it corresponds to constraints c4 and c5.

46 CHAPTER 4. AFDIVIDER : PRESENTATION AND FORMAL ANALYSIS

•
{

ξ
κ1
1 = {(g,in)} ,ξ κ2

2 = {(h,iout)}
}

•
{

ξ
κ1
2 = {(g,out)} ,ξ κ2

1 = {(h,in)}
}

•
{

ξ
κ1
3 = {(g,und)} ,ξ κ2

3 = {(h,iund)}
}

Using the same process we obtain the following results for af 2:

•
{

ξ
κ3
1 = {(l,und)} ,ξ ′κ4

1 = {(m,out)}
}

•
{

ξ
κ3
1 = {(l,und)} ,ξ ′κ4

3 = {(m,und)}
}

For each of the reunified labelling profile computed (Algorithm 2, line 6 and 7), labelling parts corre-
sponding to the configurations forming the reunified profile are reunified together.

Example 21. Following Example 20, Table 4.6 shows the complete labellings obtained for af 1 and Table 4.7
shows the ones for af 2.

ℓ1.1 ℓ1.2 ℓ1.3

d out in und

e in out und

f out in und

g in out und

h out in und

i in out und

Table 4.6: Complete labellings

ℓ2.1 ℓ2.2

j und und

k und und

l und und

m und out

n und in

Table 4.7: Complete labellings

4.3. AFDIVIDER PROPERTIES: SOUNDNESS AND COMPLETENESS 47

A special step has to be done for the preferred semantics as this reunifying process does not ensure
the maximality (w.r.t. ⊆) of the set of in -labelled arguments (so not all of the labellings produced in
Algorithm 2, line 7 are preferred ones). Indeed, the preferred semantics is not bottom-up decomposable
(see Proposition 8 on page 21). A maximality check is done (Algorithm 2, line 8) in order to keep only the
wanted labellings.

Note: This maximality check has a complexity of Θ(n2), n being the number of component labelling pro-
duced by the algorithm. As a consequence, if n is large, it could be very time consuming. To enhance this
check, an optimization have been made: check only the reunified labellings whose reunified profile labelling
contains an und-labelled argument. Indeed, the preferred semantics is top-down decomposable. As all the
cluster labellings are maximal w.r.t. their corresponding context, the only way for a reunified labelling to
not be maximal is to have an und-labelled argument at the cluster border. Experimental analysis show the
interest of this optimization. See Section 5.3.4 on page 58.

Note: When computing the preferred semantics with a partition selector that does not cut SCCa f , the
maximality check is not necessary. Indeed, any reunified component labelling will be maximal. See the proof
of Proposition 11 for more details.

Note: When computing the stable semantics, the set of labellings Lσ returned by ComputeCompLabs may
be empty. It happens when one of the component clusters has no stable labelling.

4.2.4.2 Whole AF labelling reunification

Now that all the component labellings are built, we can reunify the labellings of the whole AF. Indeed,
given that ℓgr is a fixed part of all σ -labellings of AF and that all the connected components are completely
independent, the building of the σ -labellings of the whole AF is made with a simple Cartesian product
(Algorithm 1, line 7) between the labellings of all the components and the grounded one. If one of the
components has no labelling then the whole AF has no labelling (so Lσ =∅).

Example 22. To finish our illustration, following Example 21 on the previous page and following Exam-
ple 12 on page 31, the complete labellings of AF are shown in Table 4.8 on the next page.

4.3 AFDivider properties: soundness and completeness

In this section we give properties ensuring that the AFDivider algorithm works well. More precisely, we
ensure that it gives all the expected labellings for the complete, stable and preferred semantics; this is the
notion of completeness, and that the algorithm gives only good labellings for the semantics complete, stable
and preferred ; this is the notion of soundness.

In [9], Baroni et al. introduce several notions and proved semantics properties that are useful to prove
that our proposed algorithms are sound and complete. They are presented in Chapter 2 on page 16, the most
important being fully decomposable and top-down decomposable semantics properties.

A semantics will be a fully decomposable or top-down decomposable semantics if for any AF and any
partition of this AF, it is possible to reconstruct all the labellings of the whole AF by combining the labellings
(under the same semantic) of the partition parts.

To be more precise, the difference between a top-down decomposable semantics and a fully decompos-
able one is that for a top-down decomposable one, when doing this process of labelling part reunification,

48 CHAPTER 4. AFDIVIDER : PRESENTATION AND FORMAL ANALYSIS

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6

a in in in in in in

b out out out out out out

c out out out out out out

d out out in in und und

e in in out out und und

f out out in in und und

g in in out out und und

h out out in in und und

i in in out out und und

j und und und und und und

k und und und und und und

l und und und und und und

m und out und out und out

n und in und in und in

Table 4.8: Complete labellings of AF

all the semantics labellings will be found but it is also possible to obtain non correct labellings, whereas, for
a fully decomposable all and only the correct semantics labellings will be obtained.

As one may notice, in the AFDivider algorithm we do not use the notion of AF with input (introduced in
[9], see Chapter 2). Instead, we use the notion of cluster structure. There is definitely a link between these
two notions, link that we will present before proving the soundness and the completeness of our algorithm.

4.3.1 Relation between AFs with input and cluster structures
The aim of this comparison is to use semantics decomposability properties for cluster structures. The fol-
lowing example illustrates the differences between the two approaches.

Example 23. Consider the following AF, AF = ⟨A,K⟩:

g

h i

4.3. AFDIVIDER PROPERTIES: SOUNDNESS AND COMPLETENESS 49

Given ω = {h, i}, af = AF ↓ω is represented as follows:

h i

Considering our approach, the cluster structure for ω is κ =
〈

af , I = {(g,h)},O =∅,B = {h}
〉
.

Then three contexts exist: µ1 = {(g,out)}, µ2 = {(g,in)}, µ3 = {(g,und)}. And so three induced AFs
can be defined (for respectively µ1, µ2, and µ3):

h i i h i

Considering the approach proposed by Baroni and co., the AF with input corresponding to ω is defined
by
〈

af ,{g},µ,{(g,h)}
〉

with µ being either µ1, or µ2, or µ3. So three standard AFs can be defined (for
respectively µ1, µ2, and µ3):

gg′

h i

g

h i

g

h i

Relying on the notion of complete-based semantics (Definition 38), Proposition 9 gives the correspon-
dence between our induced AFs and the standard AFs.

Definition 38 (Complete-based semantics). A semantics σ is complete-based if and only if the following
condition holds:

∀AF ∈Φa f ,Lσ (AF)⊆Lco(AF)

Note: By definition complete-based semantics are also complete-compatible (See Definition 21 on page 19).

Proposition 9. Let σ be a complete-based semantics. Let AF = ⟨A,K⟩ be an AF and ω ⊆ A be a set of
arguments. Let af = ⟨ω,K∩ (ω×ω)⟩ be the restricted AF corresponding to AF ↓ω . Let κ = ⟨af , I = ωK ,
O = K∩ (ω× (A\ω)), B = {a|(a,b) ∈ O or (b,a) ∈ I}⟩ be the cluster structure corresponding to ω . Let µ

be a context of κ . The following equation holds:

L
µ(κ)

σ = Fσ (af ,ω inp,µ,ωK)

Note: As a recall, see Definition 15 on page 16 for ωK and ω inp.

□ Proof of Proposition 9: link (See page 219).

50 CHAPTER 4. AFDIVIDER : PRESENTATION AND FORMAL ANALYSIS

4.3.2 Soundness and completeness
First, we have for Algorithm 2 the two following properties:

Proposition 10 (Completeness of Algorithm 2). Algorithm 2 is complete for the stable, complete and pre-
ferred semantics.

□ Proof of Proposition 10: link (See page 221).

Proposition 11 (Soundness of Algorithm 2). The following properties hold:

1. Algorithm 2 is sound for the stable and complete semantics

2. Algorithm 2 is sound for the preferred semantics

□ Proof of Proposition 11: link (See page 222).

Note: Proposition 11 and afterward Proposition 13 are separated into two assertions because the proofs
for the preferred semantics are different.

From Propositions 10 and 11, we can prove that the entire algorithm is sound and complete for the stable,
preferred and complete semantics.

Regarding Algorithm 1, two similar properties can be established:

Proposition 12 (Completeness of Algorithm 1). Algorithm 1 is complete for the stable, complete and pre-
ferred semantics.

□ Proof of Proposition 12: link (See page 223).

Proposition 13 (Soundness of Algorithm 1). The following properties hold:

1. Algorithm 1 is sound for the stable and complete semantics.

2. Algorithm 1 is sound for the preferred semantics.

□ Proof of Proposition 13: link (See page 224).

Chapter 5

AFDivider : Experimental analysis

5.1 Introduction

In this chapter we present experimental results conducted with three AFDivider variants presented in Sec-
tion 5.2 on the next page.

Note: A detailed technical documentation of the whole AFDivider project (user manual of the solver, soft-
ware sources, project installation, experimental environment) can be found in [37].

The experiments have been made on some hard instances of the ICCMA competition for the pre-
ferred, stable and complete semantics and for the enumeration problem.1 The AF instances studied are
of Barabási–Albert (BA), Erdős–Rényi (ER), Watts-Strogatz (WS), Traffic (TR), Block world (BW) and
Ferry (F2) types. The three first types have been generated by AFBenchGen2 (see [21]), the fourth type
are AF generated from real traffic data (see [30]) and the last two types are block world and ferry planning
problems transformed into AF problems (see [20]).

To compute the labellings of a cluster given a particular labelling of its inward attack sources, we have
used an already existing solver called “µ-toksia”, the winner of all enumeration problem tracks of the IC-
CMA 2019 session, which transforms the AF labelling problem into a SAT problem [59]. In these exper-
iments, we compare our algorithms (using µ-toksia) with µ-toksia itself, and with several other solvers
presented in ICCMA 2017 and 2019. In the following, solver names are suffixed by the year of the ICCMA
session for which they participated. For each experiment, we used 6 cores of an Intel Xeon Gold 6136 pro-
cessor, each core having a frequency of 3 GHz. The RAM size was 45GB. The timeout was set to 1 hour for
the real time. Analysis have been conducted on a number of solvers. The ones which are presented here are
those which succeed to solve at least one of these selected hard instances.2

After the presentation of the three AFDivider variants (Section 5.2 on the next page), we analyse our
result experiments (Section 5.3 on page 55), by focusing, in a first step, on the success rate of the solvers, in
a second step, on their solving time, and in a third step, by comparing the clustering time with the resolution
time of our AFDivider variants.

1In ICCMA Competition the enumeration problems for the preferred, stable and complete semantics are named respectively “EE-
PR”, “EE-ST” and “EE-CO”

2In addition to the solvers presented in Table 5.1 on page 56, Eqargsolver2019, Taas-dredd2019 and Yonas2019 have also been
analysed.

51

52 CHAPTER 5. AFDIVIDER : EXPERIMENTAL ANALYSIS

5.2 Clustering methods
Among the various clustering methods, three of them, particularly well suited for the kind of graphs that
we want to address (see Chapter 5 on the previous page), are presented here. For each clustering method
associated with the AFDivider algorithm, an implementation has been made.

5.2.1 Spectral clustering
The first clustering method that we used for the AFDivider algorithm is the so-called “spectral clustering”.
This method is presented and illustrated in details in the Mathematical Background, Part VI, Section 17.2
on page 188.

This clustering method, originally used for data mining, relies on a similarity matrix that represents how
much a data in a dataset is similar to another one. To adapt it for AF clustering, we defined the similarity
between two arguments a and b as the number of attacks between them. Thus, this number may be 0, 1 or 2.
Formally we defined a transformation that produces a non-directed graph from an AF.

Definition 39. (Undirection transformation) Let AF = ⟨A,K⟩ be an AF. The non-directed graph G =
(V,E,W) obtained by the undirection transformation of AF (noted U (AF)) is defined as following:

• V = A

• E = {(a,b)|(a,b) ∈ K or (b,a) ∈ K}

• W : E→{0,1,2} is defined as following:

W : (a,b) 7→


0 if (a,b) /∈ K and (b,a) /∈ K,

1 if ((a,b) ∈ K and (b,a) /∈ K) or ((a,b) /∈ K and (b,a) ∈ K),

2 otherwise

d

e

f

g

h i

(a) Component 1: af 1

j k

l

mn

(b) Component 2: af 2

Figure 5.1: The connected components of AF hard

5.2. CLUSTERING METHODS 53

Example 24. Let consider the running example used in the previous section. Figure 5.1 on the previous
page recalls the two components obtained after the removing of the trivial part of the original AF. Figure 5.2
shows the non-directed graphs obtained by the undirection transformation of af 1 and af 2. These non-

d

e

f

g

h i

1

21

2

1

1

(a) Component 1: af 1

j k

l

mn

1

11

1

2

(b) Component 2: af 2

Figure 5.2: U (af 1) and U (af 2)
.

directed weighted graphs can be represented by their adjacency matrices defined as:

M
af 1
a =



d e f g h i

d 0 2 0 1 0 0

e 2 0 1 0 0 0

f 0 1 0 2 0 0

g 1 0 2 0 1 0

h 0 0 0 1 0 1

i 0 0 0 0 1 0


M

af 2
a =



j k l m n

j 0 1 1 0 0

k 1 0 1 0 0

l 1 1 0 1 0

m 0 0 1 0 2

n 0 0 0 2 0



Given an AF, the AF spectral clustering relies thus on a kind of adjacency matrix where the directionality
of edges is omitted and where the matrix values are the number of edges between two arguments. Basically,
the more an argument will be related to another, the more similar the two arguments will be considered.
This similarity criterion is particularly relevant for non-dense graphs with a clustered structure. Indeed, it
produces sparse matrices and as a consequence the eigenvector equation system to solve is simplified as
there are many zero values. This is what motivated our choice for the spectral clustering method.

Example 25. Following Example 24, the spectral clustering produces the partitions represented in Fig-
ure 5.3 on page 62.

Note: For a step by step illustration of how we end up with this result, see Section 17.2 on page 188.

54 CHAPTER 5. AFDIVIDER : EXPERIMENTAL ANALYSIS

Notice that when using the spectral clustering method for the preferred semantics computation, the
optimization described in the first note of Page 47 is used for the maximality check (made in Algorithm 2,
line 8).

5.2.2 USCC based clusterings
While the idea of the previous clustering was to find groups of arguments highly related in terms of attack
relations, gathering them together regardless of their membership to common SCC structures, the two others
clustering studied have been proposed to ensure that SCCs are not split into different clusters.

Given an AF, the so-called “USCC Chain” clustering forms clusters as following (each cluster being a
USCCa f):

1. First, the set of SCC is computed.

2. Then neighbour SCC singletons are joined together as chains. The first element of such a chain is thus
a singleton that is not attacked by a singleton.

3. If a singleton belongs to several chains, it is kept only by the chain that has the least inward attacks
(attacks coming from arguments that are not in the chain). Note that the intersection of the so built
chains is empty. Ties are broken arbitrarily.

4. The last step is to join SCC and chains together so that there are not too many clusters of little size.
This is done in an iterative way. The smallest group is merged to its smallest neighbour group, and
that until there is no group of less than a certain number of arguments. We experimentally choose to
fix this threshold to 10.

The third clustering studied is the so-called “USCC Tree” clustering. It has several common steps with
the USCC Chain method, but it differs on one point: instead of forming chains that do not intersect, chains
that have common arguments are merged together. This process thus produces trees.

Example 26. Both USCC based clustering methods give the same result on the previous AF example. In
order to highlight the differences between the two, let consider AF = ⟨A,K⟩, the AF shown in Figure 5.4
on page 62. For the sake of brevity, the AF chosen is small. Therefore we will not illustrate the fourth step
(otherwise the AF would have to be to big).

The two first steps are the same for both methods:

• Step 1: the SCCa f of AF are computed. They are graphically represented in Figure 5.5 on page 63.

• Step 2: In the second step the singletons are joined together as shown in Figure 5.6 on page 63.

At Step 3, they will differ:

• The USCC Chain method will produce the partition: {{a,b} ,{c,d} ,{e, f} ,{g,h, i} ,{ j,k}}

• The USCC Tree method will produce the partition: {{a,b} ,{c,d,e, f} ,{g,h, i} ,{ j,k}}

Notice that when using these two clustering methods for the preferred semantics computation, we skip
the maximality check made in Algorithm 2, line 8, as explained in the second note of Page 47.

5.3. RESULT PRESENTATION 55

5.3 Result presentation

5.3.1 Success Count Comparison
Table 5.1 on the next page shows the number of successes for each solver, by AF type selection. For each
selection (columns) there are three values in each cell corresponding respectively to the preferred, the stable
and the complete semantics. The following list provides references for the different solvers analysed:

• For AFDiv-spectral, see Section 5.2.1

• For AFDiv-USCC-Chain, see Section 5.2.2

• For AFDiv-USCC-Tree, see Section 5.2.2

• For ArgSemSAT2017, see [22]

• For Argmat-dvisat2017, see [60]

• For Argmat-sat2017, see [61]

• For Aspartix2019, see [44]

• For Cegartix2017, see [42]

• For Coquiaas2019, see [50]

• For µ-toksia2019, see [59]

• For Pyglaf2017, see [2]

• For Pyglaf2019, see [3]

Note: The P-SCC-REC algorithm presented in Section 7.2.3 on page 79 has not been included in this study
because no solver were available, as best as we know.

Among the first things we can observe is that the AF type, has a great impact on the aptitude of a given
solver to enumerate the labellings under a given semantics. As an example, for the preferred semantics,
Argmat-dvisat2017 solves nine BA instances (which is the best score among other solvers than ours) but
only three WS instances. Likewise, we can also observe that for a given solver and for a given AF type,
the aptitude to succeed depends on the semantics. As an example, for the ER type, Pyglaf2017 succeeds in
solving six instances for the preferred semantics but four for the stable one. Such a table of experimental
results is then a good tool to identify solvers specificities and capabilities.

Another observation is that the complete semantics is much harder than the two other ones. Although
several decision problems under the preferred and the stable semantics are harder than under the complete
one, in practice the first stumbling block to enumerate the labellings of a given semantics is (for most of the
studied AF instances) the number of labellings it produces.

Let focus on our solvers results. One interesting fact is that the clustering criterion used by the AFDivider
algorithm has an impact on the AF types for which it will be well suited. Indeed there are two different
behaviour classes: one for the USCC clustering variants and another one for the spectral clustering one.
Both behaviour classes are good on BA type and bad for BW and F2 types (whatever the semantics) but we
can see that the USCC variants are good on ER and WS types which is not the case for the spectral one while
the latter is better than them on TR type. These results were expected. Indeed, ER and WS type instances do
not have a structure with groups of arguments such that the intra density (within group) is greater than the
one inter groups (outside group). That is precisely what spectral clustering is seeking for. In contrast, some
TR instances have a structure which is much less adequate to USCC variants. Given that for each cut attack
three cases have to be consider when computing a cluster labellings, clusterings as the three proposed ones
are not suited for BW and F2 instance types. Indeed these instances are translation of planning problems in
which the notion of sequential constraints (over time or resources) is very present. This leads to AFs with
particular shape for which a sequential reasoning (even though multi-threaded) is better. Nevertheless, it
is worth noting that spectral clustering gives better result than USCC ones on BW type. Unlike planning

56 CHAPTER 5. AFDIVIDER : EXPERIMENTAL ANALYSIS

AF type selections

BA ER TR WS BW F2 All types BA to WS BA-ER-WS

Nb of instances 15 15 15 15 15 15 15 15 15 15 15 15 9 9 9 6 6 6 75 75 75 60 60 60 45 45 45

AFDiv-spectral 10 10 2 0 2 0 4 5 0 0 0 0 3 5 0 0 0 0 17 22 2 14 17 2 10 12 2

AFDiv-USCC-Chain 10 10 2 6 6 5 1 1 0 4 5 4 0 0 0 0 0 0 21 22 11 21 22 11 20 21 11

AFDiv-USCC-Tree 10 10 2 5 6 6 1 1 0 4 5 4 0 0 0 0 0 0 20 22 12 20 22 12 19 21 12
ArgSemSAT2017 0 2 0 6 3 1 0 4 0 5 2 0 0 4 0 0 5 0 11 20 1 11 11 1 11 7 1

Argmat-dvisat2017 9 11 2 2 3 3 4 5 1 3 5 4 9 9 1 5 5 5 32 38 16 18 24 10 14 19 9

Argmat-sat2017 2 3 0 2 3 3 2 5 0 3 5 4 5 8 0 5 5 0 19 29 7 9 16 7 7 11 7

Aspartix2019 6 11 2 6 8 6 3 8 0 5 5 4 8 9 0 5 6 3 33 47 15 20 32 12 17 24 12
Cegartix2017 6 3 0 2 2 2 3 5 0 3 4 5 8 8 0 5 5 0 27 27 7 14 14 7 11 9 7

Coquiaas2019 4 2 0 1 4 2 3 4 0 0 5 4 8 7 0 5 5 0 21 27 6 8 15 6 5 11 6

µ-toksia2019 6 3 0 5 6 6 3 5 0 4 5 4 8 8 0 5 5 0 31 32 10 18 19 10 15 14 10

Pyglaf2017 6 11 2 6 4 2 9 9 2 3 5 4 8 9 1 5 6 5 37 44 16 24 29 10 15 20 8

Pyglaf2019 6 8 2 6 6 6 4 6 0 3 5 4 8 9 0 5 5 0 32 39 12 19 25 12 15 19 12

Table 5.1: Success count for preferred - stable - complete semantics (best values in bold and large font).

AF, the BA type is completely adequate to such a cutting process. Although not presented in the following
tables, other clustering methods (fully random partition, among them) have been studied for the AFDivider
algorithm. All of them give pretty good results on the BA type, even better than most of the studied solvers.
This shows that a clustering approach (even with a random clustering) can give interesting results.

We can see that our USCC solvers are among the best considering BA, ER and WS types (last column).
The success rate over all types and for all semantics is of 43.11% for Pyglaf2017 (best rate), 42.22% for
Aspartix2019 (second rate) and of 24% for both of the USCC variants. When considering only the BA, ER
and WS types, we have a rate of 39.23% for Aspartix2019 (best rate), 38.52% for both of the USCC variants
(second ones), 34.07% for Pyglaf2019 (third one) and 31.85% for Pyglaf2017 (forth rate).

It is also interesting to consider the reasons why some experiments failed. We observe that, for solvers
other than the AFDivider variants, about 2% of the failures are due to memory overflow while 98% are due
to timeout. For the AFDivider variants, about 56% are due to memory overflow and 44% are due to timeout.
Knowing that in most cases, it is not because of time limitation that the AFDivider fail, a better memory
management could increase its already good performances as highlighted in Section 5.3.5 on page 59.

5.3.2 Resolution Time Comparison
Let now consider the resolution time of those solvers. Given that the different solvers do not succeed
for the same instances, making an overall average time could be misleading. Instead, in Table 5.2 on the
following page, we compare the solvers two by two on instances solved by both of them (that is, same couple
instance/semantics succeeded). Because of that, the average time is computed regardless of the AF type and
of the semantics. To illustrate how to read this table, let consider the last cell of the first column. Over all
their common instances successes, in average Pyglaf2019 takes 552 seconds more than AFDiv-spectral.

While the AFDiv-spectral does not stand out on the previous analysis, this table shows that it is faster
than all other solvers (except ours). On the instances which have been successfully solved by the USCC

5.3. RESULT PRESENTATION 57

variants and AFDiv-spectral (which are mainly of BA type), the USCC ones are faster. We can observe that
no solvers are better than all others, only 3 of 12 are better than 8 other ones: AFDiv-spectral, AFDiv-USCC-
Chain and Aspartix2019. The three AFDivider variants give good results compared to other solvers.

A
F

D
iv

-s
pe

ct
ra

l

A
F

D
iv

-U
SC

C
-C

ha
in

A
F

D
iv

-U
SC

C
-T

re
e

A
rg

Se
m

SA
T2

01
7

A
rg

m
at

-d
vi

sa
t2

01
7

A
rg

m
at

-s
at

20
17

A
sp

ar
tix

20
19

C
eg

ar
tix

20
17

C
oq

ui
aa

s2
01

9

µ
-t

ok
si

a2
01

9

P
yg

la
f2

01
7

P
yg

la
f2

01
9

AFDiv-spectral 0 45 36 -192 -30 -252 -145 -368 -547 -212 -191 -552

AFDiv-USCC-Chain -45 0 -87 132 -68 2 279 -736 -495 -159 -101 -311

AFDiv-USCC-Tree -36 87 0 144 -64 29 278 -708 -451 -15 -64 -232

ArgSemSAT2017 192 -132 -144 0 306 275 402 -185 169 118 153 187

Argmat-dvisat2017 30 68 64 -306 0 -266 8 -405 -477 -133 -54 -329

Argmat-sat2017 252 -2 -29 -275 266 0 448 -91 -208 188 151 176

Aspartix2019 145 -279 -278 -402 -8 -448 0 -430 -562 -328 -52 -423

Cegartix2017 368 736 708 185 405 91 430 0 -177 311 242 270

Coquiaas2019 547 495 451 -169 477 208 562 177 0 402 291 350

µ-toksia2019 212 159 15 -118 133 -188 328 -311 -402 0 -38 -23

Pyglaf2017 191 101 64 -153 54 -151 52 -242 -291 38 0 -104

Pyglaf2019 552 311 232 -187 329 -176 423 -270 -350 23 104 0

Table 5.2: Average real time difference between solvers on same set of solved instances (in seconds)
The values in bold and large font correspond to the case where the solver given in the line is faster than the solver given in the column.

Given that several studied solvers are multi-threaded, a similar analysis has been made considering the
CPU time. Even though the values may slightly differ from this table, the comparison between the solvers
stays the same. As there are few changes, this table is not relevant.

5.3.3 Clustering Impact Comparison
Let now consider the impact of the clustering against the resolution time of our AFDivider variants (Table 5.3
on the next page).

First of all, we can observe that the clustering is very time-efficient compare to other steps of the algo-
rithm.

As expected, the USCC Tree clustering is faster than the USCC Chain one. Indeed merging chains is
simpler than wisely separating chains sharing common arguments. We can also observe that the spectral
clustering is more time consuming than the USCC ones.

58 CHAPTER 5. AFDIVIDER : EXPERIMENTAL ANALYSIS

AFDiv-spectral AFDiv-USCC-Chain AFDiv-USCC-Tree

Clustering and cutting time 0.37 0.16 0.15

Cluster and component labelling time 57.09 31.10 30.52

Cartesian product time 40.63 40.66 40.65

Printing time 24.88 24.46 25.89

Total resolution time 122.97 96.39 97.20

Table 5.3: Average real time comparison (in seconds) of AFDivider variants over 26 instances.

AFDiv-spectral takes more time to compute the labellings than the USCC variants, which means that on
those common solved instances the USCC partitions are better chosen.

As Table 5.2 on the previous page shows, on common instances AFDiv-spectral is slower than the two
other ones. Nevertheless, it is worth noting, as it has been said previously, that they form two distinct
behaviour classes of solvers, that do not share so many successes. The common ones are mainly of BA type.

Table 5.3 shows another important fact. Most of the resolution time, on those instances at least, comes
from the cartesian product and the result printing. Indeed, some instances may admit millions and even more
of labellings which take much time to print. Even without taking the printing time into account, we can see
that the cartesian product alone takes between 40% (in the spectral case) and 55% (in the other cases) of the
effective calculation time. The “Compact Enumeration Representation” introduced in Chapter 6 on page 64
is a proposal to address this issue.

5.3.4 Maximality Check Impact Comparison
When computing the preferred semantics with the AFDivider algorithm, a maximality check of the compo-
nent labellings is needed. In Page 47 two optimizations for this check have been described:

1. Checking only profiles with und -labelled arguments

2. Skipping the maximality check when using USCC clustring methods

Let now consider the impact of those optimizations.

5.3.4.1 Checking only profiles with und -labelled arguments

To show its interest, we compare the labelling of components with and without the optimization, the com-
ponents being clustered following the very same partition ensuring so a fair comparison.

Table 5.4 on the following page sums up the labelling step details of each experiment. We choose the first
component from a TR AF type and the second one from a BW AF type. All durations are given in second.
The percentages in brackets represent the duration rate of each step compared with the total component
labelling time.

Without the optimization, each computed component labelling has to be checked. This step thus has a
complexity of Θ(n2), n being the number of computed component labellings. As shown by Table 5.4, it can
be very consuming. The first component produces 3408 labellings while the second one 76366.

We can observe that with the optimization the maximality check is 100 times faster for the first compo-
nent (2.251s against 0.021s), while the total component labelling is 1.5 times faster (6.631s against 4.370s).

5.3. RESULT PRESENTATION 59

Component 1 Component 2

Number of clusters 4 2

Number of component labellings 3408 76366

With Optimization no yes no yes

Cutting time 0.637 (9.60%) 0.934 (21.37%) 0.7 (0.03%) 0.685 (0.26%)

Clustering time 0.002 (0.03%) 0.007 (0.16%) 0.008 (0.00%) 0.010 (0.00%)

Labelling time 2.869 (43.27%) 2.725 (62.36%) 87.785 (3.94%) 88.784 (33.31%)

CSP solving time 0.872 (13.15%) 0.683 (15.63%) 178.819 (8.02%) 177.046 (66.43%)

Maximality check time 2.251 (33.95%) 0.021 (0.48%) 1961.143 (88.01%) 8×10−6 (0.00%)

Total Component labelling time 6.631 (100%) 4.370 (100%) 2228.455 (100%) 266.525 (100%)

Component labelling reunification time
3.123 (47.10%) 0.704 (16.11%) 2139.962 (96.03%) 177.046 (66.43%)

(CSP solving + Maximality check)

Table 5.4: Component labelling time details (in second)

For the second component, with the optimization the maximality check is 2.5×108 times faster (1961.143s
against 8×10−6s) while the total component labelling is 8.4 times faster (2228.455s against 266.525s).

Notice that this optimization may produce an empty set of labellings to check. The value 2.5×108 for
the maximality check of second component indicated that the set to check is empty.

5.3.4.2 Skipping the maximality check when using USCC clustering methods

In this experiment, we compared the use of the optimization analysed above against no maximality checking
while using an USCC clustering.

None of the experiments made produced profiles with und -labelled arguments. As a consequence, in
both cases the component labelling process was almost identical. The impact of skipping the maximality
check was thus negligible, on those instances.

However, if we want to compare the use of this optimization against the use of no optimization at all
(that is, the use of the naive maximality check in Θ(n2)) we can refer to the previous section to have an idea
of the benefit we can get.

5.3.5 Memory Overflow Analysis
Table 5.5 on page 61 shows the details of the memory overflows that occurred during our experiments.
Following AF types, it shows which percentage of them happened at each step of the algorithm. As an
example on how to read the table, let analyse the memory overflows made by AFDiv-spectral on the TR
instances: 12 of the 45 TR instances ended up with an overflow, 41.67% of them (that is, 41.67% of the
12) occurred during the clustering and cutting step, 8.33% during the cluster and component labelling step,
33.33% during the cartesian product and 16.67% during the printing step (which gives a total of 100%).

Note: The values “NaN” are used in the table when no instance of the corresponding AF type has produced
a memory overflow.

60 CHAPTER 5. AFDIVIDER : EXPERIMENTAL ANALYSIS

We can observe that, BA instances put aside, most of the memory overflow occurs during the clustering
and cutting phase and secondarily during the cartesian product phase. For BA instances, it is during the
cartesian product phase and secondarily the labelling phase.

Further investigations need to be made to understand the memory overflows that occur during the clus-
tering and cutting phase, especially for the USCC clusterings. Indeed this could be due to implementation
flaws.

If it is only an implementation flaw supposition in the clustering and cutting phase, it is a certainty for
the printing phase. If stored properly, it must be possible to print all the computed labellings without using
much space (as an example with the help of buffers, iterators, etc).

The memory overflows that occurred during the cartesian product and the printing phases can be avoided
by using the “Compact Enumeration Representation” introduced in Chapter 6 on page 64.

5.4 Synthesis
As a synthesis, in our experimental analysis, we instantiated the generic distributed and clustering based
algorithm AFDivider, that enumerates the complete, stable and preferred semantics labellings, with three
different clustering methods. We compare their performances, to other solvers, according to AF types,
over success rate and resolution time. It comes out from this study that the AFDiv-spectral variant is
faster than most solvers (except ours) in average on common successful instances while the AFDiv-USCC-
Tree and AFDiv-USCC-Chain variants succeed to solve most instances when considering Barabási–Albert
(BA), Erdős–Rényi (ER) and Watts-Strogatz (WS) AF types, for the complete, stable and preferred seman-
tics.

Based on the AF types that they solve efficiently, we identify two behaviour classes among our three
solvers: one for the spectral clustering and one for the USCC based clusterings. This shows that the clus-
tering method which is used has an important effect on the performances of the AFDivider algorithm on a
particular AF type.

A major improvement of the AFDivider algorithm would then be to “know” in advance which clustering
method (including ones other than those presented in Section 5.2 on page 52) should be used for a particular
AF instance. Experiments could be conducted to learn, for example with a neural network, which one to
use. To go further, even the cutting process could be supervised by a neural network trained to cluster
AF instances following their structure. As a consequence, for any known AF type, the most appropriate
clustering method would be used to solve each AF instance efficiently.

The experiments also show that a better memory management and a more compact labelling representa-
tion could enhance the efficiency of the algorithm. This is what we tried to solve introducing the notion of
“compact enumeration representation” presented in Chapter 6 on page 64.

5.4. SYNTHESIS 61

AFDiv-spectral AFDiv-USCC-Chain AFDiv-USCC-Tree

BA

Total number of overflows 21 over 45 20 over 45 20 over 45

Clustering and cutting 0% 0% 0%

Cluster and component labelling +19.05% +10% +10%

Cartesian product +80.95% +85% +85%

Printing +0% +5% +5%

ER

Total number of overflows 31 over 45 0 over 45 0 over 45

Clustering and cutting 100% NaN NaN

Cluster and component labelling +0% NaN NaN

Cartesian product +0% NaN NaN

Printing +0% NaN NaN

TR

Total number of overflows 12 over 45 26 over 45 26 over 45

Clustering and cutting 41.67% 80.77% 80.77%

Cluster and component labelling +8.33% +7.69% +7.69%

Cartesian product +33.33% +3.85% +3.85%

Printing +16.67% +7.69% +7.69%

WS

Total number of overflows 39 over 45 0 over 45 0 over 45

Clustering and cutting 100% NaN NaN

Cluster and component labelling +0% NaN NaN

Cartesian product +0% NaN NaN

Printing +0% NaN NaN

BW

Total number of overflows 12 over 27 27 over 27 27 over 27

Clustering and cutting 75% 100% 100%

Cluster and component labelling +16.67% +0% +0%

Cartesian product +8.33% +0% +0%

Printing +0% +0% +0%

F2

Total number of overflows 2 over 18 17 over 18 17 over 18

Clustering and cutting 100% 100% 100%

Cluster and component labelling +0% +0% +0%

Cartesian product +0% +0% +0%

Printing +0% +0% +0%

All

Total number of overflows 117 over 225 90 over 225 90 over 225

Clustering and cutting 73.50% 72.22% 72.22%

Cluster and component labelling +5.99% +4.45% +4.45%

Cartesian product +18.8% +20.0% +20.0%

Printing +1.71% +3.33% +3.33%

Table 5.5: Memory overflow analysis: rate of instances passing algorithm steps

62 CHAPTER 5. AFDIVIDER : EXPERIMENTAL ANALYSIS

d

e

f

g

h i

(a) Clusters of af 1

j k

l

mn

(b) Clusters of af 2

Figure 5.3: Cluster partition

a b

c

d

e

f

g

hi

j k

Figure 5.4: AF example

5.4. SYNTHESIS 63

a b

c

d

e

f

g

hi

j k

Figure 5.5: AF example

a b

c

d

e

f

g

hi

j k

Figure 5.6: AF example

Chapter 6

AFDivider : Compact representation

6.1 Motivation and Definition

The last step of the AFDivider algorithm (Algorithm 1 on page 30, line 7) is a huge cartesian product between
the fixed labelling part and all the component labellings. Experimental analysis shows that in some cases this
enumeration construction is very time consuming. Furthermore, we realise that in order to answer common
AF decision problems, this enumeration could not be necessary. These observations make us think about a
“compact enumeration representation”. Notice that the aim of this new algorithm is no more to enumerate
the labellings/extensions under a given semantics but rather to provide a data structure from which all AF
classical decision problems, and even more, can be answered. In few words, the compact enumeration
representation is the set of the component labelling sets (and the fixed part).

Definition 40 (Compact Enumeration Representation). Let σ be a semantics. Let AF = ⟨A,K⟩ be an AF and
Ω= {ω0, ...,ωn} be a partition of A such that ω0 is the trivial part of AF (i.e. ω0 =A∩(in(ℓgr)∪out(ℓgr)))
and ω1, ...,ωn correspond to the sets of arguments of the connected components of AF hard , following the
computation made by Algorithm 1. Let

{
af 0, ...,af n

}
be the set of sub-AF corresponding to Ω. The compact

enumeration representation Compσ (AF) is the set: {Lσ (af 0), ...,Lσ (af n)}.

Example 27. Let consider one more time our running example. Let AF = ⟨A,K⟩ be the AF shown in
Figure 6.1 on the following page. The compact enumeration representation corresponding to the complete
semantics is the set {A,B,C} with:

A = Lσ (af 0) = {{(a,in),(b,out),(c,out)}}

B = Lσ (af 1) =


{(e,in),(f ,out),(g,in),(h,out)}

{(e,out),(f ,in),(g,out),(h,in)}

{(e,und),(f ,und),(g,und),(h,und)}


C = Lσ (af 2) =

 {(j,und),(k,und),(l,und),(m,out),(n,in)}

{(j,und),(k,und),(l,und),(m,und),(n,und)}


64

6.2. DECISION PROBLEMS WITH COMPACT ENUMERATION 65

a

b c

d

e

f

g

h i

j k

l

mn

Figure 6.1: The AF of the running example

6.2 Decision Problems with Compact Enumeration

Given that any combination of component labelling parts produces a valid labelling of the computed seman-
tics, all classical AF decision problems can be answered.

For the credulous (resp. skeptical) acceptance problem of an argument a, we just have to look if a is at
least in one (resp. in any) labelling part in the component in which a is. For the verification problem of a
labelling ℓ, we just have to look if there exists a combination of component labelling parts that produces ℓ.

For the existence problem, we just have to look if at least a combination is possible. In the case that there
is no labelling the compact enumeration representation is the empty set. No product is thus possible.

For the non-empty existence problem, we just have to look if a combination produces a labelling having
at least an in -labelled argument.

Finally, for the uniqueness problem, we just have to verify that one and only one combination is possible,
that is, each set of the enumeration compact representation has exactly one element.

Let formally define the AF decision problems using this representation and then show that they are
equivalent to the classical ones.

Definition 41 (AF decision Problems with compact enumeration representation).
Let AF = ⟨A,K⟩ be an AF decomposed into n components and Compσ (AF) = {Lσ (af 0), ...,Lσ (af n)} be
the compact enumeration representation corresponding to σ(AF).

• Credulous Acceptance Comp-Credσ : Given an AF AF = ⟨A,K⟩ and an argument a ∈ A. Is it the case
that: ∀Lσ (af) ∈ Compσ (AF), Lσ (af) ̸= ∅ (i.e. Comp-Existsσ (AF) is true) and that there exists a
set Lσ (af) ∈ Compσ (AF) such that ∃ℓ ∈Lσ (af) and ℓ(a) = in?

• Skeptical Acceptance Comp-Skepσ : Given an AF AF = ⟨A,K⟩ and an argument a ∈ A. Is it the case
that: ∀Lσ (af) ∈ Compσ (AF), Lσ (af) ̸= ∅ (i.e. Comp-Existsσ (AF) is true) and that there exists a
set Lσ (af) ∈ Compσ (AF) such that ∀ℓ ∈Lσ (af), ℓ(a) = in?

66 CHAPTER 6. AFDIVIDER : COMPACT REPRESENTATION

• Verification of an extension Comp-Verσ : Given an AF AF = ⟨A,K⟩ and a labelling ℓ. Is there a
combination of component labellings ℓ1, ...,ℓn with ℓi ∈ Lσ (af i) and Lσ (af i) ∈ Compσ (AF) such
that: ℓ=

⋃n
i=1 ℓi ?

• Existence of an extension Comp-Existsσ : Given an AF AF = ⟨A,K⟩. Is it the case that: ∀Lσ (af) ∈
Compσ (AF), Lσ (af) ̸=∅?

• Existence of a non-empty extension Comp-Exists¬∅σ : Given an AF AF = ⟨A,K⟩. Does there exist a
combination of component labellings ℓ1, ...,ℓn, with ℓi ∈Lσ (af i) and Lσ (af i) ∈ Compσ (AF), such
that: ∃i ∈ {1, ...,n},in(ℓi) ̸=∅?

• Uniqueness of a solution Comp-Uniqueσ : Given an AF AF = ⟨A,K⟩. Is it the case that: ∀Lσ (af i) ∈
Compσ (AF), |Lσ (af i)|= 1?

Proposition 14. Let σ ∈ {complete,stable,preferred} be a semantics. Let AF = ⟨A,K⟩ be any AF, a ∈ A
be an argument and ℓ be any labelling of AF . We have the following equivalence (that is, in any case both
decision problems give the same answer):

1. Credσ (AF ,a)≡Comp-Credσ (AF ,a)

2. Skepσ (AF ,a)≡Comp-Skepσ (AF ,a)

3. Verσ (AF ,ℓ)≡Comp-Verσ (AF ,ℓ)

4. Existsσ (AF)≡Comp-Existsσ (AF)

5. Exists¬∅σ (AF)≡Comp-Exists¬∅σ (AF)

6. Uniqueσ (AF)≡Comp-Uniqueσ (AF)

□ Proof of Proposition 14: link (See page 226).

As stated by Proposition 14, the compact enumeration representation is sufficient to answer all classical
decision problems. But more than that, it could be used for other type of problems such as gradual accept-
ability : “Given a ∈ AF , what is the portion of extensions a belongs to?”. This portion is the same portion
as the one in its own component.

6.3 Implementation ideas

In order to enhance the time needed to answer the first three decision problems Comp-Credσ , Comp-
Skepσ and Comp-Verσ , we can produce as output two dictionaries: one linking the component name to
its labellings and the other one linking each argument to the name of the component they belong to.

Example 28. For the running example, we would have :

• Dictionary 1 :

6.3. IMPLEMENTATION IDEAS 67

A : {{(a,in),(b,out),(c,out)}}

B :


{(e,in),(f ,out),(g,in),(h,out)}

{(e,out),(f ,in),(g,out),(h,in)}

{(e,und),(f ,und),(g,und),(h,und)}


C :

 {(j,und),(k,und),(l,und),(m,out),(n,in)}

{(j,und),(k,und),(l,und),(m,und),(n,und)}





• Dictionary 2 :

 a : A, b : A, c : A, d : B, e : B, f : B, g : B,

h : B, i : B, j : C, k : C, l : C, m : C, n : C


Given that a labelling is also a dictionary, once this representation is computed, verifying the credulous

or skeptical acceptance of a given argument can be made in linear time according to the number of labellings
of the argument component.1 For the verification problem it can also be made in linear time according to
the total number of component labellings and arguments.

Example 29. Let consider the answer process for these already given examples

• Is ℓ=

 (a,in),(b,out),(c,out),(e,out),(f ,in),(g,out),

(h,in),(j,und),(k,und),(l,und),(m,und),(n,und)

 ∈Lco(AF)?

Given that finding an element in a dictionary can be done in constant time2, splitting ℓ following
the components using Dictionnary 2 can be done in linear time according to the number of argu-
ments. This split produces {(a,in),(b,out),(c,out)} for A, {(e,out),(f ,in),(g,out),(h,in)} for B
and {(j,und),(k,und),(l,und),(m,und),(n,und)} for C. Given that labellings are also dictionaries,
checking if those labellings parts belong to their corresponding component can be done in linear time
according to the number of the component labellings. For A, at most one check has to be done, three
for B and two for C. As a consequence, six checks at most have to be performed, which is the total
number of component labellings. Let v be the number of component labellings and w be the number of
arguments of the AF, the complexity of checking if a labelling is produced by a given semantics is thus
in Θ(w+ v),3 so in linear time according to the number of arguments and of component labellings.

• For any labelling ℓ ∈Lco(AF), is ℓ(n) = in?

Finding the component of the argument n using Dictionary 2 is done in constant time. Then checking
if n is in-labelled in any labelling of C is done in linear time according to the number of labellings of
C, which is two.

1This is due to the fact that finding an element in a dictionnary is done in constant time (i.e. Θ(1)) in the average case as explained
by the following footnote.

2Good implementations of dictionaries use some hash function to create the keys of the stored elements. If the hash function is well
chosen w.r.t. the size of the dictionary itself and the definition domain of the stored elements, then the verification of the membership
of an element to the dictionary can be done in average in constant time (i.e. Θ(1)).

3See Section 16.5 on page 184 for an explanation on Θ(w+ v).

68 CHAPTER 6. AFDIVIDER : COMPACT REPRESENTATION

6.4 Compact Enumeration Representation: Experimental Analysis
The experiments with the compact enumeration representation have been made using the very same setting as
the ones presented in Chapter 5 on page 51. The only difference is that, instead of using µ-toksia2019 [59],
to compute the labellings of a cluster given a particular labelling of its inward attack sources, we used As-
partix2019 [44], a solver which transforms the AF labelling problem into an ASP problem. Indeed, although
µ-toksia2019 is the winner of all enumeration problem tracks of the ICCMA 2019 session, our experiments
show that Aspartix2019 is better on the AF instances we selected (See Section 5.3 on page 55).

Now let consider Table 6.1 on the following page. Using this representation improves the algorithm
performances for the types BA, TR and BW. We do not see effect on the other ones because (at least for
the studied instances) they do not lead to multiple connected components. As a consequence, doing the
enumeration is strictly equivalent to not doing it.

As one can observe, avoiding the enumeration allows to resolve in some cases more instances but above
all it allows to compute much faster the semantics labellings: 97.03 times much faster for BA type, 2.46 for
TR and 1.15 for BW.4

It is also worth noting that much less memory is used. A lot of failures were due to memory overflow (see
Section 5.3.1 on page 55). Using the compact enumeration representation allows AFDiv-spectral to solve 26
instances more (24 of them were supposed to produce a memory overflow, the two other ones a timeout). For
AFDiv-USCC-Chain, 22 new instances have been solved (21 of them were supposed to produce a memory
overflow, the left one a timeout). For AFDiv-USCC-Tree, 22 new instances have been solved (20 of them
were supposed to produce a memory overflow, the two other ones a timeout).

6.5 Synthesis
As a synthesis for this chapter, we show that the complete enumeration of all labellings is not necessary for
solving classical AF problems. This can be done with a more compact data structure. This improvement
has been shown interesting for the most difficult instances (especially for BA and TR, but also for BW) of
the ICCMA benchmarks (see Table 6.1 on the following page). On these instances, the new version of the
algorithm (without the complete enumeration) goes faster and solves more instances that the original one.
The impact of the “no-enumeration” is particularly significant for the complete semantics due to the huge
number of labellings that causes memory overflow during the enumeration.

4These comparisons do not take into account average solving time of the compact enumeration representation mode when standard
enumeration mode gives no result.

6.5. SYNTHESIS 69

Enum. AFDiv-spectral AFDiv-USCC-Chain AFDiv-USCC-Tree

BA

Nb Suc.
yes 10 10 2 10 10 2 10 10 2

no 14 14 13 14 14 13 14 14 13

Time avg.
yes 59.34 59.62 167.80 61.84 61.66 169.74 60.25 59.57 167.63

no 4.82 0.80 0.56 0.49 0.52 0.40 0.50 0.50 0.35

ER

Nb Suc.
yes 0 2 0 6 6 6 5 6 4

no 0 2 0 6 6 6 5 6 4

Time avg.
yes NaN 2133.79 NaN 1737.72 1311.29 1917.24 1695.76 1471.12 1919.99

no NaN 2133.79 NaN 1737.72 1311.29 1917.24 1695.76 1471.12 1919.99

TR

Nb Suc.
yes 4 5 0 1 1 0 1 1 0

no 5 6 4 2 2 1 2 2 1

Time avg.
yes 154.89 76.64 NaN 288.41 209.99 NaN 244.01 209.89 NaN

no 101.47 45.82 21.69 106.40 71.57 0.64 83.66 70.91 0.68

WS

Nb Suc.
yes 0 0 0 4 5 4 4 5 4

no 0 0 0 4 5 4 4 5 4

Time avg.
yes NaN NaN NaN 1304.46 849.96 1385.25 1524.22 875.35 1473.26

no NaN NaN NaN 1304.47 849.96 1385.25 1524.22 875.35 1473.26

BW

Nb Suc.
yes 4 5 0 0 0 0 0 0 0

no 4 5 1 0 0 0 0 0 0

Time avg.
yes 72.90 90.41 NaN NaN NaN NaN NaN NaN NaN

no 69.21 72.77 2867.53 NaN NaN NaN NaN NaN NaN

Table 6.1: AFDivider solvers success with and without enumeration for preferred - stable - complete seman-
tics.

Chapter 7

Related Work: Algorithms for AF

In this chapter are presented the related works associated to our algorithm proposal. We emphasize the
comparison with direct approach based algorithms, as AFDivider is itself such an algorithm.

7.1 Indirect approach based algorithms
In this section, we briefly present some indirect approaches to solve AF problems, with an emphasis on SAT
based algorithms, as it is the most common transformation used to solve argumentation problems.

7.1.1 SAT based algorithms
Logic and Abstract Argumentation are interrelated since the seminal work of Dung (see [13] for an overview
about these links). Moreover, given the experience and hindsight we have today, SAT solvers are really
efficient (See [51] as an example). Many problem considered as intractable are today, at least for some
instances, within reach and that through the use of SAT solvers. There has been so much progress in the
field that, when considering a computational problem, it is important to ask whether or not a transformation
of our problem into a SAT one is advantageous or not. Indeed, this option could save us development costs
and possibly, for better result in the end.

Following this observation, many argumentation solvers actually transform argumentation problems into
SAT problems (See [38, 68, 23, 3] as examples). Given that they are as many approaches as there are
SAT based argumentation solvers and AF semantics, we will simply recall some encoding examples for the
labelling-based complete semantics, that have been presented in [23].

Given that SAT solvers take as input a CNF formula,1 the encoding must be of that form. To do so, let
introduce some notions. Let AF = ⟨A,K⟩ be an AF such that |A| = k and φ : {1, ...,k} → A be an indexing
of A.

• φ(i) is thus the argument i of AF . We denote by φ(i)− the set of attackers of the argument i.

• For each argument i, three boolean variables are defined: Ii, Oi, Ui. For Ii to be true (resp. Oi, Ui), it
means that the argument i is labelled in (resp. out , und).

1A CNF is a propositional formula which is a conjunction of clauses. A clause is a propositional formula which is a disjunction of
literals. A literal is a propositional variable or the complement of a propositional variable (e.g. v or ¬v).

70

7.1. INDIRECT APPROACH BASED ALGORITHMS 71

• The set of boolean variables corresponding to AF , denoted as V (AF), corresponds to:

V (AF) =
⋃

i∈{1,...,n}
{Ii,Oi,Ui}

Following what has been said above, let define a first encoding for the complete semantics.

Definition 42. Let AF = ⟨A,K⟩ be an AF, with |A|= k and φ : {1, ...,k}→ A be an indexing of A. The SAT
encoding C1 defined on V (AF), is given by the conjunction of the formulae listed below:∧

i∈{1,...,n}
((Ii∨Oi∨Ui)∧ (¬Ii∨¬Oi)∧ (¬Ii∨¬Ui)∧ (¬Oi∨¬Ui)) (7.1)

∧
{i|φ(i)−=∅}

(Ii∨¬Oi∨¬Ui) (7.2)

∧
{i|φ(i)− ̸=∅}

Ii∨

 ∨
{ j|(φ(j),φ(i))∈K}

¬O j

 (7.3)

∧
{i|φ(i)− ̸=∅}

 ∧
{ j|(φ(j),φ(i))∈K}

¬Ii∨O j

 (7.4)

∧
{i|φ(i)− ̸=∅}

 ∧
{ j|(φ(j),φ(i))∈K}

¬I j ∨Oi

 (7.5)

∧
{i|φ(i)− ̸=∅}

¬Oi∨

 ∨
{ j|(φ(j),φ(i))∈K}

I j

 (7.6)

∧
{i|φ(i)− ̸=∅}

 ∧
{k|(φ(k),φ(i))∈K}

Ui∨¬Uk ∨

 ∨
{ j|(φ(j),φ(i))∈K}

I j

 (7.7)

∧
{i|φ(i)− ̸=∅}

 ∧
{ j|(φ(j),φ(i))∈K}

(¬Ui∨¬I j)

∧
¬Ui∨

 ∨
{ j|(φ(j),φ(i))∈K}

U j

 (7.8)

∨
i∈{1,...,n}

Ii (7.9)

Note: The last clause has been added for technical reasons, due to the algorithm introduced in [23]. It
restricts the result to “non-empty” complete labellings (that is, at least one argument is labelled in). Verify-
ing if the “empty” labelling is a complete labellings can be done afterward trivially by adding conjunctions
forcing all Ui to be true.

Let describe each part of C1:

• Equation (7.1) states that for each argument i one and only one label has to be assigned.

• Equation (7.2) states that each unattacked argument must be labelled in .

72 CHAPTER 7. RELATED WORK: ALGORITHMS FOR AF

• Equation (7.3) states that argument i is labelled in if all its attackers are labelled out .

• Equation (7.4) settles the reverse (i.e. the “only if”) condition of the precedent point.

• Equation (7.5) corresponds to the constraint that argument i is labelled out if at least one of its
attackers is labelled in .

• Equation (7.6) corresponds to the “only if” condition of the precedent point.

• Equation (7.7) states that argument i is labelled und if none of its attackers is labelled in and at least
one of its attackers is labelled und .

• Equation (7.8) corresponds to the “only if” condition of the precedent point.

• Equation (7.9) ensures non-emptiness, i.e. that at least one argument is labelled in .

In [23], it has been given the six equivalent encodings as stated by the following proposition:

Proposition 15 ([23]). Referring to the formulae listed in Definition 42 on the previous page, the following
encodings are equivalent:

• C1 : (7.1)∧ (7.2)∧ (7.3)∧ (7.4)∧ (7.5)∧ (7.6)∧ (7.7)∧ (7.8)∧ (7.9)

• C2 : (7.1)∧ (7.2)∧ (7.3)∧ (7.4)∧ (7.5)∧ (7.6)∧ (7.7)∧ (7.9)

• C3 : (7.1)∧ (7.2)∧ (7.3)∧ (7.5)∧ (7.6)∧ (7.7)∧ (7.8)∧ (7.9)

• C4 : (7.1)∧ (7.2)∧ (7.3)∧ (7.4)∧ (7.6)∧ (7.7)∧ (7.8)∧ (7.9)

• C5 : (7.1)∧ (7.2)∧ (7.4)∧ (7.6)∧ (7.8)∧ (7.9)

• C6 : (7.1)∧ (7.2)∧ (7.3)∧ (7.5)∧ (7.7)∧ (7.9)

Most semantics can be encoded with such rules. Now for semantics that need some maximisation such
as the preferred semantics, the SAT solver can be called iteratively until a maximal solution is found. There
exists a huge amount of search strategies, each one leading to a different SAT-based algorithm. By sake
of brevity, they will not be presented in this paper but the reader interested can refer to [38, 68, 23, 3] as
examples.

7.1.2 Other indirect approach based algorithms

Other types of transformation can be used to solve argumentation problems. Here is a non exhaustive list of
approaches. References are given to go further:

• ASP-based algorithms (e.g. [44]). Notice that in ICCMA 2019 session, Aspartix, the solver presented
in [44], gave very good results.

• Neural network based algorithms (e.g. [55]). Although the ICCMA 2017 session shew that this solver
is not efficient, it opens perspectives for a radical paradigm change in argumentation problem solving.

7.2. DIRECT OR SEMI-DIRECT APPROACH BASED ALGORITHMS 73

7.2 Direct or semi-direct approach based algorithms

In this section we compare the behaviour of our algorithm to other existing ones, using direct or “semi-direct”
approach. By “semi-direct” we mean that the algorithm mainly and directly deals with AF and takes advan-
tage of its structure, but in some cases, for some sub-problems as the computation of labellings/extensions
of a part of the AF, uses an indirect solving method such as a transformation to SAT.

Notice that several algorithms, other than those presented in this section, use solving methods similar to
the ones of the algorithms presented. By sake of brevity, our algorithm is compared only to one algorithm
of each method type.

In order to illustrate how these other algorithms work, we will consider the AF shown in Figure 7.1 as
running example and show how the preferred labellings are computed following the different algorithms.
This particular AF has been chosen because its structure let appear clusters in it, it has four SCCs and there
is an interesting hierarchy between them. These two last points are very relevant for the algorithms presented
in Sections 7.2.1 and 7.2.2 on the current page and on page 78.

j

k l

f

d e

h

g i

b

ca

Figure 7.1: AF example AF

7.2.1 Dynamic programming algorithm

In [43], Dvořák et al. proposed an algorithm based on a dynamic analysis of an argumentation framework.
In the interest of brevity, we will just highlight the main idea of this algorithm (see [43] for a more detailed
explanation).

Basically, this algorithm relies on the nice tree decomposition of a graph.

Definition 43. (Tree decomposition). Let G = (V,E) be a non directed graph. A tree decomposition of G is
a pair ⟨T ,X ⟩ where T = (VT ,ET) is a tree and X = (Xt)t∈VT

is a set of so-called bags, which has to
satisfy the following conditions:

74 CHAPTER 7. RELATED WORK: ALGORITHMS FOR AF

∅

b

bc

abc

ac

ac j

ac jl

ac jkl

ackl

ackl

akl

ak

adk

dk

d f k

d f

de f

ackl

ckl

cl

cil

il

hil

hi

ghi

t0:

t1:

t2:

t3:

t4:

t5:

t6:

t7:

t8:

t9:

t10:

t11:

t12:

t13:

t14:

t15:

t16:

t17:

t18:

t19:

t20:

t21:

t22:

t23:

t24:

Figure 7.2: Nice tree decomposition of AF

•
⋃

t∈VT
Xt =V , i.e. X is a set covering of V .

• for each v ∈V , T ↓{t|v∈Xt} is a connected tree.

• for each {vi,v j} ∈ E, {vi,v j} ⊆ Xt for some t ∈VT .

Definition 44. (Width of a tree decomposition). Let ⟨T ,X ⟩ be a tree decomposition where T = (VT ,ET)
is a tree and X = (Xt)t∈VT

is a set of so-called bags. The width of such a tree decomposition is given by:

max{card(Xt)|t ∈VT }−1

Definition 45. (Tree-width of a graph). Let G = (V,E) be a non directed graph. The tree-width of G is
defined by the minimum width over all its tree decompositions.

Definition 46. (Nice tree decomposition). A tree decomposition ⟨T ,X ⟩ of a graph G is called nice if T is
a rooted tree and if each node t ∈T is one of the following types:

• LEAF: t is a leaf of T

7.2. DIRECT OR SEMI-DIRECT APPROACH BASED ALGORITHMS 75

• FORGET: t has only one child t ′ and Xt = Xt ′ \{v} for some v ∈ Xt ′

• INSERT: t has only one child t ′ and Xt = Xt ′ ∪{v} for some v /∈ Xt ′

• JOIN: t has two children t ′, t ′′ and Xt = Xt ′ = Xt ′′

v\Xt Xt0 Xt1 Xt2 Xt3 Xt4 Xt5 Xt6 Xt7 Xt8 Xt9 Xt10 Xt11 Xt12 Xt13 Xt14 Xt15 Xt16 Xt17 Xt18 Xt19 Xt20 Xt21 Xt22 Xt23 Xt24
a

b

c

d

e

f

g

h

i

j

k

l

Table 7.1: Bags of X
“ ” means that the vertex v corresponding to the current line belongs to the bag Xt corresponding to the current column

Example 30. Figure 7.2 on the previous page shows one nice tree decomposition of the AF AF , ⟨T ,X ⟩
where:

• T = (VT ,ET) with:

– VT = {ti|i ∈ J0,24K}
– ET = {(ti, ti+1)|i ∈ J0,15K∪ J17,23K}∪{(t8, t17)}

• X = {Xti |i ∈ J0,24K} with each bag being as summarised in Table 7.1.

As node type examples, according to Definition 46:

• t24 is a LEAF type node (no child)

• t2 is a FORGET type node (t3 being a child of t2)

• t10 is a INSERT type node (t11 being a child of t10)

• t8 is a JOIN type node (t9 and t17 being the children of t8)

The nice tree decomposition shown in Figure 7.2 on the previous page is one among all tree decomposi-
tions of AF with the minimal width, which is 4. In other words, the tree-width of AF is 4.

There exist other possible nice tree decompositions of AF with non minimal width. As an example, the
one shown in Figure 7.3 on the next page has a width of 11.

To each nice tree node is associated a sub AF defined as following:

76 CHAPTER 7. RELATED WORK: ALGORITHMS FOR AF

∅

a

ab

abc

abcd

abcde

abcde f

abcde f g

abcde f gh

abcde f ghi

abcde f ghi j

abcde f ghi jk

abcde f ghi jkl

Figure 7.3: Nice tree decomposition of AF

Definition 47. (Tree node associated AF). Let AF be an AF and ⟨T ,X ⟩ be its tree decomposition where
T = (VT ,ET) is a tree and X = (Xt)t∈VT

is a set of so-called bags. We denote by X⩾t the union of all
bags Xs ∈X such that s occurs in the subtree of T rooted at t.

Let t ∈VT be a tree node. The AF af associated with t is defined as following:

af = AF ↓X⩾t

Example 31. Let take as example the node t12 in Figure 7.2 on page 74. According to Definition 47, we
have:

X⩾t12 = Xt12 ∪Xt13 ∪Xt14 ∪Xt15 ∪Xt16 = {a,d,e, f ,k}

We have so:
af = AF ↓X⩾t12

= AF ↓{a,d,e, f ,k}
Figure 7.4 on the following page shows the AF af associated with the node t12.

Once the AF nice tree determined and the sub AFs associated to each tree node identified, the tree is
explored from the bottom up. On each tree node, the labellings of its associated AF are computed. The node
type (LEAF, INSERT, FORGET or JOIN) indicates which operations to do in order to update the computed
set of labellings.

Notice that the sub AF associated with the tree root is the whole AF. So, at the tree root, all the labellings
of the AF are found.

7.2. DIRECT OR SEMI-DIRECT APPROACH BASED ALGORITHMS 77

k

f

d e

a

Figure 7.4: af , the AF associated with the node t12

This is basically the general idea of this algorithm.
This algorithm is dynamic in the sense that we are interested in the labellings of sub AF that evolve

dynamically following the nice tree decomposition. To each leaf is associated an initial AF that will be
transformed forgetting and inserting argument nodes in it. This approach has the advantage of breaking the
SCC and eventually the hardness of the AF problem. Nevertheless it has also some disadvantages.

Indeed, each step adds or removes at most one argument. The consequence is that a lot of updates are
useless and a lot of space is used for potential correct labellings.

a1 a2 a3 a4

Figure 7.5: AF example

∅

a1

a1 ,a2

a2

a2 ,a3

a3

a3 ,a4

t0:

t1:

t2:

t3:

t4:

t5:

t6:

Figure 7.6: Nice tree decomposition

Example 32. Let take as example the AF in Figure 7.5 and its nice tree decomposition in Figure 7.6.
Although this AF admits only one preferred labelling which is {(a1,in),(a2,out),(a3,in),(a4,out)},

as we go from the leaf to the top the set of partial labellings will be updated 6 times and, at each tree node,

78 CHAPTER 7. RELATED WORK: ALGORITHMS FOR AF

we will have to consider all the potential partial labellings.

Actually, this algorithm does not work directly with labellings but with “colorings”; a coloring is a 4-state
argument mapping from which are determined the semantic extensions we are interested in. Without going
too deep into the details of how this coloring works, we will just highlight the fact that for each argument
attacked by an argument outside the current associated AF, four colorings have to be considered, according
to the four possible status of that argument. As a consequence, a lot of space is used in order to ensure that
all possibilities have been explored.

This algorithm and the AFDivider algorithm have both the ability to break the SCC and hopefully the
hardness the AF. However, they differ on other points and the main one is how the combinatorial effect of
potential labelling number is tackled. Although the AFDivider algorithm computes all cases for a given
cluster, this combinatorial effect is limited to that particular cluster and is not propagated on the whole AF.
As a consequence, space and computational time are spared.

7.2.2 SCC decomposition based algorithms
In [52], Beishui Liao proposed an algorithm that computes the labellings of an AF following its SCC de-
composition.

Notice that if each SCC of a graph is considered as a super node, the resulting super graph will be acyclic.
We can thus have a hierarchical representation of this super graph: in the first layer are SCCs with no

parents, in the second layer are contained all the SCCs whose parents are in the previous layers, and so on.

j

k l

f

d e

h

g i

b

ca

Layer 2

Layer 1

Layer 0

SCC n°4

SCC n°3SCC n°2

SCC n°1

Figure 7.7: The SCC decomposition for AF (the first layer being Layer 0)

Example 33. Figure 7.7 is the SCC hierarchical view of AF .

Given that the labellings of each SCC are influenced only by the ones of its parents, it is possible to guide
the research of labellings following the hierarchical representation of the SCCs of the AF. This is the main
idea of the algorithm.

7.2. DIRECT OR SEMI-DIRECT APPROACH BASED ALGORITHMS 79

Example 34. In a first step, the labellings of the SCC n°1 are computed. The result is the following set of
labellings:

{ℓscc1
1 ,ℓscc1

2 ,ℓscc1
3 } with


ℓscc1

1 = {(a,in)},{(b,out)},{(c,out)},

ℓscc1
2 = {(a,out)},{(b,in)},{(c,out)},

ℓscc1
3 = {(a,out)},{(b,out)},{(c,in)}

Then, possible labellings of the SCCs n°2 and n°3 are computed considered the labellings of the parents
SCCs, in this case SCC n°1. For instance, considering ℓscc1

1 = {(a,in)},{(b,out)},{(c,out)}:

• For SCC n°2 we have:

{ℓscc2
1 ,ℓscc2

2 } with

 ℓscc2
1 = {(d,out)},{(e,out)},{(f ,in)},

ℓscc2
2 = {(d,out)},{(e,in)},{(f ,out)}

• For SCC n°3 we have:

{ℓscc3
1 ,ℓscc3

2 ,ℓscc3
3 } with


ℓscc3

1 = {(g,out)},{(h,out)},{(i,in)},

ℓscc3
2 = {(g,out)},{(h,in)},{(i,out)},

ℓscc3
3 = {(g,in)},{(h,out)},{(i,out)}

The same thing must be done considering ℓscc1
2 and ℓscc1

3 .

Afterwards, the labellings of SCC n°4 are computed according to the compatible SCC parents labellings.
In the interest of brevity we will not give the entire result as this AF has 47 distinct preferred labellings.

The great advantage of this approach is that no useless computation is made. When going from one layer
to another, only possible labellings are considered. This reduces considerably the computational time.

Although not proposed in this paper, it is possible to parallelize the computation when there are indepen-
dent branches in the acyclic super graph. But even though a distributed version of this algorithm had been
proposed, it would still be very different from the AFDivider algorithm.

Indeed, this algorithm is profitable only if there are several SCCs and if the hardness of solving the AF
problem is not inside the SCCs. The major difference is that the AFDivider algorithm is able to look inside
SCCs and hopefully break the hardness by finding clusters in it. Another difference is that the way AFDivider
parallelizes the labelling computation is not subject to any hierarchy of SCCs. As a consequence, there are
no sequential constraints on the distributed computation made to construct the labellings. Finally, the used
clustering method tries to balance the cluster sizes (in terms of number of arguments) so that hopefully the
workload may be also balanced.

7.2.3 Parallel algorithms
The algorithm proposed by Cerruti et al. in [25], named P-SCC-REC, has several common points with
the AFDivider algorithm. Indeed, both algorithms are distributed and they are able to look inside SCCs.
Nevertheless, the way of distributing and of “cutting” of the AF are completely different.

The P-SCC-REC algorithm is rather complex. We are going to highlight its main concepts (see [25] for
additional information).

It is a recursive algorithm. In one recursion level, the following steps are performed:

80 CHAPTER 7. RELATED WORK: ALGORITHMS FOR AF

• As in the AFDivider algorithm, the grounded labelling is computed and only the hard part of the AF
is considered for the next steps.

• As in the Beishui Liao’s algorithm, an SCC hierarchical view of the AF is determined.

• For each SCC, a greedy labelling computing is performed, considering that all arguments attacking
the given SCC is labelled out . This computation is made in a distributed way, parallelized following
the SCCs.

• For each layer:

– The labelling of the SCCs are computed according to the labelling of their SCC ancestors. This
computation is made in a distributed way, parallelized both following the SCCs and the SCC
ancestors labellings.

* In some cases when the SCC ancestors labelling does not allow to determine quickly the
labellings of the current SCC, P-SCC-REC is called recursively. The sub-AF on which it
is called is that particular SCC, sligthly modified to fit with the labelling of attackers from
its SCC ancestors: arguments that are attacked by in -labelled arguments from its SCC
ancestors are removed.2

– Following the previous step, the set of SCC ancestors labellings of the next layer is determined.

• Some computations of SCC labelling are made using a transformation to SAT.

Example 35. Applied to AF , P-SCC-REC will behave a bit like Beishui Liao’s algorithm as there is no
argument labelled in or out in the grounded labelling of AF .

Notice that, given the labelling ℓscc1
1 = {(a,in)},{(b,out)},{(c,out)}, when computing the labellings

of the SCC n°2, P-SCC-REC will be recursively called on the AF shown in Figure 7.8.

f e

Figure 7.8: SCC n°2 under ℓscc1
1

The P-SCC-REC algorithm will look inside an SCC if its SCC ancestor labelling allows it, not according
to the size of this SCC and its possible hardness, whereas the AFDivider algorithm will try to found clusters
similar in size whether it is necessary to break SCCs or not.

There is another aspect of P-SCC-REC algorithm that may narrow its performance. If we put aside the
greedy phase of the algorithm, the algorithm follows the SCC hierarchical view of the AF and parallelizes
following the SCCs in one layer, and following the ancestor labellings. This later parallelization causes two
problems:

1. Most of the time, it makes the number of threads explodes and so overloads the CPUs.

2. It leads to redundant computation as the computation cases are not based on the states of input argu-
ments of the current SCC.

2P-SCC-REC is called recursively with a parameter which corresponds to the set of arguments attacked by und -labelled arguments
from the SCC ancestors.

7.2. DIRECT OR SEMI-DIRECT APPROACH BASED ALGORITHMS 81

Example 36. Let consider the step to compute the SCC n°4 labellings.

• As an illustration of point 1:

– We have 21 distinct SCC ancestor labellings and so 21 threads will be created. Although AF is
a small AF, the amount of threads is rather important. On a bigger one, the number of threads
could quickly overload the CPUs.

• As an example of point 2:

– Even if several distinct SCC ancestor labellings are equal when restricted to the arguments f
and h, the labelling computation will be made for each of them, which is highly redundant.

It is true that some of the cases computed by the AFDivider algorithm may be unused in the reunifying
phase (bear in mind that it is not possible to know them in advance) but there is no waiting time due to a
hierarchical view of the AF, and there is no redundant computation. Furthermore, if the AF is not too dense,
the number of threads will not explode, even though the number of labellings is huge.

Part IV

Higher-Order Attack Argumentation
Frameworks: Background

82

83

Part presentation:

Higher-Order Attack Argumentation Frameworks are Argumentation Frameworks in which an attack can
have as target an attack. In this background are presented two of such frameworks:

• The so-called “Recursive Argumentation Framework” (denoted RAF), introduced in [18], consists of
a set of arguments, a set of attacks, and mapping functions that associate to each attack a source and a
target.

• The so-called “Argumentation Framework with Recursive Attack” (denoted AFRA), introduced in
[5, 6], consists of a set of arguments and a set of named attacks.

This implies that they cannot be represented as a directed graph like AFs. However their graphical represen-
tation is as much as intuitive, as shown in Figure 7.9.

a b δ

c

d

eγ

hf θ

g

ι

α

β

ε

ζ
η

κ

λ

Figure 7.9: Example of a RAF/AFRA

Formally, RAFs and AFRAs are defined as follows:

Definition 48 (Recursive argumentation framework - RAF). A Recursive Argumentation Framework (RAF)
RAF = ⟨A,K,s, t⟩ is a quadruple where A and K are (possibly infinite) disjoint sets respectively representing
arguments and attack names, and where s : K → A and t : K → A∪K are functions respectively mapping
each attack to its source and to its target. The set of all possible RAFs is denoted as Φra f .

Definition 49 (AFRA). An Argumentation Framework with Recursive Attacks (AFRA) is a pair AFRA =
⟨A,K⟩ where A is a set of arguments and K is a set of named attacks, namely pairs (a,x) such that a ∈ A and
x ∈ (A∪K). Given an attack α = (a,x), we say that a is the source of α (denoted as “src(α)”) and x is the
target of α (denoted as “trg(α)”). The set of all possible AFRAs is denoted as Φa f ra.

Note: Although the definitions of AFRA and RAF are equivalent and that both frameworks can represent
the same relations between arguments, substantial differences appear afterward in the way that semantics
are computed.

84

Note: In the following, to simplify the notation and highlight the link between AFRA and RAF, while refering
to AFRAs, we will use “s(α)” (resp. “t(α)”) instead of “src(α)” (resp. “trg(α)”) to represent the source
(resp. the target) of an attack α .

Example 37. Figure 7.9 on the previous page shows a RAF/AFRA example. In all this document, arguments
(in Latin letter) will be represented by a round box, while attacks (in Greek letters) will be represented by
directed edges from a “circular node” to another “node” (squared or circular) through a “square node”
containing the name of the attack. As one can notice, the attacks γ , κ and η have as target an attack.

In Chapter 8 are presented the background for AFRAs and in Chapter 9 the background for RAFs.

Chapter 8

Argumentation Framework with
Recursive Attacks (AFRA)

In this chapter, we first present AFRA semantics (Section 8.1). Then, we present the relations between
AFRA and AF (Section 8.2 on page 90).

8.1 Extension-based Semantics

What differs from AF to AFRA is that in an AFRA an attack can have an attack for target. As a consequence,
an attack is not always “acceptable”. In order to express this fact, an AFRA “extension-based semantic”,
that is, a function that defines the solutions of an AFRA, produces AFRA-extension that not only contains
arguments but also attacks. As for extensions in AF, the idea behind the notion of AFRA-extension is
that when presented together, the elements of the AFRA-extension (i.e. arguments plus attacks) win the
argumentation.

8.1.1 Definitions
Formally, an AFRA extension-based semantic is defined as follows:

Definition 50 (Extension-based Semantics). Let σ be a function over Φa f ra. σ is said to be an AFRA
extension-based semantics iff the following property holds:

∀AFRA ∈Φa f ra, σ(AFRA)⊆ 2A∪K , with AFRA = ⟨A,K⟩

An AFRA-extension is thus defined as follows:

Definition 51 (AFRA-extension). A set S is said to be an AFRA-extension of some AFRA = ⟨A,K⟩ if it
satisfies: S⊆ A∪K.

Intuitively, any attack that does not belong to S is understood as non-acceptable and, in this sense, it
cannot defeat its target. Two types of defeat relation are defined for AFRAs:

85

86 CHAPTER 8. ARGUMENTATION FRAMEWORK WITH RECURSIVE ATTACKS (AFRA)

Definition 52 (Direct defeat [6]). Let AFRA = ⟨A,K⟩ be an AFRA, α ∈ K be an attack and x ∈ (A∪K) be
an argument or an attack. We say that α directly defeats x iff t(α) = x.

Definition 53 (Indirect defeat [6]). Let AFRA = ⟨A,K⟩ be an AFRA, α ∈ K be an attack and β ∈ K be an
attack. We say that α indirectly defeats β iff t(α) = s(β).

The following notion captures both defeat relations:

Definition 54 (Defeat [6]). Let AFRA = ⟨A,K⟩ be an AFRA, α ∈ K be an attacks and x ∈ (A∪K) be an
argument or an attack. We say that α defeats β , denoted as α →K x, iff α directly or indirectly defeats β .

From the defeat relation, we formally define the notion of acceptability as follows:

Definition 55 (Acceptability [6]). Let AFRA = ⟨A,K⟩ be an AFRA, S⊆ (A∪K) be a subset of the elements
of AFRA and x ∈ (A∪K) be an argument or an attack. We say that x is acceptable w.r.t. S (or defended by
S) iff ∀α ∈ K s.t. α →K x, ∃β ∈ S s.t. β →K α .

From these notion of defeat and acceptability, we can define the sets of defeated and acceptable element
w.r.t. some set of elements S.

Definition 56 (Defeat and acceptable set). Let AFRA = ⟨A,K⟩ be an AFRA.

• Let S be a subset of the elements of AFRA . We denote by AFRA-De f (S) = {x|x ∈ (A∪K),∃α ∈
S s.t. α →K x} the set of all the elements defeated by S.

• Let S be a subset of the elements of AFRA . We denote by AFRA-Acc(S) = {x|x ∈ (A∪K),∀α ∈
K s.t. α →K x, ∃β ∈ S s.t. β →K α} the set of all the elements defended by S.

Note: These definitions of defeat and acceptable sets slightly differ from the ones given in [6], but they are
equivalent. We chose these ones to be closer the corresponding definitions for RAF (once more, in order to
facilitate the comparison between the two approaches).

As for Dung’s Argumentation Framework, based on the notion of acceptability, semantics have been
defined for AFRAs. We will focus only on semantics we are interested in although much semantics have
been defined.

Definition 57 (AFRA Semantics [6]). Let AFRA = ⟨A,K⟩ be an AFRA and S ⊆ (A∪K) be a subset of its
elements. S is said to be an extension:

1. AFRA-conflict-free iff S∩AFRA-De f (S) =∅.

2. AFRA-admissible iff it is AFRA-conflict-free and S⊆ AFRA-Acc(S).

3. AFRA-complete iff it is AFRA-conflict-free and S = AFRA-Acc(S).

4. AFRA-preferred iff it is a ⊆-maximal AFRA-admissible extension.

5. AFRA-grounded iff it is a ⊆-minimal AFRA-complete extension.

6. AFRA-stable iff it is AFRA-conflict-free and S∪AFRA-De f (S) = (A∪K).

7. AFRA-semi-stable extension iff it is an AFRA-complete extension such that S∪AFRA-De f (S) is max-
imal w.r.t. ⊆.

8.1. EXTENSION-BASED SEMANTICS 87

Given an AFRA AFRA , we denote by co(AFRA) (resp. gr(AFRA), st(AFRA), sst(AFRA), pr(AFRA))
the set of AFRA-extensions of AFRA under the semantics AFRA-complete (resp. AFRA-grounded, AFRA-
stable, AFRA-semi-stable and AFRA-preferred).

Example 38. Let consider the AFRA shown in Figure 7.9 on page 83. The AFRA-extensions corresponding
to the semantics mentioned are given in Table 8.1 on the next page. By sake of space the AFRA-admissible
and the AFRA-conflict-free semantics are not given.

8.1.2 Properties
In [6], the following propositions and theorem have been proven.

Proposition 16. The set of all AFRA-admissible extensions forms a complete partial order with respect to
⊆.

Theorem 1. The following assertions hold:

• every AFRA-admissible extension is also AFRA-conflict-free

• every AFRA-complete extension is also AFRA-admissible

• the AFRA-grounded extension is also AFRA-complete

• every AFRA-preferred extension is also AFRA-complete

• every AFRA-semi-stable extension is also AFRA-preferred

• every AFRA-stable extension is also AFRA-semi-stable

Proposition 17 (extension semantics cardinality). The following properties hold:

• There is always at least one AFRA-conflict-free extension.

• There is always at least one AFRA-admissible extension.

• There is always at least one AFRA-complete extension.

• There is always a unique AFRA-grounded extension.

• There is always at least one AFRA-preferred extension.

• There is always at least one AFRA-semi-stable extension.

• It may be the case that there is no AFRA-stable extension.

Figure 8.1 on page 89 illustrates Theorem 1 and Proposition 17. Notice that we have a partial ordering
similar to the one for AF (see Figure 1.1 on page 10).

88 CHAPTER 8. ARGUMENTATION FRAMEWORK WITH RECURSIVE ATTACKS (AFRA)

AFRA-extensions

S1 S2 S3 S4

A
rg

um
en

ts
or

at
ta

ck
s

a

b

c

d

e

f

g

h

α

β

γ

δ

ε

ζ

η

θ

ι

κ

λ

A
FR

A
Se

-
m

an
tic

s

AFRA-complete

AFRA-grounded

AFRA-preferred

AFRA-stable

In the first part of the table, i j means that element i belongs to extension j.
In the second part of the table, i j means that j is an extension of the semantics i.

Table 8.1: AFRA semantics

8.1. EXTENSION-BASED SEMANTICS 89

AFRA-conflict-free (+)

AFRA-admissible (+)

AFRA-complete (+)

AFRA-preferred (+)

AFRA-semi-stable (+)

AFRA-stable (*)

AFRA-grounded (1)

Figure 8.1: AFRA semantics partial ordering

The cardinality of each semantics is represented between parenthesis.
“∗” means zero or more, “+” means one or more.

90 CHAPTER 8. ARGUMENTATION FRAMEWORK WITH RECURSIVE ATTACKS (AFRA)

8.2 Relation between AFRA and AF
There exists a way to express AFRAs as AFs.

Definition 58 (AFRA expressed as AF [6]). Let AFRA = ⟨A,K⟩ be an AFRA. The corresponding AF of

AFRA , ÃFRA =
〈

Ã, K̃
〉

is defined as following:

• Ã = A∪K

• K̃ = {(a,b)|(a,b) ∈ (A∪K)2 and a→K b}

In [6] has been shown a very important result concerning AFRAs and their corresponding AFs: there
exists a one-to-one correspondence between extensions in AFRAs and their corresponding AFs for some
semantics. Here we will focus on Dung’s semantics and the semi-stable one but the result shown in [6]
concerned much semantics.

Proposition 18 (Semantics correspondence: AFRA expressed as AF [6]). Let AFRA = ⟨A,K⟩ be an AFRA

and ÃFRA =
〈

Ã, K̃
〉

its corresponding AF. Let S⊆ A∪K.

• S is an AFRA-complete extension for AFRA iff S is a complete extension for ÃFRA .

• S is an AFRA-preferred extension for AFRA iff S is a preferred extension for ÃFRA .

• S is an AFRA-grounded extension for AFRA iff S is a grounded extension for ÃFRA .

• S is an AFRA-stable extension for AFRA iff S is a stable extension for ÃFRA .

• S is an AFRA-semi-stable extension for AFRA iff S is a semi-stable extension for ÃFRA .

Note: This correspondence does not correspond to a conservative generalization of AF. Indeed, if we
consider for instance AFRA = ⟨A,K⟩, the non recursive AFRA illustrated in Figure 8.2(a), then the set
{α,c} is an AFRA-admissible set. Notice that {α,c} is an admissible extension of ÃFRA as represented
in Figure 8.2(b). Nevertheless, if we read AFRA as an AF (i.e. without naming its attacks) c cannot be
accepted without a. This is due to the fact that the link between an attack and its source is broken in the
AFRA semantics (as it can be seen in Figure 8.2(b)).

a b cα β

(a) A non recursive AFRA

a α β c

b

(b) Corresponding AFRA expressed as AF

Figure 8.2: An example of AFRA expressed as AF

Note: See Section 9.3 on page 99 for the relation between RAFs and AFRAs.

Chapter 9

Recursive Argumentation Framework
(RAF)

In this chapter, we first present RAF structure-based semantics, the counterpart of AF extension-based
semantics (Section 9.1). Then, we present the relations between RAF and AF that already exist in the
literature (Section 9.2 on page 94). Notice that several RAF notions/ideas are similar to those defined for
AFRAs. A comparison between the two approaches is given in Section 9.3 on page 99.

9.1 Structure Semantics

As in AFRA, what differs from AF to RAF is that in a RAF an attack can have an attack for target. As a
consequence, an attack is not always “valid”. In order to express this fact, a RAF “structure-based semantic”,
that is, a function that defines the solutions of a RAF produces structures: a couple whose first element is a
set of arguments and the second, a set of attacks. As for extensions in AF (or in AFRA), the idea behind the
notion of structure is that when presented together, the elements of the structure (i.e. arguments plus attacks)
win the argumentation.

9.1.1 Definitions

Formally, a RAF structure-based semantic is defined as follows:

Definition 59 (Structure-based Semantics). Let σ be a function over Φra f . σ is said to be a RAF structure-
based semantics iff the following property holds:

∀RAF ∈Φra f , σ(RAF)⊆ 2A×2K , with RAF = ⟨A,K,s, t⟩

A structure is thus defined as follows:

Definition 60 (Structure). A pair U= ⟨S,Q⟩ is said to be a structure of some RAF = ⟨A,K,s, t⟩ if it satisfies:
S⊆ A and Q⊆ K. Notice that by x ∈ U we mean: x ∈ S∪Q.

91

92 CHAPTER 9. RECURSIVE ARGUMENTATION FRAMEWORK (RAF)

Intuitively, the set S represents the set of “acceptable arguments” w.r.t. the structure U, while Q represents
the set of “valid attacks” w.r.t. U. Any attack that does not belong to Q is understood as non-valid and, in
this sense, it cannot defeat its target.

Definition 61 (Defeat and Inhibition in RAF). Let U= ⟨S,Q⟩ be a structure. The set of all arguments
defeated by U, denoted RAF-De f (U), is defined as follows:

RAF-De f (U) = {a ∈ A|∃α ∈ Q s.t. s(α) ∈ S and t(α) = a}

The set of all attacks inhibited by U, denoted RAF-Inh(U), is defined as follows:

RAF-Inh(U) = {α ∈ K|∃β ∈ Q s.t. s(β) ∈ S and t(β) = α}

The counterpart of defeat/inhibition is the notion of acceptance:

Definition 62 (RAF Acceptability). An element x ∈ (A∪K) is said to be acceptable w.r.t. some structure U

iff every attack α ∈ K with t(α) = x satisfies one of the two following conditions:

• s(α) ∈ RAF-De f (U)

• α ∈ RAF-Inh(U)

By RAF-Acc(U) we denote the set containing all acceptable arguments and attacks with respect to U.

For any pair of structures U= ⟨S,Q⟩ and U′ = ⟨S′,Q′⟩, we write U′ ⊑ U′ iff (S∪Q)⊆ (S′∪Q′) and we
write U ⊑ar U

′ iff S ⊆ S′. As usual, we say that a structure U is ⊑-maximal (resp. ⊑ar-maximal) iff every
U′ that satisfies U⊑ U′ (resp. U⊑ar U

′) also satisfies U′ ⊑ U (resp. U′ ⊑ar U).

Inspired by Dung’s AF semantics, the first RAF structure-based semantics, that have been defined in [18],
are the following ones:

Definition 63 (RAF structure semantics). Let U= ⟨S,Q⟩ be a structure over some RAF RAF = ⟨A,K,s, t⟩.
U is said to be:

1. RAF-conflict-free iff S∩RAF-De f (U) =∅ and Q∩RAF-Inh(U) =∅.

2. RAF-naive iff it is a ⊑-maximal RAF-conflict-free structure.

3. RAF-admissible iff it is RAF-conflict-free and (S∪Q)⊆ RAF-Acc(U).

4. RAF-complete iff it is RAF-conflict-free and (S∪Q) = RAF-Acc(U).

5. RAF-grounded iff it is a ⊑-minimal RAF-complete structure.

6. RAF-preferred iff it is a ⊑-maximal RAF-admissible structure.

7. RAF-arg-preferred iff it is a ⊑ar-maximal RAF-preferred structure.

8. RAF-stable iff S = A\RAF-De f (U) and Q = K \RAF-Inh(U).

Notice that the RAF-semi-stable semantics has not been defined in [18]. This is a contribution of this
thesis. See Section 10.1 on page 102.

Example 39. Let consider the RAF shown in Figure 7.9 on page 83. The structures corresponding to the
semantics mentioned in Definition 63 are given in Table 9.1 on the following page. By sake of space the
RAF-admissible and the RAF-conflict-free semantics are not given.

9.1. STRUCTURE SEMANTICS 93

Structures

U1 U2 U3 U4

A
rg

um
en

ts
or

at
ta

ck
s

a

b

c

d

e

f

g

h

α

β

γ

δ

ε

ζ

η

θ

ι

κ

λ

Se
m

an
tic

s
w

ith
st

ru
ct

ur
es

RAF-complete

RAF-grounded

RAF-preferred

RAF-arg-preferred

RAF-stable

In the first part of the table, i j means that element i belongs to structure j.
In the second part of the table, i j means that j is a structure of the semantics i.

Table 9.1: RAF semantics with structures

94 CHAPTER 9. RECURSIVE ARGUMENTATION FRAMEWORK (RAF)

9.1.2 Properties
In [18], Propositions 19 and 20 and Theorem 2 have been proven.

Proposition 19. The set of all RAF-admissible structures forms a complete partial order with respect to ⊑.
Furthermore, for every RAF-admissible structure U, there exists a RAF-preferred (and a RAF-arg-preferred)
U′ such that U⊑ U′.

Theorem 2. The following assertions hold:

• every RAF-naive structure is also RAF-conflict-free

• every RAF-admissible structure is also RAF-conflict-free

• every RAF-complete structure is also RAF-admissible

• the RAF-grounded structure is also RAF-complete

• every RAF-preferred structure is also RAF-complete

• every RAF-arg-preferred structure is also RAF-preferred

• every RAF-stable structure is also RAF-arg-preferred

• every RAF-stable structure is also a RAF-naive

Proposition 20 (Structure semantics cardinality). The following properties hold:

• There is always at least one RAF-conflict-free extension.

• There is always at least one RAF-naive extension.

• There is always at least one RAF-admissible extension.

• There is always at least one RAF-complete extension.

• There is always a unique RAF-grounded extension.

• There is always at least one RAF-preferred extension.

• There is always at least one RAF-arg-preferred extension.

• It may be the case that there is no RAF-stable extension.

Figure 9.1 on the following page illustrates Theorem 2 and Proposition 20. Notice that we have a partial
ordering similar to the one for AF (see Figure 1.1 on page 10).

9.2 Relation between RAF and AF
In this section the relation between RAFs and AFs is briefly presented. We first present semantics relation
(Section 9.2.1 on page 96) then a flattening process that transforms RAF into AF (Section 9.2.2 on page 98).

9.2. RELATION BETWEEN RAF AND AF 95

RAF-conflict-free (+)

RAF-admissible (+) RAF-naive (+)

RAF-complete (+)

RAF-preferred (+)

RAF-arg-preferred (+)

RAF-stable (*)

RAF-grounded (1)

Figure 9.1: RAF semantics partial ordering

The cardinality of each semantics is represented between parenthesis.
“∗” means zero or more, “+” means one or more.

96 CHAPTER 9. RECURSIVE ARGUMENTATION FRAMEWORK (RAF)

9.2.1 Semantics correspondence
In order to establish a point of comparison, we define the notion of D-structure:

Definition 64 (D-structure). A d-structure U= ⟨S,Q⟩ is a structure that satisfies:

(RAF-Acc(U)∩K)⊆ Q

Note: Following the previous definition, all valid attacks w.r.t. a d-structure U belong to U.

Example 40. Let consider RAF = ⟨A,K,s, t⟩, the RAF illustrated in Figure 7.9 on page 83 and let consider
U1, U2, U3 and U4, the structures shown in Table 9.1 on page 93. We have: U1, U2, U3 and U4 being
d-structures.

RAF semantics for d-structures can be defined as follows:

Definition 65. A conflict-free (respectively naive, admissible, complete, preferred, grounded, stable) d-
structure is a RAF-conflict-free (respectively RAF-naive, RAF-admissible, RAF-complete, RAF-preferred,
RAF-grounded, RAF-stable) structure which is also a d-structure.

Given the definition of the RAF-complete semantics, the following property holds:

Proposition 21. Every RAF-complete structure is a d-structure.

It is interesting to note that an AF can be viewed as a RAF without recursive attack, that is without attack
whose target is an attack. Such a RAF is called a “non recursive framework” and is formally defined as
follows:

Definition 66 (Non recursive framework). A framework RAF = ⟨A,K,s, t⟩ is said to be non-recursive iff :

∀α ∈ K, t(α) ∈ A

Example 41. Let consider RAF = ⟨A,K,s, t⟩, the RAF illustrated in Figure 9.2. RAF is a non recursive
framework.

a b

c

γ

α

β

Figure 9.2: A non recursive RAF

9.2. RELATION BETWEEN RAF AND AF 97

AF extension-based semantics produce sets of arguments. Unlikely, RAF structure-based semantics
produce pairs of arguments and attacks. In order to make a bridge between those two frameworks and
compare them, the notion of extensions w.r.t. a given RAF has to be defined:

Definition 67 (Argument extensions). Given RAF = ⟨A,K,s, t⟩. Let S ⊆ A be a set of arguments. S is said
to be a conflict-free extension (respectively naive, admissible, complete, preferred, grounded, stable) w.r.t.
RAF iff there is some Q⊆K such that U= ⟨S,Q⟩ is a conflict-free (respectively naive, admissible, complete,
preferred, grounded, stable) d-structure of RAF .

Example 42. Let consider the non recursive framework in Figure 9.2 on the previous page. We have: {a,c}
being a complete extension w.r.t. RAF . Indeed: U = ⟨{a,c} ,{α,β ,γ}⟩ is a RAF-complete d-structure of
RAF .

Finally, with the notions defined above, the following theorem and its corollary can be established:

Theorem 3. For each semantics σ ∈ {conflict-free, naive, admissible, complete, preferred, grounded,
stable}: A set of arguments S ⊆ A is a σ -extension w.r.t. some non-recursive RAF = ⟨A,K,s, t⟩ iff it is
a σ -extension w.r.t. AF = ⟨A,{(s(α), t(α))|α ∈ K}⟩.

Corollary 1. For each semantics σ ∈ {complete, preferred, grounded, stable}: U= ⟨S,K⟩ is a σ -structure
w.r.t. a non-recursive RAF = ⟨A,K,s, t⟩ iff S is σ -extension w.r.t. AF = ⟨A,{(s(α), t(α))|α ∈ K}⟩.

Example 43. Let AF = ⟨A,K⟩ be the AF show in Figure 9.3 and RAF be the RAF of Example 41 on
the previous page. For σ ∈ {complete, preferred, grounded, stable}, we can verify that: U= ⟨S,Q⟩ is a
RAF-σ -structure of RAF iff S is σ -extension of AF .

a b

c

Figure 9.3: The AF corresponding to the non recursive framework of Figure 9.2 on the previous page

Theorem 3 and Corollary 1 prove that RAFs are a conservative generalization of AFs. Indeed there
is a one-to-one correspondence between the structures of a RAF without recursive attacks and their corre-
sponding Dung’s extensions for the semantics complete, preferred, grounded and stable. Furthermore, RAFs
conserve the notion conflict-freeness.

Note: In Section 10.1 on page 102, we prove that there is also a one-to-one correspondence between the
structures of a RAF without recursive attacks and their corresponding Dung’s extensions for semi-stable
semantics.

98 CHAPTER 9. RECURSIVE ARGUMENTATION FRAMEWORK (RAF)

b

c

βa α

d

γδ

(a) A RAF

b

nbβ

β

c

αnaαa

naγ

γ

δ

ndδ

d

(b) Corresponding MAF/AF

Figure 9.4: Example of RAF flattening with Raf2Afmaf

9.2.2 RAF flattening
In [18], a transformation has been already proposed in order to establish a link between RAF and MAF
(Meta-Argumentation Framework). This flattening, inspired by the works presented in [46] and [16], trans-
forms a RAF into MAF. Given that MAFs are basically AFs, a brief presentation of this flattening process is
then relevant.

Definition 68 (RAF flattening to MAF/AF). Let Raf2Afmaf : Φra f → Φa f be the function transforming a
RAF into an AF. Raf2Afmaf is defined as follows:

∀ RAF = ⟨A,K,s, t⟩ ∈Φra f , Raf2Afmaf : RAF 7→MAF =
〈
A′,K′

〉
With: A′ = A∪K∪N

N =
{

ns(α)α |α ∈ K
}

K′ =
{
(s(α),ns(α)α)|α ∈ K

}
∪
{
(ns(α)α ,α)|α ∈ K

}
∪{(α, t(α))|α ∈ K}

Example 44. Let consider the RAF RAF illustrated in Figure 9.4(a). Figure 9.4(b) illustrates AF =
Raf2Afmaf(RAF), the MAF/AF corresponding to RAF .

Definition 69 (RAF Structure to MAF/AF extension). Let RAF = ⟨A,K,s, t⟩ be a RAF and U= ⟨S,Q⟩ be a
structure. We denote by str2MafExt(U) the MAF/AF extension corresponding to U. It is defined as:

str2MafExt(U) = S∪{α ∈ Q|s(α) ∈ S}∪
{

ns(α)α ∈ N
∣∣ s(α) /∈ S and s(α) ∈ RAF-De f (U)}

Theorem 4. For each semantics σ ∈ {complete,stable,preferred,grounded} and for any RAF ∈ Φra f , the

9.3. RELATION BETWEEN RAF AND AFRA 99

function str2MafExt(·) is a one-to-one correspondence between the sets of all σ -structures of RAF and
the set of all σ -extensions of Raf2Afmaf(RAF).

It is important to note that even thought there is a one-to-one correspondence between the sets of all
σ -structures and the set of all σ -extensions, this correspondence does not guarantee that each acceptable
element w.r.t. a structure will be acceptable w.r.t. its corresponding extension in the resulting MAF/AF.

Example 45. As an illustration of that fact, we have following Example 44 on the previous page:

• U= ⟨{b} ,∅⟩ being a RAF-admissible structure of RAF . We have: RAF-Acc(U)= {α,δ ,γ}. ⟨{b} ,{α ,
δ ,γ}⟩ is thus a RAF-complete structure. By the way, it is also the RAF-grounded structure.

• Raf2Afmaf(U) = {b} is an admissible extension of MAF and it is also its grounded extension. We
have: Acc({b}) =∅. As a consequence, α is not acceptable w.r.t. {b}.

This remark will serve as motivation for a new flattening process. See Chapter 12 on page 114.

9.3 Relation between RAF and AFRA
In this section the relation between RAFs and AFs is briefly presented. In order to establish a point of
comparison, we define a transformation from RAF structures to AFRA extensions:

Definition 70 (RAF Structure to AFRA extension [18]). Let RAF = ⟨A,K,s, t⟩ be a RAF and U= ⟨S,Q⟩ be
a structure. We denote by str2afraExt(U) the AFRA extension corresponding to U. It is defined as:

str2afraExt(U) = S∪{α ∈ Q|s(α) ∈ S}

In [18], Proposition 22 and Theorem 5 have been proven.

Proposition 22. Let RAF = ⟨A,K,s, t⟩ be a RAF and U= ⟨S,Q⟩ be some RAF-conflict-free (respectively
RAF-admissible) structure. Then str2afraExt(U) is AFRA-conflict-free (respectively AFRA-admissible).

Theorem 5. For each semantics σ ∈ {complete,stable,preferred,grounded}, the function str2afraExt(·)
is a one-to-one correspondence between the sets of all σ -structures and the set of all AFRA-σ -extensions.

Example 46. Let consider the RAF/AFRA shown in Figure 8.2 on page 90. Following Examples 38 and 39
on page 87 and on page 92 and as shown by the result in Table 8.1 on page 88 and Table 9.1 on page 93,
there is a one-to-one correspondence between the sets of all structures and the set of all AFRA-extensions
for the all the complete-based semantics mentioned. We have:

• S1 corresponding to U1

• S2 corresponding to U2

• S3 corresponding to U3

• S4 corresponding to U4

Part V

Higher-Order Attack Argumentation
Frameworks: Contribution

100

101

Part presentation:
In this part is presented all the works about Recursive Argumentation Frameworks done during my thesis.
The two main contributions of this part are the adaptation of the notion of AF labelling for RAF, so-called,
structure labellings, and the study of semantics decomposability property of RAF semantics. These works
lead to several publications:

• An IRIT report about RAF structure labellings, [34], which serves as support for subsequent works,
providing details on concepts and the properties proofs that are not in articles.

• An IRIT report about RAF Complexities, [33], which serves to the same purpose.

• A poster in KR 2020, the 7th International Conference on Principles of Knowledge Representation
and Reasoning, [36], about structure labellings and RAF semantics complexities.

• An article in ICTAI 2020, the 32th International Conference on Tools with Artificial Intelligence [35],
about the structure labellings and RAF semantics complexities.

• A journal article that has been submitted and currently being reviewed in IJAIT, the International
Journal of Artificial Intelligence Tools, gathering most of the works that have been done on RAFs.

Firstly, the notion of Dung labellings and the semi-stable semantics are extended to RAF. Secondly, a
Flattening process that transforms RAFs into AFs, ensuring interesting properties, is introduced. Thirdly,
relying on that Flattening, the complexities of RAF semantics is studied. Fourthly, the notion of Strongly
Connected Component is adapted to RAFs and from this key notion, the semantics decomposability and the
directionality of RAF semantics are studied. Finally, related works are presented.

Chapter 10

New semantics for RAF

In this chapter is introduced the semi-stable semantics for RAF, and a focus on RAFs with no recursive
attacks is done. The notion of AF reinstatement labelling introduced in [14] is also generalized for RAF (so
called “reinstatement RAF labelling”).

Note: The RAF illustrated in Figure 10.1 will serve as running example.

a b δ

c

d

eγ

hf θ

g

ι

α

β

ε

ζ

η

κ

λ

Figure 10.1: Running example

10.1 The Semi-stable semantics

While introducing labellings for AF and studying labellings over some constraints, Caminada et al. ([14])
highlighted a non yet discovered semantics: the semi-stable semantics. From the semi-stable labelling
semantics has been defined the semi-stable extension semantics.

102

10.1. THE SEMI-STABLE SEMANTICS 103

10.1.1 Definition and some properties

As for AF, we propose that semi-stable structures be the ones that decide the most on the acceptance or the
rejection of arguments and attacks. They are formally defined as follows:

Definition 71. (Semi-stable structure). Let RAF = ⟨A,K,s, t⟩ be a RAF and U= ⟨S,Q⟩ be some structure
over it. U is said to be a semi-stable structure iff U is a complete structure such that:

S∪Q∪RAF-De f (U)∪RAF-Inh(U) is maximal w.r.t. to inclusion.

Theorem 6. The following assertions hold:

1. Every stable structure is a semi-stable structure

2. Every semi-stable structure is a preferred structure

□ Proof of Theorem 6: link (See page 230).

Theorem 7. Let RAF = ⟨A,K,s, t⟩ be a RAF. If there exists a stable structure, then the semi-stable structures
coincide with the stable structures.

□ Proof of Theorem 7: link (See page 231).

Example 47. The complete, grounded, preferred, semi-stable, arg-preferred and stable semantics corre-
sponding to Figure 10.1 on the previous page are given in Table 10.1 on page 105. We can observe that the
stable semantics produces no structure for that RAF. This example shows that a semi-stable structure is not
always a stable one (see U3 and U4) and that a preferred structure is not always a semi-stable one (see U2).

10.1.2 The case of RAF with no recursive attacks

As stated in Section 9.2 on page 94, it has been proven in [18] that in RAFs without recursive attacks
there is a one-to-one correspondence between structures and Dung’s extensions for the complete, grounded,
preferred and stable semantics. Let now consider the case of the semi-stable semantics and show that the set
of semi-stable extensions coincides with the set of semi-stable structures on RAF with no recursive attacks
(i.e. RAF that happened to be simple AF). Notice that all the structures of such a RAF contain all the attacks.

Proposition 23 (Semi-stable extensions and structures). Let RAF = ⟨A,K,s, t⟩ be a RAF such that ∀α ∈ K,
t(α) ∈ A. RAF can thus be considered as a simple AF. Let AF = ⟨A,K⟩ be the AF version of RAF .

U= ⟨S,K⟩ is a semi-stable structure of RAF iff S is a semi-stable extension of AF

□ Proof of Proposition 23: link (See page 231).

104 CHAPTER 10. NEW SEMANTICS FOR RAF

10.2 Reinstatement RAF labellings
Now that relations between structure semantics and between structure and extensions semantics have been
stated, we introduce the notion of labelling on RAF.

The reason why we are interested in the labelling approach to compute semantics is that labellings are
more precise than structures (as there are three statuses to describe the acceptance of elements) and especially
because it seems to be more practical for finding algorithms.

Definition 72. (RAF labelling). Let RAF = ⟨A,K,s, t⟩ be a recursive argumentation framework. A RAF
labelling is a tuple L=

〈
ℓA,ℓK

〉
such that ℓA is a total function ℓA : A→ {in,out,und} and ℓK , a total

function ℓK : K→{in,out,und}.
We define:

• in(L) as the tuple
〈
{a ∈ A|ℓA(a) = in},{α ∈ K|ℓK(α) = in}

〉
,

• und(L) as the tuple
〈
{a ∈ A|ℓA(a) = und},{α ∈ K|ℓK(α) = und}

〉
and

• out(L) as the tuple
〈
{a ∈ A|ℓA(a) = out},{α ∈ K|ℓK(α) = out}

〉
.

Let x ∈ (A∪K). Given a certain L, we use the notation L(x) to indicate the labelling of x in L. It could
mean ℓA(x) or ℓK(x), following the nature of x.

Definition 73. (Reinstatement RAF labelling). Let RAF = ⟨A,K,s, t⟩ be a recursive argumentation frame-
work and L=

〈
ℓA,ℓK

〉
be a RAF labelling. L is a reinstatement RAF labelling iff it satisfies the following

conditions: ∀x ∈ (A∪K),

• (L(x) = out) ⇐⇒ (∃α ∈ K s.t. t(α) = x, ℓK(α) = in and ℓA(s(α)) = in)

• (L(x) = in) ⇐⇒ (∀α ∈ K s.t. t(α) = x, ℓK(α) = out or ℓA(s(α)) = out)

An equivalent definition of reinstatement RAF labelling can be made, as for AF, using the notion of
“legally labelled argument”. An in -labelled element is said to be legally in iff all its attackers or their
involved attacks are labelled out . An out -labelled element is said to be legally out iff at least one of
its attackers and the involved attack are labelled in . An und -labelled element is said to be legally und iff
it does not have any attacker and its involved attack that are labelled in and one of its attackers and the
involved attack are not labelled out . Formally, “valid labellings” (notion equivalent to reinstatement RAF
labellings) are defined as follows:

Definition 74 (Legally labelled elements, valid RAF labelling).
Let RAF = ⟨A,K,s, t⟩ be a recursive argumentation framework and L=

〈
ℓA,ℓK

〉
be a RAF labelling over

RAF . Let x be an argument or an attack of RAF . x is said to be legally labelled in L if and only if the 3
following conditions hold:

• x ∈ in(L) iff (∀α ∈ K s.t. t(α) = x, ℓK(α) = out or ℓA(s(α)) = out)

• x ∈ out(L) iff (∃α ∈ K s.t. t(α) = x, ℓK(α) = in and ℓA(s(α)) = in)

• x ∈ und(L) iff ((∄α ∈ K s.t. t(α) = x, ℓK(α) = in and ℓA(s(α)) = in)
and (∃α ∈ K s.t. t(α) = x, ℓK(α) ̸= out and ℓA(s(α)) ̸= out))

L is said to be a valid RAF labelling if all its elements are legally labelled.

Example 48. As an illustration, the labelling version of Table 10.1 on the following page about Figure 10.1
on page 102 is shown in Table 10.2 on page 106.

10.2. REINSTATEMENT RAF LABELLINGS 105

U1 U2 U3 U4

A
rg

um
en

ts
or

at
ta

ck
s

a

b

c

d

e

f

g

h

α

β

γ

δ

ε

ζ

η

θ

ι

κ

λ

Se
m

an
tic

s
w

ith
st

ru
ct

ur
es

grounded

complete

preferred

arg-preferred

semi-stable

stable

In the first part of the table, i j means that the element
i belongs to the structure j.
In the second part of the table, i j means that j is a
structure of the semantics i.

Table 10.1: Semantics structures

106 CHAPTER 10. NEW SEMANTICS FOR RAF

L1 L2 L3 L4

A
rg

um
en

ts
or

at
ta

ck
s

a und in out out

b und out in in

c und und in in

d und und in in

e und und out out

f und und in in

g und in in out

h und und und und

α in in in in

β in in in in

γ in in in in

δ und in out out

ε in in in in

ζ in in in in

η in in in in

θ und und out out

ι und out out in

κ in in in in

λ in in in in

Table 10.2: RAF labellings

Chapter 11

Structure labellings and semantics

In this chapter we show that there exists a one-to-one mapping between RAF labellings and structures.
Specific semantics structures happen to be coinciding with RAF labellings under some constraints. In order
to prove it, we introduce the two following functions to go from structures to labellings and vice versa:

Definition 75. (Struct2Lab and Lab2Struct). Let RAF = ⟨A,K,s, t⟩ be a RAF, U= ⟨S,Q⟩ be a structure
and L=

〈
ℓA,ℓK

〉
be a RAF labelling. The functions Struct2LabRAF and Lab2StructRAF are defined as

following:

• Struct2LabRAF (U) =
〈
ℓA,ℓK

〉
, a RAF labelling with:

– ℓA = {(a,in)|a ∈ S} ∪ {(a,out)|a ∈ (A \ S) and a ∈ RAF-De f (U)} ∪ {(a,und)|a ∈ (A \ S)
and a /∈ RAF-De f (U)}

– ℓK = {(α,in)|α ∈ Q}∪{(α,out)|α ∈ (K \Q) and α ∈ RAF-Inh(U)}∪{(α,und)|
α ∈ (K \Q) and α /∈ RAF-Inh(U)}

• Lab2StructRAF (L) = ⟨S,Q⟩, a structure with:

– S = {a|ℓA(a) = in}
– Q = {α|ℓK(α) = in}

We write Struct2Lab and Lab2Struct instead of Struct2LabRAF and Lab2StructRAF when there is no
ambiguity about the RAF RAF we refer to.

11.1 Complete semantics
Reinstatement RAF labellings coincide with complete structures as stated by Theorems 8 and 9 on the current
page and on the next page.

Theorem 8. Let RAF = ⟨A,K,s, t⟩ be a RAF and let L=
〈
ℓA,ℓK

〉
be a reinstatement RAF labelling. Then

Lab2Struct(L) is a complete structure.

□ Proof of Theorem 8: link (See page 232).

107

108 CHAPTER 11. STRUCTURE LABELLINGS AND SEMANTICS

Theorem 9. Let RAF = ⟨A,K,s, t⟩ be a RAF and let U= ⟨S,Q⟩ be a complete structure. Then Struct2Lab(U)
is a reinstatement RAF labelling.

□ Proof of Theorem 9: link (See page 233).

11.2 Preferred semantics

In this section we show that several constraints on reinstatement RAF labellings lead to the preferred seman-
tics.

11.2.1 Reinstatement RAF labellings with maximal in
Reinstatement RAF labellings such that in (L) is maximal coincide with preferred structures as stated by
Theorems 10 and 11.

Theorem 10. Let RAF = ⟨A,K,s, t⟩ be a RAF and let L=
〈
ℓA,ℓK

〉
be a reinstatement RAF labelling such

that in(L) is maximal. Then Lab2Struct(L) is a preferred structure.

□ Proof of Theorem 10: link (See page 234).

Theorem 11. Let RAF = ⟨A,K,s, t⟩ be a RAF and let U= ⟨S,Q⟩ be a preferred structure. Then L =
Struct2Lab(U) is a reinstatement RAF labelling such that in(L) is maximal.

□ Proof of Theorem 11: link (See page 234).

11.2.2 Reinstatement RAF labellings with maximal out
Reinstatement RAF labellings such that out (L) is maximal also coincide with preferred structures.

Theorem 12. Let RAF = ⟨A,K,s, t⟩ be a RAF and let L=
〈
ℓA,ℓK

〉
be a reinstatement RAF labelling such

that out(L) is maximal. Then Lab2Struct(L) is a preferred structure.

□ Proof of Theorem 12: link (See page 236).

Theorem 13. Let RAF = ⟨A,K,s, t⟩ be a RAF and let U= ⟨S,Q⟩ be a preferred structure. Then L =
Struct2Lab(U) is a reinstatement RAF labelling such that out(L) is maximal.

□ Proof of Theorem 13: link (See page 236).

11.3 Stable semantics: reinstatement RAF labellings with empty und

Reinstatement RAF labellings such that und (L) is empty coincide with stable structures as stated by Theo-
rems 14 and 15 on the following page.

11.4. GROUNDED SEMANTICS 109

Theorem 14. Let RAF = ⟨A,K,s, t⟩ be a RAF and let L=
〈
ℓA,ℓK

〉
be a reinstatement RAF labelling such

that und(L) =∅. Then Lab2Struct(L) is a stable structure.

□ Proof of Theorem 14: link (See page 236).

Theorem 15. Let RAF = ⟨A,K,s, t⟩ be a RAF and let U= ⟨S,Q⟩ be a stable structure. Then L= Struct2Lab(U)
is a reinstatement RAF labelling such that und(L) is empty.

□ Proof of Theorem 15: link (See page 236).

11.4 Grounded semantics
In this section we show that several constraints on reinstatement RAF labellings lead to the grounded se-
mantics.

11.4.1 Reinstatement RAF labellings with maximal und
Reinstatement RAF labellings such that und (L) is maximal coincide with the grounded structure as stated
by Theorems 16 and 17.

Theorem 16. Let RAF = ⟨A,K,s, t⟩ be a RAF and let L=
〈
ℓA,ℓK

〉
be a reinstatement RAF labelling such

that und(L) is maximal. Then Lab2Struct(L) is the grounded structure.

□ Proof of Theorem 16: link (See page 237).

Theorem 17. Let RAF = ⟨A,K,s, t⟩ be a RAF and let U= ⟨S,Q⟩ be the grounded structure. Then L =
Struct2Lab(U) is a reinstatement RAF labelling such that und(L) is maximal.

□ Proof of Theorem 17: link (See page 237).

11.4.2 Reinstatement RAF labellings with minimal in
Reinstatement RAF labellings such that in (L) is minimal coincide with the grounded structure as stated by
Theorems 18 and 19.

Theorem 18. Let RAF = ⟨A,K,s, t⟩ be a RAF and let L=
〈
ℓA,ℓK

〉
be a reinstatement RAF labelling such

that in(L) is minimal. Then Lab2Struct(L) is the grounded structure.

□ Proof of Theorem 18: link (See page 237).

Theorem 19. Let RAF = ⟨A,K,s, t⟩ be a RAF and let U= ⟨S,Q⟩ be the grounded structure. Then L =
Struct2Lab(U) is a reinstatement RAF labelling such that in(L) is minimal.

□ Proof of Theorem 19: link (See page 237).

110 CHAPTER 11. STRUCTURE LABELLINGS AND SEMANTICS

11.4.3 Reinstatement RAF labellings with minimal out

Note that reinstatement RAF labellings such that out (L) is minimal also coincide with the grounded struc-
ture as stated by Theorems 20 and 21.

Theorem 20. Let RAF = ⟨A,K,s, t⟩ be a RAF and let L=
〈
ℓA,ℓK

〉
be a reinstatement RAF labelling such

that out(L) is minimal. Then Lab2Struct(L) is the grounded structure.

□ Proof of Theorem 20: link (See page 237).

Theorem 21. Let RAF = ⟨A,K,s, t⟩ be a RAF and let U= ⟨S,Q⟩ be the grounded structure. Then L =
Struct2Lab(U) is a reinstatement RAF labelling such that out(L) is minimal.

□ Proof of Theorem 21: link (See page 237).

11.5 Semi-stable semantics

Reinstatement RAF labellings such that und (L) is minimal coincide with semi-stable structures as stated
by Theorems 22 and 23.

Theorem 22. Let RAF = ⟨A,K,s, t⟩ be a RAF and let L=
〈
ℓA,ℓK

〉
be a reinstatement RAF labelling such

that und(L) is minimal. Then Lab2Struct(L) is a semi-stable structure.

□ Proof of Theorem 22: link (See page 238).

Theorem 23. Let RAF = ⟨A,K,s, t⟩ be a RAF and let U= ⟨S,Q⟩ be a semi-stable structure. Then L =
Struct2Lab(U) is a reinstatement RAF labelling such that und(L) is minimal.

□ Proof of Theorem 23: link (See page 238).

11.6 A one-to-one mapping

In this section are summarized the relations between labellings and structures in RAF and are also presented
the links between labellings in AF and RAF with no recursive attacks.

11.6.1 Structures and labellings in RAF

Table 11.1 on the following page sums up the whole previous sections of Chapter 11. It shows the corre-
spondence between structure semantics and reinstatement RAF labellings.

Example 49. Following Example 48 on page 104 and the different properties proven in this chapter, the
semantics labellings of the RAF illustrated in Figure 11.1 on page 112 are given in Table 11.2 on page 113.

11.6. A ONE-TO-ONE MAPPING 111

Restriction on
Semantics Theorems

Reinstatement RAF labelling

no restrictions complete semantics Theorems 8 and 9

empty und stable semantics Theorems 14 and 15

maximal in preferred semantics Theorems 10 and 11

maximal out preferred semantics Theorems 12 and 13

maximal und grounded semantics Theorems 16 and 17

minimal in grounded semantics Theorems 18 and 19

minimal out grounded semantics Theorems 20 and 21

minimal und semi-stable semantics Theorems 22 and 23

Table 11.1: Reinstatement RAF labellings and structures semantics

11.6.2 AF labellings and RAF labellings when no recursive attack exists
As stated in Section 10.1.2 on page 103, there exists a one-to-one mapping between structures and extensions
in RAF without recursive attacks for the complete, grounded, preferred, semi-stable and stable semantics.

[14] established a one-to-one mapping between AF extensions and AF reinstatement labellings for the
mentioned semantics. In this thesis, as summarized in Section 11.6.1 on the previous page, is established a
one-to-one mapping between RAF structures and reinstatement RAF labellings for the same semantics.

As a consequence, for RAF with no recursive attacks, there exists obviously a one-to-one mapping
between reinstatement labellings (AF notion) and structures (RAF notion) and also between reinstatement
labellings (AF notion) and reinstatement RAF labellings (RAF notion).

112 CHAPTER 11. STRUCTURE LABELLINGS AND SEMANTICS

a b δ

c

d

eγ

hf θ

g

ι

α

β

ε

ζ

η

κ

λ

Figure 11.1: Running example

11.6. A ONE-TO-ONE MAPPING 113

L1 L2 L3 L4

A
rg

um
en

ts
or

at
ta

ck
s

a und in out out

b und out in in

c und und in in

d und und in in

e und und out out

f und und in in

g und in in out

h und und und und

α in in in in

β in in in in

γ in in in in

δ und in out out

ε in in in in

ζ in in in in

η in in in in

θ und und out out

ι und out out in

κ in in in in

λ in in in in

Se
m

an
tic

s
w

ith
R

A
F

la
be

lli
ng

s

grounded

complete

preferred

arg-preferred

semi-stable

stable

i j means that j is a labelling of semantics i.

Table 11.2: RAF Semantics labellings

Chapter 12

RAF flattening

In this chapter is presented a new RAF flattening process to convert RAF into AF. We first discuss the
interest of such process (Section 12.1). We, then, define it and illustrate it (Section 12.2 on the following
page). Finally, some semantics properties are studied (Section 12.3 on page 116).

12.1 Motivation

What motivated the search for a flattening process that transforms RAFs into AFs is that such a tool could
probably opened up perspectives for the study of RAF properties. Indeed, Dung’s Argumentation Theory
has been explored for decades now. A lot of properties on AFs and semantics have been defined and stud-
ied. Having a way to transform RAFs into AFs could then probably help for the extension of notions and
properties defined for AF to RAF. We can think, as examples, of AF shape properties (SCC, autonomous
fragments [7]), semantics properties (complexity, SCC-recursiveness [11], semantics decomposability [8]).
Furthermore, such a transformation could be used for computational purposes given that there is a wide
range of AF solvers nowadays.

This being said, it important to know that such a transformation has been already proposed in [18], as
seen in Section 9.2.2 on page 98. Even though this transformation proves a one-to-one semantics corre-
spondence between RAF and MAF (and also between RAF and AF, since MAF are AF), it is not enough
for proving properties as semantics complexity. Indeed, as explained in Example 45 on page 99, this cor-
respondences do not guarantee that each acceptable element w.r.t. a structure will be acceptable w.r.t. its
corresponding extension in the resulting MAF/AF.

Note: Such a transformation has also been proposed in [6], as seen in Section 8.2 on page 90, to trans-
form AFRA into AF. As the previous mentioned one, this transformation ensures a one-to-one semantics
correspondence between AFRA and AF, but not between acceptable elements.

Moreover, in our sense, this transformation presents a counter-intuitive meaning of the link between an
attack and its source. Indeed each attack is related to its source by a sequence of attacks meaning that the
attack is “defended” by its source. So, every attack is always attacked in the resulting MAF even if it is not
the target of an attack in the initial RAF. This has also a potential impact on properties related to the shape
of the AF.

Let now introduce a new flattening process for RAF that fixes those two problems.

114

12.2. A NEW FLATTENING PROCESS 115

12.2 A new flattening process
Introduced in [35], the new flattening process is formally defined as follows:

Definition 76. Let Raf2Af : Φra f →Φa f be the function transforming a RAF into an AF. Raf2Af is defined
as follows:

∀ RAF = ⟨A,K,s, t⟩ ∈Φra f , Raf2Af : RAF 7→ AF =
〈
A′,K′

〉
With: A′ = A∪K∪NotA∪NotK ∪AndA,K

K′ = K′1∪K′2∪K′3∪K′4∪K′5
NotA = {¬a|a ∈ A}
NotK = {¬β |β ∈ K}

AndA,K = {a.β |β ∈ K,a = s(β)}
K′1 = {(a,¬a)|a ∈ A}
K′2 = {(β ,¬β)|β ∈ K}
K′3 = {(¬a,a.β)|a ∈ A,s(β) = a}
K′4 = {(¬β ,a.β)|β ∈ K,s(β) = a}
K′5 = {(a.β , t(β))|β ∈ K,s(β) = a}

Note: “¬a”, “¬β” and “a.β” are just simple argument names that represent respectively, the “negation”
of argument a, the “negation” of attack β and the “conjunction” of attack β with its source a.1

This transformation represents, with AFs, the semantics of RAF defeat relation, by mean of additional
arguments. Let a be an argument attacking an element β through the attack α in the RAF RAF . Given that
to β be defeated by a, α must be valid (non-inhibited) and a accepted (not defeated), we represent this by
creating an additional argument named “a.α” accepted in AF only when both a and α are. To do that we
create two others arguments named “¬a” and “¬α”. We create an attack going from a to ¬a, another going
from α to ¬α , two others going from ¬a to a.α and ¬α to a.α , and finally a last one going from a.α to β .
An argument (corresponding to an element of the original RAF) is thus defeated in the resulting AF if and
only if there exists a valid attack in the original RAF that targets this argument and whose source is accepted.

Example 50. Let consider Figure 12.1 on the next page. Let RAF = ⟨A,K,s, t⟩ be the RAF represented in
Figure 12.1(a). We have AF = Raf2Af(RAF) being the AF represented in Figure 12.1(b).

Note: Interesting properties are formally proven in Section 12.3 and Chapters 13 and 14 on the next page,
on page 119 and on page 123. Until then we can already notice that the shape structure is preserved: all and
only elements that are attacked in the original RAF are attacked in the flattened version. Moreover, the cor-
respondence between structure and extension seems intuitive. Let S = {a,b,c,d,α,δ ,¬β ,¬γ,d.δ ,a.α}.
S is a complete extension of AF . We have the intuition that removing the created arguments during
the flattening and putting arguments and attacks apart, lead to a RAF-complete structure of RAF : U =
⟨{a,b,c,d} ,{α,δ}⟩ (that is indeed RAF-complete).

1The words “negation” and “conjunction” are used only by abuse of language and not in a logic meaning (even if there is a link,
see [19]).

116 CHAPTER 12. RAF FLATTENING

a βα

c

b

γ

d

δ

(a) A RAF

a

¬a

a.α
β

¬β

b.β

c
¬c

c.γ

¬α α

¬γ γ

d.δ

¬d¬δ

dδ

¬b

b

(b) Flattened version of the RAF in Figure 14.4(a) on page 128

Figure 12.1: RAF flattening illustration

12.3 Properties

In order to study the semantics properties, we defined what is an extension (of the RAF flattened version)
corresponding to a structure (of the initial RAF).

Definition 77 (Extension corresponding to structure). Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF)
be an AF (with AF = ⟨A′,K′⟩). Let U= ⟨S,Q⟩ be a structure in RAF . We denote by “εU” the extension in
AF corresponding to a structure U, defined by:

εU = S∪Q∪{¬a ∈ NotA|a ∈ RAF-De f (U)}
∪{¬β ∈ NotK |β ∈ RAF-Inh(U)}
∪{s(β).β ∈ AndA,K |β ∈ Q,s(β) ∈ S}

The next proposition establishes the link between the RAF-De f and RAF-Inh relations of the original
RAF with De f relation in the AF, and the link between the RAF-Acc relation in the RAF with the Acc
relation in the AF.

Proposition 24. Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be an AF (with AF = ⟨A′,K′⟩).
Let U= ⟨S,Q⟩ be a structure in RAF . The following properties holds:

1. RAF-De f (U)∪RAF-Inh(U) =

12.3. PROPERTIES 117

De f (εU)\


{¬a ∈ NotA|a ∈ εU}

∪{¬β ∈ NotK |β ∈ εU}

∪{s(β).β ∈ AndA,K |β ∈ De f (εU) or s(β) ∈ De f (εU)}



2. RAF-Acc(U) = Acc(εU)\


{¬a ∈ NotA|a ∈ De f (εU)}

∪{¬β ∈ NotK |β ∈ De f (εU)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU}


□ Proof of Proposition 24: link (See page 238).

From the previous proposition, we can state the following semantics correspondence:

Proposition 25. Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be an AF (with AF = ⟨A′,K′⟩).
The following properties holds:

1. U= ⟨S,Q⟩ is a RAF-complete structure in RAF iff εU is a complete extension in AF .

2. U= ⟨S,Q⟩ is a RAF-grounded structure in RAF iff εU is a grounded extension in AF .

3. U= ⟨S,Q⟩ is a RAF-preferred structure in RAF iff εU is a preferred extension in AF .

4. U= ⟨S,Q⟩ is a RAF-stable structure in RAF iff εU is a stable extension in AF .

5. U= ⟨S,Q⟩ is a RAF-semi-stable structure in RAF iff εU is a semi-stable extension in AF .

□ Proof of Proposition 25: link (See page 242).

The study of the semantics properties can also be done the other way around. Let define what is a
structure (of the initial RAF) corresponding to an extension (of the RAF flattened version).

Definition 78 (RAF labelling and AF labelling). Let σ be a semantics. Let RAF = ⟨A,K,s, t⟩ be a RAF
and AF = Raf2Af(RAF) be an AF (with AF = ⟨A′,K′⟩).

The function rafLab2AfLab : Lσ -ra f (RAF)→ Lσ (AF), which maps to each structure labelling of
RAF an AF labelling of AF , is defined as following. Let L be a structure labelling of RAF and let ℓ =
rafLab2AfLab(L). We have:

• ∀x ∈ (A∪K):

– L(x) = ℓ(x)

– ℓ(¬x) = und ⇐⇒ L(x) = und

– ℓ(¬x) = in ⇐⇒ L(x) = out

– ℓ(¬x) = out ⇐⇒ L(x) = in

• ∀α ∈ K:

– ℓ(s(α).α) = in ⇐⇒ (L(s(α)) = in and L(α) = in)

118 CHAPTER 12. RAF FLATTENING

– ℓ(s(α).α) = out ⇐⇒ (L(s(α)) = out or L(α) = out)

– ℓ(s(α).α) = und ⇐⇒ (L(s(α)) ̸= out and L(α) ̸= out and (L(s(α)) = und or L(α) = und)

The function afLab2RafLab : Lσ (AF)→ Lσ -ra f (RAF), which maps to each AF labelling of AF a
structure labelling of RAF , is defined as following. Let ℓ be a labelling of AF and let L= afLab2RafLab(ℓ).
We have:

L=
〈
ℓ ↓A,ℓ ↓K

〉

The following propositions are trivially induced by Proposition 25 on the previous page.

Proposition 26. Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be an AF (with AF = ⟨A′,K′⟩).
The following property holds: L=

〈
ℓA,ℓK

〉
is a RAF-complete (resp. RAF-grounded, RAF-preferred, RAF-

stable and RAF-semi-stable) structure labelling of RAF iff ℓ = rafLab2AfLab(L) is a complete (resp.
grounded, preferred, stable and semi-stable) labelling of AF .

Proposition 27. Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be an AF. The following prop-
erty holds: ℓ is a complete (resp. grounded, preferred, stable and semi-stable) labelling of AF iff L =
afLab2RafLab(ℓ) is a RAF-complete (resp. RAF-grounded, RAF-preferred, RAF-stable and RAF-semi-
stable) structure labelling of RAF .

Chapter 13

RAF Decision Problems and semantics
complexities

13.1 RAF Decision problems

Although in [18], results about RAF semantics complexities are given for the RAF-Credσ problem (for
the RAF-complete, RAF-preferred and RAF-stable semantics) and for the RAF-Skepσ problem (for the
RAF-preferred and RAF-stable semantics), the decisions problems have not been explicitly defined nor the
detailed proofs for the result given. In Definition 79, they are formally defined and in Section 13.2 on the
next page their complexities are studied.

Definition 79 (Decision Problems in RAF).

• Credulous Acceptance Credσ : Given an RAF RAF = ⟨A,K,s, t⟩ and an element x ∈ A∪K. Is x
contained in some U ∈ σ(RAF)?

• Skeptical Acceptance Skepσ : Given an AF RAF = ⟨A,K,s, t⟩ and an element x∈A∪K. Is x contained
in each U ∈ σ(RAF)?

• Verification of a structure Verσ : Given an RAF RAF = ⟨A,K,s, t⟩ and a structure U. Is U∈ σ(RAF)?

• Existence of a structure Existsσ : Given an RAF RAF = ⟨A,K,s, t⟩. Is σ(RAF) ̸=∅?

• Existence of a non-empty structure Exists¬∅σ : Given an RAF RAF = ⟨A,K,s, t⟩. Does there exist a
structure U ̸=∅ such that U ∈ σ(RAF)?

• Uniqueness of a solution Uniqueσ : Given an RAF RAF = ⟨A,K,s, t⟩. Is there a unique structure
U ∈ σ(RAF), i.e. σ(RAF) = {U}?

Example 51. Let σ be the preferred semantics. Let RAF = ⟨A,K,s, t⟩ be the RAF represented in Figure 13.1
on the next page and U be any structure of it. Following Table 9.1 on page 93, we have three preferred

119

120 CHAPTER 13. RAF DECISION PROBLEMS AND SEMANTICS COMPLEXITIES

structures:

σ(RAF) =


U2 = {a,g,α,β ,γ,δ ,ε,ζ ,η ,κ,λ}

U3 = {b,c,d, f ,g,α,β ,γ,ε,ζ ,η ,κ,λ}

U4 = {b,c,d, f ,α,β ,γ,ε,ζ ,η , ι ,κ,λ}


As a consequence, we have so:

• RAF-Credσ (RAF ,e) = false

• RAF-Credσ (RAF ,a) = true

• RAF-Skepσ (RAF ,b) = false

• RAF-Skepσ (RAF ,α) = true

• RAF-Verσ (RAF ,U) = true iff U ∈
{U2,U3,U4}

• RAF-Existsσ (RAF) = true

• RAF-Exists¬∅σ (RAF) = true

• RAF-Uniqueσ (RAF) = false

a b δ

c

d

eγ

hf θ

g

ι

α

β

ε

ζ
η

κ

λ

Figure 13.1: Same RAF as Figure 10.1 on page 102

13.2 RAF Semantics Complexities
In Section 9.2 on page 94 we saw that in terms of semantics, RAF is a generalization of Dung’s AF. Knowing
this, we searched for a polynomial reduction to transform RAF decision problems into AF ones and vice
versa. Thereby, we could compare RAF decision problems complexities to the known AF complexities and
potentially identify precisely the complexity classes of RAF decision problems.

As seen in Section 12.2 on page 115, we defined a function, Raf2Af, that transforms RAF in into AF.
Let define a function, Af2Raf, that does the opposite.

Definition 80. Let Af2Raf : Φa f →Φra f be the function transforming an AF into an RAF. Af2Raf is defined
as following:

∀ AF = ⟨A,K⟩ ∈Φa f , Af2Raf : AF 7→ RAF =
〈
A′,K′,s, t

〉
With:

13.2. RAF SEMANTICS COMPLEXITIES 121

• A′ = A

• K′ = {α|α = (a,b) ∈ K}.1

• ∀α = (a,b) ∈ K, t(α) = b and s(α) = a

The definition of Af2Raf that transforms an AF into an RAF is trivial since an RAF without higher-order
attacks is an AF. So it is enough to name the attacks of the AF in order to obtain a RAF. Note that, following
the previous definition, no attack can be inhibited (as none of them is a target) in the RAF obtained by
Af2Raf.

Both Raf2Af and Af2Raf are polynomial time and log-space functions. Let thus take advantage of these
properties and prove that AF decision problems can be reduced into RAF ones and vice versa.

Proposition 28. Let RAF = ⟨A,K,s, t⟩ be an RAF and AF = Raf2Af(RAF) be an AF (with AF = ⟨A′,K′⟩).
Let a ∈ (A∪K) be an element in RAF and an argument in AF , following the definition of Raf2Af. Let
U= ⟨S,Q⟩ be a structure of RAF .

For each semantics σ ∈ {complete, semi-stable, stable, preferred, grounded}, we have:

1. RAF-Credσ accepts (RAF ,a) iff Credσ accepts (AF ,a).

2. RAF-Skepσ accepts (RAF ,a) iff Skepσ accepts (AF ,a).

3. RAF-Verσ accepts (RAF ,U) iff Verσ accepts (AF ,εU).

4. RAF-Existsσ accepts RAF iff Existsσ accepts AF .

5. RAF-Exists¬∅σ accepts RAF iff Exists¬∅σ accepts AF .

6. RAF-Uniqueσ accepts RAF iff Uniqueσ accepts AF .

□ Proof of Proposition 28: link (See page 251).

Given the previous property and given that Raf2Af is a polynomial time and log-space function, we can
assert that:

Proposition 29. The complexities of AF decision problems are at least as hard as RAF ones, for the seman-
tics complete, semi-stable, stable, preferred, grounded.

□ Proof of Proposition 29: link (See page 252).

Let now do the other way around process.

Proposition 30. Let AF = ⟨A,K⟩ be an AF and RAF = Af2Raf(AF) be an RAF. Let a ∈ A be an argument
in AF and in RAF , following the definition of Af2Raf. For each semantics σ ∈ {complete, semi-stable,
stable, preferred, grounded}, we have:

1. Credσ accepts (AF ,a) iff RAF-Credσ accepts (RAF ,a).

2. Skepσ accepts (AF ,a) iff RAF-Skepσ accepts (RAF ,a).

1This means that K′ received the names of the attacks that are in K.

122 CHAPTER 13. RAF DECISION PROBLEMS AND SEMANTICS COMPLEXITIES

3. Verσ accepts (AF ,S) iff RAF-Verσ accepts (RAF ,U= ⟨S,K⟩).

4. Existsσ accepts AF iff RAF-Existsσ accepts RAF .

5. Exists¬∅σ accepts AF iff RAF-Exists¬∅σ accepts RAF .

6. Uniqueσ accepts AF iff RAF-Uniqueσ accepts RAF .

□ Proof of Proposition 30: link (See page 252).

Given the previous property and given that Af2Raf is a polynomial time and log-space function, we can
assert that:

Proposition 31. The complexities of RAF decision problems are at least as hard as AF ones, for the seman-
tics complete, semi-stable, stable, preferred, grounded.

□ Proof of Proposition 31: link (See page 252).

Finally, we obtain the following proposition:

Proposition 32. The complexities of RAF decision problems are the same as AF ones, for the semantics
complete, semi-stable, stable, preferred, grounded, as stated in Table 13.1.

□ Proof of Proposition 32: link (See page 253).

σ
RAF-

Credσ Skepσ Verσ Existsσ Exists¬∅σ Uniqueσ

Grounded P-c P-c P-c trivial in L trivial

Complete NP-c P-c in L trivial NP-c coNP-c

Preferred NP-c ΠP
2-c coNP-c trivial NP-c coNP-c

Stable NP-c coNP-c in L NP-c NP-c DP-c

Semi-stable ΣP
2-c ΠP

2-c coNP-c trivial NP-c in ΘP
2

Table 13.1: Complexities of RAF decision problems

Proposition 32 is a very interesting one. Indeed, the complexities for the decision problems in the context
of RAF, are the same as the ones in Dung’s framework, despite all the additional expressivity that is brought
by the higher-order attacks.

Chapter 14

Hierarchical view of RAF and semantics
decomposability

In this chapter, the notion of SCCa f is extended to RAF (Section 14.1). Based on it, the semantics decom-
posability of RAF semantics is studied (Section 14.3 on page 133). Finally, a hierarchical view of RAF is
proposed (Section 14.2 on page 131). These new properties open perspectives for future algorithms.

14.1 RAF Strongly Connected Component

In this section we build up from basic ones the notion of SCC for RAF. We also established the link between
the SCCs of a given RAF and the SCCs of its AF flattened version.

Definition 81 (RAF-walk). Let RAF = ⟨A,K,s, t⟩ be a RAF and e1, ...,en ∈ (A∪K) be elements of RAF . A
RAF-walk is a sequence (e1, ...,en) with n ∈ N∗ such that:

• ∀i ∈ {1, ...,n},ei ∈ (A∪K)

• If n > 1, ∀i ∈ {1, ...,n−1}, ei ∈ A =⇒ ei+1 ∈ K and ei = s(ei+1)

• If n > 1, ∀i ∈ {1, ...,n−1}, ei ∈ K =⇒ t(ei) = ei+1

Definition 82 (RAF-path). A RAF-path is a RAF-walk in which all the elements are distinct. Let RAF =
⟨A,K,s, t⟩ be a RAF. We denote by “Pathsra f (RAF)” the set of RAF-paths of RAF .

Example 52. Let consider Figure 14.1 on the next page. As an example, we have: (b,γ,δ ,d,ε,e) ∈
Pathsra f (RAF) (in green) and (h, f) /∈ Pathsra f (RAF) (in red). Note that (h) ∈ Pathsra f (RAF) and (f) ∈
Pathsra f (RAF).

Definition 83 (RAF-cycle). Let RAF = ⟨A,K,s, t⟩ be a RAF. A RAF-cycle is a sequence (e1, ...,en) with
n≥ 2 such that:

• (e2, ...,en) is a RAF-path

123

124 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

a b δ

c

d

eγ

hf θ

g

ι

α

β

ε

ζ
η

κ

λ

Figure 14.1: Example of RAF-paths: valid in green, invalid in red

• (e1, ...,en−1) is a RAF-path

• e1 = en

We denote by “Cyclesra f (RAF)” the set of RAF-cycles of RAF .

Example 53. Let consider Figure 14.1. As an example, we have: (δ ,d,ε,e,ζ ,c,δ) ∈Cyclesra f (RAF) and
(d,e,c,d) /∈Cyclesra f (RAF).

Definition 84 (RAF-closed-walk). Let RAF = ⟨A,K,s, t⟩ be a RAF. A sequence (e1, ...,en) is said to be a
RAF-closed-walk iff (e1, ...,en) is a RAF-walk and that e1 = en.

We denote by “ClosedWalkra f (RAF)” the set of RAF-closed-walk of RAF .

a b

c

d

α β

γ

δ ε

Figure 14.2: Example for RAF-closed-walk

Example 54. Let consider the RAF in Figure 14.2. As an example, we have: (a,α,c,γ,d,ε,b,β ,c,γ,d,δ ,a)∈
ClosedWalkra f (RAF).

14.1. RAF STRONGLY CONNECTED COMPONENT 125

Note: A RAF-cycle is by definition a RAF-closed-walk. A RAF-closed-walk is formed by the agglomeration
of one or several cycles.

Definition 85. Let RAF = ⟨A,K,s, t⟩ be a RAF. A RAF-walk (e1, . . . ,en) attacks an element x ∈ (A∪K) iff
there exists ei in the walk such that x = t(ei).

Example 55. Let consider Figure 14.1 on the previous page. As an example, the RAF-walk (d,ε,e,ζ)
attacks c that is not in the RAF-walk. An other example: the RAF-cycle (δ ,d,ε,e,ζ ,c,δ) attacks c and does
not attack δ .

Note: Following Definitions 84 and 85 on the previous page and on the current page, a RAF-cycle or a
RAF-closed-walk can only attack elements that belongs to it.

An equivalence relation can be defined on the notion of RAF-paths, establishing the fact that two ele-
ments x and y belong to the same equivalence class if and only if there exists a path from x to y attacking y
and vice-versa (a path from y to x attacking x) in the RAF. This is an important difference with the definition
of SCC in graph theory. Formally, this equivalence relation is defined, as follows:

Definition 86 (RAF Path Equivalence - PEra f). Given a RAF RAF = ⟨A,K,s, t⟩, a RAF Path Equivalence
noted PEra f (RAF) is a binary relation between elements of RAF such that:

• PEra f (RAF)⊆ (A∪K)2

• ∀x ∈ (A∪K),(x,x) ∈ PEra f (RAF)

• Given two distinct elements x,y ∈ (A∪K), (x,y) ∈ PEra f (RAF) if and only if there exist:

– p ∈ Pathsra f (RAF) such that p = (x, ...,en−1,y) and y = t(en−1).

– p′ ∈ Pathsra f (RAF) such that p′ = (y, ...,em−1,x) and x = t(em−1).

We introduce the notation x ≡
RAF

y to state that (x,y) ∈ PEra f (RAF).

The idea behind the previous definition is the following:

• y is attacked by p (in the sense of Definition 85) so x has an effect on y.

• x is attacked by p′ (in the sense of Definition 85) so y has an effect on x.

As both affect each other they are considered as equivalent under the PEra f relation.

Definition 87 (RAF Strongly Connected Component - SCCra f).
Given a RAF RAF = ⟨A,K,s, t⟩, a RAF Strongly Connected Component (SCCra f) is an equivalence class of
elements under the relation PEra f . The set of SCCra f of RAF is denoted by SCCSra f (RAF).

An interesting property of PEra f relation is that if two elements are equivalent then there exists a RAF-
closed-walk that contains and attacks them:

Proposition 33. Let RAF = ⟨A,K,s, t⟩ be a RAF and let x and y be two distinct elements of RAF . The
following property holds:

x ≡
RAF

y iff there exists a RAF-closed-walk c = (e1, ...,en) ∈ClosedWalkra f (RAF) such that:

126 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

• x ∈ c. So there exists i ∈ {2, ...,n} such that: x = ei

• y ∈ c. So there exists j ∈ {2, ...,n} such that: y = e j

• ei−1 ∈ K

• e j−1 ∈ K

□ Proof of Proposition 33: link (See page 253).

Note: The two last conditions of the previous proposition are related to the fact that x (respectively y) must
be attacked by the RAF-closed-walk.

Example 56. Let consider Figure 14.3 on the following page.

• {ι ,g} ∈ SCCSra f (RAF):

Indeed, there exists a RAF-path from g to ι attacking ι which is (g,κ, ι) and another one from ι to
g attacking g which is (ι ,g). As a consequence, we have: ι ≡

RAF
g. As there is no other element in

x ∈ RAF such that x ≡
RAF

ι or x ≡
RAF

g then {ι ,g} is a SCCra f . Note that, although κ ∈ (g,κ, ι), κ does

not belong to this SCCra f since it is not attacked by (g,κ, ι).

• {δ ,d,ε,e,ζ ,c} /∈ SCCSra f (RAF):

Although there exists a RAF-path from δ to d attacking d (which is (δ ,d)), there is no RAF-path from
d to δ attacking δ . The only RAF-path from d to δ is (d,ε,e,ζ ,c,δ) and it doesn’t attack δ . As a
consequence d ̸≡

RAF
δ and so {δ ,d,ε,e,ζ ,c} is not an SCCra f .

• {d,e,c} ∈ SCCSra f (RAF):

In the RAF-cycle (δ ,d,ε,e,ζ ,c,δ), d, e and c are all attacked. As a consequence we have: d ≡
RAF

e ≡
RAF

c. As there is no other element in RAF equivalent to them w.r.t. PEra f , then {d,e,c} ∈ SCCSra f (RAF).

In this example we have:

SCCSra f (RAF) =

 {ι ,g} ,{d,e,c} ,{a,b} ,{α} ,{β} ,{κ} ,{γ} ,{δ} ,{ε} ,{ζ} ,{η} ,{λ} ,{θ} ,{h} ,{ f}


Following the previous proposition, all elements attacked by a given RAF-closed-walk belong to the

same SCCra f :

Proposition 34. Let RAF = ⟨A,K,s, t⟩ be a RAF. Let c = (e1, ...,en) ∈ ClosedWalkra f (RAF). Let U =
{ei|i ∈ {2, ...,n} s.t. ei−1 ∈ K} be the set of attacked elements by the RAF-closed-walk c. The following
property holds:

U is included in some S ∈ SCCSra f (RAF)

□ Proof of Proposition 34: link (See page 253).

14.1. RAF STRONGLY CONNECTED COMPONENT 127

a b δ

c

d

eγ

hf θ

g

ι

α

β

ε

ζ
η

κ

λ

Figure 14.3: Example of two SCCra f : one in green and one in blue

Examples 57 to 61 on pages 127–128 illustrate several cases and some interesting properties that lead to
Propositions 35 and 36 on page 129.

Example 57. Let consider Figure 14.4 on the next page and RAF = ⟨A,K,s, t⟩ the RAF illustrated in Fig-
ure 14.4(a) on the next page. As you can see, considering the attack α ∈ RAF , we have in Raf2Af(RAF):
(α,¬α,a.α,β) ∈ Pathsa f (Raf2Af(RAF)) and (a,¬a,a.α,β) ∈ Pathsa f (Raf2Af(RAF)).

Let consider now the RAF RAF = ⟨A,K,s, t⟩ and the AF AF = Raf2Af(RAF) illustrated in Figure 14.5
on page 129:

• Considering the attack β ∈ RAF , we have in Raf2Af(RAF): (a,¬a,a.β ,a) ∈ Cyclesa f (AF) and
there exists a unique path in Raf2Af(RAF) whose first element is β and whose last is a, that is
(β ,¬β ,a.β ,a).

• Considering the attack α ∈ RAF , we have in AF : (α,¬α,a.α,α) ∈Cyclesa f (AF) being the unique
cycle in AF whose first and last elements are α and (a,¬a,a.α,α) is a path in AF .

Example 58. Let consider Figure 14.4 on the next page. Let RAF be the RAF in Figure 14.4(a) on the next
page and let consider the RAF-path (a,α,β).

• In Raf2Af(RAF), there is a path from a to β which is (a,¬a,a.α,β). But in a slightly different RAF
it could be possible that there exists another RAF-path from a to β and so another path from a to β in
Raf2Af(RAF). See Example 59 on the next page.

• In Raf2Af(RAF), there is a path from α to β which is (α,¬α,a.α,β). This path is unique as an
attack has a unique target.

Example 59. Let consider Figure 14.6 on page 130. Let RAF be the RAF in Figure 14.6(a) on page 130
and AF its flattened version in Figure 14.6(b) on page 130. As one can notice there are two RAF-paths in
RAF from a to β which are:

(a,α,β) and (a,γ,d,δ ,β)

128 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

a βα

c

b

γ

d

δ

(a) A RAF

a

¬a

a.α
β

¬β

b.β

c
¬c

c.γ

¬α α

¬γ γ

d.δ

¬d¬δ

dδ

¬b

b

(b) Flattened version of the RAF in Figure 14.4(a)

Figure 14.4: RAF flattening illustration (Same as Figure 12.1)

Similarly there are two paths in AF from a to β which are:

(a,¬a,a.α,β) and (a,¬a,a.γ,d,¬d,d.δ ,β)

Example 60. Let consider Figure 14.4. Let RAF be the RAF in Figure 14.4(a) and let consider the RAF-path
(d,δ ,γ,a,α,β). There is a path in Raf2Af(RAF) from d to β which is (d,¬d,d.δ ,γ,¬γ,c.γ,a,¬a,a.α,β).

Example 61. Let consider Figure 14.4. Let RAF be the RAF in Figure 14.4(a).

• As (d,δ ,γ,a,α,β) is a RAF-path, there is a path in Raf2Af(RAF) from d to β which is
(d,¬d,d.δ ,γ,¬γ,c.γ,a,¬a,a.α,β).

• Furthermore, as (d,¬d,d.δ ,γ,¬γ,c.γ,a,¬a,a.α,β) is a path and that d ∈ RAF and β ∈ RAF then
there is also a RAF-path in RAF from d to β such that the before last element is an attack. The path
(d,δ ,γ,a,α,β) satisfies those conditions.

The following proposition is very important to establish the correspondence between SCCra f and SCCa f
in a RAF flattened version:

Proposition 35. Let RAF = ⟨A,K,s, t⟩ be a RAF and U ⊆ A∪K be a subset of elements of RAF .

U is included in some S ∈ SCCSra f (RAF) iff U is included in some S′ ∈ SCCSa f (Raf2Af(RAF))

14.1. RAF STRONGLY CONNECTED COMPONENT 129

a αβ

(a) A RAF

a ¬a

a.αα

¬α

a.β ¬β β

(b) Flattened version of the RAF in Fig-
ure 14.5(a)

Figure 14.5: RAF flattening illustration

□ Proof of Proposition 35: link (See page 261).

Example 62. As an illustration of Proposition 35, let consider Figure 14.4 on the previous page. Let RAF
be the RAF in Figure 14.4(a) on the previous page.

(a,β) ∈ PEa f (Raf2Af(RAF)). As a consequence they are in the same SCCra f in RAF which is: S =
{a,β ,c}. (a,β) ∈ PEra f (RAF). As a consequence they are in the same SCCa f in Raf2Af(RAF) which is:
S′ = {a,¬a,a.α,β ,¬β ,b.β ,c,¬c,c.γ}. We have: {a,β} ⊆ S and {a,β} ⊆ S′.

Finally, the correspondence SCCra f and SCCa f is fully established by the following proposition:

Proposition 36. Let RAF = ⟨A,K,s, t⟩ be a RAF and S⊆ A∪K be a subset of elements of RAF .

S ∈ SCCSra f (RAF)

iff

S ∪

{¬a ∈ NotA|a ∈ S and (|S|> 1 or (∃α ∈ K s.t. s(α) = a and t(α) = a))} ∪

{¬α ∈ NotK |α ∈ S and (|S|> 1 or t(α) = α)} ∪

{s(α).α ∈ AndA,K |α ∈ S and (|S|> 1 or t(α) = α)} ∪

{s(α).α ∈ AndA,K |s(α) ∈ S and t(α) ∈ S}


∈ SCCSa f (Raf2Af(RAF))

□ Proof of Proposition 36: link (See page 262).

130 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

a dγ

β

δα

b c

(a) A RAF

γ

¬γ a.γ ¬a

a

a.α ¬α

α

d

¬d

δ ¬δ

d.δ

β ¬β

b ¬b

b.β

c

¬c

(b) Flattened version of the RAF in Figure 14.6(a)

Figure 14.6: RAF flattening illustration n°2

Example 63. Let consider the RAF Γ and its corresponding AF in Figure 14.7 on the following page.

• See S= {a,β ,c}∈ SCCSra f (RAF) and S′= {a,¬a,a.α,β ,¬β ,b.β ,c,¬c,c.γ}∈ SCCSa f (Raf2Af(RAF))
in blue. In details, following the successive unions in Proposition 36 on the previous page, we have:

S′ = S∪{¬a,¬c}∪{¬β}∪{b.β}∪{a.α,c.γ}

• See T = {d} ∈ SCCSra f (RAF) and T ′ = {d} ∈ SCCSa f (Raf2Af(RAF)) in green. Indeed following
Proposition 36 on the previous page, we have:

– {¬a ∈ NotA|a ∈ T and (|T |> 1 or (a,a) ∈ K)}=∅
– {¬α ∈ NotK |α ∈ T and |T |> 1}=∅
– {s(α).α ∈ AndA,K |α ∈ T and |T |> 1}=∅
– {s(α).α ∈ AndA,K |s(α) ∈ T and t(α) ∈ T}=∅

Example 64. Let consider the RAF Γ and its corresponding AF in Figure 14.8 on page 132.

• See S = {a} ∈ SCCSra f (RAF) and S′ = {a,¬a,a.α} ∈ SCCSa f (Raf2Af(RAF)) in blue. In details,
following the successive unions in Proposition 36 on the previous page, we have:

S′ = S∪{¬a}∪{}∪{}∪{a.α}

• See T = {α} ∈ SCCSra f (RAF) and T ′ = {α} ∈ SCCSa f (Raf2Af(RAF)) in green. Indeed following
Proposition 36 on the previous page, we have:

– {¬a ∈ NotA|a ∈ T and (|T |> 1 or (a,a) ∈ K)}=∅
– {¬α ∈ NotK |α ∈ T and |T |> 1}=∅

14.2. SCC PARTIAL ORDER AND HIERARCHY 131

a βα

c

b

γ

d

δ

(a) RAF example

a

β

c

¬a

a.α

¬β

b.β

¬c

c.γ

¬α α

¬γ γ

d.δ

¬d¬δ

dδ

¬b

b

(b) Flattened version of the RAF in Figure 14.7(a)

Figure 14.7: SCCra f to SCCa f example
One SCCra f and its corresponding SCCa f in green
One SCCra f and its corresponding SCCa f in blue

(light blue used for elements not in the initial RAF)

– {s(α).α ∈ AndA,K |α ∈ T and |T |> 1}=∅
– {s(α).α ∈ AndA,K |s(α) ∈ T and t(α) ∈ T}=∅

Definition 88. Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be the corresponding AF of RAF .
Let S ∈ SCCSra f (RAF) be a SCCra f and let S′ ∈ SCCSa f (AF) be an SCCa f . We say that S′ is the SCCa f
corresponding to S (and vice-versa) iff :

S′ =



S ∪

{¬a ∈ NotA|a ∈ S and (|S|> 1 or (∃α ∈ K s.t. s(α) = a and t(α) = a))} ∪

{¬α ∈ NotK |α ∈ S and (|S|> 1 or t(α) = α)} ∪

{s(α).α ∈ AndA,K |α ∈ S and (|S|> 1 or t(α) = α)} ∪

{s(α).α ∈ AndA,K |s(α) ∈ S and t(α) ∈ S}


14.2 SCC partial order and hierarchy
In this section, we highlight the fact that there exists a partial order over the SCCra f of RAF according to the
binary relation defined in Definition 89 on the next page.

132 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

a α

(a) A RAF

a ¬a

a.α ¬α

α

(b) Flattened version of the RAF in Figure 14.8(a)

Figure 14.8: SCCra f to SCCa f 2nd example
One SCCra f and its corresponding SCCa f in green
One SCCra f and its corresponding SCCa f in blue

(light blue used for elements not in the initial RAF)

Definition 89 (SCCra f relation: ≼). Let RAF = ⟨A,K,s, t⟩ be a RAF, S∈ SCCSra f (RAF) and S′ ∈ SCCSra f (RAF).
We define the relation ≼ as a binary relation between elements of SCCSra f (RAF) as following:

S ≼ S′ if and only if

(∃(e1, ...,en−1,en) ∈ Pathsra f (RAF) s.t. e1 ∈ S and en ∈ S′ and en−1 ∈ K)

or

S = S′

Proposition 37. The relation ≼ is a partial order.

□ Proof of Proposition 37: link (See page 266).

Given this partial ordering, we can define the notions of predecessors and successors of an SCCra f :

Definition 90 (Predecessor and successor of an SCCra f). Let RAF = ⟨A,K,s, t⟩ be a RAF and let S1 ∈
SCCSra f (RAF) and S2 ∈ SCCSra f (RAF) be two distinct SCCra f of RAF . We say that S1 is a predecessor of
S2 (resp. S2 is a successor of S1) if and only if:

S1 ≼ S2 and ∄S3 ∈ SCCSra f (RAF) s.t. S3 ̸= S1 and S3 ̸= S2 and S1 ≼ S3 and S3 ≼ S2

Given two SCCra f such that one is the predecessor of the other, the following property holds:

Proposition 38. Let RAF = ⟨A,K,s, t⟩ be a RAF and let S ∈ SCCSra f (RAF) and S′ ∈ SCCSra f (RAF) be
two distinct SCCra f . If S is the predecessor of S′ (resp. S′ is the successor of S) then for any path p =
(e1, ...,en−1,en) ∈ Pathsra f (RAF) such that e1 ∈ S and en ∈ S′ and en−1 ∈ K then for all i ∈ {1, ...,n}, we
have the following property:

ei ∈ p∩K =⇒ t(ei) ∈ (S∪S′)

□ Proof of Proposition 38: link (See page 267).

Example 65. Let consider the RAF in Figure 14.7(a) on the previous page. We have:

SCCSra f (RAF) = {{b},{d},{a,β ,c},{γ},{δ},{α}}

14.3. DECOMPOSABILITY OF SEMANTICS 133

aβc

αγ

bd

δ

Figure 14.9: Dagscc(RAF) corresponding to the RAF in Figure 14.7(a) on page 131

Here is the partial order among these SCCra f :

• {b}≼ {a,β ,c}

• {α}≼ {a,β ,c}

• {γ}≼ {a,β ,c}

• {d}≼ {γ} and {d}≼ {a,β ,c}

• {δ}≼ {γ} and {δ}≼ {a,β ,c}
Given a RAF, if we reduce all its SCCra f to super nodes then we obtain, as for AFs (or more generally: as

for directed graphs), a “DAG” (Directed Acyclic Graph) as stated by Proposition 39. Definition 91 describes
the transformation that produces the DAG corresponding to a given RAF.

Definition 91 (Dagscc transformation). Let RAF = ⟨A,K,s, t⟩ be a RAF and let associate to each Si ∈
SCCSra f (RAF) a super node ni. Dagscc(RAF) is the directed graph defined as following:

Dagscc(RAF) =
〈
{ni|Si ∈ SCCSra f (RAF)},{(ni,n j)|Si is a predecessor of S j}

〉
Proposition 39. Let RAF = ⟨A,K,s, t⟩ be a RAF. Dagscc(RAF) is acyclic.

□ Proof of Proposition 39: link (See page 267).

Example 66. Let consider the RAF in Figure 14.7(a) on page 131 and let illustrate the notion of Dagscc.
Let aβc be the super node corresponding to the SCCra f {a,β ,c}. Given that the other SCCra f of RAF are
all singletons we associate to each of them a super node having as name the element it possesses. See the
resulting DAG in Figure 14.9.

This property of SCCra f partial ordering opens perspectives for algorithms computing RAF semantics
following a certain hierarchical view of a given RAF.

14.3 Decomposability of semantics
In this chapter the decomposability property of semantics defined for AF (introduced in [9]) is extended
to RAF. We first give some formal definitions to introduce the decomposability of RAF semantics (Sec-
tion 14.3.1 on the next page). Then, we give an illustration of this notion for the RAF-complete semantics
(Section 14.3.2 on page 142). Finally, the decomposability properties of the RAF-complete, RAF-grounded,
RAF-preferred, RAF-semi-stable and RAF-stable semantics are established and proven (Section 14.3.3 on
page 153).

134 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

14.3.1 Definitions
In Dung’s Argumentation Framework attacks are always valid. Based on the notion introduced in [9] and [8],
any AF can be splitted into several sub-frameworks by simply ignoring some attacks. Indeed the influence
of an input attack on a sub-framework only depends to the acceptance state of its source in its own sub-
framework. It is not the case for RAF. Attacks, as arguments, can be labelled in , out or und . As a
consequence, we cannot just ignore attacks to split a RAF. Furthermore, as attacks can be attacked in RAF,
the removal of an attack could require some other removals in cascade (see Example 67).

a

α

β γ

δ ε

b

c

d

e

g

Figure 14.10: Example of attacks in cascade

Example 67. Let consider the RAF in Figure 14.10. If we want to split this RAF so that the argument g
may be alone in its sub-framework, we cannot just ignore the existence of ε , because it will require the same
treatment for δ , and then for γ , then β and α .

Now, if we do not suppress attacks while splitting RAFs, we will have attacks without targets or without
sources. Given that, the result of such a split do not produce RAFs. A new notion is thus necessary to capture
this idea of RAF splitting: “Partial RAF”.

Definition 92 (Partial RAF). Let RAF = ⟨A,K,s, t⟩ be a RAF. A partial RAF R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
of RAF

is a tuple where:

• Ã⊆ A is a set representing arguments

• K̃ ⊆ K is a set representing attacks

• s̃ : K̃ → {true,false} is a boolean function that indicates whether or not an attack in K̃ has its
source in Ã defined as following:

∀α ∈ K̃, s̃(α) = true if s(α) ∈ Ã otherwise false

• t̃ : K̃→{true,false} is a boolean function that indicates whether or not an attack in K̃ has its target
in Ã∪ K̃

∀α ∈ K̃, t̃(α) = true if t(α) ∈ Ã∪ K̃ otherwise false

14.3. DECOMPOSABILITY OF SEMANTICS 135

Example 68. Figure 14.11 gives an illustration of partial RAFs. We have:

• RAF = ⟨A,K,s, t⟩ with:

– A = {a,b,c,d} and K = {α,β ,γ,δ}
– s(α) = a, s(β) = b, s(γ) = c, s(δ) = d
– t(α) = β , t(β) = c, t(γ) = δ , t(δ) = a

• R̃AF 1 =
〈
Ã1, K̃1, s̃1, t̃1,s, t

〉
with:

– Ã1 = {a,d} and K̃1 = {δ}
– s̃1(δ) = true

– t̃1(δ) = true

• R̃AF 2 =
〈
Ã2, K̃2, s̃2, t̃2,s, t

〉
with:

– Ã2 = {b,c} and K̃2 = {α,β ,γ}
– s̃2(α) = false, s̃2(β) = true, s̃2(γ) = true

– t̃2(α) = true, t̃2(β) = true, t̃2(γ) = false

a βα

c

b

δ γ

d

(a) RAF example: RAF

a

δ

d

(b) Partial RAF n°1: R̃AF 1

βα

c

b

γ

(c) Partial RAF n°2: R̃AF 2

Figure 14.11: Illustration of partial RAFs

So using the notion of partial RAF we are able to define a partition of a RAF:

Definition 93 (RAF partition). Let RAF = ⟨A,K,s, t⟩ be a RAF. Let Ω = {ω1, ...,ωn} be a partition1 of
(A∪K). A RAF partition of RAF is a set of partial RAFs {R̃AF 1, ..., R̃AF n} such that:

∀ωi ∈Ω, R̃AF i =
〈
Ãi, K̃i, s̃i, t̃i,s, t

〉
with:

1So the following property holds for Ω:
• ∀(i, j) ∈ {1, ...,n} s.t. i ̸= j,ωi ∩ω j =∅

•
n⋃

i=1
ωi = A∪K

136 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

• Ãi = ωi∩A

• K̃i = ωi∩K

• s̃i : K̃i → {true,false} is a boolean function that indicates whether or not an attack in K̃i has its
source in Ãi defined as following:

∀α ∈ K̃i, s̃i(α) = true if s(α) ∈ Ãi otherwise false

• t̃i : K̃i → {true,false} is a boolean function that indicates whether or not an attack in K̃i has its
target in Ãi∪ K̃i

∀α ∈ K̃i, t̃i(α) = true if t(α) ∈ Ãi∪ K̃i otherwise false

Example 69. Following Example 68 on the previous page, R̃AF 1 and R̃AF 2 form a RAF partition of RAF
as Ã1∩ Ã2 =∅, K̃1∩ K̃2 =∅ and (A∪K) = (Ã1∪ K̃1)∪ (Ã2∪ K̃2).

Among all possible partial RAFs, we highlight to particular types: the “Well-founded partial RAF”
and the “Independant partial RAF”. The first type corresponds to partial RAFs in which all attacks have
their sources. The second one corresponds to well founded partial RAFs that are not attacked from outside.
Formally, we have the following definitions:

Definition 94 (Well founded Partial RAF). Let RAF = ⟨A,K,s, t⟩ be a RAF and R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
be a

partial RAF of RAF . R̃AF is said to be “well founded” if and only if the following property holds: ∀α ∈ K̃,
s̃(α) is true.

Definition 95 (Independent Partial RAF). Let RAF = ⟨A,K,s, t⟩ be a RAF and R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
be a

partial RAF of RAF . R̃AF is said to be “independent” if and only if the following property holds:

R̃AF is well founded and ∀α ∈ K s.t. t(α) ∈ (Ã∪ K̃), α ∈ K̃

Example 70. Following Example 68 on the previous page: R̃AF 1 is well founded but not independent,
R̃AF 2 is neither well founded nor independent.

Considering a partial RAF implies to consider also its “inputs”:

Definition 96 (Partial RAF with input). Let RAF = ⟨A,K,s, t⟩ be a RAF and R̃AF = ⟨Ã, K̃, s̃, t̃, s, t⟩ be a
partial RAF of RAF . The input I of R̃AF is a tuple

〈
Sinp,Qinp

〉
where:

• Sinp is the set of arguments defined by Sinp = {s(α) ∈ (A\ Ã)|α ∈ K and t(α) ∈ (Ã∪ K̃)}

• Qinp is the set of attacks defined by Qinp = {α ∈ (K \ K̃)|t(α) ∈ (Ã∪ K̃)}

The tuple
〈

R̃AF ,I,Linp
〉

is called a “partial RAF with input”, where Linp is a structure labelling of the

elements in Sinp and Qinp.

Example 71. Let consider the partial RAFs R̃AF 1 and R̃AF 2 of Example 68 on the previous page. Fig-
ure 14.12 on the following page illustrates the notion of inputs for these partial RAFs.

Let I1 =
〈

Sinp
1 ,Qinp

1

〉
be the input of R̃AF 1 and I2 =

〈
Sinp

2 ,Qinp
2

〉
be the input of R̃AF 2. Let Linp

1

(respectively L
inp
2) be a structure labelling associated to I1 (respectively I2). We have:

14.3. DECOMPOSABILITY OF SEMANTICS 137

a βα

c

b

δ γ

d

(a) RAF example: RAF

a

cδ γ

d

Input elements

(b) Partial RAF n°1: R̃AF 1

a βα

c

b

γ

Input

elements

(c) Partial RAF n°2: R̃AF 2

Figure 14.12: Illustration of partial RAFs with inputs
Note that input elements do not belong to the partial RAFs.

• Sinp
1 = {c}, Qinp

1 = {γ}. As an example, we may have: Linp
1 = ⟨{(c,out)},{(γ,und)}⟩.

• Sinp
2 = {a}, Qinp

2 =∅. As an example, we may have: Linp
2 = ⟨{(a,in)},∅⟩.

Then a standard RAF is the RAF that can be built from a partial RAF with inputs:

Definition 97 (Standard RAF). Let RAF = ⟨A,K,s, t⟩ be a RAF. Let
〈

R̃AF ,I,Linp
〉

be a partial RAF with

input such that R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
is a partial RAF of RAF . The standard RAF w.r.t.

〈
R̃AF ,I,Linp

〉
is

a RAF defined as R̃AF s = ⟨As,Ks,ss, ts⟩ where:

• As = Ã∪Sinp∪{υ ,ρ,ζ}

• Ks = K̃∪Qinp∪N∪{θ}, with:

– N = {αx|x ∈ (Und∪Out)}
– Out = out(Linp)

– Und = und(Linp)

And where ss : Ks→ As and ts : Ks→ (As∪Ks) are functions respectively mapping each attack to its source
and to its target and such that:

• ∀α ∈ (K̃∪Qinp), ss(α) = s(α)

• ∀α ∈ Qinp∪ (K̃ \{α|α ∈ K̃ s.t. t̃(α) is false}), ts(α) = t(α)

• ∀α ∈ {α|α ∈ K̃ s.t. t̃(α) is false}, ts(α) = ζ

• ∀αx ∈ {αx ∈ N|x ∈ Out}, ss(αx) = ρ

• ∀αx ∈ {αx ∈ N|x ∈Und}, ss(αx) = υ

• ∀αx ∈ N, ts(αx) = x

138 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

• ss(θ) = υ

• ts(θ) = υ

The following list gives the intuition of the new elements added in the standard RAF:

• υ is the argument that will serve to label und an element of the RAF input.

• θ is the attack whose source and target is υ , making υ a self attacking argument and thus an argument
that will be labelled und .

• ρ is the argument that will serve to label out an element of the RAF input.

• N is the set of attacks that will link υ and ρ to all elements of the RAF input that should be labelled
out or und .

• ζ is an argument that will serve as the target of all attacks of the partial RAF whose target does not
belong to the partial RAF.

Note: By definition, all RAF-complete labellings of the standard RAF2 R̃AF s restricted to the elements of
the input I coincide with the labelling Linp.

Example 72. Figure 14.13 on the following page gives illustrations of standard RAFs. R̃AF s1 is the standard
RAF corresponding to the partial RAF with input:〈

R̃AF 1,I1 =
〈

Sinp
1 = {c},Qinp

1 = {γ}
〉
,Linp

1 = ⟨{(c,out)},{(γ,und)}⟩
〉

R̃AF s2 is the standard RAF corresponding to the partial RAF with input:〈
R̃AF 2,I2 =

〈
Sinp

2 = {a},Qinp
2 =∅

〉
,Linp

2 = ⟨{(a,in)},∅⟩
〉

Notice that ζ , υ and ρ may be disconnected from the rest of the standard RAF following the partial RAF
structure and the input labelling.

Let define an operator in order to select a sub-part of a structure labelling:

Definition 98. (Structure labelling restriction ↓). Let L=
〈
ℓA,ℓK

〉
be a structure labelling. Let U= ⟨S,Q⟩

be a structure. The restriction of L to U denoted as L ↓U is defined as:〈
ℓA∩ (S×{in,out,und}),ℓK ∩ (Q×{in,out,und})

〉
Given a RAF with input, the canonical local function is simply a function that gives the set of labellings

under a certain semantics of the sub-RAF we are interested in (i.e. the input elements and the other fictive
elements created are not in these labellings).

Definition 99 (RAF canonical local function). Let RAF = ⟨A,K,s, t⟩ be a RAF, R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
be

a partial RAF of RAF , σ be a semantics,
〈

R̃AF ,I,Linp
〉

be a RAF with input, and R̃AF s be its standard
RAF.

2A standard RAF being a RAF, standard RAF labellings are simply RAF labellings.

14.3. DECOMPOSABILITY OF SEMANTICS 139

a

cδ γ

d

ζ

ραc

υ θ

αγ

(a) R̃AF s1 corresponding to
〈

R̃AF 1,I1,L
inp
1

〉
with

N = {αc,αγ}, Out = {c}, Und = {γ}

a βα

c

b

ζ γ

υ θ

ρ

(b) R̃AF s2 corresponding to〈
R̃AF 2,I2,L

inp
2

〉
with N = Out =Und =∅

Figure 14.13: Standard RAFs example

A local function F ra f
σ assigns to any partial RAF with input

〈
R̃AF ,I,Linp

〉
a (possibly empty) set of

labellings of R̃AF , i.e. F ra f
σ (R̃AF ,I,Linp) ∈ 2{L|L being any structure labelling over ⟨Ã,K̃⟩}.

The canonical local function F ra f
σ is the local function such that F ra f

σ (R̃AF ,I,Linp) = {L ↓⟨Ã∪K̃⟩ |L ∈

Lσ -ra f (R̃AF s)}.

Example 73. Following Example 72 on the previous page, we have for the RAF-complete semantics in the
case of R̃AF 1:

F ra f
co (R̃AF 1,I1,L

inp
1) = {⟨{(a,out),(d,in)},{(δ ,in)}⟩}

The next step consists in establishing a link between a RAF partition and a partition of its flattened
version. Let first define a RAF partition selector:

Definition 100. (RAF Partition selector). A RAF partition selector S is a function receiving as input a RAF
RAF = ⟨A,K,s, t⟩ and returning a set of partitions of A∪K.

While considering partitions of flattened RAF, some specific partitions must be considered:

Definition 101 (RAF-compliant partition selector). An AF partition selector S is said to be “RAF-compliant”
iff for any RAF RAF = ⟨A,K,s, t⟩ and its corresponding AF AF = Raf2Af(RAF) (with AF = ⟨A′,K′⟩), we
have the following property:

∀Ω′ ∈S (AF),∀ω ′ ∈Ω
′,

 x ∈ (A∪K)∩ω ′ =⇒ ¬x ∈ ω ′

α ∈ K∩ω ′ =⇒ s(α).α ∈ ω ′

To precise that a partition selector is RAF-compliant we use the notation: Sra f -c. Let Ω′ ∈Sra f -c(AF)
be a partition of AF selected by some RAF-compliant selector. We say that Ω′ is a RAF-compliant partition
of AF .

140 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

Note: Definition 101 on the previous page describe a property, the property for AF partition selector to
be RAF-compliant. But it does not define any selector. The following definition defines the default RAF-
compliant partition selector, which is the AF partition selector that produces, given a flattened RAF, all
RAF-compliant partitions.

Definition 102 (Default RAF-compliant partition selector). The default RAF-compliant selector, denoted by
SD-ra f -c, is the AF RAF-compliant partition selector defined as follows:

∀RAF = ⟨A,K,s, t⟩ ∈Φra f ,

SD-ra f -c(AF) =

Ω′

∣∣∣∣∣∣∣∣∣
Let Ω′ be any partition of AF

and (∀ω ′i ∈Ω′,∀x ∈ (A∪K),x ∈ ω ′i =⇒ ¬x ∈ ω ′i)

and (∀ω ′i ∈Ω′,∀α ∈ K,α ∈ ω ′i =⇒ s(α).α ∈ ω ′i)

 , with AF = Raf2Af(RAF)

The following definition establishes the relation between RAF partition selectors and AF RAF-compliant
partition selectors:

Definition 103. (AF and RAF partition selector correspondance) Let S be a RAF partition selector and
let Sra f -c be an AF RAF-compliant partition selector. We say that S is the RAF counterpart of Sra f -c (and
vice-versa) iff :

∀RAF ∈Φra f ,S (RAF) = {{ω ′∩ (A∪K)|ω ′ ∈Ω
′}|Ω′ ∈Sra f -c(Raf2Af(RAF))}

The idea behind the previous definition is that, when we consider the partition of the flattened version of
a RAF, we want that any element in AndA,K belongs to the same part as the attack it is related to, any element
in NotA (resp. NotK) belongs to the same part as the argument (resp. the attack) it is related to.

Although it could be defined otherwise, we choose this definition because:

1. The acceptance of an element x ∈ (A∪K) is intrinsically related to the acceptance of the argument ¬x:

• x is labelled in iff ¬x is labelled out

• x is labelled out iff ¬x is labelled in

• x is labelled und iff ¬x is labelled und

2. A RAF argument may be the source of several attacks, whereas an attack has only one target. It seems
thus reasonable to put arguments that belong to AndA,K in the same part as the argument corresponding
to their attack.

The following example illustrates Definition 103.

Example 74. Let consider the frameworks in Figure 14.14 on the following page. Let Sra f -c be an AF
“RAF-compliant” partition selector and S be its RAF counterpart.

Let consider Ω ∈S such that:

Ω = {{d},{δ ,γ},{α,β ,b,c,a}}

We have thus Ω′ ∈Sra f -c(AF) such that:

Ω
′ = {{d,¬d},{δ ,¬δ ,d.δ ,γ,¬γ,c.γ},{α,¬α,a.α,β ,¬β ,b.β ,b,¬b,c,¬c,a,¬a}}

14.3. DECOMPOSABILITY OF SEMANTICS 141

a βα

c

b

γ

d

δ

(a) RAF

a

¬a

a.α
β

¬β

b.β

c
¬c

c.γ

¬α α

¬γ γ

d.δ

¬d¬δ

dδ

¬b

b

(b) Flattened version of the RAF in Figure 14.14(a)

Figure 14.14: RAF-compliant partition example

142 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

And finally the last but not the least notion corresponds to the notion of semantics decomposability:

Definition 104. (Semantics decomposability). A semantics σ is fully decomposable (or simply decompos-
able) if and only if there is a local function F ra f

σ such that for every RAF RAF = ⟨A,K,s, t⟩ and every
partition Ω = {ω1, ...,ωn} of (A∪K) and {R̃AF 1, ..., R̃AF n} the partition of RAF corresponding to Ω, the
following property holds:

Lσ -ra f (RAF) = {L1∪ ...∪Ln|∀i ∈ {1, ...,n}, Li ∈F ra f
σ (R̃AF i,Ii,L

inp
i)}

With R̃AF i =
〈
Ãi, K̃i, s̃i, t̃i,s, t

〉
and Ii =

〈
Sinp

i ,Qinp
i

〉
and L

inp
i defined as following:

• Sinp
i = {s(α) /∈ Ãi|∃α ∈ K s.t. t(α) ∈ (Ãi∪ K̃i)}

• Qinp
i = {α /∈ K̃i|∃α ∈ K s.t. t(α) ∈ (Ãi∪ K̃i)}

• L
inp
i = (

⋃
j∈{1,...,n} s.t. j ̸=i

L j) ↓〈Sinp
i ,Qinp

i

〉
A semantics σ is said to be top-down decomposable if and only if the following property holds:

Lσ -ra f (RAF)⊆ {L1∪ ...∪Ln|∀i ∈ {1, ...,n}, Li ∈F ra f
σ (R̃AF i,Ii,L

inp
i)}

A semantics σ is said to be bottom-up decomposable if and only if the following property holds:

Lσ -ra f (RAF)⊇ {L1∪ ...∪Ln|∀i ∈ {1, ...,n}, Li ∈F ra f
σ (R̃AF i,Ii,L

inp
i)}

14.3.2 Illustration
In this section we illustrate the decomposability property of the complete semantics, and show the link
between this property in AF and in RAF. For this purpose, let consider Figure 14.15 on the following page.

Let RAF = ⟨A,K,s, t⟩ be the RAF and AF = Raf2Af(RAF) (with AF = ⟨A′,K′⟩) be the flattened version
of RAF , as represented in Figure 14.15 on the following page. Let Ω′ = {{d,¬d,δ ,¬δ ,d.δ ,a,¬a},{α,¬α,
a.α,β , ¬β ,b,¬b,b.β , c,¬c,γ, ¬γ,c.γ}} be a partition of A′. We have: Ω′ ∈ SD-ra f -c(AF) (See Defini-
tion 102 on page 140). Let Ω = Ω′∩ (A∪K) be the partition of A∪K corresponding to Ω′. Let us split RAF
along the partition Ω and AF along the partition Ω′. The partial RAFs R̃AF 1 and R̃AF 2 produced by the
split of RAF are represented in Figure 14.16 on page 144 and the clusters κ1 and κ2 produced by the split of
AF are represented in Figure 14.17 on page 144.

We have:

• R̃AF 1 =
〈
Ã1, K̃1, s̃1, t̃1,s, t

〉
and I1 = ⟨{c},{γ}⟩ with:

– Ã1 = {a,d} and K̃1 = {δ}
– s̃1(δ) = true

– t̃1(δ) = true

14.3. DECOMPOSABILITY OF SEMANTICS 143

a βα

c

b

δ γ

d

(a) RAF example: RAF

a

¬a a.α β ¬β

b.β

c

¬cc.γδ¬δ

d.δ

d

¬d α

¬α

b

¬bγ

¬γ

(b) AF : the flattened version of RAF

Figure 14.15: Running example for semantics decomposability illustration

• R̃AF 2 =
〈
Ã2, K̃2, s̃2, t̃2,s, t

〉
and I2 = ⟨{a},∅⟩ with:

– Ã2 = {b,c} and K̃2 = {α,β ,γ}
– s̃2(α) = false, s̃2(β) = true, s̃2(γ) = true

– t̃2(α) = true, t̃2(β) = true, t̃2(γ) = false

And:

• κ1 =
〈

af 1, I1,O1,B1
〉

with:

– af 1 =
〈

Aaf 1
,Kaf 1

〉
being an AF with:

* Aaf 1
= {d,¬d,δ ,¬δ ,d.δ ,a,¬a}

* Kaf 1
= {(δ ,¬δ),(d,¬d),(¬d,d.γ),(¬δ ,d.γ),(d.δ ,a),(a,¬a)}

– I1 = {(c.γ,δ)} (the inward attacks)

– O1 = {(¬a,a.α)} (the outward attacks)

– B1 = {¬a,δ} (the border arguments)

• κ2 =
〈

af 2, I2,O2,B2
〉

with:

– af 2 =
〈

Aaf 2
,Kaf 2

〉
being an AF with:

* Aaf 2
= {α,¬α,a.α,β ,¬β ,b,¬b,b.β ,c,¬c,γ,¬γ,c.γ}

* Kaf 2
= {(α,¬α),(¬α,a.α),(a.α,β),(β ,¬β),(b,¬b),(¬β ,b.β),(¬b,b.β),(b.β ,c),

(c,¬c),(γ,¬γ),(¬γ,c.γ),(¬c,c.γ)}
– I2 = {(¬a,a.α)}

144 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

– O2 = {(c.γ,δ)}
– B2 = {a.α,c.γ}

a

cδ γ

d

Input elements

(a) Partial RAF n°1: R̃AF 1

a βα

c

b

γ

Input

elements

(b) Partial RAF n°2: R̃AF 2

Figure 14.16: Partial RAFs of RAF
Notice that input elements do not belong to the partial RAFs.

a

¬a

d.δ

¬δ δ

d

¬d

(a) Cluster n°1: κ1

a.α β ¬β

b.β

c

¬cc.γ

b

¬bγ

¬γα

¬α

(b) Cluster n°2: κ2

Figure 14.17: Clusters of AF

Given the input elements of the partial RAFs of RAF , let define the possible labellings associated with
them. For R̃AF 1, we have:

• L
inp
1.1 = ⟨{(c,in)},{(γ,in)}⟩

• L
inp
1.2 = ⟨{(c,in)},{(γ,out)}⟩

• L
inp
1.3 = ⟨{(c,in)},{(γ,und)}⟩

• L
inp
1.4 = ⟨{(c,out)},{(γ,in)}⟩

• L
inp
1.5 = ⟨{(c,out)},{(γ,out)}⟩

• L
inp
1.6 = ⟨{(c,out)},{(γ,und)}⟩

14.3. DECOMPOSABILITY OF SEMANTICS 145

a

cδ γ

d

ζ

ρ

υ θ

(a) R̃AF s1.1 corresponding to〈
R̃AF 1,I1,L

inp
1.1

〉

a

¬a

d.δ

¬δ

d

¬d

(b) af ′1.1 the induced AF of κ1 un-
der µ1.1 (Notice that δ has disappeared
since its attacker is labelled in).

Figure 14.18: When c and γ are accepted
With:

• µ1.1 = {(c.γ,in)}

• L
inp
1.1 = ⟨{(c,in)},{(γ,in)}⟩

• L
inp
1.7 = ⟨{(c,und)},{(γ,in)}⟩

• L
inp
1.8 = ⟨{(c,und)},{(γ,out)}⟩

• L
inp
1.9 = ⟨{(c,und)},{(γ,und)}⟩

For R̃AF 2, we have:

• L
inp
2.1 = ⟨{(a,in)},∅⟩ • L

inp
2.2 = ⟨{(a,out)},∅⟩ • L

inp
2.3 = ⟨{(a,und)},∅⟩

Likewise given the border arguments of the clusters of AF , let define the possible contexts associated
with them. For κ1, we have:

• µ1.1 = {(c.γ,in)} • µ1.2 = {(c.γ,out)} • µ1.3 = {(c.γ,und)}

For κ2, we have:

• µ2.1 = {(¬a,out)} • µ2.2 = {(¬a,in)} • µ2.3 = {(¬a,und)}

Figures 14.18 to 14.23 on pages 145–150 show the standard RAFs produced from R̃AF 1 and R̃AF 2
associated with the induced AF produced from κ1 and κ2. It is worth to notice that several standard RAFs
can be associated to a same induced AF (see for instance Figures 14.19 and 14.20 on the next page and on
page 147).

Let consider Figure 14.18. Notice that, only for this figure, the elements belonging to the partial RAF
are highlighted in green and those being the RAF inputs in blue, we have:3

3The use of these colors illustrates more easily the common points between the RAF side and the AF side and also the fact that the
inputs can still appear on the RAF side but not on the AF side.

146 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

a

cδ γ

d

ζ

ρ

υ θ

αγ

(a) R̃AF s1.2 corresponding to〈
R̃AF 1,I1,L

inp
1.2

〉

a

cδ γ

d

ζ

ρ

υ θ

αc

(b) R̃AF s1.4 corresponding to〈
R̃AF 1,I1,L

inp
1.4

〉

a

cδ γ

d

ζ

ρ

υ θ

αcαγ

(c) R̃AF s1.5 corresponding to〈
R̃AF 1,I1,L

inp
1.5

〉

a

cδ γ

d

ζ

ρ

υ θ

αc

αγ

(d) R̃AF s1.6 corresponding to〈
R̃AF 1,I1,L

inp
1.6

〉

a

cδ γ

d

ζ

ρ

υ θ

αc

αγ

(e) R̃AF s1.8 corresponding to〈
R̃AF 1,I1,L

inp
1.8

〉

a

¬a

d.δ

¬δ δ

d

¬d

(f) af ′1.2 the induced AF of κ1 under µ1.2

Figure 14.19: When c or γ is rejected

With:

• µ1.2 = {(c.γ,out)}

• L
inp
1.2 = ⟨{(c,in)},{(γ,out)}⟩

• L
inp
1.4 = ⟨{(c,out)},{(γ,in)}⟩

• L
inp
1.5 = ⟨{(c,out)},{(γ,out)}⟩

• L
inp
1.6 = ⟨{(c,out)},{(γ,und)}⟩

• L
inp
1.8 = ⟨{(c,und)},{(γ,out)}⟩

14.3. DECOMPOSABILITY OF SEMANTICS 147

a

cδ γ

d

ζ

ρ

υ θ

αγ

(a) R̃AF s1.3 corresponding to〈
R̃AF 1,I1,L

inp
1.3

〉

a

cδ γ

d

ζ

ρ

υ θ

αc

(b) R̃AF s1.7 corresponding to〈
R̃AF 1,I1,L

inp
1.7

〉

a

cδ γ

d

ζ

ρ

υ θ

αcαγ

(c) R̃AF s1.9 corresponding to〈
R̃AF 1,I1,L

inp
1.9

〉

a

¬a

d.δ

¬δ δ

d

¬d

(d) af ′1.3 the induced AF of κ1 under µ1.3

Figure 14.20: When neither c nor γ is out and one of them is und

With:

• µ1.3 = {(c.γ,und)}

• L
inp
1.3 = ⟨{(c,in)},{(γ,und)}⟩

• L
inp
1.7 = ⟨{(c,und)},{(γ,in)}⟩

• L
inp
1.9 = ⟨{(c,und)},{(γ,und)}⟩

148 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

a βα

c

b

ζ γ

υ

θ

ρ

(a) R̃AF s2.1 corresponding to〈
R̃AF 2,I2,L

inp
2.1

〉

a.α β ¬β

b.β

c

¬cc.γ

b

¬bγ

¬γα

¬α

(b) af ′2.1 the induced AF of κ2 under µ2.1

Figure 14.21: When a is accepted

With:

• L
inp
2.1 = ⟨{(a,in)},∅⟩ • µ2.1 = {(¬a,out)}

• Lco-ra f (R̃AF s1.1) =


〈
{ (a,in) , (d,in) , (c,in) ,(ρ,in),(υ ,und),(ζ ,in)},

{ (δ ,out) , (γ,in) ,(θ ,in)}

〉
• L

µ1.1(κ1)
co = { {(d,in) ,(¬d,out), (δ ,out) ,(¬δ ,in),(d.δ ,out), (a,in) ,(¬a,out)}}

Let consider Figure 14.19 on page 146. We have:

• Lco-ra f (R̃AF s1.2) =


〈
{(a,out),(d,in),(c,in),(ρ,in),(υ ,und),(ζ ,in)},

{(δ ,in),(γ,out),(θ ,in),(αγ ,in)}

〉
• Lco-ra f (R̃AF s1.4) =


〈
{(a,out),(d,in),(c,out),(ρ,in),(υ ,und),(ζ ,in)},

{(δ ,in),(γ,in),(θ ,in),(αc,in)}

〉
• Lco-ra f (R̃AF s1.5) =


〈
{(a,out),(d,in),(c,out),(ρ,in),(υ ,und),(ζ ,in)},

{(δ ,in),(γ,out),(θ ,in),(αγ ,in),(αc,in)}

〉
• Lco-ra f (R̃AF s1.6) =


〈
{(a,out),(d,in),(c,out),(ρ,in),(υ ,und),(ζ ,in)},

{(δ ,in),(γ,und),(θ ,in),(αγ ,in),(αc,in)}

〉
• Lco-ra f (R̃AF s1.8) =


〈
{(a,out),(d,in),(c,und),(ρ,in),(υ ,und),(ζ ,in)},

{(δ ,in),(γ,out),(θ ,in),(αγ ,in),(αc,in)}

〉

14.3. DECOMPOSABILITY OF SEMANTICS 149

a βα

c

b

ζ γ

υ

θ

ρ

αa

(a) R̃AF s2.2 corresponding to〈
R̃AF 2,I2,L

inp
2.2

〉

β ¬β

b.β

c

¬cc.γ

b

¬bγ

¬γα

¬α

(b) af ′2.2 the induced AF of κ2 under µ2.2

Figure 14.22: When a is rejected

With:

• L
inp
2.2 = ⟨{(a,out)},∅⟩ • µ2.2 = {(¬a,in)}

• L
µ1.2(κ1)

co = {{(d,in),(¬d,out),(δ ,in),(¬δ ,out),(d.δ ,in),(a,out),(¬a,in)}}

Let consider Figure 14.20 on page 147. We have:

• Lco-ra f (R̃AF s1.3) =


〈
{(a,und),(d,in),(c,in),(ρ,in),(υ ,und),(ζ ,in)},

{(δ ,und),(γ,und),(θ ,in),(αγ ,in)}

〉
• Lco-ra f (R̃AF s1.7) =


〈
{(a,und),(d,in),(c,und),(ρ,in),(υ ,und),(ζ ,in)},

{(δ ,und),(γ,in),(θ ,in),(αc,in)}

〉
• Lco-ra f (R̃AF s1.9) =


〈
{(a,und),(d,in),(c,und),(ρ,in),(υ ,und),(ζ ,in)},

{(δ ,und),(γ,und),(θ ,in),(αγ ,in),(αc,in)}

〉
• L

µ1.3(κ1)
co = {{(d,in),(¬d,out),(δ ,und),(¬δ ,und),(d.δ ,und),(a,und),(¬a,und)}}

Let consider Figure 14.21 on the previous page. We have:

• Lco-ra f (R̃AF s2.1) =


〈
{(a,in),(b,in),(c,in),(ρ,in),(υ ,und),(ζ ,out)},

{(α,in),(β ,out),(γ,in),(θ ,in)}

〉
• L

µ2.1(κ2)
co =


 (α,in),(¬α,out),(a.α,in),(β ,out),(¬β ,in),(b.β ,out),

(b,in),(¬b,out),(c,in),(¬c,out),(γ,in),(¬γ,out),(c.γ,in)




150 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

a βα

c

b

ζ γ

υ

θ

ρ

αa

(a) R̃AF s2.3 corresponding to〈
R̃AF 2,I2,L

inp
2.3

〉

a.α β ¬β

b.β

c

¬cc.γ

b

¬bγ

¬γα

¬α

(b) af ′2.3 the induced AF of κ2 under µ2.3

Figure 14.23: When a is undecided

With:

• L
inp
2.3 = ⟨{(a,und)},∅⟩ • µ2.3 = {(¬a,und)}

Let consider Figure 14.22 on the previous page. We have:

• Lco-ra f (R̃AF s2.2) =


〈
{(a,out),(b,in),(c,out),(ρ,in),(υ ,und),(ζ ,in)},

{(α,in),(β ,in),(γ,in),(θ ,in),(αa,in)}

〉
• L

µ2.2(κ2)
co =


 (α,in),(¬α,out),(a.α,out),(β ,in),(¬β ,in),(b.β ,in),

(b,in),(¬b,out),(c,out),(¬c,in),(γ,in),(¬γ,out),(c.γ,out)




Let consider Figure 14.23. We have:

• Lco-ra f (R̃AF s2.3) =


〈
{(a,und),(b,in),(c,und),(ρ,in),(υ ,und),(ζ ,und)},

{(α,in),(β ,und),(γ,in),(θ ,in),(αa,in)}

〉
• L

µ2.3(κ2)
co =


 (α,in),(¬α,out),(a.α,und),(β ,und),(¬β ,und),(b.β ,und),

(b,in),(¬b,out),(c,und),(¬c,und),(γ,in),(¬γ,out),(c.γ,und)




Notice that we have the following equalities:

• F ra f
σ (R̃AF s1.1 ,I1,L

inp
1.1) =

{〈
ℓ ↓Ã1

,ℓ ↓K̃1

〉
|ℓ ∈L

µ1.1(κ1)
co

}
= {⟨{(a,in),(d,in)},{(δ ,out)}⟩}

14.3. DECOMPOSABILITY OF SEMANTICS 151

• F ra f
σ (R̃AF s1.2 ,I1,L

inp
1.2) = F ra f

σ (R̃AF s1.4 ,I1,L
inp
1.4)

= F ra f
σ (R̃AF s1.5 ,I1,L

inp
1.5)

= F ra f
σ (R̃AF s1.6 ,I1,L

inp
1.6)

= F ra f
σ (R̃AF s1.8 ,I1,L

inp
1.8)

=
{〈

ℓ ↓Ã1
,ℓ ↓K̃1

〉
|ℓ ∈L

µ1.2(κ1)
co

}
= {⟨{(a,out),(d,in)},{(δ ,in)}⟩}

• F ra f
σ (R̃AF s1.3 ,I1,L

inp
1.3) = F ra f

σ (R̃AF s1.7 ,I1,L
inp
1.7)

= F ra f
σ (R̃AF s1.9 ,I1,L

inp
1.9)

=
{〈

ℓ ↓Ã1
,ℓ ↓K̃1

〉
|ℓ ∈L

µ1.3(κ1)
co

}
= {⟨{(a,und),(d,in)},{(δ ,und)}⟩}

• F ra f
σ (R̃AF s2.1 ,I2,L

inp
2.1) =

{〈
ℓ ↓Ã2

,ℓ ↓K̃2

〉
|ℓ ∈L

µ2.1(κ2)
co

}
= {⟨{(b,in),(c,in)},{(α,in),(β ,out),(γ,in)}⟩}

• F ra f
σ (R̃AF s2.2 ,I2,L

inp
2.2) =

{〈
ℓ ↓Ã2

,ℓ ↓K̃2

〉
|ℓ ∈L

µ2.2(κ2)
co

}
= {⟨{(b,in),(c,out)},{(α,in),(β ,in),(γ,in)}⟩}

• F ra f
σ (R̃AF s2.3 ,I2,L

inp
2.3) =

{〈
ℓ ↓Ã2

,ℓ ↓K̃2

〉
|ℓ ∈L

µ2.3(κ2)
co

}
= {⟨{(b,in),(c,und)},{(α,in),(β ,und),(γ,in)}⟩}

Finally, we can reunify compatible structure labellings of the partial RAFs of RAF , ensuring that any
produced labelling is valid:

Lco-ra f (RAF) =


⟨{(a,in),(d,in),(b,in),(c,in)},{(δ ,out),(α,in),(β ,out),(γ,in)}⟩ ,

⟨{(a,out),(d,in),(b,in),(c,out)},{(δ ,in),(α,in),(β ,in),(γ,in)}⟩ ,

⟨{(a,und),(d,in),(b,in),(c,und)},{(δ ,und),(α,in),(β ,und),(γ,in)}⟩


These structure labellings coincide with the valid labellings produced by the reunification of the cluster

152 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

labellings of AF :

Lco(AF)=




(a,in),(¬a,out),(d,in),(¬d,out),(b,in),(¬b,out),(c,in),(¬c,out),

(δ ,out),(¬δ ,in),(α,in),(¬α,out),(β ,out),(¬β ,in),(γ,in),(¬γ,out),

(d.δ ,out),(a.α,in),(b.β ,out),(c.γ,in)

 ,


(a,out),(¬a,in),(d,in),(¬d,out),(b,in),(¬b,out),(c,out),(¬c,in),

(δ ,in),(¬δ ,out),(α,in),(¬α,out),(β ,in),(¬β ,out),(γ,in),(¬γ,out),

(d.δ ,in),(a.α,out),(b.β ,in),(c.γ,out)

 ,


(a,und),(¬a,und),(d,in),(¬d,out),(b,in),(¬b,out),(c,und),(¬c,und),

(δ ,und),(¬δ ,und),(α,in),(¬α,out),(β ,und),(¬β ,und),(γ,in),(¬γ,out),

(d.δ ,und),(a.α,und),(b.β ,und),(c.γ,und)





14.3. DECOMPOSABILITY OF SEMANTICS 153

14.3.3 Properties
In this section, we prove the decomposability properties of RAF semantics from those of AF semantics. The
first steps of the demonstration consist in highlighting labellings correspondence between RAF and flattened
RAF and w.r.t. some partitioning. Figure 14.24 gives an overview of those steps, leading to Proposition 41
on page 159. From this property, the second steps of the demonstration consist in establishing equivalences
between RAF and AF semantics decomposability properties (See Propositions 42, 43 and 45 on pages 160–
161). Figure 14.25 on the next page gives an overview of those steps, leading ultimately to Proposition 47
on page 162.

A RAF: RAF = ⟨A,K,s, t⟩

A RAF with input corresponding to
ω ∈Ω:

〈
R̃AF ,I,Linp

〉

A standard RAF: R̃AF s =
〈
Ãs, K̃s,ss, ts

〉

R̃AF s flattened: R̃AF
′
s =
〈
Ã′s, K̃

′
s
〉

An AF: AF = ⟨A′,K′⟩

An AF with input corresponding
to ω ′ ∈ Ω′ such that ω ′ corre-
sponds to ω:

〈
AF ↓ω ′ ,J ,ℓ

J ,KJ

〉

A standard AF: std-AF = ⟨A′s,K′s⟩

(flattening)
Raf2Af(RAF)

Definition 105

Proposition 41:
Labelling

correspondence

Partition of RAF : Ω

Definition 97

Raf2Af(R̃AF s)

RAF-compliant partition of
AF corresponding to Ω: Ω′

Definition 17

Proposition 40: Common
sub-AF in both AFs and
labelling correspondence

Figure 14.24: Demonstration overview: schema n◦1

154 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

Decomposability
equivalence

Proposition 42

Selector
correspondance
Definition 103

Decomposability
equivalence

Proposition 47

Induced by
Proposition 42

(See above)

Decomposability
equivalence

Proposition 47

Induced by
Proposition 42

(See above)

Decomposability
equivalence

Proposition 43
Proposition 44

Decomposability
equivalence

Proposition 45
Proposition 46

A RAF semantics: σ -raf Corresponding AF semantics: σ

RAF and AF
semantics

correspondence
Definition 106

A RAF partition
selector: S

Default
partition
selector:
SD-ra f

USCCra f
partition
selector:
Sra f -USCC

Corresponding AF
RAF-compliant
partition selector:
Sra f -c

Default AF RAF-
compliant partition
selector: SD-ra f -c

USCCa f AF RAF-
compliant partition
selector: Sra f -c-USCC

Default
partition
selector:
SD-a f

USCCa f
partition
selector:
SUSCC

Notice that this equivalence
is not sufficient to derive
RAF semantics decompos-
ability properties from AF
ones. We need the proposi-
tions below to do so.

RAF side AF side

Figure 14.25: Demonstration overview: schema n◦2

14.3. DECOMPOSABILITY OF SEMANTICS 155

In order to establish a point of comparison between RAF semantics decomposability and AF semantics
decomposability we introduce with the following definition the correspondence between an AF with input
and a RAF with input:

Definition 105 (AF with input corresponding to RAF with input). Let RAF = ⟨A,K,s, t⟩ be a RAF and
AF = Raf2Af(RAF) be the corresponding AF of RAF (with AF = ⟨A′,K′⟩). Let Ω be a partition of (A∪K)
and Ω′ ∈ SD-ra f -c(AF) be the RAF-compliant partition of A′ corresponding to Ω, i.e. Ω′ = {ω ′ = ω ∪
{¬x|x ∈ ω}∪ {s(α).α ∈ AndA,K |α ∈ ω}|ω ∈ Ω}. Let ω ∈ Ω and ω ′ ∈ Ω′ be its counterpart in AF . Let
R̃AF =

〈
Ã, K̃, s̃, t̃,s, t

〉
be the partial RAF corresponding to ω . Let I =

〈
Sinp,Qinp

〉
be the input elements

of R̃AF and Linp be a structure labelling of them. Let
〈

R̃AF ,I,Linp
〉

be a RAF with input. We define〈
AF ↓ω ′ ,J ,ℓ

J ,KJ

〉
as the AF with input corresponding to

〈
R̃AF ,I,Linp

〉
with:

• J = {s(α).α|α ∈ Qinp}∪{¬a|a ∈ Sinp s.t. ∃α ∈ K̃ and s̃(α) = false and s(α) = a}

• ∀(s(α).α) ∈ J s.t. α ∈ Qinp, ℓJ (s(α).α) is defined as following:

ℓJ
(s(α).α) =


in ⇐⇒ Linp(α) = in and Linp(s(α)) = in

out ⇐⇒ Linp(α) = out or Linp(s(α)) = out

und ⇐⇒

(
Linp(α) ̸= out and Linp(s(α)) ̸= out and
(Linp(α) = und or Linp(s(α)) = und)

)

• ∀¬a ∈ J s.t. a ∈ Sinp, ℓJ (¬a) is defined as following:

ℓJ
(¬a) =


in ⇐⇒ Linp(a) = out

out ⇐⇒ Linp(a) = in

und ⇐⇒ Linp(a) = und

• KJ = {(s(α).α, t(α))|α ∈ Qinp}∪{(¬s(α),s(α).α)|α ∈ K̃ and s̃(α) = false}

Example 75. Let RAF = ⟨A,K,s, t⟩ and AF = Raf2Af(RAF) be respectively the RAF and the AF rep-
resented in Figure 14.26 on the next page. Let Ω′ = {{d,¬d,c,¬c,γ,¬γ,c.γ},{δ ,¬δ ,d.δ ,a,¬a,α,¬α ,
a.α,b,¬b}} be a partition of A′. We have: Ω′ ∈SD-ra f -c(AF). Let Ω = Ω′ ∩ (A∪K) be the partition of
A∪K corresponding to Ω′. Let us split RAF along the partition Ω and AF along the partition Ω′.

Let choose the left part of the RAF/AF for the illustration. We select thus: ω ′= {δ ,¬δ ,d.δ ,a,¬a,α,¬α ,
a.α,b,¬b}. We have so: ω = {δ ,a,α,b}

Let R̃AF 1 =
〈
Ã1, K̃1, s̃1, t̃1,s, t

〉
be a partial RAF of RAF corresponding to ω , with:

• A1 = {a,b} and K1 = {α,δ}

• s̃1(δ) = false and s̃1(α) = true

• t̃1(δ) = true and t̃1(α) = true

Let I1 = ⟨{c,d},{γ}⟩ be the input corresponding to R̃AF 1, as represented in Figure 14.27 on the next page.
Let as an example L

inp
1 = ⟨{(c,in),(d,und)} ,{(γ,out)}⟩ be a labelling of I1.

Following Definition 105,
〈

AF ↓ω ′ ,J ,ℓ
J ,KJ

〉
is the AF with input corresponding to

〈
R̃AF 1,I1,L

inp
1

〉
with:

156 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

a

b

α cγ

dδ

(a) RAF example: RAF

γ¬γc.γ

c¬c

d¬d

α¬αa.α

a¬ab

¬b d.δ

¬δδ

(b) AF : the flattened version of RAF

Figure 14.26: Decomposability illustration

• J = {c.γ,¬d}

• ℓJ = {(c.γ,out),(¬d,und)}

• KJ = {(c.γ,α),(¬d,d.δ)}

Let std-AF be the standard AF corresponding to
〈

AF ↓ω ′ ,J ,ℓ
J ,KJ

〉
. Following the definition of stan-

dard AF (See Definition 17 on page 17) we have: std-AF =
〈
A′∪ J ′,K′∪K′J

〉
, where:

• J ′ = J ∪
{

a′|a ∈ J ∩out(ℓJ)
}

• K′J = KJ ∪
{
(a′,a)|a ∈ J ∩out(ℓJ)

}
∪
{
(a,a)|a ∈ J ∩und(ℓJ)

}

a

b

α cγ

d

δ

Input elements

Figure 14.27: R̃AF 1

14.3. DECOMPOSABILITY OF SEMANTICS 157

a

b

α cγ

dδ

ζ

ρ

υθ

αd

αγ

(a) R̃AF s

c.γ

c.γ ′

¬d

α

a

¬αa.α

¬ab

¬b d.δ

¬δδ

(b) std-AF

Figure 14.28: When c is accepted, γ rejected and d undefined

We have so: J ′ = {c.γ,c.γ ′} and K′J = {(c.γ,α),(c.γ ′,c.γ),(¬d,d.δ),(¬d,¬d)}.
Let R̃AF s be the standard RAF corresponding to

〈
R̃AF 1,I1,L

inp
1

〉
(See Definition 97 on page 138).

R̃AF s and std-AF are such represented in Figure 14.28.

An important property is the fact that, given a RAF with input
〈

R̃AF ,I,Linp
〉

and its corresponding AF

with input
〈

AF ↓ω ′ ,J ,ℓ
J ,KJ

〉
, the flattening of the standard RAF associated with

〈
R̃AF ,I,Linp

〉
and the

standard AF std-AF corresponding to
〈

AF ↓ω ′ ,J ,ℓ
J ,KJ

〉
will have a common sub-AF, attacked by same

attackers (See Figure 14.29 on the next page).

Example 76. Following Example 75, let consider R̃AF
′
s, the RAF illustrated in Figure 14.29 on the next

page. There is a common sub-RAF in R̃AF
′
s and in std-AF (See Figure 14.28(b)). Indeed, we have: ω ′ =

{δ ,¬δ ,d.δ ,a,¬a,α,¬α , a.α,b,¬b}, J = {¬d,c.γ} and we can verify that:

• R̃AF
′
s ↓ω ′= std-AF ↓ω ′ (all additional arguments are not concerned)

• J ⊆ K̃′s and J ⊆ K′s (the input arguments are present in both AFs. Here: c.γ and ¬d)

• (J ×ω ′)∩ K̃′s = (J ×ω ′)∩K′s (the attacks from the input arguments are the same in both AFs)

Moreover, arguments attacking this sub-AF are subject to same labellings, given a “complete-based”
semantics.

The following example illustrates this fact:

Example 77. Considering Examples 75 and 76, we have:

∀ℓ ∈Lσ (R̃AF
′
s),∀ℓ

′
∈Lσ (std-AF),ℓ′(c.γ) = ℓ(c.γ) = out and ℓ′(¬d) = ℓ(¬d) = und

158 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

c.γ ρ.αγα

a

¬αa.α

¬ab

¬b d.δ

¬δδ

¬d

d υ .αd

¬αd

αd

¬υ

υ

υ .θ

¬θ

θ

¬αγ αγ

¬ρ ρ

ζ

¬ζ

¬cc ¬γ γ

Figure 14.29: R̃AF
′
s : the flattened version of R̃AF s

As a consequence, restricted to the area of interest, both the standard AF of
〈

AF ↓ω ′ ,J ,ℓ
J ,KJ

〉
and the

flattening of the standard RAF associated with
〈

R̃AF ,I,Linp
〉

will produce the same labellings as stated by
Proposition 40.

Proposition 40. Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be the corresponding AF of

RAF (with AF = ⟨A′,K′⟩). Let
〈

R̃AF ,I,Linp
〉

be a RAF with input of RAF and
〈

AF ↓ω ′ ,J ,ℓ
J ,KJ

〉
be

its corresponding AF with input, as defined in Definition 105 on page 155. Let R̃AF s =
〈
Ãs, K̃s,ss, ts

〉
be the standard RAF of

〈
R̃AF ,I,Linp

〉
and let std-AF = ⟨A′s,K′s⟩ be the standard AF corresponding to〈

AF ↓ω ′ ,J ,ℓ
J ,KJ

〉
. Let R̃AF

′
s = Raf2Af(R̃AF s) be the AF corresponding to the flattening of R̃AF s (with

R̃AF
′
s =
〈
Ã′s, K̃

′
s
〉
). Let σ be an AF complete-based semantics. The following assertion holds:

{ℓ ↓ω ′∪J |ℓ ∈Lσ (R̃AF
′
s)}= {ℓ ↓ω ′∪J |ℓ ∈Lσ (std-AF)}

□ Proof of Proposition 40: link (See page 279).

Following Proposition 40, we can now establish the relation between the labellings of a partial RAF with
input and the labellings of its corresponding AF with input for a given semantics, as made in Definition 106
and Proposition 41 on the following page.

Definition 106 (Semantics correspondence). Let σ be an AF semantics. Following the definitions of
afLab2RafLab and rafLab2AfLab (See Definition 78 on page 118), we say that σ -raf is the RAF semantics
corresponding to σ if and only if:

∀RAF ∈Φra f , Lσ -ra f (RAF) = {afLab2RafLab(ℓ)|ℓ ∈Lσ (Raf2Af(RAF))}

14.3. DECOMPOSABILITY OF SEMANTICS 159

Or equivalently, if and only if:

∀RAF ∈Φra f , Lσ (Raf2Af(RAF)) = {rafLab2AfLab(L)|L ∈Lσ -ra f (RAF)}

Proposition 41. Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be the corresponding AF of

RAF (with AF = ⟨A′,K′⟩). Let
〈

R̃AF ,I,Linp
〉

be a RAF with input of RAF and
〈

AF ↓ω ′ ,J ,ℓ
J ,KJ

〉
be

its corresponding AF with input, as defined in Definition 105 on page 155. Let σ be an AF complete-based
semantics and let σ -raf be its corresponding counterpart for RAF. The following property holds:

{L ↓⟨Ã,K̃⟩ |L ∈Lσ -ra f (R̃AF s)}=
{〈
ℓ ↓A,ℓ ↓K

〉∣∣∣ℓ ∈F a f
σ (AF ↓ω ′ ,J ,ℓ

J
,KJ)

}
Or equivalently that:

F ra f
σ (R̃AF ,I,Linp) =

{〈
ℓ ↓A,ℓ ↓K

〉∣∣∣ℓ ∈F a f
σ (AF ↓ω ′ ,J ,ℓ

J
,KJ)

}
□ Proof of Proposition 41: link (See page 280).

In Definition 104 on page 142 has been defined the notion of decomposibity for RAF. Definition 107
refines this notion by making it relative to a given partition selector :

Definition 107 (Top-down, bottom-up and fully decomposability w.r.t. a RAF partition selector S). Let S
be a RAF partition selector. A RAF semantics σ is top-down decomposable w.r.t. S iff for any RAF RAF
and any partition Ω = {ω1, ...,ωn} ∈S (RAF), it holds that:

Lσ -ra f (RAF)⊆
{
L1∪ ...∪Ln

∣∣∣Li ∈F ra f
σ (R̃AF i,Ii,L

inp
i)
}

With: R̃AF i built from ωi and L
inp
i = (

⋃
j∈{1,...,n} s.t. j ̸=iL j) ↓Ii

A RAF semantics σ is bottom-up decomposable w.r.t. S iff for any RAF and any partition Ω =
{ω1, ...,ωn} ∈S (RAF), it holds that:

Lσ -ra f (RAF)⊇
{
L1∪ ...∪Ln

∣∣∣Li ∈F ra f
σ (R̃AF i,Ii,L

inp
i)
}

With: R̃AF i built from ωi and L
inp
i = (

⋃
j∈{1,...,n} s.t. j ̸=iL j) ↓Ii

A RAF semantics is fully decomposable (or simply decomposable) w.r.t. a partition selector S iff it is
both top-down and bottom-up decomposable w.r.t. S .

Note: For a RAF semantics σ -raf, to be top-down (resp. bottom-up, fully) decomposable is equivalent to
be top-down (resp. bottom-up, fully) decomposable w.r.t. the partition selector that produces all possible
partition of a RAF.

Let formally defined this partition selector:

Definition 108. SD-ra f is the RAF partition selector defined as follows:

∀RAF ∈Φra f ,SD-ra f (RAF) is the set of all possible partition of RAF

160 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

Now, in order to take advantage of the decomposability properties already proven for AF semantics, we
have to show that the decomposability of RAF semantics w.r.t. a given partition selector S is equivalent
to the decomposability property of the corresponding AF semantics w.r.t. a “RAF-compliant” version of
S . Following the relation stated in Proposition 41 on the previous page, we can establish the following
proposition:

Proposition 42. Let σ be an AF complete-based semantics and let σ -raf be the RAF semantics correspond-
ing to σ . Let S be a RAF partition selector and let Sra f -c be the AF RAF-compliant partition selector
corresponding to S . The following properties holds:

1. σ -raf is top-down decomposable w.r.t. S iff σ is top-down decomposable w.r.t. Sra f -c.

2. σ -raf is bottom-up decomposable w.r.t. S iff σ is bottom-up decomposable w.r.t. Sra f -c.

3. σ -raf is fully decomposable w.r.t. S iff σ is fully decomposable w.r.t. Sra f -c.

□ Proof of Proposition 42: link (See page 281).

Proposition 42 is not sufficient to derive RAF semantics decomposability properties from AF ones.
Indeed the equivalences are established between a RAF selector (whatever it is) and its AF RAF-compliant
version. To access all the wanted properties, we have to show that, for AF semantics, having a certain
decomposability property w.r.t. the default AF RAF-compliant partition selector SD-ra f -c is equivalent to
having the same property w.r.t. the default AF partition selector SD-a f (See Definition 25 on page 20),4 and
having a certain decomposability property w.r.t. the USCCa f RAF-compliant partition selector Sra f -c-USCC
(See Definition 109 on the following page) is equivalent to having the same property w.r.t. the USCCa f
partition selector SUSCC.

Proposition 43 establishes, for a given AF semanctics σ (so this property concerns AF), the equivalence
between the decomposability properties of σ for any partition and the decomposability properties of σ w.r.t.
SD-ra f -c:

Proposition 43. Let σ be an AF complete-based semantics. The following properties hold:

1. σ is top-down decomposable (equivalently w.r.t. SD-a f) iff σ is top-down decomposable w.r.t. SD-ra f -c.

2. σ is bottom-up decomposable (equivalently w.r.t. SD-a f) iff σ is bottom-up decomposable w.r.t.
SD-ra f -c.

3. σ is fully decomposable (equivalently w.r.t. SD-a f) iff σ is fully decomposable w.r.t. SD-ra f -c.

□ Proof of Proposition 43: link (See page 288).

From Proposition 43, new results concerning AF semantics are induced. Indeed, we can now have the
decomposability properties w.r.t. SD-ra f -c of AF semantics, and state the following proposition:

Proposition 44. Let RAF = ⟨A,K,s, t⟩ be any RAF and AF = Raf2Af(RAF) be the corresponding AF of
RAF . The semantics properties in Table 14.1 on the following page hold for the flattened RAF.

□ Proof of Proposition 44: link (See page 289).

14.3. DECOMPOSABILITY OF SEMANTICS 161

co gr pr sst st

Full decomposability w.r.t. SD-ra f -c ××× ××× ×××

Top-down decomposability w.r.t. SD-ra f -c ×××

Bottom-up decomposability w.r.t. SD-ra f -c ××× ××× ×××

Table 14.1: AF Semantics decomposability properties w.r.t. SD-ra f -c

“ ” means that the semantics on the column has the property on the row.
“×××” means that the semantics on the column does not have the property on the row.

Some AF semantics, as the preferred semantics, are not fully decomposable except w.r.t. the specific
selector SUSCC. To study the decomposability of such semantics for RAF, we have to define a selector
equivalent to SUSCC for RAF and then its “RAF-compliant” version.

Definition 109. (USCC RAF partition selector and AF correspondence) Let RAF be a RAF. Let Sra f -USCC
be the RAF partition selector such that :

Sra f -USCC(RAF)

=

{Ω| Ω is a partition of RAF and ∀S ∈ SCCSra f (RAF),∃ωi ∈Ω s.t. ωi∩S ̸=∅ =⇒ S⊆ ωi}

Given a RAF RAF = ⟨A,K,s, t⟩, we call “USCCra f ” a subset S⊆ A∪K such that S ∈Sra f -USCC(RAF).
We define Sra f -c-USCC as the RAF-compliant AF partition selector corresponding to Sra f -USCC.

Those selectors defined, we can establish a property similar to Proposition 43 on the previous page, but
w.r.t. SUSCC and Sra f -c-USCC.

Proposition 45. Let σ be an AF complete-based semantics. The following properties hold:

1. σ is top-down decomposable w.r.t. SUSCC iff σ is top-down decomposable w.r.t. Sra f -c-USCC.

2. σ is bottom-up decomposable w.r.t. SUSCC iff σ is bottom-up decomposable w.r.t. Sra f -c-USCC.

3. σ is fully decomposable w.r.t. SUSCC iff σ is fully decomposable w.r.t. Sra f -c-USCC.

□ Proof of Proposition 45: link (See page 289).

From Proposition 45, new results concerning AF semantics are induced. Indeed, we can now have the
decomposability properties w.r.t. Sra f -c-USCC of AF semantics, and state the following proposition:

Proposition 46. Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be the corresponding AF of
RAF . The semantics properties in Table 14.2 on the next page hold for the flattened RAF.

□ Proof of Proposition 46: link (See page 290).

4As a reminder, for an AF semantics σ , to be top-down (resp. bottom-up, fully) decomposable is equivalent to be top-down (resp.
bottom-up, fully) decomposable w.r.t. SD-a f .

162 CHAPTER 14. HIERARCHICAL VIEW OF RAF AND SEMANTICS DECOMPOSABILITY

co gr pr sst st

Full decomposability w.r.t. Sra f -c-USCC ×××

Top-down decomposability w.r.t. Sra f -c-USCC ×××

Bottom-up decomposability w.r.t. Sra f -c-USCC ×××

Table 14.2: AF Semantics decomposability properties w.r.t. Sra f -c-USCC

“ ” means that the semantics on the column has the property on the row.
“×××” means that the semantics on the column does not have the property on the row.

Finally, the way is now clear to access all AF decomposability properties and know the decomposability
properties of RAF semantics, w.r.t. Sra f -USCC or not, as stated by Proposition 47 (result concerning RAF).

Proposition 47. Let RAF = ⟨A,K,s, t⟩ be any RAF. The semantics properties in Table 14.3 hold.

□ Proof of Proposition 47: link (See page 290).

RAF-co RAF-gr RAF-pr RAF-sst RAF-st

Full decomposability ××× ××× ×××

Top-down decomposability ×××

Bottom-up decomposability ××× ××× ×××

Full decomposability w.r.t. Sra f -USCC ×××

Top-down decomposability w.r.t. Sra f -USCC ×××

Bottom-up decomposability w.r.t. Sra f -USCC ×××

Table 14.3: RAF Semantics decomposability properties

“ ” means that the semantics on the column has the property on the row.
“×××” means that the semantics on the column does not have the property on the row.

Chapter 15

Related Work

There are very few work related to the contributions made in this part:

• No labelling has previously been proposed for RAF.

• Before the one proposed in Chapter 12 on page 114, a flattening method to transform RAF into AF
had already been introduced in [18]. It is discussed in Sections 9.2.2 and 12.1 on page 98 and on
page 114.

• In [17], results about complexities in RAF are given on the RAF-Credσ problem (for the complete,
preferred and stable semantics) and on the RAF-Skepσ problem (for the preferred and stable seman-
tics), but not for all RAF decision problems and semantics. Furthermore, proofs are not formally
given.

• No work attempts to extend the notion of Strongly Connected Component to RAF and the decompos-
ability of RAF semantics has not been studied before our contribution.

163

Part VI

Conclusion and Perspectives

164

165

This thesis has been for me a very rewarding experience, of course, in terms of research methodology but
also in terms of human experience. From time to time, I had to cross long deserts, littered with failures and
without any potential discoveries in sight. I learned that perseverance is the key for the success. I overcame
all these hard times and, today, I am glad to conclude this thesis and present below all the contributions I
have made during those three years of PhD. Afterward, I present the perspectives opened by my works.

Conclusion of the first milestone

In the first contribution part of my thesis (Part III on page 27), I address the issue of the enumeration
problem solving time issue of Dung’s AF semantics. I proposed a generic algorithm, so-called AFDivider,
that computes labellings of the complete, stable and preferred semantics in a distributed and clustering-based
fashion. This algorithm is generic in the sense that it can be used with any clustering method to split the
AF into clusters structures and can be associated to any sound and complete procedure that computes the
labellings of the different clusters structure for the wanted semantics. It has been proven to be complete and
sound for all three mentioned semantics. That is, the algorithm produces all the expected labellings of the
wanted semantics and each produced labelling is indeed a correct one.

Three clustering methods have been proposed, which lead to three AFDivider solver versions. The first
one, so-called AFDiv-spectral, uses a spectral clustering method to split the AF. To the best of my knowl-
edge, it is the first algorithm that uses this methods to compute semantic labellings. The second and the third
ones, so-called AFDiv-USCC-Tree and AFDiv-USCC-Chain, split the AF following a USCC partition of it
(that is, a partition that does not cut the AF SCC). They differ in the way the partition is selected.

An experimental analysis of those solvers has been conducted to identify their performances, compared
to other solvers, according to AF types, over success rate and resolution time. It comes out from this study
that the AFDiv-spectral variant is faster than most solvers in average on common successful instances while
the AFDiv-USCC-Tree and AFDiv-USCC-Chain variants succeed to solve most instances when considering
Barabási–Albert (BA), Erdős–Rényi (ER) and Watts-Strogatz (WS) AF types, for the complete, stable and
preferred semantics.

Based on the AF types that they solve efficiently, I identify two behaviour classes among our three
solvers: one for the spectral clustering and one for the USCC based clusterings. This shows that the clus-
tering method which is used has an important effect on the performances of the AFDivider algorithm on a
particular AF type. This is an important observation that must be taken into consideration for the develop-
ment of new AF solvers.

The main advantage of the AFDivider algorithm I want to highlight is the fact that cutting the AF into
clusters has the great advantage of limiting the solving hardness to the clusters. Indeed, in those other
approaches, the combinatorial effect due to the number of labellings is propagated to the whole AF whereas,
in the AFDivider algorithm, it is limited to the clusters. This property makes it well suited for non dense AF
with a clustered structure.

The Compact Enumeration Representation I proposed takes full advantage of that fact. While it has
been proven sufficient to answer all classical argumentation problems, experiments show that the Compact
Enumeration Representation allows to solve more hard instances of some AF types such as BA, TR (Traffic)
and BW (Block World). Furthermore, it produces an output much more faster than when enumerating all the
labellings, especially for BA type AF (97.03 times much faster). The impact of the Compact Enumeration
Representation is particularly significant for the complete semantics due to the huge number of labellings
that causes memory overflow during the enumeration.

The AFDivider algorithm, with or without Compact Enumeration Representation, opens thus a new way

166

to approach argumentation problems and many perspectives.

Perspectives of the first milestone

Here are some ideas to go further with the AFDivider algorithm:

• A recursive clustering version of this algorithm could be made. Indeed, after the cutting process,
an induced AF could still be hard to solve. It may be possible that applying recursively the same
clustering process on AF parts (until a certain criterion is satisfied) could enhance the global solving
time.

• Other clustering methods than those tested could be more appropriate for some AF types. This could
be studied in future works.

• The Compact Enumeration Representation could be exploited to answer non classical problems such
as: “What is the labelling rate in which an argument a is labelled in ?”, “Is there an argument labelled
in in more that 70% of the labellings ?”, “Is the set of arguments S is accepted (together) in more
than 60% of the labellings” and other questions of that type, and that, without explicitly enumerating
all the labellings, avoiding the costly cartesian product of component labellings.

• It would be interesting to extend this work to further generalizations of AFs, using several types of
relation (not only attacks but also supports), with relation and argument strength, recursive relations,
and so for more complex semantics.

• Recently, a new category of AF problems appeared in ICCMA competition: Dynamic AF semantics
computation. Given an AF, it consists of computing some semantics of the initial AF in a first place,
then of its altered version (arguments/attacks are added/removed from the initial AF). Dynamic algo-
rithms use the previous computed result to compute the current altered AF semantics. It would be
interesting to explore the possibilities for a dynamic version of AFDivider.

• Explainability is becoming essential for reliable IA information systems. In the domain of Abstract
Argumentation, having an explanation for the acceptance or the reject of some argument, more concise
and informative than a whole extension/labelling, has an important interest. A work could be made to
study how the AF decomposition made by our algorithm (given some clustering method) could help
to explain such things.

I would like to emphasize two major improvements of the AFDivider algorithm:

• The first would be to “know” in advance which clustering method (including ones other than those
presented in this paper) should be used for a particular AF instance. Experiments could be conducted
to learn, for example with a neural network, which one to use.

• The second, which is the most interesting, is to go further and have even the cutting process being
supervised by a neural network trained to cluster AF instances following their structure. As a conse-
quence, for any known AF type, the most appropriate clustering method would be used to solve each
AF instance efficiently. The clustering might be in a certain sense dynamic, as the rules applied to cut
may be different from one AF area to another.

167

Conclusion of the second milestone
In the second contribution part of my thesis (Part V on page 101), I created a certain number of tools for the
study of RAF structure and RAF semantics complexity and properties, with the objective of proposing a first
algorithm to compute RAF semantics.

In a first step, I define new semantics for RAF. The semi-stable semantics have been defined for RAF
and it has been shown that RAF are still a conservative generalization of Dung’s AF, even for the semi-
stable semantics. The notion of labellings has been extended to RAF. Given a RAF, a structure labelling or
RAF labelling is a tuple in which the first element is a labelling over its arguments and the second one is a
labelling over its attacks. As for AF labellings, these RAF labellings are three-value based, indicating the
degree of acceptance of a RAF element (i.e. accepted: in , rejected: out or undecided: und).

In a second step, RAF semantics have been redefined in terms of RAF labelling semantics. A one-
to-one mapping between structures and RAF labellings have been identified using two linking functions:
Struct2Lab, that transforms a structure into a RAF labelling and Lab2Struct, that transforms a RAF
labelling into a structure. Reinstatement RAF labellings have been formally defined as coherent RAF la-
bellings. It is shown (see Chapter 11 on page 107) that the complete, grounded, preferred, semi-stable
and stable structure semantics correspond to precise types of reinstatement RAF labellings. Table 11.1 on
page 111 gives the correspondence between structure semantics and reinstatement RAF labellings. More-
over, this work confirms that RAF are a conservative generalization of Dung’s AF. Indeed in RAF with no
recursive attacks, there is a one-to-one mapping between reinstatement labellings (AF notion) and two RAF
notions (structures and reinstatement RAF labellings) for the complete, grounded, preferred, semi-stable and
stable semantics. This additional precision on the acceptability status of a RAF element, from the informa-
tion a simple structure can give (that is, a binary acceptability status: given a structure, whether an element
belongs to it or not), opens a whole new field of research for RAF solving algorithms.

In a third step, I defined a new flattening process that transforms a RAF into an AF and this, while
preserving the meaning of the RAF defeat relation, ensuring thus interesting properties such as shape or
acceptability related properties that will be used in the following steps. This transformation is not only
polynomial in time but also logarithmic in space. Although it has not been used in this way in this thesis, it
allows the use of AF solvers to solve RAF semantics problems.

In a fourth step, decision problems for RAF have been defined and their complexity studied. Using
the flattening process, an important result has been found: the complexities of RAF decision problems are
the same as the ones in Dung’s framework, despite all the additional expressiveness that is brought by the
higher-order attacks.

In a fifth step, the notion of Strong Connected Component (SCC) has been extended to RAF. A bijection
has been shown between the SCCra f of a given RAF and the SCCa f of its flattened version. Then the
decomposability properties of RAF semantics have been studied. It has been shown that the decomposability
properties of RAF semantics are equivalent to the ones of their corresponding AF semantics.

Perspectives of the second milestone
As perspectives for this milestone, here is a list of interesting ideas to explore:

• More AF semantics could be extended to RAF, whether structure-based or labelling-based semantics.

• The SCC-recursiveness [11] of RAF semantics could be studied, based on the flattening process pro-
posed.

168

• Other notions of graph theory, such as tree-width, could be extended to RAF, allowing thus the study
of other types of properties.

• RAF generator following different structure types as well as benchmarks for RAF semantics compu-
tation could be given, as no work has been done to address those questions so far.

• Beside decision problems, other problems are of interest for argumentation frameworks, whether
they have higher-order attacks or not: function problems.1 The functional counterpart of Credσ and
Exists¬∅σ may turn to be particularly useful in the context of a dialogue between agents, the output
being here the concerned acceptable set. Defining such problems, and investigating their complexity,
would be interesting.

• All those contributions pave the way for an algorithmic investigation of the computation of RAF
semantics and RAF decision problem solving. A sound and complete AFDivider-like algorithm for
RAF could be proposed.

1In computational complexity theory, a function problem is a computational problem where a single output is expected for every
input, but the output is more complex than that of a decision problem: it is not simply “yes” or “no”.

Appendix 1: Mathematical Background

169

Chapter 16

Mathematical Theories

In this chapter are presented firstly, basic notions of Set Theory (Section 16.1). Secondly, some notions
of Graph Theory (Section 16.2). Thirdly, definitions are given about matrices (Section 16.3 on page 175).
Fourthly, the computational complexity theory is presented in Section 16.4 on page 178. Finally, basic
notions of algorithm analysis are presented in Section 16.5 on page 184. Notice that the scope of this
background is limited to the necessary. For an overview of set theory see [45], of graph theory see [48], of
matrix computation see [47], of complexity theory see [28] and of algorithm analysis see [66].

16.1 Set theory

The notions of set and set partition are used throughout this document.

Definition 110 (Set). A set is a collection of distinct elements.

Definition 111 (Partition of a set). A partition Ω = {ω1, ...,ωn} of a set O is a set of subsets of O such that:

• ∀i, j ∈ {1, ...,n} s.t. i ̸= j, ωi∩ω j =∅

•
⋃

i∈{1,...,n}ωi = O

16.2 Graph theory

In this section different types of graph are presented, and also notions related to nodes, relations, paths,
subgraphs and topology.

16.2.1 Graph types
Definition 112. (Non-directed and directed graph). A non-directed (respectively directed) graph is an or-
dered pair G = (V,E) where:

• V is a set whose elements are called nodes or vertices;

170

16.2. GRAPH THEORY 171

• E is a set of unordered (respectively ordered) pairs of vertices called non-directed edges (respectively
directed edges).

Example 78. Figure 16.1 shows an example of a directed and a non-directed graph.

j k

l

mn

(a) A non-directed graph

j k

l

mn

(b) A directed graph

Figure 16.1: Example of graphs

Note: E is a set. As a consequence, in this document non-directed (respectively directed) graphs have
only distinct unordered (respectively ordered) pairs in E. Non-directed (respectively directed) multigraphs,
non-directed (respectively directed) graphs in which is permitted to have multiple non-directed (respectively
directed) edges that have the same endpoints,1 are not considered.

Definition 113. (Weighted graph). A weighted directed (respectively non-directed) graph is an ordered pair
G = (V,E,W) where:

• (V,E) is a directed (respectively non-directed) graph.

• W : E → R is a total function that associates a weight to each directed (respectively non-directed)
edge in E.

Example 79. Figure 16.2 on the next page shows examples of weighted graphs.

In the following we will implicitly consider that a non-weighted directed (respectively non-directed)
graph G = (V,E) is a weighted directed (respectively non-directed) graph whose edges are weighed 1.

16.2.2 Node and edge relations
Definition 114 (Incidence). Let G = (V,E) be a graph (directed or not), and e = (vi,v j) ∈ E be an edge.
We say that e is incident to vi and v j, or joins vi and v j. Similarly, vi and v j are incident to e.

Definition 115 (Adjacency). Let G = (V,E) be a graph (directed or not), and vi ∈ V , v j ∈ V be two nodes
of G. We say that vi and v j are adjacent if (vi,v j) ∈ E or (v j,vi) ∈ E.

1The endpoints of an edge are the vertices incident to it. See Definition 114.

172 CHAPTER 16. MATHEMATICAL THEORIES

j k

l

mn

1

11

5

6

(a) A non-directed weighted
graph

j k

l

mn

2

31

2
4

5

(b) A directed weighted graph

Figure 16.2: Example of weighted graphs

Definition 116 (Degree in a non-directed graph). Let G = (V,E) be a non-directed graph and v ∈ V be a
vertex. The degree of v in G, noted deg(G,v), is its number of incident edges.

Definition 117 (Degree in a directed graph). In directed graphs three degrees are associated to each vertex.
Let G = (V,E) be a directed graph and v ∈V be a vertex. We have:

• The inward degree of v, denoted in-deg(G,v), is its number of incident edges such that v is the second
element of the edge.

• The outward degree of v, denoted out-deg(G,v), is its number of incident edges such that v is the first
element of the edge.

• The degree of v, denoted deg(G,v), is its number of incident edges. That is: deg(G,v)= out-deg(G,v)+
in-deg(G,v).

Example 80. Let consider Figure 16.1 on the previous page. In both graphs:

• m and n are incident to e = (m,n) and vice versa

• m and n are adjacent

In the non-directed graph, we have: deg(G,m) = 2.
In the directed graph, we have: deg(G,m) = 3, in-deg(G,m) = 2 and out-deg(G,m) = 1.

Definition 118. (Weighted degree). Let G = (V,E,W) be a weighted graph (directed or not). Let v ∈V be a
vertex and I the set of its incident edges. We define the weighted degree of v, noted degw(G,v), as the weight
sum of its incident edges:

degw(G,v) = ∑
e∈I

W (e)

Note: In order to simplify the notation, deg(G,v) (resp. degw(G,v)) will be noted deg(v) (resp. degw(v))
when there is no ambiguity about the graph in which the degree is measured.

Example 81. Let consider Figure 16.2. In both graphs we have: deg(m) = 11.

16.2. GRAPH THEORY 173

16.2.3 Connectivity
Definition 119 (Walk). Let G = (V,E) be a graph (directed or not). A walk is a sequence (v1, ...,vn) such
that:

• ∀i ∈ {1, ...,n}, vi ∈V

• ∀i ∈ {1, ...,n−1}, (vi,vi+1) ∈ E

Definition 120 (Non-directed walk). Let G = (V,E) be a directed graph. A non-directed walk is a sequence
(v1, ...,vn) such that:

• ∀i ∈ {1, ...,n}, vi ∈V

• ∀i ∈ {1, ...,n−1}, (vi,vi+1) ∈ E or (vi+1,vi) ∈ E

In this document, we will restrict the notion of graph paths to strict simple paths (i.e. they contains only
distinct elements).

Definition 121 (Path). Let G = (V,E) be a graph (directed or not). A path is a walk which contains distinct
vertices.

Definition 122 (Non-directed path). Let G = (V,E) be a directed graph. A non-directed path is a non-
directed walk which contains distinct vertices.

Definition 123 (Cycle). Let G = (V,E) be a graph (directed or not). A cycle is a sequence (v1, ...,vn) with
n≥ 2 such that:

• (v2, ...,vn) is a path

• (v1, ...,vn−1) is a path

• v1 = vn

Example 82. Let consider Figure 16.1(b) on page 171. (l, j,k, l,m) is a walk, (j,k, l) is a path and (j,k, l, j)
is a cycle.

Definition 124 (Connected and disconnected graph). Let G=(V,E) be a directed (respectively non-directed)
graph. G is a connected graph if, for all distinct vertices vi ∈V and v j ∈V , there exists a non-directed path
p (respectively a path p) in G s.t. vi is the first vertex of p and v j is the last vertex of p. Otherwise the graph
is called a disconnected graph.

Definition 125 (Subgraph). Let G = (V,E) be a directed graph (respectively non-directed graph). A sub-
graph S = (V ′,E ′) of G is a directed graph (respectively non-directed graph) such that:

• V ′ ⊆V .

• E ′ ⊆ E.

• ∀(vi,v j) ∈ E ′,vi ∈V ′ and v j ∈V ′.

Definition 126 (Graph restriction ↓). Let G=(V,E) be a graph and S⊆V be a set of vertices. The restriction
of G to S is the subgraph of G defined as G ↓S≡ (S,E ∩ (S×S)).

174 CHAPTER 16. MATHEMATICAL THEORIES

Note: Notice that when restricting a graph G to a set S of nodes, any edge of G whose endpoints are both
in S must be kept. It is not the case for the more general subgraph definition. Indeed, a subgraph of G whose
set of nodes coincides with S may not keep all these edges.

Example 83. Let consider the graph G = (V,E) in Figure 16.1(b) on page 171. We have: G ↓{m,n}=
({m,n} ,{(m,n),(n,m)}).
Definition 127 (Connected component). Let G be a graph (directed or not). Let H be a subgraph of G such
that:

• H is connected.

• H is not contained in any connected subgraph of G which has more vertices or edges than H has.

Then H is a connected component of G.

In the following by “component” we mean “connected component”.

Definition 128 (Path-equivalence relation). Let G = (V,E) be a directed graph. The binary relation of
path-equivalence between nodes, denoted as PEG ⊆ (V ×V), is defined as follows:

• ∀vi ∈V,(vi,vi) ∈ PEG.

• given two distinct nodes vi,v j ∈V,(vi,v j) ∈ PEG if and only if there is a path from vi to v j and a path
from v j to vi.

Definition 129 (SCC). The strongly connected components of a directed graph G are the equivalence classes
of nodes under the relation of path-equivalence. Basically, an SCC is a (directed) subgraph in which there
is a path between each pair of its vertices.

Example 84. Let consider the graph in Figure 16.1(b) on page 171. {m,n} and { j,k, l} are SCCs.

16.2.4 Topology
Several contributions made in this thesis have been inspired by ideas from graph topologies (that is their
“shape”) and especially about “clusters” of nodes in graphs. Formally, clusters can be defined as follows:

Definition 130 (Cluster). Let G be a graph. A cluster of G is a connected subgraph of G.

To express the gathering, the connectivity between the nodes we use the notion of relation density:

Definition 131 (Relation density). Let G= (V,E) be a graph, S be a subset of V . The relation density Rd(G)
of the graph G is defined by:

Rd(G) =
|E|
|V |

The relation density Rd(G ↓S) of the subgraph G ↓S is defined by:

Rd(G ↓S) =
|E ∩ (S×S)|
|S|

In practice, given an initial graph, we will be interested by some of its connected subgraphs which have
similar sizes (number of nodes) and such that their inside relation density is greater than their neighbouring
relation density.

Example 85. Following Example 83, we can consider G ↓{m,n} as a cluster. We have: Rd(G ↓{m,n}) = 1

16.3. MATRICES 175

16.3 Matrices

In this section are presented notions on matrices, the key notions being the eigenvectors and values, and
laplacian matrices.

Definition 132 (Matrix). A matrix M with m lines and n columns, or a m× n matrix, with values in some
field of scalars K is an application of {1,2, ...,m−1,m}×{1,2, ...,n−1,n} in K . Mi, j ∈ K is the image of
the couple (i, j). i is called the line index and j the column index.

Definition 133 (Eigenvector and eigenvalue). Let O be a vector space over some field K of scalars, let u be
a linear transformation mapping O into O (i.e. u : O→ O), and let v ∈ O be a non-zero vector.

v is an eigenvector of u if and only if there exists a scalar λ ∈ K such that:

u(v) = λ · v

In this case λ is called eigenvalue (associated with the eigenvector v).

For more details on eigenvectors and eigenvalues see [56], Chapter 6.

Definition 134 (Adjacency matrix). Let G = (V,E,W) be a weighted non-directed graph. The adjacency
matrix Ma of G is an n×n matrix (with n = |V |) defined as:

(Ma)i, j =

{
W ((vi,v j)) if (vi,v j) ∈ E
0 otherwise

If the weights of a graph G represent similarity measures then adjacency matrix is called the similarity
matrix of G.

Definition 135 (Degree matrix). Given a weighted non-directed graph G = (V,E,W), the degree matrix Md
for G is an n×n matrix (with n = |V |) defined as:

(Md)i, j =

{
degw(vi) if i = j
0 otherwise

Note: Md is a diagonal matrix.

Definition 136 (Laplacian matrix). Given a weighted non-directed graph G = (V,E,W), the laplacian ma-
trix Ml for G is an n×n matrix (with n = |V |) defined as:

Ml = Md−Ma

Example 86. Let illustrate these notions while considering the non-directed graph G = (V,E,W) in Fig-
ure 16.3 on the next page.

176 CHAPTER 16. MATHEMATICAL THEORIES

j k

l

mn

1

11

1

2

Figure 16.3: A weighted non-directed graph

The adjacency matrix Ma of G is:

Ma =



j k l m n

j 0 1 1 0 0

k 1 0 1 0 0

l 1 1 0 1 0

m 0 0 1 0 2

n 0 0 0 2 0


The degree matrix Md of G is:

Md =



j k l m n

j 2 0 0 0 0

k 0 2 0 0 0

l 0 0 3 0 0

m 0 0 0 3 0

n 0 0 0 0 2


And then, its laplacian matrix Ml is:

Md−Ma = Ml =



j k l m n

j 2 −1 −1 0 0

k −1 2 −1 0 0

l −1 −1 3 −1 0

m 0 0 −1 3 −2

n 0 0 0 −2 2



16.3. MATRICES 177

Let v ∈ R5 be a vector, with:

v =



x1

x2

x3

x4

x5


Let u be the linear transformation mapping R5 into R5 (i.e. u : R5→R5), whose coefficients correspond

to the matrix Ml , that is, the application whose definition corresponds to matrix multiplication between Ml
and v ∈ R5.

Note: In practice we do not search for the exact expression of u, but rather directly solve the system of
equations corresponding to: Ml× v = λ · v, with v being a non-zero vector.

Given that:

Ml× v =



2 −1 −1 0 0

−1 2 −1 0 0

−1 −1 3 −1 0

0 0 −1 3 −2

0 0 0 −2 2


×



x1

x2

x3

x4

x5



=



2× x1 − 1× x2 − 1× x3 + 0× x4 + 0× x5

−1× x1 + 2× x2 − 1× x3 + 0× x4 + 0× x5

−1× x1 − 1× x2 + 3× x3 − 1× x4 + 0× x5

0× x1 + 0× x2 − 1× x3 + 3× x4 − 2× x5

0× x1 + 0× x2 + 0× x3 − 2× x4 + 2× x5


We have so:

u(v) =



2× x1− x2− x3,

−x1 +2× x2− x3,

−x1− x2 +3× x3− x4,

−x3 +3× x4−2× x5,

−2× x4 +2× x5


Given the expression of u(v) and given that v is an eigenvector of Ml if and only if v is a non-zero vector2

and that there exists a value λ ∈ R such that: u(v) = λ · v, we have thus to solve the following system of

2That is, whether x1 ̸= 0, x2 ̸= 0, x3 ̸= 0, x4 ̸= 0 or x5 ̸= 0

178 CHAPTER 16. MATHEMATICAL THEORIES

equations: 

2× x1− x2− x3 = λ × x1

−x1 +2× x2− x3 = λ × x2

−x1− x2 +3× x3− x4 = λ × x3

−x3 +3× x4−2× x5 = λ × x4

−2× x4 +2× x5 = λ × x5

|x1|+ |x2|+ |x3|+ |x4|+ |x5| ̸= 0

There are five solutions (five eigenvectors v and their corresponding eigenvalues λ):

• The eigenvectors of Ml are:



v1 v2 v3 v4 v5

−0.4472136 0.4397326 7.071068×1×10−1 0.3038906 0.1195229

−0.4472136 0.4397326 −7.071068×1×10−1 0.3038906 0.1195229

−0.4472136 0.1821432 −5.551115×1×10−17 −0.7336569 −0.4780914

−0.4472136 −0.4397326 −2.775558×1×10−16 −0.3038906 0.7171372

−0.4472136 −0.6218758 −1.665335×1×10−16 0.4297663 −0.4780914


• And their associated eigenvalues are:

[λ1 λ2 λ3 λ4 λ5

2.476651×1×10−16 5.857864×1×10−1 3.000000 3.414214 5.000000
]

16.4 Computational complexity theory
In this section is given a succinct overview of computational complexity theory. For a more complete view
on computational complexity theory see [28].

16.4.1 Principles
Computational complexity theory is a field of computer science whose purpose is to cluster computational
problems into “complexity classes”. Problems are gathered according to some criterion on the resources
required to solve them. Generally the measure used to differentiate them is the time (i.e. the number of
steps taken by an algorithm) needed or the space (i.e. the amount of memory) needed to solve them, but
a clustering could be based on any other resource criterion. In this report, we will consider only time
complexity classes.

We say that a problem P belongs to the complexity class C (or P has complexity C) if there exists an
algorithm that solves P satisfying the resource requirements of C . Basically, the more a problem requires
resources the more it will be considered has difficult.

16.4. COMPUTATIONAL COMPLEXITY THEORY 179

In order to rank them in a fair way and so, form coherent complexity classes, problems are considered
in their generic form. This means that the comparison is not made on specific “problem instances” (i.e. the
problem applied to concrete data inputs). The resource requirements are expressed according to the problem
“input size”.

Nevertheless, considering problem’s generic form is not sufficient for a proper comparison. Indeed,
one can say that solving a given problem on such or such machines (that differ for example on their soft-
ware or hardware architecture) would induce different resource requirements. In order to fix this issue, in
computational complexity theory, we consider that algorithms are executed on some standard “model of
computation”, such as the so-called “(Deterministic) Turing Machine” introduced by Alan Turing in [65].

For the sake of brevity, we will not explain in details how it works but simply give the intuition of it. The
Turing Machine is an abstract model of computational machine. It is composed of a tape on which symbols
(0 or 1) can be read and written by an head that can move the tape left and right one cell at a time. An
algorithm written for a Turing Machine is simply a set of transitions going through some so-called “states”.
A state indicates what to do given the symbol read on the current tape cell. What is initially written on the
tape corresponds to the input (i.e. an encoding of it using the Turing Machine symbols). Given an input, the
number of steps made by a Turing Machine to execute an algorithm is used as a time measurement and the
number of cells used on the tape is used as a space measurement.

For a particular problem the input size could be expressed with a more understandable measure than the
encoding size. For example for Argumentation Framework problems, we can use the number of arguments
of a given an Argumentation Framework or the number of attacks.

Now, saying that “a problem P1 has a lower time complexity than another problem P2” means “for
inputs of size n there exists an algorithm that solves P1 with fewer steps than any other algorithm that
solves P2”. Notice that, is taken into account the number of steps for the worst possible case of input of size
n (i.e. the input of size n that induces the most transitions to solve the problem). Finally, it is the asymptotic
behaviour of P1 and P2 as n grows that is considered.

The comparison method being fair, problems can now be grouped in suitable complexity classes. Those
correspond basically to different orders of magnitude of steps.

Now let consider the complexity classes of so called “decision problems”.

16.4.2 Decision problem theory
A decision problem is a type of computational problem that has for output a boolean. That is, given an input
the solution of the problem is whether “yes” (equivalently true or 1) or “no” (equivalently false or 0). We
say that the problem “accepts” or “rejects” the input.

One of the most famous decision problem, for its importance in computational complexity theory is the
satisfaction problem, so-called SAT problem. It is defined as follows:

“Given a propositional formula φ , is φ satisfiable?3”

Decision problems are probably the most studied type of computational problems. Over the decades a
lot of complexity classes and hierarchies between them have been established. Let consider some interesting
complexity classes for our work.

3A propositional formula is said to be satisfiable if there exists a model of it, that is a value (true or false) assignation of its
propositional variables for which φ is true.

180 CHAPTER 16. MATHEMATICAL THEORIES

16.4.3 Decision time complexity classes

16.4.3.1 Polynomial time: P and L

The polynomial time class P regroups computational problems for which there exists an algorithm that solves
them in a number of steps that is polynomially related to the size of the input. Problems belonging to this
class are considered as “easy” or “tractable”.

P has a subclass called “logarithmic space” denoted by L that regroups the problems of P that require an
amount of space (excluded the input and the output) that is logarithmically related to the size of the input.

16.4.3.2 Non-deterministic polynomial time: NP

The non-deterministic polynomial time class NP relies on the notion of witness.

Given an input x, a witness of x can be seen as a potential proof by example that the answer of the decision
problem is positive for x. Let illustrate this considering the SAT problem. Given a propositional formula φ ,
a witness of SAT for φ is an interpretation of φ , i.e. a value assignation of the propositional variables of φ .
Given an input x, a valid witness is a valid proof by example that the decision problem accepts x.

A problem P is in NP if and only if:

1. for any instance input x, all potential witnesses of x are of polynomial size w.r.t. |x| (the size of x),

2. any witness of a given input can be verified in a polynomial number of steps w.r.t. |x|,

3. given an input x, P accepts x if and only if x has a valid witness.

As an example, the SAT problem is in NP.

NP can also be defined as the set of problems which can be solved in polynomial time on a non-
deterministic Turing Machine.

The difference between a Deterministic Turing Machine and a non-deterministic one is that for each
step several transitions are possible simultaneously. To illustrate this, one can imagine that at each step a
new Deterministic Turing Machine could be added (a copy of the machine in its current state) for the prob-
lem solving. While a Deterministic Turing Machine follows a single computation path, a non-deterministic
Turing Machine follows a computation tree. A given decision problem accepts x if there exists a non de-
terministic algorithm such that at least one computation branch followed by the non-deterministic Turing
Machine accepts the input.

NP problems are thus computational problems for which there exists a non-deterministic algorithm that
can solve them on non-deterministic Turing Machine and doing so, following a computation tree having a
polynomial depth and a number of leaves relative to the input size.

NP is thus the class of computational problems for which a solution (a proposed proof by example) can
be verified easily. Although there is no formal proof (at the time of writing) that P ̸= NP, we will consider
that this inequation holds in the following as it is the standard assumption.

16.4.3.3 The coNP class

The coNP class is the class regrouping the complement problems of those of NP. As for NP, coNP relies on
the same notion of witness and the same witness properties, i.e. for any input x, all potential witnesses of x
are of polynomial size w.r.t. |x|, and any witness of x is verifiable in an amount of steps polynomial w.r.t. |x|.

16.4. COMPUTATIONAL COMPLEXITY THEORY 181

The difference between NP and coNP is that coNP regroups the decision problems for which we want all the
witnesses for a certain property to be invalid.

As illustration, the coNP problem relative to the SAT problem is the following one:

“Given a propositional formula φ , is φ unsatisfiable?4”

Here the property of interest is the satifiability of φ . UNSAT will accept φ if and only if no witness of φ

(i.e. no value assignation of its propositional variables) makes φ satisfied.

16.4.3.4 The polynomial-time hierarchy

The notion of “oracle” is very important to understand what is the polynomial-time hierarchy. An oracle
is a black-box abstract machine that can solve a problem of a certain complexity class in one single step.
Complexity classes can be expressed via this notion.

Given a problem P , we say that P is in the complexity class C D , if there exists an algorithm solving
P with a complexity C and calling an oracle that solves in one operation a sub-problem of complexity class
D .

As an example, let consider the ∃2QBF problem. Let φ be a propositional formula over the set of
propositional variables Ω. Let v1 ⊂Ω and v2 ⊂Ω be two subsets of propositional formula such that {v1,v2}
is a partition5 of Ω. The ∃2QBF is the following decision problem:

“∃v1 such that ∀v2, φ is true?”

Which means:

“Does there exist a valuation of the variables of v1 such that for all valuations of the variables of v2, φ is
true?”

Let propose a non-deterministic algorithm to solve the ∃2QBF problem. Let O be an oracle witnessing
that a given propositional formula is valid.6 O is in coNP. Indeed, to decide if φ is valid is equivalent to
decide if ¬φ is unsatisfiable. The algorithm A that non-deterministically guesses a valuation of v1 and then
verifies if for all valuations of v2 the combined valuations (of v1 and v2) are models of φ , can be viewed an
NP algorithm using O as oracle. As A solves ∃2QBF, we have ∃2QBF belonging to the class NPcoNP.

The polynomial hierarchy, denoted by PH, is the complexity class hierarchy defined as follows:

• ΣP
0 = ΠP

0 = ΘP
0 = P

• ΣP
k+1 = NPΣP

k

• ΘP
k+1 = PΣP

k

• ΠP
k+1 = coNPΣP

k

The polynomial hierarchy is the union of all these complexity classes:

PH =
∞⋃

k=0
ΣP

k =
∞⋃

k=0
ΠP

k

Figure 16.4 on the next page illustrates this hierarchy.
4A propositional formula is said to be unsatisfiable iff there exists no model of it.
5Ω = v1 ∪ v2 and v1 ∩ v2 =∅.
6A formula φ is said to be valid if all valuations of its propositional variables are models of φ , i.e. φ is always true.

182 CHAPTER 16. MATHEMATICAL THEORIES

P

NP= ΣP
1

coNP= ΠP
1

ΘP
2

ΣP
2

ΠP
2

ΘP
3

ΣP
3

ΠP
3

...

Figure 16.4: Polynomial hierarchy

Notice that calling a polynomial oracle from a non-deterministic algorithm doesn’t add any complexity.
As a consequence, we especially have NPP = NP.

Notice also that using as oracle, in an algorithm, a NP based oracle or coNP based oracle of same class
level (i.e. ΣP

k or ΠP
k for a given level k) doesn’t matter. Indeed the answer of one of these oracles can be

switched to correspond to the one solving the complementary problem.
As a consequence, we especially have NPcoNP = NPNP = ΣP

2. And so, we have ∃2QBF belonging to ΣP
2.

16.4.3.5 The difference class: DP

The so-called “difference class” denoted by DP is a kind of conjunction of the NP and coNP classes. A
problem P belongs to DP if and only if it is composed of two sub-problems, P1 belonging to NP and
P2 belonging to coNP, and for all input x, x is accepted by P if and only if x is accepted by P1 and
P2.

As an illustration, the SAT-UNSAT problem belongs to DP. It is defined as follows:

“Given a couple of propositional formulas ⟨φ ,Ψ⟩, is φ satisfiable and Ψ unsatisfiable?”

Following the polynomial hierarchy introduced in the previous section, the DP-hierarchy is defined as
follows:

DPk = ΣP
k ∧ΠP

k , with k ∈ J1,+∞J

Notice that “∧” means “conjunction of problems” as explained above. It is not the intersection of sets of
problems.

16.4.4 Problem reduction, completeness and hardness

16.4.4.1 Problem reduction

Let P1 and P2 be two decision problems. We denote by IP1 and IP2 the sets of all the instances of P1 and
P2. Let f : IP1 → IP2 be an efficient7 procedure that transforms any instance of P1 into one instance of
P2 such that for all x ∈ IP1 , P1 accepts x iff P2 accepts f (x).

If such a procedure exists, it means that any algorithm solving P2 could be used to solve P1 by firstly
converting P1 instances into P2 ones.

7The complexity of f should be “easy” compared to the complexity of solving P1 or P2.

16.4. COMPUTATIONAL COMPLEXITY THEORY 183

Now if it holds that P2 is in some complexity class C , it means that P1 is also in C considering that f
is an efficient problem transformer. Likewise if P2 is not in C , then P1 is not in C .

In computational complexity theory, polynomial reduction are considered as efficient. Polynomial re-
ductions are thus applicable to problems in P or complexity classes above. We denote by P1 ≤P P2 the
relation expressing that P1 is polynomially reducible to P2, and by P1 ≤ f

P P2 that the relation holds by
using f . Usually, we use polynomial reductions in P while studying problems in NP and harder complex-
ity classes, and log-space reductions, that is procedures belonging to L (denoted by ≤L), while studying
complexity classes within P.

16.4.4.2 Completeness and hardness

We consider that a problem is hard for a certain class C if an efficient algorithm solving it could be used to
efficiently solve, by mean of reductions, all the problems in C . It is formally defined as follows: let P1 be
a problem of complexity class C . P1 is said to be hard w.r.t. C , denoted by C -hard, if:

∀P2 ∈ C , P2 ≤P P1

A problem P is said to be complete for C , denoted by C -c, if P ∈ C and P is C -hard.

16.4.5 Function problems

As such type of problems has not been studied in this thesis, we do not detail the function problem Theory
as it has been done for Decision Problem Theory. We rather give a definition of what a function problem is
and give one example.

Formally:

Definition 137 (Function problem). A function problem P is defined as a relation R over strings of an
arbitrary alphabet Σ:

R⊆ Σ
∗×Σ

∗,with:

Σ
∗being the set of all strings over symbols in Σ, including the empty string

An algorithm solves P if for every input x such that there exists a value y satisfying (x,y)∈R, the algorithm
produces one such y.

In simple words, a function problem is a computational problem that produces an output more complex
than a boolean, as it is the case for decision problems. Here is a concrete example of function problem:

Example 87. The functional version of the SAT problem presented in Section 16.4.2 on page 179, so-called
FSAT, is the following:

Given a boolean formula φ with variables x1, . . . ,xn,
find an assignment xi→{true,false} such that φ evaluates to true

or decide that no such assignment exists.

184 CHAPTER 16. MATHEMATICAL THEORIES

16.5 Analysis of Algorithms

16.5.1 Presentation
As seen in the previous section the computational complexity theory classifies computational problems fol-
lowing their hardness into complexity classes. In this theory, the subjects of interest are thus theoretical
problems. It is not about concrete implementations of theoretical problems. Instead, the study of the com-
plexity of explicitly given algorithms is called analysis of algorithms.

Both are highly related. Indeed, given a problem P , if a concrete algorithm A solves P then the
complexity class of P is a lower bound for the complexity of A and the complexity of A is an upper bound
for the complexity of P .

It is however important to note that, as far as we know about the current state of computational technolo-
gies, there are no such things as oracles in the real world. Even quantum machines are not non-deterministic
turing machines. As a consequence, on a deterministic real world computer, algorithms solving theoret-
ical problems whose complexity class C belongs to the polynomial hierarchy such that C /∈ P , are thus
algorithms of complexity exponential.

This being said, in this section we present basic notions to analyse the complexity of algorithms.

16.5.2 Asymptotic analysis
Given an algorithm A , we are interested in estimating its running time as a function of a given machine-
independent parameter n ∈ N. Moreover, to have a machine-independent measurement, we identify the
calculation time with the number of executed instructions. The parameter n could be for example the length
of an array or the number of arguments/attacks in an AF.

To compare algorithms, we consider only their behavior for a large n (that is what we call the “asymp-
totic complexity”) and consider their “order of magnitude” rather than the precise number of instructions
executed, ensuring that the complexity measure is independent of the programming language and the ma-
chine on which the algorithm runs.

This Order of magnitude can be declined into several relation types. Here are the three most common
ones:

Definition 138 (Order of magnitude relations). Let T and f be positive non-zero functions. O, Ω and Θ are
order of magnitude relations defined as follows:

• “Big O”: T (n) ∈O(f) if ∃c ∈R∗ and n0 ∈N s.t. ∀n≥ n0, T (n)≤ c× f (n). T is said to be asymptot-
ically dominated by f . f is an asymptotic upper bound for T .

• “Big Ω”: T (n) ∈Ω(f) if ∃c ∈R∗ and n0 ∈N s.t. ∀n≥ n0, T (n)≥ c× f (n). f is an asymptotic lower
bound for T .

• “Big Θ”: T (n) ∈Θ(f) if T (n) ∈Ω(f) and T (n) ∈ O(f).

The “asymptotic complexity” of an algorithm is formally defined, as follows:

Definition 139 (Asymptotic complexity). Let A be an algorithm and n be its measurement parameter. The
asymptotic complexity of A , denoted by T (n), is the “order of magnitude” of its execution time (in terms of
number of executed instructions) when n→ ∞.

16.5. ANALYSIS OF ALGORITHMS 185

Note: An asymptotic complexity can be studied for the worst (denoted Tmax), the best (denoted Tmin) or the
average (denoted Tave) cases for an input of size n.8 Generally, we are interested in the complexities for the
worst and average cases.

Example 88. Let A be an algorithm computing the product of two square matrices of size n, using the basic
method non optimized. We have:

• Tmin(n) = Tmax(n) = Tave(n) ∈Θ(n2)

• Tmin(n) = Tmax(n) = Tave(n) ∈ O(en)

• Tmin(n) = Tmax(n) = Tave(n) ∈Ω(n)

Notice that O(en) is far to be the best upper bound for Tmin(n) (resp. Tmax(n), Tave(n)), as Tmin(n) ∈ O(n2)
(resp. Tmax(n) ∈ O(n2), Tave(n) ∈ O(n2)). Likewise, Ω(n) is not the best lower bound for Tmin(n) (resp.
Tmax(n), Tave(n)) as Tmin(n) ∈Ω(n2) (resp. Tmax(n) ∈Ω(n2), Tave(n) ∈Ω(n2))

8For n fixed, there are several possible inputs. Among them are worst and best cases.

Chapter 17

Mathematical Problems

This chapter presents two mathematical problems used in this thesis. Section 17.1 presents the Constraint
Satisfaction Problem and Section 17.2 on page 188 a graph/data clustering method called Spectral Cluster-
ing. Notice that for the sake of space we will not go into details. The scope of this background is limited to
the necessary.

17.1 Constraint Satisfaction problem

In this section is presented the formal definition of a constraint satisfaction problem (CSP).1

Given a set of changeable state objects, a Constraint Satisfaction Problem (CSP) is a mathematical
problem in which we look for a configuration of object states (i.e. a mapping where each object has a
particular state) that satisfies a certain number of constraints.

Definition 140 (Constraint Satisfaction Problem). A CSP is defined by a triplet Ψ = ⟨X ,D,C⟩ where:

• X = {X1, ...,Xn} is a set of variables.

• D = {D(X1), ...,D(Xn)} is a set of domains, where D(Xi) ⊂ Z is the finite set of values that variable
Xi can take (i.e. D(Xi) is the domain of Xi).

• C = {c1, ...,ce} is a set of constraints.

Note: In real problems, the value of the variables are not always integers but they can be converted to
integers. Any value of a given variable domain can be associated with an integer. Therefore, this definition
of CSP is sufficient to capture all real constraint type problems.

Definition 141 (Constraint). A constraint ci is a boolean function involving a sequence of variables X(ci) =
(Xi1 , ...,Xiq) called its scheme. The function is defined on Zq. A combination of values (or tuple) τ ∈ Zq

satisfies ci if ci(τ) = 1 (also noted τ ∈ ci). If ci(τ) = 0 (or τ /∈ ci), τ violates ci.
1A CSP modelling is used for in AFDivider algorithm. See Section 4.2.4 on page 42.

186

17.1. CONSTRAINT SATISFACTION PROBLEM 187

Definition 142 (Instantiation). An instantiation of the X variables is a mapping where each Xi takes a value
in its domain D(Xi).

Definition 143 (CSP Solution). A solution of a CSP is an instantiation of the X variables that violates no
constraint.

Note: For more details on CSP see [64].

Example 89. Let consider the CSP Ψ = ⟨X ,D,C⟩ illustrated in Figure 17.1 where:

• X = {X1,X2,X3,X4} is the set of variables of Ψ

• D =



D(X1) = {1,4} ,

D(X2) = {1,2,3,4} ,

D(X3) = {1,3} ,

D(X4) = {1,3}


is a set of their domains

• C = {c1,c2,c3,c4} is a set of constraints, with ci for i ∈ {1, ...,4}, being an inequality constraint.
Their schemes, that is the set of variables on which they are applied, are:

– X(c1) = (X1,X2)

– X(c2) = (X1,X3)

– X(c3) = (X3,X4)

– X(c4) = (X1,X4)

1,4
X1

1,2,3,4
X2

1,3
X3

1,3
X4

c1: ̸= c2: ̸=

c4: ̸=
c3: ̸=

Figure 17.1: CSP illustration

Now that the CSP problem has been properly defined, let consider some facts. We have:

• If τ = (1,1) then c1(τ) = false

188 CHAPTER 17. MATHEMATICAL PROBLEMS

• If τ = (1,2) then c1(τ) = true

• If τ = (3,2) then c1(τ) = false as 3 /∈ D(X1)

• {X1 = 4, X2 = 1, X3 = 3, X4 = 3} is an instanciation that does not solve Ψ as it violates c3

• {X1 = 4, X2 = 2, X3 = 3, X4 = 1} is a solution of Ψ

17.2 Spectral Clustering

Finding clusters in graph is a subject that has been widely studied. In this section we will present an approach
that we used for argumentation framework clustering: the spectral clustering. For an overview of non-
directed graph clustering algorithms see [63] and for directed ones see [54].

The spectral clustering is a clustering method which is based on the spectral analysis of a similarity
laplacian matrix.

A similarity matrix is a square matrix in which the lines and the columns describe the same set of
elements. The matrix coefficients (i.e. the cell values) represent how much a element is similar to another,
according to given similarity measure.

In short, here is how the spectral clustering works:

• Given a similarity matrix, the laplacian of this matrix is computed.

– The lines of the laplacian matrix correspond to the coordinates of the elements in a certain
similarity space.

• The eigenvectors of the laplacian matrix with their associated eigenvalues are computed.

• The eigenvalues computed are sorted increasing order. A number n of them is kept with their associ-
ated eigenvectors.

– This solving and sorting process is done in order to project the datapoints in a new space which
maximizes the closeness of similar elements. This space basis is formed by the computed eigen-
vectors. The eigenvalue of an eigenvector represents how much the datapoints are scattered on
the eigenvector corresponding axis. Given that we are interested in the dimensions that maxi-
mize the best similarity (axes on which the datapoints are closed to each other), we keep the n
smallest eigenvalues and their eigenvectors.

– If there are clusters in a data set, it is reasonable to think that the number of small eigenvalues are
the number of groups identified (the datapoints being rather homogeneous following that axis).
An heuristic to find the appropriate number of dimensions to keep is to detect the jump in the
eigenvalues sequence (sorted in increasing order).

• A matrix whose columns are the remaining eigenvectors is constructed. The lines of it represent the
new elements coordinates.

17.2. SPECTRAL CLUSTERING 189

j k

l

mn

1

11

1

2

Figure 17.2: The weighted non-directed graph of Example 86

• Once this data treatment is done, a simple algorithm of clustering such as KMeans is applied to that
new data set, seeking for a partition into n parts, based on the coordinates of the elements (see [53] for
more information about KMeans algorithm).

Let illustrate this algorithm on a concrete example.

Example 90. Let consider the graph G = (V,E,W) shown in Figure 17.2 and let consider the weight over
the edges as the similarity between two nodes. Following Example 86 on page 178, the similarity matrix
corresponding to G is the following adjacency matrix Ma:

Ma =



j k l m n

j 0 1 1 0 0

k 1 0 1 0 0

l 1 1 0 1 0

m 0 0 1 0 2

n 0 0 0 2 0


The degree matrix Md of G is:

Md =



j k l m n

j 2 0 0 0 0

k 0 2 0 0 0

l 0 0 3 0 0

m 0 0 0 3 0

n 0 0 0 0 2



190 CHAPTER 17. MATHEMATICAL PROBLEMS

And then, the laplacian matrix Ml of G is:

Md−Ma = Ml =



j k l m n

j 2 −1 −1 0 0

k −1 2 −1 0 0

l −1 −1 3 −1 0

m 0 0 −1 3 −2

n 0 0 0 −2 2


From the graph similarity matrix and by means of the laplacian matrix, the datapoints are projected in

a new space in which similarity is maximised. The idea is that, if a certain structure exists in the data set,
we will see in that space appear some agglomerates corresponding to the node clusters.

To do that, we compute the n smallest eigenvalues2 of the laplacian matrix obtained from the similarity
matrix and the vectors associated with them (this n is an arbitrary parameter).

Indeed, the eigenvectors found will correspond to the basis of that similarity space and the eigenvalues
to the variance on the corresponding axes. Given that we are looking for homogeneous groups, we will
consider only the axis on which the variance is low, and so the eigenvectors that have small eigenvalues.
The space whose basis is the n selected eigenvectors (corresponding to the n smallest eigenvalues) is then a
compression of similarity space (i.e. we keep only the dimension useful for a clustering).

For the sake of the illustration let fix the parameter n to its maximal value: n = 5. Following Example 86
on page 178, we have:

• The eigenvectors of Ml are:



v1 v2 v3 v4 v5

−0.4472136 0.4397326 7.071068×1×10−1 0.3038906 0.1195229

−0.4472136 0.4397326 −7.071068×1×10−1 0.3038906 0.1195229

−0.4472136 0.1821432 −5.551115×1×10−17 −0.7336569 −0.4780914

−0.4472136 −0.4397326 −2.775558×1×10−16 −0.3038906 0.7171372

−0.4472136 −0.6218758 −1.665335×1×10−16 0.4297663 −0.4780914


• And their associated eigenvalues are:

[λ1 λ2 λ3 λ4 λ5

2.476651×1×10−16 5.857864×1×10−1 3.000000 3.414214 5.000000
]

Now that the similarity space is found, another important step is to find how many groups we have in that
space. Intuitively, the number of eigenvectors with small eigenvalues, and so, the number of axes with small

2There exist algorithms, such as Krylov-Schur method, able to compute eigenvectors from smallest to greatest eigenvalue and stop at
any wanted step (e.g. number of vectors found). With such an algorithm it is not necessary to find all the solutions as we are interested
only in the small eigenvalues.

17.2. SPECTRAL CLUSTERING 191

variance is the number of clusters. However, within the n smallest eigenvalues determined, it is difficult to
formally say what is a small eigenvalue, and so, what is the number of clusters to chose.

Sorted in ascending order, the eigenvalue sequence represents how the similarity within clusters in-
creases as the number of clusters grows. Obviously, the more clusters, the more homogeneous they will get.
The idea is to find a compromise between number of clusters and homogeneity.

As eigenvalues say, in the end, how much the corresponding clusters will be homogeneous, the heuristic
we have chosen to consider is to look for the “best elbow” in that ascending order sequence. We look for the
number of dimensions to keep just before the quick growth of the variance. If the topology of the graph let
appear some clusters then we will indeed have elbows. We can see in Figure 17.3 that this “best elbow” in
the eigenvalues sequence (blue line with squares) is in second position. In that case the number of clusters
determined by that heuristic is so 2.

To compute that “best elbow” we consider the second derivative (green line with triangles) of the ascend-
ing order sequence. As the second derivative represents the concavity of the eigenvalue sequence, we can
take the first value of the second derivative above a certain threshold (red line without symbol) determined
experimentally (i.e. the first position where the eigenvalue sequence is enough convex).

As you can see the first point of the second derivative, corresponding to the concavity formed by the first
three eigenvalues, is the first value above the threshold and then we determine that the “best elbow” is in
position 2.

λ1 λ2 λ3 λ4 λ5
−3

−2

−1

0

1

2

3

4

5
Eigenvalues

Second derivative
Threshold = 0.04

Figure 17.3: eigenvalues sorted by ascending order

Once the number of clusters is chosen, we remove from the similarity matrix the columns that are after
this number (i.e. we remove the dimensions we are not interested in for the clustering). The lines of the

192 CHAPTER 17. MATHEMATICAL PROBLEMS

resulting matrix, which columns are the kept eigenvectors, correspond to the coordinates of the nodes in that
new compressed similarity space.

Finally, we just have to apply a KMeans type algorithm [53] to find the groups of datapoint in that space
and so have the partition of nodes we wanted.

Given that the chosen number of clusters is 2, we keep only the vectors v1 and v2 and when binded by
column the lines they form correspond to the coordinates of the nodes in a new space that maximizes the
similarity.



v1 v2

j −0.4472136 0.4397326

k −0.4472136 0.4397326

l −0.4472136 0.1821432

m −0.4472136 −0.4397326

n −0.4472136 −0.6218758


As you can see the v1 dimension is useless. In practice it is removed.

−1 −0.8 −0.6 −0.4 −0.2 0
−1

−0.5

0

0.5

1

j
k

l

m
n

v1

v 2

Figure 17.4: Node datapoints projected in similarity space

Figure 17.4 shows two clusters as expected: G ↓{m,n} and G ↓{ j,k,l}.

Note: For more information on spectral clustering see [67].

Appendix 2: Tables

193

Tables of symbols

Table 18.1: Shortcut symbols

Symbol Meaning

i.e. The abbreviation for the Latin phrase “id est”, meaning “that is”

e.g. The abbreviation for the Latin phrase “exempli gratia”, meaning “for example”

w.r.t. The abbreviation for “with regard to”

s.t. The abbreviation for “such that”

iff The abbreviation for “if and only if”

AF The abbreviation for “Argumentation Framework (Dung)”

SCCa f The abbreviation for “AF SCC”

RAF The abbreviation for “Recursive Argumentation Framework”

SCCra f The abbreviation for “RAF SCC”

USCCa f The abbreviation for “AF USCC”. See Definition 27 on page 21

USCCra f The abbreviation for “RAF USCC”. See Definition 109 on page 161

BA, ER,
WS, TR,
F2,BW

The abbreviations for respectively Barabási–Albert, Erdős–Rényi, Watts-Strogatz,
Traffic, Ferry and Block world graph types.

194

195

Table 18.2: Graph and matrix symbols

Symbol Meaning

G = (V,E) A graph G with V being a set of nodes and E being a set of edges

G = (V,E,W) A graph G with V being a set of nodes, E being a set of edges and W being
a function that associates a weight to any e ∈ E

deg(G,v) Let G = (V,E) be a non-weighted graph and v ∈V . deg(G,v) is the number
of incident edges to v in G. See Definitions 116 and 117 on page 172

degw(G,v) Let G = (V,E,W) be a weighted graph and v ∈V . deg(G,v) is the weight
sum of the incident edges to v in G. See Definition 118 on page 172

Rd(G) Let G be a graph. Rd(G) is the relation density in G with:

Rd(G) =
|E|
|V |

See Definition 131 on page 174

M A matrix. See Definition 132 on page 175

(M)i, j The cell of row i and column j of the matrix M

Ma The adjacency matrix of a certain graph. See Definition 134 on page 175

Md The degree matrix of a certain graph. See Definition 135 on page 175

Ml The laplacian matrix of a certain graph. See Definition 136 on page 175

Table 18.3: AF and RAF related symbols

Symbol Meaning

σ A semantics

S A set of arguments/elements

Continued on next page ...

196 TABLES OF SYMBOLS

Table 18.3: AF and RAF related symbols (continued)

Symbol Meaning

in A labelling acceptability value indicating that the argument/element is
accepted

out A labelling acceptability value indicating that the argument/element is
rejected

und A labelling acceptability value indicating that the argument/element is
undecided

iout A labelling acceptability value indicating that the argument/element of a
cluster structure/partial RAF is illegally rejected. See Definition 34 on
page 36

iund A labelling acceptability value indicating that the argument/element of a
cluster structure/partial RAF is illegally undecided. See Definition 34 on
page 36

in (.), out (.), und (.) The sets of arguments/elements in “.” that are labelled respectively in , out
and und

Ω ω The symbols Ω and ω are used to represent respectively partitions and parts
in a given partition. In the case of AFs, we have, given an AF AF = ⟨A,K⟩:
Ω = {ω1, ...,ωn} being a partition of A. In the case of RAFs, we have, given
a RAF RAF = ⟨A,K,s, t⟩: Ω = {ω1, ...,ωn} being a partition of A∪K

Table 18.4: AF related Symbols

Symbol Meaning

Φa f The set of all possible AF

AF = ⟨A,K⟩ An AF where:
• A is a set of arguments
• K is a set of attacks (i.e. K ⊆ A×A)

af = ⟨A,K⟩ Same definition as the previous one. This notation is used occasionally to
represent a sub-AF and especially connected component sub-AFs of an AF
named AF . See for example Definition 40 on page 64.

Continued on next page ...

197

Table 18.4: AF related Symbols (continued)

Symbol Meaning

De f (S) The set of arguments defeated w.r.t. the set of arguments S

Acc(S) The set of arguments acceptable w.r.t. the set of arguments S

L (AF) Let AF be an AF. L (AF) is the set of all possible labellings of AF

L (S) Let S be a set of arguments. L (S) is the set of all possible labellings of S

Lσ (AF) Let AF be an AF. Lσ (AF) is the set of AF labellings under the semantics σ

ℓ A labelling

Sinp Let AF = ⟨A,K⟩ be an AF and let S⊆ A. Sinp is the set of input arguments
of S, that is: Sinp = {b ∈ A\S|∃a ∈ S,(b,a) ∈ K}

SK Let AF = ⟨A,K⟩ be an AF and let S⊆ A. SK is the conditioning relation of
S, that is: K∩ (Sinp×S)〈

AF ,J ,ℓJ ,KJ

〉
An AF with input, with:

• AF being an AF
• J being a set of input arguments
• ℓJ being a labelling of J
• KJ being a set of conditioning relations such that KJ ⊆ J ×A

std-AF Standard AF corresponding to an AF with input
〈

AF ,J ,ℓJ ,KJ

〉
is defined

as std-AF =
〈
A∪ J ′,K∪K′J

〉
, where J ′ = J ∪

{
a′|a ∈ J ∩out (ℓJ)

}
and

K′J = KJ ∪
{
(a′,a)|a ∈ J ∩out (ℓJ)

}
∪
{
(a,a)|a ∈ J ∩und (ℓJ)

}
. See

Definition 17 on page 17

J ′ See std-AF

F a f
σ (AF ,J ,ℓJ ,KJ) The canonical local function computing the σ -labellings associated with the

AF with input
〈

AF ,J ,ℓJ ,KJ

〉
(see Definition 18 on page 18)

Pathsa f (AF) The set of paths of AF

Walksa f (AF) The set of walks of AF

Continued on next page ...

198 TABLES OF SYMBOLS

Table 18.4: AF related Symbols (continued)

Symbol Meaning

Cyclesa f (AF) The set of cycles of AF

PEa f (AF) The path-equivalence relation over AF

SCCSa f (AF) The set of SCCa f of AF

S (AF) A partition selector S is a function receiving as input an AF AF = ⟨A,K⟩
and returning a set of partitions of A

SD-a f The “default AF partition selector” is the partition selector that produces all
possible partitions of an AF. See Definition 25 on page 20

SUSCC A partition selector that does not split SCCa f . See Definition 27 on page 21

AF hard Let AF = ⟨A,K⟩ be an AF. The “hard part” of AF is the sub AF defined as:
AF hard = AF ↓{a|a∈A,ℓgr(a)=und }. See Section 4.2.1 on page 30

κ =
〈

af , I,O,B
〉

Let AF = ⟨A,K⟩ be an AF κ is a cluster structure where:
• af is a sub AF of AF such that for some ω ⊆ A, af = AF ↓ω

• I = {(a,b)|(a,b) ∈ K,b ∈ ω and a /∈ ω}
• O = {(a,b)|(a,b) ∈ K,b /∈ ω and a ∈ ω}
• B = {a|(a,b) ∈ O or (b,a) ∈ I}

See Definition 30 on page 32

µ Let κ =
〈

af , I,O,B
〉

be a cluster structure. A context µ of κ is a labelling of
the inward attack sources of κ , i.e. {a|(a,b) ∈ I}. See Definition 31 on
page 34

L
µ(κ)

σ The set of induced labelling produced by the cluster structure κ under the
context µ . See Definition 33 on page 35

ξ Let κ =
〈

af , I,O,B
〉

be a cluster structure, L
µ(κ)

σ a set of induced

labellings and ℓ ∈L
µ(κ)

σ be a labelling. The configuration ξ corresponding
to ℓ is a five value-based labelling of the border arguments of κ . See
Definition 34 on page 36

af ′ Let κ =
〈

af , I,O,B
〉

be a cluster structure and µ be a context of κ . We
denote by af ′ the induced AF from κ under µ . See Definition 32 on page 35

D The set of deleted arguments from the an induced AF. See Definition 32 on
page 35

Continued on next page ...

199

Table 18.4: AF related Symbols (continued)

Symbol Meaning

L κ
D The set of distinct labellings of a cluster structure κ . See Definition 35 on

page 39

ξℓκ
i

The merge configuration corresponding to the labelling ℓi of the cluster
structure κ . See Definition 36 on page 41

p = {ξ1, ...,ξn} A reunified labelling profile. See Definition 37 on page 43

Ξ Let p = {ξ1, ...,ξn} be a reunified labelling profile. Ξ is the union of those
configurations: Ξ = (

⋃n
i=1 ξi)

Pκ The set of configurations corresponding to the cluster structure κ . See
Algorithm 2 on page 31

P A set of reunified labelling profiles

U (AF) The undirection transformation that transforms an AF into a weighted
non-directed graph. See Definition 39 on page 52

Compσ (AF) The compact enumeration representation of AF according to a semantics σ .
See Definition 40 on page 64

MAF A “Meta-Argumentation Framework” (MAF). They are basically
Argumentation Framework. See [46] for more information

Credσ , Skepσ , Verσ ,
Existsσ , Exists¬∅σ ,

Uniqueσ

Respectively the Credulous Acceptance, Skeptical Acceptance, Verification
of a labelling, Existence of an extension/labelling/structure, Existence of a
“non-empty” extension/labelling/structure and the Uniqueness of a solution
AF decision problems. See Definition 28 on page 23

Table 18.5: RAF related Symbols

Symbol Meaning

Φra f The set of all possible RAF

Continued on next page ...

200 TABLES OF SYMBOLS

Table 18.5: RAF related Symbols (continued)

Symbol Meaning

RAF = ⟨A,K,s, t⟩ A RAF where:
• A is a set of arguments
• K is a set of attacks
• s is a mapping function that associates an attack with its source (i.e.

s : K→ A)
• t is a mapping function that associates an attack with its target (i.e.

t : K→ A∪K)

U= ⟨S,Q⟩ A structure. S is a set of arguments and Q is a set of attacks

RAF-De f (U) Let RAF = ⟨A,K,s, t⟩ be a RAF and U= ⟨S,Q⟩ be a structure of RAF .
RAF-De f (U) is the set of arguments defeated by U, that is:

RAF-De f (U) = {a ∈ A|∃α ∈ Q s.t. s(α) ∈ S and t(α) = a}

See Definition 61 on page 92

RAF-Inh(U) Let RAF = ⟨A,K,s, t⟩ be a RAF and U= ⟨S,Q⟩ be a structure of RAF .
RAF-Inh(U) is the set of attacks inhibited by U, that is:

RAF-Inh(U) = {α ∈ K|∃β ∈ Q s.t. s(β) ∈ S and t(β) = α}

See Definition 61 on page 92

RAF-Acc(U) Let RAF = ⟨A,K,s, t⟩ be a RAF and U= ⟨S,Q⟩ be a structure of RAF .
RAF-Acc(U) is the set of elements acceptable w.r.t. U, that is:
{e ∈ (A∪K)|(∃α ∈ K s.t. t(α) = e) =⇒ (s(α) ∈ RAF-De f (U) or α ∈
RAF-Inh(U))}. See Definition 62 on page 92

⊑ ⊑ar Let U= ⟨S,Q⟩ and U′ = ⟨S′,Q′⟩ be any pair of structures. We write U′ ⊑ U′

iff (S∪Q)⊆ (S′∪Q′) and U⊑ar U
′ iff S⊆ S′.

L=
〈
ℓA,ℓK

〉
A structure labelling

Lσ -ra f (RAF) Lσ -ra f (RAF) is the set of structure labellings of RAF under the semantics
σ

Lab2Struct(ℓ) Let RAF = ⟨A,K,s, t⟩ be a RAF. The function Lab2Struct transforms a
labelling ℓ of RAF into its corresponding structure U of RAF . See
Definition 75 on page 107

Continued on next page ...

201

Table 18.5: RAF related Symbols (continued)

Symbol Meaning

Struct2Lab(U) Let RAF = ⟨A,K,s, t⟩ be a RAF. The function Struct2Lab transforms a
structure U of RAF into its corresponding labelling ℓ of RAF . See
Definition 75 on page 107

SCCSra f (RAF) The set of SCCra f of RAF . See Definition 87 on page 125

Pathsra f (RAF) The set of RAF-paths of RAF . See Definition 82 on page 123

Cyclesra f (RAF) The set of RAF-cycles of RAF . See Definition 83 on page 124

ClosedWalkra f (RAF) The set of RAF-closed-walks of RAF . See Definition 84 on page 124

PEra f (RAF) The path-equivalence relation over RAF . See Definition 87 on page 125

≡
RAF

̸≡
RAF

Other notations for the path-equivalence relation over given RAF . “x ≡
RAF

y”

means “(x,y) ∈ PEra f (RAF)” and “x ̸≡
RAF

y” means “(x,y) /∈ PEra f (RAF)”

R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
Let RAF = ⟨A,K,s, t⟩ be a RAF. R̃AF is a partial RAF of RAF where:

• Ã⊆ A is a set representing arguments
• K̃ ⊆ K is a set representing attacks
• s̃ : K̃→{true,false} is a boolean function that indicates whether

or not an attack in K̃ has its source in Ã defined as following:

∀α ∈ K̃, s̃(α) = true if s(α) ∈ Ã otherwise false

• t̃ : K̃→{true,false} is a boolean function that indicates whether or
not an attack in K̃ has its target in Ã

∀α ∈ K̃, t̃(α) = true if t(α) ∈ Ã∪ K̃ otherwise false

See Definition 92 on page 134

I=
〈
Sinp,Qinp

〉
Let RAF = ⟨A,K,s, t⟩ be a RAF and R̃AF is a partial RAF of RAF . We
denote by I the input of R̃AF . See Definition 96 on page 136〈

R̃AF ,I,Linp
〉

Let R̃AF be a partial RAF and I be an the input of R̃AF . The tuple〈
R̃AF ,I,Linp

〉
is called a “partial RAF with input”, where Linp is a

structure labelling of the elements in Sinp and Qinp. See Definition 96 on
page 136

Continued on next page ...

202 TABLES OF SYMBOLS

Table 18.5: RAF related Symbols (continued)

Symbol Meaning

R̃AF s = ⟨As,Ks,ss, ts⟩ Let
〈

R̃AF ,I,Linp
〉

be a partial RAF with input. R̃AF s is the standard RAF
corresponding to it. See Definition 97 on page 138

ζ υ ρ θ AndÃs,K̃s
NotÃs

NotK̃s

Let
〈

R̃AF ,I,Linp
〉

be a partial RAF with input. In the process of flattening

created the standard RAF R̃AF s corresponding to it, several elements and
sets of elements are created. See Definition 97 on page 138

F ra f (R̃AF ,I,Linp) Let
〈

R̃AF ,I,Linp
〉

be a partial RAF with input, the canonical function

F ra f (R̃AF ,I,Linp) computes the structure labellings corresponding to it.
See Definition 99 on page 138

≼ A partial order relation between SCCra f . See Definition 89 on page 132

Dagscc(RAF) A function that creates a the directed graph corresponding to the ≼ relation
over RAF . See Definition 91 on page 133

S (RAF) A partition selector S is a function receiving as input a RAF
RAF = ⟨A,K,s, t⟩ and returning a set of partitions of A∪K

SD-ra f The “default RAF partition selector” is the partition selector that produces
all possible partitions of a RAF. See Definition 108 on page 159

Sra f -USCC A RAF partition selector that does not split SCCra f . See Definition 109 on
page 161

Sra f -c-USCC The AF partition selector that corresponds to Sra f -USCC. See Definition 109
on page 161

RAF-Credσ ,
RAF-Skepσ , RAF-Verσ ,

RAF-Existsσ ,
RAF-Exists¬∅σ ,
RAF-Uniqueσ

Respectively the Credulous Acceptance, Skeptical Acceptance, Verification
of a labelling, Existence of an extension/labelling/structure, Existence of a
“non-empty” extension/labelling/structure and the Uniqueness of a solution
RAF decision problems. See Definition 79 on page 119

203

Table 18.6: Transformation related symbols: RAF and AF

Symbol Meaning

Af2Raf(AF) Let AF = ⟨A,K⟩ be an AF. The function Af2Raf transforms an AF into a
RAF by naming its attacks. See Definition 80 on page 121

Raf2Af(RAF) Let RAF = ⟨A,K,s, t⟩ be a RAF. The function Raf2Af transforms a RAF
into an AF. See Definition 76 on page 115

NotA NotK AndA,K Let RAF = ⟨A,K,s, t⟩ be a RAF. In the process of flattening RAF with
Raf2Af, several sets of arguments are created. Among those are NotA, NotK
and AndA,K . See Definition 76 on page 115

¬x Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be the flattened
version of RAF . Let x ∈ (A∪K) be an element of RAF . ¬x is the created
argument that represents the “negation” of element x. See Definition 76 on
page 115 (Notice that ¬x ∈ (NotA∪NotK))

s(α).α Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be the flattened
version of RAF . Let α ∈ K be an attack of RAF . s(α).α is the created
argument that represents the “conjunction” of attack α with its source s(α).
See Definition 76 on page 115 (Notice that s(α).α ∈ AndA,K)

εU Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be the flattened
version of RAF . Let U be a structure of RAF . εU is the extension of AF
corresponding to U. See Definition 77 on page 116

rafLab2AfLab(L) Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be the flattened
version of RAF . rafLab2AfLab is a function that transforms a structure
labelling L of RAF into the labelling of AF corresponding to it. See
Definition 78 on page 118

afLab2RafLab(ℓ) Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be the flattened
version of RAF . afLab2RafLab is a function that transforms a labelling ℓ
of AF into the structure labelling of AF corresponding to it. See
Definition 78 on page 118

Raf2Afmaf(RAF) Let RAF = ⟨A,K,s, t⟩ be a RAF. The function Raf2Afmaf flattens a RAF
into a MAF/AF. See Definition 68 on page 98

str2MafExt(U) Let RAF = ⟨A,K,s, t⟩ be a RAF and MAF = Raf2Afmaf(RAF). Let U be a
structure labelling of RAF . str2MafExt(U) is the extension of MAF
corresponding to U. See Definition 69 on page 98

Continued on next page ...

204 TABLES OF SYMBOLS

Table 18.6: Transformation related symbols: RAF and AF (continued)

Symbol Meaning

Sra f -c(AF) Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be the flattened
version of RAF . Sra f -c is a partition selector that selects partitions of AF
that are “compliant” with RAF . See Definition 101 on page 139

SD-ra f -c(AF) Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be the flattened
version of RAF . SD-ra f -c, so-called “default RAF-compliant partition
selector”, is the partition selector that produces all the RAF-compliant
partitions of AF . See Definition 102 on page 140

Table 18.7: Complexity Symbols

Symbol Meaning

P A decision problem. See Sections 16.4.1 and 16.4.2 on page 178 and on
page 179

C A complexity class. See Section 16.4.1 on page 178

≤P, ≤L Respectively polynomial reduction and logarithmic in space reduction. See
Section 16.4.4.1 on page 182

C -hard Let P be a problem and C be a complexity classes. P ∈ C -hard if and
only if P is at least as hard as the other problems of the class C . See
Section 16.4.4.2 on page 183

C -c Let P be a problem and C be a complexity classes. P ∈ C -c if an only if
P ∈ C -hard and P ∈ C . See Section 16.4.4.2 on page 183

L, P, NP, DP, DP2, coNP,
ΣP

2, ΠP
2, ΘP

2, NPNP, PNP,
NPcoNP

Several time complexity classes. See Section 16.4.3 on page 180

Table of figures

Table 18.8: Table of figures

Figure Description

Figure 1 on page 7 An AF example

Figure 1.1 on page 10 AF semantics partial ordering and cardinality

Figures 2.1 to 2.3 on pages 16–18 Given an initial AF, these figures illustrate what is an AF
with input and its corresponding standard AF

Figure 3.1 on page 24 A recall of Example 1 on page 7 to illustrate AF decision
problems

Figures 4.2 to 4.8 on pages 32–38 An illustration of the different steps of the AFDivider
algorithm

Figure 4.9 on page 38 An cluster example showing the interest of the 5-value
labelling used for the reunification made by the the
AFDivider algorithm

Figure 4.11 on page 40 An illustration of merge configuration

Figure 4.12 on page 42 An illustration of same merge configuration for different
labellings

Figures 5.1 to 5.3 on pages 52–62 An illustration of the spectral clustering partition method

Figures 5.4 to 5.6 on pages 62–63 An illustration of the USCC-based partition methods

Figure 6.1 on page 65 A recall of Example 1 on page 7 to illustrate the Compact
Enumeration Representation

Continued on next page ...

205

206 TABLE OF FIGURES

Table 18.8: Table of figures (continued)

Figure Description

Figure 7.1 on page 73 An AF example to illustrate the other direct-approach
algorithms

Figures 7.2 to 7.6 on pages 74–77 There figures illustrate the algorithm proposed in [43]

Figure 7.7 on page 78 An SCC decomposition hierarchy of an AF. This layered
schema is used to illustrate the algorithms proposed in [52]
and [25]

Figure 7.8 on page 80 An illustration for the recursiveness of the P-SCC-REC
algorithm (cite [25])

Figure 7.9 on page 83 An example of a RAF/AFRA

Figure 8.1 on page 89 AFRA semantics partial ordering and cardinality

Figure 8.2 on page 90 An illustration of the fact that AFRA does not correspond to
a conservative generalization of AF

Figure 9.1 on page 95 RAF semantics partial ordering and cardinality

Figure 9.2 on page 96 An example of non recursive RAF

Figure 9.3 on page 97 The AF corresponding to the non recursive framework of
Figure 9.2 on page 96

Figure 9.4 on page 98 An example of RAF flattening with the Raf2Afmaf function

Figure 10.1 on page 102 A RAF example

Figure 11.1 on page 112 A recall of Figure 10.1 on page 102 to illustrate RAF
semantics labellings

Figure 12.1 on page 116 A RAF flattening illustration

Figure 13.1 on page 120 A recall of Figure 10.1 on page 102 to illustrate RAF
decision problems

Figure 14.1 on page 124 An example of RAF-paths

Figure 14.3 on page 127 An example of SCCra f

Continued on next page ...

207

Table 18.8: Table of figures (continued)

Figure Description

Figures 14.4 to 14.5 on pages 128–129 Different cases of RAF flattening that illustrate some
interesting properties leading to Propositions 35 and 36 on
page 129

Figures 14.7 to 14.8 on pages 131–132 Illustrations of the correspondance between SCCa f and
SCCra f

Figure 14.9 on page 133 Dagscc(RAF) corresponding to the RAF in Figure 14.7(a) on
page 131

Figure 14.10 on page 134 A RAF example having attacks in cascade

Figure 14.11 on page 135 Illustration of partial RAFs

Figure 14.12 on page 137 Illustration of partial RAFs with inputs

Figure 14.13 on page 139 An example of standard RAFs

Figure 14.14 on page 141 An example of RAF-compliant partition

Figures 14.15 to 14.23 on
pages 143–150

An illustration of the decomposability RAF semantics

Figures 14.24 and 14.25 on page 153
and on page 154

Schemas showing the demonstration overview of RAF
semantics decomposability properties

Figures 14.26 to 14.29 on
pages 156–158

These figures illustrate that given a RAF and its flattened
version, there is a correspondence between its RAFs with
input and AFs with input, between their respective standard
RAFs and standard AFs, and finally, between the flattened
version of a standard RAF and its corresponding standard
AF

Figure 16.1 on page 171 Examples of graph

Figure 16.2 on page 172 Examples of weighted graph

Figure 16.3 on page 176 A weighted non-directed graph

Figure 16.4 on page 182 A schema of the Polynomial Hierarchy

Continued on next page ...

208 TABLE OF FIGURES

Table 18.8: Table of figures (continued)

Figure Description

Figure 17.1 on page 187 An illustration of CSP modeling

Figure 17.2 on page 189 The weighted non-directed graph of Example 86 on
page 178

Figure 17.3 on page 191 Following Example 90 on page 192 illustrating the Spectral
Clustering method, this graphics shows eigenvalues sorted
by ascending order

Figure 18.1 on page 261 A counter example that shows that Assertion 2 of Lemma 10
on page 260 is only an implication and not an equivalence

Figure 18.2 on page 283 Example giving an intuition for the proof of Propositions 43
and 45

Table of tables

Table 18.9: Table of tables

Table Description

Tables 1.1 and 1.2 on page 13 and on
page 14

Semantic extensions and labellings of the AF in Figure 1 on
page 7

Table 1.3 on page 15 Labelling and extension based semantics correspondence

Table 2.1 on page 22 AF Semantics decomposability properties

Tables 4.1 to 4.8 on pages 39–48 Labelling tables illustrating the different steps of the
AFDivider algorithm on the AF represented in Figure 4.2 on
page 32

Table 5.1 on page 56 AF solver success count analysis

Table 5.2 on page 57 AF solver resolution time analysis

Table 5.3 on page 58 A comparison of the average real time of the AFDivider
variants

Table 6.1 on page 69 AFDivider success count and resolution time analysis when
using the Compact Enumeration Representation

Table 7.1 on page 75 Bags produced by the algorithm proposed in [43]

Table 8.1 on page 88 AFRA semantics extension for the AFRA illustrated in
Figure 7.9 on page 83

Table 9.1 on page 93 RAF semantics extension for the RAF illustrated in
Figure 7.9 on page 83

Continued on next page ...

209

210 TABLE OF TABLES

Table 18.9: Table of tables (continued)

Table Description

Table 10.1 on page 105 A recall of Table 9.1 on page 93 with the addition of the
semi-stable semantics

Table 10.2 on page 106 RAF labellings corresponding to Table 10.1 on page 105

Table 11.1 on page 111 Correspondence between reinstatement RAF labellings and
structures semantics

Table 11.2 on page 113 RAF semantics labellings for the RAF illustrated in
Figure 11.1 on page 112

Table 13.1 on page 122 Complexities of RAF decision problems

Table 14.1 on page 161 AF Semantics decomposability properties w.r.t. SD-ra f -c

Table 14.2 on page 162 AF Semantics decomposability properties w.r.t. Sra f -c-USCC

Table 14.3 on page 162 RAF Semantics decomposability properties

Table 18.2 on page 195 Graph and matrix symbols

Table 18.3 on page 195 AF and RAF related symbols

Table 18.4 on page 196 AF related Symbols

Table 18.5 on page 199 RAF related Symbols

Table 18.6 on page 203 Transformation related symbols: RAF and AF

Table 18.7 on page 204 Complexity Symbols

Table 18.8 on page 205 Tables of figures

Table 18.9 on the previous page Tables of tables

Glossary

Abstract Argumentation Abstract argumentation theory proposes methods to represent and deal with con-
tentious information, and to draw conclusions or take decision from it. Such an abstract approach
focuses on how arguments affect each other. Arguments are seen as generic entities which interact
positively (support relation) or negatively (attack relation) with each other. 2, 70, 166, 210

adjacency See Definition 115 on page 171. 210

adjacency matrix See Definition 134. 53, 175, 176, 189, 210

AF trivial part Part of an AF that has a unique and fixed labelling that can be computed in linear time. See
Section 4.2.1. i, 30, 210

AF with input See Definition 16. 17, 18, 48, 49, 153, 155, 157–159, 210

AF-extension A set of arguments of an AF. 210, 213

AFRA Argumentation Framework with Recursive Attacks. See Definition 49. 83, 210

AFRA-extension A set of arguments and attacks of an AFRA. 210, 213

algorithm A finite sequence of well-defined, computer-implementable instructions, typically to solve a
class of specific problems or to perform a computation. 3, 5, 27, 70, 104, 123, 165, 210

application A mathematical application is a relationship between two sets in which each element of the
former is related to a single element of the latter. 175, 177, 210

Argument Mining A sub research field of Argumentation interested in extracting arguments and their re-
lations with each others, from natural language speeches (oral or written), in order to create a formal
model to reason with. 2, 28, 210

argumentation A research field of Artificial Intelligence interested in managing contentious information.
2, 210

Argumentation Framework An argumentation framework, in the general sense, is a particular formalism
to express argumentation problems. The expression has also come to mean an argumentation problem
instance modeled after a particular formalism (by the way, a particular argumentation framework). 2,
3, 83, 210

Argumentation Reasoning A sub research field of Argumentation interested in reasoning over some ar-
gumentation model. It is useful to conclude, decide, convince, persuade or explain some issue. 2,
210

211

212 Glossary

asymptotic Given a mathematical function f , the “asymptotic” behavior of f is its limiting behavior, that
is for a large input (w.r.t. its domain definition). 179, 184, 185, 210

bijection A mathematical application establishing a relation between two sets such that any element of one
is the image of a single element of the other. 12, 23, 167, 210

border argument Argument of a cluster structure being the source of an outward attack or the target of an
inward attack. See Definition 30. 32, 36, 37, 42–45, 143, 145, 210

bottom-up decomposability See glossary: semantics decomposability. 210

bottom-up decomposable See glossary: semantics decomposability. 19, 20, 47, 142, 159–161, 210

cardinality A notion of size for sets. When a set is finite its cardinal is the number of elements it contains.
9, 12, 87, 94, 210

cluster structure See Definition 30. 32, 34–37, 42, 43, 48, 49, 210

clustering A method of data analysis consisting in dividing a data set into different homogeneous “clusters”.
The data in each subset share common characteristics, which usually correspond to similarity criteria
that are defined by introducing distance measures between the data set elements. 3, 29, 30, 32, 34, 42,
51, 52, 54–57, 60, 79, 165, 166, 178, 186, 188–191, 210

compact enumeration representation See Chapter 6. 60, 64–66, 68, 210

complete A problem is said to be complete for a given complexity class C if it belongs to C and is C -hard.
See Section 16.4.4.2. 183, 210

complete An algorithm is said to be complete for a given problem if and only if it produces all the solutions
of the wanted problem. See Section 4.3 as an example. 50, 165, 168, 210, 212

complete-based See Definition 38. 49, 157–161, 210

complete-compatible See Definition 21. 19, 20, 49, 210

completeness See glossary: complete. 32, 47, 48, 210

complexity class A theoretical group computational problems of similar hardness. See Section 16.4.1. 24,
120, 178, 179, 181, 183, 184, 210

computational complexity theory Computational complexity theory is a field of computer science whose
purpose is to cluster computational problems into “complexity classes”. Problems are gathered ac-
cording to some criterion on the resources required to solve them. See Section 16.4. 170, 178, 179,
183, 184, 210

concavity A function is called concave if the line segment between any two points on the graph of the
function lies below the graph between the two points. Some functions can have concave and convex
(the opposite of concave) portions. 191, 210

configuration See Definition 34. 31, 36, 38–43, 46, 210

Glossary 213

conjecture In mathematics, a conjecture is an assertion for which a proof is not yet known, but which is
strongly believed to be true, in the absence of a counterexample. More generally speaking, its an
opinion based on probabilities, appearances. 29, 210

connected component See Definition 127. 30–32, 34, 47, 64, 68, 174, 210

CPU time Amount of time for which a CPU was used for processing instructions of a computer program,
as opposed to, for example, waiting for input/output operations. The CPU time is often measured in
clock ticks or as a percentage of the CPU capacity. 57, 210, 216

CSP A Contraint Satisfaction Problem is a mathematical problem that looks for a configuration of object
states (i.e. a mapping where each object has a particular state) that satisfies a certain number of
constraints. See Section 17.1. 43–45, 186, 187, 210

datapoint Discrete unit of information. In a statistical or analytical context, a datapoint is usually derived
from a measurement or research and can be represented numerically and/or graphically. 188, 190,
192, 210

decision problem A decision problem is a type of computational problem that has for output a boolean.
That is, given an input the solution of the problem is whether “yes” (equivalently true or 1) or “no”
(equivalently false or 0). We say that the problem “accepts” or “rejects” the input. See Section 16.4.2.
7, 23, 24, 55, 64–66, 120–122, 163, 167, 168, 210

degree matrix See Definition 135 on page 175. 176, 189, 210

directed graph See Definition 112. 210, 214

Dung’s Argumentation Framework Dung introduced in [39] the seminal abstract argumentation frame-
work. See Definition 1. 2, 23, 27, 86, 210

eigenvalue See Definition 133. 175, 178, 188, 190, 191, 210

eigenvector See Definition 133. 53, 175, 177, 178, 188, 190, 192, 210

enumeration problem Functional problem consisting in finding all the possible solutions of a computa-
tional problem. See Definition 29 for the enumeration problem in Argumentation. 27, 28, 51, 68, 165,
210

extension See glossary: AF-extension and AFRA-extension. 3, 8, 9, 85, 102, 103, 111, 166, 210

extension-based See glossary: extension-based semantics. 8, 12, 28, 210

extension-based semantics A semantics that produces extensions. 3, 8, 12, 16, 23, 85, 91, 97, 210, 213

field A field is one of the fundamental algebraic structures of general algebra. It is a set with two binary
operations making possible addition, multiplication and the calculation of opposites and inverses,
allowing the definition of subtraction and division operators. 210, 215, 217

flattening Process by which an argumentation framework is transformed into another one (often using a
less complex formalism) while keeping some properties of interest. 3, 94, 98, 99, 101, 114, 115, 157,
158, 163, 167, 210

214 Glossary

full decomposability See glossary: semantics decomposability. 210

fully decomposable See glossary: semantics decomposability. 18–20, 47, 48, 142, 159–161, 210

function problem Type of computational problem that has for output a more complex output than decision
problems. See Definition 137. 28, 168, 183, 210

graph See glossary: non-directed graph, directed graph, weighted graph. 210

hard We consider that a computational problem is hard for a certain complexity class if an efficient algo-
rithm solving it could be used to efficiently solve, by mean of reductions, all the problems in that given
class. See Section 16.4.4.2. 121, 122, 183, 210

heuristic Any approach to problem solving or self-discovery that employs a practical method that is not
guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching an immediate,
short-term goal or approximation. 3, 28, 188, 191, 210

Higher-Order Attack Argumentation Framework A argumentation framework that allow attacks to have
as target an attack. See Parts IV and V. ii, 82, 83, 100, 210

incidence See Definition 114 on page 171. 210

independant partial RAF See Definition 95. 136, 210

induced AF See Definition 32. 34, 35, 49, 145, 210

inhibited Basically, the “inhibition” is the notion of defeat but for attacks. Given a structure U, an attack α

is said to be inhibited by U if there exists β ∈U such that β has its source in U and its target is α . See
Definition 61. 92, 121, 210, 217

input argument See Definition 15. 16–18, 80, 157, 210

inward attack Attack going into a cluster. See Definition 30. 32, 34, 42, 51, 54, 68, 143, 210

labelling Generally speaking, a labelling is an acceptance value mapping of a set of elements. See Defini-
tion 6 for AF, Definition 72 for RAF. 3, 11, 29, 101, 104, 165, 167, 210

labelling-based See glossary: labelling-based semantics. 8, 12, 28, 210

labelling-based semantics A semantics that produces labellings. 12, 23, 29, 167, 210, 214

laplacian matrix See Definition 136. 175, 176, 188, 190, 210

legally labelled See Definition 7 for AF and Definition 74 for RAF. 11, 104, 210, 216

linear application See glossary: linear transformation. 210

linear combination expression constructed from a set of terms by multiplying each term by a constant and
adding the results. 210, 215

Glossary 215

linear transformation A linear application (also called linear transformation) is an application between
two vector spaces over a field which respects vector addition and scalar multiplication, and thus more
generally preserves linear combinations. See glossary: field, linear combination, vector space. 175,
177, 210, 214

log-space function A polynomial time function that can be executed using at most a memory space loga-
rithmic w.r.t. to the size of the input. Section 16.4.3.1. 121, 122, 210

matrix See Definition 132. 52, 53, 170, 175, 177, 188–192, 210

merge configuration See Definition 36. 39–44, 210

multi-threaded See glossary: multi-threading. 55, 57, 210

multi-threading a form of parallelization or division of work to enable simultaneous processing. Instead of
giving a large workload to a single CPU core, threaded programs divide the work into several software
tasks (threads). These tasks are processed in parallel by different CPU cores to save time. 210, 215

non-directed graph See Definition 112. 210, 214

order of magnitude See Definition 138. 184, 210

outward attack Attack coming out of a cluster. See Definition 30. 32, 143, 210

partial RAF See Definition 92. 134, 210

partial RAF with input See Definition 96. 136, 210

partition See Definition 111. An AF partition is a partition of its arguments. A RAF partition is a partition
of its elements (arguments and attacks). 18–20, 32, 47, 53, 54, 56, 64, 135, 139, 140, 210

partition selector An application that produces some set of partitions from a given argumentation frame-
work (whether AF or RAF). See Definition 23 for AF and Definition 100 for RAF. 20, 21, 139, 140,
159, 161, 210

path See Definition 121. 210

path-equivalence relation See Definition 128 for AF and Definition 86 for RAF. 20, 210, 216

polynomial reduction A problem reduction that is polynomial in time. See glossary: problem reduction.
120, 183, 210

problem reduction Basically, a procedure that transforms a given computational problem into another one.
See Section 16.4.4.1 for details. 210, 215

RAF Recursive Argumentation Framework. See Definition 48. 83, 210

RAF path See Definition 82. 210

RAF-compliant See Definition 101. 139, 140, 155, 160, 161, 210

216 Glossary

real time As opposed to CPU time (See glossary: CPU time), Real Time is the actual, real world, time that
a process takes to run. 51, 210

reinstatement labelling A labelling is in which all elements are legally labelled. 102, 111, 167, 210

reunified labelling profile See Definition 37. 31, 42–44, 46, 210

SAT The decision problem consisting in deciding if a given propositional formula is satisfiable or not. 51,
70–73, 80, 179–181, 183, 210

SCC Given an AF (resp. a RAF), an SCC is a set of arguments (resp. elements) that are equivalent w.r.t.
the PEa f (resp. w.r.t. the PEra f) relation. See glossary: path-equivalence relation. 20, 54, 73, 78–80,
123, 174, 210

SCC decomposition See Section 7.2.2. ii, 78, 210

semantics Given an argumentation framework, a semantics corresponds to a formal way to say how the
solution of the argumentation should be decided. 2–4, 8, 28, 83, 85, 101, 165, 210

semantics decomposability Properties of a semantics stating if the latter is computable in a distributed
way, that is by considering sub-parts of an argumentation framework (whatever the formalism and for
all instances). The top-down (resp. bottom-up) decomposability property ensures that the distributed
computation made is complete (resp. sound). The fully decomposability property is the intersection
of both properties. 3, 7, 16, 48, 101, 114, 123, 210, 212, 214, 217

set A set is a collection of distinct elements. 210

similarity criterion Criterion used in the spectral clustering method. See Section 17.2. 53, 210

sound An algorithm is said to be sound for a given problem if and only if it produces only valid solutions
for the wanted problem. See Section 4.3 as an example. 50, 165, 168, 210, 216

soundness See glossary: sound. 32, 47, 48, 210

space In mathematics, a space is a set with additional structures, allowing to define objects analogous to
those of usual geometry. The elements can be called points, vectors, functions, etc., depending on the
context. See for an example glossary: vector space. 188, 190, 192, 210

sparse A graph is said to be sparse when its density is low. See Definition 131. 29, 53, 210, 216

sparsity See glossary: sparse. 210

spectral clustering A clustering method. See Section 17.2. 52, 53, 55, 57, 60, 165, 188, 192, 210

standard AF See Definition 17. 17, 18, 49, 153, 156–158, 210

standard RAF See Definition 97. 210

structure Given a RAF, a structure is a pair whose first element is a set of arguments and the second a set
of attacks. 3, 91, 103, 167, 210

structure labelling Given a RAF, a structure labelling is a pair whose first element is a labelling of argu-
ments and the second a labelling of attacks. 3, 101, 117, 118, 136, 138, 151, 155, 167, 210

217

structure-based See glossary: structure-based semantics. 167, 210

structure-based semantics A semantics that produces RAF structures. 3, 91, 92, 97, 210, 217

top-down decomposability See glossary: semantics decomposability. 210

top-down decomposable See glossary: semantics decomposability. 19, 20, 47, 142, 159–161, 210

USCC Union of SCCs. See Definition 27 for AF and Definition 109 for RAF. 21, 54–58, 60, 210

USCC Chain A clustering method. See Section 5.2.2. 54, 57, 210

USCC Tree A clustering method. See Section 5.2.2. 54, 57, 210

valid attack Given a RAF and a structure U, an attack α is said to be valid if U does not inhibit α . See
glossary: inhibited. 92, 210

variance In probability theory and statistics, variance is the expectation of the squared deviation of a random
variable from its population mean or sample mean. 190, 191, 210

vector space Also called a linear space, a vector space is a set of objects called vectors, which may be
added together and multiplied (“scaled”) by numbers, called scalars. Scalars are often taken to be
real numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational
numbers, or generally any field. 175, 210, 215, 216

walk See Definition 119. 210

weighted graph See Definition 113. 210, 214

well-founded partial RAF See Definition 94. 136, 210

Appendix 3: Proofs

218

Proofs of Part III: Contributions about
AF

Proofs of Section 4.3: AFDivider soundness and completeness

In all the following proofs, by Lσ () we mean “the set of labellings under the semantics σ according to
the mathematical definition of σ” whereas by L ∗

σ () we mean “the set of labellings under the semantics
σ computed with our algorithm”. Thus, proving completeness is proving that Lσ () ⊆L ∗

σ () and proving
soundness is proving L ∗

σ ()⊆Lσ ().

We assume, in the following proofs, that the external existing solver used to compute the labellings of the
induced AFs from the different cluster structures is sound and complete for the grounded, complete, stable
and preferred semantics.

Proofs of Section 4.3.1: Relation between AFs with input and cluster structures

Proof of Proposition 9 on page 49. Let af ′ be the induced AF of κ under the context µ . Let
〈

af ,ω inp,µ,ωK
〉

be an AF with input (See Definition 16 on page 17) and std-AF be its standard argumentation framework
(See Definition 17 on page 17). Let prove that:

L
µ(κ)

σ = Fσ (af ,ω inp,µ,ωK)

By definition of the induced AF (Definition 32 on page 35), we have:

af ′ =
〈
ω
′,K′

〉
Where:

• D = {a|a ∈ ω and (s,a) ∈ ωK and s ∈ in (µ)} being the set of arguments attacked by an in -labelled
argument in µ .

• ω ′ = ω \D

• K′ = (K∩ (ω ′×ω ′))∪{(a,a)|(s,a) ∈ ωK and s ∈ und (µ)}

af ′ is so the AF obtained from af after the removal of the arguments attacked by an in -labelled argument
of the context and after the adding of self-attacks on each argument attacked by an und -labelled argument
of the context.

By definition of the standard argumentation framework (Definition 17 on page 17), we have:

219

220

std-AF =
〈
ω ∪ J ′,(K∩ (ω×ω))∪K′J

〉
Where:

• J ′ = ω inp∪{a′|a ∈ ω inp∩out (µ)}. See footnote.1

• K′J = ωK ∪{(a′,a)|a ∈ ω inp∩out (µ)}∪{(a,a)|a ∈ ω inp∩und (µ)}

Let std-AF 1 be the AF corresponding to std-AF ↓ω∪{a|a∈in (µ)}∪{a|a∈und (µ)}. Given that to obtain std-AF 1

from std-AF we just have to remove the arguments labelled out in µ and those attacking them,2 we have
then:

{ℓ ↓ω |ℓ ∈Lσ (std-AF 1)}= {ℓ ↓ω |ℓ ∈Lσ (std-AF)} (18.1)

Let ω ′ be the set of arguments such that ω ′ = ω \D (as defined above). Let std-AF 2 be the AF corre-
sponding to std-AF 1 ↓ω ′∪{a|a∈und (µ)}. Given that to obtain std-AF 2 from std-AF 1 we just have to remove
the arguments labelled in in µ and those they attack,3 we have then:

{ℓ ↓ω ′ |ℓ ∈Lσ (std-AF 2)}= {ℓ ↓ω ′ |ℓ ∈Lσ (std-AF 1)} (18.2)

Considering the AF std-AF 2, let U = {a|a ∈ ω ′ and (b,a) ∈ ωK and b ∈ ω inp ∩und (µ)} be the set of
arguments of ω ′ attacked by an argument labelled und in µ . Let u ∈U be one of these arguments.

Given that u is attacked by an und -labelled argument, u must be labelled und or out . Nevertheless
having an argument labelled und cannot have as consequence an argument labelled in or out . And so, if u
is labelled out in some labelling of std-AF 2, it is not due to the set of arguments labelled und in µ .

Knowing this, we have:

Lσ (af ′) = {ℓ ↓ω ′ |ℓ ∈Lσ (std-AF 2)} (18.3)

From Equation (18.3) and Equation (18.2), we have:

Lσ (af ′) = {ℓ ↓ω ′ |ℓ ∈Lσ (std-AF 1)} (18.4)

Let ℓD be the labelling of the set of arguments D defined as following: ℓD = {(a,out)|a ∈ D}.
From Equation (18.4) and Equation (18.1), we have:

{ℓ∪ℓD|ℓ ∈Lσ (af ′)}= {ℓ ↓ω |ℓ ∈Lσ (std-AF)} (18.5)

By definition of an induced labelling set (Definition 33 on page 35), we have:

L
µ(κ)

σ = {ℓ∪ℓD|ℓ ∈Lσ (af ′)} (18.6)

By definition of a canonical local function (Definition 18 on page 18), we have:

Fσ (af ,ω inp,µ,ωK) = {ℓ ↓ω |ℓ ∈Lσ (std-AF)} (18.7)

1For each a ∈ ω inp ∩out (µ) an argument a′ is created.
2All these arguments are not in ω .
3All these arguments are not in ω ′.

221

From Equations (18.5) to (18.7) on the previous page, we prove thus that:

L
µ(κ)

σ = Fσ (af ,ω inp,µ,ωK)

■

Proofs of Section 4.3.2: Soundness and completeness
Proof of Proposition 10 on page 50. Let af = ⟨A,K⟩ be an AF, Ω = {ω1, ...,ωn} be a partition of A and
{κ1, ...,κn} be the set of cluster structures corresponding to Ω, with each κi being defined as:

κi =
〈

af ↓ωi , I = ω
K
i ,O = K∩ (ωi× (A\ωi)),B = {a|(a,b) ∈ O or (b,a) ∈ I}

〉
Let σ be a top-down decomposable semantics.
Let L κi

D be the set of distinct labellings of κi according to the semantics σ .
Let L ∗

σ (af) be the set of labellings of af according to σ obtained by Algorithm 2.
Let L

∗µ(κi)
σ be the set of labellings of κi under the context µ .

By definition we have (Definition 22 on page 19):

Lσ (af)⊆ {ℓω1 ∪ ...∪ℓωn |ℓωi ∈Fσ (af ↓ωi ,ω
inp
i ,(

⋃
j∈{1,...,n} s.t. j ̸=i

ℓω j) ↓
ω

inp
i
,ωK

i)} (18.8)

Given that the labellings of all cluster structures are computed for every possible context, we have, by
definition of the context and of the input arguments:

∀i,∀ℓinp
= (

⋃
j∈{1,...,n} s.t. j ̸=i

ℓω j) ↓
ω

inp
i
, ∃µ

κi s.t. µ
κi = ℓinp (18.9)

Given that the external solver that computes the labellings of af ↓ωi according to the semantics σ is sound

and complete, and considering std-AF being the standard AF w.r.t to the AF with input
〈

af ↓ωi ,ω
inp
i ,µκi ,ωK

i

〉
,

we have:

∀i,∀µ
κi ,∀ℓstd-AF ∈Lσ (std-AF),∃ℓ ∈L

∗µ(κi)
σ s.t. ℓ= ℓstd-AF ↓ωi (18.10)

So we have:

∀i,∀µ
κi ,∀ℓstd-AF ∈Lσ (std-AF),ℓstd-AF ↓ωi∈L κi

D (18.11)

And so (following Definition 18 on page 18):

∀ωi,Fσ (af ↓ωi ,ω
inp
i ,(

⋃
j∈{1,...,n} s.t. j ̸=i

ℓω j) ↓
ω

inp
i
,ωK

i)⊆L κi
D (18.12)

As a consequence and because of Equation (18.8) we have (∏ denoting the cartesian product):

Lσ (af)⊆∏
κi

L κi
D (18.13)

Let χ = {ℓ|ℓ ∈ ∏κi L
κi
D and ∃a ∈ A s.t. a is illegally labelled in ℓ} be the set of all possible incorrect

labellings (i.e. the set of labellings in which there exists an argument that is not legally labelled).

222

We have, by definition of σ :

Lσ (af)⊆ (∏
κi

L κi
D)\χ (18.14)

Given that, for all computed labellings, we keep only the merged configuration, that is the most flexible
possible configuration, our CSP modelisation does not add extra constraints. The proposed reunification
removes, thus, only the labellings belonging to χ .

As a consequence, we have:

Lσ (af)⊆L ∗
σ (af) (18.15)

We prove so that for any top-down decomposable semantics σ our algorithm is complete, and so for the
complete, stable and preferred semantics following Proposition 8 on page 21. ■

Proof of Proposition 11 on page 50.

• Assertion 1: Let af = ⟨A,K⟩ be an AF and Ω = {ω1, ...,ωn} be a partition of A corresponding to
the clustering of af . Let σ be a fully decomposable and complete-based semantics and let ℓ∗ be a
labelling of af according to σ obtained by Algorithm 2.

Let suppose that ℓ∗ /∈Lσ (af). We will prove that it is impossible with a reductio ad absurdum.

As σ is a complete-based and fully decomposable semantics we can say that (Definition 19 on
page 19):

ℓ∗ /∈ {ℓω1 ∪ ...∪ℓωn |ℓωi ∈Fσ (af ↓ωi ,ω
inp
i ,(

⋃
j∈{1,...,n} s.t. j ̸=i

ℓω j) ↓
ω

inp
i
,ωK

i)} (18.16)

And so:
∃ωi ∈Ω s.t. ℓ∗ ↓ωi /∈Fσ (af ↓ωi ,ω

inp
i ,(

⋃
j∈{1,...,n} s.t. j ̸=i

ℓω j) ↓
ω

inp
i
,ωK

i) (18.17)

In the following we denote by ω the particular ωi for which Equation (18.17) holds in order to simplify
the notation.

Let κ =
〈

af ↓ω , I = ωK ,O = K∩ (ω× (A\ω)),B = {a|(a,b) ∈ O or (b,a) ∈ I}
〉

be the cluster struc-
ture corresponding to ω .

Let µ be a context of κ such that µ = (
⋃

j∈{1,...,n} s.t. ω j ̸=ω ℓ
ω j) ↓ω inp .

Let L
∗µ(κ)

σ be the set of labellings of κ under the context µ produced by Algorithm 2.

Let ℓ′∗ ∈L
∗µ(κ)

σ be the labelling coinciding with ℓ∗ ↓ω (i.e. ℓ′∗ = ℓ∗ ↓ω).

We have so:
ℓ′∗ ∈L

∗µ(κ)
σ (18.18)

Whereas:
ℓ′∗ /∈Fσ (af ↓ω ,ω

inp,µ,ωK) (18.19)

And so:
L
∗µ(κ)

σ ̸= Fσ (af ↓ω ,ω
inp,µ,ωK) (18.20)

223

Nevertheless, according to Proposition 9 on page 49 we must have:

L
∗µ(κ)

σ = Fσ (af ↓ω ,ω
inp,µ,ωK) (18.21)

Thus, there is a contradiction between Equation (18.20) on the previous page and Equation (18.21).

From this contradiction we can conclude that:

L ∗
σ (af)⊆Lσ (af) (18.22)

We prove so that for any fully decomposable and complete-based semantics σ our algorithm is sound,
and so for the complete and stable semantics, following Proposition 8 on page 21.

• Assertion 2: Let af = ⟨A,K⟩ be an AF. Given that Algorithm 2 is complete for the preferred semantics
(see Proposition 10 on page 50), L ∗

σ , the set of all labellings reunified from the different clusters
obtained in Algorithm 2 line 7, contains all the preferred labellings of af .

In Algorithm 2 line 8, we keep from L ∗
σ only the maximal (w.r.t ⊆ of in -labelled arguments) la-

bellings, that are by definition the preferred labellings. As a consequence, Lpr contains only and all
the preferred labellings of af .

Algorithm 2 is, thus, sound and complete for the preferred semantics.

■

Proof of Proposition 12 on page 50. (Completeness of Algorithm 1 + Algorithm 2). Let AF = ⟨A,K⟩ be
an AF, ℓgr be its grounded labelling, AF hard = AF ↓{a|a∈A,ℓgr(a)=und } be the hard part of AF and {af 1 =

⟨A1,K1⟩ , ...,af n = ⟨An,Kn⟩} be the set of AFs obtained from AF hard components.
Let σ be the complete, stable or preferred semantics.
Let L ∗

σ (AF) be the set of labellings obtained from Algorithm 1.
Let L ∗

σ (af i) be the set of labellings obtained from Algorithm 2 for the component af i.
Let Lσ (AF) be the set of labellings of AF .
Let Ω = {ωgr,A1, ...,An} be a partition of A with ωgr = {a|a ∈ in (ℓgr) or a ∈ out (ℓgr)}.
Let ℓ ∈Lσ (AF) be a labelling of AF according to σ .
Given that (following Definition 18 on page 18):

Fσ (AF ↓ωgr ,ω
inp
gr ,(

⋃
i∈{1,...,n}

ℓAi) ↓
ω

inp
gr
,ωK

gr) = {ℓgr} (18.23)

We have by definition of top-down decomposable semantics (following Definition 22 on page 19):

Lσ (AF)⊆ {ℓgr ∪
⋃
Ai

ℓAi} with ℓAi ∈Fσ (AF ↓Ai ,A
inp
i ,(

⋃
j∈{1,...,n} s.t. j ̸=i

ℓA j) ↓Ainp
i
,AK

i) (18.24)

Given that Algorithm 2 is complete for top-down decomposable semantics (i.e. ∀p ∈ Ω,Lσ (AF ↓p) ⊆
L ∗

σ (AF ↓p)),

∀Ai,ℓ
Ai ∈L ∗

σ (af i) (18.25)

Furthermore:

224

∀ℓ∗ ∈L ∗
σ (AF),ℓ∗ = ℓgr ∪

⋃
ℓ∗i , with ℓ∗i ∈L ∗

σ (af i) (18.26)

We have so:
{ℓgr ∪

⋃
Ai

ℓAi}= L ∗
σ (AF) (18.27)

Finally, we have:
Lσ (AF)⊆L ∗

σ (AF) (18.28)

We prove so that our algorithm is complete for the complete, stable and preferred semantics. ■

Proof of Proposition 13 on page 50.

• Assertion 1: Algorithm 1 is sound for the stable and complete semantics.

Let AF = ⟨A,K⟩ be an AF, ℓgr be its grounded labelling, AF hard = AF ↓{a|a∈A,ℓgr(a)=und } be the
hard part of AF and {af 1 = ⟨A1,K1⟩ , ...,af n = ⟨An,Kn⟩} be the set of AFs obtained from AF hard
components.

Let σ be the complete or stable semantics.

Let L ∗
σ (AF) be the set of labellings of AF obtained from Algorithm 1.

Let Lσ (AF) be the set of labellings of AF .

Let ℓ∗ ∈L ∗
σ (AF) be a labelling of AF computed by Algorithm 1.

Let L ∗
σ (af i) be the set of labellings of af i obtained from Algorithm 2.

Following Algorithm 1, we have:

ℓ∗ = ℓgr ∪
⋃
ℓ∗i , with ℓ∗i ∈L ∗

σ (af i) (18.29)

Let Ω = {ωgr,A1, ...,An} be a partition of A with ωgr = {a|a ∈ in (ℓgr) or a ∈ out (ℓgr)}.
We have (following Definition 18 on page 18):

Fσ (AF ↓ωgr ,ω
inp
gr ,(

⋃
i∈{1,...,n}

ℓAi) ↓
ω

inp
gr
,ωK

gr) = {ℓgr} (18.30)

Because σ is a fully decomposable semantics we have so (Definition 19 on page 19):

Lσ (AF) = {ℓgr ∪
⋃
Ai

ℓAi} with ℓAi ∈Fσ (af ↓Ai ,A
inp
i ,(

⋃
j∈{1,...,n} s.t. j ̸=i

ℓA j) ↓Ainp
i
,AK

i) (18.31)

Given that Equation (18.31) holds and that Algorithm 2 is sound for fully decomposable semantics
(i.e. ∀p ∈Ω, L ∗

σ (AF ↓p) ⊆Lσ (AF ↓p)), we have:

ℓ∗ ∈Lσ (AF) (18.32)

And thus:
L ∗

σ (AF)⊆Lσ (AF) (18.33)

We prove so that for the complete and stable semantics our algorithm is sound.

225

• Assertion 2: Algorithm 1 is sound for the preferred semantics.

Let AF = ⟨A,K⟩ be an AF, ℓgr be its grounded labelling, AF hard = AF ↓{a|a∈A,ℓgr(a)=und } be the
hard part of AF and {af 1 = ⟨A1,K1⟩ , ...,af n = ⟨An,Kn⟩} be the set of AFs obtained from AF hard
components.

Let L ∗
pr(AF) be the set of labellings of AF obtained from Algorithm 1.

Let Lpr(AF) be the set of labellings of AF .

Let L ∗
pr(af i) be the set of labellings of af i obtained from Algorithm 2.

Following Algorithm 1, we have:

L ∗
pr(AF) = {ℓgr ∪ℓ

A1 ∪ ...∪ℓAn |ℓAi ∈L ∗
pr(af i)} (18.34)

Let A0 = {a|a ∈ in (ℓgr) or a ∈ out (ℓgr)} be the fixed part of AF . The set of argument sets Ω =
{A0,A1, ...,An} is then a partition of A.

By definition of the grounded labelling, we have:

∃a ∈ A s.t. ℓgr(a) = und =⇒ (∀a′ ∈ A s.t. (a′,a) ∈ K,ℓgr(a) ̸= in) (18.35)

Given that:
und (ℓgr)∩A0 =∅ (18.36)

And that by construction of A0:

∀i ∈ {1, ...,n},∀a ∈ Ai,ℓgr(a) = und (18.37)

The consequence of Equation (18.35) is:

∀i ∈ {1, ...,n},∀(a′,a) ∈ K s.t. a′ ∈ A0 and a ∈ Ai,ℓgr(a
′) = out (18.38)

Let AF ′ = ⟨A,K \{(a′,a)|(a′ ∈ A0 and a /∈ A0) or (a′ /∈ A0 and a ∈ A0)}⟩ be the AF constructed by
removing from AF the attacks between its fixed part and its non fixed part. As in AF all arguments
in the fixed part attacking arguments outside the fixed part is labelled out (Equation (18.38)) their
attacks have no effect. The consequence is the following:

Lpr(AF ′) = Lpr(AF) (18.39)

Notice that AF ′ has n+1 connected components corresponding to the partition Ω. Given that there is
no connection (attack) between those connected components, each Ai ∈ Ω is an USCCa f (see Defini-
tion 27 on page 21). As a consequence, following the definition of SUSCC (Definition 27 on page 21),
we have:

Ω ∈SUSCC(AF ′) (18.40)

As the preferred semantics is fully decomposable w.r.t. SUSCC (Definition 27 on page 21), we have
(following Definition 24 on page 20):

Lσ (AF ′) = {ℓA0 ∪ ...∪ℓAn |ℓAi ∈Fpr(AF ↓Ai ,A
inp
i ,(

⋃
j∈{0,...,n} s.t. j ̸=i

ℓA j) ↓Ainp
i
,AK

i)} (18.41)

226

Notice that:
Fpr(AF ′ ↓A0 ,A

inp
0 ,(

⋃
i∈{1,...,n}

ℓAi) ↓Ainp
0
,AK

0) = {ℓgr} (18.42)

Notice also that, given Algorithm 2 is sound and complete for the preferred semantics (Propositions 10
and 11 on page 50), we have:

∀i ∈ {1, ...,n},Fpr(AF ′ ↓Ai ,A
inp
i ,(

⋃
j∈{1,...,n} s.t. j ̸=i

ℓA j) ↓Ainp
i
,AK

i) = L ∗
pr(af i) (18.43)

From the Equations (18.41) to (18.43) on pages 225–226, we have:

Lpr(AF ′) = {ℓgr ∪ℓ
A1 ∪ ...∪ℓAn |ℓAi ∈L ∗

pr(af i)} (18.44)

From Equations (18.39) and (18.44) on the previous page and on this page, we have:

Lpr(AF) = {ℓgr ∪ℓ
A1 ∪ ...∪ℓAn |ℓAi ∈L ∗

pr(af i)} (18.45)

Finally, from Equations (18.34) and (18.45) on the previous page and on this page we have:

L ∗
pr(AF) = Lpr(AF) (18.46)

We prove so that Algorithm 1, when using Algorithm 2 to compute the component labellings, is sound
and complete for the preferred semantics.

■

Proofs of Chapter 6: Compact representation
Proof of Proposition 14 on page 66. Following Algorithm 1, let AF be decomposed into n components
and let Compσ (AF) = {Lσ (af 0), ...,Lσ (af n)} be the compact enumeration representation corresponding
to σ(AF).

Assertion 1: Credσ (AF ,a)≡Comp-Credσ (AF ,a).

• Case 1: If Credσ (AF ,a) is true, then Comp-Credσ (AF ,a) is true.

If Credσ (AF ,a) is true, then there exists a labelling ℓ ∈ σ(AF) such that a ∈ in (ℓ).
Given that σ(AF) ̸= ∅ and that Algorithm 1 is complete for σ then ∀Lσ (af i) ∈ Compσ (AF), we
have: Lσ (af i) ̸=∅.

Moreover, as Algorithm 1 is complete for σ , there exists a combination of component labellings
ℓ0, ...,ℓn, with ℓi ∈Lσ (af i) and Lσ (af i) ∈ Compσ (AF), such that: ℓ =

⋃n
i=0 ℓi. As a consequence,

there exists i ∈ {0, ...,n} such that a ∈ in (ℓi).

We have so: Comp-Credσ (AF ,a) being true.

• Case 2: If Comp-Credσ (AF ,a) is true, then Credσ (AF ,a) is true.

If Comp-Credσ (AF ,a) is true, then ∀Lσ (af i) ∈ Compσ (AF), Lσ (af i) ̸= ∅, and there exists a set
Lσ (af) ∈ Compσ (AF) such that ∃ℓ j ∈ Lσ (af) s.t. ℓ j(a) = in . As no component labelling set is

227

empty, following Algorithm 1, there is thus a combination of component labellings ℓ0, ...,ℓn, with
ℓi ∈Lσ (af i) and Lσ (af i) ∈ Compσ (AF), including that particular ℓ j. Let ℓ =

⋃n
i=0 ℓi. Given that

Algorithm 1 is sound for σ , then we have: ℓ ∈ σ(AF). As a ∈ in (ℓ), then we have: Credσ (AF ,a)
being true.

We prove so that: Credσ (AF ,a)≡Comp-Credσ (AF ,a).

Assertion 2: Skepσ (AF ,a)≡Comp-Skepσ (AF ,a).

• Case 1: If Skepσ (AF ,a) is true, then Comp-Skepσ (AF ,a) is true.

If Skepσ (AF ,a) is true, then σ(AF) ̸=∅ and ∀ℓ ∈ σ(AF), we have: a ∈ in (ℓ).
Given that σ(AF) ̸= ∅ and that Algorithm 1 is complete for σ then ∀Lσ (af i) ∈ Compσ (AF), we
have: Lσ (af i) ̸=∅.

Let Lσ (af j) be the labelling set of the particular component to which a belongs and let, for i ∈
({0, ...,n}\{ j}), Lσ (af i)∈ Compσ (AF)} be a set of labellings of the compact enumeration represen-
tation different from Lσ (af j). As Algorithm 1 is sound for σ , then ∀ℓ j ∈Lσ (af j), ∀ℓ0 ∈Lσ (af 0),
..., ∀Lσ (ℓn) ∈ af n, (ℓ j

⋃n
i=0 ℓi) ∈ σ(AF). As ∀ℓ ∈ σ(AF), a ∈ in (ℓ), then a ∈ in (ℓ j

⋃n
i=0 ℓi). As a

consequence: a ∈ in (ℓ j).

We have so: Comp-Skepσ (AF ,a) being true.

• Case 2: If Comp-Skepσ (AF ,a) is true, then Skepσ (AF ,a) is true.

If Comp-Skepσ (AF ,a) is true, then ∀Lσ (af i) ∈ Compσ (AF), Lσ (af i) ̸= ∅, and there exists a set
Lσ (af j) ∈ Compσ (AF) such that ∀ℓ j ∈Lσ (af j),ℓ j(a) = in .

As no component labelling set is empty and as Algorithm 1 is sound for σ , we have, with Lσ (af i) ∈
Compσ (AF) for i ∈ ({0, ...,n} \ { j}), the following assertions: ∀ℓ j ∈ Lσ (af j), ∀ℓ0 ∈ Lσ (af 0), ...,
∀Lσ (ℓn) ∈ af n, (ℓ j

⋃n
i=0 ℓi) ∈ σ(AF) and a ∈ in (ℓ j

⋃n
i=0 ℓi).

Given that Algorithm 1 is complete for σ and that ∀ℓ= ℓ j
⋃n

i=0 ℓi, we have a ∈ in (ℓ), then we have:
Skepσ (AF ,a) being true.

We prove so that: Skepσ (AF ,a)≡Comp-Skepσ (AF ,a).

Assertion 3: Verσ (AF ,ℓ)≡Comp-Verσ (AF ,ℓ)

• Case 1: If Verσ (AF ,ℓ) is true, then Comp-Verσ (AF ,a) is true.

If Verσ (AF ,ℓ) is true, then ℓ ∈ σ(AF). Given that Algorithm 1 is complete for σ , then there exists a
combination of component labellings ℓ0, ...,ℓn, with ℓi ∈Lσ (af i) and Lσ (af i) ∈ Compσ (AF), such
that: ℓ=

⋃n
i=0 ℓi. As a consequence we have: Comp-Verσ (AF ,a) is true.

• Case 2: If Comp-Verσ (AF ,a) is true, then Verσ (AF ,ℓ) is true.

If Comp-Verσ (AF ,ℓ) is true, there exists a combination of component labellings ℓ0, ...,ℓn, with ℓi ∈
Lσ (af i) and Lσ (af i) ∈ Compσ (AF), such that: ℓ =

⋃n
i=0 ℓi. Given that Algorithm 1 is sound for σ

then ℓ ∈ σ(AF). As a consequence we have: Verσ (AF ,a) is true.

We prove so that: Verσ (AF ,ℓ)≡Comp-Verσ (AF ,ℓ).

Assertion 4: Existsσ (AF)≡Comp-Existsσ (AF)

228

• Case 1: If Existsσ (AF) is true, then Comp-Existsσ (AF) is true.

If Existsσ (AF) is true, then σ(AF) ̸= ∅. Let ℓ ∈ σ(AF) be a labelling. As Algorithm 1 is com-
plete for σ , there exists thus a combination of component labellings ℓ0, ...,ℓn, with ℓi ∈Lσ (af i) and
Lσ (af i) ∈ Compσ (AF) such that ℓ=

⋃n
i=0 ℓi. As a consequence, we have: ∀Lσ (af i) ∈ Compσ (AF),

Lσ (af i) ̸=∅.

We prove so that if Existsσ (AF) is true, then Comp-Existsσ (AF) is true.

• Case 2: If Comp-Existsσ (AF) is true, then Existsσ (AF) is true.

If Comp-Existsσ (AF) is true, then ∀Lσ (af i) ∈ Compσ (AF), Lσ (af i) ̸= ∅. Let ℓ =
⋃n

i=0 ℓi be a
labelling with ℓi∈{0,...,n} ∈Lσ (af i). As Algorithm 1 is sound for σ , then ℓ ∈ σ(AF).

We prove so that if Comp-Existsσ (AF) is true, then Existsσ (AF) is true.

We prove so that: Existsσ (AF)≡Comp-Existsσ (AF).

Assertion 5: Exists¬∅σ (AF)≡Comp-Exists¬∅σ (AF)

• Case 1: If Exists¬∅σ (AF) is true, then Comp-Exists¬∅σ (AF) is true.

If Exists¬∅σ (AF) then ∃ℓ ∈ σ(AF) s.t. in (ℓ) ̸= ∅. As Algorithm 1 is complete for σ , there exists
thus a combination of component labellings ℓ0, ...,ℓn, with ℓi ∈Lσ (af i) and Lσ (af i) ∈ Compσ (AF)
such that ℓ =

⋃n
i=0 ℓi. As a consequence, we have: ∀Lσ (af i) ∈ Compσ (AF), Lσ (af i) ̸= ∅ and

∃i ∈ {0, ...,n} s.t. in (ℓi) ̸=∅.

We prove so that if Exists¬∅σ (AF) is true, then Comp-Exists¬∅σ (AF) is true.

• Case 2: If Comp-Exists¬∅σ (AF) is true, then Exists¬∅σ (AF) is true.

If Comp-Exists¬∅σ (AF) is true, then ∀Lσ (af i) ∈ Compσ (AF), Lσ (af i) ̸= ∅ and ∃Lσ (af i) s.t. ℓi ∈
Lσ (af i) and in (ℓi) ̸= ∅. As Algorithm 1 is sound for σ then there exists a labelling ℓ =

⋃n
i=0 ℓi,

with ℓi ∈Lσ (af i), such that ℓ ∈ σ(AF) and in (ℓ) ̸=∅.

We prove so that if Comp-Exists¬∅σ (AF) is true, then Exists¬∅σ (AF) is true.

We prove so that: Exists¬∅σ (AF)≡Comp-Exists¬∅σ (AF).

Assertion 6: Uniqueσ (AF)≡Comp-Uniqueσ (AF)

• Case 1: If Uniqueσ (AF) is true, then Comp-Uniqueσ (AF) is true.

If Uniqueσ (AF) is true, then σ(AF) = {ℓ}.
As Algorithm 1 is complete for σ , there exists thus a combination of component labellings ℓ0, ...,ℓn,
with ℓi ∈Lσ (af i) and Lσ (af i) ∈ Compσ (AF) such that ℓ=

⋃n
i=0 ℓi. As a consequence, ∀Lσ (af i) ∈

Compσ (AF), Lσ (af i) ̸=∅.

As Algorithm 1 is sound for σ and as |σ(AF)|= 1, then ∀Lσ (af i) ∈ Compσ (AF), |Lσ (af i)|= 1.

We prove so that if Uniqueσ (AF) is true, then Comp-Uniqueσ (AF) is true.

• Case 2: If Comp-Uniqueσ (AF) is true, then Uniqueσ (AF) is true.

If Comp-Uniqueσ (AF) is true, then ∀Lσ (af i) ∈ Compσ (AF), |Lσ (af i)|= 1. For i ∈ {0, ...,n}, let ℓi
be the unique labelling of the component af i.

229

Let ℓ=
⋃n

i=0 ℓi be a labelling. Given that Algorithm 1 is sound for σ , then ℓ ∈ σ(AF).

Given that Algorithm 1 is complete for σ , then |σ(AF)|= 1.

We prove so that if Comp-Uniqueσ (AF) is true, then Uniqueσ (AF) is true.

We prove so that: Uniqueσ (AF)≡Comp-Uniqueσ (AF) ■

Proofs of Part V: Contributions about
RAF

Proofs of Chapter 10: New RAF semantics

Proof of Theorem 6 on page 103.

1. (Stable structures are semi-stable ones). Let RAF = ⟨A,K,s, t⟩ be a RAF and U= ⟨S,Q⟩ be a stable
structure. According to the definition of a stable structure (Definition 63 on page 92), we have:

S = A\RAF-De f (U) and Q = K \RAF-Inh(U)

For any x ∈ (A∪K), x is either in U or is defeated or inhibited by U. As a consequence, (S∪Q∪
RAF-De f (U)∪RAF-Inh(U)) is maximal w.r.t. to inclusion.

We prove so that every stable structure is a semi-stable structure.

2. (Semi-stable structures are preferred ones). Let RAF = ⟨A,K,s, t⟩ be a RAF and U= ⟨S,Q⟩ be a
semi-stable structure. Let suppose that U is not a preferred structure. U being by definition a complete
structure (Definition 71 on page 103), there exists thus a preferred structure U′ = ⟨S′,Q′⟩ such that
U⊏ U′. We have thus by definition of ⊑-inclusion:

S⊆ S′ and Q⊆ Q′ (18.47)

From the strict inclusion, we also have:

(S∪Q)⊂ (S′∪Q′) (18.48)

It follows, from Equations (18.47) and (18.48) and from Definition 61 on page 92 that:

(RAF-De f (U)∪RAF-Inh(U))⊂ (RAF-De f (U′)∪RAF-Inh(U′)) (18.49)

Combining Equations (18.48) and (18.49), we have:

(S∪Q∪RAF-De f (U)∪RAF-Inh(U))⊂ (S′∪Q′∪RAF-De f (U′)∪RAF-Inh(U′)) (18.50)

Given that U′ is also a complete structure, the consequence of Equation (18.50) is that U is not a
semi-stable structure, as (S∪Q∪RAF-De f (U)∪RAF-Inh(U)) is not maximal. There is thus a con-
tradiction.

230

231

We prove so that every semi-stable structure is also a preferred structure.

■

Proof of Theorem 7 on page 103. Let suppose that there exists a stable structure U= ⟨S,Q⟩. Following
the definition of stable structures (Definition 63 on page 92), we have: S = A \RAF-De f (U) and Q = K \
RAF-Inh(U). As a consequence, we have (S∪RAF-De f (U)∪Q∪RAF-Inh(U)) including all the arguments
and attacks of RAF .

According to Theorem 6 on page 103, U is also a semi-stable structure. As any semi-stable structure
U′ = ⟨S′,Q′⟩ maximizes the set (S′ ∪RAF-De f (U′)∪Q′ ∪RAF-Inh(U′)) and as there exists U, a structure
such that (S∪RAF-De f (U)∪Q∪RAF-Inh(U)) is maximized to point that it includes all the arguments and
attacks of RAF , then for U′ to be maximal we necessarily have (S′ ∪RAF-De f (U′)∪Q′ ∪RAF-Inh(U′))
also including all the arguments and attacks of RAF . U′ is then a stable structure.

We prove thus that if there exists a stable structure, then the semi-stable structures coincide with the
stable structures. ■

Proof of Proposition 23 on page 103. Let RAF = ⟨A,K,s, t⟩ be a RAF such that ∀α ∈ K, t(α) ∈ A. RAF
can thus be considered as a simple AF. Let AF = ⟨A,K⟩ be the AF version of RAF .

Step 1: Let prove in a first place that if U = ⟨S,K⟩ is a semi-stable structure of RAF then S is a semi-
stable extension of AF .

Let U = ⟨S,K⟩ be a semi-stable structure over RAF . Notice that the set of attacks of U is K as attacks
are always valid in RAF , and so that RAF-Inh(U) =∅. Let suppose that S is not a semi-stable extension of
AF . There exists thus an extension S′ of AF such that:

(S∪RAF-De f (S))⊂ (S′∪RAF-De f (S′)) (18.51)

We have thus :
(S∪RAF-De f (S)∪K)⊂ (S′∪RAF-De f (S′)∪K) (18.52)

Let U′ = ⟨S′,K⟩ be the structure over RAF whose set of arguments is the extension S′. For the same
reason as U, the set of attacks of U′ is K and RAF-Inh(U′) =∅.

As RAF-Inh(U) =∅ and RAF-Inh(U′) =∅, we can thus say from Equation (18.52) that:

(S∪RAF-De f (S)∪K∪RAF-Inh(U))⊂ (S′∪RAF-De f (S′)∪K∪RAF-Inh(U′)) (18.53)

Given that all attacks are valid in RAF , we have: RAF-De f (S) = RAF-De f (U) and RAF-De f (S′) =
RAF-De f (U′). We have thus from Equation (18.53):

(S∪RAF-De f (U)∪K∪RAF-Inh(U))⊂ (S′∪RAF-De f (U′)∪K∪RAF-Inh(U′)) (18.54)

As stated by Equation (18.54), (S∪RAF-De f (S)∪K ∪RAF-Inh(U)) is not maximal. It follows that U
is not a semi-stable structure, which is a contradiction.

We prove so that if U= ⟨S,K⟩ is a semi-stable structure of RAF then S is a semi-stable extension of AF .

Step 2: Let now prove that if S is a semi-stable extension of AF then U= ⟨S,K⟩ is a semi-stable structure
of RAF .

Let S be a semi-stable extension of AF and let U= ⟨S,K⟩ be a structure over RAF whose set of arguments
is S. Notice that the set of attacks of U is K as attacks are always valid in RAF .

232

Let suppose that U is not a semi-stable structure. There exists thus a semi-stable structure U′ = ⟨S′,K⟩
such that:

(S∪RAF-De f (U)∪K∪RAF-Inh(U))⊂ (S′∪RAF-De f (U′)∪K∪RAF-Inh(U′)) (18.55)

Given that all attacks are valid in RAF , we have: RAF-Inh(U) = ∅ and RAF-Inh(U′) = ∅. We have thus
from Equation (18.55):

(S∪RAF-De f (U))⊂ (S′∪RAF-De f (U′)) (18.56)

Furthermore, as all attacks are valid in RAF , we have: RAF-De f (S) = RAF-De f (U) and RAF-De f (S′) =
RAF-De f (U′). We have thus from Equation (18.56):

(S∪RAF-De f (S))⊂ (S′∪RAF-De f (S′)) (18.57)

As stated by Equation (18.57), (S∪RAF-De f (S)) is not maximal. It follows that S is not a semi-stable
extension, which is a contradiction.

We prove so that if S is a semi-stable extension of AF then U= ⟨S,K⟩ is a semi-stable structure of RAF .

With steps 1 and 2, we have thus proven that:

U= ⟨S,K⟩ is a semi-stable structure of RAF iff S is a semi-stable extension of AF

■

Proofs of Chapter 11: Semantics and Labellings

Proofs of Section 11.1: Complete semantics
Proof of Theorem 8 on page 107. Let U = Lab2Struct(L). According to Definition 63 on page 92, U
being a complete structure (with U= ⟨S,Q⟩) means that (S∪Q) = Acc(U). In a first step, let us prove that
(S∪Q)⊆ Acc(U) and then that (S∪Q)⊇ Acc(U).

Step 1: (S∪Q)⊆ Acc(U)

Let x ∈ (S∪Q). By definition of Lab2Struct(L), we have L(x) = in . Given that L is a reinstatement
RAF labelling, we have:

∀α ∈ K s.t. t(α) = x, ℓK(α) = out or ℓA(s(α)) = out (18.58)

So two cases must be considered: ℓK(α) = out or ℓA(s(α)) = out .

1. ℓK(α) = out .

Given L is a reinstatement RAF labelling there exists an attack β such that t(β) = α , ℓK(β) = in

and ℓA(s(β)) = in . As a consequence, β ∈ Q and s(β) ∈ S. According to Definition 61 on page 92,
we have so: α ∈ RAF-Inh(U).

2. ℓA(s(α)) = out .

Given L is a reinstatement RAF labelling there exists an attack γ such that t(γ) = s(α), ℓK(γ) = in

and ℓA(s(γ)) = in . As a consequence, γ ∈ Q and s(γ) ∈ S. According to Definition 61 on page 92,
we have so: s(α) ∈ RAF-De f (U).

233

As a consequence and following Definition 62 on page 92, we have: x ∈ Acc(U).
We prove so that:

(S∪Q)⊆ Acc(U) (18.59)

Step 2: (S∪Q)⊇ Acc(U)

Let x ∈ Acc(U), x being an argument or an attack. According to Definition 62 on page 92, for all α ∈ K
such that t(α) = x, we have: s(α) ∈ RAF-De f (U) or α ∈ RAF-Inh(U).

Let y be s(α) or α . Given that y ∈ (RAF-De f (U)∪RAF-Inh(U)), there exists an attack β such that
s(β) ∈ S, β ∈ Q and t(β) = y. By definition of Lab2Struct(L), we have ℓA(s(β)) = in and ℓK(β) = in .
Given L is a reinstatement RAF labelling, we have L(y) = out .

As a consequence, we have:

∀α ∈ K s.t. t(α) = x, ℓA(s(α)) = out or ℓK(α) = out (18.60)

Then, given that L is a reinstatement RAF labelling, we have : L(x)= in . By definition of Lab2Struct(L)
we have so x ∈ (S∪Q).

We prove so that :
(S∪Q)⊇ Acc(U) (18.61)

Finally, because of Equations (18.59) and (18.61) we have:

(S∪Q) = Acc(U) (18.62)

We prove thus that Lab2Struct(L) is a complete structure. ■

Proof of Theorem 9 on page 108. Let L = Struct2Lab(U). In order to prove that L is a reinstatement
RAF labelling (with L=

〈
ℓA,ℓK

〉
) we have to prove that, for all x ∈ (A∪K):

1. (L(x) = out) =⇒ (∃α ∈ K s.t. t(α) = x, ℓK(α) = in and ℓA(s(α)) = in)

2. (L(x) = out)⇐= (∃α ∈ K s.t. t(α) = x, ℓK(α) = in and ℓA(s(α)) = in)

3. (L(x) = in) =⇒ (∀α ∈ K s.t. t(α) = x, ℓK(α) = out or ℓA(s(α)) = out)

4. (L(x) = in)⇐= (∀α ∈ K s.t. t(α) = x, ℓK(α) = out or ℓA(s(α)) = out)

Step 1: (L(x) = out) =⇒ (∃α ∈ K s.t. t(α) = x, ℓK(α) = in and ℓA(s(α)) = in)

Let x ∈ (A∪K) be an argument or an attack such that L(x) = out . According to the definition of
Struct2Lab(U), we have x ∈ (RAF-De f (U)∪RAF-Inh(U)). Following the definitions of RAF-De f (U)
and RAF-Inh(U), we can state that there exists an attack α such that α ∈Q, s(α) ∈ S and t(α) = x. Accord-
ing to the definition of Struct2Lab(U), we have so ℓK(α) = in and ℓA(s(α)) = in .

We prove so that for all x ∈ (A∪K):

(L(x) = out) =⇒ (∃α ∈ K s.t. t(α) = x, ℓK(α) = in and ℓA(s(α)) = in) (18.63)

Step 2: (L(x) = out)⇐= (∃α ∈ K s.t. t(α) = x, ℓK(α) = in and ℓA(s(α)) = in)

Let x ∈ (A∪K) be an argument or an attack. If there exists an attack α ∈ K such that t(α) = x, ℓK(α) =
in and ℓA(s(α)) = in , then according to the definition of Struct2Lab(U), we have α ∈ Q and s(α) ∈ S.

234

As a consequence, we have x ∈ (RAF-De f (U)∪RAF-Inh(U)). We have thus, according to the definition of
Struct2Lab(U): L(x) = out .

We prove so that for all x ∈ (A∪K):

(L(x) = out)⇐= (∃α ∈ K s.t. t(α) = x, ℓK(α) = in and ℓA(s(α)) = in) (18.64)

Step 3: (L(x) = in) =⇒ (∀α ∈ K s.t. t(α) = x, ℓK(α) = out or ℓA(s(α)) = out)

Let x ∈ (A∪K) be an argument or an attack such that L(x) = in . According to the definition of
Struct2Lab(U), we have then x ∈ U and as U is a complete structure we have x ∈ Acc(U). As a con-
sequence, for all α ∈ K such that t(α) = x, we have: s(α) ∈ RAF-De f (U) or α ∈ RAF-Inh(U). According
to the definition of Struct2Lab(U), we have then: ℓA(s(α)) = out or ℓK(α) = out .

We prove so that for all x ∈ (A∪K):

(L(x) = in) =⇒ (∀α ∈ K s.t. t(α) = x,ℓK(α) = out or ℓA(s(α)) = out) (18.65)

Step 4: (L(x) = in)⇐= (∀α ∈ K s.t. t(α) = x, ℓK(α) = out or ℓA(s(α)) = out)

Let x ∈ (A∪K) be an argument or an attack such that for all attacks α ∈ K s.t. t(α) = x, ℓK(α) = out

or ℓA(s(α)) = out . For any such attack α , we have then, according to the definition of Struct2Lab(U):
α ∈ RAF-Inh(U) or s(α) ∈ RAF-De f (U). As a consequence, we have x ∈ Acc(U) and so x ∈ (S∪Q), U
being a complete structure. According to the definition of Struct2Lab(U), we have then: L(x) = in .

We prove so that for all x ∈ (A∪K):

(L(x) = in)⇐= (∀α ∈ K s.t. t(α) = x,ℓK(α) = out or ℓA(s(α)) = out) (18.66)

Equations (18.63) to (18.66) on pages 233–234 being stated, we prove thus that L is a reinstatement
RAF labelling. ■

Proofs of Section 11.2: Preferred semantics
Proof of Theorem 10 on page 108. Let L be a reinstatement RAF labelling such that in (L) is maximal.
Let suppose that U = Lab2Struct(L) is not a preferred structure. According to Definition 63 on page 92,
Proposition 19 on page 94 and Theorem 2 on page 94, there exists then a complete structure U′ such that
U⊏ U′ (strict inclusion). Let L′ = Struct2Lab(U′). Then in (L′)⊂ in (L). As a consequence L is not a
reinstatement RAF labelling such that in (L) is maximal, which is a contradiction. ■

Proof of Theorem 11 on page 108. Let U be a preferred structure and L = Struct2Lab(U). Let us sup-
pose that L is not a reinstatement RAF labelling such that in (L) is maximal. Then there exists a rein-
statement RAF labelling L′ such that in (L)⊂ in (L′). Let U′ = Lab2Struct(L′). Then U′ is a complete
structure such that U ⊏ U′ (strict inclusion). As a consequence, U is not a preferred structure, which is a
contradiction. ■

Lemma 1. Let L and L′ be two reinstatement RAF labellings. If in(L)⊂ in(L′) then out(L)⊂ out(L′).

Proof of Lemma 1. Let L and L′ be two reinstatement RAF labellings such that in (L)⊂ in (L′), meaning
that:

∀w ∈ in (L), w ∈ in (L′) (18.67)

235

and

∃x ∈ in (L′), x /∈ in (L) (18.68)

Let prove that out (L)⊂ out (L′), and so that :

1. ∀y ∈ out (L), y ∈ out (L′)

2. ∃z ∈ out (L′), z /∈ out (L)

Step 1: ∀y ∈ out (L), y ∈ out (L′)

Let y be an attack or an argument such that y ∈ out (L). Given L is a reinstatement RAF labelling, we
have by definition:

(L(y) = out) =⇒ (∃α ∈ K s.t. t(α) = y,ℓK(α) = in and ℓA(s(α)) = in)

Then according to Equation (18.67) on the previous page, α ∈ in (L′) and s(α) ∈ in (L′). As L′ is also
a reinstatement RAF labelling, we have so y ∈ out (L′).

Step 2: ∃z ∈ out (L′), z /∈ out (L)

Let x be an attack or an argument such that x∈ in (L′) and x /∈ in (L). Given L and L′ are reinstatement
RAF labellings, we have by definition:

(L′(x) = in) ⇐⇒ (∀α ∈ K s.t. t(α) = x, ℓK
′
(α) = out or ℓA

′
(s(α)) = out) (18.69)

(L(x) ̸= in) ⇐⇒ (∃α ∈ K s.t. t(α) = x,ℓK(α) ̸= out and ℓA(s(α)) ̸= out) (18.70)

Let α be such an attack with t(α) = x, ℓK(α) ̸= out and ℓA(s(α)) ̸= out .
By definition of α we have, α /∈ out (L) and s(α) /∈ out (L). Furthermore, given that L′(x) = in , we

have following Equation (18.69), α ∈ out (L′) or s(α) ∈ out (L′).
We prove thus that there exists z such that, z ∈ out (L′) and z /∈ out (L). ■

Lemma 2. Let L and L′ be two reinstatement RAF labellings. If out(L)⊂ out(L′) then in(L)⊂ in(L′).

Proof of Lemma 2. Let L and L′ be two reinstatement RAF labellings such that out (L)⊂ out (L′), mean-
ing that:

∀w ∈ out (L), w ∈ out (L′) (18.71)

and

∃x ∈ out (L′), x /∈ out (L) (18.72)

Let prove that in (L)⊂ in (L′), and so that :

1. ∀y ∈ in (L), y ∈ in (L′)

2. ∃z ∈ in (L′), z /∈ in (L)

Step 1: ∀y ∈ in (L), y ∈ in (L′)

236

Let y be an attack or an argument such that y ∈ in (L). Given L is a reinstatement RAF labelling, we
have by definition:

(L(y) = in) =⇒ (∀α ∈ K s.t. t(α) = y, ℓK(α) = out or ℓA(s(α)) = out)

Then according to Equation (18.71) on the previous page, we have:

(L(y) = in) =⇒ (∀α ∈ K s.t. t(α) = y, ℓK
′
(α) = out or ℓA

′
(s(α)) = out)

As L′ is also a reinstatement RAF labelling, we have then y ∈ in (L′).

Step 2: ∃z ∈ in (L′), z /∈ in (L)
Let x be an attack or an argument such that x ∈ out (L′) and x /∈ out (L). Given L and L′ are reinstate-

ment RAF labellings, we have by definition:

(L′(x) = out) ⇐⇒ (∃α ∈ K s.t. t(α) = x,ℓK
′
(α) = in and ℓA

′
(s(α)) = in) (18.73)

(L(x) ̸= out) ⇐⇒ (∀α ∈ K s.t. t(α) = x, ℓK(α) ̸= in or ℓA(s(α)) ̸= in) (18.74)

According to Equation (18.74), for any attack α such that t(α) = x, we have: α /∈ in (L) or s(α) /∈
in (L). However, we have following Equation (18.73), there exists at least one attack α ∈K s.t. α ∈ in (L′)
and s(α) ∈ in (L′).

We prove thus that there exists z such that, z ∈ in (L′) and z /∈ in (L). ■

Proof of Theorem 12 on page 108. Let L be a reinstatement RAF labelling such that out (L) is maximal.
Let suppose that Lab2Struct(L) is not a preferred structure. Then according to Theorem 10 on page 108,
in (L) is not maximal. There exists thus a reinstatement RAF labelling L′ such that in (L)⊂ in (L′). We
have then, following Lemma 1 on page 234, out (L)⊂ out (L′), which is a contradiction. ■

Proof of Theorem 13 on page 108. Let U be a preferred structure. According to Theorem 11 on page 108,
L = Struct2Lab(U) is a reinstatement RAF labelling such that in (L) is maximal. Let suppose that
out (L) is not maximal. There exist thus a reinstatement RAF labelling L′ such that out (L) ⊂ out (L′).
We have then, following Lemma 2 on the previous page, in (L)⊂ in (L′), which is a contradiction. ■

Proofs of Section 11.3: Stable semantics

Proof of Theorem 14 on page 109. Let L=
〈
ℓA,ℓK

〉
be a reinstatement RAF labelling such that und (L) =

∅. Let U= Lab2Struct(L). Let x be any attack or argument such that x /∈ U.
Given that und (L) = ∅, we have according to Definition 75 on page 107: L(x) = out . There exists

then an attack α such that: ℓA(s(α)) = in ∩ ℓK(α) = in . We have then s(α) ∈ U and α ∈ U.
Therefore, according to Definition 61 on page 92, we have: x ∈ RAF-De f (U) or x ∈ RAF-Inh(U),

following the nature of x. This means that U defeats or inhibits any argument and attack which is not in it.
We prove so that U is, thus, a stable structure. ■

Proof of Theorem 15 on page 109. Let U be a stable structure and let x be an argument or an attack.
If x ∈ U then L(x) = in .
Let consider the case when x /∈ U. Given U is a stable structure then there exists an attack α in U that

defeats or inhibits x. We have then, according to Definition 75 on page 107: L(x) = out .
In both cases L(x) ̸= und . We prove so that und (L) =∅. ■

237

Proofs of Section 11.4: Grounded semantics

Proof of Theorem 16 on page 109. Let L=
〈
ℓA,ℓK

〉
be a reinstatement RAF labelling such that und (L)

is maximal. Let suppose that U = Lab2Struct(L) is not the grounded structure. According to Theorem 8
on page 107, U is a complete structure. By definition of the grounded structure (Definition 63 on page 92),
we can thus say that there exists a structure U′ that is the grounded structure and such that U′ ⊏ U (strict
inclusion). Let L′ = Struct2Lab(U′) be the reinstatement RAF labelling corresponding with the grounded
structure.

As U′ ⊏ U we have, by definition of Struct2Lab: in (L′)⊂ in (L)

Following Lemma 1 on page 234, we thus also have: out (L′)⊂ out (L)

As a consequence, we can say that: und (L)⊂ und (L′)

There is a contradiction.
We prove so that U is, thus, the grounded structure. ■

Proof of Theorem 17 on page 109. Let RAF = ⟨A,K,s, t⟩ be a RAF, let U= ⟨S,Q⟩ be the grounded struc-
ture and U′ be any complete structure that is not grounded. Let L= Struct2Lab(U) and L′= Struct2Lab(U′).

According to Definition 63 on page 92, we have: U⊏ U′.
By definition of Struct2Lab, we thus have: in (L)⊂ in (L′).
Following Lemma 1 on page 234, we thus also have: out (L)⊂ out (L′).
As a consequence, we have: und (L′)⊂ und (L).

We prove so that L= Struct2Lab(U) is a reinstatement RAF labelling such that und (L) is maximal. ■

Proof of Theorem 18 on page 109. L be a reinstatement RAF labelling such that in (L) is minimal. Let
suppose that U = Lab2Struct(L) is not the grounded structure. By definition of the grounded structure
(Definition 63 on page 92), we can thus say that there exists a structure U′ that is the grounded structure
and such that U′ ⊏ U (strict inclusion). Let L′ = Struct2Lab(U′) be the reinstatement RAF labelling
corresponding with the grounded structure. As U′ ⊏ U we have, by definition of Struct2Lab: in (L′) ⊂
in (L). We have then a contradiction.

We prove so that U= Lab2Struct(L) is the grounded structure. ■

Proof of Theorem 19 on page 109. Let U be the grounded structure and L= Struct2Lab(U). Let suppose
that in (L) is not minimal. There exists then a reinstatement RAF labelling L′ such that in (L′) ⊂ in (L).
Let U′ = Lab2Struct(L′). From the definition of Lab2Struct, we can say that: U′ ⊏ U. This contradicts
the definition of the grounded structure (Definition 63 on page 92).

We prove so that L= Struct2Lab(U) is a reinstatement RAF labelling such that in (L) is minimal. ■

Proof of Theorem 20 on page 110. L be a reinstatement RAF labelling such that out (L) is minimal. Fol-
lowing Lemma 2 on page 235, in (L) is also minimal. Therefore, according to Theorem 18 on page 109,
Lab2Struct(L) is the grounded structure. ■

Proof of Theorem 21 on page 110. Let U be the grounded structure and L= Struct2Lab(U). According
to Theorem 19 on page 109, in (L) is minimal. Following Lemma 1 on page 234, out (L) is also minimal.
L is thus a reinstatement RAF labelling such that out (L) is minimal. ■

238

Proofs of Section 11.5: Semi-stable semantics

Proof of Theorem 22 on page 110. Let RAF = ⟨A,K,s, t⟩ be a RAF. Let L=
〈
ℓA,ℓK

〉
be a reinstatement

RAF labelling such that und (L) is minimal. Let suppose that U = Lab2Struct(L) is not a semi-stable
structure (with U= ⟨S,Q⟩). There exists thus a semi-stable structure U′ = ⟨S′,Q′⟩ such that:

(S∪Q∪RAF-De f (U)∪RAF-Inh(U))⊂ (S′∪Q′∪RAF-De f (U′)∪RAF-Inh(U′)) (18.75)

As a consequence, we have:

(A∪K)\ (S∪Q∪RAF-De f (U)∪RAF-Inh(U))⊃ (A∪K)\ (S′∪Q′∪RAF-De f (U′)∪RAF-Inh(U′))
(18.76)

Let L′= Struct2Lab(U′). Following Equation (18.76), we have according to the definition of Struct2Lab:

und (L)⊃ und (L′)

Then und (L) is not minimal, which is a contradiction.
We prove so that U= Lab2Struct(L) is a semi-stable structure. ■

Proof of Theorem 23 on page 110. Let U= ⟨S,Q⟩ be a semi-stable structure. By definition, we have thus:

(S∪Q∪RAF-De f (U)∪RAF-Inh(U)) being maximal

As a consequence, (A∪K)\ (S∪Q∪RAF-De f (U)∪RAF-Inh(U)) is minimal. Let L = Struct2Lab(U).
According to the definition of Struct2Lab and following the previous statement, we have thus und (L)
being minimal.

We prove so that L = Struct2Lab(U) is a reinstatement RAF labelling such that und (L) is minimal.
■

Proofs of Chapter 12: Flattening

Proof of Proposition 24 on page 117. Assertion 1: RAF-De f (U)∪RAF-Inh(U) =

De f (εU)\


{¬a ∈ NotA|a ∈ εU}

∪{¬β ∈ NotK |β ∈ εU}

∪{s(β).β ∈ AndA,K |β ∈ De f (εU) or s(β) ∈ De f (εU)}


• Step 1: RAF-De f (U)∪RAF-Inh(U)⊆

De f (εU)\


{¬a ∈ NotA|a ∈ εU}

∪{¬β ∈ NotK |β ∈ εU}

∪{s(β).β ∈ AndA,K |β ∈ De f (εU) or s(β) ∈ De f (εU)}


Let x ∈ RAF-De f (U)∪RAF-Inh(U). There exists thus an attack α ∈ Q such that s(α) ∈ S and
t(α) = x. We have thus:

α ∈ εU and s(α) ∈ εU

239

As a consequence, following the definition of Raf2Af, we have:

¬α ∈ De f (εU) and ¬s(α) ∈ De f (εU)

And so:
s(α).α ∈ εU

Given that s(α).α ∈ εU, we have so:
x ∈ De f (εU)

Given that x ∈ A∪K, we have, following the definition of Raf2Af: x /∈ (NotA∪NotK ∪AndA,K). As a
consequence, we have:

x ∈ De f (εU)\ (NotA∪NotK ∪AndA,K)

We prove so that: RAF-De f (U)∪RAF-Inh(U)⊆

De f (εU)\


{¬a ∈ NotA|a ∈ εU}

∪{¬β ∈ NotK |β ∈ εU}

∪{s(β).β ∈ AndA,K |β ∈ De f (εU) or s(β) ∈ De f (εU)}


• Step 2: RAF-De f (U)∪RAF-Inh(U)⊇

De f (εU)\


{¬a ∈ NotA|a ∈ εU}

∪{¬β ∈ NotK |β ∈ εU}

∪{s(β).β ∈ AndA,K |β ∈ De f (εU) or s(β) ∈ De f (εU)}



Let x ∈ De f (εU)\


{¬a ∈ NotA|a ∈ εU}

∪{¬β ∈ NotK |β ∈ εU}

∪{s(β).β ∈ AndA,K |β ∈ De f (εU) or s(β) ∈ De f (εU)}

.

Let consider four cases: x ∈ NotA, x ∈ NotK , x ∈ AndA,K and x ∈ A∪K. Let show that the three first
cases are impossible.

– Let suppose that x ∈ NotA with x = ¬b. Given that ¬b ∈ De f (εU), according to the definition
of Raf2Af, we have b ∈ εU. As a consequence, we have: x ∈ {¬a ∈ NotA|a ∈ εU}, which is a
contradiction.

– Let suppose that x ∈ NotK with x = ¬α . Given that ¬α ∈ De f (εU), according to the definition
of Raf2Af, we have α ∈ εU. As a consequence, we have: x ∈ {¬β ∈ NotK |β ∈ εU}, which is a
contradiction.

– Let suppose that x ∈ AndA,K with x = s(α).α . Given that s(α).α ∈ De f (εU), according to the
definition of Raf2Af, we have thus: ¬s(α) ∈ εU or ¬α ∈ εU. And so we have: s(α) ∈De f (εU)
or α ∈ De f (εU). As a consequence, we have: x ∈ {s(β).β ∈ AndA,K |β ∈ De f (εU) or s(β) ∈
De f (εU)}, which is a contradiction.

240

We prove so that: x ∈ A∪K.

Given that x ∈ De f (εU), following the definition of Raf2Af, there exists thus an argument s(α).α ∈
(εU ∩AndA,K) attacking x. Given that s(α).α ∈ (εU ∩AndA,K), we have following the definition of
εU: s(α) ∈ S and α ∈ Q. As a consequence we have: x ∈ RAF-De f (U)∪RAF-Inh(U).

We prove so that: RAF-De f (U)∪RAF-Inh(U)⊇

De f (εU)\


{¬a ∈ NotA|a ∈ εU}

∪{¬β ∈ NotK |β ∈ εU}

∪{s(β).β ∈ AndA,K |β ∈ De f (εU) or s(β) ∈ De f (εU)}



Assertion 2: RAF-Acc(U) = Acc(εU)\


{¬a ∈ NotA|a ∈ De f (εU)}

∪{¬β ∈ NotK |β ∈ De f (εU)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU}



• Step 1: RAF-Acc(U)⊆ Acc(εU)\


{¬a ∈ NotA|a ∈ De f (εU)}

∪{¬β ∈ NotK |β ∈ De f (εU)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU}


Let x ∈ RAF-Acc(U). For any attack α ∈ K such that t(α) = x, we have thus:

α ∈ RAF-Inh(U) or s(α) ∈ RAF-De f (U)

As Assertion 1 holds, we have so:

α ∈ De f (εU)\


{¬a ∈ NotA|a ∈ εU}

∪{¬β ∈ NotK |β ∈ εU}

∪{s(β).β ∈ AndA,K |β ∈ De f (εU) or s(β) ∈ De f (εU)}


or

s(α) ∈ De f (εU)\


{¬a ∈ NotA|a ∈ εU}

∪{¬β ∈ NotK |β ∈ εU}

∪{s(β).β ∈ AndA,K |β ∈ De f (εU) or s(β) ∈ De f (εU)}



241

As a consequence, following the definition of Raf2Af, we have:

¬α ∈ εU or ¬s(α) ∈ εU

Furthermore, since s(α).α ∈ AndA,K , we have:

s(α).α ∈ De f (εU)∩AndA,K

As a consequence, as it is the case of any attack α attacking x, we have:

x ∈ Acc(εU)

Given that x ∈ A∪K, we have, following the definition of Raf2Af: x /∈ (NotA∪NotK ∪AndA,K). As a
consequence, we have:

x ∈ Acc(εU)\ (NotA∪NotK ∪AndA,K)

We prove so that:

RAF-Acc(U)⊆ Acc(εU)\


{¬a ∈ NotA|a ∈ De f (εU)}

∪{¬β ∈ NotK |β ∈ De f (εU)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU}



• Step 2: RAF-Acc(U)⊇ Acc(εU)\


{¬a ∈ NotA|a ∈ De f (εU)}

∪{¬β ∈ NotK |β ∈ De f (εU)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU}



Let x ∈ Acc(εU)\


{¬a ∈ NotA|a ∈ De f (εU)}

∪{¬β ∈ NotK |β ∈ De f (εU)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU}


Let consider four cases: x ∈ NotA, x ∈ NotK , x ∈ AndA,K and x ∈ A∪K. Let show that the three first
cases are impossible.

– Let suppose that x ∈ NotA with x = ¬b. Given that ¬b ∈ Acc(εU), according to the definition
of Raf2Af, we have b ∈ De f (εU). As a consequence, we have: x ∈ {¬a ∈ NotA|a ∈ De f (εU)},
which is a contradiction.

– Let suppose that x ∈NotK with x =¬α . Given that ¬α ∈ Acc(εU), according to the definition of
Raf2Af, we have α ∈ De f (εU). As a consequence, we have: x ∈ {¬β ∈ NotK |β ∈ De f (εU)},
which is a contradiction.

– Let suppose that x ∈ AndA,K with x = s(α).α . Given that s(α).α ∈ Acc(εU), according to the
definition of Raf2Af, we have thus: ¬s(α) ∈ De f (εU) and ¬α ∈ De f (εU). And so we have:

242

s(α) ∈ εU and α ∈ εU. As a consequence, we have: x ∈ {s(β).β ∈ AndA,K |s(β).β ∈ εU}, which
is a contradiction.

We prove so that: x ∈ A∪K.

Given that x ∈ Acc(εU), then following the definition of Raf2Af, for any argument s(α).α attacking
x, we have: s(α).α ∈ De f (εU). As a consequence, following the definition of Raf2Af, we have:

¬s(α) ∈ εU or ¬α ∈ εU

And so:

s(α) ∈ De f (εU) or α ∈ De f (εU)

As Assertion 1 holds and as s(α) ∈ A and α ∈ K, we have:

s(α) ∈ RAF-De f (U) or α ∈ RAF-Inh(U)

as it is the case of any attack α attacking x, we have:

x ∈ RAF-Acc(U)

We prove so that:

RAF-Acc(U)⊇ Acc(εU)\


{¬a ∈ NotA|a ∈ De f (εU)}

∪{¬β ∈ NotK |β ∈ De f (εU)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU}


■

Proof of Proposition 25 on page 117.
Assertion 1: U= ⟨S,Q⟩ is a RAF-complete structure in RAF iff εU is a complete extension in AF .

U= ⟨S,Q⟩ is a RAF-complete structure in RAF iff (S∪Q) = RAF-Acc(U).
Following Proposition 24 on page 117, we have thus:

U= ⟨S,Q⟩ is a RAF-complete structure in RAF
iff

(S∪Q) = Acc(εU)\


{¬a ∈ NotA|a ∈ De f (εU)}

∪{¬β ∈ NotK |β ∈ De f (εU)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU}



243

And so:

U= ⟨S,Q⟩ is a RAF-complete structure in RAF
iff

(S∪Q)∪


{¬a ∈ NotA|a ∈ De f (εU)}

∪{¬β ∈ NotK |β ∈ De f (εU)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU}

= Acc(εU)

(18.77)

Given that, for all s(β).β ∈ AndA,K such that s(β).β ∈ εU we have following the definition of εU: β ∈
Q,s(β) ∈ S, from Equation (18.77), we have then:

U= ⟨S,Q⟩ is a RAF-complete structure in RAF
iff

(S∪Q)∪


{¬a ∈ NotA|a ∈ De f (εU)}

∪{¬β ∈ NotK |β ∈ De f (εU)}

∪{s(β).β ∈ AndA,K |β ∈ Q,s(β) ∈ S}

= Acc(εU)

(18.78)

Following the definition of Raf2Af:

¬a ∈ NotA iff a ∈ A

and
¬β ∈ NotK iff β ∈ K

(18.79)

Furthermore, following Proposition 24 on page 117, we have:

De f (εU) =


RAF-De f (U)∪RAF-Inh(U)

∪{¬a ∈ NotA|a ∈ εU}∪{¬β ∈ NotK |β ∈ εU}

∪{s(β).β ∈ AndA,K |β ∈ De f (εU) or s(β) ∈ De f (εU)}

 (18.80)

From Equations (18.79) and (18.80) we have so:

a ∈ De f (εU) iff a ∈ RAF-De f (U)

and
β ∈ De f (εU) iff β ∈ RAF-Inh(U)

(18.81)

244

As a consequence, we have from Equations (18.78) and (18.81) on the previous page:

U= ⟨S,Q⟩ is a RAF-complete structure in RAF
iff

(S∪Q)∪


{¬a ∈ NotA|a ∈ RAF-De f (U)}

∪{¬β ∈ NotK |β ∈ RAF-Inh(U)}

∪{s(β).β ∈ AndA,K |β ∈ Q,s(β) ∈ S}

= Acc(εU)

Following the definition of εU, we have thus:

U= ⟨S,Q⟩ is a RAF-complete structure in RAF
iff

εU = Acc(εU)

We prove so that:

U= ⟨S,Q⟩ is a RAF-complete structure in RAF
iff

εU is a complete extension in AF

Assertion 2: U= ⟨S,Q⟩ is a RAF-grounded structure in RAF iff εU is a grounded extension in AF .

εU is a grounded extension in AF iff there is no complete extension εU′ in AF (with U′ = ⟨S′,Q′⟩) such
that: εU′ ⊂ εU.

We have so:

εU ∈ σgr(AF)

iff

∄εU′ ∈ σco(AF) s.t. Acc(εU′)⊂ Acc(εU)

245

Following Proposition 24 on page 117, we have:

εU ∈ σgr(AF)

iff

∄εU′ ∈ σco(AF) s.t.

RAF-Acc(U′)∪


{¬a ∈ NotA|a ∈ De f (εU′)}

∪{¬β ∈ NotK |β ∈ De f (εU′)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU′}


⊂

RAF-Acc(U)∪


{¬a ∈ NotA|a ∈ De f (εU)}

∪{¬β ∈ NotK |β ∈ De f (εU)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU}


Removing (NotA∪NotK ∪AndA,K) from both sides gives us a ⊆-inclusion:

εU ∈ σgr(AF)

iff

∄εU′ ∈ σco(AF) s.t. RAF-Acc(U′)∪


{¬a ∈ NotA|a ∈ De f (εU′)}

∪{¬β ∈ NotK |β ∈ De f (εU′)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU′}



\ (NotA∪NotK ∪AndA,K)

⊆ RAF-Acc(U)∪


{¬a ∈ NotA|a ∈ De f (εU)}

∪{¬β ∈ NotK |β ∈ De f (εU)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU}



\ (NotA∪NotK ∪AndA,K)

We have thus:

εU ∈ σgr(AF)

iff

∄εU′ ∈ σco(AF) s.t. RAF-Acc(U′)⊆ RAF-Acc(U)

Given that, following Assertion 1, εU′ and εU are complete iff U′ and U are RAF-complete, we have

246

thus:

εU ∈ σgr(AF)

iff

∄εU′ ∈ σco(AF) s.t. U′ ⊆ U

Given that εU′ ̸= εU iff U′ ̸= U, we have thus:

εU ∈ σgr(AF)

iff

∄εU′ ∈ σco(AF) s.t. U′ ⊂ U

We prove so that εU is a grounded extension in AF iff U= ⟨S,Q⟩ is a RAF-grounded structure in RAF .

Assertion 3: U= ⟨S,Q⟩ is a RAF-preferred structure in RAF iff εU is a preferred extension in AF .

εU is a preferred extension in AF iff there is no complete extension εU′ in AF (with U′ = ⟨S′,Q′⟩) such
that: εU ⊂ εU′ .

We have so:

εU ∈ σpr(AF)

iff

∄εU′ ∈ σco(AF) s.t. Acc(εU)⊂ Acc(εU′)

Following Proposition 24 on page 117, we have:

εU ∈ σpr(AF)

iff

∄εU′ ∈ σco(AF) s.t.

RAF-Acc(U)∪


{¬a ∈ NotA|a ∈ De f (εU)}

∪{¬β ∈ NotK |β ∈ De f (εU)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU}


⊂

RAF-Acc(U′)∪


{¬a ∈ NotA|a ∈ De f (εU′)}

∪{¬β ∈ NotK |β ∈ De f (εU′)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU′}



247

Removing (NotA∪NotK ∪AndA,K) from both sides gives us a ⊆-inclusion:

εU ∈ σpr(AF)

iff

∄εU′ ∈ σco(AF) s.t. RAF-Acc(U)∪


{¬a ∈ NotA|a ∈ De f (εU)}

∪{¬β ∈ NotK |β ∈ De f (εU)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU}



\ (NotA∪NotK ∪AndA,K)

⊆ RAF-Acc(U′)∪


{¬a ∈ NotA|a ∈ De f (εU′)}

∪{¬β ∈ NotK |β ∈ De f (εU′)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU′}



\ (NotA∪NotK ∪AndA,K)

We have thus:
εU ∈ σpr(AF)

iff

∄εU′ ∈ σco(AF) s.t. RAF-Acc(U)⊆ RAF-Acc(U′)

Given that, following Assertion 1, εU′ and εU are complete iff U′ and U are RAF-complete, we have
thus:

εU ∈ σpr(AF)

iff

∄εU′ ∈ σco(AF) s.t. U⊆ U′

Given that εU′ ̸= εU iff U′ ̸= U, we have thus:

εU ∈ σpr(AF)

iff

∄εU′ ∈ σco(AF) s.t. U⊂ U′

We prove so that εU is a preferred extension in AF iff U= ⟨S,Q⟩ is a RAF-preferred structure in RAF .

Assertion 4: U= ⟨S,Q⟩ is a RAF-stable structure in RAF iff εU is a stable extension in AF .

• Step 1: If U= ⟨S,Q⟩ is a RAF-stable structure in RAF then εU is a stable extension in AF .

If U= ⟨S,Q⟩ is a RAF-stable structure in RAF then ∄x∈ (A∪K) such that x /∈U and x /∈ (RAF-De f (U)∪
RAF-Inh(U)). If U is a RAF-stable structure in RAF then U is also RAF-complete. Following As-
sertion 1, εU is thus a complete extension in AF . Let suppose that εU is not stable. There exists thus
x ∈ (A′∪K′) such that x /∈ εU and x /∈ De f (εU).

248

Let consider two cases: x ∈ A∪K and x /∈ (A∪K).

Case 1: Given that U is RAF-stable, if x ∈ A∪K, we have so: x ∈ (S∪Q∪RAF-De f (U)∪
RAF-Inh(U)).

As shown in Proof of Assertion 1 (Equation (18.81) on page 243):

a ∈ A∩De f (εU) iff a ∈ RAF-De f (U)

and
β ∈ K∩De f (εU) iff β ∈ RAF-Inh(U)

(18.82)

As a consequence if x ∈ A∪K then:

x ∈ (S∪Q∪ (A∩De f (εU))∪ (K∩De f (εU)))

As x /∈ εU and x /∈ De f (εU) there is a contradiction.

Case 2: If x /∈ (A∪K) then: x ∈ (NotA∪NotK ∪AndA,K).

Given that:
x /∈ εU and x /∈ De f (εU)

We have thus three possible cases:

– x ∈ NotA \{¬a ∈ NotA|a ∈ (De f (εU)∪ εU)}
– x ∈ NotK \{¬β ∈ NotK |β ∈ (De f (εU)∪ εU)}
– x ∈ AndA,K \{s(β).β ∈ AndA,K |β ∈ (De f (εU)∪ εU)}

Given that following the definition of Raf2Af:

¬a ∈ NotA iff a ∈ A

and
¬β ∈ NotK iff β ∈ K

and
s(β).β ∈ AndA,K iff β ∈ K

(18.83)

We have thus:

– x ∈ NotA \{¬a ∈ NotA|a ∈ (A∩De f (εU))∪ (A∩ εU)}
– x ∈ NotK \{¬β ∈ NotK |β ∈ (K∩De f (εU))∪ (K∩ εU)}
– x ∈ AndA,K \{s(β).β ∈ AndA,K |β ∈ (K∩De f (εU))∪ (K∩ εU)}

As shown in Proof of Assertion 1 (Equation (18.81) on page 243):

A∩De f (εU) = RAF-De f (U)

and
K∩De f (εU) = RAF-Inh(U)

(18.84)

We have thus:

249

– x ∈ NotA \{¬a ∈ NotA|a ∈ (RAF-De f (U)∪S)}

– x ∈ NotK \{¬β ∈ NotK |β ∈ (RAF-Inh(U)∪Q)}

– x ∈ AndA,K \{s(β).β ∈ AndA,K |β ∈ (RAF-Inh(U)∪Q)}

Given that U is RAF-stable, we have thus:

– x ∈ NotA \NotA =∅

– x ∈ NotK \NotK =∅

– x ∈ AndA,K \AndA,K =∅

There is thus a contradiction.

We prove so that if U= ⟨S,Q⟩ is a RAF-stable structure in RAF then εU is a stable extension in AF .

• Step 2: If εU is a stable extension in AF then U= ⟨S,Q⟩ is a RAF-stable structure in RAF .

If εU is a stable extension in AF then ∄x∈ (A′∪K′) such that x /∈ εU and x /∈De f (εU). If εU is a stable
extension in AF then εU is also complete. As Assertion 1 holds, then U is RAF-complete. Let suppose
that U is not RAF-stable. There exists thus x ∈ (A∪K) such that x /∈ U and x /∈ (RAF-De f (U)∪
RAF-Inh(U)).

As shown in Proof of Assertion 1 (Equation (18.81) on page 243):

A∩De f (εU) = RAF-De f (U)

and
K∩De f (εU) = RAF-Inh(U)

We have thus:

x /∈
(

(A∩De f (εU))∪ (K∩De f (εU))∪S∪Q

)
Given that εU is stable, we have thus: x /∈ (A∪K), which is a contradiction.

We prove so that if εU is a stable extension in AF then U= ⟨S,Q⟩ is a RAF-stable structure in RAF .

Assertion 5: U= ⟨S,Q⟩ is a RAF-semi-stable structure in RAF iff εU is a semi-stable extension in AF .

εU is a semi-stable extension in AF iff there is no complete extension εU′ in AF (with U′ = ⟨S′,Q′⟩)
such that: (εU∪De f (εU))⊂ (εU′ ∪De f (εU′)).

We have so:

εU ∈ σsst(AF)

iff

∄εU′ ∈ σco(AF) s.t. (Acc(εU)∪De f (εU))⊂ (Acc(εU′)∪De f (εU′))

250

Following Proposition 24 on page 117, we have:

εU ∈ σsst(AF)

iff

∄εU′ ∈ σco(AF) s.t.


RAF-Acc(U)

∪RAF-De f (U)

∪RAF-Inh(U)

∪



{¬a ∈ NotA|a ∈ De f (εU)}

∪{¬β ∈ NotK |β ∈ De f (εU)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU}

∪{¬a ∈ NotA|a ∈ εU}

∪{¬β ∈ NotK |β ∈ εU}

∪{s(β).β ∈ AndA,K |β ∈ De f (εU) or s(β) ∈ De f (εU)}


⊂


RAF-Acc(U′)

∪RAF-De f (U′)

∪RAF-Inh(U′)

∪



{¬a ∈ NotA|a ∈ De f (εU′)}

∪{¬β ∈ NotK |β ∈ De f (εU′)}

∪{s(β).β ∈ AndA,K |s(β).β ∈ εU′}

∪{¬a ∈ NotA|a ∈ εU′}

∪{¬β ∈ NotK |β ∈ εU′}

∪{s(β).β ∈ AndA,K |β ∈ De f (εU′) or s(β) ∈ De f (εU′)}



Removing (NotA∪NotK ∪AndA,K) from both sides gives us a ⊆-inclusion:

εU ∈ σsst(AF)

iff

∄εU′ ∈ σco(AF) s.t.


RAF-Acc(U)

∪RAF-De f (U)

∪RAF-Inh(U)

⊆


RAF-Acc(U′)

∪RAF-De f (U′)

∪RAF-Inh(U′)



Given that, following Assertion 1, εU′ and εU are complete iff U′ and U are RAF-complete, we have

251

thus:
εU ∈ σsst(AF)

iff

∄εU′ ∈ σco(AF) s.t. U∪

 RAF-De f (U)

∪RAF-Inh(U)

⊆ U′∪

 RAF-De f (U′)

∪RAF-Inh(U′)


Given that εU′ ̸= εU iff U′ ̸= U, we have thus:

εU ∈ σsst(AF)

iff

∄εU′ ∈ σco(AF) s.t. U∪

 RAF-De f (U)

∪RAF-Inh(U)

⊂ U′∪

 RAF-De f (U′)

∪RAF-Inh(U′)


We prove so that εU is a semi-stable extension in AF iff U= ⟨S,Q⟩ is a RAF-semi-stable structure in

RAF . ■

Proofs of Chapter 13: Complexity

Proof of Proposition 28 on page 121.

Assertion 1: RAF-Credσ accepts (RAF ,a) iff Credσ accepts (AF ,a).

RAF-Credσ accepts (RAF ,a) iff ∃U ∈ σ(RAF) s.t. a ∈ U

iff ∃εU ∈ σ(AF) s.t. a ∈ εU (following Proposition 25 on page 117)
iff Credσ accepts (AF ,a)

Assertion 2: RAF-Skepσ accepts (RAF ,a) iff Skepσ accepts (AF ,a).

RAF-Skepσ accepts (RAF ,a) iff ∀U ∈ σ(RAF), a ∈ U

iff ∀εU ∈ σ(AF), a ∈ εU (following Proposition 25 on page 117)
iff Skepσ accepts (AF ,a)

Assertion 3: RAF-Verσ accepts (RAF ,U) iff Verσ accepts (AF ,εU).

RAF-Verσ accepts (RAF ,U) iff U ∈ σ(RAF)

iff εU ∈ σ(AF) (following Proposition 25 on page 117)
iff Verσ accepts (AF ,εU)

252

Assertion 4: RAF-Existsσ accepts RAF iff Existsσ accepts AF .

RAF-Existsσ accepts RAF iff ∃U ∈ σ(RAF)

iff ∃εU ∈ σ(AF) (following Proposition 25 on page 117)
iff Existsσ accepts AF

Assertion 5: RAF-Exists¬∅σ accepts RAF iff Exists¬∅σ accepts AF .

RAF-Exists¬∅σ accepts RAF iff ∃(U= ⟨S,Q⟩) ∈ σ(RAF) s.t. (S∪Q) ̸=∅
iff ∃εU ∈ σ(AF) s.t. εU ̸=∅ (following Proposition 25 on page 117)

iff Exists¬∅σ accepts AF

Assertion 6: RAF-Uniqueσ accepts RAF iff Uniqueσ accepts AF .

RAF-Uniqueσ accepts RAF iff ∃!U ∈ σ(RAF)

iff ∃!εU ∈ σ(AF) (following Proposition 25 on page 117)
iff Uniqueσ accepts AF

■

Proof of Proposition 29 on page 121. Given that Raf2Af is a polynomial time, log-space function (See
Sections 16.4.3.1 and 16.4.4.1 on page 180 and on page 182), then according to Proposition 28 on page 121,
for each semantics σ ∈ {complete, semi-stable, stable, preferred, grounded} we have:

• RAF-Credσ ≤Raf2Af
L Credσ

• RAF-Skepσ ≤Raf2Af
L Skepσ

• RAF-Verσ ≤Raf2Af
L Verσ

• RAF-Existsσ ≤Raf2Af
L Existsσ

• RAF-Exists¬∅σ ≤Raf2Af
L Exists¬∅σ

• RAF-Uniqueσ ≤Raf2Af
L Uniqueσ

■

Proof of Proposition 30 on page 122. This proof is trivial considering Theorem 3 on page 97 and Proposi-
tion 23 on page 103. ■

Proof of Proposition 31 on page 122. Given that Af2Raf is a polynomial time, log-space function, then
according to Proposition 30 on page 122, for each semantics σ ∈ {complete, semi-stable, stable, preferred,
grounded} we have:

• Credσ ≤Af2Raf
L RAF-Credσ

• Skepσ ≤Af2Raf
L RAF-Skepσ

253

• Verσ ≤Af2Raf
L RAF-Verσ

• Existsσ ≤Af2Raf
L RAF-Existsσ

• Exists¬∅σ ≤Af2Raf
L RAF-Exists¬∅σ

• Uniqueσ ≤Af2Raf
L RAF-Uniqueσ

■

Proof of Proposition 32 on page 122. Given that Raf2Af and Af2Raf are polynomial time procedures and
that Propositions 29 and 31 on page 121 and on page 122 holds, then all the complexities are the same. ■

Proofs of Chapter 14: Decomposability and Hierarchy

Proofs of Section 14.1: SCCra f

Proof of Proposition 33 on page 126. Given that x ̸= y, x ≡
RAF

y iff we have the following facts:

• ∃p ∈ Pathsra f (RAF) such that p = (x, ...,en−1,y) and y = t(en−1).

• ∃p′ ∈ Pathsra f (RAF) such that p′ = (y, ...,om−1,x) and x = t(om−1).

Let c be the sequence formed by the concatenation of p and p′ as follows:

c = (e1 = x, ...,en−1,en = y = o1, ...,om = x)

Given that p and p′ are RAF-paths and given that e1 = om = x then c is a RAF-closed-walk.
For all i ∈ {1, ...,n}, let ui = ei. For all i ∈ {2, ...,m}, let ui+n−1 = oi.

Let l = n+m−1. We have thus:

c = (u1 = x, ...,un = y, ...,ul = x) ∈ClosedWalkra f (RAF)

With this re-indexation of c, we can easily see that:

• x ∈ c and l ∈ {2, ..., l} s.t. ul = x

• y ∈ c and n ∈ {2, ..., l} s.t. un = y

• el−1 ∈ K as x = t(om−1) = t(ul−1)

• en−1 ∈ K as y = t(en−1) = t(un−1)

■

Proof of Proposition 34 on page 126. For any c ∈ClosedWalkra f (RAF), we have by definition: |U |>= 1.
If |U |= 1 then trivially U is included in some S ∈ SCCSra f (RAF). Let consider that |U |> 1. Let ei ∈U and
e j ∈U such that ei ̸= e j. Given that c ∈ClosedWalkra f (RAF), then following Proposition 33 on page 126
we have: ei ≡

RAF
e j. As a consequence, ei and e j belong to the same S ∈ SCCSra f (RAF). We prove so that:

U is included in some S ∈ SCCSra f (RAF). ■

254

The following lemma states that the source and the target of an attack (whose source is different from its
attack) belong to the same SCCra f iff there exists a RAF-path from the target to the source and whose before
last element is an attack:

Lemma 3. Let RAF = ⟨A,K,s, t⟩ be a RAF and let α ∈ K. The following proposition holds:

∃(e1 = t(α), ...,en = s(α)) ∈ Pathsra f (RAF) s.t. en−1 ∈ K

⇐⇒
t(α) ̸= s(α) and (t(α) and s(α) are in the same S ∈ SCCSra f (RAF))

Proof of Lemma 3. In two steps:

• Step 1:

∃(e1 = t(α), ...,en = s(α)) ∈ Pathsra f (RAF) s.t. en−1 ∈ K

=⇒
t(α) ̸= s(α) and (t(α) and s(α) are in the same S ∈ SCCSra f (RAF))

If there exists a RAF-path p = (e1 = t(α), ...,en = s(α)) ∈ Pathsra f (RAF) such that en−1 ∈ K, then
(by Definition 82 on page 123) t(α) ̸= s(α). Furthermore, c = (s(α),α,e1 = t(α), ...,en = s(α)) ∈
Cyclesra f (RAF) and c attacks s(α) and t(α). Following Proposition 34 on page 126, we have so:
t(α) ≡

RAF
s(α).

• Step 2:

t(α) ̸= s(α) and (t(α) and s(α) are in the same S ∈ SCCSra f (RAF))

=⇒
∃(e1 = t(α), ...,en = s(α)) ∈ Pathsra f (RAF) s.t. en−1 ∈ K

By definition, t(α) ≡
RAF

s(α) =⇒ ∃(e1 = t(α), ...,en = s(α)) ∈ Pathsra f (RAF) s.t. en−1 ∈ K.

From Steps 1 and 2, we prove Lemma 3. ■

The following lemma states implications over the different categories of attacks:

1. Self-attacking attacks (i.e. the target is the attack itself)

2. Attacks whose source is also their target

3. Non self-attacking attacks (including thus attacks in (2.))

4. Attacks whose source is different from their target (including thus attacks in (1.))

5. Non self-attacking attacks whose source is different from their target (intersection of (3.) and (4.))

Lemma 4. Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be its corresponding AF. Let (e1, ...,en)∈
Pathsra f (RAF) be a RAF-path. For any i ∈ {1, ...,n}:

1. ei ∈ K s.t. t(ei) = ei =⇒ ∃!c = (ei, ...,ei) ∈Cyclesa f (AF) and ∃(s(ei), ..., t(ei)) ∈ Pathsa f (AF)

255

2. ei ∈K s.t. t(ei) = s(ei) =⇒ ∃c = (s(ei), ...,s(ei))∈Cyclesa f (AF) and ∃!(ei, ..., t(ei))∈ Pathsa f (AF)

3. ei ∈K s.t. t(ei) ̸= ei =⇒


∃!(ei, ..., t(ei)) ∈ Pathsa f (AF)

and

(∃(s(ei), ..., t(ei)) ∈ Pathsa f (AF) or ∃(s(ei), ..., t(ei)) ∈Cyclesa f (AF))



4. ei ∈K s.t. t(ei) ̸= s(ei) =⇒


(∃!(ei, ..., t(ei)) ∈ Pathsa f (AF) or ∃!(ei, ..., t(ei)) ∈Cyclesa f (AF))

and

∃(s(ei), ..., t(ei)) ∈ Pathsa f (AF)


5. ei ∈ K s.t. t(ei) ̸= s(ei) and t(ei) ̸= ei ⇐⇒ ∃!(ei, ..., t(ei)) ∈ Pathsa f (AF) and ∃(s(ei), ..., t(ei)) ∈

Pathsa f (AF)

Proof of Lemma 4.

Assertion 1: ei ∈K s.t. t(ei)= ei =⇒ ∃!c=(ei, ...,ei)∈Cyclesa f (AF) and ∃(s(ei), ..., t(ei))∈Pathsa f (AF)
Let α ∈ K be an attack of RAF such that t(α) = α .

• According to the definition of Raf2Af (Definition 76 on page 115, see rules NotK , AndA,K , K′2, K′4 and
K′5), there is a walk in Raf2Af(AF) from α to t(α) which corresponds to the sequence of arguments:
(α , ¬α , s(α).α , t(α)). As t(α) =α then we have: (α,¬α,s(α).α,α)∈Cyclesa f (AF). Furthermore,
there exists an unique cycle whose first element is α . Indeed, by definition, an attack only has one
target.

• Likewise (see rules NotA, AndA,K , K′1, K′3 and K′5), there is a walk in Raf2Af(AF) from s(α) to t(α)
which corresponds the sequence of arguments: (s(α), ¬s(α), s(α).α , t(α)). Given that t(α) ̸= s(α),
this walk is a path. Notice that this path may not be the unique going from s(α) to t(α). Indeed it
could exists another attack whose source is s(α) and from which there exists a path to t(α).

Assertion 2: ei ∈K s.t. t(ei)= s(ei) =⇒ ∃c=(s(ei), ...,s(ei))∈Cyclesa f (AF) and ∃!(ei, ..., t(ei))∈Pathsa f (AF)
Let α ∈ K be an attack of RAF such that t(α) = s(α).

• According to the definition of Raf2Af (Definition 76 on page 115, see rules NotK , AndA,K , K′2, K′4 and
K′5), there is a walk in Raf2Af(AF) from α to t(α) which corresponds to the sequence of arguments:
(α , ¬α , s(α).α , t(α)). Given that t(ei) ̸= ei, this walk is a path. Furthermore, this path is the unique
going from α to t(α) as, by definition, an attack only has one target.

• Likewise (see rules NotA, AndA,K , K′1, K′3 and K′5), there is a walk in Raf2Af(AF) from s(α) to t(α)
which corresponds the sequence of arguments: (s(α), ¬s(α), s(α).α , t(α)). Given that t(α) = s(α),
this walk is a cycle. Notice that this cycle may not be the unique cycle whose first element is s(α).
Indeed it could exists another attack whose source is s(α) and from which there exists a cycle to s(α).

256

Assertion 3:

ei ∈K s.t. t(ei) ̸= ei =⇒


∃!(ei, ..., t(ei)) ∈ Pathsa f (AF)

and

(∃(s(ei), ..., t(ei)) ∈ Pathsa f (AF) or ∃(s(ei), ..., t(ei)) ∈Cyclesa f (AF))


Let α ∈ K such that t(α) ̸= α .

• According to the definition of Raf2Af (Definition 76 on page 115, see rules NotK , AndA,K , K′2, K′4 and
K′5), there is a walk in Raf2Af(AF) from α to t(α) which corresponds to the sequence of arguments:
(α , ¬α , s(α).α , t(α)). Given that t(α) ̸= α , this walk is a path. Furthermore, this path is the unique
path going from α to t(α) as, by definition, an attack only has one target.

We have thus:
α ∈ K s.t. t(α) ̸= α =⇒ ∃!(α, ..., t(α)) ∈ Pathsa f (AF) (18.85)

• Likewise (see rules NotA, AndA,K , K′1, K′3 and K′5), there is a walk in Raf2Af(AF) from s(α) to t(α)
which corresponds the sequence of arguments: (s(α), ¬s(α), s(α).α , t(α)). If t(α) ̸= s(α), then this
walk is a path. Otherwise it is a cycle. Notice that, in both cases, it may not be the unique path or
cycle going from s(α) to t(α). Indeed it could exists another attack whose source is s(α) and from
which there exists a path to t(α).

We have thus:

α ∈ K s.t. t(α) ̸= α =⇒ ∃(s(α), ..., t(α)) ∈ Pathsa f (AF) or ∃(s(α), ..., t(α)) ∈Cyclesa f (AF)
(18.86)

From Equations (18.85) and (18.86) we prove Assertion 3.

Assertion 4:

ei ∈ K s.t. t(ei) ̸= s(ei) =⇒


(∃!(ei, ..., t(ei)) ∈ Pathsa f (AF) or ∃!(ei, ..., t(ei)) ∈Cyclesa f (AF))

and

∃(s(ei), ..., t(ei)) ∈ Pathsa f (AF)


Let α ∈ K such that t(α) ̸= s(α).

• According to the definition of Raf2Af (Definition 76 on page 115, see rules NotK , AndA,K , K′2, K′4 and
K′5), there is a walk in Raf2Af(AF) from α to t(α) which corresponds to the sequence of arguments:
(α , ¬α , s(α).α , t(α)). If t(α) ̸= α , then this walk is a path. Otherwise, it is a cycle. Furthermore,
this path or cycle is the unique one going from α to t(α) as, by definition, an attack only has one
target.

We have thus:

α ∈ K s.t. t(α) ̸= α =⇒ ∃!(α, ..., t(α)) ∈ Pathsa f (AF) or ∃!(α, ..., t(α)) ∈Cyclesa f (AF) (18.87)

257

• Likewise (see rules NotA, AndA,K , K′1, K′3 and K′5), there is a walk in Raf2Af(AF) from s(α) to t(α)
which corresponds the sequence of arguments: (s(α), ¬s(α), s(α).α , t(α)). Given that t(α) ̸= s(α),
this walk is a path. Notice that it may not be the unique path going from s(α) to t(α). Indeed it could
exists another attack whose source is s(α) and from which there exists a path to t(α).

We have thus:
α ∈ K s.t. t(α) ̸= α =⇒ ∃(s(α), ..., t(α)) ∈ Pathsa f (AF) (18.88)

From Equations (18.87) and (18.88) on the previous page and on this page we prove Assertion 4.

Assertion 5: ei ∈ K s.t. t(ei) ̸= s(ei) and t(ei) ̸= ei ⇐⇒ ∃!(ei, ..., t(ei)) ∈ Pathsa f (AF) and ∃(s(ei), ...,
t(ei)) ∈ Pathsa f (AF)

Trivially Assertion 5 is deduced from Assertions 3 and 4. ■

The following lemma establishes the elementary link between RAF-paths and paths in the AF version of
a RAF:

Lemma 5. Let (e1, ...,en) ∈ Pathsra f (RAF).

1. For i ∈ {1, ...,n−2} (so n≥ 3), if ei ∈ A then ei+1 ∈ K and then there is a path in Raf2Af(AF) from
ei to ei+2.

2. For i ∈ {1, ...,n−1} (so n≥ 2), if ei ∈ K then there is a unique path in Raf2Af(AF) from ei to ei+1.

Proof of Lemma 5.
Assertion 1: For i ∈ {1, ...,n−2}, if ei ∈ A then ei+1 ∈ K and then there is a path in Raf2Af(AF) from ei to
ei+2.

Given that (e1, ...,en)∈Pathsra f (RAF) then ∀(i, j)∈ {1, ...,n}2 s.t. i ̸= j, ei ̸= e j. Furthermore, we have:
ei ∈ A =⇒ ei+1 ∈ K. As s(ei+1) = ei, we have: t(ei+1) ̸= s(ei+1). We also have: t(ei+1) ̸= ei+1. According
to Assertion 5 of Lemma 4 on page 255, we have then: ∃!(ei+1, ..., t(ei+1))∈ Pathsa f (AF) and ∃(s(ei+1), ...,
t(ei+1)) ∈ Pathsa f (AF). As s(ei+1) = ei and t(ei+1) = ei+2, we have thus: (ei, ...,ei+2) ∈ Pathsa f (AF).

Assertion 2: For i ∈ {1, ...,n−1}, if ei ∈ K then there is a unique path in Raf2Af(AF) from ei to ei+1.
Given that (e1, ...,en) ∈ Pathsra f (RAF) then ∀(i, j) ∈ {1, ...,n}2 s.t. i ̸= j, ei ̸= e j. Furthermore, we

have: ei ∈ K =⇒ t(ei) = ei+1. As t(ei) ̸= ei, we have following Assertion 3 of Lemma 4 on page 255:
∃!(ei, ...,ei+1) ∈ Pathsa f (AF). ■

Following Lemma 5, Lemma 6 deepens the link between RAF-paths and paths in the AF version of a
RAF:

Lemma 6. Let {e1, ...,en} ∈ Pathsra f (RAF) with n > 1. If en−1 ∈ K then there is a path in Raf2Af(RAF)
from e1 to en.

Proof of Lemma 6. If en−1 ∈ K, then according to Lemma 5 there is a path in Raf2Af(RAF) from en−1 to
en. Let prove this property for n > 2. Let e j ∈ A be the last argument of the RAF-path such that j ≤ n−2.
There are three cases to consider:

• Case 1: If there is no such e j then for i∈ {1, ...,n−2}, all ei are attacks. According to Lemma 5 (Item
2) there is thus a walk in Raf2Af(RAF) from e1 to en (i.e. the concatenation of the unique RAF-paths
from each ei to ei+1, for i = {1, . . . ,n− 1}). Furthermore, given that ∀(l,k) ∈ {1, ...,n}2 s.t. l ̸= k,
el ̸= ek, this walk is thus a path.

258

• Case 2: Else if n = 3 and e j = e1, then according to Lemma 5 on the previous page (Item 1) there is
thus a path in Raf2Af(RAF) from e1 to e3.

• Case 3: Else (i.e. n > 3 and there exists such e j), then according to Lemma 5 on the previous page
(Item 1) there is a path in Raf2Af(RAF) from e j to e j+2. Furthermore given that for i ∈ { j+1, ...,n−
1}, all ei are attacks and given that ∀(l,k) ∈ {1, ...,n}2 s.t. l ̸= k, el ̸= ek, there is thus a path in
Raf2Af(RAF) from e j to en.

If we are in Case 3, then e j−1 ∈ K and according to Lemma 5 on the previous page (Item 2) there is a
path in Raf2Af(RAF) from e j−1 to e j. By replacing n by j, by applying iteratively Case 1, 2 or 3, and by
considering that ∀(l,k) ∈ {1, ...,n}2 s.t. l ̸= k, el ̸= ek, we end up with the conclusion that: if en−1 ∈ K then
there is a path in Raf2Af(RAF) from e1 to en. ■

Note: We cannot apply this lemma for RAF-path of length 2 with an argument as first element (a,α) due to
the condition “if en−1 ∈ K”.

Following Lemmas 5 and 6 on the previous page, Lemma 7 establishes the general relation between
RAF-paths and paths in the AF version of a RAF with the following equivalence:

Lemma 7. Let RAF = ⟨A,K,s, t⟩ be a RAF and let AF = Raf2Af(RAF) be its corresponding AF. The
following property holds:

∃p′ = (x, ...,y) ∈ Pathsa f (AF) s.t. (x,y) ∈ (A∪K)2

⇐⇒
∃p = (x = e1, ...,y = en) ∈ Pathsra f (RAF) s.t. en−1 ∈ K

Proof of Lemma 7. In two steps:

Step 1: Let prove that:

∃p′ = (x, ...,y) ∈ Pathsa f (AF) s.t. (x,y) ∈ (A∪K)2

=⇒
∃p = (x = e1, ...,y = en) ∈ Pathsra f (RAF) s.t. en−1 ∈ K

Let p′ = (x = o1, ...,y = om) ∈ Pathsa f (AF) s.t. (x,y) ∈ (A∪K)2. Let consider two cases :

• Case 1: If o1 ∈ A then according to the definition of Raf2Af, we have:

• o2 ∈ NotA and o2 = ¬o1

• o3 ∈ AndA,K and o3 = o1.α with α ∈ K and s(α) = o1

• o4 ∈ (A∪K) and o4 = t(α)

• (α,¬α) ∈ K′

• (¬α,o1.α) ∈ K′

As a consequence, in RAF , we have: α ∈ K s.t. s(α) = o1 and t(α) = o4.

• Case 2: Now, if o1 ∈ K then according to the definition of Raf2Af, we have:

259

• o2 ∈ NotK and o2 = ¬o1

• o3 ∈ AndA,K and o3 = s(o1).o1

• o4 ∈ (A∪K) and o4 = t(o1)

• (s(o1),¬s(o1)) ∈ K′

• (¬s(o1),s(o1).o1) ∈ K′

As a consequence, in RAF , we have: o1 ∈ K s.t. t(o1) = o4.

In both cases o4 ∈ (A∪K) and o1 ̸= o4 and there is a RAF-path in RAF from o1 to o4, that is whether
{o1,α,o4} or {o1,o4}. Let l be the length of the one or the other path, that is 3 in the first case and 2 in the
second one. We have so el−1 = α or el−1 = o1. In both cases we have: el−1 ∈ K.

If o4 = en then the property holds: there exists a RAF-Path from x to y attacking y. That is, the before
last element of this RAF-Path is an attack whose target is y (i.e. el−1).

Otherwise, by replacing o1 by o4 in the two cases studied above and by applying them iteratively until
o4 = en, we can obtain a well formed RAF-path4 p= {x = e1, ...,y= en} from x to y. Furthermore, en−1 ∈K.

We prove so that:

∃p′ = (x, ...,y) ∈ Pathsa f (AF) s.t. (x,y) ∈ (A∪K)2

=⇒
∃p = (x = e1, ...,y = en) ∈ Pathsra f (RAF) s.t. en−1 ∈ K

Step 2: Let prove that:

∃p = (x = e1, ...,y = en) ∈ Pathsra f (RAF) s.t. en−1 ∈ K

=⇒
∃p′ = (x, ...,y) ∈ Pathsa f (AF) s.t. (x,y) ∈ (A∪K)2

Let p = (x = e1, ...,y = en) ∈ Pathsra f (RAF) s.t. en−1 ∈ K. According to Lemma 6 on page 257: ∃p′ =
(x, ...,y) ∈ Pathsa f (AF). Furthermore, (x,y) ∈ (A∪K)2.

We prove from Step 1 and Step 2 that Lemma 7 on the previous page holds. ■

Lemma 8. Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be the AF corresponding to RAF . Let
S ∈ SCCSa f (AF) and x ∈ A∪K. The following property holds:

|S|> 1 and x ∈ S ⇐⇒ |S|> 1 and ¬x ∈ S

Proof of Lemma 8. In two steps:

• Step 1: |S|> 1 and x ∈ S =⇒ |S|> 1 and ¬x ∈ S

If |S| > 1 and x ∈ S then there exists x′ ∈ S such that x ̸= x′. There is thus a path from x to x′ and a
path from x′ to x. It follows that there is a cycle from x to x. Let c ∈Cyclesa f (AF) be such a cycle.
According to the definition of Raf2Af, for any x ∈ A∪K, the only argument attacked by x is ¬x. As a
consequence, we have: ¬x ∈ c and so: ¬x ∈ S.

4The RAF-path p is indeed well formed because at each iteration we obtain whether: {o1,α,o4} s.t. o1 ∈ A,α ∈K and o4 ∈ (A∪K)
or: {o1,o4} s.t. o1 ∈ K and o4 ∈ (A∪K). This implies so that there cannot be two consecutive arguments in p.

260

• Step 2: |S|> 1 and ¬x ∈ S =⇒ |S|> 1 and x ∈ S

If |S|> 1 and ¬x ∈ S then there exists x′ ∈ S such that ¬x ̸= x′. There is thus a path from ¬x to x′ and
a path from x′ to ¬x. It follows that there is a cycle from ¬x to ¬x. Let c ∈Cyclesa f (AF) be such a
cycle. According to the definition of Raf2Af, for any ¬x ∈ NotA∪NotK , the only argument attacking
¬x is x. As a consequence, we have: x ∈ c and so: x ∈ S.

From Steps 1 and 2, we prove that: |S|> 1 and x ∈ S ⇐⇒ |S|> 1 and ¬x ∈ S ■

Lemma 9. Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be the AF corresponding to RAF . Let
S ∈ SCCSa f (AF) and α ∈ K. The following property holds:

s(α) ∈ S and t(α) ∈ S ⇐⇒ ¬s(α) ∈ S and s(α).α ∈ S and ¬t(α) ∈ S

Proof of Lemma 9. In two steps:

• Step 1: s(α) ∈ S and t(α) ∈ S =⇒ ¬s(α) ∈ S and s(α).α ∈ S and ¬t(α) ∈ S

If s(α) ∈ S and t(α) ∈ S then according to the definition of Raf2Af, there exists a path from t(α) to
s(α) whose second element is¬t(α) and a path from s(α) to t(α) which is (s(α),¬s(α),s(α).α, t(α)).
Let c∈Cyclesa f (AF) be the cycle formed by merging both paths. Given that: ¬s(α)∈ c and s(α).α ∈
c and ¬t(α) ∈ c, we also have: ¬s(α) ∈ S and s(α).α ∈ S and ¬t(α) ∈ S.

• Step 2: ¬s(α) ∈ S and s(α).α ∈ S and ¬t(α) ∈ S =⇒ s(α) ∈ S and t(α) ∈ S

Given that |S|> 1, then according to Lemma 8 on the previous page, we have:

¬t(α) ∈ S =⇒ t(α) ∈ S and ¬s(α) ∈ S =⇒ s(α) ∈ S

From Steps 1 and 2, we prove that Lemma 9 holds. ■

Lemma 10. Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be the AF corresponding to RAF .
Let S ∈ SCCSa f (AF) and x ∈ A∪K. The following properties holds:

1. |S|> 1 and x ∈ S ⇐⇒ |S|> 1 and ∃α ∈ K s.t. t(α) = x and s(α).α ∈ S

2. |S|> 1 and x ∈ S =⇒ |S|> 1 and ∃α ∈ K s.t. t(α) = x and (s(α) ∈ S or α ∈ S)

Proof of Lemma 10.

Assertion 1: |S|> 1 and x ∈ S ⇐⇒ |S|> 1 and ∃α ∈ K s.t. t(α) = x and s(α).α ∈ S

• Step 1: |S|> 1 and x ∈ S =⇒ |S|> 1 and ∃α ∈ K s.t. t(α) = x and s(α).α ∈ S

If |S| > 1 and x ∈ S then there exists x′ ∈ S such that x ̸= x′. There is thus a path from x to x′ and a
path from x′ to x. It follows that there is a cycle from x to x. Let c ∈Cyclesa f (AF) be such a cycle.
According to the definition of Raf2Af, x can only be attacked by arguments in AndA,K . There exists
thus an attack α ∈ K such that t(α) = x and s(α).α ∈ c. As a consequence, we have: s(α).α ∈ S.

• Step 2: |S|> 1 and ∃α ∈ K s.t. t(α) = x and s(α).α ∈ S =⇒ |S|> 1 and x ∈ S

If |S| > 1 and s(α).α ∈ S then there exists x′ ∈ S such that s(α).α ̸= x′. There is thus a path from
s(α).α to x′ and a path from x′ to s(α).α . It follows that there is a cycle from s(α).α to s(α).α . Let
c ∈Cyclesa f (AF) be such a cycle. According to the definition of Raf2Af, the only argument attacked
by s(α).α is t(α) = x. As a consequence, we have: x ∈ S.

261

Assertion 2: |S|> 1 and x ∈ S =⇒ |S|> 1 and ∃α ∈ K s.t. t(α) = x and (s(α) ∈ S or α ∈ S)
According to the proof of Assertion 1, given that |S|> 1 and x ∈ S, ∃α ∈ K s.t. t(α) = x and there exists

a cycle c = (x, ...,x) ∈ Cyclesa f (AF) such that s(α).α ∈ c. Given that s(α).α is attacked by only two
arguments: ¬α and ¬s(α), and so, defended by: α and s(α), we have:

(s(α) and ¬s(α) ∈ c) or (α and ¬α ∈ c)

We have so :
s(α) ∈ S or α ∈ S (18.89)

■

Note: Assertion 2 of Lemma 10 on the previous page is only an implication and not an equivalence. See
Example 91 for a counter example.

ab
β

γ

xα

(a) A RAF

a

¬a a.α

¬α

α

x

¬x

a.γb

¬b

b.β¬β

β

¬γ γ

(b) Flattened version of the RAF in Figure 18.1(a)

Figure 18.1: Counter example illustration

Example 91. Let RAF = ⟨A,K,s, t⟩ and AF = Raf2Af(RAF) be respectively the RAF and the AF illustrated
in Figure 18.1. Let S = {a,¬a,a.γ,b,¬b,b.β}. We have: S ∈ SCCSa f (AF), |S|> 1 and ∃α ∈ K s.t. t(α) =
x and (s(α) ∈ S or α ∈ S) however x /∈ S.

Proof of Proposition 35 on page 129. In two steps:

• Step 1:
If U is included is some S ∈ SCCSra f (RAF)

then
U is included in some S′ ∈ SCCSa f (Raf2Af(RAF))

Let S ∈ SCCSra f (RAF) and U ⊆ S. If |S| = 1 then trivially x ∈ S belongs to a unique SCC of
Raf2Af(RAF). Otherwise (i.e. if |S| > 1), according to the definition of SCCra f (Definition 87 on

262

page 125), for any couple (x,y) ∈ S2 s.t. x ̸= y there is a RAF-path from x to y in which y is attacked
and a RAF-path from y to x in which x is attacked.

Following Lemma 6 on page 257, there is thus a path from x to y and a path from y to x in Raf2Af(RAF).
As a consequence x and y are in the same SCC of Raf2Af(RAF). It follows that any element of S
belongs to the same SCC.

We prove so that if U is included is some S ∈ SCCSra f (RAF) then U is included in some S′ ∈
SCCSa f (Raf2Af(RAF)).

• Step 2:
If U is included is some S′ ∈ SCCSa f (Raf2Af(RAF))

then
U is included in some S ∈ SCCSra f (RAF)

Let S′ ∈ SCCSa f (Raf2Af(RAF)) and U ⊆ S′. If |S′| = 1 then trivially x ∈ S′ belongs to an unique
SCCra f of RAF . Otherwise (i.e. if |S′| > 1), according to the definition of SCCa f , for any couple
(x,y) ∈ S′2 s.t. x ̸= y there is a path from x to y and a path from y to x. It is particularly the case for
any couple (x,y) ∈U2.

Following Lemma 7 on page 258, there is thus a RAF-path: (x = e1, ...,y = en) ∈ Pathsra f (RAF) s.t.
en−1 ∈ K and another one: (y = o1, ...,x = om) ∈ Pathsra f (RAF) s.t. om−1 ∈ K. As a consequence:
(x,y) ∈ PEra f .

We prove so that U ⊆ S with S being some SCCra f of RAF .

We prove from Case 1 and Case 2 that Proposition 35 on page 129 holds. ■

Proof of Proposition 36 on page 129. Let RAF = ⟨A,K,s, t⟩ be a RAF, S ⊆ A∪K be a subset of elements
of RAF and AF = Raf2Af(RAF) be the corresponding AF of RAF .

Step 1: Let prove that:

S ∈ SCCSra f (RAF)

=⇒

S ∪

{¬a ∈ NotA|a ∈ S and (|S|> 1 or (∃α ∈ K s.t. s(α) = a and t(α) = a))} ∪

{¬α ∈ NotK |α ∈ S and (|S|> 1 or t(α) = α)} ∪

{s(α).α ∈ AndA,K |α ∈ S and (|S|> 1 or t(α) = α)} ∪

{s(α).α ∈ AndA,K |s(α) ∈ S and t(α) ∈ S}


∈ SCCSa f (Raf2Af(RAF))

If S ∈ SCCSra f (RAF) then, according to Proposition 35 on page 129, S is included in some S′ ∈
SCCSa f (AF). If S′ ∈ SCCSa f (AF) then, according to Proposition 35 on page 129, S′ ∩ (A∪K) ⊆ S. We
have so: S′ \S⊆ (NotA∪NotK ∪AndA,K).

263

Let S ∈ SCCSra f (RAF) and let S′ ∈ SCCSa f (AF) be the SCC such that S ⊆ S′ and S′ \ S ⊆ (NotA ∪
NotK ∪AndA,K).

1. Let consider the case where |S|= 1. Let x ∈ S.

• Let x ∈ A.

– Let suppose that there exists a RAF-closed-walk p=(x, ...,en−1,x)∈ClosedWalkra f (RAF).
Given that x∈ A then we have: en−1 ∈K and t(en−1) = x, e2 ∈K and s(e2) = x. If the length
of p is greater than three this means that there exists ei ∈ p for some i ∈ J3,n−1K such that
ei−1 ∈ K and so t(ei−1) = ei. Given that p is a RAF-closed-walk and that both x and ei are
attacked in p then following Proposition 34 on page 126, we have: ei ∈ S, which contra-
dicts: |S| = 1. As a consequence, if such RAF-closed-walk exists it must be the case that
its length equals three, as x ∈ A. We have so : p = (x,α,x). There exists thus α ∈ K such
that s(α) = x and t(α) = x. As s(α) ∈ S and t(α) ∈ S, we have according to Lemma 9 on
page 260: ¬x ∈ S′ and x.α ∈ S′. Furthermore, given that |S|= 1, there is no y ∈ A∪K such
that x ̸= y and x ≡

RAF
y. As a consequence, we have: S′ = {x,¬x,x.α}. We finally have:

S′ =



S ∪

{¬a ∈ NotA|a ∈ S and (|S|> 1 or (∃α ∈ K s.t. s(α) = a and t(α) = a))} ∪

{¬α ∈ NotK |α ∈ S and (|S|> 1 or t(α) = α)} ∪

{s(α).α ∈ AndA,K |α ∈ S and (|S|> 1 or t(α) = α)} ∪

{s(α).α ∈ AndA,K |s(α) ∈ S and t(α) ∈ S}


(18.90)

– If there is no RAF-closed-walk p∈ClosedWalkra f (RAF) from x to x then, there is no attack
α ∈ K such that s(α) = x and t(α) = x. We have thus: S′ = S = {x} and Equation (18.90)
holds.

• Let x ∈ K.

– Let suppose that there exists a RAF-closed-walk p= (x, ...,en−1,x)∈ClosedWalkra f (RAF)
from x to x such that en−1 ∈ K. As x in K, e2 and x are attacked by p. As a consequence,
we have x ≡

RAF
e2. This equivalence contradicts |S| = 1, except if n = 2 and x = e2. As a

consequence, we have: p = (x,x). We have so: t(x) = x. According to the definition of
Raf2Af, there exists a cycle in AF from x to x which is (x,¬x,s(x).x,x). We have thus:
¬x ∈ S′ and s(x).x ∈ S′. As there is no y ∈ A∪K such that x ̸= y and x ≡

RAF
y (i.e. |S|= 1) and

as x ∈ S and t(x) = x, we finally have: S′ = {x,¬x,s(x).x} and Equation (18.90) holds.
– If there is no RAF-closed-walk p ∈ ClosedWalkra f (RAF) from x to x then: t(x) ̸= x. We

have thus: S′ = S = {x} and Equation (18.90) holds.

2. Let consider the case where |S|> 1.

• Let a ∈ A be an argument in RAF .

264

Given that S⊆ S′, we have, according Lemma 8 on page 259, the following property:

|S|> 1 and a ∈ S ⇐⇒ |S|> 1 and ¬a ∈ S′ (18.91)

• Let α ∈ K be an attack in RAF . We have to cases to consider: α ∈ S and α /∈ S.
– Let α ∈ S. As |S| > 1, then α is equivalent to another element of RAF w.r.t. PEra f , which

is also in S. There is thus, following Proposition 33 on page 126, a RAF-closed-walk c =
(e1 = α, ...,en = α) ∈ClosedWalkra f (RAF) such that n > 2. Following Proposition 34 on
page 126, all elements of U = {ei ∈ c|i∈ {2, ...,n} s.t. ei−1 ∈K} belong to the same SCCra f .
We have thus: e2 = t(α)∈ S. Given that α ∈ S and t(α)∈ S, we also have: α ∈ S′ and t(α)∈
S′. Furthermore, according to the definition of Raf2Af, we have: (α,¬α,s(α).α, t(α)) ∈
Walksa f (AF). Notice that if t(α) = α then it must be the case that: c = (α,α) according
to the definition of RAF-closed-walk. This contradicts n > 2. As a consequence, we have:
t(α) ̸= α and so: (α,¬α,s(α).α, t(α)) ∈ Pathsa f (AF). α and t(α) being in the same
SCCa f of AF , there is also a path from t(α) to α in AF . Given that there is a path from
t(α) to α in AF and that (α,¬α,s(α).α, t(α)) ∈ Pathsa f (AF), we have: ¬α , s(α).α and
α being equivalent w.r.t. PEa f . As a consequence we have: ¬α ∈ S′ and s(α).α ∈ S′. The
following property holds then:

|S|> 1 and α ∈ S∩K =⇒ ¬α ∈ S′ and s(α).α ∈ S′ (18.92)

– Let α /∈ S. Let consider two cases: (s(α) ∈ S and t(α) ∈ S), (s(α) /∈ S or t(α) /∈ S).

* Let suppose that s(α) ∈ S and t(α) ∈ S. We have thus s(α) ∈ S′ and t(α) ∈ S′. Follow-
ing to Lemma 9 on page 260, the following property then holds:

α ∈ K \S s.t. s(α) ∈ S and t(α) ∈ S =⇒ ¬s(α) ∈ S′ and s(α).α ∈ S′ (18.93)

* Let suppose that s(α) /∈ S or t(α) /∈ S. We have thus: s(α) /∈ S′ or t(α) /∈ S′.
Let x be whether s(α) or t(α) and let suppose that x /∈ S′. As |S| > 1 and S ⊆ S′ then
we have: |S′|> 1. As x /∈ S′, we also have according to Lemma 8 on page 259: ¬x /∈ S′.
As consequence, the two following properties hold:

|S|> 1 and α ∈ K \S s.t. s(α) /∈ S =⇒ ¬s(α) /∈ S′ (18.94)

|S|> 1 and α ∈ K \S s.t. t(α) /∈ S =⇒ ¬t(α) /∈ S′ (18.95)

Let consider two cases: s(α) /∈ S′ and t(α) /∈ S′.
· Let t(α) /∈ S′. According to Lemma 10 on page 260 (Assertion 1), we have:

|S′|> 1 and t(α) ∈ S′ ⇐⇒ |S′|> 1 and ∃β ∈ K s.t. t(β) = t(α) and s(β).β ∈ S′

The negation of this equivalence is the following:

|S′| ≤ 1 or t(α) /∈ S′ ⇐⇒ |S′| ≤ 1 or (∄β ∈ K s.t. t(β) = t(α) and s(β).β ∈ S′)

Given that |S′|> 1, we have:

t(α) /∈ S′ ⇐⇒ ∄β ∈ K s.t. t(β) = t(α) and s(β).β ∈ S′

Given that t(α) /∈ S′, we have thus:

∄β ∈ K s.t. t(β) = t(α) and s(β).β ∈ S′

265

That particularly holds for β = α and so, as a consequence, we have:

s(α).α /∈ S′

The following property holds then:

|S|> 1 and α /∈ S and t(α) /∈ S =⇒ s(α).α /∈ S′ (18.96)

· Let s(α) /∈ S′. We have: |S′| > 1, α /∈ S′ and s(α) /∈ S′. Given that the case where
t(α) /∈ S has already been treated with Equation (18.96), let consider the case where
t(α) ∈ S and so t(α) ∈ S′.
If t(α) is not in the same SCCa f as s(α), then there is no cycle c ∈ Cyclesa f (AF)
going from t(α) to t(α) such that s(α) ∈ c. Likewise, if t(α) is not in the same
SCCa f as α means that there is no cycle c ∈Cyclesa f (AF) going from t(α) to t(α)
such that α ∈ c.
Following the definition of Raf2Af, there exist a walk from s(α) to t(α) which is
(s(α),¬s(α),s(α).α, t(α)) and a walk from α to t(α) which is (α,¬α,s(α).α,
t(α)).
As a consequence, there is no cycle c = (t(α), ..., t(α)) ∈ Cyclesa f (AF) such that
s(α).α ∈ c. We have thus: s(α).α /∈ S′.
The following property holds then:

|S|> 1 and α /∈ S and s(α) /∈ S =⇒ s(α).α /∈ S′ (18.97)

From Equations (18.96) and (18.97), we have thus:

|S|> 1 and α ∈ K \S and (s(α) /∈ S or t(α) /∈ S) =⇒ s(α).α /∈ S′ (18.98)

From Proposition 35 and Equations (18.91) to (18.95) and (18.98) on page 129 and on pages 264–265,
we prove to that if |S|> 1 then Equation (18.90) on page 263 holds.

From Cases 1 and 2, we prove so that:

S ∈ SCCSra f (RAF)

=⇒

S ∪

{¬a ∈ NotA|a ∈ S and (|S|> 1 or (∃α ∈ K s.t. s(α) = a and t(α) = a))} ∪

{¬α ∈ NotK |α ∈ S and (|S|> 1 or t(α) = α)} ∪

{s(α).α ∈ AndA,K |α ∈ S and (|S|> 1 or t(α) = α)} ∪

{s(α).α ∈ AndA,K |s(α) ∈ S and t(α) ∈ S}


∈ SCCSa f (Raf2Af(RAF))

266

Step 2: Let S′ =



S ∪

{¬a ∈ NotA|a ∈ S and (|S|> 1 or (∃α ∈ K s.t. s(α) = a and t(α) = a))} ∪

{¬α ∈ NotK |α ∈ S and (|S|> 1 or t(α) = α)} ∪

{s(α).α ∈ AndA,K |α ∈ S and (|S|> 1 or t(α) = α)} ∪

{s(α).α ∈ AndA,K |s(α) ∈ S and t(α) ∈ S}


and

let prove that:
S′ ∈ SCCSa f (Raf2Af(RAF)) =⇒ S ∈ SCCSra f (RAF)

If S′ ∈ SCCSa f (AF) then, according to Proposition 35 on page 129, S′∩ (A∪K) is included in the same
SCCra f . We have thus: S′∩ (A∪K)⊆V ∈ SCCSra f (RAF). Let suppose that there exists an element x such
that x ∈ V \ (S′ ∩ (A∪K)). As V ∈ SCCSra f (RAF) then according to Proposition 35 on page 129, V is
included in some SCCa f of AF . As ∃z ∈V s.t. z ∈ S′ then the SCCa f in which V is included is S′. We have
thus: x ∈ S′. Furthermore given that S′∩ (A∪K)⊆V , we have so: x ∈ S′∩ (NotA∪NotK ∪AndA,K). Given
that x ∈V then we also have: x ∈ (A∪K). Contradiction.

As a consequence such an element x does not exist. We have so: S =V .
We prove so that:

S′ ∈ SCCSa f (Raf2Af(RAF)) =⇒ S ∈ SCCSra f (RAF)

From Steps 1 and 2, we prove that Proposition 36 on page 129 holds. ■

Proofs of Section 14.2: RAF hierarchy
Proof of Proposition 37 on page 132.

1. By definition, ≼ is reflexive.

2. Let prove that ≼ is antisymmetric.

Let suppose that S ̸= S′, S ≼ S′ and S′ ≼ S. If S ≼ S′ then, as S ̸= S′, we have: ∃(e1, ...,en−1,en) ∈
Pathsra f (RAF) s.t. e1 ∈ S and en ∈ S′ and en−1 ∈ K. Likewise, if S′ ≼ S then, as S ̸= S′, we have:
∃(o1, ...,om−1,om) ∈ Pathsra f (RAF) s.t. o1 ∈ S′ and om ∈ S and om−1 ∈ K. As all elements of S (resp.
S′) are equivalent w.r.t. PEra f , we have as a consequence: ∀x ∈ S,∀x′ ∈ S′, (x,x′) ∈ PEra f (RAF).
Given that S and S′ are SCCra f and thus are equivalence class of elements under the relation PEra f ,
then we have: S = S′ which is a contradiction.

We prove so that:
(S ≼ S′ and S′ ≼ S) =⇒ S = S′

3. Let prove that ≼ is transitive.

Let S1,S2,S3 be three SCCra f and let S1 ≼ S2 and S2 ≼ S3. Let prove that S1 ≼ S3.

Trivially, if S1 = S2 or S2 = S3 then S1 ≼ S3. Let consider the case where S1 ̸= S2 and S2 ̸= S3.

If S1 ≼ S2 then, as S1 ̸= S2, we have: ∃(e1, ...,en−1,en) ∈ Pathsra f (RAF) s.t. e1 ∈ S1 and en ∈ S2 and
en−1 ∈ K. Likewise, if S2 ≼ S3 then, as S2 ̸= S3, we have: ∃(o1, ...,om−1,om) ∈ Pathsra f (RAF)
s.t. o1 ∈ S2 and om ∈ S3 and om−1 ∈ K.

267

• If en = o1 then we have: (e1, ...,en−1,en = o1, ...,om−1,om) ∈ Pathsra f (RAF). As e1 ∈ S1 and
om ∈ S3, we have: S1 ≼ S3.

• Otherwise, if en ̸= o1 then we have: |S2| > 1. Given that (en,o1) ∈ PEra f (RAF) then: ∃(en =
x1, ...,xp−1,xp = o1)∈Pathsra f (RAF) s.t. xp−1 ∈K and xp = o1. As a consequence: (e1, ...,en−1,
en = x1, ...,xp−1,xp = o1, ...,om−1,om) ∈ Pathsra f (RAF). We have thus: S1 ≼ S3.

We prove so that:
(S1 ≼ S2 and S2 ≼ S3) =⇒ S1 ≼ S3

From Steps 1, 2 and 3, we prove so that ≼ is a partial order. ■

Proof of Proposition 38 on page 132. Let p = (e1, ...,en−1,en) ∈ Pathsra f (RAF) such that e1 ∈ S and en ∈
S′ and en−1 ∈ K. Let suppose that there exists ei ∈ p∩K such that t(ei) /∈ (S∪ S′). If t(ei) /∈ (S∪ S′), we
have thus t(ei) ̸= en. Let V ∈ SCCSra f (RAF) be the SCCra f such that t(ei) ∈V . Given that (e1, ...,ei,ei+1 =
t(ei)) ∈ Pathsra f (RAF), e1 ∈ S and t(ei) ∈ V , we have then: S ≼ V . Furthermore, given that t(ei) ̸= en we
have: (ei+1 = t(ei), ...,en) ∈ Pathsra f (RAF). As t(ei) ∈ V , en ∈ S′, en−1 ∈ K then we have: V ≼ S′. Given
that S ≼V and V ≼ S′ then S is not a predecessor of S′, which is a contradiction. We prove so that:

∀i ∈ {1, ...,n},ei ∈ p∩K =⇒ t(ei) ∈ (S∪S′)

■

Proof of Proposition 39 on page 133. Given that the notion of predecessor, as defined, proceed from the
relation ≼, which is a partial order, then trivially Dagscc(RAF) is acyclic. ■

Proofs of Section 14.3: RAF semantics decomposability
Lemma 11. Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be the corresponding AF of RAF
(with AF = ⟨A′,K′⟩). Let Ω be a partition of (A∪K) and Ω′ ∈SD-ra f -c(AF) be the RAF-compliant partition
of A′ corresponding to Ω, i.e. Ω′ = {ω ′ = ω ∪{¬x|x ∈ ω}∪{s(α).α ∈ AndA,K |α ∈ ω}|ω ∈Ω}. Let ω ∈Ω

and ω ′ ∈Ω′ be its counterpart in AF . Let R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
be the partial RAF corresponding to ω . Let

I=
〈
Sinp,Qinp

〉
be the input elements of R̃AF and Linp be a structure labelling of them. Let

〈
R̃AF ,I,Linp

〉
be a RAF with input and

〈
AF ↓ω ′ ,J ,ℓ

J ,KJ

〉
be its corresponding AF with input, as defined in Definition 105

on page 155. Let R̃AF s =
〈
Ãs, K̃s,ss, ts

〉
be the standard of

〈
R̃AF ,I,Linp

〉
and let std-AF = ⟨A′s,K′s⟩ be the

standard AF corresponding to
〈

AF ↓ω ′ ,J ,ℓ
J ,KJ

〉
. Let R̃AF

′
s = Raf2Af(R̃AF s) be the corresponding AF

of R̃AF s (with R̃AF
′
s =
〈
Ã′s, K̃

′
s
〉
). The following assertions hold:

1. J ⊆ (NotA∪AndA,K)

2. (¬s(α),s(α).α) ∈ K̃′s∪K′s s.t. s(α).α ∈ ω ′ and ¬s(α) /∈ ω ′ =⇒ s(α) ∈ Sinp

3. (s(α).α, t(α)) ∈ K̃′s∪K′s s.t. s(α).α /∈ ω ′ and t(α) ∈ ω ′ =⇒ α ∈ Qinp

4. (x,y) ∈ K̃′s∪K′s s.t. y ∈ ω ′ =⇒ x ∈ ω ′∪ J

Note: In order to follow easily the following proofs, here is a reminder of some set relations:

268

• Considering the definition of R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
, R̃AF s =

〈
Ãs, K̃s,ss, ts

〉
, R̃AF

′
s =
〈
Ã′s, K̃

′
s
〉

and the
definition of Raf2Af, we have:

– Ã = A∩ω = Ãs∩ω

– K̃ = K∩ω = K̃s∩ω

– Ãs∪ K̃s∪NotÃs
∪NotK̃s

∪AndÃs,K̃s
= Ã′s

• Considering the definitions of AF = ⟨A′,K′⟩,
〈

AF ↓ω ′ ,J ,ℓ
J ,KJ

〉
, std-AF = ⟨A′s,K′s⟩ and the defini-

tion of Raf2Af, we have:

– A∪K∪NotA∪NotK ∪AndA,K = A′

– ω ′ = A′∩ω ′ = A′s∩ω ′

Proof of Lemma 11 on the previous page.
Assertion 1: J ⊆ (NotA∪AndA,K)
Trivial considering Definition 105 on page 155.

Assertion 2: (¬s(α),s(α).α) ∈ K̃′s∪K′s s.t. s(α).α ∈ ω ′ and ¬s(α) /∈ ω ′ =⇒ s(α) ∈ Sinp

Let consider two cases: (¬s(α),s(α).α) ∈ K̃′s and (¬s(α),s(α).α) ∈ K′s.

• Case 1: Let consider R̃AF
′
s and let (¬s(α),s(α).α) ∈ K̃′s s.t. s(α).α ∈ ω ′ and ¬s(α) /∈ ω ′.

Given that s(α).α ∈ Ã′, we have following the definition of Raf2Af: α ∈ K̃s. α is an attack of the
standard RAF R̃AF

′
s. Furthermore, given that s(α).α ∈ω ′, that Ω′ ∈SD-ra f -c(RAF) and that ω ′ ∈Ω′,

we have so: α ∈ ω ′ and ¬α ∈ ω ′. As α ∈ K̃s ∩ω ′, then we have: α ∈ K̃. α is thus an element of
R̃AF . Furthermore, as ¬s(α) /∈ ω ′, we have: s(α) /∈ ω ′. As a consequence, s(α) is not an element of
R̃AF . Given that s(α) /∈ R̃AF and α ∈ R̃AF , we have so: s(α) ∈ Sinp.

• Case 2: Let consider std-AF and let (¬s(α),s(α).α) ∈ K′s s.t. s(α).α ∈ ω ′ and ¬s(α) /∈ ω ′.

Given that s(α).α ∈ A′s, we have following the definition of Raf2Af: α ∈ K. α is an attack of the
original RAF RAF . Given that s(α).α ∈ ω ′, that Ω′ ∈SD-ra f -c(RAF) and that ω ′ ∈ Ω′, we have so:
α ∈ ω ′ and ¬α ∈ ω ′. As α ∈ K ∩ω ′, we have: α ∈ R̃AF . Furthermore, as ¬s(α) /∈ ω ′, we have:
s(α) /∈ ω ′. As a consequence, s(α) is not an element of R̃AF . Given that s(α) /∈ R̃AF and α ∈ R̃AF ,
we have so: s(α) ∈ Sinp.

From Cases 1 and 2, we prove so that Assertion 2 holds.

Assertion 3: (s(α).α, t(α)) ∈ K̃′s∪K′s s.t. s(α).α /∈ ω ′ and t(α) ∈ ω ′ =⇒ α ∈ Qinp

• Case 1: Let consider R̃AF
′
s and let (s(α).α, t(α)) ∈ K̃′s s.t. s(α).α /∈ ω ′ and t(α) ∈ ω ′.

Given that s(α).α ∈ Ã′, we have following the definition of Raf2Af: α ∈ K̃s. α is an attack of the
standard RAF R̃AF

′
s. Given that t(α) ∈ ω ′ and that α ∈ K̃s, we have so: t(α) ∈ Ãs∪ K̃s. As a conse-

quence and as t(α) ∈ ω ′, we have: t(α) ∈ Ã∪ K̃. Given that s(α).α /∈ ω ′, that Ω′ ∈SD-ra f -c(RAF)
and that ω ′ ∈ Ω′, we have so: α /∈ ω ′ and ¬α /∈ ω ′. As a consequence, we have α /∈ K̃. As t(α)

belongs to R̃AF and α does not belong to R̃AF , We have: α ∈ Qinp.

269

• Case 2: Let consider std-AF and let (s(α).α, t(α)) ∈ K′s s.t. s(α).α /∈ ω ′ and t(α) ∈ ω ′.

Given that s(α).α ∈ A′s, we have following the definition of Raf2Af: α ∈ K. α is an attack of
the original RAF RAF . As a consequence, we have: t(α) ∈ A∪K. Given that t(α) ∈ ω ′ and that
t(α) ∈ A∪K, we have: t(α) ∈ Ã∪ K̃. Given that s(α).α /∈ ω ′, that Ω′ ∈ SD-ra f -c(RAF) and that
ω ′ ∈ Ω′, we have so: α /∈ ω ′ and ¬α /∈ ω ′. As a consequence, we have α /∈ K̃. As t(α) belongs to
R̃AF and α does not belong to R̃AF , We have: α ∈ Qinp.

From Cases 1 and 2, we prove so that Assertion 3 holds.

Assertion 4: (x,y) ∈ K′s∪ K̃′s s.t. y ∈ ω ′ =⇒ x ∈ ω ′∪ J .
Let consider two cases: (x,y) ∈ K̃′s and (x,y) ∈ K′s.

• Case 1: (x,y) ∈ K′s
Let (x,y) ∈ K′s s.t. y ∈ ω ′. Let suppose that x /∈ (ω ′∪ J). Following the definition of standard AF, we
have thus: x ∈ J ′, J ′ being the set of added arguments to fit with the labelling of the input arguments
(see Definition 17 on page 17). Also, following the definition of standard AF: ∄(x,y) ∈ K′s s.t. x ∈
J ′ and y ∈ ω ′. We have a contradiction. We prove so that:

(x,y) ∈ K′s s.t. y ∈ ω
′ =⇒ x ∈ ω

′∪ J

• Case 2: (x,y) ∈ K̃′s
Let (x,y) ∈ K̃′s s.t. y ∈ ω ′. Trivially, x may belong to ω ′. Let thus suppose that x /∈ ω ′ and prove that
x ∈ J . Let consider three cases: y ∈ A∪K, y ∈ NotA∪NotK and y ∈ AndA,K .

– Case 2.1: y ∈ A∪K
Following the definition of Raf2Af, we have: x ∈ AndÃs,K̃s

. Let assume that x = s(α).α with
α ∈ K̃s and t(α) = y. If α ∈ K̃s∩ K̃ then we have: α ∈ ω . Given that ω ⊆ ω ′, that ω ′ ∈Ω′, that
Ω′ ∈SD-ra f -c(AF), we have: s(α).α ∈ ω ′, which contradicts: x /∈ ω ′. We have so: α ∈ K̃s \ K̃.
Thus α does not belong to R̃AF . As t(α) ∈ A∪K and t(α) ∈ ω ′, t(α) belongs to R̃AF . Given
that α /∈ K̃ and t(α) ∈ Ã∪ K̃, we have: α ∈ Qinp and so α ∈ K.
In the flattening process of RAF the RAF-walk (s(α),α, t(α)) will produce the following walks:
(s(α),¬s(α),s(α).α, t(α)) and (α,¬α,s(α).α, t(α)). Given that (s(α).α, t(α)) ∈ K′, that
s(α).α /∈ ω ′ and that t(α) ∈ ω ′, we have: (s(α).α, t(α)) ∈ KJ . As a consequence we have:
x ∈ J .

– Case 2.2: y ∈ NotA∪NotK
Following the definition of Raf2Af, we have: x ∈ Ãs ∪ K̃s. Let assume that y = ¬x. If x ∈
(Ãs∪ K̃s)∩(Ã∪ K̃), then we have: x∈ω . Given that ω ⊆ω ′, we have: x∈ω ′, which contradicts:
x /∈ ω ′. We have so: x ∈ (Ãs∪ K̃s)\ (Ã∪ K̃). We have so: x ∈ Sinp∪Qinp. x is thus an element of
RAF and we have: x ∈ A∪K.
Given that Ω′ ∈ SD-ra f -c(RAF) and that ω ′ ∈ Ω′, as y = ¬x ∈ ω ′, we have: x ∈ ω ′, which
contradicts x /∈ ω ′. As a consequence:

∄(x,y) ∈ K̃′s s.t. x /∈ ω
′ and y ∈ NotA∪NotK (18.99)

270

– Case 2.3: y ∈ AndA,K

Let assume that y = s(α).α with α ∈ K̃s.
Following the definition of Raf2Af, we have so: x ∈ NotÃs

∪NotK̃s
. Let assume that x = ¬z with

z ∈ Ãs∪ K̃s. We have so: z = s(α) or z = α . If x ∈ NotK̃s
then: z = α . Given that s(α).α ∈ ω ′,

that Ω′ ∈SD-ra f -c(RAF) and that ω ′ ∈Ω′, we have so: α ∈ ω ′ and ¬α ∈ ω ′, which contradicts
x /∈ ω ′. We have so: x ∈ NotÃs

and so: z = s(α) and z ∈ Ãs.

Given that α ∈ ω ′ and α ∈ K̃s, we have so: α ∈ K̃. α is thus an element of R̃AF and so of
RAF . Given that ¬s(α) /∈ω ′, that Ω′ ∈SD-ra f -c(RAF) and that ω ′ ∈Ω′, we have so: s(α) /∈ω ′.
As a consequence, z = s(α) ∈ Ãs \ Ã. s(α) is not an element of R̃AF . As α ∈ K̃, we have so:
s(α) ∈ Sinp and so s(α) ∈ A.
In the flattening process of RAF the RAF-walk (s(α),α, t(α)) will produce the following walks:
(s(α),¬s(α),s(α).α, t(α)) and (α,¬α,s(α).α, t(α)). Given that (¬s(α),s(α).α) ∈ K′, that
¬s(α) /∈ ω ′ and that s(α).α ∈ ω ′, we have: (¬s(α),s(α).α) ∈ KJ . As a consequence we have:
x ∈ J .

From Cases 2.1, 2.2, 2.3, we prove that:

(x,y) ∈ K̃′s s.t. y ∈ ω
′ =⇒ x ∈ ω

′∪ J

From Cases 1 and 2, we prove so that Assertion 4 holds. ■

Lemma 12. Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) (with AF = ⟨A′,K′⟩) be the corre-
sponding AF of RAF (with AF = ⟨A′,K′⟩). Let Ω be a partition of (A∪K) and Ω′ ∈SD-ra f -c(AF) be the
RAF-compliant partition of A′ corresponding to Ω, i.e. Ω′ = {ω ′ =ω∪{¬x|x∈ω}∪{s(α).α ∈ AndA,K |α ∈
ω}|ω ∈Ω}. Let ω ∈Ω and ω ′ ∈Ω′ be its counterpart in AF . Let R̃AF =

〈
Ã, K̃, s̃, t̃,s, t

〉
be the partial RAF

corresponding to ω . Let I =
〈
Sinp,Qinp

〉
be the input elements of R̃AF and Linp be a structure labelling

of them. Let
〈

R̃AF ,I,Linp
〉

be a RAF with input of RAF and
〈

AF ↓ω ′ ,J ,ℓ
J ,KJ

〉
be its corresponding AF

with input, as defined in Definition 105 on page 155. Let R̃AF s =
〈
Ãs, K̃s,ss, ts

〉
be the standard RAF of〈

R̃AF ,I,Linp
〉

and let std-AF = ⟨A′s,K′s⟩ be the standard AF corresponding to
〈

AF ↓ω ′ ,J ,ℓ
J ,KJ

〉
. Let

R̃AF
′
s = Raf2Af(R̃AF s) be the corresponding AF of R̃AF s (with R̃AF

′
s =

〈
Ã′s, K̃

′
s
〉
). The following asser-

tions hold:

1. A′s∩ Ã′s = ω ′∪ J

2. K′s∩ (ω ′×ω ′) = K̃′s∩ (ω ′×ω ′)

3. K′s∩ (J ×ω ′) = K̃′s∩ (J ×ω ′)

Proof of Lemma 12. Assertion 1: A′s∩ Ã′s = ω ′∪ J

• Step 1: Let prove that ω ′ ⊆ A′s∩ Ã′s.

First of all, notice that if x ∈ ω ′ then x ∈ AF ↓ω ′ , and so by definition of the standard AF, we have
x ∈ std-AF . More precisely we have: x ∈ A′s. The following property holds then:

x ∈ ω
′ =⇒ x ∈ A′s (18.100)

271

Secondly, notice that if x ∈ ω then x belongs to R̃AF . We have thus, by definition of the standard
RAF: x ∈ Ãs∪ K̃s. As a consequence, x and ¬x belong to R̃AF

′
s and we have: x ∈ Ã′s and ¬x ∈ Ã′s. The

following property holds then:

x ∈ ω =⇒ x ∈ Ã′s and ¬x ∈ Ã′s (18.101)

Let prove that x ∈ ω ′ \ω belongs to Ã′s. We have two cases to consider: x ∈ (ω ′∩ (NotA∪NotK)) and
x ∈ (ω ′∩AndA,K).

– Case 1: x ∈ (ω ′∩ (NotA∪NotK))
Let assume that x = ¬y as it belongs whether to NotA or NotK . Given that ¬y ∈ ω ′, that ω ′ ∈Ω′

and that Ω′ ∈ SD-ra f -c(AF), we have then: y ∈ ω ′ ∩ (A∪K) and so: y ∈ ω . According to
Equation (18.101), we have thus: y ∈ Ã′s and ¬y ∈ Ã′s. As a consequence, we have: x ∈ Ã′s. The
following property holds then:

x ∈ (ω ′∩ (NotA∪NotK)) =⇒ x ∈ Ã′s (18.102)

– Case 2: x ∈ (ω ′∩AndA,K)

Let assume that x = s(α).α as it belongs to AndA,K . Given that s(α).α ∈ ω ′, that ω ′ ∈ Ω′ and
that Ω′ ∈SD-ra f -c(AF), we have then: ¬α ∈ ω ′ and α ∈ ω ′. Furthermore, given that α ∈ K,
we have: α ∈ ω . As ω ∩K = K̃, we have: α ∈ K̃ (i.e. α is an attack belonging to R̃AF). By
definition of the standard RAF, we have thus: α ∈ Ãs. Now, given that α ∈ Ãs, by definition of
Raf2Af, we have thus: s(α) ∈ Ã′s, α ∈ Ã′s and s(α).α ∈ Ã′s. As a consequence we have: x ∈ Ã′s.
The following property holds then:

x ∈ (ω ′∩AndA,K) =⇒ x ∈ Ã′s (18.103)

From Equations (18.101) to (18.103), we prove the following property:

x ∈ ω
′ =⇒ x ∈ Ã′s (18.104)

From Equations (18.100) and (18.104) on the previous page and on this page we prove that:

ω
′ ⊆ A′s∩ Ã′s

• Step 2: Let prove that J ⊆ A′s∩ Ã′s.

By definition of the standard AF, we have:

J ⊆ A′s (18.105)

Let prove that: J ⊆ Ã′s. Let x∈ J . Following Assertion 1 of Lemma 11 on page 267, we have: x∈NotA
or x ∈ AndA,K . Let consider two cases.

– Case 1: x ∈ NotA.
Let assume that x = ¬y with y ∈ A. Following the definition of Raf2Af, we have:

(¬y,z) ∈ K′ =⇒ z ∈ AndA,K

We know that such an attack exists as¬y∈ J . Let s(α).α be an argument such that (¬y,s(α).α)∈
K′. Following the definition of Raf2Af, we have: s(α) = y. We have so: s(α) /∈ ω ′ and
¬s(α) /∈ ω ′. Furthermore, we have: s(α).α ∈ ω ′.

272

Following Assertion 2 of Lemma 11 on page 267, we have thus: y ∈ Sinp and so y ∈ Ãs. Then,
following the definition of Raf2Af, we have thus: y ∈ Ã′s and ¬y ∈ Ã′s, and so x ∈ Ã′s. The
following equation holds then:

x ∈ J ∩NotA =⇒ x ∈ Ã′s (18.106)

– Case 2: x ∈ AndA,K .
Let assume that x = s(α).α with s(α) ∈ A and α ∈ K. Following the definition of Raf2Af, we
have:

(s(α).α,z) ∈ K′ =⇒ z ∈ A∪K

Let z be an element such that (s(α).α,z) ∈ K′ s.t. z ∈ ω ′. We know that such an attack exists
as s(α).α ∈ J . Following Assertion 3 of Lemma 11 on page 267, we have thus: α ∈ Qinp.
Following the definition of standard RAF, we have so: α ∈ K̃s. Then, following the definition of
Raf2Af, we have thus: α ∈ Ã′s, ¬α ∈ Ã′s and s(α).α ∈ Ã′s, and so x ∈ Ã′s. The following equation
holds then:

x ∈ J ∩AndA,K =⇒ x ∈ Ã′s (18.107)

From Equations (18.105) to (18.107) on pages 271–272 we prove so that:

J ⊆ A′s∩ Ã′s

• Step 3: Let prove that A′s∩ Ã′s ⊆ ω ′∪ J .

Let x ∈ A′s∩ Ã′s. Notice that following the definition of standard AF (Definition 17 on page 17 used to
create std-AF), we have: Ã′s∩ J ′ =∅, J ′ being the set of added arguments to fit with the labelling of
the input arguments in std-AF .5 Given that x ∈ Ã′s, we have so: x /∈ J ′. As a consequence, we have:
x ∈ ω ′∪ J . We prove so that:

A′s∩ Ã′s ⊆ ω
′∪ J

From Steps 1, 2 and 3, we prove that Assertion 1 holds.

Assertion 2: K′s∩ (ω ′×ω ′) = K̃′s∩ (ω ′×ω ′)

• Step 1: Let prove that K′s∩ (ω ′×ω ′)⊆ K̃′s∩ (ω ′×ω ′)

Let (x,y) ∈ K′s∩ (ω ′×ω ′). Given that (x,y) ∈ (ω ′×ω ′) implies that: x /∈ J ′ and y /∈ J ′, we have thus,
following Assertion 1: x ∈ A′s∩ Ã′s and y ∈ A′s∩ Ã′s.

Following the definition of Raf2Af, we have the following four cases to consider: (x ∈ A∪K and
y∈NotA∪NotK), (x∈NotA and y∈AndA,K), (x∈NotK and y∈AndA,K) and (x∈AndA,K and y∈A∪K)

– Case 1: x ∈ A∪K and y ∈ NotA∪NotK

5Remind that J ∩ J ′ = ∅ and that the arguments that are in J ′ are different from those created in R̃AF s to fit input labelling of〈
R̃AF ,I,Linp

〉
.

273

According to the definition of Raf2Af, we have: y = ¬x. If x ∈ A∪K, then we have x ∈ ω . As a
consequence we have: x∈ Ã∪ K̃ and then x∈ Ãs∪ K̃s. The flattening of R̃AF s will thus produced
an attack (x,¬x) ∈ K̃′s, with x ∈ Ã′s and ¬x ∈ Ã′s. The following property holds then:

(x,y) ∈ K′s∩ (ω ′×ω ′) s.t. x ∈ A∪K and y ∈ NotA∪NotK

=⇒

(x,y) ∈ K̃′s∩ (ω ′×ω ′)

(18.108)

– Case 2: x ∈ NotA and y ∈ AndA,K

As x ∈ NotA, let assume that x = ¬z with z ∈ A.
Given that Ω′ ∈SD-ra f -c(RAF), that ω ′ ∈ Ω′ and that ¬z ∈ ω ′, we have: z ∈ ω ′. Moreover, as
z ∈ A, we have: z ∈ ω . z is thus an element of R̃AF .
Let assume that y = s(α).α with α ∈ K. We have thus: s(α) = z.
Given that s(α).α ∈ ω ′, that Ω′ ∈ SD-ra f -c(RAF) and that ω ′ ∈ Ω′, we have so: α ∈ ω ′. As
α ∈ K, we have: α ∈ ω . α is thus an element of R̃AF .
As a consequence, we have: α ∈ K̃s and s(α) ∈ Ãs. Following the definition of Raf2Af, we have
so: {s(α),¬s(α),s(α).α} ∈Walksa f (R̃AF

′
s).

The following property then holds:

s(α) ∈ ω
′ and s(α).α ∈ ω

′ =⇒ {s(α),¬s(α),s(α).α} ∈Walksa f (R̃AF
′
s) (18.109)

As a consequence we have: (¬z,z.α) ∈ K̃′s and so: (x,y) ∈ K̃′s.
The following property then holds:

(x,y) ∈ K′s∩ (ω ′×ω ′) s.t. x ∈ NotA and y ∈ AndA,K

=⇒

(x,y) ∈ K̃′s∩ (ω ′×ω ′)

(18.110)

– Case 3: x ∈ NotK and y ∈ AndA,K

As x ∈ NotK , let assume that x = ¬α with α ∈ K and that y = s(α).α .
Given that Ω′ ∈SD-ra f -c(RAF), that ω ′ ∈Ω′ and that ¬α ∈ ω ′, we have: α ∈ ω ′. Moreover, as
α ∈ K, we have: α ∈ ω . α is thus an element of R̃AF .
As a consequence, we have: α ∈ K̃s. Following the definition of Raf2Af, we have so:
{α,¬α,s(α).α} ∈Walksa f (R̃AF

′
s).

The following property then holds:

α ∈ ω
′ =⇒ {α,¬α,s(α).α} ∈Walksa f (R̃AF

′
s) (18.111)

As a consequence we have: (¬α,s(α).α) ∈ K̃′s and so: (x,y) ∈ K̃′s.

274

The following property then holds:

(x,y) ∈ K′s∩ (ω ′×ω ′) s.t. x ∈ NotK and y ∈ AndA,K

=⇒

(x,y) ∈ K̃′s∩ (ω ′×ω ′)

(18.112)

– Case 4: x ∈ AndA,K and y ∈ A∪K
As x ∈ AndA,K , let assume that x = s(α).α such that y = t(α). As s(α).α ∈ ω ′ and as y ∈ ω , we

have following Equation (18.111) on the previous page: {α,¬α,s(α).α, t(α)}∈Walksa f (R̃AF
′
s).

As a consequence we have: (s(α).α, t(α)) ∈ K̃′s and so: (x,y) ∈ K̃′s.
The following property then holds:

(x,y) ∈ K′s∩ (ω ′×ω ′) s.t. x ∈ AndA,K and y ∈ A∪K

=⇒

(x,y) ∈ K̃′s∩ (ω ′×ω ′)

(18.113)

From Cases 1, 2, 3 and 4 we prove so that:

(x,y) ∈ K′s∩ (ω ′×ω
′) =⇒ (x,y) ∈ K̃′s∩ (ω ′×ω

′) (18.114)

• Step 2: Let prove that K̃′s∩ (ω ′×ω ′)⊆ K′s∩ (ω ′×ω ′)

Let (x,y) ∈ K̃′s∩ (ω ′×ω ′). According to the definition of Raf2Af, we have whether: (x ∈ A∪K and
y ∈ NotA ∪NotK s.t. y = ¬x), (x ∈ NotA and y ∈ AndA,K), (x ∈ NotK and y ∈ AndA,K) or (x ∈ AndA,K
and y ∈ A∪K).

Let consider those cases.

– Case 1: x ∈ A∪K and y ∈ NotA∪NotK s.t. y = ¬x
Given that x ∈ A∪K then, following the definition of Raf2Af, we have: (x,¬x) in K′. As x ∈ω ′,
Ω′ ∈SD-ra f -c(RAF) and ω ′ ∈ Ω′, we have so: ¬x ∈ ω ′. Both x and ¬x are thus arguments of
AF ↓ω ′ . As x ∈ ω ′ ∩ (A∪K), we have following the definition of Raf2Af and the definition of
standard AF the following property:

x ∈ ω
′∩ (A∪K) =⇒ (x,¬x) ∈ K′s (18.115)

We have so: (x,y) ∈ K′s.

– Case 2: x ∈ NotA and y ∈ AndA,K

As x ∈ NotA, let assume that x = ¬z, with z ∈ A. As y ∈ AndA,K , let assume that y = s(α).α with
α ∈ K such that s(α) = z.
Given that s(α).α ∈ ω ′, that Ω′ ∈SD-ra f -c(RAF) and that ω ′ ∈Ω′, we have: α ∈ ω ′. α is thus
an argument of AF ↓ω ′ . Following the definition of Raf2Af, and the definition of standard AF,
we have thus the following property:

275

α ∈ ω
′∩K =⇒ {α,¬α,s(α).α} ∈Walksa f (std-AF) (18.116)

Furthermore, we have also the following property:

α ∈ ω
′∩K and s(α) ∈ ω

′ =⇒ {s(α),¬s(α),s(α).α} ∈Walksa f (std-AF) (18.117)

As a consequence, we have: (¬s(α),s(α).α) ∈ K′s, and so: (x,y) ∈ K′s.

– Case 3: x ∈ NotK and y ∈ AndA,K

As x ∈ NotK , let assume that x = ¬α with α ∈ K and y = s(α).α . Given that s(α).α ∈ ω ′, that
Ω′ ∈SD-ra f -c(RAF) and that ω ′ ∈Ω′, we have: α ∈ ω ′. Following Equation (18.116), we have
thus: {α,¬α,s(α).α} ∈Walksa f (std-AF).
The following property holds then:

s(α).α ∈ ω
′ =⇒ {α,¬α,s(α).α} ∈Walksa f (std-AF) (18.118)

As a consequence, we have: (¬α,s(α).α) ∈ K′s and so: (x,y) ∈ K′s
– Case 4: x ∈ AndA,K and y ∈ A∪K

As x∈AndA,K , let assume that x= s(α).α with α ∈K and y= t(α). Following Equation (18.118)
and the fact that y ∈ ω ′, we have: {α,¬α,s(α).α, t(α)} ∈Walksa f (std-AF).
As a consequence, we have: (s(α).α, t(α)) ∈ K′s and so: (x,y) ∈ K′s.

From Cases 1, 2, 3 and 4, the following property then holds:

(x,y) ∈ K̃′s s.t. x ∈ ω
′ and y ∈ ω

′ =⇒ (x,y) ∈ K′s (18.119)

From Steps 1 and 2, we prove that Assertion 2 holds.

Assertion 3: K′s∩ (J ×ω ′) = K̃′s∩ (J ×ω ′)

• Step 1: K′s∩ (J ×ω ′)⊆ K̃′s∩ (J ×ω ′)

Let (x,y)∈K′s∩(J×ω ′). Following Assertion 1 of Lemma 11 on page 267, we have whether: x∈NotA
or x ∈ AndA,K . Let consider those two cases.

– Case 1: x ∈ J ∩NotA and y ∈ ω ′.
As x ∈ NotA, let assume that x = ¬z with z ∈ A. Following the definition of Raf2Af, we have:
y ∈ AndA,K . Let thus assume that y = s(α).α with α ∈ K such that s(α) = z.
As s(α).α ∈ ω ′, following Equation (18.111) on page 273, we have:

{α,¬α,s(α).α} ∈Walksa f (R̃AF
′
s)

As a consequence we have: (¬α,s(α).α) ∈ K̃′s and so: (x,y) ∈ K̃′s.
The following property then holds:

(x,y) ∈ K′s∩ (J ×ω ′) s.t. x ∈ NotA =⇒ (x,y) ∈ K̃′s∩ (J ×ω ′) (18.120)

276

– Case 2: x ∈ J ∩AndA,K and y ∈ ω ′.
As x ∈ AndA,K , let assume that x = s(α).α with α ∈ K such that t(α) = y with y ∈ A∪K.
Following Assertion 3 of Lemma 11 on page 267, we have: α ∈ Qinp. Following the definition
of the standard RAF, we have so: α ∈ K̃s. Following the definition of Raf2Af and the fact that
y ∈ ω ′, we have then: {α,¬α,s(α).α, t(α)} ∈Walksa f (R̃AF

′
s)}.

The following property then holds:

α ∈ J =⇒ {s(α),¬s(α),s(α).α, t(α)} ∈Walksa f (R̃AF
′
s) (18.121)

As a consequence: (s(α).α, t(α)) ∈ K̃′s and so: (x,y) ∈ K̃′s.
The following property then holds:

(x,y) ∈ K′s∩ (J ×ω ′) s.t. x ∈ AndA,K =⇒ (x,y) ∈ K̃′s∩ (J ×ω ′) (18.122)

From Cases 1 and 2, we prove so that:

(x,y) ∈ K′s∩ (J ×ω
′) =⇒ (x,y) ∈ K̃′s∩ (J ×ω

′) (18.123)

• Step 2: K̃′s∩ (J ×ω ′)⊆ K′s∩ (J ×ω ′)

Let (x,y)∈ K̃′s∩(J×ω ′). Following Assertion 1 of Lemma 11 on page 267, we have whether: x∈NotA
or x ∈ AndA,K . Let consider those two cases.

– Case 1: x ∈ NotA \ω ′ and y ∈ ω ′

As x ∈ NotA, let assume that x = ¬z with z ∈ A. We have so: y ∈ AndA,K . Let assume that
y = s(α).α with α ∈ K such that s(α) = z. In the flattening process of RAF the RAF-walk
(s(α),α, t(α)) will produce the following walks: (s(α),¬s(α),s(α).α, t(α)) and (α,¬α ,
s(α).α, t(α)). Given that (¬s(α),s(α).α)∈K′, that ¬s(α) /∈ω ′ and that s(α).α ∈ω ′, we have:
(¬s(α),s(α).α)∈KJ . Following the definition of standard AF, we have thus: (¬s(α),s(α).α)∈
K′s, and so: (x,y) ∈ K′s.

– Case 2: x ∈ AndA,K \ω ′ and y ∈ ω ′

As x∈AndA,K , let assume that x= s(α).α with α ∈K. We have so: y= t(α) and y∈ (A∪K), fol-
lowing the definition of Raf2Af. In the flattening process of RAF the RAF-walk (s(α),α, t(α))
will produce the following walks: (s(α),¬s(α),s(α).α, t(α)) and (α,¬α,s(α).α, t(α)). Given
that (s(α).α, t(α)) ∈ K′, that ¬s(α).α /∈ ω ′ and that t(α) ∈ ω ′, we have: (s(α).α, t(α)) ∈ KJ .
Following the definition of standard AF, we have thus: (s(α).α, t(α)) ∈ K′s, and so: (x,y) ∈ K′s.

From Cases 1 and 2, the following property then holds:

(x,y) ∈ K̃′s s.t. x ∈ J and y ∈ ω
′ =⇒ (x,y) ∈ K′s (18.124)

From Steps 1 and 2, we prove that Assertion 3 holds. ■

Lemma 13. Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be the corresponding AF of RAF
(with AF = ⟨A′,K′⟩). Let Ω be a partition of (A∪K) and Ω′ ∈SD-ra f -c(AF) be the RAF-compliant partition
of A′ corresponding to Ω, i.e. Ω′ = {ω ′ = ω ∪{¬x|x ∈ ω}∪{s(α).α ∈ AndA,K |α ∈ ω}|ω ∈Ω}. Let ω ∈Ω

and ω ′ ∈ Ω′ be its counterpart in AF . Let R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
be the partial RAF corresponding to

277

ω . Let I =
〈
Sinp,Qinp

〉
be the input elements of R̃AF and Linp be a structure labelling of them. Let〈

R̃AF ,I,Linp
〉

be a RAF with input of RAF and
〈

AF ↓ω ′ ,J ,ℓ
J ,KJ

〉
be its corresponding AF with input, as

defined in Definition 105 on page 155. Let R̃AF s =
〈
Ãs, K̃s,ss, ts

〉
be the standard of

〈
R̃AF ,I,Linp

〉
and let

std-AF = ⟨A′s,K′s⟩ be the standard AF corresponding to
〈

AF ↓ω ′ ,J ,ℓ
J ,KJ

〉
. Let R̃AF

′
s = Raf2Af(R̃AF s)

be the corresponding AF of R̃AF s (with R̃AF
′
s =

〈
Ã′s, K̃

′
s
〉
). Let σ be a complete-based AF semantics (See

Definition 38 on page 49) and let σ -raf be the RAF semantics corresponding to σ .6 The following assertions
hold:

1. ∀¬a ∈ J ∩NotA, ∀ℓ ∈Lσ (R̃AF
′
s),

ℓ(¬a) =


in ⇐⇒ Linp(a) = out

out ⇐⇒ Linp(a) = in

und ⇐⇒ Linp(a) = und

2. ∀s(α).α ∈ J ∩AndA,K , ∀ℓ ∈Lσ (R̃AF
′
s),

ℓ(s(α).α) =


in ⇐⇒ Linp(α) = in and Linp(s(α)) = in

out ⇐⇒ Linp(α) = out or Linp(s(α)) = out

und ⇐⇒

(
Linp(α) ̸= out and Linp(s(α)) ̸= out and
(Linp(α) = und or Linp(s(α)) = und)

)

3. ∀a ∈ J , ∀ℓ1 ∈Lσ (R̃AF
′
s), ∀ℓ2 ∈Lσ (std-AF),

ℓ1(a) = ℓ2(a)

Proof of Lemma 13. Assertion 1: ∀¬a ∈ J ∩NotA, ∀ℓ ∈Lσ (R̃AF
′
s),

ℓ(¬a) =


in ⇐⇒ Linp(a) = out

out ⇐⇒ Linp(a) = in

und ⇐⇒ Linp(a) = und

Let ℓ ∈ Lσ (R̃AF
′
s) and ¬a ∈ J ∩NotA. Given that ¬a ∈ J ∩NotA we have following Definition 105

on page 155: a ∈ Sinp. As a consequence, following the definition of standard RAF we have: a ∈ Ãs.
Following the definition of Raf2Af, we have so: a ∈ Ã′s. As a consequence ℓ(a) must be defined. Let L =

afLab2RafLab(ℓ). Given that σ -raf is the RAF semantics corresponding to σ , we have: L∈Lσ -ra f (R̃AF s).
Moreover, according to Definition 78 on page 118 we have:

∀x ∈ (Ãs∪ K̃s), ℓ(x) = L(x)

Given that L ∈Lσ -ra f (R̃AF
′
s), we have following the definition of standard RAF:

∀x ∈ Sinp, L(x) = Linp(x)

6See Definition 106 on page 159 for RAF and AF semantics correspondence.

278

As a consequence, we have:
∀x ∈ Sinp, ℓ(x) = Linp(x) (18.125)

As σ is complete-based, we have: ℓ(a) = in ⇐⇒ ℓ(¬a) = out , ℓ(a) = out ⇐⇒ ℓ(¬a) = in and
ℓ(a) = und ⇐⇒ ℓ(¬a) = und . From those equivalences and from Equation (18.125), we prove so that
Assertion 1 holds.

Assertion 2: ∀s(α).α ∈ J ∩AndA,K , ∀ℓ ∈Lσ (R̃AF
′
s),

ℓ(s(α).α) =


in ⇐⇒ Linp(α) = in and Linp(s(α)) = in

out ⇐⇒ Linp(α) = out or Linp(s(α)) = out

und ⇐⇒

(
Linp(α) ̸= out and Linp(s(α)) ̸= out and
(Linp(α) = und or Linp(s(α)) = und)

)

Let ℓ ∈ Lσ (R̃AF
′
s) and s(α).α ∈ J ∩ AndA,K . Given that s(α).α ∈ J ∩ AndA,K , we have following

Definition 105 on page 155: α ∈Qinp and s(α)∈ Sinp. As a consequence, following the definition of standard
RAF we have: α ∈ K̃s and s(α)∈ Ãs. The flattening process of R̃AF s will thus produce the following walks:
(s(α),¬s(α),s(α).α, t(α)) and (α,¬α,s(α).α, t(α)). As a consequence ℓ(s(α)), ℓ(¬s(α)), ℓ(α) and
ℓ(¬α) must be defined.

Let L = afLab2RafLab(ℓ). Given that σ -raf is the RAF semantics corresponding to σ , we have: L ∈
Lσ -ra f (R̃AF s). Moreover, according to Definition 78 on page 118 we have:

∀x ∈ (Ãs∪ K̃s), ℓ(x) = L(x)

Given that L ∈Lσ -ra f (R̃AF
′
s), we have following the definition of standard RAF:

∀x ∈ (Sinp∪Qinp), L(x) = Linp(x)

As a consequence, we have:

∀x ∈ (Sinp∪Qinp), ℓ(x) = Linp(x) (18.126)

As for all s(α).α ∈ AndÃs,K̃s
(σ being complete-based), we have:

ℓ(s(α).α) =


in ⇐⇒ ℓ(α) = in and ℓ(s(α)) = in

out ⇐⇒ ℓ(α) = out or ℓ(s(α)) = out

und ⇐⇒

(
ℓ(α) ̸= out and ℓ(s(α)) ̸= out and
(ℓ(α) = und or ℓ(s(α)) = und)

)
And as Equation (18.126) holds, we prove so that Assertion 2 holds.

Assertion 3: ∀a ∈ J , ∀ℓ1 ∈Lσ (R̃AF
′
s), ∀ℓ2 ∈Lσ (std-AF),

ℓ1(a) = ℓ2(a)

Let ℓ1 ∈Lσ (R̃AF
′
s) be any σ -labelling of R̃AF

′
s. Let ℓ2 ∈Lσ (std-AF) be any σ -labelling of std-AF .

By Definition of the standard AF we have:

∀ℓ ∈Lσ (std-AF),∀x ∈ J , ℓ(x) = ℓJ
(x)

279

We have so:
∀x ∈ J , ℓ2(x) = ℓ

J
(x) (18.127)

Following Definition 105 on page 155 (σ being complete-based), we have:

• ∀(s(α).α) ∈ J s.t. α ∈ Qinp,

ℓJ
(s(α).α) =


in ⇐⇒ Linp(α) = in and Linp(s(α)) = in

out ⇐⇒ Linp(α) = out or Linp(s(α)) = out

und ⇐⇒

(
Linp(α) ̸= out and Linp(s(α)) ̸= out and
(Linp(α) = und or Linp(s(α)) = und)

)

• ∀¬a ∈ J s.t. a ∈ Sinp,

ℓJ
(¬a) =


in ⇐⇒ Linp(a) = out

out ⇐⇒ Linp(a) = in

und ⇐⇒ Linp(a) = und

Following Equation (18.127), we have so:

• ∀(s(α).α) ∈ J s.t. α ∈ Qinp,

ℓ2(s(α).α) =


in ⇐⇒ Linp(α) = in and Linp(s(α)) = in

out ⇐⇒ Linp(α) = out or Linp(s(α)) = out

und ⇐⇒

(
Linp(α) ̸= out and Linp(s(α)) ̸= out and
(Linp(α) = und or Linp(s(α)) = und)

)

• ∀¬a ∈ J s.t. a ∈ Sinp,

ℓ2(¬a) =


in ⇐⇒ Linp(a) = out

out ⇐⇒ Linp(a) = in

und ⇐⇒ Linp(a) = und

Given that by definition J = {s(α).α|α ∈ Qinp}∪{¬a|a ∈ Sinp}, we prove, following Assertions 1 and
2, that: ∀a ∈ J , ∀ℓ1 ∈Lσ (R̃AF

′
s), ∀ℓ2 ∈Lσ (std-AF), ℓ1(a) = ℓ2(a). ■

Proof of Proposition 40 on page 158. According to Assertions 1 and 2 of Lemma 12 on page 270, we have:

std-AF ↓ω ′= R̃AF
′
s ↓ω ′ (18.128)

According to Assertion 3 of Lemma 12 on page 270, we have:

K′s∩ (J ×ω
′) = K̃′s∩ (J ×ω

′) (18.129)

According to Assertion 4 of Lemma 11 on page 267, we have:

(x,y) ∈ K̃′s∪K′s s.t. y ∈ ω
′ =⇒ x ∈ ω

′∪ J (18.130)

According to Assertion 3 of Lemma 13 on page 277, we have:

∀a ∈ J , ∀ℓ1 ∈Lσ (R̃AF
′
s), ∀ℓ2 ∈Lσ (std-AF), ℓ1(a) = ℓ2(a) (18.131)

280

Given that:

1. Following Equation (18.128) on the previous page, both AFs are identical restricted to ω ′

2. Following Equations (18.129) and (18.130) on the previous page, this common subAF is attacked in
both AFs identically (by same arguments and attack relations)

3. Following Equation (18.131) on the previous page, all arguments attacking this common subAF is
labelled identically in both AFs and for all possible labellings

4. The semantics σ is complete-based

We have so:

{ℓ ↓ω ′∪J |ℓ ∈Lσ (R̃AF
′
s)}= {ℓ ↓ω ′∪J |ℓ ∈Lσ (std-AF)}

■

Proof of Proposition 41 on page 159. Given that ω ′ ⊆ (ω ′ ∪ J), we have, following Equations (18.128)
and (18.129) on the previous page given in the proof of Proposition 40 on page 158:

{ℓ ↓ω ′ |ℓ ∈Lσ (R̃AF
′
s)}= {ℓ ↓ω ′ |ℓ ∈Lσ (std-AF)}

Equivalently, we have so:

{ℓ ↓ω ′ |ℓ ∈Lσ (R̃AF
′
s)}= F a f

σ (AF ↓ω ′ ,J ,ℓ
J
,KJ) (18.132)

Now, given that σ -raf is the RAF semantics corresponding to σ , we have:

Lσ -ra f (R̃AF s) = {afLab2RafLab(ℓ)|ℓ ∈Lσ (R̃AF
′
s)}

Or equivalently:

Lσ -ra f (R̃AF s) = {
〈
ℓ ↓Ãs

,ℓ ↓K̃s

〉
|ℓ ∈Lσ (R̃AF

′
s)} (18.133)

Given that Ã⊆ Ãs and K̃ ⊆ K̃s, we have following Equation (18.133):

{L ↓⟨Ã,K̃⟩ |L ∈Lσ -ra f (R̃AF s)}= {
〈
ℓ ↓Ã,ℓ ↓K̃

〉
|ℓ ∈Lσ (R̃AF

′
s)}

Given that Ã∪ K̃ ⊆ ω ′, we have following Equation (18.132):

{L ↓⟨Ã,K̃⟩ |L ∈Lσ -ra f (R̃AF s)}= {
〈
ℓ ↓Ã,ℓ ↓K̃

〉
|ℓ ∈F a f

σ (AF ↓ω ′ ,J ,ℓ
J
,KJ)} (18.134)

Given that (Ã∪ K̃)⊆ (A∪K), that ω ′∩ ((A∪K)\ (Ã∪ K̃))∩ (A∪K) = ∅ and that F a f
σ (AF ↓ω ′ ,J ,ℓ

J ,KJ)
produces labellings of arguments that are in ω ′, we have following Equation (18.134):

{L ↓⟨Ã,K̃⟩ |L ∈Lσ -ra f (R̃AF s)}= {
〈
ℓ ↓A,ℓ ↓K

〉
|ℓ ∈F a f

σ (AF ↓ω ′ ,J ,ℓ
J
,KJ)} (18.135)

By Definition we have:

F ra f
σ (R̃AF ,I,Linp) = {L ↓⟨Ã,K̃⟩ |L ∈Lσ -ra f (R̃AF s)} (18.136)

281

Thus, from Equations (18.135) and (18.136) on the previous page, we prove that:

F ra f
σ (R̃AF ,I,Linp) =

{〈
ℓ ↓A,ℓ ↓K

〉∣∣∣ℓ ∈F a f
σ (AF ↓ω ′ ,J ,ℓ

J
,KJ)

}
■

Proof of Proposition 42 on page 160. Let RAF = ⟨A,K,s, t⟩ be a RAF and AF = Raf2Af(RAF) be the
corresponding AF of RAF (with AF = ⟨A′,K′⟩). Let Ω′ ∈SD-ra f -c(AF) be any RAF-compliant partition
of A′, with Ω′ = {ω ′1, ...,ω ′n}. Let Ω ∈S (RAF) be the partition of RAF corresponding to Ω′, with Ω =

{ωi = ω ′i ∩ (A∪K)|ω ′i ∈ Ω′}. Let {R̃AF 1, ..., R̃AF n} be the partition of RAF corresponding to Ω, with

R̃AF i =
〈
Ãi, K̃i, s̃i, t̃i,s, t

〉
being the partial RAF corresponding to ωi ∈Ω. Let Ii =

〈
Sinp

i ,Qinp
i

〉
be the input

elements of R̃AF i and L
inp
i be a structure labelling of them. For i ∈ {1, ...,n}, let

〈
R̃AF i,Ii,L

inp
i

〉
be a

RAF with input and
〈

AF ↓ω ′i
,Ji,ℓ

Ji ,KJi

〉
be its corresponding AF with input, as defined in Definition 105

on page 155.

Assertion 1: σ -raf is top-down decomposable w.r.t. S iff σ is top-down decomposable w.r.t. Sra f -c.

As σ -raf is the RAF semantics corresponding to σ , we have:

Lσ -ra f (RAF) = {
〈
ℓ ↓A,ℓ ↓K

〉
|ℓ ∈Lσ (AF)} (18.137)

σ is top-down decomposable w.r.t. Sra f -c iff :

∀Ω′ ∈Sra f -c(AF), Lσ (AF)⊆
{
ℓ1∪ ...∪ℓn

∣∣∣ℓi ∈F a f
σ (AF ↓ω ′i

,Ji,ℓ
Ji ,KJi)

}
With: ℓJi = (

⋃
j∈{1,...,n} s.t. j ̸=i ℓ

j) ↓Ji

(18.138)

We have so, from Equations (18.137) and (18.138), σ being top-down decomposable w.r.t. Sra f -c iff :

∀Ω′ ∈Sra f -c(AF),

Lσ -ra f (RAF)⊆
{〈

ℓ1 ↓A,ℓ
1 ↓K

〉
∪ ...∪

〈
ℓn ↓A,ℓ

n ↓K
〉∣∣∣ℓi ∈F a f

σ (AF ↓ω ′i
,Ji,ℓ

Ji ,KJi)
}

With: ℓJi = (
⋃

j∈{1,...,n} s.t. j ̸=i ℓ
j) ↓Ji

(18.139)

Following Proposition 41 on page 159, for all i ∈ {1, ...,n}, we have :

F ra f
σ (R̃AF i,Ii,L

inp
i) =

{〈
ℓ ↓A,ℓ ↓K

〉∣∣∣ℓ ∈F a f
σ (AF ↓ω ′i

,Ji,ℓ
Ji ,KJi)

}
(18.140)

Let denote
〈
ℓi ↓A,ℓ

i ↓K

〉
by Li, for i ∈ {1, ...,n}. Then, following Equations (18.139) and (18.140), we

have σ being top-down decomposable w.r.t. Sra f -c iff :

∀Ω′ ∈Sra f -c(AF), Lσ -ra f (RAF)⊆
{
L1∪ ...∪Ln

∣∣∣Li ∈F ra f
σ (R̃AF i,Ii,L

inp
i)
}

With: Linp
i = (

⋃
j∈{1,...,n} s.t. j ̸=iL j) ↓Ii

(18.141)

282

And so:

∀Ω ∈S (RAF), Lσ -ra f (RAF)⊆
{
L1∪ ...∪Ln

∣∣∣Li ∈F ra f
σ (R̃AF i,Ii,L

inp
i)
}

With: Linp
i = (

⋃
j∈{1,...,n} s.t. j ̸=iL j) ↓Ii

(18.142)

As a consequence, we have σ being top-down decomposable w.r.t. Sra f -c iff σ -raf is top-down decom-
posable w.r.t. S .

Assertion 2: σ -raf is bottom-up decomposable w.r.t. S iff σ is bottom-up decomposable w.r.t. Sra f -c.

As σ -raf is the RAF semantics corresponding to σ , we have:

Lσ -ra f (RAF) = {
〈
ℓ ↓A,ℓ ↓K

〉
|ℓ ∈Lσ (AF)} (18.143)

σ is bottom-up decomposable w.r.t. Sra f -c iff :

∀Ω′ ∈Sra f -c(AF), Lσ (AF)⊇
{
ℓ1∪ ...∪ℓn

∣∣∣ℓi ∈F a f
σ (AF ↓ω ′i

,Ji,ℓ
Ji ,KJi)

}
With: ℓJi = (

⋃
j∈{1,...,n} s.t. j ̸=i ℓ

j) ↓Ji

(18.144)

We have so, from Equations (18.143) and (18.144) on the next page, σ being bottom-up decomposable
w.r.t. Sra f -c iff :

∀Ω′ ∈Sra f -c(AF),

Lσ -ra f (RAF)⊇
{〈

ℓ1 ↓A,ℓ
1 ↓K

〉
∪ ...∪

〈
ℓn ↓A,ℓ

n ↓K
〉∣∣∣ℓi ∈F a f

σ (AF ↓ω ′i
,Ji,ℓ

Ji ,KJi)
}

With: ℓJi = (
⋃

j∈{1,...,n} s.t. j ̸=i ℓ
j) ↓Ji

(18.145)

Following Proposition 41 on page 159, for all i ∈ {1, ...,n}, we have :

F ra f
σ (R̃AF i,Ii,L

inp
i) =

{〈
ℓ ↓A,ℓ ↓K

〉∣∣∣ℓ ∈F a f
σ (AF ↓ω ′i

,Ji,ℓ
Ji ,KJi)

}
(18.146)

Let denote
〈
ℓi ↓A,ℓ

i ↓K

〉
by Li, for i ∈ {1, ...,n}. Then, following Equations (18.145) and (18.146), we

have σ being bottom-up decomposable w.r.t. Sra f -c iff :

∀Ω′ ∈Sra f -c(AF), Lσ -ra f (RAF)⊇
{
L1∪ ...∪Ln

∣∣∣Li ∈F ra f
σ (R̃AF i,Ii,L

inp
i)
}

With: Linp
i = (

⋃
j∈{1,...,n} s.t. j ̸=iL j) ↓Ii

(18.147)

And so:

∀Ω ∈S (RAF), Lσ -ra f (RAF)⊇
{
L1∪ ...∪Ln

∣∣∣Li ∈F ra f
σ (R̃AF i,Ii,L

inp
i)
}

With: Linp
i = (

⋃
j∈{1,...,n} s.t. j ̸=iL j) ↓Ii

(18.148)

283

As a consequence, we have σ being bottom-up decomposable w.r.t. Sra f -c iff σ -raf is bottom-up de-
composable w.r.t. S .

Assertion 3: σ -raf is fully decomposable w.r.t. S iff σ is fully decomposable w.r.t. Sra f -c.

Trivial considering Assertions 1 and 2. ■

Lemmas 14 and 15 on page 285 and on page 287 pave the road for the demonstration of Propositions 43
and 45 on page 160 and on page 161.

The hard demonstration part of Proposition 43 on page 160 is to show that if an AF semantics σ is not
fully (resp. top-down, bottom-up) decomposable then σ is not fully (resp. top-down, bottom-up) decompos-
able w.r.t. SD-ra f -c. We prove this property by choosing an AF and a partition for which σ is not fully (resp.
top-down, bottom-up) decomposable. Then, we transform this AF into a RAF by naming its attacks. Next,
we flatten this RAF into a new AF. Finally, we show with this new AF and the partition corresponding that
σ is not fully (resp. top-down, bottom-up) decomposable w.r.t. SD-ra f -c.

Likewise, the hard demonstration part of Proposition 45 on page 161 is to show that if an AF semantics
σ is not fully (resp. top-down, bottom-up) decomposable w.r.t. SUSCC then σ is not fully (resp. top-down,
bottom-up) decomposable w.r.t. Sra f -c-USCC. We prove this property by the very same process, except that
this time it is w.r.t. SUSCC and Sra f -c-USCC.

The following example illustrates what have been said above:

ab

(a) An AF: AF 1

ab
β

γ

(b) Its corresponding RAF:
RAF 2

a

¬a

a.γb

¬b

b.β¬β

β

¬γ

γ

(c) The flattened version of the RAF: AF 3

Figure 18.2: Example giving an intuition for the proof of Propositions 43 and 45

Example 92. Let consider Figure 18.2. Let AF 1 = ⟨A1,K1⟩ be the AF illustrated in Figure 18.2(a), RAF 2 =
⟨A2,K2,s2, t2⟩ be the RAF illustrated in Figure 18.2(b) such that RAF 2 = Af2Raf(AF 1) and AF 3 = ⟨A3,K3⟩
be the AF illustrated in Figure 18.2(c) such that AF 3 = Raf2Af(RAF 2).

Let consider the semantics preferred , the bottom-up decomposability property and the following parti-
tion of AF 1: Ω1 =

{
ω1

1 = {a} ,ω1
2 = {b}

}
. We have:

Lpr(AF 1)⊉
{
ℓ1∪ ...∪ℓn

∣∣∣∣ℓ j ∈F a f
pr (AF ↓

ω1
j
,J 1

j ,ℓ
J 1

j ,KJ 1
j
)

}
Indeed:

Lpr(AF 1) = {{(a,in),(b,out)} ,{(b,in),(a,out)}}

284

And: {
ℓ1∪ ...∪ℓn

∣∣∣ℓ j ∈F a f
pr (AF ↓

ω1
j
,J 1

j ,ℓ
J 1

j ,KJ 1
j
)
}

=

{{(a,in),(b,out)} ,{(b,in),(a,out)} ,{(b,und),(a,und)}}

Let consider Ω2 the partition of RAF 2 corresponding to Ω1 in which all attacks are in the same part as
their sources. We have: Ω2 =

{
ω2

1 = {a,γ} ,ω2
2 = {b,β}

}
.

Now let consider Ω3 ∈Sra f -c-USCC(AF 3), the RAF-compliant partition of AF 3 corresponding to Ω2. We
have: Ω3 =

{
ω3

1 = {a,¬a,γ,¬γ,a.γ} ,ω3
2 = {b,¬b,β ,¬β ,b.β}

}
.

We can observe that:

Lpr(AF 3)⊉
{
ℓ1∪ ...∪ℓn

∣∣∣∣ℓ j ∈F a f
pr (AF ↓

ω3
j
,J 3

j ,ℓ
J 3

j ,KJ 3
j
)

}
Indeed:

Lpr(AF 3) =




(a,in),(¬a,out),(γ,in),(¬γ,out),(a.γ,in),

(b,out),(¬b,in),(β ,in),(¬β ,out),(b.β ,out)

 ,


(a,out),(¬a,in),(γ,in),(¬γ,out),(a.γ,out),

(b,in),(¬b,out),(β ,in),(¬β ,out),(b.β ,in)




And: {

ℓ1∪ ...∪ℓn
∣∣∣ℓ j ∈F a f

pr (AF ↓
ω3

j
,J 3

j ,ℓ
J 3

j ,KJ 3
j
)
}

=


(a,in),(¬a,out),(γ,in),(¬γ,out),(a.γ,in),

(b,out),(¬b,in),(β ,in),(¬β ,out),(b.β ,out)

 ,


(a,out),(¬a,in),(γ,in),(¬γ,out),(a.γ,out),

(b,in),(¬b,out),(β ,in),(¬β ,out),(b.β ,in)

 ,


(a,und),(¬a,und),(γ,in),(¬γ,out),(a.γ,und),

(b,und),(¬b,und),(β ,in),(¬β ,out),(b.β ,und)

 ,


As a consequence the preferred semantics is not bottom-up decomposable w.r.t. Sra f -c-USCC.

Note: Other examples than Example 92 on the next page could be constructed for any wanted seman-
tics, any selector, any AF and partition. Example 92 just highlights the idea behind Lemmas 14 and 15
and Propositions 43 and 45 on page 160, on page 161, on the following page and on page 287.

285

Lemma 14. Let σ be a complete-based AF semantics. Let AF 1 = ⟨A1,K1⟩ be an AF and Ω1 =
{

ω1
1 , ...,ω

1
n
}

be any partition of AF 1. Let RAF 2 = Af2Raf(AF 1) be the non recursive RAF corresponding to AF 1, with
RAF 2 = ⟨A2,K2,s2, t2⟩ (see Definition 80 on page 121). Let Ω2 =

{
ω2

1 , ...,ω
2
n
}

be the partition of RAF 2 such

that: ∀ω2
j ∈Ω2,ω

2
j = ω1

j ∪
{

α|α ∈ K2 s.t. s(α) ∈ ω1
j

}
. Let AF 3 = Raf2Af(RAF 2) (with AF 3 = ⟨A3,K3⟩)

be the AF corresponding to the flattening of RAF 2. Let Ω3 =
{

ω3
1 , ...,ω

3
n
}

be the partition of AF 3 such that:

∀ω3
j ∈Ω3,ω

3
j = ω2

j ∪
{
¬x|x ∈ (A2∪K2)∩ω2

j

}
∪
{

s(α).α|α ∈ K2∩ω2
j

}
. The following property holds:

∀ω1
j ∈Ω1,

ℓ

∪
{
(¬a,in)|a ∈ out(ℓ)

}
∪
{
(¬a,out)|a ∈ in(ℓ)

}
∪
{
(¬a,und)|a ∈ und(ℓ)

}
∪
{
(α,in)|α ∈ K2∩ω3

j

}
∪
{
(¬α,out)|α ∈ K2∩ω3

j

}
∪
{
(s(α).α,ℓ(s(α)))|α ∈ K2∩ω3

j

}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ℓ ∈F a f
σ (AF 1 ↓ω1

j
,J 1

j ,ℓ
J 1

j ,KJ 1
j
)



= F a f
σ (AF 3 ↓ω3

j
,J 3

j ,ℓ
J 3

j ,KJ 3
j
)

With:

• J 3
j =

{
s(α).α|α ∈ K2 s.t. t(α) ∈ ω3

j and s(α).α /∈ ω3
j

}

• KJ 3
j
=
{
(s(α).α, t(α))|α ∈ K2 s.t. t(α) ∈ ω3

j and s(α).α /∈ ω3
j

}

• ℓJ 3
j being a labelling of J 3

j defined as: ∀α = (a,b) ∈ KJ 1
j
,ℓJ 3

j (s(α).α) = ℓJ 1
j (a)

Proof of Lemma 14. Given that all attacks in RAF 2 are valid and that σ is complete-based, we have:

∀ℓ′ ∈F a f
σ (AF 3 ↓ω3

j
,J 3

j ,ℓ
J 3

j ,KJ 3
j
),∀α ∈ (K2∩ω

3
j),


ℓ′(α) = in

ℓ′(¬α) = out

ℓ′(s(α).α) = ℓ(s(α))

(18.149)

286

Following the definition of Raf2Af and given that σ is complete-based, we have:

∀ℓ′ ∈F a f
σ (AF 3 ↓ω3

j
,J 3

j ,ℓ
J 3

j ,KJ 3
j
),∀a ∈ (A2∩ω

3
j)


ℓ′(¬a) = in ⇐⇒ ℓ′(a) = out

ℓ′(¬a) = out ⇐⇒ ℓ′(a) = in

ℓ′(¬a) = und ⇐⇒ ℓ′(a) = und

(18.150)

Given that ∀α = (a,b) ∈ KJ 1
j
,ℓJ 3

j (s(α).α) = ℓJ 1
j (a), we have so:

∀ω j ∈Ω,

ℓ

∪
{
(¬a,in)|a ∈ out (ℓ)

}
∪
{
(¬a,out)|a ∈ in (ℓ)

}
∪
{
(¬a,und)|a ∈ und (ℓ)

}
∪
{
(α,in)|α ∈ K2∩ω3

j

}
∪
{
(¬α,out)|α ∈ K2∩ω3

j

}
∪
{
(s(α).α,ℓ(s(α)))|α ∈ K2∩ω3

j

}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ℓ ∈F a f
σ (AF 1 ↓ω1

j
,J 1

j ,ℓ
J 1

j ,KJ 1
j
)



= F a f
σ (AF 3 ↓ω3

j
,J 3

j ,ℓ
J 3

j ,KJ 3
j
)

■

Lemma 15. Let σ be a complete-based AF semantics. Let AF 1 = ⟨A1,K1⟩ be an AF and Ω1 =
{

ω1
1 , ...,ω

1
n
}

be any partition of AF 1. Let RAF 2 = Af2Raf(AF 1) be the non recursive RAF corresponding to AF 1, with
RAF 2 = ⟨A2,K2,s2, t2⟩ (see Definition 80 on page 121). Let Ω2 =

{
ω2

1 , ...,ω
2
n
}

be the partition of RAF 2 such

that: ∀ω2
j ∈Ω2,ω

2
j = ω1

j ∪
{

α|α ∈ K2 s.t. s(α) ∈ ω1
j

}
. Let AF 3 = Raf2Af(RAF 2) (with AF 3 = ⟨A3,K3⟩)

be the AF corresponding to the flattening of RAF 2. Let Ω3 =
{

ω3
1 , ...,ω

3
n
}

be the partition of AF 3 such that:

∀ω3
j ∈ Ω3,ω

3
j = ω2

j ∪
{
¬x|x ∈ (A2∪K2)∩ω2

j

}
∪
{

s(α).α|α ∈ K2∩ω2
j

}
. Let R ∈ {⊆,⊇,=} be a binary

relation over sets. The following property holds:

Lσ (AF 1) R
{
ℓ1∪ ...∪ℓn

∣∣∣ℓ j ∈F a f
σ (AF 1 ↓ω1

j
,J 1

j ,ℓ
J 1

j ,KJ 1
j
)
}

⇐⇒

Lσ (AF 3) R
{
ℓ1∪ ...∪ℓn

∣∣∣ℓ j ∈F a f
σ (AF 3 ↓ω3

j
,J 3

j ,ℓ
J 3

j ,KJ 3
j
)
}

With:

• J 3
j =

{
s(α).α|α ∈ K2 s.t. t(α) ∈ ω3

j and s(α).α /∈ ω3
j

}

287

• KJ 3
j
=
{
(s(α).α, t(α))|α ∈ K2 s.t. t(α) ∈ ω3

j and s(α).α /∈ ω3
j

}

• ℓJ 3
j being a labelling of J 3

j

Note: Unlike in Lemma 14 on the previous page, there is no constraint on ℓJ 3
j following the definition of

the decomposability of an AF semantics. See Definitions 19 and 22 on page 19.

Proof of Lemma 15. Given that σ is complete-based, we have:

∀ℓ′ ∈Lσ (AF 3),∀x ∈ (A2∪K2),


ℓ′(¬x) = in ⇐⇒ ℓ′(x) = out

ℓ′(¬x) = out ⇐⇒ ℓ′(x) = in

ℓ′(¬x) = und ⇐⇒ ℓ′(x) = und

(18.151)

Furthermore, given that all attacks in RAF 2 are valid and that σ is complete-based, we have:

∀ℓ′ ∈Lσ (AF 3),∀α ∈ K2,


ℓ′(α) = in

ℓ′(¬α) = out

ℓ′(s(α).α) = ℓ(s(α))

(18.152)

From Equations (18.151) and (18.152), from the definition of Raf2Af and from the fact that σ is
complete-based, we have:

ℓ

∪
{
(¬a,in)|a ∈ out (ℓ)

}
∪
{
(¬a,out)|a ∈ in (ℓ)

}
∪
{
(¬a,und)|a ∈ und (ℓ)

}
∪{(α,in)|α ∈ K2}

∪{(¬α,out)|α ∈ K2}

∪
{
(s(α).α,ℓ(s(α)))|α ∈ K2

}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ℓ ∈Lσ (AF 1)



= Lσ (AF 3) (18.153)

288

Now, from Lemma 14 on page 285, we have:

ℓ

∪
{
(¬a,in)|a ∈ out (ℓ)

}
∪
{
(¬a,out)|a ∈ in (ℓ)

}
∪
{
(¬a,und)|a ∈ und (ℓ)

}
∪{(α,in)|α ∈ K2}

∪{(¬α,out)|α ∈ K2}

∪
{
(s(α).α,ℓ(s(α)))|α ∈ K2

}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ℓ ∈
{
ℓ1∪ ...∪ℓn

∣∣∣ℓ j ∈F a f
σ (AF 1 ↓ω1

j
,J 1

j ,ℓ
J 1

j ,KJ 1
j
)
}


={

ℓ1∪ ...∪ℓn
∣∣∣ℓ j ∈F a f

σ (AF 3 ↓ω3
j
,J 3

j ,ℓ
J 3

j ,KJ 3
j
)
}

(18.154)

Finally, from Equations (18.153) and (18.154) on the previous page and on this page, we prove so that:

Lσ (AF 1) R
{
ℓ1∪ ...∪ℓn

∣∣∣ℓ j ∈F a f
σ (AF 1 ↓ω1

j
,J 1

j ,ℓ
J 1

j ,KJ 1
j
)
}

⇐⇒

Lσ (AF 3) R
{
ℓ1∪ ...∪ℓn

∣∣∣ℓ j ∈F a f
σ (AF 3 ↓ω3

j
,J 3

j ,ℓ
J 3

j ,KJ 3
j
)
}

■

Proof of Proposition 43 on page 160. Trivially we have:

σ is top-down (resp. bottom-up, fully) decomposable

=⇒

σ is top-down (resp. bottom-up, fully) decomposable w.r.t. SD-ra f -c

(18.155)

Let prove that the reciprocal proposition is also true.

Let σ be an AF complete-based semantics that is not top-down (resp. bottom-up, fully) decomposable.
With R a binary relation over sets being respectively “⊆”, “⊇”, “=”, we have so:

∃AF ∈Φa f and Ω, a partition of AF s.t.

Lσ (AF)�R
{
ℓ1∪ ...∪ℓn

∣∣∣ℓi ∈F a f
σ (AF ↓ωi ,Ji,ℓ

Ji ,KJi)
} (18.156)

289

Let AF 1 = ⟨A1,K1⟩ be an AF and Ω1 =
{

ω1
1 , ...,ω

1
n
}

be any partition of AF 1 such that they satisfy
Equation (18.156) on the previous page. Let RAF 2 = Af2Raf(AF 1) be the non recursive RAF corresponding
to AF 1, with RAF 2 = ⟨A2,K2,s2, t2⟩ (see Definition 80 on page 121). Let Ω2 =

{
ω2

1 , ...,ω
2
n
}

be the partition

of RAF 2 such that: ∀ω2
j ∈ Ω2,ω

2
j = ω1

j ∪
{

α|α ∈ K2 s.t. s(α) ∈ ω1
j

}
. Let AF 3 = Raf2Af(RAF 2) (with

AF 3 = ⟨A3,K3⟩) be the AF corresponding to the flattening of RAF 2. Let Ω3 =
{

ω3
1 , ...,ω

3
n
}

be the partition

of AF 3 such that: ∀ω3
j ∈Ω3,ω

3
j = ω2

j ∪
{
¬x|x ∈ (A2∪K2)∩ω2

j

}
∪
{

s(α).α|α ∈ K2∩ω2
j

}
.

Following Lemma 15 on page 287, we have:

Lσ (AF 3)�R
{
ℓ1∪ ...∪ℓn

∣∣∣ℓi ∈F a f
σ (AF 3 ↓ω3

j
,J 3

j ,ℓ
J 3

j ,KJ 3
j
)
}

(18.157)

Notice that Ω3 is a RAF-compliant partition of AF 3 (i.e. Ω3 ∈SD-ra f -c(AF 3)). As a consequence, if σ

is not top-down (resp. bottom-up, fully) decomposable then the following statement holds:

∃AF ∈ {Raf2Af(RAF)|RAF ∈Φra f } and Ω ∈SD-ra f -c(AF) s.t.

Lσ (AF)�R
{
ℓ1∪ ...∪ℓn

∣∣∣ℓi ∈F a f
σ (AF ↓ωi ,Ji,ℓ

Ji ,KJi)
} (18.158)

Considering the contrapositive of the previous implication, we prove so that:

σ is top-down (resp. bottom-up, fully) decomposable w.r.t. SD-ra f -c

=⇒

σ is top-down (resp. bottom-up, fully) decomposable

(18.159)

■

Proof of Proposition 44 on page 160. Trivial considering Proposition 43 on page 160 and the decompos-
ability properties of AF semantics shown in Table 2.1 on page 22. ■

Proof of Proposition 45 on page 161. Following the definitions of SUSCC (See Definition 27 on page 21)
and of Sra f -c-USCC (See Definition 109 on page 161), we have:

∀RAF ∈Φra f ,Sra f -c-USCC(Raf2Af(RAF))⊆SUSCC(Raf2Af(RAF)) (18.160)

That is, for any RAF RAF = ⟨A,K,s, t⟩, each partition of Raf2Af(RAF) produced by Sra f -c-USCC is also
a partition of Raf2Af(RAF) produced by SUSCC.

It follows that:

σ is top-down (resp. bottom-up, fully) decomposable w.r.t. SUSCC

=⇒

σ is top-down (resp. bottom-up, fully) decomposable w.r.t. Sra f -c-USCC

(18.161)

Let prove that the reciprocal proposition is also true.

290

Let σ be an AF complete-based semantics that is not top-down (resp. bottom-up, fully) decomposable
w.r.t. SUSCC. With R a binary relation over sets being respectively “⊆”, “⊇”, “=”, we have so:

∃AF ∈Φa f and Ω ∈SUSCC(AF) s.t.

Lσ (AF)�R
{
ℓ1∪ ...∪ℓn

∣∣∣ℓi ∈F a f
σ (AF ↓ωi ,Ji,ℓ

Ji ,KJi)
} (18.162)

Let AF 1 = ⟨A1,K1⟩ be an AF and Ω1 ∈SUSCC(AF 1) (with Ω1 =
{

ω1
1 , ...,ω

1
n
}

) be a partition of AF 1
such that they satisfy Equation (18.162). Let RAF 2 = Af2Raf(AF 1) be the non recursive RAF correspond-
ing to AF 1, with RAF 2 = ⟨A2,K2,s2, t2⟩ (see Definition 80 on page 121). Let Ω2 =

{
ω2

1 , ...,ω
2
n
}

be the

partition of RAF 2 such that: ∀ω2
j ∈Ω2,ω

2
j = ω1

j ∪
{

α|α ∈ K2 s.t. s(α) ∈ ω1
j

}
. Let AF 3 = Raf2Af(RAF 2)

(with AF 3 = ⟨A3,K3⟩) be the AF corresponding to the flattening of RAF 2. Let Ω3 =
{

ω3
1 , ...,ω

3
n
}

be the

partition of AF 3 such that: ∀ω3
j ∈Ω3,ω

3
j = ω2

j ∪
{
¬x|x ∈ (A2∪K2)∩ω2

j

}
∪
{

s(α).α|α ∈ K2∩ω2
j

}
.

Following Lemma 15 on page 287, we have:

Lσ (AF 3)�R
{
ℓ1∪ ...∪ℓn

∣∣∣ℓi ∈F a f
σ (AF 3 ↓ω3

j
,J 3

j ,ℓ
J 3

j ,KJ 3
j
)
}

(18.163)

Notice that Ω3 is a RAF-compliant partition of AF 3 (i.e. Ω3 ∈ SD-ra f -c(AF 3)). As a consequence,
following the definition of Ω1, of Ω2 and of Ω3, we have: Ω3 ∈Sra f -c-USCC(AF 3).

It follows then that, if σ is not top-down (resp. bottom-up, fully) decomposable w.r.t. SUSCC, the
following statement holds:

∃AF ∈ {Raf2Af(RAF)|RAF ∈Φra f } and Ω ∈Sra f -c-USCC(AF) s.t.

Lσ (AF)�R
{
ℓ1∪ ...∪ℓn

∣∣∣ℓi ∈F a f
σ (AF ↓ωi ,Ji,ℓ

Ji ,KJi)
} (18.164)

Considering the contrapositive of the previous implication, we prove so that:

σ is top-down (resp. bottom-up, fully) decomposable w.r.t. Sra f -c-USCC

=⇒

σ is top-down (resp. bottom-up, fully) decomposable w.r.t. SUSCC

(18.165)

■

Proof of Proposition 46 on page 161. Trivial considering Proposition 45 on page 161 and the decompos-
ability properties of AF semantics shown in Table 2.1 on page 22. ■

Proof of Proposition 47 on page 162. Trivial considering Propositions 43 and 46 on page 160 and on page 161
and the decomposability properties of AF semantics shown in Table 2.1 on page 22. ■

Bibliography

[1] Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi. Efficient computation of extensions for
dynamic abstract argumentation frameworks: An incremental approach. In Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI, pages 49–55, 2017.

[2] Mario Alviano. Ingredients of the argumentation reasoner pyglaf: Python, circumscription, and glucose
to taste. In RCRA@ AI* IA, pages 1–16, 2017.

[3] Mario Alviano. The pyglaf argumentation reasoner. In OASIcs-OpenAccess Series in Informatics,
volume 58. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[4] Leila Amgoud, Jonathan Ben-Naim, Dragan Doder, and Srdjan Vesic. Acceptability semantics for
weighted argumentation frameworks. In Proceedings of the International Joint Conference on Artificial
Intelligence, IJCAI, volume 2017, 2017.

[5] P. Baroni, F. Cerutti, P. E. Dunne, and M. Giacomin. Computing with infinite argumentation frame-
works: The case of AFRAs. In Proc. of TAFA, Revised Selected Papers, pages 197–214, 2011.

[6] P. Baroni, F. Cerutti, M. Giacomin, and G. Guida. AFRA: Argumentation framework with recursive
attacks. Intl. Journal of Approximate Reasoning, 52:19–37, 2011.

[7] P. Baroni and M. Giacomin. Refining SCC decomposition in argumentation semantics : a first investi-
gation. Citeseer, 2006.

[8] Pietro Baroni, Guido Boella, Federico Cerutti, Massimiliano Giacomin, Leendert Van Der Torre, and
Serena Villata. On the input/output behavior of argumentation frameworks. Artificial Intelligence,
217:144–197, 2014.

[9] Pietro Baroni, Guido Boella, Federico Cerutti, Massimiliano Giacomin, Leendert W. N. van der Torre,
and Serena Villata. On input/output argumentation frameworks. In COMMA, pages 358–365, 2012.

[10] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argumentation se-
mantics. Knowledge Eng. Review, 26(4):365–410, 2011.

[11] Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida. SCC-recursiveness: a general schema for
argumentation semantics. Artificial Intelligence, 168(1-2):162–210, 2005.

[12] H. Barringer, D. M. Gabbay, and J. Woods. Temporal dynamics of support and attack networks : From
argumentation to zoology. In D. Hutter and W. Stephan, editors, Mechanizing Mathematical Reasoning,
Essays in Honor of J. H. Siekmann on the Occasion of His 60th Birthday. LNAI 2605, pages 59–98.
Springer Verlag, 2005.

291

292

[13] Philippe Besnard, Claudette Cayrol, and Marie-Christine Lagasquie-Schiex. Logical theories and ab-
stract argumentation: A survey of existing works. Argument and Computation, 11(1-2):41–102, May
2020.

[14] Martin Caminada. On the issue of reinstatement in argumentation. In JELIA, pages 111–123, 2006.

[15] Álvaro Carrera and Carlos A Iglesias. A systematic review of argumentation techniques for multi-agent
systems research. Artificial Intelligence Review, 44(4):509–535, 2015.

[16] C. Cayrol, A. Cohen, and M-C. Lagasquie-Schiex. Towards a new framework for recursive interactions
in abstract bipolar argumentation. In Proc. of COMMA, pages 191–198. IOS Press, 2016.

[17] C. Cayrol, J. Fandinno, L. Fariñas del Cerro, and M.-C. Lagasquie-Schiex. Valid attacks in Argumenta-
tion Frameworks with Recursive Attacks (long version). Rapport de recherche IRIT/RR–2019–02–FR,
IRIT, 2019.

[18] Claudette Cayrol, Jorge Fandinno, Luis Fariñas del Cerro, and Marie-Christine Lagasquie-Schiex.
Valid attacks in argumentation frameworks with recursive attacks. Annals of Mathematics and Ar-
tificial Intelligence, 89(1):53–101, November 2020.

[19] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Logical Encoding of Argumentation Frame-
works with Higher-order Attacks and Evidential Supports. International Journal on Artificial Intelli-
gence Tools, 29(03n04):2060003, June 2020.

[20] F. Cerutti, M. Giacomin, and M. Vallati. Exploiting planning problems for generating challenging
abstract Arg. Frameworks. Second ICCMA edition (2017). http: // argumentationcompetition.
org/ 2017/ Planning2AF. pdf .

[21] F. Cerutti, M. Giacomin, and M. Vallati. Generating structured argumentation frameworks: Afbench-
gen2. In COMMA, pages 467–468, 2016.

[22] F. Cerutti, M. Vallati, M. Giacomin, and T. Zanetti. ArgSemSAT-2017. Second ICCMA edition (2017).
http://argumentationcompetition.org/2017/ArgSemSAT.pdf.

[23] Federico Cerutti, Paul E Dunne, Massimiliano Giacomin, and Mauro Vallati. A SAT-based approach
for computing extensions in abstract argumentation. In Second International Workshop on Theory and
Applications of Formal Argumentation (TAFA-13), 2013.

[24] Federico Cerutti, Massimiliano Giacomin, Mauro Vallati, and Marina Zanella. An SCC recursive meta-
algorithm for computing preferred labellings in abstract argumentation. In Chitta Baral, Giuseppe De
Giacomo, and Thomas Eiter, editors, Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-24, 2014.
AAAI Press, 2014.

[25] Federico Cerutti, Ilias Tachmazidis, Mauro Vallati, Sotirios Batsakis, Massimiliano Giacomin, and
Grigoris Antoniou. Exploiting parallelism for hard problems in abstract argumentation. In AAAI,
pages 1475–1481, 2015.

[26] Günther Charwat, Wolfgang Dvořák, Sarah A Gaggl, Johannes P Wallner, and Stefan Woltran. Methods
for solving reasoning problems in abstract argumentation–a survey. Artificial intelligence, 220:28–63,
2015.

http://argumentationcompetition.org/2017/Planning2AF.pdf
http://argumentationcompetition.org/2017/Planning2AF.pdf
http://argumentationcompetition.org/2017/ArgSemSAT.pdf

293

[27] OHAAI Collaboration, Federico Castagna, Timotheus Kampik, Atefeh Keshavarzi Zafarghandi,
Mickaël Lafages, Jack Mumford, Christos T. Rodosthenous, Samy Sá, Stefan Sarkadi, Joseph Sin-
gleton, Kenneth Skiba, and Andreas Xydis. Online handbook of argumentation for ai: Volume 1,
2020.

[28] Stephen A Cook. An overview of computational complexity. Communications of the ACM, 26(6):400–
408, 1983.

[29] Sylvie Coste-Marquis, Sébastien Konieczny, Pierre Marquis, and Mohand Akli Ouali. Weighted attacks
in argumentation frameworks. In Gerhard Brewka, Thomas Eiter, and Sheila A. McIlraith, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the Thirteenth International
Conference, KR 2012, Rome, Italy, June 10-14, 2012. AAAI Press, 2012.

[30] M. Diller. Traffic networks become argumentation frameworks. Second ICCMA edition (2017). http:
// argumentationcompetition. org/ 2017/ Traffic. pdf .

[31] S. Doutre, M. Lafages, and M-C. Lagasquie-Schiex. A distributed and clustering-based algorithm for
the enumeration problem in abstract argumentation. In Proc. of PRIMA, pages 87–105. Springer, 2019.

[32] Sylvie Doutre, Mickaël Lafages, and Marie-Christine Lagasquie-Schiex. A Distributed and Clustering-
based Algorithm for the Enumeration Problem in Abstract Argumentation (JIAF 2020). In 14èmes
Journées d’Intelligence Artificielle Fondamentale (JIAF 2020), Actes des JIAF 2020, pages 99–108,
Angers, France, 2020. AFIA.

[33] Sylvie Doutre, Mickaël Lafages, and Marie-Christine Lagasquie-Schiex. Argumentation Frameworks
with Higher-Order Attacks: Complexity results. Research Report IRIT/RR–2020–03–FR, Institut
recherche en informatique de toulouse (IRIT), 2020.

[34] Sylvie Doutre, Mickaël Lafages, and Marie-Christine Lagasquie-Schiex. Argumentation Frameworks
with Higher-Order Attacks: Labelling Semantics. Research Report IRIT/RR–2020–01–FR, IRIT -
Institut de recherche en informatique de Toulouse, 2020.

[35] Sylvie Doutre, Mickaël Lafages, and Marie-Christine Lagasquie-Schiex. Argumentation Frameworks
with Higher-Order Attacks: Labellings and Complexity. In Miltos Alamaniotis and Shimei Pan, edi-
tors, 32nd International Conference on Tools with Artificial Intelligence (ICTAI 2020), Proceedings of
ICTAI 2020, pages 1210–1217, Chicago (virtual conference), United States, November 2020. IEEE,
IEEE.

[36] Sylvie Doutre, Mickaël Lafages, and Marie-Christine Lagasquie-Schiex. Argumentation Frameworks
with Higher-Order Attacks: Semantics and Complexity. 17th International Conference on Principles
of Knowledge Representation and Reasoning, September 2020. Poster.

[37] Sylvie Doutre, Mickaël Lafages, and Marie-Christine Lagasquie-Schiex. AFDivider: Manual and
Documentation. Research Report IRIT/RR–2022–02–FR, IRIT - Institut de recherche en informatique
de Toulouse, 2022.

[38] Sylvie Doutre and Jérôme Mengin. Preferred extensions of argumentation frameworks: Query, answer-
ing, and computation. In International Joint Conference on Automated Reasoning, pages 272–288.
Springer, 2001.

http://argumentationcompetition.org/2017/Traffic.pdf
http://argumentationcompetition.org/2017/Traffic.pdf

294

[39] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence, 77(2):321–357, 1995.

[40] Wolfgang Dvořák and Paul E Dunne. Computational problems in formal argumentation and their
complexity. Journal of Logics and their Applications, 4(8):2557–2622, 2017.

[41] Wolfgang Dvorak and Paul E. Dunne. Computational problems in formal argumentation and their
complexity. In Handbook of formal argumentation, pages 631–688. College publication, 2018.

[42] Wolfgang Dvorák, Matti Järvisalo, and Johannes P Wallner. Cegartix v2017-3-13: A SAT-based
counter-example guided argumentation reasoning tool. Second ICCMA, 2017.

[43] Wolfgang Dvořák, Reinhard Pichler, and Stefan Woltran. Towards fixed-parameter tractable algorithms
for abstract argumentation. Artificial Intelligence, 186:1–37, 2012.

[44] Wolfgang Dvorák, Anna Rapberger, Johannes P Wallner, and Stefan Woltran. Aspartix-v19-system
description for iccma’19. Third ICCMA edition (2019). http: // argumentationcompetition.
org/ 2019/ papers/ ICCMA19_ paper_ 7. pdf .

[45] Matthew Foreman and Akihiro Kanamori. Handbook Set Theory. Springer, 2006.

[46] D. M. Gabbay. Semantics for higher level attacks in extended argumentation frames. Studia Logica,
93:357–381, 2009.

[47] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.). Johns Hopkins University
Press, 1996.

[48] Jonathan L. Gross, Jay Yellen, and Ping Zhang. Handbook of Graph Theory, Second Edition. Chapman
& Hall/CRC, 2nd edition, 2013.

[49] Mickaël Lafages, Sylvie Doutre, and Marie-Christine Lagasquie-Schiex. Clustering and distributed
computing in abstract argumentation. Rapport de recherche IRIT/RR–2018–11–FR, IRIT, Université
Paul Sabatier, Toulouse, décembre 2018.

[50] Jean-Marie Lagniez, Emmanuel Lonca, and Jean-Guy Mailly. Coquiaas v3. 0 iccma 2019 solver de-
scription. System descriptions of the Third International Competition on Computational Models of
Argumentation (ICCMA’19), 2019.

[51] Daniel Le Berre and Stéphanie Roussel. Sat4j 2.3.2: on the fly solver configuration. Journal on
Satisfiability, Boolean Modeling and Computation, 8(3-4):197–202, 2012.

[52] Beishui Liao. Toward incremental computation of argumentation semantics: A decomposition-based
approach. Annals of Mathematics and Artificial Intelligence, 67(3-4):319–358, 2013.

[53] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–
137, 1982.

[54] Fragkiskos D Malliaros and Michalis Vazirgiannis. Clustering and community detection in directed
networks: A survey. Physics Reports, 533(4):95–142, 2013.

[55] Lars Malmqvist. Yonas: An experimental neural argumentation solver. International Competition on
Computational Models of Argumentation (ICCMA), 2019.

http://argumentationcompetition.org/2019/papers/ICCMA19_paper_7.pdf
http://argumentationcompetition.org/2019/papers/ICCMA19_paper_7.pdf

295

[56] Keith Robert Matthews. Elementary linear algebra. University of Queenland, 2013.

[57] S. Modgil. An abstract theory of argumentation that accommodates defeasible reasoning about prefer-
ences. In Proc. of ECSQARU, pages 648–659, 2007.

[58] S. Modgil. Reasoning about preferences in argumentation frameworks. Artificial Intelligence,
173:901–934, 2009.

[59] A. Niskanen and M. Järvisalo. µ-toksia (version 2019-10-31): SAT-based solver for static and dynamic
argumentation frameworks. Third ICCMA edition (2019). http://argumentationcompetition.
org/2019/papers/ICCMA19_paper_11.pdf.

[60] Fuan Pu, Hang Ya, and Guiming Luo. argmat-dvisat: A division-based algorithm framework for
solving argumentation problems using SAT. The Second International Competition on Computational
Models of Argumentation (ICCMA’17), 2017.

[61] Fuan Pu, Hang Ya, and Guiming Luo. argmat-sat: Applying SAT solvers for argumentation problems
based on boolean matrix algebra. The Second International Competition on Computational Models of
Argumentation (ICCMA’17), 2017.

[62] Patrick Saint-Dizier. Challenges of argument mining: generating an argument synthesis based on the
qualia structure. In 9th International Conference on Natural Language Generation (INLG 2016), pages
pp–79, 2016.

[63] Satu Elisa Schaeffer. Graph clustering. Computer science review, 1(1):27–64, 2007.

[64] Edward Tsang. Foundations of constraint satisfaction: the classic text. BoD–Books on Demand, 2014.

[65] Alan Mathison Turing. On computable numbers, with an application to the entscheidungsproblem.
Proceedings of the London mathematical society, 2(1):230–265, 1937.

[66] Jan Van Leeuwen. Handbook of theoretical computer science (vol. A) algorithms and complexity. Mit
Press, 1991.

[67] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007.

[68] Johannes Peter Wallner, Georg Weissenbacher, and Stefan Woltran. Advanced SAT techniques for
abstract argumentation. In International Workshop on Computational Logic in Multi-Agent Systems,
pages 138–154. Springer, 2013.

http://argumentationcompetition.org/2019/papers/ICCMA19_paper_11.pdf
http://argumentationcompetition.org/2019/papers/ICCMA19_paper_11.pdf

